Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system’s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH17- and non-TH17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Introduction

The history of the IL-17 family

Heptadecaphobia (derived from the Ancient Greek ‘hepta’ = seven, ‘deca’ = ten, and ‘phobos’ = fear) describes the pathologic fear of the number 17, which is widely spread in Italy and other countries of Latin origin. When the proinflammatory cytokine interleukin (IL)-17A, formerly called cytotoxic T lymphocyte-associated protein 8, was described for the first time in 1993 without a clear function [1], there was little evidence that this discovery might fuel the fear of superstitious scientists. Soon, it became apparent that IL-17A was only the first of six genetically related cytokines, conveniently named IL-17B, IL-17C [2], IL-17D [3], IL-17E [4], and IL-17F [5], collectively termed the IL-17 superfamily [6]. While IL-17E shares the lowest degree of genomic sequence conservation with the main member of the family, IL-17A [4], IL-17F shares the highest [7]. Later on, it was found that IL-17A and IL-17F are not only capable of forming homodimers, but they can also assemble into IL-17A/IL-17F heterodimers in mice [8] and humans [9], describing a formation in which one monomer consists of IL-17A and the other of IL-17F.

Cellular sources of type 3 cytokines

Early on, it was shown that IL-17A could be produced by T cells [1,10]. However, the groundwork for a new T-cell subset was not provided until the year 2000, when the structural distinction between IL-12 and IL-23 became apparent [11]. Shortly after, this distinction enabled recognition of the different functions of these particular cytokines [12]. Subsequently, this led to the discovery that IL-23 itself can promote the differentiation of a new IL-17A producing T-cell lineage, which expresses the cluster of differentiation (CD) 4 and is referred to as T helper 17 (T\textsubscript{H}17) cell lineage [13]. In 2001, retinoic acid receptor-related orphan receptor gamma t (ROR\textgreek{t}) was identified as an indispensable transcriptional factor for the differentiation of T\textsubscript{H}17 cells [14], distinguishing this CD4-positive T-cell subset from others. Further research revealed other cytokines that are coproduced by T\textsubscript{H}17 cells, among them IL-17F [8] and IL-22 [15]. IL-22 is a cytokine of the IL-10 family [16], first described in 2000 [17]. Together, IL-17A, IL-17F, and IL-22 form the group of type 3 cytokines [18].

Of note, other subsets of cells are equally capable of producing IL-17A, IL-17F, or IL-22. Among them are CD8-positive cytotoxic T cells, termed T cytotoxic 17 (T\textsubscript{c}17) cells [19], type 3 innate lymphoid cells (ILC3s) [20,21], natural killer T (NKT) cells [22,23], and a subset of γδ T cells [24,25], which are also referred to as γδ T17 cells when secreting IL-17A. T helper 22 (T\textsubscript{H}22) cells are yet another source of IL-22 and are defined as CD4-positive T cells lacking the production of IL-17A [26].

Regulation of type 3 cytokines

Differentiation and positive regulation toward type 3 cytokine-secreting cells are often initiated by a combination of the cytokines IL-1β, Transforming growth factor-beta (TGF-β), and IL-23 [22,27,28]. Depending on the microenvironment and the specific cell subset, multiple enhancing factors might come into play. For example, it was demonstrated that IL-7 could exclusively enhance the production of IL-17A by γδ T cells in neonate mice and by γδ T cells derived from human cord blood [29]. Likewise, spatiotemporal regulation of IL-17A, IL-17F, and IL-22 is required to insure a targeted immune response avoiding overt inflammation. One possible mechanism lies in regulating the migration of the cells producing these cytokines, such as T\textsubscript{H}17. Interestingly, T\textsubscript{H}17 is recruited to and controlled in the small intestine during an overwhelming T\textsubscript{H}17 immune response, for instance, during sepsis [30,31]. This attraction of T\textsubscript{H}17 is dependent on their expression of C-C chemokine receptor (CCR) 6 [30]. In the same fashion, γδ T17 cells often expressing CCR6 [32] can be allured to inflammation sites [33]. Vice versa, negative regulation of many type 3 cytokine-producing cells is needed and often occurs via IL-10 [34,35]. However, there are also other ways to control T\textsubscript{H}17 cells. For example, these cells may be washed out through the intestinal lumen during intensive tissue damage. Finally, T\textsubscript{H}17 can change their phenotype, acquire regulatory functions [30], and even fully transdifferentiate into regulatory T cells (T\textsubscript{regs}) [36]. Interestingly, IL-22 is not only regulated on a transcriptional level, but its activity is also controlled by IL-22-binding protein (BP), an endogenous antagonist, that binds and neutralizes IL-22 [37].

Downstream signaling of IL-17A and IL-17F

Even 25 years after the discovery of IL-17A [1], the precise mechanisms of signal transduction of IL-17A and IL-17F are not yet fully understood. In a similar fashion to their ligands, the receptors of the IL-17 family form a family of their own, comprising of interleukin-17 receptor A (IL-17RA) all the way through to IL-17RE [6]. While IL-17RA was already described to
mediate IL-17A signaling back in 1995 [38], it took another 11 years to discover IL-17RC as the second part of the functional IL-17RA/IL-17RC receptor [39]. Shortly after, it was confirmed that both IL-17A and IL-17F could bind to both IL-17RA and IL-17RC in mice [40] and humans [41] and thus induce downstream signaling directly mediated by nuclear factor kappa-B activator 1 [42] and tumor necrosis factor receptor-associated factor 6 [43]. Eventually, IL-17A and IL-17F were found to induce transcriptional factors such as nuclear factor kappa-light-chain-enhancer of activated B cells [38] and mediate transcription of proinflammatory and hematopoietic cytokines such as IL-6, IL-8, and granulocyte-colony-stimulating factor (G-CSF) [10]. Nevertheless, the long-lasting paradigms describing IL-17A signaling were significantly challenged since a recent report suggested signaling of the IL-17A homodimer through a newly described pairing of the receptors IL-17RA and IL-17RD [44]. However, further implications of this newly found heterodimeric match are yet to be elucidated.

Downstream signaling of IL-22

In contrast, the mechanisms underlying IL-22 signaling are better understood. IL-22 binds to a heterodimeric receptor, consisting of the universally expressed IL-10R2 and IL-22RA1 [17], whose expression is exclusive to non-hematopoietic cells [45]. Further downstream effects are mainly mediated by signal transducer and activator of transcription (STAT) 3, although it was also reported that STAT1 and STAT5 could be activated via IL-22 in a hepatoma cell line [46]. These effects include the enhanced production of antimicrobial peptides [45], the promotion of tissue regeneration and wound healing [47], and the protection from genotoxic stress [48].

State of the art

Today, the roles of TH17 cells and their secreted cytokines have been extensively examined in different diseases. Particularly, reports show that type 3 cytokine-producing cells are capable of exerting ambiguous roles in multiple settings. Often enough, they were found to display a pathogenic behavior and thus provide scientists with sound evidence to further fear and despise the number 17. In this review, we aim to rationalize and objectify the partially bad reputation of TH17 cells and associated cytokines during carcinogenesis and metastatic development. Worldwide, tumor development in the lung, colon, breast, liver, and stomach causes the most cancer-related deaths, with a combined death toll of four million in 2018 alone [49]. Therefore, this review will be centered on the four primary entities mentioned above, while the impact of type 3 cytokines in stomach cancer will be briefly addressed at the end. Likewise, metastases in the liver and lung rank among the most common sites for distant tumor seeding [50]. Therefore, metastasis development in these two organs will be outlined in detail. Finally, we will point out unresolved questions that need to be addressed and discuss possible therapeutic targets.

Colorectal cancer

Overview

Colorectal cancer (CRC) ranks as the third most common cancer-related cause of death in the Western world [51]. CRCs most commonly develop over the span of many years, often arising from benign polyps [52]. Over time and after accumulation of mutations in genes such as adenomatous polyposis coli (APC), (Kirsten) rat sarcoma viral oncogene homolog ([K] RAS), or tumor protein p53 [53], these benign polyps transform into cancerous tissues, which subsequently infiltrate adjacent structures. In the last stage of their development, these malignant lesions can then spread to other organs and form metastases.

Overall impact of IL-17A

The role of TH17 cells and their associated cytokines, especially IL-17A and IL-22, has been examined and reviewed extensively in the past [54–58]. While IL-17A has been described as mostly pro-tumorigenic in the colonic environment, the functions of IL-22 are more divergent (Fig. 1). One of the first observations regarding the role of IL-17A during CRC was made by crossing Il17a-deficient mice with APCMin/+ mice. These mice harbor the multiple intestinal neoplasia (Min) mutation in one of their APC loci and, thus, are prone to spontaneous development of CRC. By using this model, it was discovered for the first time that the lack of IL-17A expression protects mice against CRC [59]. A similar observation was made a year later, where Il17a-deficient mice presented with a decreased colitis-associated CRC burden compared with wild-type mice in the azoxymethane (AOM)-dextran sodium sulfate (DSS) mouse model [60]. Another genetic CRC mouse model based on a different APC mutation revealed that treatment with an antibody-inhibiting IL-17A resulted in a reduced colonic tumor burden compared with an isotype control [61]. In humans, it was found that patients suffering from
CRC display higher levels of IL-17A in their serum [62] and that IL-17A expression in tumor tissues increases during the transformation from adenoma toward dysplasia [63,64]. Furthermore, IL-17A is negatively correlated with overall survival in these patients [65], highlighting this cytokine’s CRC-promoting capabilities.

Cellular sources of IL-17A

The cellular sources of IL-17A were found to include not only TH17 cells, but also γδ T17 cells as a second producer. This was discovered in APCMin/+ mice that had been colonized with the human gut bacterium, enterotoxigenic *Bacteroides fragilis* (ETBF), to enhance...
tumor growth [66]. In humans, the exact contributions of the different sources of IL-17A are not yet fully elucidated. Indeed, one study detected both T_{H17} cells, as well as γδ T17 cells, in colonic tumor tissues [66]. After analyzing two different patient cohorts, it was shown that roughly 80% of tumor-infiltrating IL-17A-producing T cells represented T_{H17} cells. However, another study reported that despite the detection of an increased number of T_{H17} cells, γδ T17 cells were the major source of IL-17A in colonic tissues of patients suffering from CRC [67]. Here, the authors found an absolute number of γδ T17 cells that more than doubled the detected amount of T_{H17} cells in the tissue. The study further correlated the abundance of γδ T17 cells with distinct CRC progression features, including tumor stage, tumor size, tumor invasion, lymph node metastasis, and serum level of carcinoembryonic antigen (CEA). More recently, however, it was reiterated that the major source of IL-17A in CRC is T_{H17} cells, which could exert both pro- and antitumorigenic effects in vitro [68]. Therefore, it is conceivable that both γδ T17 cells and T_{H17} cells significantly contribute to IL-17A production in CRC. Nonetheless, the precise functions of these cell subsets might differ, leading to different effects during carcinogenesis. Of note, T cells expressing the major transcription factor forkhead box P3 (Foxp3), termed T_{reg}, were described to exert pathogenic properties via the production of IL-17A, as well [69,70].

Regulatory mechanisms of IL-17A

The regulation of IL-17A-producing cells during CRC is highly dependent on the colonic microbiome and its ability to induce IL-23 production [71]. Early on, IL-23 production by myeloid cells was suspected to enhance CRC growth via upstream and downstream signaling of STAT3, partially by inhibiting antitumor immunity via promotion of T_{reg} [72]. Some years later, this suggested circuit was expanded by demonstrating that early colonic adenocarcinoma stages can lead to an intestinal barrier defect. This favors an efflux of microbes and microbial peptides from the lumen toward the colon’s outer layers in mice. Subsequently, this mechanism triggers an enhanced production of IL-23 by tumor-associated myeloid cells, which then leads to an increase of IL-17A expression in the tumor [71]. Although the secretion of IL-17A in CRC is also highly dependent on IL-1β, its deficiency only slightly affects colonic tumor burden. This might be explained by potent antitumorigenic effects of IL-1β compensating its pro-tumorigenic effects, involving the control of local tumor-enhancing microbiota [73].

