Second-order impulsive differential systems with mixed and several delays

Shyam Sundar Santra¹, Apurba Ghosh¹, Omar Bazighifan²,³*, Khaled Mohamed Khedher⁴,⁵ and Taher A. Nofal⁶

¹Correspondence: o.bazighifan@gmail.com
²Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
³Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
Full list of author information is available at the end of the article

Abstract

In this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.

MSC: 34C10; 34K11

Keywords: Oscillation; Delay; Neutral; Lebesgue’s dominated convergence theorem

1 Introduction

Nowadays impulsive differential equations are attracting a lot of attention. They appear in the study of several real world problems (see, for instance, [1–3]). In general, it is well known that several natural phenomena are driven by differential equations. However, the description of some real world problems requires studies on systems of differential equations with impulses, a subject very interesting from a mathematical point of view. Examples of the aforementioned phenomena are related to mechanical systems, biological systems, population dynamics, pharmacokinetics, theoretical physics, biotechnology processes, chemistry, engineering, control theory (we also stress that in the modeling of these phenomena is suitably formulated by evolutive partial differential equations and, moreover, moment problem approaches appear also as a natural instrument in control theory of neutral type systems; see [4–6] and [7], respectively).

The literature related to impulsive differential equations is very wide. Here we mention some recent developments in this field.

In [8], Shen and Wang considered impulsive differential equations of the following form:

\[
\begin{align*}
 u'(t) + r(t)u(t - \nu) &= 0, \quad t \neq \phi_k, t \geq t_0, \\
 u(\phi_k^+) - u(\phi_k^-) &= I_k(u(\phi_k)), \quad k \in \mathbb{N},
\end{align*}
\]

where \(r \in C(\mathbb{R}, \mathbb{R}) \) and \(I_k \in C(\mathbb{R}, \mathbb{R}) \) for \(k \in \mathbb{N} \), and obtained sufficient conditions that ensure the oscillation and the asymptotic behaviour of the solutions of the problem (1).

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
In [9], Graef et al. considered the problem

\[
\begin{align*}
(u(i) - q(i)u(i - \zeta))' + r(i)u(i - \nu) \, \text{sgn}(u(i - \nu)) = 0, & \quad i \geq i_0, \\
u(i) = b_k u(\phi_k), & \quad k \in \mathbb{N},
\end{align*}
\]

(2)

assuming that \(q(i) \in PC([i_0, \infty), \mathbb{R}_+)\) (that is, \(q(i)\) is piecewise continuous in \([i_0, \infty)\)), obtained sufficient conditions for the oscillation of the solutions of the problem (2).

In [10], Shen and Zou obtained oscillation criteria for first-order impulsive neutral delay differential equations of the form

\[
\begin{align*}
(u(i) - q(i)u(i - \zeta))' + r(i)u(i - \nu_1) - \nu(i)u(i - \nu_2) = 0, & \quad i_1 \geq i_2 > 0, \\
u(i) = I_k(u(\phi_k)), & \quad k \in \mathbb{N},
\end{align*}
\]

(3)

obtaining sufficient conditions that ensure the oscillation of the solutions of (3) under the assumptions that \(q(i) \in PC([i_0, \infty), \mathbb{R}_+)\) and \(b_k \leq \frac{b(i)q(i)}{2} \leq 1\).

Karpuz et al. in [11] extended the results contained in [10] by taking the nonhomogeneous counterpart of the system (3) with variable delays.

Oscillation and nonoscillation properties for a class of second-order neutral impulsive differential equations with constant coefficients and constant delays were studied by Tripathy and Santra in [12], where the authors considered the problem

\[
\begin{align*}
(u(i) - qu(i - \zeta))'' + ru(i - \nu) = 0, & \quad i \neq \phi_k, k \in \mathbb{N}, \\
\Delta(u(\phi_k) - qu(\phi_k - \zeta))' + ru(\phi_k - \nu) = 0, & \quad k \in \mathbb{N},
\end{align*}
\]

(4)

Other necessary and sufficient conditions for the oscillation of a class of second-order neutral impulsive systems were established in [13], where Tripathy and Santra studied systems of the form

\[
\begin{align*}
(p(i)(u(i) + q(i)u(i - \zeta)))' + r(i)g(u(i - \nu)) = 0, & \quad i \neq \phi_k, k \in \mathbb{N}, \\
\Delta(p(\phi_k)(u(\phi_k) + q(\phi_k)u(\phi_k - \zeta)))' + r(\phi_k)g(u(\phi_k - \nu)) = 0, & \quad k \in \mathbb{N}.
\end{align*}
\]

(5)

In [13], in particular, the authors are interested with oscillating systems that, after a perturbation by instantaneous change of state, remain oscillating.

