Defect-controlled vortex generation in current-carrying narrow superconducting strips

D Yu Vodolazov¹, K Ilin³, M Merker³ and M Siegel³

¹ Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, GSP-105, Russia
² Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
³ Institute of Micro- and Nanoelectronic Systems (IMS), Karlsruhe Institute of Technology (KIT), Hertzstr. 16, 76187 Karlsruhe, Germany

E-mail: vodolazov@ipmras.ru

Received 10 September 2015, revised 29 October 2015
Accepted for publication 9 November 2015
Published 8 December 2015

Abstract
We experimentally study the effect of a single circular hole on the critical current \(I_c \) of narrow superconducting strip with width \(W \) much smaller than Pearl penetration depth \(\Lambda \). We found non-monotonous dependence of \(I_c \) on the location of a hole across the strip and a weak dependence of \(I_c \) on the radius of a hole in the case of a hole with \(x = R \) \(W \) (\(\xi \) is a superconducting coherence length) which is placed in the center of strip. The observed effects are caused by competition of two mechanisms of destruction of superconductivity—the entrance of vortex via the edge of the strip and the nucleation of the vortex–antivortex pair near the hole. The mechanisms are clearly distinguishable by a difference in dependence of \(I_c \) on weak magnetic field.

Keywords: superconducting detector, vortex nucleation, critical current

(Some figures may appear in colour only in the online journal)

1. Introduction

The maximal current, which can pass through the superconducting strip without dissipation, is equal to \(I_{dep} = j_{dep} Wd \), where \(W \) is a width and \(d \) is a thickness of the strip and \(j_{dep} \) is the depairing current density. However, in experiments, this value can be reached only in relatively thin \((d < \lambda, \lambda \) is the magnetic field penetration depth) and narrow strips with \(W < \Lambda = 2\sqrt{\lambda/d} \) in which a current density is distributed uniformly across the width and thickness [1]. In the opposite situation of wide and thick strips \((d > \lambda, W \gg \Lambda)\), an expelling of magnetic field, which is induced by an applied current, from the interior of the strip leads to piling up of current density at the edge of strip and the maximal critical current becomes smaller than \(I_{dep} \). Moreover, even in the narrow and thin superconducting strips with uniformly distributed current density the measured critical current \(I_c \) is smaller than \(I_{dep} \) [2–4]. The suppression of experimentally measured critical current in such structures can be explained by the presence of defects in the strip. This defect we describe as a local perturbation of properties of the strip which provides a local suppression (complete or partial) of the superconducting order parameter \(\Delta \) in the current-carrying state of the strip. This local suppression of \(\Delta \) can be due to local variation of the thickness/width of the strip, its material parameters such as the electron mean path and/or critical temperature or such suppression of \(\Delta \) may appear temporally in the place of absorption of high energetic photons or particles. The superconducting current avoids the place with suppressed \(\Delta \) and this phenomenon leads to nonuniform current distribution, with the maximal current density near the defect place. Now this phenomenon is known as a current crowding effect, which was studied in detail theoretically in [5] and confirmed experimentally in [6–9] on
model systems of narrow strips with sharp bends which play a role of defects.

In the recent theoretical work [10, 11], the effect of a single defect, which is located close to or far from the edge of the superconducting strip with finite width, on the generation of resistive state was studied in frame of Ginzburg-Landau approach. The defect was modelled by the circle with locally suppressed superconductivity—we will refer to this as a ‘hole’.

It has been shown that the mechanism of destruction of superconducting state by applied current in a narrow strip depends on the position of the hole with respect to the edge of strip. When the hole sits close to the edge, the self-generated vortices enter the hole via the edge of the film and then move across the superconductor when the current exceeds some critical value I_{pass} [10, 11]. In this sense it resembles the effect of edge defect [12–15]. When the hole is located distant from the edges, the vortex–antivortex pair is nucleated inside the hole and a motion of the pair destroys the superconducting state [10, 11, 16]. Domination of the first or the second mechanism of destruction of superconductivity leads to extremely non-monotonic dependence of critical current I_c on the position of the hole (see figure 4 in [10] or figure 5 in [11]).

