Diversity, distribution patterns, and faunogenesis of the millipedes (Diplopoda) of mainland China

Sergei I. Golovatch¹, Weixin Liu²

¹ Institute for Problems of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia ² Department of Entomology, College of Agriculture, South China Agricultural University, 483 Wushanlu, Guangzhou 510642, China

Corresponding author: Sergei I. Golovatch (sgolovatch@yandex.ru)

Abstract

Based on all available information, 339 species from 71 genera, 26 families, and eleven orders of Diplopoda have hitherto been recorded from mainland China, the fauna thus being very rich, albeit far from completely known, comprising various zoogeographic elements and populating very different environments. Diplopods mainly occur in various woodlands, in caves, and high in the mountains. Most species (> 90 %, usually highly localised, including 160 cavernicoles), 18 genera, and one family are strictly endemic to continental China. Mapping not only the horizontal, but also the vertical distributions of Diplopoda in China shows the bulk of the fauna to be expectedly restricted to forested lowland and mountain biomes or their remnants. Yet some Chordeumatida, Callipodida, Polydesmida, Julida, and even Spirobolida seem to occur only in the subalpine to alpine environments and thus may provisionally be considered as truly high-montane. The long-acknowledged notions of China being a great biogeographic zone transitional between the Palaearctic and Oriental regions generally find good support in millipede distributions, in particular at the higher taxonomic levels (generic, familial, and ordinal). While the Palaearctic/Holarctic components expectedly dominate the fauna of the northern parts of the country, the Oriental ones prevail in its south and along the Pacific coast. Both realms are increasingly mixed and intermingled towards China's centre. However, in addition to the above traditional views, based on distribution patterns alone, southern China seems to harbour a rather small, but highly peculiar faunal nucleus or origin centre of its own, whence Himalaya, Myanmar, Thailand, Indochina and/or Taiwan could have become populated by younger lineages. The millipede fauna of continental China is thus a tangled mixture of zoogeographic elements of various origins and ages, both relict and more advanced. The few anthropochores must have been the latest faunal “layer” to populate China.
Keywords
continental China, Diplopod fauna, zoogeography

Introduction

Millipedes (Diplopoda) form a highly diverse, yet strongly understudied arthropod class with > 11,000 described species (Minelli 2015). Apparently, only ca. 20 % of the global species diversity of millipedes are currently known, with the actual number of species being estimated between 50,000 and 80,000 species (Minelli and Golovatch 2013). Being mainly represented by mesophilous forest-dwelling detritivores, millipedes have long been recognised as playing important ecological roles, mostly in temperate and tropical land ecosystems where their diversity is especially pronounced (Golovatch and Kime 2009).

The class encompasses 16 extant orders, 140+ families, and ca. 2,000 genera (Minelli and Golovatch 2013), while the distributions of higher taxa fully agree with the major biogeographic divisions of Earth into the Holarctic (Palaearctic + Nearctic), Afrotropical, Oriental, Neotropical and Australian regions which are accepted since Alfred Russel Wallace and Joseph Dalton Hooker. Antarctica is completely devoid of diplopods, whereas the Oriental Region appears to be the sole one to harbour all 16 orders. Being very ancient (Silurian, early Palaeozoic) and diverse taxonomically, widespread (present on all continents except Antarctica), virtually fully terrestrial (even fossils show spiracles), poorly agile (with highly limited dispersal capacities) and highly limited in compensatory ecological faculties (strongly restricted by a single limiting ecological factor even if the others are favourable), Diplopoda have long been considered as an exemplary group for biogeographic studies and reconstructions (e.g. Shelley and Golovatch 2011).

China has long been considered as a huge territory lying between and linking the Palaearctic and Oriental realms, with very considerable areas of southern China representing not only a marked transitional zone (e.g. Wulf 1944; Zherikhin 2003; Holt et al. 2012), but also the largest karst belt of the world particularly rich in cavernicoles, including millipedes (Golovatch 2015a). Continental China as conventionally understood here includes Hainan and Hong Kong but excludes Taiwan. The territory in question covers ca. 9,326 million sq. km, spanning ca. 5,500 km from north to south and ca. 5,200 km from west to east. China’s topography is very complex. The outline descends step by step from west to east: mountains, high plateaus and hilly land prevail and take up nearly 70 % of the total area, with deserts also located in the west, but mostly plains, deltas and hills in the east. The climates are likewise varied, ranging from sharply continental in the north, through temperate in the middle, to monsoon subtropical and tropical in the south, with a warm humid influence along the eastern sea coasts (https://en.wikipedia.org/wiki/Geographic_information_systems_in_China).

China with its highly varied climates and relief (ca. 70 % national land area being mountains or plateaus) is exceptionally rich in ecological conditions and it supports as many as 18 natural latitudinal belts or biomes (Ni et al. 2000). They range from Polar desert and Alpine tundra in Tibet, through grasslands (savanna, steppe) or desert in the northern parts, to various woodlands (scrub, boreal forest, temperate forest, tropi-
Diversity, distribution patterns and faunogenesis of the millipedes of China

Nature zonation is generally well-expressed, forested biomes prevailing in total area and forming a succession of boreal forest in the north, through temperate (conifer, deciduous and evergreen), to tropical rainforest in the far south. Altitudinal zonation follows the same general pattern which varies depending on location and grows increasingly complex from seven vegetation or eco-geographic belts in the Tianshan Mountains in the northwest or Tibetan Plateau in the southwest to 14 in Yunnan in the south (review by Zhang et al. 2004).

Figure 1. Nature zonation and the main biomes of China (after Ni et al. 2000).
Even though the millipede fauna of China enjoys a very long history of taxonomic study, dating back to 1833 (Wang and Mauriès 1996), it still remains far from well-known. Based on all available information, 339 species from 71 genera, 26 families, and eleven orders of Diplopoda have hitherto been recorded from mainland China (Table 1), but there can be no doubt that our review will soon be out of date.

The present paper is an attempt not only to summarise the Chinese species list (as of the end of 2019), but also to provide an analysis of the distribution patterns revealed, both altitudinal and horizontal, and to hypothesise the main sources, routes and stages of fauno-genesis. A very similar approach has recently been applied to treating the millipedes of the Himalaya (Golovatch and Martens 2018).

Materials and methods

Only described species and published records are considered in our paper, while dubious taxa and those not identified to the species level have been omitted from both checklist and bibliography.

Several broken transects have been chosen to grossly reflect the macro relief of mainland China that accompanies the usual mapped distributions (Figs 2–15). The maps and their corresponding transects at the bottom show both horizontal and vertical distributions of all or most species in a number of largely speciose genera from different families and of various origins across China. The species on the maps and along transects are arranged from west to east and/or north to south. The generic level has been chosen as the most suitable to be accepted in historical biogeography (Kryzhansky 2002). The above novel approach to a graphic presentation of faunistic data allows us to combine the horizontal and vertical distributions of millipedes in the easiest and most vivid way on the same map. Mapping largely concerns endemic species and only the territory of mainland China.

The colour maps were generated using Google Earth Pro version 7.3.2.5495 and Adobe Photoshop CS6. The final images were processed with Adobe Photoshop CS6.

Results

The diplopod fauna of continental China at any higher level is basically a mixture of various zoogeographic elements. At the species level, most diplopods encountered in China are not only endemic to the country, but they are also more or less narrowly localised. This holds especially true for cave-dwellers which are usually presumed troglobionts restricted to a single or few adjacent caves. Generally, as the real diversity of millipedes in China has been estimated to amount to no less than 1,000 species (Golovatch 2015a), the list in Table 1, however impressive, seems to represent only ca. 1/3 of the fauna. It is thereby noteworthy that epigean Diplopoda remain especially badly understudied, since much of the collecting and taxonomic exploration efforts still focus on cavernicoles (Golovatch 2015a).
As noted above, according to the ordinal and supra-ordinal distributions in the Diplopoda and a purely biogeographic reconstruction of their origins and early evolution by Shelley and Golovatch (2011), the Oriental Region is the only biogeographic realm of the globe that supports all 16 extant orders of the class. Amongst them, eleven orders are known to occur in mainland China, with the distribution patterns of their constituent families and genera available in Table 1. The remaining five orders, albeit formally excluded from consideration, are added to the roster (Table 2), because representatives of the orders Glomeridesmida, Siphonophorida, Siphonocryptida, Siphoniulida, and Stemmiulida occur or occurred in the adjacent parts of East, Southeast and/or Central Asia. Thus, one extant species of Glomeridesmida and Siphonocryptida each is known from northern Thailand and Taiwan, respectively (Shelley and Golovatch 2011, Golovatch 2015a), several Siphonophorida have been recorded from Vietnam, Laos and northern Pakistan (Jeekel 2001), while fossil Siphoniulida have recently been described from northern Myanmar (Liu et al. 2017c). Two very small orders, Siphoniulida and Siphonocryptida, are considered relict, in a stage of evolutionary decline, whereas most if not all of the remaining orders of Diplopoda are far more diverse and currently in an expansive stage of their evolution (Shelley and Golovatch 2011, Shelley 2011, Golovatch 2015a).

The greatest and about equal shares in the diplopod fauna of mainland China expectedly belong to Holarctic/Palaearctic or Oriental elements, with the former naturally dominating the northern, the latter the southern, parts of the country, and both thoroughly mixed and intermingled mainly in the more central parts. The orders Polyxenida, Polyzoniida, Platydesmida, Glomerida, Callipodida, Chordeumatida, and Julida, the families Polydesmidae and Xystodesmidae, as well as certain genera of Paradoxosomatidae seem best to be attributed to Holarctic/Palaearctic components in the fauna of China. In contrast, most of the remaining higher taxa such as the largely tropical orders Sphaerotheriida, Spirobolida, and Spirostreptida, the families Cryptodesmidae, Haplodesmidae, Opisotretidae, and Pyrgodesmidae, as well as several genera of Paradoxosomatidae seem to represent the Oriental stem. Only two families (of 25, or 8%) are endemic or subendemic to China: the monobasic Guizhousomatidae (Chordeumatida), an apparently relict troglobiont from Guizhou Province, and the Paracortinidae (Callipodida) with two genera (maybe just one, see Stoev and Geoffroy 2004) and a handful of species (including two from northern Vietnam). The number of endemic genera is quite high, 16 (of 65, or ca. 25 %): Sinostemmiulus (Julida), Parabilingulus, Agaricogonopus, Junceustreptus, Prominulostreptus (all Spirostreptida), Lipseuma (Chordeumatida), Angulifemur (Callipodida), Belousoviella, Gonobelus, Mandarinopus, Orthomorphella, Sigipinius, Sinomorpha, Wulingina, Yuennanina (all Polydesmida: Paradoxosomatidae), and Kiulinga (Polydesmida: Xystodesmidae). One might think the higher the altitude, the more likely the taxon's Holarctic or Palaearctic origin and, vice versa, the lower the elevation, the more probable a tropical descent. However, the vertical distributions usually fail to provide a clear-cut support to attributing a higher taxon to this or that stem. The following examples can serve to show this.
Table 1. The millipede fauna of continental China, with data on distributions and basic literature sources.

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
Order Polyxenida Verhoeff, 1934		
Family Polyxenidae Lucas, 1840		
Genus *Eudigraphis* Silvestri, 1948		
1. *Eudigraphis sinensis* Ishii & Liang, 1990	ca. 100	Zhejiang, Hangzhou, Lake Xihu (Ishii and Liang 1990)
Genus *Polyxenus* Latreille, 1802–03		
2. *Polyxenus hangzoensis* Ishii & Liang, 1990	ca. 100	Zhejiang, Hangzhou, Lake Xihu (Ishii and Liang 1990)
Order Glomerida Brandt, 1833		
Family Glomeridae Leach, 1816		
Genus *Hyleoglomeris* Verhoeff, 1910	145–2810	Balkans, Anatolia, Caucasus, Central, E and SE Asia
3. *Hyleoglomeris albicorporis* Zhang & Zhang, 1995	ca. 1660	Yunnan, Baoshan City, Cave Shihua Dong (Zhang and Zhang 1995)
4. *H. aschne* Makhan, 2010	ca. 730	Chongqing, Beibei, Mt. Jinynushan (Makhan 2010b)
5. *H. baxian* Liu & Tian, 2015	ca. 145	Guangxi, Du’an County, Chengjiang Town, Cave Baxian Park Dong (Liu and Tian 2015a)
6. *H. bicolor* (Wood, 1865)	210	Hong Kong, Mt. Taimoshan (Golovatch et al. 2006b)
7. *H. curtisiucata* Golovatch, Liu & Geoffroy, 2012	420	Guangxi, Huanjiang County, Mulun, Cave Gang Lai Dong (Golovatch et al. 2012b)
8. *H. emarginata* Golovatch, 1981	310	Jiangsu, Nanjing City, Mt. Zijinshan (Golovatch 1981, Golovatch et al. 2006b)
9. *H. esulcata* Golovatch, Geoffroy & Mauriès, 2006	ca. 410	Guizhou, Libo County, caves Latai Dong and Shuijiang Dong (Golovatch et al. 2006b)
10. *H. generalis* Liu & Tian, 2015	550	Guizhou, Cengong County, Shuiwei Town, Cave Jiangjun Dong (Liu and Tian 2015a)
11. *H. getuhensis* Liu & Tian, 2015	ca. 910	Guizhou, Ziyun County, Getuhe National Geopark, Cave Miaoting Dong (Liu and Tian 2015a)
12. *H. grandis* Liu & Tian, 2015	ca. 280	Guangxi, Dahua County, Qibainong Geopark, Cave Xia Dong (Liu and Tian 2015a)
13. *H. gudu* Golovatch, Liu & Geoffroy, 2012	1365	Guizhou, Anlong County, Cave Hei Dong (Golovatch et al. 2012b)
14. *H. hebang* Golovatch, Liu & Geoffroy, 2012	ca. 700	Guangxi, Xilin County, Cave Zhoubang Dong (Golovatch et al. 2012b)
15. *H. kunnan* Golovatch, Liu & Geoffroy, 2012	420	Guangxi, Huanjiang County, Mulun, Cave Ganxiao Dong (Golovatch et al. 2012b)
16. *H. lii* Golovatch, Liu & Geoffroy, 2012	190	Guangxi, Fuchuan County, Cave Baifu Dong (Golovatch et al. 2012b)
17. *H. maculata* Golovatch, Geoffroy & Mauriès, 2006	ca. 1315	Yunnan, Mengzi County, Cave Laoshao Dong (Golovatch et al. 2006b)
18. *H. mashanorum* Golovatch, Liu & Geoffroy, 2012	ca. 210	Guangxi, Huanjiang County, Mulun, Cave Mashan Dong (Golovatch et al. 2012b)
19. *H. multistriata* Liu & Tian, 2015	ca. 400	Guizhou, Jinhong County, Nuxi Town, Cave I Dong (Liu and Tian 2015a)
20. *H. mulunensis* Golovatch, Liu & Geoffroy, 2012	ca. 210	Guangxi, Huanjiang County, Mulun, Cave Xia Dong (Golovatch et al. 2012b)
21. *H. nigu* Golovatch, Liu & Geoffroy, 2012	ca. 1120	Guizhou, Qianxi County, Cave Luo Sai Dong (Golovatch et al. 2012b)
22. *H. qiyi* Golovatch, Liu & Geoffroy, 2012	ca. 210	Guangxi, Huanjiang County, Mulun, Cave MinLi Dong (Golovatch et al. 2012b)
23. *H. reducta* Golovatch, Geoffroy & Mauriès, 2006	ca. 1315	Yunnan, Jianshui County, Cave Yan Dong (Golovatch et al. 2006b)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
------	---------------------	---
24. H. rhinoceros Liu & Tian, 2015	ca. 1025	Guizhou, Anlong County, Dushan Town, Cave Xiniu Dong (Liu and Tian 2015a)
25. H. rukouqu Liu & Wynne, 2019	190	Guangxi, Yangshuo County, Cave Shangshuiyan Dong (Liu and Wynne 2019)
26. H. sinensis (Brölemann, 1896)	1540–2810	Sichuan, Kangding County, and Tibet (Golovatch et al. 2006b, Liu and Tian 2015a); New record: Sichuan, W of Ningnan County, 3.3 km WSW of Xiaotiancun village
27. H. tiani Golovatch, Liu & Geoffroy, 2012	ca. 300	Hunan, Linwu County, Huatang Town, Cave Long Dong (Golovatch et al. 2012b)
28. H. variabilis Liu & Tian, 2015	830	Guizhou, Cengong County, Pingle Town, Cave Wanfuchengchong Dong (Liu and Tian 2015a)
29. H. wuse Golovatch, Liu & Geoffroy, 2012	ca. 425	Guizhou, Maolan County, Cave Dongge Dong (Golovatch et al. 2012b)
30. H. xia Golovatch, Liu & Geoffroy, 2012	ca. 300	Hunan, Linwu County, Sanhe Town, Tianhe Village, Cave 1 Dong (Golovatch et al. 2012b)
31. H. xueba Golovatch, Liu & Geoffroy, 2012	ca. 140	Guangxi, Du’an County, Cave Yaonan Dong (Golovatch et al. 2012b)
32. H. xuxiakui Liu & Wynne, 2019	190	Guangxi, Yangshuo County, Cave Guanshan No. 4 Dong (Liu and Wynne 2019)
33. H. yinshi Golovatch, Liu & Geoffroy, 2012	1205	Hainan, Kaiyang County, Cave Xianyan Dong (Golovatch et al. 2012b)
34. H. youhao Golovatch, Liu & Geoffroy, 2012	ca. 300	Hunan, Linwu County, Sanhe Town, near Changshali Village, Cave 2 Dong (Golovatch et al. 2012b)

Order Sphaerotheriida Brandt, 1833

Family Zephroniidae Gray, in Jones, 1843

Genus *Prionobelum* Verhoeff, 1924

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
35. *Prionobelum hainani* (Gressitt, 1941)	375	Hainan, Tai-Pin-ts’uen (Dwa Bi), foot of Mt. Loi Mother (Mauriès 2001)
36. *P. jolivetii* Mauriès, 2001	145	Hainan, W of Dazhou (Mauriès 2001)
37. *P. maculosum* (Attems, 1935)	10	Fujian, Fuzhou City (Attems 1935, Mauriès 2001, Wesener 2016)
38. *P. majorinum* (Zhang & Li, 1982)	1200	Hainan, Mt. Diaoluoshan (Zhang and Li 1982c, Mauriès 2001)
39. *P. multidentata* (Wang & Zhang, 1993)	1500	Fujian, Jiangle County, Mt. Longqi (Wang and Zhang 1993b, Wesener 2016)

