Nuclear Factor Kappa-B Signaling Is Integral to Ocular Neovascularization in Ischemia-Independent Microenvironment

Michael DeNiro¹, Futwan A. Al-Mohanna¹,²

¹ Dept. of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia, ²Al-Faisal University, Riyadh, Saudi Arabia

Abstract

Retinal ischemia promotes the upregulation of VEGF expression and accounts for most pathological features of retinal neovascularization (NV). Paradoxically, VEGF remains the pivotal stimulator of ocular NV, despite the absence of ischemia. Therefore, the central question arises as to how the various molecular mechanisms interplay in ischemia-independent NV. It’s been suggested that NFκB plays a crucial role in the pathogenesis of diabetic vasculopathies. Here, we dissected the molecular mechanism of ocular NV in the rho/VEGF transgenic mouse model, which develops subretinal NV in ischemia-independent microenvironment. Furthermore, we examined whether intravitreal administration of YC-1, a HIF-1 inhibitor, can modulate the activation of NFκB and its downstream angiogenic signaling in the mouse retina. We demonstrated that YC-1 inhibited retinal NFκB/p65 DNA binding activity and downregulated NFκB/p65, FAK, z58,1, EPO, ET-1, and MMP-9 expression at the message and the protein levels. In addition, YC-1 significantly inhibited subretinal NV by reducing the number of neovascular lesions, the area of each lesion and the total area of NV per retina. We further investigated the influence of VEGF signaling pathway on HIF-1α transcriptional activity to substantiate that this mouse model develops subretinal NV in an ischemia-independent microenvironment. Our data demonstrated that VEGF overexpression didn’t have any impact on HIF-1α transcriptional activity, whereas treatment with YC-1 significantly inhibited endogenous HIF-1 activity. Our study suggests that retinal NFκB transcriptional activity is pivotal to ischemia-independent mechanisms, which lead to the local activation of angiogenic cascades. Our data also indicate that the nexus between VEGF and NFκB is implicated in triggering the angiogenic cascade that promotes retinal NV. Hence, targeting the VEGF/NFκB axis may act in a negative feedback loop to suppress ocular NV. This study suggests that inhibition of NFκB activation may be a means of turning off a “master switch” responsible for initiating and perpetuating these ocular pathologies.

Introduction

Retinal neovascularization (NV) is the major cause of severe vision loss and irreversible blindness, affecting people of all ages [1]. Retinal NV is characterized by the abnormal formation of new vessels in the retina and in the vitreous [2]. In addition, angiogenic factors, such as vascular endothelial growth factor (VEGF) play a prominent role in promoting retinal NV [3]. VEGF is an ischemia-induced molecule [4,2], which acts as a major angiogenic stimulator in the signaling cascade of ischemia-induced retinal NV [5,6]. Most VEGF-based animal models have focused primarily on retinal NV, which occurs in the ischemic phase of various ocular pathologies.

Nuclear factor kappa-B (NFκB) is a heterodimeric complex of Rel family of proteins that is physically confined to the cytoplasm in unstimulated cells through the binding to inhibitor of κB (IκB) proteins [7]. In most cells the predominant form of active NFκB consists of a p65/p50 heterodimer although other homo/heterodimers also form [7]. Upon exposure of cells to growth factors such as epidermal growth factor (EGF), cytokines, interleukin-1(II-1), and tumor necrosis factor α (TNF-α), IκB is proteolytically cleaved to release its p50/p65 subunits, which undergo nuclear translocation. NFκB binds to a specific DNA response element; (5′-GGGPyNNPyPyCC-3′), in the promoter regions of target genes, and activates their transcription [8]. It has been indicated that VEGF activates NFκB signaling pathway, which ultimately triggers the elevation of various pro-angiogenic mediators that contribute to the development and progression of retinal microvasculopathies. We have previously demonstrated the molecular link between VEGF and NFκB under a hypoxia-independent microenvironment in vitro [9].

YC-1 [(3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole); a small molecule inhibitor of HIF-1, which activates soluble guanylyl cyclase (sGC) independently of nitric oxide (NO) in vivo [10]. Previously, it has been indicated that YC-1 attenuates NFκB signaling and the angiogenesis signaling cascade in different cell types [11,9]. Here we extend our in vitro findings to an in vivo model and investigate the mechanism of ocular NV under ischemia-independent microenvironment. We have further examined the influence of YC-1 on the inhibition of subretinal NV in the Rhodopsin/VEGF (rho/VEGF) transgenic mouse model, which represents an ischemia-independent model of ocular NV.
[12,13]. Rho/VEGF mouse contains the VEGF gene that is placed under the regulation of the rhodopsin promoter, and therefore, it manifests an inducible expression of VEGF in the retinal photoreceptors that inflicts severe subretinal NV within the retina and traction retinal detachment [14].

Materials and Methods

Ethics Statement

All experiments were conducted in compliance with the laws and the regulations of the Kingdom of Saudi Arabia. All animal protocols were approved by the Institutional Review Board and conformed to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research statement of the Association for Research in Vision and Ophthalmology. In addition, this investigation was further approved by the Basic Research Committee (BRC) and the Animal Care and Use Committee (ACUC) at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. The approval ID number is “RAC # 2100 016”. This research study was also approved by the Human Ethics and the Institutional Review Board Committees (HEC/IRB), King Khaled Eye Specialist Hospital Riyadh, Saudi Arabia. The permit number/approval ID is “RP 0630-P”. All surgeries were performed while the animals were under ketamine and xylazine anesthesia, and all efforts were made to minimize suffering. All animals were treated according to the protocols that were compliant and consistent with the policies and procedures of the HEC/IRB; BRC and ACUC committees, in order to eliminate the impact of any cohort and/or uncontrolled/unexamined environmental effects.

