Optimal control for the use of botanical fungicides in the spread of plant diseases

R Amelia, M Mardiyah, J Nahar, N Anggriani and A K Supriatna
Universitas Padjadjaran, Bandung, Indonesia

E-mail: rika17003@mail.unpad.ac.id

Abstract. One of the main obstacles in crop cultivation is the occurrence of fungal infections. Fungal spores can spread due to direct contact between susceptible hosts and infected hosts, which can be controlled using botanical fungicides. We constructed a mathematical model of the growth of logistics on the spread of plant diseases. From this model, we show the value of the Basic Reproduction Number (\mathcal{R}_0) of plant diseases transmission. The value of \mathcal{R}_0 is obtained by finding the largest eigenvalue of the next generation matrix. The results obtained show that when \mathcal{R}_0 is greater than one ($\mathcal{R}_0 > 1$), the endemic equilibrium point will be stable. However, if \mathcal{R}_0 is less than one ($\mathcal{R}_0 < 1$), the endemic equilibrium point is unstable. In addition, the results of this discussion indicate that using botanical fungicides can reduce the infected host population. We provide numerical simulations to describe the results of the analysis obtained.

1. Introduction

Plant cultivation in the tropics can make easier for farmers to determine when the planting season is good, with the hope of satisfying production. Unfortunately, current seasonal changes are not regular, resulting in very low productivity. Low crop productivity is also thought to be caused by various factors, including poor seed quality, decreased soil fertility, the application of unfavourable planting, and problems with plant pests and diseases [1].

Disease problems in plants can be caused by pathogens, such as fungi, oomycetes, bacteria, viruses, viroid, and pathogenic nematodes [2]. Plants that are infected with fungi, can last long time, and include diseases that are transmitted through the soil. In addition, fungi can survive in the roots of decaying dead plants, and spores can spread due to direct contact between vulnerable hosts and infected hosts [3]. Many prevention and control methods have been used by several researchers, such as chemical resistance and control of plants [4]. Usually farmers control plant diseases caused by fungi using fungicides [5]. However, the use of excessive fungicides in addition to requiring large costs can also inhibit plant growth. To see the effectiveness of the use of fungicides, of course other knowledge is needed to get a more accurate analysis, one of which uses mathematical modelling.

A classic model for micro parasitic interactions host in mammals has been developed by Kermack and McKendrick [6]. Meanwhile, Van der Plank carried out the development of epidemic plant diseases [7]. In addition, the use of mathematical models for plant epidemics has been developed by many researchers to determine the dynamics of spread of plant diseases including the effect of giving control and prevention strategies on dynamics of the spread of plant diseases.

Theory and analysis of plant pathology can be found in Zang et al. [8], whereas some material to understand plant disease epidemics can be studied in Laurence V Madden et al. [9]. Further the theory
of vector-transmitted plant diseases has been discussed [10-16]. While, Ruiqing [17] combines prey-predator mathematical models with vector-host theory. Then, vector epidemic host models with non-linear and linear events have been created and analyzed [18]. Wang et al. [19] discusses the global dynamics of vector-borne disease models. Furthermore, epidemiological models of plant diseases involving protectant [20] and curative fungicides [21]. Anggriani et al [16] discuss the effects of insecticides on the Tungro rice vector. Chan M S and Jeger M have developed the dynamics of mathematical model in plant diseases with and without rougging mechanism [22], it shows that the application of the rougging mechanism can prevent transmission of plant diseases. Then the simplification of the SIRX model has been done by reducing a number of free parameters to help for interpret biologically [23]. Meanwhile, Anggriani et al. [24] discussed optimal control of mathematical model of plant diseases by applying fungicides, to reduce infected plants.

In this paper we develop an optimal control model that has been carried out by Anggriani et al. [24], with the growth function that we use is the logistics function. The use of logistic growth functions is considered to be the most illustrative model of the growth of organism dynamics in limited habitats compared to monomolecular, because this function shows that growth rates in populations introduced to the first environment are proportional to population size at time t and material resources left in habitat still available for exploitation [25].

