Highlights on the alternatives to antibiotic therapy against bacterial infection

Bijayanta Sircar, Shyamapada Mandal*

Laboratory of Microbiology and Experimental Medicine, Department of Zoology, University of Gour Banga, Malda-732103, India

Abstract

The antibiotic resistance among gram-positive and gram-negative pathogenic bacteria is of global health concern. This has prompted the development of new effective drugs. But the discovery and development of new drugs is slow, and the emergence of resistance to such new drugs, on the other hand, is rapid as well as continuous among the bacteria. Therefore, in tackling the emergence of antibiotic resistant pathogenic bacteria finding alternative ways is vital. This communication, based on the published scientific data, summarizes the antibacterial capacity of some naturally derived agents such as honey, phytocomponents, probiotics, and antimicrobial peptides that might bring new essence in biomedicine.

Keywords: Bacterial resistance, alternative therapeutics, honey, phytomedicine, probiotics, antimicrobial peptides.

1. Introduction

Emergence of bacterial antibiotic resistance developed through an array of mechanisms is a severe threat to humans, and such phenomenon has been marked as a global alarming problem, which in developing countries including India, as recognised by the WHO, is reaching critical levels. The multidrug resistant (MDR) ESKAPE (gram-positive: Enterococcus faecium and Staphylococcus aureus, and gram-negative: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacteria are among the most notorious to cause life threatening nosocomial infections. The continuous antibiotic therapy as well as the lack of effective antibiotics in the existing global treatment regimen has directed to a major upsurge in antibiotic resistance. The increasing trend of development of antibiotic resistance among pathogenic bacteria has been associated with a marked economic cost worldwide. As the consequences there are great mortality and morbidity, high treatment costs, diagnostic doubts, and deficiency of trusted conventional medicine. Of the six notorious ESKAPE pathogens, the four gram-negative bacteria, have been associated with four main types of multi-drug resistance, specifically the extended-spectrum β-lactamase-producing K. pneumoniae and Enterobacter spp., carbapenemase-producing A. baumannii and metallo-β-lactamase producing Ps. aeruginosa limiting the therapeutic choices. K. pneumoniae is presently developing as a noticeable opportunistic pathogen and the most challenging agent of nosocomial infections.

Exposure of the pathogenic bacteria to antibiotics surges the risk of the emergence of carbapenem resistant Enterobacteriaceae, too. Carbapenems and cephalosporins are cause of resistance that increased the risk up to 15-fold and 6-29 folds, respectively. The widespread antibiotic usage in communities and hospitals cause severe multidrug resistance among gram-negative bacteria. The ESBL-mediated MDR gram-negative ESKAPE pathogens are progressively associated with several conditions that are difficult to treat in both developed and developing nations. Current researches have shown pronounced interest in the use of alternative agents including honey, phytomedicine, probiotics, and antimicrobial peptides, in targeting the bacterial resistance corroborating their potential in the treatment of diseases caused by a large number of bacteria displaying resistance to almost all the antibiotics. This study thus provides a highlight on the antibacterial capacity of some naturally available agents, based on the scientific information published in the field.

2. Antibacterial activity

The indiscriminate use of antibiotics causes the development of antibiotic resistance among pathogenic bacteria leading to high morbidity and mortality from infections caused by such pathogens. In the current times, there has been an increasing interest in exploring and evolving new antimicrobial biotherapeutics from various sources to fight bacterial resistances. Along with the growing incidence of antibacterial resistance, complete and effective investigation is needed to look for the natural antibacterial sources, such as honey, plants, probiotics providing several active compounds having antibacterial activity that could inhibit life threatening bacterial diseases (Figure 1).
2.1. Honey

Recently it has been proved experimentally that honey display antibacterial, anti-inflammatory and antioxidant activities, which may be useful in opposing MDR bacteria as well as in inhibiting many prolonged inflammatory processes\(^8\). The antibacterial activity of honey against clinical isolates of *Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella enterica* serovar Typhi has been reported previously\(^9\). Some factors that present in the honey as antimicrobials include hydrogen peroxide (H\(_2\)O\(_2\)) and inhibin, and also the osmotic effect of honey, its low pH (3.2 – 4.5), defensin-1, as well as the presence of phytochemical components display antibacterial activity\(^10\).

Most of the researchers performed the disc diffusion or well diffusion method to study the antibacterial activity of honey. Several articles on antibacterial activity of different honey samples from diverse region of the world that has been publish are summarised in Table 1.

