2D materials and van der Waals heterojunctions for neuromorphic computing

Zirui Zhang, Dongliang Yang, Huihan Li, Ce Li, Zhongrui Wang, Linfeng Sun and Heejun Yang

1 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
2 Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
3 Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
4 Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
5 These authors contributed equally to this work.

E-mail: sunlinfeng@bit.edu.cn and h.yang@kaist.ac.kr

Keywords: 2D materials, van der Waals heterostructures, neuromorphic computing system, synaptic devices, electronic devices

Abstract
Neuromorphic computing systems employing artificial synapses and neurons are expected to overcome the limitations of the present von Neumann computing architecture in terms of efficiency and bandwidth limits. Traditional neuromorphic devices have used 3D bulk materials, and thus, the resulting device size is difficult to be further scaled down for high density integration, which is required for highly integrated parallel computing. The emergence of two-dimensional (2D) materials offers a promising solution, as evidenced by the surge of reported 2D materials functioning as neuromorphic devices for next-generation computing. In this review, we summarize the 2D materials and their heterostructures to be used for neuromorphic computing devices, which could be classified by the working mechanism and device geometry. Then, we survey neuromorphic device arrays and their applications including artificial visual, tactile, and auditory functions. Finally, we discuss the current challenges of 2D materials to achieve practical neuromorphic devices, providing a perspective on the improved device performance, and integration level of the system. This will deepen our understanding of 2D materials and their heterojunctions and provide a guide to design highly performing memristors. At the same time, the challenges encountered in the industry are discussed, which provides a guide for the development direction of memristors.

1. Introduction
Most modern computational systems are based on the von Neumann architecture, which plays a profound influence on the science and technology associated with our daily lives [1–8]. According to the traditional von Neumann architecture, the central processing unit and the data memory part are physically separated and communicate via the bus. The separated architecture prevents a high integration density of devices, and the data transportation in the bus leads to the high energy consumption of up to 60% of the total computing energy [9–11]. Moreover, the explosive growth of the data makes it further out of balance with the data bus size [3, 12–17]. In contrast with the von Neumann system, the neuromorphic computing system implements the memory and computations simultaneously in a brain-like style, which could overcome the bottleneck of the von Neumann architecture and provide a promising prospect for large data computing applications such as sound location, color and pattern recognition, and so on. Like biological systems, artificial synapses and neurons are the basic blocks of neuromorphic computing networks [18–21]. The function of each synapse is measured by ‘synaptic weight’, which corresponds to the number and size of neurotransmitter vesicles released by nerve stimulation signals in the process of signal transmission between neurons in the biological system [22–24]. The characteristics of nerve stimulation signals corresponding to different synaptic functions are...
simulated by changing the shape, frequency, and duration of the applied pulse voltage, which produces proper changes in the conductive state of the synaptic device. The resistance state emulates the plasticity of a nerve synapse, consisting of short-term plasticity (STP) and long-term plasticity (LTP), which constitutes the basis of cellular learning [25–27].

The aforementioned artificial synapse and neurons are mostly implemented on non-volatile resistive switching (NVRS), also known as the memristive effect [28], in which an external electric field is in charge of switching the resistance states of a two-terminal device. There are several kinds of approaches to realizing NVRS including conductive filaments (CFs) [29–43], oxygen vacancies migration [44–54], phase change [55–63], and Joule heating effect [2, 64, 65]. The switching mechanism varies by the channel material used in the memristor.

Traditional random accessible memory has been based on CMOS. However, as the scale of the device channel approaches several nanometers, quantum effects start to dominate the transport [66, 67]. Thus, new materials and device architectures are required to realize ideal memristors. Among many candidates for memristors, 2D layered materials have been widely investigated owing to their outstanding physical properties, such as electrical tunability, flexibility, low switching power, and hetero-integration compatibility [30, 68–72]. The van der Waals (vdW) heterostructures with 2D materials have drawn extensive interest because of their large surface-to-volume ratios [73–75], dangling-bond-free surfaces [73, 76–78], and highly gate-tunable bandgaps [79–82]. Owing to the atomically flat surface, atomic defects, and structural disorders of 2D layered materials and the dangling-bond-free vdW interfaces in vertical heterostructures, unprecedented device operation such as low operation energy and fast switching speed can be achieved [83–85], which is promising for next-generation memristors [86–90].

Here, we made a table to compare 2D material-based devices with other conventional 3D material-based devices, including oxides, organic materials, and perovskite materials, as shown in table 1. Compared with oxide materials, 2D materials demonstrate flexibility, lower threshold voltage, shorter response time, and broader work temperature ranges in device operation. Although the device performances of organic material-based devices are close to those of 2D materials-based devices, organic material-based devices cannot operate at high temperatures due to the lack of their temperature stability. As for perovskite material-based devices, their temperature ranges are narrower than those of 2D material-based devices, and the perovskite materials are unstable in ambient conditions.

In this review, we mainly focus on 2D materials and their vdW heterojunction-based neuromorphic computing devices, following a brief introduction to the fabrication approaches of the 2D materials and heterojunctions. Then, we discuss the memristors classified by the number of their terminal electrodes and various mechanisms for resistance switching. We will extend the discussion to integrated neuromorphic device arrays and their applications. The schematic diagram of main contents of this review is shown in figure 1. Accordingly, this review provides a brief outlook of the current challenges and prospects for the development of 2D materials and their heterostructures and device applications in the future.

2. Preparation of 2D materials and vdW heterostructures

The extraordinary physical properties of 2D materials, such as atomically thin geometry and chemical inertness, have attracted the attention of diverse research communities. Each atomic layer of 2D materials can be stacked with the adjacent layers via weak vdW interactions, not limited by the lattice mismatch and fabrication processing. The advantages of 2D materials realize feasible and transferable vdW heterostructures [109]. The fabrication methods of 2D materials and their vdW heterostructures have been extensively studied, as summarized below.

2.1. Preparation of 2D materials

Various preparation methods for 2D materials have been developed since the discovery of graphene in 2004: mechanical exfoliation [110–113], chemical exfoliation and intercalation [114, 115], and chemical vapor deposition (CVD) [116–122].

Mechanical exfoliation is the most convenient method to obtain 2D monolayers in the laboratory [123–125]. The quality, purity, and cleanness of the 2D materials prepared by the mechanical exfoliation method are found to be the best among 2D materials by various fabrication methods. However, producing large-area monolayers by the mechanical exfoliation is difficult [126]; the mechanical exfoliation method is not scalable and time-consuming, which makes it difficult for the systematic control of the thickness and lateral dimension of the exfoliated flakes.

Chemical methods including chemical exfoliation and intercalation could boost the production yield of atomically thin flakes. However, the quality of the 2D materials prepared by the chemical methods is low; external ions or compounds are inevitably involved in the chemical exfoliation/intercalation processes. In
Table 1. Comparison between devices based on 2D materials and other materials.

Material	On/off ratio	Endurance (cycles)	Retention time (V_{set}/V_{reset})	Operation time (set/reset)	Power consumption	Temperature	References
2D-materials							
MoS₂	10⁷	DC > 100 bending 1000	>11 h 0.08–0.3 V 40–70 ns 4.5 fJ			RT	[91]
MoS₂	10³	DC 20 10⁴ s	3.0 V/–2.0 V 0 °C–120 °C 4.5 fJ			RT	[92]
WS₂	10³	Pulse > 10⁴ s	>25 h 1.6 V/–1.5 V 0 °C–120 °C 4.5 fJ			RT	[93]
h-BN/Gr/h-BN	10³	Pulse 10⁶ s	— — 290–450 K 4.5 fJ				[90]
CuSe	10²	DC 300 10⁴ s	±0.4 V 10 μs 11.4/0.95 μW 80–420 K 4.5 fJ				[94]
Oxide materials							
ZrO₂; Cu	10³	— 10⁴ s	>3.6 V/0.8–1.5 V 50 ns/100 ns 290–450 K 4.5 fJ			RT	[95]
HfLaO	10³	DC > 10 000 10⁴ s	0.25 V/–1.81 V 10 ns 290–450 K 4.5 fJ			RT	[96]
TiO_x	~7.5%	Pulse > 200	— 3 V/–3.5 V 100 μs/100 μs 290–450 K 4.5 fJ			RT	[97]
TiO₂; Ag	—	—	— 0.4–0.8 V 290–450 K 4.5 fJ			RT	[98]
Ta₂O₅	360	AC 10²	— 2.0 V/–2.0 V 290–450 K 4.5 fJ			RT	[99]
Organic materials							
PEI	10³	DC > 100 pulse > 10³	10⁴ s 0.5 V/–0.2 V 290–450 K 4.5 fJ			RT	[100]
pV3D3	10⁶	Pulse 10³ s	— 2.6 V/0.5 V 290–450 K 4.5 fJ			RT	[101]
PTPA	10⁶	DC 10 10⁶ s	— –0.8 V/–0.5 V 290–450 K 4.5 fJ			RT	[102]
[Ru(L)₃](PF₆)₂	10³	Pulse 10⁶ s	— 0.52 V/–0.35 V 290–450 K 4.5 fJ			RT	[103]
PEO	10⁶	DC 10 000	— 0.45–0.7 V/–0.1–0.2 V 290–450 K 4.5 fJ			RT	[104]
Perovskite materials							
BiFeO₃	> 10 000	Pulse 2000	68 h –2.5––3 V/–1.5 V 290–450 K 4.5 fJ			RT	[105]
BiFeO₃	>10	—	— — 290–450 K 4.5 fJ			RT	[105]
BaTiO₃	10³	Pulse 10⁴ s	~4 V/–7 V 600 ns 290–450 K 4.5 fJ			RT	[106]
PdZr₆Ti₆Co₄O₁₉	10³	Pulse 10⁴ s	~4 V/–7 V 600 ns 290–450 K 4.5 fJ			RT	[107]
LaAlO₃	200	Pulse > 2000	>10⁴ s 25 000 ns/15 ns 290–450 K 4.5 fJ			RT	[108]

^aHere, A:B means B doped A; RT: room temperature.
addition, the thickness, morphology, and size of the flakes prepared by the chemical methods are difficult to be controlled.

On the other hand, due to its excellent controllability and scalability, the CVD method has attracted extensive attention [116–122], and is considered to be a promising way to prepare high-quality and large-area monolayers of 2D materials [127]. CVD techniques are often classified by the reaction type, source, and pressure: low-pressure CVD (LPCVD), atmospheric pressure CVD (APCVD), plasma enhanced CVD (PECVD), and metal–organic CVD (MOCVD). Traditionally, CVD methods have been limited because the growth of 2D materials is not controllable in terms of the dimension and location of 2D materials on the substrate [128]. But the CVD methods have been improved as follows; LPCVD can reduce the generation of particulates generation by quickly pumping out the contaminants [128–131]. APCVD can reduce manufacturing costs, increasing the yield of the fabrication of 2D materials with appreciable quality [120, 132, 133]. PECVD is simple, low-cost, and scalable, enabling the deposition of 2D materials films up to wafer scale [134–137]. MOCVD is an emerging method for 2D materials, which can grow uniform and high-performance 2D materials [138–140].

2.2. Preparation of 2D vdW heterostructures

Methods for preparing vdW heterostructures are classified by chemical (e.g., CVD) and physical (e.g., artificial transfer method) ones. VdW heterostructures can be directly synthesized by CVD methods with highly uniform geometry, but the control of interlayer twist angle and location is hard to be achieved [141].

The dry/wet transfer assembly techniques provide a versatile platform for the preparation of 2D vdW heterostructures with the control [141]. The common dry transfer techniques include poly-dimethyl siloxane (PDMS) exfoliation method [142–144], thermoplastic sacrificial layer method [145, 146], vdW pick-up method [147, 148], wafer bonding method [149], fully dry polymethylmethacrylate transfer method [150], covalent-like quasi-bonding (CLQB) transfer method [111, 151–153], and Al2O3 substrate assisted transfer method [154], etc. The wet transfer techniques include the chemical etching method [155–160], electrochemical bubbling transfer [161–165], adjustable wettability-assisted transfer (AWAT) [166, 167], and capillary-force-assisted clean-stamp transfer [168–171], etc.

