TWO APPLICATIONS OF STRONG HYPERBOLICITY

BOGDAN NICA

ABSTRACT. We present two analytic applications of the fact that a hyperbolic group can be endowed with a strongly hyperbolic metric. The first application concerns the crossed-product C*-algebra defined by the action of a hyperbolic group on its boundary. We construct a natural time flow, involving the Busemann cocycle on the boundary. This flow has a natural KMS state, coming from the Hausdorff measure on the boundary, which is furthermore unique when the group is torsion-free. The second application is a short new proof of the fact that a hyperbolic group admits a proper isometric action on an ℓ^p-space, for large enough p.

1. INTRODUCTION

Hyperbolicity, in the sense of Gromov, is a coarse notion of negative curvature for metric spaces. In turn, a hyperbolic group is a group which admits a proper and cocompact isometric action on a geodesic hyperbolic space. Such a space is said to be a geometric model for the group. Hyperbolic groups form a large class of groups, and they have received a lot of attention–usually from an algebraic and geometric perspective. Herein, the aims are mostly analytic.

A sharp notion of negative curvature for metric spaces is captured by the $\text{CAT}(-1)$ condition. This condition implies, and predates, hyperbolicity. Gromov’s Jugendtraum [6, p.193], that every hyperbolic group admits a geometric model which is $\text{CAT}(-1)$, is still wildly open. It is expected to fail, but no counterexamples are known. Let us mention, however, that the past decade has seen great strides in the $\text{CAT}(0)$ direction. We now understand that an extraordinary number of hyperbolic groups act on $\text{CAT}(0)$ cube complexes.

The search for enhanced geometric models of hyperbolic groups is often motivated by analytic needs. We use the term ‘enhanced hyperbolicity’ as a broad and informal way of describing hyperbolicity with additional $\text{CAT}(-1)$ properties. Such desirable properties depend on the specific context. In [13], we introduced the metric notion of strong hyperbolicity. We find this idea satisfactory on two accounts. Firstly, it is an intermediate metric notion between the $\text{CAT}(-1)$ condition and hyperbolicity, which grants the additional $\text{CAT}(-1)$ properties that, so far, have come up in analytic applications. Secondly, it turns out that every hyperbolic group admits a geometric model which is strongly hyperbolic. We briefly discuss strong hyperbolicity in Section 2 below, and we refer to [13] for more details.
The purpose of this note is to further illustrate the use of strong hyperbolicity in studying analytic aspects of hyperbolic groups. The first application concerns the C^*-crossed product $C(\partial \Gamma) \rtimes \Gamma$ defined by the action of a hyperbolic group Γ on its boundary $\partial \Gamma$. We use strong hyperbolicity to construct a natural \mathbb{R}-flow on $C(\partial \Gamma) \rtimes \Gamma$, from the Busemann cocycle on the boundary. We show that the Hausdorff measure on the boundary defines a KMS state for this Busemann flow, with inverse temperature equal to the Hausdorff dimension of the boundary. Furthermore, this is the unique KMS state for the flow when Γ is torsion-free. Previously, these facts were known in two particular cases: for free groups [5], respectively for uniform lattices in $\text{SO}(n, 1)$ [10]. Compare also [8].

The second application is a short new proof of the fact that a hyperbolic group admits a proper isometric action on an ℓ^p-space, for large enough $p \in [1, \infty)$. This result is due to Yu [15], and different proofs have been subsequently offered in [3, 12, 1]. The argument explained in Section 4 provides a link between Haagerup’s original construction for free groups [7], and the boundary construction of [12].

2. Strong hyperbolicity

2.1. Strongly hyperbolic spaces.

Let X be a metric space. We write $|x, y|$ for the distance between two points $x, y \in X$. Recall that the Gromov product with respect to a basepoint o is defined by the formula

$$\langle x, y \rangle_o = \frac{1}{2}(|o, x| + |o, y| - |x, y|).$$

The metric space X is said to be strongly hyperbolic if the Gromov product satisfies

$$e^{-\langle x, y \rangle_o} \leq e^{-\langle x, z \rangle_o} + e^{-\langle z, y \rangle_o}$$

for all $x, y, z, o \in X$. (Compare with the original definition [13, Def.4.1], involving an additional ‘visual’ parameter $\epsilon > 0$. The present definition is the normalized case when $\epsilon = 1$, and this can always be achieved by rescaling the metric.)

It is easily checked that a strongly hyperbolic space is, in particular, hyperbolic in the usual, Gromov sense. On the other hand, a CAT(-1) space is strongly hyperbolic [13, Thm.5.1]. To put it differently, strong hyperbolicity is a weak CAT(-1) condition. For the purposes of this paper, a useful consequence of strong hyperbolicity is the following [13, Thm.4.2]:

Theorem 2.1. Let X be a strongly hyperbolic space, and let $o \in X$ be a basepoint. Then the Gromov product $\langle \cdot, \cdot \rangle_o$ extends continuously to the bordification $X \cup \partial X$, and $e^{-\langle \cdot, \cdot \rangle_o}$ is a compatible metric on the boundary ∂X.

2.2. Strongly hyperbolic metrics for hyperbolic groups.

Let Γ be a hyperbolic group. To avoid trivialities, we will always assume that Γ is non-elementary. A metric on Γ is said to be admissible if it enjoys the following properties:

(i) it is equivariant: $|gx, gy| = |x, y|$ for all $g, x, y \in \Gamma$;

(ii) it is roughly geodesic: there is a constant $C \geq 0$, so that for every pair of points $x, y \in \Gamma$ there is a (not necessarily continuous) map $\gamma: [a, b] \to \Gamma$ satisfying $\gamma(a) = x$, $\gamma(b) = y$, and $|s - t| - C \leq |\gamma(s), \gamma(t)| \leq |s - t| + C$ for all $s, t \in [a, b]$;

(iii) it is quasi-isometric to any word metric on Γ.

An admissible metric on Γ is hyperbolic, since hyperbolicity is a quasi-isometry invariant for roughly geodesic spaces.
Admissible metrics naturally arise from geometric models for Γ. Let X be a geodesic hyperbolic space on which Γ acts isometrically, properly and cocompactly, and pick a basepoint $o \in X$. Then the orbit metric on Γ, given by $|g,h|_o := |go,ho|$, is admissible. (An innocuous issue is that o might have non-trivial stabilizer. This is easily made irrelevant either by language, allowing pseudo-metrics instead of metrics, or by coarse bookkeeping.)

If Γ admits a CAT（-1）geometric model, then the induced orbit metrics on Γ are strongly hyperbolic. The following theorem is a general statement to that effect, circumventing the delicate question whether a CAT（-1）geometric model is always available.

Theorem 2.2. There exist admissible metrics on Γ which are strongly hyperbolic.

Implicitly, this was first proved in [11] by an involved construction of combinatorial flavour. In [13] we show that there are, in fact, natural admissible metrics that are strongly hyperbolic. Namely, the Green metric defined by any symmetric and finitely supported random walk on Γ is, up to a rescaling, strongly hyperbolic [13, Thm.6.1].

3. The Busemann Flow for Boundary Actions of Hyperbolic Groups

3.1. Preliminaries

Let us start with some general facts on cocycles, flows, and KMS states for crossed-products. These matters are well-known, and they go back to Renault’s foundational work [14]. A minor difference is that we choose to work with reduced crossed-products, rather than full crossed-products.

Let G be a discrete countable group acting by homeomorphisms on a compact Hausdorff space Ω. The algebraic crossed-product $C(\Omega) \rtimes_{\text{alg}} G$ consists of finite sums of the form $\sum \phi_g g$, where $\phi_g \in C(\Omega)$ and $g \in G$. This is an algebra for the multiplication whose defining rule is that $(\phi g)(\psi h) = \phi(g,\psi)gh$. The reduced crossed-product $C(\Omega) \rtimes_{\text{r}} G$ is the reduced C^*-completion of $C(\Omega) \rtimes_{\text{alg}} G$.

A flow on a C^*-algebra A is a strongly continuous group homomorphism $\sigma : \mathbb{R} \to \text{Aut}(A)$. On crossed-products, cocycles give rise to flows, as follows. Consider a cocycle $c : G \to C(\Omega,\mathbb{R})$, the real-valued continuous maps on Ω. (Throughout this paper, the cocycle property is in the additive sense: $c(gh) = c(g) + g.c(h)$ for all $g,h \in G$.) Then there is a flow σ^c on $C(\Omega) \rtimes_{\text{r}} G$, defined by the formula

$$\sigma^c_t \left(\sum \phi_g g \right) = \sum e^{itc(g)} \phi_g g$$

on $C(\Omega) \rtimes_{\text{alg}} G$.

Let σ be a flow on a C^*-algebra A, and $\beta \in \mathbb{R}$. A state ω on A is said to be a β-KMS state for σ if

$$\omega(b \sigma_{t,\beta}(a)) = \omega(ab)$$

for all a, b in a dense subalgebra of σ-entire elements of A. We refrain from defining the notion of σ-entire elements of A, except to mention that the σ-entire elements form a dense $*$-subalgebra of A. The parameter β is called inverse temperature.

Now consider the flow σ^c on $C(\Omega) \rtimes_{\text{r}} G$, induced by a cocycle c as above. Then all elements in $C(\Omega) \rtimes_{\text{alg}} G$ are entire. Let ω be a β-KMS state for σ^c. As for any state on $C(\Omega) \rtimes_{\text{r}} G$, the restriction of ω to $C(\Omega)$ defines a probability μ on Ω. (Here, and in what follows, we use the term ‘probability’ as a shorthand for ‘regular Borel probability
The KMS condition means that \(\mu \) is \(e^{\beta c} \)-conformal, in the sense that
\[
\frac{d(g \ast \mu)}{d\mu} = e^{\beta c(g)}
\]
for each \(g \in G \). Conversely, let \(\mu \) be an \(e^{\beta c} \)-conformal probability on \(\Omega \). Consider the state \(\omega_\mu \) on \(C(\Omega) \rtimes_r G \), defined by
\[
\omega_\mu\left(\sum \phi_\gamma g \right) = \int \phi_1 \, d\mu
\]
on \(C(\Omega) \rtimes_{\text{alg}} G \). In other words, \(\omega_\mu \) is the composition of the standard expectation \(C(\Omega) \rtimes_r G \to C(\Omega) \) with \(\mu \), viewed as a state on \(C(\Omega) \). Then \(\omega_\mu \) is a \(\beta \)-KMS state for the cocycle flow \(\sigma_c \).

The following result says that the previous construction is the only source of KMS states for \(\sigma_c \), whenever \(c \) satisfies a certain non-vanishing condition.

Theorem 3.1 (Kumjian - Renault [9]). Consider a cocycle flow \(\sigma_c \) on \(C(\Omega) \rtimes_r G \). Assume that, for all non-trivial \(g \in G \), \(c(g) \) is non-zero at each fixed point of \(g \). Then every \(\beta \)-KMS state for \(\sigma_c \) is of the form \(\omega_\mu \) for some \(e^{\beta c} \)-conformal probability \(\mu \) on \(\Omega \).

The non-vanishing condition could be thought of as a strong cohomological non-triviality. For if the cocycle \(c : G \to C(\Omega, \mathbb{R}) \) is of the form \(c(g) = g.\theta - \theta \), then \(c(g) \) vanishes at each fixed point of \(g \), for all \(g \in G \).

3.2. The boundary crossed product of a hyperbolic group.

Now let \(\Gamma \) be a hyperbolic group and consider the reduced crossed-product \(C(\partial \Gamma) \rtimes_r \Gamma \), defined by the action of \(\Gamma \) on its boundary \(\partial \Gamma \). Endow \(\Gamma \) with a strongly hyperbolic, admissible metric.

A remarkable cocycle on \(\Gamma \) is the Busemann cocycle. To begin, there is the group Busemann cocycle, given by
\[
b(g)(x) = 2\langle g, x \rangle - |g| \quad (x \in \Gamma)
\]
for each \(g \in \Gamma \). Here, and in all that follows, the Gromov product is based at the identity, and we write \(|g| \) for \(|1, g| \), the distance from \(g \) to the identity. The cocycle property for \(b \) is easily checked. In fact, writing \(b(g)(x) = |x| - |g^{-1}x| \) exhibits \(b \) as a coboundary.

Secondly, and more importantly for the purposes of this section, there is a boundary Busemann cocycle. By Theorem 2.1, the group Busemann cocycle extends, by continuity and as a continuous function, to the boundary. The boundary Busemann cocycle is given, for each \(g \in \Gamma \), by
\[
b(g)(\xi) = 2\langle g, \xi \rangle - |g| \quad (\xi \in \partial \Gamma).
\]
The boundary Busemann cocycle \(b \) takes values in \(C(\partial \Gamma, \mathbb{R}) \), so it defines a flow \(\sigma^b \) on \(C(\partial \Gamma) \rtimes_r \Gamma \).

On the other hand, by Theorem 2.1 once again, the Gromov product based at the identity induces a compatible metric
\[
d(\xi_1, \xi_2) = e^{-(\xi_1, \xi_2)}
\]
on \(\partial \Gamma \). Let \(\mu \) be the probability on \(\partial \Gamma \) defined by normalizing the Hausdorff measure, and let \(D \) denote the Hausdorff dimension of \(\partial \Gamma \).

Theorem 3.2. Consider the Busemann cocycle flow \(\sigma^b \) on \(C(\partial \Gamma) \rtimes_r \Gamma \). Then the probability \(\mu \) induces a KMS state \(\omega_\mu \) for \(\sigma^b \), at inverse temperature \(D \). If \(\Gamma \) is torsion-free, then \(\omega_\mu \) is the unique KMS state for \(\sigma^b \).
Proof. In order for \(\omega_\mu \) to be a KMS state for \(\sigma^b \) at inverse temperature \(D \), we need to know that the probability \(\mu \) is \(e^{Db^{-1}} \)-conformal. Fix \(g \in \Gamma \). We have

\[
-2\langle gx, gy \rangle = b(g^{-1})(x) + b(g^{-1})(y) - 2\langle x, y \rangle
\]

for all \(x, y \in \Gamma \). This identity extends by continuity to the boundary, leading to

\[
d(g\xi, g\eta)^2 = e^{b(g^{-1})(\xi)} e^{b(g^{-1})(\eta)} d(\xi, \eta)^2
\]

for all \(\xi, \eta \in \partial \Gamma \). It follows, see [12, Lem. 8], that

\[
\frac{d(g^* \mu)}{d\mu} = e^{Db^{-1}}
\]

for each \(g \in G \). Up to replacing \(g \) by \(g^{-1} \), this is means that \(\mu \) is \(e^{Db^{-1}} \)-conformal, as desired.

Now let us turn to the uniqueness statement, in which \(\Gamma \) is assumed to be torsion-free. We wish to apply the Kumjian - Renault criterion, so let us check that \(b \) satisfies the non-vanishing condition of Theorem 3.1. Let \(g \) be a non-trivial element of \(\Gamma \). Then the following properties hold. Firstly, the infinite cyclic subgroup generated by \(g \) is quasi-isometrically embedded in \(\Gamma \). Secondly, there are two distinct points \(g^+, g^- \in \partial \Gamma \) such that \(g^n \to g^+ \) and \(g^{-n} \to g^- \) as \(n \to \infty \). Thirdly, the points fixed by \(g \) on the boundary are precisely \(g^+ \) and \(g^- \).

For the group Busemann cocycle, we have

\[
b(g)(g^n) = |g^n| - |g^{n-1}|, \quad b(g)(g^{-n}) = |g^{-n}| - |g^{-(n+1)}| = -b(g)(g^{n+1}).
\]

Letting \(n \to \infty \), the second relation yields

\[
b(g)(g^-) = -b(g)(g^+),
\]

while the first leads to

\[
b(g)(g^+) = \lim_{n \to \infty} \left(|g^n| - |g^{n-1}| \right) = \lim_{n \to \infty} \frac{|g^n|}{n}
\]

by the discrete l’Hospital rule. But the right-hand limit is positive, as \(g \) is undistorted, and we conclude that \(b(g)(g^+) > 0 \) and \(b(g)(g^-) < 0 \).

We deduce that a KMS state for \(\sigma^b \) at inverse temperature \(D' \) must be induced by a probability \(\mu' \) on \(\partial \Gamma \) which is \(e^{D' b^{-1}} \)-conformal. Results of Coornaert [4], and their generalizations to the roughly geodesic context by Blachère, Haïssinsky, and Mathieu [2], imply that \(D' = D \) and \(\mu' = \mu \).

4. The Haagerup cocycle for hyperbolic groups

4.1. The Haagerup cocycle for free groups. Let \(\mathbb{F} \) be a non-abelian free group. Then \(\mathbb{F} \) admits a proper isometric action on a Hilbert space. This is due to Haagerup [7], up to a slight reinterpretation, and his elegant construction runs as follows.

Consider the standard Cayley graph of \(\mathbb{F} \) with respect to the free generators and their inverses. This is a regular undirected tree. Let \(\tilde{E} \) be the set of its oriented edges. Then \(\mathbb{F} \) acts on \(\tilde{E} \) in a natural way, and we may consider the corresponding orthogonal representation of \(\mathbb{F} \) on \(\ell^2(\tilde{E}) \). Next, we perturb this linear isometric action by a cocycle \(c : \mathbb{F} \to \ell^2(\tilde{E}) \). Given \(g \in \mathbb{F} \), let \(c_g \) be the following function on \(\tilde{E} \): \(c_g \) is supported on the geodesic path joining \(g \) to the identity 1, and for an oriented edge \(e \) lying on this path
we value $c_g(e)$ to be $+1$ or -1 according to whether e points towards or away from g. In short:

$$c_g = \sum_{e \in \{1 \to g\}} \delta_e - \sum_{e \in \{g \to 1\}} \delta_e$$

The cocycle property, $c_{gh} = c_g + g.c_h$ for all $g, h \in F$, can be seen by drawing the geodesic tripod defined by $1, g$, and gh, and noting that the oriented edges lying on the leg towards g cancel out. Clearly, $c_g \in \ell^2(\vec{E})$ and

$$\|c_g\|_2^2 = 2|g|.$$

In particular, the cocycle c is proper: $\|c_g\|_2 \to \infty$ as $g \to \infty$ in F. It follows that the affine isometric action of F on $\ell^2(\vec{E})$ given by $(g, \phi) \mapsto g.\phi + c_g$ is proper. Note that this construction applies, in fact, to any space $\ell^p(\vec{E})$ for $p \in [1, \infty)$.

We wish to adapt Haagerup’s construction to a general hyperbolic context, and we start by recasting the above cocycle in a more convenient form. Firstly, we think of the oriented edge-set \vec{E} as the set $\{(x, y) \in F \times F : |x| = 1\}$. Second, we note that the cocycle c can be described by in metric terms by the following formula:

$$c_g(x, y) = \langle g, x \rangle - \langle g, y \rangle$$

Recall that $\langle \cdot, \cdot \rangle$ denotes the Gromov product based at the identity. In this form, the cocycle property is even more transparent: writing

$$c_g(x, y) = \frac{1}{2}(|x| - |g^{-1}x|) - \frac{1}{2}(|y| - |g^{-1}y|)$$

we obtain the coboundary formula $c_g = F - g.F$, for $F(x, y) = \frac{1}{2}(|x| - |y|)$.

4.2. The Haagerup cocycle for hyperbolic groups.

Let Γ be a hyperbolic group, which we may assume to be non-elementary. Endow Γ with a strongly hyperbolic admissible metric. We also consider a coarse relative of the underlying set we have used in the free group case. Namely, let

$$\Delta = \{(x, y) \in \Gamma \times \Gamma : K - C \leq |x| \leq K + C\}$$

where $C \geq 0$ is a rough geodesic constant, and $K > 0$ is another constant. For the purposes of the following theorem, we ask that $K > 2C$. Note that Δ is non-empty. This can be seen by choosing a convenient point along a rough geodesic from the identity to some sufficiently remote group element.

The group Γ acts on Δ, by $g.(x, y) = (gx, gy)$. Let c_g be defined on Δ by the metric formula $[\text{[}]$. Then c is a cocycle for Γ, for the same reasons as explained above.

Theorem 4.1. For large enough $p \in [1, \infty)$, the affine isometric action of Γ on $\ell^p(\Delta)$ given by $(g, \phi) \mapsto g.\phi + c_g$ is well-defined and proper.

Proof. For the action to be well-defined, we need to have $c_g \in \ell^p(\Delta)$ for each $g \in \Gamma$. An application of the mean value theorem to the function $t \mapsto e^{-t}$ yields

$$|e^{-\langle g, x \rangle} - e^{-\langle g, y \rangle}| \geq e^{-\max\{\langle g, x\rangle, \langle g, y \rangle\}} |\langle g, x \rangle - \langle g, y \rangle|.$$

The left-hand side is at most $e^{-\langle x, y \rangle}$, thanks to strong hyperbolicity. On the right-hand side, both $\langle g, x \rangle$ and $\langle g, y \rangle$ are at most $|g|$. It follows that

$$|c_g(x, y)| \leq e|g| e^{-\langle x, y \rangle}.$$
We complete the argument by showing that $e^{-n} \in L^p(\Delta)$ for large enough $p \in [1, \infty)$. If $(x, y) \in \Delta$ then $|x - y| > |x|$, we deduce that
\[
\sum_{(x, y) \in \Delta} e^{-p (x, y)} \leq C_1 \sum_{(x, y) \in \Delta} e^{-p |x|} \leq C_2 \sum_{x \in \Gamma} e^{-p |x|}
\]
and the latter sum converges when p is large enough.

For the action to be proper, we need to argue that $\|c_g\|^p \to \infty$ as $g \to \infty$ in Γ. In fact, we show that there are constants $C', C'' > 0$, depending only on $K, C,$ and p, such that
\[
\|c_g\|^p \geq C' |g| - C''
\]
for each $g \in \Gamma$.

Let $\gamma : [a, b] \to \Gamma$ be a rough geodesic joining the identity to g. The basic idea is that $|c_g(x, y)|$ is roughly $|x, y|$ whenever x and y lie on γ, and that we can find about $|g|/K$ pairs of points on γ that belong to Δ. Now let us be precise.

Consider the elements $\gamma(t_i) \in \Gamma$ arising from a partition $a = t_0 < \ldots < t_n \leq b$ into n intervals of length K, and a remainder of length less than K. Then $|\gamma(t_i), \gamma(t_{i+1})|$ is within C of $|t_i - t_{i+1}| = K$, so $(\gamma(t_1), \gamma(t_{1+1})) \in \Delta$. Also, $c_g(\gamma(t_i), \gamma(t_{i+1}))$ can be written as
\[
\frac{1}{2}(|\gamma(a), \gamma(t_i)| - |\gamma(b), \gamma(t_i)|) - \frac{1}{2}(|\gamma(a), \gamma(t_{i+1})| - |\gamma(b), \gamma(t_{i+1})|)
\]
which is within $2C$ of
\[
\frac{1}{2}(|a - t_i| - |b - t_i|) - \frac{1}{2}(|a - t_{i+1}| - |b - t_{i+1}|) = t_{i+1} - t_i = K.
\]
In particular, $c_g(\gamma(t_i), \gamma(t_{i+1})) \geq K - 2C > 0$, according to our assumption on K. Hence
\[
\|c_g\|^p = \sum_{(x, y) \in \Delta} |c_g(x, y)|^p \geq \sum_{i=0}^{n-1} |c_g(\gamma(t_i), \gamma(t_{i+1}))|^p \geq (K - 2C)^p n.
\]

On the other hand, we can relate n and $|g|$. The way we defined the partition implies that $K(n + 1) > b - a$, and $b - a \geq |g| - C$ by using the rough geodesic property at the endpoints. Therefore $n \geq (|g| - (K + C))/K$, and the desired claim follows. \qed

We end by pointing out that the cocycle used in [12] is the boundary analogue of [3], namely $c_g(\xi, \eta) = \langle g, \xi \rangle - \langle g, \eta \rangle$ for $\xi, \eta \in \partial \Gamma$.

Acknowledgments. I thank Jean Renault for discussions around §3.1.

References

[1] A. Alvarez, V. Lafforgue: *Actions affines isométriques propres des groupes hyperboliques sur des espaces L^p*, Expo. Math. (to appear)

[2] S. Blachère, P. Haisinsky, P. Mathieu: *Harmonic measures versus quasiconformal measures for hyperbolic groups*, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 4, 683–721

[3] M. Bourdon: *Cohomologie et actions isométriques propres sur les espaces L^p*, in Geometry, Topology and Dynamics in Negative Curvature, London Math. Soc. Lecture Note Ser. 425, Cambridge Univ. Press (2015), 84–106

[4] M. Coornaert: *Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolaue au sens de Gromov*, Pacific J. Math. 159 (1993), no. 2, 241–270

[5] G. Cornelissen, M. Marcolli: *Graph reconstruction and quantum statistical mechanics*, J. Geom. Phys. 72 (2013), 110–117

[6] M. Gromov: *Asymptotic invariants of infinite groups*, Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, London Math. Soc. Lecture Note Ser. no. 182, Cambridge Univ. Press 1993

TWO APPLICATIONS OF STRONG HYPERBOLICITY
[7] U. Haagerup: *An example of a nonnuclear C*-algebra, which has the metric approximation property*, Invent. Math. 50 (1978/79), no. 3, 279–293
[8] M. Ionescu, A. Kumjian: *Hausdorff measures and KMS states*, Indiana Univ. Math. J. 62 (2013), no. 2, 443–463
[9] A. Kumjian, J. Renault: *KMS states on C*-algebras associated to expansive maps*, Proc. Amer. Math. Soc. 134 (2006), no. 7, 2067–2078
[10] J. Lott: *Limit sets as examples in noncommutative geometry*, K-Theory 34 (2005), no. 4, 283–326
[11] I. Mineyev: *Metric conformal structures and hyperbolic dimension*, Conform. Geom. Dyn. 11 (2007), 137–163
[12] B. Nica: *Proper isometric actions of hyperbolic groups on Lp-spaces*, Compos. Math. 149 (2013), no. 5, 773–792
[13] B. Nica, J. Špakula: *Strong hyperbolicity*, Groups Geom. Dyn. 10 (2016), no. 3, 951–964
[14] J. Renault: *A groupoid approach to C*-algebras*, Lecture Notes in Mathematics 793, Springer 1980
[15] G. Yu: *Hyperbolic groups admit proper affine isometric actions on ℓp-spaces*, Geom. Funct. Anal. 15 (2005), no. 5, 1144–1151

Department of Mathematics and Statistics
McGill University, Montreal