Beyond linear regression: mapping models in cognitive neuroscience should align with research goals

Anna A. Ivanova,1,2 Martin Schrimpf,1,2,5 Stefano Anzellotti,3 Noga Zaslavsky,1,5 Evelina Fedorenko,1,2 and Leyla Isik4

1Department of Brain and Cognitive Sciences, MIT
2McGovern Institute for Brain Research, MIT
3Department of Psychology, Boston College
4Department of Cognitive Science, Johns Hopkins University
5Center for Brains, Minds and Machines, MIT

Abstract

Many cognitive neuroscience studies use large feature sets to predict and interpret brain activity patterns. Feature sets take many forms, from human stimulus annotations to representations in deep neural networks. Of crucial importance in all these studies is the mapping model, which defines the space of possible relationships between features and neural data. Until recently, most encoding and decoding studies have used linear mapping models. Increased availability of large datasets and computing resources has allowed some researchers to employ more flexible nonlinear mapping models instead; however, the question of whether nonlinear mapping models can yield meaningful scientific insights remains debated. Here, we discuss the choice of a mapping model in the context of three overarching desiderata: predictive accuracy, interpretability, and biological plausibility. We show that, contrary to popular intuition, these desiderata do not map cleanly onto the linear/nonlinear divide; instead, each desideratum can refer to multiple research goals, each of which imposes its own constraints on the mapping model. Moreover, we argue that, instead of categorically treating the mapping models as linear or nonlinear, we should instead aim to estimate the complexity of these models. We show that, in many cases, complexity provides a more accurate reflection of restrictions imposed by various research goals. Finally, we outline several complexity metrics that can be used to effectively evaluate mapping models.
1. Introduction

In recent decades, neuroscientists have witnessed a massive increase in the amount of available data, as well as in the computational power of the tools we can apply to the data. As a result, we can now leverage huge datasets to build powerful models of brain activity. In this era of new opportunities, it is important to be mindful of conceptual choices we make before modeling our data. This paper discusses one such choice: the choice of a mapping model that relates features of interest to brain responses.

When studying a brain circuit, area, or network, it is often useful to formulate and test hypotheses about features that elicit a response in the relevant neural units\(^1\) (a single cell, a population of neurons, a brain area, etc.). The features can be stimulus-based (Figure 1A), behavior-based (Figure 1B), or based on responses in other neural units, within the same brain or a brain of another individual (Figure 1C). The exact source of the features varies: common sources include human annotations (e.g., “faces” and “scenes”), empirical measurements (e.g., behavioral or neural responses), and outputs of a computational model (e.g., a vector of responses to each image in a layer of a deep neural network (DNN); Figure 1D). To relate a set of features to brain data, we need to establish a mapping between them.

Why is a mapping necessary? A mapping-free model of brain function would use features of interest and a set of fixed parameters to predict neural activity directly. For instance, given some information about the stimulus, the computational model would predict the exact firing rate of a particular neuron or change in BOLD activity in a given voxel. However, mapping-free models in cognitive neuroscience today are almost always infeasible. One limitation is a mismatch between the granularity of our theoretic predictions and the measurements to be modeled. For instance, we might want to test a model of brain function that predicts an increased firing rate in a neuron given certain stimuli but does not specify the exact amounts of that increase. The second limitation is the lack of a priori knowledge about individual functional differences that anatomy fails to fully explain. Thus, we might want to test our predictions against the neural data without deciding a priori which neural units (or combinations thereof) might encode the features of interest. The third limitation is the data that we use, which typically provide a noisy and/or indirect measure of neural activity. The presence of noise and/or an underdetermined linking function between our predictions and our measurements means that we often want to incorporate some free parameters to infer this information from the data. All in all, when modeling neural data, some level of fitting is almost always required.

\(^1\) Note that the neural data being fitted is not necessarily the neural recording itself: researchers may choose to predict the average firing rate, power in a particular frequency band, or beta coefficients from the general linear model (GLM) of fMRI responses (King et al., 2020).
Figure 1. The encoding/decoding modeling framework in cognitive neuroscience. (A) Studies investigating the effect of external stimuli on brain activity start with the stimulus, extract its features of interest, and use a mapping model to establish the mapping between these features and a neural variable extracted from the data recorded during/after stimulus presentation. (B) In other studies, researchers extract features associated with participants’ behavior and map those onto the neural variable recorded before/during this behavior. (C) Another class of studies describes the mapping between activity in different brain regions where neural variables serve as the features. (D) In recent years, more and more studies replace hand-crafted features, like those shown in (A), with high-dimensional feature vectors derived from models of brain function, such as neural networks.
Figure 2. The distinction between a model of brain function and a mapping model. A model of brain function aims to mimic the brain, but does not directly map onto neural data. Our focus is on mapping models, which link a feature set to a neural variable. The mapping model depicted here uses features derived from a model of brain function (like in Figure 1D).

A mapping model is a model that relates features of interest and neural data\(^2\). Its main distinguishing feature is the presence of free parameters whose values are determined in the process of training the model on neural data. This makes mapping models meaningfully different from models of brain function, which aim to mimic neural computations but are not trained on neural data (Figure 2). In principle, a model of brain function can also have its parameters trained or fine-tuned using neural data (Toneva & Wehbe, 2019); in this case, the distinction between the two becomes blurred. In practice, however, the majority of studies today separate these two steps: a model of brain function can be used to derive features of interest, and a mapping model is then fitted to link these features and neural data.

Mapping models have many properties that researchers need to take into account, but the most common distinction is drawn between (A) a linear mapping model (such as linear regression) and (B) a nonlinear mapping model (such as a neural network).

