Rezumat

Markerii de inflamație sistemică – factori de prognostic la pacienții cu cancer colorectal complicat, operați în urgență

Introducere: Răspunsul inflamator joacă un rol critic în carcino-geneză. Există scoruri recente bazate pe răspunsul inflamator sistemic, cum ar fi raportul neutrofile/limfocite (NLR), raportul trombocite/limfocite (PLR), raportul limfocite/monocite (LMR), despre care s-a arătat că au valoare prognostică la pacienții cu cancer. Aceste scoruri permit identificarea pacienților care vor avea un răspuns slab la tratament și o supraviețuire de scurtă durată. Scopul acestui studiu este de a evalua rolul prognostic al NLR, PLR, LMR și PNI în termeni de supraviețuire la distanță pentru bolnavii cu cancer colorectal, operați în urgență.

Material și Metode: Am inclus în studiu 391 de pacienți internați și operați pentru cancer colorectal complicat în clinica Chirurgie II a Spitalului Clinic Județean de Urgență ”Sf. Ap. Andrei” din Galați, în perioada 2008-2017. Am analizat factorii paraclinici de inflamație sistemică NLR, PLR, LMR și PNI.Ca factori de prognostic, au fost analizate curbele de supraviețuire.

Rezultate: La pacienții din lot, valorile crescute ale NLR, precum și ale PLR au dus la creșterea riscului de deces (HR=7,581, 95% CI=(6.358,9.039), p value=0.000000, respective HR=1.043, 95% CI=(1.039, 1.047), p value=0.000000), iar valorile crescute ale LMR și PNI au condus la scăderea acestui risc (HR=0.069, 95% CI=0.035,0.952), p value=0.04000000).
CI=(0.054,0.090), p value=0.000000, respective HR=0.758, 95%CI=(0.730,0.788), p value=0.000000). In the multivariate analysis, an increase in PLR resulted in a higher risk of death (HR=1.024, 95% CI=(1.019,1.029), p value=0.000000), and the increased values of LMR and PNI led to a decrease in this risk (HR=0.353, 95% CI=(0.248,0.504), p value = 0.000000, respective HR=0.852, 95% CI=(0.822,0.883), p value = 0.000000).

Conclusions: The univariate analysis showed that NLR and PLR are risk factors, and LMR and PNI are protective factors in terms of survival. The multivariate analysis revealed that PLR is an independent risk factor, and LMR and PNI are independent protection factors.

Key words: colorectal cancer, emergency, inflammation markers, survival
distinctive sign for cancer development (4). Current evidence refers to the fact that inside a tumor it exists alongside cancer cells, base structures (eg, extracellular matrix), cells that don't trigger the immune system (eg, fibrous tissue cells) and immune cells, respectively basophils, lymphocytes, eosinophils, mast cells, NK cells and dendritic cells, which interact and contribute to an extremely immuno-suppressive microenvironment. Lymphocytes play an essential role in this habitat, as the gradual growth of lymphocytes inside the tumor is directly associated with anticancer activity (5-7).

On the other way, necrosis and tissue hypoxia (8) can lead to complex interactions between altered cells and the nonspecific inflammatory reaction, facilitating the evolution of the disease (9). This systemic inflammatory response involves changes in the hematopoietic and neuroendocrine system, energy and protein metabolism, and liver function. The liver cells synthesize and discharge into the systemic circulation acute phase proteins that are linked with lymphocytopenia and affected T lymphocyte response in the tumor cells, destroying cell-mediated immunity (10). To estimate the systemic inflammatory response, platelets, lymphocytes, serum levels of neutrophils, albumin and C-reactive protein, either individual or in several blendings, were used as prognostic factors for patients with different malignant solid tumors.

Until recently, the most used parameter for evaluating the SIRS in patients with cancer was the increased level of CRP. However, there are recent scores based on the inflammatory response, such as neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio (MRL), which have been shown to have prognostic value in cancer patients. These scores allow identification of patients who will have poor response to treatment and poor survival (11).

Given the correlation between inflammatory status and prognosis of neoplasms, more and more research is being made in order to understand how the prognosis of cancer patients can be assessed by simple blood tests (12).

Cell-mediated inflammatory response, lymphocytes, neutrophils and monocytes are increasingly recognized as having an important role in carcinogenesis.

