The Common Envelope Evolution Outcome—A Case Study on Hot Subdwarf B Stars

Hongwei Ge1,2,3, Christopher A. Tout2, Xuefei Chen1,3, Matthias U. Kruckow1,3, Hailiang Chen1,3, Dengkai Jiang1,3, Zhenwei Li1,3, Zhengwei Liu1,2, and Zhanwen Han1,3

1 Yunnan Observatories, Chinese Academy of Sciences, 396 YangFangWang, GuanDu District, Kunming, 650216, People’s Republic of China; gehw@ynao.ac.cn, cat@ast.cam.ac.uk, zhanwenhan@ynao.ac.cn
2 Institute of Astronomy, The Observatories, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK; cxf@ynao.ac.cn
3 Key Laboratory for Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, Kunming 650216, People’s Republic of China

Received 2022 May 19; revised 2022 June 2; accepted 2022 June 3; published 2022 July 11

Abstract

Common envelope evolution (CEE) physics plays a fundamental role in the formation of binary systems, such as merging stellar gravitational wave sources, pulsar binaries, and Type Ia supernovae. A precisely constrained CEE has become more important in the age of large surveys and gravitational wave detectors. We use an adiabatic mass-loss model to explore how the total energy of the donor changes as a function of the remnant mass. This provides a more self-consistent way to calculate the binding energy of the donor. For comparison, we also calculate the binding energy through integrating the total energy from the core to the surface. The outcome of CEE is constrained by total energy conservation at the point at which both components’ radii shrink back within their Roche lobes. We apply our results to 142 hot subdwarf binaries. For shorter orbital period hot subdwarf B stars (sdBs), the binding energy is highly consistent. For longer orbital period sdBs in our samples, the binding energy can differ by up to a factor of 2. The common envelope (CE) efficiency parameter β_{CE} becomes smaller than α_{CE} for the final orbital period $\log_{10} P_{\text{orb}}/\text{days} > -5.5$. We also find the mass ratios $\log_{10} q$ and CE efficiency parameters $\log_{10} \alpha_{\text{CE}}$ and $\log_{10} \beta_{\text{CE}}$ linearly correlate in sdBs, similarly to the findings of De Marco et al. for post-AGB binaries.

Unified Astronomy Thesaurus concepts: Common envelope evolution (2154); Stellar physics (1621); Stellar evolution (1599); Binary stars (154)

1. Introduction

Binary star evolution plays an essential role in the formation of almost all energetic and exotic objects in astrophysics. This hinges not only on the binary fraction being over half of all stellar systems (Duchêne & Kraus 2013; Moe & Di Stefano 2017) but also the existence of binary interactions, such as Roche-lobe overflow and common envelope evolution (CEE). CEE was initially proposed to explain the formation of short orbital period cataclysmic binaries (Webbink 1975; Paczynski 1976). Subsequently it has been found that CEE plays a fundamental role in the formation of binary systems with at least one compact component, a white dwarf (WD), neutron star, or black hole. These include merging stellar gravitational wave sources (Taam & Sandquist 2000; Nelemans et al. 2001), pulsar binaries (Portegies Zwart & Yungelson 1998), and Type Ia supernovae (Webbink 1984).

A common envelope (CE) phase is believed to form when a giant donor star, with a deep convective envelope, transfers its mass to a less-massive companion star (Paczynski 1976). The outcome of a CE phase can be either the formation of a short orbital period compact binary in the case of a successful envelope ejection or the formation of a merged star in the case of a failure of envelope ejection (see Figure 1).

Generally speaking, there are two different approaches aimed at improving the CEE physics. The first is 3D hydrodynamic simulations. Significant progress has been made recently by addressing proper numerical methods and more precise physics. For examples, Ricker & Taam (2012) used both a piecewise parabolic method and an adaptive mesh refinement method in CEE studies; Ricker et al. (2019) considered radiation transport effects in CEE simulations; Sand et al. (2020) and references therein examined the ionization energy contribution to the CEE ejection process; Lau et al. (2022) performed adiabatic simulations including both radiation energy and recombination energy. Gonzalez-Bolivar et al. (2022) simulated the CEE process between a thermally pulsating asymptotic giant branch star and a low-mass main-sequence (MS) star and found that (1) the inclusion of recombination energy results in wider separations and (2) thermal pulses can trigger CEs and lead to the prediction of a larger population of post-CE binaries. But a successful ejection of the whole envelope is still facing challenges. The second approach is a stellar evolution method. The standard procedure to predict the outcome of CEE is known as the energy formalism (Webbink 1984; Iben et al. 1984; Livio & Soker 1988). This is based on the essential physics of total energy conservation. The initial and final total energy of the binary system E_i and E_f are assumed to be conserved.