In humans, it was equally demonstrated that the gut’s microbiome, and more specifically, a distinct colonic bacterium, called ETBF, can induce colonic tumor growth via the induction of T_{H17} cells [74]. Strikingly, this mechanism seems to be partially mediated by T_{reg} since depletion of these cells in a murine colon cancer model reduced tumor development promoted by IL-17A [75]. Interestingly, this T_{reg}-dependent effect could be bypassed by the inhibition of IL-2, indicating that T_{reg} might stimulate T_{H17} cells in CRC by depriving them of IL-2.

Intriguingly, it was further postulated that a subset of IL-17A-producing T_{reg} in CRC had compromised anti-inflammatory properties due to the coexpression of RORγt [76]. Since T_{H17} cells can transdifferentiate into T_{reg} as a response to systemic infections [36], it would be of high interest to determine whether regular T_{H17} cells can fully convert from RORγt+ Foxp3+ T cells to RORγt− Foxp3+ T cells as a direct response to CRC development [77]. This suspected form of plasticity might indicate a regulatory mechanism initiated by the host’s immune system to dampen the tumor-promoting effects of T_{H17} cells.

Targets of IL-17A

Mechanistically, the interactions among IL-17A, myeloid cells, and colonic cancer cells were demonstrated to be of extreme importance in mediating the mostly pro-tumorigenic effects of IL-17A. For example, one established axis describes a mechanism by which the IL-17A-mediated production of granulocyte macrophage-colony-stimulating factor (GM-CSF) favorably recruit myeloid-derived suppressor cells (MDSCs) to the tumor site. These cells are then capable of suppressing antitumorigenic effector cells [67]. As a second mechanism, it was suggested that IL-17A could enhance the migration properties of a colon cancer cell line [78], as well as cell-cycle progression [79] in vitro. Accordingly, in vivo observations found a reduced tumor burden in mice with a specific depletion of IL-17A on colonic epithelial cells [61]. Moreover, IL-17A might synergize with IL-4 to induce hydrogen peroxide production and damage DNA in colon and pancreatic cancer cell lines [80]. Of note, it was suggested that IL-17A signaling might play a role in mediating the effects of cisplatin resistance [81]. However, convincing in vivo data is currently missing to corroborate the impact of IL-17A on cancer cells.

Overall impact of IL-17F

While the effect of IL-17A on CRC has been well examined for decades, evidence of an involvement of
IL-17F is scarce. However, different polymorphisms of IL-17A, IL-17F, and IL-23R were reported to correlate with distinct clinical characteristics of CRC [82,83], pointing toward an important role of these T_{H17} cell-associated cytokines. Nonetheless, a mechanistic study from 2012 shows a protective effect of IL-17F in CRC. Here, the authors used IL-17F overexpressing cancer cell lines, which were subcutaneously implanted into the host, and the inflammation-associated AOM-DSS model [84]. Since the levels of the pro-angiogenic factor vascular endothelial growth factor (VEGF) were increased in Il17f-deficient mice, the authors concluded that mechanistically, IL-17F might inhibit angiogenesis by directly or indirectly reducing VEGF. Intriguingly, the authors discovered a high expression of IL-17F in epithelial cells and healthy colon tissue, whereas the expression of IL-17F was reduced in the tumor tissue. However, a more recent study described conflicting observations, where elevated levels of IL-17F were found in colon tumor tissues [85]. Conclusively, further studies, including bigger sample sizes, are necessary to draw conclusions.

Overall impact of IL-22

In contrast to IL-17F, the role of IL-22 during CRC has been defined more precisely. In comparison with IL-17A, the role of IL-22 is strikingly more divergent. This becomes most apparent by the observation that IL-17A, IL-22, and IL-23R were reported to correlate with distinct clinical characteristics of CRC [82,83], pointing toward an important role of these T_{H17} cell-associated cytokines. However, using a different murine model of CRC, another report described IL-22 and nitric oxide-mediated damage of DNA, which subsequently led to a decreased dysplasia of tumors in Il17f-responsive mice [82]. Finally, the last factor enhancing the production of IL-22 is mediated by IL-22BP, a soluble receptor with a high binding affinity for IL-22 [82]. It was demonstrated that a dysregulated activity of IL-22 by depletion of IL-22BP leads to a drastic increase in tumor burden [47]. In fact, it was recently described that IL-22BP production relies on the induction of IL-22 by depletion of IL-22BP.[92] Conversely, tight negative regulation of IL-22 is needed to prevent potential harmful effects. Physiological inhibition of IL-22 is mediated by IL-22BP, a soluble receptor with a high binding affinity for IL-22 [94]. It was demonstrated that a dysregulated activity of IL-22 by depletion of IL-22BP leads to a drastic increase in tumor burden [47]. In fact, it was recently described that IL-22BP production relies on the induction of lymphotoxin, in which case, inhibition of the lymphotoxin beta receptor leads to an increased CRC development in mouse models [95]. Interestingly, high levels of lymphotoxin and IL-22BP were associated with a significantly improved survival rate in patients with CRC. Moreover, high levels of IL-22BP were associated with a less advanced tumor stage and less distant metastasis.

Cellular sources of IL-22

IL-22 derived from ILC3 [86] and T_{H22} [87,88] cells was found to be pathogenic in different mouse models of CRC. Additionally, another recent report assigned a pathogenic role to IL-17A and IL-22 double producing T_{H17} cells [89]. An increase of T_{H22} cells in tumor tissue and tumor-infiltrated lymph nodes was equally detected in humans [90]. In contrast, a different study reports a tumor-protective function of ILC3 and γδ T cell-derived IL-22 [48]. Thus, it seems likely that the multiple circuits that regulate IL-22 production and assure gut homeostasis have divergent effects when faced with threats such as cancer development.

Regulatory mechanisms of IL-22

The spatiotemporal regulation and induction of IL-22-producing cells are not only mediated by cytokines and dietary components, but they also occur through commensal bacteria in the digestive tract [91]. Similar to the regulation of IL-17A, IL-23 was shown to be capable of inducing IL-22 production of lamina propria-derived ILC3s in vitro. Moreover, it was recently reported that transforming growth factor (TGF)-β1, together with ligands of the aryl hydrocarbon receptor (AhR), can enhance pathogenic IL-22 production in T_{H17} cells but not T_{H22} cells, and thus, can promote carcinogenesis in colitis-associated CRC [89]. Ligands of the AhR can also be provided by the diet and subsequently induce production of IL-22 from ILC3 and γδ T cells [48]. Strikingly, in this setting, IL-22 has an antitumorigenic effect protecting intestinal stem cells from DNA damage-mediated apoptosis [48]. However, using a different murine model of CRC, another report described IL-22 and nitric oxide-mediated damage of DNA, which subsequently led to a decreased dysplasia of tumors in IL-22-depleted mice [92]. Finally, the last factor enhancing the production of IL-22 involves the microbiome. Administering fecal samples of patients suffering from CRC to mice led to an upregulation of different cytokines, such as IL-17A and IL-22. Consequently, their tumor burden was found to be increased in an AOM-only model [93].
Targets of IL-22
Mechanistically, IL-22 can protect both malignant epithelial cells and healthy epithelial stem cells from extracellular and intracellular threats, leading to both pro- [96] and antitumorigenic [48] effects. Furthermore, IL-22 signaling increased colonic cancer cell proliferation [97,98], partially by synergizing with mutated KRAS [99]. Additionally, IL-22 can induce an upregulation of nicotinamide N-methyltransferase and CEA gene expression in multiple cancer cell lines, promoting proliferation and migration in turn [100].

Taken together, more conclusive studies are needed to decipher the dual role of IL-22 during colonic carcinogenesis. Since most data suggest that IL-22 signaling on cancer cells mediates highly pro-tumorigenic effects, the pathogenic effect of IL-22 might rely on a high tumor burden and advanced tumor stage. In this case, direct inhibition of IL-22 or overexpression of IL-22BP [101] might be considered in advanced cases of CRC.

Breast cancer

Overview
Breast cancer is the most commonly diagnosed cancer entity of women and ranks second among women’s cancer-related deaths, only after lung cancer [102]. In the last decades, progress in breast cancer diagnosis and treatment has led to a decline in mortality by 40% since 1989 [102]. Nevertheless, there is still room for refinement of existing therapies and establishment of new ones. Breast cancer can be divided into subsets classified by the expression of the estrogen receptor, the progesterone receptor, and the human epidermal growth factor receptor 2 [103]. Indeed, if one of these receptors is expressed by breast cancer, targeted therapies might be of use. For example, these targeted therapies can deprive receptors of their ligand or can antagonize the receptor signaling itself [103]. This game-changing therapeutic concept has greatly improved the overall prognosis of these breast cancer entities during recent years. Conversely, breast cancers that do not express one of these three receptors, hence labeled as triple-negative breast cancer (TNBC), have a poor prognosis due to a lack of specific therapeutic options [104].

Overall impact of IL-17A

Positive regulation of IL-17A production in breast cancer occurs through diverse mechanisms, one of which is through direct signaling of TGF-β [113]. Of note, TGF-β signaling on breast cancer cells can exert antitumorigenic functions since it was shown that it could inhibit the secretion of chemokines attracting pro-tumorigenic immune cells [118]. Furthermore, an increasing amount of evidence has been provided addressing the regulation of IL-17A through levels of salt (sodium chloride) intake [119–122]. In a recent report, mice fed with a high-salt diet displayed an accelerated subcutaneous growth of breast cancer cells as well as higher levels of IL-17A-producing T effector cells [122]. In line with this, in vitro observations report a synergistic role of IL-17A and sodium chloride in enhancing breast cancer growth and cell-cycle release [119,120] and production of pro-angiogenic factors like VEGF [121]. However, antitumorigenic functions reviewed extensively [105]. Overall, the published data suggest a rather pro-tumorigenic influence of this cytokine by exerting multiple pro-tumorigenic actions (Fig. 2). Specifically, treatment of mice with recombinant IL-17A increases the tumor burden of previously implanted breast cancer cell lines [106], and IL-17A antibody treatment reduces the tumor size [107]. Likewise, IL-17A levels are increased in patients suffering from breast cancer compared with healthy controls [108], and infiltration of IL-17A-positive cells presents itself as a poor prognostic factor in humans [109–111].

Cellular sources of IL-17A
Detailed studies surprisingly found that T effector cell infiltration was likely to be associated with a more favorable prognosis [112], thus making pathogenic effects of other IL-17A-producing cells more likely. For example, one study reported an important role of IL-17A derived from cytotoxic T cells in an orthotopic mouse model of breast cancer [113]. Another study showed that macrophages were able to produce IL-17A in human breast cancer [114]. In line with these findings, a more recent report found pathogenic crosstalk between macrophages and cancer cells involving the activation of the IL-17A signaling pathway [115]. Although γδ T cells were shown to have an overall antitumorigenic role in breast cancer [116,117], not much is known about the effect of γδ T cell-derived IL-17A. Conclusively, a possible pathogenic source of IL-17A that might confirm the role of IL-17A as a poor prognostic factor has not yet been determined.

Regulatory mechanisms of IL-17A

Positive regulation of IL-17A production in breast cancer occurs through diverse mechanisms, one of which is through direct signaling of TGF-β [113]. Of note, TGF-β signaling on breast cancer cells can exert antitumorigenic functions since it was shown that it could inhibit the secretion of chemokines attracting pro-tumorigenic immune cells [118]. Furthermore, a growing amount of evidence has been provided addressing the regulation of IL-17A through levels of salt (sodium chloride) intake [119–122]. In a recent report, mice fed with a high-salt diet displayed an accelerated subcutaneous growth of breast cancer cells as well as higher levels of IL-17A-producing T effector cells [122]. In line with this, in vitro observations report a synergistic role of IL-17A and sodium chloride in enhancing breast cancer growth and cell-cycle release [119,120] and production of pro-angiogenic factors like VEGF [121]. However, antitumorigenic functions
of high-salt intake in breast cancer have been recently described as well [123], highlighting the need for further research in this particular area.

Targets of IL-17A

Downstream effects of IL-17A involve multiple mechanisms that have only been partially elucidated so far. An important mechanism is the induction of tumor-supporting angiogenesis [106,121]. Depending on the precise type of cancer cell, IL-17A may mediate the reduction of apoptosis [113] or production of neutrophil attracting chemokines [124]. This enhanced migration of neutrophils toward the tumor site is then capable of promoting breast cancer growth on its own [107].