The interesting effects arise when the hole is located in the center of strip. First of all the theory predicts that in a certain range of the hole’s radius $\xi \ll R \ll W$ the critical current is independent of R and equal to about $0.5I_{\text{dep}}$ [5, 17]. This counterintuitive result (one could expect that $I_c = I_{\text{dep}}(1 - 2R/W)$ in the case of uniform current distribution near the hole and $I_c \approx I_{\text{dep}}$ when $R \ll W$) is the direct consequence of the current crowding near the circular hole. Secondly, in this particular situation the small magnetic field B weakly affects the critical current in comparison to a strip without hole. This weakening of the $I_c(B)$ dependence is because the resistive state is determined by the vortex–antivortex nucleation near the hole and not at the edges of a strip where Meissner currents are maximal. Moreover, due to the opposite direction of the generated Meissner currents at the opposite edges of strip, the influence of external magnetic field on I_c of strips is dependent on the location of the hole. This effect leads to an increase of I_c when the hole is near to one of the edges and to a decrease of I_c when the hole is at the opposite edge (see figure 9 in [10] or figure 6 in [11]).

We stress here the difference between the effect of defects at relatively large magnetic field (when there is dense vortex matter in the strip) and at zero or small magnetic fields $B \lesssim B_s \approx \phi_0/2\pi\xi W$ (when there are no field induced vortices) in current-carrying narrow superconducting strips with $W < \Lambda$. In the former case, the vortices, which are created by the externally applied magnetic field, can be effectively pinned by defects and, thereby, this strengthens transport properties of superconductor. Pinning by intrinsic and artificially created defects has been extensively studied in numerous theoretical and experimental works [18–20]. In the case of small or even zero magnetic field, the superconductivity is weakened near the defect due to current crowding. When the applied current exceeds some critical value the vortices are nucleated near this weak place and their motion destroys the superconducting state [10, 11, 16].

Comparison of the theoretical predictions [10, 11] with experimental results, which are obtained in real structures, is complicated. It is very difficult to find a single natural (intrinsic) defect in a film which is located far enough from other similar defects and then arrange the experiment to study transport properties that are determined by this particular defect and are not obscured by the collective effect of other defects. In case of local suppression of superconductivity caused by absorbed photon, deterministic localization of absorption site is not possible at all due to probabilistic nature of the photon absorption.

In the present work we made holes of different size and placed them in different places across the superconducting strip. Such a model system mimics the main effect of the real defect—current crowding effect and it allows us in controllable manner to study the role of the defects on the critical current and mechanisms of destruction of the superconducting state.

We have experimentally found the non-monotonous dependence of I_c of strips with the hole of constant radius R on the position of this hole with respect to the edge of the strip. We have also shown that the dependence of I_c on weak magnetic fields in case of mechanism of vortex–antivortex nucleation in the vicinity of the hole is weaker than the $I_c(B)$ dependence, which is determined by a single-vortex penetration through the edge of superconducting strip in agreement with theoretical predictions [10, 11]. Our results not only allow us to clarify the role of defects on suppression of the critical current at zero and low magnetic fields ($B \lesssim B_s$, Meissner state) but they also help us to understand the mechanism of photon detection by current-carrying superconducting strips.

2. Experiment

NbN films with thickness about 5 nm were deposited on a heated sapphire substrate by DC reactive magnetron sputtering of pure Nb target in a gas mixture atmosphere of argon and nitrogen. For the used deposition conditions of the total pressure 2.8 10^{-3} mbar, partial pressure of nitrogen 3.2 10^{-4} mbar and sputter current 150 mA, films with the critical temperature $T_c \approx 13$ K, square resistance of about 300 Ohm and residual resistance ratio $\text{RRR} = 0.89$ were deposited.

Patterning of films has been done by electron-beam lithography and ion-milling technique. The films were patterned into single-bridge structures with a width about 1 μm and a length 20 μm which were embedded between two millimeter sized contact pads. The gradual transition between the bridge and the contacts with radius of curvature $r = 5$ μm was realized to avoid a current crowding at T-shape connections which were considered in details in [5].

Two series of samples (24 bridges each) have been fabricated on separated 10 mm squared chips. In the first series of samples, a circle with radius $R \approx 130$ nm was etched inside a bridge. The etched circles were always placed at a half-length of bridge. The coordinate of circles across the width of bridge was varied with respect to the left edge of bridge with a step.
$\delta x \simeq 35 \text{ nm}$ between two subsequent positions (see the insets in figure 2). Through the paper samples which belong to this series of bridges will be named XNN where N is a distance in nanometers between left edge of a strip and the center of a hole which is etched inside the strip. The radius of circles with a center placed at the edge of bridges (in this case it is better to talk about semi-circles, see the top left inset in figure 2) was by a factor $\sqrt{2}$ larger i.e. about 185 nm. This was done to keep constant the area with suppressed order parameter independently of location of the hole.

