INTRODUCTION

Extrahepatic biliary obstruction (EHBO) is uncommon in cats and can be caused by any pathological process that obstructs the flow of bile from the liver and gallbladder to the duodenum. Pancreatitis and neoplasia are the most important causes of EHBO in dogs (Fahie and Martin 1995), but the most important causes in cats have not been well established. Causes of EHBO in cats may include pancreatitis, neoplasia, cholelithiasis, parasitic infection, diaphragmatic hernia and foreign body obstruction (Gibson 1952, Barsanti and others 1976, Feldman and others 1976, Naus and Jones 1978, Majer and Kimman 1980, Wolf 1984, Martin and others 1986, Jenkins and others 1988, Lewis and others 1991, Boothe and others 1992, Cornell and others 1993, Fahie and Martin 1995, Leveille and others 1996, Pador and others 1997).

The feline extrahepatic biliary tract is anatomically more similar to the human tract than the canine tract. It consists of the hepatic ducts, gallbladder, cystic duct and common bile duct. The common bile duct usually enters the duodenum at the major duodenal papilla along with the major pancreatic duct. In some cats, an accessory pancreatic duct enters the duodenum through the minor duodenal papilla, 2 cm distal to the major duodenal papilla (Boyden 1957, Crouch 1969). The result of this ductal fusion is a frequent confluence of pancreatic and biliary disease.

Early surgical decompression of the biliary tract has been advocated to alleviate clinical signs (Bjorling 1991). However, indications for surgical intervention are poorly defined and there is considerable morbidity and mortality associated with operative procedures in cats with EHBO (Martin and others 1986). Decompression can be achieved either temporarily via percutaneous cholecystostomy catheter drainage (Lawrence and others 1992) or by definitive surgical procedures such as cholecystoduodenostomy, cholecystojejunostomy, cholecystotomy and cholecystectomy (Martin and others 1986, Bjorling 1991, Fossum 1997).

There is a paucity of information in the veterinary literature regarding the pathogenesis of EHBO and the results of surgical treatment in cats. The aim of this study was to document the clinicopathological findings in cats with confirmed EHBO, and to report perioperative complications and long-term follow-up in cases undergoing surgical decompression.

MATERIALS AND METHODS

The medical records of cats presented to the University of Pennsylvania Veterinary Hospital between May 1988 and August 2000 were reviewed. Cats were included in the study if they had clinical signs and laboratory data consistent with hepatobiliary disease, imaging findings consistent with biliary obstruction, and complete obstruc-

Pathogenesis and outcome of extrahepatic biliary obstruction in cats

Extrahepatic biliary obstruction (EHBO) was confirmed at surgery or necropsy in 22 cats. Biliary or pancreatic adenocarcinoma was diagnosed by histopathology in six cats and one cat had an undiagnosed mass in the common bile duct. The remaining 15 cats had at least one of a complex of inflammatory diseases including pancreatitis, cholangiohepatitis, cholelithiasis and cholecystitis. The most common clinical signs were jaundice, anorexia, lethargy, weight loss and vomiting. Hyperbilirubinaemia was present in all cases. Distension of the common bile duct and gall bladder was the most commonly observed finding on abdominal ultrasound. Nineteen cats underwent exploratory laparotomy for biliary decompression and diversion. Mortality in cats with underlying neoplasia was 100 per cent and, in those with non-neoplastic lesions, was 40 per cent. Long-term complications, in those that survived, included recurrence of cholangiohepatitis, chronic weight loss and recurrence of obstruction. Based on these findings, the prognosis for EHBO in cats must be considered guarded.
lesions (Levellie and others 1996, Smith and others 1998).

Exploratory laparotomy was performed via a ventral midline incision, followed by routine exploration of all abdominal organs. Presence of EHBO was confirmed by failed attempts at manual gallbladder expression or catheterisation through a duodenotomy or cholecystotomy incision. Cholecystoduodenostomy, cholecystojunostomy, cholecdochoduodenostomy or cholecystectomy were carried out according to standard techniques (Martin 1993, Fossum 1997). In some cases, owners elected intraoperative euthanasia. Biopsy specimens from the liver, gallbladder, pancreas and duodenum were fixed in neutral buffered 10 per cent formalin solution for routine processing for histological examination. Surgical procedures were performed directly by, or under the supervision of, board-certified surgeons.