In [14], Santra and Tripathy investigated the oscillatory behaviour of the solutions for first-order impulsive neutral delay differential equations of the form

\[
\begin{align*}
(u(i) - q(i)u(i - \zeta))' + r(i)g(u(i - \nu)) = 0, & \quad i \neq \phi_k, i \geq i_0, \\
u(i) = I_k(u(\phi_k)), & \quad k \in \mathbb{N}, \\
u(\phi_k - \tau) = I_k(u(\phi_k - \tau)), & \quad k \in \mathbb{N},
\end{align*}
\]

(6)

for different values of the neutral coefficient \(q\).

We also mention Ref. [15] in which Santra and Dix, using Lebesgue’s dominated convergence theorem, obtained necessary and sufficient conditions for the oscillation of the
solutions of the following second-order neutral differential equations with impulses:

\[
\begin{align*}
 & (p(t)(w'(t)))' + \sum_{j=1}^{m} r_j(t) g_i(u(v_j(t))) = 0, & & t \geq t_0, t \neq \phi_k, k \in \mathbb{N}, \\
 & \Delta (p(t)(w'(t)))' + \sum_{j=1}^{m} \tilde{r}_j(t) g_i(u(v_j(t))) = 0, \\
\end{align*}
\]

(7)

where

\[
w(i) = u(i) + q(i)u(\zeta(i)), \quad \Delta u(a) = \lim_{s \to a^+} u(s) - \lim_{s \to a^-} u(s), \quad -1 \leq q(i) \leq 0.
\]

In line with the contents of [15], Tripathy and Santra in [16] examined oscillation and nonoscillation properties for the solutions of the following class of forced impulsive nonlinear neutral differential systems:

\[
\begin{align*}
 & (p(t)(u(i) + q(i)(u(i - \zeta)))' + r(t)g_i(u(i - v))) = f(i), & & t \neq \phi_k, k \in \mathbb{N}, \\
 & \Delta (p(t)(u(i)))' + q(\phi_k)g_i(u(i - \zeta)) + \tilde{r}(\phi_k)g_i(u(i - v)) = f(\phi_k), & & k \in \mathbb{N}, \\
\end{align*}
\]

(8)

for different values of \(q(i) \) and obtained sufficient conditions for the existence of positive bounded solutions of system (8).

Finally we mention recent work [17] in which Tripathy and Santra obtained some characterizations for the oscillation of solutions of the following second-order neutral impulsive differential system:

\[
\begin{align*}
 & (p(t)(w'(t)))' + \sum_{j=1}^{m} r_j(t)x^{w_j}(v_j(t))) = 0, & & t \geq t_0, t \neq \phi_k, \\
 & \Delta (p(t)(w'(t)))' + \sum_{j=1}^{m} \tilde{r}_j(t)x^{w_j}(v_j(\phi_k))) = 0, & & k \in \mathbb{N}, \\
\end{align*}
\]

(9)

where \(w(i) = u(i) + q(i)u(\zeta(i)) \) and \(-1 < q(i) \leq 0\).

For further details on neutral impulsive differential equations and for recent results related to the oscillation theory for ordinary differential equations, we refer the reader to Refs. [18–43] and to the references therein. In particular, the study of oscillation of half-linear/Emden–Fowler (neutral) differential equations with deviating arguments has numerous applications in physics and engineering (e.g., half-linear/Emden–Fowler differential equations arise in a variety of real world problems such as in the study of \(p \)-Laplace equations and in chemotaxis models); see, e.g., Refs. [4, 34–37, 39, 40, 42, 43] for more details. In particular, by using different methods, the following work was concerned with the oscillation of various classes of half-linear/Emden–Fowler differential equations and half-linear/Emden–Fowler differential equations with different neutral coefficients (e.g., Ref. [33] was concerned with neutral differential equations assuming that \(0 \leq q(i) < 1 \) and \(q(i) > 1 \); Ref. [34] was concerned with neutral differential equations assuming that \(0 \leq q(i) < 1 \); Ref. [36] was concerned with neutral differential equations assuming that \(q(i) > 1 \); Ref. [37, 41] were concerned with neutral differential equations in the case where \(q(i) > 1 \); Ref. [40] was concerned with neutral differential equations assuming that \(0 \leq q(i) \leq q_0 < \infty \) and \(q(i) > 1 \); Ref. [42] was concerned with neutral differential equations in the case where \(0 \leq q(i) \leq q_0 < \infty \); Ref. [43] was concerned with neutral differential equations in the case when \(0 \leq q(i) = q_0 \neq 1 \); whereas Ref. [39] was concerned with differential equations with a nonlinear neutral term assuming that \(0 \leq q(i) \leq a < 1 \), which has the same research topic as that of this paper.
Motivated by the aforementioned findings, in this paper we prove necessary and sufficient conditions for the oscillation of solutions to a second-order nonlinear impulsive differential system in the form

\[
(p(i)(w'(i))^\alpha)' + \sum_{j=1}^{m} r_j(i)u^\beta(v_j(i)) = 0, \quad t \geq t_0, t \neq \phi_k, k \in \mathbb{N},
\]

