The conducted studies of emerging situations of dangerous approaching of several ships revealed the existence of classification of ships that are target ships relative to the base ship. These target ships can be dangerous, safe, safe but dangerous under certain conditions. In turn, dangerous that require the maneuver of standard collision avoidance, as well as the targets that require the maneuver of emergency collision avoidance. It is proved that the specified classification of ships can be carried out using the belonging of target ships to different subsets, which depend on their motion parameters relative to the base ship.

This made it possible to view a group of several ships as a set of targets.

Experimental studies using computer simulations confirmed that decomposition of the ship approaching situation into subsets, each of which is different from the other in relative motion parameters, is possible. These parameters are relative course, bearing, maximum allowable closest point of approach for normal and emergency maneuvering, time until reaching the closest point of approach. The speed ratio between of the base and target ships, the ratio of the closest point of approach and the maximum allowable distance also affect the belonging to a certain subset.

This suggests that there is a clear dependence of the collision probability of ships on their belonging to different subsets, which can be calculated for each ship participating in the collision avoidance maneuver. It is shown that when the base ship performs the collision avoidance maneuver, there are changes in relative motion parameters, and hence the belonging of surrounding target ships to different subsets.

Thus, there are grounds to argue that using the specified classification of target ships, preliminary forecasted belonging of ships to different subsets can be calculated. The probability of dangerous approaching and/or collision of ships can also be calculated for each course alternation of the base ship relative to each of the surrounding target ships.

Keywords: navigation safety, ship collision avoidance, approaching hazard assessment, collision avoidance strategy.

References

1. Bulgakov, A. Yu., Alekseychuk, B. M. (2014). Manevry raskhozhdeniy trekh sudov s izmeneniem ih kursov: Problemy tekhniki: Naukov-vyrobyuchyi zhurnal, 1, 75–81.

2. Burmaka, I., Kalynychenko, G., Kulakov, M. (2017). Warning of collisions of vessels by the methods of external control of process of divergence. Science and Education a New Dimension. Natural and Technical Sciences, 14 (132), 56–60.

3. Burmaka, I. A., Kulakov, M. A., Kalinischenko, G. M. (2017). Opredelenie dopustimogo mnozhestva manevrov raskhozhdeniya sudov izmenieniem skorostej. Sushchini tehnologii. Proektuvannya, pobudovy, eksploatatsi i remontu suden, morskykh tehnichnykh zasobiv i inzhenernykh spudor: Matyrialy Vseukrainskoi nauk.-tekh. konf. Mykolaiv: MUK, 21–23.

4. Pjatakov, E. N., Kapanskiy, S. V., Volkov, E. L. (2017). Coordination of three ships passing by safely. Sudovozhdenie, 27, 185–193.

5. Benedict, K., Kirchhoff, M., Gluch, M., Fischer, S., Schaub, M., Baldaufl, M., Klaes S. (2014). Simulation Augmented Maneuvering Design and Monitoring: a New Method for Advanced Ship Handling. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 8 (1), 131–141. doi: https://doi.org/10.12716/1001.08.01.15

6. Lacki, M. (2016). Intelligent Prediction of Ship Maneuvering. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 10 (3), 511–516. doi: https://doi.org/10.12716/1001.10.03.17

7. Zhu, M., Hahn, A., Wen, Y., Bolles, A. (2017). Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 11 (1), 23–29. doi: https://doi.org/10.12716/1001.11.01.01

8. Lazarevskaya, A. (2017). Multi-criteria ACO-based Algorithm for Ship’s Trajectory Planning. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 11 (1), 31–36. doi: https://doi.org/10.12716/1001.11.01.02

9. Xu, X., Geng, X., Wen, Y. (2016). Modeling of Ship Collision Risk Index Based on Complex Plane and Its Realization. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 10 (2), 231–256. doi: https://doi.org/10.12716/1001.10.02.07

10. Horauer, S., Hahn, A., Blaich, M., Reuter, J. (2015). Trajectory Planning with Negotiation for Maritime Collision Avoidance. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 9 (3), 335–341. doi: https://doi.org/10.12716/1001.09.03.05

11. Burmaka, I. A., Burmaka, I. A., Pjatakov, E. N. (2016). Upravlenie sudami v situatsii opasnogo sblizhenniya. Saarbryukkan: LAP LAMBERT Academic Publishing, 585.

12. Tsymbal, N. N., Tyupikov, E. E., Tytsym, N. N. (2007). Gibkie strategii raskhozhdeniya sudov. Odessa: KP OGT, 424.

DOI: 10.15587/1729-4061.2019.165684

DEVELOPMENT OF A DECISIONMAKING METHOD TO FORM THE INDICATORS FOR A UNIVERSITY DEVELOPMENT PLAN (p. 12-21)

Valentina Kulikova
M. Kozybayev North Kazakhstan State University, Petropavlovsk, Kazakhstan
ORCID: http://orcid.org/0000-0001-8198-2672

Kainizhama Ilkassova
M. Kozybayev North Kazakhstan State University, Petropavlovsk, Kazakhstan
ORCID: http://orcid.org/0000-0002-8330-4282

Albina Kazanbayeva
M. Kozybayev North Kazakhstan State University, Petropavlovsk, Kazakhstan
ORCID: http://orcid.org/0000-0002-3077-3499

The problems of decision-making support in the course of designing a university development plan have been studied. This is important because modern tendencies in the development of higher educational institution are constantly changing and getting more complicated. Organization management under modern conditions is becoming adaptive, proactive, strategic, requiring a revision of
management tools. The basis of strategic planning is indicative planning, which in turn is a form that solves the problem of imperfect information through the indicators that describe an object, a process, or a phenomenon. Effective management of the activity of a higher educational institution in the framework of planning includes the forms and the methods for creating a system of indicators that reflect the picture of the organization state.

