3-20-2016

Antioxidant Constituents from the Bark of Aglaia eximia (Meliaceae)

Julinton Sianturi
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

Kindi Farabi
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

Tri Mayanti
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

Desi Harneti
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

Darwati
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

Follow this and additional works at: https://scholarhub.ui.ac.id/science
See next page for additional authors

Recommended Citation
Sianturi, Julinton; Farabi, Kindi; Mayanti, Tri; Harneti, Desi; Darwati; Supratman, Unang; Awang, Khalijah; and Hayashi, Hideo (2016) "Antioxidant Constituents from the Bark of Aglaia eximia (Meliaceae)," *Makara Journal of Science*: Vol. 20 : Iss. 1 , Article 1.
DOI: 10.7454/mss.v20i1.5655
Available at: https://scholarhub.ui.ac.id/science/vol20/iss1/1

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub.
Antioxidant Constituents from the Bark of Aglaia eximia (Meliaceae)

Cover Page Footnote
This study was financially supported by Third World Academic Sciences (TWAS) for research grant No. 12-006 RG/CHE/AS_G-UNESCO FR: 3240271335, 2013-2014 by US). We thank Dr. Ahmad Darmawan and Sofia Fajriah, M.Si at the Research Center for Chemistry, Indonesian Science Institute, for performing the NMR measurements. We are grateful to Uji Pratomo, M.Si., at the Center Laboratory of Universitas Padjadjaran for performing the HR-TOFMS measurements.

Authors
Julinton Sianturi, Kindi Farabi, Tri Mayanti, Desi Harneti, Darwati, Unang Supratman, Khalijah Awang, and Hideo Hayashi
Antioxidant Constituents from the Bark of *Aglaia eximia* (Meliaceae)

Julinton Sianturi\(^1\), Kindi Farabi\(^1\), Tri Mayanti\(^1\), Desi Harneti\(^1\), Darwati\(^1\), Unang Supratman\(^1\)*, Khalijah Awang\(^2\), and Hideo Hayashi\(^3\)

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
2. Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia
3. Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531, Japan

E-mail: unang.supratman@unpad.ac.id

Received January 6, 2016 | Accepted February 11, 2016

Abstract

The genus *Aglaia* is a rich source of different compounds with interesting biological activities. A part of our continuing search for novel biologically active compounds from Indonesia *Aglaia* plants, the ethyl acetate extract of bark of *Aglaia eximia* showed significant antioxidant activity. Four antioxidant compounds, kaempferol (1), kaempferol-3-O-α-L-rhamnoside (2), kaempferol-3-O-β-D-glucoside (3) and kaempferol-3-O-β-D-glucosyl-(1→4)-α-L-rhamnoside (4) were isolated from the bark of *Aglaia eximia* (Meliaceae). The chemical structures of compounds 1-4 were identified on the basis of spectroscopic data including UV, IR, NMR and MS along with the comparison with those spectra data previously reported. All compounds showed DPPH radical-scavenging activity with IC\(_{50}\) values of 1.18, 6.34, 8.17, 10.63 \(\mu\)g/mL, respectively.

Introduction

Aglaia eximia (Meliaceae) is an ornamental tree that has long been recommended in Indonesian medicine for reducing fever, moisturizing the lungs, and for treating contused wound, coughs and skin diseases [1-3]. Previous phytochemical studies of the species *A. eximia* reported some variety of compounds, including triterpenoids with cycloartane, dammarane, and cabraleahydroxylactone types [4-7], as well as stigmastane-types steroid [4,6] and flavonoids [8]. These metabolites have been described previously to exhibit anticancer, cytotoxic, insecticides, anti-inflammatory and antitumor activities [5,9,10].

The different parts of the genus *Aglaia* have been reported to contain biologically active classes of flavonoid compound [11]. It was suggested, for the same genus, that there are possibilities to generate the derivate compounds based on biosynthesis pathways of plants [12]. The flavonoids are a class of widely distributed phytochemicals, and scavenging of free radicals seems to play a considerable part in the antioxidant activity [13].

