SPECTROSCOPIC CONFIRMATION OF TWO MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTERS AT z ~ 1.2 IN THE SpARCS-NORTH CLUSTER SURVEY

ADAM MUZZIN1, GILLIAN WILSON2, H. K. C. YEE3, HENK HOEKSTRA4,5,13, DAVID GILBANK6, JASON SURACE7, MARK LACY7, KRIS BLINDERT8, SUBHABRATA MAJUMDAR9, RICARDO DEMARCO9, JONATHAN P. GARDNER10, MIKE GLADDESS11, AND CAROL LONSDALE12

1 Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA; adam.muzzin@yale.edu
2 Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
3 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4, Canada
4 Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
5 Leiden Observatory, Leiden University, P.O. Box 9513, 2300RA Leiden, The Netherlands
6 Astrophysics and Gravitation Group, Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
7 Spitzer Science Center, California Institute of Technology, 220-6, Pasadena, CA 91125, USA
8 Max Planck Institute for Astronomy Koenigstuhl 17, 69117, Heidelberg, Germany
9 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research 1, Homi Bhabha Road, Colaba, Mumbai 400 005, India
10 Goddard Space Flight Center, Code 665, Laboratory for Observational Cosmology, Greenbelt, MD 20771, USA
11 University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
12 North American ALMA Science Center, NRAO Headquarters, 520 Edgemont Road, Charlottesville, VA 22903, USA

Received 2008 September 30; accepted 2009 April 13; published 2009 June 5

ABSTRACT

The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z′-band imaging survey covering the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) Legacy fields designed to create the first large homogeneously selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with Canada–France–Hawaii Telescope (CFHT)/MegaCam and covers 28.3 deg2. The southern component of the survey was observed with Cerro Tololo Inter-American Observatory (CTIO)/MOSAICII, covers 13.6 deg2, and is summarized in a companion paper by Wilson et al. We also present spectroscopic confirmation of two rich cluster candidates at z ~ 1.2. Based on Nod-and-Shuffle spectroscopy from GMOS-N on Gemini, there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843, respectively, which imply masses (M200) of (1.0 ± 0.9) × 1014 M⊙ and (2.4 ± 1.8) × 1014 M⊙. Confirmation of these candidates as bona fide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1. Key words: infrared: galaxies

Online-only material: color figure

1. INTRODUCTION

In the nearby universe, there are numerous lines of evidence suggesting that environmental processes could be the dominant force driving the evolution of the galaxy population. Properties such as star formation rate (SFR; e.g., Lewis et al. 2002; Gómez et al. 2003; Kauffmann et al. 2004), morphology (e.g., Dressler 1980; Goto et al. 2003; Park et al. 2007), stellar mass (e.g., Kauffmann et al. 2004), color (e.g., Hogg et al. 2003; Balogh et al. 2004; Blanton et al. 2005), and luminosity (e.g., Croton et al. 2005; Park et al. 2007) are all strongly correlated with local galaxy density. Although there is still debate about which, if any, of these relations are “fundamental” (e.g., Hogg et al. 2004; Park et al. 2007), it is clear that the mean properties of galaxies we measure depend strongly on the type of environment they occupy.

An obvious first step toward a better understanding of environmental processes is to study how they evolve with redshift. At higher redshift, the overall population of galaxies is younger and have been living within their local environment for less time. The environmental processes that are most effective and have the shortest timescales should be most apparent when comparing galaxies at different densities in the high-redshift universe. The data at higher redshift are still somewhat sparse compared to the nearby universe but it is beginning to emerge that properties such as the SFR (e.g., Elbaz et al. 2007; Cooper et al. 2008; Poggianti et al. 2008), color (e.g., Cooper et al. 2007), and morphology (e.g., Dressler et al. 1997; Postman et al. 2005; Smith et al. 2005, Capak et al. 2007) are still correlated with local density, albeit differently from the nearby universe.

Of particular interest for understanding environmental processes are the cores of rich galaxy clusters. These are the most extreme density environments at all redshifts, and if environment is truly an important force in galaxy evolution, a comparison of the properties of galaxies that live in this environment to those that live in the field should provide the largest contrasts. Despite their potential value for such studies, and the abundance of resources directed at finding distant clusters, there are still relatively few confirmed rich clusters at z > 1.

