Approaching the interpretation of discordances in SARS-CoV-2 testing

Sandeep N. Wontakal1,5*, Robert H. Bortz III2*, Wen-Hsuan W. Lin1*, Inessa Gendлина3, Amy S. Fox4, Eldad A. Hod1, Kartik Chandran2, Michael B. Prystowsky1, Louis M. Weiss3,6, Steven L. Spitalnik1

*: denotes equal contribution

1: Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10027 USA

2: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 USA

3: Department of Medicine (Infectious Disease), Albert Einstein College of Medicine, Bronx, NY 10461 USA

4: Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461 USA

5: Corresponding author: Sandeep N. Wontakal
Department of Pathology & Cell Biology
Columbia University Irving Medical Center
New York, NY 10032
USA
Phone: 212-853-1215 Fax: 212-865-8246
Email: sw2869@cumc.columbia.edu

6: Alternate corresponding author: Louis M. Weiss
Department of Medicine (Infectious Disease)
Albert Einstein College of Medicine
Bronx, NY 10461
USA
Phone: 718-430-2142 Fax: 718-430-8543
email: louis.weiss@einsteinmed.org

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Conflict of interest statement: The authors do not have any relevant financial conflicts of interest to declare.

Key Points: Three major types of discordances found in SARS-CoV-2 antibody testing are discussed. These include 1) discordance between anti-spike and anti-nucleocapsid antibodies, 2) discordance between nucleic acid testing and serological assays, and 3) discordance between testing results amongst household members.
ABSTRACT

The COVID-19 pandemic has upended life throughout the globe. Appropriate emphasis has been placed on developing effective therapies and vaccines to curb the pandemic. While awaiting such countermeasures, mitigation efforts coupled with robust testing remain essential to controlling spread of the disease. In particular, serological testing plays a critical role in providing important diagnostic, prognostic, and therapeutic information. However, this information is only useful if the results can be accurately interpreted. This pandemic placed clinical testing laboratories and requesting physicians in a precarious position because we are actively learning about the disease and how to interpret serological results. Having developed robust assays to detect antibodies generated against SARS-CoV-2, and serving the hardest hit areas within the New York City epicenter, we found three types of discordances in SARS-CoV-2 test results that challenge interpretation. Using representative clinical vignettes, these interpretation dilemmas are highlighted, along with suggested approaches to resolve such cases.
INTRODUCTION

The COVID-19 pandemic is affecting every corner of the globe. Fifteen months after initial cases were reported in Wuhan, China in December 2019 [1], the global number of cases exceeded 116 million with >2,500,000 deaths (World Health Organization). The United States was hit particularly hard, accounting for ~25% of all cases and deaths while constituting only ~5% of the global population. New York City (NYC) became the initial epicenter of the American outbreak, reaching >6,300 daily hospitalizations in early April 2020. In addition to mitigation efforts, a critical aspect of controlling local outbreaks includes implementing robust testing schemes [2].

Soon after the genome sequence of SARS-CoV-2, the etiological agent of COVID-19, was available [3], multiple testing paradigms were developed to detect SARS-CoV-2 infection [4]. Initially, these assays focused on detecting viral RNA [4–7], the gold-standard for active infection. However, this genome sequence also allowed cloning and purification of viral proteins, thereby enabling development of serological testing [8]. Serological assays provide essential information about infectious diseases, including (i) identifying acute, subacute, and prior infections through detecting pathogen-specific IgM and IgG isotypes, respectively, to enable determination of true disease prevalence [9]; (ii) providing insights into host immune responses to infection [10]; (iii) quantifying antibody titers in recovered patients to identify convalescent plasma donors [11], and (iv) enabling isolation of neutralizing antibodies to produce therapeutic monoclonal antibodies [12–15]. Therefore, serological assays provide important diagnostic, prognostic, and therapeutic value.

