Resolution Limits for Detecting Community Change in Multilayer Networks

Michael Vaiana, Sarah Muldoon
March 12, 2018

Abstract

Multilayer networks capture pairwise relationships between the components of complex systems across multiple modes or scales of interactions. An important meso-scale feature of these networks is measured though their community structure, which defines groups of strongly connected nodes that exist within and across network layers. Because interlayer edges can describe relationships between different modalities, scales, or time points, it is essential to understand how communities change and evolve across layers. A popular method for detecting communities in multilayer networks consists of maximizing a quality function known as modularity. However, in the multilayer setting the modularity function depends on an interlayer coupling parameter, ω, and how this parameter affects community detection is not well understood. Here, we expose an upper bound for ω beyond which community changes across layers can not be detected. This upper bound has non-trivial, purely multilayer effects and acts as a resolution limit for detecting evolving communities. Further, we establish an explicit and previously undiscovered relationship between the single layer resolution parameter, γ, and interlayer coupling parameter, ω, that provides new understanding of the modularity parameter space. Our findings not only represent new theoretical considerations but also have important practical implications for choosing interlayer coupling values when using multilayer networks to model real-world systems whose communities change across time or modality.

Multilayer networks are quickly becoming the modeling framework of choice to represent complex interactions in large, multi-modal datasets. A multilayer network is a rich generalization of a traditional network that captures interactions between nodes by separating each interaction type into its own layer together with interlayer coupling of nodes between layers [25, 17, 8]. Multilayer networks have found applications in a diverse range of settings such as neuroscience [32, 13, 4, 46], financial assets [7, 10], congressional voting similarity [30, 31], social networks [42, 9, 19], and spreading processes [11, 41, 14].

Recently there has been much interest in detecting communities in dynamic and multilayer settings [18, 6, 21, 15, 24, 10, 27, 43, 12, 36, 28]. A community is a group of nodes with stronger connections to nodes within the group than to nodes external to the group, and the organization of the network into communities has strong implications for the function and structure of the system. Communities in multilayer networks represent a balance between the community structure in and between layers, and detecting multilayer communities can provide insight into the network structure which is hidden at the level of the individual layers [30]. Because multilayer communities can describe multiple interactions (throughout time, space, modality, etc.) between different layers of the network, it is especially important to understand how communities change and evolve across layers.

A popular class of algorithms attempt to optimize a quality function that measures how well a given partition of the network matches the underlying community structure. Multiple quality functions have been developed from the perspective of network topology [54, 33], information theory [40], and statistical physics [38, 29], and the optimization
of different quality functions can return different community partitions. The first and most popular quality function is the modularity function \([34, 33]\) which measures the number of internal community edges compared to a random network. However, Fortunato and Barthélemy exposed a fundamental problem with modularity maximization \([20]\) by showing that in single layer networks, there is a resolution limit such that communities that are small relative to the network can not be detected. Later, Traag et al. \([45]\) showed that any method that relies on optimizing a global quality function suffers from a resolution limit, thereby demonstrating that the resolution limit represents a fundamental challenge for a large class of algorithms. Other work relating statistical physics and modularity \([38, 26]\) introduced a tunable multiresolution parameter, \(\gamma\), to the modularity function that can be used to control the resolution of community detection. In fact, it has been shown \([44, 45]\) that several quality functions \([34, 38, 37, 2, 39]\) can all be realized as a specific formulation of a generalized multiresolution modularity function, and this multiresolution modularity function has been widely adopted to mitigate the resolution limit problem.

Importantly, modularity maximization was one of the first methods to be extended to multilayer networks \([30, 3]\) through a simple modification of the multiresolution modularity function. As such, it currently remains one of the most commonly used algorithms for performing community detection in the multilayer setting. The multilayer modularity function includes two tunable parameters: the resolution parameter, \(\gamma\), and an interlayer coupling parameter, \(\omega\), that controls the strength of the interlayer coupling, i.e. the edges that run between layers. The interlayer coupling allows communities to span across layers, and the balance between detecting community structure within and between layers is controlled by \(\omega\). When \(\omega\) is small, the community structure of each layer will be preferred and nodes can easily switch communities between layers. When \(\omega\) is large, nodes will prefer to stay in one community across layers and will be less compelled by the community structure within the layers. While some work attempts to provide guidance on how to choose these parameters \([44, 41]\), little is known about how the choice of parameter values influences community detection.

