Due to the presence of strong correlations, theoretical or experimental investigations of quantum many-body systems belong to the most challenging tasks in modern physics. Stimulated by tensor networks, we propose a scheme of constructing the few-body models that can be easily accessed by theoretical or experimental means, to accurately capture the ground-state properties of infinite many-body systems in higher dimensions. The general idea is to embed a small bulk of the infinite model in an “entanglement bath” so that the many-body effects can be faithfully mimicked. The approach we propose is efficient, simple, flexible, sign-problem-free, and it directly accesses the thermodynamic limit. The numerical results of the spin models on honeycomb and simple cu-
bic lattices show that the ground-state properties including quantum phase transitions and the critical behaviors are accurately captured by only $O(10)$ physical and bath sites. Moreover, since the few-body Hamiltonian only contains local interactions among a handful of sites, our work provides new ways of studying the many-body phenomena in the infinite strongly-correlated systems by mimicking them in the few-body experiments using cold atoms/ions, or developing novel quantum devices by utilizing the many-body features.

Introduction

Quantum many-body systems in one, two and three dimensions. Investigating the ground states and low-lying states of strongly correlated quantum many-body systems is one of the most important challenges in modern physics. It lies in the centre of interest of condensed matter physics [1, 2], atomic, molecular and optic physics [3], and high energy physics [4, 5]. Fundamentally, these systems may exhibit exotic states and phenomena, such as spin liquids [6] and topological phases [7, 8]. On the other hand, these systems have important applications in contemporary electronics, superconductivity [9], spintronics [10] and, more recently, quantum information [11]. The future quantum technologies, i.e. quantum computers, quantum simulators and annealers, quantum metrology and sensing rely essentially exclusively on the use of strongly-correlated quantum lattice systems. However, the high complexity rising from strong correlations makes the exact solutions/diagonalizations impossible or inefficient in most cases. Numerical methods, benefiting from fast development of the computer technology, become nowadays the most frequently used tools capable of reliably studying such systems. Developments of new more efficient methods, with lower cost and higher accuracy, are therefore highly demanded.

Technically, one-dimensional (1D) models are the simplest, although quantum fluctuations
in 1D are particularly large [12]. The 1D systems play important roles in electronics and spintronics, as they provide specific possibilities in controlling transport and reveal exotic excitations such as Majorana fermions [13, 14]. They can be naturally viewed as the edges of two-dimensional (2D) systems, and may correspond to edge states of these 2D systems. [2, 7]. 2D systems are obviously more demanding numerically and experimentally, whereas from a physical point of view they can be taken as playgrounds for novel concepts and exotic states such as anyonic excitations [2, 15], frustrated antiferromagnetism [16, 17], spin liquids [18], topological order and topological phase transitions, and graphene-like systems [19], etc.

In principle, the three-dimensional (3D) models are even more interesting, as they are much closer to reality of our daily experience. Because of their extreme complexity, the adoption of various approximations to treat them is totally unavoidable. The three dimension is closer to the upper critical dimension, and one may expect that the mean-field theories would work well for them. A paradigmatic example is the Bose-Hubbard model, which can be nicely explored by bosonic dynamic mean-field theory (DMFT) [20]. Such few, but well-controlled systems can serve as validation, calibration and benchmark for various numerical and analytical methods. Still, there are also 3D models that are extremely demanding to be understood, such as, among others, the spin ice [21] with pyrochlore lattice [22], that is a highly frustrated magnet; the Fermi–Hubbard model, which is usually invoked to describe high temperature superconductivity of cuprates that consist of strongly correlated 2D planes weakly coupled in the transverse direction ([9], see also [23] for a quantum simulation with ultracold atoms). The (3+1)D lattice gauge theories at high densities and temperature are also beyond the possibilities of the existing codes and machines. Generally, different approximate analytical methods might generate converse results, leading to unnecessary controversies in many cases. It turns out that finding reliable and efficient numerical methods to solve 3D quantum many-body problems becomes indeed imperative.
Tensor networks — state-of-the-art. The density matrix renormalization group (DMRG) [24] is widely recognized as a major breakthrough in the calculations of the ground states in 1D systems. Originally proposed as a mere numerical tool, the reformulation of the DMRG as a variational algorithm in terms of matrix product states (MPS) [25] leads to the proposal of more general formalism, based on tensor networks (TN’s) [26, 27, 28]. TNs provide a very general ansatz for the wave functions: the quantities of interest may be expressed as results of the contraction of a network of local tensors. It has rapidly evolved into a promising powerful tool to study large or even infinite size systems in two dimensions. In fact, TNs overcome most of the limitations of the standard numerical algorithms: for instance, in contrast to quantum Monte Carlo (QMC), TNs do not suffer from the notorious “negative-sign” problem [29] and allow for an accurate access to frustrated spin systems and fermionic models away from half-filling.

To what extent the TN is feasible depends on the amount of entanglement of the states to be simulated. The efficiency (computational memory and time) of the TN approaches is also determined by the capability of the current computers. In the standard formulations, TN works for low-entangled states such as the ground states of local and gapped Hamiltonians. For these states, an area law for the entanglement entropy holds, i.e. the entanglement entropy of a subsystem (consisting of a large, but finite block) scales with the block’s boundary [30]. This fact explains the efficiency of the MPS-based algorithms in 1D. For the same reason, the MPS-based algorithms (e.g. DMRG) work well for small 2D systems, but are strongly limited when the size grows [31, 32, 28]. By acknowledging this, many different competing approaches have been developed. Among others, a purely 2D ground-state TN ansatz, termed projected entangled pair state (PEPS), was proposed as a natural extension of MPS. PEPS fulfils the 2D area law of entanglement entropy [28, 33, 34, 26, 27, 35], while the multiscale entanglement renormalization ansatz (MERA) [36] bears particular advantages for studying critical models.

Within the existing TN algorithms, a lot of works were done on 2D quantum as well as
3D classical models, where the simulations consist in the contractions of 3D TN’s \([37, 36, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]\). This well-known quantum-classical equivalence \([52]\) becomes very explicit in the TN terminology, and is utilized frequently in the TN approaches for ground-state \([37, 33, 34, 38]\) and thermodynamic \([53, 54, 55, 56, 57]\) studies on discrete and even continuous \([58]\) systems. However, for 3D ground-state simulations, we are essentially facing the contractions of four-dimensional TN’s \([59, 60]\), which are hardly treatable even with small bond dimensions. Therefore, developing efficient 3D quantum algorithms are strongly desired, in particular for infinite quantum systems.

“Bath-stimulated” methods. For 3D quantum models, many interesting issues remain to be explored or even unsolved to a large extent \([6, 61, 62, 63, 64]\). They have been the subject of intensive studies in recent years and many numerical methods were developed to handle them. Several approaches were proposed beyond the standard mean-field and renormalization group methods, such as the linked cluster expansions \([65, 66, 67]\), and the functional renormalization group method \([68, 69]\). On the other hand, the numerical simulations are extremely challenging, and the finite-size algorithms, including exact diagonalization (ED), QMC and DMRG, suffer severe finite-size effects, which are quite consuming for large systems and can access infinite systems only by utilizing finite-size scaling.

To treat the correlations in many body systems, one usually starts by evoking the ideas of “mean field”, “bath” or boundary conditions. Analytical methods such as the Hartree-Fock mean-field theory and the saddle point approximation in path integral are commonly used. In fact, for lattice models the “mean field” idea goes back to the single-site Weiss method, applied first for classical magnetic models \([70]\). Contemporary mean field methods for lattice models include Guztwiller ansatz for bosons and/or fermions, or pairing approaches (Bogoliubov-like for bosons, or Bardeen-Cooper-Schrieffer-like for fermions) - for an overview of these and other methods see Ref. \([3]\) and references therein. In the context of the present work it is important to
mention the “cluster mean field theory” (CMFT), where the mean field à la Weiss is combined with exact diagonalization on clusters (for recent developments see \cite{71, 72} and references therein). It is also worth mentioning “entanglement mean field theory (EMFT) \cite{73, 74}, which for spin models is formulated on few spin clusters, demanding self-consistency of entanglement properties. Both CMFT and EMFT are close to the standard MFT they can give quite accurate description of standard (Landau-Ginsburg-like) ordered and disordered phases, but typically only far from criticality.

For thermal and open systems, one popular way is to introduce a “heat bath” to mimic the interactions between the system and the environment \cite{75}. Regarding numerical approaches, the density functional theory (DFT), also known as \textit{ab-initio} first-principle calculations \cite{76}, was built by extending the Thomas-Fermi approximation of homogeneous electron gas to the inhomogeneous electron system \cite{77}. Its huge success in condensed matter physics, quantum chemistry, and materials science largely relies on the simplicity and unification, “\textit{using a popular code, a standard basis, and a standard functional approximation}” \cite{76}.

In order to handle strong correlations, several schemes were developed in the spirit of DFT. The examples include the dynamic mean-field theory \cite{78, 79, 80} that maps a lattice model (such as the Hubbard model) onto a quantum impurity model subject to self-consistent conditions, and the density matrix embedding theory (DMET) \cite{81} that was proposed aiming at a better consideration of the entanglement, thanks to the accompanying explosive advances in both quantum information science \cite{82} and condensed matter physics \cite{83}. However, it is difficult to use these algorithms to study long-range ordered states or phase transitions. To probe the disordered ground-states (e.g. the spin liquids in the infinite frustrated systems), it was proposed to signal the disordered nature by simulating a finite system with random boundary conditions \cite{84}.

