RNA polymerase motors: dwell time distribution, velocity and dynamical phases

Tripti Tripathi\(^1\), Gunter M Schütz\(^{2,3}\) and Debashish Chowdhury\(^{1,4}\)

\(^1\) Physics Department, Indian Institute of Technology, Kanpur 208016, India
\(^2\) Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
\(^3\) Interdisciplinary Center for Complex Systems, University of Bonn, Germany
E-mail: tripit@iitk.ac.in, g.schuetz@fz-juelich.de and debch@iitk.ac.in

Received 23 April 2009
Accepted 21 July 2009
Published 20 August 2009

Online at stacks.iop.org/JSTAT/2009/P08018
doi:10.1088/1742-5468/2009/08/P08018

Abstract. Polymerization of RNA from a template DNA is carried out by a molecular machine called RNA polymerase (RNAP). It also uses the template as a track on which it moves as a motor, utilizing chemical energy input. The time it spends at each successive monomer of DNA is random; we derive the exact distribution of these ‘dwell times’ in our model. The inverse of the mean dwell time satisfies a Michaelis–Menten-like equation and is also consistent with a general formula derived earlier by Fisher and Kolomeisky for molecular motors with unbranched mechano-chemical cycles. Often many RNAP motors move simultaneously on the same track. Incorporating the steric interactions among the RNAPs in our model, we also plot the three-dimensional phase diagram of our model for RNAP traffic using an extremum current hypothesis.

Keywords: driven diffusive systems (theory), stochastic particle dynamics (theory), molecular motors (theory), traffic models

ArXiv ePrint: 0904.2625

\(^4\) Author to whom any correspondence should be addressed.

©2009 IOP Publishing Ltd and SISSA 1742-5468/09/P08018+13$30.00
1. Introduction

RNA polymerase (RNAP) is a molecular motor [1]. It moves on a stretch of DNA, utilizing chemical energy input, while polymerizing a messenger RNA (mRNA) [2]. The sequence of monomeric subunits of the mRNA is dictated by the corresponding sequence on the template DNA. This process of template-dictated polymerization of RNA is usually referred to as transcription [3]. It comprises three stages, namely, initiation, elongation of the mRNA and termination.

We first report analytical results on the characteristic properties of single RNAP motors. In our approach [4], each RNAP is represented by a hard rod while the DNA track is modeled as a one-dimensional lattice whose sites represent a nucleotide, the monomeric subunits of the DNA. The mechano-chemistry of individual RNAP motors is captured in this model by assigning \(m \) distinct ‘chemical’ states to each RNAP and postulating the nature of the transitions between these states. The dwell time of an RNAP at successive monomers of the DNA template is a random variable; its distribution characterizes the stochastic nature of the movement of RNAP motors. We derive the exact analytical expression for the dwell time distribution of the RNAPs in this model.

We also report results on the collective movements of the RNAPs. Often many RNAPs move simultaneously on the same DNA track; because of superficial similarities with vehicular traffic [5], we refer to such collective movements of RNAPs as RNAP traffic [4], [6]–[9]. Our model of RNAP traffic can be regarded as an extension of the totally asymmetric simple exclusion process (TASEP) [10] for hard rods where each rod can exist at a location in one of its \(m \) possible chemical states. The movement of an RNAP on its DNA track is coupled to the elongation of the mRNA chain that it synthesizes. Naturally, the rate of its forward movement depends on the availability of the monomeric subunits of the mRNA and the associated ‘chemical’ transitions on the dominant pathway in its mechano-chemical cycle. Because of the incorporation of the mechano-chemical cycles of individual RNAP motors, the number of rate constants in this model is higher than that in a TASEP for hard rods. Consequently, we plot the phase diagrams of our model not...
Figure 1. The mechano-chemical cycle of a RNAP in our model. In the chemical state 1 the RNAP is bound to pyrophosphate (PP$_i$) whereas no PP$_i$ is bound to it in state 2. The integer subscript j labels the position of the RNAP motor on its track.

in a two-dimensional plane (as is customary for the TASEP), but in a three-dimensional space where the additional dimension corresponds to the concentration of the monomeric subunits of the mRNA.

