Community-based interventions for enhancing access to or consumption of fruit and vegetables among five to 18-year olds: a scoping review

Rebecca Ganann*, Donna Fitzpatrick-Lewis, Donna Ciliska and Leslea Peirson

Abstract

Background: Low fruit and vegetable (FV) consumption is a key risk factor for morbidity and mortality. Consumption of FV is limited by a lack of access to FV. Enhanced understanding of interventions and their impact on both access to and consumption of FV can provide guidance to public health decision-makers. The purpose of this scoping review is to identify and map literature that has evaluated effects of community-based interventions designed to increase FV access or consumption among five to 18-year olds.

Methods: The search included 21 electronic bibliographic databases, grey literature, targeted organization websites, and 15 key journals for relevant studies published up to May 2011. Retrieved citations were screened in duplicate for relevance. Data extracted from included studies covered: year, country, study design, target audience, intervention setting, intervention strategies, interventionists, and reported outcomes.

Results: The search located 19,607 unique citations. Full text relevance screening was conducted on 1,908 studies. The final 289 unique studies included 30 knowledge syntheses, 27 randomized controlled trials, 55 quasi-experimental studies, 113 cluster controlled studies, 60 before-after studies, one mixed method study, and three controlled time series studies. Of these studies, 46 included access outcomes and 278 included consumption outcomes. In terms of target population, 110 studies focused on five to seven year olds, 175 targeted eight to 10 year olds, 192 targeted 11 to 14 year olds, 73 targeted 15 to 18 year olds, 55 targeted parents, and 30 targeted teachers, other service providers, or the general public. The most common intervention locations included schools, communities or community centres, and homes. Most studies implemented multi-faceted intervention strategies to increase FV access or consumption.

Conclusions: While consumption measures were commonly reported, this review identified a small yet important subset of literature examining access to FV. This is a critically important issue since consumption is contingent upon access. Future research should examine the impact of interventions on direct outcome measures of FV access and a focused systematic review that examines these interventions is also needed. In addition, research on interventions in low- and middle-income countries is warranted based on a limited existing knowledge base.

Background

Low fruit and vegetable (FV) consumption is one of the top 10 global risk factors for mortality according to the World Health Organization (WHO) [1]. Increased FV consumption can help protect overall health status and reduce both disease risk and burden [2]. Fruit and vegetable intake among children is of particular interest due to growing recognition of the importance of nutrition for growth, development, and prevention of chronic diseases such as cardiovascular disease and obesity [2]. A number of studies have shown that childhood FV consumption patterns and preferences are predictive of patterns in adolescence and adulthood [3-6]. It has been estimated that 2.7 million lives could be saved each year through increased and adequate FV consumption. In addition, this increased consumption of FV would decrease the worldwide non-communicable disease burden by almost 2% [7]. Consumption of FV is limited by a lack of access to FV, which is a conspicuous issue facing low- and
middle-income countries, but also affects high-income countries [8]. While FV intake is directly associated with socioeconomic status, many individuals do not meet recommended guidelines for FV intake regardless of country of origin and income status [8]. A systematic review of potential determinants of FV intake and intervention strategies found that availability and accessibility of FV and preferences had the most consistent positive relationship with FV consumption [9]. Another more recent systematic review of determinants of fruit and vegetable consumption among children and adolescents identified many individual level determinants including direct gradients associated with intake and socioeconomic status, home availability and accessibility, and parental intake patterns [8]. The environmental factors that influence consumption of FV extend beyond the individual to include: physical, economic and social factors; supply, availability and accessibility (includes costing); availability of FV in stores in the local community, schools, community-based programs; and policies at global, regional, national and local levels [8-11]. Nutrition knowledge, preferences, and self-efficacy are also associated with increased intake of FV [8,12,13] and therefore have been included as secondary outcomes of interest for this review. Enhanced understanding of relevant intervention research and its impact on both access to and consumption of FV, as well as chronic disease health indicators, can provide guidance to public health decision-makers and policy-makers in the establishment and maintenance of effective and supportive nutritional programs.

Three reviews have previously examined the effect of community interventions to increase FV consumption, however, one review has not been updated in over 10 years [14] and the two others were limited to school-based interventions in high-income countries [15,16]; in these the previous reviews, the important issue of access to FV was not addressed [14-16]. The purpose of this scoping review is to identify and map literature that has evaluated the effects of community-based interventions designed to increase FV access and/or consumption among five to 18-year olds. The effectiveness of upstream interventions targeting children and adolescents (18 years and under) is of particular interest to decision makers since FV consumption patterns established in childhood tend to persist through adulthood [3-6]. We are aware of a potentially complementary review that intends to examine interventions to increase FV consumption in preschool children (under 5 years) [17] and therefore focused on 5 to 18 year olds. Due to the large scope of this review topic, interventions focused solely on adults or specialized populations such as those with a specific chronic disease were considered beyond the scope of this review.

The initial step in this scoping review involved defining the research question in a PICOS (Population-Intervention-Comparison-Outcome-Study Design) format. The PICOS question was defined by the research team and refined in collaboration with two public health librarians who subsequently implemented the search.

Methods

Inclusion criteria

Participants

This review includes populations from low-, middle-, and high-income countries and focuses on children aged five to 18 years.

Interventions We included interventions delivered to anyone that brings about changes in FV access and consumption for five to 18 year olds (i.e., parents, communities, and others within the population, including children themselves). The following types of community-based interventions were included:

- Nutrition-friendly schools initiatives
- Child nutrition programs such as breakfast/lunch and summer food service programs
- Community programs (e.g., community gardens)
- Health education related to increased FV consumption
- Economic supplements and subsidies to purchase FV, including subsidies for schools and food stamp programs
- Environmental school change strategies (e.g., changing the types of foods provided in cafeterias or vending machines)
- Environmental interventions/industry partnerships focused on point-of-purchase (e.g., restaurants, grocery store distributors and retailers); this might include campaigns to draw attention to healthier products in grocery stores or to highlight the benefits of certain foods or within store promotions and costs
- Population level initiatives (e.g., agricultural policies)
- Internet, telephone and media interventions
- Farm-to-school programs that use locally produced foods
- Social marketing campaigns
- Policies that affect accessibility factors
- Policies that seek to increase FV consumption (i.e., school board level, provincial/national level).

Locations

Intervention locations included: homes, schools, health departments, religious institutions, family/child centres, community/recreation centres, non-governmental organizations, and primary healthcare settings. We excluded...
programs or strategies delivered through hospitals; outpatient clinics located within hospital settings; commercial programs, such as Health Check; universities/colleges; and metabolic or weight loss clinics.

Outcomes of interest
Our primary outcomes included measures of both access to and consumption of fruit, vegetables, or both. Evidence of intervention effects included: measures at individual, family, school or community levels. Measures of FV access included: FV supply (i.e., market inventory); and change in food environments, food disappearance, and food sales (in cafeterias and grocery stores). Food supply measures included information about which food items are distributed to different regions and areas. Market inventory refers to records a food supply organization keeps about which foods are being ordered or are available. Measures of FV consumption included: diet and food intake records, self-reported and/or reported by parents, teachers or both; food frequency questionnaires/balance sheets; food wastage and plate waste; and micronutrient measures (i.e., biomarkers of exposure to FV).

Our secondary outcomes included: awareness of importance/impact of FV consumption among targeted individuals, attitudes towards consumption of FV, general health measures including changes in weight, and adverse outcomes or unintended consequences.

Study designs
Acceptable designs for this review included systematic reviews (included research syntheses and meta-analyses), randomized and non-randomized studies (including cluster-controlled and controlled time series), interrupted time series (to assess changes that occur over time), and before-after studies with controls. Relevant clusters within studies, included school units, classrooms or communities rather than individuals as the unit of analysis.

Search strategy
Our search strategy included: electronic bibliographic databases; grey literature databases; reference lists of key articles; targeted internet searching of key organization websites; and hand searching of key journals.

We searched the following databases, adapting search terms according to the requirements of individual databases in terms of subject heading terminology and syntax: MEDLINE and Pre-MEDLINE; EMBASE; CINAHL and Pre-CINAHL; the Cochrane Central Register of Controlled Trials (CENTRAL); the Cochrane Public Health Group Specialized Register; PsycINFO; Dissertation Abstracts; ERIC; Effective Public Health Practice Project Database; Sociological Abstracts; Applied Social Sciences Index; CSA Worldwide Political Science Abstracts; ProQuest (ABI/Inform Global); PAHO Institutional Memory Database; WHO Database on Child Growth and Malnutrition; Healthstar; Current Contents; ScienceDirect; and LILACS. The original search was conducted on August 17, 2010 and was updated on May 31, 2011, searching each database from its beginning. Our search strategy for the electronic databases is shown in Appendix 1 (Additional file 1).

