Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

Dai Tian, Yanyan Qiu, Yongkun Zhan, Xiaobo Li, Xiuling Zhi, Xinhong Wang, Lianhua Yin and Yanxia Ning*

Abstract

Background: Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model.

Methods: StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively.

Results: We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, TNFα and IL-6 in culture supernatant were significantly decreased, which due to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the other hand, the role of StAR was inhibited when siRNA was introduced to reduce StAR expression.

Conclusions: Our results showed that StAR attenuated lipid synthesis and uptake as well as PA-induced inflammation and reduction in NO bioavailability in aortic endothelial cells. StAR can ameliorate endothelial dysfunction induced by PA via reducing the intracellular lipid levels.

Keywords: Steroidogenic acute regulatory protein, Endothelial dysfunction, Palmitic acid, Inflammation, Lipid metabolism, Nitric oxide

* Correspondence: ningxy@fudan.edu.cn
Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China

© 2012 Tian et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

The endothelium is considered to be the largest organ in the body. It is strategically located between the wall of blood vessels and the blood stream and is the major regulator of vascular homeostasis. Endothelium maintains the balance between 1) vasodilation and vasoconstriction, 2) inhibition and promotion of smooth muscle cell proliferation and migration, 3) prevention and stimulation of the adhesion and aggregation of platelets, and 4) thrombogenesis and fibrinolysis [1]. When the latter balance is disturbed, endothelial dysfunction occurs and causes damage to the arterial wall [2]. The observations made in human coronary arteries of atherosclerotic patients suggest that endothelial dysfunction is an early marker of atherosclerosis. The term “endothelial dysfunction” has been associated not only with atherosclerosis or hypertension, but also with other physiological and pathophysiological process, including aging, coronary syndrome, diabetes, impaired glucose tolerance, hyperglycemia, obesity, hypercholesterolemia, and inflammation etc [3]. A better understanding of various physiological and pathophysiological functions associated with endothelial cells will eventually lead to not only a better comprehension of these diseases but also improved preventive and therapeutic strategies.

Endothelial dysfunction is characterized by reduced dilator function, increased inflammatory cell and platelet adhesion, and increased coagulation activity [4]. Reduced bioavailability of nitric oxide (NO) is a major contributor of endothelial dysfunction [5]. Another potential trigger for endothelial dysfunction is inflammation. Inflammatory cytokines have been shown to impair endothelial function in animal models and isolated human veins [6]. Although there may be several drivers of endothelial dysfunction, the accumulation of intracellular lipids including triglycerides, cholesterol, and free fatty acid has emerged as a key pathophysiological factor [7-9]. Therefore, decreasing intracellular lipid levels in endothelial cells may be the key step for preventing or reversing endothelial dysfunction and related diseases, such as atherosclerosis, insulin resistance, and metabolic syndrome.

Steroidogenic acute regulatory protein (StAR) is one of the cholesterol transporters that initially found in steroidogenesis tissues. It transfers cholesterol from the relatively cholesterol-rich outer mitochondrial membrane to the cholesterol-poor inner mitochondrial membrane for oxidation [10], which is the rate-limiting step in steroidogenesis. Recently, StAR had been demonstrated to be expressed in liver, endothelial cells other than the steroidaligenic tissue with similar function [11]. Previous studies from our laboratory and others demonstrated that StAR is also expressed in human monocytes, human aorta [12], murine aorta [13], macrophages and endothelial cells [14]. Overexpression of StAR increased the mRNA and protein levels of ABCA1 and ABCG1 in microvascular endothelial cells [15], and decreased the cellular lipid levels and inflammation in macrophages [16]. In vivo investigations showed that StAR overexpression dramatically reduced cholesterol and triglyceride levels in serum, liver and aorta [17]. These evidences suggest that StAR plays a protective role in cardiovascular disease. However, the role of StAR in endothelial dysfunction remains unclear to date.

In the present study, the primary rat aortic endothelial cells (RAECs) were treated with palmitic acid (PA) as an in vitro model for endothelial dysfunction [18-20]. The effects of StAR overexpression on lipid metabolism, inflammation and NO bioavailability were investigated after infection with recombinant adenovirus encoding StAR in RAECs. We show here that StAR overexpression decreases intracellular lipid levels by reducing expression of genes involved in lipid metabolism. In addition, StAR overexpression inhibited PA-induced inflammation and attenuated impairment of NO bioavailability via regulating pAkt/peNOS/NO pathway. Overall our findings provided a strong support for StAR being as one of the key regulators for lipid metabolism and a protective molecule for endothelial dysfunctions in aortic endothelium.

