RESEARCH ARTICLE

The Complete Chloroplast Genome of Ye-Xing-Ba (*Scrophularia dentata*: Scrophulariaceae), an Alpine Tibetan Herb

Lianghong Ni1, Zhili Zhao1*, Gaawe Dorje2, Mi Ma2

1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2 Tibetan Traditional Medical College, Lhasa, China

* zhilzhao@163.com

Abstract

Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for *S. dentata*. In this paper, we report the complete chloroplast genome sequence of *S. dentata* and it is the first sequenced member of the Sect. Tomiophyllum within *Scrophularia* (Scrophulariaceae). The gene order and organization of the chloroplast genome of *S. dentata* are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within *S. dentata* were compared with those of *S. takesimensis* and present certain discrepancies. The chloroplast genome of *S. dentata* was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

Introduction

Ye-Xing-Ba (Tibetan name), a common Tibetan herb, is traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). As a medicinal alpine species [1], *Scrophularia dentata* Royle ex Benth. (Scrophulariaceae) is one of the original plants of the Tibetan herb [2]. In recent years, our research team has been concentrating on the ethnobotanical survey of Tibetan herbs since 1992 [3, 4]. Based on our specimen collection and taxonomic identification, some chemical and pharmacological studies on *S. dentata* have been conducted by our team [5, 6, 7]. Because of the harsh living environment and increasing demand for medicinal use of the alpine plant, it is of utmost urgency to develop a conservation strategy for
the species. Also, selection of excellent germplasm requires more efficient genetic data and molecular markers [8]. However, there is little sequence and genomic information available for the species in the GenBank, except for nrDNA ITS sequences, some chloroplast and mitochondrial segment sequences submitted by our team (http://www.ncbi.nlm.nih.gov/nuccore/?term=Scrophularia+dentata).

Chloroplast contains its own independent genome encoding a specific set of proteins [9]. The plastid genomes typically are composed of a large single copy (LSC) region and a small single copy (SSC) region, which are separated by two copies of inverted repeats (IRs) [10]. The small size of the chloroplast genome, about 115 to 165 kb in length, makes it suitable for complete sequencing and the data can be further applied to DNA bar coding and phylogeny construction [11, 12]. As complete chloroplast genome sequences contain sufficient information, sequencing of whole chloroplast genomes is essential for the analyses of plant species [13, 14].

S. dentata belongs to Scrophulariaceae, which is a large family of Lamiales, consisting of over 3,000 species [15]. Also, the genus Scrophularia has ca. 200 species and is divided into two sections, i.e. Sect. Scrophularia and Sect. Tomiophyllum [16]. However, the complete chloroplast genome of Scrophularia takesimensis within Sect. Scrophularia is the first published whole sequence in Scrophularia. This is the first sequenced member of the Sect. Tomiophyllum in the paper. Details of the S. dentata chloroplast genome structure and organization are reported and compared with previously annotated chloroplast genomes of other Lamiales species. Our studies could expand understanding of the diversity of Scrophularia cp genomes and provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

Materials and Methods

Plant material

Samples of S. dentata were collected in Lhasa, Tibet, China. The voucher specimens were deposited in the herbarium of Shanghai University of Traditional Chinese Medicine (field number: XZ201416). Also, the location of the specimens is not within any protected area.

DNA extraction, genome sequencing and validation

Total chloroplast DNA was extracted from 100 g of fresh leaves using a sucrose gradient centrifugation method improved by Li et al. [17]. The genome was sequenced and assembled on an Illumina MiSeq platform following Gogniashvili et al. [18]. The four junctions between the SSC/LSC and IRs were validated by PCR amplification and Sanger sequencing, and nine other fragments were selected to validate the genome sequence further (S1 Table) [19].

Genome annotation

The chloroplast genome was annotated using the annotator DOGMA [20], coupled with manual corrections. For all of the tRNA genes, the annotations were verified using tRNAscan-SE1.21 [21]. The genome map was drawn by GenomeVX [22].

Genome comparison

The complete cp genomes of S. dentata and five other Lamiales species were compared using the mVISTA program [23]. The boundaries between IR and SC regions of these species were also compared and analysed.
Repeat structure
The REPuter program [24] was used to identify repeats (forward, palindrome, complement and reverse sequences). The size and identity of the repeats were limited to no less than 30 bp and 90%, respectively, with Hamming distance equal to 3 [25, 26]. Meanwhile, simple sequence repeats (SSRs) were detected using MISA [27] by setting the minimum number of repeats to 10, 5, 4, 3, 3 and 3 for mono-, di-, tri-, tetra-, penta- and hexanucleotides. The repeats and SSRs of *S. dentata* were compared with those of *S. takesimensis*, the only one complete chloroplast genome available in Scrophulariaceae.

