Schizandra arisanensis extract attenuates cytokine-mediated cytotoxicity in insulin-secreting cells

Yi-Shin Hsu, Yao-Haur Kuo, Hui-Ling Cheng, Peter R Flatt, Hui-Kang Liu

Yi-Shin Hsu, Yao-Haur Kuo, Hui-Kang Liu, Division of Herbal Drugs and Natural Products, National Research Institute of Chinese Medicine, Taipei 112, Taiwan, China
Yao-Haur Kuo, Hui-Ling Cheng, Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan, China
Peter R Flatt, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, United Kingdom
Author contributions: Hsu YS and Liu HK were responsible for all bio-assays, research design, data analysis and manuscript writing; Kuo YH and Cheng HL were responsible for crude extract preparation, compound preparation and chemical analysis, and part of the manuscript writing; Flatt PR contributed to manuscript drafting and discussions on the results.
Supported by National Science Council, No. NSC94-2314-B-077-001, No. NSC101-2320-B-077-003-MY2, and National Research Institute of Chinese Medicine, No. NRICM95-DHM-04
Correspondence to: Dr. Hui-Kang Liu, Division of Herbal Drugs and Natural Products, National Research Institute of Chinese Medicine, 155-1 Li-Nong Street, Section 2, Taipei 112, Taiwan, China. hk.liu@nricm.edu.tw
Telephone: +886-2-28201999 Fax: +886-2-28250743
Received: July 10, 2012 Revised: September 18, 2012
Accepted: September 22, 2012
Published online: December 14, 2012

Abstract

AIM: To explore the bioactivity of an ethanolic extract of Schizandra arisanensis (SA-Et) and isolated constituents against interleukin-1β and interferon-γ-mediated β cell death and abolition of insulin secretion.

METHODS: By employing BRIN-BD11 cells, the effects of SA-Et administration on cytokine-mediated cell death and abolition of insulin secretion were evaluated by a viability assay, cell cycle analysis, and insulin assay. The associated gene and protein expressions were also measured. In addition, the bioactivities of several peak compounds collected from the SA-Et were tested against cytokine-mediated β cell death.

RESULTS: Our results revealed that SA-Et dose-dependently ameliorated cytokine-mediated β cell death and apoptosis. Instead of suppressing inducible nitric oxide synthase/nitric oxide cascade or p38MAPK activity, suppression of stress-activated protein kinase/c-Jun NH2-terminal kinase activity appeared to be the target for SA-Et against the cytokine mix. In addition, SA-Et provided some insulinotropic effects which re-activated the abolished insulin exocytosis in cytokine-treated BRIN-BD11 cells. Finally, schiarisanrin A and B isolated from the SA-Et showed a dose-dependent protective effect against cytokine-mediated β cell death.

CONCLUSION: This is the first report on SA-Et ameliorating cytokine-mediated β cell death and dysfunction via anti-apoptotic and insulinotropic actions.

© 2012 Baishideng. All rights reserved.

Key words: Schizandra arisanensis; C19 homolignans; Type 1 diabetes; Insulin-secreting cells; Interleukin-1β; Interferon-γ

Peer reviewers: Fabrizio Montecucco, MD, Assistant Professor, Division of Cardiology, Department of Internal Medicine, University of Geneva, Avenue de la Roseraie 64, 1211 Geneva, Switzerland; Qiuwei Pan, PhD, Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room L-462’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands

Hsu YS, Kuo YH, Cheng HL, Flatt PR, Liu HK. Schizandra arisanensis extract attenuates cytokine-mediated cytotoxicity in insulin-secreting cells. World J Gastroenterol 2012; 18(46): 6809-6818 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i46/6809.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i46.6809

INTRODUCTION

The onset of type 1 diabetes occurs when approximately 60%-90% of insulin secreting cells are lost and/or are dysfunctional due to β-cell directed autoimmunity[4].
During the progression of autoimmunity, heavy infiltrations of mononuclear cells lead to substantial damage to β cells by generating locally high concentrations of pro-inflammatory cytokines, perforin, and FasL-Fas interactions within the micro-environment of islets. As a result, deleterious outcomes include excessive proinsulin secretion, the abolition of glucose-induced insulin secretion, and ultimately β cell death.

Currently, scientists have developed a wide range of approaches to prevent or intervene in type 1 diabetes by stimulating β-cell proliferation, attenuating the cytotoxic effects of inflammatory agents, or modulating autoimmune response, and so on. While many clinical trials are ongoing, the application of herbal medicine remains to be fully explored.

