Effects of host plant growth form on dropping behaviour in leaf beetles

SATORU MATSUBARA* and SHINJI SUGIURA*

Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan

Received 23 November 2020; revised 12 December 2020; accepted for publication 12 December 2020

Many leaf-eating insects drop from their host plants to escape predators. However, they must return to the leaves of the host plant after dropping, which represents a cost associated with this behaviour. In woody plants, the positioning of leaves is generally higher than that of herbaceous plants, which suggests that dropping from woody plants might be costlier for leaf-eating insects than dropping from herbaceous plants. Therefore, we predicted that dropping behaviour would be observed less frequently in insects that feed on woody plant leaves than in those that feed on herbaceous plant leaves. To test this prediction, we investigated dropping behaviour experimentally in larvae (23 species) and adults (112 species) of leaf beetles (Coleoptera: Chrysomelidae) on their host plants (86 species of 44 families) in field conditions. Larvae on woody plants exhibited dropping behaviour less frequently than those on herbaceous plants. However, this pattern was not detected in adults. Thus, host plant growth form might affect the evolution of dropping behaviour in leaf beetle larvae, but not in winged adults, perhaps owing to their higher mobility.

ADDITIONAL KEYWORDS: adults – anti-predator defences – behavioural costs – chemical defences – Chrysomelidae – Coleoptera – herbaceous plants – larvae – woody plants.

INTRODUCTION

Animals defend themselves against predators in various ways (Edmunds, 1974; Sugiura, 2020). The evolution of anti-predator defences can be driven by benefits gained from protection against predators and by the associated costs (Bowers, 1992; Camara, 1997; Zevereva et al., 2017). The benefits and costs of defences are closely associated with habitat. For example, phytophagous insects sequester host plant chemicals in their bodies to defend against predators (Nishida, 2002); the effectiveness of chemical defences can vary among host plant species because they have different enemies and access to different chemical components (Denno et al., 1990; Singer & Stireman, 2003). Although studies have investigated the effects of host plants on the effectiveness of anti-predator defences (Denno et al., 1990; Singer & Stireman, 2003), few studies have clarified the effects of host plants on the costs associated with anti-predator defences in phytophagous insects (Matsubara & Sugiura, 2018).

Dropping behaviour for rapid escape from predators is among the simplest of anti-predator defences (Humphreys & Ruxton, 2019). This behaviour has been reported in various animal groups, such as mammals, lizards and insects (Edmunds, 1974; Lima, 1993; Losey & Denno, 1998a, b; Vitt et al., 2002; Martins et al., 2005; Sato et al., 2005; Castellanos et al., 2011; Greeney et al., 2012; Barnett et al., 2015, 2017; Humphreys & Ruxton, 2019; Sugiura, 2020). Therefore, dropping behaviour has evolved convergently in diverse animal groups (Humphreys & Ruxton, 2019). Dropping is frequently associated with other defensive behaviours; for example, some phytophagous insects feign death (i.e. exhibit thanatosis) as they drop from host plants (Ohno & Miyatake, 2007; Matsubara & Sugiura, 2018). Although dropping allows rapid escape from predators (Day et al., 2006; Francke et al., 2008), sudden departure from the food resources and microhabitat can reduce feeding efficiency and reproduction and increase development time (Roitberg et al., 1979; Loughridge & Luff, 1983; Dill et al., 1990; Losey & Denno, 1998c; Nelson, 2007; Perović et al., 2008; Agabiti et al., 2016). These are considered to be costs associated with dropping behaviour.
Host plants can affect the cost of dropping behaviour in phytophagous insects (Matsubara & Sugiura, 2018). When phytophagous insects drop to the ground, they must then return to an appropriate feeding position on the host plant. Underlying leaves can prevent phytophagous insects from dropping to the ground, thereby reducing the costs of dropping behaviour. For example, leaf beetles are much less likely to drop to the ground from large, oval leaves than from cleft leaves because the former can act as safety nets for the falling beetles (Matsubara & Sugiura, 2018). Given that the leaf positions on woody plants are generally higher than those on herbaceous plants, insects require more time and energy to move from the ground to their feeding position on woody plants. Consequently, the costs associated with dropping from woody plants are expected to be higher than those associated with dropping from herbaceous plants. Some arthropods that inhabit woody plants reportedly avoid dropping to the ground by gliding (Yanoviak et al., 2005, 2009, 2015; Meresman et al., 2017) or using silk lifelines (Brackenbury, 1996; Sugiura & Yamazaki, 2005). Therefore, dropping behaviour is expected to occur less frequently in insects that feed on woody plant leaves than in those that feed on herbaceous plant leaves. However, this prediction has never been tested. Clarification of the relationships between host plants and dropping behaviour would contribute to our understanding of the evolution of defensive behaviours and host plant selection in phytophagous insects.

To elucidate the effects of host plant growth form (i.e. herbaceous vs. woody plants) on dropping behaviour in phytophagous insects, we investigated the anti-predator defences of leaf beetles (Coleoptera: Chrysomelidae) on their host plants in field conditions in Japan. The species diversity of leaf beetles is high; the family Chrysomelidae includes ~41 000 extant species (Jolivet et al., 2008), ~700 of which are recorded in Japan (Kimoto & Takizawa, 1994). Most leaf beetle species are dietary specialists that feed on particular families and genera of plants (Kimoto & Takizawa, 1994; Jolivet & Verma, 2002). Although closely related beetle species frequently use the same plant families, some congenic species feed on different plant families (Kimoto & Takizawa, 1994). Leaf beetles defend themselves against predators in various ways, including dropping, flying, jumping, clinging, having spines and self-mimicking of feeding damage (Kimoto & Takizawa, 1994; Jolivet & Verma, 2002; Konstantinov et al., 2018; Shinohara & Takami, 2020; Sugiura, 2020). The secretion of chemical liquids from the body is well documented in some leaf beetle larvae as a chemical defence against predators such as ants (Sugawara et al., 1979; Pasteels et al., 1982; Pasteels et al., 1984; Kimoto & Takizawa, 1994). Thus, leaf beetles are an appropriate insect group for investigating the effects of host plant growth form on dropping behaviour and other anti-predator defences in phytophagous insects. Larvae and adults of many leaf beetle species are found on host plant leaves, making it possible to compare the effects of host plant growth form on dropping behaviour in larvae and adults.

