\[L_f^2 \]-harmonic 1-forms on smooth metric measure spaces with positive \(\lambda_1(\Delta_f) \)

JIURU ZHOU

Abstract. In this paper, we study vanishing and splitting results on a complete smooth metric measure space \((M^n, g, e^{-f} dv)\) with various negative \(m\)-Bakry-Émery Ricci curvature lower bounds in terms of the first eigenvalue \(\lambda_1(\Delta_f)\) of the weighted Laplacian \(\Delta_f\), i.e., \(\text{Ric}_{m,n} \geq -a\lambda_1(\Delta_f) - b\) for \(0 < a \leq \frac{m}{m-1}, b \geq 0\). In particular, we consider three main cases for different \(a\) and \(b\) with or without conditions on \(\lambda_1(\Delta_f)\). These results are extensions of Dung and Vieira, and weighted generalizations of Li-Wang, Dung-Sung, and Vieira.

Mathematics Subject Classification. 53C21, 53C20.

Keywords. \(L_f^2\) Harmonic forms, First eigenvalue of weighted Laplacian, Smooth metric measure spaces.

1. Introduction. One of the central problems in differential geometry is the relation between the geometry and topology of a manifold. The study of \(L^2\)-harmonic forms is such kind of problem, see, for example, [1, 2, 11] etc. and references therein. Let \(M\) be a complete Riemannian manifold and \(\lambda_1(M)\) be the first eigenvalue of the Laplacian on \(M\), which can be characterized by

\[\lambda_1(M) = \inf_{\psi \in C_0^\infty(M)} \frac{\int_M |\nabla \psi|^2 \, dv}{\int_M \psi^2 \, dv}. \]

In the work of Li and Wang [8], they proved the following vanishing theorem for \(L^2\)-harmonic 1-forms on manifolds whose Ricci curvature is bounded below by a negative multiple of the first eigenvalue.

Theorem 1.1 ([8, Theorem 4.2]). Let \(M\) be an \(n\)-dimensional complete Riemannian manifold with \(\lambda_1(M) > 0\) and

\[\text{Ric}_M \geq -\frac{n}{n-1} \lambda_1(M) + \delta \]
for some \(\delta > 0 \). Then \(\mathcal{H}^1(L^2(M)) = 0 \), where \(\mathcal{H}^1(L^2(M)) \) denotes the space of \(L^2 \) integrable harmonic 1-forms on \(M \).

After that, Lam [7] generalized Li-Wang’s theorem to manifolds with a weighted Poincaré inequality.

Later, Dung [3] asked: what is the geometric structure of \(M \) if \(\delta = 0 \)? Dung and Sung [5] get the following theorem.

Theorem 1.2 ([5, Theorem 2.2]). Let \(M \) be a complete Riemannian manifold of dimension \(n \geq 3 \). Suppose that \(\lambda_1(M) > 0 \) and

\[
\text{Ric}_M \geq -\frac{n}{n-1} \lambda_1(M).
\]

Then either

1. \(\mathcal{H}^1(L^2(M)) = 0 \); or
2. \(\tilde{M} = \mathbb{R} \times N \), where \(\tilde{M} \) is the universal cover of \(M \) and \(N \) is a manifold of dimension \(n - 1 \).

More generally, Dung [3] considered the smooth metric measure space \((M, g, e^{-f} dv) \), which is a smooth Riemannian manifold \((M, g) \) together with a smooth function \(f \) and a measure \(e^{-f} dv \). For any constant \(m \geq n = \dim M \), we have the \(m \)-dimensional Bakry-Émery Ricci curvature

\[
\text{Ric}_{m,n} = \text{Ric} + \nabla^2 f - \frac{\nabla f \otimes \nabla f}{m - n},
\]

which is just the Ricci tensor if \(m = n \), and usually we denote by \(\text{Ric}_f = \text{Ric} + \nabla^2 f \) the \(\infty \)-dimensional Bakry-Émery Ricci curvature. Hence, in the following, we are actually dealing with \(m > n \).

Denote by \(\lambda_1(\Delta_f) \) the first eigenvalue of the \(f \)-Laplacian on \(M \), which can be similarly characterized by

\[
\lambda_1(\Delta_f) = \inf_{\psi \in C_0^\infty(M)} \frac{\int_M |\nabla \psi|^2 \cdot e^{-f} dv}{\int_M \psi^2 \cdot e^{-f} dv}.
\]

Then Dung [3] proved the following result which is concerned with vanishing for the space of \(L^2_f \)-harmonic functions and the splitting of \(M \).

Theorem 1.3 ([3, Theorem 1.3]) Let \((M, g, e^{-f} dv) \) be a complete non-compact smooth metric measure space of dimension \(n \geq 3 \) with positive eigenvalue \(\lambda_1(\Delta_f) > 0 \). Assume that

\[
\text{Ric}_{m,n} \geq -\frac{m}{m-1} \lambda_1(\Delta_f).
\]

Then either

1. \(\mathcal{H}(L^2_f(M)) = \mathbb{R} \), where \(\mathcal{H}(L^2_f(M)) \) is the space of \(f \)-harmonic functions with finite \(f \)-energy; or
2. \(M = \mathbb{R} \times N \) with the warped product metric

\[
ds_M^2 = dt^2 + \eta^2(t) ds_N^2,
\]

where \(\eta(t) \) is a positive function and \(N \) is an \((n - 1)\)-dimensional manifold.
For the space of L^2_f-harmonic 1-forms, Vieira proved in the following [12].

Theorem 1.4 ([12, Theorem 1.1]). Let $(M, g, e^{-f} dv)$ be a complete non-compact smooth metric measure space with non-negative ∞-Bakry-Émery Ricci curvature. If the space of L^2_f-harmonic 1-forms is non-trivial, then the weighted volume of M^n is finite, that is,

$$\text{vol}_f(M^n) = \int_{M^n} e^{-f} dv < \infty,$$

and the universal covering splits isometrically as $\tilde{M}^n = \mathbb{R} \times N^{n-1}$.

As a corollary, Vieira obtained ([12, Corollary 1.2]) that with the same curvature assumption, if the first eigenvalue of the f-Laplacian is positive, then the space of L^2_f-harmonic 1-forms is trivial.

Inspired by Li-Wang, Vieira, Dung, and Dung-Sung’s work, in this paper, we extend Vieira’s Theorem 1.4 by relaxing the curvature condition to be $\text{Ric}_{m,n} \geq -a\lambda_1(\Delta_f)$, and generalize Dung-Sung’s Theorem 1.2 to complete non-compact smooth metric measure spaces, which can also be considered as an extension of Dung’s Theorem 1.3. More precisely, we get the following results.

Theorem 1.5 (Theorem 3.1 in this paper). Let $(M, g, e^{-f} dv)$ be a complete non-compact smooth metric measure space of dimension $n \geq 3$ with m-Bakry-Émery Ricci curvature satisfying

$$\text{Ric}_{m,n} \geq -a\lambda_1(\Delta_f),$$

where $0 < a < \frac{m}{m-1}$. If the space of L^2_f-harmonic 1-forms is non-trivial, then the weighted volume of M is finite, $\lambda_1(\Delta_f) = 0$, and the universal covering splits isometrically as $\tilde{M}^n = \mathbb{R} \times N^{n-1}$.

A corollary is that, under the same curvature assumption, if $\lambda_1(\Delta_f) > 0$, then $H^1(L^2_f(M)) = \{0\}$.

Theorem 1.6 (Theorem 3.3 in this paper). Let $(M, g, e^{-f} dv)$ be a complete non-compact smooth metric measure space of dimension $n \geq 3$ with positive first eigenvalue $\lambda_1(\Delta_f)$. Assume that the m-Bakry-Émery Ricci curvature satisfies

$$\text{Ric}_{m,n} \geq -\frac{m}{m-1}\lambda_1(\Delta_f).$$

Then either

(1) $H^1(L^2_f(M)) = 0$; or

(2) $\tilde{M} = \mathbb{R} \times N$, where \tilde{M} is the universal cover of M and N is a manifold of dimension $n-1$.

Finally, if $\lambda_1(\Delta_f)$ has some positive lower bound, then the conditions on $\text{Ric}_{m,n}$ can be further relaxed (Theorem 3.5), which is in the spirit of [13, Theorem 6 and 7].
2. Preliminaries. For a smooth metric measure space \((M, g, e^{-f}dv)\), analogously to \(L^2\)-differential forms, a differential form \(\omega\) is called an \(L^2_f\)-differential form if

\[
\int_M |\omega|^2 e^{-f}dv < \infty.
\]

By [1], the formal adjoint of the exterior derivative \(d\) with respect to the \(L^2_f\)-inner product is

\[
\delta_f = \delta + i \nabla f.
\]

Then the \(f\)-Hodge Laplacian operator is defined as

\[
\Delta f = -(d\delta_f + \delta_f d).
\]

Since the first eigenvalue of the weighted Laplacian \(\Delta_f\) is given by

\[
\lambda_1(\Delta_f) = \inf_{\psi \in C_0^\infty(M)} \frac{\int_M |\nabla \psi|^2 \cdot e^{-f}dv}{\int_M \psi^2 \cdot e^{-f}dv},
\]

by the variational principle, we have the following Poincaré type inequality

\[
\lambda_1(\Delta_f) \int_M \psi^2 \cdot e^{-f}dv \leq \int_M |\nabla \psi|^2 \cdot e^{-f}dv \quad \text{for} \quad \psi \in C_0^\infty(M).
\]

Next, we establish and recall some lemmas to be used later. By a smart application of the elementary inequality

\[
(a + b)^2 \geq \frac{a^2}{1 + \alpha} - \frac{b^2}{\alpha}, \quad \forall \alpha > 0,
\]

(2.1)

Li obtained a Bochner type inequality for \(f\)-harmonic functions, which is [10, Lemma 2.1]. Here we adopt Li’s idea [10] to get the following Bochner type inequality for \(L^2_f\)-harmonic 1-forms, which will play a key role in this paper.

Lemma 2.1. Let \(\omega\) be an \(L^2_f\)-harmonic 1-form on an \(n\)-dimensional complete smooth metric measure space \((M, g, e^{-f}dv)\) and \(m \geq n\) be any constant. Then

\[
|\omega| \Delta_f |\omega| \geq \frac{|\nabla |\omega||^2}{m - 1} + \text{Ric}_{m,n}(\omega, \omega).
\]

(2.2)

Equality holds iff

\[
(\omega_{i,j}) = \begin{pmatrix}
-(m - 1)\mu & 0 & 0 & \ldots & 0 \\
0 & \mu & 0 & \ldots & 0 \\
0 & 0 & \mu & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \mu
\end{pmatrix},
\]

where \(\mu = \frac{\langle \nabla f, \omega \rangle}{n - m}\).
Proof. By the weighted Bochner formula [11, Equation 2.10] and [12, Lemma 3.1])
\[
\frac{1}{2} \Delta f |\omega|^2 = |\nabla \omega|^2 + \Delta_f \omega \cdot \omega + \text{Ric}_f(\omega, \omega),
\]
we have
\[
\frac{1}{2} \Delta f |\omega|^2
\leq |\nabla \omega|^2 + \langle \Delta_f \omega, \omega \rangle + \text{Ric}_{m,n}(\omega, \omega) + \frac{\nabla f \otimes \nabla f}{m - n}(\omega, \omega). \tag{2.3}
\]
It also holds that
\[
\frac{1}{2} \Delta f |\omega|^2 = |\omega| \Delta_f |\omega| + |\nabla| |\omega|^2.
\]
Hence, if \(\Delta_f \omega = 0 \), we have
\[
|\omega| \Delta_f |\omega| = |\nabla \omega|^2 - |\nabla| |\omega|^2 + \text{Ric}_{m,n}(\omega, \omega) + \frac{\nabla f \otimes \nabla f}{m - n}(\omega, \omega).
\]
By [12, Lemma 2.2], \(\Delta_f \omega = 0 \) is equivalent to
\[
\begin{cases}
\omega_{i,j} = \omega_{j,i}, & i, j = 1, \ldots, n, \\
\sum_{i=1}^{n} \omega_{i,i} = \langle \nabla f, \omega \rangle.
\end{cases} \tag{2.4}
\]
Choose an appropriate local frame such that \(\omega_1 = \frac{\omega}{|\omega|} \), then
\[
|\nabla| |\omega|^2 = \sum_{j=1}^{n} \omega_{1,j}^2.
\]
Since
\[
|\nabla \omega|^2 = \omega_{1,1}^2 + \sum_{j=2}^{n} \omega_{1,j}^2 + \sum_{j=2}^{n} \omega_{j,1}^2 + \sum_{i=2}^{n} \omega_{i,i}^2 + \sum_{i,j=2, i \neq j}^{n} \omega_{i,j}^2
\geq \omega_{1,1}^2 + 2 \sum_{j=2}^{n} \omega_{1,j}^2 + \frac{1}{n-1} \left(\sum_{i=2}^{n} \omega_{i,i} \right)^2
= \omega_{1,1}^2 + 2 \sum_{j=2}^{n} \omega_{1,j}^2 + \frac{1}{n-1} (-\omega_{1,1} + \langle \nabla f, \omega \rangle)^2, \tag{2.5}
\]
where the Cauchy-Schwarz inequality and the fact that ω is Δ_f-harmonic are being used in (2.5), by (2.1), we have for any positive number α,

\[
|\nabla \omega|^2 - |\nabla |\omega||^2 \geq \sum_{j=2}^{n} \omega_{1,j}^2 + \frac{1}{n-1} (-\omega_{1,1} + \langle \nabla f, \omega \rangle)^2
\]

\[
\geq \sum_{j=2}^{n} \omega_{1,j}^2 + \frac{1}{n-1} \left(\frac{\omega_{1,1}^2}{1+\alpha} - \frac{\langle \nabla f, \omega \rangle^2}{\alpha} \right)
\]

\[
\geq \frac{1}{(1+\alpha)(n-1)} \sum_{j=2}^{n} \omega_{1,j}^2 - \frac{1}{\alpha(n-1)} \langle \nabla f, \omega \rangle^2.
\]

Hence, if we choose $\alpha = \frac{m-n}{m-1}$,

\[
|\omega|\Delta_f |\omega|
\]

\[
\geq \frac{1}{(1+\alpha)(n-1)} \sum_{j=2}^{n} \omega_{1,j}^2 + \text{Ric}_{m,n}(\omega,\omega) + \frac{\langle \nabla f, \omega \rangle^2}{m-n} - \frac{\langle \nabla f, \omega \rangle^2}{\alpha(n-1)}
\]

\[
= \frac{|\nabla |\omega||^2}{m-1} + \text{Ric}_{m,n}(\omega,\omega).
\]

In addition, equality in (2.2) holds if and only if equality in (2.5),(2.6),(2.7) holds simultaneously. Then “=” in (2.5) implies $\omega_{i,j} = 0$ for $2 \leq i \neq j \leq n$ and $\omega_{2,2} = \omega_{3,3} = \cdots = \omega_{n,n}$; “=” in (2.6) implies $\omega_{1,1} = \frac{m-1}{m-n} \langle \nabla f, \omega \rangle$; “=” in (2.7) implies $\omega_{1,j} = 0$ for $j = 2,\ldots,n$. Hence, by (2.4) and letting $\mu = \frac{\omega_{2,2}}{n-m}$, we finish the proof. \qed

In the proofs of the sequel, we will always use the following cut-off function

\[
\phi_R = \begin{cases}
1 & \text{on } B(R), \\
0 & \text{on } M \setminus B(2R),
\end{cases}
\]

such that $|\nabla \phi_R|^2 \leq \frac{C}{R^2}$ on $B(2R) \setminus B(R)$.

The following lemma is a weighted version of the corresponding [7, Lemma 3.1], which can be found as [4, Lemma 4.1].

Lemma 2.2. Let h be a non-negative function satisfying the differential inequality

\[
h \Delta_f h \geq -ah^2 + b|\nabla h|^2,
\]

in the weak sense, where a, b are constants and $b > -1$. For any $\varepsilon > 0$, we have the estimate

\[
[b(1-\varepsilon) + 1] \int_M |\nabla (\phi h)|^2 \cdot e^{-f} dv
\]

\[
\leq \left(b \left(\frac{1}{\varepsilon} - 1 \right) + 1 \right) \int_M h^2 |\nabla \phi|^2 \cdot e^{-f} dv + a \int_M \phi^2 h^2 \cdot e^{-f} dv
\]
for any compactly supported smooth function $\phi \in C^\infty_0(M)$. In addition, if
\[
\int_{B_\rho(R)} h^2 \cdot e^{-f} dv = o(R^2),
\]
then
\[
\int_M |\nabla h|^2 \cdot e^{-f} dv \leq \frac{a}{b+1} \int_M h^2 \cdot e^{-f} dv. \tag{2.9}
\]
In particular, h has a finite f-Dirichlet integral if $h \in L^2_f(M)$.

We will also need the following result,

Lemma 2.3. For an L^2_f-integrable function h on $(M, g, e^{-f} dv)$ satisfying the differential inequality
\[
h \Delta_f h \geq -ah^2 + b|\nabla h|^2,
\]
we have
\[
\lim_{R \to \infty} \int_M \phi_R h \langle \nabla \phi_R, \nabla h \rangle \cdot e^{-f} dv = 0, \tag{2.10}
\]
\[
\lim_{R \to \infty} \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} dv = \int_M |\nabla h|^2 \cdot e^{-f} dv. \tag{2.11}
\]
Moreover,
\[
\lambda_1(\Delta_f) \int_M h^2 \cdot e^{-f} dv \leq \int_M |\nabla h|^2 \cdot e^{-f} dv. \tag{2.12}
\]

Proof. Since h is L^2_f-integrable, by (2.9) in Lemma 2.2, we have
\[
\int_M |\nabla h|^2 \cdot e^{-f} dv < \infty.
\]
In addition,
\[
\int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} dv
\]
\[
= \int_M h^2 |\nabla \phi_R|^2 \cdot e^{-f} dv + \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv + 2 \int_M \langle h \nabla \phi_R, \phi_R \nabla h \rangle \cdot e^{-f} dv,
\]
where
\[\left| \int_M h^2 |\nabla \phi_R|^2 \cdot e^{-f} dv + 2 \int_M \langle h \nabla \phi_R, \phi_R \nabla h \rangle \cdot e^{-f} dv \right| \]
\[\leq \frac{C}{R^2} \int_M h^2 \cdot e^{-f} dv + \frac{2}{R} \left(\int_M h^2 |\nabla \phi_R|^2 \cdot e^{-f} dv \right)^{\frac{1}{2}} \left(\int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv \right)^{\frac{1}{2}} \]
\[\leq \frac{C}{R^2} \int_M h^2 \cdot e^{-f} dv + \frac{2\sqrt{C}}{R} \left(\int_M h^2 \cdot e^{-f} dv \right)^{\frac{1}{2}} \left(\int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv \right)^{\frac{1}{2}}. \]

Hence, letting \(R \to \infty \), one gets
\[\lim_{R \to \infty} \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} dv = \int_M |\nabla h|^2 \cdot e^{-f} dv. \]

From the proof, we see that (2.10) holds. By the variational principle,
\[\lambda_1(\Delta f) \int_M (\phi_R h)^2 \cdot e^{-f} dv \leq \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} dv, \]
and letting \(R \to \infty \), we obtain (2.12).

\[\square \]

3. Metric measure spaces with positive first eigenvalue. In this section, we present several vanishing and splitting results. The following is an extension of [12, Theorem 1.1].

Theorem 3.1. Let \((M, g, e^{-f} dv)\) be a complete non-compact smooth metric measure space of dimension \(n \geq 3 \) with \(m \)-Bakry-Émery Ricci curvature satisfying
\[\text{Ric}_{m,n}(x) \geq -a \lambda_1(\Delta_f), \]
where \(0 < a < \frac{m}{m-1} \). If the space of \(L^2_f \)-harmonic 1-forms is non-trivial, then the weighted volume of \(M \) is finite, \(\lambda_1(\Delta_f) = 0 \), and the universal covering splits isometrically as \(\tilde{M}^n = \mathbb{R} \times N^{n-1} \).

Proof. Choose a non-trivial \(L^2_f \)-harmonic 1-form \(\omega \), and let \(h = |\omega| \). Then by (2.2) and \(\text{Ric}_{m,n} \geq -a \lambda_1(\Delta_f) \), we have
\[h \Delta_f h \geq \frac{|\nabla h|^2}{m-1} - a \lambda_1(\Delta_f) h^2. \quad (3.1) \]

We multiply by the cut-off function \(\phi_R^2 \) on both sides of (3.1) and by integration by parts, we get
\[\frac{1}{m-1} \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv - a \lambda_1(\Delta_f) \int_M \phi_R^2 h^2 \cdot e^{-f} dv \]
\[\leq - \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv - 2 \int_M \phi_R h \langle \nabla \phi_R, \nabla h \rangle \cdot e^{-f} dv, \]
for which we have used the Poincaré’s inequality, so

$$\frac{m}{m-1} \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} \, dv$$

$$\leq a \lambda_1(\Delta f) \int_M \phi_R^2 \cdot e^{-f} \, dv - 2 \int_M \phi_R h \langle \nabla \phi_R, \nabla h \rangle \cdot e^{-f} \, dv$$

$$\leq a \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} \, dv - 2 \int_M \phi_R h \langle \nabla \phi_R, \nabla h \rangle \cdot e^{-f} \, dv.$$

Hence, by Lemma 2.3, letting $R \to \infty$, we obtain

$$\left(\frac{m}{m-1} - a \right) \int_M |\nabla h|^2 \cdot e^{-f} \, dv \leq 0.$$

Since $a < \frac{m}{m-1}$, h must be a constant. Then

$$\text{vol}_f(M) = \int_M h^2 \cdot e^{-f} \, dv < \infty.$$

If $\lambda_1(\Delta f) > 0$,

$$\lambda_1(\Delta f) \int_M \phi_R^2 \cdot e^{-f} \, dv \leq \int_M |\nabla \phi_R|^2 \cdot e^{-f} \, dv \leq \frac{C}{R^2} \text{vol}_f(M) \to 0, \text{ as } R \to \infty.$$

This forces $\phi_R \equiv 0$, which contradicts with the choice of ϕ_R. Hence, $\lambda_1(\Delta f) = 0$. Then the curvature condition becomes $\text{Ric}_{m,n} \geq 0$, and combining this with the weighted Bochner formula (2.3), we get

$$0 = |\nabla \omega|^2 + \text{Ric}_{m,n}(\omega, \omega) + \frac{\langle \nabla f, \omega \rangle^2}{m-n} \geq |\nabla \omega|^2 + \frac{\langle \nabla f, \omega \rangle^2}{m-n},$$

which implies that $\nabla \omega = 0$ and $\langle \nabla f, \omega \rangle = 0$, i.e., ω is a parallel 1-form. By lifting ω to the universal cover \tilde{M} of M, we get a non-trivial parallel 1-form $\tilde{\omega}$, which concludes the splitting of \tilde{M} by the de Rham decomposition theorem (see [6, Theorem 6.2]). \qed

A direct corollary is the following vanishing result

Corollary 3.2. Let $(M,g,e^{-f} \, dv)$ be a complete non-compact smooth metric measure space of dimension $n \geq 3$ with positive first eigenvalue of the f-Laplacian. Assume that the m-Bakry-Émery Ricci curvature satisfies

$$\text{Ric}_{m,n}(x) \geq -a \lambda_1(\Delta f),$$

where $0 < a < \frac{m}{m-1}$, then the space of L^2_f-harmonic 1-forms is trivial.

Under the same assumption of Corollary 3.2, if $a = \frac{m}{m-1}$, we obtain a generalization of [5, Theorem 2.2].
Theorem 3.3. Let M be a complete metric measure space of dimension $n \geq 3$. Suppose that $\lambda_1(\Delta_f) > 0$ and

$$\text{Ric}_{m,n} \geq -\frac{m}{m-1}\lambda_1(\Delta_f).$$

Then either

(1) $H^1(L^2_f(M)) = 0$; or

(2) $\tilde{M} = \mathbb{R} \times N$, where \tilde{M} is the universal cover of M and N is a manifold of dimension $n - 1$.

Proof. If $H^1(L^2_f(M)) = 0$, there is nothing to prove. Otherwise, let ω be a non-trivial L_f harmonic 1-form, and let $h = |\omega|$. Then h is L^2_f-integrable. Hence,

$$\lim_{R \to \infty} \int_M (\phi_R h)^2 \cdot e^{-f} \, dv = \int_M h^2 \cdot e^{-f} \, dv.$$

By inequality (2.2) and the assumption on $\text{Ric}_{m,n}$, we have

$$h\Delta_f h \geq -\frac{m\lambda_1(\Delta_f)}{m-1} h^2 + \frac{1}{m-1} |\nabla h|^2.$$ (3.2)

By Lemma 2.3,

$$\lim_{R \to \infty} \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} \, dv = \int_M |\nabla h|^2 \cdot e^{-f} \, dv,$$

$$\lambda_1(\Delta_f) \int_M h^2 \cdot e^{-f} \, dv \leq \int_M |\nabla h|^2 \cdot e^{-f} \, dv.$$ (3.3)

Similar to the proof of [5, Theorem 2.2], if ">" holds in (3.3), then for sufficiently large R, there exists a positive number η such that

$$(\lambda_1(\Delta_f) + \eta) \int_M (\phi_R h)^2 \cdot e^{-f} \, dv \leq \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} \, dv.$$

By Lemma 2.2, for $a = \frac{m\lambda_1(\Delta_f)}{m-1}, b = \frac{1}{m-1}$, we have for any $\varepsilon > 0$ and sufficiently large R,

$$\left[\frac{1}{m-1}(1 - \varepsilon) + 1\right] (\lambda_1(\Delta_f) + \eta) \int_M \phi_R^2 h^2 \cdot e^{-f} \, dv$$

$$\leq \left[\frac{1}{m-1}(1 - \varepsilon) + 1\right] \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} \, dv$$

$$\leq \frac{m\lambda_1(\Delta_f)}{m-1} \int_M \phi_R^2 h^2 \cdot e^{-f} \, dv + \left[\frac{1}{m-1}\left(\frac{1}{\varepsilon} - 1\right) + 1\right] \int_M h^2 |
abla \phi_R|^2 \cdot e^{-f} \, dv.$$
Hence,
\[
\frac{\eta(1-\varepsilon)}{m-1} \int_{B(R)} h^2 \cdot e^{-f} \, dv \\
\leq \frac{\varepsilon \lambda_1(\Delta f)}{m-1} \int_{B(R)} \phi_R^2 h^2 \cdot e^{-f} \, dv + \left[\frac{1}{m-1} \left(\frac{1}{\varepsilon} - 1 \right) + 1 \right] \frac{C}{R^2} \int_{B(2R) \setminus B(R)} h^2 \cdot e^{-f} \, dv.
\]
Since \(h \) is \(L^2_f \)-integrable, by letting \(R \to \infty \), and then \(\varepsilon \to 0 \), we have that
\[
\int_M h^2 \cdot e^{-f} \, dv \leq 0.
\]
Hence, \(h \equiv 0 \), which contradicts with the assumption that “\(<" holds in (3.3). If “=” holds in (3.3), equality in (3.2) holds, so by Lemma 2.2,
\[
(\omega_{i,j}) = \begin{pmatrix}
-(m-1)\mu & 0 & 0 & \ldots & 0 \\
0 & \mu & 0 & \ldots & 0 \\
0 & 0 & \mu & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \mu
\end{pmatrix}.
\]
The splitting argument is the same as that of Li and Wang [9, page 946], or Dung and Sung [5, page 1788], so we omit it here. \(\square \)

We need the following lemma for the proof of Theorem 3.5.

Lemma 3.4 ([9, Lemma 4.1]). Let \(M \) be a complete Riemannian manifold of dimension \(n \geq 2 \). Assume that the Ricci curvature of \(M \) satisfies the lower bound
\[
\text{Ric}_M(x) \geq -(n-1)\tau(x)
\]
for all \(x \in M \). Suppose \(f \) is a non-constant harmonic function defined on \(M \). Then the function \(\nabla f \) must satisfy the differential inequality
\[
\Delta |\nabla f| \geq -(n-1)\tau |\nabla f| + \frac{||\nabla \nabla f||^2}{(n-1)|\nabla f|}
\]
in the weak sense. Moreover, if equality holds, then \(M \) is given by \(M = \mathbb{R} \times N \) with the warped product metric
\[
ds_M^2 = dt^2 + \eta^2(t) ds_N^2
\]
for some positive function \(\eta(t) \), and some \((n-1) \)-dimensional manifold \(N \). In this case, \(\tau(t) \) is a function of \(t \) alone satisfying
\[
\eta''(t)\eta^{-1}(t) = \tau(t).
\]
If the \(m \)-Bakry-Émery Ricci curvature condition is further relaxed, we will need an extra condition on \(\lambda_1(\Delta f) \).
Theorem 3.5 Let \((M, g, e^{-f} dv)\) be a complete metric measure space of dimension \(n \geq 3\). Suppose that \(\lambda_1(\Delta_f) \geq \frac{b}{m-1} - a\) and
\[
\text{Ric}_{m,n} \geq -a\lambda_1(\Delta_f) - b,
\]
where \(0 < a < \frac{m}{m-1}\) and \(b > 0\). Then either

1. \(H^1(L^2_{f}(M)) = 0\); or
2. \(\tilde{M} = \mathbb{R} \times N\), where \(\tilde{M}\) is the universal cover of \(M\) and \(N\) is a manifold of dimension \(n - 1\).

Proof For any \(L^2_f\)-harmonic 1-form \(\omega\), let \(h = |\omega|\), so we have
\[
h\Delta_f h \geq \frac{1}{m-1} |\nabla h|^2 - a\lambda_1(\Delta_f) h^2 - bh^2. \tag{3.4}
\]
Multiplying by the cut-off function \(\phi_R^2\) on both sides of (3.4) and by integration by parts, one gets
\[
\frac{1}{m-1} \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv - a\lambda_1(\Delta_f) \int_M \phi_R^2 h^2 \cdot e^{-f} dv - \int_M \phi_R^2 h^2 \cdot e^{-f} dv \leq -\int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv - 2 \int_M \langle \phi_R \nabla h, h \nabla \phi_R \rangle \cdot e^{-f} dv.
\]
Combining with the variational principle, one obtains
\[
\frac{m}{m-1} \int_M \phi_R^2 |\nabla h|^2 \cdot e^{-f} dv \leq a \int_M |\nabla (\phi_R h)|^2 \cdot e^{-f} dv + b \int_M \phi_R^2 h^2 \cdot e^{-f} dv - 2 \int_M \langle \phi_R \nabla h, h \nabla \phi_R \rangle \cdot e^{-f} dv.
\]
By Lemma 2.3, when \(R \to \infty\), we have
\[
\int_M |\nabla h|^2 \cdot e^{-f} dv \leq \frac{b}{m-1} - a \int_M h^2 \cdot e^{-f} dv. \tag{3.5}
\]
Suppose \(\lambda_1(\Delta_f) > \frac{b}{m-1} - a\), if \(\omega\) is non-trivial, i.e., \(h \neq 0\), then (3.5) implies
\[
\lambda_1(\Delta_f) \leq \frac{b}{m-1} - a,
\]
which is a contradiction. Hence, if \(\lambda_1(\Delta_f) > \frac{b}{m-1} - a\), then
\[
H^1(L^2_{f}(M)) = \{0\}.
\]
Suppose \(\lambda_1(\Delta_f) = \frac{b}{m-1} - a\) and \(H^1(L^2_{f}(M))\) is non-trivial, then equality holds in (3.5). Hence, equality holds in (3.4), i.e.,
\[
h\Delta_f h = \frac{1}{m-1} |\nabla h|^2 - a\lambda_1(\Delta_f) h^2 - bh^2. \tag{3.6}
\]
Lift the metric of M to the universal cover \tilde{M} and the harmonic 1-form is lifted to a harmonic 1-form $\tilde{\omega}$ on \tilde{M}. Since \tilde{M} is simply connected, $\tilde{\omega}$ is exact, i.e., there exists a smooth function ζ such that $\tilde{\omega} = d\zeta$. Hence, ζ is a non-constant harmonic function on \tilde{M} such that
\[
|\nabla \zeta| \Delta |\nabla \zeta| = -(a\lambda_1(\Delta_f) + b)|\nabla \zeta|^2 + \frac{1}{n-1}|\nabla|\nabla \zeta||^2.
\]
Applying [9, Lemma 4.1] (see Lemma 3.4 in this paper) with
\[
\tau = \frac{1}{n-1}(a\lambda_1(\Delta_f) + b),
\]
we get the splitting of \tilde{M}. \hfill \Box

From the proof, we see that, if $\lambda_1(\Delta_f) > \frac{b}{\frac{m}{m-1} - a}$, $\mathcal{H}^1(L^2_f(M))$ vanishes, and the splitting case only happens when $\lambda_1(\Delta_f) = \frac{b}{\frac{m}{m-1} - a}$.

Acknowledgements. The author would like to thank Prof. Jiayong Wu for useful suggestions and the anonymous referees for many valuable suggestions. J.R. Zhou is partially supported by a PRC grant NSFC 11771377 and the Natural Science Foundation of Jiangsu Province (BK20191435).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Bueler, E.: The heat kernel weighted Hodge Laplacian on noncompact manifolds. Trans. Amer. Math. Soc. 351, 683–713 (1999)

[2] Carron, G.: L^2 harmonics forms on non compact manifolds. arXiv:0704.3194 (2007)

[3] Dung, N.T.: A splitting theorem on smooth metric measure spaces. Arch. Math. (Basel) 99, 179–187 (2012)

[4] Dung, N.T., Sung, C.J.: Smooth metric measure spaces with weighted Poincaré inequality. Math. Z. 273(3–4), 613–632 (2013)

[5] Dung, N.T., Sung, C.J.: Manifolds with a weighted Poincaré inequality. Proc. Amer. Math. Soc. 142(5), 1783–1794 (2014)

[6] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I. Wiley, New York (1963)

[7] Lam, K.H.: Results on a weighted Poincaré inequality of complete manifolds. Trans. Amer. Math. Soc. 362, 5043–5062 (2010)

[8] Li, P., Wang, J.P.: Complete manifolds with positive spectrum. J. Differ. Geom. 58(3), 501–534 (2001)

[9] Li, P., Wang, J.P.: Weighted Poincaré inequality and rigidity of complete manifolds. Ann. Sci. École Norm. Sup. 39, 921–982 (2006)

[10] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl 84, 1295–1361 (2005)
[11] Lott, J.: Some geometric properties of the Bakry-Émery Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

[12] Vieira, M.: Harmonic forms on manifolds with non-negative Bakry-Émery Ricci curvature. Arch. Math. (Basel) 101, 581–590 (2013)

[13] Vieira, M.: Vanishing theorems for L^2 harmonic forms on complete Riemannian manifolds. Geom. Dedicata. 184, 175–191 (2016)

JIURU ZHOU
School of Mathematical Science
Yangzhou University
Yangzhou 225002 Jiangsu
China
e-mail: zhoujiuru@yzu.edu.cn

Received: 20 January 2020
Revised: 5 January 2021
Accepted: 28 January 2021.