Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers: A Lethal Cocktail with Tumor Specific Efficacy

Roger Gilabert-Oriol¹, Alexander Weng², Benedicta von Mallinckrodt¹, Matthias F. Melzig³, Hendrik Fuchs¹ and Mayank Thakur¹

¹Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353, Berlin, Germany; ²Wolfson Centre for Gene Therapy of Childhood Disease, University College London - Institute of Child Health, London, 30 Guilford Street, London, WC 1N 1EH, United Kingdom; ³Institute of Pharmacy, Free University Berlin, Koenigin-Luise Str. 2+4, D-14195, Berlin, Germany

Abstract: The term ribosome-inactivating protein (RIP) is used to denominate proteins mostly of plant origin, which have N-glycosidase enzymatic activity leading to a complete destruction of the ribosomal function. The discovery of the RIPs was almost a century ago, but their usage has seen transition only in the last four decades. With the advent of antibody therapy, the RIPs have been a subject of extensive research especially in targeted tumor therapies, which is the primary focus of this review. In the present work we enumerate 250 RIPs, which have been identified so far. An attempt has been made to identify all the RIPs that have been used for the construction of immunotoxins, which are conjugates or fusion proteins of an antibody or ligand with a toxin. The data from 1960 onwards is reviewed in this paper and an extensive list of more than 450 immunotoxins is reported. The clinical reach of tumor-targeted toxins has been identified and detailed in the work as well. While there is a lot of potential that RIPs embrace for targeted tumor therapies, the success in pre-clinical and clinical evaluations has been limited mainly because of their inability to escape the endo/lysosomal degradation. Various strategies that can increase the efficacy and lower the required dose for targeted toxins have been compiled in this article. It is plausible that with the advancements in platform technologies or improved endosomal escape the usage of tumor targeted RIPs would see the daylight of clinical success.

Keywords: Targeted toxins, immunotoxins, ribosome-inactivating proteins, clinical application of toxins, tumor therapy, efficacy enhancer, endosomal escape enhancer.

INTRODUCTION

Ribosome-Inactivating Proteins (RIPs)

The term ribosome-inactivating protein (RIP) engenders a specific class of toxins, mostly of plant origin, which act predominantly on the ribosomal machinery via their N-glycosidase activity or polynucleotide adenosine glycosidase activity [1]. Although there is varying information about their mechanism of action, their enzymatic activity has drawn the most attention, especially relating to the anti-viral and anti-tumor effects [2]. In general, all RIPs are considered to be N-glycosidases, thus removing adenosines from ribosomal RNA, and depurinating the conserved alpha-sarcin loop of the 28S ribosomal RNA (rRNA). This leads to the inhibition of protein synthesis, a vital process for cellular proliferation, and therefore leading to cell death [3].

The plant RIPs are further classified as type 1, 2 and in rare cases as type 3. Type 1 RIPs are characterized by the presence of only a toxic domain, whereas type 2 RIPs are the ones consisting of a toxin domain (A chain) together with a cell binding domain (B chain of lectin type). The B-chain facilitates its binding to the galactose residues on the cellular membrane, thus facilitating the cellular internalization. A further class of RIPs (type 3) has been proposed but the exact classification and occurrence are ambiguous. The literature description of type 3 RIP defines it as a protein which is evolutionarily related to a 60-kDa jasmonate-induced protein from barley, with RIP activity [4]. In total, there are nearly 250 RIPs that are scientifically described and the information pertinent to them was retrievable upon an extensive literature search. A

summary of these RIPs with relevant literature reference and the botanical description is elaborated in Table 1. The information provided includes the origin of the RIP, its type and the reported usage of this RIP as a targeted toxin.

While type I RIPs generally have lower toxicity, this is not predominantly because of their lack of enzymatic activity but contrasting due to the missing B-chain making their cellular internalization cumbersonse [5]. The missing cell binding domain is a blessing in disguise for molecular biologists, and has facilitated them to prepare fusion proteins or synthetic analogs of type 1 RIPs together with ligands that are able to facilitate their cellular internalization [6]. Moreover, in the recent decade, there has been a growing evidence that use of endosomal escape enhancers can lead to a significant augmentation of the efficacy of RIPs. This strategy has also paved a path for an improvement in the therapeutic utility of RIPs as targeted toxins or immunotoxins [5].

Endocytosis, Cytosolic Delivery and Enzymatic Action of RIPs

The toxic potential of RIPs is determined by their ability to reach to the ribosomes, which are located within the cytosol. Thus, RIPs that are able to overcome cellular barriers end up exhibiting tremendous toxic potential. This overcoming of cellular barriers includes their internalization, which is generally facilitated by their B chain. Type 2 RIPs such as ricin from Ricinus communis L., abrin from Abrus precatorius L., or volkensin from Adenia volkensii Harms. [7] efficiently deliver their N-glycosidase domain (A chain) into the cytosol of intoxicated cells [8] which is facilitated by their B chains. The B chain serves as galactose/N-acetylgalactosamine binding domain (lectin) and is linked to the A chain via disulfide bonds.

After the binding with glycoproteins or glycolipids, which have numerous galactose residues on their surface, ricin is endocytosed via clathrin-dependent as well as clathrin-independent endocytosis and is thereafter delivered into the early endosomes. From there on
**Table 1. RIPs isolated from different plants, their type and reported absolute molecular masses.**

| Plant                          | RIP                             | Type | Ma (kDa) | Immunotoxins | Ref. |
|-------------------------------|--------------------------------|------|----------|--------------|------|
| *Abelmoschus esculentus* (L.) | Abelesculin                     | 1    | 30       |              | [94] |
| *Abrus precatorius* L.       | Abrin-a                         | 2    | 63       | Yes          | [95] |
| *Abrus precatorius* L.       | Abrin-b                         | 2    | 67       |              | [95] |
| *Abrus precatorius* L.       | Abrin-c                         | 2    | 63       |              | [95] |
| *Abrus precatorius* L.       | Abrin-d                         | 2    | 67       |              | [95] |
| *Abrus precatorius* L.       | Abrin-I                         | 2    | 64       |              | [96] |
| *Abrus precatorius* L.       | Abrin-II                        | 2    | 63       |              | [96] |
| *Abrus precatorius* L.       | Abrin-III                       | 2    | 63       |              | [96] |
| *Abrus precatorius* L.       | APA-I                           | 2    | 130      |              | [96] |
| *Abrus precatorius* L.       | APA-II                          | 2    | 128      |              | [96] |
| *Abrus precatorius* L.       | *Abrus* agglutinin              | 2    | 67       |              | [95] |
| *Abrus precatorius* L.       | *Abrus* agglutinin              | 2    | 134      |              | [97] |
| *Abrus pulchellus* L.        | Pulchelin                       | 2    | 61.5 - 63 |              | [98, 99] |
| *Adenia digitata* Burtt-Davy | Modeccin                        | 2    | 57       |              | [100] |
| *Adenia ellenbeckii* Harms.  | *Adenia ellenbeckii* RIP        | 1    | 30       |              | [101] |
| *Adenia ellenbeckii* Harms.  | *Adenia ellenbeckii* RIP        | 2    | 60       |              | [101] |
| *Adenia fruticosa* L. Burtt-Davy | *Adenia fruticosa* RIP      | 1    | 30       |              | [101] |
| *Adenia goetzii* Burtt-Davy  | *Adenia goetzii* RIP            | 1    | 30       |              | [101] |
| *Adenia goetzii* Burtt-Davy  | *Adenia goetzii* RIP            | 2    | 60       |              | [101] |
| *Adenia keramanthus* Harms.  | *Adenia keramanthus* RIP        | 2    | 60 - 65  |              | [101] |
| *Adenia lanceolata* Engl.    | *Adenia lanceolata* RIP         | 2    | 60       |              | [101] |
| *Adenia lanceolata* Engl.    | Lanceolin                       | 2    | 61.2     |              | [102] |
| *Adenia racemosa* W.J. de Wilde | *Adenia racemosa* RIP      | 1    | 30       |              | [101] |
| *Adenia stenodactyla* Harms. | *Adenia stenodactyla* RIP       | 2    | 60       |              | [101] |
| *Adenia stenodactyla* Harms. | Stenodactylin                   | 2    | 63.1     |              | [102] |
| *Adenia venenata* Forsk.     | *Adenia venenata* RIP           | 1    | 30       |              | [101] |
| *Adenia venenata* Forsk.     | *Adenia venenata* RIP           | 2    | 60       |              | [101] |
| *Adenia volkensii* Harms.    | Volkensin                       | 2    | 62       |              | [103, 104] |
| *Agrostemma githago* L.      | Agrostin-2                      | 1    | 30.6     |              | [105] |
| *Agrostemma githago* L.      | Agrostin-5                      | 1    | 29.5     |              | [105] |
| *Agrostemma githago* L.      | Agrostin-6                      | 1    | 29.6     |              | [105] |
| *Amaranthus caudatus* L.     | *Amaranthin* (Amaranthus caudatus agglutinin, ACA) | 1 | 33 - 36 | | [106] |
| *Amaranthus tricolor* L.     | *Amaranthus tricolor* antiviral protein-27 (AAP-27) | 1 | 27 | | [107] |
| *Amaranthus viridis* L.      | Amaranthin                      | 1    | 30       |              | [108] |
| *Aralia elata* (Miq.) Seem  | Aralin (*Aralia elata* lectin)  | 2    | 61.3     |              | [109, 110] |
| Plant                          | RIP                                | Type | Ma (kDa) | Immunotoxins | Ref.    |
|-------------------------------|------------------------------------|------|----------|--------------|---------|
| Asparagus officinalis L.      | Asparagus officinalis RIP          | 1    | 32.5     |              | [105]   |
| Asparagus officinalis L.      | Asparin 1                          | 1    | 30.5     |              | [111]   |
| Asparagus officinalis L.      | Asparin 2                          | 1    | 29.8     |              | [111]   |
| Basella rubra Roxb.           | Basella rubra RIP 2a               | 1    | 30.6     |              | [112]   |
| Basella rubra Roxb.           | Basella rubra RIP 2b               | 1    | 31.2     |              | [112]   |
| Basella rubra Roxb.           | Basella rubra RIP 3                | 1    | 31.2     |              | [112]   |
| Benincasa hispida (Thunb.) Cogn. | Alpha-benincasin Small RIP      | 1    | 11       |              | [113]   |
| Benincasa hispida (Thunb.) Cogn. | Beta-benincasin Small RIP          | 1    | 10.6     |              | [113]   |
| Benincasa hispida (Thunb.) Cogn. | Hispin                           | 1    | 21       |              | [114]   |
| Beta vulgaris L.              | Betavulgin                         | 1    | 28       |              | [115]   |
| Beta vulgaris L.              | Beetin 27                          | 1    | 27       |              | [116, 117] |
| Beta vulgaris L.              | Beetin 29                          | 1    | 29       |              | [116, 117] |
| Bougainvillea spectabilis Wild. | Bouganin (Bougainvillea spectabilis RIP) | 1 | 26.2 | Yes | [112, 118] |
| Bougainvillea xbuttiana Wild. | Bougainvillea xbuttiana antiviral protein | 1 | 35.5 |       | [119] |
| Bryonia dioica Jacq.          | Bryodin-L                          | 1    | 28.8     |              | [111]   |
| Bryonia dioica Jacq.          | Bryodin-1 (BD-1)                   | 1    | 30       | Yes         | [120]   |
| Bryonia dioica Jacq.          | Bryodin-2 (BD-2)                   | 1    | 27       | Yes         | [121]   |
| Camellia sinensis (L.) Kuntze | Camellia sinensis RIP (CS-RIP)     | 2    | 63.6     |              | [122]   |
| Celosia cristata L.           | Celosia cristata antiviral protein 25 (CCP-25) | 1 | 25 |       | [123] |
| Celosia cristata L.           | Celosia cristata antiviral protein 27 (CCP-27) | 1 | 27 |       | [124] |
| Charybdis maritima L.         | Charybdin                          | 1    | 29       |              | [125]   |
| Chenopodium album L.          | Chenopodium album antiviral RIP (CAP30) | 1 | 30 |       | [126, 127] |
| Cinnamomum camphora (L.) J. Presl. | Camphorin                        | 1    | 23       |              | [128]   |
| Cinnamomum camphora (L.) J. Presl. | Cinnamomin                       | 2    | 61       |              | [128]   |
| Cinnamomum porrectum L.       | Porrectin                          | 2    | 64.5     |              | [129]   |
| Citrullus colocynthis Schrad. | Colocin 1                          | 1    | 26.3     | Yes         | [111]   |
| Citrullus colocynthis Schrad. | Colocin 2                          | 1    | 26.3     |              | [111]   |
| Clerodendrum inerme (L.) Gaertn | CIP-29                            | 1    | 29       |              | [130, 131] |
| Clerodendrum inerme (L.) Gaertn | CIP-34                            | 1    | 34       |              | [130, 131] |
| Croton tiglium L.             | Crotin I                           | 1    | ND       |              | [132]   |
| Croton tiglium L.             | Crotin II                          | 1    | 30.2     |              | [132]   |
| Cucumis figarei Naud.         | Cucumis figarei RIP (CF-RIP)       | 1    | 31.8     |              | [133]   |
| Cucumis melo L.               | Melonin                            | 1    | 23.5     |              | [134, 135] |
| Cucurbita foetidissima Kunth. | Foetidissimin                      | 2    | 63       |              | [136]   |
| Plant                                      | RIP                  | Type         | Ma (kDa) | Immunotoxins | Ref.  |
|-------------------------------------------|----------------------|--------------|----------|--------------|-------|
| Cucurbita foetidissima Kunth.             | Foetidissimin II     | 2            | 61       |              | [137] |
| Cucurbita maxima L.                       | Cucurmoschin         | Small RIP    | 8        |              | [138] |
| Cucurbita moschata Duchesne ex Poir.      | Alpha-moschin        | Small RIP    | 12       |              | [139] |
| Cucurbita moschata Duchesne ex Poir.      | Beta-moschin         | Small RIP    | 12       |              | [139] |
| Cucurbita moschata Duchesne ex Poir.      | Moschatin            | 1            | 29       | Yes          | [140] |
| Cucurbita moschata Duchesne ex Poir.      | Cucurmosin (CUS)     | 1            | 27       |              | [141, 142] |
| Cucurbita moschata Duchesne ex Poir.      | Cucurmosin 2         | 1            | 27.2     |              | [143] |
| Cucurbita moschata Duchesne ex Poir.      | Cucurbita moschata RIP | 1        | 30.7     |              | [144] |
| Cucurbita pepo L.                         | Pepocin              | 1            | 26       |              | [145] |
| Cucurbita texana (Scheele) A. Gray        | Texanin              | 1            | 29.7     |              | [137] |
| Dianthus barbatus L.                      | Dianthin-29          | 1            | 29       |              | [146] |
| Dianthus caryophyllus L.                  | Dianthin-30          | 1            | 29.5     | Yes          | [147, 148] |
| Dianthus caryophyllus L.                  | Dianthin-32          | 1            | 31.7     | Yes          | [147, 148] |
| Dianthus sinensis L.                      | Dianthus sinensis RIP (DaRIP) | 1    | 33.3     |              | [149] |
| Eranthis hyemalis Salisb.                 | Eranthis hyemalis lectin (EHL) | 2  | 62       |              | [150, 151] |
| Gelonium multiflorum A. Juss.             | Gelonin (GAP31)      | 1            | 31       | Yes          | [152, 153] |
| Gynostemma pentaphyllum (Thunb.) Makino   | Gynostemmin          | 1            | 27       |              | [144, 154] |
| Gypsophila elegans Bieb.                  | Gypsophilin          | 1            | 28       |              | [155] |
| Hordeum vulgare L.                        | Barley translation inhibitor (barley toxin I, BRIP) | 1 | 31 | Yes | [156] |
| Hordeum vulgare L.                        | Barley toxin II      | 1            | 30       | Yes          | [157] |
| Hordeum vulgare L.                        | Barley toxin III     | 1            | 30       |              | [157] |
| Hordeum vulgare L.                        | JIP60 (60 kDa jasmonate-induced protein) | 3 | 60 | | [158] |
| Hura crepitans L.                         | Hura crepitans RIP   | 1            | 28       |              | [105] |
| Iris hollandica L.                        | Iris agglutinin b (IRAb) | 2  | 65       |              | [159] |
| Iris hollandica L.                        | Iris agglutinin t (IRAt) | 2 | 65 | | [159] |
| Iris hollandica L.                        | Iris RIP A1 (IRIP A1) | 1 | 30.9 | | [160] |
| Iris hollandica L.                        | Iris RIP A2 (IRIP A2) | 1 | 31 | | [160] |
| Iris hollandica L.                        | Iris RIP A3 (IRIP A3) | 1 | 30.9 | | [160] |
| Jatropha curcas L.                        | Curcin               | 1            | 28.2     | Yes          | [161, 162] |
| Jatropha curcas L.                        | Jc-SCRIP             | 1            | 38.9     |              | [163] |
| Lagenaria siceraria Molina.               | Lagenin              | 1            | 20       |              | [164] |
| Luffa acutangula Roxb.                    | Luffaculin-1         | 1            | 28       |              | [165] |
| Plant | RIP | Type        | Ma (kDa) | Immunotoxins | Ref.   |
|-------|-----|-------------|----------|--------------|--------|
| Luffa acutangula Roxb. | Luffaculin-2 | 1        | 28        | [165]   |
| Luffa acutangula Roxb. | Luffangulin | Small RIP | 6.5      | [166]   |
| Luffa aegyptiaca Mill. | Luffin-c | 1        | ND        | [167]   |
| Luffa aegyptiaca Mill. | Luffa ribosomal inhibitory protein (L.RIP) | 1 | 30 | Yes | [168] |
| Luffa cylindrica Mill. | Luffacylin | Small RIP | 7.8       | [169]   |
| Luffa cylindrica Mill. | Luffin-A (alpha-luffin) | 1 | 27 | Yes | [170, 171] |
| Luffa cylindrica Mill. | Luffin-B (beta-luffin) | 1 | 28 | Yes | [170] |
| Luffa cylindrica Mill. | Luffin-P1 | Small RIP | 5.2       | [172]   |
| Luffa cylindrica Mill. | Luffin-S | Small RIP | 10        | [173]   |
| Lychnis chalcedonica L. | Lychnin | 1 | 26.1   | [111, 174] |
| Malania oleifera Chun & S.K. Lee | Malanin | 2 | 61.9  | [175]   |
| Manihot palmate Mill. | Mapalmin | 1 | 32.3   | [111]   |
| Manihot utilisima Mill. | Manutin | 1 | 30.7   | [176]   |
| Marah oreganus (Torr. ex S. Wats.) Howell | MOR-I (Marah oreganus RIP-I) | 1 | 28 | [177] |
| Marah oreganus (Torr. ex S. Wats.) Howell | MOR-II (Marah oreganus RIP-II) | 1 | 27.6 | [177] |
| Mesembryanthemum crystallinum L. | R1P | 1 | 32.7   | [178]   |
| Mirabilis expansa Standl. | ME1 | 1 | 27     | [179]   |
| Mirabilis expansa Standl. | ME2 | 1 | 27.5   | [179]   |
| Mirabilis jalapa L. | Mirabilis antiviral protein (MAP) | 1 | 27.8 | [180] |
| Mirabilis jalapa L. | MAP-2 | 1 | 30.4   | [180]   |
| Mirabilis jalapa L. | MAP-3 | 1 | 29.7   | [180]   |
| Mirabilis jalapa L. | MAP-4 | 1 | 29.3   | [180]   |
| Momordica balsamina L. | Momordica balsamina RIP-1 (MbRIP-1) | 1 | 30 | [181] |
| Momordica balsamina L. | Momordin II | 1 | 32 | [182] |
| Momordica balsamina L. | Balsamin | 1 | 28     | [183]   |
| Momordica charantia L. | Momordin (Momordica charantia inhibitor, momordin-a) | 1 | 23 | Yes | [184] |
| Momordica charantia L. | Alpha-momorcharin (alpha-MMc) | 1 | 29 | [185, 186] |
| Momordica charantia L. | Beta-momorcharin (beta-MMc) | 1 | 28 | [187, 188] |
| Momordica charantia L. | Gamma-momorcharin | Small RIP | 11.5 | [189] |
| Momordica charantia L. | Delta-momorcharin | 1 | 30 | [190] |
| Momordica charantia L. | Epsilon-momorcharin | 1 | 24 | [190] |
| Momordica charantia L. | Momordica charantia lectin (MCL) | 2 | 130 | [122] |
| Momordica charantia L. | Charantin | Small RIP | 9.7 | [191] |
| Momordica charantia L. | Momordin I (Momordica charantia inhibitor) | 1 | 31 | Yes | [147, 192] |
| Plant                          | RIP                    | Type | Ma (kDa) | Immunotoxins | Ref.               |
|-------------------------------|------------------------|------|----------|--------------|--------------------|
| *Momordica cochinchinensis* Spreng | Momorcochin-S          | 1    | 30       | Yes          | [193]              |
| *Momordica cochinchinensis* Spreng | Momorcochin            | 1    | 32       | Yes          | [194]              |
| *Momordica cochinchinensis* Spreng | Cochinin B             | 1    | 28       |              | [195, 196]         |
| *Momordica grosvenorii* Swingle | Momorgrosvin           | 1    | 27.7     |              | [197]              |
| *Muscari armeniacum* Baker.   | Musarmin-1 (MU-1)      | 1    | 28.7     |              | [198]              |
| *Muscari armeniacum* Baker.   | Musarmin-2 (MU-2)      | 1    | 30       |              | [198]              |
| *Muscari armeniacum* Baker.   | Musarmin-3 (MU-3)      | 1    | 27.6     |              | [198]              |
| *Nicotiana tabacum* L.        | Tobacco RIP (TRIP)     | 1    | 26       |              | [199]              |
| *Nicotiana tabacum* L.        | CIP31                  | 1    | 31       |              | [200]              |
| *Oryza sativa* L.             | Oryza sativa RIP       | 1    | 33       |              | [201]              |
| *Oryza sativa* L.             | Oryza sativa cultivar Kazemi RIP | 1 | 29 | | [202] |
| *Panax ginseng* L.            | Panaxagin RIP-like     | 1    | 52       |              | [203]              |
| *Petrocoptis glaucifolia* (Lag.) Boiss. | Petroglaucin-1       | 1    | 26.7     |              | [205]              |
| *Petrocoptis glaucifolia* (Lag.) Boiss. | Petroglaucin-2       | 1    | 27.5     |              | [206]              |
| *Petrocoptis grandiflora* Rothm. | Petrograndin          | 1    | 28.6     |              | [205]              |
| *Phoradendron californicum* Nutt. | Phoradendron californicum lectin (PCL) | 2 | 69 | | [207] |
| *Phytolacca americana* L.     | PAP (pokeweed antiviral protein, *Phytolacca* antiviral protein) | 1 | 29 | Yes | [208, 209] |
| *Phytolacca americana* L.     | PAP II (pokeweed antiviral protein II) | 1 | 30 | Yes | [209] |
| *Phytolacca americana* L.     | PAP III (pokeweed antiviral protein III) | 1 | 30 | Yes | [210, 211] |
| *Phytolacca americana* L.     | PAP-S                  | 1    | 30       | Yes          | [212]              |
| *Phytolacca americana* L.     | PAP-C                  | 1    | 29       |              | [213]              |
| *Phytolacca americana* L.     | PAP-R                  | 1    | 29.8     |              | [111]              |
| *Phytolacca americana* L.     | PAP-H                  | 1    | 29.5     |              | [214]              |
| *Phytolacca dioica* L.        | PD-S1 (*Phytolacca dioica* RIP 1) | 1 | 30 | | [215] |
| *Phytolacca dioica* L.        | PD-S2 (*Phytolacca dioica* RIP 2) | 1 | 29.6 | Yes | [215, 216] |
| *Phytolacca dioica* L.        | PD-S3 (*Phytolacca dioica* RIP 3) | 1 | 30 | | [215] |
| *Phytolacca dioica* L.        | PD-L1                  | 1    | 32.7     |              | [217, 218]         |
| *Phytolacca dioica* L.        | PD-L2                  | 1    | 31.5     |              | [217, 218]         |
| *Phytolacca dioica* L.        | PD-L3                  | 1    | 30.4     |              | [217, 218]         |
| *Phytolacca dioica* L.        | PD-L4                  | 1    | 29.2     |              | [217, 218]         |
| *Phytolacca dioica* L.        | Dioicin 1              | 1    | 30       |              | [219, 220]         |
| *Phytolacca dioica* L.        | Dioicin 2              | 1    | 29.9     |              | [219, 220]         |
| *Phytolacca dioica* L.        | Dioicin L’Herrit       | 1    | 29       |              | [221]              |
| *Phytolacca heterotepala* L’Herrit | Dodecandrin           | 1    | 29       |              | [221]              |
| *Phytolacca heterotepala* H. Walter | Heterotepulin-4 (Mexican pokeweed RIP-4, *Phytolacca heterotepala* anti-viral protein PAP) | 1 | 29.3 | | [222] |
| Plant                          | RIP                                                                 | Type | Ma (kDa) | Immunotoxins | Ref. |
|-------------------------------|----------------------------------------------------------------------|------|----------|--------------|------|
| Phytolacca heterotepala H. Walter | Heterotepalin-5b (Mexican pokeweed RIP-5b)                          | 1    | 30.5     |              | [222]|
| Phytolacca insularis Nakai    | Phytolacca insularis antiviral protein (PIP, insularin)             | 1    | 35       |              | [223]|
| Phytolacca insularis Nakai    | Phytolacca insularis antiviral protein 2 (PIP2)                     | 1    | 35.7     |              | [224]|
| Pisum sativum L.              | Alpha-pisavin                                                        | 1    | 20.5     |              | [225]|
| Pisum sativum L.              | Beta-pisavin                                                         | 1    | 18.7     |              | [225]|
| Pisum sativum L.              | Sativin                                                             | 1    | 38       |              | [226]|
| Polygonatum multiflorum Kunth. | Polygonatum multiflorum RIP monomer (PMRIPm)                        | 2    | 60       |              | [227]|
| Polygonatum multiflorum Kunth. | Polygonatum multiflorum RIP tetramer (PMRIPt)                       | 2    | 240      |              | [227]|
| Ricinus communis L.           | Ricin                                                               | 2    | 62       | Yes          | [228]|
| Ricinus communis L.           | Ricin 1                                                             | 2    | 64       |              | [229]|
| Ricinus communis L.           | Ricin 2                                                             | 2    | 67       |              | [229]|
| Ricinus communis L.           | Ricin 3                                                             | 2    | 66       |              | [229]|
| Ricinus communis L.           | Ricin D                                                             | 2    | 60       |              | [230]|
| Ricinus communis L.           | Ricin E                                                             | 2    | 60       |              | [231]|
| Ricinus communis L.           | Ricinus agglutinin (RCA120)                                         | 2    | 120      |              | [97] |
| Ricinus communis L.           | Ricinus agglutinin 1 (RCA1)                                         | 2    | 134      |              | [229]|
| Ricinus communis L.           | Ricinus agglutinin 2 (RCA2)                                         | 2    | 140      |              | [229]|
| Ricinus sanguineus Hort. ex Groenland | Ricin R2                                                         | 2    | 63.1     |              | [232]|
| Ricinus sanguineus Hort. ex Groenland | Ricin R11                                                        | 2    | 57.8     |              | [232]|
| Ricinus sanguineus Hort. ex Groenland | Ricin R12                                                        | 2    | 62.2     |              | [232]|
| Ricinus sanguineus Hort. ex Groenland | Ricinus sanguineus agglutinin                                   | 2    | 120      |              | [233]|
| Sambucus ebulus L.            | Ebulin r                                                            | 2    | 56       |              | [234]|
| Sambucus ebulus L.            | Ebulin 1 (ebulin 1)                                                 | 2    | 56       | Yes          | [235]|
| Sambucus ebulus L.            | Alpha-ebulitin                                                     | 1    | 32       |              | [236]|
| Sambucus ebulus L.            | Beta-ebulitin                                                      | 1    | 29       |              | [236]|
| Sambucus ebulus L.            | Gamma-ebulitin                                                     | 1    | 29       |              | [236]|
| Sambucus nigra L.             | Basic nigrin b                                                      | 2    | 63.5     |              | [237]|
| Sambucus nigra L.             | Nigrin b                                                           | 2    | 58       | Yes          | [238]|
| Sambucus nigra L.             | Nigritin f1                                                        | 1    | 24.1     |              | [239]|
| Sambucus nigra L.             | Nigritin f2                                                        | 1    | 23.6     |              | [239]|
| Sambucus nigra L.             | Sambucus nigra agglutinin 1 (SNAI)                                 | 2    | 140      |              | [240]|
(Table 1) Contd….

| Plant                           | RIP                        | Type | Ma (kDa) | Immunotoxins | Ref.       |
|---------------------------------|----------------------------|------|----------|--------------|------------|
| Sambucus nigra L.               | SNLRP                      | 2    | 60 - 62  |              | [241]      |
| Sambucus racemosa L.            | Basic racemosin b          | 2    | 58       |              | [242]      |
| Sambucus sieboldiana L.         | Sieboldin-b                | 2    | 59.4     |              | [243]      |
| Saponaria ocyoides L.           | Ocyoidine                  | 1    | 30.2     | Yes          | [244]      |
| Saponaria officinalis L.        | Saporin-6                  | 1    | 29.5     | Yes          | [105, 245] |
| Saponaria officinalis L.        | Saporin-9                  | 1    | 29.5     |              | [105]      |
| Saponaria officinalis L.        | Saporin-L1                 | 1    | 31.6     | Yes          | [246]      |
| Saponaria officinalis L.        | Saporin-L2                 | 1    | 31.6     |              | [246]      |
| Saponaria officinalis L.        | Saporin-R1                 | 1    | 30.2     |              | [246]      |
| Saponaria officinalis L.        | Saporin-R2                 | 1    | 30.9     |              | [246]      |
| Saponaria officinalis L.        | Saporin-S5                 | 1    | 30.9     |              | [246]      |
| Saponaria officinalis L.        | Saporin-S6                 | 1    | 31.6     | Yes          | [246]      |
| Saponaria officinalis L.        | Saporin-S8                 | 1    | 29.5     |              | [246]      |
| Saponaria officinalis L.        | Saporin-S9                 | 1    | 29.5     |              | [246]      |
| Secale cereale L.               | Secale cereale RIP         | 1    | 31       |              | [247]      |
| Sechium edule (Jacq.) Sw.       | Sechiumin                  | 1    | 27       |              | [248]      |
| Spinacia oleracea L.            | Spinacia oleracea RIP1 (SoRIP1, BP31) | 1    | 31       |              | [249]      |
| Spinacia oleracea L.            | Spinacia oleracea RIP2 (SoRIP2) | 1    | 29       |              | [249]      |
| Stellaria aquatica Scop.        | Stellarin                  | 1    | ND       |              | [250]      |
| Stellaria media (L.) Vill.      | RIP Q3                     | 1    | 28.2     |              | [251]      |
| Trichosanthes anguina L.        | Trichoanguin               | 1    | 35       |              | [252]      |
| Trichosanthes cucumerina Wall.  | Trichosanthes cucumerina seed lectin (TCSL) | RIP-like | 69       |              | [253]      |
| Trichosanthes cucumeroides Maxim. | Beta-trichosanthin        | 1    | 28       |              | [254]      |
| Trichosanthes dioica Roxb.      | Trichosanthes dioica seed lectin (TDSL) | RIP-like | 55       |              | [255]      |
| Trichosanthes kirilowii Maxim.  | Alpha-kirilowin            | 1    | 28.8     |              | [256]      |
| Trichosanthes kirilowii Maxim.  | Beta-kirilowin             | 1    | 27.5     |              | [257]      |
| Trichosanthes kirilowii Maxim.  | Trichosanthes (TCS)        | 1    | 25 - 26  | Yes          | [258]      |
| Trichosanthes kirilowii Maxim.  | TAP-29 (Trichosanthes anti-HIV protein 29 kDa) | 1    | 29       |              | [259]      |
| Trichosanthes kirilowii Maxim.  | Trichobitacin              | 1    | 27.2     |              | [260, 261] |
| Trichosanthes kirilowii Maxim.  | S-Trichokirin              | Small RIP | 8        |              | [262]      |
| Trichosanthes kirilowii Maxim.  | Trichokirin-S1             | Small RIP | 11.4     |              | [263]      |
| Trichosanthes kirilowii Maxim.  | Alpha-trichosanthin        | 1    | 31.7     |              | [264]      |
| Trichosanthes kirilowii Maxim.  | Karasurin-A                | 1    | 27.1     |              | [265, 266] |
| Trichosanthes kirilowii Maxim.  | Karasurin-B                | 1    | 27.2     |              | [267]      |
| Trichosanthes kirilowii Maxim.  | Karasurin-C                | 1    | 27.4     |              | [267]      |
it is transported to the Golgi-apparatus by retrograde transport and finally reaches the endoplasmic reticulum (ER). Within the ER the disulfide bonds are cleaved by thioredoxin reductases and disulfide isomerases [9, 10]. The enzymatically active A chain is released and partially unfolded during this process [11]. To facilitate its entry into the cytosol, the A chain exploits a mechanism, which is known as ER-associated degradation (ERAD). ERAD is a natural mechanism for maintaining the homeostasis of the ER [12]. Proteins that are misfolded and thus non-functional are designated for proteasome degradation within the cytosol. The transport of the partially unfolded A chain is mediated by the translocon Sec61p [13] and the ER degradation-enhancing α-mannosidase-like protein 1 [14]. One of the most important factors for the cytosolic delivery is the recognition of the A chain as a substrate for the ERAD system. This is achieved by disguising the A chain as a misfolded protein. After reaching the cytosol the partially unfolded A chain is fully refolded to regain the conformational integrity as an enzymatically active form. This is facilitated by the chaperons Hsc70 and Hsp90 [15]. Genetic interaction maps indicate the involvement of a number of different factors responsible for modulating the ricin trafficking [16]. The cytosolic delivery of the A chain marks the end of a highly efficient molecular strategy that ricin adopts in order to direct the catalytic domain to the ribosomes.

As mentioned before, a common feature of all the RIPs is their ability to depurinate the rRNA by releasing an adenine residue at their α-sarcin/ricin loop. This results in an irreversible inhibition of protein synthesis facilitated by the prevention of eukaryotic elongation factor binding [17]. According to the protein data bank (PDB), RIPs belong to a group of rRNA N-glycosidases (EC 3.2.2.22) that hydrolyze the N-glycosidic bonds at the position 4324 on the 28S rRNA. The bond between the N9 of adenine and the C1 of ribose is hydrolyzed by a concerted action of an arginine at position 180 (R180) and a glutaminic acid at position 177 (E177). E177 is stabilized at a cationic oxocarbenium ribose transition state and R180 is responsible for activating water. This facilitates the nucleophilic attack on the C1 of the oxocarbenium intermediate resulting in the release of adenine [18]. Mutants lacking E177 and R180 are also devoid of the N-glycosidase activity [19]. Recent studies suggest that the action of RIPs on ribosomes depends on the ribosomal stalk, which is a network of different proteins that recruit translational factors to the ribosomes [20]. After gaining access to their substrate, RIPs act as toxic agents. It is further hypothesized that only one internalized molecule is sufficient to kill one cell. From an evolutionary point of view, it has been suggested that the B chain of ricin was generated by a lateral gene transfer from a bacteria.

Contrasting to type 2 RIPs, type 1 RIPs are less toxic [21] and consist of only the A chain (N-glycosidase), which lacks any specific cell binding properties. The low cytoxicity of type 1 RIPs is generally attributed to an inefficient endocytosis. However, based on some other reports [22] and our own experiments (Fig. 1), it is admissible that type 1 RIPs are effectively internalized. The major problem restricting their efficacy is the inefficient endosomal release.

| Plant | RIP | Type | Ma (kDa) | Immunotoxins | Ref. |
|-------|-----|------|---------|-------------|-----|
| Trichosanthes kirilowii Maxim. | Trichosanthrip | Small RIP | 11 | | [268] |
| Trichosanthes kirilowii Maxim. | Trichomislin | 1 | 27.2 | | [269] |
| Trichosanthes kirilowii Maxim. | Trichokirin | 1 | 27 | Yes | [270] |
| Trichosanthes lepiniate Maxim. | Trichomaglin | 1 | 24.7 | | [271] |
| Trichosanthes sp. Bac Kan 8-98 | Trichobakin | 1 | 27 | | [272] |
| Triticum aestivum L. | Tritin | 1 | 30 | | [273] |
| Vaccaria pyramidata Medik. | Pyramidatine | 1 | 28 | Yes | [244] |
| Viscum album L. | Viscumin (mistletoe lectin I) | 2 | 60 | Yes | [274] |
| Viscum articulatum Burm. F. | Articulatin-D | 2 | 66 | | [275] |
| Ximenia americana L. | Riproximin | 2 | 63 | | [276] |
| Zea mays L. | Maize seed RIP (b-32, corn RIP) | 1 | 32.4 | | [277] |
| Zea mais L. | Maize proRIP | 3 | 34 | | [278] |

![Fig. (1). Three-dimensional depiction (z-stacks) of the endosomal network of ECV-304 cells loaded with Alexasaporin. ECV-304 cells were challenged for 3 h with 1 μM Alexa-Fluor 488 labeled saporin (type I RIP from Saponaria officinalis L.). Cells were co-incubated with pHrodo™ Red Dextran, a marker for endo/lysosomes and analyzed by confocal live cell imaging. Depicted is the endo/lysosomal network of one living ECV-304 cell. Green: Alexasaporin in cellular vesicles, red: pHrodo™ Red Dextran in endosomes/lysosomes, yellow: co-localization of Alexasaporin and pHrodo™ Red Dextran in endosomes/lysosomes. The figure illustrates the fact that saporin is internalized and trapped in to the endosomal vesicles, thereafter it is degraded by the endo/lysosomal degradation.](image-url)
The exact mechanism of the internalization of type 1 RIPs is not deciphered so far. Previous studies indicate towards a receptor-mediated endocytosis of type 1 RIPs by low density lipoprotein (LDL) receptors [23-26]. Contrastingly, some other results confirm a receptor independent endocytosis [22]. However, the exertion of toxic effects appears to be independent of the internalization mechanism. The toxicity determining factor is the ability of type 1 RIPs to cross the endo/lysosomal membrane. Since type 1 RIPs do not contain any transduction domains facilitating the endo/lysosomal escape into the cytosol, they are less cytotoxic. Upon endo-cytosis, type 1 RIPs are delivered into the cellular compartments that are positive for lysobisphosphatidic acid (LBPA) (a specific eukaryotic phospholipid marker for late endosomes) and the lysosomal-associated membrane proteins LAMP1 and LAMP2 [22, 27]. Type 1 RIPs are thereafter degraded within the lysosomes [5].

**Immunotoxins and Targeted Toxins**

Immunotoxins as per definition are conjugates of cell binding antibodies and the complete type 1/2 RIP or the A chain of a type 2 RIP [6]. In all the reported cases, the complete type 2 RIP has a very high cytotoxic effect when conjugated to the antibody. Nonetheless, there is an increased side effect due to the off-target binding of the B chain. To circumvent this, a lot of alternative strategies including but not limited to the use of high concentrations of free galactose or lactose as competitive binders have been tested. Another alternative in overcoming this problem has been the use of steric hindrance [28]. Coupling of an antibody or its fragment to the isolated A chain via disulfide linkage appears to be the most effective strategy. RIPs lack thiol groups for a disulfide linkage and it is necessary to synthetically introduce it. Alternatively, other linkages such as maleimide linkage have also been attempted but are not successful, mainly due to the inability of cellular enzymes to reduc-tively cleave the bonds [29].

Another important term for the fusion proteins comprising of toxins is targeted toxin. It is a term which coherently finds usage in the literature to define a generic name for immunotoxins. In general, targeted toxins comprise of tumor specific ligands coupled to polypeptide toxins. They constitute a class of cancer therapeutics that leads to the death of cancer cells. They mainly act by the inactivation of cytosolic protein synthesis and induction of programmed cell death [3]. Immunotoxins are per se, restricted to an antibody or antibody fragment as the targeting moiety whereas, targeted toxins form a larger domain including the use of antibodies, small antibody fragments, growth factors, cytokines or small peptides as targeting moieties. Thus, immunotoxins form a smaller subset of targeted toxins as a classification in general.

These targeted toxins can either be prepared by chemical conjugation as described above, or they can be produced recombinantly as a fusion protein that is expressed in cells [6]. Within the past two decades, significant progress has been made towards proper identification of the appropriate cellular target for toxins with target specificity. Moreover, tremendous progress made in the field of genetic engineering and a better understanding of receptor physiology coupled with the single molecule tracking modality have led to an exponential growth in the scientific output as far as targeted toxins are concerned. This is further evidenced by an increased number of clinical trials which are being conducted on targeted toxins, with many of them in Phase 3 [30, 31].

Plant RIPs constitute a major portion of the therapies with targeted toxins, and although there is additional literature available on bacterial and human toxins, plant RIPs generate a lot of scientific interest. As listed in Table 2, there are more than 450 targeted toxins described, which comprise of plant RIPs as a toxic moiety. Amongst various RIPs the leading toxin components are ricin A chain from *Ricinus communis* L., saporin from *Saponaria officinalis* L. and gelonin from *Gelonium multiflorum* A. Juss. A lot of different targeting ligands have been successfully coupled to these toxins and have demonstrated high specificity in *in vitro* and preclinical evaluations. The ligand, apart from providing selectivity, also helps in cellular internalization of the toxin. There are a number of aspects associated with the internalization and trafficking of toxins. When the toxins are transformed into targeted toxins, there are numerous critical elements deciding their fate *in vitro* and *in vivo*; these events are discussed in detail hereafter.

**Antigen Selection and Efficiency of Internalization**

The analysis of the expression pattern of tumor-associated surface antigens and the knowledge about their ability to promote or modulate the tumor growth are critical for the identification of novel targets for targeted anti-tumor therapies. For the development of monoclonal antibodies (mAbs) or targeted toxins, it is essential to target to one, whether the biological functionalities of the monoclonal antibodies by conjugating them to bacterial toxins such as *Pseudomonas* exotoxin from *Pseudomonas aeruginosa* [42] or plant toxins such as saporin from *Saponaria officinalis* L.

**Release of Targeted Toxins into the Cytosol and their Lysosomal Degradation**

Once internalized, the targeted toxin is delivered into early endosomes. Early endosomes are part of the endosomal transport system, which is an intracellular vesicular and tubular compartment surrounded by cytosol. Within early endosomes, endocytosed ligands (targeted toxins) are either designated for recycling [43, 44] or they are further transported into late endosomes, and finally lysosomes for degradation. Since targeted toxins exert their antitumoral efficacy only in the cytosol, it is a vital prerequisite for their efficacy that they are able to escape from the endosomal network into the cytosol. Targeted toxins fused to truncated variants of bacterial toxins such as diphtheria toxin (DT) from *Corynebacterium diphtheriae* utilize the native T-domain of DT to escape from early endosomes into the cytosol [42, 45, 46] while other targeted toxins employ a KDEL-like motive of their toxin moieties, in which bulk facilitate their retrograde delivery into the ER and thereafter their transport to the cytosol [47]. However, plant-derived toxins such as saporin and gelonin or the A chain of the type 2 RIP ricin does not comprise of such translocation domains. It can be therefore anticipated that the cytosolic delivery of type 1 RIP-based targeted toxins is attenuated, compared to appropriate bacterial counterparts. However, comparative studies in this regard have not been undertaken so far.

Several strategies such as photochemical internalization [48], pore formation by listeriolysin O from *Listeria monocytogenes* [37], cell penetration by protein transduction domains [49], the use of lysosomotropic agents like chloroquine [50] or the use of triterpe-
Noidal saponins from *Saponaria officinalis* L. and *Gypsophila paniculata* L. [51, 52] have been developed to facilitate the escape of targeted toxins from endosomal vesicles (a schematic overview on the obstacles for the cytosolic delivery of targeted toxins is depicted below above). All these methods prevent the lysosomal degradation of targeted toxins by mediating their endosomal escape into the cytosol. This results in a significant augmentation of the anti-tumoral efficacy of the targeted toxin.

Lysosomal degradation is one of the main issues in targeted tumor therapies [53]. It may be compensated by increasing the dosage of the targeted toxins, however, this does promote undesirable side effects. As mentioned above, lysosomal degradation can be outweighed by combination strategies that mediate the endosomal escape of targeted toxins. The generation of modified targeted toxins that are resistant against lysosomal degradation is a further attractive strategy to increase the efficacy of targeted toxins [54].

**Advancement in the Use of RIPs as Therapeutic Agent**

Initially, targeted toxins were constructed with native ricin and were tested in vitro in the presence of high concentrations of lactose which prevented the non-specific binding of ricin B-chain. Blocking of the oligosaccharide binding sites was used to prevent off-target ricin uptake and provided the possibility of applying the immunotoxins in vivo [55]. The separation of RTA and ricin B-chain by chemical reduction allowed conjugation of the antibody to the catalytic subunit, mainly through cross-linkers containing a disulfide bond. Despite the high yield and good stability of these targeted toxins, one of the main disadvantages for them was a heterogeneous composition [28]. Furthermore, it is well known that the glycosylated residues of RTA also facilitate non-specific uptake by macrophages. Therefore, in order to prevent the non-specific uptake, RTA was submitted to a process of deglycosylation before conjugation to the antibody and formation of the immunotoxin [56].

The advancement of recombinant tools has led to a rather ubiquitous utilization of these techniques for the production of toxins. For generating these targeted toxins, the gene portion encoding the antigen-binding fragments of an antibody (Fab or Fv) is generally coupled to the gene encoding for native catalytic domain. In another case it may be linked to the mutated version of the toxin. Once the construct is available it can be proliferated in any expression system such as bacteria, yeast or algae [57, 58]. The first generated recombinant immunotoxins were mostly formed using the single-chain variable fragments (scFvs), thereafter they were substituted by disulfide-stabilized Fvs (dsFvs). The scFvs have a peptide linker compared to the disulfide bridge in dsFvs which makes the conformation more stable.

**Future Perspectives and Opinions on Targeted Toxins**

Cancer is an expended burden in an ageing population. In the fight against this complex phenomenon, it would be a misjudgment to believe that one day a single strategy such as the use of targeted toxins will be able to defeat this disease. Thus, different complementary strategies are required to overcome all the hurdles that impede recovery. Surgical intervention, chemotherapy and radiation constitute the traditional troika of cancer therapies that are used as commonly for a wide variety of tumors.
Table 2. A comprehensive list of all the targeted toxins based on plant RIPs investigated so far.

| Toxin                                | Immunotoxin                          | Ligand                  | Target antigen                                                                 | Tumor/Disease        | In vitro | In vivo | Clinical trial status | Ref. |
|---------------------------------------|--------------------------------------|-------------------------|--------------------------------------------------------------------------------|----------------------|----------|---------|-----------------------|------|
| Abrin                                 | Abrin-9.2.27                         | mAb (9.2.27)            | Melanoma-associated antigen (p250)                                           | Melanoma             | Yes      | Yes     | [279, 280]            |      |
| Abrin                                 | Abrin-NR-ML-05                       | mAb (NR-ML-05)          | Melanoma-associated antigen (p250)                                           | Melanoma             | Yes      |         | [281]                 |      |
| Abrin A-chain                         | Fib 75-abrin A chain (MAAC)          | mAb (LICR-LOND Fib 75)  | Bladder cancer antigen                                                       | EJ bladder cancer    | Yes      | Yes     | [282-284]            |      |
| Abrin A-chain                         | C27-Abrin A chain (MAAC)             | mAb (C27)               | Carcinoembryonic antigen (CEA)                                               | Colorectal cancer    | Yes      | Yes     | [285]                 |      |
| Abrin A-chain                         | Anti-Thy 1.1-Abrin A-chain (OX7)     | mAb (anti-Thy 1.1)      | CD90.1 (Thy 1.1)                                                             | Akr-A lymphoma       | Yes      | Yes     | [286]                 |      |
| Abrin A-chain                         | Anti-Hepatoma-associated Antigen-Abrin A-chain | mAb (anti-hepatoma-associated antigen L10 190 kDa glycoprotein) | Hepatoma-associated antigen L10 190 kDa glycoprotein | Hepatocarcinoma      | Yes      |         | [287]                 |      |
| Abrin A-chain                         | ITA                                  | IgG (anti-Trypanosoma cruzi surface antigens) | Trypanosoma cruzi surface antigens | Trypanosoma cruzi | Yes      |         | [288]                 |      |
| Abrin A-chain                         | F1G4-rABRa-A                         | mAb (F1G4)              | Gonadotropin releasing hormone (GnRH) receptor                                | Breast cancer, hepatoocarcinoma | Yes      |         | [289]                 |      |
| Abrin A-chain                         | SWA11-SPDB-abrin A                   | mAb (SWA11)             | CD24                                                                          | SCLC                 | Yes      |         | [290]                 |      |
| Abrin A-chain                         | ABRaA-VEGF<sub>121</sub>             | VEGF<sub>121</sub>      | VEGFR-2                                                                       | Melanoma             | Yes      | Yes     | [291]                 |      |
| Abrin variant                         | Tfn-abrin variant                    | Human diferric transferrin (Tfn) | Tfn | Glioblastoma multiforme, melanoma | Yes      |         | [292]                 |      |
| Barley toxin I                        | H65-MM-rBRIP                         | mAb (H65)               | CD5                                                                           | ALL                  | Yes      |         | [293]                 |      |
| Barley toxin I                        | 4A2-MM-rBRIP                         | mAb (4A2)               | CD7                                                                           | ALL                  | Yes      |         | [293]                 |      |
| Barley toxin I                        | Anti-melanoma-BRIP                   | mAb (anti-melanoma)     | Melanoma antigen                                                              | Melanoma             | Yes      |         | [294]                 |      |
| Barley toxin II                       | 5E9C11-Barley toxin II               | mAb (HB21) (5E9)        | Tfn                                                                           | Colon cancer         | Yes      |         | [157]                 |      |
| Bouganin                              | Anti-CD80/bouganin (M24-bouganin)    | mAb (M24)               | CD80                                                                          | Hodgkin's lymphoma, Burkitt's lymphoma | Yes      |         | [295]                 |      |
| Bouganin                              | Anti-CD86/bouganin                   | mAb (anti-CD86) (1G10)  | CD86                                                                          | Hodgkin's lymphoma, Burkitt's lymphoma | Yes      |         | [295]                 |      |
| deBouganin                            | VB6-845                              | Fab (4D5MOCB)           | EpCAM                                                                         | Solid tumors of epithelial origin | Yes      | Yes     | Phase I [296, 297]    |      |
| Bryodin-1                             | OX7-bryodin                          | mAb (anti-Thy 1.1)      | CD90.1 (Thy 1.1)                                                             | Akr-A lymphoma       | Yes      |         | [298]                 |      |
| Bryodin-1                             | BD1-G28-5 sFv                        | scFv (G28-5)            | CD40                                                                          | B-cell non-Hodgkin's lymphoma, multiple myeloma | Yes      |         | [299, 300]            |      |
| Bryodin-1                             | chiBR96-BD-1                         | scFv (BR96)             | Le<sup>+</sup> antigen                                                        | Breast cancer        | Yes      |         | [301]                 |      |
| Bryodin-1                             | Anti-epithelial antigen-bryodin      | mAb (anti-epithelial antigen) | Epithelial antigen | Colon cancer, epidermoid carcinoma | Yes      |         | [302]                 |      |
| Toxin      | Immunotoxin | Ligand                                      | Target antigen | Tumor/Disease            | In vitro | In vivo | Clinical trial status | Ref. |
|------------|-------------|---------------------------------------------|----------------|--------------------------|----------|--------|-----------------------|------|
| Bryodin-1  | F(ab')2-bryodin/UCHT1 | F(ab')2, (anti-IgG) / mAb (UCHT1) | CD3            | T-cell lymphoma          | Yes      |        |                        | [303]|
| Toxin   | Immunotoxin         | Ligand       | Target antigen            | Tumor/Disease               | In vitro | In vivo | Clinical trial status | Ref.          |
|---------|---------------------|--------------|---------------------------|-----------------------------|----------|--------|-----------------------|---------------|
| Gelonin | Lym-1-gelonin       | mAb (Lym-1) | HLA-DR                    | Burkitt’s lymphoma cells    | Yes      |        |                       | [318]         |
| Gelonin | B4G7-gelonin        | mAb (B4G7)  | EGFR                      | Lung cancer                 | Yes      | Yes    |                       | [319]         |
| Gelonin | 80G-gelonin         | mAb (80G)   | Alpha-fetoprotein         | Hepatoma                    | Yes      | Yes    |                       | [320]         |
| Gelonin | ZME-gelonin         | mAb (ZME-018)| Proteoglycan, p250       | Melanoma                    | Yes      | Yes    |                       | [321, 322]    |
| Gelonin | Gelinin-9.2.27      | mAb (9.2.27)| Melanoma-associated antigen (p250) | Melanoma                   | Yes      | Yes    |                       | [280]         |
| Gelonin | AChR-gelonin        | AChR (nicotinic acetylcholine receptor) | IgG (anti-AChR) | Experimental autoimmune myasthenia gravis (EAMG) | Yes      | Yes    |                       | [323]         |
| Gelonin | 38.13-gelonin       | mAb (38.13) | TH ceramide (Pk antigen)  | Burkitt's lymphoma          | Yes      |        |                       | [324]         |
| Gelonin | Anti-T11-gelonin    | mAb (OKT11) | CD2                       | T cells                     | Yes      | Yes    |                       | [325, 326]    |
| Gelonin | Tf-gelonin          | Transferrin  | TfR                       | Malaria (Plasmodium falciparum) | Yes      |        |                       | [327]         |
| Gelonin | AR3-gelonin         | mAb (AR3)   | CAR-3                     | Gastric cancer              | Yes      | Yes    |                       | [328]         |
| Gelonin | 15A8-gelonin        | mAb (15A8)  | Breast cancer antigen     | Breast cancer, cervical cancer | Yes      |        |                       | [329]         |
| Gelonin | HB5-gelonin         | mAb (HB5)   | Cd3 receptor              | EBV infection               | Yes      |        |                       | [330]         |
| Gelonin | Anti-Lyt 2.2-gelonin| mAb (anti-Lyt 2.2) (19/178C,) | Lyt2.2                    | T-cell lymphoma             | Yes      |        |                       | [331]         |
| Gelonin | Anti-Thy 1.2-gelonin| mAb (anti-Thy 1.2) (AT15E) | CD90.2 (Thy 1.2)          | T-cell lymphoma             | Yes      |        |                       | [331]         |
| Gelonin | Anti-Thy 1-gelonin  | mAb (anti-Thy 1) (M549) | CD90 (Thy 1.1 and 1.2)    | Leukemia                    | Yes      | Yes    |                       | [332]         |
| Gelonin | LG 2/72-gelonin     | mAb (LG 2/72)| HLA-DR                    | Lymphoma                    | Yes      |        |                       | [331]         |
| Gelonin | Anti-MCMV-gelonin   | IgG (anti-MCMV) | MCMV antigen (murine cytomegalovirus antigen) | CMV infection | Yes | | | [333] |
| Gelonin | Anti-HCMV-gelonin   | IgG (anti-HCMV) | HCMV antigen (human cytomegalovirus antigen) | CMV infection | Yes | | | [333] |
| Gelonin | Anti-JL1-gelonin    | mAb (anti-JL1) | JL1                       | Leukemia                    | Yes      |        |                       | [334]         |
| Gelonin | oLH-gelonin (lutropin-SS-gelonin) | Ovine luteinizing hormone (oLH) | Ovine LH receptor | Leydig cell tumor (testicular cancer) | Yes | | | [335] |
| Gelonin | hCG-gelonin         | Human chorionic gonadotropin (hCG) | LH receptor | Leydig cell tumor (testicular cancer) | Yes | | | [335] |
| Gelonin | Gelinin-gp330       | gp330 (renal brush border antigen) | Anti-gp330 Ig | Heymann's nephritis | Yes | Yes | | [336] |
| Gelonin | Anti-PCV-gelonin    | IgG (anti-PCV) | Pichinde virus (PCV) | Pichinde virus (PCV) | Yes | | | [337] |
| Toxin       | Immunotoxin                  | Ligand                           | Target antigen                                      | Tumor/Disease                          | In vitro | In vivo | Clinical trial status | Ref.   |
|-------------|------------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------|----------|--------|----------------------|--------|
| Gelonin     | PC4.9A6-gelonin              | mAb (PC4.9A6)                    | Pichinde virus (PCV)                                | Pichinde virus (PCV)                   | Yes      |        |                      | [337]  |
| Gelonin     | 14G2a-gelonin                | mAb (14G2a)                      | Disialoganglioside GD2                               | Neuroblastoma, melanoma               | Yes      |        |                      | [338]  |
| Gelonin     | MSN-1-gelonin                | mAb (MSN-1)                      | Endometrial adenocarcinoma antigen                   | Endometrial adenocarcinoma            | Yes      | Yes    |                      | [339]  |
| Gelonin     | F(ab')2-gelonin/UCHT1        | F(ab')2 (anti-IgG) / mAb (UCHT1) | CD3                                                 | T-cell lymphoma                       | Yes      |        |                      | [303]  |
| Gelonin     | H65-gelonin                  | mAb (H65)                        | CD5                                                 | T-cell ALL                            | Yes      | Yes    |                      | [340]  |
| Gelonin     | BACH-250/rGel               | mAb (BACH-250)                   | HER2                                                | Breast cancer                         | Yes      | Yes    |                      | [341]  |
| Gelonin     | TAB-250/rGel                | mAb (TAB-250)                    | HER2                                                | Breast cancer                         | Yes      | Yes    |                      | [341]  |
| Gelonin     | VEGF121/rGel                | VEGF121                          | KDR Flik-1 receptor                                  | Tumor neovascular, melanoma, prostate cancer | Yes      | Yes    |                      | [342]  |
| Gelonin     | HuM195/rGel                 | mAb (HuM-195)                    | CD33                                                | AML, CML, myelodysplastic syndrome    | Yes      | Yes    | Phase I              | [343-346]|
| Gelonin     | MEL scFv-rGel               | scFv (MEL)                       | gp240                                               | Melanoma, brain cancer, lobular breast cancer | Yes      | Yes    |                      | [347]  |
| Gelonin     | BLyS-gelonin                | B lymphocyte stimulator (BLyS)   | BR3/BAFF-R, TACI and BCMA                           | B-NHL subtypes, mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), B-cell precursor-acute lymphocytic leukemia (BCP-ALL) | Yes      | Yes    |                      | [348-350]|
| Gelonin     | C6.5-rGel                   | scFv (C6.5)                      | HER2                                                | Breast cancer, gastric cancer, lung cancer, ovarian cancer | Yes      | Yes    |                      | [351]  |
| Gelonin     | e23-L-rGel                  | scFv (e23)                       | HER2                                                | Breast cancer, gastric cancer, lung cancer, ovarian cancer | Yes      | Yes    |                      | [352]  |
| Gelonin     | ML3-9-rGel                  | scFv (ML3-9)                     | HER2                                                | Breast cancer, gastric cancer, lung cancer | Yes      | Yes    |                      | [351]  |
| Gelonin     | MH3-B1-rGel                 | scFv (MH3-B1)                    | HER2                                                | Breast cancer, gastric cancer, lung cancer | Yes      | Yes    |                      | [351]  |
| Gelonin     | B1D3-rGel                   | scFv (B1D3)                      | HER2                                                | Breast cancer, gastric cancer, lung cancer | Yes      | Yes    |                      | [351]  |
| Gelonin     | 3ErGel                      | scFv (sm3E)                      | Carcinoembryonic antigen (CEA)                      | Colorectal cancer                     | Yes      |        |                      | [353]  |
| Gelonin     | FErGel                      | scFv (shMFE)                     | Carcinoembryonic antigen (CEA)                      | Colorectal cancer                     | Yes      |        |                      | [353]  |
| Gelonin     | C7rGel                      | FN3 fragment (C743)              | Carcinoembryonic antigen (CEA)                      | Colorectal cancer                     | Yes      | Yes    |                      | [353, 354]|
| Toxin          | Immunotoxin         | Ligand               | Target antigen | Tumor/Disease                      | In vitro | In vivo | Clinical trial status | Ref.       |
|---------------|---------------------|----------------------|----------------|------------------------------------|----------|--------|-----------------------|------------|
| Gelonin       | E4rGel             | FN3 fragment (E246)  | EGFR           | Colorectal cancer                  | Yes      | Yes    |                       | [353, 354] |
| Gelonin       | 3C/rGel            | scFv (3C)            | FGFR3          | Multiple myeloma, hepatocellular carcinoma, bladder cancer | Yes      | Yes    |                       | [355, 356] |
| Gelonin       | 7D/rGel            | scFv (7D)            | FGFR3          | Multiple myeloma, hepatocellular carcinoma, bladder cancer | Yes      | Yes    |                       | [355]      |
| Gelonin       | H45-rGelonin (H45)  | mAb (H45)            | CD5            | ALL                                 | Yes      | Yes    |                       | [357]      |
| Luffa ribosomal inhibitory protein (LRIP) | HB21-LRIP          | mAb (HB21) (5E9)     | Tfr            | T lymphoblastic leukemia            | Yes      |        |                       | [168]      |
| Luffin-A      | Luffin-A-Ng76      | mAb (Ng76)           | Melanoma antigen | Melanoma                           | Yes      |        |                       | [359]      |
| Luffin-B      | Luffin B-Ng76      | mAb (Ng76)           | Melanoma antigen | Melanoma                           | Yes      |        |                       | [360]      |
| Luffin-B      | LKP (Luffin-L-KDEL uPAs) | uPAs (urokinase-type plasminogen activator) | Urokinase receptor | Non-small cell lung cancer (NSCLC) | Yes      |        |                       | [361]      |
| Luffin-P1     | hIL-2-Luffin P1    | IL-2                 | CD25 (IL-2 receptor) | Activated lymphocytes              | Yes      | Yes    |                       | [362-364] |
| Luffin-P1     | EBI3-Luffin P1     | EBI3 (Epstein-Barr virus (EBV)-induced gene 3) | CD25 (IL-2 receptor) | Immunological diseases, erythrolymphocytoma | Yes      |        |                       | [365]      |
| Mistletoe lectin I A-chain | Anti-CD5/MLIA    | mAb (anti-CD5)       | CD5            | T-lymphocytes                      | Yes      |        |                       | [366]      |
| Mistletoe lectin I A-chain | Anti-CD25/MLIA (Anti-CD25-MLA) | mAb (anti-CD25) | CD25 (IL-2 receptor) | Activated lymphocytes              | Yes      |        |                       | [367]      |
| Mistletoe lectin I A-chain | MoAb-16-MLIA     | mAb (16)             | Oncofetal antigen | Leukemia                           | Yes      |        |                       | [368]      |
| Mistletoe lectin I A-chain | BMAC1/MLA        | mAb (BMCA1)          | CD45           | Allograft rejection                | Yes      |        |                       | [369]      |
| Mistletoe lectin I A-chain | OX1/MLA          | mAb (OX1)            | rat CD45       | Allograft rejection                | Yes      |        |                       | [369]      |
| Momorocchin   | Anti-epithelial antigen-momorocchin | mAb (anti-epithelial antigen) | Epithelial antigen | Colon cancer, epidermoid carcinoma | Yes      |        |                       | [302]      |
| Momorocchin   | F(ab')2-momorocchin/UCHT1 | F(ab')2 (anti-IgG) / mAb (UCHT1) | CD3            | T-cell lymphoma                    | Yes      |        |                       | [303]      |
| Momorocchin-S | Momorocchin-S-A8   | mAb (8A)             | 8A myeloma antigen | Burkitt lymphoma                   | Yes      | Yes    |                       | [193]      |
| Momordin      | OX7-momordin       | mAb (anti-Thy 1.1 (OX7) | CD90.1 (Thy 1.1) | AKR-A lymphoma                     | Yes      |        |                       | [298]      |
| Momordin      | Fib 75-momordin    | mAb (LICR-LOND Fib 75) | Bladder cancer antigen | EJ bladder cancer                   | Yes      | Yes    |                       | [284, 312] |
| Toxin       | Immunotoxin                           | Ligand                      | Target antigen | Tumor/Disease                          | In vitro | In vivo | Clinical trial status | Ref.       |
|------------|---------------------------------------|-----------------------------|----------------|----------------------------------------|----------|---------|-----------------------|------------|
| Momordin   | OM124-momordin                        | mAb (anti-CD22) (OM124)     | CD22           | Burkitt's B-cell lymphoma, Epstein-Barr virus-infected B lymphoblastoid cells | Yes      | Yes     |                       | [370]      |
| Momordin   | 8A-Momordin                           | mAb (8A)                   | 8A myeloma antigen | Multiple myeloma                        | Yes      |         |                       | [371]      |
| Momordin   | Anti-CD5-Momordin                     | mAb (anti-CD5)             | CD5            | T-cell leukemia                        | Yes      | Yes     |                       | [372]      |
| Momordin   | Anti-CD30-Momordin (Ber-H2-Momordin) | mAb (Ber-H2)               | CD30           | Hodgkin's lymphoma, anaplastic large-cell lymphoma (ALCL) | Yes      | Yes     |                       | [307, 373, 374] |
| Momordin   | BDI-1-momordin                        | mAb (BDI-1)                | Bladder cancer antigen | Bladder cancer                        | Yes      | Yes     | Phase I               | [375, 376] |
| Momordin   | Folate-momordin                       | Folate                     | Folate receptor | Cervical cancer, ovarian cancer         | Yes      |         |                       | [377, 378] |
| Momordin   | Anti-epithelial antigen-momordin      | mAb (anti-epithelial antigen) | Epithelial antigen | Colon cancer, epidermoid carcinoma   | Yes      |         |                       | [302]      |
| Momordin   | F(ab')2-momordin/UCHT1                | F(ab')2 (anti-IgG) / mAb (UCHT1) | CD3           | T-cell lymphoma                        | Yes      |         |                       | [303]      |
| Momordin I | 48-127/momordin I                     | mAb (48-127)               | gp54           | Bladder cancer                        | Yes      |         |                       | [379]      |
| Moschatin  | Moschatin-Ng76                        | mAb (Ng76)                 | Melanoma antigen | Melanoma                              | Yes      |         |                       | [380]      |
| Nigrin b   | 44G4-nigrin b                         | mAb (44G4)                 | CD105 (endoglin) | Tumor neovascularure                  | Yes      |         |                       | [381]      |
| Nigrin b   | MJ7-Ngb                               | mAb (MJ7/18)               | CD105 (endoglin) | Tumor neovascularure, melanoma        | Yes      | Yes     |                       | [382, 383] |
| Nigrin b   | Nigrin b-transferrin                  | Transferrin                | TfR            | TfR-over-expressing cancer cells       | Yes      |         |                       | [310]      |
| Ocymoidine | Mint-Ocy                              | mAb (Mint5)                | EGFR           | Breast cancer                         | Yes      | Yes     |                       | [384]      |
| PAP        | B43-PAP                               | mAb (B43)                  | CD19           | Leukemia, B-cell ALL                  | Yes      | Yes     | Phase I               | [385-388] |
| PAP        | TXU-PAP                               | mAb (TXU)                  | CD7            | T-NHL, HIV type I                     | Yes      | Yes     | Phase I               | [389-391] |
| PAP        | Anti-Thy 1.1 (mAb)-PAP                | mAb (anti-Thy 1.1) (OX7)   | CD90.1 (Thy 1.1) | Leukemia                              | Yes      |         |                       | [392]      |
| PAP        | Anti-Thy 1.1 (F(ab')2)-PAP            | F(ab')2 (anti-Thy 1.1) (OX7) | CD90.1 (Thy 1.1) | Leukemia                              | Yes      |         |                       | [392]      |
| PAP        | GnRH-PAP                              | Gonadotropinreleasing hormone (GnRH) | GnRH receptor | Breast cancer                         | Yes      |         |                       | [393, 394] |
| PAP        | TP3-PAP                               | mAb (TP3)                  | p80            | Osteosarcoma                          | Yes      | Yes     |                       | [395]      |
| PAP        | J3-109-PAP                            | mAb (J3-109)               | CD72           | B-cell ALL                           | Yes      |         |                       | [396]      |
| PAP        | 74-12-4-PAP                           | mAb (74-12-4)              | porcine CD4    | Transplants                          | Yes      |         |                       | [397]      |
| PAP        | Anti-CD4-PAP                          | mAb (MT151)                | CD4            | HIV                                  | Yes      |         |                       | [398]      |
| Toxin            | Immunotoxin      | Ligand                      | Target antigen                              | Tumor/Disease                  | In vitro | In vivo | Clinical trial status | Ref.       |
|------------------|------------------|-----------------------------|---------------------------------------------|--------------------------------|----------|---------|----------------------|------------|
| PAP              | PAP-9.2.27       | mAb (9.2.27)                | Melanoma-associated antigen (p250)          | Melanoma                       | Yes      | Yes     |                      | [280, 399] |
| PAP              | J5/PAP           | mAb (J5)                    | CD10 (CALLA)                               | Lymphoma                       | Yes      |         |                      | [314]      |
| PAP             | PAP9-IL-2        | IL-2                        | CD25 (IL-2 receptor)                       | T-cell lymphoma                | Yes      |         |                      | [400]      |
| PAP II           | J5/PAP II        | mAb (J5)                    | CD10 (CALLA)                               | Lymphoma                       | Yes      |         |                      | [314]      |
| PAP-S            | OM124-PAP-S      | mAb (anti-CD22) (OM124)     | CD22                                       | Hodgkin's lymphoma             | Yes      | Yes     |                      | [307, 370] |
| PAP-S            | Anti-CD30-PAP-S  | mAb (Ber-H2)                | CD30                                       | Hodgkin's lymphoma, anaplastic large-cell lymphoma(ALCL) | Yes | Yes | [373, 401] |
| PAP-S            | 48-127/PAP-S     | mAb (48-127)                | gp54                                        | Bladder cancer                 | Yes      |         |                      | [379]      |
| PAP-S            | Anti-epithelial antigen-PAP-S | mAb (anti-epithelial antigen) | Epithelial antigen | Colon cancer, epidermoid carcinoma | Yes | | | [302] |
| PAP-S            | F(ab')2-PAP-S/UCHT1 | F(ab')2 (anti-IgG) / mAb (UCHT1) | CD3 | T-cell lymphoma | Yes | | | [303] |
| PAP-S            | J5/PAP-S         | mAb (J5)                    | CD10 (CALLA)                               | Lymphoma                       | Yes      |         |                      | [314]      |
| PD-S2            | Ber-H2-PD-S2     | mAb (Ber-H2)                | CD30                                       | Hodgkin's lymphoma             | Yes      |         |                      | [307]      |
| Pyramidatine     | Mint-Pyra        | mAb (Mint5)                 | EGFR                                        | Breast cancer                  | Yes      | Yes     |                      | [384]      |
| Ricin            | Anti-Ly2.1-ricin | mAb (anti-Ly2.1)            | Murine T-cell antigen                       | T-cell ALL                     | Yes      | Yes     |                      | [402]      |
| Ricin            | Anti-CD8-ricin   | mAb (B9.4.2)                | CD8                                         | PBMCs                          | Yes      |         |                      | [403]      |
| Ricin            | Anti-CD4-ricin   | mAb (HP2/6)                 | CD4                                         | PBMCs                          | Yes      |         |                      | [403]      |
| Ricin            | Anti-CD3-ricin   | mAb (SPV-T3b)               | CD3                                         | PBMCs                          | Yes      |         |                      | [403]      |
| Ricin            | Anti-CD3-ricin   | mAb (11D8)                  | CD3                                         | PBMCs                          | Yes      |         |                      | [403]      |
| Ricin            | UCHT1-ricin      | mAb (UCHT1)                 | CD3c                                        | GVHD                           | Yes      |         |                      | [404]      |
| Ricin            | 35.1-ricin       | mAb (35.1)                  | CD2                                         | GVHD                           | Yes      |         |                      | [404]      |
| Ricin            | T101-ricin       | mAb (T101)                  | CD5                                         | GVHD                           | Yes      | Yes     |                      | [404, 405] |
| Ricin            | Ricin-HB55       | mAb (BH55)                  | HLA-DR                                      | B-cell leukemia, lymphoma       | Yes      |         |                      | [406]      |
| Ricin            | IL2-lectin-deficient RTB-RTA | IL-2 | CD25 (IL-2 receptor) | Leukemia | Yes | | | [407] |
| Ricin            | GMCSF-ricin      | GMCSF                       | GMCSF receptor                             | AML                            | Yes      |         |                      | [408]      |
| Ricin            | M6-ricin         | mAb (M6)                    | L2C IgM idiotype                            | B-cell leukemia                 | Yes      | Yes     |                      | [409]      |
| Ricin            | Anti-GE2-ricin   | mAb (anti-GE2)              | GE2                                         | Glioma                         | Yes      |         |                      | [410]      |
| Toxin          | Immunotoxin      | Ligand         | Target antigen                        | Tumor/Disease            | In vitro | In vivo | Clinical trial status | Ref.  |
|---------------|------------------|----------------|---------------------------------------|--------------------------|----------|---------|------------------------|-------|
| Ricin         | AR3-ricin        | mAb (AR3)      | CAR-3                                 | Gastric cancer, colorectal cancer | Yes      |         |                         | [411] |
| Ricin         | BDI-1-ricin      | mAb (BDI-1)    | Bladder cancer antigen                 | Bladder cancer           | Yes      |         |                         | [412] |
| Ricin         | Ricin-mAb 35     | mAb (35)       | AChR (nicotinic acetylcholine receptor) | Strabismus               | Yes      | Yes     |                         | [413, 414] |
| Ricin         | Anti-Lyt 2.2-ricin| mAb (anti-Lyt 2.2) (19/178C1) | Lyt2.2                               | T-cell lymphoma          | Yes      |         |                         | [331] |
| Ricin         | IgE-intact ricin | mAb (IR162)    | IgE Fc receptor                       | Allergies, basophil leukemia | Yes      |         |                         | [415] |
| Ricin         | L6-ricin         | mAb (L6)       | Lung cancer antigen                    | Lung cancer              | Yes      | Yes     |                         | [416] |
| Ricin         | Ricin-EGF        | EGF            | EGFR                                  | Epidermoid carcinoma     | Yes      |         |                         | [417] |
| Ricin         | Anti-CD6-bR      | mAb (anti-CD6) | CD6                                   | CTCL, ALL                | Yes      | Yes     | Phase I                | [418, 419] |
| Ricin         | Anti-B4-bR       | mAb (anti-B4)  | CD19                                  | B-NHL                    | Yes      | Yes     | Phase III              | [420-425] |
| Ricin         | Anti-My9-bR      | mAb (anti-My9) | CD33                                  | AML                      | Yes      | Yes     | Phase I                | [418, 426, 427] |
| Ricin         | N901-bR          | mAb (N901)     | CD56 (N-CAM)                          | SCLC                     | Yes      | Yes     | Phase II               | [418, 428-431] |
| Ricin         | Anti-CEA-bR      | mAb (I-1)      | Carcinoembryonic antigen (CEA)        | Colorectal cancer        | Yes      | Yes     | Phase I/II             | [432] |
| Ricin         | IF7-bR           | mAb (IF7)      | CD26                                  | T cells                  | Yes      |         |                         | [433] |
| Ricin         | 4B4-bR           | mAb (4B4)      | CD29                                  | Lymphocytes, endothelium | Yes      |         |                         | [304] |
| Ricin         | MT151-blocked ricin | mAb (MT151) | CD4                                   | ALL                      | Yes      |         |                         | [434] |
| Ricin         | Anti-CD4.CD26-bRicin | Bispecific mAb (anti-CD4 x CD26) | CD4 + CD26                   | GVHD                     | Yes      |         |                         | [433] |
| Ricin         | Anti-CD4-bRicin  | Fab’ (19thy5D7) | CD4                                   | GVHD                     | Yes      |         |                         | [433] |
| Ricin         | Anti-CD26-bRicin | Fab’ (1F7)     | CD26                                  | GVHD                     | Yes      |         |                         | [433] |
| Ricin         | Anti-CD4.CD29-bRicin | Bispecific mAb (anti-CD4 x CD29) | CD4 + CD29                | Tissue allografts        | Yes      |         |                         | [435] |
| Ricin         | SEN31-bR         | mAb (SEN31)    | Cluster-5a antigen                    | SCLC                     | Yes      | Yes     |                         | [436] |
| Ricin         | HB7-blocked ricin| mAb (HB7)      | CD38                                  | Multiple myeloma, lymphoma | Yes      |         |                         | [437] |
| RTA           | Anti-Thy 1.1-dgRTA| mAb (anti-Thy 1.1) (OX7) | CD90.1 (Thy 1.1) | AKR-A lymphoma | Yes      | Yes     |                         | [438] |
| RTA           | Anti-CD7-dgA (DA7) | mAb (3A1e)      | CD7                                   | T-NHL, leukemia, GVHD    | Yes      | Yes     | Phase I                | [439] |
| Toxin | Immunotoxin | Ligand | Target antigen | Tumor/Disease | In vitro | In vivo | Clinical trial status | Ref. |
|-------|-------------|--------|----------------|---------------|----------|--------|----------------------|------|
| RTA   | HD37-dgA (IMTOX-19) | mAb (HD37) | CD19 | B-NHL, ALL | Yes | Yes | Phase I | [440, 441] |
| RTA   | RFB4-Fab'-dgA | Fab' (RFB4) | CD22 | B-NHL, leukemia, lymphoma | Yes | Yes | Phase I | [442, 443] |
| RTA   | RFT5-dgA (IMTOX-25) | mAb (RFT5) | CD25 | Hodgkin's lymphoma, CTCL, melanoma, GVHD | Yes | Yes | Phase II | [444-448] |
| RTA   | Ki-4.dgA | mAb (Ki-4) | CD30 | Hodgkin's lymphoma, NHL | Yes | Yes | Phase I | [447, 449, 450] |
| RTA   | RFB4-dgA (IMTOX-22) | mAb (RFB4) | CD22 | B-NHL, CLL, ALL, leukemia, lymphoma, myeloma | Yes | Yes | Phase I | [443, 451, 452] |
| RTA   | Comboxotox (RFB4-dgA / HD37-dgA) | mAb (RFB4) + mAb (HD37) | CD22, CD19 | NHL, ALL | Yes | Yes | Phase I | [453, 454] |
| RTA   | SPV-T3a-dgA + WT1-dgA | mAb (SPV-T3a) + mAb (WT1) | CD3, CD7 | GVHD | Yes | Yes | Phase I/II | [455, 456] |
| RTA   | 3A1e-dgRTA | scFv (3A1e) | CD7 | T-cell leukemia | Yes | | | [457] |
| RTA   | 3A1f-dgRTA | scFv (3A1f) | CD7 | T-cell leukemia | Yes | | | [457] |
| RTA   | UV3-dgRTA | mAb (UV3) | CD54 (ICAM-1) | Myeloma, granulocytes, monocytes | Yes | | | [458] |
| RTA   | H22-dgRTA (CD64-RiA) | mAb (H22) | CD64 | AML, rheumatoid arthritis, monocytes, macrophages | Yes | | | [459-461] |
| RTA   | D5-dgA | mAb (D5) | Cytomegalovirus | Cytomegalovirus (MCMV) | Yes | | | [462] |
| RTA   | C34-dgA | mAb (C34) | Cytomegalovirus | Cytomegalovirus (MCMV) | Yes | | | [462] |
| RTA   | HMS-dgA | IgG (HMS) | Cytomegalovirus | Cytomegalovirus (MCMV) | Yes | | | [462] |
| RTA   | 64.1-dgRTA | mAb (64.1) | CD3 | Lymphoproliferative disease (LPD) | Yes | | | [463, 464] |
| RTA   | HD6-dgA | mAb (HD6) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
| RTA   | HD6-Fab'-dgA | Fab' (HD6) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
| RTA   | UV22-1-dgA | mAb (UV22-1) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
| RTA   | UV22-1-Fab'-dgA | Fab' (UV22-1) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
| RTA   | UV22-2-dgA | mAb (UV22-2) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
| RTA   | UV22-2-Fab'-dgA | Fab' (UV22-2) | CD22 | Leukemia, lymphoma | Yes | | | [443] |
(Table 2) Contd….

| Toxin  | Immunotoxin     | Ligand        | Target antigen          | Tumor/Disease                  | In vitro | In vivo | Clinical trial status | Ref.   |
|--------|-----------------|---------------|-------------------------|--------------------------------|----------|--------|-----------------------|--------|
| RTA    | p67.7-dgA       | mAb (p67.7)   | CD33                    | AML                            |          | Yes    |                        | [465]  |
| RTA    | 120-2A3-dgA     | mAb (120-2A3) | TiR                     | Myeloma, Hodgkin's lymphoma    |          | Yes    |                        | [465]  |
| RTA    | B-B10-dgA       | mAb (B-B10)   | CD25 (IL-2 receptor)    | Myeloma, Hodgkin's lymphoma    |          | Yes    |                        | [465]  |
| RTA    | TDR31-1-dgA     | mAb (TDR31-1) | MHC class II            | Myeloma, Hodgkin's lymphoma    |          | Yes    |                        | [465]  |
| RTA    | SWA11-dg.A      | mAb (SWA11)   | CD24                    | SCLC                           |          | Yes    | Yes                   | [466, 467] |
| RTA    | M5/114-dgA      | mAb (M5/114)  | MCH Class II antigens   | Endothelial cells              |          | Yes    | Yes                   | [468]  |
| RTA    | 11-4.1-dgA      | mAb (11-4.1)  | MCH Class I antigen     | Neuroblastoma                   |          | Yes    | Yes                   | [468, 469] |
| RTA    | E6-dgA          | mAb (E6)      | Prostate-specific membrane antigen (PSMA) | Prostate cancer | Yes    | Yes |                        | [470]  |
| RTA    | 14G2a.dgA       | mAb (14G2a)   | Disialoganglioside GD2  | Neuroblastoma                   |          | Yes    | Yes                   | [471]  |
| RTA    | ch14.18.dgA     | mAb (ch14.18) | Disialoganglioside      | Neuroblastoma                   |          | Yes    |                        | [471]  |
| RTA    | BW704.dgA       | mAb (BW704)   | Disialoganglioside      | Neuroblastoma                   |          | Yes    |                        | [471]  |
| RTA    | chCE7.dgA       | mAb (chCE7)   | 190 kDa Glycoprotein (gp190) | Neuroblastoma | Yes    |                        | [471]  |
| RTA    | FVS191cys-dgRTA | scFv (FVS191) | CD19                    | Leukemia                       |          | Yes    |                        | [472]  |
| RTA    | K4-2C10-dgRA    | mAb (K4-2C10) | CD105 (endoglin)        | Tumor neovascularure, breast cancer | Yes    | Yes |                        | [473]  |
| RTA    | SN6j-dgRA       | mAb (SN6j)    | CD105 (endoglin)        | Tumor neovascularure, breast cancer | Yes    | Yes |                        | [474]  |
| RTA    | SN6k-dgRA       | mAb (SN6k)    | CD105 (endoglin)        | Tumor neovascularure, breast cancer | Yes    | Yes |                        | [474]  |
| RTA    | D5-dgA          | mAb (D5)      | MCMV antigen (murine cytomegalovirus antigen) | CMV infection | Yes    | Yes |                        | [462, 475] |
| RTA    | C34-dgA         | mAb (C34)     | MCMV antigen (murine cytomegalovirus antigen) | CMV infection | Yes    | Yes |                        | [462, 475] |
| RTA    | FF1-4D5-dgA     | mAb (FF1-4D5) | mouse δ H chain of surface IgD (mδsIgD), domain Fd | B-cells | Yes |                        | [476]  |
| RTA    | AMS-15.1-dgA    | mAb (AMS-15.1) | mouse δ H chain of surface IgD (mδsIgD), domain Fd | B-cells | Yes |                        | [476]  |
| RTA    | 11-26-dgA       | mAb (11-26)   | mouse δ H chain of surface IgD (mδsIgD), domain Fd | B-cells | Yes |                        | [476]  |
| Toxin | Immunotoxin | Ligand | Target antigen | Tumor/Disease | In vitro | In vivo | Clinical trial status | Ref. |
|-------|-------------|--------|----------------|---------------|----------|--------|----------------------|------|
| RTA   | JA12.5-dgA  | mAb (JA12.5) | mouse δ H chain of surface IgD (mδsIgD), domain Fd | B-cells | Yes | [476] |
| RTA   | AMS-9.1-dgA | mAb (AMS-9.1) | mouse δ H chain of surface IgD (mδsIgD), domain Fc | B-cells | Yes | [476] |
| RTA   | AMS-28.1-dgA| mAb (AMS-28.1)| mouse δ H chain of surface IgD (mδsIgD), domain Fc | B-cells | Yes | [476] |
| RTA   | H67/1-dgA   | mAb (H67/1) | mouse δ H chain of surface IgD (mδsIgD), domain Fc | B-cells | Yes | [476] |
| RTA   | UCHL1-dgA   | mAb (UCHL1) | CD45RO | HIV | Yes | [477-479] |
| RTA   | My7/Fab1 GAMlg.dgA | mAb (My7) / Fab1 (GAM Ig) | CD13 | Myeloid leukemia | Yes | [465] |
| RTA   | 1G10/Fab1 GAMlg.dgA | mAb (My7) / Fab1 (GAM Ig) | CD15 | Myeloid leukemia | Yes | [465] |
| RTA   | rCD4-dgA    | rCD4 (recombinant CD4) | HIVgp120 | HIV | Yes | [480] |
| RTA   | Fib 75-ricin A chain | mAb (LICR-LOND Fib 75) | Bladder cancer antigen | Bladder cancer | Yes | Yes | [282-284] |
| RTA   | ITR         | IgG (anti-Trypanosoma cruzi surface antigens) | Trypanosoma cruzi surface antigens | Trypanosoma cruzi | Yes | [288] |
| RTA   | Anti-CD25/RTA | mAb (anti-CD25) | CD25 (IL-2 receptor) | Activated lymphocytes | Yes | [367, 407] |
| RTA   | Anti-CD5/RTA | mAb (anti-CD5) | CD5 | T-lymphocytes | Yes | [366] |
| RTA   | BerH2-RTA   | mAb (Ber-H2) | CD30 | Lymphoblastoid, Hodgkin’s lymphoma | Yes | [374, 481] |
| RTA   | H65-RTA (CD5 Plus) (XomaZyme-CD5 Plus) | mAb (H65) | CD5 | | | | | |
| RTA   | 454A12-rRA  | mAb (454A12) | TαR | Breast cancer, leptomeningeal neoplasia | Yes | Yes | Phase I | [488, 489] |
| RTA   | 260F9-rRTA  | mAb (260F9) | 55 kDa breast cancer antigen (p55) | Breast cancer, ovarian cancer | Yes | Yes | Phase I | [490-492] |
| RTA   | XMMME-001-RTA (XomaZyme-Mel) | mAb (XMMME-001) | Melanoma antigen (Proteoglycan) | Melanoma | Yes | Yes | Phase I/II | [493-498] |
| RTA   | 791T/36-RTA (XomaZyme-791) | mAb (791T/36) | 72 kDa cancer antigen (72 kDa TAA) (p72) | Colorectal cancer | Yes | Yes | Phase I | [499, 500] |
| RTA   | T101-RTA    | mAb (T101) | CD5 | CLL | Yes | Yes | Phase I | [501-503] |
(Table 2) Contd….

| Toxin       | Immunotoxin            | Ligand  | Target antigen          | Tumor/Disease                      | In vitro | In vivo | Clinical trial status | Ref.                |
|-------------|------------------------|---------|-------------------------|------------------------------------|----------|--------|-----------------------|---------------------|
| RTA         | T101-RTA               | Fab (T101) | CD5                     | T-cell leukemia                     | Yes      |        |                       | [504]               |
| RTA         | T101-RTA               | F(ab')₂ (T101) | CD5                     | T-cell leukemia                     | Yes      |        |                       | [504]               |
| RTA         | MDX-RA (4197X-RA)      | mAb (4197X) | Human lens epithelial antigen | Posterior capsule opacification (secondary cataract) | Yes     |        | Phase III             | [505-507]           |
| RTA         | RTA-EGF                | EGF     | EGFR                    | Epidermoid carcinoma, EGFR⁺ cells  | Yes      |        |                       | [84, 417, 508]      |
| RTA         | WT82-RTA               | mAb (WT82) | CD8                     | T-cell ALL                         | Yes      |        |                       | [509]               |
| RTA         | 2G5-RTA                | mAb (2G5) | HLA-DR                  | Lymphoma, B cells, T cells, dendritic cells | Yes     |        |                       | [510]               |
| RTA         | CLL2m-RTA              | mAb (CLL2m) | CLL2m antigen           | ND, CLL                            | Yes      |        |                       | [511]               |
| RTA         | HAE3-RTA               | mAb (HAE3) | Glycophorin-A           | Erythromyeloblastoid leukemia      | Yes      |        |                       | [512]               |
| RTA         | HAE9-RTA               | mAb (HAE9) | Erythroid antigen       | Erythromyeloblastoid leukemia      | Yes      |        |                       | [512]               |
| RTA         | BMAC1/RTA              | mAb (BMCA1) | CD45                   | Allograft rejection                | Yes      |        |                       | [369]               |
| RTA         | OX1/RTA                | mAb (OX1) | rat CD45                | Allograft rejection                | Yes      |        |                       | [369]               |
| RTA         | SN7-RTA                | mAb (SN7) | SN7 B-cell antigen      | B-cell leukemia, B-cell lymphoma   | Yes  Yes |        |                       | [513]               |
| RTA         | HB21-RTA               | mAb (HB21) (5E9) | TfR                    | Ovarian cancer, epidermoid carcinoma | Yes      |        |                       | [492]               |
| RTA         | R17217-rRTA            | mAb (R17217) | Murine TfR              | Lymphoma                           | Yes  Yes |        |                       | [514]               |
| RTA         | YE1/9.9-RTA            | mAb (YE1/9.9) | Murine TfR              | Lymphoma                           | Yes      |        |                       | [514]               |
| RTA         | 0.5beta-RTA            | mAb (0.5beta) | HIV gp120               | HIV                                | Yes      |        |                       | [515]               |
| RTA         | Anti-gp120-RTA         | mAb (anti-gp120) | HIV gp120               | HIV                                | Yes      |        |                       | [516]               |
| RTA         | Anti-gp120-RTA         | IgG (anti-gp120) | HIV gp120               | HIV                                | Yes      |        |                       | [517]               |
| RTA         | Anti-gp41-RTA          | mAb (7B2)  | HIV gp120               | HIV                                | Yes  Yes |        |                       | [516, 518, 519]     |
| RTA         | 171A-RTA               | mAb (171A) | EpCAM                   | Colorectal cancer                  | Yes      |        |                       | [520]               |
| RTA         | MT151-RTA              | mAb (MT151) | CD4                    | ALL                                | Yes      |        |                       | [434]               |
| RTA         | MRK-RTA                | mAb (MRK16) | P-glycoprotein          | Kidney cancer                       | Yes      |        |                       | [521]               |
| RTA         | KM231-RTA              | mAb (KM231) | Sialyl-Lea-antigen      | Gastric cancer, colorectal cancer  | Yes  Yes |        |                       | [522]               |
| RTA         | UCHT1 F(ab')₂-RTA      | F(ab')₂ (UCHT1) | CD3c                  | GVHD                               | Yes  Yes |        |                       | [523]               |
| RTA         | WT32-RTA               | mAb (WT32) | CD3                    | T-cell ALL                         | Yes      |        |                       | [524]               |
| RTA         | WT1-RTA                | mAb (WT1)  | CD7                    | T-cell ALL, lymphoma               | Yes      |        |                       | [524, 525]          |
| Toxin   | Immunotoxin | Ligand   | Target antigen | Tumor/Disease                  | In vitro | In vivo | Clinical tria... |
|---------|-------------|----------|----------------|-------------------------------|----------|---------|-----------------|
| RTA     | 528-rRA     | mAb (528)| EGFR           | Lung cancer                   | Yes      | Yes     |                 |
| RTA     | Anti-Tac-RTA| mAb (anti-CD25) | CD25 (IL-2 receptor) | T-cell leukemia, activated lymphocytes | Yes      |         |                 |
| RTA     | TF-RTA      | Transferrin | TfR             | T-cell ALL, prostate cancer, malaria (Plasmodium falciparum) | Yes      |         |                 |
| RTA     | TF-KFT25-RTA| Transferrin | TfR             | T-cell ALL                   | Yes      |         |                 |
| RTA     | 520C9-RTA   | mAb (520C9) | HER2           | Breast cancer                | Yes      |         |                 |
| RTA     | 741 F8-RTA  | mAb (741 F8) | HER2           | Breast cancer                | Yes      |         |                 |
| RTA     | 454C11-RTA  | mAb (454C11) | HER2           | Breast cancer                | Yes      |         |                 |
| RTA     | STI-RTA     | mAb (STI) | CD5            | T-cell ALL                   | Yes      |         |                 |
| RTA     | RTA-9.2.27  | mAb (9.2.27) | Melanoma-associated antigen (p250) | Melanoma | Yes      | Yes     |                 |
| RTA     | BrE-3-RTA   | mAb (BrE-3) | Mucin, MUC1    | SCLC                         | Yes      |         |                 |
| RTA     | C242-RTA (ICI D0490) | mAb (C242) | Mucin           | Colorectal cancer            | Yes      | Yes     |                 |
| RTA     | 84.1c-RTA   | mAb (84.1c) | mIgE           | Allergies                    | Yes      | Yes     |                 |
| RTA     | HRS-3.dgA   | mAb (HRS-3) | CD30           | Hodgkin's lymphoma, myeloma  | Yes      |         |                 |
| RTA     | HRS-3Fab',dgA | Fab' (HRS-3) | CD30           | Hodgkin's lymphoma           | Yes      |         |                 |
| RTA     | HRS-4.dgA   | mAb (HRS-4) | CD30           | Hodgkin's lymphoma           | Yes      |         |                 |
| RTA     | HRS-4Fab',dgA | Fab' (HRS-4) | CD30           | Hodgkin's lymphoma           | Yes      |         |                 |
| RTA     | HRS-1.dgA   | mAb (HRS-1) | CD30           | Hodgkin's lymphoma           | Yes      |         |                 |
| RTA     | 90Y-C110-RTA| mAb (C110) | Carcinoembryonic antigen (CEA) | Colon cancer | Yes      |         |                 |
| RTA     | C19-RTA     | mAb (C19) | Carcinoembryonic antigen (CEA) | Colorectal cancer | Yes      |         |                 |
| RTA     | M6-RTA      | mAb (M6) | L2C IgM idiootype | B-cell leukemia | Yes      |         |                 |
| RTA     | 38.13-RTA   | mAb (38.13) | TH ceramide (Pk antigen) | Burkitt's lymphoma | Yes      |         |                 |
| RTA     | Fab'-anti-L3T4-A | Fab' (anti-L3T4) | Murine T-cell antigen (limpet hemocyanin-specific T-helper lymphocytes) | Lymphoma | Yes      |         |                 |
| RTA     | 486P-RTA    | mAb (486P 3-12-1) | Bladder cancer antigen | Bladder cancer | Yes      |         |                 |
| RTA     | RFT11-A     | mAb (RFT11) | CD2            | T-cell ALL                   | Yes      |         |                 |
| RTA     | 35.1-A      | mAb (35.1) | CD2            | T-cell ALL                   | Yes      |         |                 |

(Ref. [526, 367, 527, 327, 528, 529, 530, 531, 280, 532, 533, 534, 465, 535, 535, 535, 535, 536, 537, 409, 324, 538, 539, 540, 464, 540])
| Toxin | Immunotoxin | Ligand | Target antigen | Tumor/Disease | In vitro | In vivo | Clinical trial status | Ref. |
|-------|-------------|--------|----------------|--------------|---------|--------|----------------------|------|
| RTA   | 9.6-A       | mAb    | CD2            | T-cell ALL   | Yes     |        |                      | [464,|
|       |             | (9.6)  |                |              |         |        |                      | 540] |
| RTA   | 10.2-A      | mAb    | CD5            | T cells      | Yes     |        |                      | [464]|
|       |             | (10.2) |                |              |         |        |                      |      |
| RTA   | 452-D9-RTA  | mAb    | gp74           | c-Ha-ras expression tumors, Kirsten sarcoma | Yes     | Yes    |                      | [541,|
|       |             | (452-D9)|                |              |         |        |                      | 542] |
| RTA   | Thyroglobulin-RTA | mAb | Ig (anti-thyroglobulin) | Thyroiditis | Yes     |        |                      | [543]|
| RTA   | 96.5-RTA    | mAb    | p97            | Melanoma     | Yes     |        |                      | [544]|
| RTA   | SN5d-RTA    | mAb    | CD10 (CALLA)   | Pre-B-cell ALL | Yes     | Yes    |                      | [545]|
| RTA   | SN5-RTA     | mAb    | CD10 (CALLA)   | Pre-B-cell ALL | Yes     | Yes    |                      | [545]|
| RTA   | Anti-CALLA-RTA | mAb | (anti-CALLA) CD10 (CALLA) | Burkitt's lymphoma, (pre-B-cell ALL) | Yes     |        |                      | [546]|
| RTA   | Anti-CALLA-RTA | Fab’ | (anti-CALLA) CD10 (CALLA) | Burkitt's lymphoma, (pre-B-cell ALL) | Yes     |        |                      | [546]|
| RTA   | Anti-GE2-RTA | mAb    | GE2            | Glioma       | Yes     |        |                      | [410]|
| RTA   | D1/12-RTA   | mAb    | HLA-DR         | Glioma       | Yes     |        |                      | [410]|
| RTA   | AR3-RTA     | mAb    | CAR-3          | Gastric cancer | Yes     |        |                      | [411]|
| RTA   | 8C-RTA      | mAb    | Ovarian cancer antigen | Ovarian cancer | Yes     | Yes    |                      | [547]|
| RTA   | M2A-RTA     | mAb    | Ovarian cancer antigen | Ovarian cancer | Yes     | Yes    |                      | [547]|
| RTA   | Anti-vasopressin-RTA | mAb | (anti-vasopressin) | Vasopressin | Pituitary cancer | Yes     | Yes    |                      | [548]|
| RTA   | Cluster 2 Mab-Fab’- Anti-Mouse/RAT-RTA | mAb (Cluster 2) | Cluster 2 antigen-SCLC | SCLC | Yes     |        |                      | [549]|
| RTA   | SOKT1-RTA   | mAb    | T-cell antigen | T cells      | Yes     |        |                      | [550]|
| RTA   | MGb2-RTA    | mAb    | Gastric antigen | Gastric cancer | Yes     |        |                      | [551]|
| RTA   | MG11-RTA    | mAb    | Gastric antigen | Gastric cancer | Yes     |        |                      | [551]|
| RTA   | MoAb-16-RTA | mAb    | Oncofetal antigen | Leukemia | Yes     | Yes    |                      | [368,|
|       |             | (16)   |                |              |         |        |                      | 552] |
| RTA   | Anti-laryngeal cancer-RTA | mAb (anti-laryngeal cancer) | Laryngeal cancer antigen | Laryngeal cancer | Yes     |        |                      | [553,|
|       |             | (anti-laryngeal cancer) |                |              |         |        |                      | 554] |
| RTA   | 317G5-RTA   | mAb    | 42 kDa glycoprotein (p42) | Breast cancer | Yes     |        |                      | [555]|
| RTA   | SEN36-RTA   | mAb    | CD56 (N-CAM)   | SCLC         | Yes     |        |                      | [556]|
| RTA   | Anti-mu-RTA | mAb    | Mu chain of IgM | Myeloma      | Yes     |        |                      | [557]|
| RTA   | SEN7-bR     | mAb    | CD56 (N-CAM)   | SCLC         | Yes     |        |                      | [558]|
| Toxin             | Immunotoxin                          | Ligand                        | Target antigen                                      | Tumor/Disease                                                                 | In vitro | In vivo | Clinical trial status | Ref. |
|-------------------|--------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|----------|---------|-----------------------|------|
| RTA               | Anti-CRF-RTA                         | mAb (anti-CRF)                | CRF (corticotropin-releasing factor)                | Immunolesioning (CRF neurons within the paraventricular nucleus of the hypothalamus) | Yes       |         |                       | [559]|
| RTA               | Anti-asialo-GM2-RTA                  | mAb (anti-asialo-GM2)         | Asialo-GM2                                          | Lymphoma                                                                       | Yes       |         |                       | [560]|
| RTA               | Anti-H-2d-RTA                        | mAb (anti-H-2d)               | H-2d                                               | Lymphoma                                                                       | Yes       |         |                       | [560]|
| RTA               | V beta 6-specific immunotoxin (VIT6) | mAb (anti-V beta 6-specific)  | V beta-associated antigen receptor                 | Myasthenia gravis                                                             | Yes       |         |                       | [561]|
| RTA               | schM21-ricin A                       | scFv (schM21)                 | Astrocytoma- and medulloblastoma-associated antigen | Medulloblastoma                                                                | Yes       |         |                       | [562]|
| RTA               | ONS-M21-RTA (ORA)                    | mAb (ONS-M21)                 | Astrocytoma- and medulloblastoma-associated antigen | Medulloblastoma                                                                | Yes       |         |                       | [563]|
| RTA               | Anti-VIP-RTA                         | mAb (anti-VIP)                | Vasoactive intestinal polypeptide (VIP)            | Pheochromocytoma, immunolesioning (neurons within the SCN) (suprachiasmatic nucleus of the hypothalamus) Yes | Yes       |         |                       | [564]|
| RTA               | Anti-Thy 1.2-RTA                     | IgG (anti-Thy 1.2)            | CD90.2 (Thy 1.2)                                    | Leukemia                                                                       | Yes       | Yes     |                       | [565]|
| RTA               | IgE-ricin A-chain                    | mAb (IR162)                   | IgE Fc receptor                                     | Allergies, basophil leukemia                                                   | Yes       | Yes     |                       | [566, 567]|
| RTA               | OX-40-ricin A                        | mAb (anti-OX-40)             | OX-40                                              | Autoimmune encephalomyelitis (EAE)                                             | Yes       | Yes     |                       | [568]|
| RTA               | SWA20-RTA                            | mAb (SWA20)                   | CD24                                               | SCLC                                                                            | Yes       |         |                       | [467]|
| RTA               | Anti-T. cruzi-RTA                    | IgG (anti-Trypanosoma cruzi surface antigens) | Trypanosoma cruzi surface antigens                   | Trypanosoma cruzi                                                           | Yes       | Yes     |                       | [288]|
| RTA               | UCHT1/F(ab')-ricin A chain           | mAb (UCHT1)/F(ab') (anti-IgG) | CD3                                                | T-cell lymphoma                                                                | Yes       |         |                       | [303]|
| RTA               | RTA-NIM-R7                           | mAb (NIM-R7)                  | p58                                                | Lymphoma                                                                       | Yes       |         |                       | [569]|
| Saporin           | Anti-Thy 1.1 (F(ab')2)-saporin       | F(ab')2; (anti-Thy 1.1) (OX7) | CD90.1 (Thy 1.1)                                    | AKR-A lymphoma                                                                  | Yes       | Yes     |                       | [570]|
| Saporin           | Anti-Thy 1.1 (mAb)-saporin           | mAb (anti-Thy 1.1) (OX7)       | CD90.1 (Thy 1.1)                                    | AKR-A lymphoma                                                                  | Yes       | Yes     |                       | [570]|
| Saporin           | 192 IgG-saporin (192-IgG-SAP) (IgG-192) | mAb (192)                    | Rat nerve growth factor receptor (p75NTR)           | Immunolesioning (cholinergic basal forebrain neurons), Alzheimer's disease     | Yes       | Yes     |                       | [571-574]|
| Saporin           | OM124-saporin                        | mAb (OM124)                   | CD22                                               | Burkitt's B-cell lymphoma, Epstein-Barr virus-infected B lymphoblastoid cells | Yes       | Yes     |                       | [370]|

(Table 2) Contd....
(Table 2) Contd….

| Toxin         | Immunotoxin                                       | Ligand      | Target antigen | Tumor/Disease                        | In vitro | In vivo | Clinical trial status | Ref.  |
|---------------|---------------------------------------------------|-------------|----------------|--------------------------------------|----------|---------|-----------------------|-------|
| Saporin       | M24-saporin (anti-CD80/saporin)                   | mAb (M24)   | CD80           | Hodgkin's lymphoma, Burkitt's lymphoma | Yes      |         |                       | [295] |
| Saporin       | 1G10-saporin (anti-CD86/saporin)                  | mAb (1G10)  | CD86           | Hodgkin's lymphoma, Burkitt's lymphoma | Yes      |         |                       | [295] |
| Saporin       | M24-saporin / 1G10-saporin                         | mAb (M24) / mAb (1G10) | CD80 + CD86 | Burkitt's lymphoma, Hodgkin's lymphoma | Yes      |         |                       | [295] |
| Saporin       | OKT11-saporin                                      | mAb (OKT11) | CD2            | T-CLL                               | Yes      |         |                       | [575, 576] |
| Saporin       | 7A10C9-saporin                                     | mAb (7A10C9) | CD2            | T-CLL                               | Yes      |         |                       | [575] |
| Saporin       | OKT1-saporin                                       | OKT1        | CD5            | T-lymphocytes, B-CLL                | Yes      | Yes     |                       | [577-579] |
| Saporin       | BsAb (HB2 x anti-saporin)/(OKT10 x anti-saporin)/saporin | Bispecific F(ab')2; (HB2 x anti-saporin)/(OKT10 x anti-saporin) | CD7 + CD38 | T-ALL                               | Yes      |         |                       | [580] |
| Saporin       | BsAb (HB2 x anti-saporin)/saporin                  | Bispecific F(ab')2; (HB2 x anti-saporin) | CD7    | T-ALL                               | Yes      |         |                       | [581] |
| Saporin       | BsAb (OKT10 x anti-saporin)/saporin                | Bispecific F(ab')2; (OKT10 x anti-saporin) | CD38   | T-ALL                               | Yes      |         |                       | [580] |
| Saporin       | HB2-saporin                                        | mAb (HB2)   | CD7            | Lymphoma, T-ALL                     | Yes      | Yes     |                       | [582-584] |
| Saporin       | BU12-saporin                                       | mAb (BU12)  | CD19           | B-LL, Burkitt's lymphoma            | Yes      |         |                       | [585-587] |
| Saporin       | Rituximab/saporin-S6                              | mAb (rituximab) | CD20   | NHL                                 | Yes      |         |                       | [588] |
| Saporin       | BsAb (4KB128 x anti-saporin)/saporin               | Bispecific F(ab')2; (4KB128 x anti-saporin) | CD22   | Burkitt's lymphoma                  | Yes      |         |                       | [589] |
| Saporin       | BsAb (HD37 x anti-saporin)/saporin                 | Bispecific F(ab')2; (4KB128 x anti-saporin) | CD19   | Burkitt's lymphoma                  | Yes      |         |                       | [589] |
| Saporin       | BsAb (MB-1 x anti-saporin)/saporin                 | Bispecific F(ab')2; (4KB128 x anti-saporin) | CD37   | Burkitt's lymphoma                  | Yes      |         |                       | [589] |
| Saporin       | BsAb (4KB128 x anti-saporin)/(RFB9 x anti-saporin)/saporin | Bispecific F(ab')2; (4KB128 x anti-saporin)/(RFB9 x anti-saporin) | CD22   | Lymphoma, CLL                       | Yes      | Yes     | Phase I               | [590] |
| Saporin       | BsAb (4KB128 x anti-saporin)/(HD6 x anti-saporin)/saporin | Bispecific F(ab')2; (4KB128 x anti-saporin)/(HD6 x anti-saporin) | CD22   | B-cell lymphoma                     | Yes      | Yes     | Phase I               | [591] |
| Saporin       | IB4/saporin-S6                                     | mAb (IB4)   | CD38 (alpha-D-Galactopyranoside residues) | NHL     | Yes      |                       | [592] |
| Saporin       | Anti-B7-1-saporin                                  | mAb (B7-24) | CD80           | Burkitt's lymphoma, Hodgkin's lymphoma | Yes      |         |                       | [593] |
| Toxin       | Immunotoxin                      | Ligand     | Target antigen                                             | Tumor/Disease                                                                 | In vitro | In vivo | Clinical trial status | Ref.   |
|------------|----------------------------------|------------|------------------------------------------------------------|-------------------------------------------------------------------------------|----------|---------|----------------------|--------|
| Saporin    | Anti-CTLA-4 (83)-saporin (83-saporin) | scFv (83)  | CD152 (Cytotoxic T-lymphocyte antigen-4, CTLA-4)          | Transplantation tolerance, leukemia, EBV-positive B-cell lymphoblastoid         | Yes      | Yes     | [594-596]           |
| Saporin    | Anti-CTLA-4 (40)-saporin (40-saporin) | scFv (40)  | CD152 (Cytotoxic T-lymphocyte antigen-4, CTLA-4)          | Transplantation tolerance, EBV-positive B-cell lymphoblastoid                   | Yes      | Yes     | [594, 595]          |
| Saporin    | Anti-CTLA-4 (67)-saporin (67-saporin) | scFv (67)  | CD152 (Cytotoxic T-lymphocyte antigen-4, CTLA-4)          | Transplantation tolerance, leukemia                                            | Yes      |         | [596]                |
| Saporin    | ATG-saporin-S6                    | Antithymocyte globulin (ATG) | Thymocyte | Lymphoma, leukemia                                         | Yes      |         | [597]                |
| Saporin    | HD6-saporin                       | mAb (HD6)  | CD22                                              | Lymphoma, B-CLL                                                                | Yes      |         | [598]                |
| Saporin    | HD39-saporin                      | mAb (HD39) | CD22                                              | Lymphoma, B-CLL                                                                | Yes      |         | [598]                |
| Saporin    | HD37-saporin                      | mAb (HD37) | CD19                                              | B-cell lymphoma                                                               | Yes      |         | [598]                |
| Saporin    | Saporin-EGF (SE)                  | EGF        | EGFR                                             | Breast cancer, sarcoma, adenocarcinoma, cervical cancer                       | Yes      | Yes     | [599-602]           |
| Saporin    | SA2E                              | EGF        | EGFR                                             | Breast cancer                                                                  | Yes      | Yes     | [599-601]           |
| Saporin    | FGF-SAP                           | FGF        | FGFR                                             | Melanoma, teratocarcinoma, neuroblastoma                                      | Yes      | Yes     | [603]                |
| Saporin    | FGF2-SAP                          | FGF-2      | FGFR                                             | Bladder cancer                                                                 | Yes      |         | [604]                |
| Saporin    | bFGF-saporin                      | bFGF       | bFGFR                                           | Prostate cancer                                                                | Yes      | Yes     | [605]                |
| Saporin    | ch25A11-saparin                   | mAb (ch25A11) | CUB domain-containing protein 1 (CDCP1) | Prostate cancer                                                                | Yes      | Yes     | [606]                |
| Saporin    | hj591-saporin                     | mAb (hj591) | Prostate-specific membrane antigen (PSMA)         | Prostate cancer                                                                | Yes      | Yes     | [607]                |
| Saporin    | Ep2-saporin                       | mAb (Ep2)  | Proteoglycan, p250                                | Melanoma                                                                       | Yes      |         | [608]                |
| Saporin    | ML30-saporin                      | mAb (ML30) | Heat shock protein 65 kDa (HSP65)                  | Leukemic monocyte lymphoma, pancreatic cancer                                | Yes      |         | [609, 610]          |
| Saporin    | 48-127/saporin-S6                 | mAb (48-127) | gp54                                             | Bladder cancer                                                                 | Yes      |         | [379]                |
| Saporin    | Anti-ALCAM/CD166 scFv-saporin     | scFv (I/F8) | CD166 (activated leukocyte cell adhesion molecule, AL-CAM) | SCLC, ovarian cancer                                                           | Yes      |         | [611]                |
| Saporin    | 7E4B11-saporin                    | mAb (7E4B11) | RPTPβ                                           | Astrocytic tumor, glioblastoma                                                 | Yes      | Yes     | [612]                |
| Toxin    | Immunotoxin                  | Ligand                      | Target antigen               | Tumor/Disease                        | In vitro | In vivo | Clinical trial status | Ref.               |
|----------|------------------------------|-----------------------------|------------------------------|--------------------------------------|----------|--------|-----------------------|--------------------|
| Saporin  | Ber-H2-Saporin               | mAb (Ber-H2)                | CD30                         | Hodgkin's lymphoma, anaplastic       | Yes      | Yes    | Phase I              | [374, 613-616]     |
|          |                              |                             |                              | large-cell lymphoma (ALCL)           |          |        |                       |                    |
| Saporin  | Sap-ac-LDL                   | Acetylated LDL              | Rat scavenger receptor       | Immunolesioning (microglia)          | Yes      |        |                       | [617, 618]         |
| Saporin  | Anti-basigin-2-saporin       | mAb (anti-basigin-2)        | Human basigin-2 (CD147)      | Ovarian cancer                       | Yes      |        |                       | [619]              |
| Saporin  | Anti-basigin-2-saporin       | mAb (anti-basigin-2)        | Human basigin-2 (CD147)      | Ovarian cancer                       | Yes      |        |                       | [619]              |
| Saporin  | M290-SAP                     | mAb (M290)                  | CD103                        | Organ allograft rejection and GVHD   | Yes      | Yes    |                       | [620]              |
| Saporin  | Anti-ChAT IgG-saporin        | mAb (anti-ChAT)             | Choline acetyltransferase (ChAT) | Parkinson’s and schizophrenia      | Yes      |        |                       | [621-623]          |
| Saporin  | Anti-DAT-saporin             | mAb (anti-DAT)              | Dopamine transporter (DAT)   | Immunolesioning (dopaminergic neurons) | Yes      |        |                       | [624]              |
| Saporin  | Anti-DBH-saporin             | mAb (anti-DBH)              | Dopamine beta-hydroxylase (DBH) | Immunolesioning (noradrenergic neurons) | Yes      |        |                       | [625-627]          |
| Saporin  | Anti-SERT-SAP                | mAb (anti-SERT)             | Serotonin reuptake transporter (SERT) | Immunolesioning (serotonergic neurons) | Yes      | Yes    |                       | [628]              |
| Saporin  | Bombesin-SAP                 | Bombesin                    | Gastrin-releasing peptide receptor (GRPR) | Immunolesioning (GRPR+ neurons)      | Yes      | Yes    |                       | [629, 630]         |
| Saporin  | CCK-saporin                  | CCK (cholecystokinin)       | Cholecystokinin type 2 receptor (CCK2) | Immunolesioning (CCK+ neurons)      | Yes      |        |                       | [631]              |
| Saporin  | CRF-SAP                      | CRF (corticotropin-releasing factor) | CRF receptor               | Immunolesioning (CRFR+ cells)        | Yes      | Yes    |                       | [632, 633]         |
| Saporin  | CTB-SAP                      | CTB (cholera toxin B-subunit) | GM1 ganglioside             | Immunolesioning (paraplegia)         | Yes      |        |                       | [634]              |
| Saporin  | Dermorphin–saporin (MOR-SAP) | Dermorphin                  | Mu opioid receptor (MOR)     | Immunolesioning (MOR+ neurons)       | Yes      |        |                       | [631]              |
| Saporin  | Galanin-saporin (Galsap)     | Galanin                     | Galanin-1 receptor (GallR1)  | Immunolesioning (GallR1+ neurons)    | Yes      |        |                       | [635]              |
| Saporin  | GAT1-saporin                 | IgG (GAT1)                  | GABA-transporter-1           | Immunolesioning (MSDB neurons), Alzheimer’s disease | Yes      |        |                       | [636]              |
| Saporin  | Lep-SAP                      | Leptin                      | Leptin receptor              | Immunolesioning (leptin receptor+ neurons) | Yes      |        |                       | [637, 638]         |
| Saporin  | Anti-Mac-1-SAP               | mAb (anti-Mac-1)            | CD11b (Mac-1)                | Immunolesioning (Mac-1+ neurons, microglia) | Yes      | Yes    |                       | [639-642]          |
| Toxin        | Immunotoxin                                      | Ligand               | Target antigen                              | Tumor/Disease                                                                 | In vitro | In vivo | Clinical trial status | Ref.       |
|-------------|--------------------------------------------------|----------------------|---------------------------------------------|--------------------------------------------------------------------------------|----------|---------|-----------------------|------------|
| Saporin     | ME20.4 IgG-saporin                                | mAb (ME20.4)         | Primate p75 low-affinity neurotrophin receptor (p75NTR) | Immunolesioning (p75NTR+ neurons)                                               |         |         | Yes                   | [643, 644] |
| Saporin     | UF008/SAP                                         | IgG (UF008)          | Melanopsin                                  | Immunolesioning (intrinsically photosensitive retinal ganglion cells, ipRGCs)   | Yes      | Yes     | Yes                   | [645, 646] |
| Saporin     | NK3-SAP                                          | Neurokinin-3 (NK3)   | Neurokinin-3 receptor (NK3R)                | Immunolesioning (NK3R+ neurons)                                                 |         |         | Yes                   | [647]      |
| Saporin     | NPY-SAP                                          | Neuropeptide Y (NPY) | Neuropeptide Y receptor (NPYR)              | Immunolesioning (NPYR+ neurons)                                                 |         |         | Yes                   | [648, 649] |
| Saporin     | OXY-SAP                                          | Oxytocin             | Oxytocin receptors (OXYR)                  | Immunolesioning (OXYR+ neurons)                                                 | Yes      | Yes     | Yes                   | [650]      |
| Saporin     | Substance P-saporin                               | Substance P          | Neurokinin-1 receptor (NK1R) (Substance P receptor) | Immunolesioning (NK1R+ neurons), hyperalgesia                                   |         |         | Yes                   | [651-653]  |
| Saporin     | Hypocretin-saporin                                | Hypocretin (orexin)  | Hypocretin-2 receptor                       | Narcolepsy (parvalbumin and cholinergic neurons)                               | Yes      |         |           | [654]      |
| Saporin     | TEC-T4-saporin                                    | mAb (TEC-T4)         | CD4                                         | T cells                                                                         | Yes      |         | Yes                   | [655]      |
| Saporin     | MB-1 x anti-sap-1/saporin                         | Bispecific mAb (MB-1 x anti-sap-1) | CD37                                         | Burkitt's lymphoma                                                             |         |         | Yes                   | [589]      |
| Saporin     | OKT10-saporin                                     | mAb (OKT10)          | CD38                                        | T-cell ALL, lymphocytes, macrophages                                             |         | Yes     | Yes                   | [584]      |
| Saporin     | Campath-1-saporin                                 | mAb (Campath-1)      | CD52                                        | GVHD, myeloid cells                                                             | Yes      | Yes     | Yes                   | [656]      |
| Saporin     | TEC IgM-SAP                                       | mAb (TEC IgM)        | Immunoglobulin heavy chain                  | Burkitt’s lymphoma                                                             |         |         | Yes                   | [657]      |
| Saporin     | 8A-saporin                                        | mAb (8A)             | 8A plasma cell-associated antigens          | Multiple myeloma, Burkitt’s lymphoma                                             |         |         | Yes                   | [658]      |
| Saporin     | 62B1-saporin                                      | mAb (62B1)           | 62B1 plasma cell-associated antigens        | Multiple myeloma, Burkitt’s lymphoma                                             |         |         | Yes                   | [658]      |
| Saporin     | 3BIT (BU12-saporin / OKT10-saporin + 4KB128-saporin) | mAb (BU12) / (OKT10) / (4KB128) | CD19 + CD22 + CD38                         | Burkitt’s lymphoma                                                             | Yes      | Yes     | Yes                   | [659]      |
| Saporin     | BU12-saporin / OKT10-saporin                       | mAb (BU12) / (OKT10) | CD19 + CD38                                 | Burkitt’s lymphoma                                                             |         |         | Yes                   | [586]      |
| Saporin     | HB2-saporin / OKT10-saporin                       | mAb (HB2) / (OKT10)  | CD7 + CD38                                  | T-cell ALL                                                                     |         | Yes     | Yes                   | [584]      |
| Saporin     | B3/25-SO6                                         | mAb (B3/25)          | TIR                                         | Leukemia                                                                      | Yes      |         |           | [660]      |
| Saporin     | LAM3/saporin                                      | mAb (LAM3)           | M5b leukemia antigen                        | Acute non-lymphoid leukemia (ANLL)                                              | Yes      |         |           | [610, 661] |
| Saporin     | Tf-saporin                                        | Transferrin          | TfR                                         | Prostate cancer                                                                | Yes      |         |           | [529]      |
| Toxin | Immunotoxin | Ligand | Target antigen | Tumor/Disease | In vitro | In vivo | Clinical trial status | Ref.  |
|-------|-------------|--------|----------------|---------------|----------|--------|----------------------|------|
| Saporin | uPA-SAP | uPAcS (urokinase-type plasminogen activator) | Urokinase receptor | Lymphoma | Yes | | | [662] |
| Saporin | 11A8-saporin | mAb (11A8) | bFGFR | Ovarian cancer | Yes | Yes | | [663] |
| Saporin | Anti-CD8-saporin | mAb (anti-CD8) | CD8 | T-cell lymphoma | Yes | | | [655] |
| Saporin | HBEGF-saporin | HB-EGF | EGFR | Breast cancer, bladder cancer, melanoma, leukemia, colon cancer, renal cancer, ovarian cancer, prostate cancer, non-small cell lung cancer (NSCLC), brain cancer | Yes | | | [664] |
| Saporin | HBEGF-L32-saporin | HB-EGF | EGFR | Breast cancer, bladder cancer, melanoma, leukemia, colon cancer, renal cancer, ovarian cancer, prostate cancer, non-small cell lung cancer (NSCLC), brain cancer | Yes | Yes | | [664] |
| Saporin | B-B10-saporin | mAb (B-B10) | CD25 (IL-2 receptor) | GVHD | Yes | | | [665] |
| Saporin | W6/800E6-SAP | mAb (W6/800E6) | HER2 | Breast cancer | Yes | | | [666] |
| Saporin | W6/900H1-SAP | mAb (W6/900H1) | HER2 | Breast cancer | Yes | | | [666] |
| Saporin | H2-D'-saporin | H2-Dδ MHC class I tetramer | T-cell receptor (TCR) | diabetes mellitus, CD8+ T cells | Yes | | | [667] |
| Saporin | 2F8-saporin | mAb (2F8) | CD163 (SR-A) | Ovarian cancer | Yes | Yes | | [668] |
| Saporin | Insulin-saporin (saporin insulin complex, SIC) | Insulin | Insulin receptor | Ovarian cancer, hepatocellular carcinoma | Yes | | | [669] |
| Saporin | B-B2-saporin | mAb (BB2) | Myeloma antigen | Multiple myeloma | Yes | | | [670] |
| Saporin | B-B4-saporin | mAb (BB4) | Myeloma antigen | Multiple myeloma | Yes | | | [670] |
| Saporin | Anti-epithelial antigen-saporin 6 | mAb (anti-epithelial antigen) | Epithelial antigen | Colon cancer, epidermoid carcinoma | Yes | | | [302] |
| Saporin | Anti-SA-1-saporin | mAb (anti-SA-1) | mAb (SA-1) (16/6 idiotype binding to DNA) | Systemic lupus erythematosus (SLE) | Yes | Yes | | [671] |
| Saporin | Anti-Id-saporin | mAb (anti-Id) | mAb (Anti-Id) (anti-lymphoma idiotype) | B-cell leukemia | Yes | Yes | | [672] |
| Saporin | HB6-1 x anti-sap-1/saporin | Bispecific mAb (HB6-1 x anti-sap-1) | k-chain | Burkitt's lymphoma | Yes | | | [589] |
| Saporin | M15-8 x anti-sap-1/saporin | Bispecific mAb (M15-8 x anti-sap-1) | μ-chain | Burkitt's lymphoma | Yes | | | [589] |
| Toxin     | Immunotoxin                             | Ligand                                      | Target antigen                  | Tumor/Disease                                    | In vitro | In vivo | Clinical trial status | Ref. |
|-----------|-----------------------------------------|---------------------------------------------|----------------------------------|--------------------------------------------------|----------|--------|-----------------------|------|
| Saporin   | RFB-9 x anti-sap-1/saporin              | Bispecific mAb (RFB-9 x anti-sap-1)         | CD19                             | Burkitt's lymphoma                               | Yes      |        | [589]                 |
| Saporin   | WR17 x anti-sap-1/saporin               | Bispecific mAb (WR17 x anti-sap-1)          | CD37                             | Burkitt's lymphoma                               | Yes      |        | [589]                 |
| Saporin   | LAM7/saporin                            | mAb (LAM7)                                 | M5b leukemia antigen             | Acute non-lymphoid leukemia (ANLL)               | Yes      |        | [610, 661]            |
| Saporin   | 62B8-saporin 6                          | mAb (62B8)                                 | 62B8 myeloma antigen             | Multiple myeloma                                 | Yes      |        | [658]                 |
| Saporin   | F(ab')2-saporin/UCHT1                   | F(ab')2 (anti-IgG) / mAb (UCHT1)            | CD3                              | T-cell lymphoma                                  | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/anti-CD2                | F(ab')2 (anti-IgG) / mAb (anti-CD2)         | CD2                              | T-cell lymphoma                                  | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/anti-CD5                | F(ab')2 (anti-IgG) / mAb (anti-CD5)         | CD5                              | T-cell lymphoma                                  | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/C11                     | F(ab')2 (anti-IgG) / mAb (C11)              | CD45                             | Hodgkin's lymphoma                               | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/TEC-T4                  | F(ab')2 (anti-IgG) / mAb (TEC-T4)           | CD4                              | T-cell lymphoma                                  | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/HSR-3                   | F(ab')2 (anti-IgG) / mAb (HSR-3)            | CD30                             | Hodgkin's lymphoma                               | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/8A                      | F(ab')2 (anti-IgG) / mAb (8A)               | 8A myeloma antigen               | Burkitt lymphoma, multiple myeloma               | Yes      |        | [303]                 |
| Saporin   | F(ab')2-saporin/62B1                    | F(ab')2 (anti-IgG) / mAb (62B1)             | 62B1 myeloma antigen             | Multiple myeloma                                 | Yes      |        | [303]                 |
| Saporin   | PIGF-2-saporin                          | Placental growth factor-2 (PIGF-2)          | PIGF-2 receptor                  | Tumor neovascularization                        | Yes      |        | [673]                 |
| Saporin   | ATF-saporin                             | ATF (amino-terminal fragment of human urokinase) | Urokinase receptor               | Metastasis                                       | Yes      |        | [674]                 |
| Saporin   | Cetuximab-saporin                       | mAb (cetuximab)                            | EGFR                             | Colorectal cancer, prostate cancer, epidermoid carcinoma, breast cancer | Yes      |        | [675, 676]            |
| Saporin   | Trastuzumab-saporin                     | mAb (trastuzumab)                          | HER2                             | Breast cancer                                    | Yes      |        | [676, 677]            |
| Saporin   | 2H8/anti-GAM IgG-saporin                | mAb (2H8) / IgG (anti-GAM IgG)              | Tomoregulin                      | Prostate cancer                                  | Yes      |        | [678]                 |
| Saporin   | By114/anti-IgG-saporin                  | mAb (By114) / IgG (anti-IgG)                | Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) | Pancreatic cancer | Yes | Yes | [679] |
| Saporin   | 6-22 IgG/anti-GAH IgG-saporin           | mAb (6-22 IgG) / IgG (anti-GAH IgG)         | Human asparyl (asparaginyl) B-hydroxylase (HAAH) | Hepatocellular carcinoma | Yes | | [680] |
Regrettably, in many cases this combination is not sufficient for a complete remission. Novel chemotherapeutics such as kinase inhibitors [59] and biological molecules such as antibodies [60] essentially improve the treatment of particular cancer entities. While kinase inhibitors are highly potent in suppressing cellular proliferation, antibodies are in particular characterized by their specificity for target cells. Targeted toxins combine the idea of tumor targeting and potent cytotoxicity in a single molecule. Thus, these molecules can be considered as an important addendum to complement the traditional troika. However, it must be stated that a promising therapeutic approach is finally characterized by its clinical success, but only a few targeted toxins have so far been approved by the Food and Drug Administration of the U.S., only one of them contains a protein-based toxin (denileukin diftitox) [61] and none of them is composed of a RIP. Nevertheless, targeted toxins containing RIPS are known from a number of clinical trials and a very large number of preclinical studies, indicating the great expected potential of this class of targeted toxins. Therefore, further research is needed to optimize current developments and to bring RIP-based anti-tumor drugs into the clinical routine. Although Moolten & Cooperband described as early as in 1970 the selective destruction of target cells by diphtheria toxin which was specifically linked to antibodies directed against specific antigens on the surface of tumor cells [62], the main obstacles for protein-based targeted toxins are still unsolved, which includes expensive production, unstable proteins and short biological half-life, immunogenicity and insufficient endosomal escape. Hundreds of research groups in the world are working on these problems, a substantial number of fruitful ideas have been published to date and the techniques to investigate and to manipulate such molecules are incredible compared to 1970 so that we can be confident that we must not wait further 40 years until targeted toxins will have their breakthrough.

Molecular Aspects and Mechanisms in Targeted Toxin Therapy

Although the ultimate goal in a targeted tumor therapy is to kill the tumor cells, the modality of cell death must not be underestimated. Uncontrolled cell killing can result in colligation, tyrosinosis or coagulative necrosis, which may finally end up in causing life threatening or highly degenerative situation for the organism affected. On the contrary, apoptosis is a strictly controlled process for cell death. It can be induced by intracellular and/or extracellular signals resulting in systematic cell degradation with no damage of neighboring cells. While it is a commonly occurring process in

| Toxin | Immunotoxin | Ligand | Target antigen | Tumor/Disease | In vitro | In vivo | Clinical trial status | Ref. |
|-------|-------------|--------|----------------|---------------|---------|--------|----------------------|-----|
| Saporin | Anti-endosialin/anti-IgG-saporin | mAb (anti-endosialin) / IgG (anti-IgG) | Endosialin (CD248, tumor endothelial marker 1, TEM1) | Ewing's sarcoma, neuroblastoma | Yes | | | [681] |
| Saporin | Anti-TCblR-saporin | mAb (anti-TCblR) | CD320 (transcobalamin receptor, TCblR) | CML, colon cancer | Yes | | | [682] |
| Saporin | AF334-saporin | mAb (AF334) | Tumor endothelial marker 8 (TEM8) | Tumor neovascularization | Yes | | | [683] |
| Saporin | MRK16/anti-IgG-saporin | mAb (MRK16) / IgG (anti-IgG) | 170 kDa glycoprotein (gp170) | Colon cancer | Yes | | | [684] |
| Trichokirin | AT15E-TKR (AT15E-Trichokirin) | mAb (anti-Thy 1.2) (AT15E) | CD90.2 (Thy 1.2) | Leukemia | Yes | Yes | | [270] |
| Trichokirin | F(ab')2-trichokirin/UCHT1 | F(ab')2 (anti-IgG) / mAb (UCHT1) | CD3 | T-cell lymphoma | Yes | | | [303] |
| Trichosanthin | TCS-Hepama-1 (Hepama-1-trichosanthin) | mAb (Hepama-1) | Hepatoma-associated antigen 43 kDa glycoprotein | Hepatoma | Yes | Yes | | [685, 686] |
| Trichosanthin | p75-TCS (anti-p75-anti-mouse IgG-trichosanthin) | mAb (192) / IgG (anti-mouse) | Rat nerve growth factor (NGF) receptor (p75 receptor) (p75NTR) | Immunolesioning (cholinergic basal forebrain neurons) | Yes | | | [574] |
| Trichosanthin | CMU15—TCS | mAb (CMU15A) | Lung cancer antigen | Lung cancer | Yes | Yes | | [687, 688] |
| Trichosanthin | TCS-Ng76 | mAb (Ng76) | Melanoma antigen | Melanoma | Yes | | | [689] |
| Trichosanthin | EGF-TCS | EGF | EGFR | Hepatocellular carcinoma | Yes | Yes | | [690, 691] |
| Trichosanthin | EGF-TCSredlk | EGF | EGFR | Hepatocellular carcinoma | Yes | Yes | | [692] |
Numerous cells on a daily basis, it may be impaired in tumor cells [63].

A similar process for cellular degradation is autophagy which involves the activity of lysosomal machinery which digests different cellular organelles. It is a process dependent on internal or external cellular environment and may lead to either cell death or the promotion of cellular survival [64]. Apoptosis and autophagy are stimulated or suppressed by similar pathways. The way a cell responds to these pathways determines its survival or death (this has been extensively reviewed in [65]). In general, the toxin's primary target such as the ribosomal RNA for RIPs is not directly involved in necrosis, apoptosis or autophagy, but these targets are involved in vital cellular processes. It seems natural to assume that the interference with vital functions results in a series of events that finally trigger the apoptotic cascade [66], but this is not true for all cases.

In case of saporin, the induction of apoptosis also occurs before protein synthesis inhibition takes place [67]. Apart from this, in numerous reports there is a discrepancy in the exact mechanism in case of similar parameters studied. While in some cell lines apoptosis was indicated the same could not be confirmed in others. This also implies that the cellular response to targeted toxins is a multifaceted complex mechanism. Therefore, the choice of the toxin is a factor that must be given optimal thought in the design of targeted toxins.

### Drug Delivery Technologies Employed in Targeted Toxin Therapy

Carrier-based drug delivery systems have been widely exploited for the targeted delivery of toxins to the tumors. Commonly used drug targeting systems include nanoparticles, liposomes, virosomes, carbon nanotubes, microspheres, nanofibers amongst others [68-70]. A summary of the carrier and non-carrier based systems is shown in Fig. 3. Despite the difficulty in formulation and the need for a more thorough stability and interaction assessment, the use of a carrier-based approach has distinctive advantages. Carriers help in a more specific ligand attachment increasing the specificity for the delivery of cargo. Increasing the circulatory time as in case of liposomal nanocarriers was of advantage for the delivery of cholera toxin, and despite its utility for adjuvant effects, the strategy has potential for its application in tumor therapy as well. A classical utilization of the liposomal drug delivery system was the delivery of gelonin [71]. It was delivered to the cytoplasm of TLX5 lymphoma cells most effectively by phosphatidylserine vesicles. This formulation could also successfully inhibit the protein synthesis in XC cells (rat fibroblasts transformed by Rous sarcoma virus) and phytohemagglutinin-stimulated CBA mouse lymphocytes. Phosphatidylcholine could only show the transport facility after addition of cholesterol to the cells. Addition of mixed bovine brain gangliosides in the following order phosphatidylcholine/cholesterol/gangliosides (5:5:1) escalated the effectiveness as well [71, 72]. Tumor targeted RIPs may take advantage of nanoparticle drug delivery systems for intracellular targeting.

In the same context, a generation-4 polyamidoamine (PAMAM) dendrimer induced cellular uptake and intracellular release by facilitating the endocytic uptake of RIPs. The use of photochemical internalization (PCI) technology could increase the effectiveness of free RIPs and PAMAM-RIPs [73]. After PCI treatment, PAMAM-RIP facilitated internalization as well as nuclear entry. Albeit this being a negative outcome, the use of ER signaling could in turn be used to avoid this side effect and elicit a site specific response. The use of nanocarriers, liposomes, aptamers or dendrimeric structures may be helpful in the targeted delivery of the toxins. They surely facilitate the efficacy by either resulting in multivalence or providing a dual component delivery in a single system.

### Efficacy Enhancers in Targeted Toxin Therapy

In the past decade, a number of strategies have been attempted to circumvent the problems associated with immunogenicity, vascular leak syndrome and other off-target effects that are associated with targeted toxin therapy. Conventionally, the use of certain chemicals has been employed, which led to an elevation of the endosomal pH, thereby protecting the toxin from lysosomal enzyme degradation. Another strategy involved the use of pore forming agents (Fig. 4). Use of these components certainly helped in im-

---

**Fig. (3).** A classification chart summarizing the carrier or non-carrier based approaches for targeted tumor therapy. While targeted toxins fall under the non-carrier based approach, toxins may also be incorporated in inert carriers for better stability.
proving the efficacy but their proof in preclinical and clinical studies is still limited [74-78]. The details for other compounds including organic and inorganic substances, synthetic peptides and compounds of natural origin are detailed in Table 3. In an interesting study, the anti-tumoral effects of anti-CD5 immunotoxins, which were constructed using a monoclonal antibody Fab fragment linked to native ricin A-chain or partially deglycosylated ricin A-chain, were examined in combination with the enhancer monensin conjugated to human serum albumin and injected intraperitoneally. In this case, 90% of the tumor cells were killed. This potentiating effect was observable even at a 5% monensin saturation level. The authors were able to successfully inhibit the effect by injecting the unconjugated antibody.

These results show that the therapeutic efficacy of immunotoxins can be very well improved by following a predefined and optimized therapeutic regime [79]. Monensin is one of the compounds with proven efficacy. In the recent past, an even higher synergy has been observed by the concomitant use of saponins and plant RIPs which is the basis for the next section.

Saponins in Targeted Toxin Therapy

In our research group, we have been extensively working with the use of certain structurally specific triterpenoids viz. saponins. These compounds have shown tremendous potential in enhancing the effectiveness of targeted toxins; mainly plant type I RIPs saporin and dianthin (Fig. 5) [80, 81]. Saponins are generally classified as triterpenoidal or steroidal, based on the aglycone backbone. In general, the saponins have a sugar chain attached at either the C-3 or C-17 position (monodesmosidic saponins), or on both positions (bisdesmosidic saponins). In recent studies, the concomitant use of saponins from Saponaria officinalis L. and Gypsophila paniculata L. has been successful in synergistically enhancing the toxicity of saporin-EGF and dianthin-EGF [30]. Evaluation of the molecular mechanism revealed that the toxin was internalized via receptor mediated internalization, thereafter the saponins (which were used at a concentration far below their membrane pore forming concentrations) lead to an enhanced endosomal escape of the toxin, which in turn resulted in apoptosis. The efficacy of saponins to facilitate rapid cell death, when administered in union with the targeted toxins was further confirmed in a real-time cytotoxicity evaluation. Cell death was observed as a fall of the impedance signal (representing the number of living cells) within the first 12 h of incubation of the toxin and the saponins, while the toxin alone requires a 10,000-fold higher concentration to induce cell death after a period of nearly 48 h of incubation. It is pertinent to mention here that the saponins were used at a concentration that has no effect on its own [74-76, 82-84].

The structural features of saponins that are highly desirable for their enhancing effects have been studied extensively. It is now established that bisdesmosidic triterpenoidal saponins, which have a gypsogenin or quillaic acid backbone with a glucuronic acid at C-3 position are most effective. Moreover, there are further specific structural and sugar chain requirements that lead to a relatively small number of saponins, which show effectiveness as synergistic enhancers. As already detailed, for exerting cytotoxicity, the release of toxin in the cytosol is a very important step. This process is however very feeble in case of internalized RIPs. Interestingly, Weng et al. demonstrated that saponins which are also biosynthesized by Saponaria officinalis L., can in a very specific manner facilitate the cytosolic transfer of toxin without affecting the plasma membrane integrity. This effect mainly takes place in late endosomes and lysosomes at a pH range between 4-5.5. A strong binding affinity for saponins with RIPs using surface plasmon resonance was also verified and the combination of the targeted toxin and saponin was validated for its effectiveness in vivo in a syngeneic mouse tumor model [85]. Although using saponins or for that matter any toxicity enhancer is a novel approach for improving the effectiveness of targeted toxins, there are certain limitations associated with this strategy more importantly from a clinical perspective. Any clinical application involving the use of multiple components is always a practical and a regulatory problem. This problem in case of saponins or other enhancers can only be circumvented by the use of a drug carrier system, which either encompasses the two components together or either of the two components form a part of the delivery matrix.

OUTLOOK AND CONCLUSION

The initial hope for immunotoxin-based therapy in the treatment of cancer was their perceived role as magic bullets functioning as a cure for solid tumors and blood borne malignancies [86]. Since the 1990s, clinical studies have clearly shown that the targeted toxin therapy works as a good supplement to the existing chemotherapeutic agents [87]. The combination of chemo- and immunotherapy is manifoldly better than the effectiveness of either of them alone. This when accompanied with the combined use of enhancers would surely give the clinicians more advantage in treating the patients effectively. There are numerous facets to targeted toxin therapies and as summarized by Chandramohan et al. [88], the therapeutic success requires selective killing, absence of side effects or nonspecific toxicity, which should be further juxtaposed with...
successful delivery of the immunotoxin to tumor cells. Another important aspect for a clinical success is the designing of targeted toxin. This should be done in such a way that the production of anti-toxin antibodies is minimized in an ideal case. Most of the target receptors are ubiquitous and therefore, a bystander effect of the targeting strategy into normal tissues in most cases is unavoidable. It is in such instances that the use of a targeted toxin enhancer as described in Table 3 can certainly come to rescue. Since use of such strategy minimizes the dosage and therefore the accompanying side effects, the target specific cell killing is limited to the amount of toxin molecules available.

Another important aspect is the fact that most of the disseminated tumors are highly heterogeneous. This is further complicated by the variations in the receptor expression levels with progression of tumor into the different stages of growth [89]. It is in such cases that a “cocktail therapy” could be highly effective and beneficial [90]. In the past, the targeted toxins have shown limited success independently and it could be imagined that for a higher efficacy, a combination of a small drug with targeted toxins, administered concomitantly, may minimize the side effects of either of them, with an increased effectiveness. In addition, another strategy could be the use of a combination of two or more targeted toxins as shown by a joint application of anti-CD19 and anti-CD22 immunotoxins (Combotox) [91] or multiple receptor targeting by aptameric configurations of the toxins making them more specific to different receptor types, overexpressed in the tumor that is being targeted. The future for such an approach has tremendous potential with the recent advancement in high-throughput screening techniques and the growing importance of personalized medicine in case of tumor treatment.

Furthermore, development of bi-specific and tri-specific therapeutic antibodies would surely add to the armor of the clinicians handling targeted toxins in tumor therapy [92, 93]. It can be foreseen that a cargo of toxin, with multiple targeting ligands would be highly beneficial, not only in solid tumors but in case of disseminated and metastasized tumors as well. The future of targeted toxin therapies appears to be even more promising than within the previous decade; this is mainly ascribable to the tremendous advancements in the biotechnological tools and an unprecedented growth in the field of proteomics and genomics. The possibility of identification and procurement of inactive mutants and humanized or human toxins, which can be further modified as targeted toxins opens up
Table 3. A detailed list of all the efficacy enhancers employed in the improvement of toxin efficacy and enhancement of endosomal escape.

| Efficacy Enhancers                  | Origin              | Factor | Site of Action           | Application                  | Ref.          |
|------------------------------------|---------------------|--------|--------------------------|------------------------------|---------------|
| **Lysosomotropic amines**          |                     |        |                          |                              |               |
| Ammonium chloride                  | Inorganic           | 6700   | Endosomes                | Immunotoxins (RTA)           | [693, 694]    |
| Methylamine                        | Organic             | 13,300 | Endosomes                | Immunotoxins (RTA)           | [693]         |
| Dimethylamine                      | Organic             | 3300   | Endosomes                | Immunotoxins (RTA)           | [693]         |
| Trimethylamine                     | Organic             | 80     | Endosomes                | Immunotoxins (RTA)           | [693]         |
| Amantadine                         | Organic             | 1180   | Endosomes                | Immunotoxins (RTA)           | [693, 695]    |
| Chloroquine                        | Organic             | 2500   | Endosomes                | Immunotoxins (RTA, Gel)      | [693, 696]    |
| Lipopolyamines                     | Organic             | 10 - 250 | Endosomes        | Immunotoxins (Sap)           | [697]         |
| β-Glycylphenyl-naphthylamide (GPN) | Organic             | 10     | Endosomes                | Immunotoxins (PE)            | [698]         |
| Quinacrine                         | Organic             | 15     | Endosomes                | Immunotoxins (Gel)           | [696]         |
| **Carboxylic ionophores**          |                     |        |                          |                              |               |
| Monensin                           | Organic             | 50,000 | Lysosomes                | Immunotoxins (RTA, Gel)      | [693, 696, 699]|
| Grisorixin                         | Organic             | 25,000 | Lysosomes                | Immunotoxins (RTA)           | [693]         |
| Lasalocid                          | Organic             | 33,000 | Lysosomes                | Immunotoxins (RTA)           | [693]         |
| Nigericin                          | Organic             | 6700   | Lysosomes                | Immunotoxins (RTA)           | [693]         |
| **Calcium channel antagonists**    |                     |        |                          |                              |               |
| Verapamil                          | Organic             | 170    | Lysosomes or other vesicular compartments | Immunotoxins (RTA, PE, Gel) | [696, 698, 700]|
| Diltiazem                          | Organic             | 10, 40 | Lysosomes or other vesicular compartments | Immunotoxins (PE)           | [698]         |
| Methoxyverapamil (D-600)           | Organic             | 40     | Lysosomes or other vesicular compartments | Immunotoxins (PE)           | [698]         |
| Varapamil analogues               | Organic             | 2 - 70 | Lysosomes or other vesicular compartments | Immunotoxins (RTA, PE)      | [700]         |
| Perhexiline                        | Organic             | 10 - 2000 | Lysosomes or other vesicular compartments | Immunotoxins (RTA)           | [701]         |
| SR 33557                          | Organic             | 540    | Lysosomes or other vesicular compartments | Immunotoxins (RTA)           | [702]         |
| SR 33287                          | Organic             | 620    | Lysosomes or other vesicular compartments | Immunotoxins (RTA)           | [702]         |
| **Organic polymers**              |                     |        |                          |                              |               |
| Polyethylenimine (PEI)             | Organic polymer     | From no-effect to effect | Lysosomes | Gene transfection | [703]         |
| Poly(amidoamine) (PAAs)            | Organic polymer     | 100    | Endosomes and lysosomes  | Toxins (RTA, Gel, Sap), Gene delivery | [704-706]    |
| Poly(propylacrylic acid) (PAAP)    | Organic polymer     | Significant increase | Endosomes | Gene transfection | [707]         |
## Efficacy Enhancers

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Fusogenic lipids   |        |        |                |             |      |
| DOPE               | Organic| Significant increase | Endosomes | Gene transfection, liposomes | [708] |
| CHEMS              | Organic| Significant increase | Endosomes | siRNA delivery | [709] |
| Monoolein          | Organic| Significant increase | Endosomes | DNA delivery, nanoparticles | [75]  |
| Other organic compounds |      |        |                |             |      |
| Retinoic acid      | Organic| 10,000 | Golgi apparatus | Immunotoxins (RTA) | [710] |
| Cyclosporin A      | Organic| 100    | Vesicular compartments | Immunotoxins (RTA) | [711, 712] |
| Brefeldin-A        | Organic| 1000   | Golgi apparatus | Immunotoxins (RTA) | [713] |
| Bryostatin 1       | Organic| Significant increase | Cell signalling | Immunotoxins (PE) | [714] |
| Wortmannin         | Organic| Significant increase | Endosomes and lysosomes | Immunotoxins (ETA, Sap, Gel) | [715] |
| Synthetic surfactants |      |        |                |             |      |
| EHCO               | Organic| Significant increase | Endosomes | siRNA delivery, nanoparticles | [716, 717] |
| Viruses and virus peptides |      |        |                |             |      |
| Adenovirus         | Adenovirus| 10,000 | Endosomes, lysosomes or other vesicular compartments | Immunotoxins (PE, RTA, Sap, Gel), gene delivery | [719-721] |
| Penton base protein (adenovirus capsid protein) | Adenovirus| 100 | Endosomes and lysosomes | Immunotoxins (PE, Gel) | [722, 723] |
| Minor capsid protein VI | Adenovirus| From no-effect to effect | Endosomes | Nanoparticles | [724, 725] |
| KFT25 (N-terminus of Protein G) | Vesicular stomatitis virus| 10 - 20 | Lysosomes or other vesicular compartments | Immunotoxins (RTA, Dia) | [309, 528] |
| HA2 (hemagglutinin HA-2) | Influenza virus| 10 - 100 | Endosomes | Immunotoxins (RTA, Sap), gene transfer | [82, 726, 727] |
| HA2 / poly (L-lysine) (PLL) | Influenza virus| Significant increase | Endosomes | Gene transfer | [728] |
| HA23               | Influenza virus| 4 - 5 | Endosomes | Immunotoxins (RTA) | [729] |
| GALA               | Synthetic peptide (HIV) | From no-effect to effect | Endosomes | Gene transfection, liposomes, nanoparticles | [726, 730, 731] |
| KALA               | Synthetic peptide (HIV) | From no-effect to effect | Endosomes and other membranes | Gene transfection | [732] |
| KALA/polyethylenimine (PEI) | Synthetic peptide (HIV) | Significant increase | Endosomes and other membranes | Gene transfection | [733, 734] |
| INF-7              | Influenza virus| 100 | Endosomes | Gene delivery, siRNA delivery, liposomes | [735-737] |
| Tat (transcriptional activator Tat protein) | HIV| 3340 | Endosomes | DNA delivery, PNA delivery, liposomes, nanoparticles | [738-740] |
| gp41               | HIV| Significant increase | Endosomes | Gene delivery, siRNA delivery | [741] |
| gp41/polyethylenimine (PEI) | HIV| Significant increase | Endosomes | Gene delivery, siRNA delivery | [742] |
| L2 (minor capsid protein) | Papillomavirus| From no-effect to effect | Endosomes and other membranes | Proteins (GFP) | [743] |
| Major envelope protein (E) | West Nile virus| From no-effect to effect | Endosomes | Natural process | [744] |
(Table 3) Contd….

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| VP22 (structural protein VP22) | Herpes simplex virus | From no-effect to effect | Actin-mediated endosomes | DNA delivery, proteins (GFP) | [729] |
| Synthetic analogue of glycoprotein H (gpH) | Synthetic peptide (Herpes simplex virus) | 30 | Endosomes | Gene transfection, liposomes | [745] |
| PreS2-domain of hepatitis-B virus surface antigen (TLM) | Hepatitis-B virus | 2 - 20 | Endosomes or other vesicular compartments | Immunotoxins (Sap, Ang) | [600, 746, 747] |

**Bacterial peptides**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Listeriolysin O (LLO) | Listeria monocytogenes | Significant increase | Endosomes | DNA delivery, liposomes | [748, 749] |
| Pneumococcal pneumolysin (PLO) | Pneumococcus | From no-effect to effect | Endosomes | Toxins (Granzyme B) | [750] |
| Streptococcal streptolysin O (SLO) | Streptococcus | From no-effect to effect | Endosomes | Toxins (Granzyme B) | [750] |
| T-domain of diphtheria-toxin (DT) | Corynebacterium diphtheria | From no-effect to effect | Endosomes | Immunotoxins (DT) | [751] |
| T-domain of diphtheria toxin (DT) / poly(ethylenimine) (PEI) | Corynebacterium diphtheria | Significant increase | Endosomes | Gene transfection | [752] |
| Domain II of Pseudomonas exotoxin A (ETA) | Pseudomonas aeruginosa | From no-effect to effect | Endosomes and trans-Golgi network | Immunotoxins (PE) | [753] |
| REDLK | Pseudomonas aeruginosa | From no-effect to effect | Endoplasmatic reticulum | Immunotoxins (PE) | [754] |

**Animal and human peptides**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Penetratin (homeotic transcription protein Antennapedia, Antp) | Drosophila melanogaster | From no-effect to effect | Pinocytic and other vesicular compartments | PNA delivery | [755] |
| R6-Penetratin (with arginine residues) | Synthetic (Drosophila melanogaster) | 5 - 10 | Endosomes and other vesicular compartments | PNA delivery | [756] |
| EB1 (synthetic analog of penetratin) | Synthetic (Drosophila melanogaster) | Significant increase | Endosomes | siRNA delivery | [757] |
| hCT (9-32) (human calcitonin derived peptide 9-32) | Human | From no-effect to effect | Endosomes or other vesicular compartments | Natural process | [758, 759] |
| Fibroblast growth factor-1 (FGF-1) sequence | Human | From no-effect to effect | Endosomes | Natural process | [760] |
| Melittin | Bee venom | From no-effect to effect | Endosomes | Gene delivery | [726, 761] |
| Melittin/polyethylenimine (PEI) | Bee venom | Significant increase | Endosomes | Gene delivery, siRNA delivery | [762-764] |
| Human [3 integrin signal sequence | Human | From no-effect to effect | Endosomes | Natural process | [765] |
| Heavy chain of immunoglobulin G | Caiman crocodilus | Significant increase | Cell membrane | Liposomes | [766] |
| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Transportan        | Synthetic peptide (neuropeptide galanin + wasp venom peptide mastoparan) | From no-effect to effect | Endosomes or other vesicular compartments | Proteins (GFP, Strep) | [767] |
| Bovine prion protein (bPrPp) | Synthetic peptide (bobine prion) | From no-effect to effect | Cell membrane, macropinosomes | Nanoparticles | [768, 769] |
| KDEL               | Signal sequence | 100 - 1000 | Endoplasmatic reticulum | Immunotoxins (RTA, PE) | [770, 771] |

**Animal and human proteins**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| α-Interferon (INF) | Human | Significant increase | Cell signalling | Immunotoxins (RTA) | [772] |
| Perforin           | Human | From no-effect to effect | Early endosomes | Immunotoxins (GzmB) | [773, 774] |
| Rituximab          | Mouse/human chimeric mAb | 80 | Cell signalling | Immunotoxins (Sap) | [587] |

**Plant saponins**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Saponinum album    | Gypsophila paniculata L. | 2,500,000 | Late endosomes and lysosomes | Immunotoxins (Sap) | [599, 775, 776] |
| SA-1641            | Gypsophila paniculata L. | Significant increase | Late endosomes and lysosomes | Immunotoxins (Sap, Dia) | [83, 84] |
| SA-1657            | Gypsophila paniculata L. | From no-effect to effect | Late endosomes and lysosomes | Immunotoxins (Sap) | [52] |
| Saponaria saponins | Saponaria officinalis L. | 10,000 | Late endosomes and lysosomes | Immunotoxins (Sap) | [52] |
| SO-1861            | Saponaria officinalis L. | 1000 | Late endosomes and lysosomes | Immunotoxins (Sap, Dia) | [52] |
| Quillaja saponins  | Quillaja saponaria Mol. | 1400 | Late endosomes and lysosomes | Immunotoxins (Sap) | [775] |

**Plant proteins**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Ricin B-chain      | Ricinus communis L. | From no-effect to effect | Internalization/Cell signalling | Immunotoxins (RTA) | [777] |
| Ricin B-chain immuno-toxin | Ricinus communis L. | 2 - 4 | Internalization/Cell signalling | Immunotoxins (RTA) | [778] |
| Ricin B chain (piggyback) | Ricinus communis L. | 2 - 6 | Internalization/Cell signalling | Immunotoxins (RTA) | [779] |

**Synthetic peptides**

| Efficacy Enhancers | Origin | Factor | Site of Action | Application | Ref. |
|--------------------|--------|--------|----------------|-------------|------|
| Polyarginines      | Synthetic peptide | Significant increase | Late endosomes, Golgi apparatus and endoplasmatic reticulum | DNA delivery, siRNA delivery, proteins (GFP) | [780-782] |
| Polylysines        | Synthetic peptide | Significant increase | Endosomes | Gene transfection | [783] |
| Histidine 10       | Synthetic peptide | 7000 | Endosomes | Gene transfection | [784] |
| (R-Ahx-R)$_n$      | Synthetic peptide | From no-effect to effect | Late endosomes, Golgi apparatus and endoplasmatic reticulum | PNA delivery | [74, 785] |
| Poly(L-histidine)  | Synthetic peptide | Significant increase | Endosomes | DNA delivery | [786, 787] |
(Table 3) Contd….

| Efficacy Enhancers                  | Origin            | Factor                  | Site of Action                        | Application                                  | Ref.  |
|-------------------------------------|-------------------|-------------------------|---------------------------------------|----------------------------------------------|-------|
| Sweet arrow peptide (SAP)           | Synthetic peptide | Significant increase    | Endosomes                             | Gene delivery, nanoparticles                 | [788] |
| Loligomer                           | Synthetic peptide | From no-effect to effect | Endosomes or other vesicular compartments | Peptide delivery, fluorescent probes        | [789] |
| Amphiphilic model peptide           | Synthetic peptide | From no-effect to effect | Endosomes or other vesicular compartments | Polar bioactive compounds                    | [790] |
| IRQ peptide                         | Synthetic peptide | Significant increase    | Endosomes                             | siRNA delivery                               | [709] |
| 4,6 peptide                         | Synthetic peptide | Significant increase    | Endosomes and lysosomes                | Gene transfection                            | [791] |
| pJVE                                | Synthetic peptide | 2                       | Endosomes                             | Immunotoxins (Dia)                           | [309] |
| RAWA                                | Synthetic peptide | Significant increase    | Endosomes and other membranes         | Gene delivery                                | [792] |
| Nuclear localization signals        | Synthetic peptide | 150                     | Cytoplasmic entrapment, nuclear membrane | Gene transfection                            | [793] |
| SynB1                               | Synthetic peptide | 6                       | Endosomes and other membranes          | Peptide delivery                             | [78, 794] |
| Pep-1                               | Synthetic peptide | From no-effect to effect | Endosomes and other membranes          | Peptide delivery, proteins (GFP, β-Gal)      | [795] |

Physicochemical techniques

| Photochemical internalization       | Technique | 1000 | Endosomes | Immunotoxins (Sap, Gel), gene transfection, liposomes, nanoparticles | [796-798] |
|-------------------------------------|-----------|------|-----------|-----------------------------------------------------------------------|-----------|
| Ultrasound                          | Technique | 30   | Endosomes | Gene delivery, liposomes                                              | [799, 800] |
| Plasmonic nanobubbles               | Technique | 30   | Endosomes | Nanoparticles                                                          | [801]     |
| Magnetic nanoparticles              | Technique | From no-effect to effect | Endosomes | Gene transfection, siRNA delivery, nanoparticles                      | [76, 802] |

new vistas for tumor treatment. Recombinant DNA and expression techniques have reached a stage where a mutated version once identified to be effective, can be expressed and obtained under good manufacturing conditions in a quick succession. Recent advancements in the antibody-based therapeutics include the generation of bi-specific antibodies and bio-mimicking antibodies, while retaining selectivity these antibodies reportedly have a better efficacy. This surely adds to the repertoire of molecular biologists for reducing the incubation time during the drug development process.

CONFLICT OF INTEREST
Declared none.

ACKNOWLEDGEMENTS
Funding from the DFG project grant TH1810/1-1 to MT and DFG international grant (WE4784/2-1) to AW is acknowledged. Generous funding from the Wilhelm Sander-Stiftung (2011.121.1) is also acknowledged.

REFERENCES
[1] Peumans WJ, Hao Q, Van Damme EJ. Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 2001; 15: 1493-506.
[2] de Virgilio M, Lombardi A, Cialandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel) 2011; 2: 2699-737.
[3] Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer 2006; 6: 559-65.
[4] Hong X, Wang-Yi L. Cinnamomin- a versatile type II ribosome inactivating protein. Acta Biochimica et Biophysica Sinica 2004; 36: 169-76.
[5] Weng A, Thakur M, von Mallinckrodt B, et al. Saponins modulate the intracellular trafficking of protein toxins. J Control Release 2012; 164: 74-86.
[6] Kreitman RJ. Immunotoxins for targeted tumor therapy AAPS J. 2006; 8: E532-51.
[7] Chambery A, Di Maro A, Monti MM, Stirpe F, Parente A. Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur J Biochem/FEBS 2004; 271: 108-17.
[8] Sandvig K, Skotland T, van Deurs B, Klokki TI. Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 2013; 140: 317-26.
[9] Spooner RA, Watson PD, Marsden CJ, et al. Protein disulphide- isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 2004; 383: 285-93.
[10] Bellisola G, Fracasso G, Ippoliti R, et al. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochemical pharmacology 2004; 67: 1721-31.
[11] Spooner RA, Lord JM. How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Topics Microbiol Immunol 2012; 357: 19-40.
[12] Gregers TF, Skanland SS, Waleli S, Bakke O, Sandvig K. BiP negatively affects ricin transport. Toxins 2013; 5: 969-82.
Wesche J, Rapak A, Olness S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biological Chem 1999; 274: 34443-9.

Sliwkowska-Wojewodzka M, Gregers TF, Walchli S, Sandvig K. EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 2006; 17: 1646-75.

Sloan-Markson C, Heslinger J, Willingham MC. Clinical trials of targeted toxins. Semin Cancer Biol 1995; 6: 307-17.

Bassik MC, Kampmann M, Lebbink RJ, et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 2013; 152: 999-22.

Sokolowska I, Walchli S, Wegrzyn G, Sandvig K, Sliwkowska-Wojewodzka M. A single point mutation in ricin A-chain increases susceptibility. Cell 2013; 152: 1860-6.

Fernani S, Tosi G, Farini V, et al. Structure/function studies on two type 1 ribosome inactivating proteins: Bougain and lychnin. J structural biology 2009; 168: 278-87.

May KL, Yan Q, Turner NE. Targeting ricin to the ribosome. Toxicon : official journal Int Soc Toxinol 2013; 69: 143-51.

Battelli MG. Cytoxicity and toxicity to animals of humans of ribosome-inactivating proteins. Mini Rev Med Chem 2004; 4: 513-21.

Bolognesi A, Polito L, Scicchitano V, et al. Endocytosis and intracellular localisation of type 1 ribosome-inactivating protein saporin-s6. J Biological Regulators Homeostatic Agents 2012; 26: 97-109.

Fabbriani MS, Rappocciolo E, Carpandi D, et al. Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochem J 1997; 322 (Pt 3): 719-27.

Rajagopal V, Kreitman RJ. Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the alpha(2)-macroglobulin receptor. J Biological Chem 2000; 275: 7566-73.

Ippoliti R, Lendaro E, Benedetti PA, et al. Endocytosis of a chimera between human pro-urokinase and the plant toxin saporin: an unusual internalization mechanism. FASEB journal : official publication of the Federation Am Soc Exp Biol 2000; 14: 1335-44.

Chen WL, Shaw PC, Tam SC, Jacobsen C, Gliemann J, Nielsen E. Family members. Biochem Biophys Res Communicat 2000; 270: 453-7.

Vago R, Marsden CJ, Lord JM, et al. Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. The FEBS journal 2005; 272: 4983-95.

Frankel RJ, Kreitman RJ, Sausville EA. Targeted toxins. Clin Cancer Res 2010; 10: 317-27.

Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature reviews. Immunology 2010; 10: 309-10.

Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009; 373: 1033-40.

Bostad M, Berg K, Hogset A, Skarpen E, Stemmark H, Selbo PK. Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cell lines with cancer stem cell properties. J Controlled Release 2013; 168: 317-26.

Madhumathi J, Verma RS. Therapeutic targets and recent advances in protein immunotoxins. Current opinion in microbiology 2012; 15: 300-9.

Kioi M, Seetharam S, Puri RK. Targeting IL-13Ralpha2-positive cancer with a novel recombinant immunotoxin composed of a single-chain antibody and mutated Saporomas exotoxin. Mol Cancer Therapeutics 2008; 7: 1579-87.

Pirie CM, Liu DV, Wittrup KD. Targeted cytotoxins synergistically potentiate cytoplasmic delivery of gelonin immunotoxin. Mol Cancer Therapeutics 2013; 12: 1744-92.
[61] Fuchs H, Bachran C. Targeted tumor therapies at a glance. Curr Drug Targets 2009; 10: 89-93.

[62] Moolten FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 1970; 169: 68-70.

[63] Sankari SL, Manthan KM, Babu NA, Bhattacharjee T, E淋amali M. Apoptosis in cancer--an update. Asian Pac J Cancer Prev 2012; 13: 4873-8.

[64] Fuchs H, Bachran C eds. Design of targeted protein toxins, Wiley-VCH Verlag: Weinheim 2012.

[65] Platini F, Perez-Tomas R, Ambrosio S, Tessitore L. Understanding autophagy in cell death control. Curr Pharm Des 2010; 16: 101-13.

[66] Bergamaschi G, Perfetti V, Tonon L, et al. Saporin, a ribosome-inactivating protein used to prepare immunotoxins, induces cell death via apoptosis. Br J Haematol 1996; 93: 789-94.

[67] Sikriwal D, Ghosh P, Batra JK. Ribosome inactivating protein saporin induces apoptosis through mitochondrial cascade, independent of translation inhibition. Int J Biochem Cell Biol 2008; 40: 2880-8.

[68] Su X, Yang N, Witttrup KD, Irvine DJ. Synergistic Antitumor Activity from Two-Stage Delivery of Targeted Toxins and Endosome-Disrupting Nanoparticles. Biomacromolecules 2013; 14: 1093-102.

[69] Fiandaca MS, Berger MS, Bankiewicz KS. The Use of Convection-Enhanced Delivery with Liposomal Toxins in Neurooncology. Toxins 2011; 3: 169-87.

[70] Dharp SS, Wang Y, Chanda P, et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci USA 2005; 102: 12962-12967.

[71] McIntosh DP, Heath TD. Liposome-mediated delivery of ribosome inactivating proteins to cells in vitro. Biochimica et Biophysica Acta 1982; 690: 224-30.

[72] Lin JY, Lee TC, Hu ST, Tung TC. Isolation of four isotoxic protein toxins from Adenia laceolata and Adenia stenodactyla (Passifloraceae). Toxicon 2007; 46: 658-63.

[73] Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. The Lancet infectious diseases 2001; 1: 156-64.

[74] Angelov B, Angelova A, Filippov SK, et al. DNA/Fusogenic Lipid Nanocarrier Assembly: Millisecond Structural Changes. J Physical Chem Letters 2013; 4: 1959-64.

[75] Curcio A, Marotta R, Riedinger A, Palumbri D, Falqui A, Pellegriano G, Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chemical Communications 2012; 48: 2400-2.

[76] Abes R, Arzumanov A, Moulton H, et al. Arginine-rich cell penetrating peptides: Design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Peptide Sci 2008; 14: 455-60.

[77] Chen SY, Walker LR, Shaq O, Lopez M, Raucher D, Vig PJ. The cytotoxicity of saporin by polyamidoamine dendrimer conjugation. Acta 1982; 690: 224-30.

[78] Fuchs H, Bachran C, Flavell D. Diving through Membranes: Molecular Cunning to Enforce the Endosomal Escape of Antibody-Targeted Anti-Tumor Toxins. Antibodies 2013; 2: 209-35.

[79] Thakur M, Mergel K, Weng A, et al. Real-time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron 2011; 35: 503-6.

[80] Rostaing-Capallon O, Casellas P. In vivo cytotoxic efficacy of immunotoxins prepared from anti-CD5 antibody linked to ricin A chain. Cancer Immunology, Immunotherapy 1991; 34: 24-30.

[81] Gilabert-Oriol R, Mergel K, Thakur M, et al. Real-time analysis of membrane permeabilizing effects of oleosapine saponins. Bioorg Med Chem 2012; 21: 2387-95.

[82] Thakur M, Mergel K, Weng A, et al. Real-time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron 2011; 35: 503-6.

[83] Rostaing-Capallon O, Casellas P. In vivo cytotoxic efficacy of immunotoxins prepared from anti-CD5 antibody linked to ricin A chain. Cancer Immunology, Immunotherapy 1991; 34: 24-30.

[84] Weng A, Thakur M, Beceren-Braun F, et al. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins. Mol Oncol 2012; 6: 323-32.

[85] Thakur M, Mergel K, Weng A, et al. Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: an evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice. Mol Oncol 2013; 7: 475-83.

[86] FitzGerald D, Pastan I. Targeted Toxin Therapy for the Treatment of Cancer. J Natl Cancer Institute 1989; 81: 1453-63.

[87] Frankel AE, Kreitman RJ, Sausville EA. Targeted Toxins. Clini Cancer Res 2006; 6: 326-34.

[88] Chandramohan V, Sampson JH, Bigner DD. Toxin-based targeted therapy for malignant brain tumors. Clin Dev Immunol 2012; 2012: 480429.

[89] Liu TF, Tetter SB, Willingham MC, Yang M, Hu JJ, Frankel AE. Growth Factor Receptor Expression Varies among High-Grade Gliomas and Normal Brain: Epidermal Growth Factor Receptor Has Excellent Properties for Interstitial Fusion Protein Therapy. Mol Cancer Therapeutics 2003; 2: 783-787.

[90] Jain RK. Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science 2005; 307: 58-62.

[91] Schindler J, Gajavelli S, Ravandi F, et al. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukemia. Br J Haematol 2011; 154: 471-6.

[92] Wang XB, Zhao BF, Zhao Q, et al. A New Recombinant Single Chain Trispecific Antibody Recruits T Lymphocytes to Kill CEA (Carcinoma Embryonic Antigen) Positive Tumor Cells In Vitro Efficiently. J Biochem 2004; 135: 555-65.

[93] Kontermann R. Dual targeting strategies with bispecific antibodies. MAbs 2012; 4: 182-97.

[94] Kondo T, Yoshikawa T. Purification and characterization of abelescin, a novel ribosome-inactivating protein from the mature seeds of Abelmoschus esculentus. J Natural Medicines 2007; 61: 1-74.

[95] Lin JY, Lee TC, Hu ST, Tung TC. Isolation of four isotoxic proteins and one agglutinin from jecquirini bean Abrus precatorius. Toxicon 1981; 19: 41-51.

[96] Hegde R, Maiti TK, Podder SK. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-Sepharose affinity chromatography. Analytical Biochem 1991; 194: 101-9.

[97] Olsnes S, Salvedal E, Pihl A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biological Chem 1974; 249: 803-10.

[98] Ramos MV, Mota DM, Teixeira CR, Cavada BS, Moreira RA. Isolation and partial characterisation of highly toxic lectins from Abrus precatorius seeds. Toxicon 1998; 36: 14589-95.

[99] Chandramohan V, Sampson JH, Pastan I, Bigner DD. Toxin-based targeted therapy for malignant brain tumors. Clin Dev Immunol 2003; 2012: 480429.

[100] Tran DT, Tetter SB, Willingham MC, Yang M, Hu JJ, Frankel AE. Growth Factor Receptor Expression Varies among High-Grade Gliomas and Normal Brain: Epidermal Growth Factor Receptor Has Excellent Properties for Interstitial Fusion Protein Therapy. Mol Cancer Therapeutics 2003; 2: 783-787.

[101] Fuchs H, Bachran C, Flavell D. Diving through Membranes: Molecular Cunning to Enforce the Endosomal Escape of Antibody-Targeted Anti-Tumor Toxins. Antibodies 2013; 2: 209-35.

[102] Thakur M, Mergel K, Weng A, et al. Real-time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron 2011; 35: 503-6.

[103] Fuchs H, Bachran C, Flavell D. Diving through Membranes: Molecular Cunning to Enforce the Endosomal Escape of Antibody-Targeted Anti-Tumor Toxins. Antibodies 2013; 2: 209-35.

[104] Thakur M, Weng A, Bachran D, et al. Electrophoretic isolation of saponin fractions from Saponium album and their evaluation in synergistically enhancing the receptor-specific cytotoxicity of targeted toxins. Electrophoresis 2011; 32: 3085-9.
thus caudatus, that recognizes the T-(or cryptic T)-antigen. J Biological Chem 1989; 264: 16123-31.

[107] Roy S, Sadhana P, Begum M, Kumar S, Lodha M, Kapoor H. Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. Phytochemistry 2002; 67: 1865-73.

[108] Kwon SY, An CS, Liu JR, Paek KH. A ribosome-inactivating protein from Amaranthus viridis. Bioscience, biotechnology, and biochemistry 1997; 61: 1613.

[109] Tomatsu M, Ohnishi-Kameyama M, Shibamoto N. Aralin, a new cytototoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer letters 2003; 199: 19-25.

[110] Tomatsu M, Kondo T, Yoshikawa T, et al. An apoptotic inducer, aralin, is a novel type II ribosome-inactivating protein from Aralia elata. Biological Chem 2004; 385: 819-27.

[111] Bolognesi A, Barbieri L, Abbondanza A, et al. Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1990; 1087: 293-302.

[112] Bolognesi A, Polito L, Olivier F, et al. New ribosome-inactivating proteins with polynucleotide: adenosine glycosidase and antiviral activities from Basella rubra L. and Bougainvillea spectabilis Willd. Planta 1997; 203: 422-9.

[113] Ng T, Parkash A, Tso W. Purification and characterization of o- and β-henematoxilins, arginine-glutamate-rich peptides with translational-inhibition activity from wax gourd seeds. Peptides 2003; 24: 11-6.

[114] Ng T, Parkash A. Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expression Purification 2002; 26: 211-7.

[115] Hornung E, Wajant H, Jeske H, Mundry KW. Cloning of a cDNA encoding a new ribosome-inactivating protein from Beta vulgaris (mangold). Gene 1996; 170: 233-6.

[116] Girbis T, de Torre C, Iglezias R, Ferreras JM, Méndez E. RIP for viruses. Nature 1996.

[117] Iglezias R, Pérez Y, de Torre C, et al. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Botany 2005; 56: 1675-84.

[118] den Hartog MT, Lubelli C, Boon L, et al. Cloning and expression of cDNA coding for bouganin. Eur J Biochem 2002; 269: 1772-9.

[119] Choudhary N, Kapoor HC, Lodha ML. Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbutelata. J Phytochemistry 2006; 67: 1865-73.

[120] Hornung E, Wajant H, Jeske H, Mundry KW. Cloning and functional identification of a ribosome inactivating protein isolated from Clerodendrum inerme Gaertn. FEBS letters 1995; 396: 132-4.

[121] Yamada T, Ohki ST, Osaki T. Cloning and analysis of a cDNA coding a putative ribosome-inactivating protein from Cucumis ficurei. Plant Biotechnology 2000; 17: 37-40.

[122] Ferreira JM, Merino MJ, Iglezias R, Munoz R, Girbes T. Isolation of a ribosome-inactivating type 1 protein from seeds of Cucumis melo. Biochem Int 1989; 19: 201-7.

[123] Angeles Rojo M, Javier Arias F, Iglezias R, et al. Enzymic activity of melolin, a translational inhibitor present in dry seeds of Cucumis melo L. Plant science 1994; 103: 127-34.

[124] Zhang D, Halawesh FT. Characterization and identification of foetidisin: a novel ribosome-inactivating protein from Cucurbita Foetidissima. Plant Sci 2003; 164: 387-93.

[125] Zhang D, Halawesh FT. Isolation and Characterization of Ribosome-Inactivating Proteins from Cucurbitaceae. Chem Biodiversity 2004; 7: 431-42.

[126] Wang H, Ng T. Isolation of cucurmosin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides 2003; 24: 969-72.

[127] Ng T, Parkash A, Tso W. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds. Protein expression and purification 2002; 26: 9-13.

[128] Xie J, Zheng J, Wang Z, Chen M. Anti-proliferative and systemic induction of single-chain ribosome-inactivating protein isolated from Beta vulgaris (mangold). FEBS letters 1996; 396: 132-4.

[129] Li XD, Liu WY, Niu C-I. Purification of a new ribosome-inactivating protein from the seeds of Cinnamomum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biological Chem 1996; 377: 825-32.

[130] Olivieri F, Prasad V, Valbonesi P, et al. A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme Gaern. is a polynucleotide: adenosine glycosidase (ribosome-inactivating protein). FEBS letters 1996; 396: 132-4.

[131] Prasad V, Srivastava S, Verma H. Two basic proteins isolated from Clerodendrum inerme Gaern. are inducers of systemic antiviral resistance in susceptible plants. Plant Sci 1995; 110: 73-82.

[132] Stirpe F, Pession-Bruni A, Lorenconi E, Strochi P, Montanaro L, Sperti S. Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem J 1976; 156: 1-6.

[133] Yamada T, Ohki ST, Osaki T. Cloning and analysis of a cDNA coding a putative ribosome-inactivating protein from Cucumis ficurei. Plant Biotechnology 2000; 17: 37-40.

[134] Barbari L, Polito L, Bolognesi A, et al. Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochimica et Biophysica Acta (BBA)-General Subjects 2006; 1760: 431-42.

[135] Santos J, Hope R, de la Cuesta X, et al. Ribosome-inactivating protein from the edible tuber of Sanchi (Ipomoea batatas). FEBS letters 1996; 396: 132-4.

[136] Christofakis E, Petratos S. Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. FEBS letters 1996; 396: 132-4.

[137] Zhang D, Halawesh FT. Isolation and Characterization of Ribosome-Inactivating Proteins from Cucurbitaceae. Chem Biodiversity 2004; 7: 431-42.

[138] Wang H, Ng T. Isolation of cucurmosin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides 2003; 24: 969-72.

[139] Ng T, Parkash A, Tso W. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds. Protein expression and purification 2002; 26: 9-13.

[140] Xie J, Que W, Chen M, et al. Antitumor effects of cucurmosin in human chronic myeloid leukemia occur through cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Anticancer Res 2011; 31: 985-92.

[141] Xie J, Que W, Liu H, Liu M, Yang A, Chen M. Anti-proliferative effects of cucurmosin on human hepatoma HepG2 cells. Mol Med Rep 2012; 5: 196-201.

[142] Xie J, Que W, Liu H, Liu M, Yang A, Chen M. Anti-proliferative effects of cucurmosin on human hepatoma HepG2 cells. Mol Med Rep 2012; 5: 196-201.

[143] Xie J, Que W, Chen M, et al. Antitumor effects of cucurmosin in human chronic myeloid leukemia occur through cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Anticancer Res 2011; 31: 985-92.

[144] Xie J, Que W, Liu H, Liu M, Yang A, Chen M. Anti-proliferative effects of cucurmosin on human hepatoma HepG2 cells. Mol Med Rep 2012; 5: 196-201.

[145] Xie J, Que W, Chen M, et al. Antitumor effects of cucurmosin in human chronic myeloid leukemia occur through cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Anticancer Res 2011; 31: 985-92.

[146] Xie J, Que W, Chen M, et al. Antitumor effects of cucurmosin in human chronic myeloid leukemia occur through cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Anticancer Res 2011; 31: 985-92.

[147] Xie J, Que W, Chen M, et al. Antitumor effects of cucurmosin in human chronic myeloid leukemia occur through cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis. Anticancer Res 2011; 31: 985-92.
Kamenosono M, Nishida H, Funatsu G. Isolation and Characterization of cDNAs encoding ribosome inactivating protein from Dianthus sinensis L. Molecules and cells 2000; 10: 135-41.

Cammue B, Peeters B, Peumans W. Isolation and partial characterization of an N-acetylglactosamine-specific lectin from winter aconite (Eranthis hyemalis) root tubers. Biochem J 1985; 227: 949-55.

Kumar MA, Timm D, Neet K, Owen W, Peumans WJ, Rao AG. Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J Biological Chem 1993; 268: 25176-83.

Stirpe F, Olsner S, Phil A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. J Biological Chem 1990; 265: 6947-53.

Lee-Huang S, Kung HF, Huang PL, et al. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS letters 1991; 291: 139-44.

Zuijan LTYCWG, Qiyng L, Lianhui X. Purification of a Novel Anti-TMV Protein from Gymnostemma pentaplyllum and Sequence Analysis of Its Partial DNA Coding Region. J Agricultural Biotechnol 2003; 4: 8.

Yoshisai N, Koresawa S, Yokota S, Sawamoto H, Tamura M, Endo Y. Gypsofilm, a new type 1 ribosome-inactivating protein from Gypsophila elegans: purification, enzymatic characterization, and subcellular localization. Biosci Biotechnol Biochem 1997; 61: 324-31.

Asano K, Svensson P, Poulsen FM. Isolation and characterization of proteinase inhibitors from barley seeds. Carlsberg Res Commun 1984; 49: 619-26.

Ebert RF, Stryn LA. Immuno toxicon construction with a ribosome-inactivating protein from barley. Bioconjugate Chem 1990; 1: 331-36.

Chaudhry B, Müller-Uri F, Gómez-Moreno M, et al. The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 1994; 6: 815-24.

Hao Q, Van Damme EJ, Hause B, et al. Iris bulbs express type 1 and type 2 ribosome-inactivating proteins with unusual properties. Plant Physiol 2001; 125: 866-76.

Damene E, Barro A, Barbieri L, et al. Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. Biochem J 1997; 324: 963-70.

Lin J, Chen Y, Xu Y, Yan F, Tang L, Chen F. Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Botanica Sinica 2003; 47.

Lin J, Zhou X, Wang J, Jiang P, Tang K. Purification and characterization of curcin, a toxic lectin from the seeds of Jatropha curcas. Preparative biochem Biotechnol 2010; 40: 107-18.

Nuchsup C, Roysrith P, Sritanagowsiri et al. Bioactivities of Jc-SCRIP, a Type I Ribosome-Inactivating Protein from Jatropha curcas Seed Coat. Chem Biol Drug 2003; 10: 453-62.

Wang HX, Ng TB. Lagenin, a novel ribosome-inactivating protein with ribonuclease activity from bottle gourd (Lagenaria siceraria) seeds. Life Sciences 2000; 67: 2631-8.

Lin J, Chen M, Xie J, et al. Purification and characterization of two luffacinins, ribosome-inactivating proteins from seeds of Luffa acutangula. Chinese J biochemistry and molecular biology 2002; 18: 609-13.

Wang H, Ng TB. Luffafangulin, a novel ribosome-inactivating peptide from ridge gourd (Luffa acutangula) seeds. Life Sci 2002; 70: 899-906.

Ng TB, Chan WY, Yeung HW. The ribosome-inactivating, antiproliferative and teratogenic activities and immunoreactivities of a protein from seeds of Luffa aegyptiaca (Cucurbitaceae). General Pharmacology: The Vascular System 1993; 24: 655-8.

Ramakrishnan S, Enghild JJ, Bryant Jr HL, Xu FJ. Characterization of a translation inhibitor protein from Luffa aegyptiaca. Biochem Biophys Res Commun 1989; 160: 509-16.

Parkash A, Ng TB, Tso WY. Isolation and characterization of luffacin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 2002; 23: 1019-24.

Kamensono M, Nishida H, Funatsu G. Isolation and Characterization of Two Luffins, Protein-biosynthesis Inhibitory Proteins from the Seeds of Luffa cylindrica. Agricultural and biological chemistry 1988; 52: 1223-7.

Islam MR, Nishida H, Funatsu G. Complete amino acid sequence of luffin-a, a ribosome-inactivating protein from the seeds of sponge gourd (Luffa cylindrica). Agric Biol Chem 1990; 54: 2967-78.

Li F, Yang XX, Xia HC, et al. Purification and characterization of Luffin P1, a ribosome-inactivating protein from the seeds of Luffa cylindrica. Peptides 2003; 24: 799-805.

Gao W, Ling J, Zhong X, et al. Luffin—a small novel ribosome-inactivating protein from Luffa cylindrica. Britannica. Chemical 1998; 347: 257-60.

Chambery A, de Donato A, Bolognesi A, Polito L, Stirpe F, Parente A. Sequence determination of lychin, a type I ribosome-inactivating protein from Lycium chalcedonicum seeds. Biological Chem 2003; 387: 1261-6.

Yuan Y, Dai X, Wang D, Zeng X. Purification, characterization and cytotoxicity of malanol, a novel plant toxin from the seeds of Malanica oleifera. Toxicon 2009; 54: 121-7.

Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biochimica et Biophysica Acta (BBA) - Rev Biomembranes 1993; 1154: 237-82.

Shih N-JR, McDonald KA, Giberts T, Iglesias R, Kohlhoff AJ, Jackman AP. Ribosome-inactivating and Adenine Polynucleotide Glycosylase Activities in Mirabilis jalapa L. Tissues. J Biological Chem 2002; 277: 13709-16.

Kushwaha GS, Pandey N, Sinha M, et al. Crystal structures of a type-I ribosome-inactivating protein from Morinda balsamina in the bound and unbound states. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 2012; 1824: 679-91.

Ortiga M, Better M. Morindin II, a ribosome inactivating protein from Morinda balsamina, is homologous to other plant proteins. Nucleic Acids Res 1992; 20: 4662.

Bolognesi A, Polito L, Lubelli C, Barbieri L, Parente A, Stirpe F. Ribosome-inactivating and Adenine Polynucleotide Glycosylase Activities in Mirabilis jalapa L. Tissues. J Biological Chem 2002; 277: 13709-16.

Kaur I, Yadav S, Hariprasad G, et al. Balsamin, a novel ribosome-inactivating protein from the seeds of Balsam apple Morinda balsamina. Amino Acids 2012; 43: 973-81.

Barbieri L, Zamboni M, Lorenzoni E, Montanaro L, Sperti S, Stirpe F. Inhibition of protein synthesis in vitro by proteins from the seeds of Morinda charantia (bitter pear melon). Biochem. J 1980; 186: 443-52.

Liu WKK, Liu SC, Yang XX, Xia HC, et al. Activities of a novel ribosome inactivating protein from Momordica balsamina. Biochem J 2003; 371: 787-88.

Zhu F, Zhang P, Meng YF, et al. Alpha-moromcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 2013; 237: 77-88.

Yeung HW, Li WW, Chan WY, Law JK, Ng TB. Alpha and beta moromcharins. International J Cell Division and Protein Research 1986; 28: 518-24.

Yeung HW, Ng TB, Li WW, Cheung WK. Partial Chemical Characterization of alpha- and beta-Moromcharins. Planta Med 1987; 53: 164-6.

Pu Z, Lu BY, Liu WY, Jin SW. Characterization of the Enzymatic Mechanism of γ-Moromcharin, a Novel Ribosome-Inactivating Protein with Lower Molecular Weight of 11, 500 from the Seeds of Bitter Gourd (Morinda charantia). Biochem Biophys Res Commun 1996; 239: 287-94.

Pr Tse PMF, Ng TB, Fong WP, et al. New ribosome-inactivating proteins from seeds and fruits of the bitter gourd Morinda charantia. Int J Biochem Cell Biol 1999; 31: 895-901.

Parkash A, Ng TB, Tso WY. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Morinda charantia) seeds. J Peptide Res 2002; 59: 197-202.
Current Pharmaceutical Design, 2014, Vol. 20, No. 42 6629

[213] Barbieri L, Bolognesi A, Cenini P, et al. Ribosome-inactivating proteins from plant cells in culture. Biochem J 1989; 257: 801-7.

[214] Park S-W, Lawrence CB, Linden JC, Vavincova JM. Isolation and Characterization of a Novel Ribosome-Inactivating Protein from Root Cultures of Pokeweed and Its Mechanism of Secretion from Tobacco Leaves. Planta Med 2006; 72: 361-9.

[215] Parente A, De Luca P, Bolognesi A, et al. Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioica L. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1993; 1216: 43-9.

[216] Del Vecchio Blanco F, Bolognesi A, et al. Complete amino-acid sequence of PD-S2, a new ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochimica et Biophysica Acta (BBA) - Protein Structure Mol Enzymol 1997; 1338: 137-44.

[217] Di Maro A, Valbonesi P, Bolognesi A, et al. Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide: adenosine glycosidase activity, from leaves of Phytolacca dioica L. Planta 1999; 208: 125-31.

[218] Di Maro A, Chambery A, Carafa V, Costantini S, Colonna G, Parente A. Structural characterization and comparative modeling of PD-Ls 1-3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 2009; 91: 352-63.

[219] Parente A, Conforto B, Maro A, et al. Type 1 ribosome-inactivating proteins from Phytolacca dioica L. leaves: differential seasonal and age expression, and cellular localization. Planta 2008; 228: 963-75.

[220] Parente, A, Berisio R, Chambery A, Maro A. In Toxic Plant Proteins, J Michael Lord Martin R. Hartley, eds.; Springer Berlin Heidelberg 2010; 18: 79-106.

[221] Ready MP, Adams RP, Roberto JD, Dodecandrina, a new ribosome-inhibiting protein from Phytolacca dodecandra. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1984; 791: 314-9.

[222] Di Maro A, Chambery A, Daniele A, Casoria P, Parente A. Isolation and characterization of heterotetrapelins, type 1 ribosome-inactivating proteins from Phytolacca heterotepalae leaves. Phytochemistry 2007; 68: 767-76.

[223] Moon VH, Song SK, Choi KW, Lee JS. Expression of a cDNA encoding Phytolacca insolaris antiviral protein confers virus resistance on transgenic potato plants. Mol Cells 1997; 7: 807-15.

[224] Song SK, Choi Y, Moon Y, Kim SG, Choi Y, Lee J. Systemic induction of a Phytolacca insolaris antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Molecular Biology 2000; 43: 439-50.

[225] Lam SSL, Wang H, Ng TB. Purification and Characterization of Novel Ribosome Inactivating Proteins, Alpha- and Beta-Pisavins, from Seeds of the Garden Pea Pismum Sativum. Biochem Biophys Res Commun 1999; 253: 135-42.

[226] Ye XY, Wang HG, Ng TB. Sativin: A novel antifungal minicellulin from legumes of the sugar snap Pismum sativum var. macrocarpon. Life Sci 2000; 67: 775-81.

[227] Van Damme EJM, Hao Q, Charels D, et al. Characterization and molecular cloning of two different type 2 ribosome-inactivating proteins from the monocotyledonous plant Polygonatum multiflorum. Eur J Biochem 2000; 267: 2746-59.

[228] Olsson S, Pihl A. Different biological properties of the two constituent peptide chains of a ribosome-inactivating protein. Biochemistry 1973; 12: 3126-6.

[229] Cavley DB, Hedblom ML, Houston LL. Homology between ricin and Ricinus communis agglutinin: Amino terminal sequence analysis and protein synthesis inhibition studies. Archives Biochem Biophys 1978; 190: 74-55.

[230] Ishiguro M, Takahashi T, Hayashi K, Funatsu M. Biochemical Studies on Ricin: II. Molecular Weight and Some Physicochemical Properties of Crystalline Ricin D. J Biochem 1964; 56: 325-7.

[231] Mise T, Funatsu G, Ishiguro M, Funatsu M. Isolation and characterization of ricin E from castor beans. Agricultural Biological Chem 1977; 41: 2041-6.

[232] Jelmez M, Pieroni G. RCA60: Purification and Characterization of Ricin D Isoforms from Ricinus sanguineus. J Plant Physiol 2000; 156: 477-82.

[233] Wantyghem J, Turpin E, Neel D, Goussault Y, Bourrillon R. Interaction between the Ricinus sanguineus agglutinin and receptor sites isolated from normal human lymphocytes. Biochimie 1979; 61: 17-22.
References

[234] Citores L, De Benito FM, Iglesias R, et al. Characterization of a new non-toxic type two ribosome-inactivating protein and a structurally-related lectin from rhizomes of dwarf elder (Sambucus ebulus L.). Cell Mol Biol (Noisy-le-grand) 1997; 43: 485-99.

[235] Girbés T, Citores L, Iglesias R, et al. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus leaves. J Biological Chem 1993; 268: 18195-9.

[236] de Benito FM, Citores L, Iglesias R, et al. Ebulintins: A new family of type 1 ribosome-inactivating proteins (rRNA N-glycosidases) from leaves of Sambucus ebulus L. that coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS letters 1995; 360: 299-302.

[237] de Benito FM, Citores L, Iglesias R, et al. Isolation and partial characterization of a novel and uncommon two-chain 64-kDa ribosome-inactivating protein from the bark of elder (Sambucus nigra L.). FEBS letters 1997; 413: 85-91.

[238] Girbés T, Citores L, Miguel Ferreras J, et al. Characterization of a novel and uncommon type 1 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol Biol 1993; 22: 1118-6.

[239] de Benito FM, Iglesias R, Ferreras JM, et al. Constitutive and inducible type 1 ribosome-inactivating proteins (RIPs) in elderberry (Sambucus nigra L.). FEBS letters 1998; 428: 75-9.

[240] Van Damme EJM, Barre A, Rougé P, Van Leuven F, Peumans WJ, et al. The NeuAc(2,6)-2,6-Gal/GalNAc-Binding Lectin from Elderberry (Sambucus nigra L.). FEBS letters 1998; 428: 75-9.

[241] Kawade K, Ishizaki T, Masuda K. Differential expression of ribosome-inactivating protein, saporin-6, in Spinacia oleracea. Physiologia Plantarum 2008; 134: 383.

[242] Benaatti L, Saccardo MB, Dani M, et al. Ribosome-Inactivating Protein with an Inactive B Chain from Elderberry (Sambucus nigra L.). FEBS letters 1999; 450: 363-71.

[243] Bolognesi A, Battelli MG, et al. Amino acid sequences and ribosome-inactivating activities of karasurin-B and -kirilowin. Acta Biochimica et Biophysica Acta (BBA) - General Structure and Expression 1982; 696: 239-44.

[244] Toyokawa S, Takeda T, Ogihara Y. Isolation and characterization of a novel ribosome-inactivating protein I. The isolation, physicochemical and biological properties of trichobitacin. Chinese J Chemistry 1997; 15: 160-8.

[245] Collins EJ, Robertus JD, LoPresti M, et al. Primary amino acid sequence of alpha-tribosanthin and molecular models for abrin A chain and alpha-tribosanthin. J Biological Chem 1990; 265: 8665-9.

[246] Lee-Huang S, Huang PL, Kung HF, et al. TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is toxic to intact cells. Proc Natl Acad Sci 1991; 88: 6570-4.

[247] Wong RNS, Dong TX, Ng TB, Yeung HW, et al. Improved isolation and further characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica. Archives of Biochemistry and Biophysics 2004; 432: 212-21.

[248] No TB, Feng Z, Li WW, Yeung HW. Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of Trichosanthes cucumeroides (cucurbitaceae). International J Biochemistry 1987; 25: 561-7.

[249] Sultan NAM, Kenoth R, Swamy MJ. Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes kirilowii. Biochemical and Biophysical Research Communications 1994; 199: 387-93.

[250] Maragano JM, Joseph M, Bailey MC. Purification and characterization of tribosanthin. Homology to the ricin A chain and implications as to mechanism of abortifacient activity. J Biological Chem 1987; 262: 11628-33.

[251] Lee-Huang S, Huang PL, Kung HF, et al. TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is toxic to intact cells. Proc Natl Acad Sci 1991; 88: 6570-4.

[252] Dong TX, Ng TB, Yeung HW, Wong RNS. Isolation and Characterization of a Novel Ribosome-Inactivating Protein, β-Kirilowin, from the Seeds of Trichosanthes kirilowii. Biological and Biochemical properties of trichobitacin. Chinese J Chemistry 1997; 15: 160-8.

[253] YongTang Z, KunLong B, ShanWei J. Anti-HIV-1 activity of Tribobitacin, a novel ribosome-inactivating protein. Acta Pharmacologica Sinica 2000; 21: 179-82.

[254] Tai NW, Li F, Li Z, Zhuang DH, Zhang ZC. Purification and Partial Characterization of S-trichokirin, A New Small Ribosome-Inactivating Protein, from Seeds of Trichosanthes kirilowii. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2000; 32: 495-8.

[255] Li F, Yang XX, Hu WG, Xia HC, Li Z, Zhang ZC. Purification and characterization of trichobitacin-S1, a novel ribosome-inactivating peptide from seeds of Trichosanthes kirilowii. Acta Biochimica Et Biophysica Sinica 2003; 9: 10.

[256] Collins EJ, Robertus JD, LoPresti M, et al. Primary amino acid sequence of alpha-tribosanthin and molecular models for abrin A chain and alpha-tribosanthin. J Biological Chem 1990; 265: 8665-9.

[257] Toyokawa S, Takeda T, Ogihara Y. Isolation and characterization of a new abortifacient protein, karasurin, from root tubers of Trichosanthes kirilowii Max. var. japonicum Kitam. Chem Pharm Bull (Tokyo) 1991; 39: 716-9.

[258] Toyokawa S, Takeda T, Ogihara Y. Isolation and characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes kirilowii. Archives of Biochemistry and Biophysics 1994; 199: 387-93.

[259] Collins EJ, Robertus JD, LoPresti M, et al. Primary amino acid sequence of alpha-tribosanthin and molecular models for abrin A chain and alpha-tribosanthin. J Biological Chem 1990; 265: 8665-9.

[260] Mi SL, An CC, Wang Y, et al. Amino acid sequences and ribosome-inactivating activities of karasurin-B and karasurin-C. Biological & pharmaceutical bulletin 1996; 19: 1485-9.

[261] Shu SH, Xie GZ, Guo XL, Wang M. Purification and characterization of a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii Maxim. Protein expression and purification 2009; 67: 120-5.

[262] Mi SL, An CC, Wang Y, et al. Trichosamin, a novel ribosome-inactivating protein, induces apoptosis that involves mitochondria and caspase-3. Archives of Biochemistry and Biophysics 2005; 434: 258-65.

[263] Casellas P, Dussossoy D, Falasca AI, et al. Trichokirin, a ribosome-inactivating protein from seeds of Trichosanthes kirilowii Maximowicz. Eur J Biochemistry 1988; 176: 581-7.

[264] Chen R, Xu YZ, Wu J, et al. Purification and characterization of the homogenin-A, a novel cell-inactivating protein with abortifacient activity. JUmbre Life 1999; 47: 185-93.

[265] Chi PV, Tranng HQ, Ha NT, Chung W, Binh LT. Characterization of trichobakin, a type I ribosome-inactivating protein from Trichosanthes sp. Bac Kan 8:982001; 34: 85-92.

[266] Habuka N, Kataoka J, Miyano M, Tsuge H, Ago H, Noma M. Nucleotide sequence of a genomic gene encoding tritin, a ribo-
some-inactivating protein from Triticum aestivum. Plant Molecular Biology 1993; 22: 171-6.

[274] Olness S, Stirpe F, Sandvig K, Phil A. Isolation and characterization of vaccinin, a toxic lectin from Viscum album L. (mistletoe). J Biological Chem 1982; 257: 13263-70.

[275] Das MK, Sharma RS, Mishra V. A cytotoxic type-2 ribosome inactivating protein (from leafless mistletoe) lacking sugar binding activity. International J Biological Macromolecules 2011; 49: 1096-103.

[276] Voss C, Eyol E, Frank M, von der Lieth CW, Berger MR. Identification and characterization of riproxin, a new type II ribosome-inactivating protein with antiproliferative activity from Xenima americana. The FASEB Journal 2006; 20: 1194-6.

[277] Fonzo N, Hartings H, Brembilla M, et al. The b-32 protein from maize endosperm, an albumin regulated by the O2 locus: Nucleic acid (cDNA) and amino acid sequences. Molecular and General Genetics MGG 1988; 212: 481-7.

[278] Walsh TA, Morgan AE, Hey TD. Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. Novel mechanism of proenzyme activation by proteolytic cleavage of a 2.8-kilodalton internal peptide segment. J Biological Chem 1991; 266: 23422-7.

[279] Godal A, Fodstad Ø, Pihl A. Studies on the Mechanism of Action of Abrin-9.2.27 Immunotoxin in Human Melanoma Cell Lines. Cancer Res 1987; 47: 6243-7.

[280] Sivam G, Pearson JW, Bohn W, Oldham RK, Sadoff JC, Morgan AE. Immunotoxins to a Human Melanoma-associated Antigen: Comparison of Gelonin with Ricin and Other A Chain Conjugates. Cancer Res 1987; 47: 3169-73.

[281] Godal A, Kumle B, Phil A, Juell S, Fodstad Ø. Immunotoxins directed against the high-molecular-weight melanoma-associated antigen. Identification of potent antibody-toxin combinations. Int J Cancer 1992; 52: 631-5.

[282] Skillett DN, Price RJ, Parnell GD, Cumber AJ. The low uptake of an abrin A-chain immunotoxin by rat hepatic cells in vivo and in vitro. Cancer Letters 1989; 46: 161-6.

[283] Forrester J, McIntosh D, Cumber A, Parnell G, Ross W. Delivery of ricin and abrin A-chains to human carcinoma cells in culture following covalent linkage to monoclonal antibody LCR-LOND-Fib 75. Cancer drug delivery 1984; 1: 283-92.

[284] Wawrzynczak EJ, Cumber AJ, Henry RV, et al. Pharmacokinetics in the Rat of a Panel of Immunotoxins Made with Abrin A Chain, Ricin A Chain, Gelinon, and Momordin. Cancer Res 1990; 50: 7519-26.

[285] Tsai LC, Chen YL, Lee C, et al. Growth suppression of human colorectal carcinoma in nude mice by monoclonal antibody C27-abrin A chain conjugate. Diseases of the Colon & Rectum 1995; 38: 1067-74.

[286] Thorpe PE, Blakely DC, Brown ANF, et al. Comparison of Two Anti-CD19 Monoclonal Antibody and the Ribosome-inactivating Protein FdRicin A Chain-Prepared With Different Cross-Linking Agents: Antitumor Effects, In Vivo Fate, and Tumor Cell Mutants. J the National Cancer Institute 1987; 79: 1101-12.

[287] Hwang KM, Foon KA, Cheung PH, Pearson JW, Oldham RK. Selective Antitumor Effect on L10 Hepatocarcinoma Cells of a Potent Immunoon conjugate Composed of the A Chain of Abrin and a Monoclonal Antibody to a Hepatoma-associated Antigen. Cancer Res 1984; 44: 4578-86.

[288] Santana JM, Teixeira AR. Effect of immunotoxins against Trypanosoma cruzi. Am J Trop Med Hyg 1989; 41: 177-82.

[289] Gadadhar S, Karande AA. Abrin Immunotoxin: Targeted Cytoxicity and Intracellular Trafficking Pathway. PLoS ONE 2013; 8: e58304.

[290] Wawrzynczak EJ, Zangemeister-Wittke U, Waibel R, et al. In vitro anti-tumour activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. Br J Haematol 2000; 110: 351-61.

[291] Entwistle J, Kowalski M, Brown J, Cizeau J, MacDonald G. In Antibody-Drug Conjugates and Immunotoxins, Gail Lewis Phillips, ed.; Springer New York 2013: pp.; 349-67.

[292] Entwistle J, Brown JG, Chomienne C, Cizeau J, MacDonald GC. Preclinical evaluation of VB6-845: an anti-EPotCAM immunotoxin with reduced immunogenic potential. Cancer Biotherapy Radiopharm 2012; 27: 582-92.

[293] Stirpe F, Wawrzynczak EJ, Brown AN, et al. Selective cytotoxic activity of immunotoxins composed of a monoclonal anti-Thy 1.1 antibody and the ribosome-inactivating proteins bydronid and momordin. Br J Cancer 1988; 58: 559-61.

[294] Francisco JA, Gawlak SL, Siegall CB. Construction, Expression, and Characterization of BD1-G28-5 f, a Single-chain Anti-CD40 Immunotoxin Containing the Ribosome-inactivating Protein Bydronid 1. J Biological Chem 1997; 272: 24165-9.

[295] Francisco JA, Gawlak SL, Miller M, et al. Expression and Characterization of Bydronid 1 and a Blydon 1-Based Single-Chain Immunotoxin from Tobacco Cell Culture. Bioconjugate Chem 1997; 8: 708-13.

[296] Siegall CB, Gawlak SL, Chace D, Wolff EA, Mixan B, Marquardt H. Characterization of ribosome-inactivating proteins isolated from Bryonia dioica and their utility as carcinoma-reactive immunocojugates. Bioconjugate Chem 1994; 5: 423-9.

[297] Dosio F, Brusa P, Crossoso P, Fruttero C, Cantil L, Bolognesi A. Synthesis of different immunotoxins composed by ribosome inactivating proteins non-covalently bound to monoclonal antibody. II Farimaco 1996; 51: 477-82.

[298] Bolognesi A, Tazzari PL, Tassi C, Gromo G, Gobbi M, Stirpe F. A comparison of anti-lymphocyte immunotoxins containing different ribosome-inactivating proteins and antibodies. Clin Exp Immunol 1992; 99: 341-6.

[299] Frankel AE, Neville DL, Bugge TA, Kreitman RJ, Leppha SH. Immunotoxin therapy of hematologic malignancies. Seminars Oncol 2003; 30: 545-57.

[300] Zheng Q, Xiong YL, Su Z, et al. Expression of curcin-transferrin receptor binding peptide fusion protein and its anti-tumor activity. Protein Expression and Purification 2013; 89: 181-8.

[301] Bolognesi A, Tazzari P, Legname G, Olivieri F, Modena D, Conte R, Stirpe F. Anti-CD30 immunotoxins with native and recombinant dianthin 30. Cancer Immunology, Immunotherapy 1995; 40: 109-14.

[302] Bolliieri L, Bolognesi A, Valbonesi P, Polito L, Olivieri F, Stirpe F. Polynucleotide: Adenosine Glycosidase Activity of Immunotoxins Containing Ribosome-Inactivating Proteins. J Drug Targeting 2000; 8: 281-8.

[303] Gilbert-Roriel R, Thakur M, Weise C, et al. Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression. Protein Expression and Purification 2013; 91: 54-60.

[304] Lorenzetti I, Meneguzzi A, Fracasso G, et al. Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates. Int J Cancer 2000; 86: 582-9.

[305] Cifre La, Miguel Ferreras J, Muñoz R, Benítez J, Jiménez P, Girbés T. Targeting cancer cells with transferrin-conjugated containing the non-toxic type 2 ribosome-inactivating proteins nigrin b or ebulin I. Cancer Letters 2002; 184: 29-35.

[306] Benítez J, Ferreras JM, Muñoz R, et al. Cytotoxicity of an ebulin l-anti-human CD105 immunotoxin on mouse fibroblasts (L929) and human melanoma cells (U87MG) cells expressing human CD105. Med Chem 2005; 1: 65-70.

[307] Cumber AJ, Henry RV, Parnell GD, Wawrzynczak EJ. Purification of immunotoxins containing the ribosome-inactivating proteins gelonin and momordin using high performance liquid immunoaffinity chromatography compared with Blue Sepharose CL-6B affinity chromatography. J Immunological Methods 1990; 135: 15-24.
Otten H, de Gast G, Vooijs W, et al. Preclinical evaluation of anti-CD86 immunotoxin in rhesus monkeys: analysis of systemic toxicity, pharmacokinetics, and effect on primary T-cell responses. Cancer Immunology, Immunotherapy 2003; 52: 569-75.

Lambert JM, Senter PD, Yao-Young A, Blätter WA, Goldmacher VS. Purified immunotoxins that are reactive with human lymphoid cells. Monoclonal antibodies conjugated to the ribosome-inactivating proteins gelonin and the pokeweed antiviral proteins. J Biological Chem 1985; 260: 12035-41.

Harris P, Reed E, West King D, Suciu-Foca N. In vitro studies of the effect of MAb NDA 4 linked to toxin on the proliferation of a human EBV-transformed lymphoblastoid B cell line and of gibbon M LA leukemia cell line. Cellular Immunology 1991; 134: 85-95.

Scott CF, Goldmacher VS, Lambert JM, Jackson JV, McIntyre GD. An Immunotoxin Composed of a Monoclonal Antitransferrin Receptor Antibody Linked by a Disulfide Bond to the Ribosome-Inactivating Protein Gelonin: Potential In Vitro and In Vivo Effects Against Human Tumors. J the National Cancer Institute 1987; 79: 1163-72.

Wenning LA, Murphy RM. Coupled cellular trafficking and diffusional limitations in delivery of immunotoxins to multilcell tumor spheres. Biotechnology and Bioengineering 1999; 62: 562-75.

O’Boyle KP, Colletti D, Mazurek C, et al. Potentiation of Antipot- littifactive Effects of Monoclonal Antibody Lym-1 and Immunotoxin Conjugate Lym-1-gelonin on Human Burkitt’s Lymphoma Cells with [gamma]-Interferon and Tumor Necrosis Factor. J Immunotherapy 1995; 18: 221-30.

Hirota N, Ueda M, Ozawa S, Abe O, Shinizu M. Suppression of an Epidermal Growth Factor Receptor-hyperproducing Tumor by an Immunotoxin Conjugate of Gelonin and a Monoclonal Anti-Epidermal Growth Factor Receptor Antibody. Cancer Res 1989; 49: 7106-9.

Masuda K, Takahashi K, Nagata S, Hirano K, Takagishi Y. Immunotoxins Composed of Monoclonal Antibody to a-Fetoprotein and Gelonin as a Potent Hepatoma-Targeted Drug Delivery System. J Drug Targeting 1994; 2: 323-31.

Rosenblum MG, Murray JL, Cheung L, Rifkin R, Salmon S, Barnet et al. The antileukemic activity of recombinant humanized M195-gelonin immunotoxin in nude mice. Leukemia 1996; 10: 321-6.

Murok J, Cheung L, Murray J, Rosenblum M. Pharmacokinetics, tissue distribution, and in vivo antitumor effects of the antimal- noma immunotoxin ZME-gelonin. Cancer Immunology, Immunotherapy 1995; 40: 339-45.

Urbanis IL, Sterz RKM, Peper K, Trommer WE. Antigen-specific therapy of experimental myasthenia gravis with acetylcholine receptor-gelonin conjugates in vivo. European J Immunology 1993; 23: 776-9.

Wiel S, Junqua S, Dujardin P, Le Pecc JB, Tursz T. Properties of Immunotoxins against a Glycolipid Antigen Associated with Burkitt’s Lymphoma. Cancer Res 1984; 44: 129-33.

Reimann KA, Goldmacher VS, Lambert JM, et al. In vivo administration of lymphocyte-specific monoclonal antibodies in nonhu- man primates. IV. Cytotoxic effect of an anti-T11-gelonin immuno- toxin. J Clin Invest 1988; 82: 129-38.

Frankel AE, Woo JH, Neville DM. In Principles of Cancer Biotherapy, R. K. Oldham, R. O. Dillman, eds.; Springer Science + Business Media BV 2009; pp: 407-51.

Sulorla N, Misquith S. Cell surface receptor directed targeting of toxin to human malaria parasite, Plasmodium falciparum. FEBS Letters 1996; 396: 57-61.

Arpico S, Dosio F, Brusa P, Cossato P, Cattel L. New Coupling Reagents for the Preparation of Disulfide Cross-Linked Conjugates with Increased Stability. Bioconjugate Chem 1997; 8: 327-37.

Rosenblum MG, Zuckerman JE, Marks JW, Rotbein J, Allen WR. A gelonin-containing immunotoxin directed against human breast carcinoma. Mol Biother 1992; 4: 122-9.

Tedder TF, Goldmacher VS, Lambert JM, Schlossman SF. Epstein Barr virus binding induces internalization of the C3d receptor: a novel immunotoxin delivery system. J Immunology 1986; 137: 1387-91.

Colombatti M, Bron C. Sensitivity of target cells to immunotoxins: possible role of cell-surface antigens. Immunology 1985; 55: 331-8.

Scott C, Jr, Goldmacher V, Lambert J, et al. The antileukemic efficacy of an immunotoxin composed of a monoclonal anti-Thy-1 antibody disulfide linked to the ribosome-inactivating protein gelonin. Cancer Immunol, Immunotherapy 1987; 25: 31-40.

Barnett BB, Smeek DF, Malek SM, Sidwell RW. Selective cytotoxicity towards cytomegalovirus-infected cells by immunotoxins con- sisting of gelonin linked to anti-cytomegalovirus antibody. AntiViral Res 1995; 28: 93-100.

Shin Y, Choi Y, Choi E, et al. Targeted cytotoxic effect of anti-JL1 immunotoxin against a human leukemia cell line and its clinical implications. Cancer Immunology, Immunotherapy 2003; 52: 506-12.

Singh V, Curtiss R III. Hemotoxins: the role of positive charge of lysine residue on the immunological, biological and cytotoxic properties of ovine haptatin-S-gelonin conjugates. Mol Cellular Biochem 1994; 130: 91-101.

Misquith S, Souriola A. In vivo treatment of Heymann’s Nephritis using a cytotoxic protein-toxin conjugate. FEBS Letters 1995; 373: 151-4.

Barnett BB, Burns lii NL, Park JK, Dawson MI, Kende M, Sidwell RW. Antiviral immunotoxins: antibody-mediated delivery of ge- lonin inhibits Pichinde virus replication in vitro. Antiviral Research 1991; 15: 125-38.

Mujoo K, Reisfeld R, Cheung L, Rosenblum M. A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2. Cancer Immunology, Immunotherapy 1991; 34: 198-204.

Kobayashi A, Kita E, Kurokawa Y, Tsujioka K, Kuboshirio K, et al. Effect of Gelonin Immun conjugate with Monoclonal Antibody MSN-1 to Endo- metrial Adenocarcinoma on Antigen-producing Tumor Cells in vivo. Cancer Science 1998; 89: 583-8.

Fishwild DM, Wu HM, Carroll SF, Bernard SL. Characterization of the increased cytotoxicity of gelonin anti-T cell immunon conjugates compared with ricin A chain immunon conjugates. Clin Exp Immunol 1994: 97: 10-8.

Rosenblum MG, Shawver LK, Marks JW, Brink J, Cheung L, Langton-Webster B. Recombinant Immunotoxins Directed against the c-erb-2/HER2/neu Oncogene Product: In Vitro Cytotoxicity, Pharmacokinetics, and in Vivo Efficacy Studies in Xenograft Mod- els. Clinical Cancer Research 1999; 5: 865-74.

Pietramedda LM, Jin H, Ran S, et al. In vitro and in vivo studies of a VEGF121/gelonin chimeric fusion toxin targeting the neovascu- larization of solid tumors. Proc Natl Acad Sci 2002; 99: 7866-71.

Borthakur G, Rosenblum MG, Talpaz M, et al. Phase I study of an anti-CD33 immunotoxin, humanized monoclonal antibody M195 conjugated to recombinant gelonin (HUM-195/rGEL), in patients with advanced myeloid malignancies. Haematologica 2013; 98: 217-21.

McGraw K, Rosenblum M, Cheung L, Scheinberg D. Characteriza- tion of murine and humanized anti-CD33, gelonin immunotoxins reactive against myeloid leukemias. Cancer Immunology, Immunotherapy 1994; 39: 367-74.

Nemcikaro LC, Liu B, Mugnier R, et al. Humanized M195 mono- clonal antibody conjugated to recombinant gelonin: an anti-CD33 immunotoxin with antileukemic activity. Clinical Cancer Research 1998; 4: 1971-6.

Xu Y, Xu Q, Rosenblum MG, Scheinberg DA. Antileukemic activ- ity of recombinant humanized M195-gelonin immunotoxin in nude mice. Leukemia 1996; 10: 321-6.

Rosenblum MG, Cheung LH, Liu Y, Marks JW. Design, Express- sion, Purification, and Characterization, in vitro and in vivo, of an Antimelanoma Single-chain Fv Antibody Fused to the Toxin Ge- lonin. Cancer Res 2003; 63: 3995-4002.

Luster TA, Mukherjee I, Carroll JA, et al. Fusion Toxin BLYS- Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vi- tro and In Vivo. PLoS ONE 2012; 7: e47361.

Nimmannapalli R, Lyu MA, Du M, Keating MJ, Rosenblum MG, Gandhi V. The growth factor fusion construct containing B- lymphocyte stimulator (BLYS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood 2007; 109: 2557-64.

Luo MA, Cheung LH, Hittelmann WN, Marks JW, Agucar RGT, Rosenblum MG. The rGel/BLYS fusion toxin specifically targets malignant B cells expressing the BLYS receptors BAFF-R, TACI, and BCMA. Mol Cancer Therapeutics 2007; 6: 460-70.

Cao Y, Marks JD, Huang Q, et al. Single-Chain Antibody-Based Immunotoxins Targeting Her2/neu: Design Optimization and Im- pact of Affinity on Antitumor Efficacy and Off-Target Toxicity. Mol Cancer Therapeutics 2012; 11: 143-53.
Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers

Current Pharmaceutical Design, 2014, Vol. 20, No. 42 6633

[352] Cao Y, Marks JD, Marks JW, Cheung LH, Kim S, Rosenblum MG. Construction and Characterization of Novel, Reombinant Immunotoxins Targeting the Her-2/neu Oncogene Product: In vitro and In vivo Studies. Cancer Res 2009; 69: 8987-95.

[353] Pirie CM, Hackett BJ, Rosenblum MG, Wittrup KD. Convergent Potency of Internalized Gelonin Immunotoxins across Varied Cell Lines, Antigens, and Targeting Moieties. J Biological Chem 2011; 286: 4165-72.

[354] Pirie CM, Liu DV, Wittrup KD. Targeted Cytolysins Synergistically Potentiate Cytoplastic Delivery of Gelonin Immunotoxin. Mol Cancer Therapeutics 2013; 12: 1774-82.

[355] Cheung LH, Martinez-Torrecuadrada JL, Marks JW, III, Rosenblum MG, Casal I. Characterization Studies of Reombinant Fusion Constructs Targeting FGF13 and Containing Reombinant Gelonin (rGel). AACR Meeting Abstracts 2006; 2006: 465-c.

[356] Martinez-Torrecuadrada JL, Cheung LH, Lopez-Serra P, et al. Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol Cancer Therapeutics 2006; 7: 862-73.

[357] Better M, Bernhard SL, Fishwild DM, et al. Gelonin analogs with engineered cysteine residues form antibody immunonjugates with unique properties. J Biological Chem 1994; 269: 9644-50.

[358] Selbo PK, Sivam G, Fodstad O, Sandvig K, Berg K. Photochemical internalisation increases the cytotoxic effect of the immunotoxin APE-31-gelonin. Int J Cancer 2000; 87: 853-9.

[359] Gao WD, Zhang RP, Cao HT, Ji RH, Zhang ZC. Construction of Luffin A Immunotoxin and Its in vitro Inhibition Against Human Melanoma Cell M_. (21). Chinese Science Bulletin 1994; 39: 950.

[360] Zhang RP, Xiong CY, Yan M, Zhang ZC. In vitro Inhibition of Human Melanoma Cells by Immunotoxin Luffin B-Ng76. Sheng wu hua xue yuan sheng wu li xue bao Acta biochimica et biophysica Sinica 1998; 30: 561-4.

[361] Xiang Y, Li QY, Wang JH, et al. The construction and expression of Luffin-B-targeted fusion immunotoxin as well as its inhibitory effect on non-small cell lung cancer cells. Tumor 2013; 33: 314-20.

[362] Wang RP, Zhou LN, Wu J, et al. Construction and expression of a recombinant immunotoxin hIL-2-Luffin P1 [J]. Acta Academiae Medicinae Militariae Tarteaiae 2005; 9: 8.

[363] Wang R, Gan G, Gao W, et al. A novel recombinant immunotoxin with the smallest ribosome-inactivating protein Luffin P1: T-cell cytotoxicity and prolongation of allograft survival. J Cellular Mol Med 2010; 14: 578-86.

[364] Wang RP, He W, He WF, Zhang XR, Liu SI, Wu J. Inhibiting effects of recombinant immunotoxin hIL-2-Luffin P1 on graft re-jection of allo-skin transplantation in mice [J]. Immunological Journal 2008; 3: 17.

[365] Wu H, Lu Q, Gao WD, Chen LQ, Ren CP, Shen JJ. Antitumor activity of a pokeweed antiviral protein containing immunotoxin PAP-Luffin containing an anti-CD7 monoclonal antibody (OM124): in vitro and in vivo studies. Br J Haematol 1998; 101: 179-88.

[366] Dinota A, Barbieri L, Gobbi M, et al. An immunotoxin containing momordin suitable for bone marrow purging in multiple myeloma patients. Br J Cancer 1989; 60: 315-9.

[367] Porro G, Bolognesi A, Caretto P, et al. In vitro and in vivo properties of an anti-CD5—momordin immunotoxin on normal and neo-

[368] plastic T lymphocytes. Cancer Immunology, Immunotherapy 1993; 36: 346-50.

[369] Tenerzi A, Bolognesi A, Pasqualucci L, et al. Anti-CD30 (BER-H2) immunotoxins containing the type-1 ribosome-inactivating proteins momordin and PAP-S (pokeweed antiviral protein from seeds) display powerful antitumour activity against CD30+ tumour cells in vitro and in SCID mice. Br J Haematol 1996; 92: 872-9.

[370] Tazzari P, de Totero D, Bolognesi A, et al. An Epstein-Barr virus-infected lymphoblastoid cell line (D430B) that grows in SCID-mice with the morphologic features of a CD30+ anaplastic large cell lymphoma, and is sensitive to anti-CD30 immunotoxins. Haematologica 1999; 84: 450-5.

[371] Wu L, Gu F, Zhang C, Xie S, Guo Y. Targeted diagnosis and treatment of superficial bladder cancer with monoclonal antibody BDI-1. Chinese medical journal 1998; 111: 404-7.

[372] Zhang CL, Yu LZ, Zhao C, Xie SS, Wang RF. Characteristics in Biodistribution and Metabolism of (–131)I Labeled Immunotoxin in Against Human Bladder Carcinoma in Tumor-Bearing Nude Mice. Chinese J Cancer Biotherapy 2005; 2: 008.

[373] Leamon CP, Low PS. Cytotoxicity of monomolar-folate conjugates in cultured human cells. J Biological Chem 1992; 267: 24966-71.

[374] Leamon CP, Pasant I, Low PS. Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain. J Biological Chem 1993; 268: 24847-54.

[375] Di Massimo AM, Di Loreto M, Pacilli A, et al. Immunotoxins Targeting the Her2/neu Oncogene Product: In vitro and In vivo Efficacy of an Anti-CD7-Pokeweed Antiviral Protein Immunotoxin. Mol Cancer Therapeutics 2013; 12: 369-74.

[376] Zhang CL, Yu LZ, Zhao C, Xie SS, Wang RF. Characteristics in Toxicity of ribosome-inactivating proteins-containing immunotoxins to a human bladder carcinoma cell line. Int J Cancer 1996; 65: 485-490.

[377] Xia HC, Li F, Zhen L, Zhang ZC. Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the roots of endorphin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res 2003; 13: 369-74.

[378] Muñoz R, Arias Y, Ferreras JM, et al. Targeting of the tumour neovascularature using a novel anti-human CD105-immunotoxin containing the non-toxic type 2 ribosome-inactivating protein nigrin b. Cancer Letters 2007; 256: 73-80.

[379] Wang H, Muñoz R, Arias Y, Miguel Ferreras J, et al. Transient Injury-Dependent Up-Regulation of CD105 and its Specific Targeting with An Anti-Vascular Anti-Mouse Endoglin-Nigrin b Immunotoxin. Medicinal Chemistry 2012; 8: 996-1002.

[380] Muñoz R, Arias Y, Ferreras J, et al. In vitro and in vivo effects of an anti-mouse endoglin (CD105)-immunotoxin on the early stages of mouse B16MELA5 melanoma tumours. Cancer Immunology, Immunotherapy 2013; 62: 541-51.

[381] Di Massimo AM, Di Loreto M, Pacilli A, et al. Immunonojugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymsiae or Vaccaria pyramidata. Br J Cancer 1997; 75: 822-8.

[382] Myers DE, Irvin JD, Smith RS, Kuebelbeck VM, Uckun FM. Production of a pokeweed antiviral protein (PAP)-containing immunotoxin, B43-PAP, directed against the CD19 human B lineage lymphoid differentiation antigen in highly purified form for human clinical trials. J Immunological Methods 1991; 136: 221-37.

[383] Uckun FM. Immunotoxins for the treatment of leukaemia. Br J Haematol 1993; 85: 435-8.

[384] Ek O, Gaynon P, Zeren T, Chelstrom LM, Myers DE, Uckun FM. Treatment of human B-cell precursor leukaemia in SCID mice by using a combination of the anti-CD19 immunotoxin B43-PAP with the standard chemotherapy drugs vincristine, methyldeslorone, and L-asparaginase. Leukemia & lymphoma 1998; 31: 143-9.

[385] Waddick K, Myers D, Gunther R, et al. In vitro and in vivo antileukemic activity of B43-pokeweed antiviral protein against radiation-resistant human B-cell precursor leukemia cells. Blood 1995; 86: 4228-33.

[386] Waurzyyniak B, Schneider EA, Tumer N, et al. In vivo toxicity, pharmacokinetics, and antileukemic activity of TXU (anti-CD7)-pokeweed antiviral protein immunotoxin. Clinical Cancer Research 2002; 8: 1744-52.

[387] Uckun FM, Bellomy K, O'Neill K, Messinger Y, Johnson T, Chen CL. Toxicity, Biological Activity, and Pharmacokinetics of TXU (Anti-CD7)-Pokeweed Antiviral Protein in Chimpanzees and Adult Patients Infected with Human Immunodeficiency Virus. J Pharmacology and Experimental Therapeutics 1999; 291: 1301-7.

[388] Uckun FM, Chelstrom LM, Tuel-Ahlgren L, et al. TXU (Anti-CD7)-Pokeweed Antiviral Protein as a Potent Inhibitor of Human
Immunodeficiency Virus. Antimicrobial Agents and Chemotherapy 1998; 42: 383-8.

[392] Ramakrishnan S, Houston LL. Comparison of the Selective Cytotoxic Effects of Immunotoxins Containing Ricin A Chain or Poked Antiviral Protein and Anti-Thy 1.1 Monoclonal Antibodies. Cancer Res 1984; 44: 201-8.

[393] Qi L, Nett TM, Allen MC, et al. Binding and Cytotoxicity of Conjugated and Recombinant Fusion Proteins Targeted to the Gpnadotropin-Releasing Hormone Receptor. Cancer Res 2004; 64: 2090-95.

[394] Schlick JL, Dulieu P, Desvoyes B, et al. Anti-CD4 and anti-CD26. Blood 1993; 82: 2224-34.

[395] Morgan AC, Bordonaro J, Pearson JW, Sivam G. Immunotoxins to Induction of apoptosis by ribosome-inactivating proteins and recombinant and Recombinant Fusion Proteins Targeted to the Gonadotropin-Releasing Hormone Receptor. Cancer Res 1984; 44: 201-8.

[396] Myers DE, Uckun FM. An anti-CD72 immunotoxin against therapy-refractory B-lineage acute lymphoblastic leukemia. Leukemia & lymphoma 1995; 18: 119-22.

[397] Smith CV, Sahlinski T, Arn JS, et al. In vivo treatment with monoclonal antibodies directed against CD4 and CD8 antigens in minature swine. J Immunotherapy 1994; 16: 105-14.

[398] Frankel A, Balfour HH, Myers DE, et al. Anti-human immunodeficiency virus type 1 activity of an anti-CD44 conjugate containing pokeweed antiviral protein. Antimicrobial Agents and Chemotherapy 1993; 37: 835-8.

[399] Morgan AC, Bordorano J, Pearson JW, Sivam G. Immunotoxins to a Human Melanoma-Associated Antigen: Resistance to Pokeweed Antiviral Protein Conjugates In Vitro. J the National Cancer Institute 1987; 8: 1101-6.

[400] Dore J-M, Gras E, Wijdenes J. Expression and activity of a recombinant Gnrh-PAP fusion toxin on human tumor cell lines. FEBS Letters 2000; 472: 241-6.

[401] Ek O, Wauryniak B, Myers DE, Uckun FM. Antitumor activity of TP3(anti-p80)-pokeweed antiviral protein immunotoxin in hamster cheek pouch and severe combined immunodeficient mouse xenograft models of human osteosarcoma. Clinical Cancer Research 1998; 4: 1641-7.

[402] Myers DE, Uckun FM. An anti-CD72 immunotoxin against therapy-refractory B-lineage acute lymphoblastic leukemia. Leukemia & lymphoma 1995; 18: 119-22.

[403] Fauquet C, Tardin C, Cacan I, et al. Ricin fusion toxin targeted to the human granulocyte-macrophage colony stimulating factor receptor is selectively toxic to acute myeloid leukemia cells. Leukemia 1997; 11: 22-30.

[404] Bachur R, Fu T, Burbage C, Chandler J, Willingham M, Tagge E. IL2 fused to lectin-deficient ricin is toxic to human leukemia cells expressing the IL2 receptor. Leukemia 1997; 21: 681-90.

[405] Gregg EO, Bridges SH, Youle RJ, et al. Whole ricin and recombinant ricin A chain idotype-specific immunotoxins for therapy of the guinea pig L2C B cell leukemia. J Immunol 1987; 138: 4502-8.

[406] Colombatti M, Bisconti M, Dell'Aciapreto L, Gerosa MA, Tridente G. Sensitivity of human glioma cells to cytotoxic heterocongruates. Int J Immunopharmacol 1990; 12: 235-9.

[407] Frankel A, Fu T, Burbage C, Chandler J, Willingham M, Tagge E. IL2 fused to lectin-deficient ricin is toxic to human leukemia cells expressing the IL2 receptor. Leukemia 1997; 11: 22-30.

[408] Burbage C, Tagge EP, Harris B, et al. Ricin fusion toxin targeted to the human granulocyte-macrophage colony stimulating factor receptor is selectively toxic to acute myeloid leukemia cells. Leukemia 1997; 21: 681-90.

[409] Howell J, Duly P, Redden M, et al. Comparison of blocked and non-blocked ricin-rabbit immunotoxins against human gastric carcinoma and colorectal adenocarcinoma cell lines. Cancer Immunology, Immunotherapy 1988; 27: 233-40.

[410] Zhao C. [Preparation of an anti-human immunotoxin against bladder carcinoma and its in vitro targeting cytotoxicity]. Zhonghua Zhong Liu Za Zhi 1992; 14: 109-11.

[411] Christiansen SP, Sandnas A, Prill R, Youle RJ, McLean LK. Acute Effects of the Skeletal Muscle-Specific Immunotoxin Ricin-mAb 35 on Extracutaneous Muscles of Rabbits. Investigative Ophthalmology & Visual Science 2000; 41: 3402-9.

[412] Hott JS, Dalakas MC, Sung C, Hallett M, Youle RJ. Skeletal muscle-specific immunotoxin for the treatment of focal muscle spasm. Neurology 1998; 50: 485-91.

[413] Esoltansky H, Dyer J, Belvin M, et al. Maternal anti-p80 pokeweed antiviral protein immunotoxin: a potential therapeutic for preterm labor. Pediatr Res 1994; 35: 10-5.

[414] Schlick JL, Dulieu P, Desvoyes B, et al. Anti-CD4 and anti-CD26. Blood 1993; 82: 2224-34.

[415] Zalcberg JR, Pietersz G, Toohey B, et al. A phase I/II study of pretargeting with anti-B4-blocked ricin. Blood 1993; 82: 2224-34.

[416] Youlen RJ, McLoon LK. Acute Skeletal Muscle wasting Antiviral Protein and Anti-Thy 1.1 Monoclonal Antibodies. Cancer Res 1984; 44: 201-8.

[417] Zhao C. [Preparation of an anti-human immunotoxin against bladder carcinoma and its in vitro targeting cytotoxicity]. Zhonghua Zhong Liu Za Zhi 1992; 14: 109-11.
Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers

Duke-Cohan JS, Morimoto C, Schlossman SF. Depletion of the helper/inducer (memory) T cell subset using a bispecific antibody-toxin conjugate directed against CD4 and CD29. Transplantation 1993; 56: 1188-96.

Zangemeister-Wittke U, Collinson AR, Fisch I, et al. Anti-tumor activity of a blocked ricin immunotoxin with specificity against the cluster-5A antigen associated with human small-cell lung cancer. Int J Cancer 1993; 54: 1028-35.

Goldmacher V, Bouret L, Levine B, et al. Anti-CD38-blocked ricin: an immunotoxin for the treatment of multiple myeloma. Blood 1994; 84: 3017-25.

Eblaney DC, Watson GJ, Knowles PP, Thorpe PE. Effect of Chemical De glycosylation of Ricin A Chain on the in vivo Fate and Cytotoxic Activity of an Immunotoxin Composed of Ricin A Chain and Anti-Thy 1.1 Antibody. Cancer Res 1987; 47: 947-52.

Frankel AE, Laver JH, Willingham MC, Burns LJ, Kersey JH. Therapy of Patients with T-cell Lymphomas and Leukemias Using an Anti-CD7 Monoclonal Antibody-Rich A Chain Immunotoxin. Leukemia & lymphoma 1997; 26: 257-98.

Stone M, Sausville E, Fay J, et al. A phase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood 1996; 88: 1188-97.

Conry RM, Khazaeli M, Saleh MN, et al. Phase I trial of an anti-CD19 deglycosylated ricin A chain immunotoxin in non-Hodgkin's lymphoma: effect of an intensive schedule of administration. J Immunotherapy 1995; 18: 231-41.

Vittetta ES, Stone M, Amlot P, et al. Phase I Immunotoxin Trial in Patients with B-Cell Lymphoma. Cancer Res 1991; 51: 4052-8.

Shen GL, Li JL, Ghetie MA, et al. Evaluation of four CD22 anti-bodies as ricin a chain-containing immunotoxins for the in vivo therapy of human B-cell leukemias and lymphomas. Int J Cancer 1988; 42: 792-7.

Engert A, Diehl V, Schnell R, et al. A Phase I Study of an Anti-CD25 Ricin A-Chain Immunotoxin (RFT5-SMPT-dgA) in Patients With Refractory Hodgkin's Lymphoma. Blood 1997; 89: 403-10.

Schnell R, Vittetta E, Schindler J, et al. Treatment of refractory Hodgkin's lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia 2000; 14: 129-35.

Schnell R, Vittetta E, Schindler J, et al. Clinical trials with an anti-CD25 ricin A-chain experimental and immunotoxin (RFT5-SMPT-dgA) in Hodgkin's lymphoma. Leukemia & lymphoma 1998; 30: 525-38.

Schnell R, Borckmann P, Staak JO, et al. Clinical evaluation of ricin a-chain immunotoxins in patients with Hodgkin's lymphoma. Annals of Oncology 2003; 14: 729-36.

Martin PJ, Pei J, Gooley T, et al. Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Biology of Blood and Marrow Transplantation 2004; 10: 552-60.

Schnell R, Staak O, Borckmann P, et al. A Phase I Study with an Anti-CD30 Ricin A-Chain Immunotoxin (Kl-4-dgA) in Patients with Refractory CD30+ Hodgkin's and Non-Hodgkin's Lymphoma. Clinical Cancer Research 2002; 8: 1779-86.

Schneix R, Linnartz C, Katouzi AA, et al. Development of new ricin A-chain immunotoxins with potent anti-tumor effects against human Hodgkin cells in vitro and disseminated Hodgkin tumors in scid mice using high-affinity monoclonal antibodies directed against the CD30 antigen. Int J Cancer 1995; 63: 238-44.

Amlot P, Stone M, Cunningham D, et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993; 82: 2624-33.

Sausville E, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 1995; 85: 3457-65.

Messmann RA, Vittetta ES, Headlee D, et al. A Phase I Study of Combination Therapy with Immunotoxins IgGD-HD37-De glycosylated Ricin A Chain (dgA) and IgG-RFB4-dgA (Combotox) in Patients with Refractory CD19(+) and CD22(+) B Cell Lymphoma. Clinical Cancer Research 2000; 6: 1302-13.

Herrera L, Bostrom B, Gore L, et al. A phase 1 study of Combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia. J pediatric hematology/oncology 2009; 31: 936-41.

van Oosterhout YVJM, van Emst JL, Schattenberg AVMB, et al. A combination of anti-CD3 and anti-CD7 ricin A immunotoxins for the in vivo treatment of acute graft versus host disease. Blood 2000; 95: 3639-701.

van Oosterhout YVJM, van Emst JL, Bakker HH, et al. Production of anti-CD3 and anti-CD7 ricin A-immunotoxins for a clinical pilot study. Int J Pharmaceutics 2001; 221: 175-86.

Pauza ME, Doumont CA. Construction and characterization of human CD7-specific single-chain Fv immunotoxins. J Immunology 1997; 158: 3259-69.

Huang YW, Burrows FJ, Vitetta ES. Cytotoxicity of a novel anti-ICAM-1 immunotoxin on human myeloma cell lines. Hybridoma 1993; 12: 661-75.

Zhang RK, van de Winkel JG, Thepen T, Schultz LD, Ball ED. Cytotoxicity of anti-CD64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in SCID mice. J Hematother Stem Cell Res 2001; 10: 95-105.

van Vuuren AJ, van Roon JAG, Walraven V, et al. CD64-Directed Immunotoxin Inhibits Arthritis in a Novel CD64 Transgenic Rat Model. J Immunology 2006; 176: 3833-8.

Van Roos JA, Van Vuuren AJ, Wijngaarden S, et al. Selective elimination of synovial inflammatory macrophages in rheumatoid arthritis by an Fcγ receptor I-directed immunotoxin. Arthritis & Rheumatism 2003; 48: 1229-38.

Barnett BB, Smez DF, Malek SM, Sidwell RW. Selective cytotoxicity of ricin A chain immunotoxins towards murine cytomegalovirus-infected cells. Antimicrobial Agents and Chemotherapy 1996; 40: 470-2.

Clinchy B, Vitetta ES. The use of an anti-CD3 immunotoxin to prevent the development of lymphoproliferative disease in SCID/PBL mice. J Immunological Methods 1998; 218: 141-53.

Press OW, Vitetta ES, Farr AG, Hansen JA, Martin PJ. Evaluation of the toxicity of ricin-depleted immunotoxins directed against human T cells. Cellular Immunology 1986; 102: 10-20.

Engert A, Brown A, Thorpe P. Resistance of myeloid leukaemia cell lines to ricin a-chain immunotoxins. Leukemia Res 1991; 15: 1079-86.

Zangemeister-Wittke U, Lehmann HP, Wailel R, Wawrzynczak EJ, Stahel RA. Action of a cd24-specific deglycosylated ricin-a-chain immunotoxin in conventional and novel models of small-cell-lung-cancer xenograft. Int J Cancer 1993; 53: 521-8.

Wawrzynczak EJ, Derbyshire EJ, Henry RV, et al. Selective cytotoxic effects of a ricin A chain immunotoxin made with the monoclonal antibody SWA11 recognising a human small cell lung cancer antigen. Br J Cancer 1990; 62: 410-4.

Burrows F, Overhulser J, Thorpe P. Potent antitumor effects of an antitumor endothelial cell immunotoxin in a murine vascular targeting model. Cell Biophysics 1994; 24: 25: 15-25.

Clinchy B, Vitetta ES, Farr AG, Hansen JA, Martin PJ. Evaluation of the toxicity of ricin-depleted immunotoxins directed against human T cells. Cellular Immunology 1986; 102: 10-20.

Engert A, Brown A, Thorpe P. Resistance of myeloid leukaemia cell lines to ricin a-chain immunotoxins. Leukemia Res 1991; 15: 1079-86.

Gottstein C, Schön G, Tavadoso S, et al. Antidisialoganglioside Ricin A-Chain Immunotoxins Show Potent Antitumor Effects in Vitro and in a Disseminated Human Neuroblastoma Severe Combined Immunodeficiency Mouse Model. Cancer Res 1994; 54: 6186-93.

Wang D, Li Q, Hudson W, Berven E, Uckun F, Kersey JH. Generation and Characterization of an Anti-CD19 Single-Chain Fv Immunotoxin Composed of C-Terminial Disulfide-Linked dgRTA. Bioconjugate Chem 1997; 8: 878-84.

Matsuno F, Haruta Y, Kondo M, Barcos M, Seon BK. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res 1997; 3: 1031-44.

May RD, Finkelman FD, Wheeler HT, Uhr JW, Vitetta ES. Evaluation of ricin A chain-containing immunotoxins directed against dif-
ferent epitopes on the delta-chain of cell-surface-associated IgD on murine B cells. J Immunology 1990; 144: 3637-42.

[477] McOgg C, Van Dyke G, Chou CS, Picker LJ, Ramilo O, Vitetta ES. An anti-CD45R0 immunotoxin eliminates T cells latently infected with HIV-1 in vitro. Proc Natl Acad Sci 1999; 96: 11482-5.

[478] Saavedra-Lozano J, McOgg C, Xu J, et al. An Anti-CD45R0 Immunotoxin Kills Latently Infected Human Immunodeficiency Virus (HIV) CD4 T Cells in the Blood of HIV-Positive Persons. J Infectious Diseases 2002; 185: 306-14.

[479] Saavedra-Lozano J, Cao Y, Callison J, Sarode S, Sodora D, Edgar BJ, Till MA, Agha MA, Uhr JW, Vitetta ES. Large scale preparation of an immunotoxin constructed with a human CD80 bearing D4 and deglycyctilated ricin A chain. J Immunological Methods 1999; 126: 135-41.

[481] Engert A, Martin G, Pfreundschuh M, et al. Antitumor effects of ricin A chain immunotoxins prepared from intact antibodies and Fab' fragments on solid human Hodgkin's disease tumors in mice. Cancer Research 1990; 50: 2929-35.

[482] LeMaistre C, Rosen S, Frankel A, et al. Phase I trial of H65-RTA-ricin A immunotoxin in patients with cutaneous T-cell lymphoma. Blood 1991; 78: 11680-2.

[483] Martin P, Nelson B, Appelbaum F, et al. Evaluation of a CD5-specific immunotoxin for treatment of acute graft-versus-host disease after allogeneic marrow transplantation. Blood 1996; 88: 824-30.

[484] Strand V, Lipsky PE, Cannon GW, et al. Effects of administration of an anti-cd5 plus immunotoxin conjugate in rheumatoid arthritis. Results of two phase ii studies. Arthritis & Rheumatism 1993; 36: 620-30.

[485] Stafford JF, Fleisher TA, Lee G, et al. A pilot study of anti-CD5 ricin A chain immunotoxin in systemic lupus erythematosus. J rheumatology 1994; 21: 2068-70.

[486] Skyler JS, Lorenz TJ, Schwartz S, et al. Effects of an anti-CD5 immunotoxin (CD5-Plus) in recent onset type I diabetes mellitus. A preliminary investigation. J Diabetes and its Complications 1997; 11: 229-32.

[487] Laske DW, Muraszko KM, Oldfield EH, et al. Intraventricular immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery 1997; 41: 1039-51.

[488] Bjorn MJ, Ring D, Frankel A. Evaluation of Monoclonal Antibodies for the Development of Breast Cancer Immunotoxins. Cancer Res 1985; 45: 1214-21.

[489] Gould BJ, Borowitz MJ, Groves ES, et al. Phase I Study of an Anti-Cancer Breast Immunotoxin by Continuous Infusion: Report of a Targeted Toxic Effect Not Predicted by Animal Studies. J Natl Cancer Institute 1989; 81: 775-81.

[490] Winer LM, O'Dwyer J, Kitson J, et al. Phase I Evaluation of an Anti-Cancer Carcinoembryonic Monoclonal Antibody 260F9-Recombinant Ricin A Chain Immunotoxin. Cancer Res 1989; 49: 4062-7.

[491] Perker R, FitzGerald DJP, Willingham MC, Pastan I. Enhancement of the Activity of Immunotoxins Made with Either Ricin A Chain or Pseudomona Exotoxin in Human Ovarian and Epidermoid Carcinoma Cell Lines. Cancer Res 1988; 48: 3919-23.

[492] Hertler AA, Spalton DJ, Hollick EJ, et al. A phase I study of an anti-C50 monoclonal antibody ricin A chain immunotoxin in the treatment of metastatic melanoma: a phase I trial. Mol Biother 1991; 3: 192-6.

[493] Hertler AA, Schlossman DM, Borowitz MJ, Blythman AE. An anti-CD5 immunotoxin for chronic lymphocytic leukaemia: Enhancement of cytotoxicity with human serum albumin-monomies. Int J Cancer 1989; 43: 215-9.

[494] Laurent G, Pris J, Faret J, et al. Effects of therapy with T101 ricin A-chain immunotoxin in two leukemia patients. Blood 1986; 67: 2213-7.

[495] Hertler AA, Schlossman DM, Borowitz MJ, et al. A Phase I Study of T101-ricin A chain immunotoxin in refractory chronic lymphocytic leukemia. J Biol Response Mod 1988; 7: 97-113.

[496] Deroiq JM, Casellas P, Laurent G, Ravel S, Vidal H, Jansen F. Comparison of the cytotoxic potency of T101 Fab, Fab(ab)2 and whole IgG immunotoxins. J Immunology 1988; 141: 2837-43.

[497] Clark DS, Emery JM, Munsell ME. Inhibition of posterior capsule opacification with an immunotoxin specific for lens epithelial cells: 24 month clinical results. J Cataract & Refractive Surgery 1998; 24: 1614-20.

[498] Meacock WR, Spalth DJ, Hollick EC, Boyce JF, Barman S, Sanquinetti G. Double-masked prospective ocular safety study of a lens epithelial cell antibody to prevent posterior capsule opacification. J Cataract & Refractive Surgery 2000; 26: 716-21.

[499] MDX RA: 419TX-RA, Monoclonal Antibody Ricin A. Drugs in R&D 2002; 3: 111-2.

[500] Cathley DB, Hershman HR, Gary Gilliland D, John Collier R. Epidermal growth factor-toxin A chain conjugates: EGF-Ricin A is a potent toxin while EGF-diphtheria fragment A is nontoxic. Cell 1980; 22: 563-70.

[501] Perriers FWMB, Tax WJM, Witte TD, et al. Relationship between internalization and cytotoxicity of ricin A-chain immunotoxins. Br J Haematol 1988; 70: 289-94.

[502] Chiron M, Jaffrezou JP, Carayon P, et al. Induction and increase of anti-HLA-DR antigen expression by immune interferon on ML-3 cell line enhances the anti-HLA-DR immunotoxin activity. Clin Exp Immunol 1990; 82: 214-20.

[503] Faguet G, Agee J. Four ricin chain A-based immunotoxins directed against the common chronic lymphocytic leukemia antigen: in vitro characterization. Blood 1993; 82: 536-43.

[504] Toneyvitski AG, Agapov II, Ershova GV, Sarma T, Toptygin AY, Mechtcher EB. Cytotoxic effect of ricin A chain conjugates containing monoclonal antibodies against human erythroid cells. International J Immunopharmacology 1993; 15: 229-35.

[505] Yoshiida M, Rybak RJ, Choi Y, et al. Development of a severe combined immunodeficiency (SCID) mouse model consisting of highly disseminated human B-cell leukemia/lymphoma, cure of the tumors by systemic administration of immunotoxin, and development/application of a clonotype-specific polymerase chain reaction-based assay. Cancer Res 1997; 57: 678-85.

[506] Bjorn MJ, Groetsema G. Immunotoxins to the Murine Transferrin Receptor: Intracellular Targeting of Specific Monoclonal Antibodies. Cancer Res 1987; 47: 1717-23.

[507] Hertler AA, Spalton DJ, Frankel A. Humoral immune response to a ricin A chain immunotoxin in patients with metastatic melanoma. Cancer drug delivery 1987; 4: 245-53.

[508] Mischak RP, Foxall C, Rosen C, Spalton DJ, Knebel K, Scannon PI, Spitzer LE. Human antibody responses to components of the monoclonal antimelanoja antibody ricin A chain immunotoxin Xoma-Zyme-MEL. Mol Biother 1990; 2: 104-9.

[509] Oratz R, Sperle J, Wenz JC, et al. Antimelanoma monoclonal antibody-ricin A chain immunotoxin conjugate (XMMME-001-RTA) plus cyclophosphamide in the treatment of metastatic malignant melanoma: results of a phase II trial. J Biol Response Mod 1990; 9: 345-54.

[510] Selvaggi K, Saria EA, Schwartz R, Vlock DR, et al. Phase II evaluation of a monoclonal antibody-ricin A chain (ZOMA-ZYM-Mel) immunotoxin conjugate plus cyclosperine A in patients with metastatic melanoma. J Immunother Related Tumor Immunol 1993; 13: 201-7.

[511] Gonzalez R, Salen P, Bunn PA, Jr., et al. Single-dose murine monoclonal antibody ricin A chain immunotoxin in the treatment of metastatic melanoma: a phase I trial. Mol Biother 1991; 3: 192-6.

[512] Durrant LG, Byers VS, Rodvien R, Grant K, Durrant LG, Hudson KH, Baldwin RW, Spalton DJ. Phase I Study of Monoclonal Antibody-Ricin A Chain Immunotoxin XomaZyme-791 in Patients with Metastatic Colon Cancer. Cancer Res 1989; 49: 6153-60.

[513] Hertler AA, Schlossman DM, Borowitz MJ, et al. Immunomodulation responses to XMMCO-791-RTA immunotoxin in colorectal cancer patients. Clin Exp Immunol 1989; 75: 258-64.
Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers

Current Pharmaceutical Design, 2014, Vol. 20, No. 42 6637

[517] Pincus SH, Cole RL, Hersh EM, et al. In vitro efficacy of anti-HIV immunotoxins targeted by various antibodies to the envelope protein. J Immunol 1991; 146: 4315-24.

[518] Till MA, Zolla-Pazner S, Gorny MK, Paton JS, Uhr JW, Vitetta ES. Human immunodeficiency virus-infected T cells and monoclonal antibodies are killed by monoclonal antibodies coupled to ricin A chain. Proc Natl Acad Sci 1989; 86: 1987-91.

[519] Pincus SH, Fang H, Wilkinson RA, Marcotte TK, Robinson JE, Olson WC. In Vivo Efficacy of Anti-Glycopeptide 41, But Not Anti-Glycopeptide 120, Immunotoxins in a Mouse Model of HIV Infection. J Immunol 2003; 170: 2236-41.

[520] Gilliland DG, Stepowski Z, Cofer RJ, MitchellKF, Chang TH, Koprowski H. Antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells. Proc Natl Acad Sci 1980; 77: 4539-43.

[521] Effertth T, Volm M. Modulation of P-glycoprotein-mediated multidrug resistance by monoclonal antibodies, immunotoxins or antisense oligodeoxynucleotides in kidney carcinoma and normal kidney cells. Oncology 1993; 50: 303-8.

[522] Shitara K, Hanai N, Kosano A, et al. Application of anti-sialyl Lea monoclonal antibody, KM231, for immunotherapy of cancer. Anti-cancer Res 1991; 11: 2003-13.

[523] Valleria D, Taylor P, Panoskaltsis-Mortari A, Blazar B. Therapy for Colon Cancer. Cancer Res 1991; 51: 255-60.

[524] Engert A, Burrows F, Jung W, Ito T, Qiu H, Collins JA, Brill AB, Johnson DK, Griffin TW. Preclinical studies in mice with ICI D0 490, a novel recombinant ricin A-chain immunotoxin. Proc Natl Acad Sci 1989; 86: 1987-91.

[525] Pinn J, Hersh EM, Wilkinson RA, Marcotte TK, Robinson JE, Olson WC. In Vivo Efficacy of Anti-Glycopeptide 41, But Not Anti-Glycopeptide 120, Immunotoxins in a Mouse Model of HIV Infection. J Immunol 2003; 170: 2236-41.

[526] Gilliland DG, Stepowski Z, Cofer RJ, MitchellKF, Chang TH, Koprowski H. Antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells. Proc Natl Acad Sci 1980; 77: 4539-43.

[527] Effertth T, Volm M. Modulation of P-glycoprotein-mediated multidrug resistance by monoclonal antibodies, immunotoxins or antisense oligodeoxynucleotides in kidney carcinoma and normal kidney cells. Oncology 1993; 50: 303-8.

[528] Shitara K, Hanai N, Kosano A, et al. Application of anti-sialyl Lea monoclonal antibody, KM231, for immunotherapy of cancer. Anti-cancer Res 1991; 11: 2003-13.

[529] Valleria D, Taylor P, Panoskaltsis-Mortari A, Blazar B. Therapy for Colon Cancer. Cancer Res 1991; 51: 255-60.

[530] Engert A, Burrows F, Jung W, Ito T, Qiu H, Collins JA, Brill AB, Johnson DK, Griffin TW. Preclinical studies in mice with ICI D0 490, a novel recombinant ricin A-chain immunotoxin. Proc Natl Acad Sci 1989; 86: 1987-91.

[531] Pinn J, Hersh EM, Wilkinson RA, Marcotte TK, Robinson JE, Olson WC. In Vivo Efficacy of Anti-Glycopeptide 41, But Not Anti-Glycopeptide 120, Immunotoxins in a Mouse Model of HIV Infection. J Immunol 2003; 170: 2236-41.

[532] Gilliland DG, Stepowski Z, Cofer RJ, MitchellKF, Chang TH, Koprowski H. Antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells. Proc Natl Acad Sci 1980; 77: 4539-43.

[533] Effertth T, Volm M. Modulation of P-glycoprotein-mediated multidrug resistance by monoclonal antibodies, immunotoxins or antisense oligodeoxynucleotides in kidney carcinoma and normal kidney cells. Oncology 1993; 50: 303-8.

[534] Shitara K, Hanai N, Kosano A, et al. Application of anti-sialyl Lea monoclonal antibody, KM231, for immunotherapy of cancer. Anti-cancer Res 1991; 11: 2003-13.

[535] Valleria D, Taylor P, Panoskaltsis-Mortari A, Blazar B. Therapy for Colon Cancer. Cancer Res 1991; 51: 255-60.

[536] Engert A, Burrows F, Jung W, Ito T, Qiu H, Collins JA, Brill AB, Johnson DK, Griffin TW. Preclinical studies in mice with ICI D0 490, a novel recombinant ricin A-chain immunotoxin. Proc Natl Acad Sci 1989; 86: 1987-91.

[537] Pinn J, Hersh EM, Wilkinson RA, Marcotte TK, Robinson JE, Olson WC. In Vivo Efficacy of Anti-Glycopeptide 41, But Not Anti-Glycopeptide 120, Immunotoxins in a Mouse Model of HIV Infection. J Immunol 2003; 170: 2236-41.
on the neural cell adhesion molecule have potent cytotoxic effects against small cell lung cancer. Br J Cancer 1994; 69: 32-9.