Overall impact of IL-17F

Once again, the evidence for the involvement of IL-17F in breast cancer is rare. One study found a lower...
expression of IL-17F in the blood of TNBC patients compared with patients suffering from receptor-positive breast cancer [125]. Surprisingly, a second study reported upregulation of the T_H17 cell-associated cytokines IL-17A and IL-17F in TNBC [126]. This can be explained by peripheral IL-17F-producing cells specifically recruited to the tumor site of TNBC, therefore lowering their quantity in the blood and increasing them in the tumor. A first study suggested pro-tumorigenic effects of high-salt-diet-induced IL-17F production on cancer cells [122] in vitro. However, further in vivo studies are needed to validate this finding.

Overall impact of IL-22

The data collected from different studies on the effects of IL-22 in cancer strongly suggest a dual role of this T_H17 cell-associated cytokine. An early study suggested a direct tumor-protective role since in vivo treatment with recombinant IL-22 of mice with subcutaneously implanted breast cancer cells significantly reduced tumor growth [127]. Nonetheless, more recent studies have highlighted a pro-tumorigenic effect of IL-22 by analyzing IL-22-treated cancer cells in vitro [128–131] and using in vivo mouse models [132–134]. In humans, an increase of IL-22 in the serum of patients was described [129] and an elevated number of T_H22 cells in the tumor tissue of TNBC compared with noninfiltrated tissue [130].

Cellular sources and regulatory mechanisms of IL-22

The sources of IL-22 in breast cancer have not been extensively examined yet. One study suggested a pathogenic role of IL-22 derived from CD4-positive memory cells [132]. Furthermore, this report showed that an IL-22 induction was mainly mediated by in a murine model. In contrast, IL-1β production from immune cells induced by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 was described by the same study to induce IL-22 production in humans. A different study claimed that ILC3s were the predominant source of IL-22 in breast cancer, and its production was dependent upon IL-1β and IL-23 secretion, whereas IL-22 production was not upregulated in T cells [134].

Targets of IL-22

Similar to CRC, cancer cells themselves might present as an important target of IL-22 signaling. An antitumorigenic effect was reported in EMT6 cancer cells due to an increased cell-cycle arrest upon IL-22 stimulation in vitro [127]. However, using different cell lines, a rather pro-tumorigenic effect could be detected, reporting once more an increase in proliferation [128] and cell-cycle entry [129]. Another study described the capability of IL-22 in enhancing cell migration and paclitaxel resistance in a TNBC cell line stimulated in vitro [130]. In contrast, a different study reported that cells could upregulate their expression of the sphingosine-1-phosphate receptor 1 upon IL-22 challenge [131]. Conclusively, extensive data have been accumulated so far, describing a pro-tumorigenic effect of IL-22 on cancer cells. Precise molecular mechanisms might vary between cell lines, possibly explaining the antitumorigenic effects of IL-22 observed in the EMT6 cell line. Moreover, little is known about the effects of IL-22 on other cells during breast cancer that might contribute to mediating the strong pro-tumorigenic effects observed in different in vitro models. Furthermore, human data on the association of IL-22 levels and survival, tumor stage, and metastasis are limited, and further studies are needed to fill the gaps in our knowledge.

Lung cancer and lung metastasis

Overview

As mentioned above, lung cancer is the most common cancer-related cause of death in men and women in the United States [135]. It can be divided into two main entities, namely non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). SCLC accounts for 15–20% of lung cancer cases, whereas NSCLC is diagnosed in 80–85% of the cases [136,137]. NSCLC can be further split into squamous cell carcinoma, large cell carcinoma, and adenocarcinoma, with the latter entity being histologically diagnosed in 60% of patients suffering from NSCLC [136]. Unsurprisingly, a history of smoking is a causative factor linked to lung cancer in 90% of the cases [138] and dramatically increases relative risks of lung cancer subtypes [139]. However, other risk factors such as genetic predispositions, inhalation of nontobacco procarcinogens, or preexisting lung diseases should not be overlooked [138].

Lung metastasis describes a medical condition in which a tumor from a different primary site has spread to the lung. It is associated with a poor prognosis in nearly every cancer entity, explaining the need for further innovative therapies [140]. Even though tumor entities differ between lung cancer and lung metastasis, the target organ is the same, leading to a similar
tumor microenvironment. Thus, lung cancer and lung metastasis will be discussed in the same section to highlight similarities.

Overall impact of IL-17A in lung cancer

In recent years, overwhelming evidence has been collected regarding the pathogenic role of IL-17A in lung cancer, whereas the role of IL-17A in lung metastasis is more divergent (Fig. 3). Suspicions of pro-tumorigenic functions of IL-17A were fueled by an initial report in 2005 using human cells of NSCLC that were implanted into immunodeficient mice [141]. In the following years, murine models harboring KRAS mutations were used to define the role of IL-17A signaling further, corroborating the pro-tumorigenic effects in lung cancer [142,143]. Similarly, subcutaneous implantation of lung cancer cells in mice pretreated with recombinant IL-17A led to an equal observation [144]. Likewise, increased IL-17A-producing cells and elevated expression of IL-17A were found to be associated with decreased survival [145–148]. However, one murine study took advantage of a different genetic lung tumor model and surprisingly found a protective role of IL-17A during lung cancer development [149].

Thus, additional murine models are warranted to dissect possible pro- and antitumorigenic effects of IL-17A in lung cancer.

Cellular sources and regulatory mechanisms of IL-17A in lung cancer

Relevant sources of tumor-supporting IL-17A production are Th17 cells [142] and γδ T cells [150,151], in which the latter seems to be tightly regulated by the microbiome. Depletion of the microbiome by antibiotic treatment [150] or use of germ-free mice [151] greatly diminished lung cancer development, an effect that was shown to be associated with decreased IL-17A-producing γδ T cells in both reports. Mechanistically, a microbiome-stimulated secretion of IL-1β and IL-23 by myeloid cells was identified to be the trigger for enhanced IL-17A production [151].

A further regulatory mechanism in lung cancer might be related to the signaling of IL-7, a cytokine that can promote IL-17A production exclusively from γδ T cells [29]. An interesting study revealed a faster tumor growth of subcutaneously implanted lung carcinoma cells in older mice, an observation that was partially attributed to IL-7-mediated expansion of a specific subset of IL-17A-producing γδ T cells [152]. Since the administration of an antibody against IL-7 reduced the proliferation of this particular group of γδ T cells, inhibition of IL-7 qualifies for further extensive examination in other cancer models.

Targets of IL-17A in lung cancer

Further downstream mechanisms of IL-17A signaling involve at least three already well-established processes. Firstly, a direct effect of IL-17A on lung cancer cells supports epithelial–mesenchymal transition [153,154], an important step for cancer progression and subsequent metastasis development. Secondly, IL-17A can equally increase the production of VEGF by cancer cells themselves [155–157] and therefore lead to enhanced angiogenesis. Thirdly, IL-17A can recruit tumor-supporting myeloid cells [142] like neutrophils [143] to the lung, thus enhancing cancer development.

Overall impact of IL-17A in lung metastasis

Inconsistent with the role of IL-17A in lung cancer, multiple studies suggest a dual role of this cytokine in lung metastasis. On the one hand, some reports found a reduced development of lung metastasis of different murine and human lung cancer cell lines in Il17a-deficient mice [158,159] or a reduction of lung cancer metastasis by an antibody-mediated inhibition of IL-17A [160]. In the same fashion, treatment with an anti-IL-17A-antibody reduced metastatic burden in a sophisticated murine lung metastasis model [161]. On the other hand, a contrasting observation was made when melanoma cells were intravenously injected into the tail vein of Il17a-deficient mice [162], which generally leads to subsequent metastasis formation in the lung. Moreover, another well-known study claims that IL-17A mediates antimetastatic effects in lung metastasis [163], leading to increased lung metastasis of a colon carcinoma cell line in Il17a-deficient mice. Nonetheless, this observation remains highly controversial since other laboratories did not obtain similar results [164].

Cellular sources of IL-17A in lung metastasis

One possible explanation concerning these unclear metastatic functions of IL-17A might lay within this cytokine’s different sources. Indeed, multiple cells like Th17 cells, T cytotoxic 17 cell (Tc17 cells), and γδ T cells produce IL-17A in the lung. While IL-17A derived from γδ T cells was assigned a clear pathogenic role in two studies [159,161], IL-17A-secreting Tc17 cells were shown to possess a protective effect, although not through their
production of IL-17A [165]. When comparing these two subsets, IL-17A-producing T_{H}17 cells might mediate more divergent functions, being capable of both promoting [160] and inhibiting [162] lung metastasis.

Regulatory mechanisms of IL-17A in lung metastasis

As expected, induction of IL-17A production in γδ T cells occurs through the signaling of IL-1β [161].
follow-up study elaborated this cascade by the finding that tumor cells induce IL-1β production of macrophages via upregulation of the C-C motif chemokine ligand (CCL) 2. Subsequently, the blocking of CCL2 reduced IL-1β secretion and decreased the abundance of IL-17A-producing γδ T cells [166]. Surprisingly, IL-23 is dispensable for IL-17A induction in some lung metastasis models [161] and can even exert IL-17A independent pro-metastatic effects in lung metastasis [167].

Targets of IL-17A in lung metastasis

Moreover, the different effects of IL-17A might be explained by the multiple targets of this cytokine. These may further differ depending on the lung metastasis model used. Forced metastasis models, such as intravenous injections of cancer cells, are generally distinguished from spontaneous models, namely the subcutaneous or orthotopic implantation of cancer cells or tumor fragments. Different implantation sites and the bypassed step of extravasation in intravenous models may clarify why, on the one hand, IL-17A was shown to enhance cytotoxic antitumorigenic T-cell responses [162], while on the other hand, IL-17A was demonstrated to suppress cytotoxic T cells indirectly by recruiting immunosuppressive neutrophils via the production of G-CSF [161]. Furthermore, IL-17A can act directly on cancer cells in lung metastasis [160], leading to different outcomes depending on the cancer entity. Nevertheless, possible explanations for the observed dual role may exceed different sources and target cells of IL-17A and might also include the microbiota. In some studies, Il17a-deficient mice and wild-type mice were not cohoused [159,163], indicating that a possible protective effect of an altered microbiome in Il17a-deficient mice may be lost when cohousing mice. However, further studies are needed to address this issue before a conclusion can be drawn.

Overall impact of IL-17F in lung cancer and lung metastasis

In direct comparison with IL-17A, the role of IL-17F in lung cancer and metastasis had not been studied as well. One study discovered a higher expression of IL-17F in NSCLC with a negative correlation to tumor stage and lymph node metastasis, which hints toward a protective effect of this cytokine in lung cancer risk [168]. In line with this finding, a genetic polymorphism of IL-17F was shown to increase lung cancer [169]. Overall, a high expression of IL-17F was associated with a better prognosis [170], further highlighting the involvement of IL-17F in lung cancer. Contrastingly, a first mechanistic study suggested that IL-17F is capable of skewing macrophages toward a tumor-supporting M2-phenotype, which can promote angiogenesis, thus promoting cancer growth [171]. However, using a murine model with a lung-specific KRAS mutation, depletion of IL-17F did not impact the overall tumor burden [142]. Undoubtedly, further in vivo studies are required to explain the contradictory observations between humans and mouse models. Of note, the role of IL-17F in lung metastasis is currently unclear.

Overall impact of IL-22 in lung cancer and lung metastasis

In line with the mainly pro-tumorigenic aspects of IL-22 in other cancer entities, this cytokine follows a similar pattern in lung cancer. A genetic mouse model in which a specific KRAS mutation targets Clara cells revealed a pro-tumorigenic effect of IL-22 [172]. Equally to other cancer subsets, IL-22 expression in NSCLC patients was upregulated in pleural effusion [173] and plasma levels [173,174], with expression levels corresponding to the stage of NSCLC [175]. Another study reported that patients with higher levels of IL-22 in their bronchoalveolar lavage fluid have a decreased probability of survival [176]. However, whether IL-22 levels detected in bronchoalveolar lavage fluid are elevated or decreased in lung cancer patients currently remains unclear since different studies report conflicting observations [176,177]. Moreover, IL-22-expression in different lung tumor entities does not seem to correlate with patients’ overall survival [178].

In the KRAS-mutated mouse model, the sources of IL-22 were determined to consist of γδ T cells mainly and partially of CD4-positive cells [172]. Conversely, a study from human lung cancer tissue also demonstrated that ILC3 in the tumor could produce IL-22 upon activation [179]. The consecutive effects of IL-22 signaling have mainly been examined in cancer cells, where it was shown that in vitro stimulation of lung cancer cells can enhance proliferation [178], reduce apoptosis [173] and intensify migration, invasiveness [180], and stemness [172]. A more recent study confirmed that these IL-22-dependent consequences might even mediate resistance to gefitinib treatment [181], a tyrosine-kinase inhibitor used for targeted therapy in advanced stages of lung cancer. Further distinct studies investigating the role of IL-22 in lung metastasis are warranted, as little is known on this particular aspect.
Hepatocellular carcinoma and liver metastasis

Overview

Hepatocellular carcinoma (HCC) is the most common liver-derived tumor and nearly always arises from a cirrhotic liver. Liver cirrhosis defines a pathological condition consisting of chronic inflammation and fibrotic tissue remodeling. While early therapeutic regimes include surgical removal and liver transplantation or ablative procedures, more advanced tumors can only be treated palliatively [182]. Despite the rather new clinical use of multikinase-inhibitors, the overall prognosis of HCC remains poor [183].

Liver metastasis describes the last stage of cancer, in which tumors of several entities have spread to the organ. Since the venous system of the digestive tract converges to the portal vein, which diverges into the liver, metastases of gastrointestinal malignancies are among the most common in the liver [184,185]. CRC-derived liver metastases are the primary type due to their high prevalence compared with other malignant entities. Unsurprisingly, the prognosis of liver metastasis is poor independently of the primary tumor [186].

Overall impact of IL-17A in HCC

The role of IL-17A in HCC has been assessed in multiple studies in the past years (Fig. 4). Different reports have suggested a pro-tumorigenic role of IL-17A in murine models of HCC since Il17a-deficient mice display a decreased tumor burden [187], and inhibition of IL-17A prevents tumor development in another model [188]. In humans, increased pretherapeutic levels of IL-17A-producing cells or elevated levels of IL-17A in serum are associated with a worse prognosis [189–191]. Additionally, higher expression of IL-17A indicates an increased chance of an early recurrence of a curatively treated HCC [192].

Cellular sources of IL-17A in HCC

Multiple cellular sources have been reported to contribute to IL-17A production in murine models of HCC. Among them are not only Th17 cells in a model of nonalcoholic steatohepatitis [188] and γδ T cells in a model of intrahepatic injection of HCC cells [187], but also ILC3s [193]. Additionally, Tc17 cells were described to produce IL-17A in humans [194]. Considering the different causes of and mechanisms for liver cirrhosis, a common foundation for HCC, further studies using different mouse models are required to elucidate the contributions of different cellular sources of IL-17A.

Regulatory mechanisms of IL-17A in HCC

As it was also demonstrated for other cancer entities, IL-23 mediates the upregulation of IL-17A in HCC in different murine models [193]. Furthermore, a compelling study suggested a direct impact of the microbiome on controlling Th17 cells in the context of HCC development [195]. Mice were fed ad libitum with probiotics starting either 1 week before or on the day of tumor induction. Indeed, this treatment decreased the growth of subcutaneously implanted HCC cells during both feeding intervals with probiotics. However, antibody-mediated blocking of IL-17A inhibited tumor growth even more. This suggests the influence of further factors than just the microbiome controlling IL-17A production during carcinogenesis in the liver. Conversely, the microbiota can facilitate HCC growth and enhance liver metastasis due to mechanisms independent of IL-17A signaling [196].

Targets of IL-17A in HCC

Similar to other entities, target cells of IL-17A comprise cancer cells, in which IL-17A signaling leads to increased invasion [197], proliferation [198], and reduced apoptosis [199]. Another mechanism includes the attraction of neutrophils, which in turn exert pro-tumorigenic effects by inducing angiogenesis [200]. Likewise, it was shown that IL-17A expression in the tissue of HCC correlates with a specific marker for activation of monocytes [201], which subsequently could dampen a cytotoxic immune response of T cells in vitro. These observations deliver some further insights into IL-17A-induced circuits of pro-tumorigenic immunosuppression, which might also be transferable to other tumor entities.

Overall impact of IL-17A in liver metastasis

Notably, the implications of IL-17A production in liver metastasis have been examined less extensively than in lung metastasis. First observations in the murine liver point toward a rather pro-metastatic effect of IL-17A compared with this cytokine’s divergent effects in murine models of lung metastasis (Table 1). One study observed a reduction of liver metastasis of intrahepatically injected CRC cells upon the administration of
IL-17A blocking antibody [202]. In line with these results, another report detected a reduction of liver metastatic burden in IL-17A-deficient mice previously injected intrasplenically with cancer cells [203]. In addition, a high ratio of T_{reg} to T_{H17} cells in the CRC tumor tissue of patients was reported to be associated with a lower likelihood of metastasis generation 2 years after primary resection [204]. In line with this finding, it was equally reported that a higher expression of IL-17A in the primary tumor of CRC patients correlates with a higher prevalence of metastasis [205], further outlining a potentially pathological role of IL-17A during the development of liver metastasis. Mechanistically, some studies suggest a pro-metastatic effect of IL-17A on metastasized cancer cells promoting angiogenesis [202], as well as a suppressive effect on antitumor natural killer (NK) cells [203]. Furthermore, the microbiome’s importance in mediating the growth of liver metastasis by inducing IL-17A production was recently highlighted in a compelling study [206]. However, further insights regarding sources, regulatory mechanisms, and targets remain limited and highlight the necessity for further research.
Overall impact of IL-17F in HCC and liver metastasis

In consonance with the restricted knowledge of IL-17A in liver metastasis, the involvement of IL-17F in liver pathologies is even more unexplored. A study reported an enhanced detection of IL-17F in HCC samples compared with adjacent healthy tissue [207]. In contrast, an older report suggested an antitumorigenic effect of IL-17F due to a decreased subcutaneous tumor growth of HCC cells transfected with IL-17F retroviral vectors [208]. Last but not least, one study implicated an equally pathogenic role of IL-17F compared with IL-17A in a murine model of nonalcoholic fatty liver disease [209], a disease which may precede HCC. However, how this finding may translate to carcinogenesis in the liver is currently unclear since mechanistic studies regarding the role of IL-17F in HCC and liver metastasis are missing.

Overall impact of IL-22 in HCC and liver metastasis

On the contrary, the contribution of IL-22 in supporting HCC has been studied more extensively. In 2011, the chemical induction of HCC in an IL-22 overexpressing mouse strain revealed a higher susceptibility for HCC when exposed to higher IL-22 levels [210]. Correspondingly, it was demonstrated in the same year that IL-22-deficient mice were protected from HCC development [211], thus delivering the first proof of a HCC-promoting effect of IL-22. Since then, much incriminating evidence has been collected. In patients, IL-22-secreting cells are enriched in HCC tissue, and a high number of IL-22-producing cells in the tumor are associated with reduced disease-free survival [212]. Likewise, high serum levels of IL-22 can equally be correlated to a poor prognosis in HCC [213]. Surprisingly, in a patient cohort that underwent transarterial chemoembolization, IL-22 detection in the peripheral blood was associated with an increased probability of survival [214]. This underlines a possible protective role of IL-22, for example, by mediating repair of healthy liver tissue, depending on the progression of HCC.

Table 1. Overall impact of type 3 cytokines in lung and liver metastasis in human and mouse models. Summarized roles of the corresponding cytokines according to current literature.

Entity	Cytokine	Human	Mouse models
Lung metastasis	IL-17A	Unknown effects	Strong pro-tumorigenic effects [158–161,164,166] Possible antitumorigenic effects [162,163,165]
	IL-17F	Unknown effects	Unknown effects
	IL-22	Unknown effects	Unknown effects
Liver metastasis	IL-17A	Potential pro-metastatic effects [204,205]	Unknown effects
	IL-17F	Unknown effects	Unknown effects
	IL-22	Unknown effects	Unknown effects

Other malignancies

An overwhelming number of studies have been conducted investigating the roles of T\textsubscript{H}17 cells and their associated cytokines in other malignant entities. In many malignancies, only a few studies have addressed type 3 cytokines and their producing cells, making it very difficult to draw a preliminary conclusion on their overall effect in that entity. For instance, a recent report described a reduced IL-22 expression in the tissue of esophageal cancer patients. However, it did not answer its functional role in that type of cancer [218]. Contrarily, the pathogenicity of IL-17A and IL-22 in
pancreatic cancer is well described. IL-17A can promote pancreatic neoplasia in a genetic murine model [219], partially by inducing stem cell characteristics leading to an increased proliferation [220]. IL-22 might serve again as a valid prognostic marker since the high intratumoral expression of this cytokine [221] and increased TH22 cells [222] are associated with a poor prognosis. Moreover, multiple in vitro studies suggest a direct effect of IL-22 on pancreatic cancer cells [223,224]. In contrast, a recent compelling study was able to verify the proposed pathogenic role of IL-22 in a mouse model [225].

Likewise, a pathogenic role for IL-22 in gastric cancer has been suggested multiple times. While the impact of IL-17A on gastric cancer has not been fully addressed [226], two studies suggest a reverse correlation between the amount of circulating and intratumoral IL-22-producing cells and the patient’s survival. Moreover, several studies suggest a direct pro-tumorigenic influence of IL-22 on gastric cancer cells [229,230]. A further mechanistic study recently revealed that IL-22 deficiency did not lead to an ameliorated disease outcome in a genetic murine model of gastric cancer [231], thus hinting toward a more divergent role of IL-22 in this entity.

Unresolved questions

Naturally, many aspects concerning TH17 cells and their associated cytokines in cancer and metastasis require further attention. Much is yet to be investigated, and studies addressing the following queries in this field may provide new game-changing insights.

Firstly, functional distinctions between cell subsets and signature cytokines are needed. While the pathological function of a cell subset is often ascribed to its signature cytokine, this assumption might not always be correct. For example, a study revealed antitumorigenic functions of Th17 cells, which were surprisingly not mediated by IL-17A [165]. Thus, a more detailed characterization of these distinct subsets is required, especially to determine whether ‘upstream-inhibition’ of subset-shaping factors like IL-1β and IL-23 or ‘downstream-inhibition’ of subset-secreted cytokines like IL-17A, IL-17F, or IL-22 turns out to be more beneficial to treat cancer and metastasis.

Secondly, a possible IL-17A/IL-17F heterodimer formation mediating distinct effects should be taken into consideration. It is well accepted that IL-17A and IL-17F can form heterodimers in mice [8] and humans [9]. Nonetheless, the IL-17A/IL-17F heterodimer’s specific role in comparison with their homodimers has only been addressed marginally so far. This may be partially attributed to the fact that specific mouse lines impairing this heterodimer’s specific formation are currently lacking. Thus, it proves highly difficult to specifically examine the impact of the heterodimer on cancer and metastasis.

Thirdly, the downstream effects and target cells of IL-17A, IL-17F, and IL-22 need to be further elucidated. Many studies currently suggest a pro-tumorigenic role of IL-17A and IL-22 due to direct signaling on the tumor cells. Especially with regard to IL-22, it becomes apparent that mechanisms proving beneficial for cancer cells also exert comparable effects on healthy tissue, thus simultaneously providing an antitumorigenic component. Accordingly, a pathogenic function of different cytokines might rely on a later tumor stage, in which the pathological effects outweigh the physiological, protective ones. Conclusively, a closer look at different targets apart from the tumor cells might reveal new intriguing insights with subsequent therapeutic consequences. In line with this, another key aspect explaining divergent functions might lay within the coproduction of different cytokines from the same source. For example, IL-22 might exert different functions in the presence of IL-17A than it does in its absence, as a recent study indeed suggests [89].

