Rank \(t \mathcal{H} \)-primes in quantum matrices.

Stéphane Launois

Laboratoire de Mathématiques - UMR6056, Université de Reims
Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France
e-mail : stephane.launois@univ-reims.fr

Abstract

Let \(K \) be a (commutative) field and consider a nonzero element \(q \) in \(K \) which is not a root of unity. In \([5]\), Goodearl and Lenagan have shown that the number of \(\mathcal{H} \)-primes in \(R = O_q(\mathcal{M}_n(K)) \) which contain all \((t+1) \times (t+1)\) quantum minors but not all \(t \times t \) quantum minors is a perfect square. The aim of this paper is to make precise their result: we prove that this number is equal to \((t!)^2 S(n+1, t+1)^2 \), where \(S(n+1, t+1) \) denotes the Stirling number of second kind associated to \(n+1 \) and \(t+1 \). This result was conjectured by Goodearl, Lenagan and McCammond. The proof involves some closed formulas for the poly-Bernoulli numbers that were established in \([10]\) and \([1]\).

2000 Mathematics subject classification: 16W35 (20G42 11B68 11B73).

1 Introduction.

Fix a (commutative) field \(K \) and an integer \(n \) greater than or equal to 2, and choose an element \(q \) in \(K^* := K \setminus \{0\} \) which is not a root of unity. Denote by \(R = O_q(\mathcal{M}_n(K)) \) the quantization of the ring of regular functions on \(n \times n \) matrices with entries in \(K \) and by \((Y_{i,\alpha})_{(i, \alpha) \in [1,n]^2} \) the matrix of its canonical generators. The bialgebra structure of \(R \) gives us an action of the group \(\mathcal{H} := (\mathbb{C}^*)^{2n} \) on \(R \) by \(K \)-automorphisms (See \([5]\)) via:

\[
(a_1, \ldots, a_n, b_1, \ldots, b_n).Y_{i,\alpha} = a_i b_{\alpha} Y_{i,\alpha} \quad ((i, \alpha) \in [1,n]^2).
\]

In \([9]\), Goodearl and Letzter have shown that \(R \) has only finitely many \(\mathcal{H} \)-invariant prime ideals (See \([9]\), 5.7. (i)) and that, in order to calculate the prime and primitive spectra of \(R \), it is enough to determine the \(\mathcal{H} \)-invariant prime ideals of \(R \) (See \([9]\), Theorem 6.6). Next, using the theory of deleting derivations, Cauchon has found a formula for the exact number of \(\mathcal{H} \)-invariant prime ideals in \(R \) (See \([4]\), Proposition 3.3.2). In this paper, we investigate these ideals.

In \([12]\) (See also \([13]\)), we have proved, assuming that \(\mathcal{K} = \mathbb{C} \) (the field of complex numbers) and \(q \) is transcendental over \(\mathbb{Q} \), that the \(\mathcal{H} \)-invariant prime ideals in \(O_q(\mathcal{M}_n(\mathbb{C})) \) are generated by quantum minors, as conjectured by Goodearl and Lenagan (See \([5]\) and \([6]\)). Next, using this result together with Cauchon’s description for the set of \(\mathcal{H} \)-invariant prime ideals of \(O_q(\mathcal{M}_n(\mathbb{C})) \) (See \([4]\), Théorème 3.2.1), we have constructed an algorithm which provides an explicit generating set of quantum minors for each \(\mathcal{H} \)-invariant prime ideal in \(O_q(\mathcal{M}_n(\mathbb{C})) \) (See \([11]\) or \([13]\)).
On the other hand, Goodearl and Lenagan have shown (in the general case where \(q \in \mathbb{K}^* \) is not a root of unity) that, in order to obtain descriptions of all the \(\mathcal{H} \)-invariant prime ideals of \(R \), we just need to determine the \(\mathcal{H} \)-invariant prime ideals of certain "localized step-triangular factors" of \(R \), namely the algebras

\[
R^+_\tau := \frac{R}{\langle Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha} \rangle} \left[\sum_{r_t \geq 1} \cdots \sum_{r_1 \geq 1} \right] \]

and

\[
R^-_\tau := \frac{R}{\langle Y_{i,\alpha} \mid \alpha > c_t \text{ or } i < r_{\alpha} \rangle} \left[\sum_{r_t \geq 1} \cdots \sum_{r_1 \geq 1} \right],
\]

where \(t \in [0, n] \) and where \(r = (r_1, \ldots, r_t) \) and \(c = (c_1, \ldots, c_t) \) are strictly increasing sequences of integers in the range \(1, \ldots, n \) (See [3], Theorem 3.5). Using this result, Goodearl and Lenagan have computed the \(\mathcal{H} \)-invariant prime ideals of \(O_q(\mathcal{M}_2(\mathbb{K})) \) (See [3] and \(O_q(\mathcal{M}_3(\mathbb{K})) \) (See [3]).

The aims of this paper are to provide a description for the set \(\mathcal{H} \)-\text{Spec}(\(R^+_\tau \)) of \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \) and to count the rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \) (\(t \in [0, n] \)), that is, those \(\mathcal{H} \)-invariant prime ideals of \(R \) which contain all \((t+1) \times (t+1) \) quantum minors but not all \(t \times t \) quantum minors. In [3], the authors have shown that the number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \) is a perfect square. More precisely, they have established (See [3], 3.6) that, for any \(t \in [0, n] \):

\[
| \mathcal{H} \text{-Spec}^t(R) | = \left(\sum_{r=(r_t, \ldots, r_1)} \right)^2
\]

where \(\mathcal{H} \text{-Spec}^t(R) \) denotes the set of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \) and \(\mathcal{H} \text{-Spec}(R^+_\tau) \) denotes the set of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \). The above relation (1) opens a potential route to count the rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \): if we can compute the number of \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \), then we will be able to count the rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \).

So, to compute the number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \), the first step is to study the \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \). Since this algebra is induced from \(R \) by factor and localization, we first construct (See Section 2), by using the deleting derivations theory (See [3]), \(\mathcal{H} \)-invariant prime ideals of \(R \) that provide, after factor and localization, \(2^{r_t-r_1} \cdots t^r_{t-r_{t-1}}(t+1)^{n-r_{t-1}} \) \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \) (See Section 3.2). Next, by using (1), we are able to show that the number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \) is greater than or equal to \((t!)^2 S(n+1, t+1)^2\), where \(S(n+1, t+1) \) denotes the Stirling number of second kind associated to \(n+1 \) and \(t+1 \) (See Proposition 3.4). Finally, after observing that the number of \(\mathcal{H} \)-invariant prime ideals of \(R \) is equal to the poly-Bernoulli number \(B_n^{(-n)} \) (See Proposition 2.7), we use a closed formula for the poly-Bernoulli number \(B_n^{(-n)} \) (See [1], Theorem 2) in order to prove our main result: the number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals of \(R \) is actually equal to \((t!)^2 S(n+1, t+1)^2\). This result was conjectured by Goodearl, Lenagan and McCammond. As a corollary, we obtain a description for the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_\tau \) (See Section 3.3).

2 \(\mathcal{H} \)-invariant prime ideals in \(O_q(\mathcal{M}_n(\mathbb{K})) \).

