Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ^{13}C as light as -69% V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ^{13}C down to -125% V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.
Although there are observations supporting anaerobic oxidation of methane (AOM) in deep groundwater in fractured granitic rock1-3, the vast majority of observations of this phenomenon are from marine seabed systems including fossil methane seeps4-9 and active methane seeps10-13. At marine methane seeps microbial AOM has been shown to occur with sulphate as an electron acceptor14, involving a defined, syntrophic two-membered bacterial consortium: anaerobic methane oxidizing (ANME) archaea and sulphate-reducing bacteria (SRB)12,13,15, although AOM solely by ANME has also been suggested16. The AOM occurs at the sulphate-methane transition zone (SMTZ), where sulphate-rich descending water mix with deeper-seated methane and SRB outcompete methanogens12,13,15. Here methane is oxidized by ANME via a proposed reversal CO\textsubscript{2} reduction and, as a consequence, authigenic carbonates precipitate from the produced bicarbonate9. Because the methane generally has light carbon isotope values (\(^{13}\text{C}/^{12}\text{C}\) expressed as \(\delta^{13}\text{C}\)) of down to \(\approx 50\%\) when it is thermogenic and typically \(\approx 10\%\) when it is biogenic, the authigenic carbonates are \(^{13}\text{C}\)-depleted with values as low as \(\approx -69\%\) (refs 5-8,10-12,18).

In contrast to shallow marine sediments where sulphate is generally depleted with depth, numerous granitic shield areas worldwide host sulphate-rich water at great depth, in brines derived from a proposed marine source such as basinal brines from overlying sedimentary rock successions19-21. When the basement rock eventually has been re-exposed after erosion of the sedimentary successions, repeated inflations of surface water, including glacial melt water, marine water and meteoric water, are possible and controlled by factors such as location and topography. Fresh water (meteoric) therefore typically occupies the upper bedrock fracture volume, a mixture of brackish and glacial water is found at intermediate depth, and saline sulphate-rich water is generally restricted to great depth, such as described for the crystalline bedrock of southeastern Sweden in the Baltic Shield22,23. Owing to changing hydrochemical conditions during infiltration of occasionally carbon-rich water from the terrestrial environment above and increased alkalinity in response to microbial breakdown of organic matter and methane, carbonates (as a rule calcite) can become oversaturated and precipitate on the fracture walls. The stable carbon isotope composition of these calcites can thus be used to identify biological processes in the fractured upper crust, especially across depth-related hydrochemical boundaries, at which microbial communities thrive14. However, low-temperature calcite has only been sparsely used to reveal microbial processes in deep bedrock fractures because of its rare, fine-grained and finely zoned nature, as well as because of challenges and costs of sampling representative calcite crystals deep in the Earth’s crust3,24-28.

In the present study we have examined more than 40 cored boreholes drilled in one of the most extensively studied granitic bedrock sites in the world, the Laxemar area, Sweden, and sampled fine-grained-zoned calcite crystals throughout the upper 1,000 m of the bedrock. These calcites postdate fluid-inclusion-rich calcite formed at \(>50\,\text{°C}\) (refs 25,29) and have single-phased fluid inclusions suggesting, although few in numbers, formation at \(<50\,\text{°C}\) (ref. 30). The stable isotopic composition of carbon and oxygen was determined in transects across the numerous growth zones present within the calcite crystals, in a total of more than 430 analyses by secondary ion mass spectrometry (SIMS; \(10\mu m\) wide, 1–2 \(\mu m\) deep spots). The sulphur isotope inventory, \(^{34}\text{S}/^{32}\text{S}\) presented as \(\delta^{34}\text{S}\), of co-genetic pyrite crystals were explored by similar SIMS analyses (\(n=101\)), which can reveal coeval SRB activity31. The organic inventory of the calcites and the groundwater chemistry are also explored. Thereby, the hydrochemical and biological evolution in situ in the fractures could be revealed in detail.

