Configuring the Mesh Size, Side Taper and Wing Depth of Penaeid Trawls to Reduce Environmental Impacts

Matt K. Broadhurst1*, David J. Sterling2, Russell B. Millar3

1 NSW Department of Primary Industries, Fisheries Conservation Technology Unit, Coffs Harbour, New South Wales, Australia, 2 Sterling Trawl Gear Services, Manly, Queensland, Australia, 3 Department of Statistics, The University of Auckland, Auckland, New Zealand

Abstract

The effects of reducing mesh size while concomitantly varying the side taper and wing depth of a generic penaeid-trawl body were investigated to improve engineering performance and minimize bycatch. Five trawl bodies (with the same codends) were tested across various environmental (e.g. depth and current) and biological (e.g. species and sizes) conditions. The first trawl body comprised 41-mm mesh and represented conventional designs (termed the ‘41 long deep-wing’), while the remaining trawl bodies were made from 32-mm mesh and differed only in their side tapers, and therefore length (i.e. 1N3B or ‘long’ and ~28° to the tow direction vs 1N5B or ‘short’ and ~35°) and wing depths (‘deep’–97 T vs ‘shallow’–60 T). There were incremental drag reductions (and therefore fuel savings – by up to 18 and 12% per h and ha trolled) associated with reducing twine area via either modification, and subsequently minimizing otter-board area in attempts to standardize spread. Side taper and wing depth had interactive and varied effects on species selectivity, but compared to the conventional 41 long deep-wing trawl, the 32 short shallow-wing trawl (i.e. the least twine area) reduced the total bycatch by 57% (attributed to more fish swimming forward and escaping). In most cases, all small-meshed trawls also caught more smaller school prawns Metapenaeus macleayi but to decrease this effect it should be possible to increase mesh size slightly, while still maintaining the above engineering benefits and species selectivity. The results support precisely optimizing mesh size as a precursor to any other anterior-penaeid-trawl modifications designed to improve environmental performance.

Introduction

Benthic otter trawling relies on hydrodynamic forces created by hydrovanes (otter boards) dragged across the seabed to achieve correct net geometry (to capture the targeted animals), and consequently is an energy intensive fishing method [1]. This is especially the case for penaeid trawls which, owing to the small sizes of the targeted species and their distributions (often buried in the soft substratum) [2,3] require small mesh (typically 30–50 mm stretched mesh opening–SMO) and sufficient bottom contact pressure [4]. Such requirements, combined with considerable increases in oil prices over the past decade have resulted in reduced profit margins in many penaeid fisheries [5].

In addition to creating considerable drag, the spatial use (i.e. typically inshore tropical and temperate regions) of small-meshed penaeid trawls means that they generally retain disproportionate quantities of bycatch, including juveniles of commercially and recreationally important species [6]. More specifically, despite contributing towards <1.5% of the total harvest from marine capture fisheries, penaeid trawling is responsible for approximately one quarter of global discards [5,7]; much of which is associated with considerable mortality and the implicit assumption of negative impacts on some stocks [8].

The above concerns over high energy intensities and poor size and species selectivities of penaeid trawls have mostly been separately assessed; typically through on-going industry-based efforts at improving operational efficiencies [9], and more collaborative work with scientists to develop physical modifications to codends (posterior sections of trawls) that improve selectivity (i.e. bycatch reduction devices –BRDs) [10]. However, both of these issues might be concomitantly addressed by modifying the anterior trawl section (or rigging), including the: number of trawls (i.e. single- or multi-trawl systems) [6,11]; spreading mechanisms [9–13]; body and frame-line tapers [14,15]; and especially the material, twine diameter and size of mesh [16–18]. The mesh characteristics are particularly important, since not only do the lateral openings ultimately influence what escapes or is retained (for small animals), the twine typically comprises >70% of the total system area for most penaeid trawling systems, and therefore strongly affects drag.

In many cases, changing any of the above parameters within the anterior trawl section will influence catching and engineering performances, although there are clearly dominant factors and often complex and interactive relationships [11–13,15,17]. For example, in a recent study in an Australian penaeid-trawl fishery, we demonstrated the utility of shorter trawls (via increasing body...
taper from 1N2B to 1N5B, or the netting angle to the direction of towing from ~23° to 35° for significantly reducing the bycatch of one teleost (southern herring *Heklotosichthys castaneus*) by up to 66% and also drag [15], although there was also some loss of penaeids (school prawns *Metapenaeus macleayi*). The lower school prawn catches were hypothesized to be caused by an increase in their collision probability (i.e. more acute angles of netting) against too large a mesh (legal mesh size is ≥40 mm SMO in this fishery) for the targeted sizes (mean carapace lengths–CL of >15 mm) [19]. By comparison, most southern herring were larger than the mesh and probably escaped more easily either through the posteriorly located BRD, or from the mouths of the shorter trawls [13].

