Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear

Maosong Pei¹,², Jianxin Niu¹,²*, Chenjing Li¹,², Fujun Cao¹,² and Shaowen Quan¹,²

Abstract

Background: The objective of this study was to increase understanding about genetic mechanisms affecting calyx persistence in Korla fragrant pear (Pyrus bretschneideri Rehd). Flowers were collected at early bloom, full bloom, and late bloom. The RNA was extracted from the flowers and then combined according to calyx type. Transcriptome and digital gene expression (DGE) profiles of flowers, ovaries, and sepals with persistent calyx (SC_hua, SC_ep, and SC_zf, respectively) were compared with those of flowers, ovaries, and sepals with deciduous calyx (TL_hua, TL_ep, and TL_zf, respectively). Temporal changes in the expression of selected genes in floral organs with either persistent or deciduous calyx were compared using real-time quantitative PCR (qRT-PCR).

Results: Comparison of the transcriptome sequences for SC_hua and TL_hua indicated 26 differentially expressed genes (DEGs) with known relationship to abscission and 10 DEGs with unknown function. We identified 98 MYB and 21 SPL genes from the assembled unigenes. From SC_zf vs TL_zf, we identified 21 DEGs with known relationship to abscission and 18 DEGs with unknown function. From SC_ep vs TL_ep, 12 DEGs with known relationship to abscission were identified along with 11 DEGs with unknown function. Ten DEGs were identified by both transcriptome sequencing and DGE sequencing.

Conclusions: More than 50 DEGs were observed that were related to calyx persistence in Korla fragrant pear. Some of the genes were related to cell wall degradation, plant hormone signal transduction, and stress response. Other DEGs were identified as zinc finger protein genes and lipid transfer protein genes. Further analysis showed that calyx persistence in Korla fragment pear was a metabolic process regulated by many genes related to cell wall degradation and plant hormones.

Keywords: Persistent calyx, Deciduous calyx, Transcriptome sequencing, DGE sequencing

Background

Korla fragrant pear is one of the most valuable fruits in China’s Xinjiang Province [1]. The calyx of Korla fragrant pear is sometimes persistent. This can negatively affect pear shape and quality. Previous studies about Korla fragrant pear have examined the relationship between calyx persistence and cultivation practice [2], tree vigor [2], pollen source [3–5], growth regulators [6–8], and plant nutrition [9]. Some studies have investigated the molecular mechanisms for calyx persistence in Korla fragrant pear. For example, Dong et al. and Wang et al. cloned a kfpMYB gene related to calyx persistence using differential display RT-PCR [10, 11]. Qi et al. used digital transcript abundance measurements to identify genes correlated with calyx abscission [12].

High-throughput sequencing has contributed greatly to the study of gene function in non-model plants. High-throughput sequencing makes it possible to understand the genome and the transcriptome of a species more comprehensively [13–15]. High-throughput sequencing of RNA (RNA-Seq) has been successfully applied in Malus domestica [16, 17], Myrica rubra [18, 19], Vaccinium section Cyanococcus [20], Litchi chinensis Sonn [21], Pyrus bretschneideri Rehd [22], Vitis vinifera

* Correspondence: njx105@163.com
¹Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
²Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China

© 2016 Pei et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cv. Shiraz [23], Musa acuminate [24, 25], Citrus sinensis [26, 27], Prunus persica [28], and Diospyros kaki [29]. The objective of this experiment was to identify candidate genes related to calyx persistence in Korla fragrant pear using both transcriptome and digital gene expression (DGE) sequencing.

Results and discussion

Transcriptome sequencing and assembly

In total, 107202492 raw reads were generated by Illumina sequencing of SC_hua vs TL_hua (Table 1). There were 103466288 clean reads after removing low-quality sequences. Assembly of the clean reads resulted in 39891341 unigenes ranging in size between 201 and 16666 bp (Fig. 1). The N50 length of the unigenes was 1579 bp and the N90 length was 289 bp.

Sequence annotation

The unigenes were aligned with seven public databases [i.e., NR (NCBI non-redundant protein sequences), NT (NCBI nucleotide sequences), KEGG (Kyoto Encyclopedia of Genes and Genomes), SwissProt (A manually annotated and reviewed protein sequence database), PFAM (Protein family), GO (Gene Ontology) and KOG/COG (Clusters of Orthologous Groups of proteins)] (Table 2). The results showed that 18605 unigenes (38.05 %) had significant matches in the NR database, 16700 unigenes (34.15 %) had significant matches in the NT database, and 17326 unigenes (35.43 %) had significant matches in the SwissProt database. In total, 26088 unigenes (53.35 %) were annotated in at least one database, with 3037 unigenes (6.21 %) being annotated in all seven databases.

A total of 17749 unigenes were subjected to GO analysis (Fig. 2). In the cellular component (CC) category, genes involved in ‘cell’ (6093), ‘cell part’ (6087), and ‘organelle’ (4357), were highly represented. The molecular function category (MF) mainly included genes involved in ‘binding’ (10493), catalytic activity’ (8571) and ‘transporter activity’ (1176). In the biological process (BP) category, ‘cellular process’ (10437), ‘metabolic process’ (9848) and ‘single-organism process’ (5155) were highly represented.

The unigenes were all subjected to a search against the COG database for functional prediction and classification. In total, 8891 unigenes were assigned to COG classification and divided into 26 specific categories (Fig. 3). The largest group was ‘general function prediction only’ (1626), followed by ‘post-translational modification, protein turnover, chaperones’ (1152), ‘signal transduction mechanisms’ (800), ‘intracellular trafficking, secretion, and vesicular transport’ (535), and ‘carbohydrate transport and metabolism’ (485). Only a few unigenes were assigned to ‘extracellular structures’ (28) and ‘cell motility’ (3).

Unigene metabolic pathway analysis was also conducted using KEGG. This process predicted a total of 258 pathways, representing 6925 unigenes (Fig. 4). The pathways involving the highest number of unique transcripts were ‘carbohydrate metabolism’ (662), followed by ‘translation’ (639) and ‘signal transduction’ (542). The above data is a very valuable genetic resource for studying calyx persistence in Korla Fragrant Pear.

Differential expression analysis in SC_hua vs TL_hua

Differentially expressed genes (DEGs) are defined as genes that are significantly enriched or depleted in one sample relative to another (q value < 0.005 and |log2(foldchange)| >1). In the rest of this paper, up-regulated means that the gene expression level was greater in samples with persistent calyx than in samples with deciduous calyx.

Table 1 Summary of the sequence analyses

Sample	Raw Reads	Clean Reads	Clean Bases	Error (%)	Q20 (%)	Q30 (%)	GC Content (%)
SC_hua_1	27216916	26238309	2.62G	0.03	98.51	94.71	47.18
SC_hua_2	27216916	26238309	2.62G	0.04	96.71	91.53	47.24
TL_hua_1	26384330	25494835	2.55G	0.03	98.55	94.82	46.87
TL_hua_2	26384330	25494835	2.55G	0.04	96.79	91.67	46.93
Summary	107202492	103466288	10.34G				

Sample: Sample name_1, left reads; Sample name_2, right reads. The total number of clean reads is left + right. Clean reads: The number of reads after removing low-quality sequences. The subsequent analysis is based on clean reads. Error rate: Base error rate. Q20 and Q30, the percentage of bases with Phred values >20 and >30, respectively. GC content: the GC ratio of the total base number.
Down-regulated means that the gene expression level was less in samples with persistent calyx than in samples with deciduous calyx. There were 103 DEGs among 48894 unigenes in SC_hua vs TL_hua. Among these, 47 DEGs were up-regulated and 56 DEGs were down-regulated (Fig. 5).

To further characterize the function of the DEGs, GO enrichment analysis was conducted for all of the DEGs in SC_hua vs TL_hua with the whole transcriptome as the background (Additional file 1). In the BP category, the top three enriched terms were ‘heterocycle biosynthetic process’, ‘organic cyclic compound biosynthetic process’ and ‘cellular nitrogen compound biosynthetic process’. In the CC category, ‘nuclear part’, ‘membrane-enclosed lumen’, ‘intracellular organelle lumen’, ‘organelle lumen’ and ‘nuclear lumen’ were the dominant enriched terms. In the MF category, ‘nucleic acid binding transcription factor activity’ and ‘sequence-specific DNA binding transcription factor activity’ were most highly enriched. A GO enrichment analysis was also conducted for the up-regulated DEGs (Additional file 2). In the BP category, ‘biological regulation’, ‘regulation of biological process’ and ‘regulation of cellular process’ were most highly enriched. In the CC category, ‘membrane-enclosed lumen’, ‘intracellular organelle lumen’, ‘organelle lumen’ and ‘nuclear lumen’ were the main enriched terms. In MF, the top two enriched terms were ‘nucleic acid binding transcription factor activity’ and ‘sequence-specific DNA binding transcription factor activity’.