The process of the development of a university development plan faces the problem of selecting and ranking the indicators of the development of a higher educational institution, covers both tangible and intangible sides and is a multi-criterion problem of decision making. To solve this problem, it is necessary to select a method for decision making support to form the system of indicative indicators. Evaluation of indicative indicators are carried out through the construction of a cognitive map, a priori ranking and the hierarchy analysis method, involving experts from the field of higher education management. The results obtained are compared taking into account the strengths and weaknesses of the selected methods. The decision made on the choice of the method for the formation of indicators implies the joint use of the hierarchy analysis method and the construction of a cognitive map. During the hybrid application of the methods, the mutual influence of the indicators and the compliance of the indicators with directions of the university development should be taken into account. It is not worthwhile applying a priori ranking in order to form an indicator because there are no data on the joint influence of several studied indicators on each other.

The results of the study are aimed at simplifying the decision-making process in planning consideration of bottlenecks when designing a development plan, improvement of operation and learning quality, effective use of tangible and intangible resources.

Keywords: assessment, system, indicator, management, strategy; development, hierarchy, cognitive map, decision.

References

1. Kaplan, R. S., Norton, D. P. (2010). Shalansirovannaya sistema poka-

zateley. Ot strategii k dezystiyu. Moscow: Olimp-Biznes, 320.

2. Strategicheskikh plan razvitiya. Severo-Kazahstanskogo gosudarst-

vennogo universiteta im. M. Kozybaeva na 2016–2019 gody. Petrovlovsk, 65. Available at: http://www.nku.ru/files/docu-

ments/stratplan_2016-2019.pdf

3. Zakon Respubliki Kazachstan «Ob obrazovanii». Available at: http://

online.zakon.kz/Document/?doc_id=30118747

4. Gosudarstvennyaya programma razvitiya obrazovaniya Respubliki

Kazachstan na 2011–2020 gody. Available at: http://ru.govem-

te.ru/ru/programmy/2254-gosudarstvennaya-programma-razvitiya-

obrazovaniya-respubliki-kazachstan-na-2011-2020-gody.html

5. Astafurova, I. S., Antonenkova, S. Yu. (2014). Otsenka metodik

formirovaniya sistemy pokazateley deyatel'nosti organizatsiy. Jour-

nal of Economy and entrepreneurship, 12, 850–854.

6. Metodologicheskii reformatsionnoi po provedeniyu analiza finansov-

hojavystvennykh deyatel'nosti organizatsiy. Available at: http://docs.

cntd.ru/document/42035709

7. Ionova, A. F., Seleznova, N. V. (2006). Finansoviy analiz. Moscow:

Prospekt, 625.

8. Piv'marat' A. F. (2006). Kak otsenit' effektivnost’ roboty. General'nyi

direktor, 2.

9. Razrabotka i vnedrenie shalansirovannoy sistemy pokazateley. Available:

at: https://www.mag-consulting.ru/as/asp/maps

10. Hladchenko, M. (2015). Balanced Scorecard – a strategic manage-

ment system of the higher education institution. International Jour-

nal of Educational Management, 29 (2), 167–176. doi: https://

doi.org/10.1108/ijem-11-2013-0164

11. Golovko, N. V., Zinevich, O. V., Ruzankina, E. A. (2018). University’s

third mission and stakeholder governance for regional development.

Comparative Politics Russia, 9 (1), 5–17. doi: https://doi.org/

10.24411/2221-3279-2018-00001

12. Ponomarenko, T., Tohochynskyi, O., Kaminska, T., Kadol, L., Okhri

Strategicheskiy plan razvitiya. Severo-Kazahstanskogo gosudarst-

vennogo universiteta im. M. Kozybaeva na 2016–2019 gody. Petrovlovsk, 65. Available at: http://www.nku.ru/files/docu-

ments/stratplan_2016-2019.pdf

13. Mazelis, L., Lavrenyuk, S., Osveiko, P. V., Kamerling, R., Ton, J.,

Vis, L. et al. (2019). New indicators and indexes for benchmarking

university–industry–government innovation in medical and life sci-

ence clusters: results from the European FP7 Regions of Knowledge

HealthTIES project. Health Research Policy and Systems, 17 (1).

doi: https://doi.org/10.1186/s12961-019-0414-5

15. Al-Zoubi, M. T. (2012). Generating benchmarking indicators for

employee job satisfaction. Total Quality Management & Business

Excellence, 23 (1), 27–44. doi: https://doi.org/10.1080/14783363.2

011.637780

16. Alonso, K. R., Morales, G. B. C., Lopez, C. J. G. (2015). Indicators for

the strategic control at cienfuegos university. Revista Universidad Y

Sociedad, 7 (3), 56–62.