These results highlight the need to ensure the most appropriate mesh size and/or rigging arrangements to maintain consistent lateral openings in trawl bodies as a precursor to examining other changes designed to improve selectivity and reduce drag. However, it is also important to consider that irrespective of the mesh size, various design factors also affect lateral openings [16]. One potentially important variable is the area of netting in the trawl wings (typically controlled by depth or the number of meshes in the transverse direction), which varies considerably among designs. Because the headline height of many penaeid trawls is largely determined by the height of the otter boards, unlike fish trawls, varying wing depth will not necessarily affect the vertical trawl opening, but concomitantly differences in associated trawl area should impact on drag and potentially selectivity [16].

Given the above, this study sought to contribute to recent efforts aimed at holistically reducing the environmental impacts of penaeid trawling through modifications to the anterior section, by assessing the utility of more closely matching mesh size to the targeted species while concomitantly examining the importance of body taper and trawl area in the wings as means for reducing drag and improving species and size selectivity. The work was done within one Australian penaeid-trawl fishery, but the results are applicable to international fisheries.

Materials and Methods

Ethics statement

The research was done in Lake Wooloweyah (29°26’ S 153°22’ E) and the Clarence River (29°27’ S 153°12’ E) New South Wales (NSW) Australia and in accord with the Department of Primaries Industries scientific collection permit (No. P01/0059(A)-2.0). No specific permissions were required for the locations. The field studies did not involve endangered or protected species. Animal ethics approval for the research was granted by the NSW DPI Animal Care and Ethics Committee (Ref. 08/06).

Location and vessel

The work involved two experiments completed between October 2012 and April 2013 in Lake Wooloweyah (experiment 1) and the Clarence River (experiment 2), using a double-rigged trawler (10 m and 69 kw) fishing in ~1–18 m across sandy and mud substrata (Figure 1a). The vessel had two winch drums, each holding 9-mm diameter–Ø stainless warps and 40-m bridles (6-mm Ø stainless wire) (Figure 1a). The trawler was also equipped with: a fuel monitor (Floscan series 9000); global positioning system (GPS; Lowrance); hul-mounted sum log (EchoPilot, Bronze Log+), warp-attachable load cells and associated data logger (Amalgamated Instrument Company; model nos PA6139 and TP4); and a portable acoustic, trawl-monitoring system with wing-end distance sensors (Notus Trawlmaster System; Model no. TM800ET) [13].

Trawl configurations and otter boards

Five trawl bodies (encompassing wings and belly) were assessed; all with the same headline and footrope lengths (7.35 m), ground gear configurations, sweeps (2.89 m) and identical color and twine material, and length-for-length clusters of headline and foot-rope tapers (Figures 1 and 2, Table 1). One of the trawl bodies was a conventional design used in the Clarence River and made from nominal 41-mm (stretched mesh opening–SMO) mesh (1.20-mm O twine) with a side taper of 1N3B and termed the ‘41 long deep-wing’ (Figures 1 and 2, Table 1). The remaining four trawl bodies were constructed from nominal 32-mm (SMO) mesh and narrower 0.88-mm O twine (to maintain a constant twine-O-mesh-size ratio among designs) and differed only in their wing depths (deep—97 vs shallow—60 T) and side tapers (long—1N3B vs short—1N5B) (Figure 2, Table 1). The four smaller-mesh trawls were termed the (1) ‘32 long deep-wing’ (same dimensions as the 41-long deep-wing trawl including trawl area, but smaller mesh); (2) ‘32 long shallow-wing’; (3) ‘32 short deep-wing’; and (4) ‘32 short shallow-wing’ (Figures 1 and 2, Table 1). All trawl bodies had the same knot directions providing up force on the top and bottom panels and out force on the side panels and were rigged with Nordmore-grid BRDs in nominal 41-mm extension sections and square-mesh codends made from nominal 27-mm polyamide mesh hung on the bar (Figure 1b).

