Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of *Brassica oleracea* Subspecies

Go-Eun Yi †,‡, Arif Hasan Khan Robin †,§, Kiwoung Yang †,§, Jong-In Park †, Jong-Goo Kang †, Tae-Jin Yang ‡ and Ill-Sup Nou †,*

1 Department of Horticulture, Sunchon National University, Sunchon 540-950, Korea; E-Mails: yeege91@hanmail.net (G.-E.Y.); gpb21bau@gmail.com (A.H.K.R.); ykw7685@naver.com (K.Y.); jipark@sunchon.ac.kr (J.-I.P.); jgkang@sunchon.ac.kr (J.-G.K.)

2 Department of Plant Science, Seoul National University, Seoul 151-742, Korea; E-Mail: tjyang@snu.ac.kr

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: nis@sunchon.ac.kr; Tel.: +82-617-503-249.

Academic Editor: Derek J. McPhee

Received: 25 June 2015 / Accepted: 16 July 2015 / Published: 20 July 2015

Abstract: Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed *Brassica* species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of *Brassica oleracea*: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (*MYB28*) and one indolic transcription factor-related gene, Bol030761 (*MYB51*), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were
identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

Keywords: glucosinolates; biosynthetic genes; expression analysis; *Brassica oleracea*; subspecies; edible organs

1. **Introduction**

Glucosinolates, β-thioglucoside-N-hydroxysulfates (*cis*-N-hydroximinosulfate esters), are sulfur-enriched, anionic secondary metabolites of plants synthesized from amino acids and sugars. They are synthesized in all vegetables and oilseed plants of the order Brassicales [1]. Upon hydrolysis, these metabolites not only confer characteristic flavors to *Brassica* vegetables [2,3] but also serve to prevent carcinogenesis in animals by regulating the cell cycle and stimulating apoptosis [4]. Hydrolysis by the myrosinase enzyme degrades glucosinolates into different bioactive products, mostly isothiocyanates [5–7]. Isothiocyanates such as sulforaphane [8,9] and indole-3-carbinol [10] are strongly anti-carcinogenic, whereas phenethyl isothiocyanate inhibits the transformation of carcinogens from one form to another [11,12]. In addition to their anti-carcinogenic properties in the animals that consume them, glucosinolates are anti-oxidative [13] and help defend against herbivores and microbes [14,15]. Apart from the various benefits of glucosinolates, a few of them, for example progoitrin, are also reported to have adverse effects in animals, with goitrogenic effects (*i.e.*, enlargement of the thyroid) [16], although no evidence of any such effect has been reported in humans from *Brassica* consumption [17]. It is important to understand the genetics of biosynthesis and accumulation of health-promoting glucosinolates in order to increase their content for human and animal health and plant protection.

Plants contain over 200 structurally different glucosinolates, which are generally classified as aliphatic, indolic or aromatic based on their primary precursor amino acids [13,18]. The basic precursors of aliphatic, indolic and aromatic glucosinolates are methionine (or alanine, leucine, isoleucine and valine), tryptophan and phenylalanine (or tyrosine), respectively [13,19]. All three types of glucosinolates are generated by a characteristic biosynthetic pathway that involves elongation of the amino acid side chain by the addition of methylene groups, formation of core structure and subsequent secondary modification of amino acid side chains by oxidation, hydroxylation, methoxylation, sulfation, and glycosylation, *etc.* [20–22]. In *Brassica* species, most of the glucosinolates are biosynthesized from methionine. Elongation of the methionine side chain involves methylthioalkylmalate synthase (*MAM*), bile acid/sodium symporter family protein 5 (BASS5) and branched-chain aminotransferase (BCAT) [23–26]. Formation of the core structure is a five-step process that includes formation of aldoxime by cytochromes P450 of the CYP79 and CYP83 families, oxidation of aldoxime by members of the CYP83 family, formation of thiohydroximic
acid followed by C–S cleavage, and formation of desulfoglucosinolate by S-glucosyltransferase and glucosinolates by sulfotransferase [27,28]. Subsequent secondary modification involves several gene loci, for example those encoding GS-OX, GS-AOP, GS-OH, BZO1 and CYP81F2. R2R3-Myb transcript factors and other nucleus-localized regulators participate in glucosinolate biosynthesis [18,29–34]. Moreover, the sulfate assimilatory pathway, which provides glutathione and 3′-phosphoadenosine 5′-phosphosulfate co-substrates during glucosinolate biosynthesis on desulfo precursor, also involves several other genes [20].

Brassica oleracea is an important diversified vegetable species in which it has become clear that glucosinolate biosynthetic and catabolism pathways are different compared to those in Arabidopsis and B. rapa. B. oleracea also shows greater glucosinolate profile diversity than B. rapa and B. napus [35]. B. oleracea and B. rapa respectively have 105 and 101 glucosinolate metabolism-related genes, among which 22 genes are related to catabolism [35]. The coding DNA sequences of 84 B. oleracea genes related to glucosinolate biosynthesis [35] are available in two independent databases: Bolbase and EnesmlPlants, but expression analysis has been carried out for none of those genes to date. Therefore, a comparative validation of the coding sequences deposited in the two databases is necessary prior to functional analysis. The glucosinolate biosynthesis and catabolism among Arabidopsis, B. rapa and B. oleracea is likely related but also shows variation in the proportion of tandem genes, and the number and functions of genes for MAM and 2-oxoglutarate-dependent dioxygenase (AOP) [35]. Functions of MAM family members for condensation, side chain elongation and chain length production during glucosinolate biosynthesis differs in Arabidopsis compared to B. rapa and B. oleracea. MYB76 transcription factor is present in Arabidopsis but B. oleracea and B. rapa lack in that factor [36]. In addition to 4C glucosinolate, biosynthesis of sinigrin, a 3C glucosinolate, in B. oleracea is assumed to be related to high expression of the Bol017070 gene, while its ortholog, Bra013007, remain silenced in B. rapa [35]. By contrast, B. rapa biosynthesizes more of the 5C glucosinolate glucobrassicanapin due to higher expression of MAM3 compared to that in B. oleracea [35]. B. oleracea has only one functional AOP gene (AOP2) whereas Arabidopsis and B. rapa have four and three functional AOP genes, respectively [35].

Under different environmental conditions a complex network of transcription factors from the R2R3-MYB family regulate the glucosinolate biosynthetic pathways [18,29–34,37–39]. MYB28 and MYB29 are related to biosynthesis of aliphatic glucosinolates [18,33,34,38] while MYB51, MYB122 and MYB34 are related to indolic glucosinolate biosynthesis (Figure 1) [29,31,32,39]. Transcription factors and/or their stimulators might vary depending on herbivory [12] and sulfur metabolism [40]. Glucosinolate biosynthesis and catabolism differ not only among species [35] but also across developmental stages of tissues and organs during plant development [18,38–44]. B. oleracea is a vegetable-producing species that includes cabbage, broccoli, cauliflower, kale, brussels sprouts and kohlrabi. The edible organs are different in different subspecies; leaf is the edible organ for cabbage (B. oleracea capitata) and kale (B. oleracea acephala), whereas stem and floret are the edible organs of kohlrabi (B. oleracea italica) and cauliflower (B. oleracea botrytis), respectively. Currently, little is known about the expression of genes related to glucosinolate biosynthesis at in the edible organs of B. oleracea cultivars from qualitative and quantitative perspectives. In this study, we explored the genes related to glucosinolate biosynthesis and studied their expression in the edible organs of B. oleracea cultivars. We also measured glucosinolate contents in different edible organs of cabbage, kale, kohlrabi and cauliflower.
Figure 1. Aliphatic and indolic glucosinolate metabolic pathways along with glucosinolate (GSL)-related genes in B. oleracea, after Liu et al. [35]. Red bold denotes the GSLs measured in this work by HPLC. Blue bold indicates enzymatic activities for which gene expression was monitored via RT-PCR. Numbers in parentheses are the numbers of genes identified. 4MTB, 4-methylthiobutyl GSL; 4MSOB, 4-methylsulfinylbutyl GSL; 4BTEY, 3-butenyl GSL; 4OHB, 4-hydroxybutyl GSL; 3MTP, 3-methylthiopropyl GSL; 3MSOP: 3-methylsulfinylpropyl GSL; 3PREY: 2-Propenyl GSL; I3M: indolyl-3-methyl GSL.

