Fermionic realization of two-parameter quantum affine algebra $U_{r,s}(C_1^{(1)})$

Naihuan Jing and Honglian Zhang

Abstract. We construct a Fock space representation and the action of the two-parameter quantum algebra $U_{r,s}(gl_{\infty})$ using extended Young diagrams. In particular, we obtain an integrable representation of the two-parameter quantum affine algebra of type $C_n^{(1)}$ which is a two-parameter generalization of Kang-Misra-Miwa's realization.

Résumé. Nous construisons une représentation de l'espace de Fock et l'action de la 2-paramètre quantique algèbre $U_{r,s}(gl_{\infty})$ en utilisant diagrammes de Young prolongées. Dans particulier, on obtient une représentation intégrable de la 2-paramètres quantique algèbre affine pour le type $C_n^{(1)}$ qui est un 2-paramètres généralisation de la réalisation de Kang-Misra-Miwa.

1. Introduction

Quantum groups, introduced independently by Drinfeld [6] and Jimbo [14], are deformations of the universal enveloping algebras of the Kac-Moody Lie algebras. Among the most important classes of quantum groups, quantum affine algebras have a rich representation theory and broad applications in mathematics and physics. In particular they are expected to provide the mathematical foundation for q-conformal field theory.

Two-parameter quantum groups associated to gl_n and sl_n were studied in [3, 4, 5] by Benkart and Witherspoon (see also earlier work by Takeuchi [20]). Other classical types and some exceptional types of two-parameter quantum groups and their representations have been investigated in [1, 2, 10] (see references therein). The two-parameter quantum affine algebras were introduced in [11] and their Drinfeld realization and vertex operator representations were also known with help of Lunden bases for type A. More recently these structures have been generalized to all classical untwisted types in [12, 8], which are analog of the basic representations of the quantum affine algebras [7]. The latter builds upon certain quantization of the so-called bosonic fields. From the other angle aimed toward a categorification, [16]
provided a group-theoretic realization of two-parameter quantum toroidal algebras using finite subgroups of $SL_2(\mathbb{C})$ via the McKay correspondence.

It is well known that quantum affine algebras also admit fermionic realizations \cite{9, 19, 17, 18} that have played an important role in integrable systems and representation theory. In \cite{15} such a fermionic realization of the two-parameter quantum affine algebra was constructed for type A using Young diagrams. The combinatorial model gives rise to a natural interpretation of the deforming parameters r and s. In this paper, we construct a fermionic realization of the two-parameter quantum affine algebra of type C along the same line. We have taken a slightly different presentation from \cite{15} to use the approach of Kang-Misra-Miwa \cite{17}. We expect that this model will also work for other 2-parameter twisted quantum affine algebras.

2. The Fock Space of $U_{r,s}(gl(\infty))$

In this section, we first define the two-parameter quantum algebra $U_{r,s}(gl(\infty))$, and obtain an irreducible integrable representation using extended Young diagrams.

Let $\{\epsilon_i, | i \in \mathbb{Z}\}$ be an orthonormal basis of a Euclidean space E with an inner product $(,)$. Let $\{\alpha_i | i \in \mathbb{Z}\}$ be the simple roots of the Lie algebra $g = gl(\infty)$.

We assume that the ground field \mathbb{K} is the field $\mathbb{Q}(r,s)$ of rational functions in r, s. Similar to the definition of $U_{r,s}(gl(n))$ (cf. \cite{3}), we define $U_{r,s}(gl(\infty))$ as follows.

DEFINITION 2.1. Let $U_{r,s}(gl(\infty))$ be the unital associative algebra over \mathbb{K} generated by the elements $e_i^\infty, f_i^\infty, \omega_i^\infty, \omega'_i^\infty$ for $i \in \mathbb{Z}$ satisfying the following defining relations:

\begin{align*}
(R1) & \quad (\omega_i^\infty)^{\pm1}, (\omega'_j^\infty)^{\pm1} \text{ all commute with each another and} \\
& \quad \omega_i^\infty (\omega'_i^\infty)^{-1} = (\omega'_i^\infty)(\omega_i^\infty)^{-1} = 1, \\
(R2) & \quad \omega_i^\infty e_j^\infty = r^{(\epsilon_i, \alpha_j)} e_j^\infty \omega_i^\infty \text{ and } \omega_i^\infty f_j^\infty = r^{-(\epsilon_i, \alpha_j)} f_j^\infty \omega_i^\infty, \\
(R3) & \quad \omega_i^\infty e_j^\infty = s^{(\epsilon_i, \alpha_j)} e_j^\infty \omega_i^\infty \text{ and } \omega_i^\infty f_j^\infty = s^{-(\epsilon_i, \alpha_j)} f_j^\infty \omega_i^\infty, \\
(R4) & \quad [e_i^\infty, f_j^\infty] = \frac{\delta_{ij}}{r - s} (\omega_i^\infty \omega_{i+1}^\infty - \omega_{i+1}^\infty \omega_i^\infty), \\
(R5) & \quad [e_i^\infty, e_j^\infty] = [f_i^\infty, f_j^\infty] = 0 \text{ if } |i - j| > 1, \\
(R6) & \quad (e_i^\infty)^2 e_i^\infty = (r + s) e_i^\infty e_{i+1}^\infty e_i^\infty + rs e_{i+1}^\infty (e_i^\infty)^2 = 0, \\
& \quad e_i^\infty (e_{i+1}^\infty)^2 - (r + s) e_{i+1}^\infty e_i^\infty e_{i+1}^\infty + rs (e_{i+1}^\infty)^2 e_i^\infty = 0, \\
(R7) & \quad (f_i^\infty)^2 f_i^\infty - (r^{-1} + s^{-1}) f_i^\infty f_{i+1}^\infty f_i^\infty + (rs)^{-1} f_{i+1}^\infty (f_i^\infty)^2 = 0, \\
& \quad f_i^\infty (f_{i+1}^\infty)^2 - (r^{-1} + s^{-1}) f_{i+1}^\infty f_i^\infty f_{i+1}^\infty + (rs)^{-1} (f_{i+1}^\infty)^2 f_i^\infty = 0.
\end{align*}