Here, we expose a resolution limit on community detection in multilayer networks such that a change in community structure between two layers can not be detected. We show precisely how the interlayer coupling parameter, \(\omega\), controls the ability to detect communities in multilayer networks and give an upper bound on \(\omega\) beyond which it can be guaranteed that certain cross-layer community changes can not be detected. We demonstrate an explicit relationship between our bound and the previously established single layer resolution limit and show how our bound has non-trivial and purely multilayer effects. Further, we show that \(\omega\) is bounded above by a linear function in \(\gamma\) establishing an explicit and previously unknown relationship between these parameters.

Multi-resolution Modularity in Single Layer Networks

We first review modularity maximization in a traditional single layer network. Given a network with an adjacency matrix, \(A\), and a randomized version of the network, \(R\), the (multi-resolution) modularity function is

\[
Q(P) = \sum_{ij} (A_{ij} - \gamma R_{ij}) \delta(i, j) \tag{1}
\]

where \(P = \{M_1, M_2, \ldots, M_k\}\) is a partition of the network into communities, and \(\delta(i, j) = 1\) if \(i\) and \(j\) are in the same community and 0 otherwise. The intuition is that modularity is higher when nodes inside a community have stronger connections than random. The parameter, \(\gamma\), controls the resolution of community detection. When \(\gamma\) is large, smaller communities are detected and when \(\gamma\) is small, larger communities are detected. Despite concerns related to the degeneracy of the function \([23]\) and the ability of \(\gamma\) to truly eliminate the effects of the resolution limit in networks with a heterogeneous distribution of community sizes \([27]\), it has been shown that modularity maximization offers a balance of speed and accuracy when tested against a variety of benchmark networks \([38]\), and modularity maximization remains one of the
most popular methods for performing community detection.

Community Structure in Multilayer Networks

In order to discuss modularity maximization in the multilayer framework, we first give a brief introduction to multilayer networks. For a more comprehensive review see [25]. A multilayer network is a collection of vertices and edges separated into distinct layers. We let \(N = \{1, 2, \ldots, n\} \) be the node set of the network, and we denote the layers by the greek letters \(\alpha \) and \(\beta \). Then node \(i \) on layer \(\alpha \) is denoted as \(i_\alpha \). We let \(w(i_\alpha, j_\beta) \) denote the weight of the edge between \(i_\alpha \) and \(j_\beta \). Such an edge is called an intralayer edge if \(\alpha = \beta \) and an interlayer edge if \(\alpha \neq \beta \). We adopt the common assumption that interlayer coupling is diagonal [25, 7], that is, the only nonzero interlayer edges are those which connect a node to itself in another layer. The interlayer edges are then given by \(B_{i\alpha j\beta} = w(i_\alpha, i_\beta) \), which is the weight of the edge between node \(i \) in layer \(\alpha \) with itself in layer \(\beta \). Similarly, intralayer edges are given by \(A_{ija} = w(i_\alpha, j_\alpha) \). Note that for a fixed \(\alpha \), the matrix \(A_{ija} \) is just the regular adjacency matrix for layer \(\alpha \).

