ON WREATH PRODUCTS OF CYCLIC SCHEMES

KIJUNG KIM

Abstract. We describe explicitly the algebraic structure of the Terwilliger algebra of wreath products of cyclic schemes.

Key words: Association scheme; Terwilliger algebra; Wreath product.

1. Introduction

The Terwilliger algebra was first introduced in [11] as new tool for commutative association schemes. In general, this algebra is non-commutative, finite dimensional and semi-simple \mathbb{C}-algebra. In [2] G. Bhattacharyya, S.Y. Song and R. Tanaka began to study the wreath product of one-class association schemes. It was shown that all irreducible modules except for the primary module of the Terwilliger algebra are one-dimensional. Moreover, in [10] R. Tanaka proved that the only class of association schemes coming as the wreath product of one-class association schemes and group schemes of finite abelian groups satisfies this property. Recently, in [9] S.Y. Song and B. Xu gave a complete structural description of the Bose-Mesner algebra and Terwilliger algebra for wreath products of one-class association schemes. In this paper, we describe explicitly the algebraic structure of the Terwilliger algebra of wreath products of cyclic schemes.

The remainder of this paper is organized as follows. In Section 2 we review the notation and basic results on association schemes and the Terwilliger algebra. In Section 3 we show that $\mathbb{C}p_1 \wr \mathbb{C}p_2 \wr \cdots \wr \mathbb{C}p_d$ is triply-regular. In Section 4 we determine the structure of the Terwilliger algebra of $\mathbb{C}p_1 \wr \mathbb{C}p_2 \wr \cdots \wr \mathbb{C}p_d$ by central primitive idempotents.

2. Preliminaries

In this section, we prepare necessary notation and results about association schemes and their Terwilliger algebras. For further information, the reader is referred to [1], [2], [5] and [11].

2.1. Association schemes. Let X denote a nonempty finite set. Let $Mat|X|(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}.

Let R_0, R_1, \ldots, R_d be nonempty subsets of $X \times X$. Let A_i denote the matrix in $Mat|X|(\mathbb{C})$ with xy entry

$$(A_i)_{xy} = \begin{cases}
1 & \text{if } (x, y) \in R_i; \\
0 & \text{otherwise}.
\end{cases}$$

It is called adjacency matrix of R_i. We denote the transpose of A_i by A_i^t, the identity matrix by I and all-ones matrix by J.

We say that $\chi = (X, \{R_i\}_{0 \leq i \leq d})$ is a d-class association scheme of order $|X|$ if the following hold:

1. $A_0 = I$;

\begin{flushright}
Date: January 15, 2013.
\end{flushright}
2. Association schemes of order $|\chi|$

For each $0 \leq i, j \leq d$, $A_i A_j = \sum_{h=0}^{d} p_{ij}^h A_h$ for some nonnegative integers p_{ij}^h.

The constants p_{ij}^h given in (4) are called the intersection numbers of χ. For each A_i we abbreviate $p_{i\,i}^0$, as n_i, which is called the valency of A_i. We denote $\{y \in X \mid \langle x, y \rangle \in R_i\}$ by $R_i(x)$. Then for each $(x, y) \in R_h$, $p_{ij}^h = |\{z \in X \mid \langle x, z \rangle \in R_i, \langle z, y \rangle \in R_j\}| = |R_i(x) \cap R_j(y)|$. We say that χ is commutative if $A_i A_j = A_j A_i$, for $0 \leq i, j \leq d$. In [3], a commutative association scheme χ is called cyclic if $\{R_i\}_{0 \leq i \leq d}$ forms a cyclic group. Moreover, if the order of a cyclic scheme χ is n, then we denote χ by C_n. Next, we recall the concept of the wreath product and use the notation given in [8]. Let $\chi = (X, \{R_i\}_{0 \leq i \leq d})$ and $\psi = (Y, \{S_i\}_{0 \leq j \leq e})$ be association schemes of order $|X| = u$ and $|Y| = v$. The wreath product $\chi \wr \psi$ of χ and ψ is defined on the set $X \times Y$; but we take $Y = \{y_1, y_2, \ldots, y_v\}$, and regard $X \times Y$ as the disjoint union of v copies X_1, X_2, \ldots, X_v of X, where $X_j = X \times \{y_j\}$. The relations on $X_1 \cup X_2 \cup \cdots \cup X_v$ are defined by the following rules:

1. For any j, the relations between the elements of X_j are determined by the association relations between the first coordinates in χ.
2. The relations between the elements that belong to two different sets, say X_i and X_j, are determined by the association relation of the second coordinates y_i and y_j in ψ and the relation is independent from the first coordinates.

That is, the relations $W_0, W_1, \ldots, W_{d+e}$ of $\chi \wr \psi$ are defined by

$$W_0 = \{((x, y), (x, y)) \mid (x, y) \in X \times Y\},$$

$$W_k = \{((x_1, y_1), (x_2, y_2)) \mid (x_1, x_2) \in R_k, y \in Y\} \text{ for } 1 \leq k \leq d$$

$$W_k = \{((x_1, y_1), (x_2, y_2)) \mid x_1, x_2 \in X, (y_1, y_2) \in S_k\} \text{ for } d+1 \leq k \leq d+e.$$

Then it is easy to see that $\chi \wr \psi = (X \times Y, \{W_k\}_{0 \leq k \leq d+e})$ is a $(d+e)$-class association scheme. Note $\chi \wr \psi$ is commutative if and only if χ and ψ are.