Moreover, concise information regarding the spatiotemporal dynamics of type 3 cytokines in cancer and their producers are still rare. On the one hand, a high abundance of infiltrating TH17 cells could be detected in many malignant entities, whereas healthy tissues of these organs only displayed a few of them. Thus, it is often assumed that TH17 cells are recruited to the malignant site in these entities [232]. However, neither the stages of cancer development in which this recruitment predominantly occurs nor the axis which might be involved is clear. On the other hand, in tissues with a higher abundance of TH17 cells, different mechanisms during the early stages of tumor development might be crucial. For instance, a rapid response shaped by the production of type-3 cytokines by tissue-resident cells might be plausible. Since the generation of tissue-resident TH17 cells can be induced by resolved infections in that specific organ [233,234], it would be highly interesting to determine the effect of previous infections on type-3 cytokines, cancer, and metastasis. Luckily, there are now numerous state-of-the-art methods such as in vivo imaging to explore these questions in the next years.

Additionally, in the age of emerging immunotherapies, it will be of utter importance to better understand the prognostic role of TH17 cells and their cytokines for different therapeutic regimens. In the nearer future, it will be crucial to identify patients for the use of
specific immunotherapy. Whether the amount of infiltrating T17 cells and the expression of their signature cytokines could guide therapies in patients is currently unknown.

Ultimately, more research should be directed toward unraveling the plasticity of T cells as a possible explanation for the dichotomous effects of type 3 cytokine-producing cells. Since it is well known that T17 cells can indeed transform into other T-cell subsets during infections [36], the same mechanism can be easily imagined for cancer of different entities. The several stages of transdifferentiated cells might exert dichotomous functions due to the coproduction of different cytokines, leading to distinct effects regarding tumor growth and metastatic seeding. Although a first study does indeed hint toward plasticity in T cells during cancer development [77], more studies are needed to confirm this interesting finding.

Outlook

Taken together, mounting evidence has been presented regarding the pro-tumorigenic functions of T17 cell-derived cytokines in a lot of primary malignancies affecting mice and humans (Table 2). Consequently, therapeutic approaches may include direct inhibition of IL-17A, IL-17F, or IL-22 and a blockade of the upstream cytokines IL-23 or IL-1β. Luckily, many of these blocking antibodies have been successfully tested and are already approved for several inflammatory diseases. Namely, secukinumab (targeting IL-17A), bimekizumab (targeting IL-17A and IL-17F simultaneously, not yet approved), guselkumab (targeting IL-23), and ustekinumab (targeting IL-12 and IL-23) are currently used, among others, to treat psoriasis [235]. Likewise, Anakinra (targeting IL-1 receptor) is approved for treating rheumatoid arthritis [236], and an antibody directed against IL-22, named fezakinumab, is currently being tested in phase II trials with patients suffering from psoriasis [237].

A further therapeutic approach might lie within the inhibition of regulatory factors of type 3 cytokine production, such as targeting the transcription factor RORγt. One of the first synthetic inverse agonists of RORγt was developed in 2011 and named SR1001 [238]. This study showed that SR1001 was indeed not only able to reduce T17 development and IL-17A secretion, but also led to reduced severity of experimental autoimmune encephalomyelitis when administered intraperitoneally. Another study equally reported decreased IL-17A when cells were treated with another synthesized RORγt antagonist, termed SR2211 [239]. Also, preexisting substances such as the antiarrhythmic agent digoxin were identified as potent RORγt antagonists [240].

With passing time, more and more substances targeting RORγt emerged [241], indicating a great interest regarding their clinical use [242]. Since these expectations are partially based on the overwhelming success of IL-17A antibodies in the psoriasis treatment, major attention will be drawn toward the performance of RORγt antagonists in their actions against certain diseases. In that regard, the first results from mouse and human studies addressing RORγt antagonist treatment in psoriasis could indeed corroborate a positive effect [243–246]. Moreover, interest in treating other autoimmune diseases such as arthritis [247–249] and inflammatory bowel disease [250–252] with RORγt antagonist have begun to emerge as well.

Unfortunately, studies investigating RORγt antagonists in cancer and metastasis remain scarce. Comparable to the treatment of autoimmune diseases, these inhibitors could complement or even replace an immunotherapeutic regime with checkpoint inhibitors or antibodies directed against cytokines. Advantages of RORγt antagonists may start with the possibility of an oral administration compared with the intravenous or subcutaneous injections of most other immunotherapeutic drugs. Moreover, it is thinkable that side effects may be less severe. As small molecule inhibitors, orally administered RORγt antagonists may lead to fewer allergenic reactions than current immunotherapeutic agents. Furthermore, the sheer number of existing agents would allow physicians to switch between dozens of substances in case of drug-related complications. Definitely, further studies addressing these questions are needed.

A final advantage might lie within the fact that RORγt antagonists may target the production of different pathogenic cytokines simultaneously. This might lead to the parallel inhibition of IL-17A and IL-22, which would provide an additional benefit for the treated patient. However, enthusiasm for long-term use of RORγt antagonists might be dampened because RORγt deficiency in mice and RORγt antagonist treatment in rats leads to lymphoma development [253–255].

Another therapeutic option might include the artificial overexpression of physiological regulators of cytokines, for instance, IL-22BP [101]. Ultimately, expression levels of type 3 cytokines were shown to correlate with a poor prognosis in multiple cancer entities, so that a sound evaluation for the use of these cytokines as biomarkers should be conducted. However, despite the need for new, innovative
therapeutic regimes, physiological and sometimes antitumorigenic functions of these cytokines should not be overlooked. Moreover, one should bear in mind that many functions of IL-17A, IL-17F, and IL-22 remain elusive in this field. Hindsight has shown us that scientists might be well advised to show respect for the pathogenic functions of TH17 cells and their associated cytokines in cancer and metastasis. Whether this is reason enough to let one’s fears run wild, culminating eventually into heptadecaphobia, remains questionable.

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft (grant SFB841 to SH), the European Research Council (CoG 865466 to SH), European Respiratory Society/short-term fellowship (to ADG), Else Kröner Memorial Stipendium (to ADG), Werner Otto Stiftung (to ADG), Erich und Gertrud Roggenbuck Stiftung (to ADG) and Hamburger Krebsgesellschaft Stiftung (to ADG). SH has an endowed Heisenberg-Professorship awarded by the Deutsche Forschungsgemeinschaft. The authors thank Franziska Bertram, Elaine Hussey, Morsal Sabihi, and Dimitra E. Zazara for carefully proofreading the manuscript. Figures were created with BioRender.com.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

JL conceptualized and wrote the manuscript and designed the figures. AMS, TZ, JK, ADG, and SH provided critical scientific advice and reviewed the manuscript.

References

1. Rouvier E, Luciani MF, Mattei MG, Denizot F & Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150, 5445–5456.
2. Li H, Chen J, Huang A, Stinson J, Heldens S, Foster J, Dowd P, Gurney AL & Wood WI (2000) Cloning
and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. *Proc Natl Acad Sci USA* **97**, 773–778.

3. Starrnes T, Broxmeyer HE, Robertson MJ & Hromas R (2002) Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. *J Immunol* **169**, 642–646.

4. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin RL, Wood WI et al. (2001) IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. *J Biol Chem* **276**, 1660–1664.

5. Starrnes T, Robertson MJ, Sledge G, Kelich S, Nakshatri H, Broxmeyer HE & Hromas R (2001) Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. *J Immunol* **167**, 4137–4140.

6. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. *Nat Rev Immunol* **9**, 556–567.

7. Hymowitz SG, Filvaroff EH, Yin JP, Lee J, Cai L, Risser P, Maruoka M, Mao W, Foster J, Kelley RF et al. (2001) IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. *EMBO J* **20**, 5332–5341.

8. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CM, Wright JF et al. (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. *J Immunol* **179**, 7791–7799.

9. Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF, Qiu Y, Whitters MJ, Tomkinson KN, Dunussi-Joannopoulos K et al. (2007) Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. *J Biol Chem* **282**, 13447–13455.

10. Fossiez F, Djoussou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S et al. (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. *J Exp Med* **183**, 2593–2603.

11. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K et al. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. *Immunity* **13**, 715–725.

12. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. *Nature* **421**, 744–748.

13. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM & Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. *Nat Immunol* **6**, 1123–1132.

14. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ & Littman DR (2006) The orphan nuclear receptor ROGammad directs the differentiation program of proinflammatory IL-17+ T helper cells. *Cell* **126**, 1121–1133.

15. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M & Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. *J Exp Med* **203**, 2271–2279.

16. Dumontier L, Louahed J & Renaud JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. *J Immunol* **164**, 1814–1819.

17. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD & Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. *J Biol Chem* **275**, 31335–31339.

18. Annunziato F, Romagnani C & Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. *J Allergy Clin Immunol* **135**, 626–635.

19. Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutti TM, McKinstry KK, Cooper AM, Swain SL & Dutton RW (2009) Tc17, a unique subset of CD8+ T cells that can protect against lethal influenza challenge. *J Immunol* **182**, 3469–3481.

20. Jie Z, Liang Y, Hou L, Dong C, Iwakura Y, Soong L, Cong Y & Sun J (2014) Intrahepatic innate lymphoid cells secrete IL-17A and IL-17F that are crucial for T cell priming in viral infection. *J Immunol* **192**, 3289–3300.

21. Victor AR, Nalin AP, Dong W, McClory S, Wei M, Mao C, Kladney RD, Youssef Y, Chan WK, Briercheck EL et al. (2017) IL-18 Drives ILC3 proliferation and promotes IL-22 production via NF-kappaB. *J Immunol* **199**, 2333–2342.

22. Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmiil R, Lugner D, Nussenblatt RB & Caspi RR (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. *J Immunol* **180**, 5167–5171.

23. Paget C, Ivanov S, Fontaine J, Renneson J, Blanc F, Pichavant M, Dumontier L, Ryffel B, Renaud JC, Gosset P et al. (2012) Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. *J Biol Chem* **287**, 8816–8829.

24. Steinbach S, Vordermeier HM & Jones GJ (2016) CD4+ and gammadelta T Cells are the main producers.
of IL-22 and IL-17A in lymphocytes from Mycobacterium bovis-infected Cattle. Sci Rep 6, 29990.

25 Marchitto MC, Dillen CA, Liu H, Miller RJ, Archer NK, Ortese RV, Alphonse MP, Marusina AI, Merleev AA, Wang Y et al. (2019) Clonal Vgamma6 (+) Vdelta4 (+) T cells promote IL-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci USA 116, 10917–10926.

26 Duhen T, Geiger R, Jarrossay D, Lanzavecchia A & Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10, 857–863.

27 Sutton CE, Sweeney CM, Brereton CF, Michel ML, Pang DJ, Haque SF, Potocnik AJ, Monteiro M, Almeida CF, Agua-Doce A & Graca L, Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Duhen T, Geiger R, Jarrossay D, Lanzavecchia A & Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10, 857–863.

28 Monteiro M, Almeida CF, Agua-Doce A & Graca L (2013) Induced IL-17-producing invariant NKT cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225.

29 Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP & Pestka S (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166, 7096–7103.

30 Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JJ & Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821.

31 Pauci J, Geiger R, Jarrossay D, Lanzavecchia A & Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10, 857–863.

32 Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R & Prinz I (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10, 857–863.
inflammasome and modulates tumorigenesis in the intestine. *Nature* **491**, 259–263.

48 Gronke K, Hernandez PP, Zimmermann J, Klose CSN, Kofoid-Branzk M, Guendel F, Witkowski M, Tizian C, Amann L, Schumacher F et al. (2019) Interleukin-22 protects intestinal stem cells against genotoxic stress. *Nature* **566**, 249–253.

49 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA & Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin** **68**, 394–424.

50 Budczies J, von Winterfeld M, Klauschken F, Boekmayr M, Lennertz JK, Denkert C, Wolf T, Warth A, Dietel M, Anagnostopoulou I et al. (2015) The landscape of metastatic progression patterns across major human cancers. *Oncotarget* **6**, 570–583.

51 Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Buttery LF, Anderson JC, Cernek A, Smith RA & Jemal A (2020) Colorectal cancer statistics, 2020. *CA Cancer J Clin** **70**, 145–164.

52 Dekker E, Tanis PJ, Vleugels JLA, Kasi PM & Wallace MB (2019) Colorectal cancer. *Lancet* **394**, 1467–1480.

53 Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. *Nature* **487**, 330–337.

54 Ernst M & Putoczki T (2014) IL-17 cuts to the chase in colon cancer. *Immunity* **41**, 880–882.

55 Brockmann L, Giannou AD, Gagliani N & Huber S (2017) Regulation of TH17 cells and associated cytokines in wound healing, tissue regeneration, and carcinogenesis. *Int J Mol Sci** **18**, 1033.

