Observation of superconductivity in structure-selected Ti$_2$O$_3$ thin films

Yangyang Li1,2, Yakui Weng3, Junjie Zhang3, Junfeng Ding1,4, Yihan Zhu5, Qingxiao Wang1,6, Yang Yang7, Yingchun Cheng8, Qiang Zhang9, Peng Li10, Jiadan Lin9, Wei Chen9, Yu Han5, Xixiang Zhang11, Lang Chen1,10, Xi Chen11, Jingsheng Chen11, Shuai Dong3, Xianhui Chen12 and Tom Wu1,13

Abstract

The search for new superconductors capable of carrying loss-free current has been a research theme in condensed matter physics for the past decade. Among superconducting compounds, titanates have not been pursued as much as Cu$_2$O$_2$(3d^9) (cuprate) and Fe$_2$O$_2$(3d^5) (pnictide) compounds. Particularly, Ti$^{3+}$-based compounds or electron systems with a special 3d1 filling are thought to be promising candidates as high-T$_C$ superconductors, but there has been no report on such pure Ti$^{3+}$-based superconducting titanates. With the advent of thin-film growth technology, stabilizing new structural phases in single-crystalline thin films is a promising strategy to realize physical properties that are absent in the bulk counterparts. Herein, we report the discovery of unexpected superconductivity in orthorhombic-structured thin films of Ti$_2$O$_3$, a 3d1 electron system, which is in strong contrast to the conventional semiconducting corundum-structured Ti$_2$O$_3$. This is the first report of superconductivity in a titanate with a pure 3d1 electron configuration. Superconductivity at 8 K was observed in the orthorhombic Ti$_2$O$_3$ films. Leveraging the strong structure-property correlation in transition-metal oxides, our discovery introduces a previously unrecognized route for inducing emergent superconductivity in a newly stabilized polymorph phase in epitaxial thin films.

Introduction

Exploring structure-property correlations is a frontier of material science, which enables researchers to understand and harness the emergent properties of advanced materials. Functional oxides have attracted attention due to their strong structure-property correlation.$^{1-6}$ For example, enhanced multiferroic properties have been discovered in epitaxial-stabilized tetragonal BiFeO$_3$\(^7\) and hexagonal TbMnO$_3$ \(^3\), and these structures are absent in the bulk counterparts. Superconductors have zero electrical resistance and magnetic flux expulsion below certain critical temperatures. Motivated by both scientific curiosity and application demands, extensive efforts have been devoted to seeking new, high-T$_C$ superconductors and exploring the origin of superconductivity. However, emergent superconductivity in thin films with newly stabilized polymorph phases has not been reported. Recently, nanosized, trigonal corundum Ti$_2$O$_3$ phase has attracted much attention owing to its narrow bandgap and efficient photothermal effect.\(^9\) Here, we report the discovery of a strong structure-property correlation in Ti$_2$O$_3$ polymorphs; i.e., superconductivity emerges in orthorhombic Ti$_2$O$_3$ films epitaxially stabilized on sapphire substrates, while the trigonal bulk phase is semiconducting.

Most milestones in superconductivity research have been set by the discoveries of new materials such as cuprates10,11 and Fe-based superconductors.\(^12-15\) In addition, there are some notable transition-metal-oxide superconductors, such as tungsten bronzes with T$_C$ values up to 6 K.\(^16,17\) Within the 3d-transition-metal series, Ti$^{3+}$
+-based compounds are predicted to be promising candidates for high-T_C superconductors as a result of their special filling (3d^1 and $S = 1/2$), but superconducting titanates have been limited to materials like electron-doped SrTiO$_3$ ($T_C=0.41$ K),19 non-stoichiometric titanium monoxide TiO$_x$ ($T_C \leq 2.3$ K),20,21 and ternary oxide Li-Ti-O ($T_C=14$ K).22-24 Recently, interest in superconducting titanate thin films has resurged, and superconductivity in TiO$_2$,25 γ-Ti$_2$O$_5$,26,27 and Ti$_4$O$_7$26,27 was reported. It is important to note that these titanates feature Ti$^{3+}$ or mixed (Ti$^{3+}$/Ti$^{4+}$) valence states, and there has been no report of superconductivity in a "pure" Ti$^{3+}$ (3d^1) system.

