The Environmental Impact of Energy Consumption in Nigeria: Evidence from CO2 Emissions

Abubakar Sadiq Ibrahim (sadiqbjfu.asi@gmail.com)
Beijing Institute of Technology https://orcid.org/0000-0002-1560-2878

Dan Cudjoe
Nanjing University of Information Science and Technology

Research Article

Keywords: CO2 emissions, hydroelectricity, economic growth, population growth, charcoal consumption, gas oil consumption

DOI: https://doi.org/10.21203/rs.3.rs-420727/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
The Environmental Impact of Energy Consumption in Nigeria: Evidence from CO$_2$ Emissions

Abubakar Sadiq Ibrahim1,2, Dan Cudjoe3

1School of Management and Economics, Beijing Institute of Technology, Beijing 100181, China.

2Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181, China.

3Nanjing University of Information Science and Technology, Nanjing, China

Corresponding Author: Abubakar Sadiq Ibrahim, School of Management and Economics, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Haidian District, Beijing, Beijing, 100081, CN, sadiqbjfu.asi@gmail.com, +8618810796225; +2348117407888

Abstract

The consumption of energy to achieve economic growth has immensely impacted Nigeria’s environment through its influence on CO$_2$ emissions. The paper employed Vector Error Correction Model (VECM) to analyzed the environmental impact of energy consumption in Nigeria using time series data from 1990-2018. Our study found a long run positive impact of GDP on CO2 emissions in Nigeria. This refute the Environmental Kuznet Curve hypothesis that environmental quality improved with an increase in income. We also found that charcoal consumption has a long run tendency of reducing CO$_2$ emission while fuel wood consumption has a long run possibility of raising CO2 emission. We also found that usage of gas oil has a negative impact on CO$_2$ emissions while natural gas consumption and fuel oil consumption has a detrimental impact on CO$_2$ emission. Hydroelectricity consumption on the other has a long run negative impact on CO$_2$ emission in Nigeria. However, we suggested for investment in hydroelectricity and wood biomass energy consumption that can minimize the potential environmental damage in Nigeria. Because hydroelectricity and biomass energy can substitute fossil fuel energy in the production of goods and services which can also help to mitigate CO$_2$ emissions and improve the environmental quality of the country.

Keywords: CO2 emissions, hydroelectricity, economic growth, population growth, charcoal consumption, gas oil consumption

1. Introduction

Nigeria’s economy and its energy sector is extremely susceptible to fluctuations because of its over-reliance on fossil fuels, in particular oil and gas. It was argued that the inadequate policies and lack of professionalism in the new energy management put that country’s energy grid in fragile to climate change (Akuru and Okoro, 2014). Nigeria exported around 774,000 million barrels of crude oil in 2014, with oil and gas accounted for 90% of exports and 15% of GDP (Africa, C. 2016). However, as a result of insufficient oil field infrastructure in the country, a substantial portion of these gases associated with oil production is flared into the atmosphere which stays there for a long time. Though the volume of flared has supplemented by over 50% over the past years according to the report (Africa, C., 2016). Nigeria nevertheless remains the world’s fifth largest gas flaring nation (Africa, C. 2016) though the country is implementing projects in line with the Intended Nationally Determined Contribution (INDC) to minimize or remove GHG pollution from gas flaring by 2030. However, according to First Biennial Update Report (BUR I), the primary
sources of energy in Nigeria are natural gas, oil and biomass (Federal Republic of Nigeria, 2018). Report show that the bioenergy share in 2020 is more than 80% of the total primary energy (Federal Republic of Nigeria, 2018). However, unfortunately, only about half of Nigeria’s population has connections to grid-connected power. This is because the electric power supply in the country is insufficient and has limited industrial growth and development. For instance, the 2015 power supply averaged 3.1 gigawatts, an amount estimated to be a third demand (Federal Republic of Nigeria, 2018).

