EULER CHARACTERISTICS OF \(p \)-SUBGROUP CATEGORIES

MARTIN WEDEL JACOBSEN AND JESPER M. MÖLLER

CONTENTS

1. Introduction 1
2. Euler characteristics 3
 2.1. The Euler characteristic of a square matrix 3
 2.2. The Euler characteristic of a finite category 4
 2.3. The Euler characteristic of a finite poset 5
 2.4. The Euler characteristic of \([C]\) 5
 2.5. The Euler characteristic of a homotopy orbit category 6
3. The Möbius function of a finite group 6
 3.1. Euler characteristic of the exterior quotient of the Frobenius category 8
 3.2. Alternative weightings and coweightings 8
4. Euler characteristics of orbit categories 11
5. The range of \(\chi(\tilde{F}_G) \) 13
6. Product formulas 15
7. Variations on Frobenius categories 16
8. Self-centralizing subgroups 17
References 20

Abstract. Let \(G \) be a finite group and \(p \) a prime number. We compute the Euler characteristic in the sense of Leinster for some categories of nonidentity \(p \)-subgroups of \(G \). The \(p \)-subgroup categories considered include the poset \(S^*_G \), the transporter category \(T^*_G \), the linking category \(L^*_G \), the Frobenius, or fusion, category \(F^*_G \), and the orbit category \(O^*_G \) of all nonidentity \(p \)-subgroups of \(G \).

1. Introduction

In this note we apply Tom Leinster’s theory of Euler characteristics of (some) finite categories \([17]\) to \(p \)-subgroup categories associated to finite groups.

For a finite group \(G \) and a fixed prime number \(p \), let \(S_G \) denote the poset of consisting of all \(p \)-subgroups of \(G \) ordered by inclusion. Also, let \(T_G \) (the transporter category), \(L_G \) (the linking category \([6]\)), \(F_G \) (the Frobenius category \([19, 6]\)), \(O_G \) (the orbit category), and \(\tilde{F}_G \) (the exterior quotient of the Frobenius category \([19, 1.3, 4.8]\)) be the categories whose objects are the \(p \)-subgroups of \(G \) and whose morphism sets are

\[
T_G(H, K) = N_G(H, K) \\
L_G(H, K) = O^p C_G(H) \backslash N_G(H, K) \\
F_G(H, K) = C_G(H) \backslash N_G(H, K) \\
O_G(H, K) = N_G(H, K) / K \\
\tilde{F}_G(H, K) = C_G(H) \backslash N_G(H, K) / K
\]

for any two \(p \)-subgroups, \(H \) and \(K \), of \(G \). Here \(N_G(H, K) = \{ g \in G \mid H^g \leq K \} \) denotes the transporter set. Composition in any of these categories is induced from group multiplication in \(G \). The morphisms in \(F_G(H, K) \) are restrictions to \(H \) of inner automorphisms of \(G \), morphisms in \(O_G(H, K) \) are right \(G \)-maps \(H \backslash G \to K \backslash G \), and morphisms in \(\tilde{F}_G(H, K) \) are \(K \)-conjugacy classes of restrictions to \(H \) of inner automorphisms of \(G \). The endomorphism groups in these categories of the \(p \)-subgroup \(H \) of \(G \) are \(S^*_G(H) = \)
The five categories \(\mathcal{T}_G, \mathcal{L}_G, \mathcal{F}_G, \mathcal{O}_G \), and \(\tilde{\mathcal{F}}_G \) are related by functors
\[
\begin{array}{c c c c}
\mathcal{T}_G & \longrightarrow & \mathcal{L}_G & \longrightarrow & \mathcal{F}_G & \longrightarrow & \tilde{\mathcal{F}}_G \\
\downarrow & & & & & & \\
\mathcal{O}_G & & & & & &
\end{array}
\]
If \(\mathcal{C} \) is any of these categories
- \(\mathcal{C}^* \) is the full subcategory of \(\mathcal{C} \) generated by all nonidentity \(p \)-subgroups
- \(\mathcal{C}^a \) is the full subcategory of \(\mathcal{C}^* \) generated by all elementary abelian \(p \)-subgroups
- \(\mathcal{C}^c \) is the full subcategory of \(\mathcal{C}^* \) generated by all \(p \)-selfcentralizing \(p \)-subgroups

Here is a summary of our main results appearing in Table 1, Table 2, and Theorem 4.1.

Theorem 1.1 (Euler characteristics of \(p \)-subgroup categories). The Euler characteristics are
\[
\chi(\mathcal{C}^*) = \sum_{[H]} -\frac{\mu(H)}{|\mathcal{C}^*(H)|}, \quad \mathcal{C} = \mathcal{T}_G, \mathcal{L}_G, \mathcal{F}_G
\]
where the sum runs over the set of conjugacy classes of nonidentity \(p \)-subgroups of \(G \). Also, \(\chi(\mathcal{S}^*_G) = |G|\chi(\mathcal{T}^*_G), \chi(\tilde{\mathcal{F}}^*_G) = \chi(\mathcal{F}^*_G)\), and
\[
\chi(\mathcal{O}^*_G) = \chi(\mathcal{T}^*_G) + \frac{p-1}{p} \sum_{[C]} 1_{|\mathcal{O}^*_G(C)|}
\]
where the sum runs over the set of conjugacy classes of nonidentity cyclic \(p \)-subgroups of \(G \).

Here, \(\mu(K) = \mu_K(1, K) \) is the Möbius function of finite groups [13] [22, Chp 3.7]. (The formula for the Euler characteristic of \(\mathcal{S}^*_G \) is already known, of course.) Theorem 1.1 implies that
\[
\chi(\mathcal{C}^*) = \chi(\mathcal{C}^a)
\]
because these categories have coweightings supported (precisely) on the elementary abelian subgroups of \(G \). Dually, the weightings for \(\mathcal{S}^*_G \), \(\mathcal{O}^*_G \), and \(\mathcal{F}^*_G \) are supported on the nonidentity \(p \)-radical subgroups of \(G \) (Definition 3.18, Corollary 3.19), and, if \(G \) has a normal Sylow \(p \)-subgroup, \(P \), the weighting for \(\mathcal{F}^*_G \) is supported (precisely) on the subgroups of \(P \) of the form \(C_{p^x}(x), x \in G \) (Corollary 5.4). This shows that these \(p \)-subgroup categories carry information, retrieved by the weighting or the coweighting, about which objects are elementary abelian, \(p \)-radical, or centralizers of group elements. The Euler characteristics of Theorem 1.1 are rational numbers. However, \(|G|^{p^x}\chi(\mathcal{O}^*_G) \) and \(|G|^{p^x}\chi(\mathcal{F}^*_G) \) are integers (Corollaries 4.6 and 5.2).

As a spin-off of our investigations of (co)weightings we establish three combinatorial identities in (3.16), (3.17), and (4.5).

Corollary 1.2. For any finite group \(G \) and any prime \(p \),
\[
\sum_{[H]} (1 - \chi(\mathcal{S}^*_C(H)) + \mu(H)) = 0
\]
\[
\sum_{[H]} \sum_{x \in C_G(H)} (1 - \chi(\mathcal{S}^*_{C_{H}(x)}(H)) + \mu(H)) = 0
\]
\[
\sum_{[H]} (|H| - \chi(\mathcal{O}^*_C(H))|H| + \mu(H)) = \frac{p-1}{p} \sum_C |C|
\]
where \(H \) runs over the set of nonidentity \(p \)-subgroups of \(G \) and \(C \) over the set of nonidentity cyclic \(p \)-subgroups of \(G \).

Theorems 6.1 and 6.2 establish formulas for Euler characteristics of posets and Frobenius categories of nonidentity subgroups stating that
\[
1 - \chi(\mathcal{S}^*_n) = \prod_{i=1}^{n} (1 - \chi(\mathcal{S}^*_G)), \quad 1 - \chi(\mathcal{F}^*_n) = \prod_{i=1}^{n} (1 - \chi(\mathcal{F}^*_G))
\]
where \(G_1, \ldots, G_n \) are finite groups.

For the sake of quick reference we list here the notation that we are using throughout this paper:
• p is a fixed prime number
• n_p is p-part of the integer n, the highest power of p dividing n, and $n_{p'} = n/n_p$ is the p'-part of n
• G is a finite group
• $H \leq K$ means that H is a subgroup of K
• $\Phi(K)$ is the Frattini subgroup of K [10, Definition 3.14]
• C is a finite category, $C(a, b)$ is the set of morphisms from object a to object b, and $C(a) = C(a, a)$ is the monoid of endomorphisms of a
• $\text{Ob}(C)$ is the set of objects of C
• $[C]$ the set of isomorphism classes of objects of C and $[a] \in [C]$ the isomorphism class of $a \in \text{Ob}(C)$

2. Euler characteristics

In this section we review the relevant parts of Tom Leinster’s concept of Euler characteristic of a finite category C [17].

2.1. The Euler characteristic of a square matrix. Let S be a finite set and $\zeta : S \times S \to \mathbb{Q}$ a rational function on $S \times S$. Equivalently, $\zeta = (\zeta(a, b))_{a, b \in S}$ is a square matrix with rows and columns indexed by the finite set S and with rational entries $\zeta(a, b) \in \mathbb{Q}$, $a, b \in S$.

Definition 2.1. [17, Definition 1.10] A weighting for ζ is a column vector (k^\bullet) and a coweighting for ζ is a row vector (k_{\bullet}) solving the linear equations

$$
(\zeta(a, b))(k^b) = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \quad (k_a)(\zeta(a, b)) = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}
$$

If ζ admits both a weighting k^\bullet and a coweighting k_{\bullet}, then the sum of the values of the weighting

$$
\sum_b k^b = \sum_b (\sum_a k_a \zeta(a, b)) k^b = \sum_a k_a (\sum_b \zeta(a, b) k^b) = \sum_a k_a
$$

equals the sum of the values of the coweighting (and then this sum is independent of the choice of weighting or coweighting).

Definition 2.3. [17, Definition 2.2] The square matrix ζ has Euler characteristic if it admits both a weighting and a coweighting and its Euler characteristic is then the sum

$$
\chi(\zeta) = \sum_b k^b = \sum_a k_a
$$

of all the values of any weighting k^\bullet or any coweighting k_{\bullet}.

In case the square matrix ζ is invertible, if we let $\mu = (\mu(a, b))_{a, b \in S}$ denote the inverse of ζ, the Möbius inversion formula

$$
\forall a, c \in S: \sum_b \zeta(a, b) \mu(b, c) = \delta(a, c) = \sum_b \mu(a, b) \zeta(b, c)
$$

simply expresses that ζ and μ are inverse matrices. When ζ is invertible the vectors

$$
(k^\bullet) = (\mu(a, b)) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = (\sum_{b \in S} \mu(a, b)), \quad (k_b) = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} (\mu(a, b)) = (\sum_{a \in S} \mu(a, b))
$$

are the unique weighting and coweighting for ζ and the Euler characteristic of ζ

$$
\chi(\zeta) = \sum_{a, b \in S} \mu(a, b)
$$

is the sum of all the entries in the inverse matrix.
2.2. The Euler characteristic of a finite category. Define the \(\zeta \)-matrix for the finite category \(C \) to be the square matrix

\[
\zeta(C) = ([C(a, b)])_{a,b \in \text{Ob}(C)}
\]

that counts the number of morphisms between pairs of objects of \(C \). We say that the category \(C \) admits a weighting, admits a coweighting, or has Euler characteristic if its \(\zeta \)-matrix \(\zeta(C) \) does. This means that a weighting for \(C \) is a rational function \(k^\bullet : \text{Ob}(C) \to \mathbb{Q} \) and a coweighting for \(C \) is a rational function \(k_\bullet : \text{Ob}(C) \to \mathbb{Q} \) such that

\[
(2.5) \quad \forall a \in \text{Ob}(C): \sum_{b \in \text{Ob}(C)} \zeta(a, b)k^b = 1, \quad \forall b \in \text{Ob}(C): \sum_{a \in \text{Ob}(C)} k_\alpha \zeta(a, b) = 1
\]

and the Euler characteristic of \(C \) is

\[
\chi(C) = \sum_{b \in \text{Ob}(C)} k^b = \sum_{a \in \text{Ob}(C)} k_\alpha
\]

provided that \(C \) admits both a weighting and a coweighting. We say that \(C \) has Möbius inversion if \(\zeta(C) \) is invertible and then

\[
k^a = \sum_{b \in \text{Ob}(C)} \mu(a, b), \quad \zeta(a, b) = \sum_{a \in \text{Ob}(C)} \mu(a, b), \quad \chi(C) = \sum_{a,b \in \text{Ob}(C)} \mu(a, b)
\]

is the unique weighting, the unique coweighting, and the Euler characteristic of \(C \) where \(\mu = \zeta(C)^{-1} \) denotes the inverse of the \(\zeta \)-matrix.