17. Saule, K., Indira, U., Aleksander, B., Gulnaz, Z., Zhanl, M., Ma-

dina, I., Györik, G. (2018). Development of the information and ana-

lytical system in the control of management of university scientific and

educational activities. Acta Polytechnica Hungarica, 15 (4), 27–44.

18. Pyrysheva, T. N. (2014). Analiz strategicheskogo planirovaniya

deyatel'nosti kazahstanskikh vuzov. Nauchnnoe soobshchestvo studen-

tov XXI stoletiya. Ekonomicheskie nauki, 2 (17), 76–85. Available at: http://siab.info/archive/economy/2(17).pdf

19. Silov, V. B. (1995). Priymatit' strategicheskikh resheniy v nechetkoy

obstanovke. Moscow: INPRO-RES, 22.

20. Kulikov, V. P., Iklausova, K. F. (2019). Cognitive model analysis of

the development strategy of higher educational institution. Vestnik

PGU, 1, 196–207.

21. Belov, P. G. (2019). Upravlenie riskami, sistemnyi analiz i mod-

elirovanie. Moscow: Izdatel'stvo Yurayt, 272.

22. Taha, H. (2005). Vedenie v isledovanie operatsiy. Moscow: Izdatel'

skiy dom "Vil'yame", 912.

23. Saaty, T. L. (2008). Decision making with the analytic hierar-

chy process. International Journal of Services Sciences, 1 (1), 83.

doi: https://doi.org/10.1504/ijssci.2008.017590

24. Porter, M. E. (2005). Konkurentnaya strategiya: Metodika analiza

otrasley i konkurentov. Moscow: AL'pina Biznes, 320.

DOI: 10.15587/1729-4061.20170212

**ANALYTICAL STUDY OF MULTIFRACTAL INVARIA

TIAL ATTRIBUTES OF TRAFFIC FLOWS (p. 22-29)**
The motor transport complex is formed by a multitude of motor traffic flows and a network of automobile roads. Transition to a new level of the motor functioning transport complex requires development of new methods of formalizing the collective interaction of all road users. This is connected to an increase in the number of autonomous vehicles in joint traffic. We established that the transport-technological self-organization of motor transport flows is a multifractal structure. Such a structure is reliably enough described by regular hierarchical – sets of Cantor regarding the parameter of the dynamic dimension of an individual vehicle. We proved that the main multifractal attributes of road traffic flows are their fragmentation parameter and fractal dimensionality. These attributes are functionally determined by the speed, traffic density and interval of vehicles movement. Accordingly, there are three modes of vehicles movement. The absence of mutual obstacles between vehicles, low speed and low traffic intensity characterizes free movement. Such a movement determines the boundary of the collective and synchronized flows. Collective movement is characterized by a high density of traffic flow, and speed is limited by the possibilities of the road. If the indicators of the technical and operational condition of the road become decisive, we get a saturated synchronized flow. Analytical studies established a log-exponential functional relationship between the fragmentation parameter of the motor flow and the fractal dimension. We found that the combination of several road traffic flows in the case of multi-lane traffic management determines the dynamics of changes in the basic multifractal characteristics of vehicles variety. At the same time, an increase in the number of road lanes leads to an increase in the fragmentation parameter and a decrease in the fractal dimension of motor traffic flows aggregate. We considered the possibility of creating appropriate navigation algorithms for the variable optimization of the fractal attributes of road traffic. In this case, safe transport and technological modes of the motor transport complex are provided. The same applies to the conditions for increasing the part of autonomous robotic unmanned vehicles in the composition of motor vehicles.

Keywords: traffic flow, unmanned vehicle, Cantor α-set, multifractality, fragmentation parameter.

References
1. Sheludchenko, B. A. (2014). Vstup do konstruiuvannya pryrodno-tekhnomohennikh heoekosistem (landshaftno-terytorialniy aspekt). Kamianets-Podilskyi: Vyshovje pidatv., 170.
2. Yang, S., Wu, J., Xu, Y., Yang, T. (2019). Revealing heterogeneous spatiotemporal traffic flow patterns of urban road network via tensor decomposition-based clustering approach. Physica A: Statistical Mechanics and its Applications, 526, 120688. doi: https://doi.org/10.1016/j.physa.2019.03.053
3. Chen, X., He, Z., Wang, J. (2018). Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition. Transportation Research Part C: Emerging Technologies, 86, 39–77. doi: https://doi.org/10.1016/j.trc.2017.10.023
4. Kawasaki, Y., Hara, Y., Kuwahara, M. (2019). Traffic state estimation on a two-dimensional network by a state-space model. Transportation Research Part C: Emerging Technologies. doi: https://doi.org/10.1016/j.trc.2019.03.016
5. Balhanov, V. K. (2013). Osnovy fraktal'noy geometrii i fraktal'nogo ischisleniya. Ulan-Ude, 224.
6. Babkov, V. F. (1980). Landshaftnoe proektirovanie avtomobil'nyh dorog. Moscow: Transport, 189.
A characteristic feature of railroads with such a traffic system is the difficulty in predicting the stages of a transportation process, which necessitates the development of effective methods of forecasting. Based on correlation analysis, we have determined the dependence of the general macro-characteristics of train flow and individual parameters of a freight train on the duration of its movement along a section. It has been proposed to represent the dependence of predicted duration of train movement along a railroad section on the following factors: traffic intensity and density along a section, the proportion of passenger trains in total train flows, the length of a train and its gross weight. All experimental studies are based on actual data on the operation of the distance Osnova-Lybyotyn at the railroad network AO Ukrzaliznytsya.