A 2018 report by Federal Republic of Nigeria declared that Nigeria vowed environmental degradation unreservedly to reduce GHG emissions by 20% by 2030, relative to business as usual (BAU) emission rate. Similarly, it was also reported that Nigeria’s energy emissions increased by 32% on average from 1990 to 2014, mainly due to energy consumption especially fuel combustion (WRA CAIT 4.0, 2017). Though a fugitive emissions which occur from leaks and irregular release of non-renewable consumption, for instance, gases, are a significant source of GHG emissions but reduced recently according to recent statistics. While on the other hand, smaller sources of emissions from electricity and heating generation, transportation and manufacturing and construction have increased (WRA CAIT 4.0, 2017). But in 2016, energy efficiency increased by 20%, which provided 13-gigawatt renewable electricity to rural communities that are currently have no access to the electricity grid (African, 2016). Proportionally, crucial mitigation steps to end gas flaring by 2030 have been further established by the report. This involve the usage of efficient gas turbines, a 2% annual rise in energy efficiency, a shift in the mode of transport from automobiles to buses, a change in the power system, the development of climate-smart farming and forest conservation (the Federal Republic of Nigeria, 2018).

However, the relationships between energy, pollution and economic development thus have important policy consequences for any country’s economic landscape. This is because economic development requires various quantities and forms of resources, like energy use. Thus, if CO\textsubscript{2} emission rate varies through various resource production and energy sources, the energy use and other resource production to achieve economic development ultimately adds to environmental quality. Energy consumption, mainly fossil fuel energy contributes to CO\textsubscript{2} emissions which is among the cause of climate change and global warming. Therefore, it was in line with this that the International Energy Agency (2018) suggested that any efforts to reduce CO\textsubscript{2} emissions in a country effectively, a strategic plan of the energy and economic sectors should be applied. The agency categorized energy users and producers of CO\textsubscript{2} emissions from energy burning into seven groups: industry, transportation, residential, commercial and private services, agriculture/forestry, fisheries, and undefined energy users (IEA, 2018). However, the carbon dioxide released into the environment from the usage of fossil fuels such as diesel, coal and natural gas is the key gas that induces the global warming (Yavuz, 2014).

Recently, energy consumption and environmental degradation has been the focus of intensive studies in the energy and environmental literature. Interestingly, scientific evidence to date remains controversial and unclear. The available research shows that empirical studies vary considerably in terms of data used and data analysis techniques and are not exhaustive in providing policy guidelines that can be implemented throughout nations (Kebede et al., 2017). Studies over the past decades have revealed that energy has become one of the most vital drivers in the development process, particularly for its significant contribution to the industrial sector in many developing nation. This is because energy usage has a positive effect on the societal and national economy as well as the general well-being of the citizens on the one hand, and on the other hand, it harms the environment through indirect production of CO\textsubscript{2} emissions from energy incineration.

Therefore, to study the environmental impact of energy consumption is necessary especially for a country like Nigeria with weak environmental regulations. This is because global warming is viewed as a major environmental challenge to climate change. In 2010, UNDP reported that most of the carbon emission is known to come from the production and consumption of non-renewable energy especially oil and gas. Therefore, since crude oil contributes significant percentage of Nigeria’s GDP, using GDP as a measure of social and human welfare is unacceptable to a large extent. Because economic growth should also be achieved in a safe and sustainable economic environment to
reduce the citizen’s risks of exposure to various health hazards. Thus, this study seek to explore the environmental impact of energy consumption in Nigeria, evidence from CO₂ emissions.

The remaining parts of this research are organized as follows: section 2 review the related literatures while section 3 describes the materials and methods. Section 4 contains results and discussions, and section 5 presents the conclusion. Section 6 present recommendations and policy implications of the paper respectively.

2. Literature Review

The linkage between economic growth and CO₂ emissions has been examined by several researchers. For instance, Shahbaz et al. (2013) and Saboori and Sulaiman (2013) found a two-way relationship between GDP per capita and CO₂ emissions, while Alam et al. (2016); Hwang and Yoo (2012); Chandran and Tang (2013) and Saboori et al. (2012) found a one-way relationship between per capita GDP and CO₂ emissions. Also, in similar studies, Saboori et al. (2012), Saboori and Sulaiman (2013), and Alam et al. (2016) investigated the relationship between economic development and environmental degradation in Indonesian using the EKC approach. The result from Saboori et al. (2012) and Saboori and Sulaiman (2013) found that there is no evidence of the EKC hypothesis, while on the other hand, the evidence that support the EKC hypothesis was found by Alam et al. (2016) studies. Furthermore, studies by Farhani et al. (2014), Odhiambo (2011), Paresh and Narayan (2010), Kim, Lee, and Nam (2010), Kim and Baek (2011), Ghosh (2010) for instance, examined the links between economic growth and environmental pollutants. These studies confirmed the validity of the environmental Kuznets curve (EKC) Hypothesis, which states that an inverted U-shaped relationship between economic growth and the level of environmental degradation exists. This means that during the early stages of economic development, environmental destruction rises with the amount of per capita income and only falls with per capita income until hitting a plateau (Acaravci & Ozturk, 2010a).

