The coupling of the $X^1\Sigma^+$ and $a^3\Sigma^+$ states of KRb

A. Pashov
Department of Physics, Sofia University, 5 James Bourchier boulevard, 1164 Sofia, Bulgaria

O. Docenko, M. Tamanis, and R. Ferber
Department of Physics and Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Rainis boulevard, Riga LV-1586, Latvia

H. Knöckel and E. Tiemann
Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

A comprehensive study of the electronic states at the 4s+5s asymptote in KRb is presented. Abundant spectroscopic data on the $a^3\Sigma^+$ state were collected by Fourier-transform spectroscopy which allow to determine an accurate experimental potential energy curve up to 14.8 Å. The existing data set (C. Amiot et al. J. Chem. Phys. 112, 7068 (2000)) on the ground state $X^1\Sigma^+$ was extended by several additional levels lying close to the atomic asymptote. In a coupled channels fitting routine complete molecular potentials for both electronic states were fitted. Along with the line frequencies of the molecular transitions, recently published positions of Feshbach resonances in ^{40}K and ^{85}Rb mixtures (F. Ferlaino et al. Phys. Rev. A 74, 039903 (2006)) were included in the fit. This makes the derived potential curves capable for an accurate description of observed cold collision features so far. Predictions of scattering lengths and Feshbach resonances in other isotopic combinations are reported.

PACS numbers: 31.50.Bc, 33.20.Kf, 33.20.Vq, 33.50.Dq

I. INTRODUCTION

Along with NaK and NaRb, the KRb molecule is one of the most extensively studied among the mixed alkalis. The ground state $X^1\Sigma^+$, the lowest singlet states and some of the triplet states were studied by various spectroscopic techniques. It is therefore surprising that the triplet state $a^3\Sigma^+$ was not characterized experimentally so far.

In recent years, understanding interactions between different alkali-metal species in their singlet and triplet ground states of the pairs became important due to the experiments in mixed atomic traps. This stimulated investigations of the molecular states as well. Using molecular spectroscopy, several ground state asymptotes were examined: NaRb [1], NaCs [2], LiCs [3]. In the present study we applied the same technique for KRb. This molecule is particularly interesting since several groups are operating two-species traps, cold KRb molecules have been already formed, positions of several Feshbach resonances in $^{40}\text{K}^{87}\text{Rb}$ have been measured [4, 5], and new ones are still being searched for. The study of the (4s)K+(5s)Rb asymptote has therefore several strong motivations: (i) to obtain complete and accurate potentials for the $X^1\Sigma^+$ and $a^3\Sigma^+$ states, to be able to model cold collisions; (ii) to prove of the validity of the isotopic scaling rules, i.e. applying the potentials derived for the main isotopic combination $^{39}\text{K}^{85}\text{Rb}$ to reproduce the experimental observations (including the Feshbach resonances) in other isotopes of KRb; (iii) to predict new Feshbach resonances that can be later verified and precisely measured experimentally with much reduced effort for the search procedure.

Along with the theoretical calculations of the long range dispersion coefficients, there is only one theoretical work yet devoted to the study of the electronic structure of KRb [11].

The ground state $X^1\Sigma^+$ of KRb was first studied for $v'' \leq 44$ at high resolution by Ross and coworkers [12]. A significant step towards the asymptote was done in Ref. [13], where an accurate potential energy curve for v'' up to 87 was derived. In both investigations the laser induced fluorescence to the KRb ground state was recorded by exciting the $A^3\Sigma^+$ state by radiation of a Ti:Sapphire laser. The B(1)$^1\Pi$ state was studied in Refs. [14, 15, 16].

Numerous perturbations were observed due to mixing with the nearby lying triplet states. Therefore in order to study the $a^3\Sigma^+$ state it was expected to follow straightforward the strategy which was successfully applied for the investigation of the same states in NaRb [1] and NaCs [2], i.e. to use the perturbations in the B(1)$^1\Pi$ state as a window to the triplet manifold.

II. EXPERIMENT

The KRb molecules were produced in a stainless steel heat-pipe similar to that developed for NaRb [1] and NaCs [2]. Metallic K and Rb were mixed in an approximate mass ratio 1:1. The heat-pipe was operated typically at a temperature of 550 K with 2-5 mbar of Ar as buffer gas. The Laser Induced Fluorescence (LIF) was excited with narrow band single mode lasers and resolved with a Fourier Transform Spectrometer (FTS) Bruker 120 HR.

For excitation of the B(1)$^1\Pi$ state we used a Coher...
ent 599 linear laser with DCM dye delivering a power of about 70 mW. In the region between 15000 cm$^{-1}$ and 15300 cm$^{-1}$ we found a lot of transitions in the B-X band system. Along with them, transitions in the similar system of K$_2$ were often seen with comparable intensity. Going to higher frequencies the transitions in K$_2$ dominated those in KRb. It is worth noting here, that when we tested a heat-pipe filled only with potassium, the fluorescence due to K$_2$ at similar experimental conditions (temperature, laser frequency, laser power) was at least a factor of 3 stronger than in the KRb heat-pipe. Obviously in case of mixtures the concentration of molecules cannot be derived simply from the saturated vapour pressure of the correspondent pure metals as often stated in spectroscopic papers. This is confirmed also by the fact that Rb$_2$ fluorescence was not observed in the studied spectral region, although Rb$_2$ was reported to absorb there [17, 18, 19].

