“Integration of multimodal data in the developing tooth reveals candidate dental disease genes”

Emma Wentworth Winchester¹, Alexis Hardy², Justin Cotney³,⁴

1 DMD/PhD Program, University of Connecticut School of Dental Medicine, Farmington, CT USA
2 Master of Genetics Program, Paris Diderot University, Paris, France
3 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT USA
4 Institute for Systems Genomics, University of Connecticut, Storrs, CT USA

Abstract

Dental malformations range from rare syndromes to common nonsyndromic phenotypes. These malformations can predispose individuals to dental disease, which can in turn affect systemic health. While many dental phenotypes are heritable, most cases have not been linked to deleterious mutations in single genes. We demonstrate that human and conserved mouse craniofacial enhancers show enrichment of dental phenotype-associated variants. Given these findings in bulk craniofacial tissues, we looked to determine the role of tooth enhancers in this phenomenon. We used ChIP-seq and machine learning to identify enhancers of E13.5 mouse incisors. Multi-tissue comparisons of human and mouse enhancers revealed that putative tooth enhancers had the strongest enrichment of dental phenotype-associated variants, suggesting a role for dysregulation of tooth development in dental phenotypes. To uncover novel dental phenotype-driving genes in the developing tooth we performed coexpression analysis and annotated the contributing cell types of gene modules using scRNAseq. Through integration of chromatin state, bulk gene coexpression, and cell type resolved gene expression we prioritized a list of candidate novel dental disease genes for future investigations in mouse models and human studies.

Background

Dental malformations range from rare syndromes such as amelogenesis or dentinogenesis imperfecta [1–5], to relatively common nonsyndromic phenotypes, such as abnormal tooth number [6–10] or enamel hypoplasia [11,12]. Aberrations from normal dental development may predispose individuals to dental disease [13,14] and require costly and complex interventions. As dental health is known to impact systemic health [15,16], dental malformations pose a substantial public health burden and determining their causes is a priority. While environmental factors play a major role in the incidence of many of these common phenotypes, the heritability of normal and abnormal dental phenotypes has been reported to range from 40 to 90% suggesting strong genetic components [17–23].

In most mammals the primary teeth begin to develop during early embryogenesis and are mostly developed before erupting into the oral cavity shortly after birth. As such, the underlying genetic causes of many dental malformations and diseases likely exert their effects during development. Therefore, genetic programs that coordinate dental development are of particular interest in identifying drivers of dental malformations and disease. While rare syndromes affecting teeth have been linked to mutations in specific genes [24–27], most
cases of common dental malformations, diseases, and phenotypes such as caries [20–23,28,29], delayed
tooth eruption [30], and abnormal tooth number [31–33] have not been linked to deleterious mutations in single
genes or large DNA copy number changes. The combination of relatively high heritability of many of these
dental phenotypes despite only a small fraction of cases being explained by mutations in protein-coding genes
and their tooth-isolated nature suggests that these phenotypes may be associated with defective gene
regulation caused by enhancers.

Enhancers are gene regulatory sequences that can operate over long genomic distances, some over 1
megabase from their target gene, to regulate gene expression in spatiotemporal-specific contexts. [34–36]
Disruption of enhancers results in changes in gene expression when and where that enhancer is normally
active, resulting in typically tissue-isolated abnormalities. [37,38] This concept has been shown to contribute to
craniofacial phenotypes such as nonsyndromic orofacial clefting and normal craniofacial morphology. [39–41]
Common human single nucleotide polymorphisms (variants) associated with these craniofacial phenotypes are
enriched in enhancer sequences active in embryonic human craniofacial tissues. However, findings in the bulk
human face have not been extended to investigate the contribution of these enhancers in dental
morphogenesis or disease. As a consequence of this, the target genes of any dental phenotype-associated
enhancers that ultimately drive the phenotype have not been identified in a systematic manner.

Ideally investigations of these drivers would use primary developing human teeth. However, due to the
gestational time period in human development when these cell types arise [42–46] and lack of clear in vitro
models, tooth development is primarily studied using primary mouse tissue. The early stages of development
of the mouse dentition are largely analogous to human dental development [42–44], and many rare human
dental syndromes are modelable in mice. [42,44,47–49] However, investigations into the noncoding genome of
the developing tooth in mammals have been limited to a small number of regions [50,51]. As such, the
conservation of the noncoding drivers of dental development between human and mouse genome-wide has
not been definitively proven.

In this manuscript we demonstrate the contribution of active human and mouse craniofacial enhancers to
dental disease risk and dental developmental traits. We used ChIP-seq and a well-established chromatin
annotation pipeline [40,52,53] to annotate active enhancers of the developing tooth and demonstrate that these
regions have the highest burden of dental phenotype-associated variants compared to all other tissues. To
uncover potential disease-causing target genes associated with these enhancers, we integrated bulk and
single cell transcriptomics with our ChIP-seq enhancer calls. Specifically, we leveraged weighted gene
co-expression network analysis (WGCNA) of publicly available bulk transcriptomic data whereby we identified
modules of coexpressed genes specifically relevant to the developing tooth. We determined the cell type
specificity of these modules using novel cell type specific transcriptomic signatures identified from re-analysis
of publicly available scRNA-seq data of the E14 mouse molar. Transcriptomic data were integrated with E13.5
mouse incisor enhancer calls and human Genome-Wide Association Study data (GWAS), which were used to
prioritize candidate disease genes. We present the results of this analysis as a prioritized list of candidate
human disease genes with the intention of their use in future in-depth experiments. In addition to these genes,
the tissue-specific enhancers we describe are of particular interest as they provide precise molecular tools for
tissue specific knockouts or reporter gene expression as we have described for specific regions of the mouse
brain [54].

Results
Section 1. Craniofacial enhancers contribute to dental development and disease risk

It has been well described that the regulatory regions active in early craniofacial development play an important role in orofacial clefting and normal human facial variation [39–41,55]. Given the demonstrated genetic component of nonsyndromic dental phenotypes such delayed tooth eruption and hypodontia, we hypothesized that craniofacial regulatory regions may also play a role in these relatively common phenotypes. To test this, we compiled a list of ‘odontogenesis’ and ‘caries’-associated common variants from the GWAS catalog (GO_0042476 and EFO_0003819, respectively; Supplemental Table 1)[56–62]. We interrogated the enrichment of these dental phenotype-associated variants (DVs) within strong enhancers of the developing human face [40] compared to strong enhancers of hundreds of other tissues [52](Methods). We observed an enrichment of variants associated with dental phenotypes in active enhancers of craniofacial tissues compared to hundreds of other tissue types from the Roadmap Epigenome Project, for variants associated with both odontogenesis (Figure 1A) and caries (Figure 1B). Notably, enrichment is not observed in craniofacial enhancers for variants associated with diseases not known to have a craniofacial component, such as Crohn’s disease (EFO_0000384)(Supplemental Figure 1). These results suggest a role for the regulatory regions active in the developing craniofacial apparatus in dental developmental traits and disease.

These findings raised the question whether loci of risk for dental phenotypes are similarly conserved in the widely used developmental model, the mouse. To determine this, we interrogated enrichment of the same variants in conserved strong enhancers from hundreds of publicly available embryonic and postnatal mouse samples, including the developing craniofacial structures (Methods)[63]. Similar to humans, we observed an enrichment of odontogenesis (Figure 1A) associated variants in conserved mouse craniofacial active enhancers. When we interrogated caries-associated variants (Figure 1B), no mouse tissue passed genome-wide significance cutoff. The combination of these findings in human and mouse support our hypothesis that some common dental phenotypes, specifically age of tooth eruption and number of teeth, may be directly impacted by distal gene regulatory sequences and that these regions may affect generally conserved processes in orofacial development.

While these results indicated a general role in craniofacial enhancers and development in dental phenotypes, it did not initially reveal any particular target genes important for these phenotypes. When we inspected the loci implicated by our analysis, we observed a variant associated with decreased tooth number (rs12229918) located in an intron of MSRB3. MSRB3 does not demonstrate specific expression in any part of the developing teeth [65], however the gene WIF1 (WNT Inhibitory Factor 1) is relatively close by and has a bivalent chromatin status we previously showed to be enriched for craniofacial relevant genes [40]. Notably Wif1 has been shown in mice to be expressed strongly in the enamel knot, an non-proliferative signaling center required for normal tooth development, where it plays a role in normal tooth morphology (Figure 1C)[71]. This variant is within strong linkage disequilibrium of many other odontogenesis-associated variants which overlap human craniofacial enhancers that are components of larger human craniofacial superenhancer regions. The mouse ortholog of this locus also demonstrated craniofacial enhancer activity, and the larger chromatin landscape surrounding these conserved enhancers includes VISTA-validated enhancers with activity in the pre-dental regions of the pharyngeal arches (Figure 1C). These findings suggest that rs12229918 may disrupt a regulatory region interacting with WIF1, demonstrating a locus at which craniofacial enhancers and their target genes may play a role in dental malformation. A similar scenario was observed for the strongest caries associated variant which is in strong disequilibrium with a conserved craniofacial enhancer demonstrated to target Pltx1 in mouse (Supplemental Figure 2).
Section 2. Tooth-specific enhancers and disease burden

While these findings were encouraging, they were identified in bulk mouse and human craniofacial tissue up to and including the approximated emergence of dedicated dental cell types. We hypothesized that the enrichment of DVs would be even more pronounced in isolated tooth tissue, particularly tooth-specific enhancers. While it would be ideal to perform this analysis on human developing teeth, the scarcity of this tissue necessitates the use of an animal model. As such, we relied on the mouse model, which is the standard in the tooth development field.