Moreover, Apergis and Payne (2010b), Apergis and Payne (2014), Bella, Massidda and Mattana, 2014, Alkhathlan and Javid (2013), Saboori and Sulaiman (2013), Alam et al. (2016), Rafindadi (2016), Omri (2016) modeled the ties between economic development, energy use and emissions in the same context. These studies consider CO₂ emissions as a function of income, income squared, and income cubed in addition to other explanatory variables such as energy use; thus, the model suffered from collinearity problems. Therefore, our study is an attempt to fill the gap by introducing new variables such as fuel consumption, natural gas consumption, gas oil consumption, fuel wood consumption, hydroelectricity consumption etc. besides economic indicators such as GDP per capita. This is in order to solve the problem of omitted variables and misspecification of model.

Therefore, compared to previous research, our study has three significant contributions. First, beside the commonly used variables such as GDP per capita, this study considered energy consumption variables (such as natural gas consumption, fuel wood consumption, fuel consumption, charcoal consumption, and hydroelectricity consumption) as socioeconomic drivers of CO₂ emissions in Nigeria; this could provide exciting policy option to mitigate CO₂ emissions which has severe environmental impact. Second, unlike the other studies, this study employed Vector Error Correction model to investigate the environmental impact of energy consumption in Nigeria. The result from VECM will give an interesting direction to the policy makers not only in devising national policy related to energy consumption but also in developing and promoting a sustainable economic environment in the country. Thirdly, the relation between CO₂ emissions and economic growth in the energy demand system is explored to help the EKC hypothesis. This will address the study void in this area and is thus one of this research’s main contributions.

3. Materials and Methods

According to Kebede et al. (2017), economic prosperity cannot take place without resource usage and, through the laws of thermodynamics, resource usage ultimately means waste output. Therefore, it’s widely known that Nigeria depends mainly on fossil fuel consumption (petroleum and gas), which is a key driver of environmental damage and the severity of the impact of energy consumption on the Nigeria’s environment depends on the energy consumption structure of the country. However, considering that Nigeria is abundant with fossil energy, the variables
such as fuel oil consumption, natural gas consumption and gas oil consumption are included in the model. While other energy used in this paper is hydroelectricity as well as fuel wood and charcoal as other energy sources. All variables are in total energy consumption. Thus, the present study employed Vector Error Correction Model (VECM) to analyze the environmental impact of energy consumption in Nigeria. The data for the study were sourced from African Development Bank (2019) and National Bureau of Statistics (2019).

However, the choice of the variables follow some research suggestions such as International Energy Agency (2018) that suggested the categorization of the energy users and producers of CO$_2$ emissions from energy burning into seven groups, which include industry, transportation, residential, commercial and private services, agriculture/forestry, fisheries, and undefined energy users). In another study, Luong et al. (2017) observed that households consume more energy to complement their daily activities, especially in such areas as cooking, lighting and heating. Similarly, Baran & Yilmaz (2018) pointed out that energy is used and consumed more by the households’ sector than in any other sector. While studies such as Azam et al. (2015a); Zhang, (2017) and Al-Fatlawi, (2018) have shown that electricity use and CO$_2$ emissions changes are associated with other economic measures, such as gross domestic products, exports, imports, international growth and foreign direct investment as well as energy consumption. While GDP per capita was used in order to capture the EKC hypothesis.

3.1 Models Specifications

3.1.1 Augmented Dickey-Fuller Unit root test

Since the data for this research possess the qualities of time series data, then it must be ensured that all the variables included in the model are stationary. If a time series is not stationary in the sense just defined, it is called a non-stationary time series. In other words, a non-stationary time series will have a time-varying mean or a time-varying variance or both. This also ensures that every variable has a constant mean-variance. This will make the prediction of future value sensible and meaningful. Therefore, if a variable is non-stationary at level, the data will be differenced. The researcher will expose the research data to a stationary test based on the Augmented Dickey Fuller test.