2. The controversy

Today, the vast majority of cognitive neuroscience studies use linear mapping models (such as linear regression). Linear mapping models are ubiquitous across domains (including vision, audition, and language) and recording techniques (from single unit recordings to non-invasive measures such as M/EEG and fMRI). An overwhelmingly common way to combine models of

\(^{2}\) In this paper, we discuss both encoding mapping models, i.e. models that map from the features of interest to the neural variable, and decoding mapping models, i.e. models that map from the neural variable to the features of interest (Figure 1). Others have discussed the relative merits of the two approaches (Holdgraf et al., 2017; King et al., 2020; Kriegeskorte & Douglas, 2019; Naselaris et al., 2011); our arguments in this paper apply to both mapping directions, unless specified otherwise.
brain function and mapping models is to use so-called linearized models, where a predefined nonlinearity is applied to a stimulus and/or a neural variable to derive a set of features, which are then linked to neural data using a linear mapping model. Linearized models were first established in sensory neuroscience (e.g., Aertsen & Johannesma, 1981) and have become the predominant approach, particularly in encoding models (Naselaris et al., 2011; van Gerven, 2017; Wu et al., 2006).

One of the major reasons linear mapping models have become so common is a practical one: they can be fitted using standard statistical techniques that require little data and modest amounts of computation. However, recent advances in machine learning (ML), coupled with an increased availability of computing resources, have enabled neuroscientists to explore a much broader range of modeling techniques (Bzdok et al., 2017). The concurrent increase in the size of available datasets (e.g., Chang et al., 2019; Majaj et al., 2015; Schoffelen et al., 2019) has enabled researchers to train large-scale mapping models without overfitting them. As a result, a number of applied neuroscience studies have leveraged the power of ML-based methods to build flexible nonlinear mapping models and use them to identify neural correlates of brain disorders (e.g., Hasanzadeh et al., 2019; Kazemi & Houghten, 2018; Kim et al., 2016; Leming et al., 2020) and of behavioral traits (e.g., Kumar et al., 2019; Morioka et al., 2020; Xiao et al., 2019).

Although the practical justifications for restricting ourselves to linear mapping models no longer apply (cf. Section 4), many researchers still heavily rely on them, arguing that there are several theoretical reasons why linear mappings are preferable. Some of the common arguments in favor of linear mapping models are the following:

1. Linear mapping models facilitate a comparison of predictive accuracy across feature sets (e.g., Caucheteux & King, 2020; Jain & Huth, 2018; Schrimpf et al., 2018, 2021; Yamins et al., 2014).
2. Linear mapping models estimate weights for individual features, making the mapping more interpretable (e.g., Anderson et al., 2017; Lee Masson & Isik, 2021; Naselaris et al., 2011; Sudre et al., 2012; cf. Haufe et al., 2014; Kriegeskorte & Douglas, 2019).
3. Linear mapping models are more biologically plausible: they approximate readout by a downstream area and can therefore indicate what information is available to the rest of the brain (e.g., Kamitani & Tong, 2005; Kriegeskorte, 2011).

More generally, the three desiderata mentioned above — predictive accuracy, interpretability, and biological plausibility — are commonly cited as important considerations for choosing a mapping model. However, the relationship between each desideratum and the linearity requirement is not as straightforward as it might appear. In the following section, we critically review these desiderata and show that each of them, in fact, can refer to several distinct research

3 See, e.g., the online discussion of the proposal that served as a precursor to this paper: https://openreview.net/forum?id=-o0dOwashib
goals (not just the ones listed above), which place very different demands on the space of mappings to be considered. Thus, it is the specific research goal, not a general desideratum like “interpretability”, that should dictate the choice of the optimal mapping model.

3. How do we use mapping models?

To choose the best mapping model, we first need to specify the goal that we are trying to achieve (Kording et al., 2020; Kriegeskorte, 2011). The goal, of course, can be defined at various levels of granularity. Here, we focus on specific goals a researcher might want to accomplish by training a mapping model on their data (as opposed to discussing high-level goals, such as curing Alzheimer’s or building artificial general intelligence).

We categorize research goals under the three desiderata commonly cited in favor or against nonlinear mapping models — predictive accuracy, interpretability, and biological plausibility. We show that each desideratum, in fact, corresponds to several distinct goals with their own mapping model requirements, and that the linearity requirement only holds for some of the goals. Within each desideratum, we arrange the goals from the most restrictive to the least restrictive.

3.1. Predictive accuracy

In neuroscience, as in other fields, scientific progress is driven by the generation of new hypotheses, followed by the testing of the hypotheses’ predictions against experimental data, and then by the selection of the best (most accurate) hypothesis (or generation of new hypotheses if none of the current hypotheses are good enough). In the encoding/decoding framework, a hypothesis can be operationalized as a set of features hand-crafted by the researchers (e.g., Kanwisher et al., 1997), derived from a model of brain function (e.g., Yamins et al., 2014) or obtained from behavioral ratings (e.g., Anderson et al., 2017). A common way to measure the predictive accuracy of a set of features is to use a mapping model that will estimate the best link between the features and the neural data. The mapping — fit on the training set — can then be used to predict responses in a held-out test set, after which we can evaluate those predictions by, e.g., correlating them with the test data. These correlations are often normalized by an estimate of the reliability of the data (a “ceiling”) to yield an estimate of explained variance (e.g., Cadieu et al., 2014; Kell et al., 2018; Schrimpf et al., 2018, 2021; Yamins et al., 2014).

This prediction-oriented framework can be used to achieve multiple research goals, only some of which impose specific constraints on the mapping model.

3.1.1. Compare feature sets. Model accuracy (e.g., explained variance) can be used to compare competing feature sets (often extracted from different models of brain function) to figure out which of them best reflects neural responses (Schrimpf et al., 2020). Such comparison-oriented
studies tend to use linear mappings in order to minimize the number of additional computations performed on the features. A question these studies tend to ask is: “Which feature set provides the most faithful reflection of the neural representational space?” Here, researchers often choose to restrict themselves to linear mappings because a powerful non-linear mapping model could inadvertently incorporate transformations that reduce or erase the differences across feature sets. For example, if the goal is to determine whether activity in inferior temporal cortex is better predicted by an early or a late layer of a convolutional neural network, we should use a mapping model with a limited expressive power; otherwise, the mapping model will be able to transform features from an early layer into features from a late layer, eliminating meaningful differences between them. Thus, feature comparison studies often benefit from linear mapping models.

