THE WOODY FLORA OF CERRADO VEGETATION IN THE STATE OF PIAUÍ, NORTHEASTERN BRAZIL

A. A. J. F. CASTRO*, F. R. MARTINS† & A. G. FERNANDES‡

Cerrado vegetation covers about 33% of the total area of the state of Piauí, northeastern Brazil, where there are also large areas of transition and contact with other vegetation types. Although the Piauí cerrados are a direct northern prolongation of the central core area, they are considered marginal by almost all authors. There are few previous records of their woody flora. This paper presents a floristic list of woody species based on the survey of 11 localities and updating of two already published lists. The climate belongs to Thornthwaite’s subhumid category due to Piauí’s position between the semiarid northeastern domain and the superhumid Amazon. The annual total rainfall is similar to that of the major part of the Brazilian cerrado area, but the rainy season is shorter. The soils differ from most cerrado soils in containing a greater proportion of concretions and plinthite with generally lighter colours, which may be interpreted as indicating large fluctuations of the water-table during pedogenesis. There are also widespread indications of seasonal high water-table showing that many of the Piauí cerrados probably belong to Sarmiento’s hyperseasonal savannah category. A total of 60 families is represented by 307 woody taxa (including 14 family indet., four genera indet. and 80 species indet.). The lowest floristic diversity (richness) occurred in pure cerrado, the greatest in transition and contact areas.

O cerrado do Piauí, nordeste do Brasil, cobre cerca de 33% da área do estado e apresenta extensas áreas de transição e contato com outros tipos de vegetação. É um prolongamento setentrional do cerrado central, mas é considerado marginal. Sua flora lenhosa é pouco conhecida. Este trabalho apresenta uma lista florística lenhosa baseada em 11 levantamentos de campo e atualização de duas listas já publicadas. Os climas são subúmidos de Thornthwaite, em decorrência de sua localização entre o domínio semi-árido nordestino e o superúmido amazônico. O total anual de chuva é semelhante ao do resto do cerrado, mas a estação chuvosa é bem mais curta. Os solos são diferentes dos do restante dos cerrados, apresentando concreções, plintita e cores claras, indicando grandes flutuações do lençol freático durante a pedogênese. As grandes flutuações estacionais do lençol freático implicam em que boa parte do cerrado piauiense possa ser classificada como savana hiperestacional de Sarmiento. Apresenta-se um total de 60 famílias conhecidas e 308 táxons lenhosos (14 desconhecidos no nível de família, 4 desconhecidos no nível de gênero e 80 desconhecidos no nível de espécie). A menor diversidade (riqueza) florística ocorreu no domínio puro do cerrado; as maiores ocorreram nas áreas de transição.

* Departamento de Biologia, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina 64049-550, PI, Brasil.
† Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas 13083-970, SP, Brasil.
‡ Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brasil.
INTRODUCTION

The state of Piauí is located in the northeastern region of Brazil (Fig. 1) and has a total area of 25,093,400ha of which about 33.3% (8,349,759ha) is covered by cerrado vegetation sensu lato, and 14.0% (3,507,107ha) represents transition and contact areas of cerrado with other types of vegetation: caatinga (dry thorn woodland and shrubland), carrasco (dry cerrado-caatinga transition), dry deciduous forest, seasonal subdeciduous forest, Orbignya palm forest, riparian forest and grasslands (CEPRO, 1992). Cerrado constitutes the second most extensive type of vegetation in the state; its area is only exceeded by that of the caatinga.

Although the cerrado area in the state of Piauí is a direct continuation of that of the core area on the Central Plateau of Brazil, it is generally considered marginal (e.g. Rizzini, 1963) since it is located at the northern extreme of the distribution area of the biome. There is little information available about its flora: only five relevant papers have so far been published, of which two (Goergen, 1983; Jenrich, 1989) did not have floristic survey as their main goal. Of the others, Rizzini (1976) produced a preliminary list of 61 species of angiosperms based on a single field survey and an examination of herbarium material, but Barroso & Guimaraes (1980) and Castro (1984) reported intensive field surveys. The present paper communicates the results of surveys of some representative areas in the state.

MATERIALS AND METHODS

Eleven different localities (locs. 102 and 121–130, Fig. 1) were surveyed by means of the plot method (Mueller-Dombois & Ellenberg, 1974). The vegetation of all localities fell into the physiognomic class of cerrado sensu stricto (Coutinho, 1978); many were sited in regions of vegetation transition (principally between cerrado and deciduous forest or cerrado and caatinga).

In one locality (loc. 102) the area was surveyed by a systematic grid consisting of thirty 10 x 20m plots, 50m apart, and all woody plants with at least one trunk with diameter at ground level ≥3cm were recorded. All other localities (see Table 1 and caption of Fig. 1 for details) were sampled by single 20 x 500m (1ha) plots on which all woody plants with at least one trunk of ≥5cm DBH were recorded.

The species records of Barroso & Guimaraes (1980) from the Sete Cidades National Park (loc. 69, Fig. 1) and Castro (1984) from Uruçuí-Uná Ecological Station (loc. 95) are also included to make the list as complete as possible. The identifications in the latter work have been updated. These authors used the 'preferential collecting' method (Castro, 1994), i.e., a general reconnaissance and collecting, or wide-patrolling or walking-and-gathering method, without setting any specific area or plant size limits. Arboreal and shrubby species have been selected from their lists, which also included species from the lower layers of vegetation.