The KEGG pathway enrichment analysis for DEGs also revealed both common and tissue specific patterns of over-representation (Additional file 3). The top-four enriched pathways for DEGs in SC_hua vs TL_hua were ‘cysteine and methionine metabolism’, ‘porphyrin and chlorophyll metabolism’, ‘phenylalanine metabolism’ and ‘isooquinoline alkaloid biosynthesis’. For up-regulated DEGs (Additional file 4), ‘calcium signaling pathway’, ‘porphyrin and chlorophyll metabolism’, ‘phosphatidylinositol signaling system’ and ‘glycerolipid metabolism’ were most highly enriched. For down-regulated DEGs (Additional file 5), ‘cysteine and methionine metabolism’, ‘isooquinoline alkaloid biosynthesis’ and ‘biosynthesis of amino acids’ were the three main enriched pathways.

DGE sequencing

A DGE analysis was performed to compare gene expression in SC_ep, SC_zf, TL_ep, and TL_zf. After removing low-quality sequences, we obtained 12283115, 10084701,
9449491 and 9999449 clean reads in SC_ep, SC_zf, TL_ep, and TL_zf, respectively (Table 3). The clean data were mapped back onto the assembled transcriptome using RSEM software. The bowtie parameter mismatch was 2. Among the four DGE sequencing results, at least 91.50% of the sequences could be mapped back to the reference sequences (Table 4).

Comparison of four DGE databases
We obtained 64 DEGs by comparing the DGE results of SC_ep vs TL_ep. Among the DEGs, 49 were up-regulated and 15 were down-regulated. There were 95 DEGs in SC_zf vs TL_zf, with 71 DEGs being up-regulated and 24 being down-regulated. There were 48 DEGs in SC_ep vs TL_ep and 79 DEGs in SC_zf vs TL_zf. In total, SC_ep vs TL_ep and SC_zf vs TL_zf had 16 DEGs in common (Fig. 6).

KEGG pathway analysis of four DGE databases
The KEGG database was used to analyze the metabolic pathways of the DEGs of SC_ep vs TL_ep and of SC_zf vs TL_zf. The results showed that 31 DEGs in SC_ep vs TL_ep were enriched in 22 KEGG pathways (Additional file 6). In comparison, 53 DEGs in SC_zf vs TL_zf were enriched in 26 KEGG pathways (Additional file 7). The top four KEGG pathways of SC_ep vs TL_ep were ‘nitrogen metabolism,’ ‘cysteine and methionine metabolism,’ ‘flavone and flavonol biosynthesis’ and ‘isoquinoline alkaloid biology.’
biosynthesis'. Regarding up-regulated DEGs, 'nitrogen metabolism', 'flavone and flavonol biosynthesis', 'diterpenoid biosynthesis' and 'selenocompound metabolism' were most highly enriched. Regarding down-regulated DEGs, 'isoquinoline alkaloid biosynthesis', 'tropane, piperidine and pyridine alkaloid biosynthesis', 'beta-Alanine metabolism' and 'carotenoid biosynthesis' were the four main enriched KEGG pathways. Among the 26 KEGG pathways of SC_zf vs TL_zf, the most enriched pathways were 'nitrogen metabolism', 'alpha-Linolenic acid metabolism', and 'glutathione metabolism'. Regarding the up-regulated DEGs, 'nitrogen metabolism', and 'glutathione metabolism' were mostly highly enriched. For down-regulated DEGs, 'linoleic acid metabolism', 'alpha-linolenic acid metabolism' and
cysteine and methionine metabolism’ were the three main enriched pathways. These results show that calyx persistence in Korla fragrant pear is regulated by a complex transcription mechanism.

We observed that 60 DEGs from SC_ep vs SC_zf, 179 DEGs from TL_ep vs TL_zf, 4 DEGs from SC_ep vs TL_ep, and 3 DEGs from SC_zf vs TL_zf were enriched in the STRING database (http://string-db.org/).

Real-time quantitative PCR

Ten DEGs were identified by both transcriptome sequencing and DGE sequencing (Table 5). These DEGs included three genes related to plant hormones [ethylene-responsive transcription factor ERF109 OS = Arabidopsis thaliana GN = ERF109 PE = 1 SV = 1 (comp36863_c0), ethylene-responsive transcription factor ERF027 OS = Arabidopsis thaliana GN = ERF027 PE = 2 SV = 1 (comp44254_c0), auxin-induced protein 5NG4 OS = Pinus taeda PE = 2 SV = 1 (comp50752_c0)]. Three genes were related to cell wall degradation [polygalacturonase inhibitor OS = Pyrus communis GN = PGIP PE = 1 SV = 1 (comp49798_c0), beta-galactosidase OS = Malus domestica PE = 1 SV = 1 (comp49925_c0), glucan endo-1,3-beta-glucosidase, acidic isoform GI9 OS = Nicotiana tabacum GN = PR2 PE = 1 SV = 1 (comp43208_c0)]. Two genes were related to stress [dehydration-responsive protein RD22 [Prunus persica] (comp44869_c0), dehydration-responsive element-binding protein, partial [Malus × domestica] (comp49899_c0)]. One gene was related to lipid transfer protein precursor [Pisum sativum] (comp36582_c0), and one gene was involved in NAC domain-containing protein 2 OS = Arabidopsis thaliana GN = NAC002 PE = 2 SV = 2 (comp41728_c0). We randomly selected five genes (comp36863_c0, comp41728_c0, comp46544_c0, comp49798_c0, comp49614_c0) from the ten DEGs and all of the MYB and SPL genes. The expression levels of these five genes were measured in different floral organs at the early bloom, full bloom, and late bloom stages using qRT-PCR.

The expression of ERF109 at the early bloom and late bloom stages was significantly ($P = 0.01$) greater in flowers with persistent calyx than in flowers with deciduous calyx. Regardless of whether the flower had a deciduous or a persistent calyx, ERF109 expression was significantly ($P = 0.01$) greater at the early bloom stage than at either the full bloom or late bloom stages (Fig. 7a). The expression of ERF109 at the late bloom stage was significantly ($P = 0.01$) greater in ovaries with persistent calyx than in sepals with persistent calyx (Fig. 7b). Regardless of bloom stage, the expression of ERF109 in ovaries with deciduous calyx was not significantly different than that in sepal with deciduous calyx (Fig. 7c).

The expression of NAC002 in flowers varied significantly depending on the type of calyx and the flower stage. Specifically, NAC002 expression at early bloom and late bloom was significantly ($P = 0.01$) greater in flowers with persistent calyx than in flowers with deciduous calyx; however, the opposite was observed at full bloom with persistent calyx than in flowers with deciduous calyx.

Table 3 Statistics of DGE sequencing

Sample	Raw Reads	Clean Reads	Clean Bases	Error (%)	Q20 (%)	Q30 (%)	GC Content (%)
SC_ep	12343471	12283115	0.61G	0.01	99.21	97.67	46.89
SC_zf	10138431	10084701	0.5G	0.01	99.2	97.62	46.98
TL_ep	9486992	9449491	0.47G	0.01	99.24	97.74	46.69
TL_zf	10139423	9999449	0.5G	0.01	99.22	97.7	46.79

Clean reads: The number of reads after removing low-quality sequences. The subsequent analysis is based on clean reads. Error rate: Base error rate. Q20 and Q30, the percentage of bases with Phred values >20 and >30, respectively. GC content: the GC ratio of the total base number

Table 4 DGE reads mapped to the reference sequences

Sample name	Total reads	Total mapped
SC_ep	12283115	11280554 (91.84 %)
SC_zf	10084701	9248894 (91.71 %)
TL_ep	9449491	8646697 (91.50 %)
TL_zf	9999449	9172179 (91.73 %)

Total reads: Number of reads after removing low-quality sequences (clean data). Total mapped: Number of reads that could be mapped back to the reference sequences. Values within the parenthesis represent total mapped divided by total reads x 100 %
bloom (Fig. 7d). The NAC002 expression in flowers with a persistent calyx was significantly \((P = 0.01) \) highest at the late bloom and early bloom stages. In contrast, NAC002 expression in flowers with a deciduous calyx was significantly \((P = 0.05) \) greatest at the full bloom stage. The expression of NAC002 in ovaries with persistent calyx was significantly greater than that in sepal with persistent calyx at the early bloom stage \((P = 0.05) \) and at the full bloom stage \((P = 0.01) \) (Fig. 7e). In contrast, at the late bloom stage, NAC002 expression in ovaries with persistent calyx was significantly \((P = 0.01) \) less than that in sepal with persistent calyx. The expression of NAC002 in ovaries with deciduous calyx was significantly greater than that in sepal with deciduous calyx at the full bloom \((P = 0.01) \) and late bloom stages \((P = 0.05) \) (Fig. 7f).