To the best of our knowledge, antioxidant activity of compounds or extracts from some members of *Aglaia* have been described previously [11,12], but no infor-
mation is available on the antioxidant activity of kaempferol and their glycosides from the species of A. eximia. In the further screening for antioxidant activity against DPPH radical-scavenging on polar fraction from A. eximia, we found that the ethyl acetate extract of the bark of A. eximia showed a DPPH radical-scavenging activity with an IC₅₀ value of 20 µg/mL. We herein report the isolation and structure elucidation of kaempferol and their glycosides from the bark of A. eximia together with antioxidant activity against DPPH radical-scavenging.

Materials and Methods

General. Melting points were measured on an electrothermal melting point apparatus and are uncorrected. Optical rotations on an ATAGO AP-300 automatic polarimeter. UV spectra were measured by using Shimazu UV-160A UV-Vis spectrophotometer. The IR spectra were measured on a Perkin–Elmer spectrum-100 FT-IR in KBr. Mass spectra with a Water Qtof HR-MS XEV mass spectrometer; the NMR spectra were measured with a JEOL JNM A-500 spectrometer using TMS as an internal standard. Chromatographic separations were carried out on silica gel 60 (70–230 mesh and 230–400 mesh, Merck). Preparative TLC glass and TLC plates were precoated with silica gel GF₂₅₄ (Merck, 0.25 mm) and detection was achieved by spraying with 5% AlCl₃ in ethanol, followed by heating on a hotplate at 100°C for 2.5 minutes.

Plant material. The bark of A. eximia was collected in Bogor Botanical Garden, Bogor in June of 2011. The plant was identified by the staff of the Bogoriense Herbarium, Bogor, Indonesia and a voucher specimen (No. Bo-1295315) was deposited at the herbarium.

Plant extraction. Dried ground bark (4.0 kg) of A. eximia was extracted successively with n-hexane, EtOAc, and MeOH for three days and then filtered, decanted, and evaporated under vacuum. Evaporation resulted in the crude extracts of n-hexane (26.4 g), EtOAc (54.5 g), and MeOH (32.5 g), respectively. All of the extracts’ antioxidant activity was evaluated against DPPH radical-scavenging and showed antioxidant activity with IC₅₀ values of 59, 20, and 52 µg/mL, respectively. The EtOAc showed the strongest antioxidant activity. Subsequent phytochemical analysis was therefore focused on the EtOAc extract. The EtOAc extract was subjected to column chromatography over silica gel using mixture of CHCl₃/MeOH (10:0–0:10) as an eluent to afford 20 fractions (E01–E20). The E04–E05 fractions (13.9 mg) were combined and purified with preparative TLC on silica gel GF₂₅₄ plates, eluted with CHCl₃/MeOH (9:1), to give 1 (7.0 mg), which was identified based on spectroscopic methods. Fractions E11–E12 (112.4 mg) were combined and was chromatographed on a column of silica gel using mixtures of CHCl₃/MeOH (10:0–8:2) as an eluent to afford 22 fractions (F01-F22). Fractions F08-F21 (74.6 mg) were combined and was chromatographed on a column of silica gel using mixtures of CHCl₃/MeOH (10:0–9:1) to give 2 (18.6 mg), was identified based on spectroscopic methods. Fractions E13–E15 (156.3 mg) were crystallized with MeOH to give 3 (88.0 mg), was identified based on spectroscopic methods. Fractions E16–E19 (296.6 mg) were combined and subjected to silica gel column chromatography using mixtures of CHCl₃/MeOH (10:0–0:10) as eluting solvents to afford 23 fractions (G01-G23). Fractions G16–G19 were combined (171.9 mg) and was chromatographed on a column of silica gel using mixtures of CHCl₃/MeOH (10:0–7:3) as eluting solvents to give 4 (20.3 mg), was identified based on spectroscopic methods.

