Malaysian Traffic Police in Highly Populated Areas: Is it Safe Working Outdoors on a Daily Basis?

Putri Anis Syahira Mohamad Jamil, Nur Athirah Diyana Mohammad Yusof, Karmegam Karuppiah*, Irniza Rasdi, Juliana Jalaludin, Shamsul Bahri Mohd Tamrin, Vivien How, Sivasankar Sambasivam, Nurul Maizura Hashim

ABSTRACT

Previous studies have reported on the increment in the concentration levels of outdoor air pollution affecting the lung functions among traffic police as they work outdoors, on an average, for 12 hours daily. This paper provides an analysis of the outdoor air pollutant trends. It is novel in considering how it can be used to understand the impact on the 1,149 Malaysian Traffic Police in the states of Kuala Lumpur (KL) and Johor Bahru (JB). The study used 165,604 data from a nine-year database (2009–2017) of selected Malaysian air monitoring stations in KL and JB. The statistical analysis showed that the yearly trends of PM$_{10}$ were above the Malaysian Ambient Air Quality Guideline (MAAQG) standard while the SO$_2$, O$_3$, NO$_2$, and CO readings were below the standard. An increasing trend was noticed in the total number of vehicles in both states from 2009 to 2017. All the pollutants were positively correlated with each other, indicating that most of the pollutants are from similar sources. There is a strong positive correlation between the total number of vehicles and CO, NO$_2$, and O$_3$. This study proves the trends and consequences of outdoor air pollutants coupled with the rise in the number of vehicles that can affect respiratory health and well-being of the traffic police personnel. As a resolution to this, an efficient risk control such as air monitoring system for traffic police is necessary. The findings of this study will facilitate its usefulness to the authorities, management, policymakers, and researchers in the years ahead.

Keywords: Traffic-related air pollutant; Air quality; Hazardous air pollutants; Respiratory health; PM$_{10}$.

INTRODUCTION

The primary task of traffic police personnel in Malaysia, according to the Police Act of 1967, is to monitor and regulate the traffic flow of public roads and the enforcement of the Road Transport Act 1987 (Police Act 1967). Hence, they are required to work outdoors for long periods (8–16 hours) (ILO, 2012). The Traffic Police in the Point Duty Unit mainly works on regulating the traffic flow in congested junctions all around the city centres and outskirts across the country. As the traffic flow tends to be heavy regularly, the need for traffic police to regulate traffic flow is important (Muhammad et al., 2012). The details of the traffic police tasks in the Point Duty Unit and the flow of traffic are shown in Table 1. This study concentrates on traffic police in Kuala Lumpur (KL) and Johor Bahru (JB) as both states have one of the busiest city centres in Malaysia with a large population (Mohamad Jamil et al., 2018).

Due to the heavy traffic load, the traffic police personnel are often exposed to outdoor air pollutants which affect their respiratory health. The health impacts of these air pollutants are, namely, Chronic Obstructive Pulmonary Disorder (COPD), wheezing, lung cancer, and heart disease (Kelly and Fussel, 2015). A study by Azhari et al. (2018) stated that the exposure to trace gases in the atmosphere might lead to acute and chronic effects on respiratory and even cardiovascular hospitalisation.

Despite all the studies on the air quality and its impact, the previous works have not addressed the current situation experienced by the Malaysian Traffic Police. This study was intended to discuss the critical situation in the working area (KL and JB) of Malaysian Traffic Police in Point Duty Unit.

METHODS

The states of KL and Johor are chosen as the study areas since these states have among the busiest city centres in Malaysia. The city centres are KL and JB respectively as shown in Fig. 1 according to their territory. A wide range of air...
Table 1. Job description of traffic police in Point Duty Unit.

Shift	Time	Flow of Traffic	Job Description
Morning	6 am	Peak hour and heavy traffic	Assemble in Traffic Police station for clock-in and briefing on duty of the day
	7 am		To be ready at the designated junction
	7–10 am	Uninterrupted	Starts working to regulate traffic flow on the public roads
	10 am–2 pm		Report back at the station and attend a briefing on ‘Summons and traffic hindrance’ duty
	2 pm	Slow	Patrolling
Evening	2 pm	Slow	End of duty
	3–4 pm	Uninterrupted	Assemble in Traffic Police station for clock-in and briefing on duty of the day
	4–8 pm	Peak hour and heavy traffic	Patrolling
	8–10 pm		Starts working to regulate traffic flow on the public roads
	10 pm	Uninterrupted	Report back at the station and attend a briefing on ‘Summons and traffic hindrance’ duty