Here we report extremely \(^{13}\text{C}\)-depleted carbonates precipitated in fractures deep within granitoid rocks. The \(\delta^{13}\text{C}\) values are by far the lowest ever reported for carbonates (\(\delta^{13}\text{C}\): \(-125\%\)) and are suggested to be related to microbial sulphate-dependent anaerobic oxidation of biogenic methane. Methane oxidation occurring in the energy-limited and carbon-poor groundwater systems deep within Earth’s terrestrial landscape evidently results in a unique carbon isotope variability compared with other environments, such as the well-characterized sedimentary AOM settings.

Results

Extreme carbon isotope variation of calcite in rock fractures.

Within the individual calcite crystals (Fig. 1) there is large \(\delta^{13}\text{C}\) variation, of up to almost \(110\%\) between different growth zones, thus revealing large temporal variation of the processes in the fractures (Figs 2b and 3, Supplementary Table 1, location in Supplementary Fig. 1). The range of the \(\delta^{13}\text{C}\) values depends on the depth at which the calcites were precipitated and reside and, therefore, mark different biological processes at different depths within the fracture network (Fig. 2b). In the upper 200 m several calcites have zones with positive \(\delta^{13}\text{C}\) values (for example, in Fig. 3a). Such \(^{13}\text{C}\)-enriched carbonate pools develop where methanogenesis occurs32,33, leading to a \(^{13}\text{C}\)-rich methane and \(^{13}\text{C}\)-rich residual CO\textsubscript{2} from which calcite formed. Although measurements of methane are relatively scarce in this area and the concentrations are generally low (<0.2 ml-1), anomalies with elevated concentrations (>0.6 ml-1, related to waters with abundant cultivatable methanogens and high concentrations of dissolved organic carbon, DOC24), are indeed restricted to shallower depths than the sulphate-rich saline waters (Fig. 2a,

![Figure 1](image-url) Fracture and mineral characteristics. (a) Drill core with an exposed fracture surface (scale in cm). (b,c) SEM images of crystals in situ on the fracture wall (scale bars, 500 \(\mu m\)). The calcite in c is formed via anaerobic oxidation of methane and is intergrown with pyrite formed in relation to bacterial sulphate reduction.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8020

© 2015 Macmillan Publishers Limited. All rights reserved.
Calcite methanogenesis—calcite coatings were collected. Equation 1,000 l current groundwater at the same depth where the AOM- or calcites between 200 and 730 m. This 13C depletion is so strong water temperatures of 5–20 °C evidenced has a surficial origin.

Figure 2 | Depth-related variations of geochemical variables in the groundwater and in calcite. (a) Sulphate and methane concentrations in the groundwater. (b) δ13Ccalcite and groundwater δ13CDIC. (c) δ34Scalcite. –1,000

Supplementary Table 2. The organic input to the system in the form of descending DOC, which fuels the methanogenesis, evidently has a surficial origin.

Extreme 13C depletion of −125 to −50‰ was observed in calcites between 200 and 730 m. This 13C depletion is so strong that it cannot originate from any other source compound than methane. For methane to be incorporated in calcite, it first has to be oxidized, in this particular setting by anaerobic mechanisms because of consistently reducing conditions (absence of O2; Eh ranges from −210 to −380 mV (ref. 22), far below the redox transition at 20 m depth33). In addition, aerobic methane oxidation would have resulted in calcite dissolution rather than precipitation35. The oxidation of methane causes a decrease in 13C in the produced CO2, with fractionation (δCH4-CO2) commonly in the order of 1.009–1.024 (refs 17,37,38). The calcites with the lightest δ13C must therefore have been produced from a source methane with δ13C lighter than −100‰.

