Heavy Metal Absorption Efficiency of two Species of Mosses (Physcomitrellapatens and Funariahygrometrica) Studied in Mercury Treated Culture under Laboratory Condition.

Abanti Pradhan, Sony Kumari, Saktisradha Dash, Durga Prasad Biswal, Aditya Kishore Dash, Kishore C. S. Panigrahi

Abstract: As an important component of ecosystems, mosses have a strong influence on the cycling of water, energy and nutrient. Given their sensitivity to environmental change, mosses can be used as bioindicators of water quality, air pollution, metal accumulation and climate change. In the present study, the growth, differentiation and heavy metal (Hg) absorption of two species of mosses like Physcomitrella patens and Funariahygrometrica were studied in solid cultures under laboratory conditions. It was observed that, the number of gametophores developed from single inoculated gametophores after 45 days of growth of F. hygrometrica was 11±2.0 in control whereas it has decreased at higher concentrations, 4±1.5 in 1ppm of mercury treatment. P. patens also shows a similar trend. The heavy metal uptake of both the species of mosses
was studied. It was observed that Hg content in pseudo leaves of *P. patens* ranged from 0.98 ppm to 2.76 ppm at different Hg treatment (0.1-1 ppm), whereas in *F. hygrometrica* it ranged from 0.78 ppm to 2.43 ppm under the same treatment condition. Comparing between the Hg content in pseudo-leaves and rhizoids of *P. patens* and *F. hygrometrica*, it was observed that the Hg content was elevated about 60-64% in rhizoids than that of pseudo-leaves at 0.1% treatment level, whereas it was increased almost up to 50% in other treatment level.

Keywords: Heavy Metals, Hg Pollution, Mosses, *P. patens*, *F. hygrometrica*.

1. INTRODUCTION

The heavy industrialization, usage of modern technology, usage of chemicals in agriculture and improper waste disposal practices has collected much bio-degradable and non-biodegradable waste that has accelerated in soil and water, which spreads contamination round the globe [1]. The most common contaminants constitute herbicides, pesticides, heavy metals and hydrocarbons. Among these contaminants, heavy metal pollution owes a major issue due to their toxicity and carcinogenic nature [2],[3]. In many parts of India, the water and soil has been contaminated by heavy metals like Cd, Pb, Hg, Cr, Co, Zn, Ni and Mn which needs immediate mitigation measures. Several methods like chemical precipitation, coagulation, ion-exchange, adsorption and absorption are used for removal of metals from wastes [4],[5]. A number of literatures are also available regarding the bio-remediation and phyto-remediation of contaminated water [6]–[12]. Environmental contamination due to mercury is caused by several industries, petrochemical, mining, painting and also by agricultural sources such as fertilizer and fungicidal sprays [13]. Very often Hg enters into the human body through the food chain. It generally affects gastro-intestinal, neurological and renal organ systems [14]. Bacteria and algae contain enzymes to convert metallic mercury into soluble methyl mercury entering the waterways. Methyl mercury undergoes biomagnifications and finally enters into human through the fishes [15]. Utilization of bio-organisms for remediation of heavy metals from soil and water is an important measure adopted now a day. Bio-remediation is affected by various factors like type of species, tolerance of species, climatic conditions and other environmental factors. The demand of the situation is the need for a robust methodology which can spread as par with other technology for a quicker, cost effective, less energy consumption and economical remediation [16],[17]. Mosses have been found to be one of the best bio-indicator species for this purpose [18],[19]. They usually have efficient mechanism for absorbing metals from their environment [20],[21]. Mosses have very thin under developed cuticle which allows them to perform ion exchange from the surface through their cell membrane. They have a great capacity for trace element retention [22],[23]. Mosses have been used to monitor pollutant in terrestrial [23],[24], air [25] and aquatic [26],[27] ecosystems. *Funaria hygrometrica* is also known as bonfire moss grows on shady, damp, moist soil, moist walls and crevices of the rocks [28]. The plant body is upright, soft and green in colour. It consists of main stem bearing sessile pseudo leaves which are spirally arrange in the stem [28]. *Physcomitrella paten* is also known for its sensitiveness to toxic chemical and use as a model organism for several
research works [29],[30]. It is widely use in biotechnology and molecular biology research [28]. In the present study an attempt has been made to study the efficiency of two species of mosses (Funaria hygrometrica and Physcomitrella patens) in removing heavy metal under laboratory conditions.