Kaempferol (1). Yellow powder, m.p. 276-278°C, UV (MeOH) λmax nm (log ε) 367 (4.24); 257 (4.19); IR (KBr) νmax 3433, 1641, 1478, 1164, 1051, 825 cm⁻¹; 1H-NMR (CD₂OD, 500 MHz); 13C-NMR (CD₂OD, 125 MHz), see Table 1; HR-TOFMS (negative ion mode) m/z 285.3512 [M-H]⁻, (calcd. C₁₃H₁₀O₅, m/z 286.3477).

Kaempferol-3-O-α-L-rhamnoside (2). Yellow powder, m.p. 183-185, UV (MeOH) λmax nm (log ε) 349 (4.14), 268 (4.23); IR (KBr) νmax 3421, 2922, 1676 and 1205 cm⁻¹; 1H-NMR (CD₂OD, 500 MHz), see Table 1; HR-TOFMS (negative ion mode) m/z 431.7157 [M-H]⁻ (calcd. C₁₉H₁₂O₇, m/z 432.7118).

Kaempferol-3-O-β-D-glucoside (3). Yellow powder, m.p. 201-203°C, UV (MeOH) λmax nm (log ε) 351 (4.44), 266 (4.53); IR (KBr) νmax 3401 1659, 1509, 1364, 1285, 1063 cm⁻¹; 1H-NMR (DMSO-d₆, 500 MHz) see Table 1; 13C-NMR (CD₂OD, 125 MHz), see Table 1; HR-TOFMS (negative ion mode) m/z 447.8083 [M-H]⁻ (calcd. C₂₁H₁₆O₁₀, m/z 448.3769).

Kaempferol-3-O-β-D-glucosyl-(1→4)-α-L-rhamnoside (4). Yellow powder, [α]D₂₀=20 (c, 0.5, MeOH), UV MeOH λmax nm (log ε) 349 (4.17), 266 (4.25); IR (KBr) νmax 3833, 1660, 1509, 1362, 1283, 1063 cm⁻¹; 1H-NMR (DMSO-d₆, 500 MHz) see Table 1; 13C-NMR (DMSO-d₆, 125 MHz), see Table 1; HR-TOFMS (negative ion mode) m/z 593.5167 [M-H]⁻ (calcd. C₂₇H₁₉O₁₅, m/z 594.5181).

Identification of the presence of propose aglycone moiety in 2-4. Compounds 2-4 (2 mg) dissolved in MeOH were heated to reflux with 2 mL of sulphuric acid under stirring about six hours. The reaction mixture was concentrated under a vacuum and suspended in 20 mL water. The aqueous layer was extracted three times with ethyl acetate for 3x24 h; the organic layer was
Hydrazyl-hydrate (DPPH) radical sample was dissolved in DMSO and mixed with L-ascorbic acid as a positive control. The compound which was identified as kaempferol (1) by comparison of its co-TLC with standard compound.

After 30 minutes at 20°C, the test samples were subjected to normal-phase column chromatography over silica gel GF254 and yielded four antioxidant flavonoid compounds 1–4 (Figure 1).

The phytochemical test for the EtOAc extract showed the presence of flavonoids. By using DPPH radical-scavenging assay to guide separations, the EtOAc fraction was subjected to preparative TLC on silica gel GF254 and yielded four antioxidant flavonoid compounds 1–4 (Figure 1). Compound 1 was obtained as a yellow powder. The HR-TOFMS spectrum showed [M-H]- m/z 286.2487 (calcd. m/z 286.2487), which corresponded to the molecular formula of C13H11O6 with 11 degrees of unsaturation. UV (MeOH) λ_{max} nm (log e) 367 (4.24); 257 (4.19), suggested the presence of flavonoid compound. The IR spectra showed absorption peaks at 3433 cm\(^{-1}\) (OH), 1732 (C=O).

The amount of sample necessary to decrease the absorbance of DPPH by 50%. All analyses were carried out in triplicate, and the results were expressed as the mean ± standard deviation (SD) and compared using Waller-Duncan test. A value of p < 0.05 was considered statistically significant.

Table 1. NMR Data of Compounds 1-4

Position	Compound 1	Compound 2	Compound 3	Compound 4
Carbon	δC (multip.)	δH (2H, multi J Hz)	δC (multip.)	δH (2H, multi J Hz)
1	160.3 (s)	-	161.7 (s)	-
2	159.9 (s)	-	159.9 (s)	-
3	156.7 (s)	-	157.5 (s)	-
4	162.4 (s)	-	161.2 (s)	-

The IC\(_{50}\) value was determined by probit values and were plotted against the logarithmic values of concentrations of the test samples and a linear regression curve. It is the amount of sample necessary to decrease the absorbance of DPPH by 50%. All analyses were carried out in triplicate, and the results were expressed as the mean ± standard deviation (SD) and compared using Waller-Duncan test. A value of p < 0.05 was considered statistically significant.

Results and Discussion

The phytochemical test for the EtOAc extract showed the presence of flavonoids. By using DPPH radical-scavenging assay to guide separations, the EtOAc fraction was subjected to preparative TLC on silica gel GF254 and yielded four antioxidant flavonoid compounds 1–4 (Figure 1). Compound 1 was obtained as a yellow powder. The HR-TOFMS spectrum showed [M-H]- m/z 285.3912 (calcd. m/z 285.3912), which corresponded to the molecular formula of C13H11O6 with 11 degrees of unsaturation. UV (MeOH) λ_{max} nm (log e) 367 (4.24); 257 (4.19), suggested the presence of flavonoid compound. The IR spectra showed absorption peaks at 3433 cm\(^{-1}\) (OH), 1732 (C=O).
1641 cm⁻¹ (conjugated carbonyl), 1478 cm⁻¹ (C=C olefinic), 1164 cm⁻¹ (asymmetric C-O-C stretch) and 825 cm⁻¹ (substituted benzene). The ¹H-NMR spectrum of compound 1 showed a characteristic AA′BB′ pattern of ring B at δ_H 8.08 (2H, d, J=9.1 Hz) and δ_H 6.90 (2H, d, J=9.1 Hz), corresponding to H-2'/H-6' and H-3'/H-5'. The resonances of two meta-coupling protons of ring A were observed at δ_H 6.36 (1H, d, J=2.0 Hz) and δ_H 6.16 (1H, d, J=2.0 Hz). The addition of olefinic singlet signal in the deshielded region was assigned the presence hydroxyl substituent in ring C of 1. The ¹³C-NMR and DEPT 135° spectra showed the presence of six methines and nine quaternary carbons (1 sp² carbon) and a ketonic group, C-4, resonating at δ_C 176.7 ppm. In the HMBC spectrum, two meta-coupling protons of ring A (H-6 and H-8) exhibited long-range correlations to C-4 (176.7 ppm), C-7 (165.2 ppm), C-9 (157.8 ppm), C-5 (162.4 ppm) and C-10 (104.2 ppm), suggested that two hydroxyl group attached at C-5 and C-7, respectively. These functionalities accounted for eight of the total 11 degrees of unsaturation, and the remaining three degrees of unsaturation were consistent with the flavonoid structure. The full assignments of compound 1 were shown in Table 1. Comparison of the NMR data of compound 1 with kaempferol [16] showed high similarity, consequently indicating the loss of a terminal rhamnosyl unit (-142), which corresponded to the molecular formula of C₇H₁₀O₂ and thus required 12 degrees of unsaturation. The ¹H and ¹³C-NMR spectra of 3 resembled that of 1 except the presence of methine and methylene signals. The presence of methylene signal which occurred as a doublet at 3.83 (1H, dd, J=2.3, 10.1 Hz) and 3.83 (1H, dd, J=5.2, 10.1 Hz) which is typical for a glucose moiety. An anomeric proton H-1β resonating at δ_H 5.90, 3J=4.5 Hz, the magnitude of the coupling constant 3J=4.5 Hz revealed an axial-equatorial position which occurred as β-configuration [19]. In comparison the NMR data of 3 with the literature data [19, 20], and compound 3 was identified as kaempferol-3-O-α-D-glucoside.

Compound 2 was obtained as a yellow powder. The HR-TOFMS spectrum showed [M-H] m/z 431.7157 [M-H]⁺ (calcld. C₁₁H₁₇O₁₀, m/z 432.7118), the fragment ion peaks occurred at m/z 285.8202 [M+H-146]⁺, indicating the loss of a terminal rhamnose unit (-142), which corresponded to the molecular formula of C₇H₁₀O₂ and thus required 12 degrees of unsaturation. The ¹H and ¹³C-NMR spectrum of 2 resembled that of 1 except in the oxygenated region. The presence of methyl signal which occurred as a doublet at 0.91 (3H, d, J=5.9 Hz) together with anomeric signal proton at δ_H 5.40, (1H, d, J=1.5 Hz) as well as with four oxygenated methines, resonating at δ_H 4.18 (1H, dd, J=5.9, 9.6 Hz), 3.69 (1H, dd, J=1.5, 3.4 Hz), 3.31 (1H, dd, J=3.4, 9.6 Hz), 3.28 (1H, t, 9.6 Hz), which is typical for a rhamnose moiety. An anomeric protons resonated at δ_H 5.40, (1H, d, J=1.5 Hz), which were assigned to the one sugar units α-rhamnopyranosyl (Rha). The HMBC spectrum showed correlations between H-1′ at δ_H 5.4, (1H, d, J=1.5 Hz) with C-3 (δ_C 136.3 ppm) which further established the connectivity between rhamnopyranosyl units to the flavonoid on the C-3 (δ_C 136.3 ppm). In comparison the NMR data of 2 with the literature data [17, 18], compound 2 was identified as kaempferol-3-O-α-L-rhamnoside.

Compound 3 was obtained as a yellow powder. The HR-TOFMS spectrum showed [M-H] m/z 447.4083, (calcld. m/z 448.3769), and a fragment ion [kaempferol-2H]⁺ at m/z 284.0023 resulting from the loss of a glucose moiety (M-H-162), which corresponded to the molecular formula of C₁₈H₂₀O₁₀ and thus required 12 degrees of unsaturation. The ¹H and ¹³C-NMR spectra of 3 resembled that of 2 except the presence of methine and methylene signals. The presence of methylene signal which occurred as a doublet at 3.83 (1H, dd, J=2.3, 10.1 Hz) and 3.83 (1H, dd, J=5.2, 10.1 Hz) which is typical for a glucose moiety. An anomeric proton H-1′ resonating at δ_H 5.90, 3J=4.5 Hz, the magnitude of the coupling constant 3J=4.5 Hz revealed an axial-equatorial position which occurred as β-configuration [19]. In comparison the NMR data of 3 with the literature data [19, 20], and compound 3 was identified as kaempferol-3-O-α-D-glucoside.

Compound 4 was obtained as a yellow powder. The HR-TOFMS spectrum showed [M-H] m/z 591.5877, (calcld. for m/z 592.5587). The fragment ion peaks occurred at m/z 448.9022 [M+H-146], indicating the loss of a terminal rhamnose unit (m/z -142), 142 results and m/z 278.2 [M+H-146-162], which was assigned to the additional loss of a primary hexosyl moiety (m/z -162), which corresponded to the molecular formula of C₁₈H₂₀O₁₄ and thus required 13 degrees of unsaturation. The ¹H and ¹³C-NMR spectra of 4 resembled that of 3, except for the presence of methine and methylene signals as well as an oxygenated region. The presence methyl signal resonating at 0.98 (3H, d, J=6.5 Hz) as a doublet, which is typical for a rhamnose moiety. Two anomeric protons resonating at δ_H 5.31 (1H, d, J=7.8 Hz) and at δ_H 5.35 (1H, d, J=1.4 Hz), suggested the presences two sugar units, β-glucopyranosyl (Glu), and α-rhamnopyranosyl (Rha) of 4. The spin system of this sugar unit were confirmed by ¹H-¹H- COSY spectrum. The connectivity of the monosaccaride unit with kaempferol was established on the basis of HMBC correlation (Figure 2).
Compounds 1-4 antioxidant activity were evaluated against DPPH radical-scavenging. The antioxidant activity of compounds 1-4 are shown in Table 2. Compounds 1-4 showed weaker activity compared with standard compound, ascorbic acid. Among those isolated compounds, compound 1, showed strongest activity with IC\textsubscript{50} value of 1.18 ± 0.02 µg/mL. Previous structure-activity studies of flavonoids have pointed to the importance of the number and location of OH groups and could be more important for the antiradical efficacy. The effectivity of radical scavenging activity of 1, is proposed by 4-hydroxy in the B ring as electron donating and being a radical target, together with 3-OH moiety in the C ring is also beneficial as antioxidant activity. A conjugated double bond between C2-C3 with 4-keto group further enhances the radical-scavenging capacity through electron delocalization from the B ring; the presence of hydroxyl group on C-3 and C-5 in combination with an α-unsaturated-4-carbonyl can improve the radical scavenging activity of 1 [19], whereas sugar moiety of compounds 2-4 were showed the steric effect. That could reduce the free radical scavenging activity as well as weaken the electronic distribution of flavonoid molecules. Dihedral angles of compounds 2 > 3 > 4 caused by the sugar unit in the C-ring, lead the conformation to reverse and make molecule lose coplanar varying degrees; this could reduce the electronic distribution of compounds 2-4.

Based on frontier molecular orbital theory, the HOMO of flavonoid is mainly distributed in the B-ring, while the LUMO is distributed in the C-ring. The electron-donating capability of a molecule can be determined by the values of HOMO corresponds with a strong capability for donating electrons [19, 20]. It was suggested the higher of DPPH radical-scavenging was more focused on B-ring and the conjugate part than the C-ring. It show us, that there is no significance to the IC\textsubscript{50} vaules of compound 1-4 (Table 2).

Conclusions

Four antioxidant compounds, kaempferol (1), kaempferol-3-O-α-L-rhamnoside (2), kaempferol-3-O-β-D-glucoside (3) and kaempferol-3-O-β-D-glucosyl-(1→4)-α-L-rhamnoside (4) were isolated from the bark of Aglaia eximia (Meliaceae). Compounds 1-4 showed DPPH radical-scavenging activity with IC\textsubscript{50} values of 1.18, 6.34, 8.17, 10.63 µg/mL, respectively.

Acknowledgement

This study was financially supported by Third World Academic Sciences (TWAS) for research grant No. 12006 RG/CHE/AS_G-UNESCO FR: 3240271335, 2013-2014 by US). We thank Dr. Ahmad Darmawan and Sofa Fajriah, M.Si at the Research Center for Chemistry, Indonesian Science Institute, for performing the NMR measurements. We are grateful to Uji Pratomo, M.Si., at the Center Laboratory of Universitas Padjadjaran for performing the HR-TOFMS measurements.

References

[1] Mabberley, D.J., Pannel, C.M., Sing, A.M. 1995. Flora Malesiana: Series I. Vol 12. Leiden, Netherlands. pp. 1-407.

[2] Hidayat, S.S., Hutapea, J.R., 1991. Indonesian Medicinal Plants (II), Research and Development Agency. Ministry of Health. Jakarta. Indonesia. pp. 15-21.
[3] Muellner, A.M., Greger, H., and Pannell, C.M. Genetic diversity and geographic structure in Aglaia elaegnoidea (Meliaceae, Sapindales), a morphologically complex tree species, near the two extremes of its distribution. Blumea. 54:207-216. doi: 10.1080/14786419.2010.538395.

[4] Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K., Hayashi, H. 2014. Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochem. Lett. 8:28-31. doi: http://dx.doi.org/10.1016/j.phytol.2014.01.005.

[5] Awang, K., Loong, X., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.R., Mohamad, K. 2012. Triterpenes and steroids from the leaves of Aglaia eximia (Meliaceae). Fitoterapia. 83(8):1391-1395. doi:http://dx.doi.org/10.1016/j.fitote.2012.10.00.

[6] Fu, H.K., Chantrapromma, S., Supriadin, A., Harneti, D., Supratman, U., 2012. 3-epi-Dammarenediol II 1.075 hydrate: a dammarane triterpene from the bark of Aglaia eximia. Acta Cryst., E68, o3089-o3090. doi:10.1107/S1600536812040366.

[7] Loong, X.M., Mohamad, K., Awang, K., Hamid, A., Hadi, A., Ng, S.W., 2010. Cabraleahydroxylactone from the leaves of Aglaia eximia (Meliaceae). Acta Crystallogr Sect E Struct Rep Online. E66, o2541. doi:10.1107/S1600536810035208.

[8] Sianturi, J., Purnamasari, M., Mayanti, T., Harneti, D., Supratman, U., Awang, K., Hayashi, H., 2015. Flavonoid compounds from the bark of Aglaia eximia (Meliaceae). Makara J. Sci. 19(1):7-12. doi: 7454/mss.v.19i1.4476.

[9] Wang, W., Wang, H., Rayburn,E.R., Zhao,Y., Hill, D.L., Zhang, R., 2008. 20(S)-25-methoxyl-dammarane-3β, 12β,20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanism of action. Br. J Cancer. 98:792-802. doi: 10.1038/sj.bjc.6604227.

[10] Sharma, V and Singh, M., 2014. Ameliorative effect of Opeculina turpethum and its isolated stigma-5,22dien-3-O-β-D-glucopyranoside on the Hematological parameters of male mice exposed to N-nitrosodimethylamine, a potent carcinogen. Toxicol Int. 21(1):29-36. doi: 10.4103/0971-6580.128789.

[11] Ebada, S.S., Lajkiewicz, N., Porco, J.A., Li-Weber, M., and Proksch, P. 2011. Chemistry and Biology of Rocaglamides (flavagline) and related derivatives from Aglaia species (Meliaceae). Prog. Chem. Org. Nat. Prod. 94:1-58. doi: 10.1007/978-3-7091-0748-5-1.

[12] Dewick, P.M. 2009. Medicinal Natural Products a Biosynthetic Approach, 3rd ed. John Wiley and Sons. Nottingham. pp. 170-175.

[13] Wolfe, K.L and Liu, R.H., 2008. Structure-Activity Relationships of flavonoids in the Celular Antioxidant Activity Assay. J. Agri Food Chem., 56:8404-8411. doi: 10.1021/jf8013074.

[14] Aksoy, L., Kolay, E., Agilonu, Y., Aslan, Z., and Kargioglu, M., 2013. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermoplis turciana, Saudi J. Biol. Sci. 20(3):235-239. doi: 10.1016/j.sjbs.2013.02.003.

[15] Choe, K.I., Kwon, J.H., Park, K.H, Oh, M.H., Kim, M.H., Kim, H.H., Cho, S.Y., Chung, E.K., Ha, S.Y., Lee, M.W., 2012. The Antioxidant and Anti-inflammatory Effects of Phenolic Compounds Isolated from the Root of Rhodiola sachalinensis A. BOR. Molecules. 17:11484-11494. doi: 10.3390/ molecules171011484.

[16] Lei, J., Xiao, Y., Huang, J., Tang, M., and Deng, P., 2009. Two new kaempferol glycosides from Androsace umbellata. Helv. Chem. Acta. 92(7):1439-1444. doi: 10.1002/hlca.200800415.

[17] Weng, K., Ali, D.M.H., and Boey, P. 2012. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat. Prod. Res. 26(7): 609-618. doi: 10.1080/14764819.2010.538395.

[18] Kazuma, K., Noda, N., Suzuki, M. 2003. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochem. 62(2):229-237. doi: 10.1016/S0031-9422(02)00486-7.

[19] Cai, W., Chen, Y., Xie, L., Zhang, H., Hou, C., 2014. Characterization and density functional theory study of the antioxidant activity of quercetine and its sugar-containing analogues. Eur. Food Res. Technol. 238:121-128. doi: 10.1007/s00217-013-2091-X.

[20] Clare, B.W., 1995. Charge transfer complexes and frontier orbital energies in QSAR: a congeneric series of electron acceptors. J. Mol. Struct. Theochem., 337:139-150. doi: 10.1016/0166-2236(94)03783-H.