Long-term follow-up was obtained either from the medical records or by questionnaire. Owners and/or their referring veterinarians were specifically questioned about postoperative complications, long-term morbidity and any recurrence of signs.

RESULTS

Twenty-two cats were confirmed to have EHBO either at surgery (n=19) or necropsy (n=3). Fifteen of the 22 (68 per cent) were domestic shorthaired cats; two (9 per cent) were Siamese; and there was one each of domestic long-haired, Burmese, Abyssinian, Himalayan and M aine coon breeds. Eleven of the 22 cats (50 per cent) were spayed females, nine (41 per cent) were castrated males and two (9 per cent) were intact males. The mean weight of the cats at presentation was 3.7 kg (range 1.9 to 6.3 kg) and the mean age at presentation was 8.8 years (range nine months to 18 years).

The most common presenting clinical signs (Table 1) were icterus (100 per cent), anorexia (95 per cent), lethargy (82 per cent), weight loss (82 per cent), vomiting (55 per cent) and dehydration (45 per cent). At the time of presentation, five cats were febrile (>39–5°C) with a mean temperature of 40°C (range 39.5 to 40.5°C) and two cats were hypothermic (<37.8°C). The mean time from onset of clinical signs to presentation was 20 days (range two to five months). Ten cats had been treated with antibiotics (amoxicillin, ampicillin or metronidazole) prior to referral, five had received intravenous fluid therapy, and one had received prednisone. Three cats had previously confirmed hyperthyroidism (two were clinically hyperthyroid at presentation and one was euthyroid after thyroidec- tomy). Five other cats tested for thyroid hormone concentrations upon admission were within the reference range. All animals tested for FeLV (nine cats), FIP (five) and T. gondii (three) were negative. One of six cats tested for FIV was positive.

Complete blood counts were available for 21 cats and were within the reference range in 10 of these animals. Nine cats had a leucocytosis (mean leucocyte count 28 ×10^9/litre; reference range 5.5 to 19.5 ×10^9/litre), primarily due to a mature neutrophilia in all cases. Eight cats were anaemic (packed cell volume <0.3 litres/litre; reference range 0.4 to 0.45 litres/litre). Serum biochemical analysis revealed elevations of alkaline phosphatase (ALP) in 17 of 22 (77 per cent) cats; alanine transaminase (ALT) in 17 of 21 (81 per cent) cats; gamma-glutamyl transferase (GGT) in 11 of 11 (100 per cent) cats; and aspartate aminotransferase (AST) in 12 of 12 (100 per cent) cats. Plasma ammonia concentrations were elevated in eight of 10 (80 per cent) cases, and serum total bilirubin concentra- tion was elevated in 22 of 22 (100 per cent) cats. Serum cholesterol was normal in 21 of 22 (95 per cent) cases. O nly seven of 22 (32 per cent) cats had decreased serum albumin concentrations and the decrease was mild in all cases. Two of 22 (9 per cent) cats had moderate elevations of blood urea nitrogen and serum creatinine (Table 2).

Table 1. Clinical signs in 22 cats with extrahepatic biliary obstruction

Sign	n	Per cent
Icterus	22	100
Anorexia	21	95
Lethargy	18	82
Weight loss	18	82
Vomiting	12	55
Dehydration	10	45
Polyuria	4	18
Polydipsia	3	14
Palpable cranial abdomi		
nal mass	3	14
Painful abdomen	1	5
Distended abdomen	1	5
Diarrhoea	1	5
Dyspnoea	1	5
In eight of 18 (44 per cent) cats, the OSP T was prolonged (mean 37 per cent prolongation; range 27 to 69 per cent), and in 10 of 18 (56 per cent) cats the APTT was prolonged (mean 46 per cent prolongation; range 29 to 105 per cent). In four of 17 (24 per cent) cats the plasma FDP assay (reference range <5 µg/ml in three cats and >10 µg/ml in one cat). All eight cats with prolonged OSP T had an APTT prolongation.

