Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency

Lorna McAusland1*, Silène Viala-Chabrand1*, Philip Davey1, Neil R. Baker1, Oliver Brendel2,3 and Tracy Lawson1

1School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK; 2INRA, UMR1137 ‘Ecologie et Ecophysiologie Forestières’, F-54280 Champenoux, France; 3UMR1137 ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, Université de Lorraine, F-54500 Vandœuvre-Les-Nancy, France

Summary

- Both photosynthesis (A) and stomatal conductance (gs) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in non-co-ordination between A and gs in dynamic light environments.
- Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated.
- The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and W. The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics.
- Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.

Introduction

Stomata control the balance of gases between the internal leaf environment and the external atmosphere; regulating CO2 uptake for photosynthesis and water loss through transpiration (E). Low stomatal conductance to water vapour (gs) can restrict CO2 uptake by limiting CO2 influx and thus net CO2 assimilation rate (A), whereas high gs facilitates high rates of A, but greater water loss is an inevitable consequence.

This balance between CO2 limitation and water loss is characterized by intrinsic water use efficiency (WUE), which is the ratio between A and gs. On an instantaneous timescale, maintaining a suitable and appropriate balance is impeded by the temporal stomatal responses, which are a magnitude slower than those of A. Therefore, in response to changing light, the kinetics of gs can greatly impact CO2 uptake and water loss, which has significant implications water use efficiency (WUE). WUE can be defined as the ratio of net CO2 uptake relative to water loss through transpiration (E) or as the ratio of biomass or yield accumulation to water use over the growing season. Consequently, WUE is often a target for improving crop performance; however, it should be noted that greater WUE is often at the expense of A (Blum, 2009; Lawson et al., 2010; Lawson & Blatt, 2014). The rate of water transpired through the stomata is an order of magnitude greater than the rate of CO2 uptake for A due to the greater water concentration gradient between the intercellular spaces within the leaf and the external atmosphere (as well as biochemical limitation on A). In order to maintain an optimal balance between A and E, stomatal guard cells are continually adjusting to environmental and intracellular cues (Lawson & Blatt, 2014).

Many previous studies have reported a strong correlation between A and gs (Wong et al., 1979; Farquhar & Sharkey, 1982). This correlation is generally observed because steady-state values are often reported, yet under dynamic conditions gs responses are not always coupled with A (Knapp & Smith, 1987, 1990). In natural environments, photosynthetic photon flux density (PPFD) fluctuates on timescales of seconds to days and seasons (Assmann & Wang, 2001) driven by changes in cloud cover, sun angle and shading from adjacent leaves in the canopy (Pearcy, 1990; Chazdon & Pearcy, 1991; Way & Pearcy, 1992). Plants therefore experience short and long term fluctuations in PPFD creating ‘sun’ and ‘shade’ flecks to which A and gs respond. Slower stomatal opening when A responds rapidly to a PPFD increase can limit CO2 assimilation (Tinoco-Ojanguren & Pearcy, 1993), whilst delayed stomatal closing responses following a decrease in PPFD and photosynthesis result in unnecessary water loss when carbon gain is limited (Lawson et al., 2010; Lawson & Blatt, 2014). Due to the difference in the rate of carbon gain to water loss, any disparity in the response of A and

*These authors contributed equally to this work.

g, also increases the probability of water stress (Condon et al., 2002). For example, slow closing of stomata when A has decreased will result in higher than necessary transpiration rates that will deplete the soil water more rapidly and thus potentially create a soil water deficit.

It has been estimated that stomata can limit A by up to 20%, which can impact substantially on crop yields (Farquhar & Sharkey, 1982; Jones, 1987, 1998; Fischer et al., 1998; Lawson & Blatt, 2014). In order to maximize A and optimize W, species or cultivars with rapid stomatal responses would intuitively be desirable, as there would be greater synchrony with mesophyll demands for CO₂. Amplitude and rapidity of stomatal movements are therefore potential targets to improve A and W. The majority of studies reporting stomatal influences on photosynthesis describe steady-state values and explore the potential of increasing or decreasing g, to enhance A or diminish water loss, however this often results in an overall reduction of A and thus productivity (Blum, 2009). We propose here to follow another approach for plant improvement, which exploits stomatal kinetics to facilitate synchronous g, responses with mesophyll demands for CO₂, thus simultaneously reducing CO₂ limitations as well as avoidable water losses, incidentally enhancing W.

Only a handful of investigations have focused on dynamic stomatal responses and even fewer of these have explored the effects on A and W. Most of these studies have examined forest understorey species and the impact of sun-fleck regimes on A and E (Pearcy, 1990; Tinoco-Ojanguren & Pearcy, 1993; Leakey et al., 2005; Way & Pearcy, 2012). In addition, assessing the rapidity of stomatal movements is complicated by variation in both the sensitivity and responsiveness of stomata between different species (Ooba & Takahashi, 2003; Lawson et al., 2010; Vico et al., 2011) and between individuals of the same species grown in different habitats (Drake et al., 2013). After a change in PPFD, the temporal response of g, is usually composed of three steps: an initial lag where the value of g, remains stable for several minutes, followed by an exponential phase during which rapid increases in g, are observed before reaching final steady-state plateau (Naumburg et al., 2001; Vialet-Chabrand et al., 2013). Recently, a dynamic sigmoidal model has been developed by Vialet-Chabrand et al. (2013) to analyse the temporal response of g, by estimating the initial lag time (λ), a time constant (k) and a steady-state target (Gmax; see Table 1 for a summary of parameters and units). The time constant was used to describe the rapidity of the exponential phase independently of the amplitude of the g, response, facilitating species or cultivar comparisons as well as proposing a more accurate interpretation.

In order to determine the impact of stomatal responses to increasing and decreasing PPFD on limitation of A, water loss and intrinsic WUE, we have assessed and quantified the rapidity of stomatal movements in a range of plant types, including several major crops. We have selected species with kidney- and dumbbell-shaped guard cells to estimate the influence of anatomical features on rapidity of responses.

Table 1 A summary of parameters referred to within the text with accompanying units

Parameter	Definition	Units
A	Net CO₂ assimilation rate	μmol m⁻² s⁻¹
A₉₅	95% maximum A under	μmol m⁻² s⁻¹
Cₐ	Atmospheric CO₂ concentration	μmol mol⁻¹
Cᵢ	Intracellular CO₂ concentration	μmol mol⁻¹
E	Water loss via transpiration	mol m⁻² s⁻¹
GCW	Guard cell width	μm
gₛ	Stomatal conductance to water vapour	mmol m⁻² s⁻¹
Gₛ_max	Predicted steady-state gₛ under 1000 μmol m⁻² s⁻¹ PPFD	mmol m⁻² s⁻¹
Gₛ_min	Predicted steady-state gₛ under 100 μmol m⁻² s⁻¹ PPFD	mmol m⁻² s⁻¹
k	Time constant describing time taken to achieve steady-state gₛ	min
kᵢ	Time constant for gₛ to increase to Gₛ_max under 1000 μmol m⁻² s⁻¹ PPFD	min
kₜ	Time constant for gₛ to decrease to steady-state under 100 μmol m⁻² s⁻¹ PPFD	min
PL	Stomatal pore length	μm
PPFD	Photosynthetically active photon flux density	μmol m⁻² s⁻¹
SD	Stomatal density	mm²⁻¹
Sᵢ_max	Maximum rate of gₛ opening to an increase in PPFD from 100 to 1000 μmol m⁻² s⁻¹	mmol m⁻² s⁻¹
t₀	Minimum gₛ of the sigmoidal response of gₛ to a step increase in PPFD	mmol m⁻² s⁻¹
VPD	Vapour pressure difference from leaf to air	kPa
Wᵢ	Intrinsic water-use efficiency	μmol mol⁻¹
Wᵢ₉₅	Wᵢ at A₉₅	μmol mol⁻¹
Wᵢ_max	Maximum Wᵢ under 1000 μmol m⁻² s⁻¹ PPFD	μmol mol⁻¹
λ	Initial lag in the response time of gₛ to a step increase in PPFD	min

Materials and Methods

Plant material and growth conditions

Thirteen important crop species (including three C₄ species) were selected along with the model plant Arabidopsis thaliana, and the relict gymnosperm species Ginkgo biloba. Eight had kidney- or elliptical-shaped guard cells whilst four had dumbbell-shaped guard-cells that are typically found in grasses. Arabidopsis thaliana (Columbia, Col-0) seed was germinated in 100-cm³ pots containing peat-based compost (Levingtons F25, Everiss, Ipswich, UK) and grown in a controlled environment (Reftech BV, Sassenheim, the Netherlands). Photosynthetic photon flux density (PPFD) was maintained at 155 ± 10 μmol m⁻¹ s⁻¹ for an 8 h photoperiod, whilst temperature and vapour pressure deficit (VPD) were 23°C and 1.1 kPa, respectively, day and night.

Oat (Avena sativa), sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), pea (Pisum sativum), tomato (Solanum
lycopersicum), Sorgum (Sorghum bicolor), Barly (Hordeum vulgare), wheat (Triticum aestivum), maize (Zea mays), French bean (Phaseolus vulgaris) and broad bean (Vicia faba) were germinated in 650-cm² pots containing peat based compost (Levington F2S). Following germination, plants were grown in a temperature-controlled glasshouse for 4–8 wk before measuring. Established Miscanthus (Miscanthus nepalensis) were supplied in 1-l pots from a commercial nursery (Beth Chatto, Colchester, UK). Solar radiation provided a PPFD of 100 µmol m⁻² s⁻¹, supplemented by sodium vapour lamps (600W; Hortilux Schröder, Monster, the Netherlands) to 300 µmol m⁻² s⁻¹ PPFD when external PPFD dropped below 1200 µmol m⁻² s⁻¹ over a 10 h period. Air temperature was maintained at 25°C ± 3°C during the day and 18°C ± 3°C at night. Plants were watered daily from below, with any excess water not absorbed by the pot within 2 h removed.

Rice (Oryza sativa) seeds were germinated and transferred to 650-cm³ pots as described above and grown in a controlled environment with a photoperiod of 12 h: 12 h, light: dark at a PPFD of 500 ± 20 µmol m⁻² s⁻¹, a day temperature of 25°C and VPD of 0.8 ± 0.2 kPa. Plants were measured after 12 wk.

Leaf gas-exchange measurements

Photosynthetic carbon assimilation (A) and stomatal conductance to water (gₛ) were measured on the youngest fully expanded leaf using infrared gas analysis (Li-Cor 6400, Lincoln, NB, USA, and CIRAS-1, PP Systems, Amesbury, MA, USA). Light was provided by an integrated LED light source (Li-Cor, PP Systems). Leaves were first equilibrated at a PPFD of 100 µmol m⁻² s⁻¹ until both A and gₛ reached ‘steady state’, this being defined as a <2% change in rate during a 10-min period (c. 30–60 min). Once steady state was satisfied, PPFD was increased to 1000 µmol m⁻² s⁻¹ for 1 h before returning to 100 µmol m⁻² s⁻¹ for 30 min. The leaf cuvette was maintained at 400 µmol mol⁻¹ CO₂ concentration (Cᵣ), a leaf temperature of 20°C (±2°C) and a VPD of 1 ± 0.05 kPa. A and gₛ were recorded every 1 min. Intrinsic water use efficiency (WUE) was calculated as Wₑ = A/lgₛ. All measurements were completed before 14:00 h to avoid any unwanted diurnal or circadian effects on photosynthesis.

Leaf anatomical measurements

Stomatal impressions of the ad- and abaxial leaf surfaces were taken of the same area, measured using gas exchange. A negative impression was made using a dental polymer (Xantoprene, Heraeus Kulzer Ltd, Hanau, Germany) following the methods of Weyers & Johansen (1985). Once the impression material had dried and was removed from the leaf, a positive impression was made from this by placing in nail varnish on a microscope slide. Stomatal density, guard cell length (L) and guard cell width were determined using IMAGEJ software (National Institute of Health, Bethesda, MD, USA) from twenty fields of view (size 1250 µm²) captured from each impression using a 5 MP eye-piece camera (MicroCAM 5 MP, Bresser Optics, Rhede, Germany).

Modelling gₛ, A and Wₑ responses to PPFD

In order to describe the temporal response of gₛ to a single step-change in PPFD, an analytical model derived from the model by (Violet-Chabrand et al., 2013) was used (Fig. 1).

The model described the temporal response of gₛ using a time constant (kₛ, min), an initial time lag (λ, min) and a steady-state gₛ (Gₛmax, mmol m⁻² s⁻¹) reached at given PPFD:

\[gₛ = (Gₛmax - rₒ) e^{-\frac{t}{kₛ}} + rₒ \]

(Eqn 1)

(t, time, where time 0 is the point at which PPFD was increased from 100 to 1000 µmol m⁻² s⁻¹; rₒ (mmol m⁻² s⁻¹), initial value of stomatal conductance before the change in PPFD). In this equation, the time constant kₛ is a measure of the rapidity of response of gₛ independent of the amplitude of variation in gₛ (Eqn 2). To distinguish between the time taken for the stomata to open (increase) and to close (decrease), the abbreviations kₒ and kₚ are used.

A second parameter combining rapidity and amplitude of the response, the maximum slope (Sₒmax), was used to describe the maximal slope of the gₛ response to the step-change in PPFD:

\[Sₒmax = kₒ(Gₒ - rₒ) \]

(Eqn 2)

Parameter values were estimated using a Metropolis Hasting algorithm and a Bayesian model. The priors (a priori probability of the parameter values) used were uniform covering a large range of possible values and the initial values were chosen randomly. The initial values were chosen from observed values (± 10%) of both rₒ and Gₒ. For kₒ, the range of values were selected from between 10 and 60 min, whilst λ values were between 0.1 and

![Fig. 1 Theoretical temporal response of stomatal conductance (gₛ; black) and net CO₂ assimilation (A; red) to a step change in PPFD from 100 (shaded area) to 1000 (unshaded area) µmol m⁻² s⁻¹. Where Sₒmax describes the maximum temporal response of gₛ (dashed line), λ describes the time-lag before gₛ starts to increase (blue arrow) and Gₒmax describes the steady-state target of gₛ under 1000 µmol m⁻² s⁻¹ PPFD. The dotted lines represented the time and the value were 95% A is reached.](https://www.newphytologist.com/doi/abs/10.1111/nph.12965)
5 min. After 100 000 iterations using a thinning factor of 15, the chains were checked for stability and convergence (see Table 1).

Temporal responses in g_s limits A

During a step increase in PPFD, photosynthesis was considered limited by stomatal conductance until 95% A (A_{95}) was reached. Using this assumption, the percentage of limitation of A by g_s was estimated by:

$$\text{Limitation} \ (\%) = \frac{\int_0^t (A_{\text{max}} - A) \ dt}{\int_0^t A_{\text{tot}} \ dt} \quad \text{Eqn 3}$$

($\int_0^t (A_{\text{max}} - A)$, integral of the difference between the maximum potential A (A_{max}) and the observed limited A from the beginning of the observed curve to the time t where A reached 95% of the steady state; $\int_0^t A_{\text{tot}}$, maximum integral of A for 1 h period). Calculating the ratio using $\int_0^t A_{\text{tot}}$ normalized g_s limitation over the 1-h measurement period (see Table 1 for a summary of parameters).

The impact of different g_s and A responses on water loss

The nonsynchronous g_s and A response influences the temporal W_i response and the amount of water lost following a step increase in PPFD. To investigate the impact of g_s responses on water use efficiency, we predicted g_s from a simple model ($g = A/W_i$) using a constant W_i during the transient response. The constant value of W_i was chosen close to the maximum A (95%), assuming that this would be close to an optimal W_i with no limitation of A. On the one hand, when observed values of g_s were greater than predicted by the constant W_i model, more water was ‘lost’ than required to maintain optimal A; on the other, when observed values of g_s were lower than predicted, water was ‘saved’, illustrating a close coupling of g_s with A.

As an investigating tool, this approach allowed us to assess the percentage of water ‘lost’ and ‘saved’ by comparing the coupling between A and g_s in different species.

Statistical analysis

Statistics were conducted using SPSS (v.16; SPSS Inc., Chicago, IL, USA) and R (http://www.r-project.org/). A Shapiro–Wilk test was used to test for normality and a Levene’s test of homogeneity was used to determine if samples had equal variance. Single factor differences were analysed using a one-way ANOVA with a Tukey–Kramer honest significant difference test where more than one group existed or a Student’s t-test where only two groups were compared.

Results

Most species measured achieved steady-state g_s after 60 min of high PPFD, except *Helianthus* and *Vicia*, which had not attained their maximum g_s values within this timeframe (Fig. 2), which might have led to an underestimation of their k_i values, which were already high (Fig. 3). Additionally, Ginkgo displayed atypical g_s and A behaviour (Fig. 2). The 30-min exposure to low light may not have been sufficient for complete, steady-state stomatal closure for some species; however, this does not greatly impact our estimations of additional water loss compared to instantaneous stomatal responses, because the major part of the water loss can be attributed to the initial rapid opening response of the stomata (Fig. 2).

Quantifying A and g_s responses to step changes in PPFD

Steady-state g_s at the initial PPFD of 100 μmol m$^{-2}$ s$^{-1}$ (G_{min}) varied significantly among the species ($F_{(14,49)} = 5.007$, $P < 0.0001$), with the lowest values recorded for *G. biloba*.
(13.2 mmol m\(^{-2}\) s\(^{-1}\)) and highest values for \(T.\ aestivum\) (255.9 mmol m\(^{-2}\) s\(^{-1}\)) (Fig. 3a; Supporting Information Fig. S1), whereas \(A\) was below 9 mmol m\(^{-2}\) s\(^{-1}\) for all species (Figs 3b, S2). An increase in PPFD to 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) led to an immediate and rapid increase in \(A\) compared to \(g_s\) for all species. After this initial period, the increase in \(A\) slowed to a magnitude similar to the concurrent increase in \(g_s\). For the majority of species, \(A\) reached steady state while \(g_s\) continued to increase. These different periods of coupled and uncoupled responses of \(A\) and \(g_s\) were species-dependent. Although the majority of species displayed a mainly uncoordinated response of \(A\) and \(g_s\), temporal response (Fig. 2), final steady-state values of \(g_s\) (Fig. 3a; Supporting Information Fig. S3). In contrast to the majority of the species examined, \(S.\ bicolor\), \(O.\ sativa\) and \(G.\ biloba\) all exhibited low \(g_s\) and an unusually strong coupling between \(A\) and \(g_s\). The key difference between these three species was that \(S.\ bicolor\) and \(O.\ sativa\) exhibited a faster response of \(A\) and \(g_s\), whereas \(G.\ biloba\) showed rather slower responses.

The steady-state values of \(g_s\) (at 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD) estimated by the model (\(G_{\text{max}}\)) were significantly different among species (\(P<0.0001, F_{(14,49)}=14.469;\) Fig. 3a), with observed values 10-fold higher in \(T.\ aestivum\) (482.9 ± 18.7 mmol m\(^{-2}\) s\(^{-1}\)) compared with \(G.\ biloba\) (45.2 ± 1.9 mmol m\(^{-2}\) s\(^{-1}\)). Values of \(G_{\text{max}}\) were positively related to \(S_{\text{max}}\) \((r=0.61, P<0.01)\) in elliptical- and dumbbell-shaped guard cells \((r=0.41, P<0.05)\), whereas \(S_{\text{max}}\) was related to the total time taken to open to \(G_{\text{max}}\) \((k_d)\) in elliptical- \((r=-0.54; P<0.01)\) and dumbbell-shaped \((r=-0.68; P<0.01)\) guard cells (Table 2). Six out of the seven species with dumbbell-shaped guard cells showed the highest values of \(S_{\text{max}}\) (Table 3). Applying the Viala-Chabrand model to the temporal response of \(g_s\), an increase from 100 to 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD, showed that the initial lag time in the \(g_s\) response \((\lambda)\) was significantly different among species \((P<0.0001, F_{(14,49)}=5.819)\) and ranged from 12 s for \(A.\ sativa\) to 6 min for \(G.\ biloba\) (Table 3).

After PPFD was returned to 100 \(\mu\)mol m\(^{-2}\) s\(^{-1}\), \(A\) decreased immediately whereas \(g_s\) showed a slow, exponential and species-dependent decrease. Most species showed a temporal response of \(g_s\), decreasing light which was an order of magnitude lower than that of \(A\), with some exceptions. \(S.\ bicolor\) and \(Z.\ mays\) demonstrated significantly lower values of \(k_d\) \((<1\text{ min};\) Fig. 3c) and thus faster responses compared to other species, approaching the speed of assimilation rate response to light (Fig. 2). When PPFD was returned to 100 \(\mu\)mol m\(^{-2}\) s\(^{-1}\), no significant differences in \(\lambda\) were observed (data not shown), although steady-state \(g_s\) and \(S_{\text{max}}\) varied significantly amongst species.

Significant differences in the opening \((k_1)\) and closing \((k_2)\) time constants were observed amongst species (Fig. 3c); \(k_1\) ranged from 0.9 min in \(O.\ sativa\) to 23 min in \(V.\ faba\), and \(k_2\) ranged from 0.9 min in \(S.\ bicolor\) to 14 min in \(P.\ vulgaris\). \(k_1\) and \(k_2\) were positively correlated in species with elliptical- \((R^2=0.29, P<0.01)\) and dumbbell-shaped \((R^2=0.52; P<0.001)\) guard cells. Although the majority of species showed tendencies for greater rapidity in stomatal closing than opening (Fig. 3c), this was significant in only six species (Fig. 3c). On average, the species with dumbbell-shaped guard cells were 10 min faster in opening than elliptical species, reaching \(G_{\text{max}}\) in significantly shorter periods of time \((t_{44}=8.2, P>0.0001)\). \(C_4\) species increased \(g_s\) more rapidly than \(C_3\) species \((P<0.0001)\). Estimations from the closing response showed that dumbbell-shaped guard cells were also faster than elliptical-shaped guard cells \((P<0.04)\) and \(C_4\) species closed faster than \(C_3\) species \((P<0.0001)\) (Table 3).

\(g_s\) limitation of \(A\)

In order to assess the extent that \(A\) was limited by \(g_s\) during the increase of PPFD, we determined the time taken to reach 95% of

Fig. 3 Comparison between species of (a) steady-state \(g_s\) under 100 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD \((G_{\text{max}})\), \(g_s\) at 95% maximum net assimilation under 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD \((A_{\text{max}})\) and steady state \((G_{\text{max}})\) under 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD for 15 species; (b) steady-state \(A\) under 100 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD \((A_{\text{init}})\) and \(A_{\text{max}}\); (c) time constants \(k_1\) and \(k_2\) for stomatal opening and closure, respectively; and (d) the time taken to reach \(A_{\text{max}}\). Data are the mean ± SE \((n=3–5)\). Asterisks represent a significant asymmetry of \(k_1/k_2\) \((P<0.05)\). Species in bold have dumbbell-shaped guard cells, underlined species have a \(C_4\) metabolism and species in plain font have elliptical-shaped guard cells and \(C_3\) metabolism (see Table 3 for species name abbreviations).
maximum A (A_{95}) at 1000 μmol m$^{-2}$ s$^{-1}$ PPFD (Fig. 3d). Further increases in g_s after A_{95} were substantially greater than the remaining 5% increase in A, suggesting that g_s was no longer limiting A (Fig. 2). Stomatal opening did not increase significantly after A_{95} had been reached for the species with dumbbell-shaped guard cells (Z. mays, S. bicolor, M. nepalensis, O. sativa) and for G. biloba (Fig. 2). The majority of species achieved A_{95} within 30 min with values ranging between 5.7 and 30.7 μmol m$^{-2}$ s$^{-1}$ (Fig. 3b,d). Z. mays and A. sativa both attained the highest A and achieved A_{95} in the least time (12–11 min; Fig. 3d), whereas G. biloba was the slowest, taking on average 48 min to achieve the lowest A_{95}. Species with elliptical-shaped guard cells achieve significantly lower A_{95} ($P<0.0001$) compared with species with dumbbell-shaped guard cells (Fig. 3b). The percentage of stomatal limitation of A during the opening response to A_{95} (Fig. 4) demonstrated significant variation among species ($P<0.0001$, $F(14,49) = 27.368$), with values ranging from 6.5 (P. sativum) to 24.3% (G. biloba). With the exception of G. biloba, which was statistically different from all other species, the limitation was 10–15%. Values of A_{95} also provided a set point from which to

k_i and k_{g_i}, time constants for stomatal opening and closing, respectively; λ, initial lag time in response to an increase in irradiance; S_{limax}, maximum slope of the temporal response of g_s; G_{max}, steady-state target reach under 1000 μmol m$^{-2}$ s$^{-1}$ PPFD. The data are means ± SE ($n=3–8$). Lowercase letters refer to significant differences ($P<0.05$) between species (Tukey–Kramer honest significant difference). Species in bold have dumbbell-shaped guard cells, underlined species have a C_3 metabolism and species in plain font have elliptical-shaped guard cells and C_4 metabolism.

Table 3 Parameters of the dynamic model of g_s as estimated from a step increase in irradiance from 100 to 1000 μmol m$^{-2}$ s$^{-1}$ for 15 species

Species	Shape of guard cell/metabolism	Graph initials	K_i (min)	K_d (min)	λ (min)	S_{limax} (mmol m$^{-2}$ s$^{-2}$)	G (mmol m$^{-2}$ s$^{-1}$)
Oryza sativa	Dumbbell/C$_3$	OS	0.9 ± 0.21a	4.1 ± 2.16abc	0.11 ± 0.02a	1.91 ± 0.60b	424.50 ± 89.99abcd
Sorghum bicolor	Dumbbell/C$_4$	SB	1.2 ± 0.16b	0.9 ± 0.09b	1.04 ± 0.17a	0.46 ± 0.11bc	118.32 ± 15.91cde
Miscanthus nepalensis	Dumbbell/C$_4$	MN	1.4 ± 0.11a	1.2 ± 0.10a	1.36 ± 0.16b	1.56 ± 0.11bc	175.56 ± 18.53f
Hordeum vulgare	Dumbbell/C$_6$	HV	2.2 ± 0.30	3.2 ± 0.70ab	0.62 ± 0.37	1.01 ± 0.24ab	529.07 ± 55.85a
Zea mays	Dumbbell/C$_4$	ZM	3.0 ± 0.10b	1.1 ± 0.08b	1.37 ± 0.23b	0.37 ± 0.02bc	244.31 ± 33.18abcde
Avena sativa	Dumbbell/C$_3$	AS	4.4 ± 0.23b	14.1 ± 2.37	0.20 ± 0.02a	0.34 ± 0.03	478.95 ± 30.06ab
Nicotiana tabacum	Elliptical/C$_3$	NT	6.9 ± 1.28b	6.5 ± 0.72abc	5.91 ± 1.39b	0.13 ± 0.01c	316.21 ± 10.92bcde
Solomon lycopersicum	Elliptical/C$_3$	SL	9.3 ± 1.64bcd	4.4 ± 0.90bc	3.27 ± 0.22b	0.10 ± 0.01c	286.12 ± 22.78bcd
Arabidopsis thaliana	Elliptical/C$_2$	AT	9.9 ± 0.69c	3.4 ± 0.61a	1.0 ± 0.56b	0.11 ± 0.01c	307.91 ± 8.69bcd
Triticum aestivum	Dumbell/C$_3$	TA	11.7 ± 1.13c	11.8 ± 2.54ed	1.03 ± 0.69a	0.13 ± 0.02c	482.98 ± 18.66b
Phaseolus vulgaris	Elliptical/C$_3$	PV	12.6 ± 2.08de	11.4 ± 6.10abc	3.75 ± 1.20b	0.10 ± 0.01c	275.42 ± 23.58cde
Pisum sativum	Elliptical/C$_3$	PS	13.2 ± 1.18de	7.9 ± 1.04abc	0.26 ± 0.03a	0.04 ± 0.00	209.78 ± 18.34cde
Helianthus annuus	Elliptical/C$_3$	HA	14.2 ± 0.67de	4.7 ± 0.35abc	0.33 ± 0.03a	0.09 ± 0.00	446.25 ± 25.52abc
Ginkgo biloba	Elliptical/C$_3$	GB	18.3 ± 2.07ef	7.3 ± 0.85abc	6.13 ± 2.53c	0.01 ± 0.00	45.20 ± 9.10f
Vicia faba	Elliptical/C$_3$	VF	23.4 ± 2.68b	7.9 ± 0.75abc	0.29 ± 0.07a	0.08 ± 0.02	430.14 ± 55.49abcd
quantify the g\textsubscript{s} response after A achieved near maximum steady state (Fig. 2, dotted line) with the majority of species with elliptical-shaped stomata showing an ‘overshooting’ in stomatal opening, demonstrated by a significant increase in g\textsubscript{s} (P<0.01) between 10 and 125 mmol m-2 s-1 (Fig. 3a). Species with dumbbell-shaped stomata (with the exception of T. aestivum; A. sativa) and G. biloba showed no or only a small ‘overshoot’ (< 3 mmol m-2 s-1 (Fig. 3a)).

Quantifying W\textsubscript{i} responses to a step change in PPFD

The consequence of the lack of synchrony between the responses of A and g\textsubscript{s} to a step increase in PPFD can be illustrated by the temporal responses of W\textsubscript{i} (Figs 5, S4). Following the step increase in PPFD, A rapidly increased compared to g\textsubscript{s} (Fig. 2) and W\textsubscript{i} reached a maximum value (W\textsubscript{imax}) well before A\textsubscript{95} was achieved. The first 20 min of this response is shown in Fig. S4. The subsequent further increases in g\textsubscript{s} drove a continuous decrease in W\textsubscript{i} until both A and g\textsubscript{s} reached steady state. In most of the C\textsubscript{3} species, W\textsubscript{i} continued to decrease after A had reached a steady state due to the continued increase in g\textsubscript{s}. W\textsubscript{imax} represents the greatest CO\textsubscript{2} uptake for g\textsubscript{s}; however, it should be noted that this value occurs earlier in the transient response before A\textsubscript{95} is reached and that W\textsubscript{imax} is achieved only for an extremely brief period of time. The diversity in W\textsubscript{i} between species was determined by G\textsubscript{smax} rather than A\textsubscript{max} as no correlation between A\textsubscript{max} with W\textsubscript{imax} was observed, whereas G\textsubscript{smax} was negatively correlated with W\textsubscript{imax} (P<0.0001, r\textsubscript{s} = -0.67) and with W\textsubscript{i} before the decrease in PPFD (P<0.0001, r\textsubscript{s} = -0.74). For example, G. biloba, S. bicolour, M. nepalensis and Z. mays achieved and maintained the highest W\textsubscript{i} (P<0.001) with vastly different values of A by maintaining a relatively low g\textsubscript{s} compare to other species. The balance between CO\textsubscript{2} fixation and water loss was different between species, revealed by the four-fold difference in W\textsubscript{imax} observed...
between the 15 species, with the lowest values observed in *H. vulgare* (0.054 ± 0.006 μmol mmol⁻¹ m⁻² s⁻¹). On average, the percentage decrease between *Wimax* and *Wi* at the end of the response under 1000 μmol m⁻² s⁻¹ PPFD was significantly less in species with dumbbell-shaped guard cells (*P* < 0.0001) than in species with elliptical-shaped guard cells.

The temporal response of *Wi* is driven by the temporal variation in *gi* to increasing PPFD that is uncoordinated with *A*, resulting in unnecessary water loss (Fig. 2). To investigate the theoretical variation of *gi* required to optimize *W*, if coordinated with *A*, a model with a constant *Wi* chosen at *A95* (*W95*) was applied and the difference between observed and modelled *gi* assessed (Fig. 6), with modelled values of *gi* greater than observed signifying ‘water saving’ and values less than observed representing a ‘water loss’. Figure 6(a,b) show examples for *T. aestivum* and *V. faba*. During the first part of the response, the amount of potential ‘water saved’ was not significantly different between species (0.98–17.3%) (Fig. 6c). However, after *W95* was achieved, a significant difference in ‘water loss’ between species, in terms of percentage change in *gi* (*P* < 0.0001, *F*14,49 = 3.454) was observed. For example, in *P. vulgaris*, *gi* increased by 57% (± 23%) for only a 5% gain in *A*, which illustrates the strong uncoupling of *A* and *gi* in this species and the negative impact on *Wi* (Figs 3a, S5). By contrast, the observed response of *gi* in *S. bicolor* was close to the modelled optimal *gi* with minimal increases in *gi* once *A95* was reached (Figs 3a, 6c).

The results revealed that *Wimax* and *A95* were not reached at the same point during the temporal response (Fig. 5). To reach *A95* (denoted by the dotted line, Fig. 5), the species typically displayed a decrease in *Wi* from *Wimax*. The percentage increase in *A* from 100 to 1000 μmol m⁻² s⁻¹ PPFD was significantly greater (*P* < 0.01) than the percentage decrease in *Wi*. The highest gains in *A* were observed for *G. biloba* and the species with dumbbell-shaped guard cells (with the exception of *M. nepalensis*) which all achieved > 30% increase in *A* (Fig. S5).

Anatomical features

Stomatal density was significantly different between species with abaxial stomatal densities ranging from 68.5 to 376.3 mm⁻² and adaxial densities between 0 and 281.6 mm⁻² (Fig. S6) A positive correlation between ad- and abaxial density for species both with elliptical- (*R*² = 0.87) and dumbbell-shaped (*R*² = 0.79 excluding *M. nepalensis*) guard cells was observed. When considering both types of guard cells, a strong correlation between abaxial and adaxial values for stomatal density (*R*² = 0.76 excluding *M. nepalensis*), pore length (PL; *R*² = 0.79) and guard cell width (GCW; *R*² = 0.85) was also observed, and therefore mean values were used to correlate with stomatal response traits. A strong correlation between PL and GCW was observed and hence only PL was used for further analyses.

With reference to opening responses of elliptical-shaped guard cells, no significant relationships were found between the anatomical features (PL and SD) and *Sgmax*, *k* or *G*, whereas in dumbbell-shaped guard cells, PL and SD correlated significantly with *Gmax* and *k* was correlated with PL but not with SD. The same correlations were observed with reference to closing responses in both guard cell types; however, a significant relationship between SD and *k* was also observed in dumbbell-shaped guard cells (Table 2).

Discussion

As light changes rapidly and is often considered the most dynamic and most important environmental variable influencing both stomatal behaviour and photosynthetic rate, we examined the kinetics of photosynthesis (*A*) and stomatal conductance (*gi*)
to a step increase followed by a decrease in photosynthetic photon flux density (PPFD), in a number of species; assessing the speeds of the gᵢ response, the amplitude of change, gᵢ limitation of A and the impact of these kinetics on intrinsic water use efficiency (Wᵢ). The temporal dynamics showed clear species-specific differences and noncoordination between A and gᵢ, with gᵢ exhibiting a slower and more varied response than A. Such uncoordinated A and gᵢ responses could have significant implications for cumulative carbon assimilation and transpirational water loss, especially in dynamic light environments. For example, Lawson & Blatt (2014) modelled synchronous gᵢ and A behaviour and calculated a theoretical 20% increase in water use efficiency if gᵢ responded instantaneously to the changes in PPFD and matched mesophyll demands for CO₂.

A combination of rapid responses and high steady-state values of gᵢ reduce CO₂ diffusional limitations of A, but can also drastically reduce Wᵢ due to the nonlinear relationship between A and gᵢ (Wong et al., 1979). We show for example that the high steady-state values and rapid responses observed in Oryza sativa, Avena sativa and Triticum aestivum facilitated high photosynthetic rates but ultimately resulted in low Wᵢ, which may be indicative of traditional breeding and selection practices for high yield at the expense of water loss (Jones, 1987). Although high gᵢ reduces Wᵢ, it is also possible that, under well-watered conditions, such stomatal behaviour would increase overall photosynthetic carbon gain by enabling plants to opportunistically use sun flecks in the canopy that can occur on a timescale of seconds to hours (Chazdon & Pearcy, 1991; Kirschbaum et al., 1988; Pearcy, 1990; Way & Pearcy, 2012). Under the measurement conditions used here, when PPFD was raised A immediately (within 1 min) increased in all species, indicating that gᵢ at the lower light requirement was greater than required. However, a clear stomatal limitation of A was also apparent as all species took > 9 min to reach 95% final A (A₀₉₅) (Fig. 3d).

A common feature of gᵢ dynamics was the noncoordination in A and gᵢ responses and the continued stomatal opening after A₀₉₅ had been reached (or ‘overshooting’ of gᵢ; Fig. 3a), resulting in decreases in Wᵢ. The observed diversity in responses of A and gᵢ in the species measured questions the mechanisms that coordinate these parameters. Intercellular CO₂ concentration (Cᵢ) was originally proposed as the mediator for the close correlation between gᵢ and A (Wong et al., 1979; Farquhar & Wong, 1984; Mansfield et al., 1990; Buckley et al., 2003). It was assumed that stomata adjust to a steady-state aperture to maintain Cᵢ at 2/3 atmospheric [CO₂] (Ehleringer & Pearcy, 1983) and therefore, when A is increasing the resulting decrease in Cᵢ would cause stomata to open and vice versa. When A reaches steady state, further increases in gᵢ would result in a greater Cᵢ that cannot increase A and therefore, following the Cᵢ hypothesis, no further increases in gᵢ would be expected once steady-state A has been achieved. However, our results do not fully support this conclusion (e.g. Vicia faba in Fig. 2) and agree with findings from work on transgenic plants with reductions in photosynthesis, which showed increasing gᵢ with light despite high Cᵢ (Von Caemmerer et al., 2004; Baroli et al., 2008; Lawson et al., 2008). Many studies support Cᵢ-driven stomatal responses (e.g. Roelfsema & Prins, 1995) and we do not argue against CO₂ as a driver; however, our results show that Cᵢ is clearly not of high priority in the hierarchy.

Stomata have been a key target for improving plant water use efficiency (WUE) and/or a plant’s ability to cope with reductions in water availability. However, improvements of WUE in crop plants often come at the expense of photosynthetic rates (Yoo et al., 2009, 2010) and are therefore of limited value, given that current global research efforts focus on increasing crop yield for sustainable food and fuel production (Long et al., 2015). However, as we have illustrated here, Wᵢ-max does not correspond to maximum assimilation rate (Fig. 5) as maximum WUE can often only be achieved when gᵢ restricts A. Based on these observations of dynamic responses we could suggest a steady-state gᵢ target that would provide a compromise between A and Wᵢ and propose that this target should be the lowest gᵢ value that enables A₀₉₅ to be achieved. It should be noted that this is an optimal target and that fluctuations in the environment could result in different integrated values of A, gᵢ and therefore Wᵢ, highlighting the importance of appreciating the speed of stomatal responses and coordination between A and gᵢ.

It is well known that significant variation in photosynthetic capacity (A₀₉₅) exists both within and amongst different species (Lawson et al., 2012) and, as observed here, this is generally correlated with steady-state gᵢ (and G₀₉₅). As may be expected the C₄ species measured in our study were able to achieve a greater A₀₉₅ at a lower gᵢ (at A₀₉₅) compared to C₃ species (Fig. S3), and it is likely that the faster stomatal opening and closing responses observed in C₄ species (Fig. 3c) facilitated this greater level of coordination between A and gᵢ (Fig. 2). This faster response was a common feature not just in C₄ plants, but also C₃ species with dumbbell-shaped guard cells. However, despite the close coupling in C₄ species, the same stomatal limitation on A of c. 10% or greater was observed in both C₄ and C₃ plants (Fig. 4). This illustrates the importance of considering both CO₂ uptake and water loss when evaluating steady-state or transient Wᵢ (McAusland et al., 2013), as maximum Wᵢ is often not observed at maximum A. Here the decrease in Wᵢ (between Wᵢ-max and A₀₉₅) with increasing gᵢ was outweighed by a substantial gain in A in all species.

The temporal uncoupling between stomatal behaviour and carbon demand observed in many species can be evaluated by comparing measured gᵢ responses with those modelled assuming a stable Wᵢ (at A₀₉₅, which represented a Wᵢ value that is achieved without a limitation on A), providing an estimate of the differences between variable and stable Wᵢ in terms of water gain and expense for each species. Using this model over the period measured, stomatal behaviour in the majority of species resulted in water expense exceeding water conservation, illustrating that the latter was not the priority. As all the plants in these experiments were maintained under relatively well-watered conditions, this would have led to a higher stomatal conductance than would be observed in plants experiencing water limitation (Comstock & Ehleringer, 1993; Mott & Peak, 2012; Lawson & Blatt, 2014). In general, C₄ species were an exception to this and either demonstrated a balanced water budget or greater gains than
losses, further exemplifying the more synchronous A and g_s responses observed in the three species measured. The most likely explanation for the greater loss of water in C$_3$ species is the substantial overshoot in g_s after A_{95} had been achieved, which was not apparent in the two C$_4$ species studied (Figs 3a, 6).

However, C$_3$ species with rapid stomata responses (e.g. *O. sativa*) also exhibited a positive water balance, whilst species with the slowest stomatal opening (with the exception of *G. biloba*) demonstrated the most negative water balances (Fig. 6c) hinting at the possible existence interspecific diversity of stomatal control.

The rapidity of response for stomata to open (increase; k) and close (decrease; k_0) was positively correlated for species with elliptical- as well as dumbbell-shaped guard cells, suggesting that similar mechanisms or pathways were involved in both opening and closing responses. Overall, significant asymmetry of the stomatal responses revealed a faster closing than opening, which has previously been associated with conserving water (Tinoco-Ojanguren & Pearcy, 1993; Ooba & Takahashi, 2003). In comparison, species with dumbbell-shaped guard cells displayed the fastest responses and most had greater similarity in the rapidity of opening and closing, which is consistent with the fact that these guard cells require fewer solutes and less water to achieve a given unit increase in aperture (Franks & Farquhar, 2007; Raven, 2014). The rapidity of increasing g_s impacts on A, with species with high k taking longer to achieve A_{95}, as low g_s restricts CO$_2$ diffusion. Under field conditions with a dynamic light environment, slowly responding stomata could restricted CO$_2$ uptake and thus have a compound effect on the cumulative A over the growing season and affect yield (Reynolds et al., 1994; Fischer et al., 1998). However, slow stomatal closure would negatively impact on W_i when environmental conditions reduce A. It should be noted that under field conditions, changing the light environment also results in changes in leaf temperature. A direct impact of increasing PPFD would be an increased leaf temperature, which would lead to higher leaf-to-air vapour pressure difference and thus exacerbate the transpirational losses of ‘overshooting’ stomata. However, higher transpirational losses would have a cooling effect. Therefore, concomitant temperature variation could have complex effects on the dynamic responses of A, g_s and W_i, and should be studied in detail using appropriate experimental set-ups.

Variation between species was also observed in the maximum speed of g_s response (S_{max}) and the rapidity of opening (k) to achieve steady-state conductance. Previous research has associated the speed of stomatal responses with the size of stomata, with smaller stomata facilitating rapid opening and closing (Hetherington & Woodward, 2003; Franks & Farquhar, 2007; Franks & Beering, 2009; Drake et al., 2013; Raven, 2014). The majority of these studies have used the maximum slope (S_{max}) as a measure of the maximum speed of response; however, this measurement is also dependent on the amplitude of the response (Eqn 2). Additionally, because g_s is determined by both stomatal aperture and density, small changes in aperture in plants with smaller, more numerous stomata will have a greater S_{max} for the same change in aperture as species with fewer larger stomata.

Therefore, although S_{max} may provide a useful comparative measure within species (in which anatomical features and the scales of stomatal responses are similar), it is not a useful parameter to compare speeds of response between species with different anatomical features and magnitudes of change. To address this issue, we used the time constant k to provide a measure of the rapidity of g_s, independently of the magnitude of response and the absolute g_s values observed. For elliptical-shaped guard cells, we did not detect any significant correlation between stomatal density and S_{max} or k, suggesting that on an interspecific basis neither the speed nor the amplitude of the stomatal responses to PPFD were dependent on stomatal density. On the other hand, for dumbbell-shaped guard cells, variation among species in stomatal size impacted on the speed and amplitude of stomatal responses. This hints at the possibility that for elliptical-shaped guard cells attributes other than anatomical features are important contributors to the speed of stomatal responses (Hetherington & Woodward, 2003; Franks & Beering, 2009) such as membrane permeability due to ion channels number or distribution (see discussion, Lawson & Blatt, 2014). By contrast, for dumbbell-shaped guard cells, anatomical variations seem to impact the rapidity of their response. Additionally, these species were also able to achieve a greater S_{max} and tended to be faster. This may be due to the energetic requirements for stomatal movement of the often smaller dumbbell-shaped guard cells (Grantz & Assmann, 1991; Franks & Farquhar, 2007; Raven, 2014). The dumbbell-shaped design means that small changes in width can cause larger changes in stomatal aperture and maximize the potential of these stomata to track changes in environmental conditions (Hetherington & Woodward, 2003).

Although transients of leaf-level W_i provide insight into potentially optimizing stomatal behaviour, numerous other processes contribute to W_i in the field. Manipulation of the speed of g_s provides scope for improving carbon acquisition in fluctuating light environments but also enhances drought tolerance through improved conservation of water. Integration of these dynamic responses over daily or seasonal time periods is complex and would require a model that includes respiration (both from leaves and parts including stems and roots) and transpiration as a product of changes in diurnal saturation deficit (Cowan & Farquhar, 1977; Farquhar et al., 1989; Jones, 2004) Identifying varieties or genotypes with more rapid stomatal responses could be used as an optimizing strategy for whole-plant water use over the growing period, potentially improving the ability of the plant to adapt to changing environments (Schulze & Hall, 1982; Campielli et al., 2016) which could feed forward to maintain or improve yields (Chaffer et al., 2005; Lawson & Blatt, 2014).

Conclusion

This is one of the few studies to investigate temporal responses in A and g_s in relation to carbon assimilation and W_i, and illustrates significant species-specific variation in the speed of stomatal responses and magnitude of change, as well as coordination with A. Slow stomatal responses can limit A by c. 10%, which could equate to substantial losses in photosynthetic rates, productivity
and reductions in yield. Previous research focusing on improving productivity has shown that by enhancing photosynthesis by only 2–3%, substantial increases in plant growth and biomass can be achieved over the season (Lefebvre et al., 2005; Zhu et al., 2007; Simkin et al., 2015). The work presented here illustrates that similar short-term improvements in A could be gained by improving the rapidity of stomatal responses and coordination with A. Tighter coupling between stomata and A therefore has the potential to achieve a substantial improvement in WUE, as in the present study, overshooting of g by up to 80% was observed for only a 5% gain in A and fast closing responses resulted in substantial saving in water loss.

Our findings support faster responses in dumbbell- compared with elliptical-shaped guard cells and suggest that photosynthetic type (C₃/C₄) also plays a role. The speed of stomatal responses might not be dependent on the same underlying processes when comparing elliptic- and dumbbell-shaped guard cells, with physiological processes being more important for the former and anatomical features for the latter. Improving the rapidity of stomatal responses could greatly improve productivity and Wᵣ, but achieving this will require greater knowledge of the physiological and molecular mechanisms that determine the speed of stomata and coordination with mesophyll demands for CO₂, and further field-based measurements that integrate the dynamics of A, g, and Wᵣ over seasons.

Acknowledgements

NERC funding is acknowledged for PhD studentship to L.M. (NERC quota studentship). S.V-C. was supported by a BBSRC grant BB/1001187_1 to T.L. We are also grateful to Sue Corbett for her help in the glasshouse.

Author contributions

L.M., N.R.B. and T.L. planned and designed the research. L.M., S.V-C., P.D. and T.L. performed experiments and analysed data. L.M., S.V-C., P.D., N.R.B., O.B. and T.L. wrote the manuscript.

References

Assmann SM, Wang XQ. 2001. From milliseconds to millions of year: guard cells and environmental responses. Current Opinion in Plant Biology 4: 421–428.
Baroli I, Price GD, Badger MR, Von Caemmerer S. 2008. The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiology 146: 737–747.
Blum A. 2009. Effective use of water (EUE) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119–123.
Buckley T, Mott K, Farquhar G. 2003. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell & Environment 26: 1767–1785.
Campitelli BE, Des Marais DL, Juenger TE. 2016. Ecological interactions and the fitness effect of water-use efficiency: competition and drought alter the impact of natural MPK12 alleles in Arabidopsis. Ecology letters 19: 424–434.
Chaerle L, Saibo N, Van Der Straeten D. 2005. Tuning the pores: towards engineering plants for improved water use efficiency. Trends in Biotechnology 23: 308–315.

Chazdon RL, Pearcy RW. 1991. The importance of sunflecks for forest understory plants. BioScience 41: 760–766.
Comstock J, Ehleringer J. 1993. Stomatal response to humidity in common bean (Phaseolus vulgaris): implications for maximum transpiration rate, water-use efficiency and productivity. Functional Plant Biology 20: 669–691.
Condon A, Rebetzke G, Farquhar G. 2002. Improving intrinsic water-use efficiency and crop yield. Crop Science 42: 122.
Cowan I, Farquhar G. 1977. Stomatal function in relation to leaf metabolism and the environment. In: Jennings DH, ed. Integration of activity in the higher plants; Symposium of the Society of Experimental Biology. Cambridge, UK: Cambridge University Press, 471–505.
Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495–505.
Ehleringer J, Pearcy RW. 1983. Variation in quantum yield for CO₂ uptake among C₃ and C₄ plants. Plant Physiology 73: 555–559.
Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40: 503–537.
Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Biology 33: 317–345.
Farquhar G, Wong S. 1984. An empirical model of stomatal conductance. Functional Plant Biology 11: 191–210.
Fischer R, Rees D, Sayre K, Lu Z-M, Condon A, Saavedra AL. 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science 38: 1467–1475.
Franks PJ, Beering DJ. 2009. Maximum leaf conductance driven by CO₂ effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 10 343–10 347.
Franks PJ, Farquhar GD. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology 143: 78–87.
Grantz D, Assmann S. 1991. Stomatal response to blue light: water use efficiency in sugarcane and soybean. Plant, Cell & Environment 14: 683–690.
Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901–908.
Jones HG. 1987. Breeding for stomatal characters. Stanford, CA, USA: Stanford University Press.
Jones HG. 1998. Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany 49: 387–398.
Jones HG. 2004. What is water use efficiency? Oxford, UK: Blackwell Publishing.
Knapp AK, Smith WK. 1987. Stomatal and photosynthetic responses during sun/shade transitions in subalpine plants: influence on water use efficiency. Oecologia 74: 62–67.
Knapp AK, Smith WK. 1990. Stomatal and photosynthetic responses to variable sun light. Physiologia Plantarum 78: 160–165.
Lawson T, Blatt M. 2014. Stomatal size, speed and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556–1570.
Lawson T, Caemmerer S, Baroli I. 2010. Photosynthesis and Stomatal Behaviour. Progress in Botany 72: 265–304.
Lawson T, Kramer DM, Raines CA. 2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opinion in Biotechnology 23: 215–220.
Lawson T, Lefebvre S, Baker NR, Morison JI, Raines CA. 2008. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO₂. Journal of Experimental Botany 59: 3609–3619.
Leakey A, Scholes J, Press M. 2005. Physiological and ecological significance of sunflecks for dipterocarp seedlings. Journal of Experimental Botany 56: 469–482.
Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA. 2005. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants may stimulate photosynthesis and growth from an early stage in development. Plant Physiology 138: 451–460.
Long SP, Marshall-Colon A, Zhu X-G. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161: 56–66.
Mansfield T, Hetherington A, Atkinson C. 1990. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology 143: 78–87.
McAusland L, Davey P, Kanwal N, Baker N, Lawson T. 2013. A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. *Journal of Experimental Botany* 64: 4993–5007.

Mott KA, Peak D. 2012. Testing a vapour-phase model of stomatal responses to humidity. *Plant, Cell & Environment* 36: 936–944.

Naumburg E, Ellsworth DS, Katul GG. 2001. Modeling dynamic understory photosynthesis of contrasting species in ambient and elevated carbon dioxide. *Oecologia* 126: 487–499.

Peary RW. 1990. Sunflecks and photosynthesis in plant canopies. *Annual Review of Plant Biology* 41: 421–453.

Peary RW. 1999. Sunflecks and photosynthesis in plant canopies. *Annual Review of Plant Biology* 65: 1415–1424.

Raven JA. 2014. Speedy small stomata? *Journal of Experimental Botany* 65: 2014–2024.

Reynolds M, Balota M, Delgado M, Amani I, Fischer R. 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. *Functional Plant Biology* 21: 717–730.

Roelfsema MRG, Prins H. 1995. Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of *Arabidopsis thaliana*. *Physiologia Plantarum* 95: 373–378.

Schulze E-D, Hall A. 1982. Stomatal responses, water loss and CO₂ assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. *Physiological plant ecology II*. Berlin: Springer, 181–230.

Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA. 2015. Multigene manipulation of photosynthetic carbon assimilation increases CO₂ fixation and biomass yield in tobacco. *Journal of Experimental Botany* 66: 4075–4090.

Tinoco-Ojanguren C, Peary RW. 1993. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. *Oecologia* 94: 395–402.

Vila-Chabrand S, Dreyer E, Brendel O. 2013. Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. *Plant, Cell & Environment* 36: 1529–1546.

Vico G, Manzoni S, Palmroth S, Katul G. 2011. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. *New Phytologist* 192: 640–652.

Von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ, Raines CA. 2004. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. *Journal of Experimental Botany* 55: 1157.

Way DA, Peary RW. 2012. Sunflecks in trees and forest: from photosynthetic physiology to global change biology. *Tree Physiology* 32: 1066–1081.

Weyers JD, Johansen LG. 1985. Accurate estimations of stomatal aperture from silicon rubber impressions. *New Phytologist* 10: 109–115.

Wong S, Cowan I, Farquhar G. 1979. Stomatal conductance correlates with photosynthetic capacity. *Nature* 282: 424–426.

Yoo CY, Pence HE, Hasegawa PM, Mickelbart MV. 2009. Regulation of transpiration to improve crop water use. *Critical Reviews in Plant Science* 28: 410–431.

Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV. 2010. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. *Plant Cell Online* 22: 4128.

Zhu X-G, de Sturler E, Long SP. 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. *Plant Physiology* 145: 513–526.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Response of stomatal conductance to water vapour (gs) of 15 species to an increase in irradiance from 100 to 1000 μmol m⁻² s⁻¹ PPFD.

Fig. S2 Response of net CO₂ assimilation (A) of 15 species to an increase in irradiance from 100 to 1000 μmol m⁻² s⁻¹ PPFD.

Fig. S3 The relationship between 95% maximum net CO₂ assimilation (A₀₅) and steady-state stomatal conductance under 1000 μmol m⁻² s⁻¹ PPFD (Gmax) for 15 species.

Fig. S4 Normalized temporal response of intrinsic water-use efficiency (Wₑ) of 15 species for the first 20 min after an increase in irradiance from 100 to 1000 μmol m⁻² s⁻¹.

Fig. S5 Determining the percentage decrease in intrinsic water-use efficiency (Wₑ) for a percentage increase in CO₂ assimilation (A) between maximum Wₑ max to 95% of the maximum A (A₀₅) reached under 1000 μmol m⁻² s⁻¹ PPFD for 15 species.

Fig. S6 Counts of stomatal density and measurements of guard cell length and width for 15 species from the adaxial and abaxial surfaces of the leaf.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.