ABSTRACT: We examine a variant of so-called carbon nanotube peapods by packing C$_{60}$ molecules inside the open edge ducts of collapsed carbon nanotubes. C$_{60}$ insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C$_{60}$ over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C$_{60}$ solid cores.

KEYWORDS: Peapods, fullerenes, collapsed carbon nanotubes, silocrystals
We first consider the anticipated ease for C60 insertion into a CCNT. Figure 1 schematically shows on the left a C60 molecule which has a carbon-center to carbon-center distance of 0.7 nm and a more relevant van der Waals outer diameter of ~1.0 nm.2 The two-walled CCNT shown on the right side of Figure 1 has, using a simple continuum elasticity model, a duct bulb height \(d = 0.78 \text{ nm} \) and duct width \(L = 1.81 \text{ nm} \). Unless the duct bulb size increases (via C60-induced partial ungluing of the collapsed CNT), the C60 does not fit inside the duct.

Figure 1. Precursor materials for C60/CCNT hybrids. Left: An isolated C60 molecule, with diameter (carbon center to carbon center) 0.7 nm. The van der Waals interaction diameter (shadow) is somewhat larger at ~1 nm. Right: Cross-section of edge of fully collapsed two-walled CNT. A simple continuum elasticity model predicts a duct bulb height \(d = 0.78 \text{ nm} \) and duct width \(L = 1.81 \text{ nm} \). Unless the duct bulb size increases (via C60-induced partial ungluing of the collapsed CNT), the C60 does not fit inside the duct.

Which brings us to the question of whether it is feasible to insert C60 into the edge ducts of CCNTs. The results indicate that both \(d \) and \(L \) values slightly increase from single- to four-walled CCNTs. However, even for a four-walled CCNT, the \(d \) value is smaller than the threshold diameter for C60 insertion. For comparison available experimental data are also presented in the table.

Importantly, however, the open ducts of CCNTs are fundamentally very different from the central cylindrical hollow of uncollapsed CNTs. The opposite walls in a CNT are attracted to each other only by the graphitic inter layer binding energy (of order of 50 meV per atom) which allows ungluing of the edges of the core flattened region and swelling of the duct cross-section during C60 insertion (the C60 molecules have a higher binding energy with the graphitic layers compared to the interlayer binding of graphite). This flexibility allows the CCNT edge ducts to readily accept single or even multiple chains of C60. In a sense, the CCNT is a deformable medium and readily accepts and conforms to suitable inserted foreign species.

We now discuss experimental synthesis, transmission electron microscopy (TEM) characterization, and theoretical analysis of the hybrid C60/CCNTs, either produced in house or obtained commercially, whose end we remove by thermal oxidation. One to few-wall, relatively large inner diameter CCNTs are then obtained by sonication of the MWCNTs, which removes some of the core tubes in a telescoping fashion and collapses the remaining outer walls (more experimental data on CCNTs are presented in Supporting Information). Filling of the CCNT ducts with C60 is also performed in solution either in a separate subsequent sonication step (following first drying of the CCNTs to ensure removal of residual trapped solvent) or, more directly, in concert with the core extraction/collapse sonication process. We choose to insert C60 using a solution rather than vapor transport process as the former has been shown to an effective lower temperature, a much faster method to create conventional peapods. In addition solution based lowers entanglement and/or bundling of CCNTs, which in turn facilitates the ungluing of opposite walls in the CCNTs. We also choose n-hexane as a solvent in which, due to low solubility, C60 molecules form clusters instead of discrete solvated molecules. The direct interaction of C60 clusters and CCNTs results in effective filling of CCNTs. For the one-step collapsing/filling method, C60 and uncapped MWCNTs are dispersed in hexane and sonicated for 2 h using an ultrasonic probe. During sonication the temperature of the dispersion increases up to 80 °C due to mechanical energy transfer from the sonicator. We find that the elevated temperature is a key factor for effective filling. During the sonication process hexane lost to evaporation is replenished to ensure a consistent concentration of C60 and CCNTs. Different initial C60 concentrations yield different levels of duct filling, as discussed in detail below. See the Methods section for additional synthesis details. A statistical analysis of the TEM images taken from different parts of the TEM grid reveals that at optimum filling condition up to 70% of the CCNTs can be filled by different configurations of C60 molecules.

