Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in *Escherichia coli*. In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the *E. coli* genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the *lrp* mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the *lrp* mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.

Keywords: *Escherichia coli* genome; Genomic SELEX; leucine response regulator; regulation target; transcription factor.

Abbreviations: CE, capillary electrophoresis; ESI, electrospray ionization; Lrp, leucine-responsive regulatory protein; PM, Phenotype MicroArray; RNAP, RNA polymerase; TOF, time-of-flight.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Three supplementary tables are available with the online Supplementary Material.

Introduction

Leucine-responsive regulatory protein (Lrp) belongs to the widely distributed Lrp–AsnC family of small, basic transcription factors. *Escherichia coli* Lrp of 164 aa in size consists of three functional domains: an N-terminal 40% domain containing the helix–turn–helix motif of DNA binding, the next 40% of the middle domain responsible for transcription activation and an overlapping C-terminal domain required for the response to Leu (de los Rios & Perona, 2007; Ettema *et al.*, 2002; Platko & Calvo, 1993). Lrp forms a dimer in solution (Calvo & Matthews, 1994; Willins *et al.*, 1991), but self-assembles to form a mixture of octamers and hexadecamers (Chen *et al.*, 2001b). As Lrp-regu-
lateral promoters commonly contain multiple adjacent Lrp-binding sites, the higher-order structures could play an important functional role.

Lrp was first identified in *E. coli* as a regulatory protein involved in the control of the transport of branched-chain amino acids (Anderson et al., 1976). Subsequently, mutations in the *lrp* gene were found to influence the expression of operons involved in the biosynthesis and degradation of some more amino acids (Lin et al., 1992; Platko et al., 1993), suggesting that Lrp plays a regulatory role in transport and metabolism of not only Leu, but also some other amino acids. The number of regulation targets of Lrp has further increased concomitant with the advance of genome expression monitoring systems. Proteome analysis suggested the alteration of levels of a total of 25 proteins in the *lrp* mutant (Ernsting et al., 1992). The alteration of expression levels of up to 85 proteins was also identified by random phage insertions into the genome (Lin et al., 1992). The transcriptome analysis indicated that as many as >400 genes or ~10% of the genes within the *E. coli* genome are affected in the absence of Lrp, of which at least 130 were suggested to be under the direct control of Lrp (Cho et al., 2008; Hung et al., 2002; Tani et al., 2002). A certain proportion of the regulated genes are involved, as originally proposed, in transport and metabolism of amino acids, but Lrp has also been suggested to regulate genes involved in biosynthesis and degradation of various metabolites other than amino acids (Brinkman et al., 2003; Calvo & Matthews, 1994; Newman & Lin, 1995). In addition, the genes for other cellular functions, such as pili synthesis and adhesion to host cells have been indicated to be under the control of Lrp (Calvo & Matthews, 1994). Furthermore, Lrp is also known to function as a structural element, together with other the nucleoid proteins, to establish the conformation of genome DNA (reviewed by Ishihama, 2009). Thus, as in the case of other nucleoid proteins, Lrp is a bifunctional protein, playing a regulatory role in gene expression and an architectural role in nucleoid organization. Accordingly, the intracellular level of Lrp in exponentially growing *E. coli* cells is as abundant as other nucleoid proteins (Ali Azam et al., 1999; Ishihama et al., 2014; Willins et al., 1991).

One unique characteristic of Lrp is its functional modulation after interaction with multiple effectors. The regulatory function of Lrp was first recognized under the control of Leu (Chen & Calvo, 2002; Chen et al., 2001a; Haney et al., 1992; Platko & Calvo, 1993; Roesch & Blomfield, 1998; Willins et al., 1991). Leu is the most abundant building block (~9% of total blocks) of all proteins in *E. coli*, suitable as a representative signal molecule of the availability of substrates for protein production. Lrp acts as a sensor of this key signal, leading to modulation of its activity and specificity. The effector Leu modulates multimerization of Lrp and thereby controls the transcription of certain target genes (Chen & Calvo, 2002; Chen et al., 2001a, b). In most cases, Lrp has been reported to activate the operons that encode enzymes for amino acid biosynthesis and repress the operons that encode catabolic enzymes (Calvo & Matthews, 1994). The activation of some operons is overcome by Leu, but in other cases the activation requires Leu (Calvo & Matthews, 1994; Ernsting et al., 1992; Lin et al., 1992; Newman et al., 1992). A group of regulation target genes are, however, activated by Lrp independent of Leu. More complexity has arisen from the findings that amino acids other than Leu are involved in the regulation of activity and specificity of Lrp. In place of Leu, Ala has been indicated to act as an effector of Lrp (Berthiaume et al., 2004; Kim et al., 2010; Martin, 1996; Zhi et al., 1998, 1999).

A systematic survey of effector function for all amino acids indicated that His, Ile, Met and Thr influence, besides Leu and Ala, Lrp activity (Hart & Blumenthal, 2011). The direction and level of the influence on Lrp activity by each amino acid effector appears variable depending on the target genes and under the culture conditions. The complex nature of Lrp action may be related to its physiological role to harmonize the expression of Lrp regulon genes to match with the surrounding conditions, such as the composition and availability of nutrients.

As a short-cut approach to identify the whole set of regulation target genes of the RNA polymerase (RNAP) sigma subunits and a total of ~300 species of transcription factors, we developed the Genomic SELEX screening

Impact Statement

Leucine-responsive regulatory protein (Lrp) is known as a global regulator of the genes for transport, biosynthesis and catabolism of amino acids to establish their balance needed for protein synthesis. After Genomic SELEX screening, however, we identified that Lrp not only controls the production of amino acids, but also the utilization pathway of amino acids by regulating the genes for tRNAs, aminocyl-tRNA synthetases and rRNAs. Phenotype MicroArray and metabolome analyses indicated Lrp-mediated correlation between the intracellular levels of amino acids and their utilization for protein synthesis: the intracellular levels are low for amino acids that are efficiently used for protein synthesis, allowing fast cell growth, but cell growth is low even in the presence of high levels of amino acids that are not so much used for protein synthesis. Here, we also identified another expanded role of Lrp in regulation of a set of transcription factors, each playing a regulatory role in the control of a specific metabolism pathway or physiological response to a specific nutritional condition. Lrp stays on the top of this hierarchic network of transcription factors. Overall, we propose an expanded role for Lrp in controlling the production and utilization of amino acids – the key metabolites of cell construction.
system in vitro (Shimada et al., 2005). By using this SELEX system, we succeeded in identifying the whole set of constitutive promoters that are recognized by the RNAP RpoD holoenzyme alone in the absence of supporting transcription factors (Shimada et al., 2014). The functional modulation of RNAP after replacement of sigma factors was then identified by the same SELEX system (T. Shimada and A. Ishihama, in preparation). Along this line, a systematic search of regulation targets by the SELEX system is in progress for ~300 species of E. coli transcription factors. In this study, an attempt was made to identify the regulation target genes that are recognized by Lrp alone in the absence of any effectors. The results herein described indicate a novel role of Lrp in the regulation of a large group of genes involved in not only the transport and metabolism of amino acids, but also the polymerization of amino acids into proteins.

