RESEARCH ARTICLE

Have improvements in ozone air quality reduced ozone uptake into plants?

Allison C. Ronan*,†, Jason A. Ducker*, Jordan L. Schnell† and Christopher D. Holmes*

Peak levels of ozone (O\(_3\))—quantified by concentration metrics such as accumulated O\(_3\) exposure over a threshold of 40 ppb (AOT40) and the sigmoidal-weighted cumulative exposure (W126)—have decreased over large parts of the United States and Europe in the last several decades. Past studies have suggested that these improvements in AOT40 and W126 indicate reductions in plant injury, even though it is widely recognized that O\(_3\) flux into leaves, not ambient O\(_3\) concentration, is the cause of plant damage. Using a new dataset of O\(_3\) uptake into plants derived from eddy covariance flux towers, we test whether AOT40, W126, or summer mean O\(_3\) are useful indicators of trends in the cumulative uptake of O\(_3\) into leaves, which is the phytotoxic O\(_3\) dose (POD or POD\(_y\), where y is a detoxification threshold). At 32 sites in the United States and Europe, we find that the AOT40 and W126 concentration metrics decreased over 2005–2014 at most sites: 25 and 28 sites, respectively. POD\(_y\), however, increased at a majority (18) of the sites. Multiple statistical tests demonstrate that none of the concentration metrics—AOT40, W126, and mean O\(_3\)—are good predictors of POD\(_y\) temporal trends or variability (R\(^2\) ≤ 0.15). These results are insensitive to using a detoxification threshold (POD\(_y\)). The divergent trends for O\(_3\) concentration and plant uptake are due to stomatal control of flux, which is shaped by environmental variability and plant factors. As a result, there has been no widespread, clear improvement in POD over 2005–2014 at the sites we can assess. Decreases in concentration metrics, therefore, give an overly optimistic and incomplete picture of the direction and magnitude of O\(_3\) impacts on vegetation. Because of this lack of relation between O\(_3\) flux and concentration, flux metrics should be preferred over concentration metrics in assessments of plant injury from O\(_3\).

Keywords: Ozone Trends; Vegetation Uptake and Injury

1. Introduction

Ground-level ozone (O\(_3\)) is harmful to people and plants (Ainsworth et al., 2012; Fleming et al., 2018). In plants, O\(_3\) causes internal oxidative damage following uptake through their stomata, which then slows photosynthesis (Reich and Amundson, 1985; Morgan et al., 2003; Ainsworth et al., 2012), impairs stomatal control (Hoshika et al., 2015), suppresses the land-carbon sink, and indirectly forces climate change (Sitch et al., 2007; Lombardozzi et al., 2012). O\(_3\) exposure can also increase plant metabolic costs (Iriti and Faoro, 2009), affect reproduction (Black et al., 2000; Iriti and Faoro, 2009), alter nutrient cycling and biodiversity (Fuhrer et al., 2016), heighten the effects of other environmental stressors (Sandermann et al., 1998; Black et al., 2000; Iriti and Faoro, 2009), and diminish crop yield and quality (Ainsworth, 2017). Although plant species and varieties vary in their sensitivity to O\(_3\) (Feng et al., 2018; Harmens et al., 2018; Mills et al., 2018c), nearly all are injured to some degree and O\(_3\) is the most damaging air pollutant for most plants (Krupa et al., 2001; Wittig et al., 2009; Ainsworth et al., 2012; Lombardozzi et al., 2012). At present-day levels of O\(_3\) injuries are documented in crops, grasses, shrubs, and trees across Europe, North America, and Asia (Chappelka and Samuelson, 1998; Krupa et al., 2001; Baumgarten et al., 2009; Sarkar and Agrawal, 2010; Mills et al., 2011a; Ainsworth et al., 2012; Tang et al., 2013; Feng et al., 2014; Büker et al., 2015; Hoshika et al., 2015). These injuries reduce crop yields and lead to economic losses. It is estimated that O\(_3\) has reduced global soybean, wheat, rice, and maize yields about by 5–15%, valued at US $10-25 billion annually (Reich and Amundson, 1985; Van Dingenen et al., 2009; Fishman et al., 2010; Awney et al., 2011; Tai et al., 2014; Mills et al., 2018c). The magnitude of these impacts and their relevance to food security and carbon storage in the biosphere show the importance of quantifying and understanding trends in O\(_3\) and its impacts on vegetation, which is our goal in this work.