Figure 2A(i) shows a TEM image of the edge region of a two-walled CCNT into which C60 has been inserted. A chain-like row of C60 molecules can be clearly seen near the inner edge of collapsed tube ribbon. This and many related images recorded for different C60/CCNT orientations (see Supporting Information) clearly show that the C60s are situated in the open ducts near the curved edges of the collapsed tube.

The C60-C60 center-to-center distance along straight chain segments in the CCNT ducts is experimentally found (on average) to be 0.98 nm, in accord with the 1 nm spacing reported for conventional CNT peapods. Figure 2A(ii) and (iii) represents our theoretical results for a linear chain of C60 within the ducts of a two-walled CCNT. C60 insertion has increased the bulb height and width significantly compared to Figure 1: \(d \) increases from 0.78 to 1.32 nm and \(L \) increases from 1.81 to 2.18 nm. Not surprisingly, our calculated value of \(d \) for CCNTs with a linear chain of C60’s is close to the threshold diameter (1.25 nm) for encapsulating C60 in SWCNTs. The predicted C60-C60 distance in the linear chain in our calculations is 0.97 nm, consistent with experiment. It should be noted, however, that our simulations show that the strictly linear chain of C60’s is not particularly stable: the tendency is for the C60s to open the bulb up even more and assume a staggered configuration (thereby increasing

CCNT n	theoretical calculation	experiment		
	\(L \) (nm)	\(d \) (nm)	\(L \) (nm)	\(d \) (nm)
\(n = 1 \)	1.65	0.71		
\(n = 2 \)	1.81	0.78		
\(n = 3 \)	1.99	0.86		
\(n = 4 \)	2.19	1.03	2.5	0.94
the overall C60 density). Indeed, this is observed experimentally, as exemplified in Figure 2B.

By increasing the concentration of C60 during the solution based synthesis, the filling of ducts can be enhanced and the linear chain overwhelmed. Figure 2B(i) shows a five-wall CCNT edge where the duct has widened, and the inserted C60s have assumed a staggered configuration. Figure 2B(ii) and (iii) show corresponding model calculations for staggered C60s in two-wall CCNT (for simplicity and better comparison of duct cross section dimensions, all the model calculations presented in Figure 2 are for a two-walled tube—the wall number does not change the results substantively; see Table 1). The C60's are close-packed in the duct, which (see Figure 2B(iii)) has an increased width $L = 3.4$ nm to now accommodate the “double row” of C60s. Such a staggered packing of C60 molecules has been observed in CNT peapods and in filled BN tubes with diameters of 2 nm, but there the staggered chains tend to spiral along the axis of the tubes, whereas for CCNTs ducts the

Figure 2. High-resolution TEM image and theoretical modeling (top view and duct cross section) of (A) a double-wall CCNT filled with a linear chain of C60 molecules. (B) A five-walled CCNT filled with staggered C60 configuration. (C) A three-walled CCNT showing C60 dimers, a result of C60 close packing in a stagger configuration plus duct pressure combined with elevated temperature and/or electron beam stimulation. Dashed box in C(i) indicates a C60 pair forming dimers. Calculated values for dimensions of the bulb, L and d, and C60-C60 distance are indicated in the image. Note that for better comparison of duct cross section dimensions the result for double-walled CCNTs are presented in the image. The scale bar in all experimental images is 5 nm.

