A novel quinoline-based colorimetric fluorescent probe for hydrogen sulfide

Dingqiang Fu

Abstract
In this article, a novel fluorescent probe was designed and synthesized based on the quinoline structure for the detection of H$_2$S. After optical evaluation, the probe showed good characteristics, including a fast response, high sensitivity, and good selectivity. More importantly, the probe could be directly observed by the naked eye after responding to H$_2$S and has good application value.

Keywords
fluorescent probe, hydrogen sulfide, quinoline structure

Introduction
Hydrogen sulfide (H$_2$S), a colorless gas with the smell of rotten eggs, has long been considered a highly toxic gas and environmental pollutant. However, in recent years, numerous studies have shown that hydrogen sulfide has important physiological functions and is an important biological and pharmacological medium at nanomolar to millimolar levels. In mammals, endogenous hydrogen sulfide is mainly derived from the metabolism of l-cysteine and homocysteine. Numerous studies have also shown that hydrogen sulfide has a dual effect on the growth of tumor cells. In addition, hydrogen sulfide has potential therapeutic value for several central nervous system diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and traumatic brain injury (TBI).

Considering the potential of hydrogen sulfide–based treatments, the detection of H$_2$S is crucial, so various methods have been developed for detection, such as colorimetry, titration, chromatography, electrochemical, and fluorescent probe detection methods. Among these, fluorescent probes have attracted much attention due to their high sensitivity, fast response, and convenient operation. In recent years, significant research into hydrogen sulfide fluorescent probes has been carried out rapidly. The main types of fluorescent scaffolds that have been used include coumarins, isophoronitriles, fluoropyrroles, quaternary pyridine salts, naphthalenes, quinolines, and the like.

Herein, based on a review of the literature, we report the design of hydrogen sulfide fluorescent probe 6 that has a quinoline group connected to a dinitrophenyl ether through a styrene linker. After reacting with hydrogen sulfide, the dinitrophenyl ether group was removed, releasing a hemicyanine chromophore. The probe is simple and easy to obtain, and the raw materials required for the synthesis are readily available (see Scheme 1). Probe 6 in a phosphate-buffered saline (PBS/dimethyl sulfoxide (DMSO)= 6:4, v/v, pH = 7.4) solution achieved rapid and selective colorimetric recognition of hydrogen sulfide.

Results and discussion
The synthesis of probe 5 is detailed in the three steps shown in Scheme 1. First, (E)-4-(2-(quinolin-2-yl)vinyl)phenyl acetate 3 was synthesized from 2-methylquinoline and 4-hydroxybenzaldehyde and second, compound 3 was hydrolyzed under basic conditions to obtain intermediate 4. Finally, intermediate 4, 2,4-dinitrobenzene, and methyl iodide were used to prepare probe 6 under reflux conditions. Its structure was fully characterized by elemental analysis, UV-Vis, 1H NMR, 13C NMR, and electrospray ionization mass spectra (ESI-MS).

With the probe in hand, 5 equiv. of aqueous sodium sulfide was added to 10 µM of a solution of probe 6 (PBS/DMSO= 6:4, pH = 7.4), and the reaction between the probe and sodium sulfide was observed. The UV absorption spectra at 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 min are shown in
Figure 1. With longer reaction times, the absorption peak of the probe at 390 nm disappeared and a new absorption band appeared at 590 nm. After 14 min, the UV absorption leveled off reaching a maximum after 18 min (Figure 1). Therefore, the reaction between probe 6 and sodium sulfide was complete in 18 min and hydrogen sulfide could be detected quickly.

Next, the emission behavior of the probe with different concentrations of sodium sulfide was investigated. The solution of probe 6 (PBS/DMSO = 6:4, pH = 7.4) was added to different concentrations of solution of sodium sulfide solution (0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, and 70 µM), and the absorption spectrum was measured after 20 min. The results are shown in Figure 2. With an increase in sodium sulfide concentration, the absorption peak of the probe at 390 nm gradually decreased and a new absorption band appeared at 590 nm and then gradually increased reaching the maximum when the sodium sulfide concentration was 70 µM. In addition, the color of the solution was observed to change from pale yellow to blue with the naked eye. When the sodium sulfide concentration is in the range of 0–10 µM, the absorbance of probe 6 at 500 nm had a linear relationship with the concentration of sodium sulfide, with a correlation coefficient of 0.991.

