Some nonexistence results for space–time fractional Schrödinger equations without gauge invariance

Mokhtar Kirane¹,² · Ahmad Z. Fino³,⁴

Received: 18 October 2021 / Revised: 13 March 2022 / Accepted: 28 April 2022 / Published online: 28 June 2022
© Diogenes Co. Ltd 2022

To Professor J. A. Tenreiro Machado, in Memoriam

Abstract
In this paper, we consider the Cauchy problem in \(\mathbb{R}^N \), \(N \geq 1 \), for semi-linear Schrödinger equations with space–time fractional derivatives. We discuss the nonexistence of global \(L^1 \) or \(L^2 \) weak solutions in the subcritical and critical cases under some conditions on the initial data and the nonlinear term. Furthermore, the nonexistence of local \(L^1 \) or \(L^2 \) weak solutions in the supercritical case are studied.

Keywords Schrödinger equations (primary) · Fractional derivatives and integrals · Test function method · Nonexistence of global solution

Mathematics Subject Classification 26A33 (primary) · 35A01

Mokhtar Kirane
mokhtar.kirane@ku.ac.ae
Ahmad Z. Fino
ahmad.fino01@gmail.com

¹ Department of Mathematics, Faculty of Arts and Science, Khalifa University, P.O. Box: 127788, Abu Dhabi, United Arab Emirates
² NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jidda 21589, Saudi Arabia
³ Department of Mathematics, Faculty of Sciences III, Lebanese University, P.O. Box 1352, Tripoli, Lebanon
⁴ FracDiff Research Group (DR/RG/03), Department of Mathematics, Sultan Qaboos University, Al-Khoud, P.O. Box 46, 123 Muscat, Oman
1 Introduction

In this paper, we consider the problem

$$\begin{cases}
i^\alpha c D_{0+}^\alpha u - (-\Delta)^{\beta/2} u = \lambda |u|^p, & (t, x) \in (0, T) \times \mathbb{R}^N, \\
u(x, 0) = \varepsilon u_0(x), & x \in \mathbb{R}^N, \end{cases} \tag{1}$$

where u is a complex-valued unknown function of (t, x), $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $p > 1$, $T > 0$, $\varepsilon > 0$, $\lambda \in \mathbb{C} \setminus \{0\}$, and i^α is the principal part of i^α, i.e.

$$i^\alpha = \cos \left(\frac{\alpha \pi}{2} \right) + i \cos \left(\frac{\alpha \pi}{2} \right),$$

$c D_{0+}^\alpha$ is the Caputo fractional derivative and $(-\Delta)^{\beta/2} : L^2(\mathbb{R}^N) \to L^2(\mathbb{R}^N)$ is the fractional Laplacian which can be defined by a pointwise representation as given in Definition 6.

Different fractional generalizations of the Schrödinger equation appeared in the literature: The classical Schrödinger equations with nongauge power nonlinearity, i.e. (1) with $\alpha = 1$ and $\beta = 2$, has been studied by Ikeda and Wakasugi [8] and Ikeda and Inui [9, 10], the spatial fractional Schrödinger equation involving fractional order space derivatives, i.e. (1) with $\alpha = 1$ and $\beta \in (0, 2)$, has been investigated in [4, 5, 14–16], the fractional temporal Schrödinger equation involving a fractional time derivative, i.e. $\alpha \in (0, 1)$ and $\beta = 2$, has been studied in [19, 20, 25], the semirelativistic Schrödinger equation with nongauge invariant power nonlinearity, i.e. (1) with $\alpha = 1$ and $\beta = 1/2$, got interest by Fujiwara [6], Inui [11], Fujiwara and Ozawa [7], and the spatio-temporal fractional Schrödinger equation with both time and space fractional derivatives attracted the attention of [2, 22].

The expected critical exponent can be determined by the following scaling argument: If $u(x, t)$ is a solution of (1) with initial data u_0, then

$$v(t, x) = \gamma^{\frac{\beta}{p-1}} u(\gamma^{\alpha/\beta} t, \gamma x),$$

for all $\gamma > 0$, is also a solution of (1) with initial data $v_0(x) = v(0, x) = \gamma^{\frac{\beta}{p-1}} u_0(\gamma x)$, for all $x \in \mathbb{R}^N$. We choose $p = p_s$ such that we get an invariant H^s-norm of the initial data:

$$\|v_0\|_{H^s} = \gamma^{\frac{\beta}{p-1} - \frac{N-2s}{2}} \|u_0\|_{H^s} = \|u_0\|_{H^s};$$

this happens if and only if

$$p = p_s = 1 + \frac{2\beta}{N - 2s}.$$

Therefore, the case $p = p_s$ is called H^s-critical case; the case $p < p_s$ (resp. $p > p_s$) is called H^s-subcritical case (resp. H^s-supercritical case). On the other hand, the Fujita critical exponent for the corresponding heat equation with fractional Laplacian is

\[\square \] Springer
\[p_F = 1 + \frac{\beta}{N}. \]

Our main goal is to study the nonexistence of \(L^1 \) or \(L^2 \) global weak solutions under the condition \(p \leq p_s \) or \(p \leq p_F \) as well as the nonexistence of \(L^1 \) or \(L^2 \) local weak solutions under the condition that \(p > p_s \) or \(p > p_F \) (see e.g. [10]), using the test function method (see e.g. [24]) or a fractional differential equation approach (i.e. construct a fractional differential equation for a new function and using comparison principle). The local existence for (1) is expected in the \(H^s \)-subcritical case, but this is not our case. We refer the reader to [8, Appendix] by using the Strichartz estimates recently studied by Lee [17].

Let

\[X_T = \{ \varphi \in C([0, \infty), H^\beta(\mathbb{R}^N)) \cap C^1([0, \infty), L^2(\mathbb{R}^N)) ; \text{supp}\ \varphi \subset Q_T, \varphi \text{ is } \mathbb{R} \text{-valued} \}, \]

and

\[Y_T = \{ \varphi \in C([0, \infty), H^\beta(\mathbb{R}^N)) \cap C^1([0, \infty), L^\infty(\mathbb{R}^N)) ; \text{supp}\ \varphi \subset Q_T, \varphi \text{ is } \mathbb{R} \text{-valued} \}, \]

where \(Q_T := [0, T] \times \mathbb{R}^N \) and the homogeneous fractional Sobolev space \(H^\beta(\mathbb{R}^n) \), \(\beta \in (0, 2) \) is defined by

\[H^\beta(\mathbb{R}^n) = \begin{cases} \{u \in L^2(\mathbb{R}^n); (-\Delta)^{\beta/2}u \in L^2(\mathbb{R}^n)\}, & \text{if } \beta \in (0, 1), \\ H^1(\mathbb{R}^n), & \text{if } \beta = 1, \\ \{u \in H^1(\mathbb{R}^n); (-\Delta)^{\beta/2}u \in L^2(\mathbb{R}^n)\}, & \text{if } \beta \in (1, 2), \end{cases} \]

endowed with the norm

\[\|u\|_{H^\beta(\mathbb{R}^n)} = \begin{cases} \|u\|_{L^2(\mathbb{R}^n)} + \|(-\Delta)^{\beta/2}u\|_{L^2(\mathbb{R}^n)}, & \text{if } \beta \in (0, 1), \\ \|u\|_{L^2(\mathbb{R}^n)} + \|\nabla u\|_{L^2(\mathbb{R}^n)}, & \text{if } \beta = 1, \\ \|u\|_{L^2(\mathbb{R}^n)} + \|\nabla u\|_{L^2(\mathbb{R}^n)} + \|(-\Delta)^{\beta/2}u\|_{L^2(\mathbb{R}^n)}, & \text{if } \beta \in (1, 2). \end{cases} \]

Definition 1 [\(L^2 \)-weak solution] Let \(u_0 \in L^2(\mathbb{R}^N) \) and \(T > 0 \). We say that \(u \) is an \(L^2 \)-weak solution of (1) if

\[u \in L^1((0, T), L^2(\mathbb{R}^N)) \cap L^p((0, T), L^{2p}(\mathbb{R}^N)), \]

and

\[\begin{aligned} &\lambda \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + \varepsilon i^{\alpha} \int_{Q_T} u_0(x)^c D^\alpha_{t|x} \varphi(t, x) \, dt \, dx \\ &\quad = i^\alpha \int_{Q_T} u^c D^\alpha_{t|x} \varphi \, dt \, dx - \int_{Q_T} u(-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx, \quad (2) \end{aligned} \]
holds for all $\varphi \in X_T$. We denote the lifespan for the L^2-weak solution by

$$T_w(\varepsilon) := \sup\{T \in (0, \infty); \text{ there exists a unique } L^2\text{-weak solution } u \text{ to } (1.1)\}.$$

Moreover, if $T > 0$ can be arbitrary chosen, i.e. $T_w(\varepsilon) = \infty$, then u is called a global L^2-weak solution of (1).

Definition 2 (L^1-weak solution) Let $u_0 \in L^1(\mathbb{R}^N)$ and $T > 0$. We say that u is an L^1-weak solution of (1) if $u, |u|^p \in L^1((0, T), L^1(\mathbb{R}^N))$ and

$$\lambda \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + \varepsilon i^\alpha \int_{Q_T} u_0(x)^c D_1^\alpha |t \varphi(t, x) \, dt \, dx$$

$$= i^\alpha \int_{Q_T} u^c D_1^\alpha |t \varphi(t, x) \, dt \, dx - \int_{Q_T} u(-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx,$$

(3)

holds for all $\varphi \in Y_T$. We denote the lifespan for the L^1-weak solution by

$$T_w(\varepsilon) := \sup\{T \in (0, \infty); \text{ there exists a unique } L^1\text{-weak solution } u \text{ to } (1.1)\}.$$

Moreover, if $T > 0$ can be arbitrary chosen, i.e. $T_w(\varepsilon) = \infty$, then u is called a global L^1-weak solution to (1).

