Plasma Aβ: A Possible Missing Link Between Alzheimer Disease and Diabetes

Naoyuki Sato¹,² and Ryuichi Morishita¹

Currently, there are more than 30 million dementia patients worldwide (1). More than half of dementia is caused by Alzheimer disease (AD), which consists of both familial and sporadic forms. Familial AD is caused by mutations in the amyloid precursor protein (APP) (2) and presenilin genes (3). Both mutations cause overproduction of amyloid-β (Aβ), particularly its longer form, Aβ42, which is more prone to aggregate. It should be noted that familial AD accounts for only 5% of all AD cases, indicating that most AD cases are sporadic. The occurrence of Aβ42 in the pancreas (11) and skeletal muscle (12). There is still required to confirm this concept, it is intriguing to investigate the mechanisms whereby Aβ enhances diabetes risk, as 285 million people battle diabetes worldwide against the backdrop of an aging society (5), understanding the relationship between AD and diabetes is of extreme importance.

Interestingly, several clinical reports have suggested that AD patients also have glucose intolerance, suggesting a bidirectional relationship between the two conditions (6,7). Supporting this idea are data from animal models such as APP + ob/ob mice showing that AD aggravates the diabetic phenotype (8,9). Although further evidence is still required to confirm this concept, it is intriguing to investigate the mechanisms whereby AD affects the diabetic phenotype. Several possibilities can be hypothesized. First, central control of peripheral glucose metabolism may be compromised in AD (10). Second, plasma Aβ may mediate peripheral insulin resistance. Third, Aβ accumulation occurs in the pancreas (11) and skeletal muscle (12). There are also in vitro data suggesting a molecular link between Aβ and insulin. These data indicate that insulin modulates Aβ level by increasing its secretion (13) or by inhibiting insulin-degrading enzyme–mediated Aβ degradation (14).

It has been reported that plasma Aβ level is increased after glucose loading in an AD model (15). In humans, although the magnitude of changes is much smaller than in AD transgenic mice, the changes in plasma Aβ levels after oral glucose loading are nonetheless different between AD and non-AD patients (16). It is also reported that insulin administration induces a greater increase in plasma Aβ level in AD patients compared with nondemented control subjects (17). Together, this evidence suggests that one of the possible mechanisms by which AD aggravates the diabetic phenotype might be attributable to plasma Aβ.

Zhang et al. (18) previously reported that APP/presenilin 1 (PS1) transgenic AD mice with increased plasma Aβ40/42 levels have impaired glucose/insulin tolerance and hepatic insulin signaling as well as activation of the JAK2/STAT3/SOCS1 pathway. In this issue of Diabetes, Zhang et al. (19) extended this line of investigation by examining the role of plasma Aβ in insulin resistance in vivo (Fig. 1).

Zhang et al. (19) demonstrate that plasma Aβ induces hepatic insulin resistance in vivo via JAK2. They demonstrate that injection of Aβ42 upregulated fasting blood glucose level and impaired insulin tolerance and hepatic insulin signaling in mice. Consistent with the findings from their previous work, Aβ42 induced SOCS-1 upregulation and JAK2/STAT3 activation in mouse liver. In this study, Zhang et al. also tried neutralization of Aβ in APP/PS1 mice to investigate the role of plasma Aβ in insulin resistance. They found that neutralization of Aβ by anti-Aβ antibodies inhibited hepatic JAK2/STAT3/ SOCS1 signaling in APP/PS1 mice. These findings raise the possibility that inhibition of Aβ signaling could be a new strategy for addressing insulin resistance and diabetes. Furthermore, the investigators showed that knockdown of hepatic JAK2 by adenosine inhibited JAK2/STAT3/SOCS1 signaling and improved insulin sensitivity in APP/PS1 mice. The JAK/STAT/SOCS pathway was initially identified as being downstream of inflammatory cytokines (20), by which inflammation aggravates insulin resistance in the peripheral system. Even though no receptor or mediator of Aβ has yet been consistently identified, the JAK/STAT/SOCS pathway is one of the candidates that Aβ could affect directly or indirectly. It is also noteworthy that Aβ causes insulin resistance in culture neurons (21) and the central nervous system (CNS) in vivo (8). Therefore, the detailed pathway from Aβ to systemic insulin resistance through JAK/STAT/SOCS might also provide insights into the role of Aβ in the CNS.