Figure 3. High-resolution TEM image of (A) a double-walled CCNTs in intermediate stage of reinflating. (B) A completely reinflated three-walled CCNT. (C) Modeling for change in width of a double-walled CCNT with diameter close to the one in the figure (A): (i) to (vi) different stages of filling/reinflation after the structures are relaxed at 300 K. The main change in the width of CCNT happens when the C60 molecules form a three-dimensional structure. Note that the width of CCNT with single layer C60 increases compared to the CCNT with linear chains of C60’s. Scale bars: (A and B) 5 nm.
helical degree of freedom is quenched. We remark that we have also observed C60-filled CCNTs, where regions of nearly linear chain configurations coexist end-to-end in the same duct with regions of staggered chains, and we have also observed staggered chains in single-walled CCNT. All of these observations support that the C60 configuration at the duct is independent of number of walls (see Supporting Information).

C60's stagger-packed into CCNT ducts experience anisotropic confinement pressure from the duct walls. As can be readily seen in the cross-section model views (iii) in Figure 2, C60's situated closer to the central axis of the CCNT tend to be pushed toward the edge by the collapsed graphene layers. The close-packing and enhanced pressure leads to distortions in the zigzag staggered chain and sets the stage for C60−C60 dimerization. Evidence for compressed C60 chains in a two-walled CCNT is presented in Figure 2C(i), where experimentally the C60−C60 distance along the duct axis is 0.98 nm, while the angled C60−C60 pair distance is 0.90 nm. A representative pair is outlined by the dashed box in Figure 2C(i). Such pairs likely represent well-known C60 dimerization,31−34 easily induced in the CCNT case by duct pressure combined with elevated temperature and/or electron beam stimulation; it is realized via the so-called 2 + 2 cycloaddition resulting from the breaking of two double bonds of neighboring C60 molecules. Our model calculations for the dimerized C60/CCNT case are shown in Figure 2C(ii) and (iii) (The results of similar model calculations for single- to four-walled CCNT are presented in Supporting Information, Table S1). It should be noted that although the value of L increases with increasing the wall number (see Table 1) due to the teardrop shape of the cross section (d is decreasing along L), the C60 molecules are always (independent of number of walls) pushed toward the edges by the collapsed graphene layer.

An interesting question is whether the C60 insertion process into CCNTs is self-limiting (at say the staggered chain level) or if it continues unchecked as long as sufficient C60 is available and the ducts remain free of foreign matter. We find strong evidence that, with sufficient C60 concentration in the preparation solution and sonication time, C60 insertion can continue until the CCNT is fully “reinflated” to a circular cross-section; the CNT has then a completely filled crystalline C60 core.

Figure 3 shows CCNTs at different stages of this overfilling and reinflation process. Figure 3A shows a TEM image over the full width of a CCNT (the contamination debris seen is likely predominantly on the outer surface of the tube). In the left part of the image, C60’s are observed in the two duct regions, forming incomplete linear chains. On the right side of the image, C60 span the entire interior width of the tube; here the outer projected width of the tube is also reduced. Considering the width of the flattened part, and accounting for the curvature of the ducts, the host tube here has a fully inflated diameter of approximately 5.8 nm, giving evidence that the right part of the tube is not yet completely circular and is still reinflating. Figure 3C shows a simple modeling—using molecular dynamic after relaxation at 300 K—for a double-walled CCNT at different steps (3 Ci to 3Ci) of reinflation, in which certain number of C60 molecules (presented below each image) are encapsulated in a supercell containing 12 unit cells of the examined CCNT (the starting configurations of Figure 3C at T = 0 K are presented in Figure S6). It is clear from the figures that if a CCNT fills with a single (two-dimensional) layer of C60 molecules (Ci) its diameter slightly increases compared to C60/CCNT with a linear chain (Ci) configuration. Thus, the decrease in diameter of the CCNT (on the right side of the image) reveals that the CCNT contains a three-dimensional crystal of C60 rather than a monolayer sheet. A comparison between the final C60/CCNT's configuration, presented in Figure 3C, and the starting configuration (at T = 0 K, see Figure S6) indicates that the encapsulated C60 molecules rearranged after relaxing the structure at 300 K and form more crystalline structure rather than an amorphous configuration. Figure 3B shows a different CCNT apparently completely filled with C60. This is the ultimate limit of C60 packing—the core of the reinflated, cylindrical CNT is completely filled with crystalline C60. We note also that the tube in Figure 3B has a diameter of 10 nm which is above the calculated critical diameter for a three-walled tube.12,35

