Heterotopic ossification: radiological and pathological review

Bilal Mujtaba1, Ahmed Taher1, Matthew J. Fiala2, Sameh Nassar1, John E. Madewell1, Abdelrahman K. Hanafy1, Rizwan Aslam1

1 Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, USA
2 The University of Texas Health Science Center at Houston, USA

Radiol Oncol 2019; 53(3): 275-284.

Received 20 February 2019
Accepted 11 July 2019

Correspondence to: Ahmed Taher, Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, T. Boone Pickens Academic Tower, 1400 Pressler St, Houston, TX 77030, USA. Phone: 832-863-6551; Fax: 713-563-6633; E-mail: ahmedramadantawfik@gmail.com, artaher@mdanderson.org

Disclosure: No potential conflicts of interest were disclosed.

Background. Heterotopic Ossification (HO) is a common condition referring to ectopic bone formation in soft tissues. It has two major etiologies, acquired (more common) and genetic. The acquired form is closely related to tissue trauma. The exact pathogenesis of this disease remains unclear; however, there is ongoing research in prophylactic and therapeutic treatments that is promising.

Conclusions. Due to HO potential to cause disability, it is so important to differentiate it from other causes in order to establish the best possible management.

Key words: heterotopic ossification; radiology; pathology

Introduction

Heterotopic Ossification (HO), also known as parasteoarthopathy, myositis ossificans, and heterotopic calcification1 among others, is a commonly occurring condition that refers to ectopic bone formation in soft tissues. HO can be subdivided into two major types: acquired and genetic, with acquired being the most predominant. Acquired HO is closely related to tissue trauma and can be seen after joint surgery, musculoskeletal trauma, central nervous system injury, and even burns.2 HO develops in up to 44% of patients undergoing hip arthroscopy or replacement, 10-20% of those with CNS injury, and 4% of those with burns covering greater than 30% of body surface.3-10 Many cases of HO lead an indolent course, however severe cases can cause inflammation, pain, immobility and functional impairment.11 Due to its potential to cause disability, it is imperative to be able to distinguish HO from other etiologies including tumoral calcinosis, osteosarcoma, or dystrophic calcification to provide adequate treatment.

Pathophysiology

Acquired HO can be broadly categorized in to three etiologic subtypes: neurogenic from central nervous system injury, orthopedic covering fractures, fixations, joint replacements, etc., and trauma related to burns and high velocity impacts.3 The formation of HO is tied to the underlying inflammatory process, which can even be demonstrated in genetic cases of HO where patients report prodromal symptoms of pain, swelling, and erythema prior to ectopic bone formation.12 Trauma-induced HO is also correlated with the severity of the trauma, infection, total burn coverage13 and cytokine concentration in affected tissues.14 As a result, the most frequently used prophylactic medications are nonsteroidal anti-inflammatory drugs.15 However, the underlying mechanisms for HO formation are still not clear. The Literature suggests multiple cellular origins for the formation of HO, pointing to muscle satellite cells16, smooth muscle cells17, and even endothelial cells.18 Although the exact cellular origin is debated, it is commonly accepted to
be multipotent cells in the local tissue. The requirements necessary for HO formation include having an inducing agent, an osteogenic precursor, and a permissive environment for osteogenesis19,20 which when met leads to proliferation and formation of bone.21 Bidner \textit{et al.} have proposed that failure to regulate the immune system or inflammatory response lead to the release of inciting agents that lead to HO.19,22 Further investigations by Salisbury \textit{et al.} and Kan \textit{et al.} have implicated bone morphogenetic protein type 2 (BMP-2) as a pro-inflammatory agent by stimulating release of substance \textit{p} and calcitonin gene-related peptide from sensory nerves.23,24 Further investigations could support BMP’s role in HO formation and lead to formulation of targeted therapies.3,21 Other suggested contributory factors include prostaglandin (specifically PGE-2), tissue hypoxia, and an imbalance between parathyroid hormone and calcitonin.25 A review performed by Cholok \textit{et al.} showed multiple potential contributory cell lineages with likely varying signalling pathways, highlighting the current lack of understanding in HO formation.3 All in all, the precise mechanisms of HO formation remain vague and need further investigation.

\section*{Clinical presentation and diagnosis}

Patients presenting with HO typically complain of inflammatory symptoms including pain, swelling, erythema, and warmth along with joint immobility, which appear anytime from 3 to 12 weeks after the precipitating event.11,25-28 The most common sites of occurrence, in a decreasing order, are the hips, knees, shoulders, and elbows.25,27 The gold standard method for diagnosing HO is through imaging studies, mainly radiography and computerized tomography (CT).3 The downfall to these types of imaging is that they are not able to detect calcifications for at least 6 weeks after the inciting trauma.25,29 Three-phase bone scintigraphy is the most sensitive method for detecting HO, with the earliest detection being 2.5 weeks post trauma.25,30 It is also effective in monitoring HO progression and determining the appropriate time to stage surgical intervention.25,26,30 Activity on bone scans usually peaks a few months after the inciting event and returns to baseline by 12 months.25

Early screening methods used before imaging studies include serum alkaline phosphate levels and 24-hour urinary PGE2. Alkaline phosphate levels can increase two weeks after trauma, reaching 3.5 times baseline by 10 weeks, and then returning to baseline by 18 weeks. A rapid increase in 24-hour PGE2 urinary secretion has also been shown to suggest HO and would indicate further imaging studies.31,32

Upon suspicion of HO on imaging, it has been suggested to perform a biopsy to confirm the diagnosis; however, current recommendations are to follow up with imaging studies in four weeks, which together with the history of trauma can confirm the diagnosis.33

\section*{Imaging and classification}

A soft tissue mass is the earliest finding of HO on imaging, it is often depicted as a peripheral zone of mineralization in acquired cases.33 With time, these outer regions can mature in to a peripheral cortex with a well-defined cancellous bone inte-
rior detectable by CT (Figures 1-2 and 3). Radiography (Figure 4) and CT scan remain the gold standard for diagnosis due to their ability to detect immature bone formation and the relatively cheap cost. In the acute phase of HO, there is increased tissue vascularization and density, which can be detected on Magnetic Resonance (MR). This region appears isointense or hyperintense to muscle on T1-weighted images and hyperintense on T2-weighted images with pronounced surrounding inflammation. As the rim of calcification forms, signal void begins to appear on the periphery on all sequences. During this maturing phase, MR imaging results in non-specific findings and heterogeneous signal that mimics many other pathologic processes. Once mature, HO presents as cancellous fat that is hyperintense on T1 and T2 weighted images outlined by the hypointense cortical bone and this can be considered diagnostic. Therefore, when MR detects a mature HO, no further imaging is necessary. On the other hand, early MRI has a great advantage in excluding other differential diagnoses, as we can observe the “striate pattern” and “checkerboard-like pattern” appearance in T2-WI and contrast-enhanced MRI images or it can be detected by displacing the fascial planes, especially at the periphery of the lesion. Recognizing these MRI patterns in HO could be very beneficial in the early phases as the condition is commonly misdiagnosed for an osteomyelitis or even a malignancy, mostly sarcomas.

Ultrasonography (US) is proved to be a sensitive imaging modality for soft tissue lesions and calcifications. It is also safe, of low-cost, and easy to perform and repeat. US has the great advantage of bedside application as well, which could be more feasible for bed-ridden patients. Qing Wang et al. discussed a new concept for monitoring the trauma-induced HO. The study gives a guidance to the orthopedist to modify the treatment and make an individualized rehabilitation program. They have shown that the grey-scale values are different during the different phases of HO maturation, and so US allows for a quantitative assessment during the rehabilitation of HO.

Staging of HO is commonly done using the Brooker classification (Table 1), which was initially developed using anteroposterior radiographs of the hip. There has been some criticism of this classification as anteroposterior radiographs cannot distinguish between bridging or overlapping calcifications. To simplify and reduce variability, Della Valle et al. created a modified classification using only three distinct grades. However, a third and more comprehensive classification was established by Schmidt and Hackenbroch (Table 2).

TABLE 1. Brooker classification of heterotopic ossification

Class	Description
Class 1	Islands of bone within the soft tissues over the hip
Class 2	Bone spurs from the pelvis or proximal end of the femur, leaving at least one centimeter between opposing bone surfaces.
Class 3	Bone spurs from the pelvis or proximal end of the femur, reducing the space between opposing bone surfaces to less than one centimeter.
Class 4	Apparent bone ankylosis of the hip
ble 3) with the goal of classifying HO while considering ossification within the region of surgical approach. From these classifications, an important distinction for reporting and assessing severity is determining whether the space between two opposing bone surfaces is greater than or less than one centimeter.

Differential diagnosis

Many pathologies can imitate HO clinically or radiographically. It is vital to understand the similarities and differences of these mimetics when considering the diagnosis of HO. A few differentials that should be considered are briefly discussed below.

Dystrophic calcification

Dystrophic calcification (DC) is the calcification that occurs in soft tissue post inflammation and damage. The mechanism is thought to be either disruption of cell membranes during cellular stress allowing calcium to enter and subsequently be concentrated in the mitochondria or by creating an acidic environment in the tissue that lacks calcification inhibitors.

It is well documented to occur in cases of collagen vascular diseases like dermatomyositis (Figure 5), systemic lupus erythematosus, and scleroderma, but has also been identified in other disease processes. On plain film, DC appears as amorphous calcification with a hazy ill-defined appearance that can increase in density over time. CT will similarly show peripheral amorphous hypodensities, with MRI showing hypointense signals in T1 and T2 weighted images.

The distinguishing difference between DC and HO is organization. DC and HO are virtually indistinguishable on plain films, CT, or MRI early in the disease process as mineralization occurs. HO will begin to organize and ossify over the course of months into lamellar bone while DC will remain as amorphous, non-ossified calcifications.

Chondrocalcinosis

Chondrocalcinosis is calcification within fibrous or cartilaginous structures and is frequently associated with calcium pyrophosphatase disease (CPPD). In cases of CPPD, there is usually acute, painful inflammation of a joint, often the knee, where calcium phosphate crystals are deposited. Microcrystals can then impregnate cartilage causing arthritic symptoms, which can range from mild to severe with joint destruction. On plain films, this appears as a dense line within hyaline cartilage that runs parallel to the articular surface. CT has excellent sensitivity and specificity for detecting chondrocalcinosis and can better visualize the linear hyperintense calcifications. There is often a concurrent degenerative joint disease with joint space narrowing and large osteophyte formation. The linear deposition contrasts with HO, which presents as a peripheral circumferential calcific mass on both plain films and CT with minimal intra-articular involvement. MRI has little utility in

Tables

TABLE 2. Della Valle classification of heterotopic ossification

Class	Description
1	Absence of HO or islands measuring <1 cm in length
2	Islands >1 cm or spurs leaving at least 1 cm between femur and pelvis
3	Spurs leaving <1 cm between opposing surfaces or bony ankylosis

TABLE 3. Schmidt and Hackenbroch classification of heterotopic ossification

Region	Description
1	Heterotopic ossifications strictly below tip of greater trochanter
2	Heterotopic ossifications below and above tip of greater trochanter
3	Heterotopic ossifications strictly above tip of greater trochanter
A	Single or multiple heterotopic ossifications < 10 mm in maximal extent without contact with pelvis or femur
B	Heterotopic ossifications > 10 mm without contact with pelvis but with possible contact with femur; no bridging from femur to proximal part of greater trochanter, with no evidence of ankylosis
C	Ankylosis by means of firm bridging from femur to pelvis

Figures

Figure 5. Dystrophic calcifications secondary to dermatomyositis are seen in the peripheral soft tissue (2 red arrows). They appear as hazy ill-defined opacities on plain film.
diagnosing Chondrocalcinosis, as the calcifications are not well visualized in tissues.

Tumoral calcinosis

Tumoral calcinosis (TC) refers to a syndrome characterized by calcium salt deposition in peri-articular soft tissue. A major component of TC is hyperphosphatemia secondary to genetically acquired decrease in phosphate secretion or chronic renal failure and resulting hyperparathyroidism. Patients present with joint pain, swelling, or immobility most commonly in the hip, elbow, shoulder, foot, or wrist. Unlike HO, TC lesions grow slowly over the course of several years. Plain radiographs, ultrasound and CT scan, all can be used for diagnosis and would show fluid filled, lobulated, cystic calcifications in peri-articular tissue.

FIGURE 6. T1 weighted non-contrast MRI (left-red arrow) of dystrophic calcifications show hypointense signal in patchy patterns. These appear as calcified hazy patches on CT (right-red arrow).

FIGURE 7. Calcium Pyrophosphate Deposition disease can lead to calcification of intra-articular cartilage. There is opacification of the lateral joint space on plain film (left-red arrow) and a more clearly defined mineralization seen near the lateral condyle on CT (right-red arrow).

FIGURE 8. X-ray of the (left- 2 red arrows) shoulder show opacified cystic, lobulated peri-articular lesions in Tumoral Calcinosis. Coronal MRI T2 sequencing (right-red arrow) reveals hypointense lesions with septal enhancement, hyperintense fluid filled cavities and fluid-fluid levels consistent with sedimentation.
T1 and T2 weighted MRI show a hypointense lesion with septal enhancement (Figure 8). HO is not cystic in nature and lacks the lobulated pattern on both CT and MRI. HO also presents with hyperintense signal centrally with a hypointense cortical shell on MRI. Management of TC is clinically determined based on the symptoms and the size of calcinosis with surgical or needle decompression being most common interventions.66

Avulsion fracture

An avulsion fracture (AF) is the separation of a bone fragment at the site of tendon attachment, often occurring after a traumatic injury. Patients with this injury typically have a definite history of trauma accompanied by pain, swelling, and loss of joint function.67 Findings on imaging can be seen immediately post trauma, depicting sharply delineated bone fragments (Figure 9). Large avulsed fragments can appear identical to matured HO, therefore having a clinical history is important. In addition, HO will not be visible on a plain film until weeks after the inciting trauma and will not mature into cortical bone for many months.68 CT of avulsion fractures helps delineate fracture sites and show displaced hyperdense cortical bone.67 HO can be distinguished from AF on CT, showing a ring of hyperdense cortical bone with a hypodense interior.29 MRI may be useful in detecting local tissue damage seen in avulsion fragments; however, findings are consistent with inflammation and are non-specific.67

Primary osteosarcoma

Osteosarcomas (OS) are the most common primary bone tumor, developing from uninhibited osteoid production by malignant mesenchymal cells.68 Patients present with localized pain and swelling, which then proceeds to joint immobility. This type of tumor is commonly seen in the metaphysis of long bones, most commonly the distal femur, proximal tibia, and proximal humerus; in a descending fashion.68,69 On plain radiographs, it can present as osteoblastic, osteolytic, or with mixed appearances, and have patchy calcifications from the newly developing bone in the surrounding soft tissue.68 The imaging appearance is commonly described as a “sunburst” appearance or as having cloudlike density (Figure 10).70 CT scan is highly sensitive to calcification and is useful in showing the amorphous osteoid formation in OS, which can help distinguish it from organized circumferential osteoid formation in HO. MRI of OS shows heterogeneous signal intensities on T1- and T2-weighted images due to a mixture of amorphous osteoid, hemorrhage, and necrosis.70,71 Radiographs can be correlated with a low signal intensity on T1-weighted imaging and hyperintensity on STIR imaging indicating mineralized matrix deposition with small periosteal reaction. Other findings include cortical bone destruction and marrow invasion not typically seen with HO.71

Tophaceous gout

Gout is a type of inflammatory arthritis caused by the deposition of monosodium urate crystals in joints and surrounding tissue.72 Clinically, this con-
tion presents with an acute onset pain and swelling at the site of deposition, typically the feet and knees but can also be seen elsewhere. Early radiographic studies can often be negative, however in chronic gout patients, punched erosions with well-defined sclerotic borders can form extra marginally, articularly, or para-articularly with preservation of the joint space. In severe cases, extreme bone destruction can occur with large periarticular lesions, joint space widening, and concurring osteoarthritis. Tophi on CT are seen as discrete masses with a higher intensity than adjacent soft tissue. CT is also useful in defining well-demarcated erosions with overhanging osteophytes seen in gout. MRI is only useful in identifying soft tissue abnormalities around affected joints rather than tophi themselves, leading to low specificity and utility. When seen, tophi appear with decreased signal intensity on T1 weighted images and heterogeneous signal on T2. HO can be distinguished from tophaceous gout on x-ray and CT by lack of intraosseous erosions, peripheral calcifications in the soft tissue, and formation of cortical bone. MRI is not useful in distinguishing between the two unless the HO is mature, when complete lamellar bone is seen.

Calcific tendonitis

Calcific Tendonitis refers to the condition of calcium deposition in tendons. This is clinically depicted by chronic pain with activity, tenderness, swelling, and joint immobility that is commonly localized to the rotator cuff tendons. The etiology remains unknown, however, severity has been associated with endocrine diseases. Pathology can be noted by standard AP radiograph with internal and external rotation views showing dense homogenous calcification typically noted proximal to the greater tubercle (Figure 11). Ultrasound, used to evaluate a rotator cuff injury, can show a hyperechoic lesions with reproducible pain in palpation during the procedure. Calcific tendonitis can also be viewed with susceptibility-weighted imaging, which presents as a hyperintense lesion at tendon insertion site with occasional central hypointensity. It lacks the well-defined shape of HO and the hyperintense core seen on T1 weighted images.

Fibrodysplasia Ossificans Progressiva

Fibrodysplasia Ossificans Progressiva is an extremely rare genetic form of HO in which patients repair mechanism ossifies the fibrous tissue at the trauma site, leaving the patient permanently frozen secondary to minor trauma. Patients initially present with characteristic malformations of the large toes at birth with painful soft tissue swelling and ectopic bone formation within the first decade of life. Laboratory changes include increased serum alkaline phosphatase and urinary basic fibroblast growth factor during acute episodes. Radiographic imaging shows extensive heterotopic bone formation diffusely with no specific pattern and ankylosis of adjacent joints with heterotopic bone formation. MRI can show heterotopic bone formation with underlying edema and subtle soft tissue changes indicating pre-osseous lesions, noted as hyperintense lesion on fat suppressed T2 imaging. CT imaging can be used for volumetric analysis of ossification that is unattainable via radiographs or MRI, showing the extent of joint ankylosis with 3D rendering and assessment of severity via Lederson grading scale. This condition can be distinguished from traumatic HO by early onset and severe disseminated ossification.

Treatment

Treatment for HO is divided into prophylaxis for high-risk patients and management of already formed HO. Due to the large variability in etiology and underlying mechanisms for HO and individualized patient risk factors, there is little agreement on appropriate treatment regimens. Commonly used prophylaxis includes NSAIDs, localized low
dose radiation, or a combination there-of with the most popular being NSAID alone.86,97 Prophylactic NSAIDs have shown to reduce the occurrence of ectopic bone formation when given peri-operatively compared to placebo, but at the expense of medication side effects such as gastrointestinal ulcers, bleeding, and delayed bone healing.88,89 Although there is a decrease in HO formation, NSAIDs had no effect on pain or physical function compared to placebo.88,90,91 NSAIDs target pro-inflammatory prostaglandins, which have been shown to be integral to osteogenesis and are thought to have some effect by suppressing the migration and proliferation of mesenchymal cells.21,92,93 The NSAID of choice is the non-selective cox inhibitor indomethacin.94 Cox-2 specific inhibitors have been suggested to reduce side effects associated with nonselective cox inhibitors; however, their cardiovascular potential side effects such as carcinogenesis, bone disunion, and oligospermia as well as the higher cost.15 Strauss et al. determined that the total cost of RT was approximately 45 times higher than that of NSAIDs.98 The high cost of RT limits its utilization, especially considering it has not been shown to have any treatment. The drawbacks to RT include potential side effects such as carcinogenesis, bone disunion, and oligospermia as well as the higher cost.15 Surgical management currently remains the only effective treatment for a preformed ectopic bone. Indications for surgery include symptomatic disabilities and radiographic evidence showing the cessation of bone growth.3 Surgery should not be performed until 12 to 18 months after HO formation to allow maturation of the lesion and patient’s tissue has had time to recover to decrease intraoperative complications and HO reoccurrence.28,100 Although efficacious, surgery inherently causes tissue trauma, which can simulate the same inflammatory conditions for HO formation and is therefore complicated by high reoccurrence rates.101

Conclusions
Heterotopic ossification is a commonly seen condition occurring secondary to trauma and may cause mild to severe disability. The exact pathogenesis of this disease remains unclear; however, there is an ongoing promising research to develop prophylactic and therapeutic treatments that is promising. Distinguishing HO from other mimics help clinicians better manage the disease and improve patient care.

References
1. Naragi FF, DeCoste TA, Moneim MS, Miller RA, Rivero D. Heterotopic ossification. Ortopedics 1996; 19: 145-51.
2. Kornhaber R, Foster N, Edgar D, Visentin D, Ofir E, Haik J, et al. The development and impact of heterotopic ossification in burns: a review of four decades of research. Scars Burns Heal 2017; 3: 20595131177695659. doi: 10.1177/20595131177695659
3. Cholok D, Chung MT, Ranganathan K, Ucer S, Day D, Davis TA, et al. Heterotopic ossification and the elucidation of pathologic differentiation. Bone 2018; 108: 12-21. doi: 10.1016/j.bone.2017.09.019
4. Bedi A, Zbeda RM, Bueno VF, Downie B, Dolan M, Kelly BT. The incidence of heterotopic ossification after hip arthroscopy. Am J Sports Med 2012; 40: 854-63. doi: 10.1177/0363546511434285
5. Cipriano CA, Pill SG, Keenan MA. Heterotopic ossification following traumatic brain injury and spinal cord injury. J Am Acad Orthop Surg 2009; 17: 689-97. doi: 10.5435/00124635-200911000-00003
6. Medina A, Shankowsky H, Savaryn B, Shukalak B, Tredget EE. Characterization of heterotopic ossification in burn patients. J Burn Care Res 2014; 35: 251-6. doi: 10.1097/BCR.0000000000000123
7. Forsberg JA, Pill SG, Keenan MA. Heterotopic ossification following combat-related trauma. J Burn Care Res 2014; 35: 251-6. doi: 10.1097/BCR.0b013e3182957768
8. Potter BK, Forsberg JA, Davis TA, Evans KN, Hawkinsworth JS, Tadaki D, et al. Heterotopic ossification following combat-related trauma. J Bone Joint Surg Am 2010; 92 (Suppl 2): 74-83. doi: 10.2106/JBJS.I.00775
9. Brooker AF, Bowerman JW, Robinson RA, Riley UH, Jr. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am 1973; 56: 1629-32.
10. Shin JJ, de Sa DL, Burnham JM, Mauro CS. Refractory pain following hip arthroscopy: evaluation and management. J Hip Preserv Surg 2018; 5: 3-14. doi: 10.1093/jhps/hmx047
11. Poppovic M, Agawa A, Zhang L, Yip C, Kredner HJ, Nousiainen MT, et al. Radiotherapy for the prophylaxis of heterotopic ossification: A systematic review and meta-analysis of published data. Radiother Oncol 2014; 113: 10-7. doi: 10.1016/j.radonc.2014.08.025
12. Pignolo RJ, Bedford-Gay C, Lijestrand M, Durbin-Johnson BP, Shore EM, Rocke DM, et al. The natural history of flare-ups in fibrodysplasia ossificans progressiva (FOP): A comprehensive global assessment. J Bone Miner Res 2016; 31: 650-6. doi: 10.1002/jbmr.2728
13. Orchard GR, Paratz JD, Blot S, Roberts JA. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification: A retrospective analysis. J Burn Care Res 2015; 36: 465-70. doi: 10.1097/BCR.000000000000123
14. Jackson WM, Aragon AB, Onodera J, Koehler SM, JY, Bulken-Hoover JD, et al. Cytokine expression in muscle following traumatic injury. J Orthop Res. 2011; 29: 1613-20. doi: 10.1002/jor.21354
15. Baird EO, Kang QK. Prophylaxis of heterotopic ossification - an updated review. J Orthop Surg Res 2009; 4: 12. doi: 10.1186/1749-799X-4-12
16. Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ. Multipotent progenitors resident in the skeletal system exhibit robust BME-dependent osteogenic activity and mediate heterotopic ossification. *Bone Miner Res* 2012; 27: 1004-17. doi: 10.1007/jbmr.1562

17. Caimis DM, Liu R, Sen M, Canper JP, Schinderle A, Little DG, et al. Interplay of Nkx2.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. *PloS one* 2012; 7: e3962-e. doi: 10.1371/journal.pone.003962

18. Lounen VY, Ramachandran R, Wosczyna MN, Attolini R, Castoldi MC. Pelvic heterotopic skeletogenesis. *J Bone Joint Surg Am* 2009; 91: 652-63. doi: 10.2106/JBJS.H.01177

19. Zhang X, Jie S, Liu T, Zhang X. Acquired heterotopic ossification in hips and knees following encephalitis: case report and literature review. *BMC Musculoskelet Disord* 2014; 15: 74. doi: 10.1186/1471-2474-15-74

20. Chalmers J, Gray DH, Rush J. Observations on the induction of bone in soft tissues. *J Bone Joint Surg Br* 1975; 57: 36-45.

21. Shimono K, Ushibe K, Kuboki T, Iwamoto M. The pathophysiology of heterotopic ossification: current treatment considerations in dentistry. *Jpn Dent Sci Rev* 2014; 50: 1-8. doi: 10.3123/jdsr.2013.07.003

22. Bidner SM, Rubins IP, Desjardins JV, Zukor DJ, Goltzman D. Evidence for a sensory nerve induced inflammation contributes to heterotopic ossification. *J Cell Biochem* 2011; 112: 2748-58. doi: 10.1002/jcb.23225

23. Salisbury L, Rodenberg E, Sonnet C, Hipp J, Gannon FH, Vadakkan TJ, et al. Sensory nerve induced inflammation contributes to heterotopic ossification. *J Cell Biochem* 2011; 112: 2748-58. doi: 10.1002/jcb.23225

24. Kidner SM, Rubins IM, Fradis D, Chakkalakal S, Peng C-Y, McGuire TL, et al. CNS demyelination in fibrodysplasia ossificans progressiva. *J Neurosurg* 2012; 159: 2513-20. doi: 10.1016/j.jns.2010.12.056

25. Shehdi D, Elzahar AH, Collier BD. Heterotopic ossification. *J Nucl Med* 2002; 43: 346-53.

26. Rossier AB, Bussat P, Infante F, Zender R, Courvoisier B, Muhelm G, et al. Humoral mechanism for enhanced osteogenesis after head injury. *Dent Sci Rev* 1990; 14: 138-146.

27. Wharton GW, Morgan TH. Ankylosis in the paralyzed patient. *Arch Phys Med Rehabil* 1997; 78: 227-32.

28. De Smet AA, Norris MA, Fisher DR. Magnetic resonance imaging correlation. *J Nucl Med* 2011; 52: 659-67.

29. Zagarella A, Impellizzeri E, Maiolino R, Attolini R, Castoldi MC. Pelvic heterotopic skeletogenesis. *J Bone Joint Surg Am* 2009; 91: 652-63. doi: 10.2106/JBJS.H.01177

30. Lacout A, Jarraya M, Marcy P-Y, Thariat J, Carlier RY. Myositis ossificans of myositis ossificans: variable patterns at different stages. *Clin Radiol* 1995; 50: 287-92. doi: 10.1016/0003-9993(95)90074-5

31. Orzel JA, Rudd TG. Heterotopic bone formation: clinical, laboratory, and sensory nerve induced inflammation contributes to heterotopic ossification. *Arch Phys Med Rehabil* 2014; 95: 208-16. doi: 10.1016/j.apmr.2013.07.003

32. Daniel Shawn Moore MCEFSC, MD, MB A. Heterotopic Ossification of soft tissue musculoskeletal calcifications. *Radiographics* 2015 [updated Nov 01, 2015] Available from: https://radiographics.rsna.org/abstract.aspx?eid=e39642-e. doi: 10.1148/radiographics.201512O00219

33. Bidner SM, Rubins IP, Desjardins JV, Zukor DJ, Goltzman D. Evidence for a sensory nerve induced inflammation contributes to heterotopic ossification. *J Cell Biochem* 2011; 112: 2748-58. doi: 10.1002/jcb.23225

34. Falsetti P, Acciai C, Lenzl L, Bedside ultrasound in early diagnosis of neurogenic heterotopic ossification in patients with acquired brain injury. *Clin Neurol Neurosurg* 2011; 113: 22-7. doi: 10.1016/j.clineuro.2010.08.012

35. Stefanidis K, Brindley P, Rammarine R, Blavias M, Daneshi M, Sithu PS, et al. Bedside ultrasound to facilitate early diagnosis and ease of follow-up in neurogenic heterotopic ossification: A pilot study from the intensive care unit. *J Head Trauma Rehabil* 2017; 32: E5-11. doi: 10.1097/HTR.0000000000000293

36. Wang Q, Zhang P, Li P, Song X, Hu H, Li X, et al. Ultrasoundography monitor imaging of trauma-induced heterotopic ossification: guidance for rehabilitation procedures. *Front Neurol* 2018; 9: 771. doi: 10.3389/fneur.2018.00771

37. Schmidt J, Hackenbroch MH. A new classification for heterotopic ossifications in total hip arthroplasty: a critical analysis of the Brooker classification and proposal of a simplified rating system. *J Arthroplasty* 2002; 17: 870-5. doi: 10.1054/arth.2002.34819

38. Seo JS, Park YK, Chang SG. Dystrophic calcification and stone formation on the entire bladder neck after potassium-titanyl phosphate laser vaporization for the prostate: a case report. *J Korean Med Sci* 2009; 24: 741-3. doi: 10.3346/jkms.2009.24.4.741

39. Tristano AG, Villarroel JL, Rodriguez MA, Millan A. Calcinosic cutis universalis in a patient with systemic lupus erythematosus. *Clin Rheumatol* 2006; 25: 70-4. doi: 10.1007/s10067-005-1134-5

40. Wang Z-A, Su HJ, Chen D, Chan WP, Wu JS. Imaging features of soft-tissue calcifications and related diseases: a systematic approach. *Korean J Radiol* 2018; 19: 1147-60. doi: 10.3348/kjr.2018.19.6.1147

41. Freire V, Moxer TP, Lepage-Saucier M. Radiological identification and analysis of soft tissue musculoskeletal calcifications. *Insights Imaging* 2018; 9: 477-92. doi: 10.1007/s11759-018-0629-0

42. Ragsdale BD, Madewell JE, Swift D. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. *Radiol Clin North Am* 1981; 19: 749-83.

43. Miksanek J, Rosenthal AK. Imaging of calcium pyrophosphate deposition disease. *Curr Rheumatol Rep* 2015; 17: 20. doi: 10.1007/s11926-015-0496-1

44. Villenave J, Avouac B. [Role of radiology in the diagnosis of joint chondrocalcinosis]. [French] The so-called atypical symptomatic aspects. *J Radiol* 1994; 75: 339-61.

45. Helms C. Fundamentals of Skeletal Radiology. 4th Edition. Amsterdam: Elsevier; 2014.

46. Fathi I, Sakr M. Review of tumoral calcinosis: a rare clinico-pathological entity. *World J Clin Cases* 2014; 2: 409-14. doi: 10.12998/wjcc.v2.i9.409

47. Topuz O, Shurman DL, Bergman R, Indelman M, Rataficzak P, Mizuhashi M, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. *Nat Genet* 2004; 36: 579-81. doi: 10.1038/ng1358
61. Benet-Pages A, Drilik P, Strom TM, Lorenz-Depiereux B. An FGFR23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14: 385-90. doi: 10.1093/hmg/ddi034

62. Kim H-S, Sub J, Kim YH, Park S-H. Tumoral calcinosis of the hand: Three unusual cases with painful swelling of small joints. Arch Pathol Lab Med 2006; 130: 548-51. doi: 10.1043/1543-2165(2006)130[548:CTOTH]2.0.CO2

63. Asuncion GF, Tzarnas CD. Uremic tumoral calcinosis: acute hand presentation mimicking infection. J Hand Surg Am 1994; 19: 809-12. doi: 10.1016/0363-5023(94)90100-7

64. Pakasa NM, Kalengayi RM. Tumoral calcinosis: a clinicopathological study of 11 cases with emphasis on the earliest changes. Histopathology 1997; 31: 28-43. doi: 10.1046/j.1365-2559.1997.6050831.x

65. Meltzer CC, Fishman EK, Scott WW Jr. Tumoral calcinosis causing bone erosion in a renal dialysis patient. Clin Imaging 1992; 16: 49-51. doi: 10.1016/0899-7071(92)90051-M

66. Olsen KM, Chew FS. Tumoral calcinosis: Pearls, polemics, and alternative possibilities. Radiographics 2006; 26: 671-85. doi: 10.1148/rg.263050599

67. Stevens MA, El-Khoury GY, Kathol MH, Brandser EA, Chow S. Imaging features of avulsion injuries. Radiographics 1999; 19: 655-72. doi: 10.1148/rg.1953990343.

68. Ritter J, Bielack SS. Osteosarcoma. Ann Oncol 2010; 21 (Suppl 7): vi320-S. doi: 10.1093/annonc/mdq276

69. Bielack S, Junges H, Jundt G, Kevric M, Kuhne T, Reichardt P, et al. Osteosarcoma: the COSS experience. Cancer Treat Rev 2009; 35: 289-308. doi: 10.1016/j.ctrv.2009.07.063

70. Park SK, Lee IS, Cho KH, Lee YH, Yi JH, Choi KU. Osteosarcoma of pelvic bones: imaging features. Clin Imaging 2017; 41: 59-64. doi: 10.1016/j.clinimag.2016.10.013

71. Dosda R, Marti-Bonmati L, Menor F, Aparisi F, Rodrigo C, Ricart V. Comparison of plain radiographs and magnetic resonance images in the evaluation of periosteal reaction and osteoid matrix in osteosarcomas. Magn Reson Imaging 1999; 9: 72-80. doi: 10.1016/S0730-725X(98)00016-X

72. McQueen FM, Doyle A, Dalbeth N. Imaging in gout—what can we learn from MRI, CT, DECT and US? Radiographics 2019; 39: 200-218. doi: 10.1148/rg.2018190024

73. Barthelemy CR, Nakayama DA, Carrera GF, Lightfoot RW, Jr., Wortmann CD. Osteosarcoma: a report of two cases. Skeletal Radiol 2009; 38: 799-806. doi: 10.1007/s00256-009-0912-3

74. Dalbeth N, Clark B, McQueen F, Doyle A, Taylor W. Validation of a radiographic method to grade bone erosion in rheumatoid arthritis. Arthritis Rheum 2005; 52: 191-205. doi: 10.1002/art.20631

75. Cohen RB, Hahn GV, Tabas JA, Peeper J, Levitz CL, Sando A, et al. The natural history of heterotopic ossification in patients who have fibrodysplasia ossificans progressiva. A study of forty-four patients. J Bone Joint Surg Am 1993; 75: 215-9. doi: 10.1093/jbjs/75.2.215

76. Klang A, Kreissl S, Glanzer R, Fuchs-Baumgartinger A. Imaging diagnosis: fibrodysplasia ossificans progressiva in a cat. Vet Radiol Ultrasound 2013; 54: 532-5. doi: 10.1111/vru.12040

77. Karunakar MA, Sen A, Bosse MJ, Sirns SH, Goulet JA, Kellam JF. Indometacin as prophylaxis for heterotopic ossification after the operative treatment of fractures of the acetabulum. J Bone Joint Br 2006; 88: 1613-7. doi: 10.1302/0301-0260.88B11.18151

78. Pavlov G, Kyrkos M, Tsalogiannis E, Korrnes N, Törديدs E. Pharmacological treatment of heterotopic ossification following hip surgery: an update. Expert Opin Pharmacother 2012; 13: 619-22. doi: 10.1517/14656566.2012.662342

79. Fransen M, Anderson C, Douglas J, MacMahon S, Neal B, Norton R, et al. Safety and efficacy of routine postoperative ibuprofen for pain and disability related to ectopic bone formation after hip replacement surgery (HIPOA): randomised controlled trial. BMJ 2006; 335: 319. doi: 10.1136/bmj.38925.471144.4F

80. Barbatto M, D’Angelo E, Di Loreto G, Menna A, Di Francesco A, Salini V, et al. Adherence to routine use of pharmacological prophylaxis of heterotrophic ossification after total hip arthroplasty: results from an Italian multicenter, prospective, observational survey. J Orthop Trauma 2012; 26: 63-7. doi: 10.1016/j.joca.2011.12.018

81. Vuolteenaho K, Moinian T, Moinian E. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol 2008; 102: 10-4. doi: 10.1111/j.1742-7843.2007.00149.x

82. Chang JK, Li CJ, Wu SC, Yeh CH, Chen CH, Fu YC, et al. Effects of anti-inflammatory drugs on proliferation, cytotoxicity and osteogenesis in bone marrow mesenchymal stem cells. Biochem Pharmacol 2007; 74: 1731-82. doi: 10.1016/j.bcp.2007.06.047

83. Sell S, Wills R, Jany R, Emsenwein S, Gaismaier C, Martin F, et al. The suppression of heterotrophic ossifications: radiation versus NSAID therapy—a prospective study. J Arthroplasty 1998; 13: 854-9. doi: 10.1016/S0883-5403(98)00189-9

84. Macfarlane RJ, Ng BH, Gamie Z, El Masry MA, Velonis S, Schizas C, et al. Pharmacological treatment of heterotopic ossification following hip and acetabular surgery. Expert Opin Pharmacother 2009; 9: 767-86. doi: 10.1517/14656566.9.5.767

85. Coventry MB, Scanlon PW. The use of radiation to discourage ectopic bone. A nine-year study in surgery about the hip. J Bone Joint Surg Am 1981; 63: 201-8. doi: 10.2106/00004623-198163020-00004

86. Childs HA, 3rd, Cole T, Falkenberg E, Smith JT, Alonso JE, Stannard JP, et al. A prospective evaluation of the timing of postoperative radiotherapy for preventing heterotrophic ossification following traumatic acetabular fractures. Int J Radiat Oncol Biol Phys 2000; 47: 1347-52. doi: 10.1016/S0360-3016(00)00582-4

87. Chao ST, Lee SY, Borden LS, Joyce MJ, Krebs VE, Suh JH. External beam radiation helps prevent heterotopic bone formation in patients with a history of heterotopic ossification. J Arthroplasty 2006; 21: 731-6. doi: 10.1016/j.arth.2005.08.014

88. Strauss JB, Chen SS, Shah AP, Coon AB, Dickler A. Cost of radiotherapy versus NSAID administration for prevention of heterotrophic ossification after total hip arthroplasty. Int J Radiat Oncol Biol Phys 2008; 71: 1460-4. doi: 10.1016/j.ijrobp.2007.12.006

89. Vlavianos P, Castellani L, Sculco TP. Prophylaxis of heterotopic ossification of the hip: systematic review and meta-analysis. Clin Orthop Relat Res 2009; 467: 3283-9. doi: 10.1002/ASRM.2009-09-0924-S

90. Mavrogenis AF, Soucacos PN, Papageorgopoulos PI. Heterotopic ossification revisited. Orthopedics 2011; 34: 177. doi: 10.3928/14777887-20101224-08

91. Agarwal S, Soder S, Chowdik D, Li J, Breuler C, Drake J, et al. Surgical excision of heterotopic ossification leads to re-emergence of mesenchymal stem cell population responsible for recurrence. Stem Cells Transl Med 2017; 6: 799-806. doi: 10.5966/sctm.2015-0365