The fluorescence from the B state led usually back to the ground X$^1\Sigma^+$ state. However when exciting a perturbed level with triplet admixture, fluorescence down to the triplet state a$^3\Sigma^+$ was seen as well. It appeared in the region of 11000-12000 cm$^{-1}$ well separated from the B-X fluorescence. An example is given in Fig. 1 where the fluorescence progression extends close to the dissociation asymptote, which can be concluded from the large decrease of the vibrational spacing below 10950 cm$^{-1}$. When resolved by the FTS with a resolution of typically 0.03 cm$^{-1}$ most lines to the a$^3\Sigma^+$ state show the expected hyperfine structure (HFS) similar to that observed in Ref. [1, 2]. In those cases it could be explained by the Fermi contact interaction [20] using the atomic HFS parameters of Rb and K [21]. However, contrary to the NaRb and NaCs cases [1, 2], there was also a large number of progressions all lines of which show unusual HFS (see Fig. 2). This we shall discuss in the following section III.

The ground state X$^1\Sigma^+$ was studied in Ref. [13] up to $v''=87$. The classical outer turning point of the last observed level is about 11.3 Å. This value differs from that given in the title of Ref. [13], namely 10 Å, since the latter corresponds to the turning point of the level ($v''=87, J''=0$), but in fact the authors observed that vibrational level for $J''=51$ which shifts the classical turning point to a larger internuclear distance. This distance, however, is still too small in order to study the coupling between the a$^3\Sigma^+$ and X$^1\Sigma^+$ states due to the HFS mixing. Therefore, we revisited the X$^1\Sigma^+$ state asymptote in order to extend the experimental information closer to the dissociation limit. For this purpose we excited the A$^1\Sigma^+ - X^1\Sigma^+$ system using a Ti:Sapphire laser (from Tekhnoscan) pumped by a 10 W cw frequency doubled Nd:YAG laser (Coherent Verdi 10) and repeated as first steps measurements from [13] for internal calibration check. Then we extended the experimental data set by recording progressions from the same upper vibrational level but with different J'. It is worth noting that some of the lines of the progression reported in Ref. [13] which go to $v_X''=87$ turned out to be overlapped with stronger lines from different progressions. Exciting other upper vibrational levels that would give fluorescence to high lying ground state levels was not applicable due to the presence of strong K$_2$ fluorescence in the same spectral region.

We searched also for transitions to the a$^3\Sigma^+$ state due to the so called long-range-changeover which provided precious information in the case of NaRb [1] and LiCs [2]. By exciting a B state level close to the atomic asymptote (in those cases ($n^2S^+ + m^2P^+$)) we actually approach the range where Hund’s case (c) starts to be more appropriate than Hund’s case (a) (due to the large fine structure splitting of the lowest p state in Rb and Cs). As a consequence, a decay from such excited levels to both X$^1\Sigma^+$ ($\Omega = 0^+$) and a$^3\Sigma^+$ ($\Omega = 1$ component) states is possible, which cannot be explained within the Hund’s case (a) or (b) models either due to selection rules or due to vanishing Franck-Condon factors for the case of local perturbations. The case of KRb, however, turned out to be more similar to that of NaCs [2], where the long-range changeover appeared rather fragmentary and provided only few transitions to near asymptotic levels in the X$^1\Sigma^+$ and a$^3\Sigma^+$ states.

III. ANALYSIS

Our previous experience [1, 2, 3] has shown, that the states a$^3\Sigma^+$ in the heteronuclear alkali-metal dimers can be modeled within the experimental resolution in the Born-Oppenheimer approximation by a single potential curve while the hyperfine splitting is well described.
The progression starts from an upper state level with $J''=7$ and only the intensity varies, the overall pattern of the right transition (to the $v''=12$, $N''=9$) a $^3\Sigma^+$ state level) remains almost unchanged and only the intensity varies, the overall pattern of the right transition (to the $(v''=6, N''=11)$ level) changes; for the blue and red detuned excitation frequencies, different components of the hyperfine triplet are missing.

Within our resolution with the atomic hyperfine parameters. This is possible if the hyperfine structure does not depend on the internuclear separation. Only close to the atomic asymptote it is necessary to take into account the mixing with the ground state $X^1\Sigma^+$.

The usual appearance of the hyperfine splitting of the $a^3\Sigma^+$ levels is shown in Fig. 2 (inset of left graph). The splitting into three components is due to the interaction of the electrons with the nuclear spin of the Rb atoms. Each of these components is further split due to the interaction with the K nuclear spin. This interaction is small, contrary to the case of Na in NaRb for example [1], and is below our experimental resolution.

