Organotin(IV) Derivatives of N-Tolyl-m-methoxybenzohydroxamic Acid:
Synthesis and Structural Elucidation

Abdualbasit Graisa, Yang Farina
School of Chemical Science & Food Technology
University Kebangsaan Malaysia, Malaysia

Emad Yousif (Corresponding author)
Department of Chemistry, College of Science
Al-Nahrain University, Baghdad, Iraq
E-mail: emad_yousif@hotmail.com

Elhadi Elbay Saad
Department of Chemistry, Faculty of Science
Sebha University, Sebha-Libya

Abstract
A series of organotin (IV) complexes of the type R_2SnL_2, where R = phenyl, butyl and methyl and $HL = N$-Tolyl-m-methoxybenzohydroxamic acid were synthesized and characterized by physico-chemical (elemental analysis, and electrolytic conductance) and spectral Infrared and 1H, ^{13}C and ^{119}Sn NMR techniques. Monomer structures for the complexes, bidentate and octahedral geometry was proposed for the complexes prepared.

Keywords: N-Tolyl-m-methoxybenzohydroxamic acid, Diorganotin(IV) Complexes, Spectral studies

1. Introduction
In the past decades the chemistry of tin compounds has gained considerable importance, both in basic research and in industrial applications. There are many interesting aspects of inorganic and organic tin chemistry discussed in various reviews. Tin (IV) and organotin (IV) compounds, a deceptively simple area of inorganic and metal-organic chemistry, have been receiving more attention due to the important industrial (Tammy and Georges, 2005) and environmental applications. Nitrogen, oxygen, and sulfur donor ligands have been used to enhance the biological activity of organotin derivatives (Mohammad et al., 2004; Jason et al., 2000). Also organotin compounds with such ligands have widely been tested for their possible use in cancer chemotherapy (Shang et al. 2008; Zhou et al. 2005). The coordination chemistry of tin is extensive with various geometries and coordination numbers known for both inorganic and organometallic complexes (Katsoulakou et al. 2008; Baul et al. 2007; Farina et al. 2008). Hydroxamic acids constitute a very important class of chelating agents with versatile biological activity (Farkas et al. 2002; Wang et al. 2003).

In view of the diverse fields of applications of organotin complexes, we have synthesized new ligand N-methyl-m-nitrobenzohydroxamate(HL) and its organotin(IV) compounds Diphenyltin(IV) Bis(N-Tolyl-m-methoxybenzohydroxamate) (Ph_2SnL_2), Dibutyltin (IV) Bis (N-Tolyl-m-methoxybenzohydroxamate)(Bu$_2SnL_2$) and Dimethyltin(IV) Bis (N-Tolyl-m-methoxybenzohydroxamate)(Me$_2SnL_2$)

2. Materials and Methods
2.1 Synthesis of N-Tolyl-m-methoxybenzohydroxamic acid
An ether solution of m-methoxybenzoyl chloride (0.01 mole) was added dropwise to a stirred cold ethereal solution of N-Tolylhydroxylamine (0.01 mole) containing sodium hydrogen carbonate (0.01 mole). The precipitate was filtered and washed with cold ethanol. Good quality crystals suitable for X-ray analysis were obtained by recrystallization from ethyl acetate.
2.2 Preparation of Complexes

Complexes were synthesized by dissolving the free ligand N-Tolyl-methoxybenzohydroxamic acid (5 mmol) in hot toluene and adding the organotin (2.5 mmol) to the solution. The solution was refluxed for 6 hours with magnetic stirrer and then cooled and filtered. The filtrate was reduced under vacuum to a small volume and solid was precipitated by the added of petroleum ether (60-80 °C).

3. Instrumentation

The percentage compositions of the elements (CHN) for the compounds were determined using an elemental analyzer CHNS Model Fison EA 1108. Molar conductance measurements were made in anhydrous DMF at 25 °C using Inolop-Cond Level 1 WTW. The infrared spectra were recorded as potassium bromide discs using a Perkin-Elmer spectrophotometer GX. The ¹H and ¹³C nuclear magnetic resonance spectra were recorded using the JEOL JNM-ECP 400 spectrometer. Electronic UV-Vis spectra were recorded with 1650 PC SHIMADZU Spectrophotometer in the range 200-400 nm. And for ultraviolet using Shimadsu-UV-Vis spectrophotometer UV -2450, DMSO used as solvent. Crystals structures determination were carried out on a Bruker Smart APEX CCD area detector diffractometer equipped with graphite monochromatised Mo-Kα (λ=0.71073Å) radiation in each case. All data collection was carried out at room temperature. The program SMART (Siemens 1996) was used for collecting frames of data, indexing reflections and determination of lattice parameters, SAINT (Siemens 1996) for absorption correction, and SHELXTL (Sheldrick 1997).