Modularity in Multilayer Networks

A partition of a multilayer network is a partition of the vertices \(i_\alpha \). Let \(P = \{M_1, M_2, \ldots, M_k\} \) be such a partition, then the groups of vertices \(M_r \) are call communities or modules. For a given multilayer network, the multilayer modularity function [30] measures how well a partition matches the communities of the network and is given by

\[
Q(P) = \sum_{ija} (A_{ija} - \gamma R_{ija}) \delta(i_\alpha, j_\alpha) + \sum_{i\alpha j\beta} B_{i\alpha j\beta} \delta(i_\alpha, i_\beta)
\]

where \(R_{ija} \) is a null model of \(A_{ija} \), \(\gamma \) is a resolution parameter, and \(\delta(i_\alpha, j_\beta) = 1 \) if \(i_\alpha \) and \(j_\beta \) are placed in the same community in \(P \) and 0 otherwise. We say that \(\delta \) is the community function induced by partition \(P \). It is important to note the community function is not the Kroneker delta function, although it is similar.

Often, for simplicity, it is assumed that the interlayer edges are constant [47], i.e. \(B_{i\alpha j\beta} = \omega \) for all \(i, \alpha, \beta \) and for some scalar \(\omega \). We will assume this for the remainder of the article unless explicitly stated otherwise. In this case, the modularity function is given by

\[
Q(P) = \sum_{ija} (A_{ija} - \gamma R_{ija}) \delta(i_\alpha, j_\alpha) + \sum_{i\alpha j\beta} \omega \delta(i_\alpha, i_\beta)
\]

Under similar assumptions to those above, Bazzi et al. [7] gave global bounds \(\omega_{\text{min}} < \omega < \omega_{\text{max}} \) which represent extreme points in community detection. When \(\omega > \omega_{\text{max}} \), nodes never change communities across layers, and when \(\omega < \omega_{\text{min}} \), the communities in each layer are determined entirely by the intralayer topology, and hence the multilayer aspect of the network is essentially ignored. While useful, these global bounds say nothing about how well multilayer modularity detects community structure between any given pair of layers. Below we give a local bound on \(\omega \) such that it can be guaranteed that modularity fails to detect community changes when \(\omega \) is beyond this bound.
Changes in Community Structure Across Layers

A fundamental goal of multilayer community detection is to understand how communities change between layers. When a group of distinct communities in layer α merge into one single community in layer β, then there has been a change in community structure across layer α and β. When interlayer edges are undirected, several communities merging into one community is equivalent to one community splitting into several smaller communities. For this reason, a merger of communities represents the most basic type of community change that can be expected in a multilayer network. We therefore focus on the behavior of multilayer modularity in the presence of community mergers. See Fig. 2. Note that we will assume that layer α and β are connected by interlayer edges.

Interlayer Coupling Bounds

We now give general bounds on the interlayer coupling parameter beyond which community mergers are undetectable. In all computations for the remainder of the paper, the function δ will refer to the community function induced by the partition P_{merge}. The partitions agree everywhere except the K nodes of layer α and are identical on layer β. Thus from equation 3 we have

$$Q(P_{\text{all}}) - Q(P_{\text{merge}})$$

$$= \sum_{ij \in K} \delta(i_{\alpha}, j_{\alpha}) = 0 \left(A_{ij\alpha} - \gamma R_{ij\alpha} \right) + 2 \sum_{i \in K} \omega$$

$$= \sum_{i \in K} \left(A_{ij\alpha} - \gamma R_{ij\alpha} \right) + 2 \theta \omega$$

where $\theta = |K| - |C_m|$ is the number of nodes of K that are not in the largest community C_m. Therefore $Q(P_{\text{merge}}) > Q(P_{\text{all}})$ if and only if

$$2 \theta \omega < \sum_{ij \in K} \delta(i_{\alpha}, j_{\alpha}) = 0 \left(\gamma R_{ij\alpha} - A_{ij\alpha} \right)$$
Figure 3: Layers α and β of a multilayer network in which the the nodes of K form communities C_1, \ldots, C_t on layer α merge into a single community in layer β. Color indicates community assignment. A) The partition P_{merge} which correctly identifies the merger of the individual communities in layer α into one large community in layer β. B) The partition P_{all} which erroneously groups all the nodes into one community in both layer α and β. Note each of the two partitions are arbitrary and identical on the remaining nodes J.

which gives

$$\omega < \sum_{i,j \in K, \delta(i,j)=0} \frac{1}{2\theta} (\gamma R_{ij\alpha} - A_{ij\alpha}) \equiv \Omega. \quad (8)$$

Thus modularity can detect the merger of the communities of K if and only if $\omega < \Omega$. Notice that equation 8 is dependent only on layer α. Our immediate goal is to characterize this bound and understand its behaviors so we can determine which values of ω will allow us to detect community mergers.