To identify enhancers active in the developing tooth at early stages, we isolated and pooled E13.5 mouse mandibular incisors and performed chromatin immunoprecipitation and sequencing (ChIP-seq) paired with a standard data analysis pipeline (Figure 2A)(Methods) [40,52,53]. We identified 25,358 strong tooth enhancers (TEs), including 6236 enhancers which were unique to the developing tooth compared to hundreds of other samples (tooth-specific enhancers, TSEs; Methods)(Supplemental Table 2, 3). To confirm we had identified tooth enhancers, we interrogated the genome-wide overlap of TEs for validated VISTA enhancers [66] which demonstrated positive enhancer activity in the craniofacial region. We observed a significant enrichment of craniofacial-positive VISTA enhancers in TEs (p<2.2e-16; odds ratio=3.55, Fisher Exact Test). Notably, we observed the same phenomenon in TSEs, despite the significantly decreased number of enhancers. These TSEs were even more highly enriched for craniofacial-positive VISTA enhancers (p=2.391e-09; odds ratio=4.71, Fisher Exact Test)(Figure 2B, Supplemental Table 4, https://cotney.research.uchc.edu/tooth/). An interactive table of these VISTA-validated elements overlapping TSEs and their images from VISTA can be explored at our website (https://cotney.research.uchc.edu/tooth/).

Previous publications have shown the enrichment of tissue-specific enhancers around genes with high tissue importance [53,70,75]. Therefore, we hypothesized that the genes targeted by tooth-specific enhancers would be enriched for genes important to dental development and disease. We used GREAT [72](Methods) to assign putative target genes of TSEs (Supplemental Table 5). These putative gene targets were enriched for tooth-relevant gene and disease ontologies, including known dental developmental diseases such as taurodontia, tooth agenesis, and abnormality of the enamel and dentin (Figure 2C,D; Supplemental Table 6)(Methods).

With these positive results of the validity of TEs and TSEs, we next aimed to test the enrichment of DVs within mouse tooth enhancers. To achieve this, we obtained the equivalent hg19 coordinates of tooth enhancers with at least 25% sequence conservation (Methods), resulting in 22,001 conserved TEs and 5,458 conserved TSEs (Supplemental Table 7, 8). We then interrogated these regions for enrichment of DVs using the same approach described above. We observed the highest enrichment (7.17 fold enrichment; padj<0.05) of odontogenesis-associated variants within conserved TEs (Figure 2E). When we re-examined the decreased tooth number-associated locus surrounding WIF1 (Figure 1C) for conserved TSEs, we noted a high number of these regions predicted to target WIF1 (Supplemental Figure 3). These results further suggest the validity of the findings and support the conservation of the role of dental developmental enhancers in dental phenotypes.

Enhancers which are active in one specific tissue compared to many others often demonstrate enrichment of binding motifs for transcription factors which are differentially expressed in the same tissue [53]. Therefore we hypothesized that TSEs would be enriched for binding motifs of transcription factors with known roles in dental development and disease. As such, we interrogated enriched transcription factor binding motifs in all TSEs
genome-wide using Hypergeometric Optimization of Motif Enrichment (HOMER)[73]. As expected, TSEs displayed enrichment of binding motifs for transcription factor families Pitx, Sox, Tead, Six, (Supplemental Table 9, Figure 2F)(Methods). These TFs are relevant to known dental developmental pathways [69,76,77]. The presence of many of these genes both as TSE targets and enriched binding motifs in TSEs reinforce their relevance in the developing tooth structure.

Together, these findings confirmed the role of developmental tooth enhancers in risk of dental phenotypes. These findings additionally suggest the developing mouse tooth is an appropriate model system for the role of enhancers in human dental phenotypes.

Section 3. WGCNA Reveals Tooth-Relevant Co-Expressed Gene Modules

These findings indicated that developmental tooth enhancers target canonical dental developmental genes. The human orthologs of many of these genes have known dental implications, suggesting TSEs likely contribute to dental phenotypes through target gene dysregulation. As previously mentioned, currently known dental phenotype-driving genes are generally associated with severe syndromes. Therefore we looked to identify previously undescribed genes which may contribute to common dental phenotypes. For genes with unannotated roles in dental development, we looked to integrate our ChIP data with transcriptomic data, specifically using weighted gene co-expression network analysis (WGCNA, Methods)[78]. Gene coexpression analysis performed on samples spanning the development of an organ have been shown to identify both known and putative novel phenotype-relevant genes, as well as cell type specific genes which tend to be coexpressed over time [53]. This has previously been applied in the developing brain and heart, where it has successfully identified genes which likely contribute to autism spectrum disorder and congenital heart disorders, respectively [53,79–81].

For WGCNA, we obtained publicly available bulk RNA-seq data from timepoints spanning the majority of dental developmental stages from both mandibular incisors and molars [82,83](Methods), including rudimentary and relatively differentiated timepoints (E12.5 and E17.5, respectively)(Figure 3A). We aligned, filtered, corrected batch effects, normalized counts, and applied principal component analysis (PCA) to identify major sources of variation in the data (Methods). The resulting PCA demonstrated the corrected batch effect (Supplemental Figure 4). We then applied WGCNA (Methods), which resulted in 28 unique modules of coexpressed genes, spanning 22016 expressed genes (Supplemental Table 10). These modules range from sizes of 63-5330 genes with a median 361 genes/module. To determine their biological relevance, we interrogated the enrichment of gene ontology categories for all genes of each module (Methods)(Supplemental Table 11). 19/28 modules demonstrated enrichment of at least one GO term (padj < 0.1, Figure 3A) relevant to biological processes in the developing tooth. Many of these processes are known to be contemporaneous and interdependent in the tooth, for example epithelial development (midnight blue) and skeletal development (red), which is reflected in the inter-module correlation of Figure 3B. These results highlight the dental significance of a subset of WGCNA coexpression modules, which is demonstrated for specific dental diseases in Figure 3D.

Given the relevant GO enrichments, we looked to determine which modules contained genes specifically active in tooth development. To answer this question, we looked at the enrichment of genes at a per-WGCNA module level within the TSE target genes using a permutation test (n=10,000; Methods). As seen in Figure 3C, we observed significant enrichment of genes from 13 WGCNA modules within TSE target genes (Supplemental Table 12). Notably, these significantly TSE-target enriched modules demonstrated significant enrichment of GO
terms relevant to tooth development (Figure 3B). These terms included skeletal development (red), epithelial development (midnight blue), epidermal regulation (black), neural development (purple and yellow), and Wnt signaling (orange).

While these results suggested the biological relevance of this subset of modules in tooth phenotypes, these GO terms did not directly correlate with dentally relevant human disease findings. To directly determine if these modules were enriched for genes with dentally relevant phenotypes in humans, we interrogated all modules for enrichment of genes implicated in all diseases with dental phenotypes in DisGeNET [84] (Methods). These genes were interrogated both individually and as an aggregate gene list (Supplemental Table 13). As seen in Figure 3C, the majority of these modules (8/13) identified above were enriched for genes implicated in at least one known dental phenotype (Supplemental Table 14). The GO terms enriched in these modules (regulation of b cell proliferation and endothelial development, respectively) are interesting in that they do not necessarily indicate any dental-specific biological processes, but these combined results rather imply that these processes are necessary for phenotypically normal dental development.

The implication of multiple WGCNA modules in dental development through DO, GO, and TSE target gene enrichment indicates that this technique serves to highlight genes which are likely important to the tissue. Their implication in known human dental phenotypes and combinatorial expression over time reflects known biology of a subset of the genes within each module, helping to prioritize modules for further investigation. Specifically, the WGCNA modules implicated by known genes relevant to dental development in mice (GO and TSE target genes) and dental phenotypes in humans (DO) are suspected to include novel genes which may be considered candidate dental disease genes.