In cell culture systems, exposing β cells to an interleukin (IL)-1β and interferon (IFN)-γ mixture can mimic the consequences of an immune attack in type 1 diabetes, which affects pro-insulin secretion and induces β cell death. By employing such a platform, potential β cell protective herbal material can be identified. Schizandra arisanensis (SA-Et) is one of the schizandraceous plants from Taiwan. This plant also contains various C₁₈ dibenzoylecocotadiene lignans and C₁₀ homolignans. The indications for this herb in traditional Chinese medicine include diabetes, hepatitis, immunomodulation, and cancer.

Therefore, in the present study, we investigated the potential β cell protective bioactivity of the ethanol extract of SA-Et, including its isolated constituents against cytokine-mediated β cell cytotoxicity and dysfunction.

MATERIALS AND METHODS

Plant material and reagents

Stems of SA-Et were collected and authenticated by Dr. Kuo YH in October 2005 in Chiayi County, Taiwan. A voucher specimen (No. NIRCM20051003) was deposited at the National Research Institute of Chinese Medicine. The following were used as positive controls in the various biological assays performed; recombinant cytokines (IL-1β and IFN-γ, PeproTech, NJ, United States); epigallocatechin gallate (EGCG; Fluka, MO, United States); nitro-L-arginine methyl ester (L-NAME), glucose, KCl and CaCl₂ (Sigma-Aldrich Corp., MO, United States). These reagents were obtained at the highest purity available (>97%) from the suppliers indicated.

Preparation of the ethanol extract of SA-Et

Dried stems of SA-Et were ground and then extracted with 95% (v/v) EtOH at 45 °C three times for 48 h each time. Under reduced pressure, the combined ethanol extracts were concentrated to an ethanolic extract residue of SA-Et. DMSO was employed as the dissolving reagent, and aliquots were prepared and stored at -20 °C before the biological assays were carried out.

High-performance liquid chromatographic analysis of the SA-Et

A filtered volume (100 μL) of the SA-Et solution (1.0 mg/mL in methanol) was prepared and injected into a reverse-phase high-performance liquid chromatography (HPLC) system. The HPLC analysis was performed using a Waters™ HPLC (cont 600 Pump, 996 photodiode array detector, 600 controller, and 717 plus autosampler; Milford, Massachusetts, United States), using a reverse-phase RP-18 column (4.6 mm × 250 mm i.d.). The solvent system used was a gradient of water and CH₃CN. The gradient system was as follows: 0-60 min, 45%-60% CH₃CN, and 60-70 min, 60%-75% CH₃CN; with elution performed at a solvent flow rate of 1 mL/min. The detection chromatogram was recorded at 215 nm.

Isolation of C₁₀ homolignan and C₁₈ lignan compounds

Peak compounds including schiarisanrin A (peak 5), schiarisanrin B (peak 1), schiarisanrin C (peak 4), schiarasanrin E (peak 3), and macelignan (peak 6) were obtained from the SA-Et followed by the procedures described below. Isolation of taimainserin A (peak 2) was based on a previous method.

Five grams of SA-Et was partitioned with water and n-hexane, to give the n-hexane residue (SA-Et-H). Further separations of SA-Et-H (100 mg) were performed on a Waters™ HPLC, using a preparative Cosmosil 5C₈ AR-II column (250 mm × 10 mm i.d.; Nacalai Tesque, Kyoto, Japan), employing a gradient system [water (A) and CH₃CN (B), mobile phase was as follows: 0-2 min, 45%-50% (B); 2-20 min, 50%-55% (B), 20-55 min, 55%-60% (B), 55-60 min, 60%-70% (B), and 60-70 min, 70%-100% (B)], at a flow rate of 3 mL/min, under 215 nm UV, to yield schiarisanrin A (4.6 mg), schiarisanrin B (4.1 mg), schiarisanrin C (5.6 mg), schiarisanrin E (6.3 mg), macelignan (11.5 mg), and schizanrin A (3.6 mg), which were identified by comparison with authentic samples and reported spectroscopic data (UR, infrared, and nuclear magnetic resonance) in the literature. Their purity was over 75% as analyzed by HPLC.

Cytotoxicity test

BRIN-BD11 cells were routinely cultured in RPMI-1640 containing 10% (v/v) fetal bovine serum and 2 g/L glucose. For the cytotoxicity test, BRIN-BD11 cells were seeded into 24-well plates at the density of 5 × 10⁴ cells/well. After overnight attachment, cells were incubated with cytokines according to the figure legends. The viability at the end of treatment was measured by a neutral red assay as described previously. The absorbance under control conditions was set to 100% viability.

