N-doped graphene/CoFe$_2$O$_4$ catalysts for the selective catalytic reduction of NO$_x$ by NH$_3$

Peng Li, Zhifang Li, Jinxing Cui, Cui Geng, Yan Kang, Chao Zhang and Changlong Yang*

In this paper, CoFe$_2$O$_4$/graphene catalysts and N-doped graphene/CoFe$_2$O$_4$ (CoFe$_2$O$_4$/graphene-N) catalysts were prepared using the hydrothermal crystallization method for the selective catalytic reduction of NO$_x$ by NH$_3$. The results of the test showed that CoFe$_2$O$_4$/graphene catalysts exhibited the best denitrification activity when the loading was at 4% and the conversion rate of NO$_x$ reached 99% at 250–300 °C. CoFe$_2$O$_4$/graphene-N catalysts presented a better denitrification activity at low temperature than CoFe$_2$O$_4$/graphene catalysts, and the conversion rate of NO$_x$ reached more than 95% at 200–300 °C. The intrinsic mechanism of CoFe$_2$O$_4$/graphene-N catalysts in promoting SCR activity was preliminarily explored. The physicochemical properties of the samples were characterized using XRD, TEM, N$_2$ adsorption, XPS, NH$_3$-TPD, and H$_2$-TPR. The results indicated that nitrogen doping can improve the dispersion of CoFe$_2$O$_4$, and it also increased the acidic sites and the redox performance conducive to improving the denitrification activity of the catalysts. In addition, CoFe$_2$O$_4$/graphene-N catalysts demonstrated a better resistance to water and sulfur than CoFe$_2$O$_4$/graphene catalysts.

1. Introduction

Nitrogen oxide (NO$_x$) is one of the typical atmospheric pollutants.
Selective catalytic reduction (SCR) is an effective method to control the emission of nitrogen oxides from coal-fired power plants. At present, V$_2$O$_5$-WO$_3$/TiO$_2$ catalysts are still widely used in the denitrification process of coal-fired boilers and power plants. However, there are many disadvantages in practical applications, such as high running temperature, poor sulfur and water resistance, and short service life. Therefore, the development of high activity denitrification catalysts at a low temperature is of great significance for environmental protection.

In recent years, iron-based catalysts have been widely used in SCR because of their fine catalytic performance, such as Fe/ZSM-5, Fe/MCM-56, Co–Fe, Fe–Mn, and Co$_3$O$_4$–CoFe$_2$O$_4$@-SiO$_2$@Au. Among them, Spinel ferrite AFe$_2$O$_4$ (A = Zn, Ni, Co, Mn) has the advantages of good chemical stability, high mechanical strength and excellent electromagnetic properties. Kennedy et al. found that the photocatalytic degradation rate of Rhodamine B by Co$_{0.8}$Mg$_{0.2}$Fe$_2$O$_4$ reached 99.5%. Wang et al. found that the photochemical degradation ability of CoFe$_2$O$_4$/MoS$_2$ nanocomposites prepared for organic dyes reached 94.9%. The Co$_1$–Zn$_{0.4}$Fe$_2$O$_4$ nanocomposite studied by Das and co-workers exhibits good photocatalytic properties. Graphene (GE) has been widely used as a carrier to improve the performance of catalysts due to its large specific surface area, high electron mobility and stable chemical properties. Yao et al. found that CoFe$_2$O$_4$/graphene has better catalytic activity than CoFe$_2$O$_4$ in phenol degradation. Bian et al. found that CoFe$_2$O$_4$/graphene nanocomposites exhibit excellent catalytic activity in redox reactions.