$$E_i = E_f$$

(1)

with

$$E_i = E_{\text{orb}} + E_{1i} + E_{2i}$$

(2)

and

$$E_f = E_{\text{orb}} + E_{1f} + E_{2f}$$

(3)

The right parts of Equations (2) and (3) are the orbital energy of the binary system and the total self energy of the donor and accretor. Typically for an MS or WD accretor E_2 is assumed not to change. In this standard prescription a CE efficiency...
The Astrophysical Journal, 933:137 (11pp), 2022 July 10

Ge et al.

Figure 1. Common envelope evolution (CEE), not to scale. A giant unstably overflows on to a more compact companion. If the envelope can be ejected a close binary results. Otherwise the stars merge.

parameter α_{CEE} is introduced as the fraction of the orbital energy change ΔE_{orb} that is used to overcome the binding energy E_{bind}, so that

$$\alpha_{\text{CEE}} \Delta E_{\text{orb}} = \Delta E_i = E_{\text{bind}}.$$

(4)

This formula is popularly written as (Webbink 1984, 2008; de Kool 1990)

$$\alpha_{\text{CEE}} \left(\frac{G M_i M_2}{2 a_i} + \frac{G M_i M_2}{2 a_f} \right) = \frac{G M_i M_{\text{ce}}}{\lambda R_{ii}},$$

(5)

where G is Newton’s gravitational constant, M are the masses, a are the semimajor axes, R is the stellar radius, and λ is a dimensionless parameter that reflects the structure of the star. The 1 and 2 subscripts refer to the donor and accretor, respectively. The i and f refer to the initial and final state of the CE phase. $M_{\text{ce}} = M_{i1} - M_{i1}$ is the mass of the CE.

The constraints on the onset, the outcome of CEE physics, and other basic knowledge of binary interactions can be used as physical inputs for binary population synthesis (BPS) studies. Hjellming & Webbink (1987) used polytropic stellar models to predict the critical initial mass ratios for dynamical timescale mass transfer, and Soberman et al. (1997) further extended this to nonconservative cases. Chen & Han (2003, 2008) used Cambridge STARS code and Pavlovskii & Ivanova (2015) and Pavlovskii et al. (2017) used the MESA code to provide limits on the onset of the CE process. Ge et al. (2010a, 2010b, 2015, 2020a, 2020b) built the adiabatic and thermal equilibrium mass-loss models and provided the critical initial mass ratios for dynamical timescale or thermal timescale mass transfer. Besides the BPS studies on low-mass binary stars (e.g., Lagos et al. 2020; Hernandez et al. 2021; Leiner & Geller 2021), such studies for massive binary stars have increased recently. For examples, studies cover pulsating ultraluminous X-ray sources (Misra et al. 2020), close double neutron stars (Vigna-Gómez et al. 2020; Kruckow 2020; Mandel et al. 2021), neutron star binaries through accretion-induced collapse (Wang & Liu 2020), compact intermediate-mass black hole X-ray binaries (Chen 2020), luminous red novae (Blagorodnova et al. 2021), rapidly rotating Be binaries (El-Badry & Quataert 2021), short-period massive binary stars (Sen et al. 2022), Type II supernova progenitors (Zapartas et al. 2021), and black hole or neutron star binaries (recent papers like Shao & Li 2021; Mandel & Broekgaarden 2022). Marchant et al. (2021) focuses on 30 M_\odot models, while Kruckow et al. (2016) focuses on 80–88 M_\odot models. Most of recent studies are driven by the detection of gravitational wave mergers (Abbott et al. 2016, 2017, 2021). These observed binary objects need precisely constrained CEE physics.

