Morphological characterization and phylogenetic relationships of Indochinese box turtles—The \emph{Cuora galbinifrons} complex

Xiaoli Liu1 | Wei Li1 | Zhaoyang Ye1,2 | Yanyu Zhu1,2 | Xiaoyou Hong1 | Xinping Zhu1

1Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
2College of Life Science and Fisheries, Shanghai Ocean University, Shanghai, China

Correspondence
Xinping Zhu, Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
Email: zhuxinping_1964@163.com

Funding information
Science and Technology Program Project of Guangdong Provincial "South China Freshwater Fishery Biological Germplasm Resource Bank", Grant/Award Number: 2019B030316029; Construction Project of Innovation Team of Modern Agricultural Industry Technology System in Guangdong Province with Agricultural Products as Unit "Organizing and Developing Innovation Team of Freshwater Fish Industry Technology System", Grant/Award Number: 2019KJ150; Central Public-interest Scientific Institution Basal Research Fund, CAFS, Grant/Award Number: 2014A11; National Basic Research Special Foundation of China, Grant/Award Number: 2013FY110700

Abstract
The members of the Indochinese box turtle complex, namely \emph{Cuora galbinifrons}, \emph{Cuora bourreti}, and \emph{Cuora picturata}, rank the most critically endangered turtle species on earth after more than three decades of over-harvesting for food, traditional Chinese medicine, and pet markets. Despite advances in molecular biology, species boundaries and phylogenetic relationships, the status of the \emph{C. galbinifrons} complex remains unresolved due to the small number of specimens observed and collected in the field.

In this study, we present analyses of morphologic characters as well as mitochondrial and nuclear DNA data to reconstruct the species boundaries and systematic relationships within the \emph{C. galbinifrons} complex. Based on principal component analysis (PCA) and statistical analysis, we found that phenotypic traits partially overlapped among \emph{galbinifrons}, \emph{bourreti}, and \emph{picturata}, and that \emph{galbinifrons} and \emph{bourreti} might be only subspecifically distinct. Moreover, we used the mitochondrial genome, COI, and nuclear gene Rag1 under the maximum likelihood criteria and Bayesian inference criteria to elucidate whether \emph{C. galbinifrons} could be divided into three separate species or subspecies. We found strong support for a sister relationship between \emph{picturata} and the other two species, and consequently, we recommend maintaining \emph{picturata} as a full species, and classifying \emph{bourreti} and \emph{galbinifrons} as subspecies of \emph{C. galbinifrons}.

These findings provide evidence for a better understanding of the evolutionary histories of these critically endangered turtles.

KEYWORDS
Cuora, molecular marker, morphology, phylogenetics, turtle
1 | INTRODUCTION

Turtles have been determined among the oldest known reptiles on earth since the rise of the dinosaurs based on the discovery of the earliest fossil which was found from the Triassic in China (Joyce & Gauthier, 2004). During the last three decades, the excessive exploitation of turtles for the pet trade throughout Asia and, the effects of habitat loss, invasive species, and unclear phylogenetic relationships, combined with the traditional Chinese markets for medicinal and edible purposes, have placed turtles in the center of highly endangered taxa (Gong et al., 2009; Parham, Simison, Kozak, Feldman, & Shi, 2001). According to reports, 51.9% of existing turtle species are recognized as threatened, 20% as critically endangered, and 35.3% are critically endangered or endangered by the World Conservation Union (IUCN TFTSG, 2018). The genus Cuora, a member of the Geoemydidae family, are restricted to southeast and east Asia (Takahashi, Ishido, & Hirayama, 2013). Among them in the genus Cuora, 12 species are critically endangered and one species is endangered on the IUCN Red List of Threatened Species (IUCN TFTSG, 2018). Given their plight, knowledge of the distribution patterns and the current diversity and phylogeny have significant consequences for species protection (IUCN TFTSG, 2018).

The recently increased data sampling has greatly improved our understanding of the evolutionary relationships of endangered species (Øivind et al., 2011). However, species boundaries, the phylogeny of the genus, and the genetic diversity of populations are still confused and uncertain, as most of the recent records are based on hunters or pet dealers (Parham et al., 2001). For instance, within the Cuora galbinifrons complex, varying numbers of recognized species (1–3) have been proposed by separate authors (Fritz & Havas, 2007; Spinks, Thomson, & Shaffer, 2009; Zhang, Nie, Cao, & Zhang, 2008). While they were initially described as subspecies of C. galbinifrons (Bourret, 1939), C. g. bourreti by Obst and Reimann (1994), and C. g. picturata (Lehr, Fritz, Obst, 1998), most recent works follow the recommendation by Stuart and Parham (2004) to treat Cuora galbinifrons, bourreti, and picturata as full species because they are morphologically distinguishable and reciprocally monophyletic and have three major mitochondrial DNA clades (Fritz, Petzold, & Auer, 2006; Stuart & Parham, 2004). However, possible introgression between bourreti and galbinifrons within the Cuora galbinifrons population on Hainan and areas of intergradation in central Vietnam (Fritz & Mendau, 2002), which qualifies bourreti and galbinifrons as conspecifics under the biological species concept, challenged this conclusion (Fritz et al., 2006). The claim that Hainan hosts possible hybrids as proposed by De Bruin and Artner (1999) has never been substantiated and it is very likely that bourreti on Hainan are only from pet trade (Blanck, 2013; Stuart & Parham, 2004); however, the population from Hainan has been described as Cuora flavomarginata hainanensis by Li (1958), later included into the synonymy of C. galbinifrons by Zhao and Adler (1993) followed by most other authors including Stuart and Parham (2004).

