Celiac Disease (CeD) is a complex immune disorder involving villous atrophy in the small intestine that is triggered by gluten intake. Current CeD diagnosis is based on late-stage pathophysiological parameters such as detection of specific antibodies in blood and histochemical detection of villus atrophy and lymphocyte infiltration in intestinal biopsies. To date, no early onset biomarkers are available that would help prevent widespread villous atrophy and severe symptoms and co-morbidities. To search for novel CeD biomarkers, we used single-cell RNA sequencing (scRNAseq) to investigate PBMC samples from 11 children before and after seroconversion for CeD and 10 control individuals matched for age, sex and HLA-genotype. We generated scRNAseq profiles of 9559 cells and identified the expected major cellular lineages. Cell proportions remained stable across the different timepoints and health conditions, but we observed differences in gene expression profiles in specific cell types when comparing patient samples before and after disease development and comparing patients with controls. Based on the time when transcripts were differentially expressed, we could classify the deregulated genes as biomarkers for active CeD or as potential pre-diagnostic markers. Pathway analysis showed that active CeD biomarkers display a transcriptional profile associated with antigen activation in CD4+ T cells, whereas NK cells express a subset of biomarker genes even before CeD diagnosis. Intersection of biomarker genes with CeD-associated genetic risk loci pinpointed genetic factors that might play a role in CeD onset.
Investigation of potential cellular interaction pathways of PBMC cell subpopulations highlighted the importance of TNF pathways in CeD. Altogether, our results pinpoint genes and pathways that are altered prior to and during CeD onset, thereby identifying novel potential biomarkers for CeD diagnosis in blood.

Keywords: celiac disease, scRNAseq, PBMC, differential gene expression, pre-diagnostic biomarkers

INTRODUCTION

Celiac disease (CeD) is a complex immune disorder triggered by gluten intake. It is characterized by inflammation and atrophy of the small intestine that severely impacts the quality of life of patients (1, 2). Even though CeD has a worldwide incidence of 1–1.5% (3), the only available treatment is a strict, life-long gluten-free diet (2).

Early diagnosis of CeD is key to minimizing its impact on patient quality of life because the persistence of intestinal damage is associated with complications such as bone abnormalities and malignancies (4) and CeD may hinder growth and development in children (5). After CeD diagnosis, patients follow a gluten-free diet, which is enough to stop villus atrophy and alleviate symptoms in most cases (2, 6). However, full recovery of the small intestine is only achieved in 50% of patients after one year of a gluten-free diet (6). Thus, diagnosis at an earlier stage of the disease, prior to the development of major villous atrophy, may decrease the burden on patients.

To date, diagnosis of CeD in adults mainly relies on serological markers found in blood, such as antibodies against tissue transglutaminase 2 (anti-TG2) (7), and on histopathological assessment of small intestinal villus atrophy and lymphocyte infiltration, both indicative of mucosal damage (8). However, CeD diagnosis is challenging in patients with IgA-deficiency, which is observed in about 2-3% of all CeD patients (9), and in patients with other (auto)immune-related diseases (7, 10, 11). Because of this limitation, novel biomarkers that can be detected at early stages of CeD-onset could improve the quality of life of patients, especially children, because villous atrophy and its consequences could be prevented. Ideally, such biomarkers would be present in tissues that can be collected in a minimally invasive manner, for instance blood.

Protein and RNA molecules are the most-studied blood biomarkers because these molecules can now be rapidly, accurately and affordably measured in virtually any type of sample (12). One advantage of RNA over proteins is that the limit of detection for RNA molecules is lower than that for proteins, which allows to use small quantities of input material, while sequencing-based technology for RNAs provides a genome-wide measurement. Additionally, there is already evidence that some RNA markers are predictive for CeD prior to villous atrophy (13) and could thus help individuals at high-risk of CeD to start the gluten-free diet before intestinal damage occurs and before the onset of major symptoms.