The test will be based on the following general model for the ADF unit root framework:

With constant only: \[\Delta Y_t = \beta_1 + \beta_2 + \delta Y_{t-1} + \alpha_t + \epsilon_t \]
\[1 \]

With Trend and Constant: \[\Delta Y_t = \beta_1 + \beta_3 t + \delta Y_{t-1} + \alpha_t + \epsilon_t \]
\[2 \]

No Trend, No Intercept: \[\Delta Y_t = \delta Y_{t-1} + \alpha_t + \epsilon_t \]
\[3 \]

Where Y_t means the level of variable, u_t is the stochastic error term which is expressed as the independent and identically distributed error term with constant variance and zero mean which is often referred to as white noise error term. Suppose Y_t is regressed on its first lag value Y_{t-1} and when the estimated $(Y_{t,1}) = 1$ and $\beta = 1$, the series is said to be non-stationary and when $\beta > 1$ is also said to be non-stationary. However, when $\beta < 1$, the series is stationary, but if $\beta = 0$ or $\beta > 1$, we may reject the null hypothesis against the alternative at the significance value, therefore our residence is I(1).

3.1.2 Vector Error Correction Model

The paper examine the short-run and long-run impact of energy consumption in Nigeria using Vector Error Correction model. Thus, owing to the fact that all the variables employed in this study have time series qualities and are integrated at first difference, i.e. I(1) series, the Vector Error Correction Model (VECM) was employed to analyze the short-run and long-run impacts of energy consumption on Nigeria’s environment proxy by total CO$_2$ emissions. The conventional VECM is written compactly as:

\[\Delta Y = \sigma + \sum_{i=1}^{k-1} \gamma \Delta Y_t - 1 + \sum_{i=1}^{k-1} \eta \Delta X + \sum_{i=1}^{k-1} \Phi \Delta R + \lambda \text{ECT} + \mu \]
\[4 \]
Where E_{t-1}^λ = lagged OLS residual obtained from the long-run cointegrating equation.

$Y_t = \sigma + \eta Y_{t-1} + \zeta R_t + \mu_t$ \hspace{1cm} (5)

and express as:

$E_{t-1}^\lambda = [Y_{t-1} - \eta Y_{t-1} - \zeta R_{t-1}]$ \hspace{1cm} (6)

λ = coefficient of the ECT and the speed at which Y returns to equilibrium after changes in X and R.

The specific VECM for this studies are as follows:

\[\Delta CO_2 t = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (7)

\[\Delta GDP t = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (8)

\[\Delta CCC t = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (9)

\[\Delta FW Ct = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (10)

\[\Delta FO Ct = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (11)

\[\Delta NG Ct = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (12)

\[\Delta GO Ct = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (13)

\[\Delta HY Dt = \sigma + \sum_{i=1}^{k-1} \alpha_i \Delta CO_2 t - 1 + \sum_{m=1}^{k-1} \Phi_m \Delta GDPt - 1 + \sum_{n=1}^{k-1} \eta_n \Delta CCCt - 1 + \sum_{p=1}^{k-1} \varphi_{p} \Delta FW Ct - 1 + \] \[\sum_{q=1}^{k-1} \xi_q \Delta FO Ct - 1 + \sum_{r=1}^{k-1} \theta_r \Delta NG Ct - 1 + \sum_{s=1}^{k-1} \gamma_s \Delta GO Ct - 1 + \sum_{w=1}^{k-1} \delta_w \Delta HYD t - 1 + \lambda ECT + \mu \] \hspace{1cm} (14)
The rationale behind adopting this model is that empirical studies have shown that the VECM is best suited for model estimation when economic variables are individually cointegrated, i.e., when there is an excellent long-run relationship between them. Another advantage is that it combines both the short-run dynamic and long-run equilibrium models in a simplified and unified system. At the same time, it guarantees conceptual rigor, accuracy and integrity of data.

3.2 Summary of Data Used.

The minimum total emitted CO$_2$ is 68,581 metric tons per capita and the maximum emitted CO$_2$ is 106,124 metric tons per capita. The average CO$_2$ emission was 90,738.35 metric tons per capita (Table I). The average CO$_2$ emission from transport is 47.1943 metric. The average hydroelectricity consumption is 6,006.462 million kilowatts per hour while the maximum consumption was 8,234.1 million kilowatts per hour, and the minimum was 4,387 million kilowatts per hour (Table I). Nigeria consumed a maximum of 3,295 thousand metric tons of fuel oil annually and a minimum of 406 thousand metric tons per annually. The average consumption of diesel oil was 1,588.038 thousand metric tons per capita.