Consequently, the C-isotope data suggest a dominantly biological origin of the source methane because thermogenic methane rarely exceed values lighter than −50‰ (ref. 17). Thirteen fractures from boreholes spread out over a 3 × 3 km area featured AOM-related calcite, which in seven fractures had lighter δ13C than −90‰ (four lighter than −100‰), marking that extraordinary 13C depletions are widespread in this environment and not single occurrences. All of these 13 fractures carried calcite with minimum δ13C values that were similar to or lighter than reported for AOM-related authigenic marine carbonate (−69‰ (ref. 5)). Minimum sulphur isotope values of pyrite (δ34Sp yrite, full results in Supplementary Table 3) co-genetic with AOM calcite are mainly 22–33‰ lighter, and in the rare case 46.8‰ lighter, than the anticipated source sulphate (+15‰ (ref. 31)). This is evidence of activity of SRB, which preferentially use the lighter S isotope in their metabolism, with large related fractionation between sulphate and produced sulphide as a consequence39. Large fractionation of the sulphur isotopes characterizes AOM-related microbial sulphate reduction, particularly when methane concentrations are low, such as at SMTZ40. These findings are in accordance with previous observations of SRB-related pyrite in the deep fracture system at Laxemar31 (Fig. 2d) and nearby Åsps3. In the latter case, pyrite was accompanied by 13C-depleted calcite (at lightest −46.5‰ V-PDB; Vienna Pee Dee Belemnite), although not specifically interpreted to be AOM-related33.

Other δ13C values than those related to methanogenesis (heavy) or AOM (light) within the crystals reflect a dominance of inorganic C (−10 to −3‰) observed at all depth, and dominance of C from microbial degradation of organic matter (down to −30 ± 5, potentially reflecting mixing of different C sources, including a minor AOM part). The latter δ13C signatures appear down to −730 m, which thus represent a depth limit for the descent of DOC from the terrestrial ecosystem above.

Organic inventory of the calcite crystals. In addition to the diagnostic 13C-depleted carbonate, the presence of typically 13C-depleted specific lipid biomarker signatures of ANME and its SRB partner frequently serve as diagnostic tracers for active or fossil AOM in marine settings14,18,41. In the tiny calcite crystals from bedrock fractures studied here, it is impossible to determine δ13C of specific organic compounds. Nevertheless, our coupled gas chromatogram mass spectrometer (GC/MS) and Time-of-Flight (ToF)-SIMS analyses revealed signatures of methylated anteiso- (ai) and iso- (i) fatty acids (ai-C15:0, 10Me-C16:0, i- and ai-C17:0, Fig. 4), hopanes (norhopane and hopene) and several non-isoprenoidal dialkyl glycoler diethers with branched alky, cyclohexyl or cyclopropyl units (DAGE, Fig. 4, Supplementary Table 4), in the AOM-related calcites. These organic molecules clearly originate from in situ microbial activity because they are mostly SRB-specific, and in the case of DAGES, and ai-C15:0 highly AOM-specific5,8,9,18. This suggests that a similar two-membered ANME-SRB microbial consortium as described at other AOM sites13,18 operated here as well. The organic material within the calcites generally clusters along intracrystal grain boundaries (the borders between different growth zones), as shown by ToF-SIMS analyses of crystal interiors. Raman spectroscopy and ToF-SIMS revealed that there is no abundant organic material in the calcite matrix apart from along these grain boundaries. The GC/MS and ToF-SIMS analyses of calcite leachates (from up to 220 mg large calcite samples), which represent accumulated organic material from grain boundaries of several crystals showed more pronounced signatures of organic compounds compared with spot analyses of the crystals. Raman spectroscopy and scanning electron microscopy (SEM) investigations showed, however, that fine-grained clay minerals
and pyrite dominate along the grain boundaries (Supplementary Fig. 2, Supplementary Note 1 and Supplementary Table 5). Numerous observations from crystalline rock fractures and vesicles elsewhere report complete mineralization of microbial structures to, for example, clay minerals, embedded in calcite. Significant, but not complete, fossilization of the microorganisms in biofilms at the grain boundaries is therefore proposed on the basis of the observations of the interiors of the AOM crystals.

General mechanisms of methane formation and oxidation.

Taken together, the δ13C data of the calcites suggest a mechanism whereby methane is formed in shallow fractures (Fig. 2a,b), transported downwards and oxidized and precipitated as calcite at the border to the sulphate-rich, methane-poor saline water deep in the crust at 200–730 m. The oxygen isotope composition (18O/16O expressed as δ18O) of the calcites can be used to link the calcites to different climatic/hydrological events through comparison with the δ18O of the infiltrating waters, which in the studied setting is approximately −21‰ V-SMOW for glacial water, −6 to 0‰ for the variety of transgressed marine and/or brackish waters (ocean-type water at c. 0‰, Holocene brackish Baltic Sea waters at −5.9 to −4.7‰), −10‰ for meteoric and c. −9‰ for the deep sulphate-rich brine at >500 m depth.

Although mixing of these waters have resulted in mixing of the δ18O values, generally one of the water types dominates. Because the δ18O values of the AOM- and methanogenesis-related calcites are generally similar and constant at −6 ± 2‰ PDB with depth (Fig. 2b), these two types of calcites can be causally and temporally linked to the infiltration of a similar type of groundwater. On the basis of the δ18O values and consideration of the fractionation occurring when calcite precipitates, this water was dominantly brackish-marine (δ18O values in line with brackish/marine waters during Holocene and the Eemian interstadial, cf.22,46, and heavier than all other potential source water types). The AOM- and methanogenesis-related calcite generally do not make up the whole crystals but

Figure 3 | Variation of stable isotope composition within different calcite and pyrite crystals. Transects of SIMS analyses are shown in back-scattered SEM images above, and isotopic compositions corresponding to these analyses below. Growth direction of calcite is from left to right. (a) Calcite with episodic methanogenesis-related signature (positive δ13C, blue symbol). This is the dominant appearance of methanogenesis-related calcite, related to δ18O with marine-influenced signature followed by lighter δ13C and δ18O. (b-e) AOM-related calcite (green symbols) with typical associated increase in δ18O values from the earlier growth zone (indicative of increased marine influence). (d,e) AOM-related calcite succeeded by calcite with significantly heavier δ13C and lighter δ18O (fresh water, with large glacial component, especially in e). (f) 34S evolution with growth from core to rim in pyrite from three different fractures. The symbol sizes are generally larger than the analytical uncertainties (except for δ18O, where error bars are shown). Scale bars (a) 300 μm, (b) 200 μm, (c) 200 μm, (d) 100 μm, (e) 200 μm, (f) 50 μm.
can be both preceded and succeeded by calcite with distinctly different δ^{13}C- and δ^{18}O-signatures (Fig. 3b–e). This reflects that methanogenesis and AOM have been initiated but also terminated in response to changing hydrochemical conditions in the fracture system. The AOM-related calcite growth is frequently accompanied by relative enrichment in δ^{18}O in the calcites, indicative of increased proportion of marine water relative to fresh waters (Fig. 3b,c), further supported by brackish-marine salinities (2.4 wt.% NaCl) estimated in the only AOM sample with measurable fluid inclusions (at /C0_623 m, Supplementary Table 6, Supplementary Note 2, Supplementary Figs 3 and 4). This is in line with the sequence of infiltration of surficial water during the repeated Pleistocene deglaciation cycles in this area, involving high hydraulic heads that pressed glacial melt water several hundred metres into the fracture network and subsequent marine transgressions over the depressed land masses."
Dominantly pre-Holocene methane oxidation. The Holocene post-glacial marine transgression generally did not reach as far inland as the investigated boreholes. Hence, the groundwater captured by these is still made up of a significant portion of glacial meltwater on top of the deep saline water. This C-poor Holocene glacial meltwater mixed with and/or replaced an older marine water, to which AOM is possibly related. Therefore, ongoing AOM is not believed to be significant at this site. This scenario is supported by (1) AOM-related and methanogenesis-related calcite being succeeded by calcite without AOM $\delta^{13}C$ signature of fresh water type (dominantly glacial or meteoric water replacing the marine/saline water, Fig. 3d,e), (2) the overall heavier $\delta^{18}O$ of the AOM- and methanogenesis-related calcites (dominantly marine) than those expected for calcite precipitated from the current groundwater with a large glacial component at great depth and a large meteoric component at shallow depth (Fig. 2c) and (3) limited variation in $\delta^{13}C_{DIC}$ values in the current groundwater compared with the calcites. This supports dominant formation of the AOM calcites in a groundwater system predating the latest (Weichselian) glaciation but within the last 10 Ma when the Paleozoic cover had been eroded away47, allowing the border to the deep sulphate-rich water to be depressed to depths of several hundred meters where AOM calcites formed. A minor number of overlapping calculated $\delta^{18}O$ values of shallow groundwater and calcite (Fig. 2c) indicate potential but limited methanogenesis-related (and minor deeper AOM-related) calcite formation from the current DOC-rich meteoric waters at these depths, in accordance with the observed scattered enhanced methane concentrations (Fig. 2a) and presence of methanogens and SRB34.

Discussion

Our study shows that AOM-related calcite precipitation was established at the border between a descending sulphate-exhausted water, carrying dissolved methane, and a deeper sulphate-rich old saline water. The processes are outlined in Fig. 5 and include reduction of sulphate to ^{34}S-depleted sulphide and oxidation of ^{13}C-depleted biogenic methane to ^{13}C-depleted bicarbonate by a syntrophic consortium of ANME and SRB. These reactions cause an increased alkalinity invoking precipitation of ^{13}C-depleted calcite on the fracture wall. This calcite formed from reaction of the produced bicarbonate with the abundant dissolved Ca^{2+} in the deep saline water (up to 740 mg l$^{-1}$ (ref. 24)). The most likely explanation why the calcites are considerably more ^{13}C-depleted than the numerous marine AOM calcites observed worldwide is that the latter form in DOC- and DIC-rich sediment porewaters and thus more readily incorporate carbonate from other carbon sources than oxidized methane48. In strong contrast, the deep groundwater in crystalline rocks carries low concentrations of DIC and DOC in Laxemar, each less than 2 mg l$^{-1}$ compared with maximum values of 330 and 21 mg l$^{-1}$, respectively, in the upper 200 m, indicating that methane has been an almost exclusive carbon source for the ^{13}C-depleted calcites. The low concentrations of DOC in the deep groundwater were likely also partly refractory to microbial degradation in similarity with the limited availability and poor reactivity of organic substrates in deep-sea sediments39. Pyrite (depleted in ^{34}S compared with sulphate) is formed by reaction of the SRB-produced dissolved sulphide and Fe$^{2+}$ (present at 0.1–0.8 mg l$^{-1}$ (ref. 24)). The large range in $\delta^{34}S_{\text{pyrite}}$ of 68.9% (−22.1 to +46.8‰, for example, in Fig. 3f) and frequent progressively heavier $\delta^{34}S$ with growth clearly reflect bacterial sulphate reduction in a system where the reduction rate has exceeded the supply of sulphate by advection and diffusion20. Increase in $\delta^{34}S$ values by up to almost 40% over a crystal growth distance of 50 μm (Fig. 3f) strongly suggests very local microscale isotope systematics at the fracture wall, in spatial relation to microbial communities31. Similarly, the contrasting $\delta^{13}C$ values in the calcites compared with those in the bulk fracture water (Fig. 3b) support local incorporation of ^{13}C-depleted bicarbonate formed by AOM at the fracture wall. However, the generally irregular $\delta^{13}C$ evolution within these calcites rules out similar closed system evolution of the carbon system as for the sulphur system. The irregular $\delta^{13}C$ variation of up to 45% in the AOM-related zone within the calcite crystals instead reflects either (1) local variability of incorporation of carbonate into calcite from other carbon sources than methane and/or (2) substantial variation of the $\delta^{13}C$ values of the oxidized biogenic methane as a result of methanogenesis during substrate-limited conditions31 occurring in the deep biosphere, or because of other factors that influence the kinetic carbon isotope effect during methanogenesis, including sulphate availability (cf. ref. 52), substrate utilized and temperature17,51. As the $\delta^{13}C$ value of the oxidized methane is unknown, we cannot exclude that the source methane of the $<−100$‰ calcites has been extremely depleted in ^{13}C. It has recently been demonstrated that low sulphate concentrations (≤50 mg l$^{-1}$) can lead to microbially mediated carbon isotope equilibration between methane and carbon dioxide resulting in some degree of reversibility of the methane oxidation (that is, back-flux)53,54. This causes progressively decreased $\delta^{13}C$ values of the residual methane. An extraordinary ^{13}C-depleted methane, affected by partial and reversible oxidation in a sulphate-limited system, such as in most of the current shallow and intermediate waters (Fig. 2a), can therefore indeed have been the source of the extremely ^{13}C-depleted calcites.

Figure 5 | Schematic images of the processes in the fractures. (a) An overview including typically near-vertical to vertical water-conducting fractures through which marine waters descended (width of view c. 1 km). (b) Conditions and (c) reactions occurring locally in open fractures (width of view in b is c. 700–800 μm). Sulphate-poor descending fluids containing the methane mix with a deeper sulphate-rich, bicarbonate-poor water. At this transition AOM occurs, involving bacterial sulphate reduction promoting pyrite precipitation and increased alkalinity triggering calcite formation. AOM occurs preferentially in microbial communities (black, degraded over time) at the fracture walls, and the incorporation of carbon into calcite is therefore dominated by products of the local AOM process, as shown by both the $\delta^{13}C$ values, and by the closed system conditions of the sulphate reduction (evidenced by the $\delta^{34}S$ evolution within the pyrites).
The setting described here is not unique for the Baltic Shield, but is found on all continents in a variety of regions. Therefore, the identified methane-consumption mechanism in bedrock fractures and similar 13C-depleted carbonates is likely to be widespread. Groundwater samples from several regions indicate that biogenic methane is consumed in the subsurface. The extent of past and present AOM deep in crystalline rocks may vary from site to site. Additionally, the use of 13C-depleted carbonates in the Doushantuo cap dolostone in South China: Insights from petrography and stable carbon isotopes. Scientific Reports 7, 13,143 (2017).

Methods

SIMS. Calcite and pyrite crystals sampled from 18 drill cores were mounted in epoxy, polished to expose crystal cross-sections and examined using SEM (to trace depth dimension) of carbon, oxygen and sulphur isotopes were performed on a Cameca IMS1280 ion microprobe. Analytical transects were made within several crystals from each sample. Spot sizes were set to be 1-2 mm in diameter on carbon, oxygen and sulphur isotopes were performed on a Cameca IMS1280 ion microprobe. Analytical transects were made within several crystals from each sample. Spot sizes were set to be 1-2 mm in diameter and 3-10 mm in depth. The reproducibility was ±0.1% for temperatures below 40°C and ±0.5°C for temperatures above 50°C.

Fluid inclusion microthermometry. Fluid inclusions were analysed in handpicked calcite crystals (0.5-1.5 mm in size) and in the epoxy-mounted crystals used for SIMS analysis. Microthermometric analysis was performed using a Linkam THM 600 stage mounted on a Nikon microscope utilizing a 100 W long working distance objective. The working range of the stage is from –196°C to 100°C (for details see ref. 68). The thermocouple readings were calibrated by means of standard silicon wafer calibration standards.

Scanning electron microscopy. The zonation and inclusions of other minerals within polished hand-picked calcite crystals mounted in epoxy were examined using a Hitachi S-4300 N SEM equipped with an integrated energy-dispersive spectrometry system. The acceleration voltage was 20 kV, and the working distance 9.2 mm. During quantitative energy-dispersive spectrometry analyses of other minerals, oxides and other elements were used, linked to a cobalt drift standard (calibrated twice every hour) and a stable specimen current. The setup was a 5 kV.

Hydrochemistry. Groundwater from water-conducting fractures were sampled at three to ten pooled-off boreholes by SKB, and results were extracted from their database (SIGADA). Only sections with < 1% dilution were used. Quality control of the analyses and details of methods are described in ref. 67.

References

1. Pedersen, K., Bengtsson, A. F., Edlund, J. S. & Eriksson, L. C. Sulphate-controlled delivery of subterranean microbial communities over depth in deep groundwater with opposing gradients of sulphate and methane. Geomicrobiol. J. 31, 617–631 (2014).

2. Pedersen, K. metabolism of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2. ISME J. 7, 839–849 (2013).

3. Pedersen, K. et al. Evidence of ancient life at 207 m depth in a granitic aquifer. Geology 25, 827–830 (1997).

4. Kotelnikova, S. Microbial production and oxidation of methane in deep subsurface. Earth Sci. Rev. 58, 367–395 (2002).

5. Campbell, K. A., Farmer, J. D. & des Marais, D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and paleoenvironments. Geofluids 2, 63–94 (2002).

6. Lin, Z., Wang, Q., Feng, D., Liu, Q. & Chen, D. post-depositional origin of highly 13C-depleted carbonate in the Doushantu cap dolostone in South China: Insights from petrography and stable carbon isotopes. Sediment. Geol. 242, 71–79 (2011).
7. Natalichio, M. et al. Polyphasic carbonate precipitation in the shallow subsurface: insights from microbially-formed authigenic carbonate beds in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 292-293, 140–148 (2012).

8. Ziegenbalg, S. B. et al. Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C-depleted microbial fossils. Chem. Geol. 292-293, 140–148 (2012).

9. Peckmann, J. & Thiel, V. Carbon cycling at ancient methane-seeps. Chem. Geol. 205, 443–467 (2004).

10. Aloisi, G. et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett. 203, 195–203 (2002).

11. Fung, D., Chen, D., Peckmann, J. & Bohrmann, G. Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Mar. Petrol. Geol. 27, 748–756 (2010).

12. Reitner, J. et al. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 18–30 (2005).

13. Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297, 1013–1015 (2002).

14. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

15. Hoehler, T. M. & Alperin, M. J. in Geomicrobiology of the Deep Subsurface: Insights from Microbially-Formed Authigenic Carbonate Beds. Eds. Budai, J. M., Martini, A. M., Walter, L. M. & Ku, T. C. W. (Springer Science+Business Media, 2012).

16. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation of authigenic carbonate: a case study from the Devonian Antrim Shale, Michigan Basin. Geochim. Cosmochim. Acta 65, 1117–1124 (2001).

17. Peckmann, J., Bach, W., Behrens, K. & Reitner, J. Putative cryptoendolithic life involved in anaerobic oxidation of methane. Geomicrobiol. J. 20, 403–419 (2003).

18. Drake, H., Tullborg, E.-L. & Mackenzie, A. B. Detecting the near-surface redox front in crystalline bedrock using fracture mineral distribution, geochemistry and U-series disequilibrium. Appl. Geochem. 24, 1023–1039 (2009).

19. Himmel, T., Brinkmann, F., Bohrmann, G. & Peckmann, J. Corrosion patterns of seep-carbonates from the Eastern Mediterranean Sea. Terra Nova 23, 206–212 (2011).

20. Alperin, M. J., Reeburgh, W. S. & Whiticar, M. J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob. Biogeochem. Cycle 2, 279–288 (1988).

21. Reeburgh, W. S. & Alperin, M. J. Studies on anaerobic methane oxidation. Science 266, 367–375 (1994).

22. Canfield, D. E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65, 1117–1124 (2001).

23. Ohmoto, H. & Goldhaber, M. B. in Isotopes in Biotite in the Earth's Crust: Applications to Geology, Environment, and Biology. (eds. B. B. Jørgensen & T. K. Pedersen) 183–207 (Geological Society, 2002).

24. Konhauser, K. O. & Urrutia, M. M. Bacterial clay authigenesis: a common biogeochemical process. Geochim. Cosmochim. Acta 191, 399–413 (1999).

25. Knittel, K., Gimeno, M. J., Auque, L. F. & Acero, P. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden. Sci. Total Environ. 468–469, 791–803 (2014).

26. Sahlstedt, E., Karhu, J. A., Pitka¨nen, P. & Whitehouse, M. Implications of sulfur isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane in deep subsurface basalt. Geo-Mat. Lett. 33, 233–234 (2013).

27. Konhauser, K. O. & Urrutia, M. M. Bacterial clay authigenesis: a common biogeochemical process. Geochim. Cosmochim. Acta 65, 1117–1124 (2001).

28. Conley, B. A. & Esteban, J. H. The origin and evolution of Canadian Shield brines: insights from microbially-formed authigenic carbonate beds in the Tono area, Japan; a promising palaeohydrogeological tool. Earth Planet. Sci. Lett. 203, 195–203 (2002).

29. Milodowski, A. E. et al. Application of mineralogical, petrological and geochemical tools for evaluating the palaeohydrogeological evolution of the PADAMOT project site. PADAMOT Project Technical Report WP2 206UK Nirex Ltd, Harwell, 2005.

30. Sahlstedt, E., Karhu, J. A. & Pitka¨nen, P. & Whitehouse, M. Implications of sulfur isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane in deep subsurface basalt. Geo-Mat. Lett. 33, 233–234 (2013).

31. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation of authigenic carbonate: a case study from the Devonian Antrim Shale, Michigan Basin. Geochim. Cosmochim. Acta 65, 1117–1124 (2001).

32. Budai, J. M., Martini, A. M., Walter, L. M. & Ku, T. C. W. Fracture-fill calcite as a record of microbial methanogenesis and fluid migration; a case study from the Devonian Antrim Shale, Michigan Basin. Geofluids 2, 163–183 (2002).

33. Stevens, T. O. & McKinley, J. P. Lithoautotrophic microorganisms, ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).
interactions with the granitic body. *Geochim. Cosmochim. Acta* 53, 1777–1781 (1989).

62. Cabral, R. A. *et al.* Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. *Nature* 496, 490–493 (2013).

63. Leshin, L. A., McKeegan, K. D., Carpenter, P. K. & Harvey, R. P. Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001. *Geochim. Cosmochim. Acta* 62, 3–13 (1998).

64. Drake, H., Heim, C., Hogalm, K. J. & Hansen, B. T. Fracture zone-scale variation of trace elements and stable isotopes in calcite in a crystalline rock setting. *Appl. Geochem.* 40, 11–24 (2014).

65. Heim, C., Sjövall, P., Lausmaa, J., Leeffmann, T. & Thiel, V. Spectral characterization of eight glycerolipids and their detection in natural samples using time-of-flight secondary ion mass spectrometry. *Rapid Commun. Mass Spectrom.* 23, 2741–2753 (2009).

66. Shepherd, T. J., Rankin, A. H. & Alderton, D. H. M. A Practical Guide to Fluid Inclusion Studies 224Blackie, 1985).

67. Kalinowski, B. E. (ed.) Background Complementary Hydrogeochemical Studies, Site Descriptive Modelling. *Sdn-Site Laxemar*. Report SKB R-08-111 (Swedish Nuclear Fuel and Waste Management Co., SKB, Stockholm, Sweden, 2010).

Acknowledgements

We are grateful to the Swedish Nuclear Fuel and Waste Management Co. (SKB) and Nova Centre for University Studies Research & Development for giving access to the hydrochemical database and the drill cores. We thank the University of Gothenburg for providing access to their SEM laboratory. We also thank Lev Ilyinsky and Kerstin Linden at NordSIM, for assistance during SIMS analyses. This is NordSIM contribution 397.

Author contributions

H.D. initiated and planned the project, carried out sampling, sample preparation, SEM-, SIMS- and ToF-SIMS analyses and wrote the manuscript together with M.E.A.

C.H. carried out GC/MS and ToF-SIMS analyses and contributed to corresponding parts of the manuscript. C.B. and M.I. carried out fluid inclusion microthermometry and Raman spectroscopy and contributed to corresponding parts of the manuscript. J.A. carried out physical modelling and wrote to Supplementary Note 3. M.W. carried out SIMS analysis. S.S. and P.S. carried out ToF-SIMS analyses.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions.

How to cite this article: Drake, H. *et al.* Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite. *Nat. Commun.* 6:7020 doi: 10.1038/ncomms8020 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/