Introduction

The oxidative stress hypothesis of atherosclerosis is based on the fact that free radical-derived damage participates in atherogenesis pathophysiology by means of LDL modification, among other mechanisms [1–3]. Supporting this hypothesis, LDL modified by oxidation (oxLDL) has been detected in atherosclerotic lesions [4–6] and oxLDL exhibits various proatherogenic activities in vitro [5,7].

It is important to emphasize that oxLDL represents a heterogeneous population of modified forms of LDL that differ greatly in their chemical composition and biological properties. The conversion of native LDL into highly modified LDL via oxidative processes can occur by two major mechanisms: In the first case, the events start with the complete loss of LDL’s endogenous antioxidants (i.e., α-tocopherol, ubiquinol-10), followed by the conversion of a majority of the polyunsaturated fatty acids (PUFA) into their corresponding hydroperoxides. Then, these primary lipid oxidation products are fragmented into secondary lipid oxidation products, such as malonyldialdehyde or 4-hydroxynonenal, which can react with the Nα-amino group of lysine residues from LDL apoprotein (Apo B-100). Consequently, the particle’s electrophoretic mobility increases and the lipoprotein becomes “high uptake” [8]. Additionally, in the subendothelial space, oxLDL may exert a “Trojan horse effect”, e.g. allowing the diffusion of those lipid mediators modifying...
endothelial and vascular smooth muscle cells. The second case is characterized by the immediate and preferential oxidation of amino acid residues from Apo B-100 in the absence of substantial consumption of lipid soluble antioxidants and/or occurrence of lipid peroxidation [9]. Nevertheless, apoprotein oxidative modifications have been not studied as extensively as lipid-phase ones.

The beneficial effects of Mediterranean diet concerning cardiovascular diseases are well known. Most of them are associated with olive oil and wine consumption [10,11], nutrients with a high content of phenolic acids. With regard to the influence of diet on atherosclerosis, the ingestion of fruits and vegetables (phenolic-rich vegetal sources) is related to a lesser development of atheroma plaque [12,13]. This effect is mainly attributed with their protective effects against LDL oxidation [14–17]. Despite a great deal of research having been devoted to the prevention of lipid peroxidation in LDL by antioxidants, including phenolic acids [18–21], few studies have reported the prevention of protein oxidation in LDL by exogenous antioxidants. Apo B-100 modifications, e.g., the binding of lipid peroxidation products or direct oxidation of amino acid side-chain residues, are thought to finally result in the formation of new epitopes that are specifically recognized by scavenger receptors [22–25], but the potential preventive effect of nutritional compounds on apoprotein oxidative modifications have not been studied so extensively.

To fill those gaps, the antioxidant effect of 21 different vegetal-derived phenolic compounds (mainly found in olive oil and grape-derived products) in the oxidation of apolipoprotein of human LDL was assessed in this study. For that purpose, the quantification of carbonyl groups (detected by Western-Blot) was carried out in LDL-model systems. The antioxidant behaviour of the more active phenols was then further characterized by measuring the protection of the lipidome changes induced by Cu++, the accumulation of specific oxidation and lipid peroxidation markers in LDL apoproteins. The preventive role on the loss of cell viability induced by Cu++-treated LDL was tested using these phenolic compounds. Finally, in order to test whether those or related phenolic compounds would have similar effects in vivo in an atherosclerosis model, carbonyl content of plasma proteins and lipid oxidation markers were analysed in hypercholesterolemic hamsters fed with a phenolic-enriched diet.

Methods

Reference Compounds

- Tocopherol was purchased from Sigma-Aldrich Chemical Co (St. Louis, MO, USA). Phenolic standards from the following sources were used without further purification: 2-(3,4-dihydroxyphenyl)-4,5-dihydroxy-3-(3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyl-oxan-2-yl]oxy)methyl]oxan-2-yl]oxy-chromen-7-one (rutin), 4’-5,7-tetrahydroxylavone (apigenin), apigenin 7-O-glucoside, 3’,4’,5,7-tetrahydroxylavone (luteolin), luteolin 7-O-glucoside, trans-4-hydroxyxycinnamic acid (p-coumaric acid), 2-(3,4-dihydroxyphenyl) ethyl alcohol (OH-tyrosol) (3,4-DHPEA), 2-(4-hydroxyphenyl) ethyl alcohol (tyrosol) (p-HPEA), oleuropein, verbascoside and vanillin from Extrasyntese (Genay, France); 3,4-dihydroxyxycinnamic acid (caffeic acid), ferulic acid, and 3,4,5-trihydroxybenzoic acid (gallic acid) from Fluka Co. (Buchs, Switzerland); Pinoresinol from Arbonova Sales (Turku, Finland). Phenolic enriched grape seed extract was obtained as previously described [26].

Component	Control (g)	Supplemented (g)
Casein	200	200
L-Cysteine	3	3
Corn starch	362	362
Sugar	140	140
Corn oil	0	0
Cellulose	50	48
Minerals	35	35
Lard	150	150
Vitamins	10	10
Cholesterol	50	50
Polyphenol extract	0	2
Total weight	**1000**	**1000**
Energy (Kcal/g diet)	4.62	4.62
Carbohydrates (g/Kg)	502	502
% Energy	43.5	43.5
Proteins (g/Kg)	203	203
% Energy	17.6	17.6
Lipids	200	200
% Energy	39	39

The control diet is an atherogenic diet.

doi:10.1371/journal.pone.0043308.0001

Isolation of Phenolic Compounds by Semipreparative HPLC

Secoiridoid derivatives 4-(acetoxyethyl)-1,2-dihydroxybenzene (3,4-DHPEA-AC), 4-hexenoic acid, 4-formyl-3-(2-oxoethyl)-2-(3,4-dihydroxyphenyl) ethyl ester (3,4-DHPEA-EDA), methylated form of the oleuropein aglycone (ME 3,4-DHPEA-EA) and 4-hexenoic acid, 4-formyl-3-(2-oxoethyl) 2-(4-hydroxyphenyl) ethyl ester (p-HPEA-EDA) were isolated from virgin olive oil phenolic extract by semi-preparative HPLC method according to the method of Artajo et al. [27]. Stock solutions of commercial standards and phenolic compounds isolated from virgin olive oil were dissolved in methanol/H2O (80:20 v/v) and stored at −40°C before the evaluation of their antioxidant activity. The chemical structures of the phenols included in the study are shown in Figure S1.

Hypercholesterolemic hamsters and human plasma

Twelve male Gold Syrian hamster weighing 127.55 ± 6.75 g were randomly assigned to two groups (n = 6 for each group) with approximately equal mean group body weights. They were caged and maintained in a 12:12 (light:dark) cycle at 22 ± 2°C and 50 ± 10% relative humidity with free access to both food and water. Food intake and body weight were controlled every week.

The control group ate an atherogenic diet [28] in which the cholesterol content had been set at 5% and which was supplemented with 13% of lard, and the experimental group ate this atherogenic diet supplemented with a 0.2% of phenolic-enriched vegetal extract (Table 1). The diets were maintained during 12 weeks and the animals were deprived of food for 15 h. Hamsters were anesthetized and then sacrificed by heart puncture and plasma and serum were collected and stored at −20°C until analysis. For metabolomic analyses, the method of Wikoff et al was used [29]. The plasma triglycerides, cholesterol, HDL, LDL, and alkaline phosphatase content were quantified by enzymatic
colorimetric reactions using commercial kits (Spinreact, Girona, Spain).

Human plasma was obtained from 6 different, healthy male donors after an overnight fast (mean age: 25 ± 3) by standard venepuncture and centrifugation using EDTA coated Vacutainer tubes. Both plasma obtention and animal experiments were supervised and approved by the Experimental and Ethics Committee of the University of Lleida.

Protein oxidation screening method: Protein oxidation and Western blot analysis

Aliquots of phenolic acid compounds dissolved in methanol were transferred to Eppendorf tubes and desiccated under a nitrogen current at room temperature. The dried phenols were redissolved to a final concentration of 5 μM with PBS (except when indicated) containing dissolved protein. Then, protein (700 μg/ml) was oxidized by exposure to different prooxidants. We used i) CuSO₄ (5 μmol/l free Cu⁺⁺); ii) Hemin:H₂O₂ (30 μmol/L: 5 μmol/l); iii) H₂O₂ (5 μmol/l); iv) Ascorbate:Fe³⁺ (1.5 mmol/l: 6 μmol/l); v) ultraviolet radiation (λ = 254 nm) and v) myeloperoxidase (MPO) (0.77 U/mL and H₂O₂ 100 μmol/l) in phosphate buffered media at 37°C for 3 hours, according published procedures [30]. All samples were used immediately or stored at −80°C for further analysis.

To assess the extent of protein oxidation, 2,4-dinitrophenylhydrazine (DNP)-reactive carbonyls were measured by Western Blot as previously described [31] (See Methods S1 to further information).

Measurement of glutamic (GSA) and aminoadipic (AASA) semialdehydes and malondialdehyde lysine (MDAL)

The concentration of chemically characterized markers of protein oxidative modification GSA, AASA, and MDAL in LDL apoproteins was evaluated by gas chromatography/mass spectrometry (GC/MS) as previously described [31] (See Methods S1 to further information).

Lipidome analyses

Lipid composition was assessed by both fatty acid analysis (see Methods S1 to further information) and time of flight mass spectrometry (TOF)-based lipid molecular species analyses. In both cases the total lipids from LDL were extracted with chloroform:methanol [21, v/v] in the presence of 0.01% butylated hydroxytoluene as previously described [31].

For TOF-based lipid molecular species analyses, lipid extracts (from LDL) or methanolic extracts (from hamster’s plasma) were submitted to mass-spectrometry using a LC ESI-QTOF MS/MS 6520 (Agilent Technologies, Barcelona, Spain), coupled to a capillary LC module using an untargeted approach as described [29] (see Methods S1 to further information). In order to offer a relative quantification of 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POPVC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), bioactive lipids present in oxLDL mass profiles [32] were integrated for an m/z of 594.3 for POPVC and 610.2 for PGPC with a Δ of 0.01 Da.

FRAP assay

The ferric reducing antioxidant power of the samples was estimated according to the procedure previously described [33,34]. Briefly, FRAP reagent, was mixed with distilled water and either of sample or appropriate reagent blank. The readings at 30 min were selected for calculation of FRAP values. Reduction power activities were as μmol of Trolox equivalents, per gram of dry matter.

Cell viability

Both HMEC (kindly provided by Anne Negre-Salvayre, INSERM, Toulouse [33] and HepG2 viability were measured with the MTT-based Cell Toxicity Colorimetric Assay Kit (Sigma-Aldrich, St.Louis, MA, USA) according to the manufacturer’s instructions after oxLDL tert-butylhydroperoxide (t-BOOH) as described [36,37]. The results were expressed as the percentage of viability versus cells exposed to non-oxidized LDL or untreated with t-BOOH. Further details are described in the Methods S1 section.

