Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands

Yongcun Zhaoa, Meiyan Wang, Shuijun Hu, Xuoding Zhang, Zhu Ouyang, Ganlin Zhang, Biao Huang, Shiwei Zhao, Jinshui Wuh, Deti Xiei, Bo Zhu, Dongsheng Yu, Xianzhang Pan, Shengxiang Xu, and Xuezheng Shi

*State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; bCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; cDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100, China; Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China

Edited by Susan E. Trumbore, Max Planck Institute for Biogeochemistry, Jena, Germany, and approved August 22, 2017 (received for review February 13, 2017)

China’s croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that the average SOC stock in the topsoil (0–20 cm) increased from 28.6 Mg C ha$^{-1}$ in 1980 to 32.9 Mg C ha$^{-1}$ in 2011, representing a net increase of 140 kg C ha$^{-1}$ year$^{-1}$. However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may limit the potential of using SOC to mitigate climate change.

Materials and Methods

We determined the changes in soil organic carbon in Chinese croplands by analyzing soil samples collected by the Second National Soil Survey of China in 1980 and the Third National Soil Survey of China in 2011. The sampling sites were either identical or very adjacent to the soil sampling locations recorded by the Second National Soil Survey of China in 1980. The sample sizes in this study are 4,060 and 9,906, respectively. The SOC measurements were conducted according to the Chinese national standard GB/T 15618-2008 (1). The soil samples were analyzed for SOC content using a total carbon analyzer (Elementar Vario EL III). The soil samples were air-dried and sieved to less than 2 mm before analysis.

Significance

Soil organic carbon (C) stock in Chinese croplands increased by about 140 kg C ha$^{-1}$ year$^{-1}$ from 1980 to 2011. This soil organic C sequestration was largely due to drastic changes in management practices, such as fertilization, tillage, and residue treatments, induced by economic and policy incentives. Our analysis also indicates that excessive N inputs and inability to incorporate residue C into deeper soils will likely constrain the future C sequestration in Chinese croplands. These findings provide new insights into the causes and limitations of economic- and policy-driven soil C sequestration in China and offer some guidance for soil C management in many developing countries that are going through the similar economic and social transformations.

Author contributions: X.S. designed research; Y.Z., M.W., X.Z., Z.O., G.Z., B.H., S.Z., J.W., D.X., B.Z., D.Y., X.P., and S.X. performed research; Y.Z., M.W., S.H., and X.S. analyzed data; and Y.Z., M.W., S.H., and X.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700292114/-/DCSupplemental.

Published online April 16, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1700292114

PNAS | April 17, 2018 | vol. 115 | no. 16 | 4045–4050
SOC over the three decades and identified the dominant agro-
nomic, economic, and policy drivers and their implications for future C sequestration in Chinese croplands.

Results and Discussion

SOC Stocks and Crop Residue Return. The area-weighted mean SOC stock (0–20 cm) in 2011, as represented by 58 counties across China, was 32.90 Mg C ha$^{-1}$, with a 95% confidence interval of 32.34–33.47 Mg C ha$^{-1}$ (Table 1). The SOC stock varied significantly among regions, ranging from about 21.0 Mg C ha$^{-1}$ in Northwest China, and Northeast China, to 42.2 Mg C ha$^{-1}$ in North China. SOC stocks in the southern parts of China (including Southwest, South Central, and East China) were intermediate, ranging from ~30.0–34.1 Mg C ha$^{-1}$. Area-weighted mean SOC stocks among the 58 counties investigated also exhibited substantial variations with the county level SOC stock, ranging from 13.2 to 69.6 Mg C ha$^{-1}$ (Table S1). The average amount of residue return via crop straw/stover incorporation (that is, the plant residues were left in place and plowed into the soil rather than burned or removed) in 2011 was 0.89 Mg C ha$^{-1}$ (Table 1). Crop straw/stover input was highest in North China, at an average of 1.38 Mg C ha$^{-1}$, and was lowest in Northeast China, with only 0.39 Mg C ha$^{-1}$ in 2011 (Table 1).

