Stability of a retrovirus dynamic model

Andrei Korobeinikov1 and Alexander Rezounenko2,3

1Centre de Recerca Matemàtica Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
2 V.N.Karazin Kharkiv National University, 4 Svobody sqr., Kharkiv, 61022, Ukraine
3The Czech Academy of Sciences, Institute of Information Theory and Automation, P.O. Box 18, 182 08 Praha, CR

Abstract

A retrovirus dynamic model is proposed. We pay attention to the case when viral pathogenicity is low and the infected cells are able to reproduce. Using Lyapunov function method we study stability properties of an inner equilibrium of the model. The equilibrium represents a chronic disease steady state.

2010 Mathematics Subject Classification: 34D20; 93D05; 92B05.

Keywords: Evolution equations; Lyapunov stability; virus infection model; anticancer virotherapy.

1 Introduction

There are two major modes of viral replication: lytic and non-lytic. The dynamics of lytic virus is considered in many papers (see, e.g. [9, 10]). Non-lytic is almost out of consideration. In the nonlytic reproduction virus stays dormant in an infected cell, then reproduce. Virus stays dormant until the cell starts to exhibit signs of exhaustion. When the first such signs appear, virus starts fast replication in the cell, kills it and brakes the cell membrane releasing virus particles.

The idea of virotherapy consist in using viruses in delivery their genetic material (a piece of RNA or DNA) into host cells that need to be treated. There are several branches of virotherapy such as viral immunotherapy, anti-cancer oncolytic viruses and viral vectors for gene therapy. Anticancer virotherapy is a new and promising method of anticancer therapy.

4Corresponding author: A. Rezounenko (email: rezounenko@gmail.com)
However, the majority of viruses that are used for virotherapy are of highly virulent and highly pathogenic type, and, therefore, the infected cells usually do not reproduce (producing the virus instead). Typical mathematical models reflect this fact.

The following classical model of virus dynamics was proposed in [9, 10]

\[
\begin{aligned}
\frac{dC(t)}{dt} &= \lambda - dC(t) - \beta C(t)V(t), \\
\frac{dI(t)}{dt} &= \beta C(t)V(t) - aI(t), \\
\frac{dV(t)}{dt} &= aN I(t) - kV(t),
\end{aligned}
\]

where \(C(t), I(t), V(t)\) represent the concentration (or the total number) of non-infected host cells, infected cells and free virions at time \(t\), respectively. All the constants \(\lambda, d, \beta, a, N, k\) in (1) are positive. The non-infected cells are produced at rate \(\lambda\), die at rate \(d\) and become infected at rate \(\beta\). Infected cells die at rate \(a\). Free virus is produced by infected cells at rate \(aN\) and die at rate \(k\). This model was extended in many directions including introduction more general nonlinear terms [4, 5], time delays [3, 16, 15, 11, 12, 13, 14], additional equations describing immune responses [15, 16, 20, 21, 22, 23, 24, 11, 12] and inhomogenous in space terms (which lead to partial differential equations models) [17, 18, 19, 13, 14] (see also references therein for more information).

In this paper we, in contrast, consider a situation when viral pathogenicity is low and the infected cells are able to reproduce. Such a situation arise, for instance, when retrovirus are used for the therapy. This assumption leads to a principally different mathematical model and principally different outcomes. We propose the following virus dynamics model

\[
\begin{aligned}
\frac{dC(t)}{dt} &= aC(t) (1 - b_{11} C(t) - b_{12} I(t)) - \alpha C(t)V(t), \\
\frac{dI(t)}{dt} &= aI(t) (1 - b_{21} C(t) - b_{22} I(t)) + \alpha C(t)V(t) - mI(t), \\
\frac{dV(t)}{dt} &= kmI(t) - \sigma V(t),
\end{aligned}
\]

where unknowns \(C(t), I(t), V(t)\) are as in the model (1) above.

We are interested in the stability properties of an equilibrium (a stationary solution) of the model (2). For the general Lyapunov stability theory see the original work [7].

2 Basic properties

First, one sees that for any non-negative initial data

\[C(0) = C_0 \geq 0, \quad I(0) = I_0 \geq 0, \quad V(0) = V_0 \geq 0,\]
the system (2) has a unique global (defined for all \(t \geq 0 \)) solution. Each coordinate is non-negative for all \(t \geq 0 \), which is a biologically important property of the model. It follows from the standard property \(\frac{dC(t)}{dt} \big|_{t=\tau} \geq 0 \) provided \(C(\tau) = 0 \). Similar properties are valid for \(I(t) \) and \(V(t) \). In the similar standard way one shows that any solution is bounded. Moreover there is a bounded invariant region in \(\mathbb{R}^3 \).