(10)

\[
\Delta(p(\phi_k)(w'(\phi_k))^\alpha) + \sum_{j=1}^{m} \tilde{r}_j(\phi_k)u^\beta(v_j(\phi_k)) = 0,
\]

(11)

where

\[
w(i) = u(i) + q(i)u(\xi(i)), \quad \Delta u(a) = \lim_{s \to a^+} u(s) - \lim_{t \to a^-} u(t),
\]

the functions \(r_j, \tilde{r}_j, p, q, v_j, \xi\) are continuous that satisfy the conditions stated now;

(a) \(v_j \in C([0, \infty), \mathbb{R}), \xi \in C^2([0, \infty), \mathbb{R}), v_j(i) < i, \xi(i) < i, \) \(\lim_{i \to \infty} v_j(i) = \infty, \lim_{i \to \infty} \xi(i) = \infty.\)

(b) \(v_j \in C((0, \infty), \mathbb{R}), \xi \in C^2((0, \infty), \mathbb{R}), v_j(i) > i, \xi(i) > i, \) \(\lim_{i \to \infty} v_j(i) = \infty, \lim_{i \to \infty} \xi(i) = \infty.\)

(c) \(p \in C^1((0, \infty), \mathbb{R}), r_j, \tilde{r}_j \in C((0, \infty), \mathbb{R}); \) \(0 < p(i), 0 \leq r_j(i), 0 \leq \tilde{r}_j(i), \) for all \(i \geq 1\) and \(j = 1, 2, \ldots, m; \sum r_j(i)\) is not identically zero in any interval \([b, \infty).\)

(d) \(q \in C^2((0, \infty), \mathbb{R}), \) with \(0 \leq q(i) \leq a < 1.\)

(e) \(\lim_{i \to \infty} P(i) = \infty\) where \(P(i) = \int_{i}^{b} P^{-1}(s) \, ds.\)

(f) \(\alpha\) and \(\beta\) are the quotients of two positive odd integers and the sequence \(\{\phi_k\}\) satisfies \(0 < \phi_1 < \phi_2 < \cdots < \phi_k \to \infty\) as \(k \to \infty.\)

\section{Preliminary results}

To make our notations simpler, we set

\[
R_1(i) = \sum_{j=1}^{m} r_j(i)(1-a)w(v_j(i))^{\beta};
\]

\[
R_{(1,k)} = \sum_{j=1}^{m} \tilde{r}_j(\phi_k)(1-a)w(v_j(\phi_k))^{\beta}.
\]

\textbf{Lemma 2.1} Suppose (a)–(f) hold for \(i \geq i_0,\) and \(u\) is an eventually positive solution of (10)–(11). Then \(w\) satisfies

\[
0 < w(i), \quad w'(i) > 0, \quad \text{and} \quad (p(i)(w'(i))^\alpha)' \leq 0 \quad \text{for} \quad i \geq i_1.
\]

(12)

\textbf{Proof} Let \(u\) be an eventually positive solution. Then \(w(i) > 0\) and there exists \(i_0 \geq 0\) such that \(u(i) > 0, u(v_j(i)) > 0, u(\xi(i)) > 0\) for all \(i \geq i_0\) and \(j = 1, 2, \ldots, m.\) Then (10)–(11) gives

\[
(p(i)(w'(i))^\alpha)' = -\sum_{j=1}^{m} r_j(i)u^\beta(v_j(i)) \leq 0 \quad \text{for} \quad i \neq \phi_k,
\]

(13)

\[
\Delta(p(\phi_k)(w'(\phi_k))^\alpha) = -\sum_{j=1}^{m} \tilde{r}_j(\phi_k)u^\beta(v_j(\phi_k)) \leq 0 \quad \text{for} \quad k \in \mathbb{N},
\]
which shows that \(p(t)(w'(t))^{\alpha} \) is non-increasing for \(t \geq t_0 \), including jumps of discontinuity. Next we claim that, for \(w > 0 \), \(p(t)(w'(t))^{\alpha} \) is positive for \(t \geq t_1 > t_0 \). If not, letting \(p(t)(w'(t))^{\alpha} \leq 0 \) for \(t \geq t_1 \), we can choose \(c > 0 \) such that

\[
p(t)(w'(t))^{\alpha} \leq -c,
\]

that is,

\[
w'(t) \leq (-c)^{1/\alpha} p^{-1/\alpha}(t).
\]

