Chemical composition and biological activity of essential oil of *Teucrium scordium* L. subsp. *scordioides* (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy)

Alessandra Piras\(^a\), Alfredo Maccionib, Danilo Falconieric, Silvia Porcedda\(^a\), Maria José Gonçalves\(^{d,e}\), Jorge M. Alves-Silvad\(^f\), Ana Silva\(^d\), Maria Teresa Cruz\(^{d,g}\), Ligia Salgueiro\(^{d,e}\) and Andrea Maxia\(^b\)

\(^a\)Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, CA, Italy; \(^b\)Department of Life and Environmental Sciences, Botany section, University of Cagliari, Cagliari, Italy; \(^c\)State Institute of Higher Education “Michele Giua”, via Montecassino, Cagliari, Italy; \(^d\)University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; \(^e\)University of Coimbra, Chemical Process Engineering and Forest Product Research Center, Coimbra, Portugal; \(^f\)University of Coimbra, Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal; \(^g\)University of Coimbra, Centre for Neuroscience and Cell Biology, Coimbra, Portugal

ABSTRACT

The aim of this study is to demonstrate the antifungal, anti-inflammatory and anti-migratory potential of the essential oil of *Teucrium scordium* subsp. *scordioides* (Schreb.) Arcang, a plant widely used in traditional medicine in Sardinia. The oil was rich in germacrene D (25.1%), δ-cadinene (12.9%) and alloaromadendrene (11.3%). The yeast *Cryptococcus neoformans* and the dermatophytes *Trichophyton rubrum*, *T. mentagrophytes* var. *interdigitale* and *Epidermophyton floccosum* were the most susceptible fungi to the action of the oil. In lipopolysaccharide (LPS)-stimulated macrophages, the oil was able to decrease nitric oxide production by ca. 30% at 1.25 \(\mu\)L/mL, without affecting cell viability. In the scratch wound assay, it allowed for ca. 36% of wound closure after 18 h, thus showing anti-migratory properties. Overall, this study highlights the potential of this species to mitigate fungal infections associated with an inflammatory response. Furthermore, we also reported for the first time its anti-migratory capacity, thus suggesting anticancer properties.

ARTICLE HISTORY

Received 19 September 2021
Accepted 5 December 2021

KEYWORDS

Teucrium scordium L. subsp. *scordioides* (Schreb.) Arcang.; essential oil; antifungal activity; anti-inflammatory activity; dermatophytes; cell migration

CONTACT

Lígia Salgueiro \(\text{ligia@ff.uc.pt}\)

Supplemental data for this article can be accessed online at https://doi.org/10.1080/14786419.2021.2018432.

© 2021 Informa UK Limited, trading as Taylor & Francis Group
1. Introduction

Teucrium L. (Lamiaceae) is a large and highly polymorphic genus that includes more than 300 species distributed in Europe, North Africa and temperate parts of Asia, although more prevalent in the Mediterranean region (Bini Maleci et al. 1995). Plants of this genus have been described as important sources of essential oils, iridoid glycosides, phenolic and polyphenolic compounds, evidencing the medicinal interest of the plants of this genus (Semiz et al. 2016; Belarbi et al. 2018; Frezza et al. 2018; Farahbakhsh et al. 2020; Maccioni et al. 2020). Several traditional uses of *Teucrium* spp. have been recently reviewed (Candela et al. 2021). In Sardinia 11 *Teucrium* taxa are described and several of them are widely used in Sardinian traditional medicine as cicatrizing agents, antiseptic, antibacterial, antifungal, tonics, among several other purposes (Maccioni et al. 2021). Particularly, *Teucrium scordium* subsp. *scordioides* (Schreb.) Arcang is used as antiseptic and anthelmintic (Atzei 2003); however, the scientific validation of these claims is still lacking. Interestingly, the anticancer effect of *T. scordium* subsp. *scordioides* has been reported for phenolic extracts (Stankovic et al. 2011), but there is still no studies in the literature reporting this activity for the essential oil. Therefore, the aim of this study is to characterize the essential oil of *T. scordium* subsp. *scordioides* as well as to demonstrate its antifungal, anti-inflammatory and anti-migratory potential.