Cell cycle analysis

At the end of treatment, cells were trypsinized and collected by centrifugation. Following a phosphate-buffered saline (PBS) wash, cell pellets were resuspended in ethanolic overnight at -20 °C. Fixed cells were then washed with PBS before being resuspended in 1% (v/v) Triton X-100 and incubated for 15 min. The cells were then resuspended in propidium iodide (PI) staining solution, consisting of 20 µg/mL PI, 50 µg/mL RNase A, and 0.0001% (v/v) Triton X-100 in PBS, and incubated at 4 °C for 30 min.
Table 1 Sequence of primer sets for conventional reverse transcription-polymerase chain reaction

β-actin	5'-CGTAAAGACCTCTATGCCAA-3'	5'-AGCCATGGCAAAATGTTGCTAT-3'
Glucokinase	5'-AAGGGAACTACATGCTAGGA-3'	5'-CATTGGCGGTCTTCATAGTA-3'
Insulin	5'-TGCCCAGGCTTTTGTCAAACAGCACCTT-3'	5'-GACCTGATGTTGCCACTGTTAG-3'
iNOS	5'-TTTTCACGACACCCTTACC-3'	5'-AAGGGAACTACATCGTAGGA-3'
Reverse Glucokinase	5'-CATTGGCGGTCTTCATAGTA-3'	
Forward Insulin	5'-CATTGGCGGTCTTCATAGTA-3'	
Reverse iNOS	5'-TTTTCACGACACCCTTACC-3'	

iNOS: inducible nitric oxide synthase.

with protection from light. Finally, the cells were passed through a mesh prior to cell cycle analysis by employing FACSan (BD Bioscience, San Jose, California, United States).

Western blot analysis
This procedure followed a previous methodology[5]. In brief, cells were washed with ice-cold PBS and scraped into ice-cold lysis buffer. Cell debris was removed by centrifugation. Equal amounts of protein (40 g) were subjected to separation on sodium dodecyl sulfate 10% polyacrylamide gels. Following transfer to nitrocellulose membranes, blots were blocked with 5% (w/v) non-fat milk in Tris-buffered saline containing 0.1% (v/v) Tween 20 for 1 h, and incubated with primary antibodies at 4 °C overnight prior to incubation for 1 h at room temperature with the secondary antibody. Finally, results were visualized after development of films with the aid of an enhanced chemiluminescence kit (Amersham Biosciences, Uppsala, Sweden).

Measurement of gene expression
Total RNA was extracted using the TRI-reagent according to the manufacturer's instructions. Total RNA (1 μg) was reverse-transcribed to generate templates. Complementary (c) DNA at 50 ng was employed for the polymerase chain reaction (PCR). The sequences of primers are listed in Table 1. The annealing temperatures for amplification of β-actin (57 °C), glucokinase (57 °C), insulin (52 °C), and inducible nitric oxide synthase (iNOS) (55 °C) were employed to generate respective sequences of 349 bp, 130 bp, 187 bp, and 441 bp. Once the reaction was complete, PCR products were separated by gel electrophoresis, visualized, photographed using a digital camera, and quantified with Genetools 3.06 (Syngene, Cambridge, United Kingdom). When iNOS mRNA was determined by real-time reverse transcription-PCR, 1 μg of total RNA was reverse-transcribed into cDNA using the RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, Maryland, United States) before being applied to the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Warrington, United Kingdom). Each reaction was carried out based on the description of the ‘TaqMan®

Gene Expression Assay kit with pre-designed probes for iNOS (Rn00561646_m1) and β-actin (Rn00667869_m1). Data were ct values (i.e., cycle number where logarithmic PCR plots cross a calculated threshold line). For comparative quantification, Δct values were firstly calculated using the formula: Δct = (ct of iNOS) - (ct of β-actin). Then the ∆Δct value was determined using the following formula: ∆∆ct = (Δct of each sample) - (average Δct of control samples). Fold increase in iNOS level under each condition was presented as 2ΔΔct.

Acute insulin-secretion test
The acute insulin-secretion test was as previously described[15]. In brief, the culture medium was discarded and the cells were washed twice with 1 mL Krebs-Ringer bicarbonate (KRB) buffer. The cells were then pre-incubated in KRB for 40 min at 37 °C. Pre-incubation buffer was then poured off followed by the addition of 1 mL of test medium per well at a constant rate. After 20 min, the test medium was collected at a constant rate and stored at -20 °C prior to insulin determination by a rat insulin enzyme-linked immunosorbent assay (ELISA) kit (Linco Research, St. Charles, Missouri, United States). The limit of sensitivity of the assay was 0.2 ng/mL (35 pmol/L) insulin using a 10 μL sample. The appropriate range of the insulin assay was 0.2 ng/mL to 10 ng/mL insulin (10 μL sample size). Samples with results greater than this range were diluted with sample buffer in order to fit the range of the standard curve.