The indefinite geographical range of the wild population, the misinterpretations of molecular-based phylogenies by different mitochondrial genes or nuclear mitochondrial pseudogenes, and the incomplete lineage sorting and introgression are the main reasons for the ambiguity of taxonomy and systematics of Cuora species. In this study, we used nuclear (Rag1) and mitochondrial markers (genome and COI) in conjunction with morphologic characters to construct the phylogeny among the C. galbinifrons complex (galbinifrons, bourreti, and picturata), as these geometric morphometrics and molecular markers have been extensively utilized to investigate the origin and evolutionary history of vertebrates, including the whale shark (Rhincodon typus); Md Taqueet, Petit, Read, & Dove, 2014), Chinese three-striped box turtle (Cuora trifasciata; Li, Zhang, Zhao, Shi, & Zhu, 2015), Carassius species complex (Liu, Li, et al., 2017), Conoryrhynchos (Sullivan, Lundberg, & Hardman, 2006), Hemicleucus leuciscus (Cheng et al., 2018), and Magadi tilapia (Kavembe, Kautt, Machado-Schiaffino, & Meyer, 2016). We detected morphological differences among the C. galbinifrons complex, and moreover, based on the results of nuclear and mitochondrial markers, we investigated whether the galbinifrons, bourreti, and picturata groups can be regarded as separate species or subspecies. The findings of this study further explore the phylogeny of highly threatened Cuora and provide significant referenced values for species conservation.

2 | MATERIALS AND METHODS

2.1 | Turtle collection and morphometric measurements

A total of 10 galbinifrons (eight specimens and one live turtle), nine bourreti (eight specimens and one live turtle), and five live picturata were obtained from Gaoming turtle breeding farm, Foshan city. Each specimen was photographed with a digital camera (Figure 1), and its nails were obtained and placed in absolute ethyl alcohol (Weijia Biotechnology Co., Ltd.) for one night and then transferred to −20°C conditions for group genetic analysis. Subsequently, we selected morphological landmarks to provide a precise definition of the turtle morphology. A total of 11 morphological characters were measured (Figure 2a–c and Table 1). Each morphological character was defined as a morphological landmark. We declare that the animal experimentation has been approved by the Pearl River Fisheries Research Institute (PRFRI, authorization number 45541566–7). All turtles used in this study were treated humanely and ethically, and we followed all applicable Chinese institutional animal care guidelines.

2.2 | Analysis of morphological differences

A homogeneity test of variances and one-way analysis of variance (one-way ANOVA) in SPSS version 20.0 were used to test for intergroup variation of the above 11 morphological characters. Duncan's multiple comparison was conducted on the variables with homogeneity of variance, and Tamhane's T2 method was used to analyze the variables without homogeneity of variance (significant level p = .05). Principal component analysis (PCA) was performed to highlight the
differences of 11 morphological characters among the three Cuora species by SPSS version 20.0. The KMO and Bartlett’s tests were used to detect whether the 11 morphological characters were suitable for factor analysis. All PCAs with eigenvalues >1.00 were considered important (Chatfield & Collins, 1983), and the first three principal components with cumulative contribution rates >85% were selected.

2.3 DNA extraction and nucleotide sequencing

Genomic DNA was extracted from the turtle nails by DNA Kit (Omega) following the manufacturer’s protocol. Fifteen pairs of primers (Table S1) were designed to amplify the complete mitochondrial genome of C. galbinifrons, bourreti, and picturata according to previously published mitogenomes of the genus Cuora (Li et al., 2015). The PCR conditions were as follows: 95°C for 2 min, 35 cycles at 94°C for 30 s, 53–58°C for 30 s, 72°C for 2 min, and 72°C for 10 min, and the reaction system was performed in an Ex Taq (Takara) 40 μl reaction. The PCR products were sequenced and annotated by Shenggong Biotechnology. Subsequently, a pair of primers COI-F and COI-R (Table S1) was designed to amplify a partial fragment of the COI gene for 24 specimens. The total PCR volume was 25 μl containing 2.5 μl of 10× buffer (TaKaRa), 4 μl of dNTP (2.5 mM), 0.5 μl of each primer (10 μmol), 1 μl of template DNA, and 0.5 μl of Taq DNA polymerase (5 U/μl). The PCR conditions were as follows: 94°C for 2 min, 33 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 2 min, followed by a final extension at 72°C for 10 min. The PCR products were sequenced by Shenggong Biotechnology. Moreover, we used the following primers (Rag1-F, Rag1-R, Table S1) for amplifying and sequencing partial fragments of the recombination activating protein 1 (Rag1) gene. The reaction system was performed in an Ex Taq (Takara) 50 μl reaction mix, and the PCR condition were as follows: 94°C for 2 min, 94°C for 30 s, 58°C for 30 s, and 72°C for 2 min for 33 cycles. The positive products were purified with a by Gel Extraction Kit (Omega) and cloned into a PMD19-T vector (Takara) for sequencing.

