The capBCA locus is required for intracellular growth of Francisella tularensis LVS

Jingliang Su1, Rexford Asare2, Jun Yang3, Manoj Kumar Mohan Nair3, Joseph E. Mazurkiewicz4, Yousef Abu-Kwaik2 and Jing-Ren Zhang3,5*

1 Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
2 Department of Microbiology and Immunology, College of Medicine, Louisville, KY, USA
3 Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
4 Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
5 Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China

Francisella tularensis is the causative agent of tularemia and a category A bioterrorism agent. The molecular basis for the extreme virulence of F. tularensis remains unclear. Our recent study found that capBCA, three neighboring genes, are necessary for the infection of F. tularensis live vaccine strain (LVS) in a respiratory infection mouse model. We here show that the capBCA genes are necessary for in vitro growth of F. tularensis LVS in the lungs, spleens, and livers of BALB/c mice. Unmarked deletion of capBCA in type A strain Schu S4 resulted in significant attenuation in virulence although the level of the attenuation in Schu S4 was much less profound than in LVS. We further demonstrated that CapB protein is produced at a low level under the in vitro culture conditions, and capB alone is necessary for in vivo growth of F. tularensis LVS in the lungs of BALB/c mice. Finally, deleterional mutations in capB alone or capBCA significantly impaired intracellular growth of F. tularensis LVS in cultured macrophages, thus suggesting that the capBCA genes are necessary for intracellular adaptation of F. tularensis. The requirement of this gene locus in intracellular adaption at least in part explains the significant attenuation of F. tularensis capBCA mutants in virulence.

Keywords: Francisella tularensis, capBCA, fitness, virulence, macrophage

INTRODUCTION

Francisella tularensis is a Gram-negative intracellular bacterium and causative agent of tularemia in humans and many other species (Sjostedt, 2007). There are four F. tularensis subspecies or biotypes: tularensis (type A), holarctica (type B), mediasiatica, and novicida. All F. tularensis subspecies are able to cause lethal infection in mice, but only the strains of types A and B are mostly associated with human disease (Keim et al., 2007). F. tularensis live vaccine strain (LVS) is a type B derivative. LVS is relatively avirulent in humans but causes a lethal infection in mice that highly resembles human tularemia (Eigelsbach and Downs, 1961; Anthony and Kongshavn, 1987). The infection can be transmitted by inhalation of F. tularensis-containing aerosols, bites of blood-sucking insects, handling of infected animal carcasses, and consumption of contaminated food or water. Respiratory tularemia has attracted the most attention because inhalation of as few as 10–50 live organisms of F. tularensis type A can cause disease and the mortality rate can be >30% by the respiratory route in the absence of antibiotic therapy (McCrum, 1961). As a result, F. tularensis type A strains are listed as a category A potential agent of bioterrorism (Dennis et al., 2001).

Francisella tularensis is able to infect a range of cell types, but its primary target during infection appears to be the macrophage (Clemens and Horwitz, 2007). The pathogenic mechanisms of F. tularensis infection are poorly understood. The extraordinary infectivity of F. tularensis is correlated with its efficient uptake, survival, and replication within host cells (Clemens and Horwitz, 2007). The ability of F. tularensis to propagate intracellularly is enhanced by the failure of lysosomes to fuse with the phagosome (Anthony et al., 1991) and the lack of stimulation of a respiratory burst (Wilson et al., 1980; Fortier et al., 1994). F. tularensis appears to bind host cells by interacting with complement receptors (Clemens et al., 2005). After entry into macrophages, the spacious phagosomes are rapidly modified to a tight phagosome (Clemens et al., 2005). In the initial phase of intracellular infection, F. tularensis resides in the membrane-bound phagosomes of macrophages and does not appear to replicate (Golovliov et al., 2003; Clemens et al., 2004; Santic et al., 2005a). Replication occurs once the bacterium escapes into the cytosol when the phagosomal membranes are damaged (Golovliov et al., 2003; Clemens et al., 2004; Santic et al., 2005a). The mechanisms for bacterial escape into the cytosol remain to be defined. It is also unclear how F. tularensis disseminates from infected host cells to uninfected cells in vivo. It is thought that F. tularensis-infected macrophages are lysed by bacterium-induced apoptosis (Lai et al., 2001; Lai and Sjoestedt, 2003).

The virulence determinants of F. tularensis are not well understood (Barker and Klose, 2007). The lipopolysaccharide (LPS) of F. tularensis has been extensively studied because of its unusually low toxicity in vitro and in vivo and potential as a vaccine component (Sandstrom et al., 1992; Ancuta et al., 1996). Several bacterial proteins have recently been implicated in F. tularensis pathogenesis. These include AcpA (Mohapatra et al., 2007), MglA/ MglB (Baron and Nano, 1998), and the proteins encoded by the
iglABCD intracellular growth operon (Nano et al., 2004). Recent whole-genome screens in *F. tularensis* strains Schu S4 (Qin and Mann, 2006; Kadzhaev et al., 2009), LVS (Maier et al., 2007; Su et al., 2007; Schulert et al., 2009), and U112 (Tempel et al., 2006; Weiss et al., 2007; Kraemer et al., 2009; Ablund et al., 2010) have identified a large number of bacterial genes that are involved in *F. tularensis* growth in cultured macrophages and host tissues. Our recent study revealed that the capBCA genes of *F. tularensis* strain LVS are necessary for bacterial growth in the lungs of mice (Su et al., 2007). Growth as used here refers to the bacterial load in host tissues, which reflects the net outcome of bacterial replication and survival in the context of host defense.

In this study, we sought to understand how the capBCA locus contributes to *F. tularensis* pathogenesis. The *in vivo* growth kinetics of LVS and the isogenic capBCA mutants were determined in the lungs, spleens, and livers of infected BALB/c mice at various stages of infection. Unmarked deletion of *capBCA* was generated to assess the significance of this gene locus in the virulence of type A virulent strain Schu S4. We further characterized the expression of *capB* and its impact on *F. tularensis* pathogenesis. Finally, the contribution of *capBCA* to intracellular growth of *F. tularensis* was evaluated in cultured macrophage lines. Our results suggest that the *capBCA* genes contribute to the virulence and pathogenesis of *F. tularensis* at least in part through enhancing bacterial intracellular adaptation.

MATERIALS AND METHODS

BACTERIAL STRAINS AND CHEMICAL REAGENTS

Francisella tularensis LVS and its derivatives were cultured as described previously (Su et al., 2007). When necessary, kanamycin (10 μg/ml) or hygromycin (200 μg/ml) was added in the broth and agar media for selection purposes. *F. tularensis* Schu S4, originally isolated from a human case of tularemia (Eigelsbach et al., 1951), was obtained from the U.S. Army Medical Research Institute for Infectious Diseases (Frederick, MD, USA; Malik et al., 2007). The culture media and conditions for Schu S4 strain are the same as for LVS. *Escherichia coli* strains were grown in Luria-Bertani (LB) broth or on LB agar plates in the presence or absence of ampicillin (100 μg/ml), kanamycin (50 μg/ml), and hygromycin (200 μg/ml). All ingredients for bacterial culture media and other chemicals used in this work were obtained from Sigma (St. Louis, MO, USA) unless otherwise stated.