2. Model

We take the DNA template as a one-dimensional lattice of length L and each RNAP is taken as a hard rod of length ℓ in units of the length of a nucleotide. Although an RNAP covers ℓ nucleotides, its position is denoted by the leftmost nucleotide covered by it. If at any instant of time, N RNAPs are located on the finite lattice of length L the number density of the RNAPs is given by $\rho = N/L$. Transcription initiation and termination steps are taken into account by the rate constants ω_α and ω_β, respectively. A hard rod, representing an mRNA, attaches to the first site $i = 1$ on the lattice with a rate ω_α if the first ℓ sites are not covered by any other RNAP at that instant of time. Similarly, an mRNA bound to the rightmost site $i = L$ is released from the system, with a rate ω_β. We have assumed hard core steric interaction among the RNAPs; therefore, no site can be simultaneously covered by more than one RNAP. At every lattice site i, an RNAP can exist in one of two possible chemical states: in one of these it is bound with a pyrophosphate (which is one of the by-products of the RNA elongation reaction and is denoted by the symbol PP$_i$), whereas no PP$_i$ is bound to it in the other chemical state (see figure 1). For plotting our results, we have used throughout this paper $\omega_{12} = 31.4$ s$^{-1}$, $\omega_{b12} = 30.0$ s$^{-1}$ and $\omega_{f21} = [\text{NTP}] \tilde{\omega}_{f21}$ s$^{-1}$, where $[\text{NTP}]$ is the concentration of nucleotide triphosphate monomers (fuel for transcription elongation) and $\tilde{\omega}_{f21} = 10^6$ M$^{-1}$ s$^{-1}$. Unless stated otherwise, the length of each RNAP is $\ell = 10$ (in units of nucleotides).

The PP$_i$ concentration in the solution is generally very low. Moreover, the rate of the reverse process is also very small. Thus, the overall rate of the pseudo-first-order backward transition from the state 2_{j+1} is negligibly small compared to those of the other transitions.

There is a close formal similarity between the mechano-chemical cycle of an RNAP in our model (see figure 1) and the catalytic cycle of an enzyme in the Michaelis–Menten scenario [11]. The states 2 and 1 in the former correspond to the states E and ES in the latter where E represents the free enzyme while ES represents the enzyme–substrate complex.

doi:10.1088/1742-5468/2009/08/P08018
3. Dwell time distribution

For every RNAP, the dwell time is measured by an imaginary ‘stopwatch’ which is reset to zero whenever the RNAP reaches the chemical state 2, for the first time, after arriving at a new site (say, i + 1th from the i-th). In this section we imagine all the sites to be equivalent so that the system is practically infinite. Therefore, the question of imposing any boundary condition does not arise.

Let \(P_\mu \) be the probability of finding an RNAP in the chemical state \(\mu \) at time \(t \). The time evolution of the probabilities \(P_\mu \) are given by

\[
\frac{dP_1}{dt} = \omega_{21}^f P_2 - \omega_{12} P_1 - \omega_{12}^b P_1 \tag{1}
\]

\[
\frac{dP_2}{dt} = \omega_{12} P_1 - \omega_{21}^f P_2 + \omega_{12}^b P_1. \tag{2}
\]

Following the trick commonly used in the calculation of the dwell time distributions [12], we insert a hypothetical intermediate state 2* between the states 1 and 2*: the state \((i + 1, 1)\) makes an irreversible transition to the state \((i + 1, 2*)\) which is essentially an ‘excited’ state of the RNAP. From the state \((i + 1, 2*)\) it relaxes to the state \((i + 1, 2)\) at a rate \(\delta\). At the end of the calculation we take the limit \(\delta \to \infty\) so that the states \((i + 1, 2*)\) and \((i + 1, 2)\) become practically indistinguishable. Then, in addition to the equation for \(P_1(t)\), we need the equation

\[
\frac{dP_{2*}}{dt} = \omega_{12} P_1 \tag{3}
\]

for \(P_{2*}\). The probability that an RNAP arrives at the state 2* between times \(t\) and \(t + \delta t\) is \(\omega_{12} P_1(t)\delta t\). Therefore, the dwell time distribution \(f(t)\) is given by

\[
f(t) = \omega_{12} P_1(t). \tag{4}
\]