Methods

Bacterial strains and plasmids. E. coli DH5α was used for plasmid amplification. E. coli BL21 was used for Lrp expression. E. coli BW25113 (W3110 lacI3 lacZM15 rpsL150 lacY1ΔlacZYA16 hisD54 hsdR17 strA18 proA1 (F' lacZΔM15 lacZYA16 proAB lacI3 proC1 recA1 araBAD araD15 rpsL150 prophage::Tn10Δ(34::Tn10) 2331 (Shimada et al., 2005, 2008). Fluctuation level of the fluorescent intensity between the 43 450 probes was less than twofold for the original DNA library. The fluorescence intensity of each peak of the test sample was then normalized with that of the corresponding peak of the original library. After normalization of each pattern, the Cy5/Cy3 ratio was measured and plotted along the E. coli genome.

Preparation of antibodies. Antibodies against Lrp were produced in two rabbits by injecting purified Lrp protein (Ishihama et al., 2014). After examination of antibody activity using immunoblot analysis, the batch of higher activity was used in this study. Antibody production was performed in the Animal Laboratory of Mitsubishi Chemical Medienc under the guidelines for animal experiments of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Genomic SELEX screening of Lrp-binding sequences. The Genomic SELEX method was carried out as described previously (Shimada et al., 2005). A mixture of DNA fragments of the E. coli K-12 W3110 genome was prepared after sonication of purified genome DNA and cloned into a multi-copy plasmid pBR322. In each SELEX screening, the DNA mixture was regenerated by PCR. For SELEX screening, 5 pmol of the mixture of DNA fragments and 10 pmol purified Lrp were mixed in a binding buffer (10 mM Tris/HCl, pH 7.8 at 4°C, 3 mM magnesium acetate, 150 mM NaCl and 1.25 mg BSA ml⁻¹) and incubated for 30 min at 37°C. The DNA–Lrp mixture was treated with anti-Lrp antibody, and DNA fragments recovered from the complexes were PCR-amplified and subjected to next cycle of SELEX for enrichment of Lrp-bound DNA fragments.

For SELEX-chip analysis, DNA samples were isolated from the DNA–protein complexes at the final state of SELEX, PCR-amplified and labelled with Cy5, whilst the original DNA library was labelled with Cy3. The fluorescently labelled DNA mixtures were hybridized to a DNA microarray consisting of 43 450 species of 60 bp DNA probes, which were designed to cover the entire E. coli genome at 105 bp interval (Oxford Gene Technology) (Shimada et al., 2005, 2008). Fluctuation level of the fluorescent intensity between the 43 450 probes was less than twofold for the original DNA library. The fluorescence intensity of each peak of the test sample was then normalized with that of the corresponding peak of the original library. After normalization of each pattern, the Cy5/Cy3 ratio was measured and plotted along the E. coli genome.

Extraction of metabolites. Samples for intracellular metabolite measurements were processed as described previously (Ohashi et al., 2008; Soga et al., 2003). The exponential-phase culture (OD₆₀₀ 0.5) was filtered under vacuum through a 0.4 μm pore size filter. Cells on the membrane filter were immediately washed with MilliQ water to remove extracellular components and then quickly immersed in 2 ml methanol containing 2.5 μM each of the internal standards, methionine sultone, MES and D-camphor 10-sulfonic acid. Dishes containing filters were sonicated for 30 s to resuspend the cells. A 1.6 ml aliquot of the cell suspension was transferred to a tube, and mixed with 1.6 ml chloroform and 0.64 ml MilliQ water. After vortexing and centrifugation, the aqueous layer was recovered and clarified using Ultrafree-MC ultrafilter devices for Metabolome Analysis UFC3LCCNB-HMT (Millipore). After drying up, materials attached on the filter were dissolved in 25 μl MilliQ water and subjected to capillary electrophoresis time-of-flight MS (CE-TOF-MS) analysis.

Instrumentation and CE-TOF-MS conditions. CE-TOF-MS analysis was carried out using an Agilent CE system equipped with an Agilent 6210 TOF mass spectrometer, Agilent 1100 isocratic HPLC pump, Agilent G1603A CE-MS adaptor kit and Agilent G1607A CE-ESI (electrospray ionization)-MS sprayer kit.
T. Shimada and others

Phenotype MicroArray (PM) for the growth test. The PM assay was performed essentially according to the published methods (Bochner et al., 2001; Zhou et al., 2003) using Biolog PM plates (Biolog). E. coli BW25113 and JW0872 were grown overnight at 30°C using Biolog PM plates (Biolog). Instrumental conditions for separations and detections of metabolites were as follows. The cationic metabolites were separated on a fused silica capillary (50 μm × 100 cm) using 1 M formic acid as the electrolyte with the voltage set at 30 kV. A solution of 50% (v/v) methanol/water was delivered as the sheath liquid at a flow rate of 10 ml min⁻¹ (Soga & Heiger, 2000; Soga et al., 2003). Separations of anionic metabolites and nucleotides were carried out on a COSMO(+)Capillary (Nacalai Tesque) using 50 mM ammonium acetate (pH 8.5) as the electrolyte. The applied voltage was set at −30 kV. A solution of 5 mM ammonium acetate in 50% (v/v) methanol/water was delivered as the sheath liquid (Soga et al., 2002; 2003). ESI-TOF-MS was conducted in the positive-ion mode (4000 V) for cationic metabolites, and the negative-ion mode (3500 V) for anionic metabolites and nucleotides. Dry nitrogen gas was maintained at 10 p.s.i. Exact mass data were acquired over a 50–1000 m/z range (Ohashi et al., 2008; Soga et al., 2006). The raw data obtained using CE-TOF-MS were processed with a proprietary software program, MasterHands, that provided noise-filtering, peak detection and integration of the peaks from sliced electropherograms and alignment of the migration time (Sugimoto et al., 2010). Absolute quantification was performed using metabolite standards for calibration. Under the conditions employed, the deviation of metabolite levels was <10% (Soga et al., 2006).

