MEAN CURVATURE FLOW AND BERNSTEIN-CALABI RESULTS FOR SPACELIKE GRAPHS

Guanghan Li1,2 and Isabel M.C. Salavessa2,†

1 School of Mathematics and Computer Science, Hubei University, Wuhan, 430062, P. R. China, e-mail: liguanghan@163.com
2 Centro de Física das Interacções Fundamentais, Instituto Superior Técnico, Technical University of Lisbon, Edifício Ciência, Piso 3, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; †e-mail: isabel.salavessa@ist.utl.pt

Contribution to the VIII International Colloquium on Differential Geometry, Santiago de Compostela, Spain, 7-11 July 2008, satellite event of the 5th European Congress of Mathematics.

Abstract

This is a survey of our work on spacelike graphic submanifolds in pseudo-Riemannian products, namely on Heinz-Chern and Bernstein-Calabi results and on the mean curvature flow, with applications to the homotopy of maps between Riemannian manifolds.

1 Introduction

It has been an important issue in geometry and in topology to determine when a map $f : \Sigma_1 \to \Sigma_2$ between manifolds can be homotopically deformed to a constant one. If each Σ_i has a Riemannian structure g_i, the curvature of these spaces may give an answer. This is particularly more complex if Σ_i are both compact. For Σ_i noncompact, by a famous result due to Gromov (8), Σ_i admits a Riemannian metric of negative sectional curvature and also one of positive sectional curvature. In each of these cases, if Σ_i is complete and simply connected, then Σ_i is diffeomorphic to a contractible space, by the Cartan-Hadmard theorem and by a result of Cheeger and Gromoll, respectively (see in 41). If this is the case for one of the Σ_i, then f is obviously homotopically trivial.

A deformation problem of an initial map can be handled using some geometric evolution equation, obtaining homotopic deformations of a certain type and with geometrical and analytical meaning, namely, giving at infinite time a solution of a certain partial differential equation. We recall the great discovery of Eells and
Sampson ([7]), a first example of this kind, on using the heat flow to deform a map to an harmonic one:

Theorem 1 (Eells and Sampson (1964)) If Σ_1 and Σ_2 are closed and Σ_2 has non-positive sectional curvature then f is homotopic to a harmonic map f_∞. Furthermore, if the Ricci tensor of Σ_1 is nonnegative then f_∞ is totally geodesic and if it is positive somewhere, then f_∞ is constant.

The last part of this theorem can be seen as a Bernstein-type theorem, and it was obtained from a Weitzenböck formula for the Laplacian of $\|df_\infty\|^2$. We recall that Bernstein-type theorems are theorems that give conditions that ensures that a solution of certain P.D.Es. with geometrical meaning, must be a a ”trivial” solution, as for example a totally geodesic or a constant map.

In this note, a survey of our main results in [10, 11, 12], we will show how to use the mean curvature flow and a Bernstein-Calabi type result for spacelike graphs to obtain a deformation of a map between Riemannian manifolds to a totally geodesic or a constant one.

The Bernstein-Calabi result is obtained by computing the Laplacian of a positive geometric quantity, the hyperbolic cosine of the hyperbolic angle of a spacelike graph, and analyzing the sign of this Laplacian, based on an idea of Chern [5] of computing a similar quantity in the Riemannian case.

Furthermore, we also will show that under somehow more general curvature conditions as in the above theorem, we can obtain a direct proof of the homotopy to a constant map, with no need to use a Bernstein-type result. This approach was started by Wang [14] for the graph Γ_f of the map f, considered as a submanifold of the Riemannian product $\Sigma_1 \times \Sigma_2$ of closed spaces with constant sectional curvature, and take its mean curvature flow and show that under certain conditions the flow preserves the graphic structure of the submanifold and converges to the graph of a constant map. The main difference with our approach is that we consider the pseudo-Riemannian structure on $\Sigma_1 \times \Sigma_2$ instead the Riemannian one. Our assumption on Γ_f to be a spacelike submanifold is essentially identical to the assumptions on the eigenvalues of $f^* g_2$ imposed in [14] in the corresponding Riemannian setting. Our advantage is that the pseudo-Riemannian setting turns out to be a more natural one, since it allows less restrictive assumptions on the curvature tensors (and that include the case of any negative sectional curvature for Σ_2) and on the map f itself after a suitable rescaling of the metric of Σ_2, and long time existence and convergence of the flow are easier obtained. In [14] it is necessary to use a White’s regularity theorem, based on a monocity formula due to Huisken, to detect possible singularities of the mean curvature flow, while in the
pseudo-Riemannian case, because of good signature in the evolution equations, we have better regularity. This will become clear in equations (1), (3) and (4) below.