However, the detailed physics of the CEE outcome (see the recent review by Ivanova et al. 2020) is still far from well understood. Many authors provide useful constraints on an efficiency parameter α_{CEE} (e.g., Zorotovic et al. 2010; De Marco et al. 2011), a structure parameter λ, or the binding energy (e.g., Dewi & Tauris 2000; Xu & Li 2010). These studies are based on detailed calculations and provide the physical parameters as functions of stellar mass and evolutionary state. We provide here an alternative way to calculate the new binding energy from the difference between the initial and final total energy of the donor star (Ge et al. 2010a). We investigate how the companion mass impacts the binding energy for a donor with the same mass and evolutionary state. We try to answer the question of whether there is a universal constant CE efficiency (Ivanova et al. 2020) α_{CEE} through observed short-period hot subdwarf B stars (sdBs).

In Section 2, we describe our method. In Section 3, we introduce short orbital period sdBs from both theoretical and observational viewpoints. We present results and discussions of the CE efficiency parameters with binding energy derived from our standard formula and our new algorithm in Section 4. We summarize and conclude on constraints on CEE outcomes in Section 5.

2. Numerical Methods

We use our code based on our adiabatic mass-loss model (Ge et al. 2010a, 2010b, 2015, 2020a) to investigate how the total energy varies as a function of the donor’s remaining mass. The code replaces the luminosity and temperature equations with a frozen entropy profile to give the approximate response of a donor star undergoing very rapid mass transfer. The basic philosophy of the adiabatic mass-loss code is the same as the Cambridge STARS code (Eggleton 1971, 1972, 1973) and a simplified version of it (Paxton 2004). The input physics, such as the equation of state, opacity, and nuclear reaction rates, is the same as in the STARS code (Pols et al. 1998). We set the mixing-length parameter to be $\alpha = l/H_p = 2.0$, the ratio of mixing length l to pressure scale height H_p, and the convective overshooting parameter $\delta_{ov} = 0.12$ (Pols et al. 1998).

We build a grid of initial stellar models with masses 1.0, 1.3, 1.6, 1.8, and $2.0 M_\odot$ and metallicity $Z = 0.02$ (see Figure 2). The change of the total energy of the donor is calculated by (see Ge et al. 2010a)

$$E_{\text{bind}} = \int_0^{M_i} \left(- \frac{Gm}{r} + U \right) dm$$

$$- \int_0^{M_i} \left(- \frac{Gm}{r} + U \right) dm,$$

(6)

where m is the mass, r is the radius, and U is its specific internal energy. Combining Equations (4)–(6), we find the initial to final separation relation,

$$\frac{a_f}{a_i} = \frac{M_f}{M_i} \left(1 + \frac{2a_i \Delta E_i}{\beta_{\text{CEE}} G M_2 M_i} \right)^{-1}.$$

(7)

Here, we define the CE efficiency parameter as β_{CEE} to indicate that the binding energy is calculated by Equation (6), which considers the response and the redistribution of the core and the thin envelope. This can differ somewhat from that of the initial stellar model, particularly for more-massive stars with a nondegenerate core (Ge et al. 2010a; Deloye & Taam 2010).
Figure 2. The Hertzsprung-Russell diagram of low-mass donor stars. The colors in the left panel indicate the mass of the convective or radiative envelope. The colors in the right panel show the critical initial mass ratio for dynamical timescale mass transfer (Ge et al. 2015, 2020a). The tracks are for stars of 1.0, 1.3, 1.6, 1.8, and 2.0 M_\odot from bottom to top. To avoid confusion, data ends at the tip of the red giant branch (TRGB).

For comparison, we also calculate the binding energy from

$$ E_{\text{bind}} = \int_{M_{\text{Mo}}}^{M_{\text{He}}} \left(\frac{Gm}{r} + U \right) dm, $$

and M_{He} is the helium core mass where the mass fraction of hydrogen is 0.1. We also transfer this binding energy to the corresponding structure parameter λ (see Table 1) through

$$ E_{\text{bind}} = GM_{1}M_{2}/R_{1i}. $$

In this case, the corresponding CE efficiency parameter α_{CE} is the same as in Equation (5).

The initial separation a_i can be found, from the donor star’s mass M_{1i} and radius $R_{1i} = R_1$ (requiring the donor to fill its Roche lobe at the onset of the CE) with companion mass M_2, to be

$$ a_i = \frac{R_{1i}}{r_1(M_{1i}/M_2)}, $$

where R_{1i} is the radius of the giant donor when it first fills its Roche lobe. For sdBs we take this to be the radius at the tip of the red giant branch (TRGB), and, by Eggleton’s approximation for Roche-lobe radius (Eggleton 1983),

$$ r_{1i}(q) = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1 + q^{1/3})} = \frac{R_1}{a}. $$

The final separation a_f can be determined from an observed object’s orbital period if we assume the period and semimajor axis did not change between the end of the CE and the observation:

$$ P_{\text{orb}}^2 = \frac{4\pi^2a_f^3}{GM_{1f} + M_2}. $$

The outcome of CEE can be self-consistently constrained by total energy conservation (Equation (7)) at the point at which both components’ radii shrink back within their Roche lobes, $R_{1i} \leq R_{1,1i}$ and $R_2 \leq R_{2,1i}$ (see also Ge et al. 2010a).

