An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities

Guanghui Qian†‡, Liyan Zhu‡, Gen Li†, Ying Liu†, Zimu Zhang†, Jian Pan†* and Haitao Lv†*

† Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China, ‡ Department of Experimental Center, Medical College of Soochow University, Suzhou, China

Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.

Keywords: deubiquitinating enzymes, type I IFN signaling, ubiquitin, virus infection, innate immunity

INTRODUCTION

Pathogen invasions are responsible for many diseases and exert extensive effects on human health ranging from mild to potentially fatal infections. Critically, the prevalence of certain viruses, such as SARS-CoV-2, can even pose a serious threat to global human health (1). The host’s immune system evolved as the first line of defense against the invasion of microbial pathogens and can also trigger various immune responses through dynamic interactions with differential cellular components (2, 3). Among all the signaling pathways examined, much attention has been given to the signaling events triggered by one class of molecules during the activation of innate immune responses, pattern-recognition receptors (PRRs). Innate immune responses are rapidly initiated when host cellular PRRs, such as Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors...
infection (11). Ultimately, the viruses recognized by different host factors (TRAF)-mediated downstream signaling during virus components then activate MAVS and TNF receptor-associated (MAVS, also termed IPS-1, VISA, or CARDIF). The interacting MDA5, respectively, and both proteins share two N-terminal caspase longer double-stranded (ds) RNA are often recognized by RIG-I and genetics and physiology protein 2 (LGP2) (10). Viral protein 5 (MDA5, also known as IFI16) and TLR7/8 recognize double-stranded RNA (dsRNA) and single-stranded RNA (ssRNA), respectively, whereas TLR9 detects unmethylated CpG double-stranded DNA species (6). The activation of TLR3, TLR4, TLR7, TLR8, and TLR9 leads to activation of the adapter myeloid differentiation 88 (MyD88)-dependent pathway, which causes IRF7 activation through a TRAF6-dependent mechanism (TLR7/8/9) or the Toll-interleukin-1 (IL-1) receptor-domain-containing adapter-inducing IFNβ (TRIF)-dependent pathway and thus leads to IFN3 and IRF7 activation through a TBK1-dependent mechanism (TLR3/4) (7–9). RLRs are another critical sensor of virus infection. These protein family members include retinoic acid-inducible gene I (RIG-I, also known as Ddx58), melanoma differentiation-associated protein 5 (MDA5, also known as Ifih1 or Helicard), and laboratory of genetics and physiology protein 2 (LGP2) (10). Viral 5′pppRNA, and longer double-stranded (ds) RNA are often recognized by RIG-I and MDA5, respectively, and both proteins share two N-terminal caspase activation and recruitment domains (CARDs), which are needed for interaction with the mitochondrial antiviral signaling protein (MAVS, also termed IPS-1, VISA, or CARDIF). The interacting components then activate MAVS and TNF receptor-associated factors (TRAF)-mediated downstream signaling during virus infection (11). Ultimately, the viruses recognized by different host sensors induce antiviral responses by regulating multiple signaling pathways, which are characterized by rapid gene expression of inflammation-inducing molecules and/or cytokines, including interferons (12–15).

Type I IFNs (also called IFNα/β or IFN-Is), which serve as the first line of host defense against virus infection can be induced in almost all cells in the body. A dysregulated interferon-response is thus associated with many diseases, such as autoimmune diseases (16), infectious diseases (17), and the recent severe coronavirus diseases, which have caused a major ongoing pandemic worldwide (18). The critical cytosolic DNA sensor, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) often recognizes viral DNA and triggers downstream immune responses through the molecule stimulator of interferon genes (STING, also known as MITA, MPYS, ERIS, or TMEM173) (19). STING further activates TRAFs, which in turn activate TANK-binding kinase 1 (TBK1) or IkB kinase (IKK), and this activation leads to the activation of nuclear factor-kappa enhancer-binding protein (NF-κB) or interferon regulatory factor 3 or 7 (IRF3 or IRF7, respectively). The activated IRF3 and IRF7 complex ultimately translocates the nucleus, which leads to the transcriptional induction of multiple IFNs (Figure 1A) (20).

Furthermore, the secreted IFN-Is bind to and signal through a heterodimeric transmembrane receptor composed of the subunits IFNAR1 and IFNAR2. The ligation of IFNAR activates the receptor-associated protein tyrosine kinases Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2). In the canonical IFNAR-mediated downstream signaling pathway, activated JAK1 and TYK2 induce phosphorylation of the signal transducer and activator of transcription 1 (STAT1) and STAT2 molecules present in the cytosol, which leads to the dimerization, nuclear translocation, and binding of these molecules to IRF9 to form the ISG factor 3 (ISGF3) complex. This complex then enters the nucleus and binds to DNA sequences termed interferon-sensitive response elements (ISREs) (with the consensus sequence TTTCCNNTTTC), which results in induction of the transcription of several hundred IFN-stimulated genes (ISGs), including Mx1, OAS, STAT1, interferon-regulatory factors (IRFs) and other antiviral genes (21) (Figure 1B). These ISGs function to induce an antiviral state within the cell. Thus, it can be concluded that host antiviral efficiencies are tightly regulated not only at the virus-induced IFN-I production level but also at the interferon receptor-mediated downstream signaling level.

Currently, post-translational modifications (PTMs), which involve the covalent linkage of new functional groups to amino acid chains, have remarkably expanded the functions of proteins. Over the years, an increasing number of studies have uncovered that PTMs also play pivotal roles during host innate immune responses upon virus infection (22, 23). In particular, ubiquitination (also known as ubiquitylation or ubiquitinylation) events in which 8.5-kDa ubiquitin (Ub) is conjugated to one or more lysine residues of proteins are broadly involved in antiviral signaling by regulating the stability, folding, and location of proteins, or by interacting with other proteins in the signaling transduction pathway (22, 24). In general, ubiquitination involves three sequential steps: an initial activation step catalyzed by the Ub-activating enzyme (E1), an intermediate step in which Ub is covalently linked to a conjugating enzyme (E2), and a final specific step in which Ub reaches its ultimate destination of the substrate amino group through a reaction catalyzed by a ligase enzyme (E3) (25–27). Substrate-conjugated ubiquitin can be modified by additional Ub molecules to build polyubiquitin chains. The C-terminal carboxyl group of the distal Ub moiety is covalently attached to either the first methionine (M1) of the proximal Ub moiety or one of the seven lysine (K) residues K6, K11, K27, K29, K33, K48, and K63 to result in the formation of linear Ub chains or polyubiquitin chains (28–30). Homotypic polyubiquitin chains are often referred to as a single type of polyubiquitin linkage, whereas heterotypic polyubiquitin chains are characterized by the presence of at least two different types of linkages within the same polymer (31).

Similar to other PTMs, ubiquitination is reversible, and the reversal process is implemented by an array of proteases termed deubiquitinating enzymes (DUBs) or deubiquitinating peptidases. Approximately 100 DUBs encoded in the human genome. These DUBs have been categorized into at least seven families based on their homology domains and cleavage preferences: namely, ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumour proteases (OTUs), Machado–Joseph disease protease family members (MJDs), the motif interacting with the Ub (MIU)-containing novel DUB family (MINDYS), the JAB1/MPN/MOV34 metalloenzyme family (JAMMs, also termed MPN+), zinc fingers with UFM1-specific peptidase domain proteins (ZUFSPs), and other members...
identified recently (32–36) (Figure 2). These DUBs often contain a catalytic domain surrounded by one or more accessory domains, and some of these domains contribute to Ub binding and target recognition (37). One of the best-characterized functions of DUBs is the removal of monoubiquitin and polyubiquitin chains from proteins, thus ensuring that the Ub-proteasome system (UPS) functions properly and recycles free Ub for reuse to maintain the homeostasis of the polyubiquitin pool (38, 39). Analogous to the dynamic and crucial roles of ubiquitination events shown previously, DUB-mediated deubiquitination events also play important roles in the antiviral innate immune response (23, 24, 40, 41). Here, we summarize the differential regulatory roles of human DUBs involved in the IFN-I signaling transduction pathway during viral infections. Integrated analyses of DUBs involved in the IFN-I signaling transduction pathway might improve our understanding of their diverse regulatory mechanisms and host antiviral activities, and facilitate the development of therapeutic targets to improve host antiviral efficiency in the future.

