Triggering with the ALICE TRD

Jochen Klein
for the ALICE collaboration

Physikalisches Institut
University of Heidelberg

TRDs for the Third Millenium
4th Workshop on Advanced Transition Radiation Detectors
Bari, September 2011
Outline

- triggering in ALICE
- concept of the TRD triggers
- on-line reconstruction
- on-line electron identification
- triggers with the TRD
ALICE trigger detectors

- V0
- SPD
- EMCAL
- PHOS
- TRD
 - full coverage of central barrel: $|\eta| < 0.9, \varphi \in [0, 2\pi]$
 - e/π-separation by transition radiation
 - short drift time $\approx 2\mu s$
 - track reconstruction in Front-End Electronics
- muon spectrometer (forward)
ALICE trigger scheme

- Constraints on trigger rates (pp):

level	time after int.	limited by	limit
L0	~ 800 ns	dead time	~ 100 kHz
L1	~ 7 μs	read-out bandwidth	~ 2.5 kHz
L2	~ 100 μs	input to High-Level Trigger	~ 1.5 kHz
HLT		1 GB/s to tape	

- so far mostly min. bias data taking

- rare triggers (L0) for the central barrel started this summer
 - EMCAL: jets
 - PHOS: photons and jets
 - SPD double-gap: diffractive events

- level-1 triggers from EMCAL and TRD
Concept

10/18 TRD supermodules currently installed

- track segments in TRD layers (tracklets)
- match tracklets \rightarrow tracks
- straight line fit \rightarrow p_\perp
- average electron likelihood \rightarrow PID
- track-based triggers

TRD trigger based on partial readout (tracklets)
\Rightarrow high Level-0 rate needed
Track-based triggers

- single high-p_{\perp} particle
e.g. used for cosmics

- high-p_{\perp} jet
 requiring minimum number of tracks above p_{\perp} threshold
 comprises single high-p_{\perp} as degenerate case

- single high-p_{\perp} electron
 combining tracklet PID to global PID

- di-electron
 requiring two tracks of opposite charge
 ultimately calculating invariant mass, e.g. for J/Ψ, Υ
Readout tree

- hierarchical readout
- no back-pressure, low latency
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p_\perp-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on p_\perp + PID of individual tracks

\[y, d_y \text{ from fit} \]
\[z \text{ from pad row} \]
\[\text{PID from } Q_0, Q_1 \]
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p_{\perp}-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on p_{\perp} + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

timebin ↔ radial position
ADC channel ↔ transverse position
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p_\perp-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on p_\perp + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Data of MCM 15 on ROB 1 in detector 94

```
| Timebin | ADC Channel |
|---------|-------------|
| 0       | 5           |
| 5       | 10          |
| 10      | 15          |
| 15      | 20          |
| 20      | 25          |
```

timebin ↔ radial position
ADC channel ↔ transverse position

Jochen Klein (Univ. of Heidelberg)
On-line reconstruction

Digital filtering

ADC data

Non-Linearity Filter

Pedestal Filter

Gain Correction Filter

Tail Cancellation Filter

Crosstalk Filter

Event Buffer

Pedestal filter
common baseline for all channels

Gain correction

\[O(t) = \gamma_n \cdot I(t) + \rho_n \]

values taken from Krypton calibration
(s. talk by Johannes Stiller)

tail cancellation

\[S(t) = 1_{(t \geq 0)} \cdot (\alpha_{long} \lambda_{long}^t + (1 - \alpha_{long}) \lambda_{short}^t) \]
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p_{\perp}-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on $p_{\perp} +$ PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Data of MCM 15 on ROB 1 in detector 94

- timebin \leftrightarrow radial position
- ADC channel \leftrightarrow transverse position
On-line reconstruction

Cluster finding

- cluster detected charge sum of three adjacent channels exceeds threshold
- position calculated as:

\[y_{\text{COG}} = \frac{1}{2} \frac{R - L}{C} \]

(values are baseline-subtracted)
- correction from PRF:

\[\Delta y(y_{\text{COG}}) = y - y_{\text{COG}} \]
- LUT calculated off-line
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p_\perp-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on $p_\perp +$ PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

data of MCM 15 on ROB 1 in detector 94

timebin \leftrightarrow radial position
ADC channel \leftrightarrow transverse position
On-line reconstruction
Tracklet composition

- straight line fit calculated from accumulated charge sums in two adjacent channels

- Lorentz correction
 \[\Psi_L = \tan(\omega \tau) \]

- tilted pad correction
 \[\Delta y = d_{\text{drift}} \cdot \tan(\alpha_{\text{tilt}}) \cdot \frac{z}{x} \]

- ship information on transverse position, deflection, pad row and PID
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 + corrections + p_\perp-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger
 based on p_\perp + PID of individual tracks
On-line reconstruction

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 + corrections + p_{\perp}-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)

- calculate L1 trigger based on p_{\perp} + PID of individual tracks
Exact simulation

- all calculations done on digitized data which are read out
- allows for detailed re-simulation of the full trigger chain
- simulation of TRAP and GTU
Tracklet performance – Monte-Carlo

- use simulation to understand influence of different parameters
- optimize efficiency multiple finding of tracklets expected from the algorithm
- achieve good position resolution of $\sim 200\mu m$
- achieve good deflection resolution of $\sim 400\mu m$ (without tail cancellation)
Tracklet performance – data

- fit through tracklets assigned to a track
- plot residuals in position and deflection
- independent of any other data on-line monitoring
- check for correct drift velocity

pp @ 7 TeV

Jochen Klein (Univ. of Heidelberg) Triggering with the ALICE TRD Bari, Sep 2011
Tracking performance

- geometrically match on-line track to off-line track
- compare p_\perp
- tracking performs well up to high-p_\perp
- deviation from diagonal for very high p_\perp expected from algorithm
- resolution about 15\% to be further improved by FEE tuning
Trigger performance

- Efficiency for "good" tracks:
 \[\frac{N_{\text{matched}}}{N_{\text{findable}}} \]

- \(N_{\text{findable}}\): off-line tracks with at least 4 TRD tracklets

- \(N_{\text{matched}}\): track which is geometrically matched to a findable one

- Compare off-line \(p_\perp\) when applying cut on on-line \(p_\perp\)
Processing optimized for low latency tracking starts upon arrival of the first data.

Total tracking time depends on multiplicity.
e^\pm identification – strategy

- Summing charge in two configurable time windows
- Enter lookup table with Q_0 (and Q_1)
- At the moment total charge is used
- Assign electron likelihood to tracklet

 Lookup table is freely configurable
 ⇒ calculate off-line
e^± identification – reference data

- clean input sample from
 \[\gamma \rightarrow e^+ e^- \]
 \[K^0 \rightarrow \pi^+ \pi^- \]

- fit charge deposition
 \[(\text{Exp} \cdot \text{Landau}) \otimes \text{Gauss}\]
 (s. talk by Xianguo Lu)

- charge dependent electron likelihood

- define cut to cover wanted fraction of the electrons
e\(^\pm\) identification – performance

- pion rejection controlled by adjusted electron efficiency
- typical values in simulation:
 - for \(\epsilon_e = 90\%\): \(\sim 40\)
- typical values in real data:
 - for \(\epsilon_e = 90\%\): \(\sim 6\)
 - for \(\epsilon_e = 80\%\): \(\sim 11\)
- differences between simulation and real data mostly understood, e.g. no on-line gain calibration yet
Cosmic trigger

- cosmic particles wanted for alignment and calibration

- first super-modules installed in horizontal position
 \[\Rightarrow\] very low rate of cosmic particles

- need for trigger on cosmic TOF as Level-0, TRD as Level-1
 very pure sample

- first version using coincident charge deposition operated since 2008
 all trigger infrastructure already commissioned

- moved to track-based trigger requiring just one track
Jet trigger – Concept

- Use on-line reconstructed tracks of charged particles
- TRD stack covers an area in η-φ plane comparable to a typical jet cone ($R \approx 0.4$)
- Ask for N tracks in one stack with p_\perp above threshold
- MC simulations confirm that this trigger becomes efficient for high-p_\perp jets
Jet trigger – efficiency from Monte-Carlo

- looking at PYTHIA jets produced in p_{\perp}^{hard} bins
- counting no. of charged tracks above p_{\perp} threshold per stack
- classification according to leading MC jet in $|\eta| < 0.5$
- compare different thresholds
Jet trigger – rejection of min. bias events

- rejection of min. bias events determined from real data
- good rejection of $\sim 10^4$ for typical threshold 3 tracks above 3 GeV/c

![Graph showing the rejection of min. bias events](image)
Jet trigger – raw spectra

- first analysis of real data
- two input samples:
 - min. bias
 - EMCAL L0
 partial overlap with TRD
- UA1 jet finder \((R = 0.4)\)
- efficiencies as expected
Challenges

- low latency trigger requires complex readout electronics
 timing very critical

- calibration must be applied already on-line

- stable gain and drift velocity needed
 feedback loop for on-line adjustment

- geometric corrections for tracklet calculation
Summary & Outlook

- TRD in use as cosmic L1 trigger since 2008
- all on-line reconstructed tracks in readout crucial for commissioning
- jet trigger in operation
- electron trigger in preparation

TRD trigger group
Bastian Bathen, Tom Dietel, Norbert Herrmann, Benjamin Hess, Stefan Kirsch, Jochen Klein, Felix Rettig, Johanna Stachel, Hannes Wessels, Uwe Westerhoff
Backup
trigger logic

\[|p_t| \geq \text{PTA} \]

\[|p_t| \geq \text{PTB} \]

2...6 GeV/c

3 GeV/c

0

185

pid \geq \text{PIDA}

3

255

pid \geq \text{PIDB}

Jochen Klein (Univ. of Heidelberg)

Triggering with the ALICE TRD

Bari, Sep 2011