2. Experimental Section

2.1. Plant Materials and Growth Conditions

Seeds of 12 different genotypes from four different groups, three genotypes from each group of B. oleracea L., were purchased from Asia Seed Co., Ltd. (Seoul, Korea). The groups were B. oleracea capitata (cabbage), B. oleracea acephala (curly kale), B. oleracea italica (kohlrabi) and B. oleracea botrytis (cauliflower) (Table 1). The seedlings were raised in garden soil composed of peat moss, coco peat, perlite, zeolite and vermiculite in a growth chamber. Four-week-old seedlings were transferred to a glasshouse. Plants were grown for four months in the glasshouse before samples were destructively excised from several plants. Sampling sites were the edible organ of the plants (Table 1). The collected samples were snap frozen in liquid nitrogen and freeze-dried and stored at −80 °C for RNA isolation and or high performance liquid chromatography (HPLC) analysis.
Table 1. List of B. oleracea subspecies, genotypes and edible organs used to study the expression of glucosinolate-related genes and to estimate content of different glucosinolates.

No.	Common Name	Genotype	Sampling Site/Edible Organ	Scientific Name of the Genotype
1	Cabbage	White cabbage	Leaf	B. oleracea L. convar capitata (L) Alef. var. alba DC
2	Cabbage	Cabbage	Leaf	B. oleracea var. capitata alba
3	Cabbage	Sprouting red cabbage	Leaf	B. oleracea capitata rubra
4	Kale	Curly kale Halftall	Leaf	B. oleracea acephala
5	Kale	Curly kale	Leaf	B. oleracea L. convar. acephala
6	Kale	Curly kale	Leaf	B. oleracea L. convar. acephala
7	Kohlrabi	Kohlrabi	Stem	B. oleracea var. italica Plenck
8	Kohlrabi	Kohlrabi	Stem	B. oleracea var. italica Plenck
9	Kohlrabi	Kohlrabi	Stem	B. oleracea L. convar. acephala (DC) Alef. var. gongyodes
10	Cauliflower	Cauliflower	Floret	B. oleracea L. convar. botrytis
11	Cauliflower	Cauliflower	Floret	B. oleracea L. convar. botrytis
12	Cauliflower	Cauliflower	Floret	B. oleracea L. convar. botrytis

2.2. In Silico Analysis

For in silico analysis, the following databases were utilized: B. rapa genome database (http://brassicadb.org/brad/glucogene.php), Bolbase, a comprehensive genomics database for B. oleracea, (http://www.ocri-genomics.org/bolbase/index.html) and EnsemblPlants (http://plants.ensembl.org/index.html). Gene symbols and annotated names for glucosinolate-related genes such those for transcription factors and enzymes related to side-chain elongation, core structure formation, secondary modification and co-substrate pathways of B. rapa were obtained from the two B. rapa databases [42]. B. oleracea orthologs along with full-length coding sequence (CDS) and % matching sequence between Bolbase and EnsemblPlants databases were then obtained (Table 2). In cases where Bolbase data were not available, EnsemblPlants data were used.

2.3. cDNA Synthesis and Reverse-Transcriptase PCR Analysis

Total RNA of the samples harvested from 12 genotypes of four B. oleracea subspecies was extracted using the RNeasy mini kit (Catalogue No. 74106, Qiagen, Valencia, CA, USA). For cDNA synthesis, 5 μg total RNA, 1 μL gene-specific primer, 1 μL annealing buffer and 8 μL RNase were combined in a 0.2 mL thin-walled PCR tube on ice. Gene specific primers were designed using Primer3 website, http://primer3.ut.ee/ (Table 3). PrimeScript-based kit (Takara Bio, Inc., Shiga, Japan) was used for cDNA synthesis. There were two biological replicates for each genotype and gene combination. The RT-PCR experiment was repeated twice for each gene and genotype combination.
Table 2. Glucosinolate (GSL) biosynthesis-related genes in *B. oleracea* as compared between Bolbase and EnsemblPlants.

Gene Name	Biosynthesis Pathway	*B. rapa* (Bolbase)	*B. oleracea* (EnsemblPlants)	Total CDS of Bolbase	Total CDS of EnsemblPlants	Matching Sequence (%) ***	
Transcription factors							
MYB28		558	1059	554(98.0)			
	Bra009245	Bo08849 (C03)	Bo3g04500.1	993	513(94.0)		
	Bra029350	Bo08849 (C03)	Bo3g04500.1	993	513(94.0)		
MYB34		951	1002	951(97.0)			
	Bra016553	Bo13207 (C08)	Bo8g067910.1	993	990(99.0)		
	Bra031035	Bo13207 (C08)	Bo8g067910.1	993	990(99.0)		
MYB51		843	882	843(97.0)			
	Bra029349	Bo36262 (C09)	Bo9g014380.1	882	882(100.0)		
	Bra029350	Bo36262 (C09)	Bo9g014380.1	882	882(100.0)		
Aliphatic and indolic GSLs							
MYB122		1005	1350	915(99.0)			
	Bra030696	Bo23400 (C08)	Bo8g010700.1	1005	1005(100.0)		
	Bra031588	Bo41144 (C05)	Bo5g008360.1	1011	1011(100.0)		
	Bra060511 (C08)	Bo8g0112940.1	936	936(100.0)			
IQD1		1656	1368	1260(95.0)			
	Bra034081	Bo23096 (C01)	Bo1g144340.1	1656	1656(100.0)		
	Bra001299	Bo33935 (Cun)	Bo3g061890.1	1437	1437(99.0)		
	Bra023629	Bo21358 (C02)	Bo2g013840.1	1146	1146(94.0)		
TFL2		1236	1372	1236(99.0)			
	Bra013958	Bo000201 (Cun) **	Bo9g159960.1 **	1236	1236(99.0)		
	Bra006417	Bo19784 (C09) **	Bo9g159960.1 **	1236	1236(99.0)		
	Bra034455 (C03)	999	Bo3g012730.1	1248	906(95.0)		
Gene Name	Biosynthesis Pathway	B. rapa (Bolbase)	B. oleracea (EnsemblPlants)	Total CDS of Bolbase	Total CDS of EnsemblPlants	Matching Sequence (%) ***	
-----------	----------------------	------------------	-----------------------------	----------------------	-----------------------------	---------------------------	
BCAT-4		Bra022448 1083	Bo5g113720.1	1083	1083(99.0)		
		Bra001764 1083	Bo3g073430.1	825	825(100.0)		
MAM1/2		Bra029355 1236	Bo7g098000.1	1527	1243(81.0)		
		Bra013009 1518	Bo2g161100.1	1518	1518(99.0)		
		Bra029356 804	Bo2g161100.1	1518	760(82.0)		
		Bra021947 1302	Bo2g102060.1	1494	880(78.0)		
		Bra013011 1527	Bo7g098000.1	1527	1527(99.0)		
MAM3		Bra018524 759	Bo2g102060.1	1494	759(100.0)		
CYP79F1		Bra026058 1551	Bo5g021810.1	1623	1551(99.0)		
CYP83A1		Bra032734 1506	Bo4g130780.1	1506	1505(99.0)		
		Bra016908 570	Bo4g191120.1	1509	570(100.0)		
GSTF11		Bra032010 633	Bo5g150180.1	648	633(98.0)		
GSTU20		Bra003645 654	Bo9g081630.1	654	654(99.0)		
UGT74C1		Bra021743 1371	Bo4g177530.1	657	647(99.0)		
		Bra005641 1371	Bo4g049480.1	1372	1371(98.0)		
STb		Bra015938 1035	Bo6g118360.1	1035	1035(100.0)		
		Bra015936 1035	Bo6g118370.1	1035	1035(100.0)		
STc		Bra025668 1014	Bo5g025610.1	1014	1014(99.0)		
FMOGS-OX2		Bra027035 1386	Bo9g037180.1	1386	1386(100.0)		
FMOGS-OX5		Bra016787 1347	Bo8g062610.1	1347	1347(99.0)		
		Bra026988 1380	Bo8g108390.1	1380	1380(100.0)		
AOP2		Bra034180	Bo9g006240.1	1032			
		Bra018521	Bo2g102190.1	1104	1105 ****		
		Bra000848	Bo3g052110.1	948	497 ****		
GS-OH		Bra022920 243	Bo4g173530.1	1077	219(99.0)		
		Bra021670 243	Bo4g173530.1	1077	219(99.0)		
Gene Name	Biosynthesis Pathway	B. rapa	B. oleracea (Bolbase)	Total CDS of Bolbase	B. oleracea (EnsemblPlants)	Total CDS of EnsemblPlants	Matching Sequence (%)***
-----------	----------------------	---------	----------------------	----------------------	-----------------------------	-----------------------------	---------------------------
CYP79B2		Bra010644	Bol032767 (C03)	1557	Bo3g152800.1	1557	1557(100.0)
		Bra011821	Bol028852 (C02)	1623	Bo1g002970.1	1623	1623(97.0)
		Bra017871	Bol018585 (C06)	1626	Bo7g118840.1	1626	1626(100.0)
CYP79B3		Bra030246	Bol031784 (Cun)	1632	Bo4g149550.1	1632	1632(99.0)
CYP83B1		Bra034941	Bol033477 (C08)	1473	Bo8g024390.1	1500	1473(100.0)
GSTF9		Bra021673	Bol033376 (C04)	648	Bo4g173610.1	648	648(99.0)
		Bra022815	Bol004624 (C03)	648	Bo3g024840.1	648	648(99.0)
GSTF10		Bra022816	Bol004625 (C03)	648	Bo3g024850.1	648	648(99.0)
STa		Bra008132	Bol039395 (C02)	1014	Bo2g080910.1	1014	1014(100.0)
		Bra015935	Bol026200 (C07)	1017	Bo6g118380.1	1017	1017(100.0)
CYP81F1		Bra011762	Bol028913 (C01)	1500	Bo1g003680.1	1437	882(97.0)
		Bra011761	Bol028914 (C01)	1497	Bo1g003710.1	1497	1497(98.0)
	Indolic GSLs		Bol017375 (C07)	369	Bo6g095040.1	942	324(99.0)
			Bol017376 (C07)	246	Bo6g095040.1	942	232(97.0)
CYP81F2		Bra002747	Bol012237 (C09)	933	Bo9g131960.1	1581	933(99.0)
		Bra020459	Bol014239 (C02)	1482	Bo2g032590.1	1482	1482(99.0)
		Bra006830	Bol026044 (C03)	1482	Bo3g019420.1	1482	1482(100.0)
CYP81F3		Bra010597	Bol032711 (C03)	1491	Bo3g153480.1	1491	1491(99.0)
		Bra011758	Bol028919 (C01)	1500	Bo1g004740.1	1500	1500(99.0)
CYP81F4		Bra010598	Bol032712 (C03)	1506	Bo1007s020.1	1506	1506(99.0)
		Bra011759	Bol032714 (C03)	960	Bo1007s020.1	1506	807(98.0)
			Bol028918 (C01)	1503	Bo1g004730.1	1506	1503(97.0)
IGMT1		Bra012270	Bol007029 (C08)	1119	Bo8g070650.1	1119	1119(100.0)
		Bra012269	Bol020663 (C05)	342	Bo09472s010.1	312	342(100.0)
IGMT2		Bra016432	Bol007030 (C08)	1125	Bo8g070660.1	1350	1120(99.0)
Table 2. Cont.