4. Results and Discussion

The ligand was prepared by the reaction of m-methoxybenzoyl chloride with one mole N-Tolyl -m-hydroxylamine in presence of sodium hydrogen carbonate as a catalyst. The purity of the ligand and its complexes were checked by TLC using silica gel-G as adsorbent. The conductance of these complexes has been recorded in DMF at room temperature in the range 10-19 ohm⁻¹ cm² mol⁻¹, suggesting their non-electrolytic nature. Their physical properties and analytical data are recorded in Table (1). The calculated values were in a good agreement with the experimental values.

4.1 Infra-Red Spectroscopy

Solid state infrared spectra of the N- Tolyl-methoxybenzohydroxamic acid are recorded in the range 4000-370 cm⁻¹ and the most important bands are presented in the below table studied here. In agreement for diagnostic purpose, the principal infrared absorption bands are those due to -OH, C=O, C-N and N-O stretching vibrations of the hydroxamate group free hydroxamic acids have been shown to exist principally in the keto form. In compound (C=O) group is positioned at 1617cm⁻¹ significantly, below the typical ketonic (C=O) of 1600 cm⁻¹. The (O-H) band is located at 3251 cm⁻¹ as broad band. The presence of the carbonyl group at lower frequency where together with the broad OH band. In general, the (C-N) and (N-O) bands occur as a sharp peak in the ranges 1429, 953 cm⁻¹ respectively (Shahid et al.2002).

On complexation, there are clear differences between the infrared spectra of the free ligand and the diorganotin(IV) complexes. In all cases, the most important features of the infrared spectra are the absence of the (OH) bands due to the complexation of the metal to the ligand through oxygen of the carbonyl group. This suggests the deprotonation of the hydroxamate group on complex formation, and (C=O) group is shifted to lower frequencies in the range 1624-1691 cm⁻¹ significantly, below the typical ketonic (C=O) of 1600 cm⁻¹. The (O-H) band is located at 3251 cm⁻¹ as broad band. The presence of the carbonyl band at lower frequency where together with the broad OH band. In general, the (C-N) and (N-O) bands occur as a sharp peak in the ranges 1429, 953 cm⁻¹ respectively (Shahid et al.2002).

4.2 Nuclear Magnetic Spectroscopy

The ¹H NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph₂SnL₂, Bu₂SnL₂ and Me₂SnL₂ Show additional signals. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁳C NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).

The ¹⁹F NMR spectra for all compounds were recorded in [²H₆] DMSO using tetramethylsilane as the internal standard. The data are compiled in Table (3). The conclusion drawn from ¹H NMR studies of a few compounds lend further support to suggested formation of N-Tolyl-methoxybenzohydroxamic acid. Ligand (HL) give a singlet –OH resonance near δ 10.64 ppm due to hydroxy group. The hydroxy resonances is absent in the spectra of the complexes. The hydroxy resonances is absent in the spectra of the complexes. The aromatic protons in Ph-Sn appears in the 7.16-8.18 ppm (Shahid et al.2002).
ppm. It is most likely that shift is due to the decrease of electron density at carbon atoms when oxygen is bonded to metal ion (Saad et al. 2003), (Figure 9 to 12).

On the basis of the observed spectral evidence, the following structure suggested for the prepared complexes

<Scheme 2>

4.3 X-ray structural studies of N-tolyl m-methoxybenzohydroxamic acid

The structure contain an C\textsubscript{15} H\textsubscript{15} N O\textsubscript{3} ligand, which is a molecule of 3-methoxybenzoyl chloride bonded with N-Tolyl hydroxylamine. The bond angles which will connect Sn atom with the ligand are: C(7)-N(1)-O2 = 117.43(16) , O(1)-C(7)-N(1)=120.14(15), respectively, giving the conformation of an octahedral with the oxygen atoms later at the bottom and the tin atom at the top. This coordination sphere is completed by the both oxygen atoms of the ligands and will be cis positions covering the oxygen atoms. The methoxybenzoyl chloride and tolyl hydroxylamine are chelated by carboxyl groups as shown bellow. And other data in table below.

<Scheme 3>

5. Conclusion

The ligand N- Tolyl-m-methoxybenzohydroxamic acid was successfully synthesized. The ligand was treated to different diorganotin(IV) oxide metal to afford the corresponding complexes. It may conclude that the ligand coordinated through oxygen to the Tin atom leading to the formation of five member ring chelate. Octahedral geometry was proposed for the prepared complexes.