The four otter boards were flat rectangular (1.39×0.61 m) and, via two removable slotted timber planks, adjustable to three surface areas (0.85, 0.73 and 0.61 m²; Figure 1c, Table 1). During experiment 1, the water was shallow (<2 m) and the trawls were deployed with only ~10-m of bridle (Figure 1a). Therefore to achieve sufficient spread at the high bridle angle, the largest area (0.85 m²) otter boards were used with all trawls (Figure 1c, Table 1). In contrast, during experiment 2 in the deeper (mostly 10–18 m) Clarence River, 40-m bridles were deployed for all hauls and otter-board areas were configured in an attempt to achieve similar (and optimal) wing-end spreads among the different trawls (Figure 1a and c, Table 1).

Experimental design and data collected

Prior to testing, the five trawls were weighed and 15 randomly-selected meshes were measured using a local, purpose-built mesh gauge in the bodies, extensions and codends for SSMO (Table 1). On each fishing day, the trawls being tested were alternately attached to the sweeps and relevant otter boards on each side of the vessel, and the Notus distance sensors and slaves secured at the ends of the inner and outer wings (Figure 1b). After each trawl was deployed, the load cells were attached to the towing wires.

There were 10 possible paired combinations of the five trawls, but it was only practical to complete five deployments (40-min) on each day. Therefore, in each experiment, we assessed all combinations over two-day blocks, providing two daily replicates of each trawl on each day. Over seven and twelve days of fishing in Lake Wooloweyah and the Clarence River, this provided 14 and 24 replicate deployments (attempting conventional target SOGs of ~1.20 ms⁻¹) of each trawl, with an even distribution of treatments between sides of the vessel.

The technical data collected during each deployment included the: (1) drag (kgf) of each configuration; (2) the total distance trawled (otter boards on and off the bottom—obtained from the plotter and trawl-monitoring system); (3) speed the ground (SOG) and through the water (STW; both in ms⁻¹); (4) depth of fishing; (5) distance of the trawls behind the vessel; and (6) the wing-end spreads (all in m). All data were recorded at 60-s intervals. During experiment 1, the shallow water and interference from the propeller wash precluded simultaneous data acquisition from the
paired trawls by the hydrophone, and so it was positioned in front
of each trawl for half the deployment (i.e., ~20-min of wing-end
spread data for each trawl). Both trawls were simultaneously
monitored throughout the deployments in experiment 2.

Biological data were also collected at the end of each
deployment and included the: total weights of school prawns
and bycatch; numbers of each bycatch species; and total lengths
(TL to the nearest 0.5 cm) of the most abundant teleosts. Random
samples of ~500 g of school prawns were placed into plastic bags
and transferred to the laboratory, where they were measured (CL
in mm), weighed and counted. The latter data were used to
estimate the numbers and weights of ‘optimal’ commercial (>15
mm CL) and sub-commercial (<15 mm CL) school prawns
during each deployment.

Statistical analyses

The hypothesis of no differences in the mesh sizes of the various
trawls, extensions and codends was tested in separate linear models
(LM), and any significant differences subsequently explored using
the Benjamini-Hochberg-Yekutieli procedure to control the false
discovery rate (FDR) [20]. Within each experiment, the remaining
technical and biological data were analyzed in linear mixed
models (LMMs), with some standardized prior to analyses. To
remove any confounding effects of slightly different wing-end
spreads (see Results), the numbers and weights of catches were
standardized to per ha trawled using the swept area of the foot
rope (calculated by average wing-end spread × the distance
trawled) and then log-transformed so that differences between
gears would act multiplicatively rather than additively. Predicted
mean numbers and weights (per ha) were obtained by back-
transforming. All other data, including the mean CL per
deployment, drag, wing-end spread, SOG, STW and distance
trawled were analyzed in their raw form.

All models included ‘trawl’ as fixed, while ‘trawl sides’ and
‘days’ and the interaction between ‘deployments’ and days were
included as random terms. For the LMM assessing drag and
spread, additional random terms involved load cells and the paired
Notus sensors, respectively while additional covariates included
SOG, ‘current’ (calculated as the speed of the water in the
direction of travel and defined as SOG–STW), distance aft of the
trawl configuration from the vessel and fishing depth. All models
were fitted using the lmer function from the lme4 package of the R
statistical language and the significance of trawl design was
determined using a likelihood ratio test (LRT). Significant
differences were investigated using FDR pair-wise tests.

