Retrospective Cohort Study

Comparison between hepatocellular carcinoma prognostic scores: A 10-year single-center experience and brief review of the current literature

Michele Campigotto, Mauro Giuffrè, Anna Colombo, Alessia Visintin, Alessandro Aversano, Martina Budel, Flora Masutti, Cristiano Abazia, Lory Saveria Crocè

ORCID number: Michele Campigotto 0000-0002-4702-3539; Mauro Giuffrè 0000-0002-9910-3514; Anna Colombo 0000-0002-2218-976X; Alessia Visintin 0000-0002-2873-4562; Alessandro Aversano 0000-0002-7882-2202; Martina Budel 0000-0003-4493-2856; Flora Masutti 0000-0002-6791-710X; Cristiano Abazia 0000-0002-5335-5302; Lory Saveria Crocè 0000-0001-9890-7011.

Author contributions: Campigotto M, Giuffrè M and Crocè LS conceived the study and drafted the manuscript; Colombo A, Visintin A, Aversano A, Budel M, Masutti F, and Colombo A collected the data; All authors reviewed the final version of the manuscript.

Institutional review board statement: The study was conducted retrospectively, without performing any intervention on patients.

Informed consent statement: All study participants or their legal guardian provided informed written consent about personal and medical data collection prior to study enrolment.

Conflict-of-interest statement: The

Abstract

BACKGROUND
Hepatocellular carcinoma (HCC) represents the most common primitive liver malignancy. A relevant concern involves the lack of agreement on staging systems, prognostic scores, and treatment allocation algorithms.

AIM
To compare the survival rates among already developed prognostic scores.

METHODS
We retrospectively evaluated 140 patients with HCC diagnosed between February 2006 and November 2017. Patients were categorized according to 15 prognostic scoring systems and estimated median survivals were compared with those available from the current medical literature.

RESULTS
The median overall survival of the cohort of patients was 35 (17; 67) mo, and it was statistically different in relation to treatment choice, ultrasound surveillance, and serum alpha-fetoprotein. The Italian Liver Cancer (ITA.LI.CA) tumor staging system performed best in predicting survival according to stage allocation among all 15 evaluated prognostic scores. Using the ITA.LI.CA prognostic system, 28.6%, 40.7%, 21.1%, and 8.6% of patients fell within stages 0-1, 2-3, 4-5 and > 5 respectively. The median survival was 57.9 mo for stages 0-1, 43 mo for stages 2-3, 21.7 mo for stages 4-5, and 10.4 mo for stage > 5. The 1-, 3-, and 5-year survival
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide, and the third cause of cancer-related mortality[1]. It is the second most frequent liver malignancy following liver metastasis and the most frequent primitive liver neoplasm, accounting for more than 85000 new diagnoses each year and more than 800000 deaths[2]. Incidence and death rates are increasing steadily (about 2%-3% per year)[3,4]. HCC usually arises in patients affected by liver cirrhosis, regardless of the etiology[5,6]. As chronic liver disease represents the leading risk factor for developing HCC, ultrasound surveillance in this condition is crucial to increase early detection rates and improve the overall survival in treated patients[7,8]. Current unmet clinical needs involve proper staging, prognosis, and treatment allocation of HCC patients. Both the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver and the European Organization for Research and Treatment of Cancer recommend staging systems that take into account tumor stage, liver function, and physical status in the form of the Barcelona Clinic Liver Cancer (BCLC) staging classification[9-13]. Also, patients’ characteristics, features of the nodules, and liver function drive the choice of treatment, which might be curative (e.g., liver resection, liver transplantation, radiofrequency ablation, microwave ablation, percutaneous ethanol injection) or merely palliative (transarterial chemoembolization/radioembolization, or specific protein kinases inhibitors such as sorafenib or lenvatinib). However, since the clinical management for HCC can be challenging, treatment should be defined and individualized by a multidisciplinary team composed of hepatologists, hepatobiliary surgeons, interventional radiologists, surgical and medical oncologists.

CONCLUSION
Survival analysis shows excellent prognostic ability of the ITA.LI.CA scoring system compared to other staging systems.

Key Words: Hepatocellular carcinoma; Prognostic score system; Prognostic factors; Survival analysis; Barcelona Clinic Liver Cancer score system; Italian Liver Cancer score system

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Italian Liver Cancer tumor staging system seems a promising prognostic score system with a good applicability and reproducibility for patients with hepatocellular carcinoma.

INTRODUCTION
Hepatocellular carcinoma: General aspects
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide, and the third cause of cancer-related mortality[1]. It is the second most frequent liver malignancy following liver metastasis and the most frequent primitive liver neoplasm, accounting for more than 850000 new diagnoses each year and more than 800000 deaths[2]. Incidence and death rates are increasing steadily (about 2%-3% per year)[3,4]. HCC usually arises in patients affected by liver cirrhosis, regardless of the etiology[5,6]. As chronic liver disease represents the leading risk factor for developing HCC, ultrasound surveillance in this condition is crucial to increase early detection rates and improve the overall survival in treated patients[7,8]. Current unmet clinical needs involve proper staging, prognosis, and treatment allocation of HCC patients. Both the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver and the European Organization for Research and Treatment of Cancer recommend staging systems that take into account tumor stage, liver function, and physical status in the form of the Barcelona Clinic Liver Cancer (BCLC) staging classification[9-13]. Also, patients’ characteristics, features of the nodules, and liver function drive the choice of treatment, which might be curative (e.g., liver resection, liver transplantation, radiofrequency ablation, microwave ablation, percutaneous ethanol injection) or merely palliative (transarterial chemoembolization/radioembolization, or specific protein kinases inhibitors such as sorafenib or lenvatinib). However, since the clinical management for HCC can be challenging, treatment should be defined and individualized by a multidisciplinary team composed of hepatologists, hepatobiliary surgeons, interventional radiologists, surgical and medical oncologists.
HCC staging systems

In the last 30 years, several staging systems have been proposed for the prognosis stratification and treatment choices of HCC. The tumor node metastasis (TNM) system does not take into account patient characteristics (e.g., liver function tests), thus not allowing for an appropriate prognostic stratification, especially for patients with large tumors; therefore, other systems have been developed. For example, the BCLC is the most widely accepted and used in clinical practice although many others in past times (i.e., Okuda Staging System, Cancer of the Liver Italian Program (CLIP) staging system, Groupe d’Etude et de Traitement du Carcinome Hepatocellulaire (GRETCH) staging system) and more recently (i.e., Japanese Integrated Staging (JIS) score, Tokyo Scoring System, Hong Kong Liver Cancer (HKLC) classification, Model to Estimate Survival in Ambulatory HCC patients (MESIAH) staging score, albumin-bilirubin [ALBI] grading system, ALBI-based BCLC staging system, ALBI-T score, model to estimate survival for HCC patients [MESH] scoring system, NIACE score system and Italian Liver Cancer Group [ITA.LI.CA] score system) allowed physicians to allocate all possible presentations of HCC cases. In addition, other scores aimed toward driving treatment procedures have been developed to improve and provide more effective and customized therapy for specific groups of patients; consensus on their use, however, is still to be reached. Meaningful examples are provided by the needle and syringe program (NSP) scoring system,[16] hepatoma arterial-embolization (HAP) scoring system,[17] the Selection for Transarterial chemoembolization Treatment (STATE) scoring system and START strategy and tumor size and number, baseline alpha-fetoprotein (AFP), Child-Pugh and objective radiological response (SNACOR) staging system.[18] The main features of the above-mentioned scoring system are reported in Table 1.

