Targeted Gene Sanger Sequencing Should Remain the First-Tier Genetic Test for Children Suspected to Have the Five Common X-Linked Inborn Errors of Immunity

Koon-Wing Chan¹, Chung-Yin Wong¹, Daniel Leung¹, Xingtian Yang¹, Susanna F. S. Fok¹, Priscilla H. S. Mak¹, Lei Yao¹, Wen Ma¹, Huawei Mao², Xiaodong Zhao³, Weiling Liang³, Surjit Singh⁴, Mohamed-Ridha Barbouche⁵, Jian-Xin He⁶, Li-Ping Jiang⁷, Woei-Kang Liew⁸, Minh Huong Thi Le⁹, Dina Mukhtari¹⁰, Fatima Johanna Santos-Ocampo¹¹, Reda Djidjik¹², Brahim Belaid¹², Intan Hakimah Ismail¹³, Amir Hamzah Abdul Latif¹⁴, Way Seah Lee¹⁵, Tong-Xin Chen¹⁶, Jinrong Liu¹⁷, Running Jin¹⁷, Xiaoqian Wang¹⁸, Yin Hsiu Chien¹⁹, Hsin-Hui Yu²⁰, Dinesh Raj²¹, Revathi Raj²², Jenifer Vaughan²³, Michael Urban²⁴, Sylvia van den Berg²⁵, Brian Eley²⁶, Anselm Chi-Wai Lee²⁷, Mas Suhaia Isa²⁸, Elizabeth Y. Ang²⁹, Bee Wah Lee³⁰, Allen Eng Juh Yeoh³¹, Lynette P. Shek³²,³³,³⁴ Nguyen Quoc Nyun Le³⁵, Van Anh Thi Nguyen³⁶, Anh Phan Nguyen Lien³⁷, Regina D. Capulong³⁸, Joanne Michelle Mallilin³⁹, Jose Carlo Miguel M. Villanueva⁴⁰, Karol Anne B. Camonayan⁴¹, Michelle De Vera⁴², Roxanne J. Casis-Hao³⁹, Rommel Cristenio M. Lobo⁴³, Ruby Foronda⁴⁴, Vicky Wee Eng Binas⁴⁵, Soraya Boushaki¹²,⁴⁶, Nadia Kechoth⁴⁷, Gun Phongsamart⁴⁸, Siriporn Wongwaree⁴⁹, Chamnanrua Jiratchaya⁵⁰, Mongkol Lao-Araya⁵¹, Muthita Trakultivakorn⁵², Narissara Suratannon⁵³, Orathai Jirapongpananurur⁵⁴, Teerapol Chantveerawong⁵⁵, Wasu Kamchaisatian⁵⁶, Lee Lee Chan⁵⁷, Mia Tuang Koh⁵⁸, Ke Juin Wong⁵⁹, Siew Moy Fong⁶⁰, Meow-Keong Thong⁶¹, Zarina Abdul Latif⁶², Lokman Mohd Noh⁶³,⁶⁴, Rajiva de Silva⁶⁵, Zineb Jouhadi⁶⁶, Khulood Al-Saad⁶⁷, Pandiarajan Vignesh⁶⁸, Ankur Kumar Jindal⁶⁹, Amit Rawat⁶⁹, Anju Gupta⁶⁹, Deepthi Suni⁶⁹, Jing Yang⁶⁹, Elaine Yue Ling Au⁷⁰, Janette Siu-Yin Kwok⁷¹, Siu-Yuen Chan⁷¹, Wayland Yuk-Fun Hui⁷¹, Gilbert T. Chua⁷¹, Jaime Rosa Duque⁷¹, Kai-Ning Cheong⁷¹, Patrick Chun Yin Chong⁷¹, Marco Kok Kung Ho⁷², Tsz-Leung Lee⁷³, Wilfred Hing-Sang Wong⁷¹, Wanling Yang⁷¹, Pamela P. Lee⁷¹, Wenwei Tu⁷¹, Xi-Qiang Yang⁷¹ and Yu Lung Lau¹

¹ Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China, ² Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China, ³ Children’s Hospital, Chongqing Medical University, Chongqing, China, ⁴ Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China, ⁵ Pediatric Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India, ⁶ Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia, ⁷ Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China, ⁸ Department of Paediatric Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore, ⁹ Department of Immuno-Allergology and Rheumatology, National Hospital of Paediatrics, Hanoi, Vietnam, ¹⁰ Department of Child Health, Faculty of Medicine Universitas Indonesia-Opto Mangunkusumo Hospital, Jakarta, Indonesia, ¹¹ Section of Allergy and Immunology, Department of Pediatrics, Makati Medical Center, Makati City, Philippines, ¹² Department of Medical Immunology, Beni Messous University Hospital Centre, University of Algiers 1, Algiers, Algeria, ¹³ Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, ¹⁴ Allergy and Immunology Centre, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia, ¹⁵ Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia, ¹⁶ Shanghai Children’s Hospital, The University of Hong Kong, China, ¹⁷ Department of Paediatrics, Faculty of Medicine, University of São Paulo, Brazil, ¹⁸ Centro de Terapia Genética, Instituto de Pesquisas Clínicas do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
To address inborn errors of immunity (IEI) which were underdiagnosed in resource-limited regions, our centre developed and offered free genetic testing for the most common IEI by Sanger sequencing (SS) since 2001. With the establishment of The Asian Primary Immunodeficiency (APID) Network in 2009, the awareness and definitive diagnosis of IEI were further improved with collaboration among centres caring for IEI patients from East and Southeast Asia. We also started to use whole exome sequencing (WES) for undiagnosed cases and further extended our collaboration with centres from South Asia and Africa. With the increased use of Next Generation Sequencing (NGS), we have shifted our diagnostic practice from SS to WES. However, SS was still one of the key diagnostic tools for IEI for the past two decades. Our centre has performed 2,024 IEI SS genetic tests, with in-house protocol designed specifically for 84 genes, in 1,376 patients with 744 identified to have disease-causing mutations (54.1%). The high diagnostic rate after just one round of targeted gene SS for each of the 5 common IEI (X-linked agammaglobulinemia (XLA) 77.4%, Wiskott–Aldrich syndrome (WAS) 69.2%, X-linked
INTRODUCTION

Inborn errors of immunity (IEI), previously known as primary immunodeficiency diseases (PIDD), arise from intrinsic defects in immunity, with most due to genetic mutations, and comprise over 400 diseases that could present with a diverse range of disorders including infection, autoimmunity, inflammation, malignancy, and allergy (1, 2). These multitudes of disorders could present with a wide spectrum of phenotypes of varying severities, resulting in difficulty recognising and diagnosing IEI promptly and accurately, especially in resource-limited countries and regions (3).

With rapid advance in both immunological and genetic studies in IEI including newborn screening for severe combined immunodeficiency (SCID) over the last 20 years, the prognosis of patients with IEI living in resource-rich countries and regions have improved enormously due to rapid and accurate genetic diagnosis with treatment tailored to specific IEI, together with family counseling regarding recurrence risk and reproductive choices (3–5). However, for most countries and regions of Asia and Africa, many patients with suspected IEI now still do not have ready access to these diagnostic and therapeutic approaches, let alone 20 years ago, resulting in underdiagnosis of IEI and a protracted diagnostic odyssey for many families (6).