56 Kempski J, Brockmann L, Gagliani N & Huber S (2017) TH17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis. *Front Immunol** **8**, 1373.

57 Hurtado CG, Wan F, Housseau F & Sears CL (2018) Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. *Gastroenterology* **155**, 1706–1715.

58 Razi S, Baradaran Noveiry B, Keshavarz-Fathi M & Rezaei N (2019) IL-17 and colorectal cancer: from carcinogenesis to treatment. *Cytokine* **116**, 7–12.

59 Chae WJ, Gibson TF, Zelterman D, Hao L, Henegarriu O & Bothwell AL (2010) Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. *Proc Natl Acad Sci USA* **107**, 5540–5544.

60 Hyun YS, Han DS, Lee AR, Eun CS, Yoon J & Kim HY (2012) Role of IL-17A in the development of colitis-associated cancer. *Carcinogenesis* **33**, 931–936.

61 Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, Zhang W, Zhong Z, Sanchez-Lopez E, Wu LW et al. (2014) Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. *Immunity* **41**, 1052–1063.

62 Radosavljevic G, Ljubic B, Jovanovic I, Srzentic Z, Pavlovic S, Zdravkovic N, Milovanovic M, Bankovic D, Knezevic M, Acimovic LJ et al. (2010) Interleukin-17 may be a valuable serum tumor marker in patients with colorectal carcinoma. *Neoplasma* **57**, 135–144.

63 Cui G, Yuan A, Goll R & Florholmen J (2012) IL-17A in the tumor microenvironment of the human colorectal adenoma-carcinoma sequence. *Scand J Gastroenterol** **47**, 1304–1312.

64 Lin Y, Xu J, Su H, Zhong W, Yuan Y, Yu Z, Fang Y, Zhou H, Li C & Huang K (2015) Interleukin-17 is a favorable prognostic marker for colorectal cancer. *Clin Transl Oncol** **17**, 50–56.

65 Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z & Zhu B (2011) IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. *Biochem Biophys Res Commun** **407**, 348–354.

66 Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, Smith KN, Tam A, Ganguly S, Wanyiri JW et al. (2016) Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. *Cancer Res** **76**, 2115–2124.

67 Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W et al. (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. *Immunity* **40**, 785–800.

68 Amicarella F, Muraro MG, Hirt C, Cremonesi E, Padovan E, Mele V, Governa V, Han J, Huber X, Droeser RA et al. (2017) Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. *Gut* **66**, 692–704.

69 Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T & Yang P (2011) Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. *J Leukoc Biol** **89**, 85–91.

70 Ma C & Dong X (2011) Colorectal cancer-derived Foxp3+(+)/IL-17(+) T cells suppress tumour-specific CD8+ T cells. *Scand J Immunol** **74**, 47–51.

71 Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE et al. (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. *Nature* **491**, 254–258.

72 Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D & Yu H (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. *Cancer Cell** **15**, 114–123.
T\textsubscript{H}17-related cytokines in cancer and metastasis

73 Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskyi IP, Khaitov MR et al. (2019) Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. *Immunity* 50, 166–180.e7.

74 Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F et al. (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. *Nat Med* 15, 1016–1022.

75 Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, Sears CL, Pardoll DM & Housseau F (2015) Regulatory T-cell response to enterotoxigenic *Bacteroides fragilis* colonization triggers IL17-dependent colon carcinogenesis. *Cancer Discov* 5, 1098–1109.

76 Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM et al. (2012) Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. *Sci Transl Med* 4, 164ra159.

77 Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL & Obermajer N (2017) Suppressive IL-17A(+)Foxp3(+) and ex-Th17 IL-17A(neg)Foxp3(+) Tregs are a source of tumour-associated Treg cells. *Nat Commun* 8, 14649.

78 Chin CC, Chen CN, Kuo HC, Shi CS, Hsieh MC, Kuo YH, Tung SY, Lee KF & Huang WS (2015) Interleukin-17 induces CC chemokine receptor 6 expression and cell migration in colorectal cancer cells. *J Cell Physiol* 230, 1430–1437.

79 Do Thi VA, Park SM, Lee H & Kim YS (2016) The membrane-bound form of IL-17A promotes the growth and tumorigenicity of colon cancer cells. *Mol Cells* 39, 536–542.

80 Wu Y, Konate MM, Lu J, Makhlof H, Chuaqui R, Antony S, Meitzler JL, Dillipantonio MJ, Liu H, Juhasz A et al. (2019) IL-4 and IL-17A cooperatively promote hydrogen peroxide production, oxidative DNA damage, and upregulation of dual oxidase 2 in human colon and pancreatic cancer cells. *J Immunol* 203, 2523–2544.

81 Sui G, Qi Y, Yu H, Kong Q & Zhen B (2019) Interleukin-17 promotes the development of cisplatin resistance in colorectal cancer. *Oncol Lett* 17, 944–950.

82 Omran I, Baroudi O, Bougatif K, Mezlini A, Abidi A, Medimegh I, Stambouli N, Ayari H, Kourda N, Uhrhammer N et al. (2014) Significant association between IL23R and IL17F polymorphisms and clinical features of colorectal cancer. *Immunol Lett* 158, 189–194.

83 Omran I, Medimegh I, Baroudi O, Ayari H, Bedhiabia W, Stambouli N, Ferchichi M, Kourda N, Bignon YJ, Uhrhammer N et al. (2015) Involvement of IL17A, IL17F and IL23R polymorphisms in colorectal cancer therapy. *PLoS One* 10, e0128911.

84 Tong Z, Yang XO, Yan H, Liu W, Niu X, Shi Y, Fang W, Xiong B, Wan Y & Dong C (2012) A protective role by interleukin-17F in colon tumorigenesis. *PLoS One* 7, e34959.

85 Chen Y, Yang Z, Wu D, Min Z & Quan Y (2019) Upregulation of interleukin 17F in colorectal cancer promotes tumor invasion by inducing epithelialmesenchymal transition. *Oncol Rep* 42, 1141–1148.

86 Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O & Powrie F (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. *J Exp Med* 210, 917–931.

87 Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, Vatan L, Szeliga W, Dou Y, Owens S et al. (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. *Immunity* 40, 772–784.

88 Huang YH, Cao YF, Jiang ZY, Zhang S & Gao F (2015) Th22 cell accumulation is associated with colorectal cancer development. *World J Gastroenterol* 21, 4216–4224.

89 Perez LG, Kempski J, McGee HM, Pelcarz P, Agalioti T, Giannoni A, Konczalla L, Brockmann L, Wahib R, Xu H et al. (2020) TGF-beta signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. *Nat Commun* 11, 2608.

90 Doulabi H, Rastin M, Shabahangh H, Maddah G, Abdollahi A, Nosratabadi R, Esmaeili SA & Mahmoudi M (2018) Analysis of Th22, Th17 and CD4(+) cells co-producing IL-17/IL-22 at different stages of human colon cancer. *Biomed Pharmacother* 103, 1101–1106.

91 Sabihi M, Bottcher M, Pelcarz P & Huber S (2020) Microbiota-dependent effects of IL-22. *Cells* 9, 2205.

92 Wang C, Gong G, Sheh A, Muthupalani S, Bryant NAP, Bakthavatchalu V et al. (2017) Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer. *Mucosal Immunol* 10, 1504–1517.

93 Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK et al. (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. *Gastroenterology* 153, 1621–1633.e6.

94 Jones BC, Logsdon NJ & Walter MR (2008) Structure of IL-22 bound to its high-affinity IL-22R1 chain. *Structure* 16, 1333–1344.
TH17-related cytokines in cancer and metastasis

100 Rudloff I, Jarde T, Bachmann M, Elgass KD, Kerr G, Zhang R, Men K, Zhang X, Huang R, Tian Y, Zhou Harbeck N & Gnant M (2017) Breast cancer.

102 DeSantis CE, Ma J, Gaudet MM, Newman LA, Du JW, Xu KY, Fang LY & Qi XL (2012) Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep 6, 1099–1102.
117 Janssen A, Villacorta Hidalgo J, Beringer DX, van Dooremalen S, Fernando F, van Diest E, Terriz AR, Bronspt B, Kock S, Schmitt-Graff A et al. (2020) Gammadelta T-cell receptors derived from breast cancer-infiltrating T lymphocytes mediate antitumor reactivity. *Cancer Immunol Res* 8, 530–543.

118 Novitsky SV, Pickup MW, Gorska AE, Owens P, Chytíl A, Aakre M, Wu H, Shyr Y & Moses HL (2011) TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. *Cancer Discov* 1, 430–441.

119 Amara S, Ivy MT, Myles EL & Tiriveedhi V (2016) Sodium channel gammaENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. *Cell Immunol* 302, 1–10.

120 Amara S, Majors C, Roy B, Hill S, Rose KL, Myles EL & Tiriveedhi V (2017) Critical role of SIK3 in mediating high salt and IL-17 synergy leading to breast cancer cell proliferation. *PLoS One* 12, e0180097.

121 Amara S, Alotaibi D & Tiriveedhi V (2016) NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. *Oncol Lett* 12, 933–943.

122 Chen J, Liu X, Huang H, Zhang F, Lu Y & Hu H (2020) High salt diet may promote progression of breast tumor through eliciting immune response. *Int Immunopharmacol* 87, 106816.

123 He W, Xu J, Mu R, Li Q, Lv DL, Huang Z, Zhang J, Wang C & Dong L (2020) High-salt diet inhibits tumour growth in mice via regulating myeloid-derived suppressor cell differentiation. *Nat Commun* 11, 1732.

124 Wu L, Awaji M, Saxena S, Varney ML, Sharma B & Singh RK (2020) IL-17-CXC chemokine receptor 2 axis facilitates breast cancer progression by up-regulating neutrophil recruitment. *Am J Pathol* 190, 222–233.

125 Tudoran O, Virtic O, Balacescu L, Lisencu C, Fetica B, Gherman C, Balacescu O & Berindan-Neagoe I (2015) Baseline blood immunological profiling differentiates between Her2-breast cancer molecular subtypes: implications for immunomediated mechanisms of treatment response. *Oncotargets Ther* 8, 3415–3423.

126 Fauchex L, Grandclaudon M, Perrot-Dockes M, Sirven P, Berger F, Hamy AS, Fourchotte V, Vincent-Salomon A, Mechta-Grigoriou F, Reyal F et al. (2019) A multivariate Th17 metagene for prognostic stratification in T cell non-inflamed triple negative breast cancer. *Oncoimmunology* 8, e1624130.

127 Weber GF, Gaertner FC, Erl W, Janssen KP, Blechert B, Holzmann B, Weighardt H &essler M (2006) IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. *J Immunol* 177, 8266–8272.

128 Kim K, Kim G, Kim JY, Yun HJ, Lim SC & Choi HS (2014) Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. *Carcinogenesis* 35, 1352–1361.

129 Rui J, Chunming Z, Binbin G, Na S, Shengxi W & Wei S (2017) IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. *Oncotarget* 8, 103601–103612.

130 Wang S, Yao Y, Yao M, Fu P & Wang W (2018) Interleukin-22 promotes triple negative breast cancer cells migration and paclitaxel resistance through JAK-STAT3/MAPKs/AKT signaling pathways. *Biochem Biophys Res Commun* 503, 1605–1609.

131 Kim EY, Choi B, Kim JE, Park SO, Kim SM & Chang EJ (2020) Interleukin-22 mediates the chemotactic migration of breast cancer cells and macrophage infiltration of the bone microenvironment by potentiating SIP/SIPR signaling. *Cells* 9, 131.

132 Voigt C, May P, Gottschlich A, Markota A, Wenk D, Gerlach I, Voigt S, Statopoulos GT, Arendt KAM, Heise C et al. (2017) Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth. *Proc Natl Acad Sci USA* 114, 12994–12999.

133 Katara GK, Kulshrestha A, Schneiderman S, Riehl V, Ibrahim S & Beaman KD (2020) Interleukin-22 promotes development of malignant lesions in a mouse model of spontaneous breast cancer. *Mol Oncol* 14, 211–224.