There are two types of RNA markers in blood: circulating ‘cell-free’ RNA (e.g. miRNAs or other RNA species that might be present in vesicles) and cellular/PBMC RNA (14). However, most studies that try to identify cellular RNA markers in blood rely on the analysis of mixed PBMC populations. The drawback of this approach is that transcriptional changes observed in bulk RNA are heavily impacted by changes in cell population frequencies, and transcriptomic changes in the minor populations may ‘snow under’ the transcripts measured in the more abundant cell types (15). Single-cell RNA sequencing (scRNAseq) makes it possible to study complex tissues like blood at cellular resolution, which allows the unbiased identification of cell type-specific transcriptomes in their tissue (blood) context (16), e.g. in a comparison of disease cases versus controls at different timepoints.

Here, we studied dynamic transcriptional changes in single cells of pediatric individuals at increased risk of developing CeD both before and after CeD seroconversion and compared these to values for individuals who did not develop CeD. In this way, we were able to elucidate differentially expressed genes (DEGs) and possible altered pathways in specific cell types found in PBMCs, as well as links with CeD-associated genetic risk loci. Such altered genes can pinpoint potential pre- and post-diagnostic markers of CeD.

MATERIALS AND METHODS

Ethical Considerations and Study Design

The pediatric PreventCD cohort has been extensively described previously (17). Briefly, the at-risk children included in this study were newborns positive for HLA-DQ2 and/or -DQ8 from families in which at least one direct relative has been diagnosed with CeD. We excluded children with trisomy 21 or Turner syndrome and premature infants born at <36 weeks. The PreventCD samples used for this study were randomly selected based on donor disease status, sex and age. We used PBMC samples from 11 patients (confirmed diagnosis based on histopathology of small intestinal biopsy) before and after seroconversion for CeD and from 10 HLA genotype-, age- and sex-matched controls who did not develop CeD during the course of the PreventCD study. After selection of these samples, all experiments were performed in a blinded way. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and it was approved by all medical ethics committees of the participating centers.

Preparation of PBMCs

PBMCs were obtained from blood samples by gradient separation in Ficoll-Paque plus™, according to the manufacturer’s recommendations. Isolated PBMCs were cryopreserved in
medium containing DMSO 10% and FCS 40% at -80°C, as described in Nazapour et al. (18), until use. Samples were thawed and prepared in batches of 10, consisting of 5 different donors sampled at two different timepoints. Upon thawing, cell concentration and viability were determined using a hemocytometer and Trypan Blue staining, respectively. Cells were then pooled into samples that contained 5 samples of different individuals (~1000 cells per donor).

Library Preparation and Sequencing of scRNA

Single-cell cDNA libraries of PBMC pools were generated using the 10X Genomics platform following the manufacturer's instructions (document CG00026) and as previously described (16). Briefly, each sample pool was loaded in one lane of Single Cell A Chip (10X Genomics, 120236), and the single-cell RNA was captured by beads, retro-transcribed into single-cell cDNA and amplified using the Single Cell 3’ Library & Gel Bead kit version 2 (10X Genomics, 120237) and the 17 Multiplex kit (10X Genomics, 120262). These libraries were sequenced according to 10X Genomics guidelines using the Novaseq 6000 S2 reagent kit (100 cycles) following a paired-end configuration. The final average sequencing depth was ~50 per cell. Raw sequencing data was processed using CellRanger v1.3 software with default settings. Sequencing reads from single cells were aligned to the hg19 reference genome.

Demultiplexing of Donors, Processing and QC of scRNAseq Libraries

Donor DNA was genotyped using the Infinium GlobalScreeningArray-24v1.0. Next, we demultiplexed the data of the pooled samples based on their genotype using the Demuxlet algorithm, as previously described (16, 19). We applied the tool Opticall v.0.7.0 (20) to call genotypes using default settings. All samples had a call rate > 0.99. We did not identify any related individuals within the study group but did identify one individual of admixed ancestry who was kept in order to maximize our sample size. Cell doublets mapped to multiple donors were removed. We used the R package Seurat v.3.2 (21) to perform further analysis. We included cells expressing >200 and < 3000 unique genes and with < 15% mitochondrial transcript reads for downstream analysis.

