2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing

Martin K. Stiles 1 · Laurent Fauchier 2 · Carlos A. Morillo 3 · Bruce L. Wilkoff 4

Published online: 21 January 2020
© The Heart Rhythm Society; the European Heart Rhythm Association, a registered branch of the European Society of Cardiology; the Asia Pacific Heart Rhythm Society; and the Latin American Heart Rhythm Society 2020

Abstract

The 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing provided guidance on bradycardia programming, tachycardia detection, tachycardia therapy, and defibrillation testing for implantable cardioverter-defibrillator (ICD) patient treatment. The 32 recommendations represented the consensus opinion of the writing group, graded by Class of Recommendation and Level of Evidence. In addition, Appendix B provided manufacturer-specific translations of these recommendations into clinical practice consistent with the recommendations within the parent document. In some instances, programming guided by quality evidence gained from studies performed in devices from some manufacturers was translated such that this programming was approximated in another manufacturer’s ICD programming settings. The authors found that the data, although not formally tested, were strong, consistent, and generalizable beyond the specific manufacturer and model of ICD. As expected, because these recommendations represented strategic choices to balance risks, there have been reports in which adverse outcomes were documented with ICDs programmed to Appendix B recommendations. The recommendations have been reviewed and updated to minimize such adverse events. Notably, patients who do not receive unnecessary ICD therapy are not aware of being spared potential harm, whereas patients in whom their ICD failed to treat life-threatening arrhythmias have their event recorded in detail. The revised recommendations employ the principle that the randomized trials and large registry data should guide programming more than anecdotal evidence. These recommendations should not replace the opinion of the treating physician who has considered the patient’s clinical status and desired outcome via a shared clinical decision-making process.

Keywords
Antitachycardia pacing · Bradycardia mode and rate · Defibrillation testing · Implantable cardioverter-defibrillator · Programming · Sudden cardiac death · Tachycardia detection · Tachycardia therapy · Ventricular tachycardia · Ventricular fibrillation

Reference

Published by Elsevier Inc./ Oxford University Press/Wiley. This article is published under the Creative Commons CC-BY license.

Martin K. Stiles is the Chair. He is the Representative of the Asia Pacific Heart Rhythm Society (APHRS)
Laurent Fauchier is the Representative of the European Heart Rhythm Association (EHRA)
Carlos A. Morillo is the Representative of the Latin American Heart Rhythm Society (LAHRS)
Bruce L. Wilkoff is the Representative of the Heart Rhythm Society (HRS)

Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). For copies of this document, please contact the Elsevier Inc. Reprint Department (reprints@elsevier.com). Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the Heart Rhythm Society. Instructions for obtaining permission are located at https://www.elsevier.com/about/our-business/policies/copyright/permissions. This article has been copublished in Heart Rhythm, Europace, and the Journal of Arrhythmia.
Correspondence: Heart Rhythm Society, 1325 G Street NW, Suite 400, Washington, DC 20005. E-mail address: clinicaldocs@hrsonline.org.

© Heart Rhythm Society
clinicaldocs@hrsonline.org

1 Waikato Hospital, Hamilton, New Zealand
2 Centre Hospitalier Universitaire Trousseau, Université François Rabelais, Tours, France
3 Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
4 Cleveland Clinic, Cleveland, OH, USA
TABLE OF CONTENTS

Abstract

Manufacturer-Specific Translation of ICD Programming Recommendations: Abbott (Formerly St. Jude Medical)

Manufacturer-Specific Translation of ICD Programming Recommendations: BIOTRONIK

Manufacturer-Specific Translation of ICD Programming Recommendations: Boston Scientific

Manufacturer-Specific Translation of ICD Programming Recommendations: Medtronic

Manufacturer-Specific Translation of ICD Programming Recommendations: MicroPort CRM (Formerly LivaNova and Sorin Group)

Appendix 1 Author disclosure table

Appendix 2 Reviewer disclosure table
1 Manufacturer-specific translation of ICD programming recommendations