2.4 Sequence analysis

The data sets of nucleotide sequences were edited and assembled by Seqman software (Zhou et al., 2012). Sequence alignments and information on nucleotide variation were conducted by MEGA6.0 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). Comparison of the C. galbinifrons complex with other available mitogenomes including Cuora amboinensis, Cuora mouhotii, Cuora aurocapitata, Cuora cyclornata, Cuora pani, Cuora trifasciata, and Cuora flavomarginata were made using the CGView Comparison Tool (CCT). For the COI and Rag1 gene data sets, HKY+G and HKY were selected as the best fit models of evolution, respectively, by MODELTEST version 3.7 (Posada & Crandall, 1998). Maximum likelihood (ML) phylogenetic trees were implemented in MEGA6.0 (Tamura et al., 2013), and Bayesian inference (BI) trees were conducted in

FIGURE 1 Shell morphology, head coloration, and patterning and coloration of plastron in C. galbinifrons, bourreti, and picturata
MRBAYES 3.1.2 (Ronquist & Huelsenbeck, 2003). For the BI tree, four simultaneous Metropolis-coupled Monte Carlo Markov chains were used and run for 50,000,000 generations. Convergence to stationarity was evaluated using log-likelihood values by TRACER v.1.5. The first 80% of the trees were discarded as burn-in, and the remaining tree samples were used to generate a consensus tree. For the ML tree, the nodal support value was assessed from 100 nonparametric bootstrap replicates.

3 | RESULTS

3.1 | Morphological variation among the C. *galbinifrons* complex

A total of 24 individuals including 10 *galbinifrons*, nine *bourreti*, and five *picturata* were obtained from Gaoming turtle breeding farm, Foshan city, and their morphological differences were significant.
across these three Cuora species. As shown in Figure 1a,b, the carapace was slightly long and narrow with variations in patterns and colors. The plastron of *galbinifrons* was predominantly black with white growth lines on both sides (Figure 1c). On the yellow head of *gallinifrons*, black or brown spots were present (Figure 1d). *Bourreti* most of the plastron was yellow, and black patches scattered around the edge of the plastron covering not more than 75% of the scute to no spots at all (Figure 1k).

To further investigate the differences in morphometric shape among the *C. gallinifrons* complex, eleven morphological characters were measured and are shown in Figure 2a–c and Table 1. Based on one-way ANOVA, morphological measurements of the plastron length (M5), anterior half width of abdominal armor (M7), posterior half anterior width of abdominal armor (M8), and throat shield width (M11) showed significant variations across the three Cuora species (Table S2). All 4 significantly different measurements of individuals from *picturata* revealed lower values than the measurements from individuals of *galbinifrons* and *bourreti* (Table S2). Individuals of *galbinifrons*, compared with *bourreti*, had lower values in the anterior half width of abdominal armor (M7) and posterior half width of abdominal armor (M8) as well as higher values of plastron length (M5) and throat shield width (M11; Table S2). Moreover, based on principal component analysis (PCA), there was an overlap of specimens from different groups in which some individuals of *galbinifrons* and *bourreti* clustered into one group, and all *picturata* and some *gallinifrons* clustered into the other group (Figure 2d). A moderate level of interspecific difference among the *C. gallinifrons* complex was detected by three components in the PCA which explained 88.478% of the variation (Table 2). The first component, which explained 60.382% of the variation, suggested a difference in morphological traits, namely on the accumulated contribution, respectively (Table 2). The first component, which explained 60.382% of the variation, suggested a difference in morphological traits, namely

Code	Morphometric characters	Measurement
M1	Weight	–
M2	Carapace length	1–2 (Maximum linear length of carapace scutes)
M3	Carapace width	3–4 (Maximum linear width of carapace scutes)
M4	Body height	5 (Maximum linear height between carapace scutes and plastron scutes)
M5	Plastron length	6–7 (Maximum linear length of plastron scutes)
M6	Length of second half of the epigastrium	7–8 (Maximum vertical straight line length from inguinal shield to rear edge of tail shield)
M7	Anterior half width of abdominal armor	9–10 (Maximum linear width in front of axillary shield)
M8	Posterior half anterior width of abdominal armor	11–12 (Linear width at the junction of abdominal shield and femoral shield)
M9	Posterior half posterior width of abdominal armor	13–14 (Linear width at the junction of femoral shield and anal shield)
M10	Tortoiseshell bridge length	8–10 (Linear length from axillary shield to inguinal shield)
M11	Throat shield width	15–16 (Maximum linear width of gular shield)

TABLE 1 Eleven morphological characters of the specimens

TABLE 2 Factor loadings of principal components extracted from 17 proportional characters for *C. gallinifrons*, *bourreti*, and *picturata*

Morphometric characters	PC1	PC2	PC3
Characteristic root	6.642	2.071	1.019
Variance contribution (%)	60.382	18.828	9.268
Accumulative contribution (%)	60.382	79.210	88.478
Weight (g)	0.688	0.409	−0.364
Carapace length (cm)	0.943	0.107	−0.001
Carapace width (cm)	0.657	0.631	−0.237
Body height (cm)	0.442	0.778	−0.127
Plastron length (cm)	0.969	0.058	0.208
Length of second half of the epigastrium (cm)	0.852	−0.428	−0.243
Anterior half width of abdominal armor (cm)	0.946	−0.166	0.074
Posterior half anterior width of abdominal armor (cm)	0.760	−0.356	−0.190
Posterior half posterior width of abdominal armor (cm)	0.819	−0.447	−0.165
Tortoiseshell bridge length (cm)	0.749	−0.374	0.424
Throat shield width (cm)	0.530	0.456	0.681

ANOVA p-value 0.019 0.172 0.263

Code	Characteristic root	Variance contribution (%)	Accumulative contribution (%)	Weight (g)	Carapace length (cm)	Carapace width (cm)	Body height (cm)	Plastron length (cm)	Length of second half of the epigastrium (cm)	Anterior half width of abdominal armor (cm)	Posterior half anterior width of abdominal armor (cm)	Posterior half posterior width of abdominal armor (cm)	Tortoiseshell bridge length (cm)	Throat shield width (cm)	ANOVA p-value
M1	6.642	60.382	60.382	0.688	0.943	0.657	0.442	0.969	0.852	0.946	0.760	0.819	0.749	0.530	0.019
M2	2.071	18.828	79.210	0.409	0.107	0.631	0.778	0.058	−0.428	−0.166	−0.356	−0.447	−0.374	0.456	0.172
M3	1.019	9.268	88.478	−0.364	−0.001	−0.237	−0.127	0.208	−0.243	0.074	−0.190	−0.165	0.424	0.681	0.263