Now we construct a Fock space representation for the two-parameter quantum algebra $U_{r,s}(gl_\infty)$, which generalizes the fermionic representation of the usual quantum algebra given in \cite{17}.

We begin with the definition of extended Young diagram given in \cite{13}.

DEFINITION 2.2. An extended Young diagram Y is a sequence $(y_k)_{k \geq 0}$ such that

\begin{enumerate}
 \item[(i)] $y_k \in \mathbb{Z}$, $y_k \leq y_{k+1}$ for all k;
 \item[(ii)] there exists fixed integer y_∞ such that $y_k = y_\infty$ for $k \gg 0$.
\end{enumerate}

The integer y_∞ is called the charge of Y.

Another way to identify an extended Young diagram is by specifying the fourth quadrant of the xy-plane with sites \{ (i, j) \in \mathbb{Z} \times \mathbb{Z} | i \geq 0, j \leq 0 \}. Thus an extended Young diagram \(Y = (y_k)_{k \geq 0} \) is an infinite Young diagram drawn on the lattice in the right half plane with sites \{ (i, j) \in \mathbb{Z} \times \mathbb{Z} | i \geq 0, j \leq 0 \}, where \(y_k \) denotes the “depth” of the \(k \)-th column.

Note that if \(y_k \neq y_{k+1} \) for some \(k \), then we will have corners in the extended Young diagram \(Y = (y_k)_{k \geq 0} \). A corner is either “concave” or “convex”. A corner located at site \((i, j)\) is called a \(d \)-diagonal corner (or corner with diagonal number \(d \)), where \(d = i + j \). For more details please see \[13\] and \[17\].

For any fixed integer \(n \), let \(\phi_n \) denote the “empty” diagram \((n, n, n, \cdots)\) of charge \(n \). Let \(Y_n \) denote the set of all extended Young diagrams of charge \(n \). The Fock space of charge \(n \)

\[\mathcal{F}_n = \bigoplus_{Y \in Y_n} Q(r, s)Y \]

denotes the \(Q(r, s) \)-vector space having all \(Y \in Y_n \) as base vectors.

The algebra \(U_{r,s}(gl(\infty)) \) acts on the Fock space as follows:

Theorem 2.3. \(\mathcal{F}_n \) is an irreducible integrable \(U_{r,s}(gl(\infty)) \)-module under the action defined as follows. For \(Y \in Y_n \),

\[\epsilon_i^\infty Y = Y', \quad \text{if } Y \text{ has an } i \text{-diagonal convex corner then,} \]
\[Y' \text{ is the same as } Y \text{ except that the } i \text{-diagonal convex corner is replaced by a concave corner,} \]
\[= 0, \quad \text{otherwise;} \]
\[f_i^\infty Y = Y'', \quad \text{if } Y \text{ has an } i \text{-diagonal concave corner then,} \]
\[Y'' \text{ is the same as } Y \text{ except that the } i \text{-diagonal concave corner is replaced by a convex corner,} \]
\[= 0, \quad \text{otherwise;} \]
\[\omega_i^\infty Y = s^{-1}Y, \quad \text{if } Y \text{ has an } i \text{-diagonal concave corner}, \]
\[= r^{-1}, \quad \text{if } Y \text{ has an } i \text{-diagonal convex corner}, \]
\[= Y, \quad \text{otherwise;} \]
\[\omega_i'^\infty Y = rY, \quad \text{if } Y \text{ has an } i \text{-diagonal concave corner}, \]
\[= s, \quad \text{if } Y \text{ has an } i \text{-diagonal convex corner,} \]
\[= Y, \quad \text{otherwise}. \]

Proof. It is straightforward to verify the relations \((R1) – (R7)\) for the action on \(\mathcal{F}_n \) for all generators. We remark that this is very much the same as in type \(A \) situation \[15\].

3. Fock Space Representations of \(U_{r,s}(C_1^{(1)}) \)

Having constructed the Fock space representation of the two-parameter quantum affine algebra \(U_{r,s}(gl(\infty)) \), we can build the Fock space representation of \(U_{r,s}(C_1^{(1)}) \) by generalizing the well-known embedding of the latter inside \(U_{r,s}(gl(\infty)) \).