2 Preliminaries

Definition 3 (Absolutely continuous functions) ([21, Chap. 1])

A function $g : [a, b] \rightarrow \mathbb{R}$ with $a, b \in \mathbb{R}$, is absolutely continuous if and only if there exists a Lebesgue summable function $\psi \in L^1(a, b)$ such that

$$g(t) = g(a) + \int_a^t \psi(s) \, ds, \quad \text{for all } t \in [a, b].$$

The space of these functions is denoted by $AC[a, b]$.

Definition 4 (Riemann–Liouville fractional integrals) ([21, Chap. 1])

Let $g \in L^1(0, T)$ with $T > 0$. The Riemann–Liouville left- and right-sided fractional integrals of order $\sigma \in (0, 1)$ are, respectively, defined by

$$I_0^\sigma g(t) := \frac{1}{\Gamma(\sigma)} \int_0^t (t-s)^{-(1-\sigma)} g(s) \, ds, \quad t > 0,$$

and

$$I_T^\sigma g(t) := \frac{1}{\Gamma(\sigma)} \int_t^T (s-t)^{-(1-\sigma)} g(s) \, ds, \quad t < T,$$

where Γ is the Euler gamma function.
Definition 5 (Caputo fractional derivatives) ([21, Chap. 1])
Let \(f \in AC[0, T] \) with \(T > 0 \). The Caputo left- and right-sided fractional derivatives of order \(\delta \in (0, 1) \) exists almost everywhere on \([0, T]\) and defined, respectively, by
\[
^{c}D_{0^+}^\delta f(t) := \frac{d}{dt} I_{0^+}^{1-\delta} [f(t) - f(0)] = I_{0^+}^{1-\delta} [f'(t)], \quad t > 0,
\]
and
\[
^{c}D_{T^-}^\delta f(t) := -\frac{d}{dt} I_{T^-}^{1-\delta} [f(t) - f(T)] = -I_{T^-}^{1-\delta} [f'(t)], \quad t < T.
\]

Lemma 1 ([12, Lemma 2.22, p. 96])
Let \(0 < \delta < 1 \) and \(T > 0 \). If \(f \in AC[0, T] \) or \(f \in C^1[0, T] \), then
\[
I_{0^+}^\delta \frac{d}{dt} I_{0^+}^{1-\delta} f(t) = f(t) - f(0). \tag{4}
\]

Given \(T > 0 \), let us define the function \(w : [0, T] \to \mathbb{R} \) by the following formula:
\[
w(t) = (1 - t/T)^\eta \quad \text{for all } 0 \leq t \leq T, \tag{5}
\]
where \(\eta \gg 1 \). Later on, we need the following properties concerning the function \(w \).

Lemma 2 ([12, Property 2.16, p. 95])
Let \(T > 0 \), \(\eta > \alpha - 1 \), and \(0 < \alpha < 1 \). For all \(t \in [0, T] \), we have
\[
^{c}D_{t}^\alpha w(t) = \frac{\Gamma(\eta + 1)}{\Gamma(\eta + 1 - \alpha)} T^{-\alpha} (1 - t/T)^{\eta-\alpha}. \tag{6}
\]

Lemma 3 Let \(T > 0 \), \(0 < \alpha < 1 \), \(\eta > \alpha p/(p - 1) - 1 \), and \(p > 1 \). Then, we have
\[
\int_0^T (w(t))^{-\frac{1}{p-1}} \left|^{c}D_{t}^\alpha w(t)\right|^\frac{p}{p-1} dt = C_1 T^{1-\alpha} \frac{p}{p-1}, \tag{7}
\]
and
\[
\int_0^T \left|^{c}D_{t}^\alpha w(t)\right| dt = C_2 T^{1-\alpha}, \tag{8}
\]
where
\[
C_1 = \frac{1}{\eta + 1 - \alpha} \left[\frac{\Gamma(\eta + 1)}{\Gamma(\eta + 1 - \alpha)} \right]^{\frac{p}{p-1}}, \quad \text{and} \quad C_2 = \frac{\Gamma(\eta + 1)}{\Gamma(\eta + 2 - \alpha)}.
\]
Proof Let us start by proving (7). Using Lemma 2, we have
\[
\int_0^T (w(t))^{-\frac{1}{p-1}}|c D_0^\alpha w(t)|^{\frac{p}{p-1}} dt
= \left[\frac{\Gamma(\eta + 1)}{\Gamma(\eta + 1 - \alpha)} \right]^{-\frac{p}{p-1}} T^{-\alpha} \int_0^T (w(t))^{-\frac{1}{p-1}} (w(t))^{\frac{\alpha}{p-1}} dt
= \left[\frac{\Gamma(\eta + 1)}{\Gamma(\eta + 1 - \alpha)} \right]^{\frac{p}{p-1}} T^{-\alpha} \int_0^T (1-t/T)^{\eta-\alpha} dt
= \left[\frac{\Gamma(\eta + 1)}{\Gamma(\eta + 1 - \alpha)} \right]^{\frac{p}{p-1}} T^{1-\alpha} \int_0^1 (1-s)^{\eta-\alpha} ds = C \frac{T^{1-\alpha}}{p-1}.
\]
Similarly, we get (8).

Lemma 4 Let \(T > 0, 0 < \alpha < 1, p > 1, A, B \geq 0, \) and \(v \in C^1([0, T], \mathbb{R}) \) satisfying the following fractional differential inequality
\[
\frac{c}{p} D_0^\alpha v(t) \geq B \left[|v(t)|^p - A \right], \quad t \in [0, T),
\]
such that \(v(0) > A \frac{1}{p}. \) Then \(v(t) \geq A \frac{1}{p} \) for all \(t \in [0, T). \)

Proof Fixing \(T_1 \in (0, T) \), we show that \(v(t) \geq A \frac{1}{p} \) for any \(t \in (0, T_1). \) Then, since \(T_1 \) is arbitrary, the claim follows. Let us start by defining \(T^* = \inf \{ t > 0; \ v(t) \geq A \frac{1}{p} \} \).

Since \(v \) is continuous and \(v(0) > A \frac{1}{p}, \) we have \(T^* > 0. \) We claim \(T^* = T_1. \) Otherwise, we have \(v(t) > A \frac{1}{p} \) for all \(t \in (0, T^*) \) such that \(v(T^*) = A \frac{1}{p}; \) this implies, in particular, that
\[
F(t, v(t)) := B \left[|v(t)|^p - A \right] \geq 0, \quad \text{for all } t \in [0, T^*].
\]

On the other hand, since the right hand side of (9) is continuous on \([0, T_1]\) and \(v \in C^1([0, T_1]), \) applying the Riemann–Liouville fractional integral \(I_0^\alpha \) to (9) on \([0, T_1]\) and using (4), we get
\[
A^{\frac{1}{p}} = v(T^*) = v(0) + \frac{1}{\Gamma(\alpha)} \int_0^{T^*} (T^* - s)^{-(1-\alpha)} F(s, v(s)) ds \geq v(0) > A^{\frac{1}{p}},
\]
where we have used (10); contradiction. This completes the proof.

Using [18, Proposition 4.6] and applying the same argument as in the proof of Lemma 4, one can define the function \(g \in C([0, T_b], \mathbb{R}^+) \) which is the unique solution of
\[
\begin{align*}
& c D_0^\alpha g(t) = B g^p(t), \quad t \in [0, T_b), \\
g(0) & > 0,
\end{align*}
\]
where \(T_b \) is the maximal time of existence.

Proposition 1 (Fractional differential inequalities)
Let \(T_b > 0 \) be the blow-time of the solution of (11), and let \(T > T_b, \) \(0 < \alpha < 1, \) \(p > 1, \) \(B > 0, \) and \(f \in C^1([0, T), \mathbb{R}) \) be a nonnegative solution of the following fractional differential inequality

\[
\begin{aligned}
\left\{ \begin{array}{ll}
\frac{\partial}{\partial t} t^\alpha f(t) \geq B f^p(t), & t \in [0, T), \\
f(0) > 0. &
\end{array} \right.
\end{aligned}
\] (12)

Then \(f \) blows up at \(T_b, \) i.e. \(\lim_{t \to T_b^-} f(t) = +\infty. \) Moreover, the following upper and lower bound of \(T_b \) are also given

\[
T_L \leq T_b \leq T_U,
\] (13)

where

\[
T_U := \left(\frac{\Gamma(1 + \alpha)}{B (f(0))^{p-1} H(p, \alpha)} \right)^{1/\alpha} \quad \text{and} \quad T_L := \left(\frac{\Gamma(1 + \alpha)}{B (f(0))^{p-1} G(p)} \right)^{1/\alpha},
\]

with

\[
G(p) = \min \left(2^p, \frac{p^p}{(p-1)^{p-1}} \right), \quad H(p, \alpha) = \max \left(p - 1, 2 - \frac{p\alpha}{p-1} \right).
\] (14)

Proof Applying [3, Theorem 5.1], we conclude that the solution \(g \) of (11) is an increasing function and

\[
\lim_{t \to T_b^-} g(t) = +\infty.
\]

On the other hand, by taking \(g(0) = f(0), \) applying [18, Theorem 4.10] and using (11), (12), we conclude that

\[
f(t) \geq g(t) \geq 0,
\]

this implies that

\[
\lim_{t \to T_b^-} f(t) = +\infty.
\]

Moreover, using [3, Theorem 5.2], we get (13)

Definition 6 ([13, 23]) Let \(s \in (0, 1) \) and \(X \) be a suitable set of functions defined on \(\mathbb{R}^N. \) The fractional Laplacian \((-\Delta)^s \) in \(\mathbb{R}^N \) is a non-local operator defined as the following singular integral

\[
(-\Delta)^s : v \in X \mapsto (-\Delta)^s v(x) := C_{N,s} \ p.v. \int_{\mathbb{R}^N} \frac{v(x) - v(y)}{|x - y|^{N+2s}} dy,
\]
as long as the right-hand side exists, \(p.v. \) stands for Cauchy’s principal value, and
\[C_{N,s} := \frac{4^{s} \Gamma \left(\frac{N}{2} + s \right)}{\pi^{\frac{N}{2}} \Gamma(-s)} \]
is a normalization constant.