Reagents

YC-1 was purchased from A.G. Scientific (San Diego, CA) and dissolved in sterile DMSO. SN50 (a cell-permeable peptide, known to inhibit the nuclear translocation of NFκB, and its negative control mutant peptide SN50M were obtained from Calbiochem [San Diego, CA]). Mouse monoclonal antibody that recognizes the active subunit (12H11) of RELA (Nuclear Factor kappa B (NFkB)/p65) (MAB3026) was obtained from Millipore (Billerica, MA, USA). Monoclonal rat anti-mouse Stromal Cell-Derived Factor-1 (SDF-1/CXCL12 antibody (Clone 247506) was obtained from R&D Systems (Minneapolis, MN). Goat polyclonal anti-mouse C-X-C Chemokine Receptor Type 4 (CXCR4) antibody was obtained from LifeSpan BioSciences (Seattle, WA). Monoclonal anti-mouse Focal Adhesion Kinase (FAK) Antibody was purchased from Thermo Scientific Pierce Antibodies (Rockford, IL). Anti-mouse integrin Alpha-5 Beta-1 (α5β1) monoclonal antibody was obtained from Millipore (Billerica, MA, USA). Rabbit polyclonal anti-mouse Erythropoietin (EPO) antibody was purchased from Bios Inc. (Woburn, MA). Rabbit anti-Endothelin-1 (ET-1) polyclonal antibody was purchased from Bios Inc. (Woburn, MA). Rabbit polyclonal anti-mouse Matrix Metalloproteinase-9 (MMP-9) antibody was obtained from LifeSpan BioSciences (Seattle, WA). Rabbit anti-mouse β-actin polyclonal antibody was purchased from Abcam (Cambridge, MA). Rat anti-Mouse IgG was purchased from eBioscience (San Diego, CA) and was used as an isotype control antibody for immunohistochemistry studies.

Animals and Experimental Design

C57BL/6 mice, which have been grown under ambient conditions, were used as negative controls. Whereas hemizygous rho/VEGF [line V6] transgenic mice in a C57BL/6 background (a gift of Professor Peter Campochiaro, Department of Ophthalmology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD), were used as the experimental animal model. All animals were housed and bred under pathogen-free conditions. As outlined in Fig. 1; Ocular NV was induced in rho/VEGF animals through the presence of the rhodopsin promoter, which drives the expression of VEGF in the photoreceptors, as described previously [12,13]. The rho/VEGF neonates [Tag(RHO-VEGFA)C57BL/6Camp] were genotyped by PCR and Southern blotting of tail DNA. These mice definitely develop vascular abnormalities especially in the eyes. These pathological anomalies include retinal neovascularization [12,13,14,15]. Mice were divided into four separate groups: Group I (Negative Control Group): Non-treated C57BL/6 mice (n = 15); Group II (Positive Control Group): Non-treated Rho/VEGF (n = 15); Group III (Mock-Treated Group): DMSO-treated Rho/VEGF mice (n = 15) — Mice received a sextuple regimen of intravitreous injections of DMSO (0.2%) at P6, P9, P12, P15, P18, and P21; and Group IV (Drug-Treated Group): YC-1-treated Rho/VEGF mice (n = 15) — Mice received a sextuple regimen of intravitreous injections of 3 μl of YC-1 (100 μM) at P6, P9, P12, P15, P18, and P21 (Fig. 1). For selective experiments that required the quantification of NFκB DNA binding activity and/or the measurements of NFκB expression at the message and the protein levels, two additional groups of mice were added to the experimental design; Group V (SN50-Treated Group): SN50-treated Rho/VEGF mice (n = 15) — Mice received a sextuple regimen of intravitreous injections of the NFκB competitive inhibitor peptide SN50 (20 μM) at P6, P9, P12, P15, P18, and P21 (Fig. 1). Whereas, Group VI (SN50M-Treated Group) — SN50M-treated Rho/VEGF mice (n = 15), received a sextuple regimen of intravitreous injections of the mutant control SN50M (20 μM) at P6, P9, P12, P15, P18, and P21 (Fig. 1). Animals were sacrificed at P21 and P24. At P24, the extent of subretinal NV was measured.

Retinal Fluorescein Angiography with High-Molecular-Weight Fluorescein-Dextran

After the onset of the VEGF transgene expression in rho/VEGF mice postnatal period; subgroups of mice were sacrificed, and the baseline subretinal NV was measured by image analysis at P21 and P24. The remainders of the rho/VEGF mouse colony were divided into three groups; the first group (n = 15) was left untreated. Whereas the second group (n = 15) received a sextuple regimen of intravitreous injections of DMSO (0.2%) to both eyes at P6, P9, P12, P15, P18, and P21. Mice in the third group (n = 15) were injected intravitreally with YC-1 (100 μM) to both eyes at P6, P9, P12, P15, P18, and P21 (sextuple injections). At 24 days post therapy, mice were anesthetized and perfused through the left ventricle with 2 ml of 25 mg/ml fluorescein-labeled dextran (2×10⁶ average molecular weight; Sigma, St. Louis, MO) in PBS, which was allowed to circulate for 2 min before the animals were euthanized and the eyes were enucleated and fixed for 24 h at 4°C in 4% paraformaldehyde/PBS. A dissecting microscope was used to remove the cornea and the lens, and the entire retina was carefully dissected from the eyecup, radially cut from the edge of the retina to the equator in all four quadrants, and flat-mounted in Aquamount Mounting Medium [Polysciences, Warrington, PA]. Coverslips were carefully placed over the retina, and the edges of the coverslips were sealed. The retinas were examined by fluorescence microscopy Axiosvert 135 (Carl Zeiss Micro-Imaging, Inc., Thornwood, NY) at low (50×) and higher (400×) magnification by using AxioCam digital camera (Carl Zeiss Micro-Imaging, Inc., Thornwood, NY), which provides a narrow depth of field so that when focusing on the outer edge of the retina, it will enable subretinal focus for neovascular buds on the outer surface.
of the retina, meanwhile the retinal vessels are out of focus in the background, which allows easy delineation of the subretinal NV. The outer edge of the retina, which corresponds to the subretinal space \textit{in vivo}, is easily identified and therefore from slide the focal plane was standardized.

Quantitation of NV on Flat Mounts

In rho/VEGF transgenic mouse model, subretinal NV was measured on retinal flat mounts. Retinas were mounted with photoreceptor side up and examined with low (50×) and higher (400×) magnification. Three investigators blinded to treatment group have utilized Metamorph digital image analysis software (version 7.1, Universal Imaging, Downingtown, PA) to delineate each of the lesions and quantifying the subretinal neovascular growth area per retina by: 1) calculating the number of buds of NV in each retina, 2) the area of neovascular lesion/retina, and 3) the total area of NV on the outer surface of the retina per eye. Measurements were repeated three times for each retina and the mean was used for one experimental value; there was insignificant variability among triplicate measurements.