The major challenge for cluster surveys targeting the z > 1 range is the need to be simultaneously deep enough to detect either the galaxies or hot X-ray gas in clusters and yet wide enough to be able to cover a large area because of the rarity of rich clusters at z > 1. The requirement of both depth and area has pushed X-ray detection of clusters with current telescopes to the limit.
The largest area targeted X-ray cluster surveys are the XMM-LSS (Valtchanov et al. 2004; Andreon et al. 2005; Pierre et al. 2006) and the XMM-COSMOS (Finoguenov et al. 2007), and while these have been successful at discovering \(z > 1 \) clusters (e.g., Bremer et al. 2006), they cover areas of only 9 and 2 deg\(^2\), respectively, and are therefore limited to fairly low mass systems on average. Indeed, X-ray detection of clusters at \(z > 1 \) is so challenging that currently the most promising surveys are those searching for clusters serendipitously in the entire XMM-Newton archive (e.g., Romer et al. 2001; Mullis et al. 2005; Stanford et al. 2006; Lamer et al. 2008).

Complementary to X-ray detection is optical detection of clusters using overdensities of galaxies selected using the red-sequence (e.g., Gladders & Yee 2000, 2005; Gilbank et al. 2004; Muzzin et al. 2005) or photometric redshifts (e.g., Stanford et al. 2005; van Breukelen et al. 2007; Eisenhardt et al. 2008). Recently, it has become clear that the key to discovering clusters above \(z > 1 \) with these techniques is the incorporation of infrared (IR) data which probes the peak of the stellar emission for galaxies at \(z > 1 \).

Although IR surveys have thus far been confined to modest areas (ranging from 0.5 to \(-8.5\) deg\(^2\)), they have been extremely successful at detecting \(z > 1 \) clusters (e.g., Stanford et al. 2005; Brodwin et al. 2006; van Breukelen et al. 2007; Zatroukakal et al. 2007; Krueck et al. 2008; Eisenhardt et al. 2008; Muzzin et al. 2008). The IR cluster community is now regularly discovering clusters at \(z > 1 \) and shortly IR-detected clusters should outnumber their X-ray counterparts.

Currently, the largest area IR survey still deep enough to detect clusters at \(z > 1 \) is the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE; Lonsdale et al. 2003; Surace et al. 2005). SWIRE covers \(\sim 50 \) deg\(^2\) in the Spitzer bandpasses and is slightly deeper, and nearly a factor of 6 larger than the next largest IR cluster survey, the IRAC Shallow Survey Cluster Search (ISCS; Eisenhardt et al. 2008). In Muzzin et al. (2008), we demonstrated the potential of using the red-sequence method with Spitzer data to detect distant clusters using data from the 3.8 deg\(^2\) Spitzer First Look Survey (FLS; Lacy et al. 2005). In 2006, we began observations for the Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS), a deep \(z’ \)-band imaging survey of the SWIRE fields. SpARCS aims to discover the first large, yet homogeneously selected, sample of rich clusters at \(z > 1 \) using the red-sequence method. SpARCS is similar to the RCS surveys (Gladders & Yee 2005; Yee et al. 2007a) which target clusters to \(z \sim 1 \) using an \(R - z’ \) color except that we use a \(z’ - 3.6 \) \(\mu \)m color, which spans the 4000 Å break at \(z > 1 \). With a total effective area of 41.9 deg\(^2\) SpARCS is currently the only \(z > 1 \) cluster survey that can discover a significant number of rare rich clusters. These clusters will be extremely valuable for quantifying the evolution of galaxy properties in the densest environments at high redshift.

This paper is organized as follows. In Section 2, we provide a brief overview of the northern component of the SpARCS survey (the southern component is summarized in Wilson et al. 2009). In Section 3, we discuss the selection of cluster candidates that were chosen for followup spectroscopy, and in Section 4 we present spectroscopic confirmation of two \(z > 1 \) clusters from early SpARCS data. In Section 5, we present the dynamical analysis of the clusters followed by a discussion of the cluster properties in Section 6. We conclude with a summary in Section 7.