Let \((\Sigma_1, g_1)\) and \((\Sigma_2, g_2)\) be Riemannian manifolds of dimension \(m \geq 2\) and \(n \geq 1\) respectively, and of sectional curvatures \(K_i\) and Ricci tensors \(Ricci_i\). On \(\mathcal{M} = \Sigma_1 \times \Sigma_2\) we consider the pseudo-Riemannian metric \(\bar{g} = g_1 - g_2\). We assume \(\Sigma_1\) oriented. Given a map \(f\), we assume the graph, \(\Gamma_f : \Sigma_1 \to \mathcal{M}, \Gamma_f(p) = (p, f(p))\), is a spacelike submanifold that is, \(g := \Gamma_f^* \bar{g} = g_1 - f^* g_2\) is a Riemannian metric on \(\Sigma_1\). Thus, the eigenvalues of \(f^* g_2\), at \(p \in M\), \(\lambda_1^2 \geq \ldots \geq \lambda_m^2 \geq 0\), are bounded from above by \(1 - \delta(p)\), where \(0 < \delta(p) \leq 1\) is a constant depending on \(p\). The hyperbolic angle \(\theta\) of \(\Gamma_f\) is given by one of the equivalent definitions:

\[
\cosh \theta = \left(\prod_i (1 - \lambda_i^2) \right)^{-1/2} = \frac{Vol_{\Sigma_1}(\pi_1(e_1), \ldots, \pi_1(e_m))}{Vol_{(\Sigma_1, g_1)}} = \frac{Vol_{(\Sigma_1, g_1)}}{Vol_{(\Sigma_1, g)}}
\]

where \(\pi_1 : \mathcal{M} \to \Sigma_1\) is the projection and \(e_i\) is a direct o.n. basis of \(\Gamma_f\), and \(Vol_{(\Sigma_1, g)}\) is the volume element of \((\Sigma_1, g)\). Then \(\cosh \theta = 1\) iff \(f\) is constant, that is \(\Gamma_f\) is a slice.

2 Bernstein-Calabi and Heinz-Chern type results

The classic Bernstein theorem says that an entire minimal graph in \(\mathbb{R}^3\) is a plane. This result was generalized to codimension one graphs in \(\mathbb{R}^{m+1}\) for \(m \leq 7\), and for higher dimensions and codimensions under additional conditions by many other authors. Calabi \((\text{[2]})\) considered the same problem for the maximal (the mean curvature \(H = 0\)) spacelike hypersurfaces \(M\) in the Lorentz-Minkowski space \(\mathbb{R}^{m+1}\) with the metric \(ds^2 = \sum_{i=1}^m (dx_i)^2 - (dx_{m+1})^2\). If \(M\) is given by the graph of a function \(f\) on \(\mathbb{R}^m\) with \(|Df| < 1\), the equation \(H = 0\) has the form

\[
\sum_{i=1}^m \frac{\partial}{\partial x_i} \left(\frac{\partial f/\partial x_i}{\sqrt{1 - |Df|^2}} \right) = 0.
\]

Calabi showed that for \(m \leq 4\), the graph of any entire solution to the above equation is a hyperplane. The same conclusion was established by Cheng and Yau \((\text{[3]})\) for any \(m\). A further generalization of this problem to \(\mathbb{R}^{m+n}\) has been obtained by some authors (see for instance in \(\text{[9]}\)).
Another natural generalization is to consider maximal spacelike graphic submanifolds in a non flat ambient space and in higher codimension. We consider a spacelike graph \(\Gamma_f \), for a map \(f : \Sigma_1 \to \Sigma_2 \).

