KINETIC FRACTIONATION OF THE ISOTOPE COMPOSITION OF 18O, 13C, AND OF CLUMPED ISOTOPE 18O-13C IN CALCITE DEPOSITED TO SPELEOTHEMS. IMPLICATIONS TO THE RELIABILITY OF THE 18O AND Δ_{47} PALEOTHERMOMETERS

Wolfgang DREYBRODT1,2

Abstract

Wolfgang Dreybrodt: Kinetic fractionation of the isotope composition of 18O, 13C, and of clumped isotope 18O-13C in calcite deposited to speleothems. Implications to the reliability of the 18O and Δ_{47} paleothermometers

Kinetic fractionation of 18O and clumped isotopes 13C-18O in calcite precipitated to speleothems in cave environments renders the paleo-climatic interpretation of these proxies difficult. Therefore a better understanding of the processes generating the isotope imprint is needed. A heuristic approach is taken to interpret recent data of the fractionations Δ_{47} and α in experimental conditions and for cave environments.

Kinetic fractionation is modeled in the framework of irreversible uni-directional precipitation. The constant, α, is determined by the differing equilibrium concentrations c_{eq} with respect to calcite. The constant, ϵ, is expressed by the kinetic fractionation $\epsilon = 1 - \alpha_{\text{eq}}^{18} / \alpha_{\text{eq}}^{13}$, where α_{eq} denotes the rate constants of precipitation for the rare and abundant isotopologues. The second constant, λ, is determined by the differing equilibrium concentrations of HCO_3^- in the surrounding atmosphere. Fitting this expression to the experimental data one obtains the parameters ϵ and λ for different temperatures. Regarding these results the temporal evolution of $^{18}\delta_{\text{calc}}$ (t) and $\Delta_{47}(t)$ is discussed for the experimental conditions and for cave environments.

IZVLÈČEK

Wolfgang Dreybrodt: Kinetična frakcionacija izotopov 18O, 13C in izotopskega skupka 18O-13C v sigah in zanesljivost paleotermometrov 18O in Δ_{47}

Kinetična frakcionacija 18O in skupka 13C-18O v kalcitu, ki se kot siga odlaga v jamskih okoljih, dela tezave pri interpretaciji paleo-olime na osnovi teh proksejev. Zato potrebujemo boljše razumevanje procesov, od katerih je odvisen izotopski zapis v sigah. V tem delu s hevrističnim pristopom interpretiramo nedavno pridobljene podatke frakcionacije Δ_{47} in α. Podatki, pridobljeni ob izločanju kalcita v pogojez, podobnih jamskim, kažejo, da na frakcionacijo bistveno vpliva hitrost izločanja kalcita (Hansen et al. 2019). V pogojih, ko je izločanje bistveno hitrejše od raztopljanja, velja zveza $\epsilon_{\text{calc}}^{18} = \epsilon - \lambda \cdot c_{\text{calc}}^{18} / F$. Pri izpeljavi te enačbe upoštevamo, da so kinetične konstante izločanja in ravnotežna konstanta kalcita različne za različne izotopologije. Konstanto ϵ lahko izrazimo s kinetično frakcionacijo $\epsilon = 1 - \alpha_{\text{eq}}^{18} / \alpha_{\text{eq}}^{13}$, kjer je α konstanta izločanja za redke ozirna večinske izotopologije. Drugo konstanto λ dobimo iz razlik ravnotežnih koncentracij izotopologov $\text{HC}O_3^-$ glede na kalcit in na atmosferski P_{CO_2}. S prilagajanjem izraza eksperimentalnem podatkom dobimo ϵ in λ pri različnih temperaturah. To omogoča obravnavo časovne odvisnosti $^{18}\delta_{\text{calc}}$ (t) in $\Delta_{47}(t)$ pri eksperimentalnih pogojih in v jamskem okolju. Rezultati so pomembni za razumevanje uporabnosti paleotermometra $1000\text{ln} \alpha^{18}_{\text{calc}},\text{HC}O_3^-$ in hkrati pokažemo na vzrok različnih kalibracij, kot jih zasledimo v literaturi. Rezultate lahko uporabimo tudi za izotopske skupke 13C-18O in kalibracijo Δ_{47} za kalitno sigo. Članek predstavi nov pogled na iskanje splošno veljavne kalibracije paleotermometrov 18O in Δ_{47}.

1 Faculty of Physics and Electrical Engineering, University of Bremen, Germany
2 Karst Research Institute ZRC SAZU, Titov trg 2, 6230 Postojna, Slovenia
e-mail: dreybrodt@t-online.de

Received/Prejeto: 01.09.2019

DOI: https://doi.org/10.3986/ac.v48i3.7710

ACTA CARSOLOGICA 48/3, 329-340, POSTOJNA 2019
This has implications to the application of $1000 \ln \alpha_{\text{CaCO}_3-H_2O}$ as a paleo-thermometer. It shows the reason why so many differing calibrations have been reported. These results analogously can be applied also to clumped isotopes 13C/18O and the calibration of the Δ_g-thermometer with regard to speleothem calcite. In summary, a better understanding of the problems arising in the search for generally valid calibrations of 18O and Δ_g paleothermometers is presented.

Key words: Calcium carbonate, 13C and 18O isotopes, clumped isotopes, kinetic fractionation between HCO_3^- and calcite, Δ_g paleothermometer.

INTRODUCTION

The isotope compositions of 13C and 18O in calcite precipitated inorganically to speleothems nowadays are widely used as proxies of paleo-climate (Fairchild & Baker 2012). To this end the temperature dependence of the calcite-water fractionation factor ($1000 \ln \alpha_{\text{calcite-water}}$) from theoretical, laboratory and cave studies has been suggested as calibration to the growth temperature of speleothems. In the ideal case when precipitation of the calcite proceeds at very low growth rates in isotope equilibrium the 18O isotope composition reflects the temperature of growth. The calibration of this line has been constructed from two measurements of isotope fractionation factors $^{18}\alpha_{\text{calcite-water}}$ of calcites from Devils Hole and Laghetto Basso (Corchia Cave, Italy) that grow extremely slow with growth rate of 10^{-11} mmol cm$^{-2}$ s$^{-1}$ in isotope equilibrium at 33.7°C (Coplen 2007) and 7.9°C (Daeron et al. 2019). However, most calcite deposited in caves to speleothems or farmed to glass plates at known temperature and also synthetic calcite obtained from the laboratory exhibit fractionation $1000 \ln \alpha_{\text{calcite-water}}$ that deviates from the Coplen-Daeron line thus rendering its use as paleo-thermometer questionable. The reason is kinetic fractionation that depends on the difference of rate constants and equilibrium concentrations in the precipitation rate laws of calcium and bicarbonate for the different isotopologues with respect to calcite (Dreybrodt 2008, 2016; Dreybrodt & Scholz 2011).

