Laser-driven hole boring and gamma-ray emission in high-density plasmas

E N Nerush1,2 and I Y Kostyukov1,2

1 Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950, Russia
2 University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia

E-mail: nerush@appl.sci-nnov.ru

Received 14 October 2014, revised 19 December 2014
Accepted for publication 15 January 2015
Published 16 February 2015

Abstract

Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Indeed, at forthcoming laser intensities ($I \gtrsim 10^{23}$ W cm$^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If the gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of the gamma-ray emission which are more pronounced at higher hole-boring velocities.

Keywords: laser-driven hole boring, gamma-ray emission, radiation losses, radiation pressure acceleration

(Some figures may appear in colour only in the online journal)

1. Introduction

Starting from the pioneering papers of Wilks and Denavit (Denavit 1992, Wilks et al 1992), which showed that relativistically intense laser pulses can bore holes in overdense plasmas and accelerate ions by the radiation pressure, radiation pressure acceleration has been intensively studied and discussed. For example, radiation pressure acceleration was investigated in recent experiments (Palmer et al 2011, Kar et al 2013), relativistic hole boring was studied theoretically (Robinson et al 2009, Schlegel et al 2009) and proposed for fast ignition schemes (Naumova et al 2009) and it is shown by means of numerical simulations that the radiation pressure acceleration is feasible for acceleration of ions up to GeV energies (Esirkepov et al 2004, Ji et al 2014a); see also (Macchi et al 2013).

A number of planned laser facilities (Bashinov et al 2014, Mourou and Tajima 2014) aim to reach high field intensity in order to demonstrate many novel phenomena such as electromagnetic cascades (Bell and Kirk 2008, Fedotov et al 2010, Nerush, Bashmakov and Kostyukov 2011), vacuum birefringence (King and Di Piazza 2014) and electron-positron pair creation (Narozhny and Fedotov 2014). Besides these effects which require special set-ups (Gonoskov et al 2013, Bashmakov et al 2014) a number of rough phenomena should occur. For instance, incoherent synchrotron emission of hard photons will be an inherent feature of extremely relativistic plasma physics (Nakamura et al 2012, Ridgers et al 2012, Nerush et al 2014, Ji et al 2014c). The latter phenomenon would surely affect particle dynamics in the laser-driven hole boring.

Here we study the hole boring in high-density plasmas accompanied by gamma-ray emission. A relativistic laser pulse (intensity $I \gtrsim 10^{18}$ W cm$^{-2}$ for optical wavelengths) can drive plasmas by its front (Wilks et al 1992). The laser field pushes plasma electrons which sweep ions by a longitudinal electric field in a thin shock-like layer of charge separation (Macchi et al 2005, Schlegel et al 2009). Some properties of the process (front velocity, ion energy, etc) can be found using, momentum and energy conservation in the non-relativistic (Kruer et al 1975, Wilks et al 1992) and in the relativistic cases (Naumova et al 2009, Robinson et al 2009) and measured in the experiments (Kar et al 2013). If the laser intensity is $I \gtrsim 10^{21}$ W cm$^{-2}$, plasma electrons can efficiently emit high-energy photons.
One- and two-dimensional simulations with radiation reaction force taken into account show that the radiation losses decrease the hole-boring velocity, suppress the filamentation process and affect the electron and ion distributions (Naumova et al. 2009, Schlegel et al. 2009, Tamburini et al. 2010, Capdessus et al. 2012). It is generally believed that radiation losses do not affect radiation pressure acceleration much if circularly polarized pulses are used (particularly for thin targets) (Tamburini et al. 2010, Chen et al. 2011, Tamburini et al. 2012). However, here we show that if laser intensity is extremely high, $I \sim 10^{25}$ W cm$^{-2}$, high-energy photons can take away a great portion of laser energy, at least for thick targets (generation of hard photons in this case can be stimulated by pair production: see section 4).

The approach that uses the radiation reaction force does not take into account the quantum nature of photon emission that is important in some cases (Duclous et al. 2011, Nerush and Kostyukov 2011). Moreover, radiation losses in a quantum regime (when quantum recoil is significant) cannot be described by the concept of a classical force in principle (Elkina et al. 2011).