In 14 cats, results were normal in 11 (79 per cent) cats. Some organs were not imaged in all 21 cats. The most commonly observed abnormalities were in the common bile duct; distension and tortuosity were seen in 17 of 20 (85 per cent) and 15 of 19 (79 per cent) cats, respectively (Fig 1), and masses compressing the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were in the common bile duct; distension and tortuosity were seen in 17 of 20 (85 per cent) and 15 of 19 (79 per cent) cats, respectively (Fig 1), and masses compressing the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Choleoliths within the common bile duct were observed in four of 20 (20 per cent) cats, two of which were at the duodenal papilla. Cholest.
received at least one vasopressor drug (phenylephrine [seven cats], epinephrine [four], ephedrine [two] or dopamine [one], at various dosages). Systolic blood pressure increased after vasopressor therapy in seven cats and failed to improve in four cats (two that received epinephrine and one each that received dopamine and phenylephrine). Eleven of 19 cats received whole blood transfusions and 10 cats had to be withdrawn from isoflurane anaesthesia and were maintained by total intravenous anaesthesia in an effort to maintain normotension. Persistent refractory postoperative hypotension resulted in euthanasia in two cats at the owners’ request.

Four of eight liver biopsies, five of 10 bile cultures and the one cholecystic sample submitted were positive on aerobic or anaerobic bacterial culture. Escherichia coli was cultured from the liver in all four cases. Clostridium, Clostridiales, Enterococcus and Streptococcus species were recovered from bile cultures. E. coli and Enterococcus species were cultured from the cholecystic submitted.

Histological interpretation of biopsy or necropsy specimens was available in 21 cases. In most, but not all, cats, the pancreas, gallbladder and liver were examined. Pancreatic adenocarcinoma was diagnosed in four cats. Two of these cats had evidence of metastases; one to the liver, the other to the lungs. Two cats had biliary adenocarcinoma. One cat had a mass in the common bile duct which did not undergo histological examination. The remaining 15 cats had at least one of the following: cholangiohepatitis, cholecytitis, pancreatitis, cholelithiasis, hepatic lipiodosis and inflammatory bowel disease (Table 3). Seven of 15 (47 per cent) cats had pancreatitis (three observed at surgery and four confirmed on histology); 13 of 14 (93 per cent) and four of 14 (40 per cent) cats, that underwent liver biopsy, had cholangiohepatitis and hepatic lipiodosis, respectively; six of 15 (40 per cent) cats had cholelithiasis; and eight of nine (89 per cent) cats that had gallbladder biopsies had cholecystitis (Table 3). Histological examination of the small intestine was performed in only one cat and revealed mild lymphocytic enteritis. Cholelith composition was analysed in one case and was shown to be 100 per cent calcium carbonate.

Seven cats suffered cardiopulmonary arrest and died; one shortly after presentation and the other six within 72 hours of surgery. Six cats were euthanased at the request of the owner; two at presentation, two at surgery due to a poor prognosis, and two due to persistent hypotension and jejunostomy tube site abscessation (at postoperative days 3 and 7, respectively). Three cats were lost to follow-up. Six cats survived to discharge with a mean follow-up time of 26 months (range one to 72 months). Three of these cats died of unknown or unrelated disease one, three and 15 months postoperatively, with no known complications. One cat presented six years prior to its EHBO episode for a common bile duct tear which was managed by cholecystoduodenostomy. At exploratory laparotomy this cat had a totally occluded stoma site and cholelithiasis. This cat died of unknown causes 19 months after revision cholecystojejunostomy and had chronic diarrhoea and weight loss throughout this period. Two other cats remained alive at the time of writing. One had had recurrent bouts of cholangiohepatitis and needed a revision cholecystoduodenostomy 20 months after initial cholecystoduodenostomy for recurrent cholelithiasis. The other cat had had no complications in a follow-up period of six years. The overall mortality in cats with underlying neoplasia was 100 per cent within 72 hours of presentation. In cats without neoplasia, the overall mortality within one week of surgery was 40 per cent.

