The Effects of TCA Cycle Mutations on the Virulence of Vibrio Aguillarum Strains M93SM and NB10SM

Edward Spinard

University of Rhode Island, edward_spinard@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Recommended Citation

Spinard, Edward, "The Effects of TCA Cycle Mutations on the Virulence of Vibrio Aguillarum Strains M93SM and NB10SM" (2017). Open Access Dissertations. Paper 638.
https://digitalcommons.uri.edu/oa_diss/638

This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
THE EFFECTS OF TCA CYCLE MUTATIONS ON THE VIRULENCE OF VIBRIO
ANGUILLARUM STRAINS M93SM AND NB10SM.

By

EDWARD SPINARD

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
CELL AND MOLECULAR BIOLOGY

UNIVERSITY OF RHODE ISLAND
DOCTOR OF PHILOSOPHY DISSERTATION

OF

EDWARD SPINARD

APPROVED:

Dissertation Committee:

Major Professor David R. Nelson

Marta Gomez-Chiarri

Ying Zhang

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2017
ABSTRACT

Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans. Mortality rates range from 30% to 100% and systemic infection usually causes fish to die within 1-4 days of initial infection. The primary routes of infections are through the skin, gills and intestines. Chemotactic motility and the metalloprotease EmpA have been shown to be important virulence factors during the invasion stage while the siderophore anguibactin, flagellin subunits and lipopolysaccharides were shown to be important for persistence in the host during the post-invasion stage. Three secreted proteins that are cytotoxic against epithelial cells and erythrocytes have been characterized in _V. anguillarum_: the HlyA homolog Vah1, the phospholipase Plp, and the MARTX toxin RtxA. Previous research has demonstrated that mutations in _vah1_ and/or _plp_ resulted in slight attenuation against juvenile Atlantic salmon (_Salmo salar_); however, _rtxA_ mutants were avirulent. Expression of the cytotoxins are under control of the transcriptional activator HlyU and the repressor H-NS. Additionally, a _V. anguillarum hns_ mutant showed attenuation in virulence when injected intraperitoneally, suggesting that proper coordination of gene expression is an important factor during the post-invasion stage.

In manuscript I “Isocitrate dehydrogenase mutation in _Vibrio anguillarum_ results in virulence attenuation and immunoprotection in rainbow trout (_Oncorhynchus mykiss_)”, seven central metabolism mutants were created in the M93Sm strain and characterized with regard to growth in minimal and complex media, expression of virulence genes and virulence in juvenile rainbow trout. Only the isocitrate dehydrogenase (_icd_) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal
injection or immersion. Further, the *icd* mutant was shown to be immunoprotective against wild type *V. anguillarum* experimental challenge. The *icd* mutant did not demonstrate a significant decrease in the expression of the three hemolysin genes was detected by qRT-PCR. Only the *icd* mutant exhibited a significantly decreased growth yield in complex media that was directly related to the amount of glutamate. A strain with a restored wild type *icd* gene was created and shown to restore growth to a wild type cell density in complex and minimal media and pathogenicity in rainbow trout. The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate derivatives (glutamate and glutamine), caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease may be dependent upon the availability of host-supplied nutrients for growth.

In manuscript II “Characterization of the growth and virulence of a *Vibrio anguillarum* citrate synthase mutant”, the role of glutamate auxotrophy during *V. anguillarum* M93Sm infection was further characterized. A citrate synthase (*gltA*) deletion mutant was created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout. The Δ*gltA* mutant exhibited a decreased final cell density when grown in LB20 that resulted from the exhaustion of glutamate from the media. There was no significant decrease in the expression of the three hemolysin genes by the Δ*gltA* mutant when detected by qRT-PCR or mortality during challenge experiments. A Δ*gltA* mutant capable of growing in minimal media was isolated and shown to have a spontaneous mutation in the transcriptional activator of 2-methylcitrate synthase (*prpR*). This mutation
resulted in an increase in expression of 2-methylcitrate synthase (prpC). The ΔgltA prpR(R66L) mutant was characterized with regard to growth in complex media and exhibited a growth advantage compared to the ΔgltA mutant after 24 h in spleen extract medium. Further, after growing 120 h in spleen extract medium, colonies of ΔgltA mutants were shown to be capable of growing in minimal media. ΔprpC and a ΔgltA ΔprpC mutants were created and characterized with regard to growth in minimal and complex media and virulence in juvenile rainbow trout. The ΔgltA ΔprpC mutant had no growth advantage in spleen extract medium compared to the ΔgltA but was still as virulent as the wild type against rainbow trout. As expected, the ΔprpC mutant was similar to the wild type in regards to both growth in minimal and complex media and virulence against rainbow trout. The data strongly suggests that simple starvation for α-ketoglutarate derivatives (glutamate and glutamine) is not directly linked to attenuation of virulence as previously proposed. Additionally, spontaneous mutations can occur that compensate for the original gene deletion if the new mutation can replace or bypass the lost metabolic reaction and results in a growth advantage.

In manuscript III “Characterization of Vibrio anguillarum NB10Sm TCA cycle mutants” the role of central metabolism in virulence was examine in the O1 serotype strain of V. anguillarum NB10Sm. A V. anguillarum NB10Sm icd mutant was created, characterized for growth in complex media and demonstrated to be as virulent as the wild type in juvenile rainbow trout. Several additional central metabolism single and double mutants were created in the following genes cra, gltA, Δicd gltA, sucA, sucC, sdhC, ΔfrdA, ΔfrdA sdhC, and fumA and characterized with regard to growth in complex media. Two mutants (ΔsucA and ΔfrdA ΔsdhC) that demonstrated a significantly reduced growth
yield compared to the wild type were further characterized with regard to their growth in several forms of complex media, expression of virulence genes, and virulence in juvenile rainbow trout. The data strongly suggest that there is no correlation between a lower growth yield \textit{in vitro} and a decrease in virulence \textit{in vivo}. Even though M93Sm and NB10Sm are same species, mutations made in the same TCA cycle genes can cause drastically difference results in regards to growth and virulence.
ACKNOWLEDGEMENT

I would like to thank my parents for their unconditional love and support. I have persevered hard times and accomplished goals that I otherwise would have not thought possible without your encouragement. You both instilled an useful stubbornness and slight neuroticism that has allowed me to excel in both graduate school and life. I would also like to thank the rest of my family for being there every step of the way. A large part of my success in grad school is owed to my advisor Dr. Nelson. Thank you for being patient through my mistakes, encouraging my creativity and keeping me on track through any backwards and frustrating bureaucratic process. Dr. Nelson’s guidance, edits, and rewrites turned a formally daunting process into a small anthill. I would like to specially thank my committee (Dr. Zhang, Dr. Marta-Gomez, Dr. Rowley) for your help molding my thesis, assembling genomes, and supplying various pieces of equipment for East Farm. Thank you to the members of the probiotics group (labs of Dr. Marta-Gomez and Dr. Rowley) for presenting loads of interesting data. I would also like to thank the CMB professors for entertaining any random questions I had, allowing me to use their equipment and their thought-provoking questions during our Friday seminars. Thank you to the students of CMB and former/current Nelson lab members (Xiangyu, Wenjing, Ken, Mike, Alla, Linda, Jason, Chris and Jackie) for all their help, especially in experimental design, data analysis, borrowing media, and lending/giving me markers. Last but not least I would like to thank all my friends (Sean, Dave, Ralph, RJ, Paul, Joe Jake, Karissa, Liz, & Eric) for keeping me sane through this process.
PREFACE

This dissertation has been prepared in the Manuscript format according to the guidelines of the Graduate School of the University of Rhode Island. The first manuscript “Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss)” was submitted to BMC Microbiology July 31st 2017 and is under revision. The second manuscript “Characterization of the growth and virulence of a Vibrio anguillarum citrate synthase mutant” and the third manuscript “Characterization of Vibrio anguillarum NB10Sm TCA cycle mutants” will be submitted for publication to BMC Microbiology. The first appendix “Draft genome of the marine pathogen Vibrio coralliilyticus RE22” was published Dec 3rd 2015 in Genome Announcements. The second appendix “Draft genome sequence of the emerging bivalve pathogen Vibrio tubiashii subsp. europaeus” was published July 28th 2016 in Genome Announcements.
TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. vi

PREFACE ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

MANUSCRIPT I ... 1

ISOCITRATE DEHYDROGENASE MUTATION IN VIBRIO ANGUILLARUM RESULTS IN VIRULENCE ATTENUATION AND IMMUNOPROTECTION IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

MANUSCRIPT II .. 54

CHARACTERIZATION OF THE GROWTH AND VIRULENCE OF A VIBRIO ANGUILLARUM CITRATE SYNTHASE MUTANT

MANUSCRIPT III .. 96

CHARACTERIZATION OF VIBRIO ANGUILLARUM NB10SM TCA CYCLE MUTANTS

APPENDICES

DRAFT GENOME OF THE MARINE PATHOGEN VIBRIO CORALLIILYTICUS RE22 .. 153

DRAFT GENOME SEQUENCE OF THE EMERGING BIVALVE PATHOGEN VIBRIO TUBIASHII SUBSP. EUROPAEUS .. 160
LIST OF TABLES

MANUSCRIPT I

Table 1. Bacterial strains and plasmids used in this study.................................21
Table 2. Primers used in this study...22
Table 3. Metabolism genes examined in this study...23
Table 4. Generation times of various V. anguillarum strains grown in LB20.........24
Table 5. Final cell density of various V. anguillarum cultures grown for 24 h.........25

MANUSCRIPT II

Table 1. Bacterial strains and plasmids used in this study.................................71
Table 2. Primers used in this study...72
Table 3. Virulence of V. anguillarum strains in juvenile rainbow trout...............73
Table 4. Final CFU/ml of various V. anguillarum cultures grown for 24 h...........74
Table 5. Virulence of V. anguillarum strains in juvenile rainbow trout...............75

MANUSCRIPT III

Table 1. Bacterial strains and plasmids used in this study.................................116
Table 2. Primers used in this study...117
Table 3. Generation times of various V. anguillarum strains grown in LB20.........118
Table 4. Virulence of V. anguillarum strains in juvenile rainbow trout...............119
Table 5. Generation times of various V. anguillarum strains grown in LB20.........120
Table 6. Final cell density of various V. anguillarum cultures grown for 24 h........121
Table 7. Virulence of V. anguillarum strains in juvenile rainbow trout...............122
Table 8. Comparison of all mutant V. anguillarum strains.................................123
LIST OF FIGURES

MANUSCRIPT I

Figure 1. Embden-Meyerhoff-Parnas Pathway, TCA cycle, and metabolism of fructose...26

Figure 2. Percent survival of rainbow trout IP injected with V. anguillarum wild type and various mutant strains at a dosage of A) 2×10^5 CFU/fish and B) 4×10^5 CFU/fish...........28

Figure 3. Percent survival of rainbow trout infected by immersion with V. anguillarum strains M93Sm or XM420 at a dose of 4×10^6 CFU/ml............................30

Figure 4. Percent survival of immersion vaccinated rainbow trout.........................32

Figure 5. Relative expression of vah1, plp, rtxA determined by qRT-PCR analysis of V. anguillarum wild type and various TCA mutants during logarithmic (Log)-phase growth...34

Figure 6. Growth curves of various V. anguillarum strains grown in LB20 at 27°C with shaking..36

Figure 7. Growth of V. anguillarum WT and the icd mutant under various conditions. A) Final cell densities of V. anguillarum strains after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 5.9 mM glutamate. B) Growth curves of V. anguillarum M93Sm and the icd mutant in LB20 or LB20 supplemented with 118 mM glutamate. C) Final cell densities of V. anguillarum M93Sm and icd mutant strains grown in LB20 supplemented with decreasing amounts of glutamate38

Figure 8. Percent survival of rainbow trout immersed with various V. anguillarum strains at a dosage of 4×10^6 to 7×10^6 CFU/ml..40
Supplemental Figure 1. Growth curves of *V. anguillarum* strains M93Sm, the *icd* mutant and the restored *icd* strain grown in A) 3M plus 0.15% glucose and B) LB20...42

Supplemental Figure 2. Hemolytic activity of various *V. anguillarum* strains grown on fish blood agar. ...44

Supplemental Figure 3. Final cell densities of *V. anguillarum* WT and the *icd* mutant after 24 h of growth in LB20 supplemented with or without 118 mM glucose and 118 mM succinate...46

MANUSCRIPT II

Figure 1. Growth of *V. anguillarum* WT and the *gltA* mutant. A) in LB20 or LB20 supplemented with 118 mM glutamate solid lines. B) Final cell densities of *V. anguillarum* strains after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 5.9 mM glutamate...76

Figure 2. Expression of *vah1*, *rtxA*, and *plp* determined by qRT-PCR analysis of *V. anguillarum* wild type and the *gltA* mutant during logarithmic-phase growth..78

Figure 3. Growth curves of various *V. anguillarum* strains grown in 3M plus 0.15% glucose at 27°C with shaking..80

Figure 4. Expression of *prpC* determined by qRT-PCR analysis of *V. anguillarum* wild type, the *gltA* mutant and the *gltA* mutant with the spontaneous mutation in *prpR*(R66L) during logarithmic-phase growth..82

Figure 5. Growth curves of various *V. anguillarum* strains grown in in NSS plus spleen extract at 27°C with shaking..84
Figure 6. Growth curves of various *V. anguillarum* strains grown in various conditions at 27°C with shaking. A) Final cell densities of *V. anguillarum* strains after 24 h of growth in LB20. B) Growth curves of various *V. anguillarum* strains grown in 3M plus 0.15% glucose at 27°C with shaking. C) Growth curves of various *V. anguillarum* strains grown in spleen extract medium at 27°C with shaking.

MANUSCRIPT III

Figure 1. Embden-Meyerhoff-Parnas Pathway, TCA cycle, and metabolism of fructose.

Figure 2. Growth of *V. anguillarum* WT and the *icd* mutant A) in LB20. B) Final cell densities of *V. anguillarum* strains NB10Sm and the *icd* mutant after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 2 mM glutamate or 2 mM glutamine.

Figure 3. Growth curves of *V. anguillarum* NB10Sm and the *icd* mutant in LB20 or LB20 supplemented with 101.7 mM gluconate. B) Growth curves of *V. anguillarum* NB10Sm and the *icd* mutant in LB20 or LB20 supplemented with 118 mM glutamate.

Figure 4. Growth curves of various *V. anguillarum* strains grown in LB20 at 27°C with shaking.

Figure 5. Growth various *V. anguillarum* strains grown in LB20 under various conditions at 27°C with shaking (200 rpm). A) Growth curve of various *V. anguillarum* strains. B) Examination of the 24 h time point from Figure 5A.

Figure 6. Growth of *V. anguillarum* WT the ΔsucA mutant and the ΔfrdA ΔsdhC mutant after A) 24 h or 48 h of growth in LB20. B) Final cell densities of *V. anguillarum* strains NB10Sm and the ΔfrdA ΔsdhC mutant after growth for 24 h in LB20 with or without the
addition of either succinic acid, gluconate acid, malate acid, or aspartate acid. C) Final cell densities of *V.anguillarum* strains NB10Sm and the ΔsucA mutant after 24 growth in LB20 with or without the addition of either lysine or DL-α,ε-Diaminopimelic acid..134

Figure 7. mRNA expression levels of various genes. A) Expression of *vah1, plp, rtxA* determined by qRT-PCR analysis of *V.anguillarum* wild type, the ΔsucA mutant and the ΔfrdA ΔsdhC mutant during logarithmic-phase growth. B) Expression of *empA* determined by qRT-PCR analysis of *V.anguillarum* wild-type, the ΔsucA mutant and the ΔfrdA ΔsdhC mutant during stationary phase-phase growth..136

Supplemental Figure 1. Cell density determined by viable count vs. OD_{600} of *V.anguillarum* NB10Sm..138

Supplemental Figure 2. Graphical representation of the CUO region and flanking genes in the genomes of *V.anguillarum* A) NB10 and B) M93Sm...140

Supplemental Figure 3. Graphical representation of a suicide vector inserting into the sucA gene..142

Supplemental Figure 4. Growth curves of *V.anguillarum* M93Sm, NB10Sm and their derived icd mutant strains grown in LB20...144
Isocitrate dehydrogenase mutation in *Vibrio anguillarum* results in virulence attenuation and immunoprotection in rainbow trout (*Oncorhynchus mykiss*)

Authors: Xiangyu Mou¹, Edward J. Spinard, Shelby L. Hillman, David R. Nelson*

Affiliation: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA

Corresponding Author: David R. Nelson; email: dnelson@uri.edu

E-mail:

Xiangyu Mou: mouxiangyu@gmail.com

Edward J. Spinard: edward_spinard@my.uri.edu

Shelby L. Hillman: shelbyhillman@yahoo.com

David R. Nelson: dnelson@uri.edu

¹Current address: Xiangyu Mou, Division of Infectious Diseases, Massachusetts General Hospital, 65 Landsdowne St, Cambridge, MA 02139
Abstract

Background: *Vibrio anguillarum* is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as *V. anguillarum*.

Results: Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (*Oncorhynchus mykiss*). Only the isocitrate dehydrogenase (*icd*) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the *icd* mutant was shown to be immunoprotective against wild type *V. anguillarum* infection. There was no significant decrease in the expression of the three hemolysin genes was detected by qRT-PCR. Additionally, only the *icd* mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type *icd* gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout.

Conclusions: The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth.
Additionally, a live vaccine strain could be created from an icd deletion strain.

Keywords: Vibrio anguillarum, TCA cycle, vibriosis, isocitrate dehydrogenase, virulence, hemolysin
Background

The aquaculture industry now produces half of all fish intended for human consumption and employs millions of people worldwide [1]. Although the first value sale of harvested fish has increased by 267% between 2004 and 2014 to over US$160 billion, infectious diseases, especially those caused by Vibrio spp. including Vibrio anguillarum, still represent a major impediment to the production of fish [1]. V. anguillarum causes diseases in crustaceans and bivalves, and is the leading causative agent of vibriosis in finfish including salmon, rainbow trout, turbot, sea bass, sea bream, cod, eel, and ayu [2]. Infections by this bacterial species have resulted in severe economic losses to aquaculture industries worldwide [3].

V. anguillarum is an extracellular pathogen that invades its host fish through the intestine, skin or gills [4, 5]. Systemic infection by V. anguillarum usually causes fish to die within 1-4 days [6-9]. Chemotactic motility and the metalloprotease EmpA have been shown to be important virulence factors during the invasion stage while the siderophore anguibactin, flagellin subunits and lipopolysaccharides were shown to be important for persistence in the host during the post-invasion stage [2, 10]. Three secreted proteins that are cytotoxic against epithelial cells and erythrocytes have been characterized in V. anguillarum: the HlyA homolog Vah1, the phospholipase Plp, and the MARTX toxin RtxA [7, 9, 11]. Mutations in vah1 and/or plp resulted in slight attenuation against juvenile Atlantic salmon (Salmo salar); however, rtxA mutants were avirulent [11, 7, 9]. Additionally, a V. anguillarum mutant that lacks H-NS, a global transcriptional regulator that represses the transcription of vah1, plp, and rtxA, showed attenuation in virulence
when injected intraperitoneally, suggesting that proper coordination of gene expression is an important factor during the post-invasion stage [8].

Since the 1980s, several bacterial species that are auxotrophic for aromatic compounds have been shown to be avirulent [12-16]. More recently, mutants that are hypothesized to experience growth defects in the nutrient limited environment inside a phagocyte have been characterized. In *Salmonella enterica*, an intracellular bacterial pathogen, some tricarboxylic acid (TCA) cycle mutant strains were avirulent and immunoprotective for subsequent wild-type *S. enterica* infection [17-21]. A functional fructose repressor (Cra) was also required for *S. enterica* infection [22]. Similar results have been observed for central metabolism mutants in other intracellular pathogens such as uropathogenic *Escherichia coli* (UPEC), *Mycobacterium tuberculosis*, and the facultative intracellular fish pathogen *Edwardsiella ictaluri* [23-27]. These observations demonstrate that central metabolism is important for pathogenesis by intracellular pathogens.

Accordingly, we hypothesized that mutations in central metabolism could interrupt the infection process of *V. anguillarum* in juvenile rainbow trout (*Oncorhynchus mykiss*). In this study, we identified and created six TCA cycle mutant strains plus one fructose metabolism mutant strain, and tested their virulence against juvenile rainbow trout using two infection methods, intraperitoneal (IP) injection and immersion. Further, the expression of each of the three hemolysin genes (*vah1*, *plp*, and *rtxA*) was examined to determine whether attenuation resulted from decreased virulence factor expression in these mutants. The growth rates and yield of each mutant strain in complex media were also determined. We specifically characterized the growth defect of the attenuated *icd*
mutant. We also created, tested, and compared a restored wild type icd strain for virulence and growth to both the wild type and the icd mutant.

Methods

Bacterial strains, plasmids and growth conditions. *V. anguillarum* strains (Table 1) were routinely grown in Lysogeny broth containing 2% NaCl (LB20) [28] or Marine Minimum Median (3M) + 0.15% glucose [29], supplemented with the appropriate antibiotic, in a shaking water bath at 27°C. *E. coli* strains (Table 1) were routinely grown in Lysogeny broth containing 1% NaCl (LB10) supplemented with the appropriate antibiotic, in a shaking water bath at 37°C. Antibiotics were used at the following concentrations: streptomycin, 200 μg/ml (Sm^{200}); chloramphenicol, 20 μg/ml (Cm^{20}) for *E. coli* and 5 μg/ml (Cm^{5}) for *V. anguillarum*; kanamycin, 50 μg/ml (Km^{50}) for *E. coli* and 80 μg/ml (Km^{80}) for *V. anguillarum*.

Identification of genes in *V. anguillarum*. *V. anguillarum* M93Sm draft genome (accession number NOWD00000000) was annotated by the RAST (Rapid Annotation using Subsystem Technology) service (http://rast.nmpdr.org/rast.cgi) using the default settings [30]. The following annotated genomes were downloaded from NCBI: *V. anguillarum* 775 (accession numbers: NC_015633.1 and NC_015637.1), 96F (accession number: NZ_AEZA00000000.1), M3 (accession numbers: NC_022223.1, NC_022224.1 and NC_022225.1), NB10 (accession numbers: NZ_LK021130.1, NZ_LK021129.1 and NZ_LK021128.1), RV22 (accession number: AEZB00000000.1) and 90-11-286 (accession numbers: NZ_CP011460.1 and NZ_CP011461.1)

Insertional mutagenesis. Insertional mutations were made by using a modification of the procedure described by Milton *et al.* [31]. Briefly, primers (Table 2) were designed based
on the target gene sequence of M93Sm. An internal 200-300 bp DNA fragment of the first third of the target gene was PCR amplified and ligated into the suicide vector pNQ705-1 (Table 1) after digestion with SacI and XbaI. The ligation mixture was introduced into *E. coli* SM10 by electroporation using a BioRad Gene Pulser II (BioRad, Hercules, CA). Transformants were selected on LB10 Cm20 agar plates. The construction of the recombinant pNQ705 was confirmed by both PCR amplification and restriction enzyme analysis. The mobilizable suicide vector was transferred from *E. coli* SM10 into *V. anguillarum* by conjugation [32]. Transconjugants were selected by utilizing the chloramphenicol resistance gene located on the suicide plasmid. The incorporation of the recombinant pNQ705 was confirmed by PCR amplification.

Fish infection experiments. Various *V. anguillarum* strains were tested for virulence against rainbow trout (*O. mykiss*) by intraperitoneal (IP) injection or immersion. Briefly, *V. anguillarum* cells grown for 19 h at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (9,000 × g, 5 min, 4°C), washed twice in NSS, and resuspended in NSS. Aliquots (100 µl) of the *V. anguillarum* NSS suspension were used to determine the OD600. The *V. anguillarum* NSS suspension was prepared to the desired specific cell density according to the conversion equation as determined by experimentation (data not shown): Cell density (10⁸ CFU/ml) = 44.905 × OD600. The actual cell density of the suspension was confirmed by dilution and viable plate count. All fish were examined and determined to be disease and injury free prior to the start of each experiment. For IP injection, fish were anesthetized by tricaine methanesulfonate (Western Chemical, Ferndale, WA), (100 mg/l for induction and 52.5 mg/l for maintenance). *V. anguillarum* strains were IP injected into fish that were
between 15 and 25 cm long in a 100 μl NSS vehicle at a dose of either 2 × 10^5 or 4 × 10^5 CFU/fish, or with NSS only as a negative control. For immersion, 10 ml of V. anguillarum suspended in NSS, or 10 ml of NSS only as a negative control was added to a bucket filled with 10 L of water supplemented with 1.5% NaCl that was maintained at 18 ± 1°C. Fish that were between 15 and 25 cm long were added and immersed for 1 h. For both methods, fish inoculated with different bacterial strains were maintained in separate 10-gallon (38 L) tanks to prevent possible cross-contamination with constant water flow (200 ml/min) at 18 ± 1°C. Death due to vibriosis was determined by the observation of gross clinical symptoms and confirmed by the recovery and isolation of V. anguillarum cells resistant to the appropriate antibiotics from the spleen or head kidney of dead fish. Observations were made for 8-14 days. All fish used in this research project were obtained from the URI East Farm Aquaculture Center. All fish infection protocols were approved by the URI IACUC. (IACUC Protocol AN06-08-002).