\textbf{Our proposal: mimicking many-body systems by few-body ones.} In general, as illus-
trated in Fig. 1, the central idea of our work is to optimally find the few-body Hamiltonian to mimic the infinite model, without any prior knowledge of the ground state. The few-body model contains the physical sites in a finite cluster and the “bath” sites around it. The few-body Hamiltonian consists of two parts: the interactions among the physical sites (blue balls) within the cluster, and those [Eq. (14)] between the boundary physical sites and the bath sites (red balls). The physical-bath interactions are represented by some local Hamiltonians, which reproduce the quantum entanglement between the cluster and the bath, in such a way that the many-body effects from the infinite environment are well captured in the few-body simulations. Then the ground-state information of the infinite system is encoded in the reduced density matrix of the few-body ground state after tracing the bath degrees of freedom.

The theoretical scheme we propose is a higher-dimensional generalization of the ab-initio optimization principle (AOP) formulated with TN [85], and originally developed for infinite 1D systems with translational invariance. The idea is to find the simplest eigenvalue equations that encodes the infinite TN contraction problem. Besides its simplicity in the implementation, the 1D AOP has proved to have several computational advantages over other established algorithms, such as iTEBD and iDMRG [24]. For the purpose of the present work, the main advantage of the AOP is its flexibility and implications in high dimensions: without any substantial conceptual changes, the AOP can be readily extended to 2D and even 3D systems with high efficiency. Furthermore, the dynamic correlation length and the first excitation gap can be straightforwardly extracted.

Our scheme consists of two stages: (1) compute physical-bath Hamiltonian and (2) solve the few-body Hamiltonian. In the first stage, by choosing the dimension of the bath site and a supercell that obeys the translational invariance, we start from the original Hamiltonian of the system and construct a set of self-consistent eigenvalue equations. Their solution gives the Hamiltonian \hat{H}^p [Eq. (14)] the describes the interactions between a physical and a bath
sites. Such equations in fact encode an optimal zero-loop TN approximation of the state. This approximation directly enters the thermodynamic limit with a Bethe TN state ansatz \[86, 87\], and already gives us the first glance of the ground state with good accuracy especially for the gapped states \[38, 55, 56, 60, 86, 87\].

The aim of the second stage is to construct the few-body Hamiltonian \(\hat{H}_{FB}\), and solve its ground state \(|\tilde{\Phi}\rangle\). \(\hat{H}_{FB}\) is formed by all the physical interactions inside a chosen cluster and several physical-bath interactions given by \(\hat{H}_\partial\). The choice of the cluster is very flexible. The ground-state properties of the infinite system is then encoded in the ground state \(|\tilde{\Phi}\rangle\) of \(\hat{H}_{FB}\). In other words, quantities such as energy, magnetization and entanglement of the infinite ground state are obtained from the density matrix of \(|\tilde{\Phi}\rangle\) by tracing all the bath degrees of freedom [Eq. (16)].

Our numerical results show, for instance, that the Heisenberg model on infinite honeycomb lattice is accurately simulated by a \(\hat{H}_{FB}\) that only contains \(N_p = 18\) physical sites surrounded by \(N_b = 12\) bath sites. For the 3D Heisenberg models on infinite simple cubic lattice, the ground-state properties including the critical behaviors near the quantum phase transition point are faithfully captured with only \(N_p = 8\) physical and \(N_b = 24\) bath sites. The discrepancy (such as energy) compared with the state-of-the-art TN algorithm is around \(\mathcal{O}(10^{-3})\).

The algorithm built from our scheme possesses several advantages (see the discussion in the supplementary material). The algorithm can directly reaches the thermodynamic limit by means of the physical-bath interactions on the boundary, thus has no conventional finite-size effects compared with the finite algorithms such as ED and DMRG. The strongly-correlated effects of the infinite models are accurately considered, and the many-body features, e.g., entanglement and criticality, can be efficiently captured, thus our scheme goes beyond the mean-field-based methods such as DFT \[76\] and DMFT \[78, 79, 80\]. The accuracy is enhanced by fully considering all interactions in the cluster, thus outperforms the Bethe TN-based algorithms.
In higher dimensions, the computational cost of our scheme is much lower than, e.g., the TN renormalization group algorithms \cite{39,36,33,44,45,46,47}. It has no sign problem \cite{29} thus can be used to simulate frustrated and fermionic systems.

The construction of \hat{H}_F^B makes it possible to investigate the many-body effects in experiments by designing the few-body models — quantum simulators described by the predicted Hamiltonians. The many-body behaviors are expected to be observed in the bulk of the few-body model. The feasibility of realizing \hat{H}_F^B in cold atom experiments is supported by several facts observed in our numerical simulations: the few-body Hamiltonian has the same interaction length as the original Hamiltonian; with a proper tolerance of error, say $O(10^{-2})$, the size of the few-body model can be very small. Especially for spin-1/2 models on simple cubic lattice, we show that it is sufficient to use only the spin-1/2’s as the bath sites. The few-body Hamiltonian then is just a small spin-1/2 system that includes some special interactions (given by \hat{H}^∂) on the boundary.

Numerical results

Heisenberg model on honeycomb lattice. We simulate the ground-state properties of the Heisenberg model on honeycomb lattice, which is on a gapless point and considered to be challenging to simulate. The Hamiltonian is the summation of the two-body interactions as

$$\hat{H} = \sum_{(i,j)} \hat{H}(i,j).$$

For Heisenberg model, we have $\hat{H}(i,j) = J_x\hat{S}^x(i)\hat{S}^x(j) + J_y\hat{S}^y(i)\hat{S}^y(j) + J_z\hat{S}^z(i)\hat{S}^z(j)$, with $\hat{S}^\alpha(i)$ ($\alpha = x, y, z$) the α component of the spin-1/2 operators on the i-th site and J_α the coupling constants.

In stage one, the bath is calculated by choosing two neighboring sites as the supercell. It means \hat{H}_F^B that appears in this stage contains $N_p = 2$ physical and $N_b = 4$ bath sites. For
stage two, we choose two different clusters to construct \hat{H}^{FB}, which contains $N_p = 8$ physical sites surrounded by $N_b = 8$ bath sites and $N_p = 18$ physical sites with $N_b = 12$ bath sites, respectively (Fig. 1). We utilize finite DMRG [24] to solve the ground state of \hat{H}^{FB}.

The ground-state energy E with different dimensions of the bath site $D = 4$ and 8 is shown in Fig. 2. One can see that E converges rapidly by increasing the dimension cut-off of DMRG χ to $E = -0.543$ and -0.544 for the two clusters, respectively. With larger D, the bath will be able to carry more entanglement and lead to a better accuracy. The accuracy will also be improved by increasing χ since the result will approach to the exact ground state of \hat{H}^{FB} with no DMRG error. When χ is sufficiently large, the errors inside the cluster due to the tree approximation, Trotter discretization and truncations will vanish.

For a comparison, the ground-state energy by ED on such a cluster of 18 spins (Fig. 1) with periodic boundary condition is $E = -0.561$, which suffers severe finite-size effects. The result solely by bath calculation (tree approximation) is $E = -0.540$, and by second renormalization group (SRG) [41] of TN is $E = -0.545$. SRG belongs to the state-of-the-art TN approaches for simulating 2D ground states with a high accuracy. The difference compared with our results are only $O(10^{-3})$.

To further investigate the effects of the finiteness of the clusters, we calculate the nearest-neighbor bond energies $e = \langle \hat{S}_i \hat{S}_j \rangle$ and magnetizations with the cluster of $N_p = 18$ and $N_b = 12$ (Fig. 3). The changes of both quantities in different positions of the cluster is mostly $O(10^{-2})$. By comparing with the tree results in the bath calculation and SRG, we find that the bond energies and magnetization on the boundary of the cluster are very close to the tree results, and in the middle where the “boundary effects” as well as the difference between our results and the SRG are minimal.

Our simulations show that without increasing the computational cost much, the finite-size effects are suppressed by introducing the entanglement bath, and at the same time the error from
the tree approximation are reduced by choosing larger clusters.

Spin models on simple cubic lattice. We investigate the ground-state properties and quantum phase transitions in the spin models on simple cubic lattice. For bath calculations, the supercell is chosen to be two neighboring sites, giving a \hat{H}^{FB} with $N_p = 2$ physical and $N_b = 10$ bath sites. In stage two, we choose a cubic with $N_p = 8$ physical and $N_b = 24$ bath sites to construct \hat{H}^{FB} (inset of Fig. 4).

The ground-state energy E, staggered magnetization M_s and dynamic correlation length ξ of the antiferromagnetic Heisenberg model on simple cubic lattice are shown in Fig. 4. The energy converges to $E = -0.904$, while that from QMC [88, 89, 90] on a $(10 \times 10 \times 10)$ lattice with periodic boundary condition is $E = -0.902$. Note the result from the tree approximation in the first stage is $E = -0.892$, which is already quite accurate. For M_s and ξ, the finite-size effects are much stronger for our QMC calculations. The AOP simulations show that $M_u = 0$ (uniform magnetization), $M_s = 0.445$ and $\xi = 0.405$. Our results are consistent with the widely accepted consensus, that its ground state is an antiferromagnetic ordered (Néel) state with a short correlation length.

We investigate the quantum phase transition of the anti-ferromagnetic Ising model in a transverse field on simple cubic lattice (Fig. 5), where the Hamiltonian reads $\hat{H} = \sum_{\langle i,j \rangle} \hat{S}^x(i)\hat{S}^x(j) + h \sum_i \hat{S}^z(i)$. For a comparison, we try different dimension cut-offs with $D = 2$, $\chi = 10$, and $D = 3$, $\chi = 20$. The critical field is found to be around $h_c = 2.66$, consistent with the results from other algorithms (Table I).