Section 4. scRNA suggests cell type specific contribution of co-expressed gene modules

These combinatorial results of TSE target genes and tooth-relevant WGCNA modules suggest lists of co-expressed genes which are likely important to tooth development and disease. However, the bulk nature of WGCNA obscures the contributing cell types of these important genes. The developing tooth is composed of layers of interdependent epithelial and neural crest-derived mesenchymal cell types, and knowing contributing cell types of candidate disease genes is crucial to developing proper treatment of maldevelopment. The minute size of the structures and this intricacy of the composing cell types necessitated single-cell level transcriptomic analysis to identify the cell types contributing to disease risk.

We reprocessed published scRNA-seq data from four E14 mouse molars [82](Methods). A graph-based clustering approach [85] revealed 33,886 cells separating into 16 transcriptionally distinct cell states (Supplemental Figure 5). Using pseudobulk methods [86] we identified 4821 total marker genes, an average 301 per cluster (Methods; Supplemental Table 15). We leveraged significant GO and DO terms enriched in each cluster (Methods) to assign biological identities per cluster (Supplemental Table 16, Figure 4A,B), and confirmed assignments with canonical marker genes (Supplemental Figure 6) (Methods). To include only cell types with consistent inclusion across all clusters, we excluded the variable “Bone Progenitor Cells” cluster (cluster 10), which indicated normal variation in mandibular tissue inclusion during dissection. Given the cap stage of tooth development of these samples we hypothesized that the enamel knot, a signaling center made up of a small set of aproliferative epithelial cells required for normal tooth development, would be present and identifiable within a subset of the epithelium. Using a subclustering approach (Methods), we were able to identify an epithelial subcluster with attributes consistent with canonical markers of the primary enamel knot
Having annotated the cell types of the E14 mouse molar including the previously un-annotated PEK, we generated transcriptomic profiles of all cell types. We identified 2573 total marker genes, an average of 367 per cluster, including the 317 PEK genes (Supplemental Table 17). As expected, 1:1 human orthologs of these marker genes were enriched for cell type-relevant disease ontologies (Figure 4B). Notably, these marker genes contained canonical EK marker genes, including the previously mentioned Wif1 (Figure 1C), validating our annotation. As the EK has not previously been profiled in single cell analyses and the vast majority (287/317) of PEK marker genes were novel, we looked to confirm the expression of the top PEK genes (TPEKs; Methods). The 60 TPEKs included 8 canonical EK genes and 52 genes not previously identified in the EK. We performed a literature survey and referenced the GenePaint resource of in situ hybridization (ISH) images of the E14.5 mouse embryo [65,87–90], looking at the approximate area of the mandibular first molar. 47 novel TPEKs had previously been profiled via ISH, the overwhelming majority of which (38/47) showed strong and specific hybridization closely mirroring the results for Shh, Wif1, or Wnt10b (Supplemental Table 18, https://cotney.research.uchc.edu/tooth/). An interactive table of all TPEKs can be further explored on our website, https://cotney.research.uchc.edu/tooth/.

Having generated transcriptomic profiles of all cell types, we looked to ascertain if the previously identified TSE target genes are enriched for marker genes of any specific cell type. Using a random permutation test (n=10,000, Methods), we revealed a significant enrichment of marker genes from all major, dentally relevant cell types within TSE target genes (Figure 4D)(Supplemental Table 19). Specifically, the only cell types whose marker genes were not enriched within TSE target genes were red blood cells and other blood cells.

With these promising results indicating validity of the identified marker genes, we asked if the prioritized WGCNA modules were enriched for marker genes of any specific cell type. As expected, we observed marker genes to be enriched in WGCNA modules with GO terms relevant to that cell type (Supplemental Table 20, Supplemental Figure 8). For instance, genes of the midnight blue module were enriched for epithelial GO terms and marker genes of both the epithelium and the epithelial-derived PEK (Figure 4D,E). Similarly, genes of the green-yellow module were enriched for angiogenesis-related terms, and marker genes of the endothelial cluster (Figure 4F). This continued with enrichment of the red module (bone GO terms) in the mesenchyme, salmon (cell migration-related GO terms) in other blood cells, and magenta (muscle GO terms) in the perivascular cells (Figure 4G-I). As expected, many of these top enriched modules for the dental-specific cell types were seen to be enriched for TSE target genes (Figure 3). Altogether, these findings suggest that prioritized modules of co-expressed genes are expressed in cell type specific patterns in the developing tooth, where they are likely important to normal dental development.

Section 5. Data integration suggests novel dental phenotype genes

These layers of transcriptomic data suggested a subset of coexpressed modules of genes for further analysis. However, these modules combined included thousands of genes which required prioritization to inform researchers on promising candidates to pursue. As such, we sought to integrate the multiple presented data modalities (transcriptome, single cell transcriptome, GWAS, ChIP-seq) to generate a candidate disease list. Genes passing a minimum expression threshold in the bulk data (Methods) were prioritized using the following general categories: 1. Classification of the gene as a marker gene from scRNA analysis, 2. Dental relevance of
the WGCNA module assigned to each gene, 3. Proximity of each gene’s human ortholog to a craniofacial-relevant variant from GWAS catalog 4. Proximity of each gene to a VISTA-validated TE, and 5. Number of TSEs predicted to target each gene (Methods). Overall, this method combined 5 categories to determine the priority of 16322 genes genome-wide.

The top priority gene through this prioritization method was revealed to be Runx2, a canonical dental development gene whose human ortholog is associated with cleidocranial dysplasia, a disease with prominent dental abnormalities [91]. The top 20 genes also included known dental disease genes Bmp4, Zfhx3, Tbx3, Twist1, Msx2, and Postn which cause phenotypes such as abnormal tooth morphology, dental caries, and tooth agenesis [92–95]. These findings within our top scoring genes validated our prioritization system. We present in Supplemental Table 21 our prioritized list of 1632 top scoring candidate disease genes, including 1416 novel candidate disease genes.

With these promising results, we sought to validate a novel putative disease gene in silico. We looked to validate a gene which: 1. Had successfully been knocked out body-wide by the mouse knockout project (KOMP) without significant early lethality [96], 2. Had successfully been assayed by GenePaint in the E14.5 mouse, and 3. Had a VISTA-validated TE within 1Mb of the TSS. We focused upon Agap1 (Arf1 GTPase activating protein 1), the highest priority gene meeting these criteria.

AGAP1 in humans contains the top scoring sequence of human acceleration on a conserved background in the genome, called HACNS1 (chr2:236773456-236774696) [97]. This sequence is located in an intron of the gene, and actually lies within a human craniofacial superenhancer region (Figure 5A), suggesting its role in the craniofacial apparatus. Despite its proximity to known craniofacial regulatory regions, HACNS1 has been proposed to regulate Gbx2 in the mouse limb [98]. However, this gene is expressed at relatively low levels in human craniofacial tissues [70] and the mouse molar compared to Agap1 (Supplemental Figure 9). These findings suggest that AGAP1 could play an important role in facial development and morphology and potentially be regulated in a human-specific fashion during tooth development. While Agap1 does not appear in a module that is enriched in TSE target genes (brown module, Figure 3B), the 1Mb region surrounding the gene contains 7 TSEs which likely target Agap1, as it is the only tooth-specific gene in the region (Figure 5A). It is notable that while variants within AGAP1 itself have not been implicated in human disease, a variant intronic to AGAP1 has been associated with hemifacial microsomia (rs3754648, p=5e-13), a disease which affects the patterning of the face and often coincides with dental phenotypes [99]. This variant lies within a human craniofacial superenhancer region, and is within linkage disequilibrium of a conserved tooth-specific enhancer that was validated by VISTA (Figure 5A,B) and demonstrates highly tooth-specific activation.

Despite the presence of a relevant variant within the gene, AGAP1 has no reported dental phenotype in humans, and has not been associated with any specific human syndrome. Interestingly, the gnomAD entry for AGAP1 demonstrates a LOEUF score (0.23) [100] in the bottom decile of all genes, indicating the gene is resistant to loss of function mutations and therefore likely extremely important in humans. Agap1 has also been demonstrated to be expressed in the upper and lower incisors and molars at E14.5 [65,87–90], where it appears to be restricted to the previously described approximate enamel knot area (Figure 5C-D, Supplemental Figure 10). Supporting this finding is its high expression in the PEK; Agap1 appeared in our single cell analysis as a PEK marker gene, with 0.7 log fold enrichment in the PEK compared to all other cell types (padj=1.51e-70)(Figure 5D). Many genes specific to the EK result in dental phenotypes when knocked
out specifically in the tooth [101,102], and the specificity of this gene to the PEK within our data suggests there would likely be a similar phenotype.