Little is perceived in the community about the processes that determine the evolution of the isotope composition when water deposits calcite to a stalagmite. One usually assumes that classical Rayleigh distillation (Mook 2000) is active during precipitation of calcite. Using this concept a fractionation factor is found. If it deviates from the known equilibrium value, as is mostly the case, kinetic fractionation is inferred.

Recently Hansen et al. (2019) reported the evolution of the isotope composition of DIC and calcite deposited from a thin film of water super saturated with respect to calcite in a cave analogue experiment. They obtained values that deviated unsystematically from the equilibrium values and inferred kinetic fractionation without further explanation. These results have recently been analyzed and interpreted by a kinetic model (Dreybrodt 2019).

In a second step they have explored the evolution of the fractionations $^{13}\varepsilon_{\text{CaCO}_3-\text{HCO}_3}$ and $^{18}\varepsilon_{\text{CaCO}_3-\text{HCO}_3}$. They suggested a dependence of this fractionation on the corresponding precipitation rates of calcite. Here we present a heuristic model that explains their observations and sheds light into the meaning of kinetic fractionation. Using these results the reasons for the problems in using the 18O and also the Δ_g paleothermometers are discussed.
DERIVATION OF EQUILIBRIUM AND KINETIC FRACTIONATION FACTORS

EQUILIBRIUM FRACTIONATION:

The equilibrium fractionation factor $\alpha_{\text{CaCO}_3-\text{HCO}_3}$ for the reaction $\text{Ca}^{2+} + 2\text{HCO}_3^- \rightleftharpoons \text{CaCO}_3 + \text{CO}_3^{2-} + \text{H}^+ \rightleftharpoons \text{CaCO}_3 + \text{H}_2\text{CO}_3$ is derived as follows: The mass action law for this reaction reads

$$
\frac{[\text{Ca}^{2+}][\text{CO}_3^{2-}]}{[\text{CaCO}_3]} = K'_i
$$

and that for the reaction $\text{HCO}_3^- \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-}$

$$
\frac{[\text{HCO}_3^-]}{[\text{CO}_3^{2-}][\text{H}^+]} = K'_i \Rightarrow \frac{[\text{CO}_3^{2-}]}{[\text{H}^+]} = \frac{[\text{HCO}_3^-]}{[\text{CO}_3^{2-}]} K'_i
$$

By inserting Equation 2 into Equation 1 one has

$$
\frac{[\text{Ca}^{2+}][\text{HCO}_3^-]}{[\text{CaCO}_3][\text{H}^+]} = K'_i K'_2
$$

Equations from 1 to 3 are simplified as

$$
\frac{[\text{Ca}^{2+}][\text{HCO}_3^-][\text{CaCO}_3][\text{H}^+]}{[\text{CaCO}_3][\text{H}^+] K'_2} = K'_i K'_2
$$

[] denote concentrations. In the carbon bearing species, i, refers to the rare and abundant isotopologue and the K'_i denote the corresponding mass action constants that are slightly different for the rare and the abundant isotopologue. Dividing the expressions (eq. 3) for the rare and abundant isotopes one gets the equilibrium fractionation factor $\alpha_{\text{CaCO}_3-\text{HCO}_3}$ as defined by Mook (2000)

$$
\frac{[\text{Ca}^{2+}][\text{HCO}_3^-][\text{CaCO}_3][\text{H}^+]}{[\text{CaCO}_3][\text{H}^+]} = \frac{[\text{HCO}_3^-][\text{CaCO}_3]}{[\text{CaCO}_3][\text{H}^+]} K'_i K'_2 = \frac{[\text{Ca}^{2+}][\text{CaCO}_3]}{[\text{CaCO}_3][\text{H}^+]} = \alpha_{\text{CaCO}_3-\text{HCO}_3}
$$

The equilibrium fractionation factor is related to mass action constants and depends solely on temperature. It is valid only for reactions in equilibrium.

KINETIC FRACTIONATION:

The isotopologues, i, of calcite are deposited with rates

$$
F^i = \alpha'_{\text{pre}} (c^i - c_{eq}^i)
$$

where, c^i stands for $[\text{HCO}_3^-]$ (Buhmann & Dreybrodt 1985). The rate constants α'_{pre} and the ratios c_{eq}^i / c^i of equilibrium concentrations, c_{eq}^i and the corresponding concentrations, c^i are slightly different for the two isotopologues, i,(Dreybrodt 2008; Dreybrodt & Scholz 2011; Dreybrodt 2016). The amount of CaCO$_3$ deposited after time T is obtained by integration

$$
\int_{0}^{T} F(t) \cdot dt = \alpha'_{\text{pre}} \int_{0}^{T} (c^i(t) - c_{eq}^i) \cdot dt
$$
In the experiment of Hansen et al. calcite is deposited to a glass plate at constant concentration. The amount of calcite deposited to the glass after time T from a solution with constant concentration, c', and constant precipitation rate, F', is $F' \cdot T = \alpha_{\text{prec}} \cdot (c' - c_{\text{eq}}) \cdot T$. Consequently one gets the kinetic fractionation

$$\alpha_{\text{kin}} = \frac{[\text{CaCO}_3]_{\text{rare}}}{[\text{CaCO}_3]_{\text{ab}}} = \frac{\alpha_{\text{prec}}}{\alpha_{\text{prec}}} \frac{(c'_{\text{rare}} - c_{\text{eq}})}{(c'_{\text{ab}} - c_{\text{eq}})} \cdot T = \frac{\alpha_{\text{prec}}}{\alpha_{\text{prec}}} \frac{(c'_{\text{rare}} - c_{\text{eq}})}{(c'_{\text{ab}} - c_{\text{eq}})} \cdot \frac{c_{\text{rare}}}{c_{\text{ab}}} = \alpha \cdot \frac{\frac{c_{\text{rare}}}{c_{\text{ab}}} \cdot (c'_{\text{rare}} - c_{\text{eq}})}{(c'_{\text{ab}} - c_{\text{eq}})}$$