Table 1: Antibacterial activity of honey

Honey type	Geographical location	Using condition	Activity against bacteria	Antibacterial activity	Ref	
Commercial grade honey	Malda, India	Aqueous honey	**Gram negative**: *Escherichia coli*, *Pseudomonas aeruginosa*, *Proteus vulgaris*, and *E. coli ATCC 25922* **Gram positive**: *Staphylococcus aureus*	6 – 30	ND	8
Natural jujube honey	Saudi Arabia	Methanol extract	**Gram negative**: *E. coli ATCC 35218*, *Klebsiella pneumoniae ATCC 700603*, and *K. pneumoniae ATCC 27736* **Gram positive**: *S. aureus ATCC 25923*, *Staphylococcus epidermidis ATCC 12228*, *Enterococcus faecalis ATCC 29212*, *Bacillus cereus ATCC 10876*,	6 – 17	ND	11
Eucalyptus honey and commercial grade honey	Mauritius	Undiluted	**Gram negative**: *Proteus sp., Klebsiella sp.*, *Pseudomonas 161 sp.*, and *E. coli ATCC 25922*, and *Ps. aeruginosa ATCC 27853* **Gram positive**: *Streptococcus sp.*, *S. epidermidis ATCC 35984*, and *S. epidermidis ATCC 14990*	6 – 28	ND	12
Table 1: (Continued)

Honey type	Geographical location	Using condition	Activity against bacteria	Antibacterial activity	Ref	
Blossoms honey	Slovakia	50% honey solution	Gram negative: *P. aeruginosa* CCM1960	ND	3–27	13
			Gram positive: *S. aureus* CCM4223			
Wildflower and bitter leaf honey	Nigeria	Raw honey	Gram negative: *Salmonella typhimurium* ATCC 14028, *Sal. typhimurium* clinical, *Shigella dysenteriae* ATCC 11836, *Sh. dysenteriae* (clinical), *E. coli* ATCC 700 728, *E. coli* (clinical)	6–26	ND	14
			Gram positive: *B. cereus* ATCC 14579, *B. cereus* (clinical), *S. aureus* ATCC 29213 and *S. aureus* (clinical)			
Natural honey	Ethiopia	Aqueous honey	Gram positive: Methicillin-resistant *S. aureus*	6–39	9.38–37.5	15
Citrus honey and mango honey	Malda, India	Aqueous honey	Gram negative: *Salmonella enterica* serovar Typhi, *P. aeruginosa* and *E. coli* ATCC 25922	15–35	ND	16
			Gram positive: *S. aureus*			
Local honey	Pakistan	Aqueous honey	Gram negative: *E. coli* ATCC 25922, *P. aeruginosa* ATCC 27853, *S. typhi* ATCC 19943 and *K. pneumoniae* ATCC 27736	14–37	ND	17
Natural (Kombu and Vembu) and commercial grade honey	Vellore, India	Honey diluted with dimethyl sulfoxide	Gram negative: *E. coli*, *S. typhi*, *Proteus mirabilis*, *K. pneumoniae*, *Shigella flexneri* and *P. aeruginosa*	6–38	ND	18
			Gram positive: *S. aureus*, *B. cereus* and *Enterococcus casseliflavus*			
Acacia, abies, sideritis, herbs, polyfloral and conifers honeys	Mount Olympus area, Greece	Raw honey	Gram negative: *A. baumannii*, *Citrobacter freundii*, *K. pneumoniae*, and *Salmonella typhimurium*	ND	6.25–12.5	19
			Gram positive: *Streptococcus infantis*			

MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

2.2. Phytotherapeutics

Roots, leaves, seeds, bark or other part of medicinal plants possess therapeutic, tonic, purgative or other pharmacologic activity under *in vitro* as well as *in vivo* conditions. Several plants are used in various countries as the source of potent and powerful medicines20. Alkaloids, norsecurinines, phyllanthine, phyllochrysine, saponins, quercetin, quercetol, rutin, quercitrin, astragalin, galallocatechins, niruretin, nirurin, brevifolin, ellagic acid ellagittannins, repandusnic acids, geraniin, carboxylic acids, corilagin, cyneme, lupeols, phyllanthanol, lignans, hypophyllanthin, niranthin, nirtetralin, lintetralins, methyl salicylate, niruriside, triacantanal, tricontanol etc. type of bioactive compounds are present in various plants as the source of therapeutic components21.

The innovation of medicinal plants in different parts of the globe is vital to the agriculture and medicine sectors, in defining the new guidelines towards spread of unconventional medicinal crops that offer improved commercial welfares22. Some tribal communities are mostly dependent upon the natural resources for their traditional food habits as well as for treating common illnesses such as diarrhea, dysentery, vomiting, headache, cold, and fever23.

Indian flora deals countless possibilities for the detection of new compounds with important medicinal uses in opposing infection. The antimicrobial compounds found in plants may inhibit bacterial toxicities by alternative mechanisms than the conventional one24. Phytotherapy, prepared from different plant materials, such as Ayurvedic traditional medicine, are relatively safe, cost effective and have less or no side effects25.

