This is for the paper [?]

- Example 11 has the wrong invariants stated. Those two polynomials correspond to \(\tau_{4,1}^{-1}(-1724, -1163982, -2322788, 4530821869, 0) \).

- (Thanks to Rin Gotou) Theorem 5 should be “\(\leq \)” and not “=“.

Theorem 5. The value \(\deg(\tau_{3,2}) \leq 12 \).

There is an error in considering only one of the multipliers for period 2 points, it may be that the degree further decreases when adding additional multipliers from additional period 2 points. Gotou shows that this is in fact true and that \(\deg(\tau_{3,2}) = 1 \).

Independent of Gotou's improvement, it should be noted that the argument in the paper could be improved to a bound of 6. The 12 points found in the proof are not all distinct since you could have \((a, b)\) and \((a, \phi(a)(b))\) appearing. In other words, there are always two period 2 points with the same multiplier (both points in the 2-cycle have the same multiplier). So the actual number of maps is half the count \(\frac{12}{2} = 6 \) when considering just one period 2 multiplier as in our argument.

Department of Mathematics and Statistics, Saint Louis University

Email address: benjamin.hutz@slu.edu