Several metrics are used to quantify surface O\(_3\) and its impacts. For human health, the maximum daily average...
over 8 hours (MDA8), a concentration metric, is widely used to predict respiratory injury (EPA, 2011; McDonnell et al., 2012; Turner et al., 2016; Fleming et al., 2018). For assessing plant impacts, some metrics quantify O₃ concentration in ambient air while others quantify the flux of O₃ into leaf tissue through the stomata. The most widely used concentration metrics are the accumulated O₃ exposure over a threshold of 40 ppb (AOT40) and sigmoidal-weighted cumulative exposure (W126) indices, both of which give greater weight to high concentrations (Lefohn and Runneckles, 1987; Húnová et al., 2003; Avnery et al., 2011; Lefohn et al., 2018; Mills et al., 2018a). Although correlations between these concentration metrics and plant injuries have been reported, the flux of O₃ through stomata is a better predictor of plant damage because it reflects the physiological dose to tissues within the leaves (Musselman et al., 2006; Mills et al., 2011a,b; Braun et al., 2014; Büker et al., 2015; CLRTAP, 2017). The phytotoxic O₃ dose (POD) metric integrates the stomatal flux over a growing season or other designated time period. The related POD metric integrates flux that exceeds a threshold (\(\text{nmol} \text{O}_3 \text{ m}^{-2} \text{s}^{-1} \)) that can be detoxified by the plant (POD, Mills et al., 2011a,b; CLRTAP, 2017; Mills et al., 2018a). When stomata are closed, high ambient O₃ concentrations may not injure plants. Conversely, when stomata are open wide, large fluxes and resulting injuries can occur at low O₃ concentrations. For these reasons, flux-based metrics are generally preferred, where they are available, and critical POD levels have been determined for many plant species (Mills et al., 2011b; CLRTAP, 2017). Indeed, several studies have found that impacts predicted from modeled stomatal uptake differ in size and pattern from impacts predicted from concentration metrics (Mills et al., 2011a; 2018c; Tang et al., 2013). Despite the advantages of POD and related flux metrics over concentration metrics, however, many plant impact studies continue to use concentration metrics because O₃ concentration data are much more widely available than stomatal O₃ flux data (Fuhrer et al., 1997; Musselman et al., 2006; Van Dingenen et al., 2009; Avnery et al., 2011; Mills et al., 2011a; Braun et al., 2014; Holmes, 2014; Lefohn et al., 2018; Mills et al., 2018a).

Across large parts of the United States and Europe, surface O₃ air quality has improved in recent decades, according to many concentration metrics (Cooper et al., 2014; Chang et al., 2017; Lefohn et al., 2017; Fleming et al., 2018; Lefohn et al., 2018; Mills et al., 2018a), after deteriorating for much of the 20th century (Vingarzan, 2004; Shindell et al., 2006; Parrish et al., 2012; Cooper et al., 2014). These recent O₃ improvements resulted from policies and technology that reduced emissions of O₃ precursors, particularly nitrogen oxides, carbon monoxide, and volatile organic compounds (EPA, 2003; Council of the European Union and European Parliament, 2008; EPA, 2011; EEA, 2016; EPA, 2016). The Tropospheric Ozone Assessment Report (TOAR) concluded that these O₃ declines reduced the potential risk of damage to crops and other vegetation in these regions, while recognizing that climate, soil, and plant controls on stomatal conductance also determine the risk of damage (Mills et al., 2018a, hereafter TOAR-Vegetation). While the TOAR-Vegetation report used concentration metrics—principally AOT40 and W126—because long-term O₃ flux data are very sparse, the report recommended that stomatal uptake metrics be used in future risk assessments (Lefohn et al., 2018; Mills et al., 2018a).

Although some studies use empirical stomatal models to calculate O₃ flux metrics and predict reductions in crop yield (Emberson et al., 2000; Mills et al., 2011a; Büker et al., 2012; Grünhage et al., 2012; Tang et al., 2013; Emberson et al., 2013; Mills et al., 2018b, 2018c), there has been little analysis of decadal or longer trends in POD or whether those trends match the trends in concentration metrics (Colette et al., 2018). POD and concentration metrics can be well correlated, at least on short time scales, under conditions where stomatal variability is limited, such as containers with a single plant species or irrigated and fertilized fields (Cieslik, 2004; Karlsson et al., 2004; González-Fernández et al., 2010; Matyssek et al., 2010; González-Fernández et al., 2014). Under less controlled, natural conditions, however, weather, hydrology, and climate can drive substantial changes in conductance on time scales from minutes to years (Emberson et al., 2000; Büker et al., 2012; Keenan et al., 2013; Clifton et al., 2017). This environmental variability may disrupt the relationship between POD and O₃ concentration. The widespread and well-documented reductions in AOT40 and W126 in the United States and Europe may, therefore, misrepresent the benefits for plant health because of the influence of stomata on POD. As a result, there is a need to test whether O₃ flux into vegetation (POD) covaries with concentration metrics (AOT40 and W126) on multi-year time scales.

This paper quantifies temporal variability and trends of O₃ uptake into vegetation and compares them to variability and trends in O₃ concentration over a decade. While past work has documented that POD has low spatial correlation with AOT40 and W126 (Mills et al., 2011a; Ducker et al., 2018), we specifically test temporal trends and relationships. We use a new dataset of O₃ fluxes in the United States and Europe (Ducker et al., 2018), which covers the period 2005–2014 when previous studies documented declines in O₃ concentration metrics (Chang et al., 2017; Lefohn et al., 2017; Lefohn et al., 2018; Mills et al., 2018a). We will show that POD trends differ significantly from the concentration metrics—specifically AOT40, W126, and mean O₃—and we examine the implications of those divergent trends for vegetation health.

2. Ozone data and methods

We analyze trends in stomatal O₃ uptake and O₃ concentration in the SynFlux dataset. As described by Ducker et al. (2018), SynFlux calculates stomatal conductance and other components of O₃ deposition velocity from measurements at eddy covariance flux towers (Pastorello et al., 2017), with some additional information from remote sensing. The method uses observed water vapor flux, heat flux, momentum flux, leaf area, and standard meteorology variables. Direct measurements of O₃ flux are not needed for SynFlux. The stomatal conductance and deposition velocity are then combined with a gridded dataset of O₃ concentration.
mole fractions to estimate stomatal fluxes of O\textsubscript{3} into vegetation around the flux tower. The O\textsubscript{3} dataset, described by Schnell et al. (2014), is a weighted interpolation of about 4000 of air quality monitoring stations and has horizontal resolution of 1° and temporal resolution of 1 hour. At sites with O\textsubscript{3} flux measurements, the gridded O\textsubscript{3} dataset reproduces 60–90% of observed daily O\textsubscript{3} variability ($R^2 = 0.6$ – 0.9) with mean bias of 5–10 ppb (Ducker et al., 2018). At a broader range of sites, Schnell et al. (2014) estimated gridded O\textsubscript{3} errors to be 6–9 ppb (rms). Since O\textsubscript{3} errors at a particular site and time affect all concentration and flux metrics simultaneously, the metric vs. metric comparisons shown here are insulated from inaccuracies in the O\textsubscript{3} dataset. SynFlux reproduces approximately 90% of the day-to-day variability ($R^2 = 0.9$) in stomatal O\textsubscript{3} uptake at flux measurement sites with a mean bias of 20% or less that can mostly be explained by the O\textsubscript{3} concentration bias (Ducker et al., 2018).