The reinflation of CCNT is further supported by tilting a C60/CCNT around its axis in a TEM experiment. Figure 4A shows TEM images of a double-walled CCNT reinflated by C60 insertion. The image is a combination of three TEM images along the length of the tube and shows a high degree of filling. The arrows in the upper image show the parts of the C60/CCNT where there are gaps between C60 molecules. This section of the tube possesses a larger width, indicating that tube was collapsed before C60 insertion. The inset in (A) shows high magnification image of the middle part (shown by rectangle). Higher magnification images of the right side of the tube (B) before and (C) after tilting the tube by 20° around the tube axis. Scale bars: 10 nm.

The inset shows high magnification image of the middle part (indicated by rectangle). Figure 4B,C shows the right section of the same tube before and after the tube is tilted around its axis by about 20°, respectively. After tilting the projection image of the empty region, with a nearly flat structure, is narrowed (6.7 nm) compared to the one before tilting (7.4 nm). In contrast, as shown in Figure 4B,C, the middle part of the tube displays no change in diameter, strongly supporting a full reinflation. A simple modeling indicating change in the diameter of an empty CCNT and a half-full reinflated CCNT is presented in Figure S4. Additional TEM images of reinflated tubes before and after tilting are also presented in Supporting Information (Figure S5). Interestingly, the constraint of a partially reinflated CCNT is fundamentally different from the cylindrical constraint of a fully inflated tube, allowing an even richer family of structures than afforded by silicocrysts.

Methods. Sample Preparation and Characterization. The caps of highly crystalline arc discharge grown MWCNTs (either produced in house11 or obtained commercially; MER...
CCNTs are simulated by introducing 12 C60 molecules at both edges of the CCNT. The C60/MWCNT mixture is dispersed in 1% weight per volume solution of sodium dodecyl sulfate (SDS, Sigma-Aldrich 99%) in water and sonicated for 1 h. The dispersion is centrifuged for 1 h at 20 000 g. The supernatant is mixed with methanol, and the precipitated material is collected. In the second approach the uncapped CNTs are first dispersed in 1% weight per volume solution of SDS in water and sonicated for 1 h to synthesis CCNTs. The CCNTs are then separated by centrifugation and filtration followed by overnight heat treatment in a vacuum oven at 200 °C to remove the residual solvent in the CCNTs. The insertion of C60 in CCNTs is performed in the same manner described above by dispersing and sonication of the mixture of CCNT and C60 in hexane.

Following solution synthesis, the C60-filled CCNT samples are dried and then dispersed on TEM grids using 1,2-dichloromethane, followed by a 2 h heat treatment in a vacuum oven at 200 °C. High-resolution TEM imaging is performed using a JEOL 2010 (with a LaB6 gun) operated at 80 keV.

Computational Methodology. Molecular dynamics (MD) simulations are performed using the large-scale atomic/molecular massively parallel simulator (LAMMPS). The interatomic interactions are characterized by the adaptive intermolecular reactive empirical bond order (AIREBO) potential. The AIREBO potential consists of the reactive empirical bond order (REBO) term for short-range van der Waals interaction ($r < 2$ Å), a Lennard-Jones term defining long-range van der Waals interaction ($2 < r < 10.2$ Å), and a torsion term describing diverse dihedral angle preferences.

