Recovery methods to reduce fatigue among athletes: A systematic review and future directions

I Ketut Yodaace, Gede Doddy Tisna MSbde, I Gede Suwiwalad, Ketut Chandra Adinata Kusumabde, & Nelson Kautzner Marques Junior2nd c

Universitas Pendidikan Ganesha, Indonesia1
Universidad de Los Lagos, Chile2

Received 30 April 2024; Accepted 31 May 2024; Published 12 June 2024
Ed 2024; 9(2): 217-234

ABSTRACT

Background Problems: The recovery process plays an important role in maintaining athletic performance and preventing fatigue among players. Research Objectives: This systematic review aims to provide a comprehensive overview of the current research on athlete fatigue recovery, including the various methods used to enhance recovery, the limitations of existing studies, and potential areas for future research. Methods: This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We designed the study using the PICO(S) strategy. We sourced the literature from established research sources in the Scopus databases. The final data used for this study consisted of 14 articles. Findings and Results: The main findings confirmed that aquatic therapies, such as hot-and-cold-water immersion (HWI) and cold-water immersion (CI), along with a number of other alternative methods, provide a strong foundation for improving athletes' recovery and performance. In addition, various novel therapies such as curcumin supplements, electrostimulation, and high-intensity interval training (HIT) also offer great potential for accelerating athletes' recovery. Conclusion: The findings from this study highlight various recovery methods that can help reduce athletes' fatigue after competition or training. This study also noted limitations and provided suggestions for future research, guiding researchers to further understand and improve athlete recovery holistically.

Keywords: Recovery; fatigue; athletes; literature review

https://doi.org/10.25299/sportarea.2023.v09(2).14781

Copyright © 2024 I Ketut Yoda, Gede Doddy Tisna MS, I Gede Suwiwa, Ketut Chandra Adinata Kusuma, Nelson Kautzner Marques Junior

Corresponding Author: I Ketut Yoda, Department of Sport Science, Faculty of Sports and Health, Universitas Pendidikan Ganesha, Bali, Indonesia
yodaketut@undiksha.ac.id

How to Cite: Yoda, I. K., Tisna MS, G. T., Suwiwa, I. G., Kusuma, K. C. A., & Junior, N. K. M. J. (2024). Recovery methods to reduce fatigue among athletes: A systematic review and future directions. Journal Sport Area, 9(2), 217-234. https://doi.org/10.25299/sportarea.2023.v09(2).14781

Authors’ Contribution: a – Study Design; b – Data Collection; c – Statistical Analysis; d – Manuscript Preparation; e – Funds Collection

INTRODUCTION

Fatigue, a prevalent phenomenon in sport, affects athletes of all levels and disciplines (Starling & Lambert, 2018). In sports, high workloads and sudden increases in training load contribute to the occurrence of fatigue and injury (Sutherland et al., 2023). This training load is related to the type of sportive periodization, for example, the block periodization has a concentrated load of strength with a high load that causes significant fatigue, but the traditional periodization of Matveev has a diluted training load with a low to high load that
causes low to medium fatigue (Dantas et al., 2022; Junior, 2020; Oliveira et al., 2018). This phenomenon has far-reaching impacts on athletes’ performance, recovery, and well-being. It is characterised by decreased physical and cognitive abilities, increased risk of injury, and negative impacts on aspects of daily life (Bestwick-Stevenson et al., 2021; Naughton et al., 2023). What is more, fatigue can also affect athletes’ psychological aspects, such as motivation, mental resilience, and sleep quality (Li et al., 2022). Thus, an in-depth understanding of the different dimensions of fatigue in sports is important to support athletes’ overall well-being and performance.

The prevalence and impact of fatigue are not only limited to the competitive arena but also affect training patterns, injury risk, and career futures for athletes across multiple disciplines (Costa, 2022). Coaches and sports medicine practitioners play an important role in managing athlete fatigue (Alba-Jiménez et al., 2022; King et al., 2023) they implement strategies to optimise performance, reduce injury risk, and promote recovery (Brooks et al., 2022; de Borja et al., 2022). Athletes, striving to achieve optimal performance, constantly navigate the balance between pushing their physical limits and allowing sufficient time for recovery. Athlete fatigue recovery is an important process for athletes to rest, refuel, and repair their bodies after intense physical activity (Bonilla et al., 2021; Lee et al., 2017).

This fatigue recovery process involves calculating energy requirements based on activity levels and ensuring adequate intake (Siqueira et al., 2018). Migratory fish extracts in diet composition can help speed up recovery by supplying more energy to the body (Huang et al., 2018), which in turn improves exercise capacity and overall performance (Kellmann et al., 2018; Skorski et al., 2019). Understanding fatigue and muscle tissue damage is key to facilitating recovery and improving work capacity (Boguszewski, 2015), which involves adequate sleep practices, good hydration, nutritious food intake, and scheduling rest days in training. Without proper fatigue recovery, athletes risk fatigue, over training, and reduced performance (Mardiana et al., 2023; Skorski et al., 2019).

Previous research in athlete fatigue recovery has provided valuable insights into various methodologies ranging from traditional approaches such as rest and sleep (Lastella et al., 2019; Tuomilehto et al., 2017) to more contemporary techniques such as cryotherapy (Kwiecien et al., 2020; Wilson et al., 2018) and compression therapy (Pavin et al., 2019). However, the rapidly evolving nature of sports science, coupled with the inherent complexity of human physiology, necessitates a comprehensive evaluation of the existing literature to identify gaps, inconsistencies, and emerging trends. Therefore, it is important to conduct a systematic review to provide a more comprehensive view of the effectiveness of various recovery strategies as well as highlight areas that require further research to optimise athlete well-being and performance.

In the past decade, the topic of athlete fatigue has taken centre stage in literature review studies (Nuuttila et al., 2024). Previous researchers have investigated various aspects of athlete fatigue, ranging from its impact on psychomotor (Habay et al., 2021), physical (Van Cutsem et al., 2017), and motor performance (Yuan et al., 2023) to its effect on inter-limb asymmetry (Heil et al., 2020) and decision-making in athletes (Almonroeder et al., 2020). Despite this, no review has specifically explored the different recovery methods available to holistically reduce athlete fatigue. By filling this gap, we can develop a better understanding of effective recovery strategies, which can assist athletes in reaching their maximum potential and maintaining their physical and mental health in the long term.

The findings from this systematic review have significant implications for various stakeholders involved in athlete management and performance optimisation. By describing the strengths, limitations, and future research directions in athlete fatigue recovery, this review aims to provide a comprehensive overview of current research on athlete fatigue recovery. Specifically, the aim of this study is to answer the following research questions: RQ 1. What are some effective recovery methods to reduce athlete fatigue after competition or training? RQ 2. What common limitations have researchers found in therapies aimed at reducing athlete fatigue after competition or training? RQ 3. What are some future research suggestions for therapies to reduce athlete fatigue after competition or training?
METHOD

This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (O’Dea et al., 2021; Parumus, 2021). The study design was done according to the PICOS strategy (Amir-Belghadami & Janati, 2020), in which the population (P) is athletes of any age, gender, and level of competition (novice, amateur, or professional) who experience fatigue after competing or training in various sports, the intervention (I) of interest is the use of recovery techniques in helping athletes recover from fatigue after competing or training in sports, the comparator (C) is not required, the outcomes (O) of interest is the outcome measured through the effects of recovery on athletes, and the study design (S) is a randomised controlled clinical study (RCT), cohort study, or observational study. Table 1 displays the electronic search and the PICOS criteria.

Criteria	Inclusion Criteria	Exclusion Criteria
Population (P)	Athletes of all ages, genders, and levels of competition (beginner, amateur, or professional) who experience fatigue after competition or training in various sports.	Non-athlete population
Intervention (I)	The use of recovery techniques helps athletes recover from fatigue after competition or training in sport.	Recovery techniques that do not fall into a category or techniques that are not relevant to the athlete's recovery after fatigue.
Comparator (C)	No comparisons required.	Not applicable.
Outcome (O)	Recovery effects on athletes	The studies did not provide data on the effects of recovery on athletes.
Study design (S)	Randomised controlled clinical studies (RCTs), cohort studies, or observational studies.	Letters to editors, trial registrations, proposals for protocols, editorials, book chapters, reviews, and conference abstracts.

For searches in databases, the following combination was used with the Boolean operators (AND, OR): (“recovery technique” OR “recovery method” OR “rehabilitation method” OR “rehabilitation technique”) AND (“athlete” OR “athletes” OR “sportsman” OR “sportswoman”) AND (“fatigue” OR “exhaustion” OR “tiredness”). We conducted this search on April 21, 2024, using the following databases: Scopus. We did not impose any restrictions on the year of publication or study type, nor did we use any search filter. Also, manual research was conducted on the bibliographies of all included studies in full-text screen.

![Figure 1. Flowchart of selected studies using PRISMA guidelines](image-url)
RESULTS AND DISCUSSION

Table 2. Summary of Recovery Methods to Reduce Fatigue Among Athletes

Author and Year	Population Characteristics	Country	Study Design	Intervention	Type of Sport	Findings	Journal
(Ishii et al., 2023)	- N = 8						
- 6 male & 2 female
- 28.4 ± 4.6 years old
- Tier 1 recreationally active individuals meeting WHO's minimum activity guidelines
- Exclusion criteria: age outside 18-35 years, recent musculoskeletal injury, discomfort during experiments
- Participants familiar with using the Biodeo System for torque data collection | Portugal | Experimental study, controlled, parallel design with repeated measures | - Electrostimulation
- Localised heating
- Compression | Not specified | - Small sample size.
- Lack of homogeneity in the sample.
- Potential bias due to lack of blinding participants.
- Need for further research with larger and more homogeneous samples.
- Need for research with methods to avoid potential biases. | Sensors |
| (Shima et al., 2023) | - N = 12
- 7 males & 5 females
- Elite athletes
- National-team skaters | France | Randomised crossover study | - Hot-and-Cold Water Immersion (HWI)
- Cold-Water Immersion (CWI)
- Active Recovery (AR) | Skaters | - It requires a larger sample size to confirm results, especially in less-trained athletes. | Journal of Sports Sciences |

Notes:
- This is not a randomised, double-blind study.
- Limited sample size.
- Selection bias due to participants choosing their own group.
- Lack of blinding leads to performance and detection bias.
- Uncertainty in subgroup analysis by gender.

Circumcision supplementation decreased levels of 8-hydroxy-2-deoxyguanosine, reduced muscle fatigue and increased the metabolic rate and fat-free mass in adolescent athletes.

Frontiers in Nutrition
Author and Year	Population Characteristics	Country	Study Design	Intervention	Type of Sport	Limitations	Findings	Journal
Xue et al. (2023)	- N = 20							
- Aged between 17 and 22, who were national first-class athletes
- The participants were in good health, without acute and chronic diseases, and no recent sports injuries
- Height, weight, and BMI were measured for the participants
- Body composition, including fat content, fat-free body weight, and body fat percentage, was assessed for the participants | China | Controlled trial with a within-subject design | - High-Intensity Interval Training (HIT)
- Measurement of human morphology
- Determination of VO2max
- Maximum Power. | Basketball | - Lack of significant difference in various parameters among the different recovery methods.
- Decrease in TC, VO2mean, and VO2total in HITA compared to HIT and HTP after completing HIT in groups 2, 3, and 4.
- Higher VO2peak, VO2mean, and VO2total in HITA compared to HITS and HTP after completing HIT in groups 2, 3, and 4.
- No significant difference in VO2 kinetics, VO2peak, VO2mean, and VO2total among the three different recovery methods. | The main findings emphasize the benefits of positive recovery during HIT in enhancing exercise ability and aerobic energy output compared to aerobic recovery and stretching exercises. | Revista Brasileira de Medicina do Esporte |
| Adair et al. (2023) | - N = 20
- Male Paralympic powerlifters (10 athletes at the national level and 10 at the regional level)
- Each group having specific disabilities. | Brazil | Randomized controlled trial (RCT) with a crossover design. | - 800 mg of Ibuprofen or Placebo
- The exercise regimen included five sets of five reps at 80% of 1-RM. | Powerlifters | - Lack of control over athletes' diet.
- Lack of control over subjects' sleep quality.
- Exposure to psychological stress factors not measured.
- Potential impact of food, stress, and sleep on immune system and recovery not fully addressed. | The main findings highlight the positive effects of ibuprofen on peak torque and fatigue in national-level Paralympic powerlifters compared to a placebo, with differences observed between national and regional level athletes. | Healthcare |
| Author and Year | Population Characteristics | Country | Study Design | Intervention | Type of Sport | Limitations | Findings | Journal |
|-----------------|-----------------------------|---------|--------------|--------------|---------------|-------------|----------|---------|
| Chaiyapai & Chalal (2021) | - N = 11
- Male basketball players
- Regularly exercising at least two hours per day and three days per week for more than one year
- Body mass index between 18.50-25.00 kg/m²
- Must have at least one year of experience in basketball games
- Exclusion criteria: individuals with musculoskeletal problems within the six-week study period; skin allergies, open wounds, abnormal skin sensations, and cardiovascular diseases | Thailand | Crossover design | Cold Water Immersion (CWI) | Basketball | - The study did not compare the effects of cold water immersion at different temperatures.
- The study did not investigate the effects of cold water immersion on female basketball players.
- The study did not explore the long-term effects of delayed cold water immersion on exercise performance.
- The study did not assess the impact of delayed cold water immersion on recovery parameters such as inflammation markers or muscle damage indicators. | Delayed cold water immersion one and three hours after high-intensity interval exercise can restore anaerobic performance to pre-test values, unlike passive recovery.
There was no significant difference in the effects of cold water immersion at one and three hours post-exercise. Both cold water immersion conditions were effective in restoring maximum vertical jump capacity. | Sport Monit |
| Otsuki et al. (2021) | - N = 14
- Female athletes specialized in 400m and 800m track events
- Sedentary residents with no recent exposure to higher altitude or hypoxic conditions | Japan | Observational study with pre-post design | High-Intensity Interval Training (HIIT) - Endurance Training | Athletics (400 and 800 metres) | - Lack of clear understanding of improvements in performance after short-term hypoxic training.
- Absence of measurements on peripheral function.
- Need for further study to determine the appropriate duration of recovery.
- Lack of measurements beyond 9 days after the training period | Short-term hypoxic training improved maximal anaerobic running performance, increased time to exhaustion in incremental running tests, and decreased mean power during the 30-s maximal pedalling test. | Gazzetta Medica Italiana Archivio per le Scienze Mediche |
| Author and Year | Population Characteristics | Country | Study Design | Intervention | Type of Sport | Limitations | Findings | Journal |
|-----------------|---------------------------|---------|--------------|--------------|---------------|-------------|----------|---------|
| Pelana et al. (2019) | - N = 20
- Male futsal athletes
- Non-smokers
- Exclusion criteria: cardiovascular or respiratory diseases | Indonesia | Parallel - 2-group - Pretest-posttest design | - Contrast Water Therapy (CWT)
- Slow Jogging Recovery (SJR) | Futsal | - Potential impact of physical, role-related, emotional functioning, and lifestyle differences on results
- Short duration of time for alternating between cold and hot water may influence outcomes | - CWT was more effective in reducing lactate concentration compared to SJR in elite futsal players after HiIT
- CWT led to a rapid recovery of heart rate in elite futsal players after HiIT
CWT, with periodic immersions in cold and hot water, can be a beneficial recovery strategy for elite futsal players post-exercise. | Physiotherapy Quarterly |
| Coulther et al. (2017) | - N = 34
- Not elite athletes.
- A mean age of 27 years
- A mean height of 180 cm
- A mean weight of 80 kg
- A mean VO2 max of 43 ml/kg/min | Australia | Randomized controlled trial design | | Not specified | - A study used a simulated team sport game, not an actual game
- The fitness and ability of the participants may not replicate that of high-performance contact team sport athletes | - Contrast water immersion enhanced perceptual recovery significantly at 1 hour post-exercise compared to other strategies
- Cold water immersion and combined recovery strategies resulted in decreased jump performance at 1 hour.
- No differences were observed in perceptual or performance variables between recovery strategies and control at 24 and 48 hours. | BMC Sports Science, Medicine and Rehabilitation |
| SUPAL et al. (2017) | - N = 18
- Participants are between 19-21 years old
- Participants have a body mass index (BMI) between 19 and 24 KGS per square meter | Iran | Semi-experimental study with a pre-test post-test design | - Active recovery (AR)
- Deep water running (DWR) | Football | - Small sample size | No statistically significant differences were found in the effects of active recovery (AR) and deep water running (DWR) on muscular damage indices among soccer players after a simulated soccer game. | National Journal of Physiology, Pharmacology and Pharmacology |
| Author and Year | Population Characteristics | Country | Study Design | Intervention | Type of Sport | Findings |
|-------------------------------------|---|-----------|----------------------------|---|---------------|---|
| Morales et al. (2016) | - N = 11
- International-standard judo athletes (7 males and 4 females)
- A mean age of 20.73 years
- A mean height of 1.72 m
- A mean body mass: 67.36 kg
- More than 5 years of experience in national and international judo competitions | Spain | Cross-sectional study design | WER method (Staggard Method, Lucila Method, and Session Rating of Perceived Exertion (RPE/session)) | Judo | The WER method, incorporating time to exhaustion, showed high correlations with other methods for quantify training load in judo. The WER method used RMTE was found to be highly adaptable for quantifying individualised training loads. The study highlights the reliability and effectiveness of the WER method in assessing external and internal training loads in judo sessions. |
| Habib et al. (2013) | - N = 44
- Elite male Australian Football League (AFL) players
- Mean age of 23.3 years
- Average height of 187.0 cm and weight of 83.0 kg | Australia | Longitudinal quasi-experimental study design | Cold Water Immersion (CWI)
- Floor Stretching
- Compression Garments | Australian Football | - Quasi-experimental design may limit causality establishment.
- Lack of associations between recovery protocols and performance measures.
- Small sample size.
- Reliance on self-reported measures.
- Lack of exploration of long-term effects.
- Lack of consideration of interactions between recovery modalities.
- Lack of investigation into individual player characteristics or preferences.
- Specific combinations of post-game recovery protocols were associated with enhanced perceptual recovery, including cold-water immersion, floor stretching, no-active recovery, and the use of a compression garment.
- No associations were found between post-game recovery methods and physical game performance measures. | Journal of Science and Medicine in Sport |
| Author and Year | Population Characteristics | Country | Study Design | Intervention | Type of Sport | Limitations | Findings | Journal |
|-------------------------------|----------------------------|-------------|---------------------------------------|---|---------------|--|--|----------------------------------|
| (Hyun et al., 2019) | - N = 13 | Belgium | Randomized crossover design study | - Passive Recovery (PR) | Climbing | - Caution needed when using cold water immersion due to potential hypersensitivity to cold. | - Active recovery and cold water immersion were effective in maintaining subsequent climbing performance in female climbers. | Medicine & Science in Sports & Exercise |
| | - Female climbers | | | - Active Recovery (AR) | | - Individualization of the protocol is necessary. | - Cold water immersion (CWI) was particularly highlighted as a beneficial recovery method for preserving climbing performance. | |
| | - Average age of 27.1 years| | | - Electromyostimulation | | - Immersion in lower temperatures may decrease grip strength. | - Electromyostimulation and passive recovery were not as effective as active recovery and CWI in maintaining climbing performance. | |
| | - Climbing experience ranging from 6 to 7 h | | | - Cold Water Immersion (CWI) | | - Deeper and deeper immersion could impair muscle blood flow and oxygen supply. | - Cold water immersion (CWI) was particularly highlighted as a beneficial recovery method for preserving climbing performance. | |
| (Ingman et al., 2009) | - N = 11 | Australia | - The experimental design was counterbalanced. However, details about randomization, blinding, or control groups are not provided. | - Cold Water Immersion (CWI) | Not specified | Assessed the variables over a 48-hour period, potentially missing long-term effects or differences that may appear over a longer duration of observation. | COLD was superior to both CWI and control treatments in post-exercise recovery following exhaustive team game exercise. | Journal of Science and Medicine in Sport |
RQ 1. What are some effective recovery methods to reduce athlete fatigue after competition or training?

Water Therapy

Recent research highlights the important role of water therapy in supporting athletes’ recovery and performance. Hot-and-cold-water immersion (HWI) has been shown to be effective in improving athletes’ power output compared to cold-water immersion alone. These findings, observed in national-level skaters by Solsona et al. (2023), show the great potential of this therapy in improving the performance of athletes involved in high-level sports. On the other hand, cold-water immersion (CWI) has also shown significant benefits. Studies by Chaiyakul and Chaibai (2021), Pelana et al. (2019), Crowther et al. (2017), and Ingram et al. (2009) highlighted that CWI can help reduce lactate concentration, improve perceptual recovery, and address post-exercise performance declines. Thus, the use of water therapy, whether in the form of HWI or CWI, can be an effective strategy for sports coaches and practitioners to improve the well-being and performance of their athletes.

Other Therapy

Through the analysis of previous related studies, several alternative therapies have attracted attention in the context of athlete recovery. Chinese Curcumin Supplement (Jiang Huang Powder Ko Da), as shown in a study by Bai et al. (2023), showed potential in reducing muscle fatigue and soreness while increasing metabolic rate and fat-free mass in adolescent athletes. On the other hand, various methods such as electrostimulation, localised heating, and compression, as observed in the study by Silva et al. (2023), did not show significant capacity for acute recovery from fatigue-inducing protocols. High-intensity interval training (HIIT), as observed in studies by Xue et al. (2023) and Oriishi et al. (2021), highlighted the positive benefits of HIIT recovery in improving exercise ability and aerobic energy output. The use of medication such as 800 mg of ibuprofen, as observed in the study by Aidar et al. (2022), was found to positively impact peak torque and fatigue in national-level Paralympic powerlifters. Another study explored active recovery methods, such as Active Recovery (AR) and Deep Water Running (DWR), in football players, with results showing no significant difference in their effects on muscle damage indices, as observed in the study by Sajadian et al. (2017).

At the level of other sports, methods such as the WER (Weighted External Resistance) Method, as observed in the study by Morales et al. (2016), showed a high correlation with other methods in measuring training load in judo athletes. Additionally, a combination of post-race recovery protocols, such as floor stretching and the use of compression garments, as observed in the study by Bahnert et al. (2013), was associated with improved perceptual recovery in Australian Football League players. Lastly, passive and active recovery methods, such as passive recovery (PR) and active recovery (AR), in combination with electromyostimulation, showed effectiveness in maintaining climbing performance in female climbers, as observed in the study by Heyman et al., 2009). As such, an in-depth understanding of these alternative recovery methods can provide valuable guidance for sports coaches and practitioners in planning effective recovery programmes for their athletes.

RQ 2. What common limitations have researchers found in therapies aimed at reducing athlete fatigue after competition or training?

Based on the research results presented in the table, there are a number of limitations that need to be considered. The study by Bai et al. (2023) was constrained by its non-randomised, non-double-blind design and limited sample size. Similarly, Silva et al. (2023) found that although various recovery methods were tested, sportswear did not have a significant impact on acute recovery, but the sample size was small and not homogeneous. The study by Solsona et al. (2023), although showing interesting results, still requires a larger sample size to confirm its findings, especially in less trained athletes. The study of Xue et al. (2023), meanwhile, found that there were no significant differences in various parameters among different recovery methods, but there was still uncertainty in the subgroup analysis based on gender. Furthermore, the study by Aidar et al. (2022) had limitations in controlling for athletes’ diet and sleep quality and did not measure psychological stress factors that may have influenced the results.
Other factors also constrain some studies. For example, the study by Chaiyakul and Chaibul (2021) did not compare the effects of cold water immersion at various temperatures, while the study by Oriishi et al. (2021) did not fully understand performance improvements after short-term hypoxic exercise. Additionally, the study by Bahnert et al. (2013) did not link recovery protocols to performance measures, and the study by Heyman et al. (2009) highlighted the need to individualise recovery protocols and consider individual sensitivity to cold temperatures. While the results offer valuable insights, the limitations indicate the need for additional research with improved designs and larger sample sizes to bolster these findings.

RQ 3. What are some future research suggestions for therapies to reduce athlete fatigue after competition or training?

Table 2 presents a number of research recommendations based on existing research to reduce athlete fatigue after competition or training. These recommendations highlight the need for further investigation into the effects of curcumin supplementation on specific muscle groups and movement types, as well as its impact on athletic performance and post-exercise recovery over longer study periods. Additionally, exploring other potential interventions and their effects on fatigue reduction could provide valuable insights for optimising athlete recovery strategies.

Title, Author and Year	Future Research	
12-Week Curcumin Supplementation May Relieve Postexercise Muscle Fatigue in Adolescent Athletes (Bai et al., 2023)	Investigate the effects of curcumin supplementation on specific muscle groups and movement types. Future research should involve studies with larger samples to confirm the results, especially in less trained athletes.	
Acute Recovery after a Fatigue Protocol Using a Recovery Sports Legging: An Experimental Study (Silva et al., 2023)	Analyse inflammatory and muscle damage markers, along with perceived recovery status, in future studies.	
Active recovery vs hot- or cold-water immersion for repeated sprint ability after a strenuous exercise training session in elite skaters (Solsena et al., 2023)	To avoid bias, consider blinding participants to recovery methods.	
Power Supply Characteristics of Basketball Players At Different Training Intensities (Xue et al., 2023)	Evaluate fatigue-related variables at different training intensities for basketball players.	
Evaluation of Ibuprofen Use on the Immune System Indicators and Force in Disabled Paralympic Powerlifters of Different Sport Levels (Aidur et al., 2022)	Explore the effects of low-intensity aerobic exercise on functional recovery.	
Effects of delayed cold water immersion after high-intensity intermittent exercise on subsequent exercise performance in basketball players (Chaiyakul & Chaibul, 2021)	To understand hypoxia adaptation, measure peripheral function.	
Short-term hypoxic training improves maximal anaerobic power after a week of recovery (Oriishi et al., 2021)	Determine the optimal duration of recovery post-hypoxia training.	
Title, Author and Year	Title, Author and Year	Future Research
---	---	---
Effect of contrast water therapy on blood lactate concentration after high-intensity	Investigate specific mechanisms of contrast water therapy (CWT) on post-exercise	Explore optimal CWT protocols, considering variations in water temperature, timing, and immersion duration.
interval training in elite futsal players (Pelana et al., 2019)	recovery, including temperature regulation and tissue healing.	
Influence of recovery strategies upon performance and perceptions following	Investigate the mechanisms behind various recovery strategies for short-term	Identify an optimal recovery strategy for enhanced sporting performance.
fatiguing exercise: A randomized controlled trial (Crowther et al., 2017)	recovery.	Additional variables related to tissue damages, inflammatory elements, and oxidative stresses will enhance understanding of effective recovery methods for football players.
Comparison of effects of active recovery and deep water running on soccer players’	Conduct further studies with larger sample sizes and control groups.	Explore strategies for adjusting training loads based on changes in athletes’ fitness levels.
indices of muscular damage (Sajadian et al., 2017)	Investigate RMTE’s long-term stability and adaptation to continuous training.	Understand why certain recovery protocols promote perceptual recovery but not physical or game performance measures.
The work endurance recovery method for quantifying training loads in Judo (Morales et	Investigate specific mechanisms behind CWI’s positive effects on recovery.	
Association between post-game recovery protocols, physical and perceived recovery, and	Examine the combined effects of active recovery and CWI on performance enhancement.	Explore the potential benefits of combining CWI with other recovery modalities.
maximal rock climbing performance (Heyman et al., 2009)	Further investigate long-term effects of COLD and CWI on athlete performance.	Investgate the impact of cycling and CWI on recovery and subsequent exercise performance in climbers.
Effects of four recovery methods on repeated maximal rock climbing performance (Heyman et al., 2009)		Compare these modalities with emerging techniques for recovery optimization.
Effect of water immersion methods on post-exercise recovery from simulated team sport		Explore mechanisms behind COLD’s superior benefits over CWI for better recovery strategy design.
exercise (Ingram et al., 2009)		

The present systematic review highlights several effective methods to reduce fatigue among athletes, corroborating earlier findings. For instance, the use of cold-water immersion and contrast water therapy in hydrotherapy consistently alleviates muscle soreness and speeds up recovery (Pelana et al., 2019). This method leverages the physiological benefits of temperature variations to enhance blood flow and reduce inflammation. Research has demonstrated that cold-water immersion can significantly decrease the perception of muscle soreness and improve recovery time. Additionally, athletes across different sports can easily implement the use of hydrotherapy in various training environments. However, the use of the CWI causes deterioration of the athlete’s strength in most studies (Malta et al., 2021), but in some studies the CWI increased the athlete’s strength (Roberts et al., 2015). Therefore, the use of the CWI needs of attention and more study to determine when the athlete’s strength returns to the normal levels.

Multiple studies have supported the use of curcumin supplements, indicating that its anti-inflammatory and antioxidant properties aid in muscle recovery and reduce delayed-onset muscle soreness (DOMS). Research by Bai et al. (2023) and Campbell et al. (2021) found that curcumin supplements significantly improved recovery times post-exercise, while Hu et al. (2023) demonstrated its effectiveness in reducing markers of muscle damage. Moreover, studies have demonstrated that curcumin modulates inflammatory pathways, a
beneficial effect for athletes undergoing intense training regimens. These findings suggest that curcumin supplementation could be a valuable addition to an athlete’s recovery protocol.

Furthermore, the integration of high-intensity exercise within recovery programmes, although seemingly counter intuitive, has shown positive effects. This approach is based on the principle of post-activation potentiation, which enhances subsequent performance through brief periods of intense activity. Juan et al. (2023) highlighted that high-intensity interval training (HIIT) not only maintains fitness levels but also accelerates the recovery process compared to traditional low-intensity recovery methods. HIIT has also been associated with improvements in metabolic health and cardiovascular fitness, making it a versatile tool for athlete recovery. HIIT's adaptability allows for customisation to individual athlete needs, resulting in a tailored recovery approach.

Despite these promising findings, the study acknowledges several limitations. The small sample sizes and non-randomised designs in many of the included studies limit the generalisability of the results. Additionally, potential biases in the measurement of recovery outcomes and the placebo effect must be considered. It is also important to note that the variability in recovery protocols across studies can complicate direct comparisons. The lack of standardisation in recovery protocols can lead to inconsistent outcomes and difficulty replicating results. These limitations highlight the need for more rigorous and standardised research methodologies in future studies.

Future research should aim to address these limitations by employing larger, more diverse sample populations and randomised controlled trial designs. Moreover, investigating the combined effects of different recovery strategies could provide a more holistic understanding of their interactions and potential synergies. Understanding the underlying mechanisms through which these methods operate will also be crucial in refining and optimising recovery protocols for athletes. Further exploration into the psychological aspects of recovery methods can also offer deeper insights into their effectiveness. By exploring these areas, researchers can develop more effective and evidence-based recovery strategies that enhance athletic performance and reduce the risk of injury.

CONCLUSION

The findings of this literature review study confirm that aquatic therapies, such as hot-and-cold-water immersion (HWI) and cold-water immersion (CWI), along with a number of other alternative methods, provide a strong foundation for improving athletes’ recovery and performance after competition or training. In addition, new therapies such as curcumin supplements, electrostimulation, and high-intensity interval training (HIIT) also offer great potential for accelerating athletes’ recovery. However, despite these promising findings, there are also a number of research limitations that need to be addressed to strengthen these results. Limitations such as the small sample size and less than ideal research design highlight the need for further research with more sophisticated approaches and larger samples. Therefore, suggestions for future research include overcoming these limitations and continuing exploration of promising recovery methods.

As such, future research is expected to provide deeper insights and more effective solutions for supporting athletes’ recovery and improving their overall performance. In addition to identifying a variety of promising recovery methods, this literature review study also made an important contribution by highlighting the need for further research that is more in-depth and focuses on improving research design and increasing sample size. As such, it provides direction for researchers to develop more sophisticated approaches to strengthen the existing evidence and further investigate the effectiveness of the identified recovery methods. This contribution provides an important foundation for the development of knowledge and practices related to athlete recovery, with the hope that it can have a significant positive impact on supporting athletes' overall well-being and performance.

ACKNOWLEDGEMENTS

The authors express their gratitude to the reviewers. The assessment carried out by the reviewers has helped this writing in attaining the required academic standard. Also, the reviewers’ insightful comments and opinions assisted future readers and researchers refine the writing’s content.
CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Aidar, F. J., Fraga, G. S., Getirana-Mota, M., Marçal, A. C., Santos, J. L., de Souza, R. F., Vieira-Souza, L. M., Ferreira, A. R. P., de Matos, D. G., de Almeida-Neto, P. F., Garrido, N. D., Díaz-de-Durana, A. L., Knechtle, B., de Araújo Tinoeco Cabral, B. G., Murawska-Ciałowicz, E., Nobari, H., Silva, A. F., Clemente, F. M., & Badicu, G. (2022). Evaluation of Ibuprofen Use on the Immune System Indicators and Force in Disabled Paralympic Powerlifters of Different Sport Levels. Healthcare (Switzerland), 10(7), 1–15. https://doi.org/10.3390/healthcare10071331

Alba-Jiménez, C., Moreno-Doutres, D., & Peña, J. (2022). Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports, 10(3), 1–15. https://doi.org/10.3390/sports10030033

Almonroeder, T. G., Tighe, S. M., Miller, T. M., & Lanning, C. R. (2020). The Influence of Fatigue on Decision-Making in Athletes: A Systematic Review. Sports Biomechanics, 19(1), 76–89. https://doi.org/10.1080/14763414.2018.1472798

Amir-Behghadami, M., & Janati, A. (2020). Population, Intervention, Comparison, Outcomes and Study (PICOS) Design as a Framework to Formulate Eligibility Criteria in Systematic Reviews. Emergency Medicine Journal, 37(6), 387. https://doi.org/10.1136/emermed-2020-209567

Bahnert, A., Norton, K., & Lock, P. (2013). Association Between Post-Game Recovery Protocols, Physical and Perceived Recovery, and Performance in Elite Australian Football League Players. Journal of Science and Medicine in Sport, 16(2), 151–156. https://doi.org/10.1016/j.jsams.2012.05.008

Bai, K. Y., Liu, G. H., Fan, C. H., Kuo, L. T., Hsu, W. H., Yu, P. A., & Chen, C. L. (2023). 12-Week Curcumin Supplementation May Relieve Postexercise Muscle Fatigue in Adolescent Athletes. Frontiers in Nutrition, 9, 1–9. https://doi.org/10.3389/fnut.2022.1078108

Bestwick-Stevenson, T., Toone, R., Neupert, E., Edwards, K., & Kluzek, S. (2021). Assessment of Fatigue and Recovery in Sport: Narrative Review. International Journal of Sports Medicine, 43(14), 1151–1162. https://doi.org/10.1055/a-1834-7177

Boguszewski, D. (2015). Application of Physiotherapeutic Methods to Support Training and Post-Exercise Recovery of Combat Sports and Martial Arts Contestants. Journal of Combat Sports and Martial Arts, 6(2), 85–90. https://doi.org/10.5604/20815735.1195358

Bonilla, D. A., Pérez-Idárraga, A., Odriozola-Martínez, A., & Kreider, R. B. (2021). The 4e’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. International Journal of Environmental Research and Public Health, 18(1), 1–19. https://doi.org/10.3390/ijerph18010103

Brooks, T. J., Bradstreet, T. C., & Partridge, J. A. (2022). Current concepts and practical applications for recovery, growth, and peak performance following significant athletic injury. Frontiers in Psychology, 13(August), 1–8. https://doi.org/10.3389/fpsyg.2022.929487

Campbell, M. S., Carlini, N. A., & Fleenor, B. S. (2021). Influence of Curcumin on Performance and Post-Exercise Recovery. Critical Reviews in Food Science and Nutrition, 61(7), 1152–1162. https://doi.org/10.1080/10408398.2020.1754754

Chaiyakul, S., & Chaibul, S. (2021). Effects of Delayed Cold Water Immersion after High-Intensity Intermittent Exercise on Subsequent Exercise Performance in Basketball Players. Sport Mont, 19(3), 3–8. https://doi.org/10.26773/smj.2111003
Costa, I. (2022). *Preparación física para el fitness y el deporte de rendimiento: una mirada revisionista*. Mar del Plata: Universidad FASTA. http://redci.ufesa.edu.ar:8082/jspui/handle/123456789/929

Crowther, F., Sealey, R., Crowe, M., Edwards, A., & Halson, S. (2017). Influence of Recovery Strategies Upon Performance and Perceptions Following Fatiguing Exercise: A Randomized Controlled Trial. *BMC Sports Science, Medicine and Rehabilitation*, 9(1), 1–9. https://doi.org/10.1186/s13102-017-0087-8

Dantas, E., Barrón, J., Bispo, M., Godoy, E., Santos, C., Bello, M., & Cuadras, G. (2022). Criteria for Identifying and Assessing Sports Training Periodization Models. *Retos, 45*, 174-183. https://doi.org/10.47197/retos.v45i09.90837

de Borja, C., Chang, C. J., Watkins, R., & Senter, C. (2022). Optimizing Health and Athletic Performance for Women. *Current Reviews in Musculoskeletal Medicine, 15*(1), 10–20. https://doi.org/10.1007/s12178-021-09735-2

Habay, J., Van Cutsem, J., Verschueren, J., De Bock, S., Proost, M., De Wachter, J., Tassignon, B., Meeusen, R., & Roelands, B. (2021). Mental Fatigue and Sport-Specific Psychomotor Performance: A Systematic Review. *Sports Medicine, 51*(7), 1527–1548. https://doi.org/10.1007/s40279-021-01429-6

Heil, J., Loffing, F., & Büsch, D. (2020). The Influence of Exercise-Induced Fatigue on Inter-Limb Asymmetries: a Systematic Review. *Sports Medicine - Open, 6*(1), 1–16. https://doi.org/10.1186/s40798-020-00270-x

Heyman, E., De Geus, B., Mertens, I., & Meeusen, R. (2009). Effects of Four Recovery Methods on Repeated Maximal Rock Climbing Performance. *Medicine and Science in Sports and Exercise, 41*(6), 1303–1310. https://doi.org/10.1249/MSS.0b013e318195107d

Hu, M., Han, M., Zhang, H., Li, Z., Xu, K., Kang, H., Zong, J., Zhao, F., Liu, Y., & Liu, W. (2023). Curcumin (CUMINUP60®) Mitigates Exercise Fatigue Through Regulating PI3K/Akt/AMPK/Mtor Pathway in Mice. *Aging, 15*(6), 2308–2320. https://doi.org/10.18632/aging.204614

Huang, Y., Nakamura, Y., Ikegami, Y., & Huang, Q. (2018). Mathematical Modeling of Human Body and Movements: On Muscle Fatigue and Recovery Based on Energy Supply Systems. *IEEE-RAS International Conference on Humanoid Robots, 1*, 564–571. https://doi.org/10.1109/HUMANOIDS.2018.8625050

Ingram, J., Dawson, B., Goodman, C., Wallman, K., & Beilby, J. (2009). Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. *Journal of Science and Medicine in Sport, 12*(3), 417–421. https://doi.org/10.1016/j.jsams.2007.12.011

Juan, S., Lee, J.H., Won, S. J., Oh, S., & Ha, M. S. (2023). Effect of Saengmaeksan on Fatigue, Liver Function, and Immunity Combined with High-Intensity Training. *Journal of Immunology Research, 2023*, 1–9. https://doi.org/10.1155/2023/3269293

Junior, N. K. M. (2020). Periodization Models Used in the Current Sport. *MOJ Sports Medicine, 4*(1), 27-34. https://doi.org/10.15406/mojsm.2020.04.00090

Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Wolfgang Kallus, K., Meeusen, R., Muijika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and performance in sport: Consensus statement. *International Journal of Sports Physiology and Performance, 13*(2), 240–245. https://doi.org/10.1123/ijspp.2017-0759

King, J., Burgess, T. L., Hendricks, C., & Carson, F. (2023). The Coach’s Role during an Athlete’s Rehabilitation Following Sports Injury: A Seoping Review. *International Journal of Sports Science and Coaching, 18*(3), 928–944. https://doi.org/10.1177/17479541221150694
Kwicien, S. Y., McHugh, M. P., & Howatson, G. (2020). Don’t Lose Your Cool with Cryotherapy: The Application of Phase Change Material for Prolonged Cooling in Athletic Recovery and Beyond. *Frontiers in Sports and Active Living*, 2(October), 1–12. https://doi.org/10.3389/fspor.2020.00118

Lastella, M., Roach, G. D., & Sargent, C. (2019). Travel fatigue and sleep/wake behaviors of professional soccer players during international competition. *Sleep Health*, 5(2), 141–147. https://doi.org/10.1016/j.sleh.2018.10.013

Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J. (2017). Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. *Journal of Strength and Conditioning Research*, 31(10), 2920–2937. https://doi.org/10.1519/JSC.0000000000002122

Li, J., Wang, Y., & Li, S. (2022). Effects of Psychological Fatigue on College Athletes’ Error-Related Negativity Based on Artificial Intelligence Computing Method. *Eurasip Journal on Wireless Communications and Networking*, 2022(1), 1–16. https://doi.org/10.1186/s13638-022-02166-8

Mulía, E., Dutra, Y., Broatch, J., Bishop, D., & Zagatto, A. (2021). The Effects of Regular Cold-Water Immersion Use on Training Induced Changes in Strength And Endurance Performance: A Systematic Review with Meta-Analysis. *Sports Medicine, 51*(7), 161-174. https://doi.org/10.1007/s40279-020-01362-0

Mardiana, M., Kartini, A., Sutiningtyih, D., Suroto, S., & Muhtar, M. S. (2023). Literature Review: Nutrition Supplementation for Muscle Fatigue in Athletes. *Jurnal Keolahragaan*, 11(1), 10–23. https://doi.org/10.21831/jk.v11i1.4686

Morales, J., Franchini, E., Garcia-Massó, X., Solana-Tramunt, M., Buscà, B., & González, L.-M. (2016). The Work Endurance Recovery Method for Quantifying Training Loads in Judo. *International Journal of Sports Physiology and Performance*, 11(7), 913–919. https://doi.org/10.1123/ijspp.2015-0605

Naughton, M., Scott, T., Weaving, D., Solomon, C., & McLean, S. (2023). Defining and Quantifying Fatigue in the Rugby Codes. *PLoS ONE*, 18(3 March), 1–17. https://doi.org/10.1371/journal.pone.0282390

Nuuttila, O., Uusitalo, A., Kokkonen, V., Weeraratna, N., & Kyröläinen, H. (2024). Monitoring Fatigue State Heart Rate-Based and Subjective Methods during Intensified Training in Recreational Runners. *European Journal of Sports Science, 23*, 1-13. https://doi.org/10.1002/ejss.12115

O’Dea, R. E., Lagisz, M., Jennions, M. D., Koricheva, J., Noble, D. W. A., Parker, T. H., Gurevitch, J., Page, M. J., Stewart, G., Moher, D., & Nakagawa, S. (2021). Preferred Reporting Items for Systematic Reviews and Meta-Analyses in Ecology and Evolutionary Biology: A PRISMA Extension. *Biological Reviews, 96*(5), 1695–1722. https://doi.org/10.1111/brv.12721

Oliveira, A., Araujo, C., Senna, G., Lopes, T., Godoy, E., Scudese, E., Brandão, P., Scatoni, F., Oliveira, C., & Dantas, E. (2018). Comparison of the Matveev periodization model and the Verkoshansky periodization model. *JEponline*, 21(6), 60-67. https://doi.org/10.3900/jfj.04.06.358.e

Oriishi, M., Hagiwara, M., Yamazaki, R., Ohya, T., Ohnuma, H., Kawahara, T., & Suzuki, Y. (2021). Short-Term Hypoxic Training Improves Maximal Anaerobic Power after a Week of Recovery. *Gazzetta Medica Italiana Archivio per Le Scienze Mediche*, 180(12), 1–6. https://doi.org/10.23736/S0393-3660.18.03938-4

Paruns, D. V. (2021). Editorial: Review Articles, Systematic Reviews, Meta-Analysis, and The Updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines. *Medical Science Monitor*, 27, 1–3. https://doi.org/10.12659/MSM.934475

Pavin, L. N., Leicht, A. S., Gimenes, S. V., da Silva, B. V. C., Simim, M. A. de M., Maroccolo, M., & da Mota, G. R. (2019). Can Compression Stockings Reduce the Degree of Soccer Match-Induced Fatigue in Females? *Research in Sports Medicine*, 27(3), 351–364. https://doi.org/10.1080/15438627.2018.1527335
Pelana, R., Maulana, A., Winata, B., Widia nastuti, W., Sukur, A., Kuswahyudi, K., Juri ana, J., & Hermawan, R. (2019). Effect of Contrast Water Therapy on Blood Lactate Concentration after High-Intensity Interval Training in Elite Futsal Players. *Physiotherapy Quarterly, 27*(3), 12–19. https://doi.org/10.5114/pq.2019.86463

Roberts, L., Muthalib, M., Stanley, J., Lichtwark, G., Nosaka, K., Coombes, J., & Peake, J. (2015). Effects of Cold-Water Immersion and Active Recovery on Hemodynamic and Recovery of Muscle Strength Following Resistance Exercise. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309*(4), 389-398. https://doi.org/10.1152/ajpregu.00151.2015

Sajadian, M., Kordi, M., Gaeini, A., & Rahnama, N. (2017). Comparison of Effects of Active Recovery and Deep Water Running on Soccer Players’ Indices of Muscular Damage. *National Journal of Physiology, Pharmacy and Pharmacology, 7*(12), 1417–1421. https://doi.org/10.5455/njp.2018.8.0936205102017

Sayers, M. G., Calder, A. M., & Sanders, J. G. (2011). Effect of Whole-Body Contrast-Water Therapy on Recovery from Intense Exercise of Short Duration. *European Journal of Sport Science, 11*(4), 293–302. https://doi.org/10.1080/17461391.2010.512365

Silva, G., Goethel, M., Machado, L., Sousa, F., Costa, M. J., Magalhães, P. S., Silva, C., Midda, M., Leite, A., Couto, S., Silva, R., Vilas-Boas, J. P., & Fernandes, R. J. (2023). Acute Recovery after a Fatigue Protocol Using a Recovery Sports Legging: An Experimental Study. *Sensors, 23*(17), 1–13. https://doi.org/10.3390/s23177634

Siqueira, A., Vieira, A., Bottaro, M., Júnior, J., Nóbrega, O., Souza, V., Marqueti, R., Babault, N., & Durizzan, J. (2018). Multiple Cold-Water Immersions Attenuate Muscle Damage but not Alter Systemic Inflammation and Muscle Function Recovery: A Parallel Randomized Controlled Trial. *Scientific Reports, 8*(10961), 1-12. https://doi.org/10.1038/s41598-018-28942-5

Skorski, S., Mujika, I., Bosquet, L., Meeusen, R., Coutts, A. J., & Meyer, J. (2019). The Temporal Relationship between Exercise, Recovery Processes and Changes in Performance. *International Journal of Sports Physiology and Performance, 14*(8), 1015–1021. https://doi.org/10.1123/ijspp.2018-0668

Solsona, R., Méline, T., Borroni, F., Deriaz, R., Lacroix, J., Normand-Gravier, T., Candau, R., Racinais, S., & Sanchez, A. M. J. (2023). Active Recovery vs Hot- or Cold-Water Immersion for Repeated Sprint Ability after A Strenuous Exercise Training Session in Elite Skaters. *Journal of Sports Sciences, 41*(11), 1126–1135. https://doi.org/10.1080/02640414.2023.2259267

Starling, L., & Lambert, M. (2018). Monitoring rugby players for fitness and fatigue: what do coaches want? *International Journal of Sports Physiology and Performance, 13*(6), 777-782. https://doi.org/10.1123/ijspp.2017-0416

Sutherland, C., Smallwood, A., Wootten, T., & Redfern, N. (2023). Fatigue and its Impact on Performance and Health. *British Journal of Hospital Medicine, 84*(2), 1–8. https://doi.org/10.12968/hmed.2022.0548

Tuomilehto, H., Vuorinen, V. P., Penttilä, E., Kivimäki, M., Vuorenmäki, M., Venöjärvi, M., Airaksinen, O., & Pihlajamäki, J. (2017). Sleep of Professional Athletes: Underexploited Potential to Improve Health and Performance. *Journal of Sports Sciences, 35*(7), 704–710. https://doi.org/10.1080/02640414.2016.1184300

Van Cutsem, J., Marcocia, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The Effects of Mental Fatigue on Physical Performance: A Systematic Review. *Sports Medicine, 47*(8), 1569–1588. https://doi.org/10.1007/s40279-016-0672-0

Wilson, L. J., Cockburn, E., Paice, K., Sinclair, S., Faki, T., Hills, F. A., Gondek, M. B., Wood, A., & Dimitriou, L. (2018). Recovery Following a Marathon: A Comparison of Cold Water Immersion, Whole Body Cryotherapy and a Placebo Control. *European Journal of Applied Physiology, 118*(1), 153–163. https://doi.org/10.1007/s00421-017-3757-z
Xue, Y., Lv, X., & Ge, Z. (2023). Power Supply Characteristics of Basketball Players at Different Training Intensities. *Revista Brasileira de Medicina Do Esporte*, 29. https://doi.org/10.1590/1517-8692202329012022_0338

Yuan, R., Sun, H., Soh, K. G., Mohammadi, A., Toumi, Z., & Zhang, Z. (2023). The Effects of Mental Fatigue on Sport-Specific Motor Performance among Team Sport Athletes: A Systematic Scoping Review. *Frontiers in Psychology*, 14, 1–13. https://doi.org/10.3389/fpsyg.2023.1143618
JSA 6

ORIGINALITY REPORT

%	SIMILARITY INDEX	INTERNET SOURCES	PUBLICATIONS	STUDENT PAPERS
13%	12%	12%	4%	

PRIMARY SOURCES

#	Source	Title	Author(s)	Percentage
1	doaj.org	Internet Source	2%	
2	www.sportmont.ucg.ac.me	Internet Source	2%	
3	Henrique de Oliveira Castro, Lorenzo Laporta, Ricardo Lima, Filipe Clemente et al.	"Small-sided games in volleyball: A systematic review of the state of the art", Biology of Sport, 2022	Publication	1%
4	www.scielo.br	Internet Source	1%	
5	Jose Morales, Emerson Franchini, Xavier García-Massó, Mónica Solana-Tramunt, Bernat Buscà, Luis-Millán González	"The Work Endurance Recovery Method for Quantifying Training Loads in Judo", International Journal of Sports Physiology and Performance, 2016	Publication	1%
6	www.mdpi.com	Internet Source	1%	
ELSA HEYMAN, BAS DE GEUS, INGE MERTENS, ROMAIN MEEUSEN. "Effects of Four Recovery Methods on Repeated Maximal Rock Climbing Performance", Medicine & Science in Sports & Exercise, 2009				
Setting	Value			
-----------------------------	---------			
Exclude quotes	Off			
Exclude bibliography	On			
Exclude matches	< 1%			