To improve awareness and recognition of IEI in our region, we started to offer e-consultation and genetic investigations free of charge for patients suspected to have IEI referred to us by our collaborators since 2001. This was built on our paediatric immunology service started in 1988, with us having rapidly acquired the in-house capacity to diagnose IEI genetically and treat the more common IEI effectively (7–17). With more experience, we started to offer the research based targeted gene Sanger sequencing (SS) for the 5 common X-linked IEI, namely X-linked agammaglobulinemia (XLA), Wiskott-Aldrich syndrome (WAS), X-linked chronic granulomatous disease (XCGD), X-linked hyper-IgM syndrome (HIGM1) and X-linked severe combined immunodeficiency (XSCID), to our collaborators in South-East Asia and mainland China initially, followed by those in South Asia and Africa. The collaboration has resulted in providing accurate genetic diagnosis leading to appropriate management of these patients as well as increasing awareness of IEI in these countries and regions (18–31).

Over the years, we have increased the number of targeted genes subjected to SS to more than 80, as well as helped our collaborators in setting up their local genetic diagnostic service through sharing of protocols and primers, resulting in local centres with expertise and diagnostics for IEI without the need to refer patients with suspected IEI to us for genetic diagnosis (32–42).

Keywords: inborn errors of immunity, primary immunodeficiency diseases, targeted gene, Sanger sequencing, whole exome sequencing, next generation sequencing

MATERIALS AND METHODS

Patients

Patients with suspected IEI referred to us from different centres over a 20-year period (2001–2021) were included. Various diagnostic work up including laboratory tests and immunological assays were done in the referring centres. Referring clinicians would send us the clinical details and laboratory findings, which would be deposited in our APID network database. Only those patients with clinical presentation indicative of IEI would be followed up (currently can refer to the IUUIS phenotypic classification) (2). Cases with HIV infection or other known causes of immune compromise would be excluded. One or several rounds of e-consultation would be conducted between the referring clinicians and the corresponding author who ultimately decided on which targeted gene SS would be done, with clinical and laboratory criteria specific to each top X-linked gene applied listed here below. X-linked genes would be normally sequenced in boys born of non-consanguineous marriages with a non-conflicting family history only, e.g., without affected sisters. Onset of recurrent bacterial infections or enteroviral infections approximately after 6 months of age, and if available, very low IgG level and B cell count would prompt the immediate sequencing of the BTK gene. The WAS gene was sequenced in boys with recurrent bacterial, viral, and fungal infections, eczema, and importantly, thrombocytopenia. The CYBB gene would be sequenced in boys with recurrent bacterial and fungal infections, BCGitis or BCGosis, and if available, a positive nitroblue tetrazolium test (NBT) or dihydrorhodamine (DHR) 123 test. The IL2RG gene was sequenced in boys presenting in first few months of life with recurrent severe infections, low absolute...
lymphocyte count, and if available, a very low T or NK cell count. The CD40LG gene was sequenced in boys with recurrent sinopulmonary infections, liver and biliary tract disease, and if available, a high IgM level accompanied by low IgG and IgA levels. Additional or more advanced laboratory investigations were normally not requested before proceeding to genetic testing as most patients were referred from resource-limited settings. Less than 5% of referral cases were not offered genetic testing due to insufficient clinical details. Once genomic DNA were received, genetic diagnosis by research-based targeted gene SS was then performed by our centre free of charge. The study was approved by the Clinical Research Ethics Review Board of The University of Hong Kong and Queen Mary Hospital (Ref. no. UW 08-301).

Targeted Gene SS
Genomic DNA was isolated from peripheral blood of patients by different centres, with consent obtained from parents or guardians before blood collection. Polymerase chain reaction (PCR) primer pairs covering entire coding region and flanking splice sites were designed for individual IEI genes. Research-based targeted gene SS was performed by PCR or long PCR direct SS of both sense and antisense strands of DNA as described in our previous studies (19, 20, 22–25). Homology analyses with reference sequences were performed by Basic Local Alignment Search Tool (BLAST). Mutations, identified by bioinformatics analysis, were described with reference to Human Genome Variation Society (HGVS) nomenclature (45). For those patients with typical phenotypes including the 5 common IEI, relevant single targeted gene SS has been offered in the first round of screening, e.g., BTK (Bruton tyrosine kinase) gene for XLA, WAS (WASP actin nucleation promoting factor) gene for WAS, CYBB (cytochrome b-245 beta chain) gene for XCGD, IL2RG (interleukin 2 receptor subunit gamma) gene for XSCID and CD40LG (CD40 ligand) gene for XHIM. For the other IEI, targeted gene or gene panel SS were offered at the same time. Further targeted gene tests were performed if no causal mutation identified in the previous round of SS.

RESULTS
From 2001 to 2021, 1,376 patients with suspected IEI have been referred from different centres as shown in Figure 1. We have developed 84 different IEI targeted gene tests according to the diversity of IEI cases referred. Totally, we have performed 2,024 targeted gene SS for all these IEI patients referred, with 744 patients identified to have disease-causing mutations. The positive diagnostic rates among patients and tests are 54.1% (744 out of 1,376 patients) and 36.8% (744 out of 2,024 SS) respectively, with 1.47 SS performed per patient on average. The details of the mutations were described in the Tables 1–4, and Supplementary Tables 1, 2. Tables 1–4, and Supplementary Table 1 show all causal mutations found in the corresponding genes of the 5 common IEI while Supplementary Table 2 for all other IEI genes. Among the patients with the 5 common IEI referred, 903 single targeted gene SS were performed in the first round of screening with 611 causal mutations identified (67.7%), with the positive diagnostic rate ranging from 51.1% (IL2RG gene mutations for XSCID) to 77.4% (BTK gene mutations for...
Patient ID	Gene	Mutant allele	cDNA/nucleotide change	Protein change	Mutant type
WAS-016A	WAS	X-linked	LRG_125t1:c.35G>C	G12A	Missense
WAS-051A	WAS	X-linked	LRG_125t1:c.62del	N21Tfs"24	Frameshift
WAS-149A	WAS	X-linked	LRG_125t1:c.91G>A	E31K	Missense
WAS-039A	WAS	X-linked	LRG_125t1:c.116T>G	L39R	Missense
WAS-126A	WAS	X-linked	LRG_125t1:c.154C>T	T45M	Missense
WAS-088A	WAS	X-linked	LRG_125t1:c.167C>T	A56V	Missense
WAS-066A	WAS	X-linked	LRG_125t1:c.217T>C	C73R	Missense
WAS-025A	WAS	X-linked	LRG_125t1:c.223G>A	C73Y	Missense
WAS-055A	WAS	X-linked	LRG_125t1:c.245C>A	S82Y	Missense
WAS-121A	WAS	X-linked	LRG_125t1:c.258C>T	R86C	Missense
WAS-030A	WAS	X-linked	LRG_125t1:c.257G>A	R86H	Missense
WAS-102A	WAS	X-linked	LRG_125t1:c.257G>A	R86H	Missense
WAS-101A	WAS	X-linked	LRG_125t1:c.257G>A	R86H	Missense
WAS-137A	WAS	X-linked	LRG_125t1:c.257G>A	R86H	Missense
WAS-148A	WAS	X-linked	LRG_125t1:c.257G>T	R86L	Missense
WAS-044A	WAS	X-linked	LRG_125t1:c.300G>C	E100D	Missense
WAS-097A	WAS	X-linked	LRG_125t1:c.397G>A	E133K	Missense
WAS-070A	WAS	X-linked	LRG_125t1:c.100C>T	R34"	Missense
WAS-110A	WAS	X-linked	LRG_125t1:c.257G>T	R34"	Missense
WAS-152A	WAS	X-linked	LRG_125t1:c.100C>T	R34"	Missense
WAS-160A	WAS	X-linked	LRG_125t1:c.100C>T	R34"	Missense
WAS-123A	WAS	X-linked	LRG_125t1:c.100C>T	R34"	Missense
WAS-029A	WAS	X-linked	LRG_125t1:c.121C>T	R41"	Missense
WAS-075A	WAS	X-linked	LRG_125t1:c.121C>T	R41"	Missense
WAS-112A	WAS	X-linked	LRG_125t1:c.121C>T	R41"	Missense
WAS-128A	WAS	X-linked	LRG_125t1:c.184G>T	E62"	Missense
WAS-050A	WAS	X-linked	LRG_125t1:c.290G>A	W97"	Missense
WAS-100A	WAS	X-linked	LRG_125t1:c.100C>T	R34"	Missense
WAS-119A	WAS	X-linked	LRG_125t1:c.306C>G	Y102"	Missense
WAS-158A	WAS	X-linked	LRG_125t1:c.403C>T	Q135"	Missense
WAS-106A	WAS	X-linked	LRG_125t1:c.454C>T	Q152"	Missense
WAS-006A	WAS	X-linked	LRG_125t1:c.472C>T	Q158"	Missense
WAS-223A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-039A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-087A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-107A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-124A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-126A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-127A	WAS	X-linked	LRG_125t1:c.631C>T	R211"	Missense
WAS-018A	WAS	X-linked	LRG_125t1:c.995dup	N335"	Missense
WAS-117A	WAS	X-linked	LRG_125t1:c.1317_1318delinsTT	Q440"	Missense
WAS-138A	WAS	X-linked	LRG_125t1:c.1336A>T	K446"	Missense
WAS-125A	WAS	X-linked	LRG_125t1:c.330dup	T111Hfs*11	Frameshift
WAS-004A	WAS	X-linked	LRG_125t1:c.350del	F117Sfs*10	Frameshift
WAS-034A	WAS	X-linked	LRG_125t1:c.410_419del	F137Sfs*121	Frameshift
WAS-155A	WAS	X-linked	LRG_125t1:c.431_432insT	K144Nfs*25	Frameshift
WAS-032A	WAS	X-linked	LRG_125t1:c.436del	Q146Kfs*115	Frameshift
WAS-072A	WAS	X-linked	LRG_125t1:c.442dup	R148Kfs*21	Frameshift
WAS-094A	WAS	X-linked	LRG_125t1:c.472_473dup	Q158Hfs*104	Frameshift
WAS-019A	WAS	X-linked	LRG_125t1:c.568del	P189Qfs*72	Frameshift