Predicted means from the LMMs for drag were used to
calculate relative fuel consumption associated with towing the five
trawls. Specifically, assuming that for any given towing speed, the
concomitant fuel usage was proportional to the drag, it is possible
to determine relative fuel consumption rate using the predicted
mean drags. Fuel consumption was standardized to per ha trawled
for each trawl design by comparing the fuel consumption rate with
predicted mean wing-end spread (the rate at which area was being
swept for a given trawl speed) from the relevant LMMs.
Results

There was a significant difference in SMO between the 41-conventional trawl (mean ±SE of 41.43±0.11 mm) and the four smaller-meshed designs (LM, p<0.001), but no significant differences among the latter (FDR, p>0.05; overall mean ±SE of 31.61±0.08 mm). There were no significant differences in SMO among the extensions (41.50±0.24 mm) and codends (27.37±0.10 mm) (LM, p>0.05).

Pooled across experiments, the five trawls caught 1511 and 119 kg of school prawns and bycatch (Table 2). The total bycatch included 31 species but in experiment 1, tailor Pomatomus saltatrix (ranging in size from 4.0–20.0 cm TL), Ramsey’s perchlet Ambassis marianus (5.0–11.0 cm TL), and southern herring Herklotsichthys castelnaui (6.0–17.0 cm TL) comprised 85% of catches, while in experiment 2, forktail catfish Arius graeffei (7.0–19.0 cm TL) represented 83% of catches. These three species, along with school prawns, form the basis of the biological analyses (Table 2).

Experiment 1: Lake Wooloweyah

The five trawl designs were towed at SOGs of between 1.17 and 1.43 ms⁻¹, covering distances of between 3.12 and 3.87 km. There were significant differences in wing-end spread and drag among trawls (LMMs, p<0.001; Tables 3 and 4). The only appropriate fixed effect in the LMM for wing-end spread was trawl, with the predicted mean (±SE) wing-end spread of the 32 short shallow-wing trawl (4.47±0.05 m) significantly greater than both the 41 (4.29±0.05 m) and 32 long deep-wing trawls (4.27±0.06 m) (FDR, p<0.05; Table 4). No significant differences were detected among the wing-end spreads of the above trawls and either the 32 long shallow-wing (4.40±0.05 m) or short deep-wing trawls (4.31±0.05 m) (FDR, p>0.05; Table 4).

Figure 2. Plan of the conventional 41 long deep-wing trawl. N, normal; T, transversals; B, Bars; and Ø, diameter.

doi:10.1371/journal.pone.0099434.g002
The LMM for drag included the fixed effects of both trawl and SOG and the random effect of catch area. There was a significant positive relationship (LMM and FDR, \(p < 0.05 \); Figure 3c, Table 3) between drags and SOG, with predicted mean mg of drag per m from 0.75 to 2.15 mg m, respectively (1T5B; 1T4B; 1T3B; and 6T4B) for SOGs of 1.00–2.11 ms\(^{-1}\). These differences were reflected in fuel rates and intensities that varied by up to 4.91–0.03 m and 4.89–0.03 m, respectively (FDR, \(p < 0.05 \); Figures 3a–c, g, 4a, Table 3). Conversely, irrespective of their wing depth, the 32 short shallow-wing trawls caught significantly less total bycatch by weight per ha than the other three trawls (by 29–57%, LMM and FDR, \(p < 0.05 \); Figure 3c, Table 3). Further, compared to all trawls, the 32 short shallow-wing trawl caught significantly fewer (per ha) total bycatch (by 29–57%), southern herring (by 83–95%), and tailor (by 40–67%) by number (LMM and FDR, \(p < 0.05 \); Figure 3d–f, Table 3). Differences in the above variables among the other trawls were less consistent (Fig. 3d–f). There were no significant differences between trawls for the number of Ramsey’s perchlet per ha fished (LMM and FDR, \(p > 0.05 \); Figures 3a–e, g, 4a, Table 3).
The LMM for drag included the fixed effects of trawl, SOG and current ($p < 0.001$; Table 3). The average current relative to the heading of the trawler was only 0.03 m s$^{-1}$, and so the predicted means were presented at the centred value of SOG (Table 4). The short shallow-wing trawl had the significantly lowest drag (by between 9.4 and 18.4%) followed by the short deep-wing, long shallow-wing and both the long deep-wing trawls (FDR, $p < 0.05$; Table 4). The above differences corresponded to variations in fuel rates and intensities among trawls by up to 1.14 L h$^{-1}$ and 0.35 L ha$^{-1}$ (Table 4). Irrespective of trawl, there were overall positive relationships between drag and both SOG and current (LMM, $p < 0.001$).

