Research Article

Inclusion Relations between α-Modulation Spaces and Triebel–Lizorkin Spaces

Mohammad Ali, Hasan Baddour, and Boushra Darrag

Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria

Correspondence should be addressed to Boushra Darrag; boushra.darrag92@gmail.com

Received 30 July 2019; Accepted 3 October 2019; Published 30 January 2020

Academic Editor: Stanislav Hencl

Copyright © 2020 Mohammad Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we obtain conditions of the inclusion relations between α-modulation spaces and Triebel–Lizorkin spaces.

1. Introduction

The modulation space $M_{p,q}^\alpha$ was first introduced by Feichtinger [1] in 1983 by the short-time Fourier transform. Modulation space has a close relationship with the topics of time-frequency analysis (see [2]), and it has been regarded as a proper space for the study of partial differential equations (see [3–5]).

The α-modulation space is introduced by Gröbner [6] to link Besov and modulation spaces by the parameter $0 \leq \alpha \leq 1$. One can find some basic properties about α-modulation spaces in [7, 8]. Among many features of the α-modulation spaces, an interesting subject is the inclusion between α-modulation and function spaces, which has been concerned by many authors to this topic, see [8–11]. As applications, α-modulation spaces are quite recently applied to the field of partial differential equations. In [12], Misiolek and Yoned proved locally ill-posedness of the Euler equations in the frame of α-modulation spaces. Furthermore, Han and Wang [13] proved a global well-posedness for the nonlinear Schrödinger equation on α-modulation spaces, and also in [14] studied the Cauchy problem for the derivative nonlinear Schrödinger equation on α-modulation spaces.

Remark 1. Modulation spaces are special α-modulation spaces in the case $\alpha = 0$, so our theorems also works well in the special case $\alpha = 0$.

In this research, we are interested in studying the inclusion relations between α-modulation spaces $M_{p,q}^{\alpha}$ and Triebel–Lizorkin spaces $F_{p,q}$ for $p \leq 1$, which greatly improve and extend the results for the inclusion relations between local Hardy spaces and α-modulation spaces obtained by Kato in [10].

2. Preliminaries

The notation $X \lesssim Y$ denotes the statement that $X \lesssim CY$ with a positive constant C that may depend on n, α, p, q, s, r. The notation $X \sim Y$ means the statement $X \leq CY$ and the notation $X = Y$ stands for $X = CY$. For a multi-index $k = (k_1, k_2, \ldots, k_n) \in \mathbb{Z}^n$, we denote $|k|_{\infty} := \max_{i=1,2,\ldots,n}|k_i|$, $|k| = |k_1| + \cdots + |k_n|$ and $k \gtrsim (1 + |k|^2)^{1/2}$.

Let $S := S(\mathbb{R}^n)$ be the Schwartz space and $S' := S'(\mathbb{R}^n)$ be the space of tempered distributions. We define the Fourier transform $\mathcal{F}f$ and the inverse Fourier transform $\mathcal{F}^{-1}f$ of $f \in S(\mathbb{R}^n)$ by

$$
\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} \, dx \quad \text{and} \quad \mathcal{F}^{-1}f(x) = \hat{f}(-x) = \int_{\mathbb{R}^n} f(\xi) e^{2\pi i \xi \cdot x} \, d\xi.
$$

We give some definitions and properties of sequences.

Definition 2. Let $0 < p, q < \infty$, $s, r \in \mathbb{R}, \alpha \in [0, 1)$. Let $\{a_k\}_{k \in \mathbb{Z}^n}$ be a sequence, we denote its ℓ_p^α (quasi-) norm