Some transfer methods such as the PDMS exfoliation method [142–144] and thermoplastic sacrificial layer method [145, 146] rely on the use of polymer layers, so substantial residues may remain on the 2D materials transferred using such polymers. The critical feature of the vdW pick-up method is the repeatability of picking up the flakes to create target stacks without any contact between the active interfaces of 2D materials and the polymer [148]. Similar to the vdW pick-up method, the wafer bonding method also has a similar benefit [149]. In addition, a gold-assisted exfoliation method underpins a universal and efficient route to produce large-area monolayers [111, 151, 152, 172–174]. Inspired by the method assisted by the Au adhesion layer with CLQB, an Al2O3-assisted exfoliation method has been developed [154]. During the process of the dry transfer technique, 2D materials are not directly exposed to water, effectively avoiding the contamination of the interface of the vdW heterostructures by unwanted chemical residues [175].

In the case of wet transfer, the chemical etching method is to detach 2D materials grown on metal substrates (e.g., copper) by the CVD technique, which produces high-quality vdW heterostructures on a large scale [156, 157, 159, 160]. However, completely dissolved metals cannot be reused in the chemical process.
The electrochemical bubbling transfer method directly exfoliates the samples from the metal, which is cost-saving without losing the metal substrate, but the bubbles may crack the 2D materials [161–165]. The AWAT method is a modified wet transfer process, which achieves uniform and wrinkle-less 2D materials on arbitrary substrates [166, 167]. Capillary-force-assisted clean-stamp transfer is also a simple and clean stamp transfer method; recently, higher capillary forces stimulate further investigation of this transfer technique for the fabrication of high-quality 2D heterostructures [168–171].

3. 2D memristor-based neuromorphic devices

The human brain is a neural network composed of neurons whose axons and dendrites are connected via synapses. The major functions of the neurons are to transmit, store, and process information, enabling humans to conduct various psychological activities that dominate and control most behaviors of humans. Synapses are the input and output channels of the nerve signals.

The evolution of strength (connectivity) of synaptic connection between neurons is called synaptic weight [176, 177]. Synaptic plasticity can be classified into two major types: short-term synaptic plasticity (STSP) and long-term synaptic plasticity (LTSP) by the timescales of the changes. LTSP consists of long-term enhancement (or long-term potentiation, LTP) and long-term inhibition (or long-term depression, LTD), which last for a long time (typically hours or longer). STSP consists of short-term potentiation (STP) and short-term-depression functions. We note other types of synaptic plasticity such as spike-time-dependent plasticity (STDP), spike-rate-dependent plasticity, spike-amplitude-dependent plasticity, and paired-pulse facilitation (PPF) [72, 178].

To mimic the human brain, hardware neuromorphic devices such as artificial neurons and artificial synapses are critical. We mentioned that memristors based on traditional CMOS devices have been widely studied with stable performance and a mature preparation process. But it is difficult to reduce the dimension of the memristor array with CMOS devices; numerous transistors are required to realize the memristor arrays. Thus, 2D material-based neuromorphic devices can be used to achieve novel technology applications that cannot be implemented by traditional oxide materials, such as low-power consumption, in-sensor resistance-switching devices, 3D integration, scalability, etc [16, 67, 71, 73, 83, 179–183]. Depending on the number of terminals, these devices can be classified into two-terminal devices, three-terminal devices, and multi-terminals devices. In the following section, we introduce the recent progress on 2D materials and their heterojunction-based neuromorphic devices, considering various underlying mechanisms of the switching devices. We collected information from several two-terminal devices and three-terminal/multi-terminal devices, consisting of 2D materials. The devices’ structures, on/off ratios, retention time, and other important device characteristics are summarized in two tables shown after sections 3.1 and 3.3. Then we made a comparison between 2D material memristor and some random access memory (RAM) devices in commercial, as shown in table 4. The details will be introduced as below.

3.1. Two-terminal devices

As the name indicates, these kinds of devices with two terminals, drain and source electrodes, emulate the characteristics of biological synapses and neurons. By using 2D materials as the active channel material, various objects such as atoms, ions, holes, and defects in the 2D materials take part in the resistance switching by applied bias voltages. Two-terminal devices can be divided by their distinct underlying working mechanisms, including atom switches/metal ion migration, anion/defects migration, charge trapping/detrapping, phase change, ferroelectric, joule heating effect, etc.

Memristors operating by atom switches/metal-ion-migration are often designed by a sandwich structure of metal/2D material/metal in a plane or vertical direction. In this kind of memristors, a 2D material usually plays a role as a dielectric layer with poor electrical conductivity, and the active metal (chosen as the top electrode) is electrochemically active, compared with the bottom electrode [184–186].

Drifted by external bias, the atoms are dissociated from the metal electrode; free atoms or ions can be diffused into the 2D material, forming CFs or conductive bridges between the drain and source electrodes, which is also called electrochemical metallization (ECM) [186–189]. The ECM results in a SET transition from high resistive states (HRS) to low resistive states (LRS) and generates a hysteresis in $I–V$ characteristics.

The metallic filaments (or CFs) can be either fractured spontaneously via an external bias or recovered via a reversed bias: SET and RESET processes between LRS and HRS. Although many CF phenomena based on traditional oxidized materials have been reported, we note that traditional oxidized materials are difficult to be integrated into 3D because the characteristic dimension of neuromorphic devices with traditional oxide materials requires larger than 5 nm, according to the device dimensional scaling rule first proposed by Dennard et al [67, 190–192].
While many memristors based on 2D materials or their heterostructures have been reported, transition metal di-chalcogenides (TMDs) have gained a lot of interest among numerous 2D materials. Hao et al formed a volatile bridge in Ag/MoS$_2$/TiW memristors (figure 2(a)) and got an on/off current ratio of up to $\sim 10^5$. The possible resistance switching schematic diagram is shown in figure 2(b). In high-resolution SEM, an Ag filament could be seen clearly, shown in figure 2(c) [193]. Dev et al mimicked the leaky-integrate-and-fire model with a $\sim 10^9$ on/off current ratio by using Au/MoS$_2$/Ag threshold switching memristors (TSM) (figures 2(d) and (e)). The work demonstrated 5×10^6 pulsed cycles with the device, which represents good reliability (figure 2(f)), and realizes an artificial neuron system by connecting the Au/MoS$_2$/Ag TSM to an external RC circuit. They achieved a stable spike output [194]. Shi et al reported an electronic synapse with a structure of Au/Ti/h-BN/Au, shown in figure 2(g). In the synaptic device, a CAFM probe was used as one terminal. After a forming process, the synaptic device exhibits stable NVRS (figure 2(h)). The conductive nanofilaments are clearly observed in the cross-sectional TEM (figure 2(i)). When applying a sequence of voltage pulses to the synaptic device, synaptic potentiation could be demonstrated (figure 2(i)) [30]. Moreover, Ge and his collaborators reported the observation of NVRS in monolayer TMDs sandwiched by metal electrodes in 2017 [70], which is contradictory to the conventional thought that nonvolatile switching cannot be scaled to sub-nanometer owing to the exceeding leakage current [195–197].

Depending on the mobile ion species, resistive switching can occur by valence change mechanism (VCM). The VCM is based on anion migration and redistribution, leading to the change of conductance with a valance state change [186]. Traditionally, metal oxides have been placed between two metal electrodes, which makes it easy for the formation of oxygen vacancies. In the SET process, the migration of oxygen anions and vacancies leads to the formation of CFs while the recombination of the oxygen anions and vacancies ruptures the CFs.
Figure 3. (a) Schematic diagram of the structure of memristive device with vertically aligned MoS$_2$ layers. (b) and (c) Endurance data for 100 manual DC switching cycles performed in ambient conditions before vacuum (b), and in vacuum (c). The absence of the resistance switching effect in a vacuum indicates a water adsorbent-driven process and OH$^-$ migration. Reproduced from [205]. CC BY 4.0. (d) Dual–$I–V$ characteristics of set process by positive and negative sweep with compliance of 500 μA. (e) and (f) Cross-sectional schematic of the device in (e) LRS and (f) HRS, where green balls represent anions, maybe oxygen vacancy or hydroxyl groups, further experiments are needed to confirm this. [207] John Wiley & Sons. © 2021 Wiley-VCH GmbH.

(i.e., the RESET process) [186, 198]. Besides oxygen anions (O$^{2-}$) [186, 199–204], hydroxy ions (OH$^-$) [205], halide ions such as chloride ion (Cl$^-$), bromide ions (Br$^-$) [186], iodide ions (I$^-$) [186], nitride, and sulfurs (S$^{2-}$) [206] could be used to form the CFs in the insulating materials (metal oxides).

Belete et al reported a NVRS in a vertical heterostructure of silicon, vertically aligned MoS$_2$, and chrome/gold metal electrodes, as shown in figure 3(a). When the MoS$_2$ is exposed to air (figure 3(b)), water molecules in ambiance could be introduced to the MoS$_2$-based memristor; the MoS$_2$ works as a catalyst to split water molecules and generate hydroxyl ions. The experimental results and analytical simulations suggest that an electric field can drive the movement of OH$^-$ ions and modify the energy barrier at the interface of MoS$_2$ [205]. Xiong et al reported an anion conductor-based memristor using layered double hydroxide (LDH) [M$_{2x+1}$M$_{3x-1}$(OH)$_2$]$^{2x-}$·[A$^{n-}$]$_m$H$_2$O as the active material, where M represents metal cations, and A represents anions. LDHs are considered to be candidates for the OH$^-$ ion conductors due to their high concentration of hydroxyl groups covalently bonded within the 2D brucite layer. Xiong et al also reported a dual resistive switching behavior in the MgAl LDH-based memristor, as shown in figure 3(d), utilizing the formation of anion CFs [207]. In summary, the CFs formed in 2D materials can reduce the scale of neuromorphic devices to the atomic level, which represents their potential for an ultrahigh density of data storage for neuromorphic applications.

Numerous atomic defects and dangling bonds are present in the 2D materials. When the metal atoms/ions are adsorbed on surface defects or inserted into a semiconducting 2D material, the conductance of the 2D material is largely modified without any microstructural change. Thus, we could get memristive devices with charge trapping/detrapping processes. Under a certain (reverse) bias voltage, metal atoms are trapped (detrapped) in (from) inherent defects or interlayer space, leading to an increase (decrease) in the conductance of the 2D materials.

Ge et al in 2020, proposed a model to explain the resistive switching phenomenon in a metal/2D material/metal crossbar structure, called as dissociation–diffusion–adsorption (DDA) model (figures 4(a)–(c)). In the model, free atoms/ions are adsorbed in inherent vacancies of 2D materials and bonded with neighboring atoms, causing a conductive point that drives a conductance increase. They calculated the energy barrier for the diffusion and adsorption process, as shown in figures 4(d) and (e). Following scanning tunneling microscope (STM) experiments supported the model (figure 4(f)). Then, they investigated and added transition metal sulfides (MS$_2$, M = Re, Sn), transition metal selenides (MSe$_2$, M = Re, Sn, Pt), a transition metal telluride (MoTe$_2$), a TMD heterostructure (WS$_2$/MoS$_2$), and an insulator (h-BN) into the category for charge trapping/detrapping [197].
Materials with different crystalline structures demonstrate significantly different optical and electronic properties. Using the phase change between different crystalline structures, we could achieve resistance switching. This kind of memristor with two-terminal electrodes is a phase-change memory memristor, also called a phase change random access memory (PCRAM) device, using the conductance modification during the phase change of materials [208].

Since the phase change in traditional oxide materials is driven thermally, there appears accumulation of 'waste' heat in the channel [208]. However, the highly anisotropic electrical and ionic transport characteristics...
and the large interlayer space of the 2D materials achieve the phase change without waste heat. The ions are inserted into the oxide layer by an electric field and make the phase transition, which is different from the anion migration for forming CFs [207]. For example, the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the thermally driven phase transition in Ge2Sb2Te5 [209] according to the density functional theory-based calculations.