DISCUSSION

In this study, the aetiologies of feline EHBO appeared to fall into two groups: neoplasia of either biliary or pancreatic origin, and inflammatory diseases including pancreatitis, cholangiohepatitis, cholecystitis and cholelithiasis. The pathogenesis of these latter diseases, and their relationship to EHBO, is incompletely understood. An association has been established between cholangiohepatitis, pancreatitis and inflammation.
Pathogeneses and outcomes

hepatitis may have been a consequence of normal with no evidence of inflammation, obstruction, the common bile duct was cholangiohepatitis in the liver. Distal to the obstruction, the common bile duct was normal with no evidence of inflammation, suggesting that, in this case, cholangiohepatitis may have been a consequence of obstruction. Two cats with pancreatic carcinomas also had cholangiohepatitis. The role of obstruction and biliary stasis in the pathogenesis of cholangiohepatitis in these cases is unknown but may be significant. The authors suggest that cholangiohepatitis may be a primary cause of EH BO but it may be more commonly a secondary change that occurs as a result of obstruction. This hypothesis is supported by experimental studies demonstrating the development of cholangiohepatitis after ligation of the common bile duct in cats (Stewart and Lieber 1935, Center and others 1986).

Cholelithiasis is uncommon in cats and can be asymptomatic (Center 1996). Choleliths can be a cause or result of EH BO. Experimental ligation of the common bile duct results in bile sludging and cholelith formation in the canine gallbladder within three days of ligation (Bernhoft and others 1983). In cats, although bile sludging does occur, prolonged (up to 42 days) experimental ligation of the common bile duct failed to induce cholelith formation (Stewart and Lieber 1935). Little is known of the lithogenicity of feline bile in health or disease, and cholelith composition has not been extensively investigated in cats. Feline cholelith composition has been reported primarily as cholesterol, calcium and bilirubin, although precise composition analyses have not been reported in most cases (Gibson 1952, O’Brien and Mitchum 1970, Naus and others 1978, Hirsch and Doige 1983, Wolf 1984, Hidarn and Campbell 1985, Jorgensen and others 1987). The only cholelith analysed in this study was composed entirely of calcium carbonate. Bile stasis and bacteriuria have been incriminated in biliary lithogenesis (Bernhoft and others 1983, Kirpensteijn and others 1993), although a causal relationship has not been proven in the cat. In this study, six cats had choleliths detected at surgery or necropsy. Bile cultures were performed in four of these cases, of which three were positive.

Cholecystitis was found in eight cases in this study. This condition has been associated with EH BO and cholelithiasis in dogs (Church and Mathiesen 1988), and is thought to occur due to the proinflammatory effects of bile stasis after bile duct occlusion or irritant effects of choleliths present in the gallbladder (Center 1996). In this study, four of seven cases with cholecystitis had concurrent cholelithiasis. In seven of eight cases where liver and gallbladder were biopsied, concurrent cholecystitis and cholangiohepatitis were found. This suggests that cholecystitis may be part of the same underlying pathological process that induces cholangiohepatitis secondary to EH BO. The role of bacteriuria in the aetiology of cholecystitis is not known in cats. In one report, 81 per cent of dogs with necrotising cholecystitis had positive bile or gallbladder wall cultures (Church and Mathiesen 1988). Five of seven cats with cholecystitis in this study had bile cultures performed. All five (100 per cent) of these were positive for bacterial growth.

The indications for exploratory laparotomy in cats with a tentative diagnosis of EH BO are not well defined. In the absence of haemolytic or primary hepatic disease, it is generally accepted that an increasing serum bilirubin level over a seven- to 10-day period, combined with supportive radiographic or ultrasonographic evidence of obstruction, is an indication for exploratory surgery (Mathiesen 1989, Center 1996, Fossum 1997). Serum ALT, ALP, AST, GGT, amylase and lipase levels are less specific indicators of biliary obstruction (Center 1996). These findings are supported by the data in this study that show serum bilirubin levels elevated in 100 per cent of cases, while serum ALP and ALP levels were elevated in 77 per cent and 81 per cent of cats, respectively. It was also noted that the increases in ALT and ALP were smaller and less consistent over time, compared to reference ranges, than those for total bilirubin. Although 100 per cent of the cats had elevated AST and GGT in this study, the specificity of these enzymes for EH BO is unknown. Serum cholesterol assay did not appear to aid diagnosis of...
Scintigraphy can give accurate information to asymptomatic unobstructed cats (Center 1996). Biliary disease but can be present in asymptomatic unobstructed cats (Fossum 1997). This demonstrates the importance of obtaining radiographic or ultrasonographic evidence of an obstructive process that could potentially be surgically palliated by biliary decompression or diversion.

