ARENS REGULARITY OF CERTAIN WEIGHTED SEMIGROUP ALGEBRA AND COUNTABILITY

B. KHODSIANI, A. REJALI AND H.R. EBRAMI VISHKI

Abstract. It is known that every countable semigroup admits a weight ω for which the semigroup algebra $\ell_1(S, \omega)$ is Arens regular and no uncountable group admits such a weight; see [4]. In this paper, among other things, we show that for a large class of semigroups, the Arens regularity of the weighted semigroup algebra $\ell_1(S, \omega)$ implies the countability of S.

1. Introduction and Preliminaries

Arens [2] introduced two multiplications on the second dual A^{**} of a Banach algebra A turning it into Banach algebra. If these multiplications are coincide then A is said to be Arens regular. The Arens regularity of the semigroup algebra $\ell_1(S)$ has been investigated in [7]. The Arens regularity of the weighted semigroup algebra $\ell_1(S, \omega)$ has been studied in [4] and [3]. In [3] Baker and Rejali obtained some nice criterions for Arens regularity of $\ell_1(S, \omega)$. Recent developments on the Arens regularity of $\ell_1(S, \omega)$ can be found in [5]. For the algebraic theory of semigroups our general reference is [6].

In this paper we first show that the Arens regularity of a weighted semigroup algebra is stable under certain homomorphisms of semigroups (Lemma 2.2). Then we study those conditions under which the Arens regularity of $\ell_1(S, \omega)$ necessitates the countability of S. The most famous example for such a semigroup is actually a group, as Craw and Young have proved in their nice paper [4]. As the main aim of the paper we shall show that for a wide variety of semigroups the Arens regularity of $\ell_1(S, \omega)$ implies that S is countable; (see Theorems 3.4 and 3.5).

2. Arens Regularity of $\ell_1(S, \omega)$ and Some Hereditary Properties

Let S be a semigroup and $\omega : S \to (0, \infty)$ be a weight on S, i.e. $\omega(st) \leq \omega(s)\omega(t)$ for all $s, t \in S$, and let $\Omega : S \times S \to (0, 1]$ be defined by $\Omega(s, t) = \frac{\omega(st)}{\omega(s)\omega(t)}$, for $s, t \in S$. Following

2010 Mathematics Subject Classification. 43A10, 43A20, 46H20, 20M18.

Key words and phrases. Arens regularity; weighted semigroup algebra; completely simple semigroup; inverse semigroup.
we call \(\Omega \) to be 0–cluster if for each pair of sequences \((x_n), (y_m)\) of distinct elements of \(S\), \(\lim_n \lim_m \Omega(x_n, y_m) = 0 = \lim_m \lim_n \Omega(x_n, y_m) \) whenever both iterated limits exist.

We define,

\[
\ell_\infty(S, \omega) := \{ f : S \to \mathbb{C} : \|f\|_{\omega, \infty} = \sup \{ \frac{|f(s)|}{\omega(s)} : s \in S \} < \infty \}
\]

\[
\ell_1(S, \omega) := \{ g : S \to \mathbb{C} : \|g\|_{\omega, 1} = \sum_{s \in S} |g(s)| \omega(s) < \infty \}.
\]

For ease of reference we quote the following criterion from [3] which will be frequently used in the sequel.

Theorem 2.1. [3, Theorems 3.2, 3.3] For a weighted semigroup algebra \(\ell_1(S, \omega)\), the following statements are equivalent.

(i) \(\ell_1(S, \omega)\) is regular.

(ii) The map \((x, y) \mapsto \chi_A(xy)\Omega(x, y)\) is cluster on \(S \times S\) for each \(A \subseteq S\).

(iii) For each pair of sequences \((x_n), (y_m)\) of distinct points of \(S\) there exist subsequences \((x'_n), (y'_m)\) of \((x_n), (y_m)\) respectively such that either

(a) \(\lim_n \lim_m \Omega(x'_n, y'_m) = 0 = \lim_m \lim_n \Omega(x'_n, y'_m)\), or

(b) the matrix \((x'_n y'_m)\) is of type C.

