Pre-school obesity is associated with an increased risk of childhood fracture: a longitudinal cohort study of 466 997 children and up to 11 years of follow up in Catalonia, Spain

Authors:
Jennifer C.E Lane BMBCh MA MEd MRCS¹ Versus Arthritis Clinical Research Fellow, MRC Doctoral Training Fellow and Orthopaedic registrar
Katherine L. Butler MBBS MRCS ², Orthopaedic registrar
Jose Luis Poveda-Marina MSc³, Statistician, CIBER
Daniel Martinez-Laguna PhD³, Primary Care Physician
Carlen Reyes PhD³, Post-doctoral researcher
Jeroen de Bont MPH³, PhD Student
M. Kassim Javaid PhD¹, Associate Professor in metabolic bone disease
Jennifer Logue MD FRCPath⁴, Reader in Metabolic Medicine
Juliet E. Compston FMedSci⁵, Professor Emeritus of Bone Medicine
Cyrus Cooper FMedSci⁴.⁵, Professor of Musculoskeletal Science, funded by MRC
Talita Duarte-Salles PhD³, Senior Epidemiologist, funded by Department of Health of the Generalitat de Catalunya and PERIS award.
Dominic Furniss DM FRCS(Plast)¹, Associate Professor of Hand and Plastic Surgery, funded by NIHR Oxford BRC
Daniel Prieto-Alhambra PhD¹.³ Professor of Pharmacoepidemiology, NIHR Senior Research Fellow and NIHR Oxford BRC

Affiliations:
1. NIHR BRC, NDORMS, University of Oxford, Oxford, United Kingdom
2. Stoke Mandeville Hospital, Aylesbury, United Kingdom
3. GREMPAL Research Group, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIPJGol) and CIBERFes, Universitat Autonoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain

4. Lancaster Medical School, Lancaster University, United Kingdom

5. Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom

6. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom

Correspondence:
Prof Daniel Prieto-Alhambra. Botnar Research Centre, Windmill Road, OX3 7LD, Oxford, UK
daniel.prietoalhambra@ndorms.ox.ac.uk

Supplemental data included:
Table: 3
Figures: 1
DISCLOSURES

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf uploaded with this submission and declare: DP-A reports grants and other from AMGEN, grants, personal fees and other from UCB Biopharma, grants from Les Laboratoires Servier, outside the submitted work; and Janssen, on behalf of IMI-funded EHDEN and EMIF consortiums, and Synapse Management Partners have supported training programmes organised by DPA's department and open for external participants. CC reports personal fees from Amgen, personal fees from Danone, personal fees from Eli Lilly, personal fees from GSK, personal fees from Kyowa Kirin, personal fees from Medtronic, personal fees from Merck, personal fees from Nestle, personal fees from Novartis, personal fees from Pfizer, personal fees from Roche, personal fees from Servier, personal fees from Shire, personal fees from Takeda, personal fees from UCB, outside the submitted work. D-M-L reports personal fees and other from AMGEN, personal fees from ITALFARMACO, personal fees from FERRER, personal fees from NOVARTIS, personal fees from ELI LILLY, personal fees from RUBIÓ, outside the submitted work. No other relationships or activities could appear to have influenced the work.
This study aimed to determine if having an overweight or obese range BMI at time of beginning school is associated with increased fracture incidence in childhood. A dynamic cohort was created from children presenting for routine pre-school primary care screening, collected in the Information System for Research in Primary Care (SIDIAP) platform in Catalonia, Spain. Data were collected from 296 primary care centres representing 74% of the regional paediatric population. 466,997 children (48.6% female) with a validated weight and height measurement within routine healthcare screening at age 4 years (±6 months) between 2006 and 2013 were included, and followed up to the age of 15, migration out of region, death, or until 31/12/2016. BMI was calculated at age 4 years and classified using WHO growth tables, and fractures were identified using previously validated ICD10 codes in electronic primary care records, divided by anatomical location. Actuarial lifetables were used to calculate cumulative incidence. Cox regression was used to investigate the association of BMI category and fracture risk with adjustment for socioeconomic status, age, sex, and nationality. Median follow up was 4.90 years (IQR 2.50 to 7.61). Cumulative incidence of any fracture during childhood was 9.20% (95% CI 3.79% to 14.61%) for underweight, 10.06% (9.82% to 10.29%) for normal weight, 11.28% (10.22% to 12.35%) for overweight children, and 13.05% (10.69% to 15.41%) for children with obesity. Compared to children of normal range weight, having an overweight and obese range BMI was associated with an excess risk of lower limb fracture (adjusted HR 1.42 [1.26 to 1.59]; 1.74 [1.46 to 2.06] respectively) and upper limb fracture (adjusted HR 1.10 [1.03 to 1.17]; 1.19 [1.07 to 1.31]). Overall, pre-school children with an overweight or obese range BMI had increased incidence of upper and lower limb fractures in childhood compared to contemporaries of normal weight.
Keywords: epidemiology, fracture risk assessment, fracture prevention, nutrition, (paediatrics, obesity)

INTRODUCTION

The increasing prevalence of childhood obesity is a major public health concern worldwide.\(^1\) Childhood obesity has previously been associated with cardiorespiratory disease, diabetes and mental health disorders in later life, in addition to premature mortality.\(^3\) Research to date has largely focussed upon the impact of obesity in later childhood and the impact on adult health, with less known about the effect of pre-school obesity upon health in childhood and adolescence.