The manufacturer-specific programming settings/choices set forth below are based on a compilation of clinical expertise and clinical trial data as reported in the 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing, of which this Appendix B is a part. These recommend-ed settings/choices represent a diligent and good faith effort on the part of the writing committee to translate the consensus statement recommendations to device settings/choices for the four specified clinical issues/implantable cardioverter-defibrillator (ICD) therapies where the writing committee considered that there was sufficient consensus and supporting data to make recommendations intended to improve the safety, morbidity, and mortality profile of patients with these clinical issues/ICD therapies. They are the recommendations of the writing committee only. They do not represent the position or recommendations of HRS, EHRA, LAHRS (formerly SOLAECE), or APHRS, nor are they the manufacturer’s nominal settings or the precise programming tested during clinical trials of these devices, nor are they necessarily the settings/choices that would be recommended by the manufacturer. These recommended settings/choices are not applicable in all circumstances. As stated in the Introduction to the consensus statement, “The care of individual patients must be provided in context of their specific clinical condition and the data available on that patient.” Each treating physician must carefully consider the circumstances of their individual patient and determine whether these recommended settings/choices are appropriate to their patient’s circumstances.

1.1 Abbott (Formerly St. Jude Medical)

*Settings that are not nominal are marked with an asterisk

Brady	Single Chamber
VVE 400bpm	

| Dual Chamber |
| DDD, consider Ventricular Intrinsic Preference (VIP) ± rate response |
| CRT |
| DDD ± rate response |
| Consider SyncAV* (if intact AV conduction) as appropriate |

| Detection |
| In patients with no VT history |
| VF: 30 intervals*, 240 or 250bpm* |
| VT: 30 intervals*, 187bpm* |
| VT: Monitor, at user discretion |

| In patients where VT CL is known |
| VF: 30 intervals*, 240 or 250bpm |
| VT: 30 intervals*, 187bpm or 10–20bpm < VT rate* |
| VT: Therapy at 10–20bpm < VT rate or Monitor zone |

1 Fewer intervals to detect may be reasonable due to the possibility of VT straddling 2 zones that may result in “binning” to both zones, effectively doubling time to detect. Beats that fall out of zone sometimes reset counters so patients with poor sensing should also have fewer detection intervals considered.

| Therapy |
| VF: ATP While Charging, 8 pulses at ≥5% VT CL |
| All shocks: Maximum output (unless BFT guided) |
| Note: 1st shock 4–6 J lower than full output |
| VT: ATP, ≥1 bursts of 8 pulses at ≥5% VT CL |
| Scan step 10ms, Re-adaptive ON, Minimum CL 200ms |
| All shocks ON |
| VT: As for VT2, favoring more ATP* |

2 Rarely, hemodynamically stable slow VT can be treated without programming a back-up shock.

| SVT Discriminators |
| Single Chamber |
| Far-Field Morphology: ON, 90%, 3 of 10 |
| All others: “Passive” |
| Dual Chamber/CRT-D |
| Far-Field Morphology: ON, 90%, 3 of 10 |
| Arrhythmia onset: ON (default settings) |
| Interval Stability: ON (default settings) |
| IF ALL |
| For CRT: Template Auto Update 30 days and Template Pacing Hysteresis ON |
| or |
| Far-Field Morphology Auto Update OFF |
| SVT Upper Limit: 230bpm |
| SVT Discrimination Timeout: OFF |
| VT Therapy Timeout: OFF |

3 SVT Discriminators are not required in Complete Heart Block.

| Oversensing Rejection |
| Low Frequency Attenuation: ON |
| SecureSense RV Lead Noise Discrimination: ON |
2 Manufacturer-specific translation of ICD programming recommendations

The manufacturer-specific programming settings/choices set forth below are based on a compilation of clinical expertise and clinical trial data as reported in the 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing, of which this Appendix B is a part. These recommended settings/choices represent a diligent and good faith effort on the part of the writing committee to translate the consensus statement recommendations to device settings/choices for the four specified clinical issues/implantable cardioverter-defibrillator (ICD) therapies where the writing committee considered that there was sufficient consensus and supporting data to make recommendations intended to improve the safety, morbidity, and mortality profile of patients with these clinical issues/ICD therapies. They are the recommendations of the writing committee only. They do not represent the position or recommendations of HRS, EHRA, LAHRS (formerly SOLAECE), or APHRS, nor are they the manufacturer’s nominal settings or the precise programming tested during clinical trials of these devices, nor are they necessarily the settings/choices that would be recommended by the manufacturer. These recommended settings/choices are not applicable in all circumstances. As stated in the Introduction to the consensus statement, “The care of individual patients must be provided in context of their specific clinical condition and the data available on that patient.” Each treating physician must carefully consider the circumstances of their individual patient and determine whether these recommended settings/choices are appropriate to their patient’s circumstances.