In the case of KRb we observed for the first time several progressions where the HFS differs from the expected one (see Fig. 2). We made special efforts to study these “unusual” features within the possibilities of our experimental setup. We found out that within a given progression the hyperfine splitting is always independent of the rotational and vibrational quantum numbers of the $a^3\Sigma^+$ (both for the usual and the unusual cases). At the same time transitions to one given $a^3\Sigma^+$ level coming from different excited levels can show different structure. Therefore, we concluded that it should be the structure of the upper state levels which is responsible for the deviations from the expected HFS. This idea was confirmed by the observation that the unusual HFS changes its appearance when the excitation laser is detuned within the Doppler profile of the molecular transition. In Fig. 3 we show results of such an experiment. The laser excites simultaneously two transitions, one ($(v''=0, J''=9)\rightarrow(v', J'=9)$) gives rise to a progression with usual HFS ($N''=7, 9, 11$ are involved, [22]) and the second ($(v''=0, J''=11)\rightarrow(v', J'=12)$, the assignment of J' is not certain, which is unimportant for the analysis of the ground states) - with unusual one ($N''=11, 13$ are involved). We chose a portion of the fluorescence spectrum where two lines, each belonging to one of the progressions, appear closely together. Then we set the laser frequency within the Doppler profile of the transitions at the three position (center and \pm...
0.018 cm$^{-1}$ and observed the change of the HFS of these lines. It is clearly seen in Fig. 3 that while the structure of the line with $N''=9$ remains almost unchanged and varies only in intensity, the overall pattern of the line with $N''=11$ changes. For the blue and red detuned excitation frequencies, different components of the hyperfine triplet are missing. Moreover, from the relative changes of the intensities of the lines from one laser frequency to another we can expect that the effective widths of the excitation transitions are different. The transition producing the progression with unusual HFS could be broader, which is probably due to HFS of the upper state level, being comparable with the Doppler width of the transition. This hypothesis seems to be reasonable if we compare it with the HFS of the $(2)^3\Sigma^+$ state in NaRb observed by Matsubara et al. in Ref. [23]. So, presently, we understand our observations in the following way: The HFS of the excited complex of singlet and triplet states in KRb is in some cases larger than the Doppler width of the transitions. The laser with given frequency excites a selected set of hyperfine components which in turn does not give fluorescence to the full multiplet of the $a^3\Sigma^+$ levels. Therefore, the observed structure of the spectral lines reflects the HFS both of the lower and the upper electronic states.

As a center frequency for a given hyperfine multiplet we chose the frequency of the central component of the HFS triplet (see the left part of Fig. 2) which is normally also the strongest. For the potential fit we used these frequencies and included the term energy of the upper level as a free parameter, common for all frequencies forming one progression. This selection is possible, because in a given progression the appearance of the HFS turned out to be independent of the vibrational and rotational quantum numbers within the experimental resolution. In case of progression with unusual HFS, we took a characteristic feature of the hyper fine group of lines (usually the strongest peak). In this way we were able to reproduce correctly the vibrational and rotational spacings of the $a^3\Sigma^+$ within a progression. We did not make efforts to reproduce the unusual HFS of the transitions, because our present understanding of the problem indicates that we need to include also the HFS of the upper state, the study of which is outside the scope of this work and would ask for a different experimental setup to get sufficient data for a convincing analysis.

A. The $a^3\Sigma^+$ state

Establishing the rotational numbering of the triplet progressions was straightforward because almost always they were accompanied by the corresponding progression to the ground $X^3\Sigma^+$ state. For finding the proper vibrational numbering we first decided to rely on the possibility of scaling the molecular constants of one electronic state with the ratio of the reduced masses of different isotopomers. Experimentally, progressions belonging to the molecule with the less abundant isotope 87Rb were easy to distinguish by the broader HFS compared to 85Rb. In our initial analysis we had several progressions in 39K85Rb and one in 39K87Rb. The range of N'' was from 31 to 68 and ν'' spanning a range of 15 vibrational quanta. Several fits of Dunham-type coefficients with different vibrational assignment including both isotopomers indicated the most probable one which we took for further analysis of the experimental data and potential energy curve (PEC) construction.

Once the initial vibrational numbering was suggested, we fitted a potential curve for the $a^3\Sigma^+$ state using a point-wise representation [24] and used it to assign new vibrational progressions. Periodically, as the size of the experimental data set significantly increased, the PEC was refined. We noticed, however, that for larger N'' there was a growing systematic disagreement between the observed and the calculated transition frequencies, which reached about 0.05 cm$^{-1}$ for the highest N''. After all experimental data were assigned, this problem remained. Similarly to the $a^3\Sigma^+$ state in NaRb, we can exclude the possibility for significant spin-rotational and second order spin-orbit effects in the $a^3\Sigma^+$ state of KRb. Therefore, we searched for a connection between these systematic disagreements and the presence of unusual HFS of the transitions to the $a^3\Sigma^+$ state levels - a phenomenon observed only in KRb up to now. Careful examination of the spectra and collection of new experimental observations proved that such a connection is not indicated by our data set. Therefore, we were forced to revise the initially established vibrational numbering, since our experience from the $a^3\Sigma^+$ state in NaRb had shown that a wrong vibrational numbering could lead to similar systematic disagreements for high rotational quantum numbers. We tried several hypothesis of shifting ν'' by up to 2 vibrational quanta and finally for one of them we got an excellent description of the whole data set within the experimental uncertainty.