Most of the current *in vitro* study on different medicinal plants with their experimental particulars, in terms of the antibacterial activity, are summarized in Table 2, where some research on bioactive fruit plants and spice herbs are also included.
Table 2: Antibacterial activity of different plant extracts

Plants	Plant parts	Extracting solvent	Activity against Bacteria	Antibacterial activity	Ref
Medicinal plants					
Aegle marmelous (Bael)	Leaves	Hexane, acetone, ethanol, and aqueous	Gram negative: *E. coli*, *Ps. aeruginosa*, *Salmonella enterica*, *Shigella sonnei*	ND	23
Azadirachta indica	Leaves and bark	Ethanol, chloroform and methanol	Gram negative: *Aeromonas hydrophila*, *A. hydrophila ATCC 7966*, *Ps. aeruginosa*, *Proteus mirabilis*, *Shiga-taxigenic E. coli*	6 – 27	26–29
Withania somnifera (Aswagandha)	Leaves	Ethyl acetate and methanol	Gram negative: *E. coli ATCC 25922*, *Proteus mirabilis ATCC 35659*, *Ps. aeruginosa ATCC 27853*, *Pseudomonas syringae pv. Phaseolicola* and *Xanthomonas campestris pv. Phaseoli*	7 – 13	30,31
Bacopa monnieri (Brahmi)	Whole plant and leaves	Methanol, acetone, ethanol and methanol	Gram negative: *E. coli K 88*, *Ps. aeruginosa*, *Salmonella typhii 62*, *Shigella dysenteriae 3*, *E. coli*, *K. pneumoniae* and *K. pneumoniae MTCC 109*	8 – 22	32,33
Santalum album (Sandal wood)	Heartwood	n-hexane, water chloroform, acetone, butanol ethylacetate and ethanol	Gram negative: *E. coli 25922, E. coli 35318* and *Shigella sonnei BB-8*	6 – 17	34
Ranwolfa serpentina (Sarpa gandha)	Leaves, Roots and leaves	Acetone, methanol and ethanol	Gram positive: *S. aureus*, *B. cereus* and *B. subtilis*	7 – 22	20,35
Ocimum sanctum (Tulsi)	Leaves	Aqueous, acetone and ethanol	Gram negative: *K. pneumoniae, E. coli*, *Pr. vulgaris*, *Ps. aeruginosa*, *S. typhi*, *Acinetobacter baumannii* and *E. coli MTCC 443*	6 – 28	36,37
Mentha pipertia (Pippermint)	Leaves	Ethanol, chloroform and hexane	Gram negative: *E. aerogenes* and *S. typhimurium*	7 – 8	38,39
Table 2: (Continued)

Plants	Plant parts	Extraction solvent	Activity against bacteria	Antibacterial activity	Ref
Phyllanthous amarus (Bhumi amla)	Whole plant and leaves	Aqueous, n-hexane, ethyl acetate and methanol	**Gram negative:** *E. coli, Ps. aeruginosa* and *Pseudomonas* spp.		
Gram positive: Coagulase positive *S. aureus* and *S. aureus*	9 – 26	ND	21, 40		
Enhydra fluctuans (helencha)	Whole aerial parts (stem and leaves)	Methanol and aqueous	**Gram negative:** *A. baumannii, Ps. aeruginosa* and *E. coli ATCC25922*		
Gram positive: *B. cereus, Listeria monocytogenes* and *L. monocytogenes MTCC657*	6 – 24	2500 – 10000	41		
Fruit plants					
Elaeocarpus floribundus (Indian olive)	Seed and mesocarp-epicarp of mature fruits	Ethanol and aqueous	**Gram negative:** *E. coli, Pr. vulgaris* and *Ps. aeruginosa* ATCC 27813		
Gram positive: *B. cereus, S. aureus* and *L. monocytogenes MTCC 657*	6 – 22	ND	42		
Mimusops elengi (Bakul)	Seed	Ethanol	**Gram negative:** *E. coli, Pr. vulgaris, K. pneumonia, E. coli ATCC 25922, K. pneumonia MTCC 7407 and *Ps. aeruginosa ATCC 27853*	7 – 17	ND
Syzygium cumini (Jamun)	Seed	Ethanol	**Gram negative:** *E. coli, K. pneumonia* and *E. coli ATCC 25922*		
Gram positive: *S. aureus* and *S. aureus ATCC 29213*	8 – 15	ND	43		
Mangifera indica (Mango)	Seed	Ethanol		10 – 20	ND
Punica granatum (Pomegranate)	Fruit Peel	Ethanol and aqueous	**Gram negative:** *E. coli, Proteus spp., K. pneumoniae, P. aeruginosa, A. baumannii*	6 – 28	2500 – 20000
Spices					
Piper nigrum (Black pepper)	Corn	Ethanol and chloroform	**Gram negative:** *E. coli, Ps. aeruginosa, Klebsiella Sp, Proteus Sp.*		
Gram positive: *Streptococcus mutans,* Coagulase negative *Staphylococci* and *S. aureus* | 6 – 29 | ND | 45, 46 |

KOH: potassium hydroxide, MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

2.3. Probiotics

Probiotics, in the form of lactic acid bacteria (LAB), generally the lactobacilli, might be crucial in controlling the emerging antibiotic resistant pathogenic bacteria. Probiotics have the inhibition property against bacterial pathogens, including the antibiotic resistant individuals: spoilage, food-borne and pathogenic bacteria, by producing H₂O₂, lactic acid and bacteriocins. Sheep and goat milks and their derivatives (cheese and yoghurt) are commercially available as functional foods, which are with nutritional as well as medicinal importance, and can be selected as valid candidates having microbiological and technological qualities. Current studies revealed that some lactic acid bacteria isolated from non-milk fermented foods act as potential probiotics with huge nutritional as well as medicinal values that might be due to the production of bacteriocins. In the intestine, probiotic microorganisms compete with pathogenic bacteria in terms of nutrients and cell-surface for colonization, and can create inhibition against biofilm formation and quorum sensing properties of many pathogens. The milk and non-milk food-based probiotics, being isolated and characterised by the scientists from around the world, are summarized, in terms of the effectiveness against bacteria, in Table 3.
Table 3: Antibacterial activity of probiotics

