A decision analytical cost analysis of offering ECV in a UK district general hospital
Marilyn James*, Kevin Hunt1, Robin Burr2 and Richard Johanson2

Address: 1Centre for Health Planning & Management, Keele University, Keele, Staffs, ST5 5BG, UK and 2North Staffordshire Hospital NHS Trust, Maternity Unit, Newcastle Road, Newcastle, Staffs, ST4 6QG, UK
E-mail: Marilyn James* - m.james@keele.ac.uk; Kevin Hunt - hma13@keele.ac.uk; Robin Burr - nicola@kogs.freeserve.co.uk; Richard Johanson - richard@kogs.freeserve.co.uk
*Corresponding author

Abstract

Objective: To determine the care pathways and implications of offering mothers the choice of external cephalic version (ECV) at term for singleton babies who present with an uncomplicated breech pregnancy versus assisted breech delivery or elective caesarean.

Design: A prospective observational audit to construct a decision analysis of uncomplicated full term breech presentations.

Setting: The North Staffordshire NHS Trust.

Subjects: All women (n = 176) who presented at full term with a breech baby without complications during July 1995 and June 1997.

Main outcome measures: The study determined to compare the outcome in terms of the costs and cost consequences for the care pathways that resulted from whether a women chose to accept the offer of ECV or not. All the associated events were then mapped for the two possible pathways. The costs were considered only within the hospital setting, from the perspective of the health care provider up to the point of delivery.

Results: The additional costs for ECV, assisted breech delivery and elective caesarean over and above a normal birth were £186.70, £425.36 and £1,955.22 respectively. The total expected cost of the respective care pathways for "ECV accepted" and "ECV not accepted" (including the probability of adverse events) were £1,452 and £1,828 respectively, that is the cost of delivery through the ECV care pathways is less costly than the non ECV delivery care pathway.

Conclusions: Implementing an ECV service may yield cost savings in secondary care over and above the traditional delivery methods for breech birth of assisted delivery or caesarean section. The scale of these expected cost savings are in the range of £248 to £376 per patient. This converts to a total expected cost saving of between £43,616 and £44,544 for the patient cohort considered in this study.

Introduction

The incidence of breech presentation at term is between 3-4%. [1] Breech presentations are at a greater risk of perinatal and neonatal mortality and morbidity than ce-
phalic presentations,[2] with an excess risk of neonatal death quoted of 4/1,000.[3]

Currently 70-80% of breech presentations are dealt with by caesarean section.[4,5] This is the third highest contribution to the rise in caesarean births seen in the past two decades.[6]

Two standard strategies remain widely accepted for the management of breech presentations; (i) assisted vaginal delivery for selected low risk patients and (ii) elective caesarean section.

More recently, external cephalic version (ECV), the manipulative transabdominal conversion of the breech to cephalic presentation, has come to be recognised as a third alternative for uncomplicated breech presentations at 37+ weeks for low risk patients. Evidence suggests that ECV is a safe and successful method for correcting breech presentations.[7] Success rates vary between 48 and 77%.[1,8]

The Royal College of Obstetricians and Gynaecologists recommends that all women with an uncomplicated breech presentation at term should be offered ECV.[9]

Methods
The Setting
A good practice standard that "100% of women with an uncomplicated breech presentation at term should be offered ECV", was introduced by the North Staffordshire NHS Trust (ASQUAM Project) in 1995.[10] Women who presented with an uncomplicated pregnancy at term were offered the choice of an ECV in the antenatal clinic or community, this will be 80% of the number of breech presentations. ECV was done in early or late pregnancy none of the cases were in labour or were repetitions. ECV is a low risk procedure to both the fetus and the mother. There is less than a 1% risk to the fetus and an even smaller risk to the mother in terms of fetal complications.

This work presents a prospective audit of practice during a two year period: July 1995 to June 1997. It considers two options whether patients accept ECV management of a breech pregnancy or not and the resultant care pathway. The study design was observational cohort analysis.

"Changing Childbirth"[11] placed considerable emphasis on patient choice, therefore a randomised controlled trial was inappropriate. The UK Changing Childbirth initiative was created to increase women's participation in the decision making process relating to pregnancy. All patients who were offered ECV at the North Staffordshire Hospital during the period from July 1995 to June 1997 were recorded in the cohort - 176 in total. The viewpoint chosen was from the secondary care sector.

The analysis focused on comparing the cost consequences of "ECV offer accepted" and "ECV offer not accepted." Each event following this decision was plotted on a decision tree using a decision analytical approach. The resulting decision tree is presented in Figure 1.

Decision analysis enables the service to be modelled and more importantly structured in a systematic fashion. The decision tree begins with "whether an ECV was successfully performed or not", and for both arms any subsequent interventions such as "whether an assisted delivery was required", or "whether an elective or emergency caesarean was performed" are recorded.

In this analysis the end point is delivery of the baby and the cost of that delivery. No consideration has been made of events beyond that point. The analysis of outcome is presented purely in terms of the cost consequences.

Any number or combination of events may occur in either arm of the decision tree leading to a sequence of events that may include assisted breech birth or result in an emergency caesarean being performed. In practice the five events that occurred were ECV, uncomplicated cephalic delivery, assisted vaginal delivery (breech or cephalic), elective caesarean or emergency caesarean. Each event incurred an attributable cost.

Economics requires the true cost of an intervention to be identified. It is therefore important to fully enumerate the whole process of care and not merely the single intervention. In the case of ECV all that happens to the patient from having an ECV performed or not, to delivery of the baby must be identified and fully costed. Whether for example, they have an uncomplicated ECV or end up having a caesarean section all needs to be costed into the final cost of the programme or the intervention. Economics further requires that the real resources of undertaking an intervention are quantified, that is the physical inputs are identified not merely the monetary value. Costs were calculated for each event based upon the staff, capital and consumables required for each intervention.

With regard to all costs a high and low figure is given depending upon whether the staff performing the intervention are minimum grade staff or higher grade staff. A staff cost per minute was used which included oncost. The actual timings for each procedure were obtained so an accurate cost for staff time could be imputed into the
Figure 1
ECV Decision Tree
calculations. In all cases the structural breakdown of costs, i.e. the resources used, was gained in interviews with the consultant obstetrician, the senior midwife, the literature and from research at the North Staffordshire Trust. The resources used were enumerated using data from the North Staffordshire Hospital Trust’s finance department. Overheads included an allocation to cover light, heating and administration.

The total cost of the two options "ECV accepted" and "ECV not accepted" depends on the probability of each event occurring. This yields a total cost figure for each arm of the decision tree. Probabilities for each event occurring were entered into the decision tree, using data of actual practice between July 1995 and June 1997.

Results

Activity

Figure 1 illustrates from the original 176 patients in the study, the actual number of patients following each branch of the decision tree and the probability associated with each event.

Cost Data

The following presents the costs of each of the five events ECV, uncomplicated cephalic birth, assisted vaginal delivery (breech or ventouse), elective caesarean and emergency caesarean, based on the staff, capital and consumables associated with each event.

Figures are presented based on the minimum grade of staff acceptable to perform an intervention i.e. E grade midwife and senior registrar, and also for higher grade staff, i.e. G grade senior midwife and consultant.

Cost of an ECV

Staff Costs

A doctor and midwife are present during the ECV. The midwife was present for 90 minutes, whilst the doctor was present for 30 minutes. In the low cost scenario this gives staff costs of:

£0.23 per minute * 90 minutes - £20.72 - midwife

£0.43 per minute * 30 minutes - £12.97 - senior registrar

resulting in a total staff cost for the procedure of **£33.68**

Capital Costs

The procedure is performed at the maternity unit and utilises a delivery suite and a back up operating theatre. Capital costs are included as part of the trust overheads to staff time. The £0.23 per minute midwife cost includes a £0.08 allowance for overheads. Overheads included an allocation to cover light heating and administration.

Specialist equipment also incurs a capital cost. These are as follows: Fetal Monitoring Cardiotacograph (CTG) - cost per minute of £0.26 (£15.88 cost per hour); Ultrasound scan before and after - cost per scan of £50 (£100 for 2). Equipment costs are converted into a unit cost by discounting to an annual equivalent cost and then dividing that figure by the number of units performed per year, i.e. an expected lifespan of 7 years discounted by a rate of 6% per year.

Consumable Costs

Certain items can be used once only or for a single patient, these items are consumables. In ECV the consumables used are: Almond Oil (£0.56) to enable the doctor to manipulate the patient’s abdomen, an injection of salbutamol (a tocolytic agent) (£1.35) to relax the patient's uterus (drug and syringe), and Saline solution (£3.01) to maintain fluid balance (litre of saline solution, an IV line, and tubes) and swabs (£1.22). This results in a total consumable cost of £6.14.

Other Costs

One additional outpatient appointment at £31.00 is required by all patients receiving an ECV.

To summarise the cost of an ECV is:

Staff Costs	**£33.68**
Capital Costs	**£115.88**
Consumable Costs	**£6.14**
Other Costs	**£31.00**
Total ECV cost with low staff costs	**£186.70**
Total ECV cost with high staff costs	**£193.30**

Cost of a Normal Vaginal Delivery

The cost of a normal vaginal delivery data has been obtained from a secondary source using work conducted by Clark and co-workers at the John Radcliffe Hospital in Oxford 1991.[12] The figure given is inflated to 1997 prices, to give a cost of £447. The figure has been validated by the North Staffordshire Trusts Finance directorate. It was felt that effort in this study should be concentrate on obtaining the incremental costs of delivery. Ingredient costs were obtained for the ECV, the cost of assisted delivery and the caesarean section. The figures obtained by the Oxford group represent a detailed and generally ap-
plicable national baseline cost for normal cephalic birth. It was assumed that this cost would be incurred as a baseline and additional cost for assisted delivery occur and emergency caesarean.

Cost of an Assisted Delivery
The cost of an assisted delivery was the same for both assisted breech delivery or assisted cephalic delivery. Assisted cephalic deliveries at the North Staffordshire Trust are usually performed by the ventouse method. The cost of assisted delivery was an additional incremental cost over and above normal cephalic birth.

Either an assisted breech or ventouse delivery is expected to require: a midwife, a doctor and a nurse practitioner and an anaesthetist on standby. Interventions prior to and following delivery are included in the cost. The cost of failure and second attempts including complications such as maternal tears have been included based upon data from the North Staffordshire Trust. In addition a probabilistic cost of proceeding to caesarean section based upon meta-analysis was added, at a rate of 1.92%.[13] this is in recognition that this cost may be incurred over and above that of an assisted delivery.

To Summarise the Cost of an Assisted Delivery

	Low Staff Costs	High Staff Costs
Staff Costs	£46.39	
Capital Costs	£22.30	
Consumable Costs	£12.17	
Other Costs	£344.55	
Total Expected Cost	**£425.36**	

Higher staff grades yields a total expected cost of **£455.60**.

Cost of a Caesarean Section
A caesarean section can either be planned (elective) or unplanned (emergency), the assumption is an elective caesarean section will substitute the costs incurred in a normal vaginal delivery and an emergency caesarean section will be in addition to these costs.

A caesarean section involves: an advanced nurse practitioner, a midwife, a surgeon, an anaesthetist, and an operating theatre orderly. In addition during the recovery period a midwife will be in attendance with the mother on a one-to-one basis.

An operating theatre and recovery area are required. Overhead costs are apportioned on a staff basis.

Inputting the two scenarios for the cost data above into the decision tree yields the following results.

With low staff cost the ECV branch of the decision tree yields an expected cost of £1,452 versus the non ECV branch of £1,828. Hence, to routinely conduct ECV on clinically suitable women with breech presentations results in an expected cost saving of **£376** per breech presentation.

Higher staff costs yields an expected cost of £1,479 for the ECV branch of the tree and £1,863 for the non ECV branch of the tree. This converts into a cost saving of **£384** per patient. These results are summarised in Table 2.

Table 1: Cost per Procedure

Description	Low Staff Costs	High Staff Costs
External Cephalic Version	£186.70	£193.30
Assisted Breech/Ventouse Delivery	£425.36	£455.60
Elective Caesarean Section	£1,955.22	£1,992.47
Emergency Caesarean Section	£2,403.22	£2,439.47
Normal Vaginal Delivery	£447.00	£447.00
The results show that a maternity service in which ECV is routinely offered to patients presenting with a breech birth will be less expensive than a service in which ECV is not offered.

Sensitivity Analysis

Sensitivity analysis allows the key variables in the data to vary to test the reliability of the decision.[14] A threshold analysis was conducted, i.e. an approach whereby key variables are altered up until the point at which the decision would be reversed.

Two key variables were examined: the cost of ECV and the cost of caesarean section.