First let us recall the definition of the two-parameter quantum affine algebra \(U_{r,s}(C_1^{(1)}) \) from \[8\].
Let \(I_0 = \{0, 1, 2, \cdots, n\} \), and \((\alpha_{ij}), i, j \in I_0\) be the Cartan matrix of type \(C^{(1)}_l \). We take the normalization \((\alpha_0, \alpha_0) = (\alpha_l, \alpha_l) = 1\) and \((\omega_i, \alpha_i) = \frac{1}{2}\) for \(1 \leq i \leq l - 1\). Let \(r_i = r^{(\alpha_i, \alpha_i)}\) and \(s_i = s^{(\alpha_i, \alpha_i)}\). Denote by \(c \) the canonical central element of \(g(C^{(1)}_l) \) and let \(\delta_{ij} \) denote the Kronecker symbol.

Definition 3.1. The two-parameter quantum affine algebra \(U_{r,s}(C^{(1)}_n) \) is the unital associative algebra over \(\mathbb{K} \) generated by the elements \(e_j, f_j, \omega_j^{\pm 1}, \omega_j'^{\pm 1} (j \in I_0) \), \(\gamma^{\pm 1}, \gamma'^{\pm 1}, D^{\pm 1}, D'^{\pm 1} \), satisfying the following relations:

\[e_j e_i - e_i e_j - (\delta_{ij}) e_i = 0, \]

\[e_j f_i - f_i e_j = (\delta_{ij} r_i - s_i)(\omega_j - \omega_j), \]

\[f_j e_i - e_i f_j + (\delta_{ij} s_i - r_i)(\omega_j - \omega_j) = 0, \]

\[f_j f_i - f_i f_j = (\delta_{ij} c r_i - s_i)(\omega_j - \omega_j) \]

Definition 3.2. For all \(\gamma = \gamma' = 0, \gamma' = (r,s)^\epsilon \), such that \(\omega_i \omega_i = \omega_i' \omega_i' = 0, \) the following relations:

\[[\omega_i^{\pm 1}, \omega_j^{\pm 1}] = [\omega_i^{\pm 1}, D^{\pm 1}] = [\omega_i^{\pm 1}, D'^{\pm 1}] = 0, \]

\[[\omega_i^{\pm 1}, \omega_j'^{\pm 1}] = [\omega_i'^{\pm 1}, \omega_j'^{\pm 1}] = [D^{\pm 1}, D'^{\pm 1}] = 1 = DD^{-1} = D'D'^{-1}, \]

Definition 3.3. For \(0 \leq i, j \leq l \),

\[D e_i D^{-1} = r_i^{\delta_{ii}} e_i, \quad D f_i D^{-1} = r_i^{-\delta_{ii}} f_i, \]

\[D e_i D^{-1} = (i, j) e_i, \quad D f_i D^{-1} = (j, i) f_i. \]

Definition 3.4. For \(0 \leq i, j \leq l \),

\[D' e_i D'^{-1} = s_i^{\delta_{ii}} e_i, \quad D' f_i D'^{-1} = s_i^{-\delta_{ii}} f_i, \]

\[D' e_i D'^{-1} = (i, j) e_i, \quad D' e_i D'^{-1} = (j, i) f_i. \]

Definition 3.5. For all \(1 \leq i \neq j \leq l \) such that \(a_{ij} = 0 \),

\[e_i e_j = [f_i, f_j] = 0, \]

\[e_i e_0 = rs e_0 e_i, \quad f_0 f_1 = rs f_1 f_0. \]

Definition 3.6. For \(1 \leq i \leq l - 2 \), the \((r, s)\)-Serre relations for \(e_i \):

\[e_0'^3 e_i - (r + s) e_0 e_1 e_i + rs e_1 e_0'^2 = 0, \]

\[e_i'^3 e_i' + (r + s) e_i e_i' e_i + (r + s) e_i e_i'^2 = 0, \]

\[e_n e_i + (r + s) e_i e_i' e_i + (r + s) e_i e_i'^2 = 0, \]

\[e_i'^2 e_{i' - 1} - (r^2 + s^2) e_{i - 1} e_{i' - 1} + (r^2 + s^2) e_{i' - 1} e_{i - 1} = 0, \]

\[e_i'^3 e_i - (r + s) e_{i - 1} e_i e_{i' - 1} = 0, \]

\[+ (rs) e_{i - 1} e_i e_{i' - 1} = 0, \]

\[e_i'^3 e_0 = (r^2 + s^2) e_i e_0, \]

\[+ (rs) e_{i - 1} e_i e_{i' - 1} e_0 e_i e_{i' - 1} = 0. \]

Definition 3.7. For \(1 \leq i \leq l - 2 \), the \((r, s)\)-Serre relations for \(f_i \) are obtained from (C6) by replacing \(e_i \) for \(f_i \) and \(rs \) by \(r^{-1}, s^{-1} \) respectively.
In the above \((i, j)\) are the matrix entries of the two-parameter quantum Cartan matrix for type \(C_1^{(1)}\):

\[
\begin{pmatrix}
rs^{-1} & r^{-1} & 1 & \cdots & 1 & rs \\
rs & r^{s-1} & r^{-1} & \cdots & 1 & 1 \\
1 & 1 & 1 & \cdots & rs & rs^{-1} \\
\end{pmatrix}
\]