SITE-DIRECTED MUTAGENESIS IN *F. TULARENSIS*

Unmarked in-frame deletional mutations were generated in the *capBCA* locus of strains LVS and Schu S4 by allelic replacement and counterselection as described (Su et al., 2007). All genetic manipulations of strain Schu S4 were performed with the approval of the Centers for Disease Control and Prevention (CDC) in a CDC-certified ABSL-3/BSL-3 facility at Albany Medical College. The entire coding region of the *capBCA* genes was deleted in Schu S4 using the conjugative plasmid pST937. pST937 was previously used to generate an unmarked deletion in *capBCA* of LVS (Su et al., 2007). *capB* was deleted in LVS in a similar manner with a few modifications. An 814-bp fragment downstream of *capB* was PCR amplified from LVS genomic DNA using primers Pr1073 (5′-TTCACTGTCGAGCATTTGGAATACGGGAGAAA-3′) and Pr1074 (5′-CTTGTTCTCGAGCATTTGGAATACGGGAGACC-3′). This fragment was digested with *Eco*RI and *Xho*I and cloned behind the 5′ fragment of *capB* in plasmid pST933 (Su et al., 2007). The entire construct was subcloned into the *EcoRV* site of a suicide plasmid pMP590 (LoVullo et al., 2006), resulting in the plasmid pMP590::ΔcapB or pST968. We chose pMP590 to delete *capB* because of its better amenability in DNA cloning (partially due to its smaller size relative to pomp) and transformation (electroporation instead of conjugation for pDMK). pST968 was transferred into LVS by electroporation and selected for kanamycin resistance (10 μg/ml) as described (LoVullo et al., 2006). To remove the inserted plasmid and generate desirable *capB* deletion, the kanamycin-resistant transformants were streaked on chocolate agar plates containing 5% (w/v) sucrose. The sucrose-resistant colonies were further screened for the loss of kanamycin resistance. The resulting clones were examined for the *capB* deletion by PCR amplification using the flanking primers Pr896 (5′-TGCTGACCTGAGTTATTTGAT-3′) and Pr901 (5′-AAATGCAAATATCGGCTGTTA-3′). The *capB* deletion was finally confirmed by DNA sequencing in strain ST1092, one of the resultant Δ*capB* mutants. ST1092 retains the sequence encoding the nine N-terminal amino acids of CapB. The lack of the CapB protein in the Δ*capB* strains was assessed by Western blot using a mouse anti-CapB antiserum as described in western blot. The resultant strain ST1092 was selected for further characterization.

COMPLEMENTATION OF *CAPB* DELETION

The capB deletion in strain ST1092 was in trans complemented with an *E. coli–Francisella* shuttle plasmid pST1032 containing the intact *capB* gene as described previously (Su et al., 2007). *capB* in pST1032 was driven by the *Francisella groEL*. pST1032 was electroporated into strain ST1092 and selected with 200 μg/ml hygromycin, resulting in strain ST1104. Production of the CapB protein in the complemented strains was assessed by western blot using a mouse antiserum against glutathione S transferase (GST)-CapB as described in Section “Antibodies and Western blotting.”

GST-CAPB FUSION PROTEIN EXPRESSION

A recombinant CapB was expressed as a fusion protein with the GST essentially as described (Lu et al., 2006). *capB* was amplified from the genomic DNA of strain LVS with primers Pr885 (5′-ATCCTGAATTCGGATCCATATTTCCTCCGTTT-3′) and Pr1175 (5′-ACTAGACCCGGGAACTACTTTGGATTATTTTGATGTTAATG-3′). This fragment was cloned into the Xmal/EcoRI site of the pGEX-2T expression vector (GE Healthcare Bio-Science, Piscataway, NJ, USA) in *E. coli* strain BL-21 (DE3). The resultant *E. coli* strain was produced to process and purify a GST fusion protein (designated GST-CapB) by affinity chromatography with the Glutathione Sepharose 4 Fast Flow resin (GE Healthcare Bio-Sciences) according to the supplier’s instructions. Protein concentration was determined by the Bio-Rad Protein Assay kit (Bio-Rad, Hercules, CA, USA) and analyzed by SDS-PAGE as described (Lu et al., 2006).

ANTIBODIES AND WESTERN BLOTTING

Antiserum against the *F. tularensis* CapB was raised with the GST-CapB fusion protein as described (Zhang et al., 1997). Female BALB/c mice (6–8 weeks old) were immunized with purified
GST-CapB every 2 weeks via the subcutaneous route for a total of three immunizations. The immunogen for each immunization consisted of 25 μg GST-CapB in 100 μl sterile phosphate-buffer saline (PBS) and 100 μl alum (Rehydrogel Low Viscosity Gel; Reheis, Berkeley Heights, NJ, USA) as described (Sun et al., 2004). Western blotting of F. tularensis proteins was performed with an enhanced chemiluminescence (ECL) Western Blot Kit (Pierce, Rockford, IL, USA) according to the supplier’s instructions. The GST-CapB antiserum and peroxidase-conjugated goat anti-mouse IgG antibody (Bio-Rad laboratories, Hercules, CA, USA) were used at a dilution of 1:1000 and 1:5000, respectively.

MOUSE INFECTIONS

Infection experiments with F. tularensis LVS and its derivatives were carried out in BALB/c mice as described (Su et al., 2007). All animal infection experiments were in compliance with the guidelines of the Institutional Animal Care and Use Committee at Albany Medical College. To prepare the F. tularensis inocula, frozen stocks of LVS and the isogenic capBCA mutants were individually diluted in PBS based on predetermined colony forming unit (CFU) values. Each preparation was serially diluted in PBS and plated to assess the actual CFUs of each inoculum immediately prior to the mouse infection experiments. Each inoculum was intranasally inoculated into groups of mice (female, 6–8 weeks old). Infected mice were sacrificed at various time points post-infection. The lungs, liver, and spleen were aseptically removed and processed to determine the CFU levels of LVS and the mutants in each organ as described (Su et al., 2007). To determine the virulence levels of the ΔcapBCA mutants in the LVS and Schu S4 backgrounds, groups of five mice were intranasally infected with serial dilutions of the wild type and isogenic ΔcapBCA strains. Infected mice were monitored daily for signs of morbidity and mortality for 21 days. Infection experiments with Schu S4 and all of its derivatives were carried out as described for strain LVS with the exception that all of the experiments associated with Schu S4 were performed and contained in a CDC-certified ABSL-3/BSL-3 facility at Albany Medical College.