We can take \(a_i \) an orthonormal basis of \(T_p \Sigma_1 \) and \(e_\alpha \) of \(T_{f(p)} \Sigma_2 \), \(1 \leq i \leq m \), \(m + 1 \leq \alpha \leq m + n \), such that \(df(a_i) = -\lambda_i a_{m+i} \) (\(\lambda_i = 0 \) if \(i > n \)). Then \(e_i = (1 - \lambda_i^2)^{-1/2}(a_i + \lambda_i a_{m+i}) \) and \(e_{m+i} = (1 - \lambda_i^2)^{-1/2}(a_{m+i} + \lambda_i a_i) \), \(e_\alpha = a_\alpha \) if \(\alpha > 2m \), define o.n.b.s. of \(T_{(p,f(p))}\Gamma_f \), and of the normal bundle at \((p,f(p)) \) respectively. Assuming \(\Gamma_f \) has parallel mean curvature, in this basis we have

\[
\Delta \cosh \theta = \cosh \theta \left\{ ||B||^2 + 2 \sum_{k} \sum_{i<j} \lambda_i \lambda_j h_{ik}^{m+i} h_{jk}^{m+j} - 2 \sum_{k} \sum_{i<j} \lambda_i \lambda_j h_{ik}^{m+i} h_{jk}^{m+j}
\right.
\]

\[
+ \sum_i \left(\frac{\lambda_i^2}{1-\lambda_i^2} Ricci_1(a_i, a_i) + \sum_{j \neq i} \frac{\lambda_i^2 \lambda_j^2}{(1-\lambda_i^2)(1-\lambda_j^2)} [K_1(P_{ij}) - K_2(P'_{ij})] \right) \right\}
\]

(1)

where \(P_{ij} = \text{span}\{a_i, a_j\} \) and \(P'_{ij} = \text{span}\{a_{m+i}, a_{m+j}\} \). Here \(h_{ij}^\alpha \) are the components of the second fundamental form \(B \) of \(\Gamma_f \) in the basis \(e_i, e_\alpha \).

Theorem 2 ([12, 10]) Let \(M = \Gamma_f \) be a spacelike graphic submanifold of \(\overline{M} \) with parallel mean curvature vector. We assume for each \(p \in \Sigma_1 \), \(Ricci_1(p) \geq 0 \) and for any two-dimensional planes \(P \subset T_p \Sigma_1 \), \(P' \subset T_{f(p)} \Sigma_2 \), \(K_1(P) \geq K_2(P') \). We have:

(i) If \(n = 1 \) and \(\cosh \theta \leq o(r) \) when \(r \to +\infty \), where \(r \) is the distance function to a point \(p \in (\Sigma_1, g_1) \), and \(\Sigma_1 \) is complete, then \(M \) is maximal.

(ii) If \(M \) is compact, then it is totally geodesic. Moreover, if \(Ricci_1(p) > 0 \) at some point, then \(M \) is a slice, that is \(f \) is constant;

(iii) If \(M \) is complete, noncompact, and \(K_1, K_2 \) and \(\cosh \theta \) are bounded, then \(M \) is maximal.

(iv) If \(M \) is a complete maximal spacelike surface, then \(M \) is totally geodesic. Moreover, (a) if \(K_1(p) > 0 \) at some point \(p \in M \), then \(M \) is a slice; (b) If \(\Sigma_1 = \mathbb{R}^2 \) and \(\Sigma_2 = \mathbb{R}^n \), then \(M \) is a plane; (c) if \(\Sigma_1 \) is flat and \(K_2 < 0 \) at some point \(f(p) \), then either \(M \) is a slice or the image of \(f \) is a geodesic of \(\Sigma_2 \).

We obtain (i) by applying a Heinz-Chern inequality derived in [12], for the absolute norm of \(H \)

\[
m ||H|| \leq \sup \cosh \theta \ h(B_r(p)),
\]

where \(h(B_r(p)) = \inf D V_{m-1}(\partial D)/V_m(D) \), is the Cheeger constant of the open geodesic ball of center \(p \) and radius \(r \), where \(D \) runs all over the bounded domains.
of the ball with smooth boundary ∂D. Since $Ricci_1 \geq 0$, $h(B_r(p)) \leq C/r$, when $r \to +\infty$, where $C > 0$ is a constant. For Σ_1 the m-hyperbolic space (with non-zero Cheeger constant), we give examples in [12] of foliations of $\mathbb{H}^m \times \mathbb{R}$ by complete spacelike graphic hypersurfaces with bounded hyperbolic angle and with constant mean curvature any real c, the same for all leaves, or parameterized by the leaf.