Consequences of Interlayer Coupling on Modularity

In the last section, we gave an upper bound on the parameter ω in terms of a generic null model $R_{ij\alpha}$. We now specialize the upper bound, Ω, to the popular Newman-Girvan (NG) model [34]. We then show a certain type of equivalence between Ω and the single layer resolution limit discussed in [20]. Also, we show an explicit dependence of the coupling parameter, ω, on the resolution parameter, γ. Finally, we discuss the consequences of these results on multilayer modularity.

Recall from equation 8 that the upper bound, Ω, is only dependent on the nodes of layer α. For convenience and clarity, we drop the subscript α, but all quantities are implicitly computed with respect to this layer. Now, define κ_i to be the degree of node i (counting only intralayer edges) and $2m = \sum_i \kappa_i$ to be the degree of all nodes (on layer α). Then the NG model is defined by $R_{ij} = \kappa_i \kappa_j / 2m$.

Recall that $\{C_1, C_2, \ldots, C_t\}$ are the communities of the nodes of K in layer α. Let d_r be the degree of community C_r, that is $d_r = \sum_{i \in C_r} \kappa_i$. Let e_r be the portion of the external degree of C_r that connects to one of the remaining communities C_s. With this notation in place, we compute

$$\sum_{i,j \in K, \delta(i,j)=0} R_{ij} = \gamma \left[\sum_{i,j \in K, \delta(i,j)=0} \kappa_i \kappa_j / 2m - \sum_{i,j \in K, \delta(i,j)=0} \kappa_i \kappa_j / 2m \right]$$

$$= \frac{\gamma}{2m} \left[\left(\sum_{r=1}^t d_r \right)^2 - \sum_{r=1}^t (d_r)^2 \right] \quad (9)$$

$$= \frac{\gamma}{2m} \sum_{r \neq s} d_r d_s. \quad (10)$$

Similarly,

$$\sum_{i,j \in K, \delta(i,j)=0} A_{ij} = \sum_{r=1}^t e_r. \quad (12)$$

Plugging equations 11 and 12 into equation 8 gives that

$$\Omega = \frac{1}{2\theta} \left[\frac{\gamma}{2m} \sum_{r \neq s} d_r d_s - \sum_{r=1}^t e_r \right]. \quad (13)$$

The Resolution Limit

Recall that if $\omega > \Omega$, then the community merge of the nodes of K can not be detected by modularity. Since ω is assumed to be non-negative when $\Omega < \Omega$.
We will not properly resolve the change in the communities of K.

We now show an explicit connection with the single layer resolution limit. Assume that $t = 2$, that is, there are only 2 communities in K. Define l_r to be the internal degree of community C_r. In [20] Fortunato et al. showed in the absence of the resolution parameter γ that if

$$l_2 < \frac{2e_1 m}{l_1 d_1 d_2}$$ \hspace{2cm} (14)

then modularity (restricted only to layer α) will be highest when the two communities of K are grouped into one larger community. Let $X = \frac{2e_1 m}{l_1 d_1 d_2}$ be this limit and define $z = \frac{d_1 d_2}{l_1 l_2}$. From equations 11, 12, and 13 we have

$$\Omega = \frac{1}{2\theta} \left[\frac{2d_1 d_2 \gamma}{2m} - e_1 - e_2 \right]$$ \hspace{2cm} (15)

$$= \frac{1}{2\theta} \left[\frac{z \gamma l_1 (l_2 - \frac{X}{\gamma} + \frac{X}{\gamma})}{m} - 2e_1 \right]$$ \hspace{2cm} (16)

$$= \frac{zl_1}{2\theta m} (\gamma l_2 - X)$$ \hspace{2cm} (17)

where $\frac{X}{\gamma}$ represents the single layer resolution limit of [20] adjusted according to the parameter γ. In the computations, we used the fact that $e_1 = e_2$ and $\frac{zl_1 X}{m} = 2e_1$.