On ultrasound examination, 85 per cent of the cats had common bile duct distension and 62 per cent had gallbladder distension, when evaluated subjectively. In two cats, neither structure was distended. Evidence of gallbladder distension, and a dilated and tortuous common bile duct or hepatic ducts is suggestive of obstruction, although ultrasound examination cannot always confirm current obstruction without induction of gallbladder emptying with either a fatty meal or cholecystokinin (Smith and others 1998). Others have found the diameter of the common bile duct to be less than 4 mm in normal cats, and at least 5 mm in most cats with EHBO (Leveille and others 1996). In contrast, after prolonged distension of the common bile duct in dogs, loss of elasticity of the bile duct can result in permanent distension, although the gallbladder enlargement usually resolves (Raptopoulos and others 1985). Gallbladder wall thickening was subjectively observed in 61 per cent of cats in this study. Wall thickening is a non-specific sign of EHBO in cats (Hittmair and others 2001). Thus, ultrasonographic features of EHBO may not be specific for current obstruction and should not be considered in isolation as an indication for surgery.

Radiographic features of EHBO are rarely specific (Smith and others 1998). Radiodense calculi in the right cranial abdominal quadrant may be suggestive of biliary disease but can be present in asymptomatic unobstructed cats (Center 1996). Scintigraphy can give accurate information on gallbladder emptying and, where available, may be a valuable additional diagnostic test (Booth and others 1992, Newell and others 1996).

Perioperative morbidity and mortality in cats with EHBO were high in this study. Nineteen cats underwent ventral midline laparotomy. Within 48 hours of surgery postoperative mortality was 57 per cent (excluding cats that were euthanased or without follow-up). The precipitating factors that led to cardopulmonary arrest in these cases are not known. Six further cats were euthanased at the request of the owner due to poor prognosis (four cases) or poor recovery from surgery (two cases). EHBO has been associated with numerous perioperative complications including hypotension (Alon and others 1982), decreased vasopressor response (Finnberg and others 1981), decreased myocardial contractility (Green and others 1986), acute renal failure (Pitt and others 1981, Dixon and others 1983), coagulopathies including disseminated intravascular coagulation (Warde 1975), gastrointestinal haemorrhage (Dixon and others 1984), delayed wound healing (Bayer and Ellis 1976) and high mortality (Pitt and others 1981, Dixon and others 1983). A mean postoperative mortality rate (from multiple studies) in people with EHBO of 13 per cent has been reported (Pain and others 1985). Principal risk factors are anaemia, hyperbilirubinemia and malignancy (Pitt and others 1981, Dixon and others 1983). Unfortunately, small case numbers in this study precluded meaningful risk factor analysis. Intraoperative hypotension was very prevalent and necessitated discontinuation of inhalant anaesthetic gases, or vasopressor response to hypertensive measures was poor. Two cats were euthanased postoperatively due to persistent and refractory hypotension and abscission of their jejunostomy tube sites.

The physiological basis of these complications is poorly understood. It is hypothesized that the absence of bile salts in the intestinal tract leads to bacterial overgrowth and endotoxin absorption (Bailey 1976). Impaired clearance of endotoxins due to reduced reticuloendothelial function in the liver (Wen Ding and others 1994) leads to peripheral endotoxaemia (Bailey 1976). Endotoxin is a potent renal vasoconstrictor that is capable of causing acute tubular necrosis (Warde 1970). Gastrointestinal bleeding may occur due to endotoxin-mediated gastric ischaemia and increased acid secretion (Dixon and others 1984). Decreased fibroplasia and angiogenesis, causing delayed healing in abdominal wounds of jaundiced patients has been shown, but is not consistently seen in clinical cases of EHBO (Bayer and Ellis 1976). Hypotension and decreased myocardial contractility has been demonstrated, although the mechanism remains unclear (Alon and others 1982, Green and others 1986). As many postoperative complications of EHBO appear to be endotoxin-related, therapeutic intervention to prevent endotoxaemia may be of benefit. Bile salt supplementation, administration of polymixin B, cimetidine, lactulose and bowel irrigation have all been shown to prevent endotoxaemia (Pain and others 1985) and may have been beneficial to cats in this study.