N-doped mesoporous carbon materials have been widely used in catalytic reactions. The modification of mesoporous carbon by incorporating nitrogen leads to the better particle dispersity, but also probably disturbs the electronic structure of carbon solids owing to the formation of a semiconductor-like energy gap. To the best of our knowledge, the research of N-doped graphene/CoFe$_2$O$_4$ (CoFe$_2$O$_4$/graphene-N) for NH$_3$-SCR has been rarely reported. In this paper, graphene as catalysts carrier was used to prepare CoFe$_2$O$_4$/graphene catalysts for NH$_3$-SCR reaction. The proper proportion of CoFe$_2$O$_4$/graphene catalysts was determined, and the effect of nitrogen doped on the denitrification performance of CoFe$_2$O$_4$/graphene catalyst was also investigated. The mechanism of CoFe$_2$O$_4$/graphene-N catalyst in promoting SCR activity was preliminarily explored, which provided a theoretical basis for the practical application of AFe$_2$O$_4$ catalysts in NH$_3$-SCR reaction.
2. Experimental

2.1 Catalysts preparation

2.1.1 Preparation of GO. Graphene oxide was prepared using the Hummers’ method.29 The preparation process was as follows: 5 g of graphite powder, 2.5 g of sodium nitrate and 115 ml of concentrated sulfuric acid were firstly added to a three-necked flask placed in an ice water bath for stirring, and after being uniformly mixed, 15 g of potassium permanganate was added. The mixture was kept in the ice-water bath for 2 hours, and then transferred from the flask into the thermostat water bath again, and stirred for 30 min at 35 °C. Transfer the mixture in the three-necked flask into an ice water bath and then add 230 ml of deionized water. Finally, react at a constant temperature of 98 °C for 20 min. The reaction mixture was then cooled down naturally to room temperature. Subsequently, the hydrogen peroxide (50 ml) was added and stirred for 10 min. Wash and dry with HCl and deionized water, respectively.

2.1.2 Preparation of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts. The CoFe2O4/graphene catalysts was prepared by the hydrothermal method.31 0.12 g GO was added to 60 ml anhydrous alcohol under ultrasonic for 30 min, as solution A. Another solution was to add a certain amount of cobalt nitrate and ferric nitrate to 20 ml absolute alcohol, namely solution B. Solution B was then added to solution A, and stirred for 30 minutes; after that, 2.16 g sodium acetate was added to continue stirring for 30 minutes, by then crystallized at 200 °C for 12 hours. In the meantime, the loads of 1CoFe2O4/graphene, 4CoFe2O4/graphene, 7CoFe2O4/graphene and 11CoFe2O4/graphene were prepared by changing the amount of cobalt nitrate and ferric nitrate added respectively. Adding solution B into A and adding 1 ml ammonia to prepare CoFe2O4/graphene-N, the preparation process is the same as above.

2.2 Evaluation of denitrification activity of the catalysts

The denitrification activity of the catalysts was tested with Shanghai Jiangke QJK45 denitrification experimental facility with 0.3 g catalysts. N2 was used as balanced gas; NH3 500 ppm; NO 500 ppm; SO2 100 ppm; O2 5%; H2O 3%; the total gas mixture in the three-necked flask in programmed desorption (NH3-TPD) of AutoChem 2920 H2 temperature programmed reduction (H2-TPR) was used to characterize and analyze the redox performance of the catalysts.

\[
\text{NOx conversion\%} = \frac{[\text{NOx}]_{\text{in}} - [\text{NOx}]_{\text{out}}}{[\text{NOx}]_{\text{in}}} \times 100\% \quad (1)
\]

2.3 Catalysts characterization

The crystal structure of the catalysts was characterized by Smart lab X-ray diffraction (XRD) of Nippon Science Corporation, with a scanning range of 5–80 degree, an operating current of 200 mA and an operating voltage of 45 kV. Hitachi H-7650 transmission electron microscopy (TEM) was used to characterize the microstructures of the samples (resolution 0.2 nm, acceleration voltage 40–120 kV, magnification 60 000×). The specific surface area, pore size distribution and pore volume of the catalysts was characterized by Autosorb IQ of Conta Instruments Company, USA. Thermo Fisher’s ESCALAB250XI X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemical composition and the chemical state of each element. The surface acidity of the catalysts was characterized by temperature programmed desorption (NH3-TPD) of AutoChem 2920 NH3, an American company. AutoChem 2920 H2 temperature programmed reduction (H2-TPR) was used to characterize and analyze the redox performance of the catalysts.

