Effect of colestimide on the concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dizenzofurans, and polychlorinated biphenyls in blood of Yusho patients

Takashi Todaka1*, Akinori Honda1, Masami Imaji1, Yoshiko Takao2, Chikage Mitoma3 and Masutaka Furue4

Abstract

Background: Oral colestimide was reported to lower the concentration of PCDDs, PCDFs, and PCB in the blood of humans. A pilot study showed that the arithmetic mean total TEQ concentrations of PCDDs, PCDFs, and PCBs in the blood of subjects after the trial decreased approximately 20 % compared to pre-trial levels, suggesting that colestimide could decrease human dioxin levels. We designed the current clinical trial study based on this information. In this study, we examined whether colestimide could reduce the individual congener concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients.

Methods: Out of the 36 Yusho patients who participated in the clinical trial, 26 patients self-administered colestimide 3 g/day orally for 6 months. The concentrations of PCDDs, PCDFs and PCBs in the blood of 26 Yusho patients before the trial were compared with those after the trial.

Results: The arithmetic mean total TEQ concentrations of PCDDs, PCDFs, non-ortho PCBs, and mono-ortho PCBs in the blood of the 26 Yusho patients before and after the clinical trial were 42–303 (mean: 130, median: 120) and 43–283 (mean: 132, median: 118) pg TEQ/g lipid, respectively. The sums of the concentrations of 58 PCB congeners measured in the blood of Yusho patients before and after the trial were 321–2643 (mean: 957, median: 872) and 286–2007 (mean: 975, median: 806) ng/g lipid, respectively, indicating that the concentrations of PCDDs, PCDFs, and PCBs after the trial were almost the same as those before the trial. Among congeners of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs, most congeners of these compounds did not show a statistically significant decrease after the trial.

Conclusion: Colestimide may not be beneficial in reducing the high blood levels of dioxin-like compounds in Yusho patients.

Keywords: PCDDs, PCDFs, PCBs, Yusho, Colestimide, Blood concentration

Background

The 1968 Yusho poisoning accident affected over 1800 people in western Japan [1]. Since the Yusho outbreak, the National Study Group for the Therapy of Yusho has carried out medical care and health examinations of patients affected [2]. In 2001, the measurement of PCDDs, PCDFs, and non-ortho PCBs in the blood became possible using small amounts of blood collected from participants during annual medical examinations [3–5]. We have measured the concentrations of PCDDs, PCDFs, and dioxin-like PCBs in the blood collected from Yusho patients in medical health examinations since 2002 [6–8]. Moreover, we have conducted a congener-specific analysis of non-dioxin-like PCBs in the blood of these patients since 2004 [9, 10].
Based on these results, we previously reported that Yusho patients continue to have higher concentrations of PCDFs in their blood than unaffected people, and that concentration of PCDFs in the blood is significantly correlated with the intensity of Yusho symptoms [11, 12]. Development of effective therapy to reduce the concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients could improve the health care of these patients. With regard to promoting the excretion of lipophilic contaminants stored in the human body, several studies of dietary supplements such as cholestyramine, mineral oil, hexadecane, and dietary fiber have been reported using laboratory animals [13–16]. In addition, another study reported the enhancing effect of non-absorbable lipid substitute olestra on fecal excretion of PCDDs, PCDFs, and PCBs in the human body [17, 18]. Our study group previously conducted a clinical trial to reduce the concentrations of PCDDs, PCDFs, and PCB in the blood of Yusho patients using cholestyramine and rice bran fiber [19, 20]. However, beneficial clinical effects could not be confirmed due to the short trial period.

Colestimide, a 2-methylimidazobenzepin polymer, is widely used to lower serum cholesterol levels in Japan. Recently, oral colestimide was reported to lower the concentration of PCDDs, PCDFs, and PCB in the blood of humans [21, 22]. A pilot study showed that the arithmetic mean total TEQ concentrations of PCDDs, PCDFs, and PCBs in the blood of subjects after the trial decreased approximately 20 % compared to pre-trial levels, suggesting that colestimide could decrease human dioxin levels [21, 22]. We designed the current clinical trial study based on this information. In this study, we examined whether colestimide could reduce the individual congener concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients.