The CCNTs are built by considering an armchair (n,n) configuration, where the consecutive layers are created with a chirality of (n + S, n + S) with respect to the previous layer (interlayer distance ~3.4 Å). Then, four different systems are created from 1 up to 4-walls) where 12 unit cells are considered in order to avoid self-interactions. The C60 filled CCNTs are simulated by introducing 12 C60 molecules at both edges of the CCNT. The MD simulations are performed under periodic boundary conditions, and the intercell separation is kept at 30 nm to avoid lateral interactions. A constant temperature of 0 K is ensured during the simulation to eliminate the atomic vibration. The molecular dynamics (MD) simulation is carried out under a constant number of atoms and volume, the temperature is controlled by a Berendsen thermostat with a 1 ps damping constant. The temperature is increased by a constant rate equal to 3.0 K/ps up to 298 K; subsequently, the MD simulation is continued for another 800 ps using a time step of 1 fs.

REFERENCES

1. Smith, B. W.; Monthieux, M.; Luzzi, D. E. Nature 1998, 396 (6709), 323–324.
2. Khlobystov, A. N.; Britz, D. A.; Aradan, A.; Briggs, G. A. D. Phys. Rev. Lett. 2004, 92 (24), 245507.
3. Frohlich, T.; Scharff, P.; Schleife, W.; Romanus, H.; Gupta, V.; Siegmund, C.; Ambacher, O.; Spiess, L. Carbon 2004, 42 (12–13), 2759–2762.
4. T. Mickelson, W.; Aloni, S.; Han, W. Q.; Cumings, J.; Zettl, A. Science 2003, 300 (5618), 467–469.
5. Hornbaker, D. J.; Kahng, S. J.; Misra, S.; Smith, B. W.; Johnson, A. T.; Mele, E. J.; Luzzi, D. E.; Yazdani, A. Science 2002, 295 (5556), 828–831.
6. Liu, X.; Pichler, T.; Knupfer, M.; Golden, M. S.; Fink, J.; Kataura, H.; Achiya, Y.; Hirohara, K.; Iijima, S. Phys. Rev. B 2002, 65 (4), 045419.
7. Yoon, G. G.; Mazzoni, M. S. C.; Louie, S. G. Appl. Phys. Lett. 2003, 83 (25), 5217–5219.
8. Utko, P.; Nygard, J.; Monthieux, M.; Noe, L. Appl. Phys. Lett. 2006, 89 (23), 233118.
9. Hodak, M.; Girifalco, L. A. Phys. Rev. B 2003, 67 (7), 075419.
10. Spudat, C.; Meyer, C.; Goss, K.; Schneider, C. M. Phys. Status Solidi B: Basic Solid State Phys. 2009, 246 (11–12), 2498–2501.
11. Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Nature 1995, 377 (6543), 135–138.
(12) Benedict, L. X.; Chopra, N. G.; Cohen, M. L.; Zettl, A.; Louie, S. G.; Crespi, V. H. *Chem. Phys. Lett.* 1998, 286 (5–6), 490–496.
(13) He, M.; Dong, J.; Zhang, K.; Ding, F.; Jiang, H.; Loiseau, A.; Lehtonen, J.; Kauppinen, E. I. *ACS Nano* 2014, 8 (9), 9657–9663.
(14) Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. *Science* 2008, 319 (5867), 1229–1232.
(15) Son, Y.-W.; Cohen, M. L.; Louie, S. G. *Nature* 2006, 444 (7117), 347–349.
(16) He, M.; Dong, J.; Zhang, K.; Ding, F.; Jiang, H.; Loiseau, A.; Lehtonen, J.; Kauppinen, E. I. *ACS Nano* 2014, 16 (5), 1921–1929.