Genus *Zephronia* Gray, 1832

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
40. *Zephronia profuga* Attems, 1936	?	Hong Kong (Attems 1936, Wesener 2016)

Order Platydesmida Cook, 1895

Family Andrognathidae Cope, 1869

Genus *Brachycybe* Wood, 1964

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
41. *Brachycybe cooki* (Loomis, 1942)	ca. 1090	Jiangxi, S of Jiujiang, Lushan City, Guling Town (Loomis 1942, Shelley et al. 2005)

Order Polyzoniida Cook, 1895

Family Polyzoniidae Gervais, 1844

Genus *Angarozonium* Shelley, 1997

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
42. *Angarozonium amurense* (Gerstfeldt, 1859)	100–1800	Heilongjiang, mouth of Songari River; also Siberia and Mongolia (Mikhajlova 2017)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
------	---------------------	--
Order Julida Brandt, 1833		Holarctic, E and SE Asia
Family Julidae Leach, 1814		Holarctic, E and SE Asia
Genus *Anaulaciulus* Pocock, 1895	10–3350	Himalaya and E Asia
43. *Anaulaciulus enghoffi* Korsós, 2001	2700	Gansu, Karyn Valley, S wall of La-shi-san Pass (Korsós 2001)
44. *A. ostigonopus* Zhang, 1993	ca. 200	Hunan, Changsha City, Mt. Yuelushan (Zhang 1993a)
45. *A. paludicola* (Pocock, 1895)	10	Zhejiang, 25 mi of Ningo (Ningbo), Lake Wo-Lee (Causey 1966)
46. *A. tibetanus* Korsós, 2001	2700–3350	Tibet, Dü Chu Valley; Assam, India, 11,000 feet (Korsós 2001)
47. *A. t. tibetanus* Korsós, 2001		
48. *A. vallicola* (Pocock, 1895)		
Genus *Nepalmatoiulus* Mauriès, 1983	275–3650	Himalaya and E Asia
49. *Nepalmatoiulus brachymerus* Enghoff, 1987	2810	Sichuan, Kangding (Enghoff 1987b)
50. *N. eulobos* Enghoff, 1987	320	Guangdong, Meizhou City, Mt. Qingliangshan (Enghoff 1987b)
51. *N. fraterdraconis* Enghoff, 1987	ca. 1045	Jiangxi, Jiujiang City, Mt. Lushan, road to Guling (Enghoff 1987b)
52. *N. polyakis* Enghoff, 1987	ca. 275	Sichuan, Suining City (Enghoff 1987b)
53. *N. rhaphimeritus* Enghoff, 1987	2810	Sichuan, Kangding City (Enghoff 1987b)
54. *N. tibetanus* Enghoff, 1987	2750–3650	SE Tibet, Do-Chu Valley, Pasho Dist., near Rombe Gompa (Enghoff 1987b)
55. *N. yunnanensis* Enghoff, 1987	?	Yunnan (Enghoff 1987b)
Genus *Pacifiiulus* Mikhaljova, 1982		Siberia
56. *Pacifiiulus amurenensis* (Gerstfeldt, 1859)	100–2500	Heilongjiang, between mouths of Ussuri and Garyn rivers; also Siberia and the Russian Far East (Mikhaljova 2017)
Family Mongoliulidae Pocock, 1903		E Asia
Genus *Skleroprotopus* Attems, 1901	125–1190	E Asia
57. *Skleroprotopus confucius* Attems, 1901	ca. 490	Hebei, Zhangjiakou City (Attems 1901)
58. *S. laticealci* Takakuwa, 1942	395	Liaoning, Shenyang City (Takakuwa 1942)
59. *S. membranadaulis* Zhang, 1985	ca. 125–150	Beijing, Fangshan, caves Shihua and Yunshui (Zhang 1985a, Vagalsini et al. 2018)
60. *S. serratus* Takakuwa & Takashima, 1949	ca. 1190	Shanxi, Yantou village (Takakuwa and Takashima 1949)
Family Nemasomatidae Bollman, 1893		Nearctic and E Asia
Genus *Orinisobates* Lohmander, 1933		Holarctic E of Ural Mountains
61. *Orinisobates gracilis* (Verhoeff, 1934)	?	Xinjiang, Urumqi, Mt. Tian-shan (Verhoeff 1934, Enghoff 1985)
Genus *Sinostemmiulus* Chamberlin & Wang, 1953		China
62. *Sinostemmiulus simplicior* Chamberlin & Wang, 1953	?	Zhejiang, Chenghsien (Cheng County?) (Chamberlin and Wang 1953, Hoffman 1966)
Family Parajulidae Bollman, 1893		Nearctic and E Asia
Genus *Karteroiulus* Attems, 1909		
63. *K. niger* Attems, 1909	?	Jiangxi, Tai-an-Long (Enghoff 1987a)
Diversity, distribution patterns and faunogenesis of the millipedes of China

Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
Order Spirobolida Cook, 1895		Panropical
Family Spirobolidae Bollman, 1893		E Asia
Genus *Spirobolus* Brandt, 1833		E Asia
64. *Spirobolus hungii* Brandt, 1833	305–3350	North of Beijing (Keeton 1960)
65. *S. cincinnalis* Wang & Zhang, 1993	1500	Fujian, Jiangle County, Mt. Longqi (Wang and Zhang 1993b)
66. *S. grahami* Keeton, 1960	ca. 305–3350	Sichuan, Suifu; S of Suifu on the Yunnan border; Mupin; near Yueh-Shi, Granham; Mt. Omeishan; Kweichow; Shih Men Kan (Keeton, 1960); Hubei, Jianshi County (Wang and Zhang 1993b)
67. *S. umbrobrochus* Keeton, 1960	ca. 915	Sichuan, Yongshien; Kueichow, Shih Men Kan (Keeton 1960)
68. *S. walkeri* Pocock, 1895	ca. 150–760	Zhejiang, Chusan Island, “Da-laen-Saen”, 30 mi SW of Ningpo (Keeton 1960)
Order Spirostreptida Brandt, 1833		Pantropical
Family Cambalopsidae Cook, 1895		Himalaya, E and SE Asia, Java, Borneo
Genus *Glyphiulus* Gervais, 1847	105–4150	E and SE Asia, Java, Borneo
69. *Glyphiulus acutus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 210	Guangxi, Huanjiang County, Mulun, caves Ganglai Dong and Huobayan Dong (Golovatch et al. 2011a)
70. *G. adeloglyphus* Zhang & Li, 1982	ca. 120	Guangxi, Yangshuo County, Xingping Town (Zhang and Li 1982b)
71. *G. anophthalmus* (Loksa, 1960)	ca. 105	Guangxi (Loksa 1960)
72. *G. balazsi* (Loksa, 1960)	ca. 990 or 835	Guizhou, Luodian County or Longping Town (Loksa 1960)
73. *G. basalis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 4150	Sichuan, Xinlong County, Cave Ganchuan Dong (Golovatch et al. 2007a)
74. *G. beroni* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1315	Yunnan, Jianshui County, Cave Baguo Dong; and Tonghai County, Cave Xianren Dong (Golovatch et al. 2007a)
75. *G. caeleus* Jiang, Guo, Chen & Xie, 2018	900	Guangxi, Tianjie County, Bala Town, Madong village, Hanyaotun, Cave Xianren Dong (Jiang et al. 2018)
76. *G. deharvengi* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	730	Hunan, Longshan County, Huoyan Village, Cave Feihu Dong, Cave Baiyan Dong, Cave Remi Dong (Golovatch et al. 2007a)
77. *G. difficultis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 925	Guangxi, Leye County, Yachang Town, Huaping, Cave She Dong and Cave Xianren Dong (Golovatch et al. 2011b)
78. *G. echinoides* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 270	Guangxi, Fushui County, Bapen village, Cave II Dong (Golovatch et al. 2011b)
79. *G. foetidus* Jiang, Guo, Chen & Xie, 2018	690–820	Guangxi, Xilin County, Zhoubang village, Cave Zhoubang Dong; Yunnan, Guangnan County, Bamei Town, Ake village, Cave Miaopu Dong (Jiang et al. 2018)
80. *G. formosus* (Pocock, 1895)	ca. 135	Hong Kong (Pocock 1895)
81. *G. granulatus* Gervais, 1847	135–440	Panropical; Guangxi, Longzhou; Hong Kong; Taiwan (Golovatch et al. 2007a)
82. *G. guangnanensis* Jiang, Guo, Chen & Xie, 2018	690	Yunnan, Guangnan County, Bamei Town, Ake village, Cave Miaopu Dong (Jiang et al. 2018)
83. *G. impletus* Jiang, Guo, Chen & Xie, 2018	320–830	Guangxi, Lingyun County, caves (Jiang et al. 2018)
84. *G. intermedius* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 485	Sichuan, Chengdu, Cave Huanlong Dong (Golovatch et al. 2007b)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
------	---------------------	---
85. *G. latellai* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1495	Guizhou, Qianxi County, Honglin village, Cave Hangtu Dong, Cave Xiao Dong, Cave Xixiang Dong, Cave Dayan Dong, Cave Taoxshui Dong, Cave Ludiaoa Dong, Cave Shuhuayan Dong, Cave Shuiluo Dong (Golovatch et al. 2007a)
86. *G. latus* Jiang, Lv, Guo & Chen, 2017	ca. 410	Sichuan, Leshan City, Muchuan County, Cave Longgong Dong (Jiang et al. 2017)
87. *G. liangshanensis* Jiang, Lv, Guo & Chen, 2017	ca. 470–1155	Sichuan, Liangshan Yi Autonomous Prefecture, Xichang City, Xixi, Xianren Cave; Miyi County, Baima Town, Cave Zhuanxulong Dong (Jiang et al. 2017)
88. *G. liporum* Mauriès & Nguyen Duy-Jacquemin, 1997	ca. 430	Hubei, cave (Mauriès and Nguyen Duy-Jacquemin 1997)
89. *G. maocun* Liu & Wynne, 2019	180	Guangxi, Lingchuan County, Maocun Village, Cave Liangfeng Dong (Liu and Wynne 2019)
90. *G. melanoporus* Mauriès & Nguyen Duy-Jacquemin, 1997	ca. 180	Guangxi, near Guilin, cave (Mauriès and Nguyen Duy-Jacquemin 1997); Xifeng District, Cave Maomaotou (Liu and Wynne 2019)
91. *G. mulunensis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 270	Guangxi, Huanjiang County, Mulun, caves Mashan Dong and Ganglai II Dong (Golovatch et al. 2011a)
92. *G. obliteratoidea* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	1400	Guizhou, Anshun City, Liangshuijing, Cave Jianxian Dong (Golovatch et al. 2007b)
93. *G. obliteratus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1315	Yunnan, Mile County, caves Bailong Dong and Houshan Dong (Golovatch et al. 2007b)
94. *G. paracostulifer* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1495	Guizhou, Qianxi County, Honglin Town, Cave Laohu Dong (Golovatch et al. 2007a)
95. *G. paragranulatus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1315	Yunnan, Jianshui County, Cave Yan Dong (Golovatch et al. 2007a)
96. *G. paralunensis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	211	Guangxi, Huanjiang County, Mulun, caves Shiui Dong and Xialan Dong (Golovatch et al. 2011a)
97. *G. parabolitatus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 725–860	Guizhou, Siyang County, Wenchuan Town, Shuanghe, Cave Dafeng Dong (Golovatch et al. 2007b)
98. *G. pergranulatus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1065	Guizhou, Guanting County, Huajiang, Cave Da Dong and Cave Anjiada Dong (Golovatch et al. 2007a)
99. *G. proximus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 210	Guangxi, Huanjiang County, Mulun, caves Ganxiao Dong and Dongtu Dong (Golovatch et al. 2011a)
100. *G. pulcher* Loksa, 1960	ca. 105	Guangxi, Daxin County, Fulong Town, a cave (Loksa 1960, Jiang et al. 2018)
101. *G. quadrabomatum* Chen & Meng, 1991	ca. 1110	Guizhou, Zhenning County, several caves (Chen and Meng 1991)
102. *G. rayrouchi* Mauriès & Nguyen Duy-Jacquemin, 1997	ca. 390	Guizhou, Maguan, Cave Heiyan Dong (Mauriès and Nguyen Duy-Jacquemin 1997)
103. *G. reticulatus* Zhang & Li, 1982	ca. 325	Zhejiang, Qingyuan County (Zhang and Li 1982b)
104. *G. semigranulatus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1315	Yunnan, Mile County, Cave Bailong Dong; Jianshui County, Cave Yanzi Dong (Golovatch et al. 2007a)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
--	---------------------	**
105. G. septentrionalis Murakami, 1975	ca. 170	Guangxi, Guilin; Japan, Ryukyus, Okinawa Island (Golovatch et al. 2007a)
106. G. sinensis (Meng & Zhang, 1993)	ca. 1065	Guizhou, Guanling County, cave (Meng and Zhang 1993)
107. G. speobius Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 310	Guangxi, Huanjiang County, caves Xialan Dong and Shenlong Dong (Golovatch et al. 2011a)
108. G. subgranulatus Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	1313	Yunnan, Mengzi County, cave near footpath to plateau, Pothole No. 2 (Golovatch et al. 2007a)
109. G. subobliteratus Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2007	ca. 1685	Yunnan, Shilin County, Cave Zhiyun Dong (Golovatch et al. 2007b)
110. G. tianii Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 210	Guangxi, Huanjiang County, Mulun, Cave Dongzai Dong (Golovatch et al. 2011a)
111. G. zorani Mauriès & Nguyen Duy-Jacquemin, 1997	ca. 1105	Guizhou, Shuicheng County, Cave Anjia Yan (Mauriès and Nguyen Duy-Jacquemin 1997)
Genus Hypocambala Silvestri, 1897		SE Asia
112. Hypocambala polytricha Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2011	ca. 110	Guangxi, Longzhou County, Nonggang, Cave Biji Dong (Golovatch et al. 2011c)
Family Pericambalidae Silvestri, 1909		China, Indochina
Genus Bilingulus Zhang & Li, 1981		China, Vietnam
113. Bilingulus sinicus Zhang & Li, 1981	165	Guangxi, Guilin City, a cave (Zhang and Li 1981a); Yangshuo County, Cave Shangshuiyan; Xiufeng District, Cave Maomaotou; Lingchuan County, Cave Liangfeng Dong (Liu and Wynne 2019)
Genus Parabilingulus Zhang & Li, 1981	105–120	China
114. Parabilingulus anamulus Zhang & Li, 1981	ca. 120	Guangxi, Yangshuo County, Xingping Town (Zhang and Li 1981a)
115. P. simplicius Mauriès & Jacqueemin-Nguyen Duy, 1997	ca. 105	Guangxi, Gongcheng County, Cave Heiyan Dong (Mauriès and Nguyen Duy-Jacquemin 1997)
Family Harpagophoridae Attems, 1909		Afrotropical, Himalaya, Sri Lanka, S India, E and SE Asia, Sunda Archipelago
Genus Agaricogonopus Zhang & Zhang, 1997		China
116. Agaricogonopus acrorifoliolatus Zhang & Zhang, 1997	ca. 870	Yunnan, Xishuangbanna, Mengla County, tropical rainforest (Zhang and Zhang 1997; Pimvichai et al. 2010)
Genus Junceustreptus Demange, 1961	650–1895	China
117. Junceustreptus brevispinus Zhang, 1985	ca. 650	Yunnan, Xishuangbanna, Mengman (Zhang 1985b; Pimvichai et al. 2010)
118. J. browningi Demange, 1962	ca. 1895	Yunnan (Demange 1962; Pimvichai et al. 2010)
119. J. retrorsus Hoffman, 1980	ca. 1890	Sichuan, Ning Guyen Nfu (Hoffman 1980; Pimvichai et al. 2010)
Genus Prominulostreptus Pimvichai, Enghoff & Panha, 2010	?	China
120. Prominulostreptus prominulus (Demange, 1962)	?	Yunnan, Lou-Fou-Tsouen (Ing-Ka-Tsoue) (Demange 1962; Pimvichai et al. 2010)
Genus Uriunceustreptus Zhang & Chang, 1990	650–1750	China, Vietnam

