RESEARCH ARTICLE

Assessment of In Vivo and In Vitro Genotoxicity of Glibenclamide in Eukaryotic Cells

Juliane Rocha de Sant’Anna¹, Claudinéia Conationi da Silva Franco², Paulo Cezar de Freitas Mathias², Marialba Avezum Alves de Castro-Prado¹

¹ Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Genética de Microorganismos e Mutagênese, Universidade Estadual de Maringá, Maringá, Paraná, Brazil,
² Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biologia Celular e Secreção, Universidade Estadual de Maringá, Maringá, Paraná, Brazil

* maacprado@uem.br

Abstract

Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 μM) and higher concentrations (10 μM, 100 μM, 240 μM and 480 μM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 μM, 10 μM and 100 μM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 μM and 480 μM concentrations and the cytokinesis block proliferation index between 0.6 μM and 240 μM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 μM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.

Introduction

Sulphonylurea is a class of oral antidiabetic agents with long clinical use in patients with type 2 diabetes. These agents are insulin secretagogues which act directly on the pancreatic β cell ATP-sensitive potassium channels (K\textsubscript{ATP} channels) and augment its closure by glucose [1]. The K\textsubscript{ATP} channels are protein channels that regulate the transport of potassium ions through
cell membranes. They are hetero-octameric complexes regulated by the intracellular levels of ATP/ADP ratio and consist of eight subunits arranged in two rings: an inner ring of four inwardly rectifying K⁺ channel (Kir6.X) subunits which form the pore through which potassium ions pass, and an outer ring that comprises four subunits of the regulatory sulphonylurea receptor (SUR) [1–3].

Several therapeutic agents may affect the K_{ATP} channels’ activity. Whereas nicorandil, a drug used for angina pectoris, activates the K_{ATP} channels, the sulphonylureas, e.g., glibenclamide, used to control type 2 diabetes, inhibit the K_{ATP} channels by their interaction with the SUR subunit. This inhibition leads to β cell membrane depolarization which results in the opening of voltage-gated Ca^{2+} channels and in the induction of Ca^{2+} transport from the extracellular compartment into the cytoplasm of the β cell. A rise in the cytosolic calcium ion concentration linearly increases the exocytosis of the insulin-containing granules into the plasma compartment [1–3].

Previous studies have shown that potassium channels regulate the growth and proliferation of many types of cell, so that K_{ATP} channels blockers, such as glibenclamide, lead to cell proliferation inhibition, whereas openers of K_{ATP} channels produce a hyperpolarization of membrane potential and activate the cell progression through the mitosis’s G1 phase. Since glibenclamide has been shown to inhibit cellular proliferation in several cancer lines, this anti-diabetic drug represents a potentially useful compound for cancer treatment [4–6].

Epidemiologic reports, designed to assess the association of malignancies with the use of glibenclamide, gliclazide and other secretagogues for type 2 diabetes treatment, have shown conflicting results. The positive association between mortality for malignancies and secretagogues users was higher for glibenclamide than for gliclazide or tolbutamide [7, 8]. Although glibenclamide has been previously associated with increased cancer risk, a potential protective effect was assigned to gliclazide [9]. On the other hand, the use of glibenclamide and gliclazide, but not glipizide, was associated with reduced cancer risk in a dose-dependent manner in a clinic-based study [10]. Despite these conflicting outcomes, a potential new role for glibenclamide as a chemotherapeutic agent in cancer treatment has been proposed [9, 11, 12].

The anti-tumor action of glibenclamide alone or in combination with tamoxifen was observed on experimental mammary tumors induced by N-nitroso-N-methylurea (NMU) in nondiabetic rats [13]. Furthermore, this K_{ATP} channel blocker was able to inhibit cell invasion and migration of ovarian clear cell carcinoma ES-2 cells by the inhibition of the secretory mechanism of the platelet-derived growth factor AA, involved in multiple tumor-associated processes [11].

Many agents used in cancer chemotherapy have been proposed as responsible for the second malignances diagnosed in cancer patients after chemotherapeutic regimens. In fact, second malignances are acknowledged as severe long-term consequences of cytotoxic therapies for a primary disorder [14–16]. Since DNA mutation and somatic recombination play important roles in the tumorigenic process [17, 18], the current research assesses the mutagenic and recombinogenic potentials of glibenclamide since it shows anticancer and anti-proliferative properties and is widely used to treat type 2 diabetes mellitus [1–6].

