Degeneracy in Density Functional Theory: Topology in ν- and n-Space

C. A. Ullrich and W. Kohn

Department of Physics, University of California, Santa Barbara, CA 93106

(Dated: October 31, 2018)

This paper clarifies the topology of the mapping between ν- and n-space in fermionic systems. Density manifolds corresponding to degeneracies $\nu = 1$ and $\nu > 1$ are shown to have the same mathematical measure: every density near a ν-ensemble-ν-representable (ν-VR) $n(r)$ is also ν-VR (except “boundary densities” of lower measure). The role of symmetry and the connection between $T = 0$ and $T = 0^+$ are discussed. A lattice model and the Be-series are used as illustrations.

PACS numbers: 31.15.Ew, 31.15.Ar, 71.10.Ca, 71.15.Mb

Density functional theory (DFT) of electrons in an external potential $v(r)$ uses the ground-state density $n(r)$ as basic variable [1]. $n(r)$ uniquely determines $v(r)$ (apart from a constant); conversely, for a given number, N, of electrons, $v(r)$ obviously determines $n(r)$ uniquely if and only if the ground state is non-degenerate. These facts point to the interesting role of degeneracy in the mapping $v(r) \Longleftrightarrow n(r)$.

In 1982-3, Levy [3] and Lieb [4] discovered examples of well-behaved density functions, $n(r)$, which could not be reproduced as non-degenerate, non-interacting ground-state densities of any $v(r)$, and were called non-ν-representable (non-VR). In these examples, the $n(r)$ could be reproduced as weighted averages of densities of degenerate ground states corresponding to a $v(r)$.

Soon afterwards, Kohn [5] adopted a lattice version of the Schrödinger equation, $r \rightarrow r_l$ ($l = 1, \ldots, M$), in which $v(r)$ and $n(r)$ become v_l and n_l and can be viewed as M'-dimensional (M'-D) vectors: $\vec{v} \equiv (v_1, \ldots, v_M')$, with $M' = M - 1$, $v_M = 0$; and $\vec{n} \equiv (n_1, \ldots, n_M')$, with $n_M = N - (n_1 + \ldots + n_M')$. The M' lattice points are enclosed by boundary points on which $\vec{v} = +\infty$ and, accordingly, all wave functions vanish. It was shown in [5] that in the M'-D \vec{n}-space there are finite M'-D regions in which all “points” (densities) are VR.

In 1985, Chayes et al. (CCR) [6], using a similar lattice model, proved the following important result: Any well-behaved \vec{n} ($0 < n_l \leq 1$) can be uniquely represented as weighted average of ν degenerate ground-state densities associated with a \vec{v}. We call the special case $\nu = 1$-VR, and the general case ($\nu \geq 1$) ν-VR. Thus, \vec{n}-space is filled by manifolds $S^\nu\nu$, in each of which \vec{n} is ν-VR. Each $S^\nu\nu$ maps on a corresponding manifold $Q^\nu\nu$ in \vec{v}-space.

This paper aims at an understanding of the topologies of the regions $S^\nu\nu$ and $Q^\nu\nu$ and of the nature of the boundaries between them. This has mathematical and physical significance, e.g. in the search for self-consistent solutions of Kohn-Sham (KS) equations [6]. We shall see that ν-VR densities with $\nu > 1$ are not mathematically exceptional and, in particular, do not depend on symmetries of the potential. As illustrations we shall present a finite lattice model and the Be-series for $Z \rightarrow \infty$ [5]. We also discuss the relationship between $T = 0$ ensembles and $T = 0^+$ thermal ensembles. We limit ourselves to systems that are everywhere nonmagnetic.

Interior regions in \vec{n}-space. We first recapitulate Ref. [3] for 1-VR densities, and then generalize to ν-VR.