In colorectal cancer, lymphocytes have a major task in the immune response, as systemic inflammation forcefully decreases cellular immunity, resulting in a significant cutback in CD4+ lymphocytes and an increase in CD8+ suppressive T lymphocytes (13).

Some immunocytes, including neutrophils, can produce vascular endothelial growth factor (VEGF), which, by angiogenesis, promotes tumor development (14).

In this context, the relationship between neutrophils and lymphocytes becomes very useful to analyze and most of the studies recognize its role as a prognostic marker in cancer (15). Zahorec (16) was the first author to report the link between NLR and disease severity as a prognostic factor in critically ill patients. Various studies evaluating the relationship between NLR and colorectal cancer have shown that NLR is a strong prognostic factor. For colorectal cancer patients it is assumed that NLR is a combined indicator of both inflammation and immune status.

Lymphocytes play a vital role in cytotoxic cell death and cytokine production, which in turn prevent the proliferation and metastasis of malignant cells (17). Studies on lymphocytes are contradictory, but most have shown that lymphocytes decrease in patients with advanced colon cancer (18).

PLR is the ratio of platelets to lymphocytes. The mechanisms underlying the association between PLR with elevated values and poor prognosis in colorectal cancer are not fully known. Recent studies have shown that platelets can prevent tumor cell death by natural-killer cells and that platelets can secrete angiogenic and tumor growth factors (GF), including vascular endothelial GF and platelet-derived GF, and thus promote growth, progression and tumor spread (19-21).

Furthermore, thrombocytosis has been promoted to be linked with poor prognosis in colorectal cancer (22,23).
LMR is the ratio between the total number of lymphocytes and the number of monocytes. Lymphocytes are involved in cytotoxic cell death and inhibition of tumor cell proliferation and migration (24,25). Lymphopenia usually indicates the severity of the disease and can cause cancer cells to escape the immunity of tumor-infiltrating lymphocytes (TILs) (26). TILs are composed of lymphocytes that migrate into the tumor microenvironment (27). Low levels of TILs have been shown to predict poorer survival in colorectal cancer patients (28). In contrast, monocytes can promote tumor progression and metastasis (29). Several proinflammatory cytokines, produced by the monocytes, are associated with poor prognosis in cancer patients, such as TNF-α and IL-1 (30). In addition, tumor-associated macrophages, derived from circulating monocytes, play a role in suppressing immunity and promoting angiogenesis, invasion, and migration (31). Thus, the decrease in LMR could be affiliated with poor prognosis for patients diagnosed with cancer.

Hypoalbuminemia is a risk factor for the survival of patients with colon cancer (32). PNI, calculated taking into account the serum albumin level and the number of peripheral lymphocytes, reflects both the nutritional and immune status of the patient (33). PNI has recently been shown to be a predictive marker for both postoperative complications and prognosis of colorectal cancer patients (34).

The target of our study is to assess the prognostic role of NLR, PLR, LMR and PNI in terms of long-term survival in patients with colorectal cancer, operated in emergency.

Material and Methods

We included 391 patients admitted and operated for complicated colorectal cancer in the Surgery II clinic of the Clinical Emergency County Hospital “Sf. Ap. Andrei” from Galati, between 2008-2017. Patient data were collected from clinical observation reports and operating protocols. We analyzed the following paraclinical systemic inflammation factors: NLR, PLR, LMR and PNI.

Neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR) and PNI nutritional prognosis index (calculated with the equation 10 x serum albumin (g/dl) + 0.005 x total lymphocyte count (per mm³)) are markers of systemic inflammation. The determination of the values of these markers was made considering the laboratory results performed at admission.

As prognostic factors, the survival curves were analyzed, following the involvement of the inflammation factors in the distance survival in the Cox univariate and multivariate regression analysis. We defined the overall survival as the period since the moment of diagnosis to the date of bereavement or until the deadline of the study (01.10.2019).

The curves for the overall survival were estimated by the Cox method, and the comparison for the statistical significance with the sig.p-value test with 95.0%CI. The analysis of the Univariate Cox proportional risk ratio (HR) was performed to identify potential prognostic factors, and that of the Cox multivariate proportional risk ratio (HR) to evaluate the independent prognostic factors. The accuracy of the prognostic factors was analyzed by evaluating the sensitivity and specificity of these markers after establishing the cut off values, using the ROC curves. Statistical study was calculated using the SPSS 23.0 program from Windows Software. Statistical conclusions were made considering a statistically significant difference p value<0.05 for all calculations performed.