(Continued)
XLA (Figure 2). XLA is the most common referred IEI with the highest positive diagnostic rate. For the other typical and atypical IEI patients (including those with negative finding after screening for the 5 common IEI), a total of 1,121 targeted gene SS (single or multiple rounds of SS may have been done for each patient) were performed with causal mutations identified in 133 (11.9%; Table 5 and Figure 3). Among the 5 common IEI, the locations of causal mutations were shown in Figures 4–8. The mutations identified include missense, nonsense, frameshift, and splicing variants. In addition, uncommon mutations such as gross deletion, in-frame deletion/insertion, start loss, stop loss and regulatory variants were identified.

DISCUSSIONS

Using one single round of targeted gene SS in our study was successful in diagnosing 611 of the 903 patients (67.7%)
TABLE 2 | Causal mutations identified in CYBB gene (Reference Sequence LRG_53) of the XCGD patients.

Patient ID	Gene	Mutant allele	cDNA/nucleotide change	Protein change	Mutant type
XCGD-110A	CYBB	X-linked	LRG_53t1:c.-65C>T		Regulatory
XCGD-072A	CYBB	X-linked	LRG_53t1:c.376T>C	C126R	Missense
XCGD-018A	CYBB	X-linked	LRG_53t1:c.577T>C	S193P	Missense
XCGD-004A	CYBB	X-linked	LRG_53t1:c.613T>A	F205I	Missense
XCGD-044A	CYBB	X-linked	LRG_53t1:c.626A>G	h208R	Missense
XCGD-072A	CYBB	X-linked	LRG_53t1:c.685A>G	H222R	Missense
XCGD-062A	CYBB	X-linked	LRG_53t1:c.911G>C	P304R	Missense
XCGD-067A	CYBB	X-linked	EX11-EX13del		Gross Deletion
XCGD-013A	CYBB	X-linked	LRG_53t1:c.925G>A	E309K	Missense
XCGD-145A	CYBB	X-linked	LRG_53t1:c.1014C>A	M312K	Missense
XCGD-058A	CYBB	X-linked	LRG_53t1:c.1016C>A	C329R	Missense
XCGD-060A	CYBB	X-linked	LRG_53t1:c.1022C>T	T341I	Missense
XCGD-008A	CYBB	X-linked	LRG_53t1:c.1025T>A	L342Q	Missense
XCGD-125A	CYBB	X-linked	LRG_53t1:c.1075G>A	G393R	Missense
XCGD-121A	CYBB	X-linked	LRG_53t1:c.1154T>G	I385R	Missense
XCGD-038A	CYBB	X-linked	LRG_53t1:c.1234G-A	G412R	Missense
XCGD-078A	CYBB	X-linked	LRG_53t1:c.1244C>T	P415L	Missense
XCGD-005A	CYBB	X-linked	LRG_53t1:c.1498G>C	D600H	Missense
XCGD-136A	CYBB	X-linked	LRG_53t1:c.1546T>C	W516R	Missense
XCGD-103A	CYBB	X-linked	LRG_53t1:c.1548G>C	W516C	Missense
XCGD-043A	CYBB	X-linked	LRG_53t1:c.1583C>G	P528R	Missense
XCGD-120A	CYBB	X-linked	LRG_53t1:c.1644G>A	W28*	Nonsense
XCGD-106A	CYBB	X-linked	LRG_53t1:c.1230G>G	Y41*	Nonsense
XCGD-129A	CYBB	X-linked	LRG_53t1:c.1717C>T	R73*	Nonsense
XCGD-095A	CYBB	X-linked	LRG_53t1:c.2717C>T	R91*	Nonsense
XCGD-142A	CYBB	X-linked	LRG_53t1:c.3988C>T	R130*	Nonsense
XCGD-029A	CYBB	X-linked	LRG_53t1:c.4699C>T	R157*	Nonsense
XCGD-074A	CYBB	X-linked	LRG_53t1:c.4699C>T	R157*	Nonsense
XCGD-101A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-076A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-107A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-137A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-138A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-130A	CYBB	X-linked	LRG_53t1:c.6767C>T	R226*	Nonsense
XCGD-084A	CYBB	X-linked	LRG_53t1:c.6866C>T	R290*	Nonsense
XCGD-108A	CYBB	X-linked	LRG_53t1:c.6866C>T	R290*	Nonsense
XCGD-147A	CYBB	X-linked	LRG_53t1:c.6866C>T	R290*	Nonsense
XCGD-080A	CYBB	X-linked	LRG_53t1:c.1328G>A	W443*	Nonsense
XCGD-059A	CYBB	X-linked	LRG_53t1:c.1399G>T	E467*	Nonsense
XCGD-014A	CYBB	X-linked	LRG_53t1:c.1437C>A	Y479*	Nonsense
XCGD-006A	CYBB	X-linked	LRG_53t1:c.1553G>T	E519*	Nonsense
XCGD-028A	CYBB	X-linked	LRG_53t1:c.777Tdel	F268Cfs*8	Frameshift
XCGD-009A	CYBB	X-linked	LRG_53t1:c.126130delinsTTTC	R43Ffs*18	Frameshift
XCGD-118A	CYBB	X-linked	LRG_53t1:c.714,715insTA	V238His*4	Frameshift
XCGD-139A	CYBB	X-linked	LRG_53t1:c.222,726delTAACA	H239Yfs*4	Frameshift
XCGD-115A	CYBB	X-linked	LRG_53t1:c.725,726del	T242Sfs*3	Frameshift
XCGD-037A	CYBB	X-linked	LRG_53t1:c.742del	I249Sfs*7	Frameshift
XCGD-003A	CYBB	X-linked	LRG_53t1:c.742dup	I248Nfs*36	Frameshift
XCGD-102A	CYBB	X-linked	LRG_53t1:c.742dup	I248Nfs*36	Frameshift
XCGD-113A	CYBB	X-linked	LRG_53t1:c.742dup	I248Nfs*36	Frameshift
XCGD-030A	CYBB	X-linked	LRG_53t1:c.857,867del	V238His*8	Frameshift
XCGD-092A	CYBB	X-linked	LRG_53t1:c.1039del	E437fs*39	Frameshift
XCGD-079A	CYBB	X-linked	LRG_53t1:c.1513del	K438Rfs*54	Frameshift
XCGD-010A	CYBB	X-linked	LRG_53t1:c.1327del	W434fs*59	Frameshift
XCGD-073A	CYBB	X-linked	LRG_53t1:c.1332del	C445Afs*57	Frameshift
XCGD-126A	CYBB	X-linked	LRG_53t1:c.1556del	T522Kfs*11	Frameshift
XCGD-134A	CYBB	X-linked	LRG_53t1:c.1599,1602del	V534Sfs*12	Frameshift
XCGD-090A	CYBB	X-linked	LRG_53t1:c.1619,1628del	A543Kfs*7	Frameshift
XCGD-075A	CYBB	X-linked	LRG_53t1:c.70,72del	F24del	In-frame Deletion/Insertion