Diversity, distribution patterns and faunogenesis of the millipedes of China

163
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
121. *Uriunceustreptus afemorispinus* Zhang & Chang, 1990	ca. 1750	Yunnan, Gejiu City (Zhang and Chang 1990; Pimvichai et al. 2010)
122. *U. bilamellatus* Zhang, 1997	ca. 650	Sichuan (now Chongqing), Youyang County (Zhang et al. 1997)
Order Chordeumatida Pocock, 1894	Mostly Holarctic, but also Central and SW South America, Madagascar, Sri Lanka, S India, E and SE Asia, Sunda Archipelago, Philippines, New Guinea, Australia, New Zealand	
Family Guizhousomatidae Mauriès, 2005	China	
Genus *Guizhousoma* Mauriès, 2005	ca. 1495	China
123. *Guizhousoma latellai* Mauriès, 2005	ca. 1495	Guizhou, Qianxi County, Honglin, caves Changtu Dong, Shujiayan, Luosai Dong, Taoshui Dong; and Dafang County, Cave Hei Dong (Mauriès 2005)
Family Kashmireumatidae Mauriès, 1982	Himalaya, E and SE Asia	
Genus *Lipseuma* Golovatch, Geoffroy & Mauriès, 2006	435–1405	China
124. *Lipseuma bernardi* Golovatch, Geoffroy & Mauriès, 2006	ca. 435	Sichuan, Xinlong County, Three Eyes Cave (Golovatch et al. 2006a, 2007)
125. *L. joistanai* Golovatch, Geoffroy & Mauriès, 2006	1405	Hubei, Banjiao Town, Cave ChuanDongZi (Golovatch et al. 2006a)
Genus *Vieteuma* Golovatch, 1984	2100–2300	China, Vietnam
126. *Vieteuma hubeiense* Mauriès & Nguyen Duy-Jacquemin, 1997	ca. 2130	Hubei, Shennongjia, Yanziya, Cave Yanzi Dong (Mauriès and Nguyen Duy-Jacquemin 1997)
127. *V. longi* Shear, 2002	2100–2300	Yunnan, Baoshan City, Mt. Gaoligongshan, Nankang, 36 air km SE of Tengchong; and LuoshuiDong, 28 air km SE of Teng Chong (Shear 2002)
Family Megalotylidae Golovatch, 1978	Himalaya, Myanmar, E and SE Asia	
Genus *Nepalella* Shear, 1979	750–4530	Himalaya, Myanmar, E and SE Asia
128. *N. caeca* Shear, 1999	1795	Guizhou, Shuicheng County, Cave Anjia Yan (Shear 1999, Liu, Wesener et al. 2017c)
129. *N. grandis* Golovatch, Geoffroy & Mauriès, 2006	ca. 1670	Yunnan, Zhenxiong County, Cave Baiyin Dong (Golovatch et al. 2006a)
130. *N. grandoides* Golovatch, Geoffroy & Mauriès, 2006	ca. 750	Sichuan, Beichuan County, caves Yuan Dong and Black Wind Dong (Golovatch et al. 2006a, Liu, Wesener et al. 2017d)
131. *N. griswoldi* Shear, 2002	2100–2300	Yunnan, Baoshan City, Mt. Gaoligongshan, Luoshuidong, 28 air km of Tengchong (Shear 2002)
132. *N. jinshishan* Liu, in Liu, Wesener et al., 2017	1500–2100	Chongqing, Jinfoshan, Cave Houshan Dong; Cave Lingguan Dong (Liu, Wesener et al. 2017d)
133. *N. kavanaughi* Shear, 2002	2500	Yunnan, Nujiang, Pianma, native forest on Mt. Gaoligongshan (Shear 2002)
134. *N. lobata* Liu, in Liu, Wesener et al., 2017	1000	Sichuan, Mianyang City, Beichuan County, Cave Liangshui Dong (Liu, Wesener et al. 2017d)
135. *N. magna* Shear, 2002	2300	Yunnan, Baoshan City, Mt. Gaoligongshan, Luoshuidong, 28 air-km of Tengchong (Shear 2002)
136. *N. marmornata* Golovatch, Geoffroy & Mauriès, 2006	ca. 4350	Sichuan, Xinlong County, caves Snake Mouth Dong and Three Eyes Dong (Golovatch et al. 2006a, 2007)
137. *N. pianma* Shear, 2002	2500	Yunnan, Nujiang, Pianma, Mt. Gaoligongshan, native forest (Shear 2002)
138. *N. troglodytes* Liu, in Liu, Wesener et al., 2017	1200–1300	Guizhou, Guiyang City, Xifeng County, Heijadong village, Cave Hejia Dong; same County, Musan village, Cave Zhangkou Dong; Guizhou, Qiannan, Longli County, Cave Feilong Dong; Guizhou, Qiannan, Fuquan County, Cave Sanlou Dong (Liu, Wesener et al. 2017d)
Diversity, Distribution Patterns and Faunogenesis of the Millipedes of China

Taxa	Altitude (m a.s.l.)	Distribution, Province/Region (Main Reference/s)
139. *N. wangi* Liu, in Liu, Wesener et al., 2017	1300	Chongqing, Wulong County, Huaping Town, Qimenxia, Cave I Dong (Liu, Wesener et al. 2017d)

Order Callipodida Pocock, 1894

Family Casiopiopetalidae Lohmander, 1931

Genus Bollmania Silvestri, 1896

140. Bollmania beroni Stoey & Enghoff, 2005

- Altitude: ca. 1315
- Distribution: Yunnan, Jianshui County, Cave Yan Dong (Stoev and Enghoff 2005)

Family Paracortinidae Wang & Zhang, 1993

Genus Angulifemur Zhang, 1997

141. Angulifemur tridigitis Zhang, 1997

- Altitude: ca. 1315
- Distribution: Yunnan, Mengzi City, Cave Liupeng-yanzhi Dong (Zhang 1997)

142. A. unidigitis Zhang, 1997

- Altitude: ca. 1315
- Distribution: Yunnan, Mengzi City, caves Longbaopo Dong and Laoxiao Dong (Zhang 1997)

Genus Paracortina Wang & Zhang, 1993

143. Paracortina carinata Wang & Zhang, 1993

- Altitude: 3300
- Distribution: Yunnan, Shangrila (= Zhongdian) County (Wang and Zhang 1993a)

144. *P. chinensis* Stoey & Geoffroy, 2004

- Altitude: ca. 1670
- Distribution: Yunnan, Zhenxiong County, caves Ke Ma Dong, Da Hei Dong and Liao Jun Dong (Stoev and Geoffroy 2004)

145. P. leptoclada Wang & Zhang, 1993

- Altitude: 3300
- Distribution: Yunnan, Shangrila (= Zhongdian) County (Wang and Zhang 1993a); Tibet, Mangkang County (Stoev et al. 2008)

146. P. serrata Wang & Zhang, 1993

- Altitude: ca. 1845
- Distribution: Yunnan, Deqin County (Wang and Zhang 1993a)

147. P. Stimula Wang & Zhang, 1993

- Altitude: 3300
- Distribution: Yunnan, Shangrila (= Zhongdian) County (Wang and Zhang 1993a)

148. P. thallina Wang & Zhang, 1993

- Altitude: 3300
- Distribution: Yunnan, Shangrila (= Zhongdian) County; Sichuan, Batang County (Wang and Zhang 1993a)

149. P. viriosa Wang & Zhang, 1993

- Altitude: 3300
- Distribution: Yunnan, Shangrila (= Zhongdian) County; Sichuan, Batang County (Wang and Zhang 1993a); Tibet, Mangkang County (Stoev et al. 2008)

150. P. voluta Wang & Zhang, 1993

- Altitude: ca. 2690
- Distribution: Sichuan, Yajiang County (Wang and Zhang 1993a)

151. P. yiniae Liu & Tian, 2015

- Altitude: ca. 865
- Distribution: Guangxi, Baise City, Longlin County, Tianshengqiao Town, Yanchang village, Cave I (Liu and Tian 2015c)

152. P. zhangi Liu & Tian, 2015

- Altitude: ca. 965
- Distribution: Guizhou, Qianxinan Autonomous Prefecture, Ceheng County, Rongdu village, Cave Qiaoxia Dong (Liu and Tian 2015c)

Family Sinocallipodidae Zhang, 1993

Genus Sinocallipus Zhang, 1993

153. Sinocallipus simplopodicus Zhang, 1993

- Altitude: 1860
- Distribution: China and Indochina

Order Polydesmida Pocock, 1887

Family Cryptodesmidae Karsch, 1880

Genus Trichopeltis Pocock, 1894

154. Trichopeltis bellii Liu, Golovatch & Tian, 2017

- Altitude: 165–1890
- Distribution: Himalaya, E and SE Asia, Malaysia, Sunda Archipelago

155. T. intricata Liu, Golovatch & Tian, 2017

- Altitude: 1890
- Distribution: Yunnan, Kunming City, Shilin County, Guishan Town, Cave Haiyi I Dong (Liu et al. 2017a)

156. T. latellai Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2010

- Altitude: ca. 1495
- Distribution: Guizhou, Qianxi County, Honglin Town, caves Tiaoshui Dong and Changtu Dong (Golovatch et al. 2010c)

157. T. liangfengdong Liu & Wynne, 2019

- Altitude: 180
- Distribution: Guangxi, Lingchuan County, Cave Liangfeng Dong (Liu and Wynne 2019)
| Taxa | Altitude (m a.s.l.) | Distribution, province/region (main reference/s) |
|------|---------------------|---|
| 158. *T. reflexus* Liu, Golovatch & Tian, 2017 | ca. 165 | Hunan, Chenzhou City, Linwu County, Xianghaling Town, II Dong Cave (Liu et al. 2017a) |
| **Family Haplodesmidae Cook, 1895** | | Himalaya, Myanmar, E and SE Asia, Malaysia, Sunda Archipelago, New Guinea, Melanesia, Australia |
| Genus *Doratodesmus* Cook, 1895 | | Sunda Archipelago, China |
| 159. *Doratodesmus grandifoliatus* Zhang, in Zhang & Wang, 1993 | ca. 1315 | Yunnan, Mengxi County, Cave Longbaopo Dong (Zhang and Wang 1993) |
| Genus *Eutrichodesmus* Silvestri, 1910 | 65–1495 | E and SE Asia, Sunda Archipelago, Melanesia |
| 160. *Eutrichodesmus anisodentus* (Zhang, 1995) | ca. 385 | Fujian, Mt. Wuyishan (Zhang 1995b) |
| 161. *E. apicalis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 75 | Hubei, Yichang, Yichang County, Grotte des Araignées (Golovatch et al. 2015) |
| 162. *E. arcicollaris* Zhang, in Zhang & Wang, 1993 | ca. 170 | Yunnan, Hekou County, Cave Huayu Dong (Zhang and Wang 1993, Golovatch et al. 2009a, 2009b) |
| 163. *E. digitatus* Liu & Tian, 2013 | ca. 65 | Guangdong, Qingyuan City, Jintan Town, Cave Mi Dong (Liu and Tian 2013) |
| 164. *E. distinctus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2009 | ca. 105 | Guangxi, Fusui County, Bapen, Cave 4 Dong (Golovatch et al. 2009b) |
| 165. *E. dorisangulatus* (Zhang, in Zhang & Wang, 1993) | ca. 635 | Yunnan, Mengla County, Cave Baoniujiao Dong (Zhang and Wang 1993, Golovatch et al. 2009a, 2009b) |
| 166. *E. incisus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2009 | ca. 1495 | Guizhou, Qianxi County, Honglin, caves Tiaoshui Dong, Cave Liaoqingling Dong, Jiyan Dong, Dakong Dong and Luosai Dong (Golovatch et al. 2009a) |
| 167. *E. jianjia* Liu & Wynne, 2019 | 190 | Guangxi, Yangshuo County, Cave Guanshan No. 4 (Liu and Wynne 2019) |
| 168. *E. latellai* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | 1060 | Guizhou, Zhenfeng County, Beipanjiang Town, Cave Shui Chi Dong (Water Pool Cave) (Golovatch et al. 2015) |
| 169. *E. latus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2009 | ca. 560 | Guangxi, Leye County, Yachang Nature Reserve, caves Yanwu Dong, Xiayan Dong, Xiaoshui Dong and She Dong (Golovatch et al. 2009a) |
| 170. *E. lipsae* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 160 | Guangxi, Guilin, Grotte des Squelettes (Golovatch et al. 2015) |
| 171. *E. monodentus* (Zhang, in Zhang & Wang, 1993) | ca. 650 | Yunnan, Mengla County, Cave Baijucuo Dong (Zhang and Wang 1993, Golovatch et al. 2009a, 2009b) |
| 172. *E. obliteratus* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 1065 | Guizhou, Guanling County, Huajiang Town, Cave Huashiban Dong (Slippery Cave) (Golovatch et al. 2015) |
| 173. *E. pectinatidentis* (Zhang, 1995) | ca. 1010 | Zhejiang, Lin’an County, Mt. Tianmu (Zhang 1995a) |
| 174. *E. planatust* Liu & Tian, 2013 | ca. 550 | Guangxi, Hechi City, Liujia Town, Cave Zhenzhuyan Dong (Liu and Tian 2013) |
| 175. *E. sketi* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | 730 | Hunan, Leshan County, Huoyan, Cave Feihu Dong (Golovatch et al. 2015) |
| 176. *E. similis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2009 | ca. 310–420 | Guangxi, Huanjiang County, Mulun Nature Reserve, caves Gui II Dong and Shenlong Dong (Golovatch et al. 2009a) |
| 177. *E. simplex* Liu & Tian, 2013 | 130 | Jiangxi, Fenyi County, Cave Taoyuan Dong (Liu and Tian 2013) |
| 178. *E. soesilae* Makhan, 2010 | ca. 735 | Chongqing, Beibei, Mt. Jinyunshan (Makhan 2010a) |
| 179. *E. spinatus* Liu & Tian, 2013 | ca. 875 | Hunan, Guidong County, Sidu Town, Sidu Caves (Liu and Tian 2013) |
| Taxa | Altitude (m a.s.l.) | Distribution, province/region (main reference/s) |
|------|-------------------|---|
| 180. *E. tenuis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 1065 | Guizhou, Guanling County, Yongning Town, Cave Yun Dong (Cloud Cave) (Golovatch et al. 2015) |
| 181. *E. triangularis* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 750 | Sichuan, Beichuan County, Cave Yan Dong (Golovatch et al. 2015) |
| 182. *E. troglobius* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | 1205 | Guizhou, Kaiyang County, Cave Xianyan Dong (Golovatch et al. 2015) |
| 183. *E. trontelji* Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2015 | ca. 410 | Guizhou, Libo County, caves Shui Jiang Dong, Shuipu Da Dong, Shuipa, Latai Dong, Jia Ban and Feng Dong (Golovatch et al. 2015) |

Family Paradoxosomatidae

Daday, 1889

Genus *Anoplodesmus* Pocock, 1895
184. *Anoplodesmus chinenis* Golovatch, 2013 1700–2400 Shaanxi, Mt. Taibaishan, southern slopes, above Houshenzi, primary broadleaved forest (Golovatch 2013a)

Genus *Antheromorpha* Jeekel, 1968
185. *Antheromorpha rosea* Golovatch, 2013 1200–1700 Yunnan, S of Pianma; Baoshan District, near Hemu, Mt. Gaolingongshan, near Cave Bianfu II Dong (Golovatch 2013a, 2013b); also N Thailand and Laos (Likhitrakarn et al. 2019)

Genus *Belousoviella* Golovatch, 2012
186. *Belousoviella kabaki* Golovatch, 2012 3360 Sichuan, SW of Mianning; right tributary of Yalongjiang River canyon (Golovatch 2012)

Genus *Cawjeekelia* Golovatch, 1980
187. *Cawjeekelia nova* Golovatch, 2011 2110 Chongqing, Dabashan Mt. Range, NE of Heyu, Betula forest (Golovatch 2011)
188. *C. pallida* Golovatch, 1996 100–2110 Hong Kong, Tai Po Kau Nature Reserve (Go1ovatch 1996)
189. *C. propria* (Mikhaljova & Korsós, 2003) 500 Jilin, Mt. Changbaishan National Park; also N Korea (Mikhaljova and Korsós 2003, Golovatch 2013a)

Genus *Desmoxytes* Chamberlin, 1923
190. *Desmoxytes planata* (Pocock, 1895) 560 Nearly pantropical; Yunnan, Xishuangbanna, Menglun, Tropical Botanical Garden (Srisonchai et al. 2018; Golovatch 2018)

Genus *Engbaffiosema* Golovatch, 1993
191. *Engbaffiosema longipes* Golovatch, 2011 3150 Yunnan, NW slope of Mt. Yulongxueshan (Golovatch 2011)

Genus *Gonobelus* Attems, 1936
192. *Gonobelus belousovi* Golovatch, 2014 995 Sichuan, NE of Shimian, Xiangshui River, Tianpingzi (Golovatch 2014a)
193. *G. martensi* Golovatch, 2013 1700–2600 Shaanxi, Mt. Taibaishan (Golovatch 2013a)
194. *G. pentaspinus* Golovatch, 2013 2475 Sichuan, NW of Mianning (Golovatch 2013b)
195. *G. sinensis* Attems, 1936 2615 Yunnan, Mt. Laojunshan, 3.7 km ENE of Segengsheng (Golovatch 2017)

Genus *Hedinomorpha* Verhoeff, 1934
196. *Hedinomorpha affinis* Golovatch, 2014 2870 Gansu, Mt. Lianhuashan (Golovatch 2014a)