The average fuel oil consumption in Nigeria annually was 2,025.385 metric tons according to our findings (Table I). Also, the country consumed a maximum of 1,660,131 terajoules of Natural gas, including LNG and a minimum of 152,000 terajoules. The average production of natural gas in Nigeria was 766,348.1 terajoules (Table I). On the other hand, the production of gas oil/diesel oil reaches a maximum of 2,604 thousand metric tons with the lowest of it' kind of 294.

4. Results and Discussions

4.1 ADF Test Result

Based on the result obtained from the Augmented Dickey Fuller unit root test (Table II), all the variables are integrated of order one, indicating that they were not stationary at levels and this is because the critical values of the ADF test statistics at 1%, 5% and 10% level of significance, are in all cases greater than the Augmented Dickey-Fuller (ADF) test statistics. Therefore, in conclusion, all the variables in the model they are integrated of order one and thus, there is a need to check both the long run and the short run relationship that exist among the variables and estimate the error correction model.

4.2 Vector Error Correction Model Estimating the Short-run and Long-run Effect of Energy Consumption on Nigeria’s Environment proxy by Total CO$_2$ Emissions in Nigeria.

The short-run and long-run influence of energy consumption on Nigeria’s environment through total CO$_2$ emissions were estimated using the vector of error correction model and the normalized estimation. The result from the error correction model (Table III) estimated the speed at which the errors that occurred in the short-run period will be corrected. The normalized estimated result (Table IV), on the other hand, explained the long-run influence of energy consumption on Nigeria’s environment through total CO$_2$ emissions. The adjustment term (-0.1965) from the estimated result is not statistically significant (Table III). This suggests that the previous year’s deviation from the long-run equilibrium is corrected for within the current year at a convergence speed of 19.65%. That is, in the long-run, the discrepancy found in the short-run lags difference will be adjusted and converged back to equilibrium at a speed of 19.65%. But this has no statistical significant meaningful.

On the other hand, the result from Table IV shows that in the long run, GDP has a significant long-run tendency of reducing the total CO$_2$ emissions in Nigeria. This result confirmed the validity of the Kuznets Curve (EKC) hypothesis for the climate, which posits an inverted U-shaped association between the degree of environmental destruction and income development. The research also agreed with the suggestion that during the early stages of economic development, environmental destruction rises with the amount of per capita income and only decreases with per capita income increase after reaching a plateau (Acaravci and Ozurk, 2010a). The finding also confirmed the studies by Ben Youssef et al. (2016) that higher income level reduces CO$_2$ emissions.
The result show that charcoal consumption has a significant possibility of reducing total CO₂ emissions in the long-run. The reason is as a result technological improvement in the country manufacturing and construction sector and the change in the method of cooking in the residential buildings in the cities. While fuel wood consumption has a long-run possibility of rising the total CO₂ emissions. This is because fuel wood is the primary energy used for cooking and heating by the majority of Nigerian population, especially in rural areas and the current rate of fuel wood consumption in Nigeria has a potential of reducing environmental quality in the future. This has put more threat to Nigeria’s environment. Similar study also found that emissions were entirely from degradation and loss of forest land (FOASTAT, 2018). This finding refutes Sulaiman et al. (2020) findings which argued that CO₂ emissions declined with an increased in wood biomass consumption.

Furthermore, gas oil consumption has a significant possibility of reducing total CO₂ emissions in the long-run. This is because recently houses and residential buildings in Nigeria especially rural areas often use gas oil to help in setting fire for cooking, local lightning and heating, especially during the rainy season. Therefore, as a result of this, the level of emitted CO₂ in our buildings contributed in reducing the level of environmental quality in the country. The study finding accord with a recent study by Dong, K. et al. (2017) that gas consumption reduces CO₂ emissions but refutes the report by IEA (2018) that residential, commercial, and private services were among the energy users and producers of CO₂ emissions from energy combustion as well as the reports by UNDP (2010) that most of the carbon emission is known to come from the production and consumption of non-renewable oil and gas.

The result also show that natural gas consumption has a significant positive effect on total CO₂ emissions. This signifies that an increase in natural gas consumption has a possibility of rising Nigerian total CO₂ emissions in the future. Also, the implication of the finding is that increasing consumption of natural gas has the potential of threatening Nigeria’s effort to meet the global goal for O₂ emission reduction as outlined in the 2015 Paris Climate Change Conference. This findings refutes the hypothesis that even though refining of natural gas increases CO₂ emissions, it produces 50% less carbon into the atmosphere than other fossil fuels such as coal and petroleum.