Throughout this paper, we use the following conventions:
• If I is a finite set, $|I|$ denotes its cardinality.
• \mathbb{K} denotes a (commutative) field and we set $\mathbb{K}^* := \mathbb{K} \setminus \{0\}$.
• $q \in \mathbb{K}^*$ is not a root of unity.
• n denotes a positive integer with $n \geq 2$.
• $R = O_q(M_n(\mathbb{K}))$ denotes the quantization of the ring of regular functions on $n \times n$ matrices with entries in \mathbb{K}; it is the \mathbb{K}-algebra generated by the $n \times n$ indeterminates $Y_{i,\alpha}$, $1 \leq i, \alpha \leq n$, subject to the following relations:
 If \[
 \begin{pmatrix}
 x & y \\
 z & t
 \end{pmatrix}
\]
is any 2×2 sub-matrix of $Y := (Y_{i,\alpha})_{(i,\alpha) \in [1,n]^2}$, then
 1. $yx = q^{-1}xy$, $zx = q^{-1}xz$, $zy = yz$, $ty = q^{-1}yt$, $tz = q^{-1}zt$.
 2. $tx = xt - (q - q^{-1})yz$.
These relations agree with the relations used in [4], [5], [6], [12] and [11], but they differ from those of [14] and [2] by an interchange of q and q^{-1}. It is well known that R can be presented as an iterated Ore extension over \mathbb{K}, with the generators $Y_{i,\alpha}$ adjoined in lexicographic order. Thus the ring R is a Noetherian domain. We denote by F its skew-field of fractions. Moreover, since q is not a root of unity, it follows from [7, Theorem 3.2] that all prime ideals of R are completely prime.
• It is well known that the group $\mathcal{H} := (\mathbb{C}^*)^{2n}$ acts on R by \mathbb{K}-algebra automorphisms via:
 \[(a_1, \ldots, a_n, b_1, \ldots, b_n).Y_{i,\alpha} = a_i b_{\alpha} Y_{i,\alpha} \quad \forall (i, \alpha) \in [1,n]^2.\]
An \mathcal{H}-eigenvector x of R is a nonzero element $x \in R$ such that $h(x) \in \mathbb{K}^* x$ for each $h \in \mathcal{H}$. An ideal I of R is said to be \mathcal{H}-invariant if $h(I) = I$ for all $h \in \mathcal{H}$. We denote by \mathcal{H}-$\text{Spec}(R)$ the set of \mathcal{H}-invariant prime ideals of R.

The aim of this paragraph is to construct \mathcal{H}-invariant prime ideals of R that, after factor and localization, will provide \mathcal{H}-invariant prime ideals of R^+. (See the introduction for the definition of this algebra). In order to do this, we use the description of the set \mathcal{H}-$\text{Spec}(R)$ that Cauchon has obtained by applying the theory of deleting derivations (See [4]).

2.1 Standard deleting derivations algorithm and description of \mathcal{H}-$\text{Spec}(R)$.

In this section, we provide the background definitions and notations for the standard deleting derivations algorithm (See [4], [12], [11]) and we recall the description of the set \mathcal{H}-$\text{Spec}(R)$ that Cauchon has obtained by using this algorithm (See [4]).

Notations 2.1

• We denote by \leq_s the lexicographic ordering on \mathbb{N}^2. We often call it the standard ordering on \mathbb{N}^2. Recall that $(i, \alpha) \leq_s (j, \beta) \iff [i < j]$ or $(i = j$ and $\alpha \leq \beta$).
• We set $E_s = ([1,n]^2 \cup \{(n,n+1)\}) \setminus \{(1,1)\}$.
• Let $(j, \beta) \in E_s$. If $(j, \beta) \neq (n,n+1)$, $(j, \beta)^+$ denotes the smallest element (relatively to \leq_s) of the set \{(i, \alpha) \in E_s \mid (j, \beta) <_s (i, \alpha)\}.
In [4], Cauchon has shown that the theory of deleting derivations (See [3]) can be applied to the iterated Ore extension $R = \mathbb{C}[Y_{1,1}, \ldots, Y_{n,n}; \sigma_{n,n}, \delta_{n,n}]$ (where the indices are increasing for $\leq s$). The corresponding deleting derivations algorithm is called the standard deleting derivations algorithm. It consists in the construction, for each $r \in E_s$, of the family $(Y_{i,\alpha}^{(r)}(i,\alpha)_{i,\alpha} \in [1,n]^2$ of elements of $F = \text{Fract}(R)$, defined as follows:

1. If $r = (n,n+1)$, then $Y_{i,\alpha}^{(n,n+1)} = Y_{i,\alpha}$ for all $(i, \alpha) \in [1,n]^2$.

2. Assume that $r = (j, \beta) <_s (n,n+1)$ and that the $Y_{i,\alpha}^{(r^+)} ((i, \alpha) \in [1,n]^2)$ are already constructed. Then, it follows from [3, Théorème 3.2.1] that $Y_{i,\alpha}^{(r^+)}$ are already constructed. Then, it follows from [3, Théorème 3.2.1] that $Y_{i,\alpha}^{(r^+)} \neq 0$ and, for all $(i, \alpha) \in [1,n]^2$, we have:

$$Y_{i,\alpha}^{(r)} = \begin{cases} Y_{i,\alpha}^{(r^+)} - Y_{i,\alpha}^{(r^+)} \left(Y_{j,\beta}^{(r^+)}\right)^{-1} Y_{j,\alpha}^{(r^+)} & \text{if } i < j \text{ and } \alpha < \beta \\ Y_{i,\alpha}^{(r^+)} & \text{otherwise.} \end{cases}$$

Notation 2.2

Let $r \in E_s$. We denote by $R^{(r)}$ the subalgebra of $F = \text{Fract}(R)$ generated by the $Y_{i,\alpha}^{(r)} ((i, \alpha) \in [1,n]^2)$, that is, $R^{(r)} := \mathbb{C}\langle Y_{i,\alpha}^{(r)} \mid (i, \alpha) \in [1,n]^2 \rangle$.

Notations 2.3

We set $R := R^{(1,2)}$ and $T_{i,\alpha} := Y_{i,\alpha}^{(1,2)}$ for all $(i, \alpha) \in [1,n]^2$.

Let $(j, \beta) \in E_s$ with $(j, \beta) \neq (n,n+1)$. The theory of deleting derivations allows us to construct embeddings $\varphi_{(j,\beta)} : \text{Spec}(R^{(j,\beta)}) \rightarrow \text{Spec}(R^{(j,\beta^+)})$ (See [3], 4.3). By composition, we obtain an embedding $\varphi : \text{Spec}(R) \rightarrow \text{Spec}(\overline{R})$ which is called the canonical embedding. In [4], Cauchon has described the set $\mathcal{H} \cdot \text{Spec}(R)$ by determining its "canonical image" $\varphi(\mathcal{H} \cdot \text{Spec}(R))$. To do this, he has introduced the following conventions and notations.

Conventions 2.4

- Let $v = (l, \gamma) \in [1,n]^2$.

 1. The set $C_v := \{(i, \gamma) \mid 1 \leq i \leq l\} \subset [1,n]^2$ is called the truncated column with extremity v.

 2. The set $L_v := \{(l, \alpha) \mid 1 \leq \alpha \leq \gamma\} \subset [1,n]^2$ is called the truncated row with extremity v.

- W denotes the set of all the subsets in $[1,n]^2$ which are a union of truncated rows and columns.

Notation 2.5

Given $w \in W$, K_w denotes the ideal in \overline{R} generated by the $T_{i,\alpha}$ such that $(i, \alpha) \in w$.

(Recall that K_w is a completely prime ideal in the quantum affine space \overline{R} (See [4], 2.1).)
The following description of the set $\mathcal{H}\text{-Spec}(R)$ was obtained by Cauchon (See [4], Corollaire 3.2.1).

Proposition 2.6

1. Given $w \in W$, there exists a (unique) \mathcal{H}-invariant (completely) prime ideal J_w in R such that $\varphi(J_w) = K_w$.

2. $\mathcal{H}\text{-Spec}(R) = \{J_w \mid w \in W\}$.