H. altiterga Golovatch, 2019 1445 Gansu, WWS of Longnan (Wudu), 2.4 km NW of Zhonghaixiang (Golovatch 2019a)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
198. *H. bifida* Golovatch, 2019	3665	Sichuan, 7.3 km S of Ganzi (Golovatch 2019a)
199. *H. biramipedicula* Zhang & Tang, 1985	ca. 1360	Shaanxi, Qinling, Mt. Taibaishan (Zhang and Tang 1985)
200. *H. circofera* Golovatch, 2013	ca. 2735	Qinghai, Beishan National Park, 120 km N of Xining (Golovatch 2013a)
201. *H. circularis* (Takakuwa & Takahima, 1949)	?	Shaanxi, Chinkaiji (Takakuwa and Takahima 1949, Golovatch 2019a)
202. *H. crassiterga* Golovatch, 2019	4490	Sichuan, 16.8 km SSW Ganzi (Golovatch 2019a)
203. *H. flavobulbus* Golovatch, 2019	3650	Gansu, WWS of Longnan (Wudu), Yin Duoguosa & Aounang divide (Golovatch 2019a, 2019b)
204. *H. hummelii* Verhoeff, 1934	?	Gansu, Tan-Chang (Verhoeff 1934)
205. *H. jeekeli* (Golovatch, 2009)	1300–2600	Shaanxi, Foping Nature Reserve, Panda area (Golovatch 2009); Shaanxi, Mt. Taibaishan, S slopes, above Houshenzi, primary and secondary broadleaved forests (Golovatch 2013a)
206. *H. martensi* Golovatch, 2014	3510	Sichuan, Langmusi, remnants of a moist *Abies* forest above town (Golovatch 2014a)
207. *H. montana* Golovatch, 2016	3080–3695	Yunnan, NNE of Weixi City, 8.15 km ESE of Shajiam; N of Weixi City, 2.95 km NW of Xugongqingshing Village; NW of Jianchuan, 4.7 km WNW of Damaid; Mt. Laojunshan, NE of Liming, 4.2 km S of Muzhengdu (Golovatch 2016b, 2017)
208. *H. nigra* Golovatch, 2013	3530–4000	Sichuan, Jiuzhaigou County, N of Dajii (Golovatch 2013b)
209. *H. proxima* Golovatch, 2016	3570	Yunnan, Mt. Tianbaoshan between Shangrila and Mt. Habaxueshan, E slope, NW of Bengla (Golovatch 2016b)
210. *H. reducita* Golovatch, 2012	2900	Sichuan, SW of Mianning, Right tributary of Yalongjiang River canyon, ca. 9 km SW of Mofanggou (Golovatch 2016b)
211. *H. subnigra* Golovatch, 2013	3910	Yunnan, W of Lake Lugu (Golovatch 2013b)
212. *H. yunnanensis* Golovatch, 2016	3480	Yunnan, NNE of Weixi City, right tributary of Lapugon River, 5.2 km ENE of Jizong (Golovatch 2016b)
Genus *Helicorthomorpha* Attems, 1914		E and SE Asia
213. *Helicorthomorpha holstii* (Pocock, 1895)	340	Widespread in SE Asia; Yunnan; Guangdong, Dinghushan Mt., 86 km W of Guangzhou (Attems 1936, Golovatch 1981)
Genus *Hirtodrepanum* Golovatch, 1994		Himalaya and China
214. *Hirtodrepanum chinense* Golovatch, 2014	1990–2015	Yunnan, Deqin, Dewei Line, E of Aqiku; Mekong Valley, 2 km E of Yezhixiang (Golovatch 2014a, 2019a)
Genus *Hylomus* Cook & Loomis, 1924	ca. 140–910	E and SE Asia
215. *Hylomus cornutus* (Zhang & Li, 1982)	ca. 140	Guangxi, Guilin, Yangshuo (Zhang and Li 1982a)
216. *H. draco* Cook & Loomis, 1924	ca. 400	Jiangxi, Jiujiang City, Mt. Lushan (Cook and Loomis 1924, Srisonchai et al. 2018)
217. *H. eapterygota* (Golovatch, Li, Liu & Geoffroy, 2012)	ca. 260	Hunan, Linwu County, Tianhe, Cave I Dong and Changshali Cave I Dong (Golovatch et al. 2012a)
218. *H. getubenis* (Liu, Golovatch & Tian, 2014)	ca. 910	Guizhou, Ziyun County, Getuhe National Geopark, caves Suidaong and Taiyangdong (Liu et al. 2014)
219. *H. laticollis* (Liu, Golovatch & Tian, 2016)	450	Guangdong, Yingde City, Huanghua Town, Yanbei village, Cave Yangyan Dong (Liu et al. 2016)
220. *H. lingulatus* (Liu, Golovatch & Tian, 2014)	ca. 140	Guangxi, Guilin, Pingle County, Cave Chaotianyan (Liu et al. 2014)
221. *H. longispinus* (Loksa, 1960)	?	Guangxi, a cave (no exact locality known) (Loksa 1960)
222. *H. lu* (Golovatch, Li, Liu & Geoffroy, 2012)	ca. 155	Guangxi, Yongfu County, Shangxiao, Cave Dachong Dong (Golovatch et al. 2012a)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
--	---------------------	--
223. *H. minutuberculatus* (Zhang, 1986)	ca. 295	Guangxi, Tianlin County (Zhang 1986)
224. *H. nodulosus* (Liu, Golovatch & Tian, 2014)	ca. 350	Guangxi, Du’an County, Xia’ao Town, near Xia’ao Middle School, Cave II Dong; same county, Yong’an Town, Yong’an village, Cave I Dong; same town, Anju Village, Cave Suidao Dong; same county, Longwan Town, Quale village, entrance to Cave I Dong (Liu et al. 2014)
225. *H. parvulus* (Liu, Golovatch & Tian, 2014)	ca. 350	Guangxi, Du’an, Xia’ao (Liu et al. 2014)
226. *H. phasmoides* (Liu, Golovatch & Tian, 2016)	ca. 445	Guangxi, Lingyun County, Jiayou Town, Yangli village, Cave Fengliu Dong (Liu et al. 2016)
227. *H. scolopendroides* (Golovatch, Geoffroy & Mauriès, 2010)	ca. 210–350	Guangxi, Huanjiang County, Dacai Town, Cave Shenlong Dong; Du’an County, Gaoling Town, Jinzhu village, Cave I Dong, Cave II Dong; Xia’ao Town, Cave I Dong (Golovatch et al. 2010b, Liu et al. 2014)
228. *H. scutigeroides* (Golovatch, Geoffroy & Mauriès, 2010)	ca. 310	Guangxi, Huanjiang County, Cave Ganglai Dong, Cave Mashan II Dong, Cave Gonglu Dong, Cave Shui Dong, and Du’an County, Disu Town, Dading village, Cave II Dong, same county, Longwan Town, Nonggu village, Cave I Dong, (Golovatch et al. 2010b, Liu et al. 2014)
229. *H. similis* (Liu, Golovatch & Tian, 2016)	230	Guangdong, Yingde City, Qingkeng Town, Bangjiao village, Cave Bangjiao Dong (Liu et al. 2016)
230. *H. simplipodus* (Liu, Golovatch & Tian, 2016)	140	Guangdong, Qingyuan City, Yangshan County, Chengjia Town, Dabe Village, Cave Kuangzhanhuan (Liu et al. 2016)
231. *H. spinissimus* (Golovatch, Li, Liu & Geoffroy, 2012)	190	Guangxi, Fuchuan County, Guanyuan, Cave Guanyuan Dong (Golovatch et al. 2012a)
232. *H. spinitergus* (Liu, Golovatch & Tian, 2016)	ca. 210	Guangxi, Huanjiang County, near Cave Gui Dong II, secondary forest (Liu et al. 2016)
233. *H. variabilis* (Liu, Golovatch & Tian, 2016)	500	Guangxi, Fengshan County, numerous caves (Liu et al. 2016)
234. *H. yuani* Liu & Wynne, 2019	180	Guangxi, Lingchuan County, Cave Liangfeng (Liu and Wynne 2019)
Genus *Inversispina* Zhang, 1997	510–4150	China and Taiwan
235. *Inversispina erectispina* Golovatch, 2012	2400–4150	Sichuan, SW of right tributary of Yalongjiang River, canyon; Sichuan, NW of Mianning, broadleafed forest; Sichuan, Jiulong County, SW of Wulaxixiang, broadleafed forest; Yunnan, between Tianbaoshan and Luzilashan, between Shuimofang and Xipazi; Yunnan, N of Lijiang, NW of Baoshanxiang, W of Bengluo village (Golovatch 2012, 2013b, 2016a, 2016b)
236. *I. multiplicina* Golovatch, 2016	2360	Sichuan, SSE of Shimiain, S of Zhuma (Golovatch 2016a)
237. *I. tortiapicalis* Zhang, 1997	510	Hubei, Heleng Tu jiazu County, Yien (Zhang et al. 1997)
238. *I. trispina* Golovatch, 2013	1050	Sichuan, Mt. Emeishan, Wannian Monastery (Golovatch 2013a)
Genus *Kronopolites* Attems, 1914	35–3600	Himalaya, E and SE Asia
239. *Kronopolites biagrilectus* Hoffman, 1963	35–3600	Sichuan, 10 mi S of Jiujiang (oHoffman 1963); Sichuan, SSE of Shimiain, S of Zhuma; Yunnan, Mt. Laojunshan, NE Liming, 2.5 km SE of Yankulu; N of Lanping, 10.3 km SW of Hexi; N of Lanping, 11.3 km SW of Hexi; Yunnan, SE of Deqin City, 3.3 km S of Gejiancun; Yunnan, Mt. Laojunshan, NE Liming, 2.5 km SE of Yankulu; N of Lanping, 10.3 km SW of Hexi; N of Lanping, 11.3 km SW of Hexi (Golovatch 2016a, 2016b, 2017)
240. *K. davidiani* Golovatch, 2014	3365	Sichuan, Wenchuan City, 214 National Road, WSW of Edi (Golovatch 2014a)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
-----------------------------------	---------------------	--
241. K. swinhoei (Pocock, 1895)	1300–1700	Shaanxi, Mt. Taibaishan (Hoffman 1963); Shaanxi, Panda area, Foping Nature Reserve; Gansu, WWS of Longnan (Wudu), 2.4 km NW of Zhongzhaixiang (Golovatch 2017, 2019a)
Genus Mandarinopus Verhoeff, 1934	700–2955	China
242. Mandarinopus corticinus (Attems, 1936)	?	Yunnan (Attems 1936, Golovatch 2019a)
243. M. gracilipes Verhoeff, 1934	700–2195	Gansu, Baishui Jiang River; WWS of Longnan (Wudu), 3 km W of Jiefajiaonaocun, Yin Duoguosa (Verhoeff 1934, Golovatch 2019a)
244. M. hirsutus Golovatch, 2019	2315	Yunnan, NW of Lijiang, W of Chang Jiang (= Yangtze) River, NW of Jining, 2.5 km N of Tuozhi village (Golovatch 2019a)
245. M. rugosus (Golovatch, 2013)	2400	Yunnan, N of Lijiang (Golovatch 2013a, 2019a)
246. M. semirugosus (Golovatch, 2013)	2955	Sichuan, NW of Mianning (Golovatch 2013b, 2019a)
Genus Nedyopus Attems, 1914	170–450	E and SE Asia
247. Nedyopus beroni (Golovatch, 1995)	350–450	Jiangsu, Nanjing City, Mt. Zijin (Golovatch 1995)
248. N. picturatus (Golovatch, 1995)	ca. 170	Guangxi, Guilin (Golovatch 1995)
Genus Orthomorpha Bollman, 1893		E and SE Asia, Sunda Archipelago
249. Orthomorpha coarctata (de Saussure, 1860)	ca. 20	Pantropical; Hainan, Sanya (Golovatch 1994)
250. "Orthomorpha" endeusa Attems, 1898	?	China (Attems 1898)
Genus Orthomorphella Hoffman, 1963		China
251. Orthomorphella pekuensis (Karsch, 1881)	ca. 40–165	Hebei, Shanlin, 70 km of Peking (Golovatch 1981); Hunan, Yuanling County, Mumaling (Zhang et al. 1997); New record: Jilin, Changchun City.
Genus Oxidus Cook, 1911	200–1300	Subcosmopolitan, anthropochore; near Beijing; Shaanxi, Xi’an City; Guangxi, near Guilin; Sichuan, Maoxian County, NE of Shimian (Golovatch 2013a, 2014a)
252. Oxidus gracilis C. L. Koch, 1847		E and SE Asia
Genus Piccola Attems, 1953	ca. 840	Guangxi, Base City, Tainlin County, Langping Town, Cave Shizikou Dadang (Liu and Tian 2015b)
Genus Polylobosoma Jeekel, 1980	10–1600	China and Vietnam
254. Polylobosoma panda (Golovatch, 2009)	1600	Shaanxi, Foping Nature Reserve, Panda area (Golovatch 2009, 2014a)
255. P. roseipes (Pocock, 1895)	10	Zhejiang, Ningpo (Jeekel 1980)
Genus Sellanucheza Enghoff, Golovatch & Nguyen, 2004	995–3155	E and SE Asia
256. Sellanucheza jaegeri Golovatch, 2013	1300–1700	Shaanxi, Mt. Taibaishan (Golovatch 2013a)
257. S. tenebra (Hoffman, 1961)	?	Sichuan, Wushan (Hoffman 1961)
258. S. typica Golovatch, 2013	995–3155	Sichuan, Maoxian County, SE of Nanxizhen (Golovatch 2013b); Sichuan, NE of Shimian, Xiangshuigou River, Tianpingzi (Golovatch 2014a)
Genus Sigipinius Hoffman, 1961	2810–4195	China
259. Sigipinius campanuliformis Golovatch, 2013	3910	Yunnan, W of Lake Lugu, N of Dajisi (Golovatch 2013b)
Diversity, distribution patterns and faunogenesis of the millipedes of China

Taxa

Number	Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
260.	S. complex Golovatch, 2013	3780–4120	Sichuan, S of Muli (Golovatch 2013b)
261.	S. dentiger Golovatch, 2016	3570	Yunnan, Mt. Tianbaoshan between Shangrila and Habaxue Shan, E slope, NW of Bengla (Golovatch 2016b)
262.	S. graminis Hoffman, 1961	2810–4170	Sichuan, Lixi County, SW of Tonghua; Juzaigou County, N of Daji; Maoxian County, SE of Nanxizhen; Lixian, WNW of Xuecheng, Ertaizi; N of Lixian, Mengdonggou & Lianghekou divide, W of Xing Fanweizi; Gansu, WWS of Longnan (Wudu), Yin Duoguosa & Aounang divide; WWS of Longnan (Wudu), Yin Duoguosa & Xaxi, W of Zhaguzu, WWS of Longnan (Wudu), Wushengguo & Line Chaping divide; NNE Zhugqu, Minjiang Bas, 3 km ENE Xaohuangga, Qinyugou (Golovatch 2013b, 2019a)
263.	S. kabaki Golovatch, 2013	3330–3550	Xinjiang, Koeksu Basin (Golovatch 2013b)
264.	S. montanus (Golovatch, 2011)	3710–4090	Yunnan, S of Nixi, near upper timber-line of a humid montane Abies forest; WNW of Zhongdian, humid mid-montane Abies forest with admixture of broad-leaved hardwood species (Golovatch 2011, 2013b)
265.	S. pinnifer Golovatch, 2016	3625	Yunnan, Mt. Gaolinggongshan, S of Pianma (Golovatch 2013a)
266.	S. simplex Golovatch, 2013	3915–4195	Yunnan, from Lijiang to Shangrila, 214 National Road, WSW of Edi (Golovatch 2014a)

Genus *Sinomorpha* Golovatch, 2013

Number	Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
268.	Sinomorpha setosa Golovatch, 2013	1050	Sichuan, Mt. Emeishan, Wannian Monastery (Golovatch 2013a)

Genus *Tetracentrosternus* Pocock, 1895

Number	Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
269.	Tetracentrosternus hoffmani Golovatch, 2013	1610	Yunnan, Mt. Gaolinggongshans, S of Pianma (Golovatch 2013a)

Genus *Tonginosoma* Jeekel, 1953

Number	Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
270.	Tonginosoma flexipes Jeekel, 1953	500	Guangxi, Hechi City, Fengshan County, Jinya Town, Hangdong village (Liu and Golovatch 2018a); also N Vietnam (Jeekel 1953)
271.	T. tianii Liu & Golovatch, 2018	1250	Guizhou, Qianxinan, Anlong County, Sayu Town, Ganhan Dong Cave (Liu and Golovatch 2018a)

