The Critical Features and the Mechanism of Inhibition of a Kinase Interaction Motif-based Peptide Inhibitor of JNK*

Renae K. Barr‡§, Ingrid Boehm‡¶, Paul V. Attwood‡, Paul M. Watt‡‡, and Marie A. Bogoyevitch‡ ‡‡§§

From the ‡Department of Biochemistry & Molecular Biology and the §Center for Child Health Research, The University of Western Australia, Crawley 6009, Western Australia and the ‡‡Western Australian Institute for Medical Research, Perth 6000, Australia.

Received for publication, February 27, 2004, and in revised form, June 2, 2004 Published, JBC Papers in Press, June 18, 2004, DOI 10.1074/jbc.M402181200

We previously reported that a small peptide based on amino acids 143–153 of the c-Jun N-terminal kinase (JNK)-binding domain of JIP-1 functioned as an in vitro inhibitor of JNK activity. This peptide (TI-JIP: RP-KRPTTLNLF) resembles the kinase-interaction motif (KIM = (K/R)2–3(X1–6)L(II)/I(II)), which is common to upstream activators, downstream substrates, phosphatases, and scaffold proteins present in MAPK cascades. In this study, we characterized the mechanism of JNK inhibition by this peptide and further investigated the biochemical features of this peptide resulting in potent JNK inhibition. We also tested various KIM-based peptides for their ability to inhibit JNK activity. TI-JIP was found to be competitive with respect to the phosphoacceptor substrate c-Jun (Kᵢ = 0.39 ± 0.08 μM), and exhibit mixed (non-competitive) inhibition with respect to ATP. All seven substitutions of Pro-5 we tested significantly reduced the JNK inhibition, as did altering the Pro-5 to Leu-8 spacing. When we independently tested eight substitutions of either Thr-6 or Thr-7, only one substitution in each position was well tolerated. Furthermore, peptides based on the KIMs from other proteins were significantly less potent JNK inhibitors than TI-JIP, including a peptide from the JNK interactor Sab that contained all critical inhibitory residues present in TI-JIP. Therefore, despite having previously identified Arg-4, Pro-5, Leu-8, and Leu-10 in TI-JIP as independently critical for mediating JNK inhibition, we find their presence in other 11-mer peptides is not sufficient for JNK inhibition. TI-JIP is therefore a unique KIM-based inhibitor of JNK activity.

The c-Jun N-terminal kinases (JNKs)³/stress-activated protein kinases (SAPKs) are a subfamily of mitogen-activated protein kinases (MAPKs). In mammals, these Ser/Thr protein kinases are activated by various stimuli including growth factors, cytokines, and cellular stresses (1–5). JNK activation requires the phosphorylation of Thr-183 and Tyr-185 in its activation loop by the upstream kinases MKK4/SEK1/JNKK1 and MKK7/SEK2/JNKK2 (6). Following their activation, JNKs phosphorylate nuclear substrates including c-Jun, ATF-2, and Elk-1, and non-nuclear substrates such as Bcl-2 family members. This allows JNK to contribute to diverse biological processes including cell proliferation, differentiation, survival, and death (7).

Selective JNK or JNK pathway inhibitors have been developed following the implication of JNK signaling in various disease states. CEP-1347 is an orally active inhibitor of the mixed lineage kinases (MLKs) that function upstream in the JNK pathway (8). It has been used to inhibit JNK activation both in vitro and in vivo (9–12) and is currently in Phase II clinical trials for the treatment of Parkinson’s disease, but is not commercially available for use as a tool to further investigate the JNK pathway. SP600125 was reported to be a reversible ATP-competitive JNK inhibitor with greater than 20-fold selectivity for JNK versus a range of kinases and enzymes tested (13). However, Bain et al. (14) recently reported that SP600125 was a relatively weak inhibitor of JNK isoforms, inhibiting JNK1α1 and JNK2α2 with IC₅₀ values of 5.8 and 6.1 μM, respectively. Moreover, 13 other protein kinases in the panel were inhibited with similar or greater potency by SP600125 (14). Given the limited availability of CEP-1347, and the relatively poor specificity of SP600125, there is a need for the development of potent, selective JNK inhibitors to investigate the intracellular actions of JNK.

Numerous groups have identified a conserved kinase-interaction motif (KIM) in the primary sequences of MAPK-interacting molecules, whether they be from the JNK, p38, or ERK MAPK pathways (15–18). The consensus KIM sequence is (K/R)₂–3(X₁–₆)L(II)/I(II) and therefore consists of a cluster of basic amino acids followed by hydrophobic amino acids. Both the basic and hydrophobic residues are important for the MAPK docking interaction, and the KIM has been demonstrated to be both necessary and sufficient for binding to MAPKs (19).

Of particular interest is the interaction between JNKs and JNK-interacting protein; TI-JIP, truncated inhibitory region of JIP; KIM, kinase interaction motif; MAPK, mitogen-activated protein kinase; IL-1β, interleukin-1β; Kᵢ, dissociation constant for the JNK-TI-JIP complex; Kᵢ₅₀, dissociation constant for the JNK-TI-JIP complex; MKK, MAPK kinase; CEP-1347, Cephalon Incorporated library compound number 1347; SP600125, Signal Pharmaceuticals library compound number 600125; ERK, extracellular signal-regulated kinase; GST, glutathione S-transferase; X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside.

* This work was supported in part by a Discovery Project Grant by the Australian Research Council and the Neurotrauma Program of WAIMR. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported by a Hackett at UWA Postgraduate Student Scholarship and a Woodside Neurotrauma Ph.D. Excellence Award.

¶ Supported by a School of Biomedical and Chemical Sciences Scholarship.

** Present address: Phylogica Ltd., 100 Roberts Rd., Subiaco 6008, Australia.

†† To whom correspondence should be addressed: Cell Signalling Laboratory Biochemistry & Molecular Biology (M310) School of Biomedical & Chemical Sciences, Faculty of Life & Physical Sciences University of Western Australia, Crawley, Perth W.A. 6009, Australia.

Tel.: 61-9-6488-1348; Fax: 61-9-6488-1148; E-mail: marieb@cyllene.uwa.edu.au.

The abbreviations used are: JNK, c-Jun N-terminal kinase; JIP, protein kinases (MAPKs). In mammals, these Ser/Thr protein kinases are activated by various stimuli including growth factors, cytokines, and cellular stresses (1–5). JNK activation requires the phosphorylation of Thr-183 and Tyr-185 in its activation loop by the upstream kinases MKK4/SEK1/JNKK1 and MKK7/SEK2/JNKK2 (6). Following their activation, JNKs phosphorylate nuclear substrates including c-Jun, ATF-2, and Elk-1, and non-nuclear substrates such as Bcl-2 family members. This allows JNK to contribute to diverse biological processes including cell proliferation, differentiation, survival, and death (7).

Selective JNK or JNK pathway inhibitors have been developed following the implication of JNK signaling in various disease states. CEP-1347 is an orally active inhibitor of the mixed lineage kinases (MLKs) that function upstream in the JNK pathway (8). It has been used to inhibit JNK activation both in vitro and in vivo (9–12) and is currently in Phase II clinical trials for the treatment of Parkinson’s disease, but is not commercially available for use as a tool to further investigate the JNK pathway. SP600125 was reported to be a reversible ATP-competitive JNK inhibitor with greater than 20-fold selectivity for JNK versus a range of kinases and enzymes tested (13). However, Bain et al. (14) recently reported that SP600125 was a relatively weak inhibitor of JNK isoforms, inhibiting JNK1α1 and JNK2α2 with IC₅₀ values of 5.8 and 6.1 μM, respectively. Moreover, 13 other protein kinases in the panel were inhibited with similar or greater potency by SP600125 (14). Given the limited availability of CEP-1347, and the relatively poor specificity of SP600125, there is a need for the development of potent, selective JNK inhibitors to investigate the intracellular actions of JNK.

Numerous groups have identified a conserved kinase-interaction motif (KIM) in the primary sequences of MAPK-interacting molecules, whether they be from the JNK, p38, or ERK MAPK pathways (15–18). The consensus KIM sequence is (K/R)₂–3(X₁–₆)L(II)/I(II) and therefore consists of a cluster of basic amino acids followed by hydrophobic amino acids. Both the basic and hydrophobic residues are important for the MAPK docking interaction, and the KIM has been demonstrated to be both necessary and sufficient for binding to MAPKs (19).

Of particular interest is the interaction between JNKs and JNK-interacting protein; TI-JIP, truncated inhibitory region of JIP; KIM, kinase interaction motif; MAPK, mitogen-activated protein kinase; IL-1β, interleukin-1β; Kᵢ, dissociation constant for the JNK-TI-JIP complex; Kᵢ₅₀, dissociation constant for the JNK-TI-JIP complex; MKK, MAPK kinase; CEP-1347, Cephalon Incorporated library compound number 1347; SP600125, Signal Pharmaceuticals library compound number 600125; ERK, extracellular signal-regulated kinase; GST, glutathione S-transferase; X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside.
Peptides were found to protect pancreatic cells from apoptotic cell death induced by IL-1β. In addition, equivalent D retro-inverso peptides conferred full protection against apoptosis during 2 weeks of continual treatment with IL-1β (21).

The success of these inhibitors is further highlighted by the use of the cell-permeable, protease-resistant, IB1/JIP-1-based TI-JIP peptide to protect against excitotoxicity and cerebral ischemia in vivo (22) and the use of this peptide to protect against both aminoglycoside and acidic trauma-induced auditory hair cell death and hearing loss (23). This peptide has high specificity for inhibiting JNK because 10 μM peptide did not inhibit the activity of 40 different kinases, tested, and when 500 μM peptide was tested, it reduced substrate phosphorylation by six different kinases by no more than 1% (22).

Although the IB1/JIP-1-based peptide inhibitors have proved successful in a number of instances, their mode of JNK inhibition remains undefined. Therefore, we used kinetic assays to characterize the mechanism of JNK inhibition by TI-JIP, and we used a series of substituted TI-JIP peptides to clarify the biochemical features mediating its potent JNK inhibition. We show that the TI-JIP peptide is competitive with respect to the protein substrate c-Jun, and non-competitive with respect to ATP. In addition, Pro-5 could not be replaced by 7 tested substitutions, and the Pro-5 to Leu-8 spacing was critical for potent JNK inhibition. Thr-6 and Thr-7 demonstrated a limited tolerance for change. In addition, the presence of all critical inhibitory residues in a peptide based on the KIM of Sab (24) was not sufficient for potent JNK inhibition. Taken together, these results suggest that TI-JIP is a KIM that is a unique and potent inhibitor of JNK activity.

EXPERIMENTAL PROCEDURES

Cell Transfection and In Vitro JNK Activity Assays—Procedures for cell transfection and in vitro JNK activity assays have previously been described in detail (20). Briefly, COS cells were transfected with pcMV-FLAG-JNK1 and then hyperosmotically shocked by incubation in 0.5 M sorbitol for 30 min. Following cell lysis, activated FLAG-JNK1 was immunoprecipitated and pretreated with inhibitor peptides for 10 min at 30 °C. JNK activity toward a GST-c-Jun(1–135) substrate was then assayed in the presence of [γ-32P]ATP for 30 min at 30 °C. The phosphorylated substrate was separated by SDS-PAGE, visualized by autoradiography, and quantitated by Cerenkov counting. For all assays, incubations in the absence of inhibitor peptides and incubations with the TI-JIP peptide were routinely performed as controls. Data from each experiment were expressed relative to the uninhibited control. In some figures, images have been spliced to simplify viewing, but all lanes come from a single experiment.

Kinetic Assays—Assays to determine the kinetics of JNK inhibition by TI-JIP were carried out in 30-μl volumes containing the final concentrations of the following: 20 mM HEPES pH 7.6, 20 mM MgCl₂, 20 mM β-glycerophosphate, 500 μM dithiothreitol, 100 μM sodium orthovanadate, 2.9 mM active JNK1α (Upstate Biotechnology Inc.), and 7–31.5 μM GST-c-Jun(1–135). The reactions were pretreated with TI-JIP inhibitor (0–4 μM, as indicated) in the absence of ATP for 10 min at 30 °C. Reactions were initiated with the addition of 2 μCi [γ-32P]ATP (3000 Ci/mmol) and 0.5–100 μM ATP (final concentration) and incubated for 15 min at 30 °C. Where the concentration of GST-c-Jun(1–135) was varied, the ATP concentration was held constant at 50 μM. Where the ATP concentration was varied, the GST-c-Jun(1–135) concentration was held constant at 8 μM. Under these conditions, less than 10% of substrate was converted to product. Reactions were stopped with 15 μl of 3× SDS sample buffer, and then the phosphorylated product was separated by SDS-PAGE and quantitated by Cerenkov counting.

Peptide Synthesis—All peptides were commercially synthesized by Mimotopes, with a free amine at the N terminus and an amide group at the C terminus. The TI-JIP peptide used for determination of kinetic parameters was synthesized individually, whereas other peptides were synthesized as a “PEPSET” using multiple technology, which allowed parallel synthesis of multiple peptides with replacement of amino acids within each peptide sequence to assess the JNK inhibition afforded by variant TI-JIP peptides and other KIM-based peptides. Peptides were prepared in Me₂SO and solubilized by brief sonication, then incubation at 37 °C for 30–60 min. All peptides remained soluble under the assay conditions. TI-JIP variant sequences are specified in individual figures, and Table I lists the sequences of peptides not based on the TI-JIP sequence including those based on the KIMs of MKK4, MKK7, MKK1, MKK3, MKK6, MEF2A/C, NFAT4, PTP-SL, and Sab.

Plasmids and Yeast Strains—All bait constructs for yeast two-hybrid analysis were made by first cloning the sequence encoding TI-JIP into...
mixed inhibition: \(v = V[S][S](1 + [\text{JI}]/K_{I}) + K_s(1 + [\text{JI}]/K_{I})) \) (Eq. 3)

where \(V \) is the maximum velocity, \([S] \) is the concentration of the varied substrate (either ATP or GST-c-Jun(1–135)), \(K_s \) is the apparent \(K_m \) of the varied substrate, \(K_i \) is the dissociation constant for the JNK-TI-JIP complex and \(K_s \) is the dissociation constant for the JNK-S-TI-JIP complex. From these fits, estimates of \(K_s \) and \(K_i \) and standard deviations of these estimates were obtained.

RESULTS

JNK Inhibition by TI-JIP Is Competitive with Respect to the Protein Substrate, and Non-competitive with Respect to ATP—We performed kinetic assays using activated JNK1a1 where either GST-c-Jun(1–135) or ATP concentrations were varied at a fixed concentration of the other substrate in the presence or absence of TI-JIP. Data obtained from experiments performed at fixed ATP concentration, where GST-c-Jun(1–135) concentrations were varied in the presence of increasing concentrations of TI-JIP, were indicative of competitive inhibition (Fig. 1A). A fit of Equation 2 to the data gave a value of \(K_i \) of 0.39 ± 0.08 \(\mu \)M. When a fit of Equation 3 was attempted, the estimate of \(K_{IS} \) obtained was many orders of magnitude greater than \(K_i \), which indicates that the affinity of TI-JIP for the JNK-GST-c-Jun(1–135) complex is negligible. Similar experiments were performed with constant GST-c-Jun(1–135) concentration and varied ATP concentrations, at several concentrations of TI-JIP (Fig. 1B). When Equation 3 was fitted to the data from these experiments, the estimates of \(K_i \) and \(K_{IS} \) obtained were 1.7 ± 0.7 and 1.8 ± 0.2 \(\mu \)M, respectively, which indicates that TI-JIP has similar affinity for both JNK and JNK-ATP. Therefore, it appears that TI-JIP competes with phosphoacceptor substrate for binding to JNK, and that the interaction between TI-JIP and JNK occurs independently of binding to ATP and JNK.

Investigating the Importance of Pro-5 and the Pro-5 to Leu-8 Spacing within TI-JIP for JNK Inhibition—In our previous alanine-scanning replacement of the TI-JIP sequence, we identified Arg-4, Pro-5, Leu-8, and Leu-10 as independently critical for mediating JNK inhibition (20). Arg-4, Leu-8, and Leu-10 reside within the highly conserved basic and hydrophobic regions of the KIM of which are important for docking to MAPKs, so their replacement with alanine most likely disrupts the interaction between TI-JIP and JNK. However, we found that Pro-5 was also critical for mediating the inhibition by TI-JIP, although it is not a conserved feature of the reported KIMS. Therefore, we investigated the tolerance for change at this position within the 11-amino acid peptide, to assess the importance of Pro-5 for JNK inhibition by TI-JIP. Using JNK activity assays, we assessed the inhibition by a series of TI-JIP Pro-5 variants, with either hydrophobic (small/bulky) or basic substitutions at this position. We found that these seven substitutions at position 5 resulted in peptides that produced significantly less JNK inhibition than TI-JIP (Fig. 2A). Therefore, despite its lack of conservation within the KIM consensus sequence, Pro-5 appeared critical for the inhibition of JNK by TI-JIP.

Within the KIM consensus sequence, there is also variability in the spacing between the conserved basic N-terminal residue and the first conserved hydrophobic C-terminal residue. This prompted an investigation into whether the spacing between these residues affected the ability of TI-JIP-based peptides to inhibit JNK activity. Given the critical nature of Pro-5 for JNK inhibition, we varied the Pro-5 to Leu-8 spacing, rather than the Arg-4 to Leu-8 spacing. Using JNK activity assays, we tested a series of TI-JIP-based peptides with 0–4 residues separating Pro-5 and Leu-8. Like the Pro-5 variant peptides, these peptides resulted in significantly less JNK inhibition.
A KIM-based Peptide Inhibitor of JNK Activity

Fig. 1. TI-JIP is competitive with respect to the phosphoacceptor substrate c-Jun, and non-competitive with respect to ATP, for binding JNK. A, active JNK1α1 (2.9 nm) and GST-c-Jun-(1–135) (7.7–31.5 μM) were preincubated with TI-JIP inhibitor (▲, 0 μM; ○, 1 μM; ●, 2 μM; △, 4 μM) in the absence of ATP for 10 min at 30 °C. Reactions were initiated with the addition of 2 μCi [γ-32P]ATP (3000 Ci/mmol) and 50 μM ATP (final concentration) and incubated for 15 min at 30 °C. Reactions were stopped with 3× SDS sample buffer and then the phosphorylated substrate was separated by SDS-PAGE and quantitated by Cerenkov counting. The lines shown and the estimate of K_{i} were derived from a non-linear least squares fit of Equation 2 to the data. B, active JNK1α1 (2.9 nm) and GST-c-Jun-(1–135) (8 μM) were preincubated with TI-JIP inhibitor (●, 0 μM; ○, 1 μM; ▲, 2 μM; △, 4 μM) in the absence of ATP for 10 min at 30 °C. Reactions were initiated with the addition of 2 μCi [γ-32P]ATP (3000 Ci/mmol) and 0.5–100 μM ATP (final concentration) and incubated for 15 min at 30 °C. Reactions were stopped with 3× SDS sample buffer and then the phosphorylated substrate was separated by SDS-PAGE and quantitated by Cerenkov counting. The lines shown were derived from a non-linear least squares fit of Equation 3 to the data.

than the TI-JIP peptide (Fig. 2B). Therefore, we concluded that in addition to the presence of Pro-5, the spacing between Pro-5 and Leu-8 was an essential feature allowing potent inhibition of JNK by TI-JIP.

Investigating the Tolerance for Change at Thr-6 and Thr-7—We had previously shown that in contrast to alanine replacement of Pro-5, substitution of either Thr-6 or Thr-7 with alanine did not significantly reduce the potency of the TI-JIP peptide (20). We therefore investigated the tolerance for change in these residues in an attempt to better understand the requirements for JNK binding. Using JNK activity assays, we tested the inhibition produced by TI-JIP variant peptides where either Thr-6 or Thr-7 was replaced by basic, acidic or hydrophobic amino acids. We also investigated the effect of substituting Pro at this position, which would be expected to alter the conformation of the amino acid backbone, or phospho-Thr, because the basic amino acids situated N-terminal to these threonine residues suggests that they might represent a phosphorylation site (28). For both Thr-6 and Thr-7 variants, a Thr to Pro substitution virtually abolished the JNK inhibition relative to wild-type TI-JIP (Fig. 3, A and B). Most of the other substitutions of Thr-6 resulted in significantly less JNK inhibition than TI-JIP, with the exception of a Thr-6 to Lys substitution (Fig. 3A). Most substitutions of Thr-7 also resulted in peptides with significantly less JNK inhibitory activity, and like the Thr-7 to Pro substitution, a Thr-7 to Tyr substitution abolished the JNK inhibition (Fig. 3B). The only substitution at position 7 that did not significantly decrease the JNK inhibition was Thr-7 to Phe (Fig. 3B). Therefore, changes to both Thr-6 and Thr-7 were sufficient to significantly reduce JNK inhibition by the peptides and hence these residues contribute to the potent inhibition of JNK by TI-JIP.

Assessing JNK Inhibition by other KIM-based Peptides—As mentioned previously, the KIM consensus sequence is present in MAPK interactors including upstream activators, substrates, phosphatases, and scaffolds (as reviewed in Ref. 19). Indeed, the TI-JIP sequence is directly derived from the KIM present in the JNK pathway scaffold protein, JIP-1. Given the homology between TI-JIP and other KIM sequences, we hypothesized that similar KIM-based peptides might function as inhibitors of JNK activity. This hypothesis is supported by recent work by Ho et al. (29), who reported that a docking site in MKK4 mediates high affinity binding to JNKs and competes with similar docking sites in JNK substrates. A peptide version of this docking site was found to inhibit MKK4/JNK binding, MKK4-mediated phosphorylation of JNK1, and JNK2-mediated phosphorylation of c-Jun and ATF-2 when used at final concentrations of 25, 200, and 10 μM, respectively (29).

We used JNK activity assays to test the potency of peptides based on the KIMs of MKK4 and MKK7 from the JNK cascade. In addition, we tested peptides based on the KIMs of MKK proteins from the related ERK and p38 MAPK cascades. We found that all of these KIM-based peptides produced significantly less JNK inhibition than the TI-JIP peptide, and that the KIMs from the JNK cascade proteins were not better inhibitors of JNK than when compared with KIMs from proteins from the ERK or p38 MAPK cascades (Fig. 4A, black bars). We hypothesized that this might be due to the lack of Pro-5 in the sequences, or the presence of a Pro residue at either position 6 or 7, which is poorly tolerated (Fig. 3, A and B). Therefore, we tested similar KIM-based peptides, but with the addition of Pro-5 to the sequences and the substitution of central Pro residues with Ala. Despite these changes, the KIM-based peptides still produced significantly less JNK inhibition than TI-JIP (Fig. 4A, gray bars).

In a recent report by Chang et al. (30), the KIM sequences present in various MAPK-interacting proteins, including JIP-1, were aligned. In addition to the MKK proteins and well-characterized transcription factor substrates of the MAPKs (c-Jun, Elk-1, ATF-2), proteins such as NFAT4, MEF2A/C, and PTP-SL were also included in the alignment. These proteins conformed to the KIM consensus sequence, but did not contain the critical Pro-5 residue and had variable spacing between the basic cluster and the first hydrophobic residue in the KIM consensus. Given their relatively low homology to TI-JIP, we predicted that these proteins would function as relatively poor JNK inhibitors. This was confirmed by JNK activity assays where the proteins reduced JNK activity by a maximum of 25%, compared with 86% reduction by TI-JIP (Fig. 4B). Therefore, although various KIMs allow docking to the JNK protein, this interaction is unlikely to inhibit JNK activity in vivo. This confirms our previous observations (20) that peptides based on the KIMs of the JNK substrates c-Jun (ILKQSMTLNLA) or ATF2 (KHKKHEMTLKFG) were also poor inhibitors of JNK activity.
Most TI-JIP/MKK7 and TI-JIP/MKK4 Hybrid Peptides Were Relatively Poor JNK Inhibitors—We were surprised that peptides based on the KIMs of MKK7 and MKK4, which are upstream activators of JNK, were not more effective JNK inhibitors than peptides based on the KIMs of proteins from other signaling pathways. To further investigate the reason why these peptides functioned as weaker JNK inhibitors, we tested a series of hybrid peptides where the N-terminal, C-terminal, and central regions of the TI-JIP peptide were systematically altered to more closely resemble the MKK7 and MKK4 KIM.

Fig. 2. Investigating the effects of altering Pro-5, or changing the Pro-5 to Leu-8 spacing within TI-JIP, on JNK inhibition. Activated JNK1 was preincubated for 10 min at 30 °C with either a buffer control, TI-JIP (1700 nM final assay concentration), or equivalent concentrations of peptides representing variants of TI-JIP at position 5 (A), or variants of TI-JIP with altered Pro-5 to Leu-8 spacing (B) before assaying its kinase activity toward GST-c-Jun-(1–135). Regions of TI-JIP that were altered in the variants are underlined and shown in italics. **P incorporated into the substrate (as indicated by the arrow to the right of the autoradiographs (upper panel)) was differentially inhibited by the TI-JIP variant peptides. The lower panel summarizes data from three independent experiments, normalized to the activity in the uninhibited reaction. Error bars represent the S.E. of the means, and asterisks indicate that values are significantly different (**, p ≤ 0.01) from the TI-JIP inhibition.
sequences. In the case of M KK7, most hybrid peptides were significantly weaker JNK inhibitors than TI-JIP (Fig. 5A). The only hybrid peptide that inhibited JNK to a similar extent as TI-JIP was "RPKRPTTLNLKD," where the TI-JIP C terminus was replaced by the MKK7 KIM C terminus. This peptide represented a Phe-11→Asp substitution of TI-JIP, and we previously demonstrated that the extreme C-terminal residue of TI-JIP could be removed from the sequence with no significant decrease in JNK inhibition (20). When the central residues of TI-JIP were changed to the corresponding MKK7 KIM residues (i.e. TT to ID), the altered peptide produced significantly less JNK inhibition than TI-JIP (Fig. 5A). Similarly, the substitution of the TI-JIP N terminus with the MKK7 KIM N terminus (i.e. RPK to EAR) significantly reduced the JNK inhibition produced by TI-JIP (Fig. 5A). Therefore it appeared that the N-terminal and central residues within the MKK7 KIM contributed to its reduced ability to inhibit JNK activity.

When a similar set of hybrid peptides based on TI-JIP and the KIM of MKK4 were tested for their ability to inhibit JNK activity, all hybrid peptides produced significantly weaker JNK

Fig. 3. Investigating the tolerance for change at Thr-6 and Thr-7. Activated JNK1 was preincubated for 10 min at 30 °C with either a buffer control, TI-JIP (1700 nM final assay concentration), or equivalent concentrations of peptides representing variants of TI-JIP at either position 6 (A) or position 7 (B) before assaying its kinase activity toward GST-c-Jun(1–135). Altered residues within the TI-JIP sequence are underlined and shown in italics. Note that pT denotes phosphothreonine. 32P incorporated into the substrate (as indicated by the arrow to the right of the autoradiographs (upper panel)) was differentially inhibited by the TI-JIP variant peptides. The lower panel summarizes data from three independent experiments, normalized to the activity in the uninhibited reaction. Error bars represent the S.E. of the means, and asterisks indicate that values are significantly different (**, p ≤ 0.01; *, p ≤ 0.05) from the TI-JIP inhibition.
Assessing JNK inhibition produced by peptides based on the KIMs of MKK proteins and other MAPK-interacting proteins. Activated JNK1 was preincubated for 10 min at 30 °C with either a buffer control, TI-JIP (1700 nM final assay concentration), or equivalent concentrations of KIM-based peptides, before assaying its kinase activity toward GST-c-Jun-(1–135). Peptides were based on the KIMs of MKK7, MKK4, MKK1, MKK3, and MKK6 (A), and MEF2A/C, NFAT4, and PTP-SL (B) (see Table I for further information). Where the sequences of the parent proteins were altered, residues that were changed are underlined and shown in italics, and columns are shown in gray. 32P incorporated into the substrate (as indicated by the arrow to the right of the autoradiographs (upper panel)) was differentially inhibited by the TI-JIP variant peptides. The lower panel summarizes data from three independent experiments, normalized to the activity in the uninhibited reaction. Error bars represent the S.E. of the means, and asterisks indicate that values are significantly different (**, p < 0.01) from the TI-JIP inhibition.
inhibition than TI-JIP (Fig. 5B). Although the most N-terminal residue of TI-JIP was removed without significant decreases in JNK inhibition (Fig. 5B), when the C terminus of this peptide was altered to resemble the MKK4 KIM (i.e. NLF to KLNF), the JNK inhibition was significantly reduced (Fig. 5B). The JNK inhibition was also significantly reduced when the central residues of the TI-JIP peptide were substituted (i.e. TT to KA), or when the N terminus was substituted (i.e. PK to QG) (Fig. 5B). Therefore, it appeared that all regions of the MKK4 KIM contributed to its significantly weaker JNK inhibition com-
pared with TI-JIP. The results obtained with both the MKK7 and MKK4 KIM hybrid peptides further emphasized the notion that although all residues of TI-JIP were not demonstrated to be independently critical for potent inhibition of JNK activity, only a limited tolerance for change is permitted and they collectively contribute to the potent JNK inhibition afforded by the TI-JIP peptide.

Assessing JNK Inhibition Produced by Peptides Based on KIMs from the Sab Protein—The Sab protein was identified as a novel JNK-interacting protein by yeast two-hybrid screening (24). Using deletion analysis and site-directed mutagenesis, the most N-terminal KIM in Sab was shown to be essential for JNK binding (24). This KIM sequence (KIM 1: RPGSLDL) contained all critical JNK-inhibitory residues identified in the TI-JIP sequence (underlined), whereas the C-terminal KIM 2 sequence (KIM 2: RMKQLSL) lacked a Pro at position 5. We predicted that a peptide based on the KIM 1 sequence would be an effective JNK inhibitor, whereas a similar peptide based on the KIM 2 sequence would be a relatively poor JNK inhibitor. Using JNK activity assays, we found that the KIM 2 peptide did not cause any significant reduction in JNK activity (Fig. 6A). However, the KIM 1 peptide reduced JNK activity by only 14%, which was significantly less than the 82% reduction by TI-JIP (Fig. 6A). This result indicated that the presence of critical inhibitory residues in a peptide was not sufficient for JNK inhibition.

To further investigate why the Sab KIM 1 peptide was a weaker JNK inhibitor than TI-JIP, we tested a series of hybrid peptides constructed from the TI-JIP sequence and the Sab KIM 1 sequence. Initially, we tested TI-JIP peptides with either Thr-6 or Thr-7 individually substituted with the corresponding residues from Sab KIM 1. Although the conservative Thr-7 → Ser substitution was well tolerated, the Thr-6 → Gly substitution significantly reduced the JNK activity produced by TI-JIP (Fig. 6B). In addition, the substitution of either the N terminus or C terminus of TI-JIP for the corresponding sequence present in Sab KIM 1 resulted in peptides that were significantly weaker JNK inhibitors than TI-JIP (Fig. 6B). Therefore, like the MKK4 KIM sequence, all regions of the Sab KIM1 sequence present in Sab KIM 1 resulted in peptides that were relatively poor JNK inhibitors. We decided to investigate in the following section whether this reduced inhibition resulted from a weaker interaction with JNK.

Using Yeast Two-hybrid Analysis to Investigate the Interaction between KIM-based Peptides and JNK—Using yeast two-hybrid analysis, we were able to assess the interaction between KIM-based peptides and JNK, used as “bait” and “prey,” respectively. Fig. 6C illustrates the results of an overlay assay performed on yeast that were replica plated onto UHW/H11002 KIM-based peptides and JNK, used as prey, and either TI-JIP, Sab KIM 1, or hybrid peptides constructed from both of these sequences. We found that yeast expressing JNK and any of the hybrid peptides exhibited significantly weaker reporter activity than yeast expressing JNK and TI-JIP (Fig. 6D, panel ii). In addition, the reporter activity was further reduced as the sequence of the bait peptide deviated from TI-JIP to more closely resemble Sab KIM 1. Therefore, the relatively weak JNK inhibition produced by the Sab KIM 1 peptide (Fig. 5A) is partially explained by the relatively weak interaction between Sab KIM 1 and JNK.

DISCUSSION

Although JIP 1-based peptides have demonstrated efficacy as JNK inhibitors, both in vitro (20) and in vivo (21–23), their mechanism of action has remained undefined. The sequence similarities between TI-JIP and the KIM sequences in JNK substrates such as c-Jun and ATF-2 suggests that these inhibitors may act by competing with the substrate for docking to JNK. However, peptides based on the KIMs of c-Jun and ATF-2 are relatively poor inhibitors of JNK when compared with TI-JIP (20). It might therefore be predicted that these inhibitors allosterically modulate JNK activity and inhibit by non-competitive or uncompetitive mechanisms. For example, the insulin receptor interacting domain of the adapter protein Grb14 behaves as an uncompetitive inhibitor with respect to the insulin receptor substrate (31). Here, we have demonstrated that the TI-JIP peptide competes with the c-Jun protein substrate for binding JNK. This is supported by recent findings that JIP-1 and c-Jun interact with similar regions of JNK2 (32).

Competitive peptide inhibitors of kinases can be divided into two groups. First, naturally occurring peptide inhibitors include the PKI (5–22) peptide derived from the heat-stable inhibitor protein that inhibits the activity of protein kinase A (33–35), and regulatory domain peptides that inhibit the activity of protein kinase C (36). The second group includes peptide inhibitors modified from known substrates. These include non-phosphorylatable substrate-based peptides that inhibit protein kinase C (37), calmodulin-dependent protein kinase II (38), MAPK-activated protein kinase-2 (39), Akt/protein kinase B (40), p60 c-Src protein-tyrosine kinase (41) and ZAP-70 tyrosine kinase (42). Inhibitors from both of these groups act as pseudosubstrates for the relevant kinases. However, this is not true for all competitive peptide inhibitors of kinases, and a third class of inhibitors based on protein-protein interaction partners can be defined. For example, a peptide inhibitor derived from the consensus sequence of the cyclin/cyclin-dependent kinase-2 (cdk2) binding motif, PVKKRFLGF, that serves as the docking site for cyclin-dependent kinase-2/cyclin complexes, blocks the phosphorylation of substrates by cyclin A/cdk2 or cyclin E/cdk2 (43). Similarly, cell-permeable peptides based on MKK1 inhibited activation of ERK MAPK both in vitro and in vivo and also inhibited ERK-mediated activation of the transcriptional activity of Elk-1 (44). It would appear that the JIP-based peptides function by a similar mechanism to this third group of inhibitors, being based on the docking motif for JNK/JIP-1 complexes and not acting as pseudosubstrates.

We have demonstrated that TI-JIP, based on the JIP-1 KIM,
also inhibits JNK with greater potency when compared with other KIM-based peptides. Although we have defined KIM-based peptides as relatively poor inhibitors of JNK activity, other groups have used similar peptides as JNK inhibitors. This discrepancy most likely arises from differences in the concentrations of inhibitors used. For example, a 16-mer peptide based on the docking site in MKK4 inhibited JNK2-mediated phosphorylation of c-Jun and ATF-2 (29), but the lowest concentration of peptide tested was 10 μM. We found that at low micromolar concentrations, an 11-mer peptide based on the KIM of MKK4 was a significantly weaker JNK inhibitor when compared with TI-JIP. In addition, MKK4 and JIP-1 KIM-
A KIM-based Peptide Inhibitor of JNK Activity

36337

Barr and peptides when used at 100 μM final concentration were reported as effective inhibitors of MKK2 phosphorylation of ERK2 (29), suggesting that selectivity for JNK versus ERK may be lost at these higher concentrations in vitro.

A similar disagreement arises with the use of peptides based on the KIM of the JNK substrate c-Jun. We previously reported that an 11-mer peptide based on the KIM of c-Jun was a strongly weak JNK inhibitor than TI-JIP (20). However, a cell-permeable version in which a 29-mer peptide from the c-Jun KIM was synthesized together with the TAT protein transduction domain inhibited the induction of glutamate cys
teine ligase in response to 4-hydroxynonenal treatment of HBE1 cells (45), and AP-1 activation through endogenous H2O2 generation by alveolar macrophages (46). In an ex vivo assay, this inhibitor reduced phosphorylation of c-Jun by activated JNK in a dose-dependent manner, where inhibition was observed with 5 μM (but not 1.25 μM) peptide. This is in contrast to TI-JIP, which significantly inhibited phosphorylation of c-Jun by activated JNK in an ex vivo assay at a concentration of 0.56 μM, and reduced c-Jun phosphorylation up to 90% at a concentration of 1.7 μM (20). Therefore, although the c-Jun-based peptides inhibit the phosphorylation of c-Jun by JNK, these appear less potent than TI-JIP.

It must be considered that peptides based on the KIMs of JNK interactors such as MKK7, MKK4, and Sab may have been relatively poor JNK inhibitors because they adopted random conformations when used in an isolated form rather than in the context of their native proteins. However, a larger protein based on Sab residues 219–425 that included the KIM 1 sequence also did not function as a JNK inhibitor, which supports the results obtained with the shorter Sab KIM 1 peptide (Fig. 6). Furthermore, although the isolated TI-JIP peptide functions as a potent JNK inhibitor, hybrid peptides based on the sequences of TI-JIP and the KIMs of MKK7, MKK4, and Sab were relatively poor inhibitors of JNK, even when these predominantly resembled the TI-JIP sequence (Figs. 5 and 6B). Therefore, although a discrete set of TI-JIP residues are independently critical for potent JNK inhibition, other non-critical residues contribute to the JNK inhibition and simultaneous substitutions of multiple residues are poorly tolerated, even when separately localized to either the N terminus, central region, or C terminus of the peptide. Furthermore, some conservative substitutions such as Thr-7 → Ser were well tolerated (Fig. 6B), whereas an Arg-4 → Lys substitution significantly decreased JNK inhibition, as did a TI-JIP variant peptide with rearrangement of Lys-3 and Arg-4. Finally, the JNK inhibition afforded by TI-JIP was not significantly reduced following an Asn-9 → Gly substitution, but was reduced by either a Thr-6 → Gly (Fig. 6B) or a Thr-7 → Gly substitution. Taken together, it appears that the KIM sequence in the JIP-1 scaffold protein has the unique ability to inhibit JNK activity with high potency. The exact biological significance of the JNK inhibition afforded by this scaffold protein remains to be clarified.

The region of JIP-1 involved in binding JNK was identified in 1997 (47). It was possible that the region of JNK binding JIP-1 corresponds to a similar domain on p38 MAPK, which bound peptides based on the KIMs of both the nuclear substrate, MEF2A, and the activator, MKK3b (30). Structural analysis has indicated that this docking groove was similar between the p38α, ERK2 and JNK3 MAPKs and it was suggested that proteins with KIMs would bind to this common region (30). However, the crystal structure of JNK1 in complex with the TI-JIP inhibitor peptide was very recently reported (48). Interestingly, all residues identified as independently critical for the potent inhibition of JNK by TI-JIP in our previous study (20) were implicated in the selective binding of TI-JIP to JNK1. Specifically, the van der Waals contacts by the three residues (Pro-5, Leu-8, and Leu-10) of TI-JIP and the hydrogen bonding between Glu-329 of JNK1 and Arg-4 or TI-JIP were critical for the selective binding (48). In addition, binding of the peptide inhibited JNK kinase activity in the N-terminal and C-terminal domains of JNK1 and distorted the ATP-binding cleft, reducing the affinity of JNK1 for ATP (48). Therefore, although we demonstrated that TI-JIP was directly competitive with phosphoacceptor substrate for binding to JNK, its potency for inhibiting JNK also results from other conformational changes that occur in JNK1 upon binding to TI-JIP.

In conclusion, it appears that TI-JIP, representing the KIM from the JIP-1 scaffold protein, functions as a unique and potent inhibitor of JNK activity. It competes with protein substrate for binding to JNK, in contrast with SP600125, which competes with ATP and is currently the only other commercially available direct inhibitor of JNK activity. JIP-1-based peptides represent a new class of direct JNK inhibitors that have relatively high specificity for inhibiting JNK (22) and are based on the docking domain involved in the JNK-JIP-1 interaction. It is likely that other peptide inhibitors based on docking domains will become increasingly popular as the interaction interfaces between protein complexes are characterized.

Acknowledgments—We thank R. M. Hopkins and S. Cattach (UWA Center for Child Health Research) for their assistance with yeast two-hybrid experiments and media preparation, respectively. We thank A. Spiess for contribution to the data for JNK inhibition by peptides based on MKK7 and MKK4.

REFERENCES

1. Minden, A., Lin, A., Smeal, T., Derijard, B., Cobb, M., Davis, R. & Karin, M. (1994) Mol. Cell. Biol. 14, 6863–6868

2. Kallunki, T., Su, B., Tsigeley, I., Stutt, H. K., Derijard, B., Moore, G., Davis, R. & Karin, M. (1994) Genes Dev. 8, 3996–3970

3. Matsuda, S., Kawashita, H., Morinaga, T., Togoh, Y. & Nishida, E. (1995) J. Biol. Chem. 270, 12761–12766

4. Bogoyevitch, M. A., Ketterman, A. J. & Sugden, P. H. (1995) J. Biol. Chem. 270, 29710–29717

5. Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben Levy, R., Ashworth, A., Marshall, C. J. & Sugden, P. H. (1996) Cell. Res. 7, 162–173

6. Lawler, S., Fleming, Y., Goedert, M. & Cohen, P. (1998) Curr. Biol. 8, 1367–1370

7. Borsell, T., Kallunki, T., Su, B., Tsigelny, I., Stuss, H. K., Derijard, B., Moore, G., Davis, R. & Karin, M. (2001) Int. J. Biochem. Cell Biol. 33, 1047–1063

8. Saporito, M. S., Hudson, R. L. & Maroney, A. C. (2002) Prog. Med. Chem. 40, 35–62

9. Pirvola, I., Xing-Qun, L., Virkkala, J., Saarma, M., Murakata, C., Camoratto, A. M., Walton, R. M. & Vilkki, J. (2000) J. Neurosci. 20, 43–50

10. Maroney, A. C., Finn, J. P., Bozycko-Coyne, D., O’Kane, T. M., Neff, N. T., Tolkovsky, A. M., Park, D. S., Yan, C. Y., Troy, C. M. & Greene, L. A. (1999) J. Neurochem. 73, 1901–1912

11. Borasio, G. D., Horstmann, S., Anneser, J. M., Neff, N. T. & Glicksman, M. A. (1998) Neuron 9, 1435–1459

12. Maroney, A. C., Glicksman, M. A., Basma, A. N., Walton, K. M., Knight, E. R., Murphy, C., A., Bartlett, B. A., Finn, J. P., Angeles, T., Matsuda, Y., Neff, N. T. & Dunne, C. A. (1998) J. Neurosci. 18, 104–111

13. Bennett, B. L., Sasaki, D. T., Murray, B. W., O’Leary, E. C., Sakata, S. T., Xu, W., Leisten, J. C., Motiwala, A., Pierce, S., Sato, Y., Bhagwat, S. S., Manning, A. H. & Anderson, D. W. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 13681–13686

14. Bain, J., McLauchlan, H., Elliot, M. & Cohen, P. (2003) Biochem. J. 371, 199–204

15. Gavin, A. C. & Nehreda, A. R. (1999) Curr. Biol. 9, 281–284

16. Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. (1999) Genes Dev. 13, 163–175

17. Smith, J. A., Poteet-Smith, C. E., Malarkey, K. & Sturgill, T. W. (1998) J. Biol. Chem. 273, 2893–2898

18. Tanoue, T., Adachi, M., Morinaga, T. & Nishida, E. (2000) Nat. Cell Biol. 2, 110–116

19. Tanoue, T. & Nishida, E. (2003) Cell Signal. 15, 455–462

20. Barr, R. K., Kendrick, T. S. & Bogoyevitch, M. A. (2002) J. Biol. Chem. 277, 10987–10997

21. Bonny, C., Oberson, A., Negri, S., Sauer, C. & Schorderet, D. F. (2001) Diabetes 50, 77–82

22. Borrello, T., Clarke, P. G., Hirt, L., Vorel, A., Repici, M., Schorderet, D. F., Bogossian, A. M., Walton, R. M. & Ylikoski, J. (2000) J. Neurosci. 20, 162–175

23. Wang, J., Van De Water, T. B., Bonny, C., de Ribaupierre, F., Puel, J. L. & Zine, A. (2003) J. Neurosci. 23, 8596–8607

2. R. K. Barr and M. A. Bogoyevitch, unpublished observations.

Downloaded from http://www.jbc.org/ by guest on August 20, 2020
A KIM-based Peptide Inhibitor of JNK Activity

24. Wiltshire, C., Matsushita, M., Tsukada, S., Gillespie, D. A. & May, G. H. (2002) Biochem. J. 367, 577–585
25. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M. & Davis, R. J. (1994) Cell 76, 1025–1037
26. Duttweiler, H. M. (1996) Trends Genet. 12, 340–341
27. Guarente, L. (1983) Methods Enzymol. 101, 1
28. Kemp, B. E. & Pearson, R. B. (1991) Methods Enzymol. 200, 121–134
29. Ho, D. T., Bardwell, A. J., Abdollahi, M. & Bardwell, L. (2003) J. Biol. Chem. 278, 32662–32672
30. Chang, C. I., Xu, B. E., Akella, R., Cobb, M. H. & Goldsmith, E. J. (2002) Mol. Cell 9, 1241–1249
31. Bereziat, V., Kasus-Jacobi, A., Perdereau, D., Cariou, B., Girard, J. & Burnol, A. F. (2002) J. Biol. Chem. 277, 4845–4852
32. Mooney, L. M. & Whitmarsh, A. J. (2004) J. Biol. Chem. 279, 11843–11852
33. Demain, J. G., Peters, K. A. & Fischer, E. H. (1977) Biochemistry 16, 3080–3086
34. Cheng, H. C., Kemp, B. E., Pearson, R. B., Smith, A. J., Musconi, L., Van Patten, S. M. & Walsh, D. A. (1986) J. Biol. Chem. 261, 989–992
35. Glass, D. B., Cheng, H. C., Mende-Mueller, L., Reed, J. & Walsh, D. A. (1989) J. Biol. Chem. 264, 8802–8810
36. House, C. & Kemp, B. E. (1987) Science 238, 1728–1729
37. Eichholtz, T., de Bont, D. B., de Wiid, J., Liskamp, R. M. & Ploegh, H. L. (1993) J. Biol. Chem. 268, 1862–1886
38. Ishida, A., Shigeri, Y., Tatsu, Y., Uegaki, K., Kameshita, I., Okuno, S., Kitani, T., Yamoto, N. & Fujisawa, H. (1998) FEBS Lett. 427, 115–118
39. Hayess, K. & Benndorf, R. (1997) Biochem. Pharmacol. 53, 1239–1247
40. Luo, Y., Smith, R. A., Guan, R., Liu, X., Klinghofer, V., Shen, J., Hutchins, C., Richardson, P., Holzman, T., Rosenberg, S. H. & Giranda, V. L. (2004) Biochemistry 43, 1254–1263
41. Kamath, J. R., Liu, R., Enstrom, A. M., Lou, Q. & Lam, K. S. (2003) J. Pept. Res. 62, 260–268
42. Nishikawa, K., Sawasdikosol, S., Fruman, D. A., Lai, J., Songyang, Z., Bura-koff, S. J., Yaffe, M. B. & Cantley, L. C. (2000) Mol. Cell 6, 869–974
43. Chen, Y. N., Sharma, S. K., Ramsey, T. M., Jiang, L., Martin, M. S., Baker, K., Adams, P. D., Bair, K. W. & Kaelin, W. G., Jr. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 4325–4329
44. Kelemen, B. R., Hsiao, K. & Goueli, S. A. (2002) J. Biol. Chem. 277, 8741–8748
45. Dickinson, D. A., Iles, K. E., Watanabe, N., Iwamoto, T., Zhang, H., Krzywanski, D. M. & Forman, H. J. (2002) Free Radic. Biol. Med. 33, 974
46. Iles, K. E., Dickinson, D. A., Watanabe, N., Iwamoto, T. & Forman, H. J. (2002) Free Radic. Biol. Med. 32, 1304–1313
47. Dickens, M., Rogers, J. S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J. R., Greenberg, M. E., Sawyers, C. L. & Davis, R. J. (1997) Science 277, 693–696
48. Heo, Y. S., Kim, S. K., Lee, C. I., Kim, Y. K., Sung, H. J., Lee, H. S., Lee, J. I., Park, S. Y., Kim, J. H., Hwang, K. Y., Hyun, Y. L., Jeon, Y. H., Ro, S., Cho, J. M., Lee, T. G. & Yang, C. H. (2004) EMBO J. 23, 2185–2195