Source	Geographical location	Probiotic strain	Activity against bacteria	Antibacterial activity	Ref
				Ref	
Milk-based products					
Local fermented milk products	Bangkok region of Thailand	Lactococcus lactis subsp. lactis	**Gram negative**: E. coli, Ps. aeruginosa and S typhimurium **Gram positive**: B. cereus and S. aureus	11 – 27 ND	54
Toraja Belang buffalo milk	Indonesia	Enterococcus faecalis	**Gram negative**: Enteropathogenic E. coli ATCC 25922, and S. typhi ATCC 58105535 **Gram positive**: S. aureus 134-P	6 – 13 ND	55
Home-made cow milk curd, commercial curd	Malda district, India	Lactobacillus animalis LMEM6, Lactobacillus plantarum LMEM7, Lactobacillus acidophilus LMEM8 and Lactobacillus rhamnosus LMEM9	**Gram negative**: S. enterica serovar Typhi, E. coli, P. vulgaris and A. baumannii	11 – 35 ND	56
Commercially available curd	Malda district, India	Lactobacillus fermentum	**Gram negative**: A. baumannii, Ps. aeruginosa, E. coli, Pr. vulgaris, K. pneumoniae, S. enterica serovar Typhi **Gram positive**: S. aureus, B. cereus, E. faecalis, L. monocytogenes	10 – 20 ND	57
Sheep and goat raw milk	Tunisia	L. plantarum and L. pentosus	**Gram negative**: S. thyphimurium ATCC 25922 and E. coli **Gram positive**: S. aureus ATCC 25923, L. monocytogenes ATCC 070 101 121	6 – 12 ND	48
Non milk-based products					
Hom-e-made fermented vegetables	Malaysia	Lactobacillus sp	**Gram negative**: Yersinia enterocolitica and E. coli **Gram positive**: S. aureus ATCC 25923, B. cereus	6 20 ND	49
Fermented plant beverages and pickles	Thailand	Lactobacillus casei and L. plantarum	**Gram negative**: S. thyphimurium PSSCM10035, S. typhi PSSCM10034, E. coli O157:H7, E. coli ATCC 25922, Shigella sonnei PSSCM10032, Shigella flexneri PSSCM10035, Pr. vulgaris PSSCM10041, Providencia rettgeri psscm10044, Enterobacter cloacae PSSCM10040, Enterobacter aerogenes PSSCM10039, Vibrio parahaemolyticus VP4 **Gram positive**: S. aureus ATCC 25923, B. cereus ATCC11778	7 10 ND	50
Vegetables and traditional Indian fermented foods	India	L. fermentum, L. plantarum Weissella confusa, Weissella cibaria and Pediococcus parvulus	**Gram negative**: E. coli K12	14 23 ND	58

MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition
2.4. Antimicrobial peptides

Several authors reported that antimicrobial peptides (AMPs) can be administered as typical candidates effective against different MDR bacterial strains. Biofilms formation by the bacterial cells causes more resistant to antibiotic managements than the planktonic forms of the same bacterial strains. Food protein hydrolysates and fermented food products serves as promising source of bioactive AMPs. The caseins and whey proteins are major milk precursors proteins found in cow milk. Caseins derived bioactive peptides consists of about thirty different constituents comprising with genomic variations, mainly of αs- (αs1-, αs2-), β, and κ-casein. Most of the potential AMPs are cationic as well as amphipathic in nature consisting of a minimum five to maximum hundred amino acids. Current studies have shown that some probiotics can synthesise AMPs that contribute significantly to host survivability, exclusively against pathogenic bacteria. Although scientists are facing some difficulties in obtaining significant and economically sustainable quantities of AMPs, and thus they are trying to manufacture heterologous endogenous AMPs using cloning technique.

Recently, a number of anionic antimicrobial peptides have been identified in vertebrates, invertebrates and plants. The vast source of antimicrobial peptides is marine organisms because of their close contact with microbes. Some antimicrobial peptides derived from plants are mostly composed of cystine-rich peptides. Insects is one of the major sources of antimicrobial peptides that show inhibition against bacteria, fungi, viruses as well as some parasites. These can be classified into four families: the α-helical peptides (cecropin and moricin), glycine-rich peptides (gloverin and attacin), proline-rich peptides (drosocin, apidaecin and lebocin) and cysteine-rich peptides (insect drosomycin and defense).

Recent studies showed antimicrobial peptides can potentially serve as novel antimicrobial agents. Different AMPs can be utilized by innate immune cells and proteins to counterbalance microbial infections, and contribute more to other cellular and/or biomolecular pathways. Table 4 summarizes the antibacterial activities of AMPs with molecular weight ranging from 1.55 to 41.44 kDa.

