Applications of (M,N)-Lucas Polynomials for Holomorphic and Bi-Univalent Functions

Abbas Kareem Wanas

Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq

Abstract. In this article, we use the (M,N)-Lucas polynomials to define a new family \(H_\Sigma(\lambda; x) \) of normalized holomorphic and bi-univalent functions and to establish the bounds for \(|a_2| \) and \(|a_3| \), where \(a_2, a_3 \) are the initial Taylor-Maclaurin coefficients. Further we investigate Fekete-Szegő inequality for functions in the family \(H_\Sigma(\lambda; x) \) which we have introduced here.

1. Introduction

Let \(A \) denote the family of functions which are holomorphic in the open unit disk
\[D = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \]
and have the following normalized form:
\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \]

We also denote by \(S \) the subclass of \(A \) consisting of functions which are also univalent in \(D \). According to the Koebe-one quarter theorem [2], every function \(f \in S \) has an inverse \(f^{-1} \) defined by
\[f^{-1}(f(z)) = z \quad (z \in D) \]
and
\[f(f^{-1}(w)) = w \quad (|w| < r_0(f); \ r_0(f) \geq \frac{1}{4}), \]
where
\[f^{-1}(w) = w - a_2 w^2 + \left(2a_2^2 - a_3\right) w^3 - \left(5a_2^3 - 5a_2 a_3 + a_4\right) w^4 + \cdots. \]
\[
\frac{z}{1 - z}, \quad -\log(1 - z) \quad \text{and} \quad \frac{1}{2} \log \left(\frac{1 + z}{1 - z}\right).
\]

We notice that the class \(\Sigma \) is not empty. However, the Koebe function is not a member of \(\Sigma \).

In a considerably large number of sequels to the aforementioned work of Srivastava et al. [20], several different subclasses of the bi-univalent function class \(\Sigma \) were introduced and studied analogously by the many authors (see, for example, [1, 5, 6, 9–16, 18, 21, 23, 24]), but only non-sharp estimates on the initial coefficients \(|a_2| \) and \(|a_3| \) in the Taylor Maclaurin expansion (1) were obtained in several recent papers. The problem to find the general coefficient bounds on the Taylor-Maclaurin coefficients

\[|a_n| \quad (n \in \mathbb{N}; \ n \geq 3) \]

for functions \(f \in \Sigma \) is still not completely addressed for many of the subclasses of the bi-univalent function class \(\Sigma \) (see, for example, [14, 21, 23]). The Fekete-Szegő functional \(|a_3 - \delta a_2^2| \) for \(f \in S \) is well known for its rich history in the field of Geometric Function Theory. Its origin was in the disproof by Fekete and Szegő [3] of the Littlewood-Paley conjecture that the coefficients of odd univalent functions are bounded by unity.

The functional has since received great attention, particularly in the study of many subclasses of the family of univalent functions. This topic has become of considerable interest among researchers in Geometric Function Theory (see, for example, [17, 19, 22]).

Let the functions \(f \) and \(g \) be analytic in \(D \), we say that the function \(f \) is subordinate to \(g \), if there exists a Schwarz function \(\omega \), which is analytic in \(D \) with

\[\omega(0) = 0 \quad \text{and} \quad |\omega(z)| < 1 \quad (z \in D), \]

such that

\[f(z) = g(\omega(z)). \]

This subordination is indicated by

\[f < g \quad \text{or} \quad f(z) < g(z) \quad (z \in D). \]

The Lucas polynomials play an important role in a variety of disciplines in the mathematical, statistical, physical and engineering sciences (see, for example [4, 8, 25]).

