The relapsing fever spirochete *Borrelia miyamotoi* is cultivable in a modified Kelly-Pettenkofer medium, and is resistant to human complement

Alex Wagemakers¹, Anneke Oei², Michelle M Fikrig¹, Willem R Miellet¹ and Joppe W Hovius¹,³,⁴*

Abstract

Background: *Borrelia miyamotoi* is a relapsing fever spirochete found in *Ixodes* ticks in North America, Europe, and Asia, and has recently been found to be invasive in humans. Cultivation of this spirochete has not yet been described, but is important for patient diagnostics and scientific purposes. Host specificity of *Borrelia* species is dependent on resistance to host complement (serum resistance), and since *B. miyamotoi* has been identified as a human pathogen we were interested whether *B. miyamotoi* is resistant to human complement.

Methods: We inoculated *B. miyamotoi* strains LB-2001 and HT31 in modified-Kelly-Pettenkofer medium with 10% fetal calf serum (MKP-F), and used standard non-laborious *Borrelia* culture methods to culture the spirochetes. Next, we assessed serum sensitivity by a direct killing assay and a growth inhibition assay.

Results: We were able to passage *B. miyamotoi* over 10 times using a standard culture method in MKP-F medium, and found *B. miyamotoi* to be resistant to human complement. In contrast to *B. miyamotoi*, *Borrelia anserina* - a relapsing fever spirochete unrelated to human infection - was serum sensitive.

Conclusions: Using a variation on MKP medium we were able to culture *B. miyamotoi*, opening the door to *in vitro* research into this spirochete. In addition, we describe that *B. miyamotoi* is resistant to human complement, which might play an important role in pathogenesis. We have also found *B. anserina* to be sensitive to human complement, which might explain why it is not related to human infection. Summarizing, we describe a novel culture method for *B. miyamotoi* and show it is resistant to human complement.

Keywords: Culture, MKP, *Borrelia miyamotoi*, Relapsing fever, Complement resistance, *Borrelia anserina*
the culture methods employed for other relapsing fever and *B. burgdorferi sensu lato* spirochetes. We have tested multiple culture media modifications and here we describe one in particular that allowed us to culture *B. miyamotoi* in a medium and method that also readily propagates various other *Borrelia* spirochetes. Serum sensitivity differs greatly amongst relapsing fever as well as *B. burgdorferi* sensu lato species, and is thought to be important in its ecology, capacity to invade different hosts and human pathogenesis [11]. Since we were now able to culture *B. miyamotoi*, we explored the susceptibility of *B. miyamotoi* to human complement (serum sensitivity).

Methods

Borrelia strains

B. miyamotoi strain LB-2001 was derived from *I. scapularis* ticks in the U.S.A. [2] and had been propagated through intraperitoneal inoculation of SCID mice approximately ten times since its isolation from a tick. *B. miyamotoi*-infected plasma from a SCID mouse was kindly provided by Durland Fish and Linda Bockenstedt, Yale University. *B. miyamotoi* strain HT31 was isolated in BSK-II medium from an *I. persulcatus* tick in Japan [1] and a low-passage (less than 5) isolate was provided by Barbara Johnson, CDC through Volker Fingerle, German National Reference Centre for *Borrelia*. Low-passage (less than 5 passages since their isolation) *B. hermsii* HSI [12], *B. anserina* Ni-NL [13,14] and *B. garinii* strain A87S [15] were cultured from ~80°C glycolrlopeptone stocks. High-passage (more than 20) reference strain *B. afzelii* PKo [16,17] was inoculated in a C3H mouse through intraperitoneal inoculation of SCID mice approximately ten times since its isolation from a tick. *B. garinii* strain A87S and *B. anserina* Ni-NL and *B. afzelii* PKo were subsequently passaged at 1:5 or 1:10 dilution for P2, 1:25 for P3 and 1:100 for all subsequent passages, or aliquotted and stored at ~80°C in 4% glycerolpeptone. Spirochetes were enumerated directly as described previously [17], using dark-field microscopy on 5 μl samples by counting at least 5 fields at a 250x magnification. A total of 350 μl of cerebrospinal fluid (CSF) - that had been stored at ~80°C for two years - from a previously described patient [9] was cultured in MKP-F and checked for the presence of viable spirochetes for 6 weeks, using dark-field microscopy.