The next step of our study, is to look for possible equilibria of the model (2).

2.1 Stationary solutions

We are interested in stationary solutions of the system (2). As a constant in-time solutions, they satisfy

\[
\begin{align*}
0 &= aC(t) (1 - b_{11}C(t) - b_{12}I(t)) - \alpha C(t)V(t), \\
0 &= a_I I(t) (1 - b_{21}C(t) - b_{22}I(t)) + \alpha C(t)V(t) - mI(t), \\
0 &= kmI(t) - \sigma V(t).
\end{align*}
\]

(3)

It is easy to see that there is a unique stationary solution of (3) such that all the coordinates are positive (inner equilibrium). In this note we are interested in this inner equilibrium and do not discuss boundary stationary solutions (when at least one coordinate is zero). Let us denote this unique inner solution of (3) by \((\hat{C}, \hat{I}, \hat{V})\).

Remark 2.1 We believe this stationary solution is the most important one from the biological point of view. The equilibrium represents a chronic disease steady state.

2.2 Lyapunov stability

Assume the parameters of the system (2) satisfy

\[
\frac{1}{I} \left[a_I b_{22} - \frac{1}{I} a_I \left(1 - b_{21} \hat{C} - b_{22} \hat{I} \right) + m \right] \cdot \frac{1}{C} \left[ab_{11} - \frac{1}{C} a \left(1 - b_{11} \hat{C} - b_{12} \hat{I} \right) \right] > \frac{1}{4} \left(\frac{ab_{12}}{C} + \frac{b_{21}}{I} - \hat{V}^2 \right)^2.
\]

(4)

Now we formulate the main result.

Theorem 2.2 Let the condition (4) be satisfied. Then there exist \(\alpha_0 > 0, k_0 > 0 \) such that for any \(\alpha \in (0, \alpha_0) \), and \(k \in (0, k_0) \) the inner equilibrium \((\hat{C}, \hat{I}, \hat{V})\) of the system (2) is locally asymptotically stable.
Proof of theorem 2.2. We use the Volterra function $v(s) \equiv s - \ln s - 1$ to construct the following Lyapunov functional

$$W(C, I, V) \equiv A \cdot v \left(\frac{C}{C} \right) + B \cdot v \left(\frac{I}{I} \right) + D \cdot v \left(\frac{V}{V} \right),$$

where A, B, D are positive constants to be chosen below.

It is easy to check that $W(C, I, V) > 0$ for all $(C, I, V) \neq (\hat{C}, \hat{I}, \hat{V})$ and $W(\hat{C}, \hat{I}, \hat{V}) = 0$.

We denote by $\dot{W}_{(2)}$ the derivative of W along a solution of the system (2), which is $\dot{W}_{(2)}(t) = \frac{4}{\sigma s} W(C(t), I(t), V(t))$. As usual, it is computed using the right-hand side of the system (2) and the property $\frac{4}{\sigma s} v(s) = 1 - s^{-1}$.

We have

$$\dot{W}_{(2)}(t) = A \left(1 - \frac{\hat{C}}{C(t)} \right) \frac{1}{C} (aC(t)(1 - b_{11}C(t) - b_{12}I(t)) - \alpha CV(t))$$

$$+ B \left(1 - \frac{\hat{I}}{I(t)} \right) \frac{1}{I} (a_{1I}I(t)(1 - b_{21}C(t) - b_{22}I(t)) + \alpha CV(t) - mI(t))$$

$$+ D \left(1 - \frac{\hat{V}}{V(t)} \right) \frac{1}{V} (kmI(t) - \sigma V(t)).$$

We split the above sum (6) on three parts $\dot{W}_{(2)}(t) = S_1(t) + S_2(t) + S_3(t)$ to estimate them separately. We omit the time argument for short.

Using $-a\hat{C}(1 - b_{11}\hat{C} - b_{12}\hat{I}) + \alpha \hat{C}\hat{V} = 0$, one can check that

$$S_1 = A \left(\frac{C - \hat{C}}{CC} \right) (aC(1 - b_{11}C - b_{12}I) - \alpha CV - a\hat{C}(1 - b_{11}\hat{C} - b_{12}\hat{I}) + \alpha \hat{C}\hat{V}).$$

Some calculations give

$$S_1 = -(C - \hat{C})^2 \cdot \frac{A}{C} \cdot \left(ab_{11} \frac{1}{C} - a \left(1 - b_{11}\hat{C} - b_{12}\hat{I} \right) + \frac{1}{C} \alpha \hat{V} \right)$$

$$- (C - \hat{C})(I - \hat{I}) \cdot \frac{Aab_{12}}{C} - (C - \hat{C})(V - \hat{V}) \cdot \frac{A\alpha}{C}. \quad (7)$$

In a similar way, using $a_{1I}\hat{I}(1 - b_{21}\hat{C} - b_{22}\hat{I}) + \alpha \hat{C}\hat{V} - m\hat{I} = 0$ (see [3]), calculations give

$$S_2 = B \left(\frac{I - \hat{I}}{I \cdot \hat{I}} \right) \left[a_{1I}(1 - b_{21}C - b_{22}I) + \alpha CV - mI - a_{1I}(1 - b_{21}\hat{C} - b_{22}\hat{I}) - \alpha \hat{C}\hat{V} + m\hat{I} \right]$$

$$= B \left(\frac{I - \hat{I}}{I \cdot \hat{I}} \right) \left[a_{1I} \left(b_{21}(\hat{C} - C) + b_{22}(\hat{I} - I) \right) + (I - \hat{I}) a_{1I}(1 - b_{21}\hat{C} - b_{22}\hat{I}) - m(I - \hat{I}) \right]$$

$$- (\hat{V} - V) C\alpha + (C - \hat{C}) \alpha \hat{V}.$$
\[= -(I - \hat{I})^2 \cdot \frac{B}{I} \left[a_I b_{22} - \frac{1}{I} a_I \left(1 - b_{21} C - b_{22} \hat{I} \right) + m \right] \]
\[= -(C - \hat{C})(I - \hat{I}) \cdot \left(\frac{B b_{21}}{I} - \alpha \hat{V} \right) + (V - \hat{V})(I - \hat{I}) \cdot \frac{C B \alpha}{I}. \tag{8} \]

The third step of calculations give (remind that \(\sigma \hat{V} = km \hat{I} \))

\[S_3 = -D \frac{V - \hat{V}}{VV} \cdot \left[km I - \sigma V - km \hat{I} + \sigma \hat{V} \right] \]
\[= D \frac{V - \hat{V}}{VV} \left[km (I - \hat{I}) - \sigma (V - \hat{V}) \right] = -(V - \hat{V})^2 \cdot \frac{1}{V} \frac{D \sigma}{V} + (V - \hat{V})(I - \hat{I}) \cdot \frac{1}{V} \frac{D km}{V}. \tag{9} \]

Hence, combining (7), (8), (9), we arrive to the form of \(\hat{W}_{(2)}(t) = S_1(t) + S_2(t) + S_3(t) \). Now our goal is to find sufficient local conditions for \(\hat{W}_{(2)}(t) < 0 \) for all points (except the inner equilibrium \((\hat{C}, \hat{I}, \hat{V})\), where \(\hat{W}_{(2)}(t) \equiv 0 \)). Our main idea is to compare the expression for \(\hat{W}_{(2)} \) with auxiliary quadratic forms. Hence, knowing the conditions for the quadratic form to be positive (negative) defined, we find sufficient local conditions for \(\hat{W}_{(2)} \) to be negative defined as a functional in a neighbourhood of \((\hat{C}, \hat{I}, \hat{V})\).

Formulas (7), (8), (9) are prepared to write \(\hat{W}_{(2)} \) in the following form (notice the sign)

\[-\hat{W}_{(2)} = (V - \hat{V})^2 \cdot \omega_{11} + (I - \hat{I})^2 \cdot \omega_{22} + (C - \hat{C})^2 \cdot \omega_{33} \]
\[+ (V - \hat{V})(I - \hat{I}) \cdot 2 \omega_{12} + (V - \hat{V})(C - \hat{C}) \cdot 2 \omega_{13} + (C - \hat{C})(I - \hat{I}) \cdot 2 \omega_{21}, \tag{10} \]

where all functions \(\omega_{ij} \) depend on coordinates \((C, I, V)\), parameters of the system, coordinates of the equilibrium \((\hat{C}, \hat{I}, \hat{V})\) and coefficients \(A, B, D\). Because of the dependence of \(\omega_{ij} \) on coordinates \((C, I, V)\) the expression (10) is not a quadratic form. We proceed as follows. Let us choose an arbitrary point \((\overline{C}, \overline{I}, \overline{V})\) in a small neighbourhood of \((\hat{C}, \hat{I}, \hat{V})\). We denote the values of \(\omega_{ij} \) at this fixed point as \(\overline{\omega_{ij}} \equiv \omega_{ij}(\overline{C}, \overline{I}, \overline{V}) \) and arrive to the quadratic form