3.1.2. Test feature decodability. Another research question a neuroscientist might ask is “do neural data Y contain information about features X?” A more applied version of this question is “can I predict features X based on neural data Y?” In this scenario, the goal is to find a mapping that allows us to achieve significant decoding accuracy\(^4\). Feature decodability has both theoretical relevance (for instance, it can provide insight about information transfer between brain regions) and clinical relevance (it can be used to identify neural markers of a disease or a behavioral trait). If our primary goal is to maximize decodability, then we should not put restrictions on the space of possible mappings — all that matters is the mapping model’s performance on held-out data. For instance, if a study aims to determine whether certain behavioral traits (X) can be predicted from neural data (Y), it does not need to limit its scope of possible mappings as long as the resulting mapping model performs successfully on unseen data. Similarly, a study that finds information about an imagined visual scene (X) in primary visual cortex (Y) may provide a valuable contribution to the field even if it uses highly unconstrained nonlinear mappings. All in all, for studies in this category, the main objective is for the mapping model to achieve the highest possible predictive accuracy (or, for applied research, to reach a certain accuracy threshold), and the space of possible mappings should be large enough to allow it.

3.1.3. Build accurate models of brain data. Finally, some researchers are trying to build accurate models of the brain activity that, in essence, enable simulations of neuroscience experiments (e.g., Khosla & Wehbe, 2021; Ratan Murty et al., 2021). This type of modeling is especially important in cases when experimental data are expensive or hard to obtain: with a high-accuracy model of brain responses, a researcher can run thousands of experiments in silico, refine their hypothesis, and then test the final prediction in vivo. Furthermore, these models may become an important component of testing experimental replicability: if the same phenomenon is shown both in vivo and in silico, it is less likely to be a false positive. The main criterion for such

\(^4\) Some authors refer to predictive accuracy as a measure of mutual information between features X and neural data Y (e.g., Kriegeskorte, 2011), but this relationship is not always straightforward. In general, estimating mutual information is a hard problem (Paninski, 2003), although some ML-based approaches can provide a useful approximation (e.g., Belghazi et al., 2018; Xu et al., 2020).
models is their predictive accuracy, but they need to clear a very high accuracy bar (ideally close to the noise ceiling of neural data). The best way to build these in silico brains might be to train large powerful mapping models on large amounts of neural data. In this scenario, there is no theoretical justification for a linear mapping constraint because, as in 3.1.2, the primary goal is maximizing predictive accuracy on held-out data.

3.2. Interpretability

Once we find a mapping that achieves sufficiently high predictive accuracy, we often want to interpret it. Which features contribute the most to neural activity? Do neurons/electrodes/voxels respond to single features or exhibit mixed selectivity? How does the mapping relate to other models or theories of brain function?

The traditional view is that linear mappings are easier to interpret than non-linear mappings (Naselaris et al., 2011). However, the goal of building interpretable models is ultimately complicated by the fact that there is no clear-cut definition for interpretability. Below, we discuss three definitions of interpretability, ranging from strictest to loosest, and show that some construals of interpretability do not require a linear mapping model. Importantly, in each of these cases, interpretability places restrictions not only on the mapping model, but also on the features that can be used to yield meaningful interpretations.

3.2.1. Examine individual features. Traditionally, many cognitive neuroscientists have aimed to interpret a neural signal by identifying a set of words to describe its function (as in Desimone et al., 1984; Kanwisher et al., 1997). In this scenario, a useful model of brain activity has features that can be described using one or a few words ("faces", "vertical lines", etc.) — a property often referred to as nameability — and a linear mapping from these features to neural data. We consider this to be the strictest definition of interpretability because it places the strongest constraints on both the features (which have to be nameable) and the mapping models (which have to be linear). With a linear mapping model, the regression weights can be interpreted as a relative measure of contribution to the neural activity (though this is not always straightforward in cases where features suffer from multicollinearity).

Interpretable features have played a crucial role in understanding brain function (Kanwisher, 2010). However, nameability of features may be an overly restrictive metric as it limits our understanding to a vocabulary that is heavily biased by a priori hypotheses and may not include words for the concepts we actually need (Buzsáki, 2019). For instance, recent work has shown that (a) neurons typically described as “face-responsive” respond more strongly to artificial images produced by DNNs than to natural images described by the word “face” (Ponce et al., 2019) and (b) a neural-network-based linearized model of activity in the fusiform face area predicts responses to faces better than label-based models (Ratan Murty et al., 2021), suggesting
that simple verbal features cannot provide a full account of neural activity. To overcome the limitation of using individual nameable features, many researchers have instead started to use high-dimensional feature sets.

3.2.2. Test correspondences between representational spaces. A looser notion of interpretability, which has become popular in the last decade, relies on the use of high-dimensional feature vectors that are linearly mapped to a neural variable (e.g., Kay et al., 2008; Yamins et al., 2014). As mentioned earlier, this setup is commonly referred to as “linearized” models of brain function, although the feature vectors are not always model-generated (see, e.g., Binder et al., 2016). When using large-scale feature sets, we cannot always interpret the weights of a linear mapping model in the same way as we did with nameable features. If individual features within a set cannot be labeled and/or are derived via a sequence of nonlinear operations (e.g., in the case of DNN layer activations), examining individual features has a limited potential to inform our intuition (Kay, 2018). However, we can examine the feature set as a whole, to ask: do features X, generated by a known process, accurately describe the space of neural responses Y? Thus, the entire feature set becomes a new unit of interpretation, and the linearity restriction is placed primarily to limit the space of possible feature space transformations. For instance, the finding that convolutional neural networks and the ventral visual stream produce representational spaces that are similar up to a linear transformation (Yamins et al., 2014) allows us to infer that both processes are subject to similar optimization constraints (Richards et al., 2019). That said, mapping models that relate two representational spaces do not have to be linear, as long as they correspond to a well-specified hypothesis about the relationship between them; for instance, we might want to relate the intrinsic dimensionality of the spaces being compared, an approach that is inherently nonlinear (e.g., Chaudhuri et al., 2019; Gallego et al., 2018; for discussion, see Jazayeri & Ostojic, 2021).

3.2.3. Describe the feature set as a whole. The loosest definition of interpretability is the ability to describe the set of features that was used to train the mapping model (e.g., “phonological features”). In this scenario, we make no assumptions about a particular representational geometry of these features (such as linear separability). The lack of specific assumptions about the form of the feature-to-brain mapping means that constraints on the mapping model are not strictly necessary — all we need is an epistemologically satisfying description of the features. If a mapping model achieves good predictivity, we can say that a given set of features is reflected in the neural signal. Under this definition, any mapping model is interpretable as long as we can describe the set of features that it uses.

3.3. Biological plausibility

In addition to prediction accuracy and interpretability-related considerations, biological plausibility can also be a factor in deciding on the space of acceptable feature-to-brain and
brain-to-feature mappings. Given that the mapping model is commonly used to determine which features are reflected in neural data, it is important to select the space of mappings in a way that can lead to the selection of biologically plausible feature sets.

3.3.1. Simulate linear readout

One of the main arguments in favor of linear mappings is the claim that they approximate the linear readout performed by a putative downstream brain area (Kamitani & Tong, 2005; Kriegeskorte, 2011). Under this view, the mapping model approximates the transmission of the features to a hypothetical information consumer. The linear readout requirement often serves as a proxy for feature usability: if the features can be extracted with a linear mapping model, it means that they require few additional computations in order to be used downstream.

The ability to use features of interest in downstream computations is indeed an important consideration. However, there are reasons to be cautious about the linear readout requirement. First, some models operate on neural data that are collected from multiple recording sites rather than a single neural population/region, which makes subsequent linear readout biologically implausible. For instance, decoding models that use whole-brain data, such as M/EEG, have no downstream region that could ‘read out’ information from all over the brain — the only entity performing readout is the observer. Second, linear readout might not be an accurate characterization of the decoding mechanisms used by downstream areas to extract information from the brain region of interest. In fact, unlike linear models that pool across all measured neurons or voxels in the region of interest, readout in biological neural systems is likely to be both sparse (e.g., Barak et al., 2013; Barlow, 1969; Olshausen & Field, 2004; Vinje & Gallant, 2000) and nonlinear (e.g., Beniaguev et al., 2021; Ghazanfar & Nicolelis, 1997; Gidon et al., 2020; Jones & Kording, 2021; Shamir & Sompolinsky, 2004). Third, linear regression is a fairly arbitrary threshold to draw for mechanistic plausibility. A linear mapping model can extract many features from the data, some of which do not faithfully reflect the underlying neural computations and could not possibly be read out by a downstream neuron. For instance, fMRI signals from V1 contain voxel-level biases that allow orientation decoding (such as radial biases in the retinotopic map) that are distinct from orientation-related neural computations (such as activity in orientation-specific cortical columns), which results in a mismatch between information used by the mapping model and information used by actual neurons (Ritchie et al., 2019). In sum, unconstrained linear mapping models (or linear mapping models constrained by weight distribution among many features, like ridge regression) may be both overly limiting because they do not account for possible nonlinear computations and overly greedy because they might leverage information in a way that real neurons do not.

Is there a better mapping model that accounts for possible nonlinear computations during readout without being overly broad? One approach is to introduce parsimony constraints on the feature spaces (Kukačka et al., 2017). For instance, introducing a sparsity constraint (i.e., allowing the
mapping model to access only a limited number of neurons) could increase the biological plausibility of putative readout (Yoshida & Ohki, 2020). However, in the context of measurements that collapse across large numbers of neurons (i.e., most measurements in cognitive neuroscience), the sparsity constraint might be impossible to enforce, as a single voxel or electrode already combines signal from a large number of neurons. More broadly, evaluating the biological plausibility of decoding is difficult as readout might differ across brain regions of interest (Anzellotti & Coutanche, 2018), and the current understanding of the details of readout mechanisms remains limited. Future progress in research on readout mechanisms will be key to evaluate the different assumptions about readout in a more principled manner.

3.3.2. Incorporate measurement-related considerations. When brain recordings are known to be nonlinear transformations of underlying neural activity (e.g., fMRI, in which BOLD responses are related to neural responses via the hemodynamic response function, or HRF; Friston et al., 2000), knowledge about the nonlinear relationship between the neural responses and the measurements can (and often should) be explicitly incorporated into the mapping. Failing to do so might privilege feature sets that incorporate properties of the measurement over feature sets that more accurately reflect the neural representations encoded in a brain region but happen to be nonlinearly related to the measured signal.

The issue of nonlinear properties of the measurement is prominent in fMRI analyses. The traditional approach to fMRI data fitting is a linearized model: the predictor variable is convolved with the HRF, and the resulting predictor is then linearly fitted to the data. However, these models typically assume a fixed HRF across voxels (Friston et al., 2000) and/or conditions (Pedregosa et al., 2015), which is not biologically plausible (Ekstrom, 2021; Handwerker et al., 2004). More flexible finite impulse response models (FIR; Dale, 1999; Glover, 1999) require fitting a large number of parameters and are computationally brittle. Thus, instead of sticking with linearized approaches, some researchers are suggesting to model the HRF shape explicitly within a family of nonlinear functions motivated by physiological data (see, for instance, Lindquist & Wager, 2007; Shain et al., 2020; Shain, 2021). By using a constrained space of nonlinear mappings (rather than an unconstrained space of linear mappings, as in FIR), one can estimate the veridical shape of the HRFs using a relatively small number of parameters.

M/EEG analyses face similar issues. A common approach is to linearly fit the predictors to the measurements or to their derivative (e.g., power in a particular frequency band). However, the predictor features taken from the best linear model might inadvertently incorporate the nonlinear mapping between the feature and the captured response. Further, for M/EEG, the recorded signal is a combination of both inhibitory and excitatory signals; thus, treating it as a straightforward linear combination is not always possible (Hansen et al., 2010). Thus, linear mapping models often overlook the complexities of neuroimaging signals, sacrificing biological plausibility as a result.
To summarize Section 3, different research goals place different constraints on the mapping model. A particular goal might require a linear mapping model, adding additional restrictions to that model, using a particular class of nonlinear models, or imposing no a priori restrictions.

