AHP validated literature review of forgery type dependent passive image forgery detection with explainable AI

Kalyani Kadam¹, Swati Ahirrao², Ketan Kotecha³
¹,²Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
³Head SCAAI, Symbiosis International (Deemed University), India

ABSTRACT
Nowadays, a lot of significance is given to what we read today: newspapers, magazines, news channels, and internet media, such as leading social networking sites like Facebook, Instagram, and Twitter. These are the primary wellsprings of phony news and are frequently utilized in malignant manners, for example, for horde incitement. In the recent decade, a tremendous increase in image information generation is happening due to the massive use of social networking services. Various image editing software like Skylum Luminar, Corel PaintShop Pro, Adobe Photoshop, and many others are used to create, modify the images and videos, are significant concerns. A lot of earlier work of forgery detection was focused on traditional methods to solve the forgery detection. Recently, Deep learning algorithms have accomplished high-performance accuracies in the image processing domain, such as image classification and face recognition. Experts have applied deep learning techniques to detect a forgery in the image too. However, there is a real need to explain why the image is categorized under forged to understand the algorithm’s validity; this explanation helps in mission-critical applications like forensic. Explainable AI (XAI) algorithms have been used to interpret a black box’s decision in various cases. This paper contributes a survey on image forgery detection with deep learning approaches. It also focuses on the survey of explainable AI for images.

Keywords: Deep learning, Explainable AI, Image forgery detection, Image splicing

This is an open access article under the CC BY-SA license.

Corresponding Author:
Kalyani Dhananjay Kadam
Symbiosis Institute of Technology
Symbiosis International (Deemed University), Pune, India
Email: kalyanik@sitpune.edu.in

1. INTRODUCTION
Images are used in almost every field, such as medical systems, glamor, courts, military, and industries, and social networking platforms such as Instagram, Facebook, and so on over the internet [1]. Regardless of whether it is the space shuttle exploding during launch, a man strolling on the moon, or officers raising a banner on Iwo Jima during World War II, such ground-breaking images impact the society [1]. The advancement in digital imaging software and photo-realistic graphics allows people to make images more realistic or spread alternative meanings. Images can be fused, graphically improved, and created by computers, then detecting these controlled images can be troublesome. The realness of digital images becomes an important study area for research and development. It finds it difficult for forensic experts to identify genuine and forged images. Identifying such manipulated parts performed by the faker’s manipulation operation is a significant work. Detecting the forgery in digital images is one of the challenges in the digital era. Nowadays, deep learning is gaining more attention due to its significant results. Deep
Learning algorithms have achieved high accuracy, but offering drawbacks, as the important features cannot be interpreted with the numbers which are given by deep learning model. The semantics is also not added. These networks are giving a higher performance without the understanding of its inside working. Black box issues are nothing but investigating the inner working of a deep learning model and interpreting why it delivered a given yield. These problems become more critical when these networks are used in real-life applications such as medical diagnosis or forensic. Explainable AI explains the decisions of a network. In computer vision, visualization networks provide fascinating ways to visualize the image’s essential features, interpreting the image. In this case, the input data is the image, and image interpretation is performed using heat maps. Heat maps give the most significant input data areas for the interpretation. It allows the user to understand which image pixels are associated with the expected class, and it also checks whether the deep learning model focuses on the image’s reasonable area. Figure 1 shows the mind map of the article. The article is mainly divided into digital image forgery detection, keyword analysis using various tools, deep learning for handling forgery type-dependent forgeries, AHP model for image forgery detection, and explainable AI.

Figure 1. Workflow of passive image forgery detection with a focus on explainable AI

2. DIGITAL IMAGE FORGERY DETECTION

Image forgery detection is classified into two approaches [1]: passive or blind and active approach. Various types of image forgeries are shown in Figure 2.