The steps of our calculation of the dwell time distribution of an RNAP are very similar to those used earlier by Kuo et al [12] for the kinetics of single-molecule enzymatic reactions. Solving the equations (1) and (2) with the initial conditions \(P_2 = 1\) and \(P_1 = 0 = P_{2*}\) at \(t = 0\), and using the relation (4) we get

\[
f(t) = \frac{\omega_{21}^f \omega_{12}}{2A} [\exp\{(A - B)t\} - \exp\{-(A + B)t\}] \tag{5}
\]

where

\[
A = \sqrt{\left(\omega_{12} + \omega_{12}^b + \omega_{21}^f\right)^2 / 4} - \omega_{12} \omega_{21}^f \tag{6}
\]

\[
B = \frac{\omega_{12} + \omega_{12}^b + \omega_{21}^f}{2}. \tag{7}
\]

The dwell time distribution (5) is plotted in figure 2. Depending on the magnitudes of the rate constants the peak of the distribution may appear at such a small \(t\) that it may not be possible to detect the existence of this maximum in a laboratory experiment. In that
RNA polymerase motors: dwell time distribution, velocity and dynamical phases

Figure 2. The dwell time distribution of a single RNAP in our model is plotted for (a) two different values of NTP concentration, keeping the rate of PP\textsubscript{i} release (and, hence, \(\omega_{12}\)) fixed and (b) two different values of \(\omega_{12}\), keeping the NTP concentration fixed.

case, the dwell time distribution would appear to be purely a single exponential [13]–[15]. It is worth pointing out that our model does not incorporate backtracking of RNAP motors which have been observed in the \textit{in vitro} experiments [16, 17]. It has been argued by some groups [18] that short transcriptional pausing is distinct from the long pauses which arise from backtracking. In contrast, some other groups [19] claim that polymerase backtracking can account for both the short and long pauses. Thus, the role of backtracking in the pause distribution remains controversial. Moreover, it has been demonstrated that a polymerase stalled by backtracking can be re-activated by the ‘push’ of another closely following it from behind [20]. Therefore, in the crowded molecular environment of intracellular space, the occurrence of backtracking may be far less frequent that those observed under \textit{in vitro} conditions. Our model, which does not allow backtracking, predicts a dwell time distribution which is qualitatively very similar to that of the short pauses provided the most probable dwell time is shorter than 1 s.
From equation (5) we get the inverse mean dwell time
\[
\frac{1}{\langle t \rangle} = \frac{\tilde{V}_{\text{max}}}{1 + (K_M/[\text{NTP}])}
\]
where \(\tilde{V}_{\text{max}} = \omega_{12} \) and \(\tilde{K}_M = (\omega_{12} + \omega_{12}^b)/\omega_{21}^f \). The form of the expression (8) is identical to the Michaelis–Menten formula for the average rate of an enzymatic reaction. It describes the slowing down of the ‘bare’ elongation progress of an RNAP due to the NTP reaction cycle that it has to undergo. The unit of velocity is nucleotide s\(^{-1}\).

The fluctuations of the dwell time can be computed from the second moment
\[
\langle t^2 \rangle = \int_0^\infty t^2 f(t) \, dt
\]
\[
= \frac{2[\omega_{12}^2 + \omega_{12}^b + \omega_{21}^f]^2 - \omega_{12}^2 \omega_{21}^f}{(\omega_{12}^2 + \omega_{21}^f)^2}
\]
(10)
of the dwell time distribution. We find the randomness parameter \([12,21,22]\)
\[
\gamma = \frac{\langle t^2 \rangle - \langle t \rangle^2}{\langle t \rangle^2}
\]
\[
= \frac{(\omega_{12} + \omega_{12}^b + \omega_{21}^f)^2 - 2\omega_{12}^2 \omega_{21}^f}{(\omega_{12} + \omega_{12}^b + \omega_{21}^f)^2}
\]
(12)

