Prenatal diagnosis and long-term follow-up of a Chinese patient with mosaic variegated aneuploidy and its molecular analysis

Sheng Mou Lin1 | Ho Ming Luk2 | Ivan Fai Man Lo2 | Wai-Keung Tam3,4 | Kelvin Yuen Kwong Chan3,4 | Hei-Yee Tse5 | Wing Cheong Leung5 | Mary Hoi Yin Tang1,4,6 | Anita Sik Yau Kan3,4

1Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
2Department of Health, Clinical Genetic Service, Hong Kong, Hong Kong
3Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, Hong Kong
4Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong, Hong Kong
5Department of Obstetrics and Gynaecology, Kwong Wah Hospital, Hong Kong, Hong Kong
6Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, Hong Kong

Correspondence
Anita Sik Yau Kan, Department of Obstetrics and Gynaecology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong.
Email: kansya@hku.hk

Funding information
Shenzhen Municipal Committee of Science and Technology Innovation, Shenzhen, China, Grant/Award Number: JCYJ20170307171743182. The University of Hong Kong-Shenzhen Hospital Seed Funding, Grant/Award Number: HKU-SZH201902017.

Abstract
Mosaic variegated aneuploidy (MVA) is a rare genetic disorder caused by mutations in BUB1B, CEP57, or TRIP13. We describe the prenatal diagnosis, molecular characterization, and clinical management of a long-lived patient with BUB1B-related MVA.

KEYWORDS
molecular diagnosis, mosaic variegated aneuploidy, prenatal diagnosis
Mosaic variegated aneuploidy (MVA, OMIM 257300) is a congenital autosomal recessive disorder characterized by mosaic aneuploidies, predominantly trisomies, and monosomies, involving multiple chromosomes and tissues. Mutations in \(BUB1B\), \(CEP57\), and \(TRIP13\) genes, which are involved in mitotic spindle and microtubule stabilization, are responsible for the molecular pathogenesis of MVA. The clinical features of MVA syndrome include severe pre/postnatal growth retardation, microcephaly, central nervous system anomalies, intellectual disability, minor congenital malformation, and predisposition to malignancy. There is some genotype-phenotype correlation (Table 1). Intellectual disability, microcephaly, brain malformations, epilepsy, and cancer predisposition are more common in \(BUB1B\) subtype. Rhizomelic shortening of the upper limbs, skull anomalies with conserved head circumference, and absence of malignancy are more common in \(CEP57\) subtype. In addition, \(TRIP13\) subtype has growth retardation with microcephaly and developmental delay, but there is no other structural abnormality and dysmorphic facial feature as in \(BUB1B\) subtype.

Several cases of MVA were diagnosed in prenatal period, followed by the termination of pregnancy. Here we reported a Chinese patient with the longest survival in literature, with cytogenetic and antenatal findings together with her long-term postnatal course and molecular finding.

3 | DISCUSSION

Premature chromatid separation (PCS) and asynchrony of mitotic stages is described to be the pathogenic mechanism for mosaic variegated aneuploidies (MVA). PCS/MVA manifests cytogenetically as a variety of mosaic aneuploidies, especially trisomies, double trisomies, and monosomies. The proportion of aneuploid cells varies but is usually >25% and is substantially greater than in normal individuals. Conventional cytogenetic analysis with at least two independent amniocyte cultures should always be performed to diagnose prenatal MVA. In our case, amniocyte, placenta, and cord blood lymphocytes culture demonstrated that the proportion of aneuploidy cells was more than 25%, which confirmed the prenatal diagnosis of MVA.

The phenotype is highly variable across individuals of MVA. Common abnormalities of MVA include intrauterine growth retardation, microcephaly, dysmorphic features, and mental retardation. There is also a high risk of early-onset childhood cancer like Wilms tumor, rhabdomyosarcoma, or leukemia. Facial dysmorphic features in MVA syndrome include micrognathia, frontal bossing, triangular face, epicanthic folds, hypertelorism, low-set ears, and broad nasal bridge. Cardiovascular, neurological, skeletal anomalies like rhizomelic shortening of the upper limbs, gastrointestinal, and dermatological anomalies, immunodeficiency, and endocrine problem like hypothyroidism have also been described.

