Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the ‘why’) to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the ‘how’), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.

Building a unified approach to conserving the biodiversity spectrum

The world is facing an anthropogenically driven biodiversity crisis [1,2] which must be urgently addressed to restore ecosystem functions, mitigate climate change, and maintain human wellbeing [3,4]. Protected area establishment is a cornerstone for biodiversity conservation. The global protected area system coverage has been increasing, both in terrestrial and marine ecosystems [5]. However, this system is incomplete and falls short in safeguarding all levels of biodiversity [genes, populations (see Glossary), species, and ecosystems] [6]. Consequently, conservation actions are needed in places that will promote biodiversity resilience, adaptive potential, and species persistence in a changing world [7].

Over the past 30 years, ecologists and evolutionary scientists have rallied to inform conservation decision-making. Molecular ecology (ME) [8,9] developed as a field for describing evolutionary processes in non-model/wild species and their populations within an ecological context. Meanwhile, systematic conservation planning (SCP) [10,11] emerged and provided a transparent, reproducible, and quantifiable approach to identifying cost-effective priority areas for conservation. As these fields continue to develop, there is growing acceptance that they should be integrated to inform conservation decisions relevant to evolutionary objectives [12]. Several ME subdisciplines can provide suitable data for SCP, such as extinction probabilities from conservation genetics or landscape connectivity from landscape genetics [13]. Recent work has described ME data types most relevant to SCP, highlighting genetic diversity, dispersal, and effective population sizes \(N_e\) [14]. However, little guidance exists to enable conservation practitioners and molecular ecologists to navigate when this evolutionary information is needed for conservation management, to implement various genetic/genomic data into conservation planning software, and to assess how well evolutionary objectives are being met [15].

Here, we present a novel, integrative framework that reconciles ME and SCP to identify priority areas that will promote the long-term persistence of biodiversity. Our framework ensures that
priority areas will be both ecologically and evolutionary driven, and meet criteria for real-world implementation. To achieve this, we bridge concepts, themes, and data used in ME and SCP to build a shared understanding of objectives needed to guide conservation decision-making (the ‘why’ section). We then outline procedures for: (i) defining conservation objectives; and using objectives to (ii) guide ME data collection; (iii) calculate molecular metrics; (iii) spatially interpolate metrics; and (iv) integrate them into SCP tools (the ‘how’ section).

The ‘why’: bridging themes in molecular ecology and systematic conservation planning

ME is grounded in understanding spatiotemporal genetic variation of natural populations, and offers multiple evolutionary metrics fundamental to assessing, and conserving, genetic diversity [16]. Major evolutionary themes have a strong focus on connectivity, adaptive potential, diversity, differentiation, and demography (hereafter, ‘CADDD’). Connectivity describes the level of gene flow between populations across their distributional range, including source/sink dynamics; adaptive potential refers to the genetic variance potentially derived from local selective pressures and can pertain to the genomic vulnerability of a species or its resilience to environmental changes (here we restrict this definition to relate to the amounts/frequencies of genes assumed to have adaptive functions); diversity represents all extant genetic variation in a population or species (putatively neutral or adaptive); differentiation refers to the relative degree of the isolation as measured by differences in allele frequencies among individuals or genetic clusters (populations); and demography includes inbreeding levels and \(N_m \) as well as historical changes in both. Thus, CADDD encompasses data across putatively neutral and adaptive loci fundamental for assuring the long-term persistence of intraspecific biodiversity [12,17,18]. We propose that understanding how metrics of CADDD integrate into the defining themes of SCP can offer more clarity about whether molecular metrics are needed for conservation objectives.