Based on a comparative analysis, using the indicators for accuracy and adequacy of several regression methods to predict ETA of cargo dispatch, we have chosen the regression model based on an artificial neural network MLP. To derive the MLP structure, a cross-validation method has been applied, which implies the validation of a mathematical model reliability based on the criteria of accuracy MAE and adequacy – F-test. The structure of MLP has been obtained, which consists of five hidden layers. We predicted the time that it would take for a train to travel in facing direction along the Osnova-Lybyotyn section. For a given projection, the value for MAE was 0.0845, which is a rather high accuracy for this type of problems, and confirms the effectiveness of MLP application to solve the task on predicting a cargo dispatch ETA.

The current study provides a possibility to design in the future an automated system for predicting a cargo dispatch ETA for a mixed-traffic railroad system in which freight trains depart not complying with a regulatory schedule.

Keywords: railroad network, expected time of arrival, artificial neural network.

References

1. Prokhorenko, A., Parkhomenko, L., Kyman, A., Matsink, V., Stepanova, J. (2019). Improvement of the technology of accelerated passage of low-capacity car traffic on the basis of scheduling of grouped trains of operational purpose. Procedia Computer Science, 149, 86–94. doi: https://doi.org/10.1016/j.procs.2019.01.111
2. Lomotko, D. V., Alyoshinsky, E. S., Zambrybor, G. G. (2016). Methodological Aspect of the Logistics Technologies Formation in Reforming Processes on the Railways. Transportation Research Proce-dia, 14, 2762–2766. doi: https://doi.org/10.1016/j.trpro.2016.05.482
3. Cameron, M., Brown, A. (1995). Intelligent transportation system Mayday becomes a reality. Proceedings of the IEEE 1995 National Aerospace and Electronics Conference. NAECON 1995. doi: https://doi.org/10.1109/naec.1995.321962
4. Chien, S. I.-J., Ding, Y., Wei, C. (2002). Dynamic Bus Arrival Time Prediction with Artificial Neural Networks. Journal of Transportation Engineering, 128 (5), 429–438. doi: https://doi.org/10.1061/(asce)0733-947x(2002)128:5(429)
5. Aylhan, S., Cosats, P., Samet, H. (2018). Predicting Estimated Time of Arrival for Commercial Flights. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – KDD ’18. doi: https://doi.org/10.1145/3219819.3219874
6. Wang, Z., Liang, M., Delahaye, D. (2018). A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation Research Part C: Emerging Technologies, 95, 280–294. doi: https://doi.org/10.1016/j.trc.2018.07.019
7. Verner, G., Yelnikova, L. (2015). Study of efficiency of using neural networks when forecasting the train arrival at the technical stations. Eastern-European Journal of Enterprise Technologies, 3 (3 (75)), 23–27. doi: https://doi.org/10.15587/1729-4061.2015.42402
8. Lavrukhin, O. V. (2014). The formation of the approaches to implement the system of decision support for operational control they distributed artificial intelligence. Collection Of Scientific Works of Dnipro National University of Railway Transport named after academician Lazaryan. Transport Systems and Transportation Technologies, 8, 88–99. doi: https://doi.org/10.15802/cstt2014/38905
9. Bardas, O. O. (2016). Improving the intelligence technologies of train traffic’s management on sorting stations. Collection Of Scientific Works of Dnipro National University of Railway Transport named after academician Lazaryan. Transport Systems and Transportation Technologies, 11, 9–15. doi: https://doi.org/10.15802/cstt2016/76818
10. Kyrychenko, H. I., Strelko, O. H., Berdnychenko, Yu. A., Ptrykovets, O. V., Kyrychenko, O. A. (2016). Scenarios modeling of cargo movement in the supply chains. Collection Of Scientific Works of Dnipro National University of Railway Transport named after academician Lazaryan. Transport Systems and Transportation Technologies, 12, 32–37. doi: https://doi.org/10.15802/cstt2016/85882
11. Barbour, W., Samal, C., Kuppa, S., Dubey, A., Work, D. B. (2018). On the Data-Driven Prediction of Arrival Times for Freight Trains on U.S. Railroads. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi: https://doi.org/10.1109/itsc.2018.8569406
12. Martin, L. J. W. (2016). Predictive Reasoning and Machine Learning for the Enhancement of Reliability in Railway Systems. Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, 178–188. doi: https://doi.org/10.1007/978-3-319-33951-1_13
13. Chen, Y., Rilett, L. R. (2017). Train Data Collection and Arrival Time Prediction System for Highway–Rail Grade Crossings. Transportation Research Record: Journal of the Transportation Research Board, 2608 (1), 36–45. doi: https://doi.org/10.3141/2608-05
14. Nguyen-Phuong, D. Q., Currie, G., De Gruyter, C., Young, W. (2017). New method to estimate local and system-wide effects of level rail crossings on network traffic flow. Journal of Transport Geography, 60, 89–97. doi: https://doi.org/10.1016/j.jtrangeo.2017.02.012
15. Rail Car Asset Management F-MAN IST-2000-29542 Deliverable D16 Final report. Available at: https://trimis.ec.europa.eu/sites/default/files/project/documents/20060411_172123_25402_F-MAN%20Final%20Report.pdf
16. Estimated time of arrival. ETA programme. Available at: http://www.rme.eu/tm-tpm/estimated-time-of-arrival
17. But’ko, T., Prokhorenko, A. (2013). Investigation into Train Flow System on Ukraine’s Railways with Methods of Complex Network Analysis. American Journal of Industrial Engineering, 1 (3), 41–45.
18. Levin, D. Yu. (1988). Optimizatsiya potokov pozeyov. Moscow: Transport, 175.
19. Gorobchenko, O., Fomin, O., Gritsuk, I., Saravas, V., Grytsuk, Y., Bulgakov, M. et. al. (2018). Intelligent Locomotive Decision Support System Structure Development and Operation Quality Assessment. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (EIPS). doi: https://doi.org/10.1109/ieps.2018.8559487
20. Instruktsiya zi skladannia brafiaka rukhuv na zaliznytsakh Ukrainy: zatv. nakazom Ukrajinatsnyi vid 5 kvitnia 2002 r. No. 170-Ts (2002). Kyiv: Transport Ukrainy, 164.
21. Greenberg, H. (1959). An Analysis of Traffic Flow. Operational Research, 7 (1), 79–85.
22. Spanos, A. (1999). Probability Theory and Statistical Inference: Econometric Modeling with Observational Data. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511754081
using the elements from a fuzzy sets theory in the process of diagnosing the loyalty of consumers of motor transport services (p. 39-49)