Since $\frac{c_{\text{rare}}}{c_{\text{ab}}} = \gamma \cdot \frac{c_{\text{eq}}}{c_{\text{ab}}}$, where γ is close to 1 and expresses the slight difference in the equilibrium concentrations, c_{eq}. Dreybrodt (2016) we finally get α_{kin} as a function of the concentration, c, of HCO$_3^-$ in the calcite precipitating solution.

$$\alpha_{\text{kin}} = \frac{[\text{CaCO}_3]_{\text{rare}}}{[\text{CaCO}_3]_{\text{ab}}} = \frac{\alpha_{\text{prec}}}{\alpha_{\text{prec}}} \frac{(c'_{\text{rare}} - c_{\text{eq}})}{(c'_{\text{ab}} - c_{\text{eq}})} = \frac{\gamma \cdot c_{\text{eq}}}{c_{\text{ab}}} = \alpha \cdot \frac{c_{\text{rare}}}{c_{\text{ab}}}$$

Note that the dependence on F' is artificial to facilitate comparison to experimental data. The relation $\alpha_{\text{kin}} = \alpha \cdot (1 - \lambda \cdot \frac{c_{\text{eq}}}{c_{\text{ab}}})$ expresses the fact that during kinetic fractionation, in contrast to equilibrium fractionation, α_{kin} depends on the pathway of the reaction that is specified by the actual concentration, c, and the end concentration c_{eq}. With $\varepsilon = \alpha - 1$ and, $\alpha_{\text{kin}} = \alpha_{\text{kin}} - 1$, the fractionation can be written as

$$\alpha_{\text{kin}} = \varepsilon - \lambda \cdot \frac{c_{\text{eq}}}{c_{\text{ab}}} \cdot \frac{\alpha_{\text{rare}}}{\alpha_{\text{ab}}} = \delta_{\text{CaCO}} - \delta_{\text{HCO}_3^-}$$

The rate law, $F' = \alpha_{\text{prec}} \cdot (c' - c_{\text{eq}})$, comprises the forward reaction of precipitation with reaction rate, R_f, and the backward reaction of dissolution with reaction rate, R_b. The fractionation of DIC is controlled by the CaCO$_3$ dissolution/precipitation ratio R_f/R_b (DePaolo 2011). Fractionation varies between an equilibrium limit at $R_f/R_b = 1$ and a kinetic limit at $R_f/R_b = 0$. My derivation of kinetic fractionation is valid for $R_f/R_b < 0.1$ (DePaolo 2011).

In all the processes discussed so far it is only the mass difference between the light and heavy isotopologues that causes changes in the isotope composition of the HCO$_3^-$ pool. Therefore clumped isotopes must obey the same rules with the consequence that all arguments given above apply also to clumped isotopes for all reactions between pools of differing carbonate species: CO$_2$ in the atmosphere, aqueous CO$_3^-$, HCO$_3^-$, CO$_3^{2-}$, and calcite. Therefore all arguments given above apply also to the application of the temperature dependence of Δ_{C} as paleothermometer, as will be shown later in this work.
KINETIC FRACTIONATION OF THE ISOTOPE COMPOSITION OF 18O, 13C, AND OF CLUMPED ISOTOPE 18O13C IN CALCITE DEPOSITED TO SPELEOTHEMS. IMPLICATIONS TO THE RELIABILITY OF THE 18O AND $\Delta$$_p$ PALEOTHERMETERS

EVALUATION OF EXPERIMENTAL DATA

Recently Hansen et al. (2019) reported experimental values of the fractionation $\epsilon$$_{\text{DIC}}$ for both 13C and 18O. They measured the isotope composition of DIC in a water film supersaturated with respect to calcite that flows down an inclined marble plate under well constrained conditions. This water precipitates calcite. Consequently, the HCO$_3^-$ and the calcium concentrations drop with distance, x, from the input. This enables one to determine the precipitation rates, F, as a function of the distance x. In a second experiment an identical supersaturated solution flowing down a sand blasted glass plate as a water layer with the same depth and velocity as that on the limestone plate precipitates calcite onto this plate.

The authors measured the isotope composition of the DIC in the water flowing along the limestone plate at various distances, x. They also measured the isotope composition of the calcite deposited to the glass plate at the same distances x. From the difference of $\delta$$_{\text{HCO}_3^-}(x)$ measured in the DIC along the marble plate and $\delta$$_{\text{calcite}}(x)$ measured in the calcite deposited on the glass plate they calculate $\epsilon$$_{\text{HCO}_3^-}$ in calcite. This method relies on the assumption that precipitation along the marble plate is identical to that of the glass plate. The authors provide arguments that this assumption should hold. They admit, however, that large errors are likely. This can be seen in fig. 19 b, d of their work where $\epsilon$$_{\text{HCO}_3^-}$ remains constant along the plate in contrast to other results in this figure.

In future measurements the following protocol could avoid the problem. A degassed supersaturated solution with pH above 8 is used to create the water film running down a short glass plate with a flow distance of about 20 cm and flow velocity of about 0.1 cm/s. Input and output conductivities should not differ by more than 5% during the entire experiment. This warrants almost

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Fig. 1: Panels a) $\epsilon$$_{\text{CaCO}_3}$ and $\epsilon$$_{\text{CaCO}_3}$ as reported by Hansen et al. (2019). Panels b) Fits to Equation 9.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Equation} & \textbf{Intercept} & \textbf{Slope} \\
\hline
$y = a + b \times x$ & 0.30542 & 3.07059 \\
$y = a + b \times x$ & 3.07059 & 0.30542 \\
\hline
\end{tabular}
\caption{Fits to Equation 9.}
\end{table}
Tab. 1: Kinetic parameters ε and λ for 18O and 13C derived by use of Equation 9 from Fig. 19 and Fig. 16 in Hansen et al. (2019). c_{eq} is calculated using PHREEQC and the rate constant α_{prec} is taken from Fig. 2 in Baker et al. (1998).

