Its Alarming, *Klebsiella* spp. towards Multidrug Resistance

Manish Pokra*, Dileep Kumar Sharma, Pushpa Mehta, Harsha Rani Verma, Smariti Pundir, Jyoti Rana and Durgalal Kulmi

Department of Microbiology, Jhalawar medical college, Jhalawar, India

*Corresponding author

Abstract

Klebsiella pneumoniae and *Klebsiella oxytoca* are the two most frequently encountered *Klebsiella* species giving rise to infections in humans. *Klebsiella* spp. causes urinary tract infections, ventilator-acquired pneumonias and blood stream infections (sepsis) among other conditions and is proving to be fatal. *Klebsiella* spp. has been associated with various types of infections and recently one of the most important and alarming aspects of *Klebsiella* spp. is the emergence of multidrug resistant strains particularly those involved in nosocomial infection. Bacteria producing *Klebsiella* carbapenemases and extended-spectrum β-lactamases (ESBL), are rapidly emerging as a cause of multidoseristant infections worldwide. Bacterial isolates harbouring these enzymes are capable of hydrolysing a broad spectrum of β-lactams including the penicillins, cephalosporins, carbapenems and monobactam. Several cases which are almost resistant to all the antibiotic compel us to study its pattern. About hundred clinical isolates were collected from different wards, Icu, Nicu, Picu, postoperative wards of Tertiary care hospital of Jhalawar district. Out of which fifty two confirmed sample of *Klebsiella* spp. were further tested for antimicrobial drug susceptibility. The study is done in period of seven month from sep.2015 to march 2016.

Keywords

Klebsiella pneumoniae, multidi drug resistant strains, β-lactams.

Introduction

During 1883, Friedlandera a German Pathologist and Microbiologist isolated a capsulated bacillus from the lungs of patient who died of pneumonia. This was named after him as Friedlander’s bacillus. Later on this organism was given the generic name of *Klebsiella*, which is ubiquitously present and reported worldwide. *Klebsiella* is among the five gram-negative pathogens most commonly encountered in hospital-acquired infections (Horan *et al.*, 1988), and *Klebsiella pneumoniae* is the most frequently occurring species, accounting for 75 to 86% of *Klebsiella* species reported (Torre *et al.*, 1985; Hansen *et al.*, 1998). Much more rarely encountered are *Klebsiella ozaenae* and *Klebsiella rhinoscleromatis*, which have been retained as separate species because of their association with specific diseases (Podschun *et al.*, 1998). Taxonomically, these two species are regarded as subspecies of *K.*
pneumoniae based on DNA-DNA hybridization data. *Klebsiella oxytoca* is the other well-established species, accounting for 13 to 25% of isolates. Strains of *Klebsiella* are responsible for a wide variety of diseases in humans. These bacteria have become important pathogens in nosocomial infections (Nordmann *et al.*, 2009) which have been well documented in United States and India. Epidemic and endemic nosocomial infections caused by *Klebsiella* species are leading causes of morbidity and mortality.

Infections caused by bacteria-producing *Klebsiella pneumoniae* carbapenemases (KPCs) are becoming an increasingly significant problem worldwide since the first detection of these enzymes greater than a decade ago. (Paterson *et al.*, 2005)

Resistance to β-lactams is mainly mediated by extended-spectrum β-lactamases, with the TEM, SHV and CTX-M types being predominant. More recently, resistance to carbapenems, mediated by β-lactamases with carbapenem-hydrolysing activity (carbapenemases), has emerged. The most prevalent among these enzymes are the serine carbapenemases KPC and OXA-48, and the metallo-β-lactamases VIM, IMP, and NDM. Carbapenemase-producing *K. pneumoniae* (CPKP) isolates have undergone extensive dissemination