We used the Grey Matters search tool, Federated Search for applicable policy documents, the System for Grey Literature in Europe and the Global Health Database to search for relevant grey literature. We conducted a hand search of the reference lists of all relevant articles for any additional references. We also searched key sites, including the World Health Organization (http://www.who.int/en/), the Food and Agriculture Organization of the United Nations (http://www.fao.org/), and Pan American Health Organization (http://new.paho.org/). Further, we had searched the following journals (for the 12-month period prior to the date of search [Aug. 17, 2010]): Health Policy, Journal of Public Health Policy; Journal of Health Politics, Policy, and Law; Health Economics, Policy, and Law; American Journal of Clinical Nutrition; Journal of Health Services Research; American Journal of Public Health; Journal of the American Dietetic Association; Nutrition Reviews; Maternal and Child Nutrition; Nutrition and Dietetics; Nutrition Research; Public Health Nutrition; American Journal of Preventive Medicine and Journal of Hunger and Environmental Nutrition. Journal selection for hand searching was guided by consultation with experts and our review advisory committee.

Study selection
A librarian conducted a search for relevant literature. The search strategy identified titles and abstracts. Teams of two reviewers conducted relevance screening to eliminate obviously irrelevant studies; each person independently reviewed titles and abstracts for relevance screening. All articles selected by either team member were retrieved for full text review. For citations with no abstract, the full article was retrieved for full text relevance screening.

Review teams independently examined the full text of retrieved articles for relevance. A third reviewer was consulted to resolve any disagreements related to inclusion of articles. Studies excluded following full text reviews and reasons for exclusion were documented. Articles in English, French and Spanish were reviewed at the inclusion screening stages (title/abstract and full text review).

Data extraction and sorting
For all included studies, data were extracted by two reviewers and included: year of publication, study design, types of outcomes reported and research location. When
there was more than one publication per study, these citations were grouped into ‘projects’. Only articles published in English and French underwent data extraction due to the fluency of available reviewers.

Results
Citation retrieval
The search strategy retrieved nearly 23,000 citations, which were reviewed by research assistants to remove duplications. Of the citations identified, 22,287 (97.3%) were found through published literature databases, 156 (0.7%) through grey literature searching, and 468 (2.0%) through hand searching relevant journals. Two reviewers independently examined the titles and abstracts of 19,607 unique citations for relevance. Following title and abstract review, 17,699 (90.3%) citations were excluded and 1,908 (9.7%) remained to undergo full text relevance screening. Following full text review, 1,619 (84.9%) studies were excluded with 289 (15.1%) unique studies remaining. Of the citations excluded during full text review, 52 (3.2%) were excluded because they were published in a language other than English or French, 366 (22.6%) had target audiences that did not include children aged five to 18 years or persons who had influence over FV access or consumption for children, 232 (14.3%) did not use a study design appropriate for evaluating interventions, 638 (39.4%) did not evaluate a relevant intervention or policy, 236 (14.6%) did not have baseline comparison data, and 95 (5.9%) did not report outcomes of interest for five to 18 year olds. See Figure 1 for a flowchart of literature retrieved, levels of screening, included studies, and types of outcomes.

The final 289 unique studies were found in the form of journal articles and reports. The published citations appeared in 100 periodicals with 89 published in five journals. These included 12 articles published in the Journal of Nutrition Education & Behavior, 14 in the Journal of Nutrition Education, 17 in the Journal of the American Dietetic Association, 19 in Preventive Medicine, and 27 in Public Health Nutrition. The year of publication for included articles ranged from 1970 to 2011, with 230 studies published during or since 2001. See Appendix 2 (Additional file 2) for details of all included studies, such as author(s), title, year, location, design, target population, and types of outcomes measured. As seen in Appendix 2, very few studies from low- or middle-income countries were identified.

Study designs and outcomes
The final 289 unique studies included 30 knowledge syntheses (including narrative systematic reviews and meta-analyses) [9,14,15,18-44], 27 randomized controlled trials [45-71], 55 quasi-experimental studies [72-126], 113 cluster controlled studies [94,127-237], 60 before-after studies [238-306], one mixed method study [307], and three controlled time series studies [308-310]. Several of studies had multiple publications reporting results (e.g., outcomes reported at different time points): Ammerman et al. [18,19,311], Bere [139,312,313]; Bere et al. [140,314,315], Byrd-Bredbenner et al. [146,316], Ciliska et al. [15,317], Chen et al. [48,318], Colby [247,319], Covelli [79,320], Cullen et al. [253,321], Gortmaker et al. [163,322], Haaren et al. [166,323], Hendy et al. [55,324], Hollar et al. [96,325,326], Hopper et al. [174,327], Jimenez et al. [100,328,329], Latimer [273,330], Lautenschlager and Smith [275,331], Lytle et al. [191,332,333], McCormick et al. [285,334], Nicklas et al. [198,335], Parmer et al. [203,336], Reinaerts et al. [217,337], Tak et al. [121,338,339], Tanner et al. [120,340], Taylor et al. [229,341], Thomas et al. [42,342], Thompson et al. [231,232,343], Walker [267,303], Wardle et al. [69,344], and Wrigley [306,345]. The number of citations for each study design and the reported outcome measures are summarized in Table 1. All study tallies included in the following sections and associated (Tables 2, 3, 4 and 5) include both knowledge syntheses and primary studies.

Figure 1 Flowchart of screening process for unique citations retrieved, number of included studies at each level of screening, and outcomes reported in included studies.
Intervention target populations and outcomes
The target audiences for interventions may have included sub-groups within the age range of five to 18 years; however, adults who influence children’s nutritional access or consumption may also have been targeted. For interventions that targeted these ‘other’ audiences, the articles needed to report outcomes for five to 18 year olds to be included in this review. Of the unique studies, 110 targeted five to seven year olds, 175 targeted eight to 10 year olds, 192 targeted 11 to 14 year olds, 73 targeted 15 to 18 year olds, 55 targeted parents, 12 targeted teachers, five targeted other service providers, and 13 targeted the general public. For a breakdown of outcomes reported in both knowledge syntheses and primary studies by target audience see Table 2. Additional file 2 summarizes target audiences for each individual study together with other study features.

Intervention locations and outcomes
Each unique citation was also examined to identify the locations in which interventions were delivered. Interventions were delivered in a wide variety of locations: schools (n = 233), supermarkets (n = 9), religious institutions (n = 2), community or community centres (n = 37), camps (n = 7), primary care settings (n = 5), homes (n = 38), by internet (n = 6), and other locations (n = 26). The other locations included after school programs, Boy and Girl Scout troop meetings, child care centres, farms or farmers’ markets, pediatricians’ offices, YMCAs and youth programs. The outcomes measured in various locations of intervention delivery are shown in Table 3 (includes knowledge syntheses and primary studies). Many studies were delivered in multiple locations such as in schools plus community [30,40,42,100,246,282], plus home [26,31,94,102,110,145,154,174,189,197,205,254,281,327,346], plus supermarkets [137], plus after school programs [43], plus the internet [103], plus other [9,27,67,195,257,286], or schools plus two or more other locations [19,23,24,29,35-38,88,157,159,161,317]. Several other studies combined a general community location plus a supermarket [82], camp [265], home [20,135], religious institution [53], other [181], or home plus internet components [231]. Three studies implemented interventions in primary care settings plus the home [25,62,63]. Others primarily targeted the home with other components delivered either by internet [251], in other locations [151,231,270], or both [46]. One study delivered an intervention within a religious institution combined and a camp [247].

Intervention strategies and outcomes
Most studies implemented multi-faceted intervention strategies with only approximately 10% of studies implementing individual strategies to increase FV access or consumption. An example of a multiple intervention

Table 1 Study design and outcomes

Study design	Access	Consumption	Knowledge/ Attitudes/ Awareness	General health measures	Harms	Total Studies by Design
Systematic Review	8	30	18	9	0	30
RCT	2	27	14	12	0	27
Quasi-Experimental	6	51	26	12	0	55
Cluster Controlled	11	107	59	25	3	113
Before-After (no control)	18	59	31	9	0	60
Mixed Method	1	1	1	0	0	1
Controlled Time Series	0	3	3	1	0	3

Table 2 Target audience and outcomes

Audience	Access	Consumption	Knowledge/ Attitudes/ Awareness	General health measures	Harms
5 - 7 year olds	16	109	55	21	1
8 - 10 year olds	30	175	98	40	3
11 - 14 year olds	29	187	102	44	3
15 - 18 year olds	12	71	42	21	0
Parents	15	57	33	22	1
Teachers/ school personnel	3	10	9	6	1
Other service providers	3	3	2	1	0
General public	6	14	4	2	0
strategy is an educational series delivered primarily in a school with an added homework component to engage parents. The outcomes measured using different intervention strategies are shown in Table 4 (knowledge syntheses and primary studies).

Intervention delivery and outcomes

Unique studies were also examined to determine who had delivered interventions. Most often teachers (n = 130), school administrators (n = 32) and/or other school personnel (n = 49) were involved in delivery. In other cases, dieticians (n = 19), health departments or health ministries (n = 11), and other health professionals (n = 23) were responsible for implementation. Community lay persons and peers were involved in delivering interventions in 12 and 15 studies, respectively. In some studies the researchers implemented the interventions (n = 13), whereas in many others it was not stated who delivered the interventions. A breakdown of the outcomes and by whom the interventions were delivered (knowledge syntheses and primary studies) is summarized in Table 5. Some studies had interventions that were delivered by multiple individuals, such as teachers plus another community or school individual (e.g., administrator, health professional, other school personnel, researcher).

