Research Paper
Comparing the Radioprotective Effects of Brewed *Rosa damascena* and Vitamin E on Ionizing Radiation-Induced Chromosomal Aberrations in Human Peripheral Blood Lymphocytes Using Micronucleus Assay in Binucleated Cells

Elham Khanirad, *Farhang Haddad, Shokouhozaman Soleymanifard*

1. Department of Biology, Faculty of Sciences, Islamic Azad University Mashhad Branch, Mashhad, Iran.
2. Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3. Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

A B S T R A C T

Aims: For occupational and therapeutic reasons, many people are exposed to the harmful effects of Ionizing Radiation (IR) including Chromosomal Aberrations (CA) every day. Radioprotective agents are able to reduce these damages through mechanisms such as scavenging free radical, donating hydrogen to damaged molecules and increasing activity of antioxidant enzymes. Medicinal plants, traditionally used in different societies, have special advantages due to their low side effects and cost-effectiveness compared to the chemical radioprotectors. *Rosa damascena* is one of these plants that is widely used in traditional medicine. The aim of this study was to investigate the radioprotective effects of brewed *Rosa damascena* in comparison with Vitamin E.

Methods & Material: In this experimental study, the radioprotective effect of 1-week use of brewed *Rosa damascena* on the CA induced by 2 Gy IR in comparison with vitamin E in peripheral blood lymphocytes of 10 volunteers, 1, 24, and 96 h as well as one week after the last intake was investigated using binucleated cell micronucleus assay.

Findings: The use of brewed *Rosa damascena* 1 h after the last intake could significantly reduce the frequency of micronuclei. This result was similar to the effect of vitamin E at the same time.

Conclusion: Brewed *Rosa damascena* is able to protect cells from IR-induced damages and can be used as a cheaper radioprotector with the possibility of daily use compared to vitamin E.

Extended Abstract

1. Introduction

Humans are exposed to oxidizing agents, including Ionizing Radiation (IR) everyday for a variety of reasons. The destructive effect of IR on living cells and tissues has already been proven [1]. IR exerts its most destructive effect indirectly by affecting water molecules and producing free proximal and hydroxyl radicals. Biological systems, with their antioxidant defense systems, are somewhat protected against the potentially harmful effects of free radicals [2]. Several studies have shown that the use of IR increases the frequency of micronucleus in peripheral blood lymphocytes [3-6].
Due to the widespread use of IR in diagnostic and therapeutic purposes, many efforts are being made today to find radiation protectors with minimal side effects [7]. Vitamin E and its derivatives have long been recognized as radiation-protective agents that can reduce the destructive effects of IR by collecting free radicals caused by oxidative stress [8, 9]. Due to the destructive effects of IR and its widespread use, it is necessary to find radioprotectors with low side effects. This study aimed to investigate the radioprotective effects of brewed *Rosa damascena* in comparison with Vitamin E.

2. Materials and Methods

This is an experimental study conducted on peripheral blood lymphocytes collected from 10 human samples (aged 20-25 years with a diet without antioxidants or low in antioxidants, and no history of smoking) in the genetic laboratory of the Department of Biology, Ferdowsi University of Mashhad. Participants were selected from among the volunteers who filled out a questionnaire on lifestyle and general health. They were randomly divided into two groups of Vitamin E (n=5) and *Rosa damascena* (n=5). The first group was given one vitamin E 200 mg capsule (Dana Pharmaceutical Co.) for one week at 10:00 AM. The second group was given a glass of brewed *Rosa damascena* for one week at 10:00 AM.

To prepare each glass of brewed *Rosa damascena*, 1 gram of dried *Rosa damascena* (Gol Kuh Company) was placed in 250 ml of boiling water for 10 minutes. Blood sampling of volunteers was collected once before consumption of vitamin E/*Rosa damascena* and four times 1, 24, 96 h and one week after the last intake in heparin tubes and then cultured for 72 h. The cells were harvested using cytochalasin b and then, the frequency of micronuclei was calculated.