Determination of nitrite production
Test samples at 100 μL were mixed with 1.32% sulfanilamide (50 μL) in 60% acetic acid and 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride HCl (50 μL) in distilled water. After 10 min incubation, the absorbance was read on a spectrophotometer at 540 nm. Actual concentrations were calculated from an absorbance vs nitrite (μmol/L) standard curve.

Statistical analysis
The significance of various treatments was determined by the Student’s unpaired t-test under non-parametric statistical conditions. Results are expressed as the mean ± SE. Differences were considered significant at P < 0.05.

RESULTS
As shown in Figure 1, HPLC analysis of the ethanolic extract of SA-Et was carried out, and seven major peaks were obtained and identified as schiarisanrin B, tainwanschinin A, schiarisanrin E, schiarisanrin C, schiarisanrin A, macelignan, and schizanrin A, respectively, by matching them to authentic samples. In addition, the model of cytokine-mediated β cell destruction was established using BRIN-BD11 cells. As shown in Figure 2A, a synergistic effect on cytotoxicity was only observed when IL-1β was mixed with IFN-γ. Maximum cell death occurred at 48 h when cells were treated with IL-1β (2 ng/mL) and IFN-γ (100 ng/mL). As shown in Figure 2B, the pres-
ence of IFN-γ alone resulted in significant G1 arrest (\(P < 0.05\)). In contrast, the presence of IL-1β alone caused significant inhibition at S phase. However, when IFN-γ was combined with IL-1β, the accumulated G1 arrested cells appeared to have progressed into the subG1 phase (\(P < 0.01\)) at the end of cytokine treatment. By affecting the mechanisms of IL-1β + IFN-γ using various inhibitors, our results showed that IL-1β + IFN-γ-mediated cytotoxicity could be attenuated by SP600125 and SB203580. On the other hand, the presence of U0126 and L-NAME had no beneficial effects on cell viability. Moreover, the viability of cytokine-treated cells was worse in the presence of wortmannin (Figure 2C).

By employing our cell model, as shown in Figure 3A, the SA-Et at 20 μg/mL provided β cell protective activity as shown by an increase of approximately 1.3-fold (\(P < 0.01\)) in the viability in the cytokine treated condition. Consistently, induction of the subG1 phase in the presence of IL-1β + IFN-γ was attenuated by the SA-Et (Figure 3B). Finally, full-length caspase-3 degradation in the presence of IL-1β + IFN-γ was observed and was parallel to the increase in cleaved caspase-3 (active form) of about 1.2-fold at 24 h post-treatment with IL-1β + IFN-γ (Figure 3C). However, while SA-Et alone reduced the cleaved form of caspase-3 by 30%, the protease-mediated caspase-3 activation by IL-1β + IFN-γ was also ameliorated by SA-Et.

Following determination of the protective effect of
Figure 2 Interleukin-1β and interferon-γ-mediated BRIN-BD11 cell apoptosis is attenuated by p38MAPK and stress-activated protein kinase/c-Jun NH2-terminal kinase inhibitors. A: The viability of interferon (IFN)−γ (100 ng/mL)-treated cells in the presence of various concentrations of interleukin (IL)-1β for 24 h, 48 h and 72 h was measured. Data are presented as the mean ± SE, n = 4. *P < 0.05, **P < 0.01 vs the viability of untreated cells; B: Cell cycle analysis was carried out at 48 h post-treatment with IL-1β (5 ng/mL), IFN-γ (100 ng/mL), or a mixture of the two. Data are presented as the mean ± SE, n = 4. *P < 0.05, **P < 0.01 vs the control; C: The viability of cytokine-treated BRIN-BD11 cells in the presence of inhibitors was measured. Data are presented as the mean ± SE, n = 4. *P < 0.05, **P < 0.01 vs the viability of untreated cells; **P < 0.01 vs the viability of cells with the cytokine mix.
SA-Et, we further examined the impact of SA-Et on signal transduction of IL-1β + IFN-γ. As shown in Figure 4A, stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), p38MAPK, and STAT-1α activation in cytokine-treated cells was evident, while ERK1/2 was not activated. In the presence of SA-Et, the phosphorylation of SAPK/JNK (at T183/Y182) and its substrate c-Jun (at S63) was attenuated by this treatment, while other pathways appeared to be unaffected by SA-Et.