In this study, we investigated experimentally the defensive behaviour of larvae (23 species) and adults (112 species) of leaf beetles on their host plants in field conditions in Japan. We examined whether larvae and adults showed dropping or other defensive behaviours in response to artificial stimuli on their host plants and explored the effects of host plant growth form (herbaceous or woody plants) on the evolution of dropping behaviour in leaf beetles.

MATERIAL AND METHODS

STUDY SITE AND SPECIES

Field experiments were conducted at 102 sites in Japan (Matsubara & Sugiura, 2021; 25°51′–41°22′N, 127°42′–141°22′E, 1–1090 m a.s.l.). The study sites included various environments, such as forest, grassland and farm. Leaf beetle larvae are external leaf feeders, leaf/stem miners, seed borers, detritus feeders or root-feeders (Jolivet, 1988). In this study, we focused on external leaf feeders that potentially drop from host plant leaves. Early instar larvae were not included in this study because they were too small to be investigated in field conditions. Therefore, larvae with body length ≥ 5 mm were used for subsequent experiments.

Leaf beetles and their host plants were identified based on their morphological characteristics (Kimoto & Takizawa, 1994; Azegami et al., 2013a, b; Hayashi, 2014). The growth form (woody or herbaceous) of each plant species was determined based on the presence or absence of woody tissues in the stems (Clapham et al., 1987; Azegami et al., 2013a, b; Hayashi, 2014).

FIELD EXPERIMENTS

To explore the effects of host plant growth form (woody or herbaceous) on the defensive behaviours of leaf beetles, we investigated the responses of beetles to simulated attacks in field conditions, following the procedure of Matsubara & Sugiura (2018). When larval or adult leaf beetles fed externally on plant leaves, we measured the feeding elevation (i.e. vertical distance from the ground to the feeding position). Individuals on leaves higher than 3.0 m were not included in our experiments because they could not be reached. We randomly selected beetles on leaves (height, ≤ 3.0 m) and poked the larval dorsal abdomen or adult elytra with forceps to simulate attacks by predacious insects.
DROPPING BEHAVIOUR IN LEAF BEETLES

(e.g. ants). Forceps have been used frequently to simulate predator attacks (e.g. Miyatake et al., 2008; Müller et al., 2016; Matsubara & Sugiura, 2018). To standardize the stimuli, the same researcher used the same forceps in all the field experiments. The same degree of stimulus was provided to all leaf beetles in this study. When beetles did not respond to a stimulus, they were poked repeatedly at 2 s intervals, up to five times. Beetles on the lowest leaves are more likely to drop to the ground than those on the overlying leaves, because underlying leaves can prevent beetles from reaching the ground (Matsubara & Sugiura, 2018). Therefore, to evaluate the effects of underlying leaves on dropping behaviour, we did not use beetles found on the lowest leaves in our experiments.

Initially, we recorded whether beetles exhibited dropping behaviour in response to artificial stimuli. Dropping behaviour was defined as departure from the feeding position attributable to gravity. When insects dropped from the host plant leaves, we also recorded the place to which they dropped (i.e. leaves or ground/water) or whether they flew before landing (Fig. 1). Dropping behaviour is frequently accompanied by thanatosis (Humphreys & Ruxton, 2018); for example, some adults of a leaf beetle species fold their legs and antennae to feign death as they drop from host plants (Matsubara & Sugiura, 2018). We included such death feigning as dropping behaviour in this study, because it was difficult to observe whether each leaf beetle feigned death during dropping. We also recorded other defensive behaviours, such as emission of visible liquids, flying, jumping and running.

Field experiments were conducted on sunny or cloudy days (08:30–18:00 h) from April 2016 to May 2020, at temperatures of 16.2–35.4 °C.

DATA ANALYSIS

The defensive behaviours of some beetle species were observed at several sites. However, site effects were not included in following models because our preliminary analysis detected no site effects on dropping behaviour.

Generalized linear mixed models (GLMMs) with binomial error distribution and logit link were used to determine the effects of host plant growth form on dropping and other behaviours of leaf beetles. As response variables, we used whether each individual exhibited dropping behaviour or not (one or zero), whether each individual dropped to the ground or not (one or zero), whether each larva exhibited chemical defence or not (one or zero) and whether each adult flew during dropping or not (one or zero). In all analyses, host plant growth form (woody or herbaceous) was used as a fixed factor. Leaf beetle tribe and species were fitted as nested random effects to account for phylogenetic constraints (Hiraiwa & Ushimaru, 2017).

Figure 1. Four patterns of dropping behaviour in leaf beetles: A, dropping to the same leaf; B, dropping to an underlying leaf; C, dropping to the ground or water; and D, flying during during dropping.
All analyses were performed using the software R v.3.5.2 \citep{RCoreTeam2018}. The GLMMs were run using the \texttt{lme4} package 1.1.13 \citep{Bates2017}.

RESULTS

A total of 286 leaf beetle larvae (23 species from six tribes) on host plants (23 species from 16 families) were investigated in field conditions; 15 and eight beetle species fed on the leaves of woody and herbaceous plants, respectively \citep{Appendix1}. The larval feeding elevations were 1501.2 ± 36.9 mm (mean ± SEM, \(N = 186\)) on woody plants and 315.6 ± 14.1 mm (\(N = 100\)) on herbaceous plants. When poked with forceps, 2.2% of 186 larvae (13.3% of 15 species) on woody plants and 36.0% of 100 larvae (87.5% of eight species) on herbaceous plants exhibited dropping behaviour (Fig. 2A; Table 1). Larvae on herbaceous plants dropped to the ground more frequently compared with those on woody plants (Fig. 2B; Table 1). Other defensive behaviours were also observed. For example, 52.2% of 186 larvae (60.0% of 15 species) on woody plants and 56.0% of 100 larvae (87.5% of eight species) on herbaceous plants secreted visible chemicals, with no significant difference between woody and herbaceous plants (Fig. 2C; Table 1). Other larvae (1.4%) raised their faecal shields in response to artificial stimuli.