4. Practical considerations

The criteria outlined above are primarily based on theoretical considerations: which mapping model has the properties that allow us to achieve a particular goal? However, another important consideration is practical feasibility: do we have enough data to accurately estimate the mapping? Will the noise in our data lead certain mapping models to fail?

Determining how much data is required for fitting a particular mapping model has critical implications for experimental design (the number of trials/data points per participant, the number of repetitions per stimulus, etc.). In general, the fewer constraints are placed on the mapping model, the more data will be needed to converge on a good mapping. This relationship can be estimated empirically using standard validation methods by, for instance, taking a large dataset and evaluating the mapping model’s predictive accuracy on left-out test data while gradually increasing the size of the training dataset. However, few studies report such analyses (and in some cases, large-enough datasets may still be lacking). One exception is a line of fMRI studies that aim to determine the best mapping model for linking interregional functional correlations and behavioral/demographic traits. The results of these studies are mixed: some report a marked advantage of nonlinear mapping models over linear ones (Bertolero & Bassett, 2020), whereas others report that linear mapping models perform equally well even when the training set includes several thousand brain images (He et al., 2020; Schulz et al., 2020). Thus, the field would greatly benefit from further systematic examinations of the influence of dataset size (and other experimental design properties) on the performance of a particular mapping model type.

Even with large amounts of data, certain measurement properties might force us to use a particular mapping class. For instance, Nozari et al. (2020) show that the relationship between activity in different brain regions during rest, as captured by fMRI, is best modeled with linear mappings and suggest that fMRI’s inevitable spatiotemporal signal averaging might be to blame (although see Anzellotti et al., 2017, for contrary evidence). In sum, even after establishing theoretical desiderata for the mapping model, we need to conduct rigorous empirical tests to determine which mapping model class will achieve good predictive accuracy given the measurement technique, the amount and quality of available data, and other practical considerations.
5. Going forward: evaluating model complexity

Instead of focusing exclusively on the linear/nonlinear dichotomy, we propose to reframe the choice of mapping model in the context of a broader notion of model complexity. Complexity lies at the heart of most desiderata discussed above. Arbitrarily complex models make predictive accuracy comparisons across feature sets more difficult; they can be harder to interpret; and they are less likely to match computations in biological circuits. Thus, we suggest replacing the linear/nonlinear dichotomy with a framework that takes into account the complexity of the mapping model.

5.1 The role of complexity in selecting a mapping model

As we saw in Section 3, specific research goals impose different constraints on the mapping model. Further, these constraints are often more graded than the linear/nonlinear distinction and can instead be seen as restrictions on model complexity:

- Interpreting individual features is easier when the mapping is not only linear, but also sparse, so that each neuron can be described with only a few features. Reframing the mapping model choice in terms of complexity allows us to pick out simple mappings within the class of linear mapping models, thus facilitating interpretation.
- Satisfying biological constraints, such as accounting for physiological properties of the measurement or simulating neural readout, may require a certain degree of nonlinearity but these nonlinearities are often well-defined and can keep overall model complexity relatively low.
- Testing whether a feature set accurately captures the representational space of neural responses may require the mapping to preserve certain properties of that space. Here, the complexity of the mapping model depends primarily on the hypothesis being tested.
- Comparing and/or interpreting feature sets is possible even when the mapping is nonlinear, as long as we can compare the mappings using a metric that incorporates both predictive accuracy and model complexity.
- Decoding features from neural data and building accurate encoding models of the brain does not require placing any theory-based restrictions on the mapping model (although such restrictions might improve performance in practice).

Figure 3 shows the research goals discussed above together with the mapping model types that are traditionally used to achieve these goals, as well as our proposal to shift from the linear/nonlinear dichotomy to explicit estimates of model complexity. Note that this diagram depicts theoretical, a priori criteria for restricting mapping model complexity; practical considerations might impose additional constraints to achieve better predictivity (see Section 4).
Figure 3. Different research goals are currently being collapsed into the “linear/nonlinear” dichotomy but in fact correspond to different degrees of mapping model complexity. Note that the exact ordering of research goals along the complexity continuum is approximate and shown primarily for illustration purposes.

5.2 Complexity measures

How can we estimate the complexity of mapping models? To date, many studies have focused primarily on a binary distinction in which linear models are “simple” and nonlinear models are
“complex”. However, as discussed above, this distinction is overly simplistic. Here, we review several measures of mapping model complexity that are commonly used in the ML literature and may serve as an alternative to the linear/nonlinear dichotomy (see Table 1 for a side-by-side comparison).

5.2.1. Number of free parameters. A common approach to measuring model complexity is by considering the number of free parameters in the model. In this approach, each model class encounters a penalty that corresponds to its number of parameters, such that classes with more parameters have a larger penalty. In order to justify the use of additional parameters, a model needs to achieve a substantial performance improvement compared to models with fewer parameters. This tradeoff is often implemented using Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC), which reward models for good predictive performance but penalize them for the number of parameters. Although simple to estimate, this complexity measure often fails to capture distinctions that seem intuitively important. For instance, a linear and a nonlinear model with the same number of parameters would have equal complexity in this view, even though the latter often has a greater expressive power. Another example is a sparse mapping model that allows non-zero weights only for a few features vs. a dense model that places non-zero weights on, say, 500 features: if the initial feature vector size is the same, then these models will have the same number of parameters and therefore equal complexity under this measure.

5.2.2. Minimum description length. Another common approach to measuring model complexity is based on minimum description length (MDL; Rissanen, 1978). This approach typically assumes an encoding function, i.e., a formal description language, over a class of models, and the complexity of each model within the class is determined by the length of the model’s encoding. The encoding function essentially serves as a prior over the model class: more probable mapping models would be assigned shorter descriptions (see Diedrichsen & Kriegeskorte, 2017; Wu et al., 2006, for a discussion of the relationship between priors and regularization constraints). The MDL approach can overcome some of the limitations of complexity measures based solely on the number of free parameters by exploiting correlations between parameters to achieve a shorter description length. For instance, under this scheme, sparse models can have a shorter description length and would therefore be considered less complex. However, the main limitation of an MDL-based metric is that it requires specifying a mapping model class, as well as an encoding scheme for mapping models within that class. Thus, if there is no natural prior over the set of mappings we wish to compare, an architecture-free complexity measure may be preferred⁵.

⁵ For example, certain informational measures (e.g., Bialek et al., 2001; Gilad-Bachrach et al., 2003) can be used to measure the complexity of the statistical relationship between the inputs and outputs of the mapping model (e.g., features and predicted neural data) regardless of a particular architecture or model class and, in some cases, may also capture the complexity of non-parametric generative models.
5.2.3. **Sample complexity.** Finally, a more practice-oriented metric is sample complexity (Kearns & Vazirani, 1994). Loosely speaking, the sample complexity of a model class is a function that determines the minimal number of training samples needed to achieve desired model performance. It is not always straightforward to compute this function *a priori*; however, it can be assessed empirically by computing learning curves, i.e., the achieved level of predictive accuracy on a test set as a function of the number of training samples. Estimates of sample complexity are vital for understanding whether a given model failed because the underlying hypothesis was wrong or because the dataset was too small to achieve a proper fitting.

Table 1. Benefits and limitations of several mapping model complexity measures.

Complexity metric	Benefits	Limitations
Number of parameters	Straightforward estimation	Does not always capture relevant complexity distinctions (e.g., sparsity or model architecture)
Minimum description length (MDL)	Better at capturing relevant distinctions (e.g., sparsity) by taking into account correlations between parameters	Requires a prior distribution over the mapping model class, which is not always easy to specify
Sample complexity	Comparable across model architectures; immediate practical application	Does not necessarily capture the expressive power of the model class

In summary, instead of defaulting to linear models, we propose to incorporate a measure of model complexity into the general evaluation framework of encoding/decoding models. This measure can be used in different ways depending on the research goal. For instance, for feature comparison, if two feature sets produce equally accurate mapping models, the feature set corresponding to a simpler mapping model (as measured with minimum description length) may represent a better fit to neural data. For estimates of potential downstream readout, instead of limiting ourselves to linear functions, we can consider a range of possible mappings, where simpler mappings reflect a higher probability that these features are used downstream. Thus, measuring model complexity can serve as a powerful tool for mapping model evaluation and selection.

6. Conclusion

The encoding/decoding framework in contemporary cognitive neuroscience has provided many valuable insights. However, in some cases, the field has been held back by its excessive reliance on linear mappings between features and brain activity. Here, we have described various research
goals that are typically considered when specifying a mapping model. Contrary to popular belief, few of these goals require the use of linear mapping models. Instead, some do not require placing any constraints on the mapping model, some require placing specific nonlinear constraints, and some use linearity simply as a proxy for reducing model complexity. We therefore suggest to explicitly include measures of model complexity when selecting and evaluating mapping models. An increased focus on mapping model complexity could help the field discover a richer space of accurate, simple, biologically plausible predictors of neural activity, thus advancing our overall understanding of brain function.

Acknowledgements

This paper is part of the Generative Adversarial Collaboration (GAC) initiative organized by the Computational Cognitive Conference board. We thank the GAC organizers, especially Megan Peters and Gunnar Blohm, for their invaluable help with this initiative. Many of the ideas discussed in this work arose during the GAC workshop in October 2020 (https://www.youtube.com/watch?v=U15KclR71IE&list=PLNWftEg2R4s5iObSUvPXhnDJvYN bs4PnM&index=2). We thank the invited workshop speakers — Kohitij Kar, Mariya Toneva, Laura Gwilliams, Jean-Rémi King, Martin Hebart, and Anna Schapiro, — as well as workshop participants, for their ideas, comments, questions and suggestions. We also thank the reviewers who provided comments on our GAC proposal in August 2020 (the reviews are available at https://openreview.net/forum?id=-o0dOwashib). AI was supported by the Whitaker Health Sciences Fund Fellowship. MS was supported by Fellowships from Takeda and the McGovern Institute, and the SRC Semiconductor Research Corporation. NZ was supported by a BCS Fellowship in Computation. EF was supported by R01 awards DC016607 and DC016950, a U01 award NS121471, and research funds from the Brain and Cognitive Sciences Department and the McGovern Institute for Brain Research.

References

Aertsen, A. M. H. J., & Johannesma, P. I. M. (1981). The Spectro-Temporal Receptive Field. Biological Cybernetics, 42(2), 133–143. https://doi.org/10.1007/BF00336731

Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Aguilar, M., Wang, X., Doko, D., & Raizada, R. D. S. (2017). Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation. Cerebral Cortex, 27(9), 4379–4395. https://doi.org/10.1093/cercor/bhw240

Anzellotti, S., & Coutanche, M. N. (2018). Beyond Functional Connectivity: Investigating Networks of Multivariate Representations. Trends in Cognitive Sciences, 22(3), 258–269. https://doi.org/10.1016/j.tics.2017.12.002

Anzellotti, S., Fedorenko, E., Kell, A. J. E., Caramazza, A., & Saxe, R. (2017). Measuring and Modeling Nonlinear Interactions Between Brain Regions with fMRI. BioRxiv, 074856. https://doi.org/10.1101/074856
Barak, O., Rigotti, M., & Fusi, S. (2013). The Sparseness of Mixed Selectivity Neurons Controls the Generalization–Discrimination Trade-Off. *Journal of Neuroscience, 33*(9), 3844–3856. https://doi.org/10.1523/JNEUROSCI.2753-12.2013

Barlow, H. (1969). Trigger features, adaptation and economy of impulses. In *Information Processing in the Nervous System* (pp. 209–230). Springer.

Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). MINE: Mutual Information Neural Estimation. *ArXiv:1801.04062*. https://arxiv.org/abs/1801.04062v4

Beniaguev, D., Segev, I., & London, M. (2021). Single cortical neurons as deep artificial neural networks. *Neuron, 109*(17), 2727-2739.e3. https://doi.org/10.1016/j.neuron.2021.07.002

Bertolero, M. A., & Bassett, D. S. (2020). Deep Neural Networks Carve the Brain at its Joints. *ArXiv:2002.08891 [Physics, q-Bio]*. http://arxiv.org/abs/2002.08891

Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. *Neural Computation, 13*(11), 2409–2463. https://doi.org/10.1162/089976601753195969

Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. *Cognitive Neuropsychology, 33*(3–4), 130–174. https://doi.org/10.1080/02643294.2016.1147426

Buzsáki, G. (2019). *The brain from inside out*. Oxford University Press.

Bzdok, D., Varoquaux, G., & Thirion, B. (2017). Neuroimaging Research: From Null-Hypothesis Falsification to Out-of-Sample Generalization. *Educational and Psychological Measurement, 77*(5), 868–880. https://doi.org/10.1177/0013164416667982

Cadieu, C. F., Hong, H., Yamins, D. L. K., Pinto, N., Ardila, D., Solomon, E. A., Majaj, N. J., & DiCarlo, J. J. (2014). Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition. *PLOS Computational Biology, 10*(12), e1003963. https://doi.org/10.1371/journal.pcbi.1003963

Caucheteux, C., & King, J.-R. (2020). Language processing in brains and deep neural networks: Computational convergence and its limits. *BioRxiv*, 2020.07.03.186288. https://doi.org/10.1101/2020.07.03.186288

Chang, N., Pyles, J. A., Marcus, A., Gupta, A., Tarr, M. J., & Aminoff, E. M. (2019). BOLD5000, a public fMRI dataset while viewing 5000 visual images. *Scientific Data, 6*(1), 49. https://doi.org/10.1038/s41597-019-0052-3

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., & Fiete, I. (2019). The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. *Nature Neuroscience, 22*(9), 1512–1520. https://doi.org/10.1038/s41593-019-0460-x

Cade, A. M. (1999). Optimal experimental design for event-related fMRI. *Human Brain Mapping, 8*(2–3), 109–114. https://doi.org/10.1002/(SICI)1097-0193(1999)8:2<109::AID-HBM7>3.0.CO;2-W

Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. *Journal of Neuroscience, 4*(8), 2051–2062. https://doi.org/10.1523/JNEUROSCI.04-08-02051.1984

Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. *PLOS Computational Biology, 13*(4), e1005508. https://doi.org/10.1371/journal.pcbi.1005508

Ekstrom, A. D. (2021). Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. *Philosophical Transactions of the Royal Society B: Biological Sciences, 376*(1815), 20190634. https://doi.org/10.1098/rstb.2019.0634

Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI. *Human Brain Mapping, 8*(2–3), 109–114. https://doi.org/10.1002/(SICI)1097-0193(1999)8:2<109::AID-HBM7>3.0.CO;2-W

Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics. *NeuroImage, 12*(4), 466–477. https://doi.org/10.1006/nimg.2000.0630

Gallego, J. A., Perich, M. G., Naufel, S. N., Ethier, C., Solla, S. A., & Miller, L. E. (2018). Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. *Nature Communications, 9*(1), 4233. https://doi.org/10.1038/s41467-018-06560-z
Ghazanfar, A. A., & Nicolelis, M. A. (1997). Nonlinear processing of tactile information in the thalamocortical loop. Journal of Neurophysiology, 78(1), 506–510. https://doi.org/10.1152/jn.1997.78.1.506

Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp, M., Vida, I., & Larkum, M. E. (2020). Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science, 367(6473), 83–87. https://doi.org/10.1126/science.aax6239

Gilad-Bachrach, R., Navot, A., & Tishby, N. (2003). An Information Theoretic Tradeoff between Complexity and Accuracy. In B. Schölkopf & M. K. Warmuth (Eds.), Learning Theory and Kernel Machines (pp. 595–609). Springer. https://doi.org/10.1007/978-3-540-45167-9_43

Glover, G. H. (1999). Deconvolution of Impulse Response in Event-Related BOLD fMRI. NeuroImage, 9(4), 416–429. https://doi.org/10.1006/nimg.1998.0419

Handwerker, D. A., Ollinger, J. M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 1639–1651. https://doi.org/10.1016/j.neuroimage.2003.11.029

Hansen, P. C., Kringelbach, M. L., & Salmelin, R. (Eds.). (2010). MEG: An introduction to methods (pp. xii, 436). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195307238.001.0001

Hasanzadeh, F., Mohebbi, M., & Rostami, R. (2019). Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. Journal of Affective Disorders, 256, 132–142. https://doi.org/10.1016/j.jad.2019.05.070

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110. https://doi.org/10.1016/j.neuroimage.2013.10.067

He, T., Kong, R., Holmes, A. J., Nguyen, M., Sabuncu, M. R., Eichhoff, S. B., Bzdok, D., Feng, J., & Yeo, B. T. T. (2020). Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage, 206, 116276. https://doi.org/10.1016/j.neuroimage.2019.116276

Holdgraf, C. R., Rieger, J. W., Micheli, C., Martin, S., Knight, R. T., & Theunissen, F. E. (2017). Encoding and Decoding Models in Cognitive Electrophysiology. Frontiers in Systems Neuroscience, 11. https://doi.org/10.3389/fnsys.2017.00061

Jain, S., & Huth, A. G. (2018). Incorporating Context into Language Encoding Models for fMRI. BioRxiv, 327601. https://doi.org/10.1101/327601

Jazayeri, M., & Ostojic, S. (2021). Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. ArXiv:2107.04084 [q-Bio]. http://arxiv.org/abs/2107.04084

Jones, I. S., & Kording, K. P. (2021). Might a Single Neuron Solve Interesting Machine Learning Problems Through Successive Computations on Its Dendritic Tree? Neural Computation, 33(6), 1554–1571. https://doi.org/10.1162/neco_a_01390

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685. https://doi.org/10.1038/nn1444

Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163–11170. https://doi.org/10.1073/pnas.1005062107