Table 4: Antibacterial activity of different bioactive peptides

Source	Amino acid number in peptides	Molecular weight (kDa)	Activity against bacteria	Antibacterial activity	Ref		
Sea Cucumber, *Holothuria tubulosa*	14 – 36	1.55 – 4.09	Gram positive: *Listeria monocytogenes*	ND	1200 – 5000	ND	59
Bacteriocin from *Lactococcus lactis* MMFII (from a Tunisian dairy product)	~40	25 – 41.44	Gram positive: *Enterococcus faecalis* [H22 E. faecalis V583 Listeria ivanovi BUG 496]	ND	0.05 – 0.1	20 – 60	65
Bacteriocin produced by *Lactobacillus plantarum* KLDS1.0391 (from fermented cream from China)	ND	21.80 – 29.70	Gram negative: *Salmonella typhimurium*	ND	ND	80	66
Marine Ascidian *Didemnum* sp.	ND	< 40	Gram negative: *Ps. aeruginosa ATCC 27853 Salmonella typhimurium ATCC 202165*	7 – 11	1.83 – 2.30	ND	67
Soybean, Glycine max	ND	< 10	Gram negative: *Acinetobacter genomospecies, Aeromonas hydrophila FDA110-36, A. hydrophila ATCC7966, Escherichia coli DH5αf, E. coli ATCC43895, E. coli NCTC8959, Salmonella enterica ATCC12325, S. enterica ATCC29934, Vibrio parahaemolyticus ATCC17802*	ND	72 – 105.0	ND	68
Source	Amino acid number in peptide	Molecular weight (kDa)	Activity against bacteria	Antibacterial activity	Ref		
--------	------------------------------	------------------------	--------------------------	------------------------	-----		
Laba garlic	5 – 6	4 – 6	Gram negative: E. coli, ATCC 25922, S. enteritidis BNCC103134, Gram positive: B. subtilis ATCC 6633, and S. aureus ATCC 25923	ZDI (mm): 9 – 27, MIC (µg/ml): 100 – 450, AU/ml: ND	69		
Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensis	33	ND	Gram negative: E. coli NCTC 10418	ZDI (mm): ND, MIC (µg/ml): 16 – 32, AU/ml: ND	70		
Moss Physcomitrella patens	14 – 18	ND	Gram negative: E. coli K-12 substr. MG1655, Gram positive: B. subtilis 16HHT	ZDI (mm): ND, MIC (µg/ml): 16 – 128, AU/ml: ND	71		
Trianthema portulacastrum Leaves	ND	5.57 – 23.44	Gram negative: E. coli	ZDI (mm): 6 – 14, MIC (µg/ml): ND, AU/ml: ND	72		
Rumen microbiome	<25	ND	Gram negative: A. baumannii	ZDI (mm): ND, MIC (µg/ml): 64 – 128, AU/ml: ND	73		
Rana arvalis	13 – 32	ND	Gram negative: E. coli ATCC 25922, Acinetobacter baumannii ATCC 19606, Gram positive: S. aureus ATCC 29213 and En. faecalis ATCC 29212	ZDI (mm): ND, MIC (µg/ml): 16 – >64 µM, AU/ml: ND	74		

AU/ml: arbitrary unit per millilitre; MIC: Minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

3. Concluding remarks

Due to the problem of antibiotic inactivity, exploration of alternative new antibacterial agents is needed to combat several life-threatening infections caused by MDR bacteria. Honey, plant extracts, probiotics and AMPs can inhibit the growth of infectious bacterial pathogens, as non-antibiotic antibacterials. Although, more specific experiments are required to know the effective dose dependent pharmacokinetic nature of the explored agents.

