Estimated clinical and economic impact through use of a novel blood collection device to reduce blood culture contamination in the emergency department: A cost-benefit analysis

Running title: Initial specimen diversion device

Erik Skoglund¹, Casey Dempsey¹, Hua Chen², Kevin W. Garey¹

¹Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
²Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Houston, TX, USA

Keywords: Economic analysis; emergency department; healthcare-associated infections; microbiology; vancomycin

Correspondence and reprint author: Kevin W. Garey PharmD, MS; 4849 Calhoun, Room 4039, Houston, TX 77204-5000; Phone: 832-842-8386; Fax: 832-842-8383; Email: kgarey@uh.edu

[This accepted manuscript was published on 24 October 2018 with a standard copyright line ("© 2018 American Society for Microbiology. All Rights Reserved."). The authors elected to pay for open access for the article after publication, necessitating replacement of the original copyright line, and this change was made on 7 November 2018.]
Abstract

Background: Blood culture contamination results in increased hospital costs and exposure to antimicrobials. We evaluated the potential clinical and economic benefits of an Initial Specimen Diversion Device® (ISDD®) when routinely utilized for blood culture collection in the emergency department (ED) of a quaternary care medical center.

Methods: A decision analysis model was created to identify the cost benefit of use of the ISDD device in the ED. Probabilistic costs were determined from published literature and direct observation of pharmacy/microbiology staff. The primary outcome was the expected per-patient cost savings (microbiology, pharmacy, and indirect hospital costs) of routine use of an ISDD using a hospital perspective. Indirect costs included increased hospital length of stay, additional procedures, adverse drug reactions, and hospital-acquired infections. Models were created for hospitals that routinely or do not routinely use rapid diagnostic tests (RDT) on positive blood cultures.

Results: The routine implementation of ISDD for blood culture collection in the ED was cost-beneficial compared to conventional blood culture collection methods. When implemented in a hospital utilizing RDT with a baseline contamination rate of 6%, ISDD use was associated with a cost-savings of $272 (3%) per blood culture in terms of overall hospital costs and $28 (5.4%) in direct-only costs. Main drivers of cost were baseline contamination rates and duration of antibiotics given to patients with negative blood cultures.

Conclusion: These findings support the routine use of ISDD during blood culture collection in the ED as a cost-beneficial strategy to reduce the clinical and economic impact of blood culture contamination in terms of microbiology, pharmacy and wider indirect hospital impact.
Introduction

Blood culture contamination is a routine complication of patient care. The clinical uncertainty created by contaminated blood cultures decreases the diagnostic value of an initial report of positive growth and often results in detrimental downstream effects, such as increased diagnostic evaluations, unnecessary antibiotic exposure, increased hospital length of stay, increased risk of nosocomial infections, and increased strain on microbiology labs (1-6). The Clinical and Laboratory Standards Institute (CLSI) recommends an overall blood culture contamination rate of less than 3%, however many institutions fail to meet this threshold with rates of blood culture contamination ranging from 2 to greater than 10% using conventional techniques (2, 3, 6-8). Increased blood culture contamination rates have been observed in EDs compared to general wards and ICUs (9).

Several interventions have been utilized to decrease the risk of blood culture contamination, including sterile collection kits and phlebotomy team (8-10). However, even with best-practices, contaminants can represent up to half of all positive blood culture growth (7). Additionally, the cost-benefit and sustainability of available interventions vary, preventing widespread adoption. A novel closed-system, mechanical blood culture diversion device that is preassembled and end-to-end sterile, Steripath® (Magnolia Medical Technologies, Seattle, WA) which is also known in the literature as Initial Specimen Diversion Device® or ISDD®, has been previously demonstrated to reduce the incidence of blood culture contamination by nearly 90% by diverting and sequestering the initial 1.5 to 2.0 mL of blood prior to culture bottle inoculation (4). However, an economic model to evaluate the cost-benefit of ISDD implementation for routine blood culture collection does not exist. We sought to build a decision-tree healthcare economic model to assess the cost-benefit of routine use of ISDD in a health-system ED and evaluate the downstream clinical and economic impacts of routine ISDD use in terms of microbiology, pharmacy, and indirect hospital costs.
Methods

