Effects of dietary protease supplementation on growth rate, nutrient digestibility, and intestinal morphology of weaned pigs

Minho Song1#, Byeonghyeon Kim1#, Jin Ho Cho2#, Hyunjin Kyoung1, Sangwoo Park1, Jee-Yeon Cho3, Kyeong Il Park1, Hyeun Bum Kim4* and Jeong Jae Lee1,5*

1Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
2Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
3DSM Nutrition Korea Ltd., Seoul 06675, Korea
4Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
5Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea

Abstract
The addition of dietary proteases (PRO) to weaner diets hydrolyzes soybean-based anti-nutritive factors and improves weaned pig’s dietary digestibility and growth performance. Therefore, this study explores the effects of PRO in a lower crude protein (CP) level diet than that in a commercial diet on the growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. A total of 90 weaned pigs were randomly assigned to 3 dietary treatments with 6 pigs per pen and 5 replicated pens per treatment using a randomized complete block design (block = body weight [BW]): 1) a commercial weaner diet as a positive control (PC; phase1 CP = 23.71%; phase2 CP: 22.36%), 2) lower CP diet than PC as a negative control (NC; 0.61% less CP than PC), and 3) an NC diet with 0.02% PRO. Pigs fed PC and PRO had higher (p < 0.05) final BW, average daily gain, and/or gain to feed ratio for the first three weeks and the overall experimental period than NC. The PC and PRO groups had greater (p < 0.05) apparent ileal digestibility of dry matter, CP, and energy than the NC group. Moreover, pigs fed PC and PRO increased (p < 0.05) apparent total tract digestibility of CP compared with those fed NC. In addition, the PRO group had a higher number of goblet cells than the PC and NC groups. However, pig fed PC and PRO increased (p < 0.05) villus height and height to crypt depth ratio in the ileum compared with those fed NC. In conclusion, PRO supplementation in a commercial weaner diet with low CP levels improves growth rate and nutrient digestibility by modulating the intestinal morphology of weaned pigs.

Keywords: Commercial weaner diet, Dietary protease, Growth rate, Intestinal morphology, Nutrient digestibility, weaned pigs

INTRODUCTION
The swine industry has been facing the problem of increasing the cost of feeds, especially the cost of
Byeonghyeon Kim
https://orcid.org/0000-0003-4651-6857
Jin Ho Cho
https://orcid.org/0000-0001-7151-0778
Hyunjin Kyoung
https://orcid.org/0000-0001-5742-5374
Sangwoo Park
https://orcid.org/0000-0003-2288-1374
Jee-Yeon Cho
https://orcid.org/0000-0002-7067-1841
Kyeong Il Park
https://orcid.org/0000-0002-3590-3993
Hyeun Bum Kim
https://orcid.org/0000-0003-1366-6090
Jeong Jae Lee
https://orcid.org/0000-0002-3455-0102

Competition interests
No potential conflict of interest relevant to this article was reported.

Funding sources
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A01087326) and by DSM Nutrition Korea Ltd., Seoul, Korea.

Acknowledgements
Not applicable.

Availability of data and material
Upon reasonable request, the datasets of this study can be available from the corresponding author.

Authors’ contributions
Conceptualization: Song M, Kim B, Cho JH, Kim HB, Lee JJ.
Data curation: Song M, Kim B, Park S, Lee JJ.
Formal analysis: Kim B, Cho JH, Kyoung H.
Methodology: Cho JH, Cho JY, Park KL.
Software: Kyoung H, Park KL.
Validation: Song M, Park S, Kim HB, Lee JJ.
Investigation: Song M, Kim B, Cho JH, Kyoung H, Park S, Cho JY, Lee JJ.
Writing - original draft: Song M, Kim B, Cho JH, Kim HB, Lee JJ.
Writing - review & editing: Song M, Kim B, Cho JH, Kyoung H, Park S, Cho JY, Park KL, Kim HB, Lee JJ.

Ethics approval and consent to participate
The animal experiment protocol for this study was approved by the Institutional Animal Care and Use Committee of the Chungnam National University, Daejeon, Korea (approval# 201909A-CNU-00611).

MATERIALS AND METHODS

The animal experiment protocol for this study was approved by the Institutional Animal Care and Use Committee of the Chungnam National University, Daejeon, Korea (approval# 201909A-CNU-00611).