Results and Discussion
Genome organization and features
The junction regions between IRs and SSC/LSC and nine additional regions were confirmed by PCR amplification and Sanger sequencing. We compared these sequences to the assembled genome and no mismatch or indel was observed, which validated the accuracy of genome sequencing and assembly. The chloroplast genome sequence of *S. dentata* has been submitted to GenBank (accession number: KT428154).

The complete chloroplast genome of *S. dentata* has a total length of 152,553 bp, with a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp (Fig 1). The total GC content is 38.0%, which is similar to the published asterids cp genomes [28, 29]. And the GC content is unevenly distributed in the genome. The GC content of IRs (43.1%) is higher than that of LSC and SSC region (36.0 and 32.29%). The high GC content in the IR regions is due to the increased presence of GC nucleotides in the four rRNA genes: *rrn5, rrn4.5, rrn23* and *rrn16*, which is congruent to what has been found in other chloroplast genomes [30, 31].

The chloroplast genome of *S. dentata* encodes a total of 114 unique genes, of which 18 are duplicated in IR regions. Among the 114 genes, there are 80 protein-coding genes (70.2%), 30 transfer genes (26.3%) and 4 rRNA genes (3.5%) (Table 1). 18 genes contain introns, 15 (nine protein-coding and six tRNA genes) of which contain one intron and three (*clpP, ycf3* and *rps12*) contain two introns (Table 2). The *rps12* gene is a trans-spliced gene, with the first exon located in LSC region and the other two exons duplicated in IR regions.

Protein-coding regions account for 59.6% of the whole genome, while tRNA and rRNA regions account for 4.6% and 5.9%, respectively. The remaining regions are noncoding sequences, including intergenic spacers, introns and pseudogenes. There are two pseudogenes identified: *ycf1* and *rps19*. They are located in the boundary regions between IRb/SSC and IRA/LSC, respectively. The lack of their protein-coding ability is due to the partial gene duplication.

Comparison to other Lamiales species
The chloroplast genome of *S. dentata* was compared with other five publicly available Lamiales genomes from different families, i.e., *Boea hygrometrica* (Gesneriaceae), *Hesperelaea palmeri* (Oleaceae), *Salvia miltiorrhiza* (Lamiaceae), *Andrographis paniculata* (Acanthaceae) and *Sesamum indicum* (Pedaliaceae) (Table 3). Organization of the Lamiales chloroplast genome is conserved; neither translocations nor inversions were detected in the analyses. However, there are differences in terms of genome size. The *A. paniculata* chloroplast genome is the shortest (150,249 bp), while that of *H. palmeri* (155,820 bp) is longer than other species. The genome size variation is attributed mainly to the difference in the length of the LSC region, similar to the features in Asteraceae chloroplast genomes [36]. Also, the average size of the six Lamiales chloroplast genomes is 152,794 bp.
The Complete Chloroplast Genome of Scrophularia dentata (Scrophulariaceae)

Scrophularia dentata
chloroplast genome
152,553 bp
The overall sequence identity of the six Lamiales chloroplast genomes was plotted using the software mVISTA with *S. dentata* as reference (Fig 2). The results show that the chloroplast genomes within Lamiales are conservative, although divergent regions could be detected. As expected, the IR region is more conserved than the LSC and SSC regions in these species. Meanwhile, non-coding regions reveal a higher divergence than coding regions. In order to check divergent hotspot regions further, all the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes were extracted and analysed (S2 Table, Fig 3). The most divergent regions are localized in the intergenic spacers, including *ccsA-ndhD*, *rps16-trnQ-UGU*, *ndhJ-ndhK*, *ndhE-ndhG*, *ndhC-trnV-UAC*, *trnH-GUG-psbA* and *ndhG-ndhI*. These intergenic regions could be used in assessing phylogenetic relationships within Lamiales species. For the coding regions, the most divergent regions are *ycf1*, *matK*, *rpl22*, *rpl32*, *rps15* and *ccsA*. These genes are all located in single copy regions.

The expansion and contraction at the borders of IR/SC are common in chloroplast genomes within Lamiales are conservative, although divergent regions could be detected. As expected, the IR region is more conserved than the LSC and SSC regions in these species.

Table 1. Genes present within Scrophularia dentata chloroplast genome.