We examine trends in O\textsubscript{3} concentration and POD in the summer growing season over the ten-year period 2005–2014. This decade has the greatest number of sites in the SynFlux dataset and longer periods would significantly reduce the number of sites in the analysis. All SynFlux sites with at least eight years of observations in the period are used, which results in 32 qualifying sites: 10 in the United States and 22 in Europe. These sites are listed in Table S1. The sites sample ecosystem types that are widely distributed in the United States and Europe. Of the 32 sites, 21 are forests (10 needleleaf, 7 broadleaf, and 4 mixed), 5 are grassland, 2 are crops, 3 are savanna or shrubland, and 1 is wetland.

At each SynFlux site, we calculate POD\textsubscript{y}, POD\textsubscript{y}, AOT40, W126, and daytime mean O\textsubscript{3} for each summer growing season, defined as June-September. POD\textsubscript{y} is the cumulative daytime stomatal flux above a threshold y nmol m-2 s-1 during these months, which is contained in the SynFlux dataset described by Ducker et al. (2018). Recommended thresholds vary by species, so we use POD\textsubscript{y}, a predictor for damage in several vegetation types (Mills et al., 2011a; Bükker et al., 2015; CLRTAP, 2017), to test whether the threshold affects our results. We integrate the stomatal flux over times when the sun is at least four degrees above the horizon. When some stomatal flux data are missing, the integral of available fluxes in each month is scaled up by the fraction of missing data; the scaled monthly integrals are summed to obtain POD\textsubscript{y} for the summer growing season. Months with fewer than 100 observations are discarded from the analysis because of the greater uncertainty in the monthly integral. When one of the four growing season months is missing, we scale up the remaining months in the same way to get total POD\textsubscript{y} for the growing season; if two or more months are missing, the POD\textsubscript{y} is treated as missing for that year. The AOT40 and W126 metrics are calculated from the gridded O\textsubscript{3} data-set following previously documented methods (Ducker et al., 2018; Lefohn et al., 2018). Unlike some studies, we do not apply a three-year running mean, so our W126 and AOT40 values describe O\textsubscript{3} concentrations in the summer growing season of a single year. Gaps in the O\textsubscript{3} concentration data, although rare, are treated similarly to POD\textsubscript{y} by scaling up the AOT40 or W126 by the fraction of missing data. All metrics are calculated over the same growing period, June–September, at all 32 sites. Accumulating the O\textsubscript{3} metrics over site-specific growing months could alter the metric values or their trends, but is less likely to affect whether POD\textsubscript{y} and concentration metrics have consistent temporal variability, which is the main focus of this work. In cases where POD\textsubscript{y} is missing for a particular site and year, the AOT40, W126, and mean O\textsubscript{3} are also discarded for consistent analysis of trends and variability. For some analyses, we remove mean spatial differences between sites by computing anomalies, $x - \overline{x}$, where x represents a metric value at a particular site and \overline{x} is its 10-year mean at that site. To compare fractional changes among metrics with different units, we also normalize values using $x' = x / \overline{x} - 1$. Figure S1 shows time series of all normalized metrics.

We estimate the linear trends in O\textsubscript{3} metrics at each site using ordinary least squares regression: $x = a + bt$, where x represents a metric value, t is time, and a and b are fitted parameters. To test if two metrics have the same trend, we normalize the metrics, as described above, and add interaction effects to the regression model: $x' = a + bt + aC + b\beta t$, where C is a categorical variable for metric type ($C = 0$ for metric one, $C = 1$ for metric two) and a and β are fitted parameters expressing the differences in the intercept and slope, respectively, for the two metrics. If β is significantly different from zero, then the metrics have different trends. We will use this approach to compare pairwise the trends in POD\textsubscript{y}, POD\textsubscript{y}, AOT40, and W126, thus highlighting the relationship between the flux and concentration metrics. In addition to standard p-values of regression coefficients, we use Fisher’s combined probability test, a meta-analysis method, to assess whether an ensemble of p-values collectively provide evidence of an effect (Fisher, 1934). We also assess the temporal co-variability of metrics in three additional ways. First, we pool the anomaly data from all sites and years ($n = 299$) and compute the coefficient of determination (R^2) for each pair of metrics. Any correlation among the anomalies is strictly from temporal co-variability since mean spatial differences have been removed. Second, we calculate the coefficients of determination site-by-site for each pair of metrics ($m = 8$–10 years) and then average the resulting R^2 values across sites ($n = 32$). Finally, we correlate the temporal trends, described above, for each pair of metrics ($n = 32$ sites). Analyses are performed in Python using the statsmodels module for statistical tests (Seabold and Perktold, 2010). We use the graphical format of Cooper et al. (2014) and Mills et al. (2018a) to visualize trend results in Figures 1 and 2.

3. Trends in O\textsubscript{3} uptake and concentration metrics Figures 1 and 2 show that summer daytime mean O\textsubscript{3} concentrations decreased at a large majority of sites over 2005–2014. That is 14 of the 22 European SynFlux sites and 7 of the 10 sites in the United States, although only 3 sites had trends with the customary $p < 0.05$ level. Past studies have found that the highest quantiles of O\textsubscript{3} distribution have fallen faster than the median and lower quantiles (Cooper et al., 2014; Lefohn et al., 2018). As a result,
W126 and AOT40, which emphasize high concentrations, have stronger declining trends than daytime mean O₃. For W126, 28 of the 32 sites have negative trends and 7 of these have \(p < 0.05 \). For AOT40, 25 of the 32 sites have decreasing trends and 3 have \(p < 0.05 \). No sites had positive trends with \(p < 0.05 \) for either AOT40 or W126.

Our analysis methods differ from some past trend studies in that we use gridded O₃ data rather than original
station measurements. Nevertheless, our concentration trend patterns are very similar to those reported by others (Cooper et al., 2014; Lefohn et al., 2017; Mills et al., 2018a), despite each of those studies using different averaging methods (daytime or 24 hour) and examining different ranges of years. They generally show that summer mean \(O_3 \) in Europe has decreased or held steady since the 1990s, while concentrations in the United States decreased in the eastern United States and were steady or rising across most of the western and central United States. Like us, those earlier studies also found more consistent downward trends in AOT40 and W126 than mean \(O_3 \) in all of these regions except the western and central United States (Fleming et al., 2018; Mills et al., 2018a). The TOAR-Vegetation analysis suggests that statistically significant declines of W126 and AOT40 are more widespread than we report (45–50% of TOAR-Vegetation sites in the United States and Europe had declines; Mills et al., 2018a), but this apparent difference is explained by the larger fraction of TOAR-Vegetation sites in areas recovering from severe historical \(O_3 \) pollution, like the eastern United States and California, and the longer period of the TOAR-Vegetation analysis (1995–2014). Overall, the comparison shows that our trend results for concentration metrics using SynFlux and gridded \(O_3 \) fields are consistent with TOAR-Vegetation results using station \(O_3 \) observations.

Trends in POD\(_O\) are distinctly different from trends in mean \(O_3 \), AOT40, and W126, as seen in Figures 1, 2, and S1. Unlike all of the concentration metrics, POD\(_O\) increased at more than half (18 of 32) of the sites, although 4 had POD\(_O\) declines with \(p < 0.05 \). The sign or direction of the POD\(_O\) (and POD\(_P\)) trends also disagree with the concentration trends about as often as they agree. Of the 28 sites with decreasing W126, 16 have increasing POD\(_O\). Of the 25 sites with decreasing AOT40, 14 have increasing POD\(_O\). Similar patterns appear in the multi-site mean trends. For AOT40, W126, and mean \(O_3 \) the multi-site mean trends are downward (\(p = 0.001, p \leq 0.0001, \) and \(p = 0.06, \) respectively) while the mean POD\(_O\) trend is upward (\(p = 0.9 \)).

The discrepancies between POD\(_O\) and concentration trends occur in nearly all vegetation types examined. The POD\(_O\) trends have opposite sign to W126 and AOT trends at roughly half of the forest sites (5 of 10 needleleaf, 4 of 7 broadleaf, 3 of 4 mixed forest), grassland sites (2 of 5 sites), and shrubland sites (1 of 2). At the one wetland site all metrics have the same trend sign, which is consistent with stomatal flux correlating with \(O_3 \) concentration in a moisture-rich environment that promotes stomatal opening (CLRTAP, 2017). Conversely, at both crop sites, POD\(_O\) and concentration trends have opposite sign. While the crop sites used irrigation, which relieves water stress, they also rotated crops in some years, which would increase the interannual variability in stomatal conductance and POD\(_O\) while having less effect on \(O_3 \) concentrations, thereby partly decoupling \(O_3 \) concentration and uptake. Trend disagreements also occur across most of the examined geographical region and climate types, with no clear pattern. While the small number of sites for some vegetation types (particularly non-forests), regions, and climates make it difficult to determine if \(O_3 \) concentration and flux preferentially decouple in certain environments, it is clear that discrepancies between POD\(_O\) and concentration trends are widespread.

Some differences in trends should be expected because of statistical fitting errors in each slope estimate stemming from errors and uncertainty in the measurements that underlie each metric. Nevertheless, if stomatal conductance and deposition velocity were steady, the normalized \(O_3 \) concentration and normalized POD\(_O\) should have similar trends. Using a regression model of normalized data with interaction effects (Section 2), we find that the fractional trends in POD are indeed different (\(p < 0.05 \) level) from the fractional trends in other metrics at 7 sites, regardless of which concentration metric is chosen. Many more sites have trend differences with marginal or low significance (0.05 < \(p < 0.2 \)) (9 for AOT40 and mean \(O_3 \), 11 for W126).

