A Scoping Review of Mycotoxin Contamination of Maize and Other Grains in South Africa

Felix Fon Fru¹, *, Clarence Yah ², Lebogang Charity Motaung ³, Palesa Sekhejane ⁴ and Patrick Berka Njobeh ³

¹Department of Food Technology, University of Johannesburg, Johannesburg, South Africa
²School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
³Food Technology, University of Johannesburg, Johannesburg, South Africa
⁴Human Sciences Research Council, Pretoria, South Africa

*Corresponding author: Department of Food Technology, University of Johannesburg, Johannesburg, South Africa. Email: felixfr30@gmail.com

Received 2021 February 07; Accepted 2021 February 10.

Abstract

Background: Despite global legislative and regulatory efforts to ensure sustainable food safety and security, mycotoxins remain a challenge in the supply of staple food commodities like maize and other grains in South Africa.

Objectives: We reviewed mycotoxin contamination of maize, maize-associated food products, and other cereals to emphasis the need for continuous monitoring and management in South Africa.

Methods: A scoping review was conducted on mycotoxin contamination of maize, maize-related products, and other cereals, as well as associated health implications in South Africa. The literature review intended to identify relevant articles and reports from 1980 to 2020 based on Arksey and O’Malley guidelines.

Results: Of 103 articles/reports identified for the research question “that defines to what extend the South African population is exposed to mycotoxins, and why”, 31 (30 %) were eligible for this study. The most recurrent mycotoxins were fumonisins (FBs) and aflatoxins (AFs). The levels of FBs and AFs were as high as 140480 µg/kg and 762 µg/kg, respectively.

Conclusions: The FBs and AFs were the main mycotoxins in maize, cereals, and related products. Therefore, adopting effective, sustainable, and scalable measures in limiting mycotoxin contamination is critical for the mitigation of food insecurity and the resulted health burden. Training farmers and other stakeholders on good hygiene and farming practices in the food chain supply is important.

Keywords: Maize, Mycotoxins, Contamination, South Africa

1. Background

Despite global legislative and regulatory efforts to enhance food safety, mycotoxins remain a recurring challenge (1) in staple foods such as maize and other locally produced cereals (2) in South Africa. The country is regarded as “a food secure nation”, however, according to Statistics, South Africa (3) and the South African National Health and Nutrition Examination Survey (SANHANES-1) indicated a high level of food insecurity at the household level (4). This situation is common with maize (Zea mays), the main staple household food and animal feed (5) in the country. Like many other food types, maize produced for human and animal consumption should be safe and supplied in sufficient quantities (1). Therefore, fungi infections and the production of associated secondary metabolites, e.g., mycotoxins, have a profound effect on maize farming and downstream activities (1).

Mycotoxin-producing fungi belong mainly to the genera Aspergillus, Alternaria, Claviceps, Fusarium, Penicillium, and Stachybotrys, which are common contaminants of maize (2, 6). Some mycotoxins are immunosuppressive, carcinogenic, nephrotoxic, and neurotoxic in both animals and humans (1, 7-9). For example, according to Grace et al., (10), over 9000 cases of liver cancer per annum, stunting, and immune suppressions in children (11) have been associated with AFs exposures. Primarily, mycotoxins effects vary based on the type of mycotoxin, level, and duration of exposure as well as age, sex, and health status of exposed individuals (12). Direct exposure is mainly through ingestion of contaminated food or inhalation of fungal spores and dust particles containing the toxin (13). Indirectly, mycotoxins are consumed via the dermal or maternal route (umbilical cord and breast milk) (13), and cereals...
are reported as the major source of dietary exposure to mycotoxins (14).

Several outbreaks of mycotoxicosis among humans and animals are reported in South Africa. In 2001, in a primary school nutrition programme (PSNP) in the Eastern Cape, children were hospitalized after consumption of peanut butter highly contaminated with aflatoxins (AFs) (15). In another mycotoxin-related disease outbreak, Arnot et al., (16) reported the death of over 220 dogs in the Gauteng province after the consumption of pet food contaminated with a high concentration of AF. Similarly, nephropathy in pigs was reported in South Africa, with a combination of ochratoxin A (OTA) and FB1 having concentration levels of 67 - 251 µg/kg and 5021 - 5289 µg/kg, respectively, as well as penicillic acid (PA) at 149 - 251 µg/kg (17). Mycotoxins have, therefore, been considered as significant contaminants of food, which carry a high burden (both morbidity and mortality) in South Africa (17-19).