SOC Stock Changes Between 1980 and 2011. The topsoil SOC stock (0–20 cm) in Chinese croplands increased from 28.56 Mg C ha$^{-1}$ (27.91–29.23 Mg C ha$^{-1}$) in 1980 to 32.90 Mg C ha$^{-1}$ (32.34–33.47 Mg C ha$^{-1}$) in 2011 (Fig. 1 and Table 1). Net increment of SOC stocks during that period was 4.34 Mg C ha$^{-1}$ (3.44–5.22 Mg C ha$^{-1}$) (Fig. 1), representing an average increase of 140 kg C ha$^{-1}$ y$^{-1}$ (111–168 kg C ha$^{-1}$ y$^{-1}$). Overall, cropland soils in China functioned as a significant carbon sink during this period. However, there was a significant difference in the SOC stock among the major agronomic regions: SOC stocks in croplands of East China, South Central China, Southwest China, North China, and Northwest China increased by 8.33, 6.67, 5.49, 5.14, and 2.84 Mg C ha$^{-1}$, respectively, while croplands in Northeast China lost 0.41 Mg C ha$^{-1}$ (Fig. 1), equivalent to ~1% of the baseline SOC stock in 1980.

The SOC sequestration rate in China was significantly higher than in Europe and the United States. Across England and Wales, Bellamy et al. (12) reported a C loss of about 300 kg C ha$^{-1}$ y$^{-1}$ from the upper 15-cm soils over the period of 1978–2003. Similarly, repeated sampling of Belgian cropland soils indicated a mean annual soil C loss of 760 kg C ha$^{-1}$ between 1989 and 1999 (13, 14). The estimates across Europe were more variable. Based on the compiled SOC inventory data, Ciais et al. (15) inferred a mean C loss of 170 kg C ha$^{-1}$ y$^{-1}$ for croplands of EU-25 over the past several decades. Results from three process-based models disagreed on the direction and magnitude of change, from a loss of 76 kg C ha$^{-1}$ y$^{-1}$ to a gain of 150 kg C ha$^{-1}$ y$^{-1}$ (15). Still, these numbers were significantly lower than what were estimated by Janssens et al. (13), who reported a loss of 900 (±500) kg C ha$^{-1}$ y$^{-1}$. In the United States, estimates using the inventory method developed by the Intergovernmental Panel on Climate Change indicated a moderate amount of SOC accumulation in United States cropland soils (upper 30 cm) at 28–35 kg C ha$^{-1}$ y$^{-1}$ from 1982 to 1997 (16). The Century model estimated that SOC stocks in United States croplands increased by 38 and 45 kg C ha$^{-1}$ y$^{-1}$ from 1990 to 1995 and from 1995 to 2000, respectively (17).

The total SOC stock in topsoils of Chinese croplands increased by 0.56 Pg C (cropland area: 130 M ha) over the last three decades, with a rate of change at 18.1 Tg C y$^{-1}$. Using the average soil C:N of 10.5 derived from 4,060 soil samples in 2011, we estimated that about 53 Mt N was simultaneously stored in the soils. The sequestered N in the increased soil organic matter (SOM) is approximately equivalent to 2.2 times China’s N fertilizer consumption in 2014 (23.93 Mt, National Bureau of Statistics of China, data.stats.gov.cn), indicating that cropland C sequestration also has significant benefits to soil nutrient supplies.