2. Results and discussion

2.1. Chemical composition

The results concerning the qualitative and quantitative analysis of the essential oil are presented in Table S1, where the components are listed in order of elution from a HP-5 column. The oil was characterized by a very high percentage of hydrocarbon sesquiterpenes (67.6%) and oxygenated sesquiterpenes (21.6%). The main compounds include germacrene D (25.1%), δ-cadinene (12.9%), alloaromadendrene (11.3%), α-cadinol (6.2%), germacrene D-4-ol (6.0%), α-pinene (4.9%), γ-cadinene (4.7%) and α-epi-cadinol (4.7%).

This composition is very distinct from the oils obtained from plants from other regions. Indeed, the essential oil from plants collected in Sicily, Italy, are rich in caryophyllene oxide (25.8%), α-pinene (19.4%) and β-pinene (8.5%) (Gagliano Candela et al. 2021) while those from Serbia are characterized by menthofuran (11.9%), (Z)-octadec-9-enoic acid (11.5%), and hexadecanoic acid (6.4%) (Radulović et al. 2012). Other studies address the composition of *T. scordium*, however, they fail to mention the subspecies, making the comparison to the present study difficult. Indeed, the oil from the aerial parts of *T. scordium* growing in North Iran was characterized by β-caryophyllene, (E)-β-farnesene, caryophyllene oxide, 1,8-cineole and β-eudesmol (Morteza-Semnani et al. 2007). In another study, samples from Serbia and Montenegro had a distinct composition, with α- and β-pinene being the major compounds (Kovacevic et al. 2001).
2.2. Antifungal activity

The antifungal effect of the essential oil is summarized in Table S2. Our results showed that Cryptococcus neoformans was the most susceptible yeast (MIC = 0.32 μL/mL). The dermatophytes Trichophyton mentagrophytes var. interdigitale, T. rubrum and Epidermophyton floccosum were the most susceptible filamentous fungi (MIC = 0.32 μL/mL) followed by T. mentagrophytes, Microsporum canis and M. gypseum with MIC = 0.64 μL/mL.

To the best knowledge of the authors, there are no studies in the literature assessing the antimicrobial effect of T. scordium essential oil; indeed only two studies assessed this effect using non-volatile extracts that were ineffective against C. albicans (Tatjana et al. 2011; Stanković et al. 2012).

Currently available therapies are often associated with problems related with drug safety, undesirable side effects, narrow activity spectrum and a small number of targets (Fuentefria et al. 2018), as well as the emergence of resistant strains (Martinez-Rossi et al. 2018; Mourad and Perfect 2018). Indeed, dermatophytes from the genus Trichophyton have been reported to show resistance to terbinafine and fluconazole, the two most widely used antifungals to control dermatophytosis (Arendrup et al. 2021). Resistance to all the classes of antifungals has also been reported for C. neoformans (Bermas et al. 2020). In this scenario plant extracts, despite having lower antifungal activity, can emerge as effective alternatives/complements. Indeed, these extracts are able to act on multiple cell targets, an important feature when considering microorganisms that are intrinsically or became resistant to conventional therapies. Several studies have demonstrated the effectiveness of essential oils in fungal infections (Zuzarte et al. 2011; Lopes et al. 2017) such as Teucrium capitatum (MIC = 0.32 – 0.64 μL/mL for dermatophytes and C. neoformans) (Maccioni et al. 2020), T. polium subsp. geyrii (MIC = 2.45 μL/mL for C. albicans) (Roukia et al. 2013) and Santolina impressa (MIC = 0.32 μL/mL against C. neoformans, Epidermophyton floccosum and Trichophyton rubrum (Alves-Silva et al. 2019). These activities are similar to the reported activity of T. scordium subsp. scordoides. Also, its major compounds, namely germacrene D, δ-cadinene, α-cadinol, epi-α-cadinol and α-pinene have been reported to inhibit the growth of several pathogenic fungi (Schmidt et al. 2007; Chang et al. 2008; Ho et al. 2011; Takao et al. 2012; Pinto et al. 2013; Lawson et al. 2020), thus suggesting that the activity of the oil might be attributed to their presence in the mixture.