For catches, the four small-meshed trawls generally caught similar quantities of commercial and sub-commercial school prawns per ha trawled, and mostly significantly more than the conventional 41 long deep-wing trawl (by up to 1.4 and 1.9 times more, respectively) (LMM and FDR, $p < 0.05$; Figure 5a–d, Table 3). The obvious exception was the short shallow-wing trawl, which caught the same quantities of school prawns per ha across both categories as the conventional 41 long deep-wing trawl (LMM and FDR, $p > 0.05$; Figure 5a–d). Combined across all catches, the mean size of school prawns retained by the 41 long deep-wing trawl was significantly larger than all small-mesh trawls (LMM and FDR, $p < 0.05$); except the short deep-wing trawl (Figure 4b). Compared to all other trawls, the short shallow-wing trawl caught significantly less bycatch by both weight (26.25–50.42%) and number (23.60–34.01%) (LMM and FDR, $p < 0.05$; Figure 5c and d, Table 3). There were no significant effects of trawl on forktail catfish numbers (LMM, $p > 0.05$; Figure 5e, Table 3).

Discussion

The results from this study further highlighted the potential for improving the engineering and biological performances of penaeid trawls simply by changing their anterior mesh (1) lateral openings

Table 2. Scientific and common names and numbers of organisms caught during experiments 1 and 2.

Group	Family	Scientific name	Common name	Experiment 1	Experiment 2
Crustaceans	Penaeidae	Metapenaeus macleayi	School prawn	120 304	424 406
	Palaeomonidae	Macrourichnus sp.	Freshwater prawn		19
Molluscs	Loliginidae	Uroteuthis sp.	Squid	44	
Teleosts	Ambassidae	Ambassis jacksoniensis	Port Jackson	148	14
	Ambassis marianus	Ramsay’s perchlet	48		
	Anguillidae	Anguilla australis	Southern shortfin eel	7	
	Apogonidae	Siphamia rosegaster	Pink-breasted siphonfish	298	
	Ariidae	Arius graeffei	Forktail catfish	1	3 008
	Clupeidae	Herklotsichthys castelnaui	Southern herring	1 298	217
	Hyperlophus vittatus	Whitebait		16	9
	Engraulidae	Engraulis australis	Australian anchovy	13	1
	Enoplosidae	Enoplosus armatus	Old wife		1
	Gerreidae	Gerres subfuscatus	Silver biddy	330	2
	Hemiramphidae	Hyporhamphus regularis	River garfish	8	
	Megalopidae	Megalops cyprinoides	Oxeye herring		2
	Mugilidae	Liza argentea	Goldspot mullet	31	
	Muraenidae	Muraenox bagio	Common pike eel		2
	Plotosidae	Euristhmus leptus	Longtail catfish	5	
	Paralichthyidae	Pseudorhombus arisis	Largetooth flounder	28	
	Percichthyidae	Macquaria novemaculeata	Australian bass		1
	Platyccephalidae	Platyccephalus fuscus	Dusky flathead	31	4
	Pomatomidae	Pomatomus saltatrix	Tailor	4 864	3
	Sciaenidae	Argyrosomus japonicus	Mulloway	2	
	Sillaginidae	Sillago ciliata	Sand whiting	64	2
	Soleidae	Synclidopus macleayanus	Narrow-banded sole	119	
	Sparidae	Acanthopagrus australis	Yellowfin bream	304	91
	Tetradontidae	Tetracenos glaber	Toadfish	4	
	Tetrodidae	Centropogon australis	Fortescue		1
	Urophoridae	Trygonoptera testacea	Stingray	2	

-- not present in catches.

doi:10.1371/journal.pone.0099434.t002
Reducing the Environmental Impacts of Penaeid Trawls

Table 3. Summaries of likelihood ratio test (LRT) statistics from linear mixed models assessing the importance of the fixed effect of trawl (conventional 41 long deep-wing, and 32 long deep- and shallow-wing and 32 short deep- and shallow-wing trawls) in explaining variability among technical and biological responses.