Iryna Fedotova
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-3277-0224

Oksana Kryvoruchko
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0967-7379

Volodymyr Shynkarenko
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0702-9781

Nadiia Bocharova
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-4371-0187

Liudmyla Sotnychenko
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-4537-1553

Svetlana Dimitrakieva
Technical University of Varna, Varna, Bulgaria
ORCID: http://orcid.org/0000-0001-9639-9557

We developed an approach to diagnosing the complex loyalty of consumer of motor transport services based on the perceptual and behavioral characteristics with application of the theory of fuzzy sets. Diagnosing the level of consumer loyalty is the basis of a cyclical process of managing the loyalty of consumers of a motor transport company (MTC) in the field of freight transportation. Formation of loyalty depends on subjective perception by a consumer; therefore, the usual quantitative methods of analysis are not effective under conditions of fuzzy (incomplete) information. Application of the theory of fuzzy sets to the analysis and evaluation of the consumer loyalty makes it possible to obtain fundamentally new models and methods of analysis.

The method of data aggregation based on the fuzzy classifier makes it possible to proceed from quantitative and qualitative values of individual indicators of perception and behavior of a consumer to complex indicators of loyalty. We obtained the empirical data used in the present study by questioning consumers. The study is based on actual data on the transportation of goods for each customer of a company. We performed quantitative assessment of integral factors of perceptual (attitudinal), behavioral and complex customer loyalty according to the standard matrix assessment scheme. A three-level classification has been applied with “Low level,” “Middle level,” and “High level” subset-terms of “Loyalty level” linguistic variable to recognize the level of these factors. It was found that most consumers have an average and high level of loyalty to MTC in the assessment based on results of estimating the level of customer loyalty of the motor transport company.

The use of fuzzy sets makes it possible to identify the mutual influence of perceptual and behavioral factors on formation of the complex consumer loyalty comprehensively, as well as to simulate different situations depending on the predicted indicators of interaction with a consumer. It is a prerequisite for the development of loyalty of consumers of motor transport services through the development of loyalty programs and individual strategies for interaction.

Keywords: fuzzy sets, linguistic variable, membership function, perceptual (attitudinal) loyalty, behavioral loyalty.