There have been continuous demands to develop new materials to realize phase change memristors. Jiao et al. reported that through geometrical shrinkage and interfacial confinement, thin Sb film with a thickness of 4 nm can be used to make a phase change memristor via phase transition between the amorphous and crystalline phase. The device demonstrated iterative RESET and cumulative SET operations, with a low resistance drift and low noise [208]. TMDC materials, such as MoS2, MoTe2 [210], and so on, have been demonstrated with their inherent different phases such as 1H, 1T, distorted 1T, 2H, and 3R. Zhu et al. reported reliable reversible memristive behaviors with layered MoS2 films via electric field-driven Li+ ions redistribution, which generates reversible local 2H (semiconducting)–1T’ (metallic) phase transition. The high in-plane diffusivity of Li+ ions allows efficient ionic coupling of multiple MoS2 devices and provides a mechanism to implement synaptic competition and synaptic cooperation effects in bio-inspired artificial neural networks, as shown in figures 5(a) and (b).

Fu and his co-workers reported photo-induced phase change in 2D nanosheets (NS)/0D quantum dots (QDs) MoS2 structures, realizing dynamic resistive memory. The device can be modulated by local QD excitation and shows the resistive switching in an electric field, as shown in figures 5(c)–(e). The Raman spectra demonstrate reversible photo-induced phase transition from 2H to 1T’ phase [56, 211]. Furthermore, the phase change, controlled by the charges and temperature, generates tunable periodic oscillations with a chaotic
behavior similar to what occurs in a biological neuron network \cite{211}, as reported by Panin et al. They claimed the potential of their devices for further artificial neural networks.

Non-centrosymmetric materials have attracted research interests owing to their polarizations and related applications. Ferroelectricity possesses a spontaneous electric polarization that can be controlled by an applied external electric field \cite{213}, making it promising for non-volatile RAM. Ferroelectric RAM (FeRAM) provides a fast read and write access compared with dynamic RAM, the most commonly used type in digital computers. The commercial FeRAM devices are mostly based on the ferroelectric effect of a lead zirconium titanium (PZT) material. Under a certain electric bias voltage, the central atom is driven to move and finally stays at a stable state (i.e., non-volatile); a reverse bias can recover the state, which can be detected by an external circuit.

However, the scale of current devices based on traditional ferroelectric materials prevents a high density of integration; new 2D ferroelectric materials are required. Unlike 3D oxidized materials, the competence of 2D layered materials to retain ferroelectric properties originates from their weak interlayer coupling, which stabilizes individual layers from out-of-plane perturbations \cite{72}.

TMDs, such as In$_2$Se$_3$ \cite{214, 215}, SnS \cite{216}, SnSe \cite{216} and so on, and other materials such as CuInP$_2$S$_6$ \cite{217}, demonstrate ferroelectricity. Wang et al reported a ferroelectric semiconductor field effect transistor (FeSFET) using ferroelectric and semiconductor characteristics of α-In$_2$Se$_3$. The switching characteristics of the device demonstrated its potential as an artificial synapse. The structure schematics of the device and material are shown in figure 6(a). Figure 6(b) shows different ferroelectric states and band diagrams corresponding to the different states. When a negative voltage is applied to the back gate (BG), its polarization direction is affected by the electric field and turns to downward near the interface between α-In$_2$Se$_3$ and Al$_2$O$_3$. In the lower surface of α-In$_2$Se$_3$, positively polarized charges are accumulated, resulting in downward band bending. The charge accumulation on the bottom surface of the channel greatly increases the carrier density and channel current and realizes the set process. However, when a positive voltage is applied to the BG, the polarization direction is opposite and negative polarization charges are accumulated, resulting in upward band

Figure 7. (a) and (b) Artificial synaptic device by Joule heating. Schematic diagrams of two-terminal devices based on monolayer MoS$_2$ without (a) and with (b) Joule heating. The violet and yellow spikes represent an input spike and a transmitted EPSC, respectively. (c) Joule heating-driven conductance (G) facilitation with multiple voltage sweeps. (d) Continuously increased synaptic strength (50 continuous synaptic strengths) by a series of pulses with an amplitude, width, and time interval of 25 V, 50 ms, and 50 ms, respectively. The auto reset process was measured with a small voltage of 0.1 V. (e) PPF and PPD indexes after two consecutive pulses as a function of the inter-pulse interval. Reprinted with permission from \cite{2}. Copyright (2018) American Chemical Society. (f) Schematic of the Pd/WS$_2$/Pt device. (g) Typical I–V curve in linear coordinates. The inset shows the electroforming curve. (h) ON switching using a 13 ns voltage pulse. \cite{44} John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Materials	Structure	Mechanism	On/off ratio	Threshold voltage (V)	Retention (s)	Endurance	References
WS₂	Pd/WS₂/Pt	Joule heating effect		~0.6(set) ~0.2(reset)	1.8 × 10⁴		[44]
MoS₂	Au/MoS₂/Au	Joule heating effect					[2]
h-BN/graphene/h-BN	Au/h-BN/graphene/h-BN/Ag	CF	10⁴		10⁵	10⁴	[90]
MoS₂	Ag/MoS₂	CF	10⁵	0.35–0.4			[193]
MoS₂	Au/MoS₂/Ag	CF	10⁵	~0.7 V			[194]
MXene	Cu/MXene/Cu/SiO₂/Si	CF	>50		10⁶	0.35–0.4	[221]
BP/ZnO	BP/ZnO	Anion migration	10⁹		5		[222]
LDH	Ti/Au/[Mₓ⁺⁺Mₓ⁺⁺⁺(OH)ₓ⁺⁺⁺⁺⁺·Aₓ⁻⁻⁻⁻⁻⁻·nH₂O/Gr	Anion migration	10⁹	2.7(set)–8.2(reset)	2.7(set)–8.2(reset)–8.6(reset)	[207]	
MoS₂	Si/MoS₂/Cr	Ion migration					[205]
MoS₂/WO₃	Cr/Au/MoS₂/WO₃	Ion migration	60×				[206]
MoS₂	Au/Li/MoS₂/Au	Phase change	~10³		7000	10⁴	[212]
MoS₂	MoS₂ NS/QD structure	Phase change	~2	4 V			[56]
In₂Se₃	In₂Se₃/Au	Ferroelectric	10³				[214]
CrI₃	h-BN/Gr/GrI₃/Gr/h-BN	Ferroelectric	~10²	2.94			[213]
SnS	Pt/SnS/Pt	Ferroelectric	20	4/–4	10³		[216]
SnS	Cr/Au/SnS/Au/Cr	Charge trapping/detrapping	~1.2				[223]
MoS₂/ h-BN/ graphene	MoS₂/h-BN/ graphene	Charge trapping/detrapping	10⁵	10	4.5 × 10⁴	10⁴	[224]
bending. Thus, the charge depletion occurs on the bottom surface of the channel, which realizes the reset process [218].

The inevitable interface traps at the interface of 2D semiconductor/ferroelectric materials suppress the ferroelectric characteristic, so a self-assembly monolayer material, three-aminopropyltriethoxysilane (APTES) was proposed to work as an interfacial passivation layer at MoS$_2$ and Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) to minimize the influence of the traps (figures 6(c) and (d)) [219]. Hernandez-Martin et al demonstrated the interplay between electrochemical and ferroelectric degrees of freedom at the interface using the dynamic formation of an oxygen vacancy profile in a ferroelectric tunnel junction [220]. Most 2D ferroelectric materials are semiconductors with an appropriate bandgap, so ferroelectric field-effect-transistor devices can be made without using an additional semiconductor channel layer, which can improve the integration density of devices. Despite the advantages of 2D ferroelectric materials, there is still a long way to achieve high-performance 2D ferroelectric material-based memristive devices due to the difficulty of large area production and the low spontaneous polarization value.

When an electric current flows through a conductor or a semiconductor channel, some heat is generated and released, which is called Joule heating. Modulating the conductivity of the channel material, the amount of heat and its release can be controlled. Distinct from all former working mechanisms, the change of conductance driven by the Joule heating effect demonstrates a mono-stable conductance threshold switching: once a bias
Figure 9. (a) The schematics of band diagrams of the metal/dielectric layer/semiconductor device in OFF/ON state, respectively. (b) The schematics of the charge trapping/detrapping process of the MoS₂ transistor in OFF/ON state, respectively. The red and blue arrows show the migration direction of electrons. Reprinted with permission from [231]. Copyright (2017) American Chemical Society. (c) Schematic of the sr-SiNx memory in a FET configuration. The inset shows the transfer characteristics of the MoTe₂ channel on the sr-SiNx substrate, sweeping in forward and backward directions, where the inset shows the corresponding transfer curve on the logarithm scale. The bias $V_{sd} = 0.5 \text{ V}$. (d) Schematic of the operational mechanism of the sr-SiNx memory. The rectangles in the pink and gray colors represent the sr-SiNx substrate and the highly p-doped Si, respectively. The ellipses in the sr-SiNx substrate denote the traps. The blue circles represent the holes that move between the sr-SiNx substrate and the p-doped Si under different gates. Reprinted with permission from [232]. Copyright (2021) American Chemical Society.

Figure 10. (a) A schematic diagram of the neuromorphic transistor with PVA proton conductor IL gate. (b) Transfer curve of the MoS₂ transistor with a fixed bias of $V_{DS} = 0.1 \text{ V}$, in which a hysteresis window is shown clearly. (c) A pair of presynaptic spikes and a triggered EPSC are shown versus time, representing the PPF phenomenon. [239] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Structure of the dual-gate MoS₂ IL (Li⁺) neuristor. (e) STP and (f) LTP of the MoS₂ neuristor. Gray lines indicate the stimulus applied to the TG (ionic gate). Reprinted with permission from [240]. Copyright (2019), American Chemical Society.

Voltage lower than a certain threshold is applied, the heat is immediately released, and the conductance of the channel materials quickly gets recovered [178].

Sun et al reported synaptic computation based on Joule heating and versatile doping induced metal–insulator transition in a scalable monolayer-molybdenum disulfide (MoS₂) device with biologically comparable energy consumption ($\sim 10 \text{ fJ}$) (shown in figures 7(a) and (b)) [2]. With the increase in temperature, the conductance increases simultaneously, supporting the synaptic computation. A circuit with tunable
excitatory and inhibitory synaptic devices demonstrated a key function of synapses such as set/auto reset, PPF, and PPD, as shown in figures 7(d) and (e).

Yan et al. reported a 2D layered WS$_2$ NS-based memristor with vacancy-induced synaptic behaviors (figures 7(f)–(h)) [44]. The electric current generated heat, leading to the generation of the vacancies of S and W atoms; electrons move by hopping through the vacancies. The device exhibited low-power consumption of the order of femto-Joules (10^{-15} J). Furthermore, it successfully emulated biological synaptic functions, such as learning and memory operations under PPF, STDP, excitation and inhibition under positive and negative pulse-stimulus trains, and STP to LTP transition.