Table 3: Intervention locations and outcomes

Location	Access	Consumption	Knowledge/ Attitudes/ Awareness	General health measures	Harms
School	33	229	130	47	3
Supermarket	2	9	6	2	0
Religious institution	0	2	2	1	0
Community	12	37	22	15	1
Camps	2	5	5	2	0
Primary care setting	0	5	1	2	0
Home	9	38	22	10	1
Internet	2	5	4	3	0
Other	5	26	15	9	0

Table 4: Intervention strategies and outcomes

Intervention Strategy	Access	Consumption	Knowledge/ Attitudes/ Awareness	General health measures	Harms
Class series	14	172	107	35	2
Community-wide intervention	9	31	16	14	0
Comprehensive school health	4	17	16	6	0
Group discussion	6	43	29	13	0
Individual counseling/ teaching	3	32	16	9	0
Interactive approach	25	166	100	52	1
Parent involvement	16	105	63	34	1
Pedagogical/ lecture approach	2	28	14	10	0
Peer-led	2	19	16	5	0
Community garden	4	19	13	2	0
Policy	16	37	15	8	1
Marketing	14	51	31	15	1
Educational written material	19	127	76	36	2
Behavior modification	8	67	38	23	1
Creating supportive environments	15	79	49	27	0
Provision of fruit and/or vegetables	23	116	64	20	2
Other	32	144	76	32	2
personnel [224,264,307]; peers plus teachers and/or administrators [16,30,35,40,55,143,155,190]; administrators and other school personnel [193,297,305]; peers plus other school personnel [55,160]; peers plus administrators plus other school personnel [173]; peers plus dietician [187,277]; peers plus community members [124]; dietician plus other school or health professionals [19,115,250,318]; and other school or health professionals plus other community or health providers [191,230,286].

Knowledge syntheses summary

This scoping review identified 30 systematic reviews, all of which reported on consumption outcomes; only eight reported on access outcomes as well. Approximately two-thirds reported on our secondary outcomes of interest that included knowledge, attitudes, awareness, and general health measures. None of the included systematic reviews reported on harms.

Discussion

The Cochrane Public Health Group acknowledges that a scoping review is a critical step in defining a systematic review question [347]. We identified a large volume of interventional research found within peer-reviewed and grey literature associated with FV access and consumption. Using a scoping review process [347], we categorized these studies with respect to outcomes based on a number of parameters such as study design, target audience, intervention location, intervention strategy, and intervention deliverer.

The predominant outcome measure was consumption. In comparison, harm was included as an outcome measure in an extremely small number of studies, which may indicate that there are few risks or potential harms associated with interventions used to increase FV consumption. It also possible that harms were overlooked given that few of these studies evaluated interventions implemented in low- or middle-income countries where populations could be more vulnerable. The bias of studies toward high-income countries and not low- and middle-income countries warrants further investigation as intervention effectiveness may vary across these populations.

While consumption measures were commonly reported, this review identified a small yet important subset of literature examining the effectiveness of interventions that increase access to FV. We believe this to be a relatively overlooked but critically important issue since consumption of FV is contingent upon access to them. A number of articles discussed FV accessibility; however, many of these studies lacked before-after comparison data or other comparison groups. These studies were excluded during full text relevance screening since they did not evaluate the impact of an intervention or policy. Specific measures of access were lacking in included studies; authors often identified a goal of evaluating the impact of interventions or policies to increase FV access but measured changes in consumption behaviors as a proxy for access.

Measuring FV access seems to be further complicated by a lack of consistent, meaningful, validated instruments; across the studies there was great variability in the ways access was measured. While some studies evaluated the impact of policy change on FV access and consumption, very few looked at population level initiatives or reported on population subgroups to be able to evaluate their impact on children aged five to 18 years. Further, despite the potential benefits of increasing access to FV, only a small number of studies partnered with farms or involved establishing community gardens. We also did not find any studies that evaluated changes in food supply or market inventory, two additional factors that influence access to and consequently consumption of FV.

This review has several methodological and operational limitations. A number of studies that examined knowledge, attitudes, awareness, and general health measures were excluded if they did not also examine either of our primary outcomes of access or consumption.

Intervention delivered by	Access	Consumption	Knowledge/ Attitudes/ Awareness	General health measures	Harms
Teacher	14	130	85	31	3
Principal/school admin	9	30	14	6	1
Community lay person	3	15	11	4	0
Peer	1	17	15	4	0
Farmer	0	2	2	0	0
Dietician	2	18	8	7	0
Other health professional	2	23	10	8	0
Other school personnel	10	49	29	9	2
Health department or Ministry of Health	3	11	3	2	0
Other	29	148	80	37	1
It is possible, that relevant studies that explored our secondary outcomes were missed as a result of these methodological considerations. Operationally, the included studies were limited by the language fluency of the reviewers. Five articles published in Spanish were reviewed and included through titles and abstracts and full text phases, however because the Spanish-speaking reviewers were not available at the data extraction stage we excluded these papers. Data extraction was limited to studies published in English or French. Finally, including participants older than 18 years would have broadened the scope of available literature but the number of studies would not have been manageable for this scoping review. Therefore, the findings of this review are limited to children aged five to 18 years.

Conclusions
This scoping review sought to identify and map literature that has evaluated the effects of community-based interventions designed to increase FV access and/or consumption among five to 18-year-olds. A variety of interventions have been used to support and increase FV consumption. Schools were the most common location for interventions, which were typically multi-faceted, targeted at individuals less than 15 years of age, and delivered by teachers or other school personnel. Additional research on implementing interventions in low- and middle-income countries is warranted based on the limited literature focusing on those populations. Finally, a somewhat narrow field of literature was identified with respect to FV access, suggesting that future research examining interventions to increase FV consumption should include direct outcome measures of FV access. Previously published syntheses revealed a gap in our understanding of the effectiveness of interventions that increase access to FV, since no syntheses that examined access to fruit and vegetables among children were found through our comprehensive literature search. While this scoping review identified several knowledge synthesis products, all were focused on FV consumption. Since consumption is contingent upon access, a focused systematic review that examines these interventions is needed. Such a review should examine and synthesize literature that seeks to increase access through interventions including (but not limited to): influencing FV supply, changing food environments, and enhancing FV sales in cafeterias and grocery stores.

Additional files

Additional file 1: Search strategy.
Additional file 2: Details of included studies.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RG participated in the conception and methodological design of this review, participated in searching and reviewing studies, and drafted the manuscript. DFL, DC, and LP participated in the conception and methodological design of this review, participated in searching and reviewing, and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We wish to thank the Fruit and Vegetable Access and Consumption Review Study Team, Rachel Warren, and Sharon Peck-Reid for their assistance in completing this scoping review.

Received: 22 December 2011 Accepted: 23 August 2012
Published: 30 August 2012

References
1. World Health Organization: Global Strategy on Diet, Physical Activity. Geneva, Switzerland: World Health Organization; 2004.
2. U.S. Department of Health and Human Services and U.S. Department of Agriculture: Dietary Guidelines for Americans. Washington, DC: U.S. Government Printing Office; 2005.
3. Lien N, Lytle LA, Klepp KI: Stability in consumption of fruit, vegetables, and sugary foods in a cohort from age 14 to age 21. Prev Med 2001, 33(3):217–226.
4. Lytle LA, Kubik MY: Nutritional issues for adolescents. Best Pract Res Clin Endocrinol Metab 2003, 17(2):177–189.
5. Kelder SH, Perry CL, Klepp KI: Longitudinal tracking of adolescent smoking, physical activity, and food choice behaviors. Am J Public Health 1994, 84(7):1121–1126.
6. Kvaavik E, Andersen LF, Klepp KI: The stability of soft drinks intake from adolescence to adult age and the association between long-term consumption of soft drinks and lifestyle factors and body weight. Public Health Nutr 2005, 8(2):149–157.
7. Lock K, Pomerleau J, Causer L, Altmann DR, McKenzie M: The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull World Health Organ 2005, 83(2):100–108.
8. Kroliner R, Rasmussen M, Brug J, Knut-Inge K, Wind M, Due P: Determinants of fruit and vegetable consumption among children and adolescents: a review of the literature. Part II: qualitative studies. Int J Behav Nutr Phys Act 2011, 8(1):112.
9. Blanchette L, Brug J: Determinants of fruit and vegetable consumption among 6–12-year-old children and effective interventions to increase consumption. J Hum Nutr Diet 2005, 18(6):431–443.
10. Bodor JN, Rose D, Farley TA, Swalm C, Scott KD: Neighbourhood fruit and vegetable availability and consumption: the role of small food stores in an urban environment. Public Health Nutr 2007, 11(4):413–420.
11. Rasmussen M, Kolner R, Klepp KI, Lytle L, Brug J, Bere E, Due P: Determinants of fruit and vegetable consumption among children and adolescents: a review of the literature. Part I: quantitative studies. J Behav Nutr Phys Act 2006, 8(22): (Epublication).
12. Ball K, Crawford D, Mishra GD: Socio-economic inequalities in women’s fruit and vegetable intakes: a multilevel study of individual, social and environmental mediators. Public Health Nutr 2006, 9(6):623–630.
13. Kristjanson-Dottir AG, Thordottir I, De Bourdieu-Huij I, Due P, Wind M, Klepp KI: Determinants of fruit and vegetable intake among 11-year-old schoolchildren in a country of traditionally low fruit and vegetable consumption. Int J Behav Nutr Phys Act 2006, 3(4).
14. Ciliska D, Miles E, O’Brien MA, Turi C, Tomaszik HH, Donovan U, Beyers J: Effectiveness of community-based interventions to increase fruit and vegetable consumption. J Nutr Educ 2000, 32(6):341–352.
15. de Sa J, Lock K: School-based Fruit and Vegetable Schemes: A review of the Evidence. UK: Department of Public Health and Policy, London School of Hygiene and Tropical Medicine London; 2007:1–39.
16. Delgado-Noguera M, Tort S, Martinez-Zapata MJ, Bonfill X: Primary school interventions to promote fruit and vegetable consumption: a systematic review and meta-analysis. Prev Med 2011, 53(1):213–9.
17. Walfendi L, Wyse RJ, Britton BI, Campbell KJ, Hodder RK, Stacey FG, McElRuff P, James EL: Interventions for increasing fruit and vegetable consumption in preschool aged children (Protocol). Cochrane Database Syst Rev 2010, Issue 6. Art. No.: CD008052.
18. Ammerman A, Lindquist C, Research Triangle, C, Research Triangle Institute-University of North Carolina Evidence-based Practice, S, United, R Agency for Healthcare, and Quality: The efficacy of interventions to modify dietary behavior related to cancer risk. In Evidence report/Technology Assessment AHRQ Publication. Vol. no. 25. Edited by. Rockville Agency for Healthcare Research and Quality, U.S. Dept. of Health and Human Services, 2001.