Figure 2. Digital image forgery detection
2.1. Active approach

In this approach, a computerized signature or watermark is injected in an image, and that is inserted either by an individual or by the acquisition device. Digital watermarking inserts particular information known as a message digest inside the image while capturing it. This information is then taken out from the image at later phases to get its authenticity. This extricated information is checked to see if it varies or not; if it changes, it shows that the image was altered after the image capturing procedure. It is a two-phase process, in the first phase, the message-digest is embedded in the image. In the second phase, i.e., after reaching the image to its destination, the message digest is retrieved and compared with the obtained watermark [1]. Digital watermarking is an effective method to secure the image trustworthiness; however, different difficulties make its utilization unrealistic. Few cameras and gadgets have the property to insert watermark in the image at the time of creation. Some types of equipment, e.g., Canon EOS-1D, Nikon D2Xs, have embedding features but are overpriced. The disadvantage is that this method cannot differentiate legitimate and invalid operations in the image. Legitimate operations are performed for improving image quality, such as sharpening, contrast improvement, and so on. In the case of watermarking special software or hardware is needed to insert message digest in an image. Image forgery is identified with statistical information. This is done by dividing the image into similar region characteristics; after this, statistical measures such as mean, mode, median, and range of pixel values are inserted in the image with an encryption method [1]. Then this information is verified to check its authenticity.

2.2. Passive approach

Passive methodologies [1] uses statistical information of the image to detect forgeries in an image. These methods work without earlier information about the image, for example, digital watermarks or signatures. This method uses the existing image, and the image’s manipulation operation changes its properties. It will make the image inconsistent, and thus the statistical image information is used for forgery identification. It is further classified into forgery type independent and dependent.

2.2.1. Forgery type independent

These techniques are used to identify the forgeries based on artifact clues left during retouching and lighting conditions [1]. This type of forgery uses statistical data of the image, and such invisible information is misused in different image handling activities, e.g., jpeg confining, image filtering, contrast improvements, and resampling. The resampling process changes the image by performing upsampling and downsampling operations and tools handling such forgeries works on either pixel or frequency domain. The median filtering tool is mostly used for noise elimination and image improvement. These methods give excellent performance, while the images are uncompressed and large. Commonly, the images are compressed with the JPEG compression strategy. The main goal of JPEG-based forgery identification techniques is to find out the locations of images with different JPEG compression locations.

- Forgery type dependent
 - This type of forgery focuses only on specific kinds of forgeries such as copy move and image splicing; these are gaining more attention as they are commonly performed manipulations on the image.
 - Copy move
 - This type of forgery copies part of the image and pasted into the same image at another region, which entirely changes its meaning. This is usually done to make an object “disappear” from the image by hiding it with a segment copied from another part of the image. This kind of forgery is very easy to perform, but it is very hard to detect as the copied section comes from the same image. Its different properties, such as shade palette, noise component, and other characteristics, are suitable to the rest of the image, which will not be recognized via the same methods that find inconsistencies in statistical measures in another portion of the image.
 - Figures 3 and 4 show that numerous papers are published in this exploration area from various countries. Data analysis is performed by using queries such as ‘copy move forgery’ and ‘copy move forgery detection using deep learning’ on IEEE (ieeexplore.org), Scopus (scopus.com), WOS (web of science), and ACM databases. The duration from 2001 to 2020 is considered for getting the result. Three different steps are performed for copy move forgery detection (CMFD): separating the image into blocks (overlying/non-overlying), executing the image property extraction technique on each block, comparison of features. In CMFD methods [1], the principal objective is to compare the portions inside an image and recognize the replicated and the original region.
 - Image splicing
 - Image compositing or splicing joins more than two images to create a forged image. It can be done by various software tools such as Adobe Photoshop, and Coral PaintShop. The copy move detection methods cannot be used in splicing as it works on multiple images; the manipulated part of the image has distinct properties compared with the rest of the image. This method uses numerous properties such as DCT and
DWT coefficients, Bi-coherence properties, camera response operation, and invariant image moments. The splicing methods consider the gadgets inborn properties instead of capturing the gadget’s actual attributes. Figures 5 and 6 show that numerous papers are published in this exploration area from various countries. Data analysis is performed by using queries such as ‘image splicing’ and ‘image splicing detection using deep learning’ on IEEE (ieeexplore.org), Scopus(scopus.com), WOS(Web of Science), and ACM. The duration from 2001 to 2020 is considered for getting the result.