Search for Lrp-binding sequences by Genomic SELEX screening

In order to identify the whole set of target promoters, genes and operons under the direct control of Lrp, we performed Genomic SELEX screening (Shimada et al., 2005), in which purified His-tagged Lrp was mixed with a collection of E. coli genome fragments of 200–300 bp in length and Lrp-bound DNA fragments were affinity-isolated. As the specificity of target recognition of Lrp is known to change toward different directions, depending on the species of interacting amino acid effector (Hart & Blumenthal, 2011), in this study we carried out SELEX screening using 0.1 mM Lrp alone in the absence of effectors. Under these conditions, Lrp exists mainly in the monomer state as estimated from the known association constants, but a possible influence of the C-terminal His-tag addition on its multimerization is not ruled out. The list of DNA sequences thus identified should provide the basic set of regulation targets by Lrp alone. The original mixture of genomic DNA fragments formed smear bands on PAGE, but after two cycles of Genomic SELEX, DNA fragments with high affinity to Lrp were enriched, forming sharper bands on PAGE gels (data not shown). As a short-circuit approach to identify the whole set of sequences recognized by Lrp, we subjected this isolated SELEX fragment mixture to DNA chip analysis using an E. coli tiling array (Shimada et al., 2008, 2011). In brief, the SELEX DNA fragments were labelled with Cy5 whilst the original DNA library was labelled with Cy3. The mixtures were then hybridized with the DNA tiling microarray (Oxford Gene Technology) and the fluorescence intensities bound on each probe were measured. For identification of Lrp-binding sites, the Cy5/Cy3 ratio was plotted along a total of 43 450 probes aligned on the array in the order of the E. coli genome (Fig. 1).
By setting a cut-off level of the Genomic SELEX pattern at 10 (Fig. 1), a total of 314 Lrp-binding peaks were identified, of which 228 (72%) were within intergenic spacers and 86 (28%) were inside ORF regions (Table 1). The Lrp-binding spacers could be classified into three groups: type A, spacers between bidirectional transcription units (78 spacers); type B, spacers upstream of one transcription unit but downstream of another transcription unit (140 spacers); and type C (10 spacers), spacers downstream of both transcription units (Table 1). In the case of type A spacers, Lrp might regulate one or both of the transcription units, whilst Lrp bound within type B spacers should be involved in regulation of one-directional transcription. Up to the present time, we have performed SELEX-chip screening for >150 E. coli transcription factors (for a review, see Ishihama, 2012); some, but not always, showed binding within type C spacers, implying an as-yet unidentified regulatory role for this group of transcription factor binding. Likewise, the total of 86 Lrp-binding sites inside ORFs may play certain regulatory roles because the amount of transcription factor-binding sites inside ORFs varies depending on transcription factor species (Ishihama, 2012; Shimada et al., 2008).

Table 1. SELEX-chip screening of Lrp-binding sequences: Lrp-binding sites on the E. coli genome

A total of 314 Lrp-binding sites can be classified into three groups: type A, spacers between bidirectional transcription units (78 spacers); type B, spacers upstream of one transcription unit but downstream of another transcription unit (140 spacers); and type C (10 spacers), spacers downstream of both transcription units.

Location	No. Lrp sites	No. targets	RegulonDB	ChIP-chip
Within type A spacers	78	78–156	9	32
Within type B spacers	140	140	15	55
Within type C spacers	10	0	0	0
Inside ORFs	86	(89)	0	0
Total	314	218–296	24	87
bound RNA polymerase, and thus the target genes and promoters under the control of Lrp could be estimated based for the Lrp-binding sites within type A and type B spacers. Based on the location of Lrp-binding sites on the E. coli genome, we then predicted the set of regulation target genes and operons recognized by Lrp alone. The total number of Lrp regulation targets thus estimated ranged between a minimum of 218 (type A 78 plus type B 140) and a maximum of 296 (type A 156 plus type B 140) (Table 1; for details see Table S1, available in the online Supplementary Material). The total number of regulation targets of Lrp has been estimated to be ~130 based on ChIP-chip analysis (Cho et al., 2008) whilst the number of Lrp targets listed in RegulonDB is 43 (Salgado et al., 2006). The list of regulation targets predicted based on the SELEX screening covered 87 (67%) of ChIP-chip data and 24 (60%) of the RegulonDB list (Table 1). In order to avoid background noise, we set a rather high cut-off level at 10 (see Fig. 1) and, as a result, we failed to pick up some of the known targets, of which most could be recovered by setting the cut-off level at 3.0 (data not shown).

The total number of Lrp targets increased ~2.3-fold from 130 up to 296. The marked increase in the number of regulation targets has been identified for not only Lrp, but also most of the transcription factors so far examined by SELEX screening (Ishihama, 2010, 2012; Shimada et al., 2011). This increase was mainly attributable to the difference between in vitro estimation by SELEX and in vivo measurement by ChIP-chip. The binding in vivo of Lrp should be interfered by competitive binding by other DNA-binding proteins. In addition, the intracellular conditions were different from in vitro SELEX conditions, altogether influencing the Lrp–DNA interaction modes. Amongst the total of 296 candidate genes under the direct control of Lrp, 114 were related to the metabolism of amino acids (Table 3, type A plus type B lane). This value corresponded to 89% of the hitherto identified genes involved in the synthesis and degradation of amino acids, in good agreement with the predicted regulatory functions of Lrp. A total of 261 transporter genes, including 43 transporters of amino acids, are listed in Genobase. After SELEX screening, a total of 84 transporter genes were found to be under the direct control of Lrp (Table 3, type A plus type B lane), of which 35 represented the genes for amino acid transporters (80% of total amino acid transporters) (Table 2).

Search for the regulatory roles of Lrp: PM

After Genomic SELEX screening, we recognized a sudden and marked increase in the list of regulation targets of Lrp, indicating that Lrp plays as-yet unidentified regulatory roles in overall transcription of the E. coli genome. As an attempt to obtain insights into the regulatory role of Lrp, we performed a PM assay, which allows the detection of cell growth under a total of 960 culture conditions: the presence of 192 species of carbon source (PM plates 1 and 2), 96 species of nitrogen source (PM plate 3), 96 species of phosphorus and sulfur sources (PM plate 4), 96 species of nutrient supplement (PM plate 5), 288 chemicals as peptide nitrogen source (PM plates 6–8), 96 species of osmolyte (PM plate 9) and 96 different pH conditions (PM plate 10) (Bochner, 2009). We measured the growth of WT E. coli BW25113 and JW0872 (lrp single-gene deletion mutant of BW25113). The time-course of cell growth was monitored by measuring the cell density-dependent increase in respiration (Bochner et al., 2001). After 3 days of culture, the difference of growth between the WT and the lrp mutant was estimated by comparison of the growth curves (Fig. 2). Growth rates of the WT and lrp mutant were essentially the same in the absence of any additions (see microplate well 1 for each PM plate).

The lrp mutant strain exhibited slower growth under a total of 59 conditions, of which 50 were in the presence of specific nitrogen sources, four in the presence of specific carbon sources, four in the presence of nutrient supplement and one at specific pH (marked in green for representative compounds in Fig. 2). It is noteworthy that the lrp mutant showed significantly reduced growth especially in the presence of Ala, Cys, Gly, Ser and Trp as a sole nitrogen source (Fig. 2, PM plate 3; for details, see Table S2) and some peptides such as Ala–Gly, Ala–Leu, Gly–Asn, Ala–His and Ala–Thr, each including one of these five amino acids

Table 2. SELEX-chip screening of Lrp-binding sequences: Lrp regulon genes involved in transport and metabolism of amino acids

The Lrp regulon genes involved in transport and metabolism of amino acids, tRNA, tRNA charging and rRNA are listed. The number of the whole set of genes involved in those functions is shown in Whole set column. The number of genes identified by SELEX screening is shown in the SELEX-chip column. The number of genes listed in RegulonDB (Salgado et al., 2006) or ChIP-chip analysis (Cho et al., 2008) is shown in the DB + ChIP-chip columns. Percentage shows the coverage of the whole set of genes.

Function	Whole set	SELEX-chip (%)	DB + ChIP-chip (%)
Transporter	43	35 (81)	24 (56)
Metabolism	128	114 (89)	41 (32)
tRNA	85	17 (20)	10 (12)
tRNA charging	24	6 (25)	1 (4)
rRNA	21	9 (43)	21 (100)
Table 3. Lrp-binding sites on the *E. coli* genome

A total of 314 Lrp-binding sites were identified within spacers on the entire *E. coli* K-12 W3110 genome. A total of 78 Lrp-binding sites were identified within type A spacers, which direct bidirectional transcription. A total of 140 Lrp-binding sites were located within type B spacers upstream of one-side genes and downstream of another-side genes. Based on the gene orientation around these binding sites, the genes and operons under the control of Lrp were estimated. Lrp-binding sites listed in RegulonDB (Salgado et al., 2006) or ChIP-chip analysis (Cho et al., 2008) are shown in the DB or ChIP-chip columns. Genes encoding amino acid metabolism, translation apparatus, transporters and transcription factors are shown in AA, TR, TP and TF columns, respectively.

Position	Operon	Gene	Direction	Lrp	Direction	Gene	Operon	Intensity
42168	caiTABCDE	caiT	<	>	fixA	fixABCX	16.4	
83830	leuLABCD	leuL	<	>	leuO	leuO	351.5	
255832	pepD	pepD	<	>	gpt	gpt	10.8	
310970	matA	matA	<	>	ykgL	ykgL	53.5	
400468	ddlA	ddlA	<	>	iraP	iraP	11.2	
584962	ompT	ompT	<	>	pauD	pauD	233.7	
632754	ydbH–ynbE–ydbL	ybdH	<	>	ybdL	ybdL	10.8	
651072	citCDEFXG	citC	<	>	dpiB	dplBA	28.2	
675858	ybeQ	ybeQ	<	>	ybeR	ybeR–djlB	32.7	
815960	ybhK	ybhK	<	>	moaA	moaABCDE	142.3	
823832	ybhPON	ybhP	<	>	ybhQ	ybhQ	42.9	
865772	moeAB	moeA	<	>	iaaA	iaaA–gstABCD	29.0	
915432	aapZ	aapZ	<	>	ybjD	ybjD	32.5	
931532	trxB	trxB	<	>	lrp	lrp	117.1	
1091836	pgaABCD	pgaA	<	>	ycdT	ycdT	13.0	
1197570	ymfED	ymfE	<	>	lit	lit	13.5	
1236636	ycgB	ycgB	<	>	dada	dadaAX	453.6	
1271162	chaA	chaA	<	>	chaB	chaBC	25.1	
1297734	adhE	adhE	<	>	ychE	ychE	121.2	
1328732	yciN	yciN	<	>	topA	topA	27.2	
1406036	ydaM	ydaM	<	>	ydaN	ydaN	38.1	
1554332	bdm–sra	bdm	<	>	osmC	osmC	16.0	
1676134	pntAB	pntA	<	>	ydgH	ydgH	182.2	
1719066	slyA	slyA	<	>	ydhL	ydhLJK	251.5	
1732246	grxD	grxD	<	>	ydhO	ydhO	11.6	
1744232	ydhQ	ydhQ	<	>	valV	valVW	30.5	
1785460	ppsA	ppsA	<	>	ppsR	ppsR	65.9	
1830358	astCADBE	astC	<	>	xthA	xthA	358.3	
1977470	insA	insA	<	>	uspC	uspC	22.0	
1984252	araFGH	araF	<	>	ftnB	ftnB	24.9	
1987632	yehH	yehH	<	>	tyrP	tyrP	66.6	
2036832	yedWV	yedW	<	>	yedX	yedX	11.7	
Position	Operon	Gene	Direction	Lp	Direction	Gene	Operon	Intensity
----------	---------	-------	-----------	----	-----------	-------	---------	-----------
2066864	insH	insH	<	>	>	yoeA	yoeA	49.2
2166740	yegRZ	yegR	<	>	>	yegS	yegS	14.9
2220130	bglX	bglX	<	>	>	dld	dld	11.7
2301638	napFDAGHBC–cccMABCDEFGH	napF	<	>	>	yofO	yofO	11.4
2363870	ais	ais	<	>	>	arnB	arnB	22.0
2405468	lrhA	lrhA	<	>	>	alaA	alaA	384.3
2495060	yfZ	yfZ	<	>	>	fadL	fadL	177.1
2523166	xapAB	xapA	<	>	>	yfeN	yfeN	286.8
2583742	aegA	aegA	<	>	>	narQ	narQ	18.2
2784156	ileY	ileY	<	>	>	ygaQ	ygaQ	30.6
2796480	stpA	stpA	<	>	>	ygaW	ygaW	147.4
2885230	cas3	cas3	<	>	>	sokX	sokX	10.6
2947130	amiC	amiC	<	>	>	argA	argA	630.0
2983583	yqeF	yqeF	<	>	>	yqeG	yqeG	44.9
3084748	yqeK	yqeK	<	>	>	yqeG	yqeG	144.7
3167858	yqiW	yqiW	<	>	>	qseB	qseB	25.2
3217358	aer	aer	<	>	>	ygiG	ygiG	102.6
3265368	tdaABCDEFGH	tdaA	<	>	>	tdaR	tdaR	27.7
3352352	yhcC	yhcC	<	>	>	gltB	gltB	319.6
3372648	nanR	nanR	<	>	>	dcuD	dcuD	26.0
3411666	envR	envR	<	>	>	acrE	acrE	16.5
3475464	fkpA	fkpA	<	>	>	slyX	slyX	11.0
3530664	yhgE	yhgE	<	>	>	pck	pck	25.7
3595854	livKHMGF	livK	<	>	>	yhhK	yhhK	277.3
3632570	yhiL	yhiL	<	>	>	yhiM	yhiM	60.4
3651640	insH	insH	<	>	>	slp	slp–dctR	552.8
3662638	gadW	gadW	<	>	>	gadY	gadY	86.3
3694242	yhiR	yhiR	<	>	>	bceE	bceEFG	39.8
3729066	xylAB	xylA	<	>	>	xylF	xylFGHR	16.1
3735330	bax	bax	<	>	>	malS	malS	37.0
3826772	ghs	ghs	<	>	>	xanP	xanP	16.8
3939530	yieP–hsrA	yieP	<	>	>	rssC	rssC–gltU–rrlC–rrfC	17.7
4044850	yihG	yihG	<	>	>	polA	polA	66.4
4048966	yihA	yihA	<	>	>	csrC	csrC	23.4
4158946	sthA	sthA	<	>	>	fabR	fabR–yijI	23.7
4267330	yihS	yihS	<	>	>	aphA	aphA	266.0
4366438	aspA–dcuA	aspA	<	>	>	fxsA	fxsA	61.5
4380356	frdABCD	frdA	<	>	>	poxA	poxA	10.2
Table 3. cont.

Type-A spacers

Position	Operon	Gene	Direction	Lrp Direction	Gene	Operon	Intensity
4437446	ytfJ	ytfJ	<	>	ytfK	ytfK	109.6
4440430	msrA	msrA	<	>	ytfM	ytfMNP	95.6
4501960	insG	insG	<	>	yhbB	yhbBC	27.5
4554598	yfIC	yfIC	<	>	iraD	iraD	62.9
4633450	rob	rob	<	>	creA	creABC	57.6

142 genes 78 78 122 genes

Operon Gene	DB	ChIP	AA	TR	TP	TF
	L	R	L	R	L	R
	9	32	20	4	13	15
Gene	19	73	46	8	21	15
AA gene	19	70	46	8	8	5

Type-B spacers

Position	Operon	Gene	Direction	Lrp Direction	Gene	Operon	Intensity
9262	talB	talB	>	>	mog	mog	40.6
85536	leuO	leuO	<	>	ilvI	ilvIH	553.6
152844	yadMLKC	yadM	<	<	htrE	htrE	15.6
155442	htrE	htrE	<	<	ecpD	ecpD	192.8
236848	dnaQ	dnaQ	>	<	aspV	aspV	50.4
251970	dinB	dinB	>	<	yafN	yafN	14.6
317836	rclCB	rclC	<	<	ykgC	ykgC	75.5
320346	hemB	hemB	<	<	insF	insF	25.6
381916	phoR	phoR	>	>	brnQ	brnQ–proY	319.3
433872	ribD	ribD	>	>	ribE	ribE–nusB–thiL–pgpA	31.3
467530	cof	cof	>	>	ybaO	ybaO	17.3
479234	aceB	aceB	<	<	lha	lha	25.4
530448	ybbB	ybbB	<	<	allS	allS	10.4
536860	glsR	glsR	>	>	ybbW	ybbW–allB–ybbY–glsK	33.3
567532	insF	insF	>	>	emrE	emrE	18.1
596966	ybcK	ybcK	>	>	ybcL	ybcLM	123.3
603938	mscM	mscM	<	<	nfsB	nfsB	10.2
659532	lipA	lipA	<	<	ybeF	ybeF	13.5
696540	metT–leuW–glnUW–methU–ghnVX	metT	<	<	asnB	132.6	
735642	ybfC	ybfC	>	>	ybfQ	ybfQ	69.4
736608	ybfQ	ybfQ	>	>	ybfL	ybfL	151.6
802538	ybfL	ybfL	>	>	ybfJ	ybfJ	17.3
837438	ybfJ	ybfJ	>	>	ybhl	ybhl	128.4
892742	ybfN	ybfN	>	>	potF	potFGHI	166.5
903170	artPIQM	artP	<	<	ybfP	ybfP	330.3
Table 3. cont.

Position	Operon	Gene	Direction	Lrp Direction	Gene	Operon	Intensity
936430	ftsK	lolA	>	>	lolA	76.4	
938542	rarA	serS	>	>	serS	112.2	
946370	ycaD	ycaM	>	>	ycaM	34.7	
956734	ycaP	serC	>	>	serC	122.3	
985134	aspC	aspC	<	<	ompF	45.3	
986550	ompF	ompF	<	<	asS	14.0	
1027954	hspQ	hspQ	<	<	yeeW	28.3	
1084060	efeB	phoH	>	>	phoH	68.3	
1120372	bssS	dinI	<	<	dinI	218.8	
1122552	yceB	grxB	<	<	grxB	23.3	
1196730	ymfD	ymfE	<	<	ymfE	24.1	
1211242	iraM	ycgX	<	<	ycgX	60.7	
1213450	bluR	ycgF	<	<	ycgF	14.1	
1218154	yygG	ymgF	>	>	ymgF	18.0	
1255430	ycgV	ycgV	<	<	ycgV	51.3	
1267356	ychA	kdsA	>	>	kdsA	13.3	
1278770	narK	narG	>	>	narG	11.8	
1298670	yceE	oppA	>	>	oppA	44.0	
1324836	yciQ	rluB	>	>	rluB	10.0	
1331770	topA	cysB	>	>	cysB	37.6	
1332958	ymiA	ymiA	>	>	ymiA	22.1	
1342734	yciZ	yciZ	<	<	yciZ	418.9	
1344942	gmr	gmr	<	<	gmr	77.8	
1384666	yegF	tyrR	>	>	tyrR	55.6	
1431960	pinR	pyrA	>	>	pyrA	236.6	
1500460	tehB	ydcL	>	>	ydcL	10.3	
1542070	narU	yddJ	>	>	yddJ	30.9	
1542844	ydJ	yddG	>	>	yddG	340.4	
1565340	dosCP	ydiW	>	>	ydiW	58.8	
1570272	gatBC	ppaL	>	>	ppaL	306.3	
1580646	ydeN	ydeO	>	>	ydeO	81.0	
1596458	ydeK	ydeK	>	>	ydeK	21.8	
1609970	yneF	yneG	>	>	yneG	43.9	
1621964	dgcZ	yde1	>	>	yde1	23.9	
1631434	ydfK	pinQ	>	>	pinQ	311.1	
1677572	ydgH	ydgI	>	>	ydgI	177.3	
1710570	nth	tppB	>	>	tppB	210.9	
1790134	cdgR	nlpC	>	>	nlpC	13.7	
1870038	yeaI	yeaI	>	>	yeaI	11.1	
1878844	leuE	yeaT	>	>	yeaT	301.1	
1894766	nudL	sdaA	>	>	sdaA	88.3	
2032166	rseX	hchA	>	>	hchA	462.6	
Table 3. cont.

Position	Operon	Gene	Direction	Lrp	Direction	Gene	Operon	Intensity
2054872	amn	yeeN	>	>	yeeN	yeeN	456.7	
2064140	cobUST	cobU	<	<	insH	yeeN	10.1	
2083632	yeeED	yeeE	>	>	yeeF	cobU	21.0	
2165152	yegQ	yegQ	>	>	cyoR	cobU	57.1	
2173052	gatABCD	gatA	<	<	gatZ	yeeN	10.3	
2202542	yehK	yehK	>	>	yehL	yehN	56.4	
221264	yehS	yehS	<	<	yehT	yehL	20.1	
2231858	yeiS	yeiS	>	>	preT	preTA	19.6	
2249730	nfo	nfo	>	>	yelI	yelI	15.8	
2267850	lpxT	yojO	>	>	spr	spr	24.5	
2301768	yegQ	yegQ	>	>	eco	eco	191.1	
2311260	micF	micF	>	>	rcsD	rcsDB	18.7	
2327840	yfaQP	yfaQ	<	<	yfaT	yfaT	16.0	
2403466	nuaABCEFGHIJLMN	nuaA	<	<	lrbA	lrbA	75.0	
2419468	pta	pta	<	<	yfcC	yfcC	25.6	
2663340	yfhR	yfhR	>	>	sfeC	sfeC	116.8	
2729552	rrsG–gltW–rrlG–rrfG	rrsG	>	>	clpB	clpB	45.6	
2735536	raiA	raiA	<	<	proV	proVX	50.5	
2802658	nrdE	nrdE	>	>	ygeA	ygeA	21.3	
2882356	casABCDE12	casA	<	<	cas3	cas3	18.8	
2920242	gudPXD	gudP	<	<	ygeA	ygeA	21.3	
2925954	ygdH	ygdH	>	>	sdaC	sdaCB	402.0	
2989940	ygeG	ygeG	>	>	ygeH	ygeH	248.3	
3023768	ygeO	ygeO	>	>	guaD	guaD–ygiQ	51.6	
3048862	gcvTHP	gcvT	<	<	visC	visC	172.3	
3056554	serA	serA	<	<	rplA	rplA	286.7	
3098946	ansB	ansB	<	<	yggN	yggN	137.8	
3117230	ygbf	ygbf	<	<	glcA	glcA	52.2	
3119562	glcA	glcA	<	<	glcB	glcB	31.6	
3134436	ptiB	ptiB	<	<	gsp	gsp	17.4	
3183246	yqiC	yqiC	>	>	ygiL	ygiL	148.8	
3265634	tdeR	tdeR	>	>	yhaB	yhaBC	233.8	
3359040	ghtD	ghtD	>	>	gltF	gltF	270.5	
3383254	argR	argR	>	>	yhcN	yhcN	227.6	
3416730	yhdV	yhdV	>	>	yhdW	yhdWXYZ	73.5	
3437550	yhdN–zntR	yhdN	<	<	rplQ	rplQ	36.9	
3444168	rplFR–rpsE–rpmD–rplO–secY–rpmJ	rplL	<	<	rpsL	rpsL	14.1	
3581134	yhhZ	yhhZ	>	>	yrhA	yrhA–insA–6AB–6B–6	10.8	
3597672	livJ	livJ	<	<	rpoH	rpoH	464.3	
3622366	yhhH	yhhH	>	>	yhhH	yhhH	28.0	
3638758	uspA	uspA	>	>	dtpB	dtpB	111.4	
Table 3. cont.

Position	Operon	Gene	Direction	Lrp	Direction	Gene	Operon	Intensity
3649330		yhiS	>			yhiS		56.3
3672564		yhiE	>			yhiE		373.5
3676430		yhiH	<			yhiH		22.5
3706050	dppABCDF	dppA	<			proK		442.5
3737670		yhjE	<			avrA		96.6
3752564	yiaWV	yiaW	<			yiaY		98.0
3758368	yiaY	yiaY	<			selB		13.2
3790672		kbl	<			htrL		111.5
3794944		rfaC	>			rfaL		372.6
3851856		tisB	>			emrD		389.0
3886430		mnmE	>			tnaC	tnaAB	24.5
3886640		tnaC	>			tnaA	tnaAB	29.3
3913240		glmUS	<			atpC		28.0
4042234		dsbA	>			yihF	yihF	41.1
4076777		yyiD	>			yyiE	yyiE	19.4
4213332		metA	>			aceB	aceBAK	50.0
4220634		arpA	<			iclR		11.2
4257166		dinF	>			yjaJ	yjaJ	40.0
4292432		nrgG	>			ghtP		217.5
4304772		yjcS	<			alsK		11.2
4336304		adlY	<			adlA		12.3
4346960	ducB–fumB	ducB	<			dcrR		70.7
4352838		lysU	<			yjaL		61.6
4358570		cadBA	<			cadC		12.1
4381730		poxA	>			yjgM	yjgM	24.4
4411064		yjgM	>			yjgC	yjgC	13.1
4427648		yjgB	>			cycA	cycA	398.4
4497636		insD	>			yigW	yigW	11.1
4523866		yjHI G	<			bggR		47.1
4540870		fumE	>			fimA	fimAICDFGH	83.3
4609272		prFC	>			osmY		374.9

120 genes	64	126 genes

261 genes	154	245 genes

296 targets	34	82

506 genes	34	82

T. Shimada and others

Microbial Genomics
Reduction of lrp mutant growth in the presence of Ser agrees with the previous observation (Ambartsoumian et al., 1994). In contrast, growth of the lrp mutant was slightly enhanced in the presence of dipeptides including Asp, Glu and Pro as a sole nitrogen source (Fig. 2, shown in red and Table S2). These results suggested that the function of Lrp was needed for utilization of some of these specific amino acids as sole nitrogen sources. In the simultaneous presence of NH4Cl, the addition of amino acids did not affect growth of the lrp mutant (Fig. 2, plate 5). One exception was the culture in the presence of both NH4Cl and Leu, in which growth of the lrp mutant was significantly reduced, indicating that excess of Leu specifically interferes with cell growth in the absence of Lrp.

Search for the physiological role of Lrp: metabolome analysis

Results of the PM analysis indicated that the intracellular composition of metabolites might be altered in the absence of Lrp. To test this prediction, we next carried out the metabolome analysis using CE-TOF-MS. For the cells grown in M9/glucose medium, a set of metabolites was measured for both the WT and lrp mutant strains. The overall metabolite profiles indicated a considerable variation in the intracellular concentrations of not only amino acids, but also some intermediate metabolites in the glycolysis/pentose phosphate pathways and tricarboxylic acid cycle (Fig. 3; for each metabolite see Fig. 4 and Table S3). The level of Gly, Phe, Tyr and Trp was markedly higher in the lrp mutant. In contrast, the level of Glu, Gln and Asp was lower in the lrp mutant. The changes in amino acid levels

Fig. 2. PM analysis of the Lrp mutant. PM analysis of E. coli WT BW25113 and its lrp mutant JW0872 was performed using the Biolog PM apparatus according to the procedure provided by the provider. Growth patterns of microplates PM1–10 are shown: PM1 and 2, carbon source metabolism; PM3, nitrogen source metabolism; PM4, phosphorus and sulfur source metabolism; PM5, nutrient supplements; PM6–8, peptide as nitrogen metabolism; PM9, osmotic and ion effects; PM10, pH effects. The curve of each well shows the time-course (x-axis, up to 3 days) of cell growth as determined by measuring the amount of purple colour (y-axis) formed from tetrazolium dye reduction. Data from the WT strain are shown in green, whilst data from the lrp mutant are shown in red. Yellow shows the overlap of the two growth curves. Details are listed in Table S2.
might be due to the regulation network of transcription factors for control of amino acid synthesis and utilization. For instance, the highly accumulated aromatic amino acids are all under the control of a single transcription factor, TyrR (regulator of aromatic amino acid synthesis). Likewise, transcription factors of the genes for amino acid metabolism, including AdiY and CysB (regulator of Cys synthesis), LeuO (regulator of Leu synthesis), and TdcA and TdcR (regulator of Thr synthesis), are all under the direct control of Lrp (Tables 3 and S1) and thus the expression of a number of genes involved in the metabolism of amino acids should be indirectly regulated in the absence of Lrp, leading to influence in the intracellular pool of respective amino acids.