In the second series of samples, the position of etched circle (the hole) was kept constant in the middle (half-length, half-width) of a strip but the radius of the hole was varied by an order of magnitude from about 29 nm up to 225 nm. In the paper, samples which belong to this series, will be named RNN where NN is a radius of etched hole in nanometers. Real dimensions of fabricated structures (width of bridge, W, radius of hole, R, and its position with respect to the left edge of bridge, coordinate x) were measured after patterning by scanning electron microscopy (SEM).

All bridges were characterized by their critical temperature of superconducting transition. The T_c value was determined as a temperature at which resistance of measured structure drops below 0.1% of the normal state resistance measured at temperatures approximately twice higher than T_c. The obtained spread of T_c among bridges in each series was about 0.3 K which can be attributed to slight variation of superconducting strength over the film caused by, for example, non-uniformity of thickness of deposited film. In case of ultra-thin films with thickness about the coherence length, which in the case of NbN is about 4–5 nm [21], even a small difference in thickness leads to a relatively large change in T_c[22, 23].

The current–voltage characteristics (IV-curves) were measured in a cryogenic-free system at $T = 5.1$ K in a DC current-bias mode. The magnetic field up to 1 T generated by a superconducting solenoid was applied normally to a sample surface. From the previous studies [21] we know that the field, which is required for penetration of magnetic vortex into a micrometer wide bridge made from thin NbN film, is in the range of few tens millitesla and therefore the range of B available in our experiments is enough for detailed investigations of bridges in Meissner and in the vortex states. The minimum step of variation of magnetic field was 1 mT which is determined by accuracy and stability of a used power supply of superconducting solenoid.

Typical IV-curves for four different magnetic fields are shown in figure 1. The curves were hysteretic independently of the magnetic fields in the whole range of applied fields B. At a critical current I_c, the bridge is characterized by a sharp jump from superconducting to normal state. Recovery of superconductivity in the bridge happens at current I_r which is almost independent of magnetic field as it is clearly seen in figure 1. In contrast, I_c demonstrates significant decrease with increase of the applied field. The accuracy of I_c determination in our experimental setup is 0.5% of I_c, i.e. about 1 μA for studied range of critical currents.

![Figure 1. Current–voltage characteristics of the superconducting strip without hole at different magnetic fields indicated in the legend. The arrows indicate correspondent critical currents I_c and current I_r of recovery of the bridge into superconducting state.](Image)

![Figure 2. Experimental dependence of the critical current on the position of the hole in the strip (series ‘X’). Width of the strip is 940 nm, radius of the hole is 130 nm $\approx W/7$ ($R = 185$ nm when semi-circle is placed at the edge). In the insets we present SEM images of the strips with the holes in different positions.](Image)

3. Results

The experimentally obtained dependence of the critical current I_c on position of the hole is shown in figure 2. It is seen that I_c is maximal when the hole is in the middle of the strip and when the hole (semi-circle) is placed at the edge of the strip. A shift of position of the hole from the center of the strip leads to a gradual decrease of I_c which reaches the minimum values when the hole is close to the edge. This experimental result qualitatively coincides with the prediction of [11]. In figure 3 we present results of theoretical calculations which were performed in the framework of the Ginzburg-Landau model for different holes and strip with $W = 40$ nm (details of numerical calculations are present in [11]). As in [11] we determine the critical current as the current at which the permanent vortex flow starts in the strip with a hole (in
I

W

in NbN.

51 5m

s = the critical current very weakly depends on

26 76 nm

IR W

x

are shown for holes with three radii.

dependence

I

coherence length

(47x499)

W

(47x261)

x

are presented in

Figure 3.

Supercond. Sci. Technol. 29 (2016) 025002

Figure 3. Theoretical dependence of the critical current on coordinate of hole’s center in the strip with width \(W = 40\xi \). Results are shown for holes with three radii.

definitions of \([10]\) \(I_c = \mu_{\text{gap}} \). Comparison of figure 3 with figure 5 of \([11]\) (where the strip with two times smaller width \(W = 20\xi \) was studied) demonstrates that the shape of dependence \(I_c(x) \) slightly changes with increasing \(W \) if one keeps the ratio \(R/W \) constant. The only qualitative difference is the appearance of two additional minima when the hole practically touches the edge. These minima appear for relatively wide strips \(W \gtrsim 30\xi \) and large radiuses of the holes \(R \gtrsim 3\xi \). The width of the additional minima is about the coherence length (see figure 3) and it is rather difficult to resolve it in the experiment due to small \(\xi \approx 5 \) nm in NbN. Small width of this minima \((\sim \xi)\) points to its origin - it appears due to suppression of the order parameter in the narrow space between edge of the hole and edge of the strip when its width becomes about \(\xi \) (because we model the hole as a region with locally suppressed superconductivity). It results in a decrease of the ‘superconducting’ width of the strip.