- Traffic volume is the highest at this point of time.
- Traffic flow is smooth.
- Traffic volume is increasing but still moving.
- Source by:
 Bavani, M. (2010, August 2). *Morning peak hour ban for heavy vehicles starts today*. The Star. https://www.thestar.com.my/news/community/2010/08/02/morning-peak-hour-ban-for-heavy-vehicles-starts-today
 TomTom Traffic Index (2020). *Kuala Lumpur traffic Malaysia*. https://www.tomtom.com/en_gb/traffic-index/kuala-lumpur-traffic/

quality data is also available for these two states. The primary body responsible for collecting, analysing, and presenting the air quality data is the Department of Environment (DOE), Malaysia. The air quality data in Malaysia is managed by a private entity (Alam Sekitar Sdn Bhd (ASMA)) who has been contracted by the DOE. The air quality data are monitored daily on a 24-hour basis from an air quality monitoring station. As postulated by the World Health Organization (WHO), the monitored air pollutants are particulate matter with a size of less than 10 microns in diameter (PM$_{10}$), sulfur dioxide (SO$_2$),
nitrogen dioxide \((\text{NO}_2)\), carbon monoxide \((\text{CO})\), and ground-level ozone \((\text{O}_3)\) (DOE, 1997). A nine-year database from 2009 to 2017 was sourced from the DOE and further analysed for trends of the outdoor air pollutants. The transportation data (number of vehicles by road) from 2009 to 2017 was obtained from the Malaysian Road Transport Department and validated by Department of Statistics Malaysia (2017). All the statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) version 22. For all the statistical analyses, the p-value of < 0.05 as the significance level was used. The research covered the data collected from 2009 to 2017. This large range was used to ensure that all possible research done in this field was covered.

RESULTS AND DISCUSSION

Air Quality Data in KL and Johor

Fig. 2 illustrates the trends of PM\(_{10}\) (24-hour average time) in KL and Johor from 2009 to 2017. The data was compared with the Malaysian Ambient Air Quality Guideline (MAAQG) standard of 2020, as shown in Table 2. Findings show that average PM\(_{10}\) concentration was above the MAAQG standard every year from 2009 to 2017. The release of PM\(_{10}\) is primarily by the industrial sector (Salahudin et al., 2013) and this explains the high concentration of PM\(_{10}\) in both states as both KL and Johor are central to many industrial and business operations (Azmi et al., 2010). Meanwhile, the highest average concentration of PM\(_{10}\) recorded was in 2015 for both states. This finding is believed to occur as a result of 2015 Haze episodes in Malaysia, deemed to be the worst after 1997 Haze due to prolonged haze lasting over two months (DOE, 2015).

Coincide, the average concentrations of \(\text{SO}_2\), \(\text{O}_3\), \(\text{NO}_2\) and CO recorded from 2009 to 2017 were below the revised MAAQG standard of 2020 (Figs. 3–6). As can be seen, the highest concentrations of \(\text{SO}_2\) were recorded in 2017 for both states. \(\text{SO}_2\) is usually the product of industrial activities and motor vehicles predominantly from diesel-engine trucks and buses (Pereira et al., 2007; Azmi et al., 2010). The peak could relate to an increase in the release of \(\text{SO}_2\) by existing or newly developed power stations due to increasing demands of energy supply in the country (Salahudin et al., 2013; Energy Commission Malaysia, 2019). Meanwhile, an observation of \(\text{O}_3\), \(\text{NO}_2\) and CO, their trends are almost similar annually and were below the MAAQG standard of 2020. These findings are also in similar with the previous work by Norela et al. (2004, 2010).

Table 2. New Malaysian Ambient Air Quality Guideline (MAAQG) standard (Source: DOE, 1997).

Pollutants	Averaging Time	Ambient Air Quality Standard (2020) µg m\(^{-3}\)
Particulate Matter with the size of less than 10 micron (PM\(_{10}\))	1 year	40
Sulfur Dioxide (SO\(_2\))	24 hours	100
Nitrogen Dioxide (NO\(_2\))	24 hours	80
Ground Level Ozone (O\(_3\))	1 year	100
*Carbon Monoxide (CO)	8 hours	30

*mg m\(^{-3}\).
Fig. 3. Average SO\textsubscript{2} concentrations (2009–2017).