2. Materials and Methods

2.1 The Model Plant

Physcomitrella patens and Funaria hygrometrica are two varieties of mosses chosen for this study because of their ubiquitous nature and also well adapted to the adverse environmental conditions.

2.2 Solid Culture

Aseptic culture of Funaria hygrometrica and Physcomitrella patens were grown under white light at 25°C on solid agar plates as described by [31]. Sub cultures of moss gametophore were carried out on routine intervals. These moss gametophore containing plates serve as the inoculum for the entire experiment. Five concentrations of Hg (Control, 0.1 ppm, 0.2 ppm, 0.5 ppm and 1 ppm) were taken for experiment. In order to maintain sterile condition, BCD and MM media were autoclaved for 15 minutes and 30 minutes respectively at 120°C. For solid culture, 15 petriplates for each of P. patens and F. hygrometrica were taken for sub-culturing. The mercury chloride solutions of different concentrations were poured into the respective petriplates containing the agar media. Single gametophore was inoculated with the forceps eventually from the mother plate to the media plates for solid culture in the laminar air flow. The plates were wrapped properly and then kept in white light incubator (16hrs light and 8hrs dark) at 25°C.

Mercury chloride stock solution was prepared by dissolving 13.576 mg of HgCl₂ in one litre of de-ionized water. Further dilutions were made to prepare 0.1 ppm, 0.2 ppm, 0.5 ppm and 1 ppm Hg solution for experimental purpose. BCD and MM agar media was prepared by following the standard method [32] for P. patens and F. hygrometrica separately. The mercury uptakes by the mosses were evaluated after 45 days of treatment of solid culture media by standard AAS, (Atomic Absorption Spectrophotometry).

3. Results and Discussions

3.1 Effect of mercury on the growth and differentiation Physcomitrella patens and Funaria hygrometrica

Effect of different Hg concentrations on the growth and differentiation of gametophore of both the species were studied. The reading was taken after 6 weeks of moss culture with known doses of Hg concentration. It was observed that, the number of gametophores developed from single inoculated gametophores after 45 days of growth of F. hygrometrica were 11±2.0 in control whereas it showed a decreasing trend at higher concentrations of
mercury treatment, the number of gametophores were 10±1.9, 9±1.5, 7±1.6 and 4±1.5 in 0.1, 0.2, 0.5 and 1ppm of Hg treatment respectively. In P. patens similar trend was also observed. In control the number of gametophores were 12±2.5, and in 0.1, 0.2, 0.5 and 1.0 ppm of Hg concentration the gametophores were 11±2.1, 10±1.8, 1.0±0.8 and 0 respectively. One way ANOVA test showed a significant different between concentration after 45 days between two species of moss (F=7.6, p<0.5). In the present study, physical characteristics of mosses, such as living form and morphology has a great influence on the heavy metal accumulation capacity of mosses, which is also follows the findings of other workers [33],[34]. So the morphological differentiation might be influenced due to inhibition of nutrient uptake with high accumulation of heavy metal in substratum.

3.2 Hg uptake by P. patens and F. hygrometrica after 45 days of solid culture

Table 1 shows that Hg content in pseudo-leaves of P. patens are in range from 0.98ppm to 2.76 ppm at different Hg treatment (0.1-1ppm), where as in F. hygrometrica it ranges from 0.78ppm to 2.43ppm under the same treatment condition. The Hg content in pseudo-leaves of P. patens was increased upto a maximum of 20% over F. hygrometrica (Fig. 1). Similarly Hg content in rhizoids increased up to a maximum of 28% at 0.1ppm Hg treated culture. But the Hg content at higher treatment level has also increased by 16.61% and 20.24% at 0.2 and 1ppm respectively.