3.2 | Nuclear DNA (nuDNA) phylogenies of *C. gallinifrons* complex

The nuclear gene *Rag1* was used to reveal the phylogenetic relationship of the three Cuora species. A total of 11 *Rag1* haplotypes were detected from the three groups including 10 *gallinifrons*, nine *bourreti*, and five *picturata* (Figure 3a and Table S3). The length variations of 11 *Rag1* haplotypes ranged from 844 to 845 bp and contained 14 variable positions, of which nine were potentially parsimony informative. As shown in Figure 3a and Table S3, *Rag1-H1* and *Rag1-H2*
FIGURE 3 Multiple alignment and phylogenetic analysis of Rag1 haplotypes across C. galbinifrons, bourreti, and picturata. (a) Multiple alignment of Rag1 haplotypes in galbinifrons, bourreti, and picturata. The identical nucleotides are shown in black shadows. Gaps (−) are introduced to optimize identity analysis. The species names are shown to the left, and the occurrence frequencies are given at the end of the alignment. (b) ML phylogeny tree of Rag1 haplotypes from galbinifrons, bourreti, and picturata. Rag1 haplotypes of Mauremys mutica are used as out-groups.
were detected from the groups of *galbinifrons* and *bourreti*, respectively, and their total occurrence frequency was high, up to 41.67% (Figure 3a). Subsequently, the phylogenetic relationship generated using BI and ML from 11 Rag1 haplotypes was well supported. As shown in Figure 3b, four major lineages emerged. Lineage A included only haplotype, Rag1-H3, which was shared by *galbinifrons* and *bourreti*. Lineage B included four haplotypes, of which three haplotypes (Rag1-H1, Rag1-H5, and Rag1-H10) were distributed in *galbinifrons* and 1 haplotype (Rag1-H8) was from the *bourreti* group. Lineage C contained Rag1-H6, Rag1-H7, and Rag1-H11, and all three haplotypes occurred in the group of *picturata* with occurrence frequencies of 8.33%, 8.33%, and 4.17%, respectively (Figure 3a,b). A total of three haplotypes (Rag1-H2, Rag1-H4, and Rag1-H9) that were derived from the group of *bourreti* were clustered into lineage D.

3.3 Characteristics of the *C. galbinifrons* complex mitogenomes

In this study, the mitogenomes of the three *Cuora* species were sequenced and the assembled mitogenome sizes of *galbinifrons*, *bourreti*, and *picturata* were 17,200, 17,407, and 16,598 bp in length, respectively. As in typical vertebrates, all three *Cuora* species mitogenomes were composed of highly conserved genes including two ribosomal RNAs (rRNAs, 12S rRNA, and 16S rRNA), 22 transfer RNAs (tRNAs), 13 protein coding genes, and a variable control region which was also known as a displacement loop (D-loop; Table 3). Among the 22 tRNAs, eight tRNAs (tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-Glu, tRNA-Pro) were located on the heavy (H) strand, while the remaining genes were encoded by the light (L) strand except for ND6 gene (Table 3). Twenty-two tRNAs with lengths ranging from 67 to 78 bp were observed in these three *Cuora* species, and variable length polymorphisms of 22 intergenic spacers were detected from 1 to 26 bp (Table 3). Similar to most other vertebrates, ATG was the most frequent start codon for all the protein-coding genes with only an exception in the COI gene, which had the GTG start codon (Table 3). For stop codons, six (COII, ATP8, ATP6, ND4L, ND4, ND5) of the 13 protein-coding genes used TAA stop codons, three (ND1, ND2, and ND3) genes had TAG stop codons, two (COI and ND6) genes stop with AGG codons, and both COIII and Cytb genes were terminated through incomplete stop codon T (Table 3). The overall GC content of *galbinifrons*, *bourreti*, and *picturata* was 42.9%, 42.9%, and 42%, respectively. The control regions of these three *Cuora* species were highly divergent, and the length variations ranged from 1,087 to 1,886 bp.

3.4 Comparison with closely related turtle species

Sequence alignment analysis of mitogenomes based on seven turtles species closely related to these three *Cuora* species including *Cuora amboinensis*, *Cuora mouhotii*, *Cuora aurocapitata*, *Cuora cyclornata*, *Cuora pani*, *Cuora trifasciata*, and *Cuora flavomarginata* in previous reports together with the current study revealed that the genome composition and gene arrangements were similar in all 10 turtle species that were compared (Figure 4a). Similar to the three *Cuora* species, the length and genetic variation were mainly located in the control region. The sequence identity at the nucleotide level between *bourreti* and the other turtle species varied between 83.47% and 96.11% (Figure 4a). To pursue the phylogenetic relationship of the 10 turtle species, both ML and BI trees were constructed according to their mitogenomes. Only the ML tree is shown in Figure 4b, as both BI and ML tree produced the same topology and well supported each other. Both matriline A and matriline B consisted of only one species (*C. amboinensis* and *C. mouhotii*, respectively). The sister group of matriline B and matriline C, contained *C. cyclornata* and the three *Cuora* species sampled in this study. Four species, *C. aurocapitata*, *C. pani*, *C. trifasciata*, and *C. flavomarginata* clustered into matriline D. The results from the topological trees of these species were consistent with the reported traditional phylogenies (Li et al., 2015; Spinks et al., 2012).