Genus *Tylopus* Jeekel, 1968

Number	Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)
272.	Tylopus deharvengi Liu & Luo, 2013	350	Guangxi, Du'an County, Xia’ao Town, Cave I Dong (Liu and Luo 2013)
273.	T. kabaki Golovatch, 2014	3575–4025	Yunnan, Deqen, Tuoxtia Highway, Mt. Xiaruisuzuxiang & Yezhizhen; same province, NW of Lijiang, W of Chang Jiang (Yangtze River), NW of Jinhuzhang, 6 km of Tuoxtzentha village; N of Lijiang, W of Maguwa, 4.2 km SE of Shanggaoshan village; N of Lijiang, W of Maguwa, 4.4 km NE of Shanggaoshan village; Mekong Valley, ENE of Yezhizhen, 3 km NE of Houqing (Golovatch 2014a, 2019b)
274.	T. nigromarginatus Golovatch, 2018	835	Chongqing, Mt. Jinjyunshen, secondary forest, stump, trees, small cave (Golovatch 2018)
275.	T. reductus Golovatch, 2013	1600–1800	Yunnan, Mt. Gaolinggongshans, S of Pianma (Golovatch 2013a)
276.	T. schautleri Golovatch, 2013	2500–2700	Yunnan, Mt. Dincangshang, above Dali (Golovatch 2013a)
277.	T. similis Golovatch, 2014	1670	Yunnan, from Lijiang to Shangrila, E of Guojie Luocun (Golovatch 2014a)
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)	
-----------------------------------	---------------------	---	
278. *T. sinensis* Golovatch, 1995	1315	Yunnan, Mengzi County, Cave Hafatiao Dong (Golovatch 1995)	
Genus *Wulingina* Zhang, 1997		China	
279. *Wulingina macroloba* Zhang, 1997	510	Hubei, Hefeng Tu jiazu County (Zhang 1997)	
280. *W. miniloba* Zhang, 1997	510	Hubei, Hefeng Tu jiazu County (Zhang 1997)	
Genus *Yuennanina* Attems, 1936	1915–1920	China	
281. *Yuennanina aceratogaster* Zhang & Li, 1977	1920	Yunnan, Kunming City (Zhang and Li 1977)	
282. *Y. ceratogaster* Attems, 1936	1920	Yunnan, Kunming City (Attems 1936)	
283. *Y. petalolobodes* Chang & Zhang, 1989	1915	Yunnan, Kunming, Chenggong County (Chang and Zhang 1989)	
Family Polydesmidae Leach, 1815		Palaeartic and SE Asia	
Genus *Epanerchodus* Attems, 1901	35–3090	Central and E Asia, marginally N Vietnam	
284. *Epanerchodus belousovi* Golovatch, 2014	2810	Sichuan, Kangding City (Golovatch 2014c)	
285. *E. chutou* Liu & Golovatch, 2018	680	Guizhou, Shiqian County, Cave Feng Dong (Liu and Golovatch 2018b)	
286. *E. coniger* Liu & Golovatch, 2018	ca. 1620	Guizhou, Bijie City, Zhijin County, Chengguan Town, Dongshan village, Cave Houshan Dong (Liu and Golovatch 2018b)	
287. *E. draco* Geoffroy & Golovatch, 2004	ca. 1670	Yunnan, Zhenxiong County, a cave; Guizhou, Liupanshui City, Shuicheng County, Cave Shendongmigong Dong (Geoffroy and Golovatch 2004, Liu and Golovatch 2018b)	
288. *E. eurycornutus* Zhang & Wang, 1992	885	Zhejiang, Mt. Tianmu (Zhang and Wang 1992)	
289. *E. frater* Geoffroy & Golovatch, 2004	ca. 1670	Yunnan, Zhenxiong County, Cave Dahei Dong (Geoffroy and Golovatch 2004)	
290. *E. fuscus* Golovatch, 2015	ca. 2450	Yunnan, Lanping County (Golovatch 2015b)	
291. *E. gladiatus* Liu & Golovatch, 2018	920	Guizhou, Wuchuan County, Huangdu Town, Gaodong village, Cave Yinshi Dong (Liu and Golovatch 2018b)	
292. *E. jaegeri* Golovatch, 2014	ca. 2345	Shaanxi, Mt. Taibaishan (Golovatch 2014b)	
293. *E. jiangxensis* Liu & Golovatch, 2018	475	Jiangxi, Lianhua County, Gaotan village, Cave Shuillian Dong (Liu and Golovatch 2018b)	
294. *E. koreanus* Verhoeff, 1937	2230	Jilin, Mt. Changbaishan (Golovatch 2014b)	
295. *E. latiss* Liu & Golovatch, 2018	1330	Chongqing, Wushan County, Luoping Town, Qinglong village, Cave Qinglong Dong (Liu and Golovatch 2018b)	
296. *E. lipsae* Golovatch & Geoffroy, 2014	750	Sichuan, Beichuan and Jiangyou counties, numerous caves (Golovatch and Geoffroy 2014, Liu and Golovatch 2018b)	
297. *E. martensi* Golovatch, 2014	ca. 2345	Shaanxi, Mt. Taibaishan (Golovatch 2014b)	
298. *E. orientalis* Attems, 1901	ca. 205	Guangxi, Fuchuan County, Cave Banbianshang Dong (Golovatch et al. 2012c), also Japan and Taiwan	
299. *E. parvus* Liu & Golovatch, 2018	830	Guizhou, Cengong County, Pingzhuang Town, Cave Wanfuchangcheng Dong (Liu and Golovatch 2018b)	
300. *E. potanini* Golovatch, 1991	ca. 1550	Sichuan, Gansu and Yunnan provinces (Golovatch 1991a, 2014b)	
301. *E. schawalleri* Golovatch, 2014	ca. 1670	Sichuan, Mt. Emeishan (Golovatch 2014b)	
302. *E. sopr Geoffroy & Golovatch, 2004	ca. 1670	Yunnan, Zhenxiong County, caves Hama Dong, Dahei Dong and Xianren Dong (Geoffroy and Golovatch 2004, Liu and Golovatch 2018b)	
303. *E. sphaerisetosus* Zhang & Chen, 1983	ca. 35	Zhejiang, 10 mi S of Jinhua City, Gaocun village (Zhang and Chen 1983)	
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)	
------	-------------------	---	
304. *E. stylotarseus* Chen & Zhang, 1990	ca. 1220	Guizhou, Guanling County, several caves (Chen and Zhang 1990, Golovatch et al. 2007, 2012)	
305. *E. tuijaphilus* Liu & Golovatch, 2018	730	Hunan, Longshan County, Huoyan village, Cave Tujiaimei Dong (Liu and Golovatch 2018b)	
306. *E. typicus* Golovatch, 2014	ca. 3030	Yunnan, Deqin County (Golovatch 2014)	
307. *E. varius* (Geoffroy & Golovatch, 2004)	ca. 755–3090	Numerous caves in Hubei, Banqiao Town; and Sichuan, Xinlong and Beichuan counties (Geoffroy and Golovatch 2004, Golovatch et al. 2007, Golovatch and Geoffroy 2014)	
308. *E. yunnanensis* Golovatch, 2014	1995	Yunnan, Dali City (Golovatch 2014b)	
Genus *Glenniea* Turk, 1945	170–1510	Himalaya and China	
309. *Glenniea blanca* Golovatch & Geoffroy, 2014	600	Sichuan, Tongjiang County, Cave Lou Fang Dong (= Grotte de la Maison) (Golovatch and Geoffroy 2014)	
310. *G. lagredae* Golovatch & Geoffroy, 2014	1360–1510	Sichuan, Beichuan County, Cave Yuan Dong (= La grotte du Rocher); Sichuan, Huajiaoling County, Cave Zhangjiayankoukeng Dong (Golovatch and Geoffroy 2014)	
311. *G. prima* Golovatch, Li, Liu & Geoffroy, 2012	ca. 170	Guangxi, Longzhou County, Shanglong Town, Lenglei Nonggang Forest (Golovatch et al. 2012c, Golovatch and Geoffroy 2014)	
Genus *Pacidesmus* Golovatch, 1991	ca. 180–1865	China and N Thailand	
312. *Pacidesmus armatus* Golovatch, Geoffroy & Mauriès, 2010	ca. 310	Guangxi, Huanjiang County, Cave Xialan Dong, caves Shui Dong and Shenglong Dong (Golovatch et al. 2010a)	
313. *P. bedoae* Golovatch, Geoffroy & Mauroiès, 2010	ca. 310	Guangxi, Huanjiang County, caves Dongruong Dong, Huoka Dong and Ganzhong Dong (Golovatch et al. 2010a)	
314. *P. bifidus* Golovatch & Geoffroy, 2014	ca. 495	Guangxi, near Fengshan County, Cave Henglixin Dong (Golovatch and Geoffroy 2014, Liu and Golovatch 2019)	
315. *P. martensi* Golovatch & Geoffroy, 2006	ca. 1495	Guizhou, Dafang County, Cave Hei Dong; Qianxi County, Honglin Town, caves Luoshui Dong and Luosai Dong (Golovatch and Geoffroy 2006, Golovatch et al. 2007, Liu and Golovatch 2019)	
316. *P. sinesis* (Golovatch & Hoffman, 1989)	ca. 1285	Guizhou, Zhenning County, Cave Kaikou Dong (Loksa 1960, Golovatch and Hoffman 1989, Chen and Meng 1990, Liu and Golovatch 2019)	
317. *P. superdraco* Golovatch, Geoffroy & Mauriès, 2007	ca. 410	Guizhou, Libo County, Cave Laitai Dong (Golovatch et al. 2007)	
318. *P. tiansi* Golovatch, Geoffroy & Mauriès, 2010	ca. 310	Guangxi, Huanjiang County, caves Ganglai Dong I and II (Golovatch et al. 2010a)	
319. *P. trifidus* Golovatch & Geoffroy, 2014	ca. 180	Guangxi, Guilin City, Cave Ku lou Dong (Golovatch and Geoffroy 2014); Yangshuo County, Cave Guanshan No. 4; Xiufeng District, Cave Maomaotou; Yangshuo County, Cave Shangshuiyan (Liu and Wynne 2019)	
320. *P. trilobatus* Liu & Golovatch, 2020	ca. 1315	Yunnan, Wenshan County, Liujing Town, Laozha village, Cave I Dong (Liu and Golovatch 2020)	
321. *P. uncatus* Liu & Golovatch, 2020	ca. 1865	Yunnan, Qujing City, Zhanzi County, Cave Tianshengqiao Dong (Liu and Golovatch 2020)	
322. *P. whitteni* Liu & Golovatch, 2020	ca. 755	Guangxi, Fengshun County, Jinyu Town, Hangdong village, Cave I Dong (Liu and Golovatch 2020)	
Genus *Polydesmus* Latreille, 1802–03		Amphi-Palaearctic	
323. *Polydesmus liber* Golovatch, 1991	ca. 140	Hong Kong (Golovatch 1991a)	
Family Pyrgodesmidae Silvestri, 1896		Pantropical	
Taxa	Altitude (m a.s.l.)	Distribution, province/region (main reference/s)	
------	---------------------	--	
Genus Cryptocorypha Attems, 1907		Old World, up to Melanesia in the east	
324. Cryptocorypha spinicornata (Zhang & Li, 1981)	ca. 1110	Guangxi, Tianlin County, Langping Town (Zhang and Li 1981b)	
Family Xystodesmidae Cook, 1895		Holarctic, E and SE Asia up to N Vietnam in the south	
Genus Kiulinga Hoffman, 1956	10–1080	China	
325. Kiulinga jeekeli Hoffman, 1956	1080	Jiangxi, Jiujiang City, Jiguling (Hoffman 1956, Zhang and Mao 1984)	
326. K. lacustris (Pocock, 1895)	10	Zhejiang, 25 mi S of Ninghsien, Lake Wo-Lee (Hoffman 1956)	
327. K. lobosa Zhang & Mao, 1984	ca. 30	Zhejiang, Zhoushan City, Daishan Island (Zhang and Mao 1984)	
Genus Riukiaria Attems, 1938	170–4440	E Asia up to N Vietnam in the south	
328. Riukiaria belousovi Golovatch, 2014	4100	Sichuan, Muli County, SW of Wulaxixiang (Golovatch 2014d)	
329. R. capaca Wang & Zhang, 1993	170	Fujian, Jiangle County (Wang and Zhang 1993b)	
330. R. chinensis Tanabe, Ishii & Yin, 1996	885	Zhejiang, Mt. Tianmu (Tanabe et al. 1996)	
331. R. davidiani Golovatch, 2014	2810	Sichuan, Lixian County, SW of Tonghua (Golovatch 2014d)	
332. R. kubaki Golovatch, 2014	4440	Sichuan, Kangding City, NNE of Walaxiang, NE of Yusicun (Golovatch 2014d)	
333. R. korolevi Golovatch, 2014	2900	Sichuan, W of Jiuzhaigou (Golovatch 2014d)	
334. R. martensi Golovatch, 2014	1700	Shaanxi, Mt. Taibaishan, southern slopes, above Houzhenzi, primary broadleaved forest (Golovatch 2014d)	
335. R. spatuliformis Golovatch, 2015	2525	Sichuan, N of Luding City, N of Lanan (Golovatch 2015b)	
336. R. tianmu (Tanabe, Ishii & Yin, 1996)	885	Zhejiang, Mt. Tianmu (Tanabe et al. 1996, Golovatch 2014d)	
Family Opisotretidae Hoffman, 1980		Himalaya, Myanmar, Indochina, Indonesia, New Guinea, Ryukyu Islands, Japan and Christmas Island, Australia, Indian Ocean (Golovatch et al. 2013)	
Genus Carlotretus Hoffman, 1980		S China and Sumatra, Indonesia (Golovatch et al. 2013)	
337. Carlotretus triramus Golovatch, Geoffroy, Stoev & VandenSpiegel, 2013	ca. 200	Guangxi, Chongzuo City, Longzhou County, Shanglong Town, Nonggang Forest (Golovatch et al. 2013)	
Genus Martensodesmus Golovatch, 1987		Himalaya, Indochina and S China (Golovatch et al. 2013)	
338. Martensodesmus bedosae Golovatch, Geoffroy, Stoev & VandenSpiegel, 2013	ca. 150	Guangxi, Hechi City, Du’an County, Baling karst hill (Golovatch et al. 2013)	
339. M. spiniger Golovatch, Geoffroy, Stoev & VandenSpiegel, 2013	ca. 200	Guangxi, Chongzuo City, Longzhou County, Shanglong Town, Nonggang Forest (Golovatch et al. 2013)	

The huge, Eurasian, warm-temperate to tropical genus *Hyleoglomeris* (Glomeridae, Glomerida) currently contains 100+ species, including numerous cavernicoles. Unlike the glomerid fauna of the adjacent Indochina which harbours a considerable proportion of endemic genera (60 % in Vietnam), continental China currently supports only 32 species of *Hyleoglomeris*, most of which occur in caves alone (Golovatch 2015a). The genus ranges from the Balkans in the west, though Anatolia, the Caucasus, Central Asia, the Himalaya, Myanmar and Indochina, to Taiwan, the Philippines and Sulawesi,
Indonesia in the east. Importantly, a fossil congener is known from Baltic amber (Eocene, 44 Mya) (Wesener et al. 2019). *Hyleoglomeris* spp. are widespread across China and occur at various elevations, from nearly sea-level to high mountains (Fig. 2), the highest record belonging to *H. sinensis* (2810 m a.s.l.) (Table 1). In the Himalaya of Nepal, one species occurs even higher in the mountains, being high-montane: *H. khumbua* Golovatch, 1987 (3250–3300 m a.s.l.) (Golovatch and Martens 2018).

A very similar pattern is demonstrated by the subendemic genus *Paracortina* (Paracortinidae, Callipodida), with 12 species, of which ten (Fig. 3) are confined to the mountains of southwestern China (Liu and Tian 2015c), mostly high-montane (3300 m a.s.l., Table 1). Only a few are cavernicoles.

Nepalmatoiulus (Julidae, Julida) is another very large genus which presently comprises 55 species that span from the central Himalaya in the west, through Bhutan, Myanmar, Indochina, Thailand and West Malaysia, to the Ryukyus, Japan and Taiwan in the east (Enghoff 1987b). Seven species range across the southern parts of China (Fig. 4), including two high-montane ones (2750–3650 m a.s.l., Table 1). Although Beron (2008) reported closer unidentified Diplopoda from up to 5300 m a.s.l. from Nepal, the world’s highest record for a known species belongs to *N. ivanloebli* Enghoff, 1987, also from Nepal: 4800 m a.s.l. (Enghoff 1987b, Shelley and Golovatch 2011). The same general pattern is observed in the similarly speciose (ca. 50 spp.), but more boreal genus *Anaulaciulus* (Julidae), the distribution of which covers northern Pakistan and India, the Himalaya, northern Myanmar, the Far East of Russia, all Japan and Korea, Taiwan, as well as central and eastern China. The highest record belongs to *A. bilineatus* Korsós, 2001 from Nepal: 3600–4300 m a.s.l. (Korsós 2001). Unlike *Nepalmatoiulus*, no *Anaulaciulus* spp. are known to occur in southern China, both these genera being allo- to parapatric. Among the Julidae in China, only very few are cavernicoles.

Particularly clear Palaearctic origins are observed in the large genus *Skleroprotopus* (Mongoliulidae, Julida), most species of which inhabit the Russian Far East, Korea, Japan and China (Table 1), the small Siberian genus *Angarozonium* (Polyzoniidae, Polyzoniidae) only marginally encountered in northern China (Table 1), the rather small Siberio-Nearctic genus *Orinisobates* (Nemasomatidae, Julida) represented in China by a single species endemic to the southern Tianshan Mountains (Table 1) (Mikhajlova 2017). The

Table 2. Distribution patterns of all 16 extant millipede orders, those presently known to occur in mainland China being marked with an asterisk.

Orders	Distribution pattern	Orders	Distribution pattern
Polyxenida*	Cosmopolitan	Siphonophorida	Pantropical
Glomeridesmida	Pantropical	Chordeumatida*	Holarctic + Neotropical + Oriental
Glomerida*	Holarctic + Oriental	Callipodida*	Holarctic + Oriental
Sphaerotheriida*	Old World	Julida*	Holarctic + Oriental
Platydesmida*	Subcosmopolitan	Sphoniulida	Pantropical
Polyzoniiida*	Subcosmopolitan	Spirostreptida*	Pantropical
Siphoniulida	Neotropical + Oriental	Spirobolida*	Pantropical
Siphonocryptida	Palaearctic + Oriental	Polydesmida*	Pantropical

176

Sergei Golovatch & Weixin Liu / ZooKeys 930: 153–198 (2020)

177

same concerns *Polydesmus* (Polydesmidae, Polydesmida), a very large genus with ca. 80 species, most of which occur in Europe, the Mediterranean area, Anatolia and the western Caucasus, but a few are known from Japan, and one each in northern Vietnam and Hong Kong (Table 1) (Golovatch 1991a, Nguyen 2009).

The large genus *Nepalella* (Megalotylidae, Chordeumatida), with its 27 species spanning from Nepal (10 species) in the west, through Myanmar (two species) and Thailand (two species), to Vietnam (one species) in the south, and southwestern China (12 species, including several presumed troglobionts) in the north (Liu, Wesener et al. 2017d), shows the same general pattern (Fig. 5). Most congeners are mid-montane, but one, *N. marmorata*, has been recorded from ca. 4350 m a.s.l. (Table 1).

Basically the same picture is revealed in the distribution of the huge Central to East Asian genus *Epanerchodus* (Polydesmidae, Polydesmida) which presently encompasses 118 species or subspecies, both epi- and endogeans, including 25 across almost entire continental China (Liu and Golovatch 2018b) (Table 1, Fig. 6). Their vertical distributions range from nearly sea-level to high-montane (3090 m a.s.l.), but a few congeners from the Himalaya occur even up to 4250 m a.s.l. (Golovatch and Martens 2018).

The genus *Pacidesmus* (Polydesmidae, Polydesmida) shows a highly peculiar distribution (Fig. 7), with all of its eleven Chinese species being low- to mid-montane
Figure 3. Distribution of the family Paracortinidae, genus *Paracortina* in mainland China. Red lines show the transect Batang – Shangrila – Yajiang – Zhenxiong – Baise, along which the elevations are crudely indicated below. 1 *P. viriosa* 2 *P. serrata* 3 *P. thallina* 4 *P. carrinata* 5 *P. leptoclada* 6 *P. stimula* 7 *P. voluta* 8 *P. chinensis* 9 *P. yinae* 10 *P. zhangi*.

Figure 4. Distribution of the family Julidae, genus *Nepalmatoiulus* in mainland China. Red lines show the transect Linzhi – Kangding – Suining – Jiujiang – Meizhou, along which the elevations are crudely indicated below. 1 *N. tibetanus* 2 *N. brachymeritus* 3 *N. rhaphimeritus* 4 *N. polyakis* 5 *N. fraterdaconis* 6 *N. eulobos*. *Nepalmatoiulus yunnanensis* is not mapped because no exact locality in Yunnan is known.
Figure 5. Distribution of the family Megalotylidae, genus *Nepalella* in mainland China. Red lines show the transect Baoshan – Xinlong – Beichuan – Shuicheng – Guiyang – Jinfoshan, along which the elevations are crudely indicated below. 1 *N. kavanaughi* 2 *N. pianma* 3 *N. magna* 4 *N. griswoldi* 5 *N. marmorata* 6 *N. lobata* 7 *N. grandoides* 8 *N. grandis* 9 *N. caeca* 10 *N. troglodytes* 11 *N. jinfoshan* 12 *N. wangi.*

and restricted to karst caves in the south (Liu and Golovatch in press), whereas the type species, *P. shelleyi* Golovatch, 1991, comes from the summit (2200–2500 m a.s.l.) of Mount Doi Inthanon, northern Thailand (Golovatch 1991a). Similarly, the small genus *Glenniea* (Polydesmidae) contains five lowland to mid-montane epigean species from the Himalaya of India and Bhutan (Golovatch and Martens 2018), as well as another three species (including two cavernicoles) from southern China (Golovatch and Geoffroy 2014) (Table 1, Fig. 8).

The great Holarctic family Xystodesmidae (Polydesmida) presently encompasses 66 genera and ca. 410 species, most of which occur in the Nearctic. Only few genera and species are known from Central and northern South America (to Ecuador in the south), the Antilles, the Mediterranean region and East Asia (Shelley and Smith 2018). The largest East Asian genus *Riukiaria* currently contains 35 species or subspecies from southern Japan, southern Korea, Taiwan and China (Korsós et al. 2011, Golovatch 2014d, 2015b, Nguyen 2016). We disagree with Nguyen (2016), who split *Riukiaria* into two genera and created a new genus, *Parariukiaria* Nguyen, 2016, to accommodate a new species from northern Vietnam and three previously described ones from China. To our mind, *Riukiaria* and *Parariukiaria* show all transitional stages in the reduction of a gonoprefemoral process and, albeit without formal synonymy advanced here, both may well be regarded as representing a single large genus, in which several peripheral, southernmost congeners demonstrate a more or less strongly suppressed process on the
gonopodal prefemur, from relatively small to totally missing. All nine *Riukiaria* species in China are epigean and span across the central and southern parts of the country, occurring in lowland to high-montane habitats (170–4440 m a.s.l., Table 1, Fig. 9).