RNA isolation. Exponential phase cells (~0.5 × 10^8 CFU/ml) of various V. anguillarum strains were treated with RNAprotect Bacteria Reagent (QIAGEN), following the manufacturer’s instructions. Total RNA was isolated using the RNeasy kit and QIAcube (QIAGEN) following the instructions of the manufacturer. All purified RNA samples were quantified spectrophotometrically by measuring absorption at 260 nm and 280 nm using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) and overall quality was assessed by gel electrophoresis. Samples were stored at -75°C for future use.

Real-time quantitative RT-PCR (qRT-PCR). qRT-PCR was used to quantify various mRNAs using an LightCycler® 480 Real-Time PCR System (Hoffmann-La Roche Inc.) and the Brilliant II SYBR Green Single-Step QRT-PCR Master Mix (Agilent
Technologies), with 10 ng of total RNA in 20 µl reaction mixtures. The thermal profile was 50°C for 30 min, 95°C for 15 min, and then 40 cycles of 95°C for 30 s and 55°C for 30 s. Fluorescence was measured at the end of the 55°C stage of each cycle. Samples were run in triplicate along with the no-reverse-transcriptase control and the no-template control. All experiments were repeated at least twice.

Growth experiments. To cultivate bacteria for growth experiments, *V. anguillarum* cells grown overnight at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (9,000 × g, 2 min), washed twice and resuspended in in NSS. A 200 µl aliquot of the *V. anguillarum* NSS suspension was transferred into a 96-well plate with a clear flat bottom and the optical density at 600 nm (OD$_{600}$) was read by a VersaMax™ Absorbance Microplate Reader (Molecular Devices). The *V. anguillarum* NSS suspension was prepared to an OD$_{600}$ of 0.420 (~4 × 107 CFU/ml) and diluted 1:100 into fresh media. Growth was monitored either by measurement of the OD$_{600}$ or by serial dilution and plate counts.

Resolving the merodiploid in the icd mutant. *V. anguillarum icd* mutant cells grown in LB20 supplemented with appropriate antibiotics for 19 h at 27°C were harvested by centrifugation (9,000 × g, 2 min), washed three times in NSS, and resuspended in NSS. Cell suspensions (100 µl) were spread onto Marine Minimum Median (3M) + 0.15% glucose agar. Well-isolated colonies were picked and subsequently streak purified onto a new 3M + 0.15% glucose agar. Isolated colonies were then transferred to LB20-Cm5 agar to screen for chloramphenicol sensitivity. Resolution of the merodiploid was confirmed by PCR amplification.
Statistical analysis. A Kaplan-Meier survival analysis with log rank significance test was performed on the survival curves in the fish infection experiment. Student's T-tests assuming unequal variances were used for experiments containing two data groups. One-way ANOVA with Tukey post hoc test was performed for all other experiments. \(P \) values of <0.05 were considered statistically significant.

Results

Identification and mutant construction of TCA cycle genes in *V. anguillarum.* In order to identify gene targets for mutagenesis the published genomes of *V. anguillarum* strains 775, 96F, M3, NB10, RV22, 90-11-286 and the *V. anguillarum* M93Sm draft genome (unpublished data) annotated by RAST were examined and found to have the following TCA cycle genes/operons: gltA, acnB, icd, sucAB, sucCD, sdhCDAB, frdABCD, fumA, and mdh (Fig. 1 and Table 3). While this set of genes allows for a fully functional TCA cycle, none of the strains have a *fumC* gene, which encodes the aerobic fumarate class II hydratase. All strains also lack the anaerobic fumarate hydratase (*fumB*) gene. Additionally, all strains possessed *cra*, which encodes the repressor of fructose metabolism in *S. enterica* [22]. The *V. anguillarum* M93Sm sequences for the icd, sucA, sucC, sdhC, fumA, mdh, and cra genes were used to create insertional mutations in *V. anguillarum* M93Sm. The seven mutant strains and the one restored strain listed in Table 1 were constructed using the primers listed in Table 2 as described in the Methods.

icd mutant is highly attenuated for virulence against rainbow trout. The virulence of the seven *V. anguillarum* metabolism mutants were tested on rainbow trout and compared to wild type M93Sm in order to determine if mutations in metabolism could affect pathogenesis. Groups of five fish were infected by IP-injection (as described in the
Methods) with either the wild type (M93Sm), *icd* mutant (XM420), *sucA* mutant (XM440), *sucC* mutant (XM450), *sdhC* mutant (XM460), *fumA* mutant (XM470), *mdh* mutant (XM410) or *cra* mutant (XM430) in NSS at a dosage of ~2×10^5 CFU per fish. Injection with NSS only served as a negative control (Mock). During the 14-day observation window, 40% of M93Sm infected fish survived. Fish infected with the *sucA* mutant, *sdhC* mutant or *icd* mutant had a higher survival percentage than M93Sm (50% for *sucA* mutant, 80% for *sdhC* mutant, and 100% for *icd* mutant); however, only the difference between the *icd* mutant and M93Sm was statistically significant (*p* = 0.037) (Fig 2A). The experiment was repeated using a two-fold higher dose (~4×10^5 CFU per fish) of M93Sm and the three mutant strains (*icd* mutant, *sucA* mutant and *sdhC* mutant) that exhibited attenuated virulence in the previous experiment. At this dose, only 20% of M93Sm-infected fish survived. Only the *icd* mutant-infected fish had a statistically significant higher survival percentage (100%) compared to M93Sm (*p* = 0.0153) (Fig 2B). The data indicate the *icd* mutant is avirulent in these experimental conditions.

Further, we tested the virulence of M93Sm and the *icd* mutant by another infection route. Groups of 10 fish were infected by immersion as described in the Methods with M93Sm or *icd* mutant in 1.5% salt solution at a dose of ~4×10^6 CFU/ml, or just immersed in a 1.5% salt solution without *V. anguillarum* as a negative control (Mock). During the 14-day observation window, there was a statistically significant difference (*p* = 0.007) between the survival of M93Sm infected fish (30%) and *icd* mutant infected fish (90%) (Fig. 3). Taken together, the IP infection data and the immersion infection data demonstrate that the *icd* mutant is highly attenuated for infection in rainbow trout.
Pre-treatment by immersion with the icd mutant protected rainbow trout from the subsequent challenge of *V. anguillarum* M93Sm. Fish previously challenged by immersion with the icd mutant were subsequently challenged with the wild type M93Sm strain to test if the icd mutant was immunogenic. Six weeks after the initial infection, a group of five fish that survived the initial infection with the icd mutant (labeled as “treated with the icd mutant” in Fig. 4) and a group of five “untreated” fish were infected via immersion with M93Sm at a dose of ~4×10^6 CFU/ml and were observed for 14 days. By day 2 all fish in the untreated group died. All fish in the group treated with the icd mutant survived the 14-day observation period. The difference between the two experimental groups was statistically significant (*p* = 0.008). The results indicate that the icd mutant is immunogenic and protective against wild type infection when administered by immersion.

All mutants exhibited either same or higher expression levels of the three hemolysin genes compared to wild type. Vah1, RtxA, and Plp are the three hemolysins found in M93Sm and are responsible for the hemolytic/cytolytic activity against fish erythrocytes, leukocyte and epithelial cells [11, 7, 9] and unpublished data]. We tested the expression of *vah1*, *rtxA* and *plp* during exponential phase to determine whether mutations in metabolism could affect the expression of these hemolysin genes. Data indicate that in all mutants except the icd mutant, expression of *vah1* and *plp* were up regulated by 1.49-16.15-fold compared to M93Sm with most of the changes being significant (Fig. 5). In the icd mutant, expression of *plp* was up regulated by 1.76-fold while the expression of *vah1* was slightly decreased (to 49% of WT), neither of which was a significant change from M93Sm (Fig. 5). Plp is the most efficient hemolysin against fish erythrocytes [11].
TCA cycle mutants with an increased expression of \textit{plp} also demonstrated an increased zone of hemolysis on 5\% fish blood agar plates (Fig. S2). There was no change in the zone of hemolysis for the \textit{icd} mutant. Expression of \textit{rtxA} in all mutants was not significantly different from M93Sm (Fig. 5). Taken together, all metabolism mutants have the same or higher expression levels of hemolysin genes compared to the wild type.

\textit{icd} mutant exhibited significant lower cell density limit than wild type in two forms of rich media. Fig. 6 shows the typical growth curves for the wild type \textit{V. anguillarum} M93Sm and the seven metabolism mutants in LB20 broth. In these growth conditions, M93Sm, the \textit{icd} mutant, and the \textit{cra} mutant exhibited classic bacterial growth curves with a lag phase, an exponential phase and a stationary phase. The \textit{sucA}, \textit{sucC}, \textit{sdhC}, \textit{fumA} and \textit{mdh} mutants all exhibited a two-stage growth curve, with each stage consisting of a lag phase and an exponential phase. The exponential phase in the first growth stage was named exponential phase I and the exponential phase in the second growth stage was named exponential phase II. The generation times of the exponential phases of all mutants were longer than for M93Sm (Table 4). The final cell density (measured by \textit{OD}_{600}) of the \textit{icd} mutant after 23 h was the lowest among all strains. Similarly, after 24 h of growth in LB20 the final cell density (CFU/ml) of the \textit{icd} mutant was 47\% that of M93Sm (Table 5) and the difference is significant ($p = 0.011$). M93Sm and the \textit{icd} mutant were grown in NSS supplemented with 200 \textmu g protein/ml of fish gastrointestinal mucus (NSSM) to better replicate conditions within a host. After 24 h of growth in NSSM the final cell density of the \textit{icd} mutant was only \sim31\% of that for M93Sm (Table 5) and the difference is significant ($p = 0.007$).

\textbf{Growth in LB20 supplemented with 118 mM glutamate restores growth of the \textit{icd}}
mutant to wild type levels. The *icd* mutant is unable convert isocitrate into α-ketoglutarate, the immediate precursor of glutamate. Consequently, the *icd* mutant was only able to grow in 3M + 0.15% glucose with the addition of glutamate (Fig. 7A). Glutamate was added to LB20 to determine if the *icd* mutant final cell density would increase. Fig. 7B shows the typical growth curves of M93Sm and the *icd* mutant in LB20 with (solid lines) and without (dashed lines) the addition of 118 mM of glutamate. After 24 h, M93Sm and the *icd* mutant grew to similar final cell densities when LB20 was supplemented with 118 mM glutamate. Additionally, Fig. 7C demonstrate that decreasing the amount of glutamate (from 118 mM to 2.95 mM) added to LB20 decreases the final cell density of the *icd* mutant, but not M93Sm, after 24 h of growth. The final cell density of the *icd* mutant was not restored to a wild type level when LB20 was supplemented with glucose, succinate (Fig. S3) or gluconate (Fig. 7C).

Resolving the merodiploid in the *icd* mutant restores growth and pathogenicity. A revertant to the wild type *icd* gene was selected to demonstrate that the *icd* mutant (XM420, a merodiploid with an insertion in the *icd* gene) contained no additional mutations that could be causing the loss of pathogenicity and decreased cell density. Initially, attempts were made to complement the *icd* mutant in trans by cloning *icd* and its native promoter into the pSUP203 vector; however, all pSUP203-*icd* vectors isolated from *E. coli* SM10 contained single nucleotide substitutions that resulted in amino acid changes in *icd* that inactivated isocitrate dehydrogenase (data not shown). Since the *icd* mutant is unable to grow on 3M + glucose, *icd* mutants that spontaneously resolved the merodiploid were isolated on 3M + glucose agar plates as described in the Methods. The reversion rate of the *icd* mutant to a wild type phenotype grown in LB20 overnight was
calculated to be 1 out of 1.6×10^{10} cells. Fig. S1 shows the typical growth curves for M93Sm, the *icl* mutant and the restored *icl* strain in LB20 and 3M + 0.15% glucose. M93Sm and the restored *icl* strain were able to grow in 3M + 0.15% glucose unlike the *icl* mutant (Fig S1A). Additionally, when the strains were grown in LB20 the final cell density returned to wild type levels when *icl* was restored (Fig. S1B). To determine if restoring *icl* restores pathogenicity, juvenile rainbow trout were challenged via immersion with M93Sm, the *icl* mutant and the restored *icl* strain at a dose of between 4×10^6 and 8×10^6 CFU/ml. After day 8, 26% (5/19) of the M93Sm challenged fish, 40% (6/15) of the restored *icl* challenged fish and 95% (19/20) of the *icl* mutant challenged fish survived (Fig. 8). There was no statistically significant difference between M93Sm and the restored *icl* strain ($P = 0.50$). Again, there was a statistically significant difference between M93Sm and the *icl* mutant ($p < 0.00004$). The results indicate that when the merodiploid present in the *icl* mutant is resolved, wild type levels of growth in 3M + 0.15% glucose and LB20 and pathogenicity against juvenile rainbow trout is returned.

Discussion

The tricarboxylic acid (TCA) cycle is involved in the generation of energy through the oxidation of acetate. TCA intermediates serve as precursor metabolites for the synthesis of amino acids and peptidoglycan. The M93Sm genome along with the published genomes of *V. anguillarum* strains 775, 96F, M3, NB10, RV22, 90-11-286 were examined for TCA cycle enzymes and the following genes were found: *gltA, acnB, icd, sucAB, sucCD, sdhCDAB, frdABCD, fuma*, and *mdh* (Fig. 1 and Table 3). Additionally, *cra*, which encodes the repressor of fructose metabolism in *S. enterica* and
E. coli and has previously been shown to be essential for S. enterica virulence, is present in the V. anguillarum genomes [22].

When in a nutrient limited environment, bacteria must be able to synthesize any essential metabolites that are not freely available in order to grow. Previous studies have shown that mutations in central metabolism genes result in attenuation of virulence in several intracellular pathogens including S. enterica, uropathogenic E. coli (UPEC), M. tuberculosis and E. ictaluri [19, 21, 26, 23-25, 17, 18]. These observations suggest that central metabolism is necessary for these intracellular pathogens to function inside the nutrient-limited environment of the phagosome; however, V. anguillarum is not an intracellular pathogen. While some studies have suggested that V. anguillarum can survive internally in fish epithelial cells and CHSE cells (derived from pooled embryonic cells from Oncorhynchus tshawytscha), more recent studies have demonstrated that V. anguillarum actively evades phagocytosis by fish epithelial cells and cannot survive for 24 h in macrophages [33-36]. In this study, fish were infected with V. anguillarum strains by either of two methods: intraperitoneal injection or immersion with both methods resulting in a similar percent survival when fish were challenged with M93Sm (20% for injection, see Fig 2A and 2B; 0%-30% for immersion, see Fig. 3). Only the icd mutant had a statistically significant higher level of survival compared to the wild type, 100% for IP injection (Fig 2A and 2B) and 90% for immersion (Fig. 3). It is not thought that reversion of the merodiploid to a wild type phenotype caused the other metabolism mutants to be virulent because Cm resistant colonies were isolated from the organs of dead fish. IP injection bypasses the need for invasion. No mortalities resulted from IP injection with the icd mutant indicating that icd is required for V. anguillarum persistence
and growth in fish tissues. Rainbow trout infected with the icd mutant via immersion and subsequently challenged with the M93Sm wild type showed 100% survival (Fig. 4) demonstrating that the icd mutant had immunoprotective effects and elicited an adaptive immune response. Moreover, as a proof of concept, the data suggest that an icd deletion mutant could be the basis for a live attenuated vaccine against V. anguillarum infection.

Our observation that a knockout of the icd gene results in attenuation of virulence raises the question of whether expression of required virulence genes is significantly reduced in the mutant and, therefore, results in attenuation. We previously identified and characterized three hemolysin/cytolysin genes and their encoded proteins secreted by V. anguillarum: plp, vah1 and rtxA [11, 7, 9]. While mutations in plp and vah1 have modest effects on virulence against fish epithelial cells and fish, a knockout mutation in rtxA is avirulent in fish [11, 7, 9]. All metabolism mutants exhibited no significant declines in the expression of three hemolysins (Fig. 5) and most of the mutants exhibited increased expression. Accordingly, the icd mutant is not attenuated by the lack of hemolysin production because the decrease in rtxA and vah1 expression was not significant; however, future studies could examine the expression of other virulence factors. It is unclear why expression of plp and vah1 is increased in the metabolism mutants. Minato et al [37] demonstrated the accumulation of acetyl-CoA in Vibrio cholerae central metabolism mutants resulted in an increased expression of its virulence gene activator ToxT. It is possible that accumulation or depletion of certain metabolites in V. anguillarum could increase hemolysin/cytolysin expression. Expression of hlyU, the positive regulator of the both the vah1 plp gene cluster and the rtxA gene cluster, was examined and shown to be up-regulated in the sucA and mdh mutants (data not shown).
However, the increased expression of *hlyU* may not be the sole explanation for the increased expression of *plp* and *vah1* because an increase in expression of *rtxA* should have also occurred.

The growth rate and final cell density was determined for all metabolism mutants grown in LB20 for 24 h. The slowest growing mutant, *fumA*, was as virulent as the wild type while the mutant with the lowest final cell density, *icd*, was attenuated suggesting that decreased final cell density results in a loss of pathogenicity against rainbow trout (Fig. 2, Fig. 6, Table 4 and Table 5). When the mutation in *icd* was resolved, the restored *icd* strain demonstrated the wild type phenotype for both growth and pathogenicity (Fig. S1A and B and Fig. 8). While it is possible that the insertional mutation affected the expression of the two genes flanking *icd* (ribosomal large subunit pseudouridine synthase E (Accession number: WP_017043910.1) and cold shock domain protein CspD (Accession number: WP_013857087.1)), it is unlikely as neither gene is part of an operon that includes *icd*. Since isocitrate dehydrogenase catalyzes the formation of α-ketoglutarate (the immediate precursor of glutamate) from isocitrate, the *icd* mutant is auxotrophic for glutamate (Fig. 7A). Our data demonstrate that the *icd* mutant stops growing once exogenous glutamate or its derivatives are exhausted (Fig. 7B and Fig. 7C). The data also demonstrate the decreased growth yield was not do to a reduction of ATP production as addition of gluconate or succinate did not restore growth to a wild type cell density. It is interesting that the only other auxotrophic mutant, *sucA*, grows to a wild type cell density in LB20 and is as virulent as the wild type considering it cannot synthesize succinyl-CoA, a metabolite needed for the synthesis of lysine, methionine and diaminopimelic acid. Presumably, succinyl-CoA or its derivatives are not limiting in
LB20 or in fish tissues. Furthermore, this also suggests that the icd mutant is primarily starved for glutamate and would not need to synthesize succinyl-CoA by metabolizing glutamate to α-ketoglutarate. We hypothesize that during infection the icd mutant is unable to obtain enough α-ketoglutarate derivatives to grow to a wild type cell density and, therefore, cannot reach a cell density necessary for a successful systemic infection. In support, it has previously been demonstrated that a *V. anguillarum* M93Sm *mugA* mutant that was unable to grow in salmon intestinal mucus was avirulent against Atlantic salmon [39]. Additionally, when *V. anguillarum* 775 was cured of its plasmid-encoded siderophore, the mutant was unable to sequester iron and exhibited decreased virulence [40, 41].

M93Sm is an O2α serotype and the presumed infection route is through the gastrointestinal tract as no necrotic skin lesions have ever been observed with this strain (unpublished data). The *in vitro* growth experiment (Table 5) suggests that there are not enough α-ketoglutarate derivatives in intestinal mucus to support the growth of the icd mutant to a wild type cell density even though it is the metabolite with the second highest concentration (3.03 mM) in rainbow trout mucus [42]. It should be noted that for *in vitro* growth experiments the concentrations of glutamate and glutamine in the mucus are not known and the growth conditions represent an ideal environment for growth; *V. anguillarum* does not have to evade the fish immune system or compete with commensal bacteria and it is not expected that the icd mutant will grow to the cell density shown in the *in vitro* growth experiments in the fish. As demonstrated by Muroga *et al.*, [43] *V. anguillarum* found in the spleen and intestine of moribund fish challenged via immersion only reached a cell density of 4.0×10^8 CFU/g and 2.5×10^7 CFU/g respectively. Altinok *et
al [44] showed a *V. anguillarum* succinate dehydrogenase mutant was avirulent against rainbow trout when injected at a dose at 10^5 CFU. Similar to our results, the authors showed that the succinate dehydrogenase mutant grew to a cell density slightly lower than the wild type at 12 h; however, the authors failed to show the growth yield at 24 h. Further, the authors did not create a complement strain to demonstrate that the loss of virulence was solely due to mutating *sdhB*. Most importantly, the ATCC has redesignated their strain as a *Pseudomonas* species.

Conclusions

Seven *V. anguillarum* metabolism mutants were created and examined for pathogenicity against juvenile rainbow trout, hemolysin/cytolysin expression and growth in rich media. Of the central metabolism mutants, only the *icd* mutant showed strong attenuation in virulence, which did not result from a decrease in virulence factor expression. In addition, only the *icd* mutant had a final cell density that was lower than the wild type, which resulted from the inability to synthesize α-ketoglutarate and downstream metabolites. Taken together, the data suggest that during infection, if *V. anguillarum* is unable to synthesize essential molecules (e.g. α-ketoglutarate/2-oxoglutarate) and when those molecules or their derivatives (e.g. glutamate, glutamine) become limiting in the host, *V. anguillarum* will be unable to grow to a density necessary to sustain a systemic infection of the host.
Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid	Description	Reference	
V. anguillarum strains			
M93Sm	Spontaneous Sm^r mutant of M93 (serotype O2a)	[45]	
XM420	Sm^r Cm^r; icd insertional mutant	This study	
ES422	Sm^r; Restored icd strain	This study	
XM440	Sm^r Cm^r; sucA insertional mutant	This study	
XM450	Sm^r Cm^r; sucC insertional mutant	This study	
XM460	Sm^r Cm^r; sdhC insertional mutant	This study	
XM470	Sm^r Cm^r; fumA insertional mutant	This study	
XM410	Sm^r Cm^r; mdh insertional mutant	This study	
XM430	Sm^r Cm^r; cra insertional mutant	This study	
E. coli strains			
Sm10	*thi thr leu tonA lacY supE recA* RP4-2-Tc::Mu::Km_(λ pir)	[46]	
S100	Km^r; Sm10 containing plasmid pNQ705-1	[47]	
Q420	Km^r Cm^r; Sm10 containing plasmid pNQ705-icd	This study	
Q440	Km^r Cm^r; Sm10 containing plasmid pNQ705-sucA	This study	
Q450	Km^r Cm^r; Sm10 containing plasmid pNQ705-sucC	This study	
Q460	Km^r Cm^r; Sm10 containing plasmid pNQ705-sdhC	This study	
Q470	Km^r Cm^r; Sm10 containing plasmid pNQ705-fumA	This study	
Q410	Km^r Cm^r; Sm10 containing plasmid pNQ705-mdh	This study	
Q430	Km^r Cm^r; Sm10 containing plasmid pNQ705-cra	This study	
Plasmid			
pNQ705-1	Cm^r; suicide vector with R6K origin	[47]	
pNQ705-icd	Cm^r; For icd insertional mutant	This study	
pNQ705-sucA	Cm^r; For sucA insertional mutant	This study	
pNQ705-sucC	Cm^r; For sucC insertional mutant	This study	
pNQ705-sdhC	Cm^r; For sdhC insertional mutant	This study	
pNQ705-fumA	Cm^r; For fumA insertional mutant	This study	
pNQ705-mdh	Cm^r; For mdh insertional mutant	This study	
pNQ705-cra	Cm^r; For cra insertional mutant	This study	
Primer	Sequence (5' to 3', underlined sequences are designed restriction sites)	Description	Reference
--------	---	-------------	-----------
pr31	GGTGAGCTCTTTTATT GCGATTATC	For icd insertional mutant, forward, SacI	This study
	AAATCTAGAGTAAGTCGTT TAATCGGTTC	For icd insertional mutant, reverse, XbaI	This study
pr50	AAAGAGCTCGTACCCGATA TGTCGATGCTA	For sucA insertional mutant, forward, SacI	This study
pr51	GGTTCTAGAGTTTCAGTGTC GATAATGTGA	For sucA insertional mutant, reverse, XbaI	This study
pr52	AAAGAGCTCGTACCCGATA GTACAGCGAA	For sucC insertional mutant, forward, SacI	This study
pr53	GGTTCTAGACTTTTTCAATT TCCACGCGCA	For sucC insertional mutant, reverse, XbaI	This study
pr54	AAAGAGCTCATGTTTCGTTGC GGTGGAATTT	For sdhC insertional mutant, forward, SacI	This study
pr55	GGTTGAGCTCTCCTTTGACC ATATTGATATG	For sdhC insertional mutant, reverse, XbaI	This study
pr56	GGGTCTAGAGGTATGGAACCCGATC	For fumA insertional mutant, forward, SacI	This study
pr57	GGGTCTAGAGGTATGGAACCCGATC	For fumA insertional mutant, reverse, XbaI	This study
pr29	GGTGAGGCTGCTAGCCAGGTGACA TCAATTTAAG	For mdh insertional mutant, forward, SacI	This study
pr30	AAATCTAGAGCTGTAGCA TCAGCACCCTGT	For mdh insertional mutant, reverse, XbaI	This study
pr33	AAAGAGCTCGTACCCGATA TGTCGATGCTA	For cra insertional mutant, forward, SacI	This study
pr34	AAATCTAGACAAATGGCAACAGTCA	For cra insertional mutant, reverse, XbaI	This study
vah1 F	GTTTGATTAGGAACACCGGC TCAAG	For vah1 qRT-PCR, forward	This study
vah1 R	GGCTCAACCTCTCCTGTGAA CCAA	For vah1 qRT-PCR, reverse	This study
plp F	CAGACGCCACCATGAGTAACC ACTAA	For plp qRT-PCR, forward	[8]
plp R	GCAATCATGATGACCCCGAC AACAG	For plp qRT-PCR, reverse	[8]
Pm111	GGAAATTTCCGCGCCAG ATGGA	For rtxA qRT-PCR, forward	[7]
Pm112	GCCGATACCGTATCGTTGCTGAA	For rtxA qRT-PCR, reverse	[7]
Table 3. Metabolism genes examined in this study

Gene or operon	Product	Present in sequenced V. anguillarum strains a
gltA	Type II citrate synthase	Yes
acnB	Aconitate hydratase B	Yes
icd	Isocitrate dehydrogenase	Yes
sucAB	2-oxoglutarate dehydrogenase (E1 component, E2 component)	Yes
sucCD	Succinyl-CoA synthetase (beta subunit, alpha subunit)	Yes
sdhCDAB	Succinate dehydrogenase (cytochrome b556 subunit, membrane anchor subunit, flavoprotein subunit, iron-sulfur protein)	Yes
frdABCD	Fumarate reductase (flavoprotein subunit, iron-sulfur subunit, anchor subunit, anchor subunit)	Yes
fumAC	Aerobic fumarate hydratase (class I, class II)	fumA: Yes; fumC: not found
fumB	Anaerobic fumarate hydratase (class I)	Not found
mdh	Malate dehydrogenase	Yes
cra	Fructose repressor protein	Yes

a V. anguillarum strains: M93Sm 775, 96F, M3, NB10, RV22, 90-11-286
Table 4. Generation times of various *V. anguillarum* strains grown in LB20

Strain	Exponential Phase I (Minutes)	Exponential Phase II (Minutes)
M93Sm	44.00	NA
icd	54.95	NA
sucA	64.32	98.52
sucC	52.42	99.57
sdhC	61.19	101.70
fumA	73.55	89.38
mdh	67.11	115.28
cra	58.59	NA

\(^1\)Values calculated from data presented in Figure 6 during exponential growth. NA: not applicable
Table 5. Final cell density (CFU/ml) of various *V. anguillarum* cultures grown for 24 h

Strain	CFU/ml in LB20	CFU/ml in NSSM (200 µg/ml)
M93Sm	3.4×10^9 (±0.3×10^9)	4.2×10^9 (±0.7×10^9)
icd	1.6×10^9 (±0.02×10^9)*	1.3×10^9 (±0.3×10^9)*

*Statistically significant difference compared to M93Sm ($p < 0.05$).
Figure Legends

Figure 1. Embden-Meyerhoff-Parnas Pathway, TCA cycle, and metabolism of fructose. The arrows indicate the physiological directions of the reactions. The gene symbols of the enzyme for each reaction are listed beside the reaction. Boxed genes indicate the genes that were mutated in this study (Table 1).
Figure 2. Percent survival of rainbow trout IP injected with *V. anguillarum* wild type (M93Sm) and various mutant strains at a dosage of **A)** 2×10^5 CFU/fish and **B)** 4×10^5 CFU/fish. Negative control groups of fish (Mock) were injected with sterile NSS. Five fish were used for each treatment. (One fish treated with the *sucA* mutant died, but not from vibriosis and no *V. anguillarum* were recovered, so only four fish were counted).