Decision model

A decision analysis model was built using TreeAge software (Williamstown, MA). The structure of the decision tree was modified from a previously published model assessing the cost-implications of blood culture contamination in the ED (10). This model was used to perform a cost-benefit analysis comparing routine use of ISDD for blood culture collection in the ED to the use of conventional practices without ISDD for blood culture collection in the ED. Conventional methods were defined as a nurse or phlebotomist collection by venipuncture with clean, but non-sterile, technique using 2% CHG in 70% isopropanol as the antiseptic or similar. The primary outcome was per-patient costs associated with ordering a blood culture in the ED including microbiology, pharmacy, and indirect hospital expenditures. The tree model is shown in Supplemental figure 1.

Target population

The target cohort for our decision tree model comprised all patients in the ED with an order for blood culture collection. Patients were excluded if they did not have two blood culture sets drawn as part of the initial order in the ED or if the blood culture yielded fungal growth (3). Culture results were adjudicated into three groups at the time of culture finalization for the purpose of evaluating costs: no bacterial growth, true bacteremia, or contaminated growth. Published studies used a definition of contamination to be blood culture growth due to skin residing organisms (coagulase-negative staphylococci, Propionibacterium spp., Micrococcus spp., viridians group streptococci, Corynebacterium spp., or Bacillus spp.) if the growth was identified in ≤50% of available bottles as previously defined generally considered one of two blood culture sets (2, 4).
Data sources

Information and model parameters for this study was primarily derived from published literature using the primary data from the publication source using a systematic review of literature. When necessary, hospital charges were converted to hospital costs using a 0.3 cost-to-charge ratio (11). All costs were adjusted to 2017 US dollars (USD) using the consumer price index (CPI) (12). In the absence of published data, information was obtained from institutional databases at an 884-bed quaternary care hospital with 78,000 annual ED visits located in the Texas Medical Center, Houston Texas. Collection of institutional data was approved by the institutional review board of the University of Houston and participating hospital. Baseline estimates as well as ranges included in the sensitivity analyses are presented in Table 1.

Rate of blood culture contamination

The incidence of bacterial growth from blood cultures drawn in the ED and the proportion of overall growth due to contamination were obtained from multiple observational studies. Published blood culture contamination rates using conventional collection methods have ranged from 2% to over 10%.(1, 3, 4, 8, 9, 13, 14) Rates of overall bacterial growth and contamination using ISDD were obtained from a controlled matched-pair trial by Rupp et al. in which a blood culture contamination rate of 0.22% was observed among 904 blood cultures (4). Investigators furthermore demonstrated that the observed prevalence of true bacteremia was not affected by use of the ISDD (7.2%) when compared to conventional techniques (7.6%, p=0.41).

Microbiology costs

The cost of materials needed for conventional collection of blood cultures was estimated based on institutional costs and corroborated by published data.(10, 15) Opportunity labor costs were determined
by surveying or direct observation by the authors of microbiology staff over a period of four-weeks at two sites: an 884-bed academic medical center and a 792-bed community hospital. Hourly wages for laboratory technicians were assigned according to the Bureau of Labor Statistics (BLS) occupational handbook (12). Initial instrument and material costs to process cultures were estimated based on institutional costs and corroborated by published data (6, 16-18). The costs of organism identification and antimicrobial susceptibility testing were determined separately for hospitals that utilize rapid diagnostic testing (RDT) (e.g. multiplex PCR, MALDI-TOF, PNA-FISH) and those that use conventional methods. Microbial identification and antimicrobial susceptibility testing costs were estimated as a composite that included the cost of reagents, supplies and instrument acquisition divided by the expected number of samples to be processed over the life of the instrument (19-21). Cost estimates were calculated assuming routine identification and antimicrobial susceptibility testing was performed for all initial microbial growth isolated from blood samples.

