A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

Martin Gross, Maria Ines F. Ramos & Werner E. Piller

To cite this article: Martin Gross, Maria Ines F. Ramos & Werner E. Piller (2015): A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2015.1078850

To link to this article: http://dx.doi.org/10.1080/14772019.2015.1078850
Introduction

During the Miocene epoch, an enormous wetland shaped western Amazonia’s landscapes and biota (the ‘Pebas system’; for comprehensive synopses see Hoorn & Wesselingh 2010; Hoorn et al. 2010a). The general understanding of this unique ecosystem has significantly improved in the last two decades. In detail, however, its nature remains controversial and disputed (e.g. ‘mega-lake’, Wesselingh et al. 2002; ‘mega-wetland’, Hoorn et al. 2010b; ‘mega-fan’, Latrubesse et al. 2010; Wilkinson et al. 2010).

In particular, the existence, chronology, spatial extent and potential sources of marine interferences continue to be a heavily (and sometimes paradigmatically) discussed subject of western Amazonia’s past. A plethora of sedimentological, palaeontological and geochemical indications were depicted to infer marine influences (e.g. Sheppard & Bate 1980; Hoorn 1993, 1994; Räsänen et al. 1995; Gingras et al. 2002; Wesselingh et al. 2002; Vonhof et al. 2003; Hovikoski et al. 2005, 2007, 2010; Rebata et al. 2006; Linhares et al. 2011; for recent compilation of arguments in favour see Boonstra et al. 2015). Nonetheless, the evidence is equivocal and permits differing interpretations (Cozzuol 2006; Westaway 2006; Latrubesse et al. 2007, 2010; Lundberg et al. 2010; Riff et al. 2010; Silva-Caminha et al. 2010; Gross et al. 2011, 2013; for comparable discussions see, e.g. Nicolaidis & Coimbra 2008; Ruskin et al. 2011).

Aside from mangrove-related pollen, dinoflagellate cysts, foraminiferal linings and remains of several marine vertebrate clades, body fossils that are specific for marine environments are scarce and restricted to thin intervals (e.g. Linhares et al. 2011; Boonstra et al. 2015). Remarkably, the highly endemic aquatic invertebrate fauna of the
‘Pebas system’ is strongly dominated by the abundance of pachydontine bivalves and the cytheroid ostracod *Cyprideis*. Otherwise common freshwater and marine taxa are rare and typical marginal marine molluscs (e.g. arcids, oysters, mangrove cerithioidian snails) are absent (e.g. Whately *et al.* 1998a; Wesselingh 2006, 2007; Gross *et al.* 2013, 2014). Based on the mollusc and ostracod faunas, brackish waters (e.g. Purper 1979; Nuttall 1990; Whately *et al.* 1998a) or extensive marine transgressions (Sheppard & Bate 1980) were proposed. However, geochemical investigations performed on the shells of these biota consistently indicate freshwater conditions. Elevated salinity (»5 PSU) is only evident for a few localities (e.g. Vonhof *et al.* 2003; Kaandorp *et al.* 2006; Wesselingh *et al.* 2006; Gross *et al.* 2013).

Wesselingh (2007) considered the ‘Pebas system’ to be a predominantly freshwater environment, in which adaptations to predation pressure and a muddy, poorly oxygenated substrate triggered speciation, as well as habitat dominance by pachydontine bivalves. Gross *et al.* (2013) suggested that it was a locally unstable but on a regional scale long-lived wetland, where euryoecious biology, passive dispersal predispositions and reproduction modes (brood care) favoured the success of the genus *Cyprideis*. Thus, a conclusive, ‘simple’ explanation about the nature of this ‘mega-wetland’ is still pending.

The current study was initiated by the finding of a very small-sized, marine ostracod (*Pellucistoma*) in late middle Miocene sediments of western Brazil (Fig. 1). This posed three central questions: (1) does this record prove the existence of marine incursions, thousands of kilometres away from the next (palaeo-)coastline; (2) which provenance could *Pellucistoma* be from; and (3) what are the potential migration pathways? It is certainly tempting to approve the first question by applying uniformitarian principles, to suppose a Caribbean origin (as suggested for e.g. molluscs; Wesselingh & Ramos 2010) and to relate our record directly to far-reaching marine incursions (e.g. Boonstra *et al.* 2015). However, in view of the conflicting discussions about this topic, we performed an extensive taxonomic, ecological and biogeographical appraisal of *Pellucistoma*. Based on this, we explore possible answers to the above-mentioned questions.

Geological setting and age

The investigated material originates from a well (1AS-10-AM) drilled ~62 km south-west of Benjamin Constant in western Brazil (site Sucuriju, close to Rio Itu; 04° 50’ S, 70° 22’ W; state of Amazonia; Fig. 1). Based on the available subsurface information (Maia *et al.* 1977; Del’ Arco *et al.* 1977), it is located in the Solimões Basin (e.g. Wanderley-Filho *et al.* 2010) and penetrates (except Holocene soils) sediments of the Solimões Formation (for substantial discussions about this formation see Purper 1979; Hoorn 1994; Latrubesse *et al.* 2010; Hoorn *et al.* 2010b).

Well 1AS-10-AM was continuously cored down to 400.25 m. Its lithology consists of alternations of semi-indurated clay and silt. Up to metre-thick, sandy as well as decimetre-thick, lignite intercalations occur subordinately. Recently, Gross *et al.* (2014) studied the

![Figure 1](image-url)

Figure 1. Location of the studied well 1AS-10-AM in western Amazonia. **A,** overview map; **B,** position of exploration wells (after Maia *et al.* 1977); star = herein investigated core; compare Gross *et al.* (2014).
microfauna (in particular the ostracod genus *Cyprideis*). For more detailed core descriptions and an illustration of the section, we refer to this work. The herein discussed findings stem from sample AM10/30 (depth = 141.2 m), which is a clayey silt, rich in mollusc remains. According to Gross *et al.* (2014) this sample is biostratigraphically dated to the *Cyprideis obliquosulcata* ostracod zone *sensu* Muñoz-Torres *et al.* (2006), corresponding to a late middle Miocene age (Wesselingh & Ramos 2010).

Material and methods

Samples (250 g of dried sediment; 40 °C, 24 h) from core 1AS-10-AM were washed through standard sieves (63/125/250/500 μm) using diluted hydrogen peroxide for disintegration (H₂O₂:H₂O = 1:5). Wet sieve residues were washed with ethanol (70%) before drying (40 °C, 24 h; Gross *et al.* 2014). Residuals ≥125 μm of sample AM10/30, from which the species under discussion originates, were picked out completely for their micropalaeontological content.

Prior to scanning electron microscope imaging (SEM: JEOL JSM-6610LV), the shells were photographed in transmitted light (Leitz Orthoplan microscope, camera: Leica DFC290) and measured (Leica Application Suite V3.6.0). Focus stacked images (Fig. 2 A, B) were obtained by combining ~35 transmitted light photographs per specimen (covered with distilled water) with the software CombineZP.

For stable isotope analyses (δ¹⁸O, δ¹³C), ostracod valves were additionally washed with distilled water and rinsed in ethanol. From core 1AS-10-AM (sample AM10/30) adults of three species were measured: *Cyprideis machadoi* (Purper, 1979), *Cyprideis multiradiata* (Purper, 1979) and *Cyprideis sulcosigmoidalis* (Purper, 1979) (for taxonomy see Gross *et al.* 2014). The number of specimens required for analyses (~50 μg) varied between 1 and 3 per measurement. A Thermo-Finnigan Kiel II automated reaction system and a Thermo-Finnigan Delta Plus isotope-ratio mass spectrometer were used to conduct the analyses (University of Graz; standard deviation = 0.1‰ relative to NBS-19; results in per mille relative to the Vienna Pee Dee Belemnite (VPDB) standard).

All specimens are housed in the micropalaeontological collection of the Museu Paraense Emílio Goeldi, Belém (Inv. No. MPEG-503-M to MPEG-514-M).

Systematic palaeontology

Suprageneric classification follows Horne *et al.* (2002).

Class **Ostracoda** Latreille, 1802

Order **Podocopida** Sars, 1866

Superfamily **Cytheroidea** Baird, 1850

Family **Cytheromatidae** Elofson, 1939

Genus **Pellucistoma** Coryell & Fields, 1937

Type species. *Pellucistoma howei* Coryell & Fields, 1937.

Pellucistoma curupira sp. nov.

(Figs 2, 3)

Holotype. MPEG-503-M, right valve (Fig. 3H, P, T, V).

Paratypes. MPEG-504-M to MPEG-513-M (Figs 2A, B, 3A–G, I–O, Q–S, U).

Additional material. MPEG-514-M, 26 adult specimens from sample AM10/30.

Diagnosis. A very small-sized, extremely thin-shelled species of *Pellucistoma* with subrhomboidal shape, ornamented with wrinkle-like ridges forming anteroventrally a weak reticulum and a unique combination of hinge structures.

Derivation of name. ‘Curupira’, the name of a mythic dwarf of Brazilian legends with backward turned feet, which should confuse pursuers; used as a noun in apposition; in reference to the small size of the species and its baffling discovery.

Type locality. Borehole 1AS-10-AM at Sucuriju close to Rio Itu (04° 50’ S, 70° 22’ W, ~62 km south-west of Benjamin Constant; municipality Atalaia do Norte, state of Amazonia, Brazil; Fig. 1).

Type horizon. Sample AM10/30 (= depth: 141.2 m, altitude: ~56.2 m; Gross *et al.* 2014).

Description.

Shape. Subrhomboidal in lateral view; anterior margin moderately infracurvature, dorsal margin almost straight and subhorizontal, ventral margin with slight concavity below the mandibular scars, posterior margin with a blunted subdorsal caudal process; valves anterodorsally, posterovertrally and posteriorly laterally flattened; lens-shaped in dorsal view with beaked posterior end.

Ornamentation. The very thin-shelled valves are basically smooth except for shallow, wrinkle-like ridges along the free valve margin as well as in the centro- and ventrodorsal area, forming a weak reticulum anteroventrally; at the caudal process an additional, oblique ridge is always present.

Inner lamella. Anterior and posterior wide; anterior vestibulum large, posterior one narrow-elongated, extending up to the caudal process; several inner lists developed; selvage subperipheral, inconspicuous anteriorly, forming at the ventral concavity a bulge, which fits into a groove...
of the other valve (groove more prominent in right valves).

Marginal pore canals. Widened at their base, leading to an irregular line of concrescence; occasionally bifurcated, some branches developed as false pore canals.

Hinge. Right valve – anterior element with four roundish sockets (the most anterior being the largest, the most posterior one is barely developed) and a spatulate anti-slip tooth below; median element consists of a smooth groove, which is deepened at its posterior end; posterior hinge element with three elongated teeth, succeeded by a fourth, indistinct tooth, which merges backwards into a thin expansion of the posterior margin; left valve – anterior element with a trilobate tooth and a further weak tooth postjacent; median element consisting of a smooth bar, which forms an elongated tooth-like structure at its posterior end; posterior element with three, elongated, shallow sockets followed by a fourth, indefinite, elongated socket fading out towards the posterior end.

Normal pores. Widely scattered, very small (~3–5 μm in diameter); sieve-type.

Central muscle scars. A row of four, slightly posteriorly inclined adductor scars; two oval mandibular scars, one irregularly ovate frontal scar; numerous dorsal muscle scars; well above the row of adductor scars a row of four dorsal scars is developed, probably corresponding to the ‘lucid spot’ (Morkhoven 1963; Sandberg 1969), which, however, is not a discrete, single spot here.

Eye-spot. Slight eye-spot developed.

Sexual dimorphism. Unclear; a few specimens (e.g. Fig. 3B) are slightly larger and display a somewhat higher posterior valve proportion, which could be related to sexual dimorphism.

Dimensions. Right valve (number of measured specimens = 9): length = 0.34–0.38 (mean = 0.36) mm, height = 0.17–0.18 (mean = 0.18) mm; left valve (number of measured specimens = 7): length = 0.34–0.38 (mean = 0.36) mm, height = 0.17–0.18 (mean = 0.17) mm.

Remarks.

Generic classification. The current species imitates several genera of different families by its subrhomboidal outline and almost smooth shells.

Amongst the Bythocytheridae Sars, 1866, some species of *Bythocythere* Sars, 1866 and *Pseudocythere* Sars, 1866 superficially resemble *Pellucistoma curupira* sp. nov. However, both genera differ explicitly due to the development of five adductor scars, and, less clearly, in their hinges (*Pseudocythere*: adont; *Bythocythere*: adont, lophodont or merodont; e.g. Morkhoven 1963; Athersuch *et al.* 1989; Stepanova 2006; Sciuto 2009).

Figure 2. Transmitted light photographs (**A, B**, focus stacked) and schematic drawings (**C, D**) of *Pellucistoma curupira* sp. nov. **A**, MPEG-513-M, left valve, internal view (length = 0.37 mm, height = 0.18 mm); **B**, MPEG-509-M, right valve, internal view of **Figure 3F**; **C**, left valve, internal view, based on **A** and **Figure 3E**; **D**, right valve, internal view, based on **B** and **Figure 3H** (compare also **Fig. 3F**).
The loxoconchid genera *Palmoconcha* Swain & Gilby, 1974 (= syn. *Lindisfarnea* Horne & Kilenyi, 1981; Horne & Whatley 1985; Athersuch et al. 1989), *Elofsonia* Wagner, 1957, *Pseudoconcha* Witte, 1993 and, especially, *Phlyctocythere* Keij, 1958, are similar to some degree.

However, *Palmoconcha* is distinguished by its gongylo-dont hinge (right valve: anterior socket—tooth—socket sequence; median smooth furrow; posterior tooth—socket—tooth sequence; median smooth groove; weak posterior tooth; Whittaker 1973; Athersuch & Horne 1984; Athersuch et al. 1989) and to a minor degree by its less prominent caudal process, strong fulcral point and Y-shaped frontal scar.

Pseudoconcha has a bipartite hinge (right valve: anterior element formed by a strong bar, with a groove below; posterior half with groove and bar below), a less developed caudal process, a well-pectinate surface and a narrower inner lamella (Witte 1993; Sarr et al. 2008).

Although some variability in details of the hinge, muscle scar patterns and pore canals seem to be present in *Elofsonia* (Aiello & Szczecuha 2002), this genus differs by its less prominent, less pointed caudal process (except *Elofsonia* sp. in Keyser & Schöning 2000) and its more simple hinge (right valve: dorsally crenulated anterior socket; smooth median groove; weak posterior tooth; Whittaker 1973; Athersuch & Horne 1984; Athersuch et al. 1989).

Originally, *Phlyctocythere* was characterized by its inflated, almost spherical carapaces with a peripherally compressed zone and an obtuse, subdorsal caudal process. Its surface is smooth, lacks eye-spots and the valves are very thin-shelled. The hinge is adont (right valve: curved, smooth bar), marginal pore canals are simple, and one frontal muscle scar is developed (Keij 1958; compare also Morkhoven 1963). Subsequently, several species were included in Phlyctocythere, which blur the prime generic diagnosis. For example: (1) outline: *Phlyctocythere hamanensis* Ikeya & Hanai, 1982 (more elongated, less arched dorsal margin), *Phlyctocythere japonica* Ishizaki, 1981 (subovate), *Phlyctocythere recta* Bold, 1988 (straight dorsal margin), *Phlyctocythere sicula* Sciuto & Pugliese, 2013 (more elongated) and *Phlyctocythere stricta* Bold, 1988 (straight dorsal margin); (2) ornament: *Phlyctocythere curva* Bold, 1988, *Phlyctocythere retifera* Bonaduce, Masoli & Pugliese, 1978, *P. sicula* and *P. stricta* display a faint reticulation and/or longitudinal ridges/wrinkles; (3) *Phlyctocythere curva*, *P. recta*, *P. stricta* and probably *P. fennerae* Mostafawi, 1992 have a slight eye-spot; (4) for *P. fennerae*, *P. japonica* and *P. retifera* few (anteroventrally) branched marginal pore canals are described and these structures are often observed to be bifurcated in *P. curva*; (5) for *P. hamanensis* normal pores are ‘presumably’ of sieve-type; (6) in *P. hamanensis* two frontal scars and one elongated mandibular scar are mentioned; in the illustration of *P. retifera* a double frontal scar is indicated; in *P. sicula* the adductor scars are very elongated; and (7) hinge: in *Phlyctocythere caudata* Hartmann, 1979, *P. curva*, *Phlyctocythere pellucida* (Müller, 1894), *P. retifera* and *P. sicula* right valves display a smooth median groove (crenulated in *P. curva*) and (two) terminal sockets (in *P. curva*: teeth); in *P. hamanensis* has a reduced gongylo-dont hinge. (Note: *Phlyctocythere hartmanni* Omatsola, 1970 is attributed to *Elofsonia* [Athersuch & Horne 1984; Schornikov 2011] or to *Pseudoconcha* [Witte 1993]). *Phlyctocythere pellucida* is discussed as belonging to *Loxocauda* Schornikov, 1969 (Athersuch & Horne 1984; Schornikov 2011). Consequently, *Phlyctocythere* is either quite variable or has turned into a collective genus due to inclusion of profuse species. An in-depth revision is obviously needed but is beyond the scope of the present work. In particular, *P. retifera* from the Red Sea is similar but it is more ovate (but note sexual dimorphism displayed in Mostafawi (1992) for *P. fennerae*), it diverges in details of the hinge (as far as reproducible) and has two frontal scars. However, by following the original diagnosis of *Phlyctocythere* (Keij 1958; Schornikov 2011) especially its outline (much more arched dorsal margin), its adont, right-bar hinge and simple marginal pore canals are considered herein to exclude an assignment of the current specimens to that genus.

Some authors (Bold 1950, 1958; Benson et al. 1961; Morkhoven 1963) have discussed a possible synonymy of *Javanella* Kingma, 1948 with *Pellucistoma* Coryell & Fields, 1937 (see also Gou & Chen 1988; Howe & McKenzie 1989; Ayress 1996). Lately, Bergue & Coimbra (2007) revised *Javanella*, revalidated it and reassigned it into the family Cytheridae Baird, 1850. According to this work only two species are left in *Javanella*, which clearly differ in outline (more elongated; caudal process below the middle of valves height) and in details of the terminal hinge elements from the present material.

Amongst the Cytheromatidae Elofson, 1939, the genus *Paracytheroma* Juday, 1907 is closely related to *Pellucistoma*. Nevertheless, *Paracytheroma* can be differentiated from the latter by lacking strong terminal anti-slip hinge elements, the absence of a caudal process and — to a minor degree — by missing a complex marginal zone with branched marginal canals (Hartmann 1978; Ayress 1990; compare also Sandberg 1969; Keyser 1976; Garbett & Maddocks 1979). Based on those features, our specimens do not belong to *Paracytheroma* but fit best with *Pellucistoma* as originally defined by Coryell & Fields (1937; for genus definition compare also Edwards 1944; Morkhoven 1963; Sanguinetti 1979). A few, minor differences concern the valves’ hinge and surface ornament.

For the hinge of the left valve an “anterior long blade-like triangular tooth” is indicated (Coryell & Fields 1937, p. 17), being trilobate in the present specimens. The median element is formed by a “serrated bar”, which “terminates at the posterior cardinal angle” (Coryell & Fields 1937, p. 17). Here, that bar is smooth — at least as
Figure 3. *Pellucistoma curupira* sp. nov. A, MPEG-504-M, left valve, external view (length = 0.36 mm, height = 0.17 mm); B, MPEG-505-M, right valve, external view (length = 0.38 mm, height = 0.18 mm); C, MPEG-506-M, left valve, external view (length = 0.38 mm, height = 0.18 mm); D, MPEG-507-M, right valve, external view (length = 0.36 mm, height = 0.18 mm); E, MPEG-508-M,
preserved. As far as described or perceptible on the provided figures, a smooth median element occurs in *Pellucistoma scrippsi* Benson, 1959 and *Pellucistoma bensoni* McKenzie & Swain, 1967 (Benson & Kaesler 1963; McKenzie & Swain 1967; Swain & Gilby 1967, 1974). For the type species, *P. howei*, the drawings of Bold (1967) and Teeter (1975) do not show such a crenulation. The crenulation of the median hinge element is in some species of *Pellucistoma* probably very delicate or indeed not developed.

A posterior hinge element, consisting of four elongated sockets/teeth as in our examples, has not been mentioned for *Pellucistoma* so far. However, based on the dorsal view of a left valve in Coryell & Fields (1937), behind the thickened, tooth-like terminal end of the bar, a shallow groove may be present which might analogously receive tiny teeth of the right valves. Moreover, the illustration of *P. scrippsi* in Swain & Gilby (1967) implies the presence of small posterior teeth in the right valve (note that this feature is not indicated in e.g. Benson 1959; Benson & Kaesler 1963; McKenzie & Swain 1967; Swain 1967). The description and illustration of the hinge structure of *Pellucistoma spuriurn* Bold, 1963 (p. 406: “In the left valve the selvage curves around the sockets and forms the upper border of the groove”) also hints at the presence of a posterior element. Thus, the subtle posterior sockets/teeth, clearly visible in our species (under the SEM), seem to be present in other *Pellucistoma* species equally. Garbett & Maddocks (1979, p. 871) carefully described a similar posterior hinge structure for *Paracytheroma stephensoni* (Puri, 1954) of which *Pellucistoma atkinsi* Hall, 1965 is a synonym (Keyser 1976): “[a] posterior tooth formed by the expanded end of the posterior margin.” That resemblance mirrors the close relation between *Pellucistoma* and *Paracytheroma* again (see above).

The surface of *Pellucistoma* is described as “finely perforated” (Coryell & Fields 1937, p. 17) and “smooth or finely punctate” (Morkhoven 1963, p. 436). Here, the valves are basically smooth, but display a weak reticulate pattern anteroventrally, some wrinkle-like ridges dorso-centrally and ventrocentrally, as well as a characteristic, oblique, light ridge on the caudal process. Shallow, postero-central and posteroventral ridges, which converge towards the caudal process, can be seen on *P. magniventra* in Garbett & Maddocks (1979). True eye-spots have not been included in the genus definition so far. However, a slight eye-spot — like in *P. curupira* sp. nov. — is recognized in *P. scrippsi* (Swain 1967; Swain & Gilby 1974).

Comparison with other Pellucistoma species. To our knowledge, 15 *Pellucistoma* species have been formally described so far (e.g. Kempf 1986, 1995, 2008; Brandão 2015).

The type species, *Pellucistoma howei* Coryell & Fields, 1937 (first record: Panama, latest middle—early late Miocene), is quite similar but differs by: its more ovate outline; its more projecting posteroventral margin; a more acuminate caudal process; a narrower anterior vestibulum (which seems to be almost restricted to the lower half of valve height); the ventral snap-mechanism is less developed; and its larger size (holotype: length/height = 0.48/0.27 mm; Coryell & Fields 1937; Bold 1967; see also e.g. Teeter 1975; Bold 1988). For differences in hinge and ornamentation see above.

Pellucistoma magniventra Edwards, 1944 (first record: North Carolina, Pliocene) is distinguished by (largely based on the redescription of Garbett & Maddocks 1979): its more arched, upwards rising dorsal margin and its strongly projecting posteroventral margin, respectively (if not aligned to the base line = reversal points in front and backwards of the ventral concavity); its much more infra-curtate anterior margin; its more pointed and acuminate caudal process; its ornament (see above); its anterior vestibulum, which is largely restricted to the anteroventral area (for variability see Garbett & Maddocks 1979); details of the hinge (crenulated median element; simple anterior and posterior sockets/teeth; lack of posterior hinge elements); and its larger size (holotype: length/height = 0.62/0.33 mm; Edwards 1944; Garbett & Maddocks 1979; see also e.g. Puri 1960; Bold 1963; Benson & Coleman 1963; Hall 1965; Morales 1966; Grossman 1967; Sandberg 1969; Cronin 1979; Krutak 1982; King Lyon 1990).

Pellucistoma scrippsi Benson, 1959 (first record: Baja California, Recent) has more convex dorsal and ventral margins and a less oblique anterior margin as well as a smooth surface. The posterior vestibulum is almost absent (but see Swain & Gilby 1967); the hinge is slightly different (simple anterior socket (right valve) and tooth (left valve); posterior teeth are lacking (except illustration of Swain & Gilby 1967)); marginal pore canals are missing on the apex of the caudal process; and it is larger (holotype: length/height = 0.69/0.33 mm; Benson 1959;}

left valve, internal view (length = 0.35 mm, height = 0.17 mm); F, MPEG-509-M, right valve, internal view (length = 0.34 mm, height = 0.17 mm); G, MPEG-510-M, left valve, internal view (length = 0.37 mm, height = 0.18); H, holotype MPEG-503-M, right valve, internal view (length = 0.36 mm, height = 0.18 mm); I, MPEG-511-M, left valve, dorsal view (length = 0.34 mm, height = 0.17 mm); J, MPEG-512-M, right valve, dorsal view (length = 0.36 mm, height = 0.17 mm); K, anterior hinge element of I; L, anterior hinge element of J; M, posterior hinge element of I; N, posterior hinge element of J; O, ventral concavity of E; P, ventral concavity of H; Q, anti-slip tooth of J (oblique dorsal view); R, normal pore, sieve-type of B; S, hinge of E; T, hinge of H; U, central muscle scars of E; V, central muscle scars of H.
Benson & Kaesler 1963; McKenzie & Swain 1967; Swain 1967; Swain & Gilby 1967, 1974).

Pellucistoma bensoni McKenzie & Swain, 1967 (first record: Baja California, Recent) differs in its strongly arched dorsal margin resulting in a subtriangular outline and a posterocentrally located caudal process, its smooth surface, its almost absent posterior vestibulum; and it is larger (holotype: length/height = 0.44/0.25 mm).

Pellucistoma spurium Bold, 1963 (first record: Trinidad, late Miocene) has a more convex dorsal margin; a more accentuated caudal process; and a hinge with a simple knob-like anterior tooth (left valve) and minutely crenulated median elements. The anterior vestibulum is restricted to the anterocentral area, the posterior vestibulum is only developed at the caudal process; and it is larger (holotype: length/height = 0.49/0.25 mm; compare also *Pellucistoma? spurium* of Bold (1988)).

Pellucistoma santafesinensis Zabert, 1978 (first record: Argentina, middle—late Miocene; correct spelling according to Kempf (2008): *P. santafesinense*; note: in the following we refer to correct spellings of species names but retain the original spellings in this work) is similar to *Pellucistoma gibosa* Sanguinetti, 1979 (see below) and possibly both are synonyms. However, it differs significantly in outline (subtriangular-elongate in lateral view; ventromedian long, pointed caudal process) and hinge structures from the current material. Size of holotype: length/height = 0.53/0.26 mm.

Pellucistoma gibosa Sanguinetti, 1979 (first record: southern Brazil, late Miocene; correct spelling according to Kempf (1986); *P. gibosum*) has an extremely humped (right valve) dorsal margin and an acuminate, long caudal process well below the half valves’ height. It is smooth; it has a hinge with a simple, strong anterior tooth (left valve) and a slightly serrated bar; the anterior vestibulum is restricted to lower half of valves height; and it is larger (holotype: length/height = 0.51/0.23 mm).

Pellucistoma elongata Whatley et al., 1997a (first record: Argentina, Recent; correct spelling according to Kempf (2008); *P. elongatum*) differs by: its more convex dorsal and posteroventral margin; more acuminate and more ventrally located caudal process; the inner lamella curves inwards posteroventrally; it is smooth (lacks eyespots); and it is larger (holotype: length/height = 0.52/0.24 mm; Whatley et al. 1997a).

Further species of questionable generic classification. Bold (1950) considered his Miocene Venezuelan species *Pellucistoma kendengensis* (Kingma) to be synonymous with *Javanella kendengensis* Kingma, 1948 (Pliocene, Java). Later, Bold (1972a) included *P. kendengensis* of Bold (1950) in his new species *Pellucistoma? kingmai* Bold, 1972a and assumed *J. kendengensis* of Kingma (1948) not to be a synonym of *P.? kingmai*. Bergue & Coimbra (2007) re-examined the type material of Bold (1950), excluded it from *Javanella* but left the generic status of *P. kendengensis* (according to Bold 1972a: *P.? kingmai*) open. Although there are some features perceptible that are unlike *Pellucistoma* (anterior margin almost equicurvate (cf. Bold 1950, p. 86: “obliquely rounded”); subventral caudal process; quite heavily punctate surface (as shown in Bergue & Coimbra 2007), as well as short and straight marginal pore canals, it cannot be definitively excluded from *Pellucistoma*.

Due to their simple marginal pore canals, the species *Pellucistoma?* sp. (Bold 1958, 1972a), *Pellucistoma? compactum* Bold, 1972a and *Pellucistoma? kingmai* Bold, 1972a, that are questionably attributed to *Pellucistoma*, differ in outline, hinge structure and development of the inner lamella. Only *Pellucistoma* sp. in Bold (1970, 1972b, 1988) is rather similar in its shape to the current species. Nevertheless, it has a smooth surface and is larger (length/height = 0.48/0.25 mm). Unfortunately, neither the hinge nor inner characters are accessible, which does not enable further comparisons.

Pellucistoma tumida Puri, 1954 (correct spelling according to Kempf (1986); *P. tumidum*) from the Pliocene of Florida is poorly described and a re-examination of the type material already failed (Bold 1988). Although its outline is comparable with the present individuals (except the equicurvate anterior margin), without additional traits (see also Bold 1963; Hulings 1967) a generic assignment or a species-specific identification is unfeasible. Bold (1988) discussed possible congruence with his *Phlyctocythere* sp. 2, which again demonstrates the superficial similarity of that loxoconchid genus with *Pellucistoma* (see above).

Pellucistoma atkinsi Hall, 1965 (see above) is a junior synonym of *Paracytheroma stephensoni* (Puri, 1954) (Keyser 1976; Garbett & Maddocks 1979).

Pellucistoma ovaliphylla Hu, 1981 from the Plio-/Pleistocene of southern Taiwan has been recognized by Hu (1984) to belong to *Paradoxostoma* Fischer, 1855. Two further Taiwanese species, *Pellucistoma magniloidea* Hu & Tao, 2008 and *Pellucistoma chushunshi* Hu & Tao, 2008, differ notably in outline, especially due to the almost lacking caudal process, from both the current as well as from other *Pellucistoma* species (important internal characters are not accessible because of missing illustrations and descriptions). Most likely, these species belong to another genus (*Paracytheroma*) but this claim needs additional investigations.

Ayress (1990, 1996) described *Pellucistoma coombsi* Ayress, 1990, *Pellucistoma fordyceti* Ayress, 1990 and *Pellucistoma punctata* Ayress, 1996 (correct spelling according to Kempf (2008); *P. punctatum*) from New Zealand and the Tasman and Coral Seas. These species diverge significantly from the present species and the genus *Pellucistoma* in general (outline: much more elongated-rectangular; hinge structures: e.g. *P. coombsi* and *P.
punctata have a right-bar hinge; inner lamella: much wider; ornament: P. punctata), which shed doubt on their
generic allocation. However, those species are not compa-
orable with the material described herein.

The illustration and description of Pellucistoma sp.
from Henderson Island (Pitcairn Islands, S. Pacific;
Recent; Whatley & Roberts 1995; Whatley et al. 2004)
do not offer enough details (e.g. hinge) for an assured
generic attribution. Its laterally inflated valves are rather
unlike those of Pellucistoma.

Faugères et al. (1984) mentioned Pellucistoma from the
Ghubbet el Kharab (Djibouti; Holocene) but provided no
figure. Presumably, this material belongs to another genus
(Phlyctocythere?).

Whatley et al. (1997b) recorded — without figure or
description — Pellucistoma sp. 1 from the southern
Strait of Magellan (Chile; Recent). Due to extremely low
water temperatures at the sampling sites, this record is eco-
logically very unlikely for Pellucistoma (see below). Thus,
we do not consider it subsequently.

The Late Cretaceous Pennyella foveolata Majoran &
Wedmark, 1998 from the Maud Rise (Southern Ocean, off
Antarctica), listed under Pellucistoma in the ‘World
Ostracoda Database’ (Brändão et al. 2015), actually
belongs to the former genus (Yasuhara et al. 2013).

To conclude, all the above compared species can be
clearly differentiated from Pellucistoma curupira sp. nov.
and are noticeably larger. Most similar are P. howei
from the Miocene of Panama and Pellucistoma sp. of Bold
(1970, 1972b, 1988; Miocene: Antilles and Panama),
however, the latter is little known and a closer examina-
tion is not possible. Most likely, the Australasian and
Taiwanese species (Ayyess 1990, 1996; Hu & Tao 2008)
do not belong to Pellucistoma. The records from the Pit-
cairn Islands and southern Chile (Whatley et al. 1997b,
2004) need additional affirmation. Currently, we assume
that the genus Pellucistoma is confined to the Americas.

Results

Stable isotope (δ18O and δ13C) analyses
Due to the minute size of Pellucistoma curupira sp. nov.,
geochemical analyses were performed on three Cyprideis
species, co-occurring in the same sample (AM10/30). All
measurements provided very light values with a range for
δ18O from –7.25 to –10.41‰ and for δ13C from –8.74 to
–13.54‰ (Fig. 4).

Spatiotemporal distribution and autecology of
hitherto known Pellucistoma species
We evaluated all published Pellucistoma records (fossil and
Recent) known to us (Fig. 5; for references and details
see Supplemental Material 1 and 2). This review might be
incomplete due to overlooked literature and, probably
more importantly, because of sampling biases. Partially
poor stratigraphical assessment of sampling sites and the
inclusion of reports without illustrations may additionally
blur our results. Nevertheless, the dataset reveals some
significant biogeographical and ecological patterns, which
 further enable a discussion of the erratic occurrence of P.
curupira sp. nov. in the Miocene of western Amazonia.

Amongst extant Pellucistoma species, P. magniventra
has a continuous Holocene record along the east coast of
the USA (Maryland (~38° N) to southern Florida) and in
the northern and southern Gulf of Mexico (Fig. 5). This is
the ‘core area’ of P. magniventra today. Further scattered
indications come from the Pacific coast of Mexico (Sinal-
loa, Nayarit, Gulf of Tehuantepec) and Colombia (Bahía
de Tumaco), from Puerto Rico, Venezuela and Trinidad
and the Brazilian equatorial shelf (~2° S; the latter as P.
ex gr. magniventra). To summarize the ecological data
(Supplemental Material 1), P. magniventra prefers
shallow marine (inner sublittoral, ~10–20 m water depth),
subtropical—tropical (minimal water temperature of cold-
est month (Tmin) ~10°C; average annual water tempera-
ture (Tav) >20°C), oxygenated, euhaline waters
(~30–40 PSU; e.g. Valentine 1971; King Lyon 1990;
Fig. 5). Fossil occurrences (late Miocene—Pliocene) of
P. magniventra match with the ‘core area’ as outlined
above. Additionally, it is reported from Cuba (middle
Miocene—Pliocene), Trinidad (early Miocene—Pliocene)
and northern Brazil (early Miocene). Pellucistoma aff.
magniventra is noted from Costa Rica (late Miocene) and
Hispaniola (middle Miocene—early Pliocene). Palaeoeco-
logical data for these fossil occurrences coincide with the
ecology of Recent P. magniventra.

Pellucistoma scrippsi, up to now only with Recent and
sub-Recent records, is restricted to the Pacific coast of
North and Meso America (~Santa Barbara/USA (~34°
N) to San Juan del Sur/Nicaragua (~11° N)). The rare
Recent and Pleistocene findings of P. bensoni plot within
the distribution area of P. scrippsi. For P. scrippsi and P.
bensoni the following autecological data can be summa-
rized: shallow marine (inner sublittoral, ~10 m water
depth), warm temperate—tropical (Tmin ~12°C, Tav >15°C),
euhaline.

Pellucistoma howei, although principally a fossil
species (Panama and Dominican Republic; middle—late
Miocene), is recorded from the Holocene of Belize as
well as with uncertainty (P. cf. howei or P. aff. howei)
from the Gulf of Mexico (Recent) and the Miocene of
Costa Rica. Ecological data characterize it as a shallow
marine (sublittoral, ~5–50 m water depth), tropi-
cal—subtropical, euhaline species.

Except for a few further Recent Pellucistoma sp.
records (Panama, Trinidad, Rocos Atoll/Brazil), P. elon-
gata remains the last extant species to be discussed. It is
confined to the Argentinean coast from about the Isla de
Los Pájaros (≈42° S) towards the north (≈36° S) to the Rio de la Plata estuary (with one Pleistocene report: Mar Chiquita). Further in the north, *P. cf. elongata* is noted off Cabo Frio (Rio de Janeiro, ≈23° S; subrecent). Based on the available information, *P. elongata* is a shallow marine (littoral—inferior sublittoral; littoral rock pools to ≈14 m water depth), euhaline species. It is reported from shallower settings than the species treated above, however, at least T_{min} can be assumed to be comparable to the occurrences of other species (e.g. Mar del Plata: $T_{\text{min}} \approx 10^\circ C$, $T_{\text{av}} \approx 15^\circ C$; www.seatemperature.org, accessed 12 January 2015).

Pellucistoma tumida (Florida), *P. spurium* (Trinidad, Bahamas), *P.? compactum* (Venezuela), *P.? kingmaei* (Venezuela), *P. gibosa* (Brazil) and *P. santafesinensis* (Argentina) are exclusively fossil taxa. As far as it is known, these species, as well as further fossil *Pellucistoma* records left in open nomenclature, lived in shallow marine, subtropical—tropical, euhaline habitats.

In summary, *Pellucistoma* is unquestionably a marine (sublittoral, euhaline) taxon of subtropical—tropical, oxygenated waters with a seasonally lower temperature limit of about $10^\circ C$. All fossil records point in the same direction. So far, there is no evidence for a different autecology in the geological past.

Discussion

Constraints of dispersal and potential dispersal modes of *Pellucistoma*

Dispersal capacity of organisms depends on various biotic and abiotic factors (e.g. autecology, reproduction mode, predation, competition, active/passive dispersal capacity, medium of transport). In the case of *Pellucistoma*, water temperature, depth and salinity appear to be the most important physico-chemical parameters (e.g. Valentine 1971, 1976; Bold 1974; Cronin 1979; Cronin & Dowsett 1986).
Little is known about its reproduction; however, due to the proof of female and male individuals in some species, sexual reproduction can be assumed. As female carapaces lack an apparent brood pouch (for storage of eggs and/or early instars), brood care seems unlikely.

Planktonic larval stages – like in all marine podocopid ostracods – are missing (Titterton & Whatley 1988). Presumably, *Pellucistoma* belongs to the marine meio-benhos. Synecological information (e.g. predation, competition) is not available for this genus.

Figure 5. Fossil and Recent records of *Pellucistoma* species (mean annual sea surface temperature (SST) based on NASA data (http://svs.gsfc.nasa.gov/index.html; accessed 18 September 2014); for details see Supplemental Material 1 and 2; species only known from the fossil record marked with †.

1990).
By considering the small size of *Pellucistoma* and the lack of planktonic stages, active dispersal can be expected to be very slow (Sandberg 1964). Land bridges (e.g. Panamanian isthmus), deep-water areas (e.g. Cayman Trench), cold waters/ocean currents (e.g. Peru Current) as well as massive river discharge (e.g. Amazon River; lowering of salinity, instability of the seabed) will be effective dispersal barriers for *Pellucistoma* (compare Cronin 1987; Coimbra et al. 1999; Iturralde-Vincent & MacPhee 1999).

However, passive dispersal by animals (e.g. birds, fishes), wind, water currents (fluvial and marine) or, in modern times, by man, are frequently quoted to affect ostracod migrations (e.g. Mesquita-Joanes et al. 2012).

Birds can transport ostracods (adults, juveniles, eggs) on e.g. their feet or feathers, preferably encased in sediment. In addition, intestinal transport (and survival) has been successfully demonstrated (e.g. Löffer 1964; Frisch et al. 2007; Brochet et al. 2010). Although bird-mediated transport is conceivable for *Pellucistoma*, three counter-arguments should be mentioned (Teeter 1973): (1) species of this genus (except *P. elongata*) prefer sublittoral settings, which makes their adhesion to shorebirds/waterfowls difficult; (2) *Pellucistoma* is rather small and thin-shelled (*P. curupira* sp. nov. is very small and very thin-shelled) and thus prone to digestion (also by fishes); and (3) torpid stages, desiccation-resistant eggs (as in freshwater Cypridoidea; e.g. Horne 1993; Rossi et al. 2011) and brood care (as e.g. in the cytheroid *Cyprideis*; Sandberg 1964; Bold 1976) facilitate aerial dispersal via birds, but the presence of such features is implausible for *Pellucistoma*. Comparable arguments seem to rule out transport by wind.

Aquatic displacement by rivers (downstream) and by tidal currents (up- and downstream) appears unlikely for the euhaline, sublittoral *Pellucistoma* (Barker 1963). Conversely, ocean currents are regarded as a prominent means of passive ostracod transport (e.g. Titterson & Whately 1988). Especially, drifting aquatic plants/algae – inclusively adhering sediments – significantly contribute to ostracod dispersal (e.g. Teeter 1973; Cronin 1987).

Human induced dispersal by ships (e.g. in ballast water or fouling of the hull) has been inferred to influence modern ostracod distribution (Teeter 1973; Witte & Harten 1991). Although the evidence is quite poor, we would refer to the possibility of phoretic dispersal via larger aquatic animals. For instance, manatees (Sirenia: Trichechidae) carry diverse epibionts on their skin (e.g. barnacles, copepods, algae and ostracods; Hartman 1979; Suárez-Morales et al. 2010; Marsh et al. 2011). Possibly, such animals act – like vessels – as means of dispersal for shallow marine ostracods. In this case, the sublittoral lifestyle of *Pellucistoma*, its susceptibility to intestinal digestion and decease due to desiccation, will be no constraint, as in bird transport. In addition, stream, tidal and ocean currents can be surmounted.

In conclusion, due to the lack of specific, dispersal-favouring traits and its autecology, the colonization of new habitats is subject to more restrictions compared to, for example, the euryoecious, broodcare practicing *Cyprideis*.

Origin and dispersal of *Pellucistoma* Based on his extensive works on Caribbean ostracods, Bold (1974) previously outlined the dispersal of *Pellucistoma*. Bold suggested an early Miocene origin in northern South America and its subsequent spread towards the Lesser Antilles and Panama before the onset of the middle Miocene. Following our evaluations, the potentially earliest records stem from the Lares Formation of Puerto Rico (upper Oligocene—lower Miocene; Fig. 6).

Either way, early Miocene occurrences are noted from Trinidad (Brasso Formation), Panama (Culebra Formation) and Brazil (Pirabas Formation), which support a substantial dispersal event in the early Miocene (Bold 1974). Afterwards (middle Miocene), *Pellucistoma* colonized the Greater Antilles (Hispaniola, Cuba) and arrived during the late Miocene at the south-eastern coasts of North America and the Pacific coast of Costa Rica. Amazingly, it also has been spread far to the south, to southern Brazil (Pelotas basin) and north-eastern Argentina (Paraná basin) at that time. During the Pliocene, *Pellucistoma* expanded along the Atlantic coast of the USA (up to North Carolina) and settled the Gulf of Mexico (*P. magniventra*).

Its Miocene and Pliocene dispersal in the Caribbean, Gufilian and Carolinian provinces (sensu Cronin 1987) can be explained by repeated, short-distance transport via floating water plants between the islands and along the shoals of the American continent, following the generally west and north-west directed sea surface currents (Bold 1974; Cronin 1987; Iturralde-Vincent & MacPhee 1999). More difficult to assert is the ‘rapid’ early Miocene spread of *Pellucistoma* towards the south-east (Pirabas Formation; ~200 km south-east of Trinidad), directed against the modern North Brazil Current. However, during the Miocene the Panama isthmus was open, causing ocean current patterns different from today. Due to the inflow of Pacific waters through the Central American Seaway, a reversed North Brazil Current, flowing along the north-east South American coast towards the south-east, has been proposed (Prange & Schulz 2004; Heinrich & Zonneveld 2013 and references therein). As neither the Orinoco River (Díaz de Gamero 1996) nor the Amazon River (Hoorn et al. 2010b) were fully developed, a significant, riverine dispersal barrier (like the modern Amazon; Coimbra et al. 1999) was not installed during the early/middle Miocene. Tentatively, a reversed Miocene North Brazil Current facilitated the south-eastward dispersal of *Pellucistoma* along the Brazilian shelf. Comparably, the colonization of areas far in the south (Pelotas and Paraná basin) in the late Miocene could have been triggered by
Figure 6. Tentative middle Miocene palaeogeography of the Caribbean realm and South America (based on Iturralde-Vinent & MacPhee 1999; Del Río 2000; Hernández et al. 2005; Hoorn et al. 2010b; Candela et al. 2012; extent of the Paranaense Sea probably too large (dashed blue line); compare Aceñolaza 2000; Cione et al. 2011; Ruskin et al. 2011) and Miocene records of Pellucistoma (the late Miocene P. magniventra (Florida) and P. aff. spuriun (Bahamas) records are not displayed; compare Fig. 5).
the south-west directed Brazil Current (Wood et al. 1999). At this time, the cold Falkland Current is assumed to have been less effective (Coimbra et al. 2009; Le Roux 2012), which enabled the proliferation of Pellucistoma in the Paranaense Sea. Although highly speculative, larger animals (e.g. sirenians) might have accelerated the expansion along the east coast of South America by acting as ectophoretic vectors. This hypothesis receives some support by the proposed north—south dispersal of sirenians along the eastern South American coast and their invasion of the Paranaense Sea from the south (Vélez-Juárbre et al. 2012).

In warmer periods of the Pleistocene, Pellucistoma extended further northwards on the west Atlantic coast (P. magniventra; e.g. Valentine 1971; Cronin 1979; Cronin & Dowssett 1990) and started to settle the Pacific coast of the USA (P. bensoni; Valentine 1976). In southern South America, a new species appeared (P. elongata; Ferrero 2009). Based on comparative morphology, P. elongata is much more closely related to P. magniventra than to the late Miocene species P. gibosa and P. santafesinensis. Thus, P. elongata is probably a descendant of P. magniventra and derives from a pre-Holocene dispersal event of the latter.

During the Holocene, Pellucistoma achieved its present distribution. Obviously, its latitudinal extension is limited by water temperature. While on the US Atlantic coast (38° N) the cold Labrador Current forms a thermal barrier, on the east Pacific coast the California Current confines its northward dispersal (34° N). On the south-west Atlantic coast (Argentina), the cold Falkland Current restricts its migration (P. elongata) further to the south. P. elongata has the highest latitudinal occurrence (42° S) of all Pellucistoma species but it is also the species with the shallowest records (at 42° S; littoral rock pool). As it is found in restricted bays, locally significantly warmer waters can be assumed, which permit its survival. A substantial northward migration could be hindered by the freshwater discharge of the Río de la Plata (Whatley et al. 1998b).

Based on the fossil and Recent records, a huge distributional gap is obvious (Fig. 5). Pellucistoma is missing along practically the entire Pacific coast of South America (there is only one P. magniventra record (one valve); Bahía de Tumaco, Colombia). Potentially this is an enormous sampling bias; however, we expect the Peru Current impeded a successful settlement of Pellucistoma. The Peru Current has been in existence at least since middle Miocene times (Le Roux 2012 and references therein). Its cold waters and northward-directed drift probably hampered the dispersal of Pellucistoma on the western coast of South America from the Miocene up to present times.

Recent P. scrippsi is restricted to the west coast of North and Meso America. Off Sinaloa and Nayarit (Mexico), it co-occurs with P. magniventra. This sympatric occurrence could be a taxonomic artefact or — speculatively — the result of a quite recent, passive, man-made dispersal event, tracing major ocean lanes from the Panama Canal towards California (Teeter 1973). Comparably, the single P. magniventra record on the western Colombian coast might reflect such a scattered displacement.

The enigmatic occurrence of Pellucistoma curupira sp. nov. in western Amazonia: proof of marine incursions?

The spatiotemporal distribution pattern of thus far known Pellucistoma species can be explained by vicariant barriers (land bridges, water temperature, depth, salinity), as well as by passive transport (sea currents (drifting matter) and, possibly, phoresy). However, the crucial questions of the palaeoenvironmental implication and the provenance of our new species remain to be discussed.

Our appraisal of records of Pellucistoma demonstrates that it is a shallow marine taxon. No evidence of substantial deviations in habitat preferences or adaptations to non-marine environments has been reported so far. Consequently, the finding of P. curupira sp. nov. appears to be amongst the most solid (body fossil) biotic evidence for proposed marine incursions, affecting the centre of Amazonia in Miocene times.

Autecology of Pellucistoma curupira sp. nov. The new species, Pellucistoma curupira sp. nov., is evidently dwarfed in comparison to all other Pellucistoma species (in length ~20–50% smaller) and very thin-shelled. There are multiple causes of size reduction or dwarfism in ostracods (temperature, oxygenation, salinity, food resources, etc.; e.g. Neale 1988; Majoran et al. 2000; Yin et al. 2001; Hunt & Roy 2006; Finston 2007; Hunt et al. 2010; Scheihing et al. 2011; Yamaguchi et al. 2012). Here, we cannot identify a single or several factors to be the reason for the small size of P. curupira sp. nov. Nevertheless, it obviously had to cope with some kind of environmental stress and lived close to its tolerance limits. Its extremely thin-shelled valves also support this theory (e.g. Frenzel & Boomer 2005 for references; compare also Vermeij & Wesselingh 2002 for marine-derived gastropods). During the preparation of this paper, Boonstra et al. (2015) reported Pellucistoma (conspecific with P. curupira sp. nov.; MIFR pers. obs.) from western Amazonia (middle Miocene; Nuevo Horizonte), accompanied by euryhaline foraminifers. Based on the low diversity foraminiferal assemblage and the high proportion of abnormal tests, these authors proposed a highly stressful habitat with poorly oxygenated bottom waters, close to freshwater conditions (Vonhof et al. 2003: <1 PSU). Hence, it seems plausible that low oxygenation (Wesselingh et al. 2006) and, in particular, low salinity are the
main abiotic stress factors leading to the dwarfism and the poorly calcified valves of *P. curupira* sp. nov.

Pellucistoma curupira sp. nov. is associated in sample AM10/30 with a typical Pebasian ostracod fauna (Whatley et al. 1998a; Gross et al. 2013, 2014), totally dominated by *Cyprideis* (12 sympatric species; 99% of the total ostracod fauna). This ostracod genus is holoeuryhaline, able to survive hypoxic periods and especially successful ostracod fauna). This ostracod genus is holoeuryhaline, able to survive hypoxic periods and especially successful in stressful settings (e.g. Gross et al. 2008 and references therein). The only other ostracods found in this sample are *Perissocytheridea ornellasaes* (Purper, 1979), *Rhadinocytherura amazonsis* Sheppard & Bate, 1980 and *Skopaeocythere tetrakanthos* Whatley et al., 2000 (MG in prep.). These species are – like *P. curupira* sp. nov. – endemic for western Amazonia and supposedly of marine origin. Interestingly, they are also of minute size (~0.30–0.35 mm in length). An adaptation to freshwater settings during the late Miocene has been demonstrated for *R. amazonsis* and *Perissocytheridea*, as well as for *Cyprideis* sp. (Gross et al. 2013).

Stable isotope analyses (δ¹³C, δ¹⁸O) performed on three *Cyprideis* species associated with *P. curupira* sp. nov. yielded very light values (Fig. 4). Such depleted δ¹³C and δ¹⁸O ratios are indicative of a freshwater system (Leng & Marshall 2004). Our results are consistent with previous isotopic data obtained from outcrop material (ostracods: Gross et al. 2013). Earlier O/C-isotopic investigations (mainly molluscs) yielded closely comparable results (Vonhof et al. 2003; Kaandorp et al. 2006; Ramos 2006; Wesselingh et al. 2006).

The morphology of *P. curupira* sp. nov. (very small and extremely thin-shelled), the associated ostracod fauna (co-occurrence of further stunted ostracods of potentially marine ancestry) and our geochemical evidence, suggest that this *Pellucistoma* species – exceptionally – managed to adapt to freshwater conditions in the late middle Miocene.

Provenance of Pellucistoma curupira sp. nov. We presume: (1) the genus *Pellucistoma* originated in the Caribbean realm around the Oligo-/Miocene boundary; (2) *Pellucistoma curupira* sp. nov. is most closely related to Caribbean species; and (3) *Pellucistoma* is a shallow marine clade but adapted (*P. curupira* sp. nov.) over geological timescales (about 10 million years) to freshwater conditions in western Amazonia. Based on this, we explore possible migration scenarios:

(A) Migration of Pellucistoma curupira sp. nov. via aerial (bird) transport. Bird-mediated transport plays a certain role in ostracod dispersal. In such a case, *Pellucistoma* (and other small aquatic invertebrates, e.g. foraminifers) could have entered western Amazonia without aquatic connections (neither fluorivus nor marine). By considering the palaeobiogeographical distribution of *Pellucistoma*, there are two potential sources (Fig. 6): the Caribbean and the Amazonian Sea. Due to the close relationship of *P. curupira* sp. nov. to Caribbean species and half the distance to travel, the first source seems more likely. Although less well developed than today, north–south bird migration was already in existence during the Miocene (Tambussi & Degrange 2013).

Nevertheless, *Pellucistoma* is not predisposed for aerial dispersal, and successful transfer as well as ‘ad hoc’ colonization of new (freshwater) habitats appears to be demanding. (Note: such a mode of migration is much more conceivable for the eurypotent *Cyprideis*. This ostracod achieved evidently a ‘habitat monopoly’ in the Miocene of western Amazonia, possibly causing additional biotic stress for other, rather stenopotent arrivals like *Pellucistoma*). However, a multitude (over millions of years) of short-distance transport ‘accidents’ through a patchy structured wetland is possible, enabling a stepwise, long-distance spread and gradual adaptation to freshwater. Even if this scenario applies for small invertebrates, it is hardly appropriate for larger, marine-derived vertebrates occurring in Amazonia (e.g. Lovejoy et al. 2006; Boonstra et al. 2015 and references therein).

(B) Migration of Pellucistoma curupira sp. nov. through marine incursions. Several marine pathways have been proposed to have linked western Amazonia with the sea during the Miocene (for comprehensive discussions see e.g. Nuttall 1990; Rebata et al. 2006; Wesselingh & Salo 2006; Hovikoski et al. 2010). Such connections have been envisaged towards the north (Caribbean Sea), the east (Amazonian Sea), the south (Paranaean Sea) and the west (Pacific, southern Ecuador).

Concerning *Pellucistoma*, we have no evidence for an eastern Pacific source, which corroborates low faunistic affinities in the mollusc record (Wesselingh & Salo 2006). *Pellucistoma* occurs in the Pirabas Formation (early Miocene) and the Amazonian Sea could be a potential source. Nevertheless, marine incursions, originating from the eastern Brazilian Atlantic, are unlikely since the ‘Purus arch’ formed a significant watershed at least until the late Miocene (e.g. Figueiredo et al. 2009; Hoorn et al. 2010b; Latrubesse et al. 2010; Dino et al. 2012).

Relations between aquatic biota of the Paranaean Sea and the Pebas system are poor (e.g. Marengo 2000; Hulka et al. 2006; Wesselingh & Salo 2006; Nicolaidis & Coimbra 2008). Similarly, *P. curupira* sp. nov. is not closer related to the species of the Paraná and Pelotas basins, for which we already suggested migration along the eastern coast of South America. Potential marine connections with the Paranaean Sea are dated to the late Miocene (Hovikoski et al. 2007; Uba et al. 2009). Thus, *P. curupira* sp. nov. (late middle Miocene) pre-dates the southern South American species and immigration from the south is improbable.

Most authors agree with a linkage between the early–middle Miocene Pebas wetland and the Caribbean
Sea through corridors in the Llanos basin (e.g. Nuttall 1990; Hoorn et al. 1995; Anderson et al. 2006; Lovejoy et al. 2006; Wesselingh & Macsotay 2006). Morphological affinities of *P. curupira* sp. nov. to the Caribbean also support this claim. Hence, a Caribbean—Llanos—Pebas dispersal pathway is most plausible; however, fossil evidence is pending for *Pellucistoma* in the Llanos region.

Marine incursions, deriving from the Caribbean realm, have been assumed to affect western Amazonia’s environments and biota (e.g. Boonstra et al. 2015). At first glance, our *Pellucistoma* record is a profound confirmation of such far-reaching marine influences, as it could have followed the ingestions. But, as argued above, this record does not confirm the influx of marine waters. To clarify, we do not reject the possibility of marine incursion throughout the entire Miocene history of western Amazonia. For instance, the probably slightly older middle Miocene *Pellucistoma* records from oligo-/mesohaline layers of Nuevo Horizonte (Boonstra et al. 2015) could be interpreted to mirror an incursion-related immigration as well as the stepwise freshwater adaptation of *P. curupira* sp. nov. Nevertheless, in our case direct marine connections are not mandatory.

(C) Migration of *Pellucistoma curupira* sp. nov. through aquatic pathways. The Caribbean-derived *Pellucistoma* probably reached the Llanos Basin (like other marine biota) during sporadic marine incursions in the early/middle Miocene (e.g. Wesselingh & Macsotay 2006; Jiménez & Hammen 2007; Bayona et al. 2007; Gomez et al. 2009; Boonstra et al. 2015 and references therein). Larger animals of marine ancestry (e.g. fishes, dolphins, manatees; Lovejoy et al. 2006; Lundberg et al. 2010; Bianucci et al. 2013) were able to migrate actively into the Pebas system via fluvial pathways. Smaller biota (e.g. ostracods, foraminifers, mollusc larvae) could have entered this ‘mega-wetland’ actively too but, more likely, could have been freighted ectophoretically and gradually developed freshwater tolerance over long timescales (e.g. *P. curupira* sp. nov.). Thus, “it would not seem to be necessary for the connection between the sea and the heart of the basin to be direct at any one time. A series of lakes continually splitting and merging with each other, or perhaps becoming reconnected by streams, would enable taxa to progress gradually from one area to another.” (Nuttall 1990, p. 351; compare Lundberg et al. 2010).

Based on our investigations and the data available, we favour hypothesis (C). However, we cannot explicitly reject hypotheses (A) and (B), which might also contribute to the enigmatic occurrence of *Pellucistoma curupira* sp. nov.

Conclusions

Based on our in-depth evaluation of a new species of the ostracod genus *Pellucistoma* from the late middle Miocene of western Amazonia, we conclude that this genus is: (1) biogeographically restricted to the Americas; (2) in general a typical shallow marine clade; and (3) of Oligocene/early Miocene Caribbean origin. We assume that *Pellucistoma* entered the Llanos Basin during the early Miocene, migrated into the fluvio-lacustrine Pebas mega-wetland by phoresy through aquatic (fluvial) connections and adapted to freshwater conditions. Our finding emphasizes again that palaeoenvironmental interpretations based on a straightforward application of uniformitarian principles are problematical for the endemic biota of western Amazonia (Wesselingh 2006; Gross et al. 2013). Thus we conclude that this record of *Pellucistoma* is not evidence for marine incursions.

Acknowledgements

This study was financed by the Austrian Science Fund project P21748-N21 and supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico/Ministério da Ciência e Tecnologia (CNPq/MCT; process number EXC 010389/2009-1). For access to core materials as well as to unpublished reports we acknowledge the Departamento Nacional de Produção Mineral (DNPM/Manaus, especially Gert Woeltje) and the Companhia de Pesquisa de Recursos Minerais (CPRM/Manaus, especially Marco Antônio de Oliveira). The authors are grateful to Dan L. Danielopol (University of Graz), Frank Gitter (UM Joanneum, Graz), Eugen Kempf (University of Cologne) and Sylvain Richoz (University of Graz) for discussions. We thank Hsi-Jen Tao (University of Taipei), Moriaki Yasuhara (University of Hong Kong), Claudia Wrozyna (University of Graz) and Yanlong Chen (University of Graz) for providing literature and translations as well as Hans-Peter Bojar (UM Joanneum, Graz) for access to the SEM of the Joanneum. Sincere thanks are given to Claudia Wrozyna and Marco Caporaletti (University of Graz) for δ18O- and δ13C-analyses. We express our gratitude to Elsa Gloiozzi (Roma Tre University) and an anonymous reviewer for constructive comments on the manuscript.

Supplemental material

Supplemental material for this article can be accessed here: http://dx.doi.org/10.1080/14772019.2015.1078850

References

Aceañolaza, F. G. 2000. La Formación Paraná (Miocene medio: estratigrafía, distribucion regional y unidades equivalentes). Instituto Superior de Correlación Geológica (INSUGEo), Serie Correlación Geológica, 14, 9–28.
Benson, R. H. & Szczechura, J. 2002. Appearance of the genus *Elossonia* Wagner, 1957 (Loxoconchinae: Ostracoda) in the Middle Miocene of Central Paratethys. *Revue de Micropaleontologie*, 45, 3–7.

Anderson, L. C., Hartman, J. H. & Wesselingh, F. 2006. Close evolutionary affinities between freshwater corbilelivalves from the Neogene of western Amazonia and Paleogene of the northern Great Plains, USA. *Journal of South American Earth Sciences*, 21, 28–48.

Athersuch, J. & Horne, D. J. 1984. A Review of some European genera of the Family Loxoconchinae (Crustacea: Ostracoda). *Zoological Journal of the Linnean Society*, 81, 1–22.

Aiello, G. & Bold, W. A. van den 1992a. Ostracods of the post-Eocene of Venezuela and regions vecinas. *Boletin de Geologia, Ministerio de Minas e Hidrocarburos*, Publicación Especial, 5, 999–1071.

Bold W. A. van den 1970. Ostracoda of the Lower and Middle Miocene of St. Croix, St. Martin and Anguilla. *Caribbean Journal of Science*, 10, 35–61.

Bold W. A. van den 1972a. Ostracods of the post-Eocene of Venezuela y regiones vecinas. *Boletin de Geologia, Ministerio de Minas e Hidrocarburos*, Publicación Especial, 5, 999–1071.

Bold W. A. van den 1972b. Ostracoda of the La Boca Formation, Panama Canal Zone. *Micropaleontology*, 18, 410–442.

Bold W. A. van den 1974. Ostracode Associations in the Caribbean Neogene. *Verhandlingen der Naturforschenden Gesellschaft in Basel*, 84, 214–221.

Bold W. A. van den 1976. Ostracode correlation of brackishwater beds in the Caribbean Neogene. *Transactions of the 7th Caribbean Geological Conference*, 169–175.

Bold W. A. van den 1988. Neogene Palaeontology in the northeastern Dominican Republic. 7. The Subclass Ostracoda (Arthropoda: Crustacea). *Bulletins of American Palaeontology*, 94, 1–105.

Bonaduce, G., Masoli, M. & Pugliese, N. 1978. Ostracoda from the Gulf of Aqaba (Red Sea). *Pubblicazioni della Stazione Zoologica di Napoli*, 40, 372–428.

Boonstra, M., Ramos, M. I. F., Lammerstma, E. I., Antoine, P.-O. & Hoorn, C. 2015. Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). *Palaeogeography, Palaeoclimatology, Palaeoecology*, 417, 176–194.

Brandão, S. 2015. *Pellucistoma* Coryell & Fields, 1937, *World Ostracoda Database*. [World Register of Marine Species; www.marinespecies.org], Accessed 3 April 2015.

Brochet, A. L., Gauthier-Clerc, M., Guillemin, M., Fritz, H., Waterkeyn, A., Baltanas, A. & Green, A. J. 2010. Field evidence of dispersal of branchiopods, ostracods and byrophyans by teal (*Anas crecca*) in the Camargue (southern France). *Hydrobiologia*, 637, 255–261.

Candela, A. M. Bonini, R. A. & Noriega, J. I. 2012. First continental vertebrates from the marine Paraná Formation (late Miocene, Mesopotamia, Argentina): Chronology, biogeography, and palaeoenvironments. *Geobios*, 45, 515–526.

Cione, A. L., Cozzuol, M. A., Dozo, M. T. & Hospitalce, C. A. 2011. Marine vertebrate assemblages in the southwest Atlantic during the middle Miocene. *Biological Journal of the Linnean Society*, 103, 423–440.

Coimbra, J. C., Pinto, I. D., Würdug, N. L. & Carmo, D. A. 1999. Zoogeography of Holocene Podocopina (Ostracoda) from the Brazilian Equatorial shelf. *Marine Micropaleontology*, 37, 365–379.

Coimbra, J. C., Carreño, A. L. & Anjos-Zerfass, G. S. 2009. Biostatigraphy and paleoceanographical significance of the Neogene planktonic foraminifera from the Pelotas Basin, southernmost Brazil. *Revue de Micropaleontologie*, 52, 1–14.

Coryell, H. N. & Fields, S. 1937. A Gatun ostracoda fauna from Cattiva, Panama. *American Museum Novitates*, 956, 1–18.

Cozzuol, M. A. 2006. The Acre vertebrate fauna: Age, diversity, and geography. *Journal of South American Earth Sciences*, 21, 185–203.

Cronin, T. M. 1979. Late Pliocene marginal marine ostracods from the southeastern Atlantic coastal plain and their palaeoenvironmental implications. *Geographie Physique et Quaternaire*, 33, 121–173.

Cronin, T. M. 1987. Evolution, biogeography, and systematic of *Puriana*: Evolution and Speciation in Ostracoda, III. *The Paleontological Society, Memoir*, 21, 1–71.
Cronin, T. M. & Dowsett H. J. 1990. A Quantitative Micropaleontologic Method for Shallow Marine Paleoclimatology: Application to Pliocene Deposits of the Western North Atlantic Ocean. Marine Micropaleontology, 16, 117–147.

Del’ Arco, J. O., Santos, R. O. B., Rivetti, M., Olivera Alves, E. D., Fernandes, C. A. C. & Silva, L. L. 1977. Folha SBA. 19 Juruá—Geologia. Projeto Radambrasil. Levantamento de Recursos Naturais, 15, 19–88.

Del Rio, C. J. 2000. Malacofauna de las Formaciones Paraná y Puerto Madryn (Mioceno marino, Argentina): su origen, composición y significado bioestratigráfico. Instituto Superior de Correlación Geológica (INSUEGO), Serie Correlación Geológica, 14, 77–101.

Díaz de Gamero, M. L. 1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 385–402.

Dino, R., Soares, E. A. A., Antonioli, L., Riccomini, C. & Nogueira, A. C. R. 2012. Palynostratigraphy and sedimentary facies of Middle Miocene fluvial deposits of the Amazonas Basin, Brazil. Journal of South American Earth Sciences, 34, 61–80.

Edwards, R. A. 1944. Ostracoda from the Duplin Marl (Upper Miocene) of North Carolina. Journal of Paleontology, 18, 505–528.

Faugères, J. C., Duprat, J., Gonthier, E. & Peypouquet, J. P. 1984. La sédimentation marine holocène dans le Ghubbet el Kharab (territoire des Afars et Issas): importance du contexte régional. Oceanologica Acta, 7, 5–12.

Ferrero, L. 2009. Peraminiferans och osträkodon del Pleistoceno tardio (Mar Chiquita, provincial de Buenos Aires, Argentina. Ameghiniana, 46, 637–656.

Figueiredo, J., Hoorn, C., Ven, P., van der & Soares, E. 2009. late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.

Finston, T. 2007. Size, shape and development time are plastic traits in salt lake ostracods of the Mytilocypris mytiloides (Ostracoda : Cyprididae) species complex. Marine and Freshwater Research, 58, 511–518.

Fischer, S. 1855. Beitrag zur Kenntnis der Ostracoden. Abhandlungen der mathematisch-physikalischen Classe der königlich-bayerischen Akademie der Wissenschaften, 7, 635–666.

Frenzel, P. & Boomer, I. 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 225, 68–92.

Frisch, D., Green, A. J. & Figueirola, J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences, 69, 568–574.

Garrett, E. C. & Maddocks, R. F. 1979. Zoogeography of Holocene cytheracean ostracodes in the bays of Texas. Journal of Paleontolosy, 53, 841–919.

Gingras, M. J., Rásanen, M. E., Pemberton, S. G. & Romero, L. P. 2002. Ichnology and sedimentary record reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. Journal of Sedimentary Research, 72, 871–883.

Gomez, A. A., Jaramillo, C. A., Parra, M. & Mora, A. 2009. Huessner Horizon: A lake and a marine incursion in northwestern South America during the Early Miocene. Palaios, 24, 199–210.

Gou, Y.-S. & Chen, D.-Q. 1988. On the occurrence of Javanella and Saida in the Pliocene of Leizhou peninsula, Guangdong, China. Pp. 797–803 in T. Hanai, N. Ikeya & K. Ishizaki (eds) Evolutionary Biology of Ostracoda: its fundamentals and applications. Elsevier, Tokyo.

Gross, M., Minati, K., Danielpol, D. L. & Piller, W. E. 2008. Environmental changes and diversification of Cyprideis in the late Miocene of the Styrian Basin (Lake Pannon, Austria). Senckenbergiana lethaea, 88, 161–181.

Gross, M., Piller, W. E., Ramos, M. I. & Paz, J. D. S. 2013. late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil). Journal of South American Earth Sciences, 32, 169–181.

Gross, M., Ramos, M. I. & Caporaletti, M. & Piller, W. E. 2013. Ostracods (Crustacea) and their palaeoenvironmental implication for the Solimões Formation (late Miocene; Western Amazonia/Brazil). Journal of South American Earth Sciences, 42, 216–241.

Gross, M., Ramos, M. I. & Piller, W. E. 2014. On the Miocene Cyprideis species flock (Ostracoda; Crustacea) of Western Amazonia (Solimões Formation): Refining taxonomy on species level. Zootaxa, 3899, 1–69.

Grossman, S. 1967. Part 1. Living and fossil rhizopod and ostracode populations. The University of Kansas Paleontological Contributions, 44, 7–82.

Grossman, E. L. & Ku, T.-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59, 59–74.

Hall, D. D. 1965. Paleoecology and taxonomy of fossil Ostracoda in the vicinity of Sapelo Island, Georgia. Pp. 1–79 in R. V. Kesling, D. G. Darby, R. N. Smith & D. D. Hall (eds) Four Reports of Ostracod Investigations. National Science Foundation Project GB-26, Report 4, University of Michigan.

Hartman, D. S. 1979. Ecology and behavior of the manatee (Trichechus manatus) in Florida. The American Society of Mammalogists, Special Publication, 5, 1–150.

Hartmann, G. 1978. Die Ostracoden der Ordnung Podocopoda G. W. Müller, 1894 der tropisch-subtropischen Westküste Australiens (zwischen Derby im Norden und Perth im Süden). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 75, 64–219.

Hartmann, G. 1979. Die Ostracoden der Ordnung Podocopoda G. W. Müller, 1894 der warm-temperierten (antiborealen) West- und Südwestküste Australiens (zwischen Perth im Norden und Eucla im Süden). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 76, 219–301.

Heinrich, S. & Zonneveld K. A. F. 2013. Influence of the Amazon River development and construction of the Central American Seaway on Middle/late Miocene oceanic conditions at the Ceara Rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 599–606.

Hernández, R. M., Jordan, T. E., Dalentz, Farjat, A., Echavarria, L., Idleman, B. D. & Reynolds, J. H. 2005. Age, distribution, tectonics and eustatic controls of the Paraná and Caribbean marine transgressions in southern Bolivia and Argentina. Journal of South American Earth Sciences, 19, 495–512.

Hoorn, C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.

Hoorn, C. 1994. An environmental reconstruction of the palaeo-Amazon River system (Middle—late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.
Hoorn, C. & Wesselingh, F. P. 2010 (eds). Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford, 464 pp.

Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.

Hoorn, C., Wesselingh, F. P., Steege, H. ter, Bermudez, M. A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. 2010a. Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330, 927–931.

Hoorn, C., Wesselingh, F. P., Hovikoski, J. & Guerrero, J. 2010b. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). Pp. 123–142 in C. Hoorn & F. P. Wesselingh (eds) Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford.

Horne, F. R. 1993. Survival strategy to escape desiccation in a freshwater ostracod. Crustacea, 65, 53–61.

Horne, D. J. & Kilenyi, T. I. 1981. Linsdisfarna laevata (Norman). Stereо-Atlas of Ostracod Shells, 8, 107–116.

Horne, D. J. & Whatley, R. C. 1985. On Palmoconcha laevata (Norman). Stereо-Atlas of Ostracod Shells, 12, 158.

Horne, D. J., Cohen, A. & Martens, K. 2002. Taxonomy, Morphology and Biology of Quaternary and Living Ostracoda. American Geophysical Union Monograph, 131, 5–36.

Hovikoski, J., Räsänen, M., Gingras, M., Roddaz, M., Brusset, S., Hermoza, W., Pittman, L. R. & Lertola, K. 2005. Miocene semidiurnal tidal rhythms in Madre de Dios, Peru. Geology, 33, 177–180.

Hovikoski, J., Räsänen, M., Gingras, M., Lopez, S., Romero, L., Ranzi, A. & Melo, J. 2007. Palaeogeographical implications of the Miocene Quendeque Formation (Bolivia) and tidally-influenced strata in southwestern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 23–41.

Hovikoski, J., Wesselingh, F. P., Räsänen, M., Gingras, M. & Vonhof, H. B. 2010. Marine influence in Amazonia: evidence from the geological record. Pp. 143–161 in C. Hoorn & F. P. Wesselingh (eds) Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford.

Hove, H. V. & McKenzie, K. G. 1989. Recent marine Ostracoda (Crustacea) from Darwin and north-western Australia. Northern Territory Museum of Arts and Sciences, Monograph Series, 3, 1–49.

Hu, C.-H. 1981. New Ostracod Faunas from the Maanshan Mudstone of Hengchun Peninsula, Southern Taiwan. Petroleum Geology of Taiwan, 18, 81–109.

Hu, C.-H. 1984. New Fossil Ostracod Faunas from Hengchun Peninsula, Southern Taiwan. Journal of Taiwan Museum, 37, 65–129.

Hu, C.-H. & Tao, H.-J. 2008. Studies on the ostracod fauna of Taiwan and its adjacent seas. National Taiwan Museum, Special Publication Series, 13, 1–910. [In Chinese.]

Hulings, N. C. 1967. Marine Ostracoda from the western North Atlantic Ocean between Cape Hatteras, North Carolina, and Jupiter Inlet, Florida. Bulletin of Marine Science, 17, 629–659.

Hulka, C., Grafe, K.-U., Sames, B., Uba, C. E. & Heubeck, C. 2006. Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. Journal of South American Earth Sciences, 21, 135–150.

Hunt, G. & Roy, K. 2006. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracods. Proceedings of the National Academy of Sciences of the United States of America, 103, 1347–1352.

Hunt, G., Wicaksono, S. A., Brown, J. E. & Macleod, K. G. 2010. Climate-driven body-size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology, 53, 1255–1268.

Ikeya, N. & Hanai, T. 1982. Ecology of recent ostracods in the Hamana-Ko region, the Pacific coast of Japan. The University Museum, The University of Tokyo, Bulletin, 20, 15–59.

Ishizaki, K. 1981. Ostracoda from the East China Sea. Science Report of Tohoku University, Second Series, Geology, 51, 37–65.

Iturralde-Vinent, M. A. & MacPhee, R. D. E. 1999. Paleoecology and biogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1–95.

Jiménez, H. D. & Hammen, T. van der 2007. Significado geológico y asociaciones palinológicas de las formaciones Diablo Inferior (Miocene Tardío) y San Fernando Superior (Miocene Medio), Piedemonte cuenca de los Llanos Orientales, Colombia. Revista de la Academia Colombiana de Ciencias, 31, 481–498.

Judy, C. 1907. Ostracoda of the San Diego region. II: Littoral forms. University of California Publications in Zoology, 3, 135–156.

Kaandorp, R. J. G., Wesselingh, F. P. & Vonhof, H. B. 2006. Ecological implications from geochemical records of Miocene Western Amazonian bivalves. Journal of South American Earth Sciences, 21, 54–74.

Keij, A. J. 1958. Note on the Lutetian Ostracoda of Damery (Marne), France. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 61, 63–73.

Kempf, E. K. 1986. Index and bibliography of marine Ostracoda: 1: Index A. Sonderveröffentlichungen des Geologischen Instituts der Universität zu Köln, 50, 1–762.

Kempf, E. K. 1995. Index and bibliography of marine Ostracoda: 6: Index A: Supplement 1. Sonderveröffentlichungen des Geologischen Instituts der Universität zu Köln, 100, 1–244.

Kempf, E. K. 2008. Index and bibliography of marine Ostracoda: 11: Index A: Supplement 2. CD-ROM edition only.

Kieser, D. & Schöning, C. 2000. Holocene Ostracoda (Crustacea) from Bermuda. Senckenbergiana lehela, 80, 567–591.

King Lyon, S. 1990. Biostatigraphic and paleoenvironmental interpretation from late Pleistocene Ostracoda, Charleston, South Carolina. U.S. Geological Survey Professional Paper, 1367, D1–48.

Kingma, J. T. 1948. Contribution to the knowledge of the young Cainozoic Ostracoda from the Malayan Region. Unpublished PhD thesis, University of Hamburg, 142 pp.

Kieser, D. & Schöniger, C. 2000. Holocene Ostracoda (Crustacea) from Bermuda. Senckenbergiana lehela, 80, 567–591.

Krutak, P. R. 1982. Modern ostracodes of the Veracruz-Anton Lizardo reefs, Mexico. Micropaleontology, 28, 258–288.

Latzubes, E. M., Silva, S. A. F., Cozzuol, M. & Absy, M. L. 2007. Late Miocene continental sedimentation in the southwestern Amazonia and its regional significance: Biotic and geological evidence. Journal of South American Earth Sciences, 23, 61–80.

Latzubes, E. M., Cozzuol, M., Silva-Caminha, S. A. F., Rigby, C. A., Absy, M. L. & Jaramillo, C. 2010. The late Miocene palaeogeography of the Amazon Basin and the
Munez-Torres, F. A., Whatley, R. C., & Harten, D. van 2006. Miocene ostracod (Crustacea) biostratigraphy of the upper Amazon Basin and evolution of the genus Cyprideis. *Journal of South American Earth Sciences*, 21, 75–86.

Neale, J. W. 1988. Ostracods and palaeosalinity reconstructions. Pp. 125–157 in P. De Deckker, J. P. Colin & J. P. Peypouquet (eds) *Ostracoda in the Earth Sciences*. Elsevier, Amsterdam.

Nicolaidis, D. D. & Coimbra, J. C. 2008. *Perissoctytheridea carrenoae* sp. nov. (Crustacea, Ostracoda) and associated calcareous microfauna from Yecua Formation (Miocene), Bolivia. *Revista Brasileira de Paleontologia*, 11, 179–186.

Nuttall, C. P. 1990. A review of the Tertiary non-marine molluscan faunas of the Peruvian and other inland basins of north-western South America. *Bulletin of the British Museum (Natural History). Geology Series*, 45, 165–371.

Omatsola, M. E. 1970. Podocopid Ostracoda from the Lagos Lagoon, Nigeria. *Micropaleontology*, 16, 407–445.

Prange, M. & Schulz, M. 2004. A coastal upwelling seasaw in the Atlantic Ocean as a result of the closure of the Central American Seaway. *Geophysical Research Letters*, 31, L17207, 1–4.

Puri, H. S. 1954. Contribution to the study of the Miocene of the Florida Panhandle, Part 3: Ostracoda. *Geological Bulletin, Florida Geological Survey*, 36, 215–345.

Puri, H. S. 1960. Recent Ostracoda from the west coast of Florida. *Transactions of the Gulf Coast Association of Geologists Societies*, 10, 107–149.

Purser, I. 1979. Cenozoic Ostracodes of the Upper Amazon Basin, Brazil. *Pisuiquas*, 12, 209–281.

Ramos, M. I. F. 2006. Ostracods from the Neogene Solimões Formation (Amazonas, Brazil). *Journal of South American Earth Sciences*, 21, 87–95.

Rásanen, M. E., Linna, A. M., Santos, J. C. R. & Negri, F. R. 1995. late Miocene tidal deposits in the Amazonian Foreland Basin. *Science*, 269, 386–390.

Rebata, L. A., Gingras, M. K., Rásanen, M. E. & Barberi, M. 2006. Tidal-channel deposits on a delta plain from the Upper Miocene Nauta Formation, Marañón Foreland Sub-basin, Peru. *Sedimentology*, 53, 971–1013.

Riff, D., Romano, P. S. R., Oliveira G. R. & Aguilera, O. A. 2010. Neogene crocodile and turtle fauna in northern South America. Pp. 259–280 in C. Hoorn & F. P. Wesselingh (eds) *Amazonia, Landscape and Species Evolution: A Look into the Past*. Wiley-Blackwell, Oxford.

Rossi, V., Benassi, G., Belletti, F. & Menezzi, P. 2011. Colonization, population dynamics, predatory behaviour and cannibalism in *Heterocycris incongruens* (Crustacea: Ostracoda). *Journal of Limnology*, 70, 102–108.

Ruskin, B. G., Dávila, F. M., Hoke, G. D., Jordan, T. E., Astini, R. A. & Alonso, R. 2011. Stable isotope composition of middle Miocene carbonate of the Frontal Cordillera and Sierra Pampeanas: Did the Paranaese seaway flood western and central Argentina? *Palaeogeography, Palaeoclimatology, Palaeoecology*, 308, 293–303.

Sandberg, P. A. 1994. The ostracod genus *Cyprideis* in the Americas. *Acta Universitatis Stockholmiensis*, 12, 1–178.

Sandberg, P. A. 1969. Appendages and family placement of the ostracod genus *Pellucistoma*. *Journal of Paleontology*, 43, 1174–1178.

Sanguinetti, Y. T. 1979. Miocene ostracodes of the Pelotas Basin, state of Rio Grande do Sul, Brazil. *Pisuiquas*, 12, 119–187.

Sarr, R., Sow, E. H. & Sarr, B. 2008. Holocene marine intrusions in Retba and Mbayane lakes (Senegal) evidenced by
New Miocene ostracod and Amazonian marine incursions

Virginia. U.S. Geological Survey Professional Paper, 683, D1–28.

Valentine, P. C. 1976. Zoogeography of Holocene Ostracoda off Western North America and Paleoclimatic Implications. U.S. Geological Survey Professional Paper, 916, 1–47.

Vélez-Juarbe, J., Noriega, J. I. & Ferrero, B. S. 2012. Fossil Dugongidae (Mammalia, Sirenia) from the Paraná Formation (late Miocene) of Entre Ríos province, Argentina. Ameghiniana, 49, 585–593.

Vermeij, G. J. & Wesselingh, F. P. 2002. Neogastropod Molluscs from the Miocene of Western Amazonia, with Comments on Marine to Freshwater Transitions in Molluscs. Journal of Paleontology, 76, 265–270.

Vonhof, H. B., Wesselingh, F. P., Kaandorp, R. J. G., Davies, G. R., Hinte, J. E. van, Guerrero, J., Rasaen, M., Romero-Pittman, L. & Ranzi, A. 2003. Paleogeography of Miocene Western Amazonia: Isotopic composition of molluscan shells constrains the influence of marine incursions. Geologische Society of America Bulletin, 115, 983–993.

Wagner, C. W. 1957. Sur les Ostracodes du Quaternaire récent des Pays-Bas et leur utilisation dans l’étude géologique des dépôts holocènes. Unpublished PhD thesis, Université de Paris, 259 pp.

Wanderley-Filho, J. R., Eiras, J. F., Cunha, P. R. C. & Ven, P. H. van der 2010. The Paleozoic Solimões and Amazonas basins and the Acre foreland basin of Brazil. Pp. 29–37 in C. Hoorn & F. P. Wesselingh (eds) Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford.

Wesselingh, F. P. 2006. Molluscs from the Miocene Pebas Formation of Peruvian and Colombian Amazonia. Scripta Geologica, 133, 19–290.

Wesselingh, F. P. 2007. Long-Lived Lake Molluscs as Island Faunas: A Bivalve Perspective. Pp. 275–314 in W. Renema (ed.) Biogeography, Time, and Place: Distributions, Barriers, and Islands. Springer, Dordrecht.

Wesselingh, F. P. & Macsotay, O. 2006. Pachydon hettneri (Anderson, 1928) as indicator for Caribbean–Amazonian lowland connections during the Early–Middle Miocene. Journal of South American Earth Sciences, 21, 45–53.

Wesselingh, F. P. & Ramos, M. I. F. 2010. Amazonian aquatic invertebrate faunas (Mollusca, Ostracoda) and their development over the past 30 million years. Pp. 302–316 in C. Hoorn & F. P. Wesselingh (eds) Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford.

Wesselingh, F. P. & Salo, J. A. 2006. A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133, 439–458.

Wesselingh, F. P., Räsänen, M. E., Irion, G., Vonhof, H. B., Kaandorp, R., Renema, W., Romero Pittman, L. & Gingras, M. 2002. Lake Pebas: a palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainozoic Research, 1, 35–81.

Wesselingh, F. P., Kaandorp, R. J. G., Vonhof, H. B., Räsänen, M. E., Renema, W. & Gingras, M. 2006. The nature of aquatic landscapes in the Miocene of western Amazonia: an integrated palaeontological and geochemical approach. Scripta Geologica, 133, 363–393.

Westaway, R. 2006. Late Cenozoic sedimentary sequences in Acre state, southwestern Amazonia: Fluvial or tidal? Deductions from the ICGP 449 fieldtrip. Journal of South American Earth Sciences, 21, 120–134.
Whitaker, J. E. & Roberts, R. 1995. Marine Ostracoda from Pitcairn, Oeno and Henderson Islands. *Biological Journal of the Linnean Society, 56*, 359–364.

Whitaker, R. C., Moguilevsky, A., Toy, N., Chadwick, J. & Ramos, M. I. F. 1997a. Ostracoda from the south west Atlantic. Part II. The littoral fauna from between Tierra del Fuego and the Río de la Plata. *Revista Española de Micropaleontología, 29*, 5–83.

Whitaker, R. C., Staunton, M. & Kaesler, R. L. 1997b. The depth distribution of recent marine Ostracoda from the southern Strait of Magellan. *Journal of Micropalaeontology, 16*, 121–130.

Whitaker, R. C., Muñoz-Torres, F. & Harten, D. van 1998a. The Ostracoda of an isolated Neogene saline lake in the western Amazon Basin, Peru. *Bulletin du Centres de Recherches Elf Exploration-Production, Memoires, 20*, 221–245.

Whitaker, R. C., Ramos, M. I. F., Moguilevsky, A. & Chadwick, J. 1998b. The provincial distribution of Recent littoral sets and shelf Ostracoda in the SW Atlantic. *Bulletin du Centres de Recherches Elf Exploration-Production, Memoires, 20*, 317–327.

Whitaker, R. C., Muñoz-Torres, F. & Harten, D. van 2000. *Skopaeocythere*: a minute new limnocytherid (Crustacea, Ostracoda) from the Neogene of the Amazon Basin. *Amechiniana, 37*, 163–167.

Whitaker, R., Jones, R. & Roberts, R. 2004. The marine Ostracoda of Pitcairn, Oeno and Henderson Islands, southern Pacific. *Revista Española de Micropaleontología, 36*, 493–528.

Whittaker, J. E. 1973. On *Elofsonia baltica* (Hirschmann). *Stereo-Atlas of Ostracod Shells*, I, 193–200.

Wilkinson, M. J., Marshall, L. G., Lundberg, J. G. & Kreslavsky, M. H. 2010. Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. Pp. 162–184 in C. Hoorn & F. P. Wesselingh (eds) *Amazonia, Landscape and Species Evolution: A Look into the Past*. Wiley-Blackwell, Oxford.

Witte, L. 1993. Taxonomy and Biogeography of West African Beach Ostracodes. *Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, 1, Reeks*, 39, 1–84.

Witte, L. & Harten, D. van 1991. Polymorphism, Biogeography and Systematics of *Kotoracythere inconspicua* (Brady, 1880) (Ostracoda: Pectocytheridae). *Journal of Biogeography, 18*, 427–436.

Wood, A. M., Ramos, M. I. F. & Whatley, R. C. 1999. The palaeozoogeography of Oligocene to Recent marine Ostracoda from the Neotropics (mid- and South America) and Antarctica. *Marine Micropaleontology, 37*, 345–364.

Yamaguchi, T., Norris, R. D. & Bornemann, A. 2012. Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. *Palaeogeography, Palaeoclimatology, Palaeoecology, 346–347*, 130–144.

Yasuhara, M., Hunt, G., Okahashi, H. & Brandão, S. N. 2013. The ‘*Oxycythereis*’ Problem: Taxonomy and palaeobiogeography of deep-sea ostracod genera *Pennyella* and *Rugocythereis*. *Palaeontology, 56*, 1045–1080.

Yin, Y., Li, W., Yang, X., Wang, S., Li, S. & Xia, W. 2001. Morphological responses of *Limnocythere inopinata* (Ostracoda) to hydrochemical environment factors. *Science in China, D 44*, 316–322.

Zabert, L. L. 1978. Micropaleontologia de la formacion Parana (Mioceno superior) en el subsuelo de la provincial de Santa Fe, Republica Argentina. *Facena, 2*, 101–165.