Of all the factors, the selectivity of the probe is the most important due to the complexity of biological samples. Therefore, the effects of 11 common anions and reduced thiol Cys on the fluorescence intensity of probe 6 were investigated. After adding 5 equiv. of Na2S, F-, Cl-, I-, H3PO4, AcO-, SO42-, CO32-, HCO3-, NO2-, Cys, and HSO3- sodium salts to the solution of probe, the fluorescence spectra were measured. The results are shown in Figure 4. Only Na2S significantly reduced the fluorescence intensity of probe 6. Therefore, probe 6 can selectively detect hydrogen sulfide.

It is well known that H2S can induce the departure of 2,4-dinitrobenzene in aqueous solution, and this strategy has been successfully applied to construct various...
reaction-based fluorescence sensors for the detection of H₂S. Probe 6 may be cleaved to release a quinoline on action with H₂S, resulting in detectable changes in the fluorescence spectrum. In addition, probe 6 itself had an intramolecular charge transfer (ICT) under the action of an electron-withdrawing group (2,4-dinitrobenzene) and had the highest fluorescence intensity. When hydrogen sulfide reacts with the probe, 2,4-dinitrobenzene is expelled, and the mechanism of ICT action disappears so that the fluorescence intensity was decreased. In addition, we used a ¹H NMR titration experiment to prove that H₂S can cause the departure of 2,4-dinitrobenzene and the appearance of a hydroxyl at 9.83 ppm (Scheme 2).

Conclusion
In this article, the design and synthesis of the colorimetric fluorescence–enhanced probe 6 for the selective detection of hydrogen sulfide are reported. By adding sodium sulfide, the color of the solution of probe 6 could be observed with the naked eye to change from pale yellow to blue. With the increase in sodium sulfide concentration, the maximum fluorescence emission intensity of probe 6 at 490 nm gradually decreased. A good linear relationship was found between the sodium sulfide concentration (0–10 µM) and the fluorescence intensity ($R^2=0.991$). More importantly, the probe could be used as a colorimetric and highly selective fluorescent probe for the rapid detection of sulfur hydrogen.

Experiments
All the reagents and solvents were purchased from commercial suppliers and used without further purification. The compounds used for the selectivity studies were Na₂S, NaF, NaCl, NaI, NaH₂PO₄, NaOAc, Na₂SO₄, Na₂CO₃, NaHCO₃, NaNO₂, Cys, and NaHSO₃. The water used in the experiments was ultrapure water purified by a Millipore water purification system. ¹H nuclear magnetic resonance (NMR) and ¹³C NMR were measured on a Bruker AVANCE III400 MHz spectrometer with tetramethylsilane (TMS) as an internal standard, and chemical shifts were reported in ppm. UV absorption spectra were taken on a PERSEE TU-1900 spectrophotometer. Fluorescence spectra were recorded using a CARY Eclipse fluorescence spectrophotometer.

The intermediates 3 and 4 were synthesized according to the routes reported in the literature. Compound 4 (494 mg, 2 mmol), 2,4-dinitrochlorobenzene (425 mg, 2.2 mmol), and anhydrous potassium carbonate (331 mg, 2.4 mmol) were sequentially added to 5 mL of dimethylformamide (DMF) and allowed to react overnight at room temperature. After the reaction was completed, 20 mL of water was added to the reaction mixture that was then extracted with ethyl acetate (3 × 20 mL). The organic phases were combined, washed with water to remove DMF, and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to give crude compound. Then, the crude compound (206 mg, 0.5 mmol) and methyl iodide (142 mg, 1 mmol) were dissolved in 3 mL of acetonitrile, and the reaction mixture was refluxed for 8 h. After cooling to room temperature, precipitation occurred and filtration, washing the filter cake with a small amount of acetonitrile, and drying the solid under vacuum gave the fluorescent probe 6.
200 mg yellow solid, yield 72%. m.p. 310 °C–312 °C. UV-Vis (in DMSO, nm): 375. Anal. calcd C, 51.91; H, 3.27; N, 7.57%; found: C, 51.99; H, 3.25; N, 7.59%. 1H NMR (400 MHz, DMSO- d6) δ 9.13 (d, J = 8.8 Hz, 1H), 8.95 (d, J = 2.8 Hz, 1H), 8.60 (d, J = 8.8 Hz, 2H), 8.52 (dd, J = 9.2, 2.8 Hz, 1H), 8.39 (dd, J = 8.1, 1.6 Hz, 1H), 8.30–8.18 (m, 2H), 8.18–8.11 (m, 2H), 8.04–7.94 (m, 2H), 7.49–7.41 (m, 2H), 7.37 (d, J = 9.2 Hz, 1H), 4.60 (s, 3H). 13C NMR (100 MHz, DMSO- d6) δ 156.71, 156.55, 154.39, 145.88, 144.86, 142.59, 140.41, 139.70, 135.51, 133.05, 132.09, 130.58, 130.23, 129.62, 128.41, 122.49, 121.69, 121.03, 120.87, 120.27, 119.87, 40.59. MS (ESI) m/z for C24H18IN3O5, 428.1 [M − I] +; found: 427.8.

