Supplementary Information for

Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution

Shinichiro Komaki¹,*, Eelco C. Tromer², Geert De Jaeger³,⁴, Nancy De Winne³,⁴, Maren Heese⁵, and Arp Schnittger⁵,∗

¹ Nara Institute of Science and Technology, 630-0192 Nara, Japan
² University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
³ Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
⁴ VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
⁵ University of Hamburg, Institute for Plant Sciences and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany

*Correspondence can be addressed to Shinichiro Komaki and Arp Schnittger
Email: shini-komaki@bs.naist.jp, arp.schnittger@uni-hamburg.de

This PDF file includes:

Supplementary Methods
Figures S1 to S5
Table S1
Legends for Movies S1 to S10
Legends for Datasets S1 to S6
Supplementary References

Other supplementary materials for this manuscript include the following:

Movies S1 to S10
Datasets S1 to S6
Supplementary Datasets S2 to S6 can be found at:

https://figshare.com/articles/dataset/SI_Datasets_Movies_Figures_associated_to_pre-print_artic le_Molecular_convergence_by_differential_domain_acquisition_is_a_hallmark_chromosomal_p assenger_complex_evolution_/17840213

Or at:

10.6084/m9.figshare.17840213
Supplementary Methods

LC-MS/MS and data analysis
The obtained peptide mixtures were introduced into an LC-MS/MS system, the Ultimate 3000 RSLC nano (Dionex, Amsterdam, The Netherlands) in-line connected to a Q Exactive Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany). The sample mixture was loaded on a trapping column (made in-house, 100 μm internal diameter (I.D.) x 20 mm (length), 5 μm C18 Reprosil-HD beads, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). After back-flushing from the trapping column, the sample was loaded on a reverse-phase column (made in-house, 75 μm I.D. x 150 mm, 5 μm C18 Reprosil-HD beads, Dr. Maisch). Peptides were loaded with solvent A (0.1% trifluoroacetic acid, 2% acetonitrile), and separated with a 30 min linear gradient from 98% solvent A' (0.1% formic acid) to 50% solvent B' (0.1% formic acid and 80% acetonitrile) at a flow rate of 300 nl/min, followed by a wash step reaching 100% solvent B’. The mass spectrometer was operated in data-dependent, positive ionization mode, automatically switching between MS and MS/MS acquisition for the 5 most abundant peaks in a given MS spectrum. The source voltage was 3.6 kV, and the capillary temperature was 275°C. One MS1 scan (m/z 400–2,000, AGC target 3 × 106 ions, maximum ion injection time 80 ms), acquired at a resolution of 70,000 (at 200 m/z), was followed by up to 5 tandem MS scans (resolution 17,500 at 200 m/z) of the most intense ions fulfilling predefined selection criteria (AGC target 5 × 104 ions, maximum ion injection time 80 ms, isolation window 2 Da, fixed first mass 140 m/z, spectrum data type: centroid, intensity threshold 1.3xE4, exclusion of unassigned, 1, 5-8, >8 positively charged precursors, peptide match preferred, exclude isotopes on, dynamic exclusion time 12 s). The HCD collision energy was set to 25% Normalized Collision Energy and the polydimethylcyclosiloxane background ion at 445.120025 Da was used for internal calibration (lock mass).