Here we want to direct special attention to this problem, because it is common practice to establish vibrational numbering by using the mass relations between the isotopes. Our experience in NaRb and KRb $a^3\Sigma^+$ states demonstrates now, that given a limited set of levels with assinged rotational and vibrational quantum numbers, it is still possible to achieve an almost satisfactory quality of the fit assuming an incorrect vibrational assignment. In both molecules, discussed as examples here, we were able to construct PECs that fit the experimental data up to $N''=70$, but turned out to be systematically inadequate when going to higher N''. It is important to note also that in both cases the lowest vibrational levels ($\nu''=0-2$ for KRb) were not observed experimentally thus missing in the data field.

Finally, the analysis of our experimental data led to the assignment of 2400 transition frequencies to about 1100 rovibrational levels in the $a^3\Sigma^+$ state in KRb. In Fig. 4 the range of the observed triplet state energy levels is presented. The full list of the transition frequencies is...
After the assignment of the levels of the $a^3\Sigma^+$ state and the derivation of a preliminary potential for it, we made first coupled channel calculations including the two states correlated to the $4s+5s$ atomic asymptote and the hyperfine interaction [1]. The purpose was to determine states correlated to the $4s+5s$ atomic asymptote and the derivation of a preliminary potential for it, we were able to extend the highest observed vibrational levels with a wider range of J''. Therefore, we corrected the experimental data with the calculated potentials using single channel fits and then we performed coupled channels calculations and determined the shifts due to the interaction between the states. As a next step, we corrected the experimental data with the calculated corrections, obtaining in this way “adiabatic” data sets, i.e. data sets that would have been observed if the states of interest should be the same, but overlapping KRb or K$_2$ lines should be shifted or disappear. As an example, we show in Fig. 5 progressions starting from $(v''=8, J''=50)$ for the upper trace and $(v''=8, J''=52)$ for the lower trace. In order to make a reliable connection in the energy scale between the $X^1\Sigma^+$ and the $a^3\Sigma^+$ states we added due to the interaction between the states. As a next step, we corrected the experimental data with the calculated corrections, obtaining in this way “adiabatic” data sets, i.e. data sets that would have been observed if the states

IV. POTENTIALS

The full description of the experimental data needs a model including adiabatic PECs of the two electronic states and parameters that describe the coupling between them due to the hyperfine interaction. Similarly to the approach adopted in Refs. [11,12] we first constructed the potentials using single channel fits and then we performed coupled channels calculations and determined the shifts due to the interaction between the states. As a next step, we corrected the experimental data with the calculated corrections, obtaining in this way “adiabatic” data sets, i.e. data sets that would have been observed if the states
would not couple. Afterwards the whole procedure was repeated until the results of the coupled channels calculations agreed with the experimental observations.

For the potential construction we first used the pointwise representation. In the initial stages of fitting it has the advantage to be very flexible, achieving a convergence in only few iterations. In this way the potential curve was refined following the growth of the experimental data set, several hypothesis of the vibrational numbering in the $a^3\Sigma^+$ state were tested and also some wrong line assignments were identified. For the coupled channels fit the pointwise potentials were transformed into analytic form with which the number of free parameters is reduced by almost a factor of two.

We split the representation of the potentials into three regions: the repulsive wall ($R<R_{\text{inn}}$), the asymptotic region ($R>R_{\text{out}}$), and the intermediate region in between. The analytic form of each potential in the intermediate range is described by a finite power expansion with a nonlinear variable function ξ of internuclear separation R:

$$\xi(R) = \frac{R - R_m}{R + b R_m}$$

$$U_{\text{IR}}(R) = \sum_{i=0}^{n} a_i \xi(R)^i$$

where $\{a_i\}$ are fitting parameters and b and R_m are chosen during the transform process from the spline representation to the analytic one, R_m is close to the value of the equilibrium separation. The potential is continuously extrapolated for $R < R_{\text{inn}}$ with:

$$U_{\text{SR}}(R) = A + B/R^6$$

by adjusting the A and B parameters.

For large internuclear distances ($R > R_{\text{out}}$) we adopted the standard long range form of molecular potentials:

$$U_{\text{LR}}(R) = U_\infty - C_6/R^6 - C_8/R^8 - C_{10}/R^{10} \pm E_{\text{exch}}$$

where the exchange contribution is given by

$$E_{\text{exch}} = A_{\text{ex}} R^\gamma \exp(-\beta R)$$

and U_∞ is the energy of the atomic asymptote (excluding the hyperfine energies) with respect to the minimum of the $X^1\Sigma^+$ state. It coincides with the dissociation energy of this state, D_c^X. The exchange energy is repulsive for the triplet state (plus sign in 4) and attractive for the singlet state (minus sign). All parameters in Eqs. 4 and 5 are common for the $X^1\Sigma^+$ and the $a^3\Sigma^+$ states.