Acknowledgements
We thank the Analytical and Testing Center of Sichuan University for NMR measurements.

Declaration of conflicting interest
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References
1. Shibuya N, Nagahara N and Kimura H. J Biochem 2009; 146: 5.
2. Stein A and Bailey SM. Redox Biol 2013; 1: 1.
3. Chen X, Jhee KH and Kruger WD. J Bio Chem 2004; 279: 50.
4. Powell CR, Dillon KM and Matson JB. Biochem Pharmacol 2018; 149: 75.
5. Eto AK. Biochem Biph Res Co 2002; 293: 60.
6. Hu L.F. Aging Cell 2010; 9: 102.
7. Zhang X and Bian JS. ACS Chem Neurosci 2014; 5: 10.
8. Choi MG, Cha S, Lee H, et al. Chem Commun 2009; 47: 32.
9. Ishigami M, Hirak R, Umemura K, et al. Antioxid Redox Signal 2009; 11: 2.
10. Cutter GA. Anal Chem 1993; 65: 170.
11. Spilker B, Randhahn J, Grabow H, et al. J Electroanal Chem 2008; 612: 19.
12. Li J, Yin C and Huo F. RSC Adv 2015; 5: 3.
13. Chen Y, Cen J and Guo Z. Angew Chem Int Ed Engl 2013; 52: 6.
14. Zhu HC. Anal Chem 2019; 12: 78.
15. Peng HY, Lefer DJ and Wang B. Angew Chem Int Ed Engl 2011; 50: 41.
16. Ren M, Wang L and Lin W. Anal Chem 2019; 91: 4.
17. Liu TY and Spring DR. Org Lett 2013; 19: 13.
18. Ismail I, Yi L and Xi Z. Dyes Pigments 2019; 163: 170.
19. Wu X, Liu Y and Sun B. Food Chem 2019; 284: 5.
20. Yang Y, Zhang G and Liu W. Talanta 2019; 197: 790.
21. Hong J, Gong S and Feng G. Dyes Pigments 2019; 160: 119.
22. Shi X, Zhang Y and Yin C. New J Chem 2019; 43: 25.
23. Huang Y, Liu F and Yan JW. Talanta 2019; 198: 170.
24. Shi WJ, Zheng L and Chen K. Dyes Pigments 2019; 170: 243.
25. Yu Z, Zhao W and Chen Z. Analyst 2019; 144: 67.
26. Rao C, Wang Z and Liu C. Analyst 2019; 16: 21.
27. Shen Y, Tang Y and Li H. Spectrochim Acta A Mol Biomol Spectrosc 2020; 230: 467.
28. Zhang C, Shuang S and Dong C. ChemistrySelect 2019; 4: 19.
29. Cho SW, Singha S and Ahn KH. Sensor Actuat B Chem 2019; 279: 17.
30. Zhou Z, Li H and Zhang Y. Sensor Actuat B Chem 2019; 280: 89.
31. Long L, Han Z and Wang K. ACS Omega 2019; 4: 6.
32. Dong ZM, Chao JB and Wang Y. Spectrochim Acta A Mol Biomol Spectrosc 2019; 217: 2.
33. Zhu L, Chen Y and Zhu Q. Dyes Pigments 2020; 172: 65.
34. Zamboni R, Champion E and Young RN. J Med Chem 1992; 35: 3832.