\[\overline{W}_{(2)} = (V - \hat{V})^2 \cdot \overline{\omega}_{11} + (I - \hat{I})^2 \cdot \overline{\omega}_{22} + (C - \hat{C})^2 \cdot \overline{\omega}_{33} \]
\[+ (V - \hat{V})(I - \hat{I}) \cdot 2 \overline{\omega}_{12} + (V - \hat{V})(C - \hat{C}) \cdot 2 \overline{\omega}_{13} + (C - \hat{C})(I - \hat{I}) \cdot 2 \overline{\omega}_{21}. \tag{11} \]

This auxiliary quadratic form \(\overline{W}_{(2)} \) is designed in such a way that \(\overline{W}_{(2)}(\overline{C}, \overline{I}, \overline{V}) = -\hat{W}_{(2)}(\overline{C}, \overline{I}, \overline{V}) \). Hence, a condition to be positive defined for \(\overline{W}_{(2)} \) implies the desired property \(\hat{W}_{(2)}(\overline{C}, \overline{I}, \overline{V}) < 0 \). Since point \((\overline{C}, \overline{I}, \overline{V})\) is arbitrary chosen, we arrive to the local stability result.

We apply the classical Sylvester’s criterion to the quadratic form \(\overline{W}_{(2)} \).

Let us outline the main technical idea to show that the form is positive defined about \((\hat{C}, \hat{I}, \hat{V})\). The first leading principal minor of the quadratic form (11) reads \(\Delta_1 \equiv \overline{\omega}_{11} = \)
$\frac{1}{\nu} \frac{D\sigma}{V} > 0$. Let us consider the second leading principal minor $\Delta_2 = \omega_{11} \cdot \omega_{22} - \omega_{12}^2$. It reads

$$\Delta_2 = \frac{1}{V} \frac{D\sigma}{V} \cdot \frac{B}{T} \left[a_{1} b_{22} - \frac{1}{T} a_{1} \left(1 - b_{21} \hat{C} - b_{22} \hat{I} \right) + m \right] - \frac{1}{4} \left(\frac{1}{V} \frac{D \text{km} \sigma}{V} + \frac{\hat{C}}{T} \cdot \frac{B \alpha}{T} \right)^2.$$

We remind that we consider the *inner equilibrium*, so $\Delta_2 \equiv \Delta_2(C, \hat{I}, \hat{V})$ is continuous in a small enough neighbourhood of $(\hat{C}, \hat{I}, \hat{V})$. Hence, the property $\Delta_2(C, \hat{I}, \hat{V}) > 0$ will guarantee the property $\Delta_2(C, I, V) > 0$ in a small enough neighbourhood. We write down the expression of

$$\Delta_2(C, \hat{I}, \hat{V}) = \frac{1}{V} \frac{D\sigma}{V} \cdot \frac{B}{T} \left[a_{1} b_{22} - \frac{1}{T} a_{1} \left(1 - b_{21} \hat{C} - b_{22} \hat{I} \right) + m \right] - \frac{1}{4} \left(\frac{1}{V} \frac{D \text{km} \sigma}{V} + \frac{\hat{C}}{T} \cdot \frac{B \alpha}{T} \right)^2.$$

and see that the property $\Delta_2(C, \hat{I}, \hat{V}) > 0$ can be reached by choosing small enough k and α.

The same line of arguments is used to show that the third leading principal minor Δ_3 is positive. We write it in a short form as follows

$$\Delta_3 = \omega_{11} \cdot (\omega_{22} \cdot \omega_{33} - \omega_{23}^2) - \omega_{12} \cdot (\omega_{12} \cdot \omega_{33} - \omega_{23} \cdot \omega_{13}) + \omega_{13} \cdot (\omega_{12} \cdot \omega_{23} - \omega_{22} \cdot \omega_{13}).$$

The detailed analysis of these three terms of Δ_3 shows that the first term $\omega_{11} \cdot (\omega_{22} \cdot \omega_{33} - \omega_{23}^2)$ can be made positive provided condition (4) is satisfied. Moreover, Δ_3 is positive provided k and α are small enough. We omit the calculation here.

It completes the proof of theorem 2.2.

Remark 2.3 We notice that the smallness of parameters k and α is not the only possible way to reach the stability. We choose this case just because of the clear biological meaning.

Acknowledgement. This work was supported in part by GA CR under project 16-06678S.