3. Results and discussion

3.1 Structure and microstructure analysis of catalysts

Fig. 1 shows the XRD patterns of the graphene oxide (GO), CoFe2O4, CoFe2O4/graphene, and CoFe2O4/graphene-N. The XRD diagram of GO in Fig. 1(a) finds the strong diffraction peak of GO appears at 12 degrees, which indicates that the oxide of graphite has been successfully synthesized.32 It can be seen from Fig. 1(a) that the obvious diffraction peaks are observed at 30.0, 35.4, 43.4, 57.1 and 62.7 degrees respectively. According to the PDF card, namely PDF#03-0864, CoFe2O4 has been successfully synthesized. Fig. 1(b) XRD patterns of CoFe2O4/graphene catalysts with different CoFe2O4 loadings show that

![Fig. 1 XRD patterns of (a) GO, CoFe2O4, CoFe2O4/graphene, CoFe2O4/graphene-N. (b) CoFe2O4/graphene catalysts with different loadings.](image-url)
there are obvious characteristic peaks of graphene at 25.2 degrees, proving that graphene oxide has been successfully reduced during the preparation of the catalysts. At the same time, the diffraction peaks of CoFe$_2$O$_4$ can be observed, indicating that CoFe$_2$O$_4$/graphene catalysts has been successfully synthesized.

Fig. 2 reveals CoFe$_2$O$_4$ nanoparticles distribute on the surface of graphene. From the TEM diagram of CoFe$_2$O$_4$/graphene, it can be found that the active components are aggregated, and the distribution of CoFe$_2$O$_4$ in CoFe$_2$O$_4$/graphene-N catalysts is more uniform. The results show that nitrogen doped was beneficial to the uniform distribution of the active components and to make a good contact with the reactants in NH$_3$-SCR test, thereby enhancing the reactivity of the catalysts.

Fig. 3 shows nitrogen adsorption–desorption isotherms of CoFe$_2$O$_4$/graphene and CoFe$_2$O$_4$/graphene-N. It can be seen from the diagram that all types of catalytic isotherms are IV type and the lagging ring type is H1 type. The results show that the catalysts of CoFe$_2$O$_4$/graphene and CoFe$_2$O$_4$/graphene-N contain typical mesoporous structures, and the isotherm hysteresis is related to the existence of voids.

Table 1 is the specific surface area, pore volume and pore size parameters of GO, CoFe$_2$O$_4$/graphene and CoFe$_2$O$_4$/graphene-N catalysts. It was found that the specific surface area of CoFe$_2$O$_4$/graphene-N catalysts was reduced, but its denitrification activity was higher than that of CoFe$_2$O$_4$/graphene catalysts. This indicated that the denitrification activity of the catalysts was not only related to the specific surface area but also to the acidic site and redox performance of the catalysts.

3.2 Nitrogen-doped enhances the denitrification activity of CoFe$_2$O$_4$/graphene-N catalysts

Fig. 4 shows the CoFe$_2$O$_4$/graphene catalysts of different loadings and the denitrification activity of CoFe$_2$O$_4$/graphene-N. It can be seen from the graph that the denitrification activity of CoFe$_2$O$_4$/graphene catalysts with different loading amount increases with the increase of the reaction temperature when it is less than 250 °C. When the reaction temperature is at 250 °C, the conversion of NOx of all catalysts is above 95%, which indicates that the catalysts have good denitrification activity at low temperature. The SCR catalytic activity of CoFe$_2$O$_4$/graphene catalyst increases and then decreases with the increasing of the loadings. Compared with CoFe$_2$O$_4$/graphene catalysts of 1%, 7% and 11% loading respectively, CoFe$_2$O$_4$/graphene catalysts with 4% loading have the highest denitrification conversion in the range of 200–400 °C, indicating that the optimum loading of the prepared CoFe$_2$O$_4$/graphene catalysts was 4%. Compared with 4CoFe$_2$O$_4$/graphene catalysts, 4CoFe$_2$O$_4$/graphene-N catalyst exhibits higher denitrification activity at low temperature in the range of 150–300 °C. It is due to the more uniform distribution of CoFe$_2$O$_4$ after nitrogen doped. It is also related to the acidic site, redox performance of the catalysts and the synergetic effect between CoFe$_2$O$_4$ and N-doped graphene support. The literature reported the synergetic effect can enhance photocatalytic activity and photostability.25,26

Compared with the reported supported catalysts, CoFe$_2$O$_4$/graphene-N catalysts have better denitrification activity (Table 2).27–29
CeO2/Al2O3

Other peaks are observed at 284.6 eV and 286.5 eV belong to the C sp2 bonded C and C sp3 bonded C, respectively.