Information on the geographic distribution of cerrado woody species was obtained from many references (e.g. Ratter et al., 1973; Heringer et al., 1977; Sarmiento, 1983;
FIG. 1. Map of Piauí showing distribution of cerrado and transitional vegetation (CEPRO, 1992) and the positions of the survey localities.
Table 1. Details of the 13 survey areas (from north to south). Information on the soil units is given in Table 2.

Loc. No.	Name & municip.	No. of spp.	No. of individ.	Co-ord.	Alt. (m)	Soil unit	Clim. topol.
128	Alto Bonito, Piracuruca	22	252	3°58'S 41°43'W	70	AQ-1	aC1s1A4a'
125	Caicara, Batalha	29	322	4°01'S 42°04'W	80	R-2	bC1s2A4a'
69*	Sete Cidades, Piripiri e Piracuruca	116	—	4°06'S 42°43'W	275	PV-16	bC1s2A4a'
127	Bom Princípio, Batalha	20	270	4°08'S 42°09'W	80	R-2	bC1s2A4a'
124	Lagoa Seca, Barras	25	249	4°14'S 42°37'W	75	LA-9	bC1s2A4a'
126	Carnaubal, Piripiri	23	213	4°16'S 41°47'W	160	LA-14	cC2s1A4a'
129	Santana, Capitão de Campos	35	405	4°27'S 41°56'W	140	LA-11	aC1s1A4a'
123	Tucum, José de Freitas	35	396	4°45'S 42°35'W	137	PT-3	bC1s2A4a'
121	Descanso, Beneditinos	39	323	5°27'S 42°21'W	80	PT-4	bC1s2A4a'
122	Toti Negra, Monsenhor Gil	25	323	5°33'S 42°37'W	115	PV-11	bC1s2A4a'
130	Vista Alegre, Elesbão Veloso	27	336	6°12'S 42°08'W	230	R-13	dC1d2A4a'
102	Chapada Grande, Oeiras	84	2,136	6°36'S 42°16'W	430	LA-1	dC1d2A4a'
95**	Uruçuí-Unia, Ribeiro Gonçalves	128	—	8°51'S 45°15'W	400	LA-3	eC1s1A3a'

Notes:
- Dry subhumid with a moderate water excess in the autumn, fourth megathermic
- Dry subhumid with a large water excess in the autumn, fourth megathermic
- Humid subhumid with a moderate water deficit in the spring, fourth megathermic
- Dry subhumid with slight water excess in the autumn, fourth megathermic
- Dry subhumid with a moderate water excess in the autumn, third megathermic

* Barroso & Guimarães (1980)
** CASTRO (1984)
by examination of herbarium specimens and by personal communication.

Voucher specimens are deposited in the Graziela Barroso Herbarium (TEGB) of the Departamento de Biologia/Centro de Ciências Naturais/Universidade Federal do Piauí, Prisco Bezerra Herbarium (EAC) of the Departamento de Biologia/Centro de Ciências/Universidade Federal do Ceará, and Herbarium of the Departamento de Botânica/Instituto de Biologia/Universidade Estadual de Campinas (UEC).

Information on climatic elements and soils was obtained from Brasil (1990), Jacomine et al. (1986), Krishnan (1980), Lima et al. (1982), Nimer & Brandão (1985, 1989), and Varejão-Silva & Reis (1988). The hydric balance and the classification of the climate of each locality were determined according to Thornthwaite (1948) and Thornthwaite & Mather (1955), following the instructions of Nimer & Brandão (1985, 1989) and Varejão-Silva & Reis (1988).

PHYSICAL ENVIRONMENT

All localities have a fair degree of climatic similarity with average annual temperature between 26.3°C and 27.0°C, precipitation between 1,217mm and 1,709mm, and annual average hydric deficiency between 365mm and 560mm. They all fall into Thornthwaite's dry subhumid climatic type with the exception of locality 126 which just falls into his humid subhumid category (Table 1). The prevalence of subhumid climatic types in the localities studied is a consequence of the geographic position of the state of Piauí. They indicate the transition between the two great groups present in northern and northeastern Brazil, the Wet and Dry climates of Thornthwaite (1948). This transitional climatic character is expected, since the state is under both the northeastern influence, with its semiarid climate, and the Amazonian influence, with its superhumid climate (Azevedo & Caser, 1980). The yearly total precipitation is similar to that of the bulk of the cerrado area in Brazil, and the climate shows a marked hydric seasonality, as it is highly megathermic all the year round and the rains are concentrated in a few months (December to April).

The soil mapping units to which each locality belongs are given in Table 1 and are described in Table 2. Most of the soils show evidence of hydric seasonality in the presence of concretions, plinthite, or light grey or yellow colours (Tables 1 and 2). Concretions and plinthite result most commonly from the interaction between iron, or iron and aluminium, and water in conditions of alternating soaking and drying, as can happen when the water-table shows great variation. Greyish colours may be produced by anaerobic conditions due to the elevation of the water-table, while yellow colours may indicate an excessive humidity with formation of goethite (when iron is present), but may also indicate low iron content and prevalence of kaolinite (Oliveira et al., 1992). The presence of *Copernicia* and *Orbignya* palms also indicates the influence of the soil water-table (Rizzini et al., 1988). The prevalence of soils showing the presence of a seasonally high water-table indicates that these Piauian cerrados may be classified closer to hyperseasonal savannahs than to purely
TABLE 2. The soil mapping units found in the 13 survey areas, following Jacomine (1986).