Observational studies in adults have implicated obesity in the pathophysiology and outcome of fractures, with protection against fracture at some anatomical sites and increased risk at others.\(8-10\) Fractures are very common in childhood, with associations seen with male gender, team sport participation, urban living, ethnicity, and socioeconomic deprivation.\(11-16\) Chronic kidney disease, low bone mineral density, glucocorticoid use, vitamin D deficiency, and dietary factors have been implicated in the pathophysiology of fracture.\(17\) Vitamin D deficiency has been associated with childhood obesity, obesity being implicated in paediatric fracture pathophysiology in retrospective clinical and basic science studies.\(23-31\)

Less evidence exists for the impact of pre-school obesity upon future health, with previous studies including a wide age range of children producing conflicting results.\(^32\) A focussed study of the association between pre-school obesity and fracture risk offers the opportunity to better understand the impact of obesity in early life. Observational data, especially whole region population data linked to routine clinical care, offer the opportunity to study trends in childhood pathology that ethically may be difficult in a trial setting, and to include subgroups of patients who may either be excluded from or underrepresented in clinical trials.
The primary aim of this study was to determine if elevated BMI just before starting school at age four is associated with an increased incidence of fracture in childhood. Secondly, we aimed to analyse the association between BMI and the anatomical site of fracture.

MATERIALS AND METHODS

Study Design & Setting

A prospective dynamic cohort was made using anonymised primary care electronic health records from the Information System for Research in Primary Care (SIDIAP; www.sidiap.org) including the data from the paediatric healthcare programme. SIDIAP is based in the region of Catalonia, Spain, where healthcare is universal, paid for by taxation. 296 primary care centres with 853 primary care paediatricians in Catalonia contribute to SIDIAP, covering over 74% of the total population. Data contained in SIDIAP has been found to be representative of the Catalan population in previous studies comparing electronic health records with health surveys, and strict criterion are used in order to ensure data quality is maintained with the dataset. (33-35)

The paediatric healthcare programme is a comprehensive surveillance of childhood growth and development in all children in the region. All children in the region are regularly reviewed by primary care paediatricians and paediatric nurses from birth until they transition to general practitioner care at age 15. Data on weight and height measurements between 01/01/2006 and 31/12/2013 were included in this study.

In 2019, Catalonia represented 16.2% of the overall Spanish population. (36) 15.5% of the Catalan population were estimated to be children aged 0 to 14, which is similar to the estimate average in the European Union (EU; 15.6%). It was estimated that 104.2 women per
100 men in Catalonia, again similar to the rest of the eurozone (104.5 women per 100 men).

Catalonia is estimated to have 10.9% unemployment, lower than in Spain overall (14.2%), but higher than the average in the EU of 6.3%.

Population

All children assessed at the school starting age of four years (± six months) by a paediatrician or paediatric nurse in any of the contributing Catalan Health Institute primary care centres were included. Participants must have had at least one valid height and weight measurement recorded within the recruitment period to be included. Height and weight were used to calculate body mass index (BMI) (kg/m²). These measurements were taken as part of routine clinical care within a paediatric health surveillance programme within the region.\(^{(38)}\)

Participants were followed up from the date of index BMI measurement until either 15 years of age, they migrated out of SIDIAP region, died, or until the end of the study period (31/12/2016).

Study Exposure and Outcomes

The main exposure of the study was BMI category (underweight, normal weight, overweight and obesity) of the children at four years (± six months). BMI category was obtained by calculating age- and sex-specific BMI z-score (number of standard deviations from the reference population) following the World Health Organisation (WHO) growth standard.\(^{(39)}\)

These growth standards were determined by the WHO Multicentre Growth Reference Study collecting data from healthy child populations in Brazil, Ghana, India, Norway, Oman and the USA, therefore representing a wide range of ethnic backgrounds.\(^{(40)}\) The categories were defined as: underweight (<-2 BMI z-score), normal weight (-2 to +2 BMI z-score), overweight (> +2 z-score) and obesity (> +3 z-score). Biologically implausible values of
height, weight and BMI were removed according to the WHO guidance, and a conditional
growth percentile model up to age 10 years was applied to remove implausible height and
weight trajectories.\(^{(41, 42)}\)

The main outcome of incident fracture was determined using pre-specified validated lists of
International Statistical Classification of Diseases 10\(^{th}\) edition (ICD-10).\(^{(43, 44)}\) These fracture
codes have been specifically validated within the SIDIAP database prior to this study, with a
positive predictive value of 80.5\% \(^{(44)}\). In this validation study, there was no association
found between misclassification of fracture with BMI. Anatomical fracture sites were defined
as ‘axial’ (spine/thorax, but also including pelvis and clavicle), upper limb (proximal upper
limb, wrist/forearm, hand), and lower limb (femur, tibia/fibula/ankle and foot). In a
secondary analysis, anatomical fracture sites were analysed individually and this analysis was
pre planned.