The proof of (ii) and (iii) consists on showing that, under the curvature conditions, one has $\Delta \ln \cosh \theta \geq \delta \|B\|^2$, where $\delta > 0$ is a constant that does not depend on p and in (iii) showing that the Ricci tensor of M is bounded from below, and applying the Omori-Cheng-Yau maximum principle for noncompact manifolds. (i) and (iii) are obtained by different approaches. If M is a maximal Riemannian surface, (iv) gives a generalization of the Bernstein type theorem of Albujer-Alías [1] for maximal graphic spacelike surfaces in a Lorentzian three manifold $\Sigma_1 \times \mathbb{R}$ to higher codimension. As in [5, 1] the proof is based on a parabolicity argument for surfaces with nonnegative Gauss curvature. In fact, in this case, we have that $\Delta (\frac{1}{\cosh \theta}) \leq 0$ and the Gauss curvature of M satisfies

$$K_M = \frac{1}{(1-\lambda_1^2)(1-\lambda_2^2)} [K_1 - \lambda_1^2 \lambda_2^2 K_2(a_3, a_4)] + \sum_\alpha [(h_{11}^\alpha)^2 + (h_{12}^\alpha)^2] \geq 0.$$

The conclusion that $B = 0$ comes from analyzing the vanishing of the term involving the components of B in the expression of $\Delta (1/\cosh \theta)$. Our proof for (iv)(b), gives a simpler proof of the same result of Jost and Xin [9] for the case of surfaces, but using their result that any entire maximal graph in \mathbb{R}^{m+n} is complete.

We also derive in [11] a Simons’ type identity for the absolute norm of the second fundamental form $\|B\|^2$ of a spacelike submanifold M of any pseudo-Riemannian manifold \overline{M},

$$\Delta \|B\|^2 = 2\|\nabla B\|^2 + \sum_{ij\alpha} 2h_{ij}^\alpha H_{ij}^\alpha - \sum_{ij\alpha} 2h_{ij}^\alpha \sum_k (\bar{\nabla}_j \bar{R})_{kik} + \sum_k (\bar{\nabla}_j \bar{R})_{ikj}$$

$$+ \sum_{ijkl\alpha} 2 \sum_k (4\bar{R}_{ijkl}^\alpha h_{ij}^\alpha - \bar{R}_{kij} h_{ij}^\alpha h_{ij}^\alpha) + \bar{R}_{i\beta}^\alpha h_{ij}^\beta h_{ij}^\alpha$$

$$+ \sum_{ijkl\alpha} 4(\bar{R}_{ijkl}^\alpha h_{ij}^\alpha h_{kl}^\alpha + \bar{R}_{ikj}^\alpha h_{ij}^\alpha h_{kl}^\alpha) - \sum_{ijkl\alpha\beta} 2h_{ij}^\alpha h_{ik}^\alpha h_{jk}^\beta h_{ij}^\alpha$$

$$+ 2\sum_{ijkl\alpha\beta} \left(\sum_k (h_{ik}^\alpha h_{jk}^\beta - h_{ik}^\beta h_{jk}^\alpha)^2 \right) + 2\sum_{ijkl\alpha\beta} \left(\sum_k (h_{ik}^\alpha h_{jk}^\beta - h_{ik}^\beta h_{jk}^\alpha)^2 \right).$$

5
3 The mean curvature flow

The mean curvature flow of an immersion $F_0 : M \rightarrow \overline{M}$ is a family of immersions $F_t : M \rightarrow \overline{M}$ defined in a maximal interval $t \in [0, T)$ evolving according to

$$\begin{align*}
\frac{d}{dt}F(x,t) &= H(x,t) = \Delta_{g_t}F_t(x) \\
F(\cdot,0) &= F_0
\end{align*}$$

(2)

where H_t is the mean curvature of $M_t = F_t(M) = (M, g_t = F_t^*\bar{g})$. The mean curvature flow of hypersurfaces in a Riemannian manifold has been extensively studied. Recently, mean curvature flow of submanifolds with higher co-dimensions has been paid more attention. In [14], the graph mean curvature flow is studied in Riemannian product manifolds, and it is proved long-time existence and convergence of the flow under suitable conditions. When M is a pseudo-Riemannian manifold, it is considered the mean curvature flow of spacelike submanifolds. This flow for spacelike hypersurfaces has also been largely studied, but very little is known on mean curvature flow in higher codimensions except in a flat space \mathbb{R}^{n+m} [15]. In [11] we consider (2) with M any pseudo-Riemannian manifold and F_0 any spacelike submanifold, and we derive the evolution of the following quantities at a given point (x,t) with respect to an o.n. frame e^α of the normal bundle of M_t and a coordinate chart x^i of M, normal at x relatively to the metric g_t