$$
\|\{a_k\}\|_{\ell_p^\alpha} = \begin{cases}
\left(\sum_{k \in \mathbb{Z}^n} |a_k|^p \langle k \rangle^{q(1-\alpha)} \right)^{1/p} & 0 < p < \infty, \\
\sup_{k \in \mathbb{Z}^n} |a_k| \langle k \rangle^{s(1-\alpha)} & p = \infty,
\end{cases}
$$
and let \(e_p^{a,0} \) be the (quasi-) Banach space of sequences whose \(e_p^{a,1} \) (quasi-) norm is finite.
Let \(\{ b_j \}_{j \in \mathbb{N}} \) be a sequence, we denote its \(e_p^{a,1} \) (quasi-) norm
\[
\left\| \{ b_j \} \right\|_{e_p^{a,1}} = \left(\sum_{j \in \mathbb{N}} |b_j|^p \right)^{1/p} ; \quad 0 < p < \infty ,
\]
and let \(e_p^{a,0} \) be the (quasi-) Banach space of sequences whose \(e_p^{a,1} \) (quasi-) norm is finite.
Let \(\{ c_k \}_{k \in \mathbb{Z}^n} \) be a sequence, we denote its \(e_p^{a,0} \) (quasi-) norm
\[
\left\| \{ c_k \} \right\|_{e_p^{a,0}} = \left(\sum_{k \in \mathbb{Z}^n} |c_k|^p \right)^{1/p} ; \quad p = \infty ,
\]
and let \(e_p^{a,0} \) be the (quasi-) Banach space of sequences whose \(e_p^{a,1} \) (quasi-) norm is finite.

We recall some embedding lemmas about sequences defined above.

Lemma 3 (sharpness of embedding, for uniform decomposition). Suppose \(0 < p, q \leq \infty , s_1, s_2 \in \mathbb{R} \). Then
\[
e_p^{a,1} \subsetneq e_q^{a,1},
\]
holds if and only if
\[
s_1 \leq s_2 , \quad \frac{1}{q} \leq \frac{1}{p} + \frac{1}{n} ,
\]
or
\[
s_1 = s_2 , \quad p = q .
\]

Lemma 4 (sharpness of embedding, for dyadic decomposition). Suppose \(0 < p, q \leq \infty , s_1, s_2 \in \mathbb{R} \). Then.
\[
e_p^{a,1} \subsetneq e_q^{a,1},
\]
holds if and only if
\[
s_2 < s_1 , \quad \frac{1}{q} < \frac{1}{p}.
\]

Lemma 5 (sharpness of embedding, for \(\alpha \)-decomposition). Suppose \(0 < p, q \leq \infty , s_1, s_2 \in \mathbb{R} , \alpha \in [0, 1) \). Then
\[
e_p^{a,0} \subsetneq e_q^{a,0},
\]
holds if and only if
\[
\frac{1 - \alpha}{q} + \frac{s_2}{n} < \frac{1 - \alpha}{p} + \frac{s_1}{n} , \quad \frac{1}{q} \leq \frac{1}{p}.
\]
Let \(Q^n \) be the collection of all cubes \(Q_{v,k} \) in \(\mathbb{R}^n \) with sides parallel to the axes, centered at \(2^{-v}k \), and with side length \(2^{-v} \), where \(k \in \mathbb{Z}^n \) and \(v \in \mathbb{N}_p \).

Let \(Q \) be a cube in \(\mathbb{R}^n \) and \(m > 0 \), then \(mQ \) is the cube in \(\mathbb{R}^n \) concentric with \(Q \) and with side length \(m \) times the side length of \(Q \). We write \((v,k) < (v',k')\) if \(v \geq v' \) and

\[
Q_{v,k} \subset 2Q_{v',k'} \quad \text{with} \quad Q_{v,k} = 2Q_{v,k'} \subset Q^n.
\]

Let \(a \in \mathbb{R} \), then \(a_e = \max(a,0) \) and \([a]\) stands for the largest integer less than or equal to \(a \).

Definition 7 (see [16]). Let \(s \in \mathbb{R}, 0 < p \leq 1 < r \leq \infty \). Let \(K \) and \(L \) be integers with

\[
K \geq (\lceil s \rceil + 1)s, \quad \text{and} \quad L \geq \max\left\{\left\lfloor n\left(\frac{1}{p} - 1\right) - s\right\rfloor, -1\right\}.
\]

(1) The (complex-valued) function \(f(x) \) is called a \(s \)-atom if \(\supp a \subset 5Q \), for some \(Q = Q_{v,k} \in \mathbb{R}^n \) and

\[
|D^\alpha f(x)| \leq 1 \quad \text{for} \quad |\alpha| \leq K.
\]

(2) Let \(Q = Q_{v,k} \in \mathbb{R}^n \). The (complex-valued) function \(f(x) \) is called a \((Q,s,p,r)-\)atom if (20) is satisfied,

\[
|D^\alpha f(x)| \leq |Q|^{-1/r + (s/n) - (|\alpha|/n)} \quad \text{for} \quad |\alpha| \leq K,
\]

and

\[
\int_{\mathbb{R}^n} x^\beta f(x) dx = 0 \quad \text{for} \quad |\beta| \leq L.
\]

(3) The distribution \(g \in S' \) is called an \((s,p,r)-\)atom if

\[
g = \sum_{\mu \in E(s,k)} d_{\mu} a_{\mu}(x) \quad \text{(convergence in} \mathcal{F}_{p,r}')
\]

for some \(v \in \mathbb{N}_p \) and \(k \in \mathbb{Z}^n \), where \(a_{\mu}(x) \) is a \((Q_{v,k},s,p,r)-\)atom and \(d_{\mu} \) are complex numbers with

\[
\left(\sum_{\mu \in E(s,k)} |d_{\mu}| \right)^{1/p} \leq |Q_{v,k}|^{(1/p) - (1/q)}
\]

with usual modification if \(q = \infty \).

Lemma 8 (see [16]). Let \(s \in \mathbb{R}, 0 < p \leq 1 < r \leq \infty \). Let \(K \) and \(L \) be fixed integers satisfying (19). Then \(f \in S' \) is an element of \(\mathcal{F}_{p,r}' \) if and only if it can be represented as

\[
f = \sum_{j=1}^{\infty} (\mu_j a_j + \lambda_j g_j) \quad \text{(convergence in} S')
\]

where \(a_j \) are \(s \)-atoms, \(g_j \) are \((s,p,r)-\)atoms, \(\mu_j \) and \(\lambda_j \) are complex numbers with

\[
\left(\sum_{j=1}^{\infty} |\mu_j|^p + |\lambda_j|^p \right)^{1/p} \leq \|f\|_{p,r}'.
\]

We also give the following lemma for inclusion relations between Besov and \(\alpha \)-modulation spaces [8].

Lemma 9. Let \(0 < p, q \leq \infty \), and \(s \in \mathbb{R} \). Then the following tow statement are true:

1. \(M_{p,q}^\alpha \subset M_{p,q}^\alpha \quad \text{if and only if} \quad s > 0 \vee \left[n(\alpha - 1) \left(\frac{1}{p} - \frac{1}{q} \right) \right] \vee \left[n(\alpha - 1) \left(1 - \frac{1}{p} \right) \right].
\]

2. \(B_{p,q} \subset M_{p,q}^\alpha \quad \text{if and only if} \quad s \leq 0 \wedge \left[n(\alpha - 1) \left(\frac{1}{p} - \frac{1}{q} \right) \right] \wedge \left[n(\alpha - 1) \left(1 - \frac{1}{p} \right) \right] \).

Lemma 10 (Young’s inequality).

(1) \(0 < p \leq 1, R > 0, \supp f, \supp g \subseteq B(x,R) \subseteq \mathbb{R}^n \).

We have

\[
\|f \ast g\|_L_s \leq CR_{R^p}(1/p - 1)\|f\|_L_s \|g\|_L_s.
\]

for all \(f, g \in S(\mathbb{R}^n) \) and \(R > 0 \), where \(C \) independent of \(x \in \mathbb{R}^n \).

(2) \(1 \leq p, q, r \leq \infty \) satisfy \(1 + (1/q) = (1/p) + (1/r) \).

Then we have

\[
\|f \ast g\|_L_s \leq \|f\|_L_s \|g\|_L_s.
\]

The following Bernstein multiplier theorem will be used in our proof.