For the polynomials \(M(x) \) and \(N(x) \) with real coefficients, Lee and Aslı [7] considered the \((M,N)\)-Lucas polynomials \(L_{M,N}(x) \), which are given by the following recurrence relation:

\[L_{M,N}(x) = M(x)L_{M,N-1}(x) + N(x)L_{M,N-2}(x) \quad (k \geq 2), \]

with

\[L_{M,N,0}(x) = 2, \quad L_{M,N,1}(x) = M(x) \quad \text{and} \quad L_{M,N,2}(x) = M^2(x) + 2N(x). \]

The generating function of the \((M,N)\)-Lucas polynomial \(L_{M,N}(x) \) (see [7]) is given by

\[T_{L_{M,N}(x)}(z) = \sum_{k=0}^{\infty} L_{M,N}(x)z^k = \frac{2 - M(x)z}{1 - M(x)z - N(x)z^2}. \]

2. Main Results

We begin this section by defining the new class \(H_\Sigma(\lambda; x) \) as follows:
Definition 2.1. For $0 \leq \lambda \leq 1$, a function $f \in \Sigma$ is called in the class $H_{\Sigma}(\lambda; x)$ if it fulfills the conditions:

\[
1 + \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} - \frac{\lambda z^2 f''(z) + zf'(z)}{\lambda z f'(z) + (1 - \lambda) f(z)} < T_{\{\lambda\Sigma(\lambda)\}}(z) - 1
\]

and

\[
1 + \frac{w(f^{-1}(w))'}{f^{-1}(w)} + \frac{w(f^{-1}(w))''}{(f^{-1}(w))'} - \frac{\lambda w^2 (f^{-1}(w))'' + w(f^{-1}(w))'}{\lambda w (f^{-1}(w))' + (1 - \lambda) f^{-1}(w)} < T_{\{\lambda\Sigma(\lambda)\}}(w) - 1,
\]

where f^{-1} is given by (2).

Example 2.2. For $\lambda = 1$, a function $f \in \Sigma$ is called in the class $H_{\Sigma}(1; x) =: S_{\Sigma}(x)$ if it fulfills the conditions:

\[
\frac{zf'(z)}{f(z)} < T_{\{\lambda\Sigma(\lambda)\}}(z) - 1
\]

and

\[
\frac{w(f^{-1}(w))'}{f^{-1}(w)} < T_{\{\lambda\Sigma(\lambda)\}}(w) - 1,
\]

where f^{-1} is given by (2).

Example 2.3. For $\lambda = 0$, a function $f \in \Sigma$ is called in the class $H_{\Sigma}(0; x) =: C_{\Sigma}(x)$ if it fulfills the conditions:

\[
1 + \frac{zf''(z)}{f'(z)} < T_{\{\lambda\Sigma(\lambda)\}}(z) - 1
\]

and

\[
1 + \frac{w(f^{-1}(w))''}{(f^{-1}(w))'} < T_{\{\lambda\Sigma(\lambda)\}}(w) - 1,
\]

where f^{-1} is given by (2).

Our first main result is asserted by Theorem 2.4 below.

Theorem 2.4. For $0 \leq \lambda \leq 1$, let $f \in \mathcal{A}$ be in the class $H_{\Sigma}(\lambda; x)$. Then

\[
|a_2| \leq \frac{|M(x)| \sqrt{|M(x)|}}{\sqrt{2} \left| (\lambda - 1)M^2(x) - (2 - \lambda)^2 N(x) \right|}
\]

and

\[
|a_3| \leq \frac{M^2(x)}{(2 - \lambda)^2} + \frac{|M(x)|}{2(3 - 2\lambda)}.
\]

Proof. Suppose that $f \in H_{\Sigma}(\lambda; x)$. Then there are two analytic functions $\phi, \psi : \mathbb{D} \to \mathbb{D}$ given by

\[
\phi(z) = r_1 z + r_2 z^2 + r_3 z^3 + \cdots \quad (z \in \mathbb{D})
\]

and

\[
\psi(w) = s_1 w + s_2 w^2 + s_3 w^3 + \cdots \quad (w \in \mathbb{D}),
\]

with

\[
\phi(0) = \psi(0) = 0 \quad \text{and} \quad \max \left\{ |\phi(z)|, |\psi(w)| \right\} < 1 \quad (z, w \in \mathbb{D}),
\]
such that
\[1 + \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} - \frac{\lambda z^2 f''(z) + zf'(z)}{\lambda f'(z) + (1 - \lambda)f(z)} = -1 + L_{MN,0}(x) + L_{MN,1}(x)\phi(z) + L_{MN,2}(x)\phi^2(z) + \cdots \] (6)

and
\[1 + \frac{w\left(f^{-1}(w)\right)'}{f^{-1}(w)} + \frac{w\left(f^{-1}(w)\right)''}{f^{-1}(w)^{''}} - \frac{\lambda w^2 \left(f^{-1}(w)\right)'' + w\left(f^{-1}(w)\right)'}{\lambda w \left(f^{-1}(w)\right)'' + (1 - \lambda)f^{-1}(w)} = -1 + L_{MN,0}(x) + L_{MN,1}(x)\psi(w) + L_{MN,2}(x)\psi^2(w) + \cdots . \] (7)

Combining (4), (5), (6) and (7), yield
\[1 + \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} - \frac{\lambda z^2 f''(z) + zf'(z)}{\lambda f'(z) + (1 - \lambda)f(z)} = 1 + L_{MN,1}(x)r_1z + \left[L_{MN,1}(x)r_2 + L_{MN,2}(x)r_1^2\right]z^2 + \cdots \] (8)

and
\[1 + \frac{w\left(f^{-1}(w)\right)'}{f^{-1}(w)} + \frac{w\left(f^{-1}(w)\right)''}{f^{-1}(w)^{''}} - \frac{\lambda w^2 \left(f^{-1}(w)\right)'' + w\left(f^{-1}(w)\right)'}{\lambda w \left(f^{-1}(w)\right)'' + (1 - \lambda)f^{-1}(w)} = 1 + L_{MN,1}(x)s_1w + \left[L_{MN,1}(x)s_2 + L_{MN,2}(x)s_1^2\right]w^2 + \cdots . \] (9)

It is well-known that, if
\[\max \left\{|\phi(z)|, |\psi(w)|\right\} < 1 \quad (z, w \in \mathbb{D}), \]

then
\[|r_j| \leq 1 \quad \text{and} \quad |s_j| \leq 1 \quad (\forall j \in \mathbb{N}). \] (10)

Now, by comparing the corresponding coefficients in (8) and (9), and after simplifying, we find that
\[(2 - \lambda)a_2 = L_{MN,1}(x)r_1, \] (11)
\[2(3 - 2\lambda)a_3 - \left(5 - (\lambda + 1)^2\right)a_2^2 = L_{MN,1}(x)r_2 + L_{MN,2}(x)r_1^2, \] (12)
\[(\lambda - 2)a_2 = L_{MN,1}(x)s_1 \] (13)

and
\[\left(7 - 8\lambda + (\lambda + 1)^2\right)a_2^2 - 2(3 - 2\lambda)a_3 = L_{MN,1}(x)s_2 + L_{MN,2}(x)s_1^2. \] (14)

It follows from (11) and (13) that
\[r_1 = -s_1 \] (15)

and
\[2(2 - \lambda)^2 a_2^2 = L_{MN,1}^2(x)(r_1^2 + s_1^2). \] (16)

If we add (12) to (14), we obtain
\[2\left(1 + (\lambda - 1)^2\right)a_2^2 = L_{MN,1}(x)(r_2 + s_2) + L_{MN,2}(x)(r_1^2 + s_1^2). \] (17)

Substituting the value of \(r_1^2 + s_1^2\) from (16) in the right hand side of (17), we deduce that
\[2\left[1 + (\lambda - 1)^2 - \frac{L_{MN,2}(x)}{L_{MN,1}(x)}(2 - \lambda)^2\right]a_2^2 = L_{MN,1}(x)(r_2 + s_2). \] (18)
Moreover computations using (3), (10) and (18), we find that
\[|a_2| \leq \frac{|M(x)| \sqrt{|M(x)|}}{\sqrt{2} |(\lambda - 1) M^2(x) - (2 - \lambda)^2 N(x)|}. \]