Proposed in 1999 and updated in 2003, the BCLC staging classification analyzes tumor size, presence of metastasis, portal hypertension, Child-Turcotte-Pugh score, total bilirubin and performance status, stratifying patients into five groups: Stage 0 (very early HCC), stage A (early HCC) which is divided into four subgroups A1-A4; stage B (intermediate HCC); stage C (advanced HCC); stage D (end-stage HCC). The recommended therapy changes according to the stage: Surgical resection is indicated from stage 0 to A2, liver transplant or local ablation procedures from stage A2 to A4, transarterial chemoembolization (TACE) for stage B, sorafenib for stage C, and supportive care for stage D.[19] The median survival for the various stages is over 60 mo for BCLC 0-A, 20 mo for BCLC B, 11 mo for BCLC C and less than 3 mo for BCLC D. Despite its widespread application, the BCLC staging classification has some limitations, especially the strictness in treatment recommendation and the fact that it includes considerably heterogeneous populations in the same stage (principally stage B and C);[20] Because of the heterogeneity of patients in the intermediate stage (B) of BCLC, several authors have attempted to create subclassifications within this stage to provide more precise prognostic information and allow a more tailored therapeutic approach. In 2012, Bolondi et al.[21] proposed a four-class substaging from B1 to B4, based on characteristics such as Child-Turcotte-Pugh score, beyond Milan and up-to-7 criteria, Eastern Cooperative Oncology Group (ECOG) PS and portal vein thrombosis,[22] thus modifying treatment approach according to BCLC scheme.[23] In 2014, the staging system proposed by Bolondi et al.[24] was validated in an Asian population-based study. A year later, the Japanese Society of Transcatheter Hepatic Arterial Embolization (JSTHAE) proposed an alternative subclassification of BCLC stage B, based only on Child-Turcotte-Pugh score and the 4-of-7 cm criterion (total of 4 tumor nodules, with maximum diameter ≤ 7 cm).[25] During the same year, researchers from the Kindai University developed other substaging criteria, which appear to perform appropriately; however, external validation is needed.[26] Another subclassification for intermediate HCC based on the one proposed by Bolondi et al.[27] was designed by a Taiwanese group in 2015; however, it has not been validated in Western cohorts of patients. In 2016, a study was conducted to assess whether the ALBI grade could substitute the Child-Turcotte-Pugh score in the BCLC staging system. Concerning the prediction of the clinical outcome of HCC, the ALBI grade performed similarly to the Child-Turcotte-Pugh score when integrated into the BCLC staging system.[28] A few months later, the ITA.LI.CA study group developed and validated its own prognostic system, trying to overcome the shortcomings of previous scores. In particular, 5183 Italian HCC patients (mainly hepatitis C virus infected patients with good performance status and compensated cirrhosis) from the ITA.LI.CA dataset were included in the analysis for internal validation, while other 2651 patients from Taipei (mainly chronic hepatitis B virus infected patients) were recruited for external validation to test the general application of the system. The ITA.LI.CA prognostic system features parameters such as tumor burden (assessed via the...
Score system	Parameters taken into account	Classes/ levels	1-, 2-, 3-, or 5-yr survival rates/median survival	Ref.
BCLC	Tumor size; presence of metastasis; portal hypertension; Child-Pugh score; total bilirubin; performance status	Stage 0 (very early HCC); stage A (early HCC, subdivided into A1-A4); stage B (Intermediate HCC); stage C (advanced HCC); stage D (end-stage HCC)	5-yr survival rates: 50%-70% for BCLC 0-A; 2-yr survival rates: 63% for BCLC B; 1-yr survival rates: 82%, 44% and 11% for BCLC B, C and D respectively	Llovet et al[34], Mazzaferro et al[35], Weinmann et al[36], Barman et al[37], Yopp et al[38]
Okuda staging system	Tumor size (tumor > 50% of the liver; presence of ascites; albumin < 3 g/dL; bilirubin > 3 mg/dL)	Stage I (0 factors); stage II (1-2 factors); stage III (3-4 factors)	1-yr survival rates: 57% for stage 1, 20% for stage 2 and 3% for stage 3 respectively	Maida et al[39]
CLIP staging system	Tumor size; tumor morphology (uninodular, < 50%; multinodular, < 50%; massive or > 50%); Child-Turcotte-Pugh score; alpha-fetoprotein levels (< or ≥ 400 ng/mL); presence of portal vein thrombosis	One point each parameter (total score ranging from 0 to 6)	1-yr survival rates: 86% for CLIP 0, 76% for CLIP 1, 57% for CLIP 2, 38% for CLIP 3, 22% for CLIP 4, 9% for CLIP 5 and 0% for CLIP 6 respectively; 2-yr survival rates: 69% for CLIP 0, 53% for CLIP 1, 25% for CLIP 2, 7% for CLIP 3, 10% for CLIP 4 respectively; 3-yr survival rates: 58% for CLIP 0, 39% for CLIP 1, 15% for CLIP 2, 6% for CLIP 3, 5% for CLIP 4	[19]
GRETCH staging system	Serum bilirubin; alkaline phosphatase; alpha-fetoprotein; evidence of portal obstruction; Karnofsky score	Stage A (low risk); stage B (intermediate risk); stage C (high risk)	1-yr survival rates are 79%, 31% and 4% for stage A, B and C, respectively	Maida et al[39], Cammà et al[40]
Japanese integrated staging score	LCSGJ TNM (presence of single mass; dimension < 2 cm absence of vessel invasion); Child-Pugh score	Total JIS score is the sum of LCSGJ TNM (I to IV are assigned 0 to 3 points) and Child-Turcotte-Pugh score (A, B or C are assigned 0, 1 or 2 points)	2-yr survival rates are 94.5%, 88.9% 78.2%, 52.7%, 30.3% and 15.3% for JIS 0 to JIS 5	Kudo et al[41]
Tokyo scoring system	Serum albumin; serum bilirubin; tumor size; number of nodules, each of which is attributed a score	Total Tokyo score is the sum of: 0 points for serum albumin ≤ 3.5 g/dL; serum bilirubin levels < 1 mg/dL; tumor size < 2 cm and ≤ 3 tumors; 1 point for serum albumin levels ≥ 3.5 g/dL; serum bilirubin levels ≥ 1 mg/dL and tumor size < 2 cm; 2 points for serum albumin levels ≥ 2.5 mg/dL; tumor size ≥ 5 cm; and > 3 tumors.	1-yr survival rates: 100% for score 0, 97.6% for score 1, 94.2% for score 2, 84.6% for score 3, 73.8% for score 4-6; 2-yr survival rates: 98.1% for score 0, 90.5% for score 1, 81.7% for score 2, 70.5% for score 3, 52.4% for score 4-6; 3-yr survival rates: 96.2% for score 0, 90.5% for score 1, 83.5% for score 2, 74.7% for score 3, 33.3% for score 4-5; 4-yr survival rates: 52.8% for score 0, 37.3% for score 1, 27.9% for score 2, 19.2% for score 3, 16.7 % for score 4-6	Tateishi et al[42]
MISIAH staging score	Tumor size; number of nodules; vascular invasion; extrahepatic metastasis; age; serum albumin; AFP levels; MELD score	Each of the parameters is assigned a specific coefficient.	Along with the score is provided a tailored probability of survival at 1, 3, 6, 12, 24 and 36 mo.	Kinoshiata et al[43], Choi et al[44]
ALBI grading system	Serum bilirubin (µmol/L); serum albumin (g/L).	ALBI grade 1 corresponds to a score ≤ -2.60. ALBI grade 2 corresponds to a score > -2.60 and ≤ -1.39. ALBI grade 3 corresponds to a score > -1.39.	In European patients, the median survivals reported in the study were 24.7 mo for ALBI grade 1, 11.4 mo for ALBI grade 2 and 4.9 mo for ALBI grade 3.	Ogasawara et al[45]
ALBI-based BCLC staging	The procedure to calculate the BCLC stage stays the same, but, instead of Child-Turcotte-Pugh grade A, B and C, ALBI grade 1, 2 and 3 are employed respectively.	An ALBI score 1 can be present in BCLC stage 0, A, B and C; ALBI score 2 can be present in BCLC stage A, B and C; ALBI score 3 is	1-yr survival rates: 91.3% for ALBI-based BCLC 0, 85.8% for ALBI-based BCLC stage A, 72.6% for ALBI-based BCLC stage B, 32.9% for ALBI-based BCLC Stage C, 26.6% for ALBI-based BCLC stage D. 2-yr survival rates: 79.7% for ALBI-based BCLC 0,	Chan et al[46]
ALBI-T score
ALBI grade; LCSGJ TNM staging system

The final score, ranging from 0 to 5, is related to BCLC stage D

Score Range	BCLC Stage	Survival Rate
1-5	A	69.2%
6-10	B	46%
11-15	C	7.2%
16-20	D	2%

The sum of the points obtained in the various sections leads to the final ALBI-T score (ranging from 0 to 5).