Here we use the 3D PIC code with emission of hard photons taken into account by means of Monte Carlo method (Nerush et al. 2014). Electron-positron pair production (photon decay) is also taken into account, which allows us to simulate the hole-boring process at intensities of about 10^{25} W cm$^{-2}$ and higher. A similar approach has been used in a number of articles (Ridgers et al. 2012, Ridgers et al. 2013, Brady et al. 2014) where absence of reflection, the modification of the ion spectrum and the influence of gamma-ray emission on the energy budget are mentioned. However, the influence of incoherent emission on the hole boring was not the main topic of these articles and was not covered in detail.

Here we present detailed results of numerical simulations and theoretical analysis that takes into account radiation losses during the laser-driven hole boring and elucidates the key effects of gamma-ray emission.

2. Conservation of energy and momentum in laser-plasma interactions

To investigate the influence of gamma-ray generation on ion acceleration we consider the interaction geometry where a laser pulse is incident on a plasma slab producing reflected light, ion flow and high-energy photons (figure 1). According to (Ji et al. 2014c), the ratio of the electron energy to the overall energy in laser-plasma interactions decreases as the intensity increases and for $I \gtrsim 10^{23}$ W cm$^{-2}$ the electron energy can become negligible in the energy balance. Therefore, conservation of energy and momentum is given as:

\begin{equation}
(1 - R) S_\gamma = S_i + S_r,
\end{equation}

\begin{equation}
(1 + R) S_i = \Pi_i + S_r \cos \varphi_0,
\end{equation}

where S_i, S_r, and S_γ are the laser pulse energy, the overall ion energy and the overall energy of gamma-rays, respectively, Π_i/c is the overall ion momentum, $\cos \varphi_0$ determines the ratio of the longitudinal momentum of gamma-rays to their energy (i.e. φ_0 is the halfangle of the gamma-ray divergence), R is the reflection coefficient and c is the speed of light. It follows from equations (1)–(2) that

\begin{equation}
\Pi_i - S_i = 2RS_i + (1 - \cos \varphi_0) S_r,
\end{equation}

\begin{equation}
\Pi_i + S_i = 2S_i - (1 + \cos \varphi_0) S_r.
\end{equation}

If $\Pi_i = 0$, equation (3) is fulfilled only in the unrealistic case of $R = 0$, $S_i = 0$ and $\varphi_0 = 0$. This means that Π_i should be greater than zero, hence the gamma-ray generation is always accompanied by ion acceleration.

In addition, when the ion acceleration is accompanied by gamma-ray emission, the former should be affected by the latter according to the momentum end energy conservation. The effect of gamma-ray emission is quite simple if the ions are ultrarelativistic.

In laser-foil interactions ions gain velocity almost equal to the speed of light, for instance, in the laser-piston regime (Esirkepov et al. 2004). In this regime light pressure pushes a foil behaving as a mirror. The reflection coefficient tends to zero due to relativistic motion of the foil (Esirkepov et al. 2004) and gamma-rays are emitted primarily in the forward direction ($\varphi_0 \approx 0$) because of light aberration and relativistic Doppler effect (Ridgers et al. 2012, Nerush et al. 2014). These features of laser-plasma interaction apparently are also inherent for ultrarelativistic hole-boring. Furthermore, for ultrarelativistic ions $\Pi_i \approx S_i$, hence equation (3) is naturally fulfilled and equation (4) yields $S_i \approx S_r - S_\gamma$. Therefore, the gamma-ray emission only lowers the ion acceleration rate if ions are ultrarelativistic.
3. Energy and momentum balance in laser-driven hole boring

The laser-driven hole boring is a well-known interaction regime that can be roughly described as ion acceleration by a kick from a shock moving together with the laser pulse front with the speed v_{bh} (Wilks et al 1992, Robinson et al 2009, Schlegel et al 2009). Rebounded ions overtake the front and, since all of them move with the same velocity v_i, they form a quasimonenergetic distribution. In fact, ions in this regime are accelerated by the electric field induced by the laser pulse through electron-ion separation (Schlegel et al 2009, Nerush et al 2014). Every rebounded ion passes the same track in the field, hence, all of them gain the same energy. This idealized picture allows one to find the speed of the laser pulse front, v_{bh}, as demonstrated in section 3.1 for almost absent gamma-ray emission and in section 3.2 for abundant gamma-ray emission.

3.1. Low gamma-ray emission

The conservation law equations (1) and (2) can be written not only for the overall energy and momentum, but also for the energy and momentum flow rates per unit area of the shock:

$$\frac{(1-R)(c-v_{bh})}{4\pi} |\mathbf{E} \times \mathbf{B}| = n_i v_{bh} M c^2 (\gamma - 1), \tag{5}$$

$$\frac{(1+R)(c-v_{bh})}{4\pi} |\mathbf{E} \times \mathbf{B}| = n_i v_{bh} M c v_i \gamma_i, \tag{6}$$

where \mathbf{E} and \mathbf{B} are electric and magnetic fields of the laser pulse, n_i is the initial ion density, M is the ion mass and $\gamma_i = (c^2 - v_i^2)^{-1/2}$ is the Lorentz factor of the rebounded ions. It follows directly from these equations that

$$R = \frac{c - v_{bh}}{2c} |\mathbf{E} \times \mathbf{B}| = M c n_i v_{bh} [\gamma_i (c + v_i) - c]. \tag{7}$$

$$\gamma_i = \frac{c}{\sqrt{c^2 - v_i^2}} = \frac{c^2 + v_{bh}^2}{c^2 - v_{bh}^2}. \tag{8}$$

The velocity and the Lorentz factor of the accelerated ions can be found from the assumption of perfectly elastic rebound in the reference frame co-moving with the front of the laser pulse:

$$v_i = \frac{2c^2 v_{bh}}{c^2 + v_{bh}^2}, \quad \gamma_i = \frac{c}{\sqrt{c^2 - v_i^2}} = \frac{c^2 + v_{bh}^2}{c^2 - v_{bh}^2}. \tag{9}$$

From these equations together with equations (7) and (8) we get, first, $R = (c-v_{bh})(c + v_{bh})$. This formula corresponds to a complete laser light reflection in the reference frame co-moving with the front of the laser pulse. Second,

$$v_{bh} = \frac{c}{1 + \mu}, \quad \mu = \frac{4|M_i|^2 M_i}{|\mathbf{E} \times \mathbf{B}|} = \frac{1}{a_0} \frac{M_i}{m n_c}, \tag{10}$$

that matches with the results obtained in Robinson et al (2009) and Schlegel et al (2009) by a slightly different approach. Here $n_c = \omega m^3/4 \pi e^2$ is the critical density, ω is the laser cyclic frequency, m and $e > 0$ are the electron mass and the electron charge magnitude, respectively, $a_0 = e E_0 / mc \omega$ is the normalized amplitude of the incident laser pulse, E_0.

Results of a 3D particle-in-cell simulation with incoherent emission taken into account illustrate well hole boring with an intense laser pulse in a dense plasma (figures 1 and 2). The simulation box is $17.5 \lambda \times 25 \times 25 \lambda$ corresponding to the grid size $670 \times 125 \times 125$ with the cell size $0.026 \lambda \times 0.2 \lambda \times 0.2 \lambda$. The time step is $0.019 \omega / \lambda$, where ω is the laser wavelength. The initial number of quasiparticles is 3.8×10^7 corresponding to 3.8×10^7 particles per cell in the unperturbed plasma. In the simulation a quasi-rectangular $(12 \lambda \times 24 \lambda \times 24 \lambda)$ circularly polarized laser pulse of intensity 7×10^{23} $W \ cm^{-2}$ ($\lambda = 1 \mu m$, $a_0 = 500$) interacts with a He slab ($n_s = 2 n_i = 7.8 \times 10^{22} \ cm^{-3}$, $n_s n_c = 35$). Helium becomes fully ionized, then electrons are pushed by $\mathbf{v} \times \mathbf{B}$ force resulting in a charge separation that creates an accelerating field. For the given parameters $\mu = 1$ and $v_{bh} = 0.5c$ which is in fairly good agreement with the numerical results (figure 2(a)). The overall ion energy grows linearly with time while the laser pulse front is passing the slab ($3 \omega \lambda \leq t \leq 9 \omega \lambda$; see figure 2(b)). However, the rebound of ions is not regular in time and the resulting ion spectrum is

![Figure 2](image-url)
not strictly monoenergetic (figure 2(c)); on the broadening of the ion spectrum and modulations in the phasespace see also (Robinson et al 2009, Schlegel et al 2009, Macchi et al 2013).

3.2. Abundant gamma-ray emission

According to equation (10), which does not take into account high-energy photons, the hole-boring velocity remains the same if Mn_i (i.e. mass density) is increased proportionally to the laser intensity. If the hole-boring velocity is non-relativistic, the gamma-ray generation efficiency is low and does not grow with simultaneous increase of the intensity and the density (Nerush et al 2014). However, the energy taken away by gamma-rays increases sharply with the intensity and can be of the order of the initial laser pulse energy in the case of relativistic hole boring.

PIC simulation (figure 3; the simulation box is $17.5\lambda \times 25\lambda$, the cell size is 0.007$\lambda \times 0.17\lambda \times 0.17\lambda$, the time step is 0.005$\lambda/c$, the initial number of quasiparticles is 2×10^8 that is barely enough to resolve high-energy tails in the electron distribution, thus massive simulations are desirable in the future) shows that in the interaction of a 9.3×10^{24} W cm$^{-2}$ ($a_0 = 1840$) laser pulse with a diamond foil ($n_e \approx 6 \ n_i = 1.1 \times 10^{24}$ cm$^{-3}$, $n_i/n_{cs} = 158$) the fraction of energy carried away by gamma-rays is 2.3 times larger than that of ions (figure 3(b)); in the previous case, for a He slab and a laser pulse of $a_0 = 500$, this ratio is only 0.3. Though μ is the same in both cases, such sizeable energy losses, caused by incoherent synchrotron emission in the second case, considerably affect the interaction process. Primarily, the reflection coefficient, the hole-boring velocity and the ion spectrum are involved.

To determine the effect of radiation losses we introduce them into equations (5) and (6):

\[
(1 - R) \frac{(c - v_{bh})}{4\pi} |E \times B| = n_i v_{bh} M c^2 (\gamma_i - 1) + S_r, \tag{11}
\]

\[
(1 + R) \frac{(c - v_{bh})}{4\pi} |E \times B| = n_i v_{bh} M c v_{hi} S_r + S_r \cos \phi_0. \tag{12}
\]

From these equations the reflection coefficient can be found as the function of the rebound speed v_r, the emission angle ϕ_0 and

\[
\eta_{\gamma i} = S_r / n_i v_{bh} M c^2 (\gamma_i - 1), \tag{13}
\]

the fraction of the energy carried away by gamma-rays to the energy carried away by ions, as follows:

\[
R = \frac{c - v_r}{c + v_r} \frac{1 - (1 - \cos \phi_0) \eta_{\gamma i} f^+}{1 + (1 + \cos \phi_0) \eta_{\gamma i} f^-}, \tag{14}
\]

\[
f^+ = \frac{1}{\sqrt{c + v_r}} \frac{c - \sqrt{c^2 - v_r^2}}{\sqrt{c + v_r} - \sqrt{c - v_r}.} \tag{15}
\]

If gamma-ray emission is abundant, $\eta_{\gamma i} \gg 1$ (for instance, from the slope of the curves in figure 3(b) we obtain $\eta_{\gamma i} \approx 5$). The function f^+ increases from 0 to 1/2 and the function f^- changes from 0 to ∞ if v_r grows from 0 to 1. Thus, if the hole-boring is relativistic, the products $\eta_{\gamma i} f^+$ and $\eta_{\gamma i} f^-$ become greater than unity and the reflection coefficient in this case tends to zero. Furthermore, if $\eta_{\gamma i} f^+ \gg 1$, the gamma-rays are emitted mostly in the forward direction (cos $\phi_0 \approx 1$), otherwise equation (14) yields $R < 0$. As $f^+ \rightarrow 1$ and $f^- \rightarrow 0$ with the increase of v_r, the decrease of the reflection coefficient and the narrowing of the gamma-ray radiation pattern caused by the radiation losses become more pronounced at higher hole-boring velocities.