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/JNEUROCIS1.17-11-04302.1997

Kay, K. N. (2018). Principles for models of neural information processing. NeuroImage, 180(Pt A), 101–109. https://doi.org/10.1016/j.neuroimage.2017.08.016

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452(7185), 352–355. https://doi.org/10.1038/nature06713

Kazemi, Y., & Houghten, S. (2018). A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data. 2018 IEEE Conference on Computational Intelligence in Bioinformatics
Kearns, M. J., & Vazirani, U. (1994). *An Introduction to Computational Learning Theory*. MIT Press. http://direct.mit.edu/books/book/2604/An-Introduction-to-Computational-Learning-Theory

Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Haignere, S. V., & McDermott, J. H. (2018). A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. *Neuron*, 98(3), 630-644.e16. https://doi.org/10.1016/j.neuron.2018.03.044

Khosla, M., & Wehbe, L. (2021). Hypothesis-free response-optimized models of higher-order visual cortex reveal strong semantic selectivity. *In Prep.*

Kim, J., Calhoun, V. D., Shim, E., & Lee, J.-H. (2016). Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. *NeuroImage*, 124, 127–146. https://doi.org/10.1016/j.neuroimage.2015.05.018

Koc, Y., Görgiz, J. M., & Suckling, J. (2020). Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and Other Tasks. *International Journal of Neural Systems*, 30(07), 2050012. https://doi.org/10.1142/S0129065720500124

Kording, K. P., Blohm, G., Schrater, P., & Kay, K. (2020). Appreciating the variety of goals in computational neuroscience. *Neurons, Behavior, Data Analysis, and Theory*, 3(6). http://arxiv.org/abs/2002.03211

Kriegeskorte, N. (2011). Pattern-information analysis: From stimulus decoding to computational-model testing. *NeuroImage*, 56(2), 411–421. https://doi.org/10.1016/j.neuroimage.2011.01.061

Kriegeskorte, N., & Douglas, P. (2019). Interpreting encoding and decoding models. *Current Opinion in Neurobiology*, 55, 167–179. https://doi.org/10.1016/j.conb.2019.04.002

Kukačka, J., Golkov, V., & Cremer, D. (2017). Regularization for Deep Learning: A Taxonomy. *ArXiv:1710.10686 [Cs, Stat].* http://arxiv.org/abs/1710.10686

Kumar, S., Yoo, K., Rosenberg, M. D., Scheinost, D., Constable, R. T., Zhang, S., Li, C.-S. R., & Chun, M. M. (2019). An information network flow approach for measuring functional connectivity and predicting behavior. *Brain and Behavior*, 9(8), e01346. https://doi.org/10.1002/brb3.1346

Lee Masson, H., & Isik, L. (2021). Functional selectivity for naturalistic social interaction perception in the human superior temporal sulcus. *BioRxiv*, 2021.03.26.437258. https://doi.org/10.1101/2021.03.26.437258

Leping, M., Górriz, J. M., & Suckling, J. (2020). Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and Other Tasks. *International Journal of Neural Systems*, 30(07), 2050012. https://doi.org/10.1142/S0129065720500124

Lindquist, M. A., & Wager, T. D. (2007). Validity and power in hemodynamic response modeling: A comparison study and a new approach. *Human Brain Mapping*, 28(8), 764–784. https://doi.org/10.1002/hbm.20310

Majaj, N. J., Hong, H., Solomon, E. A., & DiCarlo, J. J. (2015). Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance. *Journal of Neuroscience*, 35(39), 13402–13418. https://doi.org/10.1523/JNEUROSCI.5181-14.2015

Morioka, H., Calhoun, V., & Hyvärinen, A. (2020). Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits. *NeuroImage*, 218, 116989. https://doi.org/10.1016/j.neuroimage.2020.116989

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. *NeuroImage*, 56(2), 400–410. https://doi.org/10.1016/j.neuroimage.2010.07.073

Nozari, E., Stiso, J., Caciagli, L., Cornblath, E. J., He, X., Bertolero, M. A., Mahadevan, A. S., Pappas, G. J., & Bassett, D. S. (2020). Is the brain macroscopically linear? A system identification of resting state dynamics. *ArXiv:2012.12351 [Cs, Eess, Math, q-Bio].* http://arxiv.org/abs/2012.12351

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. *Current Opinion in*
Tracking neural coding of perceptual and semantic features of concrete nouns. *NeuroImage, 62*(1), 451–463. https://doi.org/10.1016/j.neuroimage.2012.04.048

Toneva, M., & Wehbe, L. (2019). Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). *ArXiv:1905.11833 [Cs, q-Bio].* http://arxiv.org/abs/1905.11833

van Gerven, M. A. J. (2017). A primer on encoding models in sensory neuroscience. *Journal of Mathematical Psychology, 76*, 172–183. https://doi.org/10.1016/j.jmp.2016.06.009

Vinje, W. E., & Gallant, J. L. (2000). Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. *Science, 287*(5456), 1273–1276. https://doi.org/10.1126/science.287.5456.1273

Wu, M. C.-K., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of sensory neurons by system identification. *Annual Review of Neuroscience, 29*(1), 477–505. https://doi.org/10.1146/annurev.neuro.29.051605.113024

Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang, Y.-P. (2019). Alternating Diffusion Map Based Fusion of Multimodal Brain Connectivity Networks for IQ Prediction. *IEEE Transactions on Biomedical Engineering, 66*(8), 2140–2151. https://doi.org/10.1109/TBME.2018.2884129

Xu, Y., Zhao, S., Song, J., Stewart, R., & Ermon, S. (2020). A Theory of Usable Information Under Computational Constraints. *ArXiv:2002.10689.* https://arxiv.org/abs/2002.10689v1

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. *Proceedings of the National Academy of Sciences of the United States of America, 111*(23), 8619–8624. https://doi.org/10.1073/pnas.1403112111

Yoshida, T., & Ohki, K. (2020). Natural images are reliably represented by sparse and variable populations of neurons in visual cortex. *Nature Communications, 11*(1), 872. https://doi.org/10.1038/s41467-020-14645-x