Results of a perturbation theory generating a one-parameter semigroup

Akinola Yussuff Akinyele1,\ast, Omotoni Ezekiel Jimoh1, Jude Babatunde Omosowon1, Liman Kinbokun Alhassan1 and Kareem Akanbi Bello1

1 Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
* Correspondence: olaakinyele04@gmail.com

Academic Editor: Choonkil Park
Received: 23 July 2021; Accepted: 22 April 2022; Published: 22 June 2022.

Abstract: This paper consists of the results about ω-order preserving partial contraction mapping using perturbation theory to generate a one-parameter semigroup. We show that adding a bounded linear operator B to an infinitesimal generator A of a semigroup of the linear operator does not destroy A’s property. Furthermore, A is the generator of a one-parameter semigroup, and B is a small perturbation so that $A + B$ is also the generator of a one-parameter semigroup.

Keywords: ω – OCP\textsubscript{n}; Analytic semigroup; C_0-semigroup; Perturbation.

MSC: 06F15; 06F05; 20M05.

1. Introduction

Perturbation theory comprises methods for finding an approximate solution to a problem; in perturbation theory, the solution is expressed as a power series in a small parameter ε. The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of ε usually become smaller. Assume X is a Banach space, $X_n \subseteq X$ is a finite set, $T(t)$ the C_0-semigroup, ω – OCP\textsubscript{n} the ω-order preserving partial contraction mapping, M_m be a matrix, $L(X)$ be a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, $\sigma(A)$ a spectrum of A and $A \in \omega$ – OCP\textsubscript{n} is a generator of C_0-semigroup. This paper consists of results of ω-order preserving partial contraction mapping generating a one-parameter semigroup.

Akinyele et al., [1] introduced perturbation of the infinitesimal generator in the semigroup of the linear operator. Batty [2] established some spectral conditions for stability of one-parameter semigroup and also in [3] Batty et al., revealed some asymptotic behavior of semigroup of the operator. Balakrishnan [4] obtained an operator calculus for infinitesimal generators of the semigroup. Banach [5] established and introduced the concept of Banach spaces. Chill and Tomilov [6] deduced some resolvent approaches to stability operator semigroup. Davies [7] obtained linear operators and their spectra. Engel and Nagel [8] introduced a one-parameter semigroup for linear evolution equations. Ribiger and Wolf [9] deduced some spectral and asymptotic properties of the dominated operator. Rauf and Akinyele [10] introduced ω-order preserving partial contraction mapping and established its properties, also in [11], Rauf et al., deduced some results of stability and spectra properties on semigroup of a linear operator. Vrabie [12] proved some results of C_0-semigroup and its applications. Yosida [13] established and proved some results on differentiability and representation of one-parameter semigroup of linear operators.

In this paper, we show that adding a bounded linear operator B to an infinitesimal generator A of a semigroup of the linear operator does not destroy A’s property. Furthermore, A is the generator of a one-parameter semigroup, and B is a small perturbation so that $A + B$ is also the generator of a one-parameter semigroup.

2. Preliminaries

Definition 1. (C_0-Semigroup) [8] A C_0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.
Definition 2. (ω-OCPn)[11] A transformation $a \in P_n$ is called ω-order preserving partial contraction mapping if $\forall x, y \in \text{Dom } a : x \leq y \implies ax \leq ay$ and at least one of its transformation must satisfy $ay = y$ such that $T(t+s) = T(t)T(s)$ whenever $t, s > 0$ and otherwise for $T(0) = I$.

Definition 3. (Perturbation) [1] Let $A : D(A) \subseteq X \to X$ be the generator of a strongly continuous semigroup $(T(t))_{t \geq 0}$ and consider a second operator $B : D(B) \subseteq X \to X$ such that the sum $A + B$ generates a strongly continuous semigroup $(S(t))_{t \geq 0}$. We say that A is perturbed by operator B or that B is a perturbation of A.