The most important finding of this study is that neutralization of Aβ downregulated fasting blood glucose level and improved insulin sensitivity in AD model mice. Whether AD aggravates diabetes in clinical settings in humans requires more intensive observational studies. It should be noted that one weakness of this study was the relatively high concentration of injected Aβ. When Aβ was injected intraperitoneally, plasma concentrations were 400 and 1,500 pg/mL, or nearly 80 and 300 pmol/L. However, plasma Aβ42 level in humans is usually less than these values (22). Moreover, as intraperitoneal injection could directly affect hepatic cells in addition to the effect through vessels, a more in-depth discussion on the role of plasma Aβ on hepatic insulin sensitivity might be helpful.

Another important question is whether plasma Aβ plays a role in the peripheral system such as in insulin resistance.
in humans, although it undoubtedly has a pathological role in the CNS. If these questions could be addressed clearly, prevention of these two devastating diseases might be strengthened by interrupting this vicious cycle.

It is still unclear whether plasma Aβ could be a non-invasive biomarker for AD (22). Because the measurement of plasma Aβ level is simple and straightforward, its clinical significance in the potential relationship between AD and diabetes warrants further investigation. Importantly, since it is known that the plasma Aβ level could be affected by various molecules and physiological conditions, other common diseases affecting insulin sensitivity such as hypertension, obesity, and dyslipidemia might have influence on plasma Aβ level and, by extension, its utility as a marker for AD. Continuing progress in pharmacotherapy to neutralize Aβ by vaccine or low molecular weight drugs might answer questions regarding the interaction between AD and diabetes in humans in the very near future.

ACKNOWLEDGMENTS
No potential conflicts of interest relevant to this article were reported.

REFERENCES
1. Dartigues JF. Alzheimer’s disease: a global challenge for the 21st century. Lancet Neurol 2009;8:1082–1083
2. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991;349:704–706
3. Sherrington R, Rogaei EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995;375:754–760
4. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999;53:1037–1042
5. Type 2 diabetes epidemic: a global education. Lancet 2009;374:1654
6. Bucht G, Adolfsson R, Läthner F, Winblad B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 1983;213:387–392
7. Menouiky GS, Hill A. Alterations in glucose metabolism in patients with Alzheimer’s disease. J Am Geriatr Soc 1993;41:710–714
8. Takeda S, Sato N, Uchio-Yamada K, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 2010;107:7036–7041
9. Sato N, Takeda S, Uchio-Yamada K, et al. Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Curr Aging Sci 2011;4:118–127
10. van de Nes JA, Kamphorst W, Ravid R, Swaab DF. Comparison of beta-protein/A4 deposits and Ab-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer’s disease patients: amorphic plaques and cytosomeleal changes occur independently. Acta Neuropathol 1998;96:129–138
11. Miklossy J, Qing H, Radenovic A, et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging 2008;31:1503–1515
12. Roher AE, Esh CL, Kolkjohn TA, et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement 2009;5:18–29
13. Gasparini L, Gouras GK, Wang P, et al. Stimulation of beta-amyloid precur- sor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001;21:2561–2570
14. Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998;273:32730–32738
15. Takeda S, Sato N, Uchio-Yamada K, et al. Elevation of plasma beta-amyloid level by glucose loading in Alzheimer mouse models. Biochem Biophys Res Commun 2000;285:193–197
16. Takeda S, Sato N, Uchio-Yamada K, et al. Oral glucose loading modulates plasma beta-amyloid level in Alzheimer’s disease patients: potential diagnostic method for Alzheimer’s disease. Dement Geriatr Cogn Disord 2012;34:25–30
17. Kulstad JJ, Green PS, Cook DG, et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 2006;66:1506–1510
18. Zhang Y, Zhou B, Zhang P, et al. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes 2012;61:1434–1443
19. Zhang Y, Zhou B, Deng B, et al. Amyloid-β induces hepatic insulin resistance in vivo via JAK2. Diabetes 2013;62:1159–1166
20. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000;19:2548–2556
21. Tokutake T, Kasuga K, Yajima R, et al. Hyperphosphorylation of tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 2012;287:35222–35233
22. Iwatsubo T. Amyloid beta protein in plasma as a diagnostic marker for Alzheimer’s disease. Neurobiol Aging 1998;19:161–163