Statistical analysis

Cumulative incidence of fracture in childhood (from age 4 to 15 years) was calculated using
actuarial lifetable methods, stratified by fracture site and sex. Kaplan-Meier plots were used
to depict cumulative probability of fracture-free survival stratified by BMI categories.

Finally, proportional hazards Cox regression models were fitted to calculate Hazard Ratios
(HR) and 95\% confidence intervals (95\% CI) according to BMI categories, adjusted for age
at the time of BMI measurement (in months), sex, socio-economic status (as measured using
the ecological deprivation MEDEA index, calculated and categorised into quintiles for those
living in an urban environment, in addition to those living in rural areas categorised as
‘rural’), and nationality (Spanish or other).\(^{(45)}\) The MEDEA index was generated from 2001
Census data from 5 major Spanish regions, with a study undertaken to identify
socioeconomic factors associated with standardised mortality ratios. Significant factors (level
of education, employment, housing conditions, number of parents in the household) were then used to produce the index. As this index only includes those who live in urban areas, a ‘rural’ category was added into the socioeconomic category for this study in order to include children who lived in areas outside of the scope of the MEDEA index.

Data cleaning was undertaken in SPSS, data analysis in SPSS and R with graphical results generated in R.\(^{46, 47}\)

RESULTS

We identified 466,997 children (out of a total potentially eligible of 803,921) with height and weight measurements taken at a mean age 49.1 months (standard deviation [SD] 2.0) (Figure 1), and followed them for a median of 4.90 (interquartile range [IQR] 2.50 to 7.61) years. Participants were more commonly of Spanish nationality compared to those excluded (89% versus 81%) but were otherwise similar to those with no 4-year BMI available (Supplementary Table 1). For those children excluded, the BMI and age given in Supplementary Table 1 are for the first recorded BMI within the dataset.

Baseline characteristics of the participants stratified by BMI category are provided in Table 1. 5.7% were considered to have an overweight BMI, and 2.0% an obese BMI; there were approximately equal numbers of males and females in the overweight BMI category (female 47.0%), but slightly more boys and more children from more deprived areas in the obese BMI category.

Table 1. Baseline characteristics of the studied population.

	Total	Underweight range BMI	Normal range BMI	Overweight range BMI	Obese range BMI	
Participants	No. (%)	466,997	540 (0.1)	430,681 (92.2)	26,526 (5.7)	9,250 (2.0)
BMIz	Mean (SD)	-3.51 (0.47)	0.8 (0.88)	2.40 (0.28)	3.66 (0.51)	
--------------	-------------	--------------	------------	-------------	-------------	
Age in months (at time of BMIz measurement)	Mean (SD)	49.13 (2.00)	49.06 (2.50)	49.13 (1.99)	49.13 (2.01)	49.15 (2.11)
Sex	Female N (%)	226868 (48.6)	248 (45.9)	210274 (48.8)	12455 (47.0)	3891 (42.1)
Socioeconomic status (the MEDEA index, quintiles + rural)	1 Least deprived area	57 439 (12.3)	51 (9.4)	53 877 (12.5)	2 750 (10.4)	761 (8.2)
	2	68 720 (14.7)	80 (14.8)	63 799 (14.8)	3 715 (14.0)	1 126 (12.2)
	3	71 416 (15.3)	79 (14.6)	65 660 (15.2)	4 170 (15.7)	1 507 (16.3)
	4	72 801 (15.6)	79 (14.6)	66 407 (15.4)	4 569 (17.2)	1 746 (18.9)
	5 Most deprived area	77 129 (16.5)	117 (21.7)	69 581 (16.2)	5 259 (19.8)	2 172 (23.5)
Rural N (%)	94 825 (20.3)	100 (18.4)	88 571 (20.6)	4 666 (17.6)	1 488 (16.1)	
Missing	24 667 (5.3)	34 (5.5)	22 786 (5.3)	1 397 (5.3)	450 (4.9)	
Nationality	Spanish (%)	415829 (89.0)	439 (81.3)	383739 (89.1)	23568 (88.8)	8083 (87.4)
	Other N (%)	51 168 (11.0)	101 (18.7)	46 942 (10.9)	2958 (11.2)	1167 (12.6)

Overall, the cumulative incidence of fracture in childhood (from age 4 to 14 years old) was 10.19% (95% CI 9.96% to 10.43%). After stratification by gender, cumulative incidence was 8.24% (95% CI 7.99% to 8.49%) in girls and 12.05% (95% CI 11.66% to 12.44%) in boys.

Upper limb fractures were the most commonly affected skeletal sites in both genders, followed by lower limb, with ‘axial’ fractures being rare in childhood (Figure 2).

The overall cumulative incidence of fracture during childhood was 9.20% (95% CI 3.79% to 14.61%) for underweight, 10.06% (9.82% to 10.29%) for normal weight, 11.28% (10.22% to 12.35%) for children with an overweight BMI, and 13.05% (10.69% to 15.41%) for children in the obese range BMI category (Supplementary Figure 1). When analysed by BMI category
and sex, cumulative incidence of fracture during childhood (from age 4 to age 14) was higher in children with obesity independent of sex (Supplementary Table 2).