Clustering and Cell Type Identification of scRNAseq

The filtered single-cell dataset was analyzed to obtain the most variable genes across samples and cells, and the first 12 principle components were used for an unsupervised clustering with a resolution of 0.6 using the R package Seurat v.3.2 (21). Thereafter, to achieve an accurate annotation of cell cluster, we took a combined approach based on both well-annotated PBMC data and the known marker genes list of PBMC subsets. Specifically, we firstly applied a canonical correlation analysis to project the data onto a larger dataset of well-annotated PBMCs (16). The annotation of cell-types in the reference was then used to identify the cell populations in the query dataset. Second, the resulting cell types were validated by checking the expression of previously characterized marker genes of PBMC subsets (22).

Differential Expression Analysis of scRNAseq

The generated data are from the following four categories of samples: data obtained from patients before and after seroconversion (CeD T0 and CeD T1, respectively) and from HLA genotype-, age- and sex-matched controls (CTR T0 and CTR T1). Using the “MAST” approach (23), we performed differential gene expression analyses comparing: 1) CeD T0 vs. CTR T1, 2) CeD T1 vs. CTR T1, 3) CeD T0 vs. CeD T1 and 4) CTR T0 vs. CTR T1. We only characterized transcripts that were expressed in > 10% of the cells of each subset and filtered in DEGs with an absolute log2FC > 0.25 and an adjusted p-value < 0.05. We then checked the data for the presence of 118 genes previously genetically associated with CeD and prioritized to play a possible causal role in CeD (24).

Pathway Enrichment Analysis

The R package clusterProfiler v.3.14.3 was used to investigate whether the DE transcript sets were enriched for genes involved in specific pathways (P adjusted value < 0.05) (25).

Cellular Communication Analysis

CellPhoneDB (26) was applied to the identified DEGs to infer immune ligand–receptor interactions in our dataset using the default parameters for the statistical analysis (receptor and ligand expressed in at least 10% of cells, 1000 permutations, FDR < 0.05). The R package ggplot2 was used to generate a heatmap visualizing the significance and the mean expression levels of these ligand–receptor gene pairs in different cellular subsets.

RESULTS

Single-Cell Survey of PBMCs in CeD Context

To study the differences at the onset of CeD at the transcriptomic level, we isolated PMBCs from 21 children included in the PreventCD cohort (17), who all were at high-risk of developing CeD. These samples were classified into cases or controls based on whether the donors developed CeD during the study, confirmed by histopathology of small intestinal biopsy. Samples (n=22) were collected from the same patients (n=11) before (T0) and after (T1) seroconversion for CeD as determined by the anti-TG2 antibody test (U/milliliters > 6). Control samples (n=20) from HLA genotype and sex matched donors (n=10) were taken at similar ages to T0 (n=10) and T1 (n=10) from CeD patients (Figure 1A and Supplementary Table 1). The average time between T0 and T1 was 16 months. In total, 19,663 single cells were profiled. After quality control by filtering based on possible doublets, the number of genes expressed (included cells with >200 and <3,000 genes) and low quality cells (included cells with <15% mitochondrial transcript reads)
processed in a similar manner (16). In total, we identified an external dataset of PBMCs from healthy controls that were used for subsequent analyses.

The PreventCD participants used for this study were randomly selected from the comparison of cases vs controls before seroconversion as pre-diagnostic markers (indicated in yellow in Supplementary Figure 2). We observed a varying number of DEGs in each cell type and category. CD4+ T cells showed the highest number of DEGs (n=467 genes), including 250 markers that were unique to only one of the comparisons, while the other DEGs were present in at least two of the comparisons (Figure 2A). The high number of DEGs in CD4+ T cells could be related to the increased power in this compartment as it is the most abundant cell type in our samples.