Example 2.6. [17, Examples 1.1.c] Suppose that \(C \) has Euler characteristic. If \(C \) has an initial element 0 then the Kronecker function \(k_\bullet = \delta(0, \bullet) \) is a coweighting concentrated at the initial element because

\[
\sum_a \delta(0, a)\zeta(a, b) = \zeta(0, b) = 1
\]

and the Euler characteristic of \(C \) is \(\chi(C) = \sum_a \delta(0, a) = \delta(0, 0) = 1 \). Dually, if \(C \) has a terminal element 1, then \(k^\bullet = \delta(\bullet, 1) \) is a weighting concentrated at the terminal element, and \(\chi(C) = 1 \).

As usual, \(\delta \) stands for Kronecker’s \(\delta \)-function

\[
\delta(a, b) = \begin{cases}
1 & a = b \\
0 & a \neq b
\end{cases}, \quad a, b \in \text{Ob}(C),
\]

Lemma 2.7. [17, Proposition 2.4] Let \(C \) and \(D \) be finite categories.

1. \(C \) has Euler characteristic if and only if its opposite category \(C^{\text{op}} \) has and then \(\chi(C) = \chi(C^{\text{op}}) \).
2. If both \(C \) and \(D \) have Euler characteristics and there is an adjunction \(C \rightleftarrows D \) then \(\chi(C) = \chi(D) \).
3. If \(C \) and \(D \) are equivalent then \(C \) has Euler characteristic if and only if \(D \) has Euler characteristic and then \(\chi(C) = \chi(D) \).

Lemma 2.8. Let \(C \) be a full subcategory of \(D \) and suppose that both categories have Euler characteristics.

1. If \(\text{Ob}(C) \) contains the support of some weighting \(k^\bullet \) on \(D \), then the restriction \(k^\bullet|\text{Ob}(C) \) is a weighting for \(C \) and \(\chi(C) = \chi(D) \).
2. If \(\text{Ob}(C) \) contains the support of some coweighting \(k_\bullet \) on \(D \), then the restriction \(k_\bullet|\text{Ob}(C) \) is a coweighting for \(C \) and \(\chi(C) = \chi(D) \).

Proof. (2) The assumption is that \(\forall a \in \text{Ob}(D): k_\alpha \neq 0 \implies a \in \text{Ob}(C) \). For any \(b \in \text{Ob}(C) \)

\[
\sum_{a \in \text{Ob}(C)} k_\alpha \zeta(a, b) = \sum_{a \in \text{Ob}(D)} k_\alpha \zeta(a, b) = 1
\]

so that the restriction to \(\text{Ob}(C) \) of \(k_\bullet \) is indeed a coweighting for \(C \). The Euler characteristic of \(C \) is \(\chi(C) = \sum_{a \in \text{Ob}(C)} k_\alpha = \sum_{a \in \text{Ob}(D)} k_\alpha = \chi(D) \). \(\square \)
2.3. The Euler characteristic of a finite poset. In particular, any finite poset, S, has Möbius inversion [22]. The value of the Möbius function

$$\mu(a, b) = \chi((a, b)) - 1, \quad a < b,$$

depends only on the open interval (a, b) from a to b and not on the whole poset [22, Proposition 3.8.5] [17, Corollary 1.5].

Example 2.9. Let S be a finite poset with a least element, 0. Then $\chi(S) = 1$ by Example 2.6. For any element b of S,

$$\sum_{a: 0 \leq a \leq b} \mu(a, b) = \sum_{a: 0 \leq a \leq b} |S(0, a)| \mu(a, b) = \delta(0, b)$$

and for any element $b > 0$ of S,

$$(2.10) \quad \sum_{0 \leq a \leq b} \mu(a, b) = -\mu(0, b) + \sum_{0 \leq a \leq b} \mu(a, b) = -\mu(0, b)$$

The Euler characteristic of the subposet S^* of all elements $\neq 0$ is

$$\chi(S^*) = \sum_{a,b > 0} \mu(a, b) = \sum_{b > 0} \sum_{a > 0} \mu(a, b) = -\mu(0, b)$$

Alternatively,

$$(2.11) \quad 1 - \chi(S^*) = \mu(0, 0) + \sum_{b > 0} \mu(0, b) = \sum_{b \in \text{Ob}(S)} \mu(0, b)$$

with summation over all elements of the poset S.

2.4. The Euler characteristic of $[C]$. Let $[\zeta(C)] : [C] \times [C] \to \mathbb{Q}$ be the function induced by the ζ-function $\zeta(C)$: $\text{Ob}(C) \times \text{Ob}(C) \to \mathbb{Q}$ for C. We say that the set $[C]$ of isomorphism classes of C-objects admits a weighting, a coweighting, or has Euler characteristic if its ζ-matrix $[\zeta(C)]$ does. This means that a weighting for $[C]$ is a rational function $k^\bullet : [C] \to \mathbb{Q}$ and a coweighting for $[C]$ is a rational function $k_* : [C] \to \mathbb{Q}$ such that

$$(2.12) \quad \forall [a] \in [C] : \sum_{[b] \in [C]} [\zeta(C)]([a], [b]) k^{|b|} = 1, \quad \forall [b] \in [C] : \sum_{[a] \in [C]} k_{{[a]}} [\zeta(C)]([a], [b]) = 1$$

and the Euler characteristic of $[C]$ is

$$\chi([C]) = \sum_{[b] \in [C]} k^{|b|} = \sum_{[a] \in [C]} k_{[a]}$$

provided that $[C]$ admits both a weighting and a coweighting. Clearly, if C has a weighting k^\bullet and a coweighting k_*, then $[C]$ has weighting $k^{|a|} = \sum_{c \in [a]} k^{|c|}$ and coweighting $k_{{[b]}} = \sum_{c \in [b]} k^{|c|}$ and $\chi(C) = \chi([C])$.

We say that $[C]$ has Möbius inversion if its ζ-matrix $[\zeta(C)]$ is invertible and then

$$k^{|a|} = \sum_{[b] \in [C]} [\mu]([a], [b]), \quad k_{{[b]}} = \sum_{[a] \in [C]} [\mu]([a], [b]), \quad \chi([C]) = \sum_{[a], [b] \in [C]} [\mu]([a], [b])$$

is the unique weighting, the unique coweighting, and the Euler characteristic of $[C]$ where $([\mu]([a], [b])_{[a], [b] \in [C]}$ denotes the inverse of $[\zeta(C)]$.

Theorem 2.13. Suppose that $[C]$ has Möbius inversion. Then the functions

$$k^a = |[a]|^{-1} k^{|a|}, \quad k_{{|b|}} = |[b]|^{-1} k_{|[b]|}$$

are a weighting and a coweighting for C, and $\chi([C]) = \chi(C)$.

Proof. Let a be any object of C. Since the function k^\bullet is constant on the isomorphism class $[a]$ we find that

$$\sum_{b} \zeta(a, b) k^b = \sum_{b} [\zeta]([a], [b]) k^b = \sum_{[b]} [\zeta([a], [b]) k^{|b|}] = \sum_{[b]} [\zeta]([a], [b]) k^{|b|} = 1$$

according to (2.12) and this shows that k^\bullet is a weighting on C according to (2.5). A symmetric argument shows that k_* is a coweighting. Thus C has Euler characteristic $\chi(C) = \sum_a k^a = \sum_{[a]} |[a]| k^{|a|} = \sum_{[a]} k^{|a|} = \chi([C])$. \qed
Observe for instance that the transporter category \(\mathcal{T}_G\) (in general) does not have Möbius inversion as its \(\zeta\)-matrix \(\zeta(\mathcal{T}_G)\) has two identical rows as soon as there are two nonidentical nonidentity subgroups of \(G\) that are conjugate in \(G\). However, \([\mathcal{T}_G]\), the set of conjugacy classes of subgroups of \(G\), always has Möbius inversion: Extend the partial subconjugation ordering, \([H] \leq_G [K] \iff \mathcal{T}_G(H,K) \neq \emptyset\), to a total ordering of \([\mathcal{T}_G]\). If \([H] > [K]\) in this total order, then \(\mathcal{T}_G(H,K) = \emptyset\). This means that the \(\zeta\)-matrix \(\langle \mathcal{T}_G(H,K) \rangle_{[H], [K]\in[\mathcal{T}_G]}\) is upper-triangular in this total ordering and, as the diagonal entries are nonzero, it is invertible. We shall determine the Möbius function \([\mu]\) for \([\mathcal{T}_G]\) in Proposition 3.9.

2.5. The Euler characteristic of a homotopy orbit category. Let \(S\) be a finite category with a \(G\)-action. (This means that there is a functor from \(G\) to the category of finite categories taking the single object of \(G\) to \(S\).) The homotopy orbit category, \(\mathcal{S}_h G\), is the Grothendieck construction on the \(G\)-action on \(S\): The category with the same set of objects as \(S\) and with morphism sets

\[
\mathcal{S}_h G(a,b) = \coprod_{g\in G} S(a g, b) = \coprod_{g\in G} S(a, b g^{-1}) \quad \text{and} \quad |\mathcal{S}_h G(a,b)| = \sum_{g\in G} |S(a, b g^{-1})|
\]

Theorem 2.15. Let \(F\) be a finite category with the same objects as \(S\) such that \(d_a|F(a,b)|t^b = |\mathcal{S}_h G(a,b)|\) for all \(a,b\in \text{Ob}(S)\).

1. If \(m^* : \text{Ob}(S) \to \mathbb{Q}\) is a rational function so that \(\sum_b |S(a,b)|m^b = d_a\) for all \(a\in \text{Ob}(S)\) and \(d_*\) is \(G\)-invariant, then \(G^{-1} t^* m^*\) is a weighting for \(F\).
2. If \(m_* : \text{Ob}(S) \to \mathbb{Q}\) is a rational function so that \(\sum_a m_a |S(a,b)| = t^b\) for all \(b\in \text{Ob}(S)\) and \(t^*\) is \(G\)-invariant, then \(G^{-1} m_* d_*\) is a coweighting for \(F\).
3. Suppose that \(S\) has Möbius inversion and \(\mu\) is the Möbius function. If \(d_*\) is \(G\)-invariant then \(k^a = |G|^{-1} \sum_{g\in G} t^a \mu(a,b) db\) is a weighting for \(F\), and if \(t^*\) is \(G\)-invariant then \(k_b = |G|^{-1} \sum_{g\in G} t^b \mu(a,b) db\) a coweighting for \(F\).

Proof. \(1\) The proofs of \((1)\) and \((2)\) are dual to each other.

\(2\) For every \(b\in \text{Ob}(S)\),

\[
\sum_a m_a d_a |F(a,b)| = \sum_a m_a |\mathcal{S}_h G(a,b)| (t^b)^{-1} = \sum_{g\in G} \sum_a m_a |S(a, b g^{-1})| (t^{g^{-1}})^{-1} = \sum_{g\in G} t^{bg^{-1}} (t^b)^{-1} = |G|
\]

as \(t^*\) is \(G\)-invariant so that \(t^{bg^{-1}} = t^b\) for all \(g\in G\).

\(3\) If \(m^a = \sum_b \mu(a,b) db\) then \(\sum_b |S(a,b)|m^b = d_a\) by the Möbius inversion formula (2.4). By \((1)\), \(k^a\) is a weighting for \(F\) if \(d_*\) is \(G\)-invariant. Dually, if \(m_b = \sum_a t^a \mu(a,b)\) then \(\sum_a m_a |S(a,b)| = t^b\) by the Möbius inversion formula (2.4). By \((2)\), \(k_b\) is a coweighting for \(F\) if \(t^*\) is \(G\)-invariant.

3. The Möbius function of a finite group

The Möbius function for the finite group \(G\) is the Möbius function \(\mu\) for the poset \(\mathcal{S}_G\) of all subgroups of \(G\). Note that \(\mu\) restricts to Möbius functions for the convex subposets \(\mathcal{S}_G\) and \(\mathcal{S}_G^\ast\) of \(p\)-subgroups. For any subgroup \(K \leq G\), \(\mu(1,K)\) only depends on \(K\) and not on the whole group \(G\) and it is customary to write \(\mu(K)\) for \(\mu(1,K)\) [13].

Lemma 3.1. [12][13, Corollary 3.5] Let \(H\) and \(K\) be \(p\)-subgroups of \(G\). Then

\[
\mu(H,K) = \begin{cases} (-1)^n p^\binom{2n}{n} & \Phi(K) \leq H, \ k^p = |K: H| \\ 0 & \text{otherwise} \end{cases}
\]

In particular, \(\mu(K) = \mu(1,K) = 0\) unless \(K\) is elementary abelian where

\[
\mu(K) = (-1)^n p^\binom{2n}{n}, \quad k^n = |K|
\]

Proof. If \(\mu(H,K) \neq 0\) then \(H \lhd K\) with \(H\setminus K\) elementary abelian and \(\mu(H,K) = \mu(H\setminus K)\) [15, Proposition 2.4] [16, Lemme 4.1]. Burnside’s basis theorem [21, 5.3.2] [10, Lemma 3.15], \(\Phi(K) = [K,K][K:p]\), shows that \(H \lhd K\) with \(H\setminus K\) elementary abelian if and only if \(\Phi(K) \leq H\).

Theorem 3.2. Weightings \(k^*\), coweighings \(k_*\), and Euler characteristics for the \(p\)-subgroup categories \(\mathcal{S}_G^\ast\), \(\mathcal{T}_G^\ast\), \(\mathcal{L}_G^\ast\), \(\mathcal{F}_G^\ast\), and \(\mathcal{O}_G^\ast\) are as in Table 1.
\mathcal{C}	k^H	k_K	$\chi(\mathcal{C})$												
\mathcal{S}_G^*	$\sum_K \mu(H, K)$	$-\mu(K)$	$	G	\chi(T_G^*)$										
\mathcal{T}_G^*	$	G	^{-1} \sum_K \mu(H, K)$	$-	G	^{-1} \mu(K)$	$\sum [K] -\mu(K)$								
\mathcal{L}_G^*	$	G	^{-1} \sum_K \mu(H, K)	O^p C_G(K)	$	$-	G	^{-1} \mu(K)	O^p C_G(K)	$	$\sum [K] -\mu(K)$				
\mathcal{F}_G^*	$	G	^{-1} \sum_K \mu(H, K)	C_G(K)	$	$-	G	^{-1} \mu(K)	C_G(K)	$	$\sum [K] -\mu(K)$				
\mathcal{O}_G^*	$	G	^{-1}	H	\sum_K \mu(H, K)$	$	G	^{-1} \sum [H]	H	\mu(H, K)$	$	G	^{-1} \sum [K]	H	\mu(H, K)$

Table 1. Categories of nonidentity p-subgroups

Proof. This follows almost immediately from Theorem 2.15 because the transporter category $T_G^* = (\mathcal{S}_G^*)_{hG}$ is the homotopy orbit category for the conjugation action of G on the poset \mathcal{S}_G^* and

$$|T_G^*(H, K)| = |O^p C_G(H)| |O^p C_G(K)| = |C_G(H)| |C_G(K)| = |O_G^*(H, K)| [K]$$

Since the poset \mathcal{S}_G^* has Möbius inversion, $k^H = |G|^{-1} \sum_K \mu(H, K)$ is a weighting, $k_K = |G|^{-1} \sum_H \mu(H, K) = -|G|^{-1} \mu(K)$ (Example 2.9) a coweighting for T_G^* by Theorem 2.15.(3). In case of \mathcal{F}_G^*, Theorem 2.15.(3) provides the weighting and the coweighting

$$k^H = |G|^{-1} \sum_{H \subseteq K} \mu(H, K) |C_G(K)|, \quad k_K = |G|^{-1} \sum_{H \subseteq K} \mu(H, K) |C_G(K)| = -|G|^{-1} \mu(K) |C_G(K)|$$

where the expression for the coweighting simplifies when using $\sum_{H \in \mathcal{O}(\mathcal{S}_G^*)} \mu(H, K) = -\mu(K)$ from identity (2.10). The Euler characteristic of \mathcal{F}_G^*, calculated as the sum of the values of the coweighting, is

$$\chi(\mathcal{F}_G^*) = \sum_K k_K = -|G|^{-1} \sum_K \mu(K) |C_G(K)| = -|G|^{-1} \sum_K \mu(K) |C_G(K)| |G: N_G(K)| = \sum_K -\frac{\mu(K)}{|\mathcal{F}_G^*(K)|}$$

because the coweighting k_K is constant over the conjugacy class $[K]$ of K and $|[K]| = |G: N_G(K)|$.

The quotient category \mathcal{F}_G^* is missing from Table 1 because Theorem 2.15 does not directly apply. We shall later see that \mathcal{F}_G^* and \mathcal{F}_G^* have identical Euler characteristics (Corollary 3.6).

Lemma 2.8 implies that $\chi(\mathcal{S}^*) = \chi(\mathcal{S}^a)$ for $\mathcal{C} = \mathcal{S}, \mathcal{T}, \mathcal{L}, \mathcal{F}$ because the coweighings for these categories are concentrated on the elementary abelian p-subgroups of G (Lemma 3.1). Quillen shows in [20, Proposition 2.1] the much stronger result that the posets \mathcal{S}_G^* and \mathcal{S}_G^a are homotopy equivalent.

If P is a nonidentity p-group we immediately have that

$$\chi(\mathcal{S}_P^a) = 1, \quad \chi(\mathcal{T}_P^a) = |P|^{-1}, \quad \chi(\mathcal{L}_P^a) = |P|^{-1}, \quad \chi(\mathcal{F}_P^a) = 1, \quad \chi(\mathcal{O}_P^a) = 1, \quad \chi(\mathcal{F}_P^a) = 1$$

because P is terminal in \mathcal{S}_P^a and \mathcal{O}_P^a, $\mathcal{T}_P^a = \mathcal{L}_P^a$ and $\chi(\mathcal{T}_P^a) = |P|^{-1} \chi(\mathcal{S}_P^a) = |P|^{-1}$ by Theorem 2.15, Proposition 5.1 applies to \mathcal{F}_P^a, and Corollary 3.6 to \mathcal{F}_P^a. More generally, if G has a normal p-complement, then $\chi(\mathcal{F}_G^a) = 1$ because $\mathcal{F}_G^a = \mathcal{F}_P^a$ according to the Frobenius normal p-complement theorem [11, Proposition 16.10][21, 10.3.2]. For some more examples, let D_{pn} be the dihedral group of order $2pn$, $n \geq 1$, A_p the alternating group of order $p > 2$, and $\operatorname{SL}_n(\mathbb{F}_q)$ the special linear group where q is a power of p and $n \geq 2$. Then

$$\chi(\mathcal{S}_{D_{pn}}) = 1, \quad \chi(\mathcal{S}_{A_p}) = (p - 2)!, \quad \chi(\mathcal{S}_{\operatorname{SL}_n(\mathbb{F}_q)}) = 1 + (-1)^n q^{(2)}$$

See [20, Example 2.7] for the Euler characteristic of \mathcal{S}_{A_p}. Let $V_n(q)$ be an n-dimensional vector space over \mathbb{F}_q and $L_n(q)$ the poset of \mathbb{F}_q-subspaces of $V_n(q)$. As $\mathcal{S}_{\operatorname{SL}_n(\mathbb{F}_q)}$ and the open interval $(0, V_n(q))$, the building for $\operatorname{SL}_n(\mathbb{F}_q)$ [1, Example 6.5], are homotopy equivalent posets [20, Theorem 3.1],

$$\chi(\mathcal{S}_{\operatorname{SL}_n(\mathbb{F}_q)}) = \chi((0, V_n(q))) = 1 + \mu_{L_n(q)}(0, V_n(q)) = 1 + (-1)^n q^{(2)}$$

by the computation of the Möbius function $\mu_{L_n(q)}$ in $L_n(q)$ [22, Example 3.10.2] [16, Proposition 3.6]. In this example we may replace $\operatorname{SL}_n(\mathbb{F}_q)$ by any of the groups $\operatorname{GL}_n(\mathbb{F}_q)$, $\operatorname{PSL}_n(\mathbb{F}_q)$, or $\operatorname{PGL}_n(\mathbb{F}_q)$ since they
all have identical \(p \)-subgroup posets. The computer-generated Table 3 displays Euler characteristics of poset categories at \(p = 2 \) of small alternating groups.

The Euler characteristics of the subgroup categories generated by all \(p \)-subgroups of \(G \) (including the identity subgroup) are

\[
\chi(S_G) = 1, \quad \chi(T_G) = |G|^{-1}, \quad \chi(L_G) = |G: O^p G|^{-1}, \quad \chi(F_G) = 1, \quad \chi(O_G) = |G|^{-1} + \frac{p - 1}{p} \sum_{\kappa \in \{1\}} \frac{1}{|\mathcal{O}_G(\kappa)|}, \quad \chi(\bar{F}_G) = 1
\]

Observe that \(S_G, F_G, \) and \(\bar{F}_G \) have initial objects and that \(T_G \) deformation retracts onto \(T_G(1) = G \) and \(L_G \) deformation retracts onto \(L_G(1) = O^p G \backslash G \). See Remark 4.7 for \(\chi(O_G) \).

3.1. **Euler characteristic of the exterior quotient of the Frobenius category.** The equation

\[
(3.4) \quad |C_G(H)||\bar{F}_G(H, K)||K| = \sum_{n \in T_G(H, K)} |C_K(H^n)|
\]

follows from Burnside’s counting lemma (Lemma 3.7) applied to the action of \(C_G(H) \times K \) on the transporter set \(N_G(H, K), C_G(H) \times N_G(H, K) \times K \to N_G(H, K); (h, n, k) \to h n k \), with isotropy subgroup \(C_K(H^n) \) at \(n \in N_G(H, K) \). In particular, \(|\bar{F}_G(H)||H| = |F_G(H)||Z(H)| \).