(Continued)
TABLE 2 | Continued

Patient ID	Gene	Mutant allele	cDNA/nucleotide change	Protein change	Mutant type
XCGD-007A	CYBB	X-linked	LRG\textsubscript{53}t1:c.646\textsubscript{-}648del	F216del	In-frame Deletion/Insertion
XCGD-048A	CYBB	X-linked	LRG\textsubscript{53}t1:c.116\textsubscript{2}166\textsubscript{-}166del\textsubscript{ES}	388\textsubscript{8}98delinsES	In-frame Deletion/Insertion
XCGD-129A	CYBB	X-linked	LRG\textsubscript{53}t1:c.132\textsubscript{2}132\textsubscript{del}	F441del	In-frame Deletion/Insertion
XCGD-045A	CYBB	X-linked	LRG\textsubscript{53}t1:c.45\textsubscript{+}1G>A	Splicing	
XCGD-100A	CYBB	X-linked	LRG\textsubscript{53}t1:c.45\textsubscript{+}1G>A	Splicing	
XCGD-119A	CYBB	X-linked	LRG\textsubscript{53}t1:c.46\textsubscript{-}1G>C	Splicing	
XCGD-143A	CYBB	X-linked	LRG\textsubscript{53}t1:c.45\textsubscript{+}2delT	Splicing	
XCGD-017A	CYBB	X-linked	LRG\textsubscript{53}t1:c.141\textsubscript{+}1\textsubscript{-}141\textsubscript{+}2del	Splicing	
XCGD-093A	CYBB	X-linked	LRG\textsubscript{53}t1:c.141\textsubscript{+}3A>T	Splicing	
XCGD-001A	CYBB	X-linked	LRG\textsubscript{53}t1:c.252\textsubscript{G}>A	A84\textsubscript{=}	Splicing
XCGD-002A	CYBB	X-linked	LRG\textsubscript{53}t1:c.252\textsubscript{G}>A	A84\textsubscript{=}	Splicing
XCGD-104A	CYBB	X-linked	LRG\textsubscript{53}t1:c.252\textsubscript{G}>A	A84\textsubscript{=}	Splicing
XCGD-114A	CYBB	X-linked	LRG\textsubscript{53}t1:c.252\textsubscript{G}>A	A84\textsubscript{=}	Splicing
XCGD-015A	CYBB	X-linked	LRG\textsubscript{53}t1:c.253\textsubscript{-}1G>A	Splicing	
XCGD-089A	CYBB	X-linked	LRG\textsubscript{53}t1:c.674\textsubscript{+}6T>C	Splicing	
XCGD-010A	CYBB	X-linked	LRG\textsubscript{53}t1:c.1150\textsubscript{-}1151\textsubscript{+}2del\textsubscript{AGT}	Splicing	
XCGD-098A	CYBB	X-linked	LRG\textsubscript{53}t1:c.1151\textsubscript{+}1G>A	Splicing	
XCGD-099A	CYBB	X-linked	LRG\textsubscript{53}t1:c.1314\textsubscript{+}2T>G	Splicing	
XCGD-023A	CYBB	X-linked	LRG\textsubscript{53}t1:c.1315\textsubscript{-}2A>C	Splicing	
XCGD-061A	CYBB	X-linked	EX1\textsubscript{-}EX13del	Gross Deletion	
XCGD-041A	CYBB	X-linked	EX7\textsubscript{-}EX11del	Gross Deletion	
XCGD-116A	CYBB	X-linked	EX8\textsubscript{-}EX13del	Gross Deletion	
XCGD-026A	CYBB	X-linked	LRG\textsubscript{53}t1:c.1713\textsubscript{A}>T	*571Yext*8	Extension

Repeated mutations are in bold. CYBB, cytochrome b-245 beta chain; XCGD, X-linked chronic granulomatous disease.

*translation termination (stop) codon.

TABLE 3 | Causal mutations identified in IL2RG gene (Reference Sequence LRG\textsubscript{150}) of the XSCID patients.

Patient ID	Gene	Mutant allele	cDNA/nucleotide change	Protein change	Mutant type
IL2RG-062A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.3G>T	M1I	Start Lost
IL2RG-043A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.202G>A	E68K	Missense
IL2RG-089A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.202G>A	E68K	Missense
IL2RG-080A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.252C>A	N84K	Missense
IL2RG-142A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.272A>G	Y91C	Missense
IL2RG-063A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.304T>C	C102R	Missense
IL2RG-048A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.340G>T	G114C	Missense
IL2RG-027A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.365T>C	I122T	Missense
IL2RG-005A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.371T>C	L124P	Missense
IL2RG-064A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.383T>C	F128S	Missense
IL2RG-111A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.386T>A	V129D	Missense
IL2RG-049A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.618T>A	H206Q	Missense
IL2RG-008A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.670C>T	R224W	Missense
IL2RG-047A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.670C>T	R224W	Missense
IL2RG-112A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.675G>A	S225R	Missense
IL2RG-041A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.676C>T	R226C	Missense
IL2RG-123A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.676C>T	R226C	Missense
IL2RG-004A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.677G>A	R226H	Missense
IL2RG-115A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.694G>C	G232R	Missense
IL2RG-079A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.709T>C	W237R	Missense
IL2RG-015A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.722T>C	S241I	Missense
IL2RG-009A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-014A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-020A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-022A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-025A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-061A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense
IL2RG-083A	IL2RG	X-linked	LRG\textsubscript{150}t1:c.854G>A	R285Q	Missense