The reported median survival were 137.7 mo for ALBI-T score 0, 83.2 mo for ALBI-T score 1, 53.4 mo for ALBI-T score 2, 27.4 mo for ALBI-T score 3, 5 mo for ALBI-T score 4 and 1.4 mo for ALBI-T score 5.

References:
- Hiraoka et al\[27\]

MESH scoring system
Tumor burden (within/beyond Milan criteria); vascular invasion; metastasis; Child-Pugh score; Performance Status; serum AFP; ALP

The sum of the points obtained in the various sections leads to the final MESH score (ranging from 0 to 6).

1-yr survival rates: 89.5% for MESH 0, 82.5% for MESH 1, 74% for MESH 2, 45.2% for MESH 3, 21.4% for MESH 4, 5.7% for MESH 5, 0% for MESH 6; 2-yr survival rates: 72.9% for MESH 0, 52.8% for MESH 1, 74% for MESH 2, 49.4% for MESH 3, 12.8% for MESH 4, 3.7% for MESH 5; 3-yr survival rates: 53.3% for MESH 0, 52.8% for MESH 1, 36% for MESH 2, 14.8% for MESH 3, 8.2% for MESH 4, 1.4% for MESH 5; 5-yr survival rates: 38.6% for MESH 0, 28% for MESH 1, 14.9% for MESH 2, 5.1% for MESH 3, 3.5% for MESH 4, 0% for MESH 5

References:
- Liu et al\[29\]

NIACE score system
Number of nodules (N); infiltrative HCC (I); serum AFP levels (A); Child-Turcotte-Pugh grade (C); ECOG PS (E)

The sum of the points obtained in the various sections leads to the final NIACE score (ranging from 0 to 7).

The reported median survival were 44 mo for NIACE 0, 22 mo for NIACE 1, 20 mo for NIACE 1.5, 14 mo for NIACE 2.5, 9 mo for NIACE 3, 7 mo for NIACE 4, 4 mo for NIACE 4.5, 4 mo for NIACE 5, 3 mo for NIACE 6 and 3 mo for NIACE 7.

References:
- Adhoute et al\[30\]

ITA.LI.CA score system
Tumor burden (assessed via the ITA.LI.CA tumor staging); performance status test; Child-Pugh score; AFP concentration

The mean survival was reported to be 61 mo for patients in quartile 1 (ITA.LI.CA score ≤ 1), 38 mo for patients in quartile 2 (ITA.LI.CA score 2-3), 23 mo for patients in quartile 3 (ITA.LI.CA score 4-5) and 8 mo for patients in quartile 4 (ITA.LI.CA score > 5).

References:
- Farinati et al\[31\], Yoo et al\[32\], Borzio et al\[33\]

NSP scoring system
Tumor number (N); tumor size (S); prothrombin time (P)

The sum of the points obtained in the various sections leads to the final NSP score. Using a threshold score of 1 allows to identify 2 subgroups with different prognosis.

1-yr survival rates are 88.4% for NSP ≤ 1 and 62.7% for NSP > 1; 3-yr survival rates are 57% for NSP ≤ 1 and 16.9% for NSP > 1; 5-yr survival rates are 30.2% for NSP ≤ 1 and 20.4% for NSP > 1.

References:
- Zhang et al\[34\]

HAP scoring system
Serum levels of albumin; serum AFP; bilirubin; maximum tumor diameter; 1 point is assigned for serum albumin levels < 3.6 g/dL, serum AFP > 400 ng/dL, serum bilirubin > 0.99 mg/dL (17 mmol/L) and for a maximum tumor diameter > 7 cm

HAP A (low risk) for a total score 0; HAP B (intermediate risk) for a total score 1; HAP C (high risk) for a total score 2; HAP D (very high risk) for a total score > 2

1-yr survival rates: 64.7% for HAP A, 50% for HAP B, 38.5% for HAP C, 25% for HAP D; 2-yr survival rates: 17.6% for HAP A, 10.3% for HAP B, 10.3% for HAP C, 10% for HAP D.

References:
- Kadalayil et al\[35\]

STATE scoring system and START strategy
Up-to-7 criteria; serum albumin level; C reactive protein values. A neoplasia within Up-to-7 criteria is assigned 0 points, while a neoplasia beyond the criteria subtracts 12 points. C reactive protein values < 1 mg/dL are attributed 0 points, whereas values ≥ 1 mg/dL subtract 12 points

2 groups of patients presenting different prognosis were identified: STATE score < 18 and ≥ 18

Median survival of 20.5 mo for patients with a STATE score ≥ 18. Median survival of 6.1 mo for patients with a score < 18.

References:
- Hacke et al\[36\]

SNACOR staging system
Tumor size (S); tumor number (N); baseline AFP (A); Child-Turcotte-Pugh class (C); objective radiological response (OR).

No points are assigned for tumors < 5 cm, a number of tumors < 4, a baseline AFP < 400 ng/mL, a Child-Turcotte-Pugh class A and for complete response or partial response after TACE. 1 point is assigned for tumors ≥ 5 cm and for a Child-Turcotte-Pugh class B; 2 points are assigned for a number of tumors ≥ 4; 3 points are assigned for a baseline AFP ≥ 400 ng/mL and for stable disease or progressive disease after TACE

The final SNACOR score is the sum of the points obtained for the previous features and ranges from 0 to 10

1-yr survival rates: 80.9% for SNACOR 0-2, 69.4% for SNACOR 3-6, 40% for SNACOR 7-10; 2-yr survival rates: 55.3% for SNACOR 0-2, 38.9% for SNACOR 3-6, 20% for SNACOR 7-10; 3-yr survival rates: 42.6% for SNACOR 0-2, 26.4% for SNACOR 3-6, 6.7% for SNACOR 7-10; 5-yr survival rates: 24.5% for SNACOR 0-2, 16% for SNACOR 3-6, 3.3% for SNACOR 7-10

References:
- Mähringer-Kunz et al\[37\]
ITAILICA tumor staging), performance status test, Child-Turcotte-Pugh score and AFP concentration, and each is assigned a number of points that finally contribute to the total prognostic score (from 0, best prognosis, to 13, worst prognosis). The ITAILICA tumor staging system, taking into account features such as the diameter of the largest nodule, the number of nodules, vascular invasion or metastasis, classifies patients in stages: 0 (very early), A (early), B (intermediate, divided into B1, B2, and B3) and C (advanced). The median survival was reported to be 61 mo for patients with ITAILICA score ≤ 1, 38 mo for patients with ITAILICA scores 2-3, 23 mo for patients with scores 4-5 and 8 mo for patients with more than 5 points. In the validation cohorts, the ITAILICA score proved to have the best discriminatory ability among other staging systems such as BCLC, CLIP, JIS, HKLC, and MESIAH[46]. Compared to the BCLC classification, the ITAILICA prognostic system allows a more thorough analysis of tumor burden, subclassifying intermediate patients into three groups (B1, B2, B3) rather than grouping them as stage B. Furthermore, the ITAILICA prognostic system differentiates patients with intrahepatic or extrahepatic metastasis, who studies proved to have different prognosis[47]. Finally, external and independent validation studies proved ITAILICA to offer the best predictive ability in terms of calibration, discriminatory ability, and monotonicity of gradients in both treated and untreated patients[13,48].