Also, the result show that an increase in fuel oil consumption in the long-run, will increase total CO₂ emission. Similar studies also found that more fuel oil consumption accelerates CO₂ emissions in Nigeria (see Sulaiman et al., 2020; and Apergis and James, 2010a). Hydroelectricity consumption on the other hand has a significant negative long-run effect on total CO₂ emissions. This signifies that hydroelectricity has the tendency of reducing total CO₂ emissions in Nigeria and improve the country’s environmental quality. With this result, it signifies that the increasing needs for clean and economic environment is necessary in Nigeria and the country will have to work hard to promote the development of cleaner transition energy such as hydroelectricity in order to meet the demand for optimal energy consumption structure as well as improving environmental quality in the country.

Note that, based on the above results, GDP, charcoal consumption, fuel wood consumption, gas oil consumption, natural gas consumption, fuel oil consumption and hydroelectricity consumption have asymmetric effects on total CO₂ emissions in the long run on average ceteris paribus (see Table IV).

5. Conclusion

The paper explored the environmental impact of energy consumption in Nigeria evidence from CO₂ emission. Though energy consumption in Nigeria played a vital role in promoting the growth of the country’s economy, our study also found that it has a significant impact on the country’s environment through its influence on the level of CO₂ emission. This is because the level of CO₂ emissions in Nigeria was found to be indirectly reflecting the social and economic development in the country. As a result of this, we suggested for the need in the upgrade of energy use in an environmental way such as shifting to a more technological way, for instance, a solar source of energy and hydroelectricity. This also means that Nigeria’s economic growth requires extensive–scale energy exploitation and utilization. After all, the deposited fossil energy is not enough to satisfy the needs of over 200 million Nigerian population and its economic growth. Therefore, this requires excellent improvement in energy efficiency and the development of new energy consumption structure such as renewable energy like solar energy, which should be the
long-run potentials of growth, development and sustainability. This is because the implication of long-run impact of shifting to renewable energy resources in Nigeria is zero emissions economy, health costs reduction by lowering environmental pollution and climate change mitigation. Nigeria’s fossil fuel-based economy will depleted one day and therefore, the need for capital investment in searching for alternatives earlier is of utmost importance because in the long-run, Nigeria needs more carbon space to meet the global standard for developmental needs.

Furthermore, our empirical findings confirm the Environmental Kuznets Curve (EKC) theory for the climate change, which posits that higher income can reduce the level of environmental pollutions in the country after reaching a threshold. This shows that CO$_2$ emissions in Nigeria could be significantly reduced in the long run when the environmental pressure such as deforestation is reduced as well as strengthening the environmental policy of the country. This can guarantee sustainable development and environment in Nigeria through a robust policy implementation by the concerned authorities.

6. Recommendations and Policy Implications

Based on our findings, the study recommends more investment in hydroelectricity and wood biomass energy consumption that can improve the country environmental quality and reduce the potential of CO$_2$ emissions in the country with cleaner economic environment in the future. This can help in achieving energy security and reduce the over-dependence on other polluting energy sources such as fossil fuel like fuel, natural gas and gas oil. Furthermore, since fossil fuel consumption has proven significant drivers facilitating CO$_2$ emissions in Nigeria according to our findings, hydroelectricity and fuel wood consumption through biomass energy can substitute fossil fuel energy in large scale which can also be used in the production of goods and services as well as mitigate the level of CO$_2$ emissions in the country. Therefore, Nigeria can promote the efficiency as well as the sustainability of hydroelectricity and biomass energy consumption to achieve energy security and reduce dependency on the oil-based economy. This can also have a positive impact in diversifying the country’s economy to renewable and cleaner economic environment with good energy strategy.

Also, there is an urgent need to improve the heating system and electricity grid in the country, though recently there is implementation of a smart agricultural system that mitigates climate change by some Governors of the States especially Rivers State and the recent massive reforestation in most of the States of the Federation. Therefore, this clearly show that Nigeria have the potential of achieving clean energy consumption target through efficient utilization of the country’s abundant energy.