Studies conducted in South Africa showed that FB is the most common mycotoxin group affecting maize and maize products (20-23). Other mycotoxins, including AFs, OFs, zearalenone (ZEA), and trichothecenes, are also common, though recovered at low concentration (24, 25). Favorable climatic conditions are likely to increase fungal colonization that cause increased quantities of mycotoxins in maize and other foodstuffs (2, 26), which in turn exacerbates the health and economic consequences.

2. Objectives

This review summarizes available data on mycotoxin contamination of maize, maize-based products, and other cereals. The aim is for understanding, informing, and enhancing protection against fungal contamination in South Africa, which is one of the major producers of these products in sub-Saharan Africa.

3. Method

3.1. Scoping Review Method

Following the Arksey and O’Malley (27) method, a scoping review was conducted from April 2014 to July 2020 to collect evidence of different mycotoxins contaminations on maize and other cereal products as well as mycotoxin exposure among humans in South Africa. Although some of these secondary metabolites have been reported in South Africa, challenges were encountered in retrieving related articles for this review. For example, in cases that cost of retrieving articles was a limitation, attempts were made to contact corresponding authors for assistance. The search protocol of the present study was restricted to both published and unpublished articles and reports between 1980 to 2020. We selected a relatively long period (i.e. 40 years) in order to capture a wide range of literature on mycotoxins in South Africa.

3.2. Identification and Extraction of Articles

The following key guides were used to identify and extract related articles (27); “the research question, relevant studies, selection of relevant studies, final collation, summarizing, and reporting of the results”. Based on this methodology, the main research question for this review was “are South Africans exposed to high levels of mycotoxins, and if so, why?”. Then, keywords were generated from an initial search of this question against databases. This process was intended to both facilitate and increase the sensitivity of the search with these key phrases, which included “mycotoxins and food safety in South Africa”, “mycotoxin exposure in South Africa”, and “mycotoxicoses and mycotoxins in South Africa”. Articles and reports for this scoping review were all published in English and used as abstracts, full publications, dissertation, thesis, case studies, reviews, books, or book chapters. An excel spreadsheet was created and used to collate and screen the relevant studies on mycotoxins in maize and other cereal. Data related to information on “maize and other cereal products associated with mycotoxin contamination from 1980 to 2020 in South Africa as well as quantitative measurements of different types of mycotoxins” were collected. Article review and data collection were performed by postgraduate students who were trained on how to extract and critic relevant articles to identify research gaps.

3.3. Data Analysis

Scientific research articles indexed in PubMed, Google Scholar, Science Direct, and Web of Science were retrieved. Selected articles were all screened for duplication by two reviewers. The database was compiled in a single spreadsheet and grouped according to provinces, books, book chapters, topics, abstracts, full articles, dissertations, thesis, and year of publication. Related topics were further grouped according to eligibility criteria and then analyzed for duplications, especially for conference publications and full articles. Risk bias (i.e. publication bias), as reported by Peters et al. (28), was not considered because of the limited number of studies describing mycotoxins contamination in maize and other cereals in South Africa. The search yielded 103 publications; however, these were further screened for eligibility criteria, resulting in a total of 73 mycotoxin-related publications relevant to this study (Figure 1). Since this scoping review was based on mycotoxin contamination of maize and other cereal food products in South Africa, related reports from other countries.
were excluded. In doing so, 32 of the considered publications were further excluded. An additional 10 publications were excluded due to the absence of data on mycotoxin quantification levels. Finally, only 31 publications/reports were analyzed in-depth for this scoping review (Figure 1).

4. Results and Discussion

This study describes the type of grains, particularly maize and products associated with mycotoxin contamination, the province where the cereals were obtained as well as the type and concentration of mycotoxins. Mycotoxins in maize and other cereals were confirmed in eight provinces (Table 1). These metabolites included deoxynivalenol (DON), nivalenol (NIV), FB, AF, ZEA, OTA, and patulin (PAT). The most common group of mycotoxins found across all investigated provinces was FB, followed by the AF. Maize only was confirmed to be affected by five (FB, AF, DON, OTA, ZEA) of the mycotoxins identified in South Africa.

