The sensing of mitochondrial DAMPs by non-immune cells

Aida Rodriguez-Nuevo1,2,3 and Antonio Zorzano1,2,3,*

1 Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain.
2 Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, 08028 Barcelona, Spain.
3 CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III.
* Corresponding Author: Antonio Zorzano, Institute for Research in Biomedicine, C/ Baldri Reixac 10, 08028 Barcelona. Tel:+34-934037197; Fax:+34-934034717; E-mail: antonio.zorzano@irbbarcelona.org

ABSTRACT Mitochondria are the source of damage-associated molecular patterns (DAMPs), which are molecules that play a key modulatory role in immune cells. These molecules include proteins and peptides, such as N-formyl peptides and TFAM, as well as lipids, and metabolites such as cardiolipin, succinate and ATP, and also mitochondrial DNA (mtDNA). Recent data indicate that somatic cells sense mitochondrial DAMPs and trigger protective mechanisms in response to these signals. In this review we focus on the well-described effects of mitochondrial DAMPs on immune cells and also how these molecules induce immunogenic responses in non-immune cells. Special attention will be paid to the response to mtDNA.

MITOCHONDRIA ARE IMMUNOGENIC ORGANELLES
The efficiency of the innate immune system is determined by the capacity of distinct cell types to discriminate self from non-self structures. The dysregulation of this ability results in either immunodeficiency pathologies or autoimmune and autoimmune diseases. The immune system is primed to recognize pathogen-associated molecular patterns (PAMPs), derived from infection, through a variety of receptors. However, misplaced self-molecules can also trigger similar types of responses. Such molecules are called damage-associated molecular patterns (DAMPs). Mitochondria produce DAMPs and in fact, are relevant contributors to the cellular generation of these damage signals. In this regard, both the origin and features of these molecules account for the immunogenic capacity of the mitochondrion.

Mitochondria arose around two thousand million years ago, which makes them one of the most ancient endomembrane systems in eukaryotic cells. In 1967, Lynn Margulis rescued the long forgotten endosymbiont theory of organelle origin [1]. This proposes that eukaryotic cells derived from the engulfment of an α-proteobacterium by the eukaryotic progenitor. The resemblance of modern mitochondria to their bacterial ancestor supports this theory. Among other features, mitochondria are comprised of two functionally different and separate membranes that surround a matrix compartment that contains the unmethylated mitochondrial circular genome, which is organized as nucleoids throughout the matrix [2]. The bacterial-like characteristics of mitochondria also reinforce the notion of them being hubs of immunity. The proteins found in mitochondria are structurally similar to those in bacteria and enable their recognition by the same receptors of the immune system [3].

Mitochondria are pivotal organelles for many cellular functions and are the primary energy-generating system in...
most eukaryotic cells. The architecture of mitochondria is essential for their proper function and also for the confinement of mitochondria-derived immunogenic molecules. At the ultrastructural level, mitochondria are comprised by two membranes, namely the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). The OMM is structurally simple and highly permeable to small molecules and ions, while at the same time it protects the cell from noxious mitochondrial products, including reactive oxygen species (ROS), immunogenic mtDNA [4] and death signals. The IMM is morphologically more complex, and it creates an impermeable barrier between the matrix and the intermembrane space. This restrictive permeability and proper cristae morphology are the two major physical features that enable mitochondria to perform oxidative phosphorylation [5]. Additionally, these organelles participate in intermediary metabolism, the regulation of programmed cell death, calcium homeostasis, and the generation and control of ROS [2, 6, 7]. Mitochondrial functionality is synonymous with cellular homeostasis. In this regard, diverse molecules extruded from mitochondria alert neighboring cells, the immune system, and the producing cell itself about mitochondrial dysfunction. This signal triggers various mechanisms aimed to revert the defect and recover homeostasis, or, under chronic or more severe conditions, to induce a systemic response.

MITOCHONDRIAS GENERATE DIFFERENT TYPES OF IMMUNOGENIC MOLECULES OR DAMPS

Mitochondria-derived DAMPs (hereafter MTDs) include not only proteins but also DNA, lipids and metabolites, and they show immunogenic capacity when misplaced or imbalanced. In this review we focus on the well-described effects of MTDs on immune cells and also how these molecules induce immunogenic responses in non-immune cells.

MTDs are recognized by Pattern Recognition Receptors (PRRs). Usually, the receptors that recognize specific mitochondrial molecules are those that engage to the pathogenic homologs of these molecules. Therefore, the response triggered by MTDs resembles pathogenic effects. Hence, MTDs in sterile conditions have been studied with the aim to unravel autoimmunity and autoimmune diseases.

Mitochondria produce several DAMPs, such as ATP, succinate, cardiolipin, N-formyl peptides, mtDNA and mitochondrial transcription factor A (TFAM), which serve as danger flags for immunological signaling (Figure 1) [4, 8–11].

In addition to being the source of DAMPs, mitochondria are also linked to immunity through their role as innate immune platforms that harbor the mitochondrial antiviral-signaling protein (MAVS) as a viral RNA sensor and the Nod-like receptor 3 (NLRP3) inflammasome as a multiple immunogenic receptor [12–16].

Adenosine triphosphate

ATP is the energetic currency in all living organisms. It is synthesized mainly in mitochondria by ATP synthase coupled to the electron transport chain in the IMM. It is transported to the cytosol by the ATP-ADP translocase and used by many energy-demanding reactions in the cell. The conversion from adenosine triphosphate to adenosine diphosphate through the donation of a phosphate group enables biochemical reactions.

In addition to the crucial role of intracellular ATP as an energy source for the maintenance of cellular homeostasis, it is also a key player in extracellular signaling. ATP is released from cells by cell damage, exocytosis as well as by non-vascular mechanisms, which include ATP release channels [17]. It has been demonstrated that extracellular ATP is sensed by P2XR and P2YR receptors in the plasma membrane [18, 19]. ATP is secreted from various types of cells under stress conditions. For instance, bacterial, hypotonic and mechanical insults on epithelial cells result in increased secretion of ATP [20–22]. High levels of extracellular ATP are sensed by leukocytes and promote relaxation, vasodilatation, neurotransmission, platelet aggregation, ion transport regulation, cell growth, and immune response—all processes triggered in response to tissue damage [23–25]. In particular, neutrophils activate chemotaxis, release IL-8 and elastase, increase adhesion capacity to endothelial cells, cause degranulation, and produce ROS and ATP to further enhance the innate immune response [26]. In monocytes and macrophages, extracellular ATP promotes the production of the pro-inflammatory cytokines IL-1β and IL-18. ATP binds to P2X7 receptor and induces K+ efflux through the P2X7 channel. This results in caspase-1 cleavage in the NLRP3 inflammasome, which in turn promotes cytokine maturation and secretion [27, 28]. Both in monocytes and T lymphocytes, ATP induces shedding of L-selectin by P2X7R activation, thereby leading to transmigration through the endothelium. These observations thus indicate the involvement of ATP in both innate and adaptive immunity [29].