2.3. Anti-inflammatory properties

Since the successful colonization of the host tissues by pathogenic fungi is fuelled by inflammation, an antifungal drug concomitantly presenting anti-inflammatory activity can be a valuable therapeutic strategy to fight fungal infections. Therefore, we also assessed the anti-inflammatory potential of the essential oil using an in vitro model of inflammation, specifically macrophages stimulated with the Toll-like receptor 4 agonist lipopolysaccharide (LPS), and the effect on NO production was analysed by measuring the accumulation of nitrites in the culture medium. NO is a well-established marker of inflammation and inhibition of its production upon activation with an inflammatory
stimulus, such as LPS, might be a useful strategy to disclose new anti-inflammatory drugs. Our results show that pre-treatment with 1.25 μL/mL of the essential oil decreased the nitrite production evoked by LPS by ca. 30% (Figure S1A), without affecting macrophages viability (Figure S1B), thus suggesting and validating the safety profile of the essential oil at concentrations presenting pharmacological activity. Although we cannot state that the anti-inflammatory effect of the oil is superior to standard anti-inflammatory drugs, such as diclofenac, it is interesting to notice that for the concentration of the oil used in our experimental conditions (1.25 μL/mL), the percentage of nitric oxide inhibition is similar to that achieved by 1.591 μg/mL diclofenac without presenting as much toxicity (79.5% vs 94.5% macrophages viability for diclofenac and the essential oil, respectively). The reported activity is similar to other essential oils, even from different species, e.g., the essential oil from *Distichoselinum tenuifolium* decreases NO production by 40% at 1.25 μL/mL (Tavares et al. 2010). Although the anti-inflammatory potential of several *Teucrium* spp. has been widely reported (Barrachina et al. 1995; Puntero et al. 1997; Mukarram Shah 2015), the present study is pioneer in assessing the anti-inflammatory activity of *T. scordium* subsp. *scordioides* essential oil.

Regarding its major compounds, the anti-inflammatory potential of germacrene D, α-cadinol, epi-α-cadinol, α- and β-pinene has been already reported (Baylac 2003; Tung et al. 2011; Rufino et al. 2014; Coté et al. 2017), thus suggesting their involvement in the pharmacological activity of the oil. Since several essential oils exert their anti-inflammatory activity by inhibiting the pro-inflammatory transcription factor NF-κB (de Lavor et al. 2018) it will be of relevance to further explore the involvement of this signaling pathway on the anti-inflammatory activity of *Teucrium scordium* subsp. *scordioides* essential oil.

2.3. Cells migration assay

Cell migration was carried out using the scratch wound assay as reported by Martinotti and Ranzato (Martinotti and Ranzato 2019) by making a scratch on a cell monolayer and capturing images at regular intervals by microscopy.

The essential oil (1.25 μL/mL) decreased the capacity of the cells to migrate after the scratch (Figure S2A and S2B), thus suggesting its putative anti-migratory properties. Importantly, the essential oil was devoid of toxicity (Figure S2C), thus validating its safety profile.

The anticancer properties of the genus *Teucrium* have been widely reported as reviewed elsewhere (Milutinović and Cvetković 2020). Regarding *T. scordium* subsp. *scordioides* the anticancer properties have only been reported for a phenolic extract (Stankovic et al. 2011). Concerning cell migration, no studies have been conducted with this taxon; however several studies showing the anti-invasive and anti-migratory capacities of several *Teucrium* species have been reported (Kandouz et al. 2010; Haïdara et al. 2011; Tafrihi et al. 2014; Zivanovic et al. 2016; Tafrihi and Nakhaei Sistani 2017; Abdallah et al. 2018; Guesmi et al. 2018; Sheikhbahaei et al. 2018). The anti-invasive and anti-migratory properties of germacrene D, α-pinene and β-eudesmol have also been shown (Kummer et al. 2015; Ben Sghaier et al. 2016; Kang et al. 2016;
Huang et al. 2019; Schepetkin et al. 2020), reinforcing that the reported activity might be due to the presence of these compounds.

3. Experimental section

See Supplementary data

4. Conclusions

The present study shows, for the first time, the biological properties of the essential oil from *T. scordium* subsp. *scordioides*, particularly the antifungal and anti-inflammatory activities. Indeed, the oil was able to inhibit the growth of *Cryptococcus neoformans* and several dermatophytes. Furthermore, the essential oil decreased the production of nitric oxide in LPS-stimulated macrophages. Although the essential oil shows weaker activity than the standard antifungal or anti-inflammatory drugs, it exerts at the same time and at the same concentration antifungal and anti-inflammatory effects, which highlights its interest for the pharmaceutical industry due to this dual effect. Our results also showed that the essential oil possesses anti-migratory properties, which must be properly explored in an oncology context. Importantly, at pharmacological relevant concentrations, the oil was devoid of toxicity towards macrophages and fibroblasts, thus highlighting its safety.

Disclosure statement

We declare the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Silvia Porcedda http://orcid.org/0000-0002-1441-3979
Jorge M. Alves-Silva http://orcid.org/0000-0002-5270-3993

References

Abdallah Q, Al -Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A. 2018. Anti-angiogenic activity of Middle East medicinal plants of the Lamiaceae family. Mol Med Rep. 18(2):2441–2448.
Alves-Silva JM, Zuzarte M, Gonçalves MJ, Cruz MT, Cavaleiro C, Salgueiro L. 2019. Unveiling the bioactive potential of the essential oil of a Portuguese endemism, *Santolina impressa*. J Ethnopharmacol. 244:112–120.
Arendrup MC, Kahlmeter G, Guinea J, Meletiadis J, Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) 2021. How to: perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E.Def 11.0, exemplified by *Trichophyton*. Clin Microbiol Infect. 27(1):55–60.
Atzei AD. 2003. Le piante nella tradizione popolare della Sardegna. Delfino Carlo Editore. :596.

Barrachina MD, Bello R, Martínez-Cuesta MA, Esplugues J, Primo-Yúfera E. 1995. Antiinflammatory activity and effects on isolated smooth muscle of extracts from different Teucrium species. Phytother Res. 9(5):368–371.

Baylac S. 2003. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int. J. Aromath. 13(2-3):138–142.

Belarbi K, Atik-Bekkara F, El Haci IA, Bensaid I, Bekhechi C. 2018. Identification of phenolic compounds from the leaf part of Teucrium pseudo-Scorodonia Desf. collected from Algeria. Nat Prod Res. 32(3):350–353.

Ben Sghaier M, Mousslim M, Pagano A, Ammari Y, Luiz J, Kovacic H. 2016. β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell. Environ Toxicol Pharmacol. 46:227–233.

Bermas A, Shapiro RS, Geddes-McAlister J. 2020. Experimental evolution of antifungal resistance in Cryptococcus neoformans. Curr Protoc Microbiol. 59:1–10.

Bini Maleci L, Pinetti A, Servettaz O. 1995. Micromorphological and phytochemical characters of the two subspecies of Teucrium flavum (Labiatae) from the Italian flora. Flora. 190(3):237–242.

Candela RG, Rosselli S, Bruno M, Fontana G. 2021. A review of the phytochemistry, traditional uses and biological activities of the essential oils of genus Teucrium. Planta Med. 87(6):432–479.

Chang H, Cheng Y, Wu C, Chang S, Chang T, Su Y. 2008. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour Technol. 99(14):6266–6270.

Côté H, Boucher M-A, Pichette A, Legault J. 2017. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines. 4(2):34–39.

de Lavor EM, Fernandes AWC, de Andrade Teles RB, Leal AEBP, de Oliveira Júnior RG, Gama e Silva M, de Oliveira AP, Silva JC, de Moura Fonse Araújo MT, Coutinho HDM, et al. 2018. Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid Med Cell Longev. 2018:1–23.

Farahbakhsh J, Najafian S, Hosseinifarzahi M, Gholiour S. 2020. The effect of time and temperature on shelf life of essential oil composition of Teucrium polium L. Nat Prod Res. :1–5.

Frezza C, Venditti A, Matrone G, Serafini I, Foddai S, Bianco A, Serafini M. 2018. Iridoid glycosides and polyphenolic compounds from Teucrium chamaedrys L. Nat Prod Res. 32(13):1583–1589.

Fuenteefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. 2018. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol. 66(1):2–13.

Gagliano Candela R, Ilardi V, Badalamenti N, Bruno M, Rosselli S, Maggi F. 2021. Essential oil compositions of Teucrium fruticans, T. scordium subsp. scordioides and T. siculum growing in Sicily and Malta. Nat Prod Res. 35(20):3460–3469.