Fig. in Hansen	P_{eq} (ppmV)	$[Ca]_{eq}$ (mmol/L)	T °C	ε (‰)	λ (‰)	c_{eq} (mmol/cm²)	α_{prec} (cm/s)
16O-19 a	1000	5	10	-3.2	-4.8	0.93∙10⁻³	1.1∙10⁻⁶
16O-19 e	3000	5	20	-2.7	-3.8	1.15∙10⁻³	2.7∙10⁻⁶
16O-19 h	1000	3	20	-2.4	-1.5	0.78∙10⁻³	2.7∙10⁻⁶
16O-19 c	1000	5	30	-2.0	-2.5	0.67∙10⁻³	5.0∙10⁻⁶
16O-19 f	3000	5	30	-3.4	-3.3	0.97∙10⁻³	5.0∙10⁻⁶
16O-19 g	1000	5	30	-2.1	-6.3	0.67∙10⁻³	5.0∙10⁻⁶
13C-16 a	1000	5	10	-7.6	-11.7	0.93∙10⁻³	1.1∙10⁻⁴
13C-16 b	3000	5	10	-7.6	-3.8	1.36∙10⁻³	1.1∙10⁻⁴
13C-16 c	1000	3	20	-7.7	-1.5	1.15∙10⁻³	2.7∙10⁻⁵
13C-16 d	1000	2	30	-5.8	-1.3	0.67∙10⁻³	5.0∙10⁻⁶

Even precipitation rates along the entire flow distance. At the start and at the end of the experiment the DIC in the solution at the input and in that flowing off at the end of the glass plate is precipitated as SrCO₃ to measure its isotope composition. When a sufficient amount of calcite has been precipitated the experiment is finished and the calcite is scratched off. Provided, that constant conditions have been assured $\varepsilon_{HCO₃-CaCO₃}$ can be calculated from $\delta_{clumped}$ in one single experiment. In addition the precipitation rate can be determined by the weight of the calcite deposited. The experiment must be performed with various Ca-concentrations to obtain differing precipitation rates.

The calcite precipitated from this experiment and the SrCO₃ obtained from DIC can also be used to measure Δ_{c} of calcite and DIC to obtain $\varepsilon_{calcite-HCO₃}$. This may give important insights into kinetic fractionation of clumped isotopes.

In Fig. 16, Hansen et al. show $\varepsilon_{CaCO₃-HCO₃}$ as a function of precipitation rate F for various temperatures. In Fig. 19 correspondingly $\varepsilon_{CaCO₃-HCO₃}$ is reported.

I have used Equation 9 for fitting this data. In Fig. 1, panel b) data taken from Hansen et al. Fig. 19h are shown. These were digitized by use of ORIGIN 2016. Fig. 1, panel b) depicts the same data plotted versus $1/F$. The full line is a linear fit to this data. The fitting parameters a (intercept) and b (slope) are listed in the box. From Equation 9 one reads $\varepsilon = a$ and $\lambda = -b \cdot \varepsilon_{eq}$. Similar fits were obtained for Fig. 19 a, d, e, f, g. The data in panel b) deviate from the general trend of other panels and have not been evaluated. In panels e) and f) some points deviated significantly from the general trend and were therefore omitted.

I have also used the data in Fig. 16 in Hansen et al. (2019) to evaluate $\varepsilon_{CaCO₃-HCO₃}$. An example is shown in the lower panels of Fig. 1. Satisfactory fits were obtained for all panels in Fig. 16. Tab. 1 lists the kinetic parameters ε and λ for all fits.

The kinetic parameters should monotonously depend on temperature solely. As one can see from Tab. 1 there is large scatter of the values of ε and λ for 30, 20, and 10°C. This indicates large errors in the experiments as admitted by Hansen et al. (2019). Nevertheless, the data indicates the validity of my approach. In the future more accurate experiments as suggested above are required.

DISCUSSION

TEMPORAL EVOLUTION OF $\Delta_{CaCO₃}$

The isotope composition, $\delta_{CaCO₃}(t)$, of calcite precipitated to the glass plate after flow time, t, in the experiment is determined (Dreybrodt 2016) by

$$
\delta_{CaCO₃}(t) = \delta_{HCO₃}(0) + \varepsilon_{eq}(t) + \varepsilon_{HCO₃-CaCO₃}
$$

ε_{eq} is the increase of the isotope composition of HCO₃ by Rayleigh-distillation (Hansen et al. 2019). This is illustrated schematically in Fig. 2a. The bottom line stands for the isotope composition of HCO₃, $\delta_{HCO₃}(0)$, at time zero.
In the experiments of Hansen et al., DIC in the solution and the CO₂ in the surrounding atmosphere are in isotope equilibrium with the water. With increasing time, t, isotope composition, δ_{HCO₃}(t), increases by enrichment, \(\varepsilon_{HCO₃-CaCO₃}(t) \), due to Rayleigh distillation along the flow path. The calcite deposited is enriched by \(\varepsilon_{HCO₃-CaCO₃}(t) \), that decreases with decreasing, \(c_c-c_{eq} \). The dashed line depicts the value of \(\delta_{c_{eq}} \) when calcite is deposited in isotope equilibrium from a solution of chemical and isotope composition constant in time (Coplen 2007; Daeron et al. 2019). For details see Hansen et al. (2019).

In a cave environment the solution dripping to a stalagmite mostly has attained isotope equilibrium with the water (Dreybrodt & Scholz 2011) but not with the CO₂ in the cave atmosphere. Therefore, exchange with atmospheric CO₂ contributes

\[
\delta^{ex}(t) = \left(\delta^{eq}_{eq} - \delta^{eq}_{atm} \right) \cdot \frac{t}{\tau^{ex}}
\]