We now describe the integrable representation of the two-parameter quantum affine algebra \(U_{r,s}(C_1^{(1)})\). We start with the folding map

\[\pi : \{0, 1, \cdots, 2l-1\} \rightarrow \{0, 1, \cdots, l\}\]

where \(\pi(0) = 0, \pi(l) = l\) and \(\pi(i) = \pi(2l - i) = i\) for \(1 \leq i \leq l-1\). Extend \(\pi\) to a map from \(Z\) into \(\{0, 1, \cdots, l\}\) by periodicity \(2l\).

For any \(Y = (y_k)_{k \geq 0} \in F_n\) define the operators:

\[t_k Y = r^a Y, \quad t_k' = s^a Y\]

where \(a = |\{ p \in Z | y_k < p \leq n \text{ and } \pi(p + k) = 0\}|\) which depends on \(k\).

As we still act on the space \(\mathcal{F}_n\), so we continue to use the same notation for the new Fock space representation. The following theorem is proved by direct verification (see [13]).

Theorem 3.2. For \(k = 0, 1, \cdots, l\), the algebra \(U_{r,s}(C_1^{(1)})\) acts on \(\mathcal{F}_n\) by the equations:

\[
e_i = \sum_{\pi(j) = i} \left(\prod_{k \geq j} \omega_k^{(\alpha, \alpha)} \right)^{e_j^{\infty}}_j,
\]

\[
f_i = \sum_{\pi(j) = i} f_j^{\infty} \left(\prod_{k < j} \omega_k^{(\alpha, \alpha)} \right)^{f_j^{\infty}}_j,
\]

\[
\omega_i = \left(\prod_{\pi(j) = i} \omega_j^{\infty} \right)^{\omega_i^{\infty}}_i,
\]

\[
\omega'_i = \left(\prod_{\pi(j) = i} \omega'_j^{\infty} \right)^{\omega'_i^{\infty}}_i,
\]

\[
D = \prod_{k \geq 0} t_k, \quad D' = \prod_{k \geq 0} t'_k.
\]

Under the above action \(\mathcal{F}_n\) is an integrable \(U_{r,s}(C_1^{(1)})\)-module.

Proof. We proceed in the same way. First we have

\[
\omega'_i e_i \omega'^{-1}_j = \left(\prod_{k \geq j} \omega'_k^{(\alpha, \alpha)} \right)^{\omega'_i^{(\alpha, \alpha)}}_i \sum_{\pi(j) = i} \left(\prod_{j > j'} \omega_{j'}^{\infty} \right)^{\omega'^{-1}_j}_{j'} e_j^{\infty} \left(\prod_{\pi(k) = j} \omega_k^{\infty} \right)^{-(\alpha, \alpha)}_j.
\]

We don’t have to prove anything for \(|i - j| \geq 2\) due to \(\omega'^{-1}_i e_j = e_j \omega'^{-1}_i\).

For \(i = j\), we have \(e_m^{\infty} \omega'_m^{(\alpha, \alpha)} e_m^{\infty} = e_m^{\infty} \omega'_m^{(\alpha, \alpha)}\). For \(0 \leq i = j - 1 \leq l - 1\), applying \(e_m^{\infty} \omega_m^{(\alpha, \alpha)} e_m^{\infty} = e_m^{\infty} \omega_m^{(\alpha, \alpha)}\).
and $\langle i + 1, i \rangle^{-1} = s^{-1}(\alpha_{i+1}, \alpha_{i+1})$, we arrive at the required relation. Finally, when $1 \leq i = j + 1 \leq l$, we have $e_{m}^{\infty}(\omega_{m}^{\infty})^{-1} = r(\omega_{m-1}^{\infty})^{-1} e_{m}^{\infty}$ and $\langle i - 1, i \rangle^{-1} = r^{-1}(\alpha_{i-1}, \alpha_{i-1})$, and this implies the conclusion.

For further reference, we need a few useful identities.

Lemma 3.3. By direct calculations, we get the actions on $\mathcal{F}_{n},$

\[
\begin{align*}
f_{m}^{\infty}(\omega_{m}^{\infty})^{-1} &= \langle m, m' \rangle_{\infty}^{-1}(\omega_{m}^{\infty})^{-1} f_{m}^{\infty}, \\
e_{k}^{\infty}(\omega_{m}^{\infty})^{-1} &= \langle k, m' \rangle_{\infty}(\omega_{m}^{\infty})^{-1} e_{k}^{\infty}, \\
f_{m}^{\infty}(\omega_{k'}^{\infty})^{-1} &= \langle m, k' \rangle_{\infty}(\omega_{k'}^{\infty})^{-1} f_{m}^{\infty},
\end{align*}
\]

where $\langle i, j \rangle_{\infty}$ is defined as follows:

\[
\langle i, j \rangle_{\infty} = \begin{cases}
rs^{-1}, & i = j; \\
r^{-1}, & i = j - 1; \\
s, & i = j + 1; \\
1, & otherwise.
\end{cases}
\]