[559] Menzaghi F, Heinrichs SC, Merlo-Pich E, Tilders FJH, Koob GF. Involvement of hypothalamic corticotropin-releasing factor neurons in behavioral responses to novelty in rats. Neuroscience Letters 1994; 168: 139-42.

[560] Usui H, Hakomori S. Evaluation of ricin A-chain-containing immunotoxins directed against glycolipid and glycoprotein on mouse lymphoma cells. Acta Med Okayama 1994; 48: 305-9.

[561] Thompson PA, McCatee R, Infante AJ, Currier P, Beninati W, Krollick KA. V beta-specific immunotoxin selectively kills acetylcholine receptor-reactive T lymphocytes from mice with experimental autoimmune myasthenia gravis. Int Immunol 1994; 6: 1807-15.

[562] Ohtomo T, Kawata H, Sekimori Y, et al. A humanized single-chain Fv fragment with high targeting potential against human malignant gliomas. Anticancer Res 1998; 18: 4311-5.

[563] Shimizu K, Park KC, Tamura K, et al. Internalization with high targeting potential of mouse monoclonal antibody ONS-M21 recognizing human malignant glioma antigen. Cancer Letters 1998; 127: 171-6.

[564] Shimuzu K, Nagai K, Nakagawa H. An Immunotoxin, Anti-VIP Antibody-Ricin A Chain Conjugate Eliminates Neurons in the Hypothalamic Suprachiasmatic Nucleus Selectively and Abolishes the Circadian Rhythm of Water Intake. Brain Res Bulletin 1996; 41: 769-78.

[565] Marches R, Mota G, Margineanu M, et al. Treatment of murine EL4 leukemia in ascitic form with anti-Thy 1.2 specific immunotoxins. Neoplasma 1990; 37: 573-8.

[566] Boltsansky H, Slater J, Youle R, Isersky C, Kaliner M. IgE-immunotoxins. II. IgE-ricin A-chain. Immunopharmacology 1987; 14: 47-62.

[567] Slater JE, Boltsansky H, Kaliner M. IgE immunotoxins. Effect of an IgE-ricin A chain conjugate on rat skin histamine content. J Immunology 1988; 140: 807-11.

[568] Weinberg AD, Boudette DN, Sullivan TJ, et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 1996; 2: 183-9.

[569] Manjarrez-Orduño N, Parkhouse RME, Santos-Argumedo L. NIM-369-7, a novel marker for resting B1 and marginal-zone B lymphocytes, is also expressed on activated T and B cells. Immunology 2003; 109: 232-7.

[570] Thorpe PE, Brown AN, Bremner JA, Foxwell BM, Stipe F. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Institute 1985; 75: 151-9.

[571] Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res 1991; 562: 149-53.

[572] Wiley RG, Berbos TG, Deckwerth TL, Johnson Jr EM, Lappi DA. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease. J the Neurological Sciences 1995; 127: 171-6.

[573] Book AA, Wiley RG, Schweitzer JB. Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat. Brain Res 1992; 590: 350-5.

[574] Kwok KHH, Law KB, Wong RNS, Yung KKL. Immunolesioning of nerve growth factor p75 receptor-containing neurons in the rat brain by a novel immunotoxin: anti-p75-anti-mouse IgG-trichosanthin conjugates. Brain Res 1999; 846: 154-63.

[575] Lemoli RM, Tazzari PL, Fortuna A, et al. Positive selection of hematopoietic CD34+ stem cells provides 'indirect purging' of CD34+ lymphoid cells and the purging efficiency is increased by anti-CD2 and anti-CD30 immunotoxins. Bone Marrow Transplant 1994; 13: 465-71.

[576] Tazzari PL, Bolognesi A, De Toreto D, et al. Immunotoxins containing saporin linked to different CD2 monoclonal antibodies: in vitro evaluation. Br J Haematol 1994; 86: 97-105.

[577] Siena S, Lappi D, Bregni M, Formosa A, et al. Immunotoxin-mediated Inhibition of Chronic Lymphocytic Leukemia Cell Proliferation in Humans. Cancer Res 1989; 49: 3326-32.

[578] Siena S, Bregni M, Formosa A, et al. Immunotoxin-mediated killing of clonal T-lymphocytes infiltrating an irreversibly rejected human renal allotransplant. J Biol Regul Homeost Agents 1989; 3: 84-8.

[579] Flavell DJ, Cooper S, Morland B, French R, Flavell SU. Effectiveness of antibodies for delivering saporin to human acute T-cell lymphoblastic leukaemia cell lines via CD47 and CD38 as cellular target molecules. Br J Cancer 1992; 65: 54-51.

[580] Flavell DJ, Cooper S, Morland B, Flavell SU. Characteristics and performance of a bispecific F(ab)2 antibody for delivering saporin to a CD7+ human acute T-cell leukaemia cell line. Br J Cancer 1991; 64: 274-80.

[581] Morland BJ, Barley J, Boehm D, et al. Effectiveness of HB2 (anti-CD7)–saporin immunotoxin in an in vivo model of human T-cell leukaemia developed in severe combined immunodeficient mice. Br J Cancer 1994; 69: 279-85.

[582] Morland BJ, Boehm D, Flavell SU, Kohler JA, Flavell DJ. Immunotoxin studies in a model of human T-cell acute lymphoblastic leukaemia developed in severe combined immune-deficient mice. Cell Biophysics 1994; 24-25: 315-29.

[583] Flavell DJ, Boehm DA, Noss A, Wames SL, Flavell SU. Therapy of human T-cell acute lymphoblastic leukaemia with a combination of anti-CD7 and anti-CD38-SAPORIN immunotoxins is significantly better than therapy with each individual immunotoxin. Br J Cancer 2001; 84: 571-8.

[584] Flavell DJ, Flavell SU, Boehm DA, et al. Preclinical studies with the anti-CD19-saporin immunotoxin BU12-SAPORIN for the treatment of human-B-cell tumours. Br J Cancer 1995; 72: 1373-9.

[585] Flavell DJ, Boehm DA, Emery L, Moss A, Ramsay A, Flavell SU. Therapy of human B-cell lymphoma bearing scid mice is more effective with anti-CD19 and anti-CD38-saporin immunotoxins used in combination than with either immunotoxin used alone. Int J Cancer 1995; 62: 337-44.

[586] Flavell DJ, Wares SL, Bryson CJ, et al. The anti-CD20 antibody rituximab augments the immunosuppressive therapeutic effectiveness of an anti-CD19 immunotoxin directed against human B-cell lymphoma. Br J Haematol 2006; 134: 157-70.

[587] Bonardi MA, French RR, Amlot P, Gromo G, Modena D, Glennie MJ. Delivery of Saporin to Human B-Cell Lymphoma Using Bispecific Antibody: Targeting via CD22 but not CD19, CD37, or Immunoglobulin Results in Efficient Killing. Cancer Res 1993; 53: 3015-21.

[588] French RR, Bell AJ, Hamblin TJ, Tutt AL, Glennie MJ. Response of human T-cell acute lymphoblastic leukemia with a combination of bispecific antibodies and saporin. Leukemia 1996; 20: 607-17.

[589] French RR, Tutt AL, Glennie MJ, Hamblin TJ, Bell AJ. Treatment of B-cell lymphomas with combination of bispecific antibodies and saporin. The Lancet 1995; 346: 223-4.

[590] Bolognesi A, Polito L, Farini V, et al. CD38 as a target of IB4 mAb carrying saporin-S6: design of an immunotoxin for ex vivo deple- tion of hematological CD38+ neoplasia. J Biol Regul Homeost Agents 2005; 19: 145.

[591] Vooijs WC, Otten HG, van Vliet M, van Dijk AJ, de Weger RA, de Vries ME. Immunotoxin-mediated Inhibition Recombinant Anti-CTLA-4 Single-Chain Fragment Variable Antibodies and Saporin: In Vivo Results and In Vivo Effects in an Acute Rejection Model. J Immunol 2001; 167: 4222-9.

[592] Palmisano GL, Tazzari PL, Cozzi E, et al. Expression of CTLA-4 in nonhuman primate lymphocytes and its use as a potential target for specific immunotoxin-mediated apoptosis: results of in vitro studies. Clin Exp Immunol 2004; 135: 259-66.

[593] Tazzari P-L, Polito L, Bolognesi A, et al. Immunotoxins Containing Recombinant Anti-CTLA-4 Single-Chain Fragment Variable Antibodies and Saporin: In Vivo Results and In Vivo Effects in an Acute Rejection Model. J Immunol 2001; 167: 4222-9.

[594] Polito L, Bortolotti M, Farini V, Pedrazzi M, Tazzari PL, Bolognesi A. ATG-saporin-S6 immunotoxin: a novel potent and selective drug to eliminate activated lymphocytes and lymphoma cells. Br J Haematol 2009; 147: 710-8.
[598] Bregni M, Siena S, Formosa A, et al. B-cell restricted saporin immunotoxins: activity against B-cell lines and chronic lymphocytic leukemia cells. Blood 1989; 73: 753-62.

[599] Heisler I, Sutherland M, Bachran C, et al. Combined application of saporin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J Controlled Release 2005; 106: 123-37.

[600] Fuchs H, Bachran C, Li T, Heisler I, Dürkop H, Sutherland M. A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. J Controlled Release 2007; 117: 342-50.

[601] Bachran C, Dürkop H, Sutherland M, et al. Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saporinum album in a synergistic way. J Immunotherop 2009; 32: 713-25.

[602] Hoffmann C, Bachran C, Stanke J, et al. Creation and characterization of a xenograft model for human cervical cancer. Gynecologic Oncology 2010; 118: 76-80.

[603] Beitz JG, Davol P, Clark JW, et al. Antitumor Activity of Basic Fibroblast Growth Factor-Saporin Mitotoxin in Vitro and in Vivo. Cancer Res 1992; 52: 227-30.

[604] Tetze T, Caton M, Maher P, Parandoosh Z. Effect of fibroblast growth factor saporin mitoxin on human bladder cell lines. Clin Experimental Metastasis 1997; 15: 620-9.

[605] Davol P, Frackelton Jr AR. The Mitoxin, Basic Fibroblast Growth Factor-Saporin, Effectively Targets Human Prostatic Carcinoma in an Animal Model. J Urol 1996; 156: 1174-9.

[606] Siva AC, Wild MA, Kirkland RE, et al. Targeting CUB Domain-Containing Protein 1 with a Monoclonal Antibody Inhibits Metastasis in a Prostate Cancer Model. Cancer Res 2008; 68: 3759-66.

[607] Kuroda K, Liu H, Kim S, Guo M, Navarro V, Bander NH. Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. The Prostate 2010; 70: 1286-94.

[608] Tetzke T, Caton M, Maher P, Parandoosh Z. Antitumor Activity of Basic Fibroblast Growth Factor-Saporin Mitotoxin in Vitro and in Vivo. Cancer Res 1992; 52: 227-30.

[609] Maciejewski-Lenoir D, Heinrichs SC, Liu XJ, et al. SIRT1 protects against microglial activation following neonatal excitotoxic brain damage in postnatal day 7 rats. J Neurosci 1996; 16: 6021-37.

[610] Milstein J, Lehmann O, Theobald DH, Dalley J, Robbins T. Selective toxicity on tumor cells expressing heat shock protein 65 kD with immunotoxins containing saporin. Br J Cancer 1992; 66: 427-32.

[611] Pasqualucci L, Wasik M, Teicher B, et al. Antitumor activity of anti-CD30 immunotoxin (Ber-H2/saporin) in vitro and in severe combined immunodeficiency disease mice xenografted with human CD30+ anaplastic large-cell lymphoma. Blood 1995; 85: 2139-46.

[612] Faleni B, Fengeli L, Aversa R, et al. Response of refractory Hodgkin's disease to monoclonal anti-CD30 immunotoxin. Lancet 1992; 339: 1195-6.

[613] Tazzari PL, Bolognesi A, Totoro DD, et al. Ber-H2 (anti-CD30)-saporin immunotoxin: a new tool for the the treatment of Hodgkin's disease and CD30+ lymphoma: in vitro evaluation. Br J Haematol 1992; 81: 203-11.

[614] Giulian D, Haverkamp LJ, Yu JH, et al. Specific domains of beta-amylloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci 1996; 16: 6021-37.

[615] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280: 40364-74.

[616] Ancheta LR, Lappi DA. Basigin-2 (EMMPRIN), a Prognostic Marker, is a Dynamic Portal of Entry into Cancer Cells. Targeting Trends 2011; 12: 2.

[617] Lei Z, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation. Chinese medical journal 2010; 123: 3644-51.

[618] Zhao P, Waxman SG, Hains BC. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci 2007; 27: 2357-68.

[619] Domico LM, Cooper KR, Bernard LP, Zevek GD. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate

[620] Laplante F, Lappi DA, Sullivan RM. Cholinergic depletion in the nucleus accumbens: Effects on amphetamine response and sensorimotor gating. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2011; 35: 501-9.

[621] Laplante F, Zhang ZW, Huppe-Gourges F, Dufresne MM, et al. Neuropathic pain is mediated by saporin-conjugated monoclonal anti-CD30 antibody. J Neurosci Research 2005; 81: 203-11.

[622] Bolognesi A, Totero Dd, Poccia F, Pissl P, Di Cesare S, Tecce R, Nicotra M, Fraioli R, Cuomo M, Trizio D, Natali P, Pissl P, Vendetti S, Poccia F, Piazza T, Cha E, Bongarzone I, Tetzke T, Caton M, Maher P, Parandoosh Z. Effect of fibroblast growth factor saporin mitoxin on human bladder cell lines. Clin Experimental Metastasis 1997; 15: 620-9.

[623] Fuchs H, Bachran C, Li T, Heisler I, Dürkop H, Sutherland M. A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. J Controlled Release 2007; 117: 342-50.

[624] Lei Z, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation. Chinese medical journal 2010; 123: 3644-51.

[625] Maciejewski-Lenoir D, Heinrichs SC, Liu XJ, et al. Antitumor Activity of Basic Fibroblast Growth Factor-Saporin, Effectively Targets Human Prostatic Carcinoma in an Animal Model. J Urol 1996; 156: 1174-9.

[626] Siva AC, Wild MA, Kirkland RE, et al. Targeting CUB Domain-Containing Protein 1 with a Monoclonal Antibody Inhibits Metastasis in a Prostate Cancer Model. Cancer Res 2008; 68: 3759-66.

[627] Kuroda K, Liu H, Kim S, Guo M, Navarro V, Bander NH. Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. The Prostate 2010; 70: 1286-94.

[628] Tetze T, Caton M, Maher P, Parandoosh Z. Antitumor Activity of Basic Fibroblast Growth Factor-Saporin Mitotoxin in Vitro and in Vivo. Cancer Res 1992; 52: 227-30.

[629] Beitz JG, Davol P, Clark JW, et al. Antitumor Activity of Basic Fibroblast Growth Factor-Saporin Mitotoxin in Vitro and in Vivo. Cancer Res 1992; 52: 227-30.

[630] Maciejewski-Lenoir D, Heinrichs SC, Liu XJ, et al. SIRT1 protects against microglial activation following neonatal excitotoxic brain damage in postnatal day 7 rats. J Neurosci 1996; 16: 6021-37.

[631] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280: 40364-74.

[632] Anchea LR, Lappi DA. Basigin-2 (EMMPRIN), a Prognostic Marker, is a Dynamic Portal of Entry into Cancer Cells. Targeting Trends 2011; 12: 2.

[633] Lei Z, Hadley GA. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation. Chinese medical journal 2010; 123: 3644-51.
[642] Heldmann U, Mine Y, Kokaia Z, Ekdahl CT, Lindvall O. Selective depletion of Mac-1-expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke. Experimental Neurology 2011; 229: 391-8.

[643] Fine A, Hoyle C, Maclean CJ, LeVatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 1997; 81: 311-43.

[644] Ridley RM, Barefoot HC, Maclean CJ, Pugh P, Baker HF. Different effects on learning ability after injection of the cholinergic immunotoxin ME20.4 IgG-saporin into the diagonal band of Broca basal nucleus of Meynert, or both in monkeys. Behavioral neuroscience 1999; 113: 303.

[645] Göz D, Studholme K, Lappi DA, Rollag MD, Provenco I, Morin LP. Targeted Destruction of Photosensitive Retinal Ganglion Cells with a Saporin Conjugate Alters the Effects of Light on Mouse Circadian Rhythms. PLoS ONE 2008; 3: e13153.

[646] Ingham ES, Günhan E, Fuller PM, Fuller CA. Immunotoxin-induced ablation of melanopsin retinal ganglion cells in a non-murine mammalian model. J Comparative Neurology 2009; 516: 125-40.

[647] Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, et al. Acute Kisspeptin/Neurokinin B/Dynorphin (KNbD) Neurons Mediate the Estrogen Suppression of Gonadotropin Secretion and Body Weight. Endocrinology 2012; 153: 2800-12.

[648] Bugarth K, Dinh TT, Li AJ, Speth RC, Ritter S. Basomedial Hypothalamic Injections of Neuropeptide Y Conjugated to Saporin Selectively Disrupt Hypothalamic Controls of Food Intake. Endocrinology 2005; 146: 1179-91.

[649] Li AJ, Dinh TT, Ritter S. Hyperphagia and obesity produced by arcuate injection of NPY-saporin do not require upregulation of lateral hypothalamic orexigenic peptide genes. Peptides 2008; 29: 1732-1739.

[650] Baskin DG, Kim F, Gelling RW, et al. A New Oxytocin-Saporin Cytotoxin for Lesioning Oxytocin-Receptor Neurons in the Rat Hindbrain. Endocrinology 2010; 151: 4207-13.

[651] Nattie EE, Li A. Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivitiy. J Physiology 2002; 544: 603-16.

[652] Mantyh PW, Rogers SD, Honore P, et al. Inhibition of Hyperalgesia by Ablation of Lamina I Spinal Neurons Expressing the Substance P Receptor. Science 1997; 278: 275-279.

[653] Allen JW, Mantyh PW, Horais K, et al. Safety Evaluation of Intrathecal Substance P-Saporin, a Targeted Neurotoxin, in Dogs. Toxicological Sciences 2006; 91: 286-298.

[654] Gerashchenko D, Salin-Pascual R, Shromani PJ. Effects of hypocrein-saporin injections into the medial septum on sleep and hippocampal theta. Brain Res 2007; 1193: 106-115.

[655] Barbieri L, Bolognesi A, Dinota A, et al. Selective Killing of CD4+ and CD8+ Cells with Immunotoxins Containing Saporin. Scandinavian J Immunology 1989; 30: 369-72.

[656] Tazzari P, Barbieri L, Gobbi M, et al. An immunotoxin containing a rat IgM monoclonal antibody (Campath 1) and saporin 6: effect on T lymphocytes and hemopoietic cells. Cancer Immunology, Immunotherapy 1988; 26: 231-6.

[657] Bregni M, Lappi DA, Siena S, et al. Activity of a Monoclonal Antibody-Saporin-6 Conjugate Against B-Lymphoma Cells. J Natl Cancer Institute 1988; 80: 511-7.

[658] Barbieri L, Dinota A, Gobbi M, et al. Immunotoxins containing saporin 6 and monoclonal antibodies recognizing plasma cell-associated antigens: Effects on target cells and on normal myeloid precursors (CFU-GM). Eur J Haematol 1989; 42: 238-45.

[659] Flavell DJ, Nos A, Pulford KAF, Ling N, Flavell SU. Systemic Therapy with 3BIT, a Triple Combination Cocktail of Anti-CD19, -CD22, and -CD38-Saporin Immunotoxins, Is Curative of Human B-Cell Lymphoma in Severe Combined Immunodeficient Mice. Cancer Res 1997; 57: 4852-9.

[660] Cazzola M, Bergamaschi G, Dezsö L, et al. Cytotoxic Activity of an Anti-Transferrin Receptor Immunotoxin on Normal and Leukemic Human Hematopoietic Progenitors. Cancer Res 1991; 51: 536-41.

[661] Tecce R, Fraioli R, De Fabritiis P, et al. Production and characterization of two immunotoxins specific for Msb ANLL leukaemia. Int J Cancer 1991; 49: 310-6.

[662] Cavallaro U, del Vecchio A, Lappi DA, Soria MR. A conjugate between human urokinase and saporin, a type-I ribosome-inactivating protein, is selectively cytotoxic to urokinase receptor-expressing cells. J Biological Chem 1993; 268: 23186-90.

[663] Davol P, Beitz JG, Mohler M, et al. Saporin toxins directed to basic fibroblast growth factor receptors effectively target human ovarian teratocarcinoma in an animal model. Cancer 1995; 76: 79-85.

[664] Chandler LA, Sosnowski BA, McDonald JR, et al. Targeting tumor cells via EGF receptors: Selective toxicity of an HBEFG-toxin fusion protein. Int J Cancer 1998; 76: 106-11.

[665] Tazzari P, Bolognesi A, Totero D, et al. B-B10 (Anti-Cd25)-Saporin Immunotoxin-A Possible Tool in Graft-Versus-Host Disease Treatment. Transplantation 1992; 54: 351-6.

[666] Tecce R, Digiesi G, Savarese A, Trizio D, Natali PG. Characterization of cytotoxic activity of saporin anti-gpl85/HER-2 immunotoxins. Int J Cancer 1993; 55: 122-7.

[667] Hess PR, Barnes C, Woolard MD, et al. Selective depletion of anti-gen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin. Blood 2007; 109: 3300-7.

[668] Bak SP, Walters JJ, Takeya M, Conojo-Garcia JR, Berwin BL. Scavenger Receptor-A-Targeted Leukocyte Depletion Inhibits Peritoneal Ovarian Tumor Progression. Cancer Res 2007; 67: 4783-4789.

[669] Ippoliti R, Lendaro E, Bellerli A, et al. A saporin-insulin conjugate: Synthesis and biochemical characterization. Natural Toxins 1996; 4: 156-62.

[670] Vooijs WC, Post J, Wijdenes J, et al. Efficacy and toxicity of plasma-cell-reactive monoclonal antibodies B-B2 and B-B4 and their immunotoxins. Cancer Immunol Immunotherapy 1996; 42: 319-31.

[671] Blank M, Manosoiu J, Tomer Y, et al. Suppression of experimental systemic lupus erythematosus (SLE) with specific anti-idiotypic antibody-saporin conjugate. Clin Experimental Immunol 1994; 98: 434-41.

[672] Glennie MJ, McBride HM, Stirpe F, Thorpe PE, Worth AT, Stevenson GT. Emergence of immunoglobulin variants following treatment of a B cell leukemia with an immunotoxin composed of anti-idiotypic antibody and saporin. J Exp Med 1987; 166: 43-62.

[673] Chiaramonte R, Polizzi D, Bartolini E, Petroni D, Comi P. P1GF-saporin fusion protein: a potential anti-angiogenic agent. Anticancer Drug Des 1997; 12: 649-57.

[674] Lombardi A, Bursomanno S, Lopardo T, Colombatti M, Ippoliti R, Flavell DJ, Flavell SU, Cieriotti A, Fabbrini MS. Pichia pastoris as a host for secretion of toxic saporin chimaeras. The FASEB Journal 2010; 24: 253-265.

[675] Yip WL, Weyergang A, Berg K, Tennesen HH, Selbo PK. Targeted Delivery and Enhanced Cytotoxicity of Cetuximab–Saporin by Photochemical Internalization in EGFR-Positive Cancer Cells. Journal of Pharmaceutical Sciences 2007; 96: 2415-2417.

[676] Gilabert-Oriol R, Thakur M, von Mallinckrodt B, et al. Modified trastuzumab and cetuximab moderate efficient toxin delivery while retaining antibody-dependent cell-mediated cytotoxicity in target cells. Mol Pharmaceutics 2013.

[677] Berstad MB, Weyergang A, Berg K. Photochemical internalization (PCI) of HER2-targeted toxins: Synergy is dependent on the treatment sequence. Biochimica et Biophysica Acta (BBA) - General Subjects 2012; 1820: 1849-1858.

[678] Zhao XY, Liu HL, Liu B, Willuda J, Siemeister G, Mahmoudi M, Dinter H. Tomoregulin internalization confers selective cytotoxicity of immunotoxins on prostate cancer cells. Transl Oncol 2008; 1: 102-9.

[679] Inthiray MB, Ito H, Ashley SW, Whang EE. CEACAM6 as a plasma-cell-reactive monoclonal antibody B-B2 and B-B4 and their immunotoxins. Cancer Immunol Immunotherapy 1996; 42: 319-31.
Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers

Current Pharmaceutical Design, 2014, Vol. 20, No. 42 6641

[683] Yang MY, Chaudhary A, Seaman S, et al. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochimica et Biophysica Acta (BBA) - Molecular Cell Res 2011; 1813: 39-49.

[684] Dinola A, Tazzari PL, Michieli M, et al. In Vitro Bone Marrow Purging of Multidrug-resistant Cells with a Mouse Monoclonal Antibody Directed against Mr 170, 00 Glycoprotein and a Saporin-conjugated Anti-Mouse Antibody. Cancer Res 1990; 50: 4291-4.

[685] Wang QC, Ying WB, Xie H, Zhang ZC, Yang ZH, Ling LQ. Trichosanthis-monoclonal Antibody Conjugate Specifically Cytoxic to Human Hepatoma Cells in Vitro. Cancer Res 1991; 51: 3353-5.

[686] Qi L, Yu-Chen J, Wen-Jie L. Antitumor Effect of TCS-Hepa-1 Immunotoxin and Its Combined Use with ADM on Human Hepatoma Bearing Nude Mice. Chinese J Clin Oncol 1997; 1: 1.

[687] Jhlin L, Xiaodong L, Mingwu W. The Preparation of McAB TCS Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers. Current Pharmaceutical Design, 2007; 13: 1601-11.

[688] Jhlin L, Yaming L, Xiaodong L. Targeting Treatment with Immunotoxin Trichosanthis Conjugated with Monoclonal Antibody on Nude Mice Model Bearing Human Lung Adenocarcinoma. J China Med University 1994; 4.

[689] Yuan H, Ji R, Zhang R, Cao H, Zhang Z. Purification of EGF-TCS recombinant fusion protein and its targeting action on human tumor cells in vitro. Acta Acad Med Mil Tert 2007; 29: 1316-9.

[690] Yefenof E, Abboud G, Epszteyn S, Vitetta ES. Treatment of pre-malignancy: prevention of lymphoma in radiation leukemia virus-infected mice by cyclosporin A and immunotoxin. Proc Natl Acad Sci USA 1992; 89: 728-32.

[691] Hudson TH, Grillo FG, Brefeldin-A enhancement of ricin A-chain immunotoxins and blockade of intact ricin, modecin, and abrin. J Biological Chem 1991; 266: 18586-92.

[692] Biberacher V, Decker T, Oelsner M, Wagner M, Bogner C, Schmidt B, Kreitman RJ, Peschel C, Pastan I. Enhancement of ricin A-chain immunotoxin activity by new drugs. Mol Cellular Endocrinology 2001; 19: 1705-13.

[693] Peng CL, Lai PS, Pai CL, Peng CL, Shieh MJ, Harashima H. A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway. J Controlled Release 2008; 125: 164-73.

[694] Wu YN, Gadina M, Tao-Cheng JH, Youle RJ. Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J Cell Biol 1994; 125: 733-43.

[695] Jaffeizou JP, Sikie BL, Laurent G. Cyclosporin A and cyclosporin analogues of Verapamil. Cancer Res 1989; 49: 4791-5.

[696] Fielden ML, Perrin C, Kremer A, Bergsma M, Stuart MC, Camilleri P, Engberts FB. Sugar-based tertiary amino gemini surfactants with a vesicle-to-micelle transition in the endosomal pH range mediate efficient transfection in vitro. Eur J Biochem 2001; 268: 1269-79.

[697] Wang XL, Xu R, Lu ZB. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-directed-toxin chimeras in vitro and in vivo. Anticancer Res 1999; 19: 1705-13.

[698] Seth P, Fitzgerald D, Ginsberg H, Willingham M, Pastor I. Potentialization of Cytotoxic Activity of Immunotoxins on Cytotoxicity of gelonin conjugated to targeting molecules: effects on tumor cells in culture and in vivo. Bioconjugate Chem 2007; 18: 2169-77.

[699] Davol PA, Bizuneh A, Frackelton AR, Ya. Wortmannin, a phosphoinositide 3-kinase inhibitor, selectively enhances cytotoxicity of receptor-directed-toxin chimeras. Cancer Res 1990; 50: 289-95.

[700] Pastan I. Enhancement of the Activity of Immunotoxins by Antibody-directed-toxin chimeras in vitro and in vivo. Anticancer Res 1992; 5: 1352-9.

[701] Pastan I. Potentiation of Cytotoxic Activity of Immunotoxins on Established and Immortalized Human Lung Cancer Cell. J China Med University 1994; 4.

[702] Jaffeizou JP, Sikie BL, Laurent G. Cyclosporin A and cyclosporin analogues of Verapamil. Cancer Res 1989; 49: 4791-5.

[703] Pastan I. Enhancement of the Activity of Immunotoxins by Antibody-directed-toxin chimeras in vitro and in vivo. Anticancer Res 1992; 5: 1352-9.

[704] Patrck NG, Richardson SCW, Casolano M, Ferruti P, Duncan R. Poly(aminodioaine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Controlled Release 2001; 77: 225-32.

[705] Lai PS, Pai CL, Feng CL, Shieh MJ, Berg K, Lou PJ. Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization. J Biomed Mater Res A 2008; 87: 147-55.

[706] Lin C, Zhong Z, Lok MC, Jiang X, Hennink WE, Feijen J, Engbersen JF. Novel bioreducible poly(amido amine) for highly efficient gene delivery. Bioconjug Chem 2007; 18: 138-45.

[707] Cheung CY, Murthty N, Stayton PS, Hoffman AS. A pH-Sensitive Polymer That Enhances Cationic Lipid-Mediated Gene Transfer. Bioconjugate Chem 2001; 12: 906-10.

[708] Farhood H, Serbina N, Huang L. The role of dioxolyl phosphatidylethanolamino in cationic liposome-mediated gene transfer. Biochimica et Biophysica Acta (BBA) - Biomembranes 1995; 1235: 289-95.
Kämper N, Wodrich H, Gerace L, Nemerow GR. Adenovirus Protein VI Mediates Membrane Disruption following Capsid Disassembly. J Virol 2005; 79: 1992-2000.

Kuckhoefer VA, Garcia Y, Mikyas Y, et al. Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci USA 2005; 102: 4348-52.

Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biological Chem 1994; 269: 12918-24.

Subramanian A, Ma H, Dahl KN, Zhu J, Diamond SL. Adenovirus or HA-2 fusogenic peptide-assisted lipofection increases cytoplasmic levels of plasmid in nondividing endothelium with little enhancement of transgene expression. J Gene Medicine 2002; 4: 75-83.

Wagner E, Plank C, Zatoukall K, Cotten M, Birnstiel ML. Influence of a Herpesvirus Structural Protein. Cell 1997; 88: 233-33.

Kakudo T, Chaki S, Futaki S, et al. Transferin-Modified Liposomes Equipped with a pH-Sensitive Fusogenic Peptide: An Artificial Viral-like Delivery System. Biochemistry 2004; 43: 5618-28.

Sasaki K, Kogure K, Chaki S, et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Analytical Bioanalytical Chem 2008; 391: 2717-27.

Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers. Biochemistry 1997; 36: 3008-17.

Min SH, Lee DC, Lim MJ, et al. A composite gene delivery system consisting of polyethyleneimine and an amphipathic peptide KALA. J Gene Medicine 2006; 8: 1425-34.

Lee H, Jeong H, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Jiang X, Lok MC, Hennink WE. Degradable-Brushed pHEMA-Lee H, Jeong JH, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Sasaki K, Kogure K, Chaki S, et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Analytical Bioanalytical Chem 2008; 391: 2717-27.

Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers. Biochemistry 1997; 36: 3008-17.

Min SH, Lee DC, Lim MJ, et al. A composite gene delivery system consisting of polyethyleneimine and an amphipathic peptide KALA. J Gene Medicine 2006; 8: 1425-34.

Lee H, Jeong H, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Jiang X, Lok MC, Hennink WE. Degradable-Brushed pHEMA-Lee H, Jeong JH, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Sasaki K, Kogure K, Chaki S, et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Analytical Bioanalytical Chem 2008; 391: 2717-27.

Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers. Biochemistry 1997; 36: 3008-17.

Min SH, Lee DC, Lim MJ, et al. A composite gene delivery system consisting of polyethyleneimine and an amphipathic peptide KALA. J Gene Medicine 2006; 8: 1425-34.

Lee H, Jeong H, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Jiang X, Lok MC, Hennink WE. Degradable-Brushed pHEMA-Lee H, Jeong JH, Park TG. A new gene delivery formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Controlled Release 2001; 76: 183-92.

Sasaki K, Kogure K, Chaki S, et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Analytical Bioanalytical Chem 2008; 391: 2717-27.

Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers. Biochemistry 1997; 36: 3008-17.

Min SH, Lee DC, Lim MJ, et al. A composite gene delivery system consisting of polyethyleneimine and an amphipathic peptide KALA. J Gene Medicine 2006; 8: 1425-34.
Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers

Current Pharmaceutical Design, 2014, Vol. 20, No. 42 6643

[767] Resina S, Abes S, Turner JJ, et al. Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. Int J Pharmaceutics 2007; 344: 96-102.

[768] Kichler A, Leborgne C, Danos O, Bechinger B. Characterization of the gene transfer process mediated by histidine-rich peptides. J Mol Med 2007; 85: 191-201.

[769] Kichler A, Leborgne C, März J, Danos O, Bechinger B. Histidine-rich amphilic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc Natl Acad Sci 2003; 100: 1564-8.

[770] del Pozo-Rodríguez A, Pujals S, Delgado D, et al. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Controlled Release 2009; 133: 52-9.

[771] Sheldon, Liu D, Ferguson J, Gariépy J. Loligomers: design of de novo peptide-based intracellular vehicles. Proc Natl Acad Sci 1995; 92: 2056-60.

[772] Oehlke J, Scheller A, Wiersb B, et al. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polypeptide into the cell interior non-endocytically. Biochimica et Biophysica Acta (BBA) - Biomembranes 1998; 1414: 127-39.

[773] Olmori N, Niidome T, Wada A, Hirayama T, Hatakeyama T, Aoyagi H. The enhancing effect of anionic alpha-helical peptide on cationic peptide-mediated transfection systems. Biochim Biophys Acta Commun 1997; 235: 726-9.

[774] Fominaya J, Gasset M, Garcia R, Roncal F, Albar JP, Bernad A. An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector. J Gene Med 2000; 2: 455-64.

[775] Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther 2002; 9: 157-67.

[776] Rousselle C, Clair P, Lefaucoumier JM, Kaezorek M, Scherrmann JM, Tensman J. New Advances in the Transport of Doxorubicin through the Blood-Brain Barrier by a Peptide Vector-Mediated Strategy. Mol Pharmacol 2000; 57: 679-86.

[777] Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 2001; 19: 1173-6.

[778] Weyergang A, Selbo PK, Berg K. Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-saporin. J Control Release 2006; 111: 165-73.

[779] Weyergang A, Selbo PK, Berstad MEB, Bostad M, Berg K. Photochemical internalization of tumor-targeted protein toxins. Lasers Surgery Med 2011; 43: 721-33.

[780] Gargouri M, Sapin A, Arca-Yegan B, Melrin JL, Becuwe P, Maincent P. Photochemical internalization of tumor-targeted protein toxins. Lasers Surgery Med 2011; 43: 721-33.

[781] Omata D, Negishi Y, Hagiwara S, et al. Bubble Liposomes and Ultrasound Promoted Endosomal Escape of TAT-PEG Liposomes as Gene Delivery Carriers. Mol Pharmacol 2011; 8: 2416-23.

[782] Omata D, Negishi Y, Hagiwara S, et al. Enhanced gene delivery using Bubble liposomes and ultrasound for folate-PEG liposomes. J Drug Targeting 2012; 20: 355-63.

[783] Lukianova-Hleb EY, Belyanin A, Kashinath S, Wu X, Lapotko D. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 2012; 33: 5212-6.

[784] Luo Z, Cai K, Hu Y, et al. Redox-Responsive Molecular Nanore-servors for Controlled Intracellular Anticancer Drug Delivery Based on Magnetic Nanoparticles. Adv Materials 2012; 24: 431-5.