A set-theoretic approach to ABox reasoning services (Extended Version)

Domenico Cantone, Marianna Nicolosi-Asmundo, and Daniele Francesco Santamaria

University of Catania, Dept. of Mathematics and Computer Science
email: {cantone,nicolosi,santamaria}@dmi.unict.it

Abstract. In this paper we consider the most common ABox reasoning services for the description logic $\mathcal{D}L(4\mathcal{L}QS^{R,X})(D)$ ($\mathcal{D}L^{4,\times}_D$, for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment $4\mathcal{L}QS^R$. The description logic $\mathcal{D}L^{4,\times}_D$ is very expressive, as it admits various concept and role constructs, and data types, that allow one to represent rule-based languages such as SWRL. Decidability results are achieved by defining a generalization of the conjunctive query answering problem, called HOCQA (Higher Order Conjunctive Query Answering), that can be instantiated to the most widespread ABox reasoning tasks. We also present a KE-tableau based procedure for calculating the answer set from $\mathcal{D}L^{4,\times}_D$ knowledge bases and higher order $\mathcal{D}L^{4,\times}_D$ conjunctive queries, thus providing means for reasoning on several well-known ABox reasoning tasks. Our calculus extends a previously introduced KE-tableau based decision procedure for the CQA problem.

1 Introduction

Recently, results from Computable Set Theory have been applied to knowledge representation for the semantic web in order to define and reason about description logics and rule languages. Such a study is motivated by the fact that Computable Set Theory is a research field plenty of interesting decidability results and that there exists a natural translation function between some set theoretical fragments and description logics and rule languages.

In particular, the decidable four-level stratified fragment of set theory $4\mathcal{L}QS^R$, involving variables of four sorts, pair terms, and a restricted form of quantification over variables of the first three sorts (cf. [7]), has been used in [6] to represent the description logic $\mathcal{D}L(4\mathcal{L}QS^R)(D)$ (more simply referred to as $\mathcal{D}L^{4}_D$). The logic $\mathcal{D}L^{4}_D$ admits concept constructs such as full negation, union and intersection of concepts, concept domain and range, existential quantification and min cardinality on the left-hand side of inclusion axioms. It also supports role constructs such as role chains on the left hand side of inclusion axioms, union, intersection, and complement of abstract roles, and properties on roles such as transitivity, symmetry, reflexivity, and irreflexivity. As briefly shown in [6], $\mathcal{D}L^{4}_D$ is particularly suitable to express a rule language such as the Semantic Web Rule Language
(SWRL), an extension of the Ontology Web Language (OWL). It admits data types, a simple form of concrete domains that are relevant in real world applications. In [6], the consistency problem for \mathcal{DL}_D^1-knowledge bases has been proved decidable by means of a reduction to the satisfiability problem for $4\mathcal{LQS}^R$, whose decidability has been established in [7]. It has also been shown that, under not very restrictive constraints, the consistency problem for \mathcal{DL}_D^1-knowledge bases is NP-complete. Such a low complexity result is motivated by the fact that existential quantification cannot appear on the right-hand side of inclusion axioms. Nonetheless, \mathcal{DL}_D^1 turns out to be more expressive than other low complexity logics such as OWL RL and suitable for representing real world ontologies. For example the restricted version of \mathcal{DL}_D^1 allows one to express several ontologies, such as Ontoceramic [13] classifying ancient pottery.

In [10], the description logic $\mathcal{DL}(4\mathcal{LQS}^{R\times})(\mathcal{D})$ ($\mathcal{DL}_D^{4\times}$, for short), extending \mathcal{DL}_D^1 with Boolean operations on concrete roles and with the product of concepts, has been introduced and the Conjunctive Query Answering (CQA) problem for $\mathcal{DL}_D^{4\times}$ has been proved decidable via a reduction to the CQA problem for $4\mathcal{LQS}^R$, whose decidability follows from that of $4\mathcal{LQS}^R$ (see [7]). CQA is a powerful way to query ABoxes, particularly relevant in the context of description logics and for real world applications based on semantic web technologies, as it provides mechanisms for interacting with ontologies and data. The CQA problem for description logics has been introduced in [3, 5] and studied for several well-known description logics (cf. [1, 2, 4, 15, 16, 21, 23–26]). Finally, we mention also a terminating KE-tableau based procedure that, given a $\mathcal{DL}_D^{4\times}$-query Q and a $\mathcal{DL}_D^{4\times}$-knowledge base KB represented in set-theoretic terms, determines the answer set of Q with respect to KB. KE-tableau systems [14] allow the construction of trees whose distinct branches define mutually exclusive situations, thus preventing the proliferation of redundant branches, typical of semantic tableaux.

In this paper we extend the results presented in [10] by considering also the main ABox reasoning tasks for $\mathcal{DL}_D^{4\times}$, such as instance checking and concept retrieval, and study their decidability via a reduction to the satisfiability problem for $4\mathcal{LQS}^R$. Specifically, we define Higher Order (HO) $\mathcal{DL}_D^{4\times}$-conjunctive queries admitting variables of three sorts: individual and data type values variables, concept variables, and role variables. HO $\mathcal{DL}_D^{4\times}$-conjunctive queries can be instantiated to any of the ABox reasoning tasks we are considering in the paper. Then, we define the Higher Order Conjunctive Query Answering (HOCQA) problem for $\mathcal{DL}_D^{4\times}$ and prove its decidability by reducing it to the HOCQA problem for $4\mathcal{LQS}^R$. Decidability of the latter problem follows from that of the satisfiability problem for $4\mathcal{LQS}^R$. $4\mathcal{LQS}^R$ representation of $\mathcal{DL}_D^{4\times}$ knowledge bases is defined according to [10]. $4\mathcal{LQS}^R$ turns out to be naturally suited for the HOCQA problem since HO $\mathcal{DL}_D^{4\times}$-conjunctive queries are easily translated into $4\mathcal{LQS}^R$-formulae. In particular, individual and data type value variables are mapped into $4\mathcal{LQS}^R$ variables of sort 0, concept variables into $4\mathcal{LQS}^R$ variables of sort 1, and role variables into $4\mathcal{LQS}^R$ variables of sort 3. Finally, we present an extension of
the KE-tableau presented in [10], which provides a decision procedure for the HOCQA task for $\mathcal{DL}_D^{4,\infty}$.

2 Preliminaries

2.1 The set-theoretic fragment $4LQS^R$

It is convenient to first introduce the syntax and semantics of a more general four-level quantified language, denoted $4LQS$. Then we provide some restrictions on the quantified formulae of $4LQS$ to characterize $4LQS^R$. The interested reader can find more details in [7] together with the decision procedure for the satisfiability problem for $4LQS^R$.

$4LQS$ involves four collections, V_i, of variables of sort $i = 0, 1, 2, 3$, respectively. These will be denoted by X^i, Y^i, Z^i, \ldots (in particular, variables of sort 0 will also be denoted by x, y, z, \ldots). In addition to variables, $4LQS$ involves also pair terms of the form (x, y), for $x, y \in V_0$.

$4LQS$-quantifier-free atomic formulae are classified as:
- level 0: $x = y, \ x \in X^1, \ (x, y) \in X^2, \ (x, y) \in X^3$;
- level 1: $X^1 = Y^1, \ X^1 \in X^2$;
- level 2: $X^2 = Y^2, \ X^2 \in X^3$.

$4LQS$-purely universal formulae are classified as:
- level 0: $(\forall x_1) \ldots (\forall x_n) \varphi_0$, where $x_1, \ldots, x_n \in V_0$ and φ_0 is any propositional combination of quantifier-free atomic formulae of level 0;
- level 1: $(\forall Z^1) \ldots (\forall Z^1_m) \varphi_1$, where $Z^1, \ldots, Z^1_m \in V_1$ and φ_1 is any propositional combination of quantifier-free atomic formulae of levels 0 and 1, and of purely universal formulae of level 1;
- level 2: $(\forall Z^2) \ldots (\forall Z^2_p) \varphi_2$, where $Z^2, \ldots, Z^2_p \in V_2$ and φ_2 is any propositional combination of quantifier-free atomic formulae and of purely universal formulae of levels 1 and 2.

$4LQS$-formulae are all the propositional combinations of quantifier-free atomic formulae of levels 0, 1, 2, and of purely universal formulae of levels 1, 2, 3.

The variables z_1, \ldots, z_n are said to occur quantified in $(\forall z_1) \ldots (\forall z_n) \varphi_0$. Likewise, Z^1_1, \ldots, Z^1_m and Z^2_1, \ldots, Z^2_p occur quantified in $(\forall Z^1) \ldots (\forall Z^1_m) \varphi_1$ and in $(\forall Z^2) \ldots (\forall Z^2_p) \varphi_2$, respectively. A variable occurs free in a $4LQS$-formula φ if it does not occur quantified in any subformula of φ. For $i = 0, 1, 2, 3$, we denote with $\text{Var}_i(\varphi)$ the collections of variables of level i occurring free in φ and we put $\text{Vars}(\varphi) := \bigcup_{i=0}^3 \text{Var}_i(\varphi)$.

A substitution $\sigma := \{ x/y, X^1/Y^1, X^2/Y^2, X^3/Y^3 \}$ is the mapping $\varphi \mapsto \varphi\sigma$ such that, for any given $4LQS$-formula φ, $\varphi\sigma$ is the $4LQS$-formula obtained from φ by replacing the free occurrences of the variables x_i in x (for $i = 1, \ldots, n$) with the corresponding y_i in y, of X^i_j in X^1 (for $j = 1, \ldots, m$) with Y^i_j in Y^1, of X^i_k in X^2 (for $k = 1, \ldots, p$) with Y^i_k in Y^2, and of X^i_h in X^3 (for $h = 1, \ldots, q$)
with \(Y^3_h \) in \(Y^3 \), respectively. A substitution \(\sigma \) is free for \(\varphi \) if the formulae \(\varphi \) and \(\varphi \sigma \) have exactly the same occurrences of quantified variables. The empty substitution, denoted with \(\epsilon \), satisfies \(\varphi \epsilon = \varphi \), for every 4LQS-formula \(\varphi \).

A 4LQS-interpretation is a pair \(\mathcal{M} = (D, M) \), where \(D \) is a non-empty collection of objects (called domain or universe of \(\mathcal{M} \)) and \(M \) is an assignment over the variables in \(V_i \), for \(i = 0, 1, 2, 3 \), such that:

\[
MX^0 \in D, \quad MX^1 \in \mathcal{P}(D), \quad MX^2 \in \mathcal{P}(\mathcal{P}(D)), \quad MX^3 \in \mathcal{P}(\mathcal{P}(\mathcal{P}(D))),
\]

where \(X^i \in V_i \), for \(i = 0, 1, 2, 3 \), and \(\mathcal{P}(s) \) denotes the powerset of \(s \).

Pair terms are interpreted à la Kuratowski, and therefore we put

\[
M\langle x, y \rangle := \{\{Mx\}, \{Mx, My\}\}.
\]

Quantifier-free atomic formulae and purely universal formulae are evaluated in a standard way according to the usual meaning of the predicates ‘\(\in \)’ and ‘\(= \)’. The interpretation of quantifier-free atomic formulae and of purely universal formulae is given in [7].

Finally, compound formulae are interpreted according to the standard rules of propositional logic. If \(\mathcal{M} \models \varphi \), then \(\mathcal{M} \) is said to be a 4LQS-model for \(\varphi \). A 4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula is valid if it is satisfied by all 4LQS-interpretations.

We are now ready to present the fragment 4LQS\(^R\) of 4LQS of our interest. This is the collection of the formulae \(\psi \) of 4LQS fulfilling the restrictions:

1. For every purely universal formula \((\forall z^1_1) \ldots (\forall z^1_m) \varphi_1 \) of level 2 occurring in \(\psi \) and every purely universal formula \((\forall z^2_1) \ldots (\forall z^2_n) \varphi_0 \) of level 1 occurring negatively in \(\varphi_1, \varphi_0 \) is a propositional combination of quantifier-free atomic formulae of level 0 and the condition

\[
\neg \varphi_0 \rightarrow \bigwedge_{i=1}^n \bigwedge_{j=1}^m z_i \in Z^1_j
\]

is a valid 4LQS-formula (in this case we say that \((\forall z^2_1) \ldots (\forall z^2_n) \varphi_0 \) is linked to the variables \(Z^1_1, \ldots, Z^1_m \));

2. For every purely universal formula \((\forall z^3_1) \ldots (\forall z^3_p) \varphi_2 \) of level 3 in \(\psi \):

- every purely universal formula of level 1 occurring negatively in \(\varphi_2 \) and not occurring in a purely universal formula of level 2 is only allowed to be of the form

\[
(\forall z^1_1) \ldots (\forall z^1_n)(\neg(\bigwedge_{i=1}^n \bigwedge_{j=1}^m z_i, z_j) = Y^2_{ij}),
\]

with \(Y^2_{ij} \in \mathcal{V}^2 \), for \(i, j = 1, \ldots, n \);

- purely universal formulae \((\forall z^1_1) \ldots (\forall z^1_m) \varphi_1 \) of level 2 may occur only positively in \(\varphi_2 \).\(^1\)

Restriction 1 has been introduced for technical reasons concerning the decidability of the satisfiability problem for the fragment, while restriction 2 allows one to define binary relations and several operations on them.

\(^1\) Definitions of positive occurrence and of negative occurrence of a formula inside another formula can be found in [7].
2.2 The logic $\mathcal{DL}\langle 4LQS^{R,\times}\rangle(D)$

The description logic $\mathcal{DL}\langle 4LQS^{R,\times}\rangle(D)$ (which, as already remarked, will be more simply referred to as \mathcal{DL}_D^{4LQS}) is an extension of the logic $\mathcal{DL}\langle 4LQS\rangle(D)$ presented in [6], where Boolean operations on concrete roles and the product of concepts are defined. In addition to other features, \mathcal{DL}_D^{4LQS} admits also data types, a simple form of concrete domains that are relevant in real-world applications. In particular, it treats derived data types by admitting data type terms constructed from data ranges by means of a finite number of applications of the Boolean operators. Basic and derived data types can be used inside inclusion axioms involving concrete roles.