Fig. 4. Average O\textsubscript{3} concentrations (2009–2017).

Fig. 5. Average NO\textsubscript{2} concentrations (2009–2017).
O$_3$ is a secondary gas made up of nitrogen oxides (NO$_x$) and volatile organic compound (VOC) by photochemical responses involving the sunlight and heat from its precursor pollutants (Anderson et al., 2010; Chelani, 2013). The combination of high temperature and pressure of fuel oxidises the nitrogen in the gas to generate NO$_2$ with enough oxygen (Anderson et al., 2010). Apart from that, industrial processes also produce NO$_2$ as a by-product (Ling et al., 2014). NO$_2$ is also emitted from open burning, domestic fuel sources, and long-range air pollutants from transportation sources (Rajab et al., 2011). CO is a colourless, odourless, and toxic air pollutant, which is produced by the incomplete combustion of carbon. The largest contributors of CO in the atmosphere are vehicular gas emissions (Transportation Research Board and National Research Council, 2002). However, these major air pollutants were also affected by the surface of meteorological conditions which are unaccounted for in this study. Nonetheless, the current work can ascertain the trends of air pollutants in both KL and Johor to understand the impact towards Malaysian Traffic Police in these areas.

Total Number of Vehicles on the Road

Due to the rapid industrialisation, it can be anticipated that the number of vehicles on the road to increase annually and indirectly play a major role in the gas emissions from traffic (Chen et al., 2019). This fact is supported by the latest data from the Road Transport Department of Malaysia from 2010 to 2014 (Department of Statistics Malaysia, 2015) which shows that the total number of vehicles in each state is led by KL (4.6 million in 2014) and Johor (2.3 million in 2014) with the largest number of vehicles on the road (Fig. 7). Specifically, the total number of vehicles in KL and Johor from 2009 to 2017 is shown in Fig. 8 (Road Transport Department, Malaysia, 2017). The increasing trend of the number of vehicles can be seen growing each year with the latest number in 2017 exceeding 6.4 million vehicles in KL and 3.6 million in Johor. This finding is in agreement with a similar finding reported by other researchers. Previous studies (Abdullah et al., 2012; Salahudin et al., 2013) showed that high levels of air pollutants are probably associated with motor vehicle emissions.

Correlation between All the Air Pollutants

Table 3 shows the correlation between all the air pollutants, where a significant positive correlation can be found in all the parameters with each other. In this present study, PM$_{10}$ has a moderate positive correlation with CO ($r = 0.347$, $p < 0.01$) and a low positive correlation with O$_3$ ($r = 0.220$, $p < 0.01$), NO$_2$ ($r = 0.245$, $p < 0.01$) and SO$_2$ ($r = 0.220$, $p < 0.01$). Additionally, CO is found to have a moderate positive correlation with SO$_2$ ($r = 0.522$, $p < 0.01$) and a low positive correlation with O$_3$ ($r = 0.217$, $p < 0.01$) and NO$_2$ ($r = 0.236$, $p < 0.01$), while O$_3$ has a moderate positive correlation with NO$_2$ ($r = 0.427$, $p < 0.01$) and a low positive correlation with SO$_2$ ($r = 0.257$, $p < 0.01$). NO$_2$ is found to be in a moderate positive correlation with SO$_2$ ($r = 0.533$, $p < 0.01$). These findings are in line with several previous studies (Mansouri et al., 2011; Rahman et al., 2015) which found all the parameters positively correlated with each other. The significant correlations revealed that the pollutants might have similar or overlapping origins (Kumar and Joseph, 2006; Lee et al., 2018). However, further work would be needed to assess this matter.

Correlation between the Number of Vehicles and All the Pollutants Concentrations

Table 4 shows the correlation between the number of vehicles and the average concentrations of all the pollutants. This study reports strong positive correlations of the total number of vehicles on the road with CO ($r = 0.876$, $p < 0.01$), O$_3$ ($r = 0.847$, $p < 0.01$), and NO$_2$ ($r = 0.868$, $p < 0.01$). As for SO$_2$ and PM$_{10}$, the correlations are found to be not significant. Certain factors can explain the non-correlation findings between SO$_2$ and PM$_{10}$ with the number of vehicles. This fact might due to initiation of EURO-2M fuel usage that reduces the amount of SO$_2$ released into the environment since 2009 (Abdullah et al., 2012; Mohamed Binyehmed et al., 2016). Meanwhile, PM$_{10}$ level of concentration in Malaysia is conformed to the burning of biomass in neighbouring countries (Sentian et al., 2018) and is easily manipulated by other factors, along with weather and monsoon directions.
Table 3. Correlation between all the air pollutants.

Pollutants	PM$_{10}$	CO	O$_3$	NO$_2$	SO$_2$
PM$_{10}$	1				
CO	0.347a	1	0.217a	1	0.533a
O$_3$	0.220a	0.217a	1	0.533a	1
NO$_2$	0.245a	0.236a	0.427a	1	
SO$_2$	0.220a	0.522a	0.257a	0.533a	1

a significant at p < 0.01.

Table 4. Correlation between the air pollutants and number of vehicles.

Variables	Total no of vehicles	PM$_{10}$	CO	O$_3$	NO$_2$	SO$_2$
Total no of vehicles	1	0.94	0.876c	0.847c	0.868c	0.309

a significant at p < 0.01.

(Verma and Desa, 2008; Barmpadimos et al., 2011; Mohamad et al., 2015; Rahman et al., 2015). As a whole, however, more work is required to examine the key sources of each type of pollutant in detail. Nevertheless, the findings from present study coincide with a previous study (Zakaria et al., 2019) which suggested...
that the concentration of the pollutants rises with the number of traffic count on the road and originates from the source where the sampling of pollutants was made. Another study in Malaysia (Tajudin et al., 2019) also reported a positive correlation between the number of vehicles and air pollutants. As the air pollutants are mostly emitted from motor vehicles (Abdullah et al., 2012), this proves that the number of vehicles on the road affects the concentration of pollutants.

From the present study, the air pollutants namely, CO, O₃ and NOₓ, increases with the total number of vehicles on the road. Hence, by working outdoor for long hours, the traffic police personnel are directly exposed to the harmful air pollutants.

Exposure Level among Traffic Police Personnel

The traffic police personnel enforce the transportation legislation, policies, and agreements for commercial and non-commercial vehicles using Malaysian roads. Exposure to dust and outdoor pollutants without any preventive measure has possibly caused the traffic police personnel to be highly susceptible to a decrease in pulmonary functions over time (Mohamad Jamil et al., 2018). When travelling or standing along the roads with heavy traffic, significantly during the rush hours, the traffic police personnel are exposed directly to traffic-related air pollution, which could eventually lead to health complications.

A previous study by the same author among the traffic police in Kuala Lumpur were found to be exposed to a high PM10 concentration at a personal level which is from 12.4 µg m⁻³ to 55.3 µg m⁻³ in 8 working hours with the mean level at 28.7 ± 11.1 µg m⁻³ (Mohamad Jamil, 2016). Compared to the Malaysian Ambient Air Quality Guideline (MAAQG), the mean of PM2.5 reported does not exceed the 24-hour value of 35 µg m⁻³ (DOE, 2015). Muhammad et al. (2012) recorded a relatively lower mean value of PM2.5 at 22.33 ± 8.54 µg m⁻³ in a study among traffic police in Kuala Lumpur back in 2012. A current study by Fandi et al. (2020) reported that extended exposure to benzene and ethylbenzene increases the risk of adverse health effects among traffic police.

As shown in Table 5, there are a few studies that have reported on the exposure to air pollutants among Malaysian traffic police in their working environment. From this, it is clear that traffic police are working in an unfavourable situation for their health. However, these police officers have no other options as they need to fulfil their duties in order to preserves the public safety. Hence, all the key stakeholders must take immediate action for this matter.

CONCLUSIONS

This work was devoted to ascertaining the air quality in the working area (KL and Johor) among Malaysian Traffic Police at their Point Duty and recognising the impacts it carries. This work also determines the total number of vehicles on the road and their relationship with air pollutants. This study revealed that the average concentrations of PM10 were above the MAAQG revised standard of 2020, whereas SO₂, NOₓ, O₃ and CO recorded below the standard. The increasing trends in the number of vehicles can be seen every year from 2009 to 2017 in both KL and Johor. All the pollutants are found to be positively correlated with each other. The average concentrations of CO, NOₓ, and O₃ increased with the total number of vehicles.

As a consequence, the outdoor air quality is decreased and directly affects outdoor workers, particularly traffic police at their point of duty. Based on the results from this study, it would be timely and prudent for the bodies and management of the Royal Malaysian Police to begin strategising and formulating an effective plan to monitor the exposure of their officers to the harmful pollutants in the outdoor air. For future work, an efficient individual monitoring system for

Previous studies	Respondents	Pollutants	Outcome
Muhammad et al. (2012)	Traffic police (KL)	PM2.5	Exposure to elevated concentration level to traffic related air pollutant was the risk factors in the development of respiratory diseases.
	General police		
Muhammad et al. (2014)	Traffic police (Putrajaya)	PM10	The traffic policemen are at risk of respiratory diseases, as reflected by an increase in the reported
	General police		
Sulaiman and Anual (2015)	Traffic police (KL)	PM10	There was increased DNA damage in lymphocytes of traffic police officers compared to indoor workers.
	General police		
Mohamad Jamil (2016)	Traffic police (KL and Johor)	PM2.5	The main factors of abnormality in lung functions are exposure to PM2.5 and duration of services.
Fandi et al. (2018)	Traffic police (KL)	PM10	The respiratory symptoms were significantly higher in the exposed group which they were 3.9, 4.1, and 3.5 times more likely to develop cough, wheezing, and breathlessness respectively.
Fandi et al. (2020)	Traffic police (Klang Valley)	Benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX)	The estimated cancer risks suggests that the prolonged benzene and ethylbenzene exposure experienced by traffic policemen placed them at higher risk to adverse health effects.
exposure to air pollution may be a better resolution in order to control and manage the adverse air exposure during work. The data from this present study will facilitate its usefulness to the related authorities, management, policymakers, and researchers in the years ahead.

ACKNOWLEDGEMENTS

The authors are thankful to the Royal Malaysian Police (RMP) for their support and guidance in preparing this article. Appreciation is also due to the Department of Environment, Malaysia, for the provision of the air quality database. This study is supported by the Putra Graduate Initiative of Universiti Putra Malaysia (IPS UPM), Vote No: 9640200, the Ministry of Education Malaysia (MOE), A.F. (2018). Road... 2015. Ministry of Environment Malaysia (DOE)...

REFERENCES

Abdullah, A.M., Samah, A.A.M., and Yee Jun, T. (2012). An overview of the air pollution trend in Klang Valley, Malaysia. Open Environ. Sci. 6: 13–19. https://doi.org/10.2174/1876325101206010013

Anderson, B., Bartlett, K., Froliking, S., Hayhoe, K., Jenkins, J. and Salas, W. (2010). Methane and nitrous oxide emissions from natural sources, Office of Atmospheric Programs, U.S. EPA, EPA 430-R-10-001, Washington DC.

Azhari, A., Latif, M.T. and Mohamed, A.F. (2018). Road traffic as an air pollutant contributor within an industrial park environment. Atmos. Pollut. Res. 9: 680–687. https://doi.org/10.1016/j.apr.2018.01.007

Azmi, S.Z., Latif, M.T., Ismail, A.S., Juneng, L. and Jemain, A.A. (2010). Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Qual. Atmos. Health 3: 53–64. https://doi.org/10.1007/s11869-009-0051-1

Barmpadimos, I., Hueglin, C., Keller, J., Henne, S. and Prévôt, A.S.H. (2011). Influence of meteorology on PM_{2.5} trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys. 11: 1813–1835. https://doi.org/10.5194/acp-11-1813-2011

Chelani, A.B. (2013). Study of extreme CO, NO_{2} and O_{3} concentrations at a traffic site in Delhi: Statistical persistence analysis and source identification. Aerosol Air Qual. Res. 13: 377–384. https://doi.org/10.4209/aaqr.2013.01.0063

Chen, S., Cui, K., Yu, T.Y., Chao, H.R., Hsu, Y.C., Lu, I.C., Arcega, R.D., Tsai, M.H., Lin, S.L., Chao, W.C., Chen, C. and Yu, K.L.J. (2019). A big data analysis of PM_{2.5} and PM_{10} from low-cost air quality sensors near traffic areas. Aerosol Air Qual. Res. 19: 1721–1733. https://doi.org/10.4209/aaqr.2019.06.0328

Department of Environment Malaysia (DOE) (1997). A guide to air pollutant in Malaysia, (API). Ministry of Science, Technology and Environment, Kuala Lumpur.

Department of Statistics Malaysia (2015). Malaysia Economic Statistics Time Series 2015. Ministry of Economic Affairs, Department of Statistics, Malaysia.

Department of Statistics Malaysia (2017). Compendium of Environment Statistics, Malaysia, 2017. Ministry of Economic Affairs, Department of Statistics, Malaysia.

Energy Commission Malaysia (2019). Summary - Primary Energy Supply. https://meih.st.gov.my/statistics?p_auth=4x5XX3Lu&p_p_id=Eng_Statistic_WAR_STOASPubl icPortlet&p_p_lifecycle=1&p_p_state=maximized&p_p_mode=view&Eng_Statistic_WAR_STOASPublicPortlet_execution=1s1&Eng_Statistic_WAR_STOASPublicPortlet_eventId=ViewStatistic2&categoryld=8&flowId=19&showTotal=false

Fandi, N.F.M., Mansor, W.A.W. and Jalaludin, J. (2018). Work exposure to traffic air pollutants (PM_{10}, benzene, toluene, and xylene) and respiratory health implications among urban traffic policemen in Klang Valley, Malaysia. Malaysian J. Med. Health Sci. 14: 63–70.

Fandi, N.F.M., Jalaludin, J., Latif, M.T., Abd Hamid, H.H. and Awang, M.F. (2020). BTEX Exposure Assessment and Inhalation Health Risks to Traffic Policemen in the Klang Valley Region, Malaysia. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.2019.11.0574

International Labour Organization (ILO) (2012). International hazard datasheets on occupation: Police/Law enforcement officer. https://www.ilo.org/safework/cis/WCMS_192426/lang--en/index.htm

Kelly, F.J. and Fussell, J.C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochim. Health 37: 631–649. https://doi.org/10.1007/s10653-015-9720-1

Kumar, R. and Joseph, A.E. (2006). Air pollution concentrations of PM_{2.5}, PM_{10} and NO_{2} at ambient and kerbside and their correlation in Metro City – Mumbai. Environ. Monit. Assess. 119: 191–199. https://doi.org/10.1007/s10661-005-9022-7

Lee, P., Saylor, R. and McQueen, J. (2018). Air quality monitoring and forecasting. Atmosphere 9: 89. https://doi.org/10.3390/atmos9030089

Ling, O.H.L., Musthafa, S.N.A.M. and Mohamed, N. (2014). Air quality and land use in urban region of Petaling Jaya, Shah Alam and Klang, Malaysia. EnvironmentAsia 7: 134–144. https://doi.org/10.14456/ea.2014.17

Mansouri, B., Hoshyari, E. and Mansouri, A. (2011). Study on ambient concentrations of air quality parameters (O_{3}, SO_{2}, CO and PM_{10}) in different months in Shiraz city. Iran. Int. J. Environ. Sci. 1: 1440–1447.

Mohamad Jamil, P.A.S. (2016). Risk factors of respiratory effects from works exposure and PM_{2.5} Among Traffic Policemen. Occupational Safety and Health, Honours [Master, thesis]. Universiti Putra Malaysia Serdang (Selangor).

Mohamad Jamil, P.A.S., Karupppiah, K., Rasidi, I., Mohd Tamrin, S.B., Sambasivam, S., Mohammad Yusof, N.A.D. and Azmi, I. (2018). Respiratory symptoms prevalence among traffic policemen in Malaysia. Malaysian J. Med. Health Sci. 14: 27–31.

Mohamad, N.D., Ash’aari, Z.H. and Othman, M. (2015). Preliminary assessment of air pollutant sources identification at selected monitoring stations in Klang...
Valley, Malaysia. *Procedia Environ. Sci.* 30: 121–126. https://doi.org/10.1016/j.proenv.2015.10.021

Mohamed Binyehmed, F., Abdullah, A.M., Zainal, Z., Zawawi, R.M. and Elawad, R.E.E. (2016). Trend and status of SO2 pollution as a corrosive agent at four different monitoring stations in the Klang Valley, Malaysia. *Int. J. Adv. Sci. Tech. Res.* 3: 302–316. http://psasir.upm.edu.my/id/eprint/53163/

Muhammad, A.S., Jalaluddin, J. and Yusof, N.A. (2012). Exposure to PM2.5 and respiratory health among traffic policemen in Kuala Lumpur. *J. Occup. Saf. Health* 9: 55–64.

Muhammad, N.S., Jalaludin, J. and Sundrasegaran, S. (2014). Exposures to respirable Dust (PM10) and respiratory health among traffic policemen in Selangor. *Adv. Environ. Biol.* 8: 199–206. http://www.aensiweb.com/old/aeb/Special%208%20ICEOH%202014/199-206.pdf

Norela, S., Rozali, M.O., Maimon, A., Goh, C.N. and Jennifer, S.M. (2004). Air Quality and Noise Levels of the Balakong Industrial Area of Selangor, Malaysia. Proceedings of the Second Bangi World Conference on Environmental Management, pp. 13–14.

Norela, S., Maimon, A., Ismail, B.S. and Al-Bateyneh, S. (2010). Concentration of air pollutants during working and non-working days in the Kuala Lumpur City Centre, Malaysia. *World Appl. Sci. J.* 8: 1013–1021. https://www.idosi.org/wasj/wasj8(8)1013.pdf

Pereira, M.C., Santos, R.C. and Alvim-Ferraz, M.C.M. (2007). Air quality improvements using European environment policies: A case study of SO2 in a coastal region in Portugal. *J. Toxicol. Environ. Health Part A* 70: 347–351. https://doi.org/10.1080/15287390600884990

Police Act 1967 (Act 344), Parliament Malaysia.

Rahman, S.R.A., Ismail, S.N.S., Raml, M.F., Latif, M.T., Abidin, E.Z. and Praveena, S.M. (2015). The assessment of ambient air pollution trend in Klang Valley, Malaysia. *World Environ.* 5: 1–11. https://doi.org/10.5923/j.env.20150501.01

Rajab, J.M., Tan, K.C., Lim, H.S. and MatJafri, M.Z. (2011). Investigation on the carbon monoxide pollution over peninsular Malaysia caused by Indonesia forest fires from AIRS daily measurement. In *Advanced air pollution, Nejadkooorki, F. (Ed.), IntechOpen*, pp. 115–136. https://doi.org/10.5772/18785

Road Transport Department, Malaysia (2017). Statistik Pengangkutan Malaysia bagi Tahun 2009-2017-MOT. http://www.statistics.gov.my/index.php?option=

Salahudin, S.N., Abdullah, M.M. and Newaz, N.A. (2013). Emissions: Sources, policies and development in Malaysia. *Int. J. Educ. Res.* 1: 1–12. https://ijern.com/journal/July-2013/31.pdf

Sentian, J., Jemain, M.A., Gabda, D., Franky, H. and Wui, J.C.H. (2018). Long-term trends and potential associated sources of particulate matter (PM2.5) pollution in Malaysia. *WIT Trans. Ecol. Environ.* 230: 607–618. https://doi.org/10.2495/AIR180571

Sulaiman, N. and Anual, Z. (2015). DNA changes in lymphocytes among Malaysian traffic police officers exposed to air pollutants. *J. Occup. Saf. Health* 11: 77–82.

Tajudin, M.A.B.A., Khan, M.F., Mahiyuddin, W.R.W., Hod, R., Latif, M.T., Hamid, A.H. and Sahani, M. (2019). Risk of concentrations of major air pollutants on the prevalence of cardiovascular and respiratory diseases in urbanized area of Kuala Lumpur, Malaysia. *Ecotoxicol. Environ. Saf.* 171: 290–300. https://doi.org/10.1016/j.ecoenv.2018.12.057

Transportation Research Board and National Research Council (2002). *The ongoing challenge of managing carbon monoxide pollution in Fairbanks, Alaska: Interim Report*. The National Academies Press, Washington, DC. https://doi.org/10.17226/10378

Verma, S.S. and Desai, B. (2008). Effect of meteorological conditions on air pollution of Surat city. *J. Int. Environ. Appl. Sci.* 3: 358–367.

Zakaria, M.F., Ezani, E., Hassan, N., Raml, N.A. and Wahab, M.I.A. (2019). Traffic-related air pollution (TRAP), air quality perception and respiratory health symptoms of active commuters in a university outdoor environment. *IOP Conf. Ser.: Earth Environ. Sci.* 228: 012017. https://doi.org/10.1088/1755-1315/228/1/012017

Received for review, February 26, 2020

Revised, June 30, 2020

Accepted, July 21, 2020