Cox regression models displayed an association between pre-school BMI and childhood fracture. Table 2 shows both unadjusted and adjusted HR for each fracture site according to BMI category, using normal weight as a reference group. The hazard ratios for underweight children are not reported due to small sample size. Overall, the adjusted HR (95% CI) for any fracture was 1.13 (1.07 to 1.20) for children with an overweight BMI, and 1.26 (1.15 to 1.37) for children with obesity. The greatest observed association was with lower limb fractures, with adjusted HR of 1.42 (1.26 to 1.59) and 1.74 (1.46 to 2.06) for children in the overweight and obese categories respectively. A smaller but still significant association was seen with upper limb fractures: adjusted HR 1.10 (1.03 to 1.17) and 1.19 (1.07 to 1.31) for children who were overweight or obese respectively. Finally, there was no association between increased BMI and axial fracture. Kaplan-Meier plots depicting fracture probability over time stratified by BMI category are shown in Figure 3. As the proportional hazards assumption was met when tested, no further analysis with BMI as a time varying predictor was undertaken.

Table 2. Association of pre-school BMI category and childhood fracture.

	b Unadjusted HR	95% CI	Adjusted\(^a\) HR	95% CI
Any Fracture				
Normal range BMI	REF		REF	
Overweight range BMI	1.13	1.07 to 1.20	1.12	1.06 to 1.19
Obese range BMI	1.26	1.15 to 1.37	1.23	1.13 to 1.34
Upper Limb Fracture				
Normal range BMI	REF		REF	
Overweight range BMI	1.10	1.03 to 1.17	1.09	1.02 to 1.16
Obese range BMI	1.19	1.07 to 1.31	1.16	1.04 to 1.29
Normal range BMI	REF		REF	
In a more granular analysis separating individual fracture sites (Supplementary Table 3), the association between overweight or obese range BMI and fracture risk was more evident for distal fractures, with an almost 40% excess of hand fractures associated with an obese range BMI (adjusted HR 1.37 [1.14-1.66]), an 80% increase in tibia/fibula fractures (adjusted HR 1.81 [1.38-2.37]), and an almost 70% increase in foot fractures (adjusted HR 1.66 [1.32-2.10]). Note that the analyses for thorax/rib cage, spine and pelvis are not reported here due to insufficient statistical power.

Further analysis was undertaken to determine if there was a differential effect of BMIz upon fracture risk according to nationality. A multiplicative interaction test for nationality and BMIz was run for all model, and the p value for interaction was >0.2. As there was no evidence of a differential effect, no stratification was undertaken.

DISCUSSION

Principle findings

This study found an association between elevated pre-school BMI and increased fracture incidence in childhood. Having an obese BMI at the time of starting school was associated with a 70% and 20% excess risk of lower and upper limb fractures during childhood. Having an overweight BMI was associated with 40% and 10% excess risk of lower and upper limb

Lower Limb Fracture	Overweight range BMI	1.42	1.26 to 1.59	1.41	1.26 to 1.58
	Obese range BMI	1.74	1.46 to 2.06	1.72	1.44 to 2.04
Axial Fracture	Normal range BMI	REF	REF		
	Overweight BMI	0.85	0.68 to 1.06	0.85	0.68 to 1.06
	Obese BMI	1.04	0.74 to 1.45	1.02	0.73 to 1.43

a) Adjusted for sex, age (in months), socio-economic status (the MEDEA index), and nationality.
b) Underweight range BMI category not calculated due to small sample size.
fractures. This association of increased fracture incidence was independent of age, socioeconomic status, gender and nationality. Previous work has suggested higher incidence in boys and urban children, with conflicting evidence of the impact of socioeconomic status.\(^{(12-15)}\)

Secondary analysis in this study showed that associated fracture risk varied depending upon anatomical location, with increased risk associated with distal limb fractures. Previous work in children has also suggested a higher rate of distal upper limb fractures in children with a high BMI compared to other anatomical sites.\(^{(24, 26)}\) By comparison, research in adults has found excess risk of distal upper limb fractures associated with an overweight or obese BMI in women (in some studies after adjustment for bone mineral density), and fewer distal fractures in men with increased weight.\(^{(8, 10, 48, 49)}\)

Comparison with other studies

Childhood fracture has traditionally been postulated as a marker of low bone density in those fractures sustained from low energy trauma.\(^{(17, 50-52)}\) Impaired bone strength and lower bone mineral density have been reported in children with fractures, and these pathological changes are superimposed upon the reduced cortical thickness and mineral density that normally accompany early puberty.\(^{(52-54)}\)

There are several potential causal pathways in which obesity could have a detrimental effect upon childhood bone health. Low levels of vitamin D have been reported in children with obesity, which may be connected to a reduced dietary intake, but also due to the proinflammatory state associated with obesity.\(^{(23, 31, 55-58)}\) The negative impact of obesity upon bone health could also be explained by altered levels of adipokines and cytokines and reduced osteoblast activity.\(^{(29, 50, 59-61)}\) By contrast, the greater forces going through the limb,
reduced physical activity and impaired balance seen in children with a higher BMI could be the cause of increased fracture incidence.\(^{(30, 62-66)}\)

The proportion of children with an overweight or obese range BMI in this study is lower than that seen in the US (13.9% combined) but similar to worldwide prevalence described by the WHO.\(^{(67, 68)}\) The WHO describe that whilst the largest increase in childhood obesity has been in high-income countries, there has been an increase in obesity in low and middle income countries. High rates of malnutrition continue to exist in sub-Saharan Africa and Asia, but increasingly obesity co-exists alongside malnutrition, with around half of children worldwide who are considered obese or overweight aged 5 years living in Asia.

Strengths and weaknesses of this study

Our research question is clinically important but difficult and unethical to investigate in a clinical trial setting. Using observational data is therefore necessary, and this study has a unique combination of a population-based paediatric surveillance program alongside long-term longitudinal follow up and limited migration of children from the region during the study period (only 4.6% migration of the included cohort was observed during the study period). The outcome of fracture incidence is also well defined in the data, the coding system used in the dataset being validated before the study began.\(^{(44)}\)

This study used data from a surveillance program for the whole paediatric population in one region where the majority of healthcare is within the one public system and there was low rates of migration, enabling all children engaging with routine public healthcare to be included. Demographic analysis confirmed that all socioeconomic groups were represented appropriately in this cohort, and this allows the results to be more generalisable. This cohort is also much larger than those in these previous studies and also included children from both rural and urban communities, reducing the chance of selection bias.
In many observational studies where BMI is used as the representative variable for obesity, there is the risk of introducing selection bias and reverse causality, as BMI is more likely to be recorded in individuals with pre-existing healthcare conditions.\(^{(69,70)}\) We have attempted to minimise the risk of these methodological issues by using data from a universal screening programme. We also performed sensitivity analysis, comparing patients with and without a recorded BMI (Supplementary Table 1). Being aware of this risk of selection bias from only including children who engaged with the screening programme, we noted the baseline demographics to be similar in those with and without a valid BMI measurement, indicating the cohort is representative of the paediatric population of the region included in SIDIAP.

Our study also has some limitations. Firstly, the proportion of children whose BMI lies within the overweight or obese categories at age 4 years in this region is slightly smaller than in other populations, and therefore external validation in a different population would be beneficial to confirm the generalisability of these results.\(^{(1,71)}\) Secondly, the use of BMIz as a predictor of obesity in children may have limitations. Whilst BMI remains the consensus agreed measure for determining obesity, previous work has focussed upon validating BMI in slightly older children.\(^{(72-75)}\) BMIz has been reported as a weak to moderate predictor of total fat mass and percentage body fat in obese and overweight children aged below 9 years when evaluated as part of treatment in a weight management program.\(^{(76,77)}\) In lieu of a more widely used metric of obesity, BMIz was used in this population in order to make the results more generalisable and comparable to other studies, and we acknowledge that in the future a more precise measurement of adiposity may be used in preschool children.\(^{(74,78)}\)

This study has studied the association of BMI recorded at age 4 with fracture risk during childhood, rather than the trajectory of a child’s weight during this period. This preschool period could be considered as the early weight gain occurring in the ‘adiposity rebound’ described to be associated with young adult obesity.\(^{(79-81)}\)
BMI may underrepresent adiposity in children of Asian descent.\(^{(82)}\) Considering that the non-Spanish population represents only 11% of the cohort and the majority of the non-Spanish population in Catalonia are children of Latin American descent, it is less likely to have a significant impact upon results.

Furthermore, whilst adjustment was undertaken for the many of factors implicated in fracture incidence in the literature, the prevalence of participation in sporting activities and general patterns of activity, in addition to some medical factors (such as steroid use, chronic kidney disease) within this cohort is unknown. There is some evidence of BMIZ being negatively associated with physical activity levels in older children, but elaboration of physical activity levels is not possible within this study of pre-school children.\(^{(83)}\)

Future research

This work suggests that interventions to treat obesity in early childhood could have benefits for the primary or secondary prevention of fractures later in childhood, especially in the prevention of fractures within the forearm and hand, or foot and ankle. Whilst initial studies investigating the impact of weight loss upon bone health in children and adolescents have found improved physical activity levels and improved bone mass, further work is needed to determine the overall impact of paediatric weight loss upon bone health, especially considering the evidence for bone density loss associated with weight reduction in adults.\(^{(84-88)}\). This study investigated the impact of BMI aged 4 to identify those who had an overweight or obese BMI in pre-school years, appreciating that this is likely to represent early ‘adiposity rebound’ and those children who are likely to remain overweight during childhood. Future work could also follow the weight trajectory of this population in order to determine if there is a change in adiposity during childhood that is associated with fracture risk. Similarly,
future research could also collect data surrounding lifestyle confounders such as activity levels and enrich with further details of past medical history that could impact upon bone health to further investigate the potential associations seen in this study.

FIGURE LEGENDS

Figure 1. Study participant flow chart.

Figure 2. Age-specific cumulative incidence (95%CI) of fracture stratified by sex and skeletal site affected (upper limb, lower limb, or axial).

Figure 3. Kaplan-Meier plot for probability of survival (fracture-free) stratified by BMI category; all fractures.