Our results show that from the few-body Hamiltonian, the scaling behavior in the critical region can be faithfully captured and the critical exponents are consistent with the results obtained by other methods. By fitting the data of $D = 3$ and $\chi = 20$ near the critical point, we find

$$M_s \propto (h_c - h_x)^{\beta_s},$$ \hspace{1cm} (2)
Table 1: The values of the critical field h_c with the perturbation expansions (PE) \[91\], cluster quantum Monte Carlo (cQMC) \[92\], linked-cluster expansions (LCE) \[67\], mean field theory (MFT) \[93\] and our AOP.

	PE	cQMC	LCE	MFT	AOP
h_c	2.60	2.58	2.65	3	2.66

with $\beta^* = 0.48$, close to but slightly larger than the perturbation expansions result $\beta^* = 0.46$.

We also calculate the dynamic correlation length ξ, which shows a peak at the critical point and scales as

$$\xi \propto (h_c - h_x)^{-\sigma},$$

with $\sigma = 0.25$ near the critical point. The exponent of the (spatial) correlation length by the perturbation expansions is $\sigma = 0.5$ \[91\]. The discrepancy might be caused by the errors from both sides. Regarding the TN algorithms, the correlation length in the critical region will diverge with the scaling of the bath dimension D as well as the DMRG dimension cut-off χ (unlike M_s which converges to zero). Thus, it is difficult to directly extract the exponent of ξ with fixed dimensions. The good thing is that the algebraic behavior of ξ is clearly observed. What is open is how to get an accurate value of σ by the scaling factors versus not only h_x but also χ and D. See more discussions about the error of correlation functions with TN approaches in the supplementary material.

Method: higher-dimensional ab-initio optimization principle approach

The idea of AOP scheme \[85\] is, without any previous knowledge of the ground state, to transfer the infinite system to a finite one embedded in an entanglement bath. In the language of TN, the idea is to encode the contraction of an infinite TN in a simplest-possible local function that can
be exactly computed, with smallest-possible number of inputs. To present the approach in high dimensions, we take the 2D spin model with nearest-neighbor couplings on honeycomb lattice as an example. The implementation can be easily generalized to other models on 2D and 3D lattices.

Stage One: calculate the entanglement bath

The first stage is to calculate the entanglement bath represented by a set of tensors dubbed as *boundary tensors*. They are obtained by solving a set of self-consistent eigenvalue equations [see Eqs. (6)-(10) below]. These equations are parametrized by the Hamiltonian as well as by the boundary tensors themselves, thus they can be solved in an alternative way: starting from an arbitrary guess, we update one boundary tensor by fixing all others as the parameters of the equations, and iterate such a procedure for every tensor until the fixed point is reached.

Though our method is based on the TN representation of the imaginary-time evolution with Trotter-Suzuki decomposition [94] like several existing methods [37, 33, 34, 44, 45, 46], the idea here is to encode the TN in the eigenvalue equations [95, 85] instead of contracting the TN. On the other hand, the implementation in this stage is borrowed from the generalization of DMRG on an infinite tree [86, 87], which can be easily extended to 3D models with high efficiency. In the DMRG language, the (convergent) boundary tensors can be understood as the infinite environment of the tree branches.

To begin with, one chooses a supercell that obeys the translational invariance, e.g. two sites connected by a parallel bond (see the smallest shaded circle in Fig. 1), and construct the *cell tensor* that parametrizes the eigenvalue equations. The bulk interaction is simply the coupling between these two spins, i.e. \(\hat{H}^B(i, j) = \hat{H}(i, j) \). For the interactions between two neighboring supercells, we define the two-body operator \(\hat{F}^\partial(i, j) = I - \tau \hat{H}(i, j) \) and do the singular value
decomposition (Fig. 6) as

\[\hat{F}^0(i, j) = \sum_a \hat{F}^L(i)_a \otimes \hat{F}^R(j)_a. \] (4)

We dub \(a \) as the boundary index.

To obtain the TN of the imaginary-time evolution, we define the cell tensor that is the product of the (shifted) bulk Hamiltonian with \(\hat{F}^L_a \) and \(\hat{F}^R_a \) (Fig. 6) as

\[\hat{F}(i, j)_{a_1a_2a_3a_4} = \hat{F}^L(i)_{a_1} \hat{F}^L(i)_{a_2} \hat{F}^R(j)_{a_3} \hat{F}^R(j)_{a_4} \hat{H}(i, j), \] (5)

with \(\hat{H}(i, j) = I - \tau \hat{H}(i, j) \cdot \hat{F}(i, j) \) can be understood as a set of quantum operators defined in the Hilbert space of the supercell (spins \(i \) and \(j \) labeled by the boundary indexes \(a_1, a_2, a_3 \) and \(a_4 \). Similar to 1D AOP [85], \(\tau \) is in fact the Trotter step, and \(\hat{F}(i, j) \) gives the TN representation of \(I - \tau \hat{H} \) with an error \(\mathcal{O}(\tau^2) \).

Then, with the boundary tensors \(|V^{[2]}\rangle \) (guessed or previously obtained in the last iteration) and the cell tensor \(\hat{F}(i, j) \), we define five eigenvalue equations as

\[\hat{\mathcal{H}}(i, j)_{\mu_1'\mu_2'\mu_3'\mu_4'} = \sum_{a_1a_2a_3a_4} (V^{[1]}|_{a_1\mu_1a_2\mu_2a_3\mu_3}|V^{[2]}|_{a_2\mu_2a_3\mu_3a_4}|V^{[3]}|_{a_3\mu_3a_4\mu_4}|V^{[4]}|_{a_4\mu_4\mu_2\mu_3} \) \] (6)

\[M^{[1]}_{a_1a_2a_3a_4} = \sum_{a_2a_4a_3a_4} (V^{[2]}|_{a_2\mu_2a_3\mu_3}|\hat{A}^{[1]}(i, j)_{a_4\mu_4}\hat{F}(i, j)_{a_1a_2a_3a_4}|\hat{A}^{[1]}(i, j)_{a_1a_2a_3a_4}|V^{[4]}|_{a_4\mu_4\mu_2\mu_3} \) \] (7)

\[M^{[2]}_{a_2a_2a_4a_4a_4} = \sum_{a_1a_3a_3a_4} (V^{[1]}|_{a_1\mu_1a_3\mu_3}|\hat{A}^{[2]}(i, j)_{a_2\mu_2}\hat{F}(i, j)_{a_1a_2a_3a_4}|\hat{A}^{[2]}(i, j)_{a_1a_2a_3a_4}|V^{[4]}|_{a_4\mu_4\mu_2\mu_3} \) \] (8)

\[M^{[3]}_{a_2a_2a_4a_4a_4} = \sum_{a_1a_3a_3a_4} (V^{[2]}|_{a_2\mu_2a_3\mu_3}|\hat{A}^{[3]}(i, j)_{a_4\mu_4}\hat{F}(i, j)_{a_1a_2a_3a_4}|\hat{A}^{[3]}(i, j)_{a_1a_2a_3a_4}|V^{[4]}|_{a_4\mu_4\mu_2\mu_3} \) \] (9)

\[M^{[4]}_{a_2a_2a_4a_4a_4} = \sum_{a_1a_3a_3a_4} (V^{[1]}|_{a_1\mu_1a_3\mu_3}|\hat{A}^{[4]}(i, j)_{a_2\mu_2}\hat{F}(i, j)_{a_1a_2a_3a_4}|\hat{A}^{[4]}(i, j)_{a_1a_2a_3a_4}|V^{[4]}|_{a_4\mu_4\mu_2\mu_3} \) \] (10)

By solving the leading eigenvector of \(\hat{\mathcal{H}}(i, j) \) given by Eq. (6), we obtain a tensor \(|A(i, j)\rangle_{\mu_1\mu_2\mu_3\mu_4} \) dubbed as central tensor with \(\mu_1, \mu_2, \mu_3 \) and \(\mu_4 \) called virtual indexes according to the TN terminology. The central tensor can be considered as a state in the Hilbert space of the supercell labeled by four virtual indexes.
Meanwhile, $|V^{[x]}\rangle$ is obtained as the (left) leading eigenvector of $M^{[x]}$ [Eqs. (7)-(10)]. One can see that $M^{[x]}$ is defined by the isometries $|\tilde{A}^{[x]}(i, j)\rangle$ that is obtained by the QR decomposition of $|A(i, j)\rangle$ (referring to the x-th virtual bond μ_x) of the central tensor. For example for $x = 3$, we have (Fig. 7)

$$|A(i, j)\rangle_{\mu_1\mu_2\mu_3\mu_4} = \sum_{\nu} |\tilde{A}^{[3]}(i, j)\rangle_{\mu_1\mu_2\mu_4} R^{[3]}_{\mu_3\mu_4}. \quad (11)$$

$|\tilde{A}^{[3]}(i, j)\rangle$ is orthogonal, satisfying

$$\sum_{\mu_1\mu_2\mu_4} \langle \tilde{A}^{[3]}(i, j) |_{\mu_1\mu_2\mu_3\mu_4} | \tilde{A}^{[3]}(i, j)\rangle_{\mu_1\mu_2\mu_4\mu_4} = I_{\mu_3\mu_4}^3. \quad (12)$$

These isometries play the role of the renormalization group flow in the tree DMRG [86, 87]. Similarly, $|V^{[x]}\rangle_{a_x \mu_x \mu'_x}$ can be understood as a “state” defined in the space of the boundary index a_x labeled by μ_x and μ'_x [97]. The graphic representations of $\hat{H}(i, j)$ and $M^{[3]}$ are given in Fig. 7 as examples.