Methods

Reagents

Culture media and reagents, fetal bovine serum, basic fibroblast growth factor and TRIZOL reagent were obtained from Invitrogen Life Technologies (Grand Island, NY). RevertAld™ First Strand cDNA Synthesis Kit and PageRuler Prestained Protein Ladder were purchased from Fermentas MBI (San Diego, CA). SYBR® Green real-time PCR Master Mix was from Bio-Rad (Hercules, CA). Primary antibodies against StAR, phosphor-eNOS (S1177) and eNOS were purchased from Abcam Ltd (Cambridge Science Park, Cambridge, UK). Antibodies against NF-κB (p65) and Histone (H3) were purchased from Proteintech Group, Inc (Chicago, IL). Phosphor-Akt (Ser473) was from Cell Signaling Technology, Inc (Boston, MA). Akt antibody was purchased from Bioworld technology, co, Ltd (Nanjing, Jiangsu, China). Primary antibody against b-actin and second antibodies against rabbit and mouse IgG were obtained from CWbiotech (Beijing, China). Cerulenin, an inhibitor of fatty acid synthase, was from Biovision (Milpitas, CA). Lovastatin, an inhibitor of HMG-CoA Reductase was purchased from Sigma-Aldrich Chemical Co (StLouis, MO). siRNA for StAR gene and negative control were from Shanghai GenePharma., Ltd (Shanghai, China). The recombinant adenovirus encoding StAR (Ad-StAR) and the control adenovirus expressing the enhanced green fluorescence protein (Ad-EGFP) was a
The RAECs were infected with recombinant adenovirus encoding StAR as previously described [25]. The sequences of primers used in this study were listed in Table 1.

Western blotting

Cells were grown in either 100 mm dishes or 60 mm dishes before lysis. To determine the transfection effects of adenovirus, cells were harvested after 48 h infection with different MOI adenovirus. To determine the effect of StAR overexpression on pAkt/peNOS/NO pathway, cells were lysed after treating with 200 μM PA for 0, 30, 60 and 120 minutes following 48 h infection. To determine the effect of StAR overexpression on nuclear translocation of
NFκB (p65), cytosolic and nuclear fractions were isolated and lysed after treating with 200 μM PA for 0, 15, 30, and 60 minutes following with 48 h infection. Cytosolic and nuclear fractions were isolated with Cytosolic and Nuclear Isolation Kit (Beyotime It. Co, Nanjing, China). Lysate preparation and analysis was done as previously described [16]. Fifty micrograms of total protein and thirty micrograms of cytosolic and nuclear was applied to SDS-PAGE gel electrophoresis and transferred to PVDF membrane (Invitrogen, Grand Island, NY) using a Bio-Rad transfer blotting system at 300 mA for 100 minutes. Proteins were probed with the following antibodies overnight at 4°C: StAR (1:2000), total Akt (1:1500), phospho-Akt Ser 473 (1:2000), total eNOS (1:1000), phospho-eNOS Ser 1177 (1:1000), and NFκB p65 (1:1500). To confirm equal loading of the gels, membranes were reprobed with β-actin (1:5000) for the whole lysates and Histon-H3 (1:1500) for nuclear fractions. Semi-quantitative analysis of protein expression was performed by densitometry using NIH ImageJ software (http://rsb.info.nih.gov/ij).

Table 1 The sequences of primers used in this experiment

Gene	Forward primer (5’→3’)	Reverse primer (5’→3’)
GAPDH	GCAAGTCTCAAGGCCACAG	GCCAGTGAACCTCCAGGACAT
Hu-StAR	CTGAGGCAACAGGCTGTGAT	AGCGCAACAGGCTGAGAAG
Rat-StAR	CACAGTACACCTGACATGAC	AGCCTGTAAGACCGGCTT
ACC-1	CCCAACAAGCTAAGCGCTCGG	TCCCTTTGTGCAACTAGGAACG
FAS	CTCCTCTCTGGCAGCTGCTACTCT	ACGCAGCCGGGTGCTGAGAAG
LDLR	AAGGCGATTTTCAGGCCCAAC	AGGTGACTTGGGTGCTGATG
HMGR	TGCTGTCTTGCGTATCTG	TGAAGCCTGAACAGAAACCAG
SREBP-2	CACTCTCCCTCCTCCCTCTCTCT	CCCAGGTGCAACTGACATG
IL-1β	CTGTGACTGTGGGATGATG	GGATTGTCTGGTCTGTTG
TNFa	GCTACGGGTGTGTCACCT	CCAGCTTTCGTCGTTACTG
VCAM-1	ACACACGCTCAGCTGACATG	GTCCATGTCGAGACGAC
IL-6	CACAGTGCGAGAAGAC	ACAGTGACTCATCGGTGTTC

NFκB (p65), cytosolic and nuclear fractions were isolated and lysed after treating with 200 μM PA for 0, 15, 30, and 60 minutes following with 48 h infection. Cytosolic and nuclear fractions were isolated with Cytosolic and Nuclear Isolation Kit (Beyotime It. Co, Nanjing, China). Lysate preparation and analysis was done as previously described [16]. Fifty micrograms of total protein and thirty micrograms of cytosolic and nuclear was applied to SDS-PAGE gel electrophoresis and transferred to PVDF membrane (Invitrogen, Grand Island, NY) using a Bio-Rad transfer blotting system at 300 mA for 100 minutes. Proteins were probed with the following antibodies overnight at 4°C: StAR (1:2000), total Akt (1:1500), phospho-Akt Ser 473 (1:2000), total eNOS (1:1000), phospho-eNOS Ser 1177 (1:1000), and NFκB p65 (1:1500). To confirm equal loading of the gels, membranes were reprobed with β-actin (1:5000) for the whole lysates and Histon-H3 (1:1500) for nuclear fractions. Semi-quantitative analysis of protein expression was performed by densitometry using NIH ImageJ software (http://rsb.info.nih.gov/ij).

Figure 1 StAR overexpression in RAECs by adenovirus infection. Primary cultured RAECs were infected with the indicated recombinant adenoviruses as described in the “Methods” section. StAR mRNA and protein levels were determined by real-time Quantitative PCR (A) and Western blotting analysis (B). A: Real-time quantitative PCR analysis of StAR mRNA levels with adenovirus infection at different MOI (MOI = 10, 20, 50, 100) for 48 h. The data was normalized to internal GAPDH mRNA expression and presented as fold change. B: Western blotting analysis of StAR protein levels in RAECs after infection. β-actin serves as the loading control and a representative image is shown in upper panel. The data represent the means ± S.D. from three independent experiments and shown as fold change over the cells treated with Ad-CMV-EGFP. EGFP represents cells infected with recombinant adenovirus encoding CMV-EGFP and served as the negative control; StAR, cells infected with adenovirus encoding CMV-StAR; * represents P < 0.05.
Intracellular free fatty acid and total cholesterol determination

After 48 h infection, cells were harvested in PBS and lysated by sonication. Total intracellular cholesterol and free fatty acid were extracted by homogenization with 1/2 volume of chloroform/isopropanol/NP-40 (7/11/0.1, v/v) or chloroform-Triton X-100 (1% Triton X-100 in pure chloroform), respectively. The organic phase (lower phase) were collected and vacuumed dry to remove trace chloroform after spin the extracts at top speed in a microcentrifuge for 10 minutes. The extractions were redissolved and detected by Free Fatty Acid and Cholesterol Quantification Kit respectively (Applygen Technologies, Beijing, China) according to the manufacturer’s instructions.

ELISA assay for cytokines

RAECs were treated by PA (200 μM) overnight (16 h) after 48 h infection and cell culture media were collected to determine the effect of StAR overexpression on secretion of cytokines. The cytokine levels (IL-1β, TNFα, and IL-6) were determined by ELISA assay (NeoBioScience, Shenzhen, China) following with the manufacturer’s instructions.

Statistic analysis

Data are presented as the mean ± S.D. Statistical analysis was performed using Student’s t test or ANOVA as appropriate. P < 0.05 was considered statistically significant.

Results

StAR overexpression in RAECs by adenovirus infection

StAR is a mitochondrial cholesterol transporter functioning in the process of steroid hormones synthesis [26]. Previous investigations have demonstrated that StAR is also expressed in liver cells [11] and endothelial cells [14]. However, our preliminary data showed that StAR expression level is quite low in RAECs. To investigate the effect of StAR on endothelial cells, we overexpressed StAR using recombinant adenoviruses carrying a CMV-driven gene encoding StAR (Ad-CMV-StAR) in RAECs. After infection, RAECs produced both a high StAR mRNA and protein level without inducing any cell toxicity. Real-time quantitative PCR analysis showed that StAR mRNA level increased by 708 to 6560 folds compared with the Ad-EGFP group using different virus multiplicity of infection (MOI) (Figure 1A). Western blotting analysis