Measurement of Activation of Retinal NFkB

Preparation of Nuclear Extracts. Eyes were enucleated from the following groups I, II, III, and IV. Nuclear extraction of retinal protein was performed as described previously. The total number of animals was 60 (n = 60), and the number of animals in each experimental group was 15 (n = 15). Briefly, retinas were removed; snap frozen and stored at -70°C. Pooled retinas were homogenized with a mechanical homogenizer in five pellet volumes of Buffer A (20 mM Tris (pH 7.6), 10 mM KCl, 0.2 mM EDTA, 20% (w/v) glycerol, 1.5 mM MgCl2, 2 mM dithiothreitol (DTT), 1 mM Na3VO4 and protease inhibitors;
value of the control. The experiments were repeated 3 times and quantified by measuring the absorbance at 450 nm. The addition of a specific primary antibody directed against HIF-1α. The total number of animals was 60 (n = 60), and the number of animals in each experimental group was 15 (n = 15). Brieﬂy, retinal extracts were collected from all mouse groups: Non-treated C57BL/6 mice; Non-treated Rho/VEGF mice; DMSO-treated Rho/VEGF mice; YC-1-treated Rho/VEGF mice; SN50-treated Rho/VEGF mice; SN50M-treated Rho/VEGF mice (n = 15), received a sextuple regimen of intravitreous injections of the mutant control SN50M at P6, P9, P12, P15, P18, and P21. Animals were sacriﬁced at P21 and P24. At P24, the extent of subretinal NV was measured. Samples were collected from 2 mg of the retinal nuclear extracts and then were incubated with an oligonucleotide containing the NF-κB consensus (5'AGGACATTCC-3') bound to a 96-well plate. After extensive washes, the NFκB complexes bound to the oligonucleotide were incubated with an antibody directed against the NFκB/p65 subunit at a dilution 1:1000. After washing, the plates were subsequently incubated with a secondary antibody conjugated to horseradish peroxidase (1:1000), and the peroxidase reaction was quantiﬁed at 450 nm with a reference wavelength of 655 nm. Results are expressed in absorbance units corrected for interference at the reference wavelength.

Quantitative of HIF-1α Transcriptional Activity

The DNA binding activity of HIF-1α was evaluated using the HIF-1α transcription factor assay kit (Cayman Chemical, Ann Arbor, MI, USA) according to the manufacturer’s instructions. The total number of animals was 60 (n = 60), and the number of animals in each experimental group was 15 (n = 15). Nuclear extracts were collected from all retinas, prepared and incubated in 96-well plates coated with immobilized double-stranded oligonucleotides containing the HIF-1α response element (5'-ACGGTG-3'). The HIF-1α transcription factor complex was detected by the addition of a specific primary antibody directed against HIF-1α, visualized by an anti-IgG horseradish peroxidase (HRP)-conjugate and quantiﬁed by measuring the absorbance at 450 nm. The DNA binding activity of HIF-1α was expressed relative to the value of the control. The experiments were repeated 3 times and similar results were obtained.

Quantitative RT-PCR

Rho/VEGF mice and littermate controls were euthanized at P24, and retinas were isolated, snap frozen, pulverized, and placed in lysis buffer. The total number of animals was 60 (n = 60), and the number of animals in each experimental group was 15 (n = 15). mRNA isolation was performed on all isolated retinas using an Easycut kit (QIAGEN, Valencia, CA). To remove any contaminating genomic DNA, RNA samples were treated with DNase I (Invitrogen, Carlsbad, CA) at room temperature for 15 min, and then cDNA was synthesized with reverse transcriptase (SuperScript III; Invitrogen) and 5 μM random hexamer. The mRNA levels for all genes (NFκB/p65, SDF-1, CXCXR4, FAK, α5, β1, EPO, ET-1, and MMP-9) were quantiﬁed by Real time RT-PCR using the SYBR Green reaction mixture (QIAGEN) with 0.5 μM primers. 2085 rRNA was used as a standard for normalization. Gene-speciﬁc primers were designed to encompass the genes of interest. Threshold cycle (Ct) values for the different samples were utilized for the calculation of gene expression fold change using the formula 2 to the minus power of delta delta ct. Fold changes in the gene expression relative to the β-actin endogenous control gene were determined by the following equation: fold change = 2^{-[(ΔC_T)]}, where change in threshold cycle (ΔC_T) = C_T (gene of interest) – C_T (β-actin) and Δ (ΔC_T) = ΔC_T (treated) – ΔC_T (untreated).

Immunohistochemistry

The total number of animals used in each experiment was 60 (n = 60), and the number of animals in each experimental group was 15 (n = 15). The total number of tissue sections that were used was 20. Each experiment was performed on 5×10 tissue sections per animal (n = 5×10). Mouse retinas were dissected and prepared for immunohistochemical analysis, ﬁxed in 4% paraformaldehyde in 0.1 M PBS for 15 min at room temperature and embedded in parafﬁn, sectioned (5 μm). Tissue sections were deparafﬁnized, hydrated, and later exposed to heat-induced antigen retrieval using a microwave oven (three 5-min cycles in citrate buﬀer, pH 6.0), endogenous peroxidase was abolished with methanol, and hydrogen peroxide and nonspeciﬁc background staining was blocked by incubating the tissue sections for 5 min in the appropriate serum block. Subsequently, all slides were washed three times in PBS, and incubated for 1 hr with primary anti-(NFκB/p65, SDF-1, CXCXR4, FAK, α5β1, EPO, ET-1, MMP-9, and β-actin) antibodies. Negative control experiments consisted of omission of the primary antibody and utilizing the appropriate isotype control antibody as a replacement. The sections were washed with TBST and incubated with EnVision Polymer HRP secondary antibody (DAKO, Carpinteria, CA) for 30 min. All slides were stained with DAB solution and counterstained with hematoxylin. Slides were cover slipped (Permount; Perkin Elmer, Fair Lawn, NJ) and examined by light microscopy. Sections were visualized under a microscope (Zeiss Axiosvert 135, Thornwood, NY), and images were acquired with digital camera (Carl Zeiss Micro-Imaging, Inc., Thornwood, NY). Mouse retinas were examined at low (30×) and high (400×) magniﬁcation objective. The staining intensity in our series ranged from a weak blush to moderate or strong. The staining intensity was further categorized as focal (<10%), patchy (10%–50%), and diffuse/multifocal (>50%). For meaningful semiquantitative analysis, focal and/or weak staining was considered equivocal staining, and patchy or diffuse/multifocal staining was subcategorized as either moderate or strong staining.