Acknowledgment

The authors are grateful of School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, for provision of laboratory facilities. We would like to thank Prof Dr Buhari Ben Yamin for Analysis X Ray Data. We would like to thank the Libyan government by General Committee of High Education for their financial support.

References

Baul, T., C. Masharing, G. Ruisi, R. Jira’sko, M. Holcapek, D. De-Vos, D. Wolstenholme and A. Linden, (2007). Self-assembly of extended Schiff base amino acetohydroxamic acid (PIPDMAHA), as a chelating agent of molybdenum(VI), *Talanta*, 57: 935–943.

Jason, H., C. Kieran and R. Pratt. (2000). Inhibition of Serine Amidohydrolases by Complexes of Vanadate with Hydroxamic Acids. *Biochemical and Biophysical Res.Communications*, 274: 732–735.

Katsoulakou, E., Tiliakos M., Papaefstathiou G., Terzis A., Raptopoulou C., Geromichalos G., Papazisis K., Papi R., Pantazaki A., Kyriakidis D., Cordopatis P. and Zoupa E. (2008). Diorganotin(IV) complexes of dipeptides containing the a-aminoisobutyryl residue (Aib): Preparation, structural characterization, antibacterial and antiproliferative activities of n-Bu\textsubscript{2}Sn(H\textsubscript{1}L\textsubscript{1}) (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). *Journal of Inorganic Biochemistry*, 102: 1397–1405.

Mohammad, M., S. Khaider, M. Sohail, A. Saqib and B. Moazzam. (2004). Synthesis, Spectral Characterization and Biological Applications of Tri- and Diorganotin(IV) Derivatives of 2-[N-(2,6-Dichloro-3-methylphenyl)amino]benzoic acid. *Turkish Journal of Chemistry*, 28: 17–26.

Najeeb D., Shalan N., Ibraheem H., Farina Y. and Yousif E., (2009). Synthesis and fungicidal activity of some diorganotin(IV) with benzimidocysteine, *Journal of Al-Nahrain University (Science).*12(1): 24-28.

Saad, E., Y. Farina, I. Baba and H. Othman. (2003). Synthesis and Characterization of Some Diorganotin bis(N-methyl O-nitrobenzohydroxamate), *Sains Malaysiana*, 32: 79-86.

Shahid, S., S. Ali, M. Hussain, M. Mazhar, Mahmood S. and S., Rehman. (2002). Synthesis, Characterization and Thermal Analysis of Organotin(IV) Derivatives of 4-(N-Maleoyl)Butanoate. *Turkish Journal of Chemistry*, 26: 589 – 597.
Shang, X., J. Cui, J. Wub, A. Pombeiro and Q. Li. (2008). Polynuclear diorganotin(IV) complexes with arylhydroxamates: Syntheses, structures and in vitro cytotoxic activities, *Journal of Inorganic Biochemistry*, 102: 901–909.

Tammy L. and M. Georges. (2005). New applications of LC–MS and LC–MS2 toward understanding the environmental fate of organometallics, *Trends in Analytical Chemistry*, 24: 7-12.

Wang, W., N. Ryder, B. Weidmann, D. Patel, J. Trias, R. Whitea and Z. Yuana. (2003). Substituted Hydroxamic Acids as Novel Bacterial DeformylaseInhibitor-Based Antibacterial Agents, *Bioorganic & Medicinal Chemistry Letters*, 13: 4223–4228.

Zhou, Y., T., S. Ren, J. Yu and Z. Xia, (2005). Synthesis, crystal structure and in vitro antitumor activity of di-n-butyltin 40-(7-oxabicyclo [2,2,1]-5-heptane-2,3-dicarboximide)benzoates, *Journal of Organometallic Chemistry*, 69: 2186–2190.

![Scheme 1](image1.png)

Scheme 1.

![Scheme 2](image2.png)

Scheme 2.
Table 1. Physical data for preparation ligand and the complexes prepared.

Compound	Colour	Yield %	M.P(ºC)	Found	(Calcd)(%)
HL	Yellow	85	137-138	69.46	5.13
					(70.02)
					(5.88)
					4.90
					(5.44)
Ph₂SnL₂	Yellow	67	142-143	62.17	3.90
					(64.22)
					(4.88)
					3.09
					(3.57)
					14.01
					(15.11)
Bu₂SnL₂	Yellow pale	71	189-190	60.89	5.78
					(61.22)
					(6.22)
					3.14
					(3.76)
					15.22
					(15.92)
Me₂SnL₂	Brown	69	122-123	57.49	4.98
					(58.12)
					(5.18)
					3.85
					(4.24)
					16.89
					(17.95)

Table 2. Infrared Spectral Data for the ligand and its complexes

Compound	v (O-H) cm⁻¹	v (C=O) cm⁻¹	v (C-N) cm⁻¹	v (N-O) cm⁻¹	v (Sn-C) cm⁻¹	v (Sn-O) cm⁻¹
HL	3251	1617	1429	953	-	-
Ph₂SnL₂	-	1724	1442	922	569	443
Bu₂SnL₂	-	1691	1428	927	573	454
Me₂SnL₂	-	1693	1430	934	545	455
Table 3. 1H NMR spectral data (δ, ppm) of the ligand and complexes

Compound	-OH(s)	Aromatic	-O-CH$_3$(s)	-CH$_3$(s)
HL	10.64	8.48-7.27	3.52	3.74
Ph$_2$SnL$_2$	-	8.12-7.16	3.52	3.71
Bu$_2$SnL$_2$	-	8.44-7.21	3.79	3.81
Me$_2$SnL$_2$	-	8.14-7.39	3.79	3.79

Table 4. 13C NMR spectral data (δ, ppm) of the ligand and complexes

Compound	C-N	Aromatic	O-C, Ph-C	119Sn
HL	158.61	113.67-139.73	55.24	-_
Ph$_2$SnL$_2$	159.25	113.80-132.19	55.27	-404.75
Bu$_2$SnL$_2$	159.44	114.13-133.49	55.26	-382.85
Me$_2$SnL$_2$	159.18	113.77-129.95	55.23	-443.56
Table 5. Crystal data and structure refinement N-tolyl m-methoxybenzohydroxamic acid

Property	Value
Empirical formula	$C_{15}H_{15}NO_3$
Formula weight	257.28
Temperature	298(2) K
Wavelength	0.71073 Å
Unit cell dimensions	
a = 11.326(2) Å	α = 90°
b = 7.9503(17) Å	β = 106.369(4)°
c = 15.560(3) Å	γ = 90°
Volume	1344.3(5) Å
Z, Calculated density	4, 1.271 Mg/m³
Absorption coefficient	0.089 mm⁻¹
F(000)	544
Crystal size	0.47 x 0.36 x 0.27 mm
Theta range for data collection	1.87 to 26.00 °
Limiting indices	-7 ≤ h ≤ 13, -9 ≤ k ≤ 9, -19 ≤ l ≤ 15
Reflections collected/unique	7258/2636[R (int) = 0.0232]
Completeness to theta	26.00
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2636 / 0 / 172
Goodness-of-fit on F^2	1.158
Final R indices [I>2sigma (I)]	R1 = 0.0588, wR2 = 0.1212
R indices (all data)	R1 = 0.0767, wR2 = 0.1286
Largest diff. peak and hole	0.176 and -0.164 e.A⁻³
Table 6. Bond lengths [Å] and angles [deg] for N-tolyl m-methoxybenzohydroxamic acid

