In vitro gas production of high forage diets incubated with two live yeast (Biosaf SC47 and Procreatin 7)

A M A ELMASRY1, G D MENDOZA2, L A MIRANDA3, J A MARTÍNEZ4, G VÁZQUEZ5 and F X PLATA6

Universidad Autónoma Chapingo, Departamento de Zootecnia, km 38.5 carr. México–Texcoco. Chapingo, Estado de México, México. CP 5623

Received: 14 August 2017; Accepted: 18 August 2018

Key words: Alfalfa hay, In vitro digestibility, Metanol, Probiotics, Rumen gases

The effect of yeast cultures in animal production has been well documented (Chaucheyras-Durand and Durand 2010) and the relationships between nutritional characteristics and in vitro gas production for gramineous and leguminous forages have been established (Zhong et al. 2016). However, the interaction with different kinds of probiotics is not clear. For that reason, the aim of the present study was to determine the effects of two yeast cultures dosed at the same CFU per gram of substrate on in vitro digestibility, methane and CO2 productions of high forage diets.

Treatments were arranged in a 2 × 3 factorial design with two high forage diets (alfalfa and oat hay) prepared adding a proportion of 80% forage with 20% sorghum grain for the incubations and two types of probiotics (Procreatin 7® and Biosaf SC47®, both marketed by Societe Industrielle Lesaffre, France), tested at 3 inclusion levels (0, 1.5 and 3.0 × 107 CFU/g DM). Feeds were analysed for proximate composition (AOAC 1996).

The in vitro kinetics of gas production was determined following the technique of Menke and Steingass (1988), using 0.5 g sample of oat or alfalfa diets. Previously, each mixture was prepared with each probiotic to obtain cero, 1.5 and 3.0 × 107 CFU/g of DM. Yeast concentrations were estimated to represent doses of 0, 1 and 2 g/day per ruminant 25 kg/BW. Rumen liquor was obtained from male and female sheep (34±1.6 kg BW) fed with a 50:50 concentrate: forage ratio. Rumen liquor was flushed with CO2 before use as inoculum. Three incubation runs were performed in different weeks. Bottles were inoculated within each incubation run. For each run, 3 substrate-negative controls were also included. Gas production volumes were measured using a manometer, after 2, 4, 6, 8, 10, 14, 18, 24, 30, 36, 42, 48, 60 and 72 h of inoculation. Total gas (Vmax) values were corrected for the blank incubation. In each measurement, the CO2 was estimated (Statham and Williams 1983). Methane (CH4) production was calculated from the methane concentration in each gas sample and the corresponding total gas production.

The N-NH3 concentrations were determined according to Searle (1984). After incubation, the contents of each serum bottle were filtered and fermentation residues were used to estimate DM digestibility (DMD).

Gas production kinetic parameters were analysed according to a completely randomized design, testing linear and quadratic effects of yeast levels. The means were compared by Tukey’s test (Steel et al. 1997).

The chemical composition of ingredients and diets are shown in Table 1.

The DMD of the oat diet was higher than alfalfa diet; consequently, Vmax was greater in the oat diet (Fig. 1). The reduction in the lag phase in oat is most likely because the

Table 1. Nutritional composition of the high forage diets

Item (%)	Alfalfa hay	Oat hay	Sorghum grain	Alfalfa SD	Oat SD
CP	18.49	10.3	10.55	18.22	0.249
NDF	46.69	46.29	21.11	41.57	0.614
ADF	8.47	8.45	7.30	8.23	0.08
NFC	22.44	68.88	34.52	62.17	0.80
Ash	3.90	3.55	2.85	3.69	0.05

Fig. 1. In vitro gas production for high forage diets.
Table 2. Main effects of high forage diets and commercial probiotics on ruminal and gas production parameters