Data types are introduced through the notion of data type map, defined according to [22] as follows. Let $D = (N_D, N_C, N_F, D)$ be a data type map, where N_D is a finite set of data types, N_C is a function assigning a set of constants $N_C(d)$ to each data type $d \in N_D$, N_F is a function assigning a set of facets $N_F(d)$ to each $d \in N_D$, and D^D is a function assigning a data type interpretation d^D to each data type $d \in N_D$, a facet interpretation $f^D \subseteq d^D$ to each facet $f \in N_F(d)$, and a data value $e^D_d \in d^D$ to every constant $e_d \in N_C(d)$. We shall assume that the interpretations of the data types in N_D are nonempty pairwise disjoint sets.

Let R_A, R_D, C, I be denumerable pairwise disjoint sets of abstract role names, concrete role names, concept names, and individual names, respectively. We assume that the set of abstract role names R_A contains a name U denoting the universal role.

(a) \mathcal{DL}_D^{4LQS}-data type, (b) \mathcal{DL}_D^{4LQS}-concept, (c) \mathcal{DL}_D^{4LQS}-abstract role, and (d) \mathcal{DL}_D^{4LQS}-concrete role terms are constructed according to the following syntax rules:

(a) $t_1, t_2 \rightarrow dr \mid \neg t_1 \mid t_1 \sqcap t_2 \mid t_1 \sqcup t_2 \mid \{e_d\}$,
(b) $C_1, C_2 \rightarrow A \mid T \mid \bot \mid \neg C_1 \mid C_1 \sqcap C_2 \mid C_1 \sqcup C_2 \mid \{a\} \mid \exists R Self(\exists R_a a) \mid P [\{e_d\}]$,
(c) $R_1, R_2 \rightarrow S \mid U \mid R_1 \mid \neg R_1 \mid R_1 \sqcap R_2 \mid R_1 \sqcup R_2 \mid R_{C_1} \mid R_{C_1, C_2} \mid r_{C_1, C_2} \mid \text{id}(C) \mid C_1 \times C_2$,
(d) $P_1, P_2 \rightarrow T \mid \neg P_1 \mid P_1 \sqcup P_2 \mid P_1 \sqcap P_2 \mid P_{C_1} \mid P_{R_1} \mid P_{C_1, R_1}$,

where dr is a data range for D, t_1, t_2 are data type terms, e_d is a constant in $N_C(d)$, a is an individual name, A is a concept name, C_1, C_2 are \mathcal{DL}_D^{4LQS}-concept terms, S is an abstract role name, R, R_1, R_2 are \mathcal{DL}_D^{4LQS}-abstract role terms, T is a concrete role name, and P, P_1, P_2 are \mathcal{DL}_D^{4LQS}-concrete role terms. We remark that data type terms are introduced in order to represent derived data types.

A \mathcal{DL}_D^{4LQS}-knowledge base is a triple $\mathcal{K} = (\mathcal{R}, T, A)$ such that \mathcal{R} is a \mathcal{DL}_D^{4LQS}-RBox, T is a \mathcal{DL}_D^{4LQS}-TBox, and A a \mathcal{DL}_D^{4LQS}-ABox.

A \mathcal{DL}_D^{4LQS}-RBox is a collection of statements of the following forms:

$$R_1 \equiv R_2, \quad R_1 \sqsubseteq R_2, \quad R_1 \sqsubseteq R_{n+1}, \quad \text{Sym}(R_1), \quad \text{Asym}(R_1), \quad \text{Ref}(R_1),$$
$$\text{Irref}(R_1), \quad \text{Dis}(R_1, R_2), \quad \text{Tra}(R_1), \quad \text{Fun}(R_1), \quad R_1 \equiv C_1 \times C_2, \quad P_1 \equiv P_2,$$
where R_1, R_2 are \mathcal{DL}^{4x}_D-abstract role terms, C_1, C_2 are \mathcal{DL}^{4x}_D-abstract concept terms, and P_1, P_2 are \mathcal{DL}^{4x}_D-concrete role terms. Any expression of the type $w \subseteq R$, where w is a finite string of \mathcal{DL}^{4x}_D-abstract role terms and R is an \mathcal{DL}^{4x}_D-abstract role term, is called a role inclusion axiom (RIA).

A \mathcal{DL}^{4x}_D-TBox is a set of statements of the types:

- $C_1 \equiv C_2$, $C_1 \subseteq C_2$, $C_1 \subseteq \forall R_1, C_2$, $\exists R_1, C_1 \subseteq C_2$, $\exists R_a, C_a \subseteq C_2$,
- $t_1 \equiv t_2$, $t_1 \subseteq t_2$, $C_1 \subseteq \forall P_1, t_1$, $\exists P_1, t_1 \subseteq C_1$, $\exists P_1, t_1 \subseteq C_1$, $C_1 \subseteq \forall P_1, t_1$,

where C_1, C_2 are \mathcal{DL}^{4x}_D-concept terms, t_1, t_2 data type terms, R_1 a \mathcal{DL}^{4x}_D-abstract role term, P_1 a \mathcal{DL}^{4x}_D-concrete role term. Any statement of the form $C \subseteq D$, with C, D \mathcal{DL}^{4x}_D-concept terms, is a general concept inclusion axiom.

A \mathcal{DL}^{4x}_D-ABox is a set of individual assertions of the forms: $a : C_1, (a, b) : R_1$, $a = b$, $a \neq b$, $e_d : t_1$, $(a, e_d) : P_1$, with C_1 a \mathcal{DL}^{4x}_D-concept term, d a data type, t_1 a data type term, R_1 a \mathcal{DL}^{4x}_D-abstract role term, P_1 a \mathcal{DL}^{4x}_D-concrete role term, a, b individual names, and e_d a constant in $N_C(d)$.

The semantics of \mathcal{DL}^{4x}_D is given by means of an interpretation $I = (\Delta^I, \Delta_D^I)$, where Δ^I and Δ_D^I are non-empty disjoint domains such that $d^D \subseteq \Delta^I$, for every $d \in N_D$, and Δ^I is an interpretation function. The definition of the interpretation of concepts and roles, axioms and assertions is illustrated in Table 1.

Name	Syntax	Semantics					
concept (resp., cn.) rl.	Δ	$A^I \subseteq \Delta^I$ (resp., $P^I \subseteq \Delta^I \times \Delta_D^I$)					
nominal ab.	R (resp., P)	$a^I \subseteq \Delta^I$					
nominal data	$\{a\}$	$\{a\}^I = \{a^I\}$					
negative data type term	d (resp., $-d$)	$d^D \subseteq \Delta_D^I$ (resp., $\Delta_D^I \setminus d^D$)					
data type terms intersection	$-t_1$	$(\neg t_1)^I = \Delta_D^I \setminus t_1^D$					
data type terms union	$t_1 \cap t_2$	$(t_1 \cap t_2)^I = t_1^D \cap t_2^D$					
constant in $N_C(d)$	e_d	$e_d^I \in d^D$					
data range	$\{e_{d_1}, \ldots, e_{d_n}\}$	$\{e_{d_1}, \ldots, e_{d_n}\}^I \subseteq \{e_{d_1}^I, \ldots, e_{d_n}^I\}$					
data range union	ψ_d	$\Delta_D^I \setminus d^D$					
data range intersection	$\neg \psi_d$	$\Delta^I \setminus (\psi_d)^I$					
top (resp., bot.)	\top (resp., \bot)	$\top^I = \Delta^I$ (resp., $\bot^I = \Delta^I \setminus C^I$)					
negation conj. (resp., disj.)	\neg	$(\neg C)^I = \Delta^I \setminus C^I$					
valued exist. quantification	$\exists C \cap D$ (resp., $C \cup D$)	$(C \cap D)^I = C^I \cap D^I$ (resp., $(C \cup D)^I = C^I \cup D^I$)					
valued exist. quantification	$\exists R.a$	$(\exists R.a)^I = \{x \in \Delta^I \mid \langle x, a^I \rangle \in R^I\}$					
data typed exist. quantif. self concept nominals	\(\exists P, x_d \)	\(\exists P, x_d \) \(\cap \) \(\exists R, \text{Self} \) \(\cap \) \(\{ a_1, \ldots, a_n \} \)	\((\exists P, x_d)^I = \{ x \in \Delta^I : (x, x_d^D) \in P^I \} \)	\((\exists R, \text{Self})^I = \{ x \in \Delta^I : (x, x) \in R^I \} \)	\(\{ a_1, \ldots, a_n \}^I = \{ a_1^I \} \cup \ldots \cup \{ a_n^I \} \)		
universal role	\(\cup \)	\((\cup)^I = \Delta^I \times \Delta^I \)					
inverse role	\(R^- \)	\((R^-)^I = \{ (y, x) \mid (x, y) \in R^I \} \)					
concept cart. prod.	\(C_1 \times C_2 \)	\((C_1 \times C_2)^I = C_1^I \times C_2^I \)					
abstract role complement	\(\neg R \)	\((\neg R)^I = (\Delta^I \times \Delta^I) \setminus R^I \)					
abstract role union	\(R_1 \cup R_2 \)	\((R_1 \cup R_2)^I = R_1^I \cup R_2^I \)					
abstract role intersection	\(R_1 \cap R_2 \)	\((R_1 \cap R_2)^I = R_1^I \cap R_2^I \)					
abstract role domain restr.	\(R_{C_1} \)	\((R_{C_1})^I = \{ (x, y) \in R^I : x \in C^I \} \)					
concrete role complement	\(\neg P \)	\((\neg P)^I = (\Delta^I \times \Delta^D) \setminus P^I \)					
concrete role union	\(P_1 \cup P_2 \)	\((P_1 \cup P_2)^I = P_1^I \cap P_2^I \)					
concrete role intersection	\(P_1 \cap P_2 \)	\((P_1 \cap P_2)^I = P_1^I \cap P_2^I \)					
concrete role restricted domain restr.	\(P_{C_1	I} \)	\((P_{C_1	I})^I = \{ (x, y) \in P^I : x \in C^I \} \)			
concrete role restricted domain restr.	\(P_{C_1	I} \)	\((P_{C_1	I})^I = \{ (x, y) \in P^I : y \in t^D \} \)			
concept subsum.	\(C_1 \subseteq C_2 \)	\(I \models D \ C_1 \subseteq C_2 \iff C_1^I \subseteq C_2^I \)					
ab. role subsum.	\(R_1 \subseteq R_2 \)	\(I \models D \ R_1 \subseteq R_2 \iff R_1^I \subseteq R_2^I \)					
role incl. axiom cn. role subsum.	\(R_1 \ldots R_n \subseteq R \)	\(I \models D \ R_1 \ldots R_n \subseteq R \iff R_1^I \circ \ldots \circ R_n^I \subseteq R^I \)					
symmetric role	Sym(R)	\(I \models D \ \text{Sym}(R) \iff (R^-)^I \subseteq R^I \)					
asymmetric role	Asym(R)	\(I \models D \ \text{Asym}(R) \iff R^I \cap (R^-)^I = \emptyset \)					
transitive role	Tra(R)	\(I \models D \ \text{Tra}(R) \iff R^I \circ R^I \subseteq R^I \)					
disj. ab. role	Dis(R_1, R_2)	\(I \models D \ \text{Dis}(R_1, R_2) \iff R_1^I \cap R_2^I = \emptyset \)					
reflexive role	Ref(R)	\(I \models D \ \text{Ref}(R) \iff \{ (x, x) \mid x \in \Delta^I \} \subseteq R^I \)					
irreflexive role	Irref(R)	\(I \models D \ \text{Irref}(R) \iff R^I \cap \{ (x, x) \mid x \in \Delta^I \} = \emptyset \)					
func. ab. role	Fun(R)	\(I \models D \ \text{Fun}(R) \iff (R^-)^I \circ R^I \subseteq \{ (x, x) \mid x \in \Delta^I \} \)					
disj. cn. role	Dis(P_1, P_2)	\(I \models D \ \text{Dis}(P_1, P_2) \iff P_1^I \cap P_2^I = \emptyset \)					
func. cn. role	Fun(P)	\(I \models D \ \text{Fun}(P) \iff (x, y) \in P^I \land (x, z) \in P^I \text{ imply } y = z \)					
data type terms equivalence	\(t_1 \equiv t_2 \)	\(I \models D \ t_1 \equiv t_2 \iff t_1^D = t_2^D \)					
data type terms diseq.	\(t_1 \not\equiv t_2 \)	\(I \models D \ t_1 \not\equiv t_2 \iff t_1^D \neq t_2^D \)					
data type terms subsum.	\(t_1 \subseteq t_2 \)	\(I \models D \ t_1 \subseteq t_2 \iff t_1^D \subseteq t_2^D \)					
Let \mathcal{R}, \mathcal{T}, and \mathcal{A} be as above. An interpretation $\mathcal{I} = (\Delta^I, \Delta^D, \cdot^I)$ is a D-model of \mathcal{R} (resp., \mathcal{T}), if \mathcal{I} satisfies each axiom in \mathcal{R} (resp., \mathcal{T}) according to the semantic rules in Table 1. Analogously, $\mathcal{I} = (\Delta^I, \Delta^D, \cdot^I)$ is a D-model of \mathcal{A}, if \mathcal{I} satisfies each assertion in \mathcal{A}, according to the semantic rules in Table 1.

A DL$_4^\times$-knowledge base $\mathcal{K} = (\mathcal{A}, \mathcal{T}, \mathcal{R})$ is consistent if there is an interpretation $\mathcal{I} = (\Delta^I, \Delta^D, \cdot^I)$ that is a D-model of \mathcal{A}, \mathcal{T}, and \mathcal{R}.

Decidability of the consistency problem for DL$_4^\times$-knowledge bases was proved in [6] via a reduction to the satisfiability problem for formulae of a four level quantified syllogistic called 4LQSR. The latter problem was proved decidable in [7]. Some considerations on the expressive power of DL$_4^\times$ are in order. As illustrated in [12, Table 1] existential quantification is admitted only on the left hand side of inclusion axioms. Thus DL$_4^\times$ is less powerful than logics such as SROIQ(D) [17] for what concerns the generation of new individuals. On the other hand, DL$_4^\times$ is more liberal than SROIQ(D) in the definition of role inclusion axioms since roles involved are not required to be subject to any ordering relationship, and the notion of simple role is not needed. For example, the role hierarchy presented in [17, page 2] is not expressible in SROIQ(D) but can be represented in DL$_4^\times$. In addition, DL$_4^\times$ is a powerful rule language able to express rules with negated atoms such as Person(?p) ∧ ¬hasCar(?p, ?c) ⇒ CarlessPerson(?p). Notice that rules with negated atoms are not supported by the SWRL language.

3 ABox Reasoning services for DL$_4^\times$ knowledge base

The most important feature of a knowledge representation system is the capability of providing reasoning services. Depending on the type of the application domains, there are many different kinds of implicit knowledge that is desirable to infer from what is explicitly mentioned in the knowledge base. In particular, reasoning problems regarding ABoxes consist in querying a knowledge base in order to retrieve information concerning data stored in it. In this section we study the decidability for the most widespread ABox reasoning tasks for the logic DL$_4^\times$, resorting to a general problem, called Higher Order Conjunctive Query Answering (HOCQA), that can be instantiated to each of them.
Let \(V_l = \{ v_1, v_2, \ldots \} \), \(V_c = \{ c_1, c_2, \ldots \} \), \(V_r = \{ r_1, r_2, \ldots \} \), and \(V_o = \{ p_1, p_2, \ldots \} \) be pairwise disjoint denumerably infinite sets of variables which are disjoint from \(\text{Ind} \), \(\bigcup \{ N_C(d) : d \in N_D \} \), \(C \), \(R_A \), and \(R_D \). A HO \(\mathcal{DL}^{4\times}_D \)-atomic formula is an expression of one of the following types: \(R(w_1, w_2) \), \(P(w_1, u_1) \), \(C(w_1) \), \(r(w_1, w_2) \), \(p(w_1, u_1) \), \(c(w_1) \), \(w_1 = w_2 \), \(u_1 = u_2 \), where \(w_1, w_2 \in V_l \cup \text{Ind} \), \(u_1, u_2 \in \bigcup \{ N_C(d) : d \in N_D \} \), \(R \) is a \(\mathcal{DL}^{4\times}_D \)-abstract role term, \(P \) is a \(\mathcal{DL}^{4\times}_D \)-concrete role term, \(C \) is a \(\mathcal{DL}^{4\times}_D \)-concept term, \(r \in V_r \), \(p \in V_c \), and \(c \in V_o \).

A HO \(\mathcal{DL}^{4\times}_D \)-atomic formula containing no variables is said to be ground. A HO \(\mathcal{DL}^{4\times}_D \)-literal is a HO \(\mathcal{DL}^{4\times}_D \)-atomic formula or its negation. A HO \(\mathcal{DL}^{4\times}_D \)-conjunctive query is a conjunction of HO \(\mathcal{DL}^{4\times}_D \)-literals. We denote with \(\lambda \) the empty HO \(\mathcal{DL}^{4\times}_D \)-conjunctive query.

Let \(v_1, \ldots, v_n \in V_l \), \(c_1, \ldots, c_m \in V_c \), \(r_1, \ldots, r_k \in V_r \), \(p_1, \ldots, p_h \in V_o \), \(o_1, \ldots, o_n \in \text{Ind} \cup \bigcup \{ N_C(d) : d \in N_D \} \), \(C_1, \ldots, C_m \in C \), \(R_1, \ldots, R_k \in R_A \), and \(P_1, \ldots, P_h \in R_D \). A substitution \(\sigma := \{ v_1/o_1, \ldots, v_n/o_n, c_1/C_1, \ldots, c_m/C_m, r_1/R_1, \ldots, r_k/R_k, p_1/P_1, \ldots, p_h/P_h \} \) is a map such that, for every HO \(\mathcal{DL}^{4\times}_D \)-literal \(L \), \(L' \sigma \) is obtained from \(L \) by replacing the occurrences of \(v_i \) in \(L \) with \(o_i \), for \(i = 1, \ldots, n \); the occurrences of \(c_j \) in \(L \) with \(C_j \), for \(j = 1, \ldots, m \); the occurrences of \(r \) in \(L \) with \(R_\ell \), for \(\ell = 1, \ldots, k \); the occurrences of \(p_l \) in \(L \) with \(P_l \), for \(l = 1, \ldots, h \).

Substitutions can be extended to HO \(\mathcal{DL}^{4\times}_D \)-conjunctive queries in the usual way. Let \(Q := (L_1 \land \ldots \land L_m) \) be a HO \(\mathcal{DL}^{4\times}_D \)-conjunctive query, and \(KB \) a HO \(\mathcal{DL}^{4\times}_D \)-knowledge base. A substitution \(\sigma \) involving exactly the variables occurring in \(Q \) is a solution for \(Q \) w.r.t. \(KB \) if there exists a HO \(\mathcal{DL}^{4\times}_D \)-interpretation \(I \) such that \(I \models KB \) and \(I \models Q \sigma \). The collection \(\Sigma \) of the solutions for \(Q \) w.r.t. \(KB \) is the higher order (HO) answer set of \(Q \) w.r.t. \(KB \). Then the higher order conjunctive query answering (HOCQA) problem for \(Q \) w.r.t. \(KB \) consists in finding the HO answer set \(\Sigma \) of \(Q \) w.r.t. \(KB \). We shall solve the HOCQA problem just stated by reducing it to the analogous problem formulated in the context of the fragment \(4LQS^R \) (and in turn to the decision procedure for \(4LQS^R \) presented in [2]). The HOCQA problem for \(4LQS^R \)-formulae can be stated as follows. Let \(\phi \) be a \(4LQS^R \)-formula and let \(\psi \) be a conjunction of \(4LQS^R \)-quantifier-free atomic formulae of level 0 of the types \(x = y \), \(x \in X^1 \), \((x, y) \in X^3 \), or their negations.

The HOCQA problem for \(\psi \) w.r.t. \(\phi \) consists in computing the HO answer set of \(\psi \) w.r.t. \(\phi \), namely the collection \(\Sigma' \) of all the substitutions \(\sigma' \) such that \(\Sigma' \models \phi \land \psi \sigma' \), for some \(4LQS^R \)-interpretation \(\mathcal{M} \).

In view of the decidability of the satisfiability problem for \(4LQS^R \)-formulae, the HOCQA problem for \(4LQS^R \)-formulae is decidable as well. Indeed, let \(\phi \) and \(\psi \) be two \(4LQS^R \)-formulae fulfilling the above requirements. To calculate the HO answer set of \(\psi \) w.r.t. \(\phi \), for each candidate substitution \(\sigma' := \{ x/z, X^1/Y^1, X^2/Y^2, X^3/Y^3 \} \) one has just to check for satisfiability of the \(4LQS^R \)-formula \(\phi \land \psi \sigma' \). Since the number of possible candidate substitutions is \(|\text{Vars}(\phi)|^{|\text{Vars}(\phi)|} \) and the satisfiability problem for \(4LQS^R \)-formulae is decidable, the HO answer set of \(\psi \) w.r.t. \(\phi \) can be computed effectively. Summarizing,
Lemma 1. The HOCQA problem for $4LQS^R$-formulae is decidable. \hfill \Box

The following theorem states decidability of the HOCQA problem for $DL_{\mathcal{D}}^{\omega \omega}$:

Theorem 1. Given a $DL_{\mathcal{D}}^{\omega \omega}$-knowledge base KB and a HO $DL_{\mathcal{D}}^{\omega \omega}$-conjunctive query Q, the HOCQA problem for Q w.r.t. KB is decidable.

Proof. We first outline the main ideas and then we provide a formal proof of the theorem.

In order to define a $4LQS^R$ formula ϕ_{KB}, we recall the definition a function θ that maps the $DL_{\mathcal{D}}^{\omega \omega}$-knowledge base KB in the $4LQS^R$-formula in Conjunctive Normal Form (CNF) ϕ_{KB}, introduced in [11]. The definition of the mapping θ is inspired to the definition of the mapping τ introduced in the proof of Theorem 1 in [6]. Specifically, θ differs from τ because it allows quantification only on variables of level 0, it treats Boolean operations on concrete roles and the product of concepts, it constructs $4LQS^R$-formulae in CNF and it is extended to $DL_{\mathcal{D}}^{\omega \omega}$ HO conjunctive queries. To prepare for the definition of θ, we map injectively individuals $a \in \text{Ind}$ and constants $e_{d} \in N_{C}(d)$ into level 0 variables $x_{a}, x_{e_{d}}$, the constant concepts \top and \bot, data type terms t, and concept terms C into level 1 variables $X_{\top}^{1}, X_{\bot}^{1}, X_{C}^{1}$, respectively, and the universal variables on individuals U, abstract role terms R, and concrete role terms P into level 3 variables X_{U}^{3}, X_{P}^{3}, and X_{R}^{3}, respectively.

Then the mapping θ is defined as follows:

\[
\begin{align*}
\theta(C_1 \equiv \top) &:= (\forall z)((\neg(z \in X_{\top}^{1}) \lor z \in X_{\top}^{1}) \land (\neg(z \in X_{\bot}^{1}) \lor z \in X_{\bot}^{1})), \\
\theta(C_1 \equiv \neg C_2) &:= (\forall z)((\neg(z \in X_{C_2}^{1}) \lor z \in X_{C_2}^{1}) \land (\neg(z \in X_{C_1}^{1}) \lor z \in X_{C_1}^{1})), \\
\theta(C_1 \equiv C_2 \land C_3) &:= (\forall z)((\neg(z \in X_{C_3}^{1}) \lor z \in X_{C_3}^{1}) \land (\neg(z \in X_{C_2}^{1}) \lor z \in X_{C_2}^{1}) \land (\neg(z \in X_{C_1}^{1}) \lor z \in X_{C_1}^{1})), \\
\theta(C_1 \equiv \forall R_1.C_2) &:= (\forall z_1)(\forall z_2)((\neg(z_1 \in X_{C_3}^{1}) \lor z_1 \in X_{C_3}^{1}) \land (\neg(z_2 \in X_{R_1}^{1}) \lor z_2 \in X_{R_1}^{1})), \\
\theta(\exists R_1.C_1 \subseteq C_2) &:= (\forall z_1)(\forall z_2)((\neg(z_1 \in X_{C_2}^{1}) \lor z_1 \in X_{C_2}^{1}) \land (\neg(z_2 \in X_{C_1}^{1}) \lor z_2 \in X_{C_1}^{1}) \land (\neg(z_1, z_2 \in X_{C_2}^{1}) \lor z_1 \in X_{C_2}^{1})), \\
\theta(C_1 \equiv \forall R_1.\{a\}) &:= (\forall z)((\neg(z \in X_{C_1}^{1}) \lor z \in X_{C_1}^{1}) \land (\neg(z, x_{a} \in X_{R_1}^{1}) \lor z \in X_{C_1}^{1})), \\
\theta(C_1 \subseteq_{n} R_1.C_2) &:= (\forall z_1)(\forall z_2)\ldots(\forall z_{n+1})((\neg(z \in X_{C_1}^{1}) \lor (\forall i=1^{n+1} \neg(z_i \in X_{C_2}^{1}) \lor (\forall i<j \neg(z_i = z_j)) \lor z \in X_{C_1}^{1})).
\end{align*}
\]

2 The use of level 3 variables to model abstract and concrete role terms is motivated by the fact that their elements, that is ordered pairs (x, y), are encoded in Kuratowski’s style as $\{\{x\}, \{x, y\}\}$, namely as collections of sets of objects.
\[\theta(C_1 \equiv \exists P, \{e_d\}) := \langle \forall z \rangle (\neg (z \in X^1_{C_1}) \vee (z, x_\alpha) \in X^1_{P_1} \wedge (z, x_\alpha) \in X^2_{P_1}) \vee z \in X^1_{C_1}), \]

\[\theta(C_1 \sqsubseteq_n P, t_3) := \langle \forall z \rangle (\forall z_1) \ldots (\forall z_{n+1})(\neg (z \in X^1_{C_1}) \vee (\bigwedge_{i=1}^{n+1} (\neg (z_i \in X_{C_i}) \vee \bigvee z_i = z_j)), \]

\[\theta(\exists_n P, t_3 \sqsubseteq C_1) := \langle \forall z \rangle (\forall z_1) \ldots (\forall z_n)(\bigwedge_{i=1}^{n} (\neg (z_i \in X^1_{C_1}) \vee \neg (z, z_i) \in X^2_{P_2}) \vee \bigvee z_i = z_j) \}, \]

\[\theta(R_1 \equiv U) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{C_2}) \wedge (\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{R_2}), \]

\[\theta(R_1 \equiv R_2) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{C_2}) \wedge (\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{R_2}), \]

\[\theta(R_1 \equiv id(C_1)) := \langle \forall z_1 \rangle (\forall z_2)(((\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{C_2}) \wedge (\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{C_2}) \wedge (\neg (z_1, z_2) \in X^2_{C_1}) \wedge (\neg (z_2) \in X^2_{R_1}) \vee z_1 \neq z_2) \vee (z_1, z_2) \in X^3_{R_1}), \]

\[\theta(R_1 \equiv R_{2u_1}) := \langle \forall z_1 \rangle (\forall z_2)(((\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{R_2}) \wedge (\neg (z_1, z_2) \in X^2_{R_1}) \vee (z_1, z_2) \in X^1_{R_2}), \]

\[\theta(R_1 \ldots R_n \equiv R_{n+1}) := \langle \forall z \rangle (\forall z_1) \ldots (\forall z_n)((\neg (z, z_1) \in X^2_{R_1}) \wedge \ldots \wedge (\neg (z, z_n) \in X^2_{R_n}) \vee z_n \in X^1_{R_{n+1}}), \]

\[\theta(Ref(R_1)) := \langle \forall z \rangle (\neg (z, z) \in X^3_{R_1}), \]

\[\theta(Irref(R_1)) := \langle \forall z \rangle (\neg (z, z) \in X^3_{R_1}), \]

\[\theta(Fun(R_1)) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^2_{R_1}) \wedge (z_1, z_2) \in X^1_{R_1}) \wedge (\neg (z_1, z_2) \in X^2_{R_1}) \wedge \neg (z_2) = z_1), \]

\[\theta(P_1 \equiv P_2) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}), \]

\[\theta(P_1 \not\equiv P_2) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}), \]

\[\theta(P_1 \subseteq P_2) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}), \]

\[\theta(P_1 \not\subseteq P_2) := \langle \forall z_1 \rangle (\forall z_2)((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}), \]

\[\theta(P_1 \equiv P_{2c_1}) := \langle \forall z_1 \rangle (\forall z_2)(((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}), \]

\[\theta(P_1 \equiv P_{2c_11}) := \langle \forall z_1 \rangle (\forall z_2)(((\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2}) \wedge (\neg (z_1, z_2) \in X^3_{P_1}) \vee (z_1, z_2) \in X^1_{P_2})), \]
\[\theta(t_1 \equiv t_2) := (\forall z)(((\neg (z \in X^1_1) \lor z \in X^1_D) \land (\neg (z \in X^1_2) \lor z \in X^1_2)), \theta(t_1 \equiv -t_2) := (\forall z)(((\neg (z \in X^1_1) \lor \neg (z \in X^1_2)) \land (z \in X^1_2 \lor z \in X^1_1)),
\theta(t_1 \equiv t_2 \cup t_3) := (\forall z)(((\neg (z \in X^1_1) \lor (z \in X^1_2 \lor z \in X^1_2)) \land ((\neg (z \in X^1_2) \lor z \in X^1_2)) \lor (\neg (z \in X^1_1) \lor z \in X^1_1)),
\theta(t_1 \equiv t_2 \cap t_3) := (\forall z)(((\neg (z \in X^1_1) \lor (z \in X^1_2 \land z \in X^1_2)) \land ((\neg (z \in X^1_2) \lor \neg (z \in X^1_1))) \lor (z \in X^1_1)),
\theta(t_1 \equiv \{e_d\}) := (\forall z)(((\neg (z \in X^1_1) \lor z = x_{ed}) \land (\neg (z = x_{ed}) \lor z \in X^1_1)),
\theta(a : C_1) := x_a \in X^1_{C_1},
\theta((a, b) : R_1) := (x_a, x_b) \in X^3_{R_1},
\theta((a, b) : \neg R_1) := (\neg (x_a, x_b) \in X^3_{R_1}),
\theta(a = b) := x_a = x_b, \theta(a \neq b) := \neg(x_a = x_b),
\theta(x_{ed} : t_1) := x_{ed} \in X^1_{t_1},
\theta((a, e_d) : P_1) := (x_a, x_{ed}) \in X^3_{P_1}, \theta((a, e_d) : \neg P_1) := (\neg (x_a, x_{ed}) \in X^3_{P_1}),
\theta(a \land \beta) := \theta(a) \land \theta(\beta).
\]

Let \(KB \) be our \(DL^X \)-knowledge base, and let \(\text{cpt}_{KB}, \text{arl}_{KB}, \text{crk}_{KB}, \) and \(\text{ind}_{KB} \) be, respectively, the sets of concept, of abstract role, of concrete role, and of individual names in \(KB \). Moreover, let \(N^{KB}_D \subseteq N_D \) be the set of data types in \(KB \), \(N^{KB}_F \) a restriction of \(N_F \) assigning to every \(d \in N^{KB}_D \) the set \(N^{KB}_F(d) \) of facets in \(N_F(d) \) and in \(KB \). Analogously, let \(N^{KB}_C \) be a restriction of the function \(N_C \) associating to every \(d \in N^{KB}_D \) the set \(N^{KB}_C(d) \) of constants contained in \(N_C(d) \) and in \(KB \). Finally, for every data type \(d \in N^{KB}_D \), let \(\text{bf}^{KB}_{D}(d) \) be the set of facet expressions for \(d \) occurring in \(KB \) and not in \(N_F(d) \cup \{ \top_d, \bot_d \} \).

We assume without loss of generality that the facet expressions in \(\text{bf}^{KB}_{D}(d) \) are in Conjunctive Normal Form. We define the 4LQS\(R \)-formula \(\phi^KB \) expressing the consistency of \(KB \) as follows:

\[\phi^KB := \bigwedge_{H \in KB} \theta(H) \land \bigwedge_{i=1}^{12} \xi_i,\]

where
\[\xi_1 := (\forall z)(((\neg (z \in X^1_1) \lor \neg (z \in X^1_2)) \land (z \in X^1_D) \lor z \in X^1_2) \land (\forall z)(z \in X^1_1) \land (\forall z)(\neg (z \in X^1_1) \land \neg (\forall z) \neg (z \in X^1_D)),\]
\[\xi_2 := (\forall z)(((\neg (z \in X^1_1) \lor \neg (z \in X^1_2)) \land (\forall z)(\neg (z \in X^1_1) \land \neg (z \in X^1_2)) \land (\forall z) \neg (z \in X^1_1)) \land (\forall z) \neg (z \in X^1_2),\]
\[\xi_3 := \bigwedge_{A \in \text{cpt}_{KB}} (\forall z)(\neg (z \in X^1_A) \lor z \in X^1_1),\]
\[\xi_4 := (\bigwedge_{d \in N^{KB}_F} ((\forall z)((\neg (z \in X^1_2) \lor z \in X^1_D) \land (\forall z) \neg (z \in X^1_2)) \land (\forall z) \neg (z \in X^1_D) \lor (z \in X^1_2) \lor z \in X^1_2)) \land (\forall z) \neg (z \in X^1_2),\]
\[\xi_5 := \bigwedge_{d \in N^{KB}_F} ((\forall z)((\neg (z \in X^1_2) \lor z \in X^1_D) \land (\forall z)(\neg (z \in X^1_2) \lor z \in X^1_2)) \land (\forall z) \neg (z \in X^1_2)) \land (\forall z) \neg (z \in X^1_2),\]
\[\begin{align*}
\xi_6 &= \bigwedge_{f_d \in N^{\text{FS}}_d(d), \, d \in N^K_B} (\forall z)(\neg(z \in X^{1}_{\psi_d}) \lor z \in X^{1}_d), \\
\xi_7 &= (\forall z_1)(\forall z_2)((\neg(z_1 \in X^{1}_1) \lor \neg(z_2 \in X^{1}_1) \lor (z_1, z_2) \in X^{3}_R) \land ((\neg((z_1, z_2) \in X^{3}_D) \lor z_1 \in X^{1}_1) \land (\neg((z_1, z_2) \in X^{3}_D) \lor z_2 \in X^{1}_1))), \\
\xi_8 &= \bigwedge_{R \in \text{Rel}_K^B} (\forall z_1)(\forall z_2)((\neg((z_1, z_2) \in X^{3}_R) \lor z_1 \in X^{1}_1) \land (\neg((z_1, z_2) \in X^{3}_D) \lor z_2 \in X^{1}_1))), \\
\xi_9 &= \bigwedge_{a \in \text{Ind}_K^B} (x_a \in X^{1}_1) \land \bigwedge_{d \in N^{\text{FS}}_d(d)} x_{e_d} \in X^{1}_d, \\
\xi_{10} &= \bigwedge_{\{e_{d_1}, \ldots, e_{d_n}\} \in KB} (\forall z)((\neg(z \in X^{1}_{e_{d_1}, \ldots, e_{d_n}}) \lor \bigvee_{i=1}^n (z = x_{e_{d_i}})) \land (\bigwedge_{i=1}^n (z \neq x_{a_i}) \land z \in X^{1}_{a_1, \ldots, a_n}) \lor \bigvee_{i=1}^n (z = x_{a_i})) \land (\bigwedge_{i=1}^n (z \neq x_{a_i}) \land z \in X^{1}_{a_1, \ldots, a_n})), \\
\xi_{11} &= \bigwedge_{\{x_{e_{d_1}, \ldots, e_{d_n}}\} \in KB} (\forall z)((\neg(z \in X^{1}_{e_{d_1}, \ldots, e_{d_n}}) \lor \bigvee_{i=1}^n (z = x_{e_{d_i}})) \land (\bigwedge_{i=1}^n (z \neq x_{a_i}) \land z \in X^{1}_{a_1, \ldots, a_n}) \lor \bigvee_{i=1}^n (z = x_{a_i})) \land (\bigwedge_{i=1}^n (z \neq x_{a_i}) \land z \in X^{1}_{a_1, \ldots, a_n})), \\
\xi_{12} &= \bigwedge_{d \in N^K_B, \, \psi_d \in \text{Ind}_K^B(d)} (\forall z)((\neg(z \in X^{1}_{\psi_d}) \lor z \in \zeta(X^{1}_{\psi_d}) \land (\neg(z \in \zeta(X^{1}_{\psi_d}) \lor z \in X^{1}_{\psi_d})), \\
\end{align*}\]

with \(\zeta\) the transformation function from 4LQS\(^R\)-variables of level 1 to 4LQS\(^R\)-formulae recursively defined, for \(d \in N^K_B\), by

\[
\zeta(X^{1}_{\psi_d}) := \begin{cases}
X^{1}_{\psi_d} & \text{if } \psi_d \in N^K_B(d) \cup \{\top, \bot\} \\
\neg(\zeta(X^{1}_{\psi_d})) & \text{if } \psi_d = \neg \chi_d \\
\zeta(X^{1}_{\chi_d}) \land \zeta(X^{1}_{\varphi_d}) & \text{if } \psi_d = \chi_d \land \varphi_d \\
\zeta(X^{1}_{\chi_d}) \lor \zeta(X^{1}_{\varphi_d}) & \text{if } \psi_d = \chi_d \lor \varphi_d.
\end{cases}
\]

In the above formulae, the variable \(X^{1}_d\) denotes the set of individuals \(\text{Ind}_d\), \(X^{1}_d\) a data type \(d \in N^K_B\), \(X^{1}_{\chi_d}\) a data type \(x \in N^K_B, \, X^{1}_{\chi_d}\) the constants \(\top, \bot\), and \(X^{1}_{\chi_d}\), \(X^{1}_{\chi_d}, X^{1}_{\psi_d}\), \(X^{1}_{\psi_d}\) a facet \(f_d\) and a facet expression \(\psi_d\), for \(d \in N^K_B\), respectively. In addition, \(X^{1}_{A}, X^{1}_{R}, X^{1}_{T}\) denote a concept name \(A\), an abstract role name \(R\), and a concrete role name \(T\) occurring in \(KB\), respectively. Finally, \(X^{1}_{e_{d_1}, \ldots, e_{d_n}}\) denotes a data range \(\{e_{d_1}, \ldots, e_{d_n}\}\) occurring in \(KB\), and \(X^{1}_{a_1, \ldots, a_n}\) a finite set \(\{a_1, \ldots, a_n\}\) of nominals in \(KB\).

The constraints \(\xi_1 - \xi_{12}\) slightly differ from the constraints \(\psi_1 - \psi_{12}\) defined in the proof of Theorem 1 in [4], are introduced to guarantee that each model of \(\phi_{KB}\) can be easily transformed in a \(DL^{4,5}\)-interpretation.
The HOCQA problem for $\mathcal{DL}^1_{\mathcal{D}}$ can be solved via an effective reduction to the HOCQA problem for 4LQSR-formulae, and then exploiting Lemma [1]. The reduction is accomplished through the function θ extended in order to map also $\mathcal{DL}^1_{\mathcal{D}}$-conjunctive queries into 4LQSR-formulae in conjunctive normal form (CNF), which can be used to map effectively HOCQA problems from the $\mathcal{DL}^1_{\mathcal{D}}$-context into the 4LQSR-context. More specifically, given a $\mathcal{DL}^1_{\mathcal{D}}$-knowledge base KB and a $\mathcal{DL}^1_{\mathcal{D}}$-HO conjunctive query Q, using the function θ we can effectively construct the following 4LQSR-formulae in CNF:

$$\phi_{KB} := \bigwedge_{H \in KB} \theta(H) \land \bigwedge_{i=1}^{12} \xi_i, \quad \psi_Q := \theta(Q).$$

Then, if we denote by Σ the higher order answer set of Q w.r.t. KB and by Σ' the higher order answer set of ψ_Q w.r.t. ϕ_{KB}, we have that Σ consists of all substitutions σ (involving exactly the variables occurring in Q) such that $\theta(\sigma) \in \Sigma'$. Since, by Lemma [1], Σ' can be computed effectively, then Σ can be computed effectively too.