Notice that $\gamma l_2 - X < 0$ precisely when $l_2 < \frac{X}{\gamma}$, that is precisely when the single layer resolution limit implies the two communities will be detected as a single large community. Since all other quantities in equation 17 are positive, it follows that

$$\Omega > 0 \iff \gamma l_2 - X > 0$$ \hspace{2cm} (18)

This implies that the community merger can be detected by multilayer modularity if and only if the individual communities can be detected by single layer modularity. However, this is a much stronger statement than it seems since the additional upper bound Ω places further constraints on multilayer modularity. In fact, there exists a value of ω such that multilayer modularity can detect two merging communities if and only if single layer modularity can detect those communities. Thus, multilayer modularity succeeds only if single layer modularity succeeds and the appropriate value of ω is chosen. Further, the addition of interlayer links and the existence of the upper bound Ω have purely multilayer effects which we now discuss.

Multilayer Effects of the Resolution Limit

We draw four important conclusions from equations 13, 17, and 18.

i. Multilayer modularity can resolve community mergers if and only if single layer modularity can resolve the individual communities.

ii. The upper bound, Ω, scales inversely with the degree of the layer from which it is computed and is linear in γ. In particular, it is more difficult to detect the merger of communities that are small relative to their layer.

iii. There is an explicit dependence between the parameters γ and ω: community mergers can only be detected when $\omega < a\gamma + b$ where a and b are constants depending on the structure of the communities which merge and the degree of the corresponding layer.

iv. When the degree of the nodes of a community that merge are small, so too is Ω. This is especially important in networks where nodes may have low or zero degree on some layers and have high degree on others.

Conclusion i is not a simple restatement of the single layer resolution limit. It implies that the ability to detect changes in community structure between layers is constrained by the traditional single layer resolution limit. This is particularly important for any multilayer network statistics that measure changes in community assignment across layers [5, 6]. Also, as previously discussed, even when single layer modularity can resolve the communities, the multilayer modularity function will detect the merger only if $\omega < \Omega$. Conclusion i is of practical concern, as it gives guidance on when to expect modularity to fail to detect
community changes or on what scale \(\omega \) should be set to improve resolution for detecting changes. Specifically, if the communities that merge are small compared to their layer, then \(\omega \) also needs to be small in order to resolve the change.

As far as we are aware, conclusion iii is the first result of its kind which explicitly determines a relationship between the parameters \(\omega \) and \(\gamma \). In particular, changes in community structure will not be detected unless \(\omega < a\gamma + b \). From equation 13, we see the intercept, \(b \), is non-positive and proportional to the external degree of the merging communities. The slope, \(a \), is inversely proportional to total degree of the layer from which the communities merge and proportional to the pairwise product of the community degrees. Having an explicit linear relationship between \(\omega \) and \(\gamma \) may drive future research in understanding the modularity landscape with respect to parameter choice [47].

Finally, conclusion iv can have strong and non-trivial consequences for detecting changes in multilayer networks. Real world multilayer networks have been shown to have many nodes with zero degree on some or many layers of the network [35]. This is not surprising, as each layer represents a type of interaction, and a node may have a preferred mode of interacting, giving it non-zero degree on one layer and zero degree on another. However, a merger of a group of zero degree nodes on layer \(\alpha \) to a community in layer \(\beta \) will not be resolved by multilayer modularity since in this case the upper bound \(\Omega \) will be 0. This has important consequences for detecting changes in multilayer networks in which nodes may be inactive on one or more layers. We make this concrete with an example by showing how the community structure in one layer can propagate to others, making it impossible for modularity to detect the changing structure.