References
1. Popova, N. V., Shynkarenko, V. G. (2016). Development of the stakeholder marketing at the enterprises in transportation and logistic system. Marketing and Management of Innovations, 3, 66–75. Available at: http://mimi.fem.sumdu.edu.ua/sites/default/files/mimi2016_3_66_75.pdf
2. Fedotova, I., Shynkarenko, V., Kryvoruchko, O. (2018). Development of the Viable System Model of Partner Relationship Management of the Company. International Journal of Engineering & Technology, 7 (4.3), 445–450. doi: https://doi.org/10.14419/ijet.v7i4.3.15913
3. Bloemer, J. M., Kasper, H. D. P. (1995). The complex relationship between customer satisfaction and brand loyalty. Journal of Economic Psychology, 16 (2), 311–329. doi: https://doi.org/10.1016/0167-4870(95)90007-b
4. Homburg, C., Giering, A. (2001). Personal characteristics as moderators of the relationship between customer satisfaction and loyalty – an empirical analysis. Psychology and Marketing, 18 (1), 43–66. doi: https://doi.org/10.1002/1529-6793(200101)18:1<43::aid-mar3>3.0.co;2-i
5. Lam, S. Y., Shankar, V., Erramilli, M. K., Murthy, B. (2004). Customer Value, Satisfaction, Loyalty, and Switching Costs: An Illustration From a Business-to-Business Service Context. Journal of the Academy of Marketing Science, 32 (3), 293–311. doi: https://doi.org/10.1177/0092070304226330
6. Chen, S.-C. (2015). Customer value and customer loyalty: Is competition a missing link? Journal of Retailing and Consumer Services, 22, 107–116. doi: https://doi.org/10.1016/j.jretconser.2014.10.007
7. Popova, N., Shynkarenko, V., Kryvoruchko, O., Žeman, Z. (2018). Enterprise management in VUCA conditions. Economic Annals-XXI, 170 (3-4), 27–31. doi: https://doi.org/10.21003/ea.v170-05
8. Reichheld, F. F., Sasser, W. E. (2010). Zero defections: quality comes to services. Harvard business review, 68 (5), 105–111.
9. Tarasov, A. A., Fayzrahmanov, P. A. (2010). Problema otsenki loyal’nosti klientov negosudarstvennogo pensionnogo fonda v sisteme upravleniya vzaimootnosheniyami s klientami. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Elektrotekhnika, informatissione tehnologii, sistemy upravlennya, 4, 12–21.
10. Gergott, T. Y. (2011). Empiricheskie isследovaniya loyal’nosti klientov. Moscow: Vl’yam, 243.
11. Hayes, B. E. (2011). Lessons in Loyalty Quality Progress, 31.
12. Alok, K. R., Srivastava, M. (2013). The Antecedents of Customer Loyalty: An Empirical Investigation in Life Insurance Context. Journal of Competitiveness, 5 (2), 139–163. doi: https://doi.org/10.7441/joc.2013.02.10
13. Noskova, E. V., Romanova, I. M. (2015). Evaluation of customer loyalty to different format retailers. Journal of Internet Banking and Commerce. Available at: http://www.iacommercecentral.com/open-access/evaluation-of-customer-loyalty-to-different-format-retailers.php?aid=62413#6
14. Korneta, P. (2018). Net promoter score, growth, and profitability of transportation companies. International Journal of Management...
and Economics, 54 (2), 136–148. doi: https://doi.org/10.2478/jime-2018-0013
15. Faed, A., Hussain, O. K., Chang, E. (2014). A methodology to map customer complaints and measure customer satisfaction and loyalty. Service Oriented Computing and Applications, 8 (1), 33–53. doi: https://doi.org/10.1007/s11761-013-0142-6
16. Minser, J., Webb, V. (2010). The Benefits: Application of Customer Loyalty Modeling in Public Transportation Context. Transportation Research Record: Journal of the Transportation Research Board, 2144 (1), 111–120. doi: https://doi.org/10.3141/2144-13
17. Sun, S. (2018). Public Transit Loyalty Modeling Considering the Effect of Passengers’ Emotional Value: A Case Study in Xiamen, China. Journal of Advanced Transportation, 2018, 1–12. doi: https://doi.org/10.1155/2018/4682591
18. Pratwi, P. U. D., Landra, N., Kasuma, G. A. T. (2018). The Construction of Public Transport Service Model to Influence the Loyalty of Customer. Scientific Research Journal, 6 (2), 56–63.
19. Shiftan, Y., Barlach, Y., Shefer, D. (2015). Measuring Passenger Loyalty to Public Transport Modes. Journal of Public Transportation, 18 (1), 1–16. doi: https://doi.org/10.5038/2375-0901.18.1.7
20. Juga, J., Juntunen, J., Grant, D. B. (2010). Service quality and its relation to satisfaction and loyalty in logistics outsourcing relationships. Managing Service Quality: An International Journal, 20 (6), 496–510. doi: https://doi.org/10.1108/09604521011092857
21. Kilibarda, M., Andrejc, M. (2012). Logistics Service Quality Impact on Customer Satisfaction and Loyalty. 2nd Olympus International Conference on Supply Chains. Katerini. Available at: https://www.researchgate.net/publication/259713993_Logistics_Service_Quality_Impact_on_Customer_Satisfaction_and_Loyalty
22. Gil-Saura, I., Berenguer-Contri, G., Ruiz-Molina, E. (2018). Satisfaction and loyalty in b2b relationships in the freight forwarding industry: adding perceived value and service quality into equation. Transport, 33 (5), 1184–1195. doi: https://doi.org/10.3846/transport.2018.6648
23. Leong, L.-Y., Hew, T.-S., Lee, V.-H., Ooi, K.-B. (2015). An SEM–artificial-neural-network analysis of the relationships between SERVPERF, customer satisfaction and loyalty among low-cost and full-service airline. Expert Systems with Applications, 42 (19), 6620–6634. doi: https://doi.org/10.1016/j.eswa.2015.04.043
24. Ansari, A., Riazi, A. (2016). Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies. Future Business Journal, 2 (1), 15–30. doi: https://doi.org/10.1016/j.fbj.2016.04.001
25. Rahul, T., Mahi, R. (2014). An adaptive nonlinear approach for estimation of consumer satisfaction and loyalty in mobile phone sector of India. Journal of Retailing and Consumer Services, 21 (4), 570–580. doi: https://doi.org/10.1016/j.jretconser.2014.03.009
26. Corsi, A. M., Rungie, C., Casini, L. (2011). Is the polarization index a valid measure of loyalty for evaluating changes over time? Journal of Product & Brand Management, 20 (2), 111–120. doi: https://doi.org/10.1108/10604211112111567
27. Makurina, A. O. (2015). Otsenka loyal’nosti abonentov mobil’noy svyazi s ispol’zovaniem metodov nechetkogo modelirovaniya. Voprosy sovremennoy nauki i praktiki, 2 (50), 68–77.
28. Yue, C., Yue, Z. L. (2019). Measuring the satisfaction and loyalty for Chinese smartphone users: A simple symbol-based decision making method. Scientia Iranica, 26 (1), 589–604. doi: https://doi.org/10.24200/sci.2018.3841.0
29. Zade, L. (1976). Poniatie lingvisticheskoy peremennoy i ego primenie k prinyatiyu priblizhennyh resheniy. Moscow: Mir, 165.
30. Yarushkina, N. G. (2009). Osnovy teorii nechetkih i gibridnyh sistem. Moscow: Finansi i statistika, 321.
31. Altunin, A. E., Senuhin, M. V. (2000). Modeli i algoritmy prinyatiya resheniy v nechetkih usloviyah. Tyumen’: Tyumenskiy gosudarstvenny universitet, 352.
32. Mandani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121 (12), 1585. doi: https://doi.org/10.1049/pee.1974.0328
33. Bocharnikov, V. P. (2011). Fuzzy-tekhnologiya: matematicheskie osnovy. Praktika modelirovaniya v ekonomike. Sankt-Peterburg: <Nauka> RAN, 328.
34. Kryvoruchko, O., Shynkarenko, V., Popova, N. (2018). Quality Management of Transport Services: Concept, System Approach, Models of Implementation. International Journal of Engineering & Technology, 7 (4.3), 472–476. doi: https://doi.org/10.14419/j.et.v7i4.3.19919

DOI: 10.15587/1729-4061.2019.171052
STUDYING THE INFLUENCE OF PRODUCTION CONDITIONS ON THE CONTENT OF OPERATIONS IN LOGISTIC SYSTEMS OF MILK COLLECTION (p. 50-63)
Anatoliy Tryhuba
Lviv National Agrarian University, Dubluyan, Ukraine
ORCID: http://orcid.org/0000-0001-8014-5661

Natalia Pavlihka
Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0001-5191-242X

Mykola Rudynets
Lvutsk National Technical University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-0793-5963

Inna Tryhuba
Lviv National Agrarian University, Dubluyan, Ukraine
ORCID: http://orcid.org/0000-0002-5239-5951

Vitaliy Grabovets
Lviv National Technical University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-0340-185X

Mykola Skalyga
Lvutsk National Technical University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0003-0506-2262

Iryna Tymbaliuk
Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-1852-078X

Nataliia Khomiuk
Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-3277-8840

Valentyna FedorhukMoroz
Lvutsk National Technical University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-0941-1215

The algorithm of coordination of the content and time of operations execution in logistic systems of milk collection with manufacturing conditions was developed. The appropriateness of execution of eleven management operations ensuring coordination of collection-transport operations with daily volumes of arrival of raw milk material at its collection points was substantiated. The research was carried out based on the simulation of execution of collection-transport operations of various content, taking into consideration changing manufacturing conditions.
The prediction of the functional indicators in particular periods of the calendar year was performed based on simulation of operations execution in a logistic system of milk collection taking into account changing manufacturing conditions and possible options for the content of operations. It was substantiated that at an increase in the number of operations of milk collection, the quantitative values of the indicators of execution of these operations increase, while the quantitative values of the indicators of execution of transport operations decrease.

It was found that during the calendar year in a specified logistic system of milk collection, the content of collection and transportation operations and production conditions have a significant impact on their indicators. It was substantiated that the quantitative value of these indicators during the calendar year changes by 1.2–3 times. This is explained by a change in the volume of milk collection over a calendar year. The obtained results indicate the feasibility of daily coordination of the content of operations execution in an assigned logistic system of milk collection with production conditions.

Keywords: planning, content of operations, milk collection, logistic systems, quality of control.