3. Results

X-radiation with a dose of 2 Gy significantly increased the frequency of micronucleus in binucleated cells (9.33%) compared to controls (0.132%) (P<0.05), (Figure 1). Micronuclei frequency in binucleated cells of volunteers who used 200 mg vitamin E for one week was decreased significantly only 1 h after the last vitamin intake compared to the exposed group received no vitamin E (P<0.05). After 1 h, there was no decrease in the micronuclei frequency (Figure 1). The use of brewed *Rosa damascena* could significantly reduce the frequency of micronuclei induced by IR only 1 h after the last intake (P<0.05) compared to the exposed group received no brewed *Rosa damascena*. After 1 h, there was no decrease in the micronuclei frequency (Figure 1).

4. Discussion

In other studies, IR increased the frequency of micronuclei in peripheral blood lymphocytes at a level similar to that of the present study [3-6]. In the study by Rostami et al. [8], Vitamin E was also able to reduce the frequency of macronuclei in peripheral blood lymphocytes induced by X-rays only 1 h after use. The results of the present study show that brewed *Rosa damascena* can be used as a suitable radiation protector in people exposed to IR for various reasons shortly after consumption. Brewed *Rosa damascena* has long been used as a drink with a protective effect similar to vitamin E. Therefore, it can be used daily as an available brew by people who are particularly exposed to unwanted IR. To investigate the more effective protective effect of this plant, its phenolic compounds such catechin and flavonoids can be used in pure form. Impossibility to use more volunteers and also generalization of the study to plants of the same family due to the increase of the study groups were some of the limitations of our study.

Figure 1. Comparing the protective effects of vitamin E and brewed *Rosa damascena* against 2 Gy IR. a significant compared to control group; b significant compared to the exposed groups (P<0.05)
Ethical Considerations

Compliance with ethical guidelines

This study was approved by Iran National Committee for Ethics in Biomedical Research (Code: 21272).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Islamic Azad University of Mashhad Branch, Department of Biology at Ferdowsi University of Mashhad, and the genetic laboratory staffs of the Department for the valuable cooperation and support.
مقایسه اثر محافظتی گل محمدی، ویتامین E بر حفاظت میکرونوکلئوس در سلول‌های دوهسته‌ای

الهام خاتی رازادی، هم‌روزیا، شکوال‌الرزامان سیامی‌فرد

۱. گروه سیستماتیک فیزیولوژی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران.
۲. گروه زیست‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران.
۳. گروه زیست‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران.

۱۳۹۷ بهمن ۰۵: تاریخ دریافت
۱۳۹۸ شهریور ۰۸: تاریخ پذیرش
۱۳۹۸ دی ۰۱: تاریخ انتشار

مقدمه

انسان در زندگی رو به رو با معرضت های مختلفی مواجه می‌شود که موجب ناهنجاری‌های کروموزومی ناشی از تابش اشعه E شود. این تاثیر اشعه‌های نوترونی با استفاده از آزمون میکرونوکلئوس در سلول‌های دوهسته‌ای در نظر گرفته شده است.

شکوه الزمان سلیمانی فرد

در شرایط عادی، اغلب بین تولید رادیکال های آزاد و سیستم دفاع آنتی اکسیدانی حالتی تعادل وجود دارد. اما در صورت تبلیغ بیش از حد، رادیکال‌های آزاد می‌توانند به صورت فعالیت آنتی‌اکسیدانی سیستم اکسیداسیون را تقویت کنند. مصرف دم کرده گل محمدی، به عنوان یک اکسیداسه چندین میکرونوکلئوس را برای سلول‌های دوهسته‌ای

کلمات کلیدی:

گل‌محمدی، اشعه‌E، ویتامین، میکرونوکلئوس، لنفوسیت

**

مبحث

آبادانی در میان افراد به دلایل شغلی و درمانی در معرض تأثیرات مخرب پرتوهای یونیزان، از جمله آسیب‌های کروموزومی در زندگی روزمره نشسته است. این تاثیرات می‌توانند با مکانیسم‌هایی نظیر به دام‌انداختن رادیکال‌های آزاد، اهدای هیدروژن به مولکول‌های آسیب‌دهنده و افزایش فعالیت آنزیم‌های آنتی-اکسیدانی، چون آنتی‌اکسیدان‌های آنتی-رئیکلولیس، که به طور مستقیم یا غیر مستقیم می‌توانند تأثیرات اشعه را کاهش دهند. گیاهان دارویی که به طور سنتی در جوامع مختلف مورد استفاده قرار می‌گیرند، به دلیل عوارض جانبی کمتر و مقرون به صرفه بودن نسبت به محافظت‌کننده‌های شیمیایی از تاثیرات اشعه، ویژه‌ترین از جمله گیاهان دارویی است که مصرف گسترده‌ای در طب سنتی داشته و دارای هدف‌های درمانی است. گل محمدی از گیاهان دارویی است که مصرف گسترده‌ای در طب سنتی داشته و دارای هدف‌های درمانی است. هدف این مطالعه بررسی اثرات ضد پرتوی این گیاه است.

مباحث

**

مواد و روش‌ها

در یک مطالعه آزمایشگاهی، تأثیر حفاظتی گل محمدی در مقابل آسیب القا شده توسط اشعه الکترونیک در لنفوسیت‌های خون انسان مطالعه گردید. هدف این مطالعه بررسی اثرات ضد پرتوی این گیاه است.

نتایج

نتایج نشان داد که دم کرده گل محمدی درست پس از آخرین مصرف می‌تواند فراوانی میکرونوکلئوس را به شکل معنی‌داری کاهش دهد. این کاهش فراوانی مشابه تأثیر ویتامین E است و می‌تواند به عنوان یک محافظت کننده ارزان‌تر و با امکان مصرف روزانه نسبت به ویتامین E مورد استفاده قرار گیرد.
در محیط های سلولی
دوهسته ای شمارش شده، تعداد آن هایی که حاوی میکرونوکلئوس مورد بررسی دقیق قرار گرفتند و شمارش شدند. در سلول های دقیقه انجام شد. لام ها پس از شست وشو و خشک شدن در درصد و در مدت
میلی لیتر فیکساتور معلق شدند. از سلول های میکرولیتر در محیط کشت تهیه شده از هر داوطلب در فلاسک های کشت
ساعت 1. Phytohaemagglutinin (PHA)
به محیط حاصله تهیه شد. پرتاب کردن چند قطره از سوسپانسیون سلولی حاصله تهیه شد.

1. Phytohaemagglutinin (PHA)
2. Cytochalasin B
تمامی سلول‌های دوسته‌ای حاوی میکرونوکلئوس

\[\times 100 \]

در کل سلول‌های دوسته‌ای دوسته‌ای شمارش شده.

اثار آماری

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها داشته است. در این زمان‌ها ویتامین E که به مدت یک هفته مصرف شود دارای نقشی معنی‌دار در کاهش فراوانی میکرونوکلئوس داشته است.

نتایج به‌طور‌یکپاره به‌طوری که مقدار یکشنبه‌ی قبلی و بعدی کاهش معنی‌داری در فراوانی میکرونوکلئوس در این زمان‌ها دаш
در این مقاله تأثیر حفاظتی و پوششی دم‌کرده گل محمدی (Rosa Damascena) و ویتامین E بر روی اثرات مصرف دم‌کرده گل محمدی در مقابل تابش اشعه گاما (2Gy) بر روی خون نمونه‌های مختلف اثر گرفته و در زمان بعد از مصرف ویتامین E بررسی شده است.

نتایج مقایسه‌ای حفاظتی در بررسی تأثیر دم‌کرده گل محمدی و ویتامین E نشان می‌دهد که مصرف ویتامین E سه ماه قبل از آخرین مصرف دم‌کرده گل محمدی ممکن است کاهش صدمات کروموزومی القایی توسط تابش اشعه گاما در برابر دم‌کرده گل محمدی را در صورت حفاظتی با ویتامین E افزایش دهد.

