Language Models as Knowledge Bases?

Fabio Petroni, Tim Rocktaschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, Sebastian Riedel
Agenda

• Knowledge Bases (KB)
• Language Model and KB
• LAMA
• Models used
• Results
• Conclusion
Knowledge Bases
Knowledge Bases (KB)

- A KB is a technology to store information
- Effective solution for accessing annotated relational data
- It is possible to query them (Dante, born-in, X)

Disadvantages:
- It is difficult to populate KB
- Complex pipeline to populate KB automatically [1]
Language Model and KB
Language Model (LM)

- A model that represents the language domain
- Predict the next word in a sentence (e.g. "Dante was born in")
- Predict the masked word in a sentence (e.g. "Dante was born in [MASK] in 1265")
- Answer questions (e.g. "Where was Dante born?")
LM as KB

Similarities
- Contain knowledge
- Can be queried
- Can be updated / improved

Advantages
- No schema engineering
- No need for human annotations
- Open set of queries

Image from "Language Model as Knowledge Bases?" Petroni et al.
Authors' questions

- How much relational knowledge do LM store?

- How does this differ for different types of knowledge? (facts about entities, common sense, general question answering)

- How does the performance of LM without fine-tuning compare to symbolic knowledge bases automatically extracted from the text?
LAMA
(LAnguage Model Analysis)
LAMA probe

Test the factual and commonsense knowledge in LM

• Uses a set of knowledge sources (corpus of facts)

• Fact = (subject, relation, object) | (question, answer)

• Facts become cloze sentences used to query LM

• Evaluation: how highly LM ranks Ground Truth token

• P@k: 1 if the gold entity is in the top k results

• HYP: LM have more factual knowledge if they score high the Ground Truth
Knowledge Sources

Google-RE
- ~60K facts manually extracted from Wikipedia
- 3 relations used (place of birth, date of birth and place of death)
- template manually defined

T-Rex
- subset of Wikipedia triples derived from the T-Rex dataset [2]
 - 41 relations
 - 1000 facts per relations
 - template manually defined

ConceptNet [3]
- multilingual KB
- commonsense relationship
- 16 English relationship
- object masked in the sentence

SQuAD
- question answer dataset
- 305 context insensitive questions with single token answers
- questions rewritten to cloze sentences
Baselines

Freq
- It ranks words on how frequently they appear as an object of a specific relation
- Predict the same object for each relation

Relation Extraction (RE) [5]
- LSTM model based on attention which extract triples
- Trained on Wikipedia subcorpus
- Create a Knowledge Graph
- $RE_n = \text{naive entity linking}$
- $RE_o = \text{oracle entity linking}$

DrQA [6]
- Open-domain question answering system
- First step: TF-IDF information retrieval
- Second step: neural model extracts answers
Models used
Unidirectional LM

fairseq-conv (Fs) [7]
- Multiple layers of gated convolution
- Pretrained on the Wikitex-103 corpus

Transformers-XL (large Txl) [8]
- Large-scale LM based on Transformer with no fixed input length
- Cache previous outputs
- Use relative position encoding

$$p(\mathbf{w}) = \prod_t p(w_t | w_{t-1}, \ldots, w_1).$$
Bidirectional LM

ELMO (original Eb – 5.5B E5B) [9]
- Multi-layers BiLSTM

BERT (base Bb – large Bl) [10]
- Encoder module of a Transformers
- Pretraining: Masked LM – NSP

\[p(w_i) = p(w_i | w_1, \ldots, w_{i-1}, w_{i+1}, \ldots, w_N) \]
Results
Corpus	Relation	Statistics	Baselines	KB	LM
		#Facts	#Rel	#Facts	
Google-RE	birth-place	2937	1	4.6	3.5
	birth-date	1825	1	1.9	0.0
	death-place	765	1	6.8	0.1
	Total	5527	3	4.4	1.2
T-REx	1-1	937	2	1.78	0.6
	N-1	20006	23	23.85	5.4
	N-M	13096	16	21.95	7.7
	Total	34039	41	22.03	6.1
ConceptNet	Total	11458	16	4.8	-
SQuAD	Total	305	-	37.5	-

Table 2: Mean precision at one (P@1) for a frequency baseline (Freq), DrQA, a relation extraction with naive entity linking (RE$_n$), oracle entity linking (RE$_o$), fairseq-fconv (Fs), Transformer-XL large (Txl), ELMo original (Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bt) across the set of evaluation corpora.

Table from "Language Model as Knowledge Bases?" Petroni et al.
Additional takeaways

T-REX

- Object Mentions correlated with P@1
- Log probability correlated with P@1
- Cosine similarity SO correlated with P@1

Chart from "Language Model as Knowledge Bases?" Petroni et al.
Additional takeaways

Dataset	Query	Answer	Generation
T-Rex	Dani Alves plays with ____ .	Barcelona	Santos, Porto, Sporting, Brazil, Portugal
ConceptNet	Time is ____ .	finite	short, passing, precious, irrelevant, gone
Conclusion
Conclusion

- Systematic analysis of the factual and commonsense knowledge in publicly available pre-trained LM as is (LAMA probe)
- BERT large recall object of relationship consistently better than similar models
- BERT large is also competitive with other methods, which use oracles
- KB-RE models had not a significant improvement with an additional dataset
- Bigger corpus has an impact on the performance of BERT
- It will be easier to improve the performance of BERT rather than RE models
Questions?
References

[1] Mihai Surdeanu and Heng Ji. 2014. Overview of the English Slot Filling Track at the TAC2014 Knowledge Base Population Evaluation.

[2] Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon Hare, Frederique Laforest, and Elena Simperl. 2018. T-rex: A large scale alignment of natural language with knowledge base triples.

[3] Robert Speer and Catherine Havasi. 2012. Representing general relational knowledge in conceptnet 5.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ Questions for Machine Comprehension of Text.

[5] Daniil Sorokin and Iryna Gurevych. 2017. Context-aware representations for knowledge base relation extraction.

[6] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading wikipedia to answer open-domain questions.

[7] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language modeling with gated convolutional networks.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019. Transformer-xl: Attentive language models beyond a fixed-length context.

[9] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018a. Deep contextualized word representations.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018a. BERT: pre-training of deep bidirectional transformers for language understanding.