In a recent research on the South African perspective on the mycotoxin status of commercial maize and wheat crop annually produced, AFB1 was seldom present in commercial maize. In the same report, DON and FB were the most prevalent mycotoxins in all provinces that produce white and yellow maize (29).

This scoping review highlights the importance of mycotoxin contamination and that it remains a serious concern for producers and consumers of maize and related cereal products in the country. The high prevalence of mycotoxigenic fungi can be attributed to the limitations related to storage, particularly in urban areas. As shown in Table 1, maize is a major source of human dietary exposure to mycotoxins in South Africa, with implications in Africa, since the country is a major supplier to other countries on the African continent. Only a few studies have reported contamination of other cereals such as wheat (Triticum aestivum), barley (Hordeum vulgare), and sorghum (Sorghum bicolor) in this country, which can be attributed to the foods not commonly consumed in most parts of South Africa.

Maize is predominantly contaminated by Fusarium spp., especially F. graminearum, F. culmorum, F. verticilloides, F. proliferatum, and F. anthophilum. These are important fungal species that are the principal producers of mycotoxins, including FB, AF, and DON (38, 45). The high prevalence of mycotoxin production in provinces like Kwazulu-Natal, Gauteng, and Free State (Table 1) can be attributed to hot, dry, and humid climates. In this study, FBs (especially FB1) were the most common mycotoxin, followed by DON and AFs (Table 1). High FB levels were mostly present in home-grown maize.

This was confirmed in the Eastern Cape Province with levels as high as $1.4 \times 10^8 \mu g/kg$ (33), followed by Limpopo province with FB levels of 101 – 53863 \mu g/kg (42). In South Africa, DON contaminates mainly wheat and wheat related products (36). The highest level of DON was recovered from wheat produced in the Eastern Cape Province, with 3750 – 14360 \mu g/kg (30), though a higher level (18000 \mu g/kg) was reported with the analyses of combined wheat and wheat-based products collected throughout South Africa (36). Nonetheless, DON toxicity under field conditions has not been reported in the country, although consumption of DON contaminated foods has been linked to outbreaks of human gastroenteritis in India (46) and food poisoning in China (47). DON is also prevalent in maize and home-brewed beer, where it was recovered at 294 and 2340 \mu g/kg, respectively, particularly in the rural areas of South Africa (22, 44).

Limited information is available on AF contamination of different crops in South Africa. Available literature indicates that exposure to this toxin is restricted to maize consumption and few other crops affected by Fusarium species. It may also be directly consumed in other cereals, legumes, and related foodstuffs (31, 36) or indirectly with animal by-products, as summarized in Table 1. Other mycotoxins often encountered in South Africa include ZEA and OTA (17, 36, 39, 44). OTA has been reported in South African traditional home-brewed beer at very high levels, ranging from 876 to 2340 \mu g/L, with the highest level reported in KwaZulu-Natal (31). This is a product that is consumed almost daily by the local population, and exposure to such high levels of OTA over prolonged period could elicit serious health complications with the human kidney. However, some studies conducted in South Africa have shown OTA levels in cereals within acceptable standards (17, 36, 48). ZEA levels up to 426 \mu g/L were identified in cereal-based products (44). These levels were noted to be above the maximum level of 100 \mu g/kg established by the European Commission (49) regulated in unprocessed cereals.

Although mycotoxin occurrences have been reported in cereals in South Africa, very few cases of human mycotoxicosis have been documented. Palanee (50) reported an association between exposure levels to FB1, and levels in patient’s blood as well as brain lesions at Wentworth Hospital’s Neurosurgical Unit of Kwazulu-Natal province. Additionally, consumption of maize with high concentrations of FBs has been linked to increased risk of esophageal carcinoma in South Africa (33). In rural populations of the Eastern Cape Province, where maize and maize-based products are consumed in high volumes, FBs have been implicated in a high incidence of neural tube defects (51, 52). Recently, an association is reported between the AFB1, and cases of kwashiorkor, marasmus, and underweight in South Africa (2). With the increasing consumption of maize, particularly in rural subsistence farming commu-
Number of searched Studies based on key words describing mycotoxin in South Africa from web pages: N = 103

- 30 articles excluded: Not describing mycotoxin related to South Africa
- 73 Articles describing mycotoxin related to South Africa
- 32 removed not describing mycotoxin contamination of maize product
- 41 articles describing only maize and maize related contamination by mycotoxins in South Africa
- 10 Excluded: Not having quantitative value maize contamination by mycotoxin
- 31 articles having quantitative value of mycotoxins describing mycotoxins in South Africa. N = 31 used

There are a limited number of reports on the effect of mycotoxins on human and animal health in South Africa, which may be due to the low levels of research on the understanding of the impact of mycotoxins on food safety as well as their associated health consequences. To perform the current scoping review, we reviewed studies and reported published from 1980 to 2020. The findings highlight the economic importance of predominant mycotox-
ins in maize and other cereals like FBs, AFs, DON, and to a lesser extent, OTA and ZEA (36, 38, 53) in the country.

The methodological approach of the current study was not fully appraised due to the limited number of peer-reviewed articles describing mycotoxin contamination in maize and other cereals in South Africa. Sourcing data from non-academic institutions, particularly when such information was not available online, proved to be difficult. English was used as the search language in the study, as such also limiting the number of articles used for analysis.

5. Conclusions

This study demonstrates a high level of contamination in maize and other cereal products by mycotoxins, notably FBs and AFs. These infections are sometimes associated with major health and economic challenges. There is, therefore, a need to increase efforts towards monitoring of mycotoxins in food and feed as well as adopting regulatory measures that are effective, sustainable, and scalable in reducing mycotoxin contamination. It is important to empower farmers and other stakeholders to improve on good hygiene and farming practices, particularly at farm levels. Such interventions can limit mycotoxin-associated food contamination, which in turn will translate into declined exposure to these toxic secondary metabolites for both humans and animals. This is particularly important as other mycotoxins, especially the emerging ones, can be considered in the regulation of crop and food trade. With changes in global climate scenarios, there may be an increased mycotoxin production, and different or emerging mycotoxins may become important (53-55).

Footnotes

Authors’ Contribution: Clarence S. Yah, Patrick B. Njobeh, and P. Sekhejane conceived the idea and developed the concept note for the study. Felix F. Fru revised the idea, wrote an aspect of the article, and did all the quantitative mycotoxin information as indicated in the article, and updated the literature search. Lebohang C. Motauung guided the main literature search supported by postgraduate students and wrote the first draft of the article, which was initially reviewed by all authors. All the authors have read and consented to the information reviewed.

Conflict of Interests: There is no conflict of interest to declare.

Funding/Support: This research is largely funded by the National Research Foundation of South Africa.