Microcephaly was most commonly observed in MVA cases, described in general 90% patients. Prenatal ultrasound findings in association with MVA included intrauterine growth restriction, microcephaly, Dandy-Walker malformation, cerebral ventricular dilatation, fetal ascites, oligohydramnios, and
TABLE 1 Subtype of Mosaic Variegated Aneuploidy syndrome and genotype-phenotype correlation

Title	Mosaic variegated aneuploidy syndrome 3; MVA3	Mosaic variegated aneuploidy syndrome 1; MVA1	Mosaic variegated aneuploidy syndrome 2; MVA2	Our case	
Inheritance	Autosomal recessive	Autosomal recessive	Autosomal recessive	Autosomal recessive	
Molecular basis	Caused by mutation in the thyroid hormone receptor interactor 13 gene (TRIP13)	Caused by mutation in the budding uninhibited by benzimidazoles 1 beta gene (BUB1B)	Caused by mutation in the 57-kD centrosomal protein gene (CEP57)	Caused by mutation in the budding uninhibited by benzimidazoles 1 beta gene (BUB1B)	
Laboratory abnormalities	Aneuploidy	Mitotic lymphocyte and fibroblast cultures show mosaic variegated aneuploidy	Mitotic lymphocyte and fibroblast cultures show mosaic variegated aneuploidy (50%) affecting all chromosomes	Mitotic lymphocyte and fibroblast cultures show mosaic variegated aneuploidy	
	Premature chromatid separation	More than 50% of mitotic cells show premature chromatid separation (PCS) affecting all chromosomes	Chromosomal structural abnormalities	More than 50% of mitotic cells show premature chromatid separation (PCS) affecting all chromosomes	
	Chromosome instability	Anaphase loss or nondisjunction with trisomies, tetrasomies, monosomies	Anaphase loss or nondisjunction with trisomies, tetrasomies, monosomies	Anaphase loss or nondisjunction with trisomies, tetrasomies, and monosomies	
Growth	Height	Weight	Height	Weight	
	Short stature	Low birthweight	Intrauterine growth retardation (IUGR)	Low birthweight	
	Other	Low postnatal weight	Low postnatal weight	Other	
	Growth retardation	Postnatal and prenatal	Growth retardation, prenatal and postnatal	Growth retardation, prenatal and postnatal	
Head & neck	Head	Face	Ears	Eyes	
	Microcephaly (in some patients)	Microcephaly, severe	High forehead	Hypertelorism	
		Brachycephaly	Midface hypoplasia		
		Mesomphalia	Micrognathia		
		Long philtrum	Long philtrum		
		Ears	Ears		
		Low-set ears	Low-set ears		
		Posteriorly rotated ears	Posteriorly rotated ears		
		Hypertelorism	Hypertelorism		
		Upsettal palpebral fissures	Deep-set eyes (1/4 patients)		
		Epicanthal folds	Short palpebral fissures (1/4 patients)		
		Cataracts	Downslanting palpebral fissures (in 2/4 patients)		
		Nystagmus	Epicanthal folds (3/4 patients)		
		Nose	Small nose (2/4 patients)		
		Short, wide nose	Flat nasal bridge (in 2/4 patients)		

(Continues)
TABLE 1 (Continued)

Title	Mosaic variegated aneuploidy syndrome 3; MVA3	Mosaic variegated aneuploidy syndrome 1; MVA1	Mosaic variegated aneuploidy syndrome 2; MVA2	Our case	
Cardiovascular	Heart	Congenital heart defects (in 2/4 patients)	Atrial septal defect	Congenital heart defects	
			Ventricular septal defect	Pericardial effusion	
			Aortic valve regurgitation		
			Vascular		
			Aortic coarctation		
			Subaortic stenosis		
Respiratory	Heart			Pleural effusion, chylothorax	
	Lung		Abnormal lung lobation (in 1/4 patients)		
Chest	Ribs	Sternum Clavicles and Scapulae	Gastrointestinal	Gastrointestinal	
		Short sternum			pleural effusion, chylothorax
Abdomen	Gastrointestinal		Gastrointestinal	Gastrointestinal	
		Feeding difficulties			ascites, duplication cyst of gut
Genitourinary	Ambiguous genitalia	External Genitalia (Male)	Kidneys	Wilms tumor	
		Micropenis			glomerulosclerosis
		Hypospadias			
		Bifid scrotum			
	Internal Genitalia (Male)	Cryptorchidism			
		Kidneys			
		Renal cysts			
		Wilms tumor			
Skeletal	Delayed bone age (in 1/4 patients)	Skull			
		Epidermoid cysts (in 1/4 patients)	Limbs		
		Rhizomelic shortening of the upper limbs (in 2/4 patients)	Hands		
			Clinodactyly (in 2/4 patients)		
Skin, nails, & hair	Skin	Pigmentary abnormalities	Skin	Cafe-au-lait spot (in 1/4 patients)	
				Cafe-au-lait spot	
Neurologic	Central Nervous System	Developmental delay, profound	Central Nervous System	Mild mental retardation (in 1/4 patients)	
		Mental retardation, profound		Hypotonia (in 1/4 patients)	
		Hypotonia, generalized		Sleep apnea (in 1/4 patients)	
		Seizures, generalized tonic-clonic			
		Seizures, myoclonic			
		Hypoplastic cerebrum			
		Pachy宏观经济ry			
		Cerebral oligogyria			
		Hypoplasia of the corpus callosum			
		Agenesis of the corpus callosum			
		Posterior fossa malformations			
		Dandy-Walker malformation			
		Enlarged ventricles			
		Hydrocephalus			
		Cerebellar hypoplasia			

(Continues)
TABLE 1 (Continued)

Title	Mosaic variegated aneuploidy syndrome 3; MVA3	Mosaic variegated aneuploidy syndrome 1; MVA1	Mosaic variegated aneuploidy syndrome 2; MVA2	Our case
Endocrine features				• Growth hormone deficiency (in 1/4 patients)
				• Hypothyroidism (in 2/4 patients)
Immunology	• Combined immunodeficiency (reported in 1 patient)			
Neoplasia	• Wilms tumor	• Propensity to tumor development	• Propensity to tumor development	
	• Wilms tumor	• Wilms tumor	• Wilms tumor	
	• Nephroblastoma	• Nephroblastoma	• Nephroblastoma	
	• Rhabdomyosarcoma	• Rhabdomyosarcoma	• Sertoli-Leydig cell tumor	
	• Leukemia	• Leukemia		
Prenatal manifestations	Amniotic Fluid	• Oligohydramnios	Biochemical serum screening	
	• Delivery	• Premature labor	• raised maternal serum alpha fetoprotein	
Miscellaneous	• Onset of Wilms tumor in early childhood	• Variable phenotype	• Four patients have been reported (as of July 2011)	
	• Highly variable phenotype other than Wilms tumor	• Heterozygous parents are phenotypically normal but their cells show premature chromatid separation trait (PCS, OMIM 176430)	• Highly variable phenotype	
			• Facial dysmorphic features are mild	

Note: Modified and updated from: https://omim.org/clinicalSynopsis/table?mimNumber=617598,614114,257300

FIGURE 1 Chromosome study and facial feature of the MVA patient. A, One representative cultured amniocyte metaphase image showing karyotype result of 48,XX,+8,+17. B, Subtle facial dysmorphism at 4, 8, and 22 years old: The patient has microcephaly, failure to thrive with all growth parameters less than 3rd percentile, and subtle dysmorphism (hypertelorism, high forehead, epicanthic fold, and midface hypoplasia). The hypertrichosis at 22 years old was due to side effect of cyclosporine A after renal transplantation.
increased nuchal translucency. According the literature on the prenatal cases of MVA, fetal growth restriction is the commonest feature. In this case, the main prenatal sonographic features include fetal growth restriction, microcephaly, pericardial effusion, ascites, and congenital heart disease. In the long-term follow-up of this patient, she manifested with failure to thrive, microcephaly, mild intellectual disability, and cancer predisposition. As the clinical phenotype is highly heterogeneous in MVA, especially in prenatal period, MVA syndrome is usually under-recognized and missed.

Genetic defect of chromosome segregation in cell mitosis might be associated with MVA, and mutations of BUB1B involved in the mitotic spindle checkpoint might underlie MVA. The compound heterozygous variants NM_001211.5(BUB1B):c.[1402-5A>G];[2387-11A>G] found in this patient are located at the RNA splicing acceptor site of exons 11 and 19 of BUB1B, and reported in the literature. Reduced BUB1B expression on the spindle checkpoint is dose-dependent. An analogous mutation (in mice) to the human MVA BUB1B (encodes protein BUBR1) has a reduced lifespan and develop several age-related phenotypes at an accelerated rate. Sustained high expression of BUBR1 preserves genomic integrity and reduces tumorigenesis by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects.

Clinical management of patients with MVA syndrome includes symptomatic support and tumor surveillance, particularly for BUB1B subtype. Early molecular diagnosis might enable risk stratification for tumor surveillance. Common tumors reported in BUB1B-associated MVA syndrome are Wilms tumor, rhabdomyosarcoma, leukemia and granulosa cell tumor of the ovary. In this case, patient suffered from infantile neuroblastoma and Sertoli-Leydig cell tumor. It is recommended that patients with MVA syndrome have regular abdominal ultrasound surveillance, to particularly look for Wilms tumor. However, as the incidence rate of other rare tumor in MVA is unknown, there is still no evidence to indicate that routine screening is beneficial. But high index of suspicion is necessary. In case there are any clinical symptoms of malignancy, further investigation should be carried out.

We have reported the longest Chinese survivor of BUB1B-related MVA syndrome in the literature, its clinical course, and management.

ACKNOWLEDGMENTS
This work has been supported by The University of Hong Kong-Shenzhen Hospital Seed Funding, NO: HKU-SZH201902017 and research grants JCYJ20170307171743182 from the Shenzhen Municipal Committee of Science and Technology Innovation, Shenzhen, China.

CONFLICT OF INTEREST
There is no any conflict of interest in relation to the work.

AUTHOR CONTRIBUTIONS
Sheng Mou Lin and Ho Ming Luk: involved in conceptualization, methodology, drafting, and writing manuscript. Ivan Fai Man Lo: involved in data collection and curation. Wai-Keung Tam and Kelvin Yuen Kwong Chan: carried out investigation. Hei-Yee Tse, Wing Cheong Leung, and Mary Hoi Yin Tang: involved in data curation and validation. Anita Sik Yau Kan: involved in conceptualization, reviewing, and editing.

INFORMED CONSENT
Written informed consent was obtained from the patient.

ORCID
Sheng Mou Lin https://orcid.org/0000-0001-9033-3471

REFERENCES
1. Hanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36:1159-1161.
2. Cho CH, Oh MJ, Lim CS, Lee CK, Cho Y, Yoon SY. A case report of a fetus with mosaic autosomal variegated aneuploidies and literature review. Ann Clin Lab Sci. 2015;45(1):106-109.
3. García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P. Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A. 2008;146A(13):1687-1695.
4. Rio Frio T, Lavoie J, Hamel N, et al. Homozygous BUB1B mutation and susceptibility to gastrointestinal neoplasia. N Engl J Med. 2010;363(27):2628-2637.
5. Matsuura S, Matsumoto Y, Morishima K, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140(4):358-367.
6. Baker DJ, Dawlaty MM, Wijshake T, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol. 2013;15(1):96-102.

How to cite this article: Lin SM, Luk HM, Lo IFM, et al. Prenatal diagnosis and long-term follow-up of a Chinese patient with mosaic variegated aneuploidy and its molecular analysis. Clin Case Rep. 2020;8:1369–1375. https://doi.org/10.1002/ccc3.2802