The statistical strength of these results may be underestimated due to the random errors in SynFlux (section 2), which inflate the POD, variance and diminish the significance (\(p \) value) of differences from concentration metrics. Mean biases do not affect the POD\(_O\) trends, so they should not affect the relationship to concentration metrics. In an aggregate meta-analysis (Fisher’s combined probability test), the skew towards zero of all 32 \(p \) values gives strong evidence that the normalized POD\(_O\) trends systematically differ from the concentration trends (\(p < 0.001 \)), for all normalized concentration metrics. The divergent trends for POD\(_O\) and concentration metrics are likely explained through stomatal conductance, which is driven by many factors such as weather, hydrology, and climate. Rising stomatal conductance increases \(O_3 \) uptake into plants, while decreasing ambient \(O_3 \) concentration through dry deposition (Solberg et al., 2008; Emberson et al., 2013; Kawasalis and Murphy, 2017). Regardless of the causes, however, the divergent trends indicate that the common AOT40 and W126 metrics have limited utility for tracking changes in \(O_3 \) impacts on vegetation.

While the \(O_3 \) trends in our 10-year study period are consistent with past studies that investigated other periods, as shown above, the trends for any given site and metric can vary depending on which years are analyzed. Individual years with extreme or missing data can sometimes discernably affect trend estimates, which may contribute to a few apparently large differences between some neighboring sites (e.g. POD\(_O\) trends in Italy). Calculating trends over a longer time period could reduce the influence of individual years, but at the expense of having fewer sites in this analysis. However, the occurrence of an extreme value in one metric but not another (e.g. W126 vs. POD\(_O\)) at a single site is still a meaningful indicator that those metrics have different temporal variability. In addition, the regression model that tests differences in trends between metrics accounts for the greater uncertainty in the individual trends that result from extreme values, yet we still find statistically significant different trends across metrics.

Another measure of the usefulness of concentration metrics is their temporal correlation with POD, shown Figures 3 and 4 and Table S2. Mills et al. (2011a) recognized that the spatial pattern of POD can be quite different from the \(O_3 \) concentration pattern, particularly when considering
sites with contrasting climate and vegetation. Ducker et al. (2018) further showed that their spatial correlations are very low ($R^2 \leq 0.05$ for POD_0 vs. AOT40, W126, or mean O_3). We quantify the temporal correlation between POD_0 and other metrics in three ways (Table S2). The first approach, seen in Figure 3, which pools data from all sites, reveals no meaningful correlation between POD_0 and any of the concentration metrics ($R^2 < 0.01$) while all pairs of concentration metrics are strongly correlated ($R^2 = 0.7-0.9$). Results are unchanged when using POD_3 in place of POD_0 ($R^2 < 0.01$, Figure S2). The second, site-by-site approach also shows that the concentration metrics are closely correlated with each other ($R^2 = 0.72-0.84$ averaged across sites; Table S2) but not with POD_0 ($R^2 = 0.13-0.14$). Both of these approaches mean that none of the concentration metrics can predict well the interannual variability of POD_0. Finally, the linear trends shown in Figure 4, which are fitted to data at each individual site, indicate that POD_0 trends are essentially unrelated to trends in any concentration metric ($R^2 \leq 0.05$; Figure 4, Table S2), while all of the concentration metric trends have considerable common variability ($R^2 = 0.5-0.9$). The trend correlations are again similarly weak when using POD_3 ($R^2 \leq 0.1$; Figure S3). This means that neither AOT40 trend nor W126 trend has any skill in predicting the POD_3 trend.

While it is already widely recognized that variations in stomatal conductance complicate the relationship between O_3 concentrations and stomatal uptake (Musselman et al., 2006), these results go a step further. Our results show that the conductance changes under common environmental conditions are sufficiently large and important that W126 and AOT40 trends are poor predictors of POD_0 trends. AOT40 and W126 might still be useful for assessing ozone extremes for other applications, however. Thus, the widespread decreases of W126 and AOT40 in large parts of the United States and Europe, while favorable, are not robust indicators for improved plant uptake or health. In fact, we have shown that there has been no widespread improvement in POD_0 at sites in these regions.

4. Conclusions

By many metrics, O_3 air quality has improved in large parts of the United States and Europe over the last two decades in response to policies and technological improvements that reduced emissions of O_3 precursors. Past work and our results show that there are downward trends in mean O_3, AOT40, and W126 metrics at a majority of sites that we studied in the eastern United States and Europe. These metrics are widely used to assess the impacts of O_3 and their declines have been interpreted as indicating reduced O_3 damage to vegetation. While POD is known to be a better predictor of the physiological O_3 dose than ambient O_3 concentration, its use has been limited by data availability.

We use the SynFlux dataset to report decadal trends in POD for the first time and find that POD does not follow the same trends as the O_3 concentration metrics commonly used to assess vegetation injury. POD trends have mixed increases and decreases across the United States and Europe, in contrast to the predominant decrease in concentration metrics at the sites we examined. Many sites have simultaneous decreasing AOT40 and W126 while POD is increasing. Using multiple statistical approaches, we show that the multi-year trends and temporal variability in POD differ significantly and systematically from the concentration metrics. The results are not affected by POD_3 threshold choices ($y = 0$ or $3 \text{ nmol m}^{-2} \text{s}^{-1}$). Past work showed that concentration metrics have low spatial correlation with POD and, here, we add that there is also

![Figure 3: Temporal co-variation of ozone metrics relevant to vegetation health. Each point represents a single site and year. The site-specific mean has been subtracted from each metric to highlight temporal co-variability. DOI: https://doi.org/10.1525/elementa.399.f3](https://doi.org/10.1525/elementa.399.f3)
little temporal correspondence. Thus, AOT40 and W126 are not robust predictors of trends in plant injuries from O3. Rather, the widespread decreases of AOT40 and W126 in the United States and Europe in recent decades give an overly optimistic view of changing plant injury risk in recent years. If all else were equal, reduced concentrations would lead to less plant injury, but, in reality, stomatal conductance and its variability—driven by meteorology, hydrology, and climate—is an equally important control on POD. The analysis here further supports the recommendations of TOAR-Vegetation and others that future studies of plant damage and economic losses should avoid relying primarily on AOT40 or W126 and make greater effort to account for stomatal activity and stomatal flux. This is particularly important when considering the combined effects of climate variability and change in combination with evolving surface O3 concentrations.