DUBS REGULATE VIRUS-INDUCED IFN-I PRODUCTION AND ANTIVIRAL ACTIVITIES

Constitutively expressed RLRs often reside in the cytoplasm of uninfected cells in an auto-repressed, inactive state (42). However, upon viral infection, the master regulators RIG-I and MDA5 are
rapidly activated and then induce the transcriptional induction of multiple IFNs. Additionally, mice lacking RIG-I or MDA5 are highly susceptible to infection and fail to produce IFN-I and proinflammatory cytokines (43, 44). Given the importance of RIG-I and MDA5 in the RLR signaling pathways, the functions of the two proteins are affected by multiple PTM events, such as phosphorylation and ubiquitination. For instance, several E3 ligases, such as TRIM25 (45), RNF135 (46), RNF125 (47), RNF122 (48), TRIM40 (49), CHIP (50), and c-Cbl (51), regulate RIG-I signaling by modulating Ub chains from various signaling proteins. Among these, the K63-linked ubiquitination of RIG-I often represents a critical step in promoting the activation of IFN-I signaling (45, 46, 52). Intriguingly, IFN stimulation could also promote an increase in the expression level of RIG-I. Thus, the protein turnover and activity of RIG-I must be tightly regulated to ensure restoration to homeostasis and to avoid hyperactivation of IFN and cytokine signaling. To the best of our knowledge, at least nine DUBs, A20, CYLD, USP3, USP5, USP14, USP15, USP21, USP25, and USP27X, have been proposed to counteract the K63-linked ubiquitination of RIG-I and, thereby attenuate downstream signaling and IFN-β production (Table 1 and Figure 3) (58, 76, 93). However, unlike the nine above-mentioned Dubs, USP4 and USP17 are the two DUBs that positively regulate virus-induced IFN-I signaling by increasing the stability of RIG-I (Table 1 and Figure 3). Congruently, the overexpression of USP4 or USP17 significantly promotes virus-induced IFN production and thereby restricts virus replication, whereas the knockdown of USP4 or USP17 has the opposite effect (77, 87). Moreover, DUBs also exhibit different functions under different contexts. For example, the deubiquitinating enzyme USP15 negatively regulates virus-induced IFN-I production by targeting RIG-I (84). However, USP15 has also been identified to positively regulate type I IFN responses by decreasing the polyubiquitination level of TRIM25 (85, 86). Because the function of DUBs can be altered by various PTMs under differential contexts (123), the discrepancy that USP15 exerts both positive and negative effects may arise from the context-specific PTM of USP15 itself, which may allow dynamic fine-tuning of the signaling. Among the DUBs that interact with STING, five members, namely CYLD, OTUD5, USP18 (also termed UBP43), USP20, and USP44, have been

![Table](#)

Ubiquitin C-terminal Hydrolases (UCHs)	UCHL1	UCHL3	UCHL5	BAP1
USP1	USP2A	USP2B	USP3	USP4
USP9	USP10	USP11	USP12	USP13
USP18	USP19	USP20	USP21	USP22
USP28	USP29	USP30	USP31	USP32
USP37	USP38	USP39	USP40	USP41
USP46	USP47	USP48	USP49	USP50
CYLD	USP1			

Ubiquitin Specific Proteases (USPs)
USP5
USP6
USP7B
USP8
USP9
USP10
USP11
USP12
USP13
USP14
USP15
USP16
USP17

Otubain Proteases (OTUs)
OTUB1
OTUB2
OTUD1
OTUD3
OTUD4
OTUD5
OTUD6A
OTUD6B
OTUD7B
OTULIN
YOD1
STAMB P A20
Cezanne
Cezanne2
TRABID
VCPiP1
FAM105A

Machado-Joseph Disease Proteases (MJDs)
Ataxin-3
Ataxin-3-like
JOSD1
JOSD2
JOSD3

MINDYs
MINDY1
MINDY2
MINDY3
MINDY4

ZUFSP
ZUFSP

JAB1/MPN/Mov34 Metalloenzymes (JAMMs)
STAMB P
STAMB P1
BRCC36
COP5
COP5s
PSMD7
PSMD14
PRPF8
EIF3F
EIF3H
MPND
MYSM1

Other DUBs
MCPI P1
PPPDE1

Figure 2 | List of DUBs identified in the human genome. These DUBs are categorized into at least seven subfamilies, namely, Ub carboxyl-terminal hydrolases (UCHs), Ub-specific proteases (USPs), ovarian tumor proteases (OTUs), Machado-Joseph disease proteases (MJDs), motifs interacting with Ub (MIU)-containing novel DUB family members (MINDYs), zinc fingers with UFM1-specific peptidase domain protein/C6orf113/2UJP1 (ZUFSP), JAB1/MPN/MOV34 metalloenzyme family members (JAMMs, also termed MPN+), and other newly identified members.
DUB	Substrate	Ub Model	Effect	Specific Event	References
A20	RIG-I	NA	–	Suppressing VSV through inhibition on RIG-I	(53)
A20	MAVS	NA	–	Suppressing VSV through inhibition on MAVS	(54)
A20	IRF7	K63	–	Deubiquitinating K63-ub on IRF7 in 293T cell	(55)
A20	TRAF6	K63	–	Deubiquitinating K63-ub on TRAF6 in HEK293T cells	(56)
A20	IKKγ-γ	NA	NA	Interacting with ubiquitinated NEMO, inhibiting IKK phosphorylation and NF-κB activation	(57)
CYLD	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I to decrease IFN production	(58)
CYLD	MAVS	NA	–	Interacting with but not deubiquitinating MAVS to negatively regulate IFN production	(59)
CYLD	TBK1	K63	–	Deubiquitinating K63-ub on TBK1, negatively regulating RIG-I-mediated antiviral response	(60)
CYLD	STING	K48	+	Deubiquitinating K48-ub on STING, promoting the innate antiviral response	(61)
UCHL1	TRAF3	K63	–	Deubiquitinating K63-ub on TRAF3 in HEK293T cell, negatively regulating virus-induced IFNs production	(62)
OTUB1	TRAF3	Ub	–	Deubiquitinating Ub on TRAF3, negative regulating virus-induced IFNs signaling	(63)
OTUB2	TRAF6	Ub	–	Deubiquitinating Ub on TRAF6, negatively regulating virus-induced IFNs signaling	(64)
OTUD1	IRF3	K63	–	Deubiquitinating the viral infection-induced K63-linked ubiquitination on IRF3	(65)
OTUD1	SMURF1	K48	–	Deubiquitinating K48-ub on SMURF1, causing degradation on MAVS/TRAF3/TRAF6	(66)
OTUD3	MAVS	K63	–	Deubiquitinating K63-ub on MAVS, inhibiting innate antiviral immune responses	(67)
OTUD4	MAVS	K48	+	Deubiquitinating K48-ub on MAVS, promoting antiviral responses	(68)
OTUD4	MyD88	K63	NA	Suppressing Toll-like receptor/NF-κB signaling	(69)
OTUD5	TRAF3	K63	–	Deubiquitinating K63-ub on TRAF3, suppressing type I IFN production in HEK293 cells	(70)
OTUD5	STING	K48	+	Deubiquitinating K48-ub on STING, promoting innate antiviral immunity	(71)
OTUD7B	RIPK1	K48&K63	NA	Deubiquitinating K48-ub and K63-ub on RIPK1	(72)
OTUD7B	TRAF3	K48	NA	Deubiquitinating K48-ub on TRAF3, inhibiting TRAF3 proteolysis, preventing NF-κB activation	(73)
OTUD7B	TRAF6	K63	NA	Deubiquitinating TRAF6 in HUVeCs	(74)
USP1	TBK1	K48	+	Inhibiting TBK1 degradation, promoting RIG-I- induced IFN-expression and IFN-β secretion	(75)
USP2B	TBK1	K63	–	Deubiquitinating K63-ub on TBK1 to inhibit TBK1 kinase activity	(76)
USP3	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I, to convert RIG-I to its inactive form in 293T cell	(77)
USP4	RIG-I	K48	+	Deubiquitinating K48-ub on RIG-I to stabilize RIG-I	(78)
USP4	TRAF6	K48	NA	Deubiquitinating K48-ub on TRAF6, positively regulating RLR-induced NF-κB activation	(79)
USP5	RIG-I	K48	–	Increasing the K48-ub on RIG-I after SeV infection	(80)
USP7	TRIM27	K48	–	USP7 knockout destabilizes TRIM27, which increase TBK1 turnover and IFNs signaling	(81)
USP7	NF-κB	K48	NA	Stabilizing NF-κB, increasing NF-κB transcription	(82)
USP13	STING	K27	–	Inhibiting the recruitment on TBK1 to STING by deubiquitinating K27-ub on STING	(83)
USP14	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I in 293T cell	(84)
USP14	cGAS	K48	+	Recruited by TRIM14 to stabilize cGAS, functions as a positive feedback loop on cGAS signaling	(85)
USP15	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I in HEK-293T cells	(86)
USP15	TRIM25	K48	+	Deubiquitinating K48-ub on TRIM25 to maintain TRIM25 in an inactive state	(87)
USP15	TRIM25	Ub	+	Deubiquitinating Ub on TRIM25 in haematopoietic cells and resident brain cells	(88)
USP17	RIG-I	K48&K63	+	Deubiquitinating K48-ub on RIG-I	(89)
USP17	MDA5	K48&K63	+	Deubiquitinating K48-ub and K63-ub on MDA5	(90)
USP18	ISG15	NA	–	Recruiting USP20 to form a complex with STING independently on DUB activity	(91)
USP18	TAK1	K63	NA	Suppressing TLR/NF-κB signaling	(92)
USP19	TRIF	K27	–	Deubiquitinating K27-ub on TRIF to impair the recruitment of TRIF to TLR3/4	(93)
USP20	STING	K48	+	Deubiquitinating K33- or K48 ub on STING together with USP18	(94)
USP21	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I in HEK 293T cells	(95)
USP22	STING	K27	–	Deubiquitinating K27-ub on STING by recruiting USP13	(96)
USP22	IRF3	K48	+	Stabilizing K33-linked Ub on IRF3 nuclear translocation	(97)
USP25	RIG-I	K48&K63	–	Deubiquitinating RIG-I in HEK-293T cells	(98)
USP25	TRAF3	K48&K63	–	Deubiquitinating TRAF3 in HEK-293T cells	(99)
USP25	TRAF6	K48&K63	–	Deubiquitinating TRAF6 in HEK-293T cells	(100)
USP25	TRAF3	K48	+	Deubiquitinating K48-ub in BMDCs and MEFs	(101)
USP25	TRAF6	K63	+	Deubiquitinating Ub on TRAF6	(102)
USP27X	RIG-I	K63	–	Deubiquitinating K63-ub on RIG-I	(103)
USP27X	cGAS	K48	+	Deubiquitinating K48-ub on cGAS to stabilize cGAS	(104)
USP29	cGAS	K48	+	Deubiquitinating and stabilizing cGAS to promote innate antiviral responses against DNA viruses	(105)
USP31	TRAF2	K48	NA	Deubiquitinating K48-ub and stabilizing TRAF2	(106)
USP38	TBK1	K33	–	USP38 knockdown increases K33-linked Ub but abrogates the K48-mediated degradation on TBK1	(107)
USP44	STING	K48	+	Preventing STING from proteasome-mediated degradation	(108)
USP49	STING	K63	–	Deubiquitinating K63-ub on STING, inhibiting STING aggregation and the recruitment on TBK1	(109)
MYSM1	TRAF3	K63	–	Deubiquitinating K63-ub on TRAF3	(110)
MYSM1	TRAF6	K63	–	Deubiquitinating K63-ub on TRAF6	(111)
MYSM1	STING	K63	–	Deubiquitinating K63-ub on STING	(112)
MCRIP1	TRAFs	K48&K63	–	Deubiquitinating TRAFs and inhibiting IRF3 nuclear translocation in HEK293T and HeLa cells	(113)
demonstrated to promote IFN-I production and antiviral responses. In addition, although USP18 cannot deubiquitinate STING itself, it can recruit USP20 to deubiquitinate STING and thereby suppresses virus-induced IFN-I production (91). However, the other four DUBs (USP13, USP22, USP49, and MYSM1) inhibit IFN-I-mediated antiviral activity by deubiquitinating K27- or K63-linked polyubiquitin chains of STING (40, 81, 103, 105). Consistent with this observation, USP13- and USP49-deficient mice are more resistant to lethal herpes simplex virus type 1 (HSV-1) infection than their wild-type (WT) littermates (81, 103). In addition, MYSM1 interacts with STING to cleave STING ubiquitination and attenuate the pathway, and MYSM1-deficient mice exhibit tissue damage and high mortality upon virus infection (105). Moreover, MAVS

