Crystal growth, structure elucidation and CHARDI/BVS investigations of β-KCoFe(PO$_4$)$_2$

Adam Bouraima,a,b,* Said Ouaatta,a Jamal Khmiyas,a Jean Jacques Anguile,b Thomas Makani,b Abderrazzak Assani,a Mohamed Saadiaa and Lahcen El Ammaria

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie des Matériaux Inorganiques, Faculté des Sciences, Département de Chimie, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon. *Correspondence e-mail: bouraima_adam@yahoo.com

Single crystals of β-KCoFe(PO$_4$)$_2$, potassium cobalt(II) iron(III) bis(orthophosphate), were grown from the melt under atmospheric conditions. This phosphate crystallizes isotypically with KZnFe(PO$_4$)$_2$ in space group C2/c, adopting a zeolite-ABW type of structure. The structure of the present phosphate is distinguished by an occupational disorder of the two transition-metal sites with ratios Fe:Co of 0.5725:0.4275 for the first and 0.4275:0.5725 for the second site. In the crystal structure, PO$_4$ and (Co,Fe)O$_4$ tetrahedra are linked through vertices to form elliptical rings with the sequence DDDDUUDD of up (U) and down (D) pointing vertices. Each eight-membered ring is surrounded by four other rings of the same type, delimiting interstices with rectangular shape. This arrangement leads to the formation of \([(\text{Co/Fe})(\text{PO}_4)]^{\infty}\) sheets parallel to (001). Stacking of the sheets into a three-dimensional framework results in the formation of two types of channels. The first one is occupied by potassium cations, whereas the second one remains vacant. Calculations of bond-valence sums and charge distribution were used to confirm the structure model.

1. Chemical context

Transition-metal (TM) phosphates have been widely studied as potential candidates for various applications such as catalysis (Bautista et al., 2007), ion exchange (Szirtes et al., 2007), electrochemistry (Trad et al., 2010) or as magnetic materials (Ofer et al., 2012). In this context, zinc phosphates are of interest because the Zn$^{2+}$ cation with its d10 electronic configuration is susceptible to strong polarization and thus can be used to design new non-linear optical (NLO) materials (Shen et al., 2016). In the family of transition-metal phosphate compounds, the anionic network is formed from PO$_4$ tetrahedra bonded to different types of coordination polyhedra of the form \([\text{TM}O_n] (n = 4, 5 \text{ and } 6)\), leading to a wide variety of crystal structure types such as NaZnAl(PO$_4$)$_2$ (Yakubovich et al., 2019). The structural diversity is mainly associated with the ability of TM cations to adopt different oxidation states with various types of coordination polyhedra (Moore & Ito, 1979; Hatert et al., 2004).

It is in this context that our research team was involved with investigations of new phosphates with A^I, M^{II} and M^{III} cations where A is an alkali metal, and M^{II} and M^{III} are bivalent and trivalent cations, respectively. For example, Na$_2$Co$_2$Fe(PO$_4$)$_3$ (Bouraima et al., 2015) and NaCuIn(PO$_4$)$_2$ (Benhsina et al., 2020) are among the recently studied compounds. The present
work is devoted to synthesis and crystal structure analysis of β-KCoFe(PO₄)₂, a new compound in the family of transition-metal phosphates.

2. Structural commentary

The title compound crystallizes isotypically with KZnFe(PO₄)₂ (Badri et al., 2015). The principal building units of β-KCoFe(PO₄)₂ are shown in Fig. 1, revealing that three types of more or less distorted tetrahedra build up the framework structure. The two TM sites are characterized by partial disorder (see Refinement) with (Fe/Co)₁—O distances varying between 1.877 (2) and 1.900 (2) Å and (Co/Fe)₂—O distances between 1.881 (2) and 1.927 (2) Å. The two PO₄ tetrahedra are more regular with the P—O bonds lengths between 1.5172 (19) and 1.5306 (19) Å for P₁O₄ and 1.509 (2) and 1.533 (2) Å for P₂O₄.

The three different types of tetrahedra are linked through vertices to form ellipse-shaped rings with the sequence DDDDUUUU of up (U) and down (D) pointing vertices, as shown in Fig. 2. Each eight-membered ring is surrounded by four other rings of the same type, delimiting two interstices with rectangular shape constituted by two PO₄ and two (Fe/Co)₁O₄ tetrahedra or two PO₄ and two (Co/Fe)₂O₄ tetrahedra. This assembly leads to the formation of [(Co/Fe)(PO₄)]₀ sheets extending parallel to (001) at z = 0, ½. Stacking of these sheets along [001] leads to the formation of a three-dimensional framework structure with two types of channels. The first one is occupied by potassium cations, whereas the second one remains vacant, as shown in Fig. 3. The K⁺ cation is surrounded by nine oxygen atoms with bond lengths between 2.694 (2) and 3.172 (2) Å.

Bond-valence sum (BVS) calculations (Brown, 1977,1978; Brown & Altermatt, 1985) and charge distribution (CHARDI) (Hoppe et al., 1989) were used to confirm the structure model of β-KCoFe(PO₄)₂. BVS and CHARDI computations were carried out with EXPO2014 (Altomare et al., 2013) and CHARDI2015 (Nespolo & Guillot, 2016), respectively. Table 1 compiles the valences Vᵢ of cations

Cation	qᵢ × sofᵢ	CNᵢ	ECoNᵢ	Vᵢ	Qᵢ	qᵢ/Qᵢ
(Fe/Co)₁	2.57	4	4.00	2.48	2.57	1.00
(Fe/Co)₂	2.43	4	3.99	2.27	2.43	1.00
K₁	1.00	9	8.71	0.94	0.99	1.00
P₁	5.00	4	4.00	5.14	5.00	1.00
P₂	5.00	4	3.99	5.15	5.01	1.01

Table 1
CHARDI and BVS analysis for the cations in the title compound.

qᵢ = formal oxidation number; sofᵢ = site occupation factor; CNᵢ = classical coordination number; Qᵢ = calculated charge; Vᵢ = calculated valence; ECoNᵢ = effective coordination number.
determined with the BVS approach, as well as their corresponding charges Q_{i} calculated with the CHARDI concept. The data reveal that the values Q_{i} and V_{i} are all very close to the corresponding charges $q_{i}\times\text{sof}_{i}$ (formal oxidation numbers q_{i} weighted by site occupation factors sof_{i}). For all cations, the internal criterion q_{i}/Q_{i} is very close to 1, and the mean absolute percentage deviation (MAPD) that evaluates the agreement between the q_{i} and Q_{i} charges is 0.3%, confirming the validity of the structural model (Eon & Nespolo, 2015). The global instability index (GII) was also used to check the plausibility of the crystal-structure model (Salinas-Sanchez et al., 1992). The GII index evaluates the deviation of BVS parameters from the theoretical valence V_{i} averaged across all the constitutive atoms of the asymmetric unit. In an unstrained structure, GII is less than 0.1 and reaches 0.2 for those with lattice-induced deformations (Adams et al., 2004). For the current crystal structure GII amounts to 0.1, indicating its stability.

3. Database survey

The phosphate KCoFe(PO$_4$)$_2$ crystallizes in two polymorphs in the same crystal system but with different unit-cell parameters and space groups. The α-form of KCoFe(PO$_4$)$_2$ reported by Badri et al. (2019) crystallizes in space group $P2_1/c$ with unit-cell parameters $a = 5.148$ (1), $b = 14.403$ (2), $c = 9.256$ (1) Å, $\beta = 104.87$ (2). The title compound crystallizes in space group $C2/c$. Whereas the environments around the two TM sites are tetrahedral in the title compound, an octahedral coordination is found for one site (Co) in the α-form. The crystal structure of β-KCoFe(PO$_4$)$_2$ is isotypic with that of KZnFe(PO$_4$)$_2$ (Badri et al., 2014), while that of α-KCoFe(PO$_4$)$_2$ is isotypic with those of KNiFe(PO$_4$)$_2$ and KMgFe(PO$_4$)$_2$ (Badri et al., 2015).

4. Synthesis and crystallization

The phosphate β-KCoFe(PO$_4$)$_2$ was synthesized by mixing cobalt nitrate (Co(NO$_3$)$_2$·6H$_2$O), iron nitrate [Fe(NO$_3$)$_3$·9H$_2$O] orthophosphoric acid (H$_3$PO$_4$) and potassium nitrate (KNO$_3$) in molar ratios of 1:1:1:2. The mixture was placed in a small beaker containing distilled water and homogenized for 24 h. After evaporation to dryness, the reaction mixture underwent heat treatments at 573 and 773 K before being brought to fusion for crystal growth at 1223 K, followed by slow cooling. Crystals of purple color and of sufficient size for the analysis by X-ray diffraction were obtained from the final product.

A Quattro ESEM scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), operating under 20 kV accelerating voltage, was used for chemical analysis and photographs of the obtained crystals (Fig. 4). Determined mass percentage (+/-3%), calculated mass percentage: K (10.7, 11.4) Fe (12.4, 16.2), Co (13.4, 17.1), P (20.2, 18.0), O (43.3, 37.3)

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. During the refinement, several models were tested, with the best result for a model with occupational disorder of the two TM sites. Since the Co:Fe ratio determined from EDS measurements is almost 1:1, this ratio was constrained for the refinement of the individual site occupation, also taking into account full occupancy of both TM sites. For the TM1 site a ratio of Fe:Co = 0.5725:0.4275 was obtained, for the TM2 site a ratio of Co:Fe = 0.5725/0.4275. The maximum and minimum remaining electron density are located at 0.69 Å and 0.31 Å, respectively, from O8.

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the SEM and EDX analysis.

Table 2

Crystal data	KCoFe(PO$_4$)$_2$
Chemical formula	KCoFe(PO$_4$)$_2$
M_r	343.82
Crystal system, space group	Monoclinic, $C2/c$
Temperature (K)	296
a, b, c (Å)	13.5860 (6), 13.2320 (6), 8.7316 (4)
β (°)	90.335 (2)
V (Å3)	1544.21 (12)
Z	8
Radiation type	Mo $K\alpha$
μ (mm$^{-1}$)	4.99
Crystal size (mm)	0.36 × 0.27 × 0.15

Data collection

Diffractometer	Bruker D8 VENTURE Super DUO
Absorption correction	Multi-scan (SADABS: Krause et al., 2015)
T_{min}, T_{max}	0.391, 0.747
No. of measured, independent and observed $	30042, 3574, 2633
R_{e}, wR_{e}, S	0.036, 0.088, 1.04
No. of reflections	3574
No. of parameters	118
Δp_{max}, Δp_{min} (e Å$^{-3}$)	0.98, −0.91

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/7 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and pubICP (Westrip, 2010).

Figure 4

(a) EDS spectrum and (b) SEM micrographs of the title compound.
References

Adams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281–290.

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Curriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.

Badri, A., Hidouri, M., López, M. L., Veiga, M. L., Pico, C., Darriet, J. & Ben Amara, M. (2015). J. Struct. Chem. 56, 714–722.

Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Ben Amara, M. (2014). Mater. Res. Bull. 55, 61–66.

Badri, A., Jabli, M., López, M. L. & Ben Amara, M. (2019). Inorg. Chem. Commun. 110, 107609.

Bautista, F. M., Campelo, J. M., Luna, D., Marinas, J. M., Quirós, R. A. & Romero, A. A. (2007). Appl. Catal. Environ. 70, 611–620.

Benhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2020). Acta Cryst. E76, 366–369.

Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Brown, J. D. (1977). Acta Cryst. B33, 1305–1310.

Brown, J. D. (1978). Chem. Soc. Rev. 7, 359–376.

Brown, J. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.

Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Moore, P. B. & Itø, J. (1979). Miner. Mag. 43, 227–235.

Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.

Ofer, O., Sugiyama, J., Brewer, J. H., Månsson, M., Prsˇa, K., Ansaldo, E. J., Kobayashi, G. & Kanno, R. (2012). Phys. Procedia, 30, 160–163.

Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saéz-Puch, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Shen, Y., Zhao, S., Zhao, B., Ji, C., Li, L., Sun, Z., Hong, M. & Luo, J. (2016). Inorg. Chem. 55, 11626–11629.

Szirtes, L., Riess, L., Megyeri, J. & Kuzmann, E. (2007). Cent. Eur. J. Chem. 5, 516–535.

Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514–522.

Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.
Crystal growth, structure elucidation and CHARDI/BVS investigations of β-KCoFe(PO$_4$)$_2$

Adam Bouraima, Said Ouaatta, Jamal Khmiyas, Jean Jacques Anguilé, Thomas Makani, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium cobalt(II) iron(III) bis(orthophosphate)

Crystal data

KCoFe(PO$_4$)$_2$ $F(000) = 1328$
$M_r = 343.82$ $D_x = 2.958$ Mg m$^{-3}$

Monoclinic, $C2/c$ Mo Kα radiation, $λ = 0.71073$ Å

$a = 13.5860$ (6) Å

$\theta = 2.2$–35.6°

$b = 13.2320$ (6) Å

$\mu = 4.99$ mm$^{-1}$

$c = 8.7316$ (4) Å

$T = 296$ K

$\beta = 100.335$ (2)$^\circ$

Parallelpiped, purple

$V = 1544.21$ (12) Å3

$0.36 \times 0.27 \times 0.15$ mm

Data collection

Bruker D8 VENTURE Super DUO diffractometer $T_{\text{min}} = 0.391$, $T_{\text{max}} = 0.747$

Radiation source: INCOATEC I_μS micro-focus source 30042 measured reflections

HELIOS mirror optics monochromator $R_{\text{int}} = 0.068$

Detector resolution: 10.4167 pixels mm$^{-1}$ $\theta_{\text{max}} = 35.6^\circ$, $\theta_{\text{min}} = 2.2^\circ$

$φ$ and $ω$ scans $h = -13$→22

Absorption correction: multi-scan $k = -21$→21

(SADABS; Krause et al., 2015) $l = -14$→14

Refinement

Refinement on F^2 0 restraints

Least-squares matrix: full Primary atom site location: structure-invariant direct methods

$R[F^2 > 2\sigma(F^2)] = 0.036$ Secondary atom site location: difference Fourier map

$wR(F^2) = 0.088$ $w = 1/[σ^2(F^2) + (0.0363P)^2 + 2.2954P]$

$S = 1.04$ where $P = (F^2 + 2F_c^2)/3$

3574 reflections 118 parameters

$\sum w(a_i^2) = 1.00$

$\sum w(a_i^2) = 1.00$
(Δ/σ)_{max} = 0.001
Δρ_{max} = 0.98 \text{ e Å}^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}*/U_{eq}	Occ. (<1)
Fe1	0.37263 (3)	0.06558 (3)	0.61452 (4)	0.01728 (8)	0.5725
Co1	0.37263 (3)	0.06558 (3)	0.61452 (4)	0.01728 (8)	0.4275
Co2	0.07555 (3)	0.11785 (3)	0.04344 (4)	0.01854 (8)	0.5725
Fe2	0.07555 (3)	0.11785 (3)	0.04344 (4)	0.01854 (8)	0.4275
P1	0.42702 (5)	0.14198 (5)	−0.01872 (7)	0.01656 (12)	
P2	0.14880 (5)	0.06783 (5)	0.41434 (7)	0.01769 (12)	
K1	0.31255 (6)	0.25345 (6)	0.27514 (8)	0.03896 (17)	
O1	0.39529 (17)	0.07417 (15)	0.1059 (2)	0.0288 (4)	
O2	0.54020 (16)	0.13970 (16)	−0.0087 (2)	0.0313 (4)	
O3	0.39339 (19)	0.24769 (14)	0.0152 (3)	0.0338 (5)	
O4	0.37488 (19)	0.1089 (2)	−0.1801 (2)	0.0411 (6)	
O5	0.14870 (17)	−0.04718 (15)	0.4068 (2)	0.0312 (4)	
O6	0.1372 (2)	0.11411 (18)	0.2542 (2)	0.0431 (6)	
O7	0.24615 (14)	0.11037 (15)	0.5076 (2)	0.0262 (4)	
O8	0.06510 (17)	0.1025 (2)	0.4989 (3)	0.0475 (7)	

Atomic displacement parameters (Å²)

	U^11	U^22	U^33	U^12	U^13	U^23
Fe1	0.01435 (16)	0.02100 (16)	0.01659 (14)	0.00191 (12)	0.00307 (11)	−0.00249 (11)
Co1	0.01435 (16)	0.02100 (16)	0.01659 (14)	0.00191 (12)	0.00307 (11)	−0.00249 (11)
Co2	0.01525 (16)	0.02218 (16)	0.01902 (15)	0.00088 (12)	0.00533 (11)	0.00266 (11)
Fe2	0.01525 (16)	0.02218 (16)	0.01902 (15)	0.00088 (12)	0.00533 (11)	0.00266 (11)
P1	0.0185 (3)	0.0157 (2)	0.0169 (2)	0.0005 (2)	0.0071 (2)	−0.00144 (19)
P2	0.0128 (3)	0.0229 (3)	0.0171 (2)	−0.0018 (2)	0.0021 (2)	0.0034 (2)
K1	0.0399 (4)	0.0476 (4)	0.0342 (3)	−0.0028 (3)	0.0197 (3)	−0.0083 (3)
O1	0.0370 (12)	0.0246 (9)	0.0273 (9)	−0.0062 (8)	0.0130 (8)	0.0033 (7)
O2	0.0196 (10)	0.0354 (11)	0.0416 (11)	0.0015 (8)	0.0129 (8)	−0.0039 (9)
O3	0.0478 (14)	0.0212 (9)	0.0388 (11)	0.0109 (8)	0.0254 (10)	0.0033 (8)
O4	0.0407 (14)	0.0625 (16)	0.0201 (9)	−0.0067 (11)	0.0057 (9)	−0.0133 (9)
O5	0.0352 (12)	0.0231 (9)	0.0373 (11)	−0.0083 (8)	0.0116 (9)	0.0011 (8)
O6	0.0560 (16)	0.0449 (13)	0.0247 (10)	−0.0090 (11)	−0.0027 (10)	0.0135 (9)
O7	0.0160 (9)	0.0289 (10)	0.0314 (10)	−0.0003 (7)	−0.0019 (7)	−0.0038 (7)
O8	0.0173 (11)	0.0795 (19)	0.0482 (14)	0.0017 (11)	0.0124 (10)	−0.0163 (13)
Geometric parameters (Å, °)

Bond/Angle	Distance (Å)	Angle (°)	Note
Fe1/Co1—O4i	1.877 (2)		
Fe1/Co1—O1ii	1.8783 (19)		
Fe1/Co1—O7	1.8972 (19)		
Fe1/Co1—O7i	1.900 (2)		
Co2/Fe2—O6	1.881 (2)		
Co2/Fe2—O8iv	1.891 (2)		
Co2/Fe2—O3v	1.9191 (19)		
Co2/Fe2—O5vi	1.927 (2)		
P1—O3	1.5172 (19)		
P1—O4	1.524 (2)		
P1—O2	1.525 (2)		
P1—O1	1.5306 (19)		
P2—O6	1.509 (2)		
O4i—Fe1/Co1—O1ii	111.34 (10)		
O4i—Fe1/Co1—O7	103.45 (10)		
O1ii—Fe1/Co1—O7	115.36 (9)		
O4i—Fe1/Co1—O2iii	113.73 (10)		
O1ii—Fe1/Co1—O2iii	111.57 (9)		
O7—Fe1/Co1—O2ii	100.83 (9)		
O6—Co2/Fe2—O8iv	116.47 (11)		
O6—Co2/Fe2—O3v	101.81 (11)		
O8iv—Co2/Fe2—O3v	108.09 (12)		
O6—Co2/Fe2—O5vi	113.85 (11)		
O8iv—Co2/Fe2—O5vi	116.25 (11)		
O3v—Co2/Fe2—O5vi	97.02 (9)		
O3—P1—O4	109.84 (14)		
O3—P1—O2	110.05 (13)		
O3—P1—O1	110.14 (13)		
O3—P1—O1	105.59 (12)		
O4—P1—O1	110.20 (13)		
O2—P1—O1	110.93 (12)		
O6—P2—O5	111.47 (13)		
O6—P2—O7	106.28 (13)		
O5—P2—O7	112.60 (12)		
O6—P2—O8	111.23 (16)		
O5—P2—O8	108.96 (14)		
O7—P2—O8	106.18 (13)		
O3—K1—O7ii	142.04 (6)		
O3—K1—O6	111.80 (7)		
O7ii—K1—O6	96.69 (7)		
O3—K1—O2ii	103.65 (7)		
O7ii—K1—O2ii	95.61 (6)		
O6—K1—O2ii	99.16 (6)		
O3—K1—O8ii	107.98 (8)		
O7ii—K1—O8ii	49.37 (6)		

Acta Cryst. (2022). E78, 746-749
Bond	Bond Angle (°) (E)	Bond Angle (°) (F)	
O6—K1—O8vii	140.19 (7)	O4v—K1—O3v	44.42 (5)
O2iii—K1—O8vii	69.51 (7)	O5viii—K1—O3v	79.62 (6)
O3—K1—O7	139.67 (6)		

Symmetry codes: (i) x, y, z+1; (ii) x, −y, z+1/2; (iii) −x+1, y, −z+1/2; (iv) −x, y, −z+1/2; (v) −x+1/2, −y+1/2, −z; (vi) x, −y, z−1/2; (vii) −x+1/2, −y+1/2, −z+1; (viii) −x+1/2, y+1/2, −z+1/2.