The change in amino acid levels was interconnected with the changes in the level of intermediate metabolites of carbohydrate catabolism and energy metabolism. Some specific amino acids showed a reverse correlation between

Fig. 3. Difference of intermediate metabolites between WT and lrp mutant. *E. coli* WT BW25113 and its *lrp* mutant JW0872 were cultured in M9/0.2 % glucose medium until OD_{600} 0.2 and all the intracellular metabolites were extracted as described in Methods. The samples were subjected to CE-TOF-MS analysis according to the standard procedures as described in Methods. The intermediate metabolites are classified into amino acids (a), intermediate metabolites of the glycolysis/pentose phosphate pathway (PPP) (b), metabolites in the tricarboxylic acid (TCA) cycle (c) and nucleosides/nucleotides (d). The ratio of metabolite levels between WT and the *lrp* mutant (y-axis) is shown by log_{2}. The level of difference of each metabolite is shown in Fig. 4 and details of the measurements are described in Table S3.
the influence on cell growth and the intercellular concentration. In the presence of some dipeptides, such as Glu and Pro, as a sole nitrogen source, the *lrp* mutant showed a higher rate of cell growth than the WT cells. The intracellular concentrations of Glu and Pro in the *lrp* mutant were lower than those in WT (compare Figs 2 and 3). These growth and metabolic behaviours indicate that effective availability of Glu and Pro in the *lrp* mutant resulted in the promotion of growth. However, in the presence of some other dipeptides, such as Gly and Trp, as a sole nitrogen source, the growth of the *lrp* mutant was slower than the WT and their intracellular concentrations were higher than the WT. The lower availability of these amino acids in the *lrp* mutant resulted in growth retardation and accumulation of amino acids. This reverse correlation implies that a group of amino acids closely linked to the metabolic pathways for the production of metabolic energy is preferentially utilized for the high growth rate of the *lrp* mutant, thereby showing decreased levels of their intracellular pools.

In the absence of Lrp, a marked change was also observed in the intracellular composition of not only amino acids, but also other metabolites (Fig. 3b–d). In particular, a marked difference was detected in the level of acetyl-CoA, a major source of the metabolic energy, and the key player in the degradation and synthesis of lipids and amino acids. The level of acetyl-CoA in the *lrp* mutant was 25-fold less than that in the WT cells (Fig. 4c). Likewise, the level of dihydroxyacetone phosphate, 1,3-bisphosphoglycerate, fructose 1,6-diphosphate, the intermediates of glycolysis, was lower in the *lrp* mutant (Fig. 4b). The observed metabolic changes support the prediction of the coordinated linkage of carbon metabolism with the alteration of amino acid metabolism. The reduction of CMP, CDP, CTP, GTP and UTP (Figs 3 and 4) might lead to the decrease in RNA synthesis in the *lrp* mutant.

Transcription regulation of the newly identified targets by Lrp

Results of the SELEX-chip screening supported the concept that Lrp is a global transcription regulator for the set of
genes involved in transport, synthesis and degradation of amino acids. The results of the PM assay and metabolome analyses are both consistent with this concept. In addition, Lrp was found to be involved in regulation of the genes for the utilization of amino acids in the pathway of translation, such as tRNA, tRNA aminoacylation, rRNA and ribosomal proteins (Table 3; for details, see Table S1). *E. coli* carries a total of 23 genes for aminoacyl-tRNA synthetase. Up to the present time, regulation by Lrp has been recognized only for the *lysU* gene that encodes lysyl-tRNA synthetase (Gazeau *et al.*, 1992), but no transcriptional regulators have been identified for the other 22 aminoacyl-tRNA synthetase genes [note that both GlyRS and PheRS are composed of two different subunits, and *E. coli* contains two forms (constitutive and inducible) of LysRS]. After the Genomic SELEX screening, Lrp was found to bind the promoter region of at least eight aminoacyl-tRNA synthetase genes (*alaS*, *asnS*, *glnS*, *glyQ*, *pheS*, *serS*, *thrS* and *tyrS*), implying the involvement of Lrp in transcription regulation of these genes.

In order to examine regulation *in vivo* of these aminoacyl-tRNA synthetase genes by Lrp, we performed Northern blot analysis for detection of mRNA from these genes. RNA samples were prepared from both *E. coli* WT BW25113 and the *lrp* mutant JW0872, and subjected to Northern blot analysis (Fig. 5). mRNA of *lysU*, the known target of Lrp, was virtually undetectable in the WT strain under the culture conditions employed, but a high level of *lysU* mRNA was detected in the *lrp* mutant strain, indicating strong repression of the *lysU* gene by Lrp. Next, we analysed the level of mRNAs for seven other aminoacyl-tRNA genes. The levels of *serS*, *tyrS* and *thrS* were low in WT cells, but increased in the *lrp* mutant, as in the case of *lysU*. mRNAs of other aminoacyl-tRNA genes were detected even in WT cells, but *alaS* mRNAs increased, albeit at low levels, in mutant cells. Thus, we concluded that Lrp participates in transcription regulation of at least eight aminoacyl-tRNA synthetase genes, of which expression of five aminoacyl-tRNA synthetase, including AlaRS, LysRS, SerRS, ThrRS and TyrRS, is repressed by Lrp. So far only minimal Lrp-dependent changes have been observed in the microarray analysis (Tani *et al.*, 2002), which was, however, carried out in the cultures in the presence of Ile and Val addition. In general, Northern blot analysis gives a more accurate estimation of individual mRNA than microarray analysis.

Discussion

Regulatory roles of Lrp

After SELEX-chip screening, at least 296 regulation targets were identified for Lrp, resulting in an increase of ~2.3-fold. One group of the novel targets includes the genes for utilization of amino acids such as the genes encoding tRNA, aminoacyl-tRNA synthetase, rRNA and ribosomal proteins. Here, a total of eight aminoacyl-tRNA synthetase genes were identified to be under the direct control of Lrp.
of Lrp, but this number increases by setting the cut-off level of SELEX pattern <10 (Fig. 1). In the case of rRNA operons, all seven rRNA operons have been reported to be under the control of Lrp (Pul et al., 2005). In this study, only three were identified by setting the cut-off level at 10, but all seven known rRNA operons could be identified by setting the cut-off level at 3.0. The whole set of regulation targets herein identified indicates that Lrp senses the presence of nutritional conditions and regulates not only the transport and metabolism (synthesis and degradation) of amino acids, but also the utilization amino acids up to protein synthesis. It should be noted, however, that the selectivity of regulation targets by Lrp should be altered after interaction of an effector ligand.

E. coli contains as many as 300 species of transcription factors, each monitoring a specific factor or condition in the environment (Ishihama, 2010, 2012). The majority of E. coli transcription factors belong to the one-component signal transduction system, in which a single polypeptide contains both an effector-binding sensory domain and a DNA-binding domain. The activity of this group of transcription factors is controlled by a single species of the effector ligand, i.e. inducer or co-repressor. In some cases, the involvement of two effectors has been identified: allantoin and glyoxalate for AllR (Hasegawa et al., 2008), Arg and Lys for ArgP (Marbanianq & Gowrishankar, 2011), glyoxylate and pyruvate for IclR (Lorca et al., 2007), hypoxanthine and guanine for PurR (Houlberg & Jensen, 1983), and uracil and thymine for RutR (Shimada et al., 2007). Moreover, the activity control by more than three effectors has been recognized recently for a set of transcription factors such as CueR by Cu(II), Ag(II) and Au(II) (Ibanez et al., 2013), TyrR by Tyr, Trp and Phe (Pittard, 1996), and SdiA by three HSL analogues (Shimada et al., 2013). In this respect, Lrp is unique because its function is considered to be regulated at various levels by not only Leu, but also Ala, His, Ile, Met and Thr (Hart & Blumenthal, 2011). The next step in the research is to identify the whole set of regulation targets of Lrp in the presence of each effector ligand.

Hierarchy of the transcription factor network involving Lrp

In the collection of a total of 296 Lrp targets selected by SELEX-chip screening, a set of 21 transcription factor genes was identified, including the lrp gene itself (Fig. 6). Interestingly, the genes coding for local regulators of the genes for individual amino acids are under the control of Lrp, including AdiY (a regulator of Arg regulon), CysB (a regulator of the Cys regulon), GadW (a regulator of the Glu regulon), YbaO (a regulator of the Cys regulon), and Lrp (a regulator of the Glu regulon)
In addition to these amino acid-related transcription factors, Lrp was found to regulate a total of 15 transcription factors. These factors, known as Lrp targets, play a role in various processes such as nutrient sensing, metabolic adaptation, and stress response. The regulation of Lrp is a complex process involving multiple proteins and pathways. For instance, Lrp interacts with other transcription factors, such as EstR and TyrR, to control the expression of genes involved in amino acid metabolism and stress response. This interaction is crucial for the survival of E. coli in changing environments. Lrp also regulates the expression of genes involved in the response to different environmental stimuli, such as pH changes and nutrient availability. These regulatory mechanisms are essential for the adaptation of E. coli to different environments and for maintaining the balance of the cellular processes.
Expanded roles of Lrp in transcription regulation

Ishihama, A. (2012). Prokaryotic genome regulation: a revolutionary paradigm. Proc Natl Acad Sci U S A 88, 485–508.

Ishihama, A., Kori, A., Koshio, E., Yamada, K., Maeda, H., Shimada, T., Makino, H., Iwata, A. & Fujita, N. (2014). Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 196, 2718–2727.

Kim, S. H., Schneider, B. L. & Reiter, L. (2010). Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. J Bacteriol 192, 5304–5311.

Lin, R., D’Ari, R. & Newman, E. B. (1992). λ placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174, 1948–1955.

Lorca, G. L., Ezersky, A., Lunin, V. V., Walker, J. R., Altamentova, S., Evdokimova, E., Vedi, M., Bochkarev, A. & Savchenko, A. (2007). Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli Lrp transcriptional regulator. J Biol Chem 282, 16476–16491.

Ma, Z., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. (2002). Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YHiW). J Bacteriol 184, 7001–7012.

Marbbaniang, C. N. & Gowrishankar, J. (2011). Role of ArgP (IcA) in lysine-mediated repression in Escherichia coli. J Bacteriol 193, 5985–5996.

Martin, C. (1996). The clp (CS31A) operon is negatively controlled by Lrp, ClpB, and l-alanine at the transcriptional level. Mol Microbiol 21, 281–292.

Newman, E. B. & Lin, R. (1995). Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu Rev Microbiol 49, 747–775.

Newman, E. B., D’Ari, R. & Lin, R. T. (1992). The leucine-Lrp regulon in E. coli: a global response in search of a raison d’être. Cell 68, 617–619.

Ohashi, Y., Hirayama, A., Ishikawa, T., Nakamura, S., Shimizu, K., Ueno, Y., Tomita, M. & Soga, T. (2008). Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 4, 135–147.

Pittard, J. (1996). The various strategies within the TyrR regulation of Escherichia coli to modulate gene expression. Genes Cells 1, 717–725.

Platko, J. V. & Calvo, J. M. (1993). Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. J Bacteriol 175, 1110–1117.

Pul, U., Wurm, R., Lux, B., Mettler, M., Menzel, A., Wagner, R. & LRP, N. S. (2005). Cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol Microbiol 58, 864–876.

Roesch, P. L. & Blomfield, I. C. (1998). Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli. Mol Microbiol 27, 751–761.

Salgado, H., Gama-Castro, S., Peralta-Gil, M., Díaz-Peredo, E., Sánchez-Solano, F., Santos-Zavaleta, A., Martínez-Flores, I., Jiménez-Jacinto, V., Bonavides-Martínez, C. & other authors (2006). RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34, D394–D397.

Shimada, T., Fujita, N., Maeda, M. & Ishihama, A. (2005). Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10, 907–918.

Shimada, T., Hirao, K., Kori, A., Yamamoto, K. & Ishihama, A. (2007). RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. Mol Microbiol 66, 744–757.

Shimada, T., Ishihama, A., Busby, S. J. W. & Grainger, D. C. (2008). The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 36, 3950–3955.

Shimada, T., Bridier, A., Briandet, R. & Ishihama, A. (2011). Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NSS. Mol Microbiol 82, 378–397.

Shimada, K., Ogasawara, H., Yamada, K., Shimura, M., Kori, A., Shimada, T., Yamanaka, Y., Yamamoto, K. & Ishihama, A. (2013). Screening of promoter-specific transcription factors: multiple regulators for the sdiA gene involved in cell division control and quorum sensing. Microbiology 159, 2501–2512.

Shimada, T., Shimada, K., Matsui, M., Kitai, Y., Igarashi, J., Suga, H. & Ishihama, A. (2014). Roles of cell division control factor SdiA: recognition of quorum sensing signals and modulation of transcription regulation targets. Genes Cells 19, 405–418.

Soga, T. & Heiger, D. N. (2000). Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72, 1236–1241.

Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M. & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74, 2233–2239.

Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M. & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2, 488–494.

Soga, T., Baran, R., Suematsu, M., Ueno, Y., Ikeda, S., Sakurakawa, T., Kakazu, Y., Ishikawa, T., Robert, M. & other authors (2006). Differential metabolome reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281, 16768–16776.

Stim-Herndon, K. P., Flores, T. M. & Bennett, G. N. (1996). Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology 142, 1311–1320.

Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T. & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6, 78–95.

Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O. & Matthews, R. G. (2002). Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 99, 13471–13476.

Willins, D. A., Ryan, C. W., Platko, J. V. & Calvo, J. M. (1991). Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem 266, 10768–10774.

Yamamoto, K., Hira, K., Oshima, T., Alba, H., Utsumi, R. & Ishihama, A. (2005). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280, 1448–1456.

Zhi, J., Mathew, E. & Freundlich, M. (1998). In vitro and in vivo characterization of three major dadAX promoters in Escherichia coli that are regulated by cyclic AMP-CRP and Lrp. Mol Gen Genet 258, 442–447.

Zhi, J., Mathew, E. & Freundlich, M. (1999). Lrp binds to two regions in the dadAX promoter region of Escherichia coli to repress and activate transcription directly. Mol Microbiol 32, 29–40.

Zhou, L., Lei, X. H., Bochner, B. R. & Wanner, B. L. (2003). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185, 4956–4972.

http://mgen.sgmjournals.org