Example 1

Let \(\mathcal{M} \) be a multilayer network with \(k + 1 \) layers \(\alpha_1, \ldots, \alpha_k, \beta \) and \(N \) nodes in each layer. Suppose that the vertices in layers \(\alpha_1, \ldots, \alpha_k \) all have 0 degree and that the vertices in layer \(\beta \) form a clique, an all to all connected graph. Couple the network such that \(B_{\alpha_j\alpha_{j+1}} = \omega \) and \(B_{\alpha_k\beta} = \omega \) so only adjacent layers are connected. Then, any nonzero value of \(\omega \) implies that \(P_{\text{all}} \) has the maximum modularity amongst all the possible partitions of the network. Here \(P_{\text{all}} \) is the partition which puts all nodes in all layers into one community. This can be seen by noting that all groupings of nodes in layer \(\alpha \) result in no change in modularity since the nodes have 0 degree. On the other hand modularity is highest for layer \(\beta \) when all the nodes are grouped into a single community. Finally, leaving a node in the same community across two layers contributes positively to modularity and it follows that modularity is highest when all nodes in all layers are assigned a single community. See Fig. 4.

![Figure 4](image)

Example 2

We now perform an explicit computation of the upper bound \(\Omega \) on a toy network. In this example, we
assume the communities are disjoint cliques thus representing the strongest possible intralayer community structure. The upper bound Ω in this case implies that modularity can not detect the merger of disjoint cliques when $\omega > \Omega$. This has no single layer counterpart in the sense that disjoint cliques do not suffer from a single layer resolution limit.

Consider a network with two layers α and β. Let $K = \{1, 2, \ldots, 10\}$ be the first 10 nodes of the network. Assume in layer α the nodes of K are partitioned into 2 disjoint cliques, a 3-clique and a 7-clique, and in layer 2 the nodes of K form a 10-clique. It is clear that the nodes of K form 2 communities in layer 1 and merge into one large community in layer 2 (see Fig. 5). Further assume that remaining nodes have arbitrary connectivity but total degree of 12. We now compute the upper bound, Ω, using equation 13 as follows:

$$\Omega = \frac{\gamma}{2 \theta} \frac{1}{2m} \sum_{r \neq s} d_r d_s$$

$$= \frac{\gamma}{2 \theta} \frac{2(6 \cdot 42)}{48 + 12}$$

$$= \frac{\gamma}{14} \frac{504}{60} = 0.6 \gamma$$

Here we find that, even in this simple toy model with strong intralayer community structure, in order to detect the change in communities, we must choose $\omega < 0.6 \gamma$. This value is significantly less than global upper bound, ω_{max} given in [7], and importantly, smaller than one’s intuition might expect given the strong intralayer community structure.

Discussion

As multilayer networks continue to emerge as the pre-dominant tool to model complex multi-modal, multi-scale relationships, it is increasingly important to understand the assumptions and limitations of such models. The most popular method for detecting communities in multilayer networks is modularity maximization, but the modularity function depends on two parameters that must be selected by the user: the resolution parameter, γ, and the interlayer coupling parameter, ω.

Here, we have demonstrated that there is an exact upper bound, Ω, such that a merge of two communities is only detectable by modularity when $\omega < \Omega$. Further, we have shown that this upper bound is dependent upon the choice of resolution parameter γ, resulting in a linear relationship between the two parameters: $\omega < a \gamma + b$. These findings have very practical implications for those building multilayer networks from experimental data. For example, in cases where the interlayer coupling values are measured experimentally, it might be necessary to introduce a global scaling of such values to ensure that for a given resolution value, the values of ω are within the proper bounds to detect cross layer changes in community structure.

While these findings introduce a relationship between γ and ω and provide practical guidance for
choosing parameters, this work only considers the case of a single community merger across two layers of the network. In real-world multilayer networks, one expects multiple changes in community structure across multiple layers. In order to ensure the best detection of community changes, one would therefore need to optimize the choice of γ and over all layers and either choose the value(s) of ω accordingly between each pair of layers, or select a global ω that is within the bounds for all pairs of linked layers.