Group of genes	Gene names
1 Photosystem I	*psaA*, *psaB*, *psaC*, *psaL*, *psaJ*
2 Photosystem II	*psbA*, *psbB*, *psbC*, *psbD*, *psbE*, *psbF*, *psbH*, *psbl*, *psbJ*, *psbK*, *psbL*, *psbM*, *psbN*, *psbT*, *psbZ*
3 Cytochrome b/f complex	*petA*, *petB**, *petD**, *petG*, *petL*, *petN*
4 ATP synthase	*atpA*, *atpB*, *atpE*, *atpF**, *atpH*, *atpI*
5 NADH dehydrogenase	*ndhA**, *ndhB**(×2), *ndhC*, *ndhD*, *ndhE*, *ndhf*, *ndhG*, *ndhH*, *ndhL*, *ndhK*
6 Rubisco large subunit	*rbcL*
7 RNA polymerase	*rpoA*, *rpoB*, *rpoC1**, *rpoC2*
8 Ribosomal proteins (SSU)	*rps2*, *rps3*, *rps4*, *rps7*(×2), *rps8*, *rps11*, *rps12***(×2), *rps14*, *rps15*, *rps16*, *rps18*, *rps19*
9 Ribosomal proteins (LSU)	*rpl2*(×2), *rpl14*, *rpl16**, *rpl20*, *rpl22*, *rpl23*(×2), *rpl32*, *rpl33*, *rpl36*
10 Other genes	*clpP***, *matK*, *accD*, *ccsA*, *infA*, *cemA*
11 Proteins of unknown function	*ycf1*, *ycf2*(x2), *ycf3***, *ycf4*, *ycf15*(x2)
12 Ribosomal RNAs	*rrn4.5*(x2), *rrn5*(x2), *rrn16*(x2), *rrn23*(x2)
13 Transfer RNAs	*trnA-UGC*(x2), *trnC-GCA*, *trnD-GUC*, *trnE-UUC*, *trnF-GAA*, *trnG-GCC*, *trnG-UCC**, *trnH-GUG*, *trnL-CAU*(x2), *trnL-GAU*(x2), *trnK-UUU**, *trnL-CAA*(x2), *trnL-UAA***, *trnL-UAG*, *trnM-CAU*, *trnM-CGU*(x2), *trnM-GUUA*(x2), *trnP-GUG*, *trnQ-UUG*, *trnR-ACG*(x2), *trnR-UCU*, *trnS-GCU*, *trnS-GGA*, *trnS-GUA*, *trnT-GGU*, *trnT-UGU*, *trnV-GAC*(x2), *trnV-UAC***, *trnW-CCA*, *trnY-GUA*

*Gene containing one intron.
**Gene containing two introns.
(x2) Two gene copies in the IRs.

doi:10.1371/journal.pone.0158488.t001
The rps19 genes of *H. palmeri* and *A. paniculata* are located in the LSC region completely, and the IR region is expanded to rps19 gene in the other four genomes, with rps19 pseudogene created at the IRA/LSC border. In *S. dentata*, a short rps19 pseudogene of 40 bp is created. The same pseudogene is 30 bp in *S. indicum*, 43 bp in *S. miltiorrhiza* and 37 bp in *B. hygrometrica*, respectively. The border between IRb and SSC extends into the ycf1 genes, with ycf1 pseudogenes created in all of the six species. The length of ycf1 pseudogene is 910 bp in *S. dentata*, 1,012 bp in *S. indicum*, 1,091 bp in *H. palmeri*, 983 bp in *A. paniculata*, 1,056 bp in *S. miltiorrhiza* and 816 bp in *B. hygrometrica*, respectively. Overlaps are detected between the ycf1 pseudogene and ndhF gene in *H. palmeri*, *A. paniculata*, *S. miltiorrhiza* and *B. hygrometrica*, with lengths of 25 bp, 40 bp, 32 bp and 118 bp, respectively. The trnH-GUG genes are all located in the LSC region, with 4–57 bp apart from the LSC/IRa boundary.

Table 2. Genes with introns within *Scrophularia dentata* chloroplast genome and the length of exons and introns.

Gene	Location	Exon I (bp)	Intron I (bp)	Exon II (bp)	Intron II (bp)	Exon III (bp)
petB	LSC	6	720	642		
petD	LSC	8	735	475		
atpF	LSC	144	723	411		
ndhA	SSC	552	1067	531		
ndhB	IR	777	679	756		
rpoC1	LSC	435	756	1626		
rps12*	LSC	114	-	232	537	26
rps16	LSC	42	848	225		
rpl2	IR	393	664	435		
rpl16	LSC	9	886	399		
clpP	LSC	69	727	291	626	228
ycf3	LSC	129	702	228	720	153
trnA-UGC	IR	38	813	35		
trnG-UCC	LSC	23	683	47		
trnL-GAU	IR	42	943	35		
trnK-UUU	LSC	37	2517	35		
trnL-UAA	LSC	37	488	50		
trnV-UAC	LSC	38	585	37		

* The rps12 is a trans-spliced gene with the 5’ end located in the LSC region and the duplicated 3’ end in the IR regions.