To better understand the role of DEGs in the context of CeD, we classified the DEGs into three categories: time-related genes, genes characteristic of active CeD and pre-diagnostic CeD markers. In the time-related gene category, we included all DEGs that overlapped or were unique to the T0 to T1 comparison within the controls. These genes are unlikely to be relevant for CeD and may be differentially expressed simply as a consequence of aging (these DEGs are indicated in blue in Figure 2). Active CeD genes were defined as DEGs from the comparison of cases vs controls after seroconversion and from the comparison of T0 and T1 timepoints in cases, i.e. before seroconversion vs. after seroconversion (these DEGs are indicated in red in Figures 2A, B and Supplementary Table 2). Finally, we categorized the DEGs from the comparison of cases vs controls before seroconversion as pre-diagnostic CeD markers (indicated in yellow in Figures 2A, B and Supplementary Table 3).

Several cell populations showed distinct DEGs that were present before clinical onset of CeD (Figure 2B and Supplementary Figure 3). The top 4 DEGs for each comparison in the five most abundant cell types are depicted in Figure 3. These results demonstrate that CeD patients display a PBMC transcriptome profile that differs from that of healthy individuals. The existence of PBMC subsets with an altered transcriptome in pre-seroconversion conditions indicates that several biological processes may be altered in pediatric CeD patients even before they develop villous atrophy.

Genes Differentially Expressed in CD4+ T Cells Are Related to Migration and Activation

The CD4+ T cell population exhibited the largest number of DEGs, including 358 DEGs classified as active CeD markers and 71 classified as pre-diagnostic markers (Figure 2A and Supplementary Tables 2, 3). In Supplementary Figures 4A, B,
we show that the changes were robust for each category. Some of the upregulated genes with the highest log2FC in the active CeD category included genes associated with T cell functions, such as SELL (also known as CD62L or l-selectin), S100A4 and CD52 (Figure 3 and Supplementary Figure 4A). SELL and S100A4 are involved in the migration of T cells (28, 29), whereas CD52, which is expressed in antigen-activated T cells, can induce suppression of other T cells (30, 31). Other top DEGs encode well-known transcription factors, including FOS (associated with a broad range of processes in the T cell activation) (32) and KLF2 (involved in cell motility) (33). The increased expression of these genes is therefore in line with a deregulation of CD4+ T cells in active CeD. In the pre-diagnostic marker category, the top genes were associated to diverse functions, such as thioredoxin interacting protein TXNIP (a regulator of cellular redox state whose function in CD4+ T cells seems to affect the proliferation of effector T cells) (34), and IL32 (previously associated with the progression of various inflammatory disorders including inflammatory bowel disease and gastric inflammation) (35, 36).

We next explored which pathways were likely affected in each cell type by performing pathway enrichment analysis using the REACTOME database (Supplementary Figures 5–9). For CD4+ T cells, the genes upregulated after the seroconversion for CeD (Figures 4A, B) were significantly enriched for pathways related to immune-related functions (P adjusted value < 0.05) such as “TCR signaling” and “Generation of second messenger molecules” and mainly included genes such as CD3G, CD3E and CD3D (Figure 4A and Supplementary Table 4). In contrast, the downregulated DEGs were significantly enriched for transcripts involved in “Signaling by Interleukins” and “mRNA splicing”, amongst other pathways (Figure 4A and Supplementary Table 4). Some of the downregulated genes involved in interleukin signaling included important transcription factor–encoding genes such as NFKB2 and NFKBIA. Both these genes code for proteins that have a regulatory function in NFκB signaling: NFKB2 codes for p100, which can be processed into p52, a protein that acts as a transcriptional repressor when it is in the homodimer form, and NFKBIA codes for IκBa, which inhibits NFκB signaling by retaining NFκB complexes in the cytosol (37). The downregulation of both inhibitory proteins may indicate an enhanced pro-inflammatory NFκB response. Additionally,
some other genes found in the “Signaling by Interleukins” pathway, such as SOCS1 and SOCS3, also code for suppressor proteins in the cytokine signaling (38), indicating a loss of inhibition of this pathway. NFκB pathway is known to be upregulated in CD4+ T cells that are already being stimulated in this early stage and could start preparing for the production of proteins. Downregulated genes were more abundant and included cytoskeleton genes (e.g. ACTG1, TUBB2A and TUBA4A) and HLA genes (e.g. HLA-C and HLA-A). Some of the enriched pathways of the downregulated genes were pathways related to antigen presentation and interferon signaling (Figure 4B and Supplementary Table 5).