There are many types of serological assays, including lateral flow-based, enzyme-linked immunosorbert assay (ELISA), immunoblotting-based, and functional readouts, such as viral neutralization assays [16]. Discordances can exist between assays that utilize different techniques, as well as assays that use the same approach [9,17,18]. As two leading academic institutions in NYC, serving the hardest hit areas within the initial U.S.
epicenter, we independently developed and clinically validated ELISAs to measure IgM, IgG, and IgA anti-spike antibodies (Albert Einstein College of Medicine - Einstein) [19], and IgM and IgG anti-spike antibodies and IgG anti-nucleocapsid antibodies (Columbia University Irving Medical Center – CUIMC) [20]. These assays performed similarly with sensitivities of up to 91% and 93% and specificities of 99% and 96% for the Einstein and CUIMC assays, respectively. Cross-validations comparing these platforms were highly concordant. However, both institutions encountered several cases yielding challenging, difficult to interpret results. We categorized such cases based on the following types of result discordances: 1) antibodies recognizing nucleocapsid vs. spike antigens, 2) nucleic acid testing vs. serology, and 3) differences between household members. Representative clinical vignettes of each type of discordance are presented herein along with a discussion of how they might be interpreted.

Discordance between anti-spike and anti-nucleocapsid antibodies

A 30-year old male, with a past medical history of cutaneous marginal zone lymphoma treated with 5 cycles of Rituximab (1050mg/dose), presented to the Emergency Department with two weeks of fatigue, fever (T_{max} 102.4), one week of loose stools, cough, a 30 lb weight loss over one week, and increasing shortness of breath. He was also tachycardic and hypoxic (O_2 saturation of 90%). Diffuse patchy opacities on chest x-ray suggested multifocal bacterial and/or viral pneumonia. A nasopharyngeal swab for SARS-CoV2 RT-PCR was positive. He was admitted, placed on 2L oxygen, and started on a 5-day course of hydroxychloroquine/azithromycin along with a short course of piperacillin-tazobactam and vancomycin. His hospital course was complicated by acute renal failure, but he recovered without requiring intubation or hemodialysis, and was discharged after 10 days. A serum sample collected 5 days after presentation (~3 weeks after symptom onset) was tested for SARS-CoV2 antibodies using a laboratory-developed ELISA, and was positive for anti-nucleocapsid IgG, but negative for anti-spike IgG and IgM antibodies.
The spike and nucleocapsid proteins are two of the four main structural proteins of SARS-CoV-2. Spike is a glycoprotein on the virion surface, which binds the human angiotensin converting enzyme 2 (ACE2) receptor and mediates viral entry into host cells [21,22]. Nucleocapsid protein resides inside the viral envelope and encapsulates the RNA genome [23]. Because SARS-CoV-1 spike protein and nucleoprotein are highly immunogenic [24,25], their orthologs became obvious targets for antibody testing when SARS-CoV-2 emerged. But how are results to be interpreted when someone has antibodies against one protein but not the other?

Because SARS-CoV-2 serological tests are widely utilized, it is increasingly important to understand the breadth and diversity of testing platforms, the caveats for interpretation, and how to reconcile discordant results when using different testing paradigms. As of August 2020, 33 serological methods received emergency use authorization (EUA) from the FDA [26]. These tests utilize various antibody detection approaches, including ELISA, magnetic chemiluminescence enzyme immunoassay (MCLIA), immunofluorescence, and lateral flow assays; they also measure different immunoglobulin isotypes, including IgM, IgG, and/or IgA. Among the 18 high throughput tests, differences remain depending on which viral proteins are targeted. Spike is the most common target, used in 11 tests. However, nucleocapsid is used in tests developed by vendors (e.g., Roche, Abbott) that supply reagents to many clinical laboratories, including many national reference laboratories. Therefore, knowing what antigen is detected, and what immunoglobulin isotype is measured, is critical for interpreting results, particularly since many clinical laboratories utilize multiple platforms. This is particularly relevant with the widespread administration of vaccines targeting the spike protein. Patients vaccinated with spike antigen based vaccines will only be positive in assays that test for anti-spike antibodies and will lack antibodies that recognize the nucleocapsid antigen unless they become infected by SARS-CoV-2 and develop an immune response to that infection.
In our experience, discordant results between antibodies against the spike and nucleocapsid proteins are not infrequent. Indeed, clinical testing of >5,000 individuals, which were a mix of PCR confirmed, suspected, and asymptomatic cases, found that 12% of these patients had antibodies that recognize only one of these proteins (data not shown). However, the explanation is not simply due to differences in assay sensitivity; indeed, sensitivities for anti-spike and anti-nucleocapsid assays are comparable overall, not only with the CUIMC ELISA, but also with most published methods [27]. Therefore, what are plausible explanations for patients to exhibit only anti-nucleocapsid antibodies, but not anti-spike antibodies?

Four human coronaviruses (hCoVs) cause seasonal upper-respiratory tract infections: OC43, HKU1, NL63, and 229E. One explanation for only finding anti-nucleocapsid antibodies may be due to cross-reactivity between SARS-CoV-2 and these seasonal coronaviruses. The spike protein is the most divergent antigen among hCoVs, whereas the nucleocapsid is reasonably conserved [28,29]. Therefore, spike protein-based tests are considered to be more specific [9,28]. However, the magnitude of a humoral response highly depends on antigen dose, and the nucleocapsid is the most abundant viral protein. Thus, nucleocapsid-specific assays may have some advantage in detecting antibodies early during infection when the number of infected cells is low and the amount of all expressed viral proteins is limited [30,31].

Although evidence is still emerging, a difference in the rate of decay of anti-SARS-CoV-2 antibodies might provide another explanation for detecting antibodies against one protein but not the other. Recently, the half-life of antibodies to the spike protein, specifically to the receptor binding domain, were analyzed. Spike-specific antibodies rapidly declined in patients with mild COVID-19 symptoms who recovered from the disease, with a half-life of 36 days [32]. However, no equivalent reports gauged the decay rate of nucleocapsid-specific antibodies after recovery from COVID-19; nonetheless, following SARS-CoV-1 infection,
antibodies to the nucleocapsid are more long-lasting than those to other structural proteins [33].

Since human leukocyte antigens (HLA) orchestrate immune responses and are associated with the magnitude of antibody response to several viruses, including Hepatitis B and influenza [34,35], host genetic variability may contribute to the discordant antibody response between spike and nucleocapsid proteins. Indeed, in silico analyses of viral peptide-MHC class I binding affinity revealed that the capacity to present SARS-CoV-2 viral peptides varies significantly between HLA molecules [36]. These differences could impact the activation of the cellular immune response as well as antibody response to SARS-CoV-2, and disease severity [37].

Another possible explanation relates to the presence of underlying co-morbidities. While validating our laboratory developed ELISAs, we found that patients who were immunocompromised, or had a recent history of cancer (such as the patient described above who recently received Rituximab to treat his lymphoma), were particularly enriched in the group of patients who only had antibodies against the nucleocapsid antigen. How an immunocompromised state affects antibody responses to one but not all viral proteins remains unclear. However, underlying malignancies and immunomodulatory therapies are associated with altered or delayed antibody responses to SARS-CoV-2 [38,39].

Discordance between viral nucleic acid and serological testing

A 23-year old male with no significant past medical history experienced mild symptoms, tested positive by RT-PCR for SARS-CoV-2 during screening in New Rochelle, the site of the initial outbreak in the greater NYC area. He did not require oxygen support and isolated at home. After identification as a potential convalescent plasma donor, a serum sample was collected 34 days after symptom onset to screen for anti-SARS-CoV-2 antibodies. The patient was negative for anti-spike IgA and IgG antibodies by ELISA.
Given the recent importance placed on serological tests as a measure of immune protection, a negative SARS-CoV-2 antibody result, despite previous diagnosis by RT-PCR, can confuse clinicians and patients. The pre-test probability is relatively high that the patient had COVID-19 based on a history of having symptoms and being from a high-risk area. Therefore, it is unlikely that the initial RT-PCR result was a false positive. It is important to consider conditions that could explain the negative serological result in an individual who had COVID-19, including the test type, disease severity, and timing of sample collection.

Here, an anti-spike IgG and IgA ELISA was used to analyze the patient’s serum. As discussed above, some reports indicated earlier seroconversion of anti-nucleocapsid, as compared to anti-spike, antibodies. Given that most individuals seroconvert for IgG by 14-20 days after symptom onset, regardless of assay (and antigen) utilized [10,40], a negative result at 34 days could be considered unlikely. However, although most studies evaluated time to seroconversion for acutely ill, hospitalized patients, this patient had a mild symptomatic illness not requiring hospitalization or oxygen supplementation, and individuals with mild disease had lower overall antibody responses in several recent studies [10,41–44]. It is also possible that this individual had a robust humoral immune response that rapidly waned. Indeed, some studies observed a decline in antibodies in the first 3 months following infection; nonetheless, most individuals continue to have detectable antibodies during this period [32,45,46]. Additionally, in two studies on convalescent patients, individuals with no or extremely low levels of anti-SARS-CoV-2 antibody on initial testing were mostly positive when retested at a later time, though a small number failed to seroconvert [47,48]. Depending on test sensitivity, low levels of antibody may not be sufficient to provide a positive result on a qualitative or semi-quantitative test, and factors that can result in lower antibody responses should be considered. An adult patient with a positive RT-PCR result and mild disease, who initially tests negative for anti-SARS-CoV-2 antibodies, warrants a
second test, potentially using nucleocapsid as the target antigen. A similar sequential testing approach was deployed when screening healthcare workers with equivocal results [49].

A 55-year old male presented with shortness of breath and fever up to 103.5°F for 9 days, with no improvement on outpatient treatment with azithromycin and non-steroidal anti-inflammatory drugs. A chest x-ray demonstrated bilateral infiltrates, and a chest CT scan demonstrated bilateral airspace consolidations in the lower lobes of the lungs with diffuse nodules and ground glass opacities in all lobes. Tests for other viral and bacterial infections, including a viral respiratory panel, were negative. RT-PCR of nasopharyngeal swabs for SARS-CoV-2 was negative three times. Due to a high clinical suspicion for COVID-19, a serum sample was collected and serological testing was positive for IgG, IgM, and IgA anti-spike antibodies. The patient was intubated due to severe hypoxic respiratory failure, but later succumbed with multi-organ failure 25 days after symptom onset.

Although the current gold standard for SARS-CoV-2 diagnosis is RT-PCR, a negative result, even in a patient with high clinical suspicion, is not rare. RT-PCR testing can have false negative rates as high as 54%, though this is highly variable depending on the study and the test utilized [50]. As with serological testing, timing of sample collection is important and is intimately related to the kinetics of virus replication. Based on a meta-analysis of 7 studies, the false negative rate for RT-PCR is highest prior to symptom onset (<5 days post-exposure), is lowest ~8 days post-infection, and then steadily increases [51]. Importantly, repeat testing increases diagnostic sensitivity, even when conducted on the same day as the initial test [7], although retesting remained negative in this patient. In addition to analytical errors in conducting RT-PCR testing, pre-analytical variables, including timing and method of sample collection, sample handling, and specimen type, also affect diagnostic performance [52]. Indeed, bronchoalveolar lavage fluid and sputum had higher sensitivity for viral RNA detection than the commonly collected nasopharyngeal swab specimens [53], thus providing
a potential reason for this patient’s multiple negative RT-PCR results. One possible explanation of this phenomenon may include the presence of viral particles only in the lower respiratory tract versus the upper respiratory tract. In this scenario, a patient would presumably still mount an immune response without detectable virus in the upper respiratory tract.

Given these issues with RT-PCR, adjunct diagnostic tests are useful to increase diagnostic sensitivity. CT imaging was adopted early in the pandemic, given reports of characteristic shared features in infected individuals [54] and increased sensitivity when combined with RT-PCR [55–57]. Serological testing is a potentially more accessible and cost-effective adjunct for diagnosis. There is growing evidence for positive serology in suspected patients with negative RT-PCR results [42,58], and testing schemes combining molecular and serological testing increase the sensitivity for diagnosing disease [10,59]. Although RT-PCR is more useful for detecting infection early, before an adequate antibody response occurs, serological testing is more sensitive at later time points, especially >15 days after symptom onset, when most infected individuals have seroconverted [10,42]. The high sensitivity of serological tests, later in the disease course, allows for a high positive predictive value for diagnosis in the context of high seroprevalence (>90% in areas like NYC with >20% seropositivity) [19,60].

Household Discordance

A 9-year old male in a family of four presented with a mild cough and fever in March 2020. The patient had an uneventful course and fully recovered with supportive care at home. During this period, the patient’s brother was in constant contact with the patient and the pair were said to be “all over each other all the time.” Both the mother and father were involved in caring for the patient and all four members quarantined in the same household and did not practice social distancing at home. Of note, the father had a mild cold in January 2020 that tested positive for coronavirus HKU1. Serological testing was performed on the entire family
~6 weeks after the onset on the patient’s symptoms. The patient tested positive for anti-spike IgM and IgG, as well as anti-nucleocapsid IgG. The father tested positive for anti-nucleocapsid IgG and negative for anti-spike antibodies. Both the mother and brother tested negative for all these antibodies.

The reproductive number (R_0), a basic epidemiological measurement, represents, on average, the number of people the disease is spread to by an infected individual. R_0 describes the relative “contagiousness” of a pathogen and varies dramatically between organisms. For example, one of the most infectious agents is measles virus, with an R_0 that is normally stated as 12-18, but was reported to approach >200 in certain conditions [61], whereas the 1918 H1N1 flu was estimated to have an R_0 of ~2.0 [62]. Initial reports suggested that the R_0 for SARS-CoV-2 was 1.4-2.5 [63] with more recent estimates reaching as high as 5.7 [64]. Given the relatively high R_0 for SARS-CoV-2, how is it that no other household member, who were constantly around one another in quarantine, were infected by this patient? This raised concerns for whether the patient was a false positive, or conversely, whether the family members were false negatives.

Like most clinical serological assays, ours was a single-point assay. A single-point assay uses a pre-determined serum dilution to perform the assay. Therefore, if a patient has low titer antibodies, then the dilution used may not be able to detect such low antibody levels. The most definitive way to identify low antibody levels is to perform an antibody titer. To this end, serial serum dilutions are made and assayed to determine the titer. We performed our ELISA using serial serum dilutions to detect IgM and IgG antibodies recognizing the spike antigen, and found that the other family members were true negatives, whereas the patient had a high titer. How, then, can the lack of spread in this family be explained?
Systematic retrospective studies from China provided empirical evidence that household transmission, unintuitively, is actually fairly limited [65,66]. An initial study from two hospitals near Wuhan studied 105 index patients and 392 family household contacts [66]. Of these 392 household members, only 16.3% (64 members) subsequently contracted SARS-CoV-2 from the index patient. This rate was noted to be higher than that reported for SARS-CoV-1 and MERS, two related coronaviruses [67,68]. Interestingly, the secondary attack rate for household members under age 18 was 4%, whereas it was 20.5% for those >18, demonstrating more frequent transmission among adults than children. Within their cohort of 105 index patients, 14 immediately self-quarantined within their households “with masks, dining separately, and residing alone” [66], resulting in no subsequent family member becoming infected. Although this needs replication in larger studies, the initial results suggest that quarantining infected individuals within the household may significantly curb household transmission. Similarly, another retrospective analysis of contact tracing data in Guangzhou identified a household transmission rate of 17.1% [65]. This study also found a positive correlation between transmission rate of an infected adult to other household members based on age, with household members <20 years of age having a secondary attack rate of 5.2%, whereas those >60 had a secondary attack rate of 18.4%. Overall, these studies identify a household transmission rate of ~16-17%, with children being the least susceptible.

Household members spend significant time with each other in close proximity, particularly during quarantine, yet SARS-CoV-2 spreads to <20% of household members. This poses a conundrum of how the virus has spread so efficiently to every corner of the globe. It was noted that the spread of several infectious agents occurs from a small number of “super-spreaders” who infect a disproportionate number of contacts [69,70]. This phenomenon is described as the 20/80 rule, where 20% of infected individuals transmit the disease to 80% of infected individuals. Indeed, the 2003 SARS epidemic in Asia was thought to have been spread primarily by super-spreaders [69]. Increasing evidence points
to superspreading events as a prime source of spread of COVID-19 [71–74]. Therefore, local household spread, especially coupled with self-quarantining, may not represent a significant mode of COVID-19 spread.

Although analyses of hospitalized patients have identified common features predisposing individuals to severe disease [75], the characteristics of super-spreaders are not known. Similarly, characteristics that enable individuals to resist infection are also not known. One emerging idea proposes that uninfected individuals may have underlying T-cell mediated immunity [76]. Intriguingly, SARS-CoV-2 infected individuals, and even pre-COVID-19 specimens, had evidence of CD4 and CD8 T-cell mediated immunity against SARS-CoV-2 [76]. In particular, these T-cells evoked responses against the SARS-CoV-2 nucleocapsid protein. This is significant because the nucleocapsid protein is relatively well conserved amongst the betacoronaviruses, including those causing the common cold. Therefore, it is enticing to speculate whether infection with other coronaviruses provides T-cell mediated protection to SARS-CoV-2, such as in this patient’s father, who had a recent HKU1 infection. In addition to the role of the adaptive immune system, genetic and serological studies of severe cases of COVID-19 found an enrichment of loss-of-function mutations or autoantibodies that target type I interferon related genes [73,74], implicating the importance of the innate immune response and its interplay with the adaptive immune system to combat SARS-CoV-2.

Final Thoughts

The primary concern of patients undergoing serological testing is “Am I immune?” This concern was further amplified when certain governments, including the United States, floated the idea of issuing “Immunity Passports” to allow those with SARS-CoV-2 antibodies to travel freely, while restricting others. In addition to the ethical issues associated with such a system [79], it fundamentally misunderstands the role of serological testing. Its main clinical utility lies in identifying those who were previously infected, and does not provide
information about whether a patient is immune per se. That is, the presence of antibodies is not synonymous with protective immunity, nor is the absence of antibodies synonymous with viral susceptibility. The clinical vignettes discussed herein highlight situations where individuals may fall into such discordant categories.

Neutralizing antibodies are thought to confer immunity, and seem to be specific for the SARS-CoV-2 spike protein [80]. Therefore, it is unclear whether individuals who have anti-nucleocapsid antibodies, but not anti-spike antibodies, are protected from future infection. This is particularly relevant because many commercial testing platforms only detect anti-nucleocapsid antibodies. Furthermore, we found that not all individuals with anti-spike antibodies have viral neutralizing antibodies [81]. Because ELISAs cannot specifically identify the presence of neutralizing antibodies, no definitive conclusions can be made whether an individual who tests positive will be protected.

In contrast, a negative test does not necessarily exclude the possibility of protection. As indicated above, if the assay only detects anti-nucleocapsid antibodies, it is still possible that the patient has anti-spike antibodies, a subset of which may be neutralizing. Even if the ELISA detects anti-spike antibodies, most clinical assays are single point tests, using only one dilution of serum or plasma to detect the presence of antibody, and call a test positive if the signal reaches a predetermined threshold. Thus, it is possible that an individual who tests negative simply has low titers that are not detected at the dilution used for the assay. This may be particularly relevant when testing is performed several months after symptom onset. Even though a normal antibody response eventually wanes, the presence of the appropriate memory B-cells can still provide protection. In addition to the humoral response, T-cell mediated immunity may provide protection. The role of T-cell immunity in SARS-CoV-2 infection is only recently beginning to be unraveled [82]. Intriguingly, unlike the humoral response, preexisting primed memory T-cells that recognize SARS-CoV-2 may be present in samples from the pre-COVID-19 era [76,83]. Thus, infection with other common human coronaviruses may extend T-cell based protection against SARS-CoV-2. This suggests that,
even in the absence of SARS-CoV-2 antibodies, some individuals may have protective T-cell mediated immunity.

The discordances discussed herein highlight some interpretation challenges faced by clinical laboratory personnel and requesting physicians. Physicians should be aware of the details of the assay performed (e.g., which antigen is used, which isotype is detected, is the assay a single point assay) to interpret results properly to guide management, particularly with the widespread administration of spike antigen based vaccines. Most importantly, physicians must inform patients that serological testing does not determine if they are immune, but rather provides evidence of prior infection. Viral neutralization assays and T-cell based assays represent the next phase of testing paradigms, which will need to be clinically implemented to help answer the question of “Am I immune?”

Patient Consent Statement

This review does not include factors necessitating patient consent.
References

1. WHO | Pneumonia of unknown cause – China. Available at: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. Accessed 15 July 2020.

2. Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann. Intern. Med. 2020; 172:726–734.

3. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–273.

4. Smithgall MC, Dowlatshahi M, Spitalnik SL, Hod EA, Rai AJ. Types of Assays for SARS-CoV-2 Testing: A Review. Lab Med 2020;

5. Lieberman JA, Pepper G, Naccache SN, Huang M-L, Jerome KR, Greninger AL. Comparison of Commercially Available and Laboratory Developed Assays for In Vitro Detection of SARS-CoV-2 in Clinical Laboratories. J. Clin. Microbiol. 2020; 58.

6. Zhen W, Manji R, Smith E, Berry GJ. Comparison of Four Molecular In Vitro Diagnostic Assays for the Detection of SARS-CoV-2 in Nasopharyngeal Specimens. J. Clin. Microbiol. 2020;

7. Green DA, Zucker J, Westblade LF, et al. Clinical Performance of SARS-CoV-2 Molecular Tests. J. Clin. Microbiol. 2020; 58.

8. Stadlbauer D, Amanat F, Chromikova V, et al. SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol 2020; 57:e100.

9. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020; 6:CD013652.

10. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. 2020;

11. Casadevall A, Pirofski L. The convalescent sera option for containing COVID-19. J. Clin. Invest. 2020;

12. Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020; 584:120–124.

13. Pinto D, Park Y-J, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020; 583:290–295.

14. Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 2020;

15. Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020;
16. Krammer F, Simon V. Serology assays to manage COVID-19. Science 2020; 368:1060–1061.

17. Michel M, Bouam A, Edouard S, et al. Evaluating ELISA, Immunofluorescence, and Lateral Flow Assay for SARS-CoV-2 Serologic Assays. Front. Microbiol. 2020; 11:597529.

18. Whitman JD, Hiatt J, Mowery CT, et al. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nat. Biotechnol. 2020; 38:1174–1183.

19. Bortz RH, Floreiz C, Laundermilch E, et al. Development, clinical translation, and utility of a COVID-19 antibody test with qualitative and quantitative readouts. medRxiv 2020;

20. Meyers K, Liu L, Lin W-H, et al. Antibody Testing Documents the Silent Spread of SARS-CoV-2 in New York Prior to the First Reported Case. 2020;

21. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020; 117:11727–11734.

22. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367:1260–1263.

23. Zeng W, Liu G, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 2020; 527:618–623.

24. Leung DTM, Tam FCH, Ma CH, et al. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J. Infect. Dis. 2004; 190:379–386.

25. Shi Y, Yi Y, Li P, et al. Diagnosis of severe acute respiratory syndrome (SARS) by detection of SARS coronavirus nucleocapsid antibodies in an antigen-capturing enzyme-linked immunosorbent assay. J. Clin. Microbiol. 2003; 41:5781–5782.

26. EUA Authorized Serology Test Performance | FDA. Available at: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance. Accessed 26 August 2020.

27. Liu W, Liu L, Kou G, et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020; 58.

28. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host Microbe 2020; 27:671–680.e2.

29. Dutta NK, Mazumdar K, Gordy JT. The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development. J. Virol. 2020; 94.

30. To KK-W, Tsang OT-Y, Leung W-S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 2020; 20:565–574.
31. Burbelo PD, Riedo FX, Morishima C, et al. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J. Infect. Dis. 2020; 222:206–213.

32. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020; 383:1085–1087.

33. Tan Y-J, Goh P-Y, Fielding BC, et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 2004; 11:362–371.

34. Li Z-K, Nie J-J, Li J, Zhuang H. The effect of HLA on immunological response to hepatitis B vaccine in healthy people: a meta-analysis. Vaccine 2013; 31:4355–4361.

35. Poland GA, Ovsyannikova IG, Jacobson RM. Immunogenetics of seasonal influenza vaccine response. Vaccine 2008; 26 Suppl 4:D35–40.

36. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J. Virol. 2020; 94.

37. Tavasolian F, Rashidi M, Hatam GR, et al. HLA, Immune Response, and Susceptibility to COVID-19. Front. Immunol. 2020; 11:601886.

38. Solodky ML, Galvez C, Russias B, et al. Lower detection rates of SARS-COV2 antibodies in cancer patients versus health care workers after symptomatic COVID-19. Ann. Oncol. 2020; 31:1087–1088.