Table 1. Area-weighted mean SOC stocks (0–20 cm) and amounts of returned crop straw/stover in 2011 (N refers to the number of counties investigated; the lower and upper limits of SOC stock refer to the 95% confidence intervals of the bootstrap estimates)

Region	n	Mean (Mg C ha$^{-1}$)	Lower limits (Mg C ha$^{-1}$)	Upper limits (Mg C ha$^{-1}$)	Straw/stover residue input (Mg C ha$^{-1}$)
Northeast China	8	42.20	40.68	43.76	0.39
North China	6	21.15	20.04	22.33	1.38
East China	16	30.42	29.79	31.03	0.82
Southwest China	8	34.07	32.66	35.56	0.72
South Central China	13	29.59	28.83	30.34	1.16
Northwest China	7	20.98	20.31	21.73	0.84
Whole China	58	32.90	32.34	33.47	0.89

Fig. 1. Area-weighted mean SOC stocks (0–20 cm) in croplands of China’s six agronomic regions (EC, East China; NC, North China; NE, Northeast China; NW, Northwest China; SC, South Central China; and SW, Southwest China). Bars represent 95% confidence intervals of the bootstrap estimates.
Therefore, soils with high clay content may provide physical and chemical protection of organic matter from decomposition (19).

Initial SOC levels accounted for more than 30% of the variation in observed changes in SOC stocks (Fig. S24). The inversely proportional effect of the initial SOC on the SOC change (negative baseline effect) (Fig. S24) indicated that cropland SOC in China was not at steady state in 1980. The initial SOC stocks in most Chinese croplands in 1980 were very low (except for the black soil region in Northeast China) due to 1,000 y of cultivation and continual agricultural use (20). Furthermore, in the vast North China Plain, most croplands were recently reclaimed from saline and alkaline lands with extremely low productivity and organic C (7). In the Loess Plateau of Northwest China, soil erosion is a major cause of initial low soil C stock (21). Chinese croplands had an initial SOC stock (upper 20 cm) of about 26.63–28.56 Mg C ha\(^{-1}\) in 1980, based on different estimates using the Second National Soil Survey data (Table S2). In contrast, Europe and the United States had much higher initial SOC stocks, being about 40.2 and 43.67 Mg C ha\(^{-1}\), respectively (Table S2). For example, cropland soils in Belgium had a SOC stock of 38 and 39 Mg C ha\(^{-1}\) in 1960 and 1990, respectively and have lost C since (Table S2). In addition, application of N fertilizer is often recommended to increase SOC on cropping lands that have low SOC due to long-term cultivation (2), because N fertilizer affects crop dry matter production and therefore C inputs to soils. Crop straw/stover incorporation influences the direct C inputs to soils. High crop residue C and N fertilizer inputs were often associated with high rates of SOC changes (Figs. S28 and S34). Together, these results imply that the low initial SOC stocks in 1980 provided prerequisites for the SOC sequestration that was primarily due to enhancement of crop residue inputs.

Causes of Soil C Sequestration. Our results, together with the SOC inventory estimates by Yan et al. (11) and data from a meta-analysis of cropland soil monitoring literatures by Pan et al. (9), confirmed that cropland soils in China functioned as a significant carbon sink over the last three decades. The net increase in SOC indicates that organic C inputs were quantitatively higher than organic C losses (mainly through decomposition). Because soil C losses were likely associated with organic C inputs, we examined the C inputs during this period of rapid transformation of agriculture in China.