3. Short Orbital Period sdBs

Subdwarf B stars (sdBs) are core helium-burning stars with masses around 0.5 M_\odot and a thin hydrogen-rich envelope (less than 0.02 M_\odot). They are hot and their effective temperature is between 20,000 and 40,000 K (Heber 2009). So sdBs emit strong ultraviolet (UV) emission and this makes them the major source of the UV-upturn in the elliptical galaxies (Ferguson et al. 1991; Han et al. 2007). About half of sdBs are in close binaries with a WD or low-mass MS companion star (Heber 2009). The most-favored formation channels for sdBs are the CE ejection channel, the stable Roche-lobe overflow channel, and the merging double helium WD channel (Han et al. 2002, 2003). The merging channel produces isolated sdBs and the first two provide sdBs in binaries. The CEE with a substellar companion can also form an isolated sdB (Soker 1998; Kramer et al. 2020). Besides their importance in binary evolution, sdBs are also useful for asteroseismology (e.g., Fontaine et al. 2003), cosmology (Justham et al. 2009; Wang 2018), and gravitational wave sources studies (Wu et al. 2018).

Recently, many sdBs have been found in survey projects, such as Gaia (Geier et al. 2019) and LAMOST (Luo et al. 2021). However, a strict constraint on the orbital parameters and masses of both components is still lacking. So we use sdB examples provided by Kupfer et al. (2015) to carry out our study. Through detailed stellar evolution studies, Han et al. (2002) and Zhang et al. (2021) find that the low-mass progenitor models of short orbital period sdBs are located almost at the TRGB in order to trigger a helium flash. Furthermore, the CE ejection scenario is the only likely formation channel for these short-period sdB binaries below 10 days (Maxted et al. 2001). Hence, the simplicity of these sdBs’ progenitors makes them the perfect objects to constrain CEE physics.

Kupfer et al. (2015) studied 142 short-period sdB binaries, including 12 new systems. Assuming a canonical mass for the

4 If a progenitor overfills its Roche lobe near the TRGB and suffers a CE ejection, the remnant core can trigger a delayed helium flash and finally form an sdB (Han et al. 2002). So, we set $R_{1i} = R_{\text{TRGB}}$.

Table 1: Parameters about Three TRGB Stars

M_{1i}	M_{1f}	log_{10}(R_{1i}/R_1)	Z	E_{bind}	λ
1.0	0.4620	2.2425	0.02	2.548×10^{46}	0.4580
1.3	0.4615	2.2035	0.02	3.029×10^{46}	0.8540
1.6	0.4559	2.1394	0.02	4.235×10^{46}	1.1895

References

- Han et al. (2002, 2003) and Zhang et al. (2021).
- Kupfer et al. (2015).
Figure 3. The orbital periods against the companion masses of 142 observed hot subdwarf B stars (sdBs). As described by Kupfer et al. (2015), different symbols indicate the minimum companion masses, assuming the sdB mass $M_{\text{sdB}} = 0.47 M_{\odot}$ and the inclination angle $i = 90^\circ$. A mean companion mass, the upper error bar, can be found assuming an inclination angle $i = 60^\circ$. Black squares, red triangles, and blue circles show the type of the companion star, unknown, main-sequence (MS), or white dwarf (WD), respectively.

sdB $M_{\text{sdB}} = 0.47 M_{\odot}$ (Fontaine et al. 2012) and inclination angles of $i = 90^\circ$ and 60°, the minimum and mean mass of the companion can be determined by solving the equation for the mass function (Figure 3). Kupfer et al. (2015) find that a peak around $0.1 M_{\odot}$ corresponds to the low-mass MS companions and another peak around $0.4 M_{\odot}$ corresponds to the WD companions (see their Figure 8). Again, these short-period sdB binaries are most likely formed from CEE and we use them to constrain its physics in the next section.