We also studied how \(I_c \) depends on the radius of the hole when it is placed in the center of the strip. Theoretical results are presented in figure 4 while experimental \(I_c(R) \)-dependence is shown in figure 5. The theory predicts, that when \(\xi \ll R \ll W \) the critical current very weakly depends on \(R \) (see inset in figure 4). Calculations in the London model \([5, 17]\) predict that in this case \(I_c/I_{\text{dep}} = 1/2 \) while our numerical results give a slightly larger value \(I_c/I_{\text{dep}} \approx 0.65 - 0.7 \). The difference between theoretical results is most probably connected with the characteristics of the hole. In \([5, 17]\) the hole was considered as a ‘well’ with jump of \(\Delta \) at the edge while in our model, due to proximity effect, \(\Delta \) changes from zero to its maximal value on the distance \(\sim \xi \) near the hole’s edge.

In the experiment we find small variation of \(I_c \approx 284 - 335 \mu\text{A} \) \((I_c/I_{\text{dep}} \approx 0.42 - 0.49)\) for holes with radius \(R \approx 26 - 76 \) nm \((R \approx 5 - 15\xi)\) - see figure 5. The depairing current \(I_{\text{dep}} = 679 \mu\text{A} \) has been calculated within the framework of Ginzburg-Landau theory with account of the temperature dependent correction factor obtained by Kupriyanov and Lukichev [24] for dirty limit superconductors (see equations 3 and 4 in [21]). We have to note, that even for strips without a hole, \(I_c/I_{\text{dep}} \approx 0.5 \) (see figure 5) due to presence of the intrinsic defects. These defects may be present also at the edge of the hole, which additionally suppresses the critical current and it could be a reason for dispersion of \(I_c \) for holes with radius \(R = 26 - 76 \) nm and smaller value of \(I_c \) than expected from the theory.

Theory \([10]\) predicts, that when the hole is placed in the center of the strip the resistive state starts via nucleation of the vortex–antivortex pair near the hole. Direct experimental visualization of this process is practically impossible at the present time, due to very short time scale \((\sim \)picoseconds) of vortex nucleation. However, it could be checked...
indirectly using external magnetic field B. The applied magnetic field induces screening current which is maximal near the edges and it is equal to zero in the center of the strip. Therefore if resistive state is realized via vortex entrance via the edge of the film then applied magnetic field strongly influences I_c. In contrast, if resistive state is realized via generation of the vortex–antivortex pairs near the central part of the strip the same magnetic field weakly affects I_c. Experimental $I_c(B)$-dependencies will differ significantly in dependence on the location of penetration of vortex or vortex–antivortex pair and, thereby, can be used for determination of position of vortex generation in the strip at $I > I_c$.

In figure 6 we show experimental dependencies $I_c(B)$ for strips with and without a hole in the center. For samples R26, R91 and R170 ($R = 26, 91, 170$ nm) there is a plateau at low B while for strip without a hole (sample R0), I_c decays almost linearly at low B. Therefore, we conclude, that in the sample without the hole the vortices are generated at the edge of the strip while in the samples with the hole the vortex–antivortex pairs are generated near the hole at $|B| \leq 5–18$ mT (the larger the hole, the larger the threshold magnetic field). Magnetic fields larger than the threshold value produce large screening currents at the edges of the strip which, together with transport current, exceeds the current density near the hole and the vortices start to be generated at the edge. As a result the strong field dependence of I_c is recovered.

When the hole is located close to the edge of the strip the maximum of $I_c(B)$-dependence is shifted to the finite magnetic field (sample X150, black squares in figure 7). Nearly linear $I_c(B)$-dependence at low B again demonstrates that vortices enter via edges and the shift in $I_c(B)$ is connected with different vortex entry conditions from the left and right edges due to presence of the hole. Note, that such a shift was also observed for strip with central hole (sample R32, red circles in figure 7) where it most probably appears due to relatively large intrinsic defect at the left edge of the strip (the location of the defect follows from the direction of the shift in $I_c(B)$).