Table 3. Comparison of the base composition of six Lamiales chloroplast genomes.

	Scrophularia dentata	Boea hygrometrica	Hesperelaea palmeri	Salvia miltiorrhiza	Andrographis paniculata	Sesamum indicum
LSC	84,058 bp	84,692 bp	86,616 bp	82,695 bp	82,459 bp	85,170 bp
SSC	17,449 bp	17,901 bp	17,780 bp	17,555 bp	17,190 bp	17,872 bp
IR	25,523 bp	25,450 bp	25,712 bp	25,539 bp	25,300 bp	25,141 bp
Total	152,553 bp	153,493 bp	155,820 bp	151,328 bp	150,249 bp	153,324 bp
CG content	38.0%	37.6%	37.8%	36.2%	38.3%	38.2%
Coding gene	80	86	80	80	80	80
tRNA	30	29	30	30	30	30
rRNA	4	4	4	4	4	4
References	this study	[32]	[33]	[34]	NC_022451	[35]

The rps19 genes of *H. palmeri* and *A. paniculata* are located in the LSC region completely, and the IR region is expanded to rps19 gene in the other four genomes, with rps19 pseudogene created at the IRA/LSC border. In *S. dentata*, a short rps19 pseudogene of 40 bp is created. The same pseudogene is 30 bp in *S. indicum*, 43 bp in *S. miltiorrhiza* and 37 bp in *B. hygrometrica*, respectively. The border between IRb and SSC extends into the ycf1 genes, with ycf1 pseudogenes created in all of the six species. The length of ycf1 pseudogene is 910 bp in *S. dentata*, 1,012 bp in *S. indicum*, 1,091 bp in *H. palmeri*, 983 bp in *A. paniculata*, 1,056 bp in *S. miltiorrhiza* and 816 bp in *B. hygrometrica*, respectively. Overlaps are detected between the ycf1 pseudogene and ndhF gene in *H. palmeri*, *A. paniculata*, *S. miltiorrhiza* and *B. hygrometrica*, with lengths of 25 bp, 40 bp, 32 bp and 118 bp, respectively. The trnH-GUG genes are all located in the LSC region, with 4–57 bp apart from the LSC/IRa boundary.

doi:10.1371/journal.pone.0158488.t002
doi:10.1371/journal.pone.0158488.t003
Repeat and SSR analysis

Repeat sequences in the *S. dentata* chloroplast genome were analyzed by REPuter and the results showed that 21 forward repeats and 19 palindrome repeats were at least 30 bp long per repeat unit with a sequence identity greater than 90% (Table 4). The complement repeats and reverse repeats had not been detected. Of all the repeats found, 33 repeats (82.5%) are 30 to 39 bp long, 7 repeats (17.5%) are 40 to 49 bp long, and the longest repeat is 44 bp. We present a comparative analysis of repeats between *S. dentata* and *S. takesimensis*, the only one complete chloroplast genome available in Scrophulariaceae [38] (S3 Table, Fig 5A and 5B). Most (92.5%)
of the repeats in *S. dentata* are conserved and could be found in *S. takesimensis*, and there are another 3 complement repeats and 2 reverse repeats found in *S. takesimensis*.

In general, repeats are mostly distributed in noncoding regions [39, 40]. However, most of the repeats (62.5%) in the *S. dentata* chloroplast genome are located in coding regions (CDS),
Table 4. Repeat sequences and their distribution within *Scrophularia dentata* chloroplast genome.