Note that, for a one-step Poisson process \(f(t) = \omega \exp(-\omega t) \), \(\gamma = 1 \). The randomness parameter \(\gamma \), given by (12), is plotted against the NTP concentration in figure 3 for three different values of \(\omega_{12} \). At sufficiently low NTP concentration, \(\gamma \) is unity because NTP binding with the RNAP is the rate-limiting step. As NTP concentration increases, \(\gamma \) exhibits a nonmonotonic variation. At sufficiently high NTP concentration, PP\(_i\) release (which occurs with the rate \(\omega_{12} \)) is the rate-limiting step and, therefore, \(\gamma \) is unity also in this limit. This interpretation is consistent with the fact that the smaller is the magnitude of \(\omega_{12} \), the quicker is the crossover to the value \(\gamma = 1 \) as the NTP concentration is increased.

The randomness parameter yields the diffusion coefficient \([21]\)
\[
D = \frac{\gamma}{2\langle t \rangle}
\]
\[
= \frac{\omega_{12} \omega_{21}^f}{\omega_{12} + \omega_{12}^b + \omega_{21}^f} \left[\frac{(\omega_{12} + \omega_{12}^b + \omega_{21}^f)^2 - 2\omega_{12}^2 \omega_{21}^f}{2 (\omega_{12} + \omega_{12}^b + \omega_{21}^f)^2} \right].
\]
(14)
The expression (14) is in agreement with the general expression for the effective diffusion constant of a molecular motor with unbranched mechano-chemical cycle which was first reported by Fisher and Kolomeisky \([23]\).
4. Phase diagrams

Now we will take into account the hard core steric interaction among the RNAPs which are simultaneously moving on the same DNA track. Equations (1) and (2) will be modified to

\[
\frac{dP_1}{dt} = \omega_{f21} P_2 Q - \omega_1 P_1 - \omega_{b12} P_1 Q \tag{15}
\]

\[
\frac{dP_2}{dt} = \omega_1 P_1 - \omega_{f21} P_2 Q + \omega_{b12} P_1 Q \tag{16}
\]

where \(Q \) is the conditional probability \([4]\) of finding site \(i + \ell \) (\(i - \ell - 1 \) for backward motion) vacant, given there is a particle at site \(i \).

The initiation and termination of transcription can be captured by imposing open boundary conditions (OBC). Due to the steric interactions between RNAPs their stationary flux (and hence the transcription rate) is not limited solely by the initiation and release at the terminal sites of the template DNA. We calculate the resulting phase diagram under OBC by utilizing the extremum current hypothesis (ECH) \([24, 25]\).

The ECH relates the flux \(j \) in the system under OBC to that (i.e. flux \(J \)) under periodic boundary conditions (PBC) with the same bulk dynamics. In this approach, one imagines that initiation and termination sites are connected to two separate reservoirs where the number densities of particles are \(\rho_- \) and \(\rho_+ \), respectively, and where the particles follow the same dynamics as in the bulk of the real physical system. Then

\[
j = \begin{cases}
\max J(\rho) & \text{if } \rho_- > \rho > \rho_+ \\
\min J(\rho) & \text{if } \rho_- < \rho < \rho_+.
\end{cases} \tag{17}
\]

The actual rates \(\omega_\alpha \) and \(\omega_\beta \) of initiation and termination of mRNA polymerization are incorporated by appropriate choices of \(\rho_- \) and \(\rho_+ \), respectively.
An expression for $J(\rho)$, i.e. flux of RNAP traffic under PBC, was reported by us in [4]. In the special case where the dominant pathway is that shown in figure 1 ($\omega_{12}^b = 0$ for further calculation as $\omega_{12} \gg \omega_{12}^b$), we have

$$J(\rho) = \frac{\omega_{12}^f \omega_{21}^f \rho (1 - \rho \ell)}{\omega_{12} (1 - \rho (\ell - 1)) + \omega_{21}^f (1 - \rho \ell)}.$$ \hspace{1cm} (18)