A total of 809 leaf beetle adults (112 species from 22 tribes) on host plants (86 species from 44 families) were investigated; 57 and 55 beetle species fed on the leaves of woody and herbaceous plants, respectively \citep{Appendix1}. The feeding elevations of adult beetles were 1207.7 ± 26.9 mm (\(N = 393\)) on woody plants and 524.6 ± 18.5 mm (\(N = 416\)) on herbaceous plants. When poked with forceps, 37.7% of 393 leaf beetle adults (64.9% of 57 species) on woody plants and 39.2% of 416 adults (58.2% of 55 species) on herbaceous plants exhibited dropping behaviour (Fig. 3A; Table 2). Host plant growth form did not significantly affect dropping behaviour in leaf beetle adults (Fig. 3A, B; Table 2). In addition, significantly more adults flew after dropping from woody (9.4%) than from herbaceous plants (2.9%; Fig. 3C; Table 2). Beetles that did not drop ran (22.1%), jumped (14.2%), flew (7.3%) or secreted visible chemical liquids from their bodies (0.6%) in response to stimuli. Other beetles (1.9%) used their legs to hold tenaciously to leaf surfaces.

DISCUSSION

Previous studies have investigated the effects of host plants on anti-predator defences in phytophagous insects \citep{Denno1990}. However, few studies have focused on host plant architecture as a factor that affects dropping behaviour in leaf-feeding insects \citep{Matsubara2018}. In the present study, we conducted field experiments to test the prediction that dropping behaviour would be observed less frequently among
Leaf beetle larvae exhibited dropping behaviour less frequently than those on herbaceous plants (Fig. 2A; Table 1), supporting our prediction. However, this pattern was not detected in adults (Fig. 3A; Table 2).

Defensive Strategies in Leaf Beetles

Leaf beetle larvae exhibited chemical defence more frequently than dropping behaviour in our experiments (Fig. 2C; Table 1). Thus, larvae frequently avoided leaving their feeding sites. Most larvae that dropped from host plants ultimately landed on the ground (Fig. 2B), necessitating a return to the host plant leaves by walking. Given that leaf positions on woody plants are generally higher than those on herbaceous plants, dropping from woody plants might be costlier compared with dropping from herbaceous plants. Therefore, larvae that feed on woody plants are generally less frequent than those on herbaceous plants (Fig. 2A). However, larvae that feed on woody plants were more likely to avoid leaving their feeding sites than those that feed on herbaceous plants (Fig. 2A). However, larvae that feed on woody plants did not use chemical defences more frequently than those that feed on herbaceous plants (Fig. 2C). Given that chemicals emitted by leaf beetle larvae can effectively repel predators such as ants and spiders (Sugawara et al., 1979; Pasteels et al., 1982, 1988; Kimoto & Takizawa, 1994), the larvae of many leaf beetle species prefer to adopt chemical defences. However, we might have overestimated the importance of chemical defences in larval leaf beetles because our study was limited to the larvae of 23 species (six tribes of Chrysomelidae).

Leaf beetle adults exhibited dropping behaviour more frequently than larvae (Figs 2A, 3A). However, the drop rates of adult beetles did not differ significantly between woody and herbaceous plants (Fig. 3A; Table 2). Dropped adults frequently returned to host plant leaves by flying before landing on the ground, suggesting that the costs associated with dropping behaviour are lower for adults that can fly. The results of our previous study showed that larvae of the leaf beetle *Phaedon brassicae* Baly required more time than did adults to return to feeding sites (i.e. leaves) on host plants (Matsubara & Sugiura, 2018). Given that the costs associated with dropping to the ground are lower for adults than for larvae, adults might not avoid leaving their host plants in response to predator attacks. Alternative defensive behaviours of adults included running, jumping and flying. Although very few adults emitted visible chemical liquids from their bodies, adults of some leaf beetle species reportedly secrete small amounts of defensive chemicals (Pasteels et al., 1988). Thus, our study might have underestimated the importance of chemical defences in adult leaf beetles.

Effects of Plant Growth Form on Dropping Behaviour

We observed effects of host plant growth form (i.e. woody or herbaceous plants) on dropping behaviour.
Dropping behaviour in leaf beetle larvae might have evolved via at least one of four potential processes: (1) species that feed on herbaceous plants acquiring dropping behaviour; (2) species that feed on woody plants losing dropping behaviour; (3) species that exhibit dropping behaviour shifting from woody to herbaceous host plants; or (4) species that do not exhibit dropping behaviour shifting from herbaceous to woody host plants. The drop rate can vary among larvae of the same leaf beetle species (Appendix 1; Matsubara & Sugiura, 2018), which suggests that this behaviour is frequently acquired or lost among species (i.e. hypothetical process 1 or 2). We did not observe whether oviposition site preferences (e.g. woody or herbaceous plants) varied among adults of the same leaf beetle species in the present study. However, oviposition preferences for host plant species reportedly vary among adult females of the same leaf beetle species (Vencl & Srygley, 2013; Vencl et al., 2011, 2013), suggesting that shifts in host plant occur frequently among species (i.e. hypothetical process 3 or 4). Molecular phylogenetic analyses (e.g. ancestral reconstruction) of defensive behaviours and host plants would help to elucidate the selective processes promoting the evolution of dropping behaviour in leaf beetles.

