On Jordan type bounds for finite groups of diffeomorphisms of 3-manifolds and Euclidean spaces

Bruno P. Zimmermann
Università degli Studi di Trieste
Dipartimento di Matematica e Geoscienze
34127 Trieste, Italy

Abstract. By a classical result of Jordan, each finite subgroup G of $\text{GL}_n(\mathbb{C})$ has an abelian subgroup whose index in G is bounded by a constant depending only on n. We consider the problem if this remains true for finite subgroups G of the diffeomorphism group of a smooth manifold, and show that it is true for all compact 3-manifolds as well as for Euclidean spaces \mathbb{R}^n, $n \leq 6$. The question remains open at present e.g. for odd-dimensional spheres S^n, $n \geq 5$ and for Euclidean spaces \mathbb{R}^n, $n \geq 7$.

1. Introduction

By a classical result of Jordan, each finite subgroup G of $\text{GL}_n(\mathbb{C})$ has an abelian subgroup A whose index in G is bounded by a constant depending only on n (see [C] for the optimal bound for each n). Recently there has been much interest in generalizations, replacing $\text{GL}_n(\mathbb{C})$ by more general geometrically interesting groups such as diffeomorphism groups of smooth manifolds ([MR1,2],[P1]), automorphism groups of algebraic varieties and the Cremona groups of birational self-maps of the affine n-dimensional space (cf. [P2], [Se, Theoreme 3.1]).

Following [P1,2], we say that a group E is a Jordan group or has the Jordan property if there exits a constant such that every finite subgroup G of E has an abelian subgroup of index bounded by this constant. For a smooth manifold M, let $\text{Diff}(M)$ denote its diffeomorphism group. The present paper is motivated by the following general:

Question: For which (classes of) smooth manifolds M is $\text{Diff}(M)$ a Jordan group?

Whereas this is in general not true for non-compact manifolds ([P1]), it has been conjectured that it is true for compact manifolds (see [MR1,2]); however, it should be true e.g. also for $\text{Diff}(\mathbb{R}^n)$.

Note that a Jordan group contains only finitely many finite non-abelian simple subgroups, up to isomorphism; in this regard, it has been shown in [GZ] that $\text{Diff}(S^n)$ contains only finitely many finite non-abelian simple subgroups, up to isomorphism (and, more generally, for any closed homology n-sphere, see also [Z1]). It has been
shown in [MR1] that $\text{Diff}(M)$ is a Jordan group if M is a compact manifold without odd cohomology; in particular, $\text{Diff}(S^n)$ is a Jordan group for even dimensions n, but this remains open for odd dimensions $n \geq 5$.

On the basis of the geometrization of 3-manifolds and results of Kojima [K] and the author [Z2], in our first main result we consider the case of compact 3-manifolds:

Theorem 1. $\text{Diff}(M)$ is a Jordan group for compact 3-manifolds M.

In dimension three, this leaves open the question for non-compact 3-manifolds. Concerning dimension four, it is shown in [P2] that there are noncompact, simply connected, smooth 4-manifolds M such that $\text{Diff}(M)$ is not a Jordan group. On the other hand, it is shown in [MR2] that, for compact smooth 4-manifolds M with non-zero Euler characteristic, $\text{Diff}(M)$ is a Jordan group. The case of the 4-sphere S^4 is considered in [MeZ1,2] where it is shown that, up to 2-fold extension in the case of solvable groups, any finite group with an orientation-preserving smooth action on S^4 (or on any homology 4-sphere) is isomorphic to a subgroup of the orthogonal group $\text{SO}(5)$, presenting also a short list of such groups.

Next we consider Euclidean spaces \mathbb{R}^n. The following is proved in [GMZ]:

Theorem 2. ([GMZ]) Let G be a finite subgroup of $\text{Diff}(\mathbb{R}^n)$ (or of $\text{Diff}(M)$, for any acyclic n-manifold M). Suppose that $n \leq 4$; then G is isomorphic to a subgroup of the orthogonal group $\text{O}(n)$. In particular, the classical Jordan bound applies to G, so $\text{Diff}(\mathbb{R}^n)$ is a Jordan group for $n \leq 4$.

In [GMZ] the case of finite groups of diffeomorphisms of \mathbb{R}^5 is also considered; the classification in this case is not complete but the results imply easily that also $\text{Diff}(\mathbb{R}^5)$ is a Jordan group (more generally, the results in [GMZ] apply to arbitrary acyclic manifolds).