39. Woo MS, Steins D, Häussler V, et al. Control of SARS-CoV-2 infection in rituximab-treated neuroimmunological patients. J. Neurol. 2020;

40. Bryan A, Pepper G, Wener MH, et al. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J. Clin. Microbiol. 2020; 58.

41. Ma H, Zeng W, He H, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol 2020; 17:773–775.

42. Long Q-X, Liu B-Z, Deng H-J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020; 26:845–848.

43. Okba NMA, Müller MA, Li W, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerging Infect. Dis. 2020; 26:1478–1488.

44. Zhang B, Zhou X, Zhu C, et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front. Mol. Biosci. 2020; 7:157.

45. Wajnberg A, Amanat F, Firpo A, et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. medRxiv 2020;
46. Long Q-X, Tang X-J, Shi Q-L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020; 26:1200–1204.

47. Wajnberg A, Mansour M, Leven E, et al. Humoral immune response and prolonged PCR positivity in a cohort of 1343 SARS-CoV 2 patients in the New York City region. medRxiv 2020;

48. Staines HM, Kirwan DE, Clark DJ, et al. Dynamics of IgG seroconversion and pathophysiology of COVID-19 infections. medRxiv 2020;

49. Pérè H, Wack M, Védie B, et al. Sequential SARS-CoV-2 IgG assays as confirmatory strategy to confirm equivocal results: Hospital-wide antibody screening in 3,569 staff health care workers in Paris. J. Clin. Virol. 2020; :104617.

50. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, et al. False-negative results of initial rt-pcr assays for covid-19: a systematic review. medRxiv 2020;

51. Lippi G, Simundic A-M, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2020; 58:1070–1076.

52. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020;

53. Chung M, Bernheim A, Mei X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 2020; 295:202–207.

54. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020; 296:E32–E40.

55. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020; 296:E41–E45.

56. Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020; 126:108961.

57. Liu R, Liu X, Yuan L, et al. Analysis of adjunctive serological detection to nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection diagnosis. Int. Immunopharmacol. 2020; 86:106746.

58. Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. 2020; 71:778–785.

59. Rosenberg ES, Tesoriero JM, Rosenthal EM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. Ann Epidemiol 2020; 48:23–29.e4.
61. Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect. Dis. 2017; 17:e420–e428.

62. Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020;

63. Statement on the meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus 2019 (n-CoV) on 23 January 2020. Available at: https://www.who.int/news-room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). Accessed 6 August 2020.

64. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerging Infect. Dis. 2020; 26:1470–1477.

65. Jing Q-L, Liu M-J, Zhang Z-B, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect. Dis. 2020;

66. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin. Infect. Dis. 2020;

67. Wilson-Clark SD, Deeks SL, Gournis E, et al. Household transmission of SARS, 2003. Can. Med. Assoc. J. 2006; 175:1219–1223.

68. Hui DS, Azhar EI, Kim Y-J, Memish ZA, Oh M-D, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect. Dis. 2018; 18:e217–e227.

69. Stein RA. Super-spreaders in infectious diseases. Int. J. Infect. Dis. 2011; 15:e510–3.

70. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature 2005; 438:355–359.

71. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice - Skagit County, Washington, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020; 69:606–610.

72. Leclerc QJ, Fuller NM, Knight LE, CMMID COVID-19 Working Group, Funk S, Knight GM. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res. 2020; 5:83.

73. Liu Y, Eggo RM, Kucharski AJ. Secondary attack rate and superspreading events for SARS-CoV-2. Lancet 2020; 395:e47.

74. Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020; 5:67.
75. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584:430–436.

76. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;

77. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370.

78. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020; 370.

79. Kofler N, Baylis F. Ten reasons why immunity passports are a bad idea. Nature 2020; 581:379–381.

80. Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. Elife 2020; 9.

81. Weisberg SP, Connors T, Zhu Y, et al. Antibody responses to SARS-CoV2 are distinct in children with MIS-C compared to adults with COVID-19. medRxiv 2020;

82. Altmann DM, Boyton RJ. SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci. Immunol. 2020; 5.

83. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat. Rev. Immunol. 2020;