*Statistically significant difference compared to M93Sm ($p < 0.05$).
Figure 3. Percent survival of rainbow trout infected by immersion with *V. anguillarum* strains M93Sm (wild type) or XM420 (*icd*) at a dose of 4×10^6 CFU/ml. A negative control group of fish (Mock) were immersed in sterile NSS. Ten fish were used for each treatment. *Statistically significant difference compared to M93Sm ($p < 0.05$).
Figure 4. Percent survival of immersion vaccinated rainbow trout. Rainbow trout were sham vaccinated with NSS (labeled as “untreated”) or immersed vaccinated with the icd mutant (Labeled as “treated with icd”) and challenged with wild type *V. anguillarum* M93Sm (4×10^6 CFU/ml). Five fish were used for each treatment. *Statistically significant difference compared to M93Sm (p <0.05).*
Figure 5. Relative expression of *vah1*, *plp*, *rtxA* determined by qRT-PCR analysis of *V. anguillarum* wild-type (M93Sm) and various TCA mutants during logarithmic (Log)-phase growth. The data presented are representative of two independent experiments. Each value is the average for three replicates. Between marked strains and M93Sm: * $p < 0.05$ and *** $p < 0.001$. Error bars represent 1 standard deviation.
Figure 6. Growth curves of various *V. anguillarum* strains grown in LB20 at 27°C with shaking (200 rpm). At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are from one representative experiment.
Figure 7. Growth of *V. anguillarum* WT (M93Sm) and the *icl* mutant under various conditions. A) Final cell densities (OD$_{600}$) of *V. anguillarum* strains after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 5.9 mM glutamate. B) Growth curves of *V. anguillarum* M93Sm (black) and the *icl* mutant (blue) in LB20 (dashed lines) or LB20 supplemented with 118 mM glutamate (solid lines). Statistical analysis was based on data at 24 h. C) Final cell densities (OD$_{600}$) of *V. anguillarum* M93Sm and *icl* mutant strains grown in LB20 supplemented with decreasing amounts of glutamate. In each experiment cells grown overnight in LB20 were washed in NSS and used to inoculate the appropriate media. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). Different letters indicate statistical significance among groups ($p < 0.05$). Error bars represent 1 standard deviation.
A

B

C

unsupplemented 5.9 mM glutamate
Figure 8. Percent survival of rainbow trout immersed with various *V. anguillarum* strains at a dosage of 4×10^6 to 7×10^6 CFU/ml. Five fish were used for the uninfected (mock) group. Fifteen fish were treated with the restored *icd* strain. Nineteen fish were treated with M93Sm and twenty fish were treated with the *icd* mutant. *Statistically significant difference compared to M93Sm ($p < 0.01$).
Supplemental Figure 1. Growth curves of *V. anguillarum* strains M93Sm (WT), the *icd* mutant and the restored *icd* strain grown in A) 3M + 0.15% glucose and B) LB20. In each experiment cells grown overnight in LB20 at 27°C were washed in NSS and used to inoculate the appropriate media. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various times after inoculation, samples were taken for determination of optical density at 600 nm (OD$_{600}$). Different letters indicate statistical significance among groups ($p < 0.05$). Statistical analysis was based on data of stationary phase (>12 h).
Supplemental Figure 2. Hemolytic activity of various *V. anguillarum* strains grown on fish blood agar. Colonies grown overnight on LB20 plates were tooth picked onto LB20 + 5% trout blood agar plates. The diameter of the zones of hemolysis were measured after 7 h and 23 h of growth at 27°C. Between marked strains and M93Sm: * *p < 0.05 and **p < 0.01. Error bars represent 1 standard deviation.
Zone of Hemolysis (mm)

- M93sm
- icd
- sucA
- sucC
- sdhC
- fumA
- mdh
- cra

** * *

Time (h)
7
23

Zone of Hemolysis (mm)
Supplemental Figure 3. Final cell densities (OD$_{600}$) of *V. anguillarum* WT (M93Sm) and the *icd* mutant after 24 h of growth in LB20 supplemented with or without 118 mM glucose and 118 mM succinate. Error bars represent 1 standard deviation.
OD_{600}

- M93Sm
- icd

- unsupplemented
- 118 mM succinate
- 118 mM glucose

47
References

1. FAO. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome: FAO. p. 200.

2. Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. *Vibrio anguillarum* as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34(9):643-61. doi:10.1111/j.1365-2761.2011.01279.x.

3. Austin B, Austin DA. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. 5th ed. New York, NY: Springer; 2012

4. O'Toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H. Visualisation of zebrafish infection by GFP-labelled *Vibrio anguillarum*. Microbial Pathog. 2004;37(1):41-6. doi:10.1016/j.micpath.2004.03.001.

5. Spanggaard B, Huber I, Nielsen J, Nielsen T, Gram L. Proliferation and location of *Vibrio anguillarum* during infection of rainbow trout, *Oncorhynchus mykiss* (Walbaum). J Fish Dis. 2000;23(6):423-7. doi:DOI 10.1046/j.1365-2761.2000.00257.x.

6. Denkin SM, Nelson DR. Regulation of *Vibrio anguillarum* empA metalloprotease expression and its role in virulence. Appl Environ Microbiol. 2004;70(7):4193-204. doi:10.1128/AEM.70.7.4193-4204.2004.

7. Li L, Rock JL, Nelson DR. Identification and characterization of a repeat-in-toxin gene cluster in *Vibrio anguillarum*. Infect Immun. 2008;76(6):2620-32. doi:10.1128/IAI.01308-07.

8. Mou X, Spinard EJ, Driscoll MV, Zhao W, Nelson DR. H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in *Vibrio anguillarum*. Infect Immun. 2013;81(10):3566-76. doi:10.1128/IAI.00506-13.

9. Rock JL, Nelson DR. Identification and characterization of a hemolysin gene cluster in *Vibrio anguillarum*. Infect Immun. 2006;74(5):2777-86. doi:10.1128/IAI.74.5.2777-2786.2006.
10. Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen *Vibrio anguillarum* harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of *V. anguillarum* and *V. ordalii*. Infect Immun. 2011;79(7):2889-900. doi:10.1128/IAI.05138-11.

11. Li L, Mou X, Nelson DR. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of *Vibrio anguillarum*. BMC Microbiol. 2013;13:271. doi:10.1186/1471-2180-13-271.

12. Hoiseth SK, Stocker BAD. Aromatic-Dependent *Salmonella*-Typhimurium Are Non-Virulent and Effective as Live Vaccines. Nature. 1981;291(5812):238-9. doi:10.1038/291238a0.

13. Bowe F, Ogaora P, Maskell D, Cafferkey M, Dougan G. Virulence, Persistence, and Immunogenicity of *Yersinia enterocolitica* O:8 aroA Mutants. Infect Immun. 1989;57(10):3234-6.

14. Roberts M, Maskell D, Novotny P, Dougan G. Construction and Characterization *in vivo* of *Bordetella pertussis* aroA Mutants. Infect Immun. 1990;58(3):732-9.

15. Homchampa P, Strugnell RA, Adler B. Molecular Analysis of the AroA Gene of *Pasteurella multocida* and Vaccine Potential of a Constructed AroA Mutant. Mol Microbiol. 1992;6(23):3585-93. doi:10.1111/j.1365-2958.1992.tb01794.x.

16. Lawrence ML, Cooper RK, Thune RL. Attenuation, persistence, and vaccine potential of an *Edwardsiella ictaluri* purA mutant. Infect Immun. 1997;65(11):4642-51.

17. Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T, Cohen PS. A *Salmonella enterica* serovar typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice. Infect Immun. 2008;76(3):1128-34. doi:10.1128/IAI.01226-07.

18. Mercado-Lubo R, Leatham MP, Conway T, Cohen PS. *Salmonella enterica* serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice. Infect Immun. 2009;77(4):1397-405. doi:10.1128/IAI.01335-08.
19. Utley M, Franklin DP, Krogfelt KA, Laux DC, Cohen PS. A *Salmonella* typhimurium mutant unable to utilize fatty acids and citrate is avirulent and immunogenic in mice. FEMS Microbiol Lett. 1998;163(2):129-34.

20. Yimga MT, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS. Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of *Salmonella enterica* serovar Typhimurium in BALB/c mice. Infect Immun. 2006;74(2):1130-40. doi:10.1128/Iai.74.2.1130-1140.2006.

21. Valentine PJ, Devore BP, Heffron F. Identification of three highly attenuated *Salmonella* typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect Immun. 1998;66(7):3378-83.

22. Allen JH, Utley M, van Den Bosch H, Nuijten P, Witvliet M, McCormick BA et al. A functional cra gene is required for *Salmonella enterica* serovar typhimurium virulence in BALB/c mice. Infect Immun. 2000;68(6):3772-5.

23. Dahal N, Abdelhamed H, Karsi A, Lawrence ML. Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of *Edwardsiella ictaluri*. Vaccine. 2014;32(31):3971-6. doi:10.1016/j.vaccine.2014.05.016.

24. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. Tricarboxylic acid cycle and one-carbon metabolism pathways are important in *Edwardsiella ictaluri* virulence. Plos One. 2013;8(6):e65973. doi:10.1371/J.pone.0065973.

25. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on *Edwardsiella ictaluri* pathogenesis. Vet Microbiol. 2014;169(1-2):107-12. doi:10.1016/j.vetmic.2013.12.006.

26. Alteri CJ, Smith SN, Mobley HL. Fitness of *Escherichia coli* during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 2009;5(5):e1000448. doi:10.1371/J.ppat.1000448.
27. VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C et al. Novel inhibitors of cholesterol degradation in *Mycobacterium tuberculosis* reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog. 2015;11(2):e1004679. doi:10.1371/J.ppat.1004679.

28. Vaatanen P. Microbiological studies in coastal waters of the Northern Baltic Sea. I. Distribution and abundance of bacteria and yeasts in the Tvarminne area. Walter Andre Nottback Found Sci Rep. 1976;1:1-58.

29. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol. 1974;119(3):736-47.

30. Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75.

31. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of *Vibrio anguillarum*. J Bacteriol. 1996;178(5):1310-9.

32. Varina M, Denkin SM, Staroscik AM, Nelson DR. Identification and characterization of Epp, the secreted processing protease for the *Vibrio anguillarum* EmpA metalloprotease. J Bacteriol. 2008;190(20):6589-97. doi:10.1128/JB.00535-08.

33. Ormonde P, Horstedt P, O'Toole R, Milton DL. Role of motility in adherence to and invasion of a fish cell line by *Vibrio anguillarum*. J Bacteriol. 2000;182(8):2326-8.

34. Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fallman M, Milton DL. Lipopolysaccharide O-antigen prevents phagocytosis of *Vibrio anguillarum* by rainbow trout (*Oncorhynchus mykiss*) skin epithelial cells. Plos One. 2012;7(5):e37678. doi:10.1371/J.pone.0037678.

35. Larsen MH, Boesen HT. Role of flagellum and chemotactic motility of *Vibrio anguillarum* for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett. 2001;203(2):149-52.
36. Wang XH, Oon HL, Ho GW, Wong WS, Lim TM, Leung KY. Internalization and cytotoxicity are important virulence mechanisms in Vibrio-fish epithelial cell interactions. Microbiol. 1998;144 (Pt 11):2987-3002. doi:10.1099/00221287-144-11-2987.

37. Minato Y, Fassio SR, Wolfe AJ, Hase CC. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiol. 2013;159(Pt 4):792-802. doi:10.1099/mic.0.064865-0.

38. Li L, Mou X, Nelson DR. HlyU is a positive regulator of hemolysin expression in Vibrio anguillarum. J Bacteriol. 2011;193(18):4779-89. doi:10.1128/JB.01033-10.

39. Nelson DR. Live, avirulent strain of V. anguillarum that protects fish against infection by virulent V. anguillarum and method of making the same. U.S. Patent 6913757 B1. July 5, 2005.

40. Crosa JH. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature. 1980;284(5756):566-8.

41. Wolf MK, Crosa JH. Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J Gen Microbiol. 1986;132(10):2949-52.

42. O'Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol. 1999;181(14):4308-17.

43. Muroga K, Delacruz MC. Fate and Location of Vibrio-Anguillarum in Tissues of Artificially Infected Ayu (Plecoglossus altivelis). Fish Pathol. 1987;22(2):99-103.

44. Altinok I, Capkin E, Karsi A. Succinate dehydrogenase mutant of Listonella anguillarum protects rainbow trout against vibriosis. Vaccine. 2015;33(42):5572-7. doi:10.1016/j.vaccine.2015.09.003.

45. Denkin SM, Nelson DR. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl Environ Microbiol. 1999;65(8):3555-60.
46. Simon R, Priefer U, Puhler A. A Broad Host Range Mobilization System for *in vivo* Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria. Bio-Technol. 1983;1(9):784-91. doi:Doi 10.1038/Nbt1183-784.

47. McGee K, Horstedt P, Milton DL. Identification and characterization of additional flagellin genes from *Vibrio anguillarum*. J Bacteriol. 1996;178(17):5188-98.
Manuscript-II

Prepare for submission to BMC Microbiology

Characterization of the growth and virulence of a *Vibrio anguillarum* citrate synthase mutant

Authors: Edward J. Spinard, David R. Nelson*

Affiliation: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA

*Corresponding Author: David R. Nelson; email: dnelson@uri.edu
Abstract

Background: *Vibrio anguillarum* is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Previously, a *V. anguillarum* M93Sm isocitrate dehydrogenase mutant auxotrophic for glutamate was demonstrated to be attenuated in virulence against juvenile rainbow trout. The inability of the mutant to synthesize essential metabolites (i.e. α-ketoglutarate and derivatives) was hypothesized to cause the attenuation. In this study, a citrate synthase mutant was created and characterized to determine if another mutant that is auxotrophic for glutamate would be attenuated.

Results: A citrate synthase (*gltA*) deletion mutant was created and characterized with regard to growth in minimal and complex media, *in vitro* expression of virulence genes, and virulence in juvenile rainbow trout (*Oncorhynchus mykiss*). The Δ*gltA* mutant exhibited a decreased final cell density that resulted from the exhaustion of glutamate from the media. There was no significant decrease in the expression of the three hemolysin genes when detected by qRT-PCR or mortality during infection experiments. A Δ*gltA* mutant capable of growing in minimal media was isolated and shown to have a spontaneous mutation in the transcriptional activator of 2-methylcitrate synthase (*prpR*). This mutation resulted in an increase in expression of 2-methylcitrate synthase (*prpC*). This Δ*gltA*Δ*prpC*(R66L) mutant exhibited a growth advantage compared to the Δ*gltA* mutant after 24 h in spleen extract medium. Further, after growing 120 h in spleen extract medium, colonies of Δ*gltA* mutants were shown to be capable of growing in minimal media. Δ*prpC* and a Δ*gltA*Δ*prpC* mutants were created and characterized with regard to growth in minimal and complex media and virulence in juvenile rainbow trout. The Δ*gltA*
ΔprpC mutant had no growth advantage in spleen extract medium compared to the ΔgltA mutant in spleen extract medium but unexpectedly, was still as virulent as the wild type against rainbow trout. The ΔprpC mutant was similar to the wild type in regards to both growth in minimal and complex media and virulence against rainbow trout.

Conclusions: The data strongly suggests that simple starvation for glutamate will not directly result in attenuation of virulence. Additionally, spontaneous mutations can occur that compensate for the original gene deletion if the new mutation can replace or bypass the lost metabolic reaction and results in a growth advantage.

Keywords: *Vibrio anguillarum*, Central metabolism, TCA cycle, vibriosis, citrate synthase, virulence

Background

Vibrio anguillarum is a causative agent of warm water vibriosis in finfish, crustaceans and bivalves. Morality rates from infection reach between 30% to 100% and result in severe economic losses to aquaculture industries worldwide [1, 2]. Typically, systemic infection causes fish to die within 1 to 4 days [3-6].

V. anguillarum is an extracellular pathogen capable of invading its host through the gills, skin and intestines [7, 8]. Numerous virulence factors that have been shown to be important during infection include extracellular proteases, hemolytic cytotoxins, iron acquisition systems (siderophores), lipopolysaccharides, chemotaxis, and flagella [9]. Three secreted hemolytic cytotoxins, exhibiting activity against multiple cell types have been characterized in *V. anguillarum*: Vah1 (HlyA homolog, encoded by vah1), phospholipase Plp (a phosphatidylcholine-specific phospholipase, encoded by plp), and the MARTX toxin RtxA (encoded by rtxA) [4, 6, 10]. Expression of the cytotoxins is
under control of the transcriptional activator HlyU and the repressor H-NS [5, 11]. Mutations in vah1 and/or plp resulted in a slight attenuation in virulence against juvenile Atlantic salmon (Salmo salar); however, rtxA mutants cannot persist in host tissues and are avirulent against juvenile Atlantic salmon challenged via intraperitoneal injection [4, 6, 10].

Several bacterial species that are auxotrophic for aromatic compounds have been shown to be avirulent [12-16]. More recently, central metabolism mutants have been shown to be attenuated in pathogenicity in the intracellular pathogens Salmonella enterica, uropathogenic Escherichia coli (UPEC), Mycobacterium tuberculosis, and Edwardsiella ictaluri, [17-27]. The specific gene mutations that cause attenuation in virulence are hypothesized to reflect the metabolic reactions necessary to grow in the nutrient limited environment of the phagosome; if the pathogens cannot utilize the available nutrients they will fail to multiply to the threshold needed to cause disease [18, 26]. Recently, a V. anguillarum M93Sm icd mutant was shown to be highly attenuated and immunoprotective in juvenile rainbow trout (Oncorhynchus mykiss) [28]. In vitro growth experiments demonstrated that the icd mutant grew to a lower cell density (~60%) than the wild type in two forms of rich media, due to limiting amounts of α-ketoglutarate derivatives (glutamate and glutamine) in the media. In this study, another TCA cycle mutant auxotrophic for glutamate was constructed by deleting the citrate synthase gene (gltA). The ΔgltA mutant was characterized for growth, hemolysin expression, and pathogenicity against juvenile rainbow trout. Additionally, a ΔgltA mutant strain containing a spontaneous mutation in the transcriptional regulator prpR capable of growing in 3M + 0.15% glucose (a medium which should be unable to support the
growth of ΔgltA mutant) was isolated and characterized for growth in multiple forms of rich media composed of fish extracts that represent different stages of the infection process. Consequently, a ΔprpC (2-methylcitrate synthase) and a ΔgltA ΔprpC mutant were created and characterized for growth in multiple forms of media and pathogenicity against juvenile rainbow trout.

Methods

Bacterial strains, plasmids, and growth conditions. *V. anguillarum* strains (Table 1) were routinely grown in Lysogeny broth containing 2% NaCl (LB20) [29], LB20 + 118 mM glutamate, Marine Minimum Median (3M) + 0.15% glucose [30], NSSM (NSS supplemented with 200µg/ml of fish intestinal mucus) or Spleen extract medium supplemented with the appropriate antibiotic, in a shaking water bath at 27°C. Spleens, extracted from previously euthanized rainbow or brook trout, were added to 1 ml of NSS, placed in an ice-bath and sonicated using Fisher Scientific Sonic Dismembrator Model 500 four times at 10% power for a continuous 10 s. Tubes were then centrifuged (6000 × g, 10 min) and the supernatant was collected and centrifuged again (9000 × g, 10 min). 1 ml aliquots of the supernatant were added to a sterile 6-well plate (CytoOne) and sterilized with ultraviolet light using a Hoefer UV500 (Time = 10 min). An aliquot of the supernatant was added to LB20 and observed for growth to ensure that the spleen extract was sterile. *E. coli* strains (Table 1) were routinely grown in Lysogeny broth containing 1% NaCl (LB10) supplemented with the appropriate antibiotic, in a shaking water bath at 37°C. Antibiotics were used at the following concentrations: streptomycin, 200 µg/ml (Sm^{200}); chloramphenicol, 20 µg/ml (Cm^{20}) for *E. coli* and 5 µg/ml (Cm^{5}) for *V. anguillarum*.
Allelic exchange mutagenesis. Deletion mutations were made by using a modification of the procedure described by Milton et al. [31]. Genes of interested were identified using the M93Sm genome (Accession Number: NOWD00000000) previously annotated by RAST [33]. Briefly, primers (Table 2) were designed based on the target gene sequence of M93Sm. A 250 or 401 bp DNA fragment of the 5’ region and the 3’ region of the target gene was PCR amplified and ligated using the Gibson assembly method into the suicide vector pDM4 (Table 1) previously digested with SphI or SacI [32]. The Gibson assembly mixture was introduced into E. coli SM10 by electroporation using a BioRad Gene Pulser II (BioRad, Hercules, CA). Transformants were selected on LB10 Cm² ag plates. The construction of the recombinant pDM4 was confirmed by PCR amplification. The mobilizable suicide vector was transferred from E. coli SM10 into V. anguillarum by conjugation. Single-crossover transconjugants were selected with LB20 Sm² Cm⁵ plates, and subsequently, double-crossover transconjugants were selected with LB20 Sm² plates containing 5% sucrose. The resulting V. anguillarum mutants were checked for the desired allelic exchange by PCR amplification using primers (Table 2) flanking the deletion.

Cell growth experiments. To cultivate cells for growth experiments, V. anguillarum cells grown overnight at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (9,000 × g, 2 min), washed twice and resuspended in in NSS. A 200 µl aliquot of the V. anguillarum NSS suspension was transferred into a 96-well plate with a clear flat bottom and the optical density at 600 nm (OD₆₀₀) was read by a VersaMax™ Absorbance Microplate Reader (Molecular Devices). The V. anguillarum NSS suspension was prepared to an OD₆₀₀ between 0.400 and 0.500
(~4 × 10⁷ CFU/ml) and diluted 1:100 into fresh media. Growth was monitored either by measurement of the OD₆₀₀ or by serial dilution and plate counts.

RNA isolation. Exponential phase cells (3.9×10⁷ to 7.3×10⁷ CFU/ml) of various *V. anguillarum* strains were treated with RNAprotect Bacteria Reagent (QIAGEN) following the manufacturer’s instructions. Total RNA was isolated using the RNeasy kit following the instructions of the manufacturer. All purified RNA samples were quantified spectrophotometrically by measuring absorption at 260 nm and 280 nm using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) and overall quality was assessed by gel electrophoresis. Samples were stored at -75°C for future use.