Little progress has been made over the past several decades in the search for binary-oxide superconductors, which might possess attractive characteristics such as structural simplicity, high tenability and environmental stability. Among the few superconducting binary oxides reported to date, monoxide NbO exhibits a very low T_C of 1.38 K.28 Among sesquioxides, Zn-doped and Sn-doped In$_2$O$_3$ were reported to be superconducting at 3.3 K29 and 4 K,30 respectively. The recent advent of thin film synthesis techniques offers a new route towards achieving superconductivity at high transition temperatures in epitaxial films and heterostructures. For example, in one pioneering work, superconductivity was reported to be above 100 K in single-layer FeSe films,31 while bulk FeSe shows superconductivity below 8 K.32 Inspired by these discoveries, we postulate that investigating titanites, particularly Ti$^{3+}$-containing Ti$_2$O$_3$, in a thin film form might open a new door in the search for new oxide superconductors.

In this work, we report the discovery of superconductivity in newly stabilized, epitaxial, orthorhombic-structured Ti$_2$O$_3$ thin films grown on α-Al$_2$O$_3$ substrates, which demonstrates the strong structure-property correlation in such strongly correlated electron systems. Although six different lattice variants of Ti$_2$O$_3$ were predicted, i.e., corundum, Rh$_2$O$_3$ (II)-type, perovskite, post-perovskite, α-Gd$_2$S$_3$-type and Th$_2$S$_3$-type, only corundum and Th$_2$S$_3$-like types have been reported experimentally.33 Surprisingly, we found that the structure of Ti$_2$O$_3$ thin films can be selected by tuning the growth conditions; particularly, a hitherto unreported orthorhombic Rh$_2$O$_3$-like structure was discovered. Furthermore, although the conventional corundum-type Ti$_2$O$_3$ is a regular, narrow-bandgap semiconductor, the orthorhombic thin films are a new oxide superconductor with a T_C of 8 K. In fact, this is, to our knowledge, the first report demonstrating emergent superconductivity in thin films of a certain material while absent in the bulk counterpart. Our discovery offers a new route to inducing superconductivity in artificial epitaxial thin films and heterostructures by modifying their polymorph crystalline structures.

Materials and methods

Fabrication of Ti$_2$O$_3$ thin films

Ti$_2$O$_3$ films with a thickness range of 40–280 nm were deposited on (0001) sapphire substrates with a size of $5 \times 5 \times 0.5$ mm3 using pulsed laser deposition (PLD). A corundum-phase Ti$_2$O$_3$ target (Sigma-Aldrich, 99.99%) was used. Before deposition, the pressure of the PLD chamber was lower than 3.0×10^{-9} Torr. The deposition was performed at temperatures from 500 to 900°C with a 248 nm laser (KrF, Coherent Inc.). The energy density of the laser on the target was varied from 2 J/cm2 to 3 J/cm2. The distance between the target and substrates was fixed at 5.6 cm. More synthesis details are given in Table S1.

X-ray diffraction (XRD)

X-ray diffraction patterns were recorded using a Bruker D8 ADVANCE diffractometer (used for powder samples) and Bruker D8 DISCOVER high-resolution diffractometer (used for thin film samples) operated at 40 kV/40 mA and 35 kV/50 mA, respectively. Both diffractometers were equipped with Cu Ka radiation source and LynxEye detector.

Raman spectroscopy

Raman measurements were performed with a confocal micro-Raman system (Horiba Aramis/Jobin Yvon HR800) at ambient conditions. The wavelength of the excitation solid-state laser is 473 nm. The laser beam was focused on thin film samples using a ×100 objective lens (×50 objective for powder samples) with a numeric aperture (NA) of 0.90, and the spot size was approximately 1 µm. A typical laser power of 0.5 mW was used to avoid sample heating. The spectra were calibrated using a standard silicon sample.

X-ray photoelectron spectroscopy (XPS)

XPS measurements were carried out on a custom-built ultra-high-vacuum system with a Mg Ka (1253.6 eV) excitation source. The vacuum of the analysis chamber was approximately 2×10^{-9} Torr, and the spectrum was calibrated according to the O 1s XPS spectra (530.3 eV) before the first experiment on the Ti$_2$O$_3$-LT sample. Before the XPS experiments, the samples were sputtered for 27 min to remove contaminated surface layers.