Antimicrobial administration and duration

The duration of antibiotic therapy was estimated based on the probability of two separate events: A) receiving empiric therapy at the time of blood culture collection, and B) stopping therapy at the time of culture finalization. Patients were assumed to universally receive antibiotics at the initial report of unidentified bacterial growth from a blood culture if they were not started empirically. The duration of antibiotic therapy for patients with true bacteremia was not dependent on empiric therapy or de-escalation and was estimated based on published observational data and the minimum recommended duration by the Infectious Diseases Society of America (22, 23). For other blood culture result categories, an institutional database was utilized to estimate the probability of starting or stopping inpatient antibiotics. A composite daily pharmacy cost of antibiotic provision was constructed utilizing institutional purchasing data for
several broad-spectrum, intravenous antibiotics at standard daily doses that are commonly given as empiric therapy in patients with suspected bloodstream infections: vancomycin ($20/day), cefepime ($25/day), meropenem ($30/day), linezolid ($80/day), and piperacillin-tazobactam ($20/day). Opportunity labor costs for preparation and delivery of IV antibiotics were determined by direct observation of pharmacy staff with hourly wages assigned according to the Bureau of Labor Statistics (BLS) occupational handbook (12). A point estimate of $75 was determined to represent the daily provision cost of antibiotics to a single patient, which included pharmacy purchasing and labor and was based on retrospective data that demonstrated patients with pathogenic or contaminated blood culture results were likely to concomitantly receive multiple antibiotics (24). Additional pharmacy labor costs were considered for therapeutic drug monitoring of vancomycin. Our model assumed that a patient receiving three or fewer days of vancomycin underwent one serum concentration assay, while patients receiving more than three days of vancomycin underwent two serum concentration assays (5, 24, 25). Pharmacist labor costs associated with a serum vancomycin level was determined by direct observation of staff and estimated to require 45 minutes to conduct an assessment and response.

Indirect hospital costs

Indirect costs included increased hospital length of stay, additional procedures, adverse drug reactions, and hospital-acquired infections. Published observational data was utilized to estimate the probabilistic cost of additional diagnostic or therapeutic interventions as a result of a positive blood culture, including central line placement/removal ($1,272), bone scan ($980), echocardiogram ($1,254), additional laboratory assays ($130), and diagnostic imaging ($1,700), with a final point estimate of $1,100 of additional diagnostic/procedural cost due to a positive blood culture (26-28). Costs associated with hospital length of stay were determined by published observational data and corroborated with institutional records of
n=3,325 unique patient encounters with blood cultures ordered in the ED (1). Occupation of a single-patient, non-ICU hospital room was valued at $1,500 per day based on published data and institutional financial valuation. (29) The risk of a hospital-acquired infection (HAI) was modeled using an incremental 1.37% risk per hospital day due to observational data demonstrating the majority of HAIs are experienced in the first 10 days of hospitalization in which timeframe the incidence HAIs increases linearly (30). The risk of experiencing an antibiotic-associated adverse drug reaction (ADR) such as nephrotoxicity or an infusion reaction was estimated to increase incrementally at 6% per day of antibiotic therapy (31, 32).

Cost-benefit analysis plan
Expected value calculations were used to evaluate the cost-benefit of routine use of ISDD to collect all blood cultures in the ED. Separate analyses were performed for hospitals that did and did not use RDT for organism identification and antimicrobial susceptibility testing. One-way sensitivity analyses were performed to assess the robustness of results. Variables that were determined to have a significant effect on the outcome of our analysis were further subjected to two-way sensitivity analyses.

Results
Clinical parameters associated with blood culture contamination and healthcare costs
Data not available from our systematic review of the literature was obtained using our institutional database. Patients with contaminated blood cultures drawn in the ED were screened in a quaternary care hospital with a historical ED contamination rate of 6%. Between January and February 2017, 48 unique patient encounters were observed in which a contaminated blood culture was collected in the ED. To characterize the timing and duration of antibiotic therapy, this cohort was consecutively matched over the same period in a 1:1.5 ratio with patients whose ED blood cultures yielded no growth. Empiric therapy was
initiated in 34 of 48 patients (71%) with contaminated cultures, and 50 of 70 patients (71%) whose cultures
yielded no growth.

Of the 20 patients (29%) whose blood cultures yielded no growth and who were not started on empiric
antibiotics on the day of culture collection, 14 (70%) were eventually started on antibiotics. Of these,
antibiotics were stopped by the date of culture finalization in 10 patients (71%). Likewise, among patients
whose blood cultures collected in the ED yielded no growth and did receive empiric therapy, 36 patients
(72%) were discontinued off antibiotics by the date of culture finalization. Durations of antibiotic therapy
for these groups are displayed in table 1.