The expression of MYB5 was significantly greater in flowers with persistent calyx than in flowers with deciduous calyx at the early bloom \((P = 0.05) \) and late bloom \((P = 0.01) \) stages (Fig. 7g). In contrast, at the full bloom stage, MYB5 expression was significantly \((P = 0.05) \) less in flowers with persistent calyx than in flowers with deciduous calyx. The expression of MYB5 in sepal with persistent calyx was significantly greater than that in ovaries with persistent calyx at the full bloom \((P = 0.05) \) and late bloom \((P = 0.01) \) stages (Fig. 7h). In contrast, MYB5 expression at the early bloom stage was significantly \((P = 0.01) \) less in sepal with persistent calyx than in ovaries with persistent calyx. The expression of MYB5 in sepals with deciduous calyx was significantly greater than that in ovaries with deciduous calyx at early bloom and full bloom (Fig. 7i, \(P = 0.01 \)).

Regardless of whether the flower had a deciduous or a persistent calyx, PGIG expression was significantly \((P = 0.01) \) greater at the late bloom stage than at either the early bloom or full bloom stages (Fig. 7j). There was no significant difference in PGIG expression between flowers with persistent calyx and flowers with deciduous calyx. Regardless of whether the calyx was persistent or deciduous, the expression of PGIG in sepal was significantly greater than that in ovaries at the late bloom stage (Fig. 7k and l, \(P = 0.01 \)).

The expression of SPL9 at the early bloom and late bloom stages was greater in flowers with persistent calyx than in flowers with deciduous calyx; however the opposite was true at the full bloom stage. The expression of SPL9 in flowers with deciduous calyx was not significantly different from that in flowers with deciduous calyx. Regardless of whether the flower had a deciduous or a persistent calyx, SPL9 expression was significantly \((P = 0.01) \) greater at the late bloom stage than at either the early bloom or full bloom stages (Fig. 7m). There was no significant difference in SPL9 expression between ovaries with persistent calyx and sepal with deciduous calyx (Fig. 7n). The expression of MYB5 in ovaries with deciduous calyx was significantly greater than that in sepal at the full bloom and late bloom stages (Fig. 7o, \(P = 0.01 \)).

The total expression pattern of the three genes (\(\text{ERF}109 \) (comp36863_c0), NAC002 (comp41728_c0), and PGIG (comp49798_c0)) obtained with qRT-PCR was consistent with the RNA-seq data. This confirmed the validity of our results.

Plant hormone and organ abscission

Many hormones, especially IAA and ethylene, regulate organ abscission [30–35]. From 103 DEGs in SC_hua vs TL_hua, 11 genes were identified that were related to plant hormone metabolism. Five of these genes were related to ethylene-responsive transcription factor, two genes were related to auxin-induced protein, one gene was related to gibberellin-regulated protein, one gene was related to EREBP-like factor, one gene was related to the auxin responsive GH3 gene family, and one gene was related to brassinosteroid-regulated protein. From 64 DEGs in SC_ep vs TL_ep, seven genes were identified that were involved in plant hormone metabolism. Four of these genes were related to ethylene-responsive transcription factor, one gene was related to gibberellin 2-
Fig. 7 Temporal changes in the expression of selected genes in complete flowers, ovaries, and sepals. Error bars indicate SD. Different lowercase letters within a panel indicate significant differences at $P = 0.05$. Different uppercase letters within a panel indicate significant differences at $P = 0.01$.
beta-dioxygenase 1, one gene was related to auxin-induced protein, and one gene was related to abscisic acid 8’-hydroxylase 4. We also identified five genes related to ethylene-responsive transcription factor from 95 DEGs in SC_zf vs TL_zf (Table 6).

Genes related to cell wall degradation and organ abscission

The dissolution of the middle lamella is related to abscission, especially the loss of adhesion by separation layer cells due to the effects of cell wall degrading enzymes such as polygalacturonases. Several researchers have reported that cell wall modifying proteins such as expansin [36] and pectinesterase [37] have a role in abscission. Other researchers have observed that polygalacturonases have important function in the abscission process in oil palm [38], tomato [39], oilseed rape and Arabidopsis [40]. Beta-galactosidase [41], xyloglucan endotransglucosylase/hydrolase [42], and glucanase [43] genes have also been shown to be related to abscission.

We obtained eight genes related to cell wall degradation from DEGs in SC_hua vs TL_hua. These eight genes included one gene related to polygalacturonase, one gene related to polygalacturonase inhibition, one gene related to beta-galactosidase, one gene related to glucon endo-1,3-beta-glucosidase, one gene related to lignin catabolic process, one gene related to tissue regeneration, and two genes related to xyloglucan endotransglucosylase. One expansin gene was obtained from DEGs in SC_ep vs TL_ep. From DEGs in SC_zf vs TL_zf, we obtained genes related to glucon endo-1,3-beta-glucosidase, beta-galactosidase, polygalacturonase inhibition, xyloglucan endotransglucosylase, and pectinesterase (Table 7).

Function of SPL and MYB genes in organ abscission

The SPL genes play an important role in the growth process of plants, including morphogenesis, the transition between developmental stages, sporogenesis, floral and fruit development, stress response, and plant

Table 6 Genes related to plant hormones
Gene Id

comp33730_c0
comp36863_c0
comp43830_c0
comp44254_c0
comp44440_c0
comp47703_c0
comp50752_c0
comp54623_c0
comp50299_c0
comp49181_c2
comp33823_c0
comp33683_c0
comp43552_c0
comp44254_c0
comp50752_c0
comp48588_c0
comp36863_c0
comp42046_c0
comp43552_c0
comp47393_c0

Pei et al. BMC Genomics (2016) 17:132 Page 9 of 19
hormone signal transduction [44]. In addition, SPL genes are induced during cell senescence leading to cell death [45, 46]. The MYB genes participate in plant secondary metabolism [47] as well as the plant's response to hormones and environmental factors [48–50]. The MYB genes also regulate cellular differentiation, the cell life cycle [51, 52], and the morphogenesis of organs such as leaves [53–55]. The MYB genes are also involved in abscission [11, 56, 46]. We obtained 98 MYB and 21 SPL genes from the 48894 annotated unigenes (Table 8).

Stress response genes and abscission

The sequencing results showed that many genes related to stress response exhibited differential expression. There was one heat shock factor protein, two dehydration-responsive element-binding proteins, one dehydration-responsive protein, two NAC transcription factor proteins, one NAC domain-containing protein [57, 58], and one cysteine synthase-like gene [59] among the DEGs in SC_hua vs TL_hua. There were also genes related to the NAC domain-containing protein, the pathogenesis-related protein Bet v I family, the senescence-related protein gene, dehydration-responsive protein, and dehydration-responsive element-binding protein from DEGs in SC_ep vs TL_ep. From the DEGs in SC_zf vs TL_zf, we obtained genes related to disease resistance response protein 206, dehydration-responsive protein, defensin-like protein, and senescence-related protein (Table 9).

Other genes and abscission

Several researchers have reported that zinc finger protein [60] and lipid-transfer protein [61, 62] are involved in calyx abscission. We obtained one gene related to lipid-transfer protein from DEGs in SC_hua vs TL_hua. One gene related to lipid-transfer protein as well as five zinc finger genes were obtained from DEGs in SC_zf vs TL_zf (Table 10).

Putative genes related to abscission

Other genes in this study showed high-level differential expression. However, the function of these genes is unknown. We defined these genes as putative genes related to abscission. There were ten putative genes among DEGs in SC_hua vs TL_hua, eleven putative genes among DEGs in SC_ep vs TL_ep, and eighteen putative genes among DEGs in SC_zf vs TL_zf (Table 11).

Conclusion

More than 50 DEGs were obtained through transcriptome and DGE sequencing. These DEGS were related to