No.	Size(bp)	Type	Repeat 1 start (location)	Repeat 2 start (location)	Region
1	30	F	9597(trnG-UCCG*-trnR-UCU)	36418(trnG-GCC*-tmfM-CAU)	LSC
2	30	F	38641(panB)	40865(panA)	LSC
3	30	F	43669(ycf3 intron1)	119061(ndhA intron)	LSC; SSC
4	30	F	88876(ycf2)	88918(ycf2)	IRb
5	30	F	91289(ycf2)	91343(ycf2)	IRb
6	30	F	91318(ycf2)	91336(ycf2)	IRb
7	30	F	145238(ycf2)	145292(ycf2)	IRa
8	30	F	145258(ycf2)	145294(ycf2)	IRa
9	30	F	147663(ycf2)	147705(ycf2)	IRa
10	30	F	43669(ycf3 intron1)	98305(ucp12-trnV-GAC)	LSC; IRb
11	31	F	12909(psbl-trnS-GCU*)	69566(rpl20-rps12)	LSC
12	32	F	8053(psbl-trnS-GCU*)	35525(psblC-trnS-UGA*)	LSC
13	34	F	91308(ycf2)	91326(ycf2)	IRb
14	34	F	145251(ycf2)	145269(ycf2)	IRa
15	36	F	91288(ycf2)	91306(ycf2)	IRb
16	36	F	145269(ycf2)	145287(ycf2)	IRa
17	39	F	43657(ycf3 intron1)	98293(rps12-trnV-GAC)	LSC; IRb
18	39	F	43657(ycf3 intron1)	119049(ndhA intron)	LSC; SSC
19	40	F	91290(ycf2)	91326(ycf2)	IRb
20	40	F	145245(ycf2)	145281(ycf2)	IRa
21	41	F	98291(trnR-UCU)	119047(ndhA intron)	IRb; SSC
22	30	P	8055(psbl-trnS-GCU*)	45358(trnS-GGA)	LSC
23	30	P	43669(ycf3 intron1)	138276(trnV-GAC-rps12)	LSC; IRa
24	30	P	75205(petB intron)	75205(petB intron)	LSC
25	30	P	35527(psblC-trnS-UGA*)	45358(trnS-GGA)	LSC
26	30	P	88876(ycf2)	147663(ycf2)	IRb; IRa
27	30	P	88918(ycf2)	147705(ycf2)	IRb; IRa
28	30	P	91289(ycf2)	145238(ycf2)	IRb; IRa
29	30	P	91318(ycf2)	145245(ycf2)	IRb; IRa
30	30	P	91336(ycf2)	145263(ycf2)	IRb; IRa
31	30	P	91343(ycf2)	145292(ycf2)	IRb; IRa
32	34	P	91308(ycf2)	145251(ycf2)	IRb; IRa
33	34	P	91326(ycf2)	145269(ycf2)	IRb; IRa
34	36	P	91288(ycf2)	145269(ycf2)	IRb; IRa
35	36	P	91306(ycf2)	145287(ycf2)	IRb; IRa
36	39	P	43657(ycf3 intron1)	138279(trnV-GAC-rps12)	LSC; IRa
37	40	P	91290(ycf2)	145245(ycf2)	IRb; IRa
38	40	P	91326(ycf2)	145281(ycf2)	IRb; IRa
39	41	P	119047(ndhA intron)	138279(trnV-GAC-rps12)	SSC; IRa
40	44	P	74375(psbT-psbN)	74375(psbT-psbN)	LSC

* part in the gene.

Repeat sequences conserved in the *S. takesimensis* chloroplast genome are highlighted in bold.

F = forward, P = palindrome, IGS = intergenic spacer.

doi:10.1371/journal.pone.0158488.t004

mainly in *ycf2*; and it is similar to that of *S. takesimensis* (Fig 5B). Meanwhile, 30% repeats are located in intergenic spacers (IGS) and introns, and 7.5% repeats in parts of the IGS and CDS.
Also, simple sequence repeats (SSRs) exert significant influence on genome rearrangement and recombination [41]. A total of 44 SSRs were detected in the *S. dentata* chloroplast genome, accounting for 500 bp of the total sequence (ca.0.33%), and there were 33, 7, 1 and 3 mono-, di-, tri-, and tetra- nucleotide repeats, respectively (Table 5). No penta- or hexa- nucleotide repeats were found. Most of the SSRs are mononucleotide repeats. 43 SSRs (97.7%) are composed of A and T nucleotides, whereas only one is composed of “GTCT” repeat. The high content of AT in SSRs contributes to the AT richness of the chloroplast genome [42, 43]. Among the SSRs, 33 are located in IGS and introns, 10 are found in coding genes, including *ycf1*, *rpoC2*, *atpB*, *rpoA*, *atpA* and *ndhD*, and 1 is located in parts of the IGS and CDS. Compared with *S. takesimensis*, 12 SSRs were identity, 30 exhibited length polymorphisms and 2 had not been detected (S4 Table, Fig 5C and 5D). These repeat sequences may be useful in developing lineage-specific markers, which could be widely used in genetic diversity and evolutionary studies of *Scrophularia*.

