Nepomechie, Rafael I.; Pimenta, Rodrigo A.
Algebraic Bethe ansatz for the Temperley-Lieb spin-1 chain. (English) Zbl 1345.82008
Nucl. Phys., B 910, 885-909 (2016).

Summary: We use the algebraic Bethe ansatz to obtain the eigenvalues and eigenvectors of the spin-1 Temperley-Lieb open quantum chain with “ree” boundary conditions. We exploit the associated reflection algebra in order to prove the off-shell equation satisfied by the Bethe vectors.

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz

Full Text: DOI arXiv

References:
[1] Faddeev, L. D., How algebraic Bethe ansatz works for integrable models, (Connes, A.; Gawedzki, K.; Zinn-Justin, J., Symétries Quantiques, Les Houches Summer School Proceedings, vol. 64, (1998), North-Holland), 149-219 - Zbl 0934.35170
[2] Sklyanin, E. K., Boundary conditions for integrable quantum systems, J. Phys. A, 21, 2375-2389, (1988) - Zbl 0685.58058
[3] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G., Quantum inverse scattering method and correlation functions, (1997), Cambridge University Press - Zbl 0787.47006
[4] Temperley, H. N.V.; Lieb, E. H., Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. R. Soc. Lond. Ser. A, 322, 251-280, (1971) - Zbl 0211.56703
[5] Batchelor, M. T.; Mezincescu, L.; Nepomechie, R. I.; Rittenberg, V., \textit{q} deformations of the O(3) symmetric spin 1 Heisenberg chain, J. Phys. A, 23, (1990) - Zbl 0705.22020
[6] Jones, V. F.R., Baxterization, Int. J. Mod. Phys. A, 6, 2035-2043, (1991) - Zbl 0744.57005
[7] Nepomechie, R. I.; Pimenta, R. A., Universal Bethe ansatz solution for the Temperley-Lieb spin chain, Nucl. Phys. B, 910, 910-928, (2016) - Zbl 1345.82009
[8] Parkinson, J. B., On the integrability of the $S = 1$ quantum spin chain with pure biquadratic exchange, J. Phys. C, Solid State Phys., 20, 36, (1987)
[9] Parkinson, J. B., The $S = 1$ quantum spin chain with pure biquadratic exchange, J. Phys. C, Solid State Phys., 21, 3793, (1988)
[10] Barber, M. N.; Batchelor, M. T., Spectrum of the biquadratic spin-1 antiferromagnetic chain, Phys. Rev. B, 40, 4621-4626, (1989)
[11] Klümper, A., New results for q-state vertex models and the pure biquadratic spin-1 Hamiltonian, Europhys. Lett., 9, 815, (1989)
[12] Klümper, A., The spectra of q-state vertex models and related antiferromagnetic quantum spin chains, J. Phys. A, Math. Gen., 23, 809-823, (1990)
[13] Alcaraz, F. C.; Malvezzi, A. L., On the critical behavior of the anisotropic biquadratic spin 1 chain, J. Phys. A, 25, 4535-4546, (1992) - Zbl 0764.60107
[14] Koberle, R.; Lima-Santos, A., Exact solution of the deformed biquadratic spin 1 chain, J. Phys., 27, 5409, (1994) - Zbl 0841.35097
[15] Kulish, P., On spin systems related to the Temperley-Lieb algebra, J. Phys. A, Math. Gen., 36, (2003) - Zbl 1045.81514
[16] Aufgebauer, B.; Klümper, A., Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature, J. Stat. Mech., 1005, (2010)
[17] Tsetserakos, V., Algebraic Bethe ansatz for the Izergin-Korepin R matrix, Theor. Math. Phys., 76, 2, 793-803, (1988)
[18] Kulish, P. P.; Reshetikhin, N. Yu., Diagonalisation of GL(n) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A, 16, L501-L506, (1983) - Zbl 0545.35082
[19] Fan, H., Bethe ansatz for the Izergin-Korepin model, Nucl. Phys. B, 488, 1-2, 409-425, (1997) - Zbl 0925.82064
[20] Foerster, A.; Karowski, M., The supersymmetric t-J model with quantum group invariance, Nucl. Phys. B, 408, 3, 512-534, (1993) - Zbl 1043.82530
[21] Kulish, P. P.; Sklyanin, E. K., The general U(q) (sl(2)) invariant XXZ integrable quantum spin chain, J. Phys. A, 24, L435-L439, (1991) - Zbl 0724.17019
[22] Gainutdinov, A. M.; Hao, W.; Nepomechie, R. I.; Sommese, A. J., Counting solutions of the Bethe equations of the quantum group invariant open XXZ chain at roots of unity, J. Phys. A, 48, 49, 494003, (2015) · Zbl 1341.82022

[23] Slavnov, N. A., Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys., 79, 502-508, (1989)

[24] Gaudin, M., La fonction d'onde de Bethe, (2014), Cambridge University Press, English translation by J.-S. Caux, The Bethe Wavefunction · Zbl 1341.82003

[25] Gaudin, M.; McCoy, B. M.; Wu, T. T., Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg-Ising chain, Phys. Rev. D, 23, 417-419, (Jan 1981)

[26] Korepin, V. E., Calculation of norms of Bethe wave functions, Commun. Math. Phys., 86, 391-418, (1982) · Zbl 0531.60096

[27] Kitanine, N.; Kozlowski, K. K.; Maillet, J. M.; Niccoli, G.; Slavnov, N. A.; Terras, V., Correlation functions of the open XXZ chain I, J. Stat. Mech., 0710, (2007)

[28] Wang, Y.-S., The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain, Nucl. Phys. B, 622, 3, 633-649, (2002) · Zbl 1049.82016

[29] Finch, P. E.; Flohr, M.; Fröhlich, H., Integrable anyon chains: from fusion rules to face models to effective field theories, Nucl. Phys. B, 889, 299-332, (2014) · Zbl 1326.82004

[30] Finch, P. E.; Weston, R.; Zinn-Justin, P., Theta function solution of the qkzb equation for a face model

[31] Lima-Santos, A., On the \mathfrak{sl}_2 Temperley-Lieb reflection matrices, J. Stat. Mech., 1101, (2011)

[32] Avan, J.; Kulish, P.; Rollet, G., Reflection (K)-matrices related to Temperley-Lieb (R)-matrices, Theor. Math. Phys., 169, 1530, (2011) · Zbl 1274.82006

[33] Belliard, S., Modified algebraic Bethe ansatz for XXZ chain on the segment - I: triangular cases, Nucl. Phys. B, 892, 1-20, (2015) · Zbl 1328.82017

[34] Belliard, S.; Pimenta, R. A., Modified algebraic Bethe ansatz for XXZ chain on the segment - II - general cases, Nucl. Phys. B, 894, 527-552, (2015) · Zbl 1328.82009

[35] Avan, J.; Belliard, S.; Grosjean, N.; Pimenta, R. A., Modified algebraic Bethe ansatz for XXZ chain on the segment - III - proof, Nucl. Phys. B, 899, 229-246, (2015) · Zbl 1331.82011

[36] Wang, Y.; Yang, W.-L.; Cao, J.; Shi, K., Off-diagonal Bethe ansatz for exactly solvable models, (2015), Springer · Zbl 1341.82003

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.