3.5 mtDNA phylogenies of the *C. galbinifrons* complex

In addition to nuclear gene Rag1, we generated sequence data for the partial COI gene to further investigate the genetic differentiation across the three *Cuora* species groups. As shown in Figure 5, a total of 19 mtDNA COI haplotypes including 10 haplotypes currently identified from samples in this study, seven haplotypes obtained from previous reports (Spinks & Shaffer, 2007; Stuart & Parham, 2004), and two shared haplotypes were identified from 21 *galbinifrons*, 16 *bourreti*, and 10 *picturata* (Figure 5a and Table S4). Variable length polymorphisms were also observed from 621 to 629 bp, and these 19 haplotypes included 47 variable positions, of which 30 were parsimony informative. Among the 19 haplotypes, the highest occurrence frequency, COI-H3 (23.40%) was only present in *galbinifrons* groups (Figure 5a and Table S4). COI-H2, with a 21.28% occurrence frequency, originated directly from *picturata*. There was only one haplotype, COI-H1, with a 14.89% occurrence frequency, which was shared by individuals from *galbinifrons* and *bourreti* groups (Figure 5a and Table S4). The remaining haplotypes with occurrence frequencies range from 2.13% to 4.26% were identified only in individuals of either *bourreti* or *galbinifrons* (Figure 5a and Table S4). The constructed BI and ML trees based on the mtDNA COI haplotypes resolved extremely similar matrilines and only the ML tree is shown in Figure 5b. The in-group consisted of six highly supported matrilines. Matriline A, the sister group of all other matrilines, contained only one haplotype of *picturata*. Matriline B, the sister group of matrilines C, D, E, and F, included groups of *galbinifrons* and *bourreti* (Figure 5b). The remaining haplotypes of *galbinifrons* and *bourreti* were grouped in matrilines C and D and matrilines E and F, respectively (Figure 5b).

4 DISCUSSION

Inconsistencies between taxonomy and phylogenetic patterns have been revealed to be common among closely related species due to divergent markers, hybridization and introgression of wild populations,
arbitrary sections of clines, artificial subdivisions of species or a random combination of these factors (Naksri, Tong, Lauprasert, Suteethorn, & Claude, 2013; Petit & Excoffier, 2009; Zhang, Nie, Huang, Pu, & Zhang, 2009; Zink & Barrowclough, 2008). Defining the interspecific relationships and species boundaries for \textit{Cuora} has been a challenging endeavor for the systematic and conservation communities. Moreover, the concept of species and its criteria are widely controversial in previous literature (Meier, 2000). Here, we adopt the version of the phylogenetic species concept proposed by Crowe (1999), wherein trivial characters were avoided to define evolutionary units, and multiple independent lines of evidence including morphology, ecology, behavior, molecules, or physiology were.

TABLE 3 Details on the mitochondrial genome of \textit{C. galbinifrons}, \textit{bourreti}, and \textit{picturata}

Gene/element	Galbinifrons/bourreti/picturata					
	Strand\(^a\)	Size	GC percent (%)	Start codon	Stop codon	Intergenic nucleotide\(^b\)
tRNA-Phe	H/H/H	70/70/69	42.86/42.86/42.03	-	-	0/0/0
12S-rRNA	H/H/H	965/965/963	40.73/40.83/41.95	-	-	0/0/0
tRNA-Val	H/H/H	70/70/69	31.43/30.00/28.99	-	-	0/0/0
16S-rRNA	H/H/H	1606/1605/1599	39.17/39.50/39.46	-	-	0/0/0
tRNA-Leu	H/H/H	76/76/76	46.05/47.37/47.37	-	-	0/0/0
ND1	H/H/H	972/972/972	40.23/40.12/39.92	ATG/ATG/ATG	TAG/TAG/TAG	-1/-1/-1
tRNA-Ile	H/H/H	70/70/70	48.57/47.14/47.14	-	-	-1/-1/-1
tRNA-Gln	L/L/L	71/71/71	33.80/32.39/33.80	-	-	-1/-1/-1
tRNA-Met	H/H/H	69/69/69	39.13/39.13/39.13	-	-	0/0/0
ND2	H/H/H	1041/1041/1041	40.15/40.25/39.19	ATG/ATG/ATG	TAG/TAG/TAG	-2/-2/-2
tRNA-Trp	H/H/H	77/77/78	45.45/45.45/45.44	-	-	1/1/1
tRNA-Ala	L/L/L	69/69/69	30.43/28.99/30.43	-	-	1/1/1
tRNA-Asn	L/L/L	73/73/73	42.47/42.47/42.51	-	-	26/26/26
tRNA-Cys	L/L/L	66/66/67	33.33/33.33/31.34	-	-	0/0/0
tRNA-Tyr	L/L/L	71/71/71	40.85/40.85/40.85	-	-	1/1/1
COI	H/H/H	1548/1548/1548	42.05/41.99/41.73	GTG/GTG/GTG	AGG/AGG/AGG	-9/-9/-9
tRNA-Ser	L/L/L	71/71/71	42.25/42.25/42.25	-	-	2/2/2
tRNA-Asp	H/H/H	70/70/70	30.00/30.00/30.00	-	-	0/0/0
COII	H/H/H	687/687/687	37.41/37.70/38.28	ATG/ATG/ATG	TAA/TAA/TAA	2/2/2
tRNA-Lys	H/H/H	73/73/73	43.84/43.84/43.84	-	-	1/1/1
ATP8	H/H/H	168/168/168	32.74/32.74/33.33	ATG/ATG/ATG	TAA/TAA/TAA	-22/-22/-22
ATP6	H/H/H	696/696/693	36.49/36.35/37.23	ATG/ATG/ATG	TAA/TAA/TAA	-1/-1/-1
COII	H/H/H	784/784/784	41.96/41.58/42.60	ATG/ATG/ATG	T/T/T	0/0/0
tRNA-Gly	H/H/H	68/68/68	29.41/27.94/32.35	-	-	0/0/0
ND3	H/H/H	351/351/351	36.47/36.75/37.32	ATG/ATG/ATG	TAG/TAG/TAG	-2/-2/-2
tRNA-Arg	H/H/H	71/71/71	35.21/35.21/35.21	-	-	-1/-1/-1
ND4L	H/H/H	300/300/300	41.67/42.00/41.00	ATG/ATG/ATG	TAA/TAA/TAA	-7/-7/-7
ND4	H/H/H	1377/1377/1377	39.22/39.14/39.72	ATG/ATG/ATG	TAA/TAA/TAA	12/12/12
tRNA-His	H/H/H	70/70/70	28.57/30.00/27.14	-	-	0/0/0
tRNA-Ser	H/H/H	67/67/67	44.78/44.78/43.28	-	-	-1/-1/-1
tRNA-Leu	H/H/H	72/72/72	38.89/38.89/38.89	-	-	0/0/0
ND5	H/H/H	1806/1806/1806	39.04/38.54/38.37	ATG/ATG/ATG	TAA/TAA/TAA	-5/-5/-5
ND6	L/L/L	525/525/525	39.43/39.24/38.48	ATG/ATG/ATG	AGG/AGG/AGG	0/0/0
tRNA-Glu	L/L/L	68/68/68	42.65/42.65/38.24	-	-	4/4/4
Cytb	H/H/H	1144/1144/1144	43.44/43.36/42.83	ATG/ATG/ATG	T/T/T	0/0/0
tRNA-Thr	H/H/H	72/72/72	37.50/37.50/34.72	-	-	1/1/1
tRNA-Pro	L/L/L	69/69/70	42.03/40.58/35.71	-	-	0/0/0
D-loop	H/H/H	1678/1886/1087	26.28/24.76/28.79	-	-	0/0/0

\(^a\)H, heavy strand; L, light strand.
\(^b\)Numbers indicate nucleotides separating two adjacent genes, while negative numbers indicate overlapping nucleotides.
investigated to determine species. In this study, morphological differences did not entirely separate the three species (Figure 1). Using PCA on 11 morphological characters of the *C. galbinifrons* complex, we found that *bourreti* partially overlapped in their morphological characters with the other two species (Figure 2). In addition, similar sets of relationships based on analyses of nuclear *Rag1* gene and mitochondrial *COI* gene indicated that *picturata* was well defined as a full species, but did not resolve *galbinifrons* and *bourreti* into two distinct groups (Figures 3 and 5). Our findings were consistent with osteological comparison of the *C. galbinifrons* complex (Fritz et al., 2006) but were slightly different from the hypothesis of Stuart and Parham (2004) which rendered *galbinifrons*, *bourreti*, and *picturata* as monophyletic, evolutionary lineages. Therefore, together with external morphology and molecular analyses, we recommend maintaining *picturata* as a full species, while *galbinifrons* and *bourreti* seem to be only subspecifically distinct. It is possible that species are gradually forming and will ultimately evolve into full species through the accumulation of variation but this is not evident yet.

Four possible explanations are suggested to explain the lack of remarkable divergence between *galbinifrons* and *bourreti*. First, as clarified by Fritz et al. (2006), *galbinifrons* and *bourreti* could be conspecific due to a consistent peculiar state in the bony carapace regarding the articulation of the rib tips with the peripheral plates, although differences in the shape of the shell and coloration of soft body parts were presented as attributable to polymorphism or geographic variation. Moreover, *bourreti* might have recently diverged from *galbinifrons*, and strong selection may have accelerated morphological differentiation while mutation rates of neutral genetic
markers do not always reflect morphological differences in the process of phylogenetic evolution (Stuart & Parham, 2004). This lack of phylogenetic structure and limited lineage differentiation on mitochondrial DNA divergence are common among Hemichilus leucisculus from a lake complex in the middle Yangtze (Cheng et al., 2018) and a cluster of populations of the "Cumana guppy" (Poecilia reticulata Peters; Alexander & Breden, 2010). In addition, as an integral part of the evolutionary process, hybridization and introgression were extensively found across a wide range of taxa in nature (Baldassarre, White, Jordan, & Webster, 2015; Kidd, Bowman, Lesbarrères, & Schulte-Hostede, 2010; Stuart & Parham, 2007; Twyford & Ennos, 2012). In terms of geographical distribution, picturata is currently only known from southern Phu Yen and Khanh Hoa provinces in southern central Vietnam (McCormack, Shi, & Stuart, 2016), and galbinifrons is found in North Central Vietnam, northeastern Laos, Hainan Island, and Guangxi Province of China (McCormack, Stuart, & Blanck, 2016), bourreti is distributed in northeastern Cambodia, eastern Laos, and central Vietnam south to northern Phu Yen Province (McCormack & Stuart, 2016) which revealed a partial intergradation area with that of galbinifrons (Stuart & Parham, 2004, Naksri et al., 2013). Therefore, it is reasonable to maintain picturata as a full species and assume galbinifrons and bourreti as subspecies of C. galbinifrons due to their coherent distribution area with no real boundaries. In addition, the overlap of distribution areas between galbinifrons and bourreti provided opportunities and possibilities for their hybridization, and hybrids from the same maternal species in captive or wild populations might generate highly homologous or identical mitochondrial DNA sequences. Finally, the relationship among closely related species might be obscured by variable morphological indices or molecular markers such as different nuclear and mitochondrial markers implemented in Carassius species complex (Liu, Jiang, et al., 2017; Luo et al., 2014), Quasipaa boulengeri (Yan et al., 2013), and Neosalangx taihuensis (Zhao et al., 2008). As a consequence, multiple molecular markers or genomic DNA of populations and larger sample sizes of known provenance will help to further investigate their taxonomic status.

The identification of the C. galbinifrons as full species with C. g. bourreti as its subspecies and C. picturata as a valid species plays an important role in the protection of their germplasm resources. The analysis of nuclear and mitochondrial DNA, in combination with morphology, led us to maintain picturata as full species and recommend galbinifrons and bourreti as subspecies of C. galbinifrons. Captive breeding efforts should be used to prevent genetic contamination and maintain the integrity of these phyletic evolutions by propagating them separately under artificial conditions. Moreover, China and Vietnam are the top two countries in need of effective turtle conservation in Asia (Stuart & Thorbjarnarson, 2003). Maintaining picturata as full species but downgrading bourreti as a subspecies of C. galbinifrons decreases the number of species in the Cuora genus, but will increase awareness of species-level protection opportunities and conservation activities of C. galbinifrons. However, devastation of the C. galbinifrons complex from overexploitation for sale has not stopped, which makes further investigation of great significance across the spectrum of ecology, threematology, conservation, and evolution biology.

ACKNOWLEDGMENTS

We thank the Pearl River Fisheries Research Institute for the samples. This research work was supported by Science and Technology Program Project of Guangdong Provincial “South China Freshwater Fishery Biological Germplasm Resource Bank” (2019B030316029), Construction Project of Innovation Team of Modern Agricultural Industry Technology System in Guangdong Province with Agricultural Products as Unit “Organizing and Developing Innovation Team of Freshwater Fish Industry Technology System” (2019KJ150), Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO. 2014A11), and National Basic Research Special Foundation of China (2013FY110700).

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTIONS

Xiaoli Liu conducted the experiments and prepared the manuscript; Wei Li, Zhaoyang Ye analyzed the data; Xiaoyou Hong collected the samples; Xinping Zhu designed the study and wrote the manuscript. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT

The data are provided in Supporting Information Appendix S1.

ORCID

Xiaoli Liu https://orcid.org/0000-0001-9866-0602

REFERENCES

Alexander, H. J., & Breden, F. (2010). Sexual isolation and extreme morphological divergence in the Cumana guppy: A possible case of incipient speciation. *Journal of Evolutionary Biology*, 17, 1238–1254. https://doi.org/10.1111/j.1420-9101.2004.00788.x

Baldassarre, D. T., White, T. A., Jordan, K., & Webster, M. S. (2015). Genomic and morphological analysis of a semipermeable avian