NK Cells of CeD Patients Express Potential Pre-Diagnostic Biomarkers for CeD

NK cells showed the highest number of DEGs classified as pre-diagnostic markers (a total of 125) (Figure 2A and Supplementary Tables 2, 3). The top genes with the highest log2FC were TXNIP, PRF1 and GZMA (Figure 3, shown in red in Figure 5A and Supplementary Table 3), which are involved in NK cell activation, delivery of granzymes to target cells and cytotoxicity, respectively (41, 42). Pathway enrichment analysis showed that the upregulated pre-diagnostic markers are involved in interactions between lymphoid and non-lymphoid cells (e.g. SELL, CD247 and LAIR2) and phagocytosis (e.g. RAC1, ACTB and ARPC4). Conversely, downregulated DEGs are enriched in “translation processes”, likely caused by the high number of ribosomal proteins that are downregulated (Figure 5B and Supplementary Table 6). One of the top downregulated genes was ARID5A, a ribosome-binding protein that has been previously associated with inflammatory autoimmune diseases.
Overall, our results indicate that NK cells are already dysregulated before the onset of CeD.

Cellular Communication Related to DE Genes in CeD

We investigated whether cell–cell interactions are altered in CeD based on responding genes by applying CellPhoneDB (26) to all DEGs in the cells from the CeD cases after seroconversion. CellPhoneDB is a tool that can be used to identify signaling crosstalk between immune cell subpopulations. This analysis identified seven significant ligand–receptor pairs (receptor and ligand expressed in at least 10% of cells, 1000 permutations, FDR < 0.05) expressed among the different cell subpopulations (Figure 6).

These include potential CD74–MIF signaling interactions from possible antigen-presenting cells (such as Monocytes, DCs and B cells expressing CD74) towards adaptive immune cells (including CD4+ T cells, CD8+ T cells and plasma cells expressing MIF). Moreover, the ligand–receptor pairs ANXA1–FPR1, HLA-DPB1–TNFSF13B, TNF–TNFRSF1B and TNFRSF1B–GRN were found mainly between monocytes, while ICOSLG–ICOS and TNF–ICOS were mainly found between monocytes and CD4+ T cells. Thus, the cell–cell interactions we identified may be disrupted as a...
consequence of the differential expression of these genes during the onset of CeD.

Risk-Associated DEGs Are Mainly Found in T and NK Cells

Like inflammation and environmental factors, genetic risk factors may also assert effects on gene expression in the context of CeD. To date, 43 genetic risk factors have been identified for CeD, excluding the HLA locus, which accounts for approximately 40% of disease risk (44, 45). In order to detect the cell types that are most likely affected by CeD genetic factors, we intersected our DEGs with the CeD risk/causal genes prioritized in another study (24). Among 118 genes potentially causal in CeD, nine (NCF2, RAC2, TAGAP, REL, GPR183, STAT1, IRF1, ICOS and RGS1) were significantly differentially expressed in at least one comparison in our data (Figure 7A). Eight of these were observed in both T cells and NK cells (Figures 7A, B), suggesting the importance of the genetic background in these cell types in CeD context. One example here is TAGAP, which is a marker for active CeD in CD4+ T cells and a pre-diagnostic marker in NK cells (Figures 7A). Eight of the nine genes (NCF2, TAGAP, REL, GPR183, STAT1, IRF1, ICOS and RGS1) are downregulated in cases compared to controls and/or after developing CeD.

DISCUSSION

Using scRNAseq of the PBMC fraction of blood, we identified CeD biomarkers present in prospective and active CeD individuals. Per cell type, we classified predictive and diagnostic biomarkers based on the time when specific transcripts were differentially expressed. Moreover, we found potential CeD-associated transcriptional changes that may affect cell–cell communication and/or interactions that occur in the PBMC subsets. Finally, we also identified markers that had been genetically associated to CeD in previous GWAS and eQTL analyses. Altogether, our results pinpoint genes and pathways altered in CeD that are potentially diagnostic markers for CeD.

Based on our scRNAseq data, the PBMCs clustered in 10 cellular subsets. Overall, we found relatively stable cell proportions for each cell type when comparing the four experimental groups (CeD patients before seroconversion (T0) and after seroconversion (T1) and samples taken at two timepoints of control individuals age-matched for both patient groups). Previously, van Unen et al. showed that disease-specific leukocytes reside mainly in the affected organ and are hardly detectable in PBMC (48). Other studies have reported variations in the proportions of specific cell populations in CeD blood.
samples, including of circulating gluten-specific T cells (49, 50). Although we were able to successfully classify the major cellular lineages in PBMCs, we could not assess the presence of this rare subset because it is very scarce (0.1-1000 gluten-specific T cells per 10⁶ CD4+ T cells (49, 50). However, our results show that we can find useful CeD biomarkers even within the ‘common PBMC lineages’.

Our results agree with literature describing the importance of CD4+ T cells in CeD, since this cell type compartment is known to have a critical role in the CeD immunopathogenesis (15, 51). We identified the highest number of DEGs in CD4+ T cells. Most of these DEGs were biomarkers for active CeD, but there were also some potential pre-diagnostic biomarkers. The pool of upregulated ‘active CeD’ biomarkers showed genes associated with T cell activation (e.g. CD52) and migration (e.g. SEL and SI100A4). CD52 acts as the effector and marker molecule of specific CD4+ T cells that mediate the activation of other T cells (30). CD52 is also used as target with anti-CD52 gene to reduce the severity of associated symptoms to multiple sclerosis (52). However, the role of CD52 in CeD remains uncertain. In contrast, the downregulated genes showed an enrichment for interleukin signaling and NFκB pathways, including key inhibitory genes such as NFκB2 and NFκBIA, thus suggesting an upregulation of the NFκB pathway. Although the interleukin signaling is a major feature of active CD4+ T cells in CeD pathophysiology (53), the number of differentially expressed interleukins that we detected was low, but this could be due to the limit of detection of scRNAseq for interleukin genes or by the fact that the CD4+ T cells that contribute to CeD reside predominantly in the small intestine, while very little of them are in circulation.

The NK cells were characterized by a high number (n=125) of pre-diagnostic biomarkers. Many of these genes relate to cytotoxicity (e.g. GZMA, GZMM, PRF1 and TXNIP). These genes are of great interest for diagnostic purposes because their levels are raised in individuals who later develop CeD and they are expressed in a high fraction of the NK cells (Figure 5A). Interestingly, one of these genes is TAGAP, whose locus has been genetically associated to several infectious and autoimmune diseases, including candidemia (54), multiple sclerosis (55) and CeD (24). We find TAGAP to be differentially expressed in both the CD4+ T cell and NK subsets. However, before seroconversion it is differentially expressed in NK cells, while after seroconversion it is differentially expressed in CD4+ T cells, a shift that demonstrates that cell type should be taken into consideration when assessing biomarkers. The function of TAGAP in CD4+ T cells is related to activation, and it plays an important role in Th17-cell differentiation (56, 57). In NK cells, TAGAP’s function is
Of-function of RAC2 causes immunodeficiency (68), while upregulation of this gene is a marker of poor clinical prognosis of certain carcinomas (69).

Counterintuitively, several of the genes we see downregulated, TAGAP, REL, and GPR183, have been reported to be upregulated in gluten-specific CD4+ T cells after activation with antiCD3/CD28 or under active CeD conditions, while levels of STAT1 and IRF1 are reportedly higher in biopsies isolated from CeD cases (70, 71). We speculate that these contrasting observations might reflect the fact that we are looking at a tissue (blood) in which the pathological symptoms of CeD are not most dominant, and this may cause differences between our observations and those made in inflamed tissues (intestine). Moreover, gluten-specific CD4+ T cells are only a small subset of the CD4+ T cells in circulation (49, 50). Of note, genes differentially expressed in one cell type might have the highest expression level in another cell type (Figure 7B). For example, NCF2 showed the highest expression level in mDC, but the difference between cases and controls was observed in cMonocytes. However, the tissue/cell type where the risk genes are highly expressed is usually considered as the causal cell type. Our observations highlight the importance of assessing all cell types, including those where the risk genes may have a relatively low expression level.

We acknowledge that our study has some limitations. For instance, clustering distinct populations of CD8+ T cells and NK cells is not straightforward, potentially hampering the identification of NK cell–specific prediagnostic markers. Moreover, our study has a small overall sample size, which may affect the robustness of our observations and study detection power. Additionally, while the included controls did not convert to active CeD within a time frame of at least 10 years, conversion is still possible as these were all individuals at high risk for CeD. Our findings are limited to the development of CeD at early life, which may differ from ongoing pathogenesis at later ages. Hence, further studies performed on cohorts that follow adult high risk CeD individuals may allow for a better understanding of CeD onset. Lastly, our results only pertain to children at high risk of developing CeD. To understand if children at high risk of CeD onset exhibit different gene expression patterns than children without genetic and familial risk for CeD would have required taking control samples from age-matched children from the general population, which could not be done due to legal and ethical concerns.

In conclusion, we used scRNAseq to analyze the immune cells of children at high risk of developing CeD, before and after seroconversion. We validated previous associations of cell types and genes to CeD onset and obtained new insights about the changes in immune cells before and after CeD onset. In CD4+ T cells, we found an upregulation of genes associated to migration (SELL, S100A4) and activation (CD52) and a downregulation of key inhibitory genes of the NFκB pathway (NFKB2 and NFKBIA). Some possible interactions between immune cell compartments were potentially affected, such as that between ICOSLG and its receptor ICOS. This finding further highlights the contribution of ICOS, a CeD GWAS associated gene, in the development of CeD. Finally, we identified potential novel
biomarkers for the diagnosis of CeD, especially in the NK cell compartment (GZMA, GZMM, PRFI, TXNIP and TAPAG), that can be detected before the duodenal damage. Such biomarkers might provide potential alternatives to biopsy-dependent diagnosis of CeD patients.

DATA AVAILABILITY STATEMENT

The sequencing reads and genotypes used in this article are not readily available due to ethical and privacy restrictions. Requests to access the datasets should be directed to the corresponding author. The scRNAseq count matrix and metadata associated to cell-barcodes are available as Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Commissie Medische Ethiek LUMC, Leiden, the Netherlands; Institutional Research Ethics Committee, Heim Pal Childrens Hospital, Budapest, Hungary; and Ethikkommission LMU, Munich, Germany. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

AR-S, RM, and YK-W performed wet-lab experiments. LM, SK, and IK-S provided samples. AR-S, XC, SW, IJ, and YL conceived and wrote the manuscript. XC and AR-S performed the statistical analyses. IJ, YL, SW, LM, SK, IK-S, RT, and CW supervised and edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

AR-S is supported by a CONACYT-12T2 scholarship (no. 459192). X.C. was supported by Chinese Scholarship Council (201706040081). CW is supported by an NWO Spinoza prize (NWO SPI 92–266). IK-S was supported by grants NKFI 120392 from the Hungarian National Research, Development and Innovation Fund and GINOP-2.3.2-15-2016-00015 co-financed by the European Union and the Hungarian State. SW and CW are supported by the Netherlands Organ-on-Chip Initiative, an NWO Gravitation project (024.003.001) funded by the Ministry of Education, Culture and Science of the government of the Netherlands. IJ is supported by a Rosalind Franklin Fellowship from the University of Groningen and a Netherlands Organization for Scientific Research (NWO) VIDI grant (no. 016.171.047). This work was supported by a ZonMW-OffRoad grant (91215206) to YL. YL is also supported by a Radboud University Medical Centre Hypatia Grant (2018) and an ERC starting grant (948207). PREVENTCD consortium is supported by grants from the European Commission (FP6-2005-FOOD-4B-36383–PREVENTCD), the Azrieli Foundation, Deutsche Zöliakie Gesellschaft, Eurospital, Fondazione Celiachia, Fria Bröd Sweden, Instituto de Salud Carlos III, Spanish Society for Pediatric Gastroenterology, Hepatology, and Nutrition, Komitet Badań Naukowych (1715/B/P01/2008/34), Fundacja Nutricia (1W44/FNUT3/2013), Hungarian Scientific Research Funds (OTKA101788 and TAMOP 2.2.11/1/KONV-20 12-0023), Stichting Coeliakie Onderzoek Nederland (STICOON), Thermo Fisher Scientific, and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN).

ACKNOWLEDGMENTS

We thank all celiac disease patients and their families that have donated biological material to this study. We thank PreventCD consortium group and Frits Koning for providing access to the biological material and for the scientific discussions. We thank K. Mc Intyre for editing the final text. We thank Monique van der Wijst and Dylan de Vries for their support and feedback in the scRNAseq analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.843086/full#supplementary-material

Supplementary Data Sheet 1 | Metadata of scRNAseq per cell-barcode.

Supplementary Data Sheet 2 | Matrix of scRNAseq raw counts of genes per cell-barcode.

Supplementary Figure 1 | QC of scRNAseq data.

Supplementary Figure 2 | Percentages of cell types among cases and controls per timepoint.

Supplementary Figure 3 | Intersection and classification on all DE genes for each cell type and comparison.

Supplementary Figure 4 | DE of active CeD genes and pre-diagnostic markers of CD4+ T cells.

Supplementary Figure 5 | Pathway enrichment analysis in CD8+ T cells.

Supplementary Figure 6 | Pathway enrichment analysis in B cells.

Supplementary Figure 7 | Pathway enrichment analysis in classical Monocytes.

Supplementary Figure 8 | Pathway enrichment analysis in non-classical Monocytes.

Supplementary Figure 9 | Pathway enrichment analysis in Dendritic cells.

Supplementary Table 1 | Sample sheet and sequencing details.

Supplementary Table 2 | List of DEG classified as active CeD markers per cell-type.

Supplementary Table 3 | List of DEG classified as pre-diagnostic CeD markers per cell-type.
Cell Carcinoma. *Int J Oncol* (2019) 55(3):645–56. doi: 10.3892/ijo.2019.4849

70. Bakker OB, Ramírez-Sánchez AD, Borek ZA, de Klein N, Li Y, Modderman R, et al. Potential Impact of Celiac Disease Genetic Risk Factors on T Cell Receptor Signaling in Gluten-Specific CD4+ T Cells. *Sci Rep* (2021) 11(1):1–15. doi: 10.1038/s41598-021-86612-5

71. Christophersen A, Lund EG, Snir O, Solà E, Kanduri C, Dahal-Koirala S, et al. Distinct Phenotype of CD4+ T Cells Driving Celiac Disease Identified in Multiple Autoimmune Conditions. *Nat Med* (2019) 25(5):734–7. doi: 10.1038/s41591-019-0403-9

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ramírez-Sánchez, Chu, Modderman, Kooy-Winkelaar, Koletzko, Korponay-Szabó, Troncone, Wijmenga, Mearin, Witthoff, Jonkers and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.