Comparing between the Hg content in pseudo-leaves and rhizoids of P. patens, it was observed that the Hg content was accelerated of about 64% in rhizoids than that of pseudo-leaves at 0.1% treatment level. Whereas it was increased almost up to 50% in other treatment level (Table 1 and Fig. 2).

Table 1: Heavy Metal (Hg) content in Pseudo Leaves and Rhizoids of P. patens and F. hygrometrica after 45 days of Heavy Metal Treatment

Hg treatment in PPM	P. patens (Pseudo leaves) in µg/gm dry wt.	F. hygrometrica (Pseudo leaves) in µg/gm dry wt.
0.1	0.98±0.15	0.78±0.12
0.2	1.76±0.26	1.48±0.43
0.5	2.23±0.63	2.01±0.32
1	2.76±0.65	2.43±0.5

Hg treatment in PPM	P. patens (Rhizoids) in µg/gm dry wt.	F. hygrometrica (Rhizoids) in µg/gm dry wt.
0.1	2.75±0.37	1.98±0.37
0.2	3.31±0.56	2.76±0.42
0.5	4.31±0.76	3.80±0.61
1	5.68±0.83	4.53±1.16
Fig. 1: Hg content (µg/gm dry wt.) in pseudo-leaves of *P. patens* and *F. hygrometrica* after 45 days of experiment.

In case of *F. hygrometrica* similar trend was observed i.e. an increase of about 60% in Hg content of rhizoids than that of pseudo-leaves at 0.1ppm. In other treatment level (0.2, 0.5 and 1ppm) also showed similar trend like that of *P. patens*.

From the above experiment it has been found that with increase in Hg concentration, the decreases in number of gametophores which is emerged in a colony is clearly evident after 45 days of culture. But the numbers of rhizoids significantly increased with increasing concentration of Hg. In 1ppm, auxin concentration most likely could be high, so less gametophores but more percentage of rhizoids were developed in both the species [35],[31]. Mercury might be altering auxin homeostasis [36]. In both the cases uptake of nutrient might be inhibited by heavy metal accumulation so that the growth of shoot part is reduced at higher percentage of treatment level (0.5 and 1ppm) of Hg solution. Our finding has shown similar trend with work on another moss plant (*Pleurozium schreberi*)[37]. The shoot growth was drastically reduced in both the cases and almost absent in *P. patens* at 1ppm treatment level. Some researcher also indicate that environmental characteristics such as climatic conditions, mineral composition of soil dust, soil water, natural element cycling process and vegetation zone may have a significant influence on uptake efficiency of heavy metal in moss [38],[40].

It was also observed that rhizoids are the high accumulator of heavy metals than shoot part. They have reported that the substratum of moss is a high accumulator of heavy metals than shoot part. Here *P. patens* also more sensitive and highly accumulated Hg metal than *F. hygrometrica*. There was variation in heavy metal uptake in moss species.
Conclusion

Mosses are now a day’s broadly used as bio- indicator for heavy metal pollution of air water and soil. In the present study, the efficacies of two species of mosses like *Physcomitrella patens* and *Funaria hygrometrica* was studied in removal of mercury from water environment. It was observed that, both the species could be used as a bio- indicator of metal pollution in aquatic environment. These observations can also be visually noticed and can serve as a parameter for detecting heavy metal pollution of environment.

References

[1] A. Yass, T. Kjellstrom, T.de, Kok, and T. Guidotti, Basic environmental health. ISBN-10: 019513558X, ISBN-13: 9780195135589, 2001.

[2] S. Hamman, Bio-remediation capabilities of white rot fungi. *Spring*. BI570, 2004.

[3] A. H. Mahavi, D. Naghipour, F. Vaezi, and S. Nazmara, Tea waste as an adsorbent for heavy metal removal from industrial waste waters. Amer. J. App. Sci. vol. 2, pp. 372-375, 2005.

[4] D. E. Salt, R. C. Prince, I. J. Pickering, and I. Raskin, Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. vol. 109, pp. 1427–1433, 1995.