2. Dynamical Model
The model is constructed from the same assumptions as [24], but in this model the growth of plants follows the logistic function, where \(f(S) = S(1 - S) \). From the schematic diagram in Figure 1 [24], it is obtained:

\[
\begin{align*}
\frac{dS}{dt} &= S(1 - S) - (\beta_1 X + \beta_2 I)S - nS + \epsilon P = 0 \\
\frac{dR}{dt} &= (\beta_1 X + \beta_2 I)S - \mu l = 0 \\
\frac{dI}{dt} &= l - hR = 0 \\
\frac{dX}{dt} &= l - cX = 0 \\
\frac{dP}{dt} &= nS - \epsilon P - hp = 0
\end{align*}
\]

(2.1)

3. Mathematical Analysis

3.1. Equilibrium point
System (2.1) has two equilibrium points, the first equilibrium point is a Disease-Free Equilibrium Point (DFEP) where compartments \(I, R, \) and \(X \) are zero, given by:

\[
E_{L0} = (S_0, I_0, R_0, X_0, P_0) = \left(\frac{e + h - nh}{e + h}, 0, 0, 0, \frac{\pi(e + h - nh)}{(e + h)^2} \right).
\]

(3.1)

The second equilibrium point is the Endemic Equilibrium Point (EEP), given by:

\[
E_{L1} = (S_0, I_0, R_0, X_0, P_0) = \left(\frac{\mu c}{\beta_p + \beta_c (e + h)}, \frac{c(e + h - nh)(\beta_1 + \beta_2) - c\mu(e + h)}{(\beta_1 + \beta_2)(e + h)}, \frac{c(e + h)(\beta_1 + \beta_2) - c\mu(e + h)}{(\beta_1 + \beta_2)(e + h)}, \frac{c(e + h)(\beta_1 + \beta_2) - c\mu(e + h)}{(\beta_1 + \beta_2)(e + h)}, \frac{\mu c n}{(e + h)(\beta_1 + \beta_2)} \right)
\]

(3.2)
3.2. Basic Reproduction Number (BRN)

We use the next generation method [26-28] in determining the BRN (\mathcal{R}_0) for the system (1), where F is the rate of new infection and V is the rate of transfer in and out of the compartment of the infected plant, this is given by:

$$ F = \left[\beta_s \left(\frac{e^{h-nh}}{e+h} \right) \beta_p \left(\frac{e^{h-nh}}{e+h} \right) \right] \text{and } V = \begin{bmatrix} \mu & 0 \\ 1 & \epsilon \end{bmatrix}. $$

\mathcal{R}_0 is obtained from spectral radius ζ (dominant eigen value) of the FV^{-1} matrix denoted by ζ, so that it is obtained:

$$ \mathcal{R}_0 = \zeta(FV^{-1}) = (\beta_sc + \beta_p) \left(\frac{e^{h-nh}}{c\mu(e+h)} \right) \quad (3.3) $$

3.3. Local Stability Analysis

Theorem 1 The DFEP of the system (2.1) is locally asymptotically stable if $\mathcal{R}_0 < 1$.

Proof:

Based on [27] and from (3.1), The Jacobian matrix for DFEP is:

$$ JE_{L0} = \begin{bmatrix} 1 - \frac{2(e + (1 - \pi)h)}{h + e} - \pi & -\frac{\beta_s(e + (1 - \pi)h)}{h + e} & 0 & -\frac{\beta_p(e + (1 - \pi)h)}{h + e} & \epsilon \\ 0 & \frac{\beta_s(e + (1 - \pi)h)}{h + e} & -\mu & 0 & 0 \\ 0 & 1 & -h & 0 & 0 \\ 0 & 1 & 0 & -c & 0 \\ \pi & 0 & 0 & 0 & -(e + h) \end{bmatrix} (3.4) $$

The characteristic equation of JE_{L0} is $P(\lambda) = \frac{1}{(h+e)}(\lambda + h)P_1(\lambda)P_2(\lambda)$. The characteristics equation $P_1(\lambda)$ and $P_2(\lambda)$ have negative roots if the coefficient of λ^2, λ^3, λ^0 is positive. One coefficient of λ^2 namely a_0 at $P_1(\lambda)$ is clearly positive, while $a_1 > 0$ if $\mathcal{R}_0 < 1$ and $a_2 > 0$ if $\mathcal{R}_0 < 1$. Whereas for $P_2(\lambda)$, $a_0 > 0$, $a_1 > 0$ with the terms $\epsilon > h$ and $a_2 > 0$ with the terms $e + h > \pi h$. This is completed this proof.