TABLE 1 | Continued

DUB	Substrate	Ub Model	Effect	Specific Event	References
ATXN3	HDAC3	K48&K63	+ Deubiquitinating K48- and K63-Ub on HDAC3 in 293T cells		(108)
BRCC36	IFNAR1	K63	+ Deubiquitinating K63-Ub on IFNAR1 to sustain the turnover of IFNAR1 in 2TGH cells		(109)
BRCC36	STAT1	K63	+ Maintaining the STAT1 levels by recruiting USP13 to antagonize the SMURF1-mediated degradation on STAT1		(110)
USP2A	p-STAT1	K48	+ Inhibiting K48-Ub-linked ubiquitination and degradation on pY701-STAT1 in the nucleus		(111)
USP5	SMURF1	K63	– Deubiquitinating K63-Ub on SMURF1, inhibiting the IFN-mediated antiviral activity		(112)
USP7	SOCS1	Ub	– Enhancing SOCS1 protein stability via deubiquitination effects		(113)
USP12	CBP	NA	+ Regulating CBP and TCPTP independently on the deubiquitinase activity		(114)
USP13	STAT1	K48	+ Deubiquitinating and stabilizing STAT1		(115)
USP18	JAK1	NA	– Decreasing K6-linked Ub on STAT1 for degradation		(118)
MCM1IP1	NA	Ub	– Promoting IFN signaling by increasing ISRE promoter activity and ISG expression		(119)
JOSD1	SOCS1	K48	– Deubiquitinating K48-Ub on SOCS1		(120)
COP55	TYK2	NA	+ Stabilizing IFNAR by antagonizing the NEDD8 pathway		(121)
UCHL3	COP55	K48&K63	+ Deubiquitinating K48- and K63-linked Ub on COP55, increasing the IFNAR1 turnover in 293T cells		(122)

NA, not available; Ub model, the deubiquitination type on each DUB acting on the targeted proteins; effects, the DUBs positively (+) or negatively (−) regulate type I IFN signaling-mediated antiviral activity.

![FIGURE 3](image_url) | Overview of DUBs that modulate the virus-induced IFN-I production signaling (A) and the IFNAR-mediated downstream signaling transduction pathway (B). The green arrows and red lines respectively indicate the positive and negative regulatory roles of each DUB involved.
activation and aggregation, which is promoted by K63-linked ubiquitination catalyzed by TRIM31 (124), are counteracted by OTUD3 (65). In addition, OTUD3-deficient mice also exhibit decreased morbidity after infection with vesicular stomatitis virus (VSV), which might result from increased production of cytokines and decreased viral replication (65). In addition, both OTUD3 and A20 negatively regulate the IFN-mediated antiviral response by modulating the polyubiquitination level of MAVS (125, 126).

However, OTUD4 positively regulates IFN signaling and enhances host antiviral activities by deubiquitinating K48-ub on MAVS (66).

Among the DUBs that interact with cGAS or MDA5, USP27X (98) and USP29 (99) stabilize cGAS and thus positively regulate IFN production and antiviral activities. The knockout of USP27X in mouse macrophages significantly impairs innate antiviral responses (98), whereas the knockdown or knockout of USP29 severely impairs HSV1- or cytosolic DNA-induced expression of IFN-Is and proinflammatory cytokines (99). In addition, USP17 promotes virus-induced IFN-I production by decreasing the polyubiquitination level of MDA5 (87). Notably, UCHL1, OTUB1, OTUB2, OTUD5, USP25, MYSM1, and MCPIP1 (Figure 3A) negatively regulate virus-induced IFN-I production and antiviral activities by cleaving K63-linked or other types of polyubiquitin chains from TRAF3 or TRAF6. Regarding the kinase TBK1, a previous study showed that the T cell anergy-related E3 Ub ligase RNF128 catalyzes the K63-linked polyubiquitination of TBK1, which causes TBK1 and IRF3 activation, and IFN-β production (127). The E3 ligases DTX4, Triad3a, and TRIP have also been identified to conjugate K48-linked polyubiquitin chains on TBK1, which results in TBK1 degradation and subsequent inhibition of IFN-Is (128–130). However, DUBs cleave the polyubiquitin chains of TBK1 to reverse the ubiquitination process mediated by E3 ligases (Table 1 and Figure 3). For example, CYLD removes polyubiquitins chains from TBK1 and RIG-I and thus inhibits the IRF3 signaling pathway and IFN production triggered by RIG-I; conversely, CYLD knockdown enhances this response (58).

Similarly, USP38 negatively regulates IFN-I signaling by targeting the active form of TBK1 for degradation in vitro and in vivo (101). USP19 suppresses virus-induced IFN-I production by targeting the active form of TBK1 for degradation in vitro and in vivo (101). In most cases, the regulatory effects of DUBs are only based on cell lines and overexpression systems and need to be confirmed in vivo and with genetic models in the future.