SCP is a transparent, reproducible, and quantitative approach concerned with the optimal application of spatially explicit conservation management actions to promote the representation and persistence of biodiversity [10,19]. It involves generating prioritizations of sites to achieve conservation objectives, while accounting for social, economic, and political constraints efficiently. Conservation objective examples include safeguarding habitat of threatened species, restoring connectivity between isolated populations, or securing a comprehensive range of ecosystems [10]. Achieving such objectives requires clear and quantitative choices of the evolutionary levels (genes, populations, species, and ecosystems) and facets (taxonomic, phylogenetic, and functional) of biodiversity that are to be included [20,21]. SCP involves dividing the planning region into planning units, calculating the amount of each conservation feature in each one, and identifying sets of planning units that meet conservation goals. To ensure that prioritizations are feasible for implementation, SCP accounts for economic and opportunity costs, and resource-use requirements (e.g., ensuring sufficient areas for agricultural production or recreational fishing [22]). To maximize the efficiency of SCP, different algorithms and tools have been developed, including Marxan [23], Zonation [24], and the prioritizr R package [25] (Box 1). SCP has a set of principles to guide effective decision-making, which can be easily integrated with CADDD (Figure 1 and Table 1). Comprehensiveness refers to a system of conservation areas that sample the main components of biodiversity within a region of interest (e.g., ecoregions, habitat types, or species). Molecular data can provide insights into comprehensiveness at the species level using phylogenetic diversity as a conservation feature [26] or to find areas that best represent species, lineages, and populations [27]. Adequacy refers to the ability of a protected area network to promote long-term persistence of biodiversity and to ensure the viability of populations, species, and habitats. Molecular data can provide important insights into adequacy, by identifying evolutionary significant units (ESUs), measuring differentiation, quantifying genetic diversity...
Each of the tools uses different mathematical formulations to express optimization problems. For example, Maxan uses the minimum set formulation wherein the goal is to identify the ‘cheapest’ set of planning units for implementing management actions, while ensuring that the expected amount of each feature meets a minimum threshold (termed ‘representation target’). Zonation uses a budget-limited formulation in which the goal is to maximize the overall amount of each feature, while ensuring that the total cost of implementing management actions does not exceed a budget threshold. Finally, prioritizr allows users to create custom-tailored problem formulations (including both minimum set and budget-limited formulations). Additionally, these tools, except for Maxan (but see Maxan with Zones [89]), can accommodate multiple management actions and zones.

These tools also use different algorithms to generate prioritizations. Zonation uses a backward heuristic algorithm to iteratively rank planning units [24]. As such, thresholds are often imposed to identify planning units for prioritization (e.g., top 20% ranked planning units). Maxan uses the simulated annealing algorithm, which can identify prioritizations that are more cost-effective compared with heuristic algorithms [23]. Although both of these algorithms could identify cost-effective prioritizations, they do not guarantee optimality [90]. Non-optimal solutions can misdirect conservation resources and lead to inefficiencies. To overcome this limitation, prioritizr uses exact algorithms, which guarantee optimality [23], while Maxan and Zonation offer flexibility to quickly generate multiple solutions for stakeholder negotiations [23, 24].

The first four of these principles have long been known within the SCP literature as the CARE principles [34, 35], and here we build on them to include connectivity (CARE-C). Understanding and integrating the connections between CADDD and CARE-C are essential for performing transdisciplinary analyses in which both ME and SCP tools are used to create novel conservation strategies (Figure 1 and Table 1). These connections are the foundation for integrating the two fields: we use them to explain and supplement a review of recent studies working at this interface (Table S1 in the supplemental information online).

The ‘how’: a practical guide to incorporating molecular data into spatial plans
We propose a five-step framework to achieve integration across ME and SCP, and highlight a case study in which the framework is used to prioritize CADDD-CARE dynamics (Box 2).

1. Define objectives
Conservation objectives should be defined following the CARE-C and CADDD principles. Following the CARE-C principles, objectives could be defined to ensure adequate coverage of different ecosystem types, provide habitat for threatened species, and minimize fragmentation of priority areas to and adaptive potential, and estimating Nₑ [28]. Representativeness refers to the need to capture the full variety of biodiversity within conservation areas, ideally within each level of biological organization. Molecular data are imperative to assure that the diversity within each species is suitably represented, for instance, by prioritizing areas to capture each ESU or private alleles [29, 30]. We distinguish interspecific data as applying to comprehensiveness, and intraspecific measures (e.g., number of populations) as applying to representativeness. Efficiency highlights the need to consider the economic and opportunity costs of foregone commercial and recreational activities [31]. While molecular data are unlikely to contribute directly to reserve efficiency, it can facilitate it by providing cost-effective data to guide SCP procedures. Connectivity relates to conservation plans that counteract landscape fragmentation and protect ecological corridors that underpin biodiversity persistence and ecosystem functioning [32]. Molecular connectivity can inform the objective of establishing connected reserve areas, within which the flow of genes can lead to demographic and genetic benefits in metapopulations [33].

Glossary

Adaptive potential: capacity of populations to evolve genetically based changes in response to selection [87].
Connectivity: flow of genes, organisms, matter, and energy between and among locations.
Conservation features: biotic and abiotic elements for which long-term persistence is desirable.
Conservation objectives: quantifiable measure of success for a conservation planning exercise. Common examples include safeguarding an adequate amount of habitat for different species, or a suitable level of coverage for different ecosystems, or rare alleles, within a prioritization plan.
Conservation planning cost: any costs associated with implementing a conservation plan, including land acquisition, management, transaction, damage, and opportunity costs, or any surrogate, such as land area and human footprint.
Decision support tool: software that narrows the field of choice to support determinations, judgments, and courses of action, by providing management recommendations, foresight into potential outcomes of candidate management actions, or synthesizing available information.
Effective population size (Nₑ): number of individuals in a theoretical population that would generate the same value of a statistic of interest as observed in a real population.
Evolutionary significant unit (ESU): population that has substantial reproductive isolation, representing a distinct evolutionary component of the species.
Gene flow: exchange of alleles between populations due to migration with reproduction.
Genetic diversity: total number of genetic variants contained in a population/species. Example metrics include haplotype and nucleotide diversity, heterozygosity, or allelic richness.
Genomic vulnerability: measure of the genotypic change needed in a population to retain genotype-environment relationships under future environmental conditions.
Heterozygosity (Hₑ): proportion of individuals in a population that have more than one type of allele at a particular locus. Expected Hₑ is the proportion of heterozygous genotypes...
Objectives could also emphasize cost efficiency, such as minimizing land acquisition costs, accounting for existing protected areas, and avoiding places designated for other resource use [36]. Objectives based on the CADDD principles could include securing an adequate amount of adaptive variants for particular species to enhance their persistence under global change (Table 1, cell g), protecting populations with different evolutionary histories to retain the breadth of molecular variation (Table 1, cell n), or maximizing gene flow between reserves (Table 1, cell p).

Although examples of using both CADDD and CARE-C principles to define objectives are rare, previous studies have shown that this can strengthen analyses. For example, Diniz-Filho et al. [37] defined objectives based on CADDD to represent a proportion of neutral genetic diversity of the Brazilian tree *Eugenia dysenterica* (Table 1, cell m), and objectives based on CARE-C to avoid regions where deforestation and demand for anthropogenic land-use were forecasted to increase. Defining conservation objectives is imperative because they have a critical role in each of the following steps.

2. Obtain molecular data

Molecular data need to be obtained so that they can inform conservation decisions. Field samples can be collected and genotyped, or previously published data can be collated from data expected under Hardy-Weinberg equilibrium, which is often compared with the observed He. **Hybridization:** interbreeding of two divergent lineages with independent evolutionary histories. **Inbreeding coefficient:** measure of relative excess of homozygous individuals in a population, relative to the expectations under Hardy-Weinberg equilibrium; can result from reproduction between related individuals. **Interpolation:** process of creating spatial surface data based on a set of sampled points. **Locus:** region of the genome. **Management actions:** activities or interventions that can be implemented to achieve conservation goals (e.g., the establishment of a protected area, habitat restoration, or invasive species eradication). **Molecular ecology (ME):** use of molecular tools to study ecological questions. **Molecular marker:** specific regions of DNA that can be identified within the genome and allow detection of variations or polymorphisms that exist among individuals in the population. **Molecular metrics:** statistical measures describing the state of variation in a molecular marker. **Planning units:** discrete spatial areas that can be managed independently (e.g., grid cells, property boundaries, river segments, or coral reefs). **Population:** group of individuals that coexist in time and space, utilize the same resources and habitat, and are more likely to interbreed. **Prioritization:** priority areas identified as a result of the systematic conservation planning process. **Systematic conservation planning (SCP):** structured process of locating, configuring, and designating areas to promote the representation and persistence of biodiversity and other natural values in a cost-effective way.
Table 1. Matching objectives and metrics across fields

Conservation principles	Molecular principles				
	Connectivity (gene flow)	Adaptive capacity	Diversity	Differentiation	Demography
(a)	(b)	(c)	(d)	(e)	
(f)	(g)	(h)	(i)	(j)	
(k)	(l)	(m)	(n)	(o)	
(p)	(q)	(r)	(s)	(t)	

Objective: PA system should contain broad range of biotic elements (e.g., species, ecoregions, etc.)	(a)	(b)	(c)	(d)
OBJECTIVE: PA network to include all species present in system	METRICS: Phylogenetic endemism	Phylogenetic diversity		
METRICS: Genomic vulnerability Outlier allele frequency Rare/private alleles Population adaptive index (PAI) Adaptive score (Sadapt)				

Objective: PA system should contain a sufficient sample of each biotic element (e.g., amount of habitat) to achieve its long-term persistence	(f)	(g)	(h)	(i)
OBJECTIVE: PA system to include a sufficient sample of a range of adaptive diversity and maximize probability of persistence under different disturbances	METRICS: Genomic vulnerability Outlier allele frequency Rare/private alleles Population adaptive index (PAI) Adaptive score (Sadapt)			

This table highlights the specific ways in which different components of conservation and molecular fields intersect, including examples of how different data types can be used to meet the respective objectives for protected area (PA) systems.
repositories (e.g., NCBI GenBank1 and GeOMe1 [38]). In both cases, molecular data must contain spatial information (e.g., GPS coordinates) [39]. It is critical that the spatial locations where molecular data were collected are well suited to the objectives underpinning a conservation planning exercise. Taberlet et al. [40] aimed to generate a prioritization to secure broad-scale patterns of intraspecific neutral genetic variation for multiple plant species, and collected samples for each species across a spatial grid. Sampling design tools, such as SPOTG [41], are available to determine optimal sampling strategies to meet different ME objectives.

Deciding which molecular marker(s) to characterize molecular data from should be informed by conservation objectives. Multiple molecular markers are available [42], each with its advantages and disadvantages for particular conservation applications (see [43] for details). Traditionally, common markers were mitochondrial DNA (mtDNA) and microsatellites, while genome-wide SNPs are steadily gaining popularity as the dominant marker choice [28]. These markers are often used to detect spatial structure and historical processes, and can also be used to prioritize areas that capture an adequate amount of intraspecific adaptive variation (Table 1, cell g). Xuereb et al. [44] identified loci under selection in the giant California sea cucumber, \textit{Parastichopus californicus}, using a redundancy analysis approach. When these SNPs, mainly associated with seafloor temperature gradient, were input into SCP, they gave higher priority to sites further south compared with non-adaptive genomic data sets.

SNPs offer more precise genomic inference, yet how SNP data are generated and analyzed requires careful consideration (reviewed in [45]). For example, estimates of population differentiation (\(F_{ST}\) metrics) were found to differ between genomic sequencing types [46], and putatively adaptive candidate loci have been shown to differ between outlier detection methods [47]. There is limited research on how different markers, sequencing types, and genomic analyses influence conservation planning outcomes, but Nielsen et al. [43] found that genetic markers (such as mtDNA) can capture the adaptive patterns of genomic SNPs when combined across multiple species. There are reports of SNPs offering minor changes to population structure originally identified by mtDNA or microsatellites (often with higher levels of substructuring [48,49]), but it remains unclear as to whether this degree of genetic structure is essential to meet conservation objectives.

3. Calculate molecular metrics

Molecular metrics are used to describe genetic characteristics of individuals, populations, or species. Given the diversity of metrics available (Table 1), they must be relevant to the conservation objectives. Species- and lineage-level analyses can inform about incipient speciation, phylogenetic diversity, and evolutionary distinctiveness [50]. Henriques et al. [51] assessed the efficacy of established marine protected areas in protecting a comprehensive array of evolutionary diversity in spadfishes based on phylogenetic diversity (Table 1, cell d). Population-level analyses provide data about spatiotemporal patterns of intraspecific structure and diversity, and can provide evidence for selective pressures and local adaptation. Hanson et al. [52] used SNPs to characterize adaptive population clusters within amphibian species to prioritize management across the selection gradient, highlighting how metrics of population adaptive potential can create a representative reserve system (Table 1, cell l; and Box 2). Several tools exist to identify lineages and populations, such as general mixed Yule-coalescent models [53] and Bayesian clustering algorithms [54], respectively. Individual-level analyses can inform population membership, gene flow, and hybridization (Figure 1). Parker et al. [55] combined mitochondrial and nuclear genes to measure hybridization and introgression of introduced and native catfishes to identify areas where inbreeding was less likely to occur, using a demographic genetic metric for reserve design (Table 1, cell j) and prescribing an adequate amount of nonhybridized areas. While these examples portray analyses within discrete taxonomic units, defining such units from the species to population continuum is often challenging.
Genomic data provide advantages to delineate species, populations, lineages, and ESUs (reviewed in [56]).

4. Prepare spatial features for prioritizations
SCP requires spatially explicit data for conservation features, conservation planning costs, and connectivity. Data must be available for all planning units considered within the planning region. Molecular metrics often pertain to point localities, such that many planning units lack measurements. Such point data need to be transformed into spatial data layers [57] and predicted over the planning domain. There are two main methodologies for predicting molecular data across space: geostatistics (using tools such as inverse distance weighting, kriging, and thin-plate splines [58, 59]) and statistical models (using tools such as random forest, genetic dissimilarity, and eco-evolutionary models [60, 61]). Phair et al. [62] used the geostatistic tool of inverse distance weighting to interpolate genomic neutral and adaptive diversity metrics of the seagrass, Zostera capensis, across South African estuaries to identify unique conservation priority areas compared with scenarios only targeting habitat type. By comparison, Bay et al. [63] used a statistical model (Gradient Forest), originally developed to model spatial variation in community composition [61], to predict changes in genetic variation under different climate scenarios for the American yellow warbler, Setophaga petechia, in North America. Machine learning techniques can simulate changes in the spatial patterns of the genetic diversity of a species over time in response to threatening processes, and future studies may be able to identify priority areas that are robust or maladapted to anticipated climatic threats [64]. The full range of intraspecific lineages can be predicted using models assuming that the lineage occurring at a given location is

Box 2. Case study
The five-step framework described in the main text was used to identify conservation areas for three frog species in the Iberian Peninsula (Figure I). Methodological details can be found in [52].

1. Define conservation objectives
The aim was to identify areas representing an adequate amount of neutral and adaptive features for three frog species (Pelobates cultripes, Hyla molleri, and Rana iberica), while limiting conflicts with existing land-use and accounting for existing protected areas.

2. Obtain molecular data
Stratified sampling was conducted, ensuring collection from representative climatic conditions across the ranges of the species. Non-gray colors in Figure I represent different climatic regions identified within the range of each species, whereas black dots represent sampling sites. Tissue samples were genotyped by Diversity Arrays Technology [91] generating SNPs.

3. Calculating molecular metrics
Molecular metrics were calculated for the three species (only shown in Figure I for P. cultripes). Lineages were identified using STRUCTURE [92], CLUMPP [83], and Evanno’s K method [84]. Two lineages were identified (Figure I, represented by dots and triangles, respectively). Average heterozygosity (He) of each sampling locality was computed using ibreedR [85] (3A), and outlier loci were identified using three outlier loci detection techniques. Within each lineage, individuals were further assigned to neutral (3B) and adaptive (3C) genetic clusters, using neutral and putative adaptive loci, respectively, using Gaussian mixture model-based cluster analyses [96] (Figure I, represented by distinct colors labeled 1–10).

4. Prepare spatial features for prioritization
Geostatistical models were used to predict molecular metrics across the range of each species. Predictions of He were made using thin-plate splines (4A) and predictions of major neutral lineages (Figure I; delimited by black lines) and neutral (4B) and adaptive (4C) clusters (Figure I; indicated by colors 1–10) were made with interpolation using phylin [66]. Maps of contemporary and potential future habitat suitability were computed using Maximum Entropy modeling, and combined to compute scores of long-term habitat suitability (4D). The human footprint index (HPI) was used to describe anthropogenic impact (4E). Data delineating the boundaries of existing protected areas were compiled (4F).

5. Spatial prioritization
The prioritizr R package was applied with the minimum set formulation of the reserve selection problem. HPI was used as a surrogate for opportunity costs. Representation targets were specified to secure neutral and adaptive processes for each species. Constraints were specified to avoid areas with high anthropogenic impact (per HPI), and keep existing protected areas. Results identified priority areas (5A).
more likely to be a member of the closest known lineage [65]. For instance, the R package phylin
uses kriging and inverse distance weighting to predict the probability of occurrence of each
lineage in each location, informed by its ‘distance’ to all other localities, where ‘distance’ may
be geographical, a measure of landscape resistance, or a measure of environmental differentation
[66]. Spatial sampling biases may influence the accuracy and confidence of interpolations.
Sampling that is not fully representative of the region may result in poorly fitted models, and kriging
does not apply to data sets without a spatial autocorrelation structure. Ideally, sampling sites should
be distributed across the planning area, either following a systematic approach or stratified by
ecological gradients. Importantly, ME conservation features should be prepared along with other
features, such as land-use, habitat type, and/or existing protected areas, before being input in
SCP tools (Box 3).

5. Spatial prioritization
5a. Set conservation constraints and targets
To help meet objectives, conservation planning frequently involves setting quantifiable targets for
conservation features. Targets often specify a minimum level of spatial coverage of each feature
that prioritizations should secure. Conventionally, targets have been set for ecological objectives,
such as the percentage of the geographic range of a species [67], but they can also be used to
meet evolutionary objectives, such as representing genetic diversity, ESUs, gene flow, and the
adaptive potential of species [68] (Table 1). To maximize phylogenetic diversity (Table 1, cell c),
Rosauer et al. [27] used targets of 15% of the spatial range of each branch of a phylogenetic
tree containing 11 lizard genera, representing both inter- and intraspecific diversity. At the
intraspecific level, population divergence/structure can be used to delineate conservation areas
(Table 1, cell i) by securing a percentage of areas with low estimates of population differentiation
(i.e., F_{ST}-based measures [29,69]), or a percentage of each lineage [52]. While they allow for
quantifiable measures of effectiveness, targets are not always necessary to meet conservation
goals. For example, prioritizations can be weighted by genetic connectivity matrices to promote
connectivity (Table 1, cell p). Alternatively, specific planning regions can be ‘locked-in’ or secured
within a reserve a priori (often due to socioeconomic constraints), and prioritizations can be used
to identify the best areas to expand reserves to meet evolutionary objectives (Box 2 [70]).

5b. Choose a prioritization tool and run scenarios
SCP tools use mathematical algorithms to generate prioritizations that represent conservation
features for the lowest cost (Box 1). Once spatial data have been collated and prepared, several
scenarios are often considered to compare trade-offs in meeting targets for different features, and
are useful to pinpoint areas where molecular and traditional objectives differ/overlap in their spatial
priorities. Scenario comparisons are an essential part of SCP in that they can explore
contradictions between different conservation features. In their goal to conserve the mammalian
tree of life (Table 1, cell c), Rosauer et al. [71] found that many areas prioritized for high levels of phy-
genetic diversity (molecular objective) substantially differed from areas prioritized for high species
diversity (traditional objective). Features can also be weighted according to their importance,
which is a built-in function of the prioritization tool Zonation, in which the computational strategy is
to prioritize meeting targets of highly weighted features [24]. Carvalho et al. [20] considered alternate
scenarios of prioritizing species distributions, where all species were weighted equally, or maximiz-
ing phylogenetic diversity, where the weight of each feature was relative to phylogenetic branch

Figure I. Case study using five-step framework for integrating ME and SCP. Each row represents a step in the process, with boxes/maps representing data utilized within each step. Boxes within a light gray background highlight data inputs for our example species, *P. cultripes*, with the darker gray backgrounds representing data for the other two species which are not shown. The final step combines the data as conservation features, sets targets for each feature, and is input into a spatial planning tool to generate conservation priorities.
Although many of the examples provided in this review use molecular data produced through older sequencing techniques (e.g., mtDNA and microsatellites), we emphasize that overall methodological approaches to meet conservation objectives such as ensuring high phylogenetic diversity, but additionally prioritizing: (i) fully protected national parks; (ii) national parks open for development; or (iii) areas immediately outside of national parks [68]. For species that are of conservation concern, EDGE scores can be calculated using phylogenetic diversity and Red List category weights [69], combining them into a single conservation feature.

Increasingly, conservation planners may rely on genomic data for a set of keystone species [62], umbrella species ([73], but see [74]), or use other cost-effective surrogates of molecular metrics ([75], but see [76]). While high-throughput sequencing is invaluable to identify the adaptive potential of natural populations, there is still much uncertainty around the physiological aspects of adaptive potential and how to best map it across space and time [77]. We suggest further exploration of ME–SCP integration comparing multiple marker types, sampling designs, interpolation techniques, and spatial planning algorithms to further develop best practice guidelines. Finally, we found that certain ME–SCP links were extensively studied (such as Table 1, cells c, d, and m), but others require further inquiry, such as ways in which molecular diversity and differentiation can be used to enhance connectivity in reserves (Table S1 in the supplemental information online).
Despite these challenges, exciting recent developments within each field are likely to facilitate greater integration. The development of sequencing approaches and their applicability, such as the innovation of environmental DNA (eDNA) metabarcoding, may provide near real-time data on species diversity, and potentially within-species diversity [78], for conservation planning [79]. This, in addition to big data sets generated with other technologies, including remote sensing, citizen science, and internet ecology [80,81], will revolutionize the amount of data that can be used in conservation planning. In parallel, the sophistication and accuracy of climate models and ecological modeling to predict the distribution and abundance of different biodiversity dimensions across space and time are rapidly increasing [21,77,82,83]. The accompanying development of automated processes can leverage big data sets and prediction models to account for multiple biodiversity facets. This type of data will be invaluable to conserving biodiversity while attempting to protect or manage dynamic ecological, evolutionary, and socioeconomic processes [84] including planning under changing climates [85].

Concluding remarks

Ultimately, integrating ME and SCP concepts will pivot on co-creation between policymakers, planners, and molecular ecologists from the onset [15,86]. Bridging these fields is essential for achieving the recently proposed global conservation commitments for 2030 [3], such as expanding protected area systems, enhancing multispecies connectivity, meeting socioeconomic goals, promoting ecosystem services, and safeguarding genetic diversity. Only with an integrated approach can we design optimal conservation solutions able to revert biodiversity loss and achieve the ambitious vision of a sustainable future over the next decades.

Acknowledgments

J.O.H. was supported by Environment and Climate Change Canada (ECCC) and Nature Conservancy of Canada (NCC). M.B. acknowledges support from a NERC Wallace Programme Strategic Grant (NE/S006931/1). S.B.C. was supported by an individual research contract (CEECIND/01484/2017) attributed by Fundação para a Ciência e Tecnologia. S.v.d.H. acknowledges support from the National Research Foundation (Marine and Coastal Research grant number 116048); R.H. was supported by a European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 837990-DiMaS-H2020-MSCA-IF-2018.

Declaration of interests

None declared by authors.

Supplemental information

Supplemental information associated with this article can be found online at https://doi.org/10.1016/j.tree.2022.09.006.

Resources

1. www.ncbi.nlm.nih.gov/genbank/
2. https://geome-db.org/
3. https://aproposinfosystems.com/

References

1. Díaz, S.M. et al. (2019) The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
2. Sippel, S. et al. (2020) Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35-41
3. Ameth, A. et al. (2020) Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. U. S. A. 117, 30382–30391
4. Leclère, D. et al. (2020) Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–558
5. Bingham, H.C. et al. (2019) Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743
6. Visconti, P. et al. (2021) Protected area targets post-2020. Science 364, 239–241
7. Des Roches, S. et al. (2021) Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582
8. Avise, J.C. et al. (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–520

Outstanding questions

When will spatial conservation planning benefit from molecular data, and when is more than one molecular data type needed? When are molecular data needed from multiple time points to meet conservation objectives?

How should we interpret molecular data across a wide range of taxa to meet conservation objectives and/or set conservation targets across multiple species and molecular metrics?

How can molecular data be used to inform multispecies conservation plans when such data are scarce or not available for all relevant species? Can ecological keystone and umbrella species serve as surrogates for multispecies evolutionary protection?

What is the best way to evaluate the effectiveness of, and adaptively manage, a conservation plan that aims to conserve evolutionary potential?

How can studies integrating ME into SCP better incorporate socioeconomic conservation features to understand the costs and effects of conserving evolutionary potential while meeting other objectives, such as development or tourism?
33. Keeley, A.T.H. (2013) Core concepts of spatial quantitative Methods and Computational Tools. Oxford University Press

24. Moilanen, A. (2009) Marxan and relatives: software for spatial conservation planning. Conserv. Lett. 2, 384–399

23. Ball, I.R. (2009) Multispecies genetic objectives in spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Mollanen, A., et al., eds), pp. 185–193, Oxford University Press

22. Mollanen, A., et al. (2014) Zonation—Spatial Conservation Planning Methods and Software. Version 4. User Manual, C-BIG Conservation Biology Informatics Group

21. Pollock, L.J. et al. (2020) Protecting biodiversity (in all its complexity): new models and trends. Trends Ecol. Evol. 35, 1119–1128

20. Watson, J.E.M. et al. (2011) Systematic conservation planning: past, present and future. Conserv. Biol. 35, 136–160

19. Carstens, B.C. et al. (2012) Phylogenetic estimation and monitoring genetic diversity are now necessary and feasible. Conserv. Biol. 35, 942–952

18. Luikart, G. et al. (2018) Extending biodiversity conservation and monitoring genetic diversity captures more than just functional diversity. Proc. Natl. Acad. Sci. U.S.A. 115, e2017934118

17. Nielsen, E.S. et al. (2017) Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 4, 299–302

16. Hoban, S. et al. (2020) Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Bioconserv. 129, 1555–1570

15. Holderegger, R. et al. (2012) Connectivity metrics for conservation and monitoring genetic diversity are now necessary and feasible. BioScience 62, 364–376

14. Andrello, M. et al. (2022) Exploring spatial conservation prioritisation with intraspecific genetic data. Trends Ecol. Evol. 37, 553–564

13. Zizka, A. et al. (2021) Existing approaches and future directions to link macroecology, macroevolution and conservation prioritization. Ecography 44, 655–677

12. Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx

9. Luikart, G. et al. (2003) The power and promise of population genomics: from genotyping to genotype typing. Nat. Rev. Genet. 4, 961–964

8. Margules, C.R. and Pressey, R.L. (2000) Systematic conservation planning. Nature 405, 243–253

7. Kirkpatrick, J.B. (1995) An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biol. Conserv. 75, 127–134

6. Hoban, S. et al. (2021) Global commitments to conserving and monitoring genetic diversity are now necessary and feasible. BioScience 71, 364–976

5. Zizka, A. et al. (2021) Existing approaches and future directions to link macroecology, macroevolution and conservation prioritization. Ecography 44, 655–677

4. Andrello, M. et al. (2022) Exploring spatial conservation prioritisation with intraspecific genetic data. Trends Ecol. Evol. 37, 553–564

3. Holderegger, R. et al. (2019) Conservation genomics: linking science with practice. Trends Ecol. Evol. 34, 398–406

2. Hoban, S. et al. (2022) Global genetic diversity status and trends: a worldwide assessment of genetic diversity. Mol. Ecol. 30, 1458–1469

1. Toczylowski, R.H. et al. (2021) Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl. Acad. Sci. U.S.A. 118, e2017934118

0. Taberlet, P. et al. (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–1448

38. Rigosin, C. et al. (2020) Building a global genomics observatory: using GEOGE (the Genomic Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic data and metadata for biodiversity research. Mol. Ecol. Res. 20, 1458–1469

37. Clark, R.D. et al. (2020) Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl. Acad. Sci. U.S.A. 118, e2017934118

36. Adams, V.M. et al. (2018) The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223

35. Fitzpatrick, M.C. and Keller, S.R. (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the
Trends in Ecology & Evolution

62. Phair, N.L. et al. (2021) Applying genomic data to seagrass conservation. Biol. Conserv. 30, 2079–2096
63. Bay, R.A. et al. (2018) Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 93–96
64. Borell, J.S. et al. (2020) Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolut. Appl. 13, 161–175
65. Rosauer, D.F. et al. (2015) Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 10, e0126274
66. Tamasev, P. et al. (2019) Phylo 2.0: extending the phylogeographical interpolation method to include uncertainty and user-defined distance metrics. Mol. Ecol. Res. 19, 1081–1094
67. Rondinini, C. and Chiozza, F. (2013) Quantitative methods for defining percentage area targets for habitat types in conservation planning. Biol. Conserv. 143, 1646–1653
68. Rilov, G. et al. (2019) Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies? Glob. Ecol. Conserv. 17, e00566
69. Beger, M. et al. (2014) Evolving coral reef conservation with genetic information. Bull. Mar. Sci. 90, 159–185
70. Daigle, R.M. et al. (2005) Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579
71. Rosauer, D.F. et al. (2017) Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. R. Soc. B Biol. Sci. 284, 20170627
72. Grantham, H.S. et al. (2009) Delaying conservation actions for improved knowledge: how long should we wait? Ecol. Lett. 12, 293–301
73. Nakamura, F. (2018) Biodiversity Conservation Using Umbrella Species. Springer, Singapore
74. Habel, J.C. and Schmitt, T. (2018) Vanishing of the common species: empty habitats and the role of genetic diversity. Biol. Conserv. 218, 211–216
75. Hansson, J.O. et al. (2017) Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl. Acad. Sci. U. S. A. 114, 12755–12760
76. Hansson, J.O. et al. (2020) Evaluating surrogates of genetic diversity for conservation planning. Conserv. Biol. 35, 634–642
77. Capitani, T. et al. (2000) Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269
78. Elbrecht, V. et al. (2018) Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6, e6644
79. Bani, A. et al. (2009) Informing marine spatial planning decisions with environmental DNA. Adv. Ecol. Res. 42, 375–407
80. Bush, A. et al. (2018) Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1479
81. Jarić, I. et al. (2020) iEcology: harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639
82. Rochat, E. et al. (2021) Spatial areas of genotype probability: predicting the spatial distribution of adaptive genetic variants under future climatic conditions. Divers. Dist. 27, 1076–1090
83. Waldvogel, A.-M. et al. (2005) Evolutionary genomics can improve prediction of species’ responses to climate change. Ecol. Evol. Lett. 4, 14–18
84. Knowlton, H.K. et al. (2018) Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688
85. Hanson, J.O. et al. (2020) Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267
86. Cook, C.N. et al. (2021) Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. Evolut. Appl. 14, 1969–1979
87. Funk, W.C. et al. (2019) Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv. Genet. 20, 115–134
88. Smith, R. (2018) The CLUZ plugin for QGIS: designing conservation area systems and other ecological networks. PLoS ONE 13, e018160
89. Myers, M.E. et al. (2009) MaxMap with Zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521
90. Hansson, J.O. et al. (2019) Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663
91. Sansaloni, C. et al. (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 5, P64
92. Pritchard, J.K. et al. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–965
93. Jakobsson, M. and Rosenberg, N.A. (2007) CLUMPP: a cluster switching and multimodality in analysis of population structure. Bioinformat 23, 1801–1806
94. Evanno, G. et al. (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620
95. Stoffel, M.A. et al. (2018) inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evol. 7, 1331–1339
96. Scrucca, L. et al. (2016) mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317
97. Hermoso, V. et al. (2016) Species distributions represent intra-specific genetic diversity of freshwater fish in conservation assessments. Freshw. Biol. 61, 1707–1719
98. Pollock, L.J. et al. (2015) Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Proc. R. Soc. B Biol. Sci. 370, 20140007
99. Isaac, N.J.B. et al. (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296