Integrating both sides from \(t_1 \) to \(t \) we get

\[
w(t) - w(t_1) - \sum_{k=1}^{\infty} w'(\phi_k) \leq (-c)^{1/\alpha} (P(t) - P(t_1)).
\]

Taking the limit in both sides as \(t \to \infty \), we have \(\lim_{t \to \infty} w(t) \leq -\infty \), that is, \(w(t) \leq 0 \) which leads to a contradiction to \(w(t) > 0 \). Hence, \(p(t)(w'(t))^{\alpha} > 0 \) for \(t \geq t_1 \) i.e., \(w'(t) > 0 \) for \(t \geq t_1 \).

This completes the proof. \(\square \)

Lemma 2.2 Suppose (a)–(f) hold for \(t \geq t_0 \), and \(u \) is an eventually positive solution of (10)–(11). Then \(w \) satisfies

\[
u(t) \geq (1 - \alpha)w(t) \quad \text{for } t \geq t_1.
\]

Proof Assume that \(u \) is an eventually positive solution of (10)–(11). Then \(w(t) > 0 \) and there exists \(t \geq t_1 > t_0 \) such that

\[
u(t) = w(t) - q(t)u(\xi(t))
\geq w(t) - q(t)w(\xi(t))
\geq w(t) - q(t)w(t)
= (1 - q(t))w(t)
\geq (1 - \alpha)w(t).
\]

Hence \(w \) satisfies (14) for \(t \geq t_1 \). \(\square \)

Remark 2.1 The above two lemmas hold for any \(\alpha > \beta \) or \(\alpha < \beta \).

3 Main results

Theorem 3.1 Let (b)–(f) hold for \(t \geq t_0 \) and \(\beta > \alpha \). Then every solution of (10)–(11) is oscillatory if and only if

\[
\int_{t_0}^{\infty} p^{-1/\alpha}(s) \left[\int_{t}^{\infty} \sum_{j=1}^{m} r_j(\psi) \, d\psi + \sum_{\phi_k \geq \psi} \sum_{j=1}^{m} \tilde{r}_j(\phi_k) \right]^{1/\alpha} \, ds = \infty.
\]
Proof. Let \(u \) be an eventually positive solution of (10)–(11). Then \(w(i) > 0 \) and there exists \(t_0 \geq 0 \) such that \(u(t) > 0, u(v_j(t)) > 0, u(\xi(t)) > 0 \) for all \(t \geq t_0 \) and \(j = 1, 2, \ldots, m \). Thus, Lemmas 2.1 and 2.2 hold for \(t \geq t_1 \). By Lemma 2.1, there exists \(t_2 > t_1 \) such that \(w'(i) > 0 \) for all \(t \geq t_2 \). Then there exist \(t_3 > t_2 \) and \(c > 0 \) such that \(w(i) \geq c \) for all \(t \geq t_3 \). Next using Lemma 2.2, we get \(u(t) \geq (1 - a)w(i) \) for all \(t \geq t_3 \) and (10)–(11) become

\[
\begin{align*}
(p(t)(w'(i))^{\alpha})' + R_1(i) & \leq 0 \quad \text{for } t \neq \phi_k, \\
\Delta(p(\phi_k)(w'(\phi_k))^{\alpha}) + R_{(1,k)} & \leq 0 \quad \text{for } k = 1, 2, \ldots.
\end{align*}
\]

(16)

Integrating (16) from \(t \) to \(\infty \) we get

\[
[p(s)(w'(s))^{\alpha}]^\infty_t + \int_t^\infty R_1(s) \, ds + \sum_{\phi_k \geq t} R_{(1,k)} \leq 0.
\]

Note that \(p(t)(w'(t))^{\alpha} \) is positive and non-decreasing. So, \(\lim_{t \to \infty} p(t)(w'(t))^{\alpha} \) finitely exists and is positive. Therefore,

\[
p(t)(w'(t))^{\alpha} \geq \int_t^\infty R_1(s) \, ds + \sum_{\phi_k \geq t} R_{(1,k)},
\]

that is,

\[
w'(i) \geq p^{-1/\alpha}(i) \left[\int_i^\infty R_1(s) \, ds + \sum_{\phi_k \geq i} R_{(1,k)} \right]^{1/\alpha}
\]

\[
= (1 - a)^{\beta/\alpha} p^{-1/\alpha}(i) \left[\int_i^\infty \sum_{j=1}^m \bar{r}_j(s)w^{\beta}(v_j(s)) \, ds + \sum_{\phi_k \geq i} \sum_{j=1}^m \bar{r}_j(\phi_k)w^{\beta}(v_j(\phi_k)) \right]^{1/\alpha} \tag{17}
\]