Immunohistochemical Image Analysis

Immunostaining were captured using Axiocam digital microscope camera (Carl Zeiss Micro-Imaging, Inc., Thornwood, NY). All immunohistochemical analyses were measured by Metamorph digital image software (Molecular Devices, Sunnyvale, CA). Metamorph image analysis was conducted by setting the ﬁlter with excitation wavelengths 488. Metamorph image analysis software (version 7.1, Universal Imaging, Downingtown, PA) was used for image processing and quantitative analysis of positive immunostaining. Metamorph tools were used to set the threshold and regions of interest (ROIs). All images were captured at identical time and exposure settings, and they were all processed to the same scale. Images were ﬁrst segmented on the basis of pixel intensity, which was done on a plane-by-plane basis for an image.
stack. Briefly, each retinal section was scanned into Metamorph and five (5) fields/slide were chosen from each section for analysis. One hundred and fifty (150) cells from each field were selected. The saved file was used to calibrate each image for specific pixel size. With the help of a free drawing tool, positively-stained areas were chosen and measured in total-pixels area. A threshold encompassing an intensity range of 100–250 gray-scale values was applied to the ROIs in the least brightly-stained condition first. The data were also read and investigated by Matlab v6.5 script file software, which counted the total number of pixels that were above threshold value. This number was divided by the total number of pixels in each image to yield percent fluorescent pixels. To correct for background fluorescence, the threshold was adjusted for each experimental series, with concomitantly processed negative controls as the guide for setting background fluorescence. The background fluorescence intensities per pixel were subtracted from the experimental data by using a one-step erosion procedure, and then all remaining objects were counted. The same threshold was subsequently applied to all images. Protein staining was considered to be positive only when it exceeded the established threshold. Percent of positive protein staining expression above threshold in the total area selected was then calculated. The total staining fluorescence intensity per cell was calculated, and the average fluorescence intensity per pixel was determined by dividing the total intensity by the area of the cell measured in pixels. This was followed by measuring the average fluorescence intensity in each field. Data from multiple fields as indicated over several experiments were used to obtain the final results. The number of immunopositively-stained cells per image was then expressed per μm², and the average number per section was determined among five separate fields.

Statistical Analysis

All values obtained were expressed as mean value ± SEM. Statistical analysis was performed using a one-way analysis of variance (ANOVA) and a Tukey-Kramer post hoc test for multiple comparisons. Statistical significance was defined as *P<0.05; **P<0.01; ***P<0.001.

Results

Suppression of VEGF-Induced Ocular NV by YC-1

Ocular NV was induced in rho/VEGF animals through the presence of the rhodopsin promoter, which drives the expression of VEGF in the photoreceptors region. Depending on the designated animal group, mice received a sextuple regimen of intravitreal injections of YC-1, or DMSO, or SN50, or SN50M, or they were left untreated (Fig. 1). The number of neovascular buds and total area of NV on the outer surface of the retina were quantified by Metamorph digital imaging analysis, with three investigators masked with respect to treatment group. Retinas from group I mice (n = 15; P21 and P24) exhibited normal and healthy vascularization and without the presence of any lesions of ocular NV (Fig. 2 and Fig. 3A, B and C). Since there were no significant differences in retinal NV between P21 and P24, we have therefore selected P24 as the baseline for all ensuing measurements. Retinas from DMSO-treated mice (n = 15; P24) had numerous buds of NV (110.2 ± 5.4) which was comparable to retinas from the transgenic rho/VEGF mouse group (Fig. 2 and Fig. 3A). In addition, retinas from DMSO-treated mice had a total NV area/retina, which was measured at 13.2 ± 0.04 (mm²x10⁻³) (Fig. 3B), and they exhibited the presence of extensive area of NV/retina (7.81 ± 1.94) (Fig. 3C). The efficacy of YC-1 and SN50 in the transgenic rho/VEGF mouse was assessed by evaluating the suppression of the development of neovascular foci following a sextuple intravitreal injection regimen to the eyes of 6, 9, 12, 15, 18, and 21-day-old homozygous rho/VEGF mice (Fig. 2 and Fig. 3A, 3B, and 3C). Furthermore, under low or high-magnification views, retinas from the YC-1- and SN50-treated groups (n = 15; P24) showed a significantly fewer neovascular buds compared to retinas from eyes injected with DMSO and SN50M, respectively (Fig. 2, and 3A). YC-1 treated retinas had NV measurements of 2.52 ± 0.13 (Fig. 3B) and 1.20 ± 0.40 (Fig. 3C), respectively, which was significantly (**P<0.001) less than the measurements in DMSO-treated mice. Moreover, SN50-treated retinas had neovascular measurements of 3.29 ± 0.37 (Fig. 3B) and 1.82 ± 0.80 (Fig. 3C), respectively, which was significantly (**P<0.001) less than the measurements that were revealed in the SN50M-treated mice. Interestingly, when compared to SN50-treated retinas, retinas that were injected with YC-1 exhibited a more compelling formation of new and healthy vessels, i.e., physiological revascularization, which occupied the entire retina (Fig. 2).

YC-1 Inhibits VEGF-Induced NFκB/p65 Activation

In order to verify the increase in the NFκB/p65 binding activity was mediated by the influence of VEGF over-expression in the rho/VEGF mouse retinas, we measured the NFκB/p65 activity by ELISA in the retinal extracts of all animal groups; I, II, III, IV, V, VI (Fig. 4A). The over-expression of VEGF in the non-treated Rho/VEGF retinas, caused a significant (**P<0.001) (99.02% ± 1.3) upregulation in NFκB/p65 binding activity, as compared to retinas that were isolated from nontransgenic C57BL/6 control group. Intravitreal administration of SN50 or YC-1 resulted in a significant (**P<0.001) inhibition in NFκB binding activity, as compared to their respective controls; SN50M and DMSO-treated retinas. The extent of NFκB/p65 inhibition with SN50 and YC-1 was found to be (32.52% ± 0.6) and 78.21±0.9 as compared to their respective controls; SN50M- and DMSO-treated retinas.

VEGF Has No Impact on HIF-1α Transcriptional Activity in the rho/VEGF Mouse Model

In order to absolutely verify that rho/VEGF mouse model develops subretinal NV in an ischemia-independent microenvironment, we investigated the influence of VEGF signaling pathway upon HIF-1α transcriptional activity in this mouse model. Our results demonstrated that VEGF overexpression in the rho/VEGF mouse didn’t induce HIF-1α transcriptional activity and (Fig. 4B), whereas this endogenous activity was significantly inhibited by the use of YC-1. Since this is an ischemia-independent mouse model, it was not surprising to find that the level of HIF-1α transcriptional activity was comparable to the level of HIF-1α transcriptional activity in the C57 negative control mouse.