Definition 4. (Analytic Semigroup) [12] We say that a C_0-semigroup $\{T(t); t \geq 0\}$ is analytic if there exists $0 < \theta \leq \pi$, and a mapping $S : C_\theta \to L(X)$ such that:

1. $T(t) = S(t)$ for each $t \geq 0$;
2. $S(z_1 + z_2) = S(z_1)S(z_2)$ for $z_1, z_2 \in C_\theta$;
3. $\lim_{z_1 \in C_\theta, z_1 \to 0} S(z_1)x = x$ for $x \in X$; and
4. the mapping $z_1 \to S(z_1)$ is analytic from C_θ to $L(X)$. In addition, for each $0 < \delta < \theta$, the mapping $z_1 \to S(z_1)$ is bounded from C_δ to $L(X)$, then the C_0-Semigroup $\{T(t); t \geq 0\}$ is called analytic and uniformly bounded.

Definition 5. (Perturbation class) [7] We say that operator B is a class P perturbation of the generator A of the one-parameter semigroup $T(t)$ if:

$$
\begin{align*}
A & \text{ is a closed operator; } \\
\text{Dom}(A) & \supseteq \cup_{t \geq 0} T(t)(X); \\
\int_0^1 \|BT(t)\|dt & < \infty.
\end{align*}
$$

Note that $BT(t)$ is bounded for all $t > 0$ under conditions (1) and (1) by the closed graph theorem.

Example 1 (2×2 matrix $M_m(\mathbb{N} \cup \{0\})$). Suppose

$$
A = \begin{pmatrix}
2 & 0 \\
1 & 2
\end{pmatrix}
$$

and let $T(t) = e^{tA}$, then

$$
e^{tA} = \begin{pmatrix}
e^{2t} & e^t \\
e^t & e^{2t}
\end{pmatrix}.
$$

Example 2 (3×3 matrix $M_m(\mathbb{N} \cup \{0\})$). Suppose

$$
A = \begin{pmatrix}
2 & 2 & 3 \\
2 & 2 & 2 \\
1 & 2 & 2
\end{pmatrix}
$$

and let $T(t) = e^{tA}$, then

$$
e^{tA} = \begin{pmatrix}
e^{2t} & e^{2t} & e^{3t} \\
e^{2t} & e^{2t} & e^{3t} \\
e^t & e^t & e^{2t}
\end{pmatrix}.
$$

Example 3 (3×3 matrix $M_m(\mathbb{C})$). Since we have for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X. Suppose we have

$$
A = \begin{pmatrix}
2 & 2 & 3 \\
2 & 2 & 2 \\
1 & 2 & 2
\end{pmatrix}
$$

and let $T(t) = e^{tA}$, then

$$
e^{tA} = \begin{pmatrix}
e^{2t\lambda} & e^{2t\lambda} & e^{3t\lambda} \\
e^{2t\lambda} & e^{2t\lambda} & e^{2t\lambda} \\
e^{t\lambda} & e^{t\lambda} & e^{2t\lambda}
\end{pmatrix}.
$$
3. Main results

This section presents results of one-parameter semigroup generated by ω-OCP$_n$ using perturbation theory.

Theorem 1. Let $A \in \omega - \text{OCP}_n$ be the generator of a one-parameter semigroup $T(t)_{t \geq 0}$ on the Banach space X and suppose that

$$
\|T(t)\| \leq Me^{at}
$$

for all $t \geq 0$. If B is a bounded operator on X, then $(A + B)$ is the generator of a one-parameter semigroup $S(t)_{t \geq 0}$ on X such that

$$
\|S(t)\| \leq Me^{(a + M\|B\|)t}
$$

for all $t \geq 0$ and $B \in \omega - \text{OCP}_n$.

Proof. We define the operators $S(t)$ by

$$
S(t)f := T(t)f + \int_{s=0}^{t} T(t-s)BT(s)ds + \int_{s=0}^{t} \int_{u=0}^{s} T(t-s)BT(s-u)BT(u)f dv du
$$

$$
+ \int_{s=0}^{t} \int_{u=0}^{s} \int_{v=0}^{u} T(t-s)BT(s-u)BT(u-v)BT(v)f dv du dv + \cdots. \quad (2)
$$

The nth term is an n-fold integral whose integrand is a norm continuous function of the variables. It is easy to verify that the series is norm convergent and that

$$
\|S(t)f\| \leq Me^{at}\|f\| \sum_{n=0}^{\infty} (tM\|B\|)^n / n! = Me^{(a + M\|B\|)t}, \quad (3)
$$

for all $f \in X$, $t \geq 0$ and $B \in \omega - \text{OCP}_n$.