Gene Name	Biosynthesis Pathway	B. rapa	B. oleracea (Bolbase)	Total CDS of Bolbase	B. oleracea (EnsemblPlants)	Total CDS of EnsemblPlants	Matching Sequence (%) ***			
GGP1 *		Bra024068	Bo033672 (C06)	753	Bo7g114570.1	753	753(99.0)			
		Bra011201	Bo018073 (C01)	753	Bo1g012070.1	753	753(100.0)			
		Bra010283	Bo012989 (C03)	753	Bo3g175530.1	753	753(100.0)			
SUR1 *	Both aliphatic and indolic GSLs	Bra036490	Bo038767 (C09)	1209	Bo7g003330.1	1371	1209(99.0)			
		Bra036703	Bo038764 (C09) **	459	Bo28705s010.1 **	207	207(100.0)			
			Bo038765 (C09) **	459	Bo28705s010.1 **	207	207(100.0)			
			Bo029775 (Cun)	1008	Bo7g003330.1	1371	991(89.0)			
UGT74B1 *		Bra024634	Bo005786 (C05)	1311	Bo5g041080.1	1401	1311(99.0)			
TGG1		Bra039825	Bo017328 (C07)	822	Bo6g095780.1	411	373(99.0)			
		Bra039824	Bra039823	Bra016676	Bra004012	Bra036914	Bra025706 (C03)	Bo2g155820.1	714	187(98.0)
TGG2	Breakdown aliphatic and indolic GSLs	Bra039823	Bo028319 (C08)	1179	Bo8g039420.1	1638	1163(99.0)			
		Bra016676	Bo1025706 (C03)	663	Bo2g155820.1	714	187(98.0)			
TGG4		Bra004012	Bo031599 (C07)	1326	Bo09266s010.1	163	163(100.0)			
TGG5		Bra004840	Bo030092 (C04)	1299	Bo4g023800.1	3350	937(99.0)			
PEN2		Bra004839	Bra004840	Bra004839	Bra004839	Bra004839	Bra004839	Bra004839	Bra004839	

* Participates in biosynthesis of both aliphatic and indolic GSLs; ** These genes have the same CDS sequence in both databases; *** the number of matching base pairs between the sequence in Bol sequence (http://www.ocri-genomics.org/bolbase/) and that in EnsemblPlants (http://plants.ensembl.org/Brassica_oleracea/Info/Index?db=core); **** comparison between B. rapa and B. oleracea EnsemblPlants sequence.
Table 3. Primers used to amplify 81 glucosinolate biosynthetic genes in *B. oleracea* through RT-PCR.

Gene Name	Acc. Number	cDNA Size	Forward	Reverse	Product Size (bp)
Aliphatic GSL Pathway					
BCAT-4	Bol018130	1083	TACGCGAATGTGAAATGAGGGA	CCCCTTCTTATCCTTCAGACCC	987
	Bol026690	1083	TACGCGAATGTGAAATGAGGGA	CACCGTCCACCCTTCTTTAT	996
MAM1/2	Bol017071	1236	GTTGGATTCCTCCAGAGAGGGA	TGAATGATACAGTGTTGGCTCCA	970
	Bol020647	1518	GTGAGGCGAAGACATCCTC	AGCTTTCCAAGAATCGATTC	1000
	Bol020646	804	AAATGATTCCTCCAGAGAGGGA	CTTGAGGAGTCAGTAGCTTC	650
	Bol037823	1302	CAAGCTTCCCCACAGAGATT	CGTCCGCTAAGCTTTCCAAG	975
	Bol017070	1527	GCTTCTTACTCCACCCCAAAAAA	CAACCCCAAACATCTTCTGCC	937
MAM3	Bol016496	759	CTACCCGCAACACAAATCTC	GTCGCCGATACATCTTCTTTTCT	504
CYP79F1	Bol038222	1551	GAACCATCGGAGGCAATCAC	AGTCCGCACTTTGTGTTTA	970
CYP83A1	Bol040365	1506	ATGTGACATCCAGACGGA	GTAGGGCCACACTTTCTT	953
	Bol005188	570	GGGGTCCAAGCTTGCTCTCG	GAGCCAGTCCATGAATCCA	442
GSTF11	Bol000843	633	TACCAGGCTAAGTTACGAGGT	GCAAGCATTTCCTTTCAAGTGC	610
GSTU20	Bol021558	654	CTGGCCAAGCAGTGGTCTGTGA	TTCTTAAACTCTACGCCGCA	612
UGT774C1	Bol006450	1371	CACACGACACACTCCAAAACAC	AGCTCTTACACTTAAAACCA	989
	Bol014127	1371	CACACGACACACTCCAAAACAC	AGCTCTTACACTTAAAACCA	989
ST5b	Bol026202	1035	CTAACGCGAACAAAGACAGA	ACCATGTGCTAAGCAAACTGTG	1000
	Bol026201	1035	CCACCAACACAGAAGGAGGA	ACCATGTGCTAAGCAAACTGTG	999
ST5c	Bol030757	1014	TCCAATCCGAAACACAGGCA	GCAAGAAGACACCATGCCTCTT	995
FMOGS-OX2	Bol010993	1386	AGTCTCTCCGAACACACCTC	AACCACATTCTCTCTGCGACC	978
FMOGS-OX5	Bol029100	1347	CATAGGCTTCCACCGCGCTCT	ACTTTGCTGGCTACGCTAGT	993
GSL-OH	Bol031350	1380	AACCGTATCCACTTCTAGCG	CTGACGCGACACCAAGA	970
	Bol033373	243	GATATTCGAAAAAGGTTGT	AGACCATTTAGGATAGGAGGA	188
AOP2	Bo9g006240.1	1557	GTGAAGTGGTCTTATCCCTG	CTTGAGGAGTCTCTGCAGGC	219
	Bo2g102190.1	1623	ATCGGCGTCTATCTCGGCAAAA	CCACGTGATACGATCAGTCA	354
	Bo3g052110.1	1626	CAGAAGTGAATGAGGGA	ACCAATCCCGGACCAGTAT	552
Indolic GSL pathway					
CYP79B2	Bol032767	1557	GTGAAGTGGTCTTATCCCTG	CTTGAGGAGTCTCTGCAGGC	219
	Bol028852	1623	ATCGGCGTCTATCTCGGCAAAA	CCACGTGATACGATCAGTCA	354
	Bol018585	1626	CAGAAGTGAATGAGGGA	ACCAATCCCGGACCAGTAT	552
Gene Name	Acc. Number	cDNA Size	Forward	Reverse	Product Size (bp)
--------------------	-------------	-----------	---	--	-------------------
Indolic GSL pathway					
CYP79B3	Bol031784	1632	CGTCATTCCAGTCACATGTCC	ACGACCAAGTCCGTAACG	1000
CYP83B1	Bol03477	1473	GGACCTCAATTTTCACCGCTC	TCCACTCCTTTTCTGCTGTT	999
GSTF9	Bol03376	648	TGTACCGGACCTCACTTTTC	TCAAGAGTCTCCTTCCAAGCA	613
	Bol004624	648	TGTACCGGACCTCACTTTTC	AAGAGTCTCCTTCCAACGCA	611
GSTF10	Bol004625	648	TTGGTGAAGTGCTGGGCTG	CCGGCAATGCGATTTTCCTC	228
ST5a	Bol03935	1014	CGGTCTCCTACCTTACCCCCA	TCAATGTTCAAGCAACAAAGGT	983
	Bol02620	1017	GATCCCAACTCGAGCCTCTCA	TCATGTTGAAGCAAGCCAGT	985
CYP81F1	Bol028913	1500	GAGACCTCCGAGTAACTTT	GTCCCTCCGTCCGGCTCTTCTAG	222
	Bol028914	1497	ACTTGAATCCATCTCCCTTCC	CATCGGAGTGGAGTGGGTCAC	483
	Bol017375	369	AAGCAGAGCGGTCAGGGAAGGA	GCGTACCTTGGTGATGTGTA	204
	Bol017376	246	CGGTCTCCCTTTTAAAGG	CGACGTATTTAACGGGAGG	170
CYP81F2	Bol012237	933	CTACGGAGACACAGTGCCGTCA	GTCTGTTGAGGCTGATG	897
	Bol014239	1482	CGTGATCTCCTTCTTCTGCCC	TCATCCCATAGCTCCTGGG	978
	Bol026044	1482	CCACTCCCTTCTCCCATTC	TCGTCTTCTCCTTCCTTC	689
CYP81F3	Bol032711	1491	TCTCACCCAAAAAACCAACCA	CTCCCCATCAATACCTTCC	637
	Bol028919	1500	CTTACTCCTCCTCCCATTC	CTCCCAATATCTCCTTCC	478
CYP81F4	Bol032712	1506	CGTGTGTTCTGACACAGG	TTCCTCCCTTCCCTCAGCC	980
	Bol032714	960	GTTTCAACCTCCTCCCTCCTCTTTTCCTC	CTCTGGTGGTCTGTTGGGTGTC	818
	Bol028918	1503	CACTCTCTCCCCTTATTTT	ACCATCTATTCTTCCTTC	687
IGMT1	Bol007029	1119	GTTGTGTCCTCCTCCTCCGTCA	GTTGAGGAGAGAGAGGAGG	260
	Bol020663	342	AGATGCCTTGTATCTTGAAGACGT	CGACCAATGTAAGCCCTGAC	298
IGMT2	Bol007030	1125	TAGTTGTGATGGCCCTGAGA	CGAATTTGCAATCAGGAG	999
Both aliphatic and indolic GSL pathway					
GGP1	Bol033672	753	TGTCTTTGCTGCAATCCTGCTATTCA	AGTTCTTGTCAAATACGTGCTC	699
	Bol018073	753	TGTGTTGCTGACACAGTCCGTTA	AAAATCTTGAAGCAGTCTCCTCAA	700
	Bol012989	753	TGTGTTGCTGACACAGTCCGTTA	AAAATCTTGAAGCAGTCTCCTCAA	700
SUR1	Bol038767	1209	TCCGCACCCTGTTACGG	CTCATCCAGTCTTCTCCACC	1000
	Bol038764	459	CTGCCCTTCTCCTTCTTCTTTGCTT	CTTGATGCTCTTCTTCTTTGGT	360
	Bol038765			same as Bol038764 CDS	
Gene Name	Acc. Number	cDNA Size	Forward	Reverse	Product Size (bp)
--------------	-------------	-----------	------------------------------	------------------------------	-------------------
Both aliphatic and indolic GSL pathway					
UGT74B1	Bol029775	1008	TGGTTCCCGCGTTAAACTAGTGGAAGGGTCAGGAGTTA	AGTGGAAAGGGTCAGGAGTTA	923
	Bol005786	1311	AATCCCTTCAAGCTCAACGCACGCT	TCAACACCTCAACACCTCA	993
Breakdown of aliphatic and indolic GSLs					
TGG1	Bol017328	822	TCTTAACGTGTTGGATGGCT	CTTTCTTTGTTTCTACCTCCCT	210
	Bol028319	1179	AGATGTGCTGGACGAATCTCA	CCGGCTAACAGGTAGGATCA	401
	Bol025706	663	CGTTTGGGATGCGCTTCAGTC	TTCCGTGGTGAAGTTGGGAA	421
TGG5	Bol031599	1326	TGCAGCAGTACAGACTTTCA	CGTTCACAGAATCTCCTCC	402
PEN2	Bol030092	1299	GCATCATCATCAGACAGCT	ACGCCTTGATCAGTTCCTCA	207

Transcription factors for aliphatic and indolic GSL pathways

MYB28	Bol007795	558	GAGAGGTTCCTTGAGTGCAAC	GAGAAATCGTAACCTGATCA	238
	Bol036286	615	GAAGTAGGTGGTTAAAGGCTAATAC	TATGAGATGCTTTCCCAGG	414
	Bol017019	426	GTGCCAGCTAAGGCTACTCTCTC	CAGAAATAGCGGTTGATCTCATGCC	223
	Bol036743	426	GTTTTCTGCGGCGGTCGCTAC	CCTCGATCATCAACGTTG	328
MYB29	Bol008849	513	CGCCCAAGACCTTCTGAGTT	TGATATTGCCCATGGAAGCTG	234
	Bol017062	951	TGAGAACAACAGTCTGCAA	ACGACCTTCAAACATTCTCCA	918
	Bol007760	843	ACCATGGTGCACAGAAGAAGAGA	CCAAAACCACATCTTCCCTGCTCCA	812
	Bol036262	294	GTTTTCTCCAGCAACGTTGCT	ACAGAACTCACAACATTCTCCA	250
MYB51	Bol013207	1002	GCTGGTCTCCTCAGTCAACC	GTCTTCTCCTCAAGAACCTCGA	850
	Bol030761	990	GAAGCTCCCGAGGAAGATCAG	CCTCGACGTGCTTTGCCA	537
MYB122	Bol026204	981	CCTTAGGAGCTATAGCTAGCT	ACGATGTGCTAAATCCCTCA	510
Dof1.1	Bol023400	1005	GACGAAACATAGACAGCTCCG	ACAGGGTGTTGCTTTACATCT	227
	Bol041144	1011	TGGTGTCAGGACCTCAGAAGC	TGCTTGAAGAAGAGGACCAGA	975
	Bol006511	936	CCAATTGGTCTCAGAGCTCCTCA	AGAAGGACCGAGAAATCCG	896
IQD1	Bol023096	1656	GGGTAATTTGGAAGCAGACG	CTTTCCACACGTCACCCAA	202
	Bol033935	1437	CCAAAACACCAGCGATGAAA	AGGATGCTTTGTTGGGTG	273
TFL2	Bol021358	1146	ACGATGTGCTGAGAAGTCT	CCTGGTCCCTTTAATCCTG	199
	Bol000201	1236	CTCTCGGTTCCAGAGAGATG	CTCCAAACACACCAGATACCTC	381
	Bol019784	same as Bol000201 CDS			
	Bol034455	999	CTATCCGTACAAGCGAGG	CGATGTCGAAATTTGGTGTC	531
EmeraldAmp GT PCR Master Mix Cat, No/ID RR310A (Takara Bio, Inc., Shiga, Japan) was used for PCR mixture preparation. A typical PCR reaction included denaturation at 94 °C for 5 min, followed by 34 cycles at 94 °C for 30 s, 62 °C or 55 °C for 30 s, 72 °C for 1 min, and a final extension at 72 °C for 7 min. The actin gene (GenBank accession No. FJ969844) was used as a reference gene as it is expressed consistently in different organs of different species [45–47].