Results

The univariate analysis of Cox proportional hazards reports revealed that NLR and PLR are risk factors in terms of survival (HR = 7.581, 95% CI = (6.358,9.039), p_value = 0.000000, respectively HR = 1.043, 95% CI = (1.039, 1.047), p value = 0.000000), and LMR and PNI are protective factors (HR = 0.069, 95% CI = (0.054, 0.090), p value = 0.000000)
The Importance of Systemic Inflammation Markers in the Survival of Patients with Complicated Colorectal Cancer, Operated in Emergency

and respectively (HR = 0.758, 95% CI = (0.730, 0.788), p value = 0.000000) (Table 1).

The ROC curve designed for NLR in discriminating death in the 391 patients involved in the study (379 deceased (96.93%) and 12 survivors (3.07%)) has the area of 0.859 with 95% CI of (0.821 to 0.892), p_value = < 0.001. The cutoff point is > 2.61, with a sensitivity of 73.61 and a specificity of 100.00. (Table 2, Fig. 1).

The average survival time in patients with NLR values below 2.61 was 39.676, 95% CI = (37.189, 42.163) and in those with values above 2.61 it was 12.504, 95% CI = (11.747, 13.261), the difference between time of survival being statistically significant (p_value = 0.000000, Log-Rank) (Table 2, Fig. 2).

The area of the ROC curve designed for PLR was 0.866 with 95% CI of (0.828 to 0.898), p_value = <0.001. The cutoff point is > 139.85 with the sensitivity of 78.89 and the specificity of 100.00 (Table 2, Fig. 3).

The average survival time in patients with PLR values below 139.85 was 41.7046, 95% CI = (39.041, 44.368) and in those with values above 139.85 it was 13.294, 95% CI = (12.466, 14.121), the difference being statistically

Table 1. Survival univariate and multivariate analysis of systemic inflammation markers

Prognostic factor	Univariate HR (95% CI)	p_value	Multivariate HR (95% CI)	p_value
NLR	7.581 (6.358, 9.039)	0.000000	1.024 (1.019, 1.029)	0.000000
PLR	1.043 (1.039, 1.047)	0.000000	1.024 (1.019, 1.029)	0.000000
LMR	0.069 (0.054, 0.090)	0.000000	0.353 (0.248, 0.504)	0.000000
PNI	0.758 (0.730, 0.788)	0.000000	0.852 (0.822, 0.883)	0.000000

Table 2. Survival analysis of systemic inflammation markers with cutoff value

Prognostic factor	Deaths	Sensitivity	Specificity	Mean –Estimate HR (95% CI)	Univariate Log-Rank	p_value
NLR						
≤ 2.61	94/104	73.61	100.00			0.000000
> 2.61	285/286					
PLR						
≤ 139.85	79/90	78.89	100.00			0.000000
> 139.85	300/301					
LMR						
≤ 2.28	250/250	66.75	100.00			0.000000
> 2.28	129/141					
PNI						
≤ 39.5	221/221	60.69	100.00			0.000000
> 39.5	158/170					

Figure 1. ROC curve for NLR
significant ($p_{value} = 0.000000$, Log-Rank) (Table 2, Fig. 4).

The area of the ROC curve designed for LMR was 0.837 with 95% CI of (0.797 to 0.872), $p_{value} = <0.001$. The cutoff point is <2.28, with a sensitivity of 66.75 and a specificity of 100.00 (Table 2, Fig. 5).

The average survival time in patients with LMR values below 2.28 was 119,128, 95% CI = (10,512, 11,744) and in those with values above 2.28 it was 35231, 95% CI = (32,886, 37,576), the difference being statistically significant ($p_{value} = 0.000000$, Log-Rank) (Table 2, Fig. 6).

The area of the ROC curve designed for
PNI was 0.787, with 95% CI=(0.743 to 0.827), p_value = <0.001. The cutoff point is ≤ 39.5, with the sensitivity of 60.69 and the specificity of 100.00 (Table 2, Fig. 7).

The average survival time in patients with PNI values below 39.5 was 10,647, 95% CI = (10,038, 11,256) and in those with values below 39.5 it was 31,741, 95% CI = (29,449, 34,033), the difference being statistically significant (p_value = 0.000000, Log-Rank) (Table 2, Fig. 8).

Of the potential factors selected in the univariate analysis, in the multivariate analysis, regarding PLR, its increase leads to an increased risk of death (HR = 1.024, 95% CI = (1.019, 1.029), p value = 0.000000), this being a factor of independent risk, and for LMR and PNI, their increase leads to a lower risk of death (HR = 0.353, 95% CI = (0.248, 0.504), p value = 0.000000), respectively (HR = 0.852, 95% CI = (0.822, 0.883), p value = 0.000000) (Table 2), so they are independent protection factors.

Discussions

In the last years, numerous studies have been made that have demonstrated the connection between systemic inflammatory response and malignancies and, moreover, there is increasing evidence that inflammatory markers may influence the prognosis of neoplastic patients. The chronic systemic inflammatory response is involved in the nutritional and functional decline of cancer patients with the natural course of the disease. Evaluation of this response using markers of systemic inflammation allows the identification of patients at high risk (11).

Regarding the SIR in patients with complicated colorectal cancer, our study showed that:
- inflammatory markers NLR and PLR with increased values are risk factors, while increased values of LMR and PNI are protective factors for survival, as the univariate analysis has shown:
- PLR with high value was an independent risk factor in the multivariate analysis and LMR and PNI were independent protection factors.

All the markers analyzed in this study are calculated with formulas that involve the total number of lymphocytes. The anti-tumor immune response is orchestrated by cytotoxic T lymphocytes, which have the capacity to inhibit tumor growth (35). Small lymphoid groups, which contain both T lymphocytes and B lymphocytes, called tertiary lymphoid structures (TLS), have been detected in tumors and associated with a strong lymphocyte response and a good prognosis (36).

NLR has been suggested to reflect the balance between pro-tumor inflammation and anti-tumor immune function (37). An
increased NLR may be the outcome of one of the following: increase in neutrophils, or a decrease in lymphocytes or both. In the tumor microenvironment, an increased number of neutrophils favors tumor expansion, while a decrease in lymphocyte number indicates inefficient local tumor limitation. Thus, an elevated microenvironmental NLR may indicate tumor expansion, representing an factor of adverse prognosis. Because serum NLR is an easily measurable, reproducible and cheap marker, it may have a major clinical effect in practice in the future (38).

We have shown that the increased preoperative value of NLR was a risk factor for remote survival, as other authors have also found (39-41). In a single study conducted in 2018 at the University of Leeds in the UK, the authors reported that high NLR values were associated with a high risk of death in univariate but not multivariate analysis (42).

Many studies have reported the prognostic value of inflammatory markers NLR (43,44), LMR (18,45), PNI (46), PCR (47), but a consensus on the prognostic value of PLR has not been reached.

Ozawa et al. (48), Kwon et al. (49) and Liu H et al. (50) showed that PLR with high values is a risk factor in colorectal cancer, a fact that we also found in our study, while other authors did not find statistical significance in this association in any of the groups that they analyzed (patients with non-metastatic colorectal cancer at different stages and patients with liver metastases) (51,52). Emir et al. (53) found statistical significance in the association between PLR with increased value and 5-year survival in single- and multivariate analyzes performed on 140 patients with resectable colorectal cancer.

In our study, we showed that PLR with high values was an independent risk factor in the multivariate analysis, unlike other authors, who reported that PLR is a risk factor, but not independent (54).

In the publications, there is a growing enthusiasm in finding the verge value of markers of systemic inflammation over which the probability of death increases significantly (55-58).

The cutoff values for NLR and PLR in our study were 2.61, respectively 139.85, values close to those reported in other studies.

In a recent meta-analysis, which included 23 studies (11762 patients), it is shown that increased NLR and PLR values are risk factors for colorectal cancer patients. The cutoff values for NLR and PLR were 3 and 150 respectively (59). Other authors have calculated the cutoff value of 4.7 for NLR (60) or even 5 (61,62).

The cutoff values for PLR as a prognostic factor differ a lot in the literature. In some studies, the reported value was 130 (63), and in other studies included in a meta-analysis, the cutoff value for PLR was 150 (64), different from the one we calculated in our study.

The value of the ratio of lymphocytes to monocytes is also a biomarker of the host's immune response. Recent evidence suggests that the preoperative value of LMR may be prognostic in colorectal cancer (65).

In a retrospective study involving 3281 patients treated in the Northern Sydney Local Health District, it was found that increased MRL was associated with better survival. The authors concluded that LMR is an independent predictor for survival period in patients diagnosticated with colorectal tumors with curative resections and appears to be superior to pre-existing biomarkers (18). A meta-analysis that included the results of 15 retrospective observational studies, including 11783 patients, indicates that a high LMR value was a significant predictive factor for better survival (66), which we also found in our study.

In some other published works, the evaluation of the predictionstrength of the LMR in metastatic tumors revealed similar results, but in the multivariate analysis it did not prove to be an independent prognostic factor (67).

The cutoff value for LMR varies widely in different studies, from 2.14 (68) to 3.78 (69). Some authors calculated the cutoff value for LMR very close to that of our study (2,28,70,71).
The literature data regarding the prognostic value of the PNI index seem to be the most consistent. In several studies it has been shown that PNI with high preoperative values is a protective factor in univariate analyzes and an independent protection factor in colorectal cancer patients in multivariate analyzes (72).

A retrospective study that included 1321 colorectal cancer patients showed that patients with low preoperative PNI were associated with more aggressive tumors, advanced stages of the disease, with lymph node metastases and 5-year survival poorer than patients with high PNI values. In this study, PNI was also an independent prognostic factor. The authors concluded that the preoperative PNI is a simple and useful marker for predicting the outcomes of colorectal cancer patients, including with respect to long-term survival, so it should be included in the routine preoperative analyzes of these patients (1).

The cutoff value for PNI varies quite a bit in the studies analyzed: 44.5 (73), 45 (1), values generally higher than those calculated by us (39.5). We appreciate that we can put this fact on account of the more pronounced hypoalbuminemia and lymphocytopenia in patients operated in emergency for complicated tumors.

In the last years, many studies have been published regarding the prognostic value of different markers of systemic inflammation for colorectal cancer patients, but very few have included patients operated in emergency. We consider that in this situation, the analysis of these markers could be even more useful, given the fact that we are talking about immunocompromised, neoplastic patients, who have a precarious biological condition, with operations made in bad local conditions (unprepared colon) or in conditions of generalized peritonitis, with septic shock.

Future prospective studies will be needed to verify the significance of these prognostic markers in clinical practice. The analysis of markers of systemic inflammation is convenient, simple and cost-effective. Their routine evaluation could be useful in assessing the prognosis of patients with colorectal cancer, operated in emergency.

Conclusions
Prognostic scores based on inflammation, such as NLR, PLR, LMR and PNI, results of the SIR, have been associated with survival in patients with colorectal tumors.

In the univariate analysis, we found that the high values of NLR and PLR are risk factors, and the high values of LMR and PNI are protective factors for the survival of patients with colorectal tumors, operated in emergency.

The increased value of PLR is an independent risk factor for patients in the group, while the increased values of LMR and PNI are protective independent survival factors.

Conflicts of Interests
The authors declare no conflicts of interests.

References
1. Jian-Hui C, Iskandar EA, Caishl, Chen CQ, Wu H, He YL. Significance of Onodera’s prognostic nutritional index in patients with colorectal cancer: a large cohort study in a single Chinese institution. Tumour Biol. 2016;37(3):3277–83.
2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420:860–867
3. Virchow R. An address on the value of pathological experiments. Br Med J. 1881;2:198–203
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74
5. Pedrazzani C, Mantovani G, Fernandes E, Bagante F, Luca Salvagno G, Surci N. et al. Assessment of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and platelet count as predictors of long-term outcome after R0 resection for colorectal cancer. Sci Rep. 2017;7:1494.
6. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 2011;71:2411–6
7. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47
8. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 2004;4:641–8
9. DelNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumour metastasis. Cancer Metastasis Rev. 2008; 27:11–8
10. Roxburgh CSD, McMillan DC. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol. 2010;6:149–63
11. McMillan DC. Systemic inflammation, nutritional status and
survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 2009; 12(3):223-6.

12. Lee JS, Kim NV, Na SH, Yoon YH, Shin CS. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine (Baltimore). 2018;97(26):e11138.

13. Ying HQ, Deng QW, He BS, Pan YQ, Wang F, Sun HL et al. The prognostic value of procreative NLR, d-NLR, PLR and LMR for predicting clinical outcome in surgical colorectal cancer patients. Med Oncol. 2014; 31:396.

14. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 2012; 22:33–40.

15. Socorro Faria Sara, César Fernandes Jr P, José Barbosa Silva M, Lima VC, Fontes Wagner, Freitas-Junior R, et al. The neutrophil-to-lymphocyte ratio: a narrative review. ecancer 2016;10:702.

16. Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102:5–14.

17. Mailappa S, Sinha A, Gupta S, Chadwick SJ. Profound neutrophil to lymphocyte ratio > 5 is a prognostic factor for recurrent colorectal cancer. Colorectal Dis. 2013;15:323–328.

18. Chan JC, Chan DL, Diakos CI, Engel A, Pavlakis N, Gill A, Clarke SJ. The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann Surg. 2017;265:539–546.

19. Palumbo JS, Talmage KE, Massari JV, LaJeunesse CM, Flick MJ, Kombrinck KW et al. Platelets and fibrinogen increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;106:178–185.

20. Gay LJ, Fielding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123–134.

21. Tsuji T, Sawai T, Yamashita H. Platelet-derived endothelial cell growth factor expression is an independent prognostic factor in colorectal cancer patients after curative surgery. Eur J Surg Oncol. 2004;30:296–300.

22. Sasaki K, Kawai K, Tsumo NH, Sunami E, Kitayama J. Impact of prooperative thrombocytosis on the survival of patients with primary colorectal cancer. World J Surg. 2012;36:192–200.

23. Ishizuka M, Nagata H, Takagi K, Iwasaki Y, Kubota K. Preoperative thrombocytosis is associated with survival after surgery for colorectal cancer. J Surg Oncol. 2012;106:887–891.

24. Terzi J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.e2105.

25. Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer. 2004;90:2053–8.

26. Waldner M, Schimanski CC, Neurath MF. Colon cancer and the immune system: the role of tumor invading T cells. World J Gastroenterol. 2006;12:7232–8.

27. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

28. Huh JW, Lee JH, Kim HR. Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer. Arch Surg 2012;147:366–72.

29. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2004;436:436–44.

30. Anand M, Chhoda SK, Parikh PM, Nadkarni JS. Abnormal proinflammatory cytokine in serum and monocyte cultures from patients with chronic myeloid leukemia in different stages, and their role in prognosis. Hematol Oncol 1998;16:143–54.

31. Toneatto J, Pollard JW. Lymphocytes: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124:263–6.

32. Lai CC, You JF, Yeh CY, Chen JS, Tang R, Wang JY, Chin CC. Low preoperative serum albumin in colon cancer: a risk factor for poor outcome. Int J Colorectal Dis. 2011 Apr;26(4):473-81.

33. Yang Y, Gao P, Chen X, Song Y, Shi J, Zhao J et al. Prognostic significance of preoperative nutritional index in colorectal cancer: results from a retrospective cohort study and a meta-analysis. Oncotarget. 2016;7:58543–58552.

34. Tokunaga R, Sakamoto Y, Nakagawa S, Miyamoto Y, Yoshida N, Oki E et al. Prognostic Nutritional Index Predicts Severe Complications, Recurrence, and Poor Prognosis in Patients With Colorectal Cancer Undergoing Primary Tumor Resection. Dis Colon Rectum. 2015; 58:1048–1057.

35. Edin S., Kaprio T., Hagström J, Larsson P, Mustonen H, Bockelmann C et al. The Prognostic Importance of C20orf8 + B lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell subsets. Sci Rep 2019;9, 19997.

36. Sautes-Fridman C, Lawand M, Giraldo NA, Berlin C, Fridman WH et al. Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Front Immunol 2016;7, 407.

37. Maeda K, Shibutani M, Otani H, Nagahara H, Ikeya T, Isaki Y, et al. Inflammation-based factors and prognosis in patients with colorectal cancer. World J Gastrointest Oncol. 2015;7, 111–7.

38. Tsai PL, Wu SJ, Leung WH, Lai CT, Liu CK. Neutrophil-lymphocyte ratio and CEA level as prognostic and predictive factors in colorectal cancer: a systematic review and meta-analysis. J Cancer Res Ther. 2012;8:582–9.