Using (b) and the fact that \(w(i) \) is non-decreasing,

\[
w'(i) \geq (1 - a)^{\beta/\alpha} p^{-1/\alpha}(i) \left[\int_i^\infty \sum_{j=1}^m \bar{r}_j(s) \, ds + \sum_{\phi_k \geq i} \sum_{j=1}^m \bar{r}_j(\phi_k) \right]^{1/\alpha} w^{\beta/\alpha}(i),
\]

that is,

\[
\frac{w'(i)}{w^{\beta/\alpha}(i)} \geq (1 - a)^{\beta/\alpha} p^{-1/\alpha}(i) \left[\int_i^\infty \sum_{j=1}^m \bar{r}_j(s) \, ds + \sum_{\phi_k \geq i} \sum_{j=1}^m \bar{r}_j(\phi_k) \right]^{1/\alpha}.
\]

By integrating over \(t_3 \) and \(\infty \) both side, we have

\[
(1 - a)^{\beta/\alpha} \int_{t_3}^\infty p^{-1/\alpha}(s) \left[\int_s^\infty \sum_{j=1}^m \bar{r}_j(s) \, ds + \sum_{\phi_k \geq i} \sum_{j=1}^m \bar{r}_j(\phi_k) \right]^{1/\alpha} ds
\]

\[
\leq \int_{t_3}^\infty \frac{w'(s)}{w^{\beta/\alpha}(s)} \, ds < \infty
\]

due to \(\beta > \alpha \), which is a contradiction to (15) and hence the sufficient part of the theorem is proved.
Next we prove necessary part by contrapositive argument. If (15) does not hold, then for every \(\varepsilon > 0 \) there exists \(\iota \geq \iota_0 \) for which

\[
\int_{\iota}^{\infty} p^{-1/\alpha}(s) \left[\int_{s}^{\infty} r_j(\psi) \, d\psi + \sum_{\phi_k \geq \iota} \sum_{j=1}^{m} \tilde{r}_j(\phi_k) \right]^{1/\alpha} ds < \varepsilon \quad \text{for } \iota \geq T,
\]

where \(2\varepsilon = \left[\frac{1}{1-a} \right]^{-\beta/\alpha} > 0 \). Let us define a set

\[
V = \left\{ \underline{u} \in C([0,\infty)) : \frac{1}{2} \leq \underline{u}(\iota) \leq \frac{1}{1-a} \text{ for all } \iota \geq T \right\}
\]

and \(\Phi : V \to V \) as

\[
(\Phi \underline{u})(\iota) = \begin{cases}
0 & \text{if } \iota \leq T, \\
\frac{1-a}{2(1-a)} - q(\iota)u(\xi(\iota)) + \int_{\iota}^{\infty} p^{-1/\alpha}(s) \left[\int_{s}^{\infty} r_j(\psi) \, d\psi + \sum_{\phi_k \geq \iota} \sum_{j=1}^{m} \tilde{r}_j(\phi_k) \right]^{1/\alpha} ds & \text{if } \iota > T.
\end{cases}
\]

Next, we prove \((\Phi \underline{u})(\iota) \in V \). For \(\underline{u}(\iota) \in V \),

\[
(\Phi \underline{u})(\iota) \leq \frac{1-a}{2(1-a)} + \left(\frac{1}{1-a} \right)^{\beta/\alpha} \varepsilon = 1 + \frac{1-a}{2} \, \frac{1}{1-a}
\]

and further, for \(\underline{u}(\iota) \in V \),

\[
(\Phi \underline{u})(\iota) \geq \frac{1+a}{2(1-a)} - q(\iota) \frac{1}{1-a} + 0 \geq \frac{1+a}{2(1-a)} - \frac{a}{1-a} = \frac{1}{2}.
\]

Hence \(\Phi \) maps \(V \) into \(V \).

Now we are going to find a fixed point for \(\Phi \) in \(V \) which will give an eventually positive solution of (10)–(11).