YC-1 Downregulates the Angiogenic Gene Expression Profile in the Rho/VEGF Mice

To elucidate the molecular mechanisms involved in the regulation of VEGF-induced subretinal NV in the rho/VEGF transgenic mice; the retinal levels of; NFκB/p65, SDF-1, CXCR4, FAK, α5, β1, EPO, ET-1, and MMP-9 mRNA were evaluated on P24, by quantitative real time RT-PCR with data normalized to β-actin, and using the appropriate primers sets (Fig. 5J). Data analysis of the mRNA levels exhibited systematic variation in the gene expression patterns among various groups of retinal samples. There was a significant upregulation of NFκB/p65, FAK, α5, β1,
Figure 2. The Inhibition of Subretinal NV by YC-1 in the rho/VEGF Mouse Model. Retinal whole-mounts in mice perfused with fluorescein-labeled dextran. The retinas were examined by fluorescence microscopy, and representative retinal angiographs were obtained to illustrate the control group (group I) and all other groups (group II, III, IV, V, and VI) at different magnifications; upper panel is at low magnification (50×), while the lower panel is at high magnification (400×). Fluorescence microscopy was conducted in a fashion that provides a narrow depth of the field so that when focusing on the outer edge of the retina, it will enable subretinal focus for neovascular buds on the outer surface of the retina, meanwhile the retinal vessels are out of focus in the background, which allows easy delineation of the subretinal NV. The outer edge of the retina, which corresponds to the subretinal space in vivo, is easily identified and therefore from slide the focal plane was standardized. Panels represent retina from C57BL/6 (P24) mouse, which exhibits a homogeneous normal delicate vessel pattern throughout the retina, and no presence for vascular lesions. Different subgroups of rho/VEGF transgenic mice were given sextuple intravitreal injections of DMSO (0.2%), or SN50M (20 μM), or SN50 (20 μM), or YC-1 (100 μM), at P6, P9, P12, P15, P18, and P21, or were left untreated. Compared with eyes injected with DMSO and SN50M, there appeared to be fewer neovascular buds on the outer surface of the retina in the eyes that were injected with YC-1 and SN50, respectively (arrows). There was a
EPO, ET-1, and MMP-9 mRNA levels in group II animals, as compared to retinas from group I (Fig. 5A–I). At P21 and P24 and despite the sustained expression of VEGF, there were no detectable differences in the levels of CXCR4 and SDF-1 mRNA expression amongst the retinas of all groups (Fig. 5B and 5C). As predicted, NFkB/p65 upregulation was significantly attenuated by the NFkB inhibitor SN50 as compared to the retinas that were treated with its negative control mutant peptide SN50M (Fig. 5A). Furthermore, our data revealed that at P24, a sestuplet intravitreal injection-regimen with YC-1 resulted in significant attenuations in the message levels of FAK, \(\alpha5 \), \(\beta1 \), EPO, ET-1, and MMP-9 as compared with its negative control mutant peptide SN50M (Fig. 5A–I). Hence, we found that EPO exhibited moderate immunoexpression within the NFL and GCL, as well as neurosensory retina. Furthermore, there was an upregulation in EPO immunoreactivity compared to that in the non-treated YC-1-treated retinas (Fig. 6, Fig. 7, Fig. 8 Fig. 9, Fig. 10, Fig. 11 and Fig. 12).

SN50M-treated retinas exhibited NFkB/p65 immunoreactivity that resembled the retinas of the non-treated rho/VEGF-treated mice. The staining intensity of nuclear NFkB/p65 in the nuclei of the INL, GCL andNFL, as well as a significant augmentation in the levels of FAK, \(\alpha5 \beta1 \), EPO, ET-1, and MMP-9 immunoperoxidase compared to that in the YC-1-treated retinas (Fig. 6, Fig. 7, Fig. 8 Fig. 9, Fig. 10, Fig. 11 and Fig. 12).

Discussion

Retinal NV is a prevalent cause of blindness and is the focus of intensive efforts to find selective molecular treatments. Retinal ischemia is the central pathologic feature of retinal NV and one of its major consequences is the upregulation of VEGF [16]. Furthermore, retinal NV is suppressed by agents that neutralize VEGF [17] or block VEGF receptors [18,19]. In this study we have utilized the rho/VEGF mouse model of ocular NV. This transgenic mouse model develops increased expression of VEGF in the retina, and in the absence of hypoxia starting at P7 [12,20]. The measurement of VEGF expression in this mouse model is very well documented. At P16, the level of VEGF mRNA is roughly fivefold higher than that in P16 wild-type mice [20]. Despite the absence of ischemia in the rho/VEGF transgenic mouse, VEGF remains the pivotal stimulator for ocular NV. The question therefore arises as to the molecular mechanism of ischemia-independent NV. It is noteworthy that many pro-angiogenic factors are mediated by NFkB activation, suggesting its crucial contribution to the pathogenesis of intraocular NV. Whereas the activation of NFkB in response to VEGF have been reported in several studies [9,21,22,23]; other reports have demonstrated the inhibition of NFkB in response to VEGF [24]. The pathological setting of the rho/VEGF mouse model may suggest that increased VEGF expression in the retina is the primary cause for the pathological microenvironment that is not accompanied by retinal ischemia, which in turn causes the upregulation of various proangiogenic mediators and ultimately promoting subretinal NV. Blunting the VEGF-signaling with a small molecule like YC-1...
would also blunt the increase in the downstream pro-angiogenic factors suggesting that it is the high levels of VEGF that promote the exacerbation of subretinal NV.

YC-1 is a small molecule that inhibits HIF-1 \textit{in vivo} and \textit{in vitro} [25,26,27]. Previously, we have demonstrated that YC-1 exhibited pleiotropic effects, which impaired ischemia-induced expression of HIF-1 and its downstream angiogenic molecules, such as VEGF, EPO, and ET-1, leading to the inhibition of retinal NV in the oxygen-induced retinopathy (OIR) mouse model [27]. Furthermore, previous data demonstrated that nonischemic microenvi-

![Figure 3. A–C. Quantification of Subretinal NV in Various Control and Experimental Groups.](image)

Metamorph image-analysis software was used to compute the number and area of neovascular lesions and the total area of NV on the outer surface of each retina. The figure displays; A) the number of NV lesions per retina; B) the total neovascular area per retina; and C) the average neovascular lesion per retina. Mice that were treated with YC-1 and SN50 had: 1) significantly fewer neovascular lesions, 2) significantly smaller NV area per retina, and 3) smaller area of NV lesion per retina, than did mice that were treated with DMSO and SN50M, respectively. Image analysis confirmed that there was no difference between DMSO- and SN50M-treated mice and mice that were left untreated.