Data accessibility statement
SynFlux data, including O3 concentrations are archived and publicly available at https://doi.org/10.5281/zenodo.1402054 (Ducker et al., 2018).

Supplemental files
The supplemental files for this article can be found as follows:

- **Table S1.** SynFlux sites used in this work and their trends. DOI: https://doi.org/10.1525/elementa.399.s1
- **Table S2.** Temporal correlation (R^2) between O3 flux and concentration metrics. DOI: https://doi.org/10.1525/elementa.399.s2
- **Figure S1.** Time series (2005–2014) of ozone flux and concentration at all sites. DOI: https://doi.org/10.1525/elementa.399.s3
- **Figure S2.** Temporal co-variation of POD3 with concentration metrics. DOI: https://doi.org/10.1525/elementa.399.s4
- **Figure S3.** Co-variation of temporal trends in POD3 and concentration metrics. DOI: https://doi.org/10.1525/elementa.399.s5

Funding information
This work was supported by the Winchester Fund at Florida State University, NASA New Investigator Program grant NNX16AI57G, and NSF CAREER grant 1848372. JLS was funded by the Ubben Program for Climate and Carbon Science at Northwestern University.

Competing interests
The authors have no competing interests to declare.

Author contributions
- Contributed to conception and design: ACR, CDH
- Contributed to acquisition of data: JAD, JLS
- Contributed to analysis and interpretation of data: ACR, CDH
- Drafted or revised the article: all
- Approved the submitted version for publication: all

References
Ainsworth, EA. 2017. Understanding and improving global crop response to ozone pollution. *Plant J* 90: 886–897. DOI: https://doi.org/10.1111/tpj.13298
Ainsworth, EA, Yendrek, CR, Sitch, S, Collins, WJ and Emberson, LD. 2012. The effects of tropospheric ozone on net primary productivity and Implications for climate change. *Anna Rev Plant Biol* 63(1): 637–661. DOI: https://doi.org/10.1146/annurev-arplant-042110-103829

Figure 4: Co-variation of temporal trends in ozone metrics relevant to vegetation health. Each point represents fitted trends at a single site. DOI: https://doi.org/10.1525/elementa.399.f4
Environmental Protection Agency. Available at https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.

Feng, Z, Büker, P, Pleijel, H, Emberson, L, Karlsson, PE and Uddling, J. 2018. A unifying explanation for variation in ozone sensitivity among woody plants. *Glob Chang Biol* **24**(1): 78–84. DOI: https://doi.org/10.1111/gcb.13824

Feng, Z, Sun, J, Wan, W, Hu, E and Calatayud, V. 2014. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. *Environ Pollut* **193**: 296–301. DOI: https://doi.org/10.1016/j.envpol.2014.06.004

Fisher, RA. 1934. The combination of probabilities from tests of significance. In: *Statistical Methods for Research Workers*, 5th ed. Edinburgh: Oliver and Boyd.

Fishman, J, Creilson, JK, Parker, PA, Ainsworth, EA, Vining, GG, Szarka, J, Booker, FL and XU, X. 2010. An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. *Atmos Environ* **44**: 2248–2256. DOI: https://doi.org/10.1016/j.atmosenv.2010.01.015

Fleming, ZL, Doherty, RM, Von Schniederemesser, E, Malley, CS, Cooper, OR, Pinto, JP, Colette, A, Xu, X, Simpson, D, Schultz, MG, Lefohn, A, Hamad, S, Moolla, R, Solberg, S and Feng, Z. 2018. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. *Elem Sci Anth* **6**(1): 12. DOI: https://doi.org/10.1525/elementa.273

Fuhrer, J, Skárby, L and Ashmore, MR. 1997. Critical levels for ozone effects on vegetation in Europe. *Environ Pollut* **97**(1–2): 91–106. DOI: https://doi.org/10.1016/S0269-7491(97)00067-5

Fuhrer, J, Val Martin, M, Mills, G, Heald, CL, Harmens, H, Hayes, F, Sharps, K, Bender, J and Ashmore, MR. 2016. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. *Ecol Evol* **6**(24): 8785–8799. DOI: https://doi.org/10.1002/ece3.2568

González-Fernández, I, Calvo, E, Gerosa, G, Bermejo, V, Marzuoli, R, Calatayud, V and Alonso, R. 2014. Setting ozone critical levels for protecting horticultural Mediterranean crops: Case study of tomato. *Environ Pollut* **185**: 178–187. DOI: https://doi.org/10.1016/j.envpol.2013.10.033

Gonzalez-Fernandez, I, Kaminska, A, Dodmani, M, Goumenaki, E, Quaerrie, S and Barnes, JD. 2010. Establishing ozone flux-response relationships for winter wheat: Analysis of uncertainties based on data for UK and Polish genotypes. *Atmos Environ* **44**: 621–630. DOI: https://doi.org/10.1016/j.atmosenv.2009.11.021

Grünhage, L, Pleijel, H, Mills, G, Bender, J, Danielsson, H, Lehmann, Y, Castell, JF and Bethenod, O. 2012. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. *Environ Pollut* **165**: 147–157. DOI: https://doi.org/10.1016/j.envpol.2012.02.026

