Concerns have been raised that degradation of implants used in hip and knee arthroplasty may lead to an increased risk of some cancers, particularly those of the haematopoietic, lymphatic and urinary systems. We used linked statistical records of hospital admissions and deaths to compare cancer rates in cohorts of people who had undergone hip or knee arthroplasty with a comparison cohort. We did not find an elevated risk for cancer, overall, in either the hip or knee cohort or in both combined (rate ratio for both combined 0.99; 95% confidence intervals 0.95 – 1.02), or for haematopoietic, lymphatic or urinary system cancers. There was also no elevation in risk of cancer more than 10 years after arthroplasty. Our findings add to the evidence that arthroplasty is safe in respect of cancer risk.

British Journal of Cancer (2005) 92, 1298 – 1301. doi:10.1038/sj.bjc.6602511 www.bjcancer.com © 2005 Cancer Research UK

Keywords: arthroplasty; lymphoma; leukaemia; disease associations; record linkage

METHODS

Population and data

The Oxford Record Linkage Study (ORLS) includes brief statistical abstracts of records of all hospital admissions (including day cases) in National Health Service (NHS) hospitals, and all deaths regardless of where they occurred, in defined populations within the former Oxford National Health Service Region from January 1963 to March 1999 (Goldacre et al, 2000). The hospital data were collected routinely in the NHS as the Oxford Regional Health Authority’s hospital discharge statistics. The death data were derived from death certificates. Data collection covered part of one health district and its associated hospitals from 1963 (population 350,000), two districts from 1966 (population 850,000), six districts from 1975 (population 1.9 million) and all of the region’s districts from 1987 (population 2.5 million). With the agreement of the Region’s Data Protection Steering Group, the data for each individual were linked together routinely, as records accrued, as part of the region’s health information system. The data are now anonymised and archived.

The hip and knee arthroplasty cohorts were obtained by identifying statistical records of individuals who had been admitted to NHS hospitals for these operations. A reference cohort was constructed by selecting records of admission for various other medical and surgical conditions (see footnote of Table 2). This is based on our ‘reference’ group of conditions that has been used in other studies of inter-relationships between diseases (Goldacre et al, 2000). We searched the database for any subsequent NHS hospital care for, or death from, cancers in these cohorts. We excluded from the analysis anyone in the arthroplasty and reference cohorts who had a previous record of cancer or who had cancer on the record of admission for the arthroplasty or reference condition. We considered that rates of cancer in the reference cohort would approximate those in the general population of the region, while allowing for migration in and out of it (data on migration of individuals were not available). Following the practice of others (Visuri et al, 2003), we excluded the first year.
of results to reduce the possibility that any of the patients who underwent the operations might have had undiagnosed cancer at the time of the surgery.

Statistical methods

We calculated rates of cancer based on person-years at risk. We took 'date of entry' into each cohort as the date of first admission for hip or knee arthroplasty or reference condition, and 'date of exit' for the analysis of cancer as the date of the first record of cancer (if any occurred), death, or 31 March 1999, whichever was the earliest. We calculated rates for each cancer in each arthroplasty cohort and in the reference cohort, standardising the rates by age (in 5-year age groups), sex, calendar year of first recorded admission and district of residence, using the combined hip or knee arthroplasty and reference cohorts as the standard population. We then calculated the ratio of the standardised rate of occurrence of cancer in the hip or knee arthroplasty cohort relative to that in the reference cohort. The confidence interval for the rate ratio and χ^2 statistics for its significance were calculated as described elsewhere (Breslow and Day, 1987). We took $P<0.05$ as the initial level of statistical significance but, for those comparisons without a prior hypothesis, we also adjusted the probability values using the Bonferroni correction to allow for multiple comparisons.

We studied the results for each condition in the reference cohort separately, as well as in combination, to ensure that no individual condition disproportionately influenced the 'expected' number of people with subsequent cancer.

RESULTS

There were 33 691 patients in the hip arthroplasty cohort, 10 182 in the knee arthroplasty cohort and 475 555 in the reference (control) cohort. Table 1 summarises the age distribution of patients in both cohorts. Patients who entered the hip replacement cohort had an average age of 69 years and those who entered the knee replacement cohort had an average age of 67 years. The average periods of follow up were, respectively, 7.7 and 5.4 years.

Hip arthroplasty

There was no elevation of the overall risk of cancer in people who had undergone hip arthroplasty (Table 2): the rate ratio for all cancers combined was 0.98 (95% confidence intervals 0.94–1.01). A statistically significant deficit of lung cancer was found: rate ratio 0.86 (95% confidence interval 0.78–0.95).

Considering the cancers for which there was a prior hypothesis about elevation of risk related to arthroplasty particles, we found that the rate ratios were not significantly different from one. The rate ratio for lymphoma was 1.01 (0.82–1.24), for leukaemia 0.94 (0.75–1.15), for bladder cancer 0.99 (0.86–1.15) and for renal cancer 0.93 (0.69–1.24). Considering other cancers where the published literature has suggested that there may be a different risk from that in the general population, there were no significant differences in our study for cancers of the body of uterus, prostate, malignant melanoma or other skin cancer (Table 2).