19. Ammerman AS, Lindquist CH, Loh KN, Hersey J: The efficacy of behavioral interventions to modify dietary fat and fruit and vegetable intake: a review of the evidence. Prev Med 2002, 35(1):25–41.

20. Berti PR, Kasevec J, FitzGerald S: A review of the effectiveness of agriculture interventions in improving nutrition outcomes. Public Health Nutr 2004, 7:599–609.

21. Burchett H: Increasing fruit and vegetable consumption among British primary schoolchildren: a review. Heal Educ 2003, 103:299–109.

22. Campbell K, Waters E, O'Neill S, Summerbell C: Interventions for preventing obesity in childhood. A systematic review. Obes Rev 2001, 2(3):139–157.

23. French SA, Stables G: Environmental interventions to promote vegetable and fruit consumption among youth in school settings. Prev Med 2003, 36:765–769.

24. Hastings G, Stead M, McDermott L, Forsyth A, Mackintosh A, Rayner M: Review of Research on the Effects of Food Promotion to Children. Glasgow, Scotland: Food Standards Agency by the Centre for Social Marketing, the University of Strathclyde; 2003.

25. Hingle MD, O'Connor TM, Dave JM, Baranowski T: Parental involvement in interventions to improve child dietary intake: a systematic review. Prev Med 2010, 51(2):103–111.

26. Howerton MW, Bell BS, Dodd KW, Berrigan D, Stolzenberg-Solomon R, Mykkanen L, Nunnally C, Violon C, Roche J, McLain-Alben B, Free-Teary J: Child- and parent-targeted interventions to improve Memphis GEMS pilot study. Ethnity & Disease 2003, 13(1):540–553.

27. Jago R, Baranowski T, Cullen KW, Thompson DJ, Nicklas T, Zakeri IF, Rochon J: The Fun, Food, and Fitness Project (FFFP): The Baylor GEMS pilot study. Nutrition & Cancer 2003, 13(1):540–553.

28. Jaime PC, Lock K, Thompson DJ, Nicklas T, Zakeri IF, Rochon J: The Fun, Food, and Fitness Project (FFFP): The Baylor GEMS pilot study. Ethnity & Disease 2003, 13(1):540–553.

29. De Bourdeaudhuij I: Programmes Promoting Fruit and Vegetable Intake in Individuals of all Ages. Geneva, Switzerland: World Health Organization; 2005:1–280.

30. Summerbell CD, Waters E, Edmunds LD, Kelly S, Brown T, Campbell KJ: Interventions for preventing obesity in children. Cochrane Database Syst Rev 2005, (3):CD001478.

31. Kremers SPJ, de Bruijn GJ, Droomers M, van Lenthe FJ, Brug J: The effects of the Fun, Food, and Fitness Project on fruit and vegetable consumption: interventions using the Theory of Planned Behavior related to cancer risk. Prev Med 2007, 45:133–138.

32. Chen JL, Weiss S, Heyman MB, Cooper B, Lustig RH: The efficacy of the web-based childhood obesity prevention program in chinese american adolescents (web abc study). J Adolesc Health 2011, 49(2):148–154.

33. DeBar LL, Ritenbaugh C, Aickin M, Orwoll E, Elliot D, Dickerson J, Vuckovic N, Stevens VI, Moes E, Irving LM: Youth: a health plan-based lifestyle intervention increases bone mineral density in adolescent girls. Archives of Pediatrics & Adolescent Medicine 2006, 160(12):1269–1276.

34. Shephard J, Harden A, Rees R, Brunton G, Garcia J, Oliver S, Oakley A: Young people and healthy eating: a systematic review of research on barriers and facilitators. Heal Educ Res 2006, 21(2):239–257.

35. Summerbell CD, Waters E, Edmunds LD, Kelly S, Brown T, Campbell KJ: Interventions for preventing obesity in children. Cochrane Database Syst Rev 2005, (3):CD001478.

36. Thomas H, Cikola D, Micucci S, Wilson-Abra J, Dobbins M: Effectiveness of Physical Activity Enhancement and Obesity Prevention Program in Children and Youth. Hamilton: Effective Public Health Practice Project, 2004.

37. Van Caunenberge E, Maes L, Spitael RA, Devries M, Herreman F, Brug J, Oppert JM, De Bourdeaudhuij I: Effectiveness of school-based interventions in Europe to promote healthy nutrition in children and adolescents: systematic review of published and ‘grey’ literature. Br J Nutr 2010, 103(6):781–797.

38. Wali J, Mitrshcrck CN, Blakely T, Rodgers A, Wilton J: Effectiveness of monetary incentives in modifying dietary behavior: a review of randomized, controlled trials. Nutr Rev 2006, 64(12):518–531.

39. Baranowski T, Baranowski J, Thompson D, Buday R, Jago R, Griffith MI, Islam N, Nguyen N, Watson KJ: Video game play, child diet, and physical activity behavior change: a randomized clinical trial. Am J Prev Med 2011, 40(3):33–38.

40. Baranowski T, Baranowski JC, Cullen KW, Thompson DJ, Nicklas T, Zakeri IF, Rochon J: The Fun, Food, and Fitness Project (FFFP): The Baylor GEMS pilot study. Ethnity & Disease 2003, 13(1):540–553.

41. Chen JL, Weiss S, Heyman MB, Cooper B, Lustig RH: The efficacy of the web-based childhood obesity prevention program in chinese american adolescents (web abc study). J Adolesc Health 2011, 49(2):148–154.

42. DeBar LL, Ritenbaugh C, Aickin M, Orwoll E, Elliot D, Dickerson J, Vuckovic N, Stevens VI, Moes E, Irving LM: Youth: a health plan-based lifestyle intervention increases bone mineral density in adolescent girls. Archives of Pediatrics & Adolescent Medicine 2006, 160(12):1269–1276.

43. Epstein LH, Gordy CC, Raynor HA, Beddome M, Kiananovski CK, Baluch R: Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obes Res 2001, 9(3):171–178.

44. Faith MS, Rose E, Matz PE, Pietrobelli A, Epstein LH: Co-twin control designs for testing behavioral economic theories of child nutrition: methodological note. Int J Obes 2006, 30(10):1501–1505.

45. Francis M, Nichols SSD, Dalrymple N: The effects of a school-based intervention programme on dietary intake and physical activity among primary-school children in Trinidad and Tobago. Public Health Nutrition 2010, 13(5):738–747.

46. Fullerton JA, Rydell S, Kubik MV, Lytle L, Boulter K, Story M, Neumark-Sztainer D, Dudovitz B, Ganwcy A: Healthy home offers through the mealtine environment (HOME): feasibility, acceptability, and outcomes of a pilot study. Obesity 2010, 18(SUPPL. 1):S59–S74.

47. Grattan L, Povey R, Clark-Carter D: Promoting children’s fruit and vegetable consumption: interventions using the Theory of Planned Behaviour as a framework. Br J Heal Psychol 2007, 12(4):639–650.

48. Hendy HM, Williams KE, Camise TS: “Kids Choice” school lunch program increases children’s fruit and vegetable acceptance. Appetite 2005, 45:250–263.