The effects following from equation (14) are in fairly good agreement with the simulation results presented in figure 3. Most portions of gamma-rays are emitted at $5\lambda/c \leq t \leq 10 \lambda/c$ and the reflection coefficient is very low during this time interval (figure 3(a)). In addition, the gamma-ray radiation pattern at $t = 5\lambda/c$ is conical with $q_0 \approx 45^\circ$ and the radiation pattern at $t = 10\lambda/c$ is rather spotlight-like (figure 4). The difference between these patterns can be interpreted as follows. For $t \leq 5\lambda/c$ the gamma-ray generation efficiency is low, hence radiation losses do not affect the laser-plasma interaction much and conical radiation pattern is formed [the radiation pattern formed in the incidence of a laser pulse with $a_0 = 500$ on a He slab (see section 3.1) is almost the same]. Most parts of the gamma-rays are emitted during the time interval $5\lambda/c \leq t \leq 10 \lambda/c$, which affects the laser-plasma interaction and leads to the narrowing of the gamma-ray radiation pattern (figure 4(b)).
We assume that when a laser pulse bores a hole in a plasma, a potential barrier is also created at the front of the laser pulse in the case of abundant gamma-ray emission. Rebound of ions from the moving potential barrier is elastic and, in the reference frame co-moving with the barrier, value of the ion velocity does not change after the rebound. Thus, in the laboratory reference frame the velocity of the laser pulse front and the velocity of the rebounded ions are related according to equation (9). Together with equations (11)–(12) this yields:

\[
\frac{(c - v_{bh})}{4\pi} [E \times B] = \frac{Mn_{b}v_{bh}^{2}}{c} + \frac{S_{y}(1 + \cos \varphi_{b})}{2},
\]

and the velocity of the laser pulse front, \(v_{bh}\), is determined by equation (10) with \(\mu\) substituted for \(\sigma\):

\[
v_{bh} = \frac{c}{1 + \mu}, \quad \mu = \frac{\mu}{\sqrt{1 - \sigma_{p}^{2}}},
\]

\[
\sigma_{p} = 2 \frac{\pi (1 + \cos \varphi_{b}) S_{y}}{(c - v_{bh}) |E \times B|}.
\]

At high radiation losses, when \(R \approx 0\) and \(\cos \varphi_{b} \approx 1\), \(\sigma_{p}\) is approximately equal to the gamma-ray generation efficiency, i.e. the ratio of the emitted gamma-ray energy, \(\tau S_{y}\), to the absorbed laser pulse energy, \(\pi(c - v_{bh})|E \times B|/4 \pi\), where \(\tau\) is the interaction time. From the slope of the curves in figure 3(b) for \(5 \lambda/c \lesssim t \lesssim 10 \lambda/c\) we obtain \(\sigma_{p} \approx 0.7\), hence equations (17) and (9) yield \(\mu = 1.8\), \(v_{bh} = 0.36c\) and \(v_{t} = 0.6c(\pi = 270\ \text{MeV nucleon}^{-1})\). These analytical results describe well the ion dynamics in the numerical simulation (figure 3). However, the ion distribution in \(v - \xi\) phasespace consists not only of vertical part with \(\xi \approx 250\ \text{MeV nucleon}^{-1}\), but also of parts with higher and lower energy. Figure 3(a) demonstrates that ions with \(v_{t} \gtrsim 0.6c\) are accelerated when the gamma-ray generation is not yet efficient (\(t \lesssim 5 \lambda/c\)) and ions with \(v_{t} \lesssim 0.6\ c\) are accelerated when the laser front leaves the foil that is accompanied by a decrease in the accelerating field (\(t \approx 10 \lambda/c\)). The amount of low-energy ions in the case of \(a_{0} = 500\) laser pulse and He slab (section 3.1) is much lower than in the considered case. This indicates, possibly, much longer acceleration time in the case of abundant emission. However, here we do not consider in detail how (from the microscopic point of view) efficient gamma-ray generation is connected with the decrease in ion acceleration rate and in reflection coefficient and how it is connected with narrowing of the radiation pattern. We limit ourselves to demonstration of these general effects of gamma-ray emission.