Variables	Experiment 1	Experiment 2
Technical		
Wing-end spread	11.52*	95.24***
Drag	20.39**	177.29***
Biological		
Wt of commercial school prawns ha⁻¹	21.25***	14.93**
No. of commercial school prawns ha⁻¹	21.99***	17.26**
Wt of sub-commercial school prawns ha⁻¹	52.28***	20.69***
No. of sub-commercial school prawns ha⁻¹	53.15***	20.92***
Mean CL of school prawns	23.96***	19.43***
Wt of total bycatch ha⁻¹	33.90***	22.47***
No. of total bycatch ha⁻¹	42.73***	12.75*
No. of tailor ha⁻¹	48.24***	–
No. of Ramsey’s perchlet ha⁻¹	8.58	–
No. of southern herring ha⁻¹	53.60***	–
No. of fork tail catfish ha⁻¹	–	8.29

Excluding the mean CL of school prawns (Metapenaeus macleayi), all other numbers and weights were standardized to per ha trawled, calculated using the total average wing-end spread (per deployment) and then log-transformed.

- , not present in catches, *p < 0.05, **p < 0.01, ***p < 0.001.

doi:10.1371/journal.pone.0099434.t003

Table 4. Summary of predicted mean ± SE wing-end spreads (m) and drags (kgf) and subsequent estimated fuel rates and intensities for the five trawl designs tested in experiments 1 (Lake Wooloweyah) and 2 (Clarence River).

	41 long deep-wing	32 long deep-wing	32 long shallow-wing	32 short deep-wing	32 short shallow-wing
Wing-end spread (m)	4.29 (0.05)A	4.27 (0.06)A	4.40 (0.05)A,B	4.31 (0.05)A,B	4.47 (0.05)B
Drag (kgf)	256.14 (1.82)B	256.89 (1.82)B	248.48 (1.80)A	258.57 (1.80)B	251.83 (1.81)A
Fuel rate (L h⁻¹)	5.29	5.30	5.13	5.34	5.20
Fuel intensity (L ha⁻¹)	2.64	2.66	2.49	2.65	2.49

Mean predicted drags were derived with a centred value of speed across the ground and with zero current.

Dissimilar superscript letters for wing-end spread and drag within experiments indicate significant differences detected in false-discovery-rate pairwise comparisons (p < 0.05).

doi:10.1371/journal.pone.0099434.t004
Figure 3. Differences in predicted mean catches per ha trawled between the conventional 41 long deep-, and 32 long deep- and shallow-wing, and 32 short deep- and shallow-wing trawls used in experiment 1 (Lake Wooloweyah) for the weights of (A) commercial and (B) sub-commercial school prawns (*Metapenaeus macleayi*) numbers of (C) commercial and (D) sub-commercial school prawns, (E) weights and (F) numbers of total bycatch, and numbers of (G) tailor *Pomatomus saltatrix*, (H) Ramsey’s perchlet *Ambassis marianus*, and (I) southern herring *Herklotsichthys castelnaui*. Dissimilar letters above the histograms indicate significant differences detected in false-discovery-rate pairwise comparisons (p<0.05).
doi:10.1371/journal.pone.0099434.g003
these mechanisms might be attributed to the relative visibility of
the trawls and/or species-specific responses to associated stimuli.
More specifically, the lake was shallow (<2 m) and the relatively
larger numbers of fish may have been more easily able to detect
the smaller-meshed trawl and perhaps either avoid capture. By
contrast, forktail catfish may have been less able to detect the
approaching trawls in the much deeper river (3–18 m), although
previous studies showed that this species had limited response to
other anterior trawl body changes [11,13].

While not as extreme as a reduction in mesh size, varying wing
depth probably also affected lateral openings in the smaller-
meshed trawl bodies, although the influence on catches appeared
to at least partially depend on the side taper. It is clear that
steepening the side taper (in this case from 1N3B to 1N5B) causes
at least two geometric changes, including (1) shortening the length
of the trawl body and (2) increasing the angle of netting to the
direction of tow. In terms of teleost bycatch, both effects are
probably of consequence. Specifically, in an earlier study [13] we
attributed bycatch reductions in other shorter trawl bodies tested
in this fishery to some fish detecting the trawl and then because of
the slightly reduced distance, more easily escaping (especially
during haul back) [21]; either back out through the mouth (as
proposed for other teleosts) [14], or through the opening at the
top of the Nordmøre-grid. Similar escape mechanisms may have
occurred here.

In Lake Wooloweyah, both shorter, small-meshed trawls caught
significantly less bycatch (by weight) than the longer designs,
supporting the trend above, however, within side taper there were
divergent effects of wing depth. In particular, the 32 long deep-
wing trawl caught fewer southern herring, tailor and therefore
total bycatch than the 32 long shallow-wing trawl, while the
opposite relationship occurred for the 32 short trawls for these
species. Such results are difficult to explain, although given there
were only small variations in predicted wing end spread (e.g. <5%
differences) and assuming comparable vertical fishing heights and
ground gear contact, two possible effects were the relative
visibilities of the trawls in the shallow lake and species-specific
escape mechanisms. For example, in the 32 long deep-wing trawl,
relatively more netting in the wing may have been important in
terms of visibility for tailor and southern herring and promoted the
avoidance of some individuals. By comparison, both the shorter 32
trawls might have already been quite visible. Reducing the depth
of the wing may have more readily directed some fish toward the
Nordmøre-grid—which was located relatively closer to the trawl
mouth. In the absence of additional data, both of the above
hypotheses are speculative. Future research would benefit from a
more detailed assessment of the behavior of key species in relation
to the above postulated geometric trawl changes.

The potential behavior of school prawns during capture might
also explain why the 32 short shallow-wing trawl caught similar (or
greater) quantities as all other small-meshed trawls in Lake
Wooloweyah, but was less consistent in the Clarence River. Apart
from slightly different spread wing-end spreads, the only main
technical difference between experiments was the otter boards,
with a solid design used in all trawls in the shallow lake, compared
to a 172-mm gap used with the 32 short deep-wing trawl and an
88-mm gap with all other small-meshed trawls in the river. During
previous work [12,13], we hypothesized that otter boards have a
herding effect on school prawns, attributed to individuals buried in
the substratum being disturbed and directed into the trawls
(possibly after contacting the inner surface of the otter board).
The larger gap used with the 32 short shallow-wing trawl may have
allowed some school prawns to pass through the otter board after
being disturbed. Any potential for such effects might be eliminated
by placing mesh in the gap, although debris accumulation would
increase otter-board surface area.

Irrespective of the effects on catches, reducing the twine area via
less wing depth and a steeper body taper (and subsequently less
otter board area in deeper water) had clear incremental impacts
on drag and therefore fuel consumption. Ultimately, compared to
the conventional 41 long deep-wing trawl, the 32 short shallow-
wing trawl tested in the river required 18 and 12% less fuel per
hour and ha trawled respectively. Based on the data presented
here for the tested trawler, and assuming six hourly deployments,
the fuel savings would equate to ~13 L per day during conventional
fishing or up to ~1700 L per fishing season—a saving of ~$13000.

The engineering and biological results observed here have
implications for ongoing research. Clearly, determining the most
appropriate mesh size and ideally ensuring consistent lateral

Figure 4. Predicted mean (±SE) carapace lengths in mm
retained by the five trawls in (A) experiment 1 (Lake
Wooloweyah) and (B) experiment 2 (Clarence River).
doi:10.1371/journal.pone.0099434.g004
openings is an important precursor to other anterior gear modifications. We showed that it is possible to considerably reduce mesh size (e.g. by 22%), but still dramatically improve species selection (i.e., reduce total bycatch by up to 57%) through other changes; presumably because mesh openings mostly determined the selectivity of the targeted school prawns, whereas teleosts were more affected by changes in trawl geometry. Based on the mean sizes of school prawns retained in both experiments, the 32-mm mesh is too small. However, it should be possible to increase mesh size slightly to somewhere less than 41 mm, while still using a steep side taper to minimize teleost bycatch, and with the least amount of twine area to reduce otter-board area and drag. These results support a similar concept of attempting to optimize mesh size as a precursor to anterior penaeid-trawl changes designed to improve environmental performances in other fisheries.

Figure 5. Differences in predicted mean catches per ha trawled between the conventional 41 long deep- and 32 long deep- and shallow-wing, and 32 short deep- and shallow-wing trawls used in experiment 2 (Clarence River) for the weights of (A) commercial and (B) sub-commercial school prawns Metapenaeus macleayi, numbers of (C) commercial and (D) sub-commercial school prawns, (E) weights and (F) numbers of total bycatch, and (G) number of forktail catfish Arius graeffei. Dissimilar letters above the histograms indicate significant differences detected in false-discovery-rate pairwise comparisons (p<0.05).

doi:10.1371/journal.pone.0099434.g005
Acknowledgments

Thanks are extended to the (NSW) Professional Fishermen’s Association, Steve Everson, Don Johnson, Jen Marshall, Mitch Burns, Chris Barnes, Nick Sarapuk, and especially Craig Brand for technical assistance in the field. Rob Fryer and Steve Kennelly are thanked for providing valuable comments to the manuscript.