2.1 BIOTRONIK

*Settings that are not nominal are marked with an asterisk

Brady	Single Chamber
	VVI 40bpm
Dual Chamber	
DDD, consider IRS Plus* I OPT* ± Closed Loop Stimulation (CLS)* or DDD with Vp Suppression* ± rate response	
CRT	
DDD; optional DDD-CLS* or rate response* at user discretion	

Detection	
In patients with no VT history	
VF: 30/40 intervals* (if programmable, otherwise 24/30), 231bpm*	
VT2: 30 intervals*, 188bpm*	
VT1: Monitor zone* at user discretion	
In patients where VT CL is known	
VF: 24/30 intervals*, 231bpm*	
VT2: 30 intervals*, 188bpm* (or 10–20bpm < VT rate)	
VT1: Therapy* at 10–20bpm < VT rate or Monitor zone* at user discretion	

1 SVT discriminators are linked to Detection Zones. An alternative configuration would be VF 250bpm, VT2 231bpm and VT1 188bpm with therapy (i.e., no Monitor zone) if >1 ATP attempt desired up to 250bpm.

Therapy	
VF: ATP One-Shot, 1 burst of 8 pulses at 88% CL*, full output shocks (unless DFT guided)	
VT2: ATP ≥1 bursts* of 8 pulses* at 88% CL*, 10ms scan decrement*. All shocks ON	
VT1: Monitor zone* or Therapy* as for VT2 (favoring more ATP)*	

2 If programmable, otherwise 85%.

3 Rarely, hemodynamically stable slow VT can be treated without programming a back-up shock.

SVT Discriminators*	
Single Chamber	
MorphMatch*	ON*
Onset*	OFF
Stability	OFF*
Sustained VT Timer	OFF
Dual Chamber/CRT-D	
SMART	ON (at default settings or adapted to known VT)

4 SVT Discriminators are not required in Complete Heart Block.

5 MorphMatch is recommended for patients with narrow QRS complexes and sufficient far-field amplitude. Otherwise, Onset 20% and Stability 48ms is a recommended alternative.

6 If Onset is programmed ON, the performance of this discriminator is enhanced with a Monitoring Zone enabled.

Others	
Lead Integrity check	ON (if available)
HomeMonitoring	ON* (if available)

‡ Springer
3 Manufacturer-specific translation of ICD programming recommendations

The manufacturer-specific programming settings/choices set forth below are based on a compilation of clinical expertise and clinical trial data as reported in the 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing, of which this Appendix B is a part. These recommended settings/choices represent a diligent and good faith effort on the part of the writing committee to translate the consensus statement recommendations to device settings/choices for the four specified clinical issues/implantable cardioverter-defibrillator (ICD) therapies where the writing committee considered that there was sufficient consensus and supporting data to make recommendations intended to improve the safety, morbidity, and mortality profile of patients with these clinical issues/ICD therapies. They are the recommendations of the writing committee only. They do not represent the position or recommendations of HRS, EHRA, LAHRS (formerly SOLAECE), or APHRS, nor are they the manufacturer’s nominal settings or the precise programming tested during clinical trials of these devices, nor are they necessarily the settings/choices that would be recommended by the manufacturer. These recommended settings/choices are not applicable in all circumstances. As stated in the Introduction to the consensus statement, “The care of individual patients must be provided in context of their specific clinical condition and the data available on that patient.” Each treating physician must carefully consider the circumstances of their individual patient and determine whether these recommended settings/choices are appropriate to their patient’s circumstances.

3.1 Boston Scientific

*Settings that are not nominal are marked with an asterisk

Brady	Single Chamber	VVI, 400bpms*
	Dual Chamber	DDD, consider RYTHMIDIQ* or AV Search +* ± rate response
CRT	DDD ± rate response	Consider Smart Delay optimization of AV delays

Detection

In patients with no VT history	Option 1 – delayed therapy
VF: 8 of 10 intervals plus 5-second duration*, 250bpms*	
VI: 8 of 10 intervals plus 12-second duration*, 185bpms*	
VT-1: Monitor, at user discretion	

In patients where VT cycle length is known
VF: 5-second duration*, 250bpms*
VI: 12-second duration*, 185bpms* or 10–20bpms < VT rate
VT-1: Monitor Zone or Therapy at ≥12-second duration*, 10–20bpms < VT rate

Therapy

VF: QuickConvert ON to 300bpms* (if available)
All checks: Maximum output (unless DFT guided)
VT: ATP-1: Scan, ≥1 bursts, ≥1 pulses at 84%, coupling interval and cycle length (Minimum 200ms*), 10ms decrement*
ATP-2: OFF*
All checks: ON
VT-1: As for VT, favoring more ATP*

SVT Discriminators†

ICD
RhythmID: ON
CRT-D
Onset/Stability: ON or RhythmID: ON*
Sustained Rate Duration (SRD): OFF*

SVT Discriminators apply only up to 230bpms

Oversensing Rejection

| Norphysiological Signal Detected: ON (Latitude) |

Others

| Turn on “BEEP When Out-of-Range” Daily Lead Measurements* |
| RV Pacing Impedance Abrupt Change alert ON (Latitude) |
| Single Chamber: Consider %RV pacing alert ON (Latitude) |
| Dual Chamber: Consider %AV pacing alert in non-AVB patients ON (Latitude) |
| CRT-3: Consider CRT % pacing alert ON (Latitude) |

SUBCUTANEOUS ICD

Settings:

| Shock Zone: ≥230bpms |
| Conditional Zone: ≥200bpms or 10–20bpms < VT CL (if known) |
| Consider post-shock pacing ON |
4 Manufacturer-specific translation of ICD programming recommendations

The manufacturer-specific programming settings/choices set forth below are based on a compilation of clinical expertise and clinical trial data as reported in the 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing, of which this Appendix B is a part. These recommended settings/choices represent a diligent and good faith effort on the part of the writing committee to translate the consensus statement recommendations to device settings/choices for the four specified clinical issues/implantable cardioverter-defibrillator (ICD) therapies where the writing committee considered that there was sufficient consensus and supporting data to make recommendations intended to improve the safety, morbidity, and mortality profile of patients with these clinical issues/ICD therapies. They are the recommendations of the writing committee only. They do not represent the position or recommendations of HRS, EHRA, LAHRS (formerly SOLAECE), or APHRS, nor are they the manufacturer’s nominal settings or the precise programming tested during clinical trials of these devices, nor are they necessarily the settings/choices that would be recommended by the manufacturer. These recommended settings/choices are not applicable in all circumstances. As stated in the Introduction to the consensus statement, “The care of individual patients must be provided in context of their specific clinical condition and the data available on that patient.” Each treating physician must carefully consider the circumstances of their individual patient and determine whether these recommended settings/choices are appropriate to their patient’s circumstances.

4.1 Medtronic
*Settings that are not nominal are marked with an asterisk

Brady	Single Chamber
	VVI 40bpm
Dual Chamber	
DDD, consider Managed Ventricular Pacing (MVP; AAI→DDD) ± rate response	
CRT	
DDD ± rate response	
Patient with intact AV conduction and LBBB—Consider Adaptive BIV & LV*	

Detection	In patients with no VT history
VF:	30/40 intervals, 188bpm
FVT:	OFF*
VT:	OFF
VT Monitor:	User discretion

Detection	In patients where VT CL is known
VF:	30/40 intervals, 188bpm
FVT:	OFF*
VT:	24+ intervals*, 10–20bpm < VT rate
VT Monitor:	User discretion

1 Use of ATP Before/During Charging in the VF zone achieves similar functionality as use of the FVT zone. Multi-zone programming using FVT may allow tiered ATP therapy.