49. Jaime PC, Machado FM, Westphal MF, Monteiro CA: Nutritional education and fruit and vegetable intake: a randomized community trial. Revista De Sao Paulo Publica 2007, 41(1):155–157.

50. Johnston CA, Palic J, Tyler C, Stansberry S, Reeves RS, Fozery JP: Increasing vegetable intake in mexican-american youth: a randomized controlled trial. J Am Diet Assoc 2011, 111(5):716–720.

51. LaPorte MR, Gibbons CC, Cross E: The effects of a cancer nutrition education program on sixth grade students. School Food Service Research Review 1989, 13(2):124–129.

52. Lubans DR, Morgan PJ, Callister R, Collins CE: Effects of integrating pedometers, parental materials, and E-mail support within an extracurricular school sport intervention. J Adolesc Heal 2009, 44(2):176–183.

53. McIntosh J, Dixon LB, Smiciklas-Wright H, Mitchell D, Shannon B, Tershakovec A: Change in nutrient intakes, number of servings, and contributions of total fat from food groups in 4- to 10-year-old children enrolled in a nutrition education study. J Am Diet Assoc 1996, 96:865–873.
101. Kelder S, Hoelscher DM, Barroso CS, Walker JL, Cribb P, Hu S. The CATCH Kids Club: a pilot after-school study for improving elementary students’ nutrition and physical activity. Public Health Nutr 2005, 8(2):133–140.

102. Liquori T, Koch PD, Contesso IR, Castle J. The cookshop program: evaluation of a nutrition education program linking lunchroom food experiences with classroom cooking experiences. J Nutr Educ 1998, 30(3):202–213.

103. Long JD. The Effects of a School-Based Nutrition Education Intervention on self-efficacy for Healthy Eating. Usual Food Choices, Dietary Knowledge, and Fruit, Vegetable, and Fat Consumption in Adolescents. In PhD thesis. San Antonio, TX: University of Texas Health Science Center; 2001:202.

104. Long JD, Stevens KR. Using technology to promote self-efficacy for healthy eating in adolescents. J Nutr Scholarsh Off Publ Sigma Theta Tau Int Honor Soc Nurs Sigma Theta Tau 2004, 36(2):134–139.

105. Manios Y, Moschandreas J, Hatzis C, Kafatos A. Health and nutrition education in primary schools of Crete: changes in chronic disease risk factors following a 6-year intervention programme. B J Nutr 2002, 88:315–324.

106. Musgrove O. Impact of a nutrition education curriculum on snack choices of children ages six and seven years. 9 J Nutr Educ Behav 2007, 39(5):281–285.

107. McAleese JD, Rankin LL. Nutrition knowledge of school going adolescent girls in Hyderabad, KVR. J Nutr Educ 2002, 34(3):287–295.

108. Morgan PJ, Warren JM, Lubans DR, Saunders KL, Quick GI, Collins CE. Evaluation of a theater panel on nutrition knowledge of school going adolescent girls. J Nutr Educ Behav 2000, 32(1):65–73.

109. Olvera N, Bush JA, Sharma SV, Knox B, Scherer RL, Butte NF. Impact of a nutrition education intervention on knowledge, self-efficacy for Healthy Eating, Usual Food Choices, Dietary Knowledge, and Fruit, Vegetable, and Fat Consumption in Adolescents. In PhD thesis. San Antonio, TX: University of Texas Health Science Center; 2001:202.

110. Olvera N, Bush JA, Sharma SV, Knox B, Scherer RL, Butte NF. BOUNCE: a community-based mother-daughter healthy lifestyle intervention for low-income Latino families. Obesity 2010, 18(Suppl 1):S102–S104.

111. Perry CL, Zauner M, Cakes JM, Taylor G, Bishop DB. Evaluation of a theater production about eating behavior of children. J Sch Heal 2002, 72(6):256–261.

112. Raghunatha Rao D, Vijayapushpam T, Subba Rao GM, Antony GM, Sarma KVR. Dietary habits and effect of two different educational tools on nutrition knowledge of school going adolescent girls in Hyderabad, India. Eur J Nutr 2007, 46(1):345–352.

113. Ratcliffe MM, Merrigan KA, Rogers BL, Goldberg JP. The effects of school garden experiences on middle school-aged students’ knowledge, attitudes, and behaviors associated with vegetable consumption. Heal Promot Pract 2011, 12(1):36–43.

114. Russ CR, Tate DF, Whiteley JA, Winnett RA, Winnett SG, Pfeifer J. The effects of an innovative WWF-based health behavior program on the nutritional practices of tenth grade girls: preliminary report on the Est4Life Program. J Genr Cult Heal 1998, 3(2):121–128.

115. Schagen SB, Blennow S, Schagen I, Scott E, Teerman J, White G, Ransley J, Cade J, Greenwood D. In Evaluation of the School Fruit and Vegetable Pilot Scheme: final report. Edited by R. National Foundation for Educational. Big Lottery Fund: University of Leeds; 2005.

116. Schwartz RP, Hamre R, Dietz WH, Wasserman RC, Slora EJ, Myers EF, Sullivan S, Rockett H, Thoma KA, Dumitru G, Resnicow KA. Office-based motivational interviewing to prevent childhood obesity - A feasibility study. Arch Pediat Adolesc Med 2007, 161(5):495–501.

117. Shannon B, Graves K, Hart M. Food behavior of elementary school students after receiving nutrition education. J Am Diet Assoc 1982, 81(4):428–434.

118. Simons-Morton BG, Parcel GS, Baranowski T, Forthofer R, O’Hara NM. Promoting physical activity and a healthful diet among children: results of a school-based intervention study. Am J Public Heal 1991, 81(8):866–991.

119. Singhal N, Misra A, Shah P, Gulati S. Effects of controlled school-based multi-component model of nutrition and lifestyle interventions on behavior modification, anthropometry and metabolic risk profile of urban Asian Indian adolescents in North India. Eur J Clin Nutr 2010, 64(4):364–373.

120. Tanner A, Duhe S, Evans A, Condaksky M. Using student-produced media to promote healthy eating - A pilot study on the effects of a media and nutrition intervention. Sci Commun 2006, 30(1):108–125.

121. Tak NL, te Velde SJ, Brug J. Long-term effects of the Dutch Schoolgruiten Project–promoting fruit and vegetable consumption among primary-school children. Public Health Nutr 2009, 12(8):1213–1223.

122. Vargas ICDS, Sichieri R, Sandre-Pereira G, Gó, Veiga GV. Evaluation of an obesity prevention program in adolescents of public schools. Rev Saude Publica 2011, 45(1):59–68.

123. Wagner JL. The Relationship of Parent and Child Food Choices: Influences of a Supermarket Intervention. United States: Virginia Polytechnic Institute and State University; 1999:171.

124. Walsh CM, Dannhauser A, Joubert G. Impact of a nutrition education programme on nutrition knowledge and dietary practices of lower socioeconomic communities in the Free State and Northern Cape. South Afr J Clin Nutr 2003, 16(3):99–109.

125. White G. Evaluation of the school fruit and vegetable pilot scheme. Educ Heal 2006, 24(4):62–64.

126. Williams JE. Social Support and Adolescent Nutrition Behaviors in African-American Families. United States: University of South Carolina; 2004:188.

127. Aggazzino E, Esposito D, Genovese S, Manzi E, Russo Krauss P. Evaluation of the effectiveness of a nutrition education intervention performed by primary school teachers. Ital J Public Health 2007, 4(6):131–137.

128. Al Ashfield-Watt P, Stewart EA, Scheffer JA. A pilot study of the effect of providing daily free fruit to primary-school children in Auckland, New Zealand. Public Health Nutr 2009, 12(5):693–701.

129. Amaro S, Viggiano A, Di Costanzo A, Madeso I, Baccari ME, Marchetti E, Raia M, Viggiano E, Deepak S, Monda M, De Luca B, Kaleo, a new educational board-game, gives nutritional rudiments and encourages healthy eating in children: a pilot cluster randomized trial. Eur J Pediatr 2006, 165(9):630–635.

130. Anderson A, Hetherington M, Adamson A, Porteous LEG, Adamson AI. The impact of a school-based nutrition education intervention on dietary intake and cognitive and attitudinal variables relating to fruits and vegetables. Public Health Nutr 2005, 8(6):650–656.

131. Angelopoulos PD, Millonis HJ, Grammatikaki E, Moschonis G, Xianos Y. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health 2009, 19(3):319–325.

132. Ask AS, Herness S, Aarek I, Vik F, Brodahl C, Haugen M. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health 2009, 19(3):319–325.

133. Ask AS, Herness S, Aarek I, Vik F, Brodahl C, Haugen M. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health 2009, 19(3):319–325.

134. Auld GW, Romaniello C, Heimendinger J, Hambidge C, Hambidge M. Outcomes from a school-based nutrition education program alternating special resource teachers and classroom teachers. J Sch Heal 1999, 69(8):403–408.

135. Baranowski T, Baranowski J, Cullen KW, DeMoor C, Rittenberry L, Hebert D. A day achievement badge for African-American Boy Scouts: pilot outcome results. Prev Med 2002, 34(3):353–363.