Theorem 2 The EEP of the system (2.1) is locally asymptotically stable if $\mathcal{R}_0 > 1$.

Proof:

The points remain endemic if written in \mathcal{R}_0 are:

$$ S = \frac{\mu c}{\beta_s + \beta_s} ; I = \frac{c^2\mu(\mathcal{R}_0 - 1)}{(\beta_p + \beta_c)^2} ; R = \frac{c^2\mu(\mathcal{R}_0 - 1)}{(\beta_p + \beta_c)^2} ; X = \frac{c\mu(\mathcal{R}_0 - 1)}{(\beta_p + \beta_c)^2} ; \text{and } P = \frac{\mu c}{(e + h)(\beta_p + \beta_c)}. $$

This point can be simplified as follows

$$ p = \frac{mc}{\beta_p + \beta_c} , q = \frac{c^2\mu}{h(\beta_p + \beta_c)^2} , s = \frac{c^2\mu}{h(\beta_p + \beta_c)^2} , r = \frac{c\mu}{(\beta_p + \beta_c)^2} , l = \frac{\mu c}{(e + h)(\beta_p + \beta_c)}. $$

The characteristic equation obtained from the Jacobian matrix for endemic equilibrium points is:

$$ P(\lambda) = a_0\lambda^5 + a_1\lambda^4 + a_2\lambda^3 + a_3\lambda^2 + a_4\lambda + a_5 \quad (3.5) $$

The eigen values of $P(\lambda)$ are negative, if $a_0, a_1, a_2, a_3, a_4 > 0$ and $b_1, c_1, d_1, e_1 > 0$, so E_{L1} is locally asymptotically stable when $\mathcal{R}_0 < 1$, with the provision of $2n_{11}n_7 - n_{12}n_{15} > 0, n_{13}n_5 - n_{11}n_8 > 0, a_2b_1 - a_1b_2 > 0, c_1b_2 - b_1c_2 > 0, 4n_{10}n_7 - n_{12}n_3 - 2n_{12}n_4 > 0, 2n_{13}n_4 - n_9n_8 - 2n_{10}n_8 - n_{11}n_6 - 2n_{11}n_7 - n_{12}n_{15} > 0, n_{13}n_5 - n_{11}n_8 > 0$.

4. Optimal control problem

Optimal control in this model has the same goal as optimal control in the monomolecular model, namely minimizing the number of infected populations by looking at the minimum cost [24]. The objective function is given based on Pontryagin's Maximum Principle as follows [29]:

$$ J = \int_{t_0}^{t_f} [B_0I(t) + B_1u^2(t)] \, dt \quad (4.1) $$

The variable $u(t)$ is the control variable for application botanical fungicide and B_0 is the weight of infected population and B_1 is the weighting equal to the cost of given botanical fungicide. Using the method analyzed by [24], it is obtained:

$$\frac{\partial H}{\partial u} = 0 \Rightarrow u = \frac{(\lambda_1 - \lambda_5)\pi S}{2B_1}.$$ \hspace{1cm} (4.2)

Since $0 \leq u \leq 1$, then optimal control is obtained: $u = \min \left\{ \max \left(0, \frac{(\lambda_1 - \lambda_5)\pi S}{2B_1} \right), 1 \right\}$.

5. Numerical Simulation
We provide numerical examples with control and without control to illustrate the dynamics of the spread of plant diseases in each compartment. We use parameter values and initial conditions for each of compartment as in Table 1 [24], with the initial conditions for each compartment $S(0) = 1, I(0) = 0.8, R(0) = 0, X(0) = 0.85$, and $P(0) = 0$.

![Figure 1. Dynamics of plant populations when $R_0 < 1$.](image)

![Figure 2. Dynamics of plant populations when $R_0 > 1$.](image)

![Figure 3. Dynamics of susceptible plant population with botanical fungicides and without botanical fungicides.](image)

![Figure 4. Dynamics of infected plant population with botanical fungicides and without botanical fungicides.](image)

![Figure 5. Dynamics of removed plant population with botanical fungicides and without botanical fungicides.](image)

![Figure 6. Dynamics of infected plat population with botanical fungicides and without botanical fungicides.](image)
Figure 7. Dynamical of protected plant population with botanical fungicides and without botanical fungicides.

Figure 8. Control of botanical fungicides.

From Figure 1 and Figure 2, it can be seen that the primary and secondary infection rates will decrease on day 5 for $R_0 < 1$, and will oscillate from day 5 to month 3 for $R_0 > 1$. Thus, the level of plants removed will increase when $R_0 > 1$ and the level of protected plants increases when $R_0 < 1$. Whereas for Figure 3 until Figure 7 it can be seen that the infected population decreases when given botanical fungicide control when compared to those without control. While for plants that are susceptible to decline because they move to plant populations that are removed and protected. In Figure 8, it can be seen that the given botanical fungicide from each period has decreased and from the fourth period it appears that plants do not need to be given back fungicides.

6. Conclusion
In this paper, we have discussed the optimal control model for the use of botanical fungicides in the spread of plant diseases, where the growth of these plants is a logistic growth function. From the numerical simulation results show that there is an effect of the application of botanical fungicides to the spread of diseases in plants. It can be seen that the dynamics of infected hosts decreases after being given botanical fungicides when compared to those without botanical fungicides, then the dynamics of the removed plant population and the protection plant population with fungicides will increase after being given botanical fungicides as a control treatment.

These results indicate that there is a difference between the growth function that follows the monomolecular function and logistics, including: population dynamics when $R_0 > 1$ for logistic growth experiences temporary oscillation for monomolecular growth does not experience oscillation. In contrast to growth that follows a monomolecular function, growth following a logistical function for plant populations is susceptible to decline because populations move to plant populations that are removed and protected, so the possibility of plants experiencing infection is lower than monomolecular growth.

7. Acknowledgments
The work was funded by KEMENRISTEK DIKTI 2019, with contract number 2936/UN6.D/LT/2019 through Penelitian Dasar Unggulan Perguruan Tinggi.

8. References

[1] Soelaeman V and Ernawati A 2013 Pertumbuhan dan Perkembangan Cabai Keriting (Capsium Annuum L.) secara In Vitro pada Beberapa Konsentrasi BAP dan IAA Bul. Agrohorti, pp. 62-66.

[2] Agrios G N 2005 Plant Pathology San Diego California: Academic Pres.

[3] Miller J et al 2014 Late Blight Management Action Plant for Potatoes University of Idaho: http:\www.cals.uidaho.edu/edcomm/pdf/CIS/CISI123.pdf.
[4] Rida S Z et al 2016 Mathematical Model of Vector-Borne Plant Disease with Memory on the Host and the Vector *Progress in Fractional Differentiation and Applications* pp. 227-285.

[5] Araz M 2014 *Hama dan Penyakit pada Tanaman Cabai serta Pengendaliannya* Jambi: Balai Pengkajian Teknologi Pertanian.

[6] Kermack W O and Mckendrick A G A 2017 *Historical Introduction to Mathematical Modeling of Infectious Diseases* San Diego: Mica Haley.

[7] Van der Plank J E 1963 *Epidemics and control* New York USA: Academic Press.

[8] Zang X S Holt J and Colvin J 2000 Mathematical Models of Host Plant Infection by Helper-Dependent Virus Complexes: Why are Helper Viruses Always Avirulent? *Analytical and Theoretical Plant Pathology*, vol. 90, no. 1, pp. 85-93.

[9] Laurence V Madden et al 2007 *The Study of Plant Disease Epidemics* St. Paul, Minnesota U.S.A.: APS Press.

[10] Cai L and Xuezhi 2010 *Analysis of a Simple Vector-Host Epidemic Model with Direct Transmission* Hindawi Corporation doi: 10.1155/2010/679613.

[11] Muhammad O and Takasar H 2014 *Analysis of Vector-Host MOdel with Latent Stage Having Partial Immunity* Applied Mathematical Sciences vol. 8 pp 1569-1584.

[12] Sneha P 2015 Modelling and Analysis of a Vector-Host Epidemic Model With Saturated Incidence Rate Under Treatment *International Journal of Applied Mathematics & Statistical Science (IJAMSS)* vol 4 (6) pp 1-16.

[13] Gourley S A Liu R and Wu Ju 2007 Eradicating Vector-borne Disease via age-structured curling.* J. Math Biol*, vol. 54, pp. 309-335.

[14] Holt et al 1997 An epidemiological model incorporating vector population adynamic applied to African cassava mosaic virus disease *J. Appl. Ecol*, vol. (34) 793806.

[15] Muryawi A L M Onyango T and Owour B 2017 Mathematical Analysis of Plant Disease Dispersion Model that Incorporates wind Strength and Insect Vector at Equilibrium *British Journal of Mathematics and Computer Science*, vol. 22, no. 5, pp. 1-17.

[16] Anggriani N Yusuf M and Supriatna A K 2017 The effect of insecticide on the vector of rice Tungro disease: Insight from a mathematical model *Information: an International Interdisciplinary Journal* 10 (9A).

[17] Ruicing S Haiyan Z and Sanyi T 2014 Global Dynamic Analysis of a Vector-borne Plant Disease Model *Advances in Difference Equations*, pp. 1-16.

[18] Seema K and Sujatha J Stability Analysis of a Vector-Borne Disease Model with Nonlinear and Bilinear Incidences, *Indian Journal of Science and Technology* vol. 8 (13).

[19] Wang X Chen Y Liu S 2017 Global Dynamics of a Vector-Borne Disease Model with Infection Ages and General Incidence Rates *Computational & Applied Mathematics* doi: 10.1007/s40314-017-0560-8.

[20] Anggriani I Istifadah N Hanifah M and Supriatna A K A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis *IOP Conf. Series: Earth and Environmental Science* 31(2016)012014 doi: 10.1088/1755-1315/31/1/012014.

[21] Anggriani N Nurul P L and Supriatna A K 2015 Stability Analysis and Optimal Control Plant Fungal: An explicit model with curative factor *AIP Conference Proceedings*, vol. 1651, no. 40.

[22] Chan M S and Jeger M J 1994 An analytical model of plant virus disease dynamics with roguing and replanting *Journal of Applied Ecology*, vol. 31, pp. 413-427.

[23] Gilligan C A 2002 An epidemiological framework for disease management *In Advances in botanical research*, vol. 38, pp. 1-64.
[24] Anggriani N Mardiyah M Istifadah N and Supriatna A K 2018 Optimal control issues in plant disease with host demographic factor and botanical fungicides *IOP Conference Series: Materials Science and Engineering*, pp. 1-11.

[25] Nedorezov L V 2015 Paramecium aurelia dynamics: Non-traditional approach to estimation of model parameter (on an example of Verhulst ang Gompertz models) *Ecological Modelling* vol. 317, pp. 1-5.

[26] Diekmann O Heesterbeek J A P and Metz J A J 1990 On the definition and computation of the basic reproduction ratio R_0 in models for infectious disease in heterogeneous populations *Journal of Mathematical Biology*, vol. 28, no. 4, pp. 356-382.

[27] Diekmann O and Heesterbeek J A P 2000 *Mathematical Epidemiology of Infectious Diseases: Model building, analysis and interpretation* Wiley: New York.

[28] Castillo-Chavez Feng Z and Huang W 2006 On the Computation of R_0 and its Role on Global Stability *Mathematical Approaches for Emerging and Reemerging Infectious Disease: An Introduction IMA*, vol. 125, pp. 229-250.

[29] Leinhart S and Wokman J T 2007 *Optimal Control Applied to Biological Models* CRC Press, taylor & Francis Group.