Let the adjacency matrices of χ and ψ be A_0, A_1, \ldots, A_d and C_0, C_1, \ldots, C_e, respectively. Then the adjacency matrices of $\chi \wr \psi$ are given by

$$C_0 \otimes A_0, C_0 \otimes A_1, \ldots, C_0 \otimes A_d, C_1 \otimes J_u, \ldots, C_e \otimes J_u,$$

where \otimes denotes the Kronecker product, i.e., $A \otimes B := (a_{ij}B)$ of $A = (a_{ij})$ and B.

2.2. Terwilliger algebras. Let $\chi = (X, \{R_i\}_{0 \leq i \leq d})$ be a d-class association scheme. Let $V = CX = \bigoplus_{x \in X} \mathbb{C} \hat{x}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}, where \hat{x} denotes the column vector with 1 in the x-th position and 0 otherwise. We observe that $Mat_{|X|}(\mathbb{C})$ acts on V by left multiplication. We call V the standard module. We endow V with the Hermitian form defined by $\langle u, v \rangle = u^\dagger v$ for $u, v \in V$, where t denotes transpose and - denotes complex conjugation.

If χ is commutative, then the adjacency matrices generate a $(d+1)$-dimensional subalgebra $\mathfrak{M} = (A_0, A_1, \ldots, A_d)$, which is called the Bose-Mesner algebra.

Fix a vertex $x \in X$. For each $0 \leq i \leq d$, let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_{|X|}(\mathbb{C})$ with yy entry

$$\langle E_i^* \rangle_{yy} = \begin{cases} 1 & \text{if } (x, y) \in R_i; \\ 0 & \text{otherwise.} \end{cases}$$

The E_i^*’s form a basis for a subalgebra $\mathfrak{M}^* = \mathfrak{M}^*(x) = \langle E_0^*, E_1^*, \ldots, E_d^* \rangle$. Let $T = T(x)$ denote the subalgebra of $Mat_{|X|}(\mathbb{C})$ generated by \mathfrak{M} and \mathfrak{M}^*. We say that T is the Terwilliger algebra of χ with respect to x. Put $V_1^* = E_1^* V$. Then $V = \bigoplus_{i=0}^{d} V_i^*$. We denote the all-ones column vector in V by 1.

Finally, we review three lemmas used in our study.

Lemma 2.1. For $0 \leq i,j,h \leq d$, $E^*_i A_j E^*_h = 0$ if and only if $p^h_{i,j} = 0$.

Let $T_0(x)$ be the subspace of $T(x)$ spanned by $\{E^*_i A_j E^*_h \mid 0 \leq i,j,h \leq d\}$. It is easy to see that $T(x)$ is generated by $T_0(x)$ as an algebra, but in general, $T_0(x)$ may be a proper linear subspace of $T(x)$.

The following lemma was proved in [11], where the irreducible module is called the primary module.

Lemma 2.2. In the standard module V given above,

\[\text{Span}\{E^*_0 1, E^*_1 1, \ldots, E^*_d 1\} \] is an irreducible $T(x)$-module of dimension $d + 1$.

In [11] an association scheme χ is called triply-regular if $p^m_{ij}(x,y,z) = |R_i(x) \cap R_j(y) \cap R_k(z)|$ depends only on i,j,h,l,m,n where $(x,y) \in R_i, (x,z) \in R_m$ and $(y,z) \in R_n$.

Lemma 2.3. Let χ be a commutative association scheme. Then χ is triply-regular if and only if $T(x) = T_0(x)$ for every $x \in X$.

3. The Triply-Regularity of the Terwilliger Algebra of $C_{p^i, l} C_{p^j, l} \cdots C_{p^d, l}$

In this section, we will show that $C_{p^i, l} C_{p^j, l} \cdots C_{p^d, l}$ is triply-regular. Let $(X_d, \{R_{i,p} \}_{0 \leq i \leq d})$ be a cyclic scheme of order p_i. We denote it by C_{p_i}. In general, we denote X_i by $\{x_{i,0}, x_{i,1}, \ldots, x_{i,p_i - 1}\}$. We assume that $(A_1)^i = A_j$ and $R_1(x_0) = \{x_1\}$.

Let $\chi = (X, \{R_{i,p} \}_{0 \leq i \leq p_i - 1})$ denote $C_{p^1} C_{p^2} \cdots C_{p^d}$, where $(i, \alpha) = 0$ for $i = 0, 1 \leq \alpha \leq p_i - 1$, and $(i, \alpha) = \sum_{j=0}^{p_i-1} (p_j-1) + \alpha \mod p_i$. Note that the α is read modulo p_i. Then χ has $X_1 \times X_2 \times \cdots \times X_d$ as the vertex set. For $x \in X$, we denote it by (x_1, x_2, \ldots, x_d). Sometimes we specify x by $(x_{i,0}, x_{i,1}, \ldots, x_{i,d})$.