Bond	Length/deg	
O(1)-C(2)	1.416(3) C(4)-C(3)-C(2)	120.2
O(1)-C(7)	1.236(2) C(4)-C(3)-H(3B)	120.2
C(2)-C(8)	1.4007(19) C(2)-C(3)-H(3B)	121.4(2)
O(3)-N(1)	0.8200 C(5)-C(4)-C(3)	119.3
O(3)-H(3A)	1.331(2) C(5)-C(4)-H(4A)	119.3
N(1)-C(8)	1.425(2) C(3)-C(4)-H(4A)	119.31(19)
N(1)-C(9)	1.379(3) C(4)-C(5)-C(6)	120.3
C(1)-C(6)	1.383(3) C(4)-C(5)-H(5A)	120.3
C(1)-C(2)	0.9300 C(6)-C(5)-H(5A)	119.59(18)
C(1)-H(1A)	1.385(3) C(1)-C(6)-C(5)	117.03(17)
C(2)-C(3)	1.378(3) C(1)-C(6)-C(8)	123.03(17)
C(3)-C(4)	0.9300 C(5)-C(6)-C(8)	109.5
C(3)-H(3B)	1.373(3) O(1)-C(7)-H(7A)	109.5
C(4)-C(5)	0.9300 O(1)-C(7)-H(7B)	109.5
C(4)-H(4A)	1.386(3) H(7A)-C(7)-H(7B)	109.5
C(5)-C(6)	0.9300 O(1)-C(7)-H(7C)	109.5
C(5)-H(5A)	1.493(3) H(7A)-C(7)-H(7C)	109.5
C(6)-C(8)	0.9600 H(7B)-C(7)-H(7C)	120.34(17)
C(7)-H(7A)	0.9600 O(2)-C(8)-N(1)	120.66(17)
C(7)-H(7B)	0.9600 O(2)-C(8)-C(6)	118.92(17)
C(7)-H(7C)	1.377(3) N(1)-C(8)-C(6)	120.52(18)
C(9)-C(14)	1.378(3) C(14)-C(9)-C(10)	118.90(17)
C(9)-C(10)	1.380(3) C(14)-C(9)-N(1)	120.55(17)
C(10)-C(11)	0.9300 C(10)-C(9)-N(1)	119.1(2)
C(10)-H(10A)	1.387(3) C(9)-C(10)-C(11)	120.4
C(11)-C(12)	0.9300 C(9)-C(10)-H(10A)	120.4
C(11)-H(11A)	1.381(3) C(11)-C(10)-H(10A)	121.6(2)
C(12)-C(13)	1.505(3) C(10)-C(11)-C(12)	119.2
C(12)-C(15)	1.379(3) C(10)-C(11)-H(11A)	119.2
C(13)-C(14)	0.9300 C(12)-C(11)-H(11A)	117.72(19)
C(13)-H(13A)	0.9300 C(13)-C(12)-C(11)	121.5(2)
C(14)-H(14A)	0.9600 C(13)-C(12)-C(15)	120.8(2)
C(15)-H(15A)	0.9600 C(11)-C(12)-C(15)	121.6(2)
C(15)-H(15B)	0.9600 C(14)-C(13)-C(12)	119.2
C(15)-H(15C)	117.77(19) C(14)-C(13)-H(13A)	119.2
C(2)-O(1)-C(7)	109.5 C(12)-C(13)-H(13A)	119.37(19)
N(1)-O(3)-H(3A)	117.34(15) C(9)-C(14)-C(13)	120.3
C(8)-N(1)-O(3)	130.83(16) C(9)-C(14)-H(14A)	120.3
C(8)-N(1)-C(9)	111.54(14) C(13)-C(14)-H(14A)	109.5
O(3)-N(1)-C(9)	121.02(19) C(12)-C(15)-H(15A)	109.5
C(6)-C(1)-C(2)	119.5 C(12)-C(15)-H(15B)	109.5
C(6)-C(1)-H(1A)	119.5 H(15A)-C(15)-H(15B)	109.5
C(2)-C(1)-H(1A)	115.84(18) C(12)-C(15)-H(15C)	109.5
O(1)-C(2)-C(1)	125.03(19) H(15A)-C(15)-H(15C)	109.5
O(1)-C(2)-C(3)	119.12(19) H(15B)-C(15)-H(15C)	109.5
C(1)-C(2)-C(3)	119.6(2)	

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds geometry for N-tolyl m-methoxybenzohydroxamic acid [Å and deg.].

No	D—H···A D—H H···A D···A D—H···A	Symmetry code(i)
1	O1—H1···O2i 0.86 1.99 2.699 139	-x+1,-y+1,z+1.
Figure 1. Infrared Spectra of N-tolyl m-methoxybenzohydroxamic acid

Figure 2. Infrared Spectra of dibutyltin (IV) bis(N-tolyl m-methoxybenzohydroxamate)
Figure 3. Infrared Spectra of dimethyltin (IV) bis (N-tolyl-m- methoxybenzohydroxamate)

Figure 4. Infrared Spectra of diphenyltin (IV) bis (N- tolyl m- methoxybenzohydroxamate)
Figure 5. 13C NMR spectrum of N- tolyl m- methoxybenzohydroxamic acid

Figure 6. 1H NMR spectrum of N- tolyl m- methoxybenzohydroxamic acid
Figure 7. 1H NMR spectrum of diphenyltin (IV) bis(N- tolyl m- methoxybenzohydroxamate

Figure 8. 13C NMR spectrum of diphenyltin (IV) bis(N- tolyl m- methoxybenzohydroxamate
Figure 9. 13C NMR spectrum of dibutyltin (IV) bis(N-tolyl m-methoxybenzohydroxamate

Figure 10. 1H NMR spectrum of dibutyltin (IV) bis(N-tolyl m-methoxybenzohydroxamate
Figure 11. \(^1\)H NMR spectrum of dimethyltin (IV) bis(N-tolyl m-methoxybenzohydroxamate

Figure 12. \(^{13}\)C NMR spectrum of dimethyltin (IV) bis(N-tolyl m-methoxybenzohydroxamate