One can see that these equations are parametrized by the solutions of others, and can be solved in an alternative way in practice. One can start with four random $|V^{[x]}\rangle$’s and calculate $|A(i, j)\rangle$ by solving the leading eigenvector of Eq. (5). Then one obtains $|\tilde{A}^{[x]}(i, j)\rangle$’s using Eq. (11) and update the $|V^{[x]}\rangle$’s according to Eqs. (7)-(10). Repeat this process until the central tensor and all boundary tensors converge.

In fact, the ground-state properties can already be well extracted by the central tensor $|A(i, j)\rangle$. For example, the reduced density matrix of the supercell $\hat{\rho}(i, j) = \text{Tr}_{/\langle i, j \rangle} |\Psi\rangle \langle \Psi|$ is well approximated by the central tensor as

$$\hat{\rho}(i, j) \simeq \sum_{\mu_1\mu_2\mu_3\mu_4} |A(i, j)\rangle_{\mu_1\mu_2\mu_3\mu_4} \langle A(i, j)\rangle_{\mu_1\mu_2\mu_3\mu_4}. \quad (13)$$

Since each boundary tensor can be understood as the infinite environment of a tree branch, the original model is actually approximated at this stage by one defined on an infinite tree. Note
that when only looking at the tree locally (from one site and its nearest neighbors), it looks the same to the original lattice. Thus, the loss of information is mainly long-range, i.e., from the destruction of loops. Though it has been shown numerically by many previous work that the tree approximation is very accurate especially for gapped systems \cite{38, 55, 56, 60}, we are still facing the difficulty of controlling the effects (errors) brought by such an approximation. The discussion about such a tree approximation is given in the supplementary material in detail from the viewpoint of the state ansatz behind our approach. To this end, the next stage is to embed a much larger subsystem in the entanglement bath.

Stage two: construct the few-body Hamiltonian and solve it

The second stage is to choose a finite cluster and use the obtained boundary tensors to construct a few-body Hamiltonian. All interactions inside the cluster will be fully considered to reduce the error from the tree approximation. The entanglement bath mimics the environment of the infinite tree branches, thus the algorithm directly accesses the thermodynamic limite and there is no conventional finite-size error that appears in, e.g. ED, DMRG or QMC.

The embedding is based on the generalizations of $\hat{\mathcal{H}}(i, j)$ [Eq. (6)] in stage one. From the formulation given above, one can see that $\hat{\mathcal{H}}(i, j)$ is actually the product of two parts. The first is the shifted Hamiltonian that contains all interactions inside the supercell (two neighboring sites in our example), and the second is in fact the physical-bath interactions (Fig. 8), whose Hamiltonian is written as

$$\hat{\mathcal{H}}^\partial(n, x)_{\mu_x \mu'_x} = \sum_{\alpha_x} \hat{F}^{\partial L(R)}(n)_{n | V[x]} \alpha_x \mu_x \mu'_x.$$

Now we extend the supercell to a chosen larger cluster, where the few-body Hamiltonian denoted by $\hat{\mathcal{H}}^{FB}$ is written as

$$\hat{\mathcal{H}}^{FB} = \prod_{\langle x \in \text{cluster}, n \in \text{bath} \rangle} \hat{\mathcal{H}}^\partial(n, x) \sum_{\langle i,j \rangle \in \text{cluster}} \left[I - \tau \hat{H}(i, j) \right].$$

16
Same as $\hat{H}(i, j)$, \hat{H}^{FB} is also formed by two terms (Fig. 8). The first term is the product of several bath Hamiltonians that mimic the interactions between the cluster and the environment, and in the second term, the summation in Eq. (15) contains all couplings inside the cluster.

The entanglement bath only “interacts” with the physical sites nearby according to the coupling distance of the original Hamiltonian. In our example with nearest-neighbor couplings, every physical sites on the boundary interact with a bath site, and thus, the number of $\hat{H}^\phi(n, x)$ in the product above scales with the length of the boundary of the cluster. For this reason, \hat{H}^{FB} is the product/summation of sparse or local matrices, and its ground state can be efficiently solved by using the finite-size approaches, such as ED or DMRG.

Note that if one takes the cluster as the supercell with two sites, Eq. (15) becomes exactly Eq. (6). The bath calculation itself can be considered as using ED to solve the \hat{H}^{FB} that contains only the supercell and the bath. The cluster can be arbitrarily chosen according to the computational capacity, and it does not have to obey the translational invariance of the model.

With the ground state $|\tilde{\Phi}(i, j, \cdots)\rangle_{\{\mu\}}$ of \hat{H}^{FB}, the physical properties such as energy, magnetization, etc., can be obtained from the density operator $\tilde{\rho}$ by tracing all degrees of freedom of the bath sites as

$$\tilde{\rho}(i, j, \cdots) = \sum_{\{\mu\}} |\tilde{\Phi}(i, j, \cdots)\rangle_{\{\mu\}} \langle \tilde{\Phi}(i, j, \cdots)|_{\{\mu\}}.$$

(16)

Again, this is a generalization of Eq. (13).

Discussions about experimental realizations

Our work provides a way of using few-body experiments to mimic many-body features of infinite systems. Since the few-body Hamiltonian only contains a handful of sites with local interactions, one could design cold-atom experiments to realize it in a lab. Specifically speaking in our examples, \hat{H}^ϕ is the interaction between a physical spin and an artificial spin with
D (bath) degrees of freedom. Here, we assume that \hat{H}^∂ is Hermitian, which should be true due to the structure of the eigenvalue equations [Eqs. (7)-(10)] of the boundary tensors, where we have $|V^{[x]}\rangle_{a\mu'\nu} = |V^{[x]}\rangle^{*}_{a\mu'\nu}$. The task here is to get the coupling constants explicitly for implementing experiments.

To this end, let us transform \hat{H}^∂ to the standard summation form. We define \hat{H}^∂ that satisfies
\[
\hat{H}^\partial(n, x) = I - \tau \hat{H}^\partial(n, x) + O(\tau^2). \tag{17}
\]
It means to the first order of τ, \hat{H}^∂ is the evolution operator of a Hamiltonian \hat{H}^∂ for an infinitesimal imaginary time. This relation is true because in Eq. (14), $\hat{F}_L(R)$ is obtained by the decomposition of $I - \tau \hat{H}_B$, and the boundary tensor $|V^{[x]}\rangle$ has the similar structure since it forms an continuous MPS [98, 99] in the imaginary time direction.

Then, the few-body Hamiltonian in Eq. (15) can be rewritten in a standard summation form as
\[
\hat{H}^{FB} = I - \tau \hat{H}^{FB} + O(\tau^2) \quad \text{with}
\]
\[
\hat{H}^{FB} = \sum_{\langle i, j \rangle \in \text{cluster}} \hat{H}(i, j) + \sum_{\langle x \in \text{cluster}, n \in \text{bath} \rangle} \hat{H}^\partial(n, x). \tag{18}
\]
The two summations contain the physical and physical-bath interactions, respectively, and all terms are local as discussed above. Again, \hat{H}^{FB} is the evolution operator of \hat{H}^{FB} for an infinitesimal imaginary time to the first order of τ, i.e. $\hat{H}^{FB} \simeq e^{-\tau \hat{H}^{FB}}$.

The coupling constants of the physical-bath interactions can be calculated by expanding \hat{H}^∂ as
\[
\hat{H}^\partial(n, x) = \sum_{\alpha \alpha'} J_{\alpha \alpha'}(n, x) \hat{S}^{\alpha'}(n) \hat{S}^{\alpha}(x). \tag{19}
\]
with $J_{\alpha \alpha'}(n, x)$ the physical-bath coupling constants and $\{\hat{S}^{\alpha}\}$ and $\{\hat{S}^{\alpha'}\}$ the corresponding spin operators (including identity) that give the complete basis for the Hermitian matrices. $\{\hat{S}^{\alpha}\}$ is in fact the physical spin operators. For $\{\hat{S}^{\alpha'}\}$, one can generally choose the generators of
SU(N) groups, then the bath spins should be SU(N) spins. If a symmetry \([100, 101, 102]\) is used in the tensors, for example SU(2) symmetry for spin models, the bath spins are SU(2) spins with higher total momentum, and one will explicitly have the coefficients from the elements of \(\hat{H}^{FB}\). Moreover, it is possible to translate the whole few-body Hamiltonian into the second-quantized picture, by expanding it with the bosonic or fermionic operators. The key is that the chosen operator basis have to completely expand the physical-bath Hamiltonian.

From our numerical results, we can see that the properties of the infinite model can be accurately mimicked by very small bath dimension \(D\) and cluster size. Suppose we set the tolerance of the experimental error as \(\mathcal{O}(10^{-2})\). In this case, the cluster can be chosen as two sites. Then we have \(N_p = 2\), with \(N_b = 4\) for honeycomb lattice and \(N_b = 10\) for simple cubic lattice. For the spin-1/2 models on simple cubic lattice, the dimension of the bath sites can be chosen as \(D = 2\). This means the bath spins are simply spin-1/2, same as the physical ones, which makes it easy to implement in experiments.

In short, the steps to mimic an infinite many-body system with a few-body model are as the following:

- Starting from the Hamiltonian of the target model [e.g. Eq. (1)], compute the physical-bath Hamiltonian \(\hat{H}^\partial\) [Eq. (14)] by our AOP algorithm.
- Write \(\hat{H}^\partial\) into \(\hat{H}^\partial\) by Eq. (17), so that the total Hamiltonian of the few-body model is in a standard summation form [Eq. (18)].
- According to the symmetry of the system, choose a set of matrix basis to expand \(\hat{H}^\partial\) [Eq. (19)]. The basis will determine which kind of spins will be used as the bath sites, and the expansion coefficients will be the coupling constants.
- Build the few-body experiment with several physical sites in the bulk and bath sites on the boundary (e.g., Fig. 1 or the inset of Fig. 4). The coupling constants in the bulk are
the same as the target model, and the coupling constants on the boundary are given by the expansion coefficients of \hat{H}^0.