MATERIALS AND METHODS

A total of 140 patients diagnosed with HCC and treated at our Liver Clinic (University Hospital of Trieste) between February 2006 and November 2017, were retrospectively enrolled. Follow-up was censored on June 30, 2018. The following variables were analyzed before the first active treatment: Gender, age, etiology of liver disease, presence of portal vein thrombosis and ascites, Child-Turcotte-Pugh classification, Model for End-Stage Liver Disease score, Karnovsky score, and ECOG PS score. Laboratory tests conducted featured serum levels of albumin, total and direct bilirubin, aspartate aminotransferase and alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total proteins, creatinine, hemoglobin, sodium, potassium, white blood cells, red blood cells, platelets, international normalized ratio and activated partial thromboplastin time. The diagnosis of HCC was based on typical imaging features of HCC in computed tomography or magnetic
resonance imaging. Liver biopsy was the technique of choice for diagnosing in case previous imaging studies did not allow diagnostic certainty. Imaging was further employed to obtain information on the number of lesions, tumor diameter, presence of metastasis, and Milan and up-to-7 criteria fulfillment. Depending on their characteristics, patients underwent different therapeutic procedures: Surgical resection, radiofrequency ablation, transarterial chemoembolization (TACE), systemic therapy (sorafenib), or supportive care. Patients were then classified according to different prognostic systems, namely ITA.LI.CA, BCLC (and its subclassifications), CLIP, JIS, HKLC, Tokyo score, Okuda, GRETCH, NIACE, MESH, ALBI (and scores derived from it), HAP, STATE, SNACOR, NSP.

Continuous variables were reported as median (interquartile range) according to the results of the Shapiro-Wilk test. Discrete variables were reported as number (percentage). Between-group comparisons of discrete variables were performed using Pearson’s Chi-square test and those of continuous variables using Mann-Whitney U test. The overall survival was defined as the time from the date of diagnosis of HCC to the date of death or data censoring (June 30, 2018). Kaplan-Meier survival curves were employed to estimate the median overall survival, and the log-rank test was used to compare differences in survival. All statistical analyses were performed using SPSS version 20 (IBM Corp., Armonk, NY, United States).

RESULTS

Patients’ clinical, laboratory, radiological characteristics and treatment choice are summarized in Table 2. The median overall survival was 35 (17; 67) mo, and it was statistically different in relation to treatment choice, ultrasound surveillance and serum AFP (Table 2).

Using the ITA.LI.CA prognostic system, 28.6%, 40.7%, 22.1% and 8.6% of patients fell within stages 0-1, 2-3, 4-5 and > 5 respectively. The median survival was 57.9 mo for stages 0-1, 43 mo for stages 2-3, 21.7 mo for stages 4-5 and 10, 4 mo for stage > 5. 1-, 3-, and 5-year survival rates were 95%, 65% and 20% for stage 0-1, 94.7%, 43.9% and 26.3% for stage 2-3, 71%, 25.8% and 16.1% for stage 4-5 and 50%, 16.7% and 8.3% for stage >5. The Kaplan-Meier curves are shown in Figure 1.

Using the BCLC staging system 10.7%, 59.3%, 27.1%, 1.4% and 0% of patients fell within stages 0, A, B, C and D respectively. The median survival was > 81, 1 mo for stage 0, 44, 9 mo for stage A, 21, 3 mo for stage B and 3, 1 mo for stage C. 1-, 3-, and 5-year survival rates were 86.7%, 60% and 46.7% for stage 0, 91.6%, 50.6% and 20.5% for stage A, 73.7%, 23.7% and 13.2% for stage B and 2%, 0% and 0% for stage C. The Kaplan-Meier curves are shown in Figure 2.

With BCLC stage A substaging 29 (35%), 25 (30.1%), 5 (6%) and 24 (28.9%) patients fell within stages A1, A2, A3, and A4 respectively. The median survival, 1-, 3-, and 5-year survival rates are shown in Table 3, while Kaplan-Meier curves are shown in Figure 3A. With Bolondi’s intermediate BCLC subclassification, 13 (34.2%), 19 (50%), 3 (7.9%), and 3 (7.9%) patients fell within stages B1, B2, B3, and B4 respectively. The median survival 1-, 3-, and 5-year survival rates are listed in Table 3, while the Kaplan-Meier curves are shown in Figure 3B.

Median survivals within different stages and 1-, 3- or 5-year survivals for CLIP scoring system, JIS scoring system, HKLC scoring system, Okuda classification, GRETCH scoring system, NIACE scoring system, MESH scoring system, ALBI score, STATE scoring system, SNACOR staging system, NSP staging system are listed in Table 3. The best prognostic performance was achieved by the ITA.LI.CA score ($P < 0.001$), followed by HKLC, GRETCH, BCLC and CLIP ($P = 0.001$); the other showed less accuracy, with STATE and SNACOR staging systems showing no intergroup differences ($P = 0.322$ and $P = 0.09$ respectively). Also, the comparison between the median survival expected from the original studies and median survival in the study population according to the different scores is also shown in Table 3.

DISCUSSION

The main aim of this study was to assess the prognostic efficacy of different staging systems in the local patient population. Fifteen staging systems were analyzed and subsequently compared to data available from the current literature, showing considerably heterogeneous performances ranging from significant prognostic stratification and comparable median survivals to statistical insignificance and
Feature of interest	Study population, n = 140	Intergroup statistical significance
Gender		
Male	109 (77.9%)	
Female	31 (22.1%)	
Age at diagnosis, yr	71.6 (65.6; 75.6)	
Liver disease etiology		
Viral	36 (25.7%)	
Alcoholic	30 (21.4%)	
Metabolic	19 (13.6%)	
Mixed	55 (39.3%)	
Laboratory parameters at diagnosis		
Albumin, g/dL	1.12 (0.94-2.23)	
INR	1.12 (0.94-2.23)	
Total bilirubin, mg/dL	1.06 (0.37-14.47)	
AST, UI/L	41 (11-511)	
ALT, UI/L	32 (7-336)	
ALP, UI/L	99 (40-529)	
GGT, UI/L	69 (11-473)	
Total serum proteins, g/dL	7.3 (5.1-8.9)	
AFP, ng/mL	9.3 (5-110)	
Creatinine, mg/dL	0.89 (0.5-2.99)	
White blood cells, × 10^6 cells/µL	5.04 (1.51-12.18)	
Red blood cells, × 10^6 cells/µL	4.34 (2.85-6.78)	
Hemoglobin, g/dL	13.5 (8.7-17.8)	
Platelets, × 10^9 platelets/µL	113 (29-346)	
Sodium, mmol/L	139 (128-145)	
Potassium, mmol/L	4.24 (3.40-6.15)	
Clinical characteristics at diagnosis		
Ascites	11 (7.9%)	
Portal hypertension	64 (45.7%)	
Hepatic encephalopathy	10 (7.1%)	
Portal vein thrombosis	10 (7.1%)	
Metastasis	2 (2.4%)	
Child-Turcotte-Pugh		
Class A	116 (82.9%)	
Class B	22 (15.7%)	
Class C	2 (1.4%)	
MELD score	9 (6-25)	
Karnofsky score		
100	136 (97.1%)	
90	3 (2.1%)	
Nodule diameter, mm	30 (20; 40)	
-------------------	-------------	
Total tumor volume, cm3	14.13 (5.45-36.43)	
Milan criteria		
Within	99 (71.2%)	
Beyond	40 (28.8%)	
Up-to-7 criteria		
Within	113 (81.3%)	
Beyond	26 (18.7%)	
Treatment		
Type		
Surgical resection	28 (20%)	
Local ablation	49 (35%)	
TACE	54 (38.6%)	
Sorafenib	2 (1.4%)	
Support	7 (5%)	
Number		
< 2	63 (45%)	
≥ 2	77 (55%)	
Response at 1 mo after treatment		
Complete response	72 (51.4%)	
Of whom treated with curative treatment	56 (77.7%)	
Partial response	40 (28.6%)	
Of whom treated with curative treatment	17 (42.5%)	
Stable disease	14 (10%)	
Of whom treated with curative treatment	1 (7.1%)	
Disease progression	10 (10%)	
Of whom treated with curative treatment	1 (10%)	
Ultrasound surveillance every 6 mo		
Adhesion to ultrasound surveillance		
Under surveillance	Not under surveillance	\(P < 0.001 \)
--------------------	------------------------	------------------
Nodule diameter, mm	25 (20; 35)	34 (25; 45)
Number of nodules at diagnosis	69 (83.2%)	22 (37.3%)
Choice of curative treatment	54 (66.6%)	29 (49.2%)
Survival time, mo	35 (17;67)	NS
Survival related to gender	34 (20; 80)	35 (16; 64)
Survival related to etiology	32 (15; 65)	NS
Survival related to treatment choice	48 (18; 68)	23 (14; 34)
Survival related to ultrasound surveillance	48 (20; 75)	NS
Survival related to AFP	55 (34; 75)	22 (12; 54)