Next, if we subtract (14) from (12), we can easily see that
\[4(3 - 2\lambda)(a_3 - a_2^2) = L_{MN,1}(x)(r_2 - s_2) + L_{MN,2}(x)(r_1^2 - s_1^2). \] (19)

In view of (15) and (16), we get from (19)
\[a_3 = \frac{L_{MN,1}(x)}{2(2 - \lambda)^2}(r_1^2 + s_1^2) + \frac{L_{MN,1}(x)}{4(3 - 2\lambda)}(r_2 - s_2). \]

Thus applying (3), we conclude that
\[|a_3| \leq \frac{M^2(x)}{2 - \lambda^2} + \frac{|M(x)|}{2(3 - 2\lambda)}. \]

Putting \(\lambda = 1 \) in Theorem 2.4, we obtain the following result:

Corollary 2.5. If \(f \in A \) be in the class \(S_{\Sigma}(x) \), then
\[|a_2| \leq \frac{|M(x)| \sqrt{|M(x)|}}{\sqrt{2} |M^2(x) + N(x)|} \]
and
\[|a_3| \leq \frac{M^2(x)}{2} + \frac{|M(x)|}{2}. \]

Putting \(\lambda = 0 \) in Theorem 2.4, we obtain the following result:

Corollary 2.6. If \(f \in A \) be in the class \(C_{\Sigma}(x) \), then
\[|a_2| \leq \frac{|M(x)| \sqrt{|M(x)|}}{\sqrt{2} |M^2(x) + 4N(x)|} \]
and
\[|a_3| \leq \frac{M^2(x)}{4} + \frac{|M(x)|}{6}. \]

In the next theorem, we present the “Fekete-Szegő inequality” for \(f \in H_{\Sigma}(\lambda;x) \).

Theorem 2.7. For \(0 \leq \lambda \leq 1 \) and \(\delta \in \mathbb{R} \), let \(f \in A \) be in the class \(H_{\Sigma}(\lambda;x) \). Then
\[|a_3 - \delta a_2^2| \leq \begin{cases} \frac{|M(x)|}{2(3 - 2\lambda)} & (|\delta - 1| \leq \frac{1}{3 - 2\lambda} \left| \lambda - 1 - \frac{(2 - \lambda)^2 N(x)}{M(x)} \right|) \\ \frac{|M(x)|(|\delta - 1| - 1)}{2 |(\lambda - 1) M^2(x) - (2 - \lambda)^2 N(x)|} & (|\delta - 1| \geq \frac{1}{3 - 2\lambda} \left| \lambda - 1 - \frac{(2 - \lambda)^2 N(x)}{M(x)} \right|) \end{cases}. \]
Proof. By making use of (18) and (19), we conclude that

$$a_3 - \delta a_2^2 = (1 - \delta) \frac{L_{MN,1}^3(x)(r_2 + s_2)}{2\left[\left((\lambda - 1)^2 + 1\right)L_{MN,1}^2(x) - (2 - \lambda)^2 L_{MN,2}(x)\right]} + \frac{L_{MN,1}(x)(r_2 - s_2)}{4(3 - 2\lambda)}$$

$$= L_{MN,1}(x) \left[\varphi(\delta; x) + \frac{1}{4(3 - 2\lambda)} \right] r_2 + \left(\varphi(\delta; x) - \frac{1}{4(3 - 2\lambda)} \right) s_2 \right],$$

where

$$\varphi(\delta; x) = \frac{L_{MN,1}^2(x)(1 - \delta)}{2\left[\left((\lambda - 1)^2 + 1\right)L_{MN,1}^2(x) - (2 - \lambda)^2 L_{MN,2}(x)\right]}.$$