Conclusions

In this paper, we reported the complete sequence of *S. dentata* cp genome, as the first whole cp genome in the Sect. Tomiophyllum of the genus *Scrophularia*. This cp genome sequence was compared to other five genomes from the Lamiales species (i.e., *B. hygrometrica*, *H. palmeri*, *S. miltiorrhiza*, *A. paniculata* and *S. indicum*). No significant structural changes were detected among the chloroplast genomes. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes were extracted and analysed. The most
Unit	Length	No.	SSR start	SSR-containing region	Region
A	16	1	44297	ycf3 intron	LSC
	13	1	12158	atpF intron	LSC
	12	2	8024	IGS (psbI-trnS-GCU)	LSC
			16175	IGS (rps2-rpoC2)	LSC
	11	1	75204	petB intron	LSC
	10	8	22732	rpoC1 intron	LSC
			44557	IGS (ycf3-trnS-GGA)	LSC
			59913	IGS (accD-psal)	LSC
			63314	IGS (petA-psbB)	LSC
			111914	IGS (ndhF-rps32)	SSC
			112458	IGS (rps32-trnL-UAG)	SSC
			137924	IGS (tmV-GAC-rps12)	IRa
			152482	IGS (rps2-trnV)	IRa
T	15	1	12921	IGS (atpF-atpH)	LSC
	14	1	60099	IGS (psaI-ycf4)	LSC
	13	1	69580	IGS (rpl20-rps12)	LSC
	12	1	124137	ycf1	SSC
	11	8	8632	IGS (tmS-GCU-trnG-UCC)	LSC
			14323	IGS (atpH-atpI)	LSC
			18378	rpoC2	LSC
			57534	IGS (rbcl-accD)	LSC
			80092	IGS (infA-rps8)	LSC
			80606	IGS (rps8-rpl14)	LSC
			112115	IGS (ndhF-rps32)	SSC
			124952	ycf1	SSC
	10	8	52007	tmV-UAC intron	LSC
			54874	atpB	LSC
			54959	IGS (atpB-rbcl)	LSC
			78182	rpoA	LSC
			84121	IGS (rps19-rps2)	IRb
			98679	IGS (rps12-trnV-GAC)	IRb
			124603	ycf1	SSC
	12	1	124880	ycf1	SSC
	10	2	19751	rpoC2	LSC
			13822	IGS (atpH-atpI)	LSC
	18	1	46524	IGS (rps4-trnT-UGU)	LSC
	12	3	8212	IGS (trnS-GCU-trnG-UCU)	LSC
			31456	IGS (tmE-UUC-trmT-GGU)	LSC
			42433	IGS (psaA-ycf3)	SSC
	12	1	54928	IGS (atpB*-rbcl)	LSC
	12	1	10993	atpA	LSC
	12	1	49645	IGS (ndhJ-ndhK)	LSC
	12	1	114611	ndhD	SSC

* part in the gene.

SSRs that are identical in the S. takesimensis chloroplast genome are highlighted in bold.

doi:10.1371/journal.pone.0158488.t005
divergent regions are localized in the intergenic spacers, including ccsA-ndhD, \textit{rps16-trnQ-UUG}, \textit{ndhJ-ndhK}, \textit{ndhE-ndhG}, \textit{ndhC-trnV-UAC}, \textit{trnH-GUG-psbA} and \textit{ndhG-ndhI}. For the coding regions, the most divergent regions are \textit{ycf1}, \textit{matK}, \textit{rpl22}, \textit{rpl32}, \textit{rps15} and \textit{ccsA}. These genes are all located in single copy regions. There were some differences in the genome size and IR expansion or contraction; and the divergent regions were analysed. Tandem repeats and SSRs within \textit{S. dentata} were compared with those of \textit{S. takesimensis}, which may provide markers for the analyses of infraspecific genetic differentiation within \textit{Scrophularia}. In addition, our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.

Supporting Information

S1 Table. List of all pairs of primers used for assembly validation. (DOC)

S2 Table. Percentages of variable sites across the six Lamiales chloroplast genomes. (XLS)

S3 Table. Repeat sequences within \textit{Scrophularia takesimensis} chloroplast genome. (XLS)

S4 Table. Simple sequence repeats within \textit{Scrophularia takesimensis} chloroplast genome. (XLS)

Author Contributions

Conceived and designed the experiments: ZZ. Performed the experiments: LN. Analyzed the data: LN. Contributed reagents/materials/analysis tools: ZZ GD MM. Wrote the paper: LN ZZ.