First we define a sequence of functions in \(V \) by

\[
\begin{align*}
{u}_0(\iota) &= 0 \quad \text{for } \iota \geq \iota_0, \\
{u}_1(\iota) &= (\Phi {u}_0)(\iota) = \begin{cases}
0 & \text{if } \iota < T, \\
\frac{1}{2} & \text{if } \iota \geq T,
\end{cases} \\
{u}_{n+1}(\iota) &= (\Phi {u}_n)(\iota) \quad \text{for } n \geq 1, \iota \geq T.
\end{align*}
\]
Here we see \(u_1(t) \geq u_0(t) \) for each fixed \(t \) and \(\frac{1}{2} \leq u_{n+1}(t) \leq u_n(t) \leq \frac{1}{1-a} \), \(t \geq T \) for all \(n \geq 1 \). Thus \(u_n \) converges point-wise to a function \(u \). By Lebesgue’s dominated convergence theorem \(u \) is a fixed point of \(\Phi \) in \(V \), which shows that there has a non-oscillatory solution. This completes the proof the theorem.

Theorem 3.2 Let (a), (c)–(f) hold for \(t \geq t_0 \) and \(\beta < \alpha \). Then every solution of (10)–(11) is oscillatory if and only if

\[
\left[\int_0^\infty \sum_{j=1}^m r_j(\psi) \left[(1-a)P(v_j(\psi)) \right]^\beta d\psi + \sum_{k=1}^m \sum_{j=1}^m \tilde{r}_j(\phi_k) \left[(1-a)P(v_j(\phi_k)) \right]^\beta \right] = \infty. (18)
\]

Proof Let \(u(t) \) be an eventually positive solution of (10)–(11). Then, proceeding as in the proof of Theorem 3.1 we have \(t_2 > t_1 > t_0 \) such that (17) holds for all \(t \geq t_2 \). Using (e), there exists \(t_3 > t_2 \) for which \(P(t_2) - P(t_3) \geq \frac{1}{2} P(t) \) for \(t \geq t_3 \). Integrating (17) from \(t_3 \) to \(t \), we have

\[
w(t) - w(t_3) \geq \int_{t_3}^t P^{-1/\alpha} \left[\int_s^\infty R_1(\kappa) d\kappa \sum_{\phi_k \geq s} R_{(1,k)} \right]^{1/\alpha} ds
\]

that is,

\[
w(t) \geq \left(P(t) - P(t_3) \right) \left[\int_t^\infty R_1(\kappa) d\kappa \sum_{\phi_k \geq t} R_{(1,k)} \right]^{1/\alpha}
\]

\[
\geq \frac{1}{2} P(t) \left[\int_t^\infty R_1(\kappa) d\kappa \sum_{\phi_k \geq t} R_{(1,k)} \right]^{1/\alpha}. (19)
\]

Hence,

\[
w(t) \geq \frac{1}{2} P(t) U_1^{1/\alpha}(t) \quad \text{for } t \geq t_3
\]

where

\[
U(t) = \left[\int_t^\infty \sum_{j=1}^m r_j(\kappa) \left((1-a)w(v_j(\kappa)) \right)^\beta d\kappa + \sum_{\phi_k \geq t} \sum_{j=1}^m \tilde{r}_j(\phi_k) \left((1-a)w(v_j(\phi_k)) \right)^\beta \right].
\]

Now,

\[
U'(t) = - \sum_{j=1}^m r_j(\kappa) \left((1-a)w(v_j(\kappa)) \right)^\beta
\]

\[
\leq - \frac{1}{2^\beta} \sum_{j=1}^m r_j(\kappa) \left((1-a)P(v_j(\kappa)) \right)^\beta U_1^{1/\alpha}(v_j(\kappa)) \leq 0 \quad (20)
\]
Consider the neutral differential equations

\[\frac{d}{dt} x(t) = f(t, x(t), x(t-\tau), x(t-\sigma)) \]

which contradicts (18). This completes the proof the theorem.

Example 3.1 Consider the neutral differential equations

\[
\begin{align*}
((u(t) + e^{-t} u(\xi(t)))^{1/3})' + t(u(t-2))^{5/3} + (t+1)(u(t-3))^{5/3} &= 0, \\
((u(t^2) + e^{-t^2} u(\xi(t^2)))^{1/3})' + (t+2)(u(t^2-2))^{5/3} + (t+3)(u(t^2-3))^{5/3} &= 0.
\end{align*}
\]
For \(\beta = 5/3 \), we have \(\beta = 5/3 > \alpha = 1/3 \). To check (15) we have

\[
\int_{0}^{\infty} \left[\frac{1}{p(s)} \left(\int_{s}^{\infty} \sum_{j=1}^{m} r_{j}(\psi) \, d\psi + \sum_{\phi_{k} \geq 0}^{m} \tau_{j}(\phi_{k}) \right) \right]^{1/\alpha} \, ds
\]

\[
\geq \int_{0}^{\infty} \left[\frac{1}{p(s)} \left(\int_{s}^{\infty} r_{1}(\psi) \, d\psi \right) \right]^{1/\alpha} \, ds
\]

\[
\geq \int_{0}^{\infty} \left[\int_{s}^{\infty} \psi \, d\psi \right]^{3} \, ds = \infty.
\]

So, all the conditions of Theorem 3.1 hold. Thus, each solution of (23)–(24) is oscillatory.