Harmens, H, Hayes, F, Mills, G, Sharps, K, Osborne, S and Pleijel, H. 2018. Wheat yield responses to stomatal uptake of ozone: Peak vs rising background ozone conditions. *Atmos Environ* **173**(January): 1–5. DOI: https://doi.org/10.1016/j.atmosenv.2017.10.059

Holmes, CD. 2014. Air pollution and forest water use. *Nature* **507**(7491): E1–E2. DOI: https://doi.org/10.1038/nature13113

Hoshika, Y, Kataga, G, Deushi, M, Watanabe, M, Koike, T and Paolletti, E. 2015. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. *Sci Rep* **5**(May): 1–8. DOI: https://doi.org/10.1038/srep09871

Hůnová, I, Livorová, H and Ostatnická, J. 2003. Potential ambient ozone impact on ecosystems in the Czech Republic as indicated by exposure index AOT40. *Ecol Indic* **3**: 35–47. DOI: https://doi.org/10.1016/S1470-60X(03)00009-8

Iriti, M and Faoro, F. 2009. Chemical diversity and defence metabolism: How plants cope with pathogens and ozone pollution. *Int J Mol Sci* **10**(8): 3371–3399. DOI: https://doi.org/10.3390/ijms10083371

Karlsson, PE, Uddling, J, Braun, S, Broadmeadow, M, Elvira, S, Gimenos, B, Le Thiec, D, Oksanen, E, Vandermeiren, K, Wilkinson, M and Emberson, L. 2004. New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. *Atmos Environ* **38**: 2283–2294. DOI: https://doi.org/10.1016/j.atmosenv.2004.01.027

Kavassalis, SC and Murphy, JG. 2017. Understanding ozone-meteorology correlations: A role for dry deposition. *Geophys Res Lett* **44**(6): 2922–2931. DOI: https://doi.org/10.1175/JCLI-D-16-00168.1

Keenan, TF, Hollinger, DY, Bohrer, G, Dragoni, D, Munger, JW, Schmid, HP and Richardson, AD. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. *Nature* **499**: 324–327. DOI: https://doi.org/10.1038/nature12291

Krupa, S, Mcgrath, MT, Andersen, CP, Booker, FL, Burkey, KO, Chappelka, AH, Chevone, BI, Pell, EJ and Zilinskas, BA. 2001. Ambient ozone and plant health. *Plant Dis* **85**(1): 4–12. DOI: https://doi.org/10.1094/PDID.2001.85.1.4

Lefohn, AS, Malley, CS, Simon, H, Wells, B, Xu, X, Zhang, L and Wang, T. 2017. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. *Atmos Environ* **152**: 123–145. DOI: https://doi.org/10.1016/j.atmosenv.2016.12.025

Lefohn, AS, Malley, CS, Smith, L, Wells, B, Hazucha, M, Simon, H, Naik, V, Mills, G, Schultz, MG, Paolletti, E, Marco, A, Xu, X, Zhang, L, Wang, T, Neufeld, H, Musselman, R, Tarasick, D, Brauer, M, Feng, Z, Tang, H, Kobayashi, K, Sicard, P, Solberg, S and Gerosa, G. 2018. Tropospheric ozone assessment
report: Global ozone metrics for climate change, human health, and crop/ecosystem research. *Elem Sci Anthr* 6: 28. DOI: https://doi.org/10.1525/elementa.279

Lefohn, AS and RunecKles, VC. 1987. Establishing standards to protect vegetation-ozone exposure/dose considerations. *Atmos Environ* 21: 561–568. DOI: https://doi.org/10.1016/0004-6981(87)90308-2

Lombardozzi, D, Sparks, JP, Bonan, G and Levis, S. 2012. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. *Oecologia* 169: 651–659. DOI: https://doi.org/10.1007/s00442-011-2242-3

Matyssek, R, Karnosky, DF, Wieser, G, Percy, K, Oksanen, E, Grams, TEE, Kubiske, M, Hanke, D and Pretzsch, H. 2010. Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. *Environ Pollut* 158(6): 1990–2006. DOI: https://doi.org/10.1016/j.envpol.2009.11.033

McDonnell, WF, Stewart, PW, Smith, MV, Kim, CS and Scheelege, ES. 2012. Prediction of lung function response for populations exposed to a wide range of ozone conditions. *Inhal Toxicol* 24(10): 619–633. DOI: https://doi.org/10.3109/08958378.2012.705919

Mills, G, Hayes, F, Simpson, D, Emberson, L, Norris, D, Harmens, H and Bükner, P. 2011a. Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. *Glob Chang Biol* 17: 592–613. DOI: https://doi.org/10.1111/j.1365-2486.2010.02217.x

Mills, G, Pleijel, H, Braun, S, Bükner, P, Bermejo, V, Danielsson, H, Emberson, L, Grünhage, L, González-Fernández, I, Harmens, H, Hayes, F, Karlsson, PE and Simpson, D. 2011b. New stomatal-flux-based critical levels for ozone effects on vegetation. *Atmos Environ* 45: 5064–5068. DOI: https://doi.org/10.1016/j.atmosenv.2011.06.009

Mills, G, Pleijel, H, Malley, CS, Sinha, B, Cooper, OR, Schultz, MG, Neufeld, H, Simpson, D, Sharps, K, Feng, Z, Gerosa, G, Harmens, H, Kobayashi, K, Saxena, P, Paoletti, E, Sinha, V and Xu, X. 2018a. Tropospheric Ozone Assessment Report: present-day ozone distribution and trends relevant to vegetation. *Elem Sci Anthr* 6(47): 46. DOI: https://doi.org/10.1525/elementa.302