This retrospective study did have some limitations. Case management and surgical technique will inevitably vary from surgeon to surgeon as well as over time. It should be noted that the prevalence of cholangiohepatitis, cholecystitis and pancreatitis occurring with EHBO may have been overestimated in this study due to the likelihood that surgical biopsies were taken from grossly abnormal organs which are therefore more likely to have histopathological change. Small case numbers preclude the identification of specific risk factors for perioperative complications in feline EHBO surgery. Furthermore, the effect of chronicity of disease (mean time from onset of clinical signs to presentation was 20 days) on outcome is unknown.
Conclusions

EHBO is uncommon in cats. In this group of cats, it was most often associated with malignant neoplasia or a complex of inflammatory diseases including pancreatitis, cholangitis, cholelithiasis and cholecystitis. These cats had persistent hyperbilirubinemia and ultrasonographic evidence of obstruction, and these parameters were used as indications for exploratory laparotomy and biliary decompression. Based on this clinical experience, the prognosis for cats undergoing laparotomy should be considered guarded; perioperative morbidity and mortality is high. The majority of cats in this study had a prolonged disease course, and it is possible that surgical intervention early in the course of disease may improve results. Long-term complications seen after biliary decompression include recurrent cholangitis, chronic weight loss and recurrence of obstruction.