In particular, if \(\Omega\) is 0–cluster then \(\ell_1(S, \omega)\) is regular.

Let \(\psi : S \to T\) be a homomorphism of semigroups. If \(\omega\) is a weight on \(T\) then trivially \(\omega'(s) := \omega(\psi(s))\) defines a weight on \(T\).

If \(\psi : S \to T\) is an epimorphism and \(\omega\) is a bounded below (that is, \(\inf \omega(S) > 0\)) weight on \(S\) then a direct verification reveals that

\[
\omega^\ast(t) := \inf \omega(\psi^{-1}(t)), \quad (t \in T),
\]

defines a weight on \(T\). We commence with the next elementary result concerning to the stability of regularity under the semigroup homomorphism.

Lemma 2.2. Let \(\psi : S \to T\) be a homomorphism of semigroups.

(i) If \(\psi\) is onto and \(\omega\) is bounded below weight on \(S\) then the regularity of \(\ell_1(S, \omega)\) necessities the regularity of \(\ell_1(T, \omega^\ast)\). Furthermore if \(\Omega\) is 0-cluster, then \(\Omega^\ast\) is 0-cluster.

(ii) For a weight \(\omega\) on \(T\) if \(\ell_1(S, \omega^\ast)\) is regular, then \(\ell_1(T, \omega)\) is regular.
Proof. (i) Since ω is bounded below, we can assume that, $\inf \omega(S) \geq \varepsilon > 0$, for some $\varepsilon < 1$. Hence $\overrightarrow{\omega} \geq \varepsilon$. Let $(x_n), (y_m)$ be sequences of distinct elements in T. Then there are sequences of distinct elements $(s_n), (t_m)$ in S such that

$$
\begin{cases}
\overrightarrow{\omega}(x_n) > \omega(s_n)(1 - \varepsilon) \quad &\text{and} \quad \psi(s_n) = x_n, \\
\overrightarrow{\omega}(y_m) > \omega(t_m)(1 - \varepsilon) \quad &\text{and} \quad \psi(t_m) = y_m.
\end{cases}
$$

It follows that $\overrightarrow{\omega}(x_n)\overrightarrow{\omega}(y_m) > \omega(s_n)\omega(t_m)(1 - \varepsilon)^2$ and so from $\overrightarrow{\omega}(x_n y_m) \leq \omega(s_n t_m)$ we get

$$
\frac{\overrightarrow{\omega}(x_n)\overrightarrow{\omega}(y_m)}{\overrightarrow{\omega}(x_n)\overrightarrow{\omega}(y_m)} \leq \frac{1}{(1 - \varepsilon)^2} \frac{\omega(s_n t_m)}{\omega(s_n)\omega(t_m)}, \quad \text{or equivalently,}
$$

$$
\overrightarrow{\Omega}(x_n, y_m) \leq \frac{1}{(1 - \varepsilon)^2} \Omega(s_n, t_m), \quad (n, m \in \mathbb{N}). \quad (2.1)
$$

Applying the inequality (2.1), an standard argument based on Theorem 2.1 shows that if $\ell_1(S, \omega)$ is regular then $\ell_1(T, \overrightarrow{\omega})$ is regular. \qed

Corollary 2.3. Let $\psi : S \to T$ be a homomorphism of semigroups. If $\ell_1(S)$ is Arens regular then $\ell_1(T, \omega)$ is Arens regular, for every weight function ω on T.

Proof. Let $\ell^1(S)$ be Arens regular and let ω be a weight on T. Then $\ell^1(S, \overrightarrow{\omega})$ is Arens regular by [3, Corollary 3.4]. Lemma 2.2 implies that $\ell_1(T, \omega)$ is Arens regular. \qed

3. Arens Regularity of $\ell_1(S, \omega)$ and Countability of S

We commence with the next result of Craw and Young with a slightly simpler proof.

Corollary 3.1. (See [4, Corollary 1]) Let S be a countable semigroup. Then there exists a bounded below weight ω on S such that Ω is 0-cluster. In particular, $\ell_1(S, \omega)$ is Arens regular.

Proof. Let F be the free semigroup generated by the countable semigroup $S = \{a_k : k \in \mathbb{N}\}$. For every element $x \in F$ (with the unique presentation $x = a_{k_1}a_{k_2} \cdots a_{k_r}$) set $\omega_1(x) = 1 + k_1 + k_2 + \cdots + k_r$. A direct verification shows that ω_1 is a weight on F with $1 \leq \omega_1$, and that Ω_1 is 0-cluster. Let $\psi : F \to S$ be the canonical epimorphism. Set $\omega := \overrightarrow{\omega_1}$. By Lemma 2.2, ω is our desired weight on S. \qed

In the sequel the following elementary lemma will be frequently used.

Lemma 3.2. A nonempty set X is countable if and only if there exists a function $f : X \to (0, \infty)$ such that the sequence $(f(x_n))$ is unbounded for every sequence (x_n) with distinct elements in X.
Proof. If $X = \{x_n : n \in \mathbb{N}\}$ is countable the $f(x_n) = n$ is the desired function. For the converse, suppose that such a function $f : X \to (0, \infty)$ exists. Since $X = \cup_{n \in \mathbb{N}}\{x \in X : f(x) \leq n\}$ and each of the sets $\{x \in X : f(x) \leq n\}$ is countable, so X is countable. □

Theorem 3.3. If $\ell^1(S)$ is not Arens regular and S admits a bounded below weight for which Ω is 0-cluster, then S is countable.

Proof. Let ω be a bounded below weight for which Ω is 0-cluster. Let $\epsilon > 0$ is so that $\omega \geq \epsilon$. Let S be uncountable. By Lemma 3.2 there is a sequence (s_n) of distinct elements in S and $n_0 \in \mathbb{N}$ such that $\omega(s_n) \leq n_0$ for all $n \in \mathbb{N}$. As $\ell_1(S)$ is not Arens regular, there exist subsequences (s_{n_k}), (s_{m_l}) of (s_n) such that $\{s_{n_k}s_{m_l} : k < l\} \cap \{s_{n_k}s_{m_l} : k > l\} = \emptyset$. We thus get

$$\Omega(s_{n_k}, s_{m_l}) = \frac{\omega(s_{n_k}s_{m_l})}{\omega(s_{n_k})\omega(s_{m_l})} \geq \frac{\epsilon}{n_0^2}, \quad (k, l \in \mathbb{N}),$$

contradicts the 0-clusterlity of Ω. □

Abtehi et al. [1] have shown that for a wide variety of semigroups (including Brandt semigroups, weakly cancellative semigroups, (0-)simple inverse semigroups and inverse semigroups with finite set of idempotents) the Arens regularity of the semigroup algebra $\ell^1(S)$ necessities the finiteness of S (see [1, Corollary 3.2, Proposition 3.4 and Theorem 3.6]). Applying these together with Theorem 3.3 we arrive to the next result.

Note that as it has been reminded in Theorem 2.1, if Ω is 0-cluster then $\ell_1(S, \omega)$ is regular and the converse is also true in the case where S is weakly cancellative; (see [3, Corollary 3.8]).

Theorem 3.4. If S admits a bounded below weight for which Ω is 0-cluster then S is countable in either of the following cases.

1. S is a Brandt semigroup.
2. S is weakly cancellative.
3. S is a simple (resp. 0-simple) inverse semigroup.
4. S is an inverse semigroup with finitely many idempotents.

In the next result we shall show that the same result holds when S is a completely simple semigroup.

Theorem 3.5. If S admits a bounded below weight for which Ω is 0-cluster then S is countable in the case where S is completely simple [resp. 0-simple].
Proof. Suppose that \(\omega \) is a bounded below weight on \(S \) such that \(\Omega \) is 0–cluster. Let
\(S \) be completely 0–simple, then as it has been explained in \([6]\), \(S \) has the presentation
\(S \cong M^0(G, I, \Lambda; P) = (I \times G \times \Lambda) \cup \{0\} \), equipped with the multiplication
\[
(i, a, \lambda)(j, b, \mu) = \begin{cases}
(i, ap_{\lambda j}b, \mu) & \text{if } p_{\lambda j} \neq 0 \\
0 & \text{if } p_{\lambda j} = 0,
\end{cases}
\]
\((i, a, \lambda)0 = 0(i, a, \lambda) = 0\).

Fix \(i_0 \in I, \lambda_0 \in \Lambda \) and define \(f : I \rightarrow (0, \infty) \) by
\[
f(i) = \begin{cases} \omega(i, p_{\lambda_0 i_0}^{-1}, \lambda_0) & \text{if } p_{\lambda_0 i_0} \neq 0 \\
\omega(i, 1, \lambda_0) & \text{if } p_{\lambda_0 i_0} = 0.
\end{cases}
\]

Let \((i_n)\) be a sequence of distinct elements in \(I \) and set
\[
x_n = \begin{cases} (i_n, p_{\lambda_0 i_n}^{-1}, \lambda_0) & \text{if } p_{\lambda_0 i_n} \neq 0 \\
(i_n, 1, \lambda_0) & \text{if } p_{\lambda_0 i_n} = 0.
\end{cases}
\]

It is readily verified that if \(p_{\lambda_0 i_n} \neq 0 \) then \(x_n x_m = x_n \), for all \(m \in \mathbb{N} \); indeed
\[
x_n x_m = (i_n, p_{\lambda_0 i_n}^{-1}, \lambda_0)(i_m, p_{\lambda_0 i_m}^{-1}, \lambda_0) = (i_n, p_{\lambda_0 i_n}^{-1}p_{\lambda_0 i_m}^{-1}, \lambda_0) = (i_n p_{\lambda_0 i_n}^{-1}, \lambda_0) = x_n.
\]

And if \(p_{\lambda_0 i_n} = 0 \) then \(x_n x_m = 0 \), for all \(m \in \mathbb{N} \).

Hence \(\frac{1}{f(i_m)} = \frac{1}{\omega(x_m)} = \frac{\omega(x_n x_m)}{\omega(x_n) \omega(x_m)} = \Omega(x_n, x_m) \) in the case where \(p_{\lambda_0 i_n} \neq 0 \) and
\[
(\frac{\omega(0)}{f(i_m)})^2 = (\frac{\omega(0)}{\omega(x_m)})^2 = (\frac{\omega(0)}{\omega(x_n) \omega(x_m)}) \text{ whenever } p_{\lambda_0 i_n} = 0. \]

These observations together with the 0–clusterity of \(\Omega \) imply that \((f(i_m)) \) is unbounded. Hence \(I \) is countable, by Lemma 3.2. Similarly \(\Lambda \) is countable. We are going to show that \(G \) is also countable. To this end, let \(\omega_0(g) = \omega(i_0, gp_{\lambda_0 i_0}^{-1}, \lambda_0) \) \((g \in G)\). Then \(\omega_0 \) is a weight on \(G \) such that \(\Omega_0 \) is 0–cluster and so \(G \) is countable, by Theorem 3.4. Therefore \(S \) is countable as claimed. Proof for the case that \(S \) completely simple semigroup is similar. \(\square \)

Acknowledgments. This research was supported by the Centers of Excellence for Mathematics at the University of Isfahan.

References

[1] F. Abtahi, B. Khodsiani and A. Rejali, The Arens regularity of inverse semigroup algebras, Preprint.

[2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2,(1951), 839-848.

[3] J.W. Baker and A. Rejali, On the Arens regularity of weighted convolution algebras, J. London Math. Soc. (2) 40(1989), 535-546.

[4] I.G. Craw and N.J. Young, Regularity of multiplications in weighted group and semigroup algebras, Quart. J. Math. 25 (1974), 351-358.
[5] H.G. Dales and A.T.M. Lau, The Second Duals of Beurling Algebras, Memoris American Math. Soc., 177, 1-191, (2005).

[6] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, (1976).

[7] N.J. Young, Semigroup algebras having regular multiplication, Stadia Math. 47(1973), 191-196.

1,2 Department of Mathematics, University of Isfahan, Isfahan, IRAN.
E-mail address: b-khodsiani@sci.ui.ac.ir
E-mail address: rejali@sci.ui.ac.ir

3 Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.
E-mail address: vishki@um.ac.ir