\(\delta^{ex} \) is the initial value of DIC and \(\delta^{eq}_{atm} \) that of DIC in isotope equilibrium with the cave CO₂. Depending on the value of \(\delta^{eq}_{atm} \), \(\delta^{ex}(t) \) can be positive or negative. The exchange time \(\tau^{ex} \) is at least one order of magnitude longer than the precipitation time of calcite (Dreybrodt et al. 2016; Dreybrodt & Romanov 2016; Hansen et al. 2017; Dreybrodt 2017). Therefore \(\delta^{eq}_{eq} \) is small. If prior calcite precipitation (PCP) has been effective before the water impinges to the stalagmite Rayleigh distillation has already increased the isotope composition by \(\varepsilon_{PCP} > 0 \). Regarding this one gets

\[
\delta_{CaCO₃}(t) = \delta_{HCO₃}(0) + \varepsilon_{PCP} + \varepsilon_{atm}(t) + \varepsilon_{HCO₃-CaCO₃} + \varepsilon_{c-c eq}(12)
\]

as depicted in the lower panel of Fig. 2 illustrating these additional contributions. Note that \(\delta_{CaCO₃} \) in the calcite deposited on a stalagmite is accumulated during the drip interval \(T_{drip} \). Therefore \(\delta_{CaCO₃} \) becomes correlated to \(T_{drip} \) and two stalagmites growing with differing drip intervals but under otherwise identical conditions from the same water source at the same time, close to each other may exhibit differing \(\delta_{CaCO₃} \) when drip intervals, \(T_{drip} \), were different. The question arises whether these stalagmites are suitable as paleo-climatic proxies. Only for drip intervals, \(T_{drip} \ll \tau^{prec} \), \(\delta_{CaCO₃}(T_{drip}) - \delta_{HCO₃}(0) \) will be close to \(\varepsilon_{HCO₃-CaCO₃}(0) \). The precipitation time of calcite is given by \(\tau^{prec} = \frac{d}{\varepsilon_{atm}} \), where, \(d \), is the depth of the water layer on top of the stalagmite (Buhmann & Dreybrodt 1985). Stalagmites with diameters larger than 10 cm are suitable (Dreybrodt 2008). For high drip rates the water after entering the cave flows quickly to the stalagmite and there is little time for PCP. Therefore \(\varepsilon_{PCP} \) is small and can be neglected.

The evolution of \(\delta_{CaCO₃} \) for both \(^{13}C \) and \(^{18}O \) is caused solely by the mass difference of the isotopologues. Therefore an analogue evolution is expected also for the clumped isotope Ca\(^{13}C\)\(^{18}O\)\(^{16}O\) as the rare isotope and Ca\(^{12}C\)\(^{16}O\)\(^{16}O\) as the abundant one. From this one may define a δ\(_{clumped}\) in the traditional way that is related linearly to Δ\(_{cp}\) the common measure for clumped isotopes. As I will discuss later Rayleigh distillation and PCP cause negative changes in Δ\(_{cp}\) (t) and accordingly also in δ\(_{clumped}\)(t). This is illustrated in Fig. 3. The evolution is similar to that in Fig. 2. But now δ\(_{clumped}\) decreases in time.

![Fig. 2: Evolution of \(\delta_{CaCO₃}(t) \) in a calcite precipitating water film in the experiment (a) and (b) in natural conditions of a cave environment (see text).](image-url)
IMPLICATION TO THE CALIBRATION OF PALEOTHERMOMETERS

The $1000\ln^{18}\text{CaCO}_3\text{H}_2\text{O}$ Paleothermometer

The dependence $\alpha^{18}\text{CaCO}_3\text{H}_2\text{O}$ on temperature for naturally and synthetically precipitated calcite has been suggested as a possible paleothermometer. $1000\ln^{18}\text{CaCO}_3\text{H}_2\text{O} = \varepsilon^{\text{H}_2\text{O}-\text{CaCO}_3}$ is related to $\varepsilon^{\text{H}_2\text{O}\text{CO}_3}\text{CaCO}_3$ by $\varepsilon^{\text{H}_2\text{O}-\text{CaCO}_3} = \varepsilon^{\text{H}_2\text{O}-\text{HCO}_3} + \varepsilon^{\text{H}_2\text{O}-\text{CaCO}_3}$

The fractionation $\varepsilon^{\text{H}_2\text{O}\text{CO}_3}$ between water and HCO_3^- is a constant that depends on temperature solely (Beck et al. 2005). This means that $1000\ln^{18}\text{CaCO}_3\text{H}_2\text{O}$ must show the same variations as $\varepsilon^{\text{H}_2\text{O}\text{GCaCO}_3}$. Various attempts to calibrate $1000\ln^{18}\text{CaCO}_3\text{H}_2\text{O}$ as a paleothermometer for calcite precipitated naturally or synthetically have been reported.

Fig. 4 gives an overview. The upper panel illustrates various calibration lines taken from the literature.

The red dashed line is the equilibrium Daeron-Coplen calibration (Daeron et al. 2019). It represents fractionation in isotope equilibrium. This Daeron-Coplen line has been constructed from two isotope fractionation factors $\alpha_{\text{calcite-water}}$ of calcites from Devils Hole and Laghetto Basso (Cochia Cave, Italy) that grow extremely slow with growth rate of 10^{-11} mmol cm$^{-2}$ s$^{-1}$ in isotope equilibrium at 33.7°C (Coplen 2007) and 7.9°C respectively (Daeron et al. 2019).

The calibrations of Hansen et al. (2019) (black, dashed), Tremaine et al. (2011) (green solid), and Affek and Zaarur (2014) (magenta solid), all constructed from a variety of natural and synthetic calcites, are close to each other. The orange line is taken from the work of Johnston et al. (2013, Fig. 6). The lower panel illustrates the distribution of data points used for the construction of the orange Johnston line. Here a histogram of the difference between the equilibrium line and the actual data points is constructed from the plot in Fig. 6 in Johnston et al. (2013).

It is important to note that most of the data points and calibration lines are below the Daeron-Coplen equilibrium calibration. This is also the case for the data of Feng et al. (2014) and also valid for experiments with synthetic calcite with growth rates of several 10^{-9} mmol cm$^{-2}$ s$^{-1}$ (Levitt et al. 2018) as can be seen from Fig. 6 in Johnston et al. (2013). It is evident that most of cave calcite is precipitated out of equilibrium with kinetic fractionation ε^{kin} smaller than ε^{eq}.

Yan et al. (2012) investigated $\delta^{18}O$ in calcite precipitated in pools and in streams with fast flow in a low-
temperature travertine-depositing system at Baishuitai, Yunnan, SW China (Yan et al. 2012).

They found that the δ18O values of travertine precipitated in the canal system increased downstream, recording the δ18O values of dissolved carbonates (HCO3−) in the stream water that augmented by Rayleigh-distillation along the canal. However, in the pool systems with slow flow and almost stagnant water pools of large volume where carbonate concentration is constant in time, oxygen isotope equilibrium between dissolved carbonates and H2O was achieved. The δ18O values of travertine deposited there with rates lower by a factor of ten compared to the rates in the stream water were in agreement with those calculated from the equilibrium Daeron-Coplen calibration. This is what one expects from Fig. 2.