Guesmi F, Tyagi AK, Prasad S, Landoulsi A. 2018. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget. 9(64):32305–32320.

Haïdara K, Alachkar A, Moustafa A-EA. 2011. Teucrium polium plant extract provokes significant cell death in human lung cancer cells. Health. 03 (06):366–369.

Ho C-L, Liao P-C, Wang El-C, Su Y-C. 2011. Composition and antifungal activities of the leaf essential oil of Neolitsea parvigemma from Taiwan. Nat Prod Commun. 6(9):1357–1360.

Huang X-L, Li X-J, Qin Q-F, Li Y-S, Zhang WK, Tang H-B. 2019. Anti-inflammatory and antinociceptive effects of active ingredients in the essential oils from Gynura procumbens, a traditional medicine and a new and popular food material. J Ethnopharmacol. 239:1–7.

Kandouz M, Alachkar A, Zhang L, Dekhil H, Chehna F, Yasmeen A, Moustafa A-EA. 2010. Teucrium polium plant extract inhibits cell invasion and motility of human prostate cancer
cells via the restoration of the E-cadherin/catenin complex. J Ethnopharmacol. 129(3): 410–415.

Kang E, Lee DH, Jung YJ, Shin SY, Koh D, Lee YH. 2016. α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Appl Biol Chem. 59(4):511–569.

Kovacevic NN, Lakusic BS, Ristic MS. 2001. Composition of the essential oils of seven Teucrium species from Serbia and Montenegro. J. Essent. Oil Res. 13(3):163–165.

Kummer R, Estevão-Silva CF, Bastos RL, da Rocha BA, Spironello RA, Yamada AN, Bersani-Amado CA, Cuman RKN. 2015. Alpha-pinene reduces in vitro and in vivo leukocyte migration during acute inflammation. Int J Appl Res Nat Prod. 8(4):12–17.

Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. 2020. Volatile compositions and antifungal activities of Native American medicinal plants: focus on the Asteraceae. Plants. 9(1):118–126.

Lopes G, Pinto E, Salgueiro L. 2017. Natural Products: An Alternative to Conventional Therapy for Dermatophytosis? Mycopathologia. 182(1-2):143–167.

Maccioni A, Falconieri D, Porcedda S, Piras A, Gonçalves MJ, Alves-Silva JM, Salgueiro L, Maxia A. 2020. Antifungal activity and chemical composition of the essential oil from the aerial parts of two new Teucrium capitatum L. chemotypes from Sardinia Island, Italy. Nat Prod Res. :1–7.

Maccioni A, Falconieri D, Sanna C, Porcedda S, Piras A, Maxia A. 2021. Characterization of essential oils from different taxa belonging to the genus Teucrium in Sardinia Island, Italy. Plants. 10(7):1314–1359.

Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, Martins MP, Lopes G, Pinto A. 2018. Dermatophyte resistance to antifungal drugs: mechanisms and prospects. Front Microbiol. 9:1–18.

Martinotti S, Ranzato E. 2019. Scratch wound healing assay. Methods Mol Biol. 2109:225–229.

Mikutinović M, Cvreković D. 2020. Anticancer activity of secondary metabolites of Teucrium species. Teucrium Species: Biology and Applications. Cham: Springer. p. 355–390.

Morteza-Semnani K, Saeedi M, Akbarzadeh M. 2007. Essential oil composition of Teucrium scorodion L. Acta Pharm. 57(4):499–504.

Mourad A, Perfect JR. 2018. The war on cryptococcosis: a review of the antifungal arsenal. Mem Inst Oswaldo Cruz. 113(7):1–7.

Mukarram Shah SM. 2015. A possible anti-inflammatory mechanism of ethyl acetate extracts of Teucrium stocksianum Bioss. BMC Complement Altern Med. 15(1):6–1.

Pinto E, Hrimpeng K, Lopes G, Vaz S, Gonçalves MJ, Cavaleiro C, Salgueiro L. 2013. Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur J Clin Microbiol Infect Dis. 32(10):1311–1320.

Puntero BF, Peinado II, del Fresno AMV. 1997. Anti-inflammatory and antiulcer activity of Teucrium buxifolium. J Ethnopharmacol. 55(2):93–98.