To determine if this is the case, we turned to the mouse knockout project (KOMP) to discern whether dental related phenotypes were apparent upon disruption of $Agap1$. Exploration of the database entry for the homozygous loss of function $Agap1$ mice revealed clear and well described craniofacial phenotypes of snout malformation and malocclusion (improper meeting of maxillary and mandibular teeth) (Figure 5E, Supplemental Figure 11). Results from the KOMP also cited increased prevalence of “abnormal tooth morphology” (p=9.12e5).

Altogether, these factors in combination suggest $AGAP1$ is an important player in dental development in humans and mice, and that modulating its expression likely results in a dental phenotype. More importantly, $AGAP1$ serves as a validation of our results from the integration of multiple datasets from mouse tissue. These results also indicate the parallels this data is able to draw in the congruent human tissue when that tissue is unable to be obtained.

Discussion

Previous findings in the bulk developing human craniofacial regions demonstrated a role for active regulatory regions in craniofacial morphology and disease. Here we have shown that these regions likely also influence dental phenotypes and disease. Using publicly available ChIP-seq data we have generated functional chromatin annotations in hundreds of mouse tissues including craniofacial samples. With these annotations we have demonstrated that conserved regulatory regions active in the early developing mouse face are similarly systematically enriched for variants associated with a variety of human dental phenotypes.

We performed ChIP-seq on isolated E13.5 mouse incisors in order to understand the role of the enhancers from the tooth itself in determining these dental phenotypes and diseases. We observed that this tissue demonstrates the highest enrichment of odontogenesis-associated variants, suggesting dysregulation of enhancers specifically active in the tooth contributes to these tooth-isolated phenotypes. This conservation of findings across species indicates that the mouse tooth is a viable model for the role of enhancers in dental development and disease. To determine the genes which are likely contributing to these phenotypes, we leveraged publicly available bulk and single cell transcriptomic data, performed gene co-expression analysis and identified cell type specific transcriptomic signatures. We integrated these findings with our tooth enhancers and previously generated GWAS for dental phenotypes to prioritize genes based on their likelihood to be relevant to tooth development. While data integration of this type has proven to be useful in identifying human disease candidate genes from developing tissue [53,70], this method has not been applied to the developing mouse tooth, nor has it been extrapolated to indicate human dental disease genes.

We have demonstrated here that variants associated with odontogenic phenotypes are enriched in enhancers active in the human and mouse developing craniofacial apparatus. This role for enhancers in tooth phenotypes has not previously been demonstrated, and the role of enhancers in tooth development as a whole has been largely unexplored. In this manuscript we described a specific locus which serves as an example of the role these regions can play in dental phenotypes. We observed a variant highly associated with decreased tooth number upstream of $WIF1$, a gene known to be isolated to the enamel knot in mice where it plays an important role in tooth morphogenesis (Figure 1C). This variant and others within high linkage disequilibrium were found
to overlap with conserved regions of craniofacial enhancers, many of which were predicted to target WIFI (Figure 1C, Supplemental Figure 3). Interestingly, this gene has not been described in human dental development or disease. After integration of all our data modalities in this investigation, this gene appeared in the top ten of our candidate disease gene list, further suggesting this gene’s role in dental development and phenotypes is conserved across species.

We have also shown here that active enhancers regulating patterning of the human face also harbor a significant number of variants related to caries risk, a disease whose risk is generally considered to be both developmental and immune-mediated [13,103–105]. However, the majority of cases do not demonstrate a single-gene etiology. Our findings suggest that craniofacial enhancers play an important role in this risk, supported by our specific findings at the PITX1 locus (Supplemental Figure 2). The location of the strongest caries-associated variant in a conserved craniofacial enhancer region that has been shown to influence Pltx1, an epithelial marker gene. This suggests that modulation of its expression affects the development of dental epithelial cell types in a way which may contribute to risk of caries over time. Further, it is important to note that we observed enrichment of caries-associated variants in immune cell enhancers in addition to craniofacial enhancers (Figure 1B). Given that we observed no enrichment of TSE target genes within markers of red blood cells or immune cells (Figure 4D), we determined that these cell types do not largely contribute to enhancers identified in the bulk tooth. Rather, our results suggest a duality of independent genetic caries risk contribution from the developing tooth (prenatal risk) and immune system (postnatal risk). Additionally, we provide a list of novel genes likely important to tooth development which may be of interest for downstream modulation investigations in caries models.

In this manuscript we have also presented a re-analysis of publicly available scRNA-seq data from the E14 mandibular molar, from which we have identified a novel putative enamel knot gene signature. Using canonical EK marker genes, we annotated a previously undiscovered epithelial subcluster with features consistent with the EK (Figure 4C, Supplemental Figure 7). We uncovered 317 PEK-specific genes and demonstrated the relative EK specificity of the majority of the 60 most specific PEK genes by comparing their expression within the approximate mandibular molar to in situ patterns of canonical EK markers Shh, Wnt10a, and Cdkn1a (Supplemental Table 18). Given the known role of the structure in patterning and morphogenesis of the tooth [106–108], this novel PEK signature suggests targets for future studies in dental regeneration and morphology, and is available on our website as an interactive table for further exploration.

Lastly, we have here demonstrated the ability to extrapolate multimodal data from the developing mouse tooth to human dental development and malformations. Previous investigations in human tooth development have been limited due to scarcity of the tissue, but they demonstrated the conserved expression of important dental factors such as RUNX2, WNTs, and BMPs [42–46]. Many of these genes appear as marker genes for the mesenchyme, enamel knot, and epithelium, and appear as highly important genes in our prioritized gene list (Supplemental Table 21). This speaks to both the robust nature of our analyses and indicates the validity of this prioritized list. Additionally, our findings genome-wide and our detailed findings at the PITX1 and WIFI loci suggest the validity of the mouse tooth as a model of enhancers’ role in human dental development and disease. Further downstream experiments and analyses will be necessary to unravel the specific roles of these prioritized candidate disease genes and tooth-specific enhancers in dental development and phenotypes. Additionally the tooth-specific enhancers we have identified could be attractive molecular tools for driving highly specific expression of reporter genes or Cre recombinase as we have shown for precise regions in the mouse brain [54]. We provide a convenient portal to explore all of our results at
https://cotney.research.uchc.edu/tooth/ with minimal computational effort for the convenience of the research community.

Materials and Methods

Detailed scripts of all analyses can be found at our github (https://github.com/cotneylab/tooth).

Chromatin State Segmentation

E13.5 mouse mandibular incisors were isolated bilaterally from multiple C57BL/6J embryos and crosslinked using 1% formaldehyde as previously described [109,110]. Upon isolation of nuclei and shearing, soluble chromatin was divided equally across multiple tubes for immunoprecipitation with antibodies against H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3, and H3K9me3. Subsequent sequencing, alignments, imputation of signals, and chromatin state segmentation using 15 and 18 state models were performed as previously described [40]. The same chromatin signals were retrieved from all available data in mouse ENCODE [63] for multiple replicates of 12 tissues and 10 timepoints and imputed to yield 1316 distinct chromatin signals. These imputed signals were then segmented with the same models as above resulting in 154 chromatin state segmentations (https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=Jcotney&hgS_oth herUserSessionName=Mouse_chromhmm_15_18_state). Tooth specific enhancers were identified using bedtools (v2.29.0, [111]) on strong enhancer annotated segments (18 State chromatin segmentations; States 8, 9, 10; [53]) and compared to other non-craniofacial mouse tissues (samples without any dental tissue) and the same chromatin state segments. Mouse strong enhancers were converted to hg19 coordinates (kent-tools, v1.04.00; minimum sequence conservation 25%) for GWAS analyses (see below). Target genes of these enhancers were identified using rGREAT (v1.26.0, [72,112]) for mm10, using the default settings.

GWAS enrichment analysis

Caries, Crohn’s disease and odontogenesis-associated variants were obtained from GWAS catalog (EFO_0003819, EFO_0000384, GO_0042476). Variants identified in eastern European cohorts with p <= 5e-8 were retained for each category. GREGOR (v1.4.0, [64]) was used to interrogate enrichment of disease-associated variants within strong enhancers of each biosample, with the control group of Eastern European background variants. Human enrichment analysis was performed on 18 state segmentations of published samples obtained from [40,53] and 127 human cell types profiled by Roadmap Epigenome [52,113]. Mouse enrichment analyses were performed on 18 state segmentations from published mouse tissues from the ENCODE project and our E13.5 mouse incisor sample, as described above.