136. Baranowski T, Baranowski J, Cullen KW, de Moor C, Hambidge M, Hambidge C. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health 2009, 19(3):319–325.

137. Ask AS, Herness S, Aarek I, Vik F, Brodahl C, Haugen M. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health 2009, 19(3):319–325.

138. Bates HM. Promoting Healthy Eating and Active Living in Schools: A Pilot Study. Canada: University of Alberta; 2010:213.

139. Bee E. Fruits and Vegetables make the Mark. Oslo: Institute for Research, University of Oslo; 2004.

140. Bee E, Veerod MB, Bjelland M, Kjepp H. Outcome and process evaluation of a Norwegian school-randomized fruit and vegetable intervention: Fruits and Vegetables Make the Marks (FVMM). Heal Educ Res 2005, 21(2):258–267.

141. Bee E, Veerod MB, Bjelland M, Kjepp H. Free school fruit - Sustained effect three years later. Int J Behav Nutr Phys Act 2007, 4(15):10–.

142. Birnbaum AS, Lytle LA, Story M, Perry CL, Murray DM. Are differences in exposure to a multimedia school-based intervention associated with varying dietary outcomes in adolescents? Health Educ Behav Off Publ Soc Public Health Educ 2002, 29(4):427–443.
186. Lewis M, Brun J, Talmage H, Rasher S: Teenagers and food choices: the impact of nutrition education. J Nutr Educ 1988, 20(6):336–340.

187. Lo E, Coles R, Humbert ML, Poloski J, Henry CJ, Whiting SJ: The Peterborough Schools Nutrition Project: a multiple school-based intervention to affect adolescents’ diets: Results from the TEENs study. J Sch Heal 2004, 74(2):270–287.

188. Mangunkusumo RT, Brug J, de Koning HJ, van der Lei J, Raat H: School nutrition action groups and their effect upon the outcomes and self-reported behavior. Heal Educ Q 1998, 11(3):277–294.

189. Luepker RV, Perry CL, Nader N, Parcell GS, Stone EJ, Webber LS, Elder JP, Feldman HA, Johnson CC: Outcomes of a field trial to improve children’s dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health. CATCH collaborative group. JAMJ Am Med Assoc 1996, 275(10):769–776.

190. Lytle LA, Murray DM, Perry CL, Story M, Birnbaum AS, Kubik MY, Varnell S: A three-year school-based nutrition education intervention by teachers may promote fruit and vegetable consumption among second-grade students. J Sch Heal 2009, 89(7):769–773.

191. Mauriello LM, Ciavatta MM, Paiva AL, Sherman KJ, Castle PH, Johnson JL, Reynolds KD, Franklin FA, Binkley D, Raczynski JM, Harrington KF, Kirk KA, Person S: Increasing the fruit and vegetable consumption of youth. J Sch Heal 2010, 80(9):931–937.

192. Muth ND, Chatterjee A, Williams D, Cross A, Flower K: Making an IMPACT: an experiential learning approach for a nutrition education program to affect adolescents’ diets. J Sch Heal 2007, 77(6):526–531.

193. Neumark-Sztainer D, Story M, Hannan PJ, Rex J: Adolescents’ food choices and obesity prevention program for adolescent girls. J Sch Heal 2009, 79(5):369–376.

194. Nicklas TA, Johnson CC, Myers L, Farris RP, Cunningham A: Computerised tailored intervention for increasing intakes of fruit, vegetables, brown bread and wholegrain cereals in adolescent girls. Public Health Nutr 2010, 13(8):1271–1278.

195. Nolan LM, Strycler BJ, Guarino A, Parmer SM: Effects of a nutrition education program on the dietary behavior and nutrition knowledge of second-grade and third-grade students. J Sch Heal 2007, 77(4):129–133.

196. O’Connell KM: Reducing overweight through a multidisciplinary school-based intervention. Obesity (Silver Spring, Md) 2005, 13(5):923–928.

197. O’Connell KM, Barg F, Poses G, Parcell GS, O’Hara NM, Baranowski T: Does the school fruit and vegetable scheme in Sheffield affect food choices? J Sch Heal 2007, 77(4):302–307.

198. O’Connor KM, Neve N: The impact of education on fruit and vegetable consumption: distribution or a multicomponent programme? Public Health Nutr 2007, 10(9):939–947.

199. O’Connor KM, Neve N: The impact of education on fruit and vegetable consumption: distribution or a multicomponent programme? Public Health Nutr 2007, 10(9):939–947.

200. Parcell GS, Simons-Morton B, O’Hara NM, Baranowski T: School promotion of healthful diet and physical activity: impact on learning outcomes and self-reported behavior. Heal Educ Q 1989, 16(2):181–199.

201. Parish SM, Salisbury-Glennon J, Shannon D, Struempler B: A randomized controlled trial of single versus multiple health behavior change: promoting physical activity and nutrition among adolescents. Health Psychol DF J Dev Health Psychol Am Psychol Assoc 2004, 23(3):314–318.

202. Perry CL, Luepker RV, Murray D, Kurth C, Mullis R, Crockett S, Jacobs DR Jr: Parent involvement with children’s health promotion: the Minnesota home team. Am J Public Health 1988, 78(9):1156–1160.

203. Perry CL, Lytle LA, Feldman H, Nicklas T, Stone E, Zive M, Garceau A, Kelder SH: Effects of the Child and Adolescent Trial for Cardiovascular Health (CATCH) on fruit and vegetable intake. J Nutr Educ 1998, 30(3):34–36.

204. Perry CL, Mullis R, Male M: Modifying eating behavior of children: a pilot intervention study. J Sch Heal 1985, 55(10):399–402.

205. Powers AR, Struempler BJ, Guarino A, Parmer SM: Effects of a nutrition education program on the dietary behavior and nutrition knowledge of second-grade and third-grade students. J Sch Heal 2007, 77(4):129–133.

206. Prochaska JJ, Sallis JF: A randomized controlled trial of single versus multiple health behavior change: promoting physical activity and nutrition among adolescents. Health Psychol DF J Dev Health Psychol Am Psychol Assoc 2004, 23(3):314–318.

207. Quinn LJ, Horacek TM, Castle J: The impact of COOKSHOP on the dietary habits and attitudes of fifth graders. Top Clin Nutr 2003, 18(1):42–48.

208. Rodcliffe B, Ogden C, Welsh J, Carroll S, Coyne T, Craig P: The Queensland School Breakfast Project: a health promoting schools approach. Nutr Diet 2005, 62:33–40.

209. Raju S, Rajappal P, Gilbordie TJ: Marketing healthful eating to children: the effectiveness of incentives, pledges, and competitions. J Mark 2010, 74(3):93–106.

210. Reynolds KD, Bishop DB, Chou CP, Xie B, Nebeling L, Perry CL: Contrastng mediating variables in two 5-day nutrition intervention programs. Prev Med 2004, 39(5):882–893.

211. Reynolds KD, Franklin FA, Binkley D, Raczynski JM, Harrington KF, Kirk KA, Person S: Increasing the fruit and vegetable consumption of fourth-graders: results from the high 3 project. Prev Med 2000, 30(4):309–319.

212. Ryan L: The effect of nutrition education on improving fruit and vegetable consumption of youth. J Eat 1995, 33(2):Feature Articles SFAEA3 (Epublishation).

213. Safta P, Rudof MC, Dixey R, Hill AJ, Barth JH, Cade J: Randomised controlled trial of primary school based intervention to reduce risk factors for obesity. BMJ (Clinical research ed) 2001, 323(7292):1029–1032.

214. Shannon B, Chen AN: A three-year school-based nutrition education study. J Nutr Educ 1988, 20(3):114–124.

215. Shemilt I, Harvey I, Sheplestone L, Swift L, Reading R, Mugford M, Belderson P, Norris N, Thoburn J, Robinson J: A national evaluation of school breakfast clubs: evidence from a cluster randomized controlled trial and an observational analysis. Child Care Health Dev 2004, 30(5):413–427.

216. Siega-Riz AM, El Ghorni L, Mobley C, Gillis B, Stadler D, Hartstein J, Volpe SL, Virus A, Bridgman J: The effects of the HEALTHY study intervention on middle school student dietary intakes. Int J Behn Nutr Phys Act 2011, 8(77) (Epublishation).

217. Smith HM, Justice CL: Effects of nutrition programs on third grade students. J Nutr Educ 1979, 11:92–95.

218. Smolak L, Levine MP, Scherner F: A controlled evaluation of an elementary school primary prevention program for eating problems. J Psychosom Res 1998, 44(3):339–353.

219. Spiegel SA, Fouik D: Reducing overweight through a multidisciplinary school-based intervention. Obesity (Silver Spring, Md) 2006, 14(1):98–96.

220. Taylor RW, McAuley KA, Barbezat W, Strong A, Williams SM, Mann JJ: APPLE Project: 2-y findings of a community-based obesity prevention program in primary school age children. Am J Clin Nutr 2007, 86(5):735–742.