(Continued)
suspected to have one of the 5 common IEI, i.e., XLA (77.4%), WAS (69.2%), XCGD (59.5%), XHIM (58.1%), and XSCID (51.1%), definitively. These 5 IEI are X-linked which renders the genetic diagnosis more readily and accurately achieved. At the clinical level, a positive family history of maternal uncles or male cousins affected with similar clinical and immunological phenotypes, suggestive of X-linked pattern of inheritance, will be the first clue. Moreover, the clinical and immunological phenotypes of these 5 IEI are relatively uniform, except for XSCID, which could have multiple phenotypes due to hypomorph mutations of IL2RG gene as well as presence of multiple genes giving rise to similar immunological phenotypes. The immunophenotype of these 5 IEI is more easily defined by laboratory tests which are less technically demanding and more available, such as complete blood count, lymphocyte subsets, immunoglobulin profile, and the nitroblue tetrazolium test (6).

Though the diagnostic resources and experience of referring clinicians could differ among different centres, affecting the accuracy of the diagnosis for these 5 IEI, our findings demonstrated that the individual positive diagnostic rate is much higher than that for the other IEI (11.9%), see Supplementary Figure 1. In addition, referring clinicians can learn from our e-consultation and diagnostic algorithm to further improve the diagnostic rate. More importantly, these 5 IEI occur at much higher rates than the rest of the 400 IEI, resulting in a higher level of awareness among paediatricians, hence earlier recognition, and referral for definitive genetic diagnosis than the less common IEI.
At the genetic diagnostic level, X-linked IEI is easier to diagnose than autosomal recessive IEI in non-consanguineous population, because identification of causal mutation in a single allele is sufficient. Moreover, there is no pitfall of missing the identification of heterozygous gross deletion by Sanger sequencing as in autosomal IEI with PCR still positive in such cases. For the X-linked genes, gross deletion will be picked up by targeted gene SS in making the genetic diagnosis was 70% in our study (7 of the 13 patients (69.2%) suspected to have LAD1. As for AR-CGD due to neutrophil cytosolic factor2 (NCF2) gene mutations, the success rate of targeted gene SS of genes responsible for AR-CGD. Therefore, the 70% success rate was not after doing just one round of single targeted gene SS was successful in diagnosing 9 of the 13 patients (69.2%) suspected to have LAD1. As for AR-CGD due to NCF2 gene mutations, the success rate of targeted gene SS in making the genetic diagnosis was 70% in our study (7 out of 10 patients), but this was achieved by doing multiple AR-CGD genes at the same time, after failing to identify the genetic mutation for CYBB gene in male patients suspected to have CGD. Therefore, the 70% success rate was not after doing just one round of single targeted gene SS, but after multiple rounds of targeted gene SS of genes responsible for AR-CGD.

Apart from these 5 common IEI, there were 2 more IEI with over 50% genetic diagnostic success rates in our study using targeted gene SS, i.e., leucocyte adhesion deficiency type 1 (LAD1) and autosomal recessive chronic granulomatous disease (AR-CGD) due to neutrophil cytosolic factor2 (NCF2) gene mutations. For LAD1, the clinical and immunological phenotype is uniform with little variation, and LAD1 occurs at a much higher frequency than the other two types of LAD. With flow cytometric analysis of CD18, followed by integrin subunit beta 2 (ITGB2) gene SS, LAD1 can be diagnosed easily (46). Our one round of single targeted gene SS was successful in diagnosing 9 of the 13 patients (69.2%) suspected to have LAD1. As for AR-CGD due to NCF2 gene mutations, the success rate of targeted gene SS in making the genetic diagnosis was 70% in our study (7 out of 10 patients), but this was achieved by doing multiple AR-CGD genes at the same time, after failing to identify the genetic mutation for CYBB gene in male patients suspected to have CGD. Therefore, the 70% success rate was not after doing just one round of single targeted gene SS, but after multiple rounds of targeted gene SS of genes responsible for AR-CGD.

For the rest of the IEI, the success rates of achieving genetic diagnosis for each of these IEI after targeted gene SS were mostly

Table 4: Causal mutations identified in CD40LG gene (Reference Sequence LRG_141) of the HIGM1 patients.

Patient ID	Gene	Mutant allele	cDNA/nucleotide change	Protein Change	Mutant Type
XHIM-061A	CD40LG	X-linked	LRG_14111:c.346G>T	G116C	Missense
XHIM-020A	CD40LG	X-linked	LRG_14111:c.418T>G	W140G	Missense
XHIM-030A	CD40LG	X-linked	LRG_14111:c.420G>A	G144R	Missense
XHIM-025A	CD40LG	X-linked	LRG_14111:c.428T>A	L161Q	Missense
XHIM-050A	CD40LG	X-linked	LRG_14111:c.676G>A	Q226R	Missense
XHIM-041A	CD40LG	X-linked	LRG_14111:c.680G>A	Q227E	Missense
XHIM-049A	CD40LG	X-linked	LRG_14111:c.692T>G	L231W	Missense
XHIM-037A	CD40LG	X-linked	LRG_14111:c.761C>T	T254M	Missense
XHIM-058A	CD40LG	X-linked	LRG_14111:c.761C>T	T254M	Missense
XHIM-047A	CD40LG	X-linked	LRG_14111:c.415G>T	Q139*	Nonsense
XHIM-011A	CD40LG	X-linked	LRG_14111:c.419G>A	W140*	Nonsense
XHIM-014A	CD40LG	X-linked	LRG_14111:c.420G>A	W140*	Nonsense
XHIM-001A	CD40LG	X-linked	LRG_14111:c.654G>A	C218*	Nonsense
XHIM-022A	CD40LG	X-linked	LRG_14111:c.654G>A	C218*	Nonsense
XHIM-010A	CD40LG	X-linked	LRG_14111:c.103del	Q35Pfs*2	Frameshift
XHIM-004A	CD40LG	X-linked	LRG_14111:c.291_299delinsG	D97Efs*13	Frameshift
XHIM-024A	CD40LG	X-linked	LRG_14111:c.511_512del	I171Lfs*29	Frameshift
XHIM-017A	CD40LG	X-linked	LRG_14111:c.158_161del	IS3Kfs*13	Frameshift
XHIM-054A	CD40LG	X-linked	LRG_14111:c.158_161del	IS3Kfs*13	Frameshift
XHIM-052A	CD40LG	X-linked	LRG_14111:c.489del	R165Dfs*26	Frameshift
XHIM-016A	CD40LG	X-linked	LRG_14111:c.599del	R200Nfs*42	Frameshift
XHIM-002A	CD40LG	X-linked	LRG_14111:c.616_619del	L206Efs*35	Frameshift
XHIM-003A	CD40LG	X-linked	LRG_14111:c.719_720del	N240Sfs*3	Frameshift
XHIM-019A	CD40LG	X-linked	LRG_14111:c.157_2A-G	Splicing	
XHIM-021A	CD40LG	X-linked	LRG_14111:c.410_2A-G	Splicing	
XHIM-036A	CD40LG	X-linked	LRG_14111:c.289-28_302del	G144R	Missense
XHIM-051A	CD40LG	X-linked	LRG_14111:c.156_1G+A	Splicing	
XHIM-055A	CD40LG	X-linked	LRG_14111:c.346_2T-A	Splicing	
XHIM-056A	CD40LG	X-linked	LRG_14111:c.289_13G+C	Splicing	
XHIM-057A	CD40LG	X-linked	LRG_14111:c.347_13G+C	Splicing	
XHIM-007A	CD40LG	X-linked	LRG_14111:c.289_2A-G	Splicing	
XHIM-009A	CD40LG	X-linked	LRG_14111:c.289_2A-G	Splicing	
XHIM-055A	CD40LG	X-linked	EX1_EX2del	Gross Deletion	
XHIM-005A	CD40LG	X-linked	EX1_EX5del	Gross Deletion	
XHIM-008A	CD40LG	X-linked	EX1_EX5del	Gross Deletion	
XHIM-018A	CD40LG	X-linked	LRG_14111:c.289+259_409+652delinsTCGT	Gross Deletion	
FIGURE 2 | Number of patients with first round of targeted gene SS (Sanger Sequencing) performed, and number of patients with mutations identified. IEI, inborn errors of immunity; SS, Sanger sequencing; BTK, Bruton tyrosine kinase; WAS, WASP actin nucleation promoting factor; CYBB, cytochrome b-245 beta chain; IL2RG, interleukin 2 receptor subunit gamma; CD40LG, CD40 ligand.