Throughout this paper, we assume an \(\Omega_m = 0.3 \), \(\Omega_{\Lambda} = 0.7 \), \(H_0 = 70 \) km s\(^{-1}\) Mpc\(^{-1}\) cosmology. All magnitudes are on the Vega system unless indicated otherwise.

![Figure 1. The 3.6 \(\mu \)m mosaics for the four SWIRE fields observable from the northern hemisphere. The location of the SpARCS \(z’ \)-band CFHT/MegaCam pointings is overplotted as white boxes. Each MegaCam pointing covers \(\sim 1 \) deg\(^2\). The observations of the XMM-LSS field were obtained as part of the CFHTLS-wide survey. Excluding areas masked by bright stars and missed by MegaCam chip gaps there are 28.3 deg\(^2\) with both \(z’ \) and 3.6 \(\mu \)m observations in the northern fields that can be used for cluster finding.](image)

2. THE SpARCS-NORTH SURVEY

The SWIRE survey is located in six fields and contains \(\sim 50 \) deg\(^2\) of imaging in the four IRAC bandpasses (3.6 \(\mu \)m, 4.5 \(\mu \)m, 5.8 \(\mu \)m, and 8.0 \(\mu \)m) and the three MIPS bandpasses (24 \(\mu \)m, 70 \(\mu \)m, and 160 \(\mu \)m). Three of the fields are located in the northern hemisphere (ELAIS-N1, ELAIS-N2, and the Lockman Hole), two of the fields are located in the southern hemisphere (ELAIS-S1 and the Chandra-S), and one of the fields is equatorial, the XMM-LSS field. A thorough discussion of the data reduction, photometry, cluster finding, and the SpARCS catalogue for all fields will be presented in a future paper by A. Muzzin et al. (2009, in preparation). Here, we present a brief summary of the \(z’ \)-band observations of the ELAIS-N1, ELAIS-N2, Lockman Hole, and XMM-LSS\(^{14} \) fields obtained with Canada–France–Hawaii Telescope (CFHT)/MegaCam, hereafter the SpARCS-North Survey. Observations of the ELAIS-S1 and Chandra-S fields were obtained with Cerro Tololo Inter-American Observatory (CTIO)/MOSAICII and are outlined in the companion paper by Wilson et al. (2009).

The IRAC imaging of the ELAIS-N1, ELAIS-N2, Lockman, and XMM-LSS fields covers areas of 9.8, 4.5, 11.6, and 9.4 deg\(^2\), respectively. In Figure 1, we plot the IRAC 3.6 \(\mu \)m mosaics for these fields. The superposed white squares represent the locations of the CFHT/MegaCam pointings. The pointings were designed to maximize the overlap with the IRAC data, but to minimize the overall number of pointings by omitting regions that have little overlap with the IRAC data. There are a total of 12, 5, 15, and 13 MegaCam pointings in the ELAIS-N1, ELAIS-N2, Lockman Hole, and XMM-LSS fields, respectively.

\(^{14}\) The XMM-LSS data were obtained as part of the CFHT Legacy Survey.
We obtained observations in the z' band with 6000 s of integration time for each pointing in the ELAIS-N1, ELAIS-N2, and Lockman Hole fields in queue mode using CFHT/MegaCam which is composed of 36 4096 × 2048 pixel CCDs, and has a field of view (FOV) of ~1 deg2. Omitting the large chip gap areas and regions contaminated by bright stars, the total overlap region with both z' and IRAC data is 28.3 deg2.

Photometry was performed on both the z' and IRAC mosaics using the SExtractor photometry package (Bertin & Arnouts 1996). Colors were determined using three IRAC pixel ($3′$/$66′$) diameter apertures. The IRAC data were corrected for flux lost outside this aperture due to the wings of the PSF using aperture corrections measured by Lacy et al. (2005). No aperture corrections were applied to the z' photometry because the color aperture is much larger than the median seeing of 0′′.67. Total magnitudes for the IRAC photometry were computed using a large aperture that is similar in size to the geometric mean radius of the isophotal aperture determined by SExtractor (see Lacy et al. 2005 and Muzzin et al. 2008). The 5σ depth of the z' data varies depending on the seeing and the sky background; however, the mean 5σ depth for extended sources is $z' \sim 23.7$ Vega (24.2 AB).