Loc. no.	Soil code	Soil type	Vegetation
128	AQ-1	Quartz Sands	Subdeciduous cerrado
		Greyish Podzolics	Subdeciduous cerrado
125, 127	R-2	Litholic soils	Subdeciduous cerrado
		Concretionary Yellow-Red Podzolics	Subdeciduous cerrado
		Plinthosols	Subdeciduous cerrado/caffinga with *Orbignya*
69	PV-16	Concretionary Yellow-Red Podzolics	Subdeciduous cerrado and transition to caatinga
		Litholic soils	Subdeciduous cerrado and transition to caatinga
124	LA-9	Yellow Latosols	Subdeciduous cerrado, subdeciduous forest/cerrado with and without *Orbignya*
		Plinthosols	Subdeciduous cerrado, subdeciduous forest/cerrado with and without *Orbignya*
126	LA-14	Yellow Latosols (with pebbles)	Subdeciduous cerrado with or without *Copernicia*
		Concretionary Plinthosols	Subdeciduous cerrado with or without *Copernicia*
		Indiscriminate assemblage (Plinthosols, Greyish Podzols, Quartz Sands)	Subdeciduous cerrado with or without *Copernicia*
129	LA-11	Yellow Latosols	Subdeciduous cerrado with or without *Copernicia*, and transition to subdeciduous forest
		Plinthosols	Subdeciduous cerrado with or without *Copernicia*, and transition to subdeciduous forest
123	PT-3	Plinthosols	Campo Maior complex*
		Solodic Planosols	Campo Maior complex*
121	PT-4	Plinthosols	Campo Maior complex*
		Yellow-Red Podzolicss	Campo Maior complex*
		Litholic soils	Campo Maior complex*
122	PV-11	Concretionary Yellow-Red Podzolics	Subdeciduous forest with or without *Orbignya* and transition to cerrado with or without *Orbignya*
		Litholic soils	Deciduous forest and transition to subdeciduous cerrado
130	R-13	Litholic soils	Hypoxerophyllous caatinga and transition to deciduous cerrado
		Quartz Sands	Hypoxerophyllous caatinga and transition to deciduous cerrado
seasonal ones (Sarmiento, 1984). Soils with light colours are not very frequent under cerrado vegetation, where predominantly reddish colours indicative of well-drained soils generally occur (Furley & Ratter, 1988). Another important feature is that cerrado is a characteristic vegetation of calcium-poor dystrophic soils, while the presence of deciduous and subdeciduous forest and both Orbignya and Copernicia palms is linked to mesotrophic soils with higher calcium levels.

RESULTS AND DISCUSSION

Table 1 gives the number of species and individuals, the co-ordinates, altitude and soil type for each locality sampled. It shows that the three localities surveyed by nonstandardized methods showed the highest number of species. Localities 95 and 69 surveyed by the ‘preferential collecting’ method without reference to limited area or plant size qualification had 128 and 116 species respectively. Locality 102, where the size qualification used was trunk only >3cm diam. at ground level, contained no less than 2163 individuals of 84 species in 0.6ha. The other 10 areas were all surveyed by the same method (> 5cm DBH on 1ha plots of the same shape) and are thus directly comparable.

In these 10 areas the climate is very similar but there seems to be a relation of species diversity (richness) to soil type. It was greatest (loc. 121, 123, 129) where Plinthosols prevail in the mapping units and least (loc. 124, 126, 127, 128) where Latosols and Quartz Sands predominate, with intermediate levels (loc. 122, 125, 130) where Litholic Soils preponderate. The number of species \(S \) was roughly proportional to the absolute density \(N \) (Table 1). Therefore, the soil mapping units may influence both the density and the species richness of the vegetation. In the present study the greatest species diversity was found in plots occurring in the Campo Maior complex (a very heterogeneous environment) and in areas of transition to subdeciduous forest, that is in the transition to better (more mesotrophic) soils. The least diversity was found in plots occurring in pure physiognomies of subdeciduous cerrado. Intermediate diversity was found in areas of transition to deciduous forest and to caatinga, that is in the transition to more xeric vegetation types.

The values of \(N \) in Table 1 indicate that the absolute density of thick-stemmed
woody plants is not as high as that found in typical cerrado sensu stricto in Central Brazil (e.g. Furley et al., 1988), but is closer to that occurring on waterlogged or concretionary and rocky soils.

Of the 307 species encountered in the surveys only 22 occurred in 50% or more of the localities, and only *Byrsonima crassifolia*, *Qualea grandiflora*, *Q. parviflora*, *Stryphnodendron coriaceum* and *Vatairea macrocarpa* were present in all 13 surveys, thus indicating a great spatial heterogeneity of species composition in the cerrado vegetation in Piauí. This accords well with the high levels of heterogeneity recorded by Ratter & Dargie (1992) in their survey of 26 areas of the cerrado biome throughout Brazil.