Since glibenclamide has been shown to increase the production of reactive oxygen species (ROS) in β cells [19], and that ROS are known to cause a variety of chemical modifications to nucleic acids, which result in DNA damage [20], current study investigates the mutagenic potential of the sulphonylurea glibenclamide in human lymphocytes by the in vitro mammalian cell micronucleus (MNvit) test. The MNvit is a well-established screening method which detects the clastogenic and aneugenic effects of chemical compounds in mammalian cells [21, 22]. Further, assuming that the loss of heterozygosity (the loss of the functional allele at a heterozygous locus) arising from allelic recombination is one important biologically significant
consequence of the oxidative damage [23], the glibenclamide recombinogenic potential was also evaluated by the in vivo homozygization assay, a sensitive, low-cost and rapid eukaryotic test which detects mitotic recombination events in diploid cells of Aspergillus nidulans [24].

Materials and Methods

1. Chemicals and reagents

Glibenclamide (Sigma-Aldrich, CAS N° 10238–21–8) was used as the test substance for in vitro and in vivo tests. Glibenclamide was dissolved in 1% dimethyl sulfoxide (DMSO CAS n° 67–68–5) supplied by Sigma-Aldrich (St.Louis, Mo, USA), which was also tested as solvent control. Mitomycin-C (CAS n° 50–07–7, St. Louis, MO), used as the positive control for the MNvit test, cytosine arabinoside (CAS n° 205–705–9, St. Louis, MO), used in the in vivo homozygization assay, and cytochalasin B (CAS n° 14930–96–2, St. Louis, MO) were also purchased from Sigma. RPMI 1640 cell culture media supplemented with L-glutamine (11875–093), fetal bovine serum (12657–029) and phytohemagglutinin (10576–015) were purchased from Gibco Life Technologies. Giemsa and all other chemicals were purchased from Merck (Darmstadt, Germany). All test solutions were freshly prepared before each experiment. All chemicals, solvents and culture media used in this study were of the highest purity.

2. Lymphocyte isolation

Following OECD guideline 487 [25] and Vlastos et al. [26], current study was carried out using human peripheral blood samples from two healthy, non-smoking volunteer donors aged 20 to 25 years. All donors had no previously known exposure to high concentrations of genotoxicants. All volunteers gave their informed consent to participate in the study and signed the consent forms. Current study was approved by the Ethics Committee of the Universidade Estadual de Maringá, Maringá PR Brazil. Freshly collected, heparinised peripheral blood was used. After centrifugation at 1100 rpm for 5 min, the lymphocyte layer was collected and added to 82% RPMI 1640 medium supplemented with 15% fetal bovine serum (12657–029) and phytohemagglutinin (10576–015) were purchased from Gibco Life Technologies. Giemsa and all other chemicals were purchased from Merck (Darmstadt, Germany). All test solutions were freshly prepared before each experiment. All chemicals, solvents and culture media used in this study were of the highest purity.

3. Selection of glibenclamide testing concentrations

For the selection of glibenclamide concentrations, the effects of the wide range of concentrations were evaluated using the mitotic index (MI) as a cytotoxicity marker. While the highest glibenclamide concentration selected produced 55 ± 5% cytotoxicity [25], the lowest concentration employed was the glibenclamide plasma concentration (0.6 μM) [27]. MI was calculated as follows [28]:

\[
MI = \frac{\text{number of dividing cells}}{\text{total number of the cells}} \times 100
\]

4. MNvit test [25]

The glibenclamide plasma concentration (0.6 μM) and four higher concentrations (10 μM, 100 μM, 240 μM and 480 μM) were used in the MNvit test. The lymphocyte cultures were incubated at 37°C in a humidified atmosphere with 5.0% CO₂, for 72 h. The cells were treated with glibenclamide and mitomycin-C (0.3 μM, positive control) at 24 h after initiating the culture. Cytochalasin B (final concentration of 12.5 μM) was added after 44 h of incubation in order to block cytokinesis and obtain binucleated cells (BC). After an additional 28 h incubation at
37°C, the cells were harvested by mild centrifugation and the pellet was resuspended in a cold hypotonic solution of 75 mM KCl. The cells were fixed in a cold fixative solution (methanol: glacial acetic acid, 3:1 v/v) and, after mild centrifugation, they were fixed thrice with methanol: glacial acetic acid (3:1 v/v). In the first fixative solution, 1% formaldehyde was added to preserve the cytoplasm. Slides were prepared by dropping and air drying. The slides were stained with 5% Giemsa solution (diluted with Sorensen buffer, pH 6.8) for 7 min [25, 29]. To determine the number of micronuclei and other nuclear anomalies, the lymphocytes cultures were performed in duplicates per each donor, with 1000 BC with preserved cytoplasm scored per culture and for each treatment (4000 BC were scored per concentration, 2000 BC for each donor). The cytokinesis block proliferation index (CBPI) was determined as follows:

\[
\text{CBPI} = \frac{N_1 + 2N_2 + 3(N_3 + N_4)}{500}
\]

where \(N_1\) to \(N_4\) are the cells with one to four nuclei in 500 cells counted for each experiment [30]. CBPI indicates the average number of cell cycles per cell during the period of exposure to cytochalasin B and may be used to calculate cell proliferation [25]. The experiments were done in duplicates for each donor. The amount of cytostasis (or inhibition of cell growth, [25]) induced by each treatment was determined as follows:

\[
\% \text{ cytostasis} = 100 - 100 \left(\frac{\text{CBPI}_T - 1}{\text{CBPI}_C - 1} \right)
\]

where \(\text{CBPI}_T\) is determined in each treatment and \(\text{CBPI}_C\) is determined in negative control cultures [30]. All the results were expressed as mean ± Standard Deviation (SD) of the mean and statistically analyzed by the non-parametric Kruskal-Wallis test, using Statistica version 7 (StatSoft South America-Brazil). Differences were considered to be significant at \(p < 0.05\).

5. In vivo homozygotization assay [24]

The master strains (a) A757, with yellow conidia (\(yA2\)), and nutritional requirements for methionine (\(\text{methA}17\)), and pyridoxine (\(\text{pyroA}4\)), and (b) UT448, with white conidia (\(wA2\)) and with nutritional requirements for riboflavin (\(\text{riboA}1\)), p-aminobenzoic acid (\(\text{pabaA}124\)), and biotin (\(\text{biA}1\)), and resistant to acriflavin (\(\text{AcrA}1\)), were used to form the UT448//A757 diploid strain of \(A.\ nidulans\) [24, 31]. The UT448//A757 diploid strain, with green conidia is heterozygous for the conidia color markers \(yA2\) (yellow) and \(wA2\) (white) and for the nutritional markers and it may grow in Minimal Medium (MM) consisting of Czapek-Dox medium supplemented with 1% (w/v) glucose. When growing on the Complete Medium (CM) [31], the diploid strain may originate auxotrophic mitotic segregants, which are identified as normally growing yellow, green or white sectors on UT448//A757 diploid green colonies. The Supplemented Medium (SM) consisted of MM supplemented with all the nutritional requirements of the strains which form the diploid, except one in each SM type. Solid medium contained 1.5% (w/v) agar. The glibenclamide concentration (100 \(\mu\)M) that induced the production of ROS in human cancer cells [6] and two lower concentrations (1 \(\mu\)M, 10 \(\mu\)M) were used in the cytotoxicity and homozygotization assays. UT448//A757 diploid colonies’ diameters were evaluated for cytotoxicity during six days after incubation at 37°C. The growth rates in the presence (treatment) and in the absence (control, Fig. 1a) of glibenclamide were compared by one-way ANOVA and subsequent Bonferroni’s test, at \(p < 0.05\). All tested glibenclamide concentrations showed no cytotoxicity (results not shown). UT448//A757 diploid strain colonies were grown onto petri plates containing MM (negative control), MM + cytosine arabinoside (0.4 \(\mu\)M, positive control) and MM + glibenclamide (treatment). Plates were incubated for six days at 37°C.
and then visually inspected for diploid sectors arising on the diploid strains' colonies. All the treatments with glibenclamide produced morphologically identifiable diploid sectors for each test concentration (Fig. 1b). Diploids were homozygous (+/+ or heterozygous (+/- or +/-) but not recessive (−/) for nutritional markers, since the latter cannot grow on MM. The untreated diploid strains (negative control) and those obtained after treatment with glibenclamide (1 μM, 10 μM and 100 μM) and cytosine arabinoside (0.4 μM) were purified on MM, individually transferred to CM plates and processed by spontaneous haploidization. The haploidization process consists of the loss of one member of each chromosome pair through successive mitotic divisions and results in the haploid condition of nuclei. After haploidization, the haploid mitotic segregants (Fig. 1c) were purified in CM and their mitotic stability evaluated in CM + benomyl (0.2 μg/mL). Benomyl, a haploidizing agent, is a strong spindle toxin, leading to disturbance in the mitotic segregation of the chromosomes [32]. Only mitotically stable haploid segregants at the final stage were selected for the recombinogenesis test (Fig. 1d). In the case of phenotypic analyses, the haploid segregants were individually transferred to different SM. Mitotic crossing-over cause homozygotization of heterozygous-conditioned genes. If the