Lemma 3.1. For $1 \leq i \leq d$, $1 \leq \alpha \leq p_i - 1$ and $x \in X$, $R_{i,\alpha}(x)$ induces an association scheme which is isomorphic to $C_{p^i, l} C_{p^j, l} \cdots C_{p^d, l}$.

Proof. By definition of the wreath product, it is trivial. \qed

Lemma 3.2. Let $y \in R_{i,\alpha}(x)$, $z \in R_{j,\beta}(x)$.

1. If $i = j$, then $(y,z) \in R_h$ for some $0 \leq h \leq (i, p_i - 1)$.
2. If $i > j$, then $(z,y) \in R_{i,\alpha}$.

Proof. Without loss of generality, we may assume that x is $(x_{1,0}, x_{2,0}, \ldots, x_{d,0})$. Then $R_{i,\alpha}(x) = X_1 \times X_2 \times \cdots \times X_{i-1} \times \{x_{i,0}\} \times \{x_{i+1,0}\} \times \cdots \times \{x_{d,0}\}$. If $i = j$, then $R_{j,\beta}(x) = X_1 \times X_2 \times \cdots \times X_{i-1} \times \{x_{i,0}\} \times \{x_{i+1,0}\} \times \cdots \times \{x_{d,0}\}$. So $R_{i,\alpha}(x) \cap R_{j,\beta}(x) = X_1 \times X_2 \times \cdots \times X_{i-1} \times \{x_{i,0}\} \times \{x_{i+1,0}\} \times \cdots \times \{x_{d,0}\}$. Hence $(z,y) \in R_{i,\alpha}$. \qed

Lemma 3.3. For $0 \leq i,j,h \leq d$ and $1 \leq \alpha \leq p_i - 1, 1 \leq \beta \leq p_j - 1, 1 \leq \gamma \leq p_h - 1$, $p^h_{i,j}(\alpha, \beta, \gamma) = 0$ if and only if one of the following holds:

1. $i = j = h \neq 0$ and $\alpha + \beta \equiv \gamma$ (mod p_i);
2. $i < j < h$, $i = h < j$ or $j = h < i$;
3. $h < i = j$ and $\alpha + \beta \equiv 0$ (mod p_i);
4. $j < i = h$ and $\alpha \equiv \gamma$;
5. $i < j = h$ and $\beta \equiv \gamma$;
6. i,j,h are all distinct.
3.3. On the other hand, assume that p.

The complete list of nonzero triple products $E^*_{(i,\alpha)} A_{(j,\beta)} E^*_{(h,\gamma)}$, where $0 \leq i, j, h \leq d$ and $1 \leq \alpha \leq p_i - 1$, $1 \leq \beta \leq p_j - 1$, $1 \leq \gamma \leq p_h - 1$, is given as follows:
(1) $E^*_{(i, \alpha)} A_{(i, \beta)} E^*_{(i, \gamma)}$ for $i = 0$;
(2) $E^*_{(i, \alpha)} A_{(i, \beta)} E^*_{(i, \gamma)}$ for $i \neq 0$ and $\alpha + \beta \equiv \gamma \pmod{p_i}$;
(3) $E^*_{(i, \alpha)} A_{(i, \beta)} E^*_{(i, \gamma)}$ for $0 \leq h < i \leq d$ and $\alpha + \beta \equiv 0 \pmod{p_i}$;
(4) $E^*_{(i, \alpha)} A_{(i, \beta)} E^*_{(i, \gamma)}$ for $0 \leq j < i \leq d$ and $\alpha = \gamma$;
(5) $E^*_{(i, \alpha)} A_{(i, \beta)} E^*_{(i, \gamma)}$ for $0 \leq j < i \leq d$ and $\beta = \gamma$.

Proof. By Lemma 2.1 and 3.3, it is trivial. \square

4. Central primitive idempotents of the Terwilliger algebra of $C_{p_1} \wr C_{p_2} \cdots \wr C_{p_d}$

Let $\chi = (X, \{R_{(i, \alpha)}\}_{0 \leq (i, \alpha) \leq \Sigma_i^d (p_i - 1)})$ denote $C_{p_1} \wr C_{p_2} \cdots \wr C_{p_d}$, where $(i, \alpha) = 0$ for $i = 0, 1 \leq \alpha \leq p_i - 1$, and $(i, \alpha) = \Sigma_i^{j-1} (p_j - 1) + \alpha$ for $1 \leq i \leq d, 1 \leq \alpha \leq p_i - 1$.

In the rest of this section, we will use $\Sigma_i^d (p_i - 1)$ to denote the set $\{0, 1, \ldots, \Sigma_i^d (p_i - 1)\}$. We will denote $A_{(i, \beta)}$ as follows:

$$
\begin{pmatrix}
(A_{(j, \beta)})_{00} & (A_{(j, \beta)})_{01} & (A_{(j, \beta)})_{02} & \cdots & (A_{(j, \beta)})_{0(d,p_d-1)} \\
(A_{(j, \beta)})_{10} & (A_{(j, \beta)})_{11} & (A_{(j, \beta)})_{12} & \cdots & (A_{(j, \beta)})_{1(d,p_d-1)} \\
(A_{(j, \beta)})_{20} & (A_{(j, \beta)})_{21} & (A_{(j, \beta)})_{22} & \cdots & (A_{(j, \beta)})_{2(d,p_d-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(A_{(j, \beta)})_{(d,p_d-1)0} & (A_{(j, \beta)})_{(d,p_d-1)1} & (A_{(j, \beta)})_{(d,p_d-1)2} & \cdots & (A_{(j, \beta)})_{(d,p_d-1)(d,p_d-1)}
\end{pmatrix},
$$

where $(i, \alpha), (h, \xi)$-block of $A_{(j, \beta)}$ is a $n_{(i, \alpha)} \times n_{(h, \xi)}$ matrix. In particular, for any $(i, \alpha), (j, \beta), (h, \xi) \in [\Sigma_i^d (p_i - 1)]$, we can write $E^*_{(i, \alpha)} A_{(j, \beta)} E^*_{(h, \xi)}$ as a block matrix.

Let $J_{p,q}$ denote the $p \times q$ matrix whose entries are all 1.

Lemma 4.1. For any $(j, \beta) \in [\Sigma_i^d (p_i - 1)]$, $A_{(j, \beta)} =$

$$
\begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
$$

where $B_1 = J_{n_{(i, \beta)}, n_{(i, \beta)}}$, $B_2 = J_{n_{(i, \beta)}, n_{(j, \beta)}}$, $B_3 = J_{n_{(i, \beta)}, n_{(j, \beta)} - 1, n_{(j, \beta)}}$,

$B_4 = J_{n_{(i, \beta)}, n_{(j, \beta)} - 1}$, $B_5 = J_{n_{(i, \beta)}, n_{(j, \beta)}}$, $B_6 = J_{n_{(i, \beta)}, n_{(j, \beta)} - 1, n_{(j, \beta)}}$,

$B_7 = (A_{(j, \beta)})_{(j, \beta)1(j, \beta+1)}$, $B_8 = (A_{(j, \beta)})_{(j, \beta)(j, \beta+2)}$, $B_9 = (A_{(j, \beta)})_{(j, \beta-1)(j, \beta-1),}$

$B_{10} = (A_{(j, \beta)})_{(j, \beta)(j, \beta+1)(j, \beta+2)}$, $B_{11} = (A_{(j, \beta)})_{(j, \beta)(j, \beta+2)(j, \beta+2),}$ $B_{12} = (A_{(j, \beta)})_{(j, \beta)(j, \beta-1)(j, \beta-1),}$

$B_{13} = (A_{(j, \beta)})_{(j, \beta)(j, \beta+1)(j, \beta+1),}$ $B_{14} = (A_{(j, \beta)})_{(j, \beta)(j, \beta+2)(j, \beta+2),}$ $B_{15} = (A_{(j, \beta)})_{(j, \beta)(j, \beta-1)(j, \beta-1),}$

Proof. We may assume that \((j, \beta) \neq 0\). We will consider block matrices of \(A_{i, \alpha}\).

If \(i < j\), then \(E_{(i, \alpha)}^* A_{(j, \beta)} E_{(h, \xi)}^* \neq 0\) if and only if \(j = h\) and \(\beta = \xi\) by Theorem 3.5. This implies that \((A_{i, \alpha})_{(j, \beta)}(A_{j, \beta})_{(h, \xi)}\) is not zero.

If \(i = j\), then \(E_{(i, \alpha)}^* A_{(j, \beta)} E_{(h, \xi)}^* \neq 0\) if and only if either \(h = i\) and \(\alpha + \beta \equiv \xi \pmod{p_j}\) or \(h < i\) and \(\alpha + \beta \equiv 0 \pmod{p_j}\). This implies that \(B_{ij}, B_{j1}, \ldots, B_{ji}, B_{j2}, B_{j3}, \ldots, B_{j6}\) are nonzero.

If \(i > j\), then \(E_{(i, \alpha)}^* A_{(j, \beta)} E_{(h, \xi)}^* \neq 0\) if and only if \(h = i\) and \(\alpha = \beta = \xi\) by Theorem 3.5. This implies that \(B_{ij}, B_{ji}, \ldots, B_{ij}\) are nonzero.

We define the following matrices \(G_{(i, \alpha)(j, \beta)}\) for all \((i, \alpha), (j, \beta) \in [\Sigma_{i=1}^d (p_i - 1)]\).

\[
G_{(i, \alpha)(j, \beta)} := \begin{cases}
\frac{1}{n_{(i, \alpha)}} E_{(i, \alpha)}^* A_{(j, \beta)} E_{(j, \beta)}^* & \text{if } i < j; \\
\frac{1}{n_{(i, \alpha)}} E_{(i, \alpha)}^* A_{(i, \alpha)} E_{(j, \beta)} & \text{if } i > j; \\
\frac{1}{1} E_{(i, \alpha)}^* E_{(j, \beta)} & \text{if } i = j.
\end{cases}
\]

It is easy to see that the \(((i, \alpha), (j, \beta))\)-block of \(G_{(i, \alpha)(j, \beta)}\) is \(\frac{1}{n_{(i, \alpha)}} I_{n_{(i, \alpha)}, n_{(j, \beta)}}\), and \([G_{(i, \alpha)(j, \beta)}]((i, \alpha), (j, \beta) \in [\Sigma_{i=1}^d (p_i - 1)]\) is a linearly independent subset of \(T(x)\).

Let \(U\) be the \(\mathbb{C}\)-subspace of \(T(x)\) generated by \([G_{(i, \alpha)(j, \beta)}]((i, \alpha), (j, \beta) \in [\Sigma_{i=1}^d (p_i - 1)]\).

Then its dimension is \((1 + \Sigma_{i=1}^d (p_i - 1))^2\).

Lemma 4.2. For any \((i, \alpha), (j, \beta), (l, \gamma), (m, \delta) \in [\Sigma_{i=1}^d (p_i - 1)],

\[
G_{(i, \alpha)(j, \beta)} G_{(l, \gamma)(m, \delta)} = \delta_{(j, \beta)(l, \gamma)} G_{(i, \alpha)(m, \delta)}.
\]

Proof. It is enough to show that \(G_{(i, \alpha)(j, \beta)} G_{(j, \beta)(m, \delta)} = G_{(i, \alpha)(m, \delta)}\).

Since the \(((i, \alpha), (j, \beta))\)-block of \(G_{(i, \alpha)(j, \beta)}\) and the \(((j, \beta), (m, \delta))\)-block of \(G_{(j, \beta)(m, \delta)}\) are the only nonzero block, every block except for the \(((i, \alpha), (m, \delta))\)-block of \(G_{(i, \alpha)(j, \beta)} G_{(j, \beta)(m, \delta)}\) is zero. Thus, the \(((i, \alpha), (m, \delta))\)-block of \(G_{(i, \alpha)(j, \beta)} G_{(j, \beta)(m, \delta)}\) is \(\frac{1}{n_{(i, \alpha)}} I_{n_{(i, \alpha)}, n_{(m, \delta)}}\).

Thus, \(G_{(i, \alpha)(j, \beta)} G_{(j, \beta)(m, \delta)} = G_{(i, \alpha)(m, \delta)}\).

Lemma 4.3. Let \((h, \xi), (i, \alpha), (j, \beta) \in [\Sigma_{i=1}^d (p_i - 1)]\), the following hold.

1. If \(h < i\), then \(A_{(h, \xi)} G_{(i, \alpha)(j, \beta)} = E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).
2. If \(h = i\) and \(\alpha = \xi\), then \(A_{(h, \xi)} G_{(i, \alpha)(j, \beta)} = \sum_{r=0}^{p_i - 1} E_{(i, \alpha)}^* A_{(h, \xi)}\) for \(\rho = (\mod{p_j})\).
3. If \(h = i\) and \(\alpha \neq \xi\), then \(A_{(h, \xi)} G_{(i, \alpha)(j, \beta)} = E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\) for \(\rho = (\mod{p_j})\).
4. If \(h > i\), then \(A_{(h, \xi)} G_{(i, \alpha)(j, \beta)} = E_{(h, \xi)} A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).
5. If \(h < j\), then \(G_{(i, \alpha)(j, \beta)} A_{(h, \xi)} = G_{(i, \alpha)(j, \beta)} E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).
6. If \(h = j\) and \(\beta = \xi = \rho\) \(\mod{p_j}\), then \(G_{(i, \alpha)(j, \beta)} A_{(h, \xi)} = G_{(i, \alpha)(j, \beta)} E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).
7. If \(h = j\) and \(\beta = \xi \equiv 0 \pmod{p_j}\), then \(G_{(i, \alpha)(j, \beta)} A_{(h, \xi)} = \sum_{r=0}^{p_j - 1} E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).
8. If \(h > j\), then \(G_{(i, \alpha)(j, \beta)} A_{(h, \xi)} = G_{(i, \alpha)(j, \beta)} E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}\).

Proof. 1. By Theorem 3.5.4,

\[
A_{(h, \xi)} G_{(i, \alpha)(j, \beta)} = A_{(h, \xi)} E_{(i, \alpha)}^* A_{(i, \alpha)} G_{(i, \alpha)(j, \beta)} = E_{(i, \alpha)}^* A_{(h, \xi)} E_{(i, \alpha)} G_{(i, \alpha)(j, \beta)}.
\]
(2) By Theorem 5.5(5),

\[A(h, \xi)G_{(i, \alpha)(j, \beta)} = A(h, \xi)E_{(i, \alpha)}^*G_{(i, \alpha)(j, \beta)} \]

\[= \sum_{r=0}^{(i-1)p_i-1} E_r^* A(h, \xi) E_{(i, \alpha)}^* G_{(i, \alpha)(j, \beta)}. \]

(3) By Theorem 5.5(2),

\[A(h, \xi)G_{(i, \alpha)(j, \beta)} = A(h, \xi)E_{(i, \alpha)}^*G_{(i, \alpha)(j, \beta)} \]

\[= E_{(i, \rho)}^* A(h, \xi) E_{(i, \alpha)}^* G_{(i, \alpha)(j, \beta)} \]

for \(\rho + \xi \equiv \alpha \pmod{p_i} \).

(4) By Theorem 5.5(3),

\[A(h, \xi)G_{(i, \alpha)(j, \beta)} = A(h, \xi)E_{(i, \alpha)}^*G_{(i, \alpha)(j, \beta)} \]

\[= E_{(h, p_i-\xi)}^* A(h, \xi) E_{(i, \alpha)}^* G_{(i, \alpha)(j, \beta)} \]

(5) By Theorem 5.5(4),

\[G_{(i, \alpha)(j, \beta)}A(h, \xi) = G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) \]

\[= G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) E_{(j, \rho)}^* \]

(6) By Theorem 5.5(2),

\[G_{(i, \alpha)(j, \beta)}A(h, \xi) = G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) \]

\[= G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) E_{(j, \rho)}^* \]

for \(\beta + \xi \equiv \rho \pmod{p_j} \).

(7) By Theorem 5.5(3),

\[G_{(i, \alpha)(j, \beta)}A(h, \xi) = G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) \]

\[= \sum_{r=0}^{(j-1)p_j-1} G_{(i, \alpha)(j, \beta)} E_{(j, \beta)}^* A(h, \xi) E_r^*. \]

(8) By Theorem 5.5(5),

\[G_{(i, \alpha)(j, \beta)}A(h, \xi) = G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) \]

\[= G_{(i, \alpha)(j, \beta)}E_{(j, \beta)}^* A(h, \xi) E_{(h, \xi)}^*. \]

\[\square \]

Lemma 4.4. Let \((h, \xi), (i, \alpha), (j, \beta) \in [\Sigma^d_{i=1}(p_i - 1)] \), the following hold.

\[A(h, \xi)G_{(i, \alpha)(j, \beta)} = \begin{cases}
 n_{(h, \xi)} G_{(i, \alpha)(j, \beta)} & \text{if } h < i; \\
 \sum_{r=0}^{(i-1)p_i-1} n_{(i, \alpha)} G_{(j, \beta)} & \text{if } h = i \text{ and } \alpha = \xi; \\
 \sum_{r=0}^{(j-1)p_j-1} n_r G_{(i, \alpha-\xi)(j, \beta)} & \text{if } h = i \text{ and } \alpha \neq \xi; \\
 \sum_{r=0}^{(h-1)p_h-1} n_{(h, p_h-\xi)} G_{(i, \alpha)(h, \xi)} & \text{if } h > i.
\end{cases} \]

\[G_{(i, \alpha)(j, \beta)}A(h, \xi) = \begin{cases}
 n_{(h, \xi)} G_{(i, \alpha)(j, \beta)} & \text{if } h < j; \\
 \sum_{r=0}^{(j-1)p_j-1} n_r G_{(i, \alpha)(j, \beta)} & \text{if } h = j \text{ and } \beta + \xi \equiv \rho \pmod{p_j}; \\
 \sum_{r=0}^{(h-1)p_h-1} n_{(h, \xi)} G_{(i, \alpha)(h, \xi)} & \text{if } h > j.
\end{cases} \]

Proof. If \(h < i \), then \(A(h, \xi)G_{(i, \alpha)(j, \beta)} = E_{(i, \alpha)}^* A(h, \xi) E_{(i, \alpha)}^* G_{(i, \alpha)(j, \beta)} \) by Lemma 4.3(1). From Lemma 4.3 \(((i, \alpha), (h, \xi)) \text{-block of } E_{(i, \alpha)}^* A(h, \xi) E_{(i, \alpha)}^* \text{ is } (A(h, \xi))(i, \alpha) \) and any other block of \(E_{(i, \alpha)}^* A(h, \xi) E_{(i, \alpha)}^* \) is zero. Thus, \(E_{(i, \alpha)}^* A(h, \xi) E_{(i, \alpha)}^* G_{(i, \alpha)(j, \beta)} = n_{(h, \xi)} G_{(i, \alpha)(j, \beta)}. \)
If \(h = i \) and \(\alpha = \xi \), then by Lemma 4.2 and 4.3
\[
A_{(h,\xi)}G_{(i,\alpha)(j,\beta)} = \Sigma_{r=0}^{(i-1)p_1-1} E_r^{*} A_{(i,\alpha)} E_r^{*} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)}.
\]

If \(h = i \) and \(\alpha \neq \xi \), then by Lemma 4.3 and 4.2
\[
A_{(h,\xi)}G_{(i,\alpha)(j,\beta)} = A_{(h,\xi)}E_r A_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = E_r A_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)}.
\]

If \(h > i \), then by Lemma 4.4 and 4.2
\[
A_{(h,\xi)}G_{(i,\alpha)(j,\beta)} = A_{(h,\xi)}E_r A_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = E_r A_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = n_{(i,\alpha)} G_{(i,\alpha)(j,\beta)}.
\]

The case of \(G_{(i,\alpha)(j,\beta)} A_{(h,\xi)} \) is similar. \(\square \)

Lemma 4.5. For any \((i, \alpha), (j, \beta), (h, \xi) \in [\Sigma^d_{i=1}(p_i - 1)]\) such that \(j, h \in [i - 1], \)
\[
(1) E_{(i,\alpha)} A_{(j,\beta)} = A_{(j,\beta)} E_{(i,\alpha)}.
\]
\[
(2) E_{(i,\alpha)} A_{(j,\beta)} E_{(i,\alpha)} A_{(j,\beta)} = E_{(i,\alpha)} A_{(j,\beta)} E_{(i,\alpha)} A_{(j,\beta)}.
\]

Proof. (1) By Lemma 4.4, \(E_{(i,\alpha)} A_{(j,\beta)} = E_{(i,\alpha)} A_{(j,\beta)} E_{(i,\alpha)} A_{(j,\beta)}. \)

(2) It is trivial. \(\square \)

Define \(F_{(h,\xi)}(k, \xi) = \frac{1}{p_h n_{(h,\xi)}} E_r A_{(h,\xi)} (\Sigma_{r=0}^{(h-1)p_h-1} A_r + \varepsilon \xi A_{(h,1)} + \cdots + \varepsilon (p_h-1) \xi A_{(h,p_h-1)}) E_r^{*}, \) where \(2 \leq i \leq d, 1 \leq \alpha \leq p_i - 1, h \in [i - 1], 1 \leq \xi \leq p_h - 1 \) and \(\varepsilon = \frac{2}{p_h}. \)

Theorem 4.6. Let \(T(x) \) be the Terwilliger algebra of \(C_{p_1} \circ C_{p_2} \circ \cdots \circ C_{p_d}. \)

(1) \(\mathcal{U} \) is a \(\mathbb{C} \)-algebra isomorphic to \(M_{1 + \Sigma^d_{i=1}(p_i - 1)}(\mathbb{C}). \)

(2) \(\mathcal{U} \) is an ideal of \(T(x) \) and \(T(x)/\mathcal{U} \) is commutative.

(3) The set \(\{ F_{(h,\xi)}(k, \xi) \mid 2 \leq i \leq d, 1 \leq \alpha \leq p_i - 1, h \in [i - 1], 1 \leq \xi \leq p_h - 1 \} \) has \(\Sigma_{h=1}^{d} \) nonzero elements and each nonzero element is a central idempotent that spans a 1-dimensional non-primary ideal of \(T(x) \).

(4) \(T(x) \cong M_{1 + \Sigma^d_{i=1}(p_i - 1)}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus \Sigma_{h=1}^{d} \mathcal{U}(p_h - 1)(\mathbb{C}). \)

Proof. (1) For any \((i, \alpha), (j, \beta), (h, \xi) \in [\Sigma^d_{i=1}(p_i - 1)],\) clearly \(E_{(i,\alpha)} G_{(i,\alpha)(j,\beta)} = \delta_{(h,\xi)(i,\alpha)} G_{(i,\alpha)(j,\beta)} \in \mathcal{U} \) and \(G_{(i,\alpha)(j,\beta)} E_{(i,\alpha)} = \delta_{(j,\beta)(h,\xi)} G_{(i,\alpha)(j,\beta)} \in \mathcal{U}. \) Also \(A_{(h,\xi)}G_{(i,\alpha)(j,\beta)} \in \mathcal{U} \) and \(G_{(i,\alpha)(j,\beta)} A_{(h,\xi)} \in \mathcal{U} \) by Lemma 4.3. Thus, \(\mathcal{U} \) is an ideal of \(T(x). \) For any \((i, \alpha), (j, \beta) \in [\Sigma^d_{i=1}(p_i - 1)],\) let \(e_{(i,\alpha)(j,\beta)} \) be the \((1 + \Sigma_{h=1}^{d}(p_h - 1)) \times (1 + \Sigma_{h=1}^{d}(p_h - 1))\) matrix whose \((i, \alpha), (j, \beta)\)-entry is 1 and whose other entries are all zero. Then the linear map \(\varphi: \mathcal{U} \to M_{1 + \Sigma^d_{i=1}(p_i - 1)}(\mathbb{C}) \) defined by
\[
\varphi(G_{(i,\alpha)(j,\beta)}) = e_{(i,\alpha)(j,\beta)}
\]
is an isomorphism by Lemma 4.2.

(2) By Theorem 4.3, \(C_{p_1} \circ C_{p_2} \circ \cdots \circ C_{p_d} \) is triply-regular, namely \(T_0(x) = T(x). \)

\[T(x)/\mathcal{U} = \text{Span}\{ E_{(i,\alpha)} A_{(h,\xi)} E_{(i,\alpha)} \mathcal{U} \mid (i, \alpha) \in [\Sigma^d_{i=1}(p_i - 1)], \ h \in [i - 1], 1 \leq \xi \leq p_h - 1 \} \]
For any \((i, \alpha) \in [\sum_{i=1}^{d}(p_i - 1)] \) and \(h, g < i\), \(E_{(i, \alpha)}^* A(\xi, \epsilon) E_{(i, \alpha)}^* E_{(i, \alpha)}^* A(\eta, \epsilon) E_{(i, \alpha)}^* = E_{(i, \alpha)}^* A(\eta, \epsilon) E_{(i, \alpha)}^* E_{(i, \alpha)}^* A(\eta, \epsilon) E_{(i, \alpha)}^* \) by Lemma 4.5(2).