The number density ρ^* that corresponds to the maximum flux is given by the expression

$$\rho^* = \sqrt{\frac{\omega_{12} + \omega_{21}^f}{\ell \omega_{12}}} \left[\sqrt{\ell \left(\frac{\omega_{12} + \omega_{21}^f}{\omega_{12}} \right)} + 1 \right]^{-1}.$$ \hspace{1cm} (19)

By comparing (18) with the exact current–density relation of the usual TASEP for extended particles of size ℓ [26]-[28], which have no internal states (formally obtained by taking the limit $\omega_{12} \rightarrow \infty$ in the present model), we predict that the stationary current (i.e. the collective average rate of translation) is reduced by the occurrence of the intermediate state 1 through which the RNAPs have to pass.

From (17) one expects three phases, namely a maximal-current (MC) phase with bulk density ρ^*, a low-density phase (LD) with bulk density ρ_- and a high-density phase (HD) with bulk density ρ_+. Using arguments similar to those used in [29] in a similar context, we get [22]

$$\rho_- = \frac{\omega_\alpha (\omega_{12} + \omega_{21}^f)}{\omega_{12} \omega_{21}^f + \omega_\alpha (\omega_{12} + \omega_{21}^f) (\ell - 1)}$$ \hspace{1cm} (20)

and

$$\rho_+ = \frac{\omega_{12} \omega_{21}^f - \omega_\beta (\omega_{12} + \omega_{21}^f)}{\omega_{12} \omega_{21}^f \ell - \omega_\beta (\omega_{12} + \omega_{21}^f) (\ell - 1)}.$$ \hspace{1cm} (21)
Figure 5. Projections of several 2d phase diagrams of RNAP traffic on the $\omega_\alpha-\omega_\beta$ plane for several values of ω_{21}^f. The numbers on the phase boundary lines represent the value of ω_{21}^f. The inclined lines have LD and HD above and below, respectively, while the MC phase lies in the upper right corner.

The condition for the coexistence of the high-density (HD) and low-density (LD) phases is

$$J(\rho_-) = J(\rho_+)$$

with $\rho_- < \rho^* < \rho_+$. Using the expression (18) for J in (22) we get

$$\rho_+ = \frac{(\omega_{12} + \omega_{21}^f)(1 - \rho_- \ell)}{\ell(\omega_{12} + \omega_{21}^f)(1 - \rho_- \ell) + \rho_- \ell \omega_{12}}.$$

Substituting (20) and (21) into (23), we get the equation for the plane of coexistence of LD and HD to be $\omega_\beta = f(\omega_\alpha, \omega_{21}^f)$, where

$$f(\omega_\alpha, \omega_{21}^f) = \frac{(\omega_{12} \omega_{21}^f) \omega_{12} \ell \omega_\alpha}{(\omega_{12} + \omega_{21}^f)[\omega_{12} \omega_{21}^f - \omega_\alpha(\omega_{21}^f + \omega_{12} - \omega_{12} \ell)].}$$

In order to compare our result with the 2d phase diagram of the TASEP in the $\omega_\alpha-\omega_\beta$ plane, we project 2d cross sections of the 3d phase diagram, for several different values of ω_{21}^f, onto the $\omega_\alpha-\omega_\beta$ plane. The lines of coexistence of the LD and HD phases on this projected two-dimensional plane are curved; a similar curvature is also reported by Antal and Schütz [30]. This is in contrast to the straight coexistence line for LD and HD phases of TASEP.

doi:10.1088/1742-5468/2009/08/P08018
RNA polymerase motors: dwell time distribution, velocity and dynamical phases

Figure 6. Same as in figure 5 except that the projections are on the $\omega_1 - \omega_2$ plane for several values of ω_2. The inclined lines have LD and HD above and below, respectively. Each vertical line separates the LD phase on the left from the MC phase on its right.