| **Table 7** Genes related to cell wall metabolism |
|----------------|----------------|
| Gene Id | Gene description |
| SC-hua vs TL-hua | Probable polygalacturonase OS = Vitis vinifera GN = GSVV0002692001 PE = 1 SV = 1 |
| comp47965_c0 | Polygalacturonase inhibitor OS = Pyrus communis GN = PGIP PE = 1 SV = 1 |
| comp49708_c0 | Beta-galactosidase OS = Malus domestica PE = 1 SV = 1 |
| comp49925_c0 | Glucan endo-1,3-beta-glucosidase, acidic isoform GI9 OS = Nicotiana tabacum GN = PR2 PE = 1 SV = 1 |
| comp43208_c0 | Lignin catabolic process//oxidation-reduction process |
| comp45342_c0 | tissue regeneration//cell adhesion//regulation of transcription, DNA-dependent |
| comp49181_c0 | Malus x domestica xylolucan endotransglucosylase/hydrolase 7 mRNA, complete cds |
| comp38937_c0 | Probable xylolucan endotransglucosylase/hydrolase protein 23 OS = Arabidopsis thaliana GN = XTH23 PE = 2 SV = 1 |
| SC_ep vs TL_ep | Expansin-A8 OS = Arabidopsis thaliana GN = EXPA8 PE = 2 SV = 1 |
| SC_zf vs TL_zf | Glucan endo-1,3-beta-glucosidase 8 OS = Arabidopsis thaliana GN = At1g64760 PE = 1 SV = 2 |
| comp45273_c0 | Beta-galactosidase OS = Malus domestica PE = 1 SV = 1 |
| comp43208_c0 | Glucan endo-1,3-beta-glucosidase, acidic isoform GI9 OS = Nicotiana tabacum GN = PR2 PE = 1 SV = 1 |
| comp49708_c0 | Polygalacturonase inhibitor OS = Pyrus communis GN = PGIP PE = 1 SV = 1 |
| comp38937_c0 | Probable xylolucan endotransglucosylase/hydrolase protein 23 OS = Arabidopsis thaliana GN = XTH23 PE = 2 SV = 1 |
| comp51877_c0 | Putative pectinesterase/pectinesterase inhibitor 28 OS = Arabidopsis thaliana GN = PME28 PE = 2 SV = 1 |
Gene ID	Gene description
comp40233_c0	Squamosa promoter-binding-like protein 8 OS = Arabidopsis thaliana GN = SPL8 PE = 1 SV = 2
comp36894_c0	Squamosa promoter-binding-like protein 13B OS = Arabidopsis thaliana GN = SPL13B PE = 3 SV = 1
comp54049_c0	Squamosa promoter-binding-like protein 14 OS = Arabidopsis thaliana GN = SPL14 PE = 2 SV = 3
comp15760_c0	Squamosa promoter-binding-like protein 5 OS = Arabidopsis thaliana GN = SPL5 PE = 2 SV = 1
comp53959_c0	Squamosa promoter-binding-like protein 1 OS = Arabidopsis thaliana GN = SPL1 PE = 1 SV = 2
comp48948_c0	Squamosa promoter-binding-like protein 1 OS = Arabidopsis thaliana GN = SPL1 PE = 1 SV = 2
comp51995_c0	Squamosa promoter-binding-like protein 6 OS = Arabidopsis thaliana GN = SPL6 PE = 2 SV = 2
comp43799_c2	Squamosa promoter-binding-like protein 12 OS = Arabidopsis thaliana GN = SPL12 PE = 1 SV = 1
comp33051_c0	Putative squamosa promoter-binding-like protein 19 OS = Oryza sativa subsp. japonica GN = SPL19 PE = 3 SV = 2
comp43799_c1	Squamosa promoter-binding-like protein 1 OS = Arabidopsis thaliana GN = SPL1 PE = 1 SV = 2
comp19424_c0	Squamosa promoter-binding-like protein 16 OS = Arabidopsis thaliana GN = SPL16 PE = 2 SV = 2
comp43328_c0	Squamosa promoter-binding-like protein 4 OS = Arabidopsis thaliana GN = SPL4 PE = 1 SV = 1
comp34651_c0	Malus x domestica SPL domain class transcription factor (SPL3) mRNA, complete cds
comp48364_c1	Squamosa promoter-binding-like protein 12 OS = Oryza sativa subsp. indica GN = SPL12 PE = 2 SV = 1
comp30499_c0	Malus x domestica SPL domain class transcription factor (SPL2) mRNA, complete cds
comp46477_c1	Squamosa promoter-binding-like protein 7 OS = Oryza sativa subsp. japonica GN = SPL7 PE = 2 SV = 2
comp49614_c0	Squamosa promoter-binding-like protein 9 OS = Arabidopsis thaliana GN = SPL9 PE = 2 SV = 2
comp53802_c0	Squamosa promoter-binding-like protein 7 OS = Arabidopsis thaliana GN = SPL7 PE = 1 SV = 2
comp47538_c0	Squamosa promoter-binding-like protein 6 OS = Arabidopsis thaliana GN = SPL6 PE = 2 SV = 2
comp48561_c0	Squamosa promoter-binding-like protein 8 OS = Arabidopsis thaliana GN = SPL8 PE = 1 SV = 2
comp17109_c0	Malus x domestica SPL domain class transcription factor (SPL3) mRNA, complete cds
comp491996_c0	putative MYB transcription factor [Rosa rugosa]
comp47342_c0	Myb-related protein 308 OS = Antirrhinum majus GN = MYB308 PE = 2 SV = 1
comp47241_c0	Myb-related protein 306 OS = Antirrhinum majus GN = MYB306 PE = 2 SV = 1
comp45253_c0	Anthocyanin regulatory C1 protein OS = Zea mays GN = C1 PE = 2 SV = 1
comp44151_c0	Protein ODO1T1 OS = Petunia hybrida GN = ODO1 PE = 2 SV = 1
comp31710_c0	Transcription factor MYB39 OS = Arabidopsis thaliana GN = MYB39 PE = 2 SV = 1
comp42545_c0	Transcription factor RAX3 OS = Arabidopsis thaliana GN = RAX3 PE = 2 SV = 1
comp41210_c0	Myb-related protein 3R-1 OS = Arabidopsis thaliana GN = MYB3R-1 PE = 2 SV = 1
comp2739_c0	Myb-related protein Myb4 OS = Oryza sativa subsp. japonica GN = MYB4 PE = 2 SV = 2
comp23664_c0	Myb-related protein 306 OS = Antirrhinum majus GN = MYB306 PE = 2 SV = 1
comp49924_c0	Transcription factor MYB111 OS = Solanum tuberosum PE = 2 SV = 1
comp47011_c1	Transcription factor MYB66 OS = Arabidopsis thaliana GN = MYB66 PE = 2 SV = 1
comp45831_c0	Transcription repressor MYB6 OS = Arabidopsis thaliana GN = MYB6 PE = 1 SV = 1
comp259366_c0	Malus x domestica MYBR domain class transcription factor (MYBR14) mRNA, complete cds
comp25889_c0	Malus x domestica MYB domain class transcription factor (MYB31) mRNA, complete cds
comp51661_c2	Malus x domestica MYB domain class transcription factor (MYB88) mRNA, complete cds
comp38641_c1	Anthocyanin regulatory C1 protein OS = Zea mays GN = C1 PE = 2 SV = 1
comp36088_c0	Transcription factor MYB113 OS = Arabidopsis thaliana GN = MYB113 PE = 1 SV = 1
comp33026_c0	Transcription factor MYB3 OS = Arabidopsis thaliana GN = MYB3 PE = 1 SV = 1
comp44651_c0	Myb-related protein 3R-1 OS = Arabidopsis thaliana GN = MYB3R-1 PE = 2 SV = 1
comp44651_c0	Malus x domestica MYB92 mRNA, complete cds

Pei et al. BMC Genomics (2016) 17:132
Comp	Description	organism	gene	protein	type	PE	SV			
comp42019_c0	Transcription factor MYB21 OS = Arabidopsis thaliana GN = MYB21 PE = 1 SV = 1	Arabidopsis thaliana	MYB21	1	1					
comp42660_c0	Transcription factor MYB39 OS = Arabidopsis thaliana GN = MYB39 PE = 2 SV = 1	Arabidopsis thaliana	MYB39	2	1					
comp617_c1	Pyrus communis R2R3 MYB transcription factor 10 (MYB10) gene, promoter region and partial cds	Pyrus communis	MYB10	1	1					
comp266782_c0	MYB11 [Malus x domestica]	Malus x domestica	MYB11	1	1					
comp5228_c0	Transcription factor MYB82 OS = Arabidopsis thaliana GN = MYB82 PE = 1 SV = 1	Arabidopsis thaliana	MYB82	1	1					
comp40270_c0	Transcription repressor MYB4 OS = Arabidopsis thaliana GN = MYB4 PE = 1 SV = 1	Arabidopsis thaliana	MYB4	1	1					
comp4139_c0	Malus x domestica MYB7 mRNA, complete cds	Malus x domestica	MYB7	1	1					
comp40714_c0	MYB92 [Malus x domestica]	Malus x domestica	MYB92	1	1					
comp44744_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp38255_c0	Malus x domestica cultivar Royal Gala MYB10 (MYB10) gene, promoter region and complete cds	Malus x domestica	MYB10	1	1					
comp33193_c0	Malus x domestica MYB domain class transcription factor (MYB33) mRNA, complete cds	Malus x domestica	MYB33	1	1					
comp411_c0	PREDICTED: Cicer arietinum transcription factor MYB12-like (LOC101507446), Mrna	Cicer arietinum	MYB12	1	1					
comp33184_c0	Malus x domestica MYB domain class transcription factor (MYB33) mRNA, complete cds	Malus x domestica	MYB33	1	1					
comp38919_c0	MYB24 [Malus x domestica]	Malus x domestica	MYB24	1	1					
comp9080_c0	PREDICTED: Fragaria vesca subsp. vesca transcription factor MYB32-like (LOC101307403), mRNA	Fragaria vesca subsp. vesca	MYB32	2	1					
comp39791_c0	Myb-related protein 305 OS = Antirrhinum majus GN = MYB305 PE = 2 SV = 1	Antirrhinum majus	MYB305	2	1					
comp8954_c0	Malus x domestica MYB domain class transcription factor (MYB36) mRNA, complete cds	Malus x domestica	MYB36	1	1					
comp52545_c0	Malus x domestica MYB domain class transcription factor (MYB38) mRNA, complete cds	Malus x domestica	MYB38	1	1					
comp51661_c0	Myb-related protein B OS = Xenopus laevis GN = myb12 PE = 2 SV = 2	Xenopus laevis	myb12	2	2					
comp28973_c0	Malus x domestica MYB domain class transcription factor (MYB1) mRNA, complete cds	Malus x domestica	MYB1	2	1					
comp404278_c0	Transcription factor MYB39 OS = Arabidopsis thaliana GN = MYB39 PE = 2 SV = 1	Arabidopsis thaliana	MYB39	2	1					
comp44434_c0	Transcription factor MYB12 OS = Arabidopsis thaliana GN = MYB12 PE = 2 SV = 1	Arabidopsis thaliana	MYB12	2	1					
comp40714_c0	MYB92 [Malus x domestica]	Malus x domestica	MYB92	1	1					
comp620621_c0	Transcription factor MYB23 OS = Arabidopsis thaliana GN = MYB23 PE = 1 SV = 1	Arabidopsis thaliana	MYB23	1	1					
comp23111_c0	Myb-related protein Myb4 OS = Oryza sativa subsp. japonica GN = MYB4 PE = 2 SV = 2	Oryza sativa subsp. japonica	MYB4	2	2					
comp43823_c0	Myb-related protein Myb4 OS = Oryza sativa subsp. japonica GN = MYB4 PE = 2 SV = 2	Oryza sativa subsp. japonica	MYB4	2	2					
comp44151_c1	MYB19 [Malus x domestica] > gi	189339113	dbj	BAG48172.1	myb-related transcription factor [Malus x domestica]	Malus x domestica	MYB19	2	1	
comp49161_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp49501_c0	Transcription factor MYB111 OS = Solanum tuberosum PE = 2 SV = 1	Solanum tuberosum	MYB111	1	1					
comp48408_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp35657_c0	Transcription factor MYB48 OS = Arabidopsis thaliana GN = MYB48 PE = 2 SV = 1	Arabidopsis thaliana	MYB48	2	1					
comp46544_c0	Transcription repressor MYBS OS = Arabidopsis thaliana GN = MYBS PE = 1 SV = 1	Arabidopsis thaliana	MYBS	1	1					
comp7072_c1	Myb-related protein 306 OS = Antirrhinum majus GN = MYB306 PE = 2 SV = 1	Antirrhinum majus	MYB306	2	1					
comp46515_c0	Transcription factor MYB86 OS = Arabidopsis thaliana GN = MYB86 PE = 2 SV = 1	Arabidopsis thaliana	MYB86	2	1					
comp30457_c0	Malus x domestica MYB domain class transcription factor (MYB25) mRNA, complete cds	Malus x domestica	MYB25	1	1					
comp49893_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp46778_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp89753_c0	Transcription factor MYB12 OS = Arabidopsis thaliana GN = MYB12 PE = 2 SV = 1	Arabidopsis thaliana	MYB12	2	1					
comp44151_c1	Transcription factor AS1 OS = Arabidopsis thaliana GN = AS1 PE = 1 SV = 1	Arabidopsis thaliana	AS1	1	1					
comp25436_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp27942_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp46739_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1	Arabidopsis thaliana	MYB44	2	1					
comp40636_c1	Transcription factor MYB113 OS = Arabidopsis thaliana GN = MYB113 PE = 1 SV = 1	Arabidopsis thaliana	MYB113	1	1					
comp33843_c0	Transcription factor MYB3 OS = Arabidopsis thaliana GN = MYB3 PE = 1 SV = 1	Arabidopsis thaliana	MYB3	1	1					
comp41103_c0	Transcription repressor MYBS OS = Arabidopsis thaliana GN = MYBS PE = 1 SV = 1	Arabidopsis thaliana	MYBS	1	1					
cell wall metabolism, plant hormone metabolism, stress response, zinc finger protein, and lipid-transfer protein. Analysis of the functions and metabolic pathways of the DEGs indicated that calyx abscission in Korla fragrant pear was a metabolic process induced by a variety of genes related to cell wall metabolism and regulated by multiple plant hormones. Our laboratory is currently researching the protein function of the DEGs in Korla fragrant pear.

Table 8 The MYB and SPL genes (Continued)

CompId	Description
comp33109_c1	Rosa rugosa mRNA for putative MYB transcription factor (myb9 gene)
comp209723_c0	putative MYB transcription factor [Rosa hybrid cultivar]
comp44561_c0	Myb-related protein Myb4 OS = Oryza sativa subsp. japonica GN = MYB4 PE = 2 SV = 2
comp51083_c0	putative MYB transcription factor [Rosa hybrid cultivar]
comp31372_c0	MYB domain class transcription factor [Malus x domestica]
comp38343_c1	Malus x domestica cultivar Jiangsu Fuji MYB transcription factor (MYB53) mRNA, partial cds
comp45889_c1	Transcription factor MYB39 OS = Arabidopsis thaliana GN = MYB39 PE = 2 SV = 1
comp37277_c1	Transcription factor MYB59 OS = Arabidopsis thaliana GN = MYB59 PE = 2 SV = 2
comp52029_c2	Malus x domestica cultivar Jiangsu Fuji MYB transcription factor (MYB53) mRNA, partial cds
comp37277_c1	Transcription factor MYB59 OS = Arabidopsis thaliana GN = MYB59 PE = 2 SV = 2
comp46917_c0	MYB-related protein 330 OS = Antirrhinum majus GN = MYB330 PE = 2 SV = 1
comp7908_c0	Transcription factor MYB86 OS = Arabidopsis thaliana GN = MYB86 PE = 2 SV = 2
comp7072_c0	Transcription factor MYB39 OS = Arabidopsis thaliana GN = MYB39 PE = 2 SV = 1
comp47011_c0	Myb-related protein Hv33 OS = Hordeum vulgare GN = MYB2 PE = 2 SV = 3
comp159049_c0	Transcription factor MYB46 OS = Arabidopsis thaliana GN = MYB46 PE = 2 SV = 1
comp27400_c0	Transcription factor MYB46 OS = Arabidopsis thaliana GN = MYB46 PE = 2 SV = 1
comp308054_c0	Malus x domestica MYB domain class transcription factor (MYB18) mRNA, complete cds
comp125091_c0	Malus x domestica cultivar Royal Gala MYB9 mRNA, complete cds
comp48140_c0	Rosa hybrid cultivar mRNA for putative MYB transcription factor (myb1 gene), cultivar Yellow Island
comp8463_c0	Transcription factor MYB44 OS = Arabidopsis thaliana GN = MYB44 PE = 2 SV = 1
comp26540_c0	Malus x domestica cultivar Royal Gala MYB9 mRNA, complete cds
comp28178_c0	Malus x domestica MYB2 mRNA, complete cds
comp188108_c0	Transcription factor MYB113 OS = Arabidopsis thaliana GN = MYB113 PE = 1 SV = 1
comp29648_c0	Myb-related protein 305 OS = Antirrhinum majus GN = MYB305 PE = 2 SV = 1
comp611736_c0	Malus x domestica MYB domain class transcription factor (MYB17) mRNA, complete cds
comp49971_c0	Transcription factor MYB86 OS = Arabidopsis thaliana GN = MYB86 PE = 2 SV = 1
comp42161_c1	Lupinus albus LaMYB27 mRNA for R2R3-MYB transcription factor, partial cds
comp43170_c0	Transcription factor MYB21 OS = Arabidopsis thaliana GN = MYB21 PE = 1 SV = 1
comp37565_c0	Trifolium repens tannin-related R2R3 MYB transcription factor (Myb14) gene, Myb14-3 allele, partial cds
comp49430_c0	Myb-related protein 3R-1 OS = Arabidopsis thaliana GN = MYB3R-1 PE = 2 SV = 1
comp43202_c0	Myb-related protein 305 OS = Antirrhinum majus GN = MYB305 PE = 2 SV = 1
comp38641_c0	Malus x domestica MYB11 mRNA, complete cds
comp50379_c0	Myb-related protein 305 OS = Antirrhinum majus GN = MYB305 PE = 2 SV = 1

Methods

Plant material

Three trees with high vigor and three trees with low vigor were selected in spring 2013 at the Shayidong Horticulture Field, Korla, Xinjiang Province. Flowers were collected from each tree at the early bloom, full bloom, and late bloom stages. The first flower to open in clusters on trees with high vigor has a persistent calyx (Fig. 8a, b). The fourth flower to open in clusters from trees with low vigor has a deciduous calyx (Fig. 8c, d). The flowers were immediately frozen in liquid N and stored at −80 °C.