(17) Fan, J.; Yudasaka, M.; Yuge, R.; Futaba, D. N.; Hata, K.; Iijima, S. *Carbon* 2007, 45 (4), 722–726.
(18) Wang, Q.; Kitaura, R.; Yamamoto, Y.; Arai, S.; Shinohara, H. *Nano Res.* 2014, 7 (12), 1843–1848.
(19) Rochefort, A. *Phys. Rev. B* 2003, 67 (11), 115401.
(20) Gobre, V. V.; Tkatchenko, A. *Nat. Commun.* 2013, No. 4, 2341.
(21) Choi, D. H.; Wang, Q.; Azuma, Y.; Majima, Y.; Warner, J. H.; Miyata, Y.; Shinohara, H.; Kitaura, R. *Sci. Rep.-UK* 2013, No. 3, 1617.
(22) Yudasaka, M.; Ajiwa, K.; Suemura, K.; Ichihashi, T.; Hashimoto, A.; Iijima, S. *Chem. Phys. Lett.* 2003, 380 (1–2), 42–46.
(23) Khlobystov, A. N.; Britz, D. A.; Wang, J.; O’Neil, S. A.; Poliakoff, M.; Briggs, G. A. D. J. *Mater. Chem.* 2004, 14 (19), 2852–2857.
(24) Noe, L.; Monthioux, M. Liquid phase synthesis of “peapods” at room temperature. In *International Conference on Carbon “Carbon’04*, Ext. Abstract (CD-ROM), Oral/C105, 2004.
(25) Simon, F.; Kuzmany, H.; Rauf, H.; Pichler, T.; Bernardi, J.; Peterlik, H.; Korecz, L.; Fulop, F.; Janossy, A. *Chem. Phys. Lett.* 2004, 383 (3–4), 362–367.
(26) Simon, F.; Peterlik, H.; Pfeiffer, R.; Bernardi, J.; Kuzmany, H. *Chem. Phys. Lett.* 2007, 445 (4–6), 288–292.
(27) Smith, B. W.; Luzzi, D. E. *Chem. Phys. Lett.* 2000, 321 (1–2), 169–174.
(28) Kim, K.; Lee, Z.; Malone, B. D.; Chan, K. T.; Aleman, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. *Phys. Rev. B* 2011, 83 (24), 245433.
(29) Chamberlain, T. W.; Popov, A. M.; Knizhnik, A. A.; Samoilov, G. E.; Khlobystov, A. N. *ACS Nano* 2010, 4 (9), 5203–5210.
(30) Bandow, S.; Takizawa, M.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. *Chem. Phys. Lett.* 2001, 347 (1–3), 23–28.
(31) Moret, R.; Launois, P.; Wagberg, T.; Sundqvist, B.; Agafonov, V.; Davydov, V. A.; Rakhmanina, A. V. *Eur. Phys. J. B* 2004, 37 (1), 25–37.
(32) Sundqvist, B. Polymeric fullerene phases formed under pressure. In *Fullerene-Based Materials: Structures and Properties*; Prassides, K., Ed.; Springer-Verlag: Berlin, 2004; Vol. 109, pp 85–126.
(33) Smith, B. W.; Monthioux, M.; Luzzi, D. E. *Chem. Phys. Lett.* 1999, 315 (1–2), 31–36.
(34) Han, S. W.; Yoon, M.; Berber, S.; Park, N.; Osawa, E.; Ihm, J.; Tomanek, D. *Phys. Rev. B* 2004, 70 (11), 113402.
(35) Xiao, J.; Liu, B.; Huang, Y.; Zuo, J.; Hwang, K. C.; Yu, M. F. *Nanotechnology* 2007, 18 (39), 395703.
(36) Mughal, A.; Chan, H. K.; Weaire, D. *Phys. Rev. Lett.* 2011, 106 (12), 1.
(37) Hirahara, K.; Suemura, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. *Phys. Rev. Lett.* 2000, 85 (25), 5384–5387.
(38) Plimpton, S. *J. Comput. Phys.* 1995, 117 (1), 1–19.
(39) Stuart, S. J.; Tutein, A. B.; Harrison, J. A. *J. Chem. Phys.* 2000, 112 (14), 6472–6486.
(40) Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. *Phys.: Condens. Matter* 2002, 14 (4), 783–802.