- Observe the properties of the bulk, which mimics the ground state of the infinite system.

Summary and outlook

We propose an *ab-initio* TN approach that allows for accurate survey of the ground states of infinite many-body systems in higher dimensions by an effective few-body models embedded in an “entanglement bath”. On one hand, our scheme gives to birth to an flexible and efficient numeric algorithm for quantum lattice models. Our approach can directly access the thermodynamic limit by introducing the physical-bath interactions, which outperforms the finite-size methods such as ED and DMRG. The embedding idea allows for efficient and accurate simulations of infinite 3D quantum models, surpassing the existing TN methods. It is free from the “negative-sign” problem and can access to frustrated spin and fermionic models. It can accurately capture many-body features including entanglement, phase transitions and critical behaviors, thus it goes beyond the DFT-based approaches. It could be readily applied to other $(d \leq 3)$-dimensional systems and could be generalized to $(d \geq 4)$-dimensional models.

In practice, our numerical simulations show that with only a handful of sites, the few-body models can accurately capture the many-body features of the infinite systems. With less than 18 physical and 12 bath sites, the difference between our results and the state-of-the-art TN methods is less than $\mathcal{O}(10^{-3})$. For the spin models on simple cubic lattice, the properties of the quantum phase transitions in a magnetic field, including the phase transition point and critical exponents, are faithful captured by the few-body model containing only 8 physical and 24 bath sites.

On the other hand, the few-body Hamiltonian only contains local interactions among a hand-
ful of sites, it can be realized by, e.g., cold atoms or ions. It is possible to further improve the experiments by using the trick of synthetic gauge fields, where the higher spins, for instance, can be extended to lower spins in a synthetic dimension [103]. We suggest to investigate infinite many-body systems by realizing the predicted few-body Hamiltonian with cold atoms or ions. The many-body phenomenon are expected to be observed in the bulk. Furthermore, our work exhibits a new perspective of designing novel quantum devices by utilizing the many-body properties that appears in the bulk of the few-body system, e.g., controlling the entanglement or quantum fluctuations by driving the system to approach or leave the critical region.

References and Notes

[1] A. Auerbach. *Interacting Electrons and Quantum Magnetism*. Springer, Berlin, 1994.

[2] X. G. Wen. *Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Graduate Texts)*. Oxford University Press, Oxford, 2007.

[3] M. Lewenstein, A. Sanpera, and V. Ahufinger. *Ultracold atoms in Optical Lattices: simulating quantum many body physics*. Oxford University Press, Oxford, 2012.

[4] I. Montvay and G. Münster. *Quantum Fields on a Lattice*. Cambridge University Press, Cambridge, 1997.

[5] U.-J. Wiese. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. *Annalen der Physik*, 525:777–796, 2013.

[6] L. Balents. Spin liquids in frustrated magnets. *Nature*, 464:199, 2010.
[7] X. L. Qi and S. C. Zhang. Topological insulators and superconductors. *Rev. Mod. Phys.*, 83:1057, 2011.

[8] A. Bansil, H. Lin, and T. Das. Colloquium: Topological band theory. *Rev. Mod. Phys.*, 88:021004, 2016.

[9] P. A. Lee. From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. *Reports on Progress in Physics*, 71:012501, 2008.

[10] I. Žutić, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications. *Rev. Mod. Phys.*, 76:323, 2004.

[11] Quantum information processing and communication: Strategic report on current status, visions and goals for research in europe. http://qurope.eu/content/Roadmap.

[12] T. Giamarchi. *Quantum Physics in One Dimension (International Series of Monographs on Physics)*. Oxford University Press, Oxford, 2006.

[13] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwenhoven. Spin-orbit qubit in a semiconductor nanowire. *Nature*, 468:1084–1087, 2010.

[14] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M. Marcus, F. Nichele, and S. M. Devices. Scalable majorana devices. *arXiv:1703.03699*.

[15] D. Yoshioka. *The Quantum Hall Effect*. Springer, Berlin, 2002.

[16] G. Misguich, C. Lhuillier, and H. T. Diep. *Frustrated spin systems*. World Scientific, Singapore, 2005.

[17] S. Sachdev. Quantum magnetism and criticality. *Nature Physics*, 4:173–185, 2008.
[18] L. Savary and L. Balents. Quantum spin liquids: a review. *Reports on Progress in Physics*, 80:016502, 2017.

[19] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. *Rev. Mod. Phys.*, 81:109, 2009.

[20] P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner. Dynamical mean field solution of the bose-hubbard model. *Phys. Rev. Lett.*, 105:096402, 2010.

[21] C. Nisoli, R. Moessner, and P. Schiffer. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. *Rev. Mod. Phys.*, 85:1473, 2013.

[22] M. J. P. Gingras and P. A. McClarty. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. *Reports on Progress in Physics*, 77:056501, 2014.

[23] Jakub Imriška, Mauro Iazzi, Lei Wang, Emanuel Gull, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, Leticia Tarruell, Tilman Esslinger, and Matthias Troyer. Thermodynamics and magnetic properties of the anisotropic 3d hubbard model. *Phys. Rev. Lett.*, 112:115301, 2014.

[24] S. R. White. Density matrix formulation for quantum renormalization groups. *Phys. Rev. Lett.*, 69:2863, 1992.

[25] U. Schollwöck. The density-matrix renormalization group in the age of matrix product states. *Ann. of Phys.*, 326:96–192, 2011.

[26] J. I. Cirac and F. Verstraete. Renormalization and tensor product states in spin chains and lattices. *J. Phys. A: Math. Theor.*, 42:504004, 2009.

[27] R. Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. *Ann. Phys.*, 349:117, 2014.
[28] F. Verstraete, V. Murg, and J. I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. *Advances in Physics*, 57:143–224, 2008.

[29] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar. Numerical study of the two-dimensional hubbard model. *Phys. Rev. B*, 40:506–516, 1989.

[30] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entanglement entropy. *Rev. Mod. Phys.*, 82:277, 2010.

[31] S. R. White and D. J. Scalapino. Density matrix renormalization group study of the striped phase in the 2d t-j model. *Phys. Rev. Lett.*, 80:1272, 1998.

[32] E. M. Stoudenmire and S. R. White. Studying two-dimensional systems with the density matrix renormalization group. *Ann. Rev. Cond. Matter Phys.*, 3:111–128, 2012.

[33] F. Verstraete and J. I. Cirac. Renormalization algorithms for quantum-many body systems in two and higher dimensions. *arXiv:0407066*.

[34] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. *Phys. Rev. Lett.*, 101:250602, 2008.

[35] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac. Criticality, the area law, and the computational power of projected entangled pair states. *Phys. Rev. Lett.*, 96:220601, 2006.

[36] G. Vidal. Entanglement renormalization. *Phys. Rev. Lett.*, 99:220405, 2007.
[37] G. Vidal. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett., 98:070201, 2007.

[38] H. C. Jiang, Z. Y. Weng, and T. Xiang. Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett., 101:090603, 2008.

[39] M. Levin and C. P. Nave. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett., 99:120601, 2007.

[40] Z. C. Gu, M. Levin, and X. G. Wen. Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions. Phys. Rev. B, 78:205116, 2008.

[41] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang. Second renormalization of tensor-network states. Phys. Rev. Lett., 103:160601, 2009.

[42] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang. Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B, 86:045139, 2012.

[43] S. Yang, Z. C. Gu, and X. G. Wen. Loop optimization for tensor network renormalization. Phys. Rev. Lett., 118:110504, 2017.

[44] T. Nishino and K. Okunishi. Corner transfer matrix renormalization group method. J. Phys. Soc. Jpn., 65:891–894, 1996.

[45] R. Orús and G. Vidal. Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys. Rev. B, 80:094403, 2009.
[46] R. Orús. Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems. Phys. Rev. B, 85:205117, 2012.

[47] T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y. Akutsu. Self-consistent tensor product variational approximation for 3d classical models. Nucl. Phys. B, 575:504–512, 2000.

[48] P. Corboz. Variational optimization with infinite projected entangled-pair states. Phys. Rev. B, 94:035133, 2016.

[49] L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete. Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B, 94:155123, 2016.

[50] H. N. Phien, J. A. Bengua, H. D. Tuan, P. Corboz, and R. Orús. Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing. Phys. Rev. B, 92:035142, 2015.

[51] A. García-Sáez and J. I. Latorre. Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B, 87:085130, 2013.

[52] M. Suzuki. Relationship between d-dimensional quantal spin systems and (d+1)-dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phys., 56:1454–1469, 1976.

[53] R. J. Bursill, T. Xiang, and G. A. Gehring. The density matrix renormalization group for a quantum spin chain at non-zero temperature. J. Phys. Cond. Matter, 8:L583, 1996.
[54] W. Li, S. J. Ran, S. S. Gong, Y. Zhao, B. Xi, F. Ye, and G. Su. Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. *Phys. Rev. Lett.*, 106:127202, 2011.

[55] S. J. Ran and W. Li, B. Xi, Z. Zhang, and G. Su. Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models. *Phys. Rev. B*, 86:134429, 2012.

[56] S. J. Ran, B. Xi, T. Liu, and G. Su. Theory of network contractor dynamics for exploring thermodynamic properties of two-dimensional quantum lattice models. *Phys. Rev. B*, 88:064407, 2013.