Figure 3. Last 19 years of publication data for ‘copy move forgery’ in scopus, IEEE, WOS (web of science), and ACM

Figure 4. Past 19 years publication count for ‘copy move forgery detection using deep learning’ in Scopus, IEEE, WOS (web of science), and ACM

Figure 5. Past 19 years of the publication information for ‘image splicing’ in Scopus, IEEE, WOS (web of Science), and ACM

Figure 6. Last 19 years of publication information on ‘image splicing detection using deep learning’ in Scopus, IEEE, WOS (web of science), and ACM

3. KEYWORD ANALYSIS USING WORD CLOUD, SCIENSCAPE AND LEXIMANCER TOOL

Figures 7-9 indicate the top 3 paper’s word clouds in a deep learning approach for image forgery detection and explainable AI [2]. Word cloud highlights important words in this research field. The words with smaller fonts are an indication of future research. All the word clouds are drawn from www.wordclouds.com. Important words are copy move, splicing, deep learning, forgery detection, localization of forgery, segmentation, classification, visualization, explainable, and XAI. Less important words are image tampering detection, tampered, manipulation, blocks, and. Figures 10 and 11 are drawn with the ScienScape tool, which shows the top keywords per year from Scopus and the WOS database. In Figure 12, the thematic graph drawn using the Leximancer tool uses a machine learning technique that finds the relation between different author keywords.
AHP validated literature review of forgery type dependent passive image forgery... (Kalyani Kadam)
4. DEEP LEARNING APPROACH FOR COPY MOVE AND IMAGE SPLICING FORGERY DETECTION

ConvNets or convolutional neural networks (CNNs) [3] is one of the main categories for image recognition and classifications in neural networks. Face recognition, and detection of objects in an image are some of the fields where CNNs are extensively used. CNN is useful for retrieving meaningful features for image classification. This model [3] uses CNN for identifying copy move and image splicing forgery in an image. This network is pretrained with the help of labeled images from the training image dataset. The same
AHP validated literature review of forgery type dependent passive image forgery... (Kalyani Kadam)
5. ANALYTICAL HIERARCHICAL PROCESSING (AHP) MODEL FOR IMAGE FORGERY DETECTION

Analytical Hierarchical Process is a multi-criteria decision-making mathematical technique. It helps to make associations among qualitative and quantitative attributes and is almost used in every area. In this paper, the AHP calculation is done by using an online tool (https://bpmsg.com/ahp/). This process follows five steps, which are given below: i) Hierarchy modeling. ii) Priorities establishment; iii) Decision related to overall priorities of hierarchy; iv) Checking consistency; and v) Judgment preparation.

In AHP, numerical ranking [17] ranging from 1 to 9 compares attributes at various levels in the hierarchy by considering alternatives. Figure 2 decides different levels of decisions for the analytical hierarchy process of digital image forgery detection. Literature shows that passive image forgery detection is more significant than the active approach; therefore, in level 1 passive approach is used to make a decision. After looking at hierarchy modeling, Tables 1-3 indicates prioritizing attributes for performing AHP on image forgery. The color code in columns P and Q of Table 1-3 shows the number of comparisons that must be made between P and Q. By establishing relevance with scale (1-9), the yellow color indicates significance among the compared attributes. Table 4-6 show consistency checks for considered levels of a first and second set of important image forgery detection attributes. These tables show the priority and rank of a group of important attributes, with the highest priority indicating the most important attribute.

In the second level, the forgery type-dependent technique is considered. Literature shows that these forgeries emphases only on particular types of forgeries, and these are obtaining more recognition as they are frequently performed manipulations in the image. Figures 13-15 show rank levels 1, 2 and 3, respectively. Figure 16 summarizes the AHP implementation result for the undertaken research problem, which gives significant attributes at every level.