Now we turn to the relation (\hat{C}4). From definition and Lemma 3.3, it follows that

\[
e_{i}f_{j} - f_{j}e_{i}
= \sum_{k} \left(\prod_{\pi(k) = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} e_{k}^{\infty} \sum_{m} f_{m}^{\infty} \left(\prod_{\pi(m) = j} \omega_{m'}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})}
- \sum_{m} f_{m}^{\infty} \left(\prod_{\pi(m') = j} \omega_{m}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})} \sum_{k} \left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} e_{k}^{\infty}
\]

\[
= \sum_{k, m} \left[\left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} e_{k}^{\infty} f_{m}^{\infty} \left(\prod_{\pi(m') = j} \omega_{m'}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})}
- f_{m}^{\infty} \left(\prod_{\pi(m') = j} \omega_{m}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})} \left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} e_{k}^{\infty} \right]
\]

\[
= \sum_{k > m} \left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} \left(\prod_{\pi(m') = j} \omega_{m'}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})} \left(e_{k}^{\infty} f_{m}^{\infty} - f_{m}^{\infty} e_{k}^{\infty} \right)
+ \delta_{i,j} \sum_{k} \left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} \left(\prod_{\pi(k')} \omega_{k'}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})} \left(e_{k}^{\infty} f_{m}^{\infty} - f_{m}^{\infty} e_{k}^{\infty} \right)
+ \sum_{k < m} \left(\prod_{\pi(k') = i} \omega_{k'}^{\infty} \right)^{(\alpha_{i}, \alpha_{i})} \left(\prod_{\pi(m') = j} \omega_{m'}^{\infty} \right)^{(\alpha_{j}, \alpha_{j})}
\]
Note that if \(m = k + 1 \), then we have \(e_k^\infty f_m^\infty = 0 = f_m^\infty e_k^\infty \), and if \(m > k + 1 \), then

\[
\sum_{\substack{m' < m \\ \pi(k) = i \\ \pi(m) = j = \pi(m')}} \langle k, m' \rangle_{\infty}^{(\alpha_i, \alpha_j)} = \sum_{\substack{k' > k \\ \pi(m) = j \\ \pi(k) = i = \pi(k')}} \langle m, k' \rangle_{\infty}^{(\alpha_i, \alpha_j)}
\]

On \(F_n \), it is clear that

\[
e_k^\infty f_m^\infty - f_m^\infty e_k^\infty = \delta_{k,m} \left(\frac{\left(\prod_{k' \geq k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)}}{r_i - s_i} - \left(\prod_{k' < k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} \right)
\]

Consequently, it follows that on \(F_n \),

\[
e_i f_j - f_j e_i = \delta_{i,j} (r_i - s_i)^{-1} \sum_{\pi(k) = i} \left\{ \left(\prod_{k' \geq k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} - \left(\prod_{k' < k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} \right\}
\]

\[
= \delta_{i,j} \left(\frac{\omega_i - \omega_i'}{r_i - s_i} \right)
\]

It is straightforward to check the relation (\(\hat{C}5 \)),

\[
e_l e_0 = \sum_{\pi(k) = l} \left(\prod_{k' \geq k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} e_k^\infty \sum_{\pi(m) = 0} \left(\prod_{m' > m} \omega_{m'}^\infty \right)^{(\alpha_0, \alpha_0)} e_m^\infty = r \sum_{\pi(k) = l} \left(\prod_{k' \geq k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} e_k^\infty \sum_{\pi(m) = 0} \left(\prod_{m' > m} \omega_{m'}^\infty \right)^{(\alpha_0, \alpha_0)} e_m^\infty
\]

\[
= rs \sum_{k,m} \left(\prod_{k' > k} \omega_{k'}^\infty \right)^{(\alpha_0, \alpha_0)} e_m^\infty \left(\prod_{k' > k} \omega_{k'}^\infty \right)^{(\alpha_i, \alpha_j)} e_k^\infty
\]

The others relations can be proved similarly.

The last task is to verify the Serre relations (\(\hat{C}6 \)) and (\(\hat{C}7 \)). Here we only check the relation (\(\hat{C}6 \)) as the other relations are proved exactly in the same way.
To show the Serre relations ($\hat{C}6$), let us begin with the following notation to save space.

\[p_j = \prod_{j > j, \pi(j') = \pi(j)} \omega_j^\infty \]

\[p'_j = \prod_{j > j, \pi(j') = \pi(j)} \omega_j'^\infty. \]

Let us write $i \gg j$ if $i - j > 2$. The following lemmas can be checked directly.