The bulk density of the system is guided by the following equations:

$$
\rho(\omega_\alpha, \omega_\beta) = \begin{cases}
\rho_- & \text{if } \omega_\beta > f(\omega_\alpha, \omega_2^f) \text{ and } \omega_\alpha < \left[\frac{\rho_\ast}{1 - \rho_\ast (\ell - 1)} \right] \left[\frac{\omega_1 \omega_2^f}{\omega_1 + \omega_2^f} \right] \\
\rho_+ & \text{if } \omega_\beta < f(\omega_\alpha, \omega_2^f) \text{ and } \omega_\beta < \left[\frac{1 - \rho_\ast \ell}{1 - \rho_\ast (\ell - 1)} \right] \left[\frac{\omega_1 \omega_2^f}{\omega_1 + \omega_2^f} \right] \\
\rho_\ast & \text{if } \omega_\beta > \left[\frac{1 - \rho_\ast \ell}{1 - \rho_\ast (\ell - 1)} \right] \left[\frac{\omega_1 \omega_2^f}{\omega_1 + \omega_2^f} \right] \text{ and } \\
\omega_\alpha > \left[\frac{\rho_\ast}{1 - \rho_\ast (\ell - 1)} \right] \left[\frac{\omega_1 \omega_2^f}{\omega_1 + \omega_2^f} \right] & \text{maximal current.}
\end{cases}
$$

(25)

In figure 4, we plot the 3d phase diagram.

In general, a plane ω_2^f = constant intersects surfaces I, II and III, thereby generating the phase transition lines between the LD, HD and MC phases in the $\omega_\alpha - \omega_\beta$ plane. We have projected several of these 2d phase diagrams, each for one constant value of ω_2^f in figure 5. In the inset, we have shown the value of ω_2^f for different lines. We have also projected several 2d phase diagrams in the $\omega_1 - \omega_2$ plane and $\omega_2^f - \omega_\beta$ plane, respectively, in figures 6 and 7.

An interesting ℓ-dependent characteristic of the phase diagram is shown in figure 8. The shape of the HD–LD coexistence curve changes from concave to convex with the change of the value of ℓ.
5. Summary and conclusion

In this paper we have reported the exact dwell time distribution for a simple two-state model of RNAP motors. For realistic typical values of the model parameters, the theoretically predicted distribution exhibits a maximum at a small value of dwell time. On the other hand, the experimental data [13]–[15] seem to fit a monotonically decaying function of the dwell time. We have interpreted this apparent difference between theoretical prediction and experimental data to be a possible consequence of the limitation of the temporal resolution of the experiments. Very recently an alternative plausible reconciliation of theory and experiment has been suggested [31] on the basis of a hypothetical scenario which is yet to be tested experimentally.

From the dwell time distribution we have also computed the average velocity and the fluctuations of position and dwell time of RNAPs on the DNA nucleotides. These expressions are consistent with a general formula derived earlier by Fisher and Kolomeisky for a generic model of molecular motors with unbranched mechano-chemical cycles. The stall force of a single RNAP estimated from our force–velocity relation, using typical values of the model parameters, is consistent with those extracted from the in vitro laboratory experiments.

Taking into account the presence of steric interactions between different RNAP moving along the same DNA template we have plotted the full 3d phase diagram of a model for multiple RNAP traffic. This model is a biologically motivated extension of the TASEP, the novel feature being the incorporation of the mechano-chemical cycle of the RNAP into the dynamics of the transcription process. This cycle leads to a hopping process with a dwell time distribution which is not a simple exponential.

The phase diagram of the model is derived from the extremal current hypothesis [25] for driven diffusive systems is known to be valid for generic driven diffusive systems [10].

Figure 7. Same as in figure 5 except that the projections are on the $\omega_{21} - \omega_\alpha$ plane for several values of ω_β. Here the inclined lines have HD and LD, respectively, above and below. Each vertical line separates the HD phase on the left from the MC phase on its right.
Using mean field theory we have computed the effective boundary densities that enter the
ECH from the reaction constants of our model. We observe that the collective average rate of translation as given by the stationary RNAP current (18) is reduced by the need of the RNAP to go through the pyrophosphate bound state. This is a prediction that is open to experimental test.