Organic material inputs to Chinese croplands went through three distinct stages that were closely related to the social and economic changes over the past decades. The first stage was characterized by low organic material inputs in the late 1970s (Fig. 24). Labor-intensive manuring and plowing was a common practice then, whereas chemical fertilization was very limited, resulting in low crop productivity. Crop straw/stover in this stage was mainly used as a fuel/fodder; even crop roots (i.e., corn root) were dug out for fuel (22). Consequently, limited farmyard manure production, low root biomass input to soil, and crop residue removal limited the potential for soil C accumulation. The second stage (1980–1999) was dictated by steadily increasing inputs of root biomass resulting from chemical fertilization (Fig. 2B). Crop biomass and grain yield increased dramatically with the increasing chemical fertilizer inputs (23); only a small fraction of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made disposal of large amounts of residues a costly task. Straw burning began to appear in the 1990s. Although root inputs to soil increased significantly with increasing chemical fertilizer inputs, straw/stover return during this stage was still limited, constraining the soil C accumulation. The third stage started around 2000 when straw burning became the most common practice (25) to further reduce labor requirements. More importantly, intensive field burning activities caused severe air pollution, even closures of airports and highways. This prompted the government to enhance the monitoring of fire spots and ban straw burning through both administrative and economic penalties. In 1999, the crop residue return policy was strengthened, and implementation was required. To promote the implementation of crop residue return, the Chinese government introduced various economic incentives to the farmers and demonstration program (26), which led to more and more government introduced various economic incentives to the farmers and demonstration program (26), which led to more and more farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made disposal of large amounts of residues a costly task. Straw burning began to appear in the 1990s. Although root inputs to soil increased significantly with increasing chemical fertilizer inputs, straw/stover return during this stage was still limited, constraining the soil C accumulation. The third stage started around 2000 when straw burning became the most common practice (25) to further reduce labor requirements. More importantly, intensive field burning activities caused severe air pollution, even closures of airports and highways. This prompted the government to enhance the monitoring of fire spots and ban straw burning through both administrative and economic penalties. In 1999, the crop residue return policy was strengthened, and implementation was required. To promote the implementation of crop residue return, the Chinese government introduced various economic incentives to the farmers and demonstration program (26), which led to more and more farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24). Labor shortage due to massive migration of farmers to cities and availability of alternative energy sources, such as coal and electricity, made dispersal of large amounts of straw/stover was used for composting or as animal bedding and then returned to the field. Labor-intensive manuring and plowing practices decreased due to the decline in economic gains and the rising labor cost, compared with chemical fertilization (24).
were 7.96 and 10.67 Mg C ha$^{-1}$ continuously but at a slower rate (Fig. 2). On average, the net increase since the early 1990s, whereas root C inputs increased straw/stover C inputs were minimal at first in 1980 and then the 4,060 field sites in the 58 counties investigated, average increase SOC concentration before the soil C is saturated. Across ally, increasing C input through return of crop residues can in- straw/stover and root C inputs increased steadily, with a rate of while the rate of root C inputs stabilized at 0.016 Mg C ha$^{-1}$ (mean C input was only 0.005 Mg C ha$^{-1}$). Contributions of Crop Residue Inputs to SOC Sequestration. Generally, increasing C input through return of crop residues can increase SOC concentration before the soil C is saturated. Across the 4,060 field sites in the 58 counties investigated, average straw/stover C inputs were minimal at first in 1980 and then increased since the early 1990s, whereas root C inputs increased continuously but at a slower rate (Fig. 2B). On average, the net increments of cumulative C inputs by crop roots and straw/stover were 7.96 and 10.67 Mg C ha$^{-1}$, respectively, during the periods of 1980 and 2010. Changes in average crop residue C inputs during 1980–1989 were characterized by small net C input (Fig. 2B). Straw/stover C inputs in this period were minimal, stabilized at a low level (mean C input was only 0.005 Mg C ha$^{-1}$ y$^{-1}$, whereas root C inputs were 0.57 Mg C ha$^{-1}$ y$^{-1}$). From 1990 to 1999, both straw/stover and root C inputs increased steadily, with a rate of 0.023 and 0.018 Mg C ha$^{-1}$ y$^{-1}$, respectively. After 2000, straw/stover C inputs increased rapidly, with a rate of 0.077 Mg C ha$^{-1}$ y$^{-1}$ while the rate of root C inputs stabilized at 0.016 Mg C ha$^{-1}$ y$^{-1}$ during this period. To quantify the apparent conversion rate of crop residue (root plus straw/stover) C inputs to SOC, a linear regression analysis of SOC change rates by crop residue C inputs at the county level was conducted (Fig. S2B). A slope of 0.163 for the fitted regression model revealed that, on average, 16.3% of the crop residue C inputs were retained in the topsoil of Chinese croplands over the last three decades. Incorporation of crop roots and straw/stover has resulted in a SOC increment of roughly 1.30 and 1.74 Mg C ha$^{-1}$, respectively. Because the net increment of SOC over the last three decades was 4.34 Mg C ha$^{-1}$ (Fig. 1), the contribution of other C inputs (i.e., manure) to SOC increment can be indirectly estimated at 1.30 Mg C ha$^{-1}$. Consequently, the root, straw/stover, and other C inputs contributed to about 30%, 40%, and 30% of total SOC stock increment, respectively.

Effects of Chemical N Fertilizers on SOC Sequestration. Enhanced crop biomass production resulting from increasing fertilizer inputs, in particular low-cost N fertilizers, has made a significant contribution to the SOC sequestration over the past three decades (7, 27). However, negative effects of chemical N fertilizer inputs on SOC accumulation began to appear. The rate of SOC sequestration in Chinese croplands continuously increased with cumulative chemical N fertilizer inputs at below approximately 290 kg N ha$^{-1}$ y$^{-1}$ but decreased thereafter (Fig. S3A). The cumulative N fertilizer inputs were positively correlated with the rate of SOC sequestration in the Northwest, North, and Southwest China (Fig. S3 B–D). In contrast, N inputs were negatively related to rate of SOC change in the East China (Fig. S3E), raising questions about the sustainability of C sequestration depending on nutrient-enhanced productivity. Chemical N inputs in China are abnormally high (33). Excessive chemical N inputs may constrain SOC sequestration in soils through stimulating decomposition of cellulose-dominated crop residues (34), reducing C retention efficiency by favoring bacteria over fungi (35), and even limiting root growth by stimulating soil acidification (36). They also lead to environmental problems, such as greenhouse gas (N$_2$O in particular) emissions and serious water pollution (33, 36). Chemical fertilizers have been key to the agricultural intensification in China. The pursuit of high yield and fertilizer-dependent grain yields led Chinese farmers to believe that “the more the chemical fertilizer, the higher the crop yield.” Thus, nutrient excesses are widespread and an optimal balance between cost and benefit is missed (23). Although N fertilizer will continue to be indispensable for China’s quest to produce sufficient food to meet its growing demand, the use of fertilizer added in China has declined (37). Consequently, as an important component of agricultural intensification and increasing C sequestration, new strategies for rational use of N fertilizer in croplands of China need to be developed.

Implications and Perspectives. We present an extensive examination of changes in SOC in China’s croplands from 1980 to 2011 and find that a significant SOC sequestration occurred during this period. Multiple factors contributed to this C sequestration, including the extremely low initial SOC content and increased residue inputs first due to enhancement of productivity by fertilizers and then policy-required straw return. Our results demonstrate that it is possible to promote economic benefits for farmers and environmental protection by enhancing SOC sequestration in croplands. However, this needs to incorporate economic and policy incentives. Although SOC is the core of soil fertility, it is a long-term process for the SOC build-up before farmers can harness significant economic benefits. Economic incentives should be established to compensate for the potential short-term losses experienced by farmers who adopt SOC-promoting practices.

Our analyses also identified challenges for future C sequestration in China’s croplands. One major factor for the residue-dependent C sequestration is that the plow layer of most crop fields is too shallow to allow SOC accumulation at depth. Tillage is still indispensable to most Chinese cropping systems because China’s priority is to maintain or increase yields but long-term
no-tillage management may reduce yields. Additionally, many Chinese farmers do not have access to specialized planting equipment and chemical herbicides that are suitable for no-till systems. Tillage with animal-drawn implements was widespread in the early 1980s, and then the animal power was gradually replaced by low-power shallow tillage machineries, in particular rototiller with tilled depth usually less than 15 cm. Tillage practices facilitate crop residue incorporation and mixing of soil layers, leading to a more homogeneous C distribution across the entire tilled soil profile than the no-till systems (38). However, the long-term continuous shallow tillage and tractor wheel traffic in the field has made the plow layer shallower, and the plow pan thicker, harder, and closer to the surface, which critically limits the capacity of C preservation and crop productivity. Incorporating residues into the soil by tillage or leaving residues on the soil surface constitutes a dilemma for promoting C sequestration, as the former increases soil disturbance and decomposition of SOM, while the latter potentially limits soil C sequestration because most surface-placed residues decompose before reaching the mineral soil layer (39, 40). The intensity of Chinese cropping systems is very high and the time interval (window) between subsequent crops is very short. In the North China Plain, for example, the maize must be sown immediately once wheat is harvested. A large amount of straw/stover, if left on the soil surface, negatively affects germination of the subsequent crop plants and often induces diseases, prompting the farmers to burn the straw. Protection of organic C by the soil matrix is a primary mechanism for SOC stability (41). Conversion to deep tillage (a depth of 30 cm) after long-term shallow tillage (upper 10–12 cm; i.e., rotary tillage or harrow tillage) has been reported to improve soil carbon sequestration and crop yield in North China (42). While in the warm and humid South China, decomposition is fast and the shallow plow pan inhibits root penetration. Although residue incorporation by tillage may cause disturbance, soils in these regions contain high contents of iron and aluminum oxides and mineral clays, particularly in Oxisols, that can protect organic C from decomposition (43–45). Therefore, rational tillage rotation with deep tillage after long-term shallow tillage (i.e., tilling to a depth of 30 cm once every 2–3 y) has been shown to be an effective practice to facilitate C sequestration across China (42, 46, 47). However, the extremely low labor cost of animal-drawn tillage implements in small size of farms in China generate very limited net profits for each farm. Consequently, most farmers are unable to acquire high-cost and deep-till machineries needed for deep tillage. Therefore, one priority should be to enable farmers to have access to powerful deep-tillage machinery that can incorporate residues into deep soils. The recently proposed Rural Land Circulation policy in China is promising for further aggregation of small cropland patches for large-scale grain production so that integrated crop residue return policy and suitable tillage rotation can be applied at a reasonable cost.

The second challenge is that high N inputs may constrain future soil C accumulation, as shown by the negative relationship between N inputs and soil organic C in croplands of East China. Small farm sizes and high chemical inputs have reenforced a positive feedback loop in which requests for high yields requires high N inputs. High N inputs not only reduce root production but also reduce farmers’ enthusiasm for organic inputs. High chemical N inputs lead to soil acidity and even heavy metal toxicity, constituting the primary factor that leads to soil degradation in China (36). The exact mechanisms and their relative contributions to limiting soil C accumulation are not fully understood. The new research initiative of fertilizer reduction and related processes may help to understand these mechanisms and related processes.

For fostering both food production and potential C sequestration, the Chinese government also needs to modify policies to educate and award good management practices. The current incentives for residue return are most often “direct” subsidies, such as cash rewards for farmers (approximately $25–75 ha−1) and discount for straw-returning machine acquisition (20–30% purchase cost), depending on the economic levels of different regions. Such subsidy policy is largely supported by the quick development of China’s industrial economy. However, farmers’ enthusiasm may fade once such “direct” subsidy decreases or is ceased. One major challenge facing China’s agriculture is a severe labor shortage, with old people and women with low education levels being the primary rural labor force. Thus, long-term sustainable residue return practices that rely less on manual work would be essential. Consequently, the development of farmer-friendly (simple, effective, and time-saving) residue incorporation techniques and specialized tillage machineries with relatively low soil disturbance is also important. Moreover, livestock and poultry manure utilization, a key task in China’s “Fertilizer Use Zero-Growth Action Plan by 2020,” may benefit the potential C sequestration in Chinese croplands, but policies and supporting technologies for eliminating the potential risks of heavy metal pollutants due to manure applications also need to be developed.