Since $S(s)S(t) = S(s + t)$ and if $f \in X$, then

$$
\lim_{t \to 0} \|s(t)f - f\| = \lim_{t \to 0} \left\{ \|T(t)f - f\| + \sum_{n=1}^{\infty} Me^{at}\|f\|(tM\|B\|)^n / n! \right\} \geq 0,
$$

so that $s(t)$ is a one-parameter semigroup. If $f \in X$ and $B \in \omega - \text{OCP}_n$, then

$$
\lim_{t \to 0} \|t^{-1}(s(t)f - f) - t^{-1}(T(t)f - f) - Bf\|
$$

$$
\leq \lim_{t \to 0} t^{-1} \int_{0}^{t} T(t-s)BT(s)f ds - Bf\| + \lim_{t \to 0} t^{-1}Me^{at}\|f\| \sum_{n=2}^{\infty} (tM\|B\|)^n / n! \geq 0. \quad (4)
$$

It follows that f lies in the domain of the generator Y of $S(t)$ if and only if it lies in the domain of A, and that

$$
Yf := Af + Bf, \quad (5)
$$

for such f.

As well as being illuminating in its own right, (2) easily leads to the identities

$$
S(t)f = T(t)f + \int_{s=0}^{t} S(t-s)BT(s)f ds
$$

$$
= T(t)f + \int_{s=0}^{t} S(t-s)BT(s)f ds
$$

$$
= T(t)f + \int_{s=0}^{t} T(t-s)BS(s)f ds. \quad (6)
$$

Hence the proof is complete. □

Theorem 2. Suppose B is a class P perturbation of the generator A, then

$$
\text{Dom}(B) \supseteq \text{Dom}(A).
$$
If \(\epsilon > 0 \) and \(A, B \in \omega - \text{OCP}_n \), then
\[
\|BR(\lambda, A)\| \leq \epsilon,
\]
for all large enough \(\lambda > 0 \). Hence \(B \) has relative bound 0 with respect to \(A \).

Proof. Combining (1) with the bound
\[
\|BT(t)\| \leq \|BT(t)\| Me^{\alpha(t-1)},
\]
valid for all \(t \geq 1 \), we then see that
\[
\int_0^\infty \|BT(t)\| e^{-\alpha t} dt < \infty,
\]
for all \(\lambda > a \). Suppose \(\epsilon > 0 \) and \(A, B \in \omega - \text{OCP}_n \), then for all large enough \(\lambda \) we have
\[
\int_0^\infty \|BT(t)\| e^{-\lambda t} dt \leq \epsilon.
\]
Now,
\[
\int_0^\infty T(t)e^{-\lambda t} f dt = R(\lambda, A)f,
\]
for all \(f \in X \), so by the closedness of \(B \), we see that \(R(\lambda, A)f \in \text{Dom}(B) \) and
\[
\|BR(\lambda, A)f\| \leq \epsilon \|f\|,
\]
as required to prove (7).

If \(g \in \text{Dom}(A) \) and we put \(f := (\lambda I - A)g \), then we deduce from (7) that
\[
\|Bg\| \leq \epsilon \|(\lambda I - A)g\| \leq \epsilon \|Ag\| + \epsilon \lambda \|g\|,
\]
for all large enough \(\lambda > 0 \). This implies the last statement of the theorem and hence the proof is complete. \(\square \)

Theorem 3. Assume \(B \) is a class \(P \) perturbation of the generator \(A \) of the one-parameter semigroup \(T(t) \) on \(X \), then \(B + A \) is the generator of a one-parameter semigroup \(S(t) \) on \(X \) and \(A, B \in \omega - \text{OCP}_n \).