Methods

Sampling

The trial protocol was approved by the institutional ethics committee of Kyusyu University Hospital. Patients who fulfilled the diagnostic criteria for Yusho established by the National Study Group for the Therapy of Yusho were eligible for this study. Patients were recruited at explanatory meetings conducted in Fukuoka and Nagasaki Prefectures. 50 Yusho patients were enrolled in this clinical trial, and 14 patients refused to participate. The remaining 36 patients participated in the trial. Informed consent was obtained for study participation. The patients self-administered colestimide 3 g/day orally for 6 months. Out of the 36 Yusho patients who participated in the clinical trial, 26 patients completed the trial. The 26 patients ranged in age from 60 to 87 years (mean: 72.9, median: 72.5). Among the 26 patients, there were 13 men (age range 60–87 years; mean: 73.1, median: 74.0) and 13 women (age range 61–81 years; mean: 72.8, median: 72.0). The blood samples examined in this study were collected between April 4, 2008 and July 15, 2009. After collection, the blood samples were stored at 4 °C until analyses.

Materials

Native congeners of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs were purchased from Wellington Laboratories (Guelph, Canada). \[^{13}C_{12}\]–congeners of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs as internal standards, were also purchased from Wellington Laboratories. An active carbon column was prepared as follows: active carbon was purchased from Nacalai Tesque (Kyoto, Japan), refluxed 3 times with toluene for 1 h, and dried in vacuum, after which 500 mg of the active carbon was mixed with 500 g of anhydrous sodium sulfate (Wako Pure Chemical Industries, Ltd., Tokyo, Japan). A silver nitrate/silica gel was purchased from Wako Pure Chemical Industries, Ltd. All reagents and solvents used in this experiment were of the analytic grade of dioxin that is commercially available.

Analysis of PCDDs, PCDFs, and PCBs

The extraction and purification of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs from blood samples were performed using a previously reported method [5, 9]. Concentrations of PCDDs, PCDFs, and dioxin-like PCBs and concentrations of 58 non-dioxin-like PCB congeners were determined by a previously reported method [5, 9].