2 Consecutive count in VT zone; hence, lower NID as per Painfree SST data.

Therapy	VF: ATP Before* Charging; ChargeSaver ON All shocks: Full output shocks (unless DFT guided)
VT (if ON):	Rx1: ATP, ≥1 bursts of 8 pulses at 88% VT CL, 10ms Decrement
	Rx2-6: All Shocks ON*

3 Rarely, hemodynamically stable slow VT can be treated without programming a back-up shock.

SVT Discriminators	Single Chamber
Wavelet:	ON
Limit:	260ms (230bpm)
Stability:	OFF
Onset:	OFF

SVT Discriminators	Dual Chamber/CRT-D
PR Logic:	ON (Other 1:1 OFF until lead stabilized at ~3 months)
Wavelet:	ON (if available)
SVT Limit:	260ms (230bpm)
Stability:	OFF
Onset:	OFF

4 SVT Discriminators are not required in Complete Heart Block.

Oversensing Rejection	Lead Integrity Alert: ON
T-wave Oversensing:	ON (if available)
RV Lead Noise:	ON* without timeout (if available)
5 Manufacturer-specific translation of ICD programming recommendations

The manufacturer-specific programming settings/choices set forth below are based on a compilation of clinical expertise and clinical trial data as reported in the 2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus Statement on Optimal Implantable Cardioverter-Defibrillator Programming and Testing, of which this Appendix B is a part. These recommend-
ed settings/choices represent a diligent and good faith effort on the part of the writing committee to translate the consensus statement recommendations to device settings/choices for the four specified clinical issues/implantable cardioverter-defibrillator (ICD) therapies where the writing committee consid-
ered that there was sufficient consensus and supporting data to make recommendations intended to improve the safety, morbidity, and mortality profile of patients with these clinical issues/ICD therapies. They are the recommendations of the writing committee only. They do not represent the position or recommendations of HRS, EHRA, LAHRS (formerly SOLAECE), or APHRS, nor are they the manufacturer’s nominal settings or the precise programming tested during clinical trials of these devices, nor are they necessarily the settings/choices that would be recommended by the manufacturer. These recommended settings/choices are not applicable in all circumstances. As stated in the Introduction to the consensus statement, “The care of individual patients must be provided in context of their specific clinical condition and the data available on that patient.” Each treating physician must carefully consider the circumstances of their individual patient and determine whether these recommended settings/choices are appropriate to their patient’s circumstances.

5.1 MicroPort CRM (Formerly LivaNova and Sorin Group)
*Settings that are not nominal are marked with an asterisk

Brady	Single Chamber
VVI 60bpm*	

| Dual Chamber |
| SafR (AAI→DDD) ± rate response, consider DDD* in complete heart block |
| CRT |
| DDD ± rate response, consider weekly AV + VV SonR optimization ON |

5.2 Requires SonR tip atrial lead with integrated hemodynamic sensor.

Detection	In patients with no VT history
VF: 20 cycle* + 6/8 majority	>255bpm*
FVT: 20 cycle* + 6/8 majority	230bpm
VT: 20 or 30 cycle* + 6/8 majority	185bpm
Slow VT: Monitor zone at user discretion	

| In patients where VT CL is known |
VF: 20 cycle* + 6/8 majority	>255bpm*
FVT: 20 cycle* + 6/8 majority	230bpm
VT: >20 cycle* + 6/8 majority	185bpm (or 10-20bpm < VT rate)
Slow VT: Monitor zone at user discretion	

Therapy	VF: 6 x 42J*
FVT:	If stable: 1 x ATP (Burst @ 85% x 8 beats) then 6 x 42J* (unless DFT guided)
	If unstable: 6 x 42J* (unless DFT guided)
VT:	>1 x ATP (Burst + Scan @ 85% x 8 beats; Scan 8ms) then all Shocks ON

2 Satisfaction of stability (nominal value = 30ms) in the Fast VT zone will not prevent therapy but rather activate programmable burst pacing prior to shock therapy.
3 Rarely, hemodynamically stable slow VT can be treated without programming a back-up shock.