221. te Velde SJ, Brug J, Wind M, Hildonan C, Bjelland M, Perez-Rodrigot C, Kliepp K: Effects of a comprehensive fruit- and vegetable-promoting school-
based intervention in three European countries: The Pro Children Study. Br J Nutr 2008, 99(4):893–903.

231. Thompson D, Baranowski T, Baranowski J, Cullen K, Jago R, Watson K, Liu Y, Boy Scout 5-a-Day Badge: outcome results of a troop and Internet intervention. Prev Med 2009, 49(6):518–526.

232. Thompson V, Cullen KW, Watson KB, Zakeri I. The increased availability and marketing of fruit, juice, and vegetables to middle school students increases consumption. J Child Nutr Manag (Online) 2007, Spring 2007(1). (Epublication).

233. Weaver M, Poelhitz M, Hutchison S. A day for low-income families: evaluation of an advertising campaign and cooking events. J Nutr Educ 1999, 31(1):161–169.

234. White AA, Skinner JD. Can goal setting as a component of nutrition education effect behavior change among adolescents? J Nutr Educ 1988, 20(6):327–335.

235. Wilson DK, Friend R, Teasley N, Green S, Sica DA. Motivational versus social cognitive interventions for promoting fruit and vegetable intake and physical activity in African American adolescents. Ann Behav Med 2002, 24(4):310–319.

236. Wind M, Bjelland M, Pacrez-Rodrigo C, te Velde SJ, Hildonen C, Bere E, Klepp KI, Brug J. Appreciation and implementation of a school-based intervention are associated with changes in fruit and vegetable intake in 10- to 13-year-old schoolchildren—the Pro Children Study. Heal Educ Res 2008, 23(6):997–1007.

237. Winnett RA, Roodman AA, Del Campo R, Baca JS, Jimenez D, Sanchez PR, Del Campo D. Can a community-based garden pilot project enhance fruit and vegetable consumption among fourth-grade children. Health Educ Behav Off Publ Soc Public Health Educ 2008, 31(2):258.

238. Winnett KW, Watson KB, Zakeri I, Bailey R. Exploring changes in middle school student lunch consumption after local school food service policy modifications. Public Health Nutr 2006, 9(8):814–820.

239. Winnett RA, Baca JS, Jimenez D, Sanchez PR, Del Campo D, Baca JS, Jimenez D, Sanchez PR, Del Campo R. Just be it healthy and fit increases fifth graders’ fruit and vegetable intake, physical activity, and nutrition knowledge. J Ext 2011, 49(1): Research in Brief 1R85. (Epublication).

240. Wiggs JL, Greetoebieck J, Greetoebieck KA, Jimenez L. Promoting healthful diets and exercise: efficacy of a 12-week after-school program in urban African Americans. J Am Diet Assoc 2005, 105(3):455–459.

241. Freedman MR, Nickell A. Impact of after-school nutrition workshops in a public library setting. J Nutr Educ Behav 2010, 42(3):192–196.

242. French SA, Story M, Jeffery RW, Snyder P, Eisenberg M, Sidebottom A, Murray D. Pricing strategy to promote fruit and vegetable purchase in high school cafeterias. J Am Diet Assoc 1997, 97(11):1088–1010.

243. Greenwood B, Balston RA, Young-Clark I, Cornille T, Brown LL, Davis KE, Salley TJ, Goeinig MH, Mullins AP, Gaskins DJ. Nutrition education initiative: a school-based program to promote healthy eating practices of preadolescents. J Fam Consum Sci 2009, 101(2):247–52.

244. Goldberg JP, Collins JJ, Folta SC, McLarney MJ, Kozower C, Kuder J, Clark V, Economos CD. Retooling food service for early elementary school students in Somerville, Massachusetts: the Shape Up Somerville experience. Prev Chron Dis 2009, 6(3):A103.

245. Grainger C, Senauer B, Runge CF. Nutritional improvements and student food choices in a school lunch program. J Consum Aff 2007, 41(2):265–284.

246. Haroon D, Harper C, Wood L, Nelson M. The impact of the food-based and nutrient-based standards on lunchtime food and drink provision and consumption in primary schools in England. Public Health Nutr 2011, 14(2):209–218.

247. Heim S, Bauer KW, Stang J, Ireland M. A garden pilot project enhances fruit and vegetable consumption among children. J Am Diet Assoc 2009, 109(7):1220–1226.

248. Hermann JR, Parker SP, Brown BJ, Sewey YJ, Denney BA, Walker SJ. After-school gardening improves children’s reported vegetable intake and physical activity. J Nutr Educ Behav 2006, 38(3):201–202.

249. Howison D, Nidermeyer F, Shortridge R. Field testing a fifth-grade nutrition education program designed to change food-selection behavior. J Nutr Educ Behav 1988, 20(2):82–86.

250. Jones HS. Evaluation of the Louisiana Nutrition Education Program. Baton Rouge: Louisiana State University; 1970.

251. Koch S, Walczek TM, Zajicek JM. The effect of a summer garden program on the nutritional knowledge, attitudes, and behaviors of children. HortTechnol 2006, 16(4):620–625.

252. Kuczynski MF, Aljadid L. Gem no. 364. Using food calendars to self-monitor: get S7 Nutrition for Kids program. J Nutr Educ Behav 2003, 35(2):269–270.
273. Latimer M. The Role of Flavor-Flavor Conditioning and Sensory-Based, Vegetable-Themed Education in Increasing Vegetable Consumption in Elementary School-Aged Children. United States: Utah State University; 2009:239.

274. Laurence S, Peterken R, Burns C. Fresh Kids: the efficacy of a Health Promoting Schools approach to increasing consumption of fruit and water in Australia. Heal Promot Int 2007, 22(3):18–22.

275. Lautenschlager L, Smith C. Understanding gardening and dietary habits among youth garden program participants using the Theory of Planned Behavior. Appetite 2007, 49(1):122–130.

276. Lee A, Ho M, Keung V. Healthy school as an ecological model for prevention of childhood obesity. Res Sports Med 2010, 18(1):49–61.

277. Lindholm BW, Touliatos J, Menberg MF. Predicting changes in nutrition knowledge and dietary quality in ten to thirteen-year-olds following a nutrition education program. Adolescence 1984, 14:370–373.

278. Lineberger SE, Zajicek JM. School gardens: can a hands-on teaching tool affect students’ attitudes and behaviors regarding fruit and vegetables? HortTechnology 2000, 10(3):593–597.

279. Long JD, Armstrong ML, Amos E, Shriver B, Roman-Shriver C, Feng D, Harrison L, Luker S, Nash A, Blevins MW. Pilot using World Wide Web to prevent diabetes in adolescents. Clin Nurs Res 2006, 15(1):67–79.

280. Lowe CF, Horne PJ, Tapper K, Bowdery M, Egerton C. Effects of a peer modelling and rewards-based intervention to increase fruit and vegetable consumption in children. Eur J Clin Nutr 2004, 58(3):510–522.

281. Lowe F, Horne P. In Food Dudes. Increasing children’s Consumption of Fruit and Vegetables. Changing the Nation’s Diet: a Programme to Increase Children’s Consumption of Fruit and Vegetables. Edited by B. University of Wales: Bangor, 2007.

282. Maddock J, Takeuchi L, Netta B, Tanaka C, Irvin L, Matsuoka C, Wood B. Evaluation of a statewide program to reduce chronic disease: The Healthy Hawaii Initiative, 2000–2004, Eval Program Plan 2006, 29(3):393–400.

283. Martins M, van Assen P, Knibbe R, Engels RC, Brug J. Family environmental factors do not explain differences in the behavioral effect of a healthy diet promotion program in lower vocational schools among 12- to 14-year-old adolescents. Am J Health Promot AHP 2010, 24(3):182–185.

284. Matsusky J, Gilboy M, Anderson K. A collaborative model for nutrition education in elementary schools changes the fruit and vegetable consumption of second grade students. J Am Diet Assoc, 2009, 109(9, Supplement 1):A83–A83.

285. McCormick A, Kettlemann K, Ren C, Richards A, Wells K. “Fun fruit and veggie event” enhances acceptance of fruits and vegetables in school-aged children. Top Clin Nutr 2009, 24(3):252–261.

286. Medina J. A Dose Response Analysis of a School-Based Nutrition Intervention in Middle School Children. United States: The University of Texas School of Public Health, 2009:113.

287. Mozaffarian RS, Wecha JL, Roth BA, Nelson TF, Lee RM, Gortmaker SL. Impact of an organizational intervention designed to improve snack and beverage quality in YMCA after-school programs. Am J Public Health 2010, 100(5):925–932.

288. Mulally ML, Taylor JP, Kuhle S, Bryanton J, Hernandez KJ, McLellan DL, McKenna ML, Gray RJ, Veugelers PJ. A province-wide school nutrition policy and food consumption in elementary school children in Prince Edward Island. Can J Public Health 2010, 101(1):40–43.

289. Nelson M, Louws K, Hwang V. The contribution of school meals to food consumption and nutrient intakes of young people aged 4–18 years in England. Public Health Nutr 2007, 10:652–662.