As noted above, in China the great family Paradoxosomatidae, which is amongst the largest in the class (200+ genera, 1,000+ species), dominates most of the tropical faunas across the world, but is absent from the Nearctic, contains remarkably few troglobionts (Golovatch 2015a) and comprises genera of various origins. Some seem to be rooted in the Palaearctic (including several endemic or subendemic ones), the others are likely to be Oriental. Among the former elements, the following two rather species-rich genera can be taken as examples.

The genus *Hedinomorpha* is subendemic to China, with most of its 17 species known from the country being high-montane (up to 4490 m a.s.l., Table 1, Fig. 10), and only one more restricted to Tajikistan, Central Asia (Golovatch 2019b). The genus *Sigipinius* is strictly endemic to mainland China and contains nine high-montane species (2810–4195 m a.s.l., Table 1, Fig. 11). Such paradoxosomatid genera as *Cawjeekealia*, *Kronopolites*, *Mandarinopus* and *Orthomorphella* likewise seem best to be attributed to Palaearctic elements in the fauna of China.
Figure 7. Distribution of the family Polydesmidae, genus *Pacidesmus* in mainland China. Red lines show the transect Qujing – Wenshan – Dafang – Fengshan – Huanjiang – Guilin, along which the elevations are crudely indicated below. 1 *P. uncatus* 2 *P. trilobatus* 3 *P. martensi* 4 *P. sinensis* 5 *P. whitteni* 6 *P. bifidus* 7 *P. superdraco* 8 *P. tiani* 9 *P. bedosae* 10 *P. armatus* 11 *P. trifidus*.

Figure 8. Distribution of the family Polydesmidae, genus *Glenniea* in mainland China. Red lines show the transect Beichuan – Longzhuan – Tongjiang, along which the elevations are crudely indicated below. 1 *G. lagredae* 2 *G. prima* 3 *G. blanca*.
In contrast, Paradoxosomatidae also contain a good number of presumed Oriental components, mostly tropical to subtropical. Thus, the genus *Hylomus* presently comprises 36 species from Myanmar, Thailand, Laos, Vietnam and China (Srisonchai et al. 2018, Liu and Wynne 2019, Golovatch 2019b). Many of them are presumed troglobionts. The distributions of all 20 *Hylomus* spp. recorded from China cover much of the southern and eastern parts of the country and are only confined to lowland to mid-montane habitats (ca. 140–910 m a.s.l., Table 1, Fig. 12). At the moment, with its 73 species (Golovatch 2019b) that range from southern China in the north, through most of Indochina, to Myanmar in the south, *Tylopus* remains the largest genus of Paradoxosomatidae globally. However, the altitudinal distributions vary from lowland to high-montane (350–4025 m a.s.l., Table 1), cavernicoles are few, while the Chinese congeners mark the northern range limit of the genus and are confined to the southwestern parts of the country (Fig. 13). Because *Tylopus* and *Hedinomorpha* seem to be particularly similar morphologically and co-occur, albeit probably never strictly sympatric, in southwestern China (at least Yunnan, Figs 10, 13), these areas seem to mark the southern range limit of *Hedinomorpha*.

The relatively large genera *Anoplodesmus*, *Antheromorpha*, *Enghoffosoma*, *Nedyopus* and *Sellanucheza* also seem best to refer to as Oriental components in the fauna of China, because it is southern China that marks their northern range limits. The same concerns the small genera *Hirtodrepanum*, *Inversispina*, *Piccola*, *Polylobosoma* and *Tetracentrosternus*, all of which show one or a few congeners either in the Himalaya and/or Myanmar.
Figure 10. Distribution of the family Paradoxosomatidae, genus *Hedinomorpha* in mainland China. Red lines show the transect Shangrila – Ganzi – Liangshan – Xining – Lanzhou – Jiuzhaigou – Xi’an, along which the elevations are crudely indicated below. 1 *H. montana* 2 *H. yunnanensis* 3 *H. proxima* 4 *H. cras-siterga* 5 *H. bifida* 6 *H. subnigra* 7 *H. reducta* 8 *H. martensi* 9 *H. circofera* 10 *H. affinis* 11 *H. nigra* 12 *H. altiterga* 13 *H. flavobulbus* 14 *H. biramipedicula* 15 *H. jeekeli*; neither *H. circularis* nor *H. hummelii* is mapped because their exact type localities remain unknown.

Figure 11. Distribution of the family Paradoxosomatidae, genus *Sigipinius* in mainland China. Red lines show the transect Aksu – Shangrila – Lijiang – Kangding – Jiuzhaigou, along which the elevations are crudely indicated below. 1 *S. kabaki* 2 *S. montana* 3 *S. spiniger* 4 *S. dentiger* 5 *S. campanuliformis* 6 *S. complex* 7 *S. simplex* 8 *S. pinnifer* 9 *S. grahami*.
Diversity, distribution patterns and faunogenesis of the millipedes of China

Figure 12. Distribution of the family Paradoxosomatidae, genus *Hylomus* in mainland China. Red lines show the transect Tianlin – Ziyun – Du’an – Huanjiang – Guilin – Linwu – Qingyuan – Jiujiang, along which the elevations are crudely indicated below. 1 *H. minutuberculus* 2 *H. getuhensis* 3 *H. phasmoides* 4 *H. variabilis* 5 *H. parvulus* 6 *H. scolopendroides* 7 *H. nodulosus* 8 *H. scutigeroides* 9 *H. spiniger* 10 *H. lui* 11 *H. yuani* 12 *H. cornutus* 13 *H. lingulatus* 14 *H. spinissimus* 15 *H. eupterygotus* 16 *H. laticollis* 17 *H. simplipodus* 18 *H. similis* 19 *H. draco*. *H. longispinus* is not mapped because its exact type locality remains unknown.

Figure 13. Distribution of the family Paradoxosomatidae, genus *Tylopus* in mainland China. Red lines show the transect Shangrila – Dali – Mengzi – Jinyunshan – Du’an, along which the elevations are crudely indicated below. 1 *T. reductus* 2 *T. kabaki* 3 *T. similis* 4 *T. schawalleri* 5 *T. sinensis* 6 *T. nigromarginatus* 7 *T. deharvengi*.
Figure 14. Distribution of the family Cambalopsidae, genus Glyphiulus in mainland China. Red lines show the transect Xinlong – Liangshan – Honghe – Chengdu – Guiyang – Hechi – Longshan – Guilin – Hong Kong – Qingyuan, along which the elevations are crudely indicated below. 1 G. basalis 2 G. liangshanensis 3 G. beroni 4 G. paragranulatus 5 G. semigranulatus 6 G. subobliteratus 7 G. subgranulatus 8 G. obliterator 9 G. latus 10 G. intermedius 11 G. zorzini 12 G. guangnanensis 13 G. foetidus 14 G. sinensis 15 G. pergranulatus 16 G. quadrohamatus 17 G. paracostulifer 18 G. latellai 19 G. obliteratoroides 20 G. rayrouchi 21 G. difficilis 22 G. impletus 23 G. granulatus 24 G. basazsi 25 G. calcus 26 G. parobliteratus 27 G. pulcher 28 G. echinoides 29 G. acutus 30 G. mulunensis 31 G. proximus 32 G. tiani 33 G. paramulunensis 34 G. speobius 35 G. deharvengi 36 G. melanoporus 37 G. septentrionalis 38 G. adeloglyphus 39 G. maocun 40 G. formosus 41 G. recticulus. G. anophthalum and G. lipsorum are not mapped because their exact type localities remain unknown, whereas G. granulatus is mapped, but it is pantropical.

or northern Vietnam, or Taiwan. The mono- or oligotypic Belousoviella, Gonobelus, Sinomorpha, Wulingina, and Yuennanina are all strictly endemic to China, mostly to its southwestern parts, but their Oriental stem is clear-cut due to their closest affinities.

The immediately above paradoxosomatid genera endemic or subendemic to southern China which all seem to be of Oriental stock, together with some other polydesmidans like Carlotretus and Martensodesmus (both Opisotretidae), Glennia and Pacidesmus (both Polydesmidae, Figs 7, 8), as well as several others (e.g. Cryptodesmidae, Haplodesmidae, Pyrgodesmidae), regardless of whether they are Oriental or Palaearctic in origin, seem to be sufficiently numerous and manifest to warrant the recognition of a separate, albeit secondary, subordinate, southern Chinese diversity and faunogenetic centre which must have seriously contributed to at least the faunas of the adjacent parts of the Himalaya, Myanmar, Thailand, Indochina and Taiwan. The influence of that southern Chinese centre in the Himalaya has recently been emphasized (Golovatch and Martens 2018).
Figure 15. Distribution of the family Haplodesmidae, genus *Eutrichodesmus* in mainland China. Red lines show the transect Mengla – Hekou – Beichuan – Guiyang – Huanjiang – Guilin – Yichang – Qingyuan – Guidong – Fenyi – Wuyishan – Hangzhou, along which the elevations are crudely indicated below. 1 *E. dorsiangulatus* 2 *E. monodentus* 3 *E. arcicollaris* 4 *E. triangularis* 5 *E. tenuis* 6 *E. latellai* 7 *E. obliteratus* 8 *E. incisus* 9 *E. latus* 10 *E. soesilae* 11 *E. triglobius* 12 *E. distinctus* 13 *E. trontelji* 14 *E. planatus* 15 *E. similis* 16 *E. sketi* 17 *E. lipsae* 18 *E. jianjia* 19 *E. apicalis* 20 *E. digitatus* 21 *E. spinatus* 22 *E. simplex* 23 *E. anisodentus* 24 *E. pectinatidentis*.

The Oriental realm as one of the main sources for the formation of the millipede fauna of China can also be exemplified by the basically tropical to subtropical orders Sphaerotheriida, Spirobolida and Spirostreptida, as well as the families Cryptodesmidae, Haplodesmidae, Opisotretidae, Pyrgodesmidae (all Polydesmida) and Sinocallopodidae (Callipodida), some of which often vary a lot in altitudinal distributions just like numerous Holarctic/Palaearctic groups. The often presumed rule “tropical elements for low elevations only” does not always work.

The genus *Glyphiulus*, the largest in the family Cambalopsidae (Spirostreptida), presently comprises 60+ species in East and Southeast Asia (to Borneo in the east), 42 of which are encountered at 105–4150 m a.s.l. across China (Fig. 14). Most of them are cavernicoles (Liu and Wynne 2019). A similarly large and even more widespread genus, *Eutrichodesmus* (Haplodesmidae), presently encompasses 50 species (Liu et al. 2017b, Liu and Wynne 2019) which range from southern Japan and Taiwan in the north, through entire Southeast Asia, to Vanuatu, Melanesia in the south. The distributions of all 24 species that populate continental China seem to be more typical, much better agreeing with the above rule: 65–1495 m a.s.l. (Table 1, Fig. 15). At least half of them are also cavernicoles.
Discussion

The diversity estimates presented in Table 1, i.e. 339 species, 71 genera, 26 families, and eleven orders, are much or significantly higher than those reported from the main adjacent areas. The similarly huge territories of Siberia and the Russian Far East that lie north of China support only ca. 130 species, 46 genera, 18 families and five orders of Diplopoda, while the fauna is reasonably well known (Mikhaljova 2017). This is hardly surprising because the prevailing permafrost and sharply continental climates of Asian Russia are largely too harsh to sustain a rich millipede fauna. The even harsher, mostly arid Mongolia is extremely poor in millipedes, with some nine species, five genera and families, and three orders involved (Mikhaljova 2012, Nefediev et al. 2015).

In contrast, the great Himalayan Range spanning for >2,300 km from northwest to southeast and mostly lying south of China supports >275 species, 53 genera, 23 families and 13 orders of diplopods (Golovatch and Martens 2018). Similarly, the fauna of India presently amounts to >270 species, at least 90 genera, 25 families, and eleven orders (Golovatch and Wesener 2016), vs. 92 species from 34 genera, 13 families, and eight orders recorded from Myanmar (Likhitrakarn et al. 2017) or ca. 230 species in Thailand (Likhitrakarn et al. 2019). A direct correlation between area and latitude is clear: the larger the area and the closer it lies to the equator, the richer the biota, including the diplopod faunas. However, the more southerly, the greater the diversity, and the more incomplete and fragmentary is our knowledge.

Certainly the Chinese millipede fauna still remains strongly understudied, given the country’s great size and habitat diversity, including the globe’s greatest karst areas. It may well amount to 1,000 species (Golovatch 2015a), chiefly due to the still particularly poorly studied micropolydesmidans, as well as cavernicoles. Southern China’s karsts are unique in often harbouring up to 5–6 diplopod species per cave (Golovatch 2015a). At least some of the remaining orders such as Glomeridesmida, Siphonocryptida, Siphonophorida, Siphoniulida, and Stemmiulida that occur in the Oriental Region (Table 2), including areas immediately adjacent to mainland China, may also be expected to populate the country. For example, Jiang et al. (2019) have recently described a fossil Siphonophorida from Cretaceous amber (ca. 99 Mya) in northern Myanmar, and an extant species is long known to occur in northern Pakistan (Golovatch 1991b). In addition, the same Burmese amber contains still undescribed Stemmiulida (Stoev et al. 2019) and two described species of Siphoniulida (Liu et al. 2017c). Likewise, as noted above, an extant species of Siphonocryptida and Glomeridesmida each is known from Taiwan and northern Thailand, respectively (Korsós et al. 2008, Shelley 2011).

While the Palaearctic/Holarctic components expectedly dominate the fauna of the northern parts of the country, the Oriental ones prevail in its south and along the Pacific coast. Both realms are increasingly mixed and intermingled towards China’s centre. However, in addition to the above traditional views, based on millipede distribution patterns alone, southern China seems to harbour a subordinate, but highly peculiar faunal nucleus, or origin centre of its own, whence the adjacent Himalaya, Indochina and/or Taiwan could have become populated by younger lineages. The presence of a family (the monobasic Guizhousomatidae) and numerous genera endemic or subendemic to southern China,
both apparently relict and relatively advanced, seems to be evidence of this. Within the
order Callipodida alone, the family Sinocallipodidae seems to be the basalmost and repre-
senting a suborder of its own, the Paracortinidae is a more advanced subendemic, same as
the mostly Central Asian Caspiopetalidae (Stoev and Geoffroy 2004, Stoev and Enghoff
2011). More importantly, a fossil family representing a separate suborder has recently
been discovered in the Cretaceous Burmese amber, ca. 99 Mya (Stoev et al. 2019).

The millipede fauna of mainland China is thus a tangled mixture of zoogeographic
elements of various origins and ages, apparently both relict and more advanced. The few
anthropochores/introductions must have been the latest faunal “layer” to populate China.

Acknowledgements

We are grateful to the caving team of the South China Agricultural University
(SCAU), Guangzhou, China, for their assistance. The second author was sponsored by
the National Natural Science Foundation of China (Grant no. 31801956 and Grant
no. 41871039). Special thanks go to Robert Mesibov (Tasmania, Australia) and Pavel
Stoev (Sofia, Bulgaria), who provided very helpful reviews of the manuscript and thus
considerably improved it. The first author was supported by the Presidium of the Rus-
sian Academy of Sciences, Program No. 41 “Biodiversity of natural systems and bio-
logical resources of Russia”.

References

Attems CG (1898) System der Polydesmiden. I. Theil. Denkschriften der Kaiserlichen Akad-
emie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe, Wien 4: 221–482.
https://biodiversitylibrary.org/page/27925127

Attems CG (1901) Neue Polydesmiden des Hamburger Museums. Mitteilungen aus dem Naturhis-
torischen Museum in Hamburg 18: 85–105. https://biodiversitylibrary.org/page/29384863

Attems CG (1935) Myriopoden von Sumatra. Archiv für Hydrobiologie, Supplementum 14:
114–142.

Attems CG (1936) Diplopoda of India. Memoirs of the Indian Museum 11(4): 133–323.

Beron P (2008) High altitude Isopoda, Arachnida and Myriapoda of the old world. Bureschi-
ana 1: 1–556.

Causey NB (1966) Redescription of two Chinese species of *Anaulaciulus* (Diplopoda, Julida,
Nemasomatidae), a genus known also in Taiwan, Korea, and Japan. Proceedings of the
Louisiana Academy of Sciences 29: 63–66.

Chamberlin RV, Wang YM (1953) Records of millipedes from Japan and other oriental areas,
with descriptions of new genera and species. American Museum Novitates 1621: 1–13.
http://digitallibrary.amnh.org/handle/2246/4890

Chang NG, Zhang CZ (1989) A contribution to the knowledge of the genus *Yunnanina* and
a new species in Yunnan Province (Diplopoda, Paradoxosomatidae). Acta Zootaxonomica
Sinica 14(4): 415–419. [In Chinese, English summary]
Chen JX, Meng WX (1991) A new species of the genus *Glyphiulus* (Diplopoda, Spirostreptida, Cambalopsidae). Acta Zootaxonomica Sinica 16(4): 394–397. [In Chinese, English summary]

Chen JX, Zhang CZ (1990) A cave-dwelling new species of the diplopod genus *Epanerchodus* from Guizhou Province (Polydesmida: Polydesmidae). Acta Zootaxonomica Sinica 15(4): 406–409. [In Chinese]

Cook OF, Loomis HF (1924) A new family of spined millipedes from central China. Journal of the Washington Academy of Sciences 14: 103–108.

Demange LJ (1962) Matériaux pour servir à une révision des Harpagophoridae (Myriapodes–Diplopodes). Mémoires du Muséum national d’Histoire naturelle, sér. A, Zoologie 24: 1–274 (for 1961).

Enghoff H (1985) The millipede family Nemasomatidae. With the description of a new genus and a revision of *Orinisobates* (Diplopoda: Julida). Entomologica Scandinavica 16: 27–67. https://doi.org/10.1163/187631285X00045

Enghoff H (1987a) *Karteroiulus niger* Attems, 1909, in China (Diplopoda, Julida, Paraiulidae). Entomologist’s Monthly Magazine 123: 207–208.