References

1. Zhong BQ, Tang YC. \textit{Scrophularia} L. In: Zhong BQ, Yang HB, editors. Flora Reipublicae Popularis Sinicae, Vol 67(2). Beijing, China: Science Press. 1979; pp. 46–51.
2. Wang WY, Lu SL, Liu SW, Yang YC, Wu ZL, He TN, et al. Ye-Xin-Ba. In: Yang YC, editor. Tibetan Medicines. Xining, China: Qinghai People's Publishing House. 1991; pp. 333–334.
3. Zhao ZL, Zhao RN. Original name of traditional Chinese medicinal herb Chuan Bu. Chinese Pharmaceutical Journal. 1992; 27(5): 269–270.
4. Zhao ZL, Gaawe D, Wang ZT. Identification of medicinal plants used as Tibetan Traditional Medicine Jie-Ji. Journal of Ethnopharmacology. 2010; 132(1): 122–126. doi:10.1016/j.jep.2010.07.051 PMID: 20692329
5. Zhang L, Zhu T, Qian F, Xu J, Dorje G, Zhao Z, et al. Iridoid glycosides isolated from \textit{Scrophularia dentata} Royle ex Benth. and their anti-inflammatory activity. Fitoterapia. 2014; 98: 84–90. doi:10.1016/j.fitote.2014.07.005 PMID: 25016952
6. Zhang L, Yang Z, Jia Q, Dorje G, Zhao Z, Guo F, et al. Two new phenylpropanoid glycosides with interesterification from \textit{Scrophularia dentata} Royle ex Benth. Journal of Molecular Structure. 2013; 1049(30): 299–302.
7. Zhang L, Zhang D, Jia Q, Wang R, Dorje G, Zhao Z, et al. 19(4→3)-abeo-abietane diterpenoids from \textit{Scrophularia dentata} Royle ex Benth. Fitoterapia. 2015; 106: 72–77. doi:10.1016/j.fitote.2015.08.005 PMID: 26291646
8. Liu Y, Huo N, Dong L, Wang Y, Zhang S, Young HA., et al. Complete chloroplast genome sequences of Mongolia medicine \textit{Artemisia frigida} and phylogenetic relationships with other plants. PLoS ONE. 2013; 8(2): e57533. doi:10.1371/journal.pone.0057533 PMID: 23460871
9. Olmstead RG, Palmer JD. Chloroplast DNA systematic: a review of methods and data analysis. American Journal of Botany. 1994; 81(9): 1205–1224.
10. Wicke S, Schneeweiss GM, Depamphilis CW, Kai FM, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology. 2011; 76(3–5): 273–97. doi: 10.1007/s11103-011-9762-4 PMID: 21424877

11. Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS ONE. 2011; 6(5): e19254. doi: 10.1371/journal.pone.0019254 PMID: 21637336

12. Rivas JDL, Lozano JJ, Ortiz AR. Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Research. 2002; 12(4): 567–583. PMID: 11932241

13. Williams AV, Boykin LM, Howell KA, Nevill PG, Small I. The Complete sequence of the plastid genome of Scrophularia dentata (Scrophulariaceae). Frontiers in Plant Science. 2015; 6: 857. doi: 10.3389/fpls.2015.00857 PMID: 26212983

14. Liow MC, Lee Y, Lee M, Lee S, Lee J, et al. Complete plastid genome sequence of Metasequoia glyptostroboides Hu et Cheng (Gymnosperms). Biogeosciences. 2015; 12: 97–107. doi: 10.5194/bg-12-97-2015

15. Oo CL, Oo CS, Htet AY, Chao SY, Lin CY, et al. Complete plastid genome sequence of Podocarpus lambertii (Podocarpaceae). Biologia. 2015; 70(4): 701–7. doi: 10.3897/biologia.v70i4.16887

16. Williams AV, Boykin LM, Howell KA, Nevill PG, Small I. The Complete sequence of the plastid genome of Scrophularia dentata (Scrophulariaceae). Frontiers in Plant Science. 2015; 6: 857. doi: 10.3389/fpls.2015.00857 PMID: 26212983

17. Zhang Y, Li L, Yan TL, Liu Q. Complete chloroplast genome sequences of Praxelis (Scrophulariaceae), an important invasive species. PLoS ONE. 2014; 9(3): e90618. doi:10.1371/journal.pone.0090618 PMID: 26212983

18. Ku C, Hu JM, Kuo CH. Complete plastid genome sequence of Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS ONE. 2013; 8(4): e62548. doi: 10.1371/journal.pone.0062548 PMID: 23638113

19. Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative chloroplast genomes of Camellia species. PLoS ONE. 2013; 8(8): e73053. doi: 10.1371/journal.pone.0073053 PMID: 24099730

20. Oxelman B, Bremer B. Further disintegration of Scrophulariaceae. Taxon. 2005; 54(2): 411–425.

21. Hong DY. The distribution of Scrophulariaceae in the Holarctic with special reference to the floristic relationships between eastern Asia and eastern North America. Annals of the Missouri Botanical Garden. 1983; 70(4): 701–712.