Table 3 lists the species and attempts to indicate their geographical distribution where sufficient information is available. Information on geographical distribution can be obtained for only about 60% of the total species listed in Table 3, and is available in a very uneven fashion. Yet, although very speculative, some interpretation can be made of the known geographical distribution. Rizzini (1976) and Heringer et al. (1977) claimed that the cerrados of the states of Maranhão and Piauí have a very different woody flora from the central core area, the two areas having only about 50% of their species in common, and, for this reason, should be considered as a separate floristic or phytogeographic unit. Fernandes & Bezerra (1990) designated the vegetation of these states as the Parnaíba Basin Sector of the Cerrado Province, thus stressing its individuality. Castro (1994) proposed the existence of eight diversity supercentres for Brazilian cerrados, one of them in the northeastern region of the cerrado biome, providing evidence based on the multivariate numerical analyses of many surveys. However, Table 3 shows that many species have wide geographic distribution in neotropical savannahs (Sarmiento, 1983). Some of these species (marked by ‘W’ in Table 3 and representing about 17% of the species listed) have areas that extend far to the south and north. Others (marked by ‘S’ in Table 3; about 22% of the species listed) have a large area of distribution to the south (Leitão Filho, 1992), with the cerrados of Piauí close to their northern limit. Yet others (marked by ‘N’; about 6%) extend further to the north, the Piauian cerrados representing roughly their southern limit. Some species (marked ‘C’; about 16%) are elements from the shrub-tree caatingas (Rodal, 1992, 1994), while others (marked ‘A’; about 5%) also occur in Amazon terra firme (noninundated) forests. Species marked ‘R’ (about 8%) have their distribution restricted to the cerrados of Piauí and Maranhão. Finally, calcicolous species are indicated by ‘Ca’ (about 4%) since this soil preference is known to be important in determining species occurrence in cerrado habitats (Ratter et al., 1977, 1978). The percentages given above add up to more than the c.60% of species for which information of geographic distribution is available since some species occur in more than one distribution category.

Our results show that the Piauian cerrados have some distinct characteristics of their woody flora, not found elsewhere, thus supporting, at least partially, the ideas of Fernandes & Bezerra (1990), Heringer et al. (1977) and Rizzini (1976). The differences can even be observed at family level, e.g. *Bombacaceae* and *Proteaceae*, two important families in other areas that have not been found in our surveys in
TABLE 3. Woody species of the cerrado vegetation of the state of Piauí, northeastern Brazil. Families according to Cronquist (1988). Code letters: W, wide distribution extending far north and south; S, wide distribution to the south; N, wide distribution to the north; C, also found in shrub-tree caatinga; A, also found in terra firme (non-inundated) Amazonian forest; R, restricted distribution; Ca, calcicolous species. (Available information on distribution is often incomplete so that future research may demonstrate that, for instance, an S may prove to be a W). Total: 60 families; at least 159 genera; 307 taxa.

Species	W	S	N	C	A	R	Ca
ANACARDIACEAE							
Anacardium occidentale L.							
Astronium fraxinifolium							
Myracrodruon urundeuva							
Tapirira guianensis Aubl.							
ANNONACEAE							
Annona coriacea Mart.							
Annona spp. (3 spp.)							
Duguetia echiophora R.E.Fr.							
Guatteria aff. minarum R.E.Fr.							
Xylopia aromatica Mart.							
APOCYNACEAE							
Aspidosperma multiflorum A.DC.							
A. pyrifolium Mart.							
A. subincanum Mart. ex A.DC.							
Aspidosmera s.p.							
Hancornia speciosa M. Gómez							
Himantanthus articulatus (Vahl) Woodson							
Rauvolia ternifolia Kunth							
Secondatia densiflora A.DC.							
ARALIACEAE							
Didymopanax sp.							
ARECACEAE							
Bactris sp.							
Copernicia prunifera (Mill.) H.E. Moore							
Mauritia martiana (Mart.) Burret							
ASTERACEAE							
Brickellia pinifolia A. Grey							
Clidadium rotundifolium DC.							
Trichogonia campestris Gardner							
Vernonia fruticulosa Mart. ex DC.							
Vernonia sp.							
BIGNONIACEAE							
Anemopaegma laeve DC.							
Arrabidacea inaequalis Baill.							
A. conjugata Mart.							
Arrabidacea sp.							
Cybistax antisypilistica (Mart.) Mart.							
Jacaranda brasiliana (Lam.) Pers.							
Genus	Species Information	Status					
-----------------------	--	--------					
Jasminoides (Thunb.)	Sandwith						
Jacaranda spp.	(2 spp.)						
Tabebuia aurea (Manso)	Benth. & Hook.						
T. ochracea (Cham.)	Standl.						
T. serratifolia (Vahl)	Nicholson						
Tabebuia spp.	(2 spp.)						
Zeyheria montana Mart.							
Unknown (1 sp.)							

BORAGINACEAE

- *Cordia superba* Cham.
- *Cordia* spp. (2 spp.)