Lemma 5 ([1, Lemma 2.3]) Let
\[\langle x \rangle := (1 + |x|^2)^{1/2} \text{ for all } x \in \mathbb{R}^N. \]
Let \(s \in (0, 1) \) and \(\phi : \mathbb{R}^N \to \mathbb{R} \) be a function defined by
\[\phi(x) = \langle x \rangle^{-q}, \text{ where } n < q \leq N + 2s. \]
Then, \(\phi \in H^{2s}(\mathbb{R}^N) \) and the following estimate holds:
\[\left| (-\Delta)^s \phi(x) \right| \leq C_{N,q} \phi(x), \text{ for all } x \in \mathbb{R}^N, \quad C_{N,q} = C(s, N, q) > 0. \quad (15) \]

Lemma 6 ([1, Lemma 2.4]) Let \(s \in (0, 1) \), and let \(\psi \) be a smooth function satisfying
\(\partial^2_x \psi \in L^\infty(\mathbb{R}^N) \). For any \(R > 0 \), let \(\psi_R \) be a function defined by
\[\psi_R(x) := \psi(x/R) \text{ for all } x \in \mathbb{R}^N. \]
Then, \((-\Delta)^s \psi_R \) satisfies the following scaling properties:
\[(-\Delta)^s \psi_R(x) = R^{-2s}((-\Delta)^s \psi)(x/R), \text{ for all } x \in \mathbb{R}^N. \]

Lemma 7 Let \(s \in (0, 1) \), \(R > 0 \) and \(p > 1 \). Then, the following estimate holds
\[\int_{\mathbb{R}^N} (\phi_R(x))^{-\frac{1}{p-1}} \left| (-\Delta)^s \phi_R(x) \right|^{\frac{p}{p-1}} dx \leq C_3 R^{-\frac{2sp}{p-1} + N}, \]
where \(C_3 = (C_{N,q})^{p/(p-1)} A_0 > 0 \), \(A_0 \) is defined below, \(\phi_R(x) := \phi(x/R) \), and \(\phi \) is given in Lemma 5.

Proof If \(0 < s < 1 \), then using the change of variable \(\tilde{x} = x/R \) and Lemma 6 we have
\[(-\Delta)^s \phi_R(x) = R^{-2s}(-\Delta)^s \phi(\tilde{x}). \]
Therefore, by Lemma 5 we conclude that
\[\int_{\mathbb{R}^N} (\phi_R(x))^{-\frac{1}{p-1}} \left| (-\Delta)^s \phi_R(x) \right|^{\frac{p}{p-1}} dx \leq (C_{N,q})^{\frac{p}{p-1}} R^{-\frac{2sp}{p-1} + N} \int_{\mathbb{R}^N} \phi(\tilde{x}) d\tilde{x} \]
\[= (C_{N,q})^{\frac{p}{p-1}} A_0 R^{-\frac{2sp}{p-1} + N}, \]
where
\[A_0 = \int_{\mathbb{R}^N} \phi(x) dx > 0. \]

3 Non-existence of global \(L^1 \)-weak solution in the case \(p \leq p_F \)

To state our first result, we set
\[\lambda = \lambda_1 + i\lambda_2, \quad u_0 = g + ih, \]

\(\Box \) Springer
where $\lambda_i \in \mathbb{R}$ ($i = 0, 1$) and g and h are real-valued functions; the real and imaginary parts of $i^\alpha u_0$ can be written, respectively, as

$$G_1(x) = \cos \left(\frac{\alpha \pi}{2} \right) g(x) - \sin \left(\frac{\alpha \pi}{2} \right) h(x), \quad \text{and}$$

$$G_2(x) = \cos \left(\frac{\alpha \pi}{2} \right) h(x) + \sin \left(\frac{\alpha \pi}{2} \right) g(x).$$

Theorem 1 (Non-existence of global L^1-weak solution in the case $p \leq p_F$)

Let $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $\varepsilon = 1$.

1. If $1 < p < 1 + \frac{\beta}{N} = p_F$, and $u_0 \in L^1(\mathbb{R}^N)$ satisfies

$$\lambda_1 \int_{\mathbb{R}^N} G_1(x) \, dx > 0 \quad \text{or} \quad \lambda_2 \int_{\mathbb{R}^N} G_2(x) \, dx > 0,$$

then problem (1) admits no global L^1-weak solution.

2. If $p = p_F$, and $u_0 \in L^2(\mathbb{R}^N)$ satisfies

$$|\lambda_1|^{2-p} \lambda_1 \int_{\mathbb{R}^N} G_1(x) \, dx > C_0 A_0 \quad \text{or} \quad |\lambda_1|^{2-p} \lambda_2 \int_{\mathbb{R}^N} G_2(x) \, dx > C_0 A_0,$$

where $A_0 = \int_{\mathbb{R}^N} \langle x \rangle^{-N-\beta} \, dx$, and C_0 is defined in (25), then problem (1) admits no global L^1-weak solution.

Proof We argue by contradiction. Suppose that u is a global weak solution to (1), then

$$\lambda \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + i^\alpha \int_{Q_T} u_0(x) \overline{D_t^{\alpha} \varphi(t, x)} \, dt \, dx$$

$$= i^\alpha \int_{Q_T} u \cdot \overline{D_t^{\alpha} \varphi} \, dt \, dx - \int_{Q_T} u (-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx,$$

for all $T > 0$ and all $\varphi \in Y_T$. In order to get a non-negativity in the left hand side of (17), we consider four cases:

Case I: If $\lambda_1 > 0$, then $\int_{\mathbb{R}^N} G_1 \, dx > 0$, therefore by taking the real part (Re) of the both sides of (17), we get:

$$\lambda_1 \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + \int_{Q_T} G_1(x) \overline{D_t^{\alpha} \varphi(t, x)} \, dt \, dx$$

$$= \int_{Q_T} \text{Re}(i^\alpha u) \overline{D_t^{\alpha} \varphi} \, dt \, dx - \int_{Q_T} \text{Re}(u (-\Delta)^{\beta/2} \varphi(t, x)) \, dt \, dx.$$

Case II: If $\lambda_1 < 0$, then $\int_{\mathbb{R}^N} G_1 \, dx < 0$ therefore by taking (-Re) of the both sides of (17) we get:

$$(-\lambda_1) \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx - \int_{Q_T} G_1(x) \overline{D_t^{\alpha} \varphi(t, x)} \, dt \, dx.$$

 Springer
\[= - \int_{Q_T} \text{Re}(i^\alpha u)^c D_{_{1|T}}^{\alpha} \varphi \, dt \, dx + \int_{Q_T} \text{Re}(u)(-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx. \]

Case III: If \(\lambda_2 > 0 \), then \(\int_{\mathbb{R}^N} G_2 \, dx > 0 \), therefore by taking the imaginary part (Im) of the both sides of (17), we get:

\[
\lambda_2 \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + \int_{Q_T} G_2(x)^c D_{_{1|T}}^{\alpha} \varphi(t, x) \, dt \, dx
\]

\[
= \int_{Q_T} \text{Im}(i^\alpha u)^c D_{_{1|T}}^{\alpha} \varphi \, dt \, dx - \int_{Q_T} \text{Im}(u)(-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx.
\]

Case IV: If \(\lambda_2 < 0 \), then \(\int_{\mathbb{R}^N} G_2 \, dx < 0 \), therefore by taking (-Im) of the both sides of (17), we get:

\[
(-\lambda_2) \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx - \int_{Q_T} G_2(x)^c D_{_{1|T}}^{\alpha} \varphi(t, x) \, dt \, dx
\]

\[
= - \int_{Q_T} \text{Im}(i^\alpha u)^c D_{_{1|T}}^{\alpha} \varphi \, dt \, dx + \int_{Q_T} \text{Im}(u)(-\Delta)^{\beta/2} \varphi(t, x) \, dt \, dx.
\]

Then we only consider the Case I, since the other cases can be treated in the same way, by assuming \(\lambda_1 > 0 \), \(u_0 \in L^1(\mathbb{R}^N) \) and

\[
\int_{\mathbb{R}^N} G_1(x) \, dx > 0. \quad (18)
\]