134 Zhang Y, Liu C, Gao J, Shao S, Cui Y, Yin S & Pan B (2020) IL-22 promotes tumor growth of breast cancer cells in mice. *Aging* 12, 13354–13364.

135 Siegel RL, Miller KD & Jemal A (2019) Cancer statistics, 2019. *CA Cancer J Clin* 69, 7–34.

136 Zheng M (2016) Classification and pathology of lung cancer. *Surg Oncol Clin N Am* 25, 447–468.

137 Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. *Front Oncol* 7, 193.

138 Biesalski HK, Bueno de Mesquita B, Chesson A, Chytíl F, Grimble R, Hohms RJ, Kohrlie J, Lotan R, Norpoth K, Pastorino U et al. (1998) European Consensus Statement on Lung Cancer: risk factors and prevention. Lung Cancer Panel. *CA Cancer J Clin* 48, 167–176; discussion 164–6.

139 Lubin JH & Blot WJ (1984) Assessment of lung cancer risk factors by histologic category. *J Natl Cancer Inst* 73, 383–389.

140 Stella GM, Kolling S, Benvenuti S & Bortolotto C (2019) Lung-seeking metastases. *Cancers* 11, 1010.

141 Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK et al. (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through...
promoting CXCR-2-dependent angiogenesis. J Immunol 175, 6177–6189.

142 Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ & Dong C (2014) T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci USA 111, 5664–5669.

143 Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Zhang GQ, Han F, Fang XZ & Ma XM (2012) ChenX, WanJ, LiuJ, XieW, DiaoX, XuJ, Zhu H, Wei L, Wang H, Yang F, Ding Q & Zhao J (2016) Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol 12, 1268–1279.

144 Wei L, Wang H, Yang F, Ding Q & Zhao J (2016) Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep 13, 1673–1680.

145 Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, Zhu B & Chen Z (2010) Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 69, 348–354.

146 Zhang GQ, Han F, Fang XZ & Ma XM (2012) CD4+, IL17 and Foxp3 expression in different pTM stages of operable non-small cell lung cancer and effects on disease prognosis. Asian Pac J Cancer Prev 13, 3955–3960.

147 Lin Q, Xue L, Tian T, Zhang B, Guo L, Lin G, Chen Z, Fan K & Gu X (2015) Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers 30, e359–e363.

148 Pan B, Che D, Cao J, Shen J, Jin S, Zhou Y, Liu F, Gu K, Man Y, Shang L et al. (2015) Interleukin-17 levels correlate with poor prognosis and vascular endothelial growth factor concentration in the serum of patients with non-small cell lung cancer. Biomarkers 20, 232–239.

149 You R, DeMayo FJ, Liu J, Cho SN, Burt BM, Creighton CJ, Casal RF, Lazarus DR, Lu W, Tung HY et al. (2018) IL17A regulates tumor latency and metastasis in lung adenocarcinoma and squamous SQ.2b and AD.1 cancer. Cancer Immunol Res 6, 645–657.

150 Cheng M, Qian L, Chen G, Bian G, Xu T, Xu W, Shen G & Hu S (2014) Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism. Cancer Res 74, 4030–4041.

151 Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, Ameh S, Sandell D, Liang XS, Mazzilli S et al. (2019) Commensal microbiota promote lung cancer development via gammadelta T Cells. Cell 176, 998–1013.e16.

152 Chen HC, Eling N, Martinez-Jimenez CP, O’Brien LM, Carbonaro V, Marioni JC, Odom DT & de la Roche M (2019) IL-7-dependent compositional changes within the gammadelta T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep 20, e47379.

153 Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S & Yu Y (2015) Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-kappaB/ ZEB1 signal pathway. Am J Cancer Res 5, 1169–1179.

154 Huang Q, Han J, Fan J, Duan L, Guo M, Lv Z, Hu G, Chen L, Wu F, Tao X et al. (2016) IL-17 induces EMT via Stat3 in lung adenocarcinoma. Am J Cancer Res 6, 440–451.

155 Chen X, Xie Q, Cheng X, Diao X, Cheng Y, Liu J, Xie W, Chen Z & Zhu B (2010) Role of interleukin-17 in lymphangiogenesis in non-small-cell lung cancer: enhanced production of vascular endothelial growth factor C in non-small-cell lung carcinoma cells. Cancer Sci 101, 2384–2390.

156 Pan B, Shen J, Cao J, Zhou Y, Shang L, Jin S, Cao S, Che D, Liu F & Yu Y (2015) Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep 5, 16053.

157 Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G et al. (2016) IL-17 promotes angiogenic factors IL-6, IL-8, and VEGF production via Stat1 in lung adenocarcinoma. Sci Rep 6, 36551.

158 Li Q, Han Y, Fei G, Guo Z, Ren T & Liu Z (2012) IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett 148, 144–150.

159 Carmi Y, Rinott G, Dotan S, Elkabets M, Rider P, Voronov E & Apte RN (2011) Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J Immunol 186, 3462–3471.

160 Salazar Y, Zheng X, Brunn D, Raifer H, Picard FS, Zhang Y, Winter H, Gunther S, Weigert A, Weigmann B et al. (2020) Microenvironmental Th9- and Th17- lymphocytes induce metastatic spreading in lung cancer. J Clin Invest 130, 3560–3575.

161 Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampicotti M, Hawinkels L, Jonkers J et al. (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348.

162 Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW & Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798.

163 Kryczek I, Wei S, Szeliga W, Vatan L & Zou W (2015) Interleukin-17 induces EMT via Stat3 in lung adenocarcinoma cells. EMBO Rep 16, e47379.
Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms. *J Immunol* **190**, 1873–1881.

166 Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C et al. (2017) Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1beta in tumor-associated macrophages. *Oncoimmunology* **6**, e1334744.

167 Teng MW, Andrews DM, McLaughlin N, von Scheidt NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C et al. (2017) Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1beta in tumor-associated macrophages. *Proc Natl Acad Sci U S A* **107**, 8328–8333.

168 Li C, Ma X, Tan C, Fang H, Sun Y & Gai X (2019) IL-17F expression correlates with clinicopathologic factors and biological markers in non-small cell lung cancer. *Pathol Res Pract* **215**, 152562.

169 Kaabachi W, ben Amor M, Kaabachi S, Rafrafi A, Tiziaou I & Hamzaoui K (2014) Interleukin-17A and -17F genes polymorphisms in lung cancer. *Cytokine* **66**, 23–29.

170 Liao T, Fan J, Lv Z, Xu J, Wu F, Yang G, Huang Q, Guo M, Hu G, Zhou M et al. (2019) Comprehensive genomic and prognostic analysis of the IL17 family genes in lung cancer. *Mol Med Rep* **19**, 4906–4918.

171 Ferreira N, Mesquita I, Baltazar F, Silvestre R & Granja S (2020) IL-17A and IL-17F orchestrate macrophages to promote lung cancer. *Cell Oncol* **43**, 643–654.

172 Khosravi N, Caetano MS, Cumpian AM, Unver N, De la Garza Ramos C, Noble O, Daliri S, Hernandez BJ, Gutierrez BA, Evans SE et al. (2018) IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. *Cancer Immunol Res* **6**, 788–797.

173 Zhang W, Chen Y, Wei H, Zheng C, Sun R, Zhang J & Tian Z (2008) Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. *Clin Cancer Res* **14**, 6432–6439.

174 Liao C, Yu ZB, Meng G, Wang L, Liu QY, Chen LT, Feng SS, Tu HB, Li YF & Bai L (2015) Association between Th17-related cytokines and risk of non-small cell lung cancer among patients with or without chronic obstructive pulmonary disease. *Cancer* **121** (Suppl 17), 3122–3129.

175 Liu F, Pan X, Zhou L, Zhou J, Chen B, Shi J, Gao W & Lu L (2014) Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer. *DNA Cell Biol* **33**, 705–714.

176 Naumnik W, Naumnik B, Niklinska W, Ossolinska M & Chyczewska E (2016) Clinical implications of hepatocyte growth factor, interleukin-20, and interleukin-22 in serum and bronchoalveolar fluid of patients with non-small cell lung cancer. *Adv Exp Med Biol* **952**, 41–49.

177 Tufman A, Huber RM, Volk S, Aigner F, Edelmann M, Garfarma M, Kiefl R, Kahnert K, Tian F, Boulesteix AL et al. (2016) Interleukin-22 is elevated in lavage from patients with lung cancer and other pulmonary diseases. *BMC Cancer* **16**, 409.

178 Kobold S, Volk S, Clauditz T, Kupper NJ, Minner S, Tufman A, Duwell P, Lindner M, Koch I, Heidegger S et al. (2013) Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. *J Thorac Oncol* **8**, 1032–1042.

179 Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, Benelli R, Spaggiari GM, Cantoni C, Campana S et al. (2015) NCR(+)-ILC3 concentrates in human lung cancer and associate with intratumoral lymphoid structures. *Nat Commun* **6**, 8280.

180 Bi Y, Cao J, Jin S, Lv L, Qi L, Liu F, Geng J & Yu Y (2016) Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways. *Mol Cell Biochem* **415**, 1–11.

181 Wang X, Xu J, Chen J, Jin S, Yao J, Yu T, Wang W & Guo R (2019) IL-22 confers EGFR-TKI resistance in NSCLC via the AKT and ERK signaling pathways. *Front Oncol* **9**, 1167.

182 Forner A, Reig M & Bruix J (2018) Hepatocellular carcinoma. *Lancet* **391**, 1301–1314.

183 Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A & Roberts LR (2019) A global view of hepatocellular carcinoma: trends, risk, prevention and management. *Nat Rev Gastroenterol Hepatol* **16**, 589–604.

184 Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L et al. (2017) Colorectal cancer liver metastasis: evolving paradigms and future directions. *Cell Mol Gastroenterol Hepatol* **3**, 163–173.

185 Samir B & Arnab G (2020) Colorectal liver metastasis: current concepts. *Indian J Surg*. https://doi.org/10.1007/s12262-019-02051-7

186 Dillekas H, Rogers MS & Straume O (2019) Are 90% of deaths from cancer caused by metastases? *Cancer Med* **8**, 5574–5576.

187 Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C & Liu H (2014) IL-17A produced by laminae in lavage from patients with lung cancer and other pulmonary diseases. *BMC Cancer* **16**, 1982.

188 Gomes AL, Teijeiro A, Buren S, Tummula KS, Yilmaz M, Waisman A, Theurillat JP, Perna C & Djouder N (2016) Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. *Cancer Cell* **30**, 161–175.
189 Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP & Zheng L (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50, 980–989.

190 Li J, Lau GK, Chen L, Dong SS, Lan HY, Huang XR, Li Y, Luk JM, Yuan YF & Guan XY (2011) Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS One 6, e21816.

191 Liao R, Sun J, Wu H, Yi Y, Wang JX, He HW, Cai XY, Zhou J, Cheng YF, Fan J et al. (2013) High expression of IL-17 and IL-17RE associate with poor prognosis of hepatocellular carcinoma. J Exp Clin Cancer Res 32, 3.

192 Wu J, Du J, Liu L, Li Q, Rong W, Wang L, Wang Y, Liu Y, Song Y, Lin D, Lei L, Mei Y, Jin Z, Gong H, Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang Hu Z, Luo D, Wang D, Ma L, Zhao Y & Li L (2017) IL-17A promotes hepatocellular carcinoma through NF-κB induced matrix metalloproteinases 2 and 9 expression. PLoS One 6, e21816.

193 Liu Y, Song Y, Lin D, Lei L, Mei Y, Jin Z, Gong H, Zhu Y, Hu B, Zhang Y et al. (2019) NCR(-) group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 41, 333–344.

194 Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, Yin XY, Li L & Zheng L (2010) Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 185, 1544–1549.

195 Li J, Sung CY, Lee N, Ni Y, Phlajamaki J, Panagiotou G & El-Nezami H (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 113, E1306–E1315.

196 Ma C, Ham M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V et al. (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931.

197 Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, Pan JF, Yan J, Hu JH, Wang Z et al. (2011) IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 10, 150.

198 Hu Z, Luo D, Wang D, Ma L, Zhao Y & Li L (2017) IL-17 Activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma. Cell Physiol Biochem 43, 2379–2390.

199 Li J, Zeng M, Yan K, Yang Y, Li H & Xu X (2020) IL-17 promotes hepatocellular carcinoma through inhibiting apoptosis induced by IFN-gamma. Biochem Biophys Res Commun 522, 525–531.

200 Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY & Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54, 948–955.

201 Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J & Kuang DM (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7–H1 in hepatocellular carcinoma patients. Eur J Immunol 41, 2314–2322.

202 Tseng JY, Yang CY, Liang SC, Liu RS, Yang SH, Lin JK, Chen YM, Wu YC, Jiang JK & Lin CH (2014) Interleukin-17A modulates circulating tumor cells in tumor draining vein of colorectal cancers and affects metastases. Clin Cancer Res 20, 2885–2897.

203 Wang X, Sun R, Hao X, Lian ZX, Wei H & Tian Z (2019) IL-17 constrains natural killer cell activity by restraining IL-15-driven cell maturation via SOCS3. Proc Natl Acad Sci USA 116, 17409–17418.

204 Wang Q, Feng M, Yu T, Liu X & Zhang P (2014) Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells. Cell Immunol 287, 100–105.

205 Mitchell A, Hasanali SL, Morera DS, Baskar R, Wang X, Khan R, Talukder A, Li CS, Manoharan M, Jordan AR et al. (2019) A chemokine/chemokine receptor signature potentially predicts clinical outcome in colorectal cancer patients. Cancer Biomark 26, 291–301.

206 Li R, Zhou R, Wang H, Li W, Pan M, Yao X, Zhan W, Yang S, Xu L, Ding Y et al. (2019) Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 26, 2447–2463.

207 Wu MS, Wang CH, Tseng FC, Yang HJ, Lo YC, Kuo YP, Tsai DJ, Tsai WT & Yu GY (2017) Interleukin-17F expression is elevated in hepatitis C patients with fibrosis and hepatocellular carcinoma. Infect Agent Cancer 12, 42.

208 Xie Y, Sheng W, Xiang J, Ye Z & Yang J (2010) Interleukin-17F suppresses hepatocarcinoma cell growth via inhibition of tumor angiogenesis. Cancer Invest 28, 598–607.

209 Giles DA, Moreno-Fernandez ME, Stankiewicz TE, Cappelletti M, Huppert SS, Iwakura Y, Dong C, Shanmukappa SK & Divanovic S (2016) Regulation of inflammation by IL-17A and IL-17F modulates non-alcoholic fatty liver disease pathogenesis. PLoS One 11, e0149783.

210 Park O, Wang H, Feigenbaum L, Li H, Yin S, Ki SH, Yoo SH, Dooley S, Wang FS et al. (2011) In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology 54, 252–261.
Interleukin-22-related cytokines in cancer and metastasis

211 Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, Wang X & Sun B (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. *Hepatology* **54**, 900–909.

212 Shi J, Wang Y, Wang F, Zhu Z, Gao Y, Zhang Q & Du Z (2020) Interleukin 22 is related to development and poor prognosis of hepatocellular carcinoma. *Clin Res Hepatol Gastroenterol* **44**, 855–864.

213 Waidmann O, Kronenberger B, Scheiermann P, Koberle V, Muhl H & Piiper A (2014) Interleukin-22 serum levels are a negative prognostic indicator in patients with hepatocellular carcinoma. *Hepatology* **59**, 1207.

214 Lee HL, Jang JW, Lee SW, Yoo SH, Kwon JH, Nam SW, Bae SH, Choi JY, Han NI & Yoon SK (2019) Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. *Sci Rep* **9**, 3260.

215 Kuang DM, Xiao X, Zhao Q, Chen MM, Li XF, Liu RX, Wei Y, Ouyang FZ, Chen DP, Wu Y *et al.* (2014) B7-H1-expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets. *J Clin Invest* **124**, 4657–4667.

216 Qin S, Ma S, Huang X, Lu D, Zhou Y & Jiang H (2014) Th22 cells are associated with hepatocellular carcinoma development and progression. *Chin J Cancer Res* **26**, 135–141.

217 Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, Cui XL, Dai HJ, Xue F & Xia Q (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. *Int J Cancer* **136**, 2556–2565.

218 Karstens KF, Kemptski J, Giannou AD, Pelczar P, Steglich B, Steurer S, Freiwald E, Woestemeier A, Koneva L, Sartor M *et al.* (2020) Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival. *Cancer Immunol Immunother* **69**, 1043–1056.

219 McAllister F, Bailey JM, Alsina J, Nirschl CJ, Sharma R, Fan H, Rattigan Y, Roeser JC, Lankapalli RH, Zhang H *et al.* (2014) Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. *Cancer Cell* **25**, 621–637.

220 Zhang Y, Zoltan M, Riquelme E, Xu H, Sahin I, Castro-Pando S, Montiel MF, Chang K, Jiang Z, Ling J *et al.* (2018) Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. *Gastroenterology* **155**, 210–223.e3.

221 Wen Z, Liao Q, Zhao J, Hu Y, You L, Lu Z, Jia C, Wei Y & Zhao Y (2014) High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. *Ann Surg Oncol* **21**, 125–132.

222 Xu X, Tang Y, Guo S, Zhang Y, Tian Y, Ni B & Wang H (2014) Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. *Pancreas* **43**, 470–477.

223 He W, Wu J, Shi J, Huo YM, Dai W, Geng J, Lu P, Yang MW, Fang Y, Wang W *et al.* (2018) IL22RA1/STAT3 signaling promotes stenness and tumorigenicity in pancreatic cancer. *Cancer Res* **78**, 3293–3305.

224 Curd LM, Favors SE & Gregg RK (2012) Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. *Clin Exp Immunol* **168**, 192–199.

225 Perusina Lanfranca M, Zhang Y, Girgis A, Kasselman S, Lazarus J, Kryczek I, Delrosario L, Rhim A, Koneva L, Sartor M *et al.* (2020) Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. *Gastroenterology* **158**, 1417–1432.e11.

226 Nguyen PM & Putocki TL (2019) Could the inhibition of IL-17 or IL-18 be a potential therapeutic opportunity for gastric cancer? *Cytokine* **118**, 8–18.

227 Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, Chen W, Cheng P, Wang T, Chen N *et al.* (2012) Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. *J Clin Immunol* **32**, 1332–1339.

228 Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Guo G, Chen W, Liu XF, Zhang JY, Liu T *et al.* (2012) Increased intratumoral IL-22-producing CD4+ T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. *Cancer Immunol Immunother* **61**, 1965–1975.

229 Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J *et al.* (2014) IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. *Br J Cancer* **111**, 763–771.

230 Ji Y, Yang X, Li J, Lu Z, Li X, Yu J & Li N (2014) IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. *Int J Clin Exp Pathol* **7**, 3694–3703.

231 Low JT, Christie M, Ernst M, Dumoutier L, Preaued A, Ni Y, Griffin MDW, Mielke LA, Strasser A, Putocki TL *et al.* (2020) Loss of NFKB1 results in expression of tumor necrosis factor and activation of STAT1 to promote gastric tumorigenesis in mice. *Gastroenterology* **154**, 1444–1458.

232 Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S & Paulos CM (2014) Th17 cells in cancer: the ultimate identity crisis. *Front Immunol* **5**, 276.

233 Amezcue Vesely MC, Pallis P, Bielecki P, Low JS, Zhao J, Harman CCD, Kroepling L, Jackson R, Bailis
TH17-related cytokines in cancer and metastasis
J. Lücke et al.

W, Licona-Limon P et al. (2019) Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell 178, 1176–1188.e13.

Krebs CF, Reimers D, Zhao Y, Paust HJ, Bartsch P, Nunez S, Rosenblatt MV, Hellmig M, Kilian C, Borchers A et al. (2020) Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci Immunol 5, eaba4163.

Kamata M & Tada Y (2020) Efficacy and safety of biologics for psoriasis and psoriatic arthritis and their impact on comorbidities: a literature review. Int J Mol Sci 21, 1690.

Cavalli G & Dinarello CA (2018) Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol 9, 1157.

Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, Singer GK, Baum D, Gilleaudeau P, Sullivan-Whalen M et al. (2018) Efficacy and safety of fexizumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol 78, 872–881.e6.

Solt LA, Kumar N, Nuhan P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamehcka TM, Roush WR, Vidovic D et al. (2011) Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494.

Kumar N, Lyda B, Chang MR, Lauer JL, Solt LA, Burris TP, Kamehcka TM & Griffin PR (2012) Identification of SR2211: a potent synthetic RORgamma-selective modulator. ACS Chem Biol 7, 672–677.

Huh JR & Littman DR (2012) Small molecule inhibitors of RORgammat: targeting TH17 cells and other applications. Eur J Immunol 42, 2232–2237.

Fauber BP & Magnuson S (2014) Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-gamma (RORgamma or RORc). J Med Chem 57, 5871–5892.

Sun N, Guo H & Wang Y (2019) Retinoic acid receptor-related orphan receptor-gamma-t (RORgammat) inhibitors in clinical development for the treatment of autoimmune diseases: a patent review (2016-present). Expert Opin Ther Pat 29, 663–674.

Skepner J, Ramesh R, Trocha M, Schmidt D, Baloglu E, Lobera M, Carlson T, Hill J, Orband-Miller LA, Barnes A et al. (2014) Pharmacologic inhibition of RORgammat regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J Immunol 192, 2564–2575.

Banerjee D, Zhao L, Wu L, Palanichamy A, Ergun A, Peng L, Quigley C, Hamann S, Dunstan R, Cullen P et al. (2016) Small molecule mediated inhibition of RORgamma-dependent gene expression and autoimmune disease pathology in vivo. Immunology 147, 399–413.

Smith SH, Peredo CE, Takeda Y, Bui T, Neil J, Rickard D, Millerman E, Therrin JP, Nicodeme E, Brusq JM et al. (2016) Development of a topical treatment for psoriasis targeting RORgamma: from bench to skin. PLoS One 11, e0147979.

Takaishi M, Ishizaki M, Suzuki K, Isobe T, Shimozato T & Sano S (2017) Oral administration of a novel RORgammat antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J Dermatol Sci 85, 12–19.

Chang MR, Lyda B, Kamehcka TM & Griffin PR (2014) Pharmacologic repression of retinoic acid receptor-related orphan nuclear receptor gamma is therapeutic in the collagen-induced arthritis experimental model. Arthritis Rheumatol 66, 579–588.

Xue X, Soroosh P, De Leon-Tabaldo A, Luna-Roman R, Sablad M, Rozenkrants N, Yu J, Castro G, Banie H, Fung-Leung WP et al. (2016) Pharmacologic modulation of RORgammat translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis. Sci Rep 6, 37977.

Venken K, Jacques P, Mortier C, Labadia ME, Decuyr T, Coudenys J, Hoyt K, Wayne AL, Hughes R, Turner M et al. (2019) RORgammat inhibition selectively targets IL-17 producing iNKT and gammadelta-T cells enriched in Spondyloarthritis patients. Nat Commun 10, 9.

Fitzpatrick LR, Small J, O’Connell R, Talbott G, Alton G & Zapf J (2020) VPR-254: an inhibitor of ROR-gamma T with potential utility for the treatment of inflammatory bowel disease. Inflammopharmacology 28, 499–511.

Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, Marriott CL, Brucklacher-Waldert V, Veldhoen M, Kelsen J et al. (2016) Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med 22, 319–323.

Bassolas-Molina H, Raymond E, Labadia M, Wahle J, Ferrer-Picon E, Panzenbeck M, Zheng J, Harcken C, Hughes R, Turner M et al. (2018) An RORgammat oral inhibitor modulates IL-17 responses in peripheral blood and intestinal mucosa of Crohn’s disease patients. Front Immunol 9, 2307.

Ueda E, Kurebayashi S, Sakaue M, Backlund M, Koller B & Jetten AM (2002) High incidence of T-cell receptor-gamma. Cancer Res 62, 901–909.

Liljevald M, Borjesson J, Luciani D, Krutrok N, Branden L,
Johansson C, Xu X et al. (2016) Retinoid-related orphan receptor gamma (RORgamma) adult induced knockout mice develop lymphoblastic lymphoma. *Autoimmun Rev* **15**, 1062–1070.

Guntermann C, Piaia A, Hamel ML, Theil D, Rubic-Schneider T, Del Rio-Espinola A, Dong L, Billich A, Kaupmann K, Dawson J et al. (2017) Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. *JCI Insight* **2**, e91127.