Cutaneous Toxicities of PI3K Inhibitors: A Series of Two Cases and Review of the Literature

Simran A. Chadha, BS1, Jennifer L. Shastry, MD2, Joel C. Sunshine, MD2, Jennifer Choi, MD2, Lauren Guggina, MD2

1 Northwestern University, Feinberg School of Medicine, Chicago, IL
2 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
*These authors contributed equally

ABSTRACT
Phosphoinositide 3-kinase (PI3K) inhibitors are a class of antineoplastic agents currently approved for the treatment of multiple hematologic malignancies and breast cancer. These medications have specific molecular targets to limit toxicity; however, cutaneous adverse effects are frequently reported and can require cessation of therapy. Morbilliform, eczematous, psoriasiform, and pityriasis rubra pilaris-like eruptions are most common, though exfoliative dermatitis and Stevens-Johnson syndrome/toxic epidermal necrolysis have also been reported. We highlight two cases of photo-accentuated skin reactions to duvelisib, a p110-δ and p110-γ isoform inhibitor. Both cases required oral corticosteroids and interruption of therapy for definitive management due to severity. While one patient was able to tolerate re-challenge with duvelisib and continue on therapy, both patients experienced recurrence of cutaneous eruptions with repeat exposure, establishing a notable temporal correlation. Thus, these cases contribute a novel presentation of adverse reactions to PI3K inhibitors to existing literature.

INTRODUCTION
Phosphoinositide 3-kinase (PI3K) inhibitors are novel small molecule targeted inhibitors approved for the treatment of multiple hematologic malignancies, namely relapsed or refractory chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), small lymphocytic lymphoma (SLL), and breast cancer.1,2 Isoform-specific PI3K inhibitors are a subclass of this broader category, consisting of agents targeting the p110-α isoform (alpelisib and taselisib), the p110-δ isoform (idelalisib), and the p110-δ and p110-γ isoforms (duvelisib).3 The specificity of these molecular targets allows for higher dosage while limiting toxicity; however, cutaneous, endocrine, and gastrointestinal toxicities are common. We report two photo-accentuated duvelisib-induced skin eruptions, both requiring interruption of therapy and resolving with systemic steroids.

CASE PRESENTATION
Case 1
A 62-year-old man with a history of angioimmunoblastic T cell lymphoma (AITCL) presented with a pruritic skin eruption in the spring. The patient’s AITCL
Figure 1. Case 1 clinical image of the initial eruption reveals photo-accentuated erythematous scaly plaques on the face and neck (a). Clinical image of the recurrent eruption demonstrates pink-orange scaly plaques on the face, neck, trunk, and extremities with sparing of the antecubital fossae (b). Biopsies of the left forearm (c) and the left upper arm (d) show a chronic spongiotic dermatitis with scattered necrotic keratinocytes and a dermal infiltrate composed of lymphocytes and eosinophils (H&E, 100x, 200x).

had been previously treated with chemotherapy and autologous stem cell transplant, initially achieving complete remission. Recurrence of the AITCL prompted initiation of duvelisib three months prior to development of the skin eruption. On physical examination, the patient was noted to have erythematous, scaly thin plaques on the face, neck, dorsal hands and upper extremities with a psoriasiform appearance, accentuated in sun exposed areas. This photo-accentuated psoriasiform eruption improved after duvelisib was held for 1 month due to a transaminitis.

One month after restarting the duvelisib, the patient presented with a new skin eruption. Physical examination revealed confluent, scaly, erythematous plaques on the face, scalp, and trunk (Figure 1a and 1b). There
Figure 2. Case 2 clinical images reveal erythematous papules coalescing into plaques on the neck, shoulders, and forearms with photo-accentuation (a, b). Biopsy of the left arm (c) demonstrates a spongiotic epidermis with vesiculation, significant papillary dermal edema, and a perivascular and interstitial dermal infiltrate (H&E, 100x). Higher power (d) reveals a perivascular and interstitial infiltrate composed of lymphocytes and eosinophils (H&E, 200x).

were pink-orange scaly plaques on the bilateral palms with sharp demarcation at the wrists, well-demarcated pink plaques on the extremities, and areas of spared skin in flexural areas clinically resembling pityriasis interrupted due to the eruption; his skin improved with oral and topical steroids, and then worsened with subsequent re-challenge of duvelisib. Multiple punch biopsies were performed throughout the evolution of the patient’s rash. Histopathology demonstrated parakeratosis.