In addition, cytokine treatment also promoted IκBα degradation which was unaffected by the addition of SA-Et (Figure 4B). Consistently, the presence of SA-Et (20 μg/mL) was unable to inhibit cytokine-mediated iNOS mRNA through cytokine induction (Figure 4C and D). Interestingly, SA-Et administration up to 20 μg/mL provided minor, but significant inhibition of cytokine-mediated NO formation. However, such inhibition did not reach the level of the known iNOS inhibitor, L-NAME, which provided > 50% of the inhibition of cytokine-mediated NO production (Figure 4E).

In terms of SA-Et treatment on β-cell function with or without cytokine challenge (Figure 5A), SA-Et treatment enhanced the insulinotropic effects of glucose and extracellular Ca2+, and modestly but significantly affected the insulinotropic effect of extracellular K+. As shown in Figure 5B, glucose responsiveness of BRIN-BD11 cells was unaffected by SA-Et alone. On the other hand, a detectable amount of secreted insulin under a basal or high concentration of glucose was not detected in surviving BRIN-BD11 cells following cytokine treatment. In contrast, we detected partial secretion of insulin from cytokine-treated BRIN-BD11 cells in the presence of SA-Et (P < 0.01).

When determining the insulin level in BRIN-BD11 cells under the indicated conditions, there was a modest reduction in insulin mRNA expression in the presence of SA-Et or the cytokine mix 48 h post-treatment (Figure 5C). In addition, insulin protein expression and the intracellular insulin content of BRIN-BD11 cells were consistent with each other (Figure 5D). Cellular insulin protein level appeared to be similar regardless of the addition of SA-Et. In contrast, cellular insulin contents in cytokine-treated cells were significantly elevated (P < 0.001). Interestingly, insulin content in cytokine-treated BRIN-BD11 cells with SA-Et treatment was significantly reduced (P < 0.05) compared with that in untreated cells.

Finally, we compared the biological activities of four major peaks as shown in Figure 6. Epigallocatechin gallate (EGCG) was employed as a reference drug which has been shown to protect against cytokine-mediated β cell death10. Our results indicated that both peak 1 (schiarisanrin B) and peak 5 (schiarisanrin A) provided β cell protective bioactivity similar to EGCG (20 μg/mL). The protective potency of schiarisanrin B reached its maximum at a concentration of 5 μg/mL, and higher concentrations led to a deleterious outcome. On the other hand, schiarisanrin A provided a dose-dependent protective effect starting at a concentration of 5 μg/mL. Peak 4 (schiarisanrin C) led to cell death in a dose-dependent manner. Different from Cα homolignans, the Cα lignan, peak 6 (macelignan), played no role in cytokine-mediated cytotoxicity at any concentration.

DISCUSSION

Conventional therapy in patients with type 1 diabetes does not allow minute-to-minute control of blood glucose and does not prevent complications associated with the disease. Whole pancreas or islet transplantation facilitates glucose control on a real-time basis but the lack of...
sufficient organs for transplantation is a major obstacle. Employing toxin-resistant cells for type I diabetes therapy is another developing approach in cell-based therapies. However, dissociation between toxin resistance and insulin-secretory functions may occur during the induction of toxin resistance \[17\]. Moreover, to our knowledge, no “master” toxin-resistant cells have been created so far \[17\]. As a result, supplementation with β cell protective phytochemicals to enhance the survival rate and secretory functions of cell-based therapeutics for curing type I diabetes is an interesting and flexible approach \[17\].

To pursue this objective, we created a simple platform by employing BRIN-BD11 cells. The use of a cytokine mix successfully promoted β cell death and abolished glucose-stimulated insulin secretion after 48 h of treatment. Through cell cycle analysis, it was apparent that only the combination of IL-1β and IFN-γ elicited apoptosis as judged by caspase 3 cleavage and a significant increment of the subG1 population in BRIN-BD11 cells under such conditions. In the present investigation, the anti-apoptotic effect of SA-Et against cytokine-mediated β cell death was clearly demonstrated. Consistent with the restoration...
Hsu YS et al. β-cell protective effects of SA-Et

Figure 5 Ethanolic extract of Schizandra arisanensis treatment partially rescued the abolished insulin secretion in cytokine-treated BRIN-BD11 cells. A. Acute insulin release in response to glucose, KCl and Ca\(^{2+}\) in the presence or absence of the ethanolic extract of Schizandra arisanensis (SA-Et) was evaluated. Data are presented as the mean ± SE, n = 4. \(*P < 0.05, **P < 0.01\) vs control cells under the same glucose conditions. C: In addition, a portion of the treated cells was harvested to measure insulin mRNA level using reverse transcription-polymerase chain reaction. Relative insulin gene expression was calculated by employing endogenous β-actin mRNA level as an internal control. \(*P < 0.05\) vs control conditions (none); D: Protein level and cellular insulin content were independently measured by Western blot and enzyme-linked immunosorbent assay. Data are presented as the mean ± SE, n = 4. \(*P < 0.05, **P < 0.01\) vs control conditions (none). IL-1β: Interleukin 1β; IFN-γ: Interferon-γ; ND: Not determined.

of cell viability, the ratio of the subG\(_1\) phase and protein level of cleaved caspase-3 in the cytokine-treated condition was blocked or reduced by SA-Et.