4. Discussion

There are three main experimental observations which confirm theoretical predictions formulated in [10, 11]:

- the non-monotonic dependence of I_c on coordinate x of hole across the width of superconducting strip (figure 2);
- the dependence of I_c on radius of hole which is placed in the middle of the strip is much weaker than it is expected from geometrical point of view when radius of hole is in the range $\xi < R < W$ (figure 5);
- the weak dependence of I_c on magnetic field at small B when the hole is located in the middle of strip (figure 6). This weak $I_c(B)$-dependence is caused by generation of vortex–antivortex (V–A) pairs near the hole due to a current crowding in the vicinity of that place. This area is weakly influenced by Meissner current which vanishes in the middle of strip. In contrast, the strong, linear decrease of I_c with increasing B is observed when vortex is generated at the edge of the strip. This mechanism dominates over V–A-generation mechanism mostly in strips with holes which are shifted from the center of strip or in strips without any artificial holes (figures 6 and 7).

Quantitative deviation from the theory we explain by the presence of the intrinsic defects in real strips. Indeed, some strips without hole have a critical current comparable to I_c of the strip with the hole (see figure 5). Because measured suppression of I_c by the circular hole with radius $\xi < R < W$ is not large (see figure 6) one can imagine a situation when intrinsic defect suppresses I_c stronger than the circular hole. This result is supported by the measurement of

Figure 6. The dependence of I_c on magnetic field B for strips ($W = 980$ nm) with hole of radii $R = 26, 91, 170$ nm (R26, R91, R170) in the center of the superconductor and strip without hole (R0).

Figure 7. Dependence of critical current I_c on magnetic field of sample X150 (black squares, hole with $R = 130$ nm is located at the distance $x = 150$ nm from left edge; lower left SEM image in figure 2) and sample R32 (red circles; $R = 32$ nm; the hole is in the center of strip).
$I_c(B)$-dependence which demonstrates linear variation of I_c at low magnetic field despite the presence of the hole in the center (for illustration see figure 7, sample R32). We believe, that asymmetry of $I_c(B)$, visible in figure 7 for strip with the central hole also comes from the intrinsic defects near the hole or deviation from the circular shape which also breaks mirror symmetry in the superconducting strip.

Although we made our measurements for relatively wide micron size strip we believe that obtained results and their analysis are at least qualitatively valid for narrower strips too. Our numerical calculations show that the shape of $I_c(x)$-dependence does not change substantially while one keeps the ratio R/W the same and when $R \gg \xi$ (compare figure 3 with figure 5 from [11]). Our theoretical investigation shows that in the strips with width $W = 20 - 60 \xi$ the minima of dependence $I_c(x)$ correspond to holes placed at distance $\sim 2R$ from the edge of the strip which is close to the experimental result for strip with $W \approx 200\xi$ (see figure 2).

From figure 3 it is also seen that I_c is almost independent of the coordinate in a pretty wide range of x in the case of the smallest hole ($R = 3\xi$) which is placed in the vicinity of center of the strip. The plateau in $I_c(x)$-dependence decreases with increase of R and, in case of the largest radius, a sharp maximum of I_c is seen in the middle of strip.

Note, that when radius of the hole $R \ll W$ and $R \leq 4\xi$ there is relatively strong dependence of I_c on R (see inset in figure 4). It results in a smaller value of I_c for the strip with hole at the edge (in the form of semi-circle with radius $\sqrt{2}R$) than for the strip with central hole (it could be seen in figure 3). For larger radii we have the opposite situation (see figure 3 and figure 2).

Our results could be applied for understanding of some properties of superconducting nanowire single-photon detectors (SNSPD). If one supposes that the absorbed photon creates finite region with suppressed superconductivity and size smaller then W then it will influence the critical current of the nanowire in a similar way like holes studied in this work. Our result directly demonstrates that the resistive state will appear at different currents, depending on the place in the strip where the photon was absorbed. Therefore detection efficiency of SNSPD should increase monotonically with increase of the current due to expansion of the photon-sensitive area [10, 11], the effect which was observed in all experiments on SNSPD (see for example recent review [25]).

Acknowledgments

The work was partially supported by the Russian Foundation for Basic Research and by the Ministry of Education and Science of the Russian Federation (State contract No 02. B.49.21.0003). DYUV acknowledges support from the Russian Scientific Foundation Grant No. 15–12-10020.