The selection of the resolution and coupling parameters for performing multilayer modularity maximization must be chosen with care in order to properly detect dynamic and inter-modal changes in community structure in multilayer networks. We present important bounds for these parameters and encourage those building multilayer networks from experimental data to carefully take these bounds into consideration when interpreting the results of dynamic community detection in such models.

References

[1] Alessia Amelio and Andrea Tagarelli. Revisiting resolution and inter-layer coupling factors in modularity for multilayer networks. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pages 266–273. ACM, 2017.

[2] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure of complex networks at different resolution levels. New journal of physics, 10(5):053039, 2008.

[3] Danielle S. Bassett, Mason A. Porter, Nicholas F. Wymbs, Scott T. Grafton, Jean M. Carlson, and Peter J. Mucha. Robust detection of dynamic community structure in networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(1):013142, 2013.

[4] Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature Neuroscience, 20(3):353–364, 2017.

[5] Danielle S. Bassett, Nicholas F. Wymbs, Mason A. Porter, Peter J. Mucha, Jean M. Carlson, and Scott T. Grafton. Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108(18):7641–7646, 2011.

[6] Danielle S Bassett, Muzhi Yang, Nicholas F Wymbs, and Scott T Grafton. Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5):744751, Apr 2015.

[7] Marya Bazzi, Mason A. Porter, Stacy Williams, Mark McDonald, Daniel J. Fenn, and Sam D. Howison. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul., 2016.

[8] S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gomez-Gardees, M. Romance, I. Sendia-Nadal, Z. Wang, and M. Zanin. The structure and dynamics of multilayer networks. Physics Reports, 544(1):1122, Nov 2014.

[9] Johan Bollen, Bruno Gonçalves, Guangchen Ruan, and Huina Mao. Happiness is assortative in online social networks. Artificial life, 17(3):237–251, 2011.

[10] Charles D Brummitt and Teruyoshi Kobayashi. Cascades in multiplex financial networks with debts of different seniority. Physical Review E, 91(6):062813, 2015.

[11] Emanuele Cozzo, Raquel A Banos, Sandro Meloni, and Yamir Moreno. Contact-based social contagion in multiplex networks. Physical Review E, 88(5):050801, 2013.

[12] Caterina De Bacco, Eleanor A Power, Daniel B Larremore, and Cristopher Moore. Community detection, link prediction, and layer interdependence in multilayer networks. Physical Review E, 95(4):042317, 2017.

[13] Manlio De Domenico. Multilayer modeling and analysis of human brain networks. Giga Science, 6(5):1–8, 2017.
[14] Manlio De Domenico, Clara Granell, Mason A. Porter, and Alex Arenas. The physics of spreading processes in multilayer networks. *Nature Physics*, 12(10):901906, Aug 2016.

[15] Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. *Physical Review X*, 5(1):011027, 2015.

[16] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural reducibility of multilayer networks. *Nature communications*, 6:6864, 2015.

[17] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yanir Moreno, Mason A Porter, Sergio Gómez, and Alex Arenas. Mathematical formulation of multilayer networks. *Physical Review X*, 3(4):041022, 2013.

[18] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. Stability of graph communities across time scales. *Proceedings of the National Academy of Sciences*, 107(29):1275512760, Jun 2010.

[19] Mark E Dickison, Matteo Magnani, and Luca Rossi. *Multilayer social networks*. Cambridge University Press, 2016.

[20] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. *Proceedings of the National Academy of Sciences*, 104(1):36–41, 2007.

[21] Laetitia Gauvin, Andr Panisson, and Ciro Cattuto. Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. *PLoS ONE*, 9(1):e86028, Jan 2014.

[22] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel. Detectability thresholds and optimal algorithms for community structure in dynamic networks. *Physical Review X*, 6(3):031005, 2016.

[23] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Performance of modularity maximization in practical contexts. *Phys. Rev. E*, 81(4), Apr 2010.

