Association Mapping of Rice Germplasm Accessions for qDTY 1.1 and qDTY 12.1

Parminder Singh Saini1*, Ritu R. Saxena1, Suman Rawte1, Sunil K. Verma1, Ravi R. Saxena3 and S. B. Verulkar2

1Department of Genetics and Plant Breeding, 2Department of Plant Molecular Biology and Biotechnology, 3Department of Agricultural Statistics and Social Science, IGKV, Raipur (C.G), India

*Corresponding author

A B S T R A C T

Chhattisgarh state is renowned by the name Rice Bowl of India because rice is cultivated in maximal land area. The research study was carried out by using fifty-eight rice landraces at Research cum Instructional farm of IGKV, Raipur during Kharif 2019 under irrigated and rainfed condition in Randomized Block Design (RBD), with two replications. Using the GLM model, for grain yield RM 240 (C#2), RM 3825 (C#1), RM 5753 (C#6) and RM 11 (C#7) exhibited tight association in irrigated condition and in RM 511 (C#12), RM 307 (C#4) and RM 495 (C#1) had tight linkage with grain yield in rainfed condition. Based on two markers i.e., RM 3825 and RM 511 twenty genotypes had both the QTL’s that is qDTY1.1 and qDTY 12.1.

Keywords
Drought, Candidate gene, Rice, Association mapping, GLM model

Introduction

Rice is a primary staple food in major countries and used widely as a nutritional source. As with increase in demand due to population increment lead to increase in its production, but mainly rainfed condition is present in India, due to which drought leads to loss in yield. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. “A QTL, qDTY12.1, significantly associated with grain yield under reproductive of stage drought stress was identified on chromosome 12. qDTY12.1 is the only QTL reported so far in rice to have shown a large effect against multiple recipient genetic backgrounds as well as under highly diverse upland and lowland rice ecosystems.
qDTY12.1 can be successfully introgressed to improve grain yield under drought of popular high-yielding but drought-susceptible lowland as well as upland adapted varieties following marker-assisted breeding.

Drought is one of the most important abiotic stresses leading threat to agricultural food production especially in rice cultivation hampering rice productivity in rainfed areas. In Asia, more than 23 million ha of rice-growing area are rainfed (Pandey et al., 2007). Eastern India and adjoining areas occupy a large drought-affected area with an estimate of around 17 million ha (Huke and Huke 1997). The green revolution had little impact in rainfed ecosystems (Evenson et al., 2003). Farmers in these areas are growing popular varieties originally bred for irrigated ecosystems (Vikaram et al., 2011). The slow progress in developing rice varieties for drought-prone areas is mainly due to the complex nature of drought-tolerance mechanisms; large genotype × environment, QTL × environment and QTL × recipient genetic background interactions; and the absence of QTLs with a large and consistent effect against high-yielding but drought-susceptible varieties. This becomes even more relevant when we see that qDTY12.1 as well as qDTY2.3 is contributed by IR74371-46-1-1. Recently, candidate gene analysis has been carried out in this QTL region and several genes have been reported as putative candidate genes (Kohli et al., 2010 and Biswal et al., 2012). Swamy et al., 2011 carried out meta-QTL analysis and reported several candidate genes in the same region. qDTY12.1 could be efficiently used in marker-assisted breeding for the improvement of both lowland and upland rice varieties for drought stress.” Candidate gene studies have been at the forefront of genetic association studies i.e. identifying risk variants associated with a particular disease. Candidate gene studies are most often selected as this approach is relatively cheap and quick to perform, and are focused on the selection of genes that have been in some way related to the disease previously and thus come with prior knowledge about gene function. The candidate gene approach begins with selection of a putative candidate gene based on its relevance in the mechanism of the disease (trait) being investigated (Kwon and Goate, 2000 and Patnala et al., 2013).

Materials and Methods

Experimental site

The present research work was regulate at Research cum Instructional farm Department of Genetics and Plant Breeding, College of agriculture, Indira Gandhi Agricultural University, Raipur, Chhattisgarh, during the Kharif season of 2019.