Quality control

To evaluate the accuracy and reliability of the analysis of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs, our laboratory prepared human blood samples and conducted quality control studies of the analysis of PCDDs, PCDFs, and dioxin-like PCBs in 2007, 2009, 2011, and 2013 and non-dioxin-like PCBs in 2008, 2010, 2012, and 2014. Each quality control study involved the participation of various laboratories that perform measurements for these compounds in human blood in Japan. In each quality control study, our results were compared with those of participating laboratories, and tests confirmed that the average variation among values obtained by each organization performing the analysis was all within 10 %. These results indicated that our laboratory's analytical methods regarding PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs in human blood provided accurate results.
Congeners	Concentration (pg/g lipid)	Before the clinical trial	After the clinical trial	p Values							
		Mean	Median	SD	Minimum	Maximum	Mean	Median	SD	Minimum	Maximum
2,3,7,8-TetraCDD	1.8	1.7	0.9	0.5	4.0	2.0	1.8	1.2	0.5	4.7	0.083
1,2,3,7,8-PentaCDD	14	14	4.9	6.6	23	14	12	6.1	6.1	27	0.067
1,2,3,4,7,8-HexaCDD	3.1	3.0	1.7	1.0	7.1	3.3	3.2	1.7	1.0	6.9	0.053
1,2,3,6,7,8-HexaCDD	62	53	36	16	183	63	55	34	15	164	0.258
1,2,3,7,8,9-HexaCDD	5.5	4.5	5.2	2.1	29	5.7	3.9	6.0	1.0	31	0.770
1,2,3,4,6,7,8-HeptaCDD	55	47	25	21	113	52	43	27	20	143	0.137
OctaCDD	699	606	281	323	326	670	543	309	305	1610	0.118
Total PCDD	841	739	315	413	1525	811	688	346	382	1850	0.144
2,3,7,8-TetraCDF	2.8	2.7	1.3	0.5	5.5	2.7	2.6	1.4	0.5	5.8	0.427
1,2,3,7,8-PentaCDF	1.3	1.1	0.9	0.5	3.5	1.5	1.2	1.1	0.5	4.4	0.554
2,3,4,7,8-PentaCDF	241	191	158	48	636	242	205	158	49	613	0.732
1,2,3,4,6,7,8-HexaCDF	64	51	56	7.8	227	64	52	56	8.1	207	0.990
1,2,3,7,8,9-HexaCDF	26	21	19	6.2	86	26	22	19	5.2	74	0.534
1,2,3,7,8,9,9-HexaCDF	ND										
OctaCDF	ND										
Total PCDF	342	280	229	71	963	344	292	230	71	890	0.732
33’4’4’-TriCB(#77)	6.9	5.0	3.7	5.0	16	8.9	7.5	4.3	5.0	20	0.016
344’5-TriCB(#81)	5.3	5.0	1.4	5.0	12	5.7	5.0	2.4	5.0	15	0.180
33’44’5-PentaCB(#126)	129	100	81	30	391	131	96	85	34	356	0.770
33’44’55’-HexaCB(169)	279	250	144	104	678	293	280	129	114	585	0.101
Total Non-ortho PCBs	420	382	178	183	906	439	406	166	196	789	0.078
233’44‘-PentaCB(#105)	4454	3145	3555	1206	13788	51038	30741	43667	9528	180163	0.517
2344‘5-PentaCB(#114)	2800	2365	1688	5.0	7194	2997	2681	1699	5.0	6987	0.118
2344‘5-PentaCB(#118)	21718	16568	17601	5.0	75475	21050	15412	14335	4575	57260	0.990
2344‘5-PentaCB(#123)	304	228	273	5.0	1239	312	214	237	5.0	898	0.581
2334‘5-PentaCB(#156)	50472	32661	46375	13079	195017	51038	30741	43667	9528	180163	0.517
2334‘5-PentaCB(#157)	13157	8088	13150	3390	53954	12747	7644	11520	2332	46994	0.990
2344‘5-PentaCB(#167)	4834	4243	3373	5.0	16863	4610	4265	2422	985	10481	0.770
2344‘5-PentaCB(#189)	7385	5100	5888	1664	24429	7398	5397	5323	1730	22434	0.829
Total Mono-ortho PCBs	105125	83472	66740	40066	293077	104734	93659	59308	34746	267273	0.829
TEQ from PCDDs	24	24	7.9	11	43	24	24	9.2	11	42	0.809
TEQ from PCDFs	82	63	54	16	223	82	68	54	16	211	0.534
TEQ from non-ortho PCBs	106	83	60	27	265	107	87	61	28	249	0.790
TEQ from mono-ortho PCBs	21	20	9.8	7.4	54	22	20	9.7	7.8	47	0.485
TEQ from dioxin-like PCBs	3.2	2.5	2.0	1.2	8.8	3.1	2.8	1.8	1.0	8.0	0.829
Total TEQ	130	120	65	42	303	132	117	65	43	283	0.869

ND (less than the detection limit) values introduced to half values of the detection limit and calculated the TEQ concentrations
SD standard deviation, CDD chlorinated dibenzo-p-dioxin, CDF chlorinated dibenzofuran
Table 2 Effect of colestimide on the individual congener concentrations of non-dioxin-like PCBs in the blood of Yusho patients

IUPAC#	Concentration (pg/g lipid)	Before the clinical trial	After the clinical trial	p Values
	Mean Median SD Minimum Maximum		Mean Median SD Minimum Maximum	
TriCB-28	1644 1449 866 324 3809	1837 1866 1226 5 6187	0.025	
TriCB-29	20 12 18 5 72	20 5 23 5 99	0.845	
TriCB-37	128 5 245 5 847	73 5 165 5 698	0.112	
TeteraCB-44	348 248 523 5 2841	415 324 415 107 2261	0.034	
TeteraCB-47/48	525 359 437 117 1769	640 471 715 121 3659	0.049	
TeteraCB-49	295 179 409 44 1679	344 216 576 5 3070	0.101	
TeteraCB-52/69	956 780 836 294 4572	1060 860 745 368 3896	0.052	
TeteraCB-56/60	442 306 344 5 1412	489 284 577 104 3010	0.089	
TeteraCB-63	116 117 65 5 280	140 118 69 5 360	0.382	
TeteraCB-66	2118 1520 1507 586 5853	2181 1536 1691 613 8475	0.551	
TeteraCB-70	362 130 807 13 3375	418 143 1308 55 6817	0.280	
TeteraCB-71	37 11 56 5 238	126 5 490 5 2524	0.586	
TeteraCB-74	14823 12720 9202 3830 41089	14505 11875 9068 2973 35194	0.770	
PentaCB-85	247 139 335 5 1592	205 138 218 5 1086	0.657	
PentaCB-87	812 797 448 5 1716	747 697 442 5 2059	0.183	
PentaCB-92	719 571 482 5 2402	752 669 455 5 2264	0.412	
PentaCB-93/95/98	727 637 439 5 1964	1003 746 1165 326 6428	0.258	
PentaCB-99	23623 19114 17453 4240 90085	24873 23328 16634 4308 82151	0.182	
PentaCB-101	1931 1534 1234 5 5667	2337 1959 1481 600 6915	0.174	
PentaCB-107/108	963 785 707 5 3340	961 819 584 5 2435	0.166	
PentaCB-110	339 242 325 5 1451	332 298 268 5 1428	0.638	
PentaCB-117	1911 1466 1813 435 7951	1722 1306 1642 5 6579	0.280	
HexaCB-128	925 685 660 5 3099	949 678 775 5 3899	0.443	
HexaCB-130	7065 5603 5780 2080 25122	7238 5886 5578 1913 25258	0.568	
HexaCB-132	399 326 252 5 1125	445 397 282 5 1134	0.143	
HexaCB-134	25 5 50 5 183	35 5 47 5 168	0.203	
HexaCB-135	419 342 318 5 1577	485 330 403 5 1587	0.382	
HexaCB-137	10565 7132 9066 2996 41244	10646 7786 8734 2336 39991	0.889	
HexaCB-138	96984 89163 52967 25546 240863	97685 84306 53897 23381 244647	0.990	
HexaCB-139/149	635 452 619 15 2404	615 292 696 5 2303	0.568	
HexaCB-141	328 255 246 5 1044	340 282 287 5 1169	0.716	
HexaCB-146	32968 34220 16346 11603 83149	35211 31688 16262 9839 68936	0.086	
HexaCB-147	724 567 463 5 1678	768 622 519 5 1806	0.527	
HexaCB-151	1329 981 880 428 3402	1349 1008 1098 5 4265	0.258	
HexaCB-153	200929 184176 106109 73832 516088	206380 180663 109234 59314 458743	0.501	
HexaCB-163/164	48797 47157 25168 17426 113577	49567 47872 22738 15767 88552	0.694	
HexaCB-165	ND	ND	ND	ND
Data analysis

To estimate the TEQ concentrations, we introduced ND (less than the detection limit) values to half values of the detection limit and calculated the TEQ concentrations based on the TEF values proposed by the WHO [23]. The statistical analysis was conducted using Wilcoxon signed-rank test in the software programs from Statistics Package for Social Sciences (version 22; IBM Armonk, NY, USA). Significant probabilities (p values) were calculated for the respective number of samples analyzed.

Results

The objective of the present study was to evaluate the effectiveness of colestamide on the individual congener concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients. Of the 36 Yusho patients who began the trial, 9 patients stopped administrating colestamide due to serious adverse effects, constipation or abdominal distension. Of the 27 remaining patients, we failed to collect a posttreatment blood sample from one patient due to cancellation of hospital visit. The individual congener concentrations of PCDDs, PCDFs and PCBs in the blood of 26 Yusho patients before the trial were compared with those after the trial (Tables 1 and 2).

The arithmetic mean TEQ concentrations of PCDDs, PCDFs, non-ortho PCBs, and mono-ortho PCBs in the blood of the 26 Yusho patients were 24, 82, 21, and 3.2 pg TEQ/g lipid, respectively, before the trial, and 24, 82, 22, and 3.1 pg TEQ/g lipid, respectively, after the trial. Total TEQ concentration of these dioxin-like compounds equaled 42–303 (mean: 130, median: 120) pg TEQ/g lipid before the trial, and 43–283 (mean: 132, median: 118) pg TEQ/g lipid after the trial, indicating that the concentrations before the trial were almost the same as those after the trial. Regarding the non-dioxin-like PCB concentrations, the sums of the concentrations of 58 PCB congeners in the blood before and after the trial were 321–2643 (mean: 957, median: 872) and 286–2007 (mean: 975, median: 806) ng/g lipid, respectively. The arithmetic mean concentrations of triCBs, tetraCBs, heptaCBs, octaCBs, nonaCBs, decaCBs, total TrCBs, total TeCBs, total PeCBs, total HxCB, total HpCBs, total OcCBs, total NoCBs, total DeCBs, total PCBs are shown in Table 2.

Table 2: Effect of colestamide on the individual congener concentrations of non-dioxin-like PCBs in the blood of Yusho patients (Continued)

Congener	Before Trial	After Trial	% Change	SD	p-value
HeptaCB-180	205779	201272	2.2	6087	0.67
HeptaCB-181	53	292	433.9	71	0.03
HeptaCB-182/187	76063	60684	20.3	14834	0.03
HeptaCB-183	16843	14980	11.0	4733	0.01
HeptaCB-191	3078	2922	4.8	2008	0.04
OctaCB-194	31774	32293	1.7	22776	0.01
OctaCB-195	7832	6835	12.5	5994	0.04
OctaCB-196/203	17107	15138	12.6	11346	0.04
OctaCB-198/201	14771	12536	16.9	11520	0.03
OctaCB-200	659	485	28.0	607	0.01
OctaCB-202	5432	3893	29.3	4532	0.01
OctaCB-205	977	898	8.1	633	0.01
NonaCB-206	5049	4561	9.6	2829	0.01
NonaCB-207	922	755	17.2	572	0.01
NonaCB-208	1877	1731	7.3	1209	0.01
DecaCB-209	1857	1598	14.8	890	0.01
Total TrCBs	1792	1471	18.8	999	0.01
Total TeCBs	20023	17013	15.1	11246	0.01
Total PeCBs	31271	26027	16.9	19945	0.01
Total HxCB	402098	373141	7.6	196792	0.01
Total HpCBs	413979	401285	3.4	265364	0.01
Total OcCBs	78553	77549	1.3	55605	0.01
Total NoCBs	8749	6439	29.9	4416	0.01
Total DeCBs	1857	1598	14.8	890	0.01
Total PCBs	957422	871523	9.7	520304	0.01

ND (less than the detection limit) values introduced to half values of the detection limit and calculated the TEQ concentrations
SD standard deviation, CB chlorinated biphenyl
pentaCBs, hexaCBs, heptaCBs, octaCBs, and nonaCBs in the blood of Yusho patients were 1.8, 20, 31, 402, 414, 79, and 7.8 ng/g lipid, respectively, before the trial, and 1.9, 20, 33, 412, 420, 79, and 7.6 ng/g lipid, respectively, after the trial, indicating that concentrations of these PCBs compounds were also almost the same before and after the trial. These results indicated that the concentrations of PCDDs, PCDFs, dioxin-like PCBs and non-dioxin-like PCBs in the blood of Yusho patients were not significantly altered by the intervention with oral colestimide.

We previously reported that the concentrations of 1,2,3,6,7,8-hexaCDD, 2,3,4,7,8-pentaCDF, 1,2,3,4,7,8-hexaCDF, 1,2,3,6,7,8-hexaCDF, hexaCB-169, hexaCB-156, hexaCB-157, and heptaCB-189 in the blood of Yusho patients were higher than those of the normal controls [8, 9]. These can be considered the characteristic congeners in the blood of Yusho patients. 2,3,4,7,8-PentaCDF is recognized as the most important causative agent for subjective symptoms of Yusho. Blood levels before and after the trial were 48–636 (mean: 241, median: 191) and 49–613 (mean: 242, median: 205) pg TEQ/g lipid, respectively, indicating that the concentration did not significantly decrease with administration of colestimide. This was also the case for the concentrations of other characteristic congeners before and after the trial. Among congeners of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like PCBs, most congeners did not show statistically significant differences. According to these results, the therapeutic usefulness of colestimide in reducing the concentrations of PCDDs, PCDFs, and PCBs in blood of Yusho patients could not be confirmed.

Discussion

Over 48 years have passed since the outbreak of Yusho disease. However, some patients are still afflicted with intractable symptoms such as chloracne, general fatigue and neuropathy [12]. There are patients who continue to have much higher concentrations of dioxin-like compounds in their blood than unaffected persons. Moreover, the half-lives of blood concentrations of 2,3,4,7,8-pentaCDF have become long to near infinity in the majority of Yusho patients [24]. To reduce the concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients, our study group previously conducted a clinical trial using cholestyramine and rice bran fiber [19, 20]. Results of that study showed that the amounts of 2,3,4,7,8-pentaCDF in patients’ feces actually increased, although beneficial clinical effects were not apparent, possibly due to a short trial period. A recent study reported that colestimide can decrease the concentrations of PCDDs, PCDFs, and PCBs in blood [21, 22]. Eight male and two female healthy subjects were treated with colestimide (3 g/day) for 6 months. In this report, colestimide was effective for promoting excretion of dioxin-like compounds from the human body. Colestimide is a non-absorbable anion exchange resin and enhances excretion of cholesterol in feces by inhibiting absorption of food-derived cholesterol in the intestinal tract [25]. Based on this result, we designed a clinical trial with colestimide for Yusho patients. However, in the present study, we were unable to confirm a significant decrease in most congeners of PCDDs, PCDFs, and PCBs in the blood of Yusho patients. It is suggested that the PCDDs, PCDFs, and PCBs that have remained in the whole body of patients over the 45 years since the outbreak of Yusho are very difficult to excrete from the body. In the present trial, there may be many limitations such as a small number of participants, duration of administration period and dose of colestimide. Out of the 36 patients who participated in the trial, 9 patients experienced serious adverse effects (constipation or abdominal distension) by the repeated administration of colestimide. Therefore, we cannot recommend that elderly patients participate in clinical trial studies for such long periods as in the present study.

Conclusion

Although over 48 years have passed since the outbreak of Yusho, many patients still suffer various symptoms such as chloracne, general fatigue and neuropathy. The concentrations of causative dioxin-like compounds in their blood remain at high levels. We examined whether oral administration of colestimide could reduce the concentrations of PCDDs, PCDFs, and PCBs in the blood of Yusho patients. However, the effectiveness of colestimide on the concentrations of these dioxin-like compounds in the blood of Yusho patients could not be confirmed.

Abbreviations

PCDDs, polychlorinated dibenzo-p-dioxins; PCDFs, polychlorinated dibenzofurans; PCBs, polychlorinated biphenyls; WHO, World Health Organization; TEF, toxic equivalent factor.

Acknowledgements

We would like to sincerely thank the participants to the study and all research staff at Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital.

Funding

This research was supported by a Grant-in-Aid for scientific research from the Ministry of Health, Labour and Welfare, Japan.

Availability of data and materials

We do not wish to share the data included in this manuscript. Patients who fulfilled the diagnostic criteria for Yusho established by the National Study Group for the Therapy of Yusho were eligible for this study. Therefore, we want to protect the patients’ identities and personal information.

Authors’ contributions

TT developed the analytical method, and drafted the initial manuscript. AK, MI and YT examined the data quality for analyses. CM and MF interpreted the results. MF coordinated the project. All authors approved the final manuscript.
Competition of interests
The authors declare that they have no competing interests.

Consent for publication
Patients were recruited at explanatory meetings conducted in Fukuoka and Nagasaki Prefectures. 50 Yusho patients were enrolled in this clinical trial, and 36 patients participated in the trial. Informed consent was obtained for study participation. We also confirmed their consent for publication of this manuscript.

Ethics approval and consent to participate
The study project was approved by the institutional ethics committee of Kyushu University Hospital (reference 18034).

Author details
1 Kitakyushu Life Science Center, Public Interest Incorporated Foundation, Nakabushinmachimachi 1-4, Tobata-ku, Kitakyushu-shi, Fukuoka 804-0003, Japan.
2 Fukuoka Institute of Health and Environmental Sciences, 39, Mukaizano, Dazaifu-shi, Fukuoka 818-0135, Japan.
3 Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan. *Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.

Received: 17 December 2015 Accepted: 30 May 2016
Published online: 04 June 2016

References
1. Kurutsume M, Yoshimura Y, Hori Y, Okumura Y, Masuda Y, Yusho. A human disaster caused by PCBs and related compounds. Fukuoka, Japan: Kyushu University Press; 1969.
2. Furue M, Uenotsuchi T, Urake K, Ishikawa T, Kusabara M. Overview of Yusho. J Dermatol Sci. 2005;53–510.
3. Iida T, Todaka T. Measurement of dioxins in human blood: improvement of analytical method. Ind Health. 2003;41:197–204.
4. Todaka T, Hirakawa H, Tobishi K, Iida T. New protocol for dioxin analysis of human blood. Fukuoka Igaku Zasshi. 2003;94:148–57.
5. Todaka T, Hirakawa H, Hori T, Tobishi K, Iida T. Improvement in dioxin analysis of human blood and their concentrations in blood of Yusho patients. J Dermatol Sci. 2005;1:521–528.
6. Todaka T, Hirakawa H, Hori T, Tobishi K, Iida T. Follow-up survey of dioxins concentrations in the blood of Yusho patients in 2002–2003. Fukuoka Igaku Zasshi. 2005;96:249–58.
7. Todaka T, Hirakawa H, Kajiwara J, Hori T, Tobishi K, Onozuka D, Iida T, Yoshimura T, Furue M. Dioxin concentration in the blood of patients collected during medical check-up for Yusho in 2004–2005. Fukuoka Igaku Zasshi. 2007;98:222–31.
8. Todaka T, Hirakawa H, Hori T, Tobishi K, Iida T, Furue M. Concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and non-ortho and mono-ortho polychlorinated biphenyls in blood of Yusho patients. Chemosphere. 2007;66:1983–9.
9. Todaka T, Hori T, Hirakawa H, Kajiwara J, Yasutake D, Onozuka D, Iida T, Furue M. Concentrations of polychlorinated biphenyls in blood of Yusho patients over 35 years after the incident. Chemosphere. 2009;74:902–9.
10. Todaka T, Hori T, Yasutake D, Yoshinomi H, Hirakawa H, Onozuka D, Kajiwara J, Iida T, Yoshimura T, Furue M. Concentrations of polychlorinated biphenyls in blood collected from Yusho patients during medical check-ups performed from 2004–2007. Fukuoka Igaku Zasshi. 2009;100:156–65.
11. Imamura T, Kanagawa Y, Matsumoto M, Shiba S, Uenotsuchi T, Shibata S, Furue M. Relationship between clinical features and blood levels of pentachlorodibenzofuran in patients with Yusho. Environ Toxicol. 2007;22:124–31.
12. Kanagawa Y, Matsumoto S, Kukie S, Aiba T, Fukuhara N, Shibata S, Uchi H, Furue M, Imamura T. Association of clinical findings in Yusho patients with serum concentrations of polychlorinated biphenyls, polychlorinated quarterphenyl compounds 2,3,4,7,8-pentachlorodibenzofuran more than 30 years after the poisoning event. Environ Health. 2008;747.
13. Boylan JJ, Okean PS, Cholesterolamines: Use as a new therapeutic approach for cholesterol (kepone) poisoning. Science. 1978;190:893–5.
14. Morita K, Matsuoka T, Iida T. Effect of dietary fiber on fecal excretion of polychlorinated dibenzo-p-dioxins in rats. Jpn J Toxicol Environ Health. 1997;43:35–41 (in Japanese).
15. Rozman T, Rozman K, Williams J, Greim H. Enhanced fecal excretion of mirex in rhesus monkeys by 5 % mineral oil in the diet. Drug Chem Toxicol. 1981;4:251–62.
16. Rozman K, Rozman T, Greim H, Niemann U. Smith GS Use of aliphatic hydrocarbons in feed to decrease body burdens of lipopholic toxicants in livestock. J. Agric. Food Chem. 1982;30:98–100.
17. Geusa A, Tschachler E, Meixner M, Sandermann S, Päpke O, Wolf C, Valic E, Stirling G, Mclachlan M. Olestra increases faecal excretion of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Lancet. 1999;354:1266–7.
18. Moser GA, Mcclachlan MS A non-absorbable dietary fat substitute enhances elimination of persistent lipopholic contaminants in humans. Chemosphere. 1999;39:1513–21.
19. Iida T, Nakagawa R, Hirakawa H, Matsueda T, Morita K, Hamamura K, Hori Y, Guo Y, Chang F, Hsiao P, Lin K, Yu M, Lai T, Chen S, Hsu C. Clinical trial of a combination of rice bran fiber and cholestyramine for promotion of fecal excretion of retained polychlorinated dibenzofuran and polychlorinated biphenyl in Yu-Cheng patients. Fukuoka Igaku Zasshi. 1995;86:226–33.
20. Takanaka S, Morita K, Totsuka H, Takahashi K. Effects of rice bran fiber and cholestyramine on the fecal excretion of Kanechlor 600 (PCB). Xenobiotica. 1991;16:707–12.
21. Sakurai K, Todaka E, Saito Y, Mori C. Pilot study to reduce dioxins in the human body. Intern Med. 2004;43:792–5.
22. Sakurai K, Fukuta H, Todaka E, Saito Y, Bajo H, Mori C. Coalstiemide reduces blood polychlorinated biphenyls (PCB) levels. Intern Med. 2006;45:327–8.
23. Van den Berg M, Birmbaum L, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Havls L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Turmisto J, Tysklind M, Walker N, Petersen RE. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Tox Sci. 2006;93:223–41.
24. Matsumoto S, Akahane M, Kanagawa Y, Kajiwara J, Mitoma C, Uchi H, Furue M, Imamura T. Unexpectedly long half-lives of blood 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) levels in Yusho patients. Environ Health. 2015; doi: 10.1186/s12940-015-0059-y.
25. Kishimoto N, Fujii S, Chiba H, Sakuma I, Tsutsui H, Aita H, Usami T, Shiomi T, Kato H, Higashida H, Taima M, Aoyagi M. Long-term follow up, clinical and histological observations of an ex vivo histological model of Yusho. J. Jpn Dermatol. 2007;10:55–58.

Submit your next manuscript to BioMed Central and we will help you at every step:
- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit