Bone marrow edema syndrome (BMES) is a rare and usually self-limiting exclusion syndrome characterized by increased interstitial fluid in the bone marrow, which may cause severe pain at times. The disease is generally observed in the hip joint in the adult patient group. It rarely involves some other joints. It is often misdiagnosed, as its clinical findings are highly variable and non-specific. To make a correct diagnosis, clinicians should be aware of the syndrome and in patients presenting with musculoskeletal pain, the differential diagnosis should include BMES, especially when patient history and laboratory testing indicates low risk of other common causes. The disease usually resolves within a year without any sequelae [1-3].

Case Report

A 17-year-old male patient was admitted to the emergency room with severe back pain, which had been intermittent for 2 months but had increased in the past week. There was no history of trauma. It was learned that the patient had undertaken heavy exercise at home, 2 days before admission. It was observed that his pain decreased with rest and massage, but increased after exercise and persisted in the following days. There was no pathological feature in the personal and family history. On physical examination, it was noted that his pain increased with movement around the scapula and could be exacerbated or relieved depending on his lying position. This pain was at a level that interfered with the daily activity of the patient. No pathology was found in the patient’s laboratory tests. In particular, afebrile reactions and sedimentation were normal. In terms of possible muscle-tendon pathologies, bilateral scapula and shoulder magnetic resonance imaging (MRI) were performed. MRI imaging of the left scapula revealed BMES (Fig. 1). After diagnosis, nonsteroidal anti-inflammatory therapy (NSAID) and bed rest were ordered. His complaints disappeared within 3 days and the patient was discharged on NSAID. The patient reattended after 1 week for follow-up, and he remained symptom-free. We wanted to present this case to contribute to the literature.

Discussion

BMES has been increasingly seen in the literature in recent years. In general, patients present with pain that restricts daily activities [1,4]. It is a syndrome that was first identified and defined by MRI in 1988. It is mostly seen in middle-aged patients and in joints such as hip and knee [5,6]. BMES may develop due to mechanical, reactive, or ischemic causes but the pathogenesis is not fully understood. Increased intraosseous pressure and progression of cartilage damage have been shown as the cause of the pain. Histological findings vary according to the underlying etiology. Recovery without any sequelae is thought to be related to the self-renewal capacity of bone. Differential diagnosis of bone marrow syndrome findings due to pathologies such as mechanical, ischemic, malignancy, and osteomyelitis is mostly made by physical examination, history, laboratory findings, and imaging methods. MRI is especially helpful in diagnosis. However, the differential diagnosis should be meticulously not to miss a serious underlying pathology [7-11]. Some signal changes are evident on MRI and are characterized by low signal intensity T1-weighted images and high signal intensity T2-weighted imaging [4,10,12,13]. In our case, the diagnosis was made because of hyperintense areas on T2 imaging. Although this syndrome is rarely seen in children, it was possible to diagnose this patient based on MRI findings. Although it is rare in the shoulder area, it is probable that it was caused by overuse.

BMES can be divided into three stages. The 1st month is characterized by severe pain and dysfunction. After 1–2 months, the pain reaches a maximum level. In the following months, the pain gradually decreases and heals without any sequelae. While pain symptoms increase with the load on the affected area, pain decreases with rest. Patients usually try to protect the affected area and avoid actions involving excessive weight [14–16]. In our patient, the pain had started around 2 months before presentation and had worsened recently, probably associated with the episode of heavy exercise.

Treatment can vary depending on the underlying causes. Therefore, treatment should be arranged according to the etiology. Since BMES is a self-limiting syndrome, the main goal of treatment is to reduce pain and shorten the duration of symptoms. Patients may be advised to rest for 3–6 weeks and NSAIDs are given for symptoms. Oral NSAID can provide symptomatic relief without changing the underlying pathology [9,17,18].

Keywords: Pain, Musculoskeletal system, Bone marrow edema.
CONCLUSION

In a patient presenting with musculoskeletal pain, BMES should be considered in the differential diagnosis, especially after more common reasons are excluded from the study.

REFERENCES

1. Davis DD, Kane SM. Bone marrow edema syndrome. Treasure Island, FL: Stat Pearls Publishing; 2020.
2. De Houwer J, van Beek N, Prinsen S, van Riet A, de Roeck J, Verfaillie S. Bone marrow edema syndrome of the foot and ankle in a paediatric population: A retrospective case series with serial MRI evaluation. J Child Orthop 2020;14:440-50.
3. Baumbach SF, Pfahler V, Pozza SB, Feist-Pagenstert I, Fürmetz J, Baur-Melnyk A, et al. How we manage bone marrow edema—an interdisciplinary approach. J Clin Med 2020;9:551.
4. Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: Pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008;49:771-86.
5. Akhavan S, Martinkovich SC, Kasik C, DeMeo PJ. Bone marrow edema, clinical significance, and treatment options: A review. J Am Acad Orthop Surg 2020;28:e888-99.
6. Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: Transient bone marrow edema? Radiology 1988;167:757-60.
7. Manara M, Varenna M. A clinical overview of bone marrow edema. Reumatismo 2014;66:184-96.
8. Blum A, Roch D, Loeuille D, Louis M, Batch T, Leccoq S, et al. Bone marrow edema: Definition, diagnostic value and prognostic value. J Radiol 2009;90:1789-811.
9. Hofmann S, Kramer J, Breitenseher M, Pietsch M, Aigner N. Bone marrow edema in the knee. Differential diagnosis and therapeutic possibilities. Orthopade 2006;35:463-75.
10. Eriksen EF, Kingle JD. Bone marrow lesions: A universal bone response to injury? Rheumatol Int 2012;32:575-84.
11. Hussain ZB, Chahta J, Mandelbaum BR, Gomoll AH, LaPrade RF. The role of meniscal tears in spontaneous osteonecrosis of the knee: A systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med 2019;47:501-7.
12. Schett G. Bone marrow edema. Ann N Y Acad Sci 2009;1154:35-40.
13. Karantanas AH. Acute bone marrow edema of the hip: Role of MR imaging. Eur Radiol 2007;17:2225-36.
14. Mirghasemi SA, Trepman E, Sadeghi MS, Rahimi N, Rashidinia S. Bone marrow edema syndrome in the foot and ankle. Foot Ankle Int 2016;37:1364-73.
15. Ghasemi RA, Sadeghi S, Rahimiee N, Tahmasebi M. Technologies in the treatment of bone marrow edema syndrome. Orthop Clin North Am 2019;50:1364-73.
16. Breitenseher MJ, Kramer J, Mayerhoefer ME, Aigner N, Hofmann S. Differential diagnosis of bone marrow edema of the knee joint. Radiologie 2006;46:46-54.
17. Cohen SB, Sharkey PF. Subchondroplasty for treating bone marrow lesions. J Knee Surg 2016;29:555-63.
18. Sharkey PF, Cohen SB, Leinberry CF, Parviz I. Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop (Belle Mead NJ) 2012;41:413-7.