The mapping θ is extended for $\mathcal{DL}^4_{\mathcal{D}}$-HO conjunctive queries as follows.

$$\theta(R_1(w_1, w_2)) := \langle x_{w_1}, x_{w_2} \rangle \in X^3_{R_1},$$
$$\theta(P_1(w_1, u_1)) := \langle x_{u_1}, x_{w_1} \rangle \in X^3_{P_1},$$
$$\theta(C_1(w_1)) := x_{w_1} \in X^1_{C_1},$$
$$\theta(w_1 = w_2) := x_{w_1} = x_{w_2},$$
$$\theta(u_1 = u_2) := x_{u_1} = x_{u_2},$$
$$\theta(C_1(w_1)) := w_1 \in X^1_{C_1},$$
$$\theta(p_1(w_1, u_2)) := \langle w_1, u_2 \rangle \in X^3_{p_1}.$$

To complete, we extend the mapping θ on substitutions

$$\sigma := \{v_1/\alpha_1, \ldots, v_n/\alpha_n, c_1/C_1, \ldots, c_m/C_m, r_1/R_1, \ldots, r_k/R_k, p_1/P_1, \ldots, p_h/P_h\}$$

with $v_1, \ldots, v_n \in V_1, c_1, \ldots, c_m \in V_c, r_1, \ldots, r_k \in V_r, p_1, \ldots, p_h \in V_p$, $\alpha_1, \ldots, \alpha_n \in Ind \cup \{N_c(d) : d \in N_D\}$, $C_1, \ldots, C_m \in C, R_1, \ldots, R_k \in R_A$, and $P_1, \ldots, P_h \in R_D$.

We put

$$\theta(\sigma) = \theta(\{v_1/\alpha_1, \ldots, v_n/\alpha_n, c_1/C_1, \ldots, c_m/C_m, r_1/R_1, \ldots, r_k/R_k, p_1/P_1, \ldots, p_h/P_h\})$$

$$\{x_{v_1}/x_{\alpha_1}, \ldots, x_{v_n}/x_{\alpha_n}, X^1_{C_1}/X^1_{C_1}, \ldots, X^1_{C_m}/X^1_{C_m}, X^3_{R_1}/X^3_{R_1}, \ldots, X^3_{R_k}/X^3_{R_k}, X^3_{P_1}/X^3_{P_1}, \ldots, X^3_{P_h}/X^3_{P_h}\}$$

$$= \sigma'$$

(1)

where $x_{\alpha_1}, \ldots, x_{\alpha_n}, x_{\alpha_1}, \ldots, x_{\alpha_n}$ are variables of level 0, $X^1_{C_1}, \ldots, X^1_{C_m}, X^1_{C_1}, \ldots, X^1_{C_m}$ are variables of level 1, $X^3_{R_1}, \ldots, X^3_{R_k}, X^3_{P_1}, \ldots, X^3_{P_h}$ are variables of level 2, and $X^3_{R_1}, \ldots, X^3_{R_k}$, $X^3_{P_1}, \ldots, X^3_{P_h}$ are variables of level 3 in 4LQSR.

To prove the theorem, we show that Σ is the higher order answer set for Q w.r.t. KB iff Σ is equal to $\bigcup_{M \models \phi_{KB}} \Sigma'_M$, where Σ'_M is the collection of substitutions σ such that $M \models \psi_Q \sigma$. Let us assume that Σ is higher order the answer set for Q w.r.t. KB. We have to show that Σ is equal to $\Sigma' = \bigcup_{M \models \phi_{KB}} \Sigma'_M$, where Σ'_M is the collection of all the substitutions σ' such that $M \models \psi_Q \sigma'$.

By contradiction, let us assume that there exists a $\sigma \in \Sigma$ such that $\sigma \notin \Sigma'$, namely $M \models \psi_Q \sigma$, for every 4LQSR-interpretation M with $M \models \phi_{KB}$. Since $\sigma \in \Sigma$ there is a $4LQS_D^A$-interpretation I such that $I \models_D KB$ and $I \models_D Q_\sigma$. Then, by the construction above, we can define a 4LQSR-interpretation M_I such that $M_I \models \phi_{KB}$ and $M_I \models \psi_Q \sigma$. Absurd.

Conversely, let $\sigma' \in \Sigma'$ and assume by contradiction that $\sigma' \notin \Sigma$. Then, for all $4LQS_D^A$-interpretations such that $I \models_D KB$, it holds that $I \models_D Q_\sigma'$. Since $\sigma' \in \Sigma'$, there is a 4LQSR-interpretation M such that $M \models \phi_{KB}$ and $M \models \psi_{\sigma'}$. Then, by the construction above, we can define a $4LQS_D^A$-interpretation M_I such that $M_I \models_D KB$ and $M_I \models D Q_\sigma$. Absurd. \Box

In what follows we list the most widespread reasoning services for $4LQS_D^A$-ABox and then show how to define them as particular cases of the HOCQA task.

1. **Instance checking**: the problem of deciding whether or not an individual a is an instance of a concept C.
2. **Role retrieval**: the problem of retrieving all the individuals that are instances of a given concept.
3. **Role filler retrieval**: the problem of retrieving all the fillers x such that the pair (a, x) is an instance of a role R.
4. **Concept retrieval**: the problem of retrieving all concepts which an individual is an instance of.
5. **Role instance retrieval**: the problem of retrieving all roles which a pair of individuals (a, b) is an instance of.

The instance checking problem is a specialization of the HOCQA problem admitting HO $4LQS_D^A$-conjunctive queries of the form $Q_{IC} = C(w_1)$, with $w_1 \in \text{Ind}$. The instance retrieval problem is a particular case of the HOCQA problem in which HO $4LQS_D^A$-conjunctive queries have the form $Q_{IR} = C(w_1)$, where w_1 is a variable in V_I. The HOCQA problem can be instantiated to the role filler retrieval problem by admitting HO $4LQS_D^A$-conjunctive queries $Q_{RF} = R(w_1, w_2)$, with $w_1 \in \text{Ind}$ and w_2 a variable in V_I. The concept retrieval problem is a specialization of the HOCQA problem allowing HO $4LQS_D^A$-conjunctive queries of the form $Q_{CR} = c(w_1)$, with $w_1 \in \text{Ind}$ and c a variable in V_C. Finally, the role instance retrieval problem is a particularization of the HOCQA problem, where HO $4LQS_D^A$-conjunctive queries have the form $Q_{RI} = r(w_1, w_2)$, with $w_1, w_2 \in \text{Ind}$ and r a variable in V_R. Notice that the CQA problem for $4LQS_D^A$ defined in [10] is an instance of the HOCQA problem admitting HO $4LQS_D^A$-conjunctive queries of the form $Q_{CQA} := (L_1 \wedge \ldots \wedge L_m)$, with L_i an atomic formula of any of the types $R(w_1, w_2)$, $C(w_1)$, $D(w_1)$.
and \(w_1 = w_2 \) (or their negation), where \(w_1, w_2 \in (\text{Ind} \cup V_i) \). Notice also that problems 1, 2, and 3 are instances of the CQA problem for \(\mathcal{DL}_D^{4,x} \), whereas problems 4 and 5 fall outside the definition of CQA. As shown above, they can be treated as specializations of HOCQA.

4 An algorithm for the HOCQA problem for \(\mathcal{DL}_D^{4,x} \)

In this section we introduce an effective set-theoretic procedure to compute the answer set of a HO \(\mathcal{DL}_D^{4,x} \)-conjunctive query \(Q \) w.r.t. a \(\mathcal{DL}_D^{4,x} \)-knowledge base \(KB \). Such procedure, called \(\text{HOCQA-} \mathcal{DL}_D^{4,x} \), takes as input \(\phi_{KB} \) (i.e., the 4LQS\(^R\)-translation of \(KB \)) and \(\psi_Q \) (i.e., the 4LQS\(^R\)-formula representing the HO \(\mathcal{DL}_D^{4,x} \)-conjunctive query \(Q \)), and returns a KE-tableau \(T_{KB} \), representing the saturation of \(KB \), and the answer set \(\Sigma' \) of \(\psi_Q \) w.r.t. \(\phi_{KB} \), namely the collection of all substitutions \(\sigma' \) such that \(\mathcal{M} \models \phi_{KB} \land \psi_Q \sigma' \), for some 4LQS\(^R\)-interpretation \(\mathcal{M} \).

Specifically, \(\text{HOCQA-} \mathcal{DL}_D^{4,x} \) constructs for each open branch of \(T_{KB} \) a decision tree whose leaves are labelled with elements of \(\Sigma' \).

In the following we introduce definitions, notions, and notations useful for the presentation of Procedure \(\text{HOCQA-} \mathcal{DL}_D^{4,x} \).

Assume without loss of generality that universal quantifiers in \(\phi_{KB} \) occur as inward as possible and that universally quantified variables are pairwise distinct. Let \(S_1, \ldots, S_m \) be the conjuncts of \(\phi_{KB} \) having the form of 4LQS\(^R\)-purely universal formulae. For each \(S_i := (\forall z_{i1}) \ldots (\forall z_{in_i}) \chi_i \), with \(i = 1, \ldots, m \), we put

\[
\text{Exp}(S_i) := \bigwedge_{\{x_{a1}, \ldots, x_{an_i}\} \subseteq \text{Var}_0(\phi_{KB})} S_i\{z_{i1}/x_{a1}, \ldots, z_{in_i}/x_{an_i}\}.
\]

Let us also define the expansion \(\Phi_{KB} \) of \(\phi_{KB} \) by putting

\[
\Phi_{KB} := \{F_j : i = 1, \ldots, k\} \cup \bigcup_{i=1}^{m} \text{Exp}(S_i), \tag{2}
\]

where \(F_1, \ldots, F_k \) are the conjuncts of \(\phi_{KB} \) having the form of 4LQS\(^R\)-quantifier free atomic formulæ.

To prepare for Procedure \(\text{HOCQA-} \mathcal{DL}_D^{4,x} \) to be described next, a brief introduction on the KE-tableau system is in order (see [14] for a detailed overview of KE-tableaux). KE-tableau is a refutation system inspired to Smullyan’s semantic tableaux [27]. The main characteristic distinguishing KE-tableau from the latter is the introduction of an analytic cut rule (PB-rule) that permits to reduce inefficiencies of semantic tableaux. In fact, firstly, the classical tableau system can not represent the use of auxiliary lemmas in proofs; secondly, it can not express the bivalence of classical logic. Thirdly, it is extremely inefficient, as witnessed by the fact that it can not polynomially simulate the truth-tables. None of these anomalies occurs if the cut rule is permitted. For these reasons, Procedure \(\text{HOCQA-} \mathcal{DL}_D^{4,x} \) constructs a complete KE-tableau \(T_{KB} \) for the expansion \(\Phi_{KB} \) of \(\phi_{KB} \) (cf. [2]), representing the saturation of the \(\mathcal{DL}_D^{4,x} \)-knowledge base \(KB \).
Let $\Phi := \{C_1, \ldots, C_p\}$ be a collection of disjunctions of $4L\text{QS}^R$-quantifier free atomic formulae of level 0 of the types: $x = y$, $x \in X^1$, $\langle x, y \rangle \in X^1$. T is a KE-tableau for Φ if there exists a finite sequence T_1, \ldots, T_t such that (i) T_1 is a one-branch tree consisting of the sequence C_1, \ldots, C_p, (ii) $T_i = T$, and (iii) for each $i < t$, T_{i+1} is obtained from T_i either by an application of one of the rules in Fig. 1 or by applying a substitution σ to a branch ϑ of T_i (in particular, the substitution σ is applied to each formula X of ϑ; the resulting branch will be denoted with $\vartheta\sigma$). The set of formulae $S_T := \{\overline{T_1}, \ldots, \overline{T_n}\} \setminus \{\overline{T_i}\}$ occurring as premise in the E-rule contains the complements of all the components of the formula β with the exception of the component β_i.

$$\frac{\beta_1 \lor \ldots \lor \beta_n}{S_T} \quad \text{E-Rule}$$

where $S_T := \{\overline{T_1}, \ldots, \overline{T_n}\} \setminus \{\overline{T_i}\}$, for $i = 1, \ldots, n$, with A a literal

$$\frac{A \lor A}{A} \quad \text{PB-Rule}$$

Fig. 1. Expansion rules for the KE-tableau.

Let T be a KE-tableau. A branch ϑ of T is closed if it contains either both A and $\neg A$, for some formula A, or a literal of type $\neg(x = x)$. Otherwise, the branch is open. A KE-tableau is closed if all its branches are closed. A formula $\beta_1 \lor \ldots \lor \beta_n$ is fulfilled in a branch ϑ, if β_i is in ϑ, for some $i = 1, \ldots, n$. A branch ϑ is fulfilled if every formula $\beta_1 \lor \ldots \lor \beta_n$ occurring in ϑ is fulfilled. A branch ϑ is complete if either it is closed or it is open, fulfilled, and it does not contain any literal of type $x = y$, where x and y are distinct variables. A KE-tableau is complete (resp., fulfilled) if all its branches are complete (resp., fulfilled or closed).

A $4L\text{QS}^R$-interpretation \mathcal{M} satisfies a branch ϑ of a KE-tableau (or, equivalently, ϑ is satisfied by \mathcal{M}), and we write $\mathcal{M} \models \vartheta$, if $\mathcal{M} \models X$ for every formula X occurring in ϑ. A $4L\text{QS}^R$-interpretation \mathcal{M} satisfies a KE-tableau T (or, equivalently, T is satisfied by \mathcal{M}), and we write $\mathcal{M} \models T$, if \mathcal{M} satisfies a branch ϑ of T. A branch ϑ of a KE-tableau T is satisfiable if there exists a $4L\text{QS}^R$-interpretation \mathcal{M} that satisfies ϑ. A KE-tableau is satisfiable if at least one of its branches is satisfiable.

Let ϑ be a branch of a KE-tableau. We denote with $<_{\vartheta}$ an arbitrary but fixed total order on the variables in $\text{Var}_0(\vartheta)$.

Procedure $HOCQA-\text{DL}_D^{4\times}$ takes care of literals of type $x = y$ occurring in the branches of T_{KB} by constructing, for each open and fulfilled branch ϑ of T_{KB} a substitution σ_{ϑ} such that $\vartheta\sigma_{\vartheta}$ does not contain literals of type $x = y$ with distinct x, y. Then, for every open and complete branch $\vartheta' := \vartheta\sigma_{\vartheta}$ of T_{KB}, Procedure $HOCQA-\text{DL}_D^{4\times}$ constructs a decision tree $D_{\vartheta'}$ such that every maximal branch of $D_{\vartheta'}$ induces a substitution σ' such that $\sigma\sigma'$ belongs to the answer set of ψ_Q with respect to ψ_{KB}. $D_{\vartheta'}$ is defined as follows.
Let d be the number of literals in $\psi_\mathcal{Q}$. Then $D_{\theta'}$ is a finite labelled tree of depth $d + 1$ whose labelling satisfies the following conditions, for $i = 0, \ldots, d$:

(i) every node of $D_{\theta'}$ at level i is labelled with $(\sigma'_i, \psi Q \sigma_0 \sigma'_i)$; in particular, the root is labelled with $(\sigma'_0, \psi Q \sigma_0 \sigma'_0)$, where σ'_0 is the empty substitution;

(ii) if a node at level i is labelled with $(\sigma'_i, \psi Q \sigma_0 \sigma'_i)$, then its s successors, with $s > 0$, are labelled with $(\sigma'_i, \psi Q \sigma_0 (\sigma'_i^{q_1+1}), \ldots, \psi Q \sigma_0 (\sigma'_i^{q_s+1}))$, where $q_i + 1$ is the $(i + 1)$-st conjunct of $\psi Q \sigma_0 \sigma'_i$ and $S_{q_i+1} = \{\sigma'_i^{q_1+1}, \ldots, \sigma'_i^{q_s+1}\}$ is the collection of the substitutions $q = \{v_1/\alpha_1, \ldots, v_n/\alpha_n, c_1/C_1, \ldots, c_m/C_m\}$, $r_1/R_1, \ldots, r_k/R_k, p_1/P_1, \ldots, p_h/P_h\}$, with $\{v_1, \ldots, v_n\} = \text{var}_0(q_{i+1})$, $\{c_1, \ldots, c_m\} = \text{var}_1(q_{i+1})$, and $\{p_1, \ldots, p_h, r_1, \ldots, r_k\} = \text{var}_3(q_{i+1})$, such that $t = q_{i+1}$, for some literal t on θ'. If $s = 0$, the node labelled with $(\sigma'_i, \psi Q \sigma_0 \sigma'_i)$ is a leaf node and, if $i = d$, $\sigma_0 \sigma'_i$ is added to Σ'.

We are ready to define Procedure $HOCQA-\mathcal{L}_d^4 \times$.

```
1: procedure $HOCQA-\mathcal{L}_d^4 \times (\psi_\mathcal{Q}, \phi_{KB})$:
2:   $\Sigma' := \emptyset$;
3:   - let $\Phi_{KB}$ be the expansion of $\phi_{KB}$ (cf. (2));
4:   $\mathcal{T}_{KB} := \Phi_{KB}$;
5:   while $\mathcal{T}_{KB}$ is not fulfilled do
6:     - select a not fulfilled open branch $\vartheta$ of $\mathcal{T}_{KB}$ and a not fulfilled formula $\beta_1 \lor \ldots \lor \beta_n$ in $\vartheta$;
7:     if $S_{j'}^h$ is in $\vartheta$, for some $j \in \{1, \ldots, n\}$ then
8:       - apply the E-Rule to $\beta_1 \lor \ldots \lor \beta_n$ and $S_{j'}^h$ on $\vartheta$;
9:     else
10:       - let $B^h$ be the collection of the formulae $\overline{\beta}_1, \ldots, \overline{\beta}_n$ present in $\vartheta$ and let $h$ be the lowest index such that $\overline{\beta}_h \notin B^h$;
11:       - apply the PB-rule to $\overline{\beta}_h$ on $\vartheta$;
12:   end if;
13: end while;
14: while $\mathcal{T}_{KB}$ has open branches containing literals of type $x = y$, with distinct $x$ and $y$ do
15:   - select such an open branch $\vartheta$ of $\mathcal{T}_{KB}$;
16:   $\sigma_\vartheta := \epsilon$ (where $\epsilon$ is the empty substitution);
17:   $\mathcal{Eq}_\vartheta := \{\text{literals of type } x = y, \text{ occurring in } \vartheta\}$;
18:   while $\mathcal{Eq}_\vartheta$ contains $x = y$, with distinct $x$, $y$ do
19:     - select a literal $x = y$ in $\mathcal{Eq}_\vartheta$, with distinct $x$, $y$;
20:     $z := \text{min}_{c_s}(x, y)$;
21:     $\sigma_\vartheta := \sigma_\vartheta \cdot \{x/z, y/z\}$;
22:     $\mathcal{Eq}_\vartheta := \mathcal{Eq}_\vartheta \cdot \sigma_\vartheta$;
23: end while;
24: $\vartheta := \vartheta \cdot \sigma_\vartheta$;
25: if $\vartheta$ is open then
26:   - initialize $S$ to the empty stack;
27:   - push $(\epsilon, \psi Q \sigma_\vartheta)$ in $S$;
28: while $S$ is not empty do
29:   - pop $(\sigma', \psi Q \sigma_\sigma \sigma')$ from $S$;
```
30: if $\psi Q \sigma \sigma' \neq \lambda$ then
31: - let q be the leftmost conjunct of $\psi Q \sigma \sigma'$;
32: $\psi Q \sigma \sigma' := \psi Q \sigma \sigma'$ deprived of q;
33: $\text{Lit}_{Q}^{M} := \{ t \in \vartheta : t = q \rho, \text{for some substitution } \rho \}$;
34: while Lit_{Q}^{M} is not empty do
35: - let $t \in \text{Lit}_{Q}^{M}$, $t = q \rho$;
36: $\text{Lit}_{Q}^{M} := \text{Lit}_{Q}^{M} \setminus \{ t \}$;
37: - push $(\sigma' \rho, \psi Q \sigma \sigma' \rho)$ in S;
38: end while;
39: else
40: $\Sigma' := \Sigma' \cup \{ \sigma \}$;
41: end if
42: end while;
43: end if
44: end while;
45: return (T_{KB}, Σ');
46: end procedure;

For each open branch ϑ of T_{KB}, Procedure $HOCQA-\mathcal{DL}_{4\times}^{LQS}$ computes the corresponding D_{ϑ} by constructing a stack of its nodes. Initially the stack contains the root node $(\epsilon, \psi Q \sigma)$ of D_{ϑ}, as defined in condition (i). Then, iteratively, the following steps are executed. An element $(\sigma' \rho, \psi Q \sigma \sigma' \rho)$ is popped out of the stack. If the last literal of the query ψQ has not been reached, the successors of the current node are computed according to condition (ii) and inserted in the stack. Otherwise the current node must have the form $(\sigma' \rho, \lambda)$ and the substitution σ, σ' is inserted in Σ'. Correctness of Procedure $HOCQA-\mathcal{DL}_{D}^{4\times}$ follows from Theorems 2 and 3, which show that ϕ_{KB} is satisfiable if and only if T_{KB} is a non-closed KE-tableau, and from Theorem 4, which shows that the set Σ' coincides with the HO answer set of ψQ w.r.t. ϕ_{KB}. Theorems 2, 3, and 4 are stated below. In particular, Theorem 2 requires the following technical lemmas.

Lemma 2. Let ϑ be a branch of T_{KB} selected at step 15 of Procedure $HOCQA-\mathcal{DL}_{D}^{4\times}$, let σ_{ϑ} be the associated substitution constructed during the execution of the while-loop 18–23, and let $M = (D, M)$ be a $4\mathcal{LQS}$-interpretation satisfying ϑ. Then

$$Mx = Mx\sigma_{\vartheta}, \text{ for every } x \in \text{Var}_{0}(\vartheta),$$

is an invariant of the while-loop 18–23.

Proof. We prove the thesis by induction on the number i of iterations of the while loop 18–23 of the procedure $HOCQA-\mathcal{DL}_{D}^{4\times}$ ($\psi Q, \phi_{KB}$). For simplicity we indicate with $\sigma_{\vartheta}^{(0)}$ and with $E_{\sigma_{\vartheta}}^{(i)}$ the substitution σ_{ϑ} and the set $E_{\sigma_{\vartheta}}^{(i)}$ calculated at iteration $i \geq 0$, respectively.

If $i = 0$, $\sigma_{\vartheta}^{(0)}$ is the empty substitution ϵ and thus (3) trivially holds.

Assume by inductive hypothesis that (3) holds at iteration $i \geq 0$. We want to prove that (3) holds at iteration $i + 1$.

At iteration $i + 1$, $\sigma_\vartheta^{(i+1)} = \sigma_\vartheta^{(i)} \cdot \{x/z, y/z\}$, where $z = \min_{\vartheta} \{x, y\}$ and $x = y$ is a literal in $E_q(\vartheta)$, with distinct x, y. We assume, without loss of generality, that z is the variable x (an analogous proof can be carried out assuming that z is the variable y). By inductive hypothesis $M w = M w \sigma_\vartheta^{(i)}$, for every $w \in \text{Var}_0(\vartheta)$. If $w \sigma_\vartheta^{(i)} \in \text{Var}_0(\vartheta) \setminus \{y\}$, plainly $w \sigma_\vartheta^{(i)}$ and $w \sigma_\vartheta^{(i+1)}$ coincide and thus $M w \sigma_\vartheta^{(i)} = M w \sigma_\vartheta^{(i+1)}$. Since $M w = M w \sigma_\vartheta^{(i)}$, it follows that $M w = M w \sigma_\vartheta^{(i+1)}$.

If $w \sigma_\vartheta^{(i)}$ coincides with y we reason as follows. At iteration $i + 1$ variables x, y are considered because the literal $x = y$ is selected from $E_q(\vartheta)$. If $x = y$ is a literal belonging to ϑ, then $M x = M y$. Since $w \sigma_\vartheta^{(i)}$ coincides with y, $w \sigma_\vartheta^{(i+1)}$ coincides with x, $M y = M x$, and by inductive hypothesis $M w = M w \sigma_\vartheta^{(i)}$, it holds that $M w = M w \sigma_\vartheta^{(i+1)}$. If $x = y$ is not a literal occurring in ϑ, then ϑ must contain a literal $x' = y'$ such that, at iteration i, x coincides with $x' \sigma_\vartheta^{(i)}$ and y coincides with $y' \sigma_\vartheta^{(i)}$. Since $M x' = M y'$ and, by inductive hypothesis, $M x' = M x' \sigma_\vartheta^{(i)}$, and $M y' = M y' \sigma_\vartheta^{(i)}$, it holds that $M x = M y$, and thus, reasoning as above, $M w = M w \sigma_\vartheta^{(i+1)}$. Since $[3]$ holds at each iteration of the while loop, it is an invariant of the loop as we wished to prove.

\[\square\]

Lemma 3. Let T_0, \ldots, T_h be a sequence of KE-tableaux such that $T_0 = \Phi_{KB}$ and T_{i+1} is obtained from T_i by applying either the rule of step 8, or the rule of step 10, or the substitution of step 24 of Procedure HOCQA-DL\(_{4K}^\vartheta(\psi_Q, \phi_{KB})\), for $i = 1, \ldots, h - 1$. If T_i is satisfied by a 4LQS\(^R\)-interpretation \mathcal{M}, then T_{i+1} is satisfied by \mathcal{M} as well, for $i = 1, \ldots, h - 1$.

Proof. Let $\mathcal{M} = (D, M)$ be a 4LQS\(^R\)-interpretation satisfying T_i. Then \mathcal{M} satisfies a branch ϑ of T_i. In case the branch ϑ is different from the branch selected at step 6, if the E-rule (step 8) or the PB-rule (10) is applied, or at step 3, if a substitution for handling equalities (step 14) is applied, ϑ belongs to T_{i+1} and therefore T_{i+1} is satisfied by \mathcal{M}. In case ϑ is the branch selected and modified to obtain T_{i+1}, we have to consider the following distinct cases.

- ϑ has been selected at step 6 and thus it is an open branch not yet fulfilled. Then, if step 8 is executed, the E-rule is applied to a not fulfilled formula $\beta_1 \lor \ldots \lor \beta_n$ and to the set of formulae S_j^ϑ on the branch ϑ generating the new branch $\vartheta' := \vartheta; \beta_1$. Plainly, if $\mathcal{M} \models \vartheta, \mathcal{M} \models \beta_1 \lor \ldots \lor \beta_n$, $\mathcal{M} \models S_j^\vartheta$ and, as a consequence, $\mathcal{M} \models \vartheta'$. Thus $\mathcal{M} \models \vartheta'$ and finally, \mathcal{M} satisfies T_{i+1}. If step 10 is performed, the PB-rule is applied on ϑ originating the branches (belonging to T_{i+1}) $\vartheta'' := \vartheta; \beta_h$ and $\vartheta''' := \vartheta; \beta_h$. Since either $\mathcal{M} \models \beta_h$ or $\mathcal{M} \models \beta_h^\vartheta$, it holds that either $\mathcal{M} \models \vartheta''$ or $\mathcal{M} \models \vartheta'''$. Thus \mathcal{M} satisfies T_{i+1}, as we wished to prove.

- ϑ has been selected at step 14 and thus it is an open and fulfilled branch not yet complete. Once step 24 is executed the new branch $\vartheta \sigma_\vartheta$ is generated. Since $\mathcal{M} \models \vartheta$ and, by Lemma $[2]$ $M x = M x \sigma_\vartheta$, for every $x \in \text{Var}_0(\vartheta)$, it holds that $\mathcal{M} \models \vartheta \sigma_\vartheta$ and that \mathcal{M} satisfies T_{i+1}. Thus the thesis follows. \square
Then we have:

Theorem 2. If ϕ_{KB} is satisfiable, then T_{KB} is not closed.

Proof. Let us assume by contradiction that T_{KB} is closed. Since Φ_{KB} is satisfiable, there exists a 4LQS*-interpretation M satisfying every formula of Φ_{KB}. Thanks to Lemma 3, any KE-tableau for Φ_{KB} obtained by applying either step 8, or step 10, or step 24 of the procedure $HOCQA-DL^x_D$, is satisfied by M. Thus T_{KB} is satisfied by M as well. In particular, there exists a branch ϑ_c of T_{KB} satisfied by M. Since T_{KB} is closed, by the absurd hypothesis, the branch ϑ_c is closed as well and thus, by definition, it contains either both A and $\lnot A$, for some formula A, or a literal of type $\lnot(x = x)$, ϑ is satisfied by M and thus, either $M \models A$ and $M \models \lnot A$ or $M \models \lnot(x = x)$. Absurd. Thus, we have to admit that the KE-tableau T_{KB} is not closed.

Theorem 3. If T_{KB} is not closed, then ϕ_{KB} is satisfiable.

Proof. Since T_{KB} is not closed, there exists a branch ϑ' of T_{KB} which is open and complete. The branch ϑ' is obtained during the execution of the procedure $HOCQA-DL^x_D$ from an open fulfilled branch ϑ by applying to ϑ the substitution σ_ϑ constructed during the execution of step 14 of the procedure. Thus, $\vartheta' = \vartheta \sigma_\vartheta$. Since each formula of Φ_{KB} occurs in ϑ, showing that ϑ is satisfiable is enough to prove that Φ_{KB} is satisfiable.

Let us construct a 4LQS*-interpretation $M_\vartheta = (D_\vartheta, M_\vartheta)$ satisfying every formula X occurring in ϑ and thus Φ_{KB}. $M_\vartheta = (D_\vartheta, M_\vartheta)$ is defined as follows.

- $D_\vartheta := \{ x \sigma_\vartheta : x \in \text{Var}_0(\vartheta) \}$;
- $M_\vartheta x := x \sigma_\vartheta$, $x \in \text{Var}_0(\vartheta)$;
- $M_\vartheta X^1 := \{ x \sigma_\vartheta : x \in X^1 \text{ occurs in } \vartheta \}$, $X^1 \in \text{Var}_1(\vartheta)$;
- $M_\vartheta X^3 := \{ \langle x \sigma_\vartheta, y \sigma_\vartheta \rangle : \langle x, y \rangle \in X^3 \text{ occurs in } \vartheta \}$, $X^3 \in \text{Var}_3(\vartheta)$.

In what follows we show that M_ϑ satisfies each formula in ϑ. Our proof is carried out by induction on the structure of formulae and cases distinction. Let us consider, at first, a literal $x \neq y$ occurring in ϑ. By the construction of σ_ϑ described in the procedure, $x \sigma_\vartheta$ and $y \sigma_\vartheta$ have to coincide. Thus $M_\vartheta x = x \sigma_\vartheta = y \sigma_\vartheta = M_\vartheta y$ and then $M_\vartheta \models x = y$.

Next we consider a literal $\lnot (z = w)$ occurring in ϑ. If $\lnot z \sigma_\vartheta$ and $w \sigma_\vartheta$ coincide, namely they are the same variable, then the branch $\vartheta' = \vartheta \sigma_\vartheta$ must be a closed branch against our hypothesis. Thus $z \sigma_\vartheta$ and $w \sigma_\vartheta$ are distinct variables and therefore $M_\vartheta z = z \sigma_\vartheta \neq w \sigma_\vartheta = M_\vartheta w$, then $M_\vartheta \not\models z = w$ and finally $M_\vartheta \models \lnot (z = w)$, as we wished to prove.

Let $x \in X^1$ be a literal occurring in ϑ. By the definition of M_ϑ, $x \sigma_\vartheta \in M_\vartheta X^1$, namely $M_\vartheta x \in M_\vartheta X^1$ and thus $M_\vartheta \models x \in X^1$ as desired. If $\lnot (y \in X^1)$ occurs in ϑ, then $y \sigma_\vartheta \not\in M_\vartheta X^1$. Assume, by contradiction that $y \sigma_\vartheta \in M_\vartheta X^1$. Then there is a literal $z \in X^1$ in ϑ such that $z \sigma_\vartheta$ and $y \sigma_\vartheta$ coincide. In this case the branch ϑ', obtained from ϑ applying the substitution σ_ϑ would be closed, contradicting the hypothesis. Thus $y \sigma_\vartheta \not\in M_\vartheta X^1$ implies that $M_\vartheta y \not\in M_\vartheta X^1$, that $M_\vartheta \not\models y \in X^1$, and finally that $M_\vartheta \models \lnot (y \in X^1)$.
If \((x, y) \in X^3\) is a literal on \(\vartheta\), then by definition of \(M_\vartheta\), \((x\sigma_\vartheta, y\sigma_\vartheta) \in M_\vartheta X^3\), that is \(M_\vartheta x, M_\vartheta y) \in M_\vartheta X^3\), and thus \(M_\vartheta \models (x, y) \in X^3\).

Let \(-(z, w) \in X^3\) be a literal occurring on \(\vartheta\). Assume that \((z\sigma_\vartheta, w\sigma_\vartheta) \in M_\vartheta X^3\). Then a literal \((z', w') \in X^3\) occurs in \(\vartheta\) such that \(z'\sigma_\vartheta\) coincides with \(z\sigma_\vartheta\) and that \(w'\sigma_\vartheta\) coincides with \(w\sigma_\vartheta\). But then the branch \(\vartheta' = \vartheta\sigma_\vartheta\) would be closed contradicting the hypothesis. Thus we have to admit that \((z\sigma_\vartheta, w\sigma_\vartheta) \notin M_\vartheta X^3\), that is \((M_\vartheta z, M_\vartheta w) \notin M_\vartheta X^3\). Thus \(M_\vartheta \models \neg (x, y) \in X^3\) and finally \(M_\vartheta \models \neg (x, y) \in X^3\).

Let \(\beta = \beta_1 \lor \ldots \lor \beta_t\) be a disjunction of literals in \(\vartheta\). Since \(\vartheta\) is fulfilled, \(\beta\) is fulfilled too and, therefore, \(\vartheta\) contains a disjunct \(\beta_i\), for some \(i \in \{1, \ldots, k\}\) of \(\beta\). By inductive hypothesis \(M_\vartheta \models \beta_i\) and thus \(M_\vartheta \models \beta\).

We have shown that \(M_\vartheta\) satisfies each formula in \(\vartheta\) and, in particular the formulae in \(\Phi_\KB\). It turns out that \(\Phi_\KB\) is satisfiable as we wished to prove. \(\Box\)

It is easy to check that the 4LQS\(^R\)-interpretation \(M_\vartheta\) defined in Theorem 8 satisfies \(\phi_\KB\), a collection of 4LQS\(^R\)-purely universal formulae and of 4LQS\(^R\), quantifier free atomic formulae corresponding to a \(\mathcal{DL}^{R}\)-knowledge base \(\KB\) and, therefore, that the following corollary holds.

Corollary 1. If \(\mathcal{T}_\KB\) is not closed, then \(\phi_\KB\) is satisfiable.

In what follows, we state also a technical lemma which is needed in the proof of Theorem 4.

Lemma 4. Let \(\psi_Q := q_1 \land \ldots \land q_d\) be a HO 4LQS\(^R\)-conjunctive query, let \((\mathcal{T}_\KB, \Sigma)\) be the output of \(HOCQA-\mathcal{DL}^{R}_{\mathcal{D}}(\psi_Q, \phi_\KB)\), and let \(\vartheta\) be an open and complete branch of \(\mathcal{T}_\KB\). Then, for any substitution \(\sigma\), we have

\[\sigma \in \Sigma' \iff \{q_1\sigma, \ldots, q_d\sigma\} \subseteq \vartheta.\]

Proof. If \(\sigma' \in \Sigma'\), then \(\sigma' = \sigma_\vartheta \sigma'_1\) and the decision tree \(D_{\sigma'}\) contains a branch \(\eta\) of length \(d + 1\) having as leaf \((\sigma'_1, \lambda)\). Specifically, the branch \(\eta\) is constituted by the nodes

\[(\epsilon, q_1\sigma \land \ldots \land q_d\sigma), (\rho(1), q_2\sigma_1\rho(1) \land \ldots \land q_d\sigma_1\rho(1)), \ldots, (\rho(1), \ldots, \rho(d), \lambda),\]

and hence \(\sigma' = \sigma_\vartheta \rho(1) \ldots \rho(d)\).

Consider the node

\[(\rho(1) \ldots \rho(i+1), q_{i+1}\sigma_1\rho(1) \ldots \rho(i+1) \land \ldots \land q_d\sigma_1\rho(1) \ldots \rho(i+1))\]

constructed from the father node \(\rho(1) \ldots \rho(i+1), q_{i+1}\sigma_1\rho(1) \ldots \rho(i) \land \ldots \land q_d\sigma_1\rho(1) \ldots \rho(i)\) putting \(q_{i+1}\sigma_1\rho(1) \ldots \rho(i+1) = t\), for some \(t \in \vartheta'\). Since \(q_{i+1}\sigma_1\rho(1) \ldots \rho(i+1)\) is a ground literal, \(q_{i+1}\sigma_1\rho(1) \ldots \rho(i+1)\) coincides with \(q_{i+1}\sigma_1 = t\), and hence \(q_{i+1}\sigma_1 \in \vartheta'\). Given the generality of \(i = 0, \ldots, d - 1\), \(\{q_1\sigma, \ldots, q_d\sigma\} \subseteq \vartheta'\) as we wished to prove.

We now prove the second part of the lemma. We show that the decision tree \(D_{\sigma'}\) constructed by Procedure \(HOCQA-\mathcal{DL}^{R}_{\mathcal{D}}(\psi_Q, \phi_\KB)\) has a branch \(\eta\) of length \(d + 1\) having as leaf the node \((\sigma_1', \lambda)\), with \(\sigma_\vartheta \sigma_1' = \sigma' \in \Sigma'\). Since by hypothesis \(\vartheta' = \vartheta_\sigma\vartheta\), the root of the decision tree \(D_{\sigma'}\) is the node \((\epsilon, q_1\sigma_\vartheta \land \ldots \land q_d\sigma_\vartheta)\).
At step i, the procedure selects a literal $q^{(i)}$, namely $q_{i\sigma_0}(1)\ldots\rho^{(i-1)}$, and finds a substitution $\rho^{(i)}$ such that $q_{i\sigma_0}\rho^{(1)}\ldots\rho^{(i)}$ coincides with $q_{i\sigma'}$. Then, the procedure constructs the node $(\rho^{(1)}\ldots\rho^{(i)}, q_{i+1\sigma_0}\rho^{(1)}\ldots\rho^{(i)} \land \ldots \land q_{4\sigma_0}\rho^{(1)}\ldots\rho^{(i)})$

At step $d - 1$, the procedure constructs the leaf node $(\rho^{(1)}\ldots\rho^{(d)}, \lambda)$, that is (σ'_1, λ), as we wished to prove. □

Theorem 4. Let Σ' be the set of substitutions returned by Procedure HOCQA-$DL^1_D(\psi_Q, \phi_{KB})$. Then Σ' is the HO answer set of ψ_Q w.r.t. ϕ_{KB}.

Proof. To prove the theorem we show that the following two assertions hold.

1. If $\sigma' \in \Sigma'$, then σ' is an element of the HO answer set of ψ_Q w.r.t. ϕ_{KB}.
2. If σ' is a substitution of the HO answer set of ψ_Q w.r.t. ϕ_{KB}, then $\sigma' \in \Sigma'$.

We prove assertion (1) as follows. Let $\sigma' \in \Sigma'$ and $\theta' = \vartheta\sigma_0$ an open and complete branch of T_{KB} such that $D_{\theta'}$ contains a branch η of $d + 1$ nodes whose leaf is labelled $\langle \sigma'_1, \lambda \rangle$, where σ'_1 is a substitution such that $\sigma' = \sigma_0\sigma'_1$. By Lemma 4, $\{q_1\sigma', \ldots, q_d\sigma'\} \subseteq \theta'$. Let M_{θ} be a $4LQS^R$-interpretation constructed as shown in Theorem 3. We have that $M_{\theta} \models q_i\sigma'$, for $i = 1, \ldots, d$ because $\{q_1\sigma', \ldots, q_d\sigma'\} \subseteq \theta'$ holds. Thus $M_{\theta} \models \psi_Q\sigma'$, and since $M_{\theta} \models \phi_{KB}, M_{\theta} \models \psi_Q\sigma'$ holds. Hence σ' is a substitution of the answer set of ψ_Q w.r.t. ϕ_{KB}.

To show that assertion (2) holds, let us consider a substitution σ' belonging to the answer set of ψ_Q w.r.t. ϕ_{KB}. Then there exists a $4LQS^R$-interpretation $M \models \phi_{KB} \land \psi_Q\sigma'$. Assume by contradiction that $\sigma' \notin \Sigma'$. Then, by Lemma 4, $\{q_1\sigma', \ldots, q_d\sigma'\} \nsubseteq \theta'$, for every open and complete branch θ' of T_{KB}. In particular, given any open complete branch θ' of T_{KB}, there is an $i \in \{1, \ldots, d\}$ such that $q_i\sigma' \notin \theta' = \vartheta\sigma_0$ and thus $M_{\theta} \not\models q_i\sigma'$.

By the generality of θ', it holds that every M_{θ} satisfying T_{KB}, and thus ϕ_{KB}, does not satisfy $\psi_Q\sigma'$. Since we can prove that $M \models \phi_{KB} \land \psi_Q\sigma'$, for some $4LQS^R$-interpretation M, by restricting our interest to the interpretations M_{θ} of ϕ_{KB} defined in the proof of Theorem 3, it turns out that σ' is not a substitution belonging to the answer set of ψ_Q w.r.t. ϕ_{KB}, and this leads to a contradiction. Thus we have to admit that assertion (2) holds. Finally, since assertions (1) and (2) hold, Σ' and the answer set of ψ_Q w.r.t. ϕ_{KB} coincide and the thesis holds. □

Termination of Procedure HOCQA-DL^1_D is based on the fact that the while-loops 5–13 and 14–44 terminate.

Concerning termination of the while-loop 5–13, our proof is based on the following two facts. The E-Rule and PB-Rule are applied only to non-fulfilled formulae on open branches and tend to reduce the number of non-fulfilled formulae occurring on the considered branch. In particular, when the E-Rule is applied on a branch ϑ, the number of non-fulfilled formulae on ϑ decreases. In case of application of the PB-Rule on a formula $\beta = \beta_1 \lor \ldots \lor \beta_n$ on a branch, the rule generates two branches. In one of them the number of non-fulfilled formulae decreases (because β becomes fulfilled). In the other one the number of
non-fulfilled formulae stays constant but the subset B^T of $\{t_1, \ldots, t_n\}$ occurring on the branch gains a new element. Once $|B^T|$ gets equal to $n - 1$, namely after at most $n - 1$ applications of the PB-rule, the E-rule is applied and the formula $\beta = \beta_1 \lor \ldots \lor \beta_n$ becomes fulfilled, thus decrementing the number of non-fulfilled formulae on the branch. Since the number of non-fulfilled formulae on each open branch gets equal to zero after a finite number of steps and the E-rule and PB-rule can be applied only to non-fulfilled formulae on open branches, the while-loop 5–13 terminates. Concerning the while-loop 14–44, its termination can be proved by observing that the number of branches of the KE-tableau resulting from the execution of the previous while-loop 5–13 is finite and then showing that the internal while-loops 18–23 and 28–42 always terminate. Indeed, initially the set \mathbf{Eq}_ϑ contains a finite number of literals of type $x = y$, and σ_ϑ is the empty substitution. It is then enough to show that the number of literals of type $x = y$ in \mathbf{Eq}_ϑ, with distinct x and y, strictly decreases during the execution of the internal while-loop 18–23. But this follows immediately, since at each of its iterations one put $\sigma_\vartheta = \sigma_\vartheta \cdot (x/z, y/z)$, with $z := \min_{\vartheta}(x, y)$, according to a fixed total order $<_\vartheta$ over the variables of ϑ.\(\sigma_\vartheta\) replaces a literal of type $x = y$ in \mathbf{Eq}_ϑ, with distinct x and y, with a literal of type $x = x$.

The while loop 28–42 terminates when the stack S of the nodes of the decision tree gets empty. Since the query ψ_Q contains a finite number of conjuncts and the number of literals on each open and complete branch of T_{KB} is finite, the number of possible matches (namely the size of the set Lit^h_Q) computed at step (C) is finite as well. Thus, in particular, the internal while loop 34–38 terminates at each execution. Once the procedure has processed the last conjunct of the query, the set Lit^h_Q of possible matches is empty and thus no element gets pushed in the stack S anymore. Since the first instruction of the while-loop at step (i) removes an element from S, the stack gets empty after a finite number of “pops”. Hence Procedure $\text{HOCQA-DL}^4_{\vartheta} \times$ terminates, as we wished to prove.

Next, we provide some complexity results. Let r be the maximum number of universal quantifiers in each S_i $(i = 1, \ldots, m)$, and put $k := |\text{Var}(\phi_{KB})|$. Then, each S_i generates at most k^r expansions. Since the knowledge base contains m such formulae, the number of disjunctions in the initial branch of the KE-tableau is bounded by $m \cdot k^r$. Next, let ℓ be the maximum number of literals in each S_i. Then, the height of the KE-tableau (which corresponds to the maximum size of the models of Φ_{KB} constructed as illustrated above) is $O(\ell m k^r)$ and the number of leaves of the tableaux, namely the number of such models of Φ_{KB}, is $O(2^{\ell m k^r})$. Notice that the construction of \mathbf{Eq}_ϑ and of σ_ϑ in the lines 16–23 of Procedure $\text{HOCQA-DL}^4_{\vartheta} \times$ takes $O(\ell m k^r)$ time, for each branch ϑ.

Let $\eta(T_{KB})$ and $\lambda(T_{KB})$ be, respectively, the height of T_{KB} and the number of leaves of T_{KB} computed by Procedure $\text{HOCQA-DL}^4_{\vartheta} \times$. Plainly, $\eta(T_{KB}) = O(\ell m k^r)$ and $\lambda(T_{KB}) = O(2^{\ell m k^r})$, as computed above. It is easy to verify that $s = O(k^r)$ is the maximum branching of D_ϑ. Since the height of D_ϑ is h, where h is the number of literals in ψ_Q, and the successors of a node are computed in $O(k^r)$ time, the number of leaves in D_ϑ is $O(s^h) = O((kk^r)^h)$ and they
are computed in $O(s^h \cdot (k^r \cdot h) = O(h \cdot (k^r)^{(h+1)})$ time. Finally, since we have $\lambda(\mathcal{T}_{KB})$ of such decision trees, the answer set of ψ_Q w.r.t. ϕ_{KB} is computed in time $O(h \cdot (k^r)^{(h+1)} \cdot \lambda(\mathcal{T}_{KB})) = O(h \cdot (k^r)^{(h+1)} \cdot 2^{\ell m k^r})$.

Since the size of ϕ_{KB} and of ψ_Q are related to those of \mathcal{KB} and of Q, respectively (see the proof of Theorem 1 in [12] for details on the reduction), the construction of the HO answer set of Q with respect to \mathcal{KB} can be done in double-exponential time. In case \mathcal{KB} contains neither role chain axioms nor qualified cardinality restrictions, the complexity of our HOCQA problem is in EXPTIME, since the maximum number of universal quantifiers in ϕ_{KB}, namely r, is a constant (in particular $r = 3$). The latter complexity result is a clue of the fact that the HOCQA problem is intrinsically more difficult than the consistency problem (proved to be NP-complete in [6]). This is motivated by the fact that the consistency problem simply requires to guess a model of the knowledge base while the HOCQA problem forces the construction of all the models of the knowledge base and to compute a decision tree for each of them.

We remark that such result compares favourably to the complexity of the usual CQA problem for a wide collection of description logics such as the Horn fragment of SHOIQ and of SROIQ, respectively, EXPTIME- and 2EXPTIME-complete in combined complexity (see [25] for details).

5 Conclusions and future work

In this paper we have considered an extension of the CQA problem for the description logic $\mathcal{DL}^{4\times}_{D}$ to more general queries on roles and concepts. The resulting problem, called HOCQA, can be instantiated to the most widespread ABox reasoning services such as instance retrieval, role filler retrieval, and instance checking. We have proved the decidability of the HOCQA problem by reducing it to the satisfiability problem for the set-theoretic fragment 4LQS^R.

We have introduced an algorithm to compute the HO answer set of a 4LQS^R-formula ψ_Q representing a HO $\mathcal{DL}^{4\times}_{D}$-conjunctive query Q w.r.t. a 4LQS^R-formula ϕ_{KB} representing a $\mathcal{DL}^{4\times}_{D}$ knowledge base. The procedure, called HOCQA-$\mathcal{DL}^{4\times}_{D}$, is based on the KE-tableau system and on decision trees. It takes as input ψ_Q and ϕ_{KB}, and yields a KE-tableau \mathcal{T}_{KB} representing the saturation of ϕ_{KB} and the requested HO answer set Σ'. Procedure HOCQA-$\mathcal{DL}^{4\times}_{D}$ is proved correct and complete, and some complexity results are provided. Such procedure extends the one introduced in [10] as it allows one to handle HO $\mathcal{DL}^{4\times}_{D}$-conjunctive queries.

We are currently working at the implementation of Procedure HOCQA-$\mathcal{DL}^{4\times}_{D}$. We plan to increase the efficiency of the expansion rules and to extend reasoning with data types. Lastly, we intend to provide a parallel model of the procedure that we are implementing.

We also plan to increase the expressive power of the set theoretic fragments we are working with. In particular, we intend to define a decidable n-level stratified syllogistic allowing to represent an extension of $\mathcal{DL}^{4\times}_{D}$ admitting data type groups.
We also intend to extend the set-theoretic fragment presented in [7] with the construct of generalized union and with a restricted form of binary relational composition operator. The latter operator, in particular, turns out to be useful for the set-theoretic representation of various logics. The KE-tableau based procedure will be adapted to the new set-theoretic fragments by also making use of the techniques introduced in [9] and in [8] in the area of relational dual tableaux. On the other hand we think that KE-tableaux could be used in the ambit of relational dual tableaux to improve the performances of relational dual tableau-based decision procedures.

References

1. D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics: An automata-theoretic approach. In *AAAI*, volume 7, pages 391–396, 2007.
2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query answering in description logics. *Artificial Intelligence*, 195:335 – 360, 2013.
3. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under constraints. *PODS*, 149-158, 1998.
4. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under constraints. In *Proc. of the 17th ACM SIGACT-SIGMOD-SIGART Symp. on Princ. of Database Systems*, PODS ’98, pages 149–158, New York, NY, USA, 1998. ACM.
5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and answering under description logic constraints. *ACM Trans. Comput. Log.* 9(3): 22:1-22:31, 2008.
6. D. Cantone, C. Longo, M. Nicolosi-Asmundo, and D. F. Santamaria. Web ontology representation and reasoning via fragments of set theory. In *Web Reasoning and Rule Systems - 9th Int. Conf., RR 2015, Berlin, August 4-5, 2015*, pp. 61-76.
7. D. Cantone and M. Nicolosi-Asmundo. On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic. *Fundamenta Informaticae*, 124(4):427–448, 2013.
8. D. Cantone, M. Nicolosi-Asmundo, and E. Orlowska. Dual tableau-based decision procedures for some relational logics. In *Proceedings of the 25th Italian Conference on Computational Logic, CEUR-WS Vol. 598, Rende, Italy, July 7-9, 2010*, 2010.
9. D. Cantone, M. Nicolosi-Asmundo, and E. Orlowska. Dual tableau-based decision procedures for relational logics with restricted composition operator. *Journal of Applied Non-Classical Logics*, 21(2):177–200, 2011.
10. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. Conjunctive Query Answering via a Fragment of Set Theory. In *Proc. of ICTCS 2016, Locle, September 7-9, CEUR-WS Vol. 1720*, pp. 23–35.
11. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. Conjunctive Query Answering via a Fragment of Set Theory (Ext. Ver). *CoRR*, abs/1606.07337, 2016.
12. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A set-theoretic approach to ABox reasoning services. *CoRR*, 1702.03096, 2017. Extended version.
13. D. Cantone, M. Nicolosi-Asmundo, D. F. Santamaria, and F. Trapani. Ontoceramic: an OWL ontology for ceramics classification. In *Proc. of CILC 2015, CEUR-WS, vol. 1459, pp. 122–127*, Genova, July 1-3, 2015.
14. M. D’Agostino. Tableau methods for classical propositional logic. In Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors, Handbook of Tableau Methods, pages 45–123. Springer, 1999.
15. B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query entailment for SHOQ. In Proc. of the 2007 Description Logic Workshop, volume 250, pages 1–11, 2007.
16. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Answering conjunctive queries in the SHIQ description logic. Journal of Artif. Intell. Research, 31:150–197, 2008.
17. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. 10th Int. Conf. on Princ. of Knowledge Representation and Reasoning, (Doherty, P. and Mylopoulos, J. and Welty, C. A., eds.), pages 57–67. AAAI Press, 2006.
18. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic shiq. In David MacAllester, editor, Proceedings of the 17th International Conference on Automated Deduction (CADE-17), number 1831 in Lecture Notes in Computer Science, pages 482–496, Germany, 2000. Springer Verlag.
19. I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes. In In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI-2000), pages 399–404, 2000.
20. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description logics. In IJCAI-05, Proc. of the 19th Inter. Joint Conf. on Art. Intell., Edinburgh, Scotland, UK, July 30-August 5, 2005, pages 466–471, 2005.
21. C. Lutz. The complexity of conjunctive query answering in expressive description logics. In Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings, pages 179–193, 2008.
22. B. Motik and I. Horrocks. OWL datatypes: Design and implementation. In Proc. of the 7th Int. Semantic Web Conference (ISWC 2008), volume 5318 of LNCS, pages 307–322. Springer, October 26–30 2008.
23. B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules. Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60, 2005.
24. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for conjunctive query answering in expressive description logics. In Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), pages 1–6, 2006.
25. M. Ortiz, R. Sebastian, and M. Simkus. Query answering in the Horn fragments of the description logics SHOIQ and SROIQ. In Proc. of the 22th Int. Joint Conf. on Artificial Intell. - Vol. Two, IJCAI’11, pages 1039–1044. AAAI Press, 2011.
26. R. Rosati. On conjunctive query answering in EL. In Proc. of the 2007 International Workshop on Description Logic (DL 2007), pages 1–8. CEUR-WS, 2007.
27. R. M. Smullyan. First-order Logic. Dover books on advanced Math. Dover, 1995.