Generally, one anticipates that calcite precipitated from large volumes of water where the DIC concentration stays constant in time should be in isotope equilibrium and consequently 1000·lnα18CaCO3-H2O and Δεp of calcite precipitated under such conditions should be close to the value of the corresponding Daeron-Coplen calibration. In such large water bodies with depth, a, of at least one cm isotope exchange with the surrounding atmosphere is slow because the exchange time τex proportional to a/D where, D, the coefficient of molecular diffusion of CO2 is 2·10−5 cm² s⁻¹ (Dreybrodt et al. 2016). For a depth, a, of 1 cm τex is on the order of 1 year. Since the amount of calcite precipitated is so little that the concentration of DIC stays unaltered Rayleigh distillation is excluded. In Figs. 2 and 3 this means that precipitation happens at c(0) = ceq in isotope equilibrium of all species involved.

Recently Breitenbach et al. (2018, 2019) have reported a calibration of “subaqueously-precipitated carbonates (SPC) which form in cave pools and drip sites, as well as natural hot springs. SPC include cave pearls, cave pool rim carbonates, hot spring pisoids, and carbonate geodes. Clumped isotope measurements confirmed isotopic equilibrium for both, δ18O and Δ47 of the analysed SPCs, supporting the equilibrium equations of Coplen”. The calibration of Δεp is presented in Breitenbach et al. (2018). It is shown in Fig. 5 and is very close to the Daeron-Coplen equilibrium calibration line.

In contrast to the SPC, calcite deposited to stalagmites from thin layers of water exhibits values of 1000·lnα18CaCO3-H2O and Δεp that are out of equilibrium (Tremaine et al. 2011). Keeping in mind that now calcite precipitates from a solution with a small volume such that the Ca- and DIC concentrations change on time scales of hundred seconds this can be explained as follows: For water that has not yet precipitated calcite when it drips to the stalagmite with drip intervals small compared to the precipitation time (τdrip ≪ τprec) the enrichment of the heavy isotope can be neglected because εeq(τdrip) and εex(τdrip) are close to zero (Dreybrodt 2016; Dreybrodt & Romanov 2016). If, however drip intervals are sufficiently long such that the HCO3− concentration is reduced significantly the contribution of Rayleigh distillation, εray and that of exchange, εex cannot be neglected and the calibration points for a given temperature will depend on the drip interval. In other words, 1000lnα18CaCO3-H2O depends on drip interval and therefore calcites precipitated at the same temperature may exhibit different values of 1000lnα18CaCO3-H2O.

If prior calcite precipitation (PCP) has been effective before the water impinges to the stalagmite Rayleigh distillation has already increased the isotope composition by εray > 0. Most of the points are below the Coplen-Daeron line. In some favorable cases the total enrichment εtot = εray + εex + εsp > 0 may be sufficiently large to put the point above the Coplen-Daeron line.

Note that in the experiments of Hansen et al. (2019), Fig. 19 therein and Fig. 1 in this work due to the action of Rayleigh distillation calcite deposited close to the output of the glass plate exhibits δ values close to the Daeron-Coplen line and above it. This implies that calcite that carries an isotope imprint close to that of the equilibrium line has not necessarily been precipitated in isotope equilibrium.

Experiments have been reported to constrain the value of α18,CaCO3-H2O with respect to precipitation rates. Dietzel et al. (2009) observed α18,CaCO3-H2O values at pH of 8.3 and 10°C, 20°C, and 30°C with precipitation rates between 5.8·10−9 mmol cm⁻² s⁻¹ and 5.8·10⁻⁷ mmol cm⁻² s⁻¹. The values decrease with increasing precipitation rate. Recently Levitt et al. (2018) reported α18,CaCO3-H2O of synthethetical calcite precipitated close to equilibrium with rates between 10⁻⁹ and 10⁻⁸ mmol cm⁻² s⁻¹.

Watkins et al. (2014) proposed a model that rep-

Fig. 5: Δεp versus 10³/T² modified from Kelso et al. (2017). See text.
resents the effects of ion-by-ion growth of calcite and describes the dependence of \(\Delta^{47} \) on growth rates between the equilibrium limit at extremely slow growth at several \(10^{-11} \) mmol cm\(^{-2} \) s\(^{-1} \) and the kinetic limit for growth rates higher than \(2 \times 10^{-8} \) mmol cm\(^{-2} \) s\(^{-1} \). This model shows good agreement with their experimental data.

It is difficult to interpret these findings with my model because \(c\) and \(\alpha_{\text{prec}} \) are not well constrained in these experiments and the errors in the rate dependence on precipitation rates are high.

The experiments of Hansen et al. (2019) performed with rates of several \(10^{-8} \) mmol cm\(^{-2} \) s\(^{-1} \) must be assigned to the kinetic limit and are well constrained with respect to the chemical, \(c\) and kinetic, \(\alpha_{\text{prec}} \) conditions of the precipitation. Therefore they can be described by Equation 9.

The clumped isotope \(\Delta^47 \) thermometer

As stated above the \(\Delta^47 \)-thermometer should show a similar behavior as the 1000n\(^{18} \) paleothermometer. Here also deviations from the Coplen-Daeron equilibrium line are observed. Fig. 5, modified from Fig. 5 in Kelson et al. (2017) illustrates these findings. I have also added the calculation by Tang et al. (2014) from inorganic calcites grown under well-controlled experimental conditions and that of Kato et al. (2019) derived from synthetic calcite. The red dashed line depicts the \(\Delta^47 \)-Daeron-Coplen equilibrium calibration line taken from Daeron et al. (2019). The green line depicts the calibration of Breitenbach et al. (2018) derived from subaqueous precipitated calcites as discussed above. As one expects it is very close to the equilibrium line although with slightly different slope.