November 2020   Volume 4 Issue 6
### Table 1. Previously Reported Cutaneous Toxicities of PI3K Inhibitors

| Age/Sex | Malignancy          | PI3K Inhibitor | Time to reaction | Morphology                                                                 | Histopathology                                                                 | Reaction type         | Treatment of cutaneous eruption | PI3K therapy outcome | Successful rechallenge (if interrupted) | Associated adverse events |
|---------|---------------------|----------------|------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------|----------------------------------------|------------------------|
| 62 M    | AITCL               | Duvelisib      | 3 months         | Photo-accentuated psoriasis-like plaque on the face, neck, forearms, which | Parakeratosis, acanthosis, and spongiosis of epidermis, lymphocytic infiltrate | Photo-accentuated     | Systemic corticosteroids, topical | Interrupted                   | No                       | Transaminitis                     |
| 55 F    | PTCL                | Duvelisib      | 1 month          | Photo-accentuated erythematous papules coalescing into plaques on the face | Perivascul and interstitial dermatitis with eosinophils                        | Photo-accentuated     | Systemic corticosteroids, topical | Interrupted                   | Yes                      | Transaminitis, neutropenia, fatigue |
| 65 M    | CLL                 | Idelalisib     | 3 months         | Exfoliative rash with diffuse scaling of torso, extremities, tongue, anus, | Not performed                                                                | Exfoliative dermatitis | Not specified                   | N/A                          | N/A                      | Transaminitis, nornocytic anemia      |
| 56 M    | FL                  | Idelalisib     | 4 months         | Skin eruption, unspecified                                                  | Subacute spongiosis dermatitis, superficial dermal lymphohistiocytic infiltrate | Eczematous            | Systemic corticosteroids         | Discontinued                  | N/A                      | Colitis                           |
| 61 M    | CLL                 | Idelalisib     | 1 month          | Macular erythematous eruption with desquamation of upper arms/trunk, peeling | Hyperkeratosis and focal parakeratosis, acanthotic thickening, focal spongiosis | Not specified         | Oral corticosteroids, topical    | Discontinued                  | N/A                      | Transaminitis                     |
| 82 F    | FL                  | Idelalisib     | 11 months        | Exfoliative eruption with erythematous papules on back/buttocks with pustules | T-cell infiltration with psoriasis-like hyperplasia, subcorneal pustule         | Psoriasiform          | Topical corticosteroids          | Interrupted                   | Yes                      | None                              |
| 59 M    | CLL                 | P110-delta inhibitor | 17 months   | Photodistributed erythematous papules and large plaques on arms/legs, which | Psoriasiform epidermal hyperplasia, mild spongiosis, parakeratosis, intraepidermal/intracorneal neutrophils | Psoriasiform          | Oral acitretin, topical corticosteroids, photoptetration | Interrupted                   | Yes                      | Not specified                     |
| 57 M    | CLL                 | P110-delta/gamma inhibitor | 15 days     | Exfoliative eruption with erythematous papules with underlying micaceous scale on knees and intertrigging areas, nail pitting, pustules | Psoriasiform dermatitis with inflamed parakeratosis | Psoriasiform          | Oral corticosteroids, topical tacrolimus, topical retinoid | Interrupted                   | Yes                      | Not specified                     |
| 81 M    | SLL/CLL             | P110-delta inhibitor | 5 months      | Thinning erythematous papules coalescing into plaques with underlying micaceous scale on trunk/extremities | Spongiosis and suprabasal acantholysis with superficial dermal lymphocytic infiltrate | Psoriasiform          | Topical corticosteroids          | Discontinued                  | N/A                      | Not specified                     |
| 72 M    | MZL                 | P110-delta inhibitor | 3 months      | Thin erythematous plaques on gluteal cleft, inguinal folds; large plaques with underlying micaceous scale on neck, chest, extremities, scalp | Not performed                                                                | Psoriasiform          | Topical corticosteroids          | Discontinued (for colitis adverse effect) | N/A                      | Colitis                           |
| 40s F   | Anaplastic oligoden-drogioma | Dual pan-class I PI3K inhibitor | 4 days       | Pruritic photodistributed orange-pink erythroderma with islands of sparing and underlying fine desquamative scale, palmpoplantar keratoderma | Psoriasiform changes with alternating ortho and parakeratosis, spongiotic dermatitis, and numerous eosinophils | PRP-like               | Systemic corticosteroids, topical corticosteroids, oral antihistamines | Not specified                  | N/A                      | Essential tremor                  |
| 60s M   | CLL                 | Idelalisib     | 5 months         | Diffuse orange-red erythroderma with islands of sparing, nonscarring alopecia, palmpoplantar keratoderma | Psoriasiform changes with alternating ortho and parakeratosis, spongiotic dermatitis, and numerous eosinophils | PRP-like               | Systemic corticosteroids, topical corticosteroids, oral retinoids | Discontinued                  | N/A                      | Leukopenia, anemia, thrombocytopenia, suppressive adenitis |
| 60s M   | SLL                 | Idelalisib     | 6 weeks          | Diffuse orange-red patches with follicular prominence and islands of sparing over trunk/extremities | Subacute spongiosis dermatitis with psoriasiform scale and superficial perivascular lymphocytic infiltrate | PRP-like               | Systemic corticosteroids, topical corticosteroids | Discontinued                  | N/A                      | Peripheral eosinophila, transaminitis |

Abbreviations: pityriasis rubra pilaris (PRP), angioimmunoblastic T cell lymphoma (AITCL), peripheral T cell lymphoma (PTCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), small lymphocytic lymphoma (SLL), marginal zone lymphoma (MZL).
acanthosis, and spongiosis of the epidermis and a lymphocytic infiltrate with occasional neutrophils and eosinophils in the upper dermis. Occasional necrotic keratinocytes were seen (Figure 1c and 1d). Repeat imaging demonstrated no evidence of lymphoma; his AITCL was considered to be in remission on duvelisib. Given worsening of the rash after multiple re-challenges, the patient was diagnosed with a photo-accentuated, duvelisib-induced PRP-like skin eruption.

**Case 2**

A 55-year-old woman with a history of primary refractory CD30-positive peripheral T cell lymphoma (PTCL) presented with a pruritic eruption on the face, neck, and upper extremities in the summer. The PTCL was previously treated with chemotherapy; however, duvelisib was initiated after repeat imaging and lymph node biopsy revealed progressive disease. One month after introducing duvelisib, the patient developed concurrent skin rash and transaminitis. Within five days, the rash progressed in severity and duvelisib was held. Physical examination revealed photo-accentuated erythematous papules coalescing into plaques on the face, chest, dorsal arms (Figure 2a and 2b). A punch biopsy of her left forearm was performed, and histopathologic analysis demonstrated a perivascular and interstitial dermatitis with eosinophils (Figure 2c and 2d). The patient was treated with topical triamcinolone, antihistamines, and an oral prednisone taper. Within three weeks, the rash significantly improved and duvelisib was resumed at a lower dose.

After resumption of duvelisib, the patient had persistent pruritus and xerosis, managed with oral antihistamines and topical emollients. Her rash recurred three and a half months later, albeit with markedly decreased severity, and rapidly resolved with topical triamcinolone. She remains stable on duvelisib with complete tumor response. Given temporal association with duvelisib initiation and recurrence with re-challenge, the patient was diagnosed with duvelisib-induced photo-accentuated morbilliform skin eruption.

PI3K inhibitors block the PI3K/AKT/mTOR pathway, a signaling cascade that regulates cell proliferation, growth, motility, and survival through extracellular signaling. Isoform-specific PI3K inhibitors are a subclass that take advantage of this pathway’s impact on oncogenesis. Cutaneous adverse events are commonly observed, occurring in 17-45% of patients, varying per isoform target. Though the majority of eruptions are mild, skin toxicities are the second most common grade 3 and 4 toxicity, per Common Terminology Criteria for Adverse Events (CTCAE) grading, for alpelisib and duvelisib.

Cutaneous eruptions related to PI3K inhibitors present variably and can develop days to months after drug initiation (Table 1). A diffuse maculopapular rash with or without pruritus and xerosis is the most frequently reported skin manifestation; however phase I and II trials did not characterize cutaneous reactions with specific descriptors. Case reports have delineated various clinical presentations, including, but not limited to, eczematous, psoriasiform, and PRP-like eruptions, as well as exfoliative dermatitis and Stevens-Johnson syndrome/toxic epidermal necrolysis. Histopathology for specific eruptions largely resembles the clinical correlate, and non-specific eruptions commonly reveal perivascular and dermal infiltration by eosinophils and lymphocytes.
with or without epidermal spongiosis.\textsuperscript{5} This report of two cases of PI3K inhibitor-induced rash adds photo-accentuated eruptions to the clinical presentations previously reported in the literature.

The pathophysiology of these toxicities is attributed to the effects of PI3K inhibition on subsets of lymphocytes, including T-regulatory cells and differentiation of Th1 and Th2 lymphocytes. Disruption in immune regulation and self-tolerance thus results in toxicities of an autoimmune nature.\textsuperscript{1} Of note, PI3K inhibitors are effective photosensitizing agents and demonstrated potential utility in photodynamic therapy for cancer, thereby suggesting a possible mechanism underlying the photo-accentuated cutaneous toxicity noted in this case series.\textsuperscript{13} According to CTCAE guidelines, eruptions should be stratified by severity corresponding to body surface area involvement. Lower grade toxicities can be managed with high potency topical corticosteroids and antihistamines, whereas severe and persistent toxicities require systemic corticosteroids and possible interruption of PI3K inhibitor therapy. Notably, if therapy is interrupted, re-challenge at a lower dosage can be trialed. Close monitoring is paramount, as one in four patients experience recurrence of cutaneous toxicity with resumption of therapy, as reflected in this case series.\textsuperscript{5}

While PI3K inhibitors are currently approved for a narrow range of malignancies, ongoing clinical trials present promising data for future utility in treatment of multiple solid tumors. Thus, the cutaneous toxicities of PI3K inhibitors merit recognition as the use of these agents expands.\textsuperscript{12}

Conflict of Interest Disclosures: None

Funding: None

References:

1. Greenwell IB, Ip A, Cohen JB. PI3K Inhibitors: Understanding Toxicity Mechanisms and Management. Oncology (Williston Park). 2017;31(11):821-828.
2. Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2019;380(20):1929-1940.
3. Nunnery SE, Mayer IA. Management of toxicity to isoform alpha-specific PI3K inhibitors. Ann Oncol. 2019;30 Suppl 10:x21-x26.
4. Flinn IW, Patel M, Oki Y, et al. Duvelisib, an oral dual PI3K-delta, gamma inhibitor, shows clinical activity in indolent non-Hodgkin lymphoma in a phase 1 study. Am J Hematol. 2018;93(11):1311-1317.
5. Ransohoff JD, Kwong BY. Cutaneous Adverse Events of Targeted Therapies for Hematolymphoid Malignancies. Clin Lymphoma Myeloma Leuk. 2017;17(12):834-851.
6. Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131(8):888-898.
7. Gabriel JG, Kapila A, Gonzalez-Estrada A. A Severe Case of Cutaneous Adverse Drug Reaction Secondary to a Novice Drug: Idelalisib. J Investig Med High Impact Case Rep. 2017;5(2):2324709617711463.
8. Hammami MB, Al-Tae A, Meeks M, et al. Idelalisib-induced colitis and skin eruption mimicking graft-versus-host disease. Clin J Gastroenterol. 2017;10(2):142-146.
9. Hulilaja L, Lindgren O, Soronen M, Siitonen T, Tasanen K. A slowly developed severe cutaneous adverse reaction to idelalisib. J Eur Acad Dermatol Venereol. 2018;32(5):e192-e193.
10. Machan S, Plaza C, Perez-Gonzalez Y, Rodriguez-Pinilla M, Requena L, Cordoba R. Management of psoriasis-like rash associated with idelalisib monotherapy in a patient with refractory follicular lymphoma: a case report. J Med Case Rep. 2020;14(1):35.
11. Dewan AK, Sowerby L, Jadeja S, et al. Pityriasiform eruptions secondary to phosphoinositide 3-kinase inhibition. Clin Exp Dermatol. 2018;43(8):890-894.
12. Dewan AK, Gupta S, Bach DO, et al. Psoriasiform eruptions secondary to phosphoinositide 3-kinase inhibition. JAAD Case Rep. 2019;5(5):401-405.
13. Hayashida Y, Ikeda Y, Sawada K, et al. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor. Int J Cancer. 2016;139(3):700-711.