Of the 14 patients (29%) with contaminated blood cultures who were not started on empiric antibiotics on
the day of culture collection, 8 patients (57%) were eventually started on antibiotics. Of these, antibiotics
were discontinued by the date of culture finalization in 6 patients (75%). Among patients with
contaminated blood cultures who were started on empiric therapy, 23 patients (68%) were discontinued off
antibiotics by the date of culture finalization (Table 1).

Additional data from the same quaternary care hospital regarding hospital length of stay was extracted from
3,325 unique patient encounters in 2017 during which a blood culture was collected in the ED. Among
these patients, receipt of at least one dose of IV vancomycin was observed in 1,634 of 2,867 patients (57%)
who had no bacterial growth identified from the initial ED blood culture, 136 of 206 patients (66%) who
had true bacteremia, and 212 of 252 patients (84%) who had contaminated bacterial growth from the initial
ED blood culture. Detection of bacterial growth from the initial ED blood culture was also associated with
longer hospital stay in this cohort. The median length of stay among patients with a contaminated blood
The median length of stay among patients with a positive culture (n=253) was 7 days (IQR 4-11 days), while the median length of stay among patients with a negative culture (n=2,866) was 5 days (IQR 3-9 days) (p<0.0001).

Costs due to blood culture contamination stratified by hospital use of RDT

In hospitals that did not routinely use RDT, the overall hospital cost for patients with contaminated blood cultures was $12,824/patient including costs from pharmacy ($422/patient), microbiology ($275/patient), and indirect hospital costs ($12,126/patient). The overall costs increased in hospitals with routine use of RDT ($13,026) due to increased costs in microbiology ($477). Total cost per contaminated blood culture, per negative blood culture, and attributable cost per blood culture contamination are shown in Table 2.

Base-case cost-benefit analysis of routine ISDD implementation

Using baseline estimates from the quaternary care hospital and literature estimates, the routine implementation of ISDD for blood culture collection in the ED was cost-beneficial compared to conventional blood culture collection methods. Using a baseline contamination rate of 6%, the total expected cost of a blood culture patient-episode was $8,893 using ISDD and $9,165 with conventional methods in a hospital utilizing RDT, resulting in a cost-savings of $272 (3.0% reduction in costs) per blood culture collection (Table 3). In a hospital not utilizing RDT, the total expected cost of a blood culture patient-episode was $8,868 with ISDD and $9,130 with conventional methods, resulting in a cost-savings of $261 (2.9% reduction in costs) per blood culture collection. When considering only direct microbiology and pharmacy costs, the expected cost-savings per blood culture collection was $28 (5.4% reduction in costs) in hospitals using RDT and $16 (3.4% reduction in costs) in hospitals not using RDT.
The cost-benefit analysis also showed that routine ISDD implementation was associated with a reduction in antibiotic usage, adverse drug reactions and hospital-acquired infections. ISDD implementation was associated with a 1.7% absolute reduction in the number of patients receiving at least one dose of vancomycin after blood culture collection in the ED. In a setting with 350 patient-unique blood cultures collected in the ED every month, ISDD implementation is associated with the complete avoidance of vancomycin administration in 6 additional patients per month.

Sensitivity analyses

The results of the sensitivity analysis confirmed the robustness of the model to a range of variation in base-case parameter values. Variables that most influenced the model in hospitals that use conventional collection techniques vs. routine use of the ISDD are shown in Figure 1. To perform a more conservative evaluation of the cost-benefit of routine ISDD implementation in the ED, one- and two-way sensitivity analyses were also performed considering only direct purchasing and labor costs within the pharmacy and microbiology departments. Under these conditions, the threshold value for the unit cost of ISDD at which the strategy of routine ISDD use was equal in direct-costs to the conventional blood culture collection strategy was $28 with RDT and $16 without RDT. When considering total hospital expenditure, including indirect costs, the threshold value for the unit cost of ISDD at which the strategy of routine ISDD use was equal to the conventional blood culture collection strategy was $272 with RDT and $261 without RDT. Total hospital costs associated with a blood culture collection using Steripath vs. conventional methods over a range of baseline blood culture contamination rates is shown in Figure 2.

A two-way sensitivity analysis on the expected, per culture, direct (pharmacy and microbiology) cost of routine ISDD vs. conventional methods of blood culture collection in a hospital with RDT demonstrated
that ISDD was the least costly strategy at an ISDD unit cost of $30 over a range of baseline blood culture contamination rates above 6% (Figure 3). Likewise, ISDD was the least costly strategy in hospitals using RDT at a unit cost of $30 when the median duration of antibiotic therapy was less than 3 days among patients with negative blood cultures whose therapy was discontinued by culture finalization.

Discussion

Blood culture contamination in emergency departments increases hospital costs and affects patient outcomes. In this cost-benefit study, routine use of ISDD was a cost-saving strategy compared to conventional methods over a range of baseline variables. The results of this study demonstrate that the use of ISDD to decrease blood culture contamination rates also decreases associated hospital costs from multiple hospital departments. Strengths of the study include the use of a systematic literature review supplemented with real-world observation and databases to provide estimates, dual analyses based on microbiology use of rapid diagnostic tests, and identification of costs drivers that are affected by blood culture contamination.

The clinical utility of the Steripath ISDD was demonstrated using a cohort of phlebotomist-collected blood cultures (4). In this study, blood culture sets were collected with and without ISDD. Rates of blood culture contamination without using ISDD was 1.78% which decreased to 0.22% with use of ISDD; an 87.6% reduction. While no published studies have evaluated the economic impact of routine implementation of ISDD, the cost-effectiveness of other interventions designed to decrease the rate of blood culture contamination have been studied. A decision tree cost-analysis with a baseline contamination rate of 4.34% demonstrated that the use of sterile kits or phlebotomy teams for blood culture collection was associated with a net hospital cost-savings compared to usual practices (10). Our results showed a similar cost-
effectiveness benefit in addition to a more granular analysis of areas where cost savings are observed.

Sustainability and workflow practicality associated with dedicated phlebotomy teams in a busy ED was a limitation of the previous study. Interventions that rely on new methodology vs. constant staff education or presence of specialists may also be more sustainable over time (10, 33). Other antimicrobial stewardship benefits associated with the ISDD device should be studied in the future.

While this study was designed within a framework that could be generalized to a wide range of institutions, (e.g. those with or without access to RDT), there are important considerations to note. This study assumed that all bacterial growth identified from a blood culture was subjected to full microbiologic identification and susceptibility testing; however, not all institutions are likely to subject every organism identified as a potential skin contaminant to full antimicrobial susceptibility. Furthermore, this study utilized an aggregated composite estimate for RDT comprising a range of available laboratory instruments with varying acquisition and operating costs. We accounted for these differences in clinical practice by performing separate analyses for hospitals that do or do not routinely perform RDT as well as a wide range of possibility in the sensitivity analysis. Hospital vary widely in their use of RDT and further refinements to the model could be undertaken for differing scenarios. We did not account for any wastage of the ISDD or additional time needed to use or dispose of the device. We modeled the effect of the ISDD in the ED, an area of healthcare with high rates of contamination. Models to predict economic benefit in other areas of the healthcare continuum will be needed. The cost-benefit analysis in this study was predicted probabilities only, further real-world clinical trial evidence will be required to confirm these results. Additional limitations to this study to consider include the heterogeneous nature of data used to compile point estimates, however data obtained from disparate sources were corroborated or reconciled by review of institutional databases when available.
Conclusion

These findings support the routine use of ISDD for the collection of blood cultures in the ED as a cost-beneficial strategy to reduce the clinical and economic effect of blood culture contamination in terms of microbiology, pharmacy and wider indirect hospital implications.
Acknowledgments

Funding. This project was supported by a research grant from Magnolia Medical Technologies, Inc, Seattle, WA.

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.
1. Alahmadi YM, Aldeyab MA, McElnay JC, Scott MG, Darwish Elhajji FW, Magee FA, Dowds M, Edwards C, Fullerton L, Tate A, Kearney MP. 2011. Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect 77:233-6.