39. Borazan E, Balk AA, Bodzag Z, Arik MK, Aytekin A, Yilmaz L, et al. Assessment of the relationship between neutrophil lymphocyte ratio and prognostic factors in non-metastatic colorectal cancer. Turk J Surg 2017;33(3):185–189.

40. Ding PR, An X, Zhang RX, Fang YJ, Li LR, Chen G, et al. Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage II A colon cancer. Int J Colorectal Dis. 2010;25:1427–1433.

41. Chen XQ, Xue CR, Hou P, Lin BQ, Zhang JR. Lymphocyte-to-monocyte ratio effectively predicts survival outcome of patients with obstructive colorectal cancer. World J Gastroenterol. 2019;25(33):4970–4984.

42. Palin RP, Devine AT, Hicks G, Burke D. Association of pretreatment neutrophil-lymphocyte ratio and outcome in emergency colorectal cancer care. Ann R Coll Surg Engl. 2018 Apr;100(4):308-315.

43. Sun J, Chen X, Gao P, Song Y, Huang X, Yang Y et al. Can the neutrophil to lymphocyte ratio be used to determine gastric cancer treatment outcomes? A systematic review and meta-analysis. Dis Markers. 2016;2016:7862469.

44. Del Prete M, Giampieri R, Loupakis F, Prochilo T, Salvatore L, Faloppia L et al. Prognostic clinical factors in pretreated colorectal cancer patients receiving regorafenib: implications for clinical management. Oncotarget. 2015;6:33992–33992.

45. Gu L, Li H, Chen L, Ma X, Li X, Gao Y et al. Prognostic role of lymphocyte to monocyte ratio for patients with cancer: evidence from a systematic review and meta-analysis. Oncotarget. 2016;7, 31926–31942.

46. Yang Y, Gao P, Chen X, Song Y, Shi J, Zhao J et al. Prognostic significance of preoperative prognostic nutritional index in colorectal cancer: results from a retrospective cohort study and a meta-analysis. Oncotarget. 2016;7:58543–58552.

47. Woo HD, Kim K, Kim J. Association between preoperative C-reactive protein level and colorectal cancer survival: a meta-analysis. Cancer Causes Control. 2015;26:1661–1670.

48. Ozawa T, Ishihara S, Nishikawa T, Tanaka T, Tanaka J, Kyomatsu T et al. The preoperative platelet to lymphocyte ratio is a prognostic marker in patients with stage II colorectal cancer. Int J Colorectal Dis. 2015;30:1165–1171.

49. Kwon HC, Kim SH, Choo MY, Lee S, Lee JH, Choi HJ et al. Clinical significance of proinflammatory lymphocyte-lymphocyte ratio versus platelet-lymphocyte ratio in patients with operable colorectal cancer. Biomarkers. 2012;17:216–222.

50. Liu H, DU X, Sun P, Xiao C, Xu Y, Li R. Preoperative platelet-lymphocyte ratio is an independent prognostic factor for resectable
colorectal cancer. NangfangYikeDaxueXuebao. 2013;33:70–73

51. Li Y, Jia H, Yu W, Xu Y, Li X, Li Q, Cai S. Nomograms for predicting prognostic value of inflammatory biomarkers in colorectal cancer patients after radical resection. Int J Cancer. 2016;139:220–231.

52. Baranyai Z, Krzysztof M, Josa V, Dede K, Agoston E, Szász AM et al. The comparison of thrombocytosis and platelet-lymphocyte ratio as potential prognostic markers in colorectal cancer. Thromb Haemost. 2014;111:483–490

53. Emir S, Aydin M, Can G, Bali I, Yıldırım O, Özmr M et al. Comparison of colorectal neoplastic polyps and adenocarcinoma with regard to NLR and PLR. Eur Rev Med Pharmacol Sci. 2015;19:3613–3618

54. He W, Yin C, Guo G, Jiang C, Wang F, Qiu H et al. Initial neutrophil lymphocyte ratio is superior to platelet lymphocyte ratio as an adverse prognostic and predictive factor in metastatic colorectal cancer. Med Oncol 2013;30:439

55. Malietzis G, Giacometti M, Askari A, Nachiappan S, Kennedy RH, Faiz OD et al. A preoperative neutrophil to lymphocyte ratio of 3 predicts disease-free survival after curative elective colorectal cancer surgery. Ann Surg. 2014;260:287–92

56. Chiang SF, Hung HY, Tang R, Changchien CR, Chen JS, You YT et al. Can neutrophil-to-lymphocyte ratio predict the survival of colorectal cancer patients who have received curative surgery electively? Int J Color Dis. 2012;27:1347–57.