Co-purified proteins were identified with Mascot (version 2.5.1, MatrixScience) using the TAIR10plus database with standard settings (1). Proteins with at least two matched high confident peptides were retained according to our standard evaluation settings. Proteins with one matched high confident peptide are added for additional information and are labeled in blue. Background proteins were filtered out based on frequency of occurrence of the co-purified proteins in a large dataset containing 543 TAP experiments using 115 different baits (1). True interactors that might have been filtered out because of their presence in the list of non-specific proteins were retained by means of semi-quantitative analysis using the average normalized spectral abundance factors (NSAF) of the identified proteins (1).
Plasmid construction
To create BORI:GFP constructs, the genomic fragment of BORI1 or BORI2 gene was amplified by PCR and cloned into pDONR221. A SmaI site was inserted in front of the stop codon of each construct. Both constructs were linearized by SmaI digestion and ligated to the monomeric GFP (mGFP) gene, followed by LR recombination reactions with the destination vector pGWB501. To create BORI_N:GFP constructs, the C-terminal region of each gene was removed from BORI:GFP constructs by inverse PCR. To create BORI^{R34}:GFP constructs, corresponding point mutations were introduced in the BORI:GFP constructs by inverse PCR. To create the CRISPR/CAS9 construct against BORI2 gene, the BORI2 gene-specific spacer sequence was cloned into the pEn-Chimera, followed by LR recombination reaction with the destination vector pDe-CAS9. To create the amiRNA construct against the BORI2 gene, 75-bp gene-specific sequences of the BORI2 gene were synthesized and cloned into pENTR-AtMIR390a-B/c, followed by LR recombination reactions with the destination vector pGWB602. All constructs were transformed into Arabidopsis plants using the floral dip method. Primer pairs for plasmid construction are described in SI Appendix, Table S1. For the production of recombinant proteins, the attR1-attR2 Gateway cassette was amplified by PCR and cloned into pGEX6p-1, designated pGEX6p-GW. Full length BORI1 and 2 cDNAs were amplified from 10-day-old seedling RNA and full length Human Survivin cDNA was artificially synthesized. The resulting cDNA fragments were cloned into pDONR221 followed by LR recombination reactions with the destination vector pGEX6p-GW and introduced into in the Escherichia coli strain BL21 (DE3). For yeast two hybrid analysis, full length BORI1 cDNA and the C-terminus of BORI2 cDNA were amplified by PCR using gene-specific primers from cDNA made from total RNA of wild-type Arabidopsis plants, followed by PCR with universal attB primers and cloned into pDONR221. The helical region of Borealin (Human:1-76 aa, Yeast:1-73 aa) and Survivin (Human:89-142 aa, Yeast:889-954 aa) cDNA were artificially synthesized with attB site cloned into pDONR221. The truncated BORI1 constructs were created by inverse PCR. The subcloned cDNA fragments were recombined into the destination vector pGBT9 (DNA-BD) by LR reaction.

Detection and definition of the BORI/Survivin gene family in eukaryotes
To detect homologs of BORIs and Survivin in eukaryotes, we optimized multiple profile Hidden Markov Models (HMMs) based on iterative reciprocal similarity searches using various tools from the HMMER package version 3.1b2 (2), similar to a strategy used in our previous work (3). Iterative searches with ‘jackhammer’ were executed with standard inclusion thresholds (E>0.01, bitscore>25) until no new candidate homologs could be included, or as otherwise stated. HMMs were constructed using ‘hmmbuild’ based on multiple sequence alignments of curated homologs. We used both full-length and
subdomain (BIR, FHA and helix) HMMs as seeds for reciprocal iterative sequence searches using 'hmmrsearch'. Our search protocol was based on the following steps/considerations: (I) To limit the amount of homologs to be queried, when searching the widely present BIR and FHA domains and full-length sequences, we used stringent bitscore inclusion cut-offs of 60 up to 70 (--incT 60-70 and --incdomT 60-70). (II) We only considered sequences as candidate Survivin/BORI orthologs if they harbored both a phosphate-binding domain (FHA/BIR) and/or a conserved helix, on the condition that the helix alone should yield reciprocal best hits (phmmer) and/or reciprocal iterative (jackhammer) hits with bona fide homologs. (III) Putative candidates that contained a single short helical domain were only included in case reciprocal similarity searches yielded phosphate-binding domain containing candidates found in other eukaryotic lineages, and when a particular species or lineage did not yet contain a Survivin/BORI homolog (i.e. putative candidates in plants, animals and fungi were excluded). (IV) Were possible, we aimed to optimize one single HMM of the conserved helical domain to capture all Survivin/BORI orthologs (see SI Appendix, Dataset S5). We therefore trained an HMM of the gene family-defining feature, the conserved helical domain, on large eukaryotic sequence databases, including our in-house dataset (3), EukProt (4), and UniProt (5). Sequences of orthologs and presence-absence patterns of the Survivin/BORI gene family in a subset of representative eukaryotes can be found in separate text files in SI Appendix, Dataset S5. Clade-specific HMMs can be found in SI Appendix, Dataset S6.