BURSERACEAE

- *Protium heptaphyllum* (Aubl.) Marchand

CACTACEAE

- *Cereus jamacaru* DC.
- *Caesalpinia ferrea* Mart. ex Tul.
- *Cenostigma gardnerianum* Tul.
- *Chamaecrista desvauxii* (Colladon) Killip var. *langsdorfii* (Kunth ex Vogel) H.S. Irwin & Barneby
- *Ch. desvauxii* var. *malacophylla* (Vogel) H.S. Irwin & Barneby
- *Ch. juruenensis* (Hoehne) H.S. Irwin & Barneby
- *Ch. rotundata* (Vogel) H.S. Irwin & Barneby
- *Ch. zygophyloides* (Taub.) H.S. Irwin & Barneby
- *Chamaecrista* sp.
- *Copaifera coriacea* Mart.
- *C. luetzelburgii* Harms
- *C. martii* Hayne
- *Dimorphandra gardneriana* Tul.
- *Hymenaea courbaril* L. var. *courbaril* H. S. Irwin & Langenh.
- *H. courbaril* var. *stilbocarpa* (Hayne) Lee & Langenh.
- *H. maranhensis* Lee & Langenh.
- *H. stigonocarpa* Mart. ex Hayne
- *H. stigonocarpa* var. *pubescens* Benth.
- *H. velutina* Ducke
- *Martiodendron mediterraneum* (Mart. ex Benth.) Koeppen
- *Peltogyne confertiflora* (Hayne) Benth.
| Table 3. (Continued). |
|-----------------------|
| **Sclerolobium aureum** (Tul.) Benth. | |
| **S. hypoleucum** Benth. | |
| **S. paniculatum** Vogel | |
| **Senna latifolia** (G. Meyer) H.S. Irwin & Barneby | |
| **S. macranthera** DC. ex Colladon var. | |
| **Senna pudibunda** (Mart. ex Benth.) H.S. Irwin & Barneby | |
| **S. pendula** (Willd.) H.S. Irwin & Barneby | |
| **S. silvestris** (Vell.) H.S. Irwin & Barneby | |
| **S. trachypus** (Benth.) H.S. Irwin & Barneby | |
| **Senna sp.** | |
| **CARYOCARACEAE** |
| **Caryocar coriaceum** Wittm. | |
| **CECROPIACEAE** |
| **Cecropia cinerea** Miq. | |
| **CELASTRACEAE** |
| **Maytenus sp.** | |
| **CHRYSOBALANACEAE** |
| **Exellodendron gardneri** (Hook.f.) Prance | |
| **Hirtella ciliata** Mart. & Zucc. | |
| **Hirtella sp.** | |
| **Licania spp.** (2 spp.) | |
| **CLUSIACEAE** |
| **Clusia microphylla** Klotzsch ex Engl. | |
| **Kielmeyera sp.** | |
| **Platonia insignis** Mart. | |
| **Vismia guianensis** (Aubl.) Choisy | |
| **V. magnolifolia** Cham. & Schltdl. | |
| **Vismia sp.** | |
| **COCHLOSPERMACEAE** |
| **Cochlospermum regium** (Schrank) Pilg. | |
| **COMBRETACEAE** |
| **Buchenavia grandis** Ducke | |
| **Combretum ellipticum** Kuhl. | |
| **C. fruticosum** (Loefl.) Stuntz | |
| **C. leprosum** Mart. | |
| **C. mellifluum** Eichler | |
| **Terminalia fagifolia** Mart. & Zucc. | |
| **Terminalia sp.** | |
| **Thiloa glaucocarpa** (Mart.) Eichler | |
| **CONNARACEAE** |
| **Connarus suberosus** Planch. var. *suberosus* | |
| **C. suberosus** var. *fulvus* (Planch.) Forero | |
| **Connarus sp.** | |
| **DILLENIACEAE** |
| **Curatella americana** L. | |
| **Davilla cearensis** Huber | |
| **D. aff. multiflora** A. St.-Hil. | |
| **Davilla sp.** | |
Family	Species/Genus
EBENACEAE	
	Diospyros brasiliensis Mart.
	D. coccolobaefolia Mart.
	D. sericea A.DC.
ERYTHROXYLACEAE	
	Erythroxylum spp. (4 spp.)
EUPHORBIACEAE	
	Mabea fistulifera Mart.
	Mabea sp.
	Manihot coerulescens Pohl
	M. pruinosa Pohl
	Manihot sp.
	Maprounea sp.
FABACEAE	
	Acosmium dasycarpum (Vogel) Yakovlev
	Andira laurifolia Benth.
	A. surinamensis (Boudt.) Splitz. ex Pulle
	A. vermifuga (Mart.). Benth.
	Bowdichia virgilioides Kunth
	Camptosema coriaceum (Nees & Mart.) Benth.
	Dalbergia miscolobium Benth.
	Deguelia nitidula (Benth.) A.-Tozz.
	Dioclea glabra Mart. ex Benth.
	D. reflexa Hook.f
	Eriosema aff. congestum Benth.
	Eriosema sp.
	Harpalyce brasiliana Benth.
	Lonchocarpus araripensis Benth.
	Luetzelburgia auriculata (Allemão) Ducke
	Machaerium acutifolium Vogel
	M. opacum Vogel
	Machaerium sp.
	Pterocarpus violaceus Vogel
	Pterodon emarginatus Vogel
	Vatairea macrocarpa (Benth.) Ducke
	Vigna firmula (Benth.) Maréchal, Mascherpa & Stainier
FLACOURTIACEAE	
	Casearia arborea (A. Rich.) Urb.
	C. sylvestris Sw.
	Lindackeria latifolia Benth.
ICACINACEAE	
	Emmotum nitens (Benth.) Miers
HIPPOCRATEACEAE	
	Salacia micrantha (Mart.) Peyr.
	Salacia spp. (3 spp.)
HUMIRIACEAE	
	Humiria balsamifera Aubl.
TABLE 3. (Continued).