References

[1] Likharev K K 1971 Izv. Vuzov. Radiofizika 14 909
[2] Likharev K K 1971 Izv. Vuzov. Radiofizika 14 919
[3] Andratskii V P, Grundel L M, Gubanov V N G and Pavlov N B 1974 Destruction of superconductivity in thin narrow films by a current Sov. Phys. JETP. 38 797
[4] Rusanov A Yu, Hesselberth M B S and Aarts J 2004 Depairing currents in superconducting films of Nb and amorphous MoGe Phys. Rev. B 70 024510
[5] Nawaz S, Arpaia R, Lombardi F and Bauch T 2013 Microwave Response of Superconducting $YBa_2Cu_3O_7 - \delta$ Nanowire Bridges Sustaining the Critical Depairing Current: Evidence of Josephson-like Behavior Phys. Rev. Lett. 110 167004
[6] Clem J R and Berggren K K 2011 Geometry-dependent critical currents in superconducting nanocircuits Phys. Rev. B 84 174510
[7] Henrich D, Reichensperger P, Holtherr M, Meckbach J M, Il'in K, Siegel M, Semenov A, Zotova A and Vodolazov D Yu 2012 Geometry-induced reduction of the critical current in superconducting nanowires Phys. Rev. B 86 144504
[8] Hortensius H L, Driessen E F C, Klapwijk T M, Berggren K K and Clem J R 2012 Critical-current reduction in thin superconducting wires due to current crowding Appl. Phys. Lett. 100 182602
[9] Adami O A et al 2013 Current crowding effects in superconducting corner-shaped Al microstrips Appl. Phys. Lett. 102 052603
[10] Akhlaghi M K, Atikian H, Eftekharian A, Loncar M and Majedi A H 2012 Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors Opt. Express. 20 23610
[11] Zotova A N and Vodolazov D Y 2014 Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model Supercond. Sci. Technol. 27 125001
[12] Vodolazov D Yu, Korneeva Yu P, Semenov A V, Kornev A A and Goltsman G N 2015 Vortex-assisted mechanism of photon counting in superconducting nanowire single photon detector revealed by external magnetic field Phys. Rev. B 92 104503
[13] Buzdin A and Daumens M 1998 Electromagnetic pinning of vortices on different types of defects Physica C 294 257
[14] Aladyshkin A Yu, Mel’nikov A S, Shereshevsky I A and Tokman I D 2001 Influence of surface irregularities on barriers for vortex entry in type-II superconductors Physica C 361 67
[15] Vodolazov D Y, Maksimov I L and Brandt E H 2003 Vortex entry conditions in type-II superconductors: Effect of surface defects Physica C 384 211
[16] Koshelev A E and Vinokur V M 2001 Suppression of surface barriers in superconductors by columnar defects Phys. Rev. B 64 134518
[17] Ivanchenko Yu M and Mikheenko P N 1983 New mechanism of penetration of vortices into current-saturated superconducting films Sov. Phys. JETP. 58 1228
[18] Zotova A N and Vodolazov D Y 2012 Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach Phys. Rev. B 85 024509
[19] Reichhardt C, Olson C J and Nori F 1998 Commensurate and incommensurate vortex states in superconductors with periodic pinning arrays Phys. Rev. B 57 7937
[20] Castellanos A, Wordenweber R, Ockenfuss G, v d Hart A and Keck K 1997 Preparation of regular arrays of antidots in $YBa_2Cu_3O_7$ thin films and observation of vortex lattice matching effects Appl. Phys. Lett. 71 962
[20] Velez M, Martin J I, Villegas J E, Hoffmann A, Gonzalez E M, Vicent J L and Schuller Ivan K 2008 Superconducting vortex pinning with artificial magnetic nanostructures JMMM 320 2547

[21] Ilin K, Henrich D, Luck Y, Liang Y, Siegel M and Vodolazov D Yu 2014 Critical current of Nb, NbN, and TaN thin-film bridges with and without geometrical nonuniformities in a magnetic field Phys. Rev. B 89 184511

[22] Semenov A et al 2009 Optical and transport properties of ultrathin NbN films and nanostructures Phys. Rev. B 80 054510

[23] Noat Y et al 2013 Unconventional superconductivity in ultrathin superconducting NbN films studied by scanning tunneling spectroscopy Phys. Rev. B 88 014503

[24] Kupriyanov M Yu and Lukichev V F 1980 Temperature dependence of pair-breaking current in superconductors Fiz. Nizk. Temp. 6 445

Kupriyanov M Yu and Lukichev V F 1980 Sov. J. Low Temp. Phys. 6 210

[25] Natarajan C M, Tanner M G and Hadfield R H 2012 Superconducting nanowire single-photon detectors: physics and applications Supercond. Sci. Technol. 25 063001