2.2 Number of \mathcal{H}-invariant prime ideals in R.

In [4], Cauchon has used his description of the set $\mathcal{H}\text{-Spec}(R)$ in order to give a formula for the total number $S(n)$ of \mathcal{H}-invariant prime ideals of R. More precisely, he has established (See [4], Proposition 3.3.2) that:

\[
S(n) = (-1)^{n-1} \sum_{k=1}^{n} (k+1)^n \sum_{j=1}^{k} (-1)^{j-1} \binom{k}{j} j^n,
\]

that is
\[
S(n) = (-1)^n \sum_{k=1}^{n} (-1)^k k!(k+1)^n \left(\frac{(-1)^k}{k!} \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^n \right).
\]

Recall (See [15], p. 34) that \(\frac{(-1)^k}{k!} \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^n\) is equal to the Stirling number of second kind $S(n,k)$ (See, for example, [15] for more details on the Stirling numbers of second kind). Hence, we have:
\[
S(n) = (-1)^n \sum_{k=1}^{n} (-1)^k k!(k+1)^n S(n,k),
\]

that is
\[
S(n) = (-1)^n \sum_{k=1}^{n} \frac{(-1)^k k!}{(k+1)^n} S(n,k). \tag{2}
\]

On the other hand, it follows from [10, Theorem 1] that:
\[
(-1)^n \sum_{k=0}^{n} \frac{(-1)^k k!}{(k+1)^{-n}} S(n,k) = B_n^{(-n)},
\]

where $B_n^{(-n)}$ denotes the poly-Bernoulli number associated to n and $-n$ (See [10] for the definition of the poly-Bernoulli numbers). Observing that $S(n,0) = 0$ (See [15]), we get:
\[
(-1)^n \sum_{k=1}^{n} \frac{(-1)^k k!}{(k+1)^{-n}} S(n,k) = B_n^{(-n)},
\]

and thus, we deduce from (2) that:
Proposition 2.7

\[|\mathcal{H}\text{-Spec}(R) | = B_n^{(n)} \].

This rewriting of Cauchon’s formula was first obtained by Goodearl and McCammond.

2.3 Vanishing and non-vanishing criteria for the entries of \(q\)-quantum matrices.

Let \(J_w (w \in W) \) be an \(\mathcal{H}\)-invariant prime ideal of \(R \) (See Proposition 2.6). In the next section, we will need to know which indeterminates \(Y_{i,\alpha} \) belong to \(J_w \), that is which \(y_{i,\alpha} := Y_{i,\alpha} + J_w \) are zero. This problem is dealt with in Proposition 2.12 and Proposition 2.16 where we respectively obtain a non-vanishing criterion and a vanishing criterion for the entries of \(q\)-quantum matrices.

For the remainder of this section, \(K \) denotes a \(K\)-algebra which is also a skew-field. Except otherwise stated, all the considered matrices have their entries in \(K \).

Definitions 2.8

Let \(M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2} \) be a \(n \times n \) matrix and let \((j, \beta)\in E_s\).

- We say that \(M \) is a \(q\)-quantum matrix if the following relations hold between the entries of \(M \):

 If \(\begin{pmatrix} x & y \\ z & t \end{pmatrix} \) is any \(2 \times 2\) sub-matrix of \(M\), then

 1. \(yx = q^{-1}xy, \quad zx = q^{-1}xz, \quad zy = yz, \quad ty = q^{-1}yt, \quad tz = q^{-1}zt.\)
 2. \(tx = xt - (q - q^{-1})yz.\)

- We say that \(M \) is a \((j, \beta)\)-\(q\)-quantum matrix if the following relations hold between the entries of \(M \):

 If \(\begin{pmatrix} x & y \\ z & t \end{pmatrix} \) is any \(2 \times 2\) sub-matrix of \(M\), then

 1. \(yx = q^{-1}xy, \quad zx = q^{-1}xz, \quad zy = yz, \quad ty = q^{-1}yt, \quad tz = q^{-1}zt.\)
 2. If \(t = x_v \), then \(\begin{cases} v \geq s(j, \beta) \Rightarrow tx = xt \\ v < s(j, \beta) \Rightarrow tx = xt - (q - q^{-1})yz.\end{cases} \)

Conventions 2.9

Let \(M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2} \) be a \(q\)-quantum matrix.

As \(r \) runs over the set \(E_s \), we define matrices \(M^{(r)} = (x_{i,\alpha}^{(r)})_{(i,\alpha)\in[1,n]^2} \) as follows:

1. If \(r = (n, n + 1) \), then the entries of the matrix \(M^{(n, n+1)} \) are defined by \(x_{i,\alpha}^{(n, n+1)} := x_{i,\alpha} \) for all \((i, \alpha)\in[1,n]^2\).

2. Assume that \(r = (j, \beta) \in E_s \setminus \{(n, n + 1)\} \) and that the matrix \(M^{(r^+)} \) is already known.
 The entries \(x_{i,\alpha}^{(r)} \) of the matrix \(M^{(r)} \) are defined as follows:
(a) If \(x_{i,j}^{(r)} = 0 \), then \(x_{i,i}^{(r)} = x_{i,j}^{(r)} \) for all \((i, \alpha) \in [1, n]^2 \).

(b) If \(x_{i,j}^{(r)} \neq 0 \) and \((i, \alpha) \in [1, n]^2 \), then

\[
x_{i,i}^{(r)} = \begin{cases} x_{i,i}^{(r)} - x_{i,j}^{(r)} \left(x_{j,j}^{(r)} \right)^{-1} x_{j,i}^{(r)} & \text{if } i < j \text{ and } \alpha < \beta \\
0 & \text{otherwise.}
\end{cases}
\]

We say that \(M^{(r)} \) is the matrix obtained from \(M \) by applying the standard deleting derivations algorithm at step \(r \).

3. If \(r = (1, 2) \), we set \(t_{i,i} := x_{i,i}^{(1,2)} \) for all \((i, \alpha) \in [1, n]^2 \).

Observe that the formulas of Conventions 2.9 allow us to express the entries of \(M^{(r)} \) in terms of those of \(M^{(r)} \).

Proposition 2.10 (Restoration algorithm)

Let \(M = (x_{i,\alpha}(i, \alpha) \in [1, n]^2 \) be a \(q \)-quantum matrix and let \(r = (j, \beta) \in E_s \) with \(r \neq (n, n + 1) \).

1. If \(x_{j,j}^{(r)} = 0 \), then \(x_{i,i}^{(r)} = x_{i,j}^{(r)} \) for all \((i, \alpha) \in [1, n]^2 \).

2. If \(x_{j,j}^{(r)} \neq 0 \) and \((i, \alpha) \in [1, n]^2 \), then

\[
x_{i,i}^{(r)} = \begin{cases} x_{i,i}^{(r)} + x_{i,j}^{(r)} \left(x_{j,j}^{(r)} \right)^{-1} x_{j,i}^{(r)} & \text{if } i < j \text{ and } \alpha < \beta \\
0 & \text{otherwise.}
\end{cases}
\]

Note that our definitions of \(q \)-quantum matrix and \((j, \beta)\)-\(q \)-quantum matrix slightly differ from those of 2 (See 2, Dénfinitions III.1.1 and III.1.3). Because of this, we must interchange \(q \) and \(q^{-1} \) whenever carrying over result of 2.

Lemma 2.11

Let \((j, \beta) \in E_s \).

If \(M = (x_{i,\alpha}(i, \alpha) \in [1, n]^2 \) is a \(q \)-quantum matrix, then the matrix \(M^{(j, \beta)} \) is \((j, \beta)\)-\(q \)-quantum.

Proof: This lemma is proved in the same manner as 2 Proposition III.2.3.1.

We deduce from the above Lemma 2.11 the following non-vanishing criterion for the entries of a \(q \)-quantum matrix.

Proposition 2.12

Let \(M = (x_{i,\alpha}(i, \alpha) \in [1, n]^2 \) be a \(q \)-quantum matrix and let \((i, \alpha) \in [1, n]^2 \).

If \(t_{i,i} \neq 0 \), then \(x_{i,i} \neq 0 \). In other words, if \(x_{i,i} = 0 \), then \(t_{i,i} = 0 \).