Lemma 3.4. For all j and k, on F_n then we obtain,

\[e_k^\infty e_k^\infty = 0, \]

\[e_k^\infty e_j^\infty e_k^\infty = 0. \]

Lemma 3.5. If $\pi(k) = 0 = \pi(j)$, then it holds

\[e_j^\infty p_k = \left\{ \begin{array}{ll}
p_k e_j^\infty, & \text{for } j \leq k; \\
r^{-1} s p_k e_j^\infty, & \text{for } j > k.
\end{array} \right. \]

\[e_j^\infty p'_k = \left\{ \begin{array}{ll}
p'_k e_j^\infty, & \text{for } j \leq k; \\
s p'_k e_j^\infty, & \text{for } j > k.
\end{array} \right. \]

Lemma 3.6. If $\pi(j) = 0, \pi(k) = 1$, then it follows that

\[e_j^\infty p_k = \left\{ \begin{array}{ll}
p_k e_j^\infty, & \text{for } j \leq k; \\
r^2 p_k e_j^\infty, & \text{for } j \gg k.
\end{array} \right. \]

\[e_j^\infty p'_k = \left\{ \begin{array}{ll}
p'_k e_j^\infty, & \text{for } j \leq k; \\
s^2 p'_k e_j^\infty, & \text{for } j \gg k.
\end{array} \right. \]

Lemma 3.7. If $\pi(j) = 1, \pi(k) = 0$, then we have

\[e_j^\infty p_k = \left\{ \begin{array}{ll}
p_k e_j^\infty, & \text{for } j \leq k \text{ or } j = k + 1; \\
s^{-1} p_k e_j^\infty, & \text{for } j \gg k.
\end{array} \right. \]

\[e_j^\infty p'_k = \left\{ \begin{array}{ll}
p'_k e_j^\infty, & \text{for } j \leq k \text{ or } j = k + 1; \\
r^{-1} p'_k e_j^\infty, & \text{for } j \gg k.
\end{array} \right. \]

Lemma 3.8. If $\pi(j) = 1 = \pi(k)$, it is easy to see that

\[e_j^\infty p_k = \left\{ \begin{array}{ll}
p_k e_j^\infty, & \text{for } j \leq k; \\
r^{-1} s p_k e_j^\infty, & \text{for } j > k.
\end{array} \right. \]

\[e_j^\infty p'_k = \left\{ \begin{array}{ll}
p'_k e_j^\infty, & \text{for } j \leq k; \\
r s^{-1} p'_k e_j^\infty, & \text{for } j > k.
\end{array} \right. \]
We now prove the following Serre relation:

\[(3.20) \quad e_0^2 e_1 + (r + s)e_0 e_1 e_0 + rse_1 e_0^2 = 0\]

We first use definition to simply the left hand side (LHS) of (3.20).

\[\text{LHS} = \sum_{j,k,m} \left[\left(\prod_{j' > j} \omega_{k'} \right) e_j \left(\prod_{k' > k} \omega_{j'} \right) e_k \left(\prod_{m' > m} \omega_{m'} \right) \right] e_m \]

\[-\left(r + s \right) \left(\prod_{j' > j} \omega_{k'} \right) e_j \left(\prod_{m' > m} \omega_{m'} \right) + \left(\prod_{m' > m} \omega_{m'} \right) e_m \left(\prod_{k' > k} \omega_{j'} \right) e_k \]

\[= \left(\sum_{m > j > k} + \sum_{m = j+1 > k} + \sum_{j > m > k} + \sum_{j > m = k+1} + \sum_{j > k > m} + \sum_{j = k+1 > m} \right) \]

\[\times \left\{ p_j e_j \prod_{k'} \omega_{k'} p_m e_m + p_k e_k \prod_{j'} \omega_{j'} p_j e_j \prod_{m'} \omega_{m'} e_m \right\} \]

Using Lemma 3.4 through Lemma 3.8, we would like to show that each summand is actually 0. Taking the second summand for example, we get immediately,

\[
\sum_{m = j+1 > k} \left\{ p_j e_j \prod_{k'} \omega_{k'} p_m e_m + p_k e_k \prod_{j'} \omega_{j'} p_j e_j \prod_{m'} \omega_{m'} e_m \right\} \\
\left\{-\left(r + s \right) \left(p_j e_j \prod_{k'} \omega_{k'} p_m e_m + p_k e_k \prod_{j'} \omega_{j'} p_j e_j \prod_{m'} \omega_{m'} e_m \right) \right\} \\
+ \left\{ p_j e_j \prod_{k'} \omega_{k'} p_m e_m + p_k e_k \prod_{j'} \omega_{j'} p_j e_j \prod_{m'} \omega_{m'} e_m \right\} \\
= 0.
\]

The other summands are seen as zero by the same method. Subsequently Relation (3.20) has been verified.

Next we turn to the relation

\[(3.21) \quad e_1^2 e_0 - (r^{-1} + (r)^{-\frac{1}{2}} + s^{-1}) e_0^2 e_1 + (r)^{-\frac{1}{2}} \times \\
(r^{-1} + (r)^{-\frac{1}{2}} + s^{-1}) e_1 e_0 e_1^2 - (r)^{-\frac{1}{2}} e_0 e_1^3 = 0.
\]
Note that by definition, the left hand side (LHS) of (3.21) is equal to

\[LHS = \sum_{i,j,k,m} \left[p_i^j e_i^\infty p_j^k e_j^\infty p_k^l e_k^\infty p_m e_m^\infty \right. \]

\[-(r^{-1}+(rs)^{-\frac{1}{2}}+s^{-1}) p_i^j e_i^\infty p_j^k e_j^\infty p_m e_m^\infty p_k^l e_k^\infty \]

\[+(rs)^{-\frac{1}{2}} (r^{-1}+(rs)^{-\frac{1}{2}}+s^{-1}) p_i^j e_i^\infty p_m e_m^\infty p_j^k e_j^\infty p_k^l e_k^\infty \]

\[-(rs)^{-\frac{1}{2}} p_m e_m^\infty p_i^j e_i^\infty p_j^k e_j^\infty p_k^l e_k^\infty \left] \right. \]