2.4. Extraction of Desulfo-Glucosinolates and HPLC Analysis

Desulfoglucosinolates from the selected samples were isolated using the HPLC protocol previously used by Choi et al. [47] with modifications. Fresh leaf tissue (100 mg) was sampled and snap-frozen in liquid nitrogen and stored at −80 °C freezer. The frozen samples were ground and treated with 1 mL 70% alcohol followed by incubation at 70 °C in a water bath for 10 min and at room temperature for 1 h. The tissue and proteins were precipitated by centrifugation for 8 min at 10,000 g at 4 °C and the supernatant was collected for anion-exchange chromatography. The extraction process was repeated twice and the combined supernatant was collected in a 5 mL tube. The combined supernatants represented the crude glucosinolate extracts. The supernatant was mixed with 0.5 mL each 50 mM barium acetate and 50 mM lead acetate. The crude glucosinolates were centrifuged again at 2000 g for 10 min and loaded onto a pre-equilibrated column and rinsed three times with 1 mL distilled water and 250 μL aryl sulfatase was added for desulfation. The desulfation process was allowed to continue for 16 h and then the desulfated glucosinolates were eluted with 1 mL distilled water. The eluted glucosinolates were centrifuged at 20,000 g for 4 min at 4 °C and passed through a filter to remove any impurities (PTFE, 13 mm, 0.2 μm; Advantec, Pleasanton, CA, USA).

The samples were then used for analysis with an HPLC system (Waters 2695, Waters, Milford, MA, USA) equipped with a C18 column (Zorbax Eclipse XBD C18, 4.6 mm × 150 mm, Agilent Technologies, Palo Alto, CA, USA). Water and acetonitrile were used as mobile phase solvents. A flow rate of 0.4 mL·min⁻¹ was set at 30 °C. The desulfoglucosinolates were detected at 229 nm using a UV-visible detector (PDA 996, Waters) with commercially available sinigrin as a glucosinolate standard for quantification. A sinigrin standard curve was used to quantify the amount of glucosinolates in the samples. Individual glucosinolates were identified after mass spectrometry analysis (HPLC/MS, Agilent 1200 series, Agilent Technologies) using an Electrospray ionization interface operated in positive ion mode.

2.5. Statistical Analysis

The HPLC measurements of glucosinolate contents were analyzed via one-way analysis of variance using MINITAB 17 statistical software (Minitab Inc., State College, PA, USA). Pairwise comparisons of means were conducted following Tukey’s procedure for the significant statistical difference.

3. Results and Discussion

3.1. Genes Related to Glucosinolate Biosynthesis and Breakdown

A total of 84 B. oleracea genes orthologous to B. rapa genes related to glucosinolate biosynthesis, transcriptional regulation and breakdown were identified (Table 2). These 84 genes were distributed across all nine chromosomes of B. oleracea (Supplementary Table S1). Aliphatic biosynthesis, indolic
biosynthesis and transcription factor-related genes identified in this study were not clustered in any particular chromosome, but rather were distributed across all nine chromosomes (Supplementary Table S1). The highest numbers of aliphatic and indolic biosynthesis genes were located on chromosomes C4 and C3, respectively (Supplementary Table S1). Nine genes were not able to be assigned to a chromosome and three AOP2 genes, related to aliphatic glucosinolate biosynthesis, were absent in Bolbase although they were present in EnsemblPlants (Table 2, Supplementary Table S1). Per Bolbase, the highest and the lowest number of glucosinolate genes per chromosome were 14 and four in chromosomes C3 and C2, respectively. There was more than 93% identity in coding sequence (CDS) for 77 genes between Bolbase and EnsemblPlants (Table 2). Three MAM1/2 genes and one SUR1 gene, showed 78%–89% identity in the two databases. CDS regions differed in number of nucleotides between the two databases for several genes (Table 2). The aliphatic and indolic glucosinolate pathways involved two sets of 32 genes and seven shared genes including three genes for GGP1, four genes for SUR1 (Bol038764 and Bol038765 have identical CDS) and one gene for UGT74B1 (Table 2, Figure 1). Twenty genes were transcription related and five genes were related to aglucone biosynthesis through the breakdown of glucosinolates (Figure 1). MYB28 and MYB29 are aliphatic transcription factor-related and MYB51, MYB122 and MYB34 are indolic transcription factor-related genes in B. oleracea (Figure 1). The pairs of genes Bol000201 and Bol019784 for TFL2, Bol033373 and Bol033374 for GS-OH, and Bol038764 and Bol038765 for SUR1 each shared the same CDS (Table 2).

3.2. Glucosinolate-Related Gene Expression in B. oleracea Subspecies

Compared to the edible organs of the other three subspecies, the stem samples of kohlrabi had much lower expression of many glucosinolate-related genes (Figure 2, Supplementary Figure S1). However, at least one gene from each of the following categories was expressed in the stems of kohlrabi: transcription factor, core structure formation, secondary modification and aglucone biosynthesis (Figure 2). Expression of side chain elongation-related genes was low in all four subspecies (Figure 2). The majority of other genes were highly expressed only in the leaves of cabbage and kale and in the florets of cauliflower (Figure 2). Only eight genes out of 84 were expressed similarly in the stems of kohlrabi as in leaves of cabbage and kale and in floret of cauliflower (Supplementary Figure S1). These genes were MYB28, MYB51, IQD1 and TFL2 of the transcription-factor related set, AOP2 and ST5b aliphatic genes; the CSTF9 indolic gene and the TGG2 aglucone biosynthesis-related gene (Supplementary Figure S1). Genotypic differences in gene expression within subspecies for particular genes were also remarkable (Supplementary Figure S1). Some genes yielded notably different product size compared to the expected, for example: SUR1 (Bol038764, Bol038765), TGG2 (Bol025706), TGG5 (Bol031599). The observed product size of Bol038764, Bol025706 and Bol031599 were approximately 850, 800 and 900 bp whereas the expected product sizes from the primers designed based on Bolbase data were 360, 421 and 402 respectively (Supplementary Figure S1). Eight aliphatic pathway genes, three indolic pathway genes, five transcription factor-related genes and one breakdown-related gene were expressed in almost all genotypes of four cultivars (Supplementary Figure S1). These included aliphatic pathway CYP83AI (Bol005188), GSTF11 (Bol000843), ST5b (Bol026201, Bol026202), ST5c (Bol030757), FMOGS-OX5 (Bol031530) and GSL-OH (Bol033373, Bol033374); indolic pathway GSTF9 (Bol033376, Bol004624) and GSTF10 (Bol004625); transcription factor-related MYB28 (Bol036286), Dof1.1 (Bol041144), IQD1 (Bol023096)
and TFL2 (Bol000201, Bol019784) and breakdown-related TGG2 (Bol025706). Notably, expression levels of ST5b (Bol026202) and GSTF9 (Bol004624) were quite similar across all 12 genotypes (Supplementary Figure S1). Ten genes were expressed only in cabbage, kale and cauliflower but not in the stem of kohlrabi (Supplementary Figure S1). These genes were CYP83A1 (Bol040365), ST5a (Bol026200), SUR1 (Bol038764, Bol038765, Bol029775), UGT74B1 (Bol005786), Dof1.1 (Bol023400, Bol006511), TFL2 (Bol021358), and PEN2 (Bol030092).

![Figure 2](image_url)

Figure 2. RT-PCR analysis of selected glucosinolate biosynthesis genes reveals differences in expression between stems of kohlrabi and edible organs of three other subspecies of *B. oleracea*. Genotypes 1–3, cabbage; 4–6, kale; 7–9, kohlrabi; 10–12, cauliflower.

3.3. Glucosinolate Analysis in *B. oleracea* Subspecies

HPLC analysis revealed the presence of 16 different types of glucosinolates in three different edible organs of four different subspecies of *B. oleracea* (Supplementary Table S2, Table 4). Cabbage leaves contained 12 glucosinolates, kale leaves contained 10, kohlrabi stems contained 11 and the cauliflower florets contained 14. Gluconapin, glucoalyssin, gluconapoleiferin and 4-hydroxy glucobrassicin were identified only in the florets of cauliflower (Table 4). Glucoerucin was only found in the cabbage leaves, and glucoiberverin was identified in the cabbage leaves and kohlrabi stems (Table 4). The absolute amount of the three aliphatic glucosinolates gluconapin, glucoiberverin and glucobrassicanapin differed significantly or marginally among the edible organs (Table 4). Stems of kohlrabi contained the most glucoiberverin and glucobrassicanapin while the florets of cauliflower contained the highest gluconapin content compared to other edible organs (Table 4). Cauliflower florets recorded the highest content of methoxyglucobrassicin and gluconasturtiin, which are respectively indolic and aromatic glucosinolates (Table 4). Out of 11 aliphatic glucosinolates identified in three types of edible organs in 12 genotypes of four *B. oleracea* subspecies, only gluconapin, glucoalyssin and gluconapoleiferin were expressed in the florets of cauliflower (Table 4, Supplementary Table S3).
Table 4. Glucosinolate content (μmol·g⁻¹ DW) in edible organs of cabbage, kale, kohlrabi and cauliflower.

| Common Name (Edible Organ) | GER | GRA | GNA | PRO | GIV | GIB | SIN | GAL | GBN | GNL | GRE | GBS | 4HGS | MGS | NGS | GST |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| Cabbage (Leaf) | 0.090 | 1.024 | 0.000b| 0.126 | 0.004b| 1.176 | 0.065 | 0.000 | 0.020ab| 0.000 | 0.851 | 1.906 | 0.000 | 0.078b | 0.105 | 0.141ab|
| Kale (Leaf) | 0.000 | 0.204 | 0.000b| 0.148 | 0.000b| 0.427 | 0.201 | 0.000 | 0.013ab| 0.000 | 0.074 | 1.146 | 0.000 | 0.126b | 0.637 | 0.119ab|
| Kohlrabi (Stem) | 0.000 | 0.303 | 0.000b| 0.333 | 2.115a| 1.247 | 0.601 | 0.000 | 0.071a | 0.000 | 0.079 | 0.434 | 0.000 | 0.046b | 0.120 | 0.006b|
| Cauliflower (Floret) | 0.000 | 0.060 | 0.053a| 0.080 | 0.000b| 0.406 | 0.073 | 0.115 | 0.006b | 0.117 | 0.524 | 0.252 | 0.044 | 1.093a | 0.621 | 1.185a|
| SE | 0.255 | 0.009 | 0.040 | 0.323 | 0.318 | 0.133 | 0.029 | 0.010 | 0.029 | 0.211 | 0.493 | 0.008 | 0.165 | 0.171 | 0.187 | 0.187 |
| p (subspecies) | 0.44 | 0.61 | 0.052 | 0.10 | 0.011 | 0.73 | 0.50 | 0.44 | 0.06 | 0.44 | 0.55 | 0.69 | 0.07 | 0.033 | 0.57 | 0.056 |

Different letters indicate significant difference. GER, glucoerucin; GRA, glucoraphanin; GNA, gluconapin; PRO, progoitrin; GIV, glucoiberverin; GIB, glucoiberin; SIN, sinigrin; GAL, glucoalyssin; GBN, glucobrassicanapin; GNL, gluconapoleiferin; GRE, glucoraphenin; GBS, glucobrassicin; 4HGS, 4-hydroxy glucobrassicin; MGBS, methoxyglucobrassicin; NGBS, neoglucobrassicin; GST, gluconasturtiin.
3.4. Discussion

In this study a total of 84 genes related to glucosinolate biosynthesis in *B. oleracea* were compared. Furthermore, the expression of those genes and biosynthesis of glucosinolates in the edible organs were monitored in four *B. oleracea* subspecies. The study revealed a disparity in chromosome position for glucosinolate biosynthesis genes between Bolbase and EnsemblPlants databases (Supplementary Table S1). Moreover, the number of nucleotides in the CDS for several glucosinolate-related genes differs between Bolbase and EnsemblPlants (Table 2). These observations suggest that further investigation and validation of those two databases are required. In a future experimentation cloning and sequencing of the mismatched CDS would be targeted. In the present study, the 84 genes identified and expressed are expected to have high similarity with *Arabidopsis thaliana* and *Brassica rapa*, which have high ancestral synteny [35]. Other than those 84 genes, a recent study revealed that *bHLH04*, *bHLH05*, and *bHLH06/MYC2* factors as novel regulators of glucosinolate biosynthesis in Arabidopsis, which belong to basic helix-loop-helix transcription factors and are essential for basal glucosinolate levels and response to jasmonic acid signal pathway; *GTR1* and *GTR2*, which are involved in glucosinolate translocation [48]. Therefore in future investigation these three genes should be also included along with 84 genes reported in Liu et al. [35]. A previous study compared 52 glucosinolate biosynthetic genes between *A. thaliana* GLS (AtGS) and the draft *B. rapa* genome using nucleotide BLAST analysis [42]; high nucleotide sequence identity of about 72%–92% for the transcription factor-related genes was noted. Kim et al. [44] studied a total of 17 transcription factor-related genes in *B. rapa* ssp. pekinensis involved in glucosinolate biosynthesis through aliphatic and indolic pathways in leaves, flower, stem and root. Similar to our study, expression of transcription factor-related genes was strikingly different in stem samples compared to leaves and florets [44]. Their relative expression level, compared to the reference gene, in young leaves and flowers was much higher compared to in stem [44], similar to the results of the present study. In *B. rapa*, the highest glucosinolate content was measured in seeds and the lowest in roots and old leaves [44]. The gene *Bra035929* (encoding *MYB28*) in *B. rapa* exhibited 16- to 552-fold higher transcript levels in stems compared to seeds, young leaves and roots. Notably, the only *B. oleracea* orthologue of *Bra035929*, namely Bol036286, was expressed in all three genotypes of stem samples of kohlrabi, along with other edible organs (Figure 2). A *MYB29* gene, Bol08849, an orthologue of *Bra005949*, which has 11- to 92-fold higher gene expression in stems of *B. rapa* [44], was expressed only in two genotypes of kale and one genotype of kohlrabi (Figure 2). These results are subject of further investigation as those genes were differentially expressed among genotypes within subspecies.

Both transcription factor-related genes and glucosinolate biosynthesis genes showed differences in expression in different plant organs such as seeds, stems, leaves and flowers in previous studies [25,44]. In *A. thaliana*, some important glucosinolate biosynthetic genes, such as *CYP79B2, UGT74B1, CYP79F1, CYP79F2, IQD1*, and *Dof1.1*, are expressed only in vascular tissues [19,30,31,49–53]. Desulfo(glucosinolate sulfotransferases (BrST) isoforms, involved in core glucosinolate biosynthesis in *B. rapa*, were found to be expressed in mature leaf and root highly compared to other tissues, displaying functional redundancy for differential expression [53]. In our study, the edible organs of kohlrabi (stems) and those of cauliflower (florets) have much different types of structural and vascular tissues compared to the leaves of the other two subspecies analyzed, cabbage and kale, and hence the variation in expression of glucosinolate biosynthesis genes is expected. The fact that only one gene, namely Bol036286, out of five aliphatic...
transcription factor-related genes was expressed in all 12 genotypes including the stems of kohlrabi suggests that expression of this particular gene is essential in *B. oleracea* to induce desulfo-glucosinolates as a precursor of different aliphatic glucosinolates (Figure 2). Similarly, only one indolic transcription factor-related gene, Bol030761, was expressed in all 12 genotypes, suggesting that the presence of that gene is needed for continuation of the glucosinolate biosynthetic pathway (Supplementary Figure S1). The genes Bol025706 and Bol030092 should be essential for aglucone biosynthesis from the aliphatic and indolic glucosinolate pathways, respectively (Figures 1 and 2). Expression analysis further suggests that in the aliphatic biosynthetic pathway two genes Bol031350 (*FMOGS-OX5*) and Bo9g006240 (*AOP2*) successively carry out glucosinolate transformation in the stems of kohlrabi from the primary glucosinolates glucoerucin and glucobrassicin derived from desulfo-glucosinolates produced by three *ST5* genes (Figure 1, Supplementary Figure S1). Our results thus indicate that: (i) expression of all genes simultaneously is not required for glucosinolate biosynthesis in a particular organ; and (ii) the expression of a single gene or a few genes from each step is required to complete the glucosinolate biosynthesis. In addition, as in the stems of kohlrabi, expression of *MYB28* and contents of aliphatic glucosinolate were detected, but expression of genes related to side-chain elongation were extremely low compared to that in other subspecies, suggesting the involvement of other transcription factors recently reported [48], or there is possibility that glucosinolates were transported.

Glucosinolate concentrations are commonly estimated on a tissue dry weight basis. The variation in glucosinolate concentrations we found in the different edible parts might be related to the fact that leaves, stems and florets have differences in water content. Accordingly, glucosinolate concentration on a tissue fresh weight basis could be different from that on a tissue dry weight basis. Thus, the variation observed in glucosinolate content in our study comparing tissues on a dry weight basis might be explained as a methodological variation.

Velasco *et al.* [54] found that glucosinolate concentration in the floral parts of *B. oleracea* acephala subspecies greatly increases from 300 days of age, but that it decreases rapidly in the leaf samples of the same plants. In this study, we measured glucosinolate concentration only at one time point. Similar to our study, the presence of glucobrassicin, sinigrin and glucobrassicin was previously reported in all different subspecies of *B. oleracea* [55–57]. Likewise, in this study, other glucosinolates such as glucoraphanin, progoitrin, glucobrassicin, methoxyglucobrassicin, neoglucobrassicin and gluconasturtiin were also expressed in all three types of edible organs, such as in the leaves, stems and florets (Table 4). In *B. oleracea* var. *italica*, the patterns of glucosinolates were found to be mainly controlled genetically and less affected by environmental factors but several agronomic and environmental factors strongly influence the absolute content of various glucosinolates [2,58]. In particular, biosynthesis of aliphatic glucosinolates was found strongly genetically controlled in broccoli whereas that of indolic glucosinolates was controlled by genetic and environmental factors and by their interactions [59,60]. For example, high nitrogen and high sulphur content were found to increase the content of indolic glucobrassicin in cabbage cultivars [61,62].

Glucoraphanin and glucoiberin are the two most desirable glucosinolates from a nutritional perspective, whereas 2-hydroxy-3-butenyl (progoitrin) glucosinolate is undesirable as upon hydrolysis it produces oxazolidine-2-thione, which causes goiters in mammals and other harmful effects [56,63]. Glucoraphanin and glucoiberin were found in all four subspecies (Table 4). In this study, one of the cauliflower genotype measured no progoitrin (Supplementary Table S3). Wang *et al.* [56] found comparatively higher progoitrin
in commercial broccoli genotypes compared to inbred lines, 1.77–6.07 μmol·g⁻¹ and reported that it contributed around 20% of the total glucosinolates measured in that subspecies. Generally, *B. rapa* is abundant in that undesired glucosinolate [63]. The glucosinolates gluconapin, sinigrin, progoitrin, glucobrassicin and neoglucobrassicin show chemoprotective activity, but produce bitter and pungent isothiocyanates [60], so an excessive content might decrease consumer preference [64]. Cauliflower florets contained all five of these glucosinolates, whereas all but gluconapin were identified in all four subspecies under study (Table 4).

Among the four subspecies, the florets of cauliflower contained the highest number of glucosinolates with the lowest absolute content of progoitrin. This study thus identified that natural variation in glucosinolates and their absolute content exist among the edible organs of different *B. oleracea* subspecies, the results of which might be useful in breeding for glucosinolate contents or in transformation studies.

4. Conclusions

In this study, a total of 84 genes related to aliphatic, indolic and aromatic glucosinolate pathways or transcription/breakdown were subjected to RT-PCR-based analysis of expression in the edible organs of four species of *B. oleracea*. Only eight genes were expressed in the stem samples of kohlrabi, whereas majority of those genes were expressed in leaves of cabbage or kale and florets of cauliflower. The results are subject of further investigation as genotypic variation within subspecies is also evident along with subspecies difference. Out of 16 different types of identified glucosinolates, only five differed among the edible organs of four subspecies. Stems of kohlrabi contained the most glucoiberverin and glucobrassicanapin, whereas the florets of cauliflower had the highest contents of glucoraphanin, methoxyglucobrassicin and gluconasturtiin in the four-month-old plants. Overall, cauliflower florets had the highest number of glucosinolates and lacked undesirable progoitrin a genotype-dependent manner.

Supplementary Information

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/07/13089/s1.

Acknowledgments

We thank the Asia Seed Co., Ltd., Republic of Korea for providing *B. oleracea* seeds. This study was supported by the Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-3-SB110) of the Ministry of Agriculture, Food and Rural affairs in the Korea (MAFRA).

Author Contributions

I.S.N., T.J.Y., J.G.K. and J.P. conceived and designed the study. K.Y. conducted *in silico* analysis. G.Y. managed the experimental plants, collected samples, prepared cDNA and conducted HPLC analysis. A.H.K.R. provided technical advice to prepare tables and figures to G.Y. and K.Y., analyzed data and wrote the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.
References

1. Rodman, J.E.; Karol, K.G.; Price, R.A.; Sytsma, K.J. Molecules, morphology, and Dahlgren’s expanded order Capparales. *Syst. Bot.* **1996**, *28*, 289–307, doi:10.2307/2419660.

2. Schonhof, I.; Krumbein, A.; Brückner, B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. *Food Nahr.* **2004**, *48*, 25–33.

3. Padilla, G.; Cartea, M.E.; Velasco, P.; de Haro, A.; Ordás, A. Variation of glucosinolates in vegetable crops of Brassica rapa. *Phytochemistry* **2007**, *68*, 536–545.

4. Hayes, J.D.; Kelleher, M.O.; Eggleston, I.M. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. *Eur. J. Nutr.* **2008**, *47*, 73–88.

5. Rask, L.; Andréasson, E.; Ekbom, B.; Eriksson, S.; Pontoppidan, B.; Meijer, J. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. In *Plant Molecular Evolution*; Springer: Dordrecht, The Netherlands, 2000; pp. 93–113.

6. Wittstock, U.; Halkier, B.A. Cytochrome P450 CYP79A2 from *Arabidopsis* thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. *J. Biol. Chem.* **2000**, *275*, 14659–14666.

7. Bones, A.M.; Rossiter, J.T. The enzymic and chemically induced decomposition of glucosinolates. *Phytochemistry* **2006**, *67*, 1053–1067.

8. Keck, A.S.; Finley, J.W. Cruciferous vegetables: Cancer protective mechanisms of glucosinolate hydrolysis products and selenium. *Integr. Cancer Ther.* **2004**, *3*, 5–12.

9. Zhang, Y.; Kensler, T.W.; Cho, C.G.; Posner, G.H.; Talalay, P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. *Proc. Natl. Acad. Sci. USA* **1994**, *91*, 3147–3150.

10. Choi, H.S.; Cho, M.C.; Lee, H.G.; Yoon, D.Y. Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. *Food Chem. Toxicol.* **2010**, *48*, 883–890.

11. Hecht, S.S. Inhibition of carcinogenesis by isothiocyanates 1*. *Drug Metab. Rev.* **2000**, *32*, 395–411.

12. Nakajima, M.; Yoshida, R.; Shimada, N.; Yamazaki, H.; Yokoi, T. Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. *Drug Metab. Dispos.* **2001**, *29*, 1110–1113.

13. Halkier, B.A.; Gershenson, J. Biology and biochemistry of glucosinolates. *Annu. Rev. Plant Biol.* **2006**, *57*, 303–333.

14. Kusznierewicz, B.; Bartoszek, A.; Wolska, L.; Drzewiecki, J.; Gorinstein, S.; Namieśnik, J. Partial characterization of white cabbages (*Brassica oleracea* var. *capitata f. alba*) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. *LWT-Food Sci. Technol.* **2008**, *41*, 1–9.

15. Fahey, J.W.; Haristoy, X.; Dolan, P.M.; Kensler, T.W.; Scholtus, I.; Stephenson, K.K.; Lozniewski, A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 7610–7615.

16. Liu, Z.; Hirani, A.H.; McVetty, P.B.; Daayf, F.; Quiros, C.F.; Li, G. Reducing progoitrin and enriching glucoraphanin in *Brassica napus* seeds through silencing of the GSL-ALK gene family. *Plant Mol. Biol.* **2012**, *79*, 179–189.

17. Mithen, R.F. Glucosinolates and their degradation products. *Adv. Bot. Res.* **2001**, *35*, 213–262.
18. Sønderby, I.E.; Hansen, B.G.; Bjarnholt, N.; Ticconi, C.; Halkier, B.A.; Kliebenstein, D.J. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. *PLoS ONE* **2007**, *2*, doi:10.1371/journal.pone.0001322.

19. Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. *Trends Plant Sci.* **2006**, *11*, 89–100.

20. Sønderby, I.E.; Geu-Flores, F.; Halkier, B.A. Biosynthesis of glucosinolates—gene discovery and beyond. *Trends Plant Sci.* **2010**, *15*, 283–290.

21. Sørensen, H. Glucosinolates: Structure—properties—function. In *Canola and Rapeseed*; Springer: New York, NY, USA, 1990; pp. 149–172.

22. Mikkelsen, M.D.; Petersen, B.L.; Olsen, C.E.; Halkier, B.A. Biosynthesis and metabolic engineering of glucosinolates. *Amino Acids* **2002**, *22*, 279–295.