References

1. De Saeger S, Logrieco A. Report from the 1st MYCOKEY international conference global mycotoxin reduction in the food and feed chain held in Ghent, Belgium, 11-14 September 2017. Toxins. 2017;9(9). doi: 10.3390/toxins9090276. [PubMed: 28885598]. [PubMed Central: PMC5810910].
2. Misihairabigwi JM, Ezekiel CN, Sulyok M, Shephard GS, Kriska R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit Rev Food Sci Nutr. 2019;59(4):41-58. doi: 10.1080/10408388.2017.1357003. [PubMed: 28799776].
3. Lehohla P. Income dynamics and poverty status of households in South Africa. Pretoria, South Africa: Statistics South Africa; 2011.
4. Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, et al. The South African national health and nutrition examination survey, 2012: SANHANES-1: The health and nutritional status of the nation. Cape Town, South Africa: HSRC Press; 2014.
5. Department of Agriculture Forestry and Fisheries (DAFF). A profile of the South African maize market value chain. Pretoria, South Africa: Department of Agriculture Forestry and Fisheries (DAFF); 2018.
6. Mudili V, Nayaka SC, Batra HS. Detection of toxigenic and pathogenic fungi targeting metabolic pathway genes. In: Gupta VK, Ayyachamy M, editors. Biotechnology of fungal genes. Florida, United States: CRC Press; 2012. p. 307-41.
7. Stoev SD, Denev S, Dutton MF, Njobeh PB, Mosonik JS, Steenkamp PA, et al. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotoxin Res. 2010;26(1):31-46. doi: 10.1007/s12550-009-0038-7. [PubMed: 21605239].
8. Peraica M, Rasic D. The impact of mycotoxocoses on human history. Arch Hig Rada Toksikol. 2012;63(4):513-8. doi: 10.2478/v10041-015-0357-1. [PubMed: 22517306].
9. Marroquin-Gardona AG, Johnson NM, Phillips TD, Hayes AW. Mycotoxins in a changing global environment—A review. Food Chem Toxicol. 2014;69:220-30. doi: 10.1016/j.fct.2014.04.025; [PubMed: 24759018].
10. Grace D, Mahuku G, Hoffmann V, Atherstone C, Upadhyaya HD, Bandyopadhyay R. International agricultural research to reduce food risks: case studies on aflatoxins. Food Secur. 2015;7(3):569-82. doi: 10.1007/s12571-015-0469-2.
11. Smith LE, Prendergast AJ, Turner PC, Mbuya MN, Mutasa K, Kembo G, et al. The potential role of mycotoxins as a contributor to stunting in the SHINE trial. Clin Infect Dis. 2015;61 Suppl 7:573-7. doi: 10.1093/cid/civ849. [PubMed: 26602301]. [PubMed Central: PMC4657594].
12. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16(3):497-516. doi: 10.1128/cmrr.16.3.497-516.2003. [PubMed: 12857779]. [PubMed Central: PMC344220].
13. Njobeh PB, Dutton MF, Makun HA. Mycotoxins and human health: Significance, prevention and control. Smart biomolecules in medicine. Uplands, Sweden: VBRI Press India; 2010. p. 132-77.
14. Adebo OA, Kayitesi E, Njobeh PB. Reduction of mycotoxins during fermentation of whole grain sorghum to Whole Grain Ting (a Southern African Food). Toxins. 2019;11(3). doi: 10.3390/toxins11030180. [PubMed: 30934589]. [PubMed Central: PMC6486486].
15. Medical Research Council (MRC), Aflatoxin in peanut butter. Wiltshire, UK: Medical Research Council (MRC); 2001; [cited 2014 3rd Jun]. Available from: http://scienceinafrica.com/health/aflatoxin-peanut-butter-mrc.
16. Arnott LF, Duncan NM, Coetzter H, Botha CJ. An outbreak of canine aflatoxicosis in Gauteng Province, South Africa. J S Afr Vet Assoc. 2002;73(1):2. doi: 10.4102/jsava.v73i1.2. [PubMed: 12332740].
17. Maenetje PW, Dutton MF. The incidence of fungi and mycotoxins in South African barley and barley products. J Environ Sci Health B. 2007;42(2):229-36. doi: 10.1080/03601230160125644. [PubMed: 17385318].
18. Shephard GS, Leggott NL, Somdyala NM, Stockenstrom S, Marasas WFO. Preparation of South African maize porridge: Effect on fumonisin mycotoxin levels. S Afr J Sci. 2002;98(7):293-6.
19. Janse van Rensburg B, McLaren NW, Flett BC, Schoeman A. Fumonisin producing Fusarium spp. and fumonisin contamination in commercial South African maize. Eur J Plant Pathol. 2014;144(3):491-504. doi: 10.1007/s10654-014-0558-7.
20. Chehule PK, Gqaleni N, Dutton MF, Chuturgoon AA. Exposure of rural and urban populations in KwaZulu Natal, South Africa, to fumonisin B1 in maize. Environ Health Perspect. 2001;109(3):253-6. doi: 10.1289/ehp.0109253. [PubMed: 1133186]. [PubMed Central: PMC1240243].
21. van der Westhuizen L, Shephard GS, Rheeder JP, Burger HM. Individual fumonisin exposure and spingoid base levels in rural populations consuming maize in South Africa. Food Chem Toxicol. 2010;48(6):1698-703. doi: 10.1016/j.fct.2010.03.047. [PubMed: 20361278].
22. Shephard GS, van der Westhuizen L, Katerere DR, Herbst M, Pineiro M. Preliminary exposure assessment of deoxynivalenol and zearalenone in South African maize. Mycotox Res. 2010;26(1):211-5. doi: 10.1111/j.1439-6974.2009.0100529.x. [PubMed: 21605382].
23. Ncube E, Flett BC, Waalwijk C, Viljoen A. Occurrence of aflatoxins and fumonisins in maize produced by subsistence farmers in South Africa. S Afr J Sci. 2012;108(5):202700. [PubMed: 21349699].
24. Binder EM, Tan LM, Chiu LJ, Handli J, Richard J. Worldwide occurrence of mycotoxins in commodities, feed and feed ingredients. Anim Feed Sci Tech. 2007;137(3-4):265-82. doi: 10.1016/j.anifeedsci.2007.06.005.