Applying Lemma 3.4 through Lemma 3.8, the last relation becomes,

\[LHS = \left(\sum_{m \gg j \gg i} \sum_{m=j+1 \gg k \gg i} \sum_{j \gg m \gg k \gg i} \sum_{j \gg m = k+1 \gg i} + \sum_{j = m+1 \gg k \gg i} \sum_{j > k \gg m \gg i} \sum_{j > k \gg m = i+1} \sum_{j > k \gg m + 1 \gg i} \right) \left(p_i^j e_i^\infty p_j^k e_j^\infty p_k^l e_k^\infty p_m e_m^\infty \right) \]

\[+p_i^j e_i^\infty p_k^l e_k^\infty p_j^k e_j^\infty p_m e_m^\infty + p_j^k e_j^\infty p_k^l e_k^\infty p_i^j e_i^\infty p_m e_m^\infty \]

\[+p_j^k e_j^\infty p_i^j e_i^\infty p_k^l e_k^\infty p_m e_m^\infty + p_k^l e_k^\infty p_i^j e_i^\infty p_j^k e_j^\infty p_m e_m^\infty \]

\[+p_k^l e_k^\infty p_j^k e_j^\infty p_i^j e_i^\infty p_m e_m^\infty \right) - (r^{-1}+(rs)^{-\frac{1}{2}}+s^{-1}) \]

\[\left(p_i^j e_i^\infty p_j^k e_j^\infty p_m e_m^\infty p_k^l e_k^\infty + p_i^j e_i^\infty p_k^l e_k^\infty p_j^k e_j^\infty p_m e_m^\infty \right) \]

\[+p_j^k e_j^\infty p_k^l e_k^\infty p_m e_m^\infty p_i^j e_i^\infty + p_j^k e_j^\infty p_i^j e_i^\infty p_k^l e_k^\infty p_m e_m^\infty \]

\[+p_k^l e_k^\infty p_i^j e_i^\infty p_j^k e_j^\infty p_m e_m^\infty + p_k^l e_k^\infty p_j^k e_j^\infty p_i^j e_i^\infty \right) \]

\[+(rs)^{-\frac{1}{2}} \left(r^{-1}+(rs)^{-\frac{1}{2}}+s^{-1} \right) \left(p_i^j e_i^\infty p_m e_m^\infty p_j^k e_j^\infty p_k^l e_k^\infty \right) \]

\[+p_i^j e_i^\infty p_m e_m^\infty p_k^l e_k^\infty p_j^k e_j^\infty + p_j^k e_j^\infty p_m e_m^\infty p_i^j e_i^\infty p_k^l e_k^\infty \]

\[+p_j^k e_j^\infty p_m e_m^\infty p_i^j e_i^\infty p_k^l e_k^\infty + p_j^k e_j^\infty p_k^l e_k^\infty p_i^j e_i^\infty p_m e_m^\infty \]

\[+p_k^l e_k^\infty p_m e_m^\infty p_j^k e_j^\infty p_i^j e_i^\infty \right) - (rs)^{-\frac{1}{2}} \left(p_m e_m^\infty p_i^j e_i^\infty p_j^k e_j^\infty p_k^l e_k^\infty \right) \]

\[+p_m e_m^\infty p_i^j e_i^\infty p_k^l e_k^\infty p_j^k e_j^\infty + p_m e_m^\infty p_j^k e_j^\infty p_i^j e_i^\infty p_k^l e_k^\infty \]

\[+p_m e_m^\infty p_k^l e_k^\infty p_i^j e_i^\infty p_j^k e_j^\infty + p_m e_m^\infty p_k^l e_k^\infty p_j^k e_j^\infty p_i^j e_i^\infty \]

\[+p_m e_m^\infty p_k^l e_k^\infty p_j^k e_j^\infty p_i^j e_i^\infty \right) = 0. \]