Radulović N, Dekić M, Joković M, Vukićević R. 2012. Chemotaxonomy of serbian Teucrium species inferred from essential oil chemical composition: the case of Teucrium scordium L. ssp. scordoides. Chem Biodivers. 9(1):106–122.

Roukia H, Mahfout H, Didi O. 2013. Chemical composition and antioxidant and antimicrobial activities of the essential oil of Teucrium polium geyrii (Labiatae). J Med Plants Res. 7: 1506–1510.

Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, Mendes AF. 2014. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 77 (2):264–269.

Schepetkin I, Özék G, Özek T, Kirpotina L, Khlebnikov A, Quinn M. 2020. Chemical composition and immunomodulatory activity of Hypericum perforatum essential oils. Biomolecules. 10(6): 916–920.

Schmidt JM, Noletto JA, Vogler B, Setzer WN. 2007. Abaco bush medicine: chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J Herbs Spices Med Plants. 12(3):43–65.
Semiz G, Çelik G, Gönen E, Semiz A. 2016. Essential oil composition, antioxidant activity and phenolic content of endemic *Teucrium alyssifolium* Staph. (Lamiaceae). Nat Prod Res. 30(19): 2225–2229.

Sheikhhbahaee F, Khazaee M, Nematollahi-Mahani SN. 2018. *Teucrium polium* extract enhances the anti-angiogenesis effect of tranilast on human umbilical vein endothelial cells. Adv Pharm Bull. 8(1):131–139.

Stanković M, Stefanović O, Ćomić L, Topuzović M, Radojević I, Solujić S. 2012. Antimicrobial activity, total phenolic content and flavonoid concentrations of *Teucrium* species. Cent Eur J Biol. 7(4):664–671.

Stankovic MS, Curcic MG, Zizic JB, Topuzovic MD, Solujic SR, Markovic SD. 2011. *Teucrium* plant species as natural sources of novel anticancer compounds: antiproliferative, proapoptotic and antioxidant properties. Int J Mol Sci. 12(7):4190–4205.

Tafrihi M, Nakhaei Sistani R. 2017. E-cadherin/β-catenin complex: a target for anticancer and antimetastasis plants/plant-derived compounds. Nutr Cancer. 69(5):702–722.

Tafrihi M, Toosi S, Minaei T, Gohari AR, Niknam V, Arab Najafi SM. 2014. Anticancer properties of *Teucrium persicum* in PC-3 prostate cancer cells. Asian Pac J Cancer Prev. 15(2):785–791.

Takao Y, Kuriyama I, Yamada T, Mizoguchi H, Yoshida H, Mizushima Y. 2012. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol Med Rep. 5(5):1163–1168.

Tatjana K, Marina M, Aleks Ra T, Tatjana S, Zorica J, Branišlava L. 2011. Cytotoxicity and antimicrobial activity of *Teucrium scordium* L. (Lamiaceae) extracts. Afr J Microbiol Res. 5(19): 2950–2954.

Tavares AC, Gonçalves MJ, Cruz MT, Cavaleiro C, Lopes MC, Canhoto J, Salgueiro LR. 2010. Essential oils from *Distichoselinum tenuifolium*: Chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. J Ethnopharmacol. 130(3):593–598.

Tung Y-T, Huang C-C, Ho S-T, Kuo Y-H, Lin C-C, Lin C-T, Wu J-H. 2011. Bioactive Phytochemicals of Leaf Essential Oils of *Cinnamomum osmophloeum* Prevent Lipopolysaccharide/D-Galactosamine (LPS/D-GalN)-Induced Acute Hepatitis in Mice. J Agric Food Chem. 59(15): 8117–8123.

Zivanovic M, Stojanovic A, Cvetkovic D, Milutinovic M, Stankovic M, Markovic S. 2016. Effects of *Teucrium* spp.: Extracts on migratory potential and redox status of human colon SW-480 and breast MDA-MB-231 cancer cells. Kragujevac J Sci. 38(38):161–172.

Zuzarte M, Gonçalves MJ, Canhoto J, Salgueiro L. 2011. Antidermatophytic activity of essential oils. Science against Microbial Pathogens: communicating Current Research and Technological Advances. Formatex Research Center. p.1167–1178.