Succinate

Succinate is an intermediate of the tricarboxylic acid (TCA) cycle that is generated from succinyl-CoA via succinyl-CoA ligase. However, succinate has been shown to be secreted to the extracellular media in vitro, and this is stimulated by antimycin A treatment, which inhibits electron transfer between cytochrome b and c1 [30]. Indeed, extracellular succinate acts as a signaling molecule and is recognized by immune cells through its G-protein-couple receptor, namely succinate receptor 1 (SUCNR1, also named GPR91) [31]. The activation of the receptor stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), which favors the pro-inflammatory differentiation of T lymphocytes [32]. Succinate is also described to have synergic effects with Toll-like receptor (TLR) ligands in dendritic cells for the production of cytokines.

Cardiolipin

Cardiolipin (CL) is a phospholipid that accounts for 20% of total lipid content in the IMM [33–35]. CL is composed of two phosphatidyglyceride backbones and a glycerol head
group. Four fatty acids chains, with different lengths and degrees of saturation, are bound to CL [36]. This phospholipid is pivotal in many mitochondrial processes, including protein import, dynamics, respiratory chain functionality, and metabolism [37, 38]. Cellular necrosis exposes CL to the extracellular media, which can be sensed by T cells through CD1d [39]. Also, CL can bind directly to NLRP3 and activate inflammasome-mediated immune response [40]. CL is increased in tracheal aspirates of human pneumonia patients, as well as in lung injury models [41]. However, like other MTDs, CL is found in both bacterial and mitochondrial membranes. Therefore, to date, it has been difficult to verify the origin of pathology-associated high levels of this phospholipid in the extracellular media.

N-formyl peptides

Bacteria use the addition of a formyl group, a carbonyl bonded to hydrogen, to methionine to initiate protein synthesis. Bacterial N-formyl peptides (NFPs) serve as chemoattractants to activate host phagocytes [42]. Polymorphonuclear and mononuclear phagocytes show high expression of formyl peptide receptors (FPRs), members of the seven families of transmembrane G protein-couple receptors [43]. Recognition of NFPs by FPR in the plasma membrane of the phagocyte initiates various defense responses of the immune cell, such as morphological polarization, locomotion, phagocytosis, ROS generation, and protease secretion [42]. NFPs were first described to present chemotactic capacity for neutrophils and platelets [44, 45]. Mice unable to detect NFPs, by genetic knockout of formyl peptide receptor 1, show higher susceptibility to infection by *Listeria monocytogenes* [46]. In humans, localized juvenile periodontitis patients carry dysfunctional variant alleles of the FPR gene and present reduced neutrophil chemotaxis capacity to NFPs [47, 48]. Interestingly, NFPs are extruded not only by pathogens like *Escherichia coli* but also by the mitochondria of damaged or dying cells. Mitochondrial formylation of methionine is needed for translation initiation of mRNA transcribed from mtDNA, a mechanism reminiscent of bacteria [49]. Thus, mitochondria produce NFP due to the translation of mtDNA-encoded proteins within the mitochondrial matrix. Mitochondrial extracts of NFPs induce the chemotaxis of polymorphonuclear cells, whereas the non-formylated peptides are innocuous. Moreover, NFPs are secreted only by necrotic cells, thus excluding apoptotic cells [45]. These observations

Table 1: Mitochondria-derived DAMPs

DAMP	Mechanism
ATP	Extracellular ATP signals through P2XR to induce inflammasome activation, apoptosis and ROS.
Succinate	Secretion of succinate triggers pro-inflammatory differentiation of T lymphocytes.
Cardiolipin	Translocation of cardiolipin to the OMM is associated with increased apoptosis and autophagy.
N-formyl peptides	Extracellular N-formyl peptides act as chemoattractants of neutrophils via FPR receptors.
Mitochondrial DNA	Extra-mitochondrial mtDNA is detected by different PRR.
TFAM	TFAM is recognised by RAGE, which guides TFAM-mtDNA complexes to the endosomal pathway.
suggest that NFPs have dual roles in tissue homeostasis. On the one hand, they promote the clearance of bacteria and infected cells. On the other hand, they enable the identification of damage cells undergoing necrosis, a process that will lead to extrusion of mitochondrial content. NFPs therefore allow the rapid clearance of these damaged cells by phagocytes.

Mitochondrial DNA

The mitochondrial genome is a double-stranded circular DNA molecule of around 16 kilobases, present in hundreds to thousands of copies per cell. It is packed with nucleoids, which are slightly elongated, irregularly shaped structures of approximately 80–100 nm. Nucleoids associate with the IMM and distribute throughout mitochondria [50]. They contain relatively high levels of TFAM (1 subunit every 16–17 bp of mtDNA), which is essential for mtDNA maintenance because it is responsible for mtDNA packaging [51–56]. There is some debate regarding the number of mtDNA copies per nucleoid. While some authors have described several copies of mtDNA per nucleoid [57], others have reported only one copy [56, 58]. The organization of mtDNA into nucleoids is essential for the correct distribution and segregation of mtDNA. The mitochondrial genome encodes for 22 tRNA, 2 rRNA and 13 essential subunits of mtDNA. The mitochondrial transcription factor A (TFAM) is member of the HMG box family of proteins. TFAM interacts with mitochondrial DNA and regulates both its transcription and replication, thus modulating mtDNA-encoded protein expression and mtDNA copy number [76, 77]. TFAM correct expression is crucial for mitochondrial function and thus cellular homeostasis [55]. The presence of extracellular TFAM is described to induce an inflammatory response, similarly to the action of another DAMP of the same family of proteins, namely HMGB1. TFAM also enhances the immunogenicity of mtDNA [78]. While bound to mtDNA, it can interact with the plasma membrane receptor RAGE and induces the internalization of mtDNA, thereby promoting its recognition by TLR9 [79]. Also, TFAM enhances cytokine secretion in combination with NFPs [80]. Treatment with TFAM increases the levels of IL6 and TNF in the serum of rats and in the media from RAW264.7 macrophage cultures [81].

NON- IMMUNE CELLS ALSO RESPOND TO MITOCOHRIDIA DAMPS

Mitochondrial DAMPs were initially reported in cells of the immune system [82]. However, we now know that somatic cells also respond to mitochondrial DAMPs to either trigger protective mechanisms or pathways to exacerbate the signal. In this regard, the release of mitochondrial DAMPs in ischemia/reperfusion during liver transplantation, together with pro-inflammatory cytokines, causes hepatic inflammation and cell death [83]. In contrast, some mitochondrial DAMPs may have a protective role. The activation of the P2X7 receptor, an ATP-gated trimeric membrane cation channel, induces plasmaemmemble bblebbing [84], which prevents cellular damage triggered by bacterial pore-forming toxins. On the basis of these data, it has been proposed that ATP modulates inflammation and prevents cell death upon activation of the P2X7 receptor.

Necrosis is not strictly necessary for the release of mitochondrial DAMPs. Durugatti and colleagues reported that neurons treated with presynaptic toxins release hydrogen peroxide, as well as mtDNA and cytochrome c, secondary to mitochondrial dysfunction. These DAMPs activate Schwann cells to initiate neural degeneration. The release

High levels of circulating mtDNA have been linked to liver dysfunction and increased neutrophil-mediated inflammatory responses [71]. The injection of mtDNA induces lung injury and arthritis with infiltration of mononuclear cells in mice [72]. These data support the notion that mtDNA participates in the development of inflammatory responses in vivo [4, 73]. mtDNA also induces inflammation in microglial and neuronal cells or in mouse brains [74, 75]. Furthermore, it has been reported that mtDNA stress elicited by TFAM deficiency triggers cytosolic antiviral signaling, promoted by cytosolic mtDNA leakage [64]. Thus, the degree of packaging, the stability, the localization and the presence of oxidative damage modifications or mutations are implicated in mtDNA-innate immune signaling [12].
of mtDNA and cytochrome c results from the opening of the mitochondrial transition pore, and the maintenance of mitochondrial permeability was shown to be key to restraining mitochondrial DAMP release [85].

Cardiolipin is asymmetrically enriched in the IMM. Under stimuli determining cell or mitochondrial dysfunction such as membrane depolarization or tBid binding, CL is translocated to the OMM, a process facilitated by the phospholipid scramblase 3 (PLS3) [86]. The presence of CL in the OMM induces mitophagy [87], and apoptosis by reducing OMM permeability and thus enabling cytochrome c release. Regarding the immunogenic genetic of CL, it acts as a signaling platform in the recruitment of inflammasome particles and to induce the activation of these molecules [86, 88].

Mitochondrial DAMPs can play modulatory roles, for example, by increasing endothelial cell permeability, thus allowing the transmission of the immunogenic response to distal organs [89]. These studies indicate that mitochondrial DAMPs are important in the different levels of the immunogenic response in non-immune cells.

The regulatory role of succinate or N-formyl peptides in non-immune cells remains unclear. However, given that the expression of the succinate receptor, SUCNR1, is high in liver and kidney [90], it is likely that it mediates mitochondrial stress in these tissues. Similarly, N-formyl peptide receptors FPR1 and FPR2 show a relative broad expression so they may also play a modulatory role in various tissues [91].

MECHANISMS OF RESPONSE TO MITOCHONDRIAL DNA
Since nucleic acids are central for the replication and propagation of most pathogens, it is not surprising that their detection is covered by various kinds of PRRs localized in diverse cellular compartments. In particular, mtDNA is recognized by four innate immune receptors: cytosolic cyclic GMP-AMP synthase (cGAS), endosomal TLR9, and the two inflammasomes: Absent In Melanoma 2 (AIM2), and NOD, LRR and Pyrin domain-containing protein 3 (NLRP3) [92, 93]. Here we focus mainly on cGAS and TLR9 as mtDNA sensors since the mechanism through which mtDNA activates inflammasomes is poorly characterized.

Mitochondrial DNA and cGAS signaling
Cytosolic is the most recently described DNA sensor [94, 95]. Cytosolic double stranded (ds)DNA activates cGAS to form a dimeric cGAS-DNA complex that synthesizes cyclic GMP-AMP or cGAMP from ATP and GTP. This cGAMP functions as a second messenger because it is a high-affinity ligand for the endoplasmic reticulum (ER) membrane adaptor protein stimulator of interferon genes (STING) [96]. cGAMP induces conformational changes in STING, which result in the subsequent activation of the transcription factors NF-kB and IRF3 through the kinases IKK and TBK1, respectively (Figure 2) [97–101]. Interestingly, cGAS induces autophagy independently of STING as a protective mechanism against ischemia-reperfusion injury in liver [102].

Under conditions in which DNA is bound to HMGB1 or TFAM and forms a protein-DNA ladder, cGAS signaling is promoted [103]. Specifically, mtDNA has been reported to trigger a type I interferon (IFN) response and expression of IFN-stimulated genes (ISG) in a T Fraser heterozygous context [64]. West and colleagues observed mtDNA stress, characterized by reduced nucleoid number and increased nucleoid size. In these conditions, mtDNA was found in the cytosolic fraction in the context of mitochondrial hyperfusion. Interestingly, depletion of mitochondrial fusion protein Mfn1 normalizes ISG expression. In obesity-induced insulin resistance, the release of mtDNA to the cytosol has been described as a major driver of the chronic inflammation associated with the disease, through the activation of the cGAS-STING pathway [104]. This pathway is also activated upon release of mtDNA in apoptotic conditions, although the apoptosis pathway silences the immunogenic response. McArthur and colleagues used apoptosis as a model situation of mtDNA release to the cytosol and found that the BAK/BAX macropore allows the IMM to herniate, creating a protrusion in the mitochondrial surfaces of naked IMM. The loss of membrane integrity then allowed exposure of mtDNA to the cytosol [105].

Mitochondrial DNA as a TLR9 agonist
TLR9 was the first protein of the TLR family to be described as a nucleic acid sensor (Figure 2). It is expressed mainly in immune system cells, including dendritic cells and macrophages. However, it is also found in other non-immune cells such as muscle and epithelial cells, among others [106]. It binds specifically to unmethylated CpG DNA, like the mtDNA, in the endolysosomal compartment [12, 107–109]. TLR9 signals through the myeloid differentiation primary response protein 88 (MyD88), which activates a number of kinases and transcriptional factors, namely mitogen-activated protein kinases (MAPK), nuclear factor-κB (NF-κB) and IRF7 to enhance pro-inflammatory and type I interferon responses, respectively. Nucleic acid-sensing TLRs are not detectable at the cell surface but instead reside within internal compartments. In particular, full-length TLR9 localizes in the ER under unstimulated conditions [110]. More recent studies have identified that, upon stimulation, full-length TLR9 traffics through the Golgi apparatus to the endolysosomal compartment, guided by the accessory protein UNC93B1, and it is then cleaved to become DNA sensing-competent [111–115]. The recruitment of TLR9 to the endolysosomal compartment is key for its function since proteolytic activation of TLR9 occurs in endosomes, and in addition, MyD88 localizes in this compartment.

There is some evidence suggesting that the specific endolysosomal compartment in which the interaction between DNA and TLR9 takes place determines the type of immune response generated [116, 117]. Thus, it has been proposed that TLR9 signaling from late endosomes leads to the activation of NF-κB, whereas TLR9 signaling from a distinct population of endosomes brings about the recruitment of IRF and induction of type I IFN (IFN-a, IFN-b).
This alternative compartment is hypothesized to be either early endosomes or lysosomes [118, 119]. Interestingly, TLR9 modulates energy metabolism in cardiomyocytes [120], reduces ATP, and enhances AMPK activity [121]. In all, distinct cellular responses can be elicited in different cell types through the activation of the TLR9 receptor system.

Regarding mtDNA, unmethylated CpG motifs of mtDNA trigger TLR9 signaling. Several studies have reported the relevance of circulating or extracellular mtDNA in TLR9-dependent inflammation in diseases such as rheumatoid arthritis [122], atherosclerosis [10, 123], acute liver injury [71], and *Streptococcus pneumoniae* infections [124], among others [10, 62, 125–129]. Rats subjected to vascular injury showed increased extracellular mtDNA, which led to lung tissue damage through a TLR9-dependent pathway [130]. In pregnancy, high levels of cell death are associated with preeclampsia through a mechanism involving mtDNA and TLR9 [131]. Also, high mtDNA levels in non-alcoholic steatohepatitis patients are reported to activate TLR9 and exacerbate the inflammatory profile [129]. Moreover, high mobility group protein B1 (HMGB1), a nuclear DNA-binding protein released from necrotic cells, was found to be an essential component of DNA-containing immune complexes that stimulate cytokine production through a TLR9-MyD88 pathway involving the multivalent receptor RAGE [132]. Similarly, extracellular TFAM-bound mtDNA can induce a further stronger NF-κB activation since plasma membrane receptor RAGE interacts with TFAM and delivers mtDNA to TLR9 [133].
Mitochondrial DNA engages with TLR9 in the lysosomes of DNAse II-deficient hearts, thereby suggesting that undegraded mtDNA escaping from autophagy induces TLR9 and causes inflammation in cardiomyocytes [61]. In parallel, De Leo et al. reported a non-inflammatory role of the TLR9-DNA interaction in the lysosome cargo response, which is required to sustain the autophagic flux [134]. In skeletal muscle, ablation of the mitochondrial fusion protein Opa1 leads to a severe mitochondrial inflammatory myopathy, which is caused by TLR9 activation through a mechanism that requires mtDNA [135]. This inflammatory process is a primary cell-autonomous response of muscle cells to Opa1 deficiency and it leads to NF-κB activation [136]. Another less characterized response of TLR9 is the interaction with mtDNA and HMGB1 in the cytosol during hypoxia, which is involved in tumor growth [136]. In all, various mechanisms have been implicated in TLR9-associated pathologies. This is not surprising given the multiple factors involved in infection or injury [137–139].

Inflammasome
Mitochondrial DNA can also be recognized by two members of a superfamily of immunogenic receptors, namely the inflammasomes AIM2 and NLRP3. These are mainly cytosolic multicomponent oligomeric complexes that activate caspase-1, which in turn proteolytically cleaves IL-1β and IL-18, thus generating mature active forms of the secreted cytokines [28]. The inflammasome is triggered not only by pathogen-associated molecular patterns (PAMPs) as flags of pathogen infection but also by DAMPs, which flag cellular malfunction or stress. The activation of the inflammasome involves two sequential signals. The primary signal leads to NF-κB activation, which includes the expression of inflammasome components and inactive forms of the cytokines. This signal prepares the cell for a possible activation of the pathway in response to, for instance, pathological infection. Typically, this first signal is the engagement of a membrane PRR, for example TLR4, but it is also triggered by intracellular receptors like intraluminal TLRs, including TLR7 and TLR9. Experimentally, lipopolysaccharide (LPS) is widely used to prime cells for inflammasome activation.

The second signal is the trigger itself, which interacts with the recognition part of the complex and leads to the oligomerization and activation of the inflammasome particle. In addition to the recognition protein, which is specific for each type of inflammasome, a scaffold protein, the adaptor protein known as ASC, is common to all of them. This protein serves as a bridge from the upstream inflammasome sensor molecule to caspase 1. Inflammasome assembly and oligomerization results in the cleavage of caspase 1, which in turn causes rapid and efficient activation and secretion of large amounts of IL-1β, which were already expressed in response to the priming signal. Inflammasomes fall into several categories. In this regard, Broz and Dixit classified them into the following groups: 1) the nucleotide-binding oligomerization domain (NOD); the leucine-rich repeat (LRR)-containing protein (NLR) or NLR inflammasomes; 2) the absent in melanoma 2 (AIM2) and pyrin inflammasomes, which are canonical inflammasomes; and 3) non-canonical inflammasomes [140]. NLRP3 is the most studied type of inflammasome, yet the mechanisms of activation are so diverse that there is no consensus regarding whether it has affinity for a wide range of molecules or whether there is an unknown intracellular signal that converges all the different triggers into NLRP3 activation [16, 141, 142]. Classically, the inflammasome has been addressed only in macrophages and other inflammatory cells. However, several studies have reported inflammasome activation in non-immune cells, like podocytes, hepatocytes, and cardiac and skeletal myocytes [143–149]. The involvement of mtDNA in the activation of NLRP3 was reported upon mitochondrial dysfunction, leading to mtDNA leakage to the cytosol in primed macrophages [68]. In fact, mitochondria are proposed to harbour NLRP3 and be able to regulate the activity of the inflammasome complex. On one hand, activation of mitochondria reduces inflammation by clearing mitochondrial-bound NLRP3 complexes. On the other hand, mitochondrial ROS can exacerbate inflammasome immunogenic signal [14].

CONCLUSIONS AND PERSPECTIVES
Mitochondrial DAMPs have been studied mainly in the context of the function of immune cells, and we now know that they play a key role in the activity of the innate immune system, as well as in pathologies associated with immunodeficiencies and autoimmune and autoinflammatory diseases. In this regard, the mechanism by which mitochondrial dysfunction leads to the release of the different DAMPs described and the conditions under which some molecules predominate over others remain elusive. Specific studies are required to clarify this point.

There is a fragmented understanding of the cellular mechanisms that delocalize mtDNA and generate mitochondrial DAMPs. In this context, further research is needed. The relative role of the different cytosolic sensors to mitochondrial DNA should be clarified. In short, a greater knowledge of the stability and targeting of mtDNA and its sensors will allow us to predict the response of given cells to the generation of mitochondrial DAMPs triggered by specific mitochondrial damage.

Finally, future research should seek to unravel how non-immune cells respond to mitochondrial damage caused by the release of DAMPs, and mechanisms involved in these responses. Of particular relevance is understanding those conditions in which the damage to non-immune cells leads to chronic inflammatory responses. The findings of such lines of research would contribute to shedding light on diseases that are only partially understood, as is the case of inflammatory myopathies, and would also help to define pharmacological treatments for the same.

ACKNOWLEDGMENTS
A.R-N. was the recipient of a FPI fellowship from the “Ministerio de Educación y Cultura”, Spain. This study was supported by research grants from the MINECO (SAF2016-75246R), Generalitat de Catalunya (grant 2014SGR48),
INFLAMES (PIE-14/00045) from the Instituto de Salud Carlos III, and CIBERDEM (Instituto de Salud Carlos III). A.Z. is a recipient of an ICREA “Academia” (Generalitat de Catalunya). We gratefully acknowledge institutional funding from the MINECO through the Centres of Excellence Severo Ochoa Award, and from the CERCA Programme of the Generalitat de Catalunya.

CONFLICT OF INTEREST
Authors show no conflict of interest in connection with this manuscript.

REFERENCES

1. Sagan L (1967). On the origin of mitosing cells. J Theor Biol 14(3): 225-236. doi: 10.1016/0022-5193(67)90079-3
2. Nunari J, and Suomalainen A (2012). Mitochondria: In sickness and in health. Cell 148(6): 1145–1159. doi: 10.1016/j.cell.2012.02.035
3. Pallen MJ (2011). Time to recognise that mitochondria are bacteria? Trends Microbiol 19(2): 58–64. doi: 10.1016/j.tim.2010.11.001
4. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, and Hauser CJ (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285): 104–7. doi: 10.1038/nature08780
5. Jayashankar V, Mueller IA, and Rafelski SM (2016). Shaping the multi-scale architecture of mitochondria. Curr Opin Cell Biol 38: 45–51. doi: 10.1016/jceb.2016.02.006
6. Gunter TE, Buntinas L, Sparagna GC, and Gunter KK (1998). The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim Biophys Acta 1366(1–2): 5–15. doi: 10.1016/S0005-2728(98)00117-0
7. Hockenberg D, Nunez G, Milliman C, Schreiber RD, and Korsmeyer SJ (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299): 334–336. doi: 10.1038/348334a0
8. Krysko D V, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht SJ, and Ciborowski P. (2016). Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Cell 32(4): 157–64. doi: 10.1016/j.it.2011.01.005
9. Nakahira K, Hisata S, and Choi AM (2011). The roles of Mitochondrial DAMPs and non-Immune Cells as Emerging Mechanisms and Effector Functions. Cell Stress 3(6): 195-207. doi: 10.1016/cell.2016.03.046
10. Yu EPK, and Bennett MR (2014). Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab 25(9): 481–7. doi: 10.1016/j.tem.2014.06.008
11. Arnoult D, Soares F, Tattoli I, and Girardin SE (2011). Mitochondria in innate immunity. EMBO Rep 12(9): 901–910. doi: 10.1038/embor.2011.157
12. West AP, Shadel GS, and Ghosh S (2011). Mitochondria in innate immune responses. Nat Rev Immunol 11(6): 389–402. doi: 10.1038/nri2975
13. Mills EL, Kelly B, and O’Neill LAJ (2017). Mitochondria are the powerhouses of immunity. Nat Immunol 18(5): 488–498. doi: 10.1038/ni.3704
14. Zhou R, Yazdi AS, Menu P, and Tschopp J (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329): 221–5. doi: 10.1038/nature09663

COPYRIGHT
© 2019 Rodríguez-Nuevo and Zorzano. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.

Please cite this article as: Aida Rodríguez-Nuevo and Antonio Zorzano (2019). The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress 3(6): 195-207. doi: 10.1016/cell.2016.03.046

15. Koshiba T, Yasukawa K, Yanagi Y, and Kawabata S (2011). Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signal 4(158): ra7. doi: 10.1126/scisignal.2001147
16. Sutterwala FS, Haasken S, and Cassel SL (2014). Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319(1): 82–95. doi: 10.1111/nyas.12458
17. Taruno A (2018). ATP release channels. Int J Mol Sci 19(3): 808. doi: 10.3390/ijms19030808
18. Sloyter R, and Stokes L (2011). Significance of P2X7 receptor variants to human health and disease. Recent Pat DNA Gene Seq 5(1): 41–54. doi: 10.2174/187221151174839219
19. Fuller SJ, Stokes L, Skarratt KK, Gu BJ, and Wiley JS (2009). Genetics of the P2X7 receptor and human disease. Purinergic Signal 5(2): 257–262. doi: 10.1007/s12253-009-9136-4
20. Save S, and Persson K (2010). Extracellular ATP and P2Y receptor activation induce a proinflammatory host response in the human urinary tract. Infect Immun 78(8): 3609–3615. doi: 10.1128/IAI.00074-10
21. Hazama A, Shimizu T, Ando-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, and Okada Y (1999). Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with voltage-sensitive c(-) channels. J Gen Physiol 114(4): 525–533. doi: 10.1085/jgp.114.4.525
22. Grygorczyk R, and Hanrahan JW (1997). CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272(3 Pt 1): C1058–66. doi: 10.1152/ajpcell.1997.272.3.C1058
23. Deli T, and Csernoch L (2008). Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 14(3): 219–231. doi: 10.1007/s12253-008-9071-7
24. Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, and Lonigro AJ (2003). Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circ Physiol 285(2): H693-700. doi: 10.1152/ajpheart.01026.2002
25. Burnstock G (2006). Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1): 58–86. doi: 10.1124/pr.58.1.5
26. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, and Dagnelle PC (2006). Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2): 358–404. doi: 10.1016/j.pharmthera.2005.04.013
27. Rathinam VAK, and Fitzgerald KA (2016). Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 165(4): 792–800. doi: 10.1016/j.cell.2016.03.046
28. Lamkanfi M, and Dixit VM (2014). Mechanisms and Functions of Inflammasomes. Cell 157(5): 1013–1022. doi: 10.1016/j.cell.2014.04.007

29. Jamieson GP, Snook MB, Thrulow PJ, and Wiley JS (1996). Extracellular ATP causes loss of L-selectin from human lymphocytes via occupancy of P2Z purinoceptors. J Cell Physiol 166(3): 637–642. doi: 10.1002/(SICI)1097-4652(199603)166:3<637::AID-JCP19>3.0.CO

30. Shaah O, Slate NG, Goldberger O, Xu Q, Ramanathan A, Souza AL, Chish CB, Sims KB, and Mootha VK (2010). A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 107(4): 1517–1517. doi: 10.1073/pnas.0906039107

31. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, Schwarzer C, Junt T, Voshol H, Meingassner JG, Mao X, Werner G, Rot A, and Carballido JM (2008). Triggering the suckin receptor GP9R1 on dendritic cells enhances immunity. Nat Immunol 9(11): 1261–1269. doi: 10.1038/ni.1657

32. Tannahill GM et al. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496(7444): 238–242. doi: 10.1038/nature12084

33. Schlame M, and Greenberg ML (2017). Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta 1862(1): 3–7. doi: 10.1016/j.bbapalp.2016.08.010

34. Tatsuta T, and Lan YY. Formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol 35(8): 2486–2495. doi: 10.1002/eji.200526338

35. Daniel MA, McDonald G, Offenbacher S, and Van Dyke TE (1993). Defective chemotaxis and calcium response in localized juvenile periodontitis neutrophils. J Periodontol 64(7): 617–621. doi: 10.1002/jop.16706407.1

36. Dieude M, Striegl H, Tyznik AJ, Wang J, Behar S (2011). Dynamic regulat of mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction. Mol Cell Biol 31(24): 4994–5010. doi: 10.1128/MCB.05694-11
58. Kukat C, Wurm CA, Späh H, Falkenberg M, and Larsson N (2011). Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. *Proc Natl Acad Sci U S A* 108(33):13534-9. doi: 10.1073/pnas.1109261108

59. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, and Young IG (1981). Sequence and organization of the human mitochondrial genome. *Nature* 290(5806): 457–465. doi: 10.1038/290457a0

60. Clayton DA, Hughes H, and Chase C (2000). Transcription and replication of mitochondrial DNA. *Hum Reprod* 15(Suppl 2): 11–17. doi: 10.1093/humrep/15.suppl_2.11

61. Oka T, Hikos S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, and Otsu K (2012). Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. *Nature* 485(7397): 251–5. doi: 10.1038/nature10992

62. McCarthy CG, Wenceslau CF, Gouloupoulou S, Ogbi S, Baban B, Sullivan JC, Matsumoto T, and Webb RC (2015). Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. *Cardiovasc Res* 107(1): 119–130. doi: 10.1093/cvr/cvz17

63. Nakahira K, Haspel JA, Rathinam V a K, Lee S-J, Dolinay T, Lam HC, Englert J a, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald K a, Ryter SW, and Choi AMK (2015). Mitochondrial Lysates Induce Inflammation and Alzheimer’s Disease-Relevant Changes in Microglial and Neuronal Cells. *J Alzheimers Dis* 45(1): 305–318. doi: 10.3233/JAD-142334.Mitochondrion

64. Campbell CT, Kolesar JE, and Kaufman BA (2012). Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. *Biochim Biophys Acta* 1819(9–10): 921–929. doi: 10.1016/j.bbadis.2012.03.002

65. Kang D, Kim SH, and Hamasaki N (2007). Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. *Mitochondrion* 7(1–2): 39–44. doi: 10.1016/j.mito.2006.11.017

66. Julian MW, Shao G, Bao S, Knoell DL, Papenfuss TL, VanGundy ZC, and Crouser ED (2012). Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytid dendritic cell responses to DNA. *J Immunol* 189(1): 433–43. doi: 10.4049/jimmunol.1101375

67. Julian MW, Shao G, Vangundy ZC, Papenfuss TL, and Crouser ED (2013). Mitochondrial transcription factor A, an endogenous danger signal, promotes Tnfa release via RAGE- and TLR9-responsive plasmacytid dendritic cells. *PloS One* 8(8): e72354. doi: 10.1371/journal.pone.0072354

68. Crouser ED, Shao G, Julian MW, Macre JE, Shadel GS, Trindadpanapi, Susheela Huang Q, and D. Wewers M (2010). Monocyte Activation by Necrotic Cells Is Promoted by Mitochondrial Proteins and Formyl Peptide Receptors Elliot. *Crit Care Med* 37(6): 2000–2009. doi: 10.1097/CCM.0b013e3181a011ae.Monoocyte

69. Huang WW, Wu R, Ji Y, Dong W, and Wang P (2012). Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock. *Int J Mol Med* 30(1): 199–203. doi: 10.3892/ijmm.2012.959

70. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, and Hauser CJ (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. *Nature* 464(7285): 104–107. doi: 10.1038/nature08780

71. Hu Q, Wood CR, Cimen S, Venkatachalam AB, and Alwayn IPJ (2015). Mitochondrial damage-associated molecular patterns (MDTs) are released during hepatic ischemia reperfusion and induce inflammatory responses. *PLoS One* 10(10): 1–17. doi: 10.1371/journal.pone.0140105

72. Schoenauer R, Atanassoff AP, Wolfmeier H, Pelegrin P, Babychuk EB, and Draeger A (2014). P2X7 receptors mediate resistance to toxin-induced cell lysis. *Biochim Biophys Acta - Mol Cell Res* 1843(5): 915–922. doi: 10.1016/j.bbamcr.2014.01.024
85. Duregotti E, Negro S, Scorzetto M, Zornetta I, Dickinson BC, Chang CJ, Montecucco C, and Rigoni M (2015). Mitochondrial alarms are unleashed by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci 112(5): E497–E505. doi: 10.1073/pnas.1417108112

86. Liu J, Epand RF, Durrant D, Grossman D, Chi N, Epand RM, and Lee RM (2008). Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-alpha-induced apoptosis. Biochemistry 47(15): 4518–4529. doi: 10.1021/bi701962c

87. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Borisenko G, Yanamala N, Shrivastava IH, Mohammadyani D, Wang KZQ, Zhu J, Klein-Seetharaman J, Balasubramaniam K, Amoscato AA, Portnoy DA, and Kagan VE (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15(10): 1197–1205. doi: 10.1038/ncb2837

88. Iyer SS, He Q, Janczcy JR, Elliott EJ, Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, Eisenbarth SC, Nauseef WM, Cassel SL, and Sutterwala FS (2013). Mitochondrial cardiopilin is required for Nlrp3 inflammasome activation. Immunity 39(2): 311–23. doi: 10.1016/j.immuni.2013.08.001

89. Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, Otterbein LE, Hauser CJ, and Itagaki K (2013). Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PloS One 8(3): e59989. doi: 10.1371/journal.pone.0059989

90. He W, Miao FJ-P, Lin DC-H, Schwandner RT, Wang Z, Gao J, Chen J-L, Tian H, and Ling L (2004). Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429(6988): 188–193. doi: 10.1038/nature02488

91. Migecote I, Communi D, and Parmentier M (2006). Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17(6): 501–519. doi: 10.1016/j.cytogfr.2006.09.009

92. West AP, and Shadel GS (2019). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17(6): 363–375. doi: 10.1038/s41567-017-0013-1

93. Takeuchi O, and Akira S (2010). Pattern recognition receptors and inflammation. Cell 140(6): 805–20. doi: 10.1016/j.cell.2010.01.022

94. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, and Chen ZJ (2013). Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121): 826–830. doi: 10.1126/science.1232458

95. Sun L, Wu J, Du F, Chen X, and Chen ZJ (2012). Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science 339(6121): 1–10. doi: 10.1126/science.1232458

96. Cai D (2009). NiKappaB-mediated mitochondrial inflammation in peripheral tissues versus central nervous system. Cell Cycle 8(16): 2542–8. doi: 10.4161/cc.8.16.9386

97. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawaj T, Takeuchi O, and Akira S (2006). A Toll-like-receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7(1): 40–48. doi: 10.1038/nai282

98. Ishikawa H, and Barber GN (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265): 788–792. doi: 10.1038/nature08476

99. Zhao B, Yang Y, Li S, Wang Y-Y, Li Y, Diao F, Lei C, He X, Zhang L, Tian P, and Shu H-B (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4): 538–550. doi: 10.1016/j.immuni.2008.09.003

100. Lei Z, Deng M, Yi Z, Sun Q, Shapiro RA, Xu H, Li T, Loughran PA, Griepentrog JE, Huang H, Scott MJ, Huang F, and Biliar TR (2018). cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independent of STING. Am J Physiol Liver Physiol 5: apjl.00326.2017. doi: 10.1152/ajplip.00326.2017

101. Andreereva L, Hiller B, Kostrewra D, Lässig C, de Oliveira Mann CC, Drexler D, Maier A, Gaidt M, Leonardt H, Hornung V, and Hofpner K-P (2017). cGAS senses long and HMGB1/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature 549(7672): 394–398. doi: 10.1038/nature23890

102. Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, Cai H, Yin D, Hu D, Li Z, Chen H, Gao X, Wang F, O’Connor JC, Xu Y, Liu M, Dong LQ, and Liu F (2017). DbSA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mRNA decrease-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 114(46): 201708744. doi: 10.1073/pnas.1708744112

103. McArthur K, Whitehead LW, Hedleston JM, Li L, Padman BS, Gorschot V, Geoghegan ND, Chappaz S, Davidson S, Chinn HS, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chow TL, Dawson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, Van Delft MF, and Kile BT (2018). BAX/BAX macro pores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359(6378): 1214–1219. doi: 10.1126/science.aao6047

104. Kim G-T, Cho M-L, Park Y-E, Yoo WH, Kim J-H, Oh H-J, Kim D-S, Baek S-H, Lee S-H, J-H, Kim-H, and Kim S-I (2010). Expression of TLR2, TLR4, and TLR9 in dermatomycosis and polymycosis. Clin Rheumatol 29(3): 273–279. doi: 10.1007/s10024-009-1316-7

105. Barbalat R, Ewald SE, Mouchess ML, and Barton GM (2011). Nuclear acid recognition by the innate immune system. Annu Rev Immunol 29: 185–214. doi: 10.1146/annurev-immunol-031210-101340

106. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monsk BG, Knetter CF, Lien E, Nilson NJ, Espievik T, and Golenbock DT (2004). TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5(2): 190–8. doi: 10.1038/ni1028

107. Lampshire MS, Sirois CM, Verm A, Golenbock DT, and Latz E (2006). TLR9 and the recognition of self and non-self nucleic acids. Ann N Y Acad Sci 1082: 31–43. doi: 10.1146/annals.1348.005

108. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, and Segal DM (2004). TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173(2): 1179–1183. doi: 10.4049/jimmunol.173.2.1179

109. Ewald SE, Lee BL, Lau L, Wickiffe KE, Shi GP, Chapman HA, and Barton GM (2008). The ectodomain of Toll-like receptor 9 is degraded to generate a functional receptor. Nature 456(7222): 658–662. doi: 10.1038/nature07405

110. Chockalingam A, Brooks JC, Cameron JL, Blum LK, and Leifer C (2009). TLR9 traffics to endosome/receptor complex of the Golgi complex to localize to endosomes and respond to CpG DNA. Immunol Cell Biol 87(3): 209–217. doi: 10.1038/icb.2008.101

111. Tabeta K, Hoebe K, Janssen EM, Du X, George P, Crozat K, Mudd S, Mann N, Sovah S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, and Beutler B (2006). The UNC93B1 mutation 3d disrupts exogenous antigen presentation and signaling through Toll-like receptors 3, 7 and 9. Nat Immunol 7(6): 520–528. doi: 10.1038/ni0606-520.
114. Fuku R, Saitoh S, Matsumoto F, Kozuka-Hata H, Oyama M, Tabet K, Beutler B, and Miyake K (2009). Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but not against RNA-sensing. J Exp Med. 206(6): 1339–1350. doi: 10.1084/jem.20082316.

115. Pelka K, Phulphagar K, Zimmermann J, Stahl R, Schmid-Burgk JL, Schmidt T, Spille J-H, Labinz L, Agrama S, Kandimalla ER, Casanova J-L, Hornung V, Marshall-Rothstein A, Hönig S, and Latz E (2014). Cutting edge: the UNC93B1 tyrosine-based motif regulates trafficking and TLR responses via separate mechanisms. J Immunol 193(7): 3257–61. doi: 10.4049/jimmunol.1301886.

116. Hayashi K, Sasai M, and Iwasaki A (2015). Toll-like receptor 9 trafficking and signaling for type I interferons requires PKfyve activity. Int Immunol 27(9): 435–445. doi: 10.1039/intimm/ddv021.

117. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, and Taniguchi T (2005). Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type I interferon induction. Nature 434(7036): 1035–1040. doi: 10.1038/nature03547.

118. Lee BL, and Barton GM (2014). Trafficking of endosomal Toll-like receptors. Trends Cell Biol 24(6): 360–369. doi: 10.1016/j.tcb.2013.12.002.

119. Duhamel M, Rodet F, Murgoci AN, Desjardins R, Gagnon H, Wisotroski M, Fournier I, Day R, and Salzet M (2016). The proprotein convertase PCI1/3 regulates TLR9 trafficking and the associated signaling pathways. Sci Rep 6: 19360. doi: 10.1038/srep19360.

120. Shintani Y, Kayopo A, Kaneko M, Smolenksi RT, D’Acquisto F, Coppen SR, Harada-Soji N, Lee HJ, Thiemermann C, Takashima S, Yashiro K, and Suzuki K (2013). TL9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci U S A 110(13): 5109–14. doi: 10.1073/pnas.1219243110.

121. Shintani Y, Drexler HC, Kioka H, Terracciano CM, Coppen SR, Imamura H, Akao M, Nakaj M, Wheeler AP, Higo S, Nakayama H, Ta-kashima S, Yashiro K, and Suzuki K (2014). Toll-like receptor 9 protects non-immune cells from stress by modulating mitochondrial ATP synthase through the inhibition of SERCA2. EMBO Rep 15(4): 438–445. doi: 10.1002/embr.201337945.

122. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, and Collins EM (2015). Mitochondrial DNA and TLR9 drive muscle inflammation via a Pathway through mtDNA damage. Nat Immunol 16(7): 746–54. doi: 10.1038/ni1297.

123. Liu Y, Wen X, Hanselmann M, Li K, Kopp J, and Mehal WZ (2016). Mitochondrial DNA and oxidatively damaged DNA cause mitochondrial dysfunction and cell death in immune cells from stress by modulating mitochondrial ATP synthase for robust type I interferon induction. J Immunol 196(5): 2381–90. doi: 10.4049/jimmunol.1502972.

124. Liu Y, Wen X, Hanselmann M, Li K, Kopp J, and Mehal WZ (2016). Mitochondrial DNA and oxidatively damaged DNA drive no typical myeloid differentiation factor 88-dependent myeloid dendritic cell responses to DNA. J Immunol 196(5): 2381–90. doi: 10.4049/jimmunol.1502972.

125. Wang X, Zheng C, Liu Z, and Shi S (2016). Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis. Sci Rep 6: 22579. doi: 10.1038/srep22579.

126. Garcia-martinez J, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, Shlomchik MJ, Coffman RL, Candia A, and Mehal WZ (2016). Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 126(3): 1–6. doi: 10.1172/JCI83885DS1.

127. Zorzano A, Cutting C, and Luxembourg CM (2011). Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Physiol - Lung Cell Mol Physiol 308(10): L1078–L1085. doi: 10.1152/ajplung.00015.2015.

128. Goulopoulou S, Matsumoto T, Bomfim GF, and Webb RC (2012). Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci 123(7): 429–35. doi: 10.1042/CS20120130.

129. Tian J, Avaros AM, Mao S-Y, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshall-Rothstein A, Crown MK, Fitzgerald K A, Lutz E, Kiener P A, and Ayle J (2017). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5): 487–96. doi: 10.1038/nait1457.

130. Julian MW, Shao G, Bao S, Knoell DL, Papenfuss TL, Vangundy ZC, Crouser ED, Daren L, Papenfuss TL, Vangundy ZC, and Crouser ED (2012). Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA. J Immunol 189(1): 433–44. doi: 10.4049/jimmunol.1101375.

131. Leo MG De, Staiano L, Vicinanza M, Luciani A, Carissimo A, Mutarelli M, Campi A, D, Polischuk E, Tullo G D, Morra V, Levchenko E, Ottrabello F, Starborg T, Santoro M, Bernardo D, Devyust O, Lowe M, Medina DL, Ballabio A, and Matteis MA De (2016). Autophagosome – lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCLR. Nat Cell Biol 18(8): 839–850. doi: 10.1038/ncb3386.

132. Rodriguez-Nuevo A, Díaz-Ramos A, Noguera E, Díaz-Sáez F, Duran X, Muñoz JP, Romero M, Plana N, Sebastián D, Tezce C, Romanello V, Ribas F, Seco J, Planet E, Doctrow SR, González J, Borrás M, Liesa M, Palacín M, Vendrell J, Villarroya F, Sandri M, Shirihi A, and Zorzano A (2018). Mitochondrial DNA and TL9 drive muscle inflammation upon Opa1 deficiency. EMBO J 37(10): e96553. doi: 10.15222/embj.201796553.

133. Liu Y, Wen X, Hanselmann M, Li K, Kopp J, and Mehal WZ (2016). Mitochondrial DNA and oxidatively damaged DNA cause mitochondrial dysfunction and cell death in immune cells from stress by modulating mitochondrial ATP synthase for robust type I interferon induction. J Immunol 196(5): 2381–90. doi: 10.4049/jimmunol.1502972.

134. Rodriguez-Nuevo A, Díaz-Ramos A, Noguera E, Díaz-Sáez F, Duran X, Muñoz JP, Romero M, Plana N, Sebastián D, Tezce C, Romanello V, Ribas F, Seco J, Planet E, Doctrow SR, González J, Borrás M, Liesa M, Palacín M, Vendrell J, Villarroya F, Sandri M, Shirihi A, and Zorzano A (2018). Mitochondrial DNA and TL9 drive muscle inflammation upon Opa1 deficiency. EMBO J 37(10): e96553. doi: 10.15222/embj.201796553.

135. Wang X, Zheng C, Liu Z, and Shi S (2016). Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis. Sci Rep 6: 22579. doi: 10.1038/srep22579.

136. Garcia-martinez J, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, Shlomchik MJ, Coffman RL, Candia A, and Mehal WZ (2016). Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 126(3): 1–6. doi: 10.1172/JCI83885DS1.

137. Zorzano A, Cutting C, and Luxembourg CM (2011). Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Physiol - Lung Cell Mol Physiol 308(10): L1078–L1085. doi: 10.1152/ajplung.00015.2015.
141. Man SM, and Kanneganti TD (2015). Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16(1): 7–21. doi: 10.1038/nri.2015.7

142. Place DE, and Kanneganti TD (2018). Recent advances in inflammasome biology. Curr Opin Immunol 50: 32–38. doi: 10.1016/j.coi.2017.10.011

143. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, and Ikeda U (2011). Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6): 594–604. doi: 10.1161/CIRCULATIONAHA.110.982777

144. Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, Hoffman HM, and Feldstein AE (2013). NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation and fibrosis. Hepatology 1: 1–33. doi: 10.1002/hep.26592

145. Boaru SG, Borkham-Kamporst E, Van de Leur E, Lehen H, Liedtke C, and Weiskirchen R (2015). NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem Biophys Res Commun 458(3): 700–706. doi: 10.1016/j.bbrc.2015.02.029

146. Kanneganti TD (2015). The inflammasome: Firing up innate immunity. Immunol Rev 265(1): 1–5. doi: 10.1111/imr.12297

147. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Heymann K, Söderkvist P, Groß O, Schwenger V, Pahernik S, Nawroth PP, Gröne H-J, Madhusudhan T, and Isseman B (2014). Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87(1): 74–84. doi: 10.1038/ki.2014.271

148. Zhuang Y, Yasinta M, Hu C, Zhao M, Ding G, Bai M, Yang L, Ni J, Wang R, Jia Z, Huang S, and Zhang A (2015). Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am J Physiol - Ren Physiol 308(8): F857–F866. doi: 10.1152/ajprenal.00203.2014

149. Rawat R, Cohen TV, Ampong B, Francia D, Henriques-Pons A, Hoffman EP, and Nagaraju K (2010). Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol 176(6): 2891–900. doi: 10.2353/ajpath.2010.090058