Transcriptome sequencing

Solexa/Illumina sequencing was carried out by Novogene, Beijing, China. Total RNA was extracted from the flower samples using RNAout 1.0 (Tianenze, Beijing, China). The RNA degradation and contamination was monitored on
1 % agarose gels. The purity of the RNA was checked with a NanoPhotometer® (IMPLEN, CA, USA). The RNA concentration was measured using a Qubit®RNA Assay Kit and a Qubit®2.0 Fluorometer (Life Technologies, CA, USA). The RNA integrity was assessed using an RNA Nano 6000 Assay Kit and an Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). After quality inspection, the RNA from flowers at the early, full, and late bloom stages were combined by calyx type. The combined RNA sample from flowers with a persistent calyx will be referred to as SC_hua. The combined RNA sample from flowers with a deciduous calyx will be referred to as TL_hua. These RNA samples were used for transcriptome sequencing. Three biological replicates were used.

The RNA preparations used 3 μg RNA per sample. Sequencing libraries were generated using NEBNext™ Ultra RNA Library Prep Kit for Illumina® (NEB, USA) following the manufacturer’s recommendations. Index codes were added to attribute sequences in each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5x). First strand cDNA was synthesized using

Table 9	Genes related to stress
Gene Id	Gene description
SC-hua vs TL-hua	
comp43473_c0	Heat shock factor protein HSF24 OS = Solanum peruvianum GN = HSF24 PE = 2 SV = 1
comp44869_c0	Dehydration-responsive protein RD22 OS = Arabidopsis thaliana GN = RD22 PE = 2 SV = 1
comp49899_c0	Dehydration-responsive element-binding protein 1A OS = Arabidopsis thaliana GN = DREB1A PE = 1 SV = 2
comp39099_c0	Dehydration-responsive element-binding protein 3 OS = Arabidopsis thaliana GN = DREB3 PE = 2 SV = 1
comp45992_c0	NAC transcription factor NAM-B2 OS = Triticum durum GN = NAM-B2 PE = 2 SV = 1
comp49969_c0	NAC transcription factor 25 OS = Arabidopsis thaliana GN = NAC025 PE = 2 SV = 1
comp41728_c0	NAC domain-containing protein 2 OS = Arabidopsis thaliana GN = NAC002 PE = 2 SV = 2
comp48683_c0	Cysteine synthase OS = Citrullus lanatus PE = 1 SV = 1

SC_ep vs TL_ep	
comp34503_c0	Pathogenesis-related protein Bet v I family
comp43933_c0	senescence-related protein [Camellia sinensis]
comp44869_c0	Dehydration-responsive protein RD22 OS = Arabidopsis thaliana GN = RD22 PE = 2 SV = 1
comp41728_c0	NAC domain-containing protein 2 OS = Arabidopsis thaliana GN = NAC002 PE = 2 SV = 2
comp49899_c0	Dehydration-responsive element-binding protein 1A OS = Arabidopsis thaliana GN = DREB1A PE = 1 SV = 2

SC_zf vs TL_zf	
comp41222_c0	Disease resistance response protein 206 OS = Pism sativum GN = PI206 PE = 2 SV = 2
comp44869_c0	Dehydration-responsive protein RD22 OS = Arabidopsis thaliana GN = RD22 PE = 2 SV = 1
comp51764_c0	Defensin-like protein 2 OS = Arabidopsis thaliana GN = PDF2.2 PE = 2 SV = 1
comp43933_c0	senescence-related protein [Camellia sinensis]

SC_hua vs TL_hua					
comp36582_c0	Non-specific lipid-transfer protein OS = Pyrus communis PE = 1 SV = 1				
SC_zf vs TL_zf					
comp33569_c0	zinc finger protein, putative [Ricinus communis] > gi	223538542	gb	EEF40147.1	zinc finger protein, putative [Ricinus communis]
comp41672_c0	Zinc finger, C3HC4 type (RING finger)//Ring finger domain//Anaphase-promoting complex subunit 11 RING-H2 finger//zinc-RING finger domain//RING-H2 zinc finger				
comp43820_c0	MYM-type Zinc finger with FCS sequence motif				
comp46839_c0	Putative zinc finger protein At1g68190 OS = Arabidopsis thaliana GN = At1g68190 PE = 2 SV = 1				
comp53961_c0	RING finger and CCH zinc finger domain-containing protein 1 OS = Homo sapiens GN = RCHY1 PE = 1 SV = 1				
comp36582_c0	Non-specific lipid-transfer protein OS = Pyrus communis PE = 1 SV = 1				
Table 11 Putative genes related to abscission

Gene Id	Gene description
comp54231_c0	Polyphenol oxidase, chloroplastic OS = Malus domestica PE = 2 SV = 1
comp52712_c0	Asparagine synthetase [glutamine-hydrolyzing] OS = Asparagus officinalis PE = 2 SV = 2
comp48325_c1	NADP-dependent D-sorbitol-6-phosphate dehydrogenase OS = Malus domestica GN = S6PDH PE = 2 SV = 1
comp33824_c0	11S globulin seed storage protein 2 OS = Sesamum indicum PE = 2 SV = 1
comp42796_c0	CASP-like protein RCOM_0679870 OS = Ricinus communis GN = RCOM_0679870 PE = 2 SV = 1
comp44393_c0	UDP-glucose 4-epimerase 1 OS = Arabidopsis thaliana GN = At1g12780 PE = 1 SV = 2
comp43067_c0	Miraculin OS = Richadella dulcifica PE = 1 SV = 3
comp44995_c0	Taxadien-5-alpha-ol O-acetyltransferase OS = Taxus wallichiana var. chinensis PE = 2 SV = 1
comp36479_c0	–
comp40401_c0	Jasmonate O-methyltransferase OS = Brassica rapa subsp. pekinensis GN = JMT PE = 1 SV = 1
comp42909_c0	Ornithine decarboxylase OS = Datura stramonium PE = 2 SV = 1
comp43847_c1	Bifunctional monodehydroascorbate reductase and carbonic anhydrase nectarin-3 OS = Nicotiana langsdorffii x Nicotiana sanderae GN = NEC3 PE = 1 SV = 1
comp49118_c1	Polyphenol oxidase, chloroplastic OS = Malus domestica PE = 2 SV = 1
comp48325_c1	NADP-dependent D-sorbitol-6-phosphate dehydrogenase OS = Malus domestica GN = S6PDH PE = 2 SV = 1
comp48520_c0	Beta-D-xylosidase 1 OS = Arabidopsis thaliana GN = BXLI PE = 1 SV = 1
comp54231_c0	Polyphenol oxidase, chloroplastic OS = Malus domestica PE = 2 SV = 1
comp52712_c0	Asparagine synthetase [glutamine-hydrolyzing] OS = Asparagus officinalis PE = 2 SV = 2
comp48325_c1	NADP-dependent D-sorbitol-6-phosphate dehydrogenase OS = Malus domestica GN = S6PDH PE = 2 SV = 1
comp33824_c0	11S globulin seed storage protein 2 OS = Sesamum indicum PE = 2 SV = 1
comp42796_c0	CASP-like protein RCOM_0679870 OS = Ricinus communis GN = RCOM_0679870 PE = 2 SV = 1
comp44393_c0	UDP-glucose 4-epimerase 1 OS = Arabidopsis thaliana GN = At1g12780 PE = 1 SV = 2
comp43067_c0	Miraculin OS = Richadella dulcifica PE = 1 SV = 3
comp44995_c0	Taxadien-5-alpha-ol O-acetyltransferase OS = Taxus wallichiana var. chinensis PE = 2 SV = 1
comp36479_c0	–
comp40401_c0	Jasmonate O-methyltransferase OS = Brassica rapa subsp. pekinensis GN = JMT PE = 1 SV = 1
comp42909_c0	Ornithine decarboxylase OS = Datura stramonium PE = 2 SV = 1
comp43847_c1	Bifunctional monodehydroascorbate reductase and carbonic anhydrase nectarin-3 OS = Nicotiana langsdorffii x Nicotiana sanderae GN = NEC3 PE = 1 SV = 1
comp49118_c1	Polyphenol oxidase, chloroplastic OS = Malus domestica PE = 2 SV = 1
comp48325_c1	NADP-dependent D-sorbitol-6-phosphate dehydrogenase OS = Malus domestica GN = S6PDH PE = 2 SV = 1
comp48520_c0	Beta-D-xylosidase 1 OS = Arabidopsis thaliana GN = BXLI PE = 1 SV = 1
comp36479_c0	–
comp44627_c0	Protein ASPARTIC PROTEASE IN GUARD CELL 1 OS = Arabidopsis thaliana GN = ASPG1 PE = 1 SV = 1
comp53838_c1	Synaptotagmin-3 OS = Arabidopsis thaliana GN = SYT3 PE = 2 SV = 1
comp46366_c0	Tonoplast dicarboxylate transporter OS = Arabidopsis thaliana GN = TDT PE = 2 SV = 2
comp77776_c0	Bidirectional sugar transporter NEC1 OS = Petunia hybrida GN = NEC1 PE = 2 SV = 1
comp40676_c0	Miraculin OS = Richadella dulcifica PE = 1 SV = 3
comp44995_c0	Taxadien-5-alpha-ol O-acetyltransferase OS = Taxus wallichiana var. chinensis PE = 2 SV = 1
comp43847_c1	LOB domain-containing protein 41 OS = Arabidopsis thaliana GN = LBD41 PE = 1 SV = 1

Pei et al. BMC Genomics (2016) 17:132
random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of the 3’ ends, the DNA fragments were ligated with the NEBNext Adaptor with hairpin loop structure. The library fragments were purified with AMPure XP (Beckman Coulter, Beverly, USA) in order to select cDNA fragments with lengths of 150 ~ 200 bp. The size-selected, adaptor-ligated cDNA was mixed with 3 μl USER Enzyme (NEB, USA) at 37 °C for 15 min followed by 5 min at 95 °C before PCR. The PCR was performed with Phusion High-Fidelity DNA polymerase, universal PCR primers and Index (X) Primer. The PCR products were purified (AMPure XP system) and the library quality was assessed using an Agilent Bioanalyzer 2100.