Every summand of the last relation can be shown to be 0 as before.
Finally we check that Serre relation involving in i and $i+1$ holds in the Fock space. For $1 \leq i \leq l-2$, we compute that
\[
e_i^2 e_{i+1} - (r_i + s_i) e_i e_{i+1} e_i + (r_is_i) e_{i+1} e_i e_i = \sum_{\pi(j) \neq i \neq \pi(k)} \sum_{\pi(m) = i+1} \{ p_j e_j \infty p_k e_k \infty p_m e_m \infty + p_k e_k \infty p_j e_j \infty p_m e_m \infty \\
- (r_i + s_i) (p_j e_j \infty p_m e_m \infty p_k e_k \infty p_j e_j \infty + p_k e_k \infty p_m e_m \infty p_j e_j \infty) \\
+ (r_is_i) (p_m e_m \infty p_j e_j \infty p_k e_k \infty p_j e_j \infty + p_j e_j \infty p_m e_m \infty p_k e_k \infty p_j e_j \infty) \}
\]
\[= \left(\sum_{m \gg j > k} + \sum_{j \gg m \gg k} + \sum_{j > m \gg k} + \sum_{j = m+1} \right) \left(p_j e_j \infty p_k e_k \infty p_m e_m \infty + p_k e_k \infty p_j e_j \infty p_m e_m \infty \\
- (r_i + s_i) (p_j e_j \infty p_m e_m \infty p_k e_k \infty p_j e_j \infty + p_k e_k \infty p_m e_m \infty p_j e_j \infty) \\
+ (r_is_i) (p_m e_m \infty p_j e_j \infty p_k e_k \infty p_j e_j \infty + p_j e_j \infty p_m e_m \infty p_k e_k \infty p_j e_j \infty) \right) = 0.
\]
Therefore we have finished the proof of Theroem 3.2.

\[\square\]

ACKNOWLEDGMENT

Jing thanks the support of Simons Foundation grant 198129, NSFC grant 11271138 and NSF grants 1014554 and 1137837. H. Zhang would like to thank the support of NSFC grant 11371238.

References

[1] N. Bergeron, Y. Gao and N. Hu, Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups, J. Algebra, 301, (2006), 378-405.
[2] N. Bergeron, Y. Gao and N. Hu, Representations of two-parameter quantum orthogonal and symplectic groups, In Studies in Advanced Mathematics, Vol 39. Providence: AMS/IP, (2007), 1-21.
[3] G. Benkart and S. Witherspoon, Two-parameter quantum groups and Drinfel’d doubles, Alg. Rep. Theory, 7 (2004), 261-286.
[4] G. Benkart and S. Witherspoon, Representations of two-parameter quantum groups and Schur-Weyl duality, In Bergen J, Catoiu S, Chin W, eds. Hopf Algebras. Lecture Notes in Pure and Appl Math, 237. New York: Marcel Dekker, (2004), 65-92.
[5] G. Benkart and S. Witherspoon, Restricted two-parameter quantum groups (of type A). Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Institute Communications, Vol 40. Providence: Amer Math Soc, (2004), 293-318.
[6] V. G. Drinfel’d, Quantum groups, ICM-Berkeley Proceedings, New York, 1986, pp.798-820.
[7] I. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Nat’l. Acad. Sci. USA. 85 (1998), 9373-9377.
[8] Y. Gao, N. Hu and H. Zhang, Two-parameter Quantum Affine algebra of Type $G^{(1)}_2$, Drinfeld realization and Vertex Representation, J. Math. Phys., 56 (2015), 011704.
[9] T. Hayashi, q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127 (1990), 129-144.
[10] N. Hu and Q. Shi, *The two-parameter quantum group of exceptional type G₂ and Lusztig’s symmetries*, Pacific J. Math., 230 (2007), 327-345.

[11] N. Hu, M. Rosso and H. Zhang, *Two-parameter quantum affine algebra U_{r,s}(\hat{sl}_n), Drinfeld’s realization and quantum affine Lusztig symmetries*, Comm. Math. Phys., 278 (2008), 453-486.

[12] N. Hu and H. Zhang, *Vertex representations of two-parameter quantum affine algebras: the simply-laced cases*, Preprint, 2013

[13] M. Jimbo, K. C. Misra, T. Miwa and M. Okado, *Combinatorics of Representations of U_q(\hat{sl}_n) at q = 0*, Comm. Math. Phys., 136 (1991), 543-566.

[14] M. Jimbo *A q-difference analogue of U(g) and the Yang-Baxter equation*, Lett. Math. Phys., 10 (1985), 63-69.

[15] N. Jing and H. Zhang, *Fermionic realization of two-parameter quantum affine algebra U_{r,s}(\hat{sl}_n)*, Lett. Math. Phys., 89 (2009), 159-170.

[16] N. Jing and H. Zhang, *Two-parameter quantum vertex representations via finite groups and the McKay correspondence*, Trans. AMS., 363 (2011), 3769-3797.

[17] S. Kang, K. Misra and T. Miwa, *Fock space representations of the quantized universal enveloping algebras U_q(C^{(1)}_1), U_q(A^{(2)}_2) and U_q(D^{(2)}_{i+1})*, J. Algebra, 155 (1993), 238-251.

[18] B. Leclerc and J.-Y. Thibon, *Canonical bases of q-deformed Fock spaces*, Int. Math. Res. Notices, 9 (1996), 447-456.

[19] K. C. Misra and T. Miwa, *Crystal base for the basic representation of U_q(\hat{sl}(n))*, Comm. Math. Phys., 134 (1990), 79-88.

[20] M. Takeuchi, *A two-parameter quantization of GL(n)*, Proc. Japan Acad., 66 (1990), 112-114.

School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

E-mail address: jing@math.ncsu.edu

Department of Mathematics, Shanghai University, Shanghai 200444, China

E-mail address: hlzhangmath@shu.edu.cn