![Figure 2](image_url)

Figure 2 StAR overexpression inhibited expression of genes involved in lipid metabolism and reduced levels of intracellular free fatty acid and cholesterol. To determine the effect of StAR overexpression on lipids metabolism, the gene expression involved in lipid metabolism and intracellular total cholesterol and free fatty acid were detected after infected with adenovirus in RAECs. **A:** The mRNA levels of relative genes involved in lipid metabolism in RAECs infected with adenovirus. Data are presented as a ratio of gene-to-GAPDH expression (relative mRNA levels). RAECs were infected with adenovirus as indicated, and intracellular total cholesterol (**B**) and free fatty acid (**C**) were extracted and analyzed as described in the “Methods” section. Data represents the means ± S.D. from three independent experiments. * represents P < 0.05.
showed one major immunoreactive band with molecular weight of 30 kD and a second 37 kD band (Figure 1B) after infection, which is consistent with StAR premature and mature proteins as shown in the upper panel of Figure 1B. A summary of the data normalized to β-actin is shown in the lower panel (Figure 1B). Based on these results, we chose the MOI = 10 in the subsequent experiments with adequate overexpression effect and minimum toxicity.

StAR overexpression inhibits expression of genes involved in lipid metabolism and reduces levels of intracellular free fatty acid and cholesterol
To determine whether StAR plays an important role in endothelial lipid metabolism, we first employed real-time quantitative PCR to analyze the expression of genes involved in lipid metabolism in RAECs received Ad-CMV-EGFP or Ad-CMV-StAR. Fourty-eight hours post transduction, the relative mRNA levels of ACC-1, FAS,
HMGCR, LDLR and SREBP-2 were decreased by 80%, 63%, 62%, 87% and 81% respectively in the Ad-CMV-StAR treated RAECs (Figure 2A), whereas the mRNA levels of SREBP-1, CYP27A1, PPARα and PPARγ did not change significantly (data not shown). As demonstrated in previous studies, ACC-1, FAS, HMGCR, SREBP-2 and LDLR are key enzymes involved in cholesterol and free fatty acids (FFAs) synthesis and endocytosis [27-30]. Thus, we next extracted intracellular lipids as indicated previously [31]. Levels of cholesterol and FFAs were determined 48 h post infection. As shown in Figure 2B and C, intracellular total cholesterol and FFAs were decreased by 53% and 29% respectively after StAR overexpression compared with the Ad-CMV-EGFP group.

StAR overexpression reduces inflammatory factors expression and secretion after palmitic acid treatment in RAECs

Numerous studies have shown that saturated FFAs could readily induce inflammatory response in endothelial cells via a NFκB-dependent pathway [32], and further cause endothelial dysfunction. Based on our previous results, we hypothesized that StAR plays a protective role in endothelial dysfunction induced by FFA via regulating lipid metabolism. Because palmitic acid (C16:0, PA) is a major component of dietary saturated fat representing up to 20% of the total FFA serum concentration [33], and has been shown to be present in a high percentage of atherosclerotic lesion [19], we therefore used palmitic acid combined with albumin to induce inflammation in RAECs.

To determine the role of StAR on inflammatory responses induced by PA, adenovirus- transduced RAECs were treated with PA (200 μM) in a time-dependent manner. Cells were then harvested and total RNA was extracted for mRNA analysis. Real-time quantitative PCR analysis showed that the levels of IL-1β, TNFα, IL-6 and VCAM-1 increased significantly in a time-dependent manner after incubated with PA. At the same time, the mRNA levels of IL-1β, TNFα, IL-6 and VCAM-1 in cells with StAR overexpression were significantly lower than those in cells transduced with Ad-CMV-EGFP at any identical time (Figure 3, A-D).

To validate the changes in mRNA expression, culture supernatant were collected after treated with PA for 16 h and ELISA analysis were performed. As shown in Figure 3E, F and G, the contents of IL-1β, TNFα and IL-6 were decreased by 24%, 21%, and 30% after StAR overexpression.

StAR overexpression inhibits PA-induced NFκB nuclear translocation in RAECs

As shown in previous studies, the nuclear factor-κB (NFκB) transcription factor family has been considered the central mediator of the inflammatory process [34,35]. Translocation from cytosol to nuclear of p65/RelA, one of NFκB’s subunits, is the key step for NFκB activation [36]. To further investigate the underlying mechanism associated with StAR overexpression, we examined the nuclear translocation of NFκB p65 (RelA), which is the critical step for NFκB activation.
RAECs were treated with PA (200 μM) after adenovirus infection, and total cytosolic and nuclear proteins were extracted as described in the methods section for western blotting analysis. As shown in Figure 4A, the nuclear levels of NFκB p65 protein were significantly increased after PA treatment. In contrast, the nuclear levels of NFκB p65 were reduced by 23% and 37% after StAR overexpression at 0.5 and 1 h after PA treatment. Conversely, the cytosolic levels of NFκB p65 were higher in cells with Ad-CMV-StAR infection than those in cells received Ad-CMV-EGFP (Figure 4B). These results suggested that StAR overexpression blocked PA-induced NFκB p65 nuclear translocation in RAECs and further inhibited transcription of the inflammatory factors.

StAR overexpression attenuates PA-induced reduction in nitric oxide bioavailability

Excess PA has been shown to decrease eNOS activity in an endothelial cell culture model [20], and impair insulin-mediated NO production in human studies [38]. To investigate the effect of StAR overexpression on PA-induced downregulation of pAkt/eNOS/NO pathway, adenovirus-transduced RAECs were treated with PA (200 μM) in a time-dependent manner, and the protein levels of phosphor-Akt Ser 473 (pAkt), total Akt, phosphor-eNOS Ser 1177 (peNOS) and total eNOS were examined by Western blotting. PA treatment impaired the phosphorylation of Akt and eNOS in the absence of obvious changes in total Akt or eNOS protein levels. However, StAR overexpression attenuated the reduction
of pAkt and peNOS levels compared to the control groups (Figure 5A and B). Consistent with the levels of eNOS phosphorylation/activation, NO bioavailability was also repressed with PA treatment, and this effect was partially blocked by StAR overexpression (Figure 5C).

siRNA specific for StAR has the reverse effect as StAR overexpression on inflammatory factor mRNA expression and NO production

As shown previously, StAR overexpression could attenuate inflammatory response and NO production in RAECs treated by PA. In order to confirm the role of StAR, we performed the experiments with siRNA to knock-down StAR expression prior to PA treatment. The results indicated that StAR siRNA has the reverse effect as StAR overexpression on mRNA expression of IL-1β, TNFα, VCAM-1 and IL-6 and NO production (Figure 6B and C).

Cerulenin, and lovastatin has the same effect as StAR overexpression on inflammatory factor mRNA expression and NO production

As shown in previous studies, StAR plays an important role in lipid metabolism. To explore the underlying mechanism of StAR’s protective effect on endothelial dysfunction model, the inhibitor of fatty acid synthase and HMG-CoA reductase, cerulenin and lovastatin, were used before PA added. As shown in Figure 6A and C, the mRNA expression of IL-1β, TNFα, VCAM-1 and IL-6 were reduced while NO production was recovered.
 Discussion

Vascular endothelial dysfunction is the initiation and hallmark of various cardiovascular diseases, such as atherosclerosis, hypertension, coronary vascular disease and diabetes. Several therapeutic interventions, including changes in lifestyle and pharmacologic treatments, are used to ameliorate endothelial dysfunction under various risk factors. It is of great interest to explore new therapeutic strategies to improve endothelial function for protection and prevention of these diseases which cause significant number of deaths each year.

In the present study, we provided insight into the effect of StAR on rat aortic endothelium lipid metabolism and dysfunction. As shown in Figure 1, StAR mRNA and protein levels were significantly increased by infection with recombinant adenovirus. Following StAR overexpression, key genes involved in fatty acid synthesis (FAS, ACC-1), cholesterol synthesis (HMGR) and uptake (LDLR, SREBP-2) were greatly repressed. And, intracellular total cholesterol and FFAs were significantly reduced. Furthermore, StAR overexpression inhibited mRNA expression and secretion of inflammatory factors by blocking NFκB nuclear translocation. Finally, StAR overexpression attenuated the reduction of NO bioavailability induced by PA treatment via regulating the p-Akt/p-eNOS/NO pathway.

An elevation of circulating FFAs is supposed to be related to the onset and progression of endothelial dysfunction [39,40], and associate with a number of cardiovascular risk factors, including hypertension, dyslipidemia, and abnormal fibrinolysis. It has been noted that FFAs may increase the production of multiple cytokines in mononuclear cells by generation of reactive oxygen species (ROS) and activation of the pro-inflammatory NFκB pathway in human endothelial cells [41,42]. In the present study, we used PA as one of the major mediators to induce endothelial dysfunction by activating inflammation and reducing NO bioavailability.