Parameter	a	L	DDM (%)	CO2*	CH4*	N-NH3**
Alfalfa	324.99	3.68	68.49	96.17	52.33	8.39
Oat	442.68	1.78	73.72	78.04	40	5.73
SE	3.702	0.06	2.61	3.35	3.45	0.457
Biosaf (mg/kg)						
0	375	2.66	71.1	95.6	44.2	6.3
20	388	2.58	73.1	85.4	66.7	7
40	399	2.89	74.41	103.7	47.66	7.11
Forage	0.0001	0.0001	0.022	0.0002	0.007	0.0002
Biosaf L1	0.008	0.52	0.56	0.01	0.009	0.43
Q2	0.84	0.74	0.69	0.14	0.65	0.73
Procreatin L1	0.21	0.03	0.03	0.64	0.66	0.08
Q2	0.76	0.41	0.32	0.92	0.56	0.6

a. Vmax (ml/g DM); L, Lag (h); *ml/g DMD; **mg/100 ml

Parameter	a	L	DDM (%)	CO2*	CH4*	N-NH3**
Oat						
SE	26.1	0.47	2.38	5.21	5.51	1.07
Biosaf (mg/kg)						
0	378	2.8	78.6	94.9	45.7	6.8
20	385	2.93	75.2	98	48.7	8.15
40	388	2.93	75.2	98	48.7	8.15
Forage	0.0001	0.0001	0.022	0.0002	0.007	0.0002
Biosaf L1	0.008	0.52	0.56	0.01	0.009	0.43
Q2	0.84	0.74	0.69	0.14	0.65	0.73
Procreatin L1	0.21	0.03	0.03	0.64	0.66	0.08
Q2	0.76	0.41	0.32	0.92	0.56	0.6

gramineous forages are more quickly fermented (Zhong et al. 2016). The higher production of greenhouse gases in alfalfa diet results from a greater total activity of ruminal bacteria and methanogenic archaea associated with a lower concentration of ruminal fermentable carbohydrates (Mohammadzadeh et al. 2014). This reduction, affected bacterial production and increased the ammonia-N concentrations (Brito et al. 2014).

Table 2 shows the effects of the probiotics on in vitro gas production parameters. There was a linear effect (P<0.008) on Vmax with Biosaf®, while Procreatin® did not modify this parameter (P>0.21). The higher gas production with Biosaf was associated with an increased production of greenhouse gases according to the added probiotic quantity (AlZahal et al. 2014). Elghandour et al. (2016) reported a similar effect with the addition of S. cerevisiae to the diet and showed that yeast increased the methane production; this effect was attributed to the ability of the yeast to shift H2 utilization from methanogenesis to reductive acetogenesis through the homoacetogenic bacteria that can produce acetate from CO2 and H2.

Lag time decreased in response to Procreatin (linear, P<0.03), confirming that yeast strains may act differently in the rumen. Other studies also reported that the addition of yeast cultures decreased the lag time (Elghandour et al. 2014). This reduction, affected bacterial production and increased the ammonia-N concentrations (Brito et al. 2014).

The reduction in the lag time results in increased digestibility (Tang et al. 2008), confirming that yeast strains may act differently in the rumen. Several studies have shown that probiotics based on S. cerevisiae increase the number of cellulytic bacteria (Pinloche et al. 2013); however, the fact that Procreatin did not stimulate gas production suggests that its mechanism of action may be different in some microbial communities.

Total CO2 and methane concentrations were higher with the addition of Biosaf SC 47 (linear, P<0.01 and P<0.009, respectively); however in other studies, the total enteric CH4 production expressed as grams/day was reduced by yeast dose feed (Hernández et al. 2017).

Ammonia-N production tended (P<0.08) to increase with Procreatin 7 addition, but not with addition of Biosaf SC47. In contrast, other studies found that the addition of yeast at a suitable level was beneficial for a more efficient use of the N source for microbial protein synthesis (Mao et al. 2013), Hristov et al. (2010) also found an increment in the overall use of ammonia-N and increased microbial protein synthesis rates with the addition of yeast; however, ammonia-N concentrations in this study were low and indicate inefficiency of the system.