As a first guess we used the theoretical estimates of long range parameters published by Derevianko et al. and Porsev et al. for the $X^1\Sigma^+$ and the triplet $a^3\Sigma^+$ state. For the exchange energy amplitude we adopted the estimation from theoretical potentials in Ref. 11. The continuation at R_{out} was obtained smoothly by variation of U_∞ or a_0, the latter is preferred because the dissociation asymptote is taken as common energy reference for both states and set to zero here.

For the coupled channels calculations the hyperfine interaction is taken into account as caused by the Fermi contact interaction. The effective Hamiltonian for the electronic spin S and the nuclear spin I defines the interaction parameters:

$$H = A_{\text{RB}} \cdot S_{\text{RB}} \cdot I_{\text{RB}} + A_{K} \cdot S_{K} \cdot I_{K}$$

From the experimental spectra the A_{K} and A_{RB} constants could be determined applying Hund’s case bγ_S as basis. Generally, the molecular coupling parameters correspond to the atomic constants A. But for atoms forming a diatomic molecule the dependence of these parameters on the bond length and thus on the vibrational and rotational energy difference of both states and set to zero here.

For the coupled channels calculations the hyperfine interaction is taken into account as caused by the Fermi contact interaction. The effective Hamiltonian for the electronic spin S and the nuclear spin I defines the interaction parameters:

$$H = A_{\text{RB}} \cdot S_{\text{RB}} \cdot I_{\text{RB}} + A_{K} \cdot S_{K} \cdot I_{K}$$

With the definitions by equations 1 to 3, the iteration process of potential fitting and calculation of the corrections by singlet-triplet coupling was performed on all spectroscopic observations of the $X^1\Sigma^+$ state by and from the present work and of the $a^3\Sigma^+$ state. It is especially important to note that we obtained a large set of fluorescence progressions of $X^1\Sigma^+$ and $a^3\Sigma^+$ with a common excited level, which fixes the relative energy positions of singlet and triplet level schemes precisely and gives information on the exchange energy from levels close to the dissociation asymptote. In total, 12502 transition frequencies were contained in the fit and 68 free parameters were varied, which gave a dimensionless standard deviation $\sigma = 0.68$ for both states together.

Tables II and III present these parameters, but the values actually given there are from the final step of fitting described in the following section including data from cold collision studies of other authors. For the convenience of the reader also the position of the potential minimum in energy (T_e) and internuclear separation (R_e) is given in both tables.
Table I: Parameters of the analytic representation of the $X^2\Sigma^+$ state potential. The energy reference is the dissociation asymptote. Parameters with * are set for continuous extrapolation of the potential.

$R < R_{\text{inn}} = 3.000$ Å	$R < R_{\text{inn}} = 4.956$ Å
A^*	A^*
b	b
R_{inn}	R_{inn}
a_0	a_0
a_1	a_1
a_2	a_2
a_3	a_3
a_4	a_4
a_5	a_5
a_6	a_6
a_7	a_7
a_8	a_8
a_9	a_9
a_{10}	a_{10}
a_{11}	a_{11}
a_{12}	a_{12}
a_{13}	a_{13}
a_{14}	a_{14}
a_{15}	a_{15}
a_{16}	a_{16}
a_{17}	a_{17}
a_{18}	a_{18}
a_{19}	a_{19}
a_{20}	a_{20}
a_{21}	a_{21}
a_{22}	a_{22}
a_{23}	a_{23}
a_{24}	a_{24}
a_{25}	a_{25}
a_{26}	a_{26}
a_{27}	a_{27}
a_{28}	a_{28}
a_{29}	a_{29}
a_{30}	a_{30}
a_{31}	a_{31}
a_{32}	a_{32}
a_{33}	a_{33}
a_{34}	a_{34}
a_{35}	a_{35}
a_{36}	a_{36}

Table II: Parameters of the analytic representation of the $a^3\Sigma^+$ state potential. The energy reference is the dissociation asymptote. Parameters with * are set for continuous extrapolation of the potential.

$R < R_{\text{inn}} = 3.000$ Å	$R < R_{\text{inn}} = 4.956$ Å
U_∞	U_∞
C_6	C_6
C_8	C_8
C_{10}	C_{10}
A_{xx}	A_{xx}
γ	γ
β	β

Derived constants:
- equilibrium distance: $R^2_e = 5.9029(1)$ Å
- electronic term energy: $T^2_e = -249.03(10)$ cm$^{-1}$

Derived constants:
- equilibrium distance: $R^2_e = 4.06770(5)$ Å
- electronic term energy: $T^2_e = -249.031(10)$ cm$^{-1}$
V. COLD COLLISIONS

As it was already mentioned in the introduction, Feshbach resonances for 40K87Rb were observed by several groups [3, 6]. In this section we apply the derived potentials to calculate these Feshbach resonances and compare them with observations. It is important to note that the spectroscopic observations of the present study were done on different isotopomers, thus application of the derived potentials for the Feshbach resonances assumes the validity of the Born-Oppenheimer approximation within the desired accuracy. We use for the comparison the s-wave resonances observed by Ref. [3], because these data represent the largest set and come from the same lab, thus they should not show possible internal inconsistency like calibration errors of the magnetic field. All calculated resonances were found within 50 Gauss from the observed ones, this deviation is not surprisingly large because these calculations are extrapolations out of the range of spectroscopic observations; the largest outer turning point of observed levels is at 12.6 Å for the singlet state and at 14.8 Å for the triplet state being 6.4 cm$^{-1}$and 2.3 cm$^{-1}$below the dissociation asymptote, respectively. This indicates, that the spectroscopic observation ends within the changeover to the long range behavior and the quality of the extrapolation follows more from the reliability of the theoretical estimates of the dispersion coefficients for than from our experimental data.