The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an Illumina HiSeq 2000 platform and paired-end reads were generated.

Data analysis of transcriptome sequencing

Raw data (raw reads) in fastq format were first processed through in-house Perl scripts. Clean data (clean reads) were obtained by removing reads containing adapter sequences, reads containing poly-N, and low quality reads. The Q20, Q30, GC-content, and sequence duplication level of the clean data were calculated. All downstream analyses were based on clean data with high quality.

The left files (read1 files) from all libraries/samples were pooled into one large left.fq file. The right files (read2 files) were pooled into one large right.fq file. Transcriptome assembly was accomplished based on the left.fq and right.fq files using Trinity [63]. The min_kmer_cov was set at 2 and all other parameters were set at default. Gene function was annotated based on the following databases: NR (NCBI non-redundant protein sequences); NT (NCBI non-redundant nucleotide sequences); PFAM (Protein family); KOG/COG (Clusters of Orthologous Groups of proteins); SwissProt (A manually annotated and reviewed protein sequence database); KO (KEGG Ortholog database); GO (Gene Ontology).

DGE sequencing

The RNA was extracted from sepals and ovaries at the early, full, and late bloom stages. The RNA was combined by calyx type. The combined RNA sample from sepals with a persistent calyx will be referred to as SC_ep. The combined RNA sample from sepals with a deciduous calyx will be referred to as TL_ep. The combined RNA sample from ovaries with a persistent calyx will be referred to as SC_zf. The combined RNA sample from ovaries with a deciduous calyx will be referred to as TL_zf. The methods of RNA extraction, RNA quantification, RNA qualification, clustering, and sequencing were the same as those described above for transcriptome sequencing.

Differential expression analysis

Samples with biological replicates

Differential expression analysis of two conditions/groups was performed using the DESeqR package (1.10.1). The DESeq provides statistical routines for determining differential expression in digital gene expression data using a model based on negative binomial distribution. The resulting P values were adjusted using Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes were considered to be differentially expressed if DESeq found the adjusted P-value to be <0.05.

Samples without biological replicates

Prior to differential gene expression analysis, the read counts for each sequenced library were adjusted using edgeR software through one scaling normalized factor. Differential expression analysis of two samples was performed using DEGseq R package (2010). The P value was adjusted using the q value [64]. The q value < 0.005 & ||log2 (fold change)| > 1 was set as the threshold for significantly differential expression.

GO enrichment analysis

Gene Ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) was implemented by GOseq R packages based on Wallenius non-central
Real-time quantitative PCR

The expression of five genes (Gene ID: comp36863_c0, comp41728_c0, comp46544_c0, comp49798_c0, and comp49614_c0) that might be associated with calyx persistence in Korla Fragrant Pear were analyzed by qRT-PCR. Total RNA was separately extracted from the full flowers, sepals and ovaries using RNAout 1.0 (Tianenze, USA) and the SYBR Green Real-time PCR Master Mix (Toyobo, Osaka, Japan). The protocol of real-time PCR was as follows: initiation with a 30 s pre-denaturation at 95 °C followed by 40 cycles of amplification with 5 s of denaturation at 95 °C, 10 s of annealing at 56 °C, 15 s of extension at 72 °C and reading the plate for fluorescence data collection at 65 °C. A melting curve was performed from 65 to 95 °C to check the specificity to the amplified product. Each reaction was repeated three times. Korla fragrant pear actin gene (forward: 5′-CCATCCG TGCTTCTCCTC-3′, and reverse: 5′-GCAAGGGTCCA GACGAAGG -3′) was used as a normalizer.

Availability of supporting data

Illumina sequencing data from ‘Korla Fragrant Pear’ SC_hua, TL_hua, SC_zf, TL_zf, SC_ep, and TL_ep were deposited in the NCBI SRA database under accession number SRP066513, bioProject accession: PRJNA303067 (http://www.ncbi.nlm.nih.gov/bioproject/303067). The release time is 2016-11-21 00:00:00. All the supporting data have been provided as Additional files (1, 2, 3, 4, 5, 6 and 7).

Additional files

- Additional file 1: GO enrichment of DEGs in SC_hua vs TL_hua. (XLS 1 kb)
- Additional file 2: GO enrichment of up-regulated DEGs in SC_hua vs TL_hua. (XLS 82 kb)
- Additional file 3: The top 20 KEGG pathways enrichment of DEGs in SC_hua vs TL_hua. (XLS 1 kb)
- Additional file 4: The top 20 KEGG pathways enrichment of up DEGs in SC_hua vs TL_hua. (XLS 512 bytes)
- Additional file 5: The top 20 KEGG pathways enrichment of down DEGs in SC_hua vs TL_hua. (XLS 977 bytes)
- Additional file 6: The top 20 KEGG pathways enrichment of DEGs in SC_ep vs TL_ep. (XLS 1 kb)
- Additional file 7: The top 20 KEGG pathways enrichment of DEGs in SC_zf vs TL_zf. (XLS 1 kb)

Abbreviations

SC_hua: flowers with persistent calyx; SC_zf: ovaries of flowers with persistent calyx; TL_hua: flowers of flowers with deciduous calyx; TL_zf: ovaries with deciduous calyx; DEGs: differentially expressed genes; qRT-PCR: real-time quantitative PCR; DGE: digital gene expression; RNA-Seq: high-throughput sequencing of RNA; NR: NCBI non-redundant protein sequences; NT: NCBI nucleotide sequences; KEGG: Kyoto Encyclopedia of Genes and Genomes.
encyclopedia of genes and genomes; SwissProt: a manually annotated and reviewed protein sequence database; PFAM: protein family; GO: gene ontology; KOG/COG: clusters of orthologous groups of proteins; CC: the cellular component category; BP: the biological process category; MF: the molecular function category.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JXN led and coordinated the project, JXN and MSP designed the study, MSP, CA, FJc and SWQ collected the plant materials and isolated the RNA. MSP and SWQ conducted the real-time quantitative PCR, MSP conducted the bioinformatics analysis and wrote the paper. All authors have read and agree with the final manuscript. JXN is the corresponding author and is responsible for all contact and correspondence. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31360747), the Specialized Research Fund for the Doctoral Program of Higher Education (201361810002), and the International Scientific and Technological Cooperation Projects (2009D052).

Received: 9 July 2015 Accepted: 12 February 2016
Published online: 24 February 2016