Proof. Let \(a \) be small enough that
\[
c := \int_0^{2a} \|BT(t)\| dt < 1.
\]
We may define \(S(t) \) by the convergent series (2) for \(0 \leq t \leq 2a \), and verify as in the proof of Theorem 1 that \(S(s)S(t) = S(s + t) \) for all \(s, t \geq 0 \) such that \(s + t \leq 2a \). We now extend the definition of \(S(t) \) inductively for \(t \geq 2a \) by putting
\[
S(t) := (S(a))^n S(t - na),
\]
if \(n \in \mathbb{N} \) and \(na < t \leq (n + 1)a \). It is straightforward to verify that \(S(t) \) is a semigroup. Now suppose that
\[
\|T(t)\| \leq N \text{ for } 0 \leq t \leq a.
\]
Assume \(f \in X \) and \(B \in \omega - \text{OCP}_n \), then
\[
\|S(t)f - f\| \leq \|T(t)f - f\| + \sum_{n=1}^\infty N \left(\int_0^1 \|BS(t)\| ds \right)^n \|f\|,
\]
so that
\[
\lim_{t \to 0} \|S(t)f - f\| = 0,
\]
and \(S(t) \) is a one-parameter semigroup on \(X \). It is an immediate consequence of the definition that
\[
S(t)f = T(t)f + \int_0^1 S(t - s)BS(s)f ds,
\]
for all \(f \in X, B \in \omega - \text{OCP}_n \) and all \(0 \leq t \leq a \). Suppose that this holds for all \(t \) such that \(0 \leq t \leq na \). If \(na \leq u \leq (n+1)a \), then

\[
S(u)f = S(a)S(u-a)f
= S(a) \left\{ T(u-a)f + \int_0^{u-a} S(u-a-s)BT(s)f \, ds \right\}
= T(a)T(u-a)f + \int_0^a S(a-s)BT(s)(T(u-a)f) \, ds + \int_0^{u-a} S(u-s)BT(s)f \, ds
= T(u)f + \int_0^u S(u-s)BT(s)f \, ds.
\]

(13)

By induction, (12) holds for all \(t \geq 0 \).

We finally have to identify the generator \(Y \) of \(S(t) \). The subspace

\[
D := \bigcup_{t \geq 0} T(t) \{ \text{Dom}(A) \},
\]

is contained in \(\text{Dom}(A) \) and is invariant under \(T(t) \) and so is a core for \(A \). If \(f \in D \), then there exists \(g \in \text{Dom}(A) \) where \(A \in \omega - \text{OCP}_n \) and \(\varepsilon > 0 \) such that \(f = T(\varepsilon)g \). Hence,

\[
\lim_{t \to 0} t^{-1}(S(t)f - f) = \lim_{t \to 0} (T(t)f - f) + \lim_{t \to 0} t^{-1} \int_0^t T(t-s)(BT(\varepsilon))T(\varepsilon)g \, ds
= Af + (BT(\varepsilon))g
= (A + B)f.
\]

(14)

Therefore, \(\text{Dom}(Y) \) contains \(D \) and \(Yf(B + A) \) for all \(f \in D \) and \(A, B \in \omega - \text{OCP}_n \). If \(f \in \text{Dom}(A) \), then there exists a sequence \(f_n \in D \) such that \(\|f_n - f\| \to 0 \) and \(\|Af_n - Af\| \to 0 \) as \(n \to \infty \). It follows by Theorem 2 that \(\|Bf_n - Bf\| \to 0 \) and hence that \(Yf_n \) converges. Since \(Y \) is a generator that is closed, then we deduce that

\[
Yf = (B + A)f,
\]

for all \(f \in \text{Dom}(A) \) and \(A, B \in \omega - \text{OCP}_n \). Multiplying (12) by \(e^{-\lambda t} \) and integrating over \((0, \infty)\), we see as in the proof of Theorem 2 that if \(\lambda > 0 \) is large enough, then

\[
R(\lambda, Y)f = R(\lambda, A)f + R(\lambda, Y)BR(\lambda, A)f,
\]

for all \(f \in Y \) and \(A, B \in \omega - \text{OCP}_n \).