3. CLUSTER SELECTION

Clusters are found in the data using the cluster red-sequence algorithm developed by Gladders & Yee (2000, 2005). In brief, this method maps the density of galaxies in a survey within narrow color slices and flags the largest overdensities as candidate clusters. Muzzin et al. (2008) used a slightly modified version of the algorithm to detect clusters at $0 < z < 1.3$ in the FLS using an $R - 3.6 \mu m$ color. We use the Muzzin et al. (2008) code for the SpARCS data. The change from a $R - 3.6 \mu m$ color to $z' - 3.6 \mu m$ is optimum for targeting clusters at $z > 1$, where the $z' - 3.6 \mu m$ color spans the 4000 Å break. Other than the change of using a different optical band, the SpARCS algorithm is identical to that presented in Muzzin et al. (2008), and we refer to that paper for further details of the cluster finding technique.

After the first semester of z' observations was complete, there were ~ 14 deg2 of data with both z' and 3.6 μm data. From this area, we selected two rich cluster candidates, both from the ELAIS-N2 field with red-sequence photometric redshifts15 of $z > 1.2$ for spectroscopic followup. These two cluster candidates, SpARCS J163435+402151 (R.A.: 16:34:35.0, decl: +40:21:51.0) and SpARCS J163852+403843 (R.A.: 16:38:52.0, decl: +40:38:43.0), have richesses, parameterized by $R = 631$ which corresponds to a resolution of ~ 11 A, or ~ 250 km s$^{-1}$ at the estimated redshift of the clusters. For all observations, we used 3′ long microslits, corresponding to roughly four seeing-disks, allowing a two seeing-disk spacing between the nod positions. We observed three masks for SpARCS J163435+402151 and four masks for SpARCS J163852+403843. One mask for each of the clusters was observed in “micro-shuffle” mode, but the majority were observed in “band-shuffle” mode. All masks were observed using the RG615 filter which blocks light blueward of 6150 Å so that multiple tiers of slits could be used.

Unlike micro-shuffle where the shuffled charge is stored directly adjacent to the slit location, band-shuffle shuffles the charge to the top and bottom third of the chips for storage. While technically it is the least-efficient N&S mode in terms of usable area for observations (only the central 1.7 of the total 5′ FOV can be used), it is extremely efficient for observations of high-redshift clusters because it allows the microslits to be packed directly beside each other in the cluster core with no requirement for additional space for storing the shuffled charge. In band-shuffle mode, we were typically able to locate between 20–26 slits, including three alignment stars, per mask in the central 1.7′′ around the cluster. At $z \sim 1.2$, the 1.7′′ FOV corresponds to a diameter of 850 kpc, roughly the projected size of a massive cluster.

To reduce the number of slits placed on obvious foreground galaxies, we prioritized slits on galaxies with colors near the cluster red-sequence. To avoid significant selection bias, we used a very broad cut around the red-sequence that should include both star-forming and non-star-forming systems. Slits were placed on galaxies with priorities in the following order: Priority 1, galaxies with colors ± 0.6 mag from the red-sequence and $3.6 \mu m < 16.9$. Priority 2, galaxies with colors ± 0.6 mag from the red-sequence, $3.6 \mu m > 16.9$ and $z' > 23.5$. Priority 3, galaxies with colors > 0.6 bluer than the red-sequence, but < 1.0 mag bluer and $3.6 \mu m > 16.9$ and $z' < 23.5$. Priority 4, same as Priority 3 but for galaxies with colors bluer than the red-sequence by 1.0–1.4 mag. Priority 5: all galaxies with $23.5 < z' < 24.5$. Roughly speaking, Priorities 1 through 4 can roughly be described as bright red-sequence, faint red-sequence, blue cloud, and extreme blue cloud galaxies, respectively.

For each mask, we obtained a total of 3 hr of integration time by combining six exposures with 30 min of integration time. The six frames were obtained using 15 nod cycles of 60 s integration time per cycle. Each of the six exposures was offset by a few arcseconds using the on-chip dithering option.

4.1. Data Reduction

Data were reduced using the GMOS IRAF package. We subtracted a bias and N&S dark from each frame. The N&S darks are taken using the same exposure times and using the same charge shuffling routine as the science observations, but with the shutter closed. Regions with poor charge transfer efficiency cause electrons to become trapped during the repeated charge shuffling used in the observations. Such charge traps can be identified and corrected using dark frames taken with the same N&S settings. Images were registered using bright sky lines and sky subtracted using the complementary storage area using the “gnssksysub” task. Final mosaics are made by coadding the sky subtracted images.

15 Based on a $z_f = 2.8$ single-burst Bruzual & Charlot (2003) model.
One-dimensional spectra were extracted using the iGDDS software (Abraham et al. 2004). Wavelength calibration for each extracted spectrum was performed using bright sky lines from the unsubtracted image, also with the iGDDS software. Wavelength solutions typically have an rms < 0.5 Å. We determined a relative flux calibration curve using a long slit observation of the standard star EG131.

Redshifts were determined interactively for each spectrum by comparing with the templates available in iGDDS. Most of the redshifts were identified using the early-, intermediate-, and late-type composite spectra from the Gemini Deep Deep Survey (Abraham et al. 2004). The final redshifts were determined using the average redshift from all absorption and emission lines that were detected. The vast majority of redshifts were determined by identifying the [O II] 3727 Å-doublet emission line (which is not resolved at our resolution), or the Calcium H+K absorption lines. Many of the spectra also show the Balmer series lines. We list the spectroscopic members of SpARCS J163435+402151 and SpARCS J163852+403843 in Tables 1 and 2, and the spectroscopically confirmed foreground/background galaxies in Tables 3 and 4. We also plot examples of some cluster galaxy spectra in Figures 2 and 3, R, z′, and 3.6 μm color composites of the two clusters are shown in Figures 4 and 5. The white squares denote the spectroscopically confirmed cluster members and the green circles denote the spectroscopically confirmed foreground/background galaxies.

5. CLUSTER VELOCITY DISPERSIONS

For both clusters, there are a sufficient number of redshifts to determine a velocity dispersion (σ_r) and therefore a dynamical mass. Our σ_r’s are determined using the method detailed in Blindert (2006). Briefly, we make a rejection of near-field non-cluster members using a modified version of the Fadda

ID	R.A.	Decl.	z	3.6 μm	z′ – 3.6 μm	zspec
1						
2						
3						
4						
5						

Table 1

Spectroscopic Cluster Members in SpARCS J163435+402151

ID	R.A.	Decl.	z	3.6 μm	z′ – 3.6 μm	zspec
1						
2						
3						
4						
5						

Table 2

Spectroscopic Cluster Members in SpARCS J163852+403843

ID	R.A.	Decl.	z	3.6 μm	z′ – 3.6 μm	zspec
1						
2						
3						
4						
5						

Table 3

Spectroscopic Foreground/Background Galaxies in Field of SpARCS J163435+402151

ID	R.A.	Decl.	z	3.6 μm	z′ – 3.6 μm	zspec
1						
2						
3						
4						
5						

Table 4

Spectroscopic Foreground/Background Galaxies in Field of SpARCS J163852+403843
et al. (1996) shifting-gap procedure. This method uses both the position and velocity of galaxies to reject interlopers. In Figure 6, we plot the relative velocities of the cluster galaxies as a function of projected radius. Two galaxies in SpARCS J163435+402151 are rejected as near-field interlopers and three are rejected in SpARCS J163852+403843. The rejected galaxies are plotted as crosses in Figure 6 and are not used in computing the mean redshift of the cluster or \(\sigma_v \). Once outliers are rejected, the redshift of the clusters is determined using the remaining galaxies. The spectroscopic redshift of the clusters is 1.1798 and 1.1963 for SpARCS J163435+402151 and SpARCS J163852+403843, respectively.
The σ_v values are determined using the "robust" estimator suggested by Beers et al. (1990) and Girardi et al. (1993). The robust estimator is simply the biweight estimator for systems with > 15 members, and the gapper estimator for systems with < 15 members. As discussed in those papers and Blindert (2006), these estimators are more robust than standard deviations as they are less sensitive to outliers, which may still persist even after the initial shifting-gap rejection. Using the "robust" estimator, SpARCS J163435+402151 and SpARCS J163852+403843 have $\sigma_v = 490 \pm 140$ km s$^{-1}$ and 650 \pm 160 km s$^{-1}$, respectively, where the errors have been determined using Jackknife resampling of the data.

We estimate the dynamical mass using M_{200}, the mass contained within r_{200}, the radius at which the mean interior
density is 200 times the critical density (ρ_c). We use the equation

$$M_{200} = \frac{4}{3} \pi r_{200}^3 \times 200 \rho_c,$$ \hspace{1cm} (1)

with the dynamical estimate of r_{200} from Carlberg et al. (1997),

$$r_{200} = \frac{\sqrt{3} \sigma}{10 H(z)},$$ \hspace{1cm} (2)

where $H(z)$ is the Hubble constant at the redshift of the cluster. From these relations we derive $r_{200} = 0.62 \pm 0.18$ Mpc, and 0.82 ± 0.20 Mpc for SpARCS J163435+402151 and SpARCS J163852+403843, respectively. From Equation (2), these imply $M_{200} = (1.0 \pm 0.9) \times 10^{14} M_\odot$ and $(2.4 \pm 1.8) \times 10^{14} M_\odot$ for SpARCS J163435+402151 and SpARCS J163852+403843, respectively.

6. DISCUSSION

6.1. Red-sequence Photometric Redshifts

In Figure 7, we plot the $z' - 3.6 \mu m$ versus $3.6 \mu m$ color–magnitude relation for galaxies at $R < R_{200}$ in the fields of both clusters. Spectroscopically confirmed members and confirmed foreground/background galaxies are plotted as red and blue diamonds, respectively. The dotted line in both panels is the best fit line with the slope fixed at zero, to the spectroscopically confirmed members. These lines indicate that the red-sequence galaxies have $z' - 3.6 \mu m$ colors of 4.77 and 4.82 for SpARCS...
Figure 6. Left panel: galaxy velocities relative to the cluster mean velocity as a function of radius for SpARCS J163435+402151. Right panel: same as the left panel but for SpARCS J163852+403843. Galaxies marked with an “x” are more likely to be near-field objects than members of the cluster and are not used in the computation of the velocity dispersion.

Figure 7. Left panel: $z' - 3.6 \mu m$ vs. $3.6 \mu m$ color–magnitude diagram for galaxies at $R < R_{200}$ in the field of the cluster SpARCS J163435+402151. Spectroscopically confirmed cluster members are plotted as red circles with red diamonds and foreground/background galaxies are plotted as blue squares with blue diamonds. The dotted line is the best fit line to the confirmed cluster members with the slope fixed at zero. Right panel: same as left panel but for SpARCS J163852+403843. (A color version of this figure is available in the online journal.)

J163435+402151 and SpARCS J163852+403843, respectively. Using a solar metallicity, Bruzual & Charlot (2003) simple stellar population (SSP) with $z_f = 4.0$, these colors imply photometric redshifts of 1.19 and 1.20, in excellent agreement with the spectroscopic redshifts. At $z \sim 1.2$, the red-sequence photometric redshifts do not depend strongly on the chosen z_f. If we instead use a $z_f = 2.8$ SSP, the red-sequence color would predict redshifts of 1.21 and 1.24, and for a $z_f = 10.0$ SSP it would predict redshifts of 1.13 and 1.15. However, the color differences between all these models at a fixed redshift are small (<0.1 mag), and so it is not possible to distinguish between different formation epochs without more data. Still, the close agreement between the red-sequence photometric redshift derived using a reasonable z_f and the spectroscopic redshift is encouraging for the use of red-sequence photometric redshifts for clusters at $z > 1$.

6.2. Mass versus Richness

Both clusters have lower masses than predicted by their richness by factors of ~ 6 and 2 for SpARCS J163435+402151 and SpARCS J163852+403843, respectively, although due to the large error bars the differences are only significant at ~ 1 and 2σ, respectively. Whether this represents a redshift evolution in the $B_{\text{gc}}-M_{200}$ scaling relation, or is simply a richness-selected Eddington bias, is impossible to determine using only two clusters. Both Gilbank et al. (2007) and Andreon et al. (2008) found that for a small sample of clusters at $z \sim 1$ the cluster richnnesses were still consistent with their velocity dispersions

16 We followed up two of the richest clusters in our early data set. The cluster mass function is steep at high redshift, and low mass systems greatly outnumber high mass systems. Due to scatter in the mass–richness relation, lower mass systems with abnormally high richnnesses may be more common than truly massive systems.
based on relations calibrated at lower redshift, although both parameters have large uncertainties in their measurements. More clusters with well determined σ_v and B_{gc} will be needed to test if the cluster scaling relations at $z > 1$ are similar to those at lower redshift.

7. SUMMARY

We have presented a brief summary of the observations for the northern component of the SpARCS survey. Using Gemini NksS spectroscopy, we confirmed two rich cluster candidates at $z \sim 1.2$ selected from early survey data. We find that the photometric redshifts from the color of the cluster red-sequence agree extremely well with the spectroscopic redshifts. Both clusters have a smaller M_{200} than would be expected from their richness if we use the B_{gc}-M_{200} scaling relation calibrated at $z \sim 0.3$. Whether this represents a true evolution in the cluster scaling relations at $z > 1.2$ or is simply a selection bias will require well determined M_{200} for a larger sample of clusters.

Overall, the confirmation of both SpARCS J163435+402151 and SpARCS J163852+403843 as bona fide massive clusters at $z > 1$ provides strong evidence that the red-sequence technique is an effective and efficient method for detecting clusters at $z > 1$ (see also Wilson et al. 2009 who present a confirmed $z = 1.34$ cluster from the southern component of the SpARCS survey). The complete SpARCS catalogue contains hundreds of cluster candidates at $z > 1$ and promises to be one of the premier data sets for the study of cluster galaxy evolution at $z > 1$.

Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France—Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada–France—Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and SECYT (Argentina).

This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

REFERENCES

Abraham, R. G., et al. 2004, AJ, 127, 2455
Andreon, S., De Propris, R., Puddu, E., Giordano, L., & Quintana, H. 2008, MNRAS, 383, 102
Andreon, S., Valtchanov, I., Jones, L. R., Altieri, B., Bremer, M., Willis, J., Pierre, M., & Quintana, H. 2005, MNRAS, 359, 1250
Balogh, M. L., Baldry, I. K., Nichol, R., Miller, C., Bower, R., & Glazebrook, K. 2004, ApJ, 615, L101
Beers, T. C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Blanton, M. R., Eisenstein, D., Hogg, D. W., Schlegel, D. J., & Brinkmann, J. 2005, ApJ, 629, 143
Blindert, K. 2006, PhD thesis, Univ. Toronto
Bremer, M. N., et al. 2006, MNRAS, 371, 1427
Brodwin, M., et al. 2006, ApJ, 651, 791
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Capak, P., Abraham, R. G., Ellis, R. G., Mobasher, B., Scoville, N., Sheth, K., & Koekemoer, A. 2007, ApJS, 172, 264
Carlberg, R. G., Yee, H. K. C., & Ellingson, E. 1997, ApJ, 478, 462
Cooper, M., et al. 2007, MNRAS, 376, 1445
Cooper, M., et al. 2008, MNRAS, 383, 1058
Croton, D., et al. 2005, MNRAS, 356, 1155
Dressler, A. 1980, ApJ, 236, 351
Dressler, A., et al. 1997, ApJ, 490, 577
Eisenhardt, P. et al. 2008, ApJ, 684, 905
Elbaz, D., et al. 2007, A&A, 468, 33
Fadda, D., Girardi, M., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1996, ApJ, 473, 670
Finoguenov, A., et al. 2007, ApJS, 172, 182
Gilbank, D. G., Bower, R. G., Castander, F. J., & Ziegler, B. L. 2004, MNRAS, 348, 551
Gilbank, D. G., Yee, H. K. C., Ellingson, E. G., Gladders, M. D., Barrientos, L. F., & Blindert, K. 2007, AJ, 134, 282
Girardi, M., Biviano, A., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1993, ApJ, 404, 38
Gladders, M. D., & Yee, H. K. C. 2000, AJ, 120, 2148
Gladders, M. D., & Yee, H. K. C. 2005, ApJS, 157, 1
Gomer, et al. 2003, ApJ, 584, 210
Goto, T., Yamauchi, C., Fujita, Y., Okamura, S., Sekiguchi, M., Smail, I., Bernardi, M., & Gomez, P. L. 2003, MNRAS, 346, 601
Hogg, D. W., et al. 2003, ApJ, 585, L5
Hogg, D. W., et al. 2004, ApJ, 601, L29
Kauffmann, G., White, S. D. M., Heckman, T. M., Menard, B., Brinchmann, J., Charlot, S., Tremonti, C., & Brinkmann, J. 2004, MNRAS, 353, 713
Krick, J. E., Surace, J. A., Thompson, D., Ashby, M. L. N., Hora, J. L., Gorjian, V., & Yan, L. 2008, ApJ, 686, 918
Lacy, M., et al. 2005, ApJS, 161, 41
Lamer, G., Hoefl, M., Kohnert, J., Schwone, A., & Storm, J. 2008, A&A, 487, L33
Lewis, I., et al. 2002, MNRAS, 334, 673
Lonsdale, C. J., et al. 2003, PASP, 115, 897
Mullis, C. R., Rosati, P., Lamer, G., Bohringer, H., Schwone, A., Schuecker, P., & Fassbender, R. 2005, ApJ, 623, L85
Muzzin, A., Yee, H. K. C., Hall, P. B., & Lin, H. 2007, ApJ, 663, 150
Muzzin, A., Wilson, G., Lacy, M., Yee, H. K. C., & Stanford, S. A. 2008, ApJ, 686, 966
Park, C., Choi, Y.-Y., Vogelez, M. S., Gott, J. R., & Blanton, M. 2007, ApJ, 658, 898
Pierre, M., et al. 2006, MNRAS, 372, 591
Poggianti, B. M., et al. 2008, ApJ, 684, 888
Postman, M., et al. 2005, ApJ, 625, 721
Rosner, A. K., Viana, P. T. P., Liddle, A. R., & Mann, R. G. 2001, ApJ, 547, 594
Smith, G. P., Treu, T., Ellis, R. S., Moran, S. M., & Dressler, A. 2005, ApJ, 620, 78
Stanford, S. A., et al. 2005, ApJ, 634, L129
Stanford, S. A., et al. 2006, ApJ, 646, L13
Surace, J., Shupe, D. L., Fang, F., Lonsdale, C. J., & Gonzalez-Solares, E. 2005, SSC Website Release: The SWIRE Data Release 2 (Pasadena, CA: CalTech), http://swire.ipac.caltech.edu/swire/astronomers/publications/SWIRE2_doc_083105.pdf
van Breukelen, C., et al. 2007, MNRAS, 382, 971
Valtchanov, I., et al. 2004, A&A, 423, 75
Wilson, G., et al. 2009, ApJ, 698, 1943
Yee, H. K. C., Gladders, M. D., Gilbank, D. G., Majumdar, S., Hoekstra, H., & Ellingson, E. 2007a, arXiv:astro-ph/0701839
Yee, H. K. C., Gladders, M. D., Gilbank, D. G., Majumdar, S., Hoekstra, H., & Ellingson, E. 2007b, in ASP Conf. Ser. 379, Cosmic Frontiers, ed. N. Metcalfe & T. Shanks (San Francisco, CA: ASP), 103
Yee, H. K. C., & Lopez-Cruz, O. 1999, AJ, 117, 1985
Zatko, M., Roser, H.-J., Wolf, C., Hippelken, H., & Falter, S. 2007, A&A, 474, L5