Fig. 5(a) is a wide scan of XPS spectrum of CoFe2O4/graphene and CoFe2O4/graphene-N. The peaks at 284.6 eV and 286.5 eV belong to the C sp2 bonded C, respectively. Other peaks are observed at 796.6 eV and 802.8 eV corresponding to the Co 2p1/2 and its satellite peak, indicating the presence of Co2+. It indicates that CoFe2O4/graphene and CoFe2O4/graphene-N catalysts have been successfully synthesized, which is consistent with the XRD results. Fig. 5(e) is the N 1s XPS diagram of CoFe2O4/graphene-N. The peak at 398.8 eV belongs to pyridinic nitrogen; the peak at 399.8 eV belongs to pyrolic nitrogen; and the peak at 401.6 eV belongs to graphitic nitrogen. Among the three nitrogen species, pyridinic nitrogen is considered as the main active site for catalyzing oxygen reduction reaction, which can effectively improve the catalytic performance of CoFe2O4/graphene-N. Fig. 5(f) is the O 1s XPS diagram of CoFe2O4/graphene and CoFe2O4/graphene-N. The characteristic peaks of lattice oxygen (Oa) at 530.4 eV, adsorb oxygen (Oa) at 531.7 eV and surface oxygen (Ob) at 533.6 eV can be clearly seen from Fig. 5. It can be seen that the adsorbed oxygen (Oa) ratio (42.9%) of CoFe2O4/graphene is slightly higher than that (40.3%) of CoFe2O4/graphene-N. Surface adsorbed oxygen (Oa) has higher mobility than lattice oxygen (Oa) in SCR reaction, which is helpful to improve the denitriﬁcation activity of catalysts, which is consistent with the test results of denitriﬁcation activity of catalysts. It means that the high denitriﬁcation activity of the CoFe2O4/graphene-N catalysts is related to other factors.

Fig. 6 is the NH3-TPD diagram of CoFe2O4/graphene and CoFe2O4/graphene-N. It can be seen that CoFe2O4/graphene and CoFe2O4/graphene-N catalysts have two desorption peaks. Comparing the two curves, CoFe2O4/graphene-N catalysts have higher peak temperature and peak area than CoFe2O4/graphene catalysts. This indicates that the acid strength and quantity of CoFe2O4/graphene-N catalysts are superior to that of CoFe2O4/graphene catalysts, and the increase of acid sites of catalysts promotes the denitriﬁcation activity of catalysts.

Fig. 7 is the H2-TPR diagram of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts. As is shown, the reduction peaks of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts occur at 462 °C and 388 °C respectively. Compared with CoFe2O4/graphene, the peak of CoFe2O4/graphene-N moved to lower temperature, indicating that the catalysts have better reduction performance at low temperature. In addition, the reduction peak area of CoFe2O4/graphene-N catalysts increases, indicating that the redox performance of the catalysts increases, thus increasing the denitriﬁcation activity of the catalysts.