22. Li RW, Hu ZG, Lin XH, Li Q, Gao HH, Luo GA, et al. High-throughput pyrosequencing of the complete plastid genome of Magnolia officinalis and its application in species identification. Acta Pharmaceutica Sinica. 2012; 47(1): 124–130. PMID: 22493817

23. Gogniaashvili M, Naskidashvili P, Bedoshvili D, Kotorashvili A, Kotaria N, Beridze T. Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.). Genetic Resources and Crop Evolution. 2015; 62: 1269–1277.

24. Ni L, Zhao Z, Xu H, Chen S, Dorje G. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene. 2015; 577(2): 281–288. doi: 10.1016/j.gene.2015.12.005 PMID: 26680100

25. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20(17): 3252–3255. PMID: 15180927

26. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research. 2005; 33(suppl 2): W686–W689.

27. Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008; 24(6): 861–862. doi: 10.1093/bioinformatics/btm598 PMID: 18227121

28. Faoro H, Vieira Ldo N, Cardoso RL, de Souza EM, et al. The complete chloroplast genome of Scrophularia dentata (Scrophulariaceae). Frontiers in Plant Science. 2015; 6(5): e427. PMID: 26366664

29. Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, et al. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Frontiers in Plant Science. 2015; 6: 447. doi: 10.3389/fpls.2015.00447 PMID: 26136762

30. Vieira Ldo N, Faoro H, Rogalski M, Fraga HP, Cardoso RL, de Souza EM, et al. The complete plastid genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS ONE. 2014; 9(3): e90618. doi: 10.1371/journal.pone.0090618 PMID: 24594889

31. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics. 2003; 106(5): 862–868. doi: 10.1007/s00122-003-1130-5 PMID: 12792232

32. Zhang Y, Li L, Yan TL, Liu Q. Complete plastid genome sequences of Praxelis (Eupatorium catarrhale Veldkamp), an important invasive species. Gene. 2014; 549(1): 58–69. doi: 10.1016/j.gene.2014.07.041 PMID: 25042453

33. Ku C, Hu JM, Kuo CH. Complete plastid genome sequence of the basal asterid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS ONE. 2013; 8(4): e62548. doi: 10.1371/journal.pone.0062548 PMID: 23938113

34. Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS ONE. 2015; 10(3): e0120589. doi: 10.1371/journal.pone.0120589 PMID: 25774672

35. Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative chloroplast genomes of Camellia species. PLoS ONE. 2013; 8(8): e73053. doi: 10.1371/journal.pone.0073053 PMID: 24099730
32. Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S, et al. The Complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organelar genomes. PloS ONE. 2012; 7(1): e30531. doi: 10.1371/journal.pone.0030531 PMID: 22291979

33. Zedane L, Hong-Wa C, Murienne J, Jeziorski C, Baldwin BG, Besnard G. Museomics illuminate the history of an extinct, paleoendemic plant lineage (Hesperelaea, Oleaceae) known from an 1875 collection from Guadalupe Island, Mexico. Biological Journal of the Linnean Society. 2015; 117: 44–57.

34. Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, et al. The Complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS ONE. 2013; 8(2): e57607. doi: 10.1371/journal.pone.0057607 PMID: 23460883

35. Dong-Keun Y, Ki-Joong K. Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PloS ONE. 2012; 7(5): e35872. doi: 10.1371/journal.pone.0035872 PMID: 22606240

36. Choi KS, Park SJ. The complete chloroplast genome sequence of Aster spathulifolius (Asteraceae); genomic features and relationship with Asteraceae. Gene. 2015; 572(2): 214–221. doi: 10.1016/j.gene.2015.07.020 PMID: 26164759

37. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, et al. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution. 2006; 23(11): 2175–2190. PMID: 16916942

38. Choi KS, Park S. The complete chloroplast genome sequence of the Korean endemic plant Scrophularia takesimensis. Mitochondrial DNA. 2014; 1–2.

39. Yao X, Tang P, Li Z, Li D, Liu Y, Huang H. The First complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. PLoS ONE. 2015; 10(6): e0129347. doi: 10.1371/journal.pone.0129347 PMID: 26046631

40. Nazareno AG, Carlsen M, Lohmann LG. Complete chloroplast genome of Tanaecium tetragonolobum: the first Bignoniaceae plastome. PLoS ONE. 2015; 10(6): e0129930. doi: 10.1371/journal.pone.0129930 PMID: 26103589

41. Smith TC. Chloroplast evolution: secondary symbiogenesis and multiple losses. Current Biology. 2002; 12: R62–R64. PMID: 11818081

42. Kong W, Yang J. The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Current Genetics. 2015; 1–8.

43. Yang Y, Dang Y, Li Q, Lu J, Li X, Wang Y. Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS ONE. 2014; 9(11): e110656. doi: 10.1371/journal.pone.0110656 PMID: 25365514