Phylogenetic analyses of FHA domains found in BORI-like homologs

To prevent the inclusion of a high number of potential FHA domain-based BORI homologs to consider for phylogenetic analysis, we used a high bitscore cut-off (bitscore>70; see above). Candidate homologs were found in Viridiplantae (Chlorophyta and Streptophyta) and all contained a C-terminal helix (Fig. 1), which strongly suggested that these were orthologous to the BORIs found in Arabidopsis. To find the closest FHA domain to that of BORI, we aligned all Viridiplantae BORI orthologs and generated an HMM of the FHA domain using hmmbuild v3.1b2 (2). Using a similar HMM-based approach, but now with a bitscore cut-off of 60 (--incT 60 --incdomT 60), we found the FHA domains of the PP2C phosphatase KAPP orthologs to be the closest to those of BORI. Subsequent iterations with lower bitscore cut-offs (>50) revealed many non-BORI/KAPP FHA domains to have a roughly similar bitscore, therefore no clear outgroup for BORI and KAPP could be defined in eukaryotes. We therefore searched the Uniprot database for putative prokaryotic homologs. Indeed, Deltaproteobacterial FHA domain-containing sequences were found to be more similar compared to other eukaryotic sequences.

To provide an outgroup, we added the seed sequences for the FHA PFAM model (PF00498, see SI appendix, Dataset S3). FHA domains were aligned using MAFFT (option g-ins-i) (6). For the
phylogenetic analysis in Figure 8C, FHA domain-containing proteins were added that were significantly similar to BORI-like homologs found amongst Stramenopila, Haptista and Cryptista in the EukProt database (4), with a bitscore cut-off (>60). Maximum-likelihood phylogenetic analyses (for analysis files and further description see SI Appendix, Supplementary text, Dataset S3 and Dataset S4) were performed with the IQ-Tree webserver (version 1.6.12) using standard settings for model selection, including the assessment of all mixture models, 1000 Ultrafast bootstrap and SH-like approximate likelihood ratio test replicates (7). Parameters for the final phylogenetic analyses are as follows: analysis Fig. 1C (see SI Appendix, Dataset S3 – settings: -m LG4X+F -bb 1000 -alrt 1000 -pers 0.3 -numstop 410; 65 positions, 194 sequences with at least 70% occupancy per column, model: LG4X); Fig. 8C (see SI Appendix, Dataset S4 – settings: -m LG4X+F -bb 1000 -alrt 1000 -pers 0.4 -numstop 300; 64 positions, 408 sequences with at least 70% occupancy per column, model LG4X). Trees were visualized and annotated using FigTree v1.4.4 (8), and/or itol (9).

Accession Numbers
Sequence data from this article can be found in the Arabidopsis Information Resource database under the following accession numbers: AT2G45490 (AUR3), AT3G02400 (BORI1), AT4G14490 (BORI2), AT4G39630 (BRR), AT5G55820 (INCENP/WYRD), and AT5G19280 (KAPP). Sequences of homologs, and presence-absence patterns of Aurora kinase, INCENP, and Borealin in a subset of representative eukaryotes (see also (10)), can be found in separate text files in SI Appendix, Dataset S5.