a) $\nu = 1$. Since there is a non-degenerate non-interacting ground state with a finite gap, corresponding to some \vec{v}, we can use non-degenerate perturbation theory to calculate the first-order density change, $1n_l$, due to a weak perturbing potential $1v_l$:

$$1n_l = \sum_{l=1}^{M'} \chi_{ll'}^{-1} v_{l'} , \quad l = 1, \ldots, M' .$$

Since, according to [3], the density \vec{n} of a non-degenerate ground state uniquely determines \vec{v} (no arbitrary constant since $v_M = 0$), the homogeneous set of equations corresponding to [3] has no solution other than $1v_{l'} \equiv 0$, so that [3] can be inverted:

$$1v_l = \sum_{l'=1}^{M'} \chi_{ll'}^{-1} n_{l'} , \quad l = 1, \ldots, M' .$$

Thus, any first-order change of \vec{n} preserving N produces a density which is also 1-VR. This is the case in the entire M'-D neighborhood surrounding the point \vec{n}, in which Δ remains positive.

b) $\nu > 1$ [6]. We denote by Ψ_1, \ldots, Ψ_ν a set of ν orthogonal degenerate ground-state wave functions corresponding to $i^\nu\nu$, with common energy E and finite gap Δ. The remaining eigenfunctions are $\Psi_{\nu+1}, \ldots$. What conditions must be imposed on infinitesimal $[O(\lambda)]$ potential changes $1\vec{v}$ which will preserve this degeneracy? In the space of the Ψ_j, the perturbed Hamiltonian matrix is

$$H_{ij} = E_i \delta_{ij} + 1V_{ij} \quad i, j = 1, 2, \ldots ,$$

$$E_i = E \langle i | = 1, \ldots, g \rangle , \quad E_i \geq E + \Delta \quad (i \geq g+1) ,$$

and $1V_{ij} = \sum_{l=1}^{M'} \langle i | 1v_l | j \rangle$. Because of the finite Δ, the off-diagonal $1V_{ij}$ with $i \leq g$ and $j \geq g + 1$, or vice versa, can be removed to all orders in λ by orthogonal transformations leading to the decoupled $g \times g$ block Hamiltonian

$$\tilde{H}_{ij} = E\delta_{ij} + 1V_{ij} + O(\lambda^2) \quad i, j = 1, \ldots, g .$$
Diagonalization by an orthogonal transformation $T_{ij} = \delta_{ij} + \epsilon t_{ij} + O(\lambda^2)$ and the requirement that the eigenvalues remain degenerate gives a transformed Hamiltonian

$$
\hat{H}_{ij} \equiv \left(T^{-1}\hat{H}T\right)_{ij} = (E + \epsilon\delta_{ij} + O(\lambda^2)).
$$

(5)

On inverting the transformation and noting that every matrix commutes with δ_{ij}, one finds $\hat{H}_{ij} = \hat{H}_{ij} + O(\lambda^2)$.

Comparison with Eq. (4) leads to $\frac{1}{2} (g - 1)(g + 2)$ conditions of equal diagonal and vanishing off-diagonal 1^n_{ij}.

Thus, every point \vec{n} with a g-fold degenerate ground state and finite Δ is embedded in a manifold in \vec{v}-space of dimension $D^g = [M' - \frac{1}{2}(g - 1)(g + 2)]$, in which the degeneracy g and a finite Δ are preserved. Ground-state degeneracies in \vec{v}-space are “rare” in the above sense.

Each \vec{n} gives rise to a set of ensemble densities,

$$
\vec{n} = \sum_{j=1}^{g} w_j \vec{n}_j, \quad 0 < w_j \leq 1, \quad \sum_{j=1}^{g} w_j = 1,
$$

(6)

with $\vec{n}_j = \vec{n}_j (R^g \Psi_j)$, where R^g is a g-D orthogonal transformation $\left[\frac{1}{2}g(g - 1)\right]$ parameters] and the w_j are normalized weights $(g - 1)$ parameters]. Thus, all \vec{n} in a finite M'-D neighborhood enclosing a g-VR \vec{n}, defined by $\Delta(\vec{n}) > 0$ and $w_j > 0$, are also g-VR: Degeneracy in \vec{n}-space is not “rare”.

Boundary surfaces in \vec{n}-space. Except for boundaries of $D \leq M' - 1$, \vec{n}-space is completely filled by M'-D regions S^g, with degenerate ground-state levels and a finite positive gap to the nearest excited state.

Apart from “corners” ($D \leq M' - 2$), interior regions S^g in \vec{n}-space are bounded by $(M' - 1)$-D internal and external “surfaces” Σ^g, see Fig. 1. Each internal Σ^g separates two interior regions S' and S^{g+1}. A point \vec{n} on such a Σ^g corresponds to a $(g + 1)$-fold degenerate ground state but with one of the $g + 1$ weights equal to zero. On the g-side of Σ^g there is a g-fold degeneracy and a small gap to the $(g + 1)$-state opens up from 0. On the $(g + 1)$-side there is a $(g + 1)$-fold degeneracy and one of the $g + 1$ weights starts from 0 and becomes positive.

External boundaries correspond to either one of the n_l becoming zero, reflecting particle conservation; or one of the n_l becoming 1, reflecting the Pauli principle. For examples of both kinds, see the lattice model below.

Imposed symmetry conditions. Consider a Hamiltonian, invariant under a group G of the lattice with irreducible representations h with $D = g_h$. Let the ground state have total degeneracy $g = \sum h_m g_h$ due to m_h occurrences of h. If a small perturbation H' respecting the group G is imposed, how many further conditions must be met by H' so that the degeneracy is maintained?

We have shown above that the perturbation must have vanishing off-diagonal matrix elements (MEs) between all degenerate ground states, and equal diagonal MEs.

Off-diagonal MEs. The symmetry of H' assures immediately that all off-diagonal MEs between $h \neq h'$ vanish
where, for fcc lattices, \(\nabla_l^2 f_l = [\sum_k f_k - 12f_l]/a^2 \), with \(k \) running over the nearest neighbors of lattice site \(l \). Energies and potentials will be measured in units of \(2ma^2/h^2 \).

We consider cases of \(C_{4h} \) symmetry: \(v_l \equiv V_1 (V_2) \), \(l = 1-8; \) \(v_l \equiv V_2, l = 9-12; \) \(v_{13} = 0 \). The lattice wave functions belong to the following representations of \(C_{4h} \): \(\Gamma_l \equiv A_g \) (s-like), \(E_g \) and \(A_u \) (p-like), \(B_2 \) (d-like), and \(B_3 \) (f-like). \(A_g \) occurs three times \((1A_g, 2A_g, 3A_g) \), \(E_u \) occurs twice \((1E_u, 2E_u) \), all other representations occur only once. The eigenfunctions and energies required solutions of 3-, 2- and 1-D secular equations.

Consider the ground state of 2 non-interacting spinless fermions. The lowest level is always \(1A_g \) (1s-like). The next level depends on \(V_1 \) and \(V_2 \), see Fig. 3. The \((V_1, V_2) \) plane divides into three distinct, infinitely extended regions (shown in yellow), in each of which the eigenfunction of the second level belongs to a particular irreducible representation of \(C_{4h} \): region 1a, \(1A_u \) (2p_x-like); region 1b, \(2A_g \) (2s-like); and region 1c, \(1E_u \) (2p_x, 2p_y-like). In each region, the ground state is non-degenerate (not counting degeneracies dictated by symmetry, such as in the 2-D representation \(1E_u \)).

On the boundary lines 2a, 2b and 2c (shown in blue), crossings of levels belonging to different representations of \(C_{4h} \) occur, leading to two-fold (accidental) degeneracies. Along 2a, the potential has cubic symmetry \((V_1 = V_2) \), and the two lowest p-like levels \((1A_u, 1E_u) \) coincide. On 2b, the \(2A_g \) and \(1A_u \) levels cross, and on 2c, the \(2A_g \) and \(1E_u \) levels cross. All three boundary lines meet in a single point, “3”, at \(V_1 = V_2 = 8 \). At this point only, the ground state has a three-fold accidental degeneracy. Note that the degeneracies on 2b and 2c are not due to additional potential symmetries.

As shown above, a ground state with restricted symmetry maintains its degeneracy if \(\sum m/n (m/n - 1)/2 + m/n \equiv 1 \) conditions are met. In the present example, \(m/n = 1 \) always. Regions 2a, 2b, 2c are therefore lines (1 condition), region 3 is a point (2 conditions) in the \((V_1, V_2) \)-plane.

We now discuss all \(n \) with \(C_{4h} \) symmetry. Like \(v \), they are fully characterized by two values, \(N_1 \) and \(N_2 \), the total density at points 1–8 and 9–12. \(n_{13} = 2 - N_1 - N_2 \). \(N_1 \) and \(N_2 \) are confined within a stripe in the \((N_1, N_2) \) plane, with an “inner” boundary, with \(n_{13} = 1 \), reflecting the Pauli principle \((N_1 + N_2 < 1 \) would imply \(n_{13} > 1 \) \), and an “outer” boundary, with \(n_{13} = 0 \), reflecting particle conservation \((N_1 + N_2 \leq 2) \).

The manifold of allowed densities in the \((N_1, N_2) \) plane is subdivided into different regions, corresponding to those of the \((V_1, V_2) \)-plane. All of the regions in the \((N_1, N_2) \) plane have \(D = 2 \). This is in line with our general topological results for g-VR densities.

Fig. 4 illustrates the highest occupied state along paths in the \((V_1, V_2) \) and \((N_1, N_2) \) planes (see dotted lines in Fig. 3 top and bottom): \(1A_u \) with weight 1 (region 1a), \(1E_u \) with weight 1 (equal-weight combination of 2p_x, 2p_y-like states; region 1c), or a linear combination of the degenerate \(1A_u \) and \(1E_u \) (region 2a), with fractional weights.

Physical Example: the Be-series. Be has a nominal electronic configuration \((1s)^2(2s)^2 \) and a term value \(^1S \). Without interactions, \(2s \) and \(2p \) are degenerate. The Be-series consists of neutral Be (\(Z = 4 \)), and
there is no unoccupied degenerate state. Under these lar, there must be a finite range in $1/\lambda$.

For a given low temperature, $\beta^{-1} \ll \Delta$, the canonical density corresponding to $\vec{v} \searrow 0$ is given by

$$n' = \frac{1}{Z} \sum e^{-\beta E_j} n(\vec{r}^2 \Phi_j) + O(\lambda) + O(e^{-\beta \Delta}),$$

where $Z = \sum e^{-\beta E_j}$. This density is equal, to leading order, to the density \vec{n} of Eq. (\ref{eq:n}), if $1/\beta$ is chosen so that $\vec{r}^2 \Phi_j = \Psi_j$ and $Z^{-1} e^{-\beta \vec{E}} = w_j$. As $\beta \Delta \to \infty$, $1/\beta \sim \beta^{-1} \to 0$ and $n' \to n$. This establishes the correspondence between ensemble densities at $T = 0$ and canonical densities at low temperatures, $\beta \Delta \gg 1$.

Concluding remarks. The problem of ν-representability \cite{Bunge} had cast a shadow of uncertainty over DFT, which was very largely clarified in \cite{Baerends}. Here, building on CCR, we clarify the topology of the $\nu(\vec{r})$-$n(\vec{r})$ mapping. The Be-series and a lattice model are used for illustration. The transition from a dense discrete lattice, ν_1, to a continuous variable, ν, does not appear to offer difficulties. An open issue is extension to spin magnetism.

Support by NSF Grants No. DMR-96-30452 and DMR-99-76457 and discussions with A. Savin and C. Umrigar are gratefully acknowledged.

* Present Address: Department of Physics, University of Missouri-Rolla, Rolla, MO 65409

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136 B, 864 (1964).

[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[3] M. Levy, Phys. Rev. A 26, 1200 (1982).

[4] E. H. Lieb, Int. J. Quant. Chem. 24, 243 (1983).

[5] W. Kohn, Phys. Rev. Lett. 51, 1596 (1983).

[6] Fourier representation is an alternative.

[7] J. T. Chayes, L. Chayes, and M. B. Ruskai, J. Stat. Phys. 38, 497 (1985).

[8] A. C. Ullrich and W. Kohn, Phys. Rev. Lett. 87, 093001 (2001).

[9] See also the study of the C$_2$ molecule by P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, Theor. Chem. Acc. 99, 329 (1998).

[10] For a basic discussion of the occurrences of degenerate eigenvalues see J. von Neumann and E. Wigner, Phys. Zeitschr. 30, 467 (1929).

[11] M. Tinkham, *Group Theory and Quantum Mechanics* (McGraw-Hill, New York, 1964).

[12] R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994); C. Filippi, C. J. Umrigar, and X. Gonze, Phys. Rev. A 54, 4810 (1996).

[13] J. Linderberg and H. Shull, J. Mol. Spectr. 5, 1 (1960).

[14] C. F. Bunge, Phys. Rev. 168, 92 (1968).

[15] A. Savin, private communication.