![Figure 4. A. The Suppression of VEGF-Induced NFκB Transcriptional Activity by YC-1 in rho/VEGF Mouse Model.](image)

The graph illustrates the suppression of NFκB DNA-binding activity by YC-1 in the retinas from different subgroups of rho/VEGF transgenic mice as compared to normal C57BL/6 mice. ELISA assay was done after 18 hours of incubation with YC-1, or SN50, or DMSO, or SN50M. Columns represent the means derived from three individual experiments. *P<0.05; **P<0.01; ***P<0.001, as compared with controls (C57BL/6 mice). The bars in show the mean (±S.E.M.) of NFκB transcriptional activity, which was significantly less in eyes treated with YC-1 and SN50 as compared to the eyes that were treated with DMSO or SN50M. B. The Role of VEGF on HIF-1α Transcriptional Activity in rho/VEGF Mouse Model. The DNA binding activity of HIF-1α was evaluated using an HIF-1α transcription factor assay kit. Our results demonstrated that VEGF overexpression in the rho/VEGF mouse didn’t induce HIF-1α transcriptional activity, whereas this activity was inhibited by the use of YC-1.
Figure 5. A–I. The Activation of NFκB and Downstream Angiogenic Genes in the rho/VEGF Mouse Model. The mRNA levels for the genes; NFκB/p65, S5, β1, ET-1, MMP-9, FAK and EPO, were quantified by Real time RT-PCR. Selected experiments, which measured the mRNA levels of NFκB/p65, indicated that YC-1 and SN50 downregulated the mRNA levels of NFκB/p65 as compared to DMSO or SN50M-treated retinas, respectively. For the other genes listed above, the mRNA levels were upregulated in the DMSO-treated retinas and the rho/VEGF group that was left untreated.

Gene	Primer Sequence 1	Primer Sequence 2
NFκB/p65	CCTTCGCGGCAATAATC	TGCCACCTTCTATGAGAC
S5	AGAGCGCACTGCGGAA	TGGCGGCAATATTCACT
ET-1	CATATCGGCTTTGAGA	AAGCTTGGAGCTTCTT
MMP-9	CCCTAGGCCTGCGAGAG	CTGAGGAGTGGTGGTC
FAK	AAGGCTCTGGGATGCAC	AACTGGCTGACCTGTAC
EPO	CGAGGTCTGGAGAGGTAC	TGATCTGTGGTGGAAGCT
Actin	TGACATAGGCTGCGGTC	AAGGAAGGGCTGAGATG

Non-Treated Control: C57BL/6 Mice
Non-Treated rhoVEGF: Mice
DMSO-Treated rhoVEGF: Mice
SN50M-Treated rhoVEGF: Mice
YC-1-Treated rhoVEGF: Mice
contrast, retinas from YC-1-treated retinas exhibited a significant downregulation of the mRNA expression as compared to retinas that were treated with DMSO. Despite the sustained expression of VEGF, there were no detectable differences in the levels of CXCR4 and SDF-1 mRNA expression in the non-injected retina. ANOVA was used for statistical analyses. Mean ± SEM of mRNA level normalized to β-actin were calculated, [***P<0.001] and **P<0.01, as compared to respective controls. Data are representative of 3 independent experiments. J. Sequence for the Primer Sets Used for the Quantitative Real-Time PCR Analysis.
doi:10.1371/journal.pone.0101602.g005

Throughout this report we demonstrated that NFκB/p65 expression was elevated in the retinas of rho/VEGF transgenic mice. Previously, we have reported that in cultured human retinal microvascular endothelial cells promoted NFκB/p65 activation via; 1) upregulating the phosphorylation status of IkBα and increasing its intrinsic hydrolysis activity; 2) promoting the nuclear accumulation of p65; and 3) increasing the NFκB activity. Whereas YC-1 treatment induced the downregulation of the NFκB/p65 activation by preventing IkBα degradation, and hence inhibiting the nuclear translocation of NFκB/p65 subunit [9]. ii) YC-1 blunts the increase in the downstream pro-angiogenic factors, which promote the exacerbation of subretinal NV; v) earlier studies have indicated that high concentrations of YC-1 inhibited NFκB/p65 activation and induced apoptosis in human prostate cancer cells [11]. Furthermore, YC-1 inhibited cytokine release and NFκB/p65 activation in endotoxin mouse models [30]. In addition, other studies have demonstrated that the signaling pathways of NFκB/p65 activated by LPS were also inhibited by YC-1. In toto, this report suggests that inhibition of NFκB expression and activity by YC-1 may provide therapeutic benefits in retinal diseases associated with enhanced VEGF and NFκB, such as ischemia-independent retinal microvascularopathies [15,27,31,32,33,34,35,36].

During this investigation, we have specifically selected P6 as the initiation point for YC-1 injection since previous studies have indicated that the onset of VEGF expression in the photoreceptors of rho/VEGF transgenic mice is on approximately P6. At P10 the mice develop sprouts of NV from the deep capillary bed of the retina that grow through the photoreceptor layer and form an extensive network of new vessels in the subretinal space. This is followed by an increase to a steady-state level by about P14, and is sustained for at least several months throughout adulthood [12,20]. We have utilized the intravitreal administration of YC-1 as a method of drug delivery, because this route delivers the drug in close proximity to the localization of the pathology, while the vitreous serves as a drug reservoir, which keeps the drug longer at the site. In addition, the sextuple injection regimen, which implemented in this study, was used to maximize chances of success for proof of concept, but is not ideal for clinical application, despite that implementing the same modality (multiple intravitreal injections) have been previously reported in various investigations [37,38,39,40,41]. The selection criterion of sextuple injection regimen was based on the standards, which we have established throughout our previous studies. These standards have indicated the IC₅₀ of YC-1 at 40 hours was 55.30 ± 0.1 mom [26]. Since we didn't have any differences between these control groups highlighted above, it can be safely concluded that the effects of injection or DMSO is nullified.
Figure 6. The Expression of NFκB and Downstream Angiogenic Proteins in rho/VEGF Mouse Model. Immunohistochemical analysis of NFκB/p65, FAK, α5β1, EPO, ET-1, and MMP-9, has indicated the expression levels of these proteins were significantly elevated in the rho/VEGF retinas that were left untreated. YC-1-treated retinas exhibited a significant decrease in the protein expression levels as compared with DMSO-treated retinas. Despite the sustained expression of VEGF, there were no detectable differences in the levels of CXCR4 and SDF-1 protein expression amongst the animals of all groups. Retinas were examined at 100× objective. Scale bar, 100 μm.