TABLE 5 | Number of patients with targeted gene SS performed, and number of patients with mutations identified.

IEI genes	Patients with targeted gene SS	Patients with mutations identified	%
BTK	398	308	77.4
WAS	156	108	69.2
CYBB	148	88	59.5
IL2RG	139	71	51.1
CD40LG	62	36	58.1
Total	903	611	67.7

(Continued)
under one-third, and in most cases, we had to do multiple rounds of targeted gene SS, with an overall success rate of only 10.9%. Therefore, whole exome sequencing (WES) is now our preferred first-tier genomic test for all the IEI except the 5 most common X-linked IEI and LAD1. However, exceptions do occur, such as AR-CGD due to \textit{NCF1} gene, which has pseudogenes, rendering both SS and WES not able to identify the causal mutations due to poor and limited coverage of sequences shared with pseudogenes. Fortunately, 97% of affected alleles in patients previously reported with p47-phox deficiency carry a hot spot mutation of “GT”deletion (AGT) in exon 2 of neutrophil cytosolic factor 1 (\textit{NCF1}) gene (47). One can therefore simply identify the hot spot mutation by GeneScan® analysis as shown in Supplementary Figure 2 before proceeding to sequencing of the coding region. This approach was adopted by us to save time and cost.

IEI genes	Patients with targeted gene SS	Patients with mutations identified	%
FASLG	21	1	4.8
PRF1	32	1	3.1
IL12B	55	1	1.8
FAS	20	0	0.0
UNC13D	16	0	0.0
ICOS	16	0	0.0
AICDA	13	0	0.0
CASP10	12	0	0.0
MVK	10	0	0.0
CD40	10	0	0.0
UNG	10	0	0.0
IL10RB	9	0	0.0
RAB27A	9	0	0.0
NLRP12	7	0	0.0
CD79A	7	0	0.0
HAX1	7	0	0.0
TNFRSF1A	7	0	0.0
TYK2	7	0	0.0
LIG4	6	0	0.0
CARD9	6	0	0.0
RASGRP1	6	0	0.0
ZAP70	6	0	0.0
IL10	5	0	0.0
IL24	5	0	0.0
IRAK4	5	0	0.0
CD19	4	0	0.0
NCF4	4	0	0.0
PNP	3	0	0.0
IFNGR2	3	0	0.0
CLEC7A	3	0	0.0
MYD88	3	0	0.0
PRKCD	3	0	0.0
MAGT1	2	0	0.0
IL12A	2	0	0.0
ITK	2	0	0.0
STAT5B	2	0	0.0
STK4	2	0	0.0
TCF3	1	0	0.0
IL2RA	1	0	0.0
CXCR4	1	0	0.0
LRBA	1	0	0.0
TCIRG1	1	0	0.0
CLCN7	1	0	0.0
FERMT3	1	0	0.0
GATA2	1	0	0.0
IL1RN	1	0	0.0
IL36RN	1	0	0.0
IRF8	1	0	0.0
LAT	1	0	0.0
PGM3	1	0	0.0
PSMB8	1	0	0.0

Total 1121 133 11.9

Official gene symbols approved by HGNC were used. Approved full gene names are available in HGNC. IEI, inborn errors of immunity; SS, Sanger sequencing; HGNC, HUGO Gene Nomenclature Committee. Sum of patients are in bold.
FIGURE 3 | Number of patients with targeted gene SS performed, and number of patients with mutations identified. Official gene symbols approved by HGNC were used. Approved full gene names are available in HGNC. IEI, inborn errors of immunity; SS, Sanger sequencing; HGNC; HUGO Gene Nomenclature Committee.

FIGURE 4 | Distribution of casual mutations in various exons, exon-intron junctions and corresponding domains of BTK gene. The upper diagram shows the distribution and frequency of amino acid mutations in various protein domains; while the lower diagram shows the locations of splice site mutations and large deletions of the gene. BTK, Bruton tyrosine kinase; XLA, X-linked agammaglobulinemia; PH, Pleckstrin homology; SH2, Src homology 2; SH3. Src homology 3.
FIGURE 5 | Distribution of casual mutations in various exons, exon-intron junctions and corresponding domains of WAS gene. The upper diagram shows the distribution and frequency of amino acid mutations in various protein domains; while the lower diagram shows the locations of splice site mutations and large deletions of the gene. WAS, WASP actin nucleation promoting factor; WAS, Wiskott Aldrich Syndrome; PBD, P21-Rho-binding domain; WH1, WASP homology 1 domain; WH2, WASP homology 2 domain.

FIGURE 6 | Distribution of casual mutations in various exons, exon-intron junctions and corresponding domains of CYBB gene. The upper diagram shows the distribution and frequency of amino acid mutations in various protein domains; while the lower diagram shows the locations of splice site mutations and large deletions of the gene. CYBB, cytochrome b-245 beta chain; XCGD, X-linked chronic granulomatous disease.
FIGURE 7 Distribution of casual mutations in various exons, exon-intron junctions and corresponding domains of IL2RG gene. The upper diagram shows the distribution and frequency of amino acid mutations in various protein domains; while the lower diagram shows the locations of splice site mutations and large deletions of the gene. IL2RG, interleukin 2 receptor subunit gamma; XSCID, X-linked severe combined immunodeficiency.

FIGURE 8 Distribution of casual mutations in various exons, exon-intron junctions and corresponding domains of IL2RG gene. The upper diagram shows the distribution and frequency of amino acid mutations in various protein domains; while the lower diagram shows the locations of splice site mutations and large deletions of the gene. CD40LG; CD40 ligand; HIGM1, X-linked immunodeficiency with hyper-IgM type 1.
All in all, we were able to diagnose 744 of the 1376 patients (54.1%) referred to us suspected to have IEI, using targeted genes SS, with an average of 1.47 such tests per patient (ranging from 1 to 10). However, 632 of these 1376 patients (45.9%) of the referred patients remained genetically undiagnosed after single or multiple rounds of targeted gene SS.

With the availability of WES in 2009, we deployed this technology for selected undiagnosed IEI patients. Our first WES case for a male infant with early-onset inflammatory bowel disease (IBD) in 2009 resulted in the discovery of interleukin 10 receptor subunit alpha (IL10RA) gene mutations as the underlying cause of early-onset IBD (27), at about the same time when aberrant interleukin 10 (IL10) pathway was implicated as the underlying cause for early-onset IBD by another group using linkage analysis (48). Since then, we have incorporated WES more readily into our diagnostic algorithm, because of the cost coming down as well as developing our own in-house bioinformatic tools and results, analyzing in discovery of novel IEI (49, 50). We shall review in future our experience in using WES for patients with suspected IEI who remain undiagnosed genetically after targeted gene SS. Comparison between targeted gene SS and NGS (whole exome sequencing WES) in our institutional service has been shown in Supplementary Figure 3. In general, WES will have wider applications, but longer turnover time compared with SS under the service provided by our centre. However, if both the financial and human resource (laboratory staffs and bioinformaticians) is not a limiting factor, rapid WES may be considered to set up for those urgent cases with immediate clinical management decision (51).

In conclusion, single targeted gene SS should remain the first-tier genetic test for patients suspected to have one of the 5 common X-linked IEI before offering genomic tests such as WES or targeted gene panel (52). Flow chart of our current diagnostic algorithm, with the description of progressive changes in our bioinformatic analysis, has been provided as reference (Supplementary Figure 4). We propose IEI centres in less resourced Asian and African countries and regions could consider setting up targeted gene SS for these 6 IEI which would yield a high enough success rate of genetic diagnosis in a significant number of IEI patients to become cost-effective (6, 53).

REFERENCES

1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol (2020) 40(1):24–64. doi: 10.1007/s10875-019-00737-x

2. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Azal F, Chatila T, et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol (2020) 40(1):66–81. doi: 10.1007/s10875-020-00758-x

3. Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, et al. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. J Allergy Clin Immunol Pract (2021) 9(9):3293–3307 e6. doi: 10.1016/j.jaip.2021.05.004

4. Vorstevel E, Hoischen A, van der Made CI. Next-Generation Sequencing in the Field of Primary Immunodeficiencies: Current Yield, Challenges, and Future Perspectives. Clin Rev Allergy Immunol (2021) 62(2):212–25. doi: 10.1007/s12016-021-08838-5

5. Abraham RS, Butte MJ. The New “Wholly Trinity” in the Diagnosis and Management of Inborn Errors of Immunity. J Allergy Clin Immunol Pract (2021) 9(2):613–25. doi: 10.1016/j.jaip.2020.11.044

6. Leung D, Chua GT, Mondragon AV, Zhong Y, Nguyen-Ngoc-Quynh L, Imai K, et al. Current Perspectives and Unmet Needs of Primary Immunodeficiency Care in Asia Pacific. Front Immunol (2020) 11:605. doi: 10.3389/fimmu.2020.01605

7. Hui YF, Chan GC, Ha SY, Hui YF, Yuen KY. The role of phagocytic respiratory burst in host defense against Mycobacterium tuberculosis. Clin Infect Dis (1998) 26(1):226–7. doi: 10.1086/517036

8. Lau YL, Chan GC, Ha SY, Hui YF, Yuen KY. Regulatory T-cell function in Wiskott-Aldrich syndrome. Eur J Pediatr (1992) 151(9):680–3. doi: 10.1007/BF01957573

DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Clinical Research Ethics Review Board of The University of Hong Kong and Queen Mary Hospital (Ref. no. UW 08-301). Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

Y-LL conceptualized the study. YL, XY, WT, PL, WY, and DL designed the study. K-WC, C-YW, SF, and PM performed genetic study. K-WC, and DL curated mutations. PL and DL phenotyped the patients. K-WC, C-YW, XY, and DL analyzed data. K-WC and C-YW drafted the manuscript. Other authors referred patients and provided clinical care and clinical data. All authors critically reviewed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Hong Kong Society for Relief of Disabled Children and Jeffrey Modell Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.883446/full#supplementary-material
10. Lau YL, Kwong YL, Lee AC, Chiu EK, Ha SY, Chan CF, et al. Mixed chimerism following bone marrow transplantation for severe combined immunodeficiency: a study by DNA fingerprinting and simultaneous immunophenotyping and fluorescence in situ hybridisation. Bone Marrow Transplant (1995) 15(6):971–6.

11. Lau YL, Low LC, Jones BM, Lawton JW. Defective neutrophil and lymphocyte function in leucocyte adhesion deficiency. Clin Exp Immunol (1991) 85(2):202–8. doi: 10.1111/j.1600-0625.1991.tb07505.x

12. Lau YL, Wong SN, Lawton JW, Chow CB. Chronic granulomatous disease: a different pattern in Hong Kong? J Paediatr Child Health (1991) 27(4):235–9. doi: 10.1111/j.1440-1754.1991.tb0399x

13. Lau YL, Wong SN, Lawton WM. Takayasu’s arteritis associated with Wiskott-Aldrich syndrome. J Paediatr Child Health (1992) 28(3):407–9. doi: 10.1111/j.1440-1754.1992.tb02703.x

14. Lau YL, Yuen KY, Lee CW, Chan CF. Invasive Acremonium falciforme infection in a patient with severe combined immunodeficiency. Clin Infect Dis (1995) 20(1):197–8. doi: 10.1093/clinids/20.1.197

15. Roos D. X-CGDbase: a database of X-CGD-causing mutations. Immunol Today (1996) 17(11):517–21. doi: 10.1016/0167-5699(96)30060-1

16. Siu-Yuen C, Yuk-Fan H, Yu-Lung L. An 11-bp deletion in exon 10 of the H2-DRB1 gene of HLA in Chinese patients with Wiskott-Aldrich syndrome. Mutat Res (1991) 282(1–2):57–61. doi: 10.1016/0167-5699(91)90220-C

17. Yip KL, Chan SY, Ip WK, Lau YL. Bruton’s tyrosine kinase mutations in 8 Chinese families with X-linked agammaglobulinemia. Mutat Res (2000) 45(4):385. doi: 10.1016/S0167-5699(00)00004-1

18. Chan KW, Chen T, Jiang L, Fok SF, Lee TL, Lee BW, et al. Identification of Bruton’s tyrosine kinase mutations in 12 Chinese patients with X-linked agammaglobulinemia by long PCR-direct sequencing. Int J Immunogen (2006) 33(3):205–9. doi: 10.1111/j.1744-313X.2006.00059.x

19. Chan KW, Lee TL, Chung BH, Yang X, Lau YL. Identification of five novel WASP mutations in Chinese families with Wiskott-Aldrich syndrome. Hum Mutat (2002) 20(2):151–2. doi: 10.1002/humu.9408

20. Chang YH, Yu HH, Lau YL, Chan KW, Chang BL. A new autosomal recessive, heterogeneous pair of CYBA mutations in a patient with chronic granulomatous disease. Ann Allergy Asthma Immunol (2010) 105(2):183–5. doi: 10.1016/j.anai.2010.05.013

21. Chong JH, Januar SS, Ong C, Thoon KC, Tan ES, Lai A, et al. Tricho-hepato-enteric syndrome (TIE syndrome): two cases and review of the literature. Eur J Pediatr (2015) 174(10):1405–11. doi: 10.1007/s00431-015-2563-x

22. Lee PP, Chan KW, Chen TX, Jiang LP, Wang XC, Zeng HS, et al. Molecular diagnosis of severe combined immunodeficiency—identification of IL27R, IL10R, IL7R, DCLRE1C, RAG1, and RAG2 mutations in a cohort of Chinese and South-East Asian children. J Clin Immunol (2011) 31(2):281–96. doi: 10.1007/s10875-010-9489-7

23. Lee PP, Chan KW, Jiang L, Chen T, Li C, Lee TL, et al. Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for tuberculosis. Pediatr Infect Dis J (2008) 27(3):224–30. doi: 10.1097/INF.0b013e31815b494c

24. Lee PP, Chen TX, Jiang LP, Chan KW, Yang W, Lee BW, et al. Clinical characteristics and genotype-phenotype correlation in 62 patients with X-linked agammaglobulinemia. J Clin Immunol (2010) 30(1):121–31. doi: 10.1007/s10875-009-9341-5

25. Lee PP, Chen TX, Jiang LP, Chan J, Lee CW, Chan KW, et al. Clinical and molecular characteristics of 35 Chinese children with Wiskott-Aldrich syndrome. J Clin Immunol (2009) 29(4):490–500. doi: 10.1007/s10875-009-9285-9

26. Lee PP, Mao H, Yang W, Chan KW, Ho MH, Lee TL, et al. Penicillium marneffei infection and impaired IFN-gamma immunity in humans with autosomal-dominant-gain-of-phosphorylation STAT1 mutations. J Allergy Clin Immunol (2014) 133(3):894–903. doi: 10.1016/j.jaci.2013.08.051

27. Mao H, Yang W, Lee PP, Ho MH, Yang J, Zeng S, et al. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatal-onset Crohn’s disease. Genes Immun (2012) 13(5):437–42. doi: 10.1038/gene.2012.8

28. Naidoo R, Jordan A, Chan KW, Le Roux DM, Pienaar S, Nuttall J, et al. A novel CYBB mutation with the first genetically confirmed case of chronic granulomatous disease in South Africa. S Afr Med J (2011) 101(10):768–9.
47. Roos D, De Boer M, Koker MY, Dekker J, Singh-Gupta V, Ahlin A, et al. Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. *Hum Mutat* (2006) 27(12):1218–29. doi: 10.1002/humu.20413

48. Glocker EO, Kotelarz D, Bostug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. *N Engl J Med* (2009) 361(21):2033–45. doi: 10.1056/NEJMoa0907206

49. Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. *J Allergy Clin Immunol* (2017) 140(4):1191–4.e4. doi: 10.1016/j.jaci.2017.04.037

50. Mao H, Yang W, Latour S, Yang J, Winter S, Zheng J, et al. RASGRF1 mutation in autoimmune lymphoproliferative syndrome-like disease. *J Allergy Clin Immunol* (2018) 142(2):595–604.e16. doi: 10.1016/j.jaci.2017.10.026

51. Chung CCY, Leung GKC, Mak CCY, Fung JLF, Lee M, Pei SLC, et al. Rapid whole-exome sequencing facilitates precision medicine in paediatric rare disease patients and reduces healthcare costs. *Lancet Reg Health West Pac* (2020) 1100001. doi: 10.1016/j.lanwpc.2020.100001

52. Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar I, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. *J Allergy Clin Immunol* (2020) 145(1):46–69. doi: 10.1016/j.jaci.2019.09.009

53. Luk ADW, Lee PP, Mao H, Chan KW, Chen XY, Chen TX, et al. Family History of Early Infant Death Correlates with Earlier Age at Diagnosis But Not Shorter Time to Diagnosis for Severe Combined Immunodeficiency. *Front Immunol* (2017) 8088:808. doi: 10.3389/fimmu.2017.00808

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Citation: Chan K-W, Wong C-Y, Leung D, Yang X, Fok SFS, Mak PHS, Yao L, Ma W, Mao H, Zhao X, Liang W, Singh S, Barbouche M-R, He J-X, Jiang L-P, Liew W-K, Le MHT, Muktiarti D, Santos-Ocampo FJ, Djidjik R, Belaid B, Ismail IH, Abdul Latiff AH, Lee WS, Chen T-X, Liu J, Jin R, Wang X, Chien YH, Yu H-H, Raj D, Raj R, Vaughan J, Urban M, Berg Svd, Eley B, Lee AC-W, Isa MS, Ang EY, Lee BW, Yeoh AEJ, Shek LP, Quynh Le NN, Nguyen VAT, Phan Nguyen Lien A, Capulong RD, Mallillin JM, Villanueva JCM, Camonayan KAB, Vera MD, Caisis-Hao RJ, Lobo RCM, Foronda R, Binas VWE, Boushaki S, Kechout N, Phongsamart G, Wongwaree S, Jiratchaya C, Lao-Araya M, Trakultivakorn M, Suratannon N, Jirapongsananuruk O, Chantveerawong T, Kamchaisatian W, Chan LL, Koh MT, Wong KJ, Fong SM, Thong M-K, Latiff A, Noh LM, Silva RD, Joubadi Z, Al-Saad K, Vignesh P, Jindal AK, Rawat A, Gupta A, Suri D, Yang J, Au E-YL, Kwock JS-Y, Chan S-Y, Hui WY-F, Chua GT, Duque JR, Cheong K-N, Chong PCY, Ho MHK, Lee T-L, Wong WH-S, Yang W, Lee PP, Tu W, Yang X-Q and Lau YL (2022) Targeted Gene Sanger Sequencing for Common IEI Potential Con of Interest: The absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Citation: Chan K-W, Wong C-Y, Leung D, Yang X, Fok SFS, Mak PHS, Yao L, Ma W, Mao H, Zhao X, Liang W, Singh S, Barbouche M-R, He J-X, Jiang L-P, Liew W-K, Le MHT, Muktiarti D, Santos-Ocampo FJ, Djidjik R, Belaid B, Ismail IH, Abdul Latiff AH, Lee WS, Chen T-X, Liu J, Jin R, Wang X, Chien YH, Yu H-H, Raj D, Raj R, Vaughan J, Urban M, Berg Svd, Eley B, Lee AC-W, Isa MS, Ang EY, Lee BW, Yeoh AEJ, Shek LP, Quynh Le NN, Nguyen VAT, Phan Nguyen Lien A, Capulong RD, Mallillin JM, Villanueva JCM, Camonayan KAB, Vera MD, Caisis-Hao RJ, Lobo RCM, Foronda R, Binas VWE, Boushaki S, Kechout N, Phongsamart G, Wongwaree S, Jiratchaya C, Lao-Araya M, Trakultivakorn M, Suratannon N, Jirapongsananuruk O, Chantveerawong T, Kamchaisatian W, Chan LL, Koh MT, Wong KJ, Fong SM, Thong M-K, Latiff A, Noh LM, Silva RD, Joubadi Z, Al-Saad K, Vignesh P, Jindal AK, Rawat A, Gupta A, Suri D, Yang J, Au E-YL, Kwock JS-Y, Chan S-Y, Hui WY-F, Chua GT, Duque JR, Cheong K-N, Chong PCY, Ho MHK, Lee T-L, Wong WH-S, Yang W, Lee PP, Tu W, Yang X-Q and Lau YL (2022) Targeted Gene Sanger Sequencing for Common IEI Potential Con of Interest: The absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.