CONCLUSION

The results of this study indicate that host plant growth form affected the evolution of dropping behaviour in leaf beetle larvae but not in winged adults. However, the evolution of dropping behaviour in phytophagous insects can be influenced by other factors, such as host plant range. When generalist species drop from the host plant to the ground, they can find other plants to eat more easily than can specialist species (Bernays & Graham, 1988). Therefore, the costs associated with dropping from host plants might be higher for specialists than for generalists. In addition, primary defences, such as body colour, might affect the evolution of dropping behaviour in phytophagous insects. Insect species with cryptic body colour are less easily detected by predators compared with those having aposematic body colour when they drop to the ground. Consequently, dropping from host plants might have evolved more frequently in cryptic species than in aposematic species. Further studies are needed to test these effects on the evolution of dropping behaviour in phytophagous insects.

Figure 3. Dropping and other defensive behaviours of leaf beetle adults. Proportions of leaf beetle adults: A, exhibiting dropping behaviour; B, dropping to the ground; C, flying during dropping. Sample size: 393 individuals (57 species) on woody plants and 416 individuals (55 species) on herbaceous plants.

in leaf beetle larvae (Fig. 2A) but not in the adults (Fig. 3A). Given that few leaf beetle larvae can move among host plants, host plants can strongly influence their survival. The costs associated with dropping from woody plants might be higher than those associated with dropping from herbaceous plants, and differential costs between woody and herbaceous plants should be higher in leaf beetle larvae than in flying adults.

Dropping behaviour in leaf beetle larvae might have evolved via at least one of four potential processes: (1) species that feed on herbaceous plants acquiring dropping behaviour; (2) species that feed on woody plants losing dropping behaviour; (3) species that exhibit dropping behaviour shifting from woody to herbaceous host plants; or (4) species that do not exhibit dropping behaviour shifting from herbaceous to woody host plants. The drop rate can vary among larvae of the same leaf beetle species (Appendix 1; Matsubara & Sugiura, 2018), which suggests that this behaviour is frequently acquired or lost among species (i.e. hypothetical process 1 or 2). We did not observe whether oviposition site preferences (e.g. woody or herbaceous plants) varied among adults of the same leaf beetle species in the present study. However, oviposition preferences for host plant species reportedly vary among adult females of the same leaf beetle species (Vencl & Srygley, 2013; Vencl et al., 2011, 2013), suggesting that shifts in host plant occur frequently among species (i.e. hypothetical process 3 or 4). Molecular phylogenetic analyses (e.g. ancestral reconstruction) of defensive behaviours and host plants would help to elucidate the selective processes promoting the evolution of dropping behaviour in leaf beetles.

CONCLUSION

The results of this study indicate that host plant growth form affected the evolution of dropping behaviour in leaf beetle larvae but not in winged adults. However, the evolution of dropping behaviour in phytophagous insects can be influenced by other factors, such as host plant range. When generalist species drop from the host plant to the ground, they can find other plants to eat more easily than can specialist species (Bernays & Graham, 1988). Therefore, the costs associated with dropping from host plants might be higher for specialists than for generalists. In addition, primary defences, such as body colour, might affect the evolution of dropping behaviour in phytophagous insects. Insect species with cryptic body colour are less easily detected by predators compared with those having aposematic body colour when they drop to the ground. Consequently, dropping from host plants might have evolved more frequently in cryptic species than in aposematic species. Further studies are needed to test these effects on the evolution of dropping behaviour in phytophagous insects.
ACKNOWLEDGEMENTS

We thank three anonymous reviewers for their helpful advice on an earlier version of the manuscript. We also thank T. Shinohara, D. Satomi, K. Hoshino, M. Ito, W. Higashikawa and K. Sakagami for providing valuable information about the sampling sites. We thank M. Hiraiwa for helping with the statistical analyses. We thank K. Matsubara, H. Matsubara and the staff of the Okayama Prefectural Nature Conservation Center for allowing us to use the study sites. This research was supported by a Sasakawa Scientific Research Grant (no. 2019-5017) and a Grant-in-Aid for a Japan Society for the Promotion of Science Fellow (no. 20J11072). The authors declare that they have no competing financial interests. S.M. and S.S. conceived and designed the experiments, S.M. performed the field experiments and analysed the data, and S.M. and S.S. wrote the manuscript.

REFERENCES

Agabiti B, Wassenaar RJ, Winder L. 2016. Dropping behaviour of pea aphid nymphs increases their development time and reduces their reproductive capacity as adults. PeerJ 4: e2236.

Azegami C, Hishiyama C, Nishida N, Hirano T. 2013a. Wild flowers of Japan: plains, seaside and hills. Tokyo: Yama-Kei [in Japanese].

Azegami C, Hishiyama C, Nishida N, Hirano T. 2013b. Wild flowers of Japan: mountainside. Tokyo: Yama-Kei [in Japanese].

Barnett AA, Andrade ES, Ferreira MC, Soares JBG, da Silva VF, de Oliveira TG. 2015. Primate predation by black hawk-eagle (Spizaetus tyrannus) in Brazilian Amazonia. Journal of Raptor Research 49: 105–108.

Barnett AA, Silla JM, de Oliveira T, Boyle SA, Bezerra BM, Spironello WR, Setz EZF, da Silva RFS, de Albuquerque Teixeira S, Todd LM, Pinto LP. 2017. Run, hide, or fight: anti-predation strategies in endangered red-nosed cuxiú (Chiropotes albinasus, Pithecidae) in southeastern Amazonia. Primates 58: 353–360.

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Grothendieck G, Green P. 2017. lme4: linear mixed-effects models using linear mixed-effects models using 'Eigen' and S4. Available at: https://cran.r-project.org/web/packages/lme4/

Bernays E, Graham M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.

Bowers MD. 1992. The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB, eds. Insect chemical ecology: an evolutionary approach. New York: Chapman and Hall, 216–244.

Brackenbury J. 1996. Novel locomotory mechanisms in caterpillars: life-line climbing in Epinotia abbreviana (Tortricidae) and Yponomeuta padella (Yponomeutidae). Physiological Entomology 21: 7–14.