2. Bates DW, Goldman L, Lee TH. 1991. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA 265:365-9.

3. Gander RM, Byrd L, DeCrescenzo M, Hirany S, Bowen M, Baughman J. 2009. Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol 47:1021-4.

4. Rupp ME, Cavalieri RJ, Marolf C, Lyden E. 2017. Reduction in Blood Culture Contamination Through Use of Initial Specimen Diversion Device. Clin Infect Dis 65:201-205.

5. Souvenir D, Anderson DE, Jr., Palpant S, Mroch H, Askin S, Anderson J, Claridge J, Eiland J, Malone C, Garrison MW, Watson P, Campbell DM. 1998. Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol 36:1923-6.

6. Weinstein MP. 2003. Blood culture contamination: persisting problems and partial progress. J Clin Microbiol 41:2275-8.

7. Hall KK, Lyman JA. 2006. Updated review of blood culture contamination. Clin Microbiol Rev 19:788-802.

8. McLellan E, Townsend R, Parsons HK. 2008. Evaluation of Chloraprep (2% chlorhexidine gluconate in 70% isopropyl alcohol) for skin antisepsis in preparation for blood culture collection. J Infect 57:459-63.
9. Suwanpimolkul G, Pongkumpai M, Suankratay C. 2008. A randomized trial of 2% chlorhexidine tincture compared with 10% aqueous povidone-iodine for venipuncture site disinfection: Effects on blood culture contamination rates. J Infect 56:354-9.

10. Self WH, Talbot TR, Paul BR, Collins SP, Ward MJ. 2014. Cost analysis of strategies to reduce blood culture contamination in the emergency department: sterile collection kits and phlebotomy teams. Infect Control Hosp Epidemiol 35:1021-8.

11. Muennig P. 2008. Cost-effectiveness analyses in health: a practical approach, 2nd ed. Jossey-Bass, San Francisco.

12. Anonymous. United States Department of Labor Bureau of Labor Statistics. Occupational Outlook Handbook. Available at www.bls.gov

13. Little JR, Murray PR, Traynor PS, Spitznagel E. 1999. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med 107:119-25.

14. van der Heijden YF, Miller G, Wright PW, Shepherd BE, Daniels TL, Talbot TR. 2011. Clinical impact of blood cultures contaminated with coagulase-negative staphylococci at an academic medical center. Infect Control Hosp Epidemiol 32:623-5.

15. Cheruvanky A, Kirn TJ, Weinstein MP. 2016. Cost-Effectiveness of 30- Compared to 20-Milliliter Blood Cultures: a Retrospective Study. J Clin Microbiol 54:64-7.

16. Richter SS, Beekmann SE, Croco JL, Diekema DJ, Koontz FP, Pfaller MA, Doern GV. 2002. Minimizing the workup of blood culture contaminants: implementation and evaluation of a laboratory-based algorithm. J Clin Microbiol 40:2437-44.
17. Taniguchi T, Tsuha S, Shiiki S, Narita M. 2015. Gram-stain-based antimicrobial selection reduces cost and overuse compared with Japanese guidelines. BMC Infect Dis 15:458.

18. Valdivieso-Garcia A, Imgrund R, Deckert A, Varughese BM, Harris K, Bunimov N, Reid-Smith R, McEwen S. 2009. Cost analysis and antimicrobial susceptibility testing comparing the E test and the agar dilution method in Campylobacter jejuni and Campylobacter coli. Diagn Microbiol Infect Dis 65:168-74.

19. Hill JT, Tran KD, Barton KL, Labreche MJ, Sharp SE. 2014. Evaluation of the nanosphere Verigene BC-GN assay for direct identification of gram-negative bacilli and antibiotic resistance markers from positive blood cultures and potential impact for more-rapid antibiotic interventions. J Clin Microbiol 52:3805-7.

20. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301-8.

21. Wojewoda CM, Sercia L, Navas M, Tuohy M, Wilson D, Hall GS, Procop GW, Richter SS. 2013. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51:2072-6.

22. Havey TC, Fowler RA, Daneman N. 2011. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care 15:R267.

23. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad, II, Rijnders BJ, Sherertz RJ, Warren DK. 2009. Clinical practice guidelines for the diagnosis and management of
intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America.