Real-time quantitative RT-PCR (qRT-PCR). qRT-PCR was used to quantify various mRNAs using an LightCycler® 480 Real-Time PCR System (Hoffmann-La Roche Inc.) and the Brilliant II SYBR Green Single-Step QRT-PCR Master Mix (Agilent Technologies), with 10 ng of total RNA in 20 µl reaction mixtures. The thermal profile was 50°C for 30 min, 95°C for 15 min, and then 40 cycles of 95°C for 30 s and 55°C for 30 s. Fluorescence was measured at the end of the 55°C stage of each cycle. Samples were run in triplicate along with the no-reverse-transcriptase control and the no-template control. All experiments were repeated twice.

Fish infection experiments. Various *V. anguillarum* strains were tested for virulence against rainbow trout by immersion infection. Briefly, *V. anguillarum* cells grown for 19 h at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (6,000 × g, 10 min, 4°C), washed twice in NSS, and resuspended in NSS. The *V. anguillarum* NSS suspension was prepared to the desired specific cell density according to the conversion equation: Cell density (10⁸ CFU/ml) = 44.905 × OD₆₀₀. The
actual cell density of the suspension was confirmed by dilution and viable plate count. All fish were examined and determined to be disease and injury free prior to the start of each experiment. For immersion, 10 ml of \textit{V. anguillarum} suspended in NSS, or 10 ml of NSS only as a negative control was added to a bucket filled with 10 L of water supplemented with 1.5\% NaCl that was maintained at 18.5 ± 0.5°C. Fish that were between 15 cm and 25 cm long were added and immersed for 1 h. For both methods, fish inoculated with different bacterial strains were maintained in separate 38 L or 191 L tanks to prevent possible cross-contamination with constant water flow (200 ml/min) at 19 ± 1°C. Death due to vibriosis was determined by the observation of gross clinical symptoms and confirmed by the recovery and isolation of \textit{V. anguillarum} cells resistant to the appropriate antibiotics from the spleen or head kidney of dead fish. Observations were made for 7 days. All fish used in this research project were obtained from the Lafayette Trout Hatchery located in North Kingstown, Rhode Island. All fish infection protocols were approved by the URI IACUC. (IACUC Protocol AN06-08-002).

\textbf{Statistical analysis.} Student's T-tests assuming unequal variances were used for statistical analyses for experiments containing two data groups. One-way ANOVA with repeated measures plus Tukey post hoc test was performed on bacterial growth curves. A Kaplan-Meier survival analysis with log rank significance test was performed on the survival percentage in the fish infection experiment. \(P \) values of <0.05 were considered statistically significant.

\textbf{Results}

\textit{ΔgltA} mutant exhibited significant lower cell density limit than wild type in rich media and is auxotrophic for glutamate. Fig 1A shows a typical growth curve for the
wild type (M93Sm) and the ΔgltA mutant composed of a lag phase, exponential growth phase and stationary phase grown in a rich medium (dashed lines). Like the previously described icd mutant, the gltA mutant has a lower cell density limit rich media [28]. The gltA mutant is auxotrophic for glutamate because it cannot run the first half of the oxidative TCA cycle which is needed to synthesize the immediate precursor molecule for glutamate production, α-ketoglutarate (Fig 1B). When glutamate (118 mM final concentration) was added to LB20 (solid lines), the ΔgltA mutant grew to a wild type cell density (Fig 1A).

ΔgltA mutant exhibited either same or higher expression levels of the three hemolysin genes compared to wild type. As previously described, M93Sm secretes three hemolysins, Vah1, RtxA, and Plp that are most strongly expressed during exponential phase [11]. The expression of vah1, rtxA and plp was tested by qRT-PCR during exponential phase to determine if the ΔgltA mutant would have altered expression of these hemolysin genes. While there was no statistically significant increase in expression (P values ranged from 0.08 to 0.42), the gltA mutant exhibited 1.3-fold greater rtxA expression, 1.9-fold greater plp expression and 3.7-fold greater vah1 expression compared to the wild type (Fig. 2).

ΔgltA mutant was as virulent as the wild type against juvenile rainbow trout. Ten juvenile rainbow trout were challenged via immersion at doses of 3×10^6 to 4×10^6 CFU/ml with the wild type (M93Sm) and the ΔgltA mutant. There was no significant difference in survival between M93Sm (10%) and the ΔgltA mutant (20%) ($P = 0.31$) (Table 3); however, it took three days for the ΔgltA mutant to reach 80% mortality compared to two days for 90% mortality in fish infected with M93Sm. While the data
strongly suggest that deleting gltA had a very small effect on virulence, the delay in mortalities raised the possibility that a mutation that compensated for the loss of citrate synthase was selected in the infected fish.

A mutation in prpR allowed the ΔgltA mutant to grow in 3M + 0.15% glucose. In order to test for the possibility that a compensatory mutation that would bypass the ΔgltA mutation could have been selected, the ΔgltA mutant was grown in 3M + 0.15% glucose for multiple days. An Δicd mutant was also created and was unable to grow in 3M+0.15% glucose (data not shown). The ΔgltA mutant began to grow after 48 h, reaching wild type levels by 72 h (Fig. 3). A frozen stock was created from the 72 h culture. A single colony, isolated from the frozen stock, was used for another growth experiment in 3M + 0.15% glucose. This new strain was able grow in 3M + 0.15% glucose during a 24 h incubation. When the gltA gene was sequenced from this strain, there was no change in the sequence from the original ΔgltA mutation; it remained truncated.

It has previously been described that 2-methylcitrate synthase (PrpC), an enzyme that combines propionyl-COA and oxaloacetate to synthesize 2-methylcitrate, can act in a promiscuous manner and synthesize citrate from acetyl-CoA and oxaloacetate [34]. Accordingly, prpB (2-methylisocitrate lyase), prpC, prpR (transcriptional regulator) and the intergenic regions were sequenced using the primers listed in Table 2. A single nucleotide mutation was found in prpR that changed amino acid 66 from an arginine to a leucine. The wild type and the parental ΔgltA mutant did not have this mutation. No mutations were found in prpB, prpC or the intergenic regions. The spontaneous mutant was designated as ΔgltA prpR (R66L).
ΔgltA prpR(R66L) mutant has a higher expression level of prpC compared to wild type and the ΔgltA mutant. Digianantonio *et al* [35] demonstrated that increased expression of prpC enabled an *E. coli* ΔgltA mutant to grow on minimal media agar. Accordingly, the expression of prpC was measured by qRT-PCR during exponential phase to determine if the mutation found in the transcriptional regulator prpR of the ΔgltA prpR(R66L) mutant would cause an increase in expression of prpC. The ΔgltA prpR(R66L) mutant exhibited a 12- and 8-fold increase in expression compared to the wild type (M93Sm) and the ΔgltA mutant, respectively. These increases in prpC expression were statistically significant (*P*<0.01) demonstrating that the prpR(R66L) mutation caused an increase in expression of prpC (Fig. 4).

The ΔgltA prpR(R66L) mutant grew to a higher total cell density in spleen extract medium compared to the ΔgltA mutant. The final cell densities (CFU/ml) were determined for the wild type (M93Sm), the ΔgltA mutant and the ΔgltA prpR(R66L) mutant after 24 h of growth in three forms of rich media: LB20, NSSM and NSS supplemented with spleen extract (Table 4). In LB20 and NSSM, both the ΔgltA mutant and the ΔgltA prpR(R66L) mutants grew to a total cell density that was statistically lower than M93Sm. The difference between the ΔgltA mutant and the ΔgltA prpR(R66L) mutant was not statistically significant. In the spleen extract medium, M93Sm grew to the highest cell density (7.7×10^7 CFU/ml) followed by the ΔgltA prpR(R66L) mutant (1.5×10^7 CFU/ml), while the ΔgltA mutant grew to 5.7×10^7 CFU/ml. The difference between M93Sm and the ΔgltA prpR(R66L) mutant was not statistically significant. The data strongly suggest that the ΔgltA prpR(R66L) mutant had a growth advantage in spleen extract medium compared to the ΔgltA mutant.
The *prpR*(R66L) mutation in the Δ*gltA* mutant can be selected for in spleen extract medium. The wild type (M93Sm), the Δ*gltA* mutant and the Δ*gltA* *prpR*(R66L) mutant were grown in spleen extract medium for multiple days (Fig. 5). By 96 h, number of viable cells in the cultures of both M93Sm and the Δ*gltA* *prpR*(R66L) mutant began to decline. However, the cell density of the Δ*gltA* mutant increased between 96 h and 120 h. Colonies were chosen at random from the Δ*gltA* mutant 120 h agar plate and screened to ensure that the Δ*gltA* mutation was still deleted and if the colonies could grow in 3M + 0.15% glucose. All colonies had the truncated version of *gltA* while 4 out of the 6 colonies grew in 3M + 0.15% glucose with only a 24 h incubation. Although, it was not screened, the ability to grow 24 h in minimal media (Fig. 5) was presumably from a mutation in *prpR*. The data suggest that the *prpR*(R66L) mutation in the Δ*gltA* mutant strain is favored in spleen extract medium.

Δ*gltA* Δ*prpC* mutant is unable to grow in 3M + 0.15% glucose and grows to a lower cell density limit in two forms of rich media. A Δ*prpC* mutant and a Δ*gltA* Δ*prpC* mutant were created and their growth was examined. After 24 h, the Δ*gltA* Δ*prpC* mutant grew to a lower cell density in LB20 compared to the wild type (M93Sm) (Fig. 6A) and failed to grow in 3M + 0.15% glucose after 192 h (Fig. 6B). Growth in spleen extract medium was monitored and after 210 h the Δ*gltA* Δ*prpC* mutant failed to grow to the cell density of M93Sm or the Δ*gltA* mutant (Fig. 6C). The Δ*prpC* mutant grew to a wild type cell density in all forms of media (Fig. 6). The data demonstrate that when *prpC* is deleted in the Δ*gltA* mutant, the bacteria are no longer able to grow in 3M+0.15% glucose and lose their growth advantage in spleen extract media. However, the loss of *prpC* alone had little effect on growth.
ΔgltA ΔprpC double mutant is as virulent as the wild type against juvenile rainbow trout. Five to nine juvenile rainbow trout were challenged via immersion at a dose of 4×10^6 CFU/ml to 6×10^6 CFU/ml with either the wild type (M93Sm), the ΔprpC mutant, or the ΔgltA ΔprpC mutant. Fish infected with either M93Sm or the prpC mutant had 0% survival after 3 and 2 days, respectively (Table 5). While fish infected with the ΔgltA ΔprpC mutant had 22% survival, there was no significant difference in survival between M93Sm (0%) and the ΔgltA ΔprpC mutant (P = 0.23). The data suggest that deleting both gltA and prpC causes only a small attenuation of virulence.

Discussion

Citrate synthase catalyzes the first of eight reactions in the generation of energy through the oxidation of acetate by the tricarboxylic acid (TCA) cycle. TCA intermediates also serve as precursor metabolites for the synthesis of amino acids and peptidoglycan. Specifically, this investigation focused on the inability of the ΔgltA mutant to produce the TCA cycle intermediate and immediate precursor to glutamate synthesis, α-ketoglutarate. Previously, a V. anguillarum icd mutant was shown to be both highly attenuated in virulence and immunoprotective in juvenile rainbow trout [28]. The loss of pathogenicity was hypothesized to have resulted from the inability to synthesize glutamate; the cells would stop replicating and be prevented from reaching the threshold needed to cause systemic infection after they exhausted glutamate from their host. Aromatic compound auxotroph mutants have been demonstrated to be highly attenuated since the 1980s [12-16]. More recent studies have demonstrated that intracellular pathogens containing TCA cycle mutations are attenuated for virulence if the specific mutations prevent growth using the available nutrients in the nutrient-poor phagosome.
Since *V. anguillarum* is not an intracellular pathogen and cannot survive in macrophages, it would not be subject to this type of nutrient limitation [36]. Additionally, the initial infection site *V. anguillarum* M93Sm, an O2α serotype, is presumably the intestines (external necrotic lesions have never been observed in fish exposed to this strain, unpublished observations) where it grows in the glutamate rich intestinal mucus [7, 8, 37]. Therefore, the previously described link between glutamate auxotrophy and attenuation in virulence in M93Sm warranted further investigation [28].

A ΔgltA strain was created and showed the same growth phenotype as the previously described icd mutant (Fig. 1) [28]. Unlike the icd mutant, the gltA mutant was as virulent as the wild type against juvenile rainbow trout. However, death from systemic infection was delayed by about 1 day (Table 3) suggesting that a compensatory mutation that could bypass the citrate synthase deletion was being selected for in the ΔgltA mutant. Indeed, a ΔgltA strain capable of growth in 3M + 0.15% glucose media (a medium in which it should fail to grow) was isolated (Fig. 3). When this ΔgltA strain was sequenced a spontaneous mutation was found in prpR, the transcriptional activator of 2-methylcitrate synthase (*prpC*), that changed arginine 66 to a leucine (this strain was named ΔgltA prpR(R66L)). The normal enzymatic function of PrpC is to synthesize 2-methylcitrate from propionyl-CoA and oxaloacetate; however, it has been demonstrated that PrpC can act promiscuously, substituting acetyl-CoA for propionyl-CoA to synthesize citrate [34]. The ability of the ΔgltA prpR(R66L)) mutant to grow in 3M + 0.15% glucose media resulted from an increase in expression of *prpC* (Fig. 4). The increase in expression of *prpC* enabled the cells to bypass the gltA deletion, an observation previously described in an *E. coli* ΔgltA strain by Digianantonio *et al* [35].
The hypothesized route of infection for *V. anguillarum* M93Sm is through the anus of the fish where it damages the lining of gastrointestinal tract to enter the circulatory system where it accumulates in the spleen [7, 8]. Accordingly, the *in vitro* growth of the ΔgltA prpR(R66L) mutant was characterized in NSSM and spleen extract medium to represent the environment of early and mid-stage infections respectively (LB20 served as a control). The growth advantage of the ΔgltA prpR(R66L) mutant in spleen extract medium coupled with the isolation of spontaneous prpR mutants in the ΔgltA mutant after extended growth in spleen extract medium suggest that during infection with the ΔgltA mutant, mutations in prpR are selected for in the fish spleen allowing the ΔgltA mutant to cause systemic infection. To test this idea, a ΔgltA ΔprpC mutant was created and was shown to be unable to grow in minimal media and had no growth advantage in spleen extract. Surprisingly there was no statistically significant difference in survival in fish challenged with the wild type and the ΔgltA ΔprpC mutant indicating that glutamate auxotrophy in and of itself may not necessarily result in attenuation.

The data presented here suggest that our previously proposed hypothesis that simple starvation for glutamate results in attenuation of virulence must be modified. While the small decrease in mortality during infection of the ΔgltA ΔprpC mutant suggests glutamate auxotrophy may contribute to attenuation, it may not be the single cause of attenuation in virulence of the icd mutant. The oxidative branch of the TCA cycle is at the intersection of three regulatory molecules: acetyl-CoA, citrate and α-ketoglutarate. Citrate accumulation has been shown to be detrimental to the growth rate and growth yield of *E. coli* with spontaneous citrate synthase mutants outgrowing icd or
aconitase (*acnA* and *acnB*) double mutants during *in vitro* growth experiments in complex media [38, 39]. Additionally, in *Staphylococcus aureus*, citrate has been shown allosterically activate CcpE, a regulator of metabolism and virulence factors [40]. An *E. coli icd* mutant was shown to have increased expression of the glyoxylate shunt causing lower acetyl-CoA production [41]. During acetogenesis, phosphotransacetylase converts acetyl-CoA into acetyl-P, a global regulator that is used to phosphorylate two-component signal transduction pathways [42]. Acetyl-P has been shown to induce virulence factor expression in *V. cholerae*, *S. enterica* and *E. coli* [43-46]. Further, acetyl-CoA accumulation alone, without being converting to acetyl-P, was shown to cause increased expression of the *V. cholerae* virulence gene activator ToxT [47]. Lastly, α-ketoglutarate has been shown to be a master regulator that coordinates nitrogen and carbon metabolism by inhibiting the production of cyclic AMP and has been shown to regulate virulence factors in UPEC [48-50]. Mutations in *gltA* or *icd* in *V. anguillarum* would result in altered intracellular levels of acetyl-CoA, citrate and α-ketoglutarate. The phenotype of the *icd* mutant (low intracellular levels of acetyl-CoA and high intracellular levels of citrate) could be causing the attenuation of virulence against juvenile rainbow trout because the cells can no longer sense their metabolic environment and consequently cannot properly coordinate the expression of appropriate virulence factors *in vivo*.

While expression levels of the three hemolysins in the *icd* and Δ*gltA* mutants have been examined and shown to be the same or higher compared to their expression wild type M93Sm cells *in vitro*, (Fig. 4) expression of other virulence factors important for systemic infection and persistence (the chemotaxic system, protease production, lipopolysaccharides production, iron acquisition, and flagella synthesis) have not been
examined and could be effected by the intracellular concentrations of acetyl-CoA, citrate, or α-ketoglutarate [28]. Further studies examining the entire transcriptome may reveal whether other potential virulence factors are affected by mutations in *icd* or *gltA* in *V. anguillarum*.

Conclusion

A *V. anguillarum* Δ*gltA* strain was created and was demonstrated to be similar to the previously described *icd* mutant; both strains demonstrated a decreased final cell density in multiple forms of rich media and had expression of hemolysin genes that was similar to the wild type. Unlike the *icd* mutant, the Δ*gltA* mutant was as virulent as the wild type in juvenile rainbow trout. Spontaneous mutations arose in *prpR* that caused an increase in expression of the promiscuous enzyme *prpC* allowing the Δ*gltA* mutant to bypass the *gltA* deletion and grow in minimal media and have a growth advantage in spleen extract media. A Δ*gltA* Δ*prpC* mutant was created and was demonstrated to be unable to grow in minimal media and no longer have a growth advantage in spleen extract media. However, the Δ*gltA* Δ*prpC* mutant exhibited only a slight attenuation in virulence compared to the wild type against rainbow trout further suggesting that simple starvation for a required nutrient (i.e. glutamate) will not directly result in attenuation of virulence as previously proposed.
Strain or plasmid	Description	Reference	
V. anguillarum strains			
M93Sm	Spontaneous Sm\(^r\) mutant of M93 (serotype O2a)	[51]	
ES496	Sm\(^r\); gltA deletion mutant	This study	
ES3-2	Sm\(^r\); gltA deletion mutant, spontaneous mutation in prpR (R66L)	This study	
ES6600	Sm\(^r\); prpC deletion mutant	This study	
ES496.6600	Sm\(^r\); gltA prpC double mutant	This study	
E. coli strains			
Sm10	thi thr leu tonA lacY supE recA RP4-2-Tc::Mu::Km (\(\lambda\) pir)	[52]	
Q496	Km\(^r\) Cm\(^r\); Sm10 containing plasmid pDM4-\(gltA5'\)-\(gltA3'\)	This study	
Q6600	Km\(^r\) Cm\(^r\); Sm10 containing plasmid pDM4-\(prpC5'\)-\(prpC3'\)	This study	
Plasmid			
pDM4	Cm\(^r\) Km\(^r\) SacBC\(^r\); suicide vector	[30]	
pDM4-\(gltA5'\)-\(gltA3'\)	Cm\(^r\) SacBC\(^r\); For gltA deletion mutant	This study	
pDM4-\(prpC5'\)-\(prpC3\)	Cm\(^r\) SacBC\(^r\); For prpC deletion mutant	This study	
Primer	Sequence (5' to 3', lowercase sequences are designed to be homologous to flanking sequences)	Description	Reference
--------	---	-------------	-----------
PmG-01	caggttaaccgcatgAGCTGCCGATTATGGATGGG	For gltA 5' region, forward	This study
PmG-02	ggaaatgttaAAGTGAATGCTAGAGACGC	For gltA 5' region, reverse	This study
PmG-03	gattcacttTAACATTCTGAGTATGTGTCGAGC	For gltA 3' region, forward	This study
PmG-04	ctagatagatcgtagCGCCAGTATAAGTTGACGAGGTC	For gltA 3' region, reverse	This study
PmG-23	aatcccgagagagAAACCGACCACCTGGGAGC	For prpC 5' region, forward	This study
PmG-24	tgaccaacGCGCGTGCGATTACGCTCC	For prpC 5' region, reverse	This study
PmG-25	gcacgggcGTTGGTCAAAGCGTTATCTGAAGC	For prpC 3' region, forward	This study
PmG-26	cggtaaccggtacgTAAACGCTGCTCTATTTGGAATCCAC	For prpC 3' region, reverse	This study
PmG-27	GCTCGATAGCATGCAAACCGGT	For prpB sequencing, forward	This study
PmG-28	CCGACAATCTGCAGCGGATCAT	For prpB sequencing, reverse	This study
PmG-29C	CTGCTCTATTGCGCGGTCAAAAGCGTTATCTGAAGC	For prpC checking, forward	This study
PmG-30C	CGAGATCGCGCTTACGCTCA	For prpC checking, reverse	This study
Pm112s	AGCCCGATATCGCGCAGTTAAATG	For gltA checking, forward	This study
Pm117	TTCTTCTTGTTGCTAACCCTGTTG	For gltA sequencing	This study
Pm118	GCTCTCGGAAATGGTTAGCGGA	For gltA checking, reverse	This study
vah1F RT	GTTTGGATAGCAAACCGCTCAAG	For vah1 qRT-PCR, forward	[28]
vah1R RT	GGCTCAACCTCTCCTTGAACCA	For vah1 qRT-PCR, reverse	[28]
plp F RT	CAGACGACCACAGTAACACTAA	For plp qRT-PCR, forward	[5]
plp R RT	GCAATCATGATTCCAGCAACAG	For plp qRT-PCR, reverse	[5]
Pm111	GGAATTATCATGACCGAGGATTGA	For rtxA qRT-PCR, forward	[4]
Pm112	GCCGATACCCCTATCGTTGACAAGTAA	For rtxA qRT-PCR, reverse	[4]
Pm132	TTATGTACTGTCGCGACTGGAATTG	For prpC qRT-PCR, forward	This study
Pm133	TGGTCAAGTCTTGTAGATGT	For prpC qRT-PCR, reverse	This study

1 GA; Gibson Assembly
Table 3 Virulence of *V. anguillarum* strains in juvenile rainbow trout

Strain	Dosage (CFU/ml)²	Total Mortality	No. of days until death (No. of fish / total)
M93Sm	4×10⁶	90%	1 (3/10) 2 (9/10)
ΔgltA	3-4×10⁶	80%	1 (1/10) 2 (6/10) 3 (8/10)
Control (NSS)	0%	NA	

¹ Sum of two treatments, five fish per treatment
² ΔgltA dosage: first treatment (3×10⁶), second treatment (4×10⁶)
Table 4 Final CFU/ml (±S. D) of various *V. anguillarum* cultures grown for 24 h

Strain	CFU/ml in LB20	CFU/ml in NSSM (200 µg/ml)	CFU/ml in spleen extract (100 µg/ml)
M93Sm	3.4 (±0.3) ×10^9 [1.00]	4.2 (±1.0) ×10^9 [1.00]	7.7 (±2.1) ×10^7 [1.00]
ΔgltA	1.6 (±0.1) ×10^9 [0.47]**	1.2 (±0.2) ×10^9 [0.29]*	1.5 (±0.05) ×10^7 [0.19]*
ΔgltA prpR(R66L)	1.5 (±0.09) ×10^9 [0.45]**	1.5 (±0.2) ×10^9 [0.36]*	5.7 (±0.4) ×10^7 (0.74)

S.D = standard deviation

1Values in brackets represent growth percentage compared to wild type.

** statistically significant to wild type (*P < 0.01*), * statistically significant to wild type (*P < 0.05*)
Table 5 Virulence of *V. anguillarum* strains in juvenile rainbow trout

Strain	Dosage (CFU/ml)	Total Mortality	No. of days until death (No. of fish / total)
M93Sm	5×10^6	100%	1 (6/9) 2 (8/9) 3 (9/9)
$\Delta prpC$	6×10^6	100%	1 (2/5) 2 (5/5)
$\Delta gltA \Delta prpC$	4×10^6	78%	1 (4/9) 2 (6/9) 3 (7/9)
NSS		0%	3 (1/5)*

Death was not caused by vibriosis
Figure 1. Growth of *V. anguillarum* WT (M93Sm) and the *gltA* mutant under various conditions. A) Growth curves of *V. anguillarum* M93Sm (black) and the *gltA* mutant (blue) in LB20 (dashed lines) or LB20 supplemented with 118 mM glutamate (solid lines). B) Final cell densities (OD₆₀₀) of *V. anguillarum* strains after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 5.9 mM glutamate. In each experiment cells grown overnight in LB20 were washed twice in NSS, calibrated to an OD₆₀₀ between 0.4 and 0.5 and used to inoculate the appropriate media at a 1:100 dilution. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD₆₀₀). The data are the average of two independent experiments. Different letters indicate statistical significance among groups (*P* < 0.05). Statistical analysis was based on data at 24 h. Between marked strains and M93Sm: ** *P* < 0.01. Error bars represent 1 standard deviation.
Figure 2. Expression of *vah1*, *rtxA*, and *plp* determined by qRT-PCR analysis of *V. anguillarum* wild-type (M93Sm) and the *gltA* mutant during logarithmic (Log)-phase growth. The data presented are the averages of two independent experiments. Each value is the average for six replicates. Error bars represent 1 standard deviation.
Figure 3. Growth curves of various V. anguillarum strains grown in 3M + 0.15% glucose at 27°C with shaking (200 rpm). At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). In each experiment cells grown overnight in LB20 were washed twice in NSS, calibrated to an OD$_{600}$ between 0.4 and 0.5 and used to inoculate the appropriate media at a 1:100 dilution. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are the average of two independent experiments. Error bars represent 1 standard deviation.
Figure 4. Expression of prpC determined by qRT-PCR analysis of *V. anguillarum* wild-type (M93Sm), the *gltA* mutant and the *gltA* mutant with the spontaneous mutation in *prpR*(R66L) during logarithmic (Log)-phase growth. The data presented are the averages of two independent experiments. Each value is the average of six replicates. Between marked strains and M93Sm: ** $P < 0.01$. Error bars represent 1 standard deviation.
Figure 5. Growth curves of various *V. anguillarum* strains grown in in NSS + spleen extract (100µg/ml) at 27°C with shaking (200 rpm). The data are a representative of two independent experiments. At various time points after inoculation samples were taken for determination CFU/ml by serial dilution and spot plating. In each experiment cells grown overnight in LB20 were washed twice in NSS, calibrated to an OD$_{600}$ between 0.4 and 0.5 and used to inoculate the appropriate media at a 1:100 dilution. ΔgltA colonies were picked from the 120 h plate and used to inoculate 3M + 0.15% glucose. In addition, colony PCR using primers flanking gltA was performed to ensure gltA was still deleted.
Figure 6. Growth curves of various *V. anguillarum* strains grown in various conditions at 27°C with shaking (200 rpm). A) Final cell densities (OD$_{600}$) of *V. anguillarum* strains after 24 h of growth in LB20. B) Growth curves of various *V. anguillarum* strains grown in 3M + 0.15% glucose at 27°C with shaking (200 rpm). C) Growth curves of various *V. anguillarum* strains grown in spleen extract medium at 27°C with shaking (200 rpm). ΔgltA colonies were picked from the 120 h plate, screened to ensure gltA was still deleted by colony PCR using primers flanking gltA and were used to inoculate 3M + 0.15% glucose. At various time points after inoculation samples were taken for determination of CFU/ml by serial dilution and spot plating or for determination of optical density at 600 nm (OD$_{600}$). In each experiment cells grown overnight in LB20 were washed twice in NSS, calibrated to an OD$_{600}$ between 0.4 and 0.5 and used to inoculate the appropriate media at a 1:100 dilution. The data for A and B are the average of two independent experiments. Different letters indicate statistical significance among groups ($P < 0.05$). Statistical analysis was based on data at 24 h. Error bars represent 1 standard deviation.
References:

1. Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H: *Vibrio anguillarum* as a fish pathogen: virulence factors, diagnosis and prevention. *Journal of fish diseases* 2011, **34**(9):643-661.

2. Austin B, Austin DA: *Bacterial Fish Pathogens: Disease of Farmed and Wild Fish*: Springer London; 1999.

3. Denkin SM, Nelson DR: *Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence*. *Applied and environmental microbiology* 2004, **70**(7):4193-4204.

4. Li L, Rock JL, Nelson DR: *Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum*. *Infection and immunity* 2008, **76**(6):2620-2632.

5. Mou X, Spinard EJ, Driscoll MV, Zhao W, Nelson DR: *H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in Vibrio anguillarum*. *Infection and immunity* 2013, **81**(10):3566-3576.

6. Rock JL, Nelson DR: *Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum*. *Infection and immunity* 2006, **74**(5):2777-2786.

7. O'Toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H: *Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum*. *Microbial pathogenesis* 2004, **37**(1):41-46.

8. Spanggaard B, Huber I, Nielsen J, Nielsen T, Gram L: *Proliferation and location of Vibrio anguillarum during infection of rainbow trout, Oncorhynchus mykiss (Walbaum)*. *Journal of fish diseases* 2000, **23**(6):423-427.
9. Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fallman M, Milton DL: Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. *Plos One* 2012, 7(5):e37678.

10. Li L, Mou X, Nelson DR: Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. *BMC microbiology* 2013, 13:271.

11. Li L, Mou X, Nelson DR: HlyU is a positive regulator of hemolysin expression in Vibrio anguillarum. *Journal of bacteriology* 2011, 193(18):4779-4789.

12. Hoiseth SK, Stocker BAD: Aromatic-Dependent Salmonella-Typhimurium Are Non-Virulent and Effective as Live Vaccines. *Nature* 1981, 291(5812):238-239.

13. Bowe F, Ogaora P, Maskell D, Cafferkey M, Dougan G: Virulence, Persistence, and Immunogenicity of Yersinia-Enterocolitica O-8 Aroa Mutants. *Infection and immunity* 1989, 57(10):3234-3236.

14. Roberts M, Maskell D, Novotny P, Dougan G: Construction and Characterization Invivo of Bordetella-Pertussis-Aroa Mutants. *Infection and immunity* 1990, 58(3):732-739.

15. Homchampa P, Strugnell RA, Adler B: Molecular Analysis of the Aroa Gene of Pasteurella-Multocida and Vaccine Potential of a Constructed Aroa Mutant. *Molecular microbiology* 1992, 6(23):3585-3593.
16. Lawrence ML, Cooper RK, Thune RL: *Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant*. *Infection and immunity* 1997, 65(11):4642-4651.

17. Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T, Cohen PS: *A Salmonella enterica serovar typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice*. *Infection and immunity* 2008, 76(3):1128-1134.

18. Mercado-Lubo R, Leatham MP, Conway T, Cohen PS: *Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice*. *Infection and immunity* 2009, 77(4):1397-1405.

19. Utley M, Franklin DP, Krogfelt KA, Laux DC, Cohen PS: *A Salmonella typhimurium mutant unable to utilize fatty acids and citrate is avirulent and immunogenic in mice*. *FEMS microbiology letters* 1998, 163(2):129-134.

20. Yimga MT, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS: *Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice*. *Infection and immunity* 2006, 74(2):1130-1140.

21. Valentine PJ, Devore BP, Heffron F: *Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant*. *Infection and immunity* 1998, 66(7):3378-3383.
22. Allen JH, Utley M, van Den Bosch H, Nuijten P, Witvliet M, McCormick BA, Krogfelt KA, Licht TR, Brown D, Mauel M et al: A functional cra gene is required for Salmonella enterica serovar typhimurium virulence in BALB/c mice. Infection and immunity 2000, 68(6):3772-3775.

23. Dahal N, Abdelhamed H, Karsi A, Lawrence ML: Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri. Vaccine 2014, 32(31):3971-3976.

24. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML: Tricarboxylic acid cycle and one-carbon metabolism pathways are important in Edwardsiella ictaluri virulence. Plos One 2013, 8(6):e65973.

25. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML: Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis. Veterinary microbiology 2014, 169(1-2):107-112.

26. Alteri CJ, Smith SN, Mobley HL: Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS pathogens 2009, 5(5):e1000448.

27. VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, Crowe AM, Eltis LD, Perola E, Deininger DD et al: Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS pathogens 2015, 11(2):e1004679.
28. Mou X, Spinard EJ, Hillman SH, Nelson DR: *Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss)*. In. BMC Microbiology; submitted for publication 2017.

29. Vaatanen P: *Microbiological studies in coastal waters of the Northern Baltic Sea. I. Distribution and abundance of bacteria and yeasts in the Tvarminne area*. *Walter Andre Nottback Found Sci Rep* 1976, 1:1-58.

30. Neidhardt FC, Bloch PL, Smith DF: *Culture medium for enterobacteria*. *Journal of bacteriology* 1974, 119(3):736-747.

31. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H: *Flagellin A is essential for the virulence of Vibrio anguillarum*. *Journal of Bacteriology* 1996, 178(5):1310-1319.

32. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO: *Enzymatic assembly of DNA molecules up to several hundred kilobases*. *Nature methods* 2009, 6(5):343-345.

33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M et al: *The RAST Server: rapid annotations using subsystems technology*. *BMC genomics* 2008, 9:75.

34. Gerike U, Hough DW, Russell NJ, Dyall-Smith ML, Danson MJ: *Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships*. *Microbiology* 1998, 144 (Pt 4):929-935.
35. Digianantonio KM, Korolev M, Hecht MH: A Non-natural Protein Rescues Cells Deleted for a Key Enzyme in Central Metabolism. *ACS synthetic biology* 2017, 6(4):694-700.

36. Larsen MH, Boese HT: Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. *FEMS microbiology letters* 2001, 203(2):149-152.

37. O'Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H: The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. *Journal of bacteriology* 1999, 181(14):4308-4317.

38. Gruer MJ, Bradbury AJ, Guest JR: Construction and properties of aconitase mutants of *Escherichia coli*. *Microbiology* 1997, 143 (Pt 6):1837-1846.

39. Lakshmi TM, Helling RB: Selection for citrate synthase deficiency in icd mutants of *Escherichia coli*. *Journal of bacteriology* 1976, 127(1):76-83.

40. Ding Y, Liu X, Chen F, Di H, Xu B, Zhou L, Deng X, Wu M, Yang CG, Lan L: Metabolic sensor governing bacterial virulence in *Staphylococcus aureus*. *Proceedings of the National Academy of Sciences of the United States of America* 2014, 111(46):E4981-4990.

41. Kabir MM, Shimizu K: Metabolic regulation analysis of icd-gene knockout *Escherichia coli* based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements. *Applied microbiology and biotechnology* 2004, 65(1):84-96.
42. Wolfe AJ: The acetate switch. Microbiology and molecular biology reviews: MMBR 2005, 69(1):12-50.

43. Chiang SL, Mekalanos JJ: Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Molecular microbiology 1998, 27(4):797-805.

44. Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Pruss BM, Henk MC, Larkin JC, Conway T: Evidence that acetyl phosphate functions as a global signal during biofilm development. Molecular microbiology 2003, 48(4):977-988.

45. Lawhon SD, Maurer R, Suyemoto M, Altier C: Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Molecular microbiology 2002, 46(5):1451-1464.

46. Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ: The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. Journal of bacteriology 2007, 189(15):5574-5581.

47. Minato Y, Fassio SR, Wolfe AJ, Hase CC: Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiology 2013, 159(Pt 4):792-802.

48. Rabinowitz JD, Silhavy TJ: Systems biology: metabolite turns master regulator. Nature 2013, 500(7462):283-284.
49. Huergo LF, Dixon R: **The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite.** *Microbiology and molecular biology reviews: MMBR* 2015, 79(4):419-435.

50. Cai W, Wannemuehler Y, Dell'anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK, Li G: **A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites.** *PLoS pathogens* 2013, 9(6):e1003428.

51. Denkin SM, Nelson DR: **Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus.** *Applied and environmental microbiology* 1999, 65(8):3555-3560.

52. Simon R, Priefer U, Puhler A: **A Broad Host Range Mobilization System for Invivo Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria.** *Bio-Technol* 1983, 1(9):784-791.
Characterization of *Vibrio anguillarum* NB10Sm TCA cycle mutants

Authors: Edward J. Spinard, David R. Nelson*

Affiliation: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA

Corresponding Author: David R. Nelson; email: dnelson@uri.edu

E-mail:
Edward J. Spinard: edward_spinard@my.uri.edu
David R. Nelson: dnelson@uri.edu
Abstract

Background: There are twenty-three serotypes of the marine pathogen *Vibrio anguillarum*, three of which are responsible for causing warm water vibriosis, a fatal hemorrhagic septicemic disease of fish. A previous study demonstrated that a *V. anguillarum* M93Sm (O2a serotype) *icd* mutant was attenuated in virulence; however, it is not known if mutating this gene in the O1 serotype *V. anguillarum* NB10Sm will result in the same phenotype.

Results: A *V. anguillarum* NB10Sm *icd* mutant was created, characterized for growth in complex media and demonstrated to be as virulent as the wild type. Several additional central metabolism single and double mutants were created in the following genes *cra, gltA, Δicd gltA, sucA, sucC, sdhC, ΔfrdA, ΔfrdA sdhC, and fumA* and characterized with regard to growth in complex media. Two mutants (Δ*sucA* and Δ*frdA ΔsdhC*) that demonstrated a significantly reduced growth yield compared to the wild type were further characterized with regard to their growth in several forms of complex media, expression of virulence genes, and virulence in juvenile rainbow trout (*Oncorhynchus mykiss*).

Conclusions: The data strongly suggest that there is no correlation between a lower growth yield *in vitro* and a decrease in virulence *in vivo*. Even though M93Sm and NB10Sm are same species, mutations made in the same TCA cycle genes can cause drastically different results in regards to growth and virulence.

Keywords: *Vibrio anguillarum*, TCA cycle, vibriosis, virulence, hemolysin, protease
Background

Vibrio anguillarum is a causative agent of warm water vibriosis, which causes a fatal hemorrhagic septicemic disease of fish, as well as morbidity and mortality in crustaceans and bivalves [1-3]. Mortality rates from vibriosis range between 30 to 100% and contribute to significant economic losses to the aquaculture industry worldwide [1, 3]. Typically, the initial site of infection is the skin, gills or intestines and in vivo studies have demonstrated that death from system infection usually occurs 1-4 days post infection [4-9]. Numerous virulence factors that have been shown to be important during infection include extracellular proteases, hemolytic cytotoxins, iron acquisition systems (siderophores), lipopolysaccharides, chemotaxis, and flagella [10].

Previously, a V. anguillarum M93Sm icd mutant was shown to be highly attenuated against juvenile rainbow trout and immunoprotective [11]. Auxotrophic or TCA cycle mutants attenuated in virulence have been created in several intracellular bacteria species [12-27]. The attenuation of the V. anguillarum M93Sm mutant was hypothesized to have resulted from the mutant being unable to grow to a final wild type cell density. The decreased growth yield resulted from the cells being auxotrophic and starved for glutamate [11]. If this same growth limitation were to occur during an infection, the cells would not be able to surpass threshold needed to cause disease. Interestingly, unlike the previously reported attenuated auxotrophic or TCA cycle mutants, V. anguillarum is not an intracellular pathogen and would not be experience the nutrient limitations of the phagosome [28]. Accordingly, glutamate auxotrophy may not be the single cause of the attenuation of the icd mutant as a later study demonstrated that
another mutant auxotrophic for glutamate (ΔgltA) was as virulent as the wild type [Spinard, EJ et al, in preparation, chapter 2 of this manuscript].

There are twenty-three serotypes of *V. anguillarum* (O1-O23) that have been differentiated by O-serotyping; only three serotypes (O1-O3) are important pathogens in fish [29, 30]. M93Sm is a spontaneous streptomycin resistant mutant selected from an O2a serotype strain originally isolated from a diseased ayu (*Plecoglossus altivelis*) from Lake Biwa in Japan [31]. Even though the M93Sm icd mutant stimulated an adaptive immune response that protected the fish from a subsequent M93Sm wild type challenge, it may be necessary to create a multivalent vaccine in order to promote full immunoprotection against multiple serotypes of *V. anguillarum*. In the late 1980s, salmon reared in New Brunswick vaccinated with bacterins composed of *V. anguillarum* serotype O1 and *V. ordalii* later died from vibriosis caused by *V. anguillarum* O2 serotypes; addition of an O2 bacterin reduced death from *V. anguillarum* O2 serotype induced vibriosis [32]. Accordingly, this study focused on creating and characterizing the growth and virulence of central metabolism mutants in *V. anguillarum* NB10Sm (spontaneous streptomycin resistant O1 serotype strain originally isolated from a rainbow trout near the city of Boden, Sweden) with the goal of creating a live attenuated O1 strain [33].

Methods

Bacterial strains, plasmids, and growth conditions. *V. anguillarum* strains (Table 1) were routinely grown in Lysogeny broth containing 2% NaCl (LB20) [34], LB20 containing various additional supplements, Marine Minimum Median (3M) + 0.15% glucose [35], NSS supplemented with fish gastrointestinal mucus (NSSM), NSS supplemented with fish skin mucus (NSSSkM) or NSS Spleen extract medium
supplemented with the appropriate antibiotic, in a shaking water bath at 27°C. *E. coli* strains (Table 1) were routinely grown in Lysogeny broth containing 1% NaCl (LB10) supplemented with the appropriate antibiotic, in a shaking water bath at 37°C. Antibiotics were used at the following concentrations: streptomycin, 200 μg/ml (Sm200); chloramphenicol, 20 μg/ml (Cm20) for *E. coli* and 5 μg/ml (Cm5) for *V. anguillarum*; 40μg/ml (Km40) kanamycin for liquid media or 80μg/ml (Km80) kanamycin for solid media for *V. anguillarum* and *E. coli*.

Insertional mutagenesis. Insertional mutations in the target genes: *icd*, *sucA*, *sucC*, *sdhC*, *fumA* and *cra* were created by using previously constructed suicide vectors [11]. Additional insertional mutations were made by using a modification of the procedure described by Milton *et al.* [36]. Briefly, primers (Table 2) were designed based on the target gene sequence of NB10. A 200-300 bp DNA fragment of the target gene was PCR amplified and ligated into the suicide vector pNQ705-1 (Table 1) after digestion with SacI and XbaI. The ligation mixture was introduced into *E. coli* SM10 by electroporation using a BioRad Gene Pulser II (BioRad, Hercules, CA). Transformants were selected on LB10 Cm20 agar plates. The construction of the recombinant pNQ705 was confirmed by PCR amplification. The mobilizable suicide vector was transferred from *E. coli* SM10 into *V. anguillarum* by conjugation [37]. Transconjugants were selected by utilizing the chloramphenicol resistance gene located on the suicide plasmid. The incorporation of the recombinant pNQ705 was confirmed by PCR amplification.

Allelic exchange mutagenesis. Deletion mutations were made by using a modification of the procedure described by Milton *et al.* [36]. Suicide vectors were constructed via restriction enzyme digestion/ligation (*frdA, sucA, icd, CUO*) or Gibson Assembly (*sdhC*).
Briefly, primers (Table 2) were designed based on the target gene sequence of NB10 (Accession numbers: NZ_LK021130.1, NZ_LK021129.1 and NZ_LK021128.1). For restriction enzyme digestion and ligation, a DNA fragment of the 5’ region of the target gene varying in size from 297 to 425 bp was PCR amplified and ligated into the suicide vector pDM4 (Table 1) after digestion with SacI and XbaI. Subsequently a section of the 3’ region of the target gene varying in size from 273 to 484 bp was PCR amplified and ligated into the suicide vector pDM4 containing the previously added 5’ region after digestion with XhoI and NheI. Finally, the kanamycin resistance cassette was amplified and ligated into the previously constructed suicide vector after digestions with XbaI and XhoI. For the Gibson Assembly method [38], primers (Table 2) were designed based on the target gene sequence of NB10. A 100 bp DNA fragment of the 5’ region and the 3’ region of the target gene was PCR amplified and ligated using the Gibson assembly method into the suicide vector pDM4 (Table 1) previously digested with SacI. The ligation or the Gibson Assembly mixture was introduced into E. coli SM10 by electroporation using a BioRad Gene Pulser II (BioRad, Hercules, CA). Transformants were selected on LB10 Cm20 agar plates. The construction of the recombinant pDM4 was confirmed by PCR amplification. The mobilizable suicide vector was transferred from E. coli SM10 into V. anguillarum by conjugation. Single-crossover transconjugants were selected with LB20 Sm200 Cm5 Km80 plates, and subsequently, double-crossover transconjugants were selected with LB20 Sm200 Km80 plates containing 5% sucrose. The resulting V. anguillarum mutants were checked for the desired allelic exchange by PCR amplification using primers (Table 2) flanking the deletion.
Cell growth experiments. *V. anguillarum* cells grown overnight at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (9,000 × g, 2 min), washed twice and resuspended in in NSS. A 200 µl aliquot of the *V. anguillarum* NSS suspension was transferred into a 96-well plate with a clear flat bottom and the optical density at 600 nm (OD$_{600}$) was read by a VersaMax™ Absorbance Microplate Reader (Molecular Devices). The *V. anguillarum* NSS suspension was prepared to an OD$_{600}$ between 0.300 and 0.350 (\sim1.5 × 109 CFU/ml) and diluted 1:100 into fresh media. Growth was monitored either by measurement of the OD$_{600}$ or by serial dilution and plate counts.

Fish infection experiments. Various *V. anguillarum* strains were tested for virulence against rainbow trout by immersion infection. Briefly, *V. anguillarum* cells grown for 20 h at 27°C in LB20 supplemented with the appropriate antibiotics were harvested by centrifugation (6,000 × g, 10 min, 4°C), washed twice in NSS, and resuspended in NSS. The *V. anguillarum* NSS suspension was prepared to the desired specific cell density according to the conversion equation derived from Supplementary Figure 1: Cell density = (5 × 109 × OD$_{600}$) – 4 × 107. The actual cell density of the suspension was confirmed by dilution and viable plate count. All fish were examined and determined to be disease and injury free prior to the start of each experiment. For immersion, 10 ml of *V. anguillarum* suspended in NSS, or 10 ml of NSS only as a negative control was added to a bucket filled with 10 L of water supplemented with 1.5% NaCl that was maintained at 19.5 ± 0.5°C. Fish that were between 15 cm and 25 cm long were added and immersed for 1 h. For both methods, fish inoculated with different bacterial strains were maintained in separate 191 L tanks to prevent possible cross-contamination with constant water flow.
(200 ml/min) at 19 ± 1°C. Death due to vibriosis was determined by the observation of gross clinical symptoms and confirmed by the recovery and isolation of *V. anguillarum* cells resistant to the appropriate antibiotics from the spleen or head kidney of dead fish. Observations were made for 7 days. All fish used in this research project were obtained from the Lafayette Trout Hatchery located in North Kingstown, Rhode Island. All fish infection protocols were approved by the URI Institutional Animal Care and Use Committee (IACUC) (IACUC Protocol AN06-08-002).

RNA isolation. Exponential phase cells (~3 × 10^8 CFU/ml) or stationary phase cells (1.0 × 10^9 to 7.8 × 10^9 CFU/ml) of various *V. anguillarum* strains were treated with RNAprotect Bacteria Reagent (QIAGEN), following the manufacturer’s instructions. Total RNA was isolated using the RNeasy kit following the instructions of the manufacturer. All purified RNA samples were quantified spectrophotometrically by measuring absorption at 260 nm and 280 nm using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) and overall quality was assessed by gel electrophoresis. Samples were stored at -75°C for future use.

Real-time quantitative RT-PCR (qRT-PCR). qRT-PCR was used to quantify various mRNAs using an LightCycler® 480 Real-Time PCR System (Hoffmann-La Roche Inc.) and the Brilliant II SYBR Green Single-Step QRT-PCR Master Mix (Agilent Technologies), with 10 ng of total RNA in 20 µl reaction mixtures [7]. The thermal profile was 50°C for 30 min, 95°C for 15 min, and then 40 cycles of 95°C for 30 s and 55°C for 30 s. Fluorescence was measured at the end of the 55°C stage of each cycle. Samples were run in triplicate along with the no-reverse-transcriptase control and the no-template control. All experiments were repeated twice.
Statistical analysis. Student's T-tests assuming unequal variances were used for statistical analyses for all experiments except for the fish infection experiment. \(P \) values of <0.05 were considered statistically significant. A Kaplan-Meier survival analysis with log rank significance test was performed on the survival percentage in the fish infection experiment. \(P \) values of <0.05 were considered statistically significant.

Results

icd mutant grew to the same cell density limit as wild type in complex media. A *V. anguillarum* M93Sm *icd* mutant was previously shown to grow to a lower cell density than the wild type in nutrient rich media (e.g. LB20 and NSSM) [11]. A *V. anguillarum* NB10Sm *icd* insertional mutant was constructed and Fig. 2A shows a typical growth curve for the wild type (NB10Sm) and the *icd* mutant. Unlike the previously described M93Sm *icd* mutant, the NB10Sm *icd* had a slower growth rate during mid and late exponential phase growth compared to the wild type but reached the same cell density after growth for 24 h (Table 3, Supplementary Fig. 4) [11]. No additional copies of *icd* are found in the genome and the NB10Sm *icd* mutant was unable to grow in minimal media indicating that there is no promiscuous enzyme that can act as an isocitrate dehydrogenase (Fig. 2B). To ensure the *icd* insertional mutant (a merodiploid) did not resolve to restore the wild type, an *icd* deletion strain was created and showed no difference in growth compared to the *icd* insertional mutant (Fig. 2C). The data suggest that unlike the M93Sm *icd* mutant, the NB10Sm *icd* mutant can obtain enough \(\alpha \)-ketoglutarate derivatives (e.g. glutamate, glutamine, and peptides containing those amino acids) from LB20 to grow to a wild type final cell density.
The icd mutant exhibits at a wild type growth rate when LB20 is supplemented with gluconate or glutamate. Fig. 3 shows the typical growth curve of the wild type (NB10Sm) (black) and the icd mutant (blue) in LB20 not supplemented (Fig. 3, dashed lines) or supplemented with 101.7 mM gluconate (Fig. 3A, solid lines) or 118 mM glutamate (Fig. 3B, solid lines). The data indicate that the icd mutant exhibited a growth rate during the mid and late exponential growth phases similar to the wild type when LB20 was supplemented with a metabolite that feeds into central metabolism upstream (gluconate) or downstream (glutamate) of the icd mutation (Table 3). Interestingly, the wild type grew to a higher cell density than the icd mutant when LB20 was supplemented with gluconate. The data suggests that under these conditions the icd mutant will utilize gluconate to grow rapidly but will experience a cell density limitation when the cells exhaust the available glutamate.

A ΔCUO icd mutant has the same growth phenotype as the icd mutant. The CUO (citrate utilization operons) is a ~17.9 kbp region of the NB10 genome, consisting of multiple genes and operons: a citrate lyase operon (accession numbers: WP_013856981.1, WP_013856980.1, WP_013856979.1), an ACP synthase (accession number: WP_013856979.1), an oxaloacetate decarboxylase operon (accession numbers: WP_013856986.1 and WP_029189993.1), a chemotaxis protein and kinase (accession number: WP_013856983.1 and WP_013856984.1), and a tri-carboxylate importer operon (accession numbers: WP_013856993.1, WP_019281353.1, and WP_013856991.1). The CUO is not present in the M93Sm genome and may provide an alternative to the glyoxylate shunt to prevent the intracellular buildup of citrate. Interestingly, the upstream genes (accession numbers: WP_013856977.1, WP_017049831.1, WP_019282875.1, and
WP_019282876.1) and downstream genes (accession numbers: WP_017046166.1 and ASO29090.1) flanking this region in the NB10Sm genome are homologous to neighboring genes in the M93Sm genome indicating an occurrence of a gain of function (NB10Sm) or loss of function (M93Sm) (Supplementary Fig. 2). The CUO region was deleted to determine if it enabled the NB10Sm icd mutant grow to a final cell density that was similar to the wild type. Fig. 4 shows a typical growth curve of the wild type (NB10Sm), the icd mutant, the ΔCUO mutant and the ΔCUO icd mutant. The ΔCUO mutant had a growth curve nearly identical to the wild type and the ΔCUO icd mutant had a growth curve that was nearly identical to the icd mutant indicating that the presence of the CUOs did not enable the NB10Sm icd mutant to reach to a wild type cell density after 24 h.

icd mutant is as virulent as the wild type against juvenile rainbow trout. To determine if the NB10Sm icd mutant would be as virulent as the wild type (NB10Sm), 10 juvenile rainbow trout were challenged via immersion at a dose of between 6.5×10⁶ CFU/ml to 9.4×10⁶ CFU/ml (Table 4). Although it took seven days for the icd mutant to cause 70% morality and five days for the wild type to cause 80% mortality, there was no statistically significant difference in virulence between the two strains (P= 0.30).

sucA mutant, *fumA* mutant, and a Δ*frdA sdhC* mutant grow to a final cell density in complex media lower than the wild type. It was previously proposed that a decreased final cell density in complex media resulting from a nutrient limitation *in vitro* could correlate to attenuation in virulence *in vivo* [11]. Since the NB10Sm icd mutant did not show either a decrease in final cell density or a loss of virulence, an additional ten central metabolism single and double mutants were created in the following genes: *cra, gltA,*
Δicd gltA, sucA, sucC, sdhC, AfrdA, AfrdA sdhC, and fumA (Table 1). Fig. 5A shows a typical growth curve of the wild type (NB10Sm) and various central metabolism mutants. Examination of the growth yield for the various mutant strains after 24 h by optical density shows that the sucA mutant (OD$_{600}$ = 0.551), fumA mutant (OD$_{600}$ = 0.618), and a ΔfrdA sdhC mutant (OD$_{600}$ = 0.482) failed to grow to a wild type (OD$_{600}$ = 1.08) cell density (Fig. 5B). The sucA mutant and the ΔfrdA sdhC mutant have a large standard deviation at the 24 h time point that could have resulted from the strains resolving the merodiploid present in the sucA or sdhC gene. Supplementary Fig. 3 demonstrates how this reversion to a wild type phenotype could occur when the insertion mutant strains are grown in the absence of the antibiotic chloramphenicol.

Supplementing LB20 with additional nutrients restores growth of the ΔfrdA ΔsdhC mutant but not the ΔsucA mutant to wild type levels. Fig 6A shows the final cell density (OD$_{600}$) of the wild type (NB10Sm), ΔfrdA ΔsdhC mutant and the ΔsucA mutant after growth for 24 h and 48 h in LB20. The deletion mutations were shown to be stable because the standard deviation between biological repeats was nearly nonexistent and there was no increase in growth between 24 h and 48 h. The two mutant strains were further screened via colony PCR using primers specific to the pJM1 plasmid to ensure the decreased growth yield did not result from loss of this plasmid (data not shown). Fig 6B shows the final cell density (OD$_{600}$) of the wild type and the ΔfrdA ΔsdhC mutant grown in LB20 or LB20 supplemented with succinic acid (118 mM), gluconate (118 mM), malate (118 mM) or aspartate (118 mM). The data indicate that the addition of malate or aspartate increased the growth of the ΔfrdA ΔsdhC mutant to near wild type level. Although the ΔfrdA ΔsdhC mutant cannot convert succinate to fumarate, it is not
auxotrophic for any metabolite. Fig. 6C shows the 24 h cell density (OD$_{600}$) of the wild type and Δ$sucA$ mutant grown in LB20 or LB20 supplemented with lysine (118 mM) or DL-α, ε-diaminopimelic acid (118 mM) or lysine, DL-α, ε-diaminopimelic acid, and methionine (118 mM). The Δ$sucA$ mutant is auxotrophic for the TCA cycle intermediate succinyl-CoA, a metabolite that is needed in diaminopimelic acid, lysine and methionine biosynthesis [40]. The addition of lysine, DL-α, ε-diaminopimelic acid and methionine to LB20 did not restore the growth of the Δ$sucA$ mutant to a wild type cell density and indicates that the cells are either unable to import lysine or DL-α, ε-diaminopimelic acid or methionine or the cells require metabolites upstream of diaminopimelic acid in the biosynthetic pathway of lysine and the enzymes involved in this pathway cannot run in reverse. Interestingly, the addition of lysine and DAP actually caused the wild type to grow to a lower cell density, indicating that these cells do not favor these metabolites for growth.

The Δ$sucA$ mutant and the Δ$frdA$ Δ$sdhC$ mutant grow to a lower cell density compared to the wild type in various types of complex media. The final cell densities (CFU/ml) of the wild type (NB10Sm), Δ$sucA$ mutant and the Δ$frdA$ Δ$sdhC$ mutant were determined after 24 h of growth in four forms of complex media: LB20, NSSM, Spleen extract medium, and NSSSkM (Table 6). In all forms of complex media, the Δ$sucA$ mutant grew to the lowest cell density followed by the Δ$frdA$ Δ$sdhC$ mutant.

All mutants exhibited either same or lower expression levels of the three hemolysin genes compared to wild type. Vah1, RtxA, and Plp are three hemolysins secreted by $V. anguillarum$ M93Sm that have been characterized and determined to be responsible for the hemolytic/cytolytic activity against fish erythrocytes, leukocyte and epithelial cells [7,
9, 41] and unpublished data. It is unknown how these hemolysins contribute to the virulence of V. anguillarum NB10Sm. The expression of vah1, rtxA and plp during exponential phase was tested to determine whether mutations in metabolism could affect the expression of these hemolysin genes (Fig. 7A). rtxA was the most highly expressed (>4.6×10^3 copies/10 ng RNA) of the three hemolysins in NB10Sm and there was no statistically significant difference between the wild type (NB10Sm) and the two mutants (ΔsucA and ΔfrdA ΔsdhC). The mutants have a decrease in expression in both plp and vah1 compared to the wild type. However, these genes were expressed at the limit of detection by qRT-PCR. In the wild type, there were <30 copies/10 ng RNA for plp and <10 copies/10 ng RNA for vah1.

All mutants exhibited lower levels of empA metalloprotease gene expression compared to wild type. It has previously been demonstrated that V. anguillarum NB10 empA metalloprotease mutants are slightly attenuated in virulence and that empA expression is dependent upon RpoS and, therefore, highly expressed during stationary phase [6, 42, 43]. The expression of empA during stationary phase was tested to determine whether mutations in metabolism could affect the expression of this gene (Fig. 7B). There was a ~3000-fold decrease in the expression of empA in the ΔsucA mutant and a 23-fold decrease in the ΔfrdA ΔsdhC mutant compared to the wild type (NB10Sm). Both decreases in expression were statistically significant (P = 0.008 and P = 0.01 respectively). The data indicate that mutations in central metabolism can cause a decrease in the expression of the metalloprotease empA.

ΔsucA mutant and the ΔfrdA ΔsdhC mutant are as virulent as the wild type against juvenile rainbow trout. To determine if the ΔsucA mutant and the ΔfrdA ΔsdhC mutant
would be as virulent as the wild type (NB10Sm), 5 juvenile rainbow trout were
challenged via immersion at a dose of between 1.0×10^6 CFU/ml to 4.0×10^6 CFU/ml
(Table 7). There was no statistically significant difference in mortality between fish
challenged with the wild type (100%) and the ΔsucA mutant (100%) ($P = 0.39$) or ΔfrdA
ΔsdhC mutant (100%) ($P = 0.65$). The data once again indicate that central metabolism
mutants that have a lowered final cell density due to a starvation of a nutrient will not
necessarily be attenuated in virulence.

Discussion

A *V. anguillarum* M93Sm *icd* mutant (O2α serotype) was previously shown to be
attenuated in virulence and elicit an immunoprotective response in juvenile rainbow trout
[11]. Though, *V. anguillarum* is an extracellular pathogen, the attenuation was thought to
have resulted from the inability of the mutant to synthesize α-ketoglutarate and its amino
acid derivatives (i.e. glutamate and glutamine). Subsequently, we demonstrated that a
M93Sm ΔgltA mutant, also auxotrophic for glutamate, exhibited no reduction in
virulence *in vivo*. Unlike the previously reported intracellular pathogens, the attenuation
in virulence of the *icd* mutant is likely to involve more than just a simple nutrient
starvation [12-27] [Spinard, EJ et al, in preparation, chapter 2 of this manuscript 2017].
Regardless of the cause of the attenuation of the M93Sm *icd* mutant, it was still
immunoprotective and has potential as a live cell vaccine against vibriosis. *V.
anguillarum* vaccines must be multivalent in order to fully protect against vibriosis
caused by all *V. anguillarum* serotypes (O1, O2, O3) implicated in disease [30].
Accordingly, this study originally sought to create a live attenuated O1 serotype strain by
mutating *icd* in *V. anguillarum* NB10Sm. The NB10Sm *icd* mutant (the insertional
mutant and the deletion mutant) did not show the cell density limitation previously observed in the M93Sm icd mutant in complex media (Fig. 2) nor was it reduced in virulence against juvenile rainbow trout (Table 4) [11]. The NB10Sm icd mutant (ES920 and ES926) did have a longer generation time than the wild type during mid and late exponential growth that was shortened by the addition of gluconate or glutamate to LB20. The data suggest that the decrease in growth rate of the NB10Sm icd mutant (ES920) occurs because the cells are required to utilize unfavorable metabolites or perform energetically unfavorable reactions during the mid and late exponential growth phase that can be alleviated by the addition of an extra energy source (gluconate) or metabolite that cannot be synthesized (glutamate). It is not clear why the *V. anguillarum* NB10Sm icd mutant is not starved for α-ketoglutarate like the M93Sm icd mutant. One explanation could be linked to the higher expression levels of the *empA* metalloprotease in *V. anguillarum* NB10 compared to *V. anguillarum* M93Sm in noninduced (LB20) conditions [6]. LB20 is composed of yeast extract and tryptone (both of which are composed of peptides of varying sizes), although bacteria can only utilize peptides that are six amino acids in size or smaller [44, 45]. The increase in expression of *empA* could allow the NB10Sm icd mutant (ES920) to more efficiently break down and utilize proteins and large sized peptides than M93Sm, preventing the cells from being starved for glutamate.

Since the NB10Sm icd mutant (ES920) was not attenuated in virulence and did not have a final cell density limit that was lower than the wild type after 24 h of growth in complex media, additional central metabolism mutants and double mutants were constructed (Table 1). Mutations in *fumA*, *sucA* or Δ*frdA sdhC* caused reductions in the
final cell density (Fig. 5). Focus was placed on the \textit{sucA} mutant and the Δ\textit{frdA} \textit{sdhC} mutant and deletion mutants were constructed for each strain to prevent the mutants from spontaneously resolving the merodiploid (a phenomenon that was previously exploited to create the \textit{icd} revertant strain \cite{11}). The Δ\textit{frdA} Δ\textit{sdhC} mutant can run the reductive and oxidative branch of the TCA cycle to synthesize any intermediate and accordingly, is not auxotrophic for any metabolite when it is grown with glucose as the only carbon source. However, the data suggest that the cells favor metabolites that feed into the TCA cycle at \(\alpha\)-ketoglutarate such as glutamate and glutamine. Since the TCA cycle can only run \(\alpha\)-ketoglutarate to succinate (the reaction catalyzed by \textit{icd} is nonreversible), the cells are starved for the amino acid aspartate. The growth limitation of the Δ\textit{sucA} mutant was not fully characterized but is presumed to have resulted from the inability of the cells to synthesize succinyl-CoA, a metabolite utilized in the biosynthetic pathways for the production of diaminopimelic acid, lysine and methionine \cite{40}. The initial hypothesized route of infection for \textit{V. anguillarum} NB10Sm is through the skin, gills or anus of the fish where it enters the circulatory system and accumulates in the spleen \cite{4, 5}. Accordingly, the final cell densities of the Δ\textit{sucA} mutant and Δ\textit{frdA} Δ\textit{sdhC} mutant were determined in media that represent early infection (NSSM and NSSSkM) and mid-infection (spleen extract medium). In all forms of complex media (including LB20 as a control) the Δ\textit{sucA} mutant grew to the lowest cell density, followed by the Δ\textit{frdA} Δ\textit{sdhC} mutant (Table 6). The data suggests that, even under ideal conditions at each point of the infection process, the mutants could be starved for essential metabolites \textit{in vivo}. However, the infection experiments (Table 7) demonstrate that the starvation does not correlate to a loss of virulence \textit{in vivo} (discussed below).
The expression of the virulence factors (*rtxA, plp, vah1, empA*) were examined in the Δ*sucA* mutant and Δ*frdA ΔsdhC* mutant and compared to the wild type (Fig. 7). NB10 has been previously been shown to be non-hemolytic on blood agar, presumably from the hemolysins being degraded by EmpA before they can lyse the red blood cells [9]. This study expands upon this explanation and shows that the actual expression levels of the hemolysins is much lower in NB10Sm compared to M93Sm. Expression of *rtxA* during log phase was relatively similar between the wild type and the mutants, although a decrease in expression was observed for *plp* and *vah1* (Fig. 7). This decrease was not believed to be relevant since the expression of *plp* and *vah1* was very low in the wild type (28 and 6.5 copies per 10 ng of total RNA, respectively). It has previously been shown that a *V. anguillarum* M93Sm *rtxA* mutant is avirulent [7]. It is not known how *rtxA* contributes to the virulence of *V. anguillarum* NB10Sm especially since the RtxA of M93Sm and NB10Sm have different effector domains [46]. This study demonstrates that the expression of *rtxA* is 127-fold lower than in M93Sm [Spinard, EJ et al, in preparation, chapter 2 of this manuscript]. Yet, the expression of NB10Sm *rtxA* was still 160-fold higher than the expression of NB10Sm *plp* suggesting that it could be important for the infection process of NB10Sm. Expression of the metalloprotease *empA* was examined during stationary phase. *empA* has been shown to be nonessential for the virulence of *V. anguillarum* NB10 [42, 47]. It has previously been demonstrated that the expression of *empA* is cell density dependent [6]. Accordingly, the Δ*sucA* mutant had the lowest final cell density (13% of the wild type) and the lowest expression level of *empA* (0.03% of the wild type). The transcript of VanT, the transcriptional activator of *empA*, is stabilized by the sigma factor RpoS [43, 47]. Alternatively, the decrease in expression of *empA* in the
mutants could have resulted from a decrease in expression of RpoS.

Regardless of the lowered cell density limit and the decrease in \(empA \) production, both the \(\Delta sucA \) mutant and \(\Delta frdA \ \Delta sdhC \) mutant were as virulent as the wild type in juvenile rainbow trout (Table 7). The metabolite starvation that prevents the mutants from reaching a wild type growth yield \textit{in vitro} does not prevent the cells from reaching the threshold needed to cause disease \textit{in vivo}. Accordingly, the approach that was used in this study to find attenuated strains, screening central metabolism mutants that grow to a lower cell density than the wild type \textit{in vitro}, was unsuccessful probably because \(V.\ anguillarum \) is an extracellular pathogen that grows in the nutrient rich mucus of the skin or intestines. Still, nutrient starvation must affect the infection process of \(V.\ anguillarum \) and contribute to attenuation of the previously reported M93Sm \(icd \) mutant (decreased final cell density compared to the wild type). If it did not, it would have been expected that the NB10Sm \(icd \) mutant (same final cell density as the wild type) would have been attenuated. Yet, there must be other unknown factors besides nutrient starvation that are contributing to the reduction of virulence seen in \(V.\ anguillarum \) M93Sm \(icd \) mutant or else the previously reported M93Sm \(\Delta gltA \) mutant, that experiences the same starvation for glutamate as the \(icd \) mutant, would have been attenuated. Further studies must be performed with the M93Sm \(icd \) mutant to fully understand the cause of attenuation.

\textbf{Conclusions}

Multiple central metabolism mutants and double mutants were constructed in \(V.\ anguillarum \) NB10Sm. Unlike the previously described \(V.\ anguillarum \) M93Sm \(icd \) mutant, the NB10Sm \(icd \) mutant was as virulent as the wild type. Although both the \(\Delta sucA \) mutant and \(\Delta frdA \ \Delta sdhC \) mutant grew to lower cell densities than the wild type in
several forms of complex media and had large and significant decreases in expression of
the empA metalloprotease, neither strain was attenuated in virulence. Compared to plp
and vahI, there was higher expression in the gene encoding the MARTX toxin rtxA,
suggesting that rtxA may contribute to the virulence of NB10Sm. The data demonstrate
that strain specific phenotypes may result even if mutations are made in the same highly
conserved gene.
Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid	Description	Reference
V. anguillarum strains		
NB10Sm	Spontaneous Sm’ mutant of NB10 (serotype O1)	[42]
SM920	Sm’ Cm’ icd insertion mutant	This study
ES926	Sm’ Km’; icd allelic exchange mutant	This study
ES926.990	Sm’ Cm’ Km’; icd allelic exchange, gltA insertion double mutant	This study
ES930	Sm’ Cm’ cra insertion mutant	This study
ES940	Sm’ Cm’ sucA insertion mutant	This study
ES946	Sm’ Km’; sucA allelic exchange mutant	This study
ES950	Sm’ Cm’ sucC insertion mutant	This study
ES960	Sm’ Cm’ sdhC insertion mutant	This study
ES970	Sm’ Cm’ fumA insertion mutant	This study
ES985	Smr Cm’ Km’; frdA insertion mutant	This study
ES986	Sm’ Km’; frdA allelic exchange mutant	This study
ES986.966	Sm’ Km’; frdA allelic exchange, sdhC allelic exchange double mutant	This study
ES990	Sm’ Cm’ gltA insertion mutant	This study
ES2546	Sm’ Km’; CUO allelic exchange mutant	This study
ES2546.920	Sm’ Cm’ Km’; CUO allelic exchange icd insertion double mutant	This study
E. coli strains		
Sm10	*thi thr leu tonA lacY supE recA* RP4-2-Tc::Mu::Km (λ pir)	[48]
S100	Km’; Sm10 containing plasmid pNQ705-1	[49]
Q925	Km’ Cm’; Sm10 containing plasmid pDM4-icd	This study
Q420	Km’ Cm’; Sm10 containing plasmid pNQ705-icd	[11]
Q440	Km’ Cm’; Sm10 containing plasmid pNQ705-sucA	[11]
Q450	Km’ Cm’; Sm10 containing plasmid pNQ705-sucC	[11]
Q460	Km’ Cm’; Sm10 containing plasmid pNQ705-sdhC	[11]
Q470	Km’ Cm’; Sm10 containing plasmid pNQ705-fumA	[11]
Q430	Km’ Cm’; Sm10 containing plasmid pNQ705-cra	[11]
Q990	Km’ Cm’; Sm10 containing plasmid pNQ705-gltA	This study
Q945	Km’ Cm’; Sm10 containing plasmid pDM4-sucA	This study
Q2545	Km’ Cm’; Sm10 containing plasmid pDM4-CUO	This study
Q985	Km’ Cm’; Sm10 containing plasmid pDM4-frdA	This study
Q965	Km’ Cm’; Sm10 containing plasmid pDM4-sdhC	This study
Plasmid		
pNQ705-1	Cm’; suicide vector with R6K origin	[49]
pDM4	Cm’ Km’ SacBC; suicide vector	[35]
pNQ705-gltA	Cm’; For gltA insertion mutant	This study
pNQ705-icd	Cm’; For icd insertion mutant	This study
pNQ705-sucA	Cm’; For sucA insertion mutant	This study
pNQ705-sucC	Cm’; For sucC insertion mutant	This study
pNQ705-sdhC	Cm’; For sdhC insertion mutant	This study
pNQ705-fumA	Cm’; For fumA insertion mutant	This study
pNQ705-cra	Cm’; For cra insertion mutant	This study
pDM4-icd	Cm’ Km’ SacBC; For icd deletion mutant	This study
pDM4-sucA	Cm’ Km’ SacBC; For sucA deletion mutant	This study
pDM4-CUO	Cm’ Km’ SacBC; For CUO deletion mutant	This study
pDM4-sdhC	Cm’ SacBC; For sdhC deletion mutant	This study
Table 2. Primers used in this study.

Primer	Sequence (5' to 3')¹ ²	Description	Reference
pr31	TGGAGCCTATTTATGCGATTATC	For icd insertional mutant, forward, Sacl	[14]
pr32	AATTCTAGATATGCGCTTTTAACGCACTTC	For icd insertional mutant, reverse, XbaI	[14]
pr50	AAGAGCTCGAGATCCGATCTGAG	For sucA insertional mutant, forward, Sacl	[14]
pr51	GTTCTAGATATGCGATCTGAG	For sucA insertional mutant, reverse, XbaI	[14]
pr52	AAGAGCTCGAGATCCGATCTGAG	For sucC insertional mutant, forward, Sacl	[14]
pr53	GTTCTAGATATGCGATCTGAG	For sucC insertional mutant, reverse, XbaI	[14]
pr54	AAGAGCTCGAGATCCGATCTGAG	For sdhC insertional mutant, forward, Sacl	[14]
pr55	GTTCTAGATATGCGATCTGAG	For sdhC insertional mutant, reverse, XbaI	[14]
pr56	GTTCTAGATATGCGATCTGAG	For fumA insertional mutant, forward, Sacl	[14]
pr57	GTTCTAGATATGCGATCTGAG	For fumA insertional mutant, reverse, XbaI	[14]
pm110	GCGGAGCTCTGATGGGCGAAG	For glnA insertional mutant, forward, Sacl	This study
pm111	GCGGAGCTCTGATGGGCGAAG	For glnA insertional mutant, reverse, XbaI	This study
pr33	AAGAGCTCGAGATCCGATCTGAG	For cra insertional mutant, forward, Sacl	This study
pr34	AAGAGCTCGAGATCCGATCTGAG	For cra insertional mutant, reverse, XbaI	This study
pm119	GCCGAGCTTTGGTGCTGATCTTATTA	For CUO 5' region, forward, sac1	This study
pm120	GCCGAGCTTTGGTGCTGATCTTATTA	For CUO 5' region, reverse xba1	This study
pm121	GCCGAGCTTTGGTGCTGATCTTATTA	For CUO 3' region, forward, xho1	This study
pm122	GCCGAGCTTTGGTGCTGATCTTATTA	For CUO 3' region, reverse xhe1	This study
PmG-13	aacccggggagctctggtaaagaaaaaagtcagagctgctgtta	For sdhC 5' region, forward, Gibson assembly	This study
PmG-14	aacccggggagctctggtaaagaaaaaagtcagagctgctgtta	For sdhC 5' region, reverse, Gibson assembly	This study
PmG-15	tccgggttcgcaatttgctgtgagcc	For sdhC 3' region, forward, Gibson assembly	This study
PmG-16	cgggttaaccggctctggtaaagaaaaaagtcagagctgctgtta	For sdhC 3' region, reverse, Gibson assembly	This study
pr66	TAATATTTACATGATAATTGGTGCGCCGACCATC	For icd 3' region, reverse, xba1	This study
pr69	TAATATTTACATGATAATTGGTGCGCCGACCATC	For icd 3' region, forward, xho1	This study
pr70NheI	ACTGCTGAGCTGAGATCCGATCTTATTA	For icd 3' region, reverse, nhe1	This study
pm64suc	GCACGAGCTTGGTGCTGATCTGAG	For sucA 3' region, forward, xho1	This study
pm65suc	GCACGAGCTTGGTGCTGATCTGAG	For sucA 3' region, reverse, xhe1	This study
pm76	GTGAGCTGAGCTGAGATCCGATCTTATTA	For frdA 5' region, forward, sac1	This study
pm77	GTGAGCTGAGCTGAGATCCGATCTTATTA	For frdA 5' region, reverse, xbaI	This study
pm78	GTGAGCTGAGCTGAGATCCGATCTTATTA	For frdA 3' region, forward, xho1	This study
pm79	GTGAGCTGAGCTGAGATCCGATCTTATTA	For frdA 3' region, reverse, xhe1	This study
pm38	TGCATTCTAGAGAAATGCTGACTGACATGAA	For KanR forward, XbaI	This study
pm39	TGCATTCTAGAGAAATGCTGACTGACATGAA	For KanR reverse, xho1	This study
vah1 F RT	GTTGGATATGCGACGACGGCTAC	For vah1 qRT-PCR, forward	Reference
vah1 R RT	GTTGGATATGCGACGACGGCTAC	For vah1 qRT-PCR, reverse	Reference
plp F RT	CAGTGACCCGGAACATGACATGAA	For plp qRT-PCR, forward	Reference
plp R RT	CAGTGACCCGGAACATGACATGAA	For plp qRT-PCR, reverse	Reference
Pm111	GCGCAATCTGTTGGGCACGATTGA	For rxa qRT-PCR, forward	Reference
Pm112	GCGCAATCTGTTGGGCACGATTGA	For rxa qRT-PCR, reverse	Reference
empA-qRT-PCR-5'	TCAATCTTGGTGCTGTTACGT	For empA qRT-PCR, forward	Reference
empA-qRT-PCR-3'	GCGCGATTAAACACACCACTGGAA	For empA qRT-PCR, reverse	Reference