References

1. De AS, Baveja S, D’Souza D et al. Antimicrobial resistance among commonly encountered bacteria isolated in 2013 – The ES\KAPE Menace, Internal Medicine, 2015; 5(193):1-6. DOI:10.4172/2165-6548.1000193
2. Rice LB, Progress and challenges in implementing the research on ES\KAPE pathogens, Infection Control & Hospital Epidemiology, 2010; 31(1):57-510. DOI: 10.1086/655995
3. Santajit S, Indrawattana N, Mechanisms of antimicrobial resistance in ES\KAPE pathogens, BioMed Research International, 2016; Article ID 475067, 8 pages. DOI:10.1155/2016/2475067
4. Founou RC, Founou LL, Essack SY, Extended spectrum beta-lactama mediated resistance in carriage and clinical gram-negative ES\KAPE bacteria: a comparative study between a district and tertiary hospital in South Africa, Antimicrobial Resistance & Infection Control, 2016; 7(134):1-11. DOI: 10.1186/s13756-018-0423-0
5. Blićić C, Passet V, Touchon M et al, Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae, Wiley-Blackwell and Society for Applied Microbiology, 2017; 19(5):1881-98. DOI: 10.1111/1462-2920.13689
6. Azzahra S, Parisa N, Fatmawati et al., Antibacterial efficacy of Aloe vera sap against Staphylococcus aureus and Escherichia coli, Bioscientia Medicina 2019; 3(2):39-37.
7. Bague SD, Saha SK, Salma U et al., Antibacterial effect of Aloe vera (Aloe barbadensis) leaf gel against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae, Mymensigh Medical Journal, 2019; 28(3):490-496.
8. Saha A, Mandal S, In vitro Assessment of two commercial honey samples for antibacterial and antioxidant activities, Austin Journal of Tropical Medicine & Hygiene, 2015; 1(1):1-5.
9. Mandal S, Mandal MD, Pal NK et al, Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enteric serovar Typhi, Asian Pacific Journal of Tropical Medicine, 2010; 10(3):196-964. DOI: 10.1016/S1995-65575(11)0009-6
10. Hegazi AG, Abd Allah FM, Screening for antibacterial activity of honey against clinical isolates of Escherichia coli, Molecules, 2019; 3(2):29-37.
11. Abdallah EM, Hamed AE, Screening for antibacterial activity of two jujube honey samples collected from Saudi Arabia, Journal of Apitherapy, 2019; 5(1):6-9. DOI: 10.5455/ja.20190120035814
12. Aumeeruddy MZ, Aumeeruddy-Elaffi Z, Neetoo H et al., Pharmacological activities, chemical profile, and physico-chemical properties of raw and commercial honey, Biocatalysis and Agricultural Biotechnology, 2019; 18:101005. DOI: 10.1016/j.bcab.2019.01.043.
13. Bucekova M, Jardekova L, Juricova V et al., Antibacterial activity of different blossom Honeys: New findings, Molecules, 2019; 168HT 29212 (µg/ml) 128 ND 64 16 – >64 µM 74

Table 4: (Continued)
15. Mama M, Teshome T, Detamo J. Antibacterial activity of Honey against Methicillin-Resistant *Staphylococcus aureus*: A laboratory-based experimental study, International Journal of Microbiology, 2019; Article ID 7686130, 9 pages, DOI: 10.1155/2019/7686130.

16. Roy S, Mandal M, Pal NK et al., Exploration of antibiotic and antioxidative property of two natural honey samples from Malda District, India, Translational Medicine (Sunnyside) 2016; 6(4): DOI: 10.4172/2161-1025.1000187.

17. Shah T, Ali N, Shah Z et al., Antibacterial activity of Pakistani Honey, Journal of Scientific and Industrial Research Series B: Biological Sciences, 2019; 62(2):97-100.

18. Suganthi K, Saranraj P, Antibacterial and antifungal activity of Natural and Commercial Honey - A comparative study, Asian Journal of Applied Research, 2018; 4(3):37-41. DOI: 10.20468/ajar.2018.02.06.

19. Tsawea E, Moses D. Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds, Journal of Apicultural Research, 2019; 58(5):75-63. DOI: 10.1080/00200854.2019.1649570.

20. Deshmukh SR, Ashrit DS, Patil BA, Extraction and evaluation of insole alkaloids from *Rauwolfia Serpentina* for their antimicrobial and antiproliferative activities, International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(5):329-334.

21. Shrivastav A, Shrivastav N. Antibacterial activity of Bhui amla (*Phyllanthus niruri*), Pharma Science Monitor, 2017; 7(4):222-228.

22. Zaidan MRS, Noor Rain A, Badrul Hoque SKM, Chakraborty A, Dey D et al., Improved antioxidant activity of *Aloe vera* leaf against oral microbes, Journal of Mahatma Gandhi Institute of Medical Sciences, 2018; 23:73-6. DOI: 10.4103/jmgims.jmgims_4_16.

23. Verma M, Kumar A. Antimicrobial and antioxidant activity of whole plant extracts of *Bacopa monnieri* (*L.*) Pennell, International Journal of Applied Biology and Pharmaceutical Technology, 2017; 8(2):74-79. DOI: 10.21276/ijabpt.

24. Khazee SKM, Chakrabarty A, Dey D et al., Improved micropropagation of *Bacopa monnieri* (*L.*) Wettst. (Plantaginaceae) and antimicrobial activity of in vitro and ex vitro raised plants against multidrug-resistant clinical isolates of urinary tract infecting (UTI) and respiratory tract infecting (RTI) bacteria, Clinical Mycology, 2017; 3(17):1-10. DOI: 10.1016/j.ajfs.2016.07-0019.

25. Mehmood S, Gull S, Muchtaj A et al., In vitro antibacterial and antioxidant activities of *Santalum album* and cymbopogon by sequential extraction, The Professional Medical Journal, 2019; 26(5):717-722. DOI: 10.29309/TPMJ/v2019.26.053462.

26. Singh HK, Charan AA, Charan AI et al., Antifungal and antibacterial activity of methanolic, ethanolic and acetic leaf extracts of *Sarpagandha* (*Rauwolfia serpentine*), Journal of Pharmacognosy and Phytochemistry, 2017; 6(5):152-156.

27. Kalita C, Saikia A,arma A et al., Antibacterial and antifungal property of three plants against oral microbes, Journal of Mahatma Gandhi Institute of Medical Sciences, 2018; 23:73-6. DOI: 10.4103/jmgims.jmgims_4_16.