According to previous research, NFκB, p38MAPK, and SAPK/JNK pathways all play a role in cytokine-mediated cytotoxicity in β cells. Interestingly, unlike other cell lines, NFκB downstream iNOS/NO induction is not responsible for apoptosis of BRIN-BD11 cells. Instead, insulin secretion in response to glucose was significantly affected by NO production in BRIN-BD11 cells\(^{[22]}\). Our results are consistent with previous findings and further demonstrated that p38MAPK and JNK/SAPK play important roles in cytokine-mediated BRIN-BD11 cell death.

Using this cell model, we screened several anti-diabetic herbal extracts and discovered that SA-Et has protective bioactivity. According to the HPLC profile of the SA-Et, seven major peaks were identified: five C\(\beta\) homolignans (schiarisaninns) and two C\(\alpha\) lignans (schizanthrin A and macelignan). Through bioactivity screening, it was evident that some C\(\beta\) homolignans could account for the β cell protective effects of the SA-Et against the cytokine challenge. To our knowledge, this is the first report to reveal such bioactivity in C\(\beta\) homolignans. The results also implied that C\(\beta\) homolignans which possess an acetoxyl group at C-5 exhibited more-potent bioactivity than did those with the benzoic acid ester at C-5, regardless of the different C\(\beta\) homolignan skeletons as shown in Figure 1. Notably, schiarisanin C exhibited dose-dependent negative protection activity, which was consistent with a previous report which found that schiarisanin C exhibited cytotoxicity against other cell lines\(^{[9]}\). The structure-
activity relationship will likely be more obvious when more types of C\textsubscript{6} homolignan derivatives are compared.

To further elucidate the potential drug target of SA-Et, we evaluated the effects of SA-Et on key players in each pathway involved in cytokine-mediated \(\beta\) cell death. The results indicated that SA-Et appeared to impact on JNK/SAPK kinase activities and downstream substrate, i.e., c-Jun, to facilitate its protective activity against the cytokine mix. Recent research discovered that the JNK/c-Jun cascade could transactivate the expression of Bel-2 homology 3 (BH3)-only member death protein 5 (DPS)/harkiri (Hrk) leading to \(\beta\) cell apoptosis\cite{23}, therefore, our results suggest that SA-Et treatment might intervene in such a cytokine pathway to facilitate \(\beta\) cell protection.

Interestingly, our results also demonstrated that SA-Et treatment had no inhibitory effect on cytokine-mediated NF-\(\kappa\)B release judged by a similar pattern of cytokine-mediated \(\kappa\)B degradation and iNOS mRNA expression in the presence of SA-Et. NF-\(\kappa\)B is an important player in abolishing glucose-stimulated insulin secretion (GSIS) by affecting the glucose-induced influx of \(Ca^{2+}\)\cite{24,25}. In addition, IL-1\(\beta\)-mediated NO production also plays a negative role in insulin secretion in BRIN-BD11 cells\cite{26}. Therefore, whether SA-Et can not only preserve the viability of cytokine-treated BRIN-BD11 cells, but also rescue the impaired insulin secretion of the cytokine-treated cells was our next question.

In terms of the insulinotropic action of SA-Et, our results indicate that SA-Et acutely enhanced both glucose- and calcium-stimulated insulin secretion, although \(K^{+}\)-stimulated insulin secretion appeared to be slightly reduced by SA-Et. As a result, we speculated that the insulinotropic effect of SA-Et might be associated with calcium-mediated insulin exocytosis, an overall proximal step in insulin secretion. In contrast, under cytokine treatment, insulin exocytosis rather than insulin mRNA expression appeared to be affected in BRIN-BD11 cells. This was based on the observations that insulin secreted by cytokine-treated BRIN-BD11 cells was undetectable using the insulin ELISA kit; however, the insulin mRNA and intracellular insulin content (protein level) of BRIN-BD11 cells remained intact. When SA-Et was present, the abolished insulin exocytosis by the cytokine mix might be counteracted; therefore, resulting in partial recovery of glucose-stimulated insulin secretion and relief of accumulated insulin content in cytokine treated BRIN-BD11 cells.