3.3 Nitrogen-doped enhances the denitriﬁcation mechanism of CoFe2O4/graphene-N catalysts

Fig. 5(a) is a wide scan of XPS spectrum of CoFe2O4/graphene and CoFe2O4/graphene-N. The binding energy at 284.6 eV, 529.8 eV, 711.6 eV and 780.9 eV attributes to C 1s, O 1s, Fe 2p and Co 2p, respectively. Fig. 5(b) is a C 1s XPS diagram of CoFe2O4/graphene and CoFe2O4/graphene-N. The peaks at 284.6 eV and 286.5 eV belong to the C sp2 bonded C and C sp3 bonded C, respectively. The C-N bonds were also detected at 285.6 and 287.1 eV, which is attributed to sp2 and sp3 bonded C-N, respectively. Fig. 5(c) is a Fe 2p XPS diagram of CoFe2O4/graphene and CoFe2O4/graphene-N. The peaks at 711.6 eV and 785.1 eV can be assigned to Fe 2p3/2 and Fe 2p1/2, respectively, indicating the presence of Fe2+. Fig. 5(d) is a Co 2p XPS diagram of CoFe2O4/graphene and CoFe2O4/graphene-N. The Co 2p spectrum shows two peaks at 781.0 eV and 786.6 eV, which can be attributed to Co 2p3/2 and its satellite peak. Other peaks are observed at 90% (350 °C) and 80% (250 °C) with CoFe2O4/graphene-N, and 90% (300–400 °C) with CoFe2O4/graphene-N.

Table 1 The specific surface area, pore volume and average pore size of GO, CoFe2O4/graphene and CoFe2O4/graphene-N.

Sample	S BET (m2 g−1)	V Total (cm3 g−1)	Average pore size (nm)
GO	337	1.290	3.820
CoFe2O4/graphene	58	0.268	3.828
CoFe2O4/graphene-N	40	0.158	3.825

Table 2 The catalytic activities of the reported denitriﬁcation catalysts.

Catalysts	NOx conversion (temperature range)	GHSV	References
Cu-ZSM-5	≥80% (250–350 °C)	80 000 h−1	27
CeO2-ZrO2/TiO2	≥80% (250–350 °C)	71 400 h−1	28
CeO2/Al2O3	≥90% (300–400 °C)	7200 h−1	29

Fig. 4 NH3-SCR activity of CoFe2O4/graphene catalysts with different loadings and CoFe2O4/graphene-N catalysts. Reaction conditions: NH3 (500 ppm), NO (500 ppm), O2 5%, N2 as balanced gas, total gas flow (100 ml min−1).
3.4 Test of water and sulfur resistance of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts

Fig. 8 is a test of water and sulfur resistance of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts. It is obvious that the denitrification activity of CoFe2O4/graphene-N is higher than that of CoFe2O4/graphene, indicating that nitrogen doped is beneficial to improving the water and sulfur resistance of the catalysts. The denitrification activity of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts is tested in the presence of SO2. The denitrification conversion rate of CoFe2O4/graphene-N catalysts is relatively poor when the reaction temperature is below 250 °C. The reason was that SO2 reacts with NH3 to form sulfate that covers the active sites of the catalysts and blocks the channels of the catalysts, which weakens the catalytic activity. At the high temperature, SO2 on the surface of the catalysts is converted to SO42−, resulting in the increase of surface acidity of the catalysts and the enhancement of the denitrification activity of the catalysts.40 The poor water resistance of CoFe2O4/graphene and CoFe2O4/graphene-N catalysts is attributed to the competitive adsorption of H2O and reactive gases (NH3, O2, NO).

Catalysts	Pyridinic nitrogen/%	Pyrrolic nitrogen/%	Graphitic nitrogen/%
CoFe2O4/graphene-N	42.42%	35.89%	21.69%

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 15791–15797 | 15795
on the surface of the catalysts, and the hydroxyl groups generated by the adsorbed water on the surface of the catalysts neutralize the acidic sites on the surface of the catalysts, resulting in the deterioration of the denitrification activity of the catalysts.

3.5 Repeatability test of CoFe$_2$O$_4$/graphene-N catalyst

Fig. 9 shows the repeatability of CoFe$_2$O$_4$/graphene-N catalyst for four times. It can be seen from the Fig. 9 that the denitrification activity of the reused CoFe$_2$O$_4$/graphene-N (four times) significantly decreased under 250 °C compared with the fresh catalyst. However, it is interesting that the activity of the reused catalyst can basically maintain invariant in the temperature of 250–300 °C. In addition, the reused CoFe$_2$O$_4$/graphene-N do not significantly decrease the conversion of NOx in the range of temperature from 300 °C to 400 °C.