All the other calibration lines exhibit values higher than those of the \(\Delta^47 \)-Daeron-Coplen equilibrium line because the positive Rayleigh distillation effect for \(^{18} \)O is accompanied by a negative change of \(\Delta^47 \). The \(\Delta^47 \) offset per 1‰ of \(^{18} \)O is about \(-0.02 \)‰ (Affek & Zaarur 2014; Guo, 2019; Guo & Zhou 2019). Theoretical calculations of Guo (2008) indicate a reduction of 0.0175–0.029‰ in \(\Delta^47 \) for each 1‰ increase in \(^{18} \)O. Kluge et al. (2013) observed an offset of \(-0.047 \)‰ in speleothems from Bunker Cave (Germany). The consequences are illustrated in Fig. 3. In analogy to Fig. 2, PCP and Rayleigh distillation cause shifts from \(\delta_{\text{clumped}} \) that now, however are negative. This is the reason why in Fig. 5 the calibration lines exhibit values higher than that of the equilibrium line.

One might argue that the departure from equilibrium may be restored by quick equilibration. This argument, however, does not hold. In a recent paper Weise and Kluge (2020) report on the kinetics of the temporal evolution \(\delta^{18} \)O and \(\Delta^47 \) in the DIC pool of sodium bicarbonate solutions at pH 8 and temperatures of 40°C, 55°C, 70°C, and 90°C that are out of isotope equilibrium. These achieve isotope equilibrium by exponential approach with time constant, \(\tau_{\delta^{18} \text{O}} = 1/\exp (-\text{r} / T + 29) \), where \(T \) is in °K and \(\tau_{\delta^{18} \text{O}} \) in minutes. The long relaxation times of 55 min at 30°C, 160 min at 20°C, and 570 min at 10°C are much larger than the precipitation time \(\tau_{\text{prec}} \) of about 14 min at 30°C, 25 min at 20°C, and 70 min at 10°C (Baker et al. 1998) and equilibration is of little influence.

All these arguments give evidence why many of the various calibration lines of 1000n\(^{18} \) and \(\Delta^47 \) differ from each other and cannot be used reliably as a paleothermometer for calcite precipitated to speleothems.

CONCLUSION

A heuristic approach is presented to interpret recent data of kinetic fractionation \(\Delta^{13,18} \text{Daeron-Coplen} \) in cave analogue experiments by Hansen et al. (2019). Two parameters \(\epsilon = 1-\alpha \) and \(\lambda \) are needed to explain kinetic fractionation that depends on the growth rates of the calcite precipitated. \(\alpha \) is the ratio of the rate constants of precipitation for the rare and abundant isotope and \(\lambda \) expresses the fact that the equilibrium concentration, \(c\), of HCO\(_3\)\(^{-} \) with respect to calcite differs for the rare and abundant isotope. This approach is different from prior interpretations that infer kinetic fractionation whenever the fractionation \(\epsilon \) is different from that expected for equilibrium fractionation.

In view of these results the origin of the isotope compositions \(\Delta^{13,18} \text{Coplen} \) for the experiments of Hansen et al. (2019) and for the environment in a cave is discussed and an explanation is given why most of calcite precipitated to stalagmites has values of 1000n\(^{18} \) less than that what is expected for equilibrium by the calibration of Coplen (2007) and Daeron et al. (2019).

These results show why it is difficult to find a general valid calibration line for most naturally precipitated calcites. Analogue arguments apply to the understanding of problems with the \(\Delta^47 \)-thermometer. An improved set up for future cave analogue experiments to measure \(\Delta^{13,18} \text{Daeron-Coplen} \) and \(\Delta^47 \) more reliably is suggested.
This work was performed in connection to grant DR 79/14-1 (DFG). I acknowledge support by the Deutsche Forschungsgemeinschaft (DFG). Discussions with Tobias Kluge are highly appreciated.

REFERENCES

Affek, H.P. & S. Zaarur 2014: Kinetic isotope effect in CO₂ degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments.- Geochimica et Cosmochimica Acta, 143, 319–330. DOI: 10.1016/j.gca.2014.08.005

Baker, A., Genty, D., Dreybrodt, W., Barnes, W. L., Mockler, N. J. & J. Grapes, 1998: Testing theoretically predicted stalagmite growth rate with recent annually laminated stalagmites: implications for past stalagmite deposition.- Geochimica et Cosmochimica Acta 62, 393–404. DOI: 10.1016/S0016-7037(97)00343-8

Beck, W.C., Grossman, E.L., & J.W. Morse 2005. Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40 °C. Geochim. Cosmochim. Acta 69, 3493–3503.

Breitenbach, S. F.M., Hartland, A., Brall, N. S., Sharp, W. D., Sanchez, F. G., Rolfe, J., Bernasconi, S. M. & D.A. Hodell, 2019: Closing in on the oxygen isotopic fractionation factor between calcite and water using natural carbonates.- Geophysical Research Abstracts, 21, EGU2019-6196.

Breitenbach, S. M. E., Mleneck-Vautravers, M. J., Grauel, A-L., Bernasconi, S. M., Müller, I. A., Rolfe, J., Gazquez, F., Greaves, M. & D.A. Hodell, 2018: Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures. Geochimica et Cosmochimica Acta, 236, 283–296. DOI:10.1016/j.gca.2018.03.010

Buhmann, D. & W. Dreybrodt 1985: The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: I. Open system.- Chemical Geology, 48, 189–211. DOI: 10.1016/0009-2541(85)90024-5.

Coplen, T. B., 2007: Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory.- Geochim. Cosmochim. Acta, 71, 3948–3957. DOI: 10.1016/j.gca.2007.05.028

Daeron, M., Drysdale, R.N., Peral, M., Huyghe, D., Blaßmartm D., Coplen, T.B., Lartaud, F. & G. Zanchetta, 2019: Most Earth-surface calcites precipitate out of isotopic equilibrium.- Nature Communications, 10, 429. DOI: 10.1038/s41467-019-08336-5

Dennis, K. J. & D.P. Schrag, 2010: Clumped isotope thermometry of carbonates as an indicator of diagenetic alteration.- Geochimica et Cosmochimica Acta, 74 , 4110–4122. DOI: 10.1016/j.gca.2010.04.005

DePaolo, D. J., 2011: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions.- Geochimica et Cosmochimica Acta 75, 1039–1056. DOI: 10.1016/j.gca.2010.11.020

Dietzel, M., Tang, J., Leis, A. & S.J. Kohler, 2009: Oxygen isotopic fractionation during inorganic calcite precipitation – Effects of temperature, precipitation rate and pH.- Chem. Geol., 268, 107–115. DOI: 10.1016/j.chemgeo.2009.07.015

Dreybrodt, W., 2017: Isotope exchange between DIC in a calcite depositing water layer and the CO₂ in the surrounding atmosphere: Resolving a recent controversy.- Acta carsonologica, 46/2–3, 339–345. DOI: 10.3986/ac.v46i2-3.6597

Dreybrodt, W., 2019: Physics and chemistry of CO₂ out-gassing from a solution precipitating calcite to a speleothem: Implication to δ13C, δ18O, and clumped 13C18O isotope composition in DIC and calcite.- Acta Carso- logica, 48/1, 59-68. DOI: /10.3986/ac.v48i1.7208

Dreybrodt, W. & D. Romanov, 2016: The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO₂ containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model.- Geochimica et Cosmochimica Acta, 195, 323-338. DOI: 10.1016/j.gca.2016.07.034.