References

[1] J.R. Beddington, Mutual Interference Between Parasites or Predators and Its Effect on Searching Efficiency, Journal of Animal Ecology 44.1 (1975), 331-340.
[2] D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A Model for Tropic Interaction, Ecology, Vol. 56, No. 4 (1975), 881-892.

[3] S.A. Gourley, Y. Kuang, J.D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics 2, (2008) 140-153. doi: 10.1080/17513750701769873

[4] G. Huang, W. Ma, Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 24 (2011) 1199-1203. doi:10.1016/j.aml.2011.02.007

[5] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69 (2007), no. 6, 1871-1886. doi: 10.1007/s11538-007-9196-y

[6] Y. Kuang, Delay differential equations with applications in population dynamics. Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.

[7] A.M. Lyapunov, The general problem of the stability of motion. Kharkov Mathematical Society, Kharkov, 1892.

[8] C.C. McCluskey, Using Lyapunov functions to construct Lyapunov functionals for delay differential equations, SIAM Journal on Applied Dynamical Systems, Vol. 14(1), (2015), 1-24.

[9] M. Nowak, C. Bangham, Population dynamics of immune response to persistent viruses, Science, 272 (1996), 74-79.

[10] A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.

[11] A. V. Rezounenko, Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 1547–1563; Preprint arXiv:1603.06281v1, 20 March 2016, arxiv.org/abs/1603.06281v1

[12] A. V. Rezounenko, Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses, Electron. J. Qual. Theory Differ. Equ., 79 (2016), 1–15. doi: 10.14232/ejqtde.2016.1.79
[13] A. V. Rezounenko, Viral infection model with diffusion and state-dependent delay: stability of classical solutions, Discrete and Continuous Dynamical Systems - Series B, Vol. 23, Issue 3, 2018, P. 1091-1105; doi: 10.3934/dcdsb.2018143. Preprint arXiv:1706.08620 [math.DS], 26 Jun 2017, arxiv.org/abs/1706.08620.

[14] A. Rezounenko, Viral infection model with diffusion and state-dependent delay: a case of logistic growth, Proceedings of Equadiff 2017 Conference, Bratislava, July 24-28, 2017, K. Mikula, D. Sevcovic and J. Urban, Eds. Published by Slovak University of Technology, SPEKTRUM STU Publishing, 2017, pp.53-60. ISBN: 978-80-227-4757-8. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/783.

[15] X. Wang, S. Liu, A class of delayed viral models with saturation infection rate and immune response, Math. Methods Appl. Sci. 36 (2013), no. 2, 125–142. doi: 10.1002/mma.2576.

[16] J. Wang, J, Pang, T. Kuniya, Y. Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Applied Mathematics and Computation, Vol. 241, (2014) 298-316. doi:10.1016/j.amc.2014.05.015.

[17] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 201 (2007), 78–95.

[18] F.-B. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Applicable Analysis: An International Journal, 93 (2014), 2312–2329.

[19] J. Wang, J. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission, Journal of Mathematical Analysis and Applications, 444 (2016), 1542–1564.

[20] D. Wodarz, Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses, Journal of General Virology (2003), 84, 1743-1750. doi: 10.1099/vir.0.19118-0.

[21] D. Wodarz, Killer cell dynamics. Mathematical and computational approaches to immunology. Interdisciplinary Applied Mathematics, 32. Springer-Verlag, New York, 2007. xiv+220 pp.

[22] Y. Yan, W. Wang, Global stability of a five-dimesional model with immune responses and delay, Discrete and Continuous Dynamical Systems - Series B, 17 (2012), 401-416. doi:10.3934/dcdsb.2012.17.401.
[23] N. Yousfi, K. Hattaf, A. Tridane, Modeling the adaptive immune response in HBV infection, Journal of Mathematical Biology, 63, Issue 5, (2011) 933-957.

[24] Y. Zhao, Z. Xu, Global dynamics for a delayed hepatitis C virus infection model, Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 132, 1-18.

[25] H. Zhu, X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 511-524. doi:10.1093/imammb/dqm010

[26] A.S. Perelson, P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev. 11 (1999) 3-11.

[27] G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Letters., 22 (2009).

[28] S. Xu, Global stability of the virus dynamics model with Crowley-Martin functional response, Electron. J. Qual. Theory Differ. Equ. 2012 (9) (2012) 1-10.

[29] World Health Organization, Global hepatitis report-2017, April 2017, ISBN: 978-92-4-156545-5

http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf?ua=1

December 29, 2018