Furthermore, while striving to mitigate the environmental problems by promoting hydroelectricity and biomass energy, it is essential to note that cleaner economic growth with good environmental quality should be compromised. This is because the source of hydroelectricity is water and the source of wood biomass is trees which if unsustainably used and harvested can cause environmental degradation due to forest destruction, which can harm the economic environment of Nigeria. Therefore, the study suggest for the improvement in Nigeria’s environment through reduction in deforestation as well as strengthening the environmental policy of the country. This can guarantee a cleaner and safe economic environment in Nigeria.

Also, the need for robust policy implementation by the concerned authorities must be pursued in order to promote and improve the environmental quality that can suit the growth of the economy without trading off the future fate of Nigeria’s environment generation. Therefore, the need for energy development program that can reduce the massive dependence on fossil fuels such as oil and shift to more cleaner and renewable energy is necessary. The government should also invest more on technology for promoting the development of new energy resources and renewable energy sources since Nigeria has enough quantities of untapped renewable energy. However, to reduce the reliance on fossil fuel consumption and wean from an oil-based economy, the Nigeria must create incentives to the renewable energy sector, for instance, the power holding company of Nigeria.

Acknowledgment
We thank Chinese Government Scholarship, Beijing Institute of Technology, School of Management and Economics and People Republic of China for providing us with this opportunity to forward our education and giving us all sorts of support and guidance. We are extremely thankful to my supervisor, Professor Wei Yi-Ming for his endless support and guidance.

Ethical Approval
Not Applicable

Consent to Participate
Not Applicable

Consent to Publish
Not Applicable

Authors Contribution
Abubakar Sadiq Ibrahim being the author of the paper originally draft and write the manuscript whereas Dan Cudjoe is responsible for editing, and formatting of the manuscript.

Funding
There is no funding

Competing Interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and materials
The data will be available on request

References

- Abidin, I.S.Z., Haseeb, M. (2018), Malaysia-Gcc bilateral trade, macroeconomic indicators and Islamic finance linkages: A gravity model approach. Academy of Accounting and Financial Studies Journal, 22, 1-7.
- Acaravci, A., & Ozturk, I. (2010a). On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy, 35, 5412-5420.
- African, C. (2016). Greenhouse Gas Emissions in Nigeria. 2014, 10–11.
- Akuru U.B., Okoro O.I. (2014) "Renewable Energy Investment in Nigeria: A Review of the Renewable Energy Master Plan," J. Energy South. Afr. 25, 3, (2014).
- Alam, M. M., Murad, M. W., Noman, A. H., & Ozturk, I. (2016). Relationships among Carbon Emissions, Economic Growth, Energy Consumption and Population Growth: Testing Environmental Kuznets Curve Hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 477-479.
- Alkhathlan , K., & Javid, M. (2013). Energy consumption, carbon emissions and economic growth in Saudi Arabia: An aggregate and disaggregate analysis. Energy Policy(62), 1525–1532.
- Al-Fatlawi, S.H. (2018). Nationalists and environmentalists which are anti-globalization and the WTO. International Journal of Asian Social Science, 8(5), 256-264.
• Apergis, N., & Payne, J. E. (2010a). Renewable energy consumption and growth in Eurasia. Energy Economics, 32.

• Apergis, N., & Payne, J. E. (2010b). The emissions, energy consumption, and growth nexus: Evidence from the Energy Policy, 38, 650–655.

• Apergis, N., & Payne, J. E. (2014). Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model. Energy Economics, 42, 226–232.

• Azam, M., Khan, A.Q., Bakhtyar, B., Emirullah, C. (2015a), The causal relationship between energy consumption and economic growth in the ASEAN-5 countries. Renewable and Sustainable Energy Reviews, 47, 732-745.

• Baran, M., Yilmaz, A. (2018), A study of local environment of Harran historical domed houses in terms of environmental sustainability. Journal of Asian Scientific Research, 8(6), 211-220.

• Bella, G., Massidda, C., & Mattana, P. (2014). The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries. Journal of Policy Modeling, 36, 970–985.

• Ben Youssef, A., Hammoudeh, S., & Omri, A. (2016). Simultaneity modeling analysis of the environmental Kuznets curve hypothesis. Energy Economics, 60(November), 266–274.

• Chandran, V.G.R., Tang, C.F. (2013), The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renewable and Sustainable Energy Reviews, 24, 445-453.

• Dong, K., Sun, R., Hochman, G., Zeng, X., & Li, H. (2017). Impact of natural gas consumption on CO2 emissions: Panel data evidence from China’s provinces. Journal of Cleaner Production, 162, 400–410.

• Farhani, S., Shahbaz, M., Sbia, R., & Chaibi, A. (2014). What does MENA region initially need: Grow output or mitigate CO2 emissions? Economic Modelling, 38, 270–281.

• Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT), (2018). Nigeria, Emissions – Land use total Emissions – Agriculture total, viewed on August 19, 2018.

• Ghosh, S. (2010). Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach. Energy Policy, 38, 3008–3014.

• Hwang, J.H., Yoo, S.H. (2012), Energy consumption, CO2 emissions, and economic growth: Evidence from Indonesia. Quality and Quantity, 48(1), 63-73.

• https://doi.org/10.1016/j.eneco.2016.10.005

• https://twitter.com/Belshagy/status/1333902647540199425?s=5

• https://statista.com/statistics/1165865/contribution-of-oil-sector-to-gdp-in-nigeria/

• International Energy Agency. (2018), Indonesia (Association country). Available from: https://www.iea.org/countries/non-membercountries/indonesia. [Last retrieved on 2018 Feb 20].

• Kebede, S. (2017). Modeling Energy Consumption, CO2 Emissions and Economic Growth Nexus in Ethiopia: Evidence from ARDL. Approach to Cointegration and Causality Analysis. Munich Personal RePEc Archive, 28953.

• Kim , S.-w., Lee , K., & Nam, K. (2010). The relationship between CO2 emissions and economic growth: The case of Korea with nonlinear evidence. Energy Policy, 38, 5938–5946.

• Kim, S. K., & Baek, J. (2011). The Environmental Consequences of Economic Growth Revisited. Economics Bulletin, 31(2), 1198-1211.

• Newsom .C. (2012) "Renewable Energy Potential in Nigeria: Low-carbon Approaches to Tackling Nigeria's Energy Poverty," International Institute for Environmental Development, 2012.
• Odhiambo, N. M. (2011). Economic Growth and Carbon Emissions in South Africa: An Empirical Investigation. International Business & Economics Research Journal, 10(7), 75-84.

• Omri, A. (2016). Simultaneity modeling analysis of the environmental Kuznets curve hypothesis. Energy Economics, 60, 266–274.

• Oyedepo, S. O. (2012). On energy for sustainable development in Nigeria. Renewable and Sustainable Energy Reviews, 16(5), 2583–2598. https://doi.org/10.1016/j.rser.2012.02.010

• Paresh, K., & Narayan, S. (2010). Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy, 38, 661–666.

• Rafindadi, A. A. (2016). Revisiting the concept of environmental Kuznets curve in period of energy disaster and deteriorating income: Empirical evidence from Japan. Energy Policy, 94, 274–284.

• Saboori, B., & Sulaiman, J. (2013). CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach. Energy, 55, 813-822.

• Saboori, B., Sulaiman, J., Mohd, S. (2012). Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy, 51, 184-191.

• Shahbaz, M., Hye, Q. A., Tiwari, A. K., & Leitão, N. C. (2013). Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renewable and Sustainable Energy Reviews, 25, 109–121

• Sulaiman, C., Abdul-rahim, A. S., & Amechi, C. (2020). Does wood biomass energy use reduce CO2 emissions in European Union member countries? Evidence from 27 members. Journal of Cleaner Production, 253, 119996. https://doi.org/10.1016/j.jclepro.2020.119996

• UNDP (2010). Human Development Report 2010. United Nations Development Programme. New York: Oxford University Press.

• World Resources Institute Climate Analysis Indicators Tool (WRI CAIT 4.0, 2017). Cited in African, C. (2016). Greenhouse Gas Emissions in Nigeria. 2014, 10–11.

• Yavuz, N. Çil, (2014) “CO2 Emission, Energy Consumption, and Economic Growth for Turkey: Evidence from a Cointegration Test With a Structural Break”, Energy Sources, Part B: Economics, Planning, and Policy, 9:3, 229235, DOI: 10.1080/15567249.2011.567222. Crossref.

• Zhang, W.B. (2017), Economic development and environmental change with endogenous birth and mortality rates. Asian Journal of Economic Modelling, 5(1), 77-97.

• Zomorrodi, A., Zhou, X. (2017), Impact of FDI on environmental quality of China. International Journal of Business, Economics and Management, 4(1), 1-15.