For cancers that were first recorded at least 10 years after hip arthroplasty, the overall rate ratio was significantly less than one (0.86; 752 observed cancers, 871 expected; 95% confidence intervals 0.80–0.92). The rate ratio for lung cancer was 0.64 (82 observed, 128 expected; 0.51–0.80) and there was no elevation of risk for lymphoma (0.87; 0.56–1.30), leukaemia (0.99; 0.67–1.41), bladder cancer (0.94; 0.70–1.22) or renal cancer (0.71; 0.34–1.30).

Knee arthroplasty

There was no elevation of the overall risk of cancer in people who had undergone knee arthroplasty (Table 3): the rate ratio was 1.05 (0.97–1.14). That for cancer in people at least 10 years after knee arthroplasty was 1.07 (0.86–1.33). Of the 33 cancers studied, nonmelanoma skin cancer (rate ratio 1.35; $P=0.011$) and pancreatic cancer (rate ratio 1.76; $P=0.0002$) were found to be significantly high. The latter remained significant when the Bonferroni correction was used to adjust for multiple comparisons ($P=0.007$). There was a nonsignificant elevation of risk for lymphoma 10 or more years after knee arthroplasty (five observed, 2.6 expected; rate ratio 1.92; 0.62–4.49). There was no elevation of risk for leukaemia (0.80; 0.10–2.89).

DISCUSSION

The strengths of our study are that it is large and population-based. Although confined to hospitalised patients, arthroplasty and the vast majority of the cancer outcomes are conditions for which people are admitted to hospital. A potential weakness is that we do not have data about either hospital care for or death of people who migrate out of the region. We have to assume that the arthroplasty cohort and in another Swedish record-linkage study (Paavolainen et al, 1999). It is likely that patients who undergo joint replacements have, typically, led more active than average lifestyles. They are therefore less likely than average to have been smokers. It has also been suggested that physical activity, independently of smoking, may decrease the risk of lung cancer in men (Lee et al, 1999). Furthermore, patients selected for an elective operation are assessed and deemed to be healthy enough to warrant operation: there may be a selection effect for healthy populations who undergo joint replacements more commonly.

Table 1	Number of people admitted to hospital for hip or knee arthroplasty in each age group			
Age groups (years)	Hip arthroplasty	Knee arthroplasty		
	No.	%	No.	%
<40	676	2	176	1.7
40–49	1144	3.4	257	2.5
50–54	1468	4.4	341	3.3
55–59	2541	7.5	732	7.2
60–64	4152	12.3	1243	12.2
65–69	5280	15.7	1873	18.4
70–74	6041	17.9	2249	22.1
75–79	5642	16.7	1928	19
80–84	3979	11.8	1049	10.3
85+	2768	8.2	334	3.3
Total	33 691	100	10 182	100

© 2005 Cancer Research UK

British Journal of Cancer (2005) 92(7), 1298–1301
patients in the arthroplasty cohorts. In our study, nonmelanoma skin cancer was more common in the knee arthroplasty cohort than in the reference cohort. There is some consistency across studies in the finding of a positive association between arthroplasty and skin cancer (Nyrén et al., 1995; Signorello et al., 2001; Visuri et al., 2003). The most plausible explanation is that people who eventually need arthroplasty have typically been more active than average and have also typically spent more than average periods of time exposed to sunlight.

Associations found between joint replacement and cancer in some other studies – cancers of the uterus, prostate and kidney – were not found in our study. Our finding that cancer of the pancreas was associated with knee replacement has not been noted in other studies. We recognise that we made a wide range of comparisons, but, as the result for cancer of the pancreas was highly significant (Bonferroni corrected \(P \)-value 0.0066), this result may not be due to chance alone. This association needs to be confirmed or refuted elsewhere.

Suspicions about a possible causal association between joint replacements and cancer are largely concerned with the effects of metal implants (Sunderman, 1989; Jacobs et al., 1998; Urban et al., 2000). It has been suspected that minute, free-moving particles, resulting from wear and tear, could have carcinogenic effects and, in particular, might increase the risk of lymphoma, leukaemia and cancer of the urinary tract. Our findings add to the accumulating evidence that arthroplasty is in fact safe in these respects, at least within a period of several years. However, longer follow-up than that currently available from the published studies would be prudent.
Cancer (ICD code)	Number in cohort	Person-years of follow-up	Observed number in knee replacement	Expected number in knee replacement	Adjusted rate ratio	95% confidence interval
All cancers (140–208)	24691	5 586 906	640	609	1.05	0.97 – 1.14
Upper gastrointestinal (140–141, 143–146, 148–149)	373	5 695 396	8	9.9	0.81	0.35 – 1.61
Salivary gland (142)	98	5 696 463	0	1.7	0.00	0.21 – 2.17
Nasopharynx (147)	47	5 697 482	0	0.7	0.00	0.52 – 1.27
Oesophagus (150)	860	5 696 753	26	22.6	1.15	0.75 – 1.74
Stomach (151)	1480	5 695 381	23	31.7	0.73	0.46 – 1.09
Colon (153)	1751	4 548 060	60	67.7	0.89	0.67 – 1.14
Rectum (154)	1010	4 550 822	46	35.0	1.31	0.96 – 1.75
Liver (155)	316	5 697 605	14	8.6	1.63	0.89 – 2.73
Pancreas (157)	889	5 697 157	42	23.9	1.76	1.27 – 2.38
Lung (162)	4309	5 693 572	88	96.3	0.91	0.73 – 1.13
Breast (174, 175)	2375	5 679 995	84	79	1.06	0.85 – 1.32
Cervix (180)	216	2 284 790	3	5.6	0.54	0.11 – 1.57
Uterus (182)	373	2 284 294	15	14	1.07	0.60 – 1.77
Ovary (183.0)	137	2 287 353	10	7.3	1.37	0.66 – 2.52
Prostate (185)	2426	4 302 004	48	48.8	0.98	0.73 – 1.30
Testis (186)	142	3 408 318	0	0.5	0.00	0.27 – 1.38
Kidney (189.0, 189.1)	515	5 695 635	8	10.5	0.76	0.33 – 1.50
Bladder (188)	1756	5 686 618	46	40.4	1.14	0.83 – 1.52
Malignant melanoma (172)	399	5 695 011	6	8.6	0.70	0.26 – 1.52
Other skin cancer (173)	1949	5 681 235	72	53.4	1.35	1.05 – 1.70
Brain (malignant) (191)	447	5 696 603	8	8	1.00	0.43 – 1.97
Other nervous system (192)	56	5 697 390	0	0.8	0.00	0.46 – 1.61
Thyroid (193)	111	5 696 325	2	1.3	1.54	0.19 – 5.56
Bone (170)	162	5 696 908	2	3.6	0.56	0.07 – 2.01
Lymphoma (200–202)	932	5 692 728	27	20.2	1.34	0.88 – 1.94
Non-Hodgkin’s lymphoma (200, 202)	824	5 694 332	24	19.8	1.21	0.78 – 1.80
Hodgkin’s disease (201)	163	5 695 843	3	1.4	2.14	0.44 – 6.26
Multiple myeloma (203)	463	5 696 638	15	12.9	1.16	0.65 – 1.92
Leukaemia (204–208)	820	5 695 219	16	19.7	0.81	0.46 – 1.32
Lymphoid leukaemia (204)	393	5 696 067	7	9.3	0.75	0.30 – 1.55
Myeloid leukaemia (205)	242	5 697 041	10	10	1.00	0.48 – 1.84
Brain (benign) (225)	252	5 693 620	2	4.4	0.45	0.06 – 1.64

For reference conditions and methods of standardisation, see footnotes of Table 2.

ACKNOWLEDGEMENTS

The database was funded by the former Oxford Regional Health Authority and, over many years, it was built by Leicester

REFERENCES

Breslow NE, Day NE (1987) Statistical Methods in Cancer Research, Vol 2. The design and analysis of cohort studies. IARC scientific publication No.82. pp 103 – 115. Lyon: International Agency for Research in Cancer Gillespie WJ, Frampton CM, Henderson RJ, Ryan PM (1988) The incidence of cancer following total hip replacement. J Bone Joint Surg Br 70(4): 539 – 542

Goldacre M, Kurina L, Yeates D, Seagroatt V, Gill L (2000) Use of large medical databases to study associations between diseases. Q J Med 93: 599 – 675

Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am 80-A: 1447 – 1458

Lee J-M, Sesso HD, Paffenbarger RS (1999) Physical activity and risk of lung cancer. Int J Epidemiol 28: 620 – 625

Nyrén O, McLaughlin JK, Gridley G, Ekstrom A, Johnell O, Fraumeni JF, Adami HO (1995) Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. J Natl Cancer Inst 87(1): 28 – 33

Paavolainen P, Pukkala E, Pulkkinen P, Visuri T (1999) Cancer incidence in Finnish hip replacement patients from 1980 to 1995. J Arthroplasty 14(3): 272 – 280

Signorello LB, Ye W, Fryzek JP, Lipworth L, Fraumeni JF, Blot WJ, McLaughlin JK, Nyren O (2001) Nationwide study of cancer risk among hip replacement patients in Sweden. J Natl Cancer Inst 93: 1405 – 1410

Sunderman FW (1989) Carcinogenicity of metal alloys in orthopedic prostheses: clinical and experimental studies. Fund Appl Toxicol 13: 205 – 216

Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82-A(4): 457 – 477

Visuri T, Pukkala E, Pulkkinen P, Paavolainen P (2003) Decreased cancer risk in patients who have been operated on with total hip and knee arthroplasty for primary osteoarthritis: a meta-analysis of 6 Nordic cohorts with 73 000 patients. Acta Orthop Scand 74(3): 351 – 360

© 2005 Cancer Research UK