When the endothelium in vessels is affected by risk factors, such as pro-inflammatory factors or hyperlipidemia, it will be activated and secrete inflammatory factors. Cell adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and E-selectin are the biomarkers of endothelial activation [43]. As shown in our study, the mRNA expression and secretion of inflammatory factors were greatly increased after PA treatment in cultured rat aortic endothelial cells, while the mRNA expression of VCAM-1 was also upregulated significantly. However, the extent of increase is reduced when StAR is overexpressed by adenovirus infection. As shown by previous studies, the transcription factor NFκB regulates the expression of numerous genes including those related to pro-inflammatory responses, such as L-1β, IL-6, TNFα and VCAM-1, IL-1α [35,44]. We found that NFκB translocation from cytosol to nucleus was blocked by

Figure 7 The protective role of StAR in PA-induced endothelial dysfunction. In rat aortic endothelial cells, the key genes involved in lipid metabolism are greatly reduced following StAR overexpression. As a result, the cellular levels of cholesterol and FFAs are also reduced after StAR overexpression, which maintains the homeostasis of lipids. Levels of mRNA expression and secretion of inflammatory factors were significantly decreased after PA treatment, which is due to the blockade of NFκB nuclear translocation and activation after StAR overexpression. Moreover, the reduction of NO bioavailability induced by PA are compensated by StAR overexpression.
StAR overexpression. Thus, StAR could attenuate inflammatory responses in endothelium via its blocking of NFκB translocation.

There is strong clinical evidence that endothelial dysfunction contributes to the pathogenesis of cardiovascular disease and insulin resistance [45,46]. Endothelial cell dysfunction is defined by a decrease in the bioavailability of nitric oxide (NO), a critical regulator of vascular tone [47]. Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in producing NO. As shown in previous studies, the pAkt/peNOS/NO pathway was inhibited by PA treatment [19,20,46]. Our observations in this study demonstrated that StAR overexpression in endothelial cells attenuated the reduction of phosphorylation of Akt and eNOS, as well as NO production. Previous studies have shown an inverse correlation between StAR and NO in the steiodogenic tissues [48,49], in which NO was produced from activation of iNOS (also named NOS2). However, in our study, we observed a direct correlation between StAR and NO in vascular tissue, where NO is produced from eNOS (named NOS3). This suggests that StAR could take different roles in physiological process at different location. As shown in previous reports, NO production is regulated by a complicate network, including interactions among CaM, Cavelion-1, BH4 and ROS to regulate activation of eNOS (Ref). Each step in the network will affect the production of NO, and as a result, StAR overexpression ameliorates the reduction of NO production induced by PA treatment at a mild degree. Our results using siRNAs to inhibit StAR expression confirmed a positive role for StAR in endothelial dysfunction.

As already demonstrated in many investigations, lipids overload is a major risk factor for endothelial dysfunction. Our data obtained in the present study indicate that StAR inhibits lipid synthesis and uptake, PA-induced inflammation, and reduction in NO bioavailability in aortic endothelial cells. The inhibitor of FAS and HMGR could also ameliorate the inflammatory response induced by PA in RAECs. Taken together, the role of StAR overexpression in inhibiting inflammatory response and NO bioavailability in the cellular model of endothelial dysfunction might result from decreased lipid levels in RAECs.

Conclusions

In conclusion, the present study demonstrated that StAR overexpression in RAECs decreased intracellular total cholesterol and FFAs levels. Furthermore, StAR overexpression inhibited PA-induced inflammatory response, and attenuated reduction in NO bioavailability. Taken together, these results indicate that StAR plays a protective role in PA-induced endothelial dysfunction via regulating intracellular lipid metabolism.

Abbreviations

NO: Nitric oxide; StAR: Steroidogenic acute regulatory protein; FFA: Free fatty acid; RAECs: Rat aortic endothelial cells; PA: Palmitic acid.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DT initiated and performed the majority of the laboratory work, which was designed and supervised by YN; YQ, YZ, XL, XZ, and XW carried out additional experiments, including cell culture, transfection, and partial real-time quantitative PCR and Western blotting. LY and YN was critically involved in writing, revising, drafting the paper and has given final approval of the version of the paper to be published. All authors have read and approved the final manuscript.

Acknowledgements

This research was supported by Grant (30900716 for Dr. Ning,Y., and 81170253 for Dr. Yin, L.,) from National Natural Science Foundation of P.R. China, the Ministry of education scientific research foundation for the returned overseas for Dr. Ning, Y., and a research project (2009001) from Shanghai Municipal Bureau of Health for Dr. Wang, X.

Received: 26 July 2012 Accepted: 16 November 2012
Published: 21 November 2012

References

1. Davignon J, Ganz P: Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109(23 Suppl 1):II87–832.
2. Quyyumi AA: Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med 1998, 105(1A):325–395.
3. Feletou M, Vanhoutte PM: Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006, 291(3):H985–H1002.
4. Endemann DH, Schiffin EL: Endothelial dysfunction. J Am Soc Nephrol 2004, 15(8):1983–1992.
5. Kawashima S, Yokoyama M: Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24(6):998–1005.
6. Clapp BR, Hingorani AD, Khamban DR, Mohamed-Ali V, Stephens JW, Vallance P, MacAllister RJ: Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res 2004, 64(1):172–178.
7. de Man FH, Weverling-Rijnsburger AW, van der Laarse A, Smeit AH, Jukema JW, Blaauw GJ: Not acute but chronic hyperglycemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler Thromb Vasc Biol 2000, 20(3):744–750.
8. Han SH, Quon MJ, Koh KK: Reciprocal relationships between abnormal metabolic parameters and endothelial dysfunction. Curr Opin Lipidol 2007, 18(1):58–65.
9. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Iamamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, et al: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NADPH oxidase in cultured vascular cells. Diabetes 2000, 49(11):1939–1945.
10. Miller WL: StAR search—what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol 2007, 21(3):589–601.
11. Hall EA, Ren S, Hylemon PB, Rodriguez-Agudo D, Redford K, Marques D, Kang D, Gil G, Pandak WM: Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim Biophys Acta 2005, 1732(2–3):111–119.
12. Borthwick F, Taylor JM, Bartholomew C, Graham A: Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages. FEBS Lett 2009, 583(7):147–153.
13. Ma Y, Ren S, Pandak WM, Li X, Ning Y, Lu C, Zhao F, Yin L: The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflamm Res 2007, 56(12):495–501.
14. Ning Y, Chen S, Li X, Ma Y, Zhao F, Yin L: Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute
regulatory protein in microvascular endothelial cell line (bEnd.3).

15. Ning YX, Ren SL, Zhao FD, Yin LH: Overexpression of the stereogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3).

J. Zhejiang Univ. Sci. B 2010, 11(5):550–556.

16. Ning Y, Bai Q, Lu H, Li X, Pandak WM, Zhao F, Chen S, Ren S, Yin L: Overexpression of mitochondrial cholesterol delivery protein, STAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis 2009, 204(1):114–120.

17. Ning Y, Xu L, Ren S, Pandak WM, Chen S, Yin L: STAR overexpression decreases serum and tissue lipids in apolipoprotein E-deficient mice. Lipids 2009, 44(6):511–519.

18. Ciapaite J, van Bezu J, van Eikenhorst G, Bakker SJ, Teerlink T, Diamant M, Ning Y, Xu L, Ren S, Pandak WM, Chen S, Yin L: Shared principles in NF-kappaB signaling. Cardiovasc Diabetol 2012, 11(1):72.

19. Miller WL: Fatty acid metabolism: target for metabolic Regulation of cholesterol homeostasis. J. Lipid Res 2008, 49(10):2090–2094.

20. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, Handa CB, Pignataro OP: Effects of increasingly fat-restricted, carbohydrate-enriched diets on lipoprotein expression associated with insulin resistance. Cardiovasc Diabetol 2011, 10:68.

21. Bunn RC, Cockrell GE, Ou Y, Thrailkill KM, Lumnick CK Jr, Fowlkes JL: Palmitate and insulin synergistically induce IL-6 expression in human monocytes. Cardiovasc Diabetol 2010, 9:93.

22. Goedeke L, Fernandez-Hernando C: Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 2005, 1711(2):147–154.

23. Kim F, Tyseling RA, Rice J, Pham M, Haji L, Gallie BM, Baa AS, Paramoathy P, Giachelli CM, Carson MA et al.: Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol 2005, 25(9):1994–2001.

24. Azekoshi Y, Yasu T, Watanabe S, Tagawa T, Abe S, Yamakawa K, Uehara Y, Ogihara T, Shimosawa T, Aoyama H, Murakami K, Ogiha K, Shimosaka T, et al.: Palmitic acid induces IL-6 production in mononuclear and polymorphonuclear cells. Atherosclerosis 2004, 177(1):142–149.

25. Heine RJ, Krab K, Westerhoff HV, Schalkwijk CG: Overexpression of the steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. J. Nutr 2005, 135(8):1841–1846.

26. Steenberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000, 49(7):1231–1238.

27. Li H, Bao Y, Zhang X, Yu Y: Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB pathway in rat aorta. Int J Cardiol 2011, 152(2):218–224.

28. Aragoneses G, Saavedra P, Hernas M, Cabre A, Girona J, Masana L: Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc Diabetol 2012, 11(1):72.

29. Goedeke L, Fernandez-Hernando C: Steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters (STP2, MRP1) and resultant endothelial dysfunction through enhanced angiotensin II production in mononuclear and polymorphonuclear cells. J. Lipid Res 2008, 49(10):2090–2094.

30. Puri RK, Cullinan ME, Chen SP, Qin Y, Li Y, Pignataro OP, Schoelke SE, Lee J, Goldfine AB: Inflammation and insulin resistance. J. Clin Invest 2005, 116(7):1793–1801.

31. Ciapaite J, van Bezu J, van Eikenhorst G, Bakker SJ, Teerlink T, Diamant M, Ning Y, Xu L, Ren S, Pandak WM, Chen S, Yin L: STAR overexpression decreases serum and tissue lipids in apolipoprotein E-deficient mice. Lipids 2009, 44(6):511–519.

32. Friedberg SM, Hockenbery DM, Pham M, Rizzo NO, Tateya S, Handa CB, Pignataro OP: Effects of increasingly fat-restricted, carbohydrate-enriched diets on lipoprotein expression associated with insulin resistance. Cardiovasc Diabetol 2011, 10:68.

33. Bunn RC, Cockrell GE, Ou Y, Thrailkill KM, Lumnick CK Jr, Fowlkes JL: Palmitate and insulin synergistically induce IL-6 expression in human monocytes. Cardiovasc Diabetol 2010, 9:93.

34. Miller WL: Fatty acid metabolism: target for metabolic Regulation of cholesterol homeostasis. J. Lipid Res 2008, 49(10):2090–2094.

35. Goedeke L, Fernandez-Hernando C: Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 2005, 1711(2):147–154.

36. Kim F, Tyseling RA, Rice J, Pham M, Haji L, Gallie BM, Baa AS, Paramoathy P, Giachelli CM, Carson MA et al.: Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol 2005, 25(9):1994–2001.

37. Azekoshi Y, Yasu T, Watanabe S, Tagawa T, Abe S, Yamakawa K, Uehara Y, Ogihara T, Shimosawa T, Aoyama H, Murakami K, Ogiha K, Shimosaka T, et al.: Palmitic acid induces IL-6 production in mononuclear and polymorphonuclear cells. Atherosclerosis 2004, 177(1):142–149.

38. Heine RJ, Krab K, Westerhoff HV, Schalkwijk CG: Overexpression of the steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. J. Nutr 2005, 135(8):1841–1846.

39. Steenberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000, 49(7):1231–1238.

40. Li H, Bao Y, Zhang X, Yu Y: Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB pathway in rat aorta. Int J Cardiol 2011, 152(2):218–224.

41. Aragoneses G, Saavedra P, Hernas M, Cabre A, Girona J, Masana L: Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc Diabetol 2012, 11(1):72.

42. Goedeke L, Fernandez-Hernando C: Steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters (STP2, MRP1) and resultant endothelial dysfunction through enhanced angiotensin II production in mononuclear and polymorphonuclear cells. J. Lipid Res 2008, 49(10):2090–2094.

43. Bunn RC, Cockrell GE, Ou Y, Thrailkill KM, Lumnick CK Jr, Fowlkes JL: Palmitate and insulin synergistically induce IL-6 expression in human monocytes. Cardiovasc Diabetol 2010, 9:93.

44. Miller WL: Fatty acid metabolism: target for metabolic Regulation of cholesterol homeostasis. J. Lipid Res 2008, 49(10):2090–2094.

45. Goedeke L, Fernandez-Hernando C: Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 2005, 1711(2):147–154.

36. Bunn RC, Cockrell GE, Ou Y, Thrailkill KM, Lumnick CK Jr, Fowlkes JL: Palmitate and insulin synergistically induce IL-6 expression in human monocytes. Cardiovasc Diabetol 2010, 9:93.