Climate and weather

Chhattisgarh is situated between 17°14’N and 24°45’N latitudes and 79°16’ E and 84°15’ E longitudes. Raipur (C.G.) is lies at 21°16’N latitude and 81°36’ E longitude with an altitude of (289.60m). Overhead mean sea level. The maximum mean temperature was 32.30°C & minimum mean temperature was 23.99°C during the crop development time. The overall total rainfall during crop growing period was (1199.2 mm). The highest rainfall received during August month was (316.4 mm).

Materials and Methods

Fifty-eight genotypes of rice were taken for this research (Table 1). The material was grown under irrigated (transplanted) and rainfed (direct seeded) condition in the wet season of 2019. Nurseries were raised and 21 days old seedlings were eventually transplanted in the field, in RBD with 2
replications. R X R and P X P distance of 25 cm X 15 cm and net plot area was 3m m X 1.5 m. The crop was preserve under irrigated condition. Fertilizer dose @ of 50:40:30 kg per hectare (NPK) was applied.

Before transplanting the whole dose of potassium and phosphorus are applied and half dose of nitrogen are applied as a basal dose. The remaining dose of N was applied in 2 splits, 1st at the period of starting of tillering and 2nd, 1week after it. All the treatment was similar for agronomical practices.

Observations recorded

The observation was recorded on days to 50 % flowering, plant height (cm), flag Leaf length (cm), flag Leaf width (cm), number of effective tiller per plant, panicle length (cm), 1000 grain weight (gm), number of filled grains (NFG), number of unfilled grain (NUFG), total number of grains, biological yield per plant (BYP) (g), harvesting index (HI) (%) and grain yield per plant (GYP) (g) in irrigated and rainfed condition as well.

Statistical analysis

The data was notable in favour to divergent phenotypic and quantitative traits on the 13 yield and panicle related character of rice accessions were subjected to the statistical analysis.

In this calculation mean values were succeed for all character for everyone genotype. These mean data are used to estimate the variability parameters. ANOVA is deliberated by using OPSTAT software.

Molecular study

For molecular characterization, fifty-eight rice germplasm accessions are used. For estimating the genetic diversity of rice germplasm molecular study was execute, which included “DNA isolation, quantification, dilution of DNA, PCR amplification using microsatellite primers, electrophoresis using polyacrylamide gel, scoring and analysis of data.

Results and Discussion

Total genomic DNA was extracted from 58 lines of rice using CTAB method (Zheng et al., 1995). Fresh and healthy leaves were used for extraction of DNA. The DNA samples were quantified by using Nano Drop Spectroscopy (NANODROP 2000c). The quantity of the samples was found in the range from 500-2000 ng/μl. DNA samples were then diluted with sterilized water such that the final concentration of DNA became 50 ng/μl (Table 1–5).

Development of genotypic data based on SSR Markers

Genetic associations among 58 accessions were analyzed, based on phenotypic variation of yield traits with the help of 42 SSR markers covering all the chromosomes. A total of 74 alleles were amplified and the number of alleles per locus generated by each marker ranged from 1 to 4 alleles with an average number of 1.76 alleles per locus. Maximum number of alleles (4) was amplified by marker RM 413, RM 518 and RM 240 marker (Table 5).

Polymorphism Information Content of SSR markers

The PIC value across markers ranged from 0.00 to 0.73 with an average of 0.25. Maximum PIC value was observed on chromosome 4 (RM 518 = 0.73) followed by RM 489 of chromosome 3 (0.70) Table 5 (Fig. 1).
Table 1: List of germplasm accessions