290. Panunzio MF, Antoniello A, Celà EP, Ferguson LR, Bucci E, Petracca L, Bisceglia R, D’Ambrosio P, Buccinotti MC, Romagnolo G, D’Aprile AP, Carella G, Ugolini G. Promoting Schools approach to increasing consumption of fruit and vegetables make the Marks, Oslo: University of Oslo, 2003.

291. Perez-Rodrigo C, Aranceta J. Nutrition education for schoolchildren living in a low-income Urban Area in Spain. J Nutr Educ 1997, 29:267–273.

292. Perin EM, Jacobson Vann JC, Benjamin JT, Skinner AC, Wegner S, Armmerman AS. Use of a pediatrician toolkit to address parental perception of children’s weight status, nutrition, and activity behaviors. Acad Pediatr 2010, 10(4):274–281.

293. Resnicow K, Yaroch AL, Davis A, Wang DT, Carter S, Slaughter L, Coleman D, Baranowski T. GO GIRLS!: results from a nutrition and physical activity program for low-income, overweight African American adolescent females. Health Educ Behav Off Publ Soc Public Health Educ 2000, 27(5):616–631.

294. Rinderknecht K, Smith C. Social cognitive theory in an after-school nutrition intervention for urban Native American youth. J Nutr Educ Behav 2004, 36(6):298–304.

295. Scarpini R, Bandini L, Curtis C, Gleason J, Must A, Madlin M, Fleming R. Changes in fruit, vegetable and sweetened beverage intake in adolescents and young adults with down syndrome participating in a parent supported weight reduction program. Obesity 2008, 16(5):5307–5307.

296. Seco D. Comparison of school food policies and food preparation practices before and after the local wellness policy among Indiana high schools. Am J Heal Educ 2009, 40(5):165–173.

297. Slusser WM, Cumberland BW, Broydy BL, Lange L, Neumann C. A school salad bar increases frequency of fruit and vegetable consumption among children living in low-income households. Public Health Nutr 2007, 10(12):1490–1496.

298. Spoon MD, Benedict J, Leonotus C, Krellle-Zepponi N. Increasing fruit and vegetable consumption among middle school students: implementing the 5-a-day program. J Ext 1998, 36(4). Article Features 4FEA4. (Epulication).

299. Stawinski M, Jaworcicewicz-Szczepaniak M, Adamrek R, Maksymiuk T. Results of introducing a health education programme in a Poznan kindergarten - A preliminary study. Farm Med Prim Care Rev 2008, 10(4):1335–1409.

300. Freeman D, Blinkensop S, Ranley J, Schagen I, Schagen S, Scott E, White G. Evaluation of the Big Lottery Fund’s National School Fruit and Vegetable Scheme: Second Interim Report. London, UK: National Foundation for Educational Research; 2004.

301. Trevino RP, Pugh JA, Hernandez AE, Menchaca VR, Ramirez RR, Mendoza M. Bienestar: a diabetes risk-factor prevention program. J Sch Heal 1998, 68:62–67.

302. Tse MMY, Yuen DTW. Effects of providing a nutrition education program for teenagers: dietary and physical activity patterns. Nuts Heal Sci 2009, 11(2):160–165.

303. Walker SJ. Effect of an After School Education and Gardening Program on Nutrition and Physical Activity Behaviors in School Age Youth, Grades 3–8. United States: Oklahoma State University, 2006:1–91.

304. Wang MC, Rauzon S, Studer N, Martin AC, Craig L, Merlo C, Fung A, Kursunoglu D, Shannguan M, Crawford P. Exposure to a comprehensive school intervention increases vegetable consumption. J Adolesc Heal 2010, 47(1):74–82.

305. Wright W, Rowell Laura RD. Examining the effect of gardening on vegetable consumption among youth in kindergarten through fifth grade. Wis Med J 2010, 109(3):124–129.

306. Wrigley N. Assessing the impact of improved retail access on diet in a ‘Food Desert’: a preliminary report. Urban Stud 2002, 11:2061–2082.

307. Boyd S, Dingie R, Campbell R. Taking a Bite of the Apple: The Implementation of Fruit in Schools (Healthy Futures Evaluation Report to the Minuty of Health). Wellington: New Zealand Council for Educational Research; 2007.

308. Forneris T, Fries E, Meyer A, Buzzard M, Uygur S, Ramakrishnan R, Lewis C, Danish S. Results of a rural school-based peer-led intervention for youth: Goals for health. J Sch Heal 2010, 80(2):37–65.

309. Gorely T, Nevill ME, Morris JG, Stensel DJ, Nevill A. Effect of a school-based intervention to promote healthy lifestyles in 7–11 year old children. Int J Behav Nutr Phys Act 2009, 6:5. (Epulication).

310. Somerser S, Markwell K. Impact of a school-based food garden on attitudes and identification skills regarding vegetables and fruit: a 12-month intervention trial. Public Health Nutr 2009, 12(2):214–221.

311. Agency for Healthcare Research and Quality. Effect of Interventions to Modify Dietary Behavior Related to Cancer Risk. Rockville: AHRQ Publication No. 01-0028, 2000:1–5.

312. Bere E. Increasing School-children’s Intake of Fruit and Vegetables: Fruits and Vegetables make the Marks, Oslo: University of Oslo, 2003.

313. Bere E, Hilsen M, Klepp KI. Effect of the nationwide free school fruit scheme in Norway. Br J Nutr 2010, 104(4):589–594.

314. Bere E, Veierød MR, Bjelland M, Klepp KI. Free school fruit-sustained effect 1 year later. Heal Educ Res 2006, 21(2):268–275.

315. Bere E, Klepp KI. Changes in accessibility and preferences predict children’s future fruit and vegetable intake. Int J Behav Nutr Phys Act 2005, 2:15.
316. Byrd-Bredbenner C, O’Connell LH, Shannon R, Eddy JM: A nutrition curriculum for health education: its effect on students’ knowledge, attitude, and behavior. J Sch Heal 1984, 54(10):385–388.

317. Ciliska D, Miles E, O’Brien MA, Turl C, Tomaski HH, Donovan U, Buyers J: The Effectiveness of Community Interventions to Increase Fruit and Vegetable Consumption in People Four Years of Age and Older. Dundas, Canada: Effective Public Health Practice Project; 1999:45. Report.

318. Chen J, Weiss S, Heyman MB, Lustig RH: Efficacy of a child-centred and family-based program in promoting healthy weight and healthy behaviors in Chinese American children: a randomized controlled study. J Public Health (Oxf Engl) 2010, 32(2):219–229.

319. Colby SE, Haldeman L: Peer-led theater as a nutrition education strategy. J Nutr Educ Behav 2007, 39(1):48–49.

320. Covell MM: Efficacy of a school-based cardiac health promotion intervention program for African-American adolescents. Appl Nurs Res 2008, 21(4):173–180.

321. Mendoza JA, Watson K, Cullen KW: Change in dietary energy density after implementation of the Texas Public School Nutrition Policy. J Am Diet Assoc 2010, 110(3):434–440.

322. Kerr CM: A school based, interdisiplinary curriculum in grades 6 and 7 reduced obesity in girls [commentary on Gottmater SL, Peterson K, Wiecha J, et al. Reducing obesity via a school-based interdisiplinary intervention among youth. Planet Health. ARCH PEDIATR ADOLESC MED 1999 Apr;153(4):409–412]. Evid-Based Nurs 2000, 3(1):13–13.

323. Hendy HM, Williams KE, Camise TS, Alderman S, Ivy J, Reed J: Overweight and average-weight children equally responsive to “Kids Choice Program” to increase fruit and vegetable consumption. Appetite 2007, 49(3):683–686.

324. O’Neil CE, Nicklas TA: A nutrition and media literacy pilot intervention. Farn Community Health 2008, 29(1):43–54.

325. Taylor RW, McAuley KA, Barbezat W, Farmer VL, Williams SM, Mann JJ: Two-year follow-up of an obesity prevention initiative in children: the APPLE project. Am J Clin Nutr 2008, 88(5):1371–1377.

326. Parmer S: The Effects of an Experiential Learning Model of Education on Second-Grade Students’ Fruit and Vegetable Knowledge, Preference and Consumption. United States: Auburn University; 2006:121.

327. Reinaerts E, Cruczen R, Candel M, De Vries NK, De Nooijer J: Increasing fruit and vegetable intake among children: comparing long-term effects of a free distribution and a multicomponent program. Health Educ Res 2008, 23(6):987–996.

328. Tak N, te Velde S, Singh A, Brug J: The effects of a fruit and vegetable promotion intervention on unhealthy snacks during mid-morning school breaks: Results of the Dutch Schoolgruiten Project. J Human Nutr Diet Off J Br Diet Assoc 2010, 23(6):609–615.

329. Armstrong R, Hall BJ, Doyle J, Waters E: Cochrane update. ‘Scoping the scope’ of a cochrane review. J Public Health 2011, 33(1):147–150.

Cite this article as: Ganann et al. Community-based interventions for enhancing access to or consumption of fruit and vegetables among five to 18-year olds: a scoping review. BMC Public Health 2012 12:711.

doi:10.1186/1471-2458-12-711

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit