Evidence for Point Nodes in the Superconducting Gap Function in the Filled Skutterudite Heavy-Fermion Compound PrOs$_4$Sb$_{12}$: 123Sb-NQR Study under Pressure

Kouta Katayama, Shinji Kawasaki, Masahide Nishiyama, Hitoshi Sugawara1, Daisuke Kikuchi2, Hideyuki Sato2 and Guo-qing Zheng

Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

1Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan

2Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

(Received January 11, 2022)

We report 123Sb nuclear quadrupole resonance (NQR) measurements of the filled skutterudite heavy-fermion superconductor PrOs$_4$Sb$_{12}$ under high pressures of 1.91 and 2.34 GPa. The temperature dependence of NQR frequency and the spin-lattice relaxation rate $1/T_1$ indicate that the crystal-electric-field splitting Δ_{CEF} between the ground state Γ_1 singlet and the first excited state $\Gamma_4^{(2)}$ triplet decreases with increasing pressure. The $1/T_1$ below $T_c = 1.55$ K at $P = 1.91$ GPa shows a power-law temperature variation and is proportional to T^5 at temperatures considerably below T_c, which indicates the existence of point nodes in the superconducting gap function. The data can be well fitted by the gap model $\Delta(\theta) = \Delta_0 \sin \theta$ with $\Delta_0 = 3.08k_B T_c$. The relation between the superconductivity and the quadrupole fluctuations associated with the $\Gamma_4^{(2)}$ state is discussed.

KEYWORDS: PrOs$_4$Sb$_{12}$, superconductivity, NQR, pressure

The filled skutterudite compound PrOs$_4$Sb$_{12}$ is the first praseodymium (Pr)-based heavy-fermion superconductor with $T_c = 1.85$ K. The heavy-electron mass has been confirmed by the large specific heat jump $\Delta C/T_c \sim 500 \text{mJ}/(\text{K}^2\text{mol})$ at T_c. The superconductivity has been the focus of discussions. Although the superconducting gap function is isotropic. Previous nuclear-quadrupole-resonance (NQR) measurements of the filled skutterudite heavy-fermion superconductor PrOs$_4$Sb$_{12}$ under high pressures of 1.91 and 2.34 GPa. The temperature dependence of NQR frequency and the spin-lattice relaxation rate $1/T_1$ indicate that the crystal-electric-field splitting Δ_{CEF} between the ground state Γ_1 singlet and the first excited state $\Gamma_4^{(2)}$ triplet decreases with increasing pressure. The $1/T_1$ below $T_c = 1.55$ K at $P = 1.91$ GPa shows a power-law temperature variation and is proportional to T^5 at temperatures considerably below T_c, which indicates the existence of point nodes in the superconducting gap function. The data can be well fitted by the gap model $\Delta(\theta) = \Delta_0 \sin \theta$ with $\Delta_0 = 3.08k_B T_c$. The relation between the superconductivity and the quadrupole fluctuations associated with the $\Gamma_4^{(2)}$ state is discussed.
ments were carried out at the $\pm 3/2 \leftrightarrow \pm 5/2$ transition (hereafter, $2\nu_Q$ transition for short) of the ^{123}Sb nucleus. Figure 1 shows the increase in the $2\nu_Q$ resonance frequency below $T = 25$ K for various pressures. T_0 is the temperature at which the $2\nu_Q$ resonance frequency increases abruptly. Since the electrical field gradient (EFG) is predominantly determined by the on-site charge distribution, the NQR frequency is a good measure of the population of the ground/excited state. Indeed, in both PrOs$_4$Sb$_{12}$ and PrRu$_4$Sb$_{12}$, T_0 is in good agreement with Δ_{CEF}/k_B. More recently, it has been suggested that the temperature dependence of NQR frequency can be accounted for by the EFG associated with the hexadecapole moment of the $\Gamma^{(2)}_4$ state. Therefore, the increase in the NQR frequency below T_0 indicates that the depopulation of the $\Gamma^{(2)}_4$ state occurs below this temperature. As seen in Fig. 1, T_0 shifts to lower temperatures $T_0(P) \sim 7.5$ and 5 K at $P = 1.91$ and 2.34 GPa, respectively (also see Fig. 1 inset). These results provide evidence that Δ_{CEF} decreases with increasing pressure.

The above conclusion is supported by the pressure effect on the temperature dependence of $1/T_1 T$. Figure 2 shows the temperature dependence of $1/T_1 T$ at $P = 0$ and 1.91 GPa. The pressure effect appears below 4 K. At $P = 0$, the reduction of $1/T_1 T$ results in a peak in the plot of $1/T_1 T$ versus T, which is due to the depopulation of the $\Gamma^{(2)}_4$ state below T_0. At $P = 1.91$ GPa, the decrease in $1/T_1 T$ occurs at a lower temperature, indicating the decrease in Δ_{CEF}. These results are consistent with the conclusion inferred from the magnetization measurement.\(^{18}\)

We find concomitantly that the temperature of the onset of the superconducting transition decreased with increasing pressure, in agreement with previous reports.\(^2,18\) The inset in Fig. 3 shows the temperature dependence of ac-susceptibility measured using the NQR coil. T_c decreased from 1.85 K at $P = 0$ to 1.55 K at $P = 1.91$ GPa. The main panel of Fig. 3 shows the temperature dependence of $1/T_1$ at $P = 0$ and 1.91 GPa. The ambient-pressure data are in excellent agreement with the data at ambient P cited from literature\(^{13}\) along with the data at ambient P cited from literature\(^{13}\) of the ^{123}Sb NQR ($\pm 3/2 \leftrightarrow \pm 5/2$ transition) at $P = 0$ (solid circles), 1.91 (solid triangles), and 2.34 GPa (open squares) along with the data at $P = 0$ (open circles) by Kotegawa et al.\(^{13}\) Solid, dotted, and dashed arrows indicate T_0 at $P = 0$, 1.91, and 2.34 GPa, respectively (see text). The inset shows the pressure dependence of T_0.
independent above T_0, indicating that the relaxation in the high-temperature region is predominated by the Pr-4f^2-derived localized magnetic moments. With decreasing temperature below T_0, $1/T_1$ starts to decrease. Below T_c, no coherence peak is observed at $T_c = 1.55$ K for $P = 1.91$ GPa, as for $P = 0$. However, the T dependence of $1/T_1$ at high pressure is markedly different from that at ambient pressure. $1/T_1$ at $P = 1.91$ GPa decreases in a power law of T below T_c.

In particular, below $T \sim 0.55$ K, $1/T_1$ is proportional to T^α, as can be seen more clearly in Fig. 4. We find that a point-nodes model, with a low-energy (E) superconducting density of states (DOS) proportional to E^2, can well explain the experimental result. In Fig. 4, the curve below T_c is a fit to the Anderson-Brinkman-Morel (ABM) model.\(^{24, 25}\) Namely,

$$
\frac{T_1(T_c)}{T_1} = \frac{2}{k_B T_c} \int \left(\frac{N_S(E)}{N_0} \right)^2 f(E)[1 - f(E)]dE,
$$

where $N_S(E)/N_0 = E/\sqrt{E^2 - \Delta^2}$ with $\Delta(\theta) = \Delta_0 \sin \theta$. The fit gives $\Delta_0/k_B T_c = 3.08$. The penetration depth data at ambient pressure seem to be consistent with our results.\(^{16}\) However, the $p + h$ model proposed to explain the thermal conductivity would give a T^3-like dependence, since the DOS at low-E is linear in E, and is therefore not compatible with our data.

It has been proposed that the superconductivity is mediated by the excitons due to the $\Gamma_{1}^{(2)} - \Gamma_{1}$ quartet.\(^{11}\) In such case, T_c would increase when Δ_{CEF} is reduced. Clearly, our results do not lend a straightforward support to this theory. Further experimental study under higher pressure is highly desirable. Finally, we comment on the different temperature dependences of $1/T_1$ at $P = 0$ and 1.91 GPa. Two possible causes could be responsible. First, the larger gap Δ_{CEF} may contribute to the reduction of $1/T_1$ below T_c at ambient pressure, which makes the temperature dependence of $1/T_1$ exponential. Second, it may be due to the multiple-band nature of the superconductivity.\(^{27}\) Recent thermal conductivity measurement under a magnetic field suggests the superconductivity at ambient pressure is induced in two different Fermi sheets,\(^{27}\) which may have different symmetry. The sheet in which nodes develop may grow significantly under high pressures.

In conclusion, we have presented the 123Sb-NQR results on the filled skutterudite heavy-fermion compound PrOs$_2$Sb$_{12}$ at $P = 0$, 1.91, and 2.34 GPa. The temperature dependence of NQR frequency and the spin-lattice relaxation rate $1/T_1$ indicate that the gap Δ_{CEF} between the ground state Γ_1 singlet and the first excited state $\Gamma_{2}^{(2)}$ triplet decreases with increasing pressure. At $P = 1.91$ GPa, the temperature dependence of $1/T_1$ below T_c is well explained by the ABM superconducting state, with point nodes in the gap function. To confirm the mechanism showing why T_c decreases with increasing pressure in PrOs$_2$Sb$_{12}$, further NQR measurements under pressure are now in progress.

We thank K. Matano for his experimental help, and R. Shiina, H. Harima, Y. Kitaoka, H. Tou, M. Ichioha, N. Nakai, H. Kotegawa, and M. Yogi for discussions and comments. This work was supported in part by grants for scientific research, and a grant for Attractive Education in Graduate School ”Training Program for Pioneers of Frontier and Fundamental Sciences”, from the Ministry of Education, Culture, Sports, Science and Technology.

1) E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B. Maple: Phys. Rev. B 65 (2002) 100506.
2) M. B. Maple, P.-C. Ho, V. S. Zapf, N. A. Frederick, E. D. Bauer, W. M. Yuhasz, F. M. Woodward, and J. W. Lynn: J. Phys. Soc. Jpn. 71 (2002) Suppl., p. 23.
3) H. Sugawara, S. Osaki, S. R. Saha, Y. Aoki, H. Sato, Y. Inada, H. Shishido, R. Settai, Y. Onuki, H. Harima, and K. Oikawa: Phys. Rev. B 66 (2002) 220504(R).
4) Y. Aoki, T. Namiki, S. Ohsaki, S. R. Saha, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. 71 (2002) 2098.
5) K. Tenya, N. Oeschler, P. Gegenwart, F. Steglich, N. A. Frederick, E. D. Bauer, and M. B. Maple: Acta Physica Pol. B 34 (2003) 995.
6) T. Tayama, T. Sakakibara, H. Sugawara, Y. Aoki, and H. Sato: J. Phys. Soc. Jpn. 72 (2003) 1516.
7) M. Kohgi, K. Iwasa, M. Nakajima, N. Metoki, S. Araki, N. Bernhoeft, J. M. Mignot, A. Gukasov, H. Sato, Y. Aoki, and H. Sugawara: J. Phys. Soc. Jpn. 72 (2003) 1002.
8) K. Kuwahara, K. Iwasa, M. Kohgi, K. Kaneko, S. Araki, N. Metoki, H. Sugawara, Y. Aoki, and H. Sato: J. Phys. Soc. Jpn. 73 (2004) 1438.
9) E. A. Goremychkin, R. Osborn, E. D. Bauer, M. B. Maple, N. A. Frederick, W. M. Yuhasz, F. M. Woodward, and J. W. Lynn: Phys. Rev. Lett. 93 (2004) 157003.
10) E. D. Bauer, P.-C. Ho, M. B. Maple, T. Schauerte, D. L. Cox, and F. B. Anders: Phys. Rev. B 73 (2006) 094511.
11) M. Matsumoto and M. Koga: J. Phys. Soc. Jpn. 74 (2005)
1686.
12) K. Kuwahara, K. Iwasa, M. Kohgi, K. Kaneko, N. Metoki, S. Raymond, M.-A. Méasson, J. Flouquet, H. Sugawara, Y. Aoki, and H. Sato: Phys. Rev. Lett. 95 (2005) 107003.
13) H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G.-q. Zheng, Y. Kitaoka, S. Ohzaki, H. Sugawara, Y. Aoki, and H. Sato: Phys. Rev. Lett. 90 (2003) 027001.
14) D. E. Maclaughlin, J. E. Sonier, R. H. Heffner, O. O. Bernal, B.-L. Young, M. S. Rose, G. D. Morris, E. D. Bauer, T. D. Do, and M. B. Maple: Phys. Rev. Lett. 89 (2002) 157001.
15) K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Osaki, H. Sugawara, H. Sato, P. Thalmeier, and K. Maki: Phys. Rev. Lett. 90 (2003) 117001.
16) E. E. M. Chia, M. Salamon, H. Sugawara, and H. Sato: Phys. Rev. Lett. 91 (2003) 247003.
17) M. Nishiyama, T. Kato, H. Sugawara, D. Kikuchi, H. Sato, H. Harima, and G.-q. Zheng: J. Phys. Soc. Jpn. 74 (2005) 1938.
18) T. Tayama T. Sakakibara, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. 75 (2006) 043707.
19) A. S. Kirichenko, A. V. Kornilov, and V. M. Pudalov: Inst. Exp. Techniques 48 (2005) 121.
20) M. Yogi, H. Kotegawa, Y. Imamura, G.-q. Zheng, Y. Kitaoka, H. Sugawara, and H. Sato: Phys. Rev. B 67 (2003) 180501(R).
21) H. Tou, M. Doi, M. Sera, M. Yogi, H. Sugawara, R. Shiina, and H. Sato: J. Phys. Soc. Jpn 74 (2005) 2695.
22) The sample dependence was also found recently by Yogi et al. The most likely cause for such T-independent $1/T_1$ is the presence of a small amount of magnetic impurity, which is pressure-independent.
23) M. Yogi, T. Nagai, Y. Imamura, H. Mukuda, Y. Kitaoka, D. Kikuchi, H. Sugawara, Y. Aoki, H. Sato, and H. Harima: J. Phys. Soc. Jpn 75 (2006) 124702.
24) P. W. Anderson and P. Morel: Phys. Rev. 123 (1961) 1911.
25) P. W. Anderson and W. F. Brinkman: Phys. Rev. Lett. 30 (1973) 1108.
26) K. Maki, S. Haas, D. Parker, H. Won, K. Izawa, and Y. Matsuda: Europhys. Lett. 68 (2004) 720.
27) G. Seyfarth, J. P. Brison, M.-A. Méasson, J. Flouquet, K. Izawa, Y. Matsuda, H. Sugawara, and H. Sato: Phys. Rev. Lett. 95 (2005) 107004.