[5] C. W. Francis, M. E. Timpson, and J. H. Wilson, Bench- and pilot-scale studies relating to the removal of uranium from uranium contaminated soils using carbonate and citrate lixiviants. J. Hazard. Mat. Vol. 23, pp. 67-87, 1999.

[6] A. K. Dash, and P. C. Mishra, Changes in pigment and protein content of *Westiellopsis prolifica*, a blue-green alga, grown in paper mill waste water, Microbio. vol. 85, pp.257-266, 1996a.

[7] A. K. Dash, and P. C. Mishra, Changes in biomass, pigment and protein content of *Westiellopsis prolifica*, a blue-green alga, grown in nutrient manipulated paper mill wastewater, Cytobio. vol. 88, pp. 11-16, 1996b.

[8] A. K. Dash, and P. C. Mishra, Blue –green alga in sewage – amended paper mills waste water. Int. J. Env. Stud. vol. 53, pp. 9-10. 1998.

[9] A. K. Dash, and P. C. Mishra, Growth response of the blue-green alga, *Westiellopsis prolifica* in Sewage enriched paper mill waste water. Rev. Int. Cont. Amb. vol. 15, pp. 79-83, 1999.

[10] A. Pradhan, S. K. Sahu, and A. K. Dash, Changes in pigment content (chlorophyll and carotenoid), enzymes activities (catalase and peroxidase), biomass and yield of rice plant (*Oriza sativa* L.) following irrigation of rice mill wastewater under pot culture conditions, Int. J. Sci. Eng. Res., vol. 4, pp. 2706-2717, 2013.

[11] A. K. Dash, and A. Pradhan, Growth and biochemical changes of the blue-green alga, *Anabaena dolioinum* domestic wastewater. Int. J. Sci. and Eng. Res. vol. 4, pp. 2753-2758, 2013.

[12] A. Pradhan, S. K. Sahu, and A. K. Dash, Changes in physico-chemical characteristics of soil following application of rice mill wastewater under pot irrigation conditions. Adv. Sci. Let (special issue). vol. 22, pp. 504-510, 2016.
[13] A. Rezaee, J. Derayat, S. B. Mortazavi, Y. Yamin, and M. T. Jafarzadeh, Removal of mercury from chlor-alkali industry wastewater using Acetobacter xylinum cellulose. Am. J. Environ. Sci. vol. 1, pp. 102–105, 2005.

[14] E. Dopp, L. M. Hartmann, A. M. Florea, A. W. Rettenmeier, and A. W. Hirner, Environmental distribution analysis and toxicity of organometal (loid) compounds. Crit Rev Toxicol., vol. 34, no. 3, pp. 301-333, 2004.

[15] T. C. Chang, S. J. You, B. S. Yu, C. M. Chen, and Y. C. Chiu, Treating high-mercury-containing lamps using full-scale thermal desorption technology. J. Hazard. Mat. vol. 162, pp. 967–972, 2009.

[16] Z. Volesky, and S. Holan, Biosorption of heavy metal. J. Biotechnol. Microbial. vol. 3, pp. 11235–11250, 1995.

[17] E. Sesli, and C. M. Denchev, Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. Mycotaxon vol. 106, pp. 65–67, 2008.

[18] K. Grodzinski, Long –term ecological monitoring in the parks of Poland and the United State. Nat. Acad. Prs. vol. 252, 1990.

[19] R. Pesch, and W. Schroeder, Mosses as bio-indicators for metal accumulation: Statistical aggregation of measurement data to exposure indices. Ecol Indic., vol. 6, pp. 137–152, 2006.

[20] J. J. Shao, J. J. Fu, J. B. Shi, and G. B. Jiang, Investigation of Heavy metals in moss collected from Tibet. Abstract, Section 2, the 28th Chinese Chemical Society Congress, 2012.

[21] A. Maxhuni, P. Lazo, S. Kane, F. Qarri, E. Marku, and H. Harmens, First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ. Sci. Pollut. Res., 23, 744-755, 2016.

[22] E. M. Gestoettner, and N. S. Fisher, Accumulation of cadmium, chromium and zinc by the moss Sphagnum papillosum Lindl. Water, Air and Soil Pol. vol. 93, pp. 321-330, 1997.