WGCNA

Bulk RNA-seq fastqs from molars (n=30; 3-E12.5, 7-E13, 7-E14, 3-E15.5, 7-E16, 3-E17.5) and incisors (n=3, E12.5) from [82,83] were obtained from GEO and aligned using Kallisto (kallisto v0.46.2) to the mm10 genome (GRCm39)[114]. Aligned libraries were imported to DESeq2 (v1.26.0) [115] using tximport (v1.14.2) [116] and one replicate of E13 was omitted as an outlier. Genes were filtered for minimum transcript count of 5 in at least 3 replicates. Batch effects were corrected removing PC1 and PC2 as sources of variation using RUVseq (v1.20.0) [117]. The remaining 32 samples were processed using DESeq2. Variance stabilized transformation count matrix for all samples were imported into a WGCNA pipeline (v.170-3) [78]. In brief, samples were
filtered for outliers and genes were filtered for quality. Power for each file was obtained and a threshold of 0.85 was used to define power of 8. WGNCA network was built, using unsigned TOM, minimum module size of 50, gene dendrogram merge cut height of 0.25, and a deepSplit of 2. Correlation and intramodule connectivity for each module was identified. Gene ontology enrichment analysis and subsequent figures for each module were generated using clusterProfiler, with "enrichGO" and "enrichDGN" modalities on genes and their 1:1 human orthologs (clusterProfiler v3.14.3, org.Hs.eg.db v3.14.0, org.Mm.eg.db v3.10.0)[118–120].

Single cell RNA-seq

Raw fastqs were retrieved from GEO (GSE142201) [82] and aligned to the mm10 genome (GRCm39) using Kallisto/bustools (kallisto v0.46.2, bustools v0.40.0)[114], and Kallisto for bulk RNA-seq libraries. Kallisto/bustools was used in filtering and Seurat object generation. Seurat (v3.2.0)[87] was used to merge replicates. Cells were filtered (<5% mtDNA, >200 nFeatureRNA) and log normalized. Cell cycle stages were assigned with mouse orthologs from known human cell cycle genes. Data was scaled using all genes. Nearest neighbors were assigned using dimensions 1:15 via Louvain algorithm. Clusters were generated at resolution=0.3. UMAPs were generated with dimensions 1:15. Epithelial analysis was clustered at resolution=0.2, using dimensions 1:15. Marker genes were identified with DESeq2 using logfc>0.5, min.pct=0.25. SymlIDs were converted to EntrezID with clusterProfiler. clusterProfiler was used to calculate GO term enrichment against background. clusterProfiler "simplify" combined similar GO terms, with a z score cutoff of 0.5. Marker genes of annotated cell types were identified after dropping all cells with the identity “Bone Progenitor Cells” from analyses, using DESeq2 with logfc>1.0, min.pct=0.25, max.cells.per.ident=400.

Marker Gene Validation

In situ hybridization images for EK marker gene validation were obtained from the GenePaint online resource and a literature search for specific genes in the developing tooth [65,87–89][90,121].

Disease Gene Prioritization

All genes from WGCNA analyses, excepting genes belonging to the grey module (low expression module) were considered for prioritization. Genes were given a “score” based upon a number of factors. Genes were given one point for being a marker gene for any scRNA-seq annotated cell type. An additional point was given for marker genes of dental-specific cell types (Enamel Knot, Epithelium, Mesenchyme, and Perivascular Cells). We obtained hg19 coordinates of GWAS variants associated with craniofacial and dental phenotypes (EFO_0009892, EFO_0600095, GO_0044691, EFO_0009331, Orphanet_141136, and HP_0000175) and identified human genes located within 500kbp of at least one variant (Supplemental Table 22, 23). Mouse orthologs of these genes were given an additional point. Genes were given additional points based on the number of TSEs predicted to be associated by GREAT: 0 TSEs = 0 points, 1-2 TSEs = 1 point, 3-4 TSEs = 2 points, 5-6 TSEs = 3 points, 7+ TSEs = 4 points. Genes belonging to tooth-relevant WGCNA modules (blue, purple, green, magenta, yellow, black, red, midnightblue, darkorange, orange, lightyellow, lightgreen, white, turquoise, lightcyan, grey60) were given an additional point. We used mm10 coordinates of all VISTA+ tooth enhancers to identify all genes within 1Mb of each enhancer (Supplemental Table 24). These genes near VISTA validated enhancers were given a point. These scores were summed for each gene, and genes with the same score were further prioritized based on the predicted number of targeting TSEs.
Statistical significance for enrichment analyses was assigned using random permutation analysis (n=10,000) with Benjamini-Hochberg correction for all tests.

Figures were generated using ggplot2 v3.3.3 and ggsignif v0.6.1. ShinyCell (v.2.0.0)[122] package was used for development of the web portal. Scripts for computational analyses are available at https://github.com/cotneylab/tooth.

Acknowledgments and Funding

We would like to give our profound thanks to Dr. Mina Mina of UConn School of Dental Medicine for her work in providing the primary embryonic mouse tissues used in these experiments.

We are supported by NIH grants 1R01DE028945, 1R03DE028588, 5R35GM119465, 5T90DE021989, and 1F30DE031149.

Competing Interests

We report no conflicts of interest in this work.

References

1. Bäckman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in a northern Swedish county. Community Dent Oral Epidemiol. 1986;14: 43–47.

2. WITKOP, C. J. Heritable defects of enamel. Oral Facial Genetics. 1976; 151–226.

3. Andersson K, Malmgren B, Åström E, Dahllöf G. Dentinogenesis imperfecta type II in Swedish children and adolescents. Orphanet J Rare Dis. 2018;13: 145.

4. Witkop CJ. Hereditary defects in enamel and dentin. Acta Genet Stat Med. 1957;7: 236–239.

5. Witkop CJ Jr. Hereditary defects of dentin. Dent Clin North Am. 1975;19: 25–45.

6. Khalaf K, Miskelly J, Voge E, Macfarlane TV. Prevalence of hypodontia and associated factors: a systematic review and meta-analysis. J Orthod. 2014;41: 299–316.

7. Soni HK, Joshi M, Desai H, Vasavada M. An orthopantomographic study of prevalence of hypodontia and hyperdontia in permanent dentition in Vadodara, Gujarat. Indian J Dent Res. 2018;29: 529–533.

8. Sisman Y, Uysal T, Gelgor IE. Hypodontia. Does the prevalence and distribution pattern differ in orthodontic patients? Eur J Dent. 2007;1: 167–173.

9. Al Jawad FHA, Al Yafei H, Al Sheeb M, Al Emadi B, Al Hashimi N. Hypodontia prevalence and distribution pattern in a group of Qatari orthodontic and pediatric patients: A retrospective study. Eur J Dent. 2015;9: 267–271.

10. Acev P Darko, Gjorgova J. Prevalence of hypodontia in the permanent dentition of Macedonian population. Balkan J Dent Med. 2014;18: 93–98.

11. Warwar AH, Abdullah M, Sami W. The incidence of enamel hypoplasia in children between 8 and 15 years in Anbar Governorate, Iraq. J Int Oral Health. 2019;11: 70.
12. Lunardelli SE, Peres MA. Prevalence and distribution of developmental enamel defects in the primary dentition of pre-school children. Braz Oral Res. 2005;19: 144–149.

13. Vieira AR, Modesto A. Amelogenesis Imperfecta Enamel Changes, Amelogenin, and Dental Caries Susceptibility. Front Dent Med. 2020;1. doi:10.3389/fdmed.2020.613851

14. Hong L, Levy SM, Warren JJ, Broffitt B. Association between enamel hypoplasia and dental caries in primary second molars: a cohort study. Caries Res. 2009;43: 345–353.

15. Low W, Tan S, Schwartz S. The effect of severe caries on the quality of life in young children. Pediatr Dent. 1999;21: 325–326.

16. Åkesson M-L, Wärnberg Gerdin E, Söderström U, Lindahl B, Johansson I. Health-related quality of life and prospective caries development. BMC Oral Health. 2016;16: 15.

17. Hughes TE, Townsend GC, Pinkerton SK, Bockmann MR, Seow WK, Brook AH, et al. The teeth and faces of twins: providing insights into dentofacial development and oral health for practising oral health professionals. Aust Dent J. 2014;59 Suppl 1: 101–116.

18. Townsend GC, Pinkerton SK, Rogers JR, Bockmann MR, Hughes TE. Twin Studies: Research in Genes, Teeth and Faces. 2015. doi:10.20851/twin-studies

19. Nieminen P. Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol. 2009;312B: 320–342.

20. Boraas JC, Messer LB, Till MJ. A genetic contribution to dental caries, occlusion, and morphology as demonstrated by twins reared apart. J Dent Res. 1988;67: 1150–1155.