28. Mandal M, Mandal S, Evaluation of antibacterial growth inhibition property and phytochemical analysis of *Ocimum sanctum* L. leaf extract, International Research Journal of Pharmacy, 2018; 7(4):46-51. DOI: 10.5897/jiphic.v8i7.2017014.

29. Kucük DB, Gölpak CD, Aydin S. An Investigation of Antibacterial and Antioxidant Activity of *Nettle* (Urtica dioica L.), Mint (*Mentha piperita*), Thyme (*Thymus serpyllum*) and *Chenopodium album* L. Plants from Kayłak Plateau, Giresun, Turkey, Turkish Journal of Agriculture - Food Science and Technology, 2019; 7(1):73-80. DOI: 10.24295/turjaf.v7i1.202123.

30. Verma M, Pandey M, Shukla SK et al., Antibacterial activity of *Mentha piperita* and *Citrus limetta* against Propionibacterium acnes (anaerobic bacteria), International Journal of Pharmaceautical Sciences and Research, 2019; 7(7):2917-24. DOI: 10.1016/j.jiphic.v11.01.35.

31. Dey D, Mandal M, Mandal S, Antimicrobial activity of *Azadirachta indica* and *Acacia nilotica* leaf extracts against oral microbes, Journal of Drug Del Innovation Journal, 2019; 8(6):691-694. DOI: 10.4103/jpbs.JPBS_150_18.

32. Mandal M, Mandal S, *Syzgium cumini* and *Magnifera indica* seed extracts: In Vitro assessment for antibacterial activity alone and in combination with antibiotics against human pathogenic bacteria, Translational Medicine (Sunnyside), 2019; 6(4):188. DOI: 10.4172/2161-1025.1000188.

33. Mandal M, Mandal S, Y. 2020.9.25 MBTJ. 10.30574/gscbpc.2020.12.02.20252.

34. Deshmukh SR, Ashrit DS, Patil BA, Extraction and evaluation of insole alkaloids from *Rauwolfia Serpentina* for their antimicrobial and antiproliferative activities, International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(5):329-334.

35. Singaravelu S, Dahiya SK, Satyanarayana AA, Charan AI et al., Antifungal and antibacterial properties of *Phyllanthus amarus* and *Acacia nilotica* (*Schum & Thonn*), Bayero Journal of Pure and Applied Sciences, 2017; 10(1):238-246. DOI: 10.4314/bajopas.v10i1.35.

36. Mandal M, Mandal S, *Syzygium cumini* and *Magnifera indica* seed extracts: In Vitro assessment for antibacterial activity alone and in combination with antibiotics against clinical bacteria. Journal of Infectious Diseases & Preventive Medicine, 2016; 4(1):129. DOI: 10.4172/2329-8737.1000129.

37. Mandal M, Mandal S, Antimicrobial and antioxidant activity of *Punica granatum* fruit peel extracts against antibiotic resistant gram-negative pathogen bacteria, Bioscience Biotechnology Research Communications, 2019; 12(02):136-142. DOI: 10.30574/gscbpc.2020.12.02.20252.

38. Sircar D, Mandal M, Screening of *Elaeocarpus floribundus* fruit extracts for bioactive phytocomponents and antibacterial activity against food-borne bacteria. International Journal of Research in Medical Sciences, 2017; 5(6):3655-3671. DOI: 10.18203/2320-6012.jrims201735822.

39. Mandal M, Mandal S, *Syzygium cumini* and *Magnifera indica* seed extracts: In Vitro assessment for antibacterial activity alone and in combination with antibiotics against clinical bacteria. Journal of Infectious Diseases & Preventive Medicine, 2016; 4(1):129. DOI: 10.4172/2329-8737.1000129.

40. Mandal M, Mandal S, Can Bacteriocins Curb the Emergence of Antibiotic Resistant Pathogenic Bacteria in the Globe?, Current Trends in Biomedical Engineering & Biosciences, 2018; 17(3):555964. DOI: 10.19080/TBBBB.2018.17.555964.

41. Mandal M, Mandal S, Antimicrobial and phytochemical analysis of *Piper longum* and *Piper nigrum*, The Pharma Innovation Journal, 2019; 9(3):224-226.

42. Mandal M, Mandal S, Can Bacteriocins Curb the Emergence of Antibiotic Resistant Pathogenic Bacteria in the Globe?, Current Trends in Biomedical Engineering & Biosciences, 2018; 17(3):555964. DOI: 10.19080/TBBBB.2018.17.555964.

43. Mandal M, Mandal S, Can Bacteriocins Curb the Emergence of Antibiotic Resistant Pathogenic Bacteria in the Globe?, Current Trends in Biomedical Engineering & Biosciences, 2018; 17(3):555964. DOI: 10.19080/TBBBB.2018.17.555964.

44. Mandal M, Mandal S, Antimicrobial and phytochemical analysis of *Piper longum* and *Piper nigrum*, The Pharma Innovation Journal, 2019; 9(3):224-226.

45. Mandal M, Mandal S, Can Bacteriocins Curb the Emergence of Antibiotic Resistant Pathogenic Bacteria in the Globe?, Current Trends in Biomedical Engineering & Biosciences, 2018; 17(3):555964. DOI: 10.19080/TBBBB.2018.17.555964.
51. Cotar et al, Quantitative real-time PCR study of the influence of probiotic culture soluble fraction on the expression of Pseudomonas aeruginosa quorum sensing genes, 2010; 69(4).

52. Chu et al, Identification and characterization of new potential probiotic bacteria based on quorum-sensing system, Journal of Applied Microbiology, DOI: 10.1111/j.1365-2672.2010.04872.x

53. Besser et al., Impact of probiotics on pathogen survival in an innovative human plasma biofilm model (hpBIOM), Journal of Translational Medicine, 2019; 7:243, DOI: 10.1186/s12967-019-1990-4

54. Akbar A, Sadiq MB, Ali I, et al., Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential, QTA - Journal of Food, 2019; 17(1):214-220, DOI:10.1080/19476337.2019.1575474

55. Alang et al., Identification of lactic acid bacteria as antimicrobial agents from milk Toraja Belang buffalo, International Conference on Green Agro-industry and Bioeconomy, DOI:10.1088/1755-1315/230/1/012092

56. Halder et al., Indigenous Probiotic Lactobacillus Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria, Biomedicines, 2017; 5(31) DOI: 10.3390/biomedicines5020031

57. Halder D, Mandal S, Insights into the antagonism of Lactobacillus fermentum curd isolate against Gram-positive and Gram-negative pathogenic bacteria, Bioscience Biotechnology Research Communications, 2018; 11(3):461-468.

58. Paté A, Lindström C, Patel A, Prajapati J, Holst O, Probiotic properties of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented foods. Internationa Journal of Fermented Foods, 2012; 1(1):87-101.

59. Cusimano MG, Spinello A, Barone G et al., A Synthetic derivative of antimicrobial peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the control of Listeria monocytogenes, Marine Drugs, 2019; 17(159):1-11. DOI: 10.3390/md17030159

60. Patel A, Lindström C, Patel A, Prajapati J, Holst O, Probiotic bacteria based on quorum sensing system, Advances in Biochemistry, 2019; 7(1):22-33. DOI: 10.11648/j.abs.20190701.15

61. Mandal SM, Silva ON, Franco OL, Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients, Drug Discovery Today, 2014; 19(8):1045-1050. DOI: 10.1016/j.drudis.2014.05.019

62. Ahmed TAE, Hammami R, Recent insights into structure-function relationships of antimicrobial peptides, Journal of Food Biochemistry, 2019; 43:e12546. DOI: 10.1111/jfbc.12546

63. Farhana et al, Isolation of Antimicrobial Peptide from Food Protein Hydrolysates: An Overview, Key Engineering Materials, 2019; 797:168-176.

64. Pottanat et al, Analysis of the Ribonuclease A Superfamily of Antimicrobial Peptides in Students. Undergoing Chronic Peritoneal Dialysis, Scientific reports, 2019; 9:7753 DOI: 10.1038/s41598-019-44219-x

65. Frechichi M, Frere J, Mabrouk K et al. Lactococcus MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiology Letters, 2001; 205:55.

66. Gong HS, Meng XC, Wang H, Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium, Journal of Basic Microbiology, 2010; 50(1):37-45. DOI: 10.1002/jobm.201000130

67. Arumugam V, Venkatesan M, Ramachandran K et al., Purification, characterization and antibacterial properties of peptide from marine Ascidian Didemnum sp. International Journal of Peptide Research and Therapeutics, 2019; 26:201-208. DOI: 10.1007/s10989-019-09829-z

68. Freitas et al, Encrypted antimicrobial and antitumoral peptides recovered from a protein rich soybean (Glycine max) by-product, Journal of Functional Foods, 2019; 54:187-198.

69. Gao et al, Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism, Food & Function, DOI:10.1039/c9fo00236g

70. Li B, Lyu P, Xie S et al., LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensis, Biomolecules, 2019; 9(24):1-13. DOI: 10.3390/biom9060240

71. Fesenko I, Azarkina R, Kirov I et al., Phytotoxin treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens, BMC Plant Biology, 2019; 20:201. DOI: 10.1007/s10989-019-09829-z

72. Samriti, Biswas R, Biswas K, Antibacterial activity of antimicrobial peptide extracted from Trianthema portulacastrum Leaves, The Pharma Innovation Journal, 2019; 8(3):81-86.

73. Alexander P, Oyama L, Huws S, Utilizing novel antimicrobial peptides isolated from the rumen microbiome as a treatment method for Acinetobacter baumannii, Queen’s University Belfast. Access Microbiology, 2019; 1(1A):1. DOI: 10.1099/acmi.2019.p00404

74. Rončević T, Krc I, Gerdol M et al., Membrane-active antimicrobial peptide identified in Rana arvalis by targeted DNA sequencing. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2018; 1861(3):651-659. DOI: 10.1016/j.bbamem.2018.12.014