Camara MD. 1997. Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hübner (Nymphalidae): a gravimetric and quantitative genetic analysis. Evolutionary Ecology 11: 451–469.

Castellanos I, Barbosa P, Zuria I, Tammaru T, Christman MC. 2011. Contact with caterpillar hairs triggers predator-specific defensive responses. Behavioral Ecology 22: 1020–1025.

Clapham AR, Tutin TG, Warburg EF. 1987. Flora of the British Isles, 3rd edn. New York: Cambridge University Press.

Day KR, Docherty MR, Leather SR, Kidd NAC. 2006. The role of generalist insect predators and pathogens in suppressing spruce aphid populations through direct mortality and mediation of aphid dropping behavior. Biological Control 38: 233–246.

Denno RF, Larsson S, Olmstead KL. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71: 124–137.

Dill LM, Fraser AHG, Roitberg BD. 1990. The economics of escape behaviour in the pea aphid. Oecologia 83: 473–478.

Edmunds M. 1974. Defence in animals. Harlow: Longman.

Francke DL, Harmon JP, Harvey CT, Ives AR. 2008. Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis et Applicata 127: 118–124.

Greeney HF, Dyer LA, Smilanich AM. 2012. Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebrate Survival Journal 7: 3–34.

Hayashi M. 2014. Leaves of tree identify 1100 kinds of tree by scanned leaves. Tokyo: Yama-Kei [in Japanese].

Hiraiwa MK, Ushimaru A. 2017. Low functional diversity promotes niche changes in natural island pollinator communities. Proceedings of the Royal Society B: Biological Sciences 284: 20162218.

Humphreys RK, Ruxton GD. 2018. A review of thanatosis (death feigning) as an anti-predator behaviour. Behavioral Ecology and Sociobiology 72: 22.

Humphreys RK, Ruxton GD. 2019. Dropping to escape: a review of an under-appreciated antipredator defence. Biological Reviews 94: 575–599.

Jolivet P. 1988. Food habits and food selection of Chrysomelidae. Bionomic and evolutionary perspectives. In: Jolivet P, Petitpierre E, Hsiao TH, eds. Biology of Chrysomelidae. Dordrecht: Kluwer Academic, 1–24.

Jolivet P, Santiago-Blay J, Schmitt M. 2008. Research on Chrysomelidae, Vol. 1. Leiden: Brill.

Jolivet P, Verma KK. 2002. Biology of leaf beetles. Andover: Intercept.

Kimoto S, Takizawa H. 1994. Leaf beetles (Chrysomelidae) of Japan. Kanagawa: Tokaidai University Press [in Japanese].
Konstantinov AS, Pratapan KD, Vencl FV. 2018. Hiding in plain sight: leaf beetles (Chrysomelidae: Galerucinae) use feeding damage as a masquerade decoy. *Biological Journal of the Linnean Society* 123: 311–320.

Lima SL. 1993. Ecological and evolutionary perspectives on escape from predatory attack: a survey of North American birds. *The Wilson Bulletin* 105: 1–47.

Losey JE, Denno RF. 1998a. Interspecific variation in the escape responses of aphids: effect on risk of predation from foliar-foraging and ground-foraging predators. *Oecologia* 115: 245–252.

Losey JE, Denno RF. 1998b. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. *Ecological Entomology* 23: 53–61.

Losey JE, Denno RF. 1998c. Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. *Ecology* 79: 2143–2152.

Loughridge AH, Luff ML. 1983. Aphid predation by *Harpalus rufipes* (Degger) (Coleoptera: Carabidae) in the laboratory and field. *Journal of Applied Ecology* 20: 451–462.

Martins SS, Lima EM, Silva JS Jr. 2005. Predation of a bearded saki (*Chiroptes utahicki*) by a harpy eagle (*Harpia harpyja*). *Neotropical Primates* 13: 7–11.

Matsubara S, Sugiura S. 2018. Host plant architecture affects the costs of dropping behaviour in *Phaedon brassicae* (Coleoptera: Chrysomelidae). *Applied Entomology and Zoology* 53: 501–508.

Matsubara S, Sugiura S. 2021. Data from: Effects of host plant growth form on dropping behaviour in leaf beetles. *Figshare Digital Repository*. Available at: https://doi.org/10.6084/m9.figshare.12587564.v1

Meresman Y, Ben-Ari M, Inbar M. 2017. Turning in mid-air allows aphids that flee the plant to avoid reaching the risky ground. *Integrative Zoology* 12: 409–420.

Miyatake T, Tabuchi K, Sasaki K, Okada K, Katayama K, Moriga S. 2008. Pleiotropic antipredator strategies, fleeing and feigning death, correlated with dopamine levels in *Triobium castaneum*. *Animal Behaviour* 75: 113–121.

Müller T, Küll CL, Müller C. 2016. Effects of larval versus adult density conditions on reproduction and behavior of a leaf beetle. *Behavioral Ecology and Sociobiology* 70: 2081–2091.

Nelson EH. 2007. Predator avoidance behavior in the pea aphid: costs, frequency, and population consequences. *Oecologia* 151: 22–32.

Nishida R. 2002. Sequestration of defensive substances from plants by Lepidoptera. *Annual Review of Entomology* 47: 57–92.

Ohno T, Miyatake T. 2007. Drop or fly? Negative genetic correlation between death-feigning intensity and flying ability as alternative anti-predator strategies. *Proceedings of the Royal Society B: Biological Sciences* 274: 555–560.

Pasteels JM, Rowell-Rahier M, Braekman J-C, Daloze D. 1984. Chemical defences in leaf beetles and their larvae: the ecological, evolutionary and taxonomic significance. *Biochemical Systematics and Ecology* 12: 395–406.

Pasteels JM, Baekman JC, Daloze D. 1988. Chemical defense in the Chrysomelidae. In: Jolivet P, Petitpierre E, Hsiao TH, eds. *Biological of Chrysomelidae*. Dordrecht: Kluwer Academic, 233–252.

Pasteels JM, Braekman JC, Daloze D, Ottinger R. 1982. Chemical defence in chrysomelid larvae and adults. *Tetrahedron* 38: 1891–1897.

Perović D, Johnson ML, Scholz B, Zalucki MP. 2008. The mortality of *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) neonate larvae in relation to drop-off and soil surface temperature: the dangers of bungy jumping. *Australian Journal of Entomology* 47: 289–296.

R Core Team. 2018. *R*: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.r-project.org/

Roitberg BD, Myers JH, Frazer BD. 1979. The influence of predators on the movement of apterous pea aphids between plants. *The Journal of Animal Ecology* 48: 111–122.

Sato S, Yasuda H, Evans EW. 2005. Dropping behaviour of larvae of aphidophagous ladybirds and its effects on incidence of intraguild predation: interactions between the intraguild prey, *Adalia bipunctata* (L.) and *Coccinella septempunctata* (L.), and the intraguild predator, *Harmonia axyridis* Pallas. *Ecological Entomology* 30: 220–224.

Shinohara T, Takami Y. 2020. Functional diversity and trade-offs in divergent antipredator morphologies in herbivorous insects. *Ecology and Evolution* 10: 5089–5096.

Singer MS, Stireman JO III. 2003. Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? *Oikos* 100: 554–562.

 Sugawara F, Matsuda K, Kobayashi A, Yamashita K. 1979. Defensive secretion of chrysomelids larvae *Gastrophysa atrocyanea* Motschusky and *Phaedon brassicae* Baly. *Journal of Chemical Ecology* 5: 635–641.

 Sugiura S. 2020. Predators as drivers of insect defenses. *Entomological Science* 23: 316–337.

 Sugiura S, Yamazaki K. 2006. The role of silk threads as lifelines for caterpillars: pattern and significance of lifeline-climbing behaviour. *Ecological Entomology* 31: 52–57.

 Vencel FV, Plata CA, Srygley RB. 2013. Proximate effects of maternal oviposition preferences on defence efficacy and larval survival in a diet-specialised tortoise beetle. Who knows best: mothers or their progeny? *Ecological Entomology* 38: 596–607.

 Vencel FV, Srygley RB. 2013. Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. *Evolutionary Ecology* 27: 237–252.

 Vencel FV, Trillo PA, Geeta R. 2011. Functional interactions among tortoise beetle larval defenses reveal trait suites and escalation. *Behavioral Ecology and Sociobiology* 65: 227–239.

 Vitt LJ, Cooper WE Jr, Perera A, Pérez-Mellado V. 2002. Escaping predators on vertical surfaces: *Lacerta perspicillata*
in limestone quarries of Lithaca. *Canadian Journal of Zoology* 80: 1803–1809.

Yanoviak SP, Dudley R, Kaspari M. 2005. Directed aerial descent in canopy ants. *Nature* 433: 624–626.

Yanoviak SP, Kaspari M, Dudley R. 2009. Gliding hexapods and the origins of insect aerial behaviour. *Biology Letters* 5: 510–512.

Yanoviak SP, Munk Y, Dudley R. 2015. Arachnid aloft: directed aerial descent in neotropical canopy spiders. *Journal of the Royal Society Interface* 12: 20150534.

Zevereva EL, Zverev V, Kruglova OY, Kozlov MV. 2017. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis? *Oecologia* 183: 93–106.

SHARED DATA

The data from the study are available from the Figshare Digital Repository (Matsubara & Sugiura, 2021).
Appendix 1. Host plants and dropping behaviour of leaf beetles used in this study

Subfamily	Code	Tribe	Species	Dropping*	Type†	Host plants	Growth form
Alticinae							
	1	Alticini	Altica caerulescens	7 (7)	ELF	Acalypha australis	Herbaceous
	2	Alticini	Altica cyanea	0 (10)	ELF	Ludwigia epilobioides	Herbaceous
	3	Alticini	Altica oleracea	3 (4)	ELF	Trapa japonica	Herbaceous
	4	Alticini	Altica sp.	0 (1)	RF	Isodon sp.	Herbaceous
	5	Alticini	Aphthona formosana	1 (8)	RF	Mallotus japonicus	Woody
	6	Alticini	Aphthona perminuta	0 (4)	RF	Castanea crenata	Woody
	7	Alticini	Aphthonalitica angustata	4 (10)	UK	Akebia trifoliata	Woody
	8	Alticini	Argopus balyi	0 (2)	LM	Clematis apiifolia	Herbaceous
	9	Alticini	Chaetocnema sp.	2 (3)	RF	Digitaria ciliaris	Herbaceous
	10	Alticini	Clitea metallica	0 (5)	ELF	Citrus unshiu	Woody
	11	Alticini	Epitrix hirtipennis	0 (10)	RF	Solanum melongena	Herbaceous
	12	Alticini	Hemipyxis cinctipes	0 (11)	ELF	Clerodendrum trichotomum	Woody
	13	Alticini	Hemipyxis flavipennis	2 (3)	ELF	Clematis apiifolia	Herbaceous
	14	Alticini	Langa fulva	0 (1)	UK	Piper kadsura	Woody
	15	Alticini	Longitarus scutellaris	0 (5)	LF	Plantago asiatica	Herbaceous
	16	Alticini	Longitarus sp.	0 (10)	ELF	Heliotropium arborescens	Woody
	17	Alticini	Mantura clavareau	0 (5)	LM	Rumex acetosa	Herbaceous
	18	Alticini	Nonarthra cyanea	0 (2)	UK	Cerasus x yedoensis	Woody
	19	Alticini	Philopona vibex	0 (2)	ELF	Plantago asiatica	Herbaceous
	20	Alticini	Phyllotreta striolata	0 (15)	RF	Brassica rapa	Herbaceous
	21	Alticini	Psylliodes punctifrons	0 (10)	RF	Brassica rapa	Herbaceous
	22	Alticini	Sphaerodermia nigricolle	2 (8)	LM	Smilax china	Woody
	23	Alticini	Sphaerodermia quadrimaculatum	0 (8)	LM	Clematis apiifolia	Herbaceous
	24	Alticini	Sphaerodermia tarsatum	0 (10)	LM	Sasa kurilensis	Herbaceous
	25	Alticini	Sphaerodermia unicolor	0 (8)	LM	Clematis terniflora	Herbaceous
Bruchinae							
	26	Amblycerini	Spermaphagopus rufiventris	0 (2)	SEB	Ipomoea indica	Herbaceous
Cassidinae	27	Aspidimorphini	Laccoptera quadrimaculata	0 (8)	LF	Ipomoea cairica	Herbaceous
	28	Cassidini	Cassida circumdata	2 (6)	LM	Ipomoea indica	Herbaceous
	29	Cassidini	Cassida nebulosa	0 (1)	ELF	Cheno podium album	Herbaceous
	30	Cassidini	Cassida piperata	0 (3)	ELF	Amaranthus blitum	Herbaceous
	31	Cassidini	Cassida versicolor	0 (6)	ELF	Cerasus x yedoensis	Woody

* Dropping refers to the frequency of dropping behaviour during the study.
† Type: ELF = Early Larval Feeding, RF = Larval Feeding, LM = Late Larval Feeding, SEB = Seed Feeding, UK = Unknown.
Appendix 1. Continued

Code	Subfamily	Tribe	Species	Dropping*	Type†	Host plants	
				Adult	Larva	Species	Growth form
32	Cassidini	Cassida vespertina	0 (1)	–	ELF	Clematis apiifolia	Herbaceous
33	Cassidini	Thlaspida cribrosa	0 (9)	0 (8)	ELF	Callicarpa japonica	Woody
34	Cassidini	Thlaspida levisi	0 (1)	–	ELF	Praxinus lanuginosa	Woody
35	Hispini	Daelysia subquadra	2 (3)	–	LM	Castanea crenata	Woody
36	Hispini	Rhadina nigrocyanea	4 (11)	–	LM	Miscanthus sinensis	Herbaceous
37	Noto sacanthini	Natosacantha ihai	0 (4)	–	LM	Turpinia ternata	Woody
38	Chrysomelinae	Chrysolina aurichalcea	9 (21)	–	ELF	Artemisia indica	Herbaceous
39	Chrysomelinae	Chrysolina exanthematica	5 (15)	–	ELF	Lycopus lucidus	Herbaceous
40	Chrysomelinae	Chrysolina virgata	5 (20)	–	ELF	Lycopus lucidus	Herbaceous
41	Chrysomelinae	Chrysolena populi	0 (16)	0 (7)	ELF	Populus tremula	Woody
42	Chrysomelinae	Chrysolena vigintipunctata	0 (6)	0 (10)	ELF	Salix triandra	Woody
43	Chrysomelinae	Gastrolinea depressa	0 (10)	0 (20)	ELF	Juglans mandshurica	Woody
44	Chrysomelinae	Gastorniaodes japonicus	0 (2)	2 (15)	ELF	Viburnum plicatum	Woody
45	Chrysomelinae	Gastrophytum atroranea	18 (20)	4 (10)	ELF	Rumex japonicus	Herbaceous
46	Chrysomelinae	Gonioctena rubripennis	0 (9)	0 (12)	ELF	Wisteria floribunda	Woody
47	Chrysomelinae	Lineide aenea	0 (2)	–	ELF	Alnus pendula	Woody
48	Chrysomelinae	Lineide formosana	0 (15)	0 (16)	ELF	Alnus japonica	Woody
49	Chrysomelinae	Phaedon brassicae	12 (12)	8 (30)	ELF	Raphanus sativus	Woody
50	Chrysomelinae	Phala octodecimguttata	5 (14)	2 (8)	ELF	Vitex rotundifolia	Woody
51	Chrysomelinae	Plagiodera versicolora	1 (20)	0 (14)	ELF	Salix chaenomeloides	Woody
52	Criocerine	Lilloceris formasana	8 (11)	–	ELF	Smilax china	Woody
53	Criocerine	Lilloceris mergidera	1 (3)	–	ELF	Lilium longiflorum	Herbaceous
54	Criocerine	Lilloceris subpolita	2 (2)	–	ELF	Smilax china	Woody
55	Lemini	Lema cirscola	0 (1)	–	ELF	Commelina communis	Herbaceous
56	Lemini	Lema decempunctata	0 (1)	–	ELF	Solanum melongena	Herbaceous
57	Lemini	Lema diversa	0 (4)	–	ELF	Commelina communis	Herbaceous
58	Lemini	Oulema tristis	0 (3)	–	ELF	Carex sp.	Herbaceous
59	Cryptocephalinae	Physosmaragdina nigrifrons	1 (1)	–	DF	Fallopia japonica	Herbaceous
60	Cryptocephalinae	Smaragdina nipponensis	3 (3)	–	DF	Celtis sinensis	Woody
61	Cryptocephalinae	Smaragdina Semiaurantia	2 (11)	–	DF	Carpesium divaricatum	Herbaceous
62	Cryptocephalinae	Cryptocephalus approximatus	8 (10)	–	UK	Wisteria floribunda	Woody
Appendix 1. Continued

