RESEARCH ARTICLE

An exploration of trends and future directions in sustainability performance: A bibliometric analysis of Scopus database [version 1; peer review: awaiting peer review]

Kai Han Yang, Ai Chin Thoo

Azman Hashim International Business School, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia

Abstract

Background: Current global economic activities are increasingly being perceived as unsustainable. With the Sustainable Development Goals (SDGs) statement in 2015, sustainability performance has received significant attention. Thus, it is necessary to better understand the topics of interest and expand cooperation networks to advance studies in integrated efforts. The present bibliometric research intends to assess worldwide research tendency in sustainability performance.

Methods: We conducted an extensive bibliometric analysis of published academic articles on sustainability performance (SP) from 1997 to 2021. We reviewed, retrieved, and analysed 3680 papers published in Scopus. Specifically, VOSviewer software was used to conduct document co-authorship and co-occurrence analyses and burst detection analyses.

Results: The outcomes reveal that since 1997, the sum of publications has been on the rise steadily. About a third of all global papers on sustainability performance were produced by researchers from the United States and Australia, outnumbering the remaining 138 countries/territories. Furthermore, the ten most prolific authors of sustainability performance are all from universities. Haapala, Karl R. and Murat Kucukvar were the most influential authors found, based on the total publication number of sustainability performance.

Conclusions: The bibliometric analysis was conducted to identify the trends in the area of sustainability performance. Therefore, this study identified a significant research gap for future study of practitioners and researchers. The social sustainability and the relationship between the material flow analysis and sustainability performance should be noted. In addition, only the Scopus database has been considered due to its academic prestige. The database includes a large number of articles on sustainability performance. Therefore, the analysis was limited to the Scopus database only. However, other databases, such as Web of Science, Google Scholar, and MedLine, can...
be used for future research. These can also be used in combination.

Keywords
Sustainability performance, Scopus database, bibliometric analysis, co-citation analysis, co-occurrence analysis

This article is included in the [Climate Action](#) gateway.

Corresponding author: Kai Han Yang (yangkaihan@graduate.utm.my)

Author roles: Yang KH: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing – Original Draft Preparation; Thoo AC: Conceptualization, Project Administration, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2022 Yang KH and Thoo AC. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Yang KH and Thoo AC. *An exploration of trends and future directions in sustainability performance: A bibliometric analysis of Scopus database [version 1; peer review: awaiting peer review]* F1000Research 2022, 11:864 https://doi.org/10.12688/f1000research.121838.1

First published: 29 Jul 2022, 11:864 https://doi.org/10.12688/f1000research.121838.1
Introduction

According to the World Meteorological Organization, the period 2015–2020 was the warmest on record, with global climate change increasing by 0.2 percent compared to 2011–2015\(^2\). The 20% increase in global carbon emissions was among the factors contributing to this change, which was also higher than 410 parts per million (ppm) at the end of 2020\(^3\). However, the concentration of the major greenhouse gases showed a continuous increase in 2020. A similar trend showed through carbon dioxide (CO\(_2\)) concentration as in previous years could amount to 414 ppm or higher in 2021\(^4\). In 2018, across the world, an overall US$166 billion economy loss and 55.3 Giga tera (Gt) of carbon dioxide (CO\(_2\)) equivalent emissions were attributed to 831 critical phenomena associated with climate\(^5\). Sustainable development has become a universal concern across countries following the increasing socio-environmental issues, including climate change, pollution, and multiple health issues due to pollution\(^6\).

In 2015, all United Nations (U.N.) member states implemented Sustainable Development Goals (S.D.G.s) to eradicate poverty, provide protection to the earth, and achieve prosperity by 2030\(^7\). In the period of sustainable development, all organisations are recommended to enhance perceptiveness in achieving sustainable development objectives associated with social well-being, economic prosperity, and environmental preservation\(^8\). Notably, sustainability performance helps organisations obtain a competitive advantage in the market that is progressing towards a greener economy, achieve significant financial gains, and attract customers to assure long-term profitability\(^9\).

Therefore, sustainability performance has been under close attention by researchers, scholars, and practitioners. Furthermore, a considerable number of papers and special journal issues are available, covering a wide range of themes related to sustainability performance\(^9\). However, very few studies concerning the bibliometric analysis of sustainability performance form global perspective using VOSviewer. VOSviewer is a tool to carry out bibliometric analysis, which is helpful to comprehend the research topic status\(^\text{10}\). Additionally, this study used Scopus as a source of data mining. Scopus is the biggest database of abstracts and citations, with 1.4 billion citations and 16 million researcher information\(^\text{11}\). The Web of Science (WoS) and Scopus databases are remarkably overlapped in terms of journal indexing\(^\text{12}\). As a result, employing Scopus aims to cover a broader range of topics.

In conclusion, this study aims to conduct a bibliometric analysis of sustainability performance from 1997 to 2021. It intends to identify the trend of publication of papers in the said area, identify the prolific contributors in sustainability performance, analyze co-authorship of different researchers and nations, and analyze the co-occurrence of author keywords. This study will help scholars, policymakers, and industry grasp the research tendency in sustainability performance and identify the orientations for their research.

Sustainability performance

The concept of sustainable development has aroused more and more academic interest over the past decade due to the increasing environmental crises, inclusive of climatic variations, contamination and substantial health crises derived from contamination\(^9\). The concept of sustainable development denotes the present generation’s capability of fulfilling necessities without jeopardizing the development of our offspring\(^9\). Such a concept has three pivotal elements (society, environment, and economy) when it comes to producing commodities\(^9\).

The leading research focus currently emphasizes sustainability performance. According to 18, sustainability performance benefits from economic, social, and environmental coordination. Eventually, it fulfils stakeholders’ necessities, enhances profit, competitiveness, and organizations’ resilience in the short and long term. Numerous research (e.g. 17,19–21) has identified sustainability performance dimensions, such as environmental, economic, and society-level performances, called triple bottom line (TBL). The TBL, including economic benefit, ecological environment, and social responsibility, do not exist independently as a link to associate them. For example 22 argued that organizations highlighting TBL could achieve better economy-wise performances in contrast to those highlighting 1 or 2 aspects\(^\text{22,23}\). Higher economic gains encourage organisations to adopt better social responsibility\(^\text{24}\). Organisations with robust economic strength can splurge additional money on treating pollution, offer advantages to the society and enhance the employees’ well-being\(^\text{25}\).

Hence, sustainable development performance can be evaluated as per the economy, society, and environmental influences\(^\text{26}\).

The performance of sustainable development herein primarily denotes that corporations should manufacture on the foundation of the entire TBL. Furthermore, enterprises should minimize the expenditure, uplift consumers’ contentment, decrease discontentment, focus on developing green packaging, diminish unnecessary deliveries, and use environmentally friendly materials to minimize environmental impacts. Hence, sustainable development performance can be evaluated as per the economy, society, and environmental influences\(^\text{27}\).

Methods

In this study, bibliometric analysis was used as a research method. Bibliometric analyses are a quantification method assisting in identifying and analysing data correlated with keywords, their associations, the number of papers published within a certain time limit and their citations\(^\text{28,29}\). 31 employed this strategy, and other studies have used a similar methodology, such as 32–34, with Gaur and Kumar providing an in-depth assessment (2018).

Figure 1 depicts how to collect the articles for bibliometric analysis. The subsections that follow explain each of the stages shown in Figure 1.
Data source and search strategy
First, the research theme of sustainability performance was defined. Furthermore, this study aims to explore worldwide research tendency in sustainability performance to identify gaps and make research recommendations. Based on the research question and objectives, the article searching key words were established. The full search strategy, retrieved by topic = “sustainability performance” or “triple bottom line” or “TBL”. The timespan is 1997–2021, and the retrieval time was 13 October 2021.

The present paper was based on the Scopus database core collection to guarantee the data’s scientific and completeness. Scopus is the largest database of abstracts and citations, with 1.4 billion citations and 16 million author data. The Scopus database is superior to similar alternatives since it indexes approximately 70% more sources. It gives more thorough coverage of the newest literature, according to 37.

After the research searching keywords were chosen, the inclusion criteria (IC) were constructed. There were four criteria for inclusion:

- **IC1:** To include papers containing the research subject, which was “sustainability performance”, and the research premises/objective should match the paper’s objective.
- **IC2:** To include papers that eliminated letters, duplications, book reviews, editorials, conference proceedings and unpublished research.
- **IC3:** To include only papers within the analysis time (1997 – 2021).
- **IC4:** To include papers that limited the research fields (called “subject area” in databases) to environmental science, engineering, commercial activities, economy and society-wise research, and decision-making sciences.

The inclusion criteria contributed to the selection of articles, with only those that met all of them being chosen.

Process of selecting articles
Posterior to the initial search, we completed screening practically and methodologically to guarantee the correlation of literature, during which it needed to involve ≥ 1 keyword aforementioned in the topics, abstracts, keywords. Our team completed the initial selection for approximately 5428 literature and afterwards discussed the outcomes to generate consensus. Subsequently, we reviewed the entire databases and checked associations via reading the abstracts when necessary. As a result, the 3687 articles were identified through Search Filters 1 (SF1), which read the title, abstract, and keywords. Only articles that demonstrated potential for achieving the four inclusion criteria cleared SF1 (IC1, IC2, IC3 and IC4). Afterwards, there were 3680 articles retrieved after full reading (SF2). The procedure of study inclusion and record exclusion was presented in Table 1. Please note that the full list of included studies is available in Underlying data.

Data analysis method
After data selection, there were a total of 3680 articles extracted for analysis. Furthermore, with the fast advancement of data mining, informational analyses and graphics rendering techniques, it’s probable to utilise computers to study substantial literature data and complete data expression via

![Figure 1. Steps for selecting articles.](image)
visualising data results18. This research will use this kind of bibliometric analysis tool, VOSviewer, to perform a quantitative analysis of the relevant literature19.

Van Eck and Waltman of Leiden University in the Netherlands created VOSviewer, a program for constructing and visualizing econometrical networks. It’s capable of creating a corresponding knowledge map, identifying the research area’s knowledge base, and providing the most up-to-date progress in related research, as well as frontier hotspots, evolution paths, and future development trends in sustainability performance research, all of which are intended to serve as references and a foundation for future research18.

Results and discussion

Literature development trends

As presented by Figure 2, for the period of almost 24 years, 3680 papers were published, given the limitations in the search string. The results obtained from the preliminary analysis revealed that the oldest publication was dated 1997. The trends of the quantity of the literature witnessed relatively low before the year 2001. However, it increased gradually from then on, which showed there would be more documents to pour into the literature on sustainability performance. It may have been due to the increasing environmental crises, climatic variations, contamination and substantial health problems derived from it. The concept of sustainable development had been widely accepted among the industries1. In addition, almost 400 publications were published in each of the last three years. It reflects that this trend will also grow by the rapidly increasing rate, which shows the importance of the topic of sustainability performance.

Most influential authors

Table 2 presents the ten most productive authors in sustainability performance from five nations: the United States (4 authors), Canada (3 authors), China (1 author), Norway (1 author), and Qatar (1 author). The first publications ranged between 2009–2015, where five authors were the first authors, three were co-authors, and two were the last authors. Although there isn’t any rule pertaining to author sequence, the first author is often related to the most contribution. Also, the affiliations of authors displayed that sustainability performance studies were mainly conducted in the university.

As shown in Table 2, Haapala, Karl R. can be seen as the most prolific researcher in the field of sustainable performance, having produced the most papers, which is 25. Also, this study checked the hottest research topic of the ten most prolific authors in the last five years. The research of Haapala mainly focuses on sustainable manufacturing issues in recent years. Conversely, only Haapala focuses on sustainable manufacturing areas among the top ten prominent researchers. At the same time, material flow analysis is the most popular research topic among the top ten contributing authors, including Kucukvar, Tatari, Shen and Egilmez. The second most popular research topic is the green supply chain, which was investigated by three authors, involving Searcy, Svensson and Badurdeen. Authors Hewage and Sadiq, with the identical study field of life cycle assessment, co-authored a report entitled “Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle assessment”.

The most productive journal

The literature review should be a valid approach to identify the conceptual content of the research area and guide further studies40, whereas identifying the most tightly associated and essential research is pivotal for the bibliography. The top 10 sustainability performance-associated journals are presented in Table 3. As shown in Table 3, the top 10 most prolific journals are owned by five publishers. Four of the top ten journals were published by Elsevier. The most prolific journal was the Journal of Cleaner Production, with 9658 papers covering 299% of the overall publications. The Journal of Cleaner Production has been cited in many papers, which can explain why the CiteScore is remarkably high. As is known to all, the CiteScore can impact authors’ decision-making in selecting journals suiting their original and note-worthy works. Also, after investigation, the Journal of Cleaner Production strongly connects to clean manufacturing, environmental challenges, and sustainable development.

In addition, as shown in Table 3, the top ten journals are nearly all of excellent quality (as they are all SCI or SCIE), such as the social science citation index or science citation index expanded, except for the Sustainability Switzerland. Also, the CiteScore of Sustainability Switzerland is low. But the Sustainability Switzerland is still among the top two most productive journals. That might be because the authors consider the CiteScore and take into account if the journal
Table 2. Ten most productive researchers in sustainability performance study field.

No	Author	Scopus author I.D.	Year of 1st publication	T.P.	h-index	TC	Current affiliation	Country
1	Haapala, Karl R.	13005255100	2013	25	20	132	Oregon State University, Corvallis, United States	United States
2	Murat Kucukvar	36661159000	2011	24	35	995	Qatar University	Qatar
3	Badurdeen, Fazleena F.	14520479800	2009	17	20	500	The University of Kentucky, Lexington, United States	United States
4	Hewage, Kasun N.	8384286700	2011	17	34	473	University of British Columbia Okanagan, Kelowna, Canada	Canada
5	Tatari, Omer	14627876500	2011	17	36	842	The University of Central Florida, Orlando, United States	United States
6	Shen, Liyin	7005091994	2009	15	59	713	Chongqing University, Chongqing, China	China
7	Svensson, Göran	57202411507	2015	14	18	178	Kristiania University College, Oslo, Norway	Norway
8	Sadiq, Rehan	7003604679	2011	12	54	461	University of British Columbia Okanagan, Kelowna, Canada	Canada
9	Egilmez, Gokhan	55248346200	2014	11	24	595	University of New Haven, West Haven, United States	United States
10	Searcy, Cory	8453354600	2009	11	31	277	Ryerson University, Toronto Canada	Canada

*Note = TP: Total Publication/ TC: Total Citation

Figure 2. Number of annual publications in sustainability performance research.
can deliver research to appropriate readers and facilitate the development of the research area. Sustainability Switzerland is mainly related to sustainability and sustainable development. Therefore, CiteScore ought not to be considered the only measure. Aside from CiteScore, researchers should consider whether the publication can convey research to the appropriate academics and accelerate the relevant research field development.

Country and research institute analysis

Table 4 presents the top 15 most prolific nations facilitating the increase of sustainability performance studies across the globe. Approximately 38% of the international research were from the United States and Australia, revealing that both nations are pivotal for developing sustainability performance studies. The United States was the leading nation with 867 articles, covering 26% of the overall articles across the world. With one-half of the United States’ overall articles, Australia was the second most prolific nation. However, Oregon State University’s total publication (TPi) was comparable to that of the University of Queensland, albeit slightly lower than that of Universiti Teknologi Malaysia. As a result, having the most productive academic institution may not be synonymous with being the most productive country.

Besides, only India (73.2%) had over 2/3 single-country publications (S.C.P.) among the 15 countries. This indicated that India has a more vital intra-country collaboration than

Journal	T.P. (%)	TC	CiteScore 2020	The most cited article (reference)	Time cited	Publisher
Journal of Cleaner Production	299	9658	13.1	A fuzzy multi-criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach	510	Elsevier
Sustainability Switzerland	204	1992	3.9	Development of a risk framework for Industry 4.0 in the context of sustainability for established manufacturers	63	Multidisciplinary Digital Publishing Institute
Business Strategy and the Environment	37	2085	10.3	Measuring organizational performance: Beyond the triple bottom line	359	Wiley-Blackwell
International Journal of Production Economics	31	1767	12.2	Sustainable operations: Their impact on the triple bottom line	404	Elsevier
Journal of Business Ethics	30	1817	9.0	W(ther) ecology? The Triple Bottom Line, the Global Reporting Initiative, and Corporate Sustainability Reporting	377	Springer Nature
Ecological Indicators	29	1092	7.5	Development of composite sustainability performance index for the steel industry	263	Elsevier
Resources Conservation	27	830	14.7	A model for integrated assessment and Recycling of sustainable development	308	Elsevier
International Journal of	23	954	7.8	Impact categories for life cycle Life Cycle Assessment assessment research of seafood production systems: Review and prospectus	144	Springer Nature
International Journal of Production Research	23	1105	10.8	Does sustainable supplier cooperation affect performance? Examining implications for the triple bottom line	190	Taylor & Francis
Corporate Social Responsibility and Environmental Management	21	397	8.0	The global reporting initiative and corporate sustainability reporting in Swedish companies	161	Wiley-Blackwell

Note = TP: Total Publication/ TC: Total Citation
Table 4. The top 15 most prolific nations and academic institutions in sustainability performance publications.

Rank	Country	TPC	S.C.P. (%)	The most prolific academic institute	TPI
1	United States	867	68.9	Oregon State University	25
2	Australia	398	65.6	The University of Queensland	25
3	United Kingdom	373	48.5	University College London	10
4	China	273	37.0	Sichuan University	10
5	Malaysia	187	66.3	Universiti Teknologi Malaysia	26
6	Canada	173	61.9	University of British Columbia Okanagan	16
7	Germany	172	49.4	Technical University of Berlin	9
8	India	164	73.2	National Institute of Technology Tiruchirappalli	10
9	Brazil	160	61.9	Universidade de São Paulo	24
10	Italy	156	58.3	Politecnico di Milano	8
11	Netherlands	123	43.9	Wageningen University & Research	15
12	Spain	114	51.8	Universidad de Zaragoza	8
13	France	106	31.1	AgroParisTech	5
14	Sweden	86	50.0	Chalmers University of Technology	14
15	Turkey	85	65.9	'Istanbul Teknik Universitesi	8

*Note = Abbreviation: TPC - Total Publications of a Given Country/ TPI - Total Publications of a Given Academic Institution/S.C.P. - Single-Country Publications

other countries. Additionally, China was the nation with the least S.C.P. with 37.0%, in which 101 out of 273 articles were associated with several affiliations from 43 diverse nations. Furthermore, China has more total publications than India, which indicates that international collaboration should be a focus. As shown in Figure 3, outcomes of co-authorship revealed that America was the most affiliated nation, linked to 53 nations/territories. Moreover, the United States produced the most publications, with the total number of publications ranking first. Therefore, international collaboration might contribute to producing more publications. The government needs to formulate flexible and steady policies to sustain transnational collaborations.

Co-occurrence (author keywords)
The analyses of the knowledge development track in the study field can assist scholars in comprehensively capturing the development trend of the study field, forecasting the developmental tendency, and offering scholars more research targets. In past research, certain scholars utilized quantitative computation on the foundation of the occurrence frequency or co-occurrence frequency of words or phrases, which delineate the study. As per the association strength between topic words, they clustered them and drew a net of subject topics in diverse periods’ atlases to identify the development path of the study field.

As shown in Figure 4, there are 7634 author keywords documented, amongst which 6006 (78.7%) were merely utilized once, 782 essential words (10.2%) were utilized twice, and 276 (3.6%) were utilized three times. After re-labelling synonymical single words and congenerical phrases, 420 keywords reached the liminal value of minimal five occurrences for VOSviewer. In the map, the term ‘sustainability’ was the most popular keyword with 878 occurrences and 337 associations with other keywords. In addition, our team discovered the utilization of general terms like “organizational sustainability” (8 occurrences, 12 links), “corporate sustainability” (129 occurrences, 112 links) and ‘triple bottom line’ (22 occurrences, 29 links).

The critical concept of sustainable development includes three pivotal components, including society, environment, and economic development. In Figure 4, keywords associated with ‘social sustainability’, ‘economic sustainability’ and ‘environmental sustainability’ were repeated 31, 69 and 70 times, respectively. This result suggests that the researchers overlooked the social sustainability aspect. Although, some researchers indicated that corporations and commercial activities shouldn’t merely highlight the economy-wise sustainable development. The other aspects should be taken into consideration as well because they are equally essential.
Figure 3. A screenshot of a bibliometric map produced on the foundation of co-authorships via net visualization mode. The URL below can be utilized to open Figure 3 in VOSviewer: https://bit.ly/3vZdPU7.

Figure 4. A screen shot of the bibliometric map produced on the foundation of author keywords co-occurrence with overlay visualization mode. The URL below can be utilized to open Figure 4 in VOSviewer: https://bit.ly/3bsitk4.
Keywords that address challenges within sustainability performance by inner or outer factors were discovered as well, e.g., ‘green supply chain’ was reported 21 times and often cooccurred with ‘reverse logistics’. Furthermore, green manufacturing, green purchasing and green packaging, three elements of the green supply chain, were identified as the factor for influencing reverse logistics. But there have been no academics researching the effect of other elements of the green supply chain on reverse logistics, which provided a research gap for future study. On the other hand, material flow analysis is the most popular research topic among the top ten contributing authors. Nevertheless, no streams of keyword occurrence were observed in the review, which linked material flow analysis and sustainable development performance.

Distribution of sustainability performance based on major applications

As per the number of research and author keyword occurrences, positive associations were discovered between the outputs of the subtheme search and the centric theme search. For example, it is shown that the manufacturing industry was the most commonly seen application with 1149 papers in Scopus and 28 occurrences in VOSviewer. This was followed by the construction industry (700 papers and 21 occurrences), food industry (593 papers and 11 occurrences), automotive industry (371 papers and 7 occurrences), agriculture industry (362 papers and 7 occurrences), and oil and gas industry (246 papers and 6 occurrences).

In fact, the manufacturing sector is a cornerstone of economic development, which is pivotal for economy-wise sustainability, and it serves as a major contributor to the Gross Domestic Product (G.D.P.), employment rates and export percentage of countries around the world. However, the rapid development of manufacturing has caused substantial waste, overuse of various resources and overconsumption of energy. Also, achieving sustainability performance helps manufacturing organizations to attain a competitive advantage in the market that is moving towards a greener economy and achieving significant financial gains while attracting customers to assure long term profitability. As a result, an increasing number of academics and practitioners are incorporating sustainability into the manufacturing industry, and the manufacturing industry has become the focus of research.

Furthermore, Figure 5 showed that most publications related to the manufacturing industry, construction industry, food industry, automotive industry and agriculture industry came from the U.S.A. except on the agriculture industry. Australia is the primary focus of research into the agriculture industry’s sustainability performance. The reason for it could be linked to Australia’s economy and culture. The agricultural sector is vital for Australia’s economic and cultural development. In this country, about 65% of overall production is exported, which accounts for about 14% of the overall exportation value in Australia. Also, in general, the U.K. was amongst the top five nations that publish research on all sustainability

![Figure 5](image-url)
Figure 5. Five nations with the most publications on the selected sustainability performance major applications.
performance applications. Other nations like China, Australia, Malaysia, India, Netherlands and Italy were listed in diverse applications of sustainability performance and merely once.

Limitations of the study
The outcome may not cover all sustainability performance-associated research on Scopus by restricting the search of “sustainability performance” within titles, abstracts, and content. That’s because certain scholars didn’t refer to their systems as sustainability performance but instead utilized diverse terms. Research in the future should contrast the outputs from several databases like Scopus and Web of Sciences. The search outcomes from Web of Science, for example, automatically demonstrate the most popular research via the ‘hot paper’ function, which remains absent in Scopus. Such a function demonstrates that pivotal research was recognized quickly after publication, which is reflected via a fast and remarkable citation number. Utilizing bibliometric analyses via several data sources will facilitate more systematic research.

Conclusions
The present paper aims to help researchers and practitioners grasp the research tendency in sustainability performance and find the underlying orientations for further studies. As per academic database outputs, bibliometric analyses are a mechanical method to grasp the international research tendency in certain study fields. Such a method can distinguish a bibliometric analysis report from a review study mainly aimed at summarizing the latest development, problems, and future orientations of specific topics. Although there are certain limitations, this research is still vital for sustainability performance researchers.

Firstly, the outcomes herein reveal that the sustainability performance field has witnessed remarkable advancement recently. Publications have been increasing over the past ten years and are anticipated to increase progressively. Secondly, according to the findings of this study, the academics who focus on sustainability performance-related research are all university professors. Moreover, when publishing the article, the authors should not only consider the CiteScore but also take into account if the journal can deliver research to appropriate readers and facilitate the development of the research area. Furthermore, the study identified countries and academic institutions with solid international and internal cooperation (e.g., U.S.A. and India). Those international and internal collaborations are a treasure for scholars to expand their studies. However, the fact that some countries and regions lack international collaboration and specialized policies to support collaboration should be noted.

Finally, this paper found the research trend for academics. There are three elements of sustainability performance, however, social sustainability has been somewhat overlooked, and this should be noted. Likewise, the association of material flow with sustainable development performance, which offers future orientations for scholars, practitioners and investigators in future studies on sustainability performance, ought to be extensively researched. Moreover, merely co-authorship and cooccurrence analyses were completed via the VOSviewer. Thereby, more tools, like co-citation and bibliographical coupling of the program, can be utilized. Because sustainability performance is important across the globe, the sustainability performance research boundaries are expected to expand progressively, and more thrilling topics will definitely emerge.

Data availability
Underlying data
Dryad: An Exploration of Trends and Future Directions in Sustainability Performance. https://doi.org/10.5061/dryad.8kprr4xq40.

This project contains the following underlying data:
- Scopus.csv (articles from 1997–2010).
- Scopus_(1).csv (articles from 2010–2021).

References

1. M. M. O. World Meterological Organization (WMO): Global climate in 2015-2019: Climate change accelerates. 2019. Reference Source
2. M. M. O. World Meterological Organization (WMO): The state of the global climate 2020. 2020. Reference Source
3. Zhang C, Cai W, Liu Z, et al.: Five tips for china to realize its co-targets of climate mitigation and sustainable development goals (SDGs). Geography and Sustainability 2020; 1(3): 245–249. Publisher Full Text
4. Khan SAR, Zhang Y, Kumar A, et al.: Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth. Sustainable Development. 2020; 28(4): 833–843. Publisher Full Text
5. Pradhan P, Costa L, Rybski D, et al.: A systematic study of sustainable development goal (sdg) interactions. Earth’s Future. 2017; 5(1): 1169–1179. Publisher Full Text
6. Tsalis TA, Malamateniou KE, Koulouriotis D, et al.: New challenges for corporate sustainability reporting: United nations’ 2030 agenda for sustainable development and the sustainable development goals. Corp Soc Responsib Environ Manag. 2020; 27(4): 1617–1629. Publisher Full Text
7. Morisaka SN, Bolis I, Evans S, et al.: Transforming sustainability challenges into competitive advantage: Multiple case studies kaleidoscope converging into sustainable business models. J Clean Prod. 2017; 167: 723–738. Publisher Full Text
8. Engida TG, Rao X, Berentsen PB, et al.: Measuring corporate sustainability performance: the case of european food and beverage companies. J Clean
9. Seuring S: A review of modeling approaches for sustainable supply chain management. Decis Support Syst. 2013; 54(4): 1513–1520. Publisher Full Text

10. Luthra S, Mangla SK, Shankar R, et al.: Modelling critical success factors for sustainability initiatives in supply chains in indian context using grey-dematel. Production Planning & Control. 2018; 29(9): 705–728. Publisher Full Text

11. Safdar N, Khalid R, Ahmed W, et al.: Reverse logistics network design of e-waste management under the triple bottom line approach. J Clean Prod. 2020; 272: 122662. Publisher Full Text

12. Liu W, Bai E, Liu L, et al.: A framework of sustainable service supply chain management: A literature review and research agenda. Sustainability. 2017; 9(3): 421. Publisher Full Text

13. Franceschini F, Maisano D, Mastrogiacomo L: Empirical analysis and classification of database errors in scopus and web of science. J Inform. 2016; 10(4): 933–953. Publisher Full Text

14. Aghaei Chadegani A, Salehi H, Yunus M, et al.: A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian social science. 2013; 9(S1): 18–26. Publisher Full Text

15. Helleno AL, de Moraes AII, Simon AT: Integrating sustainability indicators and lean manufacturing to assess manufacturing processes: Application case studies in brazilian industry. J Clean Prod. 2017; 153: 405–416. Publisher Full Text

16. Orji E: Examining barriers to organizational change for sustainability and drivers of sustainable performance in the metal manufacturing industry. Jour Constr Revycl. 2019; 140: 102–114. Publisher Full Text

17. Ahmad S, Wong KY, Rajoo S: Sustainability indicators for manufacturing sectors: A literature survey and maturity analysis from the triple-bottom line perspective. Journal of Manufacturing Technology Management. 2019; 30(2): 312–334. Publisher Full Text

18. Ahl P, Seear C, Jaber MY: Energy-related performance measures employed in sustainable supply chains: A bibliometric analysis. Sustainable Production and Consumption. 2016; 7: 1–15. Reference Source

19. Zubir AFM, Habibin NF, Conding J, et al.: The development of sustainable manufacturing practices and sustainable performance in malaysian automotive industry. J Econ Sustain Dev. 2012; 3(7): 130–138. Reference Source

20. Rosen MA, Kishaway HA: Sustainable manufacturing and design: Concepts, practices and needs. Sustainability. 2012; 4(2): 154–174. Publisher Full Text

21. Vinodh S, Joy D: Structural equation modeling of sustainable manufacturing practices. Clean Techn Environ Policy. 2012; 14(1): 79–84. Publisher Full Text

22. Carter C, Rogers DS: A framework of sustainable operations management: Moving toward new theory. International Journal of Physical Distribution and Logistics Management. 2008; 38(5): 360–387. Publisher Full Text

23. Mirkouei A, Haapala KR, Sessions J, et al.: A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Appl Energy. 2017; 206: 1088–1101. Publisher Full Text

24. Moktad MA, Ali SM, Rajesh R, et al.: Modeling the interrelationships among barriers to sustainable supply chain management in leather industry. J Clean Prod. 2018; 191: 631–651. Publisher Full Text

25. Mota B, Gomes MJ, Carvalho A, et al.: Towards supply chain sustainability: economic, environmental and social design and planning. J Clean Prod. 2015; 105: 14–27. Publisher Full Text

26. Cao M, Zhang Q: Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of Operations Management. 2011; 29(3): 163–180. Publisher Full Text

27. Li Y, Zhao X, Shi D, et al.: Governance of sustainable supply chains in the fast fashion industry. European Management Journal. 2014; 32(3): 823–836. Publisher Full Text

28. Chopra S, Meindl P: Supply chain management: strategy, planning, and operation. Boston: Pearson, 2016; 31(7): 144–144. Reference Source

29. Evren S, Kozak N: Bibliometric analysis of tourism and hospitality related articles published in turkey. Anatolia. 2014; 25(1): 61–80. Publisher Full Text

30. Muñoz Leiva F, Porcu S, del Barrio-Garcia S, et al.: Discovering prominent themes of integrated marketing communication research from 1991 to 2012: A co-word analytic approach. Int J Advert. 2015; 34(4): 678–701. Publisher Full Text

31. De Sousa Jabbour ABL, Ndubisi NO, Seles BMAR: Sustainable development in asian manufacturing smes: Progress and directions. Int J Prod Econ. 2020; 225: 107567. Publisher Full Text

32. Jabbour GC: Environmental training in organisations: From a literature review to a framework for future research. Resour Conserv Recycl. 2013; 74: 144–155. Publisher Full Text

33. Mariano EB, Sobreiro VA, Rebelaio DADDN: Human development and data envelopment analysis: A structured literature review. Omega. 2015; 54: 33–49. Publisher Full Text

34. Seuring S, Müller M: From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod. 2012; 16(15): 1699–1710. Publisher Full Text

35. Sheeraz M, Ahmad UNU, Nor KM: What makes articles cited highly? an analysis of top 100 highly cited articles on organizational citizenship behavior. PIJU Social Sciences. 2021; 19(1): 90–104. Reference Source

36. Brzezinski M: Power laws in citation distributions: evidence from scopus. Scientometrics. 2015; 103(3): 213–228. PubMed Abstract | Publisher Full Text | Free Full Text

37. Harzing AW, Alakangas S: Google scholar, scopus and the web of science: a longitudinal and cross-disciplinary comparison. Scientometrics. 2016; 106(2): 787–804. Publisher Full Text

38. Meng L, van Eck NJ, Noyons ECM: A unified approach to mapping and clustering of bibliometric networks. J Inform. 2010; 4(4): 629–635. Publisher Full Text

39. Raghuram S, Tuertscher F, Garud R: Mapping the field of virtual work: a co-citation analysis. Information Systems Research. 2010; 21(4): 983–999. Reference Source

40. Beske P, Land A, Seuring S: Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. Int J Prod Econ. 2014; 152: 131–143. Publisher Full Text

41. Seuring S, Müller M: From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod. 2008; 16(15): 1699–1710. Publisher Full Text

42. Mandal S: Towards a new framework for sustainable supply chain management. Int J Manuf Mater Eng. 2013; 3(3): 1–12. Publisher Full Text

43. Hossan Chowdhury MM, Quadddus MA: Supply chain sustainability practices and governance for mitigating sustainability risk and improving market performance: A dynamic capability perspective. J Clean Prod. 2021; 278: 123521. Publisher Full Text

44. Hsu CC, Tan KC, Mohamad Zailani SH: Strategic orientations, sustainable supply chain initiatives, and reverse logistics: Empirical evidence from an emerging market. International Journal of Operations & Production Management. 2016; 36(1): 86–110. Publisher Full Text

45. Abdul-Rashid SH, Sakundarini N, Raja Ghazilla RA, et al.: The impact of sustainable manufacturing practices on sustainability performance: Empirical evidence from Malaysia. International Journal of Operations & Production Management. 2017; 37(2): 182–204. Publisher Full Text

46. Cankaya SK, Sezer B: Effects of green manufacturing and eco-innovation on sustainability performance. Journal of Manufacturing Technology Management. 2019; 54(6): 154–163. Publisher Full Text

47. Australian Government: Agricultural trade. 2020.

48. Yang K, Thoo AC: An exploration of trends and future directions in sustainability performance. Dryad Dataset. 2022. http://www.doi.org/10.5061/dryad.8kpr4kxq
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com