Transmission electron microscopy

A focused ion beam (FEI Helios 400S) was used to prepare the cross-section samples for the S/TEM analyses. A protecting Pt layer was deposited on the top of the Ti$_2$O$_3$ thin film. S/TEM lamella with a thickness of ~100 nm was transferred to a half-moon FIB grid by an in situ lift-out method, followed by low-energy Ar-ion cleaning in a Fischione Nano Mill 1040. The damaged surface layer was removed, and the final thickness of the sample was...
The cross-sections of Pt/Ti$_2$O$_3$/sapphire structures were characterized using a scanning transmission electron microscope (Titan Mono-Probe Cs, FEI). Electron diffraction patterns were obtained with a Titan ST electron microscope operated at 300 kV. HAADF-STEM images were collected with an aberration-corrected Mono-Probe Cs scanning transmission electron microscope (Titan, FEI) operated at 300 kV using a convergence semi-angle of 21 mrad. The inner collection semi-angle of the HAADF was 70 mrad.

Transport and magnetic measurements

The electrical transport and magnetic measurements were performed using a Quantum Design physical property measurement system (PPMS) and a Quantum Design superconducting quantum interference device, respectively. For the transport measurements, electrodes with 30 nm of titanium and 100 nm of platinum with a size of $0.5 \times 0.5 \text{ mm}^2$ were deposited by sputtering. Gold wires were used to connect the samples to the PPMS puck. In the magnetic measurements, a quartz holder and a straw were used to support the sample when the magnetic field was parallel and vertical to the film surface, respectively. Data were recorded at 10 Oe during warming after being zero-field cooled from 300 to 2 K. A ceramic tweezer was used to handle the samples during all measurements.

First-principles calculations

The electronic structure calculations were performed based on a generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof-revised (PBEsol) function, as implemented in the Vienna ab initio Simulation Package. Two types of structural relaxations were performed: (1) full relaxation of lattice constants and inner atomic positions and (2) relaxation of inner atomic positions with only fixed experimental lattice constants. The Hubbard U was applied to Ti d orbitals. In addition, hybrid functional calculations based on the Heyd-Scuseria-Ernzerhof exchange were also performed to correctly describe the bandgaps. Nonmagnetic states were considered. The phonon structure and e-ph coupling were calculated using the PWSCF program of the Quantum-ESPRESSO distribution based on density function perturbation theory.

![Fig. 1 Structural characterizations of Ti$_2$O$_3$-LT and Ti$_2$O$_3$-HT samples.](image-url)
Results and discussion
Thin-film deposition and structural characterizations

The epitaxial Ti₂O₃ thin films were deposited on α-Al₂O₃ (0001) substrates in a high vacuum (<3.0 × 10⁻⁹ Torr) using PLD. Experimental details are provided in the Supplementary Materials. XRD was used to examine the crystal structure and phase of the as-deposited films. The diffraction patterns of Ti₂O₃ thin films grown at 600°C (sample denoted as Ti₂O₃-LT) and 900°C (sample denoted as Ti₂O₃-HT) on α-Al₂O₃ substrates are shown in Fig. 1a and Supplementary Figure S1. Cross-sectional transmission electron microscopy (TEM) was used to determine and calibrate the film thickness in this work (Supplementary Figure S2). Apart from the substrate peak, the peaks at 39.06° and 83.78° in the 600°C grown sample (Ti₂O₃-LT) agree well with the (0006) and (00012) parameters, respectively, of the known corundum (trigonal) structure of Ti₂O₃ (R₃c space group, #167, a = b = 5.15 Å, c = 13.61 Å). Surprisingly, the XRD peaks of the 900°C grown sample (Ti₂O₃-HT) are located at different locations of 37.90° and 80.86°, indicating a phase different from that of Ti₂O₃-LT. Note that based on the XRD peak positions, the Ti₂O₃-HT phase can be well distinguished from the TiO phase.²⁵

Furthermore, we carefully explored the PLD synthesis parameters and determined the conditions for growing Ti₂O₃-LT and Ti₂O₃-HT phases (Supplementary Figure S3). We should note here that both Ti₂O₃-LT and Ti₂O₃-HT thin films are stable. No change was observed in their appearance and structure after being stored under ambient conditions for over half a year (Supplementary Figure S4).

As shown in Fig. 1b, the Raman modes observed in the Ti₂O₃-LT film are consistent with the D₃₃ point-group symmetry of the corundum structure (Supplementary Figure S4).³⁹ On the other hand, for the as-deposited Ti₂O₃-HT film, only four peaks were observed, indicating a different lattice structure and higher lattice symmetry. Raman data also allow us to exclude the existence of titanium oxides other than Ti₂O₃. Specifically, the comparison of the Raman spectra of Ti₂O₃ and Ti₂O₃-HT (Supplementary Figure S5) reveals the absence of any Ti₂O₇ phase in our samples.