Animals, diets, and study design
Ninety weaned pigs (Duroc × [Landrace × Yorkshire]; aged 28 days) with an average body weight (BW) of 6.96 ± 0.06 kg were randomly assigned to three dietary treatments with five replicates of six pigs per pen using a randomized complete block design (block = BW). The dietary treatments were as follows: 1) a commercial weaner diet to meet or exceed the requirement of crude protein (CP) as a positive control (PC; phase1 CP = 23.71%; phase2 CP: 22.36%), 2) lower CP diet than PC as a negative control (NC; 0.61% less CP than PC), and 3) an NC diet supplemented with 0.02% dietary PRO. The PRO contained 75,000 PRO units/g, which were extracted from Nocardopsis prasina produced in Bacillus licheniformis, and was a commercial product (Ronozyme® ProAct, DSM nutrition products, Kaiseraugst, Switzerland). The formulated diets met the nutritional requirements for weaned pigs based on the National Research Council [12] (Table 1). The trial period lasted 42 days using a 2-phase feeding program with each phase of three weeks. All pigs had ad libitum access to feed and water throughout the entire period. During the final week of experiment, 0.2% chromic oxide, an indicator of indigestion, was added to all dietary treatments.
Sample collection and preparation for analysis

The weight of each pig and pen was recorded on days 1, 7, 14, 21, and 42 to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) for the growth performance of weaned pigs. Fecal samples from one randomly selected pig per pen were collected daily for day 3 using the rectal massage method in the final week after the day 4 adaptation period. Each dietary treatment and fecal sample was stored at –80°C for analyzing apparent total tract digestibility (ATTD) of nutrients. On the last day (day 42) of the experiment, one pig randomly
selected from each pen (five pigs from each treatment) was anesthetized by an intramuscular injection of xylazine (20 mg per 20 kg of BW; ES Inc., Korea) and euthanized by CO\textsubscript{2} gas [5]. Ileal digesta were collected and stored at −20°C for analyzing apparent ileal digestibility (AID) of nutrients. A 3-cm ileal segment was collected and washed with distilled water, and then the samples were prepared for morphological analysis following the method of previous research [13].

Chemical analysis
Stored samples (diet, ileal digesta, and feces) were thawed and dried in a forced-air drying oven at 60°C, and then finely ground using a coffee grinder before chemical analysis. The dried samples were analyzed for dry matter (DM), gross energy (GE) by bomb calorimetry (Model C2000, IKA®, Staufen, Germany), and CP using the Kjeldahl method. The Cr concentrations of diets, ileal digesta and fecal samples were determined using graphite furnace atomic absorption spectrometry (Hitachi Z-5000 Absorption Spectrophotometer, Hitachi High-Technologies, Tokyo, Japan). The procedures for DM and CP analyses were based on the methods of AOAC International [14]. The AID and ATTD of DM, GE, and CP were calculated for each dietary treatment based on a previous report [15].

Intestinal morphology analysis
The measurements of intestinal morphology included villus height (VH), villus width, villus area, crypt depth (CD), VH to CD ratio (VH:CD), and the number of goblet cells, and were conducted as described previously [5]. The ileal tissue samples were immersed in paraffin, mounted on glass slides (5-μm thickness), and stained with hematoxylin and eosin. The stained samples were scanned using a light microscope (Eclipse TE2000, Nikon, Tokyo, Japan) equipped with a charge-coupled device camera (DS-Fi1, Nikon), and all measurements were conducted using NIS-Elements BR software 3.00 (Nikon).

Statistical analysis
Data were analyzed using the General Linear Model Procedure of SAS (Version 9.4, 2013, SAS, Cary, NC, USA) in a randomized complete block design with the initial BW as a block. The pen was the experimental unit. The statistical model for growth performance, AID and ATTD, intestinal morphology, and number of goblet cells included the effects of dietary treatments as a fixed effect. Statistical significance and tendency were considered at $p < 0.05$ and $0.05 \leq p < 0.10$, respectively.

RESULTS

Growth performance
Pigs fed PC and PRO diets increased ($p < 0.05$) final BW, ADG, and G:F from d 1 to 21 compared with the NC diet (Table 2). Moreover, PC and PRO had higher ($p < 0.05$) final BW and ADG during the overall experimental period than NC. However, no differences in the growth performance of weaned pigs were found over the overall experimental period between PC and PRO treatments.

Nutrient digestibility
The AID of DM, CP, and energy was greater ($p < 0.05$) in the PC and PRO groups than in the NC group (Table 3). Moreover, pigs fed PC and PRO increased ($p < 0.05$) ATTD of CP compared with those fed NC. However, the PRO diet did not differ in nutrient digestibility from the PC diet.
Goblet cell number and intestinal morphology

The number of goblet cells in the pigs fed PRO significantly exceeded ($p < 0.05$) that of those fed PC and NC (Table 4). Furthermore, pigs fed with PC and PRO increased ($p < 0.05$) VH and VH:CD in the ileum compared with those fed with NC. In contrast, no difference was observed in ileal morphology between the PC and PRO treatments.
DISCUSSION

After weaning, piglets suffer from several stresses due to physiological, environmental, and immunological changes [16,17]. In particular, the immediate transition of feed from liquid milk to solid diet decreases feed intake, and nutrient digestibility and thus compromises growth performance [18]. This occurs because during this period, the activity of endogenous enzymes is not yet established to digest plant nutrients (i.e., solid diet) [19]. Furthermore, the solid diet may cause cell loss by friction, and feed antigen can induce the inflammation and alteration of VH, which is highly associated with nutrient digestibility [18–20].

Weaning pigs may not well digest the protein from SBM for various reasons. The most common reason is that the digestive system is not completely developed and the activity of digestive enzymes is low during the weaning period [7,21,22]. The exogenous PRO has been investigated for its positive effect on the digestibility of dietary protein in a corn-SBM based diet in the weaning but not in the growing-finishing period [5,7,23]. This study showed that PRO supplementation improved nutrient digestibility and the growth performance of weaned pigs. This result agrees with previous research that adding exogenous enzymes is more effective in piglets weighing < 20 kg [23], and previous research has also reported an improvement in nutrient utilization efficiency using PRO as a stand-alone enzyme [5,7]. Another problem during the weaning period is the increased resistance of the disulfide linkage of soy protein to digestion [6, 24]. Intestinal maturity is closely related to nutrient digestibility and the growth performance of piglets [3], and among other parameters, well-developed VH and CD can contribute to high feed intake of weaned pigs, which can have positive effects on growth performance [18]. Studies have also reported that plant protein sources impair intestinal morphology and PRO supplementation attenuates the morphological damage, due to increased degradation of ANFs [5,7,8]. In this study, increased digestibility of nutrients by PRO supplementation induced increased growth performance, which is believed to be closely associated with intestinal development and improvement of diarrhea. Moreover, improved protein digestion and absorption, especially AID of CP, reduces the flow of undigested proteins into the large intestine, thereby preventing the proliferation of pathogenic microbes and their harmful metabolites [25]. This study’s results agree with those of some previous studies conducted using proteolytic enzymes as an exogenous enzyme [5,23,26].

In the intestine, goblet cells secrete mucus that form a mucus layer, which serves as a barrier function to prevent the antigens from attachment to the intestinal epithelium [19]. Therefore, the
thickness of this mucus layer and the number of goblet cells are essential for preventing pathogen invasion. In this study, the number of goblet cells was increased by PRO supplementation, which might be due to an improved intestinal morphology. In the intestine, metabolites or toxins from bacteria, as well as the feed antigen in the SBM, can cause inflammation [27]; this inflammation is also accompanied by damage to epithelial cells and a decrease in growth efficiency [18,28]. However, PRO addition prevented the inflammation of epithelial cells by degrading the feed antigen in SBM and preventing enteropathogen proliferation, which may be the reason for the increased number of goblet cells [5,9,19].

CONCLUSION

This study suggests that the addition of dietary PRO in a lower CP diet improves growth performance and nutrient digestibility of weaned pigs as much as a commercial weaner diet by modulating the intestinal morphology.

REFERENCES

1. Muscat A, de Olde EM, de Boer IJM, Ripoll-Bosch R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob Food Secur. 2020;25:100330. https://doi.org/10.1016/j.gfs.2019.100330
2. Berrazaga I, Micard V, Gueugneau M, Walrand S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: a critical review. Nutrients. 2019;11:1825. https://doi.org/10.3390/nu11081825
3. Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms. 2019;7:19. https://doi.org/10.3390/microorganisms7010019
4. Wu JJ, Cao CM, Ren DD, Zhang Y, Kou YN, Ma LY, et al. Effects of soybean antigen proteins on intestinal permeability, 5-hydroxytryptamine levels and secretory IgA distribution in the intestine of weaned piglets. Ital J Anim Sci. 2016;15:174-80. https://doi.org/10.1080/1828051x.2016.1148559
5. Park S, Lee JJ, Yang BM, Cho JH, Kim S, Kang J, et al. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. J Anim Sci Technol. 2020;62:21-30. https://doi.org/10.5187/jast.2020.62.1.21
6. Zhou SF, Sun ZW, Ma LZ, Yu JY, Ma CS, Ru YJ. Effect of feeding enzymolytic soybean meal on performance, digestion and immunity of weaned pigs. Asian-Australas J Anim Sci. 2011;24:103-9. https://doi.org/10.5713/ajas.2011.10205
7. Zuo J, Ling B, Long L, Li T, Lahaye L, Yang C, et al. Effect of dietary supplementation with protease on growth performance, nutrient digestibility, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Anim Nutr. 2015;1:276-82. https://doi.org/10.1016/j.aninu.2015.10.003
8. Wedekind KJ, Chen J, Yan F, Escobar J, Vazquez-Anon M. Efficacy of a mono-component protease is affected by trypsin inhibitor concentration in soybean meal. Anim Feed Sci Technol. 2020;265:114502. https://doi.org/10.1016/j.anifeedsci.2020.114502
9. Lee JJ, Kang J, Park S, Cho JH, Oh S, Park DJ, et al. Effects of dietary protease on immune responses of weaned pigs. J Anim Sci Technol. 2020;62:174-9. https://doi.org/10.5187/jast.2020.62.2.174
10. Zhang Y, Chen DW, Yu B, He J, Yu J, Mao XB, et al. Spray-dried chicken plasma improves
intestinal digestive function and regulates intestinal selected microflora in weaning piglets. J Anim Sci. 2015;93:2967-76. https://doi.org/10.2527/jas.2014-8820

11. Lee JJ, Choe J, Kang J, Cho JH, Park S, Perez-Maldonado R, et al. Dietary protease improves growth rate and protein digestibility of growing-finishing pigs. J Anim Sci Technol. 2020;62:313-20. https://doi.org/10.5187/jast.2020.62.3.313

12. NRC [National Research Council]. Nutrient requirements of swine. 11th rev. ed. Washington, DCA: National Academies Press; 2012.

13. Liu Y, Choe J, Kim S, Kim B, Campbell JM, Polo J, et al. Dietary spray-dried plasma improves intestinal morphology of mated female mice under stress condition. J Anim Sci Technol. 2018;60:10. https://doi.org/10.1186/s40781-018-0169-5

14. AOAC [Association of Official Analytical Chemists] International. Official methods of analysis of AOAC international. 21st ed. Gaithersburg, MD: AOAC International; 2019.

15. Stein HH, Sève B, Fuller MF, Moughan PJ, de Lange CFM. Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci. 2007;85:172-80. https://doi.org/10.2527/jas.2005-742

16. Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol. 2013;4:19. https://doi.org/10.1186/2049-1891-4-19

17. Moezer AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs. Anim Nutr. 2017;3:313-21. https://doi.org/10.1016/j.aninu.2017.06.003

18. Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018;4:187-96. https://doi.org/10.1016/j.aninu.2017.12.004

19. Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci. 2019;6:46. https://doi.org/10.3389/fvets.2019.00046

20. McCracken BA, Spurlock ME, Roos MA, Zuckermann FA, Gaskins HR. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J Nutr. 1999;129:613-9. https://doi.org/10.1093/jn/129.3.613

21. Kelly D, Smyth JA, McCracken KJ. Digestive development of the early-weaned pig: 1. effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. Br J Nutr. 1991;65:169-80. https://doi.org/10.1079/bjn19910078

22. Lee JJ, Choi SH, Cho JH, Choe J, Kang J, Kim S, et al. Effects of dietary carbohydrates on productive performance and immune responses of lactating sows and their piglets. J Anim Sci Technol. 2019;61:359-65. https://doi.org/10.5187/jast.2019.61.6.359

23. Zhang GG, Yang ZB, Wang Y, Yang WR, Zhou HJ. Effects of dietary supplementation of multi-enzyme on growth performance, nutrient digestibility, small intestinal digestive enzyme activities, and large intestinal selected microbiota in weanling pigs. J Anim Sci. 2014;92:2063-9. https://doi.org/10.2527/jas.2013-6672

24. Wang D, Piao XS, Zeng ZK, Lu T, Zhang Q, Li PF, et al. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-Australas J Anim Sci. 2011;24:1718-28. https://doi.org/10.5713/ajas.2011.11.11132

25. Pluske JR, Perthick DW, Hopwood DE, Hampson DJ. Nutritional influences on some major enteric bacterial diseases of pig. Nutr Res Rev. 2002;15:333-71. https://doi.org/10.1079/nrr200242

26. O’Shea CJ, Mc Alpine PO, Solan P, Curran T, Varley PF, Walsh AM, et al. The effect of
protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Anim Feed Sci Technol. 2014;189:88-97. https://doi.org/10.1016/j.anifeedsci.2013.11.012
27. Burkey TE, Skjolaas KA, Minton JE. Board-invited review: porcine mucosal immunity of the gastrointestinal tract. J Anim Sci. 2009;87:1493-501. https://doi.org/10.2527/jas.2008-1330
28. Renz H, Brandtzæg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2012;12:9-23. https://doi.org/10.1038/nri3112