Clin Infect Dis 49:1-45.

24. Beekmann SE, Diekema DJ, Doern GV. 2005. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol 26:559-66.

25. Nagel JL, Huang AM, Kunapuli A, Gandhi TN, Washer LL, Lassiter J, Patel T, Newton DW. 2014. Impact of antimicrobial stewardship intervention on coagulase-negative Staphylococcus blood cultures in conjunction with rapid diagnostic testing. J Clin Microbiol 52:2849-54.

26. Hall RT, Domenico HJ, Self WH, Hain PD. 2013. Reducing the blood culture contamination rate in a pediatric emergency department and subsequent cost savings. Pediatrics 131:e292-7.

27. Michaelidis CI, Zimmerman RK, Nowalk MP, Fine MJ, Smith KJ. 2014. Cost-effectiveness of procalcitonin-guided antibiotic therapy for outpatient management of acute respiratory tract infections in adults. J Gen Intern Med 29:579-86.

28. Waltzman ML, Harper M. 2001. Financial and clinical impact of false-positive blood culture results. Clin Infect Dis 33:296-9.

29. Golan Y, Wolf MP, Pauker SG, Wong JB, Hadley S. 2005. Empirical anti-Candida therapy among selected patients in the intensive care unit: a cost-effectiveness analysis. Ann Intern Med 143:857-69.

30. Kilgore ML, Ghosh K, Beavers CM, Wong DY, Hymel PA, Jr., Brossette SE. 2008. The costs of nosocomial infections. Med Care 46:101-4.

31. Andrews LB, Stocking C, Krizek T, Gottlieb L, Krizek C, Vargish T, Siegler M. 1997. An alternative strategy for studying adverse events in medical care. Lancet 349:309-13.

32. Magdelijns FJ, Stassen PM, Stehouwer CD, Pijpers E. 2014. Direct health care costs of hospital admissions due to adverse events in The Netherlands. Eur J Public Health 24:1028-33.
33. Robert RR. 2011. Reducing blood-culture contamination through an education program. J Infus Nurs 34:49-54.

34. Kristof K, Pongracz J. 2016. Interpretation of Blood Microbiology Results - Function of the Clinical Microbiologist. EJIFCC 27:147-55.

35. Suryadevara M, Steidl KE, Probst LA, Shaw J. 2012. Inappropriate vancomycin therapeutic drug monitoring in hospitalized pediatric patients increases pediatric trauma and hospital costs. J Pediatr Pharmacol Ther 17:159-65.

36. Rahmqvist M, Samuelsson A, Bastami S, Rutberg H. 2016. Direct health care costs and length of hospital stay related to health care-acquired infections in adult patients based on point prevalence measurements. Am J Infect Control 44:500-6.

37. Sydnor ER, Perl TM. 2011. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 24:141-73.
Figure legends

Figure 1. Tornado diagram for estimated hospital cost per blood culture collection when routinely utilizing Steripath vs. conventional methods in the ED.

Figure 2. Total hospital costs associated with a blood culture collection using Steripath vs. conventional methods over a range of baseline blood culture contamination rates.