4. Conclusions

CoFe$_2$O$_4$/graphene catalysts and CoFe$_2$O$_4$/graphene-N catalysts were prepared. When the loading amount is 4%, the denitrification activity of the catalysts is the best, and the conversion rate of NO$_x$ reaches 99% at 250–300 °C. TEM showed that nitrogen doped made the distribution of the active components more uniform on the carrier. NH$_3$-TPD and H$_2$-TPR showed that nitrogen doped resulted in more acidic sites on the surface of the catalysts and improved the redox performance of the catalysts. CoFe$_2$O$_4$/graphene-N has better denitrification activity at low temperature than CoFe$_2$O$_4$/graphene, and the conversion rate of NO$_x$ reaches more than 95% at 200–300 °C.

Conflicts of interest

There are no conflicts to declare.
Acknowledgements

This article was supported by National Natural Science Foundation of China (51708309), Heilongjiang Provincial Natural Science Foundation (QC2017065), The Fundamental Research Funds in Heilongjiang Provincial Universities (No. 135109103), Specialized Subject of Plant Food Processing Technology of Heilongjiang Education Department (YSTSXX201872), Qiqihar University Graduate Student Innovative Research Projects (YJSCX2018-032X).

References

1 K. W. Zha, S. X. Cai, H. Hu, H. R. Li, T. T. Yan, L. Y. Shi and D. S. Zhang, J. Phys. Chem. C, 2017, 121, 25243–25254.
2 X. L. Li and Y. H. Li, React. Kinet., Mech. Catal., 2014, 112, 27–36.
3 H. Q. Wang, X. B. Chen, S. Gao, Z. B. Wu, Y. Liu and X. L. Weng, Catal. Sci. Technol., 2013, 3, 715–722.
4 X. Y. Shi, F. D. Liu, L. J. Xie, W. P. Shan and H. He, Environ. Sci. Technol., 2013, 47, 3293–3298.
5 J. Grzybek, B. Gil, W. J. Roth, M. Skoczek, A. Kowalczuk and L. Chmielarz, Spectrochim. Acta, Part A, 2018, 196, 281–288.
6 C. Z. Shao, X. F. Liu, D. M. Meng, Q. Xu, Y. L. Guo, Y. Guo, W. C. Zhan, L. Wang and G. Z. Lu, RSC Adv., 2016, 6, 66169–66179.
7 C. A. Zhang, T. H. Chen, H. B. Liu, D. Chen, B. Xu and C. S. Qing, Appl. Surf. Sci., 2018, 457, 1116–1125.
8 W. L. Ma, H. Li, Q. Xu, Y. Zhang, W. Wang and J. D. Wang, New J. Chem., 2018, 42, 14757–14765.
9 J. M. Feng, X. H. Zhong, G. Z. Wang, L. Dong, X. F. Li and D. J. Li, J. Mater. Sci., 2016, 52, 3124–3132.
10 X. Y. Liu, Q. Li, J. N. Shu and H. Cui, J. Mater. Chem. C, 2017, 5, 7612–7620.
11 N. Dong, F. Z. He, J. L. Xin, Q. Z. Wang, Z. Q. Lei and B. T. Su, Mater. Res. Bull., 2016, 80, 186–190.
12 M. Sundararajan, L. John Kennedy, P. Nithya and J. Judith Vijaya, J. Phys. Chem. Solids, 2017, 108, 61–75.
13 B. Y. Ren, W. Shen, L. Li, S. Z. Wu and W. Wang, Appl. Surf. Sci., 2018, 447, 711–723.
14 P. A. Vinosha, B. Xavier, S. Krishnan and S. J. Das, J. Nanosci. Nanotechnol., 2018, 18, 5354–5366.