Define \(\bar{S}_G^* \) to be the \(G \)-category with objects the nonidentity \(p \)-subgroups of \(G \) and morphisms

\[
\bar{S}_G^*(H, K) = \begin{cases} C_K(H) & H \leq K \\ \emptyset & H \not\leq K \end{cases}
\]

with composition in \(\bar{S}_G^* \) induced from composition in the group \(G \). Using that \(G \) acts on \(\bar{S}_G^* \) by conjugation, we may rewrite equation (3.4) as

\[
(3.5) \quad |C_G(H)||\bar{F}_G^*(H, K)||K| = |(\bar{S}_G^*)h_G(H, K)|
\]

according to (2.14).

Corollary 3.6. \(\chi(\bar{F}_G^*) = \chi(F_G^*) \)

Proof. For any nonidentity \(p \)-subgroup \(K \) of \(G \), Theorem 3.2 says that

\[
\sum_{1 < H \leq K} -\mu(H)|C_K(H)| = |K|\chi(F_G^*K) = |K|
\]

because \(\chi(F_G^*K) = 1 \) by Proposition 5.1. By Theorem 2.15.(2) and equation (3.5), \(k_K = -|G|^{-1}|C_G(K)|\mu(K) \) is a coweighting for \(\bar{F}_G^* \). But this function is also a coweighting for \(F_G^* \) by Theorem 3.2 and Table 1. \(\square \)

Lemma 3.7 (Burnside’s counting lemma). [18] If \(X \) is a finite right \(G \)-set then

\[
\sum_{g \in G} |X^g| = |X/G||G| = \sum_{x \in X} |xG|
\]

where \(X^g \subset X \) is the fixed set for \(g \in G \) and \(xG \leq G \) is the isotropy subgroup for \(x \in X \).

3.2. **Alternative weightings and coweightings.** We shall first reformulate the expressions for the weightings \(\mu^* \) from Table 1 using the Möbius function for \([T_G^*] \) (Theorem 2.13).

The rational number

\[
(3.8) \quad \lambda(H, K) = \frac{1}{|N_G(H)|} \sum_{L \in [K]} \mu(H, L)
\]

only depends on the conjugacy classes of \(H \) and \(K \). In particular, \(\nu(K) = |N_G(K)|^{-1}\mu(K) \), where \(\nu(K) \) is short for \(\nu(1, K) \).

Proposition 3.9. The function \(\mu([H], [K]) \) defined by equation (3.8) is the Möbius function for \([T_G^*] \).

\(^1 \)The function \(\nu(H, K) \) is not the same as \(|N_G(H)|^{-1}\lambda(H, K) \) where \(\lambda \) is the Möbius function for the poset of \(p \)-subgroup classes ordered by subconjugation.
The third column of Table 2 is simply the sum $\sum_{[K]} k_{[K]}$ of the coweightings for $[C]$ as in Theorem 2.13. □

Remark 3.11. Define the μ-transporter from H to K to be the set

$$N^p_G(H, K) = \{ g \in G \mid \Phi(K) \leq H^p \leq K \}, \quad H, K \in \text{Ob}(S_G^p)$$

of group elements g that conjugate H into K such that $\mu(H^p, K) \neq 0$.

The map $g \to K^{g^{-1}}$ is a bijection between $N^p_G(H, K)/N_G(K)$ and the set $\{L \in [K] \mid H \leq L, \mu(H, L) \neq 0\}$ of subgroups L of G conjugate to K and containing H with $\mu(H, L) \neq 0$ and therefore

$$[\mu]|([H], [K]) = (-1)^{n} p(n)|\frac{|N^p_G(H, K)|}{|N_G(H)||N_G(K)|}, \quad H, K \in \text{Ob}(F_G^p), \quad |K| = p^n |H|$$

can be computed from these transporter sets.

Next we note that the values of the weightings for the p-subgroup categories of Table 1 can be computed locally.

Fix H, a nonidentity p-subgroup of G, and consider the projection $T_G^p(H) = N_G(H) \to N_G(H) = N_G(H)/H = O_G^p(H)$ of the p-local subgroup $N_G(H)$ onto its quotient $N_G(H)/H$. The functor

$$(3.12) \quad C_G : (S_{O_G^p(H)})^{op} \to C_{G}(H)$$

takes the nonidentity p-subgroup K of $O_G^p(H)$ to the subgroup $C_G(K)$ of $C_G(H)$ where $K \leq N_G(H)$ is the preimage of $\overline{K} \leq N_G(H)/H$. For every $x \in C_G(H),

(3.13) \quad C_G/\langle x \rangle = \{ \overline{K} \in \text{Ob}(S_{O_G^p(H)}) \mid C_G(K) \ni x \} = S_{C_{N_G(H)}(x)}$$

is the preimage under C_G of the subposet $\{ Y : \langle x \rangle \leq Y \leq C_G(H) \}$. Following the bar convention of [9, p 18], we write $\overline{C_{N_G(H)}(x)}$ for the image in $O_G^p(H)$ of the centralizer in $N_G(H)$ of $x \in C_G(H)$.

Proposition 3.14. The weightings for S^*_G, T^*_G, and O^*_G are

$$k^H_{S^*} = 1 - \chi(S^*_{O^*_G(H)})$$
$$k^H_{T^*} = \frac{1 - \chi(S^*_{O^*_G(H)})}{|G|},$$
$$k^H_{O^*} = \frac{1 - \chi(S^*_{O^*_G(H)})}{|G: H|}$$

and the weighting for F^*_G is

$$k^H_{F^*} = |G|^{-1} \sum_{x \in C_G(H)} (1 - \chi(C_G/Ax))$$

Proof. Equation (2.11) shows that

$$k^H_{S^*} = \sum_K \mu(H, K) = \sum_{K \in [H, N_G(H)]} \mu(H, K) = 1 - \chi((H, K)) = 1 - \chi((H, N_G(H))) = 1 - \chi(S^*_{O^*_G(H)})$$

as $\mu(H, K) = 0$ unless H is normalized by K (Lemma 3.1). (Indeed, the subposets (H, K) and $(H, N_G(H))$ of S^*_G are homotopy equivalent [20, Proposition 6.1].) Similarly,

$$|G|k^H_{F^*} = \sum_{H \leq K \leq N_G(H)} \mu(H, K)|C_G(K)| = \sum_{H \leq K \leq N_G(H)} \mu(H, K)|C_{N_G(H)}(K)| = \sum_{K \leq O_G(H)} \mu(K)|C_{N_G(H)}(K)|$$

because $C_G(K) = C_{N_G(H)}(K)$ as $C_G(K) \leq C_G(H) \leq N_G(H)$ when $H \leq K \leq N_G(H)$. The sum that occurs in this formula for $|G|k^H_{F^*}$ is the Euler characteristic [17, Proposition 2.8] of the Grothendieck construction for the presheaf C_G (3.12). Since the opposite of this Grothendieck construction is the direct sum [22, Chp 3.2] over $x \in C_G(H)$ of the subposets (3.13) we arrive at the formula that we wanted to prove. \qed

Using the expressions from Proposition 3.14, the Euler characteristics of S^*_G, T^*_G, and O^*_G are

$$\chi(S^*_G) = \sum_H (1 - \chi(S^*_{O^*_G(H)})),$$
$$\chi(T^*_G) = \sum_{[H]} \frac{1 - \chi(S^*_{O^*_G(H)})}{|T^*_{O^*_G(H)}|},$$
$$\chi(O^*_G) = \sum_{[H]} \frac{1 - \chi(S^*_{O^*_G(H)})}{|O^*_{O^*_G(H)}|}$$

The first of these equation can also be written

$$\sum_H (1 - \chi(S^*_{O^*_G(H)}) + \mu(H)) = 0$$

as $\chi(S^*_G) = \sum_H -\mu(H)$ (Table 1). Similarly, we obtain the alternative formula

$$\chi(F^*_G) = |G|^{-1} \sum_{x \in C_G(H)} (1 - \chi(C_G/Ax))$$

for the Euler characteristic of F^*_G. Comparing this new formula with the one from Table 1 we arrive at the combinatorial identity

$$\sum_H \sum_{x \in C_G(H)} (1 - \chi(C_G/Ax) + \mu(H)) = 0$$

where H runs over the set of nonidentity p-subgroups of G.

Finally, we observe that only p-radical p-subgroups contribute to the weightings for S^*_G, T^*_G, and O^*_G.

Definition 3.18. The p-subgroup H of G is

- p-radical if $O_p^*O^*_G(H) = 1$ [4, Proposition 4]
- F^*_G-radical if $O_p^*F^*_G(H) = 1$ [6, Definition A.9]

Corollary 3.19. The weightings for S^*_G, T^*_G, and O^*_G are supported on the nonidentity p-radical subgroups of G.

Proof. If $O_p^*O^*_G(H) > 1$ then $\chi(S^*_{O^*_G(H)}) = 1$ [20, Proposition 2.4] and the weightings $k^H_H = 0$ for the categories S^*_G, T^*_G, and O^*_G (Proposition (3.14)). \qed
Consequently,
\[\chi(C') = \chi(C^*), \quad C = S_G, T_G, O_G \]
where \(C' \) is the subposet of \(C^* \) of nonidentity \(p \)-radical \(p \)-subgroups. Bouc [3, Corollaire] shows the stronger result that \(S_G^* \) and \(S_C^* \) are homotopy equivalent posets. Thévenaz and Webb [23, Theorem 2.3] describe \(S_G^* \) when \(G \) is simple group of Lie type in defining characteristic \(p \).

We suspect that the weightings for \(S_G^*, T_G^*, \) and \(O_G^* \) are supported precisely on the nonidentity \(p \)-radical \(p \)-subgroups, ie that
\[(3.20) \]
\[\chi(S_{O_G^*(H)}) \neq 1 \iff O_p O_G^*(H) = 1 \]
This would be true if the strong Quillen conjecture
\[(3.21) \]
\[\chi(S_G^*) \neq 1 \iff O_p G = 1 \]
turns out to be true for all finite groups \(G \). (It is true, as used above, that \(O_p(G) \neq 1 \implies \chi(S_G^*) = 1 \) but the problem is that \(\chi(S_G^*) = 1 \implies O_p(G) \neq 1 \) is only known to hold for \(p \)-solvable groups with abelian Sylow \(p \)-subgroups [14, Lemma 1.1, Theorem A]. The original Quillen conjecture [20, Conjecture 2.9], that \(S_G^* \simeq \ast \implies O_p(G) \neq 1 \), is true when \(G \) is solvable. Also, it is known that \(|G|_p \) divides \(1 - \chi(S_G^*) \) [7, 20, 24, 13].)

Explicit computations with Magma [Lemma 4.3, Theorem 2.3] describe \(S_G^* \) and \(O_G^* \). Bouc [3, Corollaire] shows the stronger
\[(3.20) \]
\[\chi(S_{O_G^*(H)}) \neq 1 \iff O_p O_G^*(H) = 1 \]
when \(G \) is simple group of Lie type in defining characteristic \(p \).

We are not aware of any similar characterization of the support of the weighting for \(F_G^* \).

The two concepts of radical subgroups introduced in Definition 3.18 are unrelated in general [6, Appendix A]. If \(P \) is an abelian nonidentity \(p \)-group, then all subgroups of \(P \) are \(F_G \)-radical but only \(P \) itself is \(p \)-radical. However, if \(H \) is a \(p \)-selfcentralizing \(p \)-subgroup of \(G \) (Definition 8.1) then \(O_p C_G(H) \) is a \(p' \)-group (Lemma 8.2.(1)) and the short exact sequence
\[1 \to O_p C_G(H) \to O_G^*(H) \to \bar{F}_G(H) \to 1 \]
can be used to verify the implication
\[H \text{ is } p \text{-selfcentralizing and } F_G \text{-radical } \iff H \text{ is } p \text{-selfcentralizing and } p \text{-radical} \]
The converse implication does not hold in general: Let \(p = 2 \). The normal cyclic subgroup \(H = O_p G \) of order 4 in the dihedral group \(G = D_{24} \) of order 24 is a \(p \)-selfcentralizing subgroup with \(O_G^*(H) = \Sigma_3 \) and \(\bar{F}_G(H) = C_2 \). Thus \(H \) is \(p \)-radical but not \(F_G \)-radical.