Leaf beetles

Code	Subfamily	Tribe	Species	Dropping*	Type†	Host plants	
				Adult	Larva	Species	Growth form
63	Cryptocephalini	Cryptocephalus nigrofasciatus	2 (2)	–	UK	Quercus serrata	Woody
64	Cryptocephalini	Cryptocephalus perelegans	3 (9)	–	UK	Rosa multiflora	Woody
65	Cryptocephalini	Cryptocephalus signaticeps	1 (2)	–	UK	Rosa multiflora	Woody
66	Fulcidacini	Chlamisus geniculatus	1 (1)	–	UK	Quercus serrata	Woody
67	Fulcidacini	Chlamisus spilotus	1 (1)	–	UK	Morus australis	Woody
68	Donaciinae	Donacia lenzi	0 (8)	–	RF	Nymphaea tetragona	Herbaceous
69	Donaciini	Donacia ozensis	0 (3)	–	RF	Nuphar japonica	Herbaceous
70	Donaciini	Donacia vulgaris	1 (5)	–	RF	Nuphar japonica	Herbaceous
71	Haemonini	Donacia japonana	4 (16)	–	RF	Sparganium sp.	Herbaceous
72	Eumolpinae	Acrothrinium gaschkevitchii	7 (10)	–	RF	Vitis ficifolia	Woody
73	Bromiini	Demotina decorata	2 (3)	–	UK	Quercus glauca	Woody
74	Bromiini	Demotina fasciculata	0 (2)	–	UK	Quercus serrata	Woody
75	Bromiini	Lypesthes ater	2 (2)	–	UK	Juglans mandshurica	Woody
76	Bromiini	Lypesthes fulbus	1 (2)	–	UK	Cinnamomum yabunikkei	Woody
77	Bromiini	Lypesthes japonicus	2 (2)	–	UK	Camellia japonica	Woody
78	Bromiini	Scelodonta lewisii	4 (11)	–	UK	Rumex japonicus	Herbaceous
79	Bromiini	Trichocheysa japonica	3 (3)	–	UK	Quercus crispa	Woody
80	Bromiini	Trichocheysa okinawana	1 (1)	–	UK	Quercus crispa	Woody
81	Euryopini	Colasposoma auripenne	2 (2)	–	RF	Ipomoea cairica	Herbaceous
82	Euryopini	Colasposoma dauricum	2 (3)	–	RF	Caltystega pubescens	Herbaceous
83	Typophorini	Basilepta fulvipes	21 (29)	–	UK	Artemisia indica	Herbaceous
84	Typophorini	Basilepta rufulicollis	2 (2)	–	UK	Cerasus × yedoensis	Woody
85	Typophorini	Pagria sp.	10 (12)	–	STB	Rhaphiolepis indica	Woody
86	Galerucinae	Galeruca vicina	11 (15)	–	ELF	Petasites japonicus	Herbaceous
Appendix 1. Continued

Code	Subfamily	Tribe	Species	Dropping*	Host plants	Growth form		
				Adult	Larva	Type†	Species	
87	Galerucini	Galerucella grisescens	5 (15)	2 (7)	ELF	Rumex japonicus	Herbaceous	
88	Galerucini	Galerucella nipponensis	1 (4)	–	ELF	Trapa japonica	Herbaceous	
89	Galerucini	Ophraella communis	4 (8)	4 (7)	ELF	Xanthium occidentale	Herbaceous	
90	Galerucini	Pyrrhalta fusciennis	0 (1)	–	UK	Acer pseudoplatanus	Woody	
91	Galerucini	Pyrrhalta humeralis	2 (6)	0 (20)	ELF	Viburnum odoratissimum	Woody	
92	Galerucini	Pyrrhalta lineola	0 (10)	–	ELF	Salix alba	Woody	
93	Hylaspini	Agelastica coerula	2 (9)	0 (20)	ELF	Abies alba	Woody	
94	Hylaspini	Arthrotus niger	9 (10)	–	ELF	Castanea crenata	Woody	
95	Hylaspini	Gallerucida bifasciata	5 (5)	13 (25)	ELF	Fallopia japonica	Herbaceous	
96	Hylaspini	Morphosphaera coerula	5 (8)	0 (11)	ELF	Ficus carica	Woody	
97	Luperini	Atrachya menetriesi	2 (3)	–	ELF	Vicia sp.	Herbaceous	
98	Luperini	Aulacophora bicolor	6 (8)	–	RF	Diploclados palmatus	Herbaceous	
99	Luperini	Aulacophora indica	13 (21)	–	RF	Cucumis sativus	Herbaceous	
100	Luperini	Aulacophora loochooensis	2 (2)	–	RF	Cucurbita maxima	Herbaceous	
101	Luperini	Aulacophora nigripennis	5 (9)	–	RF	Lagenaria siceraria	Herbaceous	
102	Luperini	Epaenidea elegans	1 (2)	–	UK	Eleutherodictyon dichotomum	Woody	
103	Luperini	Fleutilia armata	18 (20)	–	RF	Morus alba	Woody	
104	Luperini	Liroetis coerulea	1 (10)	–	UK	Quercus acutissima	Woody	
105	Luperini	Monolepta kurosawai	2 (2)	–	UK	Hovenia dulcis	Woody	
106	Luperini	Monolepta nojiriensis	6 (12)	–	UK	Styrax japonicus	Woody	
107	Luperini	Monolepta pallidula	2 (2)	–	UK	Quercus variabilis	Woody	
108	Luperini	Paridea angulicollis	1 (1)	–	RF	Gynostemma pentaphyllum	Herbaceous	
109	Luperini	Paridea quadriplagiata	1 (1)	–	RF	Aster yamamotoi	Herbaceous	
110	Lepidoptera	Oides bowringii	10 (15)	0 (15)	ELF	Kadsura japonica	Woody	
111	Lamprosomatinae	Oromorphoides cupreatus	8 (22)	–	UK	Aralia elata	Woody	
112	Lamprosomatinae	Oromorphoides loochooensis	8 (8)	–	UK	Schefflera heptaphylla	Woody	

*Numbers of individuals dropping from host plants. Values in parentheses indicate the total numbers of individuals investigated in this study.
†Larval feeding type: DF, detritus feeder; ELF, external leaf feeder; LM, leaf miner; RF, root feeder; SEB, seed borer; STB, stem borer; UK, unknown. All adults feed externally on leaves.