[57] P. Czarnik, L. Cincio, and J. Dziarmaga. Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas. *Phys. Rev. B*, 86:245101, 2012.

[58] F. Verstraete and J. I. Cirac. Continuous matrix product states for quantum fields. *Phys. Rev. Lett.*, 104:190405, 2011.

[59] P. Y. Teng. Generalization of the tensor renormalization group approach to 3-d or higher dimensions. *Physica A: Statistical Mechanics and its Applications*, 472:117–135, 2017.

[60] B. Braiorr-Orrs, M. Weyrauch, and M. V. Rakov. Phase diagram of one-, two-, and three-dimensional quantum spin systems derived from entanglement properties. *Quantum Information and Computation*, 16:0885–0899, 2016.

[61] M. Guo, R. N. Bhatt, and D. A. Huse. Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. *Phys. Rev. Lett.*, 72:4137, 1994.

[62] C. Nisoli, R. Moessner, and P. Schiffer. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. *Rev. Mod. Phys.*, 85:1473, 2013.
[63] R. Moessner and A. P. Ramirez. Geometrical frustration. *Phys. Today*, 59:24–29, 2006.

[64] A. P. Ramirez. Strongly geometrically frustrated magnets. *Annu. Rev. Mater. Sci.*, 24:45–480, 1994.

[65] J. Oitmaa, C. Hamer, and W. Zheng. *Series Expansion Methods for Strongly Interacting Lattice Models*. Cambridge University Press, Cambridge, 2006.

[66] D. G. Joshi, K. Coester, K. P. Schmidt, and M. Vojta. Nonlinear bond-operator theory and 1/d expansion for coupled-dimer magnets. i. paramagnetic phase. *Phys. Rev. B*, 91:094404, 2015.

[67] K. Coester, D. G. Joshi, M. Vojta, and K. P. Schmidt. Linked-cluster expansions for quantum magnets on the hypercubic lattice. *Phys. Rev. B*, 94:125109, 2016.

[68] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer. Functional renormalization group approach to correlated fermion systems. *Rev. Mod. Phys.*, 84:299, 2012.

[69] Y. Iqbal, R. Thomale, F. P. Toldin, S. Rachel, and J. Reuther. Functional renormalization group for three-dimensional quantum magnetism. *Phys. Rev. B*, 94:140408, R.

[70] P. Weiss. Molecular field and ferromagnetic property l’hypothèse du champ moléculaire et la propriété ferromagnétique. *J. Phys. Theor. Appl.*, 6:661–690, 1907.

[71] D. Yamamoto. Correlated cluster mean-field theory for spin systems. *Phys. Rev. B*, 79:144427, 2009.

[72] Yong-Zhi Ren, Ning-Hua Tong, and Xin-Chen Xie. Cluster mean-field theory study of j1j2 heisenberg model on a square lattice. *J. Phys.: Condens. Matter*, 26:115601, 2014.
[73] A. Sen De and U. Sen. Entanglement mean field theory and the curie-weiss law. *Europhys. Lett.*, 99:20011, 2012.

[74] A. Sen De and U. Sen. Entanglement mean field theory: Lipkinmeshkovglick model. *Quantum Inf Process*, 11:675, 2012.

[75] W. H. Zurek. Environment-induced superselection rules. *Phys. Rev. D*, 26:1862, 1982.

[76] C. D. Sherrill. Frontiers in electronic structure theory. *J. Chem. Phys.*, 132:110902, 2010.

[77] L. H. Thomas. The calculation of atomic fields. *Math. Proc. Cambridge Philos. Soc.*, 23:542, 1927.

[78] W. Metzner and D. Vollhardt. Correlated lattice fermions in $d = \infty$ dimensions. *Phys. Rev. Lett.*, 62:324, 1989.

[79] A. Georges and G. Kotliar. Hubbard model in infinite dimensions. *Phys. Rev. B*, 45:6479, 1992.

[80] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. *Rev. Mod. Phys.*, 13:68, 1996.

[81] G. Knizia and G. K.-L. Chan. Density matrix embedding: A simple alternative to dynamical mean-field theory. *Phys. Rev. Lett.*, 109:186404, 2012.

[82] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. *Rev. Mod. Phys.*, 81:865, 2009.

[83] L. Amico, R. Fazio, A. Osterloh, and V. Vedral. Entanglement in many-body systems. *Rev. Mod. Phys.*, 80:517, 2008.
[84] A. Yuste, M. Moreno-Cardoner, and A. Sanpera. Using random boundary conditions to simulate disordered quantum spin models in 2d-systems. \textit{arXiv: 1612.00381}.

[85] S. J. Ran. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models. \textit{Phys. Rev. E}, 93:053310, 2016.

[86] M. Lepetit, M. Cousy, and G. M. Pastor. Density-matrix renormalization study of the hubbard model [4] on a bethe lattice. \textit{Eur. Phys. J. B}, 13:421, 2000.

[87] N. Nakatani and G. K.-L. Chan. Efficient tree tensor network states (ttns) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm. \textit{J. Chem. Phys.}, 138:134113, 2013.

[88] N. V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn. Exact, complete, and universal continuous-time worldline monte carlo approach to the statistics of discrete quantum systems. \textit{JETP}, 87:310, 1998.

[89] Y.-Z. Huang, B. Xi, X. Chen, W. Li, Z.-C. Wang, and G. Su. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice. \textit{Phys. Rev. E}, 93:062110, 2016.

[90] We are indebted to Yi-Zhen Huang for providing these QMC data, where the worm algorithm is used with the inverse temperature around 50.

[91] P. Pfeuty and R. J. Elliott. The ising model with a transverse field. ii. ground state properties. \textit{J. Phys. C: Solid St. Phys.}, 4:2370, 1971.

[92] H. W. J. Blöte and Y. J. Deng. Cluster monte carlo simulation of the transverse ising model. \textit{Phys. Rev. E}, 66:066110, 2002.
[93] S. Suzuki, J. Inoue, and B. K. Chakrabarti. *Quantum Ising Phases and Transitions in Transverse Ising Models*. Springer Berlin Heidelberg, Berlin, 2013.

[94] M. Suzuki and M. Inoue. The st-transformation approach to analytic solutions of quantum systems. In general formulations and basic limit theorems. *Prog. Theor. Phys.*, 78:787, 1987.

[95] The idea of utilizing eigenvalue equations for statistic or many-body systems has been used earlier by Baxter, Nishino, et al. See for example: R. J. Baxter, *Variational approximations for square lattice models in statistical mechanics*, J. Statist. Phys. 19, 461 (1978); T. Nishino and K. Okunishi, *Product wave function renormalization group*, J. Phys. Soc. Jpn. 64, 4084-4087 (1995).

[96] In the following, we simplify the indexes when mentioning a tensor if it causes no confusion.

[97] To distinguish from the states in physical Hilbert space $|\ast\rangle$, the symbol $|\ast\rangle$ is used to denote a state in the space of boundary indexes $\{a\}$.

[98] E. Tirrito, M. Lewenstein, and S. J. Ran. Criticality and excitation gap in quantum systems: Applications of continuous matrix product states in imaginary time. *arXiv:1608.06544*.

[99] F. Verstraete and J. I. Cirac. Continuous matrix product states for quantum fields. *Phys. Rev. Lett.*, 104:190405, 2010.

[100] I. P. McCulloch and M. Gualàcsi. The non-abelian density matrix renormalization group algorithm. *Europhys. Lett.*, 6:852, 2002.
[101] I. P. McCulloch. From density-matrix renormalization group to matrix product states. *J. Stat. Mech. Theory Exp.*, 10:P10014, 2007.

[102] A. Weichselbaum. Non-abelian symmetries in tensor networks: A quantum symmetry space approach. *Ann. Phys.*, 327:2972–3047, 2012.

[103] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzelinas, and M. Lewenstein. Synthetic gauge fields in synthetic dimensions. *Phys. Rev. Lett.*, 112:043001, 2014.

[104] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. *SIAM J. Matrix Analysis Application*, 21:1253–1278, 2000.

[105] A. Cayley. Desiderata and suggestions: No. 2. the theory of groups: graphical representation. *Amer. J. Math.*, 2:174, 1878.

[106] H. A. Bethe. Statistical theory of superlattices. *Proc. Roy. Soc. London Ser A.*, 150:552–575, 1935.

[107] This is actually the leading term of the cost without using any tricks, such as taking advantage of the sparse property.

[108] M. Lubasch, J. I. Cirac, and M.-C. Banuls. Algorithms for finite projected entangled pair states. *Phys. Rev. B*, 90:064425, 2014.

[109] H. H. Zhao, Z. Y. Xie, T. Xiang, and M. Imada. Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices. *Phys. Rev. B*, 93:125115, 2016.

[110] L. Wang and F. Verstraete. Cluster update for tensor network states. *arXiv:1110.4362*.
[111] M. Lubasch, J. I. Cirac, and M.-C. Banuls. Unifying projected entangled pair state contractions. New J. Phys., 16:033014, 2014.

[112] H. N. Phien, G. Vidal, and I. P. McCulloch. Dynamical windows for real-time evolution with matrix product states. Phys. Rev. B, 86:245107, 2012.

[113] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90:227902, 2003.

[114] S. J. Ran, C. Peng, W. Li, M. Lewenstein, and G. Su. Criticality in two-dimensional quantum systems: Tensor network approach. Phys. Rev. B, 95:155114, 2017.

[115] W. Li, J. von Delft, and T. Xiang. Efficient simulation of infinite tree tensor network states on the bethe lattice. Phys. Rev. B, 86:195137, 2012.