In conclusion, the current investigation revealed, for the first time, that C\textsubscript{6} homolignans isolated from SA-Et possessed protective bioactivity against cytokine-induced \(\beta\) cell death. The cytokine-impaired insulin secretory function was also partially restored. However, iNOS/NO inhibition appeared to be an important factor if intact \(\beta\) cell insulin secretory function is to be preserved after cytokine challenge. In the future, continued research on potent \(\beta\) cell-protective phytochemicals should substantially contribute to the development of islet/stem cell transplantation or cell-based therapies for type 1 diabetes.

COMMENTS

Background

Conventional therapy (i.e., insulin injection) in patients with type 1 diabetes does not allow minute-to-minute control of blood glucose and does not prevent complications associated with the disease. However, the employment of whole pancreas or islet transplantation suffers from a lack of sufficient organs for transplantation. Therefore, the application of cell-based therapeutics for curing type 1 diabetes is an interesting and hot topic in the field.

Research frontiers

Employing toxin-resistant cells for type 1 diabetes therapy is a developing cell-based approach for curing type 1 diabetes. At least 5 toxin resistant \(\beta\) cell lines have been generated and investigated for defensive mechanisms. However, disassociation between toxin resistance and insulin-secretory functions may occur during the induction of toxin resistance. To our knowledge, no “master” toxin-resistant cells have been created so far. As a result, employing \(\beta\)-cell protective agent(s) including phytochemicals from traditional Chinese medicine to protect cell-based transplants has become an alternative and practical approach in the field.

Innovations and breakthroughs

By employing the glucose-responsive, insulin-secreting cell line, BRIN-BD11 cells, the authors successfully established a platform mimicking hormonal part of immune-attack in type 1 diabetes. In addition, the authors noted dissociation not only between cytokine-mediated nitric oxide and cell death, but also...
between cell survival rate and secretory function. Moreover, the NFκB-induced inducible nitric oxide synthase-nitric oxide pathway is not necessarily a maser regulator for cell viability and function. Schizandra arisanensis (SA-Et) is one of the schizandraceous plants from Taiwan. The indications for this herb in traditional Chinese medicine include diabetes, hepatitis, immunomodulation and cancer. The current investigation is likely to be the first report on C+ homolog- nians from SA-Et which possess β-cell protective effects. Different to previous β-cell protective phytochemicals, such as epigallocatechin gallate and silymarin, the action of C+ homologians is not due to the blockage of NFκB-inducible nitric oxide synthase-nitric oxide.

Applications

By employing this glucose-responsive, insulin-secreting cell line to generate several platforms which represent key steps in autoimmune mediated β-cell destruction. The authors will be able to design a formulation which can be used to enhance the survival rate and maintain secretory functions in cell-based therapeutics to achieve needle-free control of type 1 diabetes in the future.

Terminology

Type 1 diabetes (T1D) is an autoimmune disease which occurs when approxi- mately 60%-90% of insulin secreting cells are lost and/or are dysfunctional due to β-cell directed autoimmunity. During the progression of T1D, heavy infiltrations of mononuclear cells lead to substantial damage to β cells by generating locally high concentrations of pro-inflammatory cytokines, perforin, and FasL-Fas interactions within the micro-environment of islets. As a result, deleterious outcomes including excessive pro-insulin secretion, the ablation of glucose-induced insulin secretion, and ultimately β cell death are observed.

Peer review

The article is very interesting and shows novel findings in insulin secreting cells. The article is well written. Furthermore, it correctly cites the most important ar- ticles in the field.

REFERENCES

1 van Belle TL, Coppoeters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118
2 Bergholdt R, Heding P, Nielsen K, Nolsae R, Sparre T, Sterling J, Nerup J, Pociot F, Mandrup-Poulsen T. Type 1 database mellitus: an inflammatory disease of the islet. Adv Exp Med Biol 2004; 552: 129-153
3 Donath MY, Sterling J, Berchtold LA, Billestrup N, Man- drup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev 2008; 29: 334-350
4 Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54 Suppl 2: S89-107
5 Kutla B, Cardozo AK, Darville MI, Kruhøffer M, Magnus- son N, Ørntoft T, Eizirik DL. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 2003; 52: 2701-2719
6 Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001; 44: 2115-2133
7 Wu MD, Huang RL, Kuo LM, Hung CC, Ong CW, Kuo YH. The anti-HBsAg (human type B hepatitis,表面抗原) and anti-HBeAg (human type B hepatitis, e antigen) C18 dibenzocyclooctadiene lignans from Kadsura matsudai and Schizandra arisanensis. Chem Pharm Bull (Tokyo) 2003; 51: 1233-1236
8 Kuo YH, Kuo LM, Chen CF. Four New C19 Homolignans, Schizarins A, B, and D and Cytotoxic Schizarin C, from Schizandra arisanensis. J Org Chem 1997; 62: 3242-3245
9 Opletal L, Krenková M, Havlicková P. [Phytotherapeutic aspects of diseases of the circulatory system. 8. Chinese magnolia (Schizandra chinensis (Turcz.) Baill.): production of the drugs and their evaluation, therapeutic and dietary prepara- tions]. Ceska Slov Farm 2001; 50: 219-224
10 Opletal L, Krenková M, Havlicková P. [Phytotherapeutic aspects of diseases of the circulatory system. 7. Schisandra chinensis (Turcz.) Baill.]: its composition and biological ac- tivity]. Ceska Slov Farm 2001; 50: 173-180
11 Chen AS, Yip EC, Yung LY, Pang H, Luk SC, Pang SF, Wong YH. Immuno-regulatory effects of CKBM on the activities of mitogen-activated protein kinases and the release of cyto- kinines in THP-1 monocytic cells. Biol Pharm Bull 2005; 28: 1645-1650
12 Kuo YH, Li SY, Wu MD, Huang RL, Yang Kuo LM, Chen CF. A new anti-HBeAg lignan, kadsarumin A, from Kadsura matsudai and Schizandra arisanensis. Chem Pharm Bull (To- kyo) 1999; 47: 1047-1048
13 McClenghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YH, O’Harte FP, Yoon TW, Swanston-Flatt SK, Flatt PR. Characterization of a novel glucose-responsive insulin- secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 1996; 45: 1132-1140
14 Chen CC, Hsu CY, Chen CY, Liu HK. Fructus Cornii sup- presses hepatic glucogenogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. J Ethnopharmacol 2008; 117: 483-490
15 Juan YC, Tsai WJ, Lin YL, Wang GJ, Cheng JJ, Yang HY, Hsu CY, Liu HK. The novel anti-hyperglycemic effect of Paeoniae radix via the transcriptional suppression of phosphoeno- pyruvate carboxykinase (PEPCK). Phytomedicine 2010; 17: 626-634
16 Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med 2003; 35: 136-139
17 Liu HK, McCluskey JT, McClenghan NH, Flatt PR. Iterative exposure of clonal BRIN-BD11 cells to ninyhydrin enables selection of robust toxin-resistant cells but with decreased gene expression of insulin secretion function. Pancreas 2008; 36: 294-301
18 Bloch K, Vardi P. Toxin-based selection of insulin-producing cells with improved defense properties for islet cell trans- plantation. Diabetes Metab Res Rev 2005; 21: 253-261
19 Liu HK, McCluskey JT, McClenghan NH, Flatt PR. Strep- totoxin-resistant BRIN-BD11 cells possess wide spectrum of toxin tolerance and enhanced insulin-secretory capacity. Endocrinology 2007; 32: 20-29
20 Zhang XZ, Li S, Wu XZ. [Effects of Tripterygiumtorum in the treatment of insulin dependent diabetes mellitus with islet transplantation]. Zhongguo Zhongxiyi Jiehe Zazhi 1994; 14: 451-453
21 Onaca N, Naziruddin B, Matsumoto S, Noguchi H, Klint- malm GB, Levy MF. Pancreatic islet cell transplantation: update and new developments. Nutr Clin Prac 2007; 22: 485-493
22 Stickings P, Cunningham JM. Interleukin-1beta-induced nitric oxide production and inhibition of insulin secretion in rats isledangers is dependent upon the nitric oxide synthase cofactor tetrahydrobiopterin. Cytochrome 2002; 18: 81-85
23 Gurzov EN, Ortis F, Cunha DA, Gossel G, Li M, Cardozo AK, Eizirik DL. Signaling by IL-1beta+IFN-gamma and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic beta-cell apoptosis. Cell Death Differ 2009; 16: 1539-1550
24 Kim HE, Choi SE, Lee SJ, Lee JH, Lee YJ, Kang SS, Chun J, Kang Y. Tumour necrosis factor-alpha-induced glucose-stimulated insulin secretion inhibition in INS-1 cells is ascribed to a reduction of the glucose-stimulated Ca2+ influx. J Endocrinol 2008; 198: 549-560
25 Heitmeier MR, Kelly CB, Ensor NJ, Gibson KA, Mullis KG, Corbett JA, Maziasz TJ. Role of cycooxygenase-2 in cyto- kinase-induced beta-cell dysfunction and damage by isolated rat and human islets. J Biol Chem 2004; 279: 53145-53151

S-Editor: Guo SX | L-Editor: Ker C | E-Editor: Lu YJ