Thus, \((T(x))/U\) is commutative.

(3) We show that \((F_{(i, \alpha)}(\xi, \epsilon))^2 = F_{(i, \alpha)}(\xi, \epsilon)\) for all \(2 \leq i \leq d, 1 \leq \alpha \leq p_i - 1, h \in [i - 1], 1 \leq \xi \leq p_h - 1\).

By Lemma 4.5, \((F_{(i, \alpha)}(\xi, \epsilon))^2 = \frac{1}{(\pm_{p_h n(h, \xi)})} E_{(i, \alpha)}^* (\sum_{r=0}^{h-1, p_h - 1}) p_h n(h, \xi) A_r + \varepsilon p_h n(h, \xi) A_{(1, +)} + \ldots + \varepsilon (p_h - 1) p_h n(h, \xi) A_{(1, \xi)} E_{(i, \alpha)}^* = F_{(i, \alpha)}(\xi, \epsilon)\).

Now we show that each element in the set \(\{ F_{(i, \alpha)}(\xi, \epsilon) \mid 2 \leq i \leq d, 1 \leq \alpha \leq p_i - 1, h \in [i - 1], 1 \leq \xi \leq p_h - 1\}\) is a central idempotent that spans a 1-dimensional ideal of \(T(x)\).

If \(j < i\) then \(A_{(j, \beta)} F_{(i, \alpha)}(\xi, \epsilon) = \frac{1}{p_h n(h, \xi)} E_{(i, \alpha)}^* A_{(j, \beta)} (\sum_{r=0}^{h-1, p_h - 1}) A_r + \varepsilon A_{(j, \beta)}\) is zero.

If \(j < i\) then \(A_{(j, \beta)} F_{(i, \alpha)}(\xi, \epsilon) = \frac{1}{p_h n(h, \xi)} E_{(i, \alpha)}^* A_{(j, \beta)} (\sum_{r=0}^{h-1, p_h - 1}) A_r + \varepsilon A_{(j, \beta)}\) is zero.

Similarly, we can check the case of \(F_{(i, \alpha)}(\xi, \epsilon) A_{(j, \beta)}\).

Therefore,

\[
A_{(j, \beta)} F_{(i, \alpha)}(\xi, \epsilon) = F_{(i, \alpha)}(\xi, \epsilon) A_{(j, \beta)} = \begin{cases}
0 & \text{if } j < i \text{ and } j > h; \\
\varepsilon^{-\beta} n_{(j, 1)} F_{(i, \alpha)}(\xi, \epsilon) & \text{if } j < i \text{ and } j = h; \\
n_{(j, 1)} F_{(i, \alpha)}(\xi, \epsilon) & \text{if } j < i \text{ and } j < h; \\
0 & \text{if } j \geq i.
\end{cases}
\]

(4) It is trivial. \(\Box\)

Corollary 4.7. If \(p_i = p\) for \(1 \leq i \leq d\), then \(T(x) \simeq M_{1+d(p_i-1)}(\mathbb{C}) \oplus M_1(\mathbb{C}) \oplus (\frac{d+1}{2})(p_i-1)^2\).

Remark 4.1. If \(p = 2\), then Corollary 4.7 coincides with the case that all of \(n_i\) in Corollary 4.3 of [2] are 2.

Acknowledgements This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government[NRF-2010-355-C00002].

References

[1] E. Bannai, T. Ito, Algebraic combinatorics I: association schemes, Benjamin/Cummings, Menlo Park, 1984.
[2] G. Bhattacharyya, S.Y. Song, R. Tanaka, Terwilliger algebras of wreath products of one-class association schemes, J. Algebraic Combin. 31 (2010): 455–466.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[4] F.A. Ferguson, A. Turull, Algebraic decompositions of commutative association schemes, J. Algebra 96 (1985): 211–229.
[5] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall Inc., New York, 1993.
[6] F. Jaeger, On spin models, triply regular association schemes, and duality, J. Algebraic Combin. 4 (1995): 103–144.
[7] A. Munemasa, An application of Terwilliger algebra, unpublished preprint 1993 (http://www.math.is.tohoku.ac.jp/~munemasa/unpublished.html).
[8] S.Y. Song, Fusion relation in products of association schemes, Graphs Comb. 18 (2002): 655–665.

[9] S.Y. Song, B. Xu, On wreath products of one-class association schemes, arXiv:1008.2228v1 [math.CO] 12 Aug 2010.

[10] R. Tanaka, Classification of commutative association schemes with almost commutative Terwilliger algebras, J. Algebraic Combin. 33 (2011): 1–10.

[11] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992): 363–388.

Department of Mathematics, POSTECH, Pohang 790-785, Republic of Korea
E-mail address: kijung@postech.ac.kr