Atomic force microscopy (AFM) was used to investigate the surface morphology of Ti₂O₃ films, and in an area of 1 μm x 1 μm, Ti₂O₃-LT and Ti₂O₃-HT have similar surface roughnesses of ~0.45 and ~0.40 nm, respectively. However, as shown in Fig. 1c, d, their morphologies are quite different, which reflects their different crystalline structures.

Figure 1e presents the O 1s and Ti 2p XPS spectra of these Ti₂O₃ thin films. Ti₂O₃-LT and Ti₂O₃-HT films show almost identical XPS spectra, indicating that their Ti ions share the same valence state. Furthermore, the positions of the XPS peaks (464.1 eV and 458.5 eV for Ti 2p₁/₂ and Ti 2p₃/₂, respectively) are consistent with those of corundum Ti₂O₃ single crystals,⁴⁰,⁴¹ indicating a dominant Ti valence state of 3+. Note that the XPS spectra are inconsistent with that of Ti₃O₅ (mixed Ti⁵⁺ and Ti⁴⁺).⁴²

Finally, electron loss spectroscopy⑴⁴,⁴⁴ and synchrotron-based X-ray absorption spectroscopy (XAS)⁴³ were used to further confirm the valence state of Ti³⁺ in both phases. As shown in Fig. 1f, the XAS spectra collected from Ti₂O₃-LT and Ti₂O₃-HT films are identical and consistent with that of the standard corundum Ti₂O₃ bulk.⁴⁵ Meanwhile, the Ti³⁺ valence state was confirmed by XPS and XAS in the Ti₂O₃-HT sample, which also reveals a difference from that of previously reported TiO,⁴⁶ Ti₂O₅ and Ti₃O₇.⁴⁷

Microstructural characterization of Ti₂O₃-HT thin films

The discovery of this new Ti₂O₃-HT phase motivated us to carry out in-depth TEM experiments. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images were collected at the interfaces of Ti₂O₃-LT/Al₂O₃ and Ti₂O₃-HT/Al₂O₃. We should note here that there are thin (2–3 nm) transition layers at the interfaces. These transition layers were also observed in some similar cases in previous reports, such as epitaxial TiO²⁵ and MgB₂⁴⁶ films on Al₂O₃. They can be regarded as buffer layers in the epitaxial growth.⁴⁷,⁴⁹ The transition layer observed at the Ti₂O₃/Al₂O₃ interface may not have the stoichiometric composition of Ti₂O₃ due to oxygen diffusion during the film-growth process.⁴⁶ However, determining the composition and structure of this intermediate layer is outside the scope of this work.

The HAADF-STEM images taken from two different zone axes (Fig. 2a, e) indicate that the epitaxial relationship between Ti₂O₃-LT and α-Al₂O₃ is [11̅20] Ti₂O₃-LT||[11̅20] α-Al₂O₃ and [10̅10] Ti₂O₃-LT||[1̅0̅1̅0] α-Al₂O₃. Fast Fourier transform (FFT) patterns, obtained from the Ti₂O₃-HT film, are shown as the insets of Fig. 2a, e, which are consistent with the simulated electron diffraction data (Supplementary Figure S6). The inverse FFT (IFFT) images in Fig. 2b, f also confirm the corundum structure of Ti₂O₃-LT.