4. Results and Discussions

We present CE efficiency parameters as a function of the orbital period for 142 sdB binaries. Three different TRGB donor stars are explored. Their binding energies are calculated by either integrating from the core to the surface of the initial model when CEE begins E_{bind} (Equation (8)) or the change of total energy during CEE E_{bind} (Equation (6)). The corresponding CE efficiency parameters are written as α_{CE} and β_{CE}, respectively. For shorter orbital period sdBs, the binding energy is almost the same and we find the difference between α_{CE} and β_{CE} is small. For longer orbital period sdBs in our samples we have found that the binding energy can differ by up to a factor of 2. The CE efficiency parameter β_{CE} becomes smaller than α_{CE} for final orbital periods $\log_{10} P_{\text{orb}}/d > -0.5$. A shallower slope for $\log_{10} \beta_{\text{CE}}$ with $\log_{10} P_{\text{orb}}$ than that for $\log_{10} \alpha_{\text{CE}}$ is found for sdBs with all types of companion.

4.1. 1.0 M_{\odot} TRGB Donor Star

According to the initial mass function (e.g., Zorotovic et al. 2010) lower-mass stars dominate the progenitors of sdBs. So we take a 1.0 M_{\odot} TRGB donor star as the typical progenitor of an sdB. The initial mass and radius of the donor are known. The final orbital period after CE ejection is found from the observed sdB binary. How the total energy changes as a function of remnant mass can be calculated through our adiabatic mass-loss code. With an initial guess and bisection method to solve the Equations (7) to (11) of this paper and Equation (1) of Kupfer et al. (2015) we can find the CE parameter β_{CE} that satisfies the sdB mass M_{sdB}, minimum companion mass M_2 (assuming $i = 90^\circ$) and the orbital period P_{orb}. For comparison, we also calculate $E_{\text{bind}}^{\text{ad}}$ in place of Equation (6) and solve for the CE parameter α_{CE}.

The solid line in Figure 4 demonstrates how the radius responds to mass loss when we assume the CE envelope is ejected adiabatically. The color of the solid line shows the binding energy as a function of the star’s remnant radius R_{M} and mass M_{M}. The dashed and dotted lines show how the inner Roche-lobe radius R_{L} changes for companion masses of 0.4 and 0.1 M_{\odot}. The black and gray colors refer to the CE efficiency parameters of 1.0 and 0.1. As discussed in Section 2, the symbols are located where the remnant stars just shrink.
back inside their Roche lobes. Lines and symbols in Figure 5 have the same meaning. For a specified progenitor with a given mass and evolutionary stage, the binding energy is not constant (the blue line in Figure 5 is for $\lambda = 0.458$) as people often assumed. The binding energy varies with both the efficiency parameter β_{CE} and the companion mass M_2 (Figure 5), as well as the rebalancing of the remnant star after its envelope mass is ejected. The difference between binding energies E_{bind} and E_{bind}' becomes larger for longer orbital period sdBs, and higher efficiency parameters or CE efficiency when the CE mass fraction of hydrogen is 0.1. The blue line in Figure 5 is for $\lambda = 0.458$. Filled symbols correspond to each other between Figures 4 and 5. The blue line is the binding energy from the right-hand side of Equation (5) for $\lambda = 0.458$.

Figures 6 to 9 present the CE efficiency parameters α_{CE} (open symbols) and β_{CE} (filled symbols) as functions of the orbital period of observed sdBs with an MS companion. The initial model is a 1.0 M_\odot TRGB star (other initial models are considered in Figures 10 to 12). The companion mass M_2 is solved with an inclination angle of $i = 90^\circ$. The dashed and solid lines are a linear least-square fits to the data.

Figure 6. The CE efficiency parameters α_{CE} (open symbols) and β_{CE} (filled symbols) against the orbital period of observed sdBs with an MS companion. The initial model is a 1.0 M_\odot TRGB star (other initial models are considered in Figures 10 to 12). The companion mass M_2 is solved with an inclination angle of $i = 90^\circ$. The dashed and solid lines are a linear least-square fits to the data.