4. Euler characteristics of orbit categories

We shall now derive a more concise expression than the ones given in Table 1 or Table 2 for the Euler characteristic of \(O_G^* \).

Theorem 4.1. The Euler characteristic of the orbit category \(O_G^* \) is
\[\chi(O_G^*) = \chi(T_G^*) + \frac{p - 1}{p} \sum_{C \in \text{Ob}(O_G^*) \text{ cyclic}} |C| \]

Proof. The coweighting \(k_G^* \) from Table 1 for \(O_G^* \) multiplied by \(|G| \) is
\[|G| k_G^* = \sum_{1 < H} |H| \mu(H, K) = -\mu(K) + \sum_{1 < H} |H| \mu(H, K) = \begin{cases} -\mu(K) + \frac{p - 1}{p} |K| & K \text{ is cyclic} \\ -\mu(K) & K \text{ is not cyclic} \end{cases} \]
by Theorem 3.2 and Corollary 4.3. Thus the Euler characteristic of \(O_G^* \) is
\[\chi(O_G^*) = \frac{1}{|G|} \sum_{K \in \text{Ob}(O_G^*)} -\mu(K) + \frac{p - 1}{p} \sum_{C \in \text{Ob}(O_G^*) \text{ cyclic}} |C| \]
where the first term is the Euler characteristic of the transporter category \(T_G^* \). \(\square \)

Equivalently, the Euler characteristic of the orbit category \(O_G^* \) is
\[(4.2) \]
\[\chi(O_G^*) = \chi(T_G^*) + \frac{p - 1}{p} \sum_{C \in \text{Ob}(O_G^*) \text{ cyclic}} \frac{1}{|O_G^*(C)|} \]
where the sum is taken over the set of conjugacy classes of nonidentity cyclic \(p \)-subgroups of \(G \).
Corollary 4.3. For any $K \in \text{Ob}(\mathcal{S}_p)$

\[\frac{1}{|\Phi(K)|} \sum_{1 \leq H \leq K} |H| \mu(H, K) = \begin{cases} p - 1 & K \text{ is cyclic} \\ 0 & K \text{ is not cyclic} \end{cases} \]

Proof. Suppose that the Frattini quotient $K/\Phi(K)$ is elementary abelian of order p^n for some $n > 0$. Recall that $n = 1$, $K/\Phi(K)$ is cyclic, if and only if K is cyclic [8, Chp 5, Corollary 1.2]. The sum of this corollary,

\[\sum_{H : \Phi(K) \leq H \leq K} |H| \mu(K/H) = \sum_{d=0}^{n} (-1)^{n-d} \binom{n}{d} p^{(n-d)} = \sum_{d=0}^{n} (-1)^{d} \binom{n}{d} p^{(2)} p^{n-d}, \]

is evaluated in Lemma 4.4. It is nontrivial only if $n = 1$ where it has value $p - 1$. \hfill \Box

The Gaussian p-binomial coefficient

\[\binom{n}{d} = \frac{\prod_{j=1}^{d} (p^n - p^{j-1})}{\prod_{j=1}^{d} (p^{d-p^{j-1}})} = \frac{\prod_{j=1}^{d} (p^{n+1-j} - 1)}{\prod_{j=1}^{d} (p^j - 1)} \]

counts the number of d-dimensional subspaces of the n-dimensional \mathbb{F}_p-vector space \mathbb{F}_p^n [22, 1.3.18].

Lemma 4.4. For any $n \geq 1$,

\[\sum_{d=0}^{n} (-1)^d \binom{n}{d} p^{(2)} p^{n-d} = \begin{cases} p - 1 & n = 1 \\ 0 & n > 1 \end{cases} \]

Proof. Note first the formulas [22, p 26]

\[\binom{n}{d} + p^{n-d} \binom{n-1}{d} = 1, \quad \binom{n}{d} = \binom{n}{0}, \quad \binom{2}{1} = 1 + p, \]

for the Gaussian p-binomial coefficients.

For $n = 1$ and $n = 2$, the sums we are evaluating are the polynomials

\[\binom{1}{0} p - \binom{1}{1} = p - 1, \quad \binom{2}{0} p^2 - \binom{2}{1} p = p^2 - (1 + p) p = p = 0 \]

For $n > 2$ the sum has the value

\begin{align*}
\sum_{d=0}^{n} (-1)^d \binom{n}{d} p^{(2)} p^{n-d} &= p^n + \sum_{d=1}^{n-1} (-1)^d \binom{n}{d} p^{(2)} p^{n-d} + (-1)^n p^{(2)} \\
&= p^n + \sum_{d=1}^{n-1} (-1)^d \left(\binom{n-1}{d} + p^{n-d} \binom{n-1}{d-1} \right) p^{(2)} p^{n-d} + (-1)^n p^{(2)} \\
&= \left(p^n + \sum_{d=1}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{n-d} \right) + \sum_{d=1}^{n-1} (-1)^d \binom{n-1}{d-1} p^{(2)} p^{2(n-d)} + (-1)^n p^{(2)} \\
&= \sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{n-d} + \sum_{d=1}^{n-1} (-1)^d \binom{n-1}{d-1} p^{(2)} p^{2(n-d)} \\
&= p^{(2)} p^{n-1-d} + \sum_{d=1}^{n-1} (-1)^d \binom{n-1}{d-1} p^{(2)} p^{2(n-d)} \\
&= \sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{2(n-d)} \]

The first term is

\[\sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{2(n-d)} = \sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{2(n-d)} \]

and the second term is

\[\sum_{d=1}^{n} (-1)^d \binom{n-1}{d-1} p^{(2)} p^{2(n-d-2)} = \sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p^{(2)} p^{2(n-d-1)} \]
We have now proved the recursive relation
\[
\sum_{d=0}^{n} (-1)^d \binom{n}{d} p(d) p^{n-d} = p(1 - p^{n-2}) \sum_{d=0}^{n-1} (-1)^d \binom{n-1}{d} p(d) p^{n-1-d}
\]
for \(n > 2 \). Since the sum equals 0 for \(n = 2 \), it equals 0 for all \(n \geq 2 \).

Equating the two expressions for \(\chi(O_G^\ast) \) from Theorem 4.1 and (3.15) we arrive at the combinatorial identity
\[
(4.5) \quad \sum_H (\lvert H \rvert - \chi(S_{O_G^\ast(H)}^\ast) \lvert H \rvert + \mu(H)) = \frac{p-1}{p} \sum_C \lvert C \rvert
\]
where \(H \) runs over the set of nonidentity \(p \)-subgroups of \(G \) and \(C \) over the set of nonidentity cyclic \(p \)-subgroups of \(G \).

Corollary 4.6. \(|G|_{p'} \chi(O_G^\ast) \) is an integer.

Proof. In fact, all values of
\[
|G|_{p'} k^H_G = |G|_{p'} \frac{1 - \chi(S_{N_G(H)}^\ast(H))}{|N_G(H) : H|} = \frac{|G|_{p'}}{|N_G(H) : H|} \frac{1 - \chi(S_{N_G(H)}^\ast(H))}{|N_G(H) : H|} p
\]
are integers because \(|G|_p \), and hence also \(|N_G(H) : H|_p \), divides \(1 - \chi(S_{N_G(H)}^\ast(H)) \) [7, Corollary 2].

Remark 4.7 (Euler characteristic of \(O_G \)). The function
\[
k^H_G = \begin{cases} |G|^{-1} - \chi(T_G^\ast) & H = 1 \\ \lvert H \rvert \sum_{K > 1} \mu(H, K) & H > 1 \end{cases}
\]
is a weighting for \(O_G \), and
\[
\chi(O_G) = |G|^{-1} - \chi(T_G^\ast) + \chi(O_G^\ast) = |G|^{-1} + \frac{p-1}{p} \sum_{\lvert C \rvert \in \{F_G^\ast \text{ cyclic}\}} \frac{1}{\lvert O_G^\ast(C) \rvert}
\]
is the Euler characteristic of the orbit category \(O_G \) of \(G \).

5. The range of \(\chi(F_G^\ast) \)

We shall first identify a class of finite groups \(G \) for which \(\chi(F_G^\ast) = 1 \).

Proposition 5.1. If \(G \) contains a central nonidentity \(p \)-subgroup then \(\chi(F_G^\ast) = 1 \) and \(\chi(L_G^\ast) = |G:O^pG|^{-1} \).

Proof. We concentrate on \(F_G^\ast \) and leave the similar case of \(L_G^\ast \) to the reader. Let \(Z \) be a nonidentity central \(p \)-subgroup of \(G \) and \(Z^+ \) the full subcategory of \(F_G^\ast \) generated by \(p \)-subgroups containing \(Z^+ \). \(Z^+ \) is a deformation retract of \(F_G^\ast \) in the sense that there are functors
\[
Z^+ \xrightarrow{R} L \rightarrow F_G^\ast, \quad 1_{Z^+} = LR, \quad 1_{F_G^\ast} \Rightarrow RL,
\]
where \(R \) is the inclusion functor and \(L \) is the functor that takes \(Q \leq G \) to \(LQ = QZ \) and the \(F_G^\ast \)-morphism \(c_g: P \rightarrow Q \) to \(c_g: LP \rightarrow LQ \) (where \(c_g: x \mapsto x^g \) is conjugation by \(g \in G \)). If \(P \) and \(Q \geq Z \) are nonidentity \(p \)-subgroups of \(G \) then
\[
Z^+(LP, Q) = F_G^\ast(PZ, Q) = C_G(PZ) \lvert N_G(PZ, Q) = C_G(P) \lvert N_G(P, Q) = F_G^\ast(P, Q) = F_G^\ast(P, RQ)
\]
showing that \(L \) and \(R \) are adjoint functors with \(L \dashv R \). By Lemma 2.7, the EI-categories \(Z^+ \) and \(F_G^\ast \) have the same Euler characteristics and, by Example 2.6, \(\chi(Z^+) = 1 \) as \(Z^+ \) has initial object \(Z \).

The converse of Proposition 5.1 is not true as \(\chi(F_G^\ast) = 1 \) and \(Z(G) = 1 \) for \(G = \Sigma_3 \) and \(p = 2 \).

The Euler characteristic \(\chi(F_G^\ast) = |G|^{-1} \sum_K k_K = -|G|^{-1} \sum_K \mu(K)|C_G(K)| \) is a rational number such that \(|G| \chi(F_G^\ast) \) is an integer. We now improve this observation.

Corollary 5.2. \(|G|_{p'} \chi(F_G^\ast) \) is an integer.
Proof. In fact, all values of
\[|G|_{p'} k_{[K]}^P = |G|_p \frac{\mu(K)}{|\mathcal{F}_G^*(K)|} = \frac{\mu(K)}{|\mathcal{F}_G^*(K)|_p'}, \quad K \in \text{Ob}(S_G^*), \quad |K| = p^n, \]
are integers because \(|\mathcal{F}_G^*(K)|_p\) divides \(|\text{Aut}(K)|_p = p^{\mu(K)}\) as \(|\mathcal{F}_G^*(K)|\) divides \(|\text{Aut}(K)|\), and \(|\mathcal{F}_G^*(K)|_p'\) divides \(|G|_{p'}\) as \(|\mathcal{F}_G^*(K)| = |\mathcal{N}_G(K): C_G(K)|\) divides \(|G|\). (Remember that \(\mu(K) = 0\) unless \(K \in \text{Ob}(S_G^*)\) is elementary abelian of order \(|K| = p^n, n > 0\).) \(\square \)

We now show that the computation of the Euler characteristic of the Frobenius category can be reduced to the computation of Euler characteristics of posets.

Proposition 5.3. \(\chi(\mathcal{F}_G^*) = |G|^{-1} \sum_{x \in G} \chi(S_{G(x)}^*)\)

Proof. Recall that \(S_G\) denotes the poset of all subgroups of \(G\). Note that for any subgroup \(K\) of \(G\)
\[|C_G(K)| = |\{x \in G \mid x \in C_G(K)\}| = |\{x \in G \mid C_G(x) \geq K\}| = \sum_{x \in G} S_G(K, C_G(x)) \]
and therefore
\[|G| \chi(\mathcal{F}_G^*) = \sum_{K \in \text{Ob}(S_G^*)} -\mu(K) |C_G(K)| = \sum_{K \in \text{Ob}(S_G^*)} \sum_{x \in G} -\mu(K) S_G(K, C_G(x)) \]
\[= \sum_{x \in G} \sum_{K \in \text{Ob}(S_G^*)} -\mu(K) S_G(K, C_G(x)) = \sum_{x \in G} \sum_{K \in \text{Ob}(S_G^*)} -\mu(K) = \sum_{x \in G} \chi(S_{G(x)}^*) \]
where the final equality uses the formula from Table 1 for \(\chi(S_G^*)\). \(\square \)

Corollary 5.4. Suppose that \(G\) has a normal Sylow \(p\)-subgroup, \(P\), (so that \(G = P \rtimes G/P\)) and let \(k_P^H, H \in \text{Ob}(S_G^*)\), be the weighting for \(\mathcal{F}_G^*\) from Table 1.

1. \(|G| k_P^H = |\{x \in G \mid C_P(x) = H\}|\)
2. \(k_P^H \geq 0\) and \(k_P^H > 0\) if and only if \(H = C_P(x)\) for some \(x \in G\)
3. \(|G| \chi(\mathcal{F}_G^*) = |\{x \in G \mid C_P(x) > 1\}|\)

Proof. For any nonidentity \(p\)-subgroup \(K\) and any element \(x \in G\), since \(K \leq P\),
\[x \in C_G(K) \iff K \leq C_G(K) \iff K \leq P \cap C_G(x) = C_P(x) \]
so that
\[|G| k_P^H = \sum_K \mu(H, K)|C_G(K)| = \sum_{x \in G} \sum_K \mu(H, K) S_G(K, C_P(x)) = \sum_{x \in G} \delta(H, C_P(x)) \]
by the Möbius inversion formula (2.4). This proves (1) which immediately implies (2) and (3). \(\square \)

Example 5.5. Let \(p = 2\) and \(G = P \rtimes C_3\) where the cyclic group \(C_3\) cyclically permutes the three factors of \(P = C_2^3\). Then \(\chi(\mathcal{F}_G^*) = 1\) by Proposition 5.1; indeed, \(k_{\mathcal{F}_G^*}^{Z(G)} = 2/3, k_{\mathcal{F}_G^*}^{P} = 1/3, \) and \(k_{\mathcal{F}_G^*}^{H} = 0\) for all other nonidentity \(2\)-subgroups \(H \leq G\) by Corollary 5.4.

Corollary 5.6. Suppose that \(G\) has an abelian Sylow \(p\)-subgroup, \(P\). Then
\[\chi(\mathcal{F}_G^*) = \frac{|\{\varphi \in \mathcal{F}_G(P) \mid C_P(\varphi) > 1\}|}{|\mathcal{F}_G(P)|} \]

Proof. When \(P\) is abelian, \(\mathcal{F}_G(P)\) has order prime to \(p\) and
\[\mathcal{F}_G = \mathcal{F}_{N_G(P)} = \mathcal{F}_{P \rtimes \mathcal{F}_G(P)} \]
where the first identity is Burnside’s Fusion Theorem [10, Lemma 16.9] which says that \(N_G(P)\) controls \(p\)-fusion in \(G\). For the second equality, observe that all morphisms in the Frobenius category of \(N_G(P)\) extend to automorphisms of \(P\). Now apply Corollary 5.4.(3) to \(P \rtimes \mathcal{F}_G(P)\). \(\square \)
For instance, let D_{pn} be the dihedral group of order $2pn$, $n \geq 1$, A_p the alternating group of order $p > 2$, and $SL_2(F_q)$ the special linear group where q is a power of p. Then

$$
\chi(F_{D_{pn}}) = \frac{1}{(2, p-1)}, \quad \chi(F_{A_p}) = \frac{2}{p-1}, \quad \chi(F_{SL_2(F_q)}) = \frac{2, q-1}{q-1}
$$

The computer-generated Table 3 displays Euler characteristics of Frobenius categories at $p = 2$ of small alternating groups. (The Frobenius categories for A_{2n} and A_{2n+1} at $p = 2$ are equivalent.) We do not know if the sequence $\chi(F_{A_p})$ converges.

Example 5.7. The group $H = (C_3 \times C_3) \times C_2$, where C_2 swaps the two copies of C_3, has an irreducible 4-dimensional representation over F_2. Let $G = C_2^4 \times H$ be the associated semi-direct product. Then $|G| = 288$ and $\chi(F_G) = 10/9$ at $p = 2$.

In all the examples we have checked (and also if G has a normal or abelian Sylow p-subgroup as in Corollary 5.4 and Corollary 5.6) $\chi(F_G)$ is positive when p divides the order of G. Example 5.7 shows that $\chi(F_G)$ can be greater than 1. Prompted by these observations, we would like to pose two questions:

- Is $\chi(F_G)$ always positive when p divides the order of G?
- Can $\chi(F_G)$ get arbitrarily large?

6. PRODUCT FORMULAS

We present product formulas for the Euler characteristics of the subgroup poset $S_{G_1 \times G_2}$ and the Frobenius category $F_{G_1 \times G_2}$ for the product of two finite groups G_1 and G_2.

The formula of Theorem 3.2 for $\chi(S_G^*)$ may be written in the alternative form of (2.11) as

$$
1 - \chi(S_G^*) = \sum_{H \in \text{Ob}(S_G)} \mu(H)
$$

with summation over all p-subgroups of G. We shall use this expression to derive a formula for the Euler characteristic of the subgroup poset of a direct product of groups.

Theorem 6.1. Let G_1, \ldots, G_n be finite groups. Then

$$
1 - \chi(S_{G_1 \times \cdots \times G_n}^*) = \prod_{i=1}^{n} 1 - \chi(S_{G_i}^*)
$$

Proof. By induction over n it is enough to prove the formula for a product of two groups, G_1 and G_2. It is then equivalent to

$$
\sum_{H \in \text{Ob}(S_{G_1 \times G_2})} \mu(H) = \sum_{H_1 \in \text{Ob}(S_{G_1})} \mu(H_1) \cdot \sum_{H_2 \in \text{Ob}(S_{G_2})} \mu(H_2)
$$

Let $\pi_1 : G_1 \times G_2 \to G_1$ and $\pi_2 : G_1 \times G_2 \to G_2$ be the projections. The product poset $S_{G_1} \times S_{G_2}$ [22, Chp 3.2] is a deformation retract of $S_{G_1 \times G_2}$ in the sense that there are poset morphisms

$$
S_{G_1} \times S_{G_2} \overset{L}{\longrightarrow} S_{G_1} \times S_{G_2}, \quad 1_{S_{G_1} \times S_{G_2}} = LR, \quad 1_{S_{G_1} \times S_{G_2}} \Rightarrow RL,
$$

where $LH = (\pi_1(H), \pi_2(H))$, $H \leq G_1 \times G_2$, $R(H_1, H_2) = H_1 \times H_2$, $H_1 \leq G_1$, $H_2 \leq G_2$, and $H \leq R(H_1, H_2) \iff LH \leq (H_1, H_2)$.
In this situation
\[\sum_{H \in \text{Ob}(S_{G_1 \times G_2}) : L_H = (H_1, H_2)} \mu(H) = \mu(H_1)\mu(H_2) \]
for all \(p \)-groups \(H_1 \leq G_1, H_2 \leq G_2 \), and \(H \leq G_1 \times G_2 \) by [17, Proposition 4.4] and the formula [22, Proposition 3.8.2]
\[\mu_{S_{G_1 \times G_2}}((1, 1), (H_1, H_2)) = \mu(H_1)\mu(H_2) \]
for the Möbius function \(\mu_{S_{G_1 \times G_2}} \) of the product poset \(S_{G_1} \times S_{G_2} \). The theorem now easily follows. \(\square \)

At \(p = 2 \), \(1 - \chi(S^*_G) = 16 \) and \(1 - \chi(S^*_G/A_6) = 1 - \chi(F_{C_2}^*) = 0 \), where \(\Sigma_6 = A_6 \rtimes C_2 \) is the permutation group and \(A_6 \) the alternating group. This example shows that Theorem 6.1 does not generalize to semi-direct products.

Theorem 6.1 also follows from work of Quillen. According to [20, Proposition 2.6], \(S_{G_1 \times G_2}^0 \) is homotopy equivalent to the join \(S_{G_1}^0 \star S_{G_2}^0 \) and therefore
\[1 - \chi(S^*_G) = 1 - \chi(S^*_{G_1 \times G_2}) = (1 - \chi(S^*_{G_1}))(1 - \chi(S^*_{G_2})) \]
as \(1 - \chi(X \ast Y) = (1 - \chi(X))(1 - \chi(Y)) \) for any two finite abstract simplicial complexes, \(X \) and \(Y \).

The formula of Theorem 3.2 for \(\chi(F_G^*) \) may be rewritten as
\[1 - \chi(F_G^*) = \frac{1}{|G|} \sum_{H \in \text{Ob}(S_G)} \mu(H)|C_G(H)| \]
with summation over all \(p \)-subgroups \(H \) of \(G \). We shall use this expression to derive a formula for the Euler characteristic of the Frobenius category of a direct product of groups.

Theorem 6.2. Let \(G_1, \ldots, G_n \) be finite groups. Then
\[1 - \chi(F_{\prod_{i=1}^n G_i}^*) = \prod_{i=1}^n 1 - \chi(F_{G_i}^*) \]

Proof. By induction over \(n \) it is enough to prove the formula for a product of two groups, \(G_1 \) and \(G_2 \). It is then equivalent to
\[\sum_{H \in \text{Ob}(S_{G_1 \times G_2})} \mu(H)|C_{G_1 \times G_2}(H)| = \sum_{H_1 \in \text{Ob}(S_{G_1})} \mu(H_1)|C_{G_1}(H_1)| \cdot \sum_{H_2 \in \text{Ob}(S_{G_2})} \mu(H_2)|C_{G_2}(H_2)| \]
But this follows as in the proof of Theorem 6.1 because \(C_{G_1 \times G_2}(H) = C_{G_1}(H_1) \times C_{G_2}(H_2) \) when \(H \leq G_1 \times G_2 \) and \(H_1 = \pi_1(H), H_2 = \pi_2(H) \) are the projections of \(H \). \(\square \)

At \(p = 2 \), \(1 - \chi(F_{\Sigma_4}^*) = 1/3 \) and \(1 - \chi(F_{\Sigma_4/A_4}^*) = 1 - \chi(F_{C_2}^*) = 0 \), where \(\Sigma_4 \) is the permutation group and \(A_4 \) the alternating group. This example shows that Theorem 6.2 does not generalize to semi-direct products. (Note also that \(O_2(\Sigma_4) > 1 \) and \(\chi(F_{\Sigma_4}^*) \neq 1 \) in contrast to [14, Lemma 1.1] according to which \(\chi(S^*_G) = 1 \) whenever \(O_p(G) > 1 \).)

7. Variations on Frobenius categories

Recall that \(\overline{S}_G \) is the poset of all subgroups of \(G \). For any two subgroups, \(H \) and \(K \), of \(G \),

\[\overline{S}_G(H, K) = \begin{cases} 1 & \text{if } H \leq K \\ 0 & \text{if } H \nleq K \end{cases} \]

Writing \([H] \) for the \(G \)-conjugacy class of \(H \), let
\[\overline{S}_G([H], K) = \sum_{H \in [H]} \overline{S}_G(H, K) \]
denote the number of subgroups of \(K \) that are \(G \)-conjugate to \(H \). In particular, \(\overline{S}_G([H], G) = |[H]| = |G : N_G(H)| \) is the number of conjugates of \(H \) in \(G \).

We next formulate an alternative expression for the Euler characteristic of a Frobenius category. Let \(P \) be a subgroup of \(G \) of index prime to \(p \), for instance, a Sylow \(p \)-subgroup of \(G \). Write \(P \cap F_G^* \) for the full subcategory of \(F_G^* \) generated by all nonidentity \(p \)-subgroups of \(P \). Then \(P \cap F_G^* \) and \(F_G^* \) are equivalent so they have identical Euler characteristics (Lemma 2.7).
Corollary 7.2. The function
\[k_K = \frac{-\mu(K)}{|F^*_G(K, P)|}, \quad K \in \text{Ob}(P \cap F^*_G), \]
is a coweighting for \(P \cap F^*_G \) and the Euler characteristic of \(P \cap F^*_G \) is
\[\chi(P \cap F^*_G) = \sum_{K \in \text{Ob}(P \cap F^*_G)} -\frac{\mu(K)}{|F^*_G(K, P)|} = \chi(F^*_G) \]
with summation over the nonidentity elementary abelian \(p \)-subgroups \(K \) of \(P \).

Proof. As \(k_K = -\mu(K)/|G: C_G(K)| \) is a coweighting for \(F^*_G \) (Table 1), the function
\[k_K \frac{S_G([K], G)}{S_G([K], P)} = -\frac{\mu(K)}{|F^*_G(K, P)|} = -\frac{1}{||K||} \frac{\mu(K)}{|F^*_G(K)|} \]
is a coweighting for \(P \cap F^*_G \). The identities
\[S_G([K], G) = |G: N_G(K)| \text{ and } S_G([K], P) = |F_G(K, P)|/|F_G(K)| \]
go into the above equality sign.

Let \(P \) be a finite \(p \)-group and \(F \) an abstract Frobenius category over \(P \) [19, Chp 2] [6]. The objects of \(F \) are the subgroups of \(P \). Define \(F^* \) to be the full subcategory of \(F \) generated by all nonidentity subgroups of \(P \).

Theorem 7.3. The function
\[k_K = \frac{-\mu(K)}{|F^*(H, K)|}, \quad K \in \text{Ob}(F^*), \]
is a coweighting for \(F^* \) and the Euler characteristic of \(F^* \) is
\[\chi(F^*) = \sum_{K \in [F^*]} -\frac{\mu(K)}{|F^*(K)|} \]
The Euler characteristic \(\chi(F^*) \in \mathbb{Z}_{(p)} \) is a \(p \)-local integer.

Proof. The Divisibility Axiom [19, 2.3.1] implies that
\[|F^*(H, K)| = |F^*(H)|S^p([H], K) \]
where \([H] \subset \text{Ob}(F) = \text{Ob}(F_P)\) is the set of \(F \)-objects \(F \)-isomorphic to \(H \) and \(S^p([H], K) = \sum_{H \in [H]} S^p(H, K) \) is the number of \(F \)-objects \(F \)-isomorphic to \(H \) and contained in \(K \). In particular, \(S^p([H], P) = ||H|| \). For any object \(K \) of \(\text{Ob}(F^*) \)
\[\sum_{H \in \text{Ob}(F^*)} -\frac{\mu(H)}{|F^*(H, P)|} |F^*(H, K)| = \sum_{H \in \text{Ob}(F^*)} -\mu(H)S^p([H], K) = \sum_{|H| \in [F^*]} \sum_{H \in [H]} -\mu(H)S^p([H], K) = \sum_{|H| \in [F^*]} -\mu(H) = \chi(S^p_h) = 1 \]
This shows that
\[k_K = \frac{-\mu(K)}{|F^*(K, P)|} = -\frac{1}{||K||} \frac{\mu(K)}{|F^*(K)|}, \quad K \in \text{Ob}(F^*), \]
is a coweighting for \(F^* \). The formula for the Euler characteristic follows.

Since \(|F^*(K)|_p \) divides \(|\text{Aut}(K)|_p = \mu(K)\) when \(K \) is elementary abelian (see proof of Corollary 5.2), the Euler characteristic of \(F^* \) is a \(p \)-local integer. \(\Box \)

8. Self-centralizing subgroups

This section deals with the \(p \)-subgroup categories generated by the \(p \)-selfcentralizing subgroups. We mention here some facts to justify our interest in these subcategories of \(p \)-selfcentralizing subgroups:
- The centric linking category \(L^*_G \) is a complete algebraic invariant of the \(p \)-completed classifying space of \(G \) [5, Theorem A]
- The Frobenius category \(F^*_G \) is completely determined by its centric subcategory \(F^*_G \) [19, Chp 4–5]
- All morphisms in the category \(F^*_G \) are epimorphisms [19, Corollary 4.9]
\[k_{[H]} = |G|^{-1} |H| \sum_{K \in \mathcal{T}_{G}^{C}} |\mu(H, K)|C_{G}(K)|_{p'}^{\mathcal{C}} \quad \text{and} \quad k_{K} = |G|^{-1} |C_{G}(K)|_{p'} \sum_{H \in \mathcal{T}_{G}^{C}} |H| \mu(H, K). \]

\[k^{[H]} = \frac{|H|}{|G| : N_{G}(H)} \sum_{[K] \in \mathcal{T}_{G}^{C}} |\mu([H], [K])|C_{G}(K)|_{p'}^{\mathcal{C}} \quad \text{and} \quad k^{[K]} = |H| \sum_{[K]} |\mu([H], [K])|C_{G}(K)|_{p'}^{\mathcal{C}}. \]

Table 4. Categories of p-selfcentralizing p-subgroups.

- All morphisms in the category \(\mathcal{F}_{G}^{C} \) have unique maximal extensions [19]

Now follow the definition and a few standard properties of p-selfcentralizing p-subgroups.

Definition 8.1. [19, 4.8.1] [6, Definition A.3] The p-subgroup \(H \) of \(G \) is p-selfcentralizing if \(C_{H}(H) \to C_{G}(H) \) is a p-Sylow inclusion.

Lemma 8.2. [19, Chp 4] [6, Appendix A] Let \(H \) be a p-subgroup of \(G \) and let \(P \) be a Sylow p-subgroup of \(G \).

1. If \(H \) is p-selfcentralizing, then \(H \) is a p-subgroup of \(G \).

2. If \(H \) is p-selfcentralizing, then \(H \) is a p-subgroup of \(G \).

3. If \(H \) is p-selfcentralizing and \(H^{q} \leq K \) for some \(q \in G \) and some p-subgroup \(K \) of \(G \), then \(K \) is p-selfcentralizing.

4. If \(Q \leq P \) and \(C_{P}(Q) \) is a Sylow p-subgroup of \(C_{G}(Q) \), then \(QC_{P}(Q) \) is p-selfcentralizing.

Proof. (1) If \(Z \) is a central Sylow p-subgroup of \(C \) then \(Z = Z \times C/Z \) where \(C/Z = O_{p}C = O^{p}C \).

(2) Assume that \(H \) is p-selfcentralizing. Then \(H^{q} \) is also p-selfcentralizing. The p-subgroup \(C_{P}(H^{q}) \) is contained in the unique Sylow p-subgroup \(Z(H^{q}) \) which is contained in \(H^{q} \). Conversely, assume that \(H \) has property (2). Choose \(g \in N_{G}(H, P) \) so that \(C_{P}(H^{q}) \) is a Sylow p-subgroup of \(C_{G}(H^{q}) \). By assumption, \(C_{P}(H^{q}) = C_{P}(H^{q}) \cap H^{q} = Z(H^{q}) \). This shows that \(Z(H^{q}) \) is a Sylow p-subgroup of \(C_{G}(H^{q}) \).

(3) Let \(h \in N_{G}(K, P) \). Then \(gh \in N_{G}(H, P) \) and \(C_{P}(K^{h}) \leq C_{P}(H^{q}) \) whenever \(h^{q} \leq K \). According to (2), \(K \) is p-selfcentralizing. Since \(Z(H) \) is central in \(C_{H}(H) \) it is the unique Sylow p-subgroup of \(C_{H}(H) \). The p-subgroup \(C_{K}(H^{q}) \) of \(C_{G}(H^{q}) \) is a subgroup of \(Z(H^{q}) \).

Now the chain of inclusions

\[Z(H^{q}) = C_{H^{q}}(H^{q}) \leq C_{K}(H^{q}) \leq Z(H^{q}) \]

shows that \(Z(H^{q}) = C_{K}(H^{q}) \). Obviously, \(Z(H^{q}) = C_{K}(H^{q}) \geq C_{K}(K) = Z(K) \).

(4) According to [19, Proposition 2.11], \(C_{P}(Q) \leq C_{P}(Q^{q}) \) and \(C_{P}((QC_{P}(Q))^{q}) \leq C_{P}(Q^{q}) \leq C_{P}(Q^{q}) \leq (QC_{P}(Q))^{q} \).

Now apply item (2).

Theorem 8.3. Weightings \(k^{*} \), coweighings \(k^{*} \), and Euler characteristics for the finite categories \(\mathcal{T}_{G}^{C} \), \(\mathcal{L}_{G}^{C} \), \(\mathcal{F}_{G}^{C} \), \(\mathcal{O}_{G}^{C} \), and \(\mathcal{F}_{G}^{C} \) of p-selfcentralizing p-subgroups of \(G \) are as in Table 4.

Proof. This follows almost immediately from Theorem 2.15. We comment on the most interesting case, \(\mathcal{F}_{G}^{C} \). If \(H \) is p-selfcentralizing and \(K \geq H \), then \(K \) is p-selfcentralizing and \(C_{K}(H) \) is isomorphic to \(Z(H) \). (Lemma 8.2.3). Equality (3.4) simplifies to

\[|C_{G}(H)|_{p'} |\mathcal{F}_{G}^{C}(H, K)| |K| = |\mathcal{T}_{G}^{C}(H, K)| \]

so that the functions

\[k^{[H]} = |G|^{-1} |H| \sum_{K \in \mathcal{T}_{G}^{C}} |\mu(H, K)|C_{G}(K)|_{p'}^{\mathcal{C}} \quad \text{and} \quad k^{[K]} = |G|^{-1} |C_{G}(K)|_{p'} \sum_{H \in \mathcal{T}_{G}^{C}} |H| \mu(H, K) \]

are a weighting and a coweighting for \(\mathcal{F}_{G}^{C} \) by Theorem 2.15. Rewriting the weighting as

\[k^{[H]} = \frac{|H|}{|G| : N_{G}(H)} \sum_{[K] \in \mathcal{T}_{G}^{C}} |\mu([H], [K])|C_{G}(K)|_{p'}^{\mathcal{C}} \quad \text{and} \quad k^{[K]} = |H| \sum_{[K]} |\mu([H], [K])|C_{G}(K)|_{p'}^{\mathcal{C}} \]
we calculate the Euler characteristic

\[\chi(\tilde{F}_G) = \sum_{[H]} k[H] = \sum_{[H]} |H| \mu([H], [K]) |C_G(K)|_{p'} \]

as the sum of the values of the weighting.

The function \(|\mu|\) of Table 2 is the Möbius function of \(|T_G^c|\) (Proposition 3.9). Because the \(p\)-selfcentralizing property is upward closed (Lemma 8.2.3) the Möbius for \(|T_G^c|\) is simply the restriction of the Möbius function for \(|T_G|\). Also, the weightings for \(C^c_G\) from Table 4 are the restrictions of the weightings for \(C^c_G\) for \(\mathcal{C} = \mathcal{T}, \mathcal{L}, \mathcal{F}, \mathcal{O}\) from Table 2.

We next note that the weightings for \(L^c_G\) and \(F^c_G\) can be computed locally (cf Proposition 3.14).

Fix \(H\), a \(p\)-selfcentralizing \(p\)-subgroup of \(G\), and consider the projection \(\tilde{T}_G(H) = N_G(H) \rightarrow \tilde{N}_G(H) = N_G(H)/H = \mathcal{O}^c_G(H)\) of the \(p\)-local subgroup \(N_G(H)\) onto its quotient \(N_G(H)/H\). The functor

\[O^pC_G: (\mathcal{S}_{C^c_G(H)})^{op} \rightarrow \mathfrak{S}_{O^pC_G(H)} \]

takes the nonidentity \(p\)-subgroup \(K\) of \(\mathcal{O}^c_G(H)\) to the subgroup \(O^pC_G(K)\) of \(O^pC_G(H)\) where \(K \leq N_G(H)\) is the preimage of \(K\) under \(C_G\). For every \(x \in O^pC_G(H)\),

\[O^pC_G/\langle x \rangle = \{ K \in \text{Ob}(\mathcal{S}_{O^c_G(H)}) \mid O^pC_G(K) \ni x \} \]

is the preimage of the subposet \(\{Y \mid \langle x \rangle \leq Y \leq O^pC_G(H)\}\) under the functor \(O^pC_G\).

Proposition 8.6. The value of the weighting for \(F^c_G\) at the \(p\)-selfcentralizing \(p\)-subgroup \(H \leq G\) is

\[k^H_{F_G} = |G|^{-1} \sum_{x \in O^pC_G(H)} (1 - \chi(O^pC_G/\langle x \rangle)) \]

Proof. By Table 4 and (3.8) the weighting for \(F^c_G\) at the \(p\)-selfcentralizing \(p\)-subgroup \(H \leq G\) is given by

\[|G:H|k^H_{F_G} = \sum_{K \in \mathcal{H}(H)} \mu(H, K) |C_G(K)|_{p'} \]

For any nonidentity \(p\)-subgroup \(H \leq G\), there is a commutative diagram

\[
\begin{array}{c}
Z(H) \longrightarrow H \longrightarrow H/Z(H) \\
\downarrow \hspace{0.5cm} \downarrow \hspace{0.5cm} \downarrow \\
C_G(H) \longrightarrow \tilde{T}_G(H) \longrightarrow \tilde{F}_G(H) \\
\downarrow \hspace{0.5cm} \downarrow \hspace{0.5cm} \downarrow \\
C_G(H)/Z(H) \longrightarrow \mathcal{O}^c_G(H) \longrightarrow \tilde{F}_G(H)
\end{array}
\]

with exact rows and columns. Let \(K\) be a \(p\)-subgroup such that \(H \leq K \leq N_G(H)\). Then \(C_G(K) \leq C_G(H) \leq N_G(H)\) so that \(C_G(K) = C_{N_G(H)}(K)\). In case \(H\) is a \(p\)-selfcentralizing subgroup of \(G\), the chain of inequalities, obtained using Lemma 8.2.3,

\[Z(K) \leq Z(H) \cap C_G(K) \leq H \cap C_G(K) \leq K \cap C_G(K) = Z(K) \]
is, in fact, a chain of identities so that \(Z(K) = Z(H) \cap C_G(K) = H \cap C_G(K) \). The projection \(T_G(H) = N_G(H) \to \mathcal{O}_G(H) = N_G(H)/H \) takes \(C_G(K) \) to \(C_G(K)/H \) with kernel \(H \cap C_G(K) = Z(K) \), the Sylow \(p \)-subgroup of \(C_G(K) \). Thus \(\mathcal{O}_G(K) = C_G(K)/Z(K) = O^p C_G(K) \) and \(|C_G(K)| = |C_G(K)|_{p'} \).

This means that
\[
|G: H|k^H_{f^G} = \sum_{R \in \mathcal{O}_G(H)} \mu(R)|C_G(K)| = |C_G(H)| - \sum_{1 \leq R \leq \mathcal{O}_G(H)} -\mu(R)|C_G(K)|
\]

We now proceed as in the proof of Proposition 3.14. The sum in the above formula is the Euler characteristic of the Grothendieck construction on the presheaf \(O^p C_G \). The opposite of this Grothendieck construction is the direct sum over \(x \in O^p C_G(H) \) of the of the posets \((8.5)\).

Based on explicit computations we suspect, first, that \(\chi(\mathcal{F}_G) = \chi(\mathcal{F}_G^x) \) (cf Corollary 3.6) and, second, that the weighting for \(\mathcal{F}_G^x \) is supported precisely on the \(p \)-selfcentralizing \(\mathcal{F}_G \)-radical subgroups (Definition 3.18), i.e.

\[
\sum_{x \in O^p C_G(H)} \chi(O^p C_G(x)) \neq |O^p C_G(H)| \iff O^p \mathcal{F}_G^x(H) = 1
\]

holds for any \(p \)-selfcentralizing subgroup \(H \) of any group \(G \), cf (3.20). Explicit computations with Magma [2] reveal that \((8.7)\) true at \(p = 2 \) for all groups of order \(\leq 760 \) and for the alternating groups \(A_n \), \(4 \leq n \leq 13 \), of Table 5.

Lemma 8.8. Let \(H \) and \(K \) be two nonidentity \(p \)-subgroups of \(G \). Then \(H \) and \(K \) are isomorphic in \(\mathcal{F}_G^x \) if and only if they are isomorphic in \(\mathcal{F}_G \).

Proof. Suppose that \(H \) and \(K \) are isomorphic in \(\mathcal{F}_G^x \). Then there exist \(x \in N_G(H,K) \), \(y \in N_G(K,H) \) so that conjugation by \(xy \) is an inner automorphism of \(H \) and conjugation by \(yx \) is an inner automorphism of \(K \). By replacing \(y \) by another element of \(yH \), if necessary, we obtain that \(yx \in C_G(H) \). Then \(yx = yx^x \in C_G(H)^x = C_G(K) \). This means that \(xy \) represents the identity of \(\mathcal{F}_G^x(H) \) and \(yx \) represents the identity of \(\mathcal{F}_G^x(K) \).

If \(P \) is a nonidentity \(p \)-group then
\[
\chi(S_P^x) = 1, \quad \chi(T_P^x) = |P|^{-1}, \quad \chi(L_P^x) = |P|^{-1}, \quad \chi(F_P^x) = 1, \quad \chi(O_P^x) = 1, \quad \chi(\mathcal{F}_G^x) = 1
\]

because \(S_P^x, O_P^x \), and \(\mathcal{F}_G^x \) have \(P \) as terminal object and \(L_P^x = T_P^x \) is the Grothendieck construction for the \(P \)-action on \(S_P^x \). Corollary 5.4.(2) shows that the weighting for \(\mathcal{F}_P^x \) and is supported on the subgroups of the form \(C_P(x), x \in P \), so that \(\chi(\mathcal{F}_P^x) = \chi(F_P^x) = 1 \) as these subgroups are \(p \)-selfcentralizing by Lemma 8.2.(4). (By Example 5.5 it is not true for general groups \(G \) that the weighting for \(\mathcal{F}_G^x \) is supported on the \(p \)-selfcentralizing subgroups and Tables 3 and 5 contain several examples of alternating groups where the nonidentity and the centric Frobenius categories have different Euler characteristics.)

References

[1] Peter Abramenko and Kenneth S. Brown, *Buildings*, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications. MR 2439729 (2009g:20005)

[2] Wieb Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR 1484478

[3] Serge Bouc, *Homologie de certains ensembles ordonnés*, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 2, 49–52. MR 756517 (85k:20015)

[4] ____, *Modules de Môbius*, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 1, 9–12. MR 756298 (85g:20006)

[5] Carles Broto, Ran Levi, and Bob Oliver, *Homotopy equivalences of p-completed classifying spaces of finite groups*, Invent. Math. 151 (2003), no. 3, 611–664. MR 1961340 (2004c:55031)

[6] ____, *The homotopy theory of fusion systems*, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856 (electronic). MR 1 992 826

[7] Kenneth S. Brown, *Euler characteristics of groups: the p-fractional part*, Invent. Math. 29 (1975), no. 1, 1–5. MR 0385008 (52 #5878)

[8] Daniel Gorenstein, *Finite groups*, Harper & Row Publishers, New York, 1968. MR 0231903 (38 #229)

[9] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, *The classification of the finite simple groups*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592 (95m:20014)

[10] ____, *The classification of the finite simple groups. Number 2. Part I. Chapter G*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1996, General group theory. MR 1358135 (96h:20032)
Euler characteristics of p-subgroup categories

[11] ———. The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998, Almost simple K-groups. MR MR1490581 (98j:20011)

[12] P. Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1936), 134–151.

[13] T. Hawkes, I. M. Isaacs, and M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (1989), no. 4, 1003–1034. MR MR1039540 (90k:20046)

[14] Trevor Hawkes and I. M. Isaacs, On the poset of p-subgroups of a p-solvable group, J. London Math. Soc. (2) 38 (1988), no. 1, 77–86. MR MR949083 (89g:20083)

[15] Charles Kratzer and Jacques Thévenaz, Fonction de Möbius d’un groupe fini et anneau de Burnside, Comment. Math. Helv. 59 (1984), no. 3, 425–438. MR 761806 (86k:20011)

[16] ———, Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini, Comment. Math. Helv. 60 (1985), no. 1, 85–106. MR 787663 (87b:06017)

[17] Tom Leinster, The Euler characteristic of a category, Doc. Math. 13 (2008), 21–49. MR MR2393085

[18] Peter M. Neumann, A lemma that is not Burnside’s, Math. Sci. 4 (1979), no. 2, 133–141. MR 562002 (81g:01012)

[19] Lluís Puig, Frobenius categories versus Brauer blocks, Progress in Mathematics, vol. 274, Birkhäuser Verlag, Basel, 2009, The Grothendieck group of the Frobenius category of a Brauer block. MR 2502803

[20] Daniel Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916 (80k:20001)

[21] Derek J. S. Robinson, A course in the theory of groups, second ed., Springer-Verlag, New York, 1996. MR 96f:20001

[22] Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. MR MR1442260 (98a:05001)

[23] J. Thévenaz and P. J. Webb, Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991), no. 2, 173–181. MR 1092846 (92k:20049)

[24] Jacques Thévenaz, Permutation representations arising from simplicial complexes, J. Combin. Theory Ser. A 46 (1987), no. 1, 121–155. MR 899904 (88f:20025)

Institut for Matematiske Fag, Universitetsparken 5, DK–2100 København E-mail address: tau.wedel@gmail.com

Institut for Matematiske Fag, Universitetsparken 5, DK–2100 København E-mail address: moller@math.ku.dk

URL: http://www.math.ku.dk/~moller