Interference of aqueous and ethanolic solutions of *Adiantum latifolium* Lam. (Pteridaceae) leaves on in vitro *Ceratocystis cacaofunesta* mycelial growth

ABSTRACT: *Ceratocystis cacaofunesta* is the etiologic agent of “Ceratocystis wilt of cacao”, an irreversible disease that affects the vascular system of the plant. The management of the disease is difficult and economic and alternative solutions are needed. The medicinal plants compounds are known to have antimicrobial activity, and they could be an alternative choice in the *C. cacaofunesta* control. Considering this, this work aimed to verify the in vitro antifungal activity of aqueous and alcoholic solutions of *Adiantum latifolium* leaves on *C. cacaofunesta*. Plant material was collected at Atlantic Forest biome in cacao cultivation area in South of Bahia state. Aqueous and ethanolic solutions were made by boiling and maceration in 70% ethanol, respectively. After filtration, they were added to culture medium at 1, 5 and 10% dilution. A 7 mm disc colony of *C. cacaofunesta* was inoculated in the middle of the well containing Sabouraud dextrose agar (SDA) and the mycelial growth was observed. Controls consisted on SDA with sterile water or 70% ethanol at the same dilution of treatments, and T ebucaronazole at 4 µg.mL⁻¹. Neither aqueous nor ethanolic solutions inhibited the mycelial growth. However, aqueous solution presence induced a higher mycelial growth rate. Conversely, aqueous solution treatment induced mycelial growth. T ebucaronazole showed important mycelial growth inhibition and it could be considered in *C. cacaofunesta* propagation control in areas where genetic selection or handling management still fail.

KEYWORDS: maidenhair fern; Cocoa; mold; Atlantic Forest.
Ceratocystis wilt is a fungal disease characterized by wilting and death of cacao (*Theobroma cacao* L) (OLIVEIRA; LUZ, 2005). Along with witches’ broom (*Moniliophthora* syn. *Crinipellis*) and frosty pod rot (*Moniliophthora roperi*) constitutes the main important agent of production losses in North-eastern Brazilian cacao crops (OLIVEIRA; LUZ, 2005; ENGELBRECHT et al., 2007).

The etiologic agent in Brazilian crops is *Ceratocystis cacaofunesta* Engler. & T.C. Harr. (BASTOS; EVANS, 1978; BAKER et al., 2003; ALMEIDA et al., 2005; ENGELBRECHT; HARRINGTON, 2005) a species belonging to *Ceratocystis* fimbriata complex (ENGELBRECHT et al., 2007; FERREIRA et al., 2010; CAB INTERNATIONAL, 2019).

Fungicides, hygienic techniques (OLIVEIRA; LUZ, 2005) and genetic resistance selection of cacao trees (SILVA et al., 2012) have been considered in Ceratocystis wilt management; however, the short period between appearance of the disease and plant death turns this disease control difficult (SILVA et al., 2012) and research in this area are still needed.

Fungicides have been used to avoid dispersion of Ceratocystis agent and substances reported to have effect on species of this genus are Benzimidazole class such as Carbenazim, Methyl Thiophanate, Benomyl (PEREIRA; SANTOS, 1986) and Triazoles such as Tebuconazole (TOCHETTO et al., 2017). Nevertheless, resistance to these drugs (NISHIJIMA; SMALLEY, 1979) has already been reported. Searching for new possibilities to handle with Ceratocystis, medicinal plant metabolites have been considered as excellent options due to easy access, low cost and less or no toxicity to the environment (STANGARLIN et al., 1999; FIORI et al., 2000; VENTUROSO et al., 2011). In this context, ferns have been considered useful medicinal plants (PAN et al., 2011; CAO et al., 2017). Specially, the *Adiantum* genus has been traditionally used in Brazil to treat respiratory diseases (HARAGUCHI; CARVALHO, 2010) being the hypoglycemic and anti-inflammatory (IBRAHEIM et al., 2011) being the hypoglycemic and antihypertensive action. In addition, species of the same genus, the *A. capillus-veneris* leaves aqueous and ethanolic solutions. Conversely, the mycelial growth of *C. cacaofunesta* tended to be stimulated by the aqueous solution when compared to control (Fig. 1 and Table 1). The same effect was observed by AMARAL et al. (2005)

Figure 1. C. cacaofunesta mycelial growth by *A. latifolium* leaves aqueous or ethanolic solutions. Conversely, the mycelial growth of *C. cacaofunesta* tended to be stimulated by the aqueous solution when compared to control (Fig. 1 and Table 1). The same effect was observed by AMARAL et al. (2005)
Table 1. *Ceratocystis cacaofunesta* mycelial growth evaluation in Sabouraud dextrose agar supplemented with *A. latifolium* leaves aqueous and ethanolic solutions.

%	Ethanol 70%	SDA 4 µg.mL⁻¹						
Aqueous	100 ± 0	100 ± 0	100 ± 0	85.4 ± 13.3	18.8 ± 32.6	19.9 ± 11.5	71.7 ± 17.8	0 ± 0
	a, B	a, B	a, B	a, B	b, A, c	b, A, d	b, A, e	a
Ethanolic	68.5 ± 27.2	24.7 ± 23.1	8.6 ± 14.8	13.3 ± 22.6	17.8 ± 30.6	24.7 ± 18.8	11.5 ± 18.5	0 ± 0
	a, B, c	b, B, d	b, B, e	a, B	a, B	a		

ANOVA followed by multiple comparison Tukey test (p < 0.05) (average ± standard deviation). SDA: Sabouraud dextrose agar; TBCZOLE: tebuconazole. Equal letters mean no significant difference between results.

It is worth noting that the fungicide Tebuconazole (Folicur 200 EC) used in this study showed high inhibition on *Fusarium solani* and *Azadirachta indica* A. Juss extract on *Fusarium solani*. This fungicide is recommended for the control of *Fusarium subglutinans* in pineapple crops, *Colletotrichum gossypii* var. *cephalosporioides* of cotton and *Alternaria porri* in garlic plantation, but not for *C. cacaofunesta* control. Therefore, following the in vitro tests this fungicide may be an alternative to control *C. cacaofunesta* propagation in areas where cacao genetic selection or handling management still fail.

ACKNOWLEDGEMENTS

We are grateful to Ms. Dilze Maria Argolo Magalhães, from the Executive Committee for Cacao Plantation - CEPLAC / CEPEC collection, for kindly providing the *Ceratocystis cacaofunesta* strain “CC20” for in vitro testing.

REFERENCES

AGUIAR, A.P.; CHIARELLO, A.G.; MENDES, S.L.; MATOS, E.N. The Central and Serra do Mar Corridors in the Brazilian Atlantic Forest. In: GALINDO-LEAL, C.; CÂMARA, I.G. *The Atlantic Forest of South America*: biodiversity status, threats, and outlook. Washington: Conservation International, 2003. p.118-132.

ALMEIDA, L.C.C.; COSTA, A.Z.M.; LOPES, J.R.M.; BEZERRA, J.L. Distribuição geográfica da murcha-de-Ceratocystis do cacaueiro na Bahia, Brasil. *Agrotrópica*, Ilhéus, v.17, p.83-86, 2005.

AMARAL, M.F.Z.J.; BARA, M.T.F. Avaliação da atividade antífúngica de extratos de plantas sobre o crescimento de fitopatógenos. *Revista Eletrônica de Farmácia*, Goiás, Suplemento, v.2, n.2, p.5-8, 2005.

BAKER, C.J.; HARRINGTON, T.C.; KRAUSS, U.; ALFENAS, A.C. Genetic variability and host specialization in the Latin American clade of *Ceratocystis fimbriata*. *Phytopathology*, v. 93, n.10, p.1274-1284, 2003. https://doi.org/10.1094/PHYTO.2003.93.10.1274

BASTOS, C.N.; EVANS, H.C. Ocorrência de *Ceratocystis fimbriata* Ell&Halst. na Amazônia Brasileira. *Acta Amazonica*, v.8, n.4, p.543-544, 1978. http://dx.doi.org/10.1590/0180-43921978084543

CAB INTERNATIONAL. *Ceratocystis fimbriata* (Ceratocystis blight). Invasive Species Compendium. Wallingford, UK: CAB International, 2019.

CAO, H.; CHAI, T.T.; WANG, X.; MORAIS-Braga, M.F.B.; YANG, J.H.; WONG, F.C.; WANG, R.; YAO, H.; CAO, J.; CORDARNA, L.; BURLANDO, B.; WANG, Y.; XIAO, J.; COUTINHO, H.D.M. Phytochemicals from fern species: potential for medicine applications. *Phytochemistry Reviews*, v.16, n.3, p.379-440, 2017. http://dx.doi.org/10.1007/s11101-016-9488-7

ENGELBRECHT, C.J.B.; HARRINGTON, T.C. Intersterility, morphology, and taxonomy of *Ceratocystis fimbriata* on sweet potato, cacao, and sycamore. *Mycologia*, v.97, n.1, p.57-69, 2005. https://doi.org/10.3852/mycologia.97.1.57

ENGELBRECHT, C.J.B.; HARRINGTON, T.C.; ALFENAS, A.C.; SUAREZ, C. Genetic variation in populations of the cacao wilt pathogen, *Ceratocystis cacaofunesta*. *Plant Pathology*, v.56, n.6, p.923-933, 2007. https://doi.org/10.1111/j.1365-3059.2007.01735.x

FERREIRA, M.; HARRINGTON, T.J.; THORPE, D.; ALFENAS, A. Genetic diversity and interfertility among highly differentiated populations of *Ceratocystis fimbriata* in Brazil. *Plant Pathology*, v.59, n.4, p.721-735, 2010. https://doi.org/10.1111/j.1365-3059.2010.02275.x

FIORI, A.C.G.; SCHWAN-ESTRADA, K.R.F.; STANGARLIN, J.R.; VIDA, J.B.; SCAPIM, C.A.; CRUZ, M.E.S.; PASCHOLATI, S.F. Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymellabryoniae. *Journal of Phytopathology*, v.148, n.7-8, p.483-487, 2000. https://doi.org/10.1046/j.1439-0434.2000.00524.x
FORMIGHIERI, A.P.; STANGARLIN, J.R.; MEINERZ, C.C.; FRANZENER, G.; SCHWAN-ESTRADA, K.R.F. Avaliação do potencial da planta *Adiantum capillus-veneris* (L.) no controle de fitopatógenos. *Arquivos do Instituto Biológico*, São Paulo, v.77, n.3, p.487-496, 2010.

HARAGUCHI, L.M.M.; CARVALHO, O.B. (Eds.). *Plantas Medicinais: do curso de plantas medicinais*. São Paulo: Secretaria Municipal do Verde e do Meio Ambiente, Divisão Técnica Escola Municipal de Jardinação, 2010. 248p.

IBRAHEIM, Z.Z.; AHMED, S.A.; GOUDA, G.Y. Phytochemical and biological studies of *Adiantum capillus-veneris*. *Saudi Pharmaceutical Journal*, v.19, n.2, p.65-74, 2011. http://dx.doi.org/10.1016/j.jsps.2011.01.007

NISHIJIMA, W.T.; SMALLEY, E.B. Ceratocystis ulmi tolerance to methyl-2-benzimidazole carbamate and other related fungicides. *Phytopathology*, v.69, n.1, p.69-73, 1979. http://dx.doi.org/10.1094/Phyto-69-69

OLIVEIRA, M.L.; LUZ, E.D.M.N. (Eds.). Murcha-de-Ceratocystis. In: OLIVEIRA, M.L.; LUZ, E.D.M.N. *Identificação e manejo das principais doenças do cacau no Brasil*. 1. ed. Ilhéus, Bahia: CEPLAC/CEPEC/SEFIT, 2005. p.55-63.

PAN, C.; CHEN, Y.G.; MA X.Y.; JIANG, J.H.; HE, F.; ZHAN, Y. Phytochemical Constituents and Pharmacological Activities of Plants from the Genus Adiantum: A Review. *Tropical Journal of Pharmaceutical Research*, v.10, n.5, p.681-692, 2011. http://dx.doi.org/10.4314/tjpr.v10i5.18

PEREIRA, J.C.R.; SANTOS, A.F. Avaliação de fungicidas e técnicas de aplicação no controle de Ceratocystis fimbriata, em seringueira. *Fitopatologia Brasileira*, v.11, n.4, p.811-816, 1986.

SILVA, S.D.V.M.; PINTO, L.R.M.; OLIVEIRA, B.F.; DAMACENO, V.O.; PIRES, J.L.; DIAS, C.T.S. Resistência de progénies de cacau ao murcha-de-Ceratocystis. *Tropical Plant Pathology*, v.37, n.3, p.191-195, 2012. http://dx.doi.org/10.1590/S1982-56762012200000005

STANGARLIN, J.R.; SCHWAN-ESTRADA, K.R.F.; CRUZ, M.E.S.; NOZAKI, M.H. Plantas medicinais e controle alternativo de fitopatógenos. *Biotecnologia, Ciência e Desenvolvimento*, Brasília, v.11, p.16-21, 1999.

TOCHETTO, N.; FORTUNA, D.; VALDEBENITO SANHUEZA, R.M. Chemical control of Ceratocystis fimbriata the causal agent of kiwi tree wilting under controlled conditions. *CONGRESSO PAULISTA DE FITOPATOLOGIA*, 40., Campinas. *Proceedings..* Campinas, 2017. Available from: http://www.summanet.com.br/summanet-site/congressos/2017/Resumos/Resumo40CPFito_141.pdf. Access on: Aug. 25 2019.

VENTUROSO, L.R.; BACCHI, L.M.A.; GAVASSONI, W.L. Atividade antifúngica de extratos vegetais sobre o desenvolvimento de fitopatógenos. *Summa Phytopathologica*, v.37, n.1, p.18-23, 2011. http://dx.doi.org/10.1590/S0100-54052011000100003