Lemma 11 (Bernstein multiplier theorem). Let \(0 < p \leq 1, \partial^p f \in L_2 \) for \(|\partial| \leq |n(1 - \alpha)((1/p) - (1/2))| + 1 \).

Then,

\[
\left\| \partial^p f \right\|_{L^p} \leq \sum_{|\partial| \leq |n(1 - \alpha)((1/p) - (1/2))|+1} \left\| \partial^p f \right\|_{L^p}.
\]

3. Main Results

Now, we state our main results as follows.

Theorem 12. Let \(0 < p \leq 1, 0 < q, r \leq \infty \), \(s \in \mathbb{R} \), and \(0 \leq \alpha < 1 \). Then, \(M_{p,q}^\alpha(\mathbb{R}^n) \subset F_{p,q}^\alpha(\mathbb{R}^n) \) holds if and only if either of the following conditions is satisfied.

1. \(p \geq q, s \geq 0, 1 \leq \frac{1}{p} \leq \frac{1}{q} \).
2. \(p < q, s > n(1 - \alpha)\left(\frac{1}{p} - \frac{1}{q} \right) \).

Theorem 13. Let \(0 < p \leq 1, 0 < q, r \leq \infty \), \(s \in \mathbb{R} \), and \(0 \leq \alpha < 1 \). Then, \(F_{p,q}^\alpha(\mathbb{R}^n) \subset M_{p,q}^\alpha(\mathbb{R}^n) \) holds if and only if either of the following conditions is satisfied.

1. \(p > q, s < -n(1 - \alpha)\left(\frac{1}{p} + \frac{1}{q} - 1 \right) \).
2. \(p \leq q, s \leq -n(1 - \alpha)\left(\frac{1}{p} + \frac{1}{q} - 1 \right) \).

We prove the following two propositions used for the proof of the Theorem 12.
Proposition 14. Let \(0 < p < \infty \), \(0 < q, r \leq \infty \), \(s \in \mathbb{R} \), and \(0 \leq \alpha < 1 \). Then we have

\begin{align*}
(1) \quad & M_{p,q}^{\alpha} \subset F_{p,r} \Rightarrow \mathcal{E}_{q}^{\alpha(1-\alpha)} \subset \mathcal{E}_{r}^{\alpha}, \\
(2) \quad & F_{p,r} \subset M_{\alpha}^{p,q} \Rightarrow \mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{r}^{\alpha(1-\alpha)}. \quad \Box
\end{align*}

Proof. Take \(f \) to be a nonzero smooth function whose Fourier transform has small support, such that \(\hat{f}_{k} \in \mathcal{F}_{p} \) if \(\mathbf{k} \neq \mathbf{m} \), where we denote \(\mathbf{f}_{k} = \hat{f}(k) \). We denote \(\mathbf{f}_{k} = \hat{f}(k) \). Denote

\[E = \sum_{k \in \mathbb{Z}} a_{k} f_{k}. \]

For a truncated (only finite non-zero items) non-negative sequence \(\{ a_{k} \}_{k \in \mathbb{Z}} \), we have

\[\|E\|_{F_{p,r}} = \left(\sum_{k \in \mathbb{Z}} |a_{k}|^{r} \right)^{1/r} \sim \left(\sum_{k \in \mathbb{Z}} |a_{k}|^{\alpha} \right)^{1/r}. \]

On the other hand, we use Proposition 15 and Lemma 3 to deduce that \(E \) is a smooth function whose Fourier sequence \(\{ a_{k} \}_{k \in \mathbb{Z}} \) non-negative sequence \(\{ a_{k} \}_{k \in \mathbb{Z}} \), where \(N \) is some large integer.

By the definition of \(\alpha \)-modulation space \(M_{p,q}^{\alpha} \), we have

\begin{align*}
\|H_{N}\|_{M_{p,q}^{\alpha}} &= \left(\sum_{k \in \mathbb{Z}} \|H_{N}^{k} \|_{L_{p}}^{q} \right)^{1/q} \\
&= \left(\sum_{k \in \mathbb{Z}} \|c_{k} f_{k}^{N} \|_{L_{p}}^{q} \right)^{1/q} \\
&= \left(\sum_{k \in \mathbb{Z}} \|c_{k}^{q} f_{k}^{q} \|_{L_{p}}^{q} \right)^{1/q} \\
&= \left(\sum_{k \in \mathbb{Z}} \|c_{k} f_{k} \|_{L_{p}}^{q} \right)^{1/q} \\
&= \|c_{k} f_{k} \|_{L_{p}}^{q}. \quad \Box
\end{align*}

Thus, we obtain \(\mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{r}^{\alpha} \) if \(M_{p,q}^{\alpha} \subset F_{p,r} \).

On the other hand, we use Proposition 15 and Lemma 5 to deduce that \(\mathcal{E}_{r}^{\alpha} \subset \mathcal{E}_{q}^{\alpha} \), which implies \((1/r) \leq (1/q) \).

For \(q \geq p_{0} \), using Proposition 14 and Lemma 3 to deduce \(\mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{p_{0}}^{\alpha} \), which implies \(s > n(1-\alpha)/(1-(1/q)). \)

Sufficiency. For \(q \geq p \). We have \((1/r) \leq (1/q) \), and then \(M_{p,q}^{\alpha} \subset B_{p,q} \). Using Lemma 9, we obtain \(M_{p,q}^{\alpha} \subset B_{p,q} \). Thus we deduce that \(M_{p,q}^{\alpha} \subset B_{p,q} \subset F_{p,q} \subset F_{p,r} \).

Thus, we obtain \(\mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{r}^{\alpha} \) if \(M_{p,q}^{\alpha} \subset F_{p,r} \).

Proposition 15. Let \(0 < p < \infty \), \(0 < q, r \leq \infty \), \(s \in \mathbb{R} \) and \(0 \leq \alpha < 1 \). Then we have

\begin{align*}
M_{p,q}^{\alpha} \subset F_{p,r} \Rightarrow \mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{r}^{\alpha}, \\
M_{p,q}^{\alpha} \subset F_{p,r} \Rightarrow \mathcal{E}_{q}^{\alpha} \subset \mathcal{E}_{r}^{\alpha}. \quad \Box
\end{align*}
Proof. Let \(g \) be a nonzero Schwartz function whose Fourier transform has compact support in \(\{ \xi : 3/4 \leq |\xi| \leq 4/3 \} \), satisfying \(g(\xi) = 1 \) on \(\{ \xi : 7/8 \leq |\xi| \leq 8/7 \} \). Set \(\tilde{g}(\xi) = \tilde{g}(\xi/2^j) \). By the definition of \(\Delta_j \), we have \(\Delta_j g_j = g_j \) for \(j \geq 0 \), and \(\Delta_j g_j = 0 \) if \(j \neq i \). Denote
\[
A_j = \left\{ k \in \mathbb{Z}^n : g_j^N = F^{−1} \eta^N_k \right\}, \quad A_j = \left\{ k \in \mathbb{Z}^n : g_j^N \neq 0 \right\},
\]
we have \(|A_j| \sim |A_j| \sim 2^{2(j−1)} \) for \(j \geq N \), where \(N \) is a sufficiently large number. We define
\[
G_N = \sum_{j \geq N} b_j^N, \quad g_j^N(x) = g_j(x − jN),
\]
for a truncated (only finite nonzero items) nonnegative sequence \(\{b_j^N\} \).

We first prove that the inclusion \(M^{fa}_{p,q} \subset F_{p,s} \) implies \(\varepsilon_j^{\rho(1−\alpha)/q+\alpha(1−(1/p))}<1 \subset \varepsilon_{p}^{\rho(1−(1/p))}<1 \). By the definition of \(\alpha \)-modulation space, we obtain that
\[
\|G_N\|_{M^{fa}_{p,q}} = \left(\sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| b_k g_N \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| b_k^N \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{j \geq N} \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| F^{−1} \eta^N_k \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho}. \]

Hence,
\[
\|G_N\|_{M^{fa}_{p,q}} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho}. \]

Thus, if \(M^{fa}_{p,q} \subset F_{p,s} \), we obtain the desired inclusion
\[
\varepsilon_j^{\rho(1−\alpha)/q+\alpha(1−(1/p))}<1 \subset \varepsilon_{p}^{\rho(1−(1/p))}<1. \]

Next we prove that the inclusion \(F_{p,s} \subset M^{fa}_{p,q} \) implies \(\varepsilon_p^{\rho(1−(1/p))} \subset \varepsilon_{p}^{\rho(1−(1/p))} \). By the definition of \(\alpha \)-modulation space, we obtain that
\[
\|G_N\|_{M^{fa}_{p,q}} = \left(\sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| b_k g_N \|_{L_p}^\rho \right)^{1/\rho} \geq \left(\sum_{j \geq N} \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| b_k^N \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{j \geq N} \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| \Delta_j g_j \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{j \geq N} \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\rho(1−\alpha)} \| \Delta_j g_j \|_{L_p}^\rho \right)^{1/\rho} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho}. \]

On the other hand, we turn to the estimate of \(\|G_N\|_{F_{p,s}} \), using the orthogonality of \(\{g_j^N\} \) as \(N \to \infty \), we obtain
\[
\|G_N\|_{F_{p,s}} = \left(\sum_{j \geq N} \| \Delta_j g_j^N \|_{L_p}^{\rho} \right)^{1/\rho} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho} \leq \left(\sum_{j \geq N} \| b_j^N \|_{L_p}^{\rho} \right)^{1/\rho}. \]

Hence,
\[
\lim_{N \to \infty} \|G_N\|_{F_{p,s}} = \|b_j\|_{L_p}^{\rho(1−(1/p))}. \]

Thus, if \(F_{p,s} \subset M^{fa}_{p,q} \), we obtain the desired inclusion
\[
\varepsilon_p^{\rho(1−(1/p))} \subset \varepsilon_{p}^{\rho(1−(1/p))}. \]

Proposition 17. Let \(0 < p \leq 1 \). We have the following inclusion relation:
\[
F_{p,\alpha}^{(2/p)−1} \subset M^{fa}_{p,q}. \]
Proof. We first verify
\[\|a\|_{M_{\nu}^{\alpha}} \leq 1, \quad (53) \]
for any \(n(1 - \alpha)((2/p) - 1) \)-atom \(a \). Tack \(a \) to be an \(n(1 - \alpha) \)
\(((2/p) - 1) \)-atom as in Definition 7 (with \(s = n(1 - \alpha)((2/p) - 1) \)). Observing that \(K \geq n(1 - \alpha)((2/p) - 1) \) \(+ 1 \geq n(1 - \alpha) \)
\(((1/p) - (1/2)) \) \(+ 1 \), we have
\[|\tilde{\partial}^\beta a| \leq 1, \quad (54) \]
for \(|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) \) \(+ 1 \). By the Bernstein multiplier theorem, we have the following estimate of \(a \):
\[\|a\|_{M_{\nu}^{\alpha}} \sim \|F^{-1} a\|_{L_2} \leq \sum_{\{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) \} + 1} \|\tilde{\partial}^\beta a\|_{L_2} \leq 1. \quad (55) \]
Next, we turn to the estimate of an \((s, p, \infty) \)-atom for \(F_{p,\infty}^{(n-1)\alpha}(2/p-1) \). By Definition 7, an \((s, p, \infty) \)-atom \(g \) can be represented by
\[g = \sum_{(\mu,j) \in (k,v)} d_{\mu,j}a_{\mu,j}(x) \quad \text{convergence in } F_{p,\infty}^{(n-1)\alpha}(2/p-1), \quad (56) \]
for some \(k \in \mathbb{Z}^n \) and \(v \in \mathbb{N}_p \), where \(a_{\mu,j} \) are \((\mu,j, s, p, \infty) \)-atoms and \(d_{\mu,j} \) are complex numbers with
\[\sup_{(\mu,j) \in (k,v)} |d_{\mu,j}| \leq |Q_{\mu,j}|^{-1/p}, \quad (57) \]
for a fixed \(\tau \leq v \), we denote
\[g_{\tau} = \sum_{(\tau,j) \in (k,v)} d_{\mu,j}a_{\mu,j}(x). \quad (58) \]
Then, \(g \) can be represented by
\[g = \sum_{\tau \leq v} g_{\tau} \quad \text{convergence in } F_{p,\infty}^{(n-1)\alpha}(2/p-1), \quad (59) \]
We now concentrate on the estimate of \(g_{\tau} \). By Definition 7, we have,
\[|\tilde{\partial}^\beta g_{\tau}| \leq \sum_{(\tau,j) \in (k,v)} d_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \leq \sum_{(\tau,j) \in (k,v)} d_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \leq |Q_{\mu,j}|^{-1/p} |\tilde{\partial}^\beta a_{\mu,j}(x)|, \quad (60) \]
for \(|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) \) \(+ 1 \). Recalling \(\text{supp } a_{\mu,j} \subset 5Q_{\mu,j} \), we use (60) and the almost orthogonality of \(a_{\mu,j} \) to deduce that
\[|\tilde{\partial}^\beta g_{\tau}| \leq \sum_{(\tau,j) \in (k,v)} d_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \leq \sum_{(\tau,j) \in (k,v)} d_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \leq |Q_{\mu,j}|^{-1/p} |\tilde{\partial}^\beta a_{\mu,j}(x)|, \quad (61) \]
for all \(|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) \) \(+ 1 \). By the Bernstein multiplier theorem, we deduce that
\[\|g_{\tau}\|_{M_{\nu}^{\alpha}} \sim \|F^{-1} g_{\tau}\|_{L_2} \leq \sum_{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) + 1} \|\tilde{\partial}^\beta g_{\tau}\|_{L_2} \leq \sum_{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) + 1} |Q_{\mu,j}|^{(1/p)-1} |\tilde{\partial}^\beta a_{\mu,j}(x)|. \quad (62) \]
By a dilation argument, we have
\[\|g_{\tau}\|_{M_{\nu}^{\alpha}} \sim \|F^{-1} g_{\tau}\|_{L_2} \leq \sum_{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) + 1} |Q_{\mu,j}|^{(1/p)-1} |\tilde{\partial}^\beta a_{\mu,j}(x)|. \quad (63) \]
Thus,
\[\|g_{\tau}\|_{M_{\nu}^{\alpha}} \leq \sum_{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) + 1} \|\tilde{\partial}^\beta g_{\tau}\|_{L_2} \leq \sum_{|\delta| \leq n(1 - \alpha)((1/p) - (1/2)) + 1} |Q_{\mu,j}|^{(1/p)-1} |\tilde{\partial}^\beta a_{\mu,j}(x)| \sim 1. \quad (64) \]
By Lemma 8 we have
\[\|f\|_{M_{\nu}^{\alpha}} \leq \sum_{j=1}^{\infty} \left(\sum_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \right)^{1/p} \leq \sum_{j=1}^{\infty} \left(\sum_{\mu,j} |\tilde{\partial}^\beta a_{\mu,j}(x)| \right)^{1/p} \leq \sum_{j=1}^{\infty} \left(\sum_{\mu,j} \right)^{1/p} \leq \|f\|_{F_{p,\infty}^{(n-1)\alpha}(2/p-1)}, \quad (65) \]
which is the desired conclusion. \(\square \)

Proof of Theorem 13. We divide this proof into two parts.

Sufficiency. For \(p \geq q \), by Lemma 9, we obtain \(B_{p,\infty} \subset M_{p,\infty}^{(n-1)\alpha}(1/(1/p)) \). Using \(F_{p,\infty} \subset B_{p,\infty} \) we deduce that
\[F_{p,\infty} \subset M_{p,\infty}^{(n-1)\alpha}(1/(1/p)) \alpha. \quad (66) \]
In addition, we have \(F_{p,\infty} \subset M_{p,\infty} \) by Proposition 17. By potential lifting, we obtain
\[F_{p,\infty} \subset M_{p,\infty}^{(n-1)\alpha}(1/(1/p)) \alpha. \quad (67) \]
Thus, the desired conclusion can be deduced by a standard interpolation argument between (66) and (67).

For \(p < q \), recalling \(F_{p,\infty} \subset M_{p,\infty}^{(n-1)\alpha}(1/(2/p)) \alpha \) obtained in Proposition 17, we deduce that
\[F_{p,\infty} \subset M_{p,\infty}^{(n-1)\alpha}(1/(2/p)) \alpha \subset M_{p,q}^{(n-1)\alpha}(1/(1/p) - (1/q)) - \varepsilon \alpha, \quad (68) \]
for any \(\varepsilon > 0, r \in (0, \infty) \).
Necessity. We use Proposition 16 to deduce inclusion relation $c_0^{(\alpha)}(1-(\alpha)/p)) \subset c_0^{(\alpha)}((\alpha)-1)$. Then, Lemma 4 yields that $s \leq -n(1-\alpha)((1/p)+(1/q)-1)$ for $p \leq q$, while the inequality is strict for $p > q$.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Tishreen University.

References

[1] H. G. Feichtinger, “Modulation spaces on locally compact Abelian group,” in Proceedings of the International Conference on Wavelet and their Applications, pp. 99–140, University of Vienna, New Delhi Allied Publishers, India, 1983.
[2] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, MA, 2001.
[3] M. Ruzhansky, M. Sugimoto, and B. Wang, “Modulation spaces and nonlinear evolution equations,” in Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol. 301, pp. 267–283, Springer, 2012.
[4] B. Wang and H. Hudzik, “The global cauchy problem for the NLS and NLKG with small rough data,” Journal of Differential Equations, vol. 232, no. 1, pp. 36–73, 2007.
[5] B. Wang and C. Huang, “Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations,” Journal of Differential Equations, vol. 239, no. 1, pp. 213–250, 2007.
[6] P. Gröbner, “Banachräume glatter Funktionen und Zerlegungsmethoden,” University of Vienna, 1992, Doctoral Thesis.
[7] W. Guo, D. Fan, H. Wu, and G. Zhao, “Sharpness of complex interpolation on α-modulation spaces,” Journal of Fourier Analysis and Applications, vol. 22, no. 2, pp. 427–461, 2016.
[8] J. Han and B. Wang, “α-modulation spaces (I) scaling, embedding and algebraic properties,” Journal of the Mathematical Society of Japan, vol. 66, no. 4, pp. 1315–1373, 2014.
[9] W. Guo, D. Fan, H. Wu, and G. Zhao, “Full characterization of inclusion relations between α-modulation spaces,” Science China Mathematics, vol. 61, no. 7, pp. 1243–1272, 2018.
[10] T. Kato, “On modulation spaces and their applications to dispersive equations,” Graduate School of Mathematics, Nagoya University, 2016, Doctoral Thesis.
[11] J. Toft and P. Wahlberg, “Embeddings of α-modulation spaces,” Pliska Studia Mathematica Bulgarica, vol. 21, pp. 25–46, 2012.
[12] G. Misiolek and T. Yoneda, “Loss of continuity of the solution map for the Euler equation in α-modulation and Hölder spaces,” 2014, https://arxiv.org/abs/1412.4619.
[13] J. Han and B. Wang, “α-modulation spaces and the cauchy problem for nonlinear Schrödinger equations,” in RIMS Kôkyûroku Bessatsu, vol. B49, pp. 119–130, Research Institute for Mathematical Sciences (RIMS), Kyoto, 2014.
[14] J. Han and B. Wang, ”α-modulation spaces (II) derivative NLS,” Journal of Differential Equations, vol. 267, no. 6, pp. 3646–3692, 2019.
[15] M. Fornasier, “Banach frames for α-modulation spaces,” Applied and Computational Harmonic Analysis, vol. 22, no. 2, pp. 157–175, 2007.
[16] H. Triebel, “Monographs in Mathematics,” Theory of function spaces. II, vol. 84, Birkhauser Verlag, Basel, 1992.