A reservoir bubble point pressure prediction model using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique with trend analysis

Fahd Saeed Alakbari, Mysara Eissa Mohyaldinn, Mohammed Abdalla Ayoub, Ali Samer Muhsan, Ibnelwaleed A. Hussein

Petroleum Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia, 2 Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia, 3 Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar, 4 Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar

* fahd_19001032@utp.edu.my (FSA); mysara.eissa@utp.edu.my (MEM)

Abstract

The bubble point pressure \((P_b) \) could be obtained from pressure-volume-temperature (PVT) measurements; nonetheless, these measurements have drawbacks such as time, cost, and difficulties associated with conducting experiments at high-pressure-high-temperature conditions. Therefore, numerous attempts have been made using several approaches (such as regressions and machine learning) to accurately develop models for predicting the \(P_b \). However, some previous models did not study the trend analysis to prove the correct relationships between inputs and outputs to show the proper physical behavior. Thus, this study aims to build a robust and more accurate model to predict the \(P_b \) using the adaptive neuro-fuzzy inference system (ANFIS) and trend analysis approaches for the first time. More than 700 global datasets have been used to develop and validate the model to robustly and accurately predict the \(P_b \). The proposed ANFIS model is compared with 21 existing models using statistical error analysis such as correlation coefficient (\(R \)), standard deviation (\(SD \)), average absolute percentage relative error (AAPRE), average percentage relative error (APRE), and root mean square error (RMSE). The ANFIS model shows the proper relationships between independent and dependent parameters that indicate the correct physical behavior. The ANFIS model outperformed all 21 models with the highest \(R \) of 0.994 and the lowest AAPRE, APRE, SD, and RMSE of 6.38\%, -0.99\%, 0.074 psi, and 9.73 psi, respectively, as the first rank model. The second rank model has the \(R \), AAPRE, APRE, SD, and RMSE of 0.9724, 9\%, -1.58\%, 0.095 psi, and 13.04 psi, respectively. It is concluded that the proposed ANFIS model is validated to follow the correct physical behavior with higher accuracy than all studied models.
1. Introduction

Determination or measurement of an accurate reservoir bubble point pressure \((P_b) \) is essential for achieving accurate reservoir and petroleum production calculations [1–4]. As a result, obtaining the \(P_b \) with high accuracy is necessary.

Numerous researchers studied the \(P_b \) for different crude oils. In North America, Standing [5], Lasater [6], Glaso [7], Petrosky and Farshad [8], De Ghetto et al. [9], Velarde et al. [4], and Dindoruk and Christman [10] showed correlations applied to determine the \(P_b \) based on \(\gamma_g \), API, and \(T_f \). Standing [5] and Lasater [6] utilized 105 and 158 datasets from the USA and Canada to develop their models. Glaso [7] applied some regressions methods to create a correlation for \(P_b \) with a standard deviation (SD) of 6.98. Petrosky and Farshad [8] used 90 Gulf Mexico datasets to develop their \(P_b \) model by applying regression methods (involving Statistical Analysis System (SAS) software). De Ghetto et al. [9] and Velarde et al. [4] used regressions techniques to create their equations to determine the \(P_b \), and they mentioned that their correlations have AAE of 12.8% and 11.7%. Dindoruk and Christman [10] showed a correlation employed to determine the \(P_b \) using 100 datasets and MS-Excel software.

Al-Marhoun [11], Dokla and Osman [12], Almehaideb [13], Mehran et al. [14], Bolondarzadeh et al. [15], Hemmati and Kharrat [16], Mazandarani and Asghari [17], Kamehchi et al. [18], and Gomaa [19] developed their \(P_b \) correlations depended on the Middle East crude oils. Al-Marhoun [11] utilized \(\gamma_g \), API, and \(T_f \) as independent parameters to create a correlation to determine the \(P_b \) by applying the non-linear multiple regression method using 160 data points. Dokla and Osman [12] and Almehaideb [13] displayed \(P_b \) correlations using 51 and 62 data points from the United Arab Emirates, and their equations have AAE of 7.61% and 4.997%, respectively. Mehran et al. [14], Bolondarzadeh et al. [15], Hemmati and Kharrat [16], Mazandarani and Asghari [17], Kamehchi et al. [18] operated regression methods to create their \(P_b \) equations using datasets from Iranian fields. Gomaa [19] developed the correlation based on \(\gamma_g \), API, and \(T_f \) and disclosed that their equation has the AAE and the SD of 8.12% and 10.69.

In Africa, Macary and EL-Batanoney [20] showed an equation used to predict the \(P_b \) with AAE of 7.04% using \(\gamma_g \), API, and \(T_f \) as independent variables and 90 datasets from Egypt. Hanafy et al. [21] used only the Rs as input parameter, the regression methods, and 324 datasets from Egyptian fields to determine the \(P_b \). Sharrad and Abd-Allah [22] found a \(P_b \) equation using more than thirty Libyan datasets and EViews software and displayed their correlation with the AAE of 8.7%.

Frashad et al. [23] showed the \(P_b \) correlation with SD of 37.02 using regression methods and 43 datasets from Colombia. Omar and Todd [24] applied non-linear regression analysis and more than ninety Malaysian datasets to display their \(P_b \) correlation and indicated that the correlation has AAE and SD of 7.17% and 9.54.

Vasquez and Beggs [25], Kartothmodjo and Schmidt [26], Al-Shammasi [27], and Arabloo et al. [28] proposed equations for predicting the \(P_b \) based on \(\gamma_g \), API, and \(T_f \) and utilizing data points from different places. Kartothmodjo and Schmidt [26] employed more than 5000 datasets from different regions in North America and used a regression approach to build the \(P_b \) correlation with 20.17% (AAE). Al-Shammasi [27] utilized a regression approach, 1661 datasets from different places to develop a \(P_b \) correlation, and stated that the correlation could predict the \(P_b \) with 17.849% AAE and 17.16 SD. Arabloo et al. [28] represented a \(P_b \) correlation with an AAE of 18.9, operating LINGO software and more than 700 global datasets. Fig 1 illustrates the previously published models based on used data locations.

Nowadays, machine learning and deep learning methods are used to develop the \(P_b \) model. Alakbari et al. [30] used artificial neural networks and fuzzy logic approaches for predicting...
the P_b based on R_s, γ_g, API, and T_f. Yang et al. [31] represented a correlation that can be used to predict the P_b using some artificial intelligent algorithms, namely neural networks. Alakbari et al. [32] created their model based on the R_s, γ_g, API, and T_f as inputs and more than 700 datasets, and they showed that their model has the absolute average percent relative error and the (R) were 8.422% and 0.990. Nonetheless, the previous models are required to improve their accuracy in obtaining the P_b.

Numerous researchers successfully applied the adaptive neuro-fuzzy inference system (ANFIS) method in engineering calculations. A noise assessment of wind turbine was predicted using the ANFIS [33]. The ionic and electronic conductivity of materials was estimated utilizing the ANFIS [34]. Ayoub et al. [35] developed a model to obtain the drilling rate of penetration using the ANFIS technique. The wind power density was determined by applying the ANFIS [36]. Sambo et al. [37] used ANFIS to determine water saturation from seismic attributes. Hamdi and Chenxi [38] proposed an ANFIS model to predict CO_2 minimum miscibility pressure (MMP) with higher accuracy. A recent study has applied ANFIS to model the isothermal oil compressibility below the P_b Ayoub et al. [39].

This research aims to build a robust and higher accurate model that can be used to determine the P_b using the ANFIS method with the trend analysis (TrA). The only attempt to apply ANFIS for developing P_b correlations is the one proposed by Shojaei et al. [40], who used 750 data points to build the P_b model. However, they have not studied the TrA to prove the proper physical behavior for their model. Therefore, in this study, a robust and highly accurate ANFIS model was developed to predict the P_b through TrA. More than 700 global datasets and the ANFIS method were applied with the trend analysis that is used to find the relationships between the independent variables (R_s, γ_g, API, and T_f) and dependent variable (P_b) to indicate the correct physical behavior for building our ANFIS model with the trends analysis that is used for the first time to a robustly and accurately determine the P_b. Moreover, statistical error analyses such as R were utilized to compare the ANFIS and all existing models’ accuracy.
2. Methodology

2.1 Data collection and pre-processing

More than seven hundred data sets were gathered from existing sources [11, 24, 28] to build the proposed ANFIS model. The R_s, γ_g, API, and T_f are utilized as independent parameters in this study because most of the studies in the literature consider these parameters as inputs; however, Hanafy et al. [21] used only the R_s as the input to predict the P_b. Table 1. Furthermore, the (R) for independent parameters (R_s, γ_g, API, and T_f) to the dependent parameter (P_b) was found to evaluate the importance of the independent and dependent parameters as shown in Fig 2. From this figure, we can see the (R) of 0.876 for the R_s, and the P_b means that the P_b can be a strong function of the R_s. As displayed in Fig 2, the (R) of -0.513 for the γ_g and

No	Model	Bubble point oil volume factor (Bob) (bbl/STB)	Gas to oil ratio (R_s) (scf/STB)	Gas-specific gravity (γ_g)	Oil-specific gravity (API) (°API)	Reservoir temperature (T_f) (° F)
1	Standing (1947) [5]	✓	✓	✓	✓	
2	Lasater (1958) [6]	✓	✓	✓	✓	
3	Glaso (1980) [7]	✓	✓	✓	✓	
4	Vazquez and Beggs (1980) [25]	✓	✓	✓	✓	
5	Al-Marhoun (1988) [11]	✓	✓	✓	✓	
6	Karttoatmodjo and Schmit (1991) [26]	✓	✓	✓	✓	
7	Dokla and Osman (1992) [12]	✓	✓	✓	✓	
8	Petrosky and Farshed (1993) [8]	✓	✓	✓	✓	
9	Macary and El-Batanoney (1993) [20]	✓	✓	✓	✓	
10	Omar and Todd (1993) [24]	✓	✓	✓	✓	
11	De Ghetto et al. (1994) [9]	✓	✓	✓	✓	
12	Frashad et al. (1996) [23]	✓	✓	✓	✓	
13	Almehaideb (1997) [13]	✓	✓	✓	✓	
14	Hanafy et al. (1997) [21]	✓	✓	✓	✓	
15	Velarde et al. (1997) [4]	✓	✓	✓	✓	
16	Al-Shammasi (1999) [27]	✓	✓	✓	✓	
17	Dindoruk and Christman (2001) [10]	✓	✓	✓	✓	
18	Mehran et al. (2006) [14]	✓	✓	✓	✓	
19	Bolondarzadeh et al. (2006) [15]	✓	✓	✓	✓	
20	Hemati and Kharrat (2007) [16]	✓	✓	✓	✓	
21	Marandarani and Asghari (2007) [17]	✓	✓	✓	✓	
22	Khamechi et al. (2009) [18]	✓	✓	✓	✓	
23	Arabloo et al. (2014) [28]	✓	✓	✓	✓	
24	Gomaa (2016) [19]	✓	✓	✓	✓	
25	Sharrad and Abd-Allah (2019) [22]	✓	✓	✓	✓	
26	Proposed ANFIS	✓	✓	✓	✓	
the P_b indicates that the P_b can be a moderate function of the \(\gamma_g \) and the (R) of 0.383 and 0.315 for the API and \(T_f \) proves that the P_b can be a weak function of the API and \(T_f \).

Before the ANFIS model was applied, the collected data were split into two parts 70% for training the model and 30% for testing the proposed ANFIS model. The statistical description of the training and testing datasets is shown in Table 2. As in the table, the training and testing datasets are at the same ranges to build and evaluate the ANFIS model with the same data ranges. It is essential to avoid the over-fitting and under-fitting issues; data randomization was used to overcome these issues. In addition, all parameters for the training and testing datasets were normalized between -1 and 1 to scale them in this range based on the following equation:

\[
Y = (Y_{\text{max}} - Y_{\text{min}}) \times (X - X_{\text{min}})/(X_{\text{max}} - X_{\text{min}}) + Y_{\text{min}}
\]

Where:
- \(Y \): the normalized parameter.
- \(Y_{\text{max}} \): the maximum normalized value (1).
- \(Y_{\text{min}} \): the minimum normalized value (-1).
- \(X \): the input variable.
- \(X_{\text{min}} \): the minimum of the variable.
- \(X_{\text{max}} \): the maximum of the variable.

![Relative importance of inputs with P_b output.](https://doi.org/10.1371/journal.pone.0272790.g002)

Table 2. Statistical description of the data.

Parameters	Training data		Testing data			
	Minimum	Maximum	SD	Minimum	Maximum	SD
Bubble point pressure (P_b) psi	126	7127	1151.55	130	4432	1135.4
Gas to oil ratio (Rs) SCF/STB	9	2637	423.50	26	1850	424.93
Gas-specific gravity (\(\gamma_g \))	0.5890	1.367	0.1593	0.5890	1.367	0.1622
Oil-specific gravity (API) °API	15.30	59.50	7.32	19.40	51.70	6.38
Reservoir temperature (\(T_f \)) °F	74	294	49.46	74	271	45.36

https://doi.org/10.1371/journal.pone.0272790.t002
2.2 Proposed ANFIS model strategy

ANFIS is a combination of artificial neural networks (ANN) and fuzzy logic (FL), and it is one of the neural networks that use the Takagi-Sugeno fuzzy inference system. The Takagi-Sugeno fuzzy model applies two fuzzy rules [41]:

rule 1: if \((x_1 \text{ is } A_1) \text{ and } (x_2 \text{ is } B_1)\), then Eq (2) is used.

\[
f_1 = p_1 x_1 + q_1 x_2 + r_1
\]

rule 2: if \((x_1 \text{ is } A_2) \text{ and } (x_2 \text{ is } B_2)\), then Eq (3) is applied.

\[
f_2 = p_2 x_1 + q_2 x_2 + r_2
\]

where:

- \(x_1\) and \(x_2\): inputs.
- \(A_1, A_2, B_1, \text{ and } B_2\): membership values.
- \(p_1, q_1, r_1, p_2, q_2, \text{ and } r_2\): parameters of the output functions \(f_1\) and \(f_2\), respectively.

As displayed in Fig 3, the ANFIS structure is constructed of five layers. These layers are the fuzzification layer, rule layer, normalization layer, defuzzification layer, and output layer. ANFIS is a multilayer feedforward neural network with supervised learning capability (a hybrid learning rule) [42, 43]. For the Sugeno fuzzy reasoning, the default defuzzification technique was applied. It can be a weighted average of all rule outputs. The fuzzified input values can be an algebraic sum of consequent fuzzy sets for the used aggregate technique. Firstly, input characteristics transfer to input membership functions. Then, they move to rules. After that, they shift to a set of output characteristics. Next, they go to output membership functions. Finally, the output membership functions provide output [44].

The ANFIS technique has advantages of showing better results than other methods. The ANFIS shows a better learning ability. It can perform a highly non-linear mapping. It has fewer adjustable parameters than those needed in other machine learning. Its structure can allow for parallel computation. Its networks show a well-structured knowledge representation and can also allow better integration with other control design methods [45]. ANFIS can combine ANN and FL in a single tool to make the technique superb in reaching a quicker decision about the mapped relationship between the feature and target parameters [46]. The ANFIS has

![Fig 3. The workflow of MATLAB ANFIS structure.](https://doi.org/10.1371/journal.pone.0272790.g003)
the benefit of decreased training time not only because of its smaller dimensions but also because the network is initialized with parameters in relation to the problem domain [47].

The proposed ANFIS model in this work was built using MATLAB R2019b. Fig 4 demonstrates the ANFIS output generated from MATLAB 2019b. The type of membership function applied in this proposed ANFIS model is Gaussian curve membership. The optimal hyperparameters of ANFIS were selected by using the manual method. In the manual method, each parameter changed in its different types or values. Then, the model accuracy and the correct trend analysis were checked. Finally, the optimal hyperparameters were selected with the proper trend analysis for the highest accuracy, as shown in Table 3.

3. Results and discussion

The ANFIS model was evaluated by conducting two tests. The proposed ANFIS model was first investigated by conducting TrA to ensure that all inputs follow the proper physical behavior. After that, the ANFIS model and studied correlations were compared. Statistical error analysis, namely, (R), standard deviation (SD), average percent relative error (APRE), average absolute percentage relative error (AAPRE), and root mean square error (RMSE), were performed to show the performance of the ANFIS and studied models.

3.1 Trend analysis (TrA)

The trend analysis (TrA) can be used to study the reliability of models. TrA can be applied by changing the studied input between the minimum and maximum values while keeping the

Table 3. Descriptions of the optimal ANFIS model hyperparameters.

Parameter	Description/value
Fuzzy structure	Sugeno-type
Initial FIS for training	genfis2
Membership function type	Dsigmf
Output membership function	Linear
Cluster centre’s range of influence	0.459
Number of inputs	4
Number of outputs	1
Optimization method	Hybrid
Number of fuzzy rules	10
Training epoch number	24
Initial step size	0.3555
Step size decrease rate	0.2
Step size increase rate	2

https://doi.org/10.1371/journal.pone.0272790.t003
other inputs at their constant mean values. The studied input, such as Rs, is plotted as the x-axis and the output P_b as the y-axis [27, 48–50]. The TrA is an essential part of this work, as some researchers used ANFIS, but they have not applied the trend analysis [40]. Without considering the trend analysis, it was clear that the ANFIS model may show fake high accuracy. As a result, the models developed without considering the trend analysis should not be considered as a reliable tool.

The trend analysis was conducted for the ANFIS, and 21 studied models to study the relationships between the inputs (Rs, γ_g, API, T_f) and output P_b to show the physical behavior. In the TrA study, the four independent variables (Rs, γ_g, API, T_f) were selected because most previous models used these variables; nevertheless, the oil formation volume factor was not considered in our model because it is only utilized by [13, 16, 24]. The TrA was performed to represent the proper relationships between the Rs, γ_g, API, T_f and the P_b to show the actual physical behavior for the studied parameters and validated the ANFIS model.

Fig 5 presents the Rs TrA for the ANFIS and all existing models. As shown in Fig 5, the ANFIS and all the previous models show the proper relationships between the Rs and the P_b. Increasing the Rs increases the P_b. However, Farshad’s [23] and Almehaideb’s [13] correlations indicate that the P_b was -812.6 and -207.5 psi at Rs 26 SCF/STB (as shown in Fig 5) because they built their correlation based on Rs ranges from 217 to 1406 and from 128 to 3871 SCF/STB, respectively. Fig 6 indicates that the developed ANFIS model follows the proper relationships between the Rs and the P_b to correct physical behavior. Li et al. [51] showed that increasing the Rs increased the P_b.

The TrA of γ_g for the ANFIS and all current models is demonstrated in Fig 7. The ANFIS and most existing models revealed that the γ_g is inversely proportional to the P_b, which proves the proper relationships between the γ_g and the P_b; nevertheless, Hanafy et al.’s [21] correlation displayed that changing the γ_g does not change the P_b as indicated by the constant trend. This indicates an incorrect relationship between the γ_g and the P_b because γ_g was not considered as

![Fig 5. Rs TrA of the ANFIS and existing models.](https://doi.org/10.1371/journal.pone.0272790.g005)
input in their model. Goma’s [19] correlation showed that the P_b was slightly increased by increasing the γ_g and the correlation indicate improper TrA for γ_g. Omar and Todd’s [24] correlation represented that the P_b decreases and then increases by increasing the γ_g, which is also improper relationships between the γ_g and the P_b. Therefore, Omar and Todd’s [24], Hanafy et al.’s [21], and Goma’s [19] models represent incorrect relationships between the γ_g and the P_b, and hence, improper physical behavior for γ_g trend. Fig 8 illustrated the correct trend γ_g for the ANFIS model. Al-Shammasi [27] proved that growing the γ_g declines the P_b.

Fig 9 shows the TrA of API for the ANFIS and all current models. The ANFIS and most models display the proper relationships between the API and the P_b. The higher the API, the lower the P_b is (Fig 9); however, Dokla and Osman [12], Hanafy et al. [21], and Gomaa [19] models do not show the correct relationships between the API and the P_b, indicating incorrect physical behavior. Dokla and Osman’s [12] correlation showed that the P_b was slightly decreased by rising the API, (Fig 9). Gomaa’s [19] correlation demonstrated that increasing the API also drops the P_b slightly (Fig 9). Hanafy et al.’s [21] equation displayed that the P_b is constant with changing the API (Fig 9). Petrosky and Farshad’s [8] correlation shows that the P_b is -37.37 psi and -145.91 psi at 48.11 and 51.7˚API, Fig 9 because they developed the equation in (16.3–45˚API) range. The ANFIS model presents the correct relationships between the API and the P_b, indicating proper physical behavior, as shown in Fig 10. Al-Shammasi [27] also revealed that increasing the API drops the P_b.

The TrA of the T_f for the ANFIS and all current models is illustrated in Fig 11. As shown in Fig 11, the ANFIS and most current models follow the proper relationships between the T_f and the P_b, increasing the T_f increases the P_b; nonetheless, Dokla and Osman’s [12] equation indicates that the P_b declines by increasing T_f indicating incorrect relationships between the T_f and the P_b. Hanafy et al.’s [21] correlation also displays a constant P_b with increasing the T_f to indicate the improper relationships between the T_f and the P_b. Dindoruk and Christman’s [10] and Arabloo et al.’s [28] correlations represent that the P_b is slightly changed by growing the T_f to show incorrect physical behavior for the T_f trend. The correct T_f trend for the proposed
ANFIS model is clearly represented in Fig 12. The temperature can drop the gas density; therefore, the temperature can increase the P_b.

From the TrA study, we can conclude that all independent parameters (Rs, γ_g, API, T_f) of the ANFIS model represent the proper relationships with the P_b to indicate the correct physical behavior; however, Dokla and Osman’s [12], Omar and Todd’s [24], Hanafy et al.’s [21], and
Goma’s [19] correlation show the improper relationships between the independent parameters and the P_b to indicate the incorrect physical behavior. Petrosky and Farshad’s [8] and Almehaideb’s [13] correlations display some negative P_b because the Rs and API as inputs for these negative values do not include in their study ranges.

Fig 9. API TrA of the ANFIS and existing models.

https://doi.org/10.1371/journal.pone.0272790.g009

Fig 10. API TrA of the ANFIS model.

https://doi.org/10.1371/journal.pone.0272790.g010
3.2 Comparison of the ANFIS model against other models

3.2.1 Cross-plot. Fig 13 shows the cross-plot for the training datasets of the ANFIS model. Most training data are closer to the 45° line to indicate that the ANFIS is a higher accurate model for the training datasets. The (R^2) for the training datasets of the ANFIS model is...
0.9725. Fig 14 presents the cross plot for the testing datasets of the ANFIS model, and most of the testing data are also closer to the 45° line to show that the ANFIS model can accurately predict the P_b for the testing datasets with the (R^2) of 0.9878. Fig 15 displays the cross-plot for the...
ANFIS and all current models studied in this paper. As shown in Fig 15, the ANFIS model is the highest accurate model with (R^2) of 0.9878 compared to all studied models.

3.2.2 Statistical error analysis

Some statistical analysis has been used along with trend analysis and cross-plotting analysis to validate and describe the efficiencies of the proposed ANFIS model. In addition, the ANFIS was compared against the 22 studied models that follow the correct physical behavior. The statistical error analysis applying in this study are (R), RMSE, SD, APRE, AAPRE, maximum and minimum absolute percent relative error (E_{max}) and (E_{min}). The statistical criterion explanations are presented in the appendix (S1 Appendix). The AAPRE and R were used in this research as the leading indicators to compare the ANFIS model’s accuracy with the current models.

The ANFIS and existing models were compared by plotting the AAPRE and R (Fig 16). As displayed in Fig 16, the ANFIS model is the first rank model and has the lowest AAPRE of 6.378% and APRE of -0.99%, and the highest (R) of 0.994. The second rank model is Velarde et al.’s [4] model with the AAPRE of 9%, the APRE of -1.58%, and R of 0.9724. The third rank model is Mehran et al.’s [14] correlation with the AAPRE of 9.75%, the APRE of -3.91%, and R of 0.9699. The last rank model is Petrosky and Farshad’s [8] model with the AAPRE of 76.59%, the APRE of 57.39%, and R of 0.9703.

The ANFIS and all existing models are compared using statistical error analyses AAPRE, APRE, RMSE, SD, E_{min}, and E_{max}. Table 4. The ANFIS model and all studied models are ranked based on the leading indicators AAPRE and R. The ANFIS model is the first rank model and has the lowest AAPRE of 6.38%, APRE of -0.99, RMSE of 9.73, SD of 0.074, E_{min}, of 0.021%, and E_{max} of 50.19% and the highest R of 0.9939. The results indicate that the ANFIS model outperformed all existing models (22 models). The second rank model is Velarde et al.’s [4] correlation that has the AAPRE of 9%, APRE of -1.58, RMSE of 13.04, SD of 0.094, E_{min}, of

![Cross-plot of the ANFIS and existing models](https://doi.org/10.1371/journal.pone.0272790.g015)
0.039, E_{max} of 62.47, and R of 0.9724. The third rank model is Mehran et al.’s [14] correlation and has the AAPRE of 9.75%, APRE of -3.91%, RMSE of 13.60, SD of 0.095, E_{min} of 0.035%, E_{max} of 63.86%, and R of 0.9699. The last rank model is Petrosky and Farshed’s [8] correlation that has the AAPRE of 76.59%, APRE of 57.39%, RMSE of 159.87, SD of 1.406, E_{min} of 0.295%, E_{max} of 784.59%, and R of 0.9703. Comparing the ANFIS and existing models conducts an important means of evaluating all the models’ performance.

4. Conclusions

With 760 global datasets used, the ANFIS model was developed with the trend analysis to robustly and accurately predict the P_b. In addition, the ANFIS mode’s accuracy was compared with 21 existing models utilizing statistical error analysis. In this research, we can conclude the following:

- The trend analysis results of the ANFIS model indicate that the ANFIS model can describe the correct relationships between the independent parameters (R_s, γ_g, API, T_f) and dependent parameter P_b to show the proper physical behavior.

- Some previous correlations fail to represent the proper relationships between the independent parameters and the P_b to indicate incorrect physical behavior.

- The proposed ANFIS model outperformed all 21 existing models and has the lowest AAPRE of 6.38%, APRE of -0.99, RMSE of 9.73, SD of 0.074, E_{min} of 0.021%, and E_{max} of 50.19% and the highest R of 0.9939 compared to 21 studied correlations that follow the correct physical behavior. The ANFIS model shows better results than other models because of its
combination of the FL and ANN performances and better learning ability. The ANFIS can perform a highly non-linear mapping.

- The data randomization was conducted to prevent the model from overfitting or underfitting to obtain the robust and accurate ANFIS model to predict the \(P_b \).

Supporting information

S1 Appendix. (PDF)

Acknowledgments

Special thanks to the Centre of Research in Enhanced Oil Recovery (COREOR), Petroleum Engineering department, Universiti Teknologi PETRONAS for supporting this work.

Author Contributions

Conceptualization: Fahd Saeed Alakbari, Mysara Eissa Mohyaldinn.

Data curation: Fahd Saeed Alakbari.

Formal analysis: Fahd Saeed Alakbari, Ibnelwaleed A. Hussein.

Funding acquisition: Mysara Eissa Mohyaldinn.
Investigation: Mohammed Abdalla Ayoub.
Methodology: Fahd Saeed Alakbari, Mohammed Abdalla Ayoub.
Project administration: Mysara Eissa Mohyaldinn.
Software: Fahd Saeed Alakbari, Mohammed Abdalla Ayoub.
Supervision: Mysara Eissa Mohyaldinn, Ali Samer Muhsan, Ibnelwaleed A. Hussein.
Visualization: Mysara Eissa Mohyaldinn, Ibnelwaleed A. Hussein.
Writing – original draft: Fahd Saeed Alakbari.
Writing – review & editing: Mysara Eissa Mohyaldinn, Mohammed Abdalla Ayoub, Ali Samer Muhsan, Ibnelwaleed A. Hussein.

References
1. Bandyopadhyay P, Sharma A. Development of a new semi analytical model for prediction of bubble point pressure of crude oils. J Pet Sci Eng. 2011; 78: 719–731. https://doi.org/10.1016/j.petrol.2011.06.007
2. Farasat A, Shokrollahi A, Arabloo M, Gharagheizi F, Mohammadi AH. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Process Technol. 2013; 115: 201–214. https://doi.org/10.1016/j.fuproc.2013.06.007
3. Valko PP, McCain WD. Reservoir oil bubblepoint pressures revisited; solution gas–oil ratios and surface gas specific gravities. J Pet Sci Eng. 2003; 37: 153–169. https://doi.org/10.1016/S0920-4105(02)00319-4
4. Velarde J, Blasingame TA, McCain WD. Correlation of Black Oil Properties At Pressures Below Bubble Point Pressure— A New Approach. Annual Technical Meeting. Petroleum Society of Canada; 1997. https://doi.org/10.2118/957-G
5. Standing MB. A pressure-volume-temperature correlation for mixtures of California oils and gases. Drilling and Production Practice. American Petroleum Institute; 1947.
6. Lasater JA. Bubble Point Pressure Correlation. J Pet Technol. 1958; 10: 65–67. https://doi.org/10.2118/957-G
7. Glaso O. Generalized Pressure-Volume-Temperature Correlations. J Pet Technol. 1980; 32: 785–795. https://doi.org/10.2118/8016-PA
8. Petrosky GE, Farshad FF. Pressure-volume-temperature correlations for Gulf of Mexico crude oils. SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1993.
9. De Ghetto G, Paone F, Villa M. Reliability Analysis on PVT Correlations. Paper SPE-28904, presented at the European Petroleum Conference held in London, UK, 25–27 October; 1994.
10. Dindoruk B, Christman PG. PVT Properties and Viscosity Correlations for Gulf of Mexico Oils. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers; 2001. p. 14. https://doi.org/10.2118/71633-MS
11. Al-Marhoun MA. PVT correlations for Middle East crude oils. J Pet Technol. 1988; 40: 650–666.
12. Dokla M, Osman M. Correlation of PVT Properties for UAE Crudes (includes associated papers 26135 and 26316). SPE Form Eval. 1992; 7: 41–46.
13. Almehaideb RA. Improved PVT Correlations For UAE Crude Oils. All Days. SPE; 1997. https://doi.org/10.2118/37691-PA
14. Mehran F, Movagharnejad K, Didanloo A. New correlation for estimation of formation volume factor and bubblepoint pressure for Iranian oil Fields. 1st Iranian Pet Eng Conference. 2006.
15. Bolondzarzadeh A, Hashemi S, Solgani B. The new PVT generated correlations of Iranian oil properties. 4th Iranian Petroleum Engineering Student conference. 2006.
16. Hemmati MN, Kharrat R. A Correlation Approach for Prediction of Crude Oil PVT Properties. All Days. SPE; 2007. https://doi.org/10.2118/104543-MS
17. Mazandarani MT, Agharshi SM. Correlations for predicting solution gas-oil ratio, bubblepoint pressure and oil formation volume factor at bubblepoint of Iran crude oils. European Congress of Chemical Engineering, Copenhagen. 2007.
18. Khamenehchi E, Rashidi F, Rasouli H, Ebrahimian A. Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils. Pet Sci. 2009; 6: 86–90. https://doi.org/10.1007/s12182-009-0016-x

19. Gomaa S. New bubble point pressure correlation for middle east crude oils. Int Adv Res J Sci Eng Tech. 2016; 3: 1–9.

20. Macary SM, EI-Batanoney MH. Derivation of PVT correlations for the Gulf of Suez crude oils. Sekiyu Gakkai Shi. 1993; 36: 472–478.

21. Hanafy HH, Macary SM, EI-Nady YM, Bayomi AA, EI Batanony MH. Empirical PVT Correlations Applied to Egyptian Crude Oils Exemplify Significance of Using Regional Correlations. All Days. SPE; 1997. https://doi.org/10.2118/37295-MS

22. Sharrad M, Abd-Alrahman HH. NEW DERIVED CORRELATIONS FOR LIBYAN CRUDE OIL TO ESTIMATE BUBBLE-POINT PRESSURE. Sci J Appl Sci Sabratha Univ. 2019; 2: 1-13. https://doi.org/10.47891/sabjas.v2i1.1–13

23. Frashad F, LeBlanc JL, Garber JD, Osorio JG. Empirical PVT Correlations For Colombian Crude Oils. All Days. SPE; 1996. https://doi.org/10.2118/36105-MS

24. Omar MI, Todd AC. Development of New Modified Black Oil Correlations for Malaysian Crudes. SPE Asia Pacific Oil and Gas Conference. Society of Petroleum Engineers; 1993. https://doi.org/10.2118/25338-MS

25. Vasquez M, Beggs HD. Correlations for Fluid Physical Property Prediction. J Pet Technol. 1980; 32: 968–970. https://doi.org/10.2118/6719-PA

26. Kartoatmodjo TRS, Schmidt Z. New correlations for crude oil physical properties. 1991.

27. Al-Shammasi AA. Bubble Point Pressure and Oil Formation Volume Factor Correlations. Middle East Oil Show and Conference. Bahrain: Society of Petroleum Engineers; 1999. p. 17. https://doi.org/10.2118/53185-MS

28. Arabi o M, Amooie M-A, Hemmati-Sarapardeh A, Ghazanfari M-H, Mohammad i AH. Application of constrained multi-variable search methods for prediction of PVT properties of crude oil systems. Fluid Phase Equilib. 2014; 363: 121–130. https://doi.org/10.1016/j.fluid.2013.11.012

29. Global distribution of fossil resources. In: Mappi [Internet]. 2009. Available: https://www.mappi.net

30. Alakbari FS, Elkatatny S, Baarimah SO. Prediction of Bubble Point Pressure Using Artificial Intelligence AI Techniques. Day 2 Thu, December 01, 2016. Manama, Kingdom of Bahrain: SPE; 2016. p. 9. https://doi.org/10.2118/184208-MS

31. Yang X, Dindoruk B, Lu L. A comparative analysis of bubble point pressure prediction using advanced machine learning algorithms and classical correlations. J Pet Sci Eng. 2020; 185: 106598. https://doi.org/10.1016/j.petrol.2019.106598

32. Alakbari FS, Mohyaldin n ME, Ayoub MA, Muhsan AS. Deep Learning Approach for Robust Prediction of Reservoir Bubble Point Pressure. ACS Omega. 2021; 6: 21499–21513. https://doi.org/10.1021/acs.omega.1c03750 PMID: 34471621

33. Shamshirband S, Petković D, Hashim R, Motamed S. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine. PLoS One. 2014; 9: e103414. https://doi.org/10.1371/journal.pone.0103414 PMID: 25075621

34. Akbarzadeh S, Arol AK, Ramesh S, Khanmirzaei MH, Nor RM. Prediction of conductivity by adaptive neuro-fuzzy model. PLoS One. 2014; 9: e92241. https://doi.org/10.1371/journal.pone.0092241 PMID: 24658582

35. Ayoub M, Shien G, Diab D, Ahmed Q. Modeling of Drilling Rate of Penetration Using Adaptive Neuro-Fuzzy Inference System. Int J Appl Eng Res. 2017; 12: 12880–12891.

36. Hossain M, Mekhilef S, Afifi F, Halabi LM, Olatomiwa L, Seyedmahmoudian M, et al. Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability. PLoS One. 2018; 13: e0193772. https://doi.org/10.1371/journal.pone.0193772 PMID: 29702645

37. Sambo CH, Hermana M, Babasari A, Janjuhah HT, Ghosh DP. Application of Artificial Intelligence Methods for Predicting Water Saturation from New Seismic Attributes. Offshore Technology Conference Asia. Kuala Lumpur, Malaysia: Offshore Technology Conference; 2018. p. 8. https://doi.org/10.4043/28221-MS

38. Hamdi Z, Chenxi D. Accurate Prediction of CO2 Minimum Miscibility Pressure Using Adaptive Neuro-Fuzzy Inference Systems. SPE Gas & Oil Technology Showcase and Conference. Dubai, UAE: Society of Petroleum Engineers; 2019. p. 17. https://doi.org/10.2118/198655-PMS

39. Ayoub MA, Zainal SN, Efiah ME, Ishak K, Hani KE, Ahmed Q. Revisiting the Coefficient of Isothermal Oil Compressibility Below Bubble Point Pressure and Formulation of a New Model using Adaptive Neuro-Fuzzy Inference System Technique. International Petroleum Technology Conference. International Petroleum Technology Conference; 2020.
40. Shojaei M-J, Bahrami E, Barati P, Riahi S. Adaptive neuro-fuzzy approach for reservoir oil bubble point pressure estimation. J Nat Gas Sci Eng. 2014; 20: 214–220.
41. Azad A, Manoochehri M, Kashi H, Farzin S, Karami H, Nourani V, et al. Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. J Hydrol. 2019; 571: 214–224.
42. Jang J-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 1993; 23: 665–685.
43. Jang J-S, Sun C-T. Neuro-fuzzy modeling and control. Proc IEEE. 1995; 83: 378–406.
44. Azad A, Farzin S, Sanikhani H, Karami H, Kisi O, Singh VP. Approaches for optimizing the performance of adaptive neuro-fuzzy inference system and least-squares support vector machine in precipitation modeling. J Hydrol. 2021; 593: 126492.
45. Isanta Navarro R. Study of a neural network-based system for stability augmentation of an airplane. 2013.
46. Tahmasebi P, Hezarkhani A. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci. 2012; 42: 18–27. https://doi.org/10.1016/j.cageo.2012.02.004 PMID: 25540468
47. Maguire LP, Roche B, McGinnity TM, McDaid LJ. Predicting a chaotic time series using a fuzzy neural network. Inf Sci (Ny). 1998; 112: 125–136.
48. Osman SA, Ayoub MA, Aaggour MA. Artificial neural network model for predicting bottomhole flowing pressure in vertical multiphase flow. Society of Petroleum Engineers https://doi.org/10.2118/93632-MS 2005.
49. Alakbari FS, Mohyaldin ME, Ayoub MA, Muhasan AS, Hussein IA. A robust fuzzy logic-based model for predicting the critical total drawdown in sand production in oil and gas wells. Wang J, editor. PLoS One. 2021; 16: e0250466. https://doi.org/10.1371/journal.pone.0250466 PMID: 33951240
50. Ayoub MA, Elhadi A, Fatherthman D, Saleh MO, Alakbari FS, Mohyaldin ME. A new correlation for accurate prediction of oil formation volume factor at the bubble point pressure using Group Method of Data Handling approach. J Pet Sci Eng. 2022; 208: 109410.
51. Li S, Li Z, Wang Z. Experimental study on the performance of foamy oil flow under different solution gas–oil ratios. RSC Adv. 2015; 5: 66797–66806. https://doi.org/10.1039/C5RA08348F