Mills, G, Sharps, K, Simpson, D, Pleijel, H, Broberg, M, Uddling, J, Jaramillo, F, Davies, WJ, Dentener, F, Van den Berg, M, Agrawal, M, Arawal, S, Ainsworth, E, Bükner, P, Emberson, L, Feng, Z, Harmens, H, Hayes, F, Kobayashi, K, Paoletti, E and Van Dingenen, R. 2018b. Ozone pollution will compromise efforts to increase global wheat production. *Glob Change Biol* 24: 3560–3574. DOI: https://doi.org/10.1111/gcb.14157

Mills, G, Sharps, K, Simpson, D, Pleijel, H, Frei, M, Burkey, K, Emberson, L, Uddling, J, Broberg, M, Feng, Z, Kobayashi, K and Agrawal, M. 2018c. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. *Glob Chang Biol* 24(10): 4869–4893. DOI: https://doi.org/10.1111/gcb.14381

Morgan, PB, Ainsworth, EA and Long SP. 2003. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. *Plant, Cell Environ* 26(8): 1317–1328. DOI: https://doi.org/10.1046/j.0016-8025.2003.01056.x

Musselman, RC, Lefohn, AS, Massman, WJ and Heath RL. 2006. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. *Atmos Environ* 40: 1869–1888. DOI: https://doi.org/10.1016/j.atmosenv.2005.10.064

Parrish, DD, Law, KS, Staehelin, J, Derwert, R, Cooper, OR, Tanimoto, H and Gilge, S. 2012. Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. *Atmos Chem Phys* 11485–11504. DOI: https://doi.org/10.5194/acp-12-11485-2012

Pastorello, GZ, Papale, D, Chu, H, Trotta, C, Agarwal, DA, Canfora, E and Baldocchi, DD. 2017. A new data set to keep a sharper eye on land-air exchanges. *Eos* 98: 28–32. DOI: https://doi.org/10.1029/2017EO071597

Reich, PB and Amundson, RG. 1985. Ambient levels of ozone reduce net photosynthesis in tree and crop species. *Science* 230(4725): 566–570. DOI: https://doi.org/10.1126/science.230.4725.566

Sandermann, H, Ernst, D, Heller, W and Langebartels C. 1998. Ozone: An abiotic elicitor of plant defence reactions. *Trends Plant Sci* 3(2): 47–50. DOI: https://doi.org/10.1016/S1360-1385(97)01162-X

Sarkar, A and Agrawal, SB. 2010. Identification of ozone stress in Indian rice through foliar injury and differential protein profile. *Environ Monit Assess* 161: 205–215. DOI: https://doi.org/10.1007/s10661-008-0738-z

Schnell, JL, Holmes, CD, Jangam, A and Prather, MJ. 2014. Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model. *Atmos Chem Phys* 14: 7721–7739. DOI: https://doi.org/10.5194/acp-14-7721-2014

Seabold, S and Perktold, J. 2010. Statsmodels: econometric and statistical modeling with Python. *Proceedings of the 9th Python in Science Conference* (SciPy 2010): 57–61. Available at http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf

Shindell, D, Faluvegi, G, Lacin, A, Hansen, J, Ruedy, R and Aguilar, E. 2006. Role of tropospheric ozone increases in 20th-century climate change. *J Geophys Res* 111: 1–11. DOI: https://doi.org/10.1029/2005JD006348

Sitch, S, Cox, PM, Collins, WJ and Huntingford, C. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. *Nature* 448: 791–794. DOI: https://doi.org/10.1038/nature06059
Solberg, S, Hov, O, Sovde, A, Isaksen, ISA, Coddeville, P, De Backer, H, Forster, C, Orsolini, Y and Ulhse, K. 2008. European surface ozone in the extreme summer 2003. *J Geophys Res* **113**(D7): D07307. DOI: https://doi.org/10.1029/2007JD009098

Tai, APK, Martin, MV and Heald, CL. 2014. Threat to future global food security from climate change and ozone air pollution. *Nature Climate Change* **4**(9): 817–821. DOI: https://doi.org/10.1038/nclimate2317

Tang, H, Takigawa, M, Liu, G, Zhu, J and Kobayashi, K. 2013. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. *Glob Chang Biol* **19**: 2739–2752. DOI: https://doi.org/10.1111/gcb.12252

Turner, MC, Jerrett, M, Pope, CA, Krewski, D, Gapstur, SM, Diver, WR, Beckerman, BS, Marshall, JD, Su, J, Crouse, DL and Burnett, R. 2016. Long-term ozone exposure and mortality in a large prospective study. *Am J Respir Crit Care Med* **193**(10): 1134–1142. DOI: https://doi.org/10.1164/rccm.201508-1633OC

Van Dingenen, R, Dentener, FJ, Raes, F, Krol, MC, Emberson, L and Cofala, J. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. *Atmos Environ* **43**: 604–618. DOI: https://doi.org/10.1016/j.atmosenv.2008.10.033

Vingarzan, R. 2004. A review of surface ozone background levels and trends. *Atmos Environ* **38**: 3431–3442. DOI: https://doi.org/10.1016/j.atmosenv.2004.03.030

Wittig, VE, Ainsworth, EA, Naidu, SL, Karnosky, DF and Long, SP. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. *Glob Chang Biol* **15**: 396–424. DOI: https://doi.org/10.1111/j.1365-2486.2008.01774.x