Acknowledgments

We acknowledge Leticia Tarruell, Ignacio Cirac, Emanuele Tirrito, Xi Chen, Nan Li and Jia Kong for enlightening discussions. CP appreciates ICFO (Spain) for the hospitality during her visit and is grateful to financial support from UCAS and ICFO. SJR is indebted to Nan Li for her kind help on illustrating the figures of lattices. CP thanks Yun-Hai Lan for modifying references format. This work was supported by ERC AdG OSYRIS (ERC-2013-AdG Grant No. 339106), the Spanish MINECO grants FOQUS (FIS2013-46768-P), FISICATEAMO (FIS2016-79508-P), and “Severo Ochoa” Programme (SEV-2015-0522), Catalan AGAUR SGR 874, Fundació Cellex, EU FETPRO QUIC and CERCA Programme / Generalitat de Catalunya. SJR acknowledges Fundació Catalunya - La Pedrera - Ignacio Cirac Program Chair. GS and CP were supported by the MOST of China (Grant No. 2013CB933401), the NSFC (Grant No. 11474279), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. 33
XDB07010100).
Figure 1: (Color online) The system on an infinite lattice is transformed into one defined on finite clusters embedded in the entanglement bath. We take the $(8 + 8)$-site and $(18 + 12)$-site clusters for the simulations on honeycomb lattice, where the first contains 8 physical (blue balls) and 8 bath sites (red balls), and the second contains 18 physical and 12 bath sites. The entanglement bath is calculated by choosing two sites as the supercell (small circle). The legs stand for the interactions between the connecting sites.
Figure 2: (Color online) The ground-state energy E (per site) of the Heisenberg model on honeycomb lattice. The cluster we choose is $(N_p + N_b)$-site where N_p and N_b denote the number of physical and bath sites, respectively (see Fig. 1). The ED on the 18-site cluster with periodic boundary condition suffers severe finite-size effects, and the tree approximation (simply from the bath calculations) underestimates long-range correlations. Our results are consistent with second renormalization group (SRG) of TN, showing that both finite-size effects and the error from the tree approximation are largely reduced.
Figure 3: (Color online) “Finite-size effects” of AOP from the ground-state magnetization (absolute value) and the bond energies $e = \langle \hat{S}_i \hat{S}_j \rangle$ of the Heisenberg model on honeycomb lattice. Here we the cluster with $N_p = 18$ physical and $N_b = 12$ bath sites. Each peak shows the absolute values of the local magnetization of the physical sites, which ranges from $M = 0.329$ (center) to 0.347 (boundary). We take $D = 8$ and $\chi = 60$. For comparison, the results from the tree approximation in the first stage are $e = -0.360$ and $M = 0.347$, and those from SRG are $e = -0.363$ and $M = 0.310$.
Figure 4: (Color online) The ground-state energy E of the Heisenberg model on simple cubic lattice versus χ is shown in the left figure. The simulation by QMC on a $(10 \times 10 \times 10)$ lattice with periodic boundary condition gives $E = -0.902$. The inset shows the cluster with $N_p = 8$ physical (blue balls) and $N_b = 24$ bath sites (red balls) used in the second stage in our AOP approach for the simulations on cubic lattice. The legs stand for the interactions between the connecting sites. In the right one, we show the staggered magnetization M_s and correlation length ξ of the ground state. We take $D = 2$ and 3.
Figure 5: (Color online) Staggered magnetization per site M_s and dynamic correlation length ξ of the ground state of the transverse Ising model on simple cubic lattice. We take $D = 2$, $\chi = 10$, and $D = 3$, $\chi = 20$. The quantum phase transition is found to occur at $h_c = 2.66$. The critical behaviors are obtained by fitting the data near h_c, where we have $M_s \propto (h_c - h_x)^{0.48}$ and $\xi \propto (h_c - h_x)^{-0.25}$.

Figure 6: (Color online) The left figure shows Eq. (4). The right one shows the construction of the cell tensor given by Eq. (5).
Figure 7: (Color online) The graphic representations of $\hat{H}(i, j)$ in Eq. (6) and $M[3]$ in Eq. (9) are given in the left and middle figures, respectively. The QR decomposition [Eq. (11)] of the central tensor $|A(i, j)\rangle$ is shown in the right figure, where the arrows indicate the orthogonality of $|\tilde{A}^{[3]}(i, j)\rangle$ [Eq. (12)].

Figure 8: (Color online) The left figure shows the bath Hamiltonian \hat{H}^{∂} [Eq. (14)] that gives the interaction between the corresponding physical and bath site. The few-body Hamiltonian in Eq. (15) is formed by the shifted bulk Hamiltonian and \hat{H}^{∂} between every physical site on the boundary and a neighboring bath site. For simplicity, the middle figure only illustrates four of the \hat{H}^{∂}'s. The right one shows the ground-state ansatz of AOP approach, which is the bulk state of the few-body Hamiltonian entangled with several branches of infinite tree PEPS. In fact, the number of tree branches should equal to the number of the physical sites on the boundary (i.e. the number of \hat{H}^{∂}). For conciseness, we only illustrate four of the tree branches.
State ansatz behind our approach

At the first stage, the ansatz is an infinite tree PEPS that optimally approximates the ground state in the \textit{rank-1} sense \cite{104, 56}. This can be seen from the tensor network (TN) encoded in the self-consistent eigenvalue equations. Starting from Eq. (6), one can substitute each of the boundary tensors $|V^{[x]}\rangle$'s by the contraction of the other three $|V^{[x]}\rangle$'s, $|\tilde{A}^{[x]}\rangle$, $(\tilde{A}^{[x]}|$ and the cell tensor \hat{F} according to Eqs. (7)-(10). We are using the fact that $|V^{[x]}\rangle$ is the eigenvector of $M^{[x]}$. By doing so repetitively, an infinite tree PEPS formed by $|A\rangle$ and $|\tilde{A}^{[x]}\rangle$'s can be grown to reach the thermodynamic limit. At the same time, the TN that gives $(I - \tau \hat{H}_{\text{tree}})$ appears, where \hat{H}_{tree} is the Hamiltonian defined on the tree. The local interactions of \hat{H}_{tree} are exactly the same with the original model as long as one only looks at a loop-free subsystem, thus \hat{H}_{tree} provides a reasonable approximation. Such a tree PEPS minimizes the energy of \hat{H}_{tree}.

For better understanding the approximation of the state on, e.g., an infinite square lattice, we could “grow” the tree in such a way that it fills the whole square lattice. Inevitably, some $|V^{[x]}\rangle$'s on the boundary of the tree will gather at the same site. The tensor product of these $|V^{[x]}\rangle$'s in fact gives the optimal rank-1 approximation \cite{104} of the tensor that forms the bulk of tree TN (translational invariant). Now, if one uses the full-rank tensor to replace its rank-1 version (the tensor product of four $|V^{[x]}\rangle$'s), one will have the TN of $I - \tau \hat{H}$ (with H the target Hamiltonian on square lattice) instead of $I - \tau \hat{H}_{\text{tree}}$, and the tree PEPS becomes the one defined on the square lattice. Such a picture can be understood in the opposite manner: imaging that one has the “correct” TN defined on the square lattice, what we do is to replaced certain tensors by its rank-1 approximations to destruct all the loops of the TN. In this sense, the tree PEPS defined on the original lattice (not actually a Cayley tree or Bethe lattice \cite{105, 106}) in
stage one provides the optimal loop-free approximation of the ground state, where the loops are destructed by the rank-1 tensors. It would be very helpful to refer to the figures and the discussions in Ref. [56] that are given considering TN contractions.

There are several issues we shall stress. Firstly, one will actually not do the above substitutions to reconstruct the tree PEPS. It is automatically encoded in the self-consistent equations. The “reconstruction picture” is proposed only to understand the ansatz behind the approach. Secondly, one may notice that the self-consistent equations proposed here are slightly different from those for the rank-1 decomposition of a single tensor [104]. The reason is that in our case, the normalization of the PEPS should be considered when doing the rank-1 approximation. We here borrow the idea of iDMRG on the tree PEPS [86, 87] to satisfy this constraint. The third issue is about the uniqueness of the reconstruction of the tree PEPS. Indeed, the contraction of three $|V^{|x|}}$’s, $|\tilde{A}^{|x|}}$, $(\tilde{A}^{|x|}}$ and \tilde{F} to substitute $|V^{|x|}}$ is not unique. However, it is unique when we require the presence of $|\tilde{A}^{|x|}}$, $(\tilde{A}^{|x|}}$ and \tilde{F}, in order to recover the TN’s of $I - \tau \tilde{H}$ as well as the tree PEPS. This is due to the uniqueness of the rank-1 decomposition, which is argued to be a concave problem [104].

Such a tree approximation is also closely related to the iPEPS algorithms called simple update [38, 55, 60], where the infinite PEPS is updated by considering the local environment. After reaching the fixed point, the PEPS satisfies a set of self-consistent equations, which lead to a similar tree structure [55]. Even some long-rang effects are ignored, simple update are still quite accurate especially for gapped states.

Aimed at reducing the error of the tree approximation, the second stage of our approach is to construct the few-body Hamiltonian \tilde{H}^{FB} on a larger cluster by reusing the bath obtained in the first stage, and then calculate the ground state of \tilde{H}^{FB} with a finite-size algorithm. The ansatz behind can be considered as a generalized tree PEPS. In the center of the PEPS, the tensor contains all the physical sites inside the cluster, connected with several infinite tree brunches.
that are the same to those appearing in stage one. The bath sites carry the entanglement between the physical sites in the cluster and these infinite tree branches.