Author Contributions

Conceived and designed the experiments: MKB DJS RBM. Performed the experiments: MKB DJS. Analyzed the data: RBM. Contributed reagents/materials/analysis tools: MKB DJS RBM. Wrote the paper: MKB DJS RBM.

References

1. Priour D (2009) Numerical optimisation of trawls design to improve their energy efficiency. Fish Res 98: 40–50.
2. Coles RG (1979) Catch size and behaviour of pre-adults of three species of penaeid prawns as influenced by tidal current direction, trawl alignment, and day and night periods. J Exp Mar Biol Ecol 38: 247–260.
3. Wassenberg TJ, Hill BJ (1994) Laboratory study of the effect of light on the emergence behaviour of eight species of commercially important adult penaeid prawns. Aust J Mar Freshwater Res 45: 43–50.
4. Vendeville P (1990) Tropical shrimp fisheries: types of fishing gear used and their selectivity. FAO Fisheries Technical Paper 261 (Revision), Food and Agriculture Organization of the United Nations. Rome, Italy, 75 p.
5. Gillett R (2008) Global study of shrimp fisheries. FAO Fisheries Technical paper 475. 359 p.
6. Andrew NL, Graham KJ, Kennelly SJ, Broadhurst MK (1991) The effects of travel configuration on the size and composition of catches using benthic prawn trawls off the coast of New South Wales, Australia. ICES J Mar Sci 48: 201–209.
7. Kelleher K (2005) Discards in the world’s marine fisheries. An update. FAO Fisheries Technical Paper 470, Food and Agriculture Organization of the United Nations, Rome, Italy, 131 p.
8. Broadhurst MK, Suuronen P, Hulme A (2000) Estimating collateral mortality from towed fishing gear. Fish Fish 7: 180–218.
9. Sterling D, Eayrs S (2010) Trawl-gear innovations to improve the efficiency of Australian prawn trawling. First International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain, 5 p.
10. Broadhurst MK (2000) Modifications to reduce bycatch in prawn trawls: A review and framework for development. Rev Fish Biol Fish 10: 27–60.
11. Broadhurst MK, Sterling DJ, Millar RB (2013) Progressing more environmentally benign trawling systems by comparing Australian single- and multi-net configurations. Fish Res 146: 7–17.
12. Broadhurst MK, Sterling DJ, Callin BR (2012) Effects of otter boards on catches of an Australian penaeid. Fish Res 131–133: 67–75.
13. Broadhurst MK, Sterling DJ, Millar RB (2013) Relative engineering and catching performances of paired penaeid-trawling systems. Fish Res 143: 143–152.
14. Conolly PC (1992) Bycatch activities in Brazil. In: Jones RP, editor. International Conference on Shrimp Bycatch. May, 1992, Lake Buena Vista, Florida (Jones, R. P. ed.), Tallahassee, FL: Southeastern Fisheries Association. pp. 291–302.
15. Broadhurst MK, Sterling DJ, Millar RB (2012) Short vs long penaeid trawls: Effects of side taper on engineering and catching performances. Fish Res 134–136: 73–81.
16. Harrington DL, Watson JW, Parker LG, Rivers JB, Taylor CW (1988) Shrimp trawl design and performance. The University of Georgia Marine Extension Service, PO Box Z Brunswick, Georgia 31523, 37 p.
17. Sumpton WD, Smith PJ, Robotham BG (1989) The influence on catch of monofilament and multifilament netting in otter prawn-trawls. Fish Res 8: 35–44.
18. Broadhurst MK, McShane PE, Larsen RB (2000) Effects of twine diameter and mesh size in the body of prawn trawls on bycatch in Gulf St. Vincent, Australia. Fish Bull 98: 463–473.
19. Broadhurst MK, Millar RB (2009) Square-mesh codend circumference and selectivity. ICES J Mar Sci 66: 566–572.
20. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165–1188.
21. Watson JW (1989) Fish behaviour and trawl design: potential for selective trawl development. In: Campbell CM, editor. Proceedings of the world symposium on fishing gear and fishing vessels. Marine Institute, St Johns, Newfoundland. pp. 25–29.