High-temperature requirement factor A1 rs11200638 polymorphism and age-related macular degenerative from a comprehensive analysis about 15316 subjects

CURRENT STATUS: Under Review

BMC Medical Genetics □ BMC Series

Ying Liu, Huipeng Jin, Dong Wei, Wenxiu Li

Ying Liu
Ophthalmic function room

Huipeng Jin
Ophthalmic function room

Dong Wei
Department of Ophthalmology

✉ hgyywd@163.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-0020-5642

Wenxiu Li
Department of Critical Medicine

Prescreen

10.21203/rs.2.23339/v4

Subject Areas

Medical Genetics Ophthalmology
Keywords

high-temperature requirement factor A1; age-related macular degeneration; polymorphism; meta-analysis; risk
Abstract

Background: The high-temperature requirement factor A1 (HTRA1) gene at the 10q26 locus has been associated with age-related macular degenerative (AMD) risk, with the significantly associated polymorphism being (rs11200638, -625G/A), however, above association is not consistent. We investigated an updated meta-analysis to evaluate the association between rs11200638 polymorphism and AMD risk thoroughly addressing this issue.

Methods: An identification was covered with the Pubmed and Chinese Wanfang databases through 27th Jan, 2020. Odds ratios (OR) and 95% confidence intervals (CI) were used to assess the strength of associations. After a thorough and meticulous search, 35 different articles (33 case-control studies with HWE, 22 case-control studies about wet/dry AMD) were retrieved.

Results: Individuals carrying A-allele or AA genotype may have an increased risk to be AMD disease. For example, there has a significantly increased relationship between rs11200638 polymorphism and AMD both for Asians (OR: 2.51, 95%CI: 2.22-2.83 for A-allele vs. G-allele) and Caucasians (OR: 2.63, 95%CI: 2.29-3.02 for A-allele vs. G-allele). Moreover, a similar trend in the source of control subgroup was detected. To classify the type of AMD, increased association was also observed in both wet (OR: 3.40, 95%CI: 2.90-3.99 for dominant model) and dry (OR: 2.08, 95%CI: 1.24-3.48 for dominant model) AMD. Finally, based on the different genotyping methods, increased relationships were identified by sequencing, TaqMan, PCR-RFLP and RT-PCR.

Conclusions: Our present meta-analysis suggests that the HTRA1 rs11200638 polymorphism are potentially associated with the risk of AMD development, especially about individuals carrying A-allele or AA genotype, who may be as identified targets to detect and intervene in advance. Further studies using larger sample sizes and including information about gene-environment interactions should be conducted to elucidate.

Background

In both developed and developing countries, age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly people [1, 2]. By 2050, the number of people affected by AMD may be estimated to reach 17.8 million [3]. AMD’s visual loss is due to dead/non-functional photoreceptor cells and potential retinal pigment epithelium cells [4]. In clinical practice, AMD is divided into two forms: early dryness that can develop into geographic atrophy (atrophic, non-exudative) and wet (exudative) AMD characterized by choroidal neovascularization (CNV) [5, 6].

Age, race, family history, smoking and sun exposure are common risk factors [7, 8]. Another main factor in the etiology of AMD is genetic susceptibility [9]. A genome-wide association study (GWAS) in 2005 confirmed the association between AMD risk and genetic variations, suggesting that AMD is a polygenic disease [10], and in the following 15 years triggered many studies involving AMD genetic association [11-13]. So far, polymorphism about age-related maculopathy susceptibility 2 (ARMS2) rs10490924, complement factor H (CFH), complement 2 (C2)/complement factor H (CFB), complement component C3 and apolipoprotein E (APOE) haplotypes have been demonstrated as associated factors with susceptibility to AMD [14-18].

As we all known, vascular endothelial growth factor (VEGF) is involved in the development of wet AMD, because angiogenesis and the formation of vascular permeability can lead to fluid leakage in blood vessels, and eventually lead to loss of vision [19]. Anti-VEGF drugs such as ranibizumab and bevacizumab have been widely used in clinics [20, 21]. In addition, they have been shown to be effective in slowing the progression of CNV, however, heterogeneity was observed among patients in invalid samples and who have shorter treatment time [22]. It is assumed that genetic factors may be involved in this period of heterogeneous response, such as variants of complement factor F (CHF), VEGFA, ARMS2 and high-temperature requirement factor A1 (HTRA1) genes [23-26].
HTRA1 encodes a member of the serine proteases trypsin family and regulates the use of insulin-like growth factor (IGF) by cleaving IGF-binding protein and transforming growth factor-β (TGF-β), which is considered regulators of cell growth, angiogenesis and extracellular matrix deposition. Furthermore, the inhibition of TGF-β may result in the overexpression of HTRA1 gene in wet AMD [27] (https://www.ncbi.nlm.nih.gov/gene/5654).

One of common polymorphisms in HTRA1 gene is rs11200638 (wide allele G to mutation allele A) [28]. Dewan et al. reported that the risk allele of the HTRA1 gene (A-allele) can affect the overexpression of its protein, which may then affect the integrity of Bruch’s membrane and stimulate the progression of the CNV stage [29].

In view of the above, we are aware of the critical role of HTRA1 gene and its common rs11200638 polymorphism, and we conducted a comprehensive summary using meta-analysis methods, including 28 different publications (33 case-control studies) [26, 30-57].

Methods

Search Strategy

We searched relative studies from PubMed and Wanfang databases before 27th Jan, 2020. The keywords were “age-related macular degeneration,” “AMD,” “polymorphism or variant,” and “HTRA1 or high-temperature requirement factor A1.” With these terms, a total of 35 different articles were included from above databases based on our inclusion criteria. Stages of AMD were assigned based on the classification of the Age-Related Eye Disease Study (AREDS) [58].

Inclusion and Exclusion Criteria

Included studies were according with (i) the correlation between AMD risk and HTRA1 gene rs11200638 polymorphism; (ii) case-control studies, and (iii) sufficient numbers of each genotypes (AA, AG, and GG) in case and control groups. Studies were excluded if they (i) included no control information; (ii) didn’t contain genotype frequency data, and (iii) were duplicated studies with some other papers [59].

Data Extraction

Two authors (Ying Liu and Dong Wei) independently screened all papers that according with the selection criteria. These data included the first author’s last name, publication year, country of origin, ethnicity, Hardy-Weinberg equilibrium (HWE) of control group, genotyping method and AMD disease types (dry and wet AMD). Ethnicity was categorized as Caucasian or Asian. The control subgroups were classified to population-based (PB) and hospital-based (HB) [59].

Statistical Analysis

Based on the genotype frequencies for cases and controls, odds ratios (OR) with 95% confidence intervals (CI) were used to measure the strengths of associations[59, 60]. The statistical significance of the OR was determined with the Z test [61]. The heterogeneity assumption among studies was evaluated using a χ^{2}-square-based Q test. If P-value > 0.10 for the Q test was indicated, a lack of heterogeneity among studies, other words, Mantel-Haenszel (fixed-effects model) was chosen, otherwise, the DerSimonian-Laird (random-effects model) was applied [62, 63]. We investigated the correlation between rs11200638 polymorphism and AMD risk by testing whole five genetic models: A versus G, AG versus GG, AA + AG versus GG, AA versus GG and AA versus AG+GG. A sensitivity analysis was performed by omitting studies, one after another, to assess the stability of results. The departure of frequencies of the rs11200638 polymorphism from expectation under HWE was assessed by the Pearson’s χ^{2} test, P < 0.05 was considered significant [64]. The funnel plot was evaluated by Begg’s test, and the publication bias was evaluated by Egger’s test, whose P-value < 0.05 was considered significant [65]. All statistical tests for this meta-analysis were performed using version 10.0 Stata software (StataCorp LP, College Station, TX, USA)[60]. The power and sample size analysis of our meta-analysis was calculated by a program called PS: Power and Sample Size.
Network of gene-interaction of HTRA1 gene

The network of gene-gene interactions for HTRA1 gene was utilized through String online server (http://string-db.org/) to more complete understanding of the role of HTRA1 in AMD [67].

Study searching and their basic information

Using various combinations of key terms, a total of 262 article titles were garnered by a document search using the PubMed (222 titles) and Wanfang (40 titles) databases. As shown in Figure 1, 178 articles were excluded after screening the Abstract sections of the manuscripts. The full texts were then evaluated, and 49 additional articles were excluded due to duplication (7), meta-analysis or systematic analysis (26), clinical trial (10), randomized controlled trial (6). Finally, 35 different articles [26, 30-57, 68-72] were included in our meta-analysis, including 38 case-control studies about HTRA1 gene rs11200638 polymorphism and AMD risk (Table 1) and 27 case-control studies about HTRA1 gene rs11200638 polymorphism and wet or dry AMD risk (Table 2). Five case-control studies [68-72] were not consistent with HWE in control groups. To make our analysis more strict, we deleted above five studies, so there were about 33 case-control studies (8101 cases and 7215 controls) for the whole AMD [26, 30-57], and 22 case-control studies for wet or dry (3938 cases and 4427 controls) studies [26, 30, 31, 33, 34, 40, 41, 43, 44, 46-48, 51, 53-56]. The frequency of the A allele from case group was found to be higher in control individuals (54.2% vs. 36.5%) (Figure 2, Supplementary Table 1). There were 19 case-control studies of Asian population, and 14 from Caucasian population; source of control in 22 case-control studies were from HB, and 11 were from PB; 17 case-control studies were about wet AMD disease, and 5 were about dry disease. Finally, we checked the Minor Allele Frequency (MAF) reported for the five main worldwide populations in the 1000 Genomes Browser (https://www.ncbi.nlm.nih.gov/snp/rs11200638): Global (0.290); East Asian (EAS=0.411); European (EUR=0.194); African (AFR=0.257); American (AMR=0.250); and South Asian (SAS=0.340) (Figure 3, Supplementary Table 1). The genotyping methods included polymerase chain reaction-restrictive fragment length polymorphism and matrix-assisted laser desorption/ionization time-of-flight, sequencing, real-time PCR, and TaqMan.

Quantitative Synthesis

Total analysis

Results of the overall meta-analysis were suggestive of increasing associations between this polymorphism and AMD susceptibility in all five genetic models (for example: AA vs. GG: OR = 5.45, 95CI% = 4.26-6.98, \(P < 0.001\)) (Table 3). In order to make this study more convincing and reliable, we detected five studies, which were not according with HWE, finally, we tested the 33 case-control studies. Also significantly increasing correlations were observed in whole genetic models (for example: A-allele vs. G-allele: OR = 2.56, 95%CI = 2.34-2.80, \(P < 0.001\); AA+AG vs. GG: OR = 2.80, 95%CI = 2.49-3.15, \(P < 0.001\)) (Figure 4) (Table 3).

Subgroup analysis

Coming up, we all know that the frequency of A-allele in different races was not the same, so we tried to analysis the relationships by ethnicity subgroups in further, which indicated an incremental statistically association between this polymorphism and both in Asians (A-allele vs. G-allele: OR = 2.51, 95% CI = 2.22-2.83, \(P_{\text{heterogeneity}} < 0.001, P < 0.001\), Figure 4; AA vs. AG+GG: OR = 3.70, 95% CI = 3.16-4.35, \(P_{\text{heterogeneity}} = 0.009, P < 0.001\)) and Caucasian populations (dominant model, OR = 2.94, 95% CI = 2.51-3.45, \(P_{\text{heterogeneity}} < 0.001;\) heterozygote comparison, OR = 2.37, 95% CI = 2.15-2.61, \(P_{\text{heterogeneity}} < 0.001;\) allelic comparison, OR = 2.63, 95% CI = 2.29-3.02, \(P_{\text{heterogeneity}} < 0.001, P < 0.001\), Figure 4) (Table 3). In addition, regular analysis by source of control, also significantly increased risks were detected for this SNP both in PB and HB studies (AG vs. GG: OR = 1.86, 95% CI = 1.58-2.19, \(P_{\text{heterogeneity}} = 0.025, P < 0.001\) for HB; AG vs. GG: OR = 2.16, 95% CI = 1.84-2.53,
$P_{\text{heterogeneity}} = 0.021$, $P < 0.001$ for PB) (Table 3) (Figure 5). AMD have different types and stages, the different of clinical presentation for dry and wet AMD is completely different, so we firmly believed that the correlations existed should be evaluated separately, significant positive associations were found both for dry (such as AA+AG vs. GG: OR = 2.73, 95% CI = 2.13-3.51, $P_{\text{heterogeneity}} = 0.498$, $P < 0.001$, Figure 6A) and wet AMD (for example in AA+AG vs. GG: OR = 3.40, 95% CI = 2.90-3.99, $P_{\text{heterogeneity}} = 0.073$, $P < 0.001$, Figure 6B). Finally, different genotype methods were applied in included studies, we tried to in each method, whether associations may exist in our analysis, we found some positive results in some methods (such as in AA vs. GG model: OR = 7.52, 95% CI = 2.05-27.68, $P_{\text{heterogeneity}} < 0.001$, $P = 0.002$ about TaqMan; OR = 4.30, 95% CI = 2.51-7.35, $P_{\text{heterogeneity}} = 0.073$ about PCR-RFLP, OR = 3.84, 95% CI = 1.53-9.63, $P_{\text{heterogeneity}} = 0.044$ about MassARRAY MALDI-TOF, Figure 7A; OR = 7.00, 95% CI = 5.84-8.39, $P_{\text{heterogeneity}} = 0.677$ about sequencing, OR = 9.83, 95% CI = 5.18-18.65, $P_{\text{heterogeneity}} = 0.817$ about sequencing RT-PCR, Figure 7B) (Table 3).

Bias Diagnosis for publication and sensitivity Analysis

The publication bias was evaluated by both Begg’s funnel plot and Egger’s test. At beginning, the shape of the funnel plots seemed asymmetrical in allele comparison for rs11200638 by Begg’s test, suggesting no publication bias was existed. Then, Egger’s test was applied to provide statistical evidence of funnel plot symmetry. As a result, no obvious evidence of publication bias was observed (A-allele vs. G-allele, $t = 0.89$, $P = 0.38$ for Egger’s test; $z = 0.85$, $P = 0.396$ for Begg’s test, Supplementary Figure 1A,B)(Table 4).

To delete studies which may influence the power and stability of whole study, we applied the sensitive analysis, finally, no sensitive case-control studies were found (Supplementary Figure 2).

Gene-gene network diagram and interaction of online website

String online server indicated that HTRA1 gene interacts with numerous genes. The network of gene-gene interaction has been illustrated in Figure 8.

Discussion

Due to the severe consequences of vision loss caused by AMD, especially advanced AMD (atrophic/dry or neovascular/wet), it is necessary to study its etiology and mechanism, and then develop early diagnostic methods and effective treatments. Today, VEGF inhibitors have been widely regarded as effective drugs in clinical application for CNV (wet AMD) [3, 73, 74]. Therefore, identifying some novel detection markers and target drugs for some different types of AMD is the focus of current and future research. In the introduction, we clarified that genetic factors may help us to search for AMD in potential high-risk groups, which can be prevented and treated in advance.

In our analysis, we selected the HTRA1 gene that can regulate certain growth factors. The rs11200638 polymorphism in HTRA1 is the most common single nucleotide polymorphism (SNP) and has been received attention. However, Kanda et al. [35] demonstrated that there was no HTRA1 gene involved in AMD related SNPs, and its rs11200638 polymorphism did not appear to have an effect on the transcripts. Instead, they found a putative mitochondrial protein (LOC105378525) that may be expressed in the retina in the negative strand, which may be a candidate gene. In fact, they showed that rs11200638 and rs10490924 are in a strong linkage disequilibrium, which is a predicted non-synonymous A69S change in a protein named LOC105378525(LOC387715)/ARMS2. According to their research, rs10490924 was a strong candidate SNP associated with AMD risk, not rs11200638. In addition, Bonyadi et al. [75] conducted a meta-analysis of rs10490924 and found that the combined cigarette smoking and rs10490924 polymorphism may have significant association with AMD risk. We believed rs10490924 was a valuable SNP for AMD, nevertheless, conclusions based on a single study may not be negated by the potential functions for HTRA1 and its SNPs, which need more evidences and support from published and future researches.

Mori et al. first investigated the association between HTRA1 gene rs11200638 polymorphism and risk of AMD
Other more following researchers duplicated their work in different populations and different types of AMD. However, results were confounding, even within same populations, though two published meta-analysis. As we all know, meta-analysis provides a method that can effectively increase the size of the sample by combining data from various related studies, thereby enhancing the statistical power of the analysis to estimate genetic effects [76], which used this method to demonstrate statistically significant genetic associations.

Two previous meta-analysis [77, 78] about rs11200638 polymorphism and AMD have been reported, however, each study has its limitations. For example, Tang et al. just included fourteen case-control studies, two studies [68, 70] were not consistent with HWE, and Tuo et al. actually reported four-source case-control studies, which shouldn’t be combined together [78]. Chen et al. also performed a meta-analysis in the same year including 14 case-control studies, similar limitations were existed [77]. After year of 2008, newly added studies have been published, and to perfect the above deficiencies, we performed an updated meta-analysis to come to a more convincing conclusion about HTRA1 gene rs11200638 polymorphism and AMD susceptibility.

To the best of our knowledge, this is the comprehensive and systematic meta-analysis exploring the associations between HTRA1 gene rs11200638 polymorphism and AMD risk; it involved about 8101 AMD individuals and 7215 controls. Increased associations were found in the whole group, in Asian and Caucasian subgroups, source of control subgroup, and dry/wet sub-types of AMD, different genotyping methods (Sequencing, TaqMan, PCR-RFLP, RT-PCR and MassARRAY MALDI-TOF), which means that A-allele or AA genotype is the risk factor for AMD, in other words, if individuals carry on this SNP from peripheral blood test, which may indicate that it is possible to increase the occurrence of AMD for them in present time or at some point in the future. Therefore, this polymorphism may be helpful in screening vulnerable populations for AMD in advance. In addition, the power of present study was 1.00, which suggested our conclusions were stable and convincing.

In addition, the online analysis system-String was applied to predict potential and functional partners related to HTRA1, which can help us to better understand the value for detection and concern. Finally, ten genes were predicted. Among them, the highest score of association was ACAN (0.943), however, so far, no research has been reported between this gene and AMD and interaction between this gene and HTRA1. Future research should be payed attention to above information, which may be in favor of AMD early detection/prevention and intervention. In other partners, ARMS2 and CFH have been shown to associate with AMD. The ARMS2 and HTRA1 genes are located nearby on the 10q26 chromosome in a strong linkage disequilibrium. Significant association was observed that ARMS2 rs10490924 was related response to ranibizumab treatment among wet AMD subjects [71]. CFH gene T1277C polymorphism is strong associated with both wet and dry AMD and may contribute to the inflammation in the pathogenesis of AMD [79]. As for the rest interaction genes (CLPP, CTRC, YME1L1, HSPD1, RPL34, CLPX and PLEKHG4) both had moderate score and no literature to support. It seems that above ten genes associated with HTRA1 came from text mining scores, which were derived from the co-occurrence of gene/protein names in related abstracts. In addition, it was important considered the occurrence of the LOC105378525 (LOC387715) and its polymorphism (A69S, rs10490924) as the main factor for AMD reported by Kanda et al (2007) [35], which should be added in the network of HTRA1 related genes. In a word, we should deep explore these partners of HTRA1 gene, and gene-gene interactions in the development of AMD in the next step.

There are some inherent limitations of our study should be declared. First, further studies should focus on Mixed and African populations, which was vacant in present analysis. Second, gene-gene and gene-environment interactions were not well analyzed. It is possible that specific environmental and lifestyle factors alter the associations between HTRA1 rs11200638 polymorphism and AMD, including age, diabetes, smoking, familial history, and hypertension. Third, vision is the most concerned-clinical indicator of AMD, future studies should include the value of the vision and analyze the relationships between rs11200638 polymorphism and the degree of visual impairment, which may help us to better detect disease progression.

In conclusion, our present meta-analysis suggests that HTRA1 rs11200638 polymorphism may be a risk factor.
for the susceptibility of AMD, larger and more comprehensive studies should be performed in the future.

Abbreviations

AMD: age-related macular degeneration; GWAS: genome-wide association studies; HTRA1: high-temperature requirement factor A1; CNV: choroidal neovascularization; VEGF: vascular endothelial growth factor; AREDS: Age-Related Eye Disease Study; SNP: single nucleotide polymorphism; HB: hospital-based; PB: population-based; SOC: source of control; PCR-RFLP: polymerase chain reaction followed by restriction fragment length polymorphism; MALDI-TOF: a chip-based matrix-assisted laser-desorption/ionization time-of-flight.

Declarations

Acknowledgements

Not applicable.

Author contributions

YL and HJ designed the study and drafted the manuscript; DW extracted, analyzed, interpreted the data, and collected the clinical data; DW and WL performed the targeted sequencing, analyzed and interpreted the data; DW and WL participated in the study coordination and revised the manuscript. All authors read and approved the final version of the manuscript.

Funding

This study was supported by Heilongjiang Health and Family Planning Commission Research Project (No. 2016-379). The funding body play no direct role in the design of the study, and collection, analysis, and interpretation of data, and in writing the manuscript.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Ophthalmic function room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, 157000, Heilongjiang Province, China. 2Department of Ophthalmology (three disease areas), Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, 157000Heilongjiang Province, China. 3Department of Critical Medicine, Second People's Hospital of Mudanjiang, 157000Heilongjiang Province, China
1. Klein BE, Klein R: **Forecasting age-related macular degeneration through 2050.** *Jama* 2009, **301**(20):2152-2153.

2. Klein R, Chou CF, Klein BE, Zhang X, Meuer SM, Saaddine JB: **Prevalence of age-related macular degeneration in the US population.** *Archives of ophthalmology (Chicago, Ill : 1960)* 2011, **129**(1):75-80.

3. Khanna S, Komati R, Eichenbaum DA, Harirprasad I, Ciulla TA, Harirprasad SM: **Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: a comparative review.** *BMJ open ophthalmology* 2019, **4**(1):e000398.

4. Blasiak J: **Senescence in the pathogenesis of age-related macular degeneration.** *Cellular and molecular life sciences : CMLS* 2020.

5. Rao P, Lum F, Wood K, Salman C, Burugapalli B, Hall R, Singh S, Parke DW, 2nd, Williams GA: **Real-World Vision in Age-Related Macular Degeneration Patients Treated with Single Anti-VEGF Drug Type for 1 Year in the IRIS Registry.** *Ophthalmology* 2018, **125**(4):522-528.

6. Cukras C, Fine SL: **Classification and grading system for age-related macular degeneration.** *International ophthalmology clinics* 2007, **47**(1):51-63.

7. Chakravarthy U, Wong TY, Fletcher A, Piault E, Evans C, Zlateva G, Buggage R, Pleil A, Mitchell P: **Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis.** *BMC ophthalmology* 2010, **10**(31).

8. Jager RD, Mieler WF, Miller JW: **Age-related macular degeneration.** *The New England journal of medicine* 2008, **358**(24):2606-2617.

9. Shahid H, Khan JC, Cipriani V, Sepp T, Matharu BK, Bunce C, Harding SP, Clayton DG, Moore AT, Yates JR: **Age-related macular degeneration: the importance of family history as a risk factor.** *The British journal of ophthalmology* 2012, **96**(3):427-431.

10. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST et al: **Complement factor H polymorphism in age-related macular degeneration.** *Science (New York, NY)* 2005, **308**(5720):385-389.

11. Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T, Yasuda M, Oshima Y, Yoshida S, Enaida H, Tsuchihashi T et al: **Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population.** *Nature genetics* 2011, **43**(10):1001-1004.

12. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A: **Age-related macular degeneration: genetics and biology coming together.** *Annual review of genomics and human genetics* 2014, **15**:151-171.

13. Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S, Tan PL, Oh EC, Merriam JE, Souied E et al: **Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC).** *Proceedings of the National Academy of Sciences of the United States of America* 2010, **107**(16):7395-7400.

14. Black JR, Clark SJ: **Age-related macular degeneration: genome-wide association studies to translation.** *Genetics in medicine : official journal of the American College of Medical Genetics* 2016, **18**(4):283-289.

15. Duvvari MR, Paun CC, Buitendijk GH, Saksens NT, Volokhina EB, Ristau T, Schoenmaker-Koller FE, van de Ven JP, Groenewoud JM, van den Heuvel LP et al: **Analysis of rare variants in the C3 gene in patients with age-related macular degeneration.** *PloS one* 2014, **9**(4):e94165.

16. Fritsche LG, Chen W, Schu M, Yspan BL, Yu Y, Thorleifsson G, Zack DJ, Arakawa S, Cipriani V, Ripke S et al: **Seven new loci associated with age-related macular degeneration.** *Nature genetics* 2013, **45**(4):433-439, 439e431-432.

17. Lu F, Liu S, Hao Q, Liu L, Zhang J, Chen X, Hu W, Huang P: **Association Between Complement Factor C2/C3/CFB/CFH Polymorphisms and Age-Related Macular Degeneration: A Meta-Analysis.** *Genetic testing and molecular biomarkers* 2018, **22**(9):526-540.

18. Xiying M, Wenbo W, Wangyi F, Qinghuai L: **Association of Apolipoprotein E Polymorphisms with...**
Age-related Macular Degeneration Subtypes: An Updated Systematic Review and Meta-analysis. Archives of medical research 2017, 48(4):370-377.

19. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY: Age-related macular degeneration. Lancet (London, England) 2012, 379(9827):1728-1738.

20. Moja L, Lucenteforte E, Kwag KH, Bertele V, Campomori A, Chakravarthy U, D'Amico R, Dickersin K, Kodjikian L, Lindsley K et al: Systemic safety of bevacizumab versus ranibizumab for neovascular age-related macular degeneration. The Cochrane database of systematic reviews 2014(9):Cd011230.

21. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS: Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. The Cochrane database of systematic reviews 2014(8):Cd005139.

22. Ba J, Peng RS, Xu D, Li YH, Shi H, Wang Q, Yu J: Intravitreal anti-VEGF injections for treating wet age-related macular degeneration: a systematic review and meta-analysis. Drug design, development and therapy 2015, 9:5397-5405.

23. Kloeckener-Gruissem B, Barthelmes D, Labs S, Schindler C, Kurz-Levin M, Michels S, Fleischhauer J, Berger W, Sutter F, Menghini M: Genetic association with response to intravitreal ranibizumab in patients with neovascular AMD. Investigative ophthalmology & visual science 2011, 52(7):4694-4702.

24. Park UC, Shin JY, McCarthy LC, Kim SJ, Park JH, Chung H, Yu HG: Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Molecular vision 2014, 20:1680-1694.

25. Ratnapriya R, Chew EY: Age-related macular degeneration-clinical review and genetics update. Clinical genetics 2013, 84(2):160-166.

26. Xu Y, Guan N, Xu J, Yang X, Ma K, Zhou H, Zhang F, Snellingen T, Jiao Y, Liu X et al: Association of CFH, LOC387715, and HTRA1 polymorphisms with exudative age-related macular degeneration in a northern Chinese population. Molecular vision 2008, 14:1373-1381.

27. Tosi GM, Caldi E, Neri G, Nuti E, Marigliani D, Baiocchi S, Traversi C, Cevenini G, Tarantello A, Fusco F et al: HTRA1 and TGF-beta1 Concentrations in the Aqueous Humor of Patients With Neovascular Age-Related Macular Degeneration. Investigative ophthalmology & visual science 2017, 58(1):162-167.

28. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X et al: A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science (New York, NY) 2006, 314(5801):992-993.

29. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M et al: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science (New York, NY) 2006, 314(5801):989-992.

30. Askari M, Nikpoor AR, Gorjipour F, Mazidi M, Sanati MH, Aryan H, Irani A, Ghasemi Falavarjani K, Nazari H, Mousavizadeh K: Association of Htra1 gene polymorphisms with the risk of developing AMD in Iranian population. Reports of biochemistry & molecular biology 2015, 4(1):43-49.

31. Chan CC, Shen D, Zhou M, Ross RJ, Ding X, Zhang K, Green WR, Tuo J: Human HtrA1 in the archived eyes with age-related macular degeneration. Transactions of the American Ophthalmological Society 2007, 105:92-97; discussion 97-98.

32. Chen JH, Yang Y, Zheng Y, Qiu M, Xie M, Lin W, Zhang M, Pang CP, Chen H: No association of age-related maculopathy susceptibility protein 2/Htra1 serine peptidase 1 or complement factor H polymorphisms with early age-related maculopathy in a Chinese cohort. Molecular vision 2013, 19:944-954.

33. Cheng Y, Huang L, Li X, Zhou P, Zeng W, Zhang C: Genetic and functional dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy. PloS one 2013, 8(1):e53665.

34. Chu J, Zhou CC, Lu N, Zhang X, Dong FT: Genetic variants in three genes and smoking show strong associations with susceptibility to exudative age-related macular degeneration in a Chinese population. Chinese medical journal 2008, 121(24):2525-2533.

35. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A: A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with
age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(41):16227-16232.

36. Kaur I, Cantsilieri S, Katta S, Richardson AJ, Schache M, Pappuru RR, Narayanan R, Mathai A, Majji AB, Tindill N et al: Association of the del443ins54 at the ARMS2 locus in Indian and Australian cohorts with age-related macular degeneration. Molecular vision 2013, 19:822-828.

37. Kaur I, Katta S, Hussain A, Hussain N, Mathai A, Narayanan R, Hussain A, Reddy RK, Majji AB, Das T et al: Variants in the 1q26 gene cluster (LOC387715 and HTRA1) exhibit enhanced risk of age-related macular degeneration along with CFH in Indian patients. Investigative ophthalmology & visual science 2008, 49(5):1771-1776.

38. Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A: LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. American journal of ophthalmology 2007, 144(4):608-612.

39. Lana TP, da Silva Costa SM, Ananina G, Hirata FE, Rim PHH, Medina FM, de Vasconcellos JPC, de Melo MB: Association of HTRA1 rs11200638 with age-related macular degeneration (AMD) in Brazilian patients. Ophthalmic genetics 2018, 39(1):46-50.

40. Lee SJ, Kim NR, Chin HS: LOC387715/HTRA1 polymorphisms, smoking and combined effects on exudative age-related macular degeneration in a Korean population. Clinical & experimental ophthalmology 2010, 38(7):698-704.

41. Leveziel N, Souied EH, Richard F, Barbu V, Zourdani A, Morineau G, Zerbib J, Coscas G, Soubrane G, Benlian P: PLEKHA1-LOC387715-HTRA1 polymorphisms and exudative age-related macular degeneration in the French population. Molecular vision 2007, 13:2153-2159.

42. Li WJ, Sheng XL, Zhuang WJ, Li HP: Associations of SNPs in ARMS2/HTRA1 with age-related macular degeneration. Ningxia Medical University Thesis for Master’s Degree 2015.

43. Liang X, Cui L, Gu H, Zhou HY, Xu J, Liu NP: Interaction of susceptibility genes in patients with exudative age-related macular degeneration. Chin J Ophthalmol 2012, 48(3):241-245.

44. Lin JM, Wan L, Tsai YY, Lin HJ, Tsai Y, Lee CC, Tsai CH, Tsai FJ, Tseng SH: HTRA1 polymorphism in dry and wet age-related macular degeneration. Retina (Philadelphia, Pa) 2008, 28(2):309-313.

45. Losonczy G, Fekete A, Voko Z, Takacs L, Kaldi I, Ajzner E, Kasza M, Vajas A, Bertas A, Balogh I: Analysis of complement factor H Y402H, LOC387715, HTRA1 polymorphisms and ApoE alleles with susceptibility to age-related macular degeneration in Hungarian patients. Acta ophthalmologica 2011, 89(3):255-262.

46. Matuskova V, Zeman T, Ewerlingova L, Hlinomazova Z, Soucek J, Vlkova E, Goswami N, Balcar VJ, Sery O: An association of neovascular age-related macular degeneration with polymorphisms of CFH, ARMS2, HTRA1 and C3 genes in Czech population. Acta ophthalmologica 2020.

47. Mori K, Horie-Inoue K, Kohda M, Kawasaki I, Gehlbach PL, Awata T, Yoneya S, Okazaki Y, Inoue S: Association of the HTRA1 gene variant with age-related macular degeneration in the Japanese population. Journal of human genetics 2007, 52(7):636-641.

48. Ng TK, Liang XY, Lai TY, Ma L, Tam PO, Wang JX, Chen LJ, Chen H, Pang CP: HTRA1 promoter variant differentiates polypoidal choroidal vasculopathy from exudative age-related macular degeneration. Scientific reports 2016, 6:28639.

49. Tian J, Qin X, Fang K, Chen Q, Hou J, Li J, Yu W, Chen D, Hu Y, Li X: Association of genetic polymorphisms with response to bevacizumab for neovascular age-related macular degeneration in the Chinese population. Pharmacogenomics 2012, 13(7):779-787.

50. Tuo J, Ross RJ, Reed GF, Yan Q, Wang JJ, Bojanowski CM, Chew EY, Feng X, Olsen TW, Ferris FL et al: The HtrA1 promoter polymorphism, smoking, and age-related macular degeneration in multiple case-control samples. Ophthalmology 2008, 115(11):1891-1898.

51. Weger M, Renner W, Steinbrugger I, Kofer K, Wedrich A, Gросelj-Strele A, El-Shabrawy I, Schmut O, Haas A: Association of the HTRA1 -625G>A promoter gene polymorphism with exudative age-related macular degeneration in a Central European population. Molecular vision 2007, 13:1274-1279.

52. Yang N, Xing J, Shao Y, Zhu Z, Ba YY, Wei W: Relationship between HTRA1 polymorphism and genetic susceptibility of wet age-related macular degeneration in Han population. Guoji Yanke Zazhi 2018, 18(5):815-818.

53. Zeng JX, Tang LS, Zhang K: Assessing susceptibility to age-related macular degeneration with
genetic makers and environment factors. *Doctoral Dissertation of Zhongnan University* 2011.

54. Tam PO, Ng TK, Liu DT, Chan WM, Chiang SW, Chen LJ, DeWan A, Hoh J, Lam DS, Pang CP: **HTRA1** variants in exudative age-related macular degeneration and interactions with smoking and **CFH**. *Investigative ophthalmology & visual science* 2008, 49(6):2357-2365.

55. Jiang H, Qu Y, Dang G, Zhang X, Yin N, Zhang Y, Bi H, Pan X, Xu X, Zhou F et al: Analyses of single nucleotide polymorphisms and haplotype linkage of LOC387715 and the HTRA1 gene in exudative age-related macular degeneration in a Chinese cohort. *Retina (Philadelphia, Pa)* 2009, 29(7):974-979.

56. Ruanviboonsuk P, Tadarati M, Singhanetr P, Wattanapokayakit S, Kunhapan P, Wanitchanon T, Wichukchinda N, Mushirota T, Akiyama M, Momozawa Y et al: Genome-wide association study of neovascular age-related macular degeneration in the Thai population. *Journal of human genetics* 2017, 62(11):957-962.

57. Fritsche LG, Loenhartd T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, Weber BH: Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. *Nature genetics* 2008, 40(7):892-896.

58. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, Ferris FL, Bressler SB, Milton RC: The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. *Archives of ophthalmology (Chicago, Ill : 1960)* 2005, 123(11):1484-1498.

59. Pan HY, Mi YY, Xu K, Zhang Z, Wu H, Zhang W, Yuan W, Shi L, Zhang LF, Zhu LJ et al: Association of C-reactive protein (CRP) rs1205 and rs2808630 variants and risk of cancer. *Journal of cellular physiology* 2020.

60. Zhang LF, Xu K, Tang BW, Zhang W, Yuan W, Yue C, Shi L, Mi YY, Zuo L, Zhu LJ: Association between SOD2 V16A variant and urological cancer risk. *Aging* 2020, 12(1):825-843.

61. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. *Statistics in medicine* 2002, 21(11):1539-1558.

62. DerSimonian R, Laird N: Meta-analysis in clinical trials. *Controlled clinical trials* 1986, 7(3):177-188.

63. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute* 1959, 22(4):719-748.

64. Napolioni V: The relevance of checking population allele frequencies and Hardy-Weinberg Equilibrium in genetic association studies: the case of SLC6A4 5-HTTLPR polymorphism in a Chinese Han Irritable Bowel Syndrome association study. *Immunology letters* 2014, 162(1 Pt A):276-278.

65. Hayashino Y, Noguchi Y, Fukui T: Systematic evaluation and comparison of statistical tests for publication bias. *Journal of epidemiology* 2005, 15(6):235-243.

66. Yu Q, Zhu J, Yao Y, Sun C: Complement family member CFI polymorphisms and AMD susceptibility from a comprehensive analysis. *Biosci Rep* 2020, 40(4).

67. Shao HB, Ren K, Gao SL, Zou JG, Mi YY, Zhang LF, Zuo L, Okada A, Yasui T: Human methionine synthase A2756G polymorphism increases susceptibility to prostate cancer. *Aging* 2018, 10(7):1776-1788.

68. Chen H, Yang Z, Gibbs D, Yang X, Hau V, Zhao P, Ma X, Zeng J, Luo L, Pearson E et al: Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration. *Vision research* 2008, 48(5):690-694.

69. Cruz-Gonzalez F, Cieza-Borrella C, Lopez Valverde G, Lorenzo-Perez R, Hernandez-Galilea E, Gonzalez-Sarmiento R: **CFH** (rs1410996), HTRA1 (rs112000638) and ARMS2 (rs10490923) gene polymorphisms are associated with AMD risk in Spanish patients. *Ophthalmic genetics* 2014, 35(2):68-73.

70. Lu F, Hu J, Zhao P, Lin Y, Yang Y, Liu X, Fan Y, Chen B, Liao S, Du Q et al: HTRA1 variant increases risk to neovascular age-related macular degeneration in Chinese population. *Vision research* 2007, 47(24):3120-3123.

71. Mohamad NA, Ramachandran V, Mohd Isa H, Chan YM, Ngah NF, Ching SM, Hoo FK, Wan Sulaiman WA, Inche Mat LN, Mohamed MH: Association of HTRA1 and ARMS2 gene polymorphisms with response to intravitreal ranibizumab among neovascular age-related macular degenerative subjects. *Human genomics* 2019, 13(1):13.

72. Yang X, Hu J, Zhang J, Guan H: Polymorphisms in **CFH**, HTRA1 and CX3CR1 confer risk to
exudative age-related macular degeneration in Han Chinese. The British journal of ophthalmology 2010, 94(9):1211-1214.

73. Amoaku WM, Chakravarthy U, Gale R, Gavin M, Ghanchi F, Gibson J, Harding S, Johnston RL, Kelly SP, Lottery A et al: Defining response to anti-VEGF therapies in neovascular AMD. Eye (London, England) 2015, 29(6):721-731.

74. Cheung GCM, Lai TYY, Gomi F, Ruamviboonsuk P, Koh A, Lee WK: Anti-VEGF Therapy for Neovascular AMD and Polypoidal Choroidal Vasculopathy. Asia-Pacific journal of ophthalmology (Philadelphia, Pa) 2017, 6(6):527-534.

75. Jabbarpoor Bonyadi MH, Yaseri M, Bonyadi M, Soheilian M, Nikkhah H: Association of combined cigarette smoking and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: A meta-analysis. Ophthalmic genetics 2017, 38(4):308-313.

76. Munafo MR, Flint J: Meta-analysis of genetic association studies. Trends in genetics : TIG 2004, 20(9):439-444.

77. Chen W, Xu W, Tao Q, Liu J, Li X, Gan X, Hu H, Lu Y: Meta-analysis of the association of the HTRA1 polymorphisms with the risk of age-related macular degeneration. Experimental eye research 2009, 89(3):292-300.

78. Tang NP, Zhou B, Wang B, Yu RB: HTRA1 promoter polymorphism and risk of age-related macular degeneration: a meta-analysis. Annals of epidemiology 2009, 19(10):740-745.

79. Narayanan R, Butani V, Boyer DS, Atilano SR, Resende GP, Kim DS, Chakrabarti S, Kuppermann BD, Khatibi N, Chwa M et al: Complement factor H polymorphism in age-related macular degeneration. Ophthalmology 2007, 114(7):1327-1331.

Tables

Table 1 Characteristics of included studies in HTRA1 rs11200638 polymorphism and AMD risk.

Author	Year	Country	Ethnicity	type	Case	Control	
Tian	2012	China	Asian	AMD	532	468	
Ruamviboonsuk	2017	Thailand	Asian	wet	377	1073	
Chu	2008	China	Asian	wet	144	126	
Losonczy	2011	Hungary	Caucasian	AMD	103	95	
Tuo	2008	USA	Caucasian	AMD	142	132	
Tuo	2008	USA	Caucasian	AMD	330	191	
Tuo	2008	USA	Caucasian	AMD	272	555	
Tuo	2008	USA	Caucasian	AMD	46	22	
Chan	2007	USA	Caucasian	AMD	52	13	
Kanda	2007	USA	Caucasian	AMD	457	280	
Name	Year	Country	Ethnicity	Disease	Gender	Age M	Age F
------------	------	----------------	-----------	---------	--------	-------	-------
Cheng	2013	China	Asian	wet	93	93	
Liang	2012	China	Asian	wet	161	150	
Jiang	2008	China	Asian	wet	159	140	
Lee	2010	Korea	Asian	wet	137	187	
Lin	2008	China-Taiwan	Asian	AMD	95	90	
Kaur	2008	India	Asian	AMD	229	184	
Xu	2007	China	Asian	wet	121	132	
Tam	2008	China-Hong Kong	Asian	wet	163	183	
Mori	2007	Japan	Asian	AMD	123	133	
Askari	2015	Iran	Asian	AMD	120	120	
Lana	2018	Brazil	Caucasian	AMD	204	166	
Kaur	2013	India	Asian	AMD	198	145	
Ng	2016	Hong Kong	Asian	wet	194	183	
Kaur	2013	India	Caucasian	AMD	616	426	
Chen	2013	China	Asian	AMD	158	157	
Kondo	2007	Japan	Asian	AMD	73	94	
Leveziel	2007	France	Caucasian	wet	118	116	
Weger	2007	Austria	Caucasian	wet	242	157	
Lu	2007	China	Asian	wet	90	106	
Cruz-González	2013	Spain	Caucasian	AMD	121	91	
Mohamad	2019	Malaysia	Asian	wet	145	145	
Yang	2010	China	Asian	wet	109	150	
Chen	2008	USA	Caucasian	AMD	776	294	
Zeng	2011	China	Caucasian	AMD	1335	509	
Li	2015	China	Asian	AMD	146	145	
Yang	2018	China	Asian	AMD	201	201	
Table 2 Characteristics of included studies in HTRA1 rs11200638 polymorphism and wet/dry AMD risk, respectively.

Author	Year	Country	Ethnicity	type	Case	Control	SOC
Lin	2008	China-Taiwan	Asian	dry	52	90	HB
Chan	2007	USA	Caucasian	dry	18	13	HB
Mori	2007	Japan	Asian	dry	19	116	HB
Askari	2015	Iran	Asian	dry	32	120	HB
Ruamviboonsuk	2017	Thailand	Asian	wet	377	1073	PB
Cheng	2013	China	Asian	wet	93	93	HB
Ng	2016	Hong Kong	Asian	wet	194	183	PB
Liang	2012	China	Asian	wet	161	150	HB
Chu	2008	China	Asian	wet	144	126	HB
Jiang	2008	China	Asian	wet	159	140	HB
Lee	2010	Korea	Asian	wet	137	187	HB
Lin	2008	China-Taiwan	Asian	wet	43	90	HB
Xu	2007	China	Asian	wet	121	132	HB
Tam	2008	China-Hong Kong	Asian	wet	163	183	HB
Chan	2007	USA	Caucasian	wet	31	13	HB
Leveziel	2007	France	Caucasian	wet	118	116	HB
Mori	2007	Japan	Asian	wet	104	116	HB
Name	Year	Region	Ethnicity	Type	Cases	Controls	Study Type
----------	-------	------------	-----------	-------	-------	----------	------------
Askari	2015	Iran	Asian	wet	88	120	HB
Weger	2007	Austria	Caucasian	wet	242	157	PB
Lu	2007	China	Asian	wet	90	106	HB
Mohamad	2019	Malaysia	Asian	wet	145	145	HB
Yang	2010	China	Asian	wet	109	150	HB
Chen	2008	USA	Caucasian	wet	470	294	HB
Chen	2008	USA	Caucasian	dry	306	294	HB
Zeng	2011	China	Caucasian	dry	341	509	PB
Zeng	2011	China	Caucasian	wet	994	509	PB
Matuskova	2020	Czech Republic	Caucasian	wet	307	191	HB

Table 3 Results of the meta-analysis on HTRA1 rs11200638 polymorphism and AMD risk in total and types of subgroups.
Variables	N	Case/Control	A-allele vs. G-allele	AG vs. GG	AA+AG						
			OR(95%CI)	P	P	OR(95%CI)	P	P	OR(95%CI)	P	P
Total	38	8582/7452	2.39(2.12-2.69)	0.000	0.000	1.91(1.69-2.16)	0.000	0.000	2.63(2	0.000	0.000
HWE	33	8101/7215	2.56(2.34-2.80)	0.000	0.000	1.98(1.76-2.23)	0.001	0.000	2.80(2	0.000	0.000
Ethnicity											
Asian	19	3424/4004	2.51(2.22-2.83)	0.000	0.000	1.67(1.47-1.88)	0.167	0.000	2.68(2	0.000	0.000
Caucasian	14	4677/3211	2.63(2.29-3.02)	0.000	0.000	2.37(2.15-2.61)	0.140	0.000	2.94(2	0.000	0.000
SOC											
HB	22	3589/3273	2.56(2.28-2.88)	0.000	0.000	1.86(1.58-2.19)	0.027	0.000	2.81(2	0.000	0.000
PB	11	4512/33942	2.55(2.18-2.99)	0.000	0.000	2.16(1.84-2.53)	0.021	0.000	2.80(2	0.000	0.000
AMD type											
Wet	17	3476/3579	3.03(2.59-3.55)	0.000	0.000	2.11(1.81-2.46)	0.038	0.000	3.40(2	0.000	0.000
Dry	5	462/848	2.36(1.71-3.24)	0.750	0.000	1.33(0.76-2.32)	0.316	0.316	2.08(1	0.000	0.000
Genotyping											
Others	5	3004/2599	2.55(2.22-2.94)	0.027	0.000	2.14(1.67-2.73)	0.006	0.000	2.85(2	0.000	0.000
Sequencing	14	2613/2332	2.84(2.61-3.09)	0.237	0.000	2.08(1.81-2.41)	0.252	0.000	3.19(2	0.000	0.000
TaqMan	4	591/524	2.66(1.43-4.94)	0.000	0.000	2.79(1.31-5.91)	0.008	0.008	3.61(1	0.000	0.000
PCR-RFLP	6	1037/1121	1.98(1.72-2.26)	0.105	0.000	1.76(1.45-2.14)	0.611	0.000	2.08(1	0.000	0.000
RT-PCR	2	509/293	2.91(2.30-3.69)	0.755	0.000	2.08(1.51-2.86)	0.643	0.000	2.90(2	0.000	0.000
MassARRAY	2	347/346	2.18(1.39-3.49)	0.043	0.001	1.46(0.95-2.24)	0.213	0.088	2.22(2	0.000	0.000

P_h: value of Q-test for heterogeneity test; P: Z-test for the statistical significance of the OR
Table 4 Publication bias tests (Begg’s funnel plot and Egger’s test for publication bias test) for HTRA1 rs11200638 polymorphism.

Genetic type	Coefficient	Standard error	t	P value	95%CI of the intercept
A-allele vs. G-allele	0.211	0.924	0.23	0.820	(-1.673-2.096)
AG vs. GG	-0.031	0.500	-0.06	0.951	(-1.051-0.989)
AA+AG vs. GG	-0.045	0.532	-0.08	0.933	(-1.130-1.040)
AA vs. GG	0.297	0.382	0.78	0.441	(-0.481-1.076)
AA vs. AG+GG	0.365	0.438	0.83	0.412	(-0.529-1.258)

Supplementary Materials

Supplementary Table 1. **Supplementary Table 1** Allele Frequency from 1000 Genomes Browser and present study.

Supplementary Figure 1. A: Begg’s funnel plot for publication bias test (A-allele vs. G-allele). Each point represents a separate study for the indicated association. Log [OR], natural logarithm of OR. Horizontal line, mean effect size. B: Egger’s publication bias plot (A-allele vs. G-allele).

Supplementary Figure 2. Sensitivity analysis between HTRA1 gene rs11200638 polymorphism and AMD risk (A-allele vs. G-allele).
35 different articles about betweeen HTRA1 gene rs11200638 were excluded after reading full article evaluation.
Figure 1

Flowchart illustrating the search strategy used to identify association studies for HTRA1 gene rs11200638 polymorphism and AMD risk.
Figure 2

The MAF of minor-allele (mutant-allele) for HTRA1 gene rs11200638 polymorphism from the 1000 Genomes online database and present analysis. EAS: East Asian; EUR: European; AFR: African; AMR: American; SAS: South Asian.
A-allele frequencies for the HTRA1 gene rs11200638 polymorphism among cases/controls stratified by ethnicity. Vertical line, allele frequency; Horizontal line, case/control groups.

Study ID	Asian
	Tian (2012)
	Ruamviboonsuk (2017)
	Cheng (2013)
	Liang (2012)
	Jiang (2008)
	Lee (2010)
	Lin (2008)
	Kaur (2008)
	Xu (2007)
	Tam (2008)
	Mori (2007)
	Askari (2015)
	Kaur (2013)
	Ng (2016)
	Chen (2013)
	Kondo (2007)
	Li (2015)
	Chu (2008)
	Yang (2018)
Figure 4

Forest plot of AMD risk associated with HTRA1 gene rs11200638 polymorphism (A-allele vs. G-allele) by ethnicity subgroup. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.
Study ID

HB
Tian (2012)
Losonczy (2011)
Chan (2007)
Kanda (2007)
Cheng (2013)
Liang (2012)
Jiang (2008)
Lee (2010)
Lin (2008)
Kaur (2008)
Xu (2007)
Tam (2008)
Mori (2007)
Askari (2015)
Lana (2018)
Chen (2013)
Kondo (2007)
Leveziel (2007)
Li (2015)
Chu (2008)
Yang (2018)
Matušková (2020)
Subtotal (I-squared = 40.8%, p = 0.025)

PR
Figure 5

Forest plot of AMD risk associated with HTRA1 gene rs11200638 polymorphism (AG vs. GG) by source of control subgroup.
Figure 6

Forest plot of AMD risk associated with HTRA1 gene rs11200638 polymorphism (AA+AG vs. GG) by AMD type subgroup. A: wet AMD; B: dry AMD.
Figure 7
Forest plot of AMD risk associated with HTRA1 gene rs11200638 polymorphism (AA vs. GG) by genotyping methods subgroup. A: random model; B: fixed model.

Figure 8
Human HTRA1 interactions network with other genes obtained from String server. At least 10 genes have been...
indicated to correlate with HTRA1 gene. ACAN: aggrecan core protein; ARMS2: age-related maculopathy susceptibility; CLPP: ATP-dependent Clp protease proteolytic subunit; CTRC: chymotrypsin-C; YME1L1: ATP-dependent zine metalloprotease YME1L1; CFH: complement factor H; HSPD1: 60 kDa heat shock protein; RPL34: 60S ribosomal protein L34; CLPX: ATP-dependent Clp protease ATP-binding subunit clpX-like; PLEKHG4: Puratrophin-1.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFigure2.tif
- SupplementaryFigure1.tif
- SupplementaryTable1.docx