FAMILY	Genus	Species Information
KRAMERIACEAE	Krameria argentea	Mart. ex Spreng.
	Krameria sp.	
LAURACEAE	Ocotea sp.	Unknown (1 sp.)
	Lecythis sp.	
LOGANIACEAE	Antonia ovata	Pohl
	Mitreola sp.	
	Strychnos mitscherlichii	M.R. Schonb. var. amapensis Krukoff & Barneby
LYTHRACEAE	Diplusudon sp.	
	Lafoensia replicata	Pohl
MALPIGHIACEAE	Banisteriopsis calcicola	B. Gates
	B. pubipetala	(A. Juss.) Cuatrec.
	B. stellaris	(Griseb.) B. Gates var. latifolia
	A. Juss.	
	Banisteriopsis spp.	(2 species)
	Byrsonima blanchetiana	Miq.
	B. crassifolia	Kunth
	B. sericea DC.	
	B. vacciniiifolia	A. Juss.
	Byrsonima spp.	(2 spp.)
	Heteropterys sp.	
	Tetrapterys squarrosa	Griseb.
	Tetrapterys sp.	
MALVACEAE	Hibiscus furcellatus	Desr.
MARCGRAVIACEAE	Norantea sp.	
MELASTOMATACEAE	Clidemia sp.	
	Leandra sp.	
	Miconia albicans	(Swartz) Triana
	M. theaezans	(Bonpl.) Cogn.
	Miconia sp.	
	Mouriri acutiflora	Naudin
	M. pusa	Gardner
MENISPERMACEAE	Cissampelos sp.	
MIMOSACEAE	Calliandra abbreviata	Benth.
	C. parviflora	Benth.
	Chloroleucum foliolosum	(Benth.)
	G.P. Lewis¹	
TABLE 3. (Continued).		

C. mangense (Jacq.) Britton & Rosè	•	•
Enterolobium contortisiliquum (Vell.) Morong	•	•
E. schomburgkii (Benth.) Benth.	•	
Enterolobium sp.	•	
Inga fagifolia (L.) Willd. ex Benth.	•	
I. scabriuscula Benth.	•	
Mimosa acutistipula Benth.	•	
M. caesalpinifolia Benth.	•	
M. pithecolobioides Benth.	•	
M. aff. somnians Humb. & Bonpl. ex Willd.	•	
M. verrucosa Benth.	•	•
Mimosa sp.	•	
Parkia platycephala Benth.	•	
Piptadenia moniliformis Pers.	•	
Plathymenia foliolosa Benth.	•	
P. reticulata Benth.	•	
Stryphnodendron coriaceum Benth.	•	
S. polyphyllum Mart.	•	
Stryphnodendron sp.	•	

MONIMIACEAE

- *Siparuna* sp.

MORACEAE

- *Brosimum guianensis* (Aubl.) Huber
- *Brosimum* spp. (2 spp.)
- *Ficus gamelleira* Kunth & Bouché ex Kunth
- *Ficus* sp.

MYRISTICACEAE

- *Virola sessilis* (A.DC.) Warb.
- *V. surinamensis* (Rol.) Warb.

MYRSINACEAE

- *Cybianthus* sp.

MYRTACEAE

- *Campomanesia lineatifolia* Ruiz & Pav.
- *Eugenia punicifolia* (Kunth) DC.
- *Eugenia* spp. (2 spp.)
- *Myrcia hayneana* Berg
- *M. obtusata* (Schauer) Legrand
- *M. polyantha* DC.
- *M. tomentosa* (Aubl.) DC. var. alloiota (Berg) Legrand
- *Myrciaria* aff. maragnensis Berg
- *Psidium* spp. (3 spp.)
- Unknown (1 sp.)

NYCTAGINACEAE

- *Guapira* sp.

OCHNACEAE

- *Ouratea hexasperma* (A. St.-Hil.) Baill.
- *Ouratea* sp.
TABLE 3. (Continued).

FAMILY	SPECIES
OLACACEAE	Ximenia americana L.
	*
OPILIACEAE	Agonandra brasiliensis Miers
	*
PASSIFLORACEAE	Passiflora foetida L.
	*
	P. haematostigma Mart.
	*
	P. kermesina Link
	*
	Passiflora sp.
POLYGALACEAE	Bredemeyera floribunda Willd.
	*
	Securidaca volubilis L.
RUBIACEAE	Alibertia concolor (Cham.) Schum.
	*
	A. edulis (L. Rich.) A. Rich.
	*
	A. obtusa Schum.
	*
	A. sessilis (Vell.) Schum.
	*
	Chomelia obtusa Cham. & Schldtl.
	*
	Genipa americana L.
	*
	Guettarda angelica Mart. ex Müll.Arg.
	*
	Palicourea sp.
	*
	Psychotria sp.
	*
	Thieleodoxa lanceolata Cham.
	*
	Tocoyena formosa (Cham. & Schldtl.) Schum.
	*
	ssp. formosa
	*
	T. formosa ssp. tomentosa (Mart.) A.L. Prado
	*
	Tocoyena sp.
SAPINDACEAE	Allophylus quercifolius (Mart.) Radlk.
	*
	Allophylus sp.
	*
	Cupania revoluta Radlk.
	*
	Magonia pubescens A. St.-Hil
	*
	Serjania caracasana (Jacq.) Willd.
	*
	S. marginata Casar.
	*
	Unknown (1 sp.)
SAPOTACEAE	Manilkara spp. (2 spp.)
	*
	Pouteria ramiflora (Mart.) Radlk.
	*
SIMAROUBACEAE	Simaba warmingiana Engl.
	*
	Simarouba versicolor A. St.-Hil.
	*
SOLANACEAE	Solanum baturitense Huber
	*
	S. cordifolium Dunal
	*
	S. macranthum Dunal
STERCULIACEAE	Helicteres sacarolha A. St.-Hil.
	*
	Sterculia striata A. St.-Hil. & Naudin
	*
	Sterculia sp.
	*
TABLE 3. (Continued).