Figure 3. Two-way sensitivity analyses for direct (microbiology and pharmacy) costs per blood culture collection in the ED associated with two blood culture collection strategies; break even analysis.
Variable	Value at baseline	Sensitivity range	References
Prevalence of true bacteremia	7%	7-7.5%	(2-4, 6, 8, 19)
Rate of blood culture contamination at baseline	6%	2-10%	(2-4, 6, 8, 19)
Rate of blood culture contamination with Steripath	0.25%	0-0.5%	(4)
Probability of empiric antibiotics at culture collection			
Negative or contaminated blood culture	71%	64-78%	Institutional database
True bacteremia	95%	85-100%	(22, 23)
Probability of stopping antibiotics by culture	71%	64-78%	Institutional database
Administration of IV vancomycin			
Negative blood culture	57%	52-62%	Institutional database
Contaminated blood culture	84%	76-92%	Institutional database
True bacteremia	66%	60-72%	Institutional database
Duration of inpatient antibiotics with negative blood culture, days			
Empiric antibiotics, stopped by final	3	1-4	Institutional database
Empiric antibiotics, not stopped by final	9	7-13	Institutional database
No empiric antibiotics	0	0-5	Institutional database
Duration of inpatient antibiotics with contaminated culture, days			
Empiric antibiotics, stopped by final	4	3-7	Institutional database
Empiric antibiotics, not stopped by final	10	7-13	Institutional database
Category	Minimum	Maximum	Source
--	---------	---------	-------------------------
No empiric antibiotics, stopped by final	1.5	1-3.5	Institutional database
No empiric antibiotics, not stopped by final	9	7-9	Institutional database
Duration of inpatient antibiotics with true bacteremia, days	10	7-13	Institutional database
Hospital length of stay, days			
Negative blood culture	5	3-9	(1), Institutional database
Contaminated blood culture	7	4-11	(1), Institutional database
True bacteremia	9	7-13	(1), Institutional database
Costs, $			
Blood culture collection and processing	36	20-56	(6, 10, 15-17, 34)
Organism identification and AST with RDT	300	108-488	(19-21), Institutional database
Organism identification and AST without RDT	104	80-200	(6, 16-18), Institutional database
Daily antibiotic therapy (purchasing and labor)	75	50-80	(12, 24)
Serum vancomycin assay (laboratory)	68	63-77	(35)
Serum vancomycin assay (pharmacy)	41	28-55	Institutional database
Non-ICU (floor) day	1,500	1,000-2,500	(29)
Follow-up tests and procedures	1,100	900-1,300	(26-28)
Cost of hospital-acquired infection	5,000	2,500-10,000	(30, 36, 37)
Cost of adverse drug reaction	150	25-600	(31, 32)

*AST=antimicrobial susceptibility testing; RDT=rapid diagnostic testing
Table 2. Distribution of component downstream costs stratified by result of initial blood culture collected in the ED

Blood culture result	Microbiology costs, $	Pharmacy costs, $	Indirect hospital hosts, $	Total costs, $						
	With RDT	Without RDT	LOS	ADRs	HAI	Additional procedures	Total indirect hospital costs	With RDT	Without RDT	
Cost per contaminated blood culture	477	275	423	10,500	47	480	1100	12,126	13,026	12,824
Cost per negative blood culture	119	118	295	7,500	30	343	0	7,873	8,287	8,286
Attributable costs per blood culture contamination	358	158	127	3,000	16	137	1100	4,253	4,739	4,538

* ADR=adverse drug reaction; HAI=hospital acquired infection; LOS=length of stay; RDT=rapid diagnostic testing
Table 3. Total estimated net cost-savings per blood culture collection associated with routine Steripath implementation in the ED

Baseline blood culture contamination rate prior to Steripath implementation for routine blood culture collection	Expected microbiology cost-savings per blood culture, $	Expected pharmacy cost-savings per blood culture, $	Expected indirect hospital cost-savings per blood culture, $	Total Expected cost-savings per blood culture, $		
With RDT	Without RDT	With RDT	Without RDT			
2%	6	3	2	74	83	79
3%	10	4	3	117	130	124
4%	13	6	4	160	178	170
6%	21	9	7	244	272	261
8%	28	12	10	330	367	352

*RDT=rapid diagnostic testing
Figure legends

Figure 1. Tornado diagram for estimated hospital cost per blood culture collection when routinely utilizing Steripath (Figure 1a) vs. conventional methods (Figure 1b) in the ED

Figure 2. Total hospital costs associated with a blood culture collection using Steripath vs. conventional methods over a range of baseline blood culture contamination rates

Figure 3. Two-way sensitivity analyses for direct (microbiology and pharmacy) costs per blood culture collection in the ED associated with two blood culture collection strategies; break even analysis
Data presented for hospitals employing using rapid diagnostic testing for antimicrobial identification and susceptibility testing.

RDT: rapid diagnostic testing; ADR: adverse drug reaction; Abx: antibiotic(s); Cx: culture
Data presented for hospitals employing rapid diagnostic testing for antimicrobial identification and susceptibility testing. Estimated cost-differential shown does not include StaphPath unit costs.
A: hospitals employing using rapid diagnostic testing; B: hospitals employing traditional microbiology identification and susceptibility techniques.