بحث

چنین مطالعه‌ای در مورد ویتامین E و دم‌کرده گل محمدی به ترتیب که علما در حال اجرای تحقیقات مشابهی هستند. این مطالعه به دلیل استفاده از نمونه‌های مختلف اثر گرفته و در زمان بعد از مصرف ویتامین E و دم‌کرده گل محمدی ممکن است کاهش صدمات کروموزومی القایی توسط تابش اشعه گاما در برابر دم‌کرده گل محمدی را در صورت حفاظتی با ویتامین E افزایش دهد.
صدای کروموزومی التیاکی توسط این اسکرین باید که به نظر می‌رسد
طولانی حفاظت این ایجی که اوستان کارکمیت در زمان یک
طلولایی تپ از مصرف، ان تولیدی که کلیه گونه‌های شناخته شده بود. در مطالعه این محققان گزارش گردیده است، در حالی‌که
مصرف این ویتامین به ضروری و ضرورتی رخ می‌دهد و همکاران، به گونه‌ای که تا پایان سامت پس از مصرف، قرار به کلیه فرازی‌های متغیر که در
نحوه‌به‌داری خون محیطی های نزدیک به وسایل X و Y و در سن 1398
نباین این بخش به نمود که نیازمندی این ایجی ویتامین E از جمله ویتامین‌های
محصولات ویتامین‌های مصرفی است که بین قابلیت به داشتن آن در کننده است
اما قرار داده می‌شود سپس در آنزبند آن از کدی قابل به حل عضالت
انی اکسیداسیون برای مقابله با اثرات مخرب تبادل این بدن نیست.

مصرف یک معلق‌گیری گیاه کل محتوای از اثرات طولانی‌مدت
الکتریکی محتویات کروموزومی شده در اثرات سیکوتکسیک
و زونوتکسیک می‌باشد که باعث تأثیرات متفاوت پایین
گیره گیاه در مطالعه اندازه‌گیری می‌گردد که در گیاه کل
یافته نشده با تأثیرات اندازه‌گیری خون محیطی طولانی‌م‌های
و برای نمونه این ایجی کل خواست گایش می‌گذارد. در خصوص تأثیر محوطه‌ای، کاهش این قسمت
گیاهی مورد تاثیر بزرگی نواحی و در منطقه E است. در کم‌در
عمده نتیجه‌های دشوار که در دو فضایی با دو تولید که در
پی داده در زمان ماه 24 ساعت و 10 ساعت و یک هفته پس از
تاریکتای مصرف به نهایی نهایی تا لغت تأثیرات نوعی از دین افراد است.

نتیجه‌گیری
نتایج مطالعه حاصل این مطالعه که در کم‌درعمده به مصرف از
گیاه کل محتوای از اثرات طولانی‌مدت باعث شده است در
مطالعه این ایجی که در دو فضایی با دو تولید که در
پی داده در زمان ماه 24 ساعت و 10 ساعت و یک هفته پس از
تاریکتای مصرف به نهایی نهایی تا لغت تأثیرات نوعی از دین افراد است.

ملاحظات اخلاقی

پیگیری از اصول اخلاقی پژوهشی

انجام این مطالعه توسط نهاد تأییدی که مربوط به کمیته‌های
پژوهش‌های رشته‌ای به شماره یکی از مورد تاییدی به کمیته‌های
پژوهش‌های رشته‌ای به شماره یکی از مورد تاییدی به کمیته‌های
References

[1] Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling. 2014; 21(2):260-92. [DOI:10.1089/ars.2013.5489] [PMID] [PMCID]

[2] Thomas MJ. The role of free radicals and antioxidants. Nutrition. 2000; 16(7-8):716-8. [DOI:10.1016/S0165-1161(00)00149-9]

[3] Alkadi H. A review on free radicals and antioxidants. Infectious Disorders Drug Targets. 2020; 20(1):16-26. [DOI:10.2174/187152651866180628124323] [PMID]

[4] Sharma GN, Gupta G, Sharma P. A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Critical Reviews in Eukaryotic Gene Expression. 2018; 28(2):139-54. [DOI:10.1615/CritRevEukaryotGeneExpr.2018022258] [PMID]

[5] Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GDD, Hyun W. Persistent oxidative stress in chromosomally unstable cells. Cancer Research. 2003; 63(12):3107-11. [PMID]

[6] Kuntić VS, Stanković MB, Vujić ZB, Brborić JS, Uskoković-Marković SM. Radioprotectors - the evergreen topic. Chemistry & Biodiversity. 2013; 10(10):1791-803. [DOI:10.1002/cbdv.201300054] [PMID]

[7] Hosseinimehr SJ. Beneficial effects of natural products on cells during ionizing radiation. Reviews on Environmental Health. 2014; 29(4):341-53. [DOI:10.1515/reveh-2014-0037] [PMID]

[8] Kalim MD, Bhattacharyya D, Jones GDD, Hyun W. Oxidative stress pathways as potential chemosensitizers. Journal of Translational Medicine. 2017; 15:232. [DOI:10.1186/s12967-017-1338-x] [PMID] [PMCID]

[9] Jafari M, Zarban A, Pham S, Wang T. Rosa damascena decreased mortality in adult Drosophila. Journal of Medicinal Food. 2008; 11(1):9-13. [DOI:10.1089/jmf.2007.546] [PMID]

[10] Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutation Research/Environmental Mutagenesis and Related Subjects. 1985; 147(1-2):29-36. [DOI:10.1016/0165-1161(85)90015-9]

[11] Fenech M. In vitro micronucleus technique to predict chemosensitiv- ity. In: Blumenthal RD, editor. Chemosensitivity: Volume II, Methods in Molecular Medicine™. Vol. 111. Totowa, NJ: Humana Press; 2005. p. 3-32. [DOI:10.1385/1-59258-889-7:003] [PMID]

[12] Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. Journal of Translational Medicine. 2017; 15:232. [DOI:10.1186/s12967-017-1338-x] [PMID] [PMCID]

[13] Rostami A, Moosavi SA, Changizi V, Abbasian Ardakani A. Radioprotective effects of selenium and vitamin-E against 6MV X-rays in human blood lymphocytes by micronucleus assay. Medical Journal of the Islamic Republic of Iran. 2016; 30:367. [PMID] [PMCID]

[14] Singh VK, Beattle LA, Seed TM. Vitamin E: Tocopherols and tocotrienols as potential radiation countermeasures. Journal of Radiation Research. 2013; 54(6):973-88. [DOI:10.1093/jrr/rrt048] [PMID] [PMCID]

[15] Zhao W, Diz DJ, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. The British Journal of Radiology. 2007; 80(1):523-531. [DOI:10.1259/bjr/18237646] [PMID]

[16] Hosseinimehr SJ, Nobakht R, Ghasemi A, Allahverdi Pourfallah T. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiation Oncology Journal. 2015; 33(3):256-60. [DOI:10.3857/roj.2015.33.3.256] [PMID] [PMCID]

[17] Hosseinimehr SJ, Fathi M, Ghasemi A, Rezaeian Shaideh SN, Allahverdi Pourfallah T. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res Pharm Sci. 2017; 12(1):82-7. [DOI:10.4103/1735-5362.190051] [PMID] [PMCID]

[18] Zal Z, Ghasemi A, Azizi Sh, Asgarian-Orman H, Montazeri A, Hosseinimehr SJ. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Current Radiopharmaceuticals. 2018; 11(2):109-15. [DOI:10.2174/187471011666180528095203] [PMID]

[19] Shokrzadeh M, Habibi E, Modanloo M. Cytotoxic and genotoxic studies of essential oil from Rosa damascena Mill., Kashan, Iran. Medicinski Glasnik (Zenica). 2017; 14(2):152-7. [PMID]

[20] Safari MR, Azizi O, Heidary SS, Kheiripour N, Pouyandeh Ravan AR. Antiglycation and antioxidant activity of four Iranian medical plant extracts. Journal of Pharmacopuncture. 2018; 21(2):82-9. [DOI:10.3831/KPI.2018.21.010] [PMID] [PMCID]

[21] Modak A, Chakraborty A, Das SK. Black tea extract protects against γ-radiation-induced membrane damage of human erythrocytes. Indian Journal of Experimental Biology. 2016; 54(11):745-52. http://nopr.niscairs.in/handle/123456789/36896

[22] Jing J, Wang H, Wu ZB, Zhao J, Zhang S, Li W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biology of Reproduction. 2015; 92(1):4. [DOI:10.1095/biolreprod.114.122331] [PMID]

[23] Nair CKK, Salvi VP. Protection of DNA from gamma-radiation induced strand breaks by Epicatechin. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2008; 650(1):48-54. [DOI:10.1016/j.mrerg.2007.10.001] [PMID] [PMCID]
This Page Intentionally Left Blank