Example 3.2 Consider the neutral differential equations

\[
(e^{-}(u(i) + e^{-}u(\xi(i))))^{11/3} + \frac{1}{t+1}(u(t-2))^{7/3} + \frac{1}{t+2}(u(t-3))^{7/3} = 0,
\]

(25)

\[
(e^{-k}(u(k) + e^{-k}u(\xi(k))))^{11/3} + \frac{1}{t+4}(u(k-2))^{7/3} + \frac{1}{t+5}(u(k-3))^{7/3} = 0.
\]

(26)

Here \(\alpha = 11/3, p(t) = e^{-t}, 0 < q(i) = e^{-t} < 1, v_{j}(i) = t - (j + 1), \phi_{k} = k \) for \(k \in \mathbb{N} \) with index \(j = 1, 2, P(t) = \int_{0}^{t} e^{3\psi/11} \, ds = \frac{11}{3}(e^{3\psi/11} - 1) \). For \(\beta = 7/3 \), we have \(\beta = 7/3 < \alpha = 11/3 \). To check (18) we have

\[
\frac{1}{(2)^{7/3}} \left[\int_{0}^{\infty} \sum_{j=1}^{m} r_{j}(\psi)[(1-a)P(v_{j}(\psi))]^{6} \, d\psi + \int_{0}^{\infty} \sum_{k=1}^{m} \tau_{j}(\phi_{k})[(1-a)P(v_{j}(\phi_{k}))]^{6} \right]
\]

\[
\geq \frac{1}{(2)^{7/3}} \int_{0}^{\infty} r_{1}(\psi)[(1-a)P(v_{1}(\psi))]^{6} \, d\psi
\]

\[
\geq \frac{1}{(2)^{7/3}} \int_{0}^{\infty} r_{1}(\psi)[(1-a)P(v_{1}(\psi))]^{6} \, d\psi
\]

\[
= \frac{1}{(2)^{7/3}} \int_{0}^{\infty} \frac{1}{\psi + 1} \left[(1-a) \frac{11}{3} (e^{3(\psi-2)/11} - 1) \right]^{7/3} \, d\psi = \infty.
\]

So, all the conditions of Theorem 3.2 hold, and therefore, each solution of (25)–(26) is oscillatory.

4 Conclusions

In this work, we studied second-order highly nonlinear neutral impulsive differential systems and established necessary and sufficient conditions for the oscillation of (10)–(11) when the neutral coefficient lies in \([0, 1)\). It would be of interest to examine the oscillation of (10)–(11) with different neutral coefficients; see, e.g., Refs. [33, 36, 37, 40–43] for more details. Furthermore, it is also interesting to analyze the oscillation of (10)–(11) with a nonlinear neutral term; see, e.g., Ref. [39] for more details.
Acknowledgements
Khaled Mohamed Kheder would like to thank the Deanship of Scientific Research at King Khalid University for funding this work through the large research groups under grant number RGP.1/372/42. (Taher A. Nofal) Taif University Researchers Supporting Project number (TURSP-2020/031), Taif University, Taif, Saudi Arabia. We would like to thank reviewers for their careful reading and valuable comments that helped correcting and improving the paper. The authors thank the editors and the reviewers for their useful comments.

Funding
This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number RGP.1/372/42.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that they have read and approved the final manuscript.

Authors’ information
Not applicable.

Author details
1Department of Mathematics, JIS College of Engineering, Kalyani, 741235, India. 2Department of Mathematics, Faculty of Education, Selayun University, Hadramout 50512, Yemen. 3Department of Mathematics, Faculty of Science, Hadramout University, Hadramout 50512, Yemen. 4Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia. 5Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul 8000, Tunisia. 6Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 February 2021 Accepted: 22 June 2021 Published online: 02 July 2021