doi:10.1371/journal.pone.0101602.g006
integrin activates the NF-κB pathway in fibroblasts and endothelial cells [46], which imply that α5β1-mediated NF-κB signaling is important for angiogenesis. It is noteworthy to mention that in rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrins’ major downstream regulator, FAK. Furthermore, β1 integrin binding and FAK activation were required for retinal ganglion cell's (RGC) survival response to
Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia. These data demonstrate that β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival [47].

Our current study demonstrates that YC-1 treatment regimen had significant anti-angiogenic effects that were mediated via suppression of VEGF/NFkB/p65 axis. Hence, targeting the nexus between VEGF and NFkB/p65 may act in a negative feedback...
loop to suppress subretinal NV (Fig. 13). This investigation presents a new role for NFκB in ischemia-independent ocular pathologies, which may range from an innocent bystander to major culprit. In addition, our study demonstrated that VEGF overexpression in the rho/VEGF mouse didn’t induce HIF-1α transcriptional activity, while the endogenous HIF-1 activity was significantly abolished by the use of YC-1. Moreover, the data that were presented in this study demonstrate that YC-1 may have the

Figure 9. The Expression of NFκB and Downstream Angiogenic Proteins in rho/VEGF Mouse Model. Immunohistochemical analysis of NFκB/p65, FAK, α5β1, EPO, ET-1, and MMP-9, has indicated the expression levels of these proteins were significantly elevated in the rho/VEGF retinas that were left untreated. YC-1-treated retinas exhibited a significant decrease in the protein expression levels as compared with DMSO-treated retinas. Despite the sustained expression of VEGF, there were no detectable differences in the levels of CXCR4 and SDF-1 protein expression amongst the animals of all groups. Retinas were examined at 100× objective. Scale bar, 100 μm.

doi:10.1371/journal.pone.0101602.g009
Figure 10. Quantitative Assessments of Retinal Immunohistochemical Staining Analyses. Retinal tissue specimens were compared between normal C57BL/6, non-treated rho/VEGF, and all other treatments. The collected images of the retinas were imported to the image analysis system Metamorph 7.1. All image analyses were conducted in a masked fashion. Values obtained from at least 5 retinal fields were used to calculate the average pixel intensity value per retina. Bar graphs exhibit the intensity of staining of various proteins in all groups. The area of staining was measured in (um²/um²) in all groups. Values (mean ± SEM), from 3 separate experiments from at least 10 images from 4 different eyes/group. (**P < 0.01 and ***P < 0.001). Data are representative of 3 independent experiments.

doi:10.1371/journal.pone.0101602
Figure 11. Quantitative Assessments of Retinal Immunohistochemical Staining Analyses. Retinal tissue specimens were compared between normal C57BL/6, non-treated rho/VEGF, and all other treatments. The collected images of the retinas were imported to the image analysis system Metamorph 7.1. All image analyses were conducted in a masked fashion. Values obtained from at least 5 retinal fields were used to calculate the average pixel intensity value per retina. Bar graphs exhibit the intensity of staining of various proteins in all groups. The area of staining was measured in (um²/um²) in all groups. Values (mean ± SEM), from 3 separate experiments from at least 10 images from 4 different eyes/group. (**P < 0.01 and ***P < 0.001). Data are representative of 3 independent experiments.

doi:10.1371/journal.pone.0101602.g011
potential to be a novel and potent drug to reduce subretinal NV in ocular vasculopathies. Additional studies are needed to elucidate the mechanism(s) by which YC-1 works in subretinal NV and find ways to exploit its anti-angiogenic activity in the development of appropriate treatments. Further studies may elucidate whether YC-1 can be a therapeutic option for patients with ischemia–independent ocular microvasculopathies. These findings, combined with previous studies superimposing the role of VEGF in the retinal injury with or without the presence of ischemia [14,40], should help elucidate the role played by dys/regulation of angiogenic pathways in response to retinal injury. However, we must acknowledge that hyperglycemia; hypertension and dyslipidemia may also play crucial roles in instigating retinal vasculopathies, such as diabetic retinopathy. Other players including reactive oxygen species (ROS), dysregulation of nitric oxide synthase (NOS), formation of advanced glycation endproducts (AGEs), signal transducers and activators of transcription proteins and activator protein 1 (AP1) [49,50] should be considered as

PROTEINS	REGIONS	(-) Cont	(+) Cont	DMSO-Treated	YC-1-Treated	SN50-Treated	SN50M-Treated
NFkB/p65	NFL	+ (cyto)	+++ (nud)	+++ (nucl)	+	+	+++
	GCL	+ (cyto)	+++ (nud)	+++ (nucl)	+	+	+++
	IPL	+ (cyto)	+++ (nud)	+++ (nucl)	+	+	+++
	INL	+ (cyto)	+++ (nud)	+++ (nucl)	+	+	+++
	OPL	+ (cyto)	+++ (nud)	+++ (nucl)	+	+	+++
SDF-1	OPL	+	+	+	+	+	
CXCR4	GCL	+	+	+	+	+	
	INL	+	+++	+++	+	+	
FAK	INL	+	+++	+++	+	+	
α5β1	RPE	+	+++	+++	+	+	
EPO	NFL	+	+++	+++	+	+	
	GCL	+	+++	+++	+	+	
	IPL	+	+++	+++	+	+	
	OPL	+	+++	+++	+	+	
R&CL	+	+++	+++	+	+	+	
ET-1	NFL	+	+++	+++	+	+	
	GCL	+	+++	+++	+	+	
	IPL	+	+++	+++	+	+	
MMP-9	NFL	+	+++	+++	+	+	
	GCL	+	+++	+++	+	+	
	OPL	+	+++	+++	+	+	
	OLM	+	++	++	+	+	
	NFL	+	+++	+++	+	+	