4. Discussion

If the incoherent photon emission is absent, energy of a laser pulse that bores a hole in a dense plasma is transmitted mostly to ions and reflected light. In this case proportional increase of the laser intensity and the plasma mass density does not change the interaction pattern (hole-boring velocity, velocity of ions, etc). However, at high intensities efficient generation of hard photons occurs that changes energy and momentum balances. First, as a great part of the laser energy is transmitted to hard photons, the energy of the reflected light drops together with the hole-boring velocity and the energy of rebounded ions. Second, the gamma-ray radiation pattern should be quite narrow and directed along the initial direction of the laser pulse because a great part of the laser momentum is carried away by gamma-rays and is not taken away by the ions. We show that the drop in the reflection coefficient and the narrowing of the gamma-ray radiation pattern caused by the losses are more pronounced for higher hole-boring velocities. In the opposite, the kinetic energy of the rebounded ions \(\gamma_{i} - 1 = 2/\mu(\mu + \mu^{2})\) is more sensitive to the radiation losses if \(\mu \gg 1\), i.e. at low hole-boring velocities. Nonetheless, at high hole-boring velocities radiation losses also influence the ion acceleration and can reduce the acceleration rate.

Three-dimensional particle-in-cell simulations with incoherent emission of hard photons and pair production taken into account agree well with the proposed picture that follows from the energy and momentum conservation laws. However, numerical simulations reveal a number of phenomena not taken into account by the analytical model. First, even in the case of low gamma-ray emission the beam of accelerated ions is not strictly homogeneous and the ion spectrum is not strictly monoenergetic (figure 2). Second, in the ultrahigh-intensity case the ion acceleration rate changes with time, leading to a broad ion spectrum (figure 3). The broadening of the ion spectrum in the low-emission case is caused by the piston oscillations (Robinson et al 2009, Schlegel et al 2009, Macchi et al 2013) that lead to the modulations in the phasespace (figure 2(c)) and modulations in the reflected light (figure 1(b)). At the same time, the broad ion spectrum and modulations in the phasespace (figure 3(c)) in the ultrahigh-intensity case are caused by the radiation losses that are correlated with pair production (see below).

The beam of the rebounded ions is propagating through the unperturbed plasma that causes Weibel-type instability and beam filamentation (Fox et al 2013); filamentation of
the laser pulse front (Naumova et al 2009, Palmer et al 2012) also occurs. Filamentation of the ion beam and the laser pulse front is more pronounced in the case of low gamma-ray emission. In the given numerical simulations ion filaments have no time to coalesce, however, for a thick foils filamentation of the ion flow and magnetic field, generation can significantly change the ion distribution function, as happens in plasmas of gamma-ray burst outflows (Silva et al 2003, Bret et al 2014).