Graphics and other software
Plots and alignments were manually compiled into figures using the open-source scalable vector graphics editor Inkscape 1.0rc1 for macOS (Inkscape Project 2020, retrieved from https://inkscape.org). 3D protein structures were visualized using Pymol v2.5. Alignments were manipulated using Jalview (11).
Figure S1. Immunoblot analysis of GAL4-BD fusion constructs. Proteins extracted from transformed yeast cells shown in Fig.2B were subjected to immunoblotting with an anti-GAL4-BD antibody. Proteins extracted from non-transformed yeast were used as a negative control. Arrowheads indicate the corresponding bands for GAL4-BD fusion proteins.
Species	Genus	Species
Homo sapiens	ARX5 - TGG - AGP90 - LA	
Xenopus tropicalis	ARX5 - TGG - AGP90 - LA	
Danio rerio	ARX5 - TGG - AGP90 - LA	
Branchiostoma floridanum	ARX5 - TGG - AGP90 - LA	
Strongylocentrotus purpuratus	ARX5 - TGG - AGP90 - LA	
Drosophila melanogaster	ARX5 - TGG - AGP90 - LA	
Anopheles gambiae	ARX5 - TGG - AGP90 - LA	
Bombyx mori	ARX5 - TGG - AGP90 - LA	
Nasonia vitripennis	ARX5 - TGG - AGP90 - LA	
Caenohabditis elegans	ARX5 - TGG - AGP90 - LA	
Brugia malayi	ARX5 - TGG - AGP90 - LA	
Schistosoma mansoni	ARX5 - TGG - AGP90 - LA	
Necator americanus	ARX5 - TGG - AGP90 - LA	
Trichoplax adhaerens	ARX5 - TGG - AGP90 - LA	
Monosiga brevicollis	ARX5 - TGG - AGP90 - LA	
Salpingoea rosetta	ARX5 - TGG - AGP90 - LA	
Capsaeraria ovicarcazi	ARX5 - TGG - AGP90 - LA	
Creolimax fragilissima	ARX5 - TGG - AGP90 - LA	
Saccharomyces cerevisiae	ARX5 - TGG - AGP90 - LA	
Debaryomyces hansenii	ARX5 - TGG - AGP90 - LA	
Yarrowia lipolytica	ARX5 - TGG - AGP90 - LA	
Aspergillus fumigatus	ARX5 - TGG - AGP90 - LA	
Neospora caninum	ARX5 - TGG - AGP90 - LA	
Schizosaccharomyces pombe	ARX5 - TGG - AGP90 - LA	
Ustilago maydis	ARX5 - TGG - AGP90 - LA	
Cryptococcus neoformans	ARX5 - TGG - AGP90 - LA	
Acremonium circinellum	ARX5 - TGG - AGP90 - LA	
Mortierella vermifera	ARX5 - TGG - AGP90 - LA	
Rhizopus nigricans	ARX5 - TGG - AGP90 - LA	
Aspergillus niger	ARX5 - TGG - AGP90 - LA	
Coniothyrium carbonum	ARX5 - TGG - AGP90 - LA	
Atractomyces flavus	ARX5 - TGG - AGP90 - LA	
Brevicrombomyces drosophila	ARX5 - TGG - AGP90 - LA	
Encephalitozoon intestinalis	ARX5 - TGG - AGP90 - LA	
Trypanosoma brucei	ARX5 - TGG - AGP90 - LA	
T. cruzi	ARX5 - TGG - AGP90 - LA	
Trypanosoma cruzi	ARX5 - TGG - AGP90 - LA	
Trypanosoma brucei	ARX5 - TGG - AGP90 - LA	
Neoplasia gruberi	ARX5 - TGG - AGP90 - LA	
Hymenolepis diminuta	ARX5 - TGG - AGP90 - LA	
Namnochoria gauthiera R-31	ARX5 - TGG - AGP90 - LA	
Ectocarpus siliculosus	ARX5 - TGG - AGP90 - LA	
Aureococcus anophageferrensis	ARX5 - TGG - AGP90 - LA	
Phaeodactylum tricornutum	ARX5 - TGG - AGP90 - LA	
Thalassiosira pseudonana	ARX5 - TGG - AGP90 - LA	
Physodiora niitonda	ARX5 - TGG - AGP90 - LA	
Albugo abaculi No.14	ARX5 - TGG - AGP90 - LA	
Saprolegnia parasitica CB5 223-65	ARX5 - TGG - AGP90 - LA	
Aurantiochyclus limacinum ATCC 15812	ARX5 - TGG - AGP90 - LA	
Blastocystis hominis	ARX5 - TGG - AGP90 - LA	
Brevicrombomyces drosophila	ARX5 - TGG - AGP90 - LA	
Plasmcidium tachyurus 30838	ARX5 - TGG - AGP90 - LA	
Plasmcidium tachyurus 30838	ARX5 - TGG - AGP90 - LA	
Toxoplasma gondii ME49	ARX5 - TGG - AGP90 - LA	
Tetrahymena thermophila	ARX5 - TGG - AGP90 - LA	
Gyotricha triflax	ARX5 - TGG - AGP90 - LA	
Bigelowiella nolens, CCMP2755	ARX5 - TGG - AGP90 - LA	
Plasmcidium brassicae	ARX5 - TGG - AGP90 - LA	
Chytridium chironomus CTCC291	ARX5 - TGG - AGP90 - LA	
Eumiais, uxei, CCMP1016	ARX5 - TGG - AGP90 - LA	
Arabidopsis thaliana	ARX5 - TGG - AGP90 - LA	
Oryza sativa japonica	ARX5 - TGG - AGP90 - LA	
Amborella trichopoda	ARX5 - TGG - AGP90 - LA	
Solanum meloformi	ARX5 - TGG - AGP90 - LA	
Physcomitrella patens subsp.	ARX5 - TGG - AGP90 - LA	
Kobsonium nitens	ARX5 - TGG - AGP90 - LA	
Chloridion moniliferum	ARX5 - TGG - AGP90 - LA	
Chlorotrichia variabilis NOS 4A	ARX5 - TGG - AGP90 - LA	
Ostreococcus lucimarinus OE901	ARX5 - TGG - AGP90 - LA	
Micromonas sps	ARX5 - TGG - AGP90 - LA	
Cyanophora paradoxa	ARX5 - TGG - AGP90 - LA	
Chondrus crispus	ARX5 - TGG - AGP90 - LA	
Porphyridium purpureum	ARX5 - TGG - AGP90 - LA	
Cyanobacterium merolae 1D	ARX5 - TGG - AGP90 - LA	
Galderia sulphuraria	ARX5 - TGG - AGP90 - LA	
Guillardia theta, CCMP2712	ARX5 - TGG - AGP90 - LA	
Gonionomas avorius	ARX5 - TGG - AGP90 - LA	
Figure S2. Multiple sequence alignment of the N-terminal tail (1-22) of Histone H3 variants across the eukaryotic kingdom. A subset of species is shown that is representative of the diversity found amongst the eukaryotic tree of life. Per species, only one canonical Histone H3 variant is shown, that harbor a conserved H3T3 position. The position of the T3 (Haspin phosphosite), S10 (mitotic Aurora phosphosite) and T11 (Haspin phosphosite) are indicated below the alignment. On the right: lineages are grouped by phylogenetic (super) groups. TSAR (Telonema, Stramenopila, Alveolata, Rhizaria). A subset of this multiple sequence alignment is shown in Figure 3A.		
Figure S3. Molecular characterization of bori mutants and knock-down lines. (A) Gene structures of BORI genes in Arabidopsis thaliana. Arrowheads indicate the position of the here-presented mutations. Red color indicates the deleted nucleotides and blue color indicates the premature stop codon in bori2-1 mutant. Rescue constructs include the region that is amplified by BORI1_F and BORI1_R or BORI2_F and BORI2_R primers. (B) Genotyping of bori mutants and BORI complementation lines by PCR. Only the PCR product from WT BORI2 is digested by the Ddel restriction enzyme. ACT8 is used as a control. (C) Expression analysis of BORI1 in bori1 mutants by RT-PCR using ACT8 as control. (D) Relative expression level of BORI2 in the amiBORI2 plants was confirmed by RT-qPCR analysis with three biological replicates. Error bars represent means ± SD. (E) Relative expression level of AUR3 in the amiAUR3 plants was assessed by RT-qPCR analysis with three biological replicates. Error bars represent means ± SD. (F) Relative expression level of BORR in the amiBORR plants was determined by RT-qPCR analysis with three biological replicates. Error bars represent means ± SD.		
Figure S4. Phenotypes of *bori* and *aur3* mutants. (A) 3-week-old plants. Scale bar, 1 cm. (B) 30-day-old plants. Scale bar, 5 cm. (C) Inflorescences of 5-week-old plants. Scale bar, 1 cm. (D) 3-week-old plants expressing *BORI1*^{R3A}:GFP. Scale bar, 1 cm. (B) 30-day-old plants expressing *BORI1*^{R3A}:GFP. Scale bar, 5 cm. (C) Inflorescences of 5-week-old plants expressing *BORI1*^{R3A}:GFP. Scale bar, 1 cm.		
Figure S5. Subcellular localization of BORIs. (A and B) Subcellular localization of BORI2:GFP (A) or BORI2R3A:GFP (B) during the cell cycle. Microtubule structures were visualized by RFP:TUA5. Scale bar, 10 μm. (C) Subcellular localization of BORI1:GFP in amiBORR mutant background during the cell cycle. Microtubule structures were visualized by RFP:TUA5. Scale bar, 10 μm. (D-F) Subcellular localization of BORI1:GFP in WT (D), BORI1:GFP in amiBORR (E), or BORI1_N:GFP in WT (F) in anaphase cells. Merged pictures of D-F correspond with Fig. 6A; anaphase, Fig. S4C; anaphase, and		
Fig. 6C; anaphase, respectively. The yellow dotted line indicates the positions where the line profiles were obtained. Arrowhead indicates the lagging chromosome. Scale bar, 10 μm. (G) Co-localization of BORI1:GFP and the inner kinetochore marker RFP:CENH3. Scale bar, 5 μm. (H) Subcellular localization of BORI1:GFP in metaphase cells. 5-day-old seedlings were treated without 5-ITu (0.05% DMSO control) or with 10 μM 5-ITu for 90 min. Microtubule structures were visualized by RFP:TUA5. Scale bar, 10 μm. (I and J) Colocalization of Histone H3:RFP and BORI1:GFP (I) or BORI1R3A:GFP (J) in metaphase cells. The yellow dotted line indicates the positions where the line profiles were obtained. Pictures of I and J correspond with Fig. 6E and F, respectively. Scale bar, 10 μm.		
Table S1. Primers used in this study.		

Purpose	**Primer name**	**Sequence (5’-3’)**
CRISPR	BORI2_CRISPR_F	attgGATATCAGTAGGAGAGAGAA
	BORI2_CRISPR_R	aaccTTTTCCTCAGTGATATAC
Genotyping	BORI1_T-DNA_check_F	AAAATTCATATTTCATGACTACAAAG
	SALK_Lbb1.3	ATTTGCGGATTCCGAA
	BORI1_WT_check_F	AATGGTGTTGGTGAGGAGGATGAGG
	BORI1_WT_check_R	GCTCTATTTTTTCTAATCTCTCTCAAC
	BORI2_CAPS_F	AATCTCGGAGATGGAGGAGGATGTTATC
	BORI2_check_R	TGGACACTTTTGTCAAACTGAACACATAC
	BORI2_CAPS_R	CTTCTACCTTCTACATTAAACAC
	BORI1_check_F	GCTTGATGATCATAGGGTGAATACGTCACGTC
	BORI1_check_R	TTAATCAGATGGAGGTCTCCAGC
	ACT8_F	AATGAAATAGGTCGTCGGCA
	ACT8_R	TCCGAGTTTGAAGAGGCTAC
RT-qPCR	BORI1_RT_F	ATGTGTCGCCCCATGCTGAGGCTGAC
	ACT8_RT_F	Same as ACT8_F
	ACT8_RT_R	Same as ACT8_R
RT-qPCR	BORI2_qRT_F	ATGTGTCGCCCCATGCTGAGGCTGAC
	BORI2_qRT_R	CAAACATCGATGCGCATCTGC
RT-qPCR	AUR3_qRT_F	GACAGAATCTGGCAAGGCCA0CCTCA
	AUR3_qRT_R	CCAATCTGGCTCAGGACCTC
RT-qPCR	BORR_qRT_F	GTAGGATCCATCTTGAGGCTATG
	BORR_qRT_R	GGAAGCTATGGTCTCGAGATGTC
RT-qPCR	PP2AA3_qRT_F	GCCAAATGATGACTCACTCTC
	PP2AA3_qRT_R	CCGTACATGCTCTCCACAC
Cloning of FP fusion constructs	attB1 adapter	GGSSGACAAGTTTGTGACAAAAAGGCCAGGCT
	attB2 adapter	GGGGACCACCTTTGTCAGAAAGAAGGCTGGT
	BORI1_GFP	caaaaagagccgctacgcgtCTCATCGAGGCAAGGCTAACTAG
	BORI1_R	caagaaagctgggtAGAGGAGGAAACTAAAGCTCGATTACG
	Cter_Smal_BORI1_F	gggTAAATCTTTGTTGATGCTGCC
	Cter_Smal_BORI1_R	gggTACAGAATCTTTGCTCTGCC
	BORI1_N_GFP	CCGGGGACCGttcgctactacgcgtCAGGGAAGGATGGAAAGTTAGTAG
	BORI1_N_GFP_R	TCCATCAACCGAAATCTTTGCTCCACAC
	BORI11ساـ1-GFP_1stPCR	ggaAGTCTGGCAATCTTCAGGTTTAAACC
	BORI11ساـ1-GFP_2ndPCR	GGCTACCCTGAGGCTAGGAGGCT
	BORI21ساـ1-GFP_1stPCR	ggaAGTCTGGCAATCTTCAGGTTTAAACC
	BORI21ساـ1-GFP_2ndPCR	GGCTACCCTGAGGCTAGGAGGCT
	BORI22ساـ1-GFP_1stPCR	ggaAGTCTGGCAATCTTCAGGTTTAAACC
	BORI22ساـ1-GFP_2ndPCR	GGCTACCCTGAGGCTAGGAGGCT
	Histone H3.1-RFP	GACTGGATCATTGGAGGTCTTCTTCCAGGGACAT
	Histone H3.1_R	GGGAAGGCGCCGCTGAGGCTAGGTTAGGGAGGATGAGGAA
	pENTR2B for Histone H3.1_F	TCACTCCACCTCTCTCCGGCGCGCGCATGAGATCATC
	pENTR2B for Histone H3.1_R	TCACTCCACCTCTCTCCGGCGCGCGCATGAGATCATC
	Cter_Smal_Histone H3.1_F	ggaAGTATTGAAGAAGGACCTAGGGAAGGATGAAAGGAA

