A new criterion for finite non-cyclic groups

Wei Zhou
College of Mathematics & Finance, Southwest China Normal University, Chongqing 400715
People’s Republic of China
E-mail: zh_great@hotmail.com
and
Wujie Shi
School of Mathematics, Suzhou University, Suzhou 215006
People’s Republic of China
E-mail: wjshi@suda.edu.cn
and
Zeyong Duan
College of Mathematics & Finance, Southwest China Normal University, Chongqing 400715
People’s Republic of China

Abstract

Let H be a subgroup of a group G. We say that H satisfies the power condition with respect to G, or H is a power subgroup of G, if there exists a non-negative integer m such that $H = G^m = \langle g^m | g \in G \rangle$. In this note, the following theorem is proved: Let G be a group and k the number of non-power subgroups of G. Then (1) $k = 0$ if and only if G is a cyclic group (theorem of F. Szász); (2) $0 < k < \infty$ if and only if G is a finite non-cyclic group; (3) $k = \infty$ if and only if G is an infinite non-cyclic group. Thus we get a new criterion for the finite non-cyclic groups.

Keywords: power subgroup, cyclic group, Dedekind group.

2000MR subject classification: 20E07, 20E34, 20D25

1. Introduction

Let H be a subgroup of group G. We say that H satisfies the power condition with respect to G, or H is a power subgroup of G if there exists a non-negative integer m such
that $H = G^m = \langle g^m \mid g \in G \rangle$. On the other hand, if $H \neq G^m$ for all m, we say that H is a non-power subgroup of G. If H is a power subgroup of G, the power exponent is the least non-negative integer m such that $H = G^m$.

It is obvious that a nontrivial group G has at least two trivial power subgroups: $\{1\}$ and G itself, and the power exponents of the two subgroups are 0 and 1, respectively.

The power subgroups have some properties. For example, if H is a power subgroup of group G, then H is a full-invariant subgroup, in particular H is normal in G; and if H is a non-power subgroup of G, then a conjugate subgroup $H^x(x \in G)$ is also a non-power subgroup of G.

The number of non-trivial power subgroups affects the structure of the group. In [2], F.Szász proved that G is a cyclic group if and only if all subgroups of G are power subgroups. That is, a non-cyclic group contains at least one non-power subgroup. In this paper, we generalize the above result of F. Szász and prove the following theorem:

Theorem. Let G be a group and k the number of non-power subgroups of G. Then

(1) $k = 0$ if and only if G is a cyclic group;

(2) $0 < k < \infty$ if and only if G is a finite non-cyclic group;

(3) $k = \infty$ if and only if G is an infinite non-cyclic group.

Remark 1. The conclusion (1) of this theorem is the theorem of F. Szász in [2].

Remark 2. Note that for some k in the theorem, the group G may not exist. In [3],[4] the author proved that the case of $k = 1$ or $k = 2$ do not occur. But there are groups having exactly 3 non-power subgroups: For example the quaternion group Q_8 of order 8, and $Z_2 \times Z_2$ are groups possessing just 3 non-power subgroups.

From the theorem the following corollary gives a new criterion for finite non-cyclic groups.

Corollary. Suppose G is a non-cyclic group. Then G is finite if and only if G contains only finitely many non-power subgroups.

Problem. For any integer $k(k \geq 3)$, does there exist groups possessing just k non-power subgroups?

In the proof of the Theorem, we use the structure of the Dedekind group. A group is called Dedekind group if all its subgroups are normal. From Theorem 5.3.7 in [1], we know that G is a Dedekind group if and only if G is abelian or the direct product of a quaternion group of order 8, an elementary abelian 2-group and an abelian group with all its elements of odd order. Notation is standard and may be found for instance in[1]. In particular, we denote k the number of of non-power subgroups of G.

2
2. Some lemmas

Lemma 1. Let A be an abelian power subgroup in a group G. Then the set of power subgroups of G contained in A coincides with the set of power subgroups of A.

Proof: If $G = A$, then there it is nothing to prove. Let $G \neq A$ and let l be the power exponent of A. Then $l > 1$ and $A = G^l$. Suppose that $G^m \leq A$ for $m \geq 1$ and let d be the greatest common divisor of l, m. Then $d = lr + ms$ for some integers r and s, and $g^d = (g^l)^r (g^m)^s \in A$ for every $g \in G$, so $G^d \leq A$. It is obvious that $A = G^l \leq G^d$, so $d = l$ and l divides m. Hence $m = ls_0$ for some $s_0 \geq 0$. Note that $A = G^l = < g^l | g \in G >$ is abelian. We get $A^{s_0} = (G^l)^{s_0} = < g^l | g \in G >^{s_0} = < g^{ls_0} | g \in G > = G^{ms_0}$. On the other hand, if A^n is a power subgroup of A, then $A^n = G^{ln}$ is a power subgroup of G. The lemma is proved.

Lemma 2. If A/N is a non-power subgroup of a factor-group G/N, then A is a non-power subgroup of G.

Proof: Suppose the result is false. That is, A is a power subgroup of G. Let $A = G^m = < g_i^m | g_i \in G, i = 1, 2, \cdots, >$. Since $g_1^m \cdots g_n^m N = (g_1 N)^m \cdots (g_n N)^m$, $A/N = (G/N)^m$, a contradiction. Hence the lemma is proved.

Now we need a lemma about the structure of the cyclic group.

Lemma 3. If G is an infinite abelian group all of whose proper quotient groups are finite, then G is infinite cyclic.

Proof: Suppose G is not infinite cyclic. We choose an element $a_0 \in G$ and $a_0 \neq 1$. $< a_0 >$ is a proper subgroup of G and $< a_0 > \neq 1$. Then $G/ < a_0 >$ is finite. So $G/ < a_0 >$ is finitely generated and G is finitely generated. Then G is a direct product of finitely many cyclic groups of infinite or prime-power orders. Let $G = < g_1 > \times < g_2 > \cdots \times < g_n >$, and $n > 1$ by the assumption. If there exists an i, such that $|g_i| = \infty$. Then $G/ < g_1 > \times \cdots \times < g_{i-1} > \times < g_{i+1} > \cdots \times < g_n > \cong < g_i >$ is finite by the condition. That is impossible. So $|g_i| < \infty, \forall i$, which makes G be a finite group, a contradiction. We prove the lemma.

Lemma 4. If the number of cyclic subgroups of a group G is finite, then G is finite.

Proof: Firstly, we have G is a torsion group, otherwise suppose $g \in G$ and $|g| = \infty$, then $< g^n >$ will be different cyclic subgroups in G with infinitely many different n, a contradiction.

For any element g in G, it can generate a cyclic subgroup $< g >$. Suppose G have n cyclic subgroups and $g_i (i = 1, \cdots, n)$ be the generated elements of all the cyclic subgroups. $G = \cup_{i=1}^{n} < g_i >$. So $|G| \leq \sum_{i=1}^{n} |g_i| < \infty$, that is to say G is finite.

3. Proof of the theorem

Proof of the theorem: We need only to prove the necessity of (2).
Case 1. G is abelian.

i) Suppose G is a torsion abelian group, we prove that G is a finite group.

Let $\pi(G)$ be the set of all primes dividing the orders of elements of G. For every prime p, let G_p be the set of all p-elements in G. Then G_p is a subgroup of G, that is, the p-component of G. We claim $|\pi(G)|$ is finite. If $|\pi(G)| = \infty$, then there must exist a prime $p \in \pi(G)$ such that G_p is a power subgroup for there are finitely many non-power subgroups. Hence there exists a positive integer m such that $G_p = G^m$, and then $G/G_p = G/G^m$, which means the exponent of G/G_p is finite. But $G/G_p \cong \prod_{q \in \pi(G) - \{p\}} G_q$. So the exponent of G/G_p can not be finite since $|\pi(G)|$ is infinite and then we get the contradiction.

If G_p is infinite for some p, then it contains infinitely many finite cyclic subgroups C_i and hence we may assume that C_i is a power subgroup in G and so G/C_i is of finite exponent, hence G is of finite exponent and G is a direct product of cyclic subgroups of finite order. In particular, G_p is of finite exponent and since $G_p \cong G/N$ for some subgroup N, G_p has only finitely many non-power subgroups in G_p by Lemma 2. Since G_p has only finitely many power subgroups, i.e., $G_p, G_p^p, \ldots, G_p^p$, where p^i is the power exponent of G_p, join with its finitely many non-power subgroups, G_p has only finitely many subgroups and so G_p is finite. Then for every $p \in \pi(G)$, G_p is finite. So G is finite.

ii) Suppose G is a non-torsion abelian group. Then G is an infinite abelian group with some elements of infinite order. We prove G is cyclic, which is contrary to $k > 0 (k$ is the number of non-power subgroups of G).

Firstly, we prove that the subgroup T of G consisting of all elements of finite orders in G is finite. Evidently, no subgroup of T can be a power subgroup of G, otherwise G would be torsion and so, by i), G is finite, a contradiction. Hence, since has only finitely many non-power subgroups, we have that T contains only finitely many subgroups. Thus T have only finitely many cyclic subgroups and T is finite by Lemma 4.

Now $T \neq G$ and $\overline{G} = G/T$ is an infinite torsion-free group. By Lemma 2, \overline{G} has only finitely many non-power subgroups. We prove \overline{G} is cyclic.

We claim that $\overline{G}/\overline{H}$ is finite for all non-trivial subgroup \overline{H} of \overline{G}. In fact, let \overline{H} be a nontrivial subgroup of \overline{G}. If \overline{H} is a power subgroup of \overline{G}, then there exists a non-negative integer m such that $\overline{H} = \overline{G}^m$. Now $\overline{G}/\overline{H}$ is torsion, and it has only finitely many non-power subgroups by Lemma 2. Then $\overline{G}/\overline{H}$ is finite by i). On the other hand, suppose \overline{H} is a non-power subgroup. Since \overline{G} is torsion-free with finitely many non-power subgroups, there must exist $1 \neq \overline{H}_1 < \overline{H}$, with \overline{H}_1 being a power subgroup of \overline{G}. Then $\overline{G}/\overline{H}_1$ is finite and then $\overline{G}/\overline{H}$ is finite.

By Lemma 3, \overline{G} is cyclic. Hence $G = T \times < z >$ where z is of infinite order. It is obvious
that \(G^n = T^n \times < z^n > \), so if \(s = |T| > 1 \) then \(T \times < z^n > \) is a non-power subgroup of \(G \) for each \(n = 2, 3, \cdots \). Thus \(T = 1 \) and so \(G \) is cyclic, a contradiction.

Case 2. \(G \) is non-abelian.

If \(G \) contains no non-power subgroups, then \(G \) is cyclic and every subgroup of a cyclic group is a power subgroup. So, suppose that \(G \) contains some non-power subgroups, and let \(H_1, \cdots, H_s \) be all of those. Since every conjugate of \(H_i(i = 1, \cdots, s) \) is also a non-power subgroup of \(G \), so \(H_i \) has only finitely many conjugate subgroups. Then the normalizer \(N_i \) of \(H_i \) has a finite index in \(G \) and hence the subgroup \(K_i = \cap_{g \in G} g^{-1}N_ig \) is normal in \(G \) and has a finite index in \(G \). Let \(K = \cap_{i=1}^s K_i \), then \(K \) is a normal subgroup of finite index in \(G \) and so it normalizes every \(H_i \). Observe that every subgroup of \(K \) is normal in \(K \). In fact, if \(L \leq K \) and \(L \) is a power subgroup of \(G \), then \(L \leq G \) and hence \(L \leq K \); if \(L \) is a non-power subgroup of \(G \), then \(L = H_i \) for some \(i = 1, \cdots, s \), and by construction of \(K \), \(H_i \leq K \). Thus \(K \) is a Dedekind group. So \(K \) is either abelian or a direct product of an abelian group and the quaternion group of order 8. Hence the center \(Z = Z(K) \) of \(K \) is of finite index in \(K \) and evidently \(Z \triangleleft G \). Thus \(Z \) is an abelian normal subgroup of finite index, say \(m \), in \(G \). In particular, \(x^m \in Z \) for every \(x \in G \). Let \(l \) be the smallest natural number such that \(x^l \in Z \) for every \(x \in G \). Then \(G^l \leq Z \).

Observe that \(G^l \) is a subgroup of finite index in \(Z \). Otherwise, then \(Z/G^l \) is infinite and contains infinitely many proper non-trivial subgroups \(R_i/G^l, i = 1, 2, \cdots \). By assumption, there exists \(t \) such that \(R_t \) is a power subgroup of \(G \), so \(R_t = G^r \) for some \(r \neq l \). It is easy to get \(r < l \), but this contradicts the choice of \(l \).

Thus the index of \(G^l \) in \(Z \) is finite, so we may replace \(Z \) by \(G^l \) and assume that \(Z \) is an abelian power subgroup of finite index in \(G \), \(Z = G^l \).

Observe that, by Lemma 1, every power subgroup of \(G \), being contained in \(Z \), is a power subgroup of \(Z \) and every power subgroup of \(Z \) is a power subgroup of \(G \). In particular, \(Z \) contains only finitely many non-power subgroups, and hence \(Z \) is finite or an infinite cyclic group. If \(Z \) is finite, then \(G \) is finite and so the result is proved. Thus we suppose \(Z \) is an infinite cyclic group, that is, \(Z = < x > \) with \(|x| = \infty \). If \(C_G(Z) \neq G \), then there exists \(y \in G \) such that \(x^y = y^{-1}xy \neq x \in < x > \). Obviously \(Z^y = Z \). Since \(x \) and \(x^{-1} \) are the only generators of \(< x > \), we have \(x^y = x^{-1} \).

Let \(Y_i = < x^{-1}yx^i >, i = 1, 2, \cdots \). We claim there are infinite many different \(Y_i \). Suppose it is false. Let \(Y_{i_1}, \cdots, Y_{i_s} \) be all the different such type subgroups. Then there are infinite subgroups of this type equal to \(Y_{it}, 1 \leq t \leq s \). Without any loss, we suppose \(Y_{i_1} = Y_{m_1} = \cdots = Y_{m_r} = \cdots \). If \(|y| = \infty \), by the generator properties of infinite cyclic group we have \(y^{x^{m_1}} = (y^{x^{m_r}})^{\varepsilon_r}, r = 2, 3, \cdots \), where \(\varepsilon_r = 1 \) or \(-1 \). Hence there must exist \(r_0, r_1 \) such that...
$\varepsilon_{r_0} = \varepsilon_{r_1}$ and $r_0 \neq r_1$. And then $y^{\varepsilon_{r_0}} = y^{\varepsilon_{r_1}}$. Suppose $m_{r_0} < m_{r_1}$ without any loss. Then we have $y = y^{x^{m_{r_1} - m_{r_0}}}$. But since $x^y = x^{-1}$, we get $y^{x^{m_{r_1} - m_{r_0}}} = x^{-2(m_{r_1} - m_{r_0})}y$. Therefore $y = y^{x^{m_{r_1} - m_{r_0}}} = x^{-2(m_{r_1} - m_{r_0})}y$, and then $x^{-2(m_{r_1} - m_{r_0})} = 1$. We get contradiction for $|x| = \infty$. On the other hand if $|y| = n$. Similarly there are infinite subgroups such that $Y_{m_1} = \cdots = Y_{m_r} = \cdots$. By the generator properties of cyclic group we have $y^{x_{m_1}} = (y^{x_{m_r}})^{\varepsilon_r}, r = 2, 3, \cdots$, where $1 \leq \varepsilon_r \leq n$ is coprime to n. Hence there must exist r_0, r_1 such that $\varepsilon_{r_0} = \varepsilon_{r_1}$ and $r_0 \neq r_1$. And then $y^{x_{m_{r_0}}} = y^{x_{m_{r_1}}}$. We get a contradiction in the same way as before.

So there are infinite many different Y_i which are conjugate with each other. In particular, these infinite many Y_i are non-normal in G and non-power subgroups of G, which is contrary to the assumption. Thus $C_G(Z) = G$ and hence $Z \leq Z(G)$. So the center of G has a finite index in G. By Schur Theorem ([1] Theorem 10.1.3), the commutator subgroup $C = [G, G]$ is finite. If $C = 1$ then G is abelian contrary to the assumption. So let y be an element of prime order p in C. Obviously $Z \cap < y >= 1$ and $< y > < Z, y >$ by $Z \leq Z(G)$, so $< Z, y >= Z \times < y >$ and all subgroups $Z^r \times < y >$ are distinct for $r = 1, 2, \cdots$. Thus there exists r such that $A = Z^r \times < y >$ is a power subgroup of G. A contains, by Lemma 1, only a finitely many non-power subgroups of A and hence A is finite or cyclic. But this is not true. The theorem is proved.

Acknowledgement The authors would like to thank Prof. V.D. Mazurov for his help.

References

[1] D.J.S. Robinson, An Course in the Theory of Groups, Springer-Verlag, Berlin 1982

[2] F. Szász, On cyclic groups, Fund. Math., 43(1956), 238-240

[3] Wei Zhou Lai ping, A characterization of non-cyclic groups, J. Southwest China Normal Univ. (Natural Sci.) (in Chinese), 2000, 25(3), 213-216.

[4] Wei Zhou, An investigation on the least bound of the number of non-exponent subgroups of non-cyclic groups, ICM 2002, Abstracts of Short Comm. and Posters, Higher Education Press, Beijing, p.40