4.2. 1.0, 1.3, and 1.6 M_\odot TRGB Donor Star

We extend our studies on the CE efficiency parameters for TRGB stars to different masses, 1.3M_\odot, and 1.6M_\odot, progenitors. Figures 10 to 12 present both the CE parameters α_{CE} (solid lines) and β_{CE} (dashed line) as functions of the orbital periods of observed sdBs with MS, WD, and unknown companions. For each line, the progenitor’s initial mass changes from 1.0 M_\odot (bottom) to 1.6 M_\odot (top). Figure 13 presents the weighted CE parameter α_{CE} (open symbols) and β_{CE} (filled symbols). The weight factor is $N(M_{i1}, a_{i1}) = M_{i1}^{-2.7}/a_{i1}$ according to the initial mass function, flat distribution of initial mass ratio, and flat distribution of logarithmic initial separation (see Hall & Tout 2014). We find the difference between α_{CE} and β_{CE} becomes important for sdBs with orbital periods P_{orb} such that $\log_{10}(P_{\text{orb}}/d) > -0.5$. For different progenitor masses of short orbital period sdB binaries, the binding energies E_{bind} and E_{bind}' differ significantly for $\log_{10}(P_{\text{orb}}/d) > -0.5$ with any type of companion. A higher companion mass spirals in and ejects the envelope with a larger final radius and mass, so a smaller binding energy E_{bind} leads to a smaller β_{CE}.
In such cases the binding energy \(E_{\text{bind}} \) is close to \(E_{\text{bind}}' \) because the the final mass is close to the Helium core mass. The binding energy \(E_{\text{bind}} \) is smaller for a longer orbital period sdBs (blue filled squares in Figure 14) because the companions do not need to spiral in that much. \(E_{\text{bind}} \) can decrease from \(E_{\text{bind}} = 2.548 \times 10^{46} \) to \(1.358 \times 10^{46} \) erg for a 1.0 \(M_\odot \) TRGB progenitor.

As shown in Equation (7), a different binding energy corresponds to a different CE efficiency. For an observed sdB system with a given progenitor model, the relation between binding energy and CE parameter is positively linearly correlated. A smaller binding energy \(E_{\text{bind}} \) reduces the CE efficiency parameter \(\beta_{\text{CE}} \) more than \(\alpha_{\text{CE}} \) for \(E_{\text{bind}}' \) in long orbital period sdBs (Figures 6 to 14).

4.4. Relation between CE Parameter and Mass Ratio

If we reformulate Equation (5), we have the mass ratio \(q = M_{1i}/M_2 \) and CE efficiency relation,

\[
\alpha_{\text{CE}} = \frac{2q(M_{1i} - M_{1f})}{\lambda L(q)(M_{1i}a_i/a_f - M_{1i})},
\]

Figure 15 shows the initial mass ratios \(\log_{10} q \) to CE efficiency \(\log_{10} \beta_{\text{CE}} \) and \(\log_{10} \alpha_{\text{CE}} \) for short orbital period sdBs. The relation in the top panel is derived from \(E_{\text{bind}}' \), while that in the bottom panel is derived from \(E_{\text{bind}} \). We find that there is linear correlation between \(\log_{10} q \) and \(\log_{10} \alpha_{\text{CE}} \) for a given sdB system with different donor masses. Although the relation is stretched for different sdB systems, the linear correlation is universal, sharing the same gradient. We have \(\log_{10} \alpha_{\text{CE}} = -0.503(\pm 0.049) + 0.328(\pm 0.062) \times \log_{10} q \) with the adjusted R-squared of 0.059 and \(\log_{10} \beta_{\text{CE}} = -0.631(\pm 0.044) + 0.400(\pm 0.055) \times \log_{10} q \) with the adjusted R-squared of 0.108.

De Marco et al. (2011) explored such an anticorrelation between log \(1/q \) and \(\log \alpha_{\text{CE}} \) for postasymptotic giant branch (post-AGB) binaries. They found the gradient to be around \(-1.2 \), but they excluded post-RGB donors. The results for sdBs in this paper also show the log \(1/q \) versus log \(\alpha_{\text{CE}} \) anticorrelation (see Equation (12)).

4.5. Effects from Other Sources

To constrain CE efficiency parameters, we use a new binding energy algorithm addressing the influence of the companion mass and the rebalance of the remnant core. The progenitors of short orbital period sdBs are located at a narrow range near the
TRGB. We only show the results of TRGB stars in the previous subsections. Progenitors from a slightly earlier stage of TRGB extend a little the range of CE efficiency parameters. The role that convection might play in transporting energy out, as Wilson & Nordhaus (2022) suggest, might affect CEE efficiencies. We discuss other possible effects on the uncertainty of CE efficiency parameters such as metallicity, companion type, and inclination angle in this subsection.

We only explored stars with metallicity $Z = 0.02$. Metal-poor stars are more compact than metal-rich stars with the same mass. We find that metal-poor stars have smaller radii and shorter orbital periods for the same companion mass (Figure 16). The binding energy is highly related to the radius of the donor star. We expect that a metal-poor star has a larger binding energy E_{bind}^p than a metal-rich star. For a given CE efficiency parameter $\beta_{CE} = 0.3$, the final orbital period or separation is surprisingly larger for a metal-poor star (see Equation (7)). This is because the compact metal-poor star shrinks to its Roche lobe earlier and makes E_{bind} smaller. So a smaller metallicity tends to reduce the linear slope of the logarithm of the CE efficiency parameter and final orbital period. Unfortunately it is hard to spectrally determine the metallicity of short orbital period hot subdwarf binaries (private communication with Prof. Yangping Luo). For example, the companions of sdBs are all cool stars with a spectral type around M (Kupfer et al. 2015) while the sdB is too luminous, unlike the long orbital period sdBs, which indicate the chemical evolution history of the Milky Way (Vos et al. 2020). We currently cannot pick out the observed sdBs with metallicity $Z = 0.02$ to give a stricter prediction or constraint.

The companion mass range is different for short orbital period sdBs with an MS or WD companion (Figure 3). From theoretical analysis, if the MS companion mass M_2 is too close to that of its companion M_1, it is likely to merge with the envelope, because the companion’s radius is likely to be larger than its Roche-lobe radius (Figure 17), for example, if M_2 were larger than 1.1 M_\odot for a $M_1 = 1.6$ M_\odot TRGB star with $\beta_{CE} = 0.1$. Furthermore, the MS companion mass cannot be too massive because at the initial mass ratio $q < q_{\text{ad}}$, it avoids CEE (right panel of Figure 2). A combination of the above reasons is very likely to explain the lower-mass peak around $0.1 M_\odot$ in Kupfer et al.’s (2015) Figure 8. There is also a lower limit around 0.1 for the CE efficiency parameters of sdBs with an MS companion. A low-mass MS companion does not shrink inside its Roche-lobe if the CE efficiency parameter is too small (Figure 17). For extreme short orbital period sdBs with a WD companion, the CE efficiency parameters are smaller than 0.1 (Figures 7, 9, 11, and 13). The progenitors of these sdBs are possibly more massive than 2.5 M_\odot. They likely form through the CE + CE channel. We only explore the progenitors of sdBs with a degenerate core and our current results do not cover progenitors of sdBs with a nondegenerate core.

In this study, we assume the inclination angle $i = 90^\circ$. We might expect there is a random distribution of the inclination angle, flat in $\cos i$. However, the companion mass is degenerate with the inclination angle (Equation (1) of Kupfer et al. 2015). We might hope to constrain the CE efficiency parameters through checking the random number density of sdBs with respect to inclination angle (see a similar method for millisecond pulsars with a helium WD by Smedley et al. 2014) but the typical companion mass of sdBs is more extended than the neutron star mass in their study. We hope future observations can provide inclination angles and metallicities in short orbital period binaries with a compact companion.

We might not provide a concluding answer for whether there is a universal constant CE efficiency (Ivanova et al. 2020) α_{CE} but we are trying to provide comprehensive studies and discussions on this aspect. Our results tend to support that longer orbital period sdBs are from lower-mass progenitors while shorter orbital period sdBs are from higher-mass
Figure 10. The CE efficiency parameters α_{CE} (gray solid line) and β_{CE} (red dashed line) as functions of the orbital period of observed sdBs with MS companions. The progenitor’s initial mass changes from $1.0M_\odot$ (bottom) to $1.6M_\odot$ (top) for each line.

Figure 11. The CE efficiency parameters α_{CE} (gray solid line) and β_{CE} (blue dashed line) as functions of the orbital period of observed sdBs with WD companions.

Figure 12. The CE efficiency parameters α_{CE} (gray solid line) and β_{CE} (black dashed line) as functions of the orbital period of observed sdBs with unknown-type companions.