References
1. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Asymptotic Properties of the Solutions. Series on Advances in Mathematics for Applied Sciences, vol. 28. World Scientific, Singapore (1995)
2. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
3. Agarwal, R.P., O’Regan, D., Saker, S.H.: Oscillation and Stability of Delay Models in Biology. Springer, New York (2014)
4. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), Art. 86, 1–18 (2019)
5. Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 34(5–6), 315–336 (2021)
6. Viglialoro, G., Woolley, T.E.: Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. Appl. Anal. 99(14), 2507–2525 (2020)
7. Infusino, M., Kuhlmann, S.: Infinite dimensional moment problem: open questions and applications. In: Contemp. Math., vol. 697, pp. 187–201. Am. Math. Soc., Providence (2017)
8. Shen, J.H., Wang, Z.C.: Oscillation and asymptotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Equ. 10(1), 61–68 (1994)
9. Graef, J.R., Shen, J.H., Stavroulakis, I.P.: Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl. 268, 310–333 (2002)
10. Shen, J., Zou, Z.: Oscillation criteria for first order impulsive differential equations with positive and negative coefficients. J. Comput. Appl. Math. 217, 28–37 (2008)
11. Karpuz, B., Ocalan, O.: Oscillation criteria for a class of first-order forced differential equations under impulse effects. Adv. Dyn. Syst. Appl. 7(2), 205–218 (2012)
12. Tripathy, A.K., Santra, S.S.: Characterization of a class of second-order neutral impulsive systems via pulsatile constant. Differ. Equ. Appl. 9(1), 87–98 (2017)
13. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillation of a class of second-order impulsive systems. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0425-7
14. Santra, S.S., Tripathy, A.K.: On oscillatory first order nonlinear neutral differential equations with nonimpulses. J. Appl. Math. Comput. 59, 257–270 (2019). https://doi.org/10.1007/s12190-018-1178-8
15. Santra, S.S., Dix, J.G.: Necessary and sufficient conditions for the oscillation solutions to a second-order neutral differential equation with impulses. Nonlinear Stud. 27(2), 375–387 (2020)
16. Tripathy, A.K., Santra, S.S.: On the forced impulsive oscillatory nonlinear neutral systems of the second-order. Nonlinear Oscil. 23(2), 274–288 (2020)
17. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses. Krugujev J. Math. 47(1), 81–93 (2023)
18. Santra, S.S., Ghosh, T., Bazighifan, O.: Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients. Adv. Differ. Equ. 2020, 643 (2020)
19. Santra, S.S., Dassios, I., Ghosh, T.: On the asymptotic behavior of a class of second-order non-linear neutral differential equations with multiple delays. Axioms 9, 134 (2020)
20. Santra, S.S., Majumder, D., Bhattacharjee, R., Bazighifan, O., Khedher, K., Marin, M.: New theorems for oscillations to the differential equations with mixed delays. Symmetry 13, 367 (2021)
21. Santra, S.S., Bazighifan, O., Ahmad, H., Chu, Y.-M.: Second-order differential equation: oscillation theorems and applications. Math. Prob. Eng. 2020, 882066 (2020)
22. Santra, S.S., Bazighifan, O., Ahmad, H., Yao, S.-W.: Second-order differential equation with multiple delays: oscillation theorems and applications. Complexity 2020, 8853745 (2020)
23. Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourth-order differential equations. Mathematics 8(4), 610 (2020)
24. Bazighifan, O., Ruggieri, M., Santra, S.S., Scapellato, A.: Qualitative properties of solutions of second-order neutral differential equations. Symmetry 12(9), 1520 (2020)
25. Berezansky, L., Braverman, E.: Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear Anal. 3, 61–77 (1996)
26. Diblik, J., Svoboda, Z., Smarda, Z.: Retract principle for neutral functional differential equation. Nonlinear Anal., Theory Methods Appl. 71(12), 1393–1400 (2009)
27. Santra, S.S., Alotaibi, H., Bazighifan, O.: On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Inequal. Appl. 2020, 256 (2020)
28. Diblik, J.: Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 72, 16–22 (2017)
29. Luo, Z., Jing, Z.: Periodic boundary value problem for first-order impulsive-functional differential equations. Comput. Math. Appl. 55, 2094–2107 (2008)
30. Yu, J., Yan, J.: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 207, 388–396 (1997)
31. Tripathy, A.K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 4, 89–101 (2014)
32. Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations. Chapman & Hall, Boca Raton (2020)
33. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 225, 787–794 (2013)
34. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)
35. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29(2), 548–560 (2018)
36. Bohner, M., Li, T.: Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 37, 72–76 (2014)
37. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)
38. Chiu, K.-S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292(10), 2153–2164 (2019)
39. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)
40. Li, T., Rogovchenko, Yu.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288(10), 1150–1162 (2015)
41. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)
42. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte Math. 184(3), 489–500 (2017)
43. Li, T., Rogovchenko, Yu.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 1–7 (2020)