FAMILY	Species
STYRACACEAE	Styrax sp.
TILIACEAE	Luehea paniculata Mart.
VERBENACEAE	Aegiphila splendens Schauer
	Lippia salviifolia Cham.
	Vitex flavens Kunth
VOCHYSIACEAE	Callisthene fasciculata Mart.
	C. microphylla Warm.
	Qualea grandiflora Mart.
	Q. parviflora Mart.
	Salvertia convallariodora A. St.-Hil.
	Vochysia gardneri Warm.
	Vochysia sp.
FAMILY UNKNOWN	14 spp.

1 Chloroleucon foliolosum (Benth.) G.P. Lewis (= Pithecellobium foliolosum Benth.).
2 Mimosa pithecolobioides Benth. (= M. lastrophylla Benth.).

Piauí. However, our research on the geographical distribution of species does not support the high degree of species endemism claimed by Rizzini (1976) and Heringer et al. (1977). Such claims must be considered against the background of extremely high floristic heterogeneity throughout the cerrado region: Castro (1994) found that about 40% of all woody species occurred at only a single locality out of the total of 145 which he compared. In fact, the number of probably endemic woody species in the Piauián cerrados is no greater than that found by Castro (1994) in other areas of the Brazilian cerrados. This, together with the high proportion of species with wide geographic distribution, suggests that the Piauián cerrados were not isolated from other cerrados areas for any long period during evolution.

ACKNOWLEDGEMENTS

Financial support for the project was provided by FAPESP (Foundation for Science Support of the State of São Paulo), CNPq (National Council of Scientific and Technological Development), SUDENE (Superintendency for the Development of the Northeastern Region), and GTZ (Deutsche Gesellschaft für Technische Zusammenarbeit). The authors are indebted to the staff of the Departamento de Botânica/Universidade Estadual de Campinas, and particularly to Professors Hermógenes de Freitas Leitão Filho (recently deceased) and Jorge Yoshio Tamashiro for helping in the taxonomic identification. We thank Drs James Ratter and Peter Furley for comments, and Esmeralda Zancheta Borghi and Emílio de Santana for drawing Fig. 1.
REFERENCES

AZEVEDO, L. G. de & CASER, R. L. (1980). Regionalização do cerrado. In: MARCHETTI, D. & MACHADO, A. D. (coord.). Cerrado: uso e manejo. Brasília, Editerrá. V Símpósio sobre o Cerrado, pp. 211–230. Brasília: Universidade de Brasília.

BARROSO, G. M. & GUIMARÃES, E. F. (1980). Excursão botânica ao Parque Nacional de Sete Cidades, Piauí. Rodriguésia 32 (53): 241–267.

BRASIL. Ministério do Interior. Superintendência do Desenvolvimento do Nordeste. (1990). Dados pluviométricos mensais do Nordeste; Estado do Piauí. Recife: SUDENE/DPG/HME, 236 pp. (Pluviometria, 2).

CASTRO, A. A. J. F. (1984). Vegetação e flora da Estação Ecológica de Uruçuí-Una (Resultados preliminares). Anais Congresso Nacional de Botânica 36: 251–261.

CASTRO, A. A. J. F. (1994). Comparação florístico-geográfica (Brasil) e fitossociológica (Piauí São Paulo) de amostras de Cerrado. PhD thesis. Universidade Estadual de Campinas. São Paulo, Brazil.

CEPRO. Fundação Centro de Pesquisas Econômicas e Sociais do Piauí. (1992). Cerrados piauienses: estudo preliminar de suas potencialidades. Teresina: CEPRO, 63pp.

COUTINHO, L. M. (1978). O conceito de cerrado. Revista Brasileira de Botânica 1 (1): 17–23.

CRONQUIST, A. (1988). The evolution and classification of flowering plants. 2nd edn. New York: New York Botanical Garden, 555pp.

FERNANDES, A. G. & BEZERRA, P. (1990). Estudo fitogeográfico do Brasil. Fortaleza: Stylus Comunicações, 205pp.

FURLEY, P. A. & RATTER, J. A. (1988). Soil resources and plant communities of the central Brazilian cerrado and their development. Journal of Biogeography 15: 97–108.

FURLEY, P. A., RATTER, J. A. & GIFFORD, D. R. (1988). Observations on the vegetation of eastern Mato Grosso, Brazil III. The woody vegetation and soils of the Morro de Fumaça, Torixoreu. Proc. R. Soc. Lond. B 235: 259–280.

GOERGEN, J. (1983). Critérios ecológicos para o desenvolvimento de modelos de aproveitamento agrícola adaptados a regiões das chapadas no Piauí central, Brasil. Teresina: DNOC/GTZ, 243pp. (Mimeographed).

HERINGER, E. P., BARROSO, G. M., RIZZO, J. A. & RIZZINI, C. T. de (1977). A flora do cerrado. In: FERRI, M. G. (coord.). IV simpósio sobre o cerrado, pp. 211–232. São Paulo: EDUSP; Belo Horizonte: Italiaia.

JACOMINE, P. K. T. (coord.). (1986). Levantamento exploratório de reconhecimento de solos do estado do Piauí. 2 vol. Rio de Janeiro, EMBRAPA/SNLCS. Recife: SUDENE/DRN, 782pp.

JENRICH, H. (1989). Vegetação arbórea e arbustea nos altiplanos das chapadas do Piauí central; Características, ocorrências e empregos. Teresina: DNOC/GTZ.

KRISHNAN, A. (1980). Agroclimatic classification methods and their application to India. In: VIRMANI, S. M., SIVAKUMAR, M. V. K., ROSENBERG, G., KUMBLE, V. (eds.). Climatic classification: a consultant’s meeting. Patanchern: ICRISAT, pp. 59–88.

LEITÃO FILHO, H. de F. (1992). A flora arbórea dos cerrados do estado de São Paulo. Hoehnea 19: 151–163.

LIMA, M. G. de, ALENCAR, P. A. M. de & COELHO, H. (1982). Normais de temperaturas máxima, mínima e média estimadas em função de latitude, longitude e altitude para o estado do Piauí. Ensaios. Boletim de Pesquisa 1: 9–37.

MUELLER-DOMBOIS, D. & ELLENBERG, H. (1974). Aims and methods of vegetation ecology. New York: John Wiley and Sons, 547pp.
NIMER, E. & BRANDÃO, A. M. P. M. (1985). Balanço hídrico anual a partir de valores normais e tipologia climática. Revista Brasileira de Geografia 47 (3/4): 373–416.

NIMER, E. & BRANDÃO, A. M. P. M. (1989). Balanço hídrico e clima da região dos cerrados. Rio de Janeiro: IBGE, 166pp.

OLIVEIRA, J. B. de; JACOMINE, P. K. T. & CAMARGO, M. N. (1992). Classes gerais de solos do Brasil; Guia auxiliar para seu reconhecimento. Ibataticabal: FUNEP, 201pp.

RATTER, J. A. & DARGIE, T. C. D. (1992). An analysis of the floristic composition of 26 cerrado areas in Brazil. Edinb. J. Bot. 49: 235–250.

RATTER, J. A., RICHARDS, P. W., ARGENT, G. & GIFFORD, D. R. (1973). Observations on the vegetation of northeastern Mato Grosso I. The woody vegetation types of the Xavantina–Cachimbo Expedition area. Phil. Trans. R. Soc. B 266: 449–492.

RATTER, J. A., ASKEW, G. P., MONTGOMERY, R. F. & GIFFORD, D. R. (1977). Observações adicionais sobre o cerradão de solos mesotróficos no Brasil Central. In: FERRI, M. G. (coord.). IV Simpósio sobre o Cerrado, pp. 303–316. São Paulo, Brazil.

RATTER, J. A., ASKEW, G. P.; MONTGOMERY, R. F. & GIFFORD, D. R. (1978). Observations on forests of some mesotrophic soils in Central Brazil. Revista Brasileira de Botânica 1: 47–58.

RATTER, J. A., BRIDGEWATER, S., ATKINSON, R. & RIBEIRO, J. F. (1996). Analysis of the floristic composition of the Brazilian cerrado vegetation II: Comparison of the woody vegetation of 98 areas. Edinb. J. Bot. 53: 153–180.

RIZZINI, C. T. de. (1963). A flora do cerrado; Análise florística das savanas centrais. In: FERRI, M. G. (org.). Simpósio sobre o Cerrado: pp. 105–202. São Paulo: Edgard Blücher/EDUSP.

RIZZINI, C. T. de. (1976). Contribuição ao conhecimento das floras nordestinas. Rodriguésia 28 (41): 137–193.

RIZZINI, C. T. de, COIMBRA FILHO, A. F. & HOUAISS, A. (1988). Ecossistemas brasileiros/Brazilian ecosystems. Rio de Janeiro: Index, 200pp.

RODAL, M. J. N. (1992). Fitossociologia da vegetação arbustivo- arbórea em quatro áreas de caatinga em Pernambuco. PhD thesis. Universidade Estadual de Campinas. São Paulo, Brasil.

RODAL, M. J. N. (1994). Lista de famílias e espécies arbustivas e arbóreas depositadas nos herbários da Empresa Pernambucana de Pesquisa Agropecuária (IPA), professor Vasconcelos Sobrinho (PEUFR) e Universidade Federal de Pernambuco (UFP). Recife: Universidade Federal Rural de Pernambuco, 15pp. (Reprographed).

SARMIENTO, G. (1983). The savannahs of tropical America. In: BOURLIÈRE, F. (ed.). Tropical Savannahs. Amsterdam: Elsevier, pp. 245–288.

SARMIENTO, G. (1984). The Ecology of Neotropical Savannahs. Cambridge, USA: Harvard University Press, 235pp.

THORNTHWAITE, C. W. (1948). An approach towards a rational classification of climate. Geographic Review 38 (1): 55–94.

THORNTHWAITE, C. W. & MATHER, J. R. (1955). The water balance. Publication of Climatology 8 (1): 1–104. Laboratory of Climatology, Centerton, New Jersey University, USA.

VAREJÃO-SILVA, M. A. & REIS, A. C. de S. (1988). Agrometeorologia e climatologia tropicais, pp. 86–89. Módulo 1.1. Brasilia, ABEAS.

Received 9 January 1995; accepted in revised form 20 October 1997