FIGURE 5 Multiple alignment and phylogenetic analysis of COI haplotypes across C. galbinifrons, bourreti, and picturata. (a) Multiple alignment of COI haplotypes in C. galbinifrons, bourreti, and picturata. The identical nucleotides are shown in black shadows. Gaps (−) are introduced to optimize identity analysis. The species names are shown to the left, and the occurrence frequencies are given at the end of the alignment. (b) ML phylogeny tree of COI haplotypes from C. galbinifrons, bourreti, and picturata. COI haplotypes of Mauremys mutica are used as out-groups.
hybrid zone suggests asymmetrical introgression of a sexual signal. Evolution, 68, 2644–2657. https://doi.org/10.1111/evo.12457
Blanck, T. (2013). Zu Besuch bei Cuora galbinifrons auf Hainan, China. Reptilia (Münster), 18, 100–109.
Bourret, R. (1939). Notes herpétologiques sur l’Indochine française XVIII. Reptiles et Batraciens reçus au Laboratoire des Sciences Naturelles de l’Université au cours de l’année 1939. Descriptions de quatorze espèces et d’une variété nouvelles. Bulletin Général de l’Instruction Publique, 19, 5–39.
Chatfield, C., & Collins, A. J. (1983). Introduction to multivariate analysis. London, UK: Chapman & Hall.
Cheng, F., Zhao, S., Schmidt, B. V., Ye, L., Hallerman, E. M., Xie, S., ... Ye, L. (2018). Morphological but no genetic differentiation among fragmented populations of Hemiculter leucisculus (Actinopterygii, Cyprinidae) from a lake complex in the middle Yangtze, China. Hydrobiologia, 809, 185–200. https://doi.org/10.1007/s10750-017-3464-0
Crowe, T. M. (1999). Species as multifaceted entities. In N. J. Adams & R. H. Slottow (Eds.), Proceedings of the 22nd International Ornithological Congress, Durban (pp. 1490–1495). Johannesburg, South Africa: BirdLife South Africa.
De Bruin, R. W. F., & Artner, H. G. (1999). On the turtles of Hainan Island, within the Geoemydidae. Zoologische Abhandlungen, Staatliches Museum für Tierkunde Dresden, 48, 125–138.
Fritz, U., & Havaš, P. (2007). Checklist of chelonians of the world. Vertebrate Zoology, 57, 149–366.
Fritz, U., & Menda, D. (2002). Ein Gattungsbastard zweier südostasiatischer Schildkröten: Cuora amboinensis kamaroma Rummler & Fritz, 1991 x Mauremys annamensis (Siebenrock, 1903). Salamandra, 38, 129–134.
Fritz, U., Petzold, A., & Auer, M. (2006). Osteology in the species complex (Cypriniformes, Cyprinidae). Proceedings Biological Sciences, 273, 1–5. https://doi.org/10.1098/rspb.2005.3252
Kavembe, G. D., Kautt, A. F., Machado-Schiappino, G., & Meyer, A. (2016). Eco-morphological differentiation in Lake Magadi tilapia, an extremophile cichlid fish living in hot, alkaline and hypersaline lakes in East Africa. Molecular Ecology, 25, 1610–1625. https://doi.org/10.1111/mec.13461
Kidd, A. G., Bowman, J., Lesbarrères, D., & Schulte-Hostedde, A. I. (2010). Hybridization between escaped domestic and wild American mink (Neovison vison). Molecular Ecology, 18, 1175–1186. https://doi.org/10.1111/j.1365-294X.2009.04100.x
Liu, X. L., Li, X. Y., Jiang, F. F., Wang, Z. W., Li, Z., Zhang, X. J., ... Gui, J. F. (2017). Numerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids in Carassius species complex. Ecology and Evolution, 7, 10604–10615. https://doi.org/10.1002/ece3.3462
Luo, J., Gao, Y., Ma, W., Bi, X. Y., Wang, S. Y., Wang, J., ... Wu, S. F. (2014). Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity, 112, 415–427. https://doi.org/10.1038/hdy.2013.121
McCormack, T., Shi, H., & Stuart, B. (2016). Cuora galbinifrons. The IUCN Red List of Threatened Species 2016: e.T97357437A3078734. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T97357437A3078734.en
McCormack, T., & Stuart, B. (2016). Cuora bourreti (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T163447A115303472. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T163447A1009344.en
McCormack, T., Stuart, B., & Blanck, T. (2016). Cuora picturata (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T163463A115303820. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T163463A1010522.en
Md Taqueer, A., Pettit, R. A., Read, T. D., & Dove, A. D. M. (2014). The complete mitochondrial genome sequence of the world’s largest fish, the whale shark (Rhincodon typus), and its comparison with those of related shark species. Gene, 539, 44–49. https://doi.org/10.1016/j.gene.2014.01.064
Spinks, P. Q., Thomson, R. C., Zhang, Y. P., Che, J., Wu, Y., & Shaffer, H. B. (2012). Species boundaries and phylogenetic relationships in the critically endangered Asian box turtle genus Cuora. Molecular Phylogenetics and Evolution, 63, 656–667. https://doi.org/10.1016/j.ympev.2012.02.014

Stuart, B. L., & Parham, J. F. (2004). Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Molecular Phylogenetics and Evolution, 31, 164–177. https://doi.org/10.1016/S1055-7903(03)00258-6

Stuart, B. L., & Thorbjarnarson, J. (2003). Biological prioritization of Asian countries for turtle conservation. Chelonian Conservation and Biology, 4, 642–647.

Sullivan, J. P., Lundberg, J. G., & Hardman, M. (2006). A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Molecular Phylogenetics and Evolution, 41, 636–662. https://doi.org/10.1016/j.ympev.2006.05.044

Takahashi, A., Ishido, Ō. K. T., & Hirayama, R. (2013). A new species of the genus Ocadia (Testudines: Geoemydidae) from the middle Miocene of Tanegashima Island, southwestern Japan and its paleogeographic implications. Zootaxa, 3647, 527. https://doi.org/10.11646/zootaxa.3647.4.3

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197

Twyford, A. D., & Ennos, R. A. (2012). Next-generation hybridization and introgression. Heredity, 108, 179–189. https://doi.org/10.1038/hdy.2011.68

Yan, F., Zhou, W. W., Zhao, H. T., Yuan, Z. Y., Wang, Y. Y., Jiang, K., ... Zhang, Y. P. (2013). Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaa boulengeri (Anura: Dicroglossidae). Molecular Ecology, 22, 1120–1133. https://doi.org/10.1111/mec.12153

Zhang, L., Nie, L., Cao, C., & Zhang, Y. (2008). The complete mitochondrial genome of the Keeled box turtle Pyxidea mouhotii and phylogenetic analysis of major turtle groups. Journal of Genetics and Genomics, 35, 33–40. https://doi.org/10.1016/S1673-8527(08)60005-3

Zhang, Y., Nie, L., Huang, Y., Pu, Y., & Zhang, L. (2009). The mitochondrial DNA control region comparison studies of four hinged turtles and its phylogenetic significance of the genus Cuora Sensu Lato (Testudinata: Geoemydidae). Genes and Genomics, 31, 349–359. https://doi.org/10.1007/bf03191253

Zhao, E. M., & Adler, K. (1993). Herpetology of China. Oxford, OH: Society for the study of Amphibians and Reptiles.

Zhao, L., Zhang, J., Liu, Z., Funk, S. M., Wei, F., Xu, M., & Li, M. (2008). Complex population genetic and demographic history of the Salangid, Neosalanx taihuensis, based on cytochrome b sequences. BMC Evolutionary Biology, 8, 201. https://doi.org/10.1186/1471-2148-8-201

Zhou, W. W., Wen, Y., Fu, J., Xu, Y. B., Jin, J. Q., Ding, L., ..., Zhang, Y. P. (2012). Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai-Tibetan Plateau. Molecular Ecology, 21, 960–973. https://doi.org/10.1111/j.1365-294X.2011.05411.x

Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17, 2107–2121. https://doi.org/10.1111/j.1365-294X.2008.03737.x

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.