DUBS IN IFNAR-MEDIATED DOWNSTREAM SIGNALING AND THE ANTIVIRAL RESPONSE

In addition to their roles in virus-induced IFN-I production signaling, signaling molecules downstream of the IFN receptor play pivotal roles in affecting host antiviral efficiency. Because increasing the dosage of IFNs alone cannot significantly improve host antiviral efficiency, it has been proven that IFNs can induce ubiquitin-dependent degradation of the IFNAR receptor, which leads to a restriction effect on host antiviral activities (131, 132). Consequently, it is similarly important to investigate the roles of DUBs involved in the IFNAR-mediated downstream signaling pathway. However, compared with the relatively large number of DUBs that regulate virus-induced IFN-I production (Figure 3A), the number of DUBs that have been implicated in IFNAR-mediated downstream signaling has rarely been explored (Figure 3B). In most cases, the regulatory effects of DUBs are mainly focused on the STAT1 protein, which functions as an essential transcription factor in IFNAR1-mediated downstream signaling. The ubiquitination and deubiquitination regulation events of STAT1 and its associated effects on the innate immune response have been increasingly investigated in recent years. For example, the three deubiquitinating enzymes BRCC36, USP13, and USP39 interact with STAT1 and decrease the K63- and K6-linked polyubiquitin chains of STAT1 respectively (110, 115, 118). These three DUBs positively regulate IFN-mediated antiviral activities and have been proposed to antagonize the degradation rate of STAT1 mediated by two E3 ligases, SLIM (133) and SMURF1 (134). More specifically, BRCC36 deficiency leads to a rapid downregulation of STAT1 during viral infection, whereas...
DUBs Regulate IFN-I-Mediated Antiviral Responses via Their Protease Activity

Because DUBs are proteases, it is often speculated that the DUBs functioning in antiviral immunity are dependent on their deubiquitinating enzyme activities. The Ub chains of each substrate involved in IFN-I signaling are cleaved by various DUBs through either endo- or exo cleavage activity. Although the determination of whether a DUB cleaves with endo- or exocleavage activity seems difficult, several studies have shown that this activity relies on both the DUB structure and the type of Ub linkage (39). Indeed, the presence of seven internal lysine residues of the Ub (K6, K11, K27, K29, K33, K48, and K63) and the α-amino-terminus of methionine1 (Met1) enable the modification of target proteins with different types of polyubiquitin chains (conjugation of Ub molecules via the same lysine residue), heterotypic Ub chains (conjugation through different linkage patterns), branched chains, or monoubiquitination (38). Among the different types of polyubiquitin modifications, the principal and most abundant forms are K48-linked and K63-linked polyubiquitination. However, the outcomes of these different ubiquitination events for the substrate are distinct: K48-linked polyubiquitin chains are the best characterized and trigger substrates for proteasomal degradation more frequently than other modifications (139, 140), whereas K63-linked chains play non degradative roles in cellular signaling, intracellular trafficking, the DNA damage response, and other contexts (141, 142).

The K48- and K63-linked polyubiquitin modifications are also the most common types of PTMs identified in the proteins of the IFN-I signaling pathway (Table 1). Although many Ub E3 ligases responsible for the K48-linked ubiquitination of proteins have been identified over the years (22, 24, 143), the corresponding DUBs in antagonizing the degradation and maintaining the protein stability of the key molecules in IFN signaling remain poorly understood (144). An overall view of the DUBs that specifically hydrolyze K48-linked polyubiquitin chains from various substrates during virus infections such as CYLD, OTUD4, OTUD5, USP1, USP4, USP14, USP15, USP20, USP25, USP27X, USP29, and USP44 is summarized in Table 1. These DUBs specifically hydrolyze K48-linked polyubiquitin chains from various substrates and thereby stabilize proteins and play positive roles during viral infection. More specifically, among the DUBs, CYLD deficiency promotes K48-linked polyubiquitination and degradation of STING and thereby decreases the induction of IRF3-responsive genes after HSV-1 infection. In accord with this observation, CYLD-knockout mice are more susceptible to HSV-1 infection than their wild-type littermates (59). The deubiquitinase OTUD4 interacts with MAVS to remove its K48-linked polyubiquitin chains and thereby maintains MAVS stability and promotes innate antiviral signaling. Additionally, the knockout of OTUD4 impairs RNA virus-triggered activation of IRF3 and NF-κB and the expression of their downstream target genes, and potentiates VSV replication in vitro and in vivo (66). Similarly, OTUD5 promotes the protein stability of STING via cleaving the K48-linked polyubiquitin chains. The knockout of OTUD5 leads to faster turnover of STING and impairs IFN-I signaling following cytosolic DNA stimulation, whereas Lyz2-Cre Otud5+/– mice and CD11-Cre Otud5+/– mice show higher susceptibility to HSV-1 infection than their corresponding control littermates (69). Among the USP members, USP1 functions as a viral infection-
induced physiological enhancer of TBK1 expression when bound to USP1 the K48-linked polyubiquitination of TBK1, resulting in enhanced TLR3/4 and RIG-I-induced IRF3 activation and IFNβ secretion (74). USP4, it positively regulates the RIG-I-mediated antiviral response by deubiquitinating K48-linked ubiquitin chains and stabilizing RIG-I (77). Interestingly, USP14, USP27X, and USP29 have been identified to positively regulate virus-induced IFN-I production by targeting the same substrate cGAS, and mechanistically, the three DUBs function by deubiquitinating K48-linked ubiquitin chains and stabilizing cGAS (83, 98, 99). Consistently, mice with the genetic ablation of USP27X and USP29 exhibit decreased levels of IFN-Is and proinflammatory cytokines after HSV-1 infection and hypersensitivity to HSV-1 infection compared with their wild-type littermates (98, 99). In addition, although both USP20 and USP44 have been shown to positively regulate virus-induced IFN-I signaling by targeting the same substrate, STING, and removing its K48-linked polyubiquitin chains, these two DUBs function differently (Table 1). Mechanistically, USP20 is recruited by USP18 to deconjugate K48-linked ubiquitination chains from STING and thus promotes the stability of STING and the expression of type I IFNs and proinflammatory cytokines after DNA virus infection (91). A later study, further confirmed that USP20 removes K48-linked ubiquitin chains from STING after HSV-1 infection and thereby stabilizes STING and promotes cellular antiviral responses (92). Congruently, USP20 knockout mice exhibit decreased levels of IFN-Is and proinflammatory cytokines, increased susceptibility to lethal HSV-1 infection, and aggravated HSV-1 replication compared with wild-type mice (92). The complementation of STING into Usp20 (-/-) cells remarkably restores HIV-1-triggered signaling and inhibits HSV-1 infection (92). In addition, the ectopic expression of USP15 enhances the TRIM25- and RIG-I-mediated production of type I IFN and thus suppresses RNA virus replication, whereas the depletion of USP15 causes decreased IFN production and markedly enhanced viral replication (85). Moreover, the DUB activity of USP25 is needed for virus-induced production of IFN-I and proinflammatory cytokines, because USP25 can stabilize TRAF3 by deubiquitinating K48-ub on TRAF3 whereas the complementation of TRAF3/6 into USP25-deficient MEFs restores virus-induced signaling (96). Consistently, USP25-deficient mice are susceptible to H5N1 or HSV-1 infection than their wild-type counterparts (96).

Notably, although DUBs including OTUD1, USP5, and USP7 function to cleave K48-linked polyubiquitin chains of various substrates, the three DUBs exert opposite effects, which play negative roles in the host immune response against virus infection (Table 1). For example, OTUD1 upregulates the protein levels of intracellular Smurf1 by removing the K48-linked polyubiquitin chains of Smurf1, and RNA virus infection promotes the binding of Smurf1 to MAVS, TRAF3, and TRAF6, which leads to ubiquitination-dependent degradation of the three proteins and subsequent potent inhibition of IFNs production (64). In agreement with this observation, OTUD1-deficient mice produce more antiviral cytokines and are more resistant to RNA virus infection (64). In addition, a recent systematic functional screening assay revealed that USP5 inhibits IFNβ expression and promotes VSV replication by recruiting STIP1 homology and U-box containing protein 1 (STUB1) to degrade RIG-I (40). Whereas USP7 acts as a negative regulator in antiviral signaling by stabilizing TRIM27 and promoting the degradation of TBK1, the knockout of endogenous USP7 leads to enhanced TRIM27 degradation and reduced TBK1 ubiquitination and degradation (79). In the case of IFNAR-mediated downstream signaling pathway, USP2A sustains interferon antiviral activity by restricting the K48-linked ubiquitination of p-STAT1 in the nucleus (111). Via using RNA interference screening strategy, USP13 was found to positively regulate IFN-I signaling by deubiquitinating the K48-linked polyubiquitin chains of the STAT1 protein (115). Congruently, STAT1 ubiquitination is reduced in cells by USP13 overexpression and increased with USP13 knockdown regardless of IFNα treatment (115). JOS1 has been identified to negatively regulate IFN-I-induced signaling and the antiviral response by deubiquitinating the K48-linked polyubiquitination of SOCS1, which is an essential negative regulator of many cytokine signaling pathways (120).

K63-linked polyubiquitin modification, it has also been identified as fundamental for both the innate and adaptive immune systems. K63-linked polyubiquitin is not only needed for the virus-induced activation of TBK1 and IRF3 (145) but also widely involved in pathways including NF-κB signaling and MAPK activation (146, 147). In NF-κB pathways, K63-linked polyubiquitin chains play pivotal roles in stabilizing the receptor signalosome on the membrane and hence facilitate the recruitment of adaptors or complexes and activating kinases (148). Critically, many E3 ligases, including TRAF6, are implicated in NF-κB pathways by catalyzing K63-linked polyubiquitination of various proteins (146). Whereas DUBs play an opposite role to E3 ligases, and various DUBs, including A20, CYLD, UCHL1, OTUD4, OTUD5, OTUD7B, USP18, USP25, and MYSM1, have been found to remove K63-linked polyubiquitin chains from various substrates (TBK1, TAK1, MyD88, TRAF3, and TRAF6) (Table 1). Intriguingly, unlike the aforementioned DUBs, A20 is a hybrid of a DUB and a E3 ligase and has an N-terminal OTU domain responsible for polyubiquitin cleavage and C-terminal domain-containing zinc fingers that bear E3 ligase activity. A20 cleaves the K63-linked polyubiquitin chains of TRAF6, RIP1, RIPK2, IKK-γ, and MALT1 and hence suppresses NF-κB activation. Moreover, A20 has been shown to promote the K48-linked ubiquitination of RIP1, which leads to its degradation and thereby the downregulation of NF-κB signaling (146, 149). Critically, K63-linked ubiquitination also plays a pivotal role in affecting virus-induced IFN-I production by either stabilizing substrates or by acting as a scaffold for the formation of a signaling multi complex (150). To date, a panel of 15 DUBs, such as CYLD, UCHL1, OTUD1, OTUD3, OTUD4, OTUD5, USP2B, USP3, USP14, USP15, USP21, USP25, USP27X, USP49, and MYSM1, have been identified to cleave the K63-linked polyubiquitin chains on various proteins, which results in a positive or negative effect on virus-induced IFN-I production under different contexts (Table 1). For example, OTUD3 removes K63-linked ubiquitin chains from MAVS and thereby inhibits MAVS aggregation and IFN-I signaling activation (65). In addition, unanchored K63
polyubiquitin chains canbind to MDA5, and this binding is important for signaling by MDA5, mutations of conserved residues in MDA5 disrupt its ubiquitin binding, and abrogate its ability to activate IRF3 (151). In the case of IFNAR1-mediated downstream signaling, BRCC36 sustains the protein turnover of IFNAR1 by removing K63-Ub from IFNAR1 (109), whereas USP5 has been identified to negatively regulate IFN-I-induced p-STAT1 activation and antiviral activities by removing K63-Ub on SMURF1 (112).

Additionally, some DUBs possess broad DUB activity against several types of Ub linkages. The DUBs OTUD7B, USP17, USP25, MCPIP1, ATXN3, and UCHL3 could simultaneously deconjugate the K48- and K63-linked Ub chains from the same protein in the IFN-I signaling pathway (Table 1). For instance, ATXN3 sustains IFNAR1-mediated downstream signaling by deubiquitinating both the K48- and K63-linked types of Ub chains on HDAC3 (108). However, USP13, USP19, and USP22 inhibit virus-induced IFN production by removing K27-linked polyubiquitin chains from STING (40, 81) or TRIF (90). In contrast, USP38 combines with the active form of TBK1 via the NLR family pyrin domain containing 4 (NLRR4) signalsomone and then cleaves K33-linked Ub chains from TBK1 at Lys670, which allows DTX4 and TRIP to catalyze K48-linked ubiquitination on the same residue (101). This process causes the degradation of TBK1, thus negatively regulates IFN-I signaling. Intriguingly, USP39 promotes IFN-mediated antiviral responses by decreasing K6-linked but not canonical K48-linked polyubiquitination of STAT1 for degradation (118), eventhough K6-linked ubiquitin chains are often related to DNA damage instead of protein degradation (142). Moreover, although USP5 reportedly increases K11- and K48-linked ubiquitination of RIG-I upon virus infection and thereby facilitates the degradation of RIG-I (40), the detailed mechanism used by USP5 to enhance K11-linked Ub chains of RIG-I and the exact functions of K11-linked Ub chains implicated in the RIG-I-mediated signaling pathway remain elusive. Overall, the atypical K6-, K11-, K27-, K33- and linear-linked polyubiquitin chains of proteins also play critical roles in antiviral immunity and inflammation (152). However, little is known about K29-linked polyubiquitination, and whether this type of PTM occurs on substrates involved in IFN-I signaling remains unknown and warrants further research.

DUBS REGULATE HOST ANTIViral ACTIVITY INDEPENDENTLY OF THEIR PROTEASE ACTIVITY

Although many studies have demonstrated that the protease activity of DUBs is critical in regulating the Ub chains on their substrates and affecting host IFN immune responses, some studies have also shown that the catalytic activity of certain DUBs is not necessary in regulating the IFN-I signaling pathway, which implies novel strategies used by DUBs. Mechanistically, the catalytically inactive mutant sites of DUBs could not abolish their negative or positive roles during virus infection, which indicates that these DUBs function independently of their protease activity. For instance, both the wild-type and enzymatically inactive mutant of USP5 can cause a decreased polyubiquitination level of SMURF1 (112), which suggest that USP5 functions in the immune response probably independently of its protease activity. In addition, some DUBs form complexes with adaptor or scaffold proteins, which act by recruiting proteins to participate in particular biological events, attracting trafficking factors that change substrate localization, or controlling substrate activity. For instance, DUBs can regulate a specific substrate by recruiting other factors, as demonstrated by USP10 recruits and binds with monocyte chemotactic protein induced protein 1 (MCPIP1) to deubiquitinate its substrate, nuclear factor kB essential modulator (NEMO) (153). Additionally, it has been shown that A20 blocks antiviral signaling by disrupting K63-linked polyubiquitination of TBK1-IKK complex independtly of the A20 deubiquitination activity (154). Furthermore, A20 prevents the interaction between Ubc13 and both TRAF2/5 and cIAP1/2 upon TNFα stimulation, which suggest A20 functions beyond its protease activity (155). In addition, A20 suppresses TNFα-induced NF-kB signaling through a noncatalytic mechanism that involves binding to polyubiquitin chains via its seventh zinc finger (ZnF7) (56, 156, 157). This binding is proposed to impede the recruitment of other linear polyubiquitin binding proteins that are essential for productive signaling downstream from TNFR (157). Moreover, USP5 suppresses IFN-β expression and enhances VSV replication by recruiting STUB1 to degrade RIG-I (40), USP13, which shares ~80% sequence similarity with USP5, negatively regulates virus-induced IFN-I production by inhibiting the recruitment of TBK1 to STING by deubiquitinating the K27-linked ubiquitin chains on STING (81), whereas USP22 recruits USP13 to cleave the K27-linked polyubiquitin chains from STING (40). USP18 does not deubiquitinate STING in vitro but facilitates USP20 to catalyze deubiquitination of STING in a manner independently of the enzymatic activity of USP18 (91). In addition, USP18-knockout mice are more susceptible to HSV-1 infection than their wild-type littermates, and the reintroduction of STING into USP18−/− MEFs can restore the HSV-1-induced expression of downstream genes and cellular antiviral responses (91). In addition to being an active enzyme, USP18 can bind to the intracellular part of IFNAR2 and compete with the binding of IAK1 to the receptor, which results in negative regulation of IFNAR signaling independently of its protease activity (117). In the case of IFNAR-mediated downstream signaling, some other DUBs also implement their functions beyond their protease activities. For example, BRCC36 functions noncatalytically by recruiting USP13 to counteract the SMURF1-mediated degradation of STAT1, and this effect enhances the stability of STAT1 and improves host antiviral efficiency (110). Additionally, USP12 positively regulates IFN antiviral signaling independently of its deubiquitinate activity. Upon IFN treatment, USP12 accumulates in the nucleus, blocks the CREB-binding protein-induced acetylation of p-STAT1, and thus inhibits the dephosphorylation effects of TCPTP on p-STAT1, which ultimately maintains the nuclear p-STAT1 levels and IFN antiviral efficacy (114).

DUB INHIBITORS AND THEIR POTENTIAL ROLES IN THERAPEUTIC PURPOSES

Because DUBs play critical roles during innate antiviral responses, the development of small-molecule inhibitors that
specifically change DUB activities might be a therapeutic strategy for improving host antiviral efficiency. Over the years, inhibitors of a panel of DUBs, including USP1, USP2, USP4, USP5, USP7, USP8, USP9X, USP10, USP11, USP13, USP14, USP19, USP20, USP25/28, USP30, COP55, STAMBP, PSMD14, UCHL1, UCHL3 and UCHL5, have been designed (158–163). However, to date, only a few small-molecule inhibitors of DUBs have been employed to investigate their functional roles in host antiviral activities. For instance, the USP7 inhibitors PS091 and P22077 have been verified to promote the type-I interferon-mediated antiviral response by destabilizing SOCS1 (113). Similarly, the USP5 inhibitor PYR41 could reduce virus replication at the mRNA and protein levels by promoting IFNAR-mediated antiviral responses (112).

Because ubiquitination and related processes are involved in myriad aspects of human cell biology and physiology, abnormalities in such events can cause many diseases. Among these events, the dysregulation of DUB activity contributes to various sporadic and genetic diseases (158, 164, 165). For instance, human USP18 deficiency underlies type 1 interferonopathy, leading to severe pseudo-TORCH syndrome which is characterized by microcephaly, enlarged ventricles, cerebral calcification, and other severe complications (166). Similarly, the homozygous mutation of USP18 also causes severe type I interferonopathy because the mutated USP18 protein results in unmitigated interferon-mediated inflammation and is lethal during the perinatal period (167). However, the treatment of these patients with ruxolitinib, a JAK 1/2 inhibitor, significantly improves their symptoms (167). Additionally, a homozygous miss-sense mutation in STAT2 results in failure to appropriately traffic USP18 to IFNAR2 and prevents USP18 from negatively regulating responses to IFN-Is, which leads to infant death from autoinflammation disease (168). Notably, given that the current therapeutics remains incapable of achieving satisfying disease management in all patients, the therapeutic modulation of DUBs might be an attractive target in certain diseases. As has been demonstrated, although some inhibitors can treat cancer disease efficiently (169), the use of these inhibitors in the treatment of viral infectious diseases remains largely unexplored. Because DUB inhibition could promote steady-state Ub levels of specific substrates without affecting global protein or Ub levels, the development of small-molecule inhibitors targeted towards DUBs has increasingly become a promising strategy for drug discovery (170). However, because many DUBs are conserved during evolution and have a high sequence similarity, new perspectives are needed to facilitate the development of specific inhibitors. Consequently, the design of small-molecule inhibitors that interfere with the activity of DUBs or the DUB-substrate interactions accompanied by their relevance in vivo and related diseases remains one of the critical and challenging research areas.

CONCLUSIONS AND PERSPECTIVES

In summary, DUB-mediated regulation represents a crucial mechanism used by hosts to tightly regulate the extent of IFN signaling to achieve a balance between pathogen eradication and the prevention of excessive immune responses. However, how DUBs implement their diverse functions and interact with substrates in a dynamic, temporal, and spatial manner to ensure the most favourable outcome remains elusive. Intriguingly, some viruses also encode DUBs and other proteins that either act alone or interact with other cellular components to evade host immune surveillance (171, 172). Thus, the interplay between DUBs and pathogens might add a new sophisticated mechanism that regulates the timing and amplitude of host immune responses to viral challenges. In addition, how PTMs (such as phosphorylation, acetylation, and methylation) of DUBs and, Ub and other unconventional Ub structures modulate the functional shift of DUBs and thus affect host innate immune signaling, is still poorly understood. Future studies exploring the detailed mechanisms of DUBs, their inducers, and downstream targets during viral infections might help improve the present understanding of the mechanisms of host innate immune responses, and these findings could lead to the identification of novel targets and help guide the development of therapeutic strategies for the treatment of human diseases.

AUTHOR CONTRIBUTIONS

The table and graphs were prepared by LZ. The literature was collected and analyzed by GL and YL. JP and ZZ provided insightful comments and suggestions on the manuscript. GQ and HL wrote the paper and critically revised the draft. All authors contributed to the article and approved the submitted version.

FUNDING

Work in our laboratory is supported by the National Natural Science Foundation of China (No. 31800982, No. 81971477, No. 82171797, No. 81870365, No. 82070512, No. 81702737, No. 81803116 and No. 81902534), Jiangsu Provincial Medical Young Talents (QNR2016756), the Applied Foundational Research of Medical and Health Care of Suzhou City (SYS2019086, SYS2019083), and Gusu Health Talent Program (GSWS2020038).

ACKNOWLEDGMENTS

We thank the editor and anonymous reviewers for their constructive comments and suggestions on the article. We also apologize to colleagues in the field whose work could not be cited owing to space limitations.

REFERENCES

1. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science (2020) 369(6504):718–24. doi: 10.1126/science.abc6027

2. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate Immune Pattern Recognition: A Cell Biological Perspective. Annu Rev Immunol (2015) 33:257–90. doi: 10.1146/annurev-immunol-032414-112240

3. Carty M, Guy C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol (2021) 183:114316. doi: 10.1016/j.bcp.2020.114316
Qian et al. Deubiquitinating Enzymes and Interferons

27. Komander D, Rape M. The Ubiquitin Code.

29. Yau R, Rape M. The Increasing Complexity of the Ubiquitin Code.

23. Zhou Y, He C, Wang L, Ge B. Post-Translational Regulation of Antiviral Innate

20. Honda K, Takaoka A, Taniguchi T. Type I Interferon [Corrected] Gene

22. Liu J, Qian C, Cao X. Post-Translational Modi

11. Rehwinkel J, Gack MU. RIG-I-Like Receptors: Their Regulation and Roles in

8. Barrat FJ, Elkon KB, Fitzgerald KA. Importance of Nucleic Acid Recognition

4. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic

6. Barrat FJ, Elkon KB, Fitzgerald KA. Importance of Nucleic Acid Recognition

50. Zhou P, Ding X, Wan X, Liu L, Yuan X, Zhang W, et al. MLL5 Suppresses

49. Zhao C, Jia M, Song H, Yu Z, Wang W, Li Q, et al. The E3 Ubiquitin Ligase

48. Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 Suppresses

46. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. Riplet/RNF135, a RING

45. Takeuchi O, Akira S. Pattern Recognition Receptors and In

43. Takeichi S, Takeda K, Taniguchi T. Type I Interferon [Corrected] Gene

42. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, et al.

41. Bhoj VG, Chen ZJ. Ubiquitylation in Innate and Adaptive Immunity.

40. Honda K, Takaoka A, Taniguchi T. Type I Interferon [Corrected] Gene

39. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Simka TK, et al. A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell (2005) 121(7):893–904. doi: 10.1016/j.cell.2005.11.007

38. Reyes-Turcu FE, Wilkinson KD. Polyubiquitin Binding and Disassembly by Deubiquitinating Enzymes. Chem Rev (2009) 109(4):1495–508. doi: 10.1021/cr8004701

37. Mevissen TET, Komander D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu Rev Biochem (2017) 86:159–92. doi: 10.1146/annurev-biochem-061516-044916

36. Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 Suppresses

35. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

34. Kim HS, Kwon J, Yoon JE, Kang TH, Jeong SJ. The Role of Ubiquitin

33. Matsushita K, Takeshi O, Sato S, Yoneyama M, Yamamoto M, Matsu kii, et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nature (2006) 441(7089):101–5. doi: 10.1038/nature04734

32. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

31. Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic

30. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

29. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

28. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

27. Komander D, Rape M. The Ubiquitin Code.

26. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

25. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

24. Coleman KE, Huang TT. In a Class of Its Own: A New Family of

23. Zhou Y, He C, Wang L, Ge B. Post-Translational Regulation of Antiviral Innate

22. Liu J, Qian C, Cao X. Post-Translational Modification Control of Innate Immunity. Immunity (2016) 45(1):15–30. doi: 10.1016/j.immuni.2016.06.020

21. Ashkenazi D, Ashkenazi A. The RING Finger Protein, Ubiquitines RIG-I to Promote Interferon-Beta Induction during the Early Phase of Viral Infection. J Biol Chem (2009) 284(2):807–17. doi: 10.1074/jbc.M804292000

20. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimokoto K. Negative Regulation of the RIG-I Signaling by the Ubiquitin Ligase RNF125. Proc Natl Acad Sci USA (2007) 104(18):7500–5. doi: 10.1073/pnas.0611551014

19. Zhao C, Jia M, Song H, Yu Z, Wang W, Li Q, et al. The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Rep (2017) 21(6):1613–23. doi: 10.1016/j.celrep.2017.10.020

18. Zhou P, Ding X, Yuan X, Liu L, Yuan X, Zhang W, et al. MLL5 Suppresses Antiviral Innate Immune Response by Facilitating STUB1-Mediated RIG-I Degradation. Nat Commun (2018) 9(1):1243. doi: 10.1038/s41467-018-03563-8

17. Zhou P, Ding X, Yuan X, Liu L, Yuan X, Zhang W, et al. MLL5 Suppresses Antiviral Innate Immune Response by Facilitating STUB1-Mediated RIG-I Degradation. Nat Commun (2018) 9(1):1243. doi: 10.1038/s41467-018-03563-8

16. Zou H, Ding X, Wu N, Zou C, Liang Y, Zhao Y, et al. Targeting the E3 Ubiquitin Ligase RNF125 for Treating RIG-I-Dependent Antiviral Activity. Cell Rep (2019) 28(6):2201–12. doi: 10.1016/j.celrep.2019.06.003

15. Zou H, Ding X, Wu N, Zou C, Liang Y, Zhao Y, et al. Targeting the E3 Ubiquitin Ligase RNF125 for Treating RIG-I-Dependent Antiviral Activity. Cell Rep (2019) 28(6):2201–12. doi: 10.1016/j.celrep.2019.06.003

14. Liu Y, Wang J, Jiang D, Wang J, Fei R, Cong X, et al. PPPDE1 is a Novel Deubiquitinase Belonging to a Cysteine Isopeptidase Family. Biochem Biophys Res Commun (2017) 488(2):291–6. doi: 10.1016/j.bbrc.2017.04.161

13. Fuchs SY. Ubiquitination-Mediated Regulation of Interferon Responses.

12. Hedeby C, Takaoka A, Taniguchi T. Type I Interferon Signatures in SARS-CoV-2 Infected Huh7 Cells. J Exp Med (2020) 213(1):1–13. doi: 10.1084/jem20191531

11. Takeichi S, Takeda K, Taniguchi T. Type I Interferon [Corrected] Gene

10. Honda K, Takaoka A, Taniguchi T. Type I Interferon [Corrected] Gene

9. Takeuchi O, Akira S. Pattern Recognition Receptors and In

8. Honda K, Okba Y, Yama H, Negishi H, Mizutani T, Takaoka A, et al. Spatiotemporal Regulation of MyD88-IRF-7 Signalling for Robust Type-I Interferon Induction. Nature (2005) 434(7036):1035–40. doi: 10.1038/nature03547

7. Wang L, Zhao J, Ren J, Hall KH, Moorpen JP, Yao QZ, et al. Protein Phosphatase 1 Abrogates IRF-7-Mediated Type I IFN Response in Antiviral Immunity. Eur J Immunol (2016) 46(10):2409–19. doi: 10.1002/eji.201646491

6. Barrat FJ, Elkon KB, Fitzgerald KA. Importance of Nucleic Acid Recognition

5. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic

4. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic

3. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic

2. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic

1. Wu J, Chen ZJ. Innate Immune Sensing and Signaling of Cytosolic Nucleic
51. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, et al. Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-1 Degradation. Cell (2013) 152(3):467–78. doi: 10.1016/j.cell.2013.01.011
52. Okamoto M, Kowaki T, Fukushima Y, Oshiumi H. Regulation of RIG-1 Activation by K63-Linked Polyubiquitination. Front Immunol (2017) 8:1942. doi: 10.3389/fimmu.2017.01942
53. Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Ashari E, Julkunen I, et al. Negative Regulation of the Retinoic Acid-Inducible Gene I-Induced Antiviral State by the Ubiquitin-Editing Protein A20. J Biol Chem (2006) 281(4):2095–103. doi: 10.1074/jbc.M51032600
54. Ning S, Pagano JS. The A20 Deubiquitinating Activity Negatively Regulates LMP1 Activation of IRF7. J Virol (2010) 84(12):6310–8. doi: 10.1128/JVI.00364-10
55. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The Ubiquitin-Modifying Enzyme A20 Is Required for Termination of Toll-Like Receptor Responses. Nat Immunol (2004) 5(10):1052–60. doi: 10.1038/ni1110
56. Skag B, Chen J, Du F, He J, Ma A, Chen ZJ. Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Mol Cell (2011) 44(4):559–71. doi: 10.1016/j.molcel.2011.09.015
57. Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM, et al. Induction of Siglec-G by RNA Viruses Potently Inhibits Innate Immune Responses by Promoting RIG-1 Degradation Mediated by Selective Autophagy Receptor P62 to Promote Inflammatory Signaling. Proc Natl Acad Sci USA (2013) 110(2):618–23. doi: 10.1073/pnas.1208446110
58. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of Deubiquitinase OTUD1 Are Associated With Autoimmune Disorders. J Autoimmun (2018) 94:156–65. doi: 10.1016/j.jaut.2017.09.019
59. Zhang Z, Wang D, Wang P, Zhao Y, You F. OTUD1 Negatively Regulates Type I IFN Induction by Disrupting Noncanonical Ubiquitination of IRF3. J Biol Chem (2020) 295(7):1904–8. doi: 10.1074/jbc.K119.003305
60. Zhang L, Liu J, Qian L, Feng Q, Wang X, Yuan Y, et al. Induction of OTUD1 by RNA Viruses Potently Inhibits Innate Immune Responses by Promoting Degradation of the MAVS/TRAF3/TRAF6 Signalingosome. PloS Pathog (2018) 14(5):e1007067. doi: 10.1371/journal.ppat.1007067
61. Zhang Z, Fang X, Wu X, Ling L, Chu F, Li J, et al. Acetylation-Dependent Deubiquitinase OTUD3 Controls MAVS Activation in Innate Antiviral Immunity. Mol Cell (2020) 79(2):304–19.e7. doi: 10.1016/j.molcel.2020.06.020
62. Luoyu T, Yu K, Ye L, Zhang Z, Zhang M, Ren Y, et al. Induction of OTUD4 by Viral Infection Promotes Antiviral Responses Through Deubiquitinating and Stabilizing MAVS. Cell Res (2019) 29(1):67–79. doi: 10.1038/s41422-018-0107-6
63. Zhao Y, Mudge MC, Soll JM, Rodrigues RB, Byrum AK, Schwarzkopf EA, et al. OTUD4 Is a Phospho-Activated K63 Deubiquitinase That Regulates MyD88-Dependent Signaling. Mol Cell (2018) 69(3):505–16.e5. doi: 10.1016/j.molcel.2018.01.009
64. Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, et al. DUBA: A Deubiquitinase That Regulates Type I Interferon Production. Science (2007) 318(5856):1628–32. doi: 10.1126/science.1149198
65. Guo Y, Jiang F, Kong L, Wu H, Zhang H, Chen X, et al. OTUD5 Promotes Innate Antiviral and Antitumor Immunity Through Deubiquitinating and Stabilizing STING. Cell Mol Immunol (2020) 18(8):1945–55. doi: 10.1038/s41423-020-00531-5
66. Enesa K, Zakkar M, Chaudhury H, Luong le A, Rawlinson L, Mason JC, et al. NF-kB Suppression by the Deubiquitinating Enzyme Cezanne: A Novel Negative Feedback Loop in Pro-Inflammatory Signaling. J Biol Chem (2008) 283(11):7036–45. doi: 10.1074/jbc.M708690200
67. Ji Y, Cao L, Zeng L, Zhang Z, Xiao Q, Guan P, et al. The N-Terminal Ubiquitin-Associated Domain of Cezanne Is Crucial For Its Function to Suppress NF-kappaB Pathway. J Cell Biochem (2018) 119(2):1979–91. doi: 10.1002/jcb.26359
68. Guo Y, Jiang F, Kong L, Wu H, Zhang H, Chen X, et al. OTUD5 Promotes Innate Antiviral and Antitumor Immunity Through Deubiquitinating and Stabilizing STING. Cell Mol Immunol (2020) 18(8):1945–55. doi: 10.1038/s41423-020-00531-5
89. Yang Z, Xian H, Hu J, Tian S, Qin Y, Wang RF, et al. USP18 Negatively Regulates NF-kappaB Signaling by Targeting TAK1 and NEMO for Deubiquitination Through Distinct Mechanisms. Sci Rep (2015) 5:12738. doi: 10.1038/srep12738

90. Wu X, Lei C, Xia T, Zhong X, Yang Q, Shu HB. Regulation of TRIF-Mediated Innate Immune Response by K27-Linked Polyubiquitination and Deubiquitination. Nat Commun (2019) 10(1):4115. doi: 10.1038/s41467-019-12145-1

91. Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, et al. USP49 Negatively Regulates Type I IFN Antiviral Response by Deubiquitinating and Stabilizing Hda3C. *J Immunol* (2018) 201(2):675–87. doi: 10.4049/jimmunol.1800285

92. Zheng H, Gupta V, Patterson-Fortin J, Bhattacharya S, Katlinksi K, Wu J, et al. A BRISC-SHMT Complex Deubiquitificates IFNAR1 and Regulates Interferon Responses. *Cell Rep* (2013) 5(1):180–93. doi: 10.1016/j.celrep.2013.08.025

93. Cheng Q, Feng Q, Xu Y, Zuo Y, Liu J, Yuan Y, et al. BRCC36 Functions Noncatalytically to Promote Antiviral Response by Maintaining STAT1 Protein Stability. *Eur J Immunol* (2020) 51(2):296–310. doi: 10.1002/eji.202048537

94. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinating USP2a Sustains Interferon Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. *PloS Pathog* (2016) 12(7):e1005764. doi: 10.1371/journal.ppat.1005764

95. Qian G, Zhu L, Huang C, Liu Y, Ren Y, Ding Y, et al. Ubiquitin-Specific Protease 5 Negatively Regulates the IFNs-Mediated Antiviral Activity via Targeting SMURF1. *Int Immunopharmacol* (2020) 87:106763. doi: 10.1016/j.intimp.2020.106763

96. Yuan Y, Miao Y, Zeng C, Liu J, Chen X, Qian L, et al. Small-Molecule Inhibitors of Ubiquitin-Specific Protease 7 Enhance Type-I Interferon Antiviral Efficacy by Destabilizing Socs1. *Cell Research* (2020) 159(3):309–21. doi: 10.1038/s41422-019-0335-9

97. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, et al. USP12 Translocation Maintains Interferon Antiviral Efficacy by Inhibiting CBP Acetyltransferase Activity. *PloS Pathog* (2020) 16(1):e1008215. doi: 10.1371/journal.ppat.1008215

98. Teh HM, Yu CY, Yang HC, Ko SH, Liao CL, Lin YL. Ubiquitin-Specific Protease 13 Regulates IFN Signaling by Stabilizing STAT1. *J Immunol* (2013) 191(6):3328–36. doi: 10.4049/jimmunol.1300225

99. Sarasin-Filipowicz M, Wang X, Yan M, Duong FH, Poli V, Hilton DJ, et al. Alpha Interferon Induces Long-Lasting Refractoriness of JAK-STAT Signaling in the Mouse Liver Through Induction of USP18/UBP43. *Mol Cell Biol* (2009) 29(17):4841–51. doi: 10.1128/MCB.00224-09

100. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, et al. USP43 is a Novel Regulator of Interferon Signaling Independent of Its ISG15 Isopeptidase Activity. *EMBO J* (2006) 25(11):2358–67. doi: 10.1038/sj/emboj.7601149

101. Peng Y, Guo J, Sun T, Fu Y, Zheng H, Dong C, et al. USP39 Serves as a Deubiquitinizing Enzyme to Stabilize STAT1 and Sustains Type I IFN-Induced Antiviral Immunity. *J Immunol* (2020) 205(11):3167–78. doi: 10.4049/jimmunol.2001384

102. Qian L, Zuo Y, Deng W, Miao Y, Liu J, Yuan Y, et al. MCP1Pi is a Positive Regulator of Type I Interferons Antiviral Activity. *Biochem Biophys Res Commun* (2018) 498(4):891–7. doi: 10.1016/j.bbrc.2018.03.076

103. Wang X, Zhang L, Zhang Y, Zhao P, Qian L, Yuan Y, et al. JOSD1 Negatively Regulates Type-I Interferon Antiviral Activity by Deubiquitinating and Stabilizing Socs1. *Viral Immunol* (2017) 30(5):342–9. doi: 10.1089/vim.2017.0015

104. Muramoto R, Nakajima M, Hirashima K, Hiroko T, Kon S, Shimoda K, et al. Jun Vaccination Domain-Binding Protein 1 (JAB1) Is Required for the Optimal Response to Interferons. *J Biol Chem* (2013) 288(33):30969–79. doi: 10.1074/jbc.M113.485847

105. Zhao P, Guo T, Qian L, Wang X, Yuan Y, Cheng Q, et al. Ubiquitin C-Terminal Hydrolase-L3 Promotes Interferon Antiviral Activity by Stabilizing Type I Interferon Receptor. *Antiviral Res* (2017) 144:120–9. doi: 10.1016/j.antiviral.2017.06.002

106. Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. *Front Pharmacol* (2021) 12:685011. doi: 10.3389/fphar.2021.685011

107. Liu B, Zhang M, Chu H, Zhang H, Wu H, Song G, et al. The Ubiquitin E3 Ligase TRIM31 Promotes Aggregation and Activation of the Signaling Adaptor MAVS Through Lys63-Linked Polyubiquitination. *Nat Immunol* (2017) 18(2):214–24. doi: 10.1038/nj.2016.3641

108. Paz S, Vilasco M, Arguello M, Sun Q, Lacoste J, Nguyen TL, et al. Ubiquitin-Regulated Recruitment of IfabpHa Kinase Epsilon to the MAVS Interferon
131. Zheng H, Qian J, Varghese B, Baker DP, Fuchs S, Basters A, Geurink PP, El Oualid F, Ketscher L, Casutt MS, Krause E, et al. Clague MJ, Urbe S, Komander D. Breaking the Chains: Deubiquitylating Enzymes in Control of Innate Antiviral Immunity. Adv Sci (Weinh) (2021) 8 (2):2002484. doi: 10.1002/advs.20202484

132. Carbone CJ, Zheng H, Bhattacharya S, Lewis JR, Reiter AM, Henthorn P, Tanaka T, Soriano MA, Grusby MJ. SLIM is a Nuclear Ubiquitin E3 Ligase Involved in NF-kappaB Signaling in Viral Activation of IRF3. Mol Cell (2009) 36(2):315–25. doi: 10.1016/j.molcel.2009.09.037

133. Cui J, Li Y, Zhu L, Liu D, Songyang Z, Wang HY, et al. NLRP4 Negatively Regulates Type I Interferon Signaling by Targeting the Kinase TBK1 for Degradation via the Ubiquitin Ligase DTX4. Nat Immunol (2012) 13(4):387–95. doi: 10.1038/ni.2239

134. Zhang M, Wang L, Zhao X, Zhao K, Meng H, Zhao W, et al. TRAF-23. doi: 10.1038/nrm3394

135. Nakhaei P, Mesplede T, Solis M, Sun Q, Zhao T, Yang L, et al. The E3 Ubiquitin Ligase Triad3A Negatively Regulates the RIG-I-MAVS Signaling Pathway by Targeting TRAF3 for Degradation. PloS Pathog (2009) 5(11): e1000650. doi: 10.1371/journal.ppat.1000650

136. Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, et al. E3 Ubiquitin Ligase RNF128 Promotes Innate Antiviral Immunity Through K63-Linked Ubiquitination of TBK1. Nat Immunol (2016) 17(12):1342–51. doi: 10.1038/ni.3588

137. Zuo Y, Park Y, Kim JH, Cho H, Kim SH, Lee HS, et al. The Mitochondrial Ubiquitin Ligase MARCH3 Resolves MAVS Aggregates During Antiviral Signalling. Nat Commun (2015) 6:7910. doi: 10.1038/ncomms8910

138. Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, et al. USP10 Inhibits Mycobacterial Infections by A20 and USP7. Immunology (2011) 136(6):959–73. doi: 10.1111/j.1365-2567.2011.03252.x

139. Zhang M, Wang L, Zhao X, Zhao K, Meng H, Zhao W, et al. TRAF-Interacting Protein (TRIP) Negatively Regulates IKBa Production and Antiviral Response by Promoting Proteasomal Degradation of TANK-Binding Kinase 1. J Exp Med (2012) 209(10):1703–11. doi: 10.1084/jem.20120204

140. Jiang X, Chen ZJ. The Role of Ubiquitylation in Immune Defence and Pathogen Evasion. Nat Rev Immunol (2009) 9(2):149–59. doi: 10.1038/nri2539

141. Ebner P, Versteeg GA, Ikeda F. Ubiquitin Enzymes in the Regulation of Innate Antiviral Immunity. Mol Cell Proteomics (2013) 12(2):2002484. doi: 10.1002/advs.20202484

142. Kulathu Y, Komander D. Atypical Ubiquitylation - the Unexplored World of Polyubiquitin Beyond Lys48 and Lys63 Linkages. Nat Rev Mol Cell Biol (2012) 13(8):508–23. doi: 10.1038/nrm3394

143. Schlagel NJ, Magin RS, Liu X, Doherty LM, Buhrlage SJ. Advances in Discovering Deubiquitylating Enzymes and Drug Discovery: Emerging Opportunities. Nat Rev Drug Discovery (2018) 17(1):51–78. doi: 10.1038/nrd.2017.152

144. Love KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, Biology and Roles of Deubiquitylating Enzymes (DUBs): DoUBle-Edged Swords in CNS Autoimmunity. J Neuroinflammation (2020) 17(1):102. doi: 10.1186/s12974-020-01783-8
166. Meuwissen ME, Schot R, Buta S, Ouadessluijs G, Tinschert S, Speer SD, et al. Human USP18 Deficiency Underlies Type 1 Interferonopathy Leading to Severe Pseudo TORCH Syndrome. *J Exp Med* (2016) 213(7):1163–74. doi: 10.1084/jem.20151529

167. Al-Ohime F, Martin-Fernandez M, Temsah MH, Alabdulhafid M, Le Voyer T, Alghamdi M, et al. JAK Inhibitor Therapy in a Child With Inherited USP18 Deficiency. *New Engl J Med* (2020) 382(3):256–65. doi: 10.1056/NEJMoa1905633

168. Gruber C, Martin-Fernandez M, Alal F, Qiu X, Taft J, Altman J, et al. Homozygous STAT2 Gain-of-Function Mutation by Loss of USP18 Activity in a Patient With Type 1 Interferonopathy. *J Exp Med* (2020) 217(5):1–9. doi: 10.1084/jem.20192319

169. Kemp M. Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. *Prog Med Chem* (2016) 55:149–92. doi: 10.1016/bs.pmch.2015.10.002

170. Altun M, Kramer HB, Willems LJ, McDermott JL, Leach CA, Goldenberg SJ, et al. Activity-Based Chemical Proteomics Accelerates Inhibitor Development for Deubiquitylating Enzymes. *Chem Biol* (2011) 18 (11):1401–12. doi: 10.1016/j.chembiol.2011.08.018

171. Hoffmann HH, Schneider WM, Rice CM. Interferons and Viruses: An Evolutionary Arms Race of Molecular Interactions. *Trends Immunol* (2015) 36(3):124–38. doi: 10.1016/j.it.2015.01.004

172. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and Function of Viral Deubiquitinating Enzymes. *J Mol Biol* (2017) 429(22):3441–70. doi: 10.1016/j.jmb.2017.06.010

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Qian, Zhu, Li, Liu, Zhang, Pan and Lv. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.