Thus, according to (3), we find that

$$\left|a_3 - \delta a_2^2\right| \leq \begin{cases}
\left|M(x)\right| & (0 \leq \left|\varphi(\delta; x)\right| \leq \frac{1}{4(3 - 2\lambda)}) \\
2\left|M(x)\right| \cdot \left|\varphi(\delta; x)\right| & \\
\left|\varphi(\delta; x)\right| & \left(\left|\varphi(\delta; x)\right| \geq \frac{1}{4(3 - 2\lambda)}) \right)
\end{cases}$$

which, after some computations, yields

$$\left|a_3 - \delta a_2^2\right| \leq \begin{cases}
\left|M(x)\right| & (0 \leq \left|\varphi(\delta; x)\right| \leq \frac{1}{4(3 - 2\lambda)}) \\
2\left|M(x)\right| \cdot \left|\varphi(\delta; x)\right| & (\left|\varphi(\delta; x)\right| \geq \frac{1}{4(3 - 2\lambda)}) \\
\left|\varphi(\delta; x)\right| & (\left|\varphi(\delta; x)\right| \geq \frac{1}{4(3 - 2\lambda)})
\end{cases}$$

Putting $\lambda = 1$ in Theorem 2.7, we obtain the following result:

Corollary 2.8. If $f \in A$ be in the class $S_{\Sigma}(x)$, then

$$\left|a_3 - \delta a_2^2\right| \leq \begin{cases}
\left|M(x)\right| & (0 \leq \left|\varphi(\delta; x)\right| \leq \frac{1}{4(3 - 2\lambda)}) \\
2\left|M(x)\right| \cdot \left|\varphi(\delta; x)\right| & (\left|\varphi(\delta; x)\right| \geq \frac{1}{4(3 - 2\lambda)}) \\
\left|\varphi(\delta; x)\right| & (\left|\varphi(\delta; x)\right| \geq \frac{1}{4(3 - 2\lambda)})
\end{cases}$$

Putting $\lambda = 0$ in Theorem 2.7, we obtain the following result:
Corollary 2.9. If \(f \in \mathcal{A} \) be in the class \(C_\Sigma(x) \), then

\[
|a_3 - \delta a_2^2| \leq \begin{cases} \left| \frac{M(x)}{\delta - 1} \right| & \left| \delta - 1 \right| \leq \frac{1}{3} \left(1 + \frac{4|N(x)|}{M'(x)} \right) \\ \left| \frac{M(x)|a_3| - 1}{2M(x)|a_2|} \right| & \left| \delta - 1 \right| \geq \frac{1}{3} \left(1 + \frac{4|N(x)|}{M'(x)} \right) \end{cases}
\]

Putting \(\delta = 1 \) in Theorem 2.7, we obtain the following result:

Corollary 2.10. If \(f \in \mathcal{A} \) be in the class \(H_\Sigma(\lambda; x) \), then

\[
|a_3 - a_2^2| \leq \frac{|M(x)|}{2(3 - 2\lambda)}.
\]

Acknowledgement. The author would like to thank the referee(s) for their helpful comments and suggestions.

References

[1] M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, *Turk. J. Math.* 41 (2017), 694–706.

[2] P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[3] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, *J. London Math. Soc.* 2 (1933), 85–89.

[4] A. Lupas, A guide of Fibonacci and Lucas polynomials, *Octagon Math. Mag.* 20 (1992), 179–182.

[5] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, *Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat.* 112 (2018), 1157–1168.

[6] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, *Complex Variables Theory Appl.* 44 (2001), 145–163.
[20] H. M. Srivastava, A. K. Mishra and P. Goelchayat, Certain subclasses of analytic and bi-univalent functions, *Appl. Math. Lett.* **23** (2010), 1188–1192.

[21] H. M. Srivastava, A. Motamednezhad and E. A. Adekan, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, *Mathematics* **8** (2020), Article ID 172, 1–12.

[22] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava and M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, *Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM)* **113** (2019), 3563–3584.

[23] H. M. Srivastava, F. M. Sakar and H. O. Günd, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, *Filomat* **32** (2018), 1313–1322.

[24] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, *Kyungpook Math. J.* **59** (2019), 493–503.

[25] T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, *Bull Math. Soc. Sci. Math. Roum.* **55** (2012), 95–103.