Thus we have

\[
\lambda_1 \int_{Q_T} |u|^p \varphi(t, x) \, dt \, dx + \int_{Q_T} G_1(x)^c D_{_{1|T}}^{\alpha} \varphi(t, x) \, dt \, dx
\]

\[
\leq \int_{Q_T} \left| \cos \left(\frac{\alpha \pi}{2} \right) \text{Re} - \sin \left(\frac{\alpha \pi}{2} \right) \text{Im}(u) \right| \left| c D_{_{1|T}}^{\alpha} \varphi(t, x) \right| \, dt \, dx
\]

\[
+ \int_{Q_T} |\text{Re}(u)| \left| (-\Delta)^{\beta/2} \varphi(t, x) \right| \, dt \, dx
\]

\[
\leq 2 \int_{Q_T} |u| \left| c D_{_{1|T}}^{\alpha} \varphi(t, x) \right| \, dt \, dx + \int_{Q_T} |u| \left| (-\Delta)^{\beta/2} \varphi(t, x) \right| \, dt \, dx, \quad (19)
\]

all \(\varphi \in Y_T \). Using the \(\epsilon \)-Young inequality

\[
ab \leq \epsilon a^p + C_\epsilon b^{\frac{p}{p-1}}, \quad \text{for all } \epsilon > 0, \, a, \, b \geq 0, \quad C_\epsilon = \frac{(p - 1)(p\epsilon)^{-\frac{1}{p-1}}}{p} \quad (20)
\]

we get

\[
2 \int_{Q_T} |u| \left| c D_{_{1|T}}^{\alpha} \varphi(t, x) \right| \, dt \, dx
\]
\[= \int_{Q_T} |u|^{\frac{1}{p}} \varphi^{-\frac{1}{p}} \left| c \, D_{t}^{\alpha} \varphi(t, x) \right| \, dt \, dx \]
\[\leq \varepsilon \int_{Q_T} |u|^{p} \varphi(t, x) \, dt \, dx + \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| c \, D_{t}^{\alpha} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx, \quad (21) \]
where
\[C_4 = 2^{\frac{p}{p-1}} C_\varepsilon = \frac{2^{\frac{p}{p-1}} (p-1)(p\varepsilon)^{-\frac{1}{p-1}}}{p}. \]

Similarly,
\[\int_{Q_T} |u| \left| (-\Delta)^{\beta/2} \varphi(t, x) \right| \, dt \, dx \]
\[\leq \varepsilon \int_{Q_T} |u|^{p} \varphi(t, x) \, dt \, dx + \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| (-\Delta)^{\beta/2} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx, \quad (22) \]
where
\[C_5 = C_\varepsilon = \frac{(p-1)(p\varepsilon)^{-\frac{1}{p-1}}}{p}. \]

Combining (21)–(22) with (19), we obtain
\[(\lambda_1 - 2\varepsilon) \int_{Q_T} |u|^{p} \varphi(t, x) \, dt \, dx + \int_{Q_T} G_1(x)^c \, D_{t}^{\alpha} \varphi(t, x) \, dt \, dx \]
\[\leq C_4 \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| c \, D_{t}^{\alpha} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx \]
\[+ C_5 \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| (-\Delta)^{\beta/2} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx, \quad (23) \]
which implies, by taking \(\varepsilon \leq \lambda_1/2 \), that
\[\int_{Q_T} G_1(x)^c \, D_{t}^{\alpha} \varphi(t, x) \, dt \, dx \]
\[\leq C_4 \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| c \, D_{t}^{\alpha} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx \]
\[+ C_5 \int_{Q_T} \varphi^{-\frac{1}{p-1}} \left| (-\Delta)^{\beta/2} \varphi(t, x) \right|^{\frac{p}{p-1}} \, dt \, dx, \quad (23) \]
all \(\varphi \in X_T \). At this stage, we take the test function
\[\varphi(t, x) := \varphi_R(x)w(t), \]
with \(\phi_R(x) := \phi(x/R) \), \(R > 0 \), where \(\phi(x) \) and \(w(t) \) are defined in Sect. 2 with \(s = \beta/2 \) and \(q = N + \beta \). Therefore, from (23) we obtain

\[
\int_{\mathbb{R}^N} G_1(x) \phi_R(x) \, dx \left. \int_0^T c D_{I,T}^\alpha w(t) \, dt \right|_{t = T} \leq C_4 \int_{\mathbb{R}^N} \phi_R(x) \, dx \int_0^T (w(t))^{-\frac{1}{p-1}} \left| c D_{I,T}^\alpha w(t) \right|^\frac{p}{p-1} \, dt + C_5 \int_0^T w(t) \, dt \int_{\mathbb{R}^N} (\phi_R(x))^{-\frac{1}{p-1}} \left| (-\Delta)^{\beta/2} \phi_R(x) \right|^\frac{p}{p-1} \, dx.
\]

As

\[
\int_{\mathbb{R}^N} \phi_R(x) \, dx = \int_{\mathbb{R}^N} \phi(\tilde{x}) R^N \, d\tilde{x} = A_0 R^N, \quad \text{and} \quad \int_0^T w(t) \, dt = \frac{T}{\eta + 1},
\]

so, using Lemmas 3 and 7 with \(s = \beta/2 \) and \(\eta > \alpha p/(p - 1) - 1 \), we obtain

\[
C_2 T^{1-\alpha} \int_{\mathbb{R}^N} G_1(x) \phi_R(x) \, dx \leq C_6 R^N T^{1-\alpha} \frac{\eta}{p-1} + C_7 T R^\frac{\eta}{p-1} + N,
\]

where

\[
C_6 = C_1 C_4 A_0, \quad \text{and} \quad C_7 = \frac{C_3 C_5}{\eta + 1}.
\]

Choosing \(R = T^{\alpha/\beta} \), we get

\[
\int_{\mathbb{R}^N} G_1(x) \phi(x/T^{\alpha/\beta}) \, dx \leq C_8 T^\frac{N}{p} \left[\frac{1}{\eta - 1} \right],
\]

(24)

where

\[
C_8 = \frac{1}{C_2} \max\{C_6, C_7\}.
\]

By taking, e.g., \(\varepsilon = \lambda_1/2 \), \(C_8 \) can be written as

\[
C_8 = C_0 A_0 \lambda_1^{-\frac{1}{p-1}},
\]

where

\[
C_0 = \frac{2^\frac{1}{p-1}}{p^{\frac{\eta}{p-1}} C_2} \max \left\{ C_1 2^\frac{p}{p-1}, \left(\frac{C_{N,N+\beta}}{\eta + 1} \right)^\frac{\eta}{p-1} \right\}.
\]

\(\square \) Springer
If \(p < 1 + \frac{\beta}{N} \), then \(\frac{N}{p} - \frac{1}{p-1} < 0 \). As \(G_1 \in L^1(\mathbb{R}^N) \), letting \(T \to \infty \) and using the dominated convergence theorem we derive

\[
\int_{\mathbb{R}^N} G_1(x) \, dx \leq 0,
\]
a contraction with (18).

If \(p = 1 + \frac{\beta}{N} \), using again the same argument, we arrive at

\[
\int_{\mathbb{R}^N} G_1(x) \, dx \leq C_0 A_0 \lambda_1^{\frac{1}{p-1}},
\]
which is a contradiction.

Remark 1 We note that the regularity of \(u_0 \) is not so important in Theorem 1, in fact, we can replace \(u_0 \in L^1(\mathbb{R}^N) \) by \(u_0 \in L^2(\mathbb{R}^N) \) and we get a nonexistence of global \(L^2 \)-weak solution. In this case, to ensure the existence of the conditions on \(G_1 \) and \(G_2 \), we need also to assume that \(G_1 \) or \(G_2 \) are in \(L^1(\mathbb{R}^N) \).

4 Non-existence of global \(L^2 \)-weak solution in \(L^2 \)-subcritical case for small data

Theorem 2 (Non-existence for global \(L^2 \)-weak solution in \(L^2 \)-subcritical case and for small data) Let \(0 < \alpha < 1, \ 0 < \beta < 2, \ N \geq 1, \ \varepsilon > 0 \). Let \(u_0 \in H^s(\mathbb{R}^N), \ s \geq 0, \) and \(u \) be an \(L^2 \)-weak solution on \([0, T_w(\varepsilon))\). We assume that \(1 < p < 1 + 2\beta/N \) and \(u_0 \) satisfies

\[
\lambda_1 \ G_1(x) \ \text{or} \ \lambda_2 \ G_2(x) \geq \begin{cases}
|x|^{-k}, & \text{if } |x| > 1, \\
0, & \text{if } |x| \leq 1,
\end{cases}
\]

where \(N/2 < k < \frac{\beta}{p-1} \). Then, \(u \) is not global, i.e. \(T_w(\varepsilon) < \infty \). More precisely, there exists a constant \(\varepsilon_0 > 0 \) such that

\[
T_w(\varepsilon) \leq \begin{cases}
B_0 \varepsilon^{\frac{1}{\kappa_0}}, & \text{if } \varepsilon \in (0, \varepsilon_0), \\
1, & \text{if } \varepsilon \in [\varepsilon_0, \infty),
\end{cases}
\]

where \(\kappa_0 = \frac{1}{p-1} - \frac{k}{p} > 0 \) and

\[
B_0 = \left(C_0(k + \beta)\omega_N^{-1} 2^{\frac{N+\beta}{2}} A_0 \lambda_1^{\frac{p-2}{2} \frac{1}{\alpha_0}} \right),
\]

with \(\omega_N \) stands for the \((N - 1)\)-dimensional surface measure of the unit sphere.
Proof. Repeating the same calculations as in the proof of Theorem 1, by taking here $\varepsilon \neq 1$, and assuming only

$$\lambda_1 > 0 \text{ and } G_1(x) \geq \begin{cases} \lambda_1^{-1} |x|^{-k}, & \text{if } |x| > 1, \\ 0, & \text{if } |x| \leq 1, \end{cases}$$

(the other cases can be treated similarly). From (24), we obtain

$$\varepsilon \int_{\mathbb{R}^N} G_1(x) \phi(x/T^{\alpha/\beta}) \, dx \leq C_0 A_0 \lambda_1^{1-1/p} T^{\alpha \left[\frac{N}{p} + \frac{1}{p-1} \right]},$$

for all $T \in (0, T_w(\varepsilon))$. On the other hand,

$$\varepsilon \int_{\mathbb{R}^N} G_1(x) \phi(x/T^{\alpha/\beta}) \, dx = \varepsilon T^{\alpha N} \int_{\mathbb{R}^N} G_1(yT^{\alpha/\beta}) \phi(y) \, dy$$

$$\geq \lambda_1^{-1} \varepsilon T^{\alpha(N-k)} \int_{|y| > T^{\alpha/\beta}} |y|^{-k} \phi(y) \, dy$$

$$= \lambda_1^{-1} \varepsilon T^{\alpha(N-k)} K(T),$$

where

$$K(T) := \int_{|y| > T^{\alpha/\beta}} |y|^{-k} \phi(y) \, dy.$$

Therefore, from (28), we arrive at

$$\varepsilon K(T) \leq C_0 A_0 \lambda_1^{1-1/p} T^{\alpha \left[\frac{k}{p} - \frac{1}{p-1} \right]}, \text{ for all } 0 < T < T_w(\varepsilon).$$

(29)

It remains to estimate from below the last inequality.

First, let $\varepsilon_0 = B_0^{\alpha k_0}$, then

$$T_w(\varepsilon) \leq 1,$$

for all $\varepsilon \geq \varepsilon_0$. Indeed, suppose on the contrary that there exists $\varepsilon \geq \varepsilon_0$ such that $T_w(\varepsilon) > 1$. Applying (29) with $\tau \in (1, T_w(\varepsilon))$, we obtain

$$\varepsilon K(\tau) \leq C_0 A_0 \lambda_1^{1-1/p} \tau^{\alpha \left[\frac{k}{p} - \frac{1}{p-1} \right]}, \text{ for all } 1 < \tau < T_w(\varepsilon).$$

(30)

Using the fact that

$$|y| \leq (1 + |y|^2)^{1/2} \leq \sqrt{2} |y|, \text{ for all } |y| > 1,$$

\text{ Springer}
we have
\[
\frac{\omega_N}{(k + \beta)2^{\frac{N+\beta}{2}}} = 2^{-\frac{N+\beta}{2}} \int_{|y|>1} |y|^{-k-N-\beta} \, dy \\
\leq K(1) \\
\leq \int_{|y|>1} |y|^{-k-N-\beta} \, dy \\
= \frac{\omega_N}{(k + \beta)}.
\]

Whereupon,
\[
K(\tau) \geq K(1) \geq \frac{\omega_N}{(k + \beta)2^{\frac{N+\beta}{2}}}, \quad \text{for all } 1 < \tau < T_w(\epsilon). \tag{31}
\]

Combining (30) and (31), we obtain
\[
\epsilon \leq (k + \beta)\omega_N^{-1}2^{\frac{N+\beta}{2}} C_0 A_0 \lambda_1^{\frac{p-2}{p-\tau}} \tau^\alpha \left[\frac{1}{\beta} - \frac{1}{p-1}\right],
\]
i.e.
\[
\tau \leq B_0 \epsilon^{-\frac{1}{\alpha x_0}}, \quad \text{for all } 1 < \tau < T_w(\epsilon).
\]

Letting \(\tau \to T_w(\epsilon) \), we get
\[
T_w(\epsilon) \leq B_0 \epsilon^{-\frac{1}{\alpha x_0}} \leq B_0 \epsilon_0^{-\frac{1}{\alpha x_0}} = 1,
\]
a contradiction. Therefore, \(T_w(\epsilon) \leq 1 \), for all \(\epsilon \geq \epsilon_0 \).

On the other hand, suppose \(\epsilon < \epsilon_0 \). If \(T_w(\epsilon) \leq 1 \), it follows that
\[
T_w(\epsilon) \leq 1 = B_0 \epsilon_0^{-\frac{1}{\alpha x_0}} \leq B_0 \epsilon^{-\frac{1}{\alpha x_0}}.
\]

Hence, it is sufficient to consider \(T_w(\epsilon) > 1 \). By the above argument, we get again
\[
T_w(\epsilon) \leq B_0 \epsilon^{-\frac{1}{\alpha x_0}}.
\]

This completes the proof.

Remark 2 We note that the condition \(k > \frac{N}{2} \) in Theorem 2 is necessary to ensure the existence of at least an \(H^s \)-function \(u_0 \) satisfying (32), for all \(s \geq 0 \).
5 Non-existence of global L^2-weak solution for large data

Theorem 3 (Non-existence of global L^2-weak solution for $p > 1$ and large data)

Let $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $\varepsilon > 0$, and $p > 1$. Let $u_0 \in H^s(\mathbb{R}^N)$, $s \geq 0$, and u be an L^2-weak solution on $[0, T_w(\varepsilon))$. We assume that u_0 satisfies

$$\lambda_1 G_1(x) \text{ or } \lambda_2 G_2(x) \geq \begin{cases} |x|^{-k}, & \text{if } |x| \leq 1, \\ 0, & \text{if } |x| > 1, \end{cases}$$

where $k < \min \left\{ \frac{N}{2} - s, \frac{\beta}{p-1} \right\}$. Then, there exists a constant $\varepsilon_1 > 0$ such that for any $\varepsilon > \varepsilon_1$, u is not global, i.e. $T_w(\varepsilon) < \infty$. More precisely,

$$T_w(\varepsilon) \leq \overline{C} \varepsilon^{\frac{1}{\alpha \kappa_0}},$$

for all $\varepsilon > \varepsilon_1$, where $\kappa_0 = \frac{1}{p-1} - \frac{k}{\beta} > 0$ and

$$\overline{C} = \left(C_0 (N - k) \omega_N^{-1} 2^{\frac{N+\beta}{p-1}} A_0 \lambda_1^{\frac{p-2}{p-1}} \right)^{\frac{1}{\alpha \kappa_0}}.$$

Proof Repeating the same calculations as in the proof of Theorem 1, by taking here $\varepsilon \neq 1$, and considering only the case

$$\lambda_1 > 0 \text{ and } G_1(x) \geq \begin{cases} \lambda_1^{-1} |x|^{-k}, & \text{if } |x| \leq 1, \\ 0, & \text{if } |x| > 1, \end{cases}$$

as the other cases can be treated similarly. From (24), we obtain

$$\varepsilon \int_{\mathbb{R}^N} G_1(x) \phi(x/T^{\alpha/\beta}) \, dx \leq C_0 A_0 \lambda_1^{-\frac{1}{p-1}} T^{\alpha \left[\frac{N}{p} + 1 - \frac{p}{p-1} \right]},$$

for all $T \in (0, T_w(\varepsilon))$. On the other hand,

$$\varepsilon \int_{\mathbb{R}^N} G_1(x) \phi(x/T^{\alpha/\beta}) \, dx = \varepsilon T^{\frac{aN}{p}} \int_{\mathbb{R}^N} G_1(yT^{\alpha/\beta}) \phi(y) \, dy \geq \lambda_1^{-1} \varepsilon T^{\frac{a(N-k)}{p}} \int_{|y| \leq T^{\frac{aN}{p}}} |y|^{-k} \phi(y) \, dy \geq \lambda_1^{-1} \varepsilon T^{\frac{a(N-k)}{p}} L(T),$$

where

$$L(T) := \int_{|y| \leq T^{\frac{aN}{p}}} |y|^{-k} \phi(y) \, dy.$$
Therefore, from (33), we arrive at
\[\varepsilon L(T) \leq C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} T^\alpha \left[\frac{k}{p-1} \right], \text{ for all } 0 < T < T_w(\varepsilon). \] (34)

It remains to estimate from below the last inequality.

We claim that there exists a constant \(\varepsilon_1 > 0 \) such that for any \(\varepsilon > \varepsilon_1 \),
\[T_w(\varepsilon) \leq 1. \] (35)

Indeed, suppose on the contrary that for all \(\varepsilon_1 > 0 \), there exists \(\varepsilon > \varepsilon_1 \) such that \(T_w(\varepsilon) > 1 \). Applying (34) with \(T = 1 \), we have
\[\varepsilon L(1) \leq C_0 A_0 \lambda_1^{\frac{p-2}{p-1}}. \] (36)

Using the fact that \(k < N \), and
\[\frac{1}{2^{N+\beta}} \leq \phi(y) \leq 1, \text{ for all } 0 \leq |y| \leq 1, \]
it is easy to check that
\[\frac{\omega_N}{(N-k)2^{\frac{N+\beta}{2}}} \leq L(1) \leq \frac{\omega_N}{(N-k)}. \] (37)

Combining (36) and (37), we obtain
\[\varepsilon \leq (N-k)\omega_N^{-1} 2^{N+\beta} C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} =: \varepsilon_1; \]
contradiction. Thus the claim is proved.

Therefore, for all \(T < T_w(\varepsilon) \leq 1 \), we have
\[L(T) \geq \int_{|y| \leq 1} |y|^{-k} \phi(y) \, dy = L(1) \geq \frac{\omega_N}{(N-k)2^{\frac{N+\beta}{2}}}, \]
which implies, using again (34),
\[\varepsilon \frac{\omega_N}{(N-k)2^{\frac{N+\beta}{2}}} \leq C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} T^\alpha \left[\frac{k}{p-1} \right], \text{ for all } 0 < T < T_w(\varepsilon), \]
i.e.
\[T \leq \frac{1}{C_0 \varepsilon} \frac{1}{\lambda_1^{\frac{1}{p-1}}}, \text{ for all } 0 < T < T_w(\varepsilon). \]

Since \(T \) is arbitrary in \((0, T_w(\varepsilon))\), the proof is completed by letting \(T \to T_w(\varepsilon) \).
Remark 3 In Theorem 3, it is sufficient to just consider the case $p \leq 1 + 2\beta/(N - 2s)$, because the other case $p > 1 + 2\beta/(N - 2s)$ is proved below in Sect. 6, (non local implies non global existence), and in this case we take $k < \frac{N}{2} - s \left(\leq \frac{\beta}{p-1}\right)$.

Remark 4 We note that the condition $k < \frac{N}{2} - s$ in Theorem 3 is necessary to ensure the existence of at least an H^s-function u_0 satisfying (32).

6 Nonexistence of local L^2-weak solution in H^s-supercritical case

Theorem 4 (Non-existence of local L^2-weak solution in H^s-supercritical case) Let $0 < \alpha < 1, 0 < \beta < 2, N \geq 1, \varepsilon > 0$, and $p > 1 + 2\beta/(N - 2s)$. Assume $u_0 \in H^s(\mathbb{R}^N), 0 \leq s < N/2$, such that u_0 satisfies (32) with $\beta/(p - 1) < k < N/2 - s$. Then there is no local L^2-weak solution of (1).

Proof Suppose that there exists an L^2-weak solution u on $[0, T)$ for some $0 < T < T_w(\varepsilon)$. Repeating the same proof of Theorem 3, we have

$$
\varepsilon L(\tau) \leq C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} \tau^{\alpha \left[\frac{k}{\beta} - \frac{1}{p-1}\right]}, \quad \text{for all } 0 < \tau < T.
$$

For all $\tau < 1$, we have

$$
L(\tau) \geq \int_{|y| \leq 1} |y|^{-k} \phi(y) dy = L(1) \geq \frac{\omega_N}{(N - k)2^{N+\beta}},
$$

whereupon

$$
\varepsilon \frac{\omega_N}{(N - k)2^{N+\beta}} \leq C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} \tau^{\alpha \left[\frac{k}{\beta} - \frac{1}{p-1}\right]}, \quad \text{for all } 0 < \tau < \min\{1, T\},
$$

i.e.

$$
\varepsilon \leq (N - k)\omega_N^{-1} 2^{\frac{N+\beta}{2}} C_0 A_0 \lambda_1^{\frac{p-2}{p-1}} \tau^{\alpha \left[\frac{k}{\beta} - \frac{1}{p-1}\right]}, \quad \text{for all } 0 < \tau < \min\{1, T\}.
$$

As $\beta/(p - 1) < k$, we have $k/\beta - 1/(p - 1) > 0$. Therefore, taking $\tau \to 0^+$, we obtain $\varepsilon = 0$; contradiction. This completes the proof.

7 Nonexistence of local L^1-weak solution in the case $p > p_F$

Theorem 5 (Non-existence of local L^1-weak solution in the supercritical case) Let $0 < \alpha < 1, 0 < \beta < 2, N \geq 1, \varepsilon > 0$, and $p > 1 + \beta/N = p_F$. Assume $u_0 \in L^1(\mathbb{R}^N)$ and satisfying (32) with $\beta/(p - 1) < k < N$. Then there is no local L^1-weak solution of (1).
Some nonexistence results for space–time fractional...

Proof Suppose that there exists an L^1-weak solution u on $[0, T)$ for some $0 < T < T_w(\varepsilon)$. Applying the proof of Theorem 4, step by step. The only difference is the condition $k < N$ instead of $k < N/2 - s$, which is required to ensure that there exists an L^1-function u_0 satisfying (32).

8 Nonexistence of global L^2-weak solution: New approach

Theorem 6 (Nonexistence for global L^2-weak solution: New approach) Let $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $p > 1$, $T > 0$, and

$$X(T) = C([0, T), L^2(\mathbb{R}^N)) \cap C^1([0, T), H^{-\frac{\beta}{2}}(\mathbb{R}^N)) \cap L^\infty((0, T), L^p(\mathbb{R}^N)).$$

Assume $u_0 \in L^2(\mathbb{R}^N)$ and satisfies

$$M_R(0) > C_{N, p, \beta, \gamma} R^{N - \frac{\beta}{p - 1}},$$

for some $R > 0$ and $\gamma \in \mathbb{C}$ satisfying $\text{Re}(\gamma \lambda) > 0$, where

$$M_R(0) = \text{Re} \left(i^\alpha \gamma \int_{\mathbb{R}^N} u(0, x) \phi_R(x) \, dx \right),$$

with $\phi_R(x) := \phi(x/R)$, $R > 0$, ($\phi(x)$ is defined in Sect. 2 with $q = N + \beta$), and

$$C_{N, p, \beta, \lambda, \gamma}^p = 2^{1/2} (\text{Re}(\gamma \lambda))^{-\frac{p}{p - 1}} |\gamma|^{\frac{p}{p - 1}} A^p_0 \left(C_{N, N + \beta} \right)^{\frac{p}{p - 1}}.$$

Then there is no distributional solution $u \in X(T)$, with $T > T_b$, for (1), where [see (13)]

$$T_b \sim \left(\frac{R^{N(p-1)} \Gamma(1 + \alpha)}{D_{N, p, \beta, \lambda, \gamma} \left[M_R(0) - C_{N, p, \beta, \gamma} R^{N - \frac{\beta}{p - 1}} \right]^{p-1}} \right)^{1/\alpha},$$

and

$$D_{N, p, \beta, \lambda, \gamma} = 2^{-1} \text{Re}(\gamma \lambda) |\gamma|^{-p} A_0^{-(p-1)}.$$

Proof Suppose, on the contrary, that there exists a distributional solution $u \in X(T)$ with $T > T_b$. Let

$$M_R(t) = \text{Re} \left(i^\alpha \gamma \int_{\mathbb{R}^N} u(t, x) \phi_R(x) \, dx \right).$$
By Lemmas 5 and 6, we have

\[
\mathcal{D}^a_{t=0} M_R(t) = \text{Re} \left(\gamma \int_{\mathbb{R}^N} i^a c \mathcal{D}^a_{t=0} u(t, x) \phi_R(x) \, dx \right)
\]

\[
= \text{Re} \left(\gamma \lambda \int_{\mathbb{R}^N} |u(t, x)|^p \phi_R(x) \, dx \right.
\]

\[
+ R^{-\beta} \text{Re} \left(\gamma \int_{\mathbb{R}^N} u(t, x) \left((-\Delta)^{\beta/2} \phi \right) (x / R) \, dx \right)
\]

\[
\geq \text{Re} \left(\gamma \lambda \int_{\mathbb{R}^N} |u(t, x)|^p \phi(x / R) \, dx \right.
\]

\[
-C_{N,N+\beta} R^{-\beta} |\gamma| \int_{\mathbb{R}^N} |u(t, x)| \phi(x / R) \, dx.
\] (40)

In order to get a differential inequality, we start by estimating the second term in the right hand side of (40). Using 1/2-Young’s inequality (20), we obtain

\[
C_{N,N+\beta} R^{-\beta} |\gamma| \int_{\mathbb{R}^N} |u(t, x)| \phi(x / R) \, dx
\]

\[
= \int_{\mathbb{R}^N} |u(t, x)| \left[\text{Re} \left(\gamma \lambda \phi(x / R) \right) \right]^{1/2} C_{N,N+\beta} R^{-\beta} |\gamma|
\]

\[
\left[\text{Re} \left(\gamma \lambda \right) \right]^{-1/2} \left[\phi(x / R) \right]^{p-1/p} \, dx
\]

\[
\leq \frac{1}{2} \text{Re} \left(\gamma \lambda \right) \int_{\mathbb{R}^N} |u(t, x)|^p \phi(x / R) \, dx
\]

\[
+C_{1/2} |\gamma|^{p-1/p} \left(C_{N,N+\beta} \right)^{p-1/p} R^{-\beta} \left(\text{Re} \left(\gamma \lambda \right) \right)^{1/p-1} \int_{\mathbb{R}^N} \phi(x / R) \, dx
\]

\[
= \frac{1}{2} \text{Re} \left(\gamma \lambda \right) \int_{\mathbb{R}^N} |u(t, x)|^p \phi(x / R) \, dx
\]

\[
+C_{1/2} A_0 |\gamma|^{p-1/p} \left(\text{Re} \left(\gamma \lambda \right) \right)^{1/p-1} \left(C_{N,N+\beta} \right)^{p-1/p} R^{N-\beta p/p-1},
\] (41)

where

\[
C_{1/2} = (p-1) p^{-1/p-1} 2^{1/p-1} \quad \text{and} \quad A_0 = \int_{\mathbb{R}^N} \phi(\tilde{x}) \, d\tilde{x}.
\]

On the other hand, by estimating the first term in the right hand side of (40) by using Hölder’s inequality, we get

\[
|M_R(t)| = \left| \text{Re} \left(i^a \gamma \int_{\mathbb{R}^N} u(t, x) \phi(x / R) \, dx \right) \right|
\]

\[
\leq |\gamma| \int_{\mathbb{R}^N} |u(t, x)| \phi(x / R) \, dx
\]

\[
= |\gamma| \int_{\mathbb{R}^N} |u(t, x)| \left(\phi(x / R) \right)^{1/p} \left(\phi(x / R) \right)^{p-1/p} \, dx
\]
\[
\leq |\gamma| \left(\int_{\mathbb{R}^N} |u(t,x)|^p \phi(x/R) \, dx \right)^{1/p} \left(\int_{\mathbb{R}^N} \phi(x/R) \, dx \right)^{p-1/p} \\
= |\gamma| A_0^{p-1/p} R^{N(p-1)/p} \left(\int_{\mathbb{R}^N} |u(t,x)|^p \phi(x/R) \, dx \right)^{1/p},
\]
i.e.
\[
\int_{\mathbb{R}^N} |u(t,x)|^p \phi(x/R) \, dx \geq |\gamma|^{-p} A_0^{-(p-1)} R^{-N(p-1)} |M_R(t)|^p.
\] (42)

Inserting (41)–(42) into (40), we conclude that
\[
^{c} D_{t|T}^\alpha M_R(t) \\
\geq 2^{-1} \text{Re} (\gamma \lambda) \int_{\mathbb{R}^N} |u(t,x)|^p \phi(x/R) \, dx \\
- C_{1/2} A_0 |\gamma|^{p-1/p} (\text{Re} (\gamma \lambda))^{-1/p-1} (C_{N,N+\beta})^{p-1/p} R^{N-\beta_p/p-1} \\
\geq 2^{-1} \text{Re} (\gamma \lambda) |\gamma|^{-p} A_0^{-(p-1)} R^{-N(p-1)} |M_R(t)|^p \\
- C_{1/2} A_0 |\gamma|^{p-1/p} (\text{Re} (\gamma \lambda))^{-1/p-1} (C_{N,N+\beta})^{p-1/p} R^{N-\beta_p/p-1} \\
= 2^{-1} \text{Re} (\gamma \lambda) |\gamma|^{-p} A_0^{-(p-1)} R^{-N(p-1)} \left[|M_R(t)|^p - C_{N,p,\beta,\lambda,\gamma}^P R^P \left(N - \frac{\beta}{p-1} \right) \right],
\]
i.e.
\[
^{c} D_{t|T}^\alpha M_R(t) \geq D_{N,p,\beta,\lambda,\gamma} R^{-N(p-1)} \left[|M_R(t)|^p - C_{N,p,\beta,\lambda,\gamma}^P R^P \left(N - \frac{\beta}{p-1} \right) \right].
\] (43)

Applying Lemma 4 and using (38), we conclude that
\[
M_R(t) \geq C_{N,p,\beta,\gamma} R^{N-\frac{\beta}{p-1}} > 0, \quad \text{for all } t \in [0, T),
\] (44)
which implies, by using (43) and the following elementary inequality
\[
a^p - b^p \geq (a - b)^p, \quad \text{for all } a > b \geq 0, \quad p > 1,
\]
that
\[
^{c} D_{t|T}^\alpha M_R(t) \geq D_{N,p,\beta,\lambda,\gamma} R^{-N(p-1)} \left[M_R(t) - C_{N,p,\beta,\gamma} R^P \left(N - \frac{\beta}{p-1} \right) \right]^p.
\] (45)

Apply Proposition 1 and the fact that \(^{c} D_{t|T}^\alpha C = 0\), for any constant \(C > 0\), we infer that
\[
\lim_{t \to T_0} M_R(t) = +\infty.
\]
Since
\[M_R(t) \leq \|u(t)\|_{L^\infty((0,T),L^2(\mathbb{R}^N))} \|\phi(\cdot / R)\|_{L^2(\mathbb{R}^N)} < \infty, \quad \text{for all } t \in [0, T), \]
we get a contradiction, and this completes the proof.

Remark 5 Note that, from (14), we have
\[H(p, \alpha) = \max\left(p - 1, 2 - \frac{p\alpha}{p-1}\right) \geq p - 1; \]
this implies that \(T_b \) can be chosen as
\[T_b = \left(\frac{R^{N(p-1)} \Gamma(1 + \alpha)}{(p-1)D_{N,p,\beta,\lambda,\gamma} \left(M_R(0) - C_{N,p,\beta,\gamma} R^{N-\frac{\beta}{p-1}} \right)^{p-1}} \right)^{1/\alpha}, \]
which is the same blow-up time as in the ordinary differential equation when \(\alpha = 1 \).

Corollary 1 (Theorem 1: New approach)
Let \(0 < \alpha < 1, 0 < \beta < 2, N \geq 1, \gamma \in \mathbb{C}, \varepsilon = 1, p > 1 \). Assume that \(p < 1 + \beta/N \), and \(u_0 \in L^1(\mathbb{R}^N) \cap L^2(\mathbb{R}^N) \) satisfies
\[\text{Re}(\gamma \lambda) > 0 \quad \text{and} \quad \text{Re}\left(i^{\alpha} \int_{\mathbb{R}^N} u_0(x) \, dx\right) > 0. \quad (46) \]
Then there is no distributional solution \(u \in X(T) \) to (1) for sufficiently large \(T > 0 \).

Proof By (46), using the dominated convergence theorem, we conclude that
\[\lim_{R \to \infty} M_R(0) = \text{Re}\left(i^{\alpha} \int_{\mathbb{R}^N} u_0(x) \, dx\right) > 0. \]
On the other hand, as \(p < 1 + \beta/N \),
\[C_{N,p,\beta,\gamma} R^{N-\frac{\beta}{p-1}} \to 0, \quad \text{when } R \to \infty. \]
Therefore, there exists \(R_0 > 0 \) such that condition (38) is satisfied. Using Theorem 6, the proof is completed.

Remark 6 Note that, by taking \(\gamma = \pm 1, \pm i \) in Corollary 1, condition (46) implies (16), which means that (46) is more general than (16). Therefore, in the subcritical case, Theorem 1 can be seen as a particular case of Corollary 1, but with different regularity.

Corollary 2 (Theorem 2: New approach)
Let $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $\varepsilon > 0$, $\gamma \in \mathbb{C}$, and $p > 1$. Assume that $p < 1 + 2\beta/N$, and $u_0 \in H^s(\mathbb{R}^N)$, $s \geq 0$, satisfies

$$
\text{Re}(\gamma \lambda) > 0 \quad \text{and} \quad \text{Re}\left(i^\alpha \gamma u_0(x)\right) \geq \begin{cases}
|x|^{-k}, & \text{if } |x| > 1, \\
0, & \text{if } |x| \leq 1,
\end{cases}
$$

(47)

where $N/2 < k < \frac{\beta}{p-1}$. Then, there exists a constant $\varepsilon_2 > 0$ such that for all $\varepsilon \in (0, \varepsilon_2]$, there is no distributional solution $u \in X(T)$ to (1) for sufficiently large $T > T_b$ with T_b defined in (39). Moreover T_b can be estimated as follows

$$
T_b \leq B_1 \varepsilon^{-\frac{1}{\alpha \kappa_1}},
$$

(48)

for all $\varepsilon \in (0, \varepsilon_2]$, where $\kappa_1 = \frac{1}{p-1} - \frac{\min(N,k)}{\beta} > 0$.

$$
B_1 = (p - 1)^{-1/\alpha} D_{N,p,\beta,\lambda,\gamma}^{-1/\alpha} \Gamma(1 + \alpha)^{1/\alpha} 2^{\frac{1}{\alpha \kappa_1}} (C_{N,p,\beta,\gamma}) \frac{\min(N,k)(p-1)}{\alpha^{\kappa_1}} I_1^{-\frac{1}{\alpha \kappa_1}},
$$

and

$$
I_1 := \begin{cases}
2^{-N-\beta-1} \omega_N (N-k)^{-1} R^{N-k}, & \text{if } k < N, \\
2^{-N-\beta} \omega_N \int_1^2 r^N r^{-1-k} dr, & \text{if } k \geq N.
\end{cases}
$$

Proof In order to apply Theorem 6, we need to estimate $M_R(0)$ from below, for some $R > 0$. Let

$$
\varepsilon_2 = \begin{cases}
I_1^{-1} C_{N,p,\beta,\gamma} 2^{1-\frac{\beta \kappa_1}{\alpha}} \frac{1}{\alpha \kappa_1}, & \text{if } k < N, \\
I_1^{-1} C_{N,p,\beta,\gamma} 2^{1-\beta \kappa_1}, & \text{if } k \geq N.
\end{cases}
$$

Let $\varepsilon \in (0, \varepsilon_2]$. We choose $R = R(\varepsilon)$ such that

$$
\begin{cases}
R \geq 2^{1/(N-k)}, & \text{if } k < N, \\
R \geq 2, & \text{if } k \geq N.
\end{cases}
$$

(49)

Then, as $R^{N-k} - 1 \geq R^{N-k}/2$, when $k < N$, using (47), we have

$$
M_R(0) \geq \varepsilon \text{Re} \left(\gamma i^\alpha \int_{\mathbb{R}^N} u_0(x) \phi(x/R) dx \right)
$$

$$
\geq \varepsilon \int_{|x| \geq 1} |x|^{-k} \phi(x/R) dx
$$

 Springer
\[
\geq \varepsilon \int_{1 \leq |x| \leq R} |x|^{-k} \phi(x/R) \, dx \\
\geq \varepsilon 2^{-N-\beta} \int_{1 \leq |x| \leq R} |x|^{-k} \, dx \\
= \varepsilon 2^{-N-\beta} \omega_N \int_1^R r^{N-1-k} \, dr \\
\geq \varepsilon 2^{-N-\beta} \omega_N \left\{ \begin{array}{ll}
(N - k)^{-1}(R^{N-k} - 1), & \text{if } k < N, \\
\int_1^2 r^{N-1-k} \, dr, & \text{if } k \geq N,
\end{array} \right.
\geq \varepsilon I_1 R^{(N-k)+},
\]
with \((N - k)_+ = \max(N - k, 0)\). Therefore,
\[
M_R(0) - C_{N,p,\beta,\gamma} R^{N-\frac{\beta}{p-1}} \geq R^{(N-k)+} \left(\varepsilon I_1 - C_{N,p,\beta,\gamma} R^{-\beta \kappa_1} \right) \\
= R^{(N-k)+} \left(\frac{\varepsilon I_1}{2} \right) > 0,
\tag{50}
\]
where \(R\) is chosen to ensure the last equality, namely
\[
R = \left(\frac{2 C_{N,p,\beta,\gamma}}{\varepsilon I_1} \right)^{\frac{1}{\beta \kappa_1}}. \tag{51}
\]
It is clear, by our choice of \(\varepsilon_2\), that condition (49) is satisfied. Applying Theorem 6, we conclude that there is no solution \(u \in X(T)\) to (1) for all \(T > T_b\). Moreover, from (13), (39) and the fact that \(H(p, \alpha) \geq p - 1\), we obtain
\[
T_b \leq T_U \leq (p - 1)^{-1/\alpha} \left(\frac{R^{(p-1) \Gamma(1+\alpha)}}{D_{N,p,\beta,\lambda,\gamma} \left[M_R(0) - C_{N,p,\beta,\gamma} R^{N-\frac{\beta}{p-1}} \right]^{p-1}} \right)^{1/\alpha}.
\]
Then, using (50) and (51), we conclude that
\[
T_b \leq B_1 \varepsilon^{-\frac{1}{\alpha \kappa_1}}.
\]
This complete the proof. \(\square\)

Remark 7 Note that, \(\kappa_1 > \kappa_0\), this means that (27) is better than (48). Moreover, by taking \(\gamma = \pm 1, \pm i\) in Corollary 2, condition (47) implies (26), which means that (47) is more general than (26). Therefore, Theorem 2 can be seen as a particular case of Corollary 2, but with different regularity.
Corollary 3 (Theorem 3: New approach) Let $0 < \alpha < 1$, $0 < \beta < 2$, $N \geq 1$, $\varepsilon > 0$, $\gamma \in \mathbb{C}$, and $p > 1$. Assume that $u_0 \in H^s(\mathbb{R}^N)$, $s \geq 0$, satisfies

$$\text{Re}(\gamma \lambda) > 0 \quad \text{and} \quad \text{Re}(i^\alpha \gamma u_0(x)) \geq \begin{cases} |x|^{-k}, & \text{if } |x| \leq 1, \\ 0, & \text{if } |x| > 1, \end{cases}$$

(52)

where $k < \min\left\{ \frac{N}{2} - s, \frac{\beta}{p-1} \right\}$. Then, there exists a constant $\varepsilon_3 > 0$ such that for any $\varepsilon \geq \varepsilon_3$, there is no distributional solution $u \in X(T)$ to (1) for sufficiently large $T > T_b$ with T_b is defined in (39). Moreover T_b can be estimated as follows

$$T_b \leq B_2 \varepsilon^{-\frac{1}{\alpha \kappa_0}},$$

for all $\varepsilon \geq \varepsilon_3$, where $\kappa_0 = \frac{1}{p-1} - \frac{k}{\beta} > 0$,

$$B_2 = (p - 1)^{-1/\alpha} D_{N,p,\beta,\lambda,\gamma}^{-1/\alpha} \Gamma(1 + \alpha)^{1/\alpha} 2^{\frac{1}{\alpha \kappa_0}} (C_{N,p,\beta,\gamma})^{\frac{k(p-1)}{\alpha \kappa_0}} \omega N^{-\frac{1}{\alpha \kappa_0}},$$

and

$$I_2 := 2^{-N-\beta} \omega N (N - k)^{-1}.$$

Proof In order to apply Theorem 6, we need to estimate $M_R(0)$ from below, for some $R > 0$. Let

$$\varepsilon_3 = 2 I_2^{-1} C_{N,p,\beta,\gamma}.$$

Let $\varepsilon \geq \varepsilon_3$. We choose $R = R(\varepsilon) \leq 1$. Then, using (52), we have

$$M_R(0) \geq \varepsilon \text{Re} \left(\gamma i^\alpha \int_{\mathbb{R}^N} u_0(x) \phi(x/R) \, dx \right)$$

$$\geq \varepsilon \int_{|x| \leq 1} |x|^{-k} \phi(x/R) \, dx$$

$$\geq \varepsilon \int_{|x| \leq R} |x|^{-k} \phi(x/R) \, dx$$

$$\geq \varepsilon 2^{-N-\beta} \int_{|x| \leq R} |x|^{-k} \, dx$$

$$= \varepsilon 2^{-N-\beta} \omega N \int_0^R r^{N-1-k} \, dr$$

$$= \varepsilon 2^{-N-\beta} \omega N (N - k)^{-1} R^{N-k}$$

$$= \varepsilon I_2 R^{N-k}.$$
Therefore
\[M_R(0) - C_{N, p, \beta, \gamma} R^{N - \frac{\beta}{p - 1}} \geq R^{N - k} \left(\varepsilon I_2 - C_{N, p, \beta, \gamma} R^{\beta \kappa_0} \right) \]
\[= R^{N - k} \left(\frac{\varepsilon I_2}{2} \right) > 0, \tag{53} \]

where
\[R = \left(\frac{2C_{N, p, \beta, \gamma}}{\varepsilon I_2} \right)^{\frac{1}{\beta \kappa_0}}. \tag{54} \]

It is clear, by our choice of \(\varepsilon_3 \), that \(R \leq 1 \). Applying Theorem 6, we conclude that there is no solution \(u \in X(T) \) of (1) for all \(T > T_b \). Moreover, from (13), (39) and \(H(p, \alpha) \geq p - 1 \), we obtain

\[T_b \leq T_U \leq (p - 1)^{-1/\alpha} \left(\frac{R^{N(p-1)} \Gamma(1 + \alpha)}{D_{N, p, \beta, \lambda, \gamma} \left[M_R(0) - C_{N, p, \beta, \gamma} R^{N - \frac{\beta}{p - 1}} \right]^{p-1}} \right)^{1/\alpha}. \]

Then, using (53) and (54), we conclude that

\[T_b \leq B_2 \varepsilon^{-\frac{1}{\alpha \kappa_0}}. \]

This complete the proof.

Remark 8 Note that, by taking \(\gamma = \pm 1, \pm i \) in Corollary 3, condition (52) implies (32), which means that (52) is more general than (32). Therefore, Theorem 3 can be seen as a particular case of Corollary 3, but with different regularity.

Acknowledgements The second author is supported by the Lebanese University research program.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Dao, T.A., Reissig, M.: A blow-up result for semi-linear structurally damped \(\sigma \)-evolution equations (2019). arXiv:1909.01181v1
2. Dong, J., Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)
3. Feng, Y., Li, L., Liu, J.G., Xu, X.: Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Contin. Dyn. Syst. B 23(8), 3109–3135 (2018)
4. Fino, A.Z., Dannawi, I., Kirane, M.: Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equ. Appl. 30(1), 67–80 (2018)
5. Fino, A.Z., Dannawi, I., Kirane, M.: Erratum to blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equ. Appl. 32(3), 395–396 (2020)
6. Fujiwara, K.: A note for the global nonexistence of semirelativistic equations with nongauge invariant power type nonlinearity. Math. Methods Appl. Sci. 41(13), 1–12 (2018)
7. Fujiwara, K., Ozawa, T.: Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearity. Int. J. Math. Anal. 9, 2599–2610 (2015)
8. Ikeda, M., Wakasugi, Y.: Small data blow-up of L^2–solution for the nonlinear Schrödinger equation without gauge invariance. Differ. Int. Equ. 26, 1275–1285 (2013)
9. Ikeda, M., Inui, T.: Small data blow-up of L^2 or H^1–solution for the semilinear Schrödinger equation without gauge invariance. J. Evol. Equ. 15(3), 1–11 (2015)
10. Ikeda, M., Inui, T.: Some non-existence results for the semilinear Schrödinger equation without gauge invariance. J. Math. Anal. Appl. 425(2), 758–773 (2015)
11. Inui, T.: Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity. Proc. Am. Math. Soc. 144(7), 2901–2909 (2016)
12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science, Inc., New York (2006)
13. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002
14. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135–3145 (2000)
15. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)
16. Laskin, N.: Fractals and quantum mechanics. Chaos 10(4), 780–790 (2000)
17. Lee, J.B.: Strichartz estimates for space–time fractional Schrödinger equations. J. Math. Anal. Appl. 487(2), 123999 (2020)
18. Li, L., Liu, J.G.: A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 50(3), 2867–2900 (2018)
19. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)
20. Narahari, B.N.A., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. (2013). https://doi.org/10.1155/2013/290216
21. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1987)
22. Saxena, R.K., Saxena, R., Kalla, S.L.: Solution of space–time fractional Schrödinger equation occurring in quantum mechanics. Fract. Calc. Appl. Anal. 13(2), 177–190 (2010)
23. Tenreiro Machado, J.A.: And I say to myself: what a fractional world! Fract. Calc. Appl. Anal. 14(4), 635–654 (2011). https://doi.org/10.2478/s13540-011-0037-1
24. Zhang, Q.S.: A blow up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris 333(2), 109–114 (2001)
25. Zhang, Q.G., Sun, H.R., Li, Y.N.: The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl. Math. Lett. 64, 119–124 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.