References
1. Gao QM, Li J, Li Y. Literature review of researches on ‘Kuerlie Sweet Pear’. Nonwood Forest Res. 2005;23:79–82.
2. Liang SW, Wang WL, Zhang JH. The reasons and strategies of calyx persistence in Dangshan pear. Agriculturae Cons Sec. 2009;68.
3. Liu N, Tao ST, Zhang SL, Cao YF, Wu HQ, Wang JZ, Wu T. Effect of different pollinator varieties on calyx retention and quality for ‘Kuerlexiang’ fruit. J Nanjing Agri Univ. 2011;34:43–7.
4. Zhu ML, Qiao JC, Xu JF. Effect of pollinating varieties and pollen amount on persistent calyx of Ya pear. J Agri Univ Hebei. 2006;29:38–40.
5. Xu YL, Gao ZH, Zhang JY, Yi XR, Shu B. Effects of pollination with various pollination varieties and pollen amount on fruit calyx of Dangshan Suli pear. J Anhui Agri Univ. 2009;36:1–6.
6. Ren YL, Li J, Qin WM, Guo QZ. Preliminary studies on characteristic and control of calyx leaving and persistent fruit from Korla Fragrant Pear. J Xinjiang Agri Univ. 2007;30:25–9.
7. Heng W, Chen J, Ye ZF, Jia B, Zhang SM, Sun J, Zhu LW. Development of calyx and its controlling techniques of young fruit of Dangshansu pear. J Anhui Agri Univ. 2010;7:238–43.
8. Jia B, Zhu LW, Zhang SL. Effects of the growth regulators on the ratio of the fruit without calyx, fruit quality and shoot growth in Pyrus bretschneideri ‘Dangshansu’. J Nanjing Agri Univ. 2012;35:26–32.
9. Jia B, Zhu LW, Zhang SL. Preliminary study on the action of the mineral element Fe in fruit calyx development of ‘Dangshanzhi’ pear. Acta Horticulturae Sinica. 2012;39:59–67.
10. Dong FY, Zhang F, Wang YT, Niu JX. Differential expression analysis of calyx falling off Korla Fragrant Pears and their persistent related genes. Xinjiang Agri Sci. 2013;50:57–64.
11. Wang BH, Sun XX, Dong FY, Zhang F, Niu JX. Cloning and expression analysis of an MYB gene associated with calyx persistence in Korla fragrant pear. Plant Cell Rep. 2014;33:1333–41.
12. Qi XX, Wu J, Wang LF, Li LT, Gao YF, Tian LM, Dong XG, Zhang SL. Identifying the candidate genes involved in the calyx abscission process of ‘Kuerlexiang’ (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC Genomics. 2013;14:272.
13. Wang Z, Gertstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
14. Anisimov SV. Serial Analysis of Gene Expression (SAGE): 13 years of application in research. Curr Pharm Biotechnol. 2008;9:338–50.
15. Surget-Groba Y, Montoya-Burgos J. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res. 2010;20:1432–40.
16. Zhang YG, Zhu J, Dai HY. Characterization of transcriptional differences between columns and standard apple trees using RNA-Seq. Plant Mol Biol Report. 2012;30:957–65.
17. Gleave AP, Amponah-Dwamena C, Berthold S, Dejnoprut S, Karunaretnam S, Nain B, Wang YF, Crowhurst RN, MacDiarmid RM. Identification and characterization of primary microRNAs from apple (Malus domestica cv. Royal Galia) expressed sequence tags. Tree Genet Genomes. 2008;4:343–58.
18. Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics. 2012;13:19.
19. Zhang SY, Li X, Feng C, Zhu CQ, Grison D, Xu CJ, Chen KS. Development and characterization of 109 polymorphic EST-SSR derived from Chinese bayberry (Myrica rubra) transcriptome. J Am Botany. 2012;99:501–7.
20. Rowland LJ, Alkalhour N, Danwigh O, Ogden EL, Polashock JJ, Bassil NV, Main D. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol. 2012;12:46.
21. Li CQ, Wang Y, Huang XM, Li J, Wang HC, Li JG. De novo assembly and characterization of fruit transcriptome of Lithchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics. 2013;14:552.
22. Xie M, Huang Y, Zhang YP, Wang X, Yang H, Yu O, Dai WH, Fang CB. Transcriptome profiling of fruit development and maturation in Chinese white pear (Pyrus bretschneideri Rehd). BMC Genomics. 2013;14:823.
23. Sweetman C, Wong DC, Ford CM, Drew DP. Transcriptomic analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics. 2012;13:691.
24. D’Hont A, Denoeud F, Aury JM, Baurens FC, Carneel F, Gamsreiter N, Noel B, Bocc S, Droc G, Rouard M, Da Silva C, Jablonski K, Cardi C, Poulin J, Souquet M, Labadie K, Jourdà C, Lengelle J, Rodier-Gourret M, Alberto A, Bernard M, Corra M, Asapalayasan S, McKain W, Leebens-Mack J, Burgess D, Freeing M, Mbaegule-A-Mbaegule D, Chabannes M, Wiiker T, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–7.
25. Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T, Yi GJ. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics. 2012;13:374.
26. Xu YQ, Xu Q, Da XL, Guo F, Ding YD, Deng XX. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics. 2012;13:110.
27. Xu Q, Liu YL, Zhu AD, Wu XM, Ye J, Quo KQ, Guo DW, Deng XX. Discovery and comparative profiling of microRNAs in a sweet orange red-flush mutant and its wild type. BMC Genomics. 2010;11:246.
28. Zhu H, Xia R, Zhao BY, An CY, Dardick CD, Callahan AM, Li ZG. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol. 2012;12:149.
29. Sablok G, Luo C, Lee WS, Rahman F, Tatanoviva TV, Harikrishna JA, Luo ZR. Bioinformatic analysis of fruit-specific expressed sequence tags library of Diospyros kaki Thunb: view at the transcriptome at different developmental stages. Biotech. 2011;1:35–45.
30. Dal Cin V, Velasco R, Raima A. Dominance induction of fruitlet shedding in Malus x domestica (L. Borkh): molecular changes associated with polar auxin transport. BMC Plant Biol. 2009;9:139.
31. Li JG, Yuan RC. NAA and Ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J Plant Growth Regul. 2008;27:283–95.
32. Corbacho J, Romorajo F, Pech JC, Latché A, Gomez-Jimenez MC. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo- and exocytosis. PloS ONE. 2013; doi:10.1371/journal. pone.0035836.
33. Agusti J, Meirelo P, Cercós M, Tadeo FR, Talón M. Comparative trans-criptional survey between laser-microdissected cells from laminar abscission zone and petalor cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biology. 2009;9:127.
34. Zhu H, Dardick CD, Beers EP, Callahan AM, Xia R, Yuan RC. Transcriptomics of shadinduced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in...
carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol. 2011;11:138.
35. Parra-Lobato MC, Gomez-Jimenez MC. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signaling pathways and nitric oxide production during olive mature fruit abscission. Exp Bot. 2011;62:4447–65.
36. Sane AP, Tripathi SK, Nath P, Petal abscission in rose (Rosa brionii) var Gruss an Teplitz is associated with the enhanced expression of an alpha expansin gene, RbEXPa1. Plant Sci. 2007;172:481–7.
37. Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfeld ML. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. J Exp Bot. 2007;58:3395–406.
38. Roongsatatham P, Morcillo F, Jantarsurayat C, Pizot M, Moussu S, Jayaweeira D, Collin M, Gonzalez-Carranza ZH, Ambland T, Tregear G, Tragonroong S, Verdee JL, Tranbarger TJ. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC Plant Biol. 2012;12:150.
39. Hong SB, Sexton R, Tucker ML. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 2000;123:869–81.
40. Imoto K, Yokoyama R, Nishitani K. Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana. Plant Mol Biol. 2005;58:177–92.
41. Wu ZC, Burns JK. A beta-galactosidase gene is expressed during mature fruit abscission of Valerian (Citrus sinensis). J Exp Bot. 2004;55:1483–90.
42. Singh AP, Tripathi SK, Nath P, Sane AP. Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransgalacose/hydrolase genes, RbXTH1 and RbXTH2. J Exp Bot. 2011;62:5091–103.
43. Taylor JE, Coupe SA, Picton S, Roberts JA. Characterization and accumulation pattern of an mRNA encoding an abscission-related B-1,4-glucanase from leaflets of Sambucus nigra. Plant Mol Biol. 1994;24:961–4.
44. Gou JY, Felippejs FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23:1512–22.
45. Niu Y, Chen KL, Wang JZ, Xu X, Qin HJ, Zhang AM, Wang DW. Molecular and functional characterization of sphingosine-1-phosphate lyase homolog from higher plants. Plant Biol. 2007;9:323–35.
46. Reis U, Okouanou B, Zhou JH, Gupta V, Soorjakumaran P, Kelly S, Wang E, Merrill AH, Sadao JD. Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J Biol Chem. 2003;279:1281–8.
47. Ulmar A, Strommer J. Myb26a a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant J. 1997;12:1273–84.
48. Chen SC, Peng SQ, Huang GX, Wu KX, Fu XH, Chen ZQ. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol Biol. 2003;51:51–8.
49. Hoeren FU, Dolfers R, Wu Y, Peacock WJ, Dennis ES. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetica. 1998;104:665–70.
50. Lea US, Simostad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta. 2007;225:1245–53.
51. Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis thaliana through interaction with GL1 and TTG1. Genomics. 2000;66:154–62.
52. Suo JF, Liang XQ, Pu L, Zhang YS, Xue YB. Identification of GlyMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochem Biophys Acta. 2003;1630:23–5.
53. Lee MM, Schefeldbin J. Cell pattern in the Arabidopsis root tip is determined by lateral inhibition with feedback. The Plant Cell. 2002;14:611–8.
54. Legay S, Lacoste M, Goicoechea M, Bréne C, Seguin A, Mackay J, Grima-Pettenati J. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci. 2007;173:542–9.
55. Yang XY, Li XG, Pei M, Gu H, Chen ZL, Qu L. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep. 2007;26:219–28.
56. Gubert CM, Christy ME, Ward DL, Groner WD, Liljegren SJ. ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers. BMC Plant Biol. 2014;14:195.