23. Kroymann, J.; Textor, S.; Tokuhisa, J.G.; Falk, K.L.; Bartram, S.; Gershenzon, J.; Mitchell-Olds, T. A gene controlling variation in *Arabidopsis* glucosinolate composition is part of the methionine chain elongation pathway. *Plant Physiol.* **2001**, *127*, 1077–1088.

24. Textor, S.; de Kraker, J.W.; Hause, B.; Gershenzon, J.; Tokuhisa, J.G. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in *Arabidopsis*. *Plant Physiol.* **2007**, *144*, 60–71.

25. Gigolashvili, T.; Yatusevich, R.; Rollwitz, I.; Humphry, M.; Gershenzon, J.; Flügge, U.I. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in *Arabidopsis thaliana*. *Plant Cell* **2009**, *21*, 1813–1829.

26. Sawada, Y.; Toyooka, K.; Kuwahara, A.; Sakata, A.; Nagano, M.; Saito, K.; Hirai, M.Y. *Arabidopsis* bile acid: Sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. *Plant Cell Physiol.* **2009**, *50*, 1579–1586.

27. Wittstock, U.; Halkier, B.A. Glucosinolate research in the *Arabidopsis* era. *Trends Plant Sci.* **2002**, *7*, 263–270.

28. Brader, G.; Mikkelsen, M.D.; Halkier, B.A.; Tapio Palva, E. Altering glucosinolate profiles modulates disease resistance in plants. *Plant J.* **2006**, *46*, 758–767.

29. Celenza, J.L.; Quiel, J.A.; Smolen, G.A.; Merrikh, H.; Silvestro, A.R.; Normanly, J.; Bender, J. The *Arabidopsis* ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. *Plant Physiol.* **2005**, *137*, 253–262.

30. Levy, M.; Wang, Q.; Kaspi, R.; Parrella, M.P.; Abel, S. *Arabidopsis* IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. *Plant J.* **2005**, *43*, 79–96.

31. Skirycz, A.; Reichelt, M.; Burow, M.; Birkemeyer, C.; Rolcik, J.; Kopka, J.; Witt, I. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in *Arabidopsis*. *Plant J.* **2006**, *47*, 10–24.

32. Gigolashvili, T.; Berger, B.; Mock, H.P.; Müller, C.; Weisshaar, B.; Flügge, U.I. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in *Arabidopsis thaliana*. *Plant J.* **2007**, *50*, 886–901.

33. Gigolashvili, T.; Yatusevich, R.; Berger, B.; Müller, C.; Flügge, U.I. The R2R3-MYB transcription factor HAG1/MYB51 regulates indolic glucosinolate biosynthesis in *Arabidopsis thaliana*. *New Phytol.* **2008**, *177*, 627–642.
35. Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.; Waminal, N.E. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, doi:10.1038/ncomms4930.

36. Araki, R.; Hasumi, A.; Nishizawa, O.I.; Sasaki, K.; Kuwahara, A.; Sawada; Y.; Totoki, Y.; Toyoda, A.; Sakaki, Y.; Li, Y.; et al. Novel bioresources for studies of Brassica oleracea: Identification of a kale MYB transcription factor responsible for glucosinolate production. Plant Biotechnol. J. 2013, 11, 1017–1027.

37. Maruyama-Nakashita, A.; Nakamura, Y.; Tohge, T.; Saito, K.; Takahashi, H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 2006, 18, 3235–3251.

38. Hirai, M.Y.; Sugiyama, K.; Sawada, Y.; Tohge, T.; Obayashi, T.; Suzuki, A.; Saito, K. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 6478–6483.

39. Malitsky, S.; Blum, E.; Less, H.; Venger, I.; Elbaz, M.; Morin, S.; Aharoni, A. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 2008, 148, 2021–2049.

40. Halkier, B.A.; Du, L. The biosynthesis of glucosinolates. Trends Plant Sci. 1997, 2, 425–431.

41. Yatusevich, R.; Mugford, S.G.; Matthewman, C.; Gigolashvili, T.; Frerigmann, H.; Delaney, S.; Kopriva, S. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J. 2010, 62, 1–11.

42. Wang, H.; Wu, J.; Sun, S.; Liu, B.; Cheng, F.; Sun, R.; Wang, X. Glucosinolate biosynthetic genes in Brassica rapa. Gene 2011, 487, 135–142.

43. Augustine, R.; Majee, M.; Gershenzon, J.; Bisht, N.C. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. J. Exp. Bot. 2013, 64, 4907–4921.

44. Kim, Y.B.; Li, X.; Kim, S.J.; Kim, H.H.; Lee, J.; Kim, H.; Park, S.U. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 2013, 18, 8682–8695.

45. Manoli, A.; Sturaro, A.; Trevisan, S.; Quaggiotti, S.; Nonis, A. Evaluation of candidate reference genes for qPCR in maize. J. Plant Physiol. 2012, 169, 807–815.

46. Han, X.; Lu, M.; Chen, Y.; Zhan, Z.; Cui, Q.; Wang, Y. Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS ONE 2012, 7, doi:10.1371/journal.pone.0043084.

47. Choi, S.H.; Park, S.; Lim, Y.P.; Kim, S.J.; Park, J.T.; An, G. Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Hortic. Environ. Biotechnol. 2014, 55, 237–247.

48. Frerigmann, H.; Berger, B.; Gigolashvili, T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiol. 2014, 166, 349–369.

49. Reintanz, B.; Lehnen, M.; Reichelt, M.; Gershenzon, J.; Kowalczyk, M.; Sandberg, G.; Palme, K. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 2001, 13, 351–367.
50. Douglas Grubb, C.; Zipp, B.J.; Ludwig-Müller, J.; Masuno, M.N.; Molinski, T.F.; Abel, S. *Arabidopsis* glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. *Plant J.* 2004, 40, 893–908.

51. Mikkelsen, M.D.; Hansen, C.H.; Wittstock, U.; Halkier, B.A. Cytochrome P450 CYP79B2 from *Arabidopsis* catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. *J. Biol. Chem.* 2000, 275, 33712–33717.

52. Zang, Y.X.; Kim, H.U.; Kim, J.A.; Lim, M.H.; Jin, M.; Lee, S.C.; Park, B.S. Genome-wide identification of glucosinolate synthesis genes in *Brassica rapa*. *FEBS J.* 2009, 276, 3559–3574.

53. Kabouw, P.; Biere, A.; van der Putten, W.H.; van Dam, N.M. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (*Brassica oleracea* var. capitata) cultivars. *J. Agric. Food Chem.* 2009, 58, 411–417.

54. Velasco, P.; Cartea, M.E.; González, C.; Vilar, M.; Ordás, A. Factors affecting the glucosinolate content of kale (*Brassica oleracea* acephala group). *J. Agric. Food Chem.* 2007, 55, 955–962.

55. Cartea, M.E.; Velasco, P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. *Phytochem. Rev.* 2008, 7, 213–229.

56. Wang, J.; Gu, H.; Yu, H.; Zhao, Z.; Sheng, X.; Zhang, X. Genotypic variation of glucosinolates in broccoli (*Brassica oleracea* var. *italica*) florets from China. *Food Chem.* 2012, 133, 735–741.

57. Cartea, M.E.; Velasco, P.; Obregón, S.; Padilla, G.; de Haro, A. Seasonal variation in glucosinolate content in *Brassica oleracea* crops grown in northwestern Spain. *Phytochemistry* 2008, 69, 403–410.

58. Vallejo, F.; Tomás-Barberán, F.A.; Benavente-García, A.G.; García-Viguera, C. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. *J. Sci. Food Agric.* 2003, 83, 307–313.

59. Brown, A.F.; Yousef, G.G.; Jeffery, E.H.; Klein, B.P.; Wallig, M.A.; Kushad, M.M.; Juvik, J.A. Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection. *J. Am. Soc. Hortic. Sci.* 2002, 127, 807–813.

60. Farnham, M.W.; Wilson, P.E.; Stephenson, K.K.; Fahey, J.W. Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. *Plant Breed.* 2004, 123, 60–65.

61. Kim, S.J.; Matsuo, T.; Watanabe, M.; Watanabe, Y. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (*Brassica rapa* L.). *Soil Sci. Plant Nutr.* 2002, 48, 43–49.

62. Rosen, C.J.; Fritz, V.A.; Gardner, G.M.; Hecht, S.S.; Carmella, S.G.; Kenney, P.M. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. *HortScience* 2005, 40, 1493–1498.

63. Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition: A review. *Anim. Feed Sci. Technol.* 2007, 132, 1–27.

64. Traka, M.; Mithen, R. Glucosinolates, isothiocyanates and human health. *Phytochem. Rev.* 2009, 8, 269–282.

Sample Availability: Seeds of the genotypes and cDNA are available from the authors.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).