Figure 13. Weighted CE efficiency parameters α_{CE} (open symbols) and β_{CE} (filled symbols) as functions of the orbital period of observed sdBs. Squares, circles, and triangles show the unknown-type, WD, and MS companions. Two horizontal thin-dashed lines are CE efficiency parameters of 0.2 and 0.3.
progenitors (Figures 10–11). If the above assumption is true we can connect the top part of the leftmost dashed line and the bottom part of the rightmost dashed line in these figures. Consequently, we can find a constant $\log_{10} \beta_{\text{CE}} \approx -0.3$ for sdBs with an MS companion and from $\log_{10} \beta_{\text{CE}} \approx -0.8$ to $\log_{10} \beta_{\text{CE}} \approx -0.2$ for sdBs with a WD companion (abandoning the three leftmost objects might come from nondegenerate progenitors and the three rightmost objects with orbital periods longer than 10 days in Figure 11). In other words, the full orbital period range of sdBs can be covered within that CE efficiency parameter range. A concluding answer needs detailed binary population synthesis studies addressing the full range of the progenitors, metallicity, effects in this study, and more strict observation as discussed.

5. Summary and Conclusions

In this paper we calculate a binding energy E_{bind} that differs from previous studies by tracing the change of the total energy based on our adiabatic mass-loss model. For comparison, we also calculate the normal binding energy E'_{bind} through integrating the total energy from the core to the surface. We assume the outcome of CEE is determined by energy conservation and when both components shrink within their Roche lobes. We have found that the remnant core radius can vary by orders of magnitude although the remnant core mass is almost the same. The remnant core mass is slightly larger than the helium core. We examine short orbital period sdBs to estimate CE efficiency parameters with different binding energy calculation methods. The CE efficiency parameter is normally defined as α_{CE} in the standard energy Equation (5).

We write the CE efficiency parameter as β_{CE} for our binding energy method. For shorter orbital period sdBs, the binding energy is almost the same and we find the difference between α_{CE} and β_{CE} is small. For longer orbital period sdBs in our samples, we have found that the binding energy can differ by up to a factor...
of 2. The CE efficiency parameter β_{CE} becomes smaller than α_{CE} for final orbital periods $\log_{10} P_{\text{orb}}/d > -0.5$. A shallower slope for $\log_{10} \beta_{\text{CE}}$ against $\log_{10} P_{\text{orb}}$ than that for $\log_{10} \alpha_{\text{CE}}$ is found for sDBs with all types of companion. We also find a log g and log α_{CE} linear correlation in sDBs similar to what De Marco et al. (2011) found in the post-AGB binaries.

To constrain the CEE physics more precisely, Hall & Tout (2014) improved the core radius fit through detailed stellar model calculations. Politano (2021) improved the radius at the mass–radius flat range (Terman & Taam 1996) by studying planetary nebulae with binary cores. De Marco et al. (2011) and Loveridge et al. (2011) provide useful constraints on the efficiency parameter α_{CE} and structure parameter λ or the binding energy as a function of the stellar mass and evolutionary stage. However, our approach differs from earlier studies. We calculate the new binding energy E_{bind} by tracing the difference between the initial and final total energy of the donor star so that the influence of the companion mass on the binding energy is addressed. For more-massive close binaries, such as those with black holes or neutron stars, that come from more-massive progenitors than sDBs, the difference between E_{bind} and E_{bind}^\prime is probably more important. Effects such as launching of jets may also play an important role (Soker 2022).

Different studies constraining the outcome of CEE process, such as our method, are important for binary population synthesis studies. More pre- and post-CE binary observations with more accurate orbital and structure parameters, as well as metallicity, are also of benefit. We shall present the grid of the CE efficiency parameters and other remnant information with different donor masses and evolutionary stages in the future.

The authors thank the anonymous referee for the helpful comments and suggested improvements. This project is supported by National Key R&D Program of China (2021YFA1600400/3) and National Natural Science Foundation of China (grants No. 12173081, 12090040/3, 11733008, 12125303, 11673058), Yunnan Fundamental Research Projects (grant No. 202101AV 070001), the key research program of frontier sciences, CAS, No. ZDBS-LY-7005, and CAS, “Light of West China Program”.

H.G. thanks the institute of astronomy, University of Cambridge for hosting the one year visiting. H.G. also thanks Prof. Ronald F. Webbink for helpful suggestions. C.A.T. thanks Churchill College for his fellowship. D.J. acknowledge the science research grants No. 12073070 and CMS-CSST-2021-A08. Zhenwei Li acknowledges the science research grants No. 12103086, 202101AU070276.