Thus the measured Feshbach resonances contain information on the long range function. To include them in the total potential determination we set up a non-linear least squares fitting code for the dispersion parameters, which contains the scattering calculations as subroutine and searches for the maximum of the elastic rate coefficient which corresponds to the observed Feshbach resonance. The resonances have been observed by trap loss of potassium, thus by an inelastic process, which will need three body collisions. As very often assumed, the three body cross section should be enhanced by the condition of a two body Feshbach resonance. The calculations were done for a temperature of 1μK and use the accuracy of the magnetic field of 0.2 G, as stated in Ref. [4], as uncertainty for each individual observation. In a first step the resonances were fitted by varying the dispersion terms C_6 and C_8, only. With the new total potentials asymptotic levels of pure singlet ($v=97, 98, 99$) and triplet ($v=29, 30, 31$) states were calculated and used as input for a new fit of the single channel calculations. Error limits for these levels were estimated from the fit of the resonances to be about 100 kHz. In the new fit of the inner part of the potentials the coefficient C_{10} was chosen as an additional free parameter. With this result a new iteration was started. Only two such iterations, resonance fit followed by single channel fit, were needed for convergence. The final results are given in Table [11] for $X^1\Sigma^+$ and in Table [111] for $a^3\Sigma^+$.

The ten s-wave Feshbach resonances could be fitted to a standard deviation of $\sigma = 1.37$ and show on average a systematic deviation of $+0.05$ G, i.e. the observations are at larger magnetic fields than the results from the fit. This fit of the resonances is slightly better than the one published in [3]: $\sigma = 1.66$ and mean deviation $+0.04$ G, and has the additional advantage, that all spectroscopic observations are equally well described as stated in the previous section. All long range parameters are close to the theoretical predictions for, which indicates that we have obtained a physically consistent model for the two electronic states correlated to the atomic ground states 4s K+5s Rb. It will be applied now to calculate an overview of expected collision properties at low kinetic energy, the upper limit of which is not easy to estimate because of the artificial repulsive branches of the potentials (see eq. 8).

Ferlaino et al. [3] give a list of singlet and triplet scattering lengths for all possible isotope combinations of KRB with natural abundance and calculate the scattering length of the lowest hyperfine input channel of KRB. For the application of mass scaling they used full potentials from other sources which give for 40K87Rb as number of supported vibrational levels 98 for singlet and 32 for triplet. The potentials derived in the present work support also 32 for triplet, however 100 for singlet. Such possible variation was taken into account by the error limits stated in [4]. Table [111] compares our results with those from Ferlaino et al. The two columns, labeled as a_{lowest}, show scattering lengths of the lowest Zeeman level in each case of the isotope pair, e.g. for 39K + 85Rb $f_K=1$, $m_K=1$ and $f_{85}=2$, $m_{85}=2$.

Certainly, for 40K87Rb the results closely agree, but for the other isotopomers significant differences, especially for the singlet case appear, which reflects the different number of supported vibrational levels within the respected potentials of this state.

In the experiments by Ferlaino et al. [3] and Ospelkaus et al. [6] also p wave resonances and s wave resonances coupled to d levels are reported. We checked if these are also well described with the present potentials. Especially in [6] the splitting between $m_l=0$ and $m_l=\pm 1$ of a p wave is reported and it gives the opportunity to check if the spin-spin or second order spin-orbit coupling for the triplet state needs to be adjusted which both together can be described by the effective operator [27]:

$$H_{SS} = \frac{2}{3}\lambda (3S_z^2 - S^2).$$

(7)

λ is a function of internuclear separation R and typically is derived from spectroscopic data as an expectation value of a specific vibrational level. Here we use simple functional forms to incorporate the pure dipole-dipole contribution for the spin-spin interaction as a function $1/R^4$ and the spin-orbit part as an exponential function reflecting effectively an overlap integral of the electronic distribution of the two atoms:
\(\lambda_{SS} = -\frac{3}{4}a^2 \left(\frac{1}{R^3} + a_{SO} \exp \left(-b(R - R_{SO}) \right) \right) \) \((8) \)

All quantities are given in atomic units, \(\alpha \) is the fine structure constant and \(a_{SO}, b, \) and \(R_{SO} \) are the model parameters for the second order spin-orbit contribution. Since the data in hand cannot be sensitive to the actual function, we selected values for \(b \) and \(R_{SO} \), which are comparable to the example of Rb2 \([28] \) (\(b= 0.7196 \ a_{0}^{-1} \) and \(R_{SO}= 7.5 \ a_{0} \)) and fitted the parameter \(a_{SO} \) which gives \(a_{SO}= -0.013 \ a_{0}^{-3} \) \((a_{0}= 0.5292 \times 10^{-10} \text{ m}) \). The result shows that the first part in eq. 8 dominates in the internuclear separation interval \(R > 12a_{0} \) important for the bound levels of the triplet state which determine the Feshbach resonances.