14
Yeast two-hybrid assay

Gene	Forward Sequence	Reverse Sequence	Source
BORI1_1-585	caaaaagcaggctccaccATGGTTGCGCCATTTGCTGAAGGCTGAC	caagaaagctggttTTAGTCGCCCTTTTCTCTTGTGCTGAC	genomic DNA
BORI1_1-293	Same as BORI1_1-585_F	Same as BORI1_1-585_F	genomic DNA
BORI1_294-585	GTCAAAGATGAGAAGAGACTCAAGAAG	Same as BORI1_1-293_R	pDONR221/BORI1_1-585
BORI1_535-585	TTTAGAAAAATGACACTCAAGAAGACT	Same as BORI1_294-585_R	pDONR221/BORI1_1-585
BORI1_294-534	Same as BORI1_1-293_F	Same as BORI1_1-293_F	pDONR221/BORI1_294-534
BORI1_N	Same as BORI1_1-585_F	Same as BORI1_1-585_F	pDONR221/BORI1_1-585-GFP
BORI2_N	Same as BORI1_1-585_F	Same as BORI1_1-585_F	pDONR221/BORI2_N-GFP
amiBORI2	TGTATTGTAATCTAGAGCATCGCAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	AATGTTTGAACTCATCTGAGAAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	
amiAUR3	TGTATTGCAAGCGGCTCTGTGAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	AATGTTTGAACTCATCTGAGAAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	

Peptide-binding assay

Gene	Forward Sequence	Reverse Sequence	Source
BORI1_N	caaaaagcaggctccaccATGGTTGCGCCATTTGCTGAAGGCTGAC	caagaaagctggttTTAGTCGCCCTTTTCTCTTGTGCTGAC	genomic DNA
BORI1_N	Same as BORI1_1-293_R	Same as BORI1_1-293_R	genomic DNA
BORI2_N	Same as BORI1_1-293_F	Same as BORI1_1-293_F	pDONR221/BORI1_N-GFP
BORI2_N	caaaaagcaggctccaccATGGTTGCGCCATTTGCTGAAGGCTGAC	caagaaagctggttTTAGTCGCCCTTTTCTCTTGTGCTGAC	genomic DNA
BORI2_N	Same as BORI1_1-293_F	Same as BORI1_1-293_F	pDONR221/BORI2_N-GFP

artificial microRNA

Gene	Forward Sequence	Reverse Sequence	Source
amiBORI2	TGTATTGTAATCTAGAGCATCGCAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	AATGTTTGAACTCATCTGAGAAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	
amiAUR3	TGTATTGCAAGCGGCTCTGTGAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	AATGTTTGAACTCATCTGAGAAGAATGATGACCATACATTTCATTTTTTTGCGATGCTATAGATTACAA	
Supplementary Movies

Movie S1
Subcellular localization of BORI1:GFP during mitosis.