[23] J. A. Fernández, F. Puche, and C. Gimeno, Primeros datos sobre el biocontrol de la deposición atmosférica de metais pesados en las provincias de Valencia, Castellón y Terruel mediante musgos de rastreros. Ecología vol. 13, pp. 83-91, 1999.

[24] J. Pearson, D. M. Wells, K. J. Seller, A. Bennett, J. Woodland, and M. J. Ingrouille, Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol. vol. 147, pp. 317-326, 2000.

[25] E. V. Ermakova, M. V. Frontasyeva, E. Steinnes, Air pollution studies in Central Russia (Tula Region) using the moss biomonitoring technique, INAA and AAS. J Radio anal Nucl Ch., vol. 259, pp. 51-58, 2004.

[26] M. A. Bruns, S. Siebert, A. Baumbach, R. Mierisch, J. Gunther, D. Markert, and G. J. Krauss, Analysis of heavy metals and sulphur rich compounds in the water moss (Fontinalis antipyretica) l. ex Hedw. (Freseniu). J. Anal. Chem. vol. 353, pp. 101-104, 1995.

[27] A. Siebert, M. A. S. Bruns, G. J. Krauss, J. Mierisch, and B. Markert, The use of Fontinalis antipyretica L. ex Hedw. as a bio-indicator for heavy metals. 1.
Fundamental investigations into heavy metal accumulation in *Fontinalis antipyretica* L. ex Hedw. Sci. Tot. Environ. vol. 177, pp. 137-144, 1996.

[28] S. R. Edwards, English Names for British Bryophytes. In “British Bryological Society” Special Volume 5 (4 ed.), 2012.

[29] R. Reski, Molecular genetics of *Physcomitrella*. Planta. vol. 208, pp. 301-309, 1999.

[30] A. Hohe, and R. Reski, Optimization of a bioreactor culture of the moss *Physcomitrella patens* for mass production of protoplasts. Plant Sci. pp. 1-6, 2002.

[31] K. C. S. Panigrahi, M. Panigrahi, M. V. Scheebaum, R. Reski, and M. M. Johri, Auxin-binding proteins without KDEL sequence in the moss *Funaria hygrometrica*. Plant cell. Rep., vol. 28, pp. 1747-1758, 2009.

[32] N. W. Aston, and D. J. Cove, 1977. The isolation and preliminary characterization of auxotrophic and analogue resistant mutants in the moss *Physcomitrella patens*. Mol. And Gen. Gene. vol. 154, pp. 87-95, 1997.

[33] J. Sucharova, and I. Suchara, Atmospheric deposition levels of chosen elements in the international Bryomonitoring Program 1995. Sci. Tot. Environ. vol. 223, pp. 37–52, 1998.

[34] J. M. Pacyna, and E. G. Pacyna, 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources world wide. Environ. Res., vol. 9, pp. 269–298, 2001.

[35] M. M. Johri, and J. S. D’ Souza, Auxin regulation of cell differentiation in moss protonema. In: Pharid R.P., Rood, S. (eds) Plant growth substances. Springer, Berlin, pp. 407-418, 1990.

[36] R. Benjamins, and B. Scheres, Auxin: the looping star in plant development. Annu Rev. Plant. Biol. vol. 59, pp. 443-465, 2008.

[37] P. Kapusta, and B. Godzik, Does heavy metal deposition affect nutrient uptake by mosses *Pleuroziium schreberi*? EDP science, Web of Conferences, 2013.

[38] H. G. Zechmeister, Annual growth of four pleurocarpous moss species and their applicability for biomonitoring heavy metals. Environ. Mon. Assee., vol. 52, pp. 441–451, 1998.

[39] H. Ross, On the use of mosses (*Hylocomium splendens* and *Pleuroziium schreberi*) for estimating atmospheric trace metal deposition. Water, Air and Soil Pollut. vol. 50, pp. 63–76, 1990.