$$\frac{d}{dt}g_{ij} = 2H^\alpha h^\alpha_{ij},$$

$$\frac{d}{dt}Vol_{M_t} = ||H||^2Vol_{M_t},$$

$$\frac{d}{dt}||B||^2 = \Delta ||B||^2 - 2||\nabla B||^2 + \sum_{ij}2h^\alpha_{ij} \left(\sum_k (\bar{\nabla}_j \bar{R})^\alpha_{kk} + (\bar{\nabla}_k \bar{R})^\alpha_{jk} \right) -\sum_{ijk\alpha\beta}2(4\bar{R}^\alpha_{\beta\kappa} h^\beta_{ij} h^\alpha_{kj} - \bar{R}^\alpha_{k\beta} h^\alpha_{ij} h^\beta_{kj}) + \sum_{ijkl\alpha\beta}4(\bar{R}^\alpha_{ij} h^\alpha_{kl} + \bar{R}^\beta_{ij} h^\beta_{kl} + \bar{R}^i_{kij} h^\alpha_{ij}) -2\sum_{ijk\alpha\beta} \left(\sum_k (h^\alpha_{ik} h^\beta_{jk} - h^\beta_{ik} h^\alpha_{jk}) \right)^2 -2\sum_{ij\alpha\beta} \left(\sum_j (h^\alpha_{ij} h^\beta_{ij} - h^\beta_{ij} h^\alpha_{ij}) \right)^2.$$
This means that either $K_1(p) \geq K_2^+(q) = \max\{K_2(q), 0\}$, or $\text{Ricci}_1(p) \geq 0$ and $K_1(p)(P) < 0$ for some two-plane \bar{P} and $K_1(p) \geq K_2(q)$, with $K_2(q) < 0$, $\forall p, q$.

We recall the main steps of [11].

For $t > 0$ sufficiently small, F_t is near F_0 and so it is a spacelike graph with $\lambda_i^2(t) \leq 1 - \delta(t)$. We derive the evolution of the hyperbolic angle

$$
\frac{d}{dt} \ln(\cosh(\theta)) = \Delta \ln(\cosh(\theta)) - \left\{ \|B\|^2 - \sum_{k,i} \lambda_i^2(h_{ik}^m)^2 - 2 \sum_{k,j} \lambda_i \lambda_i h_{ik}^m h_{jk}^m \right\} \geq \delta(t)\|B\|^2
$$

$$
- \sum_{i} \lambda_i^2 \left(\frac{1}{1 - \lambda_i^2} \text{Ricci}_i(e_i, e_i) \right) \geq 0
$$

$$
\sum_{i,j} \lambda_i^2 \left(\frac{\lambda_j^2}{1 - \lambda_i^2} \right) \left(K_1(P_{ij}) - K_2(P'_{ij}) \right) \geq 0
$$

Therefore, $\frac{d}{dt} \ln(\cosh(\theta)) \leq \Delta \ln(\cosh(\theta)) - \delta(t)\|B\|^2 \leq \Delta \ln(\cosh(\theta))$, and by the maximum principle for parabolic equations, $\max_{\Sigma_t} \cosh(\theta)$ is a nondecreasing function on t, and in particular F_t remains a spacelike graph $F_t = \Gamma_{f_t}$ for a smooth map $f_t : \Sigma_t \to \bar{M}$, $\forall t$. On what follows, c_i denotes positive constants. We may take a uniform bound $\delta = \delta(0)$, such that $\lambda_i^2(t) \leq 1 - \delta$ for all t as long as the flow exists. Consequently $g_t = g_1 - f_t g_2$ are uniformly equivalent metrics on Σ_t and Vol_{M_t} are uniformly bounded, and from the above evolution equations $\text{Vol}_{M_t} = e^{\int_0^t |H_t|^2 ds} \text{Vol}_{M_0}$, what implies $\int_0^T \sup_{\Sigma_t} |H_t|^2 dt < c_0$. From the evolution equations one gets

$$
\frac{d}{dt}\|B\|^2 \leq \Delta\|B\|^2 + c_1\|B\| + c_2\|B\|^2 - \frac{2}{n}\|B\|^4 \leq \Delta\|B\|^2 - \frac{1}{n}\|B\|^4 + c_3.
$$

This is the point where regularity theory is better in the pseudo-Riemannian setting than the Riemannian one (note the negative coefficient of the highest power of $\|B\|$, that holds in the pseudo-Riemannian case and not in the Riemannian case). From the above inequality we may use a result of Ecker and Huisken [6] to conclude that $\|B\|^2$ is uniformly bounded. From this inequality we may apply an interpolation formula due to Hamilton and applying parabolic maximum principles we conclude $\|\nabla^k B\|^2$ is uniformly bounded for all k.