Serum sensitivity

All strains were cultured at 33°C using the above mentioned culture medium until they reached a concentration of 1-2×10⁷/ml, counted as described before [18]. For normal human serum (NHS) we pooled serum samples from 4 healthy individuals (stored in ~80°C) in equal ratios, and heat-inactivated serum (HIS) was generated by incubating NHS at 56°C for 45 minutes. Serum samples were checked for the absence of *Borrelia burgdorferi* s.l. antibodies using a C6 EIA (Immunetics, Boston, MA, U.S.A.) and all were negative. In a 96-well V-shaped cell culture plate (Greiner bio-one, Kremsmünster, Austria) 25 μl of the spirochete culture and 25 μl of NHS or HIS were mixed and the plate was sealed and incubated at 37°C. After one and three hours, wells were resuspended and 5 μl of the samples were analyzed under dark-field microscopy. Samples were blinded and 100 spirochetes per sample were designated as either motile or immotile, as described previously [19]. Another method to assess serum sensitivity was performed using a pH indicator, based on previous studies in other *Borrelia* species [19-21]. In short, 5×10⁶ mid-log phase (1-2×10⁷/ml) *B. miyamotoi* LB-2001, *B. miyamotoi* HT31, *B. garinii* A87S and *B. anserina* spirochetes were washed in PBS, resuspended in 50 μl MKP-F medium containing a final phenol red concentration of 240 μg/ml, rifampicine (50 μg/ml) and phosphomycin (100 μg/ml). Samples were mixed with 50 μl pooled NHS or 50 μl HIS and cultured in sealed microtiter plates at 33°C for multiple days during which absorbance was
measured daily at 562/630 nm using an ELISA plate reader (BioTek instruments inc., Winooski, VT, U.S.A.).

Statistical analysis
A Kruskal-Wallis test was performed to identify a difference in motility between different *Borrelia* strains and conditions. The significance of the difference between two conditions (normal human serum versus heat-inactivated serum) for each *Borrelia* genospecies was analyzed using a two-tailed Mann–Whitney test. Optical densometry curves were compared using a repeated measures ANOVA. All analyses were performed using Prism 5.0 software (GraphPad Software, San Diego, CA) and p < 0.05 was considered significant.

Results
Culturing *B. miyamotoi*
Using a variation on Modified Kelly-Pettenkofer Medium, containing 10% FCS and designated MKP-F (Table 1), we managed to culture *B. miyamotoi* LB-2001 and *B. miyamotoi* strain HT31 in a similar fashion as we culture *B. burgdorferi* sensu lato in our laboratory. Using 7 ml of medium in 9 ml glass tubes in a 33°C incubator, we were able to consistently grow *B. miyamotoi* to a concentration of 1–2 × 10^7/ml for 10 passages (Table 2), as well as culture *B. miyamotoi* from glycerolpeptide stocks stored at −80°C. In addition, there was morphologically no difference in spirochete viability and motility throughout passages as assessed by dark-field microscopy. However, a frozen CSF sample from a patient with *B. miyamotoi* meningoencephalitis remained negative after 6 weeks of cultivation.

Serum sensitivity
As humans have been infected by *B. miyamotoi*, we hypothesized the spirochete to be resistant to human complement. In order to evaluate serum sensitivity we grew *B. miyamotoi* LB-2001 and HT31 spirochetes to a concentration of 1–2 × 10^7/ml and assessed spirochete motility one and three hours after addition of 50% pooled normal human serum (NHS). As a control, we added Heat Inactivated Serum (HIS), in which the complement was inactivated at 56°C. Indeed, at both time points there was no significant decrease in *B. miyamotoi* motility after addition of NHS as compared to HIS, indicating *B. miyamotoi* is resistant to human serum. As expected, *B. afzelii* PKo and *B. hermsii*, a Lyme borreliosis spirochete and relapsing fever spirochete respectively, were also resistant to killing by human complement (Figure 1A). In contrast, *B. garinii* A87S, a serum sensitive Lyme borreliosis spirochete, and *B. anserina*, a spirochete from the relapsing fever clade causing avian borreliosis, both showed a trend towards loss of motility after incubation with NHS compared to HIS (p = 0.08). We confirmed our findings using a pH-based growth inhibition assay (Figure 1B). In this pH-based assay growth of *B. miyamotoi* strains LB-2001 and HT31, represented by a pH-dependent decrease in OD, was similar when 50% normal human serum or 50% heat-inactivated human serum were added (p = 0.39 and p = 0.99, respectively). In contrast, *B. garinii* A87S and *B. anserina* did not grow in the presence of normal human serum while growth in heat-inactivated serum was unaffected (both p ≤ 0.0001, *B. garinii* data not shown). This clearly indicates that both *B. miyamotoi* strains are serum resistant, whereas *B. anserina* is serum sensitive. Negative controls (culture medium without spirochetes added) did not show a reduced OD over time (data not shown).

Passage	Peak density^a^	Motility^a^		
	LB-2001	HT31	LB-2001	HT31
1	1.25^7	1.9^7	90^1	100^1
2	15.2 (2.3)^2	14.2 (4.2)^3	100 (0)^2	96.7 (3.3)^3
3	21.6 (0.9)^2	14.8 (4.7)^3	100 (0)^2	100 (0)^3
4	14.4 (0.6)^2	22.3 (5.5)^3	100 (0)^2	100 (0)^3
5	18.1 (4.4)^2	15.8 (4.9)^3	100 (0)^2	100 (0)^3
6	11.6 (0.3)^2	20.2 (4.2)^3	100 (0)^2	96.7 (3.3)^3
7	15.0 (1.3)^2	21.9 (4.5)^3	100 (0)^2	100 (0)^3
8	20.0 (2.5)^2	19.6 (6.0)^3	100 (0)^2	100 (0)^3
9	19.1 (9.1)^2	24.0 (7.8)^3	100 (0)^2	100 (0)^3
10	16.9 (5.6)^2	17.7 (4.5)^3	100 (0)^2	100 (0)^3

Mean (±SEM) × 10^7 spirochetes/ml as determined by dark-field microscopy. *Motility is depicted as the mean percentage of motile spirochetes (±SEM). The number of individual cultures is depicted in superscript.

Table 1 Comparison of medium ingredients between MKP-F and the MKP medium it is based upon

MKP-F	Per liter	MKP	Per liter
MilliQ	662.8 ml	MilliQ	670 ml
7% gelatine	127.3 ml	7% gelatine	149 ml
FCS	100 ml	-	-
10x CMRL	65.1 ml	10x CMRL	74.5 ml
Rabbit serum	44.8 ml	Rabbit serum	53.6 ml
BSA	32.8 g	BSA	52.2 ml
HEPES	3.9 g	HEPES	4.5 g
Glucose	3.3 g	Glucose	2.2 g
Neopeptone	2.0 g	Neopeptone	3.7 g
Sodium bicarbonate	1.4 g	Sodium bicarbonate	1.5 g
Sodium citrate	0.5 g	Sodium citrate	0.5 g
Sodium pyruvate	0.5 g	Sodium pyruvate	0.6 g
N-acetyl glucosamine	0.3 g	N-acetyl glucosamine	0.3 g

B. miyamotoi strains LB-2001 and HT31 were successfully passaged to P10 multiple times. *Mean (±SEM) × 10^7* spirochetes/ml as determined by dark-field microscopy. *Motility is depicted as the mean percentage of motile spirochetes (±SEM). The number of individual cultures is depicted in superscript.
Discussion and conclusions

In this study we describe a culture medium and method that can be easily used to culture *B. miyamotoi*. We were able to passage *B. miyamotoi* for more than 10 times under regular *Borrelia burgdorferi* culturing conditions, as well as in culture plates, in a modified Kelly-Pettenkofer medium with 10% added fetal calf serum (MKP-F). Independently of our efforts, other groups are developing alternative culture methods for *B. miyamotoi* (personal communication Volker Fingerle). Using our culture method, we discovered that *B. miyamotoi* is resistant to human serum. This means that *B. miyamotoi* can evade the human complement system, probably by using complement regulating surface proteins similar to other serum resistant *Borrelia* species. This evasion might partly explain the fact that humans can be infected with this spirochete, which seems to have adapted to humans as a host.

B. hermsii, another invasive relapsing fever spirochete, was first isolated by Kelly in 1971 [22] and his medium formed the basis for later Lyme borreliosis culture media. In 1982 Stoenner enriched this formulation, by adding CMRL (without glutamine) and yeastolate [23]. Barbour further adjusted the “fortified Kelly’s medium” to form BSK-I medium, using neopeptone as the peptone source and HEPES for buffering, while using CMRL 1066 with glutamine and omitting yeastolate [24]. In 1984 the medium was further improved to BSK-II medium by adding yeastolate and again omitting glutamine [25]. In 1986 researchers from the Max von Pettenkofer Institute altered the BSK media to culture *B. burgdorferi sensu lato* in what they called “modified Kelly medium”, and later referred to as “modified Kelly-Pettenkofer medium”, MKP medium [26]. Besides more subtle differences, MKP medium differs from BSK-I and BSK-II medium by the absence of glutamine and yeastolate, respectively. The similarity to these media is reflected by comparable isolation rates of *B. burgdorferi sensu lato* in MKP compared to BSK-II medium [27-29]. Because of previous observations that *B. miyamotoi* could not be serially passaged in vitro using BSK-II medium, in this study we cultured *B. miyamotoi* in MKP medium with the addition of 10% fetal calf serum, in an attempt to enhance growth of the pathogen. However, other formulations might also be suitable for culturing *B. miyamotoi*. Indeed, one might hypothesize that the addition of other serum types also results in successful cultivation, and we do not exclude the possibility that existing culture media can be adjusted to allow for *B.
B. miyamotoi cultivation without the need of additional serum. Regardless, in MKP-F, both strains showed robust replication in serial passages, and during the preparation of this manuscript we have been able to culture both strains for 15 passages without any loss in viability or peak densities (data not shown). Thus, using our formulation, we were able to culture two tick-derived **B. miyamotoi** isolates, but it still needs to be assessed whether our or other formulations are suitable for isolating the spirochete from clinical specimens, and what the exact role of fetal calf serum is in the *in vitro* propagation of **B. miyamotoi**. We did attempt to isolate **B. miyamotoi** from 350 μl of CSF from a patient who had a **B. miyamotoi** meningoencephalitis [9], however, this did not result in a positive culture, probably due the fact that the sample had been stored at −80°C for two years without the presence of glycerol. Culture efforts on fresh patient materials should be attempted in order to yield clinical isolates in the future.

Serum resistance is important in host invasiveness and reservoir host range for *Borrelia* spirochetes [11,30]. *B. anserina*, *B. hermsii* and *B. miyamotoi* are phylogenetically related *Borrelia* species [31,32]. We hypothesized that similar to *B. hermsii*, *B. miyamotoi* would be serum resistant, as these are both relapsing fever spirochetes able to infect humans, and *Borrelia anserina* to be serum sensitive. *B. anserina* is carried by Argas ticks which normally feed on birds and some species of which can cause anaplastic reactions upon occasional human bites [33,34]. Indeed, here we show that **B. miyamotoi** is serum resistant, whereas *B. anserina* is sensitive to human serum. *B. anserina* will probably have adapted to bird complement, as it is able to cause avian borreliosis [35], however, to our knowledge this remains to be investigated. Interestingly, a previous study showed that this spirochete was unable to bind human factor H, in contrast to *B. hermsii* [36]. This underscores the importance of factor H binding in serum resistance and host invasiveness. During the preparation of this manuscript another group has identified **B. miyamotoi** strain HT31 to be resistant to human complement, confirming the phenotype described in this paper [37]. More research is needed to identify the mechanism behind the complement resistance of **B. miyamotoi**, and we are currently investigating whether **B. miyamotoi** spirochetes express Complement Regulator Acquiring Surface Proteins (CRASPs).

Our culture method will further facilitate whole genome sequencing of **B. miyamotoi** strains including its plasmids as well as *in vitro* assays. In addition, the culture method described will be an impetus to basic and clinical research on this emerging human pathogen.

Abbreviations

ANOVA: Analysis of variance; CRASP: Complement regulator acquiring surface protein; FCS: Fetal calf serum; GLPQ: Glycerophosphodiester phosphodiesterase; HIS: Heat-inactivated human serum; MKP: Modified Kelly-Pettenkofer medium; MKP-F: Variation on modified Kelly Pettenkofer medium with 10% fetal calf serum; NHS: Normal human serum; SCID: Severe combined immunodeficiency syndrome.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AW participated in the design of the study, participated in the medium optimization, participated in the complement sensitivity experiments, performed the statistical analysis and drafted the manuscript. AO participated in the medium optimization and carried out the spirochete cultures. MF participated in the medium optimization and in the complement sensitivity experiments. WM participated in the complement sensitivity experiments. JH conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank both Linda Bockenstedt (Department of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A.) and Durland Fish (Department of Epidemiology and Public Health, Yale School of Medicine, New Haven, CT, U.S.A.) for providing **B. miyamotoi** strain LB-2001, and both Barbara Johnson (Centers for Disease Control and prevention, U.S.A.) and Volker Fingele (German National Reference Centre for *Borrelia* for providing strain HT31. This work was supported by a “Veni” grant (9161 1065) received from The Netherlands Organisation for health research and development (ZonMw).

Author details

1Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. 2Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands. 3Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands. 4Amsterdam Multidisciplinary Lyme Center, Academic Medical Center, Amsterdam, The Netherlands.

Received: 12 July 2014 Accepted: 29 August 2014 Published: 4 September 2014

References

1. Fukunaga M, Takahashi Y, Tsutsumi Y, Matsuoka O, Ralph D, McClelland M, Nakao M: Genetic and phenotypic analysis of *Borrelia miyamotoi* sp. nov., isolated from the ixodid tick *Ixodes persulcatus*, the vector for Lyme disease in Japan. *Int J Syst Bacteriol* 1995, 45(4):804–810.

2. Soles GA, Papero M, Beati L, Fish D: A relapsing fever group spirochete transmitted by ixodes scapularis ticks. *Vermont Zoonotic Dis* 2001, 1(1):21–34.

3. Mun J, Eisen RJ, Eisen L, Lane RS: Detection of a *Borrelia miyamotoi* sensu lato relapsing-fever group spirochete from islands pacificus in California. *J Med Entomol* 2006, 43(1):120–123.

4. Fraenkel CJ, Garprino U, Berglund J: Determination of novel *Borrelia* genospecies in Swedish *Ixodes ricinus* ticks. *J Clin Microbiol* 2002, 40(9):3308–3312.

5. Platonov AE, Karan LS, Kolyasnikova NM, Makhteva NA, Toporkova MG, Maleev W, Fish D, Krause PJ: Humans infected with relapsing fever spirochete *Borrelia miyamotoi*, Russia. *Emerg Infect Dis* 2011, 17(10):1816–1823.

6. Krause PJ, Narasimhan S, Wormser GP, Rollend L, Fikrig E, Lepore T, Barbour A, Fish D: *Borrelia miyamotoi* infection in the United States. *NEJM* 2013, 368(3):291–293.

7. Krause PJ, Narasimhan S, Wormser GP, Barbour AG, Platonov AE, Brancato J, Fikrig E, Lepore T, Dardick K, Mamula M, Rollend L, Steeves TK, Diuk-Wasser M, Usmani-Brown S, Williamson P, Sarksyan DS, Fikrig E, Fish D, Ledizet M, Breitenstein ML, Clay T, Stanton K, Gadbaw J, Miller J, Karan LS, Brao K: *Borrelia miyamotoi* sensu lato seroreactivity and Seroprevalence in the northeastern United States. *Emerg Infect Dis* 2014, 20(11):1983–1990.

8. Gugliotta JL, Goethert HK, Berardi VP, Telford SR 3rd: Meningoencephalitis from *Borrelia miyamotoi* in an immunocompromised patient. *NEJM* 2013, 368(3):240–245.

9. Hovius JW, de Wever B, Sohne M, Brouwer MC, Coumou J, Wagemakers A, Oei A, Knol H, Narasimhan S, Hodiamont CJ, Jafarian S, Pals ST, Horlings HM,
Comparison of isolation rate of *Borrelia burgdorferi* sensu lato in different tick species. *Parasitol Res* 2003, 92:105–108.

10. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.

11. Kurtenbach K, De Michela S, Etti S, Schaffer SM, Sewell HS, Brade V, Kraiczy P: Host association of *Borrelia burgdorferi* sensu lato—the key role of host complement. *Trends Microbiol* 2002, 10(2):74–79.

12. Wang G, van Dam AP, Dankert J: Analysis of a VMP-like sequence (vls) loci in *Borrelia garinii* and *B. burgdorferi sensu lato*. *FEMS Microbiol Lett* 2001, 199:31–35.

13. Wang G, van Dam AP, Spanjaard L, Dankert J: Molecular typing of *Borrelia burgdorferi sensu lato* by randomly amplified polymorphic DNA fingerprinting analysis. *J Clin Microbiol* 1998, 36(3):768–776.

14. Hovind-Hougen K: A morphological characterization of *Borrelia anserina*. *Microbiology* 1995, 141(1 Pt 1):79–83.

15. Kupper H, van Dam AP, Spanjaard L, de Jongh BM, Wijdijkouwsm A, Ramseelaar TC, Cauro J, van K, Dankert J: Isolation of *Borrelia burgdorferi* from biopsy specimens taken from healthy-looking skin of patients with Lyme borreliosis. *J Clin Microbiol* 1994, 32(7):715–720.

16. Wilske B, Preac-Mursic V, Gobel UB, Graf B, Jauris S, Schwab E, Zumsteg G: An OspA serotyping system for *Borrelia burgdorferi* based on reactivity with monoclonal antibodies and Ospa sequence analysis. *J Clin Microbiol* 1993, 31(2):340–350.

17. van Dam AP, Oei A, van Dijk K, Wewel C, Wilske B, Spanjaard L, Dankert J: Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. *Infect Immun* 1997, 65(4):1228–1236.

18. Hovius JV, Schuit Td, de Groot KA, Roelofs JJ, van Dam AP, van der Pol T, Ramamoorthy N, Fikrig E, van Dam AP: Preferential protection of *Borrelia burgdorferi* sensu stricto by a Salp15 homologue in *Ixodes ricinus* salivary. *J Infect Dis* 2008, 198(8):1189–1197.

19. Schuit Td, Coumou J, Narasimhan S, Dei J, Deponte K, Wouters D, Wessels M, Oei A, Roelofs JJ, van Dam AP, van der Pol T, Van't Veer C, Hovius JW, Fikrig E: A tick mannoside-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. *Cell Host Microbe* 2011, 10(2):136–146.

20. Hentzberger P, Siegel C, Skerka C, Fingerle V, Schulte-Spechtel U, van Dam A, Wilcke B, Brade V: Preferential protection of *Borrelia burgdorferi* sensu stricto by a Salp15 homologue in *Ixodes ricinus* saliva. *Cell Host Microbe* 2011, 10(2):136–146.

21. Kraiczy P, Hunfeld KP: Breitner-Ruddock S, Wurzner R, Acker G, Brade V: Comparison of two laboratory methods for the determination of serum resistance in *Borrelia burgdorferi* isolates. *Infect Immun* 2014, 82(3):123–126.

22. Preac-Mursic V, Wilske B, Schierz G: European *Borrelia burgdorferi* isolated from humans and ticks culture conditions and antibiotic susceptibility. *Zentralb Bakteriol Mikrobiol Hyg A* 1986, 263(1–2):112–118.

23. Ruzic-Sabljic E, Stoff E: Comparison of growth of *Borrelia afzelii*, *B. garinii*, and *B. burgdorferi* sensu stricto in *MKP* and *BSK-II* medium. *Infect Immun* 2006, 74(5):407–412.

24. Ruzic-Sabljic E, Lotnic-Furlan S, Maraspin V, Cimperman J, Logar M, Jurca T, Stoff E: Comparison of isolation rate of *Borrelia burgdorferi* sensu lato in *MKP* and *BSK-II* medium. *Int J Med Microbiol* 2006, 296(suppl 4):267–273.

25. Ruzic-Sabljic E, Maraspin V, Cimperman J, Stoff E, Lotnic-Furlan S, Stupica D, Cerar T: Comparison of isolation rate of *Borrelia burgdorferi* sensu lato in two different culture media, *MKP* and *BSK-H*. *Clin Microbiol Infect* 2014, 20(7):636–641.

26. Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA: Serum complement sensitivity as a key factor in Lyme disease ecology. *Infect Immun* 1998, 66(3):1248–1251.

27. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.

28. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.

29. Ruzic-Sabljic E, Maraspin V, Cimperman J, Logar M, Jurca T, Stoff E: Comparison of isolation rate of *Borrelia burgdorferi* sensu lato in *MKP* and *BSK-II* medium. *Int J Med Microbiol* 2006, 296(suppl 4):267–273.

30. Ruzic-Sabljic E, Maraspin V, Cimperman J, Logar M, Jurca T, Stoff E: Comparison of isolation rate of *Borrelia burgdorferi* sensu lato in two different culture media, *MKP* and *BSK-H*. *Clin Microbiol Infect* 2014, 20(7):636–641.

31. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.

32. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.

33. Fikrig E, Sproul H, van Oers MH: A case of meningocerebralitis by the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. *Lancet* 2013, 382(9892):658.