Antimicrobial evaluation of Amyrin acetate from the stem bark of *Ficus sycomorus* (Moraceae)

Boniface Josephus, Hassan Braimah Yesufu and Fatimah A Goje

DOI: https://doi.org/10.22271/tpi.2020.v9.i10a.5419

Abstract

In this study, the antimicrobial evaluation of alpha amyrin obtained from the stem bark of *ficus sycomorus* was reported. Standard method was adopted for the screening of phytochemicals, while a combination of column and preparative thin layer chromatography lead to the compound (FA) a light yellow crystal. The compound FA showed significant inhibition on the tested organisms, E.coli (IC₅₀ = 0.81) S. typhi (IC₅₀ = 0.84) S. aureus (IC₅₀ = 0.66) K. Pneumonia (IC₅₀ = 0.06) and was identified based on spectra evidence to contain a mixture of α-amyrin acetate.

Keywords: *Ficus sycomorus*, moraceae, triterpenoids, α-amyrin acetate, antimicrobial

1. **Introduction**

Ficus sycomorus belongs to moraceae, a family that is reputable for its medicinal values, and consist of about 40 genera and over 1,400 species of trees, vines and herbs, often with milky latex juices (Zerega et al., 2005) [1]. It is commonly known as fig mulberry. The Hausa people of Northern Nigeria call it Farin Baure or Bore. The genus Ficus consist of a variety of phytochemicals which includes phenolics, polyphenols, flavonoids, tannins, anthocyanins, coumarins, volatile components, glycosides, saponins, carotenoids, alkaloids, triterpenoids and vitamins (Nawaz et al., 2019) [2]. *Ficus* species have been used for a long time in herbal medicine. Traditionally, the plant is used for the treatment of sexually transmitted infections, gastrointestinal, respiratory, inflammatory, cardiovascular disorders, ulcerative diseases, and cancers. Adeshina et al. (2010) [3] reported the antibacterial activity of ethanol extract of *F. sycomorus* L. and *F. platyphylla* Del. The antibacterial activity of *F. sycomorus* L. could be related to the presence of bioactive compounds, such as flavonoid (Adeshina et al., 2010) [3], alkaloid, tannin, saponin and steroid (Salem et al., 2013) [4]. Mohammed et al. (2015) [5] reported the antihelmitic potential of the *F. sycomorus*. While Bello et al. (2015) [6] reported that the plant material finds relevance in the management of diabetic conditions and infectious diseases. Literature has reported the isolation of α and β-amyrin acetate, a pentacyclic triterpenoid of the oleanane series from *Ficus* species example include the isolation of α-amyrin acetate, from the diethylfether fraction of the methanol extract of the stem bark of *Ficus kamerunensis*. However, its potential as an antimicrobial agent is being reported for the first time in the stem bark of *F. sycomorus* from literature survey.

2. **Expérimental Procédure**

2.1 **General**

Column chromatography was performed using silica gel (60-120 mesh), whereas TLC was performed on aluminium plates coated with silica gel 60 F254. The spots were visualized by spraying with 10% H₂SO₄, followed by heating in an oven. The ¹H (100MHz) and ¹³C NMR (400MHz) spectra were run in a Bruker AV3 spectrometer using CDCl₃ as solvent and TMS as internal standard. Both 1D and 2D NMR were run at the Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde Glasgow, Scotland.

2.2 **Plant material**

Fresh stem-bark of the medicinal plant *Ficus sycomorus* was collected from it natural habitat at Alau-dam environ in Maiduguri, Borno State, Nigeria. The herbarium specimen was identified by a plant taxonomist from the Department of Biological Sciences, University of Maiduguri,
3. Results and Discussion

The pulverized stem bark of the plant yielded 23.21% of the sample using 96% ethanol as solvent. The crude ethanol extract revealed the presence of Phytochemicals which were previously reported from the plant such as Flavonoids, steroids and Phenolic acid etc (Bello et al. 2013) [12] except for anthraquinones which were not previously reported in F. sycomorus but in other ficus species such as F. thunbergii (Kitagima et al. 1994) [13]; F. Polita (Kuet et. 2011) [14] and F. cordata (Pournale 2008) [15].

A total of 11 fractions were pooled together on the basis of their Rf values after several eluate from column chromatogram were obtained from 100g of plant extract. Subsequent Pool on the basis of Rf values gave four fractions which were designated FA-FD. Fraction FA alone (196mg) gave 1 spots (Rf value: 0.78 with benzene:hexane, 1:1) on TLC. It was mounted on Sephadex LH-20 for further purification. FA was partially soluble in hexane and insoluble in ethanol and acetone with a melting point of 190-196 °C. The proton (1H NMR) of the compound indicated the presence of eight angular methyl protons in the region δ 0.88 to 1.24 ppm; methane protons in the region δ 1.5 to 2.8 ppm; de-shielded methyl proton at δ 2.05 ppm indicate the presence of an acetate moiety and this was confirmed by the presence of carbonyl carbon at δ-171.5. The compound also indicated the presence of two two olefinic protons; at δ 5.15ppm(α) assigned to H-12 (Saeed and Sabir, 2003) [16] and an oxygenated proton at δ 4.48ppm (α) assigned to H-3 thus, suggesting a triterpenoid or steroid acetate, see table1(Sissay and Abeba, 2005) [17]. The 13C NMR spectra indicated the presence of 30 carbon peaks; with a C-C double bond (δ 121.74 ppm (α) at C-12. Oxygenated carbon shift was observed at 77.30(α) for H-3. The forgoing spectral analysis and, comparison with reported data, led us to identify the structure of the isolated compound as a known triterpene, α-amyrin acetate (figure1). The pentacyclic triterpene α-amyrin acetate (12-ursen-3β-yl acetate) Figure 1 is a constituted triterpene, that belong to the group of ursane series though their chemical structure are similar to that of the steroid, and are extremely useful in prevention or treatment of many diseases in experimental animals, particularly those in which oxidative and inflammatory stress plays a key role in pathogenesis (Sporn et al. 2011) [18].

S/N	1H ppm	13C ppm	δH ppm	δC ppm	Carbon type
1	38.80α	38.55α	CH2		
2	27.00α	27.01α	CH2		
3	78.00α	77.30α	CH		
4	38.00α	38.12α	C		
5	55.12α	55.23α	CH		
6	18.34α	18.30α	CH2		
7	33.66α	32.67α	CH2		
8	40.02α	40.09α	C		
9	47.54α	47.64α	CH		
10	37.00α	37.15α	C		
11	23.30α	23.46α	CH2		
12	122.54α	121.74α	CH		
13	143.52α	145.24α	C		
14	41.54α	41.64α	C		
15	28.34α	28.50α	CH2		
16	26.25α	26.22α	CH2		
17	32.54α	32.56α	C		
18	47.22α	47.30α	CH		
19	46.80α	46.86α	CH		
Compound F_A showed better activity than F_B, F_C with no activity recorded in F_D as determined by agar well diffusion method against some selected organisms (Escheria coli, Salmonella typhi, Staphylococcus aureus, Klebsiella pneumonia) as shown (Figure 3-6). The IC_50 showed more activity of Compound F_A on Klebsiella pneumonia (IC_50= 0.06) and least on Salmonella typhi (IC_50= 0.84).

4. Acknowledgement
The authors are particularly grateful to Prof. J.O. Igoli who assisted with the NMR Analysis and also its interpretation.

5. References
1. Zerega NJC, Clement WL, Datwley SL. Biography and divergence times in the mulberry family Moraceae. Mol. Phylogenetic Eval 2005;37(2):402-416.
2. Haq Nawaz, Rashem Waheed, Musharraz Nawaz. Phytochemical Composition, Antioxidant Potential, and Medicinal Significance 2019. of *Ficus* (Moraceae). Available from: https://www.intechopen.com/books/phytochemical-composition-antioxidant-potential-and-medicinal-significance
3. Adeshina GL, Okeke CE, Osuagwu NO, Ehinmidu JO. Preliminary *in vitro* Antimicrobial activities of ethanolic extracts of *Ficus sycomorus* and *Ficus platyphylla* Del. (Moraceae). Afri. Journal of microbiology Res 2010;4(8):598-601.
4. Salem MZM, Salem AZM, Camacho LM, Hayssam MA. Antimicrobial activities and phytochemical composition of extracts of Ficus species: An over view. Afr. J Microbiol. Res 2013;7(33):4207-4219.

5. Mohammed MJ, Tarek E, Atef-Zuhair D. Synergistic effect of Ficus sycomorus (Moraceae) Leaf and stem – bark extracts against some selected pathogens. Inter. Journal of scientific and Research publications 2015;5(12):620-625.

6. Bello MO, Ojediran JO, Olatunya MA, Awakan JO. In vivo toxicity studies and phytochemical screening of stem bark of Ficus sycomorus Linn (Moraceae). Journal of Envr. Sci. Toxicology and food tech 2015;9(3):72-74.

7. Sofowara A. Medicinal plants and Traditional medicine in Africa spectrum Books Ltd., Ibadan, Nigeria 1993, 289-300.

8. Trease GE, Evans WC. Pharmacognosy. 15th Ed. London: Saunders publishers 2002, 221-229.

9. Abalude FO. Phytochemical Screening and Mineral Contents of Leaves of Some Nigerian Woody Plants. Research journal of Phytochemistry 2007;1(1):33-39.

10. Hatil H. El-kamali, Ahmad A. El-Shikh, Preliminary phytochemical screening of 27 Plants species use in ethnoveterinary in Khartoun State Sudan J Advan. Life Sci. 5(2), 48-52.

11. EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breaking Points Tables for Interpretation of MICs and Zone Diameters 2016. Version6.0.http://www.eucast.org.

12. Bello OM, Zack FP, Abendeh M, Adkaru JG. Comparative studies of phytochemical screening of Ficus sycomorus linn stem bark extract and pilostigma thonigii root extract. Asian J Phyto. Sci Res 2013;3(6):69-73.

13. Kitajima J, Arai M, Tanaka Y. Triterpenoid constituents of Ficus thunbergii, chemical & pharmaceutical Bulletin 1994;42(3):608-610.

14. Kuet V et al. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl (Moraceae) BMC Complimentary and alternative medicine 2011;11(1):6.

15. Poumale HM et al. Pentacyclic triterpenoids and other constituents from Ficue cordata (Moraceae) 2008;63(11):1335-1338.

16. Saeed MA, Sabir AW. Irritant Potential of some constituents from seeds of Caesalpinia bonducella (L.) Fleming. Journal of Asian Natural Product Research 2003;5(1):35-41.

17. Sisay F, Abeba B. Triterpene compounds from the Latex of Ficus sur Bulletin of Chemical Society of Ethiopia 2005;19(2):307-310.

18. Sporn MB, Liby KT, Yore MM, Fu L, Lopchuk JM, Gribble GW. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. J Nat. Prod 2011;74:537-45.