For each t it is defined on \bar{M} a Riemannian metric $\bar{g}_t = \bar{g}_{\|P_t\|} - \bar{g}_{\|P_t\|}$ that makes e_i, e_α an orthonormal basis. These metrics defined along the flow are uniformly equivalent to the natural Riemannian metric $\bar{g}^+ = g_1 + g_2$ of $\bar{M} = \Sigma_1 \times \Sigma_2$.

for we have some positive constants $c(\delta)$ and $c'(\delta)$, depending only on δ, such that $c(\delta)\bar{g}_+ \leq \bar{g} \leq c'(\delta)\bar{g}_+$ holds. We observe that the Levi-Civita connections of (\bar{M}, \bar{g}_+) and of (\bar{M}, \bar{g}) are the same and $\|\bar{\nabla}B\|^2 \leq c_2 \|B\|^4 + \|\nabla B\|^2$. By induction on k we see that $\bar{\nabla}^k B$ are \bar{g} and so \bar{g}_+-uniformly bounded for all $k \geq 0$, that is all derivatives of B in \bar{M} are also bounded for the Riemannian structure. Then we can apply Schauder theory, by embedding isometrically (Σ_t, g_t) into an Euclidean space \mathbb{R}^N. The spaces $C^{k+\sigma}(\Sigma_1, \bar{M})$, $k \in \mathbb{N}$, $0 \leq \sigma < 1$ are Banach manifolds and can be seen as closed subsets of the Banach space $C^{k+\sigma}(\Sigma_1, \mathbb{R}^{N_1+N_2})$ with the Hölder norms. Equation (2) in local coordinates is of the form

$$\sum_{ij} a_{ij} \frac{\partial^2 F^a}{\partial x_i \partial x_j} - \sum_k b_k \frac{\partial F^a}{\partial x_k} = \bar{G}(x,t)^a + \frac{dF^a}{dt}$$

where $a_{ij} = g^{ij}$, $b_k = g^{ij} \Gamma_{ij}^k$, $\bar{G}(x,t)^a = (\Gamma_a^b \circ F_i) \frac{\partial F^b}{\partial x_i} \frac{\partial F^c}{\partial x_j}$. From the uniform bounds of $\bar{\nabla}^k B$ and of $\bar{\nabla}^k H$ we have that the coefficients a_{ij}, b_j are $C^{k-1+\sigma}(\Sigma_1)$-uniformly bounded, and if F_t lies on a compact set of \bar{M} then

$$\|F(\cdot,t)\|_{C^{3+\sigma}(\Sigma_1, \bar{M})} \leq c_{-1}, \quad \|F(\cdot,t)\|_{C^{2+k+\sigma}(\Sigma_1, \bar{M})} \leq c_k, \quad k \geq 0$$

for some positive constants c_t that do not depend on t. Standard use of Ascoli-Arzela’s theorem to F_t leads to the conclusion that $T = +\infty$ (by assuming $T < +\infty$ one has $F_t = F_0 + \int_0^t H$ lies in a compact set and gets an extension of the maximal solution F_t to $t = T$, what is a contradiction). We also note that the assumption of R_2 and its derivatives to be bounded is necessary to guarantee the existence of a maximal solution of the flow, as well the trick of DeTurck can also be applied in the pseudo-Riemannian case like in the Riemannian case, to reparametrize F_t in a suitable way to convert the above system in one of strictly parabolic equations (see [16] p. 17). This is necessary since the coefficients b_k also depend on the second derivatives of F_t, and so it can give a degenerated system.

Theorem 3 ([11]) *The mean curvature flow of the spacelike graph of f remains a spacelike graph of a map $f_t : \Sigma_1 \to \Sigma_2$ and exists for all time $t \geq 0$.*

Since $\int_0^{\infty} \sup_{\Sigma_1} \|H_t\|^2 dt \leq c_{12}$, then $\exists N \to +\infty$ such that $H_{Nt} \to 0$. Assuming f_t lies in a compact set of Σ_2 we obtain a subsequence F_{tn} that C^∞-converges at infinity to a map $F_\infty \in C^\infty(\Sigma_1, \bar{M})$, necessarily a spacelike graph of a map $f_\infty \in C^\infty(\Sigma_1, \Sigma_2)$, and maximal, for $H_\infty = 0$. From Bernstein theorem 2, we conclude
Theorem 4 ([11]) If Σ_2 is also compact there is a sequence $t_n \to +\infty$ such that the sequence $\Gamma_{f_{tn}}$ of the flow converges at infinity to a spacelike graph Γ_{f_∞} of a totally geodesic map f_∞, and if $\text{Ricci}_1(p) > 0$ at some point $p \in \Sigma_1$, the sequence converges to a slice.