Finally, our findings may provide some guidance for residue management for cropland C sequestration in many developing countries. Because of low productivity and residue removal for fuel or feed, low organic C inputs are the primary factor limiting SOC accumulation in many developing countries (1, 3, 23). The substantial contributions of Chinese crop residue return policy to SOC sequestration also indicates that the solutions for China may potentially be applicable in other developing countries where similar experiences and challenges exist, particularly in Southeast Asia and South Asia. Lessons from the excessive N fertilizer uses in China can be learned (36). However, crop residue return may not be equally effective in sequestering C in different countries due to regional differences in biogeochemical, climatic, and socioeconomic conditions. Therefore, scientific knowledge and technologies, economic and policy incentives, and stakeholder’s active participation are inseparable components to realize the potential of global cropland C sequestration and agricultural sustainability.

Materials and Methods

Soil Data and Estimates of SOC Changes. China conducted its second national soil survey across the country in 1980 and all of the major croplands that covered typical soil types and cropping systems were sampled. This nationwide effort generated the most comprehensive and detailed legacy data that are available so far for extracting historical information on soil properties of China (11). In 2011, we collected 4,060 topsoil (0–20 cm) samples in 58 counties across China (Fig. S1). These sample sites were chosen to (i) match the 1980s sample sites as closely as possible, (ii) be on identical soil types (soil series) and topographic characteristics, and (iii) have the most typical cropping system around the sites. The soil samples were collected by using a process of composite sampling (SI Materials and Methods). The topsoil was sampled to a depth of 20 cm, because the thickness of topsoil in China is generally less than 30 cm and the upper 20 cm was consistently sampled in the second national soil survey in 1980 (6).

Data on SOM, bulk density, and rock fragment contents were obtained from the reports of the second national soil survey of China in 1980 and the resampling campaign in 2011, respectively. Identical methods were used for measuring SOM contents and total SOC stock for both sampling dates. Briefly, SOM contents (the SOM here means SOC × 1.724) were measured using the potassium dichromate oxidation with external heating method, and bulk densities were measured using the cutting ring method (48). For each of the sampling sites, the SOC content is calculated by multiplying SOM by 0.58, and the SOC by volume (Mg C ha−1) was calculated by: CΩ × BDΩ × Depth × (1 − RF)/10, where CΩ is the organic C content (fine soil, the part of the soil that passes through a 2-mm sieve, g kg−1), BDΩ is the fine soil bulk density (g cm−3), Depth represents topsoil thickness in centimeters (20 cm in this study), and RF represents the volume fraction of rock fragments (<2 mm). The site-level SOC stocks were further aggregated to county and then to region scales using the area-weighted mean method. For each county, the mean SOC stock per soil type in the county was first.

Zhao et al.
calculated, and then the areas of each soil type recorded in the soil survey report of the county were used as weights to calculate the area-weighted mean of SOC stock for the county. For each region, the mean SOC stock per investigated county in the region and the soil areas of the investigated counties were used to derive the area-weighted mean SOC stock for the region.

The locations of the 1980s sample sites were mainly recorded by text descriptions in soil survey reports of each county because GPS was not available then. Thus, some errors in relocating the 2011 sample locations may have occurred. To obtain a robust estimate of SOC stock and its change, during the area-weighting mean calculation of SOC stocks, bootstraps with 10,000 times of repeat sampling were applied to derive the 95% confidence interval of the estimates (SI Materials and Methods), and the median of the estimates was used to represent the area-weighted mean SOC stock. It should be noted that the estimates of SOC change made in this paper did not consider effects of lateral C transport on soil C stocks.

C Input from Crop Residues (Root Plus Straw/Stover). The C input into the soil was calculated based on the county-level major crop yields. For each county, the annual crop residue C input (Mg C ha⁻¹) during 1980–2010 was estimated based on the sum of root and straw/stover C inputs of individual crops divided by the total cropland area at the corresponding year (SI Materials and Methods and Tables S3 and S4). Only staple grain crops (wheat, corn, paddy rice), oil plants (soybean, rapeseed), and cotton for each of the 58 counties were considered as sources of crop residue C inputs, as yield data for these crops during the last 30 y were readily available from the agricultural census yearbook of each county.