Table 1. Formulation of priorities for level 1(types of forgery detection such as active and passive approach)-first set of significant attributes for image forgery detection (1 comparison)

First set of attributes	Equally important	How much important?
	P	Q
Passive Approach	1	1
Active Approach	2	2
	3	3
	4	4
	5	5
	6	6
	7	7
	8	8
	9	9

Table 2. Consistency check for level 1-the first set of significant attributes for image forgery detection

Consistency check for level 1-the first set of significant attributes	Priority	Rank
Passive Approach	83.3%	1
Active Approach	16.7%	2
Comparisons	1	1
Consistency check	0.0%	1

Table 3. Formulation of priorities for level 2 (types of passive forgery detection such as forgery type-dependent and forgery type independent)-the second set of significant attributes for image forgery detection (1 comparison)

Second set of attributes	Equally important	How much important?
	P	Q
Forgery type dependent	1	1
Forgery type independent	2	2
	3	3
	4	4
	5	5
	6	6
	7	7
	8	8
	9	9

Table 4. Consistency checking for level 2-the second set of significant attributes for image forgery detection (1 comparison)

Consistency check for level 2-the second set of significant attributes	Priority	Rank
Forgery type dependent	87.5%	1
Forgery type independent	12.5%	2
Comparisons	1	1
Consistency check	0.0%	1

In the third level, equal priorities are given to both copy move and splicing.
Table 5. Formulation of priorities for level 3 (types of forgery type-dependent such as copy move and splicing)-the third set of significant attributes for image forgery detection (1 comparison)

Third set of attributes	Equally important	How much important?
	P	Q
copy move	1	
splicing		

Table 6. Consistency checking for level 3-the third set of significant attributes for image forgery detection (1 comparison)

Consistency check for level 3-the third set of significant attributes	+	-	1	2		
Priority	Rank					
Copy move	50.0%	1	0.0%	0.0%	1	1.00
Splicing	50.0%	1	0.0%	0.0%	1	1.00
Comparisons	1					
Consistency check	0.0%					
Equally important		Eigen vector solution	1	iterations, delta	0.0E+0	
Principal eigenvalue			2.000			

Figure 13. Rank level 1-the first set of significant attributes for image forgery detection

Figure 14. Rank level 2-the second set of significant attributes for image forgery detection
Figure 15. Rank level 3—the third set of significant attributes for image forgery detection

Figure 16. Summarization of AHP implementation result for the undertaken research problem

6. LITERATURE SURVEY ON EXPLAINABLE AI

Machine Learning is frequently used in research and development and, mainly through Deep Learning and neural network achievement. Nowadays, machine learning networks are overgrowing for making predictions in critical contexts; different AI stakeholders require transparency in predictions [18]. This is achieved by utilizing interpretable networks or growing new strategies and using a local approximation for interpretation. XAI helps the clients to understand and trust a network using various interpretable networks.

AI exhibited to be important in discovering new uses for existing drugs, detecting cancer in tissues, distinguishing heart arrhythmia, and anticipating hypoglycemia in people with diabetes at an earlier time than that of the clinical industry. Machine Learning, Artificial Intelligence, Neural Networks, and Deep Learning models have recently shown their medical field performance, but justifications assisting the outputs of a network remain significant, e.g., in the precision medicine field. Deep Learning is also used in other domains, e.g., self-directed vehicles in transport systems, safety, and economics. Humans using these networks must be trustworthy, interpretable, and tractable. Numerous research and development papers show that XAI has
become an essential field in machine learning, which proposed various procedures and systems that specify understandability in various fields.

6.1. XAI in deep learning

Numerous work is presently done in the explainable AI area, but several difficulties exist in explaining deep learning networks. The difficulties such as different challenges in feature selection, feature significance, and visualization methods. There is no consistency in heatmaps, saliency maps and masks, neuron stimulations, and other techniques similar to visualization methods.