¹Lowercase sequences are designed to be homologous to flanking sequences
²Underlined sequences are designed to be restriction enzyme cut sites
Table 3. Generation times of various *V. anguillarum* strains grown in LB20

Strain	Early Exponential Phase (Minutes)	Mid Exponential Phase (Minutes)	Late Exponential Phase (Minutes)						
	LB20	Gluconate	Glutamate	LB20	Gluconate	Glutamate	LB20	Gluconate	Glutamate
NB10Sm	55	65	74	98	84	84	105	99	102
icd	55	63	68	108	76	83	107	97	101

1Values calculated from data presented in Figure 2A and Figure 3 during exponential growth.
Table 4. Virulence of *V. anguillarum* strains in juvenile rainbow trout

Strain	Dosage (CFU/ml)	Total Mortality	No. of days until death (No. of fish / total)
NB10Sm	7.2-9.4×10⁶	80%	2 (6/10) 3 (5/10) 4 (6/10) 5 (8/10)
icd (ES920)	6.5-6.9×10⁶	70%	2 (1/10) 3 (3/10) 4 (4/10) 5 (5/10) 7 (7/10)
NSS		0%	NA
Table 5. Generation times of various *V. anguillarum* strains grown in LB20

Strain	Early Exponential Phase (Minutes)	Late Exponential Phase (Minutes)
NB10Sm	55	102
icd (ES920)	45	102
gltA	51	100
Δicd *gltA*	54	103
cra	52	102
sucA	55	115
sucC	67	107
sdhC	58	109
fumA	57	108
ΔfrdA	60	101
ΔfrdA *sdhC*	58	113

1Values calculated from data presented in Figure 5A during exponential growth.
Table 6. Final cell density (CFU/ml) of various *V. anguillarum* cultures grown for 24 h

Strain	CFU/ml in LB20	CFU/ml in NSSM (200µg/ml)	CFU/ml in Spleen	CFU/ml in NSSSkM (200µg/ml)
NB10Sm	7.8×10⁹ (±1.1×10⁹)	7.2×10⁹ (±0.9×10⁹)	1.5×10⁸ (±0.2×10⁸)	1.6×10⁹ (±0.3×10⁸)
ΔsucA	1.0×10⁹ (±0.9×10⁹)**	4.6×10⁸ (±2.7×10⁸)**	1.2×10⁷ (±0.8×10⁷)**	3.8×10⁷ (±0.3×10⁸)**
ΔfrdA ΔsdhC	2.2×10⁹ (±0.6×10⁹)*	2.5×10⁹ (±1.2×10⁹)*	7.7×10⁷ (±0.5×10⁷)	2.2×10⁸ (±0.3×10⁸)**

** statistically significant to wild type (*P* < 0.01), * statistically significant to wild type (*P* < 0.05)
Table 7. Virulence of *V. anguillarum* strains in juvenile rainbow trout

Strain	Dosage (CFU/ml)	Total Mortality	No. of days until death (No. of fish / total)						
NB10Sm	4×10⁶	100%	2 (3/5) 3 (4/5) 4 (5/5)						
ΔsucA	3.5×10⁶	100%	2 (1/5) 3 (4/5) 5 (5/5)						
ΔfrdA ΔsdhC	1.×10⁶	100%	2 (4/5) 3 (5/5)						
NSS	NA	0%	NA						
Strain Information	Name	Gene	Mutation Type	Parental Strain	Growth Rate	Growth Characteristics	Auxotrophic	Gene Expression	Venid cortical growth
--------------------	--------	------	---------------	----------------	-------------	------------------------	-------------	-----------------	------------------------
XM410	mab	ID	M93Sm	-	+	+	ND	ND	ND
XM420	icd	ID	M93Sm	-	+	-	ND	ND	+
XM430	cya	ID	M93Sm	+	+	+	ND	ND	+
XM440	mca	ID	M93Sm	-	+	-	ND	ND	+
XM450	sucC	ID	M93Sm	-	+	+	ND	ND	+
XM460	sbhC	ID	M93Sm	-	+	+	ND	ND	+
XM470	fmaA	ID	M93Sm	-	+	+	ND	ND	+
ES422	icd	NA	XM420	+	+	+	ND	ND	+
ES946	glA	AE	M93Sm	+	-	±	ND	ND	+
ES3-2	glA,	pppR	AE, B64L	+	-	+	ND	ND	++
ES496.6000	glA,	pppC	AE, pppR	+	-	-	ND	ND	+
ES6600	pppC	AE	M93Sm	+	+	+	ND	ND	+
ES920	icd	ID	NB10Sm	+	-	ND	ND	ND	+
ES926	icd	AE	NB10Sm	-	+	-	ND	ND	+
ES926.990	icd,	glA	AE, ID	+	+	ND	ND	ND	+
ES930	cya	ID	NB10Sm	+	+	ND	ND	ND	+
ES940	mca	ID	NB10Sm	-	+	+	ND	ND	+
ES946	mca	ID	NB10Sm	-	+	-	ND	ND	+
ES950	sucC	ID	NB10Sm	-	+	ND	ND	ND	+
ES960	sbhC	ID	NB10Sm	-	+	ND	ND	ND	+
ES970	fmaA	ID	NB10Sm	+	+	ND	ND	ND	+
ES986	fmaA	AE	NB10Sm	-	+	ND	ND	ND	+
ES986.966	fmaA	AE	NB10Sm	-	+	ND	ND	ND	+
ES990	glA	ID	NB10Sm	+	+	ND	ND	ND	+
ES2546	CuoO	AE	NB10Sm	+	+	ND	ND	ND	+
ES2546.920	CuoO	AE	NB10Sm	+	+	ND	ND	ND	+

ID: Insertional deletion (metabolically capable of restoring to a wild type genotype)
AE: Allelic exchange
NA: Not applicable
ND: Not determined
CUO: Citrate utilization operon
+ Wild type level
++ Greater than wild type
- Less than wild type

TABLE 8: Comparison of all mutant _V. anguillarum_ strains
Figure Legends

Figure 1. Embden-Meyerhoff-Parnas Pathway, TCA cycle, and metabolism of fructose. The arrows indicate the physiological directions of the reactions. The gene symbols of the enzyme for each reaction are listed beside the reaction. Boxed genes indicate the genes that were mutated in this study (Table 1).
Figure 2. Growth of *V. anguillarum* WT (NB10Sm) and the *icd* mutant (ES920) under various conditions. Growth curves of *V. anguillarum* strains NB10Sm and the *icd* mutant in LB20 at 27°C with shaking (200 rpm). At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are the average of two independent experiments. Error bars represent 1 standard deviation. B) Final cell densities (OD$_{600}$) of *V. anguillarum* strains NB10Sm and the *icd* mutant after 24 h of growth in 3M plus 0.15% glucose supplemented with or without 2 mM glutamate or 2 mM glutamine. In each experiment cells grown overnight in LB20 were washed in NSS and used to inoculate the appropriate media. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$).
Figure 3. Growth of *V. anguillarum* WT (NB10Sm) and the *icd* mutant under various conditions. A) Growth curves of *V. anguillarum* NB10Sm (black) and the *icd* mutant (blue) in LB20 (dashed lines) or LB20 supplemented with 101.7 mM gluconate (solid lines). B) Growth curves of *V. anguillarum* NB10Sm (black) and the *icd* mutant (blue) in LB20 (dashed lines) or LB20 supplemented with 118 mM glutamate (solid lines). In each experiment cells grown overnight in LB20 were washed in NSS and used to inoculate the appropriate media. Cultures were incubated at 27°C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD₆₀₀). The data are the average of two independent experiments. Different letters indicate statistical significance among groups (*P* < 0.05). Statistical analysis was based on data at 24 h. Error bars represent 1 standard deviation.
Figure 4. Growth curves of various *V. anguillarum* strains grown in LB20 at 27°C with shaking (200 rpm). At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are the average of two independent experiments. Error bars represent 1 standard deviation.
Figure 5. Growth of various *V. anguillarum* strains grown in LB20 at 27°C with shaking (200 rpm). **A)** Growth curve of various *V. anguillarum* strains. At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). **B)** Examination of the 24 h time point from Figure 5A. The data are the average of two independent experiments. Between marked strains and NB10Sm: * $P < 0.05$ and *** $P < 0.001$. Error bars represent 1 standard deviation.
Figure 6. Growth of *V. anguillarum* WT (NB10Sm) the ΔsucA mutant and the ΔfrdA ΔsdhC mutant under various conditions. **A)** Final cell densities (OD$_{600}$) of *V. anguillarum* strains NB10Sm, the ΔsucA mutant and the ΔfrdA ΔsdhC mutant after 24 h or 48 h of growth in LB20. **B)** Final cell densities (OD$_{600}$) of *V. anguillarum* strains NB10Sm and the ΔfrdA ΔsdhC mutant after growth for 24 h in LB20 with or without the addition of either succinic acid (118 mM), gluconate acid (118 mM), malate acid (118 mM), or aspartate acid (118 mM). **C)** Final cell densities (OD$_{600}$) of *V. anguillarum* strains NB10Sm and the ΔsucA mutant after 24 h of growth in LB20 with or without the addition of either lysine (118 mM) or DL-α, ε-Diaminopimelic acid. In each experiment cells grown overnight in LB20 were washed in NSS and used to inoculate the appropriate media. Cultures were incubated at 27$^\circ$C in a shaking water bath (200 rpm) and at various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are the average of two independent experiments. Different letters indicate statistical significance among groups ($P < 0.05$). Between marked strains and NB10Sm grown in LB20: ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$. Error bars represent 1 standard deviation. Error bars represent 1 standard deviation.
Figure 7. mRNA expression levels of various genes. A) Expression of \textit{vah1, plp, rtxA} determined by qRT-PCR analysis of \textit{V. anguillarum} wild-type (NB10Sm), the \textit{ΔsucA} mutant and the \textit{ΔfrdA ΔsdhC} mutant during logarithmic (Log)-phase growth. B) Expression of \textit{empA} determined by qRT-PCR analysis of \textit{V. anguillarum} wild-type (NB10Sm), the \textit{ΔsucA} mutant and the \textit{ΔfrdA ΔsdhC} mutant during stationary phase (Stat)-phase growth. The data presented are representative of two independent experiments. Each value is the average for six replicates. Between marked strains and NB10Sm: ** $P < 0.01$. Error bars represent 1 standard deviation.
Figure S1. Cell density determined by viable count vs. OD$_{600}$ of *V. anguillarum* NB10Sm. The line indicates linear regression.
Figure S2. Graphical representation of the CUO region (blue arrows) and flanking genes (green arrows) in the genomes of *V. anguillarum* A) NB10 and B) M93Sm. Yellow arrows represent open reading frames encoding hypothetical proteins.
Figure S3. Graphical representation of a suicide vector inserting into the $sucA$ gene.

A) First a crossover event occurs in the genome and the suicide vector inserts in the 5’ region of $sucA$.

B) If the cells are grown without selection a second cross over event can occur that will

C) resolve the merodiploid and restore the wild type $sucA$. Figure not

drawn to scale.
Figure S4. Growth curves of *V. anguillarum* M93Sm, NB10Sm, and their derived *icd* mutant strains grown in LB20 at 27°C with shaking (200 rpm). At various time points after inoculation samples were taken for determination of optical density at 600 nm (OD$_{600}$). The data are the average of two independent experiments. Error bars represent 1 standard deviation.
References

1. Austin B, Austin DA: Characteristics of the pathogens. Bacterial fish pathogens: disease of farmed and wild fish, 3rd edn. London, United Kingdom: Praxis Publishing Co.; 1999.

2. Egidius E: Vibriosis: Pathogenicity and pathology. Aquaculture 1987, 7:15-28.

3. Toranzo AE, Barja, J.L.: Virulence factors of bacteria pathogenic for coldwater fish. Annual Review of Fish Diseases 1993, 3:5-36.

4. O'Toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H: Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microbial pathogenesis 2004, 37(1):41-46.

5. Spanggaard B, Huber I, Nielsen J, Nielsen T, Gram L: Proliferation and location of Vibrio anguillarum during infection of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases 2000, 23(6):423-427.

6. Denkin SM, Nelson DR: Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Applied and environmental microbiology 2004, 70(7):4193-4204.

7. Li L, Rock JL, Nelson DR: Identification and characterization of a repeat-intoxin gene cluster in Vibrio anguillarum. Infection and immunity 2008, 76(6):2620-2632.

8. Mou X, Spinard EJ, Driscoll MV, Zhao W, Nelson DR: H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in Vibrio anguillarum. Infection and immunity 2013, 81(10):3566-3576.
9. Rock JL, Nelson DR: Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. *Infection and immunity* 2006, 74(5):2777-2786.

10. Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fallman M, Milton DL: Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. *Plos One* 2012, 7(5):e37678.

11. Mou X, Spinard EJ, Hillman SH, Nelson DR: Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss). In. BMC Microbiology; submitted for publication 2017.

12. Hoiseth SK, Stocker BAD: Aromatic-Dependent Salmonella-Typhimurium Are Non-Virulent and Effective as Live Vaccines. *Nature* 1981, 291(5812):238-239.

13. Bowe F, Ogaora P, Maskell D, Cafferkey M, Dougan G: Virulence, Persistence, and Immunogenicity of Yersinia-Enterocolitica O-8 Aroa Mutants. *Infection and immunity* 1989, 57(10):3234-3236.

14. Roberts M, Maskell D, Novotny P, Dougan G: Construction and Characterization Invivo of Bordetella-Pertussis-Aroa Mutants. *Infection and immunity* 1990, 58(3):732-739.

15. Homchampa P, Strugnell RA, Adler B: Molecular Analysis of the Aroa Gene of Pasteurella-Multocida and Vaccine Potential of a Constructed Aroa Mutant. *Molecular microbiology* 1992, 6(23):3585-3593.
16. Lawrence ML, Cooper RK, Thune RL: Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant. *Infection and immunity* 1997, 65(11):4642-4651.

17. Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T, Cohen PS: A Salmonella enterica serovar typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice. *Infection and immunity* 2008, 76(3):1128-1134.

18. Mercado-Lubo R, Leatham MP, Conway T, Cohen PS: Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice. *Infection and immunity* 2009, 77(4):1397-1405.

19. Utley M, Franklin DP, Krogfelt KA, Laux DC, Cohen PS: A Salmonella typhimurium mutant unable to utilize fatty acids and citrate is avirulent and immunogenic in mice. *FEMS microbiology letters* 1998, 163(2):129-134.

20. Yimga MT, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS: Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. *Infection and immunity* 2006, 74(2):1130-1140.

21. Valentine PJ, Devore BP, Heffron F: Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. *Infection and immunity* 1998, 66(7):3378-3383.
22. Allen JH, Utley M, van Den Bosch H, Nuijten P, Witvliet M, McCormick BA, Krogfelt KA, Licht TR, Brown D, Mauel M et al: A functional cra gene is required for Salmonella enterica serovar typhimurium virulence in BALB/c mice. Infection and immunity 2000, 68(6):3772-3775.

23. Dahal N, Abdelhamed H, Karsi A, Lawrence ML: Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri. Vaccine 2014, 32(31):3971-3976.

24. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML: Tricarboxylic acid cycle and one-carbon metabolism pathways are important in Edwardsiella ictaluri virulence. Plos One 2013, 8(6):e65973.

25. Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML: Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis. Veterinary microbiology 2014, 169(1-2):107-112.

26. Alteri CJ, Smith SN, Mobley HL: Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS pathogens 2009, 5(5):e1000448.

27. VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, Crowe AM, Eltis LD, Perola E, Deininger DD et al: Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS pathogens 2015, 11(2):e1004679.
28. Larsen MH, Boesen HT: Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. *FEMS microbiology letters* 2001, 203(2):149-152.

29. Pedersen K, Grisez L, van Houdt R, Tiainen T, Ollevier F, Larsen JL: Extended serotyping scheme for Vibrio anguillarum with the definition and characterization of seven provisional O-serogroups. *Current microbiology* 1999, 38(3):183-189.

30. Grisez L, Ollevier F: Comparative Serology of the Marine Fish Pathogen *Vibrio anguillarum*. *Applied and environmental microbiology* 1995, 61(12):4367-4373.

31. Denkin SM, Nelson DR: Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. *Applied and environmental microbiology* 1999, 65(8):3555-3560.

32. Airdrie DW, Paterson WD, Stevenson RMW, Flett DE: A Different Vibriosis Problem in New Brunswick Salmon Rearing. *Aquaculture Association of Canada* 1989, 3:119-121.

33. Norqvist A, Hagstrom A, Wolf-Watz H: Protection of rainbow trout against vibriosis and furunculosis by the use of attenuated strains of Vibrio anguillarum. *Applied and environmental microbiology* 1989, 55(6):1400-1405.

34. Vaatanen P: Microbiological studies in coastal waters of the Northern Baltic Sea. I. Distribution and abundance of bacteria and yeasts in the Tvarminne area. *Walter Andre Nottback Found Sci Rep* 1976, 1:1-58.
35. Neidhardt FC, Bloch PL, Smith DF: **Culture medium for enterobacteria.** _Journal of bacteriology_ 1974, **119**(3):736-747.

36. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H: **Flagellin A is essential for the virulence of *Vibrio anguillarum*.** _Journal of Bacteriology_ 1996, **178**(5):1310-1319.

37. Varina M, Denkin SM, Staroscik AM, Nelson DR: **Identification and characterization of Epp, the secreted processing protease for the Vibrio anguillarum EmpA metalloprotease.** _Journal of bacteriology_ 2008, **190**(20):6589-6597.

38. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO: **Enzymatic assembly of DNA molecules up to several hundred kilobases.** _Nature methods_ 2009, **6**(5):343-345.

39. Holm KO, Nilsson K, Hjerde E, Willassen NP, Milton DL: **Complete genome sequence of *Vibrio anguillarum* strain NB10, a virulent isolate from the Gulf of Bothnia.** _Standards in genomic sciences_ 2015, **10**:60.

40. Neidhardt FC, Curtiss R: **Escherichia Coli and Salmonella: Cellular and Molecular Biology:** ASM Press; 1996.

41. Li L, Mou X, Nelson DR: **Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of *Vibrio anguillarum*.** _BMC microbiology_ 2013, **13**:271.

42. Milton DL, Norqvist A, Wolf-Watz H: **Cloning of a metalloprotease gene involved in the virulence mechanism of *Vibrio anguillarum*.** _Journal of bacteriology_ 1992, **174**(22):7235-7244.
43. Weber B, Croxatto A, Chen C, Milton DL: RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT. *Microbiology* 2008, **154**(Pt 3):767-780.

44. Payne JW, Gilvarg C: Size restriction on peptide utilization in Escherichia coli. *The Journal of biological chemistry* 1968, **243**(23):6291-6299.

45. Sezonov G, Joseleau-Petit D, D'Ari R: Escherichia coli physiology in Luria-Bertani broth. *Journal of bacteriology* 2007, **189**(23):8746-8749.

46. Satchell KJ: Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. *Microbiology spectrum* 2015, **3**(3).

47. Croxatto A, Chalker VJ, Lauritz J, Jass J, Hardman A, Williams P, Camara M, Milton DL: VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. *Journal of bacteriology* 2002, **184**(6):1617-1629.

48. Simon R, Priefer U, Puhler A: A Broad Host Range Mobilization System for Invivo Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria. *Bio-Technol* 1983, **1**(9):784-791.

49. McGee K, Horstedt P, Milton DL: Identification and characterization of additional flagellin genes from Vibrio anguillarum. *Journal of bacteriology* 1996, **178**(17):5188-5198.
Appendix-I

Published Dec 3rd 2015 in Genome Announcements

Draft genome of the marine pathogen Vibrio coralliilyticus RE22

Edward Spinarda, Linda Kessnera, Marta Gomez-Chiarrib, David C. Rowleyc, David R. Nelsona#

aDepartment of Cell and Molecular Biology, University of Rhode Island, Kingston, USA;
bDepartment of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston Rhode Island, USA; cDepartment of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA

Running Head: Genome of marine pathogen Vibrio coralliilyticus RE22

#Address correspondence to David R. Nelson, dnelson@uri.edu
Vibrio coralliilyticus RE22 is a causative agent of vibriosis in larval bivalves. We report the draft genome of *V. coralliilyticus* RE22 and describe additional virulence factors, which may provide insight into the mechanism of pathogenicity.

Vibrio coralliilyticus RE22 (formally *Vibrio tubiashii* RE22) is a marine pathogen and a causative agent of vibriosis in larval bivalves (1). Disease is characterized by high mortality rates leading to severe loss of production in shellfish hatcheries (2-4). Currently, only two proteases (VtpA and VtpB) and one hemolysin (VthA) have been characterized in RE22 (5-7). To better understand mechanisms of pathogenicity, it is necessary to discover additional potential virulence factors. Here we announce the draft genome sequence of *V. coralliilyticus* RE22 and selectively describe some potential virulence factors.

V. coralliilyticus RE22Sm (a spontaneous mutant resistant to streptomycin) was grown overnight in yeast-peptone broth supplemented with 3% NaCl (YP30) at 27°C in a shaking water bath. Genomic DNA was isolated using the Wizard Genomic DNA Purification kit (Promega) according to the manufacturer’s instructions except DNA was resuspended into 100 μl of a 2mM Tris-HCl, pH 8 solution. DNA was sequenced at the Rhode Island Genomics Sequencing Center using an Illumina MiSeq Sequencer. Reads were trimmed using the CLC Genomics Workbench (v8.0.1) for quality, ambiguous base pairs, adapters, duplicates and size resulting in 7,602,646 paired-end and mate-paired reads averaging 235.84 bp in size. Reads were assembled using the de novo assembly algorithm of CLC Genomics Workbench and SPAdes Genomic Assembler (v3.1.1) (8). Contigs with an average coverage above 110 reads were joined using the CLC Microbial Genome Finishing module using *V. coralliilyticus* OCN014 as a reference genome. In
total, the draft genome is composed of five contigs. Three contigs totaling 3.46 Mbp and having an average G+C content of 46% mapped to chromosome 1 of *V. coralliilyticus* OCN014. The complete chromosome 2 is represented by one 1.90 Mbp contig with a G+C content of 45%. A megaplasmid is represented by one 0.32 Mbp contig with a G+C content of 50%. The draft genome was annotated using Rapid Annotation using Subsystem Technology (RAST) and resulted in 5234 open reading frames (9-11).

The genome of *V. coralliilyticus* RE22 encodes two extracellular metalloproteases besides the previously described *vtpA* and *vtpB*. One protease shows similarity to *epp* in *Vibrio anguillarum* (12) while the other contains a domain conserved in M4 family of metalloproteases (13-17). In addition to *vthA*, three putative hemolysin/cytolysin genes were discovered. A putative MARTX toxin operon encoding three T1SS transport proteins, a MARTX toxin, and a hypothetical protein is on the megaplasmid. Unlike typical MARTX toxin gene clusters, the transporter genes are not transcribed divergently from the MARTX toxin (18). Instead they seem to be in the MARTX operon, upstream of the MARTX toxin gene. Unlike most MARTX toxin gene clusters, no *rtxC* (acyltransferase) is present in the operon. Additional putative hemolysins include a phospholipase/hemolysin located on chromosome 2 that shows similarity to *plp* in *V. anguillarum* (19) and a hemolysin annotated as *hlyA* located on chromosome 1 that shows similarity to *vah1* in *V. anguillarum* (20).

This Whole Genome Shotgun project has been deposited in DDBJ/ENA/GenBank under the accession no. LGLS00000000. The version described in this paper is the first version, LGLS01000000.
Funding information. This work was supported by an award from the Rhode Island Science and Technology Council to DRN and DR. This research is based in part upon work conducted using the Rhode Island Genomics and Sequencing Center, which is supported in part by the National Science Foundation under EPSCoR Grants Nos. 0554548 & EPS-1004057. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Acknowledgements. We thank Ralph Elston and Hiroaki Hasegawa for providing us with the *Vibrio coralliilyticus* RE22 strain.

References.

1. **Wilson B, Muirhead A, Bazanella M, Huete-Stauffer C, Vezzulli L, Bourne DG.** 2013. An improved detection and quantification method for the coral pathogen *Vibrio coralliilyticus*. PLoS One 8:e81800.

2. **Estes RM, Friedman CS, Elston RA, Herwig RP.** 2004. Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster *Crassostrea gigas* larvae. Dis Aquat Organ 58:223-230.

3. **Elston RA, Hasegawa H, Humphrey KL, Polyak IK, Hase CC.** 2008. Re-emergence of *Vibrio tubiashii* in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis Aquat Organ 82:119-134.

4. **Sindermann CJ, Lightner DV.** 1988. Disease diagnosis and control in North American marine aquaculture, 2nd, rev. ed. Elsevier, Amsterdam ; New York.
5. **Hasegawa H, Hase CC.** 2009. TetR-type transcriptional regulator VtpR functions as a global regulator in *Vibrio tubiashii*. Appl Environ Microbiol **75**:7602-7609.

6. **Hasegawa H, Lind EJ, Boin MA, Hase CC.** 2008. The extracellular metalloprotease of *Vibrio tubiashii* is a major virulence factor for pacific oyster (*Crassostrea gigas*) larvae. Appl Environ Microbiol **74**:4101-4110.