In the case of abundant gamma-ray emission hard photons decay and create electron-positron pairs in strong laser and plasma fields. Numerical simulations show that in the case of ultra-intense laser pulse, pair production is crucial for efficient gamma-ray generation. For the simulation with $\alpha_0 = 1840$ the number of produced positrons is about the initial number of electrons in the simulation box and the number of hard photons produced by the positrons is about the number of hard photons produced by electrons. The possible explanation is that the generated positrons can stay near the shock for a long time and generate gamma-rays efficiently. If pair production is not included in PIC simulation, the gamma-ray generation efficiency, the hole boring velocity and the ion spectrum are close to that in the case of much less intense laser pulse ($\alpha_0 = 500$) and He slab. Thus, the feedback between processes of quantum electrodynamics and plasma physics (Nerush et al 2011, Ridgers et al 2013, Ji et al 2014b) is evident in this case. The positron dynamics during hole boring with ultra-intense laser pulses is studied in Kirk et al (2013), however, a vacuum gap assumed there is absent in our simulations; moreover, filamentation of the positron beam occurs (figure 5). This indicates that further investigations are needed. Nevertheless, pair plasma is not directly involved in energy and momentum balances and just converts laser energy into gamma-ray energy. Hence, the analysis presented here is also valid in the case of abundant pair production.

In conclusion, the influence of radiation losses on a hole boring with ultra-intense laser pulses is considered by means of 3D simulations and theoretical analysis. Conservation of momentum and energy allows one to understand how the losses affect hole boring properties for any mechanism of the incoherent photon emission.

Acknowledgments

This work has been supported in part by the Government of the Russian Federation (Project No. 14.B25.31.0008) and by the Russian Foundation for Basic Research (Grants No. 13-02-00886, 15-02-06079).

References

Bashinov A V, Gonoskov A A, Kim A V, Mourou G and Sergeev A M 2014 New horizons for extreme light physics with megascience project xcecs Eur. Phys. J. Spec. Top. 223 1105–12

Bashmakov V F, Nerush E N, Kostyukov I Y, Fedotov A M and Narozhny N B 2014 Effect of laser polarization on qed cascading Phys. Plasmas 21 013105

Bell A and Kirk J 2008 Possibility of prolific pair production with high-power lasers Phys. Rev. Lett. 101 200403

Brady C S, Ridgers C P, Arber T D and Bell A R 2014 Synchrotron radiation, pair production, and longitudinal electron motion during 10–100 pw laser solid interactions Phys. Plasmas 21 035108

Bret A, Stockem A, Narayan R and Silva L O 2014 Collisionless weibel shocks: full formation mechanism and timing Phys. Plasmas 21 072301

Capdessus R, d’Humières E and Tikhonchuk V T 2012 Modeling of radiation losses in ultrahigh power laser-matter interaction Phys. Rev. E 86 036401

Chen M, Pukhov A, Yu T P and Sheng Z M 2011 Radiation reaction effects on ion acceleration in laser foil interaction Phys. Plasmas Control. Fusion 53 014004

Denavit J 1992 Absorption of high-intensity subpicosecond lasers on solid density targets Phys. Rev. Lett. 69 3052–5

Duclos R, Kirk J G and Bell A R 2011 Monte carlo calculations of pair production in high-intensity laser-plasma interactions Plasma Phys. Control. Fusion 53 015009

Elkina N V, Fedotov A M, Kostyukov I Yu, Lagkov M V, Narozhny N B, Nerush E N and Ruhi H 2011 QED cascades induced by circularly polarized laser fields Phys. Rev. 14 054401

Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Highly efficient relativistic-ion generation in the laser-piston regime Phys. Rev. Lett. 92 175003

Fedotov A M, Narozhny N B, Mourou G and Korn G 2010 Limitations on the attainable intensity of high power lasers Phys. Rev. Lett. 105 080402

Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2013 Filamentation instability of counterstreaming laser-driven plasmas Phys. Rev. Lett. 111 225002

Gonoskov A, Gonoskov I, Harvey C, Idierton A, Kim A, Marklund M, Mourou G and Sergeev A 2013 Probing nonperturbative qed with optimally focused laser pulses Phys. Rev. Lett. 111 60404

Ji L L, Pukhov A, Kostyukov I Y, Shen B F and Akli K 2014b Radiation-reaction trapping of electrons in extreme laser fields Phys. Rev. Lett. 112 145003

Ji L L, Pukhov A, Nerush E N, Kostyukov I Y, Shen B F and Akli K U 2014c Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction Phys. Plasmas 21 023109

Ji L, Pukhov A and Shen B 2014a Ion acceleration in the dragging field of a light-pressure-driven piston New J. Phys. 16 063047