Finally we consider the case $\text{Ricci}_1 > 0$ everywhere. In this case we will see that we can drop the compactness assumption of Σ_2. From (3)

$$\frac{d}{dt} \ln(\cosh \theta) \leq \Delta \ln(\cosh \theta) - c_{15} \sum_i \lambda_i^2,$$

what implies $\frac{d}{dt} \ln(\cosh \theta) \leq \Delta \ln(\cosh \theta) - c_{15} \left(1 - \frac{1}{\cosh^2 \theta}\right)$, and consequently,

$$\begin{cases} 1 \leq \max_{\Sigma_1} \cosh \theta \leq 1 + c_{16}e^{-2c_{15}t} \\
\lambda_i^2(p,t) \leq \frac{c_{16}e^{-2c_{15}t}}{(1 + c_{16}e^{-2c_{15}t})} \leq c_{16}e^{-2c_{15}t} =: (1 - \delta(t)) \end{cases} \tag{5}$$

that is, we have for each t a constant $\delta(t)$ explicitly defined, and that approaches one in an exponentially decreasing way, and

$$\frac{d}{dt} \cosh \theta \leq \Delta \cosh \theta - \delta(t) \cosh \theta \|B\|^2.$$

Setting $p(t) = \frac{1}{\sqrt{c_{16}}} e^{c_{15}t}$ and $\psi = e^{\frac{1}{2}c_{15}t} \cosh^{p(t)} \theta \|B\|^2$, we have

$$\frac{d}{dt} \psi \leq \Delta \psi - 2 \cosh^{-p} \theta \nabla \cosh^p \theta \nabla \psi - c_{17} \left\{ e^{\frac{1}{2}c_{15}t} \psi^2 - e^{\frac{1}{4}c_{15}t} \psi^\frac{3}{2} - \psi \right\}.$$

In [11] we show this implies $\|B\| \leq c_{18} e^{-\tau t}$, where τ is a positive constant. Since $F_t = F_0 + \int_0^t H$ and the mean curvature is exponentially decreasing we can conclude that $F_t(p)$ lies on a compact region of M, and for any sequence $t_N \to +\infty$ we obtain a subsequence t_n such that F_{t_n} converges uniformly to a spacelike graph of a map f_∞. By (5) this map must be constant. Furthermore, in this case the limit is the same, for any sequence $t_N \to +\infty$ we take. This gives the next theorem, obtained with no need of using Bernstein results:

Theorem 5 ([11]) If $\text{Ricci}_1 > 0$ everywhere and $K_1 \geq K_2$, Σ_2 not necessarily compact, all the flow converges to a unique slice.
4 Homotopy to a constant map

We will give some applications of theorem 5. We assume in this section \(\Sigma_1 \) is closed and \(\Sigma_2 \) is complete with \(R_2 \) bounded and its derivatives. We also assume either \(K_1 > 0 \) everywhere, or \(\text{Ricci}_1 > 0 \) and \(K_2 \leq -c < 0 \) everywhere.

Given a constant \(\rho > 0 \) we consider a new metric \(g_1 - g_2' \) on \(\Sigma_1 \times \Sigma_2 \) where \(g_2' = \rho^{-1} g_2 \). Now if \(f : \Sigma_1 \rightarrow \Sigma_2 \) satisfies \(f^* g_2 < \rho g_1 \), means \(\Gamma_f \) is a timelike submanifold w.r.t. \(g_1 - g_2' \). Then the curvature conditions in theorem 5 demands \(K_1 \geq \rho K_2 \), that can be translated in the following

Theorem 6 ([11]) There exist a constant \(0 \leq \rho \leq +\infty \), such that any map \(f : \Sigma_1 \rightarrow \Sigma_2 \) satisfying \(f^* g_2 < \rho g_1 \) is homotopically trivial. If \(K_1 > 0 \) everywhere we may take \(\rho \leq \min_{\Sigma_1} K_1 / \sup_{\Sigma_2} K_2^+ \). For \(K_2 \leq -c \) everywhere, we may take \(\rho = +\infty \).