Entry number	Name of entry	Entry number	Name of entry
1	IRRI 154	30	Manaw Thukha
2	MINGHUI 63	31	BR28
3	ZHENSCHAN 97 B	32	TN1
4	IR 64-21	33	IR6
5	IRBB 66	34	GSR IR2-9-R1-SU3-Y2
6	IR 78222-20-7-148-2-B-B-B	35	Zanton::IRGC 31248-1
7	IR 69726-116-1-1	36	URAIBOOL::IRGC 52785-1
8	IRRI147	37	Hokkai 188
9	SANHUANGZHAN NO 2	38	IR 126182-1-1-1
10	IR77186-122-2-2-3	39	IR10F360
11	IR77298-14-1-2-10	40	Sahel 108
12	Sambha Mahsuri + Sub1	41	Sahel 134
13	Supa	42	Sahel 177
14	IRRI 104	43	Giza 178
15	N 22::IRGC 19379-1	44	Moroberekan
16	MTU1010	45	DJ123
17	Swarna	46	Oryzica 1
18	Nanhi	47	F50
19	Jasmine 85	48	TEQING
20	Kinandang Patong	49	MG 2::IRGC 79837-1
21	Sadri	50	UPL RI 7::IRTP 9897-C1
22	OM4900	51	CT11891-2-2-7-M
23	IR 95042:13-B-7-11-15-3	52	Oryzica sabana 10
24	IR 93340:14-B-21-17-12-1RGA-2RGA-1-B-B	53	Oryzica sabana 6
25	IR 93354:34-B-5-1-23-1RGA-2RGA-1-B-B	54	Oryzica Llanos 5
26	Khao Hlan On	55	Chhomrong Dhan
27	IR13F167	56	NSIC Re240
28	IR84984-83-15-481-B	57	Jamir
29	M202	58	IR10M300
Table 2: Significant marker-trait associations based on GLM model (P>0.05) in irrigated and rainfed condition during Kharif 2019

Trait	Locus	C #	p_	Rsq_	Trait	Locus	C #	p_	Rsq_
Irrigate					Rainfed				
DTF	RM 3825	1	0.0025	0.1536	DTF	RM 3825	1	7.32E-05	0.2478
	RM 11	7	0.0194	0.1379	RM 11	7	5.21E-04	0.2454	
	RM 5753	6	0.0246	0.1279	RM 518	4	0.0519	0.1647	
PH	RM 6504	1	0.0168	0.1305	PH	RM 240	2	0.0065	0.1802
	RM 28130	12	0.0233	0.0899	RM 413	4	0.0142	0.1844	
FLL	RM 240	2	0.0353	0.1249	ET	RM 518	4	0.0252	0.1834
	RM 28160	12	0.0235	0.0975	FLL	RM 240	2	0.0164	0.1474
FLW	OSR 13	1	0.0016	0.2357	OSR 13	1	0.0404	0.1225	
	RM 6504	1	0.0141	0.1372	RM 28160	12	0.0431	0.0836	
	RM 3825	1	0.045	0.0703	RM 1261	12	0.0479	0.0872	
PL	RM 3825	1	0.0085	0.1191	FLW	RM 1261	12	0.0598	0.0818
	OSR 13	1	0.0166	0.1594	PL	OSR 13	1	0.0164	0.1588
	RM 489	3	0.0424	0.1303	RM 240	2	0.0213	0.1393	
	RM 5753	6	0.0462	0.1075	RM 489	3	0.0246	0.1538	
TGW	RM 236	4	0.0598	0.0731	TGW	RM 1261	12	0.0078	0.118
GY	RM 240	2	0.0075	0.1779	RM 5753	6	0.0385	0.0923	
	RM 3825	1	0.0177	0.0978	RM 511	12	0.0397	0.0889	
	RM 5753	6	0.0245	0.128	RM 307	4	0.0434	0.0714	
	RM 11	7	0.0499	0.1067	RM 495	1	0.0482	0.0726	
BY	RM 5753	6	0.0366	0.1152	BY	RM 495	1	0.065	0.0495
	RM 3825	1	0.0529	0.0664	HY	RM 1261	12	0.0138	0.1279
HY	RM 240	2	0.0263	0.1354	RM 236	4	0.0357	0.0848	
NFG	RM 11	7	0.0263	0.1283	NFG	RM 125	7	0.0134	0.1543
NUFG	RM 240	2	0.0609	0.0977	NUFG	RM 489	3	0.0571	0.1179
	RM 28130	12	0.0884	0.0455	OSR 13	1	0.0015	0.2404	
TNG	RM 11	7	0.0232	0.1319	TNG	RM 125	7	0.0277	0.1312
						RM 125	7	0.0044	0.191
					OSR 13	1	0.0659	0.1089	
						RM 3520	1	0.071	0.0609

DTF = Days to flowering; PH = plant height (cm); NT = Number of tillers; FLL = Flag leaf length (cm); FLW = Flag leaf width (cm); PL = Panicle length (cm); TGW = Thousand grain weight (g); NFG = Number of filled grains; NUFG = Number of unfilled grains; TNG = Total number of grains; BYP = Biological yield per plant (g); HI = Harvest index (%); GYP = Grain yield per plant (g)
Table 3 Significant marker-trait associations based on MLM model (P>0.05) in irrigated and rainfed condition during *Kharif* 2019

Trait	Locus	C #	p_Marke	Rsq_	Trait	Locus	C #	p_Marke	Rsq_
	Marker				Rainfed				
Irrigated									
DTF	RM 3825	1	0.0025	0.1536	DTF	RM 3825	1	7.32E-05	0.2478
	RM 11	7	0.0194	0.1379	NT	RM 518	4	0.0385	0.1834
	RM 5753	6	0.0246	0.1279	PH	RM 240	2	0.0231	0.1802
PH	RM 6504	1	0.0165	0.1305	PL	OSR 13	1	0.0366	0.1588
RM 240	12	0.0233	0.0899	NT	RM 125	7	0.0145	0.1543	
NT	RM 6504	1	0.0604	0.0825	FLL	OSR 13	1	0.039	0.1393
FLW	OSR 13	1	0.0016	0.2357	TGW	RM 1261	12	0.0598	0.0818
RM 28160	12	0.0235	0.0975	FLW	RM 240	2	0.039	0.1393	
RM 125	7	0.0277	0.1594	RM 240	12	0.039	0.1393		
PL	RM 3825	1	0.0085	0.1191	OSR 13	1	0.0015	0.2404	
RM 3825	1	0.045	0.0703	NFG	RM 125	7	0.0145	0.1543	
NFG	RM 11	7	0.0263	0.1283	NUFG	OSR 13	1	0.0015	0.2404
RM 5753	6	0.056	0.1075	RM 125	7	0.0049	0.191		
RM 240	2	0.0598	0.0731	OSR 13	1	0.0059	0.1089		
RM 236	2	0.0274	0.1261	OSR 13	1	0.0059	0.1089		
RM 5753	6	0.0522	0.1152	OSR 13	1	0.0059	0.1089		
RM 240	2	0.0575	0.1779	OSR 13	1	0.0059	0.1089		
RM 11	7	0.0232	0.1319	OSR 13	1	0.0059	0.1089		
TNG	RM 11	7	0.0232	0.1319	OSR 13	1	0.0059	0.1089	

DTF = Days to flowering; PH = plant height (cm); NT = Number of tillers; FLL = Flag leaf Length (cm); FLW = Flag leaf width (cm); PL = Panicle Length (cm); TGW = Thousand grain weight (g); NFG = Number of filled grains; NUFG = Number of unfilled grains; TNG = Total Number of grains; BYP = Biological yield per plant (g); HI = Harvest index (%); GYP = Grain yield per plant (g)
Table 4 List of genotypes having qDTY 1.1 and qDTY 12.1 or both based on markers position

S. No	Markers for qDTY 1.1	Band size (bp)	PIC VALUE	Number of genotypes	Name of genotypes
1	RM 3825	147	0.26	32	IRRI 154, MINGHUI 63, ZHENSHAN 97 B, IR 64-21, IRBB 66, IRRI147, SANHUANGZHA NO 2, IR77186-122-2-2-3, IR77298-14-1-2-10, Supa, IRRI 104, N 22::IRGC 19379-1, MTU1010, Jasmine 85, Sadri, OM4900, IR 95042:13-B-7-11-15-3, IR 93340:14-B-21-17-12-1RGA-2RGA-1-B-B, DJ123, Oryzica 1, F50, TEQING, MG 2::IRGC 79837-1, UPL RI 7::IRTP 9897-C1 CT11891-2-2-7-M, Oryzicasabana 10, Oryzicasabana 6, Oryzica Llanos 5, ChhomrongDhan, NSIC Rc240, Jamir, IR10M300

Markers for qDTY 12.1	Band size (bp)	PIC VALUE			
2	RM 511	130	0.44	43	MINGHUI 63, ZHENSHAN 97 B, IR 64-21, IRBB 66, IR 69726-116-1-1, SANHUANGZHA NO 2, SambhaMahsuri + Sub1, N 22::IRGC 19379-1, MTU1010, Nanhi, Jasmine 85, KinandangPatong, Sadri, OM4900, IR 95042:13-B-7-11-15-3, IR 93340:14-B-21-17-12-1RGA-2RGA-1-B-B, IR 93354:34-B-5-1-23-1RGA-2RGA-1-B-B, KhaoHlan On, IR13F167, IR84984-83-15-481-1, M202, ManawThukha, BR28, TN1, GSR IR2-9-R1-SU3-1Y2, Zanton::IRGC 31248-1, URAIBOOL::IRGC 52785-1, Hokkai 188, IR 126182-1-1-1, IR10F360, Sahel 108, Sahel 134, Sahel 177, Giza 178, Moroberekan, TEQING, CT11891-2-2-7-M, Oryzicasabana 10, Oryzica Llanos 5, ChhomrongDhan, NSIC Rc240, Jamir, IR10M300

Name of common genotype for both QTL (1.1 and 12.1) based on two markers namely, RM 3825 and RM 511

Minghui 63, Zhenshan 97 b, IR 64-21, IRBB 66, Sanhuangzha No 2, N22::IRGC 19379-1, MTU 1010, Jasmine 85, Sadri, OM 4900, IR95042:13-B-7-11-15-3, IR93340:14-B-21-17-12-1RGA-2RGA-1-B-B, Teqing, CT11891-2-2-7-M, Oryzica sabana 10, Oryzica Llanos 5, Chhomrong Dhan, NSCIC Rc240, Jamir, IR10M300
Table 5
List of 42 microsatellite markers with their chromosome locations, number of alleles, allele size and PIC value found among 58 rice accessions.

MARKERS	Forward motif	Reverse motif	C#	Position (cM)	Amplicon Size (bp)	PIC value	No. of Alleles
RM 413	GGCGATTTCTTTGAGTAAGAG	TCCCCACAAAATCTTGTCTTC	5	26.7	71-114	0.48	4
OSR 13	CATTGGTGGTCAACGAGAAGAAGAGAG	AGCCACAGGCCCACATCTTCTCC	3	53.1	85-122	0.51	1
RM 133	TTGGATTTCTTTGAGTCTTC	GGAACACGGGGGTGAGACGAC	6	0	230	0.00	1
RM 489	ACTTGAGAGATCGAGAAGGACAC	TCACCAATGTGTGTTGAT	3	29.2	271	0.70	3
RM 161	TGCAGATGAGAAGCGGCGCCGCC	TGTCACAGACCGGCCGCC	5	96.9	154-187	0.00	1
RM 125	ATCAGCAAGCAGGACGCTAAGG	AGGGGATCTGTTGCCCAGG	7	24.8	105-147	0.45	3
RM 11	TCTCTCTTCCCCGATC	ATAGCGGGGGCGGTTTAG	7	47	118-151	0.46	3
RM 307	GTACTACCGACCTACGTTGTTC	CTGCTATGCATGAACTGCTC	4	0	116-191	0.51	2
RM 287	TTCCCTTGAAGAAGAGAAATC	GTGTATTTGTGAAAGCAAC	11	68.6	118	0.68	2
RM 316	CTAGTGGGCATACGAGTGGC	AGCCACAGGCCCACATCTTCTCC	9	1.8	194-216	0.00	1
RM 536	TCTCTCTTCTGTGGCTTGTGCTC	ACACATACGAGACGACGAC	11	55.1	243	0.00	1
RM 520	AGGAGCAAGAAGAAGATCTTCCC	GCAATCTGTTGAGAATIF	3	191.6	50-247	0.16	2
RM 236	GCCTGGTGGAAAAATGAG	GCATCCCTCTTTGATTCCTC	2	175	105-191	0.44	2
RM 511	CTTCGATCCGGTGACGAC	AAGAAAGCGAAGCTGTGCTC	12	59.8	50-130	0.44	2
RM 3739	AGTTGCGCAGCTAATGCTGATC	GTGTATTGTTGAAAGCAAC	11	68.6	118	0.68	2
RM 1261	GTCCATGCCCAAGACACAC	GTTACATCTGTTGACGCCAC	12	61.6	128-167	0.63	2
RM 12010	GGACCGAATCATGAGAAATG	TTGTCAGTGCAAGGCCAAGAACC	1	38.9	194-284	0.00	1
RM 3825	AAAGCCTCCACAAATCAGTAC	GTGAAACTCTGGTTAGTCG	1	143.7	50-147	0.26	2
RM 28160	AACCACATCCCACCACTTCCAC	CTATGGCCACCACTATACTCAACCAC	12	17.47	136-249	0.56	2
RM 28199	CCGTGTTAGGAGGGTTGCTGAG	GCATGCCTAGTGAAACCGCATATTCC	12	18.15	179	0.00	1
RM 452	CTGATGCGAGGGTTTAAAGG	GGCTAATCCACACGTTGTC	2	58.4	209	0.00	1
RM 472	CCAAGCCCTGAGAGAACGAG	AGCTAAATGGCCATACGGTG	1	71.6	296	0.00	1
RM 416	CCGAATTTGAGGGTTTGGAG	TCCAGTCTACACTGTCTTGGC	3	191.6	114	0.00	1
RM 518	CTCTCTACACTTACACTTCC	ATCCATCGGGACGACACA	4	25.5	135-171	0.73	4
RM 240	CTTAATGCTAGTGTGACAC	TTGTTCACATTTCTTCTTCC	2	158	50-132	0.54	4
RM 6504	GAGAGGGCTGAGTATGCTCG	TCTCTCAATTCACCCGGCCAAA	1	154.6	50-116	0.59	3
RM 5753	AACATGCTCACTTCTTGGGC	GCTAGTACGTACCTTAAG	6	148	201	0.53	3

Contd…
MARKERS	Forward motif	Reverse motif	C#	Position (cM)	Amplicon Size (bp)	PIC value	No. of Alleles
RM 1361	ATTCTCTCCGCTAAACAC	TTCTCGTGCAAGTGAATGACC	1	155.2	214	0.00	1
RM 3520	GAGGCTATATGCTCATGCTC	AAACCTGCAAATGCACAG	1	159.6	150-178	0.39	2
RM 28130	CAGCAGACGTTCGGTGCTCAG	AGGACGGTGCTGGATCTGAG	12	79.7	60-175	0.26	2
RM 28089	GGGAGGACACCTGTGTAAGTAGG	GTTCAAATGAGCCACATTC	12	15.41	150-260	0.19	2
RM 495	AATCCAAAGGTGCAGATG	CAACGATGACGAACACAC	1	2.8	159	0.55	2
RM 486	CCCCCCTCTCTCTCTCTCCT	TAGCCACATCAACAGCTTGC	1	153.5	104	0.00	1
RM 28048	TTCAGCCGATCCATTCAATTTCA	GCTATGGGCCCAGAGTAGATTAGC	12	14.10	93	0.00	1
RM 28076	GGGACTTGGGCCACCGATTTGATGG	TCAGTGCTTTGGAACTTGAT	12	15.13	289	0.00	1
RM 28086	CCCGCTGCAGCTATTATGAGG	GATCTGGTACCTCGCATGCTGTTG	12	15.33	387	0.00	1
RM 283	GTCTACATGTACCTTTTGTTG	CGGACATGAGTGCTGATG	1	31.4	151	0.00	1
RM 19	CAAAAACAGAGCAGATGAC	CTCAGATGAGGACGCAAGA	12	20.9	226	0.00	1
RM 431	TCTCGGAATGAGTACATAGT	AGAGCAAAAACCTGATTAC	1	178.3	251	0.00	1
RM 474	AAGATGTACGGGTGGCATTT	TATGAGCTGGTGAGCAATTTG	10	0	252	0.00	1
Fig. 1 Graphical representation of PIC value of 22 polymorphic SSR markers

Fig. 2 Estimation of K and population structure. Changes in ΔK value with the number of subpopulations
Structure and TASSEL analysis

Population Structure analysis

The Bayesian model-based STRUCTURE v2.3.4 program was used to infer population structure of rice genotypes. The 58 lines were divided into two sub groups (Fig. 2) based on the result of Structure Harvester, as delta K kinship was highest at K=2. With population inferred ancestry (Q) = 0.80, forty three lines were assigned to subgroup POP1, rest 8 lines were assigned to subgroup POP2 and seven genotypes/lines namely, IRBB 66 (5), Sadri (21), M 202 (29), Zanton::IRGC 31248-1 (35), DJ123 (45), MG2::IRGC 79837-1(49) and UPLRI7:: IRTP9897-C1 (50) were assigned to admixture (AD) which has less than <0.80 inferred ancestry (Fig. 3).

Courtois et al., (2012) has successfully detected two subgroups in their study population and assigned rice varieties into two groups with few admixture lines. Our results are also in conformity with the findings of Borba (2010) suggesting that using structure analysis, the accessions were sub divided into two panels. Likewise, the association of yield traits with SSR markers was undertaken with GLM model, with markers and sub population as fixed factors, and kinship matrix as random factor.

Marker-trait association

Association analysis between SSR markers and thirteen agronomic and yield attributing traits was carried out using GLM model over the 58 rice germplasm lines. The marker trait associations based on general linear model (GLM) in irrigated and rainfed conditions are presented in Table 2.

The results indicated that 26 and 31 markers were found to be associated with all the traits in irrigated and rainfed conditions respectively. For days to flowering, RM 3825 (C# 1) and RM 11 (C#7) were found to have tight association in irrigated and rainfed condition. However, RM 5753 (C#6; irrigated) and RM 518 (C#4; rainfed) also possessed tight linkage with days to flowering. Taking MLM model into consideration in irrigated condition, RM 240 (C#2) showed tight linkage with grain yield, presented in Table 3.
References

Borba, T.C., Brondani, R.V., Breseghello, F., Coelho, A.S.G., Mendonça, J.A., Rangel, P.H.N., Brondani, C. 2010. Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33(3): 515–524.

Courtois, B., Audebert, A., Dardou, A., Roques, S. and Ghneim-Herrera., T. 2013. Genome wide association mapping of root traits in a japonica rice panel. PLoS One 8(11):7803-7805.

Evenson, R.E. and Gollin, D. 2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300: 758–762.

Kohli, A., Narciso, J., Oane, R., Popluechai, S. and Kumar, A. 2010. Identification of major candidate genes in a large effect QTL for rice yield under drought stress, Paper presented at International Rice Congress, Hanoi, Vietnam, 9–11.

Kwon, J.M. and Goate, A.M. 2000. The candidate gene approach. Alcohol Res Health. 24(3): 164-168.

Pandey, S., Bhandari, H.S. and Hardy, B., 2007. Economic costs of drought and rice farmers' coping mechanisms: a cross-country comparative analysis. Int. Rice Res. Inst..

Patnala, R., Clements, J. and Batra, J. Candidate gene association studies: comprehensive guide to useful in silico tools. BMC Genet 14, 39 (2013).

Richharia, R.H. 1979. An aspect of genetic diversity in rice. Oryza. 16(1): 1–31.

Swamy, B.M., Vikram, P., Dixit, S., Ahmed, H.U. and Kumar, A., 2011. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC genomics, 12(1), p.319.

Vikram, P., Swamy, B., Dixit, S., Ahmed, H., Cruz, M.T.S., Singh, A. and Kumar, A. 2011. qDTY1.1, a major QTL for rice grain yield under reproductive stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet.12:89. 72-89.

Zheng, K., Subudhi, P.K., Domingo, J., Magpantay, G. and Huang, N. 1995. Rapid DNA isolation for marker assisted selection in rice breeding. Rice Genet. Newsletter 12: 255–258.

How to cite this article:

Parminder Singh Saini, Ritu R. Saxena, Suman Rawte, Sunil K. Verma, Ravi R. Saxena and Verulkar, S. B. 2021. Association Mapping of Rice Germplasm Accessions for qDTY 1.1 and qDTY 12.1. Int.J.Curr.Microbiol.App.Sci. 10(02): 1418-1429.
doi: https://doi.org/10.20546/ijcmas.2021.1002.170