The HAADF-STEM images of the Ti₂O₃-HT/Al₂O₃ sample, as shown in Fig. 2c, g, suggest a structure that is different from that of corundum Ti₂O₃-LT. Close-up views of the film and substrate lattices are shown in the IFFT images in Fig. 2d, h. In fact, the structure of Ti₂O₃-HT can be reconstructed from that of Ti₂O₃-LT (Supplementary Figure S7). The unit cells of Ti₂O₃-LT (R₃c space group, #167) and Ti₂O₃-HT (Immm space group, #71) are shown as insets in Fig. 2e, g, respectively.
The unit cell parameters of Ti$_2$O$_3$-HT are $a = 9.385$ Å, $b = 4.422$ Å, and $c = 2.809$ Å, and a structural comparison with α-Al$_2$O$_3$ and Ti$_2$O$_3$-LT is given in Fig. 3. Excellent agreement was obtained between the experimental HAADF-STEM images and the projections of the reconstructed structure, as shown in Fig. 2d, h (Supplementary Figure S8). Furthermore, as shown in Supplementary Figure S9, the selected area electron diffraction (SAED) patterns collected from Ti$_2$O$_3$-HT/Al$_2$O$_3$ are consistent with the simulated results. Finally, the epitaxial relationship between Ti$_2$O$_3$-HT and α-Al$_2$O$_3$ is confirmed to be $(133)_{\text{Ti}_2\text{O}_3\text{-HT}}//[\overline{1}0\overline{1}0]_{\alpha\text{-Al}_2\text{O}_3}$ or $(011)_{\text{Ti}_2\text{O}_3\text{-HT}}//[11\overline{2}0]_{\alpha\text{-Al}_2\text{O}_3}$, as shown in Fig. 2c, g, respectively. Supplementary Figure S10 schematically illustrates the in-plane epitaxial relationship between the film and α-Al$_2$O$_3$ substrate. The in-plane lattice mismatch between Ti$_2$O$_3$-LT and α-Al$_2$O$_3$ is approximately 8.4%, while that between Ti$_2$O$_3$-HT and α-Al$_2$O$_3$ is approximately 2.2 and 5.4% along (011) Ti$_2$O$_3$-HT and (100) Ti$_2$O$_3$-HT, respectively. When the PLD growth temperature is higher (900 °C), the Ti and O atoms have higher kinetic energies to rearrange themselves into the orthorhombic Ti$_2$O$_3$-HT phase to achieve a smaller mismatch with the substrate.

Superconductivity observed in Ti$_2$O$_3$-HT thin films

A metal-insulator transition (Supplementary Figure S11) was found for the Ti$_2$O$_3$-HT samples at approximately 370 K, which is much lower than that reported for the corundum-structured Ti$_2$O$_3$ (500 K). Hall effect measurements on the Ti$_2$O$_3$-LT and Ti$_2$O$_3$-HT thin films are shown in Supplementary Figure S12. Ti$_2$O$_3$-LT is a p-type semiconductor, which is consistent with previous work, whereas Ti$_2$O$_3$-HT is an n-type semiconductor. More importantly, the carrier concentration of Ti$_2$O$_3$-HT is on the scale of 10^{22} cm$^{-3}$, approximately one order of magnitude higher than that of Ti$_2$O$_3$-LT, which is the same order as that of normal metal.

The most important discovery is that the Ti$_2$O$_3$-HT samples were superconducting at low temperatures (Fig. 4a), while the Ti$_2$O$_3$-LT samples remained...
semiconducting (Fig. 4b). One unique property of the superconducting samples of Ti2O3 is the semiconducting transport observed in their high-temperature normal state, which is different from the behavior of common superconductor. In addition to the metal-insulator transition at ~370 K in Ti2O3-HT, a semiconductor-semiconductor transition (SST) was observed at ~110 K. A similar SST was observed in Mg[Ti2]O4, which is also a Ti3+ system. The SST in Mg[Ti2]O4 was believed to be a result of Ti-Ti dimerization instability, and the double-well Ti-Ti bond potential at the crossover changes from localized to itinerant electronic behavior.53 Most likely, the existence of superconductivity in the 3d3 system of Ti2O3 is related to the semiconducting normal state and SST, which warrants further investigation.

To exclude the possibility of superconductivity exclusively existing in the intermediate layer and to confirm its bulk nature, we studied the thickness dependence of the superconductivity in the orthorhombic Ti2O3-HT samples. Ti2O3-HT phase films were grown on α-Al2O3 (0001) substrates with thicknesses from ~10 to ~280 nm. As shown in Fig. 5a, we found that the critical transition temperature (Tc: onset) increases with the thickness and saturates at approximately 8 K when the
thickness is larger than 150 nm (Fig. 5b). When the sample thickness decreases to 10 nm, no superconductivity is observed above 1.8 K (the lowest measurement temperature). In addition to the thickness, the growth temperature is another important factor influencing the Tc of the orthorhombic-structured Ti2O3 samples. As shown in Table S1 and Supplementary Figure S13, samples (with the same thickness) deposited at lower temperatures exhibit lower Tc values, which could be a result of their lower degree of crystallinity. In fact, as summarized in Fig. 5c, the PLD growth temperature is the most critical factor determining the phase and superconductivity in Ti2O3 samples.

As shown in Fig. 6a, \(T_C \approx 8 \) K was obtained for Ti2O3-HT (sample HT-3 with a thickness of 168 nm), which to our knowledge is the highest \(T_C \) ever observed in binary-oxide superconductors. Figure 6b shows that a magnetic field can suppress the superconducting transition temperature of Ti2O3-HT. These behaviors were also observed in Ti2O3-HT films grown on other types of substrates (Supplementary Figure S14), which indicates that the superconductivity is an intrinsic property of the orthorhombic polymorph of Ti2O3. The contour plot shown in Fig. 6c summarizes the variation in the sample resistance as a function of the magnetic field and temperature, showing a phase diagram with a sharp phase boundary between the superconducting and semiconducting regimes.

As shown in Fig. 6d, the critical field, \(H_C \), increased with the decreasing temperature. Below 4 K, the critical field was larger than 9 T. In Fig. 6e, the critical transition fields at different temperatures are fitted to the Ginzburg-Landau (GL) equation:\(^{54} H_C(T) = H_C(0) \left(1 - \frac{t^2}{1 + t^2}\right)\), where \(t \) denotes a reduced temperature, \(T/T_c \). From the fitting, the upper critical field at zero temperature was estimated to be 21.9 T and the critical temperature to be 8.4 K.

The superconductivity was further confirmed by measuring the diamagnetic property of the Ti2O3-HT samples. As shown in Fig. 6f, the magnetization appears saturated at low temperatures, and the superconducting volume fraction is estimated to be more than 99% at 2 K (Supplementary Figure S15), indicating the clear bulk nature of the observed superconductivity. The smaller \(T_C \) observed in the magnetization measurement suggests that the superconductivity between 6 and 8 K could be filamentary. In addition, the broadened transition shown in Fig. 6f may imply the existence of some defects that formed during the film deposition.

Theoretical calculations

The physical properties of both Ti2O3 phases were further elucidated using density functional theory (DFT) calculations. More details of the DFT calculations can be found in the Supplementary Materials. The electronic structures of Ti2O3-LT and Ti2O3-HT are shown in Fig. 7a, b, respectively. To simulate the experimental conditions, we adopted the experimental lattice constants and relaxed the atomic positions based on the generalized gradient approximation with Hubbard \(U \) (GGA+U). However, as shown in Fig. 7c, the GGA+U calculations led to metallic states for both Ti2O3-LT and Ti2O3-HT (except in the large \(U \) limit for Ti2O3-LT), which was different from the experimental semiconducting results. Therefore, newly developed hybrid functional calculations were employed to recalculate the electronic structures based on the GGA+U relaxed structures. As shown in Fig. 7a, b, both Ti2O3-LT and Ti2O3-HT were predicted to be semiconductors with very narrow bandgaps close to the experimental values (0.108 eV and 0.124 eV, respectively, estimated from the optical absorption data in Supplementary Figure S16). As expected, both the highest valence band and lowest conducting band around the
Fermi level have contributions from the Ti 3d orbitals. More calculated results for Ti$_2$O$_3$-LT and Ti$_2$O$_3$-HT are shown in Supplementary Figure S17.

Most importantly, the superconductivity of Ti$_2$O$_3$ was observed only in the orthorhombic-structured Ti$_2$O$_3$ film and not in the corundum-structured bulk phase. Thus, the superconductivity observed in Ti$_2$O$_3$ is strongly polymorph-dependent. To our knowledge, only a few materials show polymorph-dependent superconductivity, including tin, zirconium, and CuSe$_2$. For tin, the β-phase (known as white tin) is superconducting, while the α-phase (known as gray tin) tin is semi-metallic. However, a recent breakthrough was made by Liao et al. upon the observation of superconductivity in few-layer stanene (ultrathin α-phase tin).

We believe that the exploration of polymorph dependence will attract more interest in the field of superconductor research. In the current stage, it is difficult for us to identify the mechanism for superconductivity in Ti$_2$O$_3$-HT films, which may be different from that in the Cu$_3^{2+}$ (3d9) and Fe$_2^{2+}$ (3d6) systems. One unique feature of the orthorhombic-structured Ti$_2$O$_3$-HT phase is its high carrier concentration (~1022/cm3), which is comparable to that of normal superconducting metals. The Bardeen-Cooper-Schrieffer (BCS) theory can describe the quantum-mechanical many-body state of interacting electrons in superconducting metals by considering electron-phonon (e-ph) coupling. We calculated the phonon-related properties of unstrained, nonmagnetic Ti$_2$O$_3$-HT, and the data for the phonon dispersion, total phonon DOS, and frequency-dependent e-ph coupling, $\lambda(\omega)$, are shown in Fig. 7d, e, f, respectively. Remarkably, the total e-ph coupling constant, λ, is 1.114, which is large enough to enable electrons to form Cooper pairs (for MgB$_2$ with $T_C = 40$ K, $\lambda = 0.73$). In contrast, much weaker e-ph coupling was obtained for Ti$_2$O$_3$-LT (Supplementary Figure S18, $\lambda = 0.46$). The BCS superconducting transition temperature was estimated using the standard Allen-Dynes McMillan equation. As shown in Fig. 7g, using a typical Coulomb pseudopotential, $\mu^* = 0.1$, and electron DOS at the Fermi level, a high T_C above 24 K can be estimated for Ti$_2$O$_3$-HT. The deviation between the experimental T_C and the calculation result might be a result of overestimating the electron DOS in the calculation or extrinsic factors such as structural defects and electronic inhomogeneity.
Here, we should note that because of the spin degree of freedom in Ti$_2$O$_3$: i.e., Ti ions have a spin of 1/2, superconducting mechanisms beyond the conventional BCS mechanism involving strong quantum fluctuations of magnetism, such as that in the case of cuprates and iron- pnictides/selenides, may play important roles. In fact, if magnetism is considered in the calculation, the ground state is antiferromagnetic for both Ti$_2$O$_3$-LT and Ti$_2$O$_3$-HT polymorphs (Supplementary Figure S19). Recently, efforts have been devoted to study the interplay between magnetism and superconductivity in cuprates, Fe-based superconductors and 2D oxide interfaces. Interestingly, similar to our case, Ti$^{3+}$ has been reported to play an important role in the coexistence of magnetism and superconductivity at the LaAlO$_3$/SrTiO$_3$ interface. Therefore, further studies to elucidate the superconductivity mechanism in orthorhombic-structured Ti$_2$O$_3$-HT with 3d^1 electrons will be interesting and may help boost the T_C in this class of materials.

Conclusion
In summary, we demonstrated the selective stabilization of a new orthorhombic phase of Ti$_2$O$_3$ in thin films grown on sapphire substrates. Moreover, as an indication of a strong structure-property correlation, the orthorhombic Ti$_2$O$_3$ films showed unexpected superconductivity at 8 K, which is absent in trigonal, corundum-structured Ti$_2$O$_3$. Our calculations revealed stronger e-ph coupling in orthorhombic-structured Ti$_2$O$_3$ compared to that in the bulk corundum phase. We envision that a further increase in the superconducting temperature could be accomplished by doping and pressure. From the perspective of fundamental science, the discovery of superconductivity in this 3d^1 electron system may provide a new platform to investigate titanite-based superconductors, which are complementary to the well-explored cuprates (3d^9) and iron-based (3d^6) systems. Importantly, Ti$_2$O$_3$ is earth-abundant, nontoxic and chemically stable, which are essential merits for potential power and communication...
applications. Furthermore, our study presents a novel path toward inducing emergent physical phenomena in thin films with newly stabilized polymorph phases, which is promising for advancing material exploration and device technologies.

Acknowledgements

This work is supported by the King Abdullah University of Science and Technology (KAUST). We also acknowledge the National Natural Science Foundation of China (Grant No. 11674055, No.11474146, No. U1532142) and the Hong Kong, Macao and Taiwan Science & Technology Cooperation Program (Grant No. 2015DFH10200).

Author details

1. Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
2. Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
3. School of Physics, Southeast University, Nanjing 211189, China.
4. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China.
5. Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
6. Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd., RL10, Richardson, TX 75080, USA.
7. Advanced Nanofabrication and Imaging Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
8. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
9. School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
10. Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
11. School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.

Conflict of interest

The authors declare no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

is available for this paper at https://doi.org/10.1038/s41427-018-0050-5.

Received: 11 November 2017 Revised: 28 February 2018 Accepted: 29 March 2018

Published online: 06 June 2018

References

1. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).
2. Chen, Z. et al. Low-symmetry monochinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv. Funct. Mater. 21, 133 (2011).
3. Haeni, I. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 (2004).
4. Kim, J. et al. Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Mater. 9, e359 (2017).
5. Klebeuker, J. E. et al. Route to achieving perfect B-site ordering in double perovskite thin films. NPG Asia Mater. 9, e406 (2017).
6. Song, S. et al. Ferroelectric polarization switching with a remarkably high activation energy in orthorhombic CaFeO3 thin films. NPG Asia Mater. 8, e242 (2016).
7. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).
8. Lee, J. H. et al. Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv. Mater. 18, 3125 (2006).
9. Wang, J. et al. High-performance photothermal conversion of narrow-bandgap TiO2 nanoparticles. Adv. Mater. 29, 1603730 (2017).
10. Tsuchiya, C. C. & Kirkley, J. R. Pilling symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000).
11. Schilling, A., Fantoni, M., Guio, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56 (1993).
12. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589 (2011).
13. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296 (2008).
14. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1-xFx. Nature 453, 761 (2008).
15. Wu, G. et al. Superconductivity at 56 K in samarium-doped SrFeAs. J. Phys. Condens. Matter 21, 142203 (2009).
16. Sweeney, A. R., Ruba, C. J. & Matthias, B. T. Superconductivity of the alkali tungsten bronzes. Phys. Lett. 15, 108 (1965).
17. Permecha, J. P. et al. Superconductivity in hexagonal tungsten bronzes. Phys. Lett. 24A, 565 (1967).
18. Uchida, Shin-ichi. High Temperature Superconductivity. 89–92 (Springer, Japan, 2015).
19. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).
20. Reid, T. B., Barus, M. D., Sibanda, M. & Keesom, P. H. Superconductivity in cubic and monoclinic “TIO”. J. Appl. Phys. 43, 2478 (1972).
21. Doyle, N. J., Hulm, J. K., Jones, C. K., Miller, R. C. & Taylor, A. Vacancies and superconductivity in titanium monoxide. Phys. Lett. 26A, 604 (1968).
22. Johnston, D. C., Prakash, H., Zchariasen, W. H. & Viswanathan, R. High temperature superconductivity in the Li–Ti–Cu ternary system. Mat. Res. Bull. 8, 777 (1973).
23. Johnston, D. C. Superconducting and normal state properties of Li+1/2Ti+1/2O3 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility. J. Low. Temp. Phys. 25, 145 (1976).
24. Satpathy, S. & Martin, P. M. Electronic structure of the superconducting oxide spinel Li2LiO2. Phys. Rev. B 36, 7269 (1987).
25. Zhang, C. et al. Enhanced superconductivity in TiO epitaxial thin films. npj Quantum Mater. 2, 2 (2017).
26. Kurokawa, H., Yoshimatsu, K., Sakata, O. & Ohtomo, A. Effects of phase fraction on superconductivity of low-valence eutectic titanate films. J. Phys. Appl. Phys. 122, 053502 (2017).
27. Yoshimatsu, K., Sakata, O. & Ohtomo, A. Superconductivity in Ti2O3 and γ-Ti2O3 films. Sci. Rep. 7, 12544 (2017).
28. Hulm, J. K., Jones, C. K., Hein, R. A. & Gibson, J. W. Superconductivity in the TiO and NbO systems. J. Low. Temp. Phys. 7, 291 (1972).
29. Makise, K. et al. Superconductivity in transparent zinc-doped In2O3 films having low carrier density: Sci. Technol. Adv. Mater. 9, 044028 (2008).
30. Mori, N. Superconductivity in transparent Sn-doped In2O3 films. J. Appl. Phys. 73, 1327 (1993).
31. Gu, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285 (2015).
32. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 105, 14262 (2008).
33. Ovsyannikov, S. V. et al. Structural stability of a golden semiconductor orthorhombic polymorph of Ti2O3 under high pressures and high temperatures. J. Phys. Condens. Matter 22, 375402 (2010).
34. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
35. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
37. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
38. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

39. Mooradian, A. & Raccah, P. M. Raman study of the semiconductor-metal transition in Ti$_2$O$_3$. Phys. Rev. B 3, 4253 (1971).

40. Kurtz, R. L. & Henrich, V. E. UHV-cleaved single crystal Ti$_2$O$_3$ (10T2) by UPS and XPS. Surf. Sci. Spectra 5, 182 (1998).

41. Shen, Z. et al. Stabilization of microcrystal $\lambda-Ti_3O_5$ at room temperature by aluminum-ion doping. Appl. Phys. Lett. 111, 191902 (2017).

42. Li, Y. et al. Orthorhombic Ti$_2$O$_3$: a polymorph-dependent narrow-bandgap ferromagnetic oxide. Adv. Funct. Mater. 28, 1705657 (2018).

43. Han, K. et al. Controlling Kondo-like scattering at the SrTiO$_3$-based interfaces. Sci. Rep. 6, 25455 (2016).

44. Wang, W. et al. Control of interfacial reactions for the growth of high-quality AlN epitaxial films on Cu(111) substrates. CrysEngComm 19, 7307 (2017).

45. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO$_3$/SrTiO$_3$ interface. Nat. Phys. 7, 767–771 (2011).

46. Dölen, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).