If \(\lambda \) is also large enough that

\[
\|BR(\lambda, A)\| < 1,
\]

we deduce that

\[
R(\lambda, Y) = R(\lambda, A)(I - BR(\lambda, A))^{-1}.
\]

Hence,

\[
\text{Dom}(Y) = \text{Ran}(R(\lambda, Y)) = \text{Ran}(R(\lambda, A)) = \text{Dom}(A),
\]

and \(Y = A + B \), and this achieve the proof. \(\square \)

Theorem 4. Let \(A := -H \) where \(H = (-\Delta)^n \geq 0 \) acts in \(L^2(\mathbb{R}^N) \). Also let \(B \) be a lower order perturbation of the form

\[
(Bf)(x) := \sum_{|\alpha| < 2n} a_\alpha(x)(D^\alpha f)(x).
\]

If \(a_\alpha \in L^p_\sigma(\mathbb{R}^N) + L^\infty(\mathbb{R}^N) \) for each \(\alpha \), where \(p_\sigma \geq 2 \) and \(p_\sigma > N/(2n - |\alpha|) \), the \(A + B \) is the generator of a one-parameter semigroup and \(B \) has relative bound \(0 \) with respect to \(A \) where \(A, B \in \omega - \text{OCP}_n \).

Proof. Suppose \(A \in \omega - \text{OCP}_n \) is the generator of holomorphic semigroup \(T(t) \) such that

\[
\|T(t)\| \leq c_1, \quad \|AT(t)\| \leq c_2/t,
\]

for all \(t > 0 \). Then

\[
\frac{d}{dt} \|T(t)\| \leq c_1 \|T(t)f\| + c_2 \|T(t)f\|/t,
\]

for all \(f \). Integrating (12) by \(e^{-\lambda t} \) and integrating over \((0, \infty)\), we see as in the proof of Theorem 2 that if \(\lambda > 0 \) is large enough, then

\[
R(\lambda, Y)f = R(\lambda, A)f + R(\lambda, Y)BR(\lambda, A)f,
\]

for all \(f \in Y \) and \(A, B \in \omega - \text{OCP}_n \).

If \(\lambda \) is also large enough that

\[
\|BR(\lambda, A)\| < 1,
\]

we deduce that

\[
R(\lambda, Y) = R(\lambda, A)(I - BR(\lambda, A))^{-1}.
\]

Hence,

\[
\text{Dom}(Y) = \text{Ran}(R(\lambda, Y)) = \text{Ran}(R(\lambda, A)) = \text{Dom}(A),
\]

and \(Y = A + B \), and this achieve the proof. \(\square \)
for all $t \in (0, 1)$. And also the operator $B \in \omega - OCP_n$ has domain containing $Dom(A)$ and there exists $\alpha \in (0, 1)$, such that
\[\|Bf\| \leq \varepsilon \|Af\| + c_3 \varepsilon^{-\alpha/(1-\alpha)} \|f\|, \] (15)
for all $f \in Dom(a)$ and $0 < \varepsilon \leq 1$. Then
\[\|BT(t)\| \leq (c_2 + c_1 c_3) t^{-\alpha}, \] (16)
for all $t \in (0, 1)$ so that B is a class P perturbation of A and by Theorem 3 under the stated conditions on t and ε, we have
\[\|BT(t)f\| \leq \varepsilon \|AT(t)f\| + c_3 \varepsilon^{-\alpha/(1-\alpha)} \|T(t)f\| \leq (\varepsilon c_2 t^{-1} + c_1 c_3 \varepsilon^{-\alpha/(1-\alpha)}) \|f\|. \]
By putting $\varepsilon = t^{1-\alpha}$, then we obtain (16).

Assume $\alpha \in (0, 1)$, H is a non-negative self-adjoint operator on P and B is a linear operator with $Dom(B) \supseteq (H)$, we have
\[\|Bf\| \leq \varepsilon \|Af\| + c_3 \varepsilon^{-\alpha/(1-\alpha)} \|f\|, \]
for all $\varepsilon > 0$ if and only if there is a constant c_4 such that
\[\|Bf\| \leq c_4 \|Af\| \|f\|^{1-\alpha}, \]
for all $f \in Dom(A)$ and $A, B \in \omega - OCP_n$.