This network [19] is practically a simple network based on the convolutional decomposition of images under a sparsity check, and this is an unsupervised approach. This method learns rich feature sets by developing a hierarchy of such decompositions. Applying this model to the natural image generates different sets of filters that capture the edge primitives such as parallel edges, edge connections, parallel lines, curves, and basic geometric shapes and high-order image structures. This does not require settings of different parameters of CNN models such as max-pooling, local contrast normalization. This work [20] presents two visualization methods for deep classification ConvNets. The first visualization method produces an image, which is illustrative of a class of interest. The second method calculates a saliency map, specifically for a given image. It also generates a class, highlighting the areas of the given image. Such a saliency map can be utilized to initialize GraphCut based object segmentation without the need to train devoted segmentation or detection networks. In the future, this method plans to incorporate the image’s explicit saliency maps into the learning process in a more principled way. This method [21] generates sharper visualizations of colorful image regions than the earlier methods specified in literature and can be utilized even in a lack of maxima in max-pooling regions. This work [22] combines bottom-up and two top-down attention. In the object level attention, various patches are given to the system, which selects significant patches to a particular object. The part level attention focuses mainly on local discriminate patterns. This method combines these attentions to train domain-specific deep networks. This technique [23] explored large convolutional neural networks trained for image classification using different ways. This network gives a way to visualize the internal representation of a network. This helps to identify the problems within the network. In this paper, a series of occlusion experiments are conducted for image classification problems, which shows the local structure is more sensitive than its broad scene. In [24], the authors proposed a method that shows single pixels’ visualization using a heatmap in result prediction. In this, a layer-wise relevance propagation (LRP) method is used, which depends on a Taylor series to estimate the point rather than partial derivatives to estimate that point. This paper [25] performs a sensitivity study of one layer CNN that determines different network components affecting its performance. It aims to differentiate between essential and reasonably inconsequential design decisions for sentence classification.

The technique used in this paper [26] can invert images represented in HOG format. This technique shows that few layers in CNNs hold photographically the same data of the image through geometrical and photometric invariance steps. This technique shows that continuously increasingly invariant and abstract information of an image is visible in the model. This method [27] utilized the CNN-LSTM model for the generation of image captions. In this technique for capturing multiple objects inside an image, features are extracted from the lower convolutional layers. Thus, multiple features represent a single image at different localities. The LSTM is trained with features that are extracted from images from various localities. LSTM generates word, and this process is repeated for k-times for creating K-words for image caption.

In this paper, layer-wise relevance propagation (LRP) [28] technique is compared with deep convolutional neural networks and fisher vector classifiers. LPP technique is used for calculating results for a single part of a given image, signifying its impact on the estimation of the classifier for one particular assessment point. Gradient-weighted class activation mapping (Grad-CAM) offers a new way to recognize any CNN-based model. Deep neural networks (DNN) show various pattern recognition tasks, particularly in vision classification problems. DNNs [29] performance is improved by understanding the brain’s internal working. One such method for enhancing DNN is an activation maximization, which works on the principle of neuron’s activation for recognizing any image. Activation maximization is improved by using deep generator network (DGN). This algorithm produces synthetic images that look almost real. Secondly, it discloses the features learned by every neuron in an interpretable way. Thirdly it generalizes to new datasets. And lastly, it tends to be considered as a high-quality generative technique. The proposed network [30] emphasizes the object’s selective features and predicts a class label suitable for that particular image. This method provides a loss function, which generates a collection of meaningful words with the help of global sentence property such as class specificity.

This paper [31] proposed a method that stacks various attention modules. The advantage of this method is that distinct attention modules hold various types of attention for feature learning. Future work focuses on detection and segmentation areas. This paper [32] shows two ways to clarify deep learning
networks. The first way focuses on the sensitivity estimation based on the variations in the input. The second way expressively divides the decision based on the given input. The future work will study the hypothetical establishments of interpretability. It also focuses on the relationship between generalizability, compactness, and interpretability. This method [33] involves three steps; in the first step global-and-local attention (GALA) module is utilized for learning combinations of local saliency and global relevance variations in feedforward neural networks. GALA adjusts input feature maps with an attention mask of a similar dimension as the input. Secondly, a vast scale online analysis was defined to enhance ImageNet. Lastly, identification accuracy is improved by humans. Humans can administer attention and only concentrate on the visual features that people favor object identification. This paper uses a technique that endeavors to highlight conditions between successive layers in a CNN to get discriminative pixel areas that control its prediction. In this technique, CNNs are trained for different computer vision undertakings (for example, image captioning and image identification) can reliably confine the objects in an image with minimal extra calculations compared to gradient-based techniques. This method can be used across various types of networks and different data or information modalities.