The 2d cross sections of this phase diagram have been compared and contrasted with the phase diagram for the TASEP. Unlike in the TASEP, the coexistence line between low- and high-density phases is curved for practically all parameter values. This is a signature of broken particle–vacancy symmetry of the RNAP dynamics. The presence of this coexistence line suggests the occurrence of RNAP ‘traffic jams’ that our model predicts to appear when stationary initiation and release of RNAP at the terminal sites of the DNA track are able to balance each other. This traffic jam would perform an unbiased random motion, as argued earlier on general theoretical grounds in the context of protein synthesis by ribosomes from mRNA templates [32]. We hope that the phase diagrams reported in this paper will motivate experimental investigation of the collective spatio-temporal organization of the RNAP motors on a track.

Acknowledgments

This work is supported by a grant from CSIR (India). GMS thanks IIT Kanpur for kind hospitality and DFG for partial financial support. DC thanks the Alexander von Humboldt Foundation for support under the Humboldt Alumni program.

References

[1] Schliwa M (ed), 2003 Molecular Motors (Weinheim: Wiley-VCH)
[2] Gelles J and Landick R, 1998 Cell 93 13
[3] Alberts B et al, 2004 Essential Cell Biology 2nd edn (New York, Oxford: Garland Science, Taylor and Francis)
[4] Tripathi T and Chowdhury D, 2008 Phys. Rev. E 77 011921
[5] Chowdhury D, Santen L and Schadschneider A, 2000 Phys. Rep. 329 199
RNA polymerase motors: dwell time distribution, velocity and dynamical phases

[6] Klumpp S and Lipowsky R, 2003 J. Stat. Phys. 113 233
[7] Chowdhury D, Schadschneider A and Nishinari K, 2005 Phys. Life Rev. 2 318
[8] Voliotis M, Cohen N, Molina-Paris C and Liverpool T B, 2007 Biophys. J. 94 334
[9] Klumpp S and Hwa T, 2008 Proc. Nat. Acad. Sci. 105 18159
[10] Schütz G M, 2001 Phase Transitions and Critical Phenomena vol 19 (New York: Academic)
[11] Dixon M and Webb E C, 1979 Enzymes (New York: Academic)
[12] Kou S C, Cherayil B J, Min W, English B P and Xie X S, 2005 J. Phys. Chem. B 109 19068
[13] Adelman K, La Porta A, Santangelo T J, Lis J T, Roberts J W and Wang M D, 2002 Proc. Nat. Acad. Sci. 99 13538
[14] Shundrovsky A, Santangelo T J, Roberts J W and Wang M D, 2004 Biophys. J. 87 3945
[15] Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R and Block S M, 2005 Nature 438 460
[16] Shaevitz J W, Abbondanzieri E A, Landick R and Block S M, 2003 Nature 426 684
[17] Galbur E, Grill S W, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M and Bustamante C, 2007 Nature 446 820
[18] Neuman K C, Abbondanzieri E A, Landick R, Gelles J and Block S M, 2003 Cell 115 437
[19] Depken M, Galbur E and Grill S W, 2009 Biophys. J. 96 2189
[20] Epshtein V and Nuñer E, 2003 Science 300 801
[21] Schnitzer M and Block S, 1995 Cold Spring Harbor Symp. Quant. Biol. 60 793
[22] Tripathi T, 2009 PhD Thesis IIT Kanpur
[23] Fisher M E and Kolomeisky A B, 1999 Proc. Nat. Acad. Sci. 96 6597
[24] Krug J, 1991 Phys. Rev. Lett. 67 1882
[25] Popkov V and Schütz G M, 1999 Europhys. Lett. 48 257
[26] MacDonald C, Gibbs J and Pipkin A, 1968 Biopolymers 6 1
[27] Shaw L B, Zia R K P and Lee K H, 2003 Phys. Rev. E 68 021910
[28] Schönerr G and Schütz G M, 2004 J. Phys. A: Math. Gen. 37 8215
[29] Basu A and Chowdhury D, 2007 Phys. Rev. E 75 021902
[30] Antal T and Schütz G M, 2000 Phys. Rev. E 62 83
[31] Yamada Y R and Peskin C S, 2009 Biophys. J. 96 3015
[32] Schütz G M, 1997 Int. J. Mod. Phys. B 11 197

doi:10.1088/1742-5468/2009/08/P08018