21. Horowitz SL, Osborne RH, Degeorge FV. Caries experience in twins. Science. 1958;128: 300–301.

22. Mansbridge JN. Heredity and dental caries. J Dent Res. 1959;38: 337–347.

23. Conry JP, Messer LB, Boraas JC, Aeppli DP, Bouchard TJ Jr. Dental caries and treatment characteristics in human twins reared apart. Arch Oral Biol. 1993;38: 937–943.

24. Adorno-Farias D, Ortega-Pinto A, Gajardo P, Salazar A, Morales-Bozo I, Werlinger F, et al. Diversity of clinical, radiographic and genealogical findings in 41 families with amelogenesis imperfecta. J Appl Oral Sci. 2019;27: e20180359.

25. Nikolopoulos G, Smith CEL, Brookes SJ, El-Asrag ME, Brown CJ, Patel A, et al. New missense variants in RELT causing hypomineralised amelogenesis imperfecta. Clin Genet. 2020;97: 688–695.

26. Smith CEL, Whitehouse LLE, Poulter JA, Wilkinson Hewitt L, Nadat F, Jackson BR, et al. A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum Mol Genet. 2020;29: 1417–1425.

27. Nitayavardhana I, Theerapanon T, Srichomthong C, Piwluang S, Wichadakul D, Porntaveetus T, et al. Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Mol Genet Genomics. 2020;295: 923–931.

28. Gustafsson BE. The Vipeholm Dental Caries Study: The Effect of Different Levels of Carbohydrate Intake on Caries Activity in 436 Individuals Observed for Five Years. 1954.
29. Vieira AR, Modesto A, Marazita ML. Caries: review of human genetics research. Caries Res. 2014;48: 491–506.

30. Garn SM, Lewis AB, Kerewsky RS. GENETIC, NUTRITIONAL, AND MATURATIONAL CORRELATES OF DENTAL DEVELOPMENT. J Dent Res. 1965;44: SUPPL:228–42.

31. Subasioglu A, Savas S, Kucukylmaz E, Kesim S, Yagci A, Dundar M. Genetic background of supernumerary teeth. Eur J Dent. 2015;9: 153–158.

32. Vieira AR. Genetic Basis of Tooth Agenesis, Supernumerary Teeth, and Other Dental Abnormalities. Genetic Basis of Oral Health Conditions. 2019. pp. 23–31. doi:10.1007/978-3-030-14485-2_3

33. Lu X, Yu F, Liu J, Cai W, Zhao Y, Zhao S, et al. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis. 2017;13: 71–82.

34. Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13: 613–626.

35. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science. 2016;354: 769–773.

36. Amano T. Gene regulatory landscape of the sonic hedgehog locus in embryonic development. Dev Growth Differ. 2020;62: 334–342.

37. Long HK, Osterwalder M, Welsh IC, Hansen K, Davies JOJ, Liu YE, et al. Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell Stem Cell. 2020;27: 765–783.e14.

38. Furniss D, Lettice LA, Taylor IB, Critchley PS, Giele H, Hill RE, et al. A variant in the sonic hedgehog regulatory sequence (ZRS) is associated with triphalangeal thumb and deregulates expression in the developing limb. Hum Mol Genet. 2008;17: 2417–2423.

39. Bonfante B, Faux P, Navarro N, Mendoza-Revilla J, Dubied M, Montillot C, et al. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. Sci Adv. 2021;7. doi:10.1126/sciadv.abc6160

40. Wilderman A, VanOudenhove J, Kron J, Noonan JP, Cotney J. High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development. Cell Rep. 2018;23: 1581–1597.

41. Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat Genet. 2018;50: 414–423.

42. Olley RC, Xavier GM, Seppala M, Volponi AA, Geoghegan F, Sharpe PT, et al. Expression analysis of candidate genes regulating successional tooth formation in the human embryo. Front Physiol. 2014;5: 445.

43. Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y, et al. Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn. 2007;236: 1307–1312.

44. Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, et al. Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol. 2014;45: 487–496.
45. Becktor KB, Hansen BF, Nolting D, Kjaer I. Spatiotemporal expression of NGFR during pre-natal human tooth development. Orthod Craniofac Res. 2002;5: 85–89.

46. Felszeghy S, Módis L, Tammi M, Tammi R. The distribution pattern of the hyaluronan receptor CD44 during human tooth development. Arch Oral Biol. 2001;46: 939–945.

47. Ji Y, Li C, Tian Y, Gao Y, Dong Z, Xiang L, et al. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev Dyn. 2021;250: 1505–1517.

48. Kim J-W, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, et al. Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet. 2019;95: 375–383.

49. Liang T, Hu Y, Zhang H, Xu Q, Smith CE, Zhang C, et al. Mouse Dspp frameshift model of human dentinogenesis imperfecta. Sci Rep. 2021;11: 20653.

50. Sagai T, Amano T, Maeno A, Kiyonari H, Seo H, Cho S-W, et al. SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development. Sci Rep. 2017;7: 13004.

51. Seo H, Amano T, Seki R, Sagai T, Kim J, Cho SW, et al. Upstream Enhancer Elements of Shh Regulate Oral and Dental Patterning. J Dent Res. 2018;97: 1055–1063.

52. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518: 317–330.

53. VanOudenhove J, Yankee TN, Wilderman A, Cotney J. Epigenomic and Transcriptomic Dynamics During Human Heart Organogenesis. Circ Res. 2020;127: e184–e209.

54. Blankvoort S, Witter MP, Noonan J, Cotney J, Kentros C. Marked Diversity of Unique Cortical Enhancers Enables Neuron-Specific Tools by Enhancer-Driven Gene Expression. Curr Biol. 2018;28: 2103–2114.e5.

55. Shaffer JR, LeClair J, Carlson JC, Feingold E, Buxó CJ, Christensen K, et al. Association of low-frequency genetic variants in regulatory regions with nonsyndromic orofacial clefts. Am J Med Genet A. 2019;179: 467–474.

56. Shungin D, Haworth S, Divaris K, Agler CS, Kamatani Y, Keun Lee M, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat Commun. 2019;10: 2773.

57. Fatemifar G, Hoggart CJ, Paternoster L, Kemp JP, Prokopenko I, Horikoshi M, et al. Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Hum Mol Genet. 2013;22: 3807–3817.

58. Pillas D, Hoggart CJ, Evans DM, O’Reilly PF, Sipilä K, Lähdesmäki R, et al. Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genet. 2010;6: e1000856.

59. Geller F, Feenstra B, Zhang H, Shaffer JR, Hansen T, Esserlind A-L, et al. Genome-wide association study identifies four loci associated with eruption of permanent teeth. PLoS Genet. 2011;7: e1002275.

60. Alotaibi RN, Howe BJ, Chernus JM, Mukhopadhyay N, Sanchez C, Deleyiannis FWB, et al.
Genome-Wide Association Study (GWAS) of dental caries in diverse populations. BMC Oral Health. 2021;21: 377.

61. Shaffer JR, Feingold E, Wang X, Lee M, Tcuenco K, Weeks DE, et al. GWAS of dental caries patterns in the permanent dentition. J Dent Res. 2013;92: 38–44.

62. Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, et al. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet. 2018;27: 3113–3127.

63. ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shores N, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583: 699–710.

64. Schmidt EM, Zhang J, Zhou W, Chen J, Mohlke KL, Chen YE, et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics. 2015;31: 2601–2606.

65. Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004;32: D552–6.

66. Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browser--a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35: D88–92.

67. Sarro R, Kocher AA, Emera D, Uebbing S, Dutrow EV, Weatherbee SD, et al. Disrupting the three-dimensional regulatory topology of the locus results in overtly normal development. Development. 2018;145. doi:10.1242/dev.158550

68. Morel G, Duhamel C, Boussion S, Frénois F, Lesca G, Chatron N, et al. Mandibular-pelvic-patellar syndrome is a novel PITX1-related disorder due to alteration of PITX1 transactivation ability. Hum Mutat. 2020;41: 1499–1506.

69. Mitsiadis TA, Drouin J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev Biol. 2008;313: 887–896.

70. Yankee TN, Wilderman A, Winchester EW, VanOudenhove J, Cotney J. Integrative analysis of transcriptomics in human craniofacial development reveals novel candidate disease genes. 2022. doi:10.1101/2022.02.28.482338

71. Lee M-J, Kim E-J, Li L, Jung H-S. Roles of Wnt inhibitory factor 1 during tooth morphogenesis. Cell Tissue Res. 2015;362: 61–68.

72. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28: 495–501.

73. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38: 576–589.

74. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50: D165–D173.
75. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337: 1190–1195.

76. Lee M-J, Kim E-J, Otsu K, Harada H, Jung H-S. Sox2 contributes to tooth development via Wnt signaling. Cell Tissue Res. 2016;365: 77–84.

77. Nonomura K, Takahashi M, Wakamatsu Y, Takano-Yamamoto T, Osumi N. Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth development. J Anat. 2010;216: 80–91.

78. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008. doi:10.1186/1471-2105-9-559

79. Werling DM, Pochareddy S, Choi J, An J-Y, Sheppard B, Peng M, et al. Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex. Cell Rep. 2020;31: 107489.

80. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155: 1008–1021.

81. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155: 997–1007.

82. Hallikas O, Das Roy R, Christensen MM, Renvoisé E, Sulic A-M, Jernvall J. System-level analyses of keystone genes required for mammalian tooth development. J Exp Zool B Mol Dev Evol. 2021;336: 7–17.

83. Lee D-J, Kim H-Y, Lee S-J, Jung H-S. Spatiotemporal Changes in Transcriptome of Odontogenic and Non-odontogenic Regions in the Dental Arch of Mus musculus. Frontiers in Cell and Developmental Biology. 2021. doi:10.3389/fcell.2021.723326

84. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48: D845–D855.

85. Yuan G-C. Computational Methods for Single-Cell Data Analysis. Humana Press; 2019.

86. Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16: 1–9.

87. Yaylaoglu MB, Titmus A, Visel A, Alvarez-Bolado G, Thaller C, Eichele G. Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev Dyn. 2005;234: 371–386.

88. Eichele G, Diez-Rou G. High-throughput analysis of gene expression on tissue sections by in situ hybridization. Methods. 2011. pp. 417–423. doi:10.1016/j.ymeth.2010.12.020

89. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9: e1000582.

90. King IA, Angst BD, Hunt DM, Buxton RS, Kruger M, Arnemann J. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation.
91. Ma D, Wang X, Guo J, Zhang J, Cai T. Identification of a novel mutation of RUNX2 in a family with supernumerary teeth and craniofacial dysplasia by whole-exome sequencing. Medicine. 2018. p. e11328. doi:10.1097/md.0000000000011328

92. Meng T, Huang Y, Wang S, Zhang H, Dechow PC, Wang X, et al. Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation. J Biol Chem. 2015;290: 29593–29602.

93. Zeng Z, Shaffer JR, Wang X, Feingold E, Weeks DE, Lee M, et al. Genome-wide association studies of pit-and-fissure- and smooth-surface caries in permanent dentition. J Dent Res. 2013;92: 432–437.

94. Yu M, Wang H, Fan Z, Xie C, Liu H, Liu Y, et al. BMP4 mutations in tooth agenesis and low bone mass. Arch Oral Biol. 2019;103: 40–46.

95. Zou C, Gao Q-P, Hussam HB, Wang W, Bai X-N, He F-Q. [BMP2/BMP4 genetic evaluation in 40 patients with tooth agenesis]. Shanghai Kou Qiang Yi Xue. 2015;24: 83–88.

96. Austin CP, Battey JF, Bradley A, Bucan M, Capecci M, Collins FS, et al. The knockout mouse project. Nat Genet. 2004;36: 921–924.

97. Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Human-specific gain of function in a developmental enhancer. Science. 2008;321: 1346–1350.

98. Dutrow EV, Emera D, Yim K, Uebbing S, Kocher AA, Krenzer M, et al. Modeling uniquely human gene regulatory function via targeted humanization of the mouse genome. Nat Commun. 2022;13: 304.

99. Elsten EECM, Caron CJJM, Dunaway DJ, Padwa BL, Forrest C, Koudstaal MJ. Dental anomalies in craniofacial microsomia: A systematic review. Orthod Craniofac Res. 2020;23: 16–26.

100. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and population genetics. Nature. 2020;581: 444–451.

101. Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes & Development. 2002. pp. 3173–3185. doi:10.1101/gad.1035602

102. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92: 19–29.

103. Russell MW, Mestecky J. Potential for immunological intervention against dental caries. J Biol Buccale. 1986;14: 159–175.

104. Michalek SM, Katz J, Childers NK. A Vaccine against Dental Caries. BioDrugs. 2001. pp. 501–508. doi:10.2165/00063030-200115080-00002

105. Abbasoğlu Z, Tanboğa İ, Küchler EC, Deeley K, Weber M, Kaspar C, et al. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015;49: 70–77.

106. Thesleff I, Keränen S, Jernvall J. Enamel knots as signaling centers linking tooth
morphogenesis and odontoblast differentiation. Adv Dent Res. 2001;15: 14–18.

107. Kwon H-JE, Li L, Jung H-S. Hippo pathway/Yap regulates primary enamel knot and dental cusp patterning in tooth morphogenesis. Cell Tissue Res. 2015;362: 447–451.

108. Vahtokari A, Aberg T, Jernvall J, Keränen S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech Dev. 1996;54: 39–43.

109. Cotney JL, Noonan JP. Chromatin immunoprecipitation with fixed animal tissues and preparation for high-throughput sequencing. Cold Spring Harb Protoc. 2015;2015: 419.

110. Cotney J, Leng J, Oh S, DeMare LE, Reilly SK, Gerstein MB, et al. Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. Genome Res. 2012;22: 1069–1080.

111. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26: 841–842.

112. Website. Available: Gu Z (2021). rGREAT: Client for GREAT Analysis. https://github.com/jokergoo/rGREAT, http://great.stanford.edu/public/html/.

113. Chadwick LH. The NIH Roadmap Epigenomics Program data resource. Epigenomics. 2012;4: 317–324.

114. Melsted P, Sina Booshaghi A, Liu L, Gao F, Lu L, Min KH (joseph), et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol. 2021; 1–6.

115. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550.

116. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4: 1521.

117. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nature Biotechnology. 2014. pp. 896–902. doi:10.1038/nbt.2931

118. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology. 2012. pp. 284–287. doi:10.1089/omi.2011.0118

119. Carlson M. org.Hs.eg.db. Bioconductor; 2017. doi:10.18129/B9.BIOC.ORG.HS.EG.DB

120. Carlson M. org.Mm.eg.db. Bioconductor; 2017. doi:10.18129/B9.BIOC.ORG.MM.EG.DB

121. Website. doi:10.11223/jarde.18.41

122. Ouyang JF, Kamaraj US, Cao EY, Rackham OJL. ShinyCell: simple and sharable visualization of single-cell gene expression data. Bioinformatics. 2021 [cited 4 Jun 2021]. doi:10.1093/bioinformatics/btab209
Figure 1. Conserved Craniofacial Enhancers Contribute to Dental Development and Phenotype Risk

A. Scatterplot of GREGOR (genomic regulatory elements and GWAS overlap algoRithm) analysis of enrichment of “Odontogenesis” (GO_0042476)-associated variants from GWAS Catalog in active enhancers annotated by 18 state chromatin segmentations genome-wide for samples from [40] (orange circles), Roadmap Epigenome (grey circles), and 18-state segmentations from Mouse ENCODE craniofacial (orange triangles) and other mouse tissue samples (grey triangles) [40,52,63]. B. GREGOR [64] analysis of “Caries” (EFO_0003819)-associated variants from GWAS Catalog as in A. C. Visualization of the locus surrounding rs12229918 (chr5:134509987, hg19) and nearby fine-mapped variants associated with decreased tooth number and delayed tooth eruption by [57]. Mouse craniofacial 18 state segmentations were generated as described in Methods from data from ENCODE [63]. Human craniofacial 18 state segmentation and composite H3K27ac, H3K4me2, and H3K4me3 p-value signal tracks were obtained from [40]. In situ hybridization images of Wif1 and HMGA2 were obtained from GenePaint [65]. Enhancer assay images were obtained from VISTA [66].
Figure 2. Enhancers of the Developing Tooth Are Enriched For Dental Phenotype Variants and Target Tooth Development Genes

A. Schematic of ChIP-seq experiment and chromatin state annotation pipeline of E13.5 mouse mandibular incisors. B. Selected VISTA-validated [66,72] craniofacial enhancers which overlap TSEs. C. Dental disease ontology categories enriched in putative target genes of TSEs, as assigned by Genomic Regions Enrichment of Annotations Tool (GREAT) [72]. D. Detailed gene networks of putative TSE target genes contributing to dental disease ontology categories from C. E. GREGOR [64] analysis of enrichment of “Odontogenesis” (GO_0042476)-associated variants from GWAS Catalog in active enhancers annotated by 18 state chromatin segmentations genome-wide for samples from [40] (orange circles), Roadmap Epigenome (grey circles), and our own 18 state segmentations from ENCODE craniofacial ChIP-seq samples (orange triangles), E13.5 incisor (green) and other samples (grey triangles). Tooth-specific enhancers (TSEs, green) do not pass the significance threshold of 1.3 (dotted line). F. Hypergeometric Optimization of Motif Enrichment (HOMER) [73] analysis of known transcription factor binding motifs enriched within tooth specific enhancers. Position weight matrices are demonstrated for each motif, obtained from JASPAR [74].
Figure 3. Weighted Gene Co-Expression Network Analysis Reveals Dental Development-Specific Co-Expression Modules

A. Network plot of co-expressed modules of genes identified through WGCNA on embryonic mouse mandibular tooth samples from molars (E12.5-E17.5) and incisors (E12.5). A Pearson correlation of the module eigenvectors was calculated for the edges, and positive correlations of ≥0.5 were included. The location of each module is determined by multidimensional scaling (MDS) of the module eigengene vectors. Size of dots indicates the number of genes in each module, and colors are module names assigned by WGCNA. Modules are labeled according to module name and the most representative significantly enriched GO term of that module, as determined by clusterProfiler.

