Finite good filtration dimension for modules over an algebra with good filtration.

Wilberd van der Kallen

Dedicated to Eric Friedlander on his 60th birthday

Abstract

Let G be a connected reductive linear algebraic group over a field k of characteristic $p > 0$. Let p be large enough with respect to the root system. We show that if a finitely generated commutative k-algebra A with G-action has good filtration, then any noetherian A-module with compatible G-action has finite good filtration dimension.

1 Introduction

Consider a connected reductive linear algebraic group G defined over a field k of positive characteristic p. We say that G has the cohomological finite generation property (CFG) if the following holds: Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. (So G acts on $\text{Spec}(A)$.) Then the cohomology ring $H^*(G, A)$ is finitely generated as a k-algebra. Here, as in [9, 1.4], we use the cohomology introduced by Hochschild, also known as ‘rational cohomology’.

In [13] we have shown that SL_2 over a field of positive characteristic has property (CFG), and in [14] we proved that SL_3 over a field of characteristic two has property (CFG). We conjecture that every reductive linear algebraic group has property (CFG). In this paper we show that this is at least a good heuristic principle: We derive one of the consequences of (CFG) for any simply connected semisimple linear algebraic group G that satisfies the following

1
Hypothesis 1.1 Assume that for every fundamental weight ϖ_i the symmetric algebra $S^*(\nabla_G(\varpi_i))$ on the fundamental representation $\nabla_G(\varpi_i)$ has a good filtration.

Recall that this hypothesis is satisfied if $p \geq \max_i(\dim(\nabla_G(\varpi_i)))$, by [1, 4.1(5) and 4.3(1)]. This inequality is not necessary. For instance, SL_n satisfies the hypothesis for $n \leq 5$, by [13, Lemma 3.2]. When $p = 2$, the hypothesis does not hold for SL_n with $n \geq 6$, by [13, 3.3].

In the sequel let G be a connected reductive linear algebraic group over a field k of characteristic $p > 0$ with simply connected commutator subgroup for which hypothesis 1.1 holds. Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. Let M be a noetherian A-module on which G acts compatibly. This means that the structure map $A \otimes M \to M$ is a G-module map. Our main result is

Theorem 1.2 If A has good filtration, then M has finite good filtration dimension and each $H^i(G, M)$ is a noetherian A^G-module.

When $A = k$ the theorem goes back to [5] and does not need hypothesis [11]. Unlike the proofs in [13] and [14], the proof of our theorem does not involve any cohomology of finite group schemes and is thus independent of the work of Friedlander and Suslin [6]. But without their work we would not have guessed the theorem. For clarity we will pull some material of [13] free from finite group schemes.

2 Recollections

Some unexplained notations, terminology, properties, ... can be found in [9]. We choose a Borel group $B^+ = TU^+$ and the opposite Borel group B^-. The roots of B^+ are positive. If $\lambda \in X(T)$ is dominant, then $\text{ind}_{B^-}^G(\lambda)$ is the ‘dual Weyl module’ or ‘costandard module’ $\nabla_G(\lambda)$ with highest weight λ. The formula $\nabla_G(\lambda) = \text{ind}_{B^-}^G(\lambda)$ just means that $\nabla_G(\lambda)$ is obtained from the Borel-Weil construction: $\nabla_G(\lambda)$ equals $H^0(G/B^-, L)$ for a certain line bundle on the flag variety G/B^-. In a good filtration $0 = V_{-1} \subseteq V_0 \subseteq V_1 \ldots$ of a G-module $V = \bigcup_i V_i$ the nonzero layers V_i/V_{i-1} are of the form $\nabla_G(\mu)$. As in [12] we will actually also allow a layer to be a direct sum of any number of copies of the same $\nabla_G(\mu)$, cf. [9, II.4.16 Remark 1]. This is much more convenient when working with infinite dimensional G-modules. It is shown
in [4] that a module of countable dimension that has a good filtration in our sense also has a filtration that is a good filtration in the old sense. Note that the module \(M \) in our theorem has countable dimension. It would do little harm to restrict to modules of countable dimension throughout.

If \(V \) is a \(G \)-module, and \(m \geq -1 \) is an integer so that \(H^{m+1}(G, \nabla_G(\mu) \otimes V) = 0 \) for all dominant \(\mu \), then we say as in [5] that \(V \) has good filtration dimension at most \(m \). The case \(m = 0 \) corresponds with \(V \) having a good filtration. And for \(m \geq 0 \) it means that \(V \) has a resolution

\[
0 \to V \to N_0 \to \cdots \to N_m \to 0
\]

in which the \(N_i \) have good filtration, in our sense. We say that \(V \) has good filtration dimension precisely \(m \), notation \(\dim_{\nabla}(V) = m \), if \(m \) is minimal so that \(V \) has good filtration dimension at most \(m \). In that case \(H^{i+1}(G, \nabla_G(\mu) \otimes V) = 0 \) for all dominant \(\mu \) and all \(i \geq m \). In particular \(H^{i+1}(G, V) = 0 \) for \(i \geq m \). If there is no finite \(m \) so that \(\dim_{\nabla}(V) = m \), then we put \(\dim_{\nabla}(V) = \infty \).

2.1 Filtrations

For simplicity assume also that \(G \) is semisimple. (Until remark [3.1]) If \(V \) is a \(G \)-module, and \(\lambda \) is a dominant weight, then \(V_{\leq \lambda} \) denotes the largest \(G \)-submodule all whose weights \(\mu \) satisfy \(\mu \leq \lambda \) in the dominance partial order [9 II.1.5]. For instance, \(V_{\leq 0} \) is the module of invariants \(V^G \). Similarly \(V_{< \lambda} \) denotes the largest \(G \)-submodule all whose weights \(\mu \) satisfy \(\mu < \lambda \). As in [12], we form the \(X(T) \)-graded module

\[
gr_{X(T)} V = \bigoplus_{\lambda \in X(T)} V_{\leq \lambda}/V_{< \lambda}.
\]

Each \(V_{\leq \lambda}/V_{< \lambda} \), or \(V_{\leq \lambda/\lambda} \) for short, has a \(B^+ \)-socle \((V_{\leq \lambda/\lambda})^U = V_{\lambda}^U \) of weight \(\lambda \). We always view \(V_{\leq \lambda}^U \) as a \(B^- \)-module through restriction (inflation) along the homomorphism \(B^- \to T \). Then \(V_{\leq \lambda/\lambda} \) embeds naturally in its ‘good filtration hull’ \(\nabla_{\nabla}(V_{\leq \lambda/\lambda}) = \text{ind}_{B^-}^G V_{\lambda}^U \). This good filtration hull has the same \(B^+ \)-socle and by Polo it is the injective hull in the category \(\mathcal{C}_\lambda \) of \(G \)-modules \(N \) that satisfy \(N = N_{\leq \lambda} \). Compare [12 3.1.10].

We convert the \(X(T) \)-graded module \(gr_{X(T)} V \) to a \(\mathbb{Z} \)-graded module through an additive height function \(ht : X(T) \to \mathbb{Z} \), defined by \(ht = 2 \sum_{\alpha > 0} \alpha^\vee \), the sum being over the positive roots. (Our \(ht \) is twice the one

used by Grosshans [7], because we prefer to get even degrees rather than just integer degrees.) The Grosshans graded module is now

\[\text{gr } V = \bigoplus_{i \geq 0} \text{gr}_i V, \]

with

\[\text{gr}_i V = \bigoplus_{\text{ht}(\lambda) = i} V_{\lambda/\lambda}. \]

In other words, if one puts

\[V_{\leq i} := \sum_{\text{ht}(\lambda) \leq i} V_{\lambda}, \]

then \(\text{gr } V \) is is the associated graded of the filtration \(V_{\leq 0} \subseteq V_{\leq 1} \cdots \).

Let us apply the above to our finitely generated commutative \(k \)-algebra with \(G \)-action \(A \). The Grosshans graded algebra \(\text{gr } A \) embeds in a good filtration hull, which Grosshans calls \(R \), and which we call \(\text{hull}_V(\text{gr } A) \),

\[\text{hull}_V(\text{gr } A) := \text{ind}_G^U A_U = \bigoplus_i \bigoplus_{\text{ht}(\lambda) = i} \text{hull}_V(A_{\lambda/A<\lambda}). \]

Grosshans [7] shows that \(A_U, \text{gr } A, \text{hull}_V(\text{gr } A) \) are finitely generated \(k \)-algebras with \(\text{hull}_V(\text{gr } A) \) finite over \(\text{gr } A \). Mathieu studied \(\text{gr } A \) and \(\text{hull}_V(\text{gr } A) \) earlier in [11].

Example 2.2 Consider the multicone [10]

\[k[G/U] := \text{ind}_U^G k = \text{ind}_B^G \text{ind}_{B^+} B^+ k = \text{ind}_B^G k[T] = \bigoplus_{\lambda \text{ dominant}} \nabla_G(\lambda). \]

It is its own Grosshans graded ring. Recall [10] that it is generated as a \(k \)-algebra by the finite dimensional sum of the \(\nabla_G(\varpi_i) \), where \(\varpi_i \) denotes the \(i \)th fundamental weight.

Lemma 2.3 Let \(A \) have a good filtration, so that \(\text{gr } A = \text{hull}_V(\text{gr } A) \). Let \(R = \oplus_i R_i \) be a graded algebra with \(G \)-action such that \(R_i = (R_i)_{\leq i} \). Then every \(T \)-equivariant graded algebra homomorphism \(R^U \to (\text{gr } A)^U \) extends uniquely to a \(G \)-equivariant graded algebra homomorphism \(R \to (\text{gr } A) \).
Proof. Use that $\text{hull}_V(\text{gr } A)$ is an induced module.

2.4 A graded polynomial $G \times D$-algebra with good filtration

We now extract a construction from [13]. It is hidden in the study of a Hochschild-Serre spectral sequence which in the present situation would correspond with the case where as normal subgroup one takes the trivial subgroup!

As the algebra $(\text{gr } A)^D$ is finitely generated, it is also generated by finitely many weight vectors. Consider one such weight vector v, say of weight λ. Clearly λ is dominant. If $\lambda = 0$, map a polynomial ring $P_v := k[x]$ with trivial G-action to $\text{gr } A$ by substituting v for x. Also put $D_v := 1$. Next assume $\lambda \neq 0$. Let ℓ be the rank of G. Define a T-action on the $X(T)$-graded algebra

$$P = \bigotimes_{i=1}^{\ell} S^*(\nabla_G(\varpi_i))$$

by letting T act on $\bigotimes_{i=1}^{\ell} S^{m_i}(\nabla_G(\varpi_i))$ through weight $\sum_i m_i \varpi_i$. So now we have a $G \times T$-action on P. Observe that by our key hypothesis 1.1 and the tensor product property [9, Ch. G] the polynomial algebra P has a good filtration for the G-action. Let D be the scheme theoretic kernel of λ. So D has character group $X(D) = X(T)/\mathbb{Z}\lambda$ and $D = \text{Diag}(X(T)/\mathbb{Z}\lambda)$ in the notations of [9, I.2.5]. The subalgebra $P^{1 \times D}$ is a graded algebra with good filtration such that its subalgebra $P^{U \times D}$ contains a polynomial algebra on one generator x of weight $\lambda \times \lambda$. In fact, this polynomial subalgebra contains all the weight vectors in $P^{U \times D}$ of weight $\mu \times \nu$ with $\text{ht}(\mu) \geq \text{ht}(\nu)$. The other weight vectors in $P^{U \times D}$ also have weight of the form $\mu \times \nu$ with ν a multiple of λ. These other weight vectors span an ideal in $P^{U \times D}$. Now assume A has a good filtration. By lemma 2.3 one easily constructs a G-equivariant algebra homomorphism $P^{1 \times D} \rightarrow \text{gr } A$ that maps x to v. Write it as $P^{1 \times D}_v \rightarrow \text{gr } A$, to stress the dependence on v.

As new P we take the tensor product of the finitely many P_v and as diagonalized group D we take the direct product of the D_v. Then we have a graded algebra map $P^D \rightarrow \text{gr } A$. It is surjective because its image has good filtration ([9, Ch. A]) and contains $(\text{gr } A)^U$. The $G \times D$-algebra P is an example of what we called in [13] a graded polynomial $G \times D$-algebra with good filtration. We have proved
Lemma 2.5 If A has a good filtration, then there is a graded polynomial $G \times D$-algebra P with good filtration and a graded G-equivariant surjection $P^D \to \text{gr} A$.

Now recall M is a noetherian A-module on which G acts compatibly, meaning that the structure map $A \otimes M \to M$ is a map of G-modules. Form the ‘semi-direct product ring’ $A \rtimes M$ whose underlying G-module is $A \oplus M$, with product given by $(a_1, m_1)(a_2, m_2) = (a_1a_2, a_1m_2 + a_2m_1)$. By Grosshans $\text{gr}(A \rtimes M)$ is a finitely generated algebra, so we get

Lemma 2.6 $\text{gr} M$ is a noetherian $\text{gr} A$-module.

This is of course very reminiscent of the proof of the lemma [8, Thm. 16.9] telling that M^G is a noetherian module over the finitely generated k-algebra A^G. We will tacitly use its counterpart for diagonalized actions, cf. [2], I.2.11.

Taking things together we learn that if A has a good filtration, then $P \otimes_{P^D} \text{gr} M$ is what we called in [13] a finite graded P-module. Lemma [13] Lemma 3.7 then tells us

Lemma 2.7 Let A have good filtration. Then $P \otimes_{P^D} \text{gr} M$ has finite good filtration dimension and each $H^i(G, P \otimes_{P^D} \text{gr} M)$ is a noetherian P^G-module.

Extend the D-action on P to $P \otimes_{P^D} \text{gr} M$ by using the trivial action on the second factor. Then we have a $G \times D$-module structure on $P \otimes_{P^D} \text{gr} M$. As D is diagonalized, P^D is a direct summand of P as a P^D-module [2], I.2.11] and $(P \otimes_{P^D} \text{gr} M)^{1 \times D} = \text{gr} M$ is a direct summand of the G-module $P \otimes_{P^D} \text{gr} M$. It follows that $\text{gr} M$ also has finite good filtration dimension and it follows that each $H^i(G, P \otimes_{P^D} \text{gr} M)^{1 \times D} = H^i(G, \text{gr} M)$ is a noetherian $P^{G \times D}$-module. But the action of $P^{G \times D}$ on $\text{gr} M$ factors through $(\text{gr} A)^G$, so we see that each $H^i(G, \text{gr} M)$ is a noetherian $(\text{gr} A)^G$-module. And one always has $(\text{gr} A)^G = (\text{gr}_0 A)^G = A^G$. We conclude

Lemma 2.8 Let A have good filtration. Then $\text{gr} M$ has finite good filtration dimension and each $H^i(G, \text{gr} M)$ is a noetherian A^G-module.
3 Degrading

We still have to get rid of the grading. The filtration $M_{\leq 0} \subseteq M_{\leq 1} \cdots$ induces a filtration of the Hochschild complex \cite[1.4.14]{Hoch} whence a spectral sequence

$$E(M) : E_{ij}^{ij} = H^{i+j}(G, \text{gr}_{-i} M) \Rightarrow H^{i+j}(G, M).$$

It lives in an unusual quadrant.

Assume that A has good filtration. Then by Lemma 2.8 $E_1(M)$ is a finitely generated A^G-module. So the spectral sequence lives in only finitely many bidegrees (i, j). Thus there is the same kind of convergence as one would have in a more common quadrant.

Choose A^G as ring of operators to act on the spectral sequence $E(M)$. As $E_1(M)$ is a noetherian A^G-module, it easily follows (even without the spectral sequence) that $H^*(G, M)$ is a noetherian A^G-module. To finish the proof of the theorem, we note that $A \otimes k[G/U]$ is also a finitely generated algebra with a good filtration and that $M \otimes k[G/U]$ is a noetherian module over it. So what we have just seen tells that $H^*(G, M \otimes k[G/U])$ is a noetherian $(A \otimes k[G/U])^G$-module. In particular, there is an $m \geq -1$ so that $H^{m+1}(G, M \otimes k[G/U]) = 0$.

\begin{remark}
Somewhere along the way we made the simplifying assumption that G is semisimple. So for the original G we have now proved that M has finite good filtration dimension with respect to the commutator subgroup H of G. But that is the same as having finite good filtration dimension with respect to G. Also, the fact that $H^i(H, M)$ is a noetherian A^H-module implies that $H^i(G, M)$ is a noetherian A^G-module by taking invariants under the diagonalizable center $Z(G)$.
\end{remark}

\begin{remark}
We did not prove that M has a finite resolution by noetherian A-modules with compatible G-action and good filtration. We do not know how to start. One may embed M into the A-module $M \otimes k[G]$ with compatible G-action. It has good filtration, but it is not noetherian as an A-module.
\end{remark}

References

[1] H. H. Andersen, J.-C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525.
[2] H. Borsari, W. Ferrer Santos, Geometrically reductive Hopf algebras, J. Algebra 152 (1992), 65–77.

[3] L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–23.

[4] E. M. Friedlander, A canonical filtration for certain rational modules. Math. Z. 188 (1985), 433–438.

[5] E. M. Friedlander, B. J. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), 235–253 (1986).

[6] E. M. Friedlander, A. A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209–270.

[7] F. D. Grosshans, Contractions of the actions of reductive algebraic groups in arbitrary characteristic, Invent. Math. 107 (1992), 127–133.

[8] F. D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics, 1673. Springer-Verlag, Berlin, 1997.

[9] J.-C. Jantzen, Representations of Algebraic Groups, Mathematical Surveys and Monographs vol. 107, Amer. Math. Soc., Providence, 2003.

[10] G. Kempf, A. Ramanathan, Multicones over Schubert varieties, Invent. Math. 87 (1987), 353–363.

[11] O. Mathieu, Filtrations of G-modules, Ann. Sci. École Norm. Sup. 23 (1990), 625–644.

[12] W. van der Kallen, Lectures on Frobenius splittings and B-modules. Notes by S. P. Inamdar, Tata Institute of Fundamental Research, Bombay, and Springer-Verlag, Berlin, 1993.

[13] W. van der Kallen, Cohomology with Grosshans graded coefficients, In: Invariant Theory in All Characteristics, Edited by: H. E. A. Eddy Campbell and David L. Wehlau, CRM Proceedings and Lecture Notes, Volume 35 (2004) 127-138.

[14] W. van der Kallen, A reductive group with finitely generated cohomology algebras, arXiv:math.RT/0403361