Proof: Assume that \(x_{i,i} = 0 \). We first prove that \(x_{i,i}^{(j, \beta)} = 0 \) for all \((j, \beta) \in E_s \). To achieve this aim, we proceed by decreasing induction (for \(\leq_s \)) on \((j, \beta) \).

Since \(x_{i,i}^{(n,n+1)} = x_{i,i} \), the case \((j, \beta) = (n, n+1) \) is done. Assume now that \((j, \beta) <_s (n, n+1) \) and \(x_{i,i}^{(j, \beta)} = 0 \). If \(x_{i,i}^{(j, \beta)} = x_{i,i}^{(j, \beta)} \), we obviously have \(x_{i,i}^{(j, \beta)} = 0 \). Next, if \(x_{i,i}^{(j, \beta)} \neq x_{i,i}^{(j, \beta)} \), then
In order to construct, in the next section, as desired. This achieves the induction.

\[
\begin{align*}
&x_{j,\beta}^+(x_{i,\alpha}^++x_{j,\alpha}^-) - x_{i,\alpha}^-x_{j,\beta}^+ = -(q-q^{-1})x_{i,\beta}^+x_{j,\alpha}^-.
\end{align*}
\]

Since \(x_{i,\alpha}^+=0\), we deduce from this equality that, in \(K\), \(x_{i,\beta}^+ x_{j,\alpha}^- = 0\). Thus, \(x_{i,\beta}^+ = 0\) or \(x_{j,\alpha}^- = 0\). On the other hand, since \(i < j\) and \(\alpha < \beta\), we have \(x_{i,\alpha}^+ = x_{i,\beta}^+ - x_{i,\alpha}^- x_{j,\beta}^+ (x_{j,\beta}^+)^{-1} x_{j,\alpha}^-\). Now it follows from the induction hypothesis that \(x_{i,\alpha}^+ = 0\). Hence, we have \(x_{i,\alpha}^+ = -x_{i,\beta}^+ (x_{j,\beta}^+)^{-1} x_{j,\alpha}^-\). Finally, since \(x_{i,\beta}^+ = 0\) or \(x_{j,\alpha}^- = 0\), we get \(x_{i,\alpha}^+ = 0\), as desired. This achieves the induction.

In particular, we have shown that \(x_{i,\alpha}^{(1,2)} = 0\), that is \(t_{i,\alpha} = 0\).

Proposition 2.12 furnishes a non-vanishing criterion for the entries of a \(q\)-quantum matrix. In order to construct, in the next section, \(\mathcal{H}\)-invariant prime ideals of \(R\) that will provide, after factor and localization, \(\mathcal{H}\)-invariant prime ideals of \(R_\mathcal{H}^+ := \frac{R}{\langle Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha} \rangle [Y_{r_1,1}, \ldots, Y_{r_t,t}]}
\)

\((\mathbf{r} = (r_1, \ldots, r_t) \text{ with } 1 \leq r_1 < \cdots < r_t \leq n)\), we also need to get a vanishing criterion for the entries \(x_{i,\alpha}^+\), \(\alpha > t\) or \(i < r_{\alpha}\), of a \(q\)-quantum matrix. This is what we do now.

Notation 2.13

If \(t\) denotes an element of \([0, n]\), we set:

\[
\mathbf{R}_t := \{(r_1, \ldots, r_t) \in \mathbb{N} \mid 1 \leq r_1 < \cdots < r_t \leq n\}.
\]

(If \(t = 0\), then \(\mathbf{R}_0 = \emptyset\).)

For the remainder of this section, we fix \(t \in [0, n]\) and \(\mathbf{r} = (r_1, \ldots, r_t) \in \mathbf{R}_t\), and we denote by \(w_{\mathbf{r}}\) the subset of \([1, n]^2\) corresponding to indeterminates \(Y_{i,\alpha}\) that have been set equal to zero in \(R_\mathcal{H}^+\), that is, we set:

\[
w_{\mathbf{r}} := \bigcup_{\alpha \in [1, t]} [1, r_{\alpha} - 1] \times \{\alpha\} \cup [1, n] \times [t + 1, n].
\]

For instance, if \(n = 3\), \(t = 2\) and \(\mathbf{r} = (1, 3)\), we have:

\[
w_{(1,3)} = \begin{array}{cc}
1 & 2 \\
\hline
3 & \text{black}
\end{array}
\]

where the black boxes symbolize the elements of \(w_{(1,3)}\).

Note that \(w_{\mathbf{r}}\) is a union of truncated columns, so that:

Remark 2.14

\(w_{\mathbf{r}}\) belongs to \(W\).
Observation 2.15
Let \((i, \alpha) \in w_r\). If \(\beta \in [\alpha, n]\), then \((i, \beta) \in w_r\).

Proof: We distinguish two cases.

• If \((i, \alpha) \in [1, n] \times [t + 1, n]\), then \(\alpha \geq t + 1\). Hence \(\beta \geq \alpha \geq t + 1\) and thus, we have \((i, \beta) \in [1, n] \times [t + 1, n] \subseteq w_r\), as required.

• Assume now that \((i, \alpha) \in \bigcup_{\gamma \in [1, t]} [1, r_{\gamma} - 1] \times \{\gamma\}\), so that we have \(\alpha \leq t\) and \(i \leq r_\alpha - 1\). If \(\beta > t\), we conclude as in the previous case that \((i, \beta) \in w_r\). So we assume that \(\beta \leq t\). Since \(i \leq r_\alpha - 1\) and since \(\alpha \leq \beta \leq t\), we have \(i \leq r_\alpha - 1 \leq r_\beta - 1\). Hence, \((i, \beta) \in [1, r_\beta - 1] \times \{\beta\} \subseteq w_r\), as desired. ■

This observation allows us to prove the following vanishing criterion:

Proposition 2.16
Let \(M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}\) be a \(q\)-quantum matrix.
If \(t_{i,\alpha} = 0\) for all \((i, \alpha) \in w_r\), then \(x_{i,\alpha} = 0\) for all \((i, \alpha) \in w_r\).

Proof: Assume that \(t_{i,\alpha} = 0\) for all \((i, \alpha) \in w_r\). We first prove by induction on \((j, \beta)\) (with respect of \(\leq_s\)) that \(x_{i,\alpha}^{(j,\beta)} = 0\) for all \((i, \alpha) \in w_r\) and \((j, \beta) \in E_s\).

If \((j, \beta) = (1, 2)\), then \(x_{i,\alpha}^{(1,2)} = t_{i,\alpha} = 0\) for all \((i, \alpha) \in w_r\), as required. Assume now that \((j, \beta) <_s (n, n + 1)\) and that \(x_{i,\alpha}^{(j,\beta)} = 0\) for all \((i, \alpha) \in w_r\). Let \((i, \alpha) \in w_r\). If \(x_{i,\alpha}^{(j,\beta)} = x_{i,\alpha}^{(j,\beta)}\), the desired result follows from the induction hypothesis. Next, if \(x_{i,\alpha}^{(j,\beta)} \neq x_{i,\alpha}^{(j,\beta)}\), it follows from Proposition 2.10 that \(x_{j,\beta}^{(j,\beta)} \neq 0\), \(i < j\), \(\alpha < \beta\) and \(x_{i,\alpha}^{(j,\beta)} + x_{i,\alpha}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{j,\alpha}^{(j,\beta)} = 0\). Since \((i, \alpha) \in w_r\), we deduce from the induction hypothesis that \(x_{i,\alpha}^{(j,\beta)} = 0\), so that \(x_{i,\alpha}^{(j,\beta)} = x_{i,\alpha}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{j,\alpha}^{(j,\beta)}\). Moreover, since \((i, \alpha) \in w_r\) and \(\alpha < \beta\), it follows from Observation 2.15 that \((i, \beta) \in w_r\). Then, we deduce from the induction hypothesis that \(x_{i,\beta}^{(j,\beta)} = 0\), so that \(x_{i,\alpha}^{(j,\beta)} = x_{i,\beta}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{j,\alpha}^{(j,\beta)} = 0\). This achieves the induction.

In particular, we have proved that \(x_{i,\alpha} = x_{i,\alpha}^{(n,n+1)} = 0\) for all \((i, \alpha) \in w_r\). ■

2.4 \(\mathcal{H}\)-invariant prime ideals \(J_w\) with \(w_r \subseteq w\).

As in the previous section, we fix \(t \in [0, n]\) and \(r = (r_1, \ldots, r_t) \in R_t\), and we set:

\[w_r := \left[\bigcup_{\alpha \in [1, t]} [1, r_{\alpha} - 1] \times \{\alpha\} \right] \bigcup [1, n] \times [t + 1, n]. \]

Recall (See Proposition 2.6) that, if \(w \in W\), there exists a (unique) \(\mathcal{H}\)-invariant prime ideal of \(R\) associated to \(w\) (See Proposition 2.3) and that the \(J_w\) \((w \in W)\) are exactly the \(\mathcal{H}\)-invariant prime ideals in \(R\). This section is devoted to the \(\mathcal{H}\)-invariant prime ideals \(J_w\) \((w \in W)\) of \(R\) with \(w_r \subseteq w\). More precisely, we want to know which indeterminates \(Y_{i,\alpha}\) belong to these ideals.
Notations 2.17
Let \(w \in W \).

1. Set \(R_w := \frac{R}{J_w} \). It follows from [8, Lemme 5.3.3] that, using the notations of Section 2.1, \(R_w \) and \(\frac{R}{K_w} \) are two Noetherian algebras with no zero-divisors, which have the same skew-field of fractions. We set \(F_w := \text{Fract}(R_w) = \text{Fract}\left(\frac{R}{K_w}\right) \).

2. If \((i, \alpha) \in \mathbb{I}^2 \), \(y_{i,\alpha} \) denotes the element of \(R_w \) defined by \(y_{i,\alpha} := \gamma_{i,\alpha} + J_w \).

3. We denote by \(M_w \) the matrix, with entries in the \(K_w \)-algebra \(F_w \), defined by:
\[
M_w := (y_{i,\alpha})_{(i,\alpha) \in \mathbb{I}^2}.
\]

Let \(w \in W \). Since \(Y = (Y_{i,\alpha})_{(i,\alpha) \in \mathbb{I}^2} \) is a q-quantum matrix, \(M_w \) is also a q-quantum matrix. Thus, we can apply the standard deleting derivations algorithm to \(M_w \) (See Conventions 2.9 with \(K = F_w \)) and if we still denote \(t_{i,\alpha} := y_{i,\alpha}^{(1,2)} \) for \((i, \alpha) \in \mathbb{I}^2 \), we get:

Proposition 2.18
\(t_{i,\alpha} = 0 \) if and only if \((i, \alpha) \in w \).

Proof: By [3, Propositions 5.4.1 and 5.4.2], there exists a \(K_w \)-algebra homomorphism \(f_{(1,2)} : R \to F_w \) such that \(f_{(1,2)}(T_{i,\alpha}) = t_{i,\alpha} \) for \((i, \alpha) \in \mathbb{I}^2 \). Its kernel is \(K_w \) and its image is the subalgebra of \(F_w \) generated by the \(t_{i,\alpha} \) with \((i, \alpha) \in \mathbb{I}^2 \). Hence, \(t_{i,\alpha} = 0 \) if and only if \(T_{i,\alpha} \in K_w \), that is, if and only if \((i, \alpha) \in w \). ■

Consider now an element \(w \) in \(W \) with \(w_r \subseteq w \) and denote by \(J_w \) the (unique) \(H \)-invariant prime ideal of \(R \) associated to \(w \) (See Proposition 2.6). Since \(w_r \subseteq w \), we deduce from Proposition 2.18 that \(t_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_r \). Hence, we can apply Proposition 2.16 to the q-quantum matrix \(M_w \) and we obtain that \(y_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_r \), that is, \(Y_{i,\alpha} \in J_w \) for all \((i, \alpha) \in w_r \).

So we have just established:

Proposition 2.19
Let \(w \in W \) with \(w_r \subseteq w \). If \((i, \alpha) \in w_r \), then \(Y_{i,\alpha} \) belongs to \(J_w \).

We will now add truncated rows to the "\(w_r \) diagram" in order to obtain \(H \)-invariant prime ideals of \(R \) that will provide, after factor and localisation, \(H \)-invariant prime ideals of \(R^+_r \). We will see later (See Section 3.4) that the \(H \)-invariant prime ideals of \(R \) obtained by adding truncated rows to the "\(w_r \) diagram" are the only \(H \)-invariant prime ideals of \(R \) that will provide, after factor and localisation, \(H \)-invariant prime ideals of \(R^+_r \).

Notation 2.20
We set \(\Gamma_r := \{ (\gamma_1, \ldots, \gamma_n) \in \mathbb{N}^n \mid \gamma_k \in [0, l] \text{ if } k \in [r_l + 1, r_{l+1}] \} \). (Here \(r_0 = 0 \) and \(r_{l+1} = n \).)
For instance, if \(n = 3, t = 2 \) and \(r = (1, 3) \), we have:

\[
\Gamma_r = \{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{N}^3 \mid \gamma_1 = 0, \gamma_2 \leq 1 \text{ and } \gamma_3 \leq 1\}.
\]

Theorem 2.21

Let \((\gamma_1, \ldots, \gamma_n) \in \Gamma_r\) and set \(w_{r,(\gamma_1, \ldots, \gamma_n)} := w_r \bigcup \bigcup_{k \in [1,n]} \{k \} \times [1, \gamma_k]\).

Then \(w_{r,(\gamma_1, \ldots, \gamma_n)}\) belongs to \(W \) and the \(H \)-invariant prime ideal \(J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) of \(R \) has the following properties:

1. \(Y_{i,\alpha} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) for all \((i, \alpha) \in w_r\).
2. \(Y_{r,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) for all \(k \in [1,t] \).

Proof: Since \(w_r\) is a union of truncated columns and since \(\bigcup_{k \in [1,n]} \{k \} \times [1, \gamma_k]\) is a union of truncated rows, \(w_{r,(\gamma_1, \ldots, \gamma_n)}\) is a union of truncated rows and columns, so that \(w_{r,(\gamma_1, \ldots, \gamma_n)} \in W\).

Since \(w_r \subseteq w_{r,(\gamma_1, \ldots, \gamma_n)}\), we deduce from Proposition 2.19 that \(Y_{i,\alpha} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) for all \((i, \alpha) \in w_r\).

Now we want to prove that \(Y_{r,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) for all \(k \in [1,t] \). Assume this is not the case, that is, assume that there exists \(k \in [1,t] \) with \(Y_{r,k} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\). Then, \(y_{r,k} = 0 \) and it follows from Proposition 2.12 that \(y_{r,k}^{(1,2)} = t_{r,k} = 0 \). Thus, we deduce from Proposition 2.18 that \((r,k) \in w_{r,(\gamma_1, \ldots, \gamma_n)}\).

Observe now that, since \(k \leq t \), \((r,k) \notin [1,n] \times [t + 1, n]\). Further, it is obvious that \((r,k) \notin \bigcup_{\alpha \in [1,t]} [1, r_{\alpha} - 1] \times \{\alpha\}\). Hence, \((r,k) \notin w_r\).

All this together shows that \((r,k) \in w_{r,(\gamma_1, \ldots, \gamma_n)} \setminus w_r = \bigcup_{l \in [1,n]} \{l\} \times [1, \gamma_l]\), so that \(k \leq \gamma_{r,k}\).

However, since \((\gamma_1, \ldots, \gamma_n) \in \Gamma_r\), we have \(\gamma_{r,k} \leq k - 1 \). This is a contradiction and thus we have proved that \(Y_{r,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}\) for all \(k \in [1,t] \).

Let us now give an example for the elements \(w_{r,(\gamma_1, \ldots, \gamma_n)}\) \((\gamma_1, \gamma_2, \gamma_3) \in \Gamma_r\) of Theorem 2.21. If \(n = 3, t = 2 \) and \(r = (1, 3) \), we have already noted that

\[
\Gamma_r = \{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{N}^3 \mid \gamma_1 = 0, \gamma_2 \leq 1 \text{ and } \gamma_3 \leq 1\},
\]

so that the elements \(w_{r,(\gamma_1, \ldots, \gamma_n)}\) \((\gamma_1, \gamma_2, \gamma_3) \in \Gamma_r\) of Theorem 2.21 are:

\[
\begin{align*}
w_{(1,3),(0,0,0)} &= w_{(1,3)} \quad & w_{(1,3),(0,1,0)} &= \quad & w_{(1,3),(1,1,1)} &= \\
w_{(1,3),(0,0,1)} &= \quad & w_{(1,3),(0,1,1)} &= \quad & w_{(1,3),(1,1,1)} &=
\end{align*}
\]
(As previously, if \(w \in W \), the black boxes symbolize the elements of \(w \).

3 Number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals in \(O_q(\mathcal{M}_n(\mathbb{K})) \).

In this paragraph, using the previous section, we begin by constructing \(\mathcal{H} \)-invariant prime ideals of the algebra \(R^+_t := \frac{O_q(\mathcal{M}_n(\mathbb{K}))}{\langle Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha} \rangle [Y_{r_1,1}, \ldots, Y_{r_t,t}] \) , where \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \) is a strictly increasing sequence of integers in the range \(1, \ldots, n \). Next, following the route sketched in the introduction, we establish our main result: the number \(|\mathcal{H}-\text{Spec}^t[R]| \) of \(\mathcal{H} \)-invariant prime ideals of \(R = O_q(\mathcal{M}_n(\mathbb{K})) \) which contain all \((t+1) \times (t+1) \) quantum minors but not all \(t \times t \) quantum minors is equal to \((t!)^2 S(n+1, t+1)^2\), where \(S(n+1, t+1) \) denotes the Stirling number of second kind associated to \(n \) and \(t+1 \). From this result, we derive a description of the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_t \).

3.1 \(\mathcal{H} \)-invariant prime ideals in \(R^+_{t,0} \).

Throughout this section, we fix \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \in \mathbb{R}_t \), and we define \(w_r \) as in the previous section.

As in [5 2.1], we set \(R^+_{t,0} = \frac{R}{\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle} \).

Recall (See [5, 2.1]) that \(R^+_{t,0} \) can be written as an iterated Ore extension over \(\mathbb{K} \). Thus, \(R^+_{t,0} \) is a Noetherian domain. Moreover, since \(q \) is not a root of unity, it follows from [7, Theorem 3.2] that all primes of \(R \) are completely prime and thus, since this property survives in factors, all primes in the algebra \(R^+_{t,0} \) are completely prime.

Observe now that, since the indeterminates \(Y_{i,\alpha} \) are \(\mathcal{H} \)-eigenvectors, \(\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle \) is an \(\mathcal{H} \)-invariant ideal of \(R \). Hence, the action of \(\mathcal{H} \) on \(R \) induces an action of \(\mathcal{H} \) on \(R^+_{t,0} \) by automorphisms. As usually, an \(\mathcal{H} \)-eigenvector \(x \) of \(R^+_{t,0} \) is a nonzero element \(x \in R^+_{t,0} \) such that \(h(x) \in K^* x \) for each \(h \in \mathcal{H} \), and an ideal \(I \) of \(R^+_{t,0} \) is said to be \(\mathcal{H} \)-invariant if \(h(I) = I \) for all \(h \in \mathcal{H} \). Further, we denote by \(\mathcal{H}-\text{Spec}(R^+_{t,0}) \) the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_{t,0} \).

Notations 3.1

- We denote by \(\pi^+_{t,0} : R \rightarrow R^+_{t,0} \) the canonical surjective \(\mathbb{K} \)-algebra homomorphism.
- If \((i, \alpha) \in [1, n]^2 \), \(Y_{i,\alpha} \) denotes the element of \(R^+_{t,0} \) defined by \(Y_{i,\alpha} := \pi^+_{t,0}(Y_{i,\alpha}) \).

Let \((\gamma_1, \ldots, \gamma_n) \in \Gamma_r \) (See Notation 2.20) and define \(w_r(\gamma_1, \ldots, \gamma_n) \) as in Theorem 2.21. Recall (See Theorem 2.21) that \(w_r(\gamma_1, \ldots, \gamma_n) \) is an element of \(W \) and that the \(\mathcal{H} \)-invariant prime ideal \(J_{w_r(\gamma_1, \ldots, \gamma_n)} \) of \(R \) contains the indeterminates \(Y_{i,\alpha} \) with \((i, \alpha) \in w_r \), so that \(\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle \subseteq J_{w_r(\gamma_1, \ldots, \gamma_n)} \). Thus, \(\pi^+_{t,0}(J_{w_r(\gamma_1, \ldots, \gamma_n)}) \) is a (completely) prime ideal of \(R^+_{t,0} \). More precisely, we have:

12
Proposition 3.2
\[J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} := \pi^+_{r,0} \left(J_{w_r,(\gamma_1,\ldots,\gamma_n)} \right) \]
is an \(\mathcal{H} \)-invariant (completely) prime ideal of \(R^+_{r,0} \) which does not contain the \(\overline{Y}_{r,k} \) \((k \in [1,t]). \)

Proof: We already explained that \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} \) is a (completely) prime ideal of \(R^+_{r,0}. \) Moreover, since \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} \) is \(\mathcal{H} \)-invariant, it is easy to check that \(J^+_{w_r,(\gamma_2,\ldots,\gamma_n)} \) is also \(\mathcal{H} \)-invariant. Finally, since \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} \) does not contain the indeterminates \(Y_{r,k} \) \((k \in [1,t]). \) (See Theorem 2.21), \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} \) does not contain the \(\overline{Y}_{r,k} = \pi^+_{r,0}(Y_{r,k}) \) with \(k \in [1,t]. \)

3.2 \(\mathcal{H} \)-invariant prime ideals in \(R^+_r \)

As in the previous section, we fix \(t \in [0,n] \) and \(r = (r_1,\ldots,r_t) \in R_t. \) In [5, 2.1], Goodearl and Lenagan have observed that the \(\overline{Y}_{r,k} \) with \(k \in [1,t] \) are regular normal elements in \(R^+_{r,0} \), so that we can form the Ore localization:

\[R^+_r := R^+_{r,0}S^{-1}_r, \]

where \(S_r \) denotes the multiplicative system of \(R^+_{r,0} \) generated by the \(\overline{Y}_{r,k} \) with \(k \in [1,t]. \)

In the previous section, we have noted that all the primes of \(R^+_{r,0} \) are completely prime. Since this property survives in localization, all the primes of \(R^+_r \) are also completely prime.

Observe now that, since the \(\overline{Y}_{r,k} \) with \(k \in [1,t] \) are \(\mathcal{H} \)-eigenvectors of \(R^+_{r,0} \), the action of \(\mathcal{H} \) on \(R^+_{r,0} \) extends to an action of \(\mathcal{H} \) on \(R^+_r \) by automorphisms. We say that an ideal \(I \) of \(R^+_r \) is \(\mathcal{H} \)-invariant if \(h(I) = I \) for all \(h \in \mathcal{H} \) and we denote by \(\mathcal{H}-\text{Spec}(R^+_r) \) the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_r \). Observe now that contraction and extension provide inverse bijections between the set \(\mathcal{H}-\text{Spec}(R^+_r) \) and the set of those \(\mathcal{H} \)-invariant prime ideals of \(R^+_{r,0} \) which are disjoint from \(S_r \).

Let \((\gamma_1,\ldots,\gamma_n) \in \Gamma_r \) (See Notation 2.20) and define \(w_{r,(\gamma_1,\ldots,\gamma_n)} \) as in Theorem 2.21. By Proposition 3.2

\[J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} := \pi^+_{r,0} \left(J_{w_r,(\gamma_1,\ldots,\gamma_n)} \right) \]
is an \(\mathcal{H} \)-invariant (completely) prime ideal of \(R^+_{r,0} \) which does not contain the \(\overline{Y}_{r,k} \) \((k \in [1,t]). \) Since \(S_r \) is generated by the \(\overline{Y}_{r,k} \) \((k \in [1,t]), \) \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} \) is an \(\mathcal{H} \)-invariant (completely) prime ideal of \(R^+_{r,0} \) which is disjoint from \(S_r. \) Thus, we have the following statement:

Proposition 3.3
\[J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}S^{-1}_r \] is an \(\mathcal{H} \)-invariant (completely) prime ideal of \(R^+_r. \)

We will prove later (See Section 3.3) that the \(J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}S^{-1}_r \) \(((\gamma_1,\ldots,\gamma_n) \in \Gamma_r) \) are exactly the \(\mathcal{H} \)-invariant prime ideals of \(R^+_r. \)

We deduce from the above Proposition 3.3 that:

Corollary 3.4
\[R^+_r \] has at least \(1^r\cdot 2^{r_2-r_1} \cdots t^{r_t-r_{t-1}}(t+1)^{n-r_t} \) \(\mathcal{H} \)-invariant prime ideals.
Proof: It follows from Proposition 3.3 that R^+_r has at least $|\Gamma_r|$ H-invariant prime ideals, and it is obvious that $|\Gamma_r| = 1^{r_1}2^{r_2-r_1}\ldots t^{r_t-r_{t-1}}(t+1)^{n-r_t}$.

3.3 Number of rank t H-invariant prime ideals in $O_q(M_n(\mathbb{K}))$.

For convenience, we recall the following definitions (See [14]):

Definitions 3.5

• Let m be a positive integer and let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,m]^2}$ be a square q-quantum matrix. The quantum determinant of M is defined by:

$$
\det_q(M) := \sum_{\sigma\in S_m} (-q)^{l(\sigma)}x_{1,\sigma(1)}\ldots x_{m,\sigma(m)},
$$

where S_m denotes the group of permutations of $[1,m]$ and $l(\sigma)$ denotes the length of the m-permutation σ.

• Let $Y := (Y_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be the q-quantum matrix of the canonical generators of R. The quantum determinant of a square sub-matrix of Y is called a quantum minor.

We can now define the rank t H-invariant prime ideals of R, as follows:

Definition 3.6

Let $t \in [0,n]$. An H-invariant prime ideal J of $R = O_q(M_n(\mathbb{K}))$ has rank t if J contains all $(t+1) \times (t+1)$ quantum minors but not all $t \times t$ quantum minors.

As in [5, 3.6], we denote by H-$\text{Spec}^{[t]}(R)$ the set of rank t H-invariant prime ideals of R.

Note that there is only one element in H-$\text{Spec}^{[0]}(R)$: $\langle Y_{i,\alpha} \mid (i, \alpha) \in [1,n]^2 \rangle$, the augmentation ideal of R. Further, Goodearl and Lenagan have observed (See [5, 3.6]) that $|H$-$\text{Spec}^{[1]}(R)| = (2^n - 1)^2$ and $|H$-$\text{Spec}^{[n]}(R)| = (n!)^2$.

Observation 3.7

The sets H-$\text{Spec}^{[t]}(R)$ ($t \in [0,n]$) partition the set H-$\text{Spec}^{[t]}(R)$.

Proof: Let P be an H-invariant prime ideal of R. Let $t \in [0,n]$ be maximal such that P does not contain all $t \times t$ quantum minors. Then P clearly belongs to H-$\text{Spec}^{[t]}(R)$. Hence, we have proved that H-$\text{Spec}(R) = \bigcup_{t\in[0,n]} H$-$\text{Spec}^{[t]}(R)$. Since this union is obviously disjoint, we get

H-$\text{Spec}(R) = \bigsqcup_{t\in[0,n]} H$-$\text{Spec}^{[t]}(R)$, as desired.

In [5], the authors have established the following result that will be our starting point to compute the cardinality of H-$\text{Spec}^{[t]}(R)$:
Proposition 3.8 (See [5], 3.6)

For all \(t \in [0, n] \), we have \(|\mathcal{H}-\text{Spec}^t(R)| = \left(\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)| \right)^2\).

Before computing \(|\mathcal{H}-\text{Spec}^t(R)|\), we first give a lower bound for \(\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)|\).

Proposition 3.9

For any \(t \in [0, n] \), we have

\[\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)| \geq t!S(n+1, t+1),\]

where \(S(n+1, t+1) \) denotes the Stirling number of second kind associated to \(n+1 \) and \(t+1 \) (See, for instance, [15] for the definition of \(S(n+1, t+1) \)).

Proof: First, we deduce from Corollary 3.4 the following inequality:

\[\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)| \geq \sum_{r \in \mathbb{R}_t} 1^{r_1}2^{r_2-r_1}\ldots t^{r_t-r_{t-1}}(t+1)^{n-r_t}. \tag{3}\]

On the other hand, we know (See [15], Exercise 16 p46) that:

\[S(n+1, t+1) = \sum_{a_1+\ldots+a_{t+1}=n+1} 1^{a_1-1}2^{a_2-1}\ldots(t+1)^{a_{t+1}-1}. \tag{4}\]

Observe now that the map \(f : \{(a_1, \ldots, a_{t+1}) \in (\mathbb{N}^*)^{t+1} | a_1+\ldots+a_{t+1} = n+1\} \rightarrow \{(r_1, \ldots, r_t) \in (\mathbb{N}^*)^t | 1 \leq r_1 < \cdots < r_t \leq n\} = \mathbb{R}_t \) defined by \(f(a_1, \ldots, a_{t+1}) = (a_1, a_1+a_2, \ldots, a_1+\ldots+a_t) \) is a bijection and that its inverse \(f^{-1} \) is defined by \(f^{-1}(r_1, \ldots, r_t) = (r_1, r_2-r_1, \ldots, r_t-r_{t-1}, n+1-n-r_t) \) for all \((r_1, \ldots, r_t) \in \mathbb{R}_t\). Thus, by means of the change of variables \((a_1, \ldots, a_{t+1}) = f^{-1}(r_1, \ldots, r_t)\), the above equality (4) is transformed to

\[S(n+1, t+1) = \sum_{1 \leq r_1 < \cdots < r_t \leq n} 1^{r_1-1}2^{r_2-r_1-1}\ldots t^{r_t-r_{t-1}-1}(t+1)^{n-r_t},\]

so that

\[t!S(n+1, t+1) = \sum_{(r_1, \ldots, r_t) \in \mathbb{R}_t} 1^{r_1}2^{r_2-r_1}\ldots t^{r_t-r_{t-1}-1}(t+1)^{n-r_t}.\]

Thus, we deduce from inequality (3) that:

\[\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)| \geq t!S(n+1, t+1),\]

as desired. \(\blacksquare \)

Remark 3.10

The proof of the above Proposition 3.9 shows that, if there exists \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \in \mathbb{R}_t \) such that \(|\mathcal{H}-\text{Spec}(R^+_r)| > 1^{r_1}2^{r_2-r_1}\ldots t^{r_t-r_{t-1}}(t+1)^{n-r_t}\), then

\[\sum_{r \in \mathbb{R}_t} |\mathcal{H}-\text{Spec}(R^+_r)| > t!S(n+1, t+1).\]
We can now prove our main result which was conjectured by Goodearl, Lenagan and McCammond:

Theorem 3.11

If \(t \in [0, n] \), then \(|H-Spec^t(R)| = (t!S(n + 1, t + 1))^2 \).

Proof: First, since the sets \(H-Spec^t(R) \) (\(t \in [0, n] \)) partition \(H-Spec(R) \) (See Observation 3.7), we have:

\[
|H-Spec(R)| = \sum_{t=0}^{n} |H-Spec^t(R)|.
\]

Recall now (See Proposition 2.7) that \(|H-Spec(R)| \) is equal to the poly-Bernoulli number \(B_n^{(-n)} \). Thus, we deduce from the above equality that:

\[
B_n^{(-n)} = \sum_{t=0}^{n} |H-Spec^t(R)|.
\]

Further, by Theorem 2], \(B_n^{(-n)} \) can also be written as follows:

\[
B_n^{(-n)} = \sum_{t=0}^{n} (t!S(n + 1, t + 1))^2.
\]

Hence, we have:

\[
\sum_{t=0}^{n} |H-Spec^t(R)| = \sum_{t=0}^{n} (t!S(n + 1, t + 1))^2,
\]

that is:

\[
\sum_{t=0}^{n} \left(|H-Spec^t(R)| - (t!S(n + 1, t + 1))^2 \right) = 0. \tag{5}
\]

On the other hand, recall (See 3.6) that \(|H-Spec^t(R)| = \left(\sum_{r \in R_t} |H-Spec(R_t^+)| \right)^2 \).

Thus, since \(\sum_{r \in R_t} |H-Spec(R_t^+)| \geq t!S(n + 1, t + 1) \) (See Proposition 3.9), we have:

\[
|H-Spec^t(R)| \geq (t!S(n + 1, t + 1))^2.
\]

In other words, each of the terms which appears in the sum on the left-hand side of (5) is non-negative. Since this sum is equal to zero, each term of this sum must be zero, that is, for all \(t \in [0, n] \), we have:

\[
|H-Spec^t(R)| = (t!S(n + 1, t + 1))^2. \tag*{\blacksquare}
\]

Remark 3.12

The cases \(t = 0 \), \(t = 1 \) and \(t = n \) were already known (See 3.6).

16
3.4 Description of the set $\mathcal{H}\text{-}Spec(R^+_t)$.

Throughout this section, we fix $t \in [0, n]$ and $r = (r_1, \ldots, r_t) \in \mathbb{R}_t$. We now use the above Theorem 3.11 to obtain a description of the set $\mathcal{H}\text{-}Spec(R^+_t)$. More precisely, we show that the only $\mathcal{H}\text{-}invariant$ prime ideals of R^+_t are those obtained in Proposition 3.3, that is, in the notations of Section 3.2:

Theorem 3.13

\[\mathcal{H}\text{-}Spec(R^+_t) = \{ J^+_{w_t, (\gamma_1, \ldots, \gamma_n)} S^{-1}_t \mid (\gamma_1, \ldots, \gamma_n) \in \Gamma_t \}. \]

Proof: We already know (See Proposition 3.3) that \[\mathcal{H}\text{-}Spec(R^+_t) \supseteq \{ J^+_{w_t, (\gamma_1, \ldots, \gamma_n)} S^{-1}_t \mid (\gamma_1, \ldots, \gamma_n) \in \Gamma_t \}. \]

Assume now that \[\mathcal{H}\text{-}Spec(R^+_t) \nsubseteq \{ J^+_{w_t, (\gamma_1, \ldots, \gamma_n)} S^{-1}_t \mid (\gamma_1, \ldots, \gamma_n) \in \Gamma_t \}. \]

Then we have \[| \mathcal{H}\text{-}Spec(R^+_t) | > | \Gamma_t |. \] Since \[| \Gamma_t | = 1^{r_1} 2^{r_2 - r_1} \ldots t^{r_t - r_{t-1}} (t + 1)^{n-r_t}, \]

we get \[| \mathcal{H}\text{-}Spec(R^+_t) | > 1^{r_1} 2^{r_2 - r_1} \ldots t^{r_t - r_{t-1}} (t + 1)^{n-r_t}. \]

Thus, it follows from Remark 3.10 that

\[\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-}Spec(R^+_t) | > t! S(n + 1, t + 1). \]

Hence we have

\[\left(\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-}Spec(R^+_t) | \right)^2 > (t! S(n + 1, t + 1))^2. \]

Recall now (See 3.6) that

\[| \mathcal{H}\text{-}Spec^{[t]}(R) | = \left(\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-}Spec(R^+_t) | \right)^2. \]

All this together shows that \[| \mathcal{H}\text{-}Spec^{[t]}(R) | > (t! S(n + 1, t + 1))^2. \]

However, it follows from Theorem 3.11 that \[| \mathcal{H}\text{-}Spec^{[t]}(R) | = (t! S(n + 1, t + 1))^2. \]

This is a contradiction and thus we have proved that \[\mathcal{H}\text{-}Spec(R^+_t) = \{ J^+_{w_t, (\gamma_1, \ldots, \gamma_n)} S^{-1}_t \mid (\gamma_1, \ldots, \gamma_n) \in \Gamma_t \}. \]

\[\blacksquare \]

Acknowledgments.

I thank T.H. Lenagan for very helpful conversations, and K.R. Goodearl for useful comments.
References

[1] T. Arakawa and M. Kaneko, *On poly-Bernoulli numbers*, Comment Math. Univ. St. Paul 48 (2) (1999), 159–167.

[2] G. Cauchon, *Quotients premiers de $O_\mathfrak{q}(\mathcal{M}_n(k))$*, J. Algebra 180 (1996), 530–545.

[3] ———, *Effacement des dérivation et spectres premiers d’algèbres quantiques*, J. Algebra. 260 (2003), 476–518.

[4] ———, *Spectre premier de $O_\mathfrak{q}(\mathcal{M}_n(k))$, image canonique et séparation normale*, J. Algebra. 260 (2003), 519–569.

[5] K.R. Goodearl and T.H. Lenagan, *Prime ideals invariant under winding automorphisms in quantum matrices*, Internat. J. Math. 13 (2002), 497–532.

[6] ———, *Winding-invariant prime ideals in quantum 3×3 matrices*, J. Algebra. 260 (2003), 657–687.

[7] K.R. Goodearl and E.S. Letzter, *Prime factor algebras of the coordinate ring of quantum matrices*, Proc. Amer. Math. Soc. 121 (1994), 1017–1025.

[8] ———, *Prime and primitive spectra of multiparameter quantum affine spaces*, Trends in ring theory (Miskolc, 1996), Canad. Math. Soc. Conf. Proc. Series, vol. 22, 1998, pp. 39–58.

[9] ———, *The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras*, Trans. Amer. Math. Soc. 352 (2000), 1381–1403.

[10] M. Kaneko, *Poly-Bernoulli numbers*, J. de Théorie des Nombres de Bordeaux 9 (1997), 221–228.

[11] S. Launois, *Generators for the \mathcal{H}-invariant prime ideals in $O_\mathfrak{q}(\mathcal{M}_{m,p}(\mathbb{C}))$*, to appear in Proceedings of the Edinburgh Mathematical Society.

[12] ———, *Les idéaux premiers invariants de $O_\mathfrak{q}(\mathcal{M}_{m,p}(\mathbb{C}))$*, to appear in J. Algebra.

[13] ———, *Idéaux premiers \mathcal{H}-invariants de l’algèbre des matrices quantiques*, Thèse de doctorat, Université de Reims, 2003.

[14] B.J. Parshall and J.P. Wang, *Quantum Linear Groups*, Mem. Amer. Math. Soc., 439, 1991.

[15] R.P. Stanley, *Enumerative Combinatorics I*, Cambridge University Press, 1997.