B. Permutation enrichment analysis (n=10,000) of genes from each module within TSE target genes. Points are named according to the WGCNA module, and point size indicates the number of genes per module which appear as a TSE target gene.

C. Permutation enrichment analysis of orthologs of known human dental disease gene categories (Methods) across WGCNA modules. Point size and shape indicates the significance of this enrichment, and color indicates the directionality of that enrichment (positive or negative).

D. Detailed gene networks of genes from WGCNA modules in C contributing to human dental diseases. Genes are colored according to their module assignment.
Figure 4. Single Cell Analyses Suggest Cell-Type Specific Activity of WGCNA Modules

A. Annotated UMAP of cell types determined through Seurat analysis of 4 replicates of E14 mouse mandibular molars (n=33,886 cells) from [82]. B. UMAP as in A, labeled according to the most representative significantly enriched human disease ontology in each cell type. C. Co-Expression overlay of UMAP from A demonstrates a band of Shh/Cdkn1a+ (cerulean) epithelial cells that make up the putative enamel knot, consistent with canonical traits of the structure. D. Permutation enrichment analysis of marker genes from each cluster within TSE target genes. Points are named according
to the cluster, and point size indicates the number of genes per cluster which appear as a TSE target gene. This indicates that blood cells are not a major contributor of tooth-specific enhancers in bulk analyses. E-I Permutation enrichment analysis of marker genes from each cluster within genes from each WGCNA module. Each plot indicates the major cell type being interrogated. Points are named according to the WGCNA module, and point size indicates the number of genes per module which appear as marker genes in that tissue.
Figure 5. Validation of Agap1 as a Novel Dental Disease Gene

A. Visualization of the hg19 locus surrounding AGAP1. TSEs, strong tooth enhancers, and predicted TSE to gene loops were determined as described (Methods) using mm10 coordinates and lifted to hg19. B. VISTA-validated enhancer hs921 demonstrates activity in the pre-mandibular pharyngeal arches, where it is limited to the approximate pre-dental regions. Images from VISTA [66]. C. Agap1 expression is apparent in both the maxillary and mandibular molars (top, red arrows) and incisors (bottom, pink arrows). in situ hybridization images from GenePaint [65,87–89]. D. Single cell transcriptomic analysis demonstrated the PEK-specific expression of Agap1 in the E14 mouse molar. p<0.05, Wilcoxon test. E. Agap1 loss of function mutations in mice result in malocclusion and abnormal facial feature phenotypes at 13 weeks postnatal age. Images from KOMP [96].
Supplemental Figure 1.
Scatterplot of GREGOR (genomic regulatory elements and GWAS overlap algorhythm) analysis of enrichment of “Crohn’s Disease” (EFO_0000384)-associated variants from GWAS Catalog in active enhancers annotated by 18 state chromatin segmentations genome-wide for samples from [40](orange circles), Roadmap Epigenome (grey circles), and our own 18 state segmentations from Mouse ENCODE craniofacial (orange triangles) and other mouse tissue samples (grey triangles) [40,52,63]
Supplemental Figure 2.
Visualization of the locus surrounding rs1122171 (chr12:65,761,808, hg19) and nearby fine-mapped variants associated with decayed, missing and filled surfaces (DMFS) by [56]. Mouse craniofacial 18 state segmentations were generated as described in Methods from publicly available data from ENCODE [63]. Human craniofacial 18 state segmentation and composite H3K27ac, H3K4me2, and H3K4me3 p-value signal tracks were obtained from [40]. The variant rs1122171 had the strongest association with DMFS and was initially reported to be associated with the uncharacterized gene C5orf66 [56]. Upon inspection of our data we found other highly significant DMFS-associated variants in strong linkage disequilibrium with this variant, many of which overlapped a human craniofacial enhancer annotation that is a component of a larger craniofacial superenhancer region [40]. The mouse ortholog of this region has also been shown to have enhancer activity restricted to the developing pharyngeal arches in the very early stages of dental development (E11.5), where it interacts directly with Pitx1 nearly 200kb away [67](Figure 1C, inset). The region is well conserved across vertebrates and mutations in PITX1 have similar consequences in humans and mice [68], including roles in tooth and limb development [69]. Additionally, PITX1 has a bivalent chromatin status in developing human craniofacial tissues and has peak expression at Carnegie stage 17 [70]. These findings suggest that rs1122171 may disrupt a regulatory region interacting with PITX1, demonstrating a locus at which craniofacial enhancers and their target genes may play a role in dental malformation and disease.
Supplemental Figure 3.
Visualization of the locus surrounding rs12229918 (chr5:134509987, hg19) and nearby fine-mapped variants associated with decreased tooth number and delayed tooth eruption (Odontogenesis) by [57]. Loops demonstrate predicted conserved mouse tooth specific enhancer-target gene interaction. “TEs” track indicates conserved active enhancers of mouse incisor. Human craniofacial superenhancers and 18 state segmentation tracks were obtained from [40].

Supplemental Figure 4.
Principal Component Analysis (PCA) plot of bulk RNA-seq data obtained from [82,83], grouped by timepoint and tooth morphology. PCs determined using vst-transformed counts from RUVseq-corrected DESeq2 object.
Supplemental Figure 5.
A. Initial clustered UMAP of cell states determined through Seurat analysis of 4 replicates of E14 mouse mandibular molars (n=33,886 cells) from [82]. B. Quality control of cells from A, as demonstrated by number of unique features per cell (nFeature_RNA), total number of RNA counts per cell (nCount_RNA), and percent mitochondria per cell (percent.mt), as demonstrated per replicate. C. Most highly variably expressed genes across all cells. D. Elbow plot ranking principal components of the dataset based on the percentage of variance within each PC. E. Per-replicate contribution of cells to each cluster demonstrates that cluster 10 (bone progenitor cells) is variable across replicates.
Supplemental Figure 6.
Dot plot of canonical tooth marker gene expression across all clusters from Supplemental Figure 5A. Color indicates average expression across cells per cluster, size indicates the percentage of cells per cluster which express that gene.
Supplemental Figure 7.
A. Initial sub clustered UMAP of cell states determined through Seurat analysis of epithelial cells from 4 replicates of E14 mouse mandibular molars (n=33,886 cells) from [82].
B. UMAP overlay of module scores of combined expression of canonical enamel knot markers, calculated by Seurat AddModuleScore.
C. Predicted cell phase across epithelial cell clusters, assigned using Seurat CellCycleScoring modality.
D. Dot plot of canonical EK markers across epithelial subclusters from A. Color indicates average expression across all cells per cluster, size indicates percentage of cells per cluster expressing that gene.
E. Annotated UMAP from A.
Supplemental Figure 8.
Combined enrichment findings from Figure 4E-I. Permutation enrichment analysis of marker genes from each annotated scRNA-seq cluster within genes from each WGCNA module, excepting Red Blood Cells cluster (did not show enrichment of any modules). Points are named according to the WGCNA module, and point size indicates the number of genes per module which appear as marker genes in that tissue. Shape indicates the annotated cell type and size of each point indicates the number of overlapping genes between each cell type’s transcriptomic signature and each WGCNA module. Each major cell type demonstrates enrichment of marker genes within at least 1 WGCNA module, indicating these modules are active in specific cell types of the developing tooth. The magnitude of these enrichments and their significance are comparable across cell types, demonstrated by the variety of cell types (shapes) demonstrating significant enrichment in multiple different WGCNA modules (top right points).
Supplemental Figure 9.
Co-Expression overlay of UMAP from A demonstrates no co-expression of Gbx2/Agap1+ (cerulean), and the relatively low expression of Gbx2 compared to Agap1 in this tissue.
Supplemental Figure 10.

In Situ hybridization images of *Agap1* in E14.5 mice from GenePaint [65,87–89]. Images are expanded whole-body images from Figure 5.
Supplemental Figure 11.
X-ray images of 13-14 week old male and female $Agap1^{-/-}$ mice and wild type, age and sex-matched littermates. Images from KOMP [96].