The first question was "to what must the cost of an ECV rise for the expected value of the ECV branch of the tree to increase to £1,828?" The answer is £718.40. This compares to the calculated ECV cost of £186.70. The cost of an ECV would have to increase by 285% for the conclusions to be reversed.

The second question was "to what must the cost of a caesarean section fall for ECV not offered to become the preferred alternative?" The answer is £856.70, compared to its expected cost of £1,955.22 (elective caesarean section). Hence, a Caesarean section would have to fall in cost by 56% for the conclusions to be reversed.

The results presented showing a potential saving of £376 per ECV per patient, do not yield the same large savings per ECV as those presented by Mauldin of $2462 (£1,501 pounds sterling) per ECV.[16] This difference can largely be explained by the relative costs for ECV, assisted delivery, caesarean section and cephalic birth in the British and American data. The challenge for both health economics and hospital management is to realise these savings in practice. In the case of ECV by avoiding procedures such as caesarean section, it should be possible to save the theatre time and staff, capital and con-
Within the context of the study a maternity service in which ECV is routinely offered for breech pregnancies at term, will be less expensive per delivery than a maternity service where ECV is not routinely offered. At the same time the service here described preserves the patients right to choose their mode of delivery in childbirth.

Competing interests
None declared

Acknowledgements
The authors would like to thank the West Midlands R&D Directorate, who funded the BOAT Study; Patients, midwives and consultants at the North Staffordshire Hospital who were involved in the study and Nicola Leighton for preparing the manuscript.

References
1. Zhang J, Bowes WA, Fortney JA: Efficacy of external cephalic version: a review Obstet Gynecol 1993, 82(2):306-12
2. Pritchard JA, MacDonald PC: In : Williams Obstetrics. Sixteenth ed. Appleton-Century-Crofts 1980 Dystocia caused by abnormalities in presenta-
tion, position, or development of the fetus, 787-96
3. Bingham P, Lifford R: Management of the selected term breech presentation: Assessment of the risks of selected vaginal de-
livery versus caesarean section for all cases Obstet Gynecol 1987, 69(6):965-78
4. Philipson EH, Rosen MG: Trends in the frequency of cesarean births Clin Obstet Gynecol 1985, 28(4):691-6
5. Maireskind HI: Cesarean Section in the United States: Has it changed since 1979? Birth 1989, 16(4):196-202
6. Burr RW, Johanson RB: In : Progress in Obstetrics and Gynaecology. Churchill Livingstone Press Breech presentation: Is external cephalic version worthwhile? 199687-97
7. Hofmeyr GJ: External cephalic version at term (Cochrane Re-
view) In: The Cochrane Library, Issue 1, 1999. Oxford: Update Software.
8. Bewley S, Robson SC, Smith M, Glover A, Spencer JAD: The intro-
duction of external cephalic version at term into routine clinical practice Eur J Obstet Gynecol Reprod Biol 1993, 52:89-93
9. : Effective procedures in obstetrics suitable for audit RCOG 1995
10. Johanson RB, Rigby C: Clinical Governance in Practice J Clin Ef-
ficiveness 1999, 1:19-22
11. : Changing Childbirth London: HMSO 1993
12. Clark L, Mugford M, Paterson C: How does the mode of delivery affect the cost of maternity care? Br J Obstet Gynaecol 1991, 98(6):519-23
13. Johanson RB, Menon V: Vacuum extraction vs forceps delivery (Cochrane Review) In: The Cochrane Library, Issue 1, 1999. Oxford: Update Software.
14. Drummond MS, Obrion B, Stoddart GL, et al: Methods for the eco-
nomic evaluation of health care programmes 2nd ed. Oxford: Oxford University Press; 1988
15. Hemminki E: Impact of caesarean section of future pregnancy - a review of cohort studies Paediatric and Perinatal Epidemiology 1996, 10(4):366-79
16. Mauldin JG, Mauldin PD, Feng TI, Adams EK, Durkalski VM: Determining the clinical efficacy and cost savings of successful external cephalic version Am J Obstet Gynecol 1996, 175:1639-44
17. Gifford DS, Keeler E, Kahn KL: Reductions in cost and caesarean section rate by routine use of external cephalic version: a de-
cision analysis Obstet Gynecol 1995, 85:930-6

Pre-publication history
The pre-publication history for this paper can be ac-
cessed here:

http://www.biomedcentral.com/content/backmatter/1472-6963-1-6-b1.pdf