Taking this result into account, the four resonances reported in \([3, 4] \) involving \(l = 1 \) and 2 were calculated. The \(l = 1 \) resonances were found within the experimental accuracy, and it is predicted that the resonance at 456G is split for \(m_l=0, \pm 1 \) by about 0.1 G where the component \(m_l=0 \) is higher in field than the others. This is opposite to the case of the observed resonance at 515 G. The \(l = 2 \) resonances were found above the observed magnetic field but not more than 0.7 G, the reason for this difference is presently unclear. These resonances are very sharp, the calculated rate constants of the corresponding elastic collisions have half widths of less than 0.001 G, which depends on the magnitude of the above mentioned SS coupling. No value was given in \([3] \) for their calculations of the widths.

VI. CONCLUSIONS

An extensive dataset on the \(a^3\Sigma^+ \) state of KRb was collected covering energy levels in a wide range of vibrational and rotational quantum numbers in \(^{39}\text{K}^{85}\text{Rb} \) and \(^{40}\text{K}^{87}\text{Rb} \). The classical turning point of the last observed level \((v' = 25, J' = 26) \) lies at 14.6 Å on the fitted rotationless potential energy curve. The long range parameters \(C_6, C_8, \) and \(C_{10} \) deviate only slightly from the theoretical estimates by ref. \([3, 10] \), but we should remind the reader, that the present data set does not allow to determine independently all three parameters. Thus due to correlations between those of the data analysis, there is no contradiction to those of the theory. But for modeling of cold collisions one should use the values reported in Tables 1 and 11 of the present work.

The complete determination of the potential curves allows for reliable extrapolation to the dissociation limit and thus their depths. Tables 1 and 11 give 4217.815(10) cm\(^{-1}\) and 249.031(10) cm\(^{-1}\) for the respective dissociation energies. Recently, Wang et al. \([29] \) reported about an independent determination of the dissociation energy of the singlet state using a photoassociation-depletion process to obtain binding energies of loosely bound vibration levels, namely \(v = 87 \) and 89. The dissociation energy was derived by adding level energies with respect to the minimum of the potential curve as reported in Ref. \([13] \) by a near-dissociation expansion (NDE) approach. The final value 4217.822(3) cm\(^{-1}\) agrees with ours within the given error limits. But for estimating the error limit Wang et al. assume that the accuracy of level energy \(v = 87 \) is equal to the standard deviation of the NDE fit, 0.0015 cm\(^{-1}\). Looking into the actual data set from Ref. \([13] \) one finds that for \(v = 87 \) only two high rotational states with \(J = 50 \) and 52 were observed. Thus a fairly far extrapolation to the levels with \(J = 0 \) is done, and one should certainly include the correlation of the NDE parameters for the error estimation. Additionally, we would remind the reader, that we corrected a misidentification of \(v=86 \) levels, due to overlapping lines, and this would effect the NDE analysis. Therefore, the good agreement between our present dissociation energy and that reported by Wang et al. could be fortunate. As a second check we calculated the binding energies for \(v = 87 \) and 89 from our results and found them larger by 0.026 cm\(^{-1}\) and 0.053 cm\(^{-1}\), respectively. For \(v = 87 \) the deviation is about 12 times the error limit reported by Wang et al. We tried to incorporate the measured binding energies in a new fit of the potentials including our spectroscopic results and the Feshbach resonances from Ref. \([3] \), but no convincing result was obtained up to now. The reason for the discrepancy is unclear for us, especially because we extended the dataset from Ref. \([13] \) just around \(v = 87 \) with more \(J \) levels and by measurements with \(v = 88 \). Thus the energy interval where the \(v = 87 \) is located is well covered by our measurements which have an accuracy of typically 0.003 cm\(^{-1}\).
By new spectroscopic data the potential curve of \(^{3} \Sigma^{-} \) could be refined compared to the work by Ref. [13], and we were able to link it to the potential curve of \(^{1} \Sigma^{+} \) with respect to the asymptotic function and to the relative energy position of both functions. This was the prerequisite to start the inclusion of the observed Feshbach resonances [4] into the modeling, which finally leads to a complete system for predicting ultracold collision properties. Such prediction can be extended to other isotopomers, as presented partly in Table III. But it would be clearly desirable to get precise Feshbach resonances also for different isotopomers in order to check the degree of validity of the Born-Oppenheimer approximation.

Despite the combination of the spectroscopic and Feshbach data there is a significant gap in the energy interval below the atomic asymptote (about 3 cm\(^{-1}\)) in which bound levels of low rotational quantum numbers, preferable \(J = 0 \) or \(N = 0 \), could be observed. Thus the prediction in this region relies on the quality of the long range parameters and measurements e.g. by two-color photo association would be valuable. To reach such levels by Feshbach spectroscopy is not promising because too high magnetic fields would be needed.