A main tool for the proof of our second main result is a recent group-theoretical result of Mundet i Riera and Turull [MT] (on the basis of the classification of the finite simple groups).

Theorem 3. $\text{Diff}(\mathbb{R}^5)$ and $\text{Diff}(\mathbb{R}^6)$ are Jordan groups (and, more generally, $\text{Diff}(M)$ for any acyclic 5- or 6-manifold M).

We will present the proof of Theorem 3 for the new case $n = 6$; the same proof works also for $n = 5$ where it is, in fact, easier. As noted above, the proof for $n = 6$ uses the full classification of the finite simple groups; the proof for $n = 5$ instead requires "only" a smaller part of the classification of the finite simple groups (the Gorenstein-Harada classification of the finite simple groups of sectional 2-rank at most four), see [GMZ], [Z1].

2
Two interesting cases where the Jordan property is not known at present are those of $\text{Diff}(S^5)$ and $\text{Diff}(\mathbb{R}^7)$. However, it seems likely that $\text{Diff}(S^n)$ and $\text{Diff}(\mathbb{R}^n)$ are Jordan groups for all values of n.

2. Proof of Theorem 1

It is easy to see that, if \tilde{M} is a finite covering of M such that $\text{Diff}(\tilde{M})$ is a Jordan group then also $\text{Diff}(M)$ is a Jordan group. So it is sufficient to consider the case of orientable manifolds, and also of orientation-preserving finite group actions G (passing eventually to a subgroup of index two of G). Also, it is sufficient to consider the case of closed manifolds since, for a compact manifold M with non-empty boundary, one can reduce to the closed case by taking the double of M along the boundary, doubling also a given finite group action on M.

So let M be a closed orientable 3-manifold and G a finite group of orientation-preserving diffeomorphisms of M. If $\pi_1(M)$ is finite then, by the geometrization of 3-manifolds after Perelman, M is a spherical 3-manifold and finitely covered by S^3; also, any finite group of diffeomorphisms of M is conjugate to a linear (orthogonal) action. By the classical Jordan bound for linear groups, $\text{Diff}(S^3)$ is a Jordan group, and hence also $\text{Diff}(M)$ is a Jordan group.

Assume next that M is irreducible and has infinite fundamental group; again by the geometrization of 3-manifolds, we can assume that M is a geometric. Then, if M does not admit a circle action, by [K, Theorem 4.1] there is a bound on the order of finite subgroups of $\text{Diff}(M)$ and we are done.

Suppose that M has a circle action and infinite fundamental group. Then M is a Seifert fiber space, and by the geometrization of finite group actions on Seifert fiber spaces ([MS]), we can assume that the action of the finite group G of diffeomorphisms of M is geometric, and in particular fiber-preserving and normalizing the S^1-action of M. Considering a suitable finite covering of M, we can moreover assume that M has no exceptional fibers, and hence that the base space of the Seifert fibration (the quotient of the S^1-action) is a closed orientable surface B without cone points. The finite group G projects to a finite group \bar{G} of diffeomorphisms of the base-surface B, and we can again assume that \bar{G} is orientation-preserving.

If B is a hyperbolic surface (of genus $g \geq 2$) then, by the formula of Riemann-Hurwitz, the order of the finite group \bar{G} of diffeomorphisms of B is bounded, and hence G has a finite cyclic subgroup of bounded index (the intersection of G with the S^1-action).

If B is a torus T^2 then there are two cases. First, M may be a 3-dimensional torus T^3; this acts by rotations on itself. Since the action of G is geometric, the subgroup G_0 of G acting trivially on the fundamental group is a subgroup of the T^3-action and hence abelian of rank at most three (see [Sc] for the geometries of 3-manifolds and their
isometry groups). The factor group G/G_0 acts faithfully on the fundamental group \mathbb{Z}^3 of the 3-torus and is isomorphic to a subgroup of $GL_3(\mathbb{Z})$. Since, by a well-known result of Minkowski, there is a bound on the finite subgroups of $GL_n(\mathbb{Z})$ for each n, G has an abelian subgroup G_0 of bounded index.

If M fibers over T^2 but is not a 3-torus then it belongs to the nilpotent geometry Nil given by the Heisenberg group (see again [Sc]). Now the subgroup G_0 of G acting trivially on the fundamental group, up to inner automorphisms, is a cyclic subgroup of the S^1 action on M, and G/G_0 injects into the outer automorphism group $Out(\pi_1 M)$ of the fundamental group. The fundamental group of M has a presentation

$$\pi_1 M = \langle a, b, t \mid [a, b] = t^k, \ [a, t] = [b, t] = 1 \rangle,$$

with $k \neq 0$. Now an easy calculation shows that the subgroup of the outer automorphism group of $\pi_1 M$ inducing the identity of the factor group $\pi_1 M \sim \mathbb{Z}$ is finite. Since the orders of finite subgroups of $GL_2(\mathbb{Z})$ are also bounded, G has a finite cyclic subgroup G_0 of bounded index.

Finally, if the base-surface is the 2-sphere then either M has finite fundamental group and is a spherical manifold, or homeomorphic to $S^2 \times S^1$ (and hence non-irreducible). We note that $S^2 \times S^1$ belongs to the $(S^2 \times \mathbb{R})$-geometry, one of Thurston’s eight 3-dimensional geometries; this is the easiest of the eight geometries and can be easily handled, see [Sc] for the isometry group of this geometry.

Summarizing, we have shown that for any closed irreducible 3-manifold M (and also for $S^2 \times S^1$), $Diff(M)$ is a Jordan group.

Suppose that M is non-irreducible but not $S^2 \times S^1$. If M has a summand other than lens spaces and $S^2 \times S^1$ then, by [K, Theorem 4.2], the orders of finite diffeomorphism groups of M are again bounded and we are done.

Suppose next that M is a connected sum $\sharp_g(S^2 \times S^1)$ of g copies of $S^2 \times S^1$, with $g > 1$. By [Z2], G has a finite cyclic normal subgroup (the subgroup acting trivially on the fundamental group, up to inner automorphisms) such that the order of the factor group is bounded by a polynomial which is quadratic in g, so we are done also in this case. Finally, if M is a connected sum of lens spaces, including $S^2 \times S^1$, then M has a finite covering by a 3-manifold of type $\tilde{M} = \sharp_g(S^2 \times S^1)$ as before. Now $Diff(\tilde{M})$ is a Jordan group and hence also $Diff(M)$.

We have considered all possibilities for M and completed the proof of Theorem 1.
3. Proof of Theorem 3

We prove the theorem for $n = 6$; for $n = 5$ the theorem follows from [GMZ, Theorem 3], and also a shorter version of the following proof for $n = 6$ applies.

We want to show that Diff(\mathbb{R}^6) is a Jordan group, i.e. that there is a constant such that every finite subgroup G of Diff(\mathbb{R}^6) has an abelian subgroup of index bounded by this constant. By the main result of [MT], if this is true for all finite subgroups G of Diff(\mathbb{R}^6) which are a semidirect product $G = P \rtimes Q$, for a finite normal p-group P and a finite q-group Q, with distinct primes p and q, then it is true for all finite subgroups G of Diff(\mathbb{R}^6) (this uses the classification of the finite simple groups). So we have to consider only groups of type $G = P \rtimes Q$: given such a group, we have to find an abelian subgroup A of G whose index is bounded by a constant not depending on the specific group.

Let $G = P \rtimes Q$ be as before; we can assume that the action of G is orientation-preserving. By general Smith fixed point theory, a finite q-group acting on \mathbb{R}^n (or on any acyclic n-manifold) has non-empty fixed point set (see [B], [GMZ, section 2]). So Q has a global fixed point and is isomorphic to a subgroup of the orthogonal group SO(6) (considering the induced linear action on the tangent space of a global fixed point). Hence, by the classical Jordan bound for linear groups, we may assume that Q is an abelian q-group.

Let F denote the fixed point set of P; since P is normal, F is invariant under the action of Q and, since the action is orientation-preserving, F is a submanifold of dimension at most four (i.e., of codimension at least two).

Suppose first that F has dimension four. Then P acts as a group of rotations around its fixed point set F and hence is a cyclic group (isomorphic to a subgroup of SO(2)). By conjugation, every element of G acts as \pm-identity on P (conjugates a minimal rotation to a minimal rotation). Let G_0 be the subgroup of index one or two of G acting trivially on P, and let Q_0 be its image in Q. Then $G_0 \cong P \times Q_0$ is an abelian subgroup of index at most two in G, so we are done in this case.

Now suppose that the fixed point set F of P has dimension three (and also codimension three). This implies that $p = 2$ since, if p is odd, by an inductive argument on the p-group P, its fixed point set F has even codimension. Considering the action of P on a 3-ball transverse to F in some point, P is a subgroup of the orthogonal group SO(3) and hence isomorphic to a cyclic or dihedral 2-group.

If $P \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to the Klein 4-group then the subgroup G_0 of G acting by conjugation trivially on P has index at most three in G (since Q is a q-group of odd order) and is abelian, so we are done. If P is a cyclic 2-group then its automorphism group is also a 2-group; since Q has odd order, G acts by conjugation trivially on P, so G is abelian and we are done. If P is a dihedral 2-group of order at least eight then it
has a cyclic characteristic subgroup P_0 of index two, so G has a subgroup $G_0 = P_0 \times Q$ of index two; by the previous case, G_0 is abelian and we are done.

Suppose next that F has dimension two. By Smith fixed point theory, F is an acyclic manifold mod p (i.e., for homology with coefficients in \mathbb{Z}_p). Since F has dimension two, it is in fact acyclic also for integer coefficients (see [GMZ, proof of Lemma 3]). Then the finite q-group Q has a fixed point in F, and hence G has a global fixed point. Now G is isomorphic to a subgroup of $\text{SO}(6)$, so we are done by the classical Jordan bound.

The cases that F has dimension one or zero are similar.

This completes the proof of Theorem 3.

Remark. Considering the next case of \mathbb{R}^7, if the fixed point set F of P has codimension two or three, or if it has dimension at most two, the proof works exactly as before. The case we cannot handle at present is when F has dimension three (and codimension four). In this case P is isomorphic to a subgroup of $\text{SO}(4)$, e.g. isomorphic to \mathbb{Z}_p or $\mathbb{Z}_p \times \mathbb{Z}_p$, and we don’t know how to bound the index of the subgroup of G (or Q) acting trivially on P (independent of the prime p).

References

[B] G. Bredon, *Introduction to Compact Transformation Groups*, Academic Press, New York 1972

[C] M.J. Collins, *On Jordan’s theorem for complex linear groups*, J. Group Theory 10, 411-423 (2007)

[GMZ] A. Guazzi, M. Mecchia, B. Zimmermann, *On finite groups acting on acyclic low-dimensional manifolds*, Fund. Math. 215, 203-217 (2011)

[GZ] A. Guazzi, B. Zimmermann, *On finite simple groups acting on homology spheres*, Monatsh. Math. 169, 371-381 (2013)

[K] S. Kojima, *Bounding finite groups acting on 3-manifolds*, Math. Proc. Camb. Phil. Soc. 96, 269-281 (1984)

[MeZ1] M. Mecchia, B. Zimmermann, *On finite simple and nonsolvable groups acting on homology 4-spheres*, Top. Appl. 153, 2933-2942 (2006)

[MeZ2] M. Mecchia, B. Zimmermann, *On finite groups acting on homology 4-spheres and finite subgroups of SO(5)*, Top. Appl. 158, 741-747 (2011)

[MS] W.H. Meeks, P. Scott, *Finite group actions on 3-manifolds*, Invent. math. 86, 287-346 (1986)

[MR1] I. Mundet i Riera, *Finite groups acting on manifolds without odd cohomology*, arXiv: 1310.6565

[MR2] I. Mundet i Riera, *Finite group actions on 4-manifolds with nonzero Euler characteristic*, arXiv:1312.3149
[MT] I. Mundet i Riera, A. Turull, *Boosting an analogue of Jordan’s theorem for finite groups*, arXiv:1310.6518

[P1] V.L. Popov, *Finite subgroups of diffeomorphism groups*, arXiv:1310.6548

[P2] V.L. Popov, *Jordan groups and automorphism groups of algebraic varieties*, arXiv:13007.5522

[Sc] P. Scott, *The geometries of 3-manifolds*, Bull. London Math. Soc. 15, 401-487 (1983)

[Se] J.-P. Serre, *Le groupe de Cremona et ses sous-groupes finis*, Sem. Bourbaki 1000, 75-100 (2008)

[Z1] B. Zimmermann, *On finite groups acting on spheres and finite subgroups of orthogonal groups*, Sib. Electron. Math. Rep. 9, 1 - 12 (2012) (http://semr.math.nsc.ru)

[Z2] B. Zimmermann, *On finite groups acting on a connected sum of 3-manifolds $S^2 \times S^1$*, arXiv:1202.5427 (to appear in Fund. Math. 2014)