To test the immuno-protection of ΔcapBCA mutants, groups of five BALB/c mice were inoculated intranasally with different dosages of ST938. Mice injected with sterile PBS were used as control. Three weeks after immunization, each mouse was challenged intranasally with 40,000 CFU of LVS. Infected mice were monitored daily for clinical signs and mortality for 21 days.

HISTOPATHOLOGY

BALB/c mice were intranasally infected with F. tularensis LVS or isogenic mutants as described above. Mice, along with uninfected controls, were sacrificed to excise the lungs, liver, and spleen at day 7. The organs were fixed in 10% neutral-buffered formalin, processed using standard histological methods to obtain 5-μm-thick paraffin sections, and stained with H&E as described (Baron et al., 2007).

MACROPHAGE INFECTION

The human monocytic cell line U937 (ATCC CRL-1593.2) and mouse alveolar macrophages MH-S cell line (ATCC CRL-2019) were obtained from the American Type Culture Collection (Manassas, VA, USA). U937 cells were maintained in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with 10% fetal bovine serum at 37°C, 5% CO2. MH-S cells were cultured in RPMI 1640 medium containing 10% (v/v) fetal bovine serum and 0.05 mM 2-mercaptoethanol at 37°C. Intracellular levels of F. tularensis were assessed out as described (Santic et al., 2005). Briefly, 2.5 × 105 macrophages were cultured in 24-well plates (Hyclone, Logan, UT, USA) to approximately 80% confluency. The F. tularensis LVS derivatives were grown in MHB broth to OD600 ~ 1.2 (~3 × 104 CFUs/ml), pelleted by centrifugation, and resuspended in pre-warmed RPMI1640 to OD600 ~ 0.2 (~5 × 104 CFUs/ml). After brief rinse with PBS, macrophages were infected with the bacterial suspensions at a multiplicity of infection (MOI) of 100 (bacterium vs. macrophage) at 0 h. After 2 h of incubation at 37°C, the unbound bacteria were removed from the wells by washing with PBS. Extracellular bacteria were killed by incubation with the cell culture medium containing gentamicin (50 μg/ml) for 1 h at 37°C. The cells were extensively rinsed to remove residual gentamicin and then cultured without antibiotic. To monitor bacterial uptake and replication, the culture medium of infected macrophages was moved to sterile tubes to lyse the cells at 3, 24, and 48 h post-infection with pre-chilled water. The medium and lysates from each well were combined, diluted with sterile PBS, and spread onto chocolate agar plates for CFU counts. Each infection experiment was repeated at least three times.

FLUORESCENCE AND ELECTRON MICROSCOPY

For fluorescence microscopy, U937 macrophages were infected with F. tularensis LVS as described previously (Santic et al., 2005a). Briefly, differentiated U937 cells on 12-mm-diameter circular glass coverslips (Fisher Scientific, Pittsburgh, PA, USA) in 24-well culture plates were infected with LVS and its isogenic mutants at MOI of 10 for 1 h. To synchronize the infection, infected cells were centrifuged at 150 g for 5 min before incubation at 37°C in 5% CO2. After 1 h of incubation, infected cells were washed three times with 1× PBS followed by 1 h of gentamicin (50 μg/ml) treatment. Cells were then fixed in 4% paraformaldehyde for 30 min. Paraformaldehyde was removed by washing the wells three times with PBS. The infected cells were permeabilized with 1% Triton-X100 for the LAMP-1 fluorescence and electron microscopy. Samples were stained with 1% Triton-X100 for the LAMP-1 fluorescence and electron microscopy. To stain the LAMP-1 and Cathepsin D, Alexa fluor 594-conjugated anti-mouse secondary antibody (1:500 dilution) and mouse monoclonal anti-LAMP-1 (H4B3; 1:500 dilution; Hybridoma Gene Bank) or anti-Cathepsin D (BD transduction; 1:500 dilution). Alexa fluoro 488-conjugated anti-mouse secondary antibody (1:500 dilution) was used to stain the LAMP-1 and Cathepsin D. Alexa fluoro 488-conjugated secondary antibody (1:500 dilution) was used to stain F. tularensis. Co-localization of bacteria with LAMP-1 and Cathepsin D out of the total bacteria in 100 infected cells from more than 10 different fields for each strain. Each experiment was repeated at least once.

For electron microscopy, U937 macrophages growing in 6-well tissue culture plates were inoculated with F. tularensis as described above. Twenty-four hours post-inoculation, the wells were washed with 0.1 M Na Cacodylate buffer, pH 7.3 and incubated for 1 h with
a solution containing 2.5% glutaraldehyde/4% formaldehyde in 0.1 M Na Cacodylate, pH 7.3. Following washing with Cacodylate buffer, the cells were post-fixed with 1.0% osmium tetroxide in 0.1 M Na Cacodylate buffer, pH 7.3 for 1 h. The monolayers were washed with normal saline, and scraped with a Costar cell scraper into normal saline and gently pelleted by centrifugation. The pellets were dehydrated in a graded Ethanol series and embedded in LR White medium (Polysciences, Inc.). Ultrathin sections were collected onto Formvar-coated grids, stained with uranyl acetate and lead citrate. Specimens were viewed and photographed with a JEOL 100CX transmission electron microscope using Kodak electron microscope film.

STATISTICAL ANALYSIS
A log-rank test was used to determine the level of significance for the Kaplan–Meier survival analyses. All other results were expressed as mean ± SEM and comparisons between the groups were made using Student’s t test. Differences between control and experimental groups were considered significant at p < 0.05 levels.

RESULTS
IN VIVO GROWTH KINETICS OF THE LVS capBCA MUTANTS
In our previous study (Su et al., 2007), the LVS mutant lacking the capBCA genes (∆capBCA) exhibited significantly impaired growth in the lungs of infected mice at day 7 post-intranasal inoculation. However, it was unclear whether the capBCA genes are required at the earlier and/or later stages of F. tularensis infection. We thus determined the in vivo growth kinetics of ∆capBCA by assessing the levels of bacterial burdens in the lungs, kidneys, and livers of infected BALB/c mice on days 1, 2, 4, 7, 14, and 21 post-intranasal inoculation.

To accurately determine the inoculation efficiency, we first determined bacterial loads in the lungs of infected mice immediately after intranasal inoculation. Mice infected with LVS or ∆capBCA (strain ST938) showed a similar level of bacteria (∼3 × 10^3 CFUs) in the lungs 1 h post-intranasal inoculation of 5 × 10^6 CFUs (day 0; Figure 1A). This indicated that ∆capBCA was effectively inoculated into the lungs of mice at a similar efficiency as the parent strain LVS. ∆capBCA displayed a significant growth deficiency in the lungs throughout the entire test period (Figure 1A). In sharp contrast to a 15.1-fold growth of LVS in the lungs of infected mice in initial 24 h, the number of ∆capBCA dropped by 75% during the same infection period, indicating that the capBCA locus is required for bacterial growth in the initial phase of LVS infection. At days 2 and 4, both LVS and ∆capBCA exhibited substantial growth, but the numbers of ∆capBCA were significantly lower when compared with that of LVS. At day 7, the bacterial levels of both LVS and ∆capBCA were reduced bacterial burdens, likely due to the onset of the adaptive immunity. By 9 days post-inoculation, all of the LVS-infected mice died, whereas ∆capBCA-infected mice did not display any detectable sign of disease and remained disease-free throughout the 21-day infection period. Finally, ∆capBCA became undetectable from the lungs of the infected mice at days 14 and 21.

We also assessed the dissemination of ∆capBCA from lung to spleen and liver in the same BALB/c mice as described in Figure 1A. As early as 24 h post-inoculation, LVS were readily detected in the spleens (2,430 CFUs in average) and livers (42,840 CFUs in average), whereas ∆capBCA was barely detectable in these distal organs until day 4 (Figures 1B, C). Similar to the kinetics of bacterial burden in the lungs, the numbers of ∆capBCA were significantly lower than those of LVS in the spleens and livers from days 1 to 7. ∆capBCA became undetectable in the livers of all infected mice on days 14 and 21. Interestingly, there were low levels of ∆capBCA detectable in the spleens of two and one mice (out of six) at days 14 and 21, respectively (see below for additional interpretations). We thus conclude that the capBCA genes are necessary for in vivo growth of F. tularensis LVS (bacterial replication and resistance to host killing).

LD₅₀ AND IMMUNO-PROTECTION OF LVS ∆capBCA
The persistent presence of ∆capBCA in the spleens (Figure 1B) raised the possibility that the mutant is capable of better priming the adaptive immunity against F. tularensis LVS. To test this notion, we first attempted to assess the attenuation level of ∆capBCA by determining the LD₅₀. Groups of BALB/c mice were intranasally infected with a wide range of bacterial doses (4.5 × 10^2–7 CFUs). None of the infected mice showed any appreciable symptoms or died from the infection during the 6-week period of observation (data not shown), indicating the LD₅₀ of the ∆capBCA mutant
was >4.5 × 10^7 CFU. LVS has an LD_{so} of ~4 × 10^7 CFUs in this infection model (Duckett et al., 2005); all of mice infected with ~8 × 10^6 CFUs of LVS died in the first 2 weeks of infection (data not shown). Therefore, LVS ΔcapBCA is avirulent in this BALB/c mouse model. We next tested immuno-protection of ΔcapBCA against infection of *F. tularensis* LVS. Groups of five BALB/c mice were intranasally infected (or immunized) with ST938 in a dose range of 4.5 × 10^5–7 CFUs. The mice were intranasally challenged with 40,000 CFUs of LVS (10 times of LVS LD_{so} in this model) 3 weeks post-immunization. All of the five unimmunized mice (negative control) died within 9 days following LVS challenge (Table 1). Similarly, the majority (80%) of the mice immunized with 450 CFUs of ST938 succumbed to LVS challenge. In contrast, all of the mice immunized with higher doses of ST938 (4.5 × 10^6–7 CFUs) did not show appreciable sign of illness after the challenge with 40,000 CFUs of LVS in the 4-week observation period (Table 1), indicating that ΔcapBCA is able to induce strong adaptive immunity against infection of *F. tularensis* LVS even at relative low doses of immunization (e.g., 10^6–4 CFUs). This result agrees with a recent report that an LVS ΔcapBCA strain induces potent immuno-protection against LVS challenge (Jia et al., 2010). We further tested the immuno-protection potential of ΔcapBCA against the challenges with type A virulent strain Schu S4 in a similar manner. None of the intranasal immunization doses (4.5 × 10^5–7 CFUs of strain ST938) conferred significant protection against intranasal challenge with 100 CFUs of Schu S4 (data not shown). The sharp difference in immuno-protection of LVS ΔcapBCA against LVS and Schu S4 demonstrate the distinct requirements for protective immunity against infections of types A and B *F. tularensis*.

IMPORTANCE OF capBCA IN TYPE A *F. TULARENSIS*

The gene sequence and organization of the capBCA locus are virtually identical between *F. tularensis* subsp. holarctica (type B) and subsp. *tularensis* (type A). We thus tested whether the capBCA genes are necessary for the virulence of *F. tularensis* type A virulent strain Schu S4. The coding sequence of the capBCA locus in Schu S4 was deleted by allelic replacement and counter selection as described in Section “Materials and Methods.” As observed with the ΔcapBCA mutants in LVS (Su et al., 2007), the Schu S4 ΔcapBCA mutants did not show obvious growth defects under *in vitro* conditions (data not shown). ST965, one of the Schu S4 ΔcapBCA mutants, was subjected to further characterization of its virulence in the lung infection mouse model. Since laboratory mice are extremely susceptible to Schu S4 infection (Malik et al., 2007), the infection doses of the ΔcapBCA mutant were accordingly adjusted. While all of mice infected with 16 CFUs of Schu S4 died by day 9, the mortality rate of mice infected with ST965 was significantly reduced in a dose-dependent manner (Figure 2). In general, the attenuation of the Schu S4 ΔcapBCA mutant was less pronounced than that of the LVS counterpart in this model. Michell et al. (2010) recently reported that deletion of capB in Schu S4 led to >100-fold attenuation in virulence in a subcutaneous infection model of BALB/c mice. These findings thus indicated that the capBCA locus is necessary for the full virulence of human virulent *F. tularensis* type A strains.

CHARACTERIZATION OF F. TULARENSIS capB

To gain more insight into the function(s) of the *F. tularensis* capBCA locus, we further characterized capB. The coding sequence of *capB* in LVS was removed by allelic exchange. Three resulting strains (ST1092-4) were verified for the lack of *capB* as determined by PCR amplification (Figure 3A) and DNA sequencing (data not shown). Primers Pr896/Pr901 were expected to produce amplicons of 2,177 bp in LVS and 991 bp in ΔcapB mutants ST1092-4. To determine the expression of the CapB protein, we also constructed a GST-CapB fusion protein in *E. coli* to generate an antiserum against CapB in mice. The *F. tularensis* CapB protein is predicted to contain 405 amino acids with the molecular mass of 44.9 kDa. As represented in Figure 3B, the antiserum reacted with a protein band of 44 kDa in LVS, which was completely absent in the isogenic ΔcapB mutant ST1092. The missing band in ST1092 was restored in *trans* by the shuttle plasmid pST1032 (strain ST1104). We thus concluded that the antiserum specifically detected the CapB protein. The CapB protein appears to be produced at a relatively low level under *in vitro* culture conditions because it was only detected when a large amount of the total bacterial lysates (~2 × 10^7 CFU) was loaded in the protein gel. This was not due to a potential low titer of the antiserum because the antiserum readily detected CapB with ~2 × 10^6 CFUs of the complementation strain ST1104 (data not shown). Apparent overproduction of CapB in ST1104 was likely due to the strength of the *Francisella* groEL promoter and/or copy number of the

Table 1 | Protection of LVS ΔcapBCA against lethal LVS infection.

Immunization dose (CFU)	Survived/total mice
0	0/5
4.5 × 10^2	1/5
4.5 × 10^3	5/5
4.5 × 10^4	5/5
4.5 × 10^5	5/5
4.5 × 10^6	5/5
4.5 × 10^7	5/5

FIGURE 2 | Contribution of capBCA to the virulence of type A *F. tularensis*. BALB/c mice (*n* = 5) were intranasally infected with the indicated doses of Schu S4 or isogenic ΔcapBCA mutant ST965. Survival was monitored for 21 days. The results are expressed as Kaplan-Meier curves and p values determined using log-rank test. The data shown are a representative of two independent experiments.
complementation construct as reported by Charity et al. (2007). A second band detected by the antisera in ST1104 may represent a smaller isoform of the *F. tularensis* CapB as reported for the *B. anthracis* CapB (Makino et al., 1989).

We further performed infection experiments with the ΔcapB mutant ST1092 and isogenic complementation strain ST1104. The ΔcapB mutant was significantly deficient in *in vivo* growth at day 7 post-intranasal inoculation compared to the parent strain LVS (Figure 3C; Figure A1 in Appendix). The attenuation phenotype of ST1092 was partially in trans restored in complementation strain ST1104. The same capB complementation construct also showed partial complementation in the transposon mutant JS2512 in our previous study (Su et al., 2007). This could be due to instability of the shuttle plasmid during infection in the absence of antibiotic selection and/or inappropriate in trans expression level of the CapB protein. We also examined the impact of capB on *F. tularensis* pathogenesis by comparing histopathology of the lungs from BALB/c mice intranasally infected with either LVS or isogenic ΔcapB mutants. In agreement with previous studies (Baron et al., 2007; Malik et al., 2007), the lungs of the LVS-infected mice had severe inflammation and tissue damage at day 7 post-infection as compared to the uninfected control (Figure 3D). In contrast, mice infected with ST1092 showed a relatively normal lung structure with little sign of inflammation. The lungs of mice infected with the capB complementation strain ST1104 exhibited a low level of tissue infiltration but the overall structure was relatively normal. Together with the experimental data with ΔcapBCA (Figure 1; Su et al., 2007), these results allowed us to conclude that capB itself is necessary for the fitness of *F. tularensis* LVS. Our data are also consistent with a very recent study reporting that an LVS ΔcapB mutant is severely attenuated in BALB/c mice (Jia et al., 2010).

DEFICIENCY OF THE capBCA MUTANTS IN INTRA-MACROPHAGE GROWTH

We sought to understand how the capBCA locus contributes to *in vivo* adaptation of *F. tularensis*. Since *F. tularensis* is a facultative intracellular pathogen, we tested whether the capBCA genes are required for intracellular growth of *F. tularensis*. We initially tested the intracellular infection of ΔcapB and ΔcapBCA in mouse MH-S macrophages, because this is a commonly used avian macrophage model derived from BALB/c mice (Mbawuike and Herscowitz, 1989; Ibrahim-Granet et al., 2003). At the end of the gentamicin treatment (hour 0), ΔcapB and ΔcapBCA showed similar levels of the intracellular growth as the parent strain LVS (Figure 4A). Because *F. tularensis* does not appear to replicate in the first 3 h post-infection (Golovliov et al., 2003; Clemens et al., 2004; Santic et al., 2005a), the result indicated that capB locus is dispensable for the initial phase of intracellular infection (bacterial adherence and uptake). By 24 and 48 h post-inoculation, the macrophages infected with ΔcapB or ΔcapBCA showed significantly lower CFUs (approximately 14- to 22-fold reduction) as compared to the cells infected with LVS (Figure 4A). Noticeably, ΔcapB and ΔcapBCA behaved similarly in this assay, suggesting that capB carries out an important function(s) in this locus. The growth defect of ΔcapB was not due to the abnormal growth of the mutant in the culture medium because LVS and its capBCA derivatives showed obvious growth in the absence of macrophages under the same conditions (data not shown). The defect of ΔcapB in intracellular growth was partially restored by in trans complementation (Figure 4A, ΔcapB::capB). The complementation strain still exhibited significant deficiency (two- to threefold) in intracellular growth as compared to LVS, likely due to overexpression of capB on the complementation construct (see Figure 3B). We were unsuccessful in our attempts to complement the entire capBCA locus due to technical difficulty in cloning the three genes in *E. coli–Francisella* shuttle vectors (data not shown).

We subsequently confirmed the impairment of ΔcapB and ΔcapBCA in intracellular growth using human U937 macrophages. Like in MH-S cells, the intracellular growth defect of ΔcapB and ΔcapBCA was only observed after the initial phase of infection (Figure 4B, hour 0). A noticeable difference between the MH-S and U937 results is the marginal effect of in trans complementation construct on the intracellular growth phenotype of ΔcapB in U937 cells (Figure 4B, ΔcapB::capB). A very recent study by Jia et al. (2010) also showed that an LVS ΔcapB mutant is significantly

FIGURE 3 | CapB expression and its impact on *in vivo* growth of *F. tularensis*. (A) Detection of the capB deletion by PCR. The sequence surrounding the capB gene was amplified from the genomic DNA of LVS or three isogenic ΔcapB clones (ST1092-4). The PCR products were separated in a 1% agarose gel and stained with ethidium bromide. The sizes of the DNA standards are indicated in kilobase. (B) Western blot detection of the *F. tularensis* CapB. Cell lysates of LVS derivatives representing ∼2 × 10^6 CFUs were separated by SDS-PAGE, probed with the GST-CapB antisera, and detected by an ECL method. (C) *In vivo* growth of the *F. tularensis* ΔcapB mutant. BALB/c mice were infected individually with LVS (4,500 CFUs), ST1092 (5,100 CFUs), or ST1104 (4,800 CFUs) by intranasal inoculation. Bacterial levels in the lungs were assessed at day 7 as in Figure 1. (D) Lung histopathology of *F. tularensis*-infected mice. BALB/c mice were infected as in (C). Lung tissues were processed for H&E staining at day 7 post-infection. Magnification = 20×.
attenuated in intracellular growth in THP-1 macrophages. Together, these results demonstrate that the capBCA locus is required for intracellular growth of F. tularensis LVS.

SUB-CELLULAR LOCALIZATION OF THE capBCA MUTANTS IN MACROPHAGES

Previous studies indicate that F. tularensis transiently resides in a LAMP-1 and LAMP-2 positive phagosomes before escape into the cytosol for replication (Santic et al., 2010). The existing data have shown a correlation between escape into the cytosol and loss of LAMP-1/2 co-localization (Checroun et al., 2006; Bonquist et al., 2008; Asare and Abu Kwaik, 2010). Therefore, loss of co-localization between phagosomes and LAMP-1/2 has been used as an indicator for phagosomal escape and/or arrest of phagosomal maturation. To test this possibility, we analyzed co-localization of ΔcapB and ΔcapBCA with LAMP-1 (a phagosomal marker) and Cathepsin D (a lysosomal marker) in U937 macrophages by immunofluorescence microscopy.

As exemplified in Figures 5A,C, only a small fraction (31%) of wild type LVS were associated with LAMP-1 and the majority of LVS bacteria were found in cytosol by 2 h post-infection, suggesting successful escape of LVS from the phagosome to cytosol. In sharp contrast, the majority of ΔcapB (61%) and ΔcapBCA (72%) were found to be associated with LAMP-1 during the same infection. These LAMP-1 co-localization levels are close to that of inactivated LVS (73%). Similar to the intracellular growth data (Figure 4B), in trans complementation of ΔcapB with the wild type gene on a shuttle plasmid had marginal effect on the LAMP-1 co-localization of the mutant (Figure 5C). This finding thus suggested that ΔcapB and ΔcapBCA were severely impaired in their ability to escape from the phagosomes into cytosol.

Consistent with the co-localization of both the mutants with LAMP-1, ΔcapB (68%) and ΔcapBCA (73%) predominantly co-localized with Cathepsin D, a lysosomal marker, by 2 h post-infection (Figures 5B,C). As a positive control, only 27% of live LVS was co-localized with Cathepsin D, which is consistent with its ability to escape from the phagosome–lysosome fusion pathway. In contrast, the inactivated LVS was mostly associated with Cathepsin D (83%) in the same infection period. Similar to the result for LAMP-1 (Figure 5A), the capB complementation construct failed to restore the co-localization of ΔcapB to the level exhibited by the wild type bacteria (Figures 5B,C). We subsequently confirmed these findings in a ΔcapB mutant of F. novicida strain U112 (data not shown). These results strongly suggested that ΔcapB and ΔcapBCA are significantly impaired in their ability to arrest maturation of the phagosome.

Finally, we visualized ΔcapB and ΔcapBCA, and their sub-cellular localization in U937 macrophages by transmission electron microscopy. We focused our analysis on the 24-h time point because the morphology of the infected macrophages was no longer intact beyond this infection period. As represented in Figure 6 (indicated by arrow heads), the LVS-infected cells contained numerous bacteria that appear to be free in the cytoplasm and surrounded by an electron lucent zone. However, in addition to the free bacteria, there were large numbers of partially degraded bacteria in vacuolar-like structures in the macrophages infected with ΔcapB (strain ST1092) and ΔcapBCA (strain ST938) as indicated by asterisks in Figure 6. This type of sub-cellular structures were rarely found in the LVS-infected macrophages (data not shown). The structures containing apparently degraded bacteria were also readily detectable in the in trans complemented ΔcapB (strain ST1104), indicating that the complementation construct failed to restore the impairment in ΔcapB. These bacterium-containing vacuolar-like structures are likely phagolysosomes or autophagosomes because most of them were surrounded by an identifiable membrane. Taken together, we conclude that the capBCA genes are required for F. tularensis phagosomal escape and/or arrest of phagosomal maturation.

DISCUSSION

The F. tularensis capBCA genes are among the 95 virulence-associated genes identified in our recent STM study (Su et al., 2007). Transposon insertions in each of the capBCA genes resulted in significantly impaired growth of F. tularensis LVS in the lungs of BALB/c mice 7 days post-intranasal inoculation. In this study, we sought to understand how this gene locus contributes to...
Francisella tularensis fitness and pathogenesis. Mouse infection experiments demonstrated that the unknown function(s) provided by the capBCA genes is required for the fitness and virulence of Francisella tularensis LVS and human virulent type A strain Schu S4. This finding is consistent with the recent reports that deletion mutants in capB of LVS (Jia et al., 2010) and Schu S4 (Michell et al., 2010) are attenuated in BALB/c mice. The experiments with the LVS capBCA mutants indicated that the capBCA genes are necessary for F. tularensis growth (replication and survival) in target organs at various stages of infection. The results from macrophage infection experiments suggest that the capBCA genes enhance F. tularensis fitness and thus virulence by promoting intracellular growth of the bacterium. This conclusion is supported by significant deficiency of ΔcapB and ΔcapBCA in intracellular growth in both MH-S and U937 macrophage models.
The deficiency of the \(\text{capBCA} \) mutants in intracellular growth lies beyond the uptake (attachment/entry) phase of intracellular infection. Specifically, the \(\text{capBCA} \) locus appears to enhance the intracellular growth of \(F. \text{tularensis} \) by promoting bacterial escape from phagosomes. This notion is consistent with multiple observations in this study. \(\Delta \text{capB} \) and \(\Delta \text{capBCA} \) remained predominantly co-localized with the LAMP-1 (a phagosomal marker) and Cathepsin D (a phagolysosomal marker) in U937 macrophages by 2 h post-infection. Second, degraded bacteria were abundantly observed in vacuolar-like structures of the macrophages infected with \(\Delta \text{capB} \) and \(\Delta \text{capBCA} \). In this regard, the \(\text{capBCA} \) mutants behaved similarly to the mutants of other \(F. \text{tularensis} \) genes that are involved in phagosomal escape, most notably, the \(\text{iglABCD} \) genes located within the \(F. \text{tularensis} \) pathogenicity island (FPI; Lai et al., 2004; Nano et al., 2003; Hou et al., 2004; Larsson et al., 2005). Candela et al. (2009) recently reported the production of PGA by the \(\text{capBCA} \) locus of \(F. \text{tularensis} \). The \(\text{capBCA} \) loci of \(F. \text{tularensis} \) and \(F. \text{nucleatum} \) are highly similar in gene sequence and order. It is thus possible that the \(F. \text{tularensis} \) \(\text{capBCA} \) locus enhances the bacterial growth in macrophages and host tissues through PGA production. However, no PGA or capsule has been detected from \(F. \text{tularensis} \) in our preliminary trials (unpublished data) or previous studies (Raynaud et al., 2007; Michell et al., 2010).

The \(\text{capBCA} \) locus is highly conserved in genus \(F. \text{tularensis} \). The sequences of the \(\text{capBCA} \) coding and intergenic regions are virtually identical among \(F. \text{tularensis} \) subspecies. \(\text{tularensis} \) (type A) (Larsson et al., 2005; Beckstrom-Sternberg et al., 2007), \(\text{holarctica} \) (type B) (Chain et al., 2006; Petrocino et al., 2006; Barabote et al., 2009), and \(\text{novicida} \) (Brittnacher et al., 2007). A recent study also revealed the presence of a similar \(\text{capBCA} \) locus in \(F. \text{philomiragia} \) (Copeland et al., 2008). Like \(F. \text{tularensis} \) subspecies \(\text{novicida} \), \(F. \text{philomiragia} \) is a water-associated bacterium and less pathogenic to humans than \(F. \text{tularensis} \) subspecies \(\text{tularensis} \) and \(\text{holarctica} \) (Penn, 2005). Our infection experiments indicate that the \(\text{capBCA} \) locus is necessary for the \(\text{in vivo} \) fitness and full virulence of \(F. \text{tularensis} \) types A and B organisms. Weiss et al. (2007) also showed that the transposon mutants in the \(\text{capB} \) and \(\text{capC} \) genes of \(F. \text{tularensis} \) subspecies \(\text{novicida} \) are attenuated in a systemic infection mouse model. Considering that mammals may not be the natural reservoirs of \(F. \text{tularensis} \) (Oyston and Quarry, 2005), the uncharacterized function(s) of the \(\text{capBCA} \) locus in \(F. \text{tularensis} \) and perhaps other \(F. \text{tularensis} \) species may be evolutionarily selected for a survival advantage under non-mammalian conditions.

It is noticeable that the attenuation level of the Schu S4 \(\Delta \text{capBCA} \) mutant was significantly lower than that of the LVS counterpart in our intranasal infection model in BALB/c mice. This difference may be due to other Schu S4-specific factor(s) that might have overshadowed the impact of the \(\text{capBCA} \) locus in the mouse model. Laboratory mice are exceptionally susceptible to Schu S4 infection (Rick Lyons and Wu, 2007). Alternatively, the \(\text{capBCA} \) locus operates in a different manner at the transcriptional and/or post-transcriptional level. Lindgren et al. (2007) recently reported that a deletion in the catalase-encoding \(\text{katG} \) of \(F. \text{tularensis} \) LVS led to significant attenuation in virulence, but a similar Schu S4 \(\Delta \text{katG} \) mutant showed no attenuation in virulence. Finally, different mouse strains and routes of infection have yielded variable outcomes with the \(F. \text{tularensis} \) \(\text{capB} \) mutants in terms of virulence.
and immuno-protection. Michell et al. (2010) reported more than 100-fold attenuation with an Schu S4 capB mutant following subcutaneous inoculation of BALB/c mice, whereas no significant attenuation was observed with an independent Schu S4 capB mutant when BALB/c mice were infected by aerosol inoculation (Conlan et al., 2010). Further evaluation of the capBCA mutants in other animal models is warranted to conclusively define the contribution of this gene locus to F. tularensis infection in humans.

ACKNOWLEDGMENTS

This work was supported by the Tsinghua University Support Fund (Jing-Ren Zhang), the Chinese Universities Scientific Fund No. 2009-3-03 (Jingliang Su), Commonwealth of Kentucky Research Challenge Trust Fund (Yousef Abu-Kwaik), and NIH grants R21AI083963 (Jing-Ren Zhang), P01AI056320 (Jing-Ren Zhang), R01AI43965 (Yousef Abu-Kwaik), and R01AI069321 (Yousef Abu-Kwaik).

REFERENCES

Ahlund, M. K., Ryden, P., Sjostedt, A., and Steven, S. (2010). Directed screen of Francisella novicida virulence determinants using Droushila melanogaster. Infect. Immun. 78, 3118–3128.

Ancuta, P., Pedron, T., Girard, R., Sandstrom, G., and Chabry, R. (1996). Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun. 64, 2041–2046.

Anthony, L. S., and Kongshavn, P. A. (1987). Experimental murine tularemia caused by Francisella tularensis, live vaccine strain: a model of acquired cellular resistance. Microb. Pathog. 2, 3–14.

Anthony, L. S., Burke, R. D., and Nana, F. E. (1991). Growth of Francisella spp. in rodent macrophages. Infect. Immun. 59, 3291–3296.

Asare, R., and Abu Kwaik, Y. (2010). Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ. Microbiol. 12, 2559–2586.

Barabote, R. D., Xie, G., Brettin, T. S., Hinrichs, S. H., Fey, P. D., Jay, J. J., Engle, J. L., Godbole, S. D., Noronha, J. M., Scheuermann, R. H., Zhou, L. W., Lion, C., and Dempsey, M. P. (2009). Complete genome sequence of Francisella tularensis subspecies holarctica FTN002:00. PLoS One 4, e7041. doi: 10.1371/journal.pone.0007041

Barker, J. R., and Klose, K. E. (2007). Molecular and genetic basis of pathogenesis in Francisella tularensis. Annu. N. Y. Acad. Sci. 1105, 138–159.

Baron, G. S., and Nana, F. E. (1998). MglA and MgbB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 29, 247–259.

Baron, S. D., Singh, R., and Metzger, D. W. (2007). Inactivated Francisella tularensis live vaccine strain protects against respiratory tularemia by intranasal vaccination in an immunoglobulin A-dependent fashion. Infect. Immun. 75, 2152–2162.

Beckstrom-Sternberg, S. M., Auerbach, R. K., Godbole, S., Pearson, J. V., Beckstrom-Sternberg, J. S., Deng, Z., Munk, C., Kabota, K., Zhou, Y., Bruce, D., Noronha, J., Scheuermann, R. H., Wang, A., Wei, X., Wang, J., Hao, J., Wagner, D. M., Brettin, T. S., Brown, N., Gilman, P., and Kem, P. S. (2007). Complete genomic characterization of a pathogenic A.ii strain of Francisella tularensis subspecies tularensis. PLoS ONE 2, e947. doi: 10.1371/journal.pone.0000947

Bonquist, L., Lindgren, H., Golvoliv, I., Guina, T., and Sjostedt, A. (2008). MglA and Ig proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 76, 3502–3510.

Brittmacher, M., Rohmer, L., Zhou, Y., Abmayr, S., D’Argenio, D., Bovee, D., Chang, I., Chen, J., Drees, B., Ernst, R., Fong, C., Forsman, M., Gallagher, L., Gallis, B., Gillett, W., Goodlett, D., Guina, T., Guenther, D., Haugen, E., Hayden, H., Jacobs, M., Kanga, A., Larson Freeman, T., Levy, R., Lim, K., Manoll, C., Olson, M. V., Raday, M., Shaffer, S., Svensson, K., Taylor, G., Wasnick, M., Kaul, R., and Miller, A. I. (2007). Francisella tularensis subspecies novicida U112, complete genome. GenBank accession CP000439.

Buchan, B. W., McCaffrey, R. L., Zhang, J.-R., and Abu-Kwaik, Y. (2006). Polyglutamate. Environ. Microbiol. 8, 757–67. doi: 10.1111/j.1462-2920.2006.00734.x

Buckman, B. W., McCaffrey, R. L., Zhou, Y., Wasnick, M., Kaul, R., and Miller, A. (2007). Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 75, 5892–5902.

Conlan, J. W., Shen, H., Golvoliv, I., Zingmark, C., Oyston, P. C., Chen, P. S., House, R. V., and Sjostedt, A. (2009). Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacterium: effects of host background and route of immunization. Vaccine 28, 1824–1831.

Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Hammon, N., Israni, S., Dalin, E., Tice, H., Pitluck, S., Chain, P., Malfatti, S., Shin, M., Vergez, L., Schmutz, J., Larimer, F., Land, M., Hauser, L., and Richardson, P. (2008). Complete sequence of chromosome of Francisella philomiragia subsesp. philomiragia ATCC 25017. GenBank accession NC_010336.

de Bruin, O. M., Ludu, J. S., and Nano, F. E. (2007). The Francisella pathogenicity island protein IgIA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7, 1. doi: 10.1186/1471-2180-7-1

Dennis, T. D., Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Friedlander, A. M., Hauer, J., Layton, M., Millbridge, S. R., McDade, J. E., Osterholm, M. T., O’Toole, T., Parker, G., Perl, T. M., Russell, P. K., Tonat, K., and Working Group on Civilian Biodefense. (2001). Tularemia as a biological weapon: medical and public health management. JAMA 285, 2763–2773.

Duckett, N. S., Olmos, S., Durrant, D. M., and Metzger, D. W. (2005). Intranasal interleukin-12 treatment for protection against respiratory infection with the Francisella tularensis live vaccine strain. Infect. Immun. 73, 2306–2311.

Eigelsbach, H. T., Braun, W., and Herring, R. D. (1951). Studies on the variation of Bacterium tularensis. J. Bacteriol. 61, 557–569.

Eigelsbach, H. T., and Downs, C. M. (1961). Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and vaccination in the white mouse and guinea pig. J. Immunol. 87, 415–425.

Fortier, A. H., Green, S. J., Polisini, T., Jones, T. R., Crawford, R. M., Leiby, D. A., Ellis, K. L., Meltzer, M. S., and Nacy, C. A. (1994). “Life and death of an intracellular pathogen: Francisella tularensis and the macrophage,” in Macrophage–Pathogen Interactions, eds B S. Zwillling and T. K. Eisenstein (New York: Marcel Dekker, Inc.), 349–361.

Glockner, F. O., Kube, M., Bauer, M., Teeling, H., Lombardo, T., Ludwig, W., Gade, D., Beck, A., Borzym, K., Heitmann, K., Rabus, R., Schlesner, H., Amann, R., and Reinhardt R. (2003). Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. U.S.A. 100, 8298–8303.

Golvoliv, I., Baranov, V., Krocova, Z., Kovarova, H., and Sjostedt, A. (2003). An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 71, 5940–5950.
Lai, X. H., Golovilov, I., and Sjostedt, A. (2001). Francisella tularensis induces cytotoxicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69, 4691–4694.

Lai, X. H., Golovilov, I., and Sjostedt, A. (2004). Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb. Pathog. 37, 225–230.

Lai, X. H., and Sjostedt, A. (2003). Definitional of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 71, 4642–4646.

LaSarre, P., Ostyon, P. C., Chain, P., Chu, M. C., Duffield, M., Fuxelius, H. H., Garcia, E., Halltorp, G., Johansson, D., Isherwood, K. E., Karp, F. D., LaSarre, E., Liu, Y., Michell, S., Prior, J., Prior, R., Moliner, S., Nøst, Å., Nosson, J., Thompson, N., Vergez, L., Wag, J. K., Wren, B. W., Lindler, L. E., Andersen, S. S., Forssman, M., and Tibball, R. W. (2005). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 37, 153–159.

Lindgren, H., Shen, H., Zingmark, C., Golovilov, I., Conlan, W., and Sjostedt, A. (2009). Identification of genes contributing to the virulence of Francisella tularensis S4 in mice. A journal intradental infection model. PLoS ONE 4, e5463. doi: 10.1371/journal.pone.0005463

Kapralov, V., Anderson, L., Ivanova, N., Reznik, G., Los, T., Lykidis, A., Bhattacharya, A., Bartman, A., Gardner, W., Grechkin, G., Zhu, L., Vairavan, O., Chu, L., Kogan, Y., Chaga, O., Golovilov, I., Sjostedt, A., Qin, A., and Mann, B. J. (2006). Unique attenuated strain that protects mice against F. tularensis challenge. Infect. Immun. 78, 4341–4355.

Kadzahev, K., Zingmark, C., Golovilov, I., Bolanoski, M., Shen, H., Conlan, W., and Sjostedt, A. (2009). Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS ONE 4, e5463. doi: 10.1371/journal.pone.0005463

Kapralov, V., Anderson, L., Ivanova, N., Reznik, G., Los, T., Lykidis, A., Bhattacharya, A., Bartman, A., Gardner, W., Grechkin, G., Zhu, L., Vairavan, O., Chu, L., Kogan, Y., Chaga, O., Golovilov, I., Sjostedt, A., Qin, A., and Mann, B. J. (2006). Unique attenuated strain that protects mice against F. tularensis challenge. Infect. Immun. 78, 4341–4355.
Su, J., Yang, J., Zhao, D., Kawula, T. H., Banas, J. A., and Zhang, J.-R. (2007). Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun. 75, 3089–3101.

Sun, K., Johansen, F. E., Eckmann, L., and Metzger, D. W. (2004). An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J. Immunol. 173, 4576–4581.

Troy, F. A. (1973). Chemistry and biosynthesis of the poly(-d-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J. Biol. Chem. 248, 316–324.

Weiss, D. S., Brotcke, A., Henry, T., Margolis, J. J., Chan, K., and Monack, D. M. (2007). In vivo negative selection screen identifies genes required for Francisella virulence. Proc. Natl. Acad. Sci. U.S.A. 104, 6037–6042.

Wilson, C. B., Tsai, V., and Remington, J. S. (1980). Failure to trigger the oxidative metabolic burst by normal macrophages. Possible mechanism for survival of intracellular pathogens. J. Exp. Med. 151, 328–346.

Zhang, J.-R., Hardham, J. M., Barbour, A. G., and Norris, S. J. (1997). Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 December 2010; accepted: 07 April 2011; published online: 25 April 2011.
APPENDIX

Figure A1 | **In vivo growth of the *F. tularensis* ΔcapB mutants in the livers (A) and spleens (B) of BALB/c mice.** BALB/c mice were infected individually with LVS (4,500 CFUs), ST1092 (5,100 CFUs), or ST1104 (4,800 CFUs) by intranasal inoculation. Bacterial levels in the livers and spleens were assessed at day 7 as in Figure 3.