Figure 12. Immunohistochemical Profile of Retinal Layers among the Various Mouse Groups. The retinal layers stained vividly. However, the grain intensity varied significantly from one layer to another. The intensity of immunoreactivity was graded as follows: strong (+++), moderate (++), weak (+), negative (–) (A). Retinal tissue specimens of YC-1 treated groups were compared to normoxic, non-treated rho/VEGF retinas, DMSO-treated-rho/VEGF mice and YC-1-treated rho/VEGF mice. doi:10.1371/journal.pone.0101602.g012
Figure 13. Schematic Representation of NFκB Molecular Signaling in Ischemia-Independent Microenvironment and the Effects of YC-1. NFκB/p65: Nuclear Factor Kappa B/P65; α5β1: Integrin Alpha-5 Beta-1; ET-1: Endothelin-1; MMP-9: Matrix Metalloproteinase-9; FAK: Focal Adhesion Kinase; EPO: Erythropoietin.

doii:10.1371/journal.pone.0101602.g013
additional players that promote retinal vasculopathies. Finally, whether YC-1 invokes direct effect(s) on autocrine VEGF production/exocytosis and/or autocrine VEGF/VEGFR signaling [51] in the rho/VEGF mouse model remains to be addressed (Fig. 13).

Acknowledgments

We thank Peter Campochiaro, MD (Johns Hopkins University/Wilmer Eye Institute) for the generous gift of the rho/VEGF mice. We would like to express our sincere gratitude to Falah Al-Mohanna, DVM (Department of Comparative Medicine, KSUH&RC) for his efforts in performing retinal extractions in mice. We also would like to thank Osama Alsmadi, PhD (Dasman Diabetes Institute, Kuwait), and Mr. Fadi Alkayal, (Dasman Diabetes Institute, Kuwait) for their assistance in conducting segments of the real-time PCR experiments. Furthermore, we owe a considerable debt of sincere gratitude to Mr. Gabriel DeNiro and Ms. Adara DeNiro, who were abundantly helpful and offered invaluable technical assistance in the quantification of the immunohistochemical staining, processing and Metamorph Imaging Analysis, as well as editing the references (Endnote). The authors owe special thanks to Mr. Melvin Velasco for his design expertise throughout the various stages of this study.

Author Contributions

Conceived and designed the experiments: MD FAM. Performed the experiments: MD FAM. Analyzed the data: MD FAM. Contributed reagents/materials/analysis tools: MD FAM. Wrote the paper: MD FAM.

References

1. Lee P, Wang CC, Adams AP (1998) Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 43(3):245–69.
2. Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184(4):301–10.
3. Aiello LP, Avery RL, Arriaga PG, Keyt BA, Jampel HD, et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487.
4. Stitt AW, Bhatari T, McMullen CB, Gardiner TA, Archer DB (2000) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun 3(6):309–8.
5. Thiene H, Aiello LP, Tsuchiguti H, Ferrante N, King GL (1995) Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells. Diabetes 44(1):98–103.
6. Adams AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, et al. (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118(4):445–56.
7. Karin M, Cao Y, Geren FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–10.
8. Wang VY, Huang W, Asagiri M, Spann N, Hoffmann A, et al. (2012) The transcriptional specificity of NF-kB dimers is coded within the DNA response elements. Cell Rep 25(24):824–39.
9. DeNiro M, Al-Mohanna F, Alsmadi O, Al-Mohanna FA (2013) The nexus between VEGF and NF-kB orchestrates a hypoxia-independent neovasculogenesis. PLoS ONE 3, e59021.
10. Ko FN, Wu CC, Kuo SC, Lee YF, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84: 4226–33.
11. Huang YT, Pan SL, Guh JH, Chang YL, Lee FY, et al. (2005) YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells. Mol Cancer Ther 10: 1628–35.
12. Okamoto N, Tohe T, Hackett SF, Ozaki H, Vinores MA, et al. (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of irratinal and subretinal neovascularization. Am J Pathol 151(1):91–91.
13. Tohe T, Okamoto N, Vinores MA, Derevanik NL, Vinores SA, et al. (1998) Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci, 1:180–188.
14. Ohno-Matsui K, Hirose A, Yamamoto S, Saikia J, Okamoto N, et al. (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 2:711–717.
15. Vinores SA, Youssri AI, Luna JD, Chen YS, Bhargave S, et al. (1997) Upregulation of vascular endothelial growth factor in ischemic and non-ischemic human and experimental retinal disease. Pisol Histopathol 1:99–109.
16. Pe’er J, Folberg R, Inn A, Gnesin H, Hemo I, et al. (1998) Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology 105(5):914–920.
17. Moses MA (1997) The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 15:180–9.
18. Berglin L, Sarman S, van der Plouw I, Steen M, Ming Y, et al. (2003) Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2−/− deficient mice. Invest Ophthalmol Vis Sci 1:403–408.
19. DeNiro and Al-Mohanna (2011) Reversal of Retinal Vascular Changes Associated with Ocular Neovascularization by Small Molecules: Progress toward Identifying Molecular Targets for Therapeutic Intervention. The Open Diabetes Journal 4:75–79.
20. Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, et al. (2006) Vasohibin is upregulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal FASER J 2006:723–5.
21. Marumo T, Schini-Kerth VB, Buse R (1999) Vascular endothelial growth factor activates nuclear factor-kappa B and induces monocyte chemotactic protein-1 in bovine retinal endothelial cells. Diabetes 3:1113–1117.
43. Rehman AO, Wang CY (2009) CXCL12/SDF-1α Activates NF-κB and Promotes Oral Cancer Invasion through the Carma3/Bcl10/Malt1 Complex. Int J Oral Sci 1(3):105–18.
44. Avraham HK, Lee TH, Koh Y, Kim TA, Jiang S, et al. (2003) Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 19;278(38):36661–8.
45. Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB (2004) Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Vis Sci 45(12):4463–9.
46. Quarnstrom F, Libed EN (1994) Electronic anesthesia versus topical anesthesia for the control of injection pain. Quintessence Int 25(10):713–6.
47. Santos AR, Corredor RG, Obeso BA, Trakhtenberg EF, Wang Y, et al. (2012) β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One 7(10):e48332.
48. Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, et al. (1997) Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 64(4):565–7.
49. Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc) 3:281–92.
50. Pantano G, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappa B signaling pathway. Antioxid Redox Signal 9–10:1791–1806.
51. Byeon SH, Lee SC, Choe SH, Lee HK, Lee JH, et al. (2010) Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci 51(2):1190–7.