![Fig 1. Glibenclamide-treated diploids and their haploid mitotic segregants.](image)

(a) Mitotic segregant (arrow) derived from the UT448/A757 diploid strain growing in the absence of glibenclamide. (b) Origin of the glibenclamide-treated diploids (arrows) in plates containing MM + 10 μM glibenclamide. (c) Mitotic segregants (arrows) derived from the 100 μM glibenclamide-treated diploid. (d) Haploid (left) and aneuploid (right) segregates derived from the diploid obtained with 10 μM of glibenclamide.
glibenclamide induces mitotic crossing-over in the original diploid strain, only heterozygotes (+/- or -/-) or homozygotes (+/+) diploids will develop in MM and the nutritional markers will segregate among the haploids in the proportion of 4+ to 2-. However, if the antidiabetic drug fails to induce crossing-over, the proportion will be 4+ to 4-. This is due to the fact that the initial selection process limits the growth of -/- diploids [24] (Fig. 2). The ratio of prototrophic to auxotrophic segregants is described by the Homozygotization Indice (HI), or rather, an HI equal to or higher than 2.0 indicates recombinogenic effects of the substance test. The recombinogenic potential of the glibenclamide was assessed by comparing the HI rates of the nutritional markers with Yates’s corrected Chi-square test, Contingency Table, using Statistic version 7 (StatSoft South America-Brazil). Differences were considered to be significant at \(p < 0.05 \).

Results

Eight concentrations of glibenclamide (0.6 \(\mu \text{M} \), 10 \(\mu \text{M} \), 20 \(\mu \text{M} \), 40 \(\mu \text{M} \), 80 \(\mu \text{M} \), 120 \(\mu \text{M} \), 240 \(\mu \text{M} \) and 480 \(\mu \text{M} \)) were evaluated by determining of the MI rates. Glibenclamide at 0.6 \(\mu \text{M} \) to 20 \(\mu \text{M} \) affected neither the normal cell morphology of lymphocytes nor the MI rates. In fact, they were not significantly different from those obtained in the untreated cultures (negative control, \(p > 0.05 \); Fig. 3). On the other hand, the MI rates in the other glibenclamide concentrations (40 \(\mu \text{M} \) to 480 \(\mu \text{M} \)) showed a statistically significant reduction when compared with the negative control (\(p < 0.05 \)). Glibenclamide at the highest concentration (480 \(\mu \text{M} \)) showed a cytotoxicity of approximately 56% when compared to that of the negative control (Figs. 3 and 4).
Since the analysis of MI was used as an indicator of glibenclamide cytotoxicity, the glibenclamide concentrations selected for MNvit test were 0.6 μM, 10 μM, 100 μM, 240 μM and 480 μM which produced cytostasis ranging approximately between 6% and 35.75% when compared to that of the negative control (Fig. 5).

Whereas micronucleated cells were rare in glibenclamide-treated cells as well as in untreated cells (negative control), mitomycin-C, the positive control, at 0.3 μM concentration, caused a significant rise (p < 0.05) in the number of micronuclei when compared to the negative control. Data on the occurrence of micronucleated cells are shown in Table 1. The frequencies of micronucleated lymphocytes were 0.7% for the negative control and 6.85% for the positive control. When compared to the negative control, glibenclamide at 0.6 μM,
10 μM, 100 μM, 240 μM and 480 μM concentrations failed to exhibit any significant increase in the frequencies of micronucleated cells, which ranged from 0.68% to 0.9% (Fig. 6). Glibenclamide at 480 μM concentration decreased significantly the CBPI values when compared to those of the negative control. Although nuclear buds (NB) and nucleoplasmic bridges (NPB) have been observed in the glibenclamide treated cultures, the results were not statistically significant (Table 1).

The recombinogenic potential of glibenclamide was evaluated by the HI rates for A. nidulans nutritional markers from chromosomes I (riboA1, pabaA124 and biA1) and IV (pyroA4).

Table 1. Effect of glibenclamide on micronuclei, nuclear buds and nucleoplasmic bridges induction in human lymphocytes in vitro.

Test Substance	Treatment	BC scored	BCMN (mean ± SD)	Total number of MN	BCNB (mean ± SD)	Total number of NB	BCNPB (mean ± SD)	Total number of NPB	CBPI (Mean±SD)
Negative control	24 -	4000	7.0±0.82	28	4.5±3.87	18	0.75±0.50	3	2.06 ± 0.08
DMSO	24 1%	4000	8.5±1.29	34	6.5±1.29	26	0.25±0.50	1	1.98 ± 0.08
Positive control	24 0.3	4000	68.5±10.02*	274*	12.75 ±5.1	51	0.5±1.00	2	1.80 ± 0.13
glibenclamide	24 0.6	4000	6.75±0.95	27	6.5±3.00	26	0	0	2.02 ± 0.07
glibenclamide	24 10	4000	7.5±1.29	30	6.0±2.16	24	0	0	1.98 ± 0.06
glibenclamide	24 100	4000	8.0±0.82	32	6.25 ±3.30	25	0	0	1.98 ± 0.05
glibenclamide	24 240	4000	9.0±2.12	36	7.0±1.82	28	0.5±0.58	2	1.9 ± 0.04
glibenclamide	24 480	4000	7.75±4.35	31	8.0±2.16	32	1.0±1.41	4	1.7 ± 0.18*

BC: binucleated cells; BCMN: binucleated cells with micronuclei; MN: micronuclei; BCNB: binucleated cells with nuclear buds; NB: nuclear buds; BCNPB: binucleated cells with nucleoplasmic bridge; NPB: nucleoplasmic bridges; CBPI: cytokinesis block proliferation index. Positive control: mitomicyn-C.

(*) Significantly different from negative control (non-parametric Kruskall-Wallis test, p < 0.05).

doi:10.1371/journal.pone.0120675.t001
Nine glibenclamide-treated diploids, three diploids treated with cytosine arabinoside and three untreated diploids were selected in MM which did not allow the development of auxotrophic diploids, specifically those which were homozygous for ribo, paba, bi, meth and pyro markers. Thus, only prototrophic diploids with green conidia were analyzed in the recombinogenic test. As expected, the HI rates for untreated diploids (negative control) were lower than 2.0 for all analyzed markers. On the other hand, cytosine arabinoside (0.4 μM), the positive control, induced HI rates which were higher than 2.0 for the ribo and bi markers and significantly different (p < 0.05) from the negative control. The HI rates for diploids obtained with all the three concentrations of glibenclamide (1 μM, 10 μM and 100 μM) were lower than 2.0 for all analyzed markers. Data for HI rates for both treated and untreated diploids are shown in Fig. 7.

Discussion

Current study investigated the mutagenic and recombinogenic potentials of glibenclamide in eukaryotic cells, the latter for the first time. Glibenclamide caused neither cytogenetic toxicity in human lymphocytes cultures nor recombinogenesis in eukaryotic cells when used at therapeutic or higher concentrations. It supported the clinical use of this antidiabetic drug in the treatment of diabetic and cancer patients.

Glibenclamide did not induce significant increase in the frequencies of micronuclei as well as in the number of NB and NPB. Since the MNvit is a screening method to detect structural chromosome damage or changes in the chromosome number [21], data in the current study demonstrated a lack of mutagenic activity of glibenclamide even when used in concentrations several hundred times greater than the plasma concentration. Based on the fact that the cytotoxicity of a genotoxic chemical in a cell culture may trigger cytostasis and cell death, the CBPI rates have been considered an index of cell kinetics and cytotoxicity [30]. Glibenclamide at 480 μM changed the cell-proliferation kinetics, significantly reducing the CBPI value when compared to the negative control. Results agree with those by Ouadid-Ahidouch and Ahidouch [5] which show the anti-proliferative effect of this hypoglycemic drug.

The recombinogenic potential of glibenclamide was evaluated by the homozygotization assay, a bioassay extensively used to detect the genotoxic effects of several chemical agents such
as environmental volatile pollutants, herbicides, antidiabetic and cancer chemotherapeutic
compounds [31, 33–35]. Mitotic recombination due to non-sister chromatids exchange pro-
duces the loss of heterozygozity (LOH) for markers distal to the recombination site [36]. In our
analysis,
A. nidulans diploids, homozygous for the nutritional markers (+/+), were not ob-
tained among the glibenclamide-treated diploids. In fact, the heterozygous condition of the
nutritional markers (+/- or -/-) was evidenced by the production of prototrophic and auxotro-
phic segregants during the haploidization of the glibenclamide-treated diploids. The absence
of homozygous diploids (+/+) was reflected in the HI rates which were not statistically different
from the negative control (non-treated diploids), demonstrating that glibenclamide is devoid
of any recombinogenic activity. The antidiabetic drug actually showed no recombinogenic ef-
fect even when used in the same concentration (100 μM) that induced DNA fragmentation
in recombinant human embryonic kidney cells and production of ROS in gastric cancer cells
[9, 37].

Homologous recombination is a process which involves reciprocal exchange of genetic ma-
terial between homologous chromosomes and promotes genome stability through the precise
repair of DNA lesions, including DNA double-strand breaks. There is now abundant evidence
that amplification of certain oncogenes and LOH in tumor suppressor genes are important
mechanisms involved in cancer initiation and/or progression. Due to mitotic recombination,
LOH has been observed in several types of tumor and is a major contributor to the tumorigenic
process [17, 38].

A series of in vitro and in vivo assays have been currently employed to evaluate the genotoxi-
city of chemical compounds. In addition to the tests utilized in the current study, the in vivo so-
matic mutation and recombination test (SMART), an one-generation test developed to detect
LOH due to different genotoxic events (i.e., mitotic recombination, point mutations and

Fig 7. Homozygatization Indices (HI) rates for nutritional markers from UT448/A757 diploid strain after treatment with 1 μM, 10 μM and 100 μM of glibenclamide. Positive control = cytosine arabinoside (0.4 μM). (*) Significantly different from negative control (Contingency Table, Yates Corrected Chi
Square, p < 0.05).

doi:10.1371/journal.pone.0120675.g007
chromosomal aberrations) in *Drosophila melanogaster* [39], and the *in vitro* comet assay, a useful approach for assessing DNA damage in eukaryotic cells [40], have been widely used in genotoxicity studies.

The monoterpene 2-methylisoborneol, an odorous substance produced by different groups of heterotrophic microorganisms [41], was recently assessed for genotoxicity using the SMART, the comet and the Cytokinesis Block Micronucleus (CBMN)-cytome assays. Investigations showed that 2-methylisoborneol induced neither mutagenesis nor recombinogenesis in *Drosophila melanogaster* and was not genotoxic in the CBMN-cytome assay using Chinese hamster ovary cells. Positive results were obtained in the comet assay only when 2-methylisoborneol was used at the highest concentration [42].

Recently, our research group evaluated the genotoxic potential of metformin, a hypoglycemic drug also prescribed for the treatment of type 2 diabetes mellitus, using the *in vitro* MNvit and chromosomal aberrations tests in human lymphocytes and the *in vivo* homozygotization assay. Metformin was characterized as genotoxic neither *in vitro* nor *in vivo* [31].

Glibenclamide is an antidiabetic drug with inhibitory effects on the proliferation of different human carcinoma cells, including breast, colon and bladder cancer cells [12, 43, 44]. Many agents used in human cancer chemotherapy, such as cisplatin, have been characterized as inducers of secondary malignances. It has been recently demonstrated that DNA damages induced by cisplatin may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens [45]. In the current study, the ability of glibenclamide to cause mitotic crossing-over *in vivo* and mutagenicity *in vitro* was evaluated. Results demonstrated that glibenclamide, in different analysis systems, and in our experimental conditions, was devoid of significant mutagenic and recombinogenic effects. Data suggest that glibenclamide is not a second malignances-inducer. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug and point to the safety usage of glibenclamide for the treatment of type 2 diabetes mellitus, including diabetic patients already taking the drug.

Author Contributions

Conceived and designed the experiments: JRS MAACP CCSF PCFM. Performed the experiments: JRS. Analyzed the data: JRS MAACP. Contributed reagents/materials/analysis tools: MAACP PCFM. Wrote the paper: JRS MAACP.

References

1. Lebovitz HE. Oral antidiabetic agents. Med Clin North Am. 2004; 88: 847–863. PMID: 15308382
2. Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, MacKay P, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes. 1998; 47: 345–351. PMID: 9519738
3. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006; 440: 470–476. PMID: 16554807
4. Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS, et al. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(–) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells. Biochem Biophys Res Comm. 1999; 261: 682–688. PMID: 10441476
5. Ouadid-Ahidouch H, Ahidouch A. K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol. 2008; 221: 1–6. PMID: 18060944
6. Qian X, Li J, Ding J, Wang Z, Duan L, Hu G. Glibenclamide exerts an antitumor activity through reactive oxygen species-c-jun NH2-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol. 2008; 76: 1705–1715. doi: 10.1016/j.bcp.2008.09.009 PMID: 18840412
7. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E. Are sulphonylureas all the same? A cohort study on cardiovascular and cancer-related mortality. Diabetes Metab Res Rev. 2007; 23: 479–484. PMID: 17385195

8. Bo S, Castiglione A, Ghigo E, Gentile L, Durazzo M, Cavallo-Perin P, et al. Mortality outcomes of different sulphonylurea drugs: the results of a 14-year cohort study of type 2 diabetic patients. Eur J Endocrinol. 2013; 169: 117–126. doi: 10.1530/EJE-13-0299 PMID: 23660643

9. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E. Sulphonyluracils and cancer: a case-control study. Acta Diabetol. 2009; 46: 279–284. doi: 10.1007/s00592-008-0083-2 PMID: 19082520

10. Yang X, So WY, Yu LW, Ko GT, Kong AP, et al. Use of sulphonylurea and cancer in type 2 diabetes-The Hong Kong Diabetes Registry. Diabetes Res Clin Pract. 2010; 90: 343–351. doi: 10.1016/j.diabetres.2010.08.022 PMID: 20889221

11. Yasukagawa T, Niwa Y, Simizu S, Umezawa K. Suppression of cellular invasion by glybenclamide through inhibited secretion of platelet-derived growth factor in ovarian clear cell carcinoma ES-2 cells. FEBS Lett. 2012; 586: 1504–1509. doi: 10.1016/j.febslet.2012.04.007 PMID: 22673517

12. Nunez M, Medina V, Croci M, Cocca C, Rivera E, et al. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol Toxicol. 2013; 14: 6. doi: 10.1186/2050-6511-14-6 PMID: 23311706

13. Cocca C, Martin G, Nunez M, Gutierrez A, Croci M, Mohamad N, et al. Effect of glibenclamide on N-nitroso-N-methylurea-induced mammary tumors in diabetic and nondiabetic rats. Oncol Res. 2005; 15: 301–311. PMID: 16408695

14. Momota H, Narita Y, Miyakita Y, Shibui S. Secondary hematological malignancies associated with temozolomide in patients with glioma. Neuro Oncol. 2013; 15: 1445–1450. doi: 10.1093/neuonc/not036 PMID: 23519741

15. Casorelli I, Bossa C, Bignami M. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias. Int. J. Environ Res Public Health. 2012; 9: 1361–2657. doi: 10.3390/ijerph90501361 PMID: 22966388

16. Swardlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, et al. Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study. J Clin Oncol. 2011; 29: 4096–4104.

17. Stewart DR, Penum A, Van Loo P, Beer E, Brems H, Sciot R, et al. Mitotic recombination of chromosome arm 17q as a cause of loss of heterozygosity of NF1 in neurofibromatosis type 1-associated gliomas. Genes Chromosomes Cancer. 2012; 51: 429–437. doi: 10.1002/gcc.21928 PMID: 22250039

18. Spaans VM, Trietsch MD, Crobach S, Stelloo E, Kremer D, Osse EM, et al. Designing a High-Throughput Somatic Mutation Profiling Panel Specifically for Gynaecological Cancers. PLoS One. 2014; 9: e93451. doi: 10.1371/journal.pone.0093451 PMID: 24671188

19. Sawada F, Inoguchi T, Tsubouchi H, Sasaki S, Fujii M, Maeda Y, et al. Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6. Metabolism. 2008; 57: 1038–1045. doi: 10.1016/j.metabol.2008.01.038 PMID: 18640379

20. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995; 18: 1033–1037. PMID: 7628729

21. Fenech M. Cytokinesis-block micronucleus cytome assay. Nature protocols. 2007; 2: 1084–1104. PMID: 17385195

22. Fenech M, Kirsch-Volders M, Natarajan AT, Casarett J, Cott JW, Parry J, et al. Molecular mechanisms of micronuclei, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011; 26: 125–132. doi: 10.1039/mutage/geq052 PMID: 21164193

23. Turner DR, Dreimanis M, Holt D, Firgaira FA, Morley AA. Mitotic recombination is an important mutational event following oxidative damage. Mutat Res. 2003; 522: 21–26. PMID: 12651708

24. Pires LT, Zucchi TMAD. A new method to detect potential genotoxic agents using mitotic crossing-over in diploid strains of Aspergillus nidulans. Brazil J Genetics. 1994; 17: 371–376.

25. OECD (Organization for Economic Co-operation and Development) Guidelines for the Testing of Chemicals, Section 4, Health Effects. 2010. Test No. 487: In Vitro Mammalian Cell Micronucleus Test.

26. Vlastos D, Madematzoglou D, Drosopoulos E, Efthimiou I, Chartomatisidou T, Pandalidou C, et al. Evaluation of the genotoxic and antigenotoxic effects of chios mastic water by the in vitro micronucleus test on human lymphocytes and the in vivo wing somatic test on drosophila. PLoS ONE. 2013; 8: e69494. doi: 10.1371/journal.pone.0069494 PMID: 23936030

27. Flores-Murrieta FJ, Carrasco-Portugal MdC, Reyes-Garcia G, Medina-Santillan R, Herrera J. Bioequivalence of two oral formulations of glyburide (glibencamide). Proc West Pharmacol Soc. 2007; 50: 64–66. PMID: 18605232
28. Chandrasekaran CV, Thyagarajan P, Sundarajan K, Krishna S, Goudar M, Murali B, et al. Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of *Andrographis paniculata* (KalmCold). Food Chem Toxicol. 2009; 47:1892–1902. doi: 10.1016/j.fct.2009.05.006 PMID: 19447157

29. Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Vande Loock K, et al. The *in vitro* MN assay in 2011: origin and fate, biological significance, protocols, high throughout methodologies and toxicological relevance. Arch Toxicol. 2011; 85: 873–899. doi: 10.1007/s00204-011-0691-4 PMID: 21537955

30. Lorge E, Hayashi M, Albertini S, Kirkland D. Comparison of different methods for an accurate assessment of cytotoxicity in the *in vitro* micronucleus test. I. Theoretical aspects. Mutat Res. 2008; 655: 1–3. doi: 10.1016/j.mrgentox.2008.06.003 PMID: 18602494

31. Sant’Anna JR, Yajima JRS, Prioli AJ, Della-Rosa VA, et al. Metformin’s performance in *in vitro* and *in vivo* genetic toxicity studies. Exp Biol Med. 2013; 238: 803–810. doi: 10.1177/153570213480744 PMID: 23788173

32. Hüsgen U, Böttner P, Müller U, Tudzynski P. Variation in karyotype and ploidy level among field isolates of *Claviceps purpurea*. J. Phytopathol. 1999; 47: 591–597.

33. Domingues Zucchi T, Zucchi FD, Zucchi TM. Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus *Aspergillus nidulans*. Chem. Toxicol. 2007; 45; 1091–1095. PMID: 17306432

34. Cardoso RA, Zucchi TD, Zucchi FD, Zucchi TM. Mitotic recombination and cytotoxicity in the *in vitro* comet assay: guideline for *Aspergillus nidulans*. Genet Mol Res. 2010; 9: 231–238. doi:10.4238/vol9-1gm0258 PMID: 20198578

35. LaRocque JR, Stark JM, Oh J, Bojilova E, Yusa K, Horie K, et al. Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Proc Natl Acad Sci U S A. 2011; 108; 11971–11976. doi: 10.1073/pnas.1104421108 PMID: 21730139

36. Hambrock A, de Oliveira Franz CB, Hiller S, Osswald H. Glibenclamide-induced apoptosis is specifically enhanced by expression of the sulfonylurea receptor isoform SUR1 but not by expression of SUR2B or the mutant SUR1(M1289T). J Pharmacol Exp Ther. 2006; 316: 1031–1037. PMID: 16306272

37. Steinemann D, Arning L, Praulich I, Stuhrmann M, Hasle H, Stary J, et al. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica. 2010; 95: 320–323. doi:10.3324/haematol.2009.010355 PMID: 20015894

38. Etcheberrigaray R, Yedgar S, Rojas E, Pollard HB. Multiple potassium and chloride channels in the human colon carcinoma cell line SW1116. Membr Biochem. 1990; 9: 215–225. PMID: 19669194

39. Graf U, Abraham SK, Guzmán-Rincón J, Würgler FE. Antigenotoxicity studies in *Drosophila melanogaster*. Mutat Res. 1998; 402: 203–209. PMID: 9729134

40. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. The single cell gel/comet assay: guideline for *in vitro* and *in vivo* genetic toxicity testing. Environ Mol Mutagenesis. 2000; 35; 206–221. PMID: 10737956

41. Jüttner F, Watson SB. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol. 2007; 73: 4395–4406. PMID: 17400777

42. Burgos L, Lehmann M, Andrade HHR, Abreu BRR, Souza AP, Juliano VB, et al. *Aspergillus* genotoxicity studies. Exp Biol Med. 2014; 100; 282–286. doi: 10.1073/pnas.1104421108 PMID: 21730139

43. Etcheberrigaray R, Yedgar S, Rojas E, Pollard HB. Multiple potassium and chloride channels in the human colon carcinoma cell line SW1116. Membr Biochem. 1990; 9: 215–225. PMID: 19669194

44. Wondergem R, Cregan M, Stricker L, Miller R, Suttles J. Membrane potassium channels and human bladder tumor cells: II. growth properties. J Membr Biol. 1998; 161: 257–262. PMID: 9493131

45. Dertinger SD, Avlasevich SL, Torous DK, Bems JC, Phanethpawat S, Labash C, et al. Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol Sci. 2014; 140; 307–314. doi: 10.1093/toxsci/kfu078 PMID: 24798381