25. Aretsy H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):39-12. doi: 10.1080/13645570500190666.
26. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rashotn L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):767-80. doi: 10.1001/jama.295.6.767. [PubMed: 16467236].
27. Meyer H, Skhosana ZD, Motlanthe M, Louw W, Rohwer E. Long term monitoring (2014-2018) of multi-mycotoxins in South African commercial maize and wheat with a locally developed and validated LC-MS/MS method. Toxins. 2019;11(5). doi: 10.3390/toxins110505271. [PubMed: 31098836]. [PubMed Central: PMC6561230].
28. Sydenham EW, Thiel PG, Marasas WFO, Newhuisen JJ. Occurrence of deoxynivalenol and nivalenol in Fusarium graminearum infected underground wheat in South Africa. J Agr Food Chem. 2002;50(1):921-6. doi: 10.1021/jf010840c.
29. Ncube E, Flett BC, Waalwijk C, Viljoen A. Occurrence of aflatoxins and aflatoxin-producing Aspergillus spp. associated with groundnut production in subsistence farming systems in South Africa. S Afr J Plant Soil. 2010;27(2):195-8.
30. Sydenham EW, Shephard GS, Thiel PG, Marasas WFO, Stockenstrom S. Fumonisin contamination of commercial corn-based human foodstuffs. J Agr Food Chem. 2002;50(1):491-6. doi: 10.1021/jf010010a.
31. Rheeder JP. Fumonisin moniliforme and fusonis in corn in relation to human esophageal cancer in Transkei. Phytopathology. 1999;89(2):353. doi: 10.1094/Phyto-89-353.
32. Rheeder JP, Sydenham EW, Marasas WF, Thiel PG, Shephard GS, Schlechter M, et al. Ear-rot fungi and mycotoxins in South African corn of the 1989 crop exported to Taiwan. Mycopathologia. 1994;127(1):35-41. doi: 10.1007/BF01040409. [PubMed: 7935717].
33. Schlechter M, Marasas WFO, Sydenham EW, Stockenström S, Vismer HF, Rheeder JP. Incidence of Fusarium moniliforme and fusonisins in commercial maize products, intended for human consumption, obtained from retail outlets in the United States and South Africa. S Afr J Sci. 1998;94(4):185-6.
34. Mashinini K, Dutton MF. The incidence of fungi and mycotoxins in South Africa wheat and wheat-based products. J Environ Sci Health B. 2006;41(3):285-96. doi: 10.1080/0360123050037548. [PubMed: 15848408].
35. Ncube E. Mycotoxin levels in subsistence farming systems in South Africa. [Dissertation]. Stellenbosch, South Africa: Stellenbosch University; 2008.
36. Chilaka CA, De Kock S, Phoku ZJ, Mwanza M, Egbuta MA, Dutton MF. Fungal and mycotoxin contamination of South African commercial maize. J Food Agric Environ. 2012;10(2):296-303.
37. Shephard GS, Burger HM, Gamabcota L, Kriska R, Powers SP, Rheeder JP, et al. Mycological analysis and multimycotoxins in maize from rural subsistence farmer’s in the former Transkei, South Africa. J Agric Food Chem. 2013;61(3):832-40. doi: 10.1021/jf402762c. [PubMed: 23912226].
38. Mwanza M, Abdel-Hadi A, Ali AM, Egbuta M. Evaluation of analytical assays efficiency to detect aflatoxin Mt in milk from selected areas in Egypt and South Africa. J Dairy Sci. 2015;98(10):6660-7. doi: 10.3168/jds.2014-9220. [PubMed: 26524521].
39. Mingqwa P, Shephard GS, Green IR, Ngobeni SH, de Rijk TC, Katerere DR. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Mpumalanga provinces). Food Addit Contam Part B Survell. 2016;9(1):38-45. doi: 10.1080/19440049.2014.912928. [PubMed: 26600208].
40. Phoku ZJ, Dutton MF, Njoebe PB, Mwanza M, Egbuta MA, Chilaka CA. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B1 in Limpopo Province, South Africa. Food Addit Contam Part A Chem Anal Control Expo Risk As-sess. 2012;29(1):374-51. doi: 10.1080/09527793.2012.708867. [PubMed: 22963721].
41. Rheeder JP, Van der Westhuizen I, Imrie G, Shephard GS. Fusarium species and fusonisins in subsistence maize in the former Transkei region, South Africa: A multi-year study in rural villages. Food Addit Contam Part B Survell. 2016;9(1):276-84. doi: 10.1080/19440049.2016.1154612. [PubMed: 26958826].
42. Odhav B, Naicker V. Mycotoxins in South African traditionally brewed beers. Food Addit Contam. 2002;19(1):55-61. doi: 10.1080/026620302100053426. [PubMed: 18877866].
43. Sydenham EW, Thiel PG, Marasas WF, Shephard GS, Van Schalkwyk DJ, Koch KR. Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. J Agr Food Chem. 2002;50(1):1900-3. doi: 10.1021/jf01000004.
44. Luo X. Food poisoning caused by Fusarium toxins. Second Asian Con-ference on Food Safety. Singapore. Proceedings of the Second Asian Conference on Food Safety; 1992. p. 129-36.
45. Stander MA, Steyn PS. Survey of ochratoxin a in South African wines. S Afr J Enol Vitic. 2017;28(1). doi: 10.21548/232-2149.
46. European Commission. Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union. 2006;34(1):5-24.
47.Falane T. The possible implication of selected Fusarium mycotoxins in the aetiology of brain cancer [dissertation]. Natal, South African University: University of Natal; 2004.
48. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau- van Waes J, et al. Fusonisins disrupt sphingolipid metabolism, fo-late transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects

Shiraz E-Med J. In Press. (In Press) e13558.
among populations consuming fumonisin-contaminated maize. J Nutr. 2004;134(4):711–6. doi: 10.1093/jn/134.4.711. [PubMed: 15051815].

52. Shephard GS. Risk assessment of aflatoxins in food in Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(10):1246–56. doi: 10.1080/02652030802036222. [PubMed: 18608489].

53. Adekoya I, Obadina A, Adaku CC, De Boevre M, Okoth S, De Saeger S, et al. Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int J Food Microbiol. 2018;270:22–30. doi: 10.1016/j.ijfoodmicro.2018.02.001. [PubMed: 29453120].

54. Medina Á, Rodríguez A, Magan N. Climate change and mycotoxicogenic fungi: Impacts on mycotoxin production. Curr Opin Food Sci. 2015;5:99–104. doi: 10.1016/j.cofs.2015.11.002.

55. Adekoya I, Obadina A, Phoku J, De Boevre M, De Saeger S, Njobeh P. Fungal and mycotoxin contamination of fermented foods from selected south african markets. Food Control. 2018;90:295–303. doi: 10.1016/j.foodcont.2018.02.040.
Table 1. Mycotoxins in Maize, Maize-Based Food Products, And Other Cereals from Different Communities in South Africa