By Theorem 3, it is sufficient to prove that for each α there exists $\beta < 1$ for which
\[X_\alpha := a_\alpha(\cdot)D^\alpha (H + 1)^{-\beta} \]
is bounded.

Let $X_\alpha = a_\alpha(Q)b_\alpha(P)$, where
\[b_\alpha(\varepsilon) = \frac{\varepsilon^{\mid \alpha \mid} e^{\alpha}}{(\varepsilon^{2\alpha} + 1)^{\beta}}. \]
If $a_\alpha \in L^\infty(\mathbb{R}^N)$, then $\|X\| \leq \|a_\alpha\|_{\infty} \|b_\alpha\|_{\infty} < \infty$ provided $|\alpha|/2n < \beta < 1$. On the other hand, if $a_\alpha \in L^p(\mathbb{R}^N)$ where $P \geq 2$ and $P > N/(2n - |\alpha|)$, then there exists β such that
\[\frac{N + |\alpha| P}{2np} < \beta < 1. \]
This implies that $(|\alpha| - 2n \beta)p + N < 0$ and hence $b_\alpha \in L^p(\mathbb{R}^N)$. \qed

4. Conclusion

In this paper, it has been established that ω-order preserving partial contraction mapping generates a one-parameter semigroup using a perturbation theory on Banach space by showing that the semigroup of a linear operator is bounded, that B has a relative bound 0 with respect to A, and also that $B + A$ is a generator of the one-parameter semigroup.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

Data Availability: All data required for this research is included within this paper.

Funding Information: No funding is available for this research.

References

[1] Akinyele, A. Y., Saka-Balogun, O. Y., & Adeyemo, O. A. (2019). Perturbation of infinitesimal generator in semigroup of linear operator. South East Asian Journal of Mathematics and Mathematical Sciences, 15(3), 53-64.

[2] Batty, C. J. (1996). Spectral conditions for stability of one-parameter semigroups. journal of Differential Equations, 127(1), 87-96.
[3] Batty, C. J., Chill, R., & Tomilov, Y. (2002). Strong stability of bounded evolution families and semigroups. *Journal of Functional Analysis*, 193(1), 116-139.

[4] Balakrishnan, A. V. (1959). An operational calculus for infinitesimal generators of semigroups. *Transactions of the American Mathematical Society*, 91(2), 330-353.

[5] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3(1), 133-181.

[6] Chill, R., & Tomilov, Y. (2007). Stability Operator Semigroup. *Banach Center Publication 75, Polish Academy of Sciences, Warsaw*, 71-73.

[7] Davies, E. B. (2007). *Linear Operators and their Spectra* (Vol. 106). Cambridge University Press.

[8] Engel, K. J., Nagel, R., & Brendle, S. (2000). *One-Parameter Semigroups for Linear Evolution Equations* (Vol. 194, pp. xxii+-586). New York: Springer.

[9] Räbiger, F., & Wolff, M. P. (2000). Spectral and asymptotic properties of resolvent-dominated operators. *Journal of the Australian Mathematical Society*, 68(2), 181-201.

[10] Rauf, K., & Akinyele, A. Y. (2019). Properties of ω-order-preserving partial contraction mapping and its relation to C₀-semigroup. *International Journal of Mathematics and Computer Science*, 14(1), 61-68.

[11] Rauf, K., Akinyele, A. Y., Etuk, M. O., Zubair, R. O., & Aasa, M. A. (2019). Some result of stability and spectra properties on semigroup of linear operator. *Advances in Pure Mathematics*, 9(01), 43-51.

[12] Vrabie, I. I. (2003). *C₀-semigroup and Application*. Mathematics Studies, 191, Elsevier, North-Holland.

[13] Yosida, K. (1948). On the differentiability and the representation of one-parameter semi-group of linear operators. *Journal of the Mathematical Society of Japan*, 1(1), 15-21.

© 2022 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).