SUMMARY

The aim of this experiment was to determine the effect of two probiotics administered at the same doses at two high forage diets (alfalfa or oat hay), using the in vitro gas production kinetics recording dry matter digestibility, CH4 and CO2 production. Treatments were arranged as a 2 × 2 factorial experiment with 2 sources of forages and 2 types of probiotics, tested at 3 inclusion levels (0, 1.5 and 3.0 × 107 CFU/g). Ruminal and and gas production parameters, including in vitro DM digestibility were complete different with oats than alfalfa diets. Procreatin increased in vitro DM digestibility and reduced the lag time linearly with dose. Also proteolysis tended to be increased linearly (P<0.08) with procreatin. Whereas a linear effect was observed in Vmax with Biosaf, this effect resulted in greater productions of CH4 and CO2. Consequently, Biosaf resulted in greater productions of greenhouse gases than Procreatin.

REFERENCES

AOAC. 1996. *Official Methods of Analysis*. Vol. 1, 15 edn. Association of Official Analytical Chemists, Washington D.C.

AlZahal O, Dionissopoulos L, Laarman A H, Walker N and McBride B W. 2014. Active dry *Saccharomyces cerevisiae* can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. *Journal of Dairy Science* 97(12): 7751–63.

Brito A F, Tremblay G F, Bertrand A, Castonguay Y, Bélanger G, Michaud R, Lafrenière C, Martineau R and Berthiaume R. 2014. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows. *Journal of Dairy Science* 97(11): 6970–90.

Chaucheyras-Durand F and Durand H. 2010. Probiotics in animal nutrition and health. *Beneficial Microbes* 1(1): 3–9.

Elghandour M M Y, Kholif A E, López S, Mendoza G D, Odongo N E and Salem A Z M. 2016. *In vitro* gas, methane, and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses in response to the supplementation with different live yeast additives. *Journal of Equine Veterinary Science* 38: 64–71.

Hernández A, Kholif A E, Elghandour M M Y, Camacho L M, Cipriano M M, Salem A Z M, Cruz H and Ugbofu E A. 2017.
Effectiveness of xylanase and *Saccharomyces cerevisiae* as feed additives on gas emissions from agricultural calf farms. *Journal of Cleaner Production* **148**: 616–23.

Hristov A N, Varga G, Cassidy T, Long M, Heyler K, Karnati S K R, Corl B, Hovde C J and Yoon I. 2010. Effect of *Saccharomyces cerevisiae* fermentation product on ruminal fermentation and nutrient utilization in dairy cows. *Journal of Dairy Science* **93**: 682–92.

Mao H L, Mao H L, Wang J K, Liu J X and Yoon I. 2013. Effects of *Saccharomyces cerevisiae* fermentation product on *in vitro* fermentation and microbial communities of low-quality forages and mixed diets. *Journal of Animal Science* **91**: 3291–98.

Menke K H and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and *in vitro* gas production using rumen fluid. *Animal Research and Development* **28**: 7–55.

Mohammadzadeh H, Yáñez-Ruiz D R, Martínez-Fernandez G and Abecia L. 2014. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. *Anaerobe* **29**: 52–58.

Pinloche E, McEwan N, Marden J, Bayourthe C, Auclair E and Newbold C J. 2013. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. *PLoS ONE* **8**: e67824.

Searle P L. 1984. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. *Analyst* **109**: 549–68.

Statham P J and Williams P J B. 1999. The automated determination of dissolved organic carbon by ultraviolet photooxidation, pp. 421–37. *Methods of Seawater Analysis*. (Eds) Grasshoff K, Kremling K and Ehrhardt M. Wiley-VCH Verlag GmbH. Weinheim, Germany.

Steel G D R, Torrie J H and Dickey D A. 1997. Principles and procedures of statistics: A biometrical approach. 3rd edn. McGraw-Hill, New York, NY.

Tang S X, Tayo G O, Tan Z L, Sun Z H, Shen L X, Zhou C S, Xiao W J, Ren G P, Han X F and Shen S B. 2008. Effects of yeast culture and fibrolytic enzyme supplementation on *in vitro* fermentation characteristics of low-quality cereal straws. *Journal of Animal Science* **86**(5): 1164–72.

Zhong R, Fang Y, Sun H, Wang M and Zhou D. 2016. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an *in vitro* gas production technique. *Journal of Integrative Agriculture* **15**: 414–23.