References

ADU, U., BERNTS, M., MÖRDERZICH, D., HASSIBANNA, M. & BETTER, O. S. (1982) Effect of isolated cholelithaemia on systemic haemodynamics and kidney function in conscious dogs. Clinical Science 63, 59-64
BACI, J. L., HENRICH, M. J., WALKER, L. M. & WISHAL, R. (1989) Radiographic, ultrasonographic, and endoscopic findings in cats with inflammatory bowel disease of the stomach and small intestine: 33 cases (1990-1997). Journal of the American Veterinary Medical Association 215, 349-354
BAILEY, M. E. (1976) Endotoxin, bile salts and renal function in obstructive jaundice. British Journal of Surgery 63, 774-778
BARKSDALE, J. A., HEGGS, R. J., SWINN, J. S. & JONES, B. D. (1976) Adenocarcinoma of the extrahepatic bile duct in a cat. Journal of Small Animal Practice 17, 599-605
BAYE, J. I. & ELLIS, H. (1976) Jaundice and wound healing: an experimental study. British Journal of Surgery 63, 392-396
BERNHOFT, R. A., PELLEGRINI, C. A., BRODERICK, W. C. & WAY, J. (1996) Diseases of the gallbladder and biliary tree. In: Text-Atlas of Cat Anatomy. Ed J. E. Crouch. Lea & Febiger, Philadelphia. pp 144-145
BORG, J. M., ARMSTRONG, C. P., DUFFY, S. W. & DAVIES, G. C. (1983) Factors affecting morbidity and mortality after surgery for obstructive jaundice: a review of 373 patients. Annals of Surgery 198, 155-162
BROWN, J. M., ARMSTRONG, C. P., DUFFY, S. W. & EITAN, R. A. (1984) Upper gastrointestinal bleeding: A significant complication after surgery for obstructive jaundice. Annals of Surgery 199, 271-275
BRAH, M. A. & MARTIN, R. A. (1995) Extrahepatic biliary tract obstruction: A retrospective study of 45 cases (1983-1993). Journal of the American Animal Hospital Association 31, 48-52
BRODIE, F. L., STRAUSS, A. C. & GABERT, N. (1976) Bile duct carcinoma in the cat. Three case reports. Feline Practice 1, 33-39
FIBERG, J. P. M., SYDOR, H. A. & BETTER, O. S. (1981) Blunted response to angiotensin and sympathomimetic amines in bile-duct ligated dogs. Clinical Science 61, 525-533
FOSSE, T. W. (1997) Surgery of the extrahepatic biliary system. In: Small Animal Surgery Ed T. W. Fossum. Mosby, St Louis. pp 389-399
GREGSON, K. S. (1951) Cholelithiasis and cholecystitis in a cat. British Journal of Surgery 38, 288-289
GREEN, J., BOHM, R., MILLER, D. & BETTER, O. S. (1986) ‘The jaundiced heart’: a possible explanation for postoperative shock in obstructive jaundice. Surgery 100, 141-19
HEIDEN, G. L., CAPEFFEL, K. L. (1985) Cholestasis in a cat. Journal of the American Veterinary Medical Association 186, 176-177
HESCH, V. M. & DOESE, C. E. (1983) Supportive cholangiitis in cats. Journal of the American Veterinary Medical Association 182, 1221-1226
HITTMAN, K. M., VELOGRADIUS, H. D. & LOUPIN, G. (2001) Ultrasonographic evaluation of gallbladder wall thickness in cats. Veterinary Radiology & Ultrasound 42, 149-155
JENKINS, C. C., LEWIS, D. D., BROCK, K. A., HAGER, D. A. & WOLF, A. M. (1984) Obstructive jaundice in a cat resulting from choledocholithiasis. Veterinary Surgery 13, 779-786
JONES, A. J. & JONES, B. T. (1976) Adenocarcinoma of the extrahepatic bile duct in a cat. Veterinary Record 119, 63-64
KARELLAS, A., COMPTON, C. C., KROLOPOUS, F. J., DOWNS, R. A. & SMITH, E. H. (1985) The effect of bile and cholecystectomy on experimental biliary tree dilatation. Investigative Radiology 20, 276-286
KARELLAS, A., SMITH, E. H., DOWNS, R. A., KROLOPOUS, F. J. & MEYER, D. J. (1984) Hepatobiliary scintigraphy in the evaluation of feline liver disease. Journal of Veterinary Internal Medicine 10, 308-315
O'BRIEN, T. R. & MITCHIUS, G. D. (1970) Cholestasis in a cat. Journal of the American Veterinary Medical Association 156, 134-141
PAUL, J. A., CARL, C. J. & BALEY, M. E. (1985) Perioperative complications in obstructive jaundice: therapeutic considerations. British Journal of Surgery 72, 942-945
PASTON, J. J., MILL, N., ARUNDA, C., GARCIA, F., VELAZQUE, R., PUNISHA, M. & LAWS, S. (1997) Sciatrico adenocarcinoma of the extrahepatic bile duct in a cat. Veterinary Record 140, 367-368
PIETRO, H. A., CAMERON, J. L., POSTER, R. G. & GANDER, T. R. (1981) Factors affecting mortality in biliary tract surgery. American Journal of Surgery 141, 66-72
RAPPOPORT, V., FABAN, T. M., SULZ, W. D., O'CALL, J. & KAHLELL, A., COMPTON, C. C., KROLOPOUS, F. J., DOWN, R. A. & SMITH, E. H. (1985) The effect of bile and cholecystectomy on experimental biliary tree dilatation. Investigative Radiology 20, 276-286
SCHULTZ, S. A., BILLER, D. S., KRAFT, S. L., GESCHI, J. M. & HOSKING, J. J. (1998) Diagnostic imaging of biliary obstruction. The Compendium - Small Animal 20, 1114-1116
STEWARD, M. L. & LEBBE, M. M. (1935) Ligation of the common bile duct in the cat. Archives of Pathology 19, 34-36
THUNE, A., FRIMAN, S., CONRADI, N. & SWIKORK, J. (1990) Functional and morphological relationships between the feline main pancreatic and bile duct sphincters. Gastroenterology 98, 758-765
WIELAND, E. N. (1970) Endotoxin and acute renal failure associated with obstructive jaundice. British Medical Journal 4, 472-474
WIELAND, E. N. (1975) Endotoxin and acute renal failure. Nephron 14, 311-313
WIESE, D. J., GAGNE, J. M. & ARMSTRONG, P. J. (1996) Relationship between inflammatory hepatic disease and inflammatory bowel disease, pancreatitis, and nephritis in cats. Journal of the American Veterinary Medical Association 209, 1114-1116
WIN DRING, J., ANDERSSON, R., SOLTSHER, W. G. & BENGIKJA, M. (1994) Obstructive jaundice in a cat resulting from cholecystolithiasis. Journal of the American Veterinary Medical Association 185, 85-87

© British Small Animal Veterinary Association. All rights reserved