15 Q. A. Zhao, H. B. Zhao, L. Yan, M. X. Bi, Y. W. Li, Y. Q. Zhou, Z. J. Song and T. S. Jiang, J. Nanosci. Nanotechnol., 2017, 17, 3951–3958.
16 S. H. Wu, H. J. He, X. Li, C. P. Yang, G. M. Zeng, B. Wu, S. Y. He, L. Lu, et al., Chem. Eng. J., 2018, 341, 126–136.
17 Y. J. Yao, Z. H. Yang, D. W. Zhang, W. C. Peng, H. Q. Sun and S. B. Wang, Ind. Eng. Chem. Res., 2012, 51, 6044–6051.
18 W. Y. Bian, Z. R. Yang, P. Strasser and R. Z. Yang, J. Power Sources, 2014, 250, 196–203.
19 F. Yang, L. T. Jia, B. Hou, D. B. Li, J. G. Wang and Y. H. Sun, J. Phys. Chem. C, 2014, 118, 268–277.
20 Y. B. Shao, T. Jing, J. Z. Tian and Y. J. Zheng, RSC Adv., 2015, 5, 103943–103955.
21 S. L. Ma, S. H. Zhan, Y. N. Jia and Q. X. Zhou, ACS Appl. Mater. Interfaces, 2015, 7, 10576–10586.
22 Y. P. Dou, J. J. Peng, W. Li, M. Li, H. H. Liu and H. M. Zhang, J. Nanopart. Res., 2015, 17, 489.
23 C. R. Minita and R. T. Rajendrakumar, Adv. Mater. Res., 2013, 678, 56–60.
24 P. Li, Z. F. Li, C. Geng, Y. Kang, C. Zhang and C. L. Yang, Chin. J. Inorg. Chem., 2018, 34, 2205–2210.
25 Y. Lin, S. H. Wu, X. Li, X. Wu, C. P. Yang, G. M. Zeng, Y. R. Peng, Q. Zhou and L. Lu, Appl. Catal. B Environ., 2018, 227, 557–570.
26 Y. Lin, S. H. Wu, C. P. Yang, M. Chen and X. Li, Appl. Catal. B Environ., 2019, 245, 71–86.
27 Q. Yuan, Z. Y. Zhang, N. S. Yu and B. Dong, Catal. Commun., 2018, 108, 23–26.
28 Q. J. Jin, Y. S. Shen, S. M. Zhu, X. H. Li and M. Hu, Chin. J. Catal., 2016, 37, 1521–1528.
29 W. Yan, Y. S. Shen, S. M. Zhu, Q. J. Jin, Y. L. Liu and X. H. Li, Catal. Lett., 2016, 146, 1221–1230.
30 S. L. Zhang, Q. Z. Jiao, J. Hu, J. J. Li, Y. Zhao, H. S. Li and Q. Wu, J. Alloys Compd., 2015, 630, 195–201.
31 L. X. Zheng, L. T. Guan, G. Yang, S. M. Chen and H. J. Zheng, RSC Adv., 2018, 8, 8607–8614.
32 F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou and F. S. Xiao, J. Mater. Chem. A, 2013, 1, 9037–9045.
33 H. Xia, D. D. Zhu, Y. S. Fu and X. Wang, Electrochim. Acta, 2012, 68, 166–174.
34 M. Zhang, X. Yang, X. F. Kan, X. Wang, L. Ma and M. Q. Jia, Electrochim. Acta, 2013, 112, 727–734.
35 S. H. Li, H. Miaoa, Q. Xu, Y. J. Xue, S. S. Sun, Q. Wang and Z. P. Liu, RSC Adv., 2016, 6, 99179–99183.
36 E. J. Biddingger, D. von Deak and U. S. Ozkan, Top. Catal., 2009, 52, 1566–1574.
37 Y. Jiang, Z. M. Xing, X. C. Wang, S. B. Huang, Q. Y. Liu and J. S. Yang, J. Ind. Eng. Chem., 2015, 29, 43–47.
38 Z. M. Liu, S. X. Zhang, J. H. Li and L. L. Ma, Appl. Catal. B Environ., 2014, 144, 90–95.
39 H. F. Li, G. Z. Lu, Q. G. Dai, Y. Q. Wang, Y. Guo and Y. L. Guo, Appl. Catal. B Environ., 2011, 102, 475–483.
40 R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang and T. T. Gu, Catal. Today, 2010, 153, 84–89.
41 C. C. Xu, W. Sun, L. M. Cao, T. T. Li, X. X. Cai and J. Yang, Chem. Eng. J., 2017, 308, 980–987.