Movie S2
Subcellular localization of BORI2:GFP during mitosis.

Movie S3
Co-localization of BORI1:GFP and BORR:RFP during mitosis.

Movie S4
Subcellular localization of BORI1_N:GFP during mitosis.

Movie S5
Subcellular localization of BORI1:GFP in *amiBORR* during mitosis.

Movie S6
Subcellular localization of BORI1^{R3A}:GFP during mitosis.

Movie S7
Subcellular localization of BORI2^{R3A}:GFP during mitosis.

Movie S8
3D projection of *bori1 bori2* root cells complemented with *BORI1:GFP*. Both cells have 10-dotted-GFP signals. Left cell is shown in Fig. 7E.

Movie S9
3D projection of *bori1 bori2* root cells complemented with *BORI1^{R3A}:GFP*. The cell has 9-dotted-GFP signals.

Movie S10
3D projection of *bori1 bori2* root cells complemented with *BORI1^{R3A}:GFP*. Both cells have 11-dotted-GFP signals. Left cell is shown in Fig. 7F.
Supplementary Datasets

Supplementary Datasets S2 to S6 can be found at:

https://figshare.com/articles/dataset/SI_Datasets_Movies_Figures_associated_to_pre-print_article_Molecular_convergence_by_differential_domain_acquisition_is_a_hallmark_chromosomal_passenger_complex_evolution_/17840213

Or at:

10.6084/m9.figshare.17840213

Dataset S1
Protein Identification details obtained by mass spectrometry.

Dataset S2
Separate .pdb files of predicted 3D structures of AthaBORI 1 and 2, and a pymol session file with BORI1 and 2 aligned corresponding to the structures shown in Figure 1D. BORI1: At3g02400 (uniprot-ID:Q9M8A0); BORI2: At4g14490 (uniprot-ID:O23305) - downloaded from the AF2 repository https://alphafold.ebi.ac.uk/.

Dataset S3
Text files and multiple sequence alignment used for IQ-Tree maximum-likelihood phylogenetic analysis found in Figure 1D.

Dataset S4
Text files and multiple sequence alignment used for IQ-Tree maximum-likelihood phylogenetic analysis found in Figure 8C.

Dataset S5
Text files, including: (1) .xlsx table with genome/transcriptome sources, presences and absences of Aurora kinase, INCENP, Borealin, Survivin/BORI and the H3 N-terminal tail (1-21), (2) sequences of homologs in separate text files, and (3) including separate domain annotations for the Survivin/BORI gene family + Hidden Markov models used for these annotations.

Dataset S6
Hidden Markov Models and multiple sequence alignment files for the detection of both N- and C-terminal helices in Survivin/BORI orthologs (EukProt sequence database).
Supplementary references

1. J. Van Leene, et al., An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. *Nat. Protoc.* **10**, 169–187 (2015).

2. S. R. Eddy, Accelerated Profile HMM Searches. *PLoS Comput. Biol.* **7**, e1002195 (2011).

3. E. C. Tromer, T. A. Wemyss, P. Ludzia, R. F. Waller, B. Akiyoshi, Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. *Open Biol.* **11**, 210049 (2021).

4. D. J. Richter, C. Berney, J. F. H. Strassert, F. Burki, C. de Vargas, EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. 2020.06.30.180687 (2020).

5. UniProt Consortium, UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res.* **47**, D506–D515 (2019).

6. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

7. J. Trifinopoulos, L.-T. Nguyen, A. von Haeseler, B. Q. Minh, W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res.* **44**, W232–5 (2016).

8. A. Rambaut, FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. *Edinburgh, UK: Retrieved from http://tree.bio.ed.ac.uk/software/figtree [Google Scholar]* (2012).

9. I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* **47**, W256–W259 (2019).

10. J. J. van Hooff, E. Tromer, L. M. van Wijk, B. Snel, G. J. Kops, Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. *EMBO Rep.* **18**, 1559–1571 (2017).

11. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, G. J. Barton, Jalview Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189–1191 (2009).