References

1. On Milk and Dairy Products: Zakon vid 24.06.2004 No. 1870-IV. Verkhovna Rada of Ukraine. Available at: https://zakon.rada.gov.ua/laws/show/1870-15
2. Seriya standartov ISO9000. Oftisaľ'nye dokumenty. Available at: http://staratel.com/iso/ISO9000/Doc/index.html
3. Hoštra, N., Dullaert, W., De Leeuw, S., Spiliotopoulos, E. (2019). Individual goals and social preferences in operational decisions. International Journal of Operations & Production Management, 39 (1), 116–137. doi: https://doi.org/10.1108/ijopm-11-2016-0030
4. Akkerman, R., van Denk, D. P. (2009). Analyzing scheduling in the food-processing industry: structure and tasks. Cognition, Technology & Work, 11 (3), 215–226. doi: https://doi.org/10.1007/s10117-007-0107-7
5. Fransoo, J. C., Wiers, V. C. S. (2006). Action variety of planners: Cognitive load and requisite variety. Journal of Operations Management, 24 (6), 813–821. doi: https://doi.org/10.1016/j.jom.2005.09.008
6. Bendoly, E., Croson, R., Goncalves, P., Schultz, K. (2009). Bodies of Knowledge for Research in Behavioral Operations. Production and Operations Management, 19 (4), 434–452. doi: https://doi.org/10.1111/j.1937-5956.2009.01108.x
7. Buijs, P., Alvarez, J. A. L., Veenstra, M., Roodbergen, K. J. (2016). Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom. Interfaces, 46 (2), 119–132. doi: https://doi.org/10.1287/inte.2015.0838
8. Bendul, J. C., Knollman, M. (2016). The human factor in production planning and control: considering human needs in computer aided decision-support systems. International Journal of Manufacturing Technology and Management, 30 (5), 346. doi: https://doi.org/10.1504/ijmtm.2016.078921
9. Buijs, P., ("Hans") Wortmann, J. C. (2014). Joint operational decision-making in collaborative transportation networks: the role of IT. Supply Chain Management: An International Journal, 19 (2), 200–210. doi: https://doi.org/10.1108/scm-08-2013-0298
10. Sadler, I., Hines, P. (2002). Strategic operations planning process for manufacturers with a supply chain focus: concepts and a meat processing application. Supply Chain Management: An International Journal, 7 (4), 225–241. doi: https://doi.org/10.1108/13598540210438962
11. Levykin, V., Chala, O. (2018). Development of a method for the probabilistic inference of sequences of a business process activities to support the business process management. Eastern-European Journal of Enterprise Technologies, 5 (3 (85)), 16–24. doi: https://doi.org/10.15587/1729-4061.2018.142664
12. Liotta, G., Stecca, G., Kailara, T. (2015). Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, 351–365. doi: https://doi.org/10.1016/j.ijpe.2014.12.016
13. Petraška, A., Čižmárička, K., Prentkovich, O., Jarantšuk, A. (2018). Methodology of Selection of Heavy and oversized Freight Transportation System. Transport and Telecommunication Journal, 19 (1), 45–58. doi: https://doi.org/10.2478/ttj-2018-0005
14. Bazaras, D., Batarličienė, N., Pališaitis, R., Petraška, A. (2013). Optimal road route selection criteria system for oversize goods transportation. The Baltic Journal of Road and Bridge Engineering, 8 (1), 19–24. doi: https://doi.org/10.3648/j.bjbhe.2013.03
15. Sidorchuk, O. V., Triguba, A. M., Panyura, Ya. Y., Sholud’ko, P. V. (2010). Features of situational management by the maintenance and the lead time of works in the integrated projects agrarian production. Eastern-European Journal of Enterprise Technologies, 1 (2 (43)), 46–48. Available at: http://journals.uran.ua/ejet/article/view/2507/2205
16. Tryhuba, A. M., Rudynets, M. V. (2011). Coordination of work in integrated projects molocharstva. Eastern-European Journal of Enterprise Technologies, 1 (6 (49)), 13–16. Available at: http://journals.uran.ua/ejet/article/view/2373/2175
17. Sydorchuk, O. V., Tryhuba, A. M., Lub, P. M., Sharybura, A. O. (2016). Uzghodzhenia parametriv transportnykh zasobiv systemy tsentralizovani zahotivli silskohospodarskoi produktsii iz vyrobnychymy unomdowny administrativnoho raionu. Suchasni tekhnoloji v mashynobuduvannya ta transporti, 1 (5), 148–152.
18. Tryhuba, A., Zachko, O., Grabovets, V., Berladyn, O., Pavlova, I., Rudynets M. (2018). Examining the effect of production conditions at territorial logistic systems of milk harvesting on the parameters of a fleet of specialized road tanks. Eastern-European Journal of Enterprise Technologies, 5 (3 (95)), 59–70. doi: https://doi.org/10.15587/1729-4061.2018.142227
19. Tryhuba, A., Ratushny, R., Bashynsky, O., Shcherbachenko, O. (2018). Identification of firefighting system configuration of rural settlements. MATEC Web of Conferences, 247, 00035. doi: https://doi.org/10.1051/matecconf/201824700035
20. Tryhuba, A. M., Sholudko, P. V., Sydorchuk, L. B., Boiarchuk, O. V. (2016). System-value principles of management of integrated programs of the milk production development based on modeling. Bulletin of NTU "KhPI". Series: Strategic Management, Portfolio, Program and Project Management, 2 (1174), 103–107. doi: https://doi.org/10.20998/2413-3000.2016.1174.23