7. **Hasegawa H, Hase CC.** 2009. The extracellular metalloprotease of *Vibrio tubiashii* directly inhibits its extracellular haemolysin. Microbiology **155**:2296-2305.

8. **Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA.** 2013. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol **20**:714-737.

9. **Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O.** 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics **9**:75.

10. **Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, 3rd, Stevens R, Vonstein V, Wattam AR, Xia F.** 2015. RASTtk: a modular and extensible
implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365.

11. **Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R.** 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206-214.

12. **Varina M, Denkin SM, Staroscik AM, Nelson DR.** 2008. Identification and characterization of Epp, the secreted processing protease for the *Vibrio anguillarum* EmpA metalloprotease. J Bacteriol 190:6589-6597.

13. **Adekoya OA, Sylte I.** 2009. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des 73:7-16.

14. **Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH.** 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205-210.

15. **Marchler-Bauer A, Bryant SH.** 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327-331.

16. **Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH.**
2015. CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222-226.

17. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225-229.

18. Satchell KJ. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75:5079-5084.

19. Li L, Mou X, Nelson DR. 2013. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 13:271.

20. Rock JL, Nelson DR. 2006. Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect Immun 74:2777-2786.
Appendix-II

Published July 28th 2016 in Genome Announcements

Draft genome sequence of the emerging bivalve pathogen* Vibrio tubiashii subsp. europaeus.

Edward J. Spinarda, Javier Dubertb, David R. Nelsona#, Susana Prado, Marta Gomez-Chiarrić, Juan L. Barjab.

aDepartment of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881 United States

bDepartamento de Microbiología y Parasitología, CIBUS–Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, 15782 Spain.

cDepartment of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, 02881 United States

Running title: Draft genome of* Vibrio tubiashii subsp. europaeus.

#Corresponding author:

Address correspondence to David R. Nelson, dnelson@uri.edu
Vibrio tubiashii subsp. **europaeus** is a bivalve pathogen isolated during episodes of mortality affecting larval cultures in different shellfish hatcheries. Here we announce the draft genome of the type strain PP-638 and describe potential virulence factors, which may provide insight into the mechanism of pathogenicity.

Vibrio tubiashii subsp. **europaeus** is an emerging bivalve pathogen identified recently as the etiological agent responsible of larval and spat mortalities in clam, oyster and abalone cultures detected in Spanish and French hatcheries (1, 2). This pathogen is a causative agent of vibriosis inducing mass mortalities and important economic losses, representing the main bottleneck for the production process in shellfish aquaculture (1, 2).

V. tubiashii subsp. **europaeus** PP-638\(^T\) (= CECT 8136\(^T\)= DSM 27349\(^T\)) was originally isolated from seawater in a culture tank of flat oyster (*Ostrea edulis*) during an episode of larval mortality detected in a shellfish hatchery (Galicia, NW Spain) (1). DNA was isolated from **V. tubiashii** subsp. **europaeus** PP-638\(^T\) grown up overnight in YP30 using the Wizard Genomic DNA Purification kit (Promega) following the manufacturer’s instructions except DNA was resuspended in 2mM Tris-HCl Buffer (Bio Basic). Genomic DNA was sequenced using an Illumina MiSeq at the Rhode Island Genomics and Sequencing Center at the University of Rhode Island. Reads were trimmed using the CLC Genomics Workbench (v8.5.1) for quality, ambiguous nucleotides and adapters. 2,943,708 paired-end and 3,234,516 mate-paired reads providing 199\(\times\) coverage were assembled using Spades (v3.1.1) using the default parameters (1). Contigs were filter based on 34\(\times\) coverage and 4000 bp length resulting in ten contigs with an N50 of
1,788,614 and an average G + C content of 45.37%. The assembly was mapped to *Vibrio tubiashii* ATCC 19109 using the CLC Microbial Genome Finishing module and resulted in six contigs mapping to chromosome 1, one complete contig representing chromosome 2, one complete contig representing the p251-like megaplasmid and one contig mapping to the p57-like plasmid (2). One 4,885 bp contig did not map to the reference genome. The draft genome was submitted to Rapid Annotations using Subsystems Technology (RAST) for annotation resulting in 5157 open reading frames (3-5).

Encoded on chromosome 2 of the *V. tubiashii* subsp. * europaeus* PP-638T genome is a putative metalloprotease that has a 75% similarity to VtpA found in *Vibrio coralliilyticus* RE22 (6). Another protease that has a 71% similarity to Epp in *Vibrio anguillarum* M93Sm is encoded on chromosome 2 (7). There are three putative hemolysins and phospholipases encoded in the genome. One hemolysin located on chromosome 2 has a 67% similarity to Plp in *V. anguillarum* M93Sm (8, 9). In *V. anguillarum* M93Sm, *plp* is divergently transcribed from the pore-forming hemolysin/cytolysin *vah1* (9). In *V. tubiashii* subsp. * europaeus* PP-638T, the Plp homolog is also divergently transcribed away from a pore-forming cytolysin, though it has a 42% similarity to aerolysin in *Aeromonas eucrenophila*, not *vah1* (NCBI Reference Sequence: WP_042642875.1). The genome encodes two secretion systems (T3SS and T6SS) that are used to deliver effector molecules directly into the host. The T3SS secreted virulence factor has a domain that is similar to the GTPase-activating domain found on YopE from *Yersinia pestis* (10-14). While the T6SS structural components are encoded on the p251-like megaplasmid, the protein responsible for forming the puncturing tip of the T6SS
secretion system, VgrG, appears to be encoded by two genes. One VgrG-encoding gene is on Chromosome 1 and the second is on Chromosome 2.

Nucleotide sequence accession numbers. This Whole Genome Shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession number LUAX00000000. The version described in this paper is the first version LUAX01000000.

Acknowledgements. This material is based upon work conducted at a Rhode Island NSF EPSCoR research facility, the Genomics and Sequencing Center, supported in part by the National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057 and by grant AGL2014–59655 from the Ministry of Economy and Competitiveness of Spain.

References.

1. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA. 2013. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714-737.

2. Richards GP, Needleman DS, Watson MA, Bono JL. 2014. Complete Genome Sequence of the Larval Shellfish Pathogen Vibrio tubiashii Type Strain ATCC 19109. Genome Announc 2.

3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsm K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich
C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagitko O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75.

4. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365.

5. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206-D214.

6. Hasegawa H, Lind EJ, Boin MA, Hase CC. 2008. The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74:4101-4110.

7. Varina M, Denkin SM, Staroscik AM, Nelson DR. 2008. Identification and characterization of Epp, the secreted processing protease for the Vibrio anguillarum EmpA metalloprotease. J Bacteriol 190:6589-6597.

8. Li L, Mou X, Nelson DR. 2013. Characterization of Plp, a phosphatidylcholinespecific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 13:271.

9. Rock JL, Nelson DR. 2006. Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect Immun 74:2777-2786.
10. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205-210.

11. Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327-331.

12. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222-226.

13. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225-229.

14. Evdokimov AG, Tropea JE, Routzahn KM, Waugh DS. 2002. Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci 11:401-408
Adekoya OA, Sylte I. 2009. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chemical Biology Drug Design 73:7-16.

Airdrie, D.W., et al. "A Different Vibriosis Problem in New Brunswick Salmon Rearing." Aquaculture Association of Canada 3 (1989): 119-21. Print.

Allen, J. H., et al. "A Functional Cra Gene Is Required for Salmonella Enterica Serovar Typhimurium Virulence in Balb/C Mice." Infection and Immunity 68.6 (2000): 3772-5. Print.

Alteri, C. J., S. N. Smith, and H. L. Mobley. "Fitness of Escherichia Coli During Urinary Tract Infection Requires Gluconeogenesis and the Tca Cycle." PLoS Pathogens 5.5 (2009): e1000448. Print.

Altinok, I., E. Capkin, and A. Karsi. "Succinate Dehydrogenase Mutant of Listonella Anguillarum Protects Rainbow Trout against Vibriosis." Vaccine 33.42 (2015): 5572-7. Print.

Austin, B., and D.A Austin. Characteristics of the Pathogens. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. 3rd ed. London, United Kingdom: Praxis Publishing Co., 1999. Print.

Aziz, R., et al. "The Rast Server: Rapid Annotations Using Subsystems Technology." BMC Genomics 9.1 (2008): 75. Print.

Bowe, F., et al. "Virulence, Persistence, and Immunogenicity of Yersinia-Enterocolitica O-8 Aroa Mutants." Infection and Immunity 57.10 (1989): 3234-36. Print.

Brettin T., et al. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports 5:8365.

Cai, W., et al. "A Novel Two-Component Signaling System Facilitates Uropathogenic Escherichia Coli’s Ability to Exploit Abundant Host Metabolites." PLoS Pathogens 9.6 (2013): e1003428. Print.

Chiang, S. L., and J. J. Mekalanos. "Use of Signature-Tagged Transposon Mutagenesis to Identify Vibrio Cholerae Genes Critical for Colonization." Molecular Microbiology 27.4 (1998): 797-805. Print.

Crosa, J. H. "A Plasmid Associated with Virulence in the Marine Fish Pathogen Vibrio Anguillarum Specifies an Iron-Sequestering System." Nature 284.5756 (1980): 566-8. Print.
Croxatto, A., et al. "Vant, a Homologue of Vibrio Harveyi Luxr, Regulates Serine, Metalloprotease, Pigment, and Biofilm Production in Vibrio Anguillarum." *Journal of Bacteriology* 184.6 (2002): 1617-29. Print.

Dahal, N., et al. "Tissue Persistence and Vaccine Efficacy of Tricarboxylic Acid Cycle and One-Carbon Metabolism Mutant Strains of Edwardsiella Ictaluri." *Vaccine* 32.31 (2014): 3971-6. Print.

Dahal, N., et al. "Effect of Multiple Mutations in Tricarboxylic Acid Cycle and One-Carbon Metabolism Pathways on Edwardsiella Ictaluri Pathogenesis." *Veterinary Microbiology* 169.1-2 (2014): 107-12. Print.

---. "Tricarboxylic Acid Cycle and One-Carbon Metabolism Pathways Are Important in Edwardsiella Ictaluri Virulence." *Plos One* 8.6 (2013): e65973. Print.

Denkin, S. M., and D. R. Nelson. "Induction of Protease Activity in Vibrio Anguillarum by Gastrointestinal Mucus." *Applied and Environmental Microbiology* 65.8 (1999): 3555-60. Print.

---. "Regulation of Vibrio Anguillarum EmpA Metalloprotease Expression and Its Role in Virulence." *Applied and Environmental Microbiology* 70.7 (2004): 4193-204. Print.

Digianantonio, K. M., M. Korolev, and M. H. Hecht. "A Non-Natural Protein Rescues Cells Deleted for a Key Enzyme in Central Metabolism." *ACS Synthetic Biology* 6.4 (2017): 694-700. Print.

Ding, Y., et al. "Metabolic Sensor Governing Bacterial Virulence in *Staphylococcus Aureus*." *Proceedings of the National Academy of Sciences USA* 111.46 (2014): E4981-90. Print.

Egidius, E. "Vibriosis: Pathogenicity and Pathology." *Aquaculture* 7 (1987): 15-28. Print.

Elston RA, Hasegawa H, Humphrey KL, Polyak IK, Hase CC. 2008. Re-emergence of *Vibrio tubiashii* in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. *Diseases of Aquatic Organisms Journal* 82:119-134.

Estes RM, Friedman CS, Elston RA, Herwig RP. 2004. Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster *Crassostrea gigas* larvae. *Diseases of Aquatic Organisms Journal* 58:223-230.

Evdokimov AG, Tropea JE, Routzahn KM, Waugh DS. 2002. Crystal structure of the *Yersinia pestis* GTPase activator *YopE*. *Protein Science* 11:401-408
Food and Agriculture Organization of the United Nations. Fisheries Department. "The State of World Fisheries and Aquaculture." Rome: Food and Agriculture Organization of the United Nations. volumes. Print.

Frans, I., et al. "Vibrio Anguillarum as a Fish Pathogen: Virulence Factors, Diagnosis and Prevention." Journal of Fish Diseases 34.9 (2011): 643-61. Print.

Gerike, U., et al. "Citrate Synthase and 2-Methylcitrate Synthase: Structural, Functional and Evolutionary Relationships." Microbiology 144 (Pt 4) (1998): 929-35. Print.

Gibson, D. G., et al. "Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases." Nature Methods 6.5 (2009): 343-5. Print.

Grisez, L., and F. Ollevier. "Comparative Serology of the Marine Fish Pathogen Vibrio Anguillarum." Applied and Environmental Microbiology 61.12 (1995): 4367-73. Print.

Gruer, M. J., A. J. Bradbury, and J. R. Guest. "Construction and Properties of Aconitase Mutants of Escherichia Coli." Microbiology 143 (Pt 6) (1997): 1837-46. Print.

Hasegawa H, Hase CC. 2009. The extracellular metalloprotease of Vibrio tubiashii directly inhibits its extracellular haemolysin. Microbiology 155:2296-2305.

... 2009. TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Applied and Environmental Microbiology 75:7602-7609.

Hasegawa H, Lind EJ, Boin MA, Hase CC. 2008. The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Applied and Environmental Microbiology 74:4101-4110.

Hoisteth, S. K., and B. A. D. Stocker. "Aromatic-Dependent Salmonella-Typhimurium Are Non-Virulent and Effective as Live Vaccines." Nature 291.5812 (1981): 238-39. Print.

Holm, K. O., et al. "Complete Genome Sequence of Vibrio Anguillarum Strain Nb10, a Virulent Isolate from the Gulf of Bothnia." Standards in Genomic Sciences 10 (2015): 60. Print.

Homchampa, P., R. A. Strugnell, and B. Adler. "Molecular Analysis of the Aroa Gene of Pasteurella-Multocida and Vaccine Potential of a Constructed Aroa Mutant." Molecular Microbiology 6.23 (1992): 3585-93. Print.

Huergo, L. F., and R. Dixon. "The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite." Microbiology and Molecular Biology Reviews 79.4 (2015): 419-35. Print.
Kabir, M. M., and K. Shimizu. "Metabolic Regulation Analysis of Icd-Gene Knockout Escherichia Coli Based on 2d Electrophoresis with Maldi-Tof Mass Spectrometry and Enzyme Activity Measurements." Applied Microbiology and Biotechnology 65.1 (2004): 84-96. Print.

Klein, A. H., et al. "The Intracellular Concentration of Acetyl Phosphate in Escherichia Coli Is Sufficient for Direct Phosphorylation of Two-Component Response Regulators." Journal of Bacteriology 189.15 (2007): 5574-81. Print.

Lakshmi, T. M., and R. B. Helling. "Selection for Citrate Synthase Deficiency in Icd Mutants of Escherichia Coli." Journal of Bacteriology 127.1 (1976): 76-83. Print.

Larsen, M. H., and H. T. Boesen. "Role of Flagellum and Chemotactic Motility of Vibrio Anguillarum for Phagocytosis by and Intracellular Survival in Fish Macrophages." FEMS Microbiology Letters 203.2 (2001): 149-52. Print.

Lawhon, S. D., et al. "Intestinal Short-Chain Fatty Acids Alter Salmonella Typhimurium Invasion Gene Expression and Virulence through Bara/Sira." Molecular Microbiology 46.5 (2002): 1451-64. Print.

Lawrence, M. L., R. K. Cooper, and R. L. Thune. "Attenuation, Persistence, and Vaccine Potential of an Edwardsiella Ictaluri Pura Mutant." Infection and Immunity 65.11 (1997): 4642-51. Print.

Li, L., X. Mou, and D. R. Nelson. "Characterization of Plp, a Phosphatidylcholine-Specific Phospholipase and Hemolysin of Vibrio Anguillarum." BMC Microbiology 13 (2013): 271. Print.

---. "HlyU Is a Positive Regulator of Hemolysin Expression in Vibrio Anguillarum." Journal of Bacteriology 193.18 (2011): 4779-89. Print.

Li, L., J. L. Rock, and D. R. Nelson. "Identification and Characterization of a Repeat-in-Toxin Gene Cluster in Vibrio Anguillarum." Infection and Immunity 76.6 (2008): 2620-32. Print.

Lindell, K., et al. "Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio Anguillarum by Rainbow Trout (Oncorhynchus Mykiss) Skin Epithelial Cells." Plos One 7.5 (2012): e37678. Print.

Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Research 32: W327-331.

Marchler-Bauer A., et al. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Research 37: D205-210.
Marchler-Bauer A., et al. 2011. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 39: D225-229.

Marchler-Bauer A., et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43: D222-226.

McGee, K., P. Horstedt, and D. L. Milton. "Identification and Characterization of Additional Flagellin Genes from Vibrio Anguillarum." Journal of Bacteriology 178.17 (1996): 5188-98. Print.

Mercado-Lubo, R., et al. "A Salmonella Enterica Serovar Typhimurium Succinate Dehydrogenase/Fumarate Reductase Double Mutant Is Avirulent and Immunogenic in Balb/C Mice." Infection and Immunity 76.3 (2008): 1123-34. Print.

Mercado-Lubo, R., et al. "Salmonella Enterica Serovar Typhimurium Mutants Unable to Convert Malate to Pyruvate and Oxaloacetate Are Avirulent and Immunogenic in Balb/C Mice." Infection and Immunity 77.4 (2009): 1397-405. Print.

Milton, D. L., A. Norqvist, and H. Wolf-Watz. "Cloning of a Metalloprotease Gene Involved in the Virulence Mechanism of Vibrio Anguillarum." Journal of Bacteriology 174.22 (1992): 7235-44. Print.

Milton, D.L., et al. "Flagellin a Is Essential for the Virulence of Vibrio Anguillarum." Journal of Bacteriology 178.5 (1996): 1310-19. Print.

Minato, Y., et al. "Central Metabolism Controls Transcription of a Virulence Gene Regulator in Vibrio Cholerae." Microbiology 159.Pt 4 (2013): 792-802. Print.

Mou, X., et al. "H-NS Is a Negative Regulator of the Two Hemolysin/Cytotoxin Gene Clusters in Vibrio Anguillarum." Infection and Immunity 81.10 (2013): 3566-76. Print.

Mou, X., et al. "Isocitrate Dehydrogenase Mutation in Vibrio Anguillarum Results in Virulence Attenuation and Immunoprotection in Rainbow Trout (Oncorhynchus mykiss)." BMC Microbiology submitted for publication 2017. Print.

Muroga, K., and M. C. Delacruz. "Fate and Location of Vibrio-Anguillarum in Tissues of Artificially Infected Ayu (Plecoglossus-Altivelis)." Fish Pathology 22.2 (1987): 99-103. Print.

Naka, H., et al. "Complete Genome Sequence of the Marine Fish Pathogen Vibrio Anguillarum Harboring the Pjm1 Virulence Plasmid and Genomic Comparison with Other Virulent Strains of V. Anguillarum and V. Ordalii." Infection and Immunity 79.7 (2011): 2889-900. Print.
Neidhardt, F. C., P. L. Bloch, and D. F. Smith. "Culture Medium for Enterobacteria." Journal of Bacteriology 119.3 (1974): 736-47. Print.

Neidhardt, F.C., and R. Curtiss. Escherichia Coli and Salmonella: Cellular and Molecular Biology. ASM Press, 1996. Print.

Nelson, D.R. "Live, Avirulent Strain of V. Anguillarum That Protects Fish against Infection by Virulent V. Anguillarum and Method of Making the Same." Google Patents, 2005. Print.

Nørqvist, A., A. Hagstrom, and H. Wolf-Watz. "Protection of Rainbow Trout against Vibriosis and Furunculosis by the Use of Attenuated Strains of Vibrio Anguillarum." Applied and Environmental Microbiology 55.6 (1989): 1400-5. Print.

Nurk S, et al. 2013. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology 20:714-737.

O'Toole, R., et al. "The Chemotactic Response of Vibrio Anguillarum to Fish Intestinal Mucus Is Mediated by a Combination of Multiple Mucus Components." Journal of Bacteriology 181.14 (1999): 4308-17. Print.

---. "The Chemotactic Response of Vibrio Anguillarum to Fish Intestinal Mucus Is Mediated by a Combination of Multiple Mucus Components." Journal of Bacteriology 181.14 (1999): 4308-17. Print.

O'Toole, R., et al. "Visualization of Zebrafish Infection by GFP-Labelled Vibrio Anguillarum." Microbial Pathogenesis 37.1 (2004): 41-6. Print.

Ormonde, P., et al. "Role of Motility in Adherence to and Invasion of a Fish Cell Line by Vibrio Anguillarum." Journal of Bacteriology 182.8 (2000): 2326-8. Print.

Overbeek R., et al. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42: D206-214.

Payne, J. W., and C. Gilvarg. "Size Restriction on Peptide Utilization in Escherichia Coli." Journal of Biological Chemistry 243.23 (1968): 6291-9. Print.

Pedersen, K., et al. "Extended Serotyping Scheme for Vibrio Anguillarum with the Definition and Characterization of Seven Provisional O-Serogroups." Current Microbiology 38.3 (1999): 183-89. Print.

Rabinowitz, J. D., and T. J. Silhavy. "Systems Biology: Metabolite Turns Master Regulator." Nature 500.7462 (2013): 283-4. Print.
Richards GP, Needleman DS, Watson MA, Bono JL. 2014. Complete Genome Sequence of the Larval Shellfish Pathogen Vibrio tubiashii Type Strain ATCC 19109. Genome Announcements 2.

Roberts, M., et al. "Construction and Characterization in vivo of Bordetella-Pertussis-Aroa Mutants." Infection and Immunity 58.3 (1990): 732-39. Print.

Rock, J. L., and D. R. Nelson. "Identification and Characterization of a Hemolysin Gene Cluster in Vibrio Anguillarum." Infection and Immunity 74.5 (2006): 2777-86. Print.

Satchell, K. J. "Multifunctional-Autoprocessing Repeats-in-Toxin (MARTX) Toxins of Vibrios." Microbiology Spectrum 3.3 (2015). Print.

Sezonov, G., D. Joseleau-Petit, and R. D'Ari. "Escherichia Coli Physiology in Luria-Bertani Broth." Journal of Bacteriology 189.23 (2007): 8746-9. Print.

Simon, R., U. Priefer, and A. Puhler. "A Broad Host Range Mobilization System for Invivo Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria." Bio-Technology 1.9 (1983): 784-91. Print.

Sindermann CJ, Lightner DV. 1988. Disease diagnosis and control in North American marine aquaculture, 2nd, rev. ed. Elsevier, Amsterdam; New York.

Spanggaard, B., et al. "Proliferation and Location of Vibrio Anguillarum During Infection of Rainbow Trout, Oncorhynchus Mykiss (Walbaum)." Journal of Fish Diseases 23.6 (2000): 423-27. Print.

Toranzo, A.E., Barja, J.L. "Virulence Factors of Bacteria Pathogenic for Coldwater Fish." Annual Review of Fish Diseases 3 (1993): 5-36. Print.

Utley, M., et al. "A Salmonella Typhimurium Mutant Unable to Utilize Fatty Acids and Citrate Is Avirulent and Immunogenic in Mice." FEMS Microbiology Letters 163.2 (1998): 129-34. Print.

Vaatanen, P. "Microbiological Studies in Coastal Waters of the Northern Baltic Sea. I. Distribution and Abundance of Bacteria and Yeasts in the Tvarminne Area." Walter Andre Nottback Found Scientific Reports 1 (1976): 1-58. Print.

Valentine, P. J., B. P. Devore, and F. Heffron. "Identification of Three Highly Attenuated Salmonella Typhimurium Mutants That Are More Immunogenic and Protective in Mice Than a Prototypical Aroa Mutant." Infection and Immunity 66.7 (1998): 3378-83. Print.

VanderVen, B. C., et al. "Novel Inhibitors of Cholesterol Degradation in Mycobacterium Tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment." PLoS Pathogens 11.2 (2015): e1004679. Print.
Varina, M., et al. "Identification and Characterization of Epp, the Secreted Processing Protease for the Vibrio Anguillarum EmpA Metalloprotease." Journal of Bacteriology 190.20 (2008): 6589-97. Print.

Wang, X. H., et al. "Internalization and Cytotoxicity Are Important Virulence Mechanisms in Vibrio-Fish Epithelial Cell Interactions." Microbiology 144 (Pt 11) (1998): 2987-3002. Print.

Weber, B., et al. "RpoS Induces Expression of the Vibrio Anguillarum Quorum-Sensing Regulator Vant." Microbiology 154.Pt 3 (2008): 767-80. Print.

Wilson B, Muirhead A, Bazanella M, Huete-Stauffer C, Vezzulli L, Bourne DG. 2013. An improved detection and quantification method for the coral pathogen Vibrio coralliilyticus. PLoS One 8: e81800.

Wolf, M. K., and J. H. Crosa. "Evidence for the Role of a Siderophore in Promoting Vibrio Anguillarum Infections." Journal of General Microbiology 132.10 (1986): 2949-52. Print.

Wolfe, A. J. "The Acetate Switch." Microbiology and Molecular Biology Reviews 69.1 (2005): 12-50. Print.

Wolfe, A. J., et al. "Evidence That Acetyl Phosphate Functions as a Global Signal During Biofilm Development." Molecular Microbiology 48.4 (2003): 977-88. Print.

Yimga, M. T., et al. "Role of Gluconeogenesis and the Tricarboxylic Acid Cycle in the Virulence of Salmonella Enterica Serovar typhimurium in Balb/C Mice." Infection and Immunity 74.2 (2006): 1130-40. Print.