ACKNOWLEDGEMENTS

Authors’ roles: The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. JCEL literature search, study concept, data interpretation, writing; KLB literature search, writing; JLP-M data analysis; DM-L, C R-R, JdeB, TD-S, D P-A study design & concept, data interpretation; MKJ, JL, JEC, CC, DF study concept, data interpretation. All authors edited, commented on, and approved the final version of the manuscript.

Funding sources: This work was partially supported by the NIHR Biomedical Research Centre, Oxford and La Marató de TV3 Foundation (Grant Number: 201621-30). JCEL is funded by a Versus Arthritis Clinical Research Fellowship (21605) and a MRC Doctoral Training Fellowship (MR/K501256/1). TDS is funded by the Department of Health of the Generalitat de Catalunya, awarded on the 2016 call under the Strategic Plan for Research and
Innovation in Health (PERIS) 2016-2020, modality incorporation of scientists and technologists, with reference SLT002/16/00308. DPA is funded by a National Institute for Health Research Clinician Scientist award (CS-2013-13-012). This article presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health, Versus Arthritis, or MRC. The funding sources had no role in the study design, data collection, data analysis, data interpretation or report preparation.

CONFLICT OF INTEREST STATEMENT

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf uploaded with this submission and declare these conflicts of interests that all exist outside of this submitted work: DP-A reports grants and other from AMGEN, grants, personal fees and other from UCB Biopharma, grants from Les Laboratoires Servier, outside the submitted work; and Janssen, on behalf of IMI-funded EHDEN and EMIF consortiums, and Synapse Management Partners have supported training programmes organised by DPA’s department and open for external participants. CC reports personal fees from Amgen, personal fees from Danone, personal fees from Eli Lilly, personal fees from GSK, personal fees from Kyowa Kirin, personal fees from Medtronic, personal fees from Merck, personal fees from Nestle, personal fees from Novartis, personal fees from Pfizer, personal fees from Roche, personal fees from Servier, personal fees from Shire, personal fees from Takeda, personal fees from UCB, outside the submitted work. D M-L reports personal fees and other from AMGEN, personal fees from ITALFARMACO, personal fees from FERRER, personal fees from NOVARTIS, personal fees from ELI LILLY, personal fees from RUBIÓ, outside the submitted work. No other relationships or activities could appear to have influenced the work.
DATA SHARING

SIDIAP data used in this study is available upon submission of an appropriate application to the SIDIAP data application process. The authors do not have permission to share data without permission from the SIDIAP scientific committee.

ETHICAL APPROVAL

This study was approved by the ethics committee of IDIAPJGol (code P16/179).

REFERENCES

1. Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015;385(9986):2510-20.
2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. Jama. 2014;311(8):806-14.
3. Pulgaron ER. Childhood obesity: a review of increased risk for physical and psychological comorbidities. Clin Ther. 2013;35(1):A18-32.
4. Bjorge T, Engeland A, Tverdal A, Smith GD. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am J Epidemiol. 2008;168(1):30-7.
5. Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol. 1996;27(2):277-84.
6. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350-5.
7. Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007;357(23):2329-37.

8. Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27(2):294-300.

9. Rousseau C, Jean S, Gamache P, Lebel S, Mac-Way F, Biertho L, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. Bmj. 2016;354:i3794.

10. Premaor MO, Compston JE, Fina Aviles F, Pages-Castella A, Nogues X, Diez-Perez A, et al. The association between fracture site and obesity in men: a population-based cohort study. J Bone Miner Res. 2013;28(8):1771-7.

11. Lyons RA, Sellstrom E, Delahunty AM, Loeb M, Varilo S. Incidence and cause of fractures in European districts. Arch Dis Child. 2000;82(6):452-5.

12. Hedstrom EM, Waernbaum I. Incidence of fractures among children and adolescents in rural and urban communities - analysis based on 9,965 fracture events. Inj Epidemiol. 2014;1(1):14.

13. Stark AD, Bennet GC, Stone DH, Chishti P. Association between childhood fractures and poverty: population based study. Bmj. 2002;324(7335):457.

14. Lyons RA, Delahunty AM, Heaven M, McCabe M, Allen H, Nash P. Incidence of childhood fractures in affluent and deprived areas: population based study. Bmj. 2000;320(7228):149.

15. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976-81.
16. Wren TA, Shepherd JA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, et al. Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr. 2012;161(6):1035-40.

17. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15(10):2011-8.

18. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, et al. Fracture Burden and Risk Factors in Childhood CKD: Results from the CKiD Cohort Study. J Am Soc Nephrol. 2016;27(2):543-50.

19. Ward LM. Osteoporosis due to glucocorticoid use in children with chronic illness. Horm Res. 2005;64(5):209-21.

20. Anderson LN, Heong SW, Chen Y, Thorpe KE, Adeli K, Howard A, et al. Vitamin D and Fracture Risk in Early Childhood: A Case-Control Study. Am J Epidemiol. 2017;185(12):1255-62.

21. James JR, Massey PA, Hollister AM, Greber EM. Prevalence of hypovitaminosis D among children with upper extremity fractures. J Pediatr Orthop. 2013;33(2):159-62.

22. Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154(6):610-3.

23. Smotkin-Tangorra M, Purushothaman R, Gupta A, Nejati G, Anhalt H, Ten S. Prevalence of vitamin D insufficiency in obese children and adolescents. J Pediatr Endocrinol Metab. 2007;20(7):817-23.

24. Manning Ryan L, Teach SJ, Searcy K, Singer SA, Wood R, Wright JL, et al. The Association Between Weight Status and Pediatric Forearm Fractures Resulting From Ground-Level Falls. Pediatr Emerg Care. 2015;31(12):835-8.
25. Ferro V, Mosca A, Crea F, Mesturino MA, Olita C, Vania A, et al. The relationship between body mass index and children's presentations to a tertiary pediatric emergency department. Ital J Pediatr. 2018;44(1):38.

26. Singer SA, Chamberlain JM, Tosi L, Teach SJ, Ryan LM. Association between upper extremity fractures and weight status in children. Pediatr Emerg Care. 2011;27(8):717-22.

27. Paulis WD, Silva S, Koes BW, van Middelkoop M. Overweight and obesity are associated with musculoskeletal complaints as early as childhood: a systematic review. Obes Rev. 2014;15(1):52-67.

28. Pollock NK. Childhood obesity, bone development, and cardiometabolic risk factors. Mol Cell Endocrinol. 2015;410:52-63.

29. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, et al. Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab. 2015;100(2):594-602.

30. Kim JE, Hsieh MH, Soni BK, Zayzafoon M, Allison DB. Childhood obesity as a risk factor for bone fracture: a mechanistic study. Obesity (Silver Spring). 2013;21(7):1459-66.

31. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30.

32. Lawlor DA, Martin RM, Gunnell D, Galobardes B, Ebrahim S, Sandhu J, et al. Association of body mass index measured in childhood, adolescence, and young adulthood with risk of ischemic heart disease and stroke: findings from 3 historical cohort studies. Am J Clin Nutr. 2006;83(4):767-73.

33. Bolíbar B, Fina Aviles F, Morros R, García-Gil Mdel M, Hermosilla E, Ramos R, et al. [SIDIAP database: electronic clinical records in primary care as a source of information for epidemiologic research]. Med Clin (Barc). 2012;138(14):617-21.

34. Violan C, Foguet-Boreu Q, Hermosilla-Perez E, Valderas JM, Bolíbar B, Fabregas-Escurriola M, et al. Comparison of the information provided by electronic health records data
and a population health survey to estimate prevalence of selected health conditions and multimorbidity. BMC Public Health. 2013;13:251.

35. Garcia-Gil Mdel M, Hermosilla E, Prieto-Alhambra D, Fina F, Rosell M, Ramos R, et al. Construction and validation of a scoring system for the selection of high-quality data in a Spanish population primary care database (SIDIAP). Inform Prim Care. 2011;19(3):135-45.

36. Statistical Institute of Catalonia. Official statistics of Catalonia Barcelona2019 [Available from: https://www.idescat.cat/?lang=en Last Accessed 16.12.19].

37. Eurostat. EU Unemployment Rates 2019 [Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Unemployment_statistics. Last Accessed 16.12.19].

38. Catalunya Gd. Protocol d’activitats preventives i de promocio de la salut a l’edat pediàtrica. In: Salut Dd, editor. 2008.

39. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76-85.

40. de Onis M, Garza C, Victora CG, Onyango AW, Frongillo EA, Martines J. The WHO Multicentre Growth Reference Study: planning, study design, and methodology. Food Nutr Bull. 2004;25(1 Suppl):S15-26.

41. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452.

42. Yang S, Hutcheon JA. Identifying outliers and implausible values in growth trajectory data. Ann Epidemiol. 2016;26(1):77-80 e1-2.

43. Pages-Castella A, Carbonell-Abella C, Aviles FF, Alzamora M, Baena-Diez JM, Laguna DM, et al. "Burden of osteoporotic fractures in primary health care in Catalonia (Spain): a population-based study". BMC Musculoskelet Disord. 2012;13:79.
44. Martinez-Laguna D, Soria-Castro A, Carbonell-Abella C, Orozco-Lopez P, Estrada-Laza P, Nogues X, et al. Validation of fragility fractures in primary care electronic medical records: A population-based study. Reumatol Clin. 2017.

45. Dominguez-Berjon MF, Borrell C, Cano-Serral G, Esnaola S, Nolasco A, Pasarin MI, et al. [Constructing a deprivation index based on census data in large Spanish cities (the MEDEA project)]. Gac Sanit. 2008;22(3):179-87.

46. IBM. IBM SPSS Statistics for Windows. 25.0 ed 2017.

47. R Core Team. R: A Language and Environment for Statistical Computing. 2019.

48. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124(11):1043-50.

49. Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, et al. Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab. 2011;96(8):2414-21.

50. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13(1):143-8.

51. Landin L, Nilsson BE. Bone mineral content in children with fractures. Clin Orthop Relat Res. 1983(178):292-6.

52. Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21(4):501-7.

53. Maatta M, Macdonald HM, Mulpuri K, McKay HA. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCT study. Osteoporos Int. 2015;26(3):1163-74.
54. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24(6):1033-42.

55. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics. 2009;124(3):e362-70.

56. Lagunova Z, Porojnicu AC, Lindberg FA, Aksnes L, Moan J. Vitamin D status in Norwegian children and adolescents with excess body weight. Pediatri Diabetes. 2011;12(2):120-6.

57. Gonzalez-Gross M, Valtuena J, Breidenassel C, Moreno LA, Ferrari M, Kersting M, et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr. 2012;107(5):755-64.

58. Reyman M, Verrijn Stuart AA, van Summeren M, Rakhshandehroo M, Nuboer R, de Boer FK, et al. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int J Obes (Lond). 2014;38(1):46-52.

59. Eliakim A, Nemet D, Wolach B. Quantitative ultrasound measurements of bone strength in obese children and adolescents. J Pediatr Endocrinol Metab. 2001;14(2):159-64.

60. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24(5):627-32.

61. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35-43.

62. Davidson PL, Goulding A, Chalmers DJ. Biomechanical analysis of arm fracture in obese boys. J Paediatr Child Health. 2003;39(9):657-64.
63. Goulding A, Jones IE, Taylor RW, Piggot JM, Taylor D. Dynamic and static tests of balance and postural sway in boys: effects of previous wrist bone fractures and high adiposity. Gait Posture. 2003;17(2):136-41.

64. Gracia-Marco L, Moreno LA, Ortega FB, Leon F, Sioen I, Kafatos A, et al. Levels of physical activity that predict optimal bone mass in adolescents: the HELENA study. Am J Prev Med. 2011;40(6):599-607.

65. Gracia-Marco L, Rey-Lopez JP, Santaliestra-Pasias AM, Jimenez-Pavon D, Diaz LE, Moreno LA, et al. Sedentary behaviours and its association with bone mass in adolescents: the HELENA Cross-Sectional Study. BMC Public Health. 2012;12:971.

66. Christoffersen T, Emaus N, Dennison E, Furberg AS, Gracia-Marco L, Grimnes G, et al. The association between childhood fractures and adolescence bone outcomes: a population-based study, the Tromso Study, Fit Futures. Osteoporos Int. 2018;29(2):441-50.

67. Hales CM, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS data brief, no 288. In: Services HaH, editor. Hyattsville, MD: National Center for Health Statistics2017.

68. Obesity and Overweight Fact Sheet [press release]. 2018.

69. Bhaskaran K, Forbes HJ, Douglas I, Leon DA, Smeeth L. Representativeness and optimal use of body mass index (BMI) in the UK Clinical Practice Research Datalink (CPRD). BMJ Open. 2013;3(9):e003389.

70. Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776-86.

71. Ogden CL, Carroll MD, Kit BK, Fleg KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. Jama. 2012;307(5):483-90.
72. Flegal KM, Ogden CL, Yanovski JA, Freedman DS, Shepherd JA, Graubard BI, et al. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. Am J Clin Nutr. 2010;91(4):1020-6.

73. Krebs NF, Jacobson MS. Prevention of pediatric overweight and obesity. Pediatrics. 2003;112(2):424-30.

74. World Health Organisation. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. Geneva, Switzerland; 2000.

75. Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB. Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr. 1998;132(2):204-10.

76. Vanderwall C, Randall Clark R, Eickhoff J, Carrel AL. BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr. 2017;17(1):135.

77. Widhalm K, Schonegger K. BMI: does it really reflect body fat mass? J Pediatr. 1999;134(4):522-3.

78. Martin-Calvo N, Moreno-Galarraga L, Martinez-Gonzalez MA. Association between Body Mass Index, Waist-to-Height Ratio and Adiposity in Children: A Systematic Review and Meta-Analysis. Nutrients. 2016;8(8).

79. Dietz WH. Periods of risk in childhood for the development of adult obesity--what do we need to learn? J Nutr. 1997;127(9):1884s-6s.

80. Ekelund U, Ong K, Linne Y, Neovius M, Brage S, Dunger DB, et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr. 2006;83(2):324-30.

81. Cole TJ. Children grow and horses race: is the adiposity rebound a critical period for later obesity? BMC Pediatr. 2004;4:6.
82. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3(3):141-6.

83. Manyanga T, Barnes JD, Chaput JP, Guerrero M, Katzmarzyk PT, Mire EF, et al. Body mass index and movement behaviors among schoolchildren from 13 countries across a continuum of human development indices: A multinational cross-sectional study. Am J Hum Biol. 2019:e23341.

84. Jensen LB, Quaade F, Sorensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res. 1994;9(4):459-63.

85. Reece LJ, Sachdev P, Copeland RJ, Thomson M, Wales JK, Wright NP. Intra-gastric balloon as an adjunct to lifestyle support in severely obese adolescents; impact on weight, physical activity, cardiorespiratory fitness and psychosocial well-being. Int J Obes (Lond). 2017;41(4):591-7.

86. Mahdy T, Atia S, Farid M, Adulatif A. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526-31.

87. Sachdev P, Reece L, Thomson M, Natarajan A, Copeland RJ, Wales JK, et al. Intragastric balloon as an adjunct to lifestyle programme in severely obese adolescents: impact on biomedical outcomes and skeletal health. Int J Obes (Lond). 2018;42(1):115-8.

88. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15(4):710-20.