Modified amyloid variants in pathological subgroups of β-amyloidosis

Janina Gerth¹, Sathish Kumar¹, Ajeet Rijal Upadhaya², Estifanos Ghebremedhin³, Christine A. F. von Arnim⁴, Dietmar R. Thal²,⁵,⁶,a & Jochen Walter¹,a

¹Department of Neurology, University of Bonn, Bonn, Germany
²Laboratory for Neuropathology, Institute for Pathology, University of Ulm, Ulm, Germany
³Department of Anatomy, University of Frankfurt, Frankfurt am Main, Germany
⁴Department of Neurology, University of Ulm, Ulm, Germany
⁵Department of Neurosciences, KU Leuven, Leuven, Belgium
⁶Department of Pathology, UZ Leuven, Leuven, Belgium

Abstract

Objective: Amyloid β (Aβ) depositions in plaques and cerebral amyloid angiopathy (CAA) represent common features of Alzheimer’s disease (AD). Sequential deposition of post-translationally modified Aβ in plaques characterizes distinct biochemical stages of Aβ maturation. However, the molecular composition of vascular Aβ deposits in CAA and its relation to plaques remain enigmatic. Methods: Vascular and parenchymal deposits were immunohistochemically analyzed for pyroglutaminated and phosphorylated Aβ in the medial temporal and occipital lobe of 24 controls, 27 pathologically-defined preclinical AD, and 20 symptomatic AD cases. Results: Sequential deposition of Aβ in CAA resembled Aβ maturation in plaques and enabled the distinction of three biochemical stages of CAA. B-CAA stage 1 was characterized by deposition of Aβ in the absence of pyroglutaminated Aβ and phosphorylated Aβ. B-CAA stage 2 showed additional Aβ and B-CAA stage 3 additional Aβ. Based on the Aβ maturation staging in CAA and plaques, three case groups for Aβ pathology could be distinguished: group 1 with advanced Aβ maturation in CAA; group 2 with equal Aβ maturation in CAA and plaques; group 3 with advanced Aβ maturation in plaques. All symptomatic AD cases presented with end-stage plaque maturation, whereas CAA could exhibit immature Aβ deposits. Notably, Aβ pathology group 1 was associated with arterial hypertension, and group 2 with the development of dementia. Interpretation: Balance of Aβ maturation in CAA and plaques defines distinct pathological subgroups of β-amyloidosis. The association of CAA-related Aβ maturation with cognitive decline, the individual contribution of CAA and plaque pathology to the development of dementia within the defined Aβ pathology subgroups, and the subgroup-related association with arterial hypertension should be considered for differential diagnosis and therapeutic intervention.
Introduction

Alzheimer’s disease (AD) represents the most common form of dementia, characterized by the accumulation of amyloid β (Aβ) in extracellular plaques and hyperphosphorylated tau in intracellular neurofibrillary tangles (NFTs). The majority of AD patients additionally develop amyloid lesions in the cerebrovasculature. Cerebral amyloid angiopathy (CAA) describes an AD-associated vessel disorder, defined by the deposition of Aβ in leptomeningeal and/or parenchymal arteries, veins, and capillaries. Cerebrovascular Aβ structurally resembles Aβ fibrils in plaques of AD patients. The overall abundance of CAA and plaques in AD was defined by the parenchymal deposition of Aβ lacking N-terminal truncated, pyroglutamated Aβ (AβN3pE) and phosphorylated Aβ (AβpS8), whereas Aβ including AβN3pE was prevalent in B-Aβ plaque stage 2. B-Aβ plaque stage 3, finally, exhibited AβpS8 within the parenchymal Aβ aggregates in addition to other forms of Aβ including AβN23pE.

Post-translational modification of Aβ by N-terminal truncation and pyroglutamation as well as phosphorylation affect the aggregation, stability, and toxicity of Aβ. In particular pyroglutamation at glutamate 3 and phosphorylation at serine 8 promote aggregation, thereby enhancing metabolic stability and toxicity of Aβ.

Despite the abundance of AβN3pE and AβpS8 in plaques and CAA of AD patients, the molecular composition of CAA lesions and its relation to the progression of AD remain enigmatic. To compare amyloid deposition in CAA and plaques, we analyzed the medial temporal and occipital lobe of control, pathologically-defined preclinical AD (p-preAD), and symptomatic AD cases for the presence of Aβ and its modified forms AβN3pE and AβpS8 in CAA-affected blood vessels.

Materials and Methods

Neuropathology

Brain tissue originated from the brain bank of the “Laboratory of Neuropathology” at the “University of Ulm” (Germany) that collected brain tissue in accordance with German legal regulations. Collection of brain tissue and experimental analyses of this project were approved by the ethics committees of the Universities of Ulm (Germany), Bonn (Germany), and KU Leuven (Belgium) where experiments have been performed (Votes Nos. Bonn: 161/01, 238/04; Ulm: 238/07, 54/08, 57/12; Leuven: S-58102, S-59295).

The brain collection consists of hospital-based autopsy cases that were included into the brain bank at the time point of autopsy. The clinical information, therefore, included only information from files that could be reviewed retrospectively in the respective hospital. Longitudinal data and data from neuropsychological tests were not available.

Morphological analysis of cerebrovascular and parenchymal Aβ lesions was performed in autopsy brains of 24 control, 27 p-preAD, and 20 sporadic AD cases (Table 1). The diagnosis of AD was performed neuropathologically with consideration of clinical information about the cognitive status. Control cases were defined by absence of amyloid plaques including cases with primary age-related tauopathy and occasionally CAA. Non-demented cases with AD pathology, comprising Aβ plaques and NFTs, were designated as p-preAD cases, whereas symptomatic AD cases were characterized by substantial AD pathology and impairment of cognition.

Following autopsy, brains were fixed in a 4% aqueous solution of formalin and tissue from both the medial temporal and occipital lobe was embedded in paraffin and cut into sections of 12 μm. Neuropathological diagnosis of AD was performed according to established guidelines of the “National Institute of Aging-Alzheimer’s Association” (NIA-AA AD degree) and included (1) the assessment of NFT distribution (Braak-NFT stage) on the basis of Gallyas’ silver impregnation and/or immunohistochemical staining of abnormal phosphorylated tau (AT8, 1:1000, Pierce Endogen; Rockford, USA), (2) the assignment of neuritic plaque density (Consortium to Establish a Registry for AD (CERAD) score) on the basis of Gallyas’ silver impregnation and/or immunohistochemical staining of abnormal phosphorylated tau (AT8, 1:1000, Pierce Endogen; Rockford, USA), and (3) the evaluation of amyloid plaque distribution in the medial temporal lobe (Aβ-MTL phase) on the basis of immunohistochemical staining for Aβ17-24 (4G8, 1:5000, Covance; Princeton, USA). Apolipoprotein E (APOE) genotypes were determined by restriction isotyping of unfixed brain tissue with HhaI.

The severity of CAA-related vessel wall destruction (CAA severity) was graded according to Vonsattel et al., and the stage of the anatomical expansion of CAA throughout the brain (CAA stage) was rated according to Thal et al. CAA with affection of capillaries was referred to as CAA type 1, and CAA without capillary Aβ deposits was designated as CAA type 2.

Medical examination of control, p-preAD, and AD cases was performed one to four weeks prior to death according to standardized protocols and included the...
Table 1. List of control, p-preAD, and AD cases used for analysis of CAA and plaques.

No	Age	Gender	Diagnosis	Diabetes mellitus	Hypertension	Alcohol abuse	CDR score	Aβ-MTL phase	Braak-NFT stage	CERAD score	NIA-AA AD degree	APOE genotype	B-Aβ plaque stage	B-CAA stage
1	60	M	Control	-	+	-	0	0	0	0	not AD	"2/3"	0	0
2	69	F	Control	-	-	-	0	0	1	0	not AD	"2/3"	0	0
3	66	M	Control	-	-	-	0	0	1	0	not AD	"2/3"	0	0
4	71	F	Control	+	-	-	0	0	0	0	not AD	"3/3"	0	0
5	58	F	Control	-	-	-	0	0	0	0	not AD	"3/3"	0	0
6	46	M	Control	-	-	-	0	0	0	0	not AD	"3/3"	0	0
7	45	M	Control	+			0	0	0	0	not AD	"3/3"	0	0
8	35	M	Control	-			0	0	0	0	not AD	"3/3"	0	0
9	59	M	Control	-	+		0	1	0	0	not AD	"3/3"	0	0
10	57	M	Control	-			0	1	0	0	not AD	"3/3"	0	0
11	74	M	Control	-			0	0	1	0	not AD	"3/3"	0	0
12	66	M	Control	-			0	0	0	0	not AD	"3/3"	0	0
13	61	M	Control	-			0	1	0	0	not AD	"3/3"	0	0
14	66	M	Control	+			0	1	0	0	not AD	"3/3"	0	0
15	60	M	Control	-			0	0	1	0	not AD	"3/3"	0	0
16	69	F	Control	-			0	0	0	0	not AD	"3/3"	0	0
17	66	F	Control	-			0	0	0	0	not AD	"3/3"	0	0
18	62	M	Control	-			0	0	0	0	not AD	"3/3"	0	0
19	72	F	Control	+			0	1	0	0	not AD	"3/3"	0	0
20	62	M	Control	-			0	0	0	0	not AD	"3/3"	0	0
21	72	F	p-preAD	+			0	1	0	0	low	"3/3"	0	0
22	71	M	p-preAD	+			0	3	2	1	low	"2/4"	3	3
23	68	F	p-preAD	-			0	2	2	0	low	"2/3"	3	3
24	73	F	p-preAD	-			0	1	2	0	low	"3/3"	2	0
25	77	F	p-preAD	-			0	3	2	0	low	"3/4"	3	0
26	78	F	p-preAD	-			0	3	2	0	low	"3/4"	3	3
27	71	F	p-preAD	-			0	3	2	0	low	"3/3"	3	3
28	78	F	p-preAD, SD	+			3	2	3	1	low	"3/3"	2	3
29	73	F	p-preAD	+			0	1	2	0	low	"2/3"	2	0
30	74	M	p-preAD	+			0	2	2	0	low	"3/3"	2	0
31	64	M	p-preAD, brain infarct	+			0	1	1	0	low	"3/3"	2	0
32	74	M	p-preAD	+			0	2	1	0	low	"3/3"	2	0
33	68	F	p-preAD	+			0	2	1	0	low	"3/3"	2	0
34	78	F	p-preAD, VD	-			3	1	1	0	low	"3/3"	2	0
35	73	M	p-preAD	+			0	2	1	0	low	"3/3"	2	0

(Continued)
Table 1. Continued.

No	Age	Gender	Diagnosis	Diabetes mellitus	Hypertension	Alcohol abuse	CDR score	Aβ-MTL phase	Braak-NFT stage	CERAD score	NIA-AA AD degree	APOE genotype	B-Ab plaque stage	B-CAA stage
36	67	F	p-preAD	+	-	-	0	2	2	0	low	"3/3"	2	0
37	82	F	p-preAD, microinfaet	-	+	-	0	3	3	1	intermediate	"3/4"	3	3
38	87	M	p-preAD	-	+	-	0	3	3	1	intermediate	"3/4"	3	3
39	84	F	p-preAD	-	+	-	0	3	2	0	low	"2/3"	3	0
40	84	F	p-preAD, brain infarction	-	-	-	0	3	2	0	low	"3/3"	3	3
41	88	M	p-preAD, AGD	-	+	-	2	3	2	1	low	"2/3"	3	2
42	83	F	p-preAD	+	-	-	0	3	3	1	intermediate	"2/3"	3	1
43	72	M	p-preAD	+	-	-	0	2	2	0	low	"3/3"	2	0
44	64	F	p-preAD	-	-	-	0	2	2	1	low	"3/3"	2	0
45	63	F	p-preAD	-	-	-	0	2	2	0	low	"3/3"	2	0
46	85	F	p-preAD	+	-	-	3	4	3	1	intermediate	"3/3"	2	0
47	83	M	p-preAD, brain infarction	+	+	-	0	2	2	0	low	"3/3"	2	0
48	79	F	AD	-	-	-	3	4	6	3	high	"3/4"	3	2
49	64	F	AD	-	+	-	4	6	3	3	high	"3/4"	3	3
50	62	F	AD	-	-	-	3	4	6	3	high	"3/4"	3	3
51	84	M	AD	-	-	-	3	4	6	3	high	"3/4"	3	2
52	72	F	AD	-	-	-	1	4	4	2	intermediate	"3/3"	2	0
53	83	M	AD	-	-	-	1	4	4	2	intermediate	"3/4"	3	3
54	78	M	AD	-	-	-	3	4	4	1	intermediate	"3/4"	3	2
55	75	F	AD	-	-	-	0.5	4	3	1	low	"4/4"	3	3
56	84	M	AD, AGD, ALS, VD	-	+	3	3	3	4	2	intermediate	"3/3"	3	3
57	68	F	AD	-	-	1	4	4	6	3	high	"3/3"	3	1
58	82	M	AD	+	+	-	2	3	3	2	intermediate	"3/4"	3	3
59	86	F	AD, AGD	-	-	-	3	4	6	3	high	"3/3"	3	3
60	83	M	AD	-	-	-	3	4	4	2	intermediate	"3/4"	3	3
61	78	F	AD	-	+	-	3	4	5	3	high	"3/4"	3	3
62	89	F	AD	+	-	-	2	4	4	3	intermediate	"3/4"	3	3
63	87	F	AD	+	-	-	3	4	4	1	intermediate	"3/3"	3	3
64	89	F	AD	+	-	-	3	4	5	2	high	"4/4"	3	3
65	81	F	AD	+	-	-	3	4	5	1	intermediate	"3/3"	3	2
66	83	M	AD	-	+	-	3	4	5	3	high	"4/4"	3	3
67	68	F	Control, pure CAA	-	+	-	0	2	0	2	not AD	"3/3"	0	3

(Continued)
assessment of (1) cognition (including short term and long term memory), (2) speech, writing, and reading, (3) self-dependence and self-care, (4) habit of eating, (5) bladder and bowel continence, and (6) orientation within the hospital setting. Clinical data were used to retrospectively assess clinical dementia rating scores (CDR scores) and for information about arterial hypertension, diabetes mellitus, and alcohol abuse. Cases with CDR scores ≥ 0.5 in conjunction with intermediate to high NIA-AA AD degrees were considered as symptomatic AD cases. Due to missing clinical data, CDR scores could not be obtained for 5 of 24 control, 2 of 27 p-preAD, and 2 of 20 AD cases (Table 1).

Immunohistochemistry

Following deparaffinization, hydration, and blocking, sections of the medial temporal and occipital lobe were incubated for 24 h at room temperature with anti-Aβ17-24 (4G8, 1:5000, Covance; Princeton, USA; formic acid pretreatment), anti-AβN3pE (1:100, IBL; Hamburg, Germany; formic acid/microwave pretreatment), or anti-AβpS8 (SA5434/1E4E11, 1:5; formic acid/microwave pretreatment) antibodies. The antibodies used in this study to detect phosphorylated or pyroglutaminated Aβ were raised specifically against synthetic Aβ peptides carrying the phosphorylation or pyroglutamate modification and recognize phosphorylated serine or pyroglutamate residues selectively in the context of the Aβ amino acid sequence. Primary antibodies were detected with biotinylated secondary antibodies and visualized with the ABC method (Vector Laboratories; Burlingame, USA) and 3,3′-diaminobenzidine (DAB; brown color) as chromogen. Sections were counterstained with hematoxylin. Positive and negative controls were performed.

Sensitivity and specificity of phosphorylation-state specific polyclonal (SA5434) and monoclonal (1E4E11) antibodies were examined by preabsorption with synthetic Aβ peptides followed by western immunoblotting and/or immunohistochemistry using brain tissue from transgenic mouse models and human AD cases. Additional staining with antibodies against Aβ1-17 (6E10; 1:1,250, Covance; Princeton, USA; formic acid pretreatment) was performed on selected sections as described previously.

Analysis of Aβ, AβN3pE, and AβPS8 deposition in CAA

Analysis of CAA was conducted in the medial temporal lobe of control, p-preAD, and AD cases stained for Aβ, AβN3pE, or AβPS8 (Table 1). Cases that exhibited Aβ deposits in leptomeningeal and/or parenchymal vessels were considered positive for CAA independent of the severity and extent of CAA pathology. Vascular Aβ deposition was
Figure 1. Stages of amyloid maturation in CAA. Detection of Aβ, AβN3pE, and AβpS8 in leptomeningeal (arrow) and parenchymal (open arrow) vessels of AD cases enabled the differentiation of three biochemical stages of amyloid deposition in the pathogenesis of CAA. B-CAA stage 1 (A–C) was characterized by initial deposition of Aβ in the vessel (A) in the absence of AβN3pE (B) and AβpS8 (C) deposition. B-CAA stage 2 (D–F), however, corresponded to the additional deposition of AβN3pE (E) whereas the vessels were still devoid of AβpS8 deposits (F, the intravascularly stained material in one vessel in F and F2 (no arrow) is related to insufficient peroxidase blocking in the erythrocytes and does not correspond to positivity for AβpS8 as demonstrated in I, I1, and I2). Co-deposition of Aβ (G), AβN3pE (H), and AβpS8 (I) in the vessel could be detected in B-CAA stage 3 (G–I). The figure displays representative images of the temporal cortex of AD cases stained with DAB for Aβ (A, D, G), AβN3pE (B, E, H), and AβpS8 (C, F, I). Scale bar: (A, B, C, D, E, F, G, H, I) 350 μm, (A1, A2, C1, C2, D2, E2, F2, G1, H1, I1) 70 μm, (B1, B2, D1, E1, F1, G2, H2, I2) 35 μm.
Table 2. Partial Spearman’s rank correlations (control for age/gender).

B-CAA stage	Correlation coefficient	P-value
CAA stage	0.910	<0.001
CAA severity	0.911	<0.001
Aβ plaque load	0.163 (0.007)*	<0.001
AβN3pE plaque load	0.216 (0.055)*	<0.001
AβPS8 plaque load	0.469 (-0.044)*	0.001
CERAD score	0.535*	<0.001
NIA-AA AD degree	0.403	0.001
Aβ-MTL phase	0.394	0.001
Braak-NFT stage	0.509	<0.001
CERAD score	0.599	<0.001
B-Aβ plaque stage	0.500	<0.001

Quantification of Aβ, AβN3pE, and AβPS8 plaque loads

Aβ, AβN3pE, and AβPS8 plaque loads were quantified in the temporal cortex (Brodmann area 36) of control, p-preAD, and AD cases (Table 1) stained with anti-Aβ17-24 (Aβ plaque load), anti-AβN3pE (AβN3pE plaque load), or anti-AβPS8 (AβPS8 plaque load) antibodies as previously published. ImageJ 1.46 (National Institutes of Health; Bethesda, USA) was used to delineate the temporal cortex and, similarly, to delineate the plaques at morphological identification. The area covered by the plaques was calculated and related to the area of the temporal cortex to assess the plaque load.

Statistical analysis

Statistical analysis was performed using SPSS Statistics 22 (IBM; Chicago, USA). Partial Spearman’s rank correlation (control for age/gender) was used to evaluate the association amongst CAA- and AD-related parameters. Multinomial logistic regression (control for age/gender) was applied to compare Aβ pathology groups for their association with CAA- and AD-related parameters, vascular risk factors, and alcohol abuse. Linear regression (control for age/gender) was used to determine the effect of B-CAA and B-Aβ plaque stages on NIA-AA AD degree, CDR score, vascular risk factors, and alcohol abuse.

B-Aβ plaque stages and amyloid plaque loads used for statistical analysis were obtained from a previous publication in which the present cases were analyzed for the biochemical composition of Aβ aggregates in plaques.

Results

Molecular differentiation of amyloid deposition in CAA

To analyze amyloid composition of CAA, brains of control (including cases with CAA in the absence of plaques), p-preAD, and AD cases were stained with antibodies determined independently for Aβ, AβN3pE, and AβPS8 for each case. Cases that did not exhibit vascular Aβ, AβN3pE, and AβPS8 deposition in the medial temporal lobe were additionally analyzed for CAA in the occipital lobe.

Table 3. Distribution of cases within different B-Aβ plaque and B-CAA stages.

B-CAA stage	Number
CAA stage 0	36
CAA stage 1	3
CAA stage 2	11
CAA stage 3	21

© 2018 The Authors. *Annals of Clinical and Translational Neurology* published by Wiley Periodicals, Inc on behalf of American Neurological Association.
Table 4. Multinomial logistic regression models (control for age/gender).

	Aβ pathology group 1 vs Aβ pathology group 2	Aβ pathology group 1 vs Aβ pathology group 3	Aβ pathology group 2 vs Aβ pathology group 3						
	P-value	odds ratio	95% confidence interval	P-value	odds ratio	95% confidence interval	P-value	odds ratio	95% confidence interval
CAA severity	0.583	0.520	0.050–5.376	0.016	0.606	0.006–0.597	0.001	0.031	0.004–0.240
CAA stage	0.535	0.543	0.079–3.734	0.014	0.072	0.009–0.588	0.002	0.133	0.037–0.481
CAA type 1	0.452	2.812	0.190–41.587	0.689	1.729	0.119–25.179	0.112	2.106	1.123–40.167
CAA type 2	0.249	4.385	0.355–54.137	0.040	12.106	1.123–130.467	0.162	2.761	0.665–11.452
APOE ε4 allele	0.998	2.678 x 10^-9	0.998 x 1.176 x 10^-8	0.021	0.228	0.064–0.804	0.160	2.898	0.657–12.788
Arterial hypertension	0.010	0.028	0.002–0.426	0.042	0.080	0.007–0.918	0.207	2.530	0.597–10.713
Diabetes mellitus	0.282	0.272	0.025–2.914	0.726	0.687	0.084–5.606	0.098	0.647	0.319–1.329
Alcohol abuse	1.000	1.398	-	1.000	1.172 x 10^-8	-	0.998	2.279 x 10^-8	-
Aβ-MTL phase	0.008	5.279	1.530–18.210	0.042	2.867	1.039–7.907	0.134	1.841	0.829–4.089
Braak-NFT stage	0.037	3.008	1.069–8.466	0.137	2.095	0.790–5.555	0.131	1.436	0.897–2.298
CERAD score	0.034	3.322	1.092–10.103	0.433	1.517	0.535–4.296	0.021	2.190	1.128–4.253
Aβ plaque load	0.048	1.328	1.002–1.759	0.124	1.222	0.947–1.577	0.303	1.087	0.928–1.273
AβN3pE plaque load	0.009	2.613	1.271–5.374	0.057	1.816	0.982–3.357	0.106	1.439	0.926–2.237
AβP38 plaque load	0.000	2.514 x 10^7	1.034 x 10^7–6.112 x 10^7	-	-	-	0.099	2.110	0.868–5.128
CDR score	0.000	3.733 x 10^10	2.096 x 10^10–6.650 x 10^10	0.997	6.324 x 10^-13	1.289	0.389	1.289	0.724–2.296

Aβ = amyloid β, APOE = apolipoprotein E, CAA = cerebral amyloid angiopathy, CDR = clinical dementia rating, CERAD = Consortium to Establish a Registry for Alzheimer’s disease, MTL = medial temporal lobe, NFT = neurofibrillary tangle; Aβ/AβN3pE/AβP38 plaque load, Aβ-MTL phase, Braak-NFT stage, CAA severity, CAA stage, CERAD score. Bold values represent statistically significant results.

against non-modified epitopes of Aβ (Aβ1-17, Aβ1-24, Aβ1-4), or the post-translationally modified species AβN3pE and AβP38. Deposition of Aβ, including AβN3pE and AβP38, was detected in arteries, veins, and/or capillaries of the leptomeninges and/or the parenchyma (Fig. 1). Of the 35 cases with CAA detected through anti-Aβ1-24 staining, 32 cases (91.4%) also showed vascular AβN3pE whereas vascular AβP38 was limited to 21 cases with CAA (60%). Thereby, AβP38 was exclusively detected in cases also exhibiting AβN3pE. Triple label immunofluorescence revealed that non-modified (6E10-positive) Aβ, AβN3pE, and AβP38 could colocalize in the same vessels (Fig. S1). Moreover, all cases in which CAA could be detected with antibodies against Aβ1-24 also showed a positive staining for Aβ1-17.

Our findings indicate the sequential deposition of distinct post-translationally modified Aβ species in CAA analogous to the biochemical stages of Aβ deposition in amyloid plaques (B-Aβ plaque stages), defining three biochemical (immunohistochemical) stages of CAA (B-CAA stages). B-CAA stage 1 was characterized by deposition of Aβ in the absence of AβN3pE and AβP38; B-CAA stage 2 was defined by the additional deposition of AβN3pE; and B-CAA stage 3 corresponded to the deposition of Aβ including AβN3pE and AβP38 (Fig. 1). In the combined cohort of control, p-preAD, and AD cases, three of 35 cases with CAA (8.6%) presented with B-CAA stage 1, whereas B-CAA stage 2 was prevalent in 11 of 35 cases with CAA (31.4%). Twenty one of 35 cases with CAA (60%) exhibited B-CAA stage 3 (Table 1).

The B-CAA stages highly correlated with the overall anatomical expansion of CAA as represented by the CAA stage and the severity of CAA-related vessel wall damage according to the Vonsattel grading (P < 0.001, Table 2).

Heterogeneous amyloid deposition in CAA and plaques

Analysis of Aβ deposition in CAA and plaques revealed heterogeneity between B-Aβ plaque and B-CAA stages. On the one hand, B-CAA stage 1 and 2 could be detected in cases with B-Aβ plaque stage 3. Two cases with B-Aβ plaque stage 3 even presented without CAA. On the other hand, cases with B-CAA stage 3 could exhibit initial stages of amyloid deposition in plaques (B-Aβ plaque stage 2) or no amyloid plaques at all (Table 1). The distribution of the distinct B-Aβ plaque stages within the different B-CAA stages of control, p-preAD, and AD cases indeed supported the heterogeneous deposition of modified Aβ in CAA and plaques (Table 3). Accordingly, analysis of control, p-preAD, and AD cases with Aβ pathology revealed no significant correlation between the B-CAA stages and the Aβ/AβN3pE plaque load (P ≥ 0.137, Table 2). However, the B-CAA stages weakly correlated with the AβP38 plaque load (P = 0.001, Table 2).
Figure 2. Neuropathologic associations of Aβ pathology groups. Relation of case groups for Aβ pathology to CAA stage (of CAA distribution) and CAA severity (A), to Aβ-MTL phases, Braak-NFT stages, and CERAD scores (B), and to Aβ, AβN3pE, and AβpS8 plaque loads (C).
Table 5. Prevalence of arterial hypertension within Aβ pathology groups.

Aβ pathology group	Arterial hypertension	No arterial hypertension
group 1	6 (85.7%)	1 (14.3%)
group 2	4 (23.5%)	13 (76.5%)
group 3	11 (40.7%)	16 (59.3%)

Absolute (number of cases in bold) and relative (percentage of cases in italics) frequency of (no) arterial hypertension within Aβ pathology groups. Of the 20 control cases without Aβ pathology that could not be assigned to either of the Aβ pathology groups, seven cases (35%) exhibited arterial hypertension, whilst arterial hypertension was not observed in 13 cases (65%).

Table 6. Linear regression models (control for age/gender).

Model	B-CAA stage coefficients	B-CAA stage P-value	B-Aβ plaque stage coefficients	B-Aβ plaque stage P-value
1	0.087	0.248	0.823	<0.001
2	0.401	0.005	-	
3	-0.105	0.319	-	
4	-0.133	0.213	-	
5	-0.068	0.522	-	
6	-0.169	0.064	-	
7	-0.205	0.022	-	
8	-0.053	0.569	-	

Aβ = amyloid β; AD = Alzheimer’s disease; CAA = cerebral amyloid angiopathy; CDR score = clinical dementia rating score; B-CAA stage = biochemical CAA stage; B-Aβ plaque stage = biochemical Aβ plaque stage; NIA-AA AD degree = National Institute on Aging-Alzheimer’s Association Alzheimer’s disease degree; model 1 - model 2: dependent variables: NIA-AA AD degree, CDR score; independent variables: B-CAA stage, B-Aβ plaque stage; confounding variables: age, gender; model 3 - model 8: dependent variables: B-CAA stage, B-Aβ plaque stage; independent variables: arterial hypertension, diabetes mellitus, alcohol abuse; confounding variables: age, gender; = variable is not included in the model. Values in bold represent statistically significant results.

dissociation of the B-CAA stages from the plaque load became particularly obvious when restricting the correlation analysis to cases with CAA pathology (≥ B-CAA stage 1) (P ≥ 0.761, Table 2).

Based on the distribution of the B-Aβ plaque and B-CAA stages, cases with Aβ pathology could be subclassified into three groups of Aβ aggregate maturation: group 1 corresponded to cases with biochemically more advanced maturation of CAA pathology (CAA-predominant group: B-CAA stage > B-Aβ plaque stage; this group included CAA cases without plaque pathology); group 2 comprised cases with equal biochemical maturation of Aβ aggregates in CAA and plaques (equal maturation group: B-CAA stage = B-Aβ plaque stage; this group contained only cases with end-stage Aβ pathology); and group 3 referred to cases with biochemically more advanced maturation of plaque pathology (plaque-predominant group: B-CAA stage < B-Aβ plaque stage; this group included 16 cases without CAA). Seven of 51 cases with Aβ pathology (13.7%) were assigned to group 1 whereas group 3 comprised 27 of 51 cases with Aβ pathology (53.0%). Notably, 17 of 51 cases (33.3%) exhibited equal maturation of Aβ in CAA and plaques, thus being classified into group 2 (Table 3).

Association of Aβ pathology groups with CAA- and AD-related pathology

Comparison of the CAA-predominant (group 1), plaque-predominant (group 3), and equally maturing (group 2) cases by multinomial logistic regression (controlled for age and gender) revealed no association with the CAA stage and severity when comparing groups 1 and 2 (P ≥ 0.535, Table 4). However, group 3 exhibited lower levels of CAA severity and expansion throughout the brain than the other two groups (P ≤ 0.016, Table 4; Fig. 2A).

Notably, cases with capillary CAA (CAA type 1) more likely belonged to group 2 than to group 3 compared to cases without capillary Aβ deposits (CAA type 2) or without CAA (P = 0.035, Table 4). No significant difference became obvious between groups 1 and 2, or groups 1 and 3 (P ≥ 0.452, Table 4). In contrast, the presence of CAA type 2 significantly increased the probability of a case for belonging to group 1 compared to group 3 (P = 0.040, Table 4) that could not be observed for group 2 (P ≥ 0.162, Table 4). The APOE ε4 allele frequency was higher in group 2 compared to group 3 (P = 0.021, Table 4). Furthermore, group 1 (P ≤ 0.042, Table 4), but not groups 2 and 3 (P = 0.160, Table 4), was associated with arterial hypertension. The differential prevalence of arterial hypertension within the Aβ pathology groups indeed supported the association with CAA-related Aβ maturation (Table 5). None of the groups showed an association with diabetes mellitus or alcohol abuse (P ≥ 0.207, Table 4).

Cases in groups 2 or 3 presented with higher Aβ-MTL phases compared to group 1 (P ≤ 0.042, Table 4). However, no significant difference was detected between groups 2 and 3 (P = 0.134, Table 4). Higher Braak-NFT stages were observed in group 2 (equal maturation) compared to group 1 with CAA-predominant Aβ pathology (P = 0.037, Table 4) whereas no significant difference became obvious between groups 1 and 3, or groups 2 and 3 (P ≥ 0.131, Table 4). Likewise, CERAD scores for neurtic plaque pathology were higher in group 2 than in groups 1 and 3 (plaque-predominant maturation) (P ≤ 0.034, Table 4). Groups 1 and 3 did not differ significantly (P = 0.433, Table 4; Fig. 2B).

Notably, cases of groups 1 and 2 showed significant differences in the Aβ, AβN42, and AβpS8 plaque load (P ≤ 0.048, Table 4). Comparison of group 3 with groups
Figure 3. Amyloid maturation within Aβ pathology groups. Schematic representation of the biochemical (immunohistochemical) stages of CAA- (B-CAA stage) and plaque- (B-Aβ plaque stage) related Aβ maturation (A) and their balance in distinct Aβ pathology groups (B).
1 or 2, however, revealed no association with the Aβ, Aβ_{N3pE} or Aβ_{PS8} plaque load (P ≥ 0.057, Fig. 2C).

Since six cases presented with vascular dementia (VD), corticobasal degeneration (CBD), Lewy body disease (LBD), and/or argyrophilic grain disease (AGD) additional to AD pathology that might contribute to cognitive decline, multinominal logistic regression of CDR scores was restricted to cases with “pure” CAA and/or AD pathology, thereby preventing the distortion of statistics through the contribution of these co-morbidities to dementia. Notably, group 2 exhibited higher CDR scores compared to group 1 (P < 0.001, Table 4). No significant difference was detected between groups 1 and 3, or groups 2 and 3 (P ≥ 0.389, Table 4).

Association of B-CAA stages with AD-related pathology, risk factors, and clinical progression

CAA was prevalent in 4 of 24 control cases (16.7%), 11 of 27 p-preAD cases (40.7%), and 20 of 20 AD cases (100%). All B-CAA stages could be detected in p-preAD and AD cases, whereby two of 11 p-preAD cases with CAA (18.2%) and one of 20 AD cases with CAA (5%) exhibited B-CAA stage 1. B-CAA stage 2 was prevalent in one of 11 p-preAD (9.1%) and seven of 20 AD (35%) cases with CAA. B-CAA stage 3, however, became obvious in eight of 11 p-preAD cases with CAA (72.7%) but only in 12 of 20 AD cases with CAA (60%). In this context, it is important to re-note that 16 of 27 p-preAD cases (59.3%) did not exhibit CAA. Three of four control cases with CAA (75%) exhibited B-CAA stage 2, whereas B-CAA stage 3 was prevalent in one of four control cases with CAA (25%) (Table 1).

Partial Spearman’s rank correlation (controlled for age and gender) revealed a moderate correlation between the B-CAA stages and (1) the progression of AD pathogenesis (control, p-preAD, AD) or (2) the degree of dementia, provided by the CDR score (P < 0.001, Table 2). Correlation of the B-CAA stages with the CDR score was restricted to cases without VD, CBD, LBD, and/or AGD to avoid bias caused by these co-morbidities. Furthermore, the anatomical expansion of amyloid plaques (Aβ_{-MTL} phases) as well as the B-ABA plaque stages, Braak-NFT stages, CERAD scores, and NIA-AA AD degrees showed a weak to moderate correlation with the B-CAA stages (P ≤ 0.001, Table 2). Interestingly, the B-CAA stages also correlated with the APOE ε4 allele frequency similar to the CAA severity, the B-Aβ plaque stages, and the Aβ_{-MTL} phases (P ≤ 0.003, Table 2). Linear regression (controlled for age and gender) furthermore revealed a negative association of arterial hypertension with the B-Aβ plaque stages (P = 0.022, Table 6) but not with the B-CAA stages (P = 0.319, Table 6). Diabetes mellitus and alcohol abuse did not affect the B-CAA or B-Aβ plaque stages (P ≥ 0.064, Table 6).

To clarify the impact of plaque- and CAA-related Aβ maturation on the development of AD according to the NIA-AA AD criteria and the degree of dementia as described by the CDR score, we calculated two linear regression models (controlled for age and gender) including both B-CAA and B-Aβ plaque stages. Plaque maturation (B-Aβ plaque stages; P < 0.001, Table 6) but not CAA maturation (B-CAA stages; P = 0.248, Table 6) correlated with the progression of AD (NIA-AA AD degree). Accordingly, all symptomatic AD cases exhibited B-ABA plaque stage 3 but only 60% of symptomatic AD cases presented with B-CAA stage 3. Additional linear regression (restricted to cases without VD, CBD, LBD, and/or AGD) indicated that CAA maturation significantly contributed to the degree of cognitive decline (CDR score) (P = 0.005, Table 6). As expected from the finding that all cases with symptomatic AD exhibited B-ABA plaque stage 3, no additional impact of plaque-related Aβ maturation on cognitive decline was detected (P = 0.173, Table 6).

Discussion

Biochemical stages of CAA-related Aβ maturation (B-CAA stages)

The combined detection of different Aβ variants revealed a hierarchical sequence of Aβ deposition in CAA that could be differentiated into three distinct stages (Fig. 3A): B-CAA stage 1 corresponded to the deposition of Aβ₅₃ modified by pyroglutamation and/or phosphorylation; B-CAA stage 2 was characterized by the additional deposition of Aβ_{N3pE} and B-CAA stage 3, finally, included Aβ_{PS8}. This sequential deposition of Aβ in CAA corresponds to the previously observed hierarchical sequence for the deposition of modified Aβ in plaques, suggesting that vascular and parenchymal Aβ deposition represent two aspects of a common biochemical process of Aβ maturation. A common sequence of Aβ deposition in CAA and plaques is indeed supported by the correlation of the B-CAA stages with the B-Aβ plaque stages (P ≤ 0.001, Table 2). Interestingly, the B-CAA stages also correlated with the APOE ε4 allele frequency similar to the CAA severity, the B-Aβ plaque stages, and the Aβ_{-MTL} phases (P ≤ 0.003, Table 2). Linear regression (controlled for age and gender) furthermore revealed a negative association of arterial hypertension with the B-Aβ plaque stages (P = 0.022, Table 6) but not with the B-CAA stages (P = 0.319, Table 6). Diabetes mellitus and alcohol abuse did not affect the B-CAA or B-Aβ plaque stages (P ≥ 0.064, Table 6).
vessels. However, despite the common sequence of Aβ deposition in CAA and plaques, the segregation of CAA and plaque pathology became particularly obvious through the case-by-case analysis of B-CAA and B-Aβ plaque stages and the absent correlation of the B-CAA stages with amyloid plaque load.

Cross-sectional autopsy studies cannot prove the sequential deposition of Aβ and its modified forms. However, the following arguments strongly support a sequential process: (1) none of the cases showed deposition of AβpS8 in the absence of AβN3pE, (2) the B-CAA stages correlate with the sequential expansion of plaques throughout the MTL, which correlates with increased amyloid PET-tracer retention, and (3) the sequential occurrence of Aβ and its modified forms in line with the B-Aβ plaque stages within the human brain has been confirmed in a mouse model for AD. Thus, there is at least indirect evidence that the B-CAA stages indeed represent a sequential process of Aβ, AβN3pE, and AβpS8 deposition.

Case groups for plaque- and CAA-related Aβ maturation (Aβ pathology groups)

Despite the correlation of the B-CAA stages with the B-Aβ plaque stages and the Aβ-MTL phases, significant variations between the B-CAA and B-Aβ plaque stages existed within individual cases. The specific composition of vascular and parenchymal Aβ deposits indicated three distinct case groups for Aβ pathology (Fig. 3B, Table 3): group 1 was defined by predominant Aβ maturation in CAA (B-CAA stage > B-Aβ plaque stage); group 2 included cases with equal Aβ maturation in CAA and plaques (B-CAA stage = B-Aβ plaque stage); and group 3 was characterized by predominant Aβ maturation in plaques (B-CAA stage < B-Aβ plaque stage), including cases without CAA. Interestingly, these case groups showed additional neuropathological associations. Cases with CAA-predominant pathology showed less advanced Aβ-MTL phases for the anatomical expansion of plaque pathology, whereas cases with plaque-predominant pathology exhibited less widespread and severe CAA. Previous neuropathological studies revealed that CAA cases could differ in their relation between CAA severity and AD-related plaque pathology. Thus, our finding of differences in the balance of Aβ maturation between CAA and plaques might provide an explanation at the molecular level for the well-known variation in CAA in relation to plaque pathology.

The association of the CAA-predominant pathology group with arterial hypertension furthermore indicates that this condition could affect the leading site of Aβ maturation and, thereby, might act as additional risk factor for Aβ seeding and maturation. This is indeed supported by the development of CAA in a rat model for hypertension. Thus, arterial hypertension should be taken into account for therapeutic intervention because it might modify the pathological picture of AD to the CAA-predominant pattern.

The length of Aβ could also play an important role in the balance between vascular and parenchymal Aβ deposition. Aβ40 predominantly occurs within vascular Aβ deposits whereas Aβ42 predominates in plaques. Likewise, mouse models producing mainly Aβ40 develop a CAA-predominant Aβ pathology and mice exhibiting augmented amounts of Aβ42 show negligible CAA pathology but abundant plaques. The identification of B-CAA stages with the same Aβ maturation sequence as plaques suggests that post-translational modifications could occur in both Aβ40- and Aβ42-predominant aggregates in blood vessels and parenchymal plaques. However, since vascular deposits in the human brain contain both Aβ40 and Aβ42 even in early stages of pathogenesis, it might require transgenic animal models to specifically address the question whether the ratio of Aβ40 and Aβ42 influences the site of Aβ aggregate maturation.

Furthermore, the site of leading Aβ maturation might attract further proteins to accumulate. This interpretation corresponds to the finding that seeds of Aβ aggregates could induce further Aβ deposition and argues in favor of the view that the presence of local seeds determines the aggregation pattern. However, it will be important to investigate whether the apparent maturation of Aβ in individual deposits results from addition of modified species to existing Aβ aggregates or whether already aggregated Aβ within deposits undergoes post-translational modification. Previously, we demonstrated AβN3pE and AβpS8 within non-detergent extracts of human and APP transgenic mouse brains, indicative for the presence of these Aβ variants in monomeric or soluble oligomeric form. Whether already aggregated and deposited Aβ is amenable to pyroglutamitination and/or phosphorylation is not known. Own preliminary studies suggest that Aβ aggregates can be phosphorylated at serine 8 in vitro but further work would be required to proof that this could occur in vivo. It has also been shown that plaques and CAA in human and transgenic mouse brains contain N-terminally truncated Aβ species that would also be detected by the antibody used in this study. Since the cerebrovascular deposits were detected with antibodies raised against Aβ17-24 and Aβ1-17, it is quite likely that these deposits contain truncated Aβ. Only some early plaque types, such as fleecy amyloid, appeared to contain N-terminal truncated Aβ with a non-identified N-terminus as reported previously. The simultaneous presence of truncated forms of Aβ other than AβN3pE and AβpS8 in B-CAA stage 1 cerebrovascular Aβ deposits, however, could not
be excluded. Additional to the aggregation-promoting effect, phosphorylation, and pyroglutamination also affect the proteolytic degradation of \(\alpha \beta \) monomers and the stability of \(\alpha \beta \) aggregates.13,56–58 Thus, pyroglutamation could potentially favor further phosphorylation and, thereby, increase the stability of \(\alpha \beta \) aggregates, and exaggerate \(\alpha \beta \) aggregation.

Contribution of CAA-related \(\alpha \beta \) maturation to cognitive decline

The B-CAA stages significantly correlated with the CDR score representing cognitive decline. However, only cases with equal maturation of \(\alpha \beta \) in CAA and plaques showed an association with cognitive decline, suggesting that \(\alpha \beta \) maturation in CAA represents only one of numerous factors that contribute to dementia. The mere presence of end-stage CAA maturation (that was observed both in CAA-predominant and equal maturation cases) seems to be insufficient to determine the development of dementia on its own. Rather end-stage plaque maturation has to be present. Accordingly, all symptomatic AD cases presented with end-stage plaque maturation. In contrast, only 60% of symptomatic AD cases exhibited full CAA maturation, supporting the importance of plaque maturation for the development of dementia. However, a multiple linear regression model revealed only the selective impact of CAA maturation on the CDR score, indicating that the impact of plaques on the development of dementia might only partially be ascribed to \(\alpha \beta \) maturation but that instead the high level of other AD neuropathologic changes that correlate with end-stage plaque maturation, such as NFT pathology,59 might contribute to the course of dementia in AD.

Molecular characterization of amyloid pathology, based on the composition of CAA and plaques, might not only help to identify pathological subgroups of \(\beta \)-amyloidosis but also to understand the effect of therapeutic interventions. \(\alpha \beta \) immunization, for example, could reduce the amyloid load within plaques but simultaneously exacerbate CAA pathology and CAA-related hemorrhages.60,61 The association of CAA-predominant \(\alpha \beta \) maturation with arterial hypertension argues for a higher risk for therapy-related bleedings in these patients as both CAA and arterial hypertension represent risk factors for intracerebral hemorrhages.62, 63

Acknowledgment

All authors thank Irina Kosterin, Christine Schneider, Kathrin Pruy, Alice Yates, Daniela Demharter, and Sandra Theil for technical help. We are also grateful to Drs. Stephan Schilling and Inge Lues (Probiodrug AG) for providing antibodies against A\(\beta \)\textsubscript{N3pE5} and for critically reading the manuscript. The work was supported by the “Deutsche Forschungsgemeinschaft” (WA1477/6 (JW), TH624/6-1 (DRT)), “Alzheimer Forschung Initiative” (grant #13803, #10810 (DRT); #12854 (SK)), “KU Leuven starting grant” (DRT), “Fonds Wetenschappelijk Onderzoek Vlaanderen” (FWO-G0F516N Odysseus (DRT)), and “Vlaamse Impulsfinanciering voor Netwerken voor Dementie-Onderzoek” (IWT 135043 (DRT)).

Author Contribution

Conception and design of study: JW, DRT, JG; acquisition and analysis of data: (i) neuropathology: DRT, (ii) production and characterization of non-commercial antibodies: SK, JG, JW, (iii) immunohistochemistry: JG, DRT, ARU, SK, JW, (iv) APOE genotyping: EG, JG, (v) clinical assessment: CAFVA, (vi) statistical analysis: JG, DRT; draft of figures and manuscript: JG, DRT, JW.

Conflicts of Interest

DRT received consultancies from Covance Laboratories (UK) and GE-Healthcare (UK), a speaker honorarium from GE-Healthcare (UK), and collaborated with Novartis Pharma Basel (Switzerland), Probiodrug (Germany) and Janssen Pharmaceutical Companies (Belgium). CAFVA received honoraria from serving on the scientific advisory board of Nutricia GmbH and Hongkong University Research council, received funding for travel and speaker honoraria from Nutricia GmbH, Novartis Pharma GmbH, Lilly Deutschland GmbH, Desitin Arzneimittel GmbH, Biogen, and Dr. Willmar Schwabe GmbH & Co. KG, and collaborated with Roche Diagnostics GmbH, Biologische Heilmittel Heel GmbH, and ViaMed GmbH. All other authors declare no conflicts of interest with the content of the publication.

References

1. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012;8:1–13.
2. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001;81:741–766.
3. Attems J, Jellinger K, Thal DR, Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2011;37:75–93.
4. Wisniewski H, Johnson AB, Raine CS, et al. Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study. Lab Invest 1970;23:287–296.
5. Love S, Miners S, Palmer J, et al. Insights into the pathogenesis and pathogenicity of cerebral amyloid
angiopathy. Front Biosci (Landmark Ed) 2009;14:4778–4792.
6. Kovari E, Herrmann FR, Hof PR, Bouras C. The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 2013;39:498–509.
7. Thal DR, Griffin WST, De Vos RAI, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 2008;115:599–609.
8. Thal DR, Rüb U, Orantes M, Braak H. Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58:1791–1800.
9. Rijal Upadhaya A, Kosterin I, Kumar S, et al. Biochemical stages of amyloid β-peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically-preclinical Alzheimer’s disease. Brain 2014;137:887–903.
10. Jawhar S, Wirths O, Bayer TA. Pyroglutamate amyloid-beta (Abeta): a hatchet man in Alzheimer disease. J Biol Chem 2011;286:38823–38832.
11. Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. Alzheimers Res Ther 2014;6:28.
12. Kumar S, Rezaei-Ghaleh N, Terwel D, et al. Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 2011;30:2255–2265.
13. Kumar S, Singh S, Hinze D, et al. Phosphorylation of amyloid-beta peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J Biol Chem 2012;287:8641–8651.
14. Russo C, Violani E, Salis S, et al. Pyroglutamate-modified amyloid-beta-peptides–AbetaN3(pE)—strongly affect cultured neuron and astrocyte survival. J Neurochem 2002;82:1480–1489.
15. Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S. Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 1996;215:173–176.
16. Schlenzig D, Manhart S, Cinar Y, et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 2009;48:7072–7078.
17. Ashby EL, Miners JS, Kumar S, et al. Investigation of abeta phosphorylated at serine 8 (pAbeta) in Alzheimer’s disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol 2015;41:428–444.
18. Frost JL, Le KX, Cynis H, et al. Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol 2013;183:369–381.
19. Iwatsubo T, Saido TC, Mann DM, et al. Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 1996;149:1823–1830.
20. Saido TC, Iwatsubo T, Mann DM, et al. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 1995;14:457–466.
21. Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014;128:755–766.
22. The National Institute on Aging. Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on aging, and reagan institute working group on diagnostic criteria for the neuropathological assessment of alzheimer’s disease. Neurobiol Aging 1997;18:S1–S2.
23. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991;82:239–259.
24. Braak H, Braak E. Demonstration of amyloid deposits and neuro fibrillary changes in whole brain sections. Brain Pathol 1991;1:213–216.
25. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006;112:389–404.
26. Mirra SS, Heyman A, McKeel D, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991;41:479–486.
27. Thal DR, Rüb U, Schultz C, et al. Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 2000;59:733–748.
28. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lipid Res 1990;31:545–556.
29. Vonsattel JP, Myers RH, Hedley-Whyte ET, et al. Cerebral amyloid angiopathy without and with cerebral hemmorhages: a comparative histological study. Ann Neurol 1991;30:637–649.
30. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. Vascular pathology in Alzheimer’s disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/ lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 2003;62:1287–1301.
31. Thal DR, Ghebremedhin E, Rüb U, et al. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002;61:282–293.
32. Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982;140:566–572.
33. Kumar S, Wirths O, Theil S, et al. Early intraneuronal accumulation and increased aggregation of phosphorylated
Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol 2013;125:699–709.
34. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 1999;96:14088–14093.
35. Weller RO, Subash M, Preston SD, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 2008;18:253–266.
36. Curtis C, Gamez JE, Singh U, et al. Phase 3 Trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 2015;72:287–294.
37. Thal DR, Beach TG, Zanette M, et al. [18F]flutemetamol amyloid PET in preclinical and symptomatic Alzheimer’s disease: specific detection of advanced phases of Aβ pathology. Alzheimers Dement 2015;11:975–985.
38. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol 2012;11:669–678.
39. Balakrishnan K, Rijal Upadhaya A, Steinmetz J, et al. Impact of amyloid beta aggregate maturation on antibody treatment in APP23 mice. Acta Neuropathol Commun 2015;3:41.
40. Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983;14:924–928.
41. Jellinger KA, Attems J. Prevalence and impact of cerebrovascular pathology in Alzheimer’s disease and parkinsonism. Acta Neurol Scand 2006;114:38–46.
42. Olichney JM, Hansen LA, Hofstetter CR, et al. Association between severe cerebral amyloid angiopathy and cerebrovascular lesions in Alzheimer disease is not a spurious one attributable to apolipoprotein E4. Arch Neurol 2000;57:869–874.
43. Held F, Morris AWJ, Pirici D, et al. Vascular basement membrane alterations and beta-amyloid accumulations in an animal model of cerebral small vessel disease. Clin Sci (Lond) 2017;131:1001–1013.
44. Roher AE, Lowenson JD, Clarke S, et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A 1993;90:10836–10840.
45. Herzig MC, Winkler DT, Burgermeister P, et al. Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 2004;7:954–960.
46. Kane MD, Lipinski WJ, Callahan MJ, et al. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci 2000;20:3606–3611.
47. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006;313:1781–1784.
48. Xu F, Fu Z, Dass S, et al. Cerebral vascular amyloid seeds drive amyloid beta-protein fibril assembly with a distinct anti-parallel structure. Nat Commun 2016;7:13527.
49. Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985;82:4245–4249.
50. Antonios G, Saiepour N, Bouter Y, et al. N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun 2013;1:56.
51. Guntert A, Dobeli H, Bohrmann B. High sensitivity analysis of amyloid-beta peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 2006;143:461–475.
52. Harigaya Y, Saido TC, Eckman CB, et al. Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 2000;276:422–427.
53. Tekirian TL, Saido TC, Markesbery WR, et al. N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J Neuropathol Exp Neuro 1998;57:76–94.
54. Thal DR, Capetillo-Zarate E, Schultz G, et al. Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta)-deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. Acta Neuropathol 2005;110:459–471.
55. Thal DR, Sassin I, Schultz C, et al. Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neuro 1999;58:210–216.
56. Rezaei-Ghaleh N, Amininasab M, Kumar S, et al. Phosphorylation modifies the molecular stability of beta-amyloid deposits. Nat Commun 2016;7:11359.
57. Wulff M, Baumann M, Thummler A, et al. Enhanced fibril fragmentation of N-terminally truncated and pyroglutamyl-modified abeta peptides. Angew Chem Int Ed Engl 2016;55:5081–5084.
58. Kumar S, Wirths O, Stüber K, et al. Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol 2016;131:525–537.
59. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992;42:631–639.
60. Racke MM, Boone LI, Hepburn DL, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 2005;25:629–636.

61. Boche D, Nicoll JA. The role of the immune system in clearance of abeta from the brain. Brain Pathol 2008;18:267–278.

62. Jellinger K. Cerebrovascular amyloidosis with cerebral hemorrhage. J Neurol 1977;214:195–206.

63. Yamori Y, Horiie R, Handa H, et al. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 1976;7:46–53.

64. Morris JC, Heyman A, Mohs RC, et al. The consortium to establish a registry for Alzheimer's Disease (CERAD). Part I. clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989;39:1159–1165.

65. Montine TJ, Phelps CH, Beach TG, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012;123:1–11.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1: Vascular colocalization of modified Aβ.