SVT Discriminators

| Single Chamber |
| Single button programming; Stability±/Acc |
| Rate, Stability, Degree of Onset, VT long cycle search |
| Nominal settings: Onset 19%, Stability 65ms (Slow VT, VT); Long cycle extension 10 cycles; Long cycle gap 170ms |
| Dual Chamber/CRT-D |
| Single button programming; PARAD+ |
| Rate, Stability, AV association analysis, Degree and Chamber of Onset, VT long cycle search |
| Nominal settings: Onset 25%, Stability 65ms (Slow VT, VT); Long cycle extension 10 cycles; Long cycle gap 170ms |

4 SVT Discriminators are not required in Complete Heart Block.

Oversensing Rejection

| Daily check Lead impedance ON* |
| Daily check Lead coil continuity ON* |
| Daily check V oversensing alerts ON* |
| T-wave filtering and noise detection are hardcoded in firmware |
Appendix 1 Author disclosure table

Writing group member	Employment	Honoraria/ Speaking/ Consulting	Speakers' bureau	Research* Fellowship support*	Ownership/Partnership/Principal/ Majority stockholder	Stock or stock options	Intellectual property/Royalties	Other
Martin K. Stiles, MBChB, PhD, FHRS (Chair)	Waikato Hospital, Hamilton, New Zealand Centre Hospitalier Universitaire Trousseau, Université François Rabelais, Tours, France	None						
Laurent Fauchier, MD, PhD	None							
Carlos A. Morillo, MD, FHRS	Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada	None						
Bruce L. Wilkoff, MD, FHRS, CCDS	Cleveland Clinic, Cleveland, Ohio	None						

Number value: $0 = \leq \$10,000; 1 = \>$10,000 to \leq \$25,000; 2 = \>\$25,000 to \leq \$50,000; 3 = \>\$50,000 to \leq \$100,000; 4 = \>\$100,000

* Research and fellowship support are classed as programmatic support. Sources of programmatic support are disclosed but are not regarded as a relevant relationship with industry for writing group members or reviewers.
Appendix 2 Reviewer disclosure table

Peer reviewer	Employment	Honoraria/ Speaking/ Consulting	Speakers’ bureau	Research*	Fellowship support*	Ownership/ Partnership/ Principal/Majority stockholder	Stock or stock options	Intellectual property/ Royalties	Other
Serge Boveda, MD, PhD	Cardiology Department, Clinique Pasteur, Toulouse, France	1: Boston Scientific; 1: Medtronic; 1: MicroPort	None	None	None	None	None	None	None
Michael R. Gold, MD, PhD, FHRS	Medical University of South Carolina, Charleston, South Carolina	1: Abbott Vascular; 1: EBR Systems; 1: Medtronic; 2: Boston Scientific	None	None	None	None	None	None	None
Roberto Keegan, MD	Hospital Privado del Sur and Hospital Español, Bahia Blanca, Argentina	None	None	None	None	None	None	None	None
Valentina Kutyifa, MD, PhD, FHRS, FESC, FACC	University of Rochester Medical Center, Rochester, New York; Adjunct Position at Semmelweis University Heart Center, Budapest, Hungary	1: Biotronik; 1: ZOLL Medical Corporation	None	None	5: Biotronik; 5: Boston Scientific; 5: ZOLL Medical Corporation	None	None	None	
Chu-Pak Lau, MD, FHRS, CCDS	The University of Hong Kong, Hong Kong, Hong Kong	None	None	None	None	None	None	None	None
Mark A. McGuire, MBBS, PhD	Heart Rhythm Centre, Newtown, Australia	1: Medtronic	None	None	None	None	None	None	None
Siva K. Mulpuru, MD, FHRS, CCDS	Mayo Clinic Arizona, Phoenix, Arizona	None	0; Medtronic	None	None	None	None	None	None
David J. Slotwiner, MD, FHRS	Weill Cornell Medical College, New York, New York	None	None	None	None	None	None	None	None
William Uribe, MD, MBA, FHRS	CES Cardiología, Medellin, Colombia	1: Abbot Laboratories; 1: Pfizer	None	None	None	None	None	None	None

Number value: 0 = $0; 1 = ≤ $10,000; 2 = > $10,000 to ≤ $25,000; 3 = > $25,000 to ≤ $50,000; 4 = > $50,000 to ≤ $100,000; 5 = > $100,000

ABIM = American Board of Internal Medicine

* Research and fellowship support are classed as programmatic support. Sources of programmatic support are disclosed but are not regarded as a relevant relationship with industry for writing group members or reviewers.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.