Here, we made a table summarizing two-terminal devices based on 2D materials such as TMDs, MXene, h-BN, graphene, LDM, and so on, as shown in table 2. The device structures, mechanisms, on/off ratios, threshold voltages, retention times, and endurance of the various devices are shown in table 2. In table 2, CF devices tend to have higher on/off ratios, lower threshold voltages while anion migration devices need higher threshold voltages for similar on/off ratios (compared with CF devices). The on/off ratios of ion migration, phase change, and ferroelectric devices are lower with higher threshold voltages than those of CF and anion migration devices. Charge trapping/detrapping devices require the highest threshold voltages of ~ 10 V while their performances are good with a high on/off ratio of up to $\sim 10^6$ and a long retention time of up to 10^4 s.
# of terminals	Materials	Structure	Control gate/FG/BG	Mechanism	On/off current ratio	Power consumption	Threshold voltage (V)	Retention (s)	Endurance	References
3	MoS$_2$	v-MoS$_2$/Gr/SiO$_2$/Si	—/—/Si	VdW structure	$\sim 10^6$	—	—	—	—	[228]
3	MoS$_2$	Al$_2$O$_3$/PTCDAMoS$_2$/SiO$_2$/Gr/++-Si	Electrical/optical spike	VdW structure	—	—	—	—	—	[227]
3	MoS$_2$/h-BN/Gr	MoS$_2$/h-BN/Gr	Light	VdW structure	$\sim 10^6$	~ 2 nJ	~ 3 V	3.6×10^4	$>10^4$	[224]
3	MoTe$_2$	MoTe$_2$/Gr/SiO$_2$/Si	—/—/Si	Charge trapping/detrapping	4×10^3	$\sim 2nJ$	3.6×10^4	$>10^4$	>570	[232]
3	MoS$_2$	IL/MoS$_2$/SiO$_2$/Si	Proton-PVA	IL control	$>10^4$	1.5 V	—	—	—	[239]
3	WSe$_2$	WSe$_2$/LiNbO$_3$ (LNO)	Metal	Ferroelectric	898.4	6–9 V	6–9 V	—	—	[243]
3	MoS$_2$	MoS$_2$/APTES passivation layer/Hf$_0.5$Zr$_0.5$O$_2$/p-Si	p-Si	Ferroelectric	<10 V	<10 V	—	—	—	[219]
3	WSe$_2$	WO$_{3-x}$/WSe$_2$/Gr/SiO$_2$/p$^{++}$/Si	SiO$_2$/p$^{++}$/Si	Oxygen migration	10^3	0.2–0.5 V	$<10^3$	$<10^3$	[244]	
3	MoS$_2$	Au/HF/Hf$_0.5$Si$_0.5$/Sapphire	Au	Diffusion of double sulfur vacancy	10^3	$<10^3$	—	—	—	[245]
4	WSe$_2$/WO$_3$	WSe$_2$/WSe$_{3-x}$/O/WO$_3$ SiO$_2$/p-Si	Light/—/p-Si	VdW structure	$\sim 10^7$	2.7 pF	—	100	—	[226]
4	MoS$_2$	h-BN/MoS$_2$/h-BN/Gr/SiO$_2$/Si	—/Au/Gr	Charge trapping/detrapping	~ 300	~ 7.3fF	<10 V	$>10^3$	—	[183]
4	2D MoO$_3$	IL/MoO$_3$/SiO$_2$/Si	Li$^+$/IL/Si	IL control	10^4	—	—	—	—	[236]
4	MoS$_2$	IL/MoS$_2$/SiO$_2$/n$^+$-Si	Li$^+$/IL/n$^+$-Si	IL control	3000	—	—	—	—	[240]
3.2. Three-terminal devices

In contrast to two-terminal devices, three-terminal synaptic devices can achieve both stimuli transmission and the learning process. Therefore, they can provide a new component for synaptic devices and potentially for complex neural network circuits. In the three-terminal geometry, a gate electrode is introduced to mimic the presynaptic processes or external stimulus, acting as a signal modulator. 2D materials and source and drain electrodes mimic the post-neuron, while channel currents can imitate the synaptic weight plasticity in real-time. There are three subtypes of three-terminal devices: vdW heterostructures, charge trapping/detrapping, and ionic gating, which would be introduced in detail below.

2D vdW heterostructures have drawn great interest due to their appealing optoelectronic, mechanical, and electronic properties. In a modified operation, more charge trap sites can be generated to serve as hopping sites for charge carriers; then, the channel formed in the 2D vdW heterostructure and the energy band alignment is substantially changed, leading to an increase in conductance.

In 2015, monolayer MoS2 was used to feature NVRS in a lateral device [225]. In 2020, He et al reported a multi-gate memristor with a lateral heterostructure of 2D WSe2 and WO3, as shown in figures 8(a) and (b). Between the WSe2 and WO3 parts, there is an intermediate transition layer, a mixture of WSe2−x and WO3−y. Protons are injected into or removed from the intermediate layer, generating the memristive behavior. Using the device structure, the authors emulated synaptic functions such as post-synaptic current, STP, and LTP, with highly linearity, symmetry, and ultra-low energy consumption of ~20.7 pJ per spike [226].

Wang et al demonstrated the first multi-functional synaptic transistor based on a fully 2D inorganic/organic, MoS2/polyethylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) hybrid heterojunction. Via the optical/electrical modulation of the interface band structure, the synaptic inhibition and excitation could be switched with the minimum inhibition of 3% and the maximum excitation of 50% [227]. However, the lateral structure lacks the integration density that is achievable in two-terminal vertical devices. Accordingly, a vertical device structure is ideal for high-density system integration [197].

Kalita et al reported the integrate-and-fire response of an artificial neuron based on the volatile threshold switching behavior of a vertical-MoS2/graphene vdW heterostructure. They successfully emulated the typical behaviors of biological neurons such as all or nothing spiking, the threshold-driven spiking of the action potential, the post-firing refractory period, and strength modulated frequency response [228].

To overcome the limits of the capacity for device miniaturization and to increase circuit complexity, Tran et al reported a two-terminal multibit memory via MoS2/h-BN/graphene vdW heterostructure. An electric field can modulate the energy band structure, leading to the transition between on/off states, as shown in figures 8(c) and (d) [224]. He et al demonstrated a novel multi-terminal device based on the 2D vdW heterostructure with a dual-gate, which exhibited admirable multi-level NVRS (figures 8(e) and (f)). Applying different external voltage biases between the source and drain electrodes, they realized cooperative programming and erasing process [183].

In summary, three-terminal memristive devices based on vdW heterostructures demonstrate their potential to extend the range of memristors with promising applications such as image sensing, logic gates, and synaptic devices for neuromorphic computing to meet the power saving, high efficiency, and parallel computing.

Distinct from the two-terminal charge trapping/detrapping devices, there is a selective dielectric layer placed between the charge donor and the charge reservoir (localized defects or trapping layers). When a bias voltage is applied on the control gate, charges are trapped/detrapped from the charge reservoir without back-flow and charge neutralization, generating the switching between LRS and HRS [229, 230]. In the studies, the charge donor is often chosen as a photosensitive material so that, upon light irradiation, numerous hole/electron pairs are formed.

Arnold et al mimicked neurotransmitter release dynamics, and LTP in chemical synapses, by using hysteresis engineering in a BG MoS2 FET. The band diagram shown in figure 9(a) gives a clear energy perspective of the switching process. The resistive switching process by the electrons trapped/de-trapped into/from the MoS2 layer is shown in figure 9(b). Applying a negative voltage to the p-doped Si leads electrons to be detrapped from the semiconductor, resulting in the off-state. When applying a positive voltage, electrons are trapped into the semiconductor, resulting in the on-state [231]. Xiang et al reported a memristor based on silicon-rich silicon nitride (sr-SiNx) as the charge trapping layer owing to its large trap density and high trapping efficiency (figures 9(c) and (d)). They further demonstrated a 2D TMDs-based artificial synaptic array on the sr-SiNx substrate in the three-terminal FET configuration. The device array exhibited a minimal device-to-device (5.3%) and cycle-to-cycle (1.5%) variability, high analog on/off ratio, and conductance update linearity [232].

The charge trapping/detrapping devices discussed above show their potential for next-generation neuromorphic computing systems. They introduced that a 2D dielectric layer can prevent the reverse electric field generated by the accumulated charges and help the anions to migrate, realizing the linearity and higher saturation values of the conductance.
Table 4. Comparison between the 2D material devices and several commercial RAMs.

Operating mechanisms	Merits	Demerits
Resistive RAM/RRAM	Non-volatile	Unclear mechanism
	Fast speed and high density	Large fluctuation
	High reliability	Insufficient reliability
	Multi-value storage	Integration problems
		Low read speed in the integrated array
Magnetic RAM/MRAM (take spin-transfer torque MRAM as an example)	Non-volatile	Barrier layer damage and data storage reliability caused by high current density
	Fast speed	Non-ideal circuit design
	High reliability	
	Near-infinite erasure times	
Phase change RAM/PCRAM	Low production cost and high scalability	Low endurance
	Large storage capacity	Low data-retention reliability
Ferroelectric RAM/FeRAM	Non-volatile	Destructive read out-FeRAM:
	Fast speed and high density	Fatigue failure
	Low power consumption	Non-destructive read out-FeRAM:
	Radiation-proof	Laboratory research stage
2D-material RAM	Non-volatile	Wafer-scale synthesis of high-quality and uniform 2D materials
	Smaller sizes	Integration difficulty of high-density neural networks
	Faster speed and higher density	
	Lower power consumption	
	Compatibility with traditional CMOS devices	
CF and anion migration	High on/off ratio	Stochastic path of CFs, especially for low current operation (by unstable paths)
	Low threshold voltage	Structure change led by ion-migration
	Low power consumption	
Charge trapping/detrapping	Utilizing inherent defects in 2D materials	Affected by environmental conditions greatly
	No damage to channel materials	
Phase change	Inherent different states	High cost
	Low energy consumption	High heating effect and power consumption
		Faulty circuit design
Ferroelectric	Electric-field-driven polarization transformation	High threshold voltage
	Fast read and write access	

(continued on next page)
Besides the three-terminal memristive devices discussed above, ionic liquid (IL) gating control has attracted wide attention from researchers due to its powerful charge control ability via an IL control gate. Researchers have discovered that, in addition to the effect of net charge under IL gate voltage particularly in oxides, there are often complicated ion insertion/extraction processes [233–238].

The introduction of an IL gate leads to the formation of a double electric layer in the IL, inducing charge carriers electrostatically and/or inserting ions into and out of the 2D material's lattice. The charge and ion dynamics produce considerable changes in the electronic, optical and magnetic properties of the material, and can even modify the lattice crystal structure as well.

In 2017, Jiang et al for the first time, proposed the proof-of-principle neuromorphic devices with multiple presynaptic inputs based on a polyvinyl alcohol (PVA) proton-conducting electrolyte, laterally coupled, 2D MoS2 electric-double-layer transistor, as shown in figures 10(a)–(c). They successfully emulated excitatory post-synaptic current (EPSC), PPF, dynamic filter, spatiotemporal signal dendritic integration, and spike logic. Bao et al demonstrated a MoS2 neuristor with a dual-gate transistor structure. An ionic top gate (TG)/electronic BG was designed to control the migration of ions/electrons, as shown in figures 10(d)–(f). When the BG (electronic gate) is grounded, the MoS2 neuristor behaves as a synaptic transistor, demonstrating STP, LTP, PPF, and a potential/depression process with good linearity and symmetry [240]. Furthermore, the IL gating control memristors could be used to achieve artificial modulation of many novel physical phenomena, such as metal–insulator phase transition, magnetic phase transition, superconducting transition, and so on.

3.3. Multi-terminal devices

Although two-terminal and three-terminal devices have demonstrated great potential for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal devices are needed to realize complex functions such as heterosynaptic plasticity. In the human brain, multi-synapses interact and work together. To mimic the multi-synapse interactions, Zhu et al reported a multi-terminal neuromorphic device, as shown in figure 11(a). The synaptic behaviors are modulated by the change of Li⁺ concentration, driven by a bias voltage. Comparing the two devices with the two configurations (figure 11(c)), we learn that the device with a higher concentration of Li⁺ ions has a better conductance response, revealing that Li⁺ ions take part in the conductance switching process [212].

Sangwan et al experimentally realized a multi-terminal hybrid memristor and transistor (memtransistor) using polycrystalline monolayer MoS2 [241]. The device demonstrated great switching properties and acted as a LRS–HRS memtransistor. The LRS and HRS resistances change by a factor of about 10⁴. The 2D planar geometry of the MoS2 memtransistor realizes multi-terminal neural circuits. In a six-terminal memtransistor, the conductance between any two of the four inner electrodes can be modulated by high-bias pulses applied to the two outer electrodes while the inner electrodes are disconnected. The six-terminal device demonstrated LTP/LTD, and indirect STDP.

Xie et al mimicked spatiotemporally-processed visual neurons by a coplanar multigate 2D MoS2 transistor with PVA electrolytes as laterally coupled gate dielectrics experimentally (figure 11(d)). The multigate array was regarded as the receptive field of a visual cortex cell, whereas the EPSC amplitude was measured as an activity of the spatial cortical cell, respectively. Based on the device, they realized some fundamental neuromorphic behaviors such as EPSC and paired-pulse facilitation successfully, as shown in figures 11(e)–(h), providing a promising approach to the current system design for artificial visual recognition [242].

Here, we made a table summarizing three-terminal/multi-terminal devices based on 2D materials such as TMDs, MXene, h-BN, graphene, LDM, and so on, as shown in table 3. The device structures, mechanisms, on/off ratios, power consumption, threshold voltages, retention times, and endurance of the various devices are shown in table 3. The on/off ratios vary from 10² to 10⁶, and power consumption reaches several nJ and even pJ. The threshold voltages of three-terminal/multi-terminal devices are generally higher than two-terminal devices.

Operating mechanisms	Merits	Demerits
Joule heating effect	Low threshold voltage	Heat-driven resistive switching
IL gating	Better electron control ability	Integration difficulty of large-area IL gating

Possible electrochemical reactions

Possible electrochemical reactions
1. Li⁺ + e⁻ → Li₀
2. Li⁺ + e⁻ → Li⁺⁺

Table 4. Continued.
Figure 12. (a) Schematic picture of the Ag/h-BN/graphene/h-BN/Au in the crossbar memory array architecture. (b) SEM images of 12 × 12 crossbar Ag/h-BN/graphene/h-BN memory array/Au. Scale bars: 5 µm for the SEM images. (c) I–V characteristics of a single memory cell. Reproduced from [90]. CC BY 4.0. (d) Optical microscope images of metal/h-BN/metal memristive crossbar arrays fabricated on two-inch wafers. (e) Optical of six 10 × 10 metal/h-BN/metal memristor crossbar arrays. Scale bars, 50 µm. (f) I–V cycling characteristics of a single Au/h-BN/Au memristor. (g) I–V cycling characteristics of a single Ag/h-BN/Ag memristor. Reproduced from [254], with permission from Springer Nature. (h) Schematic of a single WSe2 photodiode. (i) Macroscopic image of the photodiode array. Scale bar, 15 µm. (j) Illustration of the ANN photodiode array and circuit diagram of a single pixel in the photodiode array. (k) Schematics of the classifier and the autoencoder. Reproduced from [255], with permission from Springer Nature.

Given so many different mature RAM devices in commercial, we made a comparison between 2D material-based devices and other RAM devices. We summarized their merits and demerits in table 4. We can use 2D materials to make the device size smaller, overcoming the energy consumption problems with a high on/off ratio, and so on. Despite great advances in the neuromorphic devices based on 2D materials, there remain some problems to be solved.

4. Neuromorphic device array

Since the neural network of our brain is composed of 10¹¹ neurons and 10¹⁵ synapses, and its structure and function are complex, simulating the biological brain requires memristors integrated with a high density. The crossbar array consists of perpendicular top and bottom metal lines, named word lines and bit lines. Memristors can be integrated at the intersections of the word and bit lines.

The crossbar array can conduct parallel operations for matrix multiplication and addition, which can accelerate neural network computation. Therefore, the neural network based on memristors provides a solution for the construction of a new computing architecture that combines storage and computing [246–248]. The oxides-based memristive array has been widely reported [30, 249–252]. With the development of ultra-large-scale integration process technology, the size of silicon-based electronic devices has entered the nanometer scale, which is expected to encounter quantum effects that are different from classical devices [253].

With the development of large-scale integration process technology, the size of silicon-based electronic devices has reached nanometer scale. In the geometry, quantum phenomena such as short channel effect or tunneling (TL) current, which do not occur in large-scale devices, newly appear. Sun et al reported a 12 × 12 self-selective memory array constructed by stacking h-BN and graphene layers into a vertical structure of h-BN/graphene/h-BN between silver (Ag) and gold (Au) electrodes in a crossbar array structure, as shown in...
Figure 13. (a) The human optic nerve system is realized by integrating with the h-BN/WSe2 photodetector and h-BN/WSe2 synaptic device. (b) The simplified electrical circuit for the optic-neural synaptic device. (c) The recognition rate of the optic-neural network and neural network at 600 epochs. Reproduced from [19]. CC BY 4.0.

In addition, Chen et al. reported a wafer-scale integration of high-density memristive crossbar arrays for artificial neural networks using 2D h-BN. The arrays exhibit a high yield (98%), low cycle-to-cycle variability (1.53%), and low device-to-device variability (5.74%). Memristive crossbar arrays with Au/h-BN/Au and Ag/h-BN/Ag structures were fabricated by CVD large-area growth of multilayer h-BN and transferred to two-inch SiO2/Si wafers, as shown in figures 12(d) and (e). Figures 12(f) and (g) corresponds to the electrical tests of Au/h-BN/Au and Ag/h-BN/Ag, respectively [254].

Despite great achievements in memristor-based electrical crossbar arrays, the conversion of optical signals to electrical signals remains a bottleneck. Therefore, Mennel et al. designed a 2D photodiode array, where WSe2 plays a role as the photoactive material (figures 12(h) and (i)). Figure 12(j) schematically illustrates the basic layout of the image sensor and the corresponding circuit diagram. They implemented two types of ANNs: a classifier and an autoencoder, as shown in figure 12(k), which realizes the perception-storage-calculation of optical signals. Furthermore, the device could realize positive and negative photoconductivity. The optical signals can be used for training in the neural network, avoiding the digital-to-analog conversion of the signal, and greatly improving efficiency [255].

5. Applications of neuromorphic devices

Most of our brain’s knowledge of the surrounding environments comes from the sensory organs: eyes, ears, nose, tongue, and skin. Therefore, emulating human’s visual, auditory, tactile, and olfactory nerves is fascinating and attracts extensive research. Brain-inspired neuromorphic computing is considered as the most promising solution to provide effective emulation of the functionality of the human brain via the integration of artificial neuron and synaptic device components. Due to their remarkable electronic, optical, mechanical, and thermal properties, 2D materials provide an ideal platform to develop diverse functionalities for brain-inspired neuromorphic devices. Here, we introduce recently reported applications of neuromorphic devices based on 2D materials and their heterostructures.

5.1. Artificial visual

As one of the most important organs for acquiring information for human beings, biological vision has attracted many scientists to mimic the visual functions of the human brain through machine vision to realize ‘seeing’ and real-time recognition and information storage. Visual perception grasps more than 80% of the information in the process of human interaction with the surrounding environment [174, 256–259].

Recently, Sun et al. proposed a new multi-dimensional photoelectric fusion memristive device based on 2D layered tin sulfide (SnS). The device demonstrated reservoir computing by combining the sensory functions and successfully made such in-sensor reservoir computing electronic devices used in language symbol recognition and learning. Even with extremely similar interference items, a 91% recognition rate can be achieved for complex language systems. This research work overcomes the technical bottleneck of physically separated
sensors and reservoir computing calculations and greatly reduces the learning system complexity and operating costs. The new device deals with the urgent requirements of the explosive growth of big data processing in the Internet of Things era and provides a technological breakthrough for more effective machine learning and brain-like computing [223].

Similarly, Seo et al used a vdW heterostructure (h-BN/WSe2) to realize an optic-neural synaptic device with synaptic and optical-sensing functions, as shown in figure 13(a). The device demonstrated diverse synaptic dynamics with various light illumination conditions (red ($\lambda = 655$ nm), green ($\lambda = 532$ nm), and blue ($\lambda = 405$ nm)), and preserved its synaptic plasticity. Figure 13(b) shows the simplified electrical circuit for the optic-neural synaptic device. Simultaneously, the colored and color-mixed pattern recognition capability of the human visual system was emulated by an optic neural network, which achieved an >90% (figure 13(c)) recognition rate for the color-pattern recognition task, which is an analog to a color-blindness test [19].

5.2. Artificial tactile

Touch is another sensory way, one of the main ways for humans to coordinate and interact with surrounding environments. Sense of touch can help humans to evaluate the properties of objects, such as size, shape, texture, temperature, etc; ‘touch’ could transmit various sensory information such as pressure, vibration, pain, and temperature to the central nervous system, helping humans to perceive the surrounding environment and avoid potential harm. The human touch system consists of receptors, transmitters, and synapses that act as a medium for the perception of external mechanical stimuli and the transmission/processing of sensory signals [133, 260–264].

Chen et al reported a piezotronic graphene artificial sensory synapse by integrating a piezoelectric nanogenerator (PENG) with an ionic gel–gated transistor demonstrated (figure 14). Figure 14(a) shows the tactile receptors in human skin by which the received mechanical stimulus can be converted into presynaptic potentials. The presynaptic potentials are transmitted to the central nervous system through neurons and synapses. Figure 14(b) shows the schematic illustration of the proposed piezotronic artificial sensory synapse and the corresponding circuit diagram shown in figure 14(c).

The working mechanism of the device is to trigger the PENG to generate an induced electric field through mechanical strain, which causes the uneven distribution of ions in the IL, resulting in the change of the conductance in the graphene channel. In addition, they demonstrated the LTP and LTD of artificial synaptic plasticity by the tension and compression strain pulses applied to the PENG [265] (figures 14(d) and (e)).

5.3. Artificial auditory

Generally, the ear, as an auditory organ, receives the sound from all directions, converts the sound signals into neural signals, and transmits them to the nerve system in the brain, which is finally processed and understood.
by the brain. The functional goal of the auditory system is to detect and extract information from pressure waves in the surrounding medium, usually air or water. Sound waves with different amplitudes, frequencies, and compositions are produced by motion or collisions, and they primarily tell the perceiver what is happening in the environment [266–272].

Sun et al designed a synaptic device with the structure of Au–MoS$_2$–Au, realizing a key function for the most precise temporal computation in the human brain, sound localization, through detecting binaural time difference by suppressing sound intensity or frequency-dependent synaptic connections, as shown in figures 15(a) and (b). Synaptic weights could be modified by the metal–insulator transition in a scalable monolayer-molybdenum disulfide (MoS$_2$) induced by Joule heating and versatile doping. Furthermore, the energy consumption (\sim10 fJ) is comparable to biological (figure 15(c)). Figure 15(d) illustrates the confounding effect of the cue of interaural level difference (ILD) without our synaptic computation or inhibitory synaptic device [2]. This work demonstrates a breakthrough in neuromorphic computing in mimicking the complex and accurate information processing in the human brain.

Recently, Seo et al demonstrated a vdW-hybrid synaptic device with linear and symmetric conductance update characteristics and realized their applications in acoustic pattern recognition (figure 15(e)). Through the training and inference simulation, a high recognition rate of 93.8% was achieved by using the vdW-hybrid synaptic device, as shown in figure 15(f). The vdW-hybrid synaptic device holds great promise in highly accurate neuromorphic computing [272].
6. Challenges and outlook

In summary, recent advances in understanding the microscopic working mechanisms and applications of neuromorphic devices are reviewed in this manuscript. We summarized several methods for preparing 2D materials and heterojunctions. Then, we discussed the emerging neuromorphic devices. Depending on the number of terminals, the device could be divided into three kinds: two-terminal, three-terminal, and multi-terminal. For each kind, we clarify the underlying resistance switching mechanisms. After that, we introduced the neuromorphic device array and its applications on artificial visual, artificial tactile, and artificial auditory.

While great progress has been made so far, we are still far from system-level, brain-inspired neural computing that enables practical artificial intelligence with 2D materials. Some technical challenges remain to be addressed before the realization of commercial applications as follows.

(a) Wafer-scale synthesis of high-quality and uniform 2D materials; large-area and high-quality 2D crystals are the basis for the development of next-generation electro-optical devices. The synthesis of wafer-scale 2D materials is a critical step for industrial applications. At present, the CVD method is still considered to be the most effective technique, which can be industrially produced and relatively simple to operate. Besides CVD, there are several other methods to synthesize TMDCs. Such as pulsed laser deposition, atomic layer deposition ALD (PEALD), and molecular beam epitaxy.

(b) The compatibility with traditional CMOS fabrications; integrating devices with different functions in one chip significantly improves the performance of the circuit and reduces the cost. Solving the CMOS process compatibility problem of neuromorphic computing devices will enable large-scale integration of brain-like devices for commercial applications.

(c) Device development with low power consumption and high stability; the energy consumption of synaptic devices plays a critical role in the realization of neuromorphic computing. We need to further improve the device efficiency by reducing the contact resistance of 2D materials. As the metal electrode deposited on the 2D material will partially damage the covalent bonds in the atomic lattice and may introduce the Fermi level pinning and form Schottky contacts, the contact resistance increases.

(d) The high-density integration serving neural networks; the current integration density is much lower than the human brain containing 10^{11} neurons and 10^{15} synapses, so we need to develop high-density/high-capacity 3D stacked device arrays to address the challenge. Low-integration-density integrated circuits that take advantage of the advanced properties of 2D materials have remained an issue, and several companies have begun to commercialize them. In the future, high-density integrated circuits impose more stringent requirements in terms of yield, variability, reliability, and stability, thus requiring lower defect densities at 2D materials and their interfaces with other materials.

Therefore, for future computing, we should first prepare proper 2D materials that can achieve high-performance devices through a precise physical design. Secondly, designing new device structures to overcome the limitations of the von Neumann bottleneck is critical. Finally, integrating reliable device functions is required for system-level applications. All the efforts should be comprehensively promoted in all aspects of the developments: materials design, device fabrication, and circuit integration. Then, we will be able to realize brain-like computing systems for real-world applications.

Acknowledgments

This work was supported by Beijing Natural Science Foundation (Grant No. Z210006) and the National Natural Science Foundation of China Grant No. 12104051. LS also acknowledges the financial support from the Beijing Institute of Technology Research Fund Program for Young Scholars. ZW was supported by the Hong Kong Research Grant Council—Early Career Scheme (Grant No. 27206321), National Natural Science Foundation of China—Excellent Young Scientists Fund (Hong Kong and Macau) (Grant No. 62122004). HY acknowledges the support from Samsung Research Funding & Incubation Center of Samsung Electronics, under Project No. SRFC-MA1701-01.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
ORCID iDs

Zhongrui Wang https://orcid.org/0000-0003-2264-0677
Linfeng Sun https://orcid.org/0000-0001-5851-8206
Heejun Yang https://orcid.org/0000-0003-0502-0054

References

[1] Pei J et al 2019 Towards artificial general intelligence with hybrid Tianjic chip architecture Nature 572 106–11
[2] Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Esthete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization Nano Lett. 18 3229–34
[3] Zhang W, Gao B, Tang J, Yao P, Yu S, Chang M-F, Yao H-J, Qian H and Wu H 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82
[4] Sun L et al 2020 Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications Nano Energy 69 104472
[5] Van De Burgt Y, Lubbernum E, Fuller E J, Keene S T, Farra G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414–8
[6] Li X et al 2020 Power-efficient neuro-network with artificial dendrites Nat. Nanotechnol. 15 776–82
[7] Jo S H, Chang T, Ebong I, Bhadviya B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301
[8] Sun B, Guo T, Zhou G, Ranjan S, Jiao Y, Wei L, Zhou Y N and Wu Y A 2021 Synthetic devices based non-volatile memristor computing applications in artificial intelligence Mater. Today. Phys. 18 100393
[9] Berl A, Gelenbe E, Di Girolamo M, Giuliani G, De Meer H, Dang M Q and Pentikousis K 2010 Energy-efficient cloud computing Comput. J. 53 1045–51
[10] Lee Y C and Zomaya A Y 2012 Energy efficient utilization of resources in cloud computing systems J. Supercomput. 60 268–80
[11] Mukherjee T, Banerjee A, Varsamopoulos G, Gupta S K S and Rungta S 2009 Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers Comput. Netw. 53 2888–904
[12] Jeong D S, Kim K M, Kim S, Choi B J and Hwang C S 2016 Memristors for energy-efficient new computing paradigms Adv. Electron. Mater. 2 1600090
[13] Yang J-T, Ge C, Du J-Y, Huang H-Y, He M, Wang C, Lu H-B, Yang G-Z and Jin K-J 2018 Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor Adv. Mater. 30 1801548
[14] Yang D, Yang H, Guo X, Zhang H, Jiao C, Xiao W, Guo P, Wang Q and He D 2020 Robust polyethyleneimine electrolyte for high performance and thermally stable atomic switch memristors Adv. Funct. Mater. 30 2004514
[15] Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308
[16] Lee G, Baek J H, Ren F, Pearton S J, Lee G H and Kim J 2021 Artificial neuron and synapse devices based on 2D materials Small 17 2100640
[17] Cai F, Correll J M, Lee S H, Lim Y, Bothra V, Zhang Z, Flynn M P and Lu W D 2019 A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations Nat. Electron. 2 290–9
[18] Miao F et al 2011 Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor Adv. Mater. 23 5633–40
[19] Seo S et al 2018 Artificial optic-neural synapse for colored and color-mixed pattern recognition Nat. Commun. 9 5106
[20] Zador A M 2019 A critique of pure learning and what artificial neural networks can learn from animal brains Nat. Commun. 10 3770
[21] Klein-Flügge M C, Wittmann M K, Shpektor A, Jensen D E A and Rushworth M F S 2019 Multiple associative structures created by reinforcement and incidental statistical learning mechanisms Nat. Commun. 10 4835
[22] Xiao Z and Huang J 2016 Energy-efficient hybrid porousvite memristors and synaptic devices Adv. Electron. Mater. 2 1600100
[23] Rachmuth G, Shouval H Z, Bear M F and Poon C S 2011 A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity Proc. Natl Acad. Sci. USA 108 1266–74
[24] Ohno T, Hasegawa T, Tsurolka T, Terabe K, Gíménez J K and Aono M 2011 Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 591–5
[25] Abraham W C and Bear M F 1996 Metaplasticity: the plasticity of synaptic plasticity Trends Neurosci. 19 126–30
[26] Abbott L F and Nelson S B 2000 Synaptic plasticity: taming the beast Adv. Mater. 1266–74
[27] Zucke R S and Regehr W G 2002 Short-term synaptic plasticity Ann. Rev. Physiol. 64 355–405
[28] Hus S M 2019 Observation of single-defect memristor in an MoS2 atomic sheet Nano. Mater. 16 58–62
[29] Jang B C et al 2019 Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system Nano Lett. 19 839–49
[30] Shi Y et al 2018 Electronic synapses made of layered two-dimensional materials Nat. Electron. 1 458–65
[31] Wu X, Ge B, Akinwande D and Lee J C 2020 Understanding of multiple resistance states by current sweeping in MoS2-based non-volatile memory devices Nanotechnology 31 465206
[32] Wu X et al 2019 Thinnest nonvolatile memory based on monolayer h-BN Adv. Mater. 31 1806790
[33] Xu R, Jang H, Lee M-H, Amanov D, Cho Y, Kim H, Park S, Shin H-J and Ham D 2019 Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV Nano Lett. 19 2411–7
[34] Yan X et al 2019 Robust Ag(ZrO)2/WO3/Pt memristor for neuromorphic computing ACS Appl. Mater. Interfaces 11 48029–38
[35] Zeng X et al 2021 Controllable high-performance memristors based on 2D Fe3GeTe2 oxide for biological synapse imitation Nanotechnology 32 235205
[36] Guo J et al 2020 Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration Mater. Today 2 965–76
[37] Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J and Zhuge F 2017 Ultrasensitive memristive synapses based on lightly oxidized sulfide films Adv. Mater. 29 1606927
[38] Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K and Aono M 2012 Controlling the synaptic plasticity of a Cu$_2$S gap-type atomic switch Adv. Funct. Mater. 22 3606–13
[39] Wang H, Yan X, Wang S and Lu N 2021 High-stability memristive devices based on Pd conductive filaments and its applications in neuromorphic computing ACS Appl. Mater. Interfaces 13 17844–51
[40] Wang M et al 2018 Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold switch Adv. Mater. 30 1802316
[41] Wang W, Wang M, Ambrosi E, Bricalli A, Laudato M, Sun Z, Chen X and Lelmini D 2019 Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices Nat. Commun. 10 81
[42] Zhao X et al 2017 Confining cation injection to enhance CBRAM performance by nanopore graphene layer Small 13 1603948
[43] Zhao X et al 2018 Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects Adv. Mater. 30 1705193
[44] Yan X et al 2019 Vacancy-induced synaptic behavior in 2D WS$_2$ nanosheet-based memristor for low-power neuromorphic computing Small 15 1901423
[45] Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryhänen T and Bailey M J A 2015 Layered memristive and memcapacitive switches for printable electronics Nat. Mater. 14 199–204
[46] Choi B J, Torrezn A C, Kotula P G, Lohn A J, Marinella M J, Li Z, Williams R S and Yang J J 2016 High-speed and low-energy nitride memristors Adv. Funct. Mater. 26 5290–6
[47] Du C, Ma W, Chang T, Sheridan P and Lu W D 2015 Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics Adv. Funct. Mater. 25 4290–9
[48] Hota M K, Hedhilli N M, Wehbe N, McLaclahn M A and Alshareef H N 2016 Multistate resistive switching memory for synaptic memory applications Adv. Mater. Interfaces 3 1600192
[49] Hu S G, Liu Y, Liu Z, Chen T P, Wang J J, Yu Q, Deng L J, Yin Y and Hosaka S 2015 Associative memory realized by a reconfigurable memristive Hopfield network Nat. Commun. 6 7522
[50] Lee T-H, Hwang H-G, Woo J-U, Kim D-H, Kim T-W and Nahm S 2018 Synaptic plasticity and metallastility of biological synapse realized in a KNbO$_3$ memristor for application to artificial synapse ACS Appl. Mater. Interfaces 10 25673–82
[51] Lim E and Ismail R 2015 Conduction mechanism of valence change resistive switching memory: a survey Electronics 4 536–613
[52] Liu B, Liu Z, Chiu I-S, Di M, Wu Y, Wang J-C, Hou T-H and Lai C-S 2018 Programmable synaptic metallastility and below femtojoule spikeing energy realized in graphene-based phase-change resistive memory ACS Appl. Mater. Interfaces 10 20237–43
[53] Serb A, Illl J, Khat A, Berdan R, Legenstein R and Prodmakakis T 2016 Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses Nat. Commun. 7 12611
[54] Yin J, Zeng F, Wan Q, Li F, Sun Y, Hu Y, Liu J, Li G and Pan F 2018 Adaptive crystallite kinetics in homogeneous bilayer oxide memristor for emulating diverse synaptic plasticity Adv. Funct. Mater. 28 1706927
[55] Apte A et al 2019 Two-dimensional lateral epitaxy of 2H (MoSe$_2$)–1T’ (ReSe$_2$) phases Nano Lett. 19 6338–45
[56] Fu X et al 2019 Molybdenum disulfide nanosheet/quantum dot dynamic memristive structure driven by photoinduced phase transition Small 15 1903809
[57] Boybat I et al 2018 Neuromorphic computing with multi-memristive synapses Nat. Commun. 9 2514
[58] Driscoll T, Kim H-T, Chae B-G, Di Ventura M and Basov D N 2009 Phase-transition driven memristive system Appl. Phys. Lett. 95 043503
[59] Kumar S, Pickett M D, Strachan J P, Gibson G, Nissh Y and William R S 2015 Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO$_2$ Adv. Mater. 25 6128–32
[60] Sebastian A, Le Gallo M, Burr G W, Kim S, Brightsky M and Eleftheriou E 2018 Tutorial: brain-inspired computing using phase-change memory devices J. Appl. Phys. 124 111101
[61] Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Stochastic phase-change neurons Nat. Nanotechnol. 11 693–9
[62] Wu Y et al 2019 High sensitivity micro-fiber Mach–Zehnder interferometric temperature sensors with a high index ring layer Opt. Express 27 34247
[63] Zhang W, Mazzarrello R, Wuttig M and Ma E 2019 Designing crystallization in phase-change materials for universal memory and neuro-inspired computing Nat. Rev. Mater. 4 150–68
[64] Sangwan V K et al 2021 Visualizing thermally activated memristive switching in percolating networks of solution-processed 2D semiconductors Adv. Funct. Mater. 31 2107385
[65] Sun L et al 2018 Selective growth of monolayer semiconductors for diverse synaptic junctions 2D Mater. 6 015029
[66] Sangwan V K and Hersam M C 2020 Neuromorphic nanoelectronic materials Nat. Nanotechnol. 15 517–28
[67] Liu C, Chen H, Wang S, Liu Q, Jiang Y-G, Zhang D W, Liu M and Zhou P 2020 Two-dimensional materials for next-generation computing technologies Nat. Nanotechnol. 15 545–57
[68] Ko T-J et al 2020 Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications iScience 23 101676
[69] Wang M et al 2018 Robust memristors based on layered two-dimensional materials Nat. Electron. 1 130–6
[70] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L, Zhang Y, Lee J C and Akinwande D 2017 Atomistor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides Nano Lett. 18 434–41
[71] Zhang L, Gong T, Wang H, Guo Z and Zhang H 2019 Memristive devices based on emerging two-dimensional materials beyond graphene NanoScale 11 12413–35
[72] Kwon K, Taren A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 Recent developments in emerging two-dimensional materials and their applications J. Mater. Chem. C 8 387–440
[73] Xiang D et al 2019 Anomalous broadband spectrum photodetection in 2D rhenum disulfide transistor Adv. Opt. Mater. 7 1901115
Neuromorph. Comput. Eng. 2 (2022) 032004
Topical Review

Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Tightly bound trions in monolayer MoS2, Nat. Mater. 12 207–11
Xia W, Dai L, Yu P, Tong X, Song W, Zhang G and Wang Z 2017 Recent progress in van der Waals heterojunctions Nanoscale 9 4524–55
Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H and Zhou P 2020 Memory materials and devices: from concept to application InfMat 2 261–90
Li H, Shi Y and Li L J 2017 Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly Carbon 127 602–10
Huh W, Lee D and Lee C H 2020 Memristors based on 2D materials as an artificial synapse for neuromorphic electronics Adv. Mater. 32 2002092
Tan C et al 2017 Recent advances in ultrathin two-dimensional nanomaterials Chem. Rev. 117 6225–331
Butler S Z et al 2013 Progress, challenges, and opportunities in two-dimensional materials beyond graphene ACS Nano 7 2898–926
Ajayan P, Kim P and Banerjee K 2016 Two-dimensional van der Waals materials Phys. Today 69 38–44
Ko T-J et al 2020 Large-area 2D TMD layers for mechanically reconfigurable electronic devices J. Phys. D: Appl. Phys. 53 513002
Huang Z, Han W, Tang H, Ren L, Chander D S, Qi X and Zhang H 2015 Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure 2D Mater. 2 035011
Lee E, Lee S G, Lee W H, Lee H C, Nguyen N N, Yoo M S and Cho K 2020 Direct CVD growth of a graphene/MoS2 heterostructure with interfacial bonding for two-dimensional electronics Chem. Mater. 32 4544–52
Sun L et al 2019 Self-selective van der Waals heterostructures for large scale memory array Nat. Commun. 10 3161
Feng X et al 2019 A fully printed flexible MoS2 memristive artificial synapse with femtouloure switching energy Adv. Electron. Mater. 5 1900730
Bhattacharjee S et al 2020 Insights into multilevel resistive switching in monolayer MoS2 ACS Appl. Mater. Interfaces 12 6022–9
Das U, Bhattacharjee S, Mahato B, Prajapat M, Sarkar P and Roy A 2020 Uniform, large-scale growth of WS2 nanodomains via CVD technique for stable non-volatile RAM application Mater. Sci. Semicond. Process. 107 104837
Yin L, Cheng R, Wen Y, Zhai B, Jiang J, Wang H, Liu C and He J 2022 High-performance memristors based on ultrathin 2D copper chalcogenides Adv. Mater. 34 2108313
Liu M, Guan W, Long S, Liu Q and Wang W 2008 Excellent resistive switching characteristics of Cu doped ZrO2 and its 64 bit cross-point integration IEEE pp 905–8
Chen L, Xu Y, Sun Q-Q, Zhou P, Wang P-F, Ding S-J and Zhang D W 2010 Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance IEEE Electron Device Lett. 31 1296–8
Gupta I, Serb A, Khiat A, Zeiler R, Vassanelli S and Prodromakis T 2016 Real-time encoding and compression of neuronal spikes by metal-oxide memristors Nat. Commun. 7 12805
Yan X, Zhao J, Liu S, Zhou Z, Liu Q, Chen J and Liu X Y 2018 Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing Adv. Funct. Mater. 28 1705230
Govoreanu B, Adelmann C, Redolfi A, Zhang L, Clima S and Jurczak M 2013 High-performance metal–insulator–metal tunnel diode selectors IEEE Electron Device Lett. 35 63–5
Jang B C, Seong H, Kim S K, Kim J Y, Koo B J, Choi J, Yang S Y, Im S G and Choi S Y 2016 Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition ACS Appl. Interfaces 8 12951–8
Zhang W et al 2014 Thermally-stable resistive switching with a large on/off ratio achieved in poly(triphenylamine) Chem. Commun. 50 11856–8
Goswami S et al 2017 Robust resistive memory devices using solution-processable metal-coordinated azo aromatics Nat. Mater. 16 1216–24
Krishnan K, Tsuruoka T, Mannquenin C and Aono M 2016 Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches Adv. Mater. 28 640–8
Yamada H et al 2013 Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions ACS Nano 7 5385–90
Boynt S et al 2017 Learning through ferroelectric domain dynamics in solid-state nanosystems Nat. Commun. 8 14736
Guo R et al 2018 Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering ACS Appl. Mater. Interfaces 10 12862–9
Yoon C, Lee J H, Lee S, Jeon J H, Jang J T, Kim D H, Kim Y H and Park B H 2017 Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction Nano Lett. 17 1499–55
Wu S et al 2014 Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors ACS Appl. Mater. Interfaces 6 8575–9
Liu Y, Weiss N O, Duan X, Cheng H-C, Huang Y and Duan X 2016 Van der Waals heterostructures and devices Nat. Rev. Mater. 1 16042
Yi M and Shen Z 2015 A review on mechanical exfoliation for the scalable production of graphene J. Mater. Chem. A 3 11700–15
Magda G Z, Pető J, Dobrik G, Hwang C, Biró L P and Tapasztó I L 2015 Exfoliation of large-area transition metal chalcogenide single layers Sci. Rep. 5 14714
Chiu M-H, Li M-Y, Zhang W, Hsu W-T, Chang W-H, Terrones M, Terrones H and Li L J 2014 Spectroscopic signatures for interlayer coupling in MoS2–WS2, van der Waals stacking ACS Nano 8 9649–56
Zhang J, Najmaei S, Lin H and Lou J 2014 MoS2 atomic layers with artificial active edge sites as transparent counter electrodes for improved performance of dye-sensitized solar cells Nanoscale 6 5279–83
Low C T J, Walsh F C, Chakrabarti M H, Hashim M A and Hussain M A 2013 Electrochemical approaches to the production of graphene flakes and their potential applications Carbon 54 1–21
Malik S, Vijayaraghavan A, Erini R, Ariga K, Khalakhan I and Hill J P 2010 High purity graphenes prepared by a chemical intercalation method Nanoscale 2 2139–43
Li J et al 2019 Fractal-theory-based control of the shape and quality of CVD-grown 2D materials Adv. Mater. 31 1902431
Zhan Y, Liu Z, Najmaei S, Ayany P M and Lou J 2012 Large-area vapor-phase growth and characterization of MoS2, atomic layers on a SiO2 substrate Small 8 966–71
Lin Y-C, Zhang W, Huang J-K, Liu K-K, Lee Y-H, Liang C-T, Chu C-W and Lin L-J 2012 Wafer-scale MoS2 thin layers prepared by Mo2O7 sulfuration Nanoscale 4 6637–41
Liu K-K et al 2012 Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates Nano Lett. 12 1538–44
Lee Y-H et al 2012 Synthesis of large-area MoS2 atomic layers with chemical vapor deposition Adv. Mater. 24 2320–5
Neuromorph. Comput. Eng. 2 (2022) 032004

Topical Review

[163] de la Rosa C J, Lindvall N, Cole M T, Nam Y, Löffler M, Olsson E, Yurgens A, Teo K B K and Yurgens A 2013 Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu Appl. Phys. Lett. 102 022101

[164] Yan S J et al 2015 Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils ACS Nano 9 5510–9

[165] Gao Y et al 2015 Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils Nat. Commun. 6 8569

[166] Shen Y C et al 2021 Rational design on wrinkle-less transfer of transition metal dichalcogenide monolayer by adjustable wettability-assisted transfer method Adv. Funct. Mater. 31 2014978

[167] Liu X, Huang K, Zhao M, Li F and Liu H 2019 A modified wrinkled-free MoS2 film transfer method for large area high mobility field-effect transistor Nanotechnology 31 055707

[168] Ma X, Liu Q, Xu D, Zhu Y, Kim S, Cui Y, Zhong L and Liu M 2017 Capillary-force-assisted clean-stamp transfer of two-dimensional materials Nano Lett. 17 6961–7

[169] Sheath P and Majumder M 2016 Flux accentuation and improved rejection in graphene-based filtration membranes produced by capillary-force-assisted self-assembly Phil. Trans. R. Soc. A 373 20150208

[170] Hou Y et al 2020 Preparation of twisted bilayer graphene via the wetting transfer method ACS Appl. Mater. Interfaces 12 40958–67

[171] Sanchez D A, Dai Z, Wang P, Cantu-Chavez A, Brennan C J, Huang R and Lu N 2018 Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals Proc. Natl Acad. Sci. USA 115 7884–9

[172] Huang Y et al 2020 Universal mechanical exfoliation of large-area 2D crystals Nat. Commun. 11 2453

[173] Liu F, Wu W, Bai Y, Che W H, Li Q, Wang J, Hone J and Zhu X Y 2020 Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices Science 367 903–6

[174] Moon Y J et al 2020 Layer-engineered large-area exfoliation of graphene Sci. Adv. 6 6601

[175] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A 2018 Cleaning interfaces in layered materials heterostructures Nat. Commun. 9 5337

[176] Bear M F and Malenda R C 1994 Synaptic plasticity: LTP and L TD Curr. Opin. Neurobiol. 4 389–99

[177] Yang Y and Calakos N 2013 Presynaptic long-term plasticity Front. Synaptic Neurosci. 5 8

[178] Sun L, Wang W and Yang H 2020 Recent progress in synaptic devices based on 2D materials Adv. Intell. Syst. 2 1900167

[179] Yu Q A et al 2016 Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio Nat. Commun. 7 12725

[180] Cao G, Meng P, Chen J, Liu H, Biao Z, Liu F and Liu Z 2020 2D material based synaptic devices for neuromorphic computing Adv. Funct. Mater. 31 2003443

[181] Meng J L et al 2021 Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications Mater. Horiz. 8 538–46

[182] Zhou F, Chen J, Tao X, Wang X and Chai Y 2019 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor Research 2019 0490413

[183] He C et al 2020 Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing ACS Appl. Mater. Interfaces 12 11945–54

[184] Ge N, Zhang M-X, Zhang L, Yang J J, Li Z and Williams R S 2014 Electrode-material dependent switching in TaOx memristors Semicond. Sci. Technol. 29 104003

[185] Wang S, Zhang D W and Zhou P 2012–3 materials for synaptic electronics and neuromorphic systems Sci. Bull. 64 1056–66

[186] Zhao X, Xu H, Wang Z, Lin Y and Liu Y 2019 Memristors with organic—inorganic halide perovskites InfoMat 1 183–210

[187] Chen J-Y, Huang C-W, Chiu C-H, Huang Y-T and Wu W-W 2015 Switching kinetic of VCM-based memristor: evolution and positioning of nanofilament Adv. Mater. 27 5028–33

[188] Xue W et al 2017 A 1D vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal–insulator transition Adv. Mater. 29 1702162

[189] Kim S J, Kim S B and Jang H W 2020 Competing memristors for brain-inspired computing Science 24 1018410

[190] Dannard R H, Gaensslen F H, Yu H-N, Rideout V L, Bassous E and LeBlanc A R 1974 Design of ion-implanted MOSFET’s with very small physical dimensions IEEE J. Solid-State Circuits 9 256–68

[191] Irisawa T, Numata T, Tizuka T, Sugiyma N and Takagi S-I 2006 Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain IEEE pp 1–4

[192] Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T and Takagi S 2002 Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm IEEE pp 47–50

[193] Hao S, Li X, Zheng S, Pang K Y, Lin K G, Cong T C and Zhao R 2020 A monolayer leaky integrate-and-fire neuron for 2D memristive neuromorphic networks Adv. Electron. Mater. 6 1901355

[194] Dev D, Krishnaprasad A, Shawkat M S, He Z, Das S, Fan D, Chung H S, Jung Y and Roy T 2020 2D MoS2-based threshold switching memristor for artificial neuron IEEE Electron Device Lett. 41 936–9

[195] Wong H S-P, Lee H-Y, Yu S, Chen Y-S, Wu Y, Chen P-S, Lee B, Chen F T and Tsai M-J 2012 Metal-oxide RRAM Proc. IEEE 100 1951–70

[196] Zhao L, Jiang Z, Chen H-Y, Sohn J, Okabe K, Magyari-Köpe B, Wong H-S P and Nishi Y 2014 Ultrathin (~2 nm) HfO2 as the fundamental resistive switching element: thickness scaling limit, stack engineering and 3D integration IEEE pp 6.1–4

[197] Ge R et al 2021 A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon Adv. Mater. 33 2007792

[198] Lee H-S 2019 The latest trends and issues of anion-based memristor J. Microelectro. Packag. Soc. 26 1–7

[199] Lee M-J et al 2011 A fast, high-endurance and scalable non-volatile memory device made from asymmetric TaOx−x/TaO2−x bilayer structures Nat. Mater. 10 625–30

[200] Zhu X, Su W, Liu Y, Hu B, Pan L, Lu W, Zhang J and Li R-W 2012 Observation of conductance quantization in oxide-based resistive switching memory Adv. Mater. 24 3941–6

[201] Abunahlah H and Mohammad B 2018 Memristor Technology: Synthesis and Modeling for Sensing and Security Applications (Berlin: Springer) pp 1–29

[202] Liu S, Sun Y, Song B, Li Z, Liu H and Li Q 2019 Understanding the conduction and switching mechanism of Ti/AIOx/TaO2/Pt analog memristor Phys. Lett. A 383 125877

[203] Chen C, Gao S, Zeng F, Wang G Y, Li S Z, Song C and Pan F 2013 Conductance quantization in oxygen-anion-migration-based resistive switching memory devices Appl. Phys. Lett. 103 47
Neuromorph. Comput. Eng. 2 (2022) 032004

Topical Review

[204] Mao G-Q, Xue K-H, Song Y-Q, Wu W, Yuan J-H, Li L-H, Sun H, Long S and Miao X-S 2019 Oxygen migration around the filament region in HfO2 memristors AIP Adv. 9 105007

[205] Belete M, Kataria S, Turfanda A, Vaziri S, Wahlbrink T, Engström O and Lemme M C 2020 Nonvolatile resistive switching in nanocrystalline molybdenum disulfide with ion-based plasticity Adv. Electron. Mater. 6 1900092

[206] Hao S, Ji X, Liu F, Zhong S, Pang K Y, Lim K G, Chong T C and Zhao R 2021 Monolayer MoS2/WO3 heterostructures with sulfur anion reservoirs as electronic synapses for neuromorphic computing ACS Appl. Nano Mater. 4 1766–75

[207] Xiong X, Xiong F, Tian H, Wang Z, Wang Y, Tao R, Klausen L H and Dong M 2021 Ultra-thin arrhythmia sensing devices based memristor Adv. Electron. Mater. 8 2100845

[208] Jiao F, Chen B, Ding K, Li K, Wang L, Zeng X and Rao F 2020 Monotonic 2D phase-change memory for precise neuromorphic computing Appl. Mater. Today 20 100641

[209] Rehn D A, Li Y, Pop E and Reed E J 2018 Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials npj Comput. Mater. 4 2

[210] Zhang F et al 2019 Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories Nat. Mater. 18 55–61

[211] Panin G N 2021 Optoelectronic dynamic memristor systems based on two-dimensional crystals Chaos Solitons Fractals 142 110523

[212] Xiaojian Z, Da L, Liang X and Lu W D 2019 Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing Nat. Mater. 18 141–8

[213] Kim H H et al 2020 Magneto-memristive switching in a 2D layer antiferromagnet Adv. Mater. 32 1905435

[214] Gabel M and Gu Y 2021 Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor Adv. Funct. Mater. 31 2009999

[215] Si M et al 2019 A ferroelectric semiconductor field-effect transistor Nat. Electron. 2 580–6

[216] Kwon K C et al 2020 In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device ACS Nano 14 7628–38

[217] Si M, Liao P-Y, Qu G, Duan Y and Ye P D 2018 Ferroelectric field-effect transistors based on MoS2 and CaInP3S6 two-dimensional van der Waals heterostructure ACS Nano 12 6700–5

[218] Wang L, Wang X, Zhang Y, Li R, Ma T, Leng K, Chen Z, Abdelwahab I and Loh K P 2020 Exploring ferroelectric switching in α-In2S3 for neuromorphic computing Adv. Funct. Mater. 30 2004609

[219] Jeon H, Kim S G, Park J, Kim S H, Park E, Kim J and Yu H Y 2020 Hysteresis modulation on van der Waals-based ferroelectric field-effect transistor by interfacial passivation technique and its application in optic neural networks Small 16 2004371

[220] Hernandez-Martín D et al 2020 Controlled sign reversal of electrodissociation in oxide tunnel junctions by electrochemical–ferroelectric coupling Phys. Rev. Lett. 125 266802

[221] Chen Y et al 2019 Realization of artificial neuron using MXene bi-directional threshold switching memristors IEEE Electron Device Lett. 40 1866–9

[222] Hu L, Yuan J, Ren Y, Wang Y, Yang J-Q, Zhou Y, Zeng Y-J, Han S-T and Ruan S 2018 Phosphorene/ZnO nano-heterojunctions for broadband photon nonvolatile memory applications Adv. Mater. 30 1801232

[223] Sun L et al 2021 In-sensor reservoir computing for language learning via two-dimensional memristors Sci. Adv. 7 1455

[224] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim H-J and Lee Y H 2019 Two-terminal multibit optical memory via van der Waals heterostructure Adv. Funct. Mater. 30 1807075

[225] Sangwan V K, Jariwala D, Kim I S, Chen K-S, Marks T J, Lauhon L J and Hersam M C 2015 Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2 Nat. Nanotechnol. 10 403–6

[226] He H-K, Yang R, Huang H-M, Yang F-F, Wu Y-Z, Shaibo J and Gao X 2020 Multi-gate memristive synapses realized with the lateral heterostructure of 2D WS2 and WO3 Nanoscale 12 580–7

[227] Wang S et al 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227

[228] Kalita H et al 2019 Artificial neuron using vertical MoS2/graphene threshold switching memristors Sci. Rep. 9 53

[229] Mao J Y, Zhou L, Zhu X, Zhou Y and Han S T 2017 Photonic memristor for future computing: a perspective Adv. Opt. Mater. 7 1900766

[230] Kim Y et al 2018 Noceptive memristor Adv. Mater. 30 1704320

[231] Arnold A I, Razavi A, Nasr J R, Schulman D S, Eichfeld C M and Das S 2017 Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transitors ACS Nano 11 3110–8

[232] Xiang D, Liu T, Zhang X, Zhou P and Chen W 2021 Dielectric engineered two-dimensional neuromorphic transitors Nano Lett. 21 3557–65

[233] Jeong J, Aetukuri N B, Passarelo D, Conradson S D, Samant M G and Parkin S S P 2015 Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ion liquid gating Proc. Natl Acad. Sci. USA 112 10183–8

[234] Li M, Han W, Jiang X, Jeong I, Samant M G and Parkin S S P 2015 Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen Nano Lett. 15 4675–8

[235] Schlacht D T, Graf T, Aetukuri N B, Li M, Fantini A, Jiang X, Samant M G and Parkin S S P 2013 Crystal-facet-dependent metallization in electrolyte-gated rutile TiO2 single crystalsACS Nano 7 8704–71

[236] Cheng Z et al 2018 Ion migration studies in exfoliated 2D molybdenum oxide via ionic liquid gating for neuromorphic device applications ACS Appl. Mater. Interfaces 10 22623–31

[237] Li Y, Yin K, Diao Y, Fang M, Yang I, Zhang I, Cao H, Liu X and Jiang J 2022 Biopolymer-gated ionotonic junctionless oxide transistor array for spatiotemporal pain-perceptual emulation in nociceptor network Nanoscale 14 2316–26

[238] Cheng Y, Shan K, Xu Y, Yang I, Je J and Jiang J 2020 Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-time-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure NanoScale 12 21798–811

[239] Jiang J et al 2017 2D MoS2 neuromorphic devices for brain-like computational systems Small 13 1700933

[240] Bao L et al 2019 Dual-gated MoS2 neuristor for neuromorphic computing ACS Appl. Mater. Interfaces 11 41482–9

[241] Sangwan V K, Lee H-S, Bergeron H, Balla I, Beck M E, Chen K-S and Hersam M C 2018 Multi-terminal memristors from polycrystalline monolayer molybdenum disulfide Nature 554 500–4

[242] Xie D, Jiang J, Lu W, He Y, Yang I, Je J, Gao Y and Wan Q 2018 Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition ACS Appl. Mater. Interfaces 10 25943–8
[243] Tong L et al 2021 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware Science 373 1353–8
[244] Huh W et al 2018 Synaptic barristor based on phase-engineered 2D heterostructures Adv. Mater. 30 1801447
[245] Wang L et al 2019 Artificial synapses based on multiterminal memtранsistorstors for neuromorphic application Adv. Funct. Mater. 29 1901106
[246] Xia Q and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23
[247] Jiang W, Xie B, Liu C-C and Shi Y 2019 Integrating memristors and CMOS for better AI Nat. Electron. 2 376–7
[248] Li H et al 2021 Memristive crossbar arrays for storage and computing applications Adv. Intell. Syst. 3 2100017
[249] Li C et al 2017 Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–9
[250] Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qin H 2020 Fully hardware-implemented memristor convolutional neural network Nature 577 641–6
[251] Liu Z et al 2020 Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces Nat. Commun. 11 4234
[252] Zhengwu Liu J T, Gao B, Lin Y, Liu D, Hong B, Qian H and Wu H 2020 Multichannel parallel processing of neural signals in memristor arrays Sci. Adv. 6 4797
[253] Doddà A and Das S 2021 Demonstration of stochastic resonance, population coding, and population voting using artificial MoS2 based synapses ACS Nano 15 16172–82
[254] Chen S et al 2020 Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks Nat. Electron. 3 638–45
[255] Mennel L, Symonowicz J, Wachtler S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62–6
[256] Kim S-G, Kim S-H, Park J, Kim G-S, Park J-H, Saraswat K C, Kim J and Yu H-Y 2019 Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse ACS Nano 13 10294–300
[257] Yu J et al 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 9117
[258] Zhou F et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82
[259] Xie D, Wei L, Xie M, Jiang L, Yang J, He J and Jiang J 2021 Photoelectric visual adaptation based on 0D-CaPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor Adv. Funct. Mater. 31 2010655
[260] Chen S et al 2021 An artificial neural tactile sensing system Nat. Electron. 4 429–38
[261] Ji X, Zhao X, Tan M C and Zhao R 2020 Artificial perception built on memristive system: visual, auditory, and tactile sensations Adv. Intell. Syst. 2 1900118
[262] Zheng Q, Lee J-h, Shen X, Chen X and Kim J-K 2020 Graphene-based wearable piezoresistive physical sensors Mater. Today 36 158–79
[263] Xue F, Chen L, Wang L, Pang Y, Chen J, Zhang C and Wang Z I 2016 MoS2 tribotronic transistor for smart tactile switch Adv. Funct. Mater. 26 2104–9
[264] Ding G, Yang B, Chen X-S, Zhou K, Han S-T and Zhou Y 2021 MXenes for memristive and tactile sensory systems Appl. Phys. Rev. 8 011316
[265] Chen Y et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959
[266] Agus T R, Suied C, Thorpe S J and Pressnitzer D 2012 Fast recognition of musical sounds based on timbre J. Acoust. Soc. Am. 131 4124–33
[267] Stange-Marten A, Nabel A L, Sinclair J L, Fischl M, Alexandrova O, Wohlfarth H, Kopp-Scheinpflug C, Pecka M and Grothe B 2017 Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem Proc. Natl. Acad. Sci. USA 114 4851–8
[268] Grothe B, Pecka M and McAlpine D 2010 Mechanisms of sound localization in mammals Physiol. Rev. 90 983–1012
[269] Wei Wang G P, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S and Ielmini D 2018 Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses Sci. Adv. 4 4752
[270] Liu Y, Li E, Wang X, Chen Q, Zhou Y, Hu Y, Chen G, Chen H and Guo T 2020 Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection Nano Energy 78 105403
[271] Paul T, Mukundan A A, Tiwari K K, Ghosh A and Singh Thakur C 2021 Demonstration of intrinsic STDP learning capability in all-2D multi-state MoS2 memory and its application in modelling neuromorphic speech recognition 2D Mater. 8 045031
[272] Seo S et al 2020 Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition Nat. Commun. 11 3936