Province	Type of Mycotoxin	Food Stuff(s)	Mycotoxin Levels (µg/kg)	References
Eastern Cape	DON, NIV	Wheat	3750 - 14360	(30)
EC (Bizana)	FB1, FB2	Healthy corn	0.2 - 0.55	(30)
EC (Centane)	FB1, FB2	Healthy corn	0.5 - 7.90	(31)
Free State	FB1, FB2	Corn meal	47913	(30)
Western Cape	FB1, FB2	Corn grits	190,020	(32)
Eastern Cape	Total FBs	Good corn, low rate area	19870050 - 10150	(30)
		Moldy corn		
		Low rate area, high rate area	600 - 256504350 - 63200	(33)
		Good corn, low rate area	198942806700	(33)
		Moldy corn		
		Low rate area, high rate area	110 - 154043770 - 140480	(33)
Mpumalanga	FB1, FB2	Maize	630250	(34)
Northern Cape	FB1, FB2	Maize	270,070	(34)
NS	FB1, FB2	Maize products (meal, braai pap and samp)	0.1 - 250	(35)
South Africa	AF, DON, ZEA, FB1, OTA	Whole wheat and wheat products	0.5 - 12500 - 180040000 - 20001 - 4	(36)
NS	AF, DON, ZEA, FB1, OTA	Field wheat	218000910002	(36)
NS	AF, DON, ZEA, OTA	Maltsters barley	0.98320, 9440	(37)
NS	AF, DON, ZEA, OTA	Maltsters malt	1,3821, 350	(37)
Gauteng	DON, ZEA	Retail barley	150,070	(34)
SA	DON	Wheat (2014 - 2018)/White maize (2014 - 2017)/Yellow maize (2014 - 2017)	202 - 397 (Mean conc.); 381 - 593 (Max. conc.)	(29)
	FUM	White maize (2014 - 2017)/Yellow maize (2014 - 2017)	100 - 575 (Mean conc.); 124 - 205 (Mean conc.)	(29)
	ZON	White maize (2014 - 2017)/Yellow maize (2014 - 2017)	57 - 1332 (Mean conc.); 25 - 121 (Mean conc.)	(29)
KZN/Limpopo/Eastern Cape/Mpumalanga	FB1s, FB2s, AFMs	Maize	21,840.2, 505, 512925, 33.9 - 19	(37)
NS	DON	Wheat flour/Maize	29294	(22)
	PAT	Apple juice	210 a	(22)
KZN	AFM1	Farm milk/Retail milk	0.02 - 1.5 * 0.01 - 3.1 *	(24)
KZN	FBs, AFs, DON, ZEA	Maize	64 - 1035762349353	(38)
Eastern Cape	FB1, FB2, DONZEA	Good maize	276410594.725	(39)
	FB1, FB2, DONZEA	Moldy maize	10.584145.78135	(39)
Mpumalanga, Limpopo & Gauteng	AFMs	Milk (rural farm)/Milk (commercial farm)	0.150, 14	(40)
Limpopo	AF1, FB1	Maize	1 - 1332 - 8514	(41)
Mpumalanga	AF1, FB1	Maize	< 1.011 - 18924	(41)
Limpopo	FB1	Maize/porridge/Faeces	101 - 53863.02 - 200.3 - 464	(42)
EC (Centane) (1997) (2000)	Total FB	Good home-grown maize/Moldy home-grown maize/Good home-grown maize/Moldy home-grown maize/Good home-grown maize/Moldy home-grown maize	575484597512905215043565	(43)
KZN (Durban)	AF1	Commercial beers (Utshwala)	20 - 400 a	(44)
Location	Abbreviation	Type	Concentration	Reference
----------------	--------------	------------------------	---------------	-----------
KZN (Durban)	AFB	Home-brewed Beers	12 μg/L	(44)
KZN (Durban)	ZEA	Home-brewed beers	2.6 - 426 μg/L	(44)
KZN (Durban)	ZEA	Home-brewed beers	3 - 8 μg/L	(44)
KZN (Durban)	OTA	Home-brewed beers	1.5 - 2340 μg/L	(44)
KZN (Durban)	OTA	Home-brewed beers	60 - 876 μg/L	(44)
KZN (Durban)	OTA	Home-brewed beers	150 - 1100 μg/L	(44)

Abbreviations: NS, not specified; EC, Eastern Cape; KZN, KwaZulu-Natal; AFB, aflatoxins; AFB$_1$, aflatoxin B$_1$; AFB$_2$, aflatoxin B$_2$; AFG$_1$, aflatoxin G$_1$; AFG$_2$, aflatoxin G$_2$; AFM$_1$, aflatoxin M$_1$; AFM$_2$, aflatoxin M$_2$; DON, deoxynivalenol; Nivalenol, NIV; FB, fumonisins; FB$_1$, fumonisin B$_1$; FB$_2$, fumonisin B$_2$; OTs, ochratoxins; OTA, ochratoxin A; OTB, ochratoxin B; OTC, ochratoxin C; THs, trichothecenes; ZEA, zearalenone. μg/L.