7. CONCLUSION

In this paper, the survey on image forgeries with the deep learning approach is presented. It also focuses on the survey of XAI for images. Literature shows deep learning frameworks have higher performance accuracy, but the results are not interpretable because of which there is a need for techniques that interpret decisions either in visual format or in workings. The explainable artificial intelligence survey focuses on various types of XAI techniques in deep learning frameworks that help to interpret the decision. For image forgery detection, three different databases, namely Scopus, Web of Science, and ACM Digital Library, have been used, which shows the number of papers published in this area from various countries. Keyword analysis for image forgery detection is done with the help of various tools such as word cloud, Sciencescape. The thematic graph using the Leximancer tool studies relationship between different author keywords. The words with smaller fonts indicate future research in forgery detection and explainable AI in word cloud figures. The figures drawn with the Sciencescape tool’s help provide top keywords per year in forgery detection. The AHP model is carried out on digital image forgery detection at multiple levels. The digital image forgery detection AHP model is based on existing literature. This survey can be used by various research scholars, technologists, and experts working in multiple fields where image and interpretation have more significance. Till date, no research paper considered the combined scenario of image forgery with explainable AI; this is the key aspect of this research paper.

REFERENCES

[1] S. Walia and K. Kumar, “Digital image forgery detection: a systematic scrutiny,” Australian Journal of Forensic Sciences, vol. 51, no. 5, pp. 488-526, 2019, doi: 10.1080/00450618.2018.1424241.
[2] K. D. Kadam, S. A. Ahirrao, and K. Kotecha,” Bibliometric Analysis of Passive Image Forgery Detection and Explainable AI,” DigitalCommons @ University of Nebraska-Lincoln, 2020
[3] Y. Rao and J. Ni, “A deep learning approach to detection of splicing and copy-move forgeries in images,” 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, United Arab Emirates, 2016, pp. 1-6, doi: 10.1109/WIFS.2016.7823911.
[4] Y. Zhang, J. Goh, L. L. Win, and V. Thing, “Image region forgery detection: A deep learning approach,” Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016, vol. 14, 2016, pp. 1-11.
[5] L. Bondi, S. Lameri, D. Guera, P. Bestagini, E. J. Delp, and S. Tubaro, “Tampering Detection and Localization Through Clustering of Camera-Based CNN Features,” 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 2017, pp. 1855-1864, doi: 10.1109/CVPRW.2017.232.
[6] J. Bunk, J. H. Batty, T. M. Mohammed, L. Nataraj, A. Flenner, B.S. Manjunath et al., “Detection and Localization of Image Forgeries Using Resampling Features and Deep Learning,” 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 2017, pp. 1881-1889, doi: 10.1109/CVPRW.2017.235.
[7] N. Huang, J. He, and N. Zhu, “A Novel Method for Detecting Image Forgery Based on Convolutional Neural Network,” 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 2018, pp. 1702-1705, doi: 10.1109/TrustCom/BigDataSE.2018.00255.
[8] X. Zhu, Y. Qian, X. Zhao, B. Sun, and Y. Sun, “A deep learning approach to patch-based image inpainting forensics,” Signal Processing: Image Communication, vol. 67, pp. 90-99, 2018, doi: 10.1016/j.image.2018.05.015.
[9] T. Pomari, G. Ruppert, E. Rezende, A. Rocha and T. Carvalho, “Image Splicing Detection Through Illumination Inconsistencies and Deep Learning,” 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 3788-3792, doi: 10.1109/ICIP.2018.8451227.
[10] R. Salloum, Y. Ren, and C. C. Jay Kuo, “Image Splicing Localization using a Multi-task Fully Convolutional Network (MFCN),” Journal of Visual Communication and Image Representation, vol. 51, pp. 201-209, 2018, doi: 10.1016/j.jvcir.2018.01.010.

[11] L. Liu, Y. Zhao, R. Ni, and Q. Tian, “Copy-move forgery localization using convolutional neural networks and CFA features,” International Journal of Digital Crime and Forensics, vol. 10, no. 4, pp. 140-155, 2018, doi: 10.4018/IJDCF.2018100110.

[12] P. Zhou, X. Han, V. I. Moraru, and L. S. Davis, “Learning Rich Features for Image Manipulation Detection,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 1053-1061, doi: 10.1109/CVPR.2018.00116.

[13] B. Liu and C. M. Pun, “Locating splicing forgery by fully convolutional networks and conditional random field,” Signal Processing: Image Communication, vol. 66, pp. 103-112, 2018, doi: 10.1016/j.image.2018.04.011.

[14] J. H. Bappy, C. Simons, L. Nataraj, B. S. Manjunath, and A. K. Roy-Chowdhury, “Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3286-3300, 2019, doi: 10.1109/TIP.2019.2895466.

[15] X. Wang, H. Wang, S. Niu, and J. Zhang, “Detection and localization of image forgeries using improved mask regional convolutional neural network,” Mathematical Biosciences and Engineering, vol. 16, no. 5, pp. 4581-4593, 2019 doi: 10.3934/mbe.2019229.

[16] J. Zhang, Y. Li, S. Niu, Z. Cao, and X. Wang, “Improved Fully Convolutional Network for Digital Image Region Forgery Detection,” Computers, Materials and Structures, vol. 58, no. 2, pp. 287-303, 2019, doi: 10.32604/cms.2019.05353.

[17] T. L. Saaty, “What Is The Analytic Hierarchy Process?,” Mathematical Models for Decision Support, vol. 48, pp. 109-121, 1988.

[18] A. Preece, D. Harborne, D. Braines, and R. Tomsett, “Stakeholders in Explainable AI,” arXiv:1810.00184v1, pp. 1-6, 2016.

[19] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional Networks,” 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 2528-2535, doi: 10.1109/CVPR.2010.5599957.

[20] K. Simonyan, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps,” arXiv:1312.6034v2, pp. 1-8, 2013.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving For Simplicity: The All convolutional Net,” arXiv:1412.6806, pp. 1-14, 2015.

[22] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 842-850, doi: 10.1109/CVPR.2015.7298685.

[23] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” European Conference on Computer Vision-ECCV 2014, vol. 8689, 2014, pp. 818-833.

[24] S. Bach, A. Binder, G. Montavon, and F. Klauschen, “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation,” Plos One, vol. 10, no. 7, 2015, Art. No. e0130140, doi: 10.1371/journal.pone.0130140.

[25] B. C. Wallace, Ye Zhang, “A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification,” arXiv:1510.01820, 2014.

[26] A. Mahendran and A. Vedaldi, “Understanding Deep Image Representations by Inverting Them,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 5188-5196, doi: 10.1109/CVPR.2015.7299155.

[27] K. Xu, A. Courville, R. S. Zemel, and Y. Bengio, “Show, Attend and Tell : Neural Image Caption Generation with Visual Attention,” ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, 2015, pp. 2048-2057.

[28] F. Heinrich, “Controlling Explanatory Heatmap Resolution And Semantics Via,” arXiv:1603.06463, 2016.

[29] J. Clune, J. Yosinski, and T. Brox, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016, pp. 1-29, 2016.

[30] L. A. Hendricks and J. Donahue, “Generating Visual Explanations,” Conference: European Conference of Computer Vision: Amsterdam, NL, 2016, doi: 10.1007/978-3-319-46893-0_1.

[31] F. Wang Mengqin Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang, “Residual Attention Network for Image Classification,” CVF, no. 1, pp. 3156-3164, 2017.

[32] W. Samek, T. Wiegand, K. -R. Muller, “Explainable Artificial Intelligence: Understanding, visualizing and interpreting deep learning models,” ITU Journal: ICT Discoveries, no. 1, pp. 39-48, 2017.

[33] D. Linsley, D. Shiebler, S. Eberhardt, and T. Serre, “Global-and-local attention networks for visual recognition,” A Conference Paper at ICLR 2019, 2019, pp. 1-21.