AFP: Alpha-fetoprotein; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ECOG: Eastern Cooperative Oncology Group; GGT: Gamma glutaryl transferase; INR: International normalized ratio; MELD: Model for End-Stage Liver Disease; TACE: Transarterial chemoembolization.

differences in overall survival. The most relevant differences were found for the BCLC, CLIP, JJS, HKLC, Okuda, and GRETCH staging systems and for the ALBI grade, as reported in Table 3.

Despite the unequivocal statistical significance in prognostic stratification of the CLIP and GRETCH staging systems in the study population, the original studies reported substantially shorter survival for almost every stage, although they were validated in European cohorts. However, the reason behind this difference might be related to the advances in treatment for HCC that took place over time since the 1992 and 1994, when the studies were censored. Despite being statistically significant in the study population, the original studies for the Okuda, JJS, and HKLC staging systems reported notably different median overall survival rates. In this case, although the JJS staging system was proven effective by some studies also for Western patients, the explanation is likely to be found in the patient population recruited for the analysis, since validation was performed using only Eastern cohorts along with other factors such as prevalent etiology and different treatment protocols. Moreover, the worse median survival from the original study for the Okuda staging system can be justified by the higher efficacy that therapeutic procedures have reached since 1984. The shorter median survival of patients from the ALBI original study can be explained by the
Table 3 Patients’ allocation and their median survival according to prognostic scores taken into account

Score	Number of patients	Percentage	Median survival in mo	Statistical significance for prognostic stratification	Median survival in the original study in mo
IT.A.L.I.C.A					
0	7	5%	93.5		
1	33	23.6%	57.9		
2	19	13.6%	63.1		
3	38	27.1%	40.6		
4	20	14.3%	25.2		
5	11	7.8%	21.1		
6	5	3.6%	20.8		
7	4	2.9%	10.3		
8	3	2.1%	4.3		
> 8	0	0%			
IT.A.L.I.C.A					
0-1	40	28.6%	57.9		57-61
2-3	57	40.7%	43		43-48
4-5	31	22.1%	21.7		23
> 5	12	8.6%	10.4		9-8
BCLC					
0	15	10.7%	> 81.1		> 60
A	83	59.3%	44.9		> 60
B	38	27.1%	21.3		20
C	2	1.4%	3.1		11
D	0	0%			< 3
BCLC A					
A1	29	20.7%	61.9		43.4
A2	25	17.6%	44.3		28.9
A3	5	3.5%	10.7		25.4
A4	24	17.1%	34.4		22.3
BCLC B (Bolondi)					
B1	13	9.3%	34.7		31.9
B2	19	15.7%	25.2		26.9
B3	3	0.7%	10.4		13.5
B4	3	1.4%	7.8		10.9
CLIP					
0	59	42.1%	50.7		27
1	47	33.6%	53.3		15
2	19	13.6%	20.5		9
3	12	8.6%	17.8		7
4	3	2.1%	3.1		5
> 4	0	0%			3
JIS					
-----------	---	---	---	---	---
0	27	19.3%	70.8	22.6	
1	66	47.1%	44.3	22	
2	40	28.6%	42	20.6	
3	7	5%	10.4	16.9	
4-5	0	0%	0	12.1-5.9	
HKLC					
1	93	67.4%	47	79.7	
2a	10	7.3%	19	33.4	
2b	18	13%	34.7	32.7	
3a	5	3.6%	10.4	12.5	
3b	10	7.3%	20.8	5.5	
4a	1	0.7%	17.8	3.9	
4b	1	0.7%	3.1	1.9	
5 (a/b)	0	0%	0	32.5/1.6	
Tokyo					
0	10	7.1%	93.5		
1	48	34.3%	47		
2	41	29.3%	43.6		
3	21	15%	30.3		
4	14	10%	20.8		
5	4	2.9%	10.4		
6	1	0.7%	10.3		
7	0	0%	0		
8	1	0.7%	0.8		
Okuda					
1	102	72.9%	45.5	15.8	
2	36	25.7%	20.5	3.6	
3	2	1.4%	0.8	1.3	
GRETCH					
A	75	53.6 %	57.6	29.3	
B	62	44.3 %	30	7.4	
C	3	2.1 %	7.8	2.1	
NIACE					
0	77	55 %	45.7	44	
1	10	7.1 %	43	22	
1.5	39	27.9 %	21.7	20	
2.5	5	3.6 %	10.4	14	
3	6	4.3 %	16.5	9	
4	3	2.1 %	3.1	7	
> 4	0	0 %	0	4	
MESH					
0	40	28.6 %	57.9	66	
---	---	---	---		
1	46	32.9 %	43		
2	30	21.4 %	19.5		
3	19	13.6 %	20.8		
4	5	3.5 %	10.4		
>4	0	0 %	5		
ALBI	P = 0.008				
1	43	31.9 %	79.2		
2	87	64.4 %	34.7		
3	5	3.7 %	15.7		
ALBI	P = 0.008				
2a	53	39.2 %	44.3		
2b	34	25.2 %	25.2		
BCLC based on ALBI	P = 0.048				
0	15	10.9 %	> 81.1		
A	75	54.3 %	44.9		
B	20	14.5 %	22.2		
C	1	0.7 %	3.1		
D	27	19.6 %	21.7		
ALBI-T	P = 0.002				
0	12	9 %	93.5		
1	42	31.6 %	63.1		
2	49	36.8 %	42		
3	28	21.1 %	21.3		
4	2	1.5 %	0.8		
5	0	0 %	5		
HAP	P = 0.004				
A	31	22.2 %	45.7		
B	51	36.4 %	45.7		
C	41	29.3 %	35.7		
D	17	12.1 %	20.6		
STATE	P = 0.322				
>37	8	5.7 %	25.2		
27-37	17	12.1 %	40.6		
18-27	16	11.4 %	44.9		
<18	13	9.3 %	20		
Median STATE score	29.1 (range: 2.4 – 45.6)				
SNACOR	P = 0.09				
0-2	31	22.1 %	25.2		
3-6	17	12.1 %	19		
7-10	1	0.7 %	10.3		
NSP	P = 0.03				
0	63	45 %	79.2		
Comparison with data in original studies which available. NS: Not significant. ALBI: Albumin-bilirubin; BCLC: Barcelona Clinic Liver Cancer; CLIP: Cancer of the Liver Italian Program; GRETCH: Groupe d’Étude et de Traitement du Carcinome Hépatocellulaire; HAP: Hepatoma arterial embolization; HKLC: Hong Kong Liver Cancer; ITA.LI.CA: Italian Liver Cancer; JIS: Japanese Integrated Staging; MESH: Model to estimate survival for hepatocellular carcinoma patients; NSP: Needle and syringe programme; SNACOR: Tumor size and number, baseline alpha-fetoprotein, Child-Pugh and objective radiological response; STATE: Selection for Transarterial chemoembolization treatment.

European population employed as the reference, for all the patients had advanced
HCC and were treated with sorafenib. Furthermore, if the study population’s median survivals are compared with those of the Japanese population of the study, that also included patients who underwent surgical resection, the differences appear much less significant. Despite the difference in survival, however, the ALBI grade showed statistical significance in the study population.

The median survival from the BCLC staging system clearly differs for stages A (and BCLC stage A subclassification) and C in the study population. The difference in survival for stage A might be explained with the heterogeneity in treatment that these patients received in the study population, while the reason for the difference in stage C is to be found in the low number of patients falling within this category in the study population. Nevertheless, BCLC stage B showed similar survivals, and so happened also for the BCLC intermediate subclassification according to Bolondi. The BCLC staging system, BCLC stage A subclassification and Bolondi’s BCLC B substaging all resulted statistically significant.

The NIACE staging systems presented median survivals similar to the validation study, and similarly, the MESH staging system presented median survivals comparable to those of the original study, except for stages with lower numbers of patients.

Among all of the staging systems, not only did the ITA.LI.CA show one of the highest statistical significance \(P < 0.001 \) for prognostic stratification of the patients, but it also showed almost complete correspondence of median overall survivals for all different stages. Only patients in stage > 5 showed a median survival 2 mo longer than that of the original study (10.4 vs 8.9 mo), probably related to the relatively low numerosity of patients in this stage (12 patients, 8.6%). This study further supports the external validation process for the ITA.LI.CA prognostic system in Western patients affected by HCC\(^{[48]}\).

The study also assessed the prognostic performance of scoring systems related to treatment. The median survivals of all three scoring systems (STATE, SNACOR, NSP) in the study population were similar to those of the original studies, but only the NSP system reached inter-group statistical significance.

As could be expected, the median overall survival of patients undergoing ultrasound surveillance every 6 mo was longer than those of patients who were not followed (48 vs 30 mo), attributable to an early detection of HCC nodules. In fact, as shown in Table 2, patients undergoing ultrasound surveillance had smaller nodule diameter (25 vs 34 mm, \(P < 0.001 \)) and showed lower prevalence of 32 nodules at diagnosis. Also, patients with AFP > 200 ng/mL showed reduced survival if compared to patients with lower AFP levels (22 vs 55 mo, \(P < 0.001 \)).

In terms of the treatment regimen, median overall survival was 48 (20; 75) mo for curative (surgery/ablation) treatment and 23 (14; 34) mo for non-curative (TACE/sorafenib/support) treatment. Further analyses were carried out assessing the difference in survival of patients who did and did not receive the treatment...
recommended for their stage by the BCLC staging system. For patients treated with surgical resection or TACE, there was no significant difference in survival between the two groups, proving that the BCLC score does not affect the overall survival for the same type of therapy. As could be expected, patients with BCLC stage A who underwent curative treatment (as recommended by the BCLC staging system) presented a significantly better survival compared to those who did not, but at the same time patients with BCLC stage B showed a benefit from curative treatment (not recommended by the BCLC staging system) compared to those who underwent TACE (as recommended), with a median survival of 34.7 mo instead of 22.2 mo. Therefore, the rigorous application of treatment recommendations for each BCLC stage, may shorten patients’ survival. In fact, treatment choices based on the sub-classification of the BCLC stage B can furtherly stratify patients and provide the most suitable treatment[49-53].

CONCLUSION

In conclusion, the study identified the ITA.LI.CA as the most effective staging system in the local population. In addition, the ITA.LI.CA does not propose a treatment algorithm, as opposed to other staging systems such as the BCLC, since numerous variables influence treatment choice, and the use of rigid and categorical flowcharts may not always guarantee the most suitable therapy, as partly shown also in this study. ITA.LI.CA seems a promising prognostic score system with a good applicability and reproducibility for patients with HCC.

ARTICLE HIGHLIGHTS

Research background
Hepatocellular carcinoma represents the most common primitive liver malignancy.

Research motivation
Currently there is a widespread lack of agreement on staging systems, prognostic scores and treatment allocation algorithms.

Research objectives
Define the prognostic ability of fifteen different prognostic scores.

Research methods
Retrospective study, 10-year enrollment of patients.

Research results
With the Italian Liver Cancer (ITA.LI.CA) prognostic system 28.6%, 40.7%, 22.1% and 8.6% of patients fell within stages 0-1, 2-3, 4-5 and > 5 respectively. The median survival was 57.9 mo for stages 0-1, 43 mo for stages 2-3, 21.7 mo for stages 4-5 and 10.4 mo for stage > 5. 1-, 3-, and 5-year survival rates were 95%, 65% and 20% for stages 0-1, 94.7%, 43.9% and 26.3% for stages 2-3, 71%, 25.8% and 16.1% for stages 4-5 and 50%, 16.7% and 8.3% for stage > 5.

Research conclusions
The median overall survival of the cohort of patients was 35 (17; 67) mo, and it was statistically different in relation to treatment choice, ultrasound surveillance and serum AFP.

Research perspectives
External validation to the ITA.LI.CA staging system.

ACKNOWLEDGEMENTS

Special Acknowledgments to Leonardo Da Rio, MD and Riccardo Patti, MD who significantly contributed to data collection and analysis.
A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. JAMA Oncol 2017; 3: 1683-1691 [PMID: 28983565 DOI: 10.1001/jamaoncol.2017.3055]

Boisset C, Levi F, Boffetta P, Lucchini F, Negri E, La Vecchia C. Trends in mortality from hepatocellular carcinoma in Europe, 1980-2004. Hepatology 2008; 48: 137-145 [PMID: 18537177 DOI: 10.1002/hep.22214]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30 [PMID: 26742998 DOI: 10.3322/caac.201332]

Colombo M, de Francinis R, Del Ninno E, Sangiovanni A, De Fazio C, Tommasini M, Donato MF, Piva A, Di Carlo V, Dioguardi N. Hepatocellular carcinoma in Italian patients with cirrhosis. N Engl J Med 1991; 325: 675-680 [PMID: 1651452 DOI: 10.1056/NEJM199109053251002]

Mittal S, Piva A, Di Carlo V, Dioguardi N. Hepatocellular carcinoma in Italian patients with cirrhosis. Clin Gastroenterol Hepatol 2013; 11: 820-827 [PMID: 23683565 DOI: 10.1016/j.cgh.2013.01.001]

Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. How does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 5: G889-G906 [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019]

Wong GL, Wong VW, Tan GM, Ip KI, Lai WK, Li YW, Mak MS, Lai PB, Sung JJ, Chan HL. Surveillance programme for hepatocellular carcinoma improves the survival of patients with chronic viral hepatitis. Liver Int 2008; 28: 79-87 [PMID: 17900247 DOI: 10.1111/j.1478-3231.2007.01576.x]

Bruis J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]

European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]

Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abbacasis MM, Roberts LR, Zha AX, Murad MH, Marrero JA. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358-380 [PMID: 28130846 DOI: 10.1002/hep.29086]

Hennedtge T, Venkatesh SK. Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring. Cancer Imaging 2013; 12: 530-547 [PMID: 23400006 DOI: 10.1102/1470-7334.2012.0044]

Parikh ND, Singal AG. The ITA.L.I.CA Staging System: A Novel Staging System for Hepatocellular Carcinoma. PLoS Med 2016; 13: e1002005 [PMID: 27116028 DOI: 10.1371/journal.pmed.1002005]

Kamarajah SK, Frankel TL, Sonnenday C, Cho CS, Nathan H. Critical evaluation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with Hepatocellular Carcinoma (HCC): A Surveillance, Epidemiology, End Results (SEER) analysis. J Surg Oncol 2018; 117: 644-650 [PMID: 29127719 DOI: 10.1002/jso.24908]

Chan AC, Fan ST, Poon RT, Cheung TT, Chok KS, Chan SC, Lo CM. Evaluation of the seventh edition of the American Joint Committee on Cancer tumour-node-metastasis (TNM) staging system for patients undergoing curative resection of hepatocellular carcinoma: implications for the development of a refined staging system. HPB (Oxford) 2013; 15: 439-448 [PMID: 23659567 DOI: 10.1111/j.1477-2579.2012.00617.x]

Poon RT, Fan ST, Lo CM, Liu CL, Ng IO, Wong J. Long-term prognosis after resection of hepatocellular carcinoma associated with hepatitis B-related cirrhosis. J Clin Oncol 2000; 18: 1094-1101 [PMID: 10694562 DOI: 10.1200/JCO.2000.18.5.1094]

Subramaniam S, Kelley RK, Venook AP. A review of hepatocellular carcinoma (HCC) staging systems. Chin Clin Oncol 2013; 2: 33 [PMID: 25841912 DOI: 10.3978/j.issn.2304-3865.2013.07.05]

Maida M, Orlando E, Cammà C, Cabibbo G. Staging systems of hepatocellular carcinoma: a review of literature. World J Gastroenterol 2014; 20: 4141-4150 [PMID: 24764652 DOI: 10.3748/wjg.v20.i15.4141]

A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 1998; 28: 751-755 [PMID: 9736716]

REFERENCES
Campigotto M et al. HCC in North-East Italy

9731568 DOI: 10.1002/hep.510280322

20 Cammà C, Di Marco V, Cabibbo G, Latteri F, Sandonato L, Parisi P, Enea M, Attanasio M, Galia M, Alessi N, Licitia A, Latteri MA, Craxi A. Survival of patients with hepatocellular carcinoma in cirrhosis: a comparison of BCLC, CLIP and GRETCH staging systems. *Abitumen Pharmacol Ther* 2008; 28: 62-75 [PMID: 18376368 DOI: 10.1111/j.1365-2036.2008.03692.x]

21 Kudo M, Chung H, Osaki Y. Prognostic staging system for hepatocellular carcinoma (CLIP score): its value and limitations, and a proposal for a new staging system, the Japan Integrated Staging Score (JIS score). *J Gastroenterol* 2003; 38: 207-215 [PMID: 12673442 DOI: 10.1007/s0053503000833]

22 Sherman M. Staging for hepatocellular carcinoma: complex and confusing. *Gastroenterology* 2014; 146: 1599-1602 [PMID: 24780213 DOI: 10.1053/j.gastro.2014.04.026]

23 Adhoute X, Penaranda G, Bronowicki JP, Raoul JL. Usefulness of the HKLC vs. the BCLC staging system in a European HCC cohort. *J Hepatol* 2015; 62: 492-493 [PMID: 25194894 DOI: 10.1016/j.jhep.2014.08.035]

24 Kinoshita A, Onoda H, Fushiyama N, Koike K, Nishino H, Tajiri H. Staging systems for hepatocellular carcinoma: Current status and future perspectives. *World J Hepatol* 2015; 7: 406-424 [PMID: 25848467 DOI: 10.4254/wjh.v7.i3.406]

25 Choi WM, Yu SJ, Ahn H, Cho H, Cho YY, Lee M, Yoo JJ, Cho Y, Lee DH, Cho EJ, Lee JH, Kim YJ, Yoon JH. A model to estimate survival in ambulatory patients with hepatocellular carcinoma: Can it predict the natural course of hepatocellular carcinoma? *Dig Liver Dis* 2017; 49: 1273-1279 [PMID: 28807489 DOI: 10.1016/j.dld.2017.07.007]

26 Ogasawara S, Chiba T, Ooka Y, Suzuki E, Kanogawa N, Saito T, Motoyama T, Tawada A, Kanai F, Yokosuka O. Liver function assessment according to the Albumin-Bilirubin (ALBI) grade in sorafenib-treated patients with advanced hepatocellular carcinoma. *Invest New Drugs* 2015; 33: 1257-1262 [PMID: 26426281 DOI: 10.1007/s10637-015-0292-9]

27 Hiraoaka A, Kumada T, Michitaka K, Toyoda H, Tada T, Uski H, Kaneto M, Aihiki T, Okudaira T, Kawakami T, Kawamura T, Yamago H, Suga Y, Miyamoto Y, Tomida H, Azemoto N, Mori K, Miyata H, Ninomiya T, Kawai H. Usefulness of albumin-bilirubin grade for evaluation of prognosis of 2584 Japanese patients with hepatocellular carcinoma. *J Gastroenterol Hepatol* 2016; 31: 1031-1036 [PMID: 26647219 DOI: 10.1111/jgh.13250]

28 Liu PH, Hsu CY, Hsia CY, Lee YH, Huang HY, Su CW, Lee FY, Lin HC, Hsiao T. Proposal and validation of a new model to estimate survival for hepatocellular carcinoma patients. *Eur J Cancer* 2016; 63: 25-33 [PMID: 27259100 DOI: 10.1016/j.ejca.2016.04.023]

29 Adhoute X, Pénaranda G, Raoul JL, Blanc JF, Edeline J, Conroy G, Perrier H, Pol B, Bayle O, Monnet O, Beaupain P, Muller C, Castellani P, Bronowicki JP, Bourlière M. Prognosis of advanced hepatocellular carcinoma: a new stratification of Barcelona Clinic Liver Cancer stage C: results from a French multicenter study. *Eur J Gastroenterol Hepatol* 2016; 28: 433-440 [PMID: 26695429 DOI: 10.1097/MEG.0000000000000558]

30 Zhang YF, Zhou J, Wei W, Zou RH, Chen MS, Lau WY, Shi M, Guo RP. Intermediate-stage hepatocellular carcinoma treated with hepatic resection: the NSP score as an aid to decision-making. *Br J Cancer* 2016; 115: 1039-1047 [PMID: 27701389 DOI: 10.1038/bjc.2016.30]

31 Kadalahayil L, Benini R, Pallan L, O’Beirne J, Marelli L, Yu D, Hackshaw A, Fox R, Johnson P, Parikh ND, Singal AG. Is the Hong Kong Liver Cancer Staging System Ready to Replace the Barcelona Clinic Liver Cancer Staging System? *Clin Gastroenterol Hepatol* 2016; 14: 1261-1270 [PMID: 25162222 DOI: 10.1016/j.jhep.2014.07.002]

32 Mähringer-Kunz A, Weinnmann A, Schmidtmann I, Koch S, Schotten S, Pinto Dos Santos D, Pitton MB, Deuber B, Galle PR, Klöckner R. Validation of the SNACOR clinical scoring system after transarterial chemoembolisation in patients with hepatocellular carcinoma. *Eur J Gastroenterol Hepatol* 2016; 28: 433-440 [PMID: 26695429 DOI: 10.1097/MEG.0000000000000558]

33 Zhang YP, Zhou J, Wei W, Zou RH, Chen MS, Lau WY, Shi M, Guo RP. Intermediate-stage hepatocellular carcinoma treated with hepatic resection: the NSP score as an aid to decision-making. *Br J Cancer* 2016; 115: 1039-1047 [PMID: 27701389 DOI: 10.1038/bjc.2016.30]

34 Hück F, Pinter M, Graziaièi I, Bota S, Vogel W, Müller C, Heinzl H, Waneck F, Trauner M, Peck-Radosavljevic M, Sieghart W. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. *J Hepatol* 2014; 61: 2560-2570 [PMID: 23857958 DOI: 10.1016/j.jhep.2014.02.007]

35 Mähringer-Kunz A, Weinnmann A, Schmidtmann I, Koch S, Schotten S, Pinto Dos Santos D, Pitton MB, Deuber B, Galle PR, Klöckner R. Validation of the SNACOR clinical scoring system after transarterial chemoembolisation in patients with hepatocellular carcinoma. *BMC Cancer* 2018; 18: 489 [PMID: 29703174 DOI: 10.1186/s12885-018-4407-5]

36 Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. *Semin Liver Dis* 1999; 19: 329-338 [PMID: 10518132 DOI: 10.1055/s-2007-1007122]

37 Mazzaferro V, Llovet JM, Miceli R, Bhooria S, Schiavo M, Marianni L, Camerini T, Roayaie S, Schwartz ME, Grazi GL, Adam R, Neuhaus P, Salizzoni M, Bruix J, Fornier A, De Carli L, Cillo U, Burroughs AK, Troisi R, Rossi M, Gerunda GE, Lerut J, Belghiti J, Boin I, Gugenheim J, Rochling F, Van Hoek B, Majno P, Metroticket Investigator Study Group. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. *Lancet Oncol* 2009; 10: 35-43 [PMID: 19058755 DOI: 10.1016/S1470-2045(08)70284-5]

38 Weinnmann A, Koch S, Sprinzl M, Kloekner R, Schulze-Bergkamen H, Dübker C, Lang H, Otto G, Wörsn MA, Galle PR. Survival analysis of proposed BCLC-B subgroups in hepatocellular carcinoma patients. *Liver Int* 2015; 35: 591-600 [PMID: 25290314 DOI: 10.1111/liv.12696]

39 Barman PM, Su GL. Limitations of the Barcelona clinic liver cancer staging system with a focus on transarterial chemoembolization as a key modality for treatment of hepatocellular carcinoma. *Clin Liver Dis* (Hoboken) 2016; 7: 32-35 [PMID: 31041024 DOI: 10.1002/cld.530]

40 Yopp AC, Parikh ND, Singal AG. Is the Hong Kong Liver Cancer Staging System Ready to Replace the Barcelona Clinic Liver Cancer System? *Clin Gastroenterol Hepatol* 2017; 15: 756-758 [PMID:
28063971 DOI: 10.1016/j.gastro.2016.12.028

39 Bolondi L, Burroughs A, Dufour JF, Galle PR, Mazzaferro V, Piscaglia F, Raoul JL, Sangro B. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis 2012; 32: 348-359 [PMID: 23397536 DOI: 10.1055/s-0032-1299006]

40 Ha Y, Shim JH, Kim SO, Kim KM, Lim YS, Lee HC. Clinical appraisal of the recently proposed Barcelona Clinic Liver Cancer stage B subclassification by survival analysis. J Gastroenterol Hepatol 2014; 29: 787-793 [PMID: 24224567 DOI: 10.1111/j.1440-1746.2014.07554.x]

41 Yamakado K, Miyayama S, Hirota S, Mizunuma K, Nakamura K, Inaba Y, Maeda H, Matsuo K, Nishida N, Aramaki T, Anai H, Koura S, Oikawa S, Watanabe K, Yasumoto T, Furucihi K, Yamaguchi M. Subgrouping of intermediate-stage (BCLC stage B) hepatocellular carcinoma based on tumor number and size and Child-Pugh grade correlated with prognosis after transarterial chemoembolization. Jpn J Radiol 2014; 32: 260-265 [PMID: 24615165 DOI: 10.1007/s11604-014-0298-9]

42 Yamakado K, Hirota S. Sub-classification of intermediate-stage (Barcelona Clinic Liver Cancer stage-B) hepatocellular carcinomas. World J Gastroenterol 2015; 21: 10604-10608 [PMID: 26457020 DOI: 10.3748/wjg.v21.i37.10604]

43 Arizumi T, Ueshima K, Iwanishi M, Minami T, Chishina H, Kono M, Takita M, Kitai S, Inoue T, Yada N, Hagiwara S, Minami Y, Ida H, Sakurai T, Kitano M, Nishida N, Kudo M. Validation of Kinki Criteria, a Modified Substaging System, in Patients with Intermediate Stage Hepatocellular Carcinoma. Dig Dis 2016; 34: 671-678 [PMID: 27750236 DOI: 10.1159/000448834]

44 Wang JH, Kee KM, Lin CY, Hung CH, Chen CH, Lee CM, Lu SN. Validation and modification of a proposed substaging system for patients with intermediate hepatocellular carcinoma. J Gastroenterol Hepatol 2015; 30: 358-363 [PMID: 25088668 DOI: 10.1111/j.1440-1746.2014.07557.x]

45 Chan AW, Kumada T, Toyoda H, Tada T, Chong CC, Mo FK, Yeow W, Johnson PJ, Lai PB, Chan AT, To KF, Chan SL. Integration of albumin-bilirubin (ALBI) score into Barcelona Clinic Liver Cancer (BCLC) stage for hepatocellular carcinoma. J Gastroenterol Hepatol 2016; 31: 1300-1306 [PMID: 26751608 DOI: 10.1111/jgh.13291]

46 Farinati F, Vitale A, Spolverato G, Pawlik TM, Hoo TL, Lee YH, Frigo AC, Giacomini A, Giannini EG, Ciccaresce F, Piscaglia F, Rapaccini GL, Di Marco M, Caturessi E, Zoli M, Borzio F, Cabibbo G, Felder M, Sacco R, Morisco F, Biasini E, Foschi FG, Gasbarrini A, Svegliati Baroni G, Virdone R, Masotto A, Trevisani F, Cillo U; ITA. LLCA study group. Development and Validation of a New Prognostic System for Patients with Hepatocellular Carcinoma. PLoS Med 2016; 13: e1002006 [PMID: 27116206 DOI: 10.1371/journal.pmed.1002006]

47 Yoo JJ, Lee JH, Lee SH, Lee M, Lee DH, Cho Y, Lee YB, Yu SJ, Kim HC, Kim YJ, Yoon JH, Kim CY, Lee HS. Comparison of the effects of transarterial chemoembolization for advanced hepatocellular carcinoma between patients with and without extrahepatic metastases. PLoS One 2014; 9: e113926 [PMID: 25427152 DOI: 10.1371/journal.pone.0113926]

48 Borzio M, Dionigi E, Rossini A, Marignani M, Sacco R, De Sio J, Bertolini E, Francica G, Giacomini A, Parisi G, Vicari S, Meliti M, Ferrari M, Fornari F. External validation of the ITA.LLCA prognostic system for patients with hepatocellular carcinoma: A multicenter cohort study. Hepatology 2018; 67: 2215-2225 [PMID: 29165831 DOI: 10.1002/hep.29662]

49 Chevret S, Trinchet JC, Mathieu D, Rached AA, Beaumgrand M, Chastang C. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Groupe d’Etude et de Traitement du Carcinome Hepatocellulaire. J Hepatol 1999; 31: 133-141 [PMID: 10424293 DOI: 10.1016/S0168-8278(99)80173-1]

50 Okuda K, Obata H, Nakajima Y, Ohtsuki T, Okazaki N, Ohnishi K. Prognosis of primary hepatocellular carcinoma. Hepatology 1984; 4: 3S-6S [PMID: 6319264 DOI: 10.1002/hep.1840040703]

51 Yau T, Tang VY, Yao TJ, Fan ST, Lo CM, Poon RT. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-700. e3 [PMID: 24583061 DOI: 10.1053/j.gastro.2014.02.032]

52 Kim JY, Simn DH, Gwak GY, Choi GS, Saleh AM, Joh JW, Cho SK, Shin SW, Carriere KC, Ahn JH, Paik YH, Choi MS, Lee JH, Koh KC, Paik SW. Transarterial chemoembolization versus resection for intermediate-stage (BCLC B) hepatocellular carcinoma. Clin Mol Hepatol 2016; 22: 250-258 [PMID: 27377909 DOI: 10.3330/cmh.2016.0013]

53 Ciria R, López-Cillero P, Gallardo AB, Cabrera J, Pleguezuelo M, Ayllón MD, Luque A, Zurera L, Espejo JJ, Rodríguez-Peralvarez M, Montero JL, de la Mata M, Briceno J. Optimizing the management of patients with BCLC stage-B hepatocellular carcinoma: Modern surgical resection as a feasible alternative to transarterial chemoembolization. Eur J Surg Oncol 2015; 41: 1153-1161 [PMID: 26183137 DOI: 10.1016/j.ejso.2015.05.023]

54 Tatatsish R, Yoshida H, Shina S, Imamura H, Hasegawa K, Teratani T, Obi S, Sato S, Koike Y, Fujishima T, Makuchi M, Omata M. Proposal of a new prognostic model for hepatocellular carcinoma: an analysis of 403 patients. Gut 2005; 54: 419-425 [PMID: 15710994 DOI: 10.1136/gut.2003.035055]