57. Shin JS, Suh KW, Oh SY. Preoperative neutrophil to lymphocyte ratio predicts survival in patients with T1-T2N0 colorectal cancer. J SurgOncol. 2011;105:623–31

58. Jankova L, Dent OF, Chan C, Chapuis P, Clarke SJ. Preoperative neutrophil/lymphocyte ratio predicts overall survival but does not predict recurrence or cancer-specific survival after curative resection of node-positive colorectal cancer. BMC Cancer. 2013;13:442

59. Zhang J, Zhang HY, Li J, Shao XY, Zhang CX. The elevated NLR, PLR and PLT may predict the prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21:3938–46

60. Dimitriou N., Felekouras E., Karavokyros I, Alexandrou A, Pikoulis E, Grippatsos J. Neutrophils to lymphocytes ratio as a useful prognosticator for stage II colorectal cancer patients. BMC Cancer 2018;18:1202

61. Haram A, Boland MR, Kelly ME, Bolger JC, Waldron RM, Kerin MJ. The prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review. J SurgOncol. 2017;115:470–9

62. Malietzis G, Giacometti M, Kennedy RH, Athanasiou T, Aiz O, Jenkins JT. The emerging role of neutrophil to lymphocyte ratio in determining colorectal cancer treatment outcomes: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21:3938–46

63. Lu C, Gao P, Yang Y, Chen X, Wang L, Yu D et al. Prognostic evaluation of platelet to lymphocyte ratio in patients with colorectal cancer. Oncotarget. 2017;8(49):86287–86295. Published 2017 Sep 21.

64. Huang XZ, Chen WJ, Zhang X, Wu CC, Zhang CY, Wu J. An elevated platelet-to-lymphocyte ratio predicts poor prognosis and clinicopathological characteristics in patients with colorectal cancer: a meta-analysis. Disease Markers 2017;1:1–10

65. Nishijima TF, Muss HB, Shachar SS, Tamura K, Takamatsu Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: a systematic review and meta-analysis. Cancer Treat Rev 2015;41:971–8

66. Tan D, Fu Y, Tong W, Li F. Prognostic significance of lymphocyte to monocyte ratio in colorectal cancer: A meta-analysis. Int J Surg. 2018;55:128–138.

67. Neal CP, Cairns V, Jones MJ, Masood MM, Nana GR, Mann CD et al. Prognostic performance of inflammation-based prognostic indices in patients with resectable colorectal liver metastases. Med Oncol. 2015;32:144

68. Stotz M, Pichler M, Absenger G, Szakandera J, Armingier F, Schaberl-Moser R et al. The preoperative lymphocyte to monocyte ratio predicts clinical outcome in patients with stage III colon cancer. Br J Cancer 2014;110:435–40

69. Xiao WW, Zhang LN, You KY, Huang R, Yu X, Pei-Rong D et al. A low lymphocyte-to-monocyte ratio predicts unfavorable prognosis in pathological T3N0 rectal cancer patients following total mesorectal excision. J Cancer 2015;6:616–22

70. Kozak MM, von Eyben R, Pai JS, Anderson EM, Koong A, Chang DT. The prognostic significance of pretreatment hematologic parameters in patients undergoing resection for colorectal cancer. Am J Clin Oncol 2015

71. Neal CP, Cairns V, Jones MJ, Masood MM, Nana GR, Mann CD et al. Prognostic performance of inflammation-based prognostic indices in patients with resectable colorectal liver metastases. Med Oncol. 2015;32:144

72. Luvián-Morales J, González-Trejo S, Carillo J, Herrera-Sgoepert R, Aiello-Crocifoglio V, Gallardo-Rincon D et al. Association of the prognostic nutritional index and overall survival in patients with colorectal cancer: A STROBE compliant retrospective cohort study. Cancer Med. 2019 ;8(7):3379–3388.

73. Manikam NR, Kristian Y, Lidwina L, Sari AD, Sunardi D. Prediction of Post-operative Survival of Colorectal Cancer Patient By Using the Prognostic Nutritional Index: An Evidence-Based Case Report. World Nutrition Journal 2019; 2(2):25–31