Kar S et al 2013 Experimental investigation of hole boring and light sail regimes of rpa by varying laser and target parameters Plasma Phys. Control. Fusion 55 124030
King B and Di Piazza A 2014 Investigating the qed vacuum with ultra-intense laser fields Eur. Phys. J. Spec. Top. 223 1063–8
Kirk J G, Bell A R and Ridgers C P 2013 Pair plasma cushions in the hole-boring scenario Plasma Phys. Control. Fusion 55 095016
Krour W L, Valeo E J and Estabrook K G 1975 Limitation of brillouin scattering in plasmas Phys. Rev. Lett. 35 1076–9
Macchi A, Borghesi M and Passoni M 2013 Ion acceleration by superintense laser-plasma interaction Rev. Mod. Phys. 85 751–93
Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Laser acceleration of ion bunches at the front surface of overdense plasmas Phys. Rev. Lett. 94 165003
Mourou G and Tajima T 2014 Summary of the IZEST science and aspiration Eur. Phys. J. Spec. Top. 223 979–84
Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G and Bulanov S V 2012 High-power γ-ray flash generation in ultraintense laser-plasma interactions Phys. Rev. Lett. 108 195001
Nerush E N and Fedotov A M 2014 Creation of electron-positron plasma with superstrong laser field Eur. Phys. J. Spec. Top. 223 1083–92
Naumova N, Schlegel T, Tikhonchuk V T, Labaune C, Sokolov I V and Mourou G 2009 Hole boring in a dt pellet and fast-ion ignition with ultraintense laser pulses Phys. Rev. Lett. 102 025002
Nerush E N, Bashmakov V F and Kostyukov I Y 2011 Analytical model for electromagnetic cascades in rotating electric field Phys. Plasmas 18 083107
Nerush E N, Kostyukov I Y, Fedotov A M, Narozhny N B, Elkina N V and Ruhl H 2011 Laser field absorption in self-generated electron-positron pair plasma Phys. Rev. Lett. 106 035001
Nerush E N, Kostyukov I Y, Ji L and Pukhov A 2014 Gamma-ray generation in ultrahigh-intensity laser-foil interactions Phys. Plasmas 21 013109
Nerush E N and Kostyukov I Y 2011 Kinetic modelling of quantum effects in laser-beam interaction Nucl. Instrum. Methods Phys. Res. A 653 7–10
Palmer C A J et al 2011 Monoenergetic proton beams accelerated by a radiation pressure driven shock Phys. Rev. Lett. 106 014801
Palmer C A J et al 2012 Rayleigh–Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser Phys. Rev. Lett. 108 225002
Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D and Bell A R 2013 Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas Phys. Plasmas 20 056701
Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L and Bell A R 2012 Dense electron–positron plasmas and ultraintense γ rays from laser-irradiated solids Phys. Rev. Lett. 108 165006
Robinson A P L, Gibbon E, Zepf M, Kar S, Evans R G and Bellei C 2009 Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses Plasma Phys. Control. Fusion 51 024004
Schlegel T, Naumova N, Tikhonchuk V T, Labaune C, Sokolov I V and Mourou G 2009 Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses Phys. Plasmas 16 083103
Silva L O, Fonseca R A, Tonge J W, Dawson J M, Mori W B and Medvedev M V 2003 Interpenetrating plasma shells: near-equipartition magnetic field generation and nonthermal particle acceleration Astrophys. J. Lett. 596 4
Tamburini M, Liseykina T V, Pegoaro F and Macchi A 2012 Radiation-pressure-dominant acceleration: polarization and radiation reaction effects and energy increase in 3D simulations Phys. Rev. E 85 016407
Tamburini M, Pegoaro F, Piazza A D, Keitel C H and Macchi A 2010 Radiation reaction effects on radiation pressure acceleration New J. Phys. 12 123005
Wilks S C, Kruer W L, Tabak M and Langdon A B 1992 Absorption of ultra-intense laser pulses Phys. Rev. Lett. 69 1383–6