“Finite-loop” effects

Thanks to the infinite tree branches in the PEPS ansatz, our algorithm does not suffer the conventional finite-size effect in the algorithms such as ED, QMC or DMRG. Thus, the effects from the finiteness of the cluster in the second stage are essentially different. In the first stage, the system size is already infinite because the bath encodes the information of an infinite tree in the eigenvalue equations. Only the loops beyond the supercell are destroyed in an optimal manner (rank-1 approximation of the tensors) [56]. In stage two, there will be no tree error inside the cluster since all interactions there are fully considered. If the cluster contains larger loops than the cell tensor used in stage one, the precision will be improved. On the other hand, there will be no improvement if one increases the size of the cluster without having larger loops. For this reason, the “finite-size effect” of AOP means the error caused by the finiteness of the considered loops.

Computational cost

The motivation to use the tree approximation is its efficiency especially for 3D quantum models. The computational cost of the first stage is that of the generalized DMRG on an infinite tree PEPS [86, 87], which roughly scales as $O(d^{2N_0}D^{3z})$ with d the dimension of the physical Hilbert space on one site, N_0 the number of physical sites in the supercell, D the dimension of a virtual index and z the coordination number of the lattice [107].

To solve the few-body Hamiltonian, the computational cost (leading term) with ED scales as $O(d^{N}D^{N^\partial})$ (N and N^∂ the number of physical and bath sites, respectively), and that with DMRG scales as $O[((N + N^\partial) \max(d, D)^3 \chi^6]$ (χ the bond dimension cut-off of DMRG). The
Figure S1: (Color online) The illustrations of three kinds of possible few-body Hamiltonians that contain several interacting physical and bath sites. All the physical interactions (black lines) inside the chosen cluster should be fully considered. The left figure illustrates the one by using the tree DMRG for the physical-bath interactions \hat{H}_∂ (blue dashes), where there are no bath-bath interactions. By choosing other algorithms (e.g., SRG or CTMRG) to calculate \hat{H}_∂, it is possible to also have nearest-neighbor (middle figure) or even long-range (right figure) bath-bath interactions (red dots).

cost is similar to solving a nearest-neighbor finite-size system that contains two kinds of sites, whose local Hilbert space is of dimension d (physical) and D (bath), respectively. Surely one can choose other algorithms to solve the few-body Hamiltonian in the second stage, such as QMC or finite PEPS algorithms [108, 109]. Benefits from the fact that the few-body Hamiltonian is the product (or summation) of local couplings, the efficiency will be similar to that when applying to the standard (short-range) Hamiltonians. In addition, it is possible to update the bath simultaneously in stage two, and the computational cost would be approximately identical to the cluster update schemes of TN.

General form of few-body Hamiltonian

As discussed above, the dominant error comes from the destruction of the loops. As a consequence, the interactions between the bath and the physical sites are the tensor product of local
It means that in the standard summation form, there are no bath-bath interactions (Fig. S1). The tree branches in the ground-state ansatz are not connected to each other from anywhere else than the central part.

One can adopt other TN algorithms such as the cluster or full update schemes [33, 34, 110, 111, 44, 45, 46, 48, 49, 41, 42] to obtain the physical-bath interactions. Then the Hamiltonian will not simply be the tensor product, but generally given by

$$\hat{H}^{FB} = \prod_{\langle x,n \rangle} \hat{H}^0(n,x).$$

(S1)

Then the bath-bath interactions will appear in the standard summation form. See the illustrations of three possible situations in Fig. S1. The extra summations will lead to another (similar) PEPS ansatz beyond the one with tree branches, which should better mimics the infinite environment. However, the computational cost with the currently known methods will become much more sensitive to the coordination number and the dimensionality of the model, making the 3D ground states extremely difficult to access.

Discussions about imaginary-time evolution picture and criticality in higher dimensions

The idea of approximating an infinite Hamiltonian with a finite effective one has been proposed for the time evolution of 1D quantum systems [112]. An important difference in our work is that the “evolution” of the finite effective model is constructed not from a new \hat{H} but with a shift ($I - \tau \hat{H}$) that is in fact the imaginary-time evolution operator. It brings several operational advantages for simulating the ground states, in particular, of higher-dimensional systems. The triangular structure of the Hamiltonian is avoided here, thus the eigenvalue equations for the
boundary tensors have stable solutions and the entanglement bath is well-defined. The few-body Hamiltonian with the bath of higher-dimensional systems can be easily constructed.

Our scheme makes it possible to adopt the \((1 + 1)\)-D scaling theories for characterizing criticality \([113]\) to higher-dimensional models. It is known that any TN algorithms, essentially, cannot give directly a divergent correlation length at the critical point. For 1D quantum systems, it has been shown that at the critical point, any MPS with a finite bond dimension is gapped and possesses a finite correlation length \(\xi\) satisfying

\[\xi \sim D^\kappa, \]

with \(D\) the bond dimension of the MPS and \(\kappa\) its scaling exponent. One can see that with a finite \(D\), \(\xi\) is always finite, and the information of the criticality is in hidden the algebraical scaling behavior when \(D\) increases. For the scaling of magnetic field \(h\) near the critical point, the algebraic behavior of \(\xi\) versus \(h\) can still survive, however, the value of the exponent might be inaccurate.

For a 2D PEPS, one has to compute the contraction of a 2D TN (e.g., by iTEBD with MPS) to get its correlations using finite dimension cut-offs, and thus the results will still be finite \([114]\). To tackle this difficulty, it has been proposed that the divergence of the correlations can be studied by the scaling of the bond dimension of the MPS, from which the central charge of the conformal field theory to characterize the criticality can be accurately obtained \([113, 114]\).

In our approach, the dynamic correlation length of the ground state \(\xi\) is given by the correlation length of an infinite MPS formed by \(|V^{[x]}\rangle\) in the imaginary time direction, written as

\[|\tilde{\psi}\rangle = \sum_{\{\mu\}} \prod |V^{[x]}\rangle_{a \mu \mu \mu \xi}. \]

Such an MPS is quasi-continuous (discretized up to the Trotter step \(\tau \to 0\)). Then, one has the dynamic correlation length simply by

\[\xi = \frac{\tau}{\log \Lambda_0 - \log \Lambda_1}, \]

with \(\Lambda_0\) and \(\Lambda_1\) the two largest eigenvalues of \(\hat{H}^{FB}\). (See Ref. \([98]\) for details). It means we
cannot directly obtain a divergent correlation length at the critical point, and a scaling of the
dimension would be necessary to identify the criticality. How to do such kind of scalings for
2D and 3D states is still an open question.

Relations to other algorithms

By taking certain limits of the computational parameters, the relations among our approach and
other algorithms are illustrated in Fig. S2. The simplest situation is to take the dimension of
the bath sites \(\dim(\mu_x) = \dim(\mu'_x) = 1 \), and then \(\hat{H}^\partial \) can be written as a linear combination
of spin operators (and identity). Thus in this case, \(|V^x| \) simply plays the role of a mean field.
If one only uses the bath calculation of the first stage to obtain the ground-state properties, the
algorithm will be reduced to the tree DMRG [86, 87]. If one takes the minimal supercell with
\(D = 1 \) in stage one, the entanglement bath will be reduced to a magnetic mean field. By choos-
ing a large cluster, the DMRG [24] simulation in stage two becomes equivalent to the standard
DMRG for solving the cluster in a mean field. If one uses \(D = 1 \) and chooses a supercell of a
tolerably large size in the first stage without entering stage two, or if one chooses a small cluster
with \(D = 1 \) in stage one and uses ED in stage two to solve the few-body Hamiltonian with a
tolerably large cluster, our approach will become the ED on the corresponding finite system in
a mean field. By taking proper supercell, cluster, algorithms and computational parameters, our
approach outperforms others.

Generalization to \((d \geq 4) \) dimensions

Benefiting from its flexibility, it is possible to generalize our approach to even \((d \geq 4) \)-
dimensional quantum models. The main problem to be tackled is the computational cost. In the
second stage by using DMRG for example, the cost increases polynomially with the size of the
cluster, thus also polynomially with the dimensionality \(d \). In the first stage with tree DMRG, the
Figure S2: (Color online) Relations between AOP and several existing algorithms (PEPS, DMRG and ED) for the ground-state simulations of 2D and 3D Hamiltonian. The corresponding computational set-ups in the first (bath calculation) and second (solving the few-body Hamiltonian) stages of AOP algorithm are given above and under the arrows, respectively.

The cost increase exponentially with d, which makes the simulations for higher-dimensional models extremely expensive. Luckily, the main task here is to solve $(2d + 1)$ number of self-consistent eigenvalue equations, say five [Eq. (6)-(10)] for 2D, seven for 3D and nine for 4D quantum systems. One way to lower the cost from exponential to polynomial expenses is to use a finite algorithm such as DMRG to solve each eigenvalue problem. It is certain that the stability and efficiency have to be tested.

Open issues

Several following-up issues are to be further investigated. The flexibility allows for possible incorporating with other methods. For example, the TN techniques with symmetries [100] [101] [102] can be introduced to lower the computational cost so that much larger clusters can
be reached in the second stage. Besides the tree DMRG [86, 87], the other TN optimization schemes such as TN variational techniques [50, 49, 48] and tensor renormalization group algorithms [39, 45, 46, 41, 42, 43] can be adapted when the cost is tolerable. The finite-size scaling of the cluster should be explored. Our approach could also be readily generalized to higher-dimensional bosonic and fermionic lattice models. The entanglement embedding idea with the physical-bath Hamiltonian proposed here can be adopted to develop novel algorithms for infinite systems by hybridizing with other methods such as QMC, finite or tree PEPS algorithms [115, 108, 109], or the approaches in material sciences and quantum chemistry, such as DFT [76] and DMET [81].