Dreybrodt, W., Hansen M. & D. Scholz, 2016: Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO₂ of the cave atmosphere. - Geochimica et Cosmochimica Acta, 174, 247–262. DOI: 10.1016/j.gca.2015.11.012.

Fairchild, I. J. & A. Baker, 2012: Speleothem Science: From Process to Past Environments.- Wiley-Blackwell. pp. 450.
Feng, W., Casteel, R. C., Banner, J. L. & A. Heinze-Fry, 2014: Oxygen isotope variations in rainfall, drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new speleothem temperature proxy.- Geochimica et Cosmochimica Acta, 127, 233–250. DOI: 10.1016/j.gca.2013.11.039

Guo, W., 2008: Carbonate clumped isotope thermometry: application to carbonaceous chondrites & effects of kinetic isotope fractionation.- Ph. D. thesis, California Inst. Techn., pp. 261.

Guo, W., 2019: Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: Patterns, controls, and implications.- Geochimica et Cosmochimica Acta, in press. DOI: 10.1016/j.gca.2019.07.055

Guo, W. & C. Zhou, 2019: Patterns and Controls of Disequilibrium Isotope Effects in Speleothems: Insights from an Isotope-Enabled Diffusion-Reaction Model and Implications for Quantitative Thermometry.- Geochimica et Cosmochimica Acta, in press. DOI: 10.1016/j.gca.2019.07.028

Hansen, M., Scholz, D., Froeschmann, M.-L., Schöne, B.R. & C. Spötl, 2017: Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model.- Geochim. Cosmochim. Acta 211, 28–47. DOI: 10.1016/j.gca.2017.05.005

Hansen, M., Scholz D., Schöne B. R. & C. Spötl, 2019: Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3.- Chemical Geology 509, 20-44. DOI: 10.1016/j.chemgeo.2018.12.012

Johnston, V. E., Borsato, A., Spöt, C., Frisia, S. & R. Morandi, 2013: Stable isotopes in caves over 3: altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change.- Climate of the Past, 9, 99–118. DOI: 10.5194/cp-9-99-2013

Kato, H., Amekawa, S., Kano, A., Mori, T., Kuwahara, Y. & J. Quade, 2019: Seasonal temperature changes obtained from carbonate clumped isotopes of annually laminated tufas from Japan: Discrepancy between natural and synthetic calcites.- Geochimica et Cosmochimica Acta, 244, 548–564. DOI: 10.1016/j.gca.2018.10.016

Kelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C. & A.R. Lechler, 2017: Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggests single temperature relationship.- Geochimica et Cosmochimica Acta, 197, 104-131. DOI: 10.1016/j.gca.2016.10.010

Kim, S.-T. & J.R O’Neil, 1997: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.- Geochimica et Cosmochimica Acta, 61, 3461–3475. DOI: 10.1016/S0016-7037(97)00169-5

Kluge, T., Affek, H. P., Marx, T., Aeschbach-Hertig, W., Riechelmann, D. F. C., Scholz, D., Riechelmann, S., Immenhauser, A., Richter, D.K., Fohlenmeister, J., Wackerbarth, A., Mangini, A. & C. Spötl, 2013: Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany).- Climate of the Past, 9, 377–391. DOI: 10.5194/cp-9-377-2013

Levitt, N. P., Eiler, J. M., Romanek, C. S., Beard, B. L., Xu, H. & C.M. Johnson, 2018: Near equilibrium 13C-18O bonding during inorganic calcite precipitation under chemo-stat conditions.- Geochemistry, Geophysics, Geosystems, 19, 901–920.DOI: 10.1002/2017GC007089

Mook, W.G., 2000: Environmental Isotopes in the Hydrological Cycle. Vol 1: Principles and Applications Vol.1.-International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization.- [Online] Available from: http://www.hydrology.nl/images/docs/ihp/Mook_1.pdf [Accessed January 30th 2019].

Tang, J., Dietzel, M., Alvaro Fernandez, A., Aradhna, K., Tripati, A. & B. E.Rosenheim, 2014: Evaluation of kinetic effects on clumped isotope fractionation (Δ18O) during inorganic calcite precipitation.- Geochimica et Cosmochimica Acta 134, 120–136. DOI: 10.1016/j.gca.2014.03.005

Tremaine, D.M., Froelich, P.N. & Y. Wang, 2011: Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously monitored natural cave system.- Geochim. Cosmochim. Acta 75, 4929–4950.DOI:10.1016/j.gca.2011.06.005

Watkins, J. M., Hunt, J.D., Ryerson, F. J. & D.J. DePaolo, 2014: The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite.- Earth and Planetary Science Letters, 404, 332-343. DOI: 10.1016/j.epsl.2014.07.036

Weise, A. & T. Kluge, 2020: Isotope exchange rates in dissolved inorganic carbon between 40°C and 90°C.- Geochimica et Cosmochimica Acta, 268, 56-72,DOI: 10.1016/j.gca.2019.09.032

Yan, H., Sun, H. & Z. Liu, 2012: Equilibrium vs. kinetic fractionation of oxygen isotopes in two low-temperature travertine-depositing systems with differing hydrodynamic conditions at Baishuitai, Yunnan, SW China.- Geochimica et Cosmochimica Acta 95, 63–78. DOI: 10.1016/j.gca.2012.07.024

Zaarur, S., Affek, H. P. & M.T. Brandon, 2013: A revised calibration of the clumped isotope thermometer.- Earth and Planetary Science Letters, 382, 47–57. DOI: 10.1016/j.epsl.2013.07.026