Enghoff H (1987b) Revision of *Nepalmatoiulus* Mauriès 1983, a southeast Asiatic genus of millipedes (Diplopoda: Julidae). Courier Forschorschings-Institut Senckenberg 93: 241–331.

Geoffroy JJ, Golovatch SI (2004) Some polydesmidan millipedes from caves in southern China (Diplopoda: Polydesmida), with descriptions of four new species. Arthropoda Selecta 13(1/2): 19–28. http://zmmu.msu.ru/files/images/spec/journals/13_1%20019_028%20Geoffr%20Golov.pdf

Golovatch SI (1981) Some East-Asiatic millipedes (Diplopoda) in the collection of the Institute of Zoology of the Polish Academy of Sciences. Annales Zoologici 36(8): 161–168.

Golovatch SI (1991a) The millipede family Polydesmidae in Southeast Asia, with notes on phylogeny (Diplopoda: Polydesmida). Steenstrupia 17(4): 141–159.

Golovatch SI (1991b) On a small collection of millipedes (Diplopoda) from northern Pakistan and its zoogeographic significance. Revue Suisse de Zoologie 98(4): 865–878. https://doi.org/10.5962/bhl.part.79815

Golovatch SI (1994) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), II. Arthropoda Selecta 3(3–4): 127–137.

Golovatch SI (1995) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), III. Arthropoda Selecta 4(2): 89–97.

Golovatch SI (1996) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), IV. Arthropoda Selecta 4(3–4): 71–78.

Golovatch SI (2009) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), VIII. Arthropoda Selecta 18(1–2): 1–7. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/18/18_1_001_007_Golovatch.pdf

Golovatch SI (2011) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XI. Arthropoda Selecta 20(4): 259–266. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/20/20_4%20259%266%20Golovatch%20Orient.pdf

Golovatch SI (2012) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XII. Arthropoda Selecta 21(1): 1–12. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/21/21_1%20001_012%20Golovatch%20for%20Inet.pdf
Diversity, distribution patterns and faunogenesis of the millipedes of China

Golovatch SI (2013a) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XIII. Arthropoda Selecta 22(1): 1–31. http://zmmu.msu.ru/files/images/spec/journals/22_1%20001_031%20Golovatch%20for%20Inet%20low%20res.pdf

Golovatch SI (2013b) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XIV. Arthropoda Selecta 22(4): 307–332. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/22/22_4%20307_332%20Golovatch%20for%20Inet.pdf

Golovatch SI (2014a) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XV. Arthropoda Selecta 23(1): 1–19. https://doi.org/10.15298/arthsel.23.1.01

Golovatch SI (2014b) Review of the millipede genus Epanerchodus Attems, 1901 in continental China, with descriptions of new species (Diplopoda: Polydesmidae). Zootaxa 3760(2): 275–288. https://doi.org/10.11646/zootaxa.3760.2.7

Golovatch SI (2014c) Two new and one little-known species of the millipede genus Epanerchodus Attems, 1901 from southern China (Diplopoda, Polydesmida, Polydesmidae). Fragmenta Faunistica 56(2): 157–166. https://doi.org/10.3161/00159301FF2013.56.2.157

Golovatch SI (2014d) The millipede genus Riukiaria Attems, 1938 in continental China, with descriptions of new species (Diplopoda: Polydesmida: Xystodesmidae). Zootaxa 3793(1): 188–200. https://doi.org/10.11646/zootaxa.3793.1.9

Golovatch SI (2015a) Cave Diplopoda of southern China with reference to millipede diversity in Southeast Asia. ZooKeys 510: 79–94. https://doi.org/10.3897/zookeys.510.8640

Golovatch SI (2015b) Two new species of the millipede order Polydesmida from southern China (Diplopoda). Zoologicheskii zhurnal 64(9): 1023–1028.

Golovatch SI (2016a) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XIX. Arthropoda Selecta 25(2): 131–152. https://doi.org/10.15298/arthsel.25.2.01

Golovatch SI (2016b) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XX. Arthropoda Selecta 25(3): 219–240. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/25/25_3_219_240_Golovatch_for_Inet.pdf

Golovatch SI (2017) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XXII. Arthropoda Selecta 26(2): 87–102. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/26/26_2_087_102_Golovatch_for_Inet.pdf

Golovatch SI (2018) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XXV. Arthropoda Selecta 27(4): 261–277. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/27/27_4_261_277_Golovatch.pdf

Golovatch SI (2019a) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XXVI. Arthropoda Selecta 28(3): 347–367. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/28/28_3_347_367_Golovatch_for_Inet.pdf

Golovatch SI (2019b) On several new or poorly-known Oriental Paradoxosomatidae (Diplopoda: Polydesmida), XXVII. Arthropoda Selecta 28(4): 459–478 kmkjournals.com/upload/PDF/ArthropodaSelecta/28/28_4_459_478_Golovatch_for_Inet.pdf

Golovatch SI, Geoffroy JJ (2006) Review of the Southeast Asian millipede genus Paechesmus Golovatch, with the description of a new troglobitic species from southern China (Diplopoda: Polydesmidae: Polydesmidae). Zootaxa, 1325: 363–368. https://doi.org/10.11646/zootaxa.1325.1.24
Golovatch SI, Geoffroy JJ (2014) On some new or poorly-known species of the millipede family Polydesmidae from southern China (Diplopoda: Polydesmida). Russian Entomological Journal 23(2): 91–105. https://doi.org/10.15298/rusentj.23.2.01

Golovatch SI, Hoffman RL (1989) Identity of Polydesmus hamatus Brandt 1841, a Malagasy millipede (Diplopoda Polydesmida Dalodesmidae). Tropical Zoology 2: 159–164. https://doi.org/10.1080/03946975.1989.10539436

Golovatch SI, Kime RD (2009) Millipede (Diplopoda) distributions: A review. Soil Organisms 81(3): 565–597.

Golovatch SI, Martens J (2018) Distribution, diversity patterns and faunogenesis of the millipedes (Diplopoda) of the Himalayas. ZooKeys 741: 3–34. https://doi.org/10.3897/zook.eys.741.20041

Golovatch SI, Wesener T (2016) A species checklist of the millipedes (Myriapoda, Diplopoda) of India. Zootaxa 4129(1): 001–075. https://doi.org/10.11646/zootaxa.4129.1.1

Golovatch SI, Geoffroy JJ, Mauriès JP (2006a) Four new Chordeumatida (Diplopoda) from caves in China. Zoosystema 28(1): 75–92. http://sciencepress.mnhn.fr/en/periodiques/zosystema/28/1/quatre-nouveaux-chordeumatida-diplopoda-de-grottes-de-chine

Golovatch SI, Geoffroy JJ, Mauriès JP (2006b) Review of the millipede genus Hyleoglomeris Verhoeff, 1910 (Diplopoda, Glomerida, Glomeridae), with descriptions of new species from caves in Southeast Asia. Zoosystema 28(4): 887–915.

Golovatch SI, Geoffroy JJ, Mauriès JP (2007) Several new or poorly-known cavernicolous millipedes (Diplopoda) from southern China. Arthropoda Selecta 15(2): 81–89. https://kmkjournals.com/upload/PDF/ArthropodaSelecta/15/15_2_081_089_Golovatch.pdf

Golovatch SI, Geoffroy JJ, Mauriès JP (2010a) Review of the millipede genus Pacidesmus Golovatch, 1991, with descriptions of three new species from caves in southern China (Diplopoda: Polydesmidae). Tropical Natural History 10(2): 159–169. https://www.tci-thaijo.org/index.php/tnh/article/view/103016

Golovatch SI, Geoffroy JJ, Mauriès JP (2010b) Two new species of the millipede genus Desmoxystes Chamberlin, 1923 (Diplopoda: Polydesmida: Paradoxosomatidae) from caves in southern China. Arthropoda Selecta 19(2): 57–61. https://doi.org/10.15298/arthsel.19.2.01

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2007a) Review of the millipede genus Glyphiulus Gervais, 1847, with descriptions of new species from Southeast Asia (Diplopoda: Spirostreptida: Cambalopsidae). Part 1. The granulatus-group. Zoosystema 29(1): 7–49.

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2007b) Review of the millipede genus Glyphiulus Gervais, 1847, with descriptions of new species from Southeast Asia (Diplopoda: Spirostreptida: Cambalopsidae). Part 2. The javanicus-group. Zoosystema 29(3): 417–456. http://sciencepress.mnhn.fr/en/periodiques/zosystema/29/3/revision-des-diplopodes-du-genre-glyphiulus-gervais-1847-et-description-de-nouvelles-especes-d-asie-du-sud-est-diplopoda-spirostreptida-cambalopsidae-partie-2-le-groupe-javanicus

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2009a) Review of the millipede family Haplodesmidae Cook, 1895, with descriptions of some new or poorly-known species (Diplopoda, Polydesmida). ZooKeys 12: 1–53. https://doi.org/10.3897/zookeys.7.117

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2009b) Review of the millipede genus Eutrichodesmus Silvestri, 1910 (Diplopoda, Polydesmida, Haplodesmidae), with descriptions of new species. ZooKeys 7: 1–46. https://doi.org/10.3897/zookeys.12.167
Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2010c) Two new species of the millipede genus *Trichopeltis* Pocock, 1894 (Diplopoda: Polydesmida: Cryptodesmidae) from Vietnam and China. Arthropoda Selecta 19(2): 63–72. https://doi.org/10.15298/arthsel.19.2.02

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2011a) New species of the millipede genus *Glyphiulus* Gervais, 1847 from the *granulatus*-group (Diplopoda: Spirostreptida: Cambalopsidae). Arthropoda Selecta 20(2): 65–114. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/20/20_2%20065_114%20Golovatch%20for%20Inet.pdf

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2011b) New species of the millipede genus *Glyphiulus* Gervais, 1847 from the *javanicus*-group (Diplopoda: Spirostreptida: Cambalopsidae). Arthropoda Selecta 20(3): 149–165. http://kmkjournals.com/upload/PDF/ArthropodaSelecta/20/20_3%20149_165%20Golovatch%20for%20Inet.pdf

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2011c) Two new species of the millipede genus *Hypocambala* Silvestri, 1895 from China and Vietnam (Diplopoda: Spirostreptida: Cambalopsidae). Arthropoda Selecta 20(3): 167–174. https://doi.org/10.15298/arthsel.20.3.03

Golovatch SI, Geoffroy JJ, Mauriès JP, VandenSpiegel D (2015) Review of the millipede genus *Eutrichodesmus* Silvestri, 1910, in China, with descriptions of new cavernicolous species (Diplopoda, Polydesmida, Haplodesmidae). ZooKeys 505: 1–34. https://doi.org/10.3897/zookeys.505.9862

Golovatch SI, Geoffroy JJ, Stoew P, VandenSpiegel D (2013) Review of the millipede family Opisotretidae (Diplopoda, Polydesmida), with descriptions of new species. ZooKeys 302: 13–77. https://doi.org/10.3897/zookeys.302.5357

Golovatch SI, Li Y, Liu W, Geoffroy JJ (2012a) Three new cavernicolous species of dragon millipedes, genus *Desmoxytes* Chamberlin, 1923, from southern China, with notes on a formal congener from the Philippines (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 185: 1–17. https://doi.org/10.3897/zookeys.185.3082

Hoffman RL (1956) Studies on some oriental xystodesmine millipedes. Proceedings of the Entomological Society of Washington 58(2): 95–104.

Hoffman RL (1961) Two new Diplopoda genera from western China (Polydesmida, Strongylosomidae). Annals and Magazine of Natural History 13(3): 533–543. https://doi.org/10.1080/00222936008651054

Hoffman RL (1966) The ordinal position of the generic name *Sinostemmiulus* Chamberlin & Wang, 1953. Proceedings of the Entomological Society of Washington 68: 322–325.

Hoffman RL (1980) Studies on spirostreptoid millipedes. XV. On some new or poorly known harpagophorid genera and species from China and the East Indies. Journal of Natural History 14: 589–596. https://doi.org/10.1080/00222938000770481
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang ZH, Whittaker RJ, Fjeldså J, Rahbek C (2012) An update of Wallace’s zoogeographic regions of the world. Science Express: 1–191. https://doi.org/10.1126/science.1228282

Ishii K, Liang L (1990) Two new species of penicillate diplopods of the family Polyxenidae from China. Canadian Entomologist 122: 1239–1246. https://doi.org/10.4039/Ent1221239-11

Jeekel CAW (1953) Two new Strongylosomidae from Indochina (Diplopoda, Polydesmida). Beaufortia 2(29): 1–8.

Jeekel CAW (1980) The genetic allocation of some little-known Paradoxosomatidae from South-East Asia (Diplopoda, Polydesmida). Revue Suisse de Zoolgie 87: 651–670. https://doi.org/10.5962/bhl.part.85538

Jeekel CAW (2001) A bibliographic catalogue of the Siphonophorida (Diplopoda). Myriapod Memoranda 3: 44–71.

Jiang XK, Guo X, Chen HM, Xie ZC (2018) Four new species of the Glyphiulus javanicus group from southern China (Diplopoda, Spirostreptida, Cambalopsidae). ZooKeys 741: 155–179. https://doi.org/10.3897/zookeys.741.23223

Jiang XK, Lv JC, Guo X, Yu ZG, Chen HM (2017) Two new species of the millipede genus Glyphiulus Gervais, 1847 from Southwest China (Diplopoda: Spirostreptida: Cambalopsidae). Zootaxa 4323(2): 197–208. https://doi.org/10.11646/zootaxa.4323.2.3

Jiang XK, Shear WA, Hennen DA, Chen HM, Xie ZC (2019) One hundred million years of stasis: Siphonophora hui sp. nov., the first Mesozoic sucking millipede (Diplopoda: Siphonophorida) from mid-Cretaceous Burmese amber. Cretaceous Research 97: 34–39. https://doi.org/10.1016/j.cretres.2019.01.011

Keeton WT (1960) A taxonomic study of the millipede family Spirobolidae (Diplopoda, Spirobolida). Memoirs of the American Entomological Society 17: 1–146.

Korsós Z (1994) Redescription of Anaulaciulus tonginus (Karsch, 1881) (Diplopoda, Julida, Julidae). Steenstrupia 20(7): 177–183. http://www.zmuc.dk/commonweb/JOURNALS/PDF/Vol29-1/Korsos.pdf

Korsós Z (2001) Diplopoda from the Nepal Himalaya: Towards the clarification of the genus Anaulaciulus Pocock 1895 (Diplopoda, Julida, Julidace, Brachyiulini). Senckenbergiana Biologica 81(1/2): 61–86.

Korsós Z, Enghoff H, Chang HW (2008) A most unusual distribution pattern: A new siphonocryptid millipede from Taiwan (Diplopoda, Siphonocryptida). Acta Zoologica Academiae Scientiarum Hungaricae 54(2):151–157.

Korsós Z, Nakamura Y, Tanabe T (2011) Two new millipede species of the genus Riukiaria (Diplopoda, Polydesmida, Xystodesmidae) endemic to the Ryukyu Archipelago, Japan. Zootaxa 2877: 55–68. https://doi.org/10.11646/zootaxa.2877.1.3

Kryzanovsky OL (2002) The composition and distribution of the entomofaunas of the globe. Moscow, KMK Scientific Press, 237 pp. https://www.zin.ru/ANIMALiA/COLEOPTERA/RUS/kryz2002.htm [in Russian]

Likhitrakarn N, Golovatch SI, Semenyuk I, Panha S (2019) A new species and a new record of the Southeast Asian millipede genus Antheromorpha Jeekel, 1968 (Polydesmida: Paradoxosomatidae) from Vietnam. ZooKeys 832: 77–89. https://doi.org/10.3897/zookeys.832.32596
Diversity, distribution patterns and faunogenesis of the millipedes of China

Likhitrakarn N, Jirapatrasilp P, Golovatch SI, Panha S (2017) A checklist of the millipedes (Diplopoda) of Myanmar, with an updated list of Leonardo Fea’s collecting localities. Zootaxa 4350(1): 001–046. https://doi.org/10.11646/zootaxa.4350.1.1

Liu WX, Golovatch SI (2018a) Occurrence of the millipede genus Tonkinosoma Jeekel, 1953 in China, with the description of the first presumed troglobitic species of this genus (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 742: 23–34. https://doi.org/10.3897/zookeys.742.23471

Liu WX, Golovatch SI (2018b) The millipede genus Epanerchodus Attems, 1901 in continental China, with descriptions of seven new cavernicolous species (Diplopoda, Polydesmida, Polydesmidae). Zootaxa 4459(1): 001–046. https://doi.org/10.11646/zootaxa.4459.1.2

Liu WX, Golovatch SI (in press) Three new cavernicolous species and three new records of the millipede genus Pacidesmus from southern China (Diplopoda, Polydesmida, Polydesmidae). Raffles Bulletin of Zoology.

Liu WX, Golovatch SI, Tian MY (2014) A review of the dragon millipede genus Desmoxytes Chamberlin, 1923 in China, with descriptions of four new species (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys (448): 9–26. https://doi.org/10.3897/zookeys.448.8081

Liu WX, Golovatch SI, Tian MY (2016) Six new species of dragon millipedes, genus Desmoxytes Chamberlin, 1923, mostly from caves in China (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 577(577): 1–24. https://doi.org/10.3897/zookeys.577.7825

Liu WX, Golovatch SI, Tian MY (2017a) Three new cavernicolous species of the millipede genus Trichopeltis Pocock, 1894 from southern China (Diplopoda, Polydesmida, Cryptodesmidae). ZooKeys 710: 1–14. https://doi.org/10.3897/zookeys.710.20025

Liu WX, Luo XZ (2013) A new species of the millipede genus Tylopus from southern China (Diplopoda: Polydesmida, Paradoxosomatidae). Acta Zootaxonomica Sinica 38(1): 50–52.

Liu WX, Tian MY (2013) Four new cavernicolous species of the millipede genus Eutrichodesmus Silvestri, 1910 from southern China (Diplopoda: Polydesmida, Paradoxosomatidae). Zootaxa 3734(2): 281–291. https://doi.org/10.11646/zootaxa.3734.2.11

Liu WX, Tian MY (2015a) A checklist of millipede genus Hyleoglomeris Verhoeff, 1910 in mainland China, with descriptions of seven new species (Diplopoda, Glomerida, Glomeridae). Zootaxa 4032(1): 103–116. https://doi.org/10.11646/zootaxa.4032.1.5

Liu WX, Tian MY (2015b) Occurrence of the millipede genus Piccola Attems, 1953 in China (Diplopoda: Polydesmida: Paradoxosomatidae). Zootaxa 3904(3): 403–408. https://doi.org/10.11646/zootaxa.3904.3.5

Liu WX, Tian MY (2015c) Two new cave-dwelling species of the millipede genus Paracortina Wang & Zhang, 1993 from southern China (Diplopoda, Callipodida, Paracortinidae). ZooKeys 517: 123–140. https://doi.org/10.3897/zookeys.517.9949

Liu WX, Golovatch SI, Wesener T (2017b) Four new species of the millipede genus Eutrichodesmus Silvestri, 1910 from Laos, including two with reduced ozopores (Diplopoda, Polydesmida, Haplodesmidae). ZooKeys 660: 43–65. https://doi.org/10.3897/zookeys.660.11780

Liu WX, Rühr PT, Wesener T (2017c) A look with mCT technology into a treasure trove of fossils: The first two fossils of the millipede order Siphoniulida discovered in Cretaceous Burmese amber (Myriapoda, Diplopoda). Cretaceous Research 74: 100–108. https://doi.org/10.1016/j.cretres.2017.01.009
Liu WX, Wesener T, Golovatch SI, Tian MY (2017d) Contributions to the millipede genus *Nepalella* Shear, 1979 from China, with four new species and first results on phylogeny based on DNA-barcoding (Diplopoda, Chordeumatida, Megalotylidae). Zootaxa 4243(3): 455–482. https://doi.org/10.11646/zootaxa.4243.3.3

Liu WX, Wynne JJ (2019) Cave millipede diversity with the description of six new species from Guangxi, China. Subterranean Biology 30: 57–94. https://doi.org/10.3897/subtbiol.30.35559

Loksa I (1960) Einige neue Diplopoden- und Chilopoden-Arten aus chinesischen Höhlen. Acta Zoologica Academiae Scientiarum Hungaricae 6(1–2):135–148.

Loomis HF (1942) *Sinocybe*, a new genus of colobognath millipedes from China. Journal of the Academy of Sciences 32: 270–273.

Makhan D (2010a) *Eutrichodesmus soesilae* sp. nov., a new millipede from Mt. Jinyun, Beibei, Chongqing, China (Diplopoda, Polydesmida, Haplodesmidae). Calodema 110: 1–5. https://www.researchgate.net/publication/320991928_Eutrichodesmus_soesilae_sp_nov_a_new_millipede_from_Mt

Makhan D (2010b) *Hyleoglomeris aschnae* sp. nov., a new millipede from Mt. Jinyun, Beibei, Chongqing, China (Diplopoda, Glomerida, Glomeridae). Calodema 113: 1–3.

Mauriès JP (2001) Sur l’identité de *Zephronia hainani* Gressitt, 1941, à propos de la description d’un nouveau *Prionobelum* (Diplopoda, Sphaerotheriida, Sphaeropoeidae) de Haïnan, Chine. Zoosystema 23(1): 131–142.

Mauriès JP (2005) *Guizhousoma latellai* gen.n., sp.n., de Chine continentale, type d’une nouvelle famille de la superfamille des Neoactrosomatoidea (Diplopoda: Chordeumatida). Arthropoda Selecta 14(1): 11–17. https://kmkjournals.com/upload/PDF/ArthropodaSelecta/14/14_1%20011_017%20Mauries.pdf

Mauriès JP, Nguyen Duy-Jacquemin M (1997) Nouveaux craspedosomides et glyphiulides cavernicoles de Chine (Diplopoda). Mémoires de Biospéologie 24: 49–62.

Meng WX, Zhang CZ (1993) A new troglobitic millipede, *Podoglyphiulus sinensis*, sp. nov. from Guizhou Province (Diplopoda, Spirostreptida, Cambalopsidae). Proceedings of the 11th International Congress of Speleology, August 2003, Beijing, 130–131.

Mikhaljova EV (2012) The class Diplopoda in Mongolia, with description of a new species. Zootaxa 3418: 41–50. https://doi.org/10.11646/zootaxa.3418.1.3

Mikhaljova EV (2017) The millipede fauna (Diplopoda) of the Asian part of Russia. Vladivostok, Dalnauka. 336 pp. [In Russian, English abstract]

Mikhaljova EV, Korsós Z (2003) Millipedes (Diplopoda) from Korea, the Russian Far East, and China in the collection of the Hungarian Natural History Museum. Acta Zoologica Academiae Scientiarum Hungaricae 49(3): 215–242.

Minelli A (2015) The Myriapoda. Volume 2. Treatise of Zoology – Anatomy, Taxonomy, Biology. Brill: Leiden & Boston, 482 pp. https://doi.org/10.1163/9789004188273

Minelli A, Golovatch SI (2013) Myriapods. In: Levin SA (Ed.) Encyclopedia of Biodiversity, Vol. 5. Academic Press, Waltham, 421–432. https://doi.org/10.1016/B978-0-12-384719-5.00208-2

Nefediev P, Nefedieva JS, Jankowski K (2015) The first record of a julid millipede (Diplopoda: Julida: Julidae) from the Altai Mountains of Mongolia. Invertebrate Zoology 12(2): 213–214. https://doi.org/10.15298/invertzool.12.2.07
Nguyen DA (2009) A new species of the family Polydesmidae (Diplopoda: Polydesmida) from Vietnam. International Journal of Myriapodology 1: 63–68. https://doi.org/10.1163/187525409X462421

Nguyen DA (2016) Discovery of a new millipede species in northern Vietnam, and the proposal of a new genus, Parariukiaria (Diplopoda, Polydesmida, Xystodesmidae). Zootaxa 4121(3): 331–336. https://doi.org/10.1163/zootaxa.4121.3.7

Ni J, Sykes MT, Prentice C, Cramer W (2000) Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3. Global Ecology & Biogeography 9: 463–479. https://doi.org/10.1046/j.1365-2699.2000.00206.x

Pimvichai P, Enghoff H, Panha S (2010) The Rhynchoproctinae, a south-east Asiatic subfamily of giant millipedes: cladistic analysis, classification, four new genera and a deviating new species from north-west Thailand (Diplopoda: Spirostreptida: Harpagophoridae). Invertebrate Systematics 24: 51–80. https://doi.org/10.1071/IS09052

Pocock RI (1895) Report upon the Chilopoda and Diplopoda obtained by P. W. Basset-Smith, Esq., Surgeon R. N., during the cruise in the Chinese seas of H.M.S. “Penguin”, Commander W. U. Moore commanding. Annals and Magazine of Natural History (6)15: 121–142. https://doi.org/10.1080/00222939508677895

Shear WA (1999) A new troglobitic millipede of the genus Nepalella from China (Diplopoda, Chordeumatida, Megalotylidae). Myriapodologica 6(1): 1–10.

Shear WA (2002) Five new chordeumatidan millipedes from China: new species of Vieteuma (Kashmirumatidae) and Nepalella (Megalotylidae). Proceedings of the California Academy of Sciences 53(6): 62–72.

Shelley RM (2011) The milliped order Glomeridesmida (Diplopoda: Pentazonia: Limacomorpha) in Oceania, the East Indies, and southeastern Asia; first records from Palau, the Philippines, Vanuatu, New Britain, the Island of New Guinea, Cambodia, Thailand, and Borneo and Sulawesi, Indonesia. Insecta Mundi 0196: 1–11. https://journals.flvc.org/mundi/issue/view/3638

Shelley RM, Golovatch SI (2011) Atlas of myriapod biogeography. I. Indigenous ordinal and supra-ordinal distributions in the Diplopoda: perspectives on taxon origins and ages, and a hypothesis on the origin and early evolution of the class. Insecta Mundi 0158: 1–134. https://journals.flvc.org/mundi/article/view/0158

Shelley RM, Smith JM (2018) Expanded concept and revised taxonomy of the milliped family Xystodesmidae Cook, 1895 (Polydesmida: Leptodesmidea: Xystodesmoidea): incorporations of Euryuridae Pocock, 1909 and Eurymerodesmidae Causey, 1951, taxonrevivals/proposals/transferrals, and a distributional update. Insecta Mundi 0660: 1–41. https://journals.flvc.org/mundi/article/view/0660

Shelley RM, McAllister CT, Tanabe T (2005) A synopsis of the millipede genus Brachycybe Wood, 1864 (Platydesmida: Andrognathidae). Fragmenta Faunistica 48(2): 137–166. https://doi.org/10.3161/00159301FF2005.48.2.137

Srisonchai R, Enghoff H, Likhittrakarn N, Panha S (2018) A revision of dragon millipedes I: genus Desmoxytes Chamberlin, 1923, with the description of eight new species (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 761: 1–177. https://doi.org/10.3897/zookeys.761.24214
Stoev P, Enghoff H (2005) A new cave-dwelling millipede of the genus *Bollmania* Silvestri, 1896 from Yunnan, China, with remarks on the reduction of the second female leg-pair (Diplopoda: Callipodida: Caspiopetalidae). Journal of Natural History 39(21): 1875–1891. https://doi.org/10.1080/00222930400025896

Stoev P, Enghoff H (2011) A review of the millipede genus *Sinocallipus* Zhang, 1993 (Diplopoda, Callipodida, Sinocallipodidae), with notes on gonopods monotony vs. peripheral diversity in millipedes. ZooKeys 90: 13–34. https://doi.org/10.3897/zookeys.90.1291

Stoev P, Geoffroy JJ (2004) Review of the millipede family Paracortinidae Wang & Zhang 1993 (Diplopoda: Callipodida). Acta Arachnologica 53(2): 93–103. https://doi.org/10.2476/asjaa.53.93

Stoev P, Moritz L, Wesener T (2019) Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. ZooKeys 841: 79–96. https://doi.org/10.3897/zookeys.841.34991

Stoev P, Sierwald P, Billey A (2008) An annotated world catalogue of the millipede order Callipodida (Arthropoda: Diplopoda). Zootaxa 1706: 1–50. https://doi.org/10.11646/zootaxa.1706.1.1

Takakuwa Y (1942) Zur Kenntnis der japanischen Diplopoden. Annotationes Zoologicae Japonenses 21(1): 39–47.

Takakuwa Y, Takashima H (1949) Myriapods collected in Shansi, North China. Acta Arachnologica 9(314): 51–69. https://doi.org/10.2476/asjaa.11.51

Tanabe T, Ishii K, Yin WY (1996) Two new xystodesmid millipedes from the Tian-mu Mountains, Zhejiang Province, China. Edaphologia 57: 13–19.

Vagalinski B, Meng K, Bachvarova D, Stoev P (2018) A redescription of the poorly known cave millipede *Skleroprotopus membranipedalis* Zhang, 1985 (Diplopoda, Julida, Mongoliulidae), with an overview of the genus *Skleroprotopus* Attems, 1901. Subterranean Biology 26: 55–66. https://doi.org/10.3897/subtbiol.26.26225

Verhoeff KW (1934) Schwedisch-chinesische wissenschaftlich Expedition nach den nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof. Su Ping-chang. Arkiv för zoologi 26: 1–41.

Wang DQ, Mauriès JP (1996) Review and perspective of study on myriapodology of China. In: Geoffroy JJ, Mauriès JP, Nguyen Duy-Jacquemin M (Eds) Acta Myriapodologica. Mémoires du Muséum national d’Histoire naturelle 169: 81–99.

Wang DQ, Zhang CZ (1993a) A new family of millipedes (Diplopoda: Callipodida) from southwestern China. Peking Natural History Museum 53: 395–390.

Wang DQ, Zhang CZ (1993b) Diplopoda: Chilopoda. Animals of Longqi Mountain: 845–851.

Wesener T (2016) The Giant Pill-Millipedes, order Sphaerotheriida – An annotated species catalogue with morphological atlas and list of apomorphies (Arthropoda: Diplopoda). Bonn zoological Bulletin, Supplementum 63: 1–104.

Wesener T (2019) The oldest fossil pill millipede: A species of the Asiatic pill millipede genus *Hyleoglomeris* in Baltic amber (Diplopoda: Glomerida: Glomeridae). Zoologischer Anzeiger 283: 40–45. https://doi.org/10.1016/j.jcz.2019.08.009

Wulf EW (1944) A historical geography of plants. USSR Academy of Sciences Publishers, Moscow – Leningrad, 546 pp. [In Russian]
Diversity, distribution patterns and faunogenesis of the millipedes of China

Zhang BP, Mo SG, Wu HZ, Xiao F (2004) Digital spectra and analysis of altitudinal belts in Tianshan Mountains, China. Journal of Mountain Science 1(1): 18–28. https://doi.org/10.1007/BF02919356

Zhang CZ (1985a) A new species of millipeds of the genus Skleroprotopus in Stone Buddha Cave, Fangshang County, Beijing. In: Karst geomorphology and speleology. Science Press, Beijing, 154–156. [In Chinese]

Zhang CZ (1985b) A new species of millipede of the genus junceustreptus in southwestern China (Diplopoidea: Harpagophoridae). Acta Zootaxonomica Sinica 10(2): 137–139. [In Chinese]

Zhang CZ (1986) On the genus Pratinus and its two new species from China (Diplopoidea: Paradoxosomatidae). Acta Zootaxonomica Sinica 11(3): 253–257. [In Chinese]

Zhang CZ (1993a) Small Myriapoda in soil from China I. A new julidan species Anaulaciulus otigonopus (Julida: Julidae). Acta Zootaxonomica Sinica 18(1): 18–21. [In Chinese]

Zhang CZ (1993b) Diplopoidea from Yunnan caves II. Contribution to the study of a new cavernous taxon of the nematophoran millipedes (Diplopoidea: Coelocheta: Callipodida). International Union of Speleology. Proceedings of the XI International Congress of Speleology: 128–130. [In Chinese]

Zhang CZ (1995a) Small Myriapoda in soil from China II. A new genus and species of the family Doratodesmidae from Zhejiang Province (Diplopoidea: Polydesmida). Acta Zootaxonomica Sinica 20(4): 411–415. [In Chinese, English summary]

Zhang CZ (1995b) Small Myriapoda in soil from China III. A new species of the millipede genus Nanocondylodesmus Zhang (Diplopoidea: Polydesmida: Doratodesmidae). Acta Zootaxonomica Sinica 20(4): 416–419. [In Chinese, English summary]

Zhang CZ (1997) Diplopoidea from Yunnan Caves III. A new genus Angulifemur, including two new species of the cave-dwelling callipodid millipedes (Diplopoidea, Callipodida, Paracortinidae). Thesis Compilation of Tianjin Natural History Museum 14: 1–5.

Zhang CZ, Chang NG (1990) A new genus and new species of the family Harpagophoridae from Yunnan, China (Diplopoidea: Spirostreptida). Acta Zootaxonomica Sinica 15(1): 32–35. [In Chinese, English abstract]

Zhang CZ, Chen ZP (1983) A new species of the genus Epanerchodus (Diplopoidea: Polydesmidae) from Zhejiang Province. Journal of Zhejiang Teacher's College (Natural Sciences Edition) 6: 87–89. [In Chinese, English abstract]

Zhang CZ, Li ZY (1977) Eine neue Yunnanina-Art (Diplopoidea) aus China. Acta Zoologica Sinica 23(4): 357–359. [In Chinese, German abstract]

Zhang CZ, Li ZY (1981a) Über Bilinguidae fam. nov. (Diplopoidea: Spirostreptida) aus dem südchinesischen Karstgebiete. Acta Zootaxonomica Sinica 6(4): 373–377. [In Chinese, German abstract]

Zhang CZ, Li ZY (1981b) Eine neue Art vom Archandrodesmus (Cryptodesmidae, Diplopoidea) aus China. Acta Zootaxonomica Sinica 6(3): 250–252. [In Chinese, German abstract]

Zhang CZ, Li ZY (1982a) Centralodesmus cornutus sp. nov., eine neue Diplopoden-Art aus dem Süd-China (Paradoxosomatidae: Polydesmida). Acta Zootaxonomica Sinica 7(1): 37–39. [In Chinese, German abstract]
Zhang CZ, Li ZY (1982b) Die Gattung *Glyphiulus* (Diplopoda: Cambalidea) von China. *Sinozooologia* (2): 85–93. [In Chinese, German abstract]
Zhang CZ, Li ZY (1982c) Eine neue Art vom *Chinosphaera* (Sphaerotheriida, Diplopoda) aus China. *Acta Zootaxonomica Sinica* 7(2): 152–154. [In Chinese, German abstract]
Zhang CZ, Mao JR (1984) A new species of the genus *Kiulinga* (Diplopoda: Xystodesmidae). *Acta Zootaxonomica Sinica* 9(2): 135–137. [In Chinese, English abstract]
Zhang CZ, Tang HG (1985) Eine neue Art der Gattung *Hedinomorpha* (Diplopoda: Paradoxosomatidae) aus China. *Sinozooologia* 3: 35–38. [In Chinese, German abstract]
Zhang CZ, Wang DQ (1992) Chilopoda, Diplopoda, Pauropoda and Symphyla. In: Yin WY (Ed.) *Subtropical Soil Animals of China*. Beijing, Science Press: 365–392. [In Chinese]
Zhang CZ, Wang DQ (1993) Diplopoda in caves of Yunnan I. A study of new genera and species of the millipede family Doratodesmidae. In: Song LH, Ting HY (Eds) *Karst Landscape and Cave Tourism*. China Environmental Science Press, Beijing, 205–215. [In Chinese, English abstract]
Zhang CZ, Wang DQ, Zhang FX (1997) Two new genera and four new species of Diplopoda from Wuling mountains area. In: Song DX (Ed.) *Invertebrates of Wuling Mountains area, southwestern China*. Beijing: Science Press: 508–522. [In Chinese, English abstract]
Zhang CZ, Zhang NG (1997) An interesting new millipede, *Agaricogonopus acrotrifoliolatus* gen. et sp. nov., from the tropical rain-forest region of Xishuangbanna, Yunnan (Diplopoda: Sirostreptida: Harpagophoridae). *Acta Zootaxonomica Sinica* 22(4): 349–352.
Zhang F, Zhang CZ (1995) A new troglobitic species of glomerid millipeds from Yunnan (Diplopoda, Glomerida, Glomeridae). *Zoological Research* 16(1): 17–21. [In Chinese, English abstract]
Zherikhin VV (2003) A history of biomes. Selected Works. KMK Scientific Press, Moscow, 98–188. [In Russian]