ACKNOWLEDGMENTS. We thank Prof. Jingyun Fang and Prof. Gurusu Yu for their suggestions in preparing this manuscript; and many other scientists, particularly Drs. Xiaozeng Han, Chunsheng Hu, Chengyi Zhao, Huifeng Hu, Nianpeng He, and Qifeng Wang, for their help in data collection. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDA05050000) and the National Natural Science Foundation of China (Grants 41471117, 41401240, and 41571209).

1. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627.
2. Schlesinger WH (1999) Carbon and agriculture—Carbon sequestration in soils. Science 284:2095.
3. Lal R (2001) World cropland soils as a source or sink for atmospheric carbon. Adv Agron 71:145–191.
4. van Wesemael B, et al. (2010) Agricultural management explains historic changes in regional soil carbon stocks. Proc Natl Acad Sci USA 107:14926–14930.
5. Shen JB, et al. (2013) Transforming Agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob Food Secur 2:1–8.
6. Liao QL, et al. (2009) Increase in soil organic carbon stock over the last two decades in Jiangsu Province. Glob Chang Biol 15:861–875.
7. Liao Y, Wu WL, Meng FQ, Smith P, Lal R (2015) Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 12:1403–1413.
8. Li G, et al. (2003) Modeling soil organic carbon change in croplands of China. Ecol Appl 13:327–336.
9. Pan GX, Xu XW, Smith P, Pan WN, Lal R (2010) An increase in topsoil SOC of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric Ecosyst Environ 136:133–138.
10. Tang HJ, Qiu J, Van Ranst E, Li CS (2006) Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma 134:200–206.
11. Yan XY, Cai ZC, Wang SW, Smith P (2011) Direct measurement of soil organic carbon content change in the croplands of China. Glob Chang Biol 17:1487–1496.
12. Bellamy PH, Loveland PJ, Bradley RJ, Lark RM, Kirk GD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248.
13. Janssens IA, et al. (2003) Europe’s terrestrial biosphere absorbs 7% to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542.
14. Steuret S, De Neve S, Hofman G (2003) Estimates of carbon stock changes in Belgian cropland. Soil Use Manage 19:166–171.
15. Ciais P, et al. (2010) The European carbon balance. Part 2: Croplands. Glob Chang Biol 16:1409–1428.
16. Ogle SM, Breidt FJ, Eve MD, Paustian K (2003) Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Glob Chang Biol 9:1521–1542.
17. Ogle SM, et al. (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob Chang Biol 16:810–822.
18. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301.
19. Oades JM (1988) The retention of organic-matter in soils. Biogeochemistry 5:35–70.
20. Song GH, Li-LQ, Pan GX, Zhang Q (2005) Topsoil organic carbon storage of China and its loss by cultivation. Biogeography 74:47–62.
21. Zheng F, Wang B (2014) Soil erosion in the Loess Plateau region of China. Restoration and Development of the Degraded Loess Plateau, China, eds Tszunekawa A, Liu G, Yamanaka N, Du S (Springer, Tokyo), pp 77–92.
22. Shen S (1998) Chinese Soil Fertility (Chinese Agricultural Press, Beijing).
23. Vitousek PM, et al. (2009) Agriculture. Nutrient imbalances in agricultural development. Science 324:1519–1520.
24. Hao C, Sun B, Zhang TL (2006) Sustainable nutrient management in Chinese agriculture: Challenges and perspective. Pedosphere 16:253–263.
25. Qu C, Li B, Wu H, Giesy JP (2012) Controlling air pollution from straw burning in China. Adv Environ Sci Technol 49:734–7936.
26. Gale F (2013) Growth and evolution in China’s agricultural support policies (US Department of Agriculture, Economic Research Service, Washington, DC, ERR-153).
27. Huang Y, Sun WJ (2006) Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin Sci Bull 51:1785–1803.
28. Chen S, van Heesden J, van Wesemael B, Muys B, Perrin D (2005) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Chang Biol 11:2128–2140.