KRb is very often discussed for applications in studies of dipolar cold gases or even quantum computing. To transfer Feshbach molecules to deeply bound levels which are stable and would have large electric dipole moments, spectroscopic data on excited states will be of importance to predict efficient processes. Such data are partly existing from other authors and are in hand also from our own spectroscopic work, which will be analyzed joining the available data. Of particular interest in KRb is the HFS in the \(^{2}\Pi \) state which is supposed to cause the “irregular” hyperfine splitting the transitions to the \(^{3}\Sigma^{+} \) state.

VII. ACKNOWLEDGMENTS

We acknowledge gratefully C. Amiot for providing us his total experimental data in electronic form. The work is supported by DFG through SFB 407 and GRK 665. O.D., M.T. and R.F. acknowledge the support by the NATO SfP 978029 Optical Field Mapping grant and by the Latvian Science Council grant No. 04.1308. O.D. acknowledges the support from the European Social Fund and A.P. - a partial support from the Bulgarian National Science Fund Grants MUF 1506/05 and VUF 202/06.

[1] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Knöckel, E. Tiemann. Phys. Rev. A 72, 062505 (2005).
[2] O. Docenko, J. Zaharova, M. Tamanis, R. Ferber, A. Pashov and H. Knöckel, E. Tiemann. J. Phys. B: At. Mol. Opt. Phys. 39, 8929 (2006).
[3] P. Staanum, A. Pashov, H. Knöckel, E. Tiemann. Phys. Rev. A 75, 042513 (2007).
[4] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, A. Simoni Phys. Rev. A, 73, 040702 (2006).
[5] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, A. Simoni Phys. Rev. A 74, 033903 (2006).
[6] S. Ospelkaus, C. Ospelkaus, L. Humbert, K. Sengstock, K. Bongs Phys. Rev. Lett. 97, 120403 (2006).
[7] B. Bussery, Y. Achkar, M. Aubert-Frécon. Chem. Phys. 116, 319 (1987).
[8] M. Mariscu and H. R. Sadeghpour. Phys. Rev. A 59, 390 (1999).
[9] A. Dervianko, J. F. Babb, A. Dalgarno. Phys. Rev. A 63, 052704 (2001).
[10] S. G. Porsev, A. Dervianko. J. Chem. Phys. 119, 844 (2003).
[11] S. Rousseau, A.R. Allouche, M. Aubert-Frécon. J. Mol. Spectrosc. 203, 235 (2000).
[12] A. J. Ross, C. Effantin, P. Crozet, and E. Boursey. J. Phys. B: At. Mol. Opt. Phys. 23, L247 (1990).
[13] C. Amiot and J. Vergés. J. Chem. Phys. 112, 7068 (2000).
[14] T. Leininger, H. Stoll, G.-H. Jeung. J. Chem. Phys. 106, 2541 (1997).
[15] S. Kasahara, Ch. Fujiwara, N. Okada, H. Kato, M. Baba. J. Chem. Phys. 111, 8857 (1999).
[16] C. Amiot, J. Vergès, J. d’Incan, C. Effantin. The KRb \(^{2}\Pi \) electronic state. Chem. Phys. Lett. 321, 21 (2000).
[17] C. Amiot J. Chem. Phys. 93, 8591 (1993).
[18] C. Amiot, J. Vergés. Chem. Phys. Lett. 274, 91 (1997).
[19] C.D.Caldwell, F. Engelske, H. Hage. Chem. Phys. 54, 21 (1980).
[20] S. Kasahara, T. Ebi, M. Tanimura, H. Ikoma K. Matsubara, M. Baba, H. Katô. J. Chem. Phys. 105, 1341 (1996).
[21] E. Arimondo, M. Inguscio, P.Violino. Rev. Mod. Phys. 49, 31 1977.
[22] the appropriate rotational quantum number for the \(^{3}\Sigma^{+} \) state is \(J = 0 \) in the Hund’s case b.
[23] K. Matsubara, Y.-C. Wang, K. Ishikawa, M. Baba, A. J. McCaffery, H. Katô. J. Chem. Phys. 99, 5036 (1993).
[24] A. Pashov, W. Jastrzębski, P. Kowalczyk. Comput. Phys. Commun. 128, 622 (2000).
[25] C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knöckel, E. Tiemann. Phys. Rev. A 63, 012710 (2000).
[26] H. Knöckel, B. Bodermann, E. Tiemann. Eur. Phys. J. D 28, 199 (2004).
[27] E. Hirota, J.M. Brown, J.T. Hougen, T. Shida, N. Hirota, E. Arimondo, M. Inguscio, P. Violino. Rev. Mod. Phys. 75, 571 (1994).
[28] F.H. Mies, C.J. Williams, P. S. Julienne, M. Kraus. Phys. Rev. A 54, 131 (1996).
[29] D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P.L. Gould, W. C. Stwalley Phys. Rev. A 75, 032511 (2007).