[24] Jacopo Iacobacci, Zhihao Wu, and Ginestra Bianconi. Mesoscopic structures reveal the network between the layers of multiplex data sets. *Physical Review E*, 92(4):042806, 2015.

[25] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. Multilayer networks. *Journal of Complex Networks*, 2(3):203271, Jul 2014.

[26] Renaud Lambiotte, Jean-Charles Delvenne, and Mauricio Barahona. Random walks, Markov processes and the multiscale modular organization of complex networks. *IEEE Trans. Netw. Sci. Eng.*, 1(2):7690, Jul 2014.

[27] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in community detection. *Physical review E*, 84(6):066122, 2011.

[28] Fuchen Liu, David Choi, Lu Xie, and Kathryn Roeder. Global spectral clustering in dynamic networks. *Proceedings of the National Academy of Sciences*, page 201718449, 2018.

[29] Catherine Matias and Vincent Miele. Statistical clustering of temporal networks through a dynamic stochastic block model. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 2016.

[30] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela. Community structure in time-dependent, multiscale, and multiplex networks. *Science*, 328(5980):876878, May 2010.

[31] Peter J Mucha and Mason A Porter. Communities in multislice voting networks. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 20(4):041108, 2010.

[32] Sarah Feldt Muldoon and Danielle S Bassett. Network and multilayer network approaches to
understanding human brain dynamics. *Philosophy of Science*, 83(5):710–720, 2016.

[33] M. E. J. Newman. Modularity and community structure in networks. *Proceedings of the National Academy of Sciences*, 103(23):8577–8582, May 2006.

[34] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. *Phys. Rev. E*, 69(2), Feb 2004.

[35] Vincenzo Nicosia and Vito Latora. Measuring and modeling correlations in multiplex networks. *Phys. Rev. E*, 92:032805, Sep 2015.

[36] Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground truth about metadata and community detection in networks. *Science advances*, 3(5):e1602548, 2017.

[37] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures in large-scale networks. *Physical review E*, 76(3):036106, 2007.

[38] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection. *Physical Review E*, 74(1):016110, 2006.

[39] Peter Ronhovde and Zohar Nussinov. Multiresolution community detection for megascale networks by information-based replica correlations. *Physical Review E*, 80(1):016109, 2009.

[40] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal community structure. *Proceedings of the National Academy of Sciences*, 105(4):1118–1123, 2008.

[41] Marta Sarzynska, Elizabeth A Leicht, Gerardo Chowell, and Mason A Porter. Null models for community detection in spatially embedded, temporal networks. *Journal of Complex Networks*, 4(3):363–406, 2015.

[42] Michael Szell, Renaud Lambiotte, and Stefan Thurner. Multirelational organization of large-scale social networks in an online world. *Proceedings of the National Academy of Sciences*, 107(31):13636–13641, 2010.

[43] Dane Taylor, Saray Shai, Natalie Stanley, and Peter J Mucha. Enhanced detectability of community structure in multilayer networks through layer aggregation. *Physical review letters*, 116(22):228301, 2016.

[44] Gergely Tibóly and János Kertész. On the equivalence of the label propagation method of community detection and a potts model approach. *Physica A: Statistical Mechanics and its Applications*, 387(19-20):4982–4984, 2008.

[45] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. Narrow scope for resolution-limit-free community detection. *Physical Review E*, 84(1):016114, 2011.

[46] Michael Vaiana and Sarah Feldt Muldoon. Multilayer brain networks. *Journal of Nonlinear Science*, pages 1–23, 1 2018.

[47] William H Weir, Scott Emmons, Ryan Gibson, Dane Taylor, and Peter J Mucha. Post-processing partitions to identify domains of modularity optimization. *Algorithms*, 10(3):93, 2017.

[48] Zhao Yang, Ren Algesheimer, and Claudio J. Tessone. A comparative analysis of community detection algorithms on artificial networks. *Scientific Reports*, 6:30750, Aug 2016.