Statistical analyses

All statistics were analysed using the SPSS software (SPSS Inc., Chicago, IL, USA). Differences between the groups were analysed by the Student’s T tests or ANOVA (with post-hoc analyses for detecting differences between specific pairs), after assessment of normal distribution of variables by the Kolmogorov-Smirnoff test. Correlations between variables were evaluated by the Pearson statistic and plotted with the Metaboanalyst software [38] The 0.05 level was selected as the point of minimal statistical significance in every comparison.

Results

Effect of individual phenolic compounds on LDL oxidation. LDL oxidation by different methods induces accumulation of carbonyl in LDL apoproteins: differential inhibitory potential of phenolic compounds

The antioxidant capacity was quantified after Western Blot of DNP reactive carbonyls in LDL apoproteins (Figure 1A) being the value corresponding to oxLDL considered 0% of antioxidant capacity. The anti-DNP immunoreactivities which are lower than that found in oxLDL were interpreted as anti-oxidant activity and that which are higher as prooxidant activities. The different phenols were tested at three concentrations (5, 50 and 100 μM) (Figure 1B), using α-tocopherol as a reference. Apoprotein oxidation was significantly inhibited by the majority of the phenols tested. The OH-tyrosol showed the maximal efficiency even at 5 μM, higher than the efficiency of α-tocopherol. Luteolin (flavonoid), pinoresinol (lignan), gallic and caffeic acids showed a good efficiency which was concentration-dependent. These phenols reduced the Cu⁺⁺ induced oxidation by between 60 and 80%. The secoiridoid derivatives (3,4-DHPEA-EDA and p-HPEA-EDA) showed a slight activity, similarly to α-tocopherol. Other phenols, such as verbascoside, vanillin, 3,4-DHPEA-AC and the methylated form of the oleuropein aglycone (ME 3,4-DHPEA-EA) showed lower antioxidant activity with oxidation inhibition values below 20%. The prooxidant effect shown by some phenols, such as oleuropein, tyrosol and apigenin in its aglycone and glucosidic forms should also be noted.

As Figure 1B shows, different phenolic compounds exhibit differential effects in a dose dependent fashion, in the apoprotein moiety of human LDL. According to this first screening, the more active phenols selected were: OH-tyrosol (OH-tyrosol), 3,4-DHPEA-EDA (3,4-DHPEA-EA) as secoiridoid derivative; pinoresinol (Pin) as a lignane; luteolin (Lut) as a flavonoid; and gallic (Gallicic) acids as a phenolic acid.

In order to extend those findings from Cu⁺⁺ to other oxidation systems, we measured the effects of phenolics in different systems ranging from ultraviolet radiation to enzymatic paradigm (Figure 1C, D, E, F and G). Of those, only UVA, Fe²⁺-Asc and H₂O₂ increased carbonyl content more than 50% in LDL (Figure 1D, E and F). In those systems, all phenols analysed had...
a strong antioxidant action, with the exception of Fe3+-Asc, where only luteolin (and 3,4-DHPEA and pinocarveol to a minor extent) had a significant effect. Of note, pathogenically relevant systems such as MPO+H\textsubscript{2}O\textsubscript{2} do not offer a significant increase in carbonyl staining (Figure 1G). Most importantly, all selected phenolic compounds are able to significantly inhibit the accrual of carbonyl modification after MPO+H\textsubscript{2}O\textsubscript{2} incubation, being pinocarveol the most active.

In order to extent those results to other proteic systems, BSA and human plasma were oxidized using Hemin+H\textsubscript{2}O\textsubscript{2}, UVA and Fe3+-Asc. These results (Figure S2) do not allow to distinguish any individual phenol as a general antioxidant, i.e. its effect being independent of the protein and oxidation-system used. Generally, BSA is less oxidizable than LDL in same conditions, and only pinocarveol and luteolin diminish significantly protein oxidation in specific systems (Figure S2B and S2C). In contrast, human plasma is more oxidizable than BSA (under UVA and Fe3+-Asc). Under Fe3+-Asc, again pinocarveol and luteolin stand out as significant inhibitors of protein oxidation in plasma (Figure S2E and S2F). Of note, several polyphenols (notably gallic acid) exhibited prooxidant actions under these conditions (Figure S2B and S2D).

Cu2+ incubation induces accumulation of metal-catalyzed oxidation (MCO), lipoxidation markers in LDL apoproteins and changes in LDL lipidome: differential inhibitory potential of phenolic acid compounds

Taking into account that DNP reactive carbonyls could arise from either lipid peroxidative damage or the direct modification of aminoacid residues by MCO [39] specific probes for each of those oxidative modifications were measured by using GC/MS. The results show that Cu2+ incubation led to significant increases in the MCO markers GSA, AASA and an even greater increase in the lipoxidation marker MDAL (Figure 2A, B and C). OH-tyrosol and the lignane were the most effective compounds for inhibiting GSA accumulation. Luteolin also prevented its accumulation in Cu2+-treated LDL. Neither gallic acid, nor 3,4-DHPEA-EEDA were effective (Figure 2A). A similar pattern was observed for AASA accumulation, but in this case, gallic acid was significant inhibitors of its formation (Figure 2B). Finally, OH-tyrosol and pinocarveol were potent antioxidants in considering MDAL accumulation, while 3,4-DHPEA-EEDA, and specially luteolin (with no significant effect), were among the lowest in this sense (Figure 2C). To reinforce the importance of the lipid composition in relation with the lipoxidative modifications of proteins, a significant correlation was observed ($r^2=0.91$; $p<0.0001$) between PI and MDAL formation (Figure 2D).