Note that, for \(\text{Ricci} > 0, K_2 \leq -c < 0 \) everywhere, then \(\rho \geq \max_{\Sigma_1} K_1^- / \inf_{\Sigma_2} K_2 \), where \(K^- = \max\{-K, 0\} \). This means we may take \(\rho = +\infty \) if \(K_2 \leq -c \) as in case \(\sup_{\Sigma_2} K_2^+ = 0 \) and \(K_1 > 0 \). This is the case \(n = 1 \). The homotopy is given by the flow, namely, since \(F_t(p) = (\phi_t(p), f_t(\phi_t(p))) \), where \(\phi : \Sigma_1 \rightarrow \Sigma_1 \) is a diffeomorphism with \(\phi_0 = \text{id}_{\Sigma_1} \), then \(K(t, p) = f_t(\phi_t(p)) \) is the homotopy. This gives a new proof of the classic Cartan-Hadmard theorem:

Corollary 1 If \(K_2 \leq 0, m \geq 2, \) any map \(f : S^m \rightarrow \Sigma_2 \) is homotopically trivial.

The condition given in [14], \(det(g_1 + f^* g_2) < 2 \) implies \(\sum_i \lambda_i^2 + 1 \leq \prod_i (1 + \lambda_i^2) < 2 \) and so \(\Gamma_f \) is a spacelike submanifold. The next theorem, obtained in the Riemannian setting, can be seen as a reformulated corollary of theorem 5:

Theorem 7 ([14, 13]) Assume both \(\Sigma_i \) are closed and with constant sectional curvature \(K_i \) and satisfying \(K_1 \geq |K_2|, K_1 + K_2 > 0 \).

1. If \(det(g_1 + f^* g_2) < 2 \), then \(\Gamma_f \) can be deformed by a family of graphs to the one of a constant map.

2. If \(f \) is an area decreasing map, that is \(\lambda_1 \lambda_j < 1 \) for \(i \neq j \), then it is homotopically trivial.

The area decreasing condition is a slightly more general condition than spacelike graph for \(n \geq 2 \). In case \(n = 1 \) any map is area decreasing, but it is included in the case \(K_2 \leq 0 \). We note that in the previous theorem it is used the Riemannian structure, and in this setting \(K_2 \) cannot be given arbitrarily negative, a somehow artificial condition, that can be dropped if one uses the pseudo-Riemannian structure of the product.
Acknowledgements

The first author is partially supported by NSFC (No.10501011) and by Fundação Ciência e Tecnologia (FCT) through a FCT fellowship SFRH/BPD/26554/2006. The second author is partially supported by FCT through the Plurianual of CFIF and POCI-PPCDT/MAT/60671/2004.

References

[1] A. Albujer A. and L. Alías, Calabi-Bernstein results for maximal surfaces in Lorentz product spaces. arXiv:math/0709.4363, 2007

[2] E. Calabi, Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15(1970), 223–230.

[3] S. Cheng and S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28(1975), 333–354.

[4] J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian geometry. North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.

[5] S.S. Chern, Simple proofs of two theorems on minimal surfaces. Enseignement Math. II. Sér 15 (1969), 53-61.

[6] K. Ecker and G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm. Math. Phys. 135 (1991), no. 3, 595–613.

[7] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109–160.

[8] M. Gromov, Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986.

[9] J. Jost and Y. Xin, Some aspects of the global geometry of entire spacelike submanifolds. Results math. 40(2001), 233–245.
[10] G. Li and I.M.C. Salavessa, Graphic Bernstein results in curved pseudo-
Riemannian manifolds. Arxiv.0801.3850.

[11] G. Li and I.M.C. Salavessa, Mean curvature flow of spacelike graphs.
Arxiv.0804.0783.

[12] I.M.C. Salavessa, Spacelike graphs with parallel mean curvature. Bull. Bel.
Math. Soc. 15 (2008), 65-76.

[13] M-P. Tsui, and M-T. Wang, Mean curvature flows and isotopy of maps be-
tween spheres. Comm. Pure Appl. Math. 57 (2004), no. 8, 1110–1126.

[14] M-T. Wang, Long-time existence and convergence of graphic mean curva-
ture flow in arbitrary codimension. Invent. Math. 148 (2002), no. 3, 525-543.

[15] Y. Xin, Mean curvature flow with convex Gauss image. Chin. Ann. Math.
Ser. B 29 (2008), no. 2, 121–134.

[16] X-P. Zhu, Lectures on mean curvature flows. AMS/IP Studies in advanced
mathematics, 32, American Mathematical Society, Providence, RI; Interna-
tional Press (2002).