[40] C. Reimann, H. Niskavaara, G. Kashulina, P. Filzmoser, R. Boyd, T. Volden, O. Tomilina, and I. Bogatyrey, Critical remarks on the use of terrestrial moss (*Hylocomium splendens* and *Pleuroziium schreberi*) for monitoring of airborne pollution. Environ. Pollut. vol. 113, pp. 41–57, 2001.

Authors Profile

| Dr Abanti Pradhan | has completed M.Sc.(School of Life Sciences), M.Phil. and Ph.D. (Environmental Sciences), presently working as a faculty in Environmental Engineering at Institute of Technical Education and Research (ITER) under S’O’A University, Bhubaneswar, |
Author	Profile
1st Author	Odisha, India. He has more than 16 years of teaching and research experience in the field of Environmental Science and Engineering. Dr. Pradhan has more than 20 research publications in the journal of national and international repute and has attended more than 18 national and international conferences. His major area of research includes, bioremediation utilizing macrophytes /phyto- remediation of waste water, air quality monitoring and modeling, Biodiversity (Ave fauna and plant diversity), soil toxicity study etc.
2nd Author	Sony Kumari is working as a PhD scholar at NISER, Bhubaneswar, Odisha under the supervision of Dr Kishore C. SekharPanigrahi at plant biology laboratory of NISER. Her area of interest includes role in between red light and auxin signaling in patterning of root in *Arabidopsis thailana*. It has been shown that Phytochrome B negatively regulates auxin signaling, but what is happening to auxin transport and synthesis are not clear yet. This study could be helpful in solving these questions. She is also working on moss as a bio-indicator species for environmental pollution.
3rd Author	Sakti Sradha Dash has M Sc (Environmental Sciences) M.Tech (Environmental science and engineering) is a student working on Bioremediation potential or mosses for removal of heavy metals from wastewater under Siksha’O’ Anusandhan University, Bhubaneswar, Odisha.
4th Author	Durga Prasad Biswal is working as a Ph.D scholar at NISER, Bhubaneswar, Odisha under the supervision of Dr Kishore C. SekharPanigrahi at plant biology laboratory of NISER. His area of research includes plant nature, interaction between external environment and endogenous regulators in a unique manner, sensor phytochromes regulator the majority of growth and developmental pattern in a plant. Integration of light and hormone signaling, phytochromes and phyto-hormones interaction. Our interest revolves around the crosstalk between light and hormone signaling in *Physcomitrella patens*, a moss which are the representative of ancient plants, those conquered land first.
5th Author	Dr. Aditya Kishore Dash has M. Sc., M. Phil., M. Tech. (Environmental Science and Engineering), Ph.D. (Environment), presently working as a faculty in Environmental Engineering at Institute
of Technical Education and Research (ITER) under S’O’A University, Bhubaneswar, Odisha, India. He has more than 20 years of postgraduate teaching and research experience in the field of Environmental Science and Engineering. Dr. Dash has more than 35 research publications in the journal of national and international repute and has attended more than 20 national and international conferences. He was also associated with a number of research projects. Dr. Dash has worked as the Board of Studies member for different universities. Presently he is also the Editorial Board Member for four different national and international journals. His major area of research includes, bioremediation/phyto-remediation of waste water, air quality monitoring and modeling, biodiversity study etc.

Dr Kishore C. Sekhar. Panigrahi has M Sc (School of life sciences), Ph.D(Plant Molecular Biology, TIFR), Post Doc (Plant Light Signaling, University of Freiburg, Germany), worked as a group leader Max-Planck Institute, Koln, Germany (Flowering time and circadian rhythm control in plant), presently working as a scientist F and heading Plant Biology Lab of NISER with his group. Dr Panigrahi area of research includes circadian rhythm, production of immunomodulators and exploring biofuel potential of weeds from Chilika. However his prime focus is on light signaling and the molecular events controlling the flowering time. Dr Panigrahi use Arabidopsis and Physcomitrella patens as our model systems. Besides these, he has numbers of international publications with high impact factor, His group investigating the effect of nano particles on flowering time control and the mechanism of nano particle synthesis from Plant Extracts.