Carbonyl modification of apoproteins can arise from lipid peroxidation. In such a case, the LDL fatty acid composition exhibits PUFA consumption. To test this, the fatty acid composition of LDL was analysed after Cu2+-induced oxidation, demonstrating significant losses in PI and PUFA content (Table 2). For this reason we examined the potential for prevention of this phenomenon. OH-tyrosol, and the lignane were among the most potent compounds, almost preventing the effect of Cu2+. Gallic acid was less potent, and luteolin and 3,4-DHPEA-EEDA had almost no effect on the oxidative modification of LDL.

After TOF-based analyses of oxLDL, palmityllysophosphatidylcholine (PLPC), 1-stearoyl-sn-glycero-3-phosphocholine (SGPC) and 1-oleoylglycerophosphocholine (OGPC) comprised more than 90% of the differentially present lipids in Cu2+-treated LDL (Figure 2E). Similarly to the fatty acid analyses, luteolin and gallic acid exhibit the lowest capacity for preventing the build-up of PLPC, while the other compounds prevented the accumulation of this compound almost completely. Luteolin was the only compound unable to inhibit the formation of SGPC (Figure 2F and 2G).

Taking into account that 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) have been identified as biological effectors of oxLDL [32], the presence of those compounds was ensured. As expected, their level increased in Cu2+-treated samples (12 and 4-fold over untreated samples, respectively). Luteolin and gallic acid prevented the accumulation PLPC to a lower extent when compared with the other compounds (Figure 2F).

Biological relevance of plant-derived phenolics antioxidant effects: Loss of cell viability induced by Cu2+-treated LDL and in vivo evidences of protein and lipid antioxidant activity

To further reinforce the biological relevance of the antioxidant potential of those compounds and the methodology described here for its identification, we examined the cytotoxic potential of Cu2+ incubated LDL in an endothelial cell culture model. For this purpose, the endothelial cell line HMEC-1 was treated with Cu2+-treated LDL and 18 h later, the viability of the cultures was assessed with the MIT assay. The results demonstrate that oxLDL led to a loss of 60% of viability and OH-tyrosol prevented partially those effects (Figure 3A), inducing only a 10% of viability loss. Unexpectedly, luteolin, a compound with a low antioxidant potential, based on lipidome changes, showed a significant preventive effect on the oxLDL induced loss of viability.

To ascertain whether this was due to a specific cellular effect (e.g. by modulation of antioxidant cellular responses in endothelial cells), we examined the potential influence of those compounds in tert-BOOH-mediated cell death in a HepG2 cell line, an unrelated cell line. Those analyses demonstrate that luteolin, OH-tyrosol and 3,4-DHPEA-EEDA were the only compounds able to prevent significantly the loss of viability secondary to treatment with tert-BOOH (Figure 3B).

The correlation of cell viability with antioxidant capacity reinforced the pathogenic importance of LDL apoprotein oxidative modification, as that GSA amount showed the most significant correlation with the loss of viability induced by oxLDL (Figure 3C).
Prevention of Lipoxidation by Natural Phenolics

A. GSA content (% respect to control)

B. AA/SA content (% respect to control)

C. MDAL content (% respect to control)

D. MDAL (µmol/mg tissue)

E. Peroxidizability index

F. PI PC (% respect to control)

G. SgPC (% respect to control)

H. PGVPC content (% of control)

I. PGPC content (% respect to control)
Figure 2. Cu\(^{2+}\)-incubated LDL show significant increases in the amounts of mass-spectrometry characterized protein and lipid oxidation markers, whose formation is inhibited by selected plant-derived phenolic acids. A–C show GC/MS analyses of GSA and AASA (markers of metal-catalyzed oxidation), and MDAL, originated from lipoxidation. Values shown are % changes of mean ± S.E.M. over values from non-oxidized LDL (GSA: 5945±61 μmol/mol lysine; AASA: 1128±20 μmol/mol lysine; and MDAL: 177±23 μmol/mol lysine); *p<0.05; **p<0.01 and ***p<0.001 respect to Cu\(^{2+}\) incubated LDL. D: protein lipoxidative damage shows a quadratic relationship with peroxidizability index (PI) (r² = 0.911; p<0.0001; model:[MDAL] = 1,03*[PI]²-151.26*[PI]-5698) E: Pie plot showing distribution of differential (Student’s T test p<0.001) lipid species between control and Cu\(^{2+}\)-incubated LDL after TOF-based lipidome analyses. F: Effect of plant-derived phenolic acids in the accumulation of PLPC induced by Cu\(^{2+}\)-incubation. G: Effect of plant-derived phenolic acids in the accumulation of SGPC induced by Cu\(^{2+}\)-incubation. H: Effect of plant-derived phenolic acids in the accumulation of POPVC induced by Cu\(^{2+}\)-incubation. I: Effect of plant-derived phenolic acids in the accumulation of PGPC induced by Cu\(^{2+}\)-incubation. Values shown are mean ± S.E.M. over values from Cu\(^{2+}\)-incubated LDL; ***p<0.001 (n = 4 for each data point). doi:10.1371/journal.pone.0043308.g002

Protein antioxidant activity of phenolic acids should be bioavailable. For this reason we analysed the plasma proteins from a hypercholesterolemic model (Golden Syrian Hamsters under hypercholesterolemic diet, showing an increase around 125% in cholesterol levels respect animals under standard chow) under a diet enriched in vegetable-derived phenols. The polyphenol supplementation did not induce any signs of toxicity nor changes in alkaline phosphatase, indicating that it was well tolerated. Despite an effect in LDL cholesterolemia was noted, no significant differences were evidenced in other values analysed (Table S1). Nevertheless, the results (Figure 3D) demonstrate that phenolic-enriched diet significantly diminishes steady state levels of oxidizable proteins ex vivo under Fe\(^{3+}\)-Asc system, both in hypercholesterolemic hamsters (Figure 3E) and in human plasma with exogenously added luteolin at 5 μM (Figure 3F). Noteworthy, compounds with masses compatible with oxidized phospholipids as PLPC, OGPC and PGPC were detected in the methanolic extract of hamster plasma (Figure S3, S4, S5). The levels of those metabolites were diminished in animals under phenolic-enriched diet (Figure 3G, H and I). Reinforcing the importance of specificity of oxidative damage measurements, FRAP assay of plasma demonstrated that polyphenol-enriched diet did not change antioxidant capacity (Figure 3J), although it changed significantly profiles of metabolic parameters by hierarchical clustering (Figure 3K).

Discussion

The present work demonstrates the antioxidant properties of selected plant-derived phenols (mainly found in olive oil and grape-derived products) in protein oxidation both in vivo and in vitro, and the existence of some heterogeneity in the mechanisms. We offer a novel approach for analysing and screening the antioxidant properties of natural products over LDL modification, especially in its protein components. After a screening phase, five different compounds were selected for further analysis. We have demonstrated for the first time, the effect of those nutritional compounds on the accrual of structurally characterized markers of both protein (GSA, AASA and MDAL) and lipid peroxidation (POVPC, PGPC) in exoLDL. The pathogenic importance of LDL protein oxidation is shown by the fact that it was the only factor that correlated with oxLDL-induced cell death. To extend the validity to an in vivo setting, we have shown that phenolic intake in a hypercholesterolemic context diminishes protein carbonyl content in plasma as well as the concentration of lipid peroxidation markers.

![Table 2. Effect of Cu\(^{2+}\) and phenolic acids in LDL fatty acid composition.](image)

Condition	Ctl	Cu\(^{2+}\)	OH-Tyrosol	Lut	Gall	3,4-DHPEA	Pin
16:0	21,1±0,59*	24,7±0,78	23,3±0,84	26,5±0,91	24,2±0,65	24,7±0,8	23,3±0,10
16:1n-7	3,0±0,28*	3,27±0,55	3,00±0,66*	3,33±0,26	3,25±0,87	3,10±0,7	3,26±0,15
18:0	11,5±0,16	11,08±0,93	8,90±0,30*	11,63±0,35	10,08±0,41	11,41±0,0	9,36±0,46*
18:1n-9	22,77±0,97**	26,38±0,26	24,91±0,27	25,37±0,06	25,24±0,93	25,74±0,0	24,61±0,69
18:2n-6	28,84±0,50**	24,97±0,21	30,39±0,33**	23,11±0,81	28,02±0,8**	28,09±0,9	29,78±0,13**
20:3n-6	1,59±0,47*	0,98±0,07	1,39±0,85*	0,88±0,02	1,18±0,14*	1,01±0,1	1,24±0,22*
20:4n-6	6,05±0,96**	3,08±0,70	4,62±0,19*	2,67±0,25	3,77±0,14*	3,32±0,6	4,29±0,65*
ACL	17,74±0,9	17,5±0,7	17,6±0,2	17,5±0,2	17,5±0,8	17,5±0,7	17,6±1,0
SFA	34,41±1,2	38,1±0,3	33,8±0,0*	40,2±0,6*	36,1±0,4	37,9±0,8	34,6±0,3*
UFA	65,59±2,2	61,8±1,7	66,2±1,0*	59,7±0,4	63,8±0,6	62,0±2,2	65,4±1,2*
MUFA	26,07±0,7	30,3±0,5	28,0±0,2	28,8±0,8	28,7±0,1	29,0±0,2	28,0±0,2*
PUFA	39,52±0,8**	35,1±0,2	38,2±0,1**	30,8±0,6	35,1±0,6*	33,0±0,0	37,4±0,2*
PUFAn-3	1,67±0,02	0,9±0,08	1,2±0,1	0,8±0,1	1,0±0,5	1,0±0,7	1,3±0,1
PUFAn-6	37,85±1,2	30,5±0,4	36,9±0,9*	30,05±0,1	34,1±0,1*	31,9±0,3	36,1±1,0*
DBI	124,58±3,2**	104,6±0,6	119,0±0,6**	103,2±0,0	111,6±0,8*	106,6±0,5	117,3±0,2**
PI	69,26±2,3**	49,1±0,1	60,6±1,1**	50,4±0,2	54,6±0,9*	51,1±0,1	59,8±0,6*

Values: mean ± S.E. ACL, average chain length; SFA, saturated fatty acids; UFA, unsaturated fatty acids; PUFA n-6/n-3, polyunsaturated fatty acids n-6 or n-3 series; MUFA, monounsaturated fatty acids; DBI, double bond index; PI, peroxidizability index, *p<0.05 and **p<0.01 respect to values in Cu\(^{2+}\) incubated LDL by ANOVA post-hoc analyses (n = 4 for each data point). doi:10.1371/journal.pone.0043308.t002
Figure 3. Plant-derived phenolic acids inhibit both the effects of oxidative stress in endothelial and HepG2 cell culture and protein oxidation in diet-induced hypercholesterolemia in vivo. A: Effect of plant-derived phenolic acids in cell death in HMVEC (endothelial cell line) induced by Cu²⁺-incubated LDL. *** p<0.001 and ** p<0.01 respect to cell death induced by Cu²⁺-incubated LDL (n = 6 for each data point). Values shown are mean ± S.E.M. over values from samples treated with control LDL. B: Effect of plant-derived phenolic acids in HepG2 capacity to withstand t-BOOH induced cell death; *** p<0.001 respect to cell death induced by t-BOOH (n = 6 for each data point). Values shown are % changes of mean ± S.E. over values from control samples. C: Endothelial cell death induced by Cu²⁺-incubated LDL is strongly correlated with GSA content (r = −0.734; p<0.016 by the Pearson correlation test). To validate this in vivo, proteins from hypercholesterolemic hamsters were analyzed for carbonyl content (D). Both plasma from hypercholesterolemic hamsters with a dietary supplement of phenolic acid-enriched vegetal extract (E) and pooled human plasma (F) were oxidized with Fe³⁺-Asc as indicated in the Methods and Material section. Aliquots were taken at indicated time points and processed for determination of carbonyl content. G: Effect of phenolic acids-enriched diet intake in the steady state levels of a compound compatible with OGPC in plasma from hypercholesterolemic hamsters. H: Effect of phenolic acids-enriched diet intake in the steady state levels of a compound compatible with PGPC in plasma from hypercholesterolemic hamsters. J: Effect of phenolic acids-enriched diet intake in FRAP activity of plasma. K: Heat-map showing that phenolic acids-enriched diets induces a significant hierarchical clustering of measured parameters, including both oxidative damage and metabolic (cholesterol, HDL and LDL-cholesterol, triacylglyceride and alkaline phosphatase activities), revealing an important biological effect. The carbonyl content is expressed as a percentual value, considering that the immunoreactivity of plasma from hypercholesterolemic hamsters individuals (Controls in D) or protein incubated without oxidant (Ctl) in E as 100% of carbonyl content. ** p<0.01 by Student’s T test respect to untreated animals (EG/H/LA or oxidant-incubated human plasma (F)). Data shown are mean±S.E.M. (n = 4 for each data point). For clustering analyses, values of samples were log transformed and hierarchical clustering was performed using Pearson correlation coefficient as distance measure and the Ward’s clustering algorithm. Colors in K express intensity/abundance with red colors showing high levels and blue colors lower levels.

Flavonoids such as rutin, flavones (apigenin and luteolin), and their glucosides (apigenin-7-O-glucoside and luteolin-7-O-glucoside) can scavenge reactive oxygen radicals, by donating a hydrogen atom or electron [49,50]. Their radical scavenging activity seems to be substantially dependent on three structural groups: (i) the orto-dihydroxyl structure (catechol structure) in the B ring, which is the obvious radical target site; (ii) the 2,3 double bond in conjunction with 4-oxo function, which is responsible for electron delocalization, and (iii) the additional presence of both the 3- and the 5-OH groups for maximal radical scavenging potential and the strongest radical absorption. Our data suggest the importance of the orto-dihydroxyl structure in the prevention of protein modification, as luteolin and rutin -both containing this structure- act as more effective antioxidants than apigenin, a very similar molecule. Comparing the antioxidant activity in the copper-induced LDL oxidation of the luteolin and luteolin-7-O-glucoside, the antioxidant capacity of both structures was similar. Despite the described preventive effects of these flavonoids in the diminution of the lag-phase of LDL induced by Cu²⁺ and other oxidants [51,52] no data were available on their role as inhibitors of protein oxidation markers. In fact, hemein can be classified as an agent with more potential for preventing direct oxidation (i.e. GSA and AASA accumulation) than for preventing lipid peroxidation, as it shows a lower power for protecting against Cu²⁺-induced lipidome changes in LDL, in agreement with previous data showing a modest inhibition in the formation of thiobarbituric acid-reactive substances driven by Cu²⁺ [53]. In contrast with this relative low in vitro potential, it shows a high efficiency in both cell systems as it is able to completely block tert-BOOH-induced changes in cell viability and it shows a high potential against oxLDL-induced cell death, in agreement with the reported inhibitory effect of luteolin in oxidized LDL-induced endothelial monocyte adhesion and/or oxidised LDL uptake [53].

Other major phenols quantified in virgin olive oils and grape-derived products are lignans, with a 2,3-dienylosylbutane skeleton, whose concentration is related to the olive cultivar of origin [54]. Although they are important as sources of lignans enterodiol and enterolactone by colonic flora metabolism, our data reveal that acetoxynoresinol and pinosolnose possess antioxidant activity, in agreement with previous reports, where it was shown that some vegetable extracts, rich in pinosolnose, were able to inhibit LDL oxidation [55,56]. Their antioxidant activity could be more closely related to their chelating properties than scavenging activity, as they only exhibit a hydroxyl group linked to an aromatic ring.
Globally, acetoxypinoresinol and pinoresinol exhibit similar potencies in the inhibition of direct protein oxidation and lipid peroxidative damage, as well as in the prevention of lipidome changes induced by Cu**.

With regard to the phenolic acid group (ferulic, cumaric, caffeic and gallic acids) (Figure S1), all the phenols showed antioxidant capacity at 50 and 100 μM. Ferulic and β-cumaric acids showed a slight prooxidant activity at 5 μM, that may be attributed to H₂O₂ in vitro production from phenolic compounds [57,58]. According to their mechanism of action, the phenolic acids may be classified as free radical terminators interfering with lipid oxidation by rapid donation of a hydrogen atom to peroxo radicals. Their antioxidant activity is related to the molecule containing at least two neighbouring phenolic hydroxyl groups; three such groups are even more desirable facilitating the interference. Results of the present study showed that the caffeic (with two neighbouring phenolic hydroxyl groups) and gallic acids (three hydroxyl groups) shown to have the highest antioxidant capacity. Previous results have demonstrated the antioxidant capacity of gallic and caffeic acids on lipid peroxidation [59–61], but only one reported the effect of gallic acids on protein modification, and that was related to nitrosative stress [62]. Concerning their cellular effects, gallic and caffeic acid differed in their effects: while gallic acid was unable to prevent oxLDL-induced or bOOH-induced loss of viability, caffeic acid inhibited the toxic effects of oxLDL (data not shown). This agrees with the known effect of gallic acid as a proapoptotic agent [63–65] and the reported protective effect of caffeic acid in endothelial cell survival after oxLDL treatment [66].

All the phenols studied showed antioxidant capacity in the LDL model, the OH-tyrosol being the more effective. In general, all the phenols showed higher antioxidant activity than α-tocopherol, which could be attributed to the hydrophilic nature of the phenolic structures. In the biphasic microenvironment constituting core lipids and water phase, such as biomembranes and plasma lipoproteins, the location of phenols should be taken into account for understanding their antioxidant activity. Vitamin E (α- tocopherol) seems to be located within the membrane lipids or lipoprotein particles because of its high lipophilicity. However, it is demonstrated that flavonoid aglycones interact in the polar surface region of the phospholipid bilayers in membranes [67], offering a higher protection. This is specially relevant assuming that the antioxidant profile is completely dependent on the system. As shown by experiments with BSA and human plasma, phenolic interaction in protein oxidation is a very complex phenomenon, which depends on not only of the system used for oxidation, but also on the protein, the presence of lipids and the several mechanisms between protein-phenol and free radical source.

In summary, these data show novel antioxidant properties of plant-derived phenolic acid compounds in LDL oxidation and demonstrate phenolic activity in protein oxidation in vivo. It is also demonstrated that in vitro antioxidant measurements could only partially predict biologic responses to oxidized LDL, thus reinforcing the importance of a multidisciplinary approach for the description of oxidative phenomena in atherosclerosis pathogenesis and its dietary modulation.

Supporting Information

Figure S1 Structures of plant-derived phenolics used in the present study.

Figure S2 Representative phenolic acids inhibit protein carbonylation in different oxidative systems up to various extents. All phenols were tested at 5 μM. Oxidation of BSA (A,B,C) or a human plasma pool (D,E,F) was induced with Hemin:H₂O₂ (A, D), Ultraviolet radiation (λ ≈ 254 nm) (B, E), and Fe³⁺:Ascorbate (C, F) as indicated in the Methods and Materials section. Carbonyl contents are expressed as percentual values, considering that the immunoreactivity of protein incubated without oxidant (Ctl) as 100% of carbonyl content. ** p<0.01 by ANOVA compare to oxidant-incubated protein. Data shown are mean±S.D., n = 4 for each data point.

Figure S3 Chromatographic and mass-spectra evidence for the presence of PLPC in methanolic extracts of plasma from hypercholesterolemic hamsters. A: Extracted ion chromatogram of m/z 496.3398 (magnified in B) showing the peak quantified as PLPC (arrow in A); C: Mass spectra of the peak quantified as PLPC (arrowhead showing m/z peak with Δ<0.05 Da in comparison to a theoretical mass of C₂₉H₅₆NO₁₀P) (DOCX)

Figure S4 Chromatographic and mass-spectra evidence for the presence of OGPC in methanolic extracts of plasma from hypercholesterolemic hamsters. A: Extracted ion chromatogram of m/z 522.3554 (magnified in B) showing the peak quantified as OGPC (arrow in A); C: Mass spectra of the peak quantified as OGPC (arrowhead showing m/z peak with Δ<0.02 Da in comparison to a theoretical mass of C₃₀H₅₂NO₁₀P) (DOCX)

Figure S5 Chromatographic and mass-spectra evidence for the presence of PGPC in methanolic extracts of plasma from hypercholesterolemic hamsters. A: Extracted ion chromatogram of m/z 610.3715 (magnified in B) showing the peak quantified as PGPC (arrow in A); C: Mass spectra of the peak quantified as PGPC (arrowhead showing m/z peak with Δ<0.01 Da in comparison to theoretical mass of C₃₀H₅₂NO₁₀P) (DOCX)

Methods S1 Supplementary methods.

Table S1

Author Contributions

Conceived and designed the experiments: RP MPR MJM MPO. Performed the experiments: ASC MJ DC AN JB JCES AC. Analyzed the data: MPO ASC JP MJ. Contributed reagents/materials/analysis tools: MJM MPR LLA JV. Wrote the paper: MJ MPO.

References

1. Goldstein JL, Brown MS (1977) The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46: 897–930.

2. Goldstein JL, Ho VK, Baus NK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 76(1): 333–337.

3. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320(14): 913–924.

4. Hassell LJ, Arnold L, Flowers D, Waeg G, Malle E, et al. (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97(6): 1335–1344.

5. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density...
lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99(9): 2075–2081.

6. Leenenaergh G, Hardy MM, Hazen SL, Wagner P, Ohishi S, et al. (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272(3): 1433–1436.

7. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherosclerosis. Free Radic Biol Med 20(5): 707–727.

8. Esterbauer H, Gelbick J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13(4): 341–390.

9. Hazell LJ, Stocker R (1993) Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J 290 (Pt 1): 165–172.

10. Suppan S, Kirschl A, Turk KL, Hayball PJ (2002) Comparison of radial scavenging effect, inhibition of microsomal oxygen free radical generation, and serum lipoprotein oxidation of several natural antioxidants. J Agric Food Chem 50(8): 2464–2469.

11. Carlucchio MA, Sicullica L, Ancora MA, Massaro M, Scoditti E, et al. (2003) Olive oil and red wine antioxidant phenolns inhibit endothelial activation: Antithrombotic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23(4): 622–629.

12. Grasso D, Aiggi A, Onori I, Croce G, Tiberi S, et al. (2008) Tea, flavonoids, and nitric oxide-mediated vascular reactivity. J Nutr 138(4): 15548–15608.

13. Natelli F, Nardini M, Beelli F, Scaccini C (2007) Coffee drinking induces incorporation of polyunsaturated fatty acids into LDL, and increases the resistance of LDL to ex vivo oxidation in humans. Am J Clin Nutr 86(3): 604–609.

14. Nakagawa K, Nishimori M, Okubo T, Asf N, Nunea L, et al. (1999) Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 47(10): 3967–3973.

15. Kamayama Y, Kishimoto Y, Tani M, Andoh K, Utsunomiya K, et al. (2009) Inhibition of low-density lipoprotein oxidation by naganos purple grape (vitis labruscana) juice. J Nutr Sci Vitaminol (Tokyo) 55(8): 471–476.

16. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, et al. (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17(11): 2744–2752.

17. Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: A review. Int J Epidemiol 26(1): 1–13.

18. Abbey M, Nestel PJ, Baghurst PA (1993) Antioxidant vitamins and low-density lipoprotein oxidation. Arterioscler Thromb 13(6): 1700–1711.

19. Suarna C, Hood RL, Dean RT, Stocker R (1993) Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoproteins. Biochim Biophys Acta 1166(2–3): 163–170.

20. Hou L, Zhou B, Yang L, Liu ZL (2004) Inhibition of human low density lipoprotein oxidation by flavonoids and their glycosides. Chem Phys Lipids 129(2): 2169–2176.

21. Chen CY, Milbury PE, Chung SK, Blumberg J (2007) Effect of almond skin homogenate on antioxidant activity of dietary polyphenols as determined in vitro by electron spin resonance spin-trapping methodology. J Agric Food Chem 55(20): 7444–7449.

22. Menendez JA, Vazquez-Martín A, Colomer R, Brunet J, Carrasco-Pancora B, et al. (2007) Olive oil’s bitter principle reverses acquired atherosclerosis to trastuzumab (herceptin) in HER2-overexpressing breast cancer cells. BMC Cancer 7: 80.

23. Bouguerne B, Belkheiri N, Bedlos-Belval F, Vindhi C, Uchida K, et al. (2011) Antithrombogenic effect of hydroxytyrosol, a natural hydrolase derivative with antioxidant, carbonic anhydrase, and antiprototrophic properties. Antioxid Redox Signal 14(1): 2093–2106.

24. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, et al. (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17(11): 2744–2752.

25. Fabbri C, Personal communication.

26. Wagner P, Heinecke JW (1997) Copper ions promote peroxidation of low-density lipoprotein by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol 17(11): 3338–3346.

27. Beutler B, Fraenkel G, Pecora D, Leibowitch J, Silverman S (1957) Prevention of Lipoxidation by Natural Phenolics
epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 278(1): 50–53.

59. Hsieh CL, Yen GC, Chen HY (2005) Antioxidant activities of phenolic acids on ultraviolet radiation-induced erythrocyte and low density lipoprotein oxidation. J Agric Food Chem 53(15): 6151–6155.

60. Hseu YC, Chang WH, Chen CS, Liao JW, Huang CJ, et al. (2008) Antioxidant activities of toona sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 46(1): 105–114.

61. Laranjinha JA, Almeida LM, Madeira VM (1994) Reactivity of dietary phenolic acids with peroxy radicals: Antioxidant activity upon low density lipoprotein peroxidation. Biochem Pharmacol 48(3): 487–494.

62. Pannala AS, Rice-Evans CA, Halliwell B, Singh S (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun 232(1): 164–168.

63. Locatelli C, Rosso R, Santos-Silva MC, de Souza CA, Lácio MA, et al. (2008) Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorg Med Chem 16(7): 3791–3799.

64. Hsu CL, Lo WH, Yen GC (2007) Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a fas- and mitochondrial-mediated pathway. J Agric Food Chem 55(18): 7359–7365.

65. Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdk25A/cdk25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5(12): 3294–3302.

66. Vieira O, Escargueil-Blanc I, Meilhac O, Basile JP, Laranjinha J, et al. (1998) Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL. Br J Pharmacol 123(3): 565–573.

67. Fukuzawa K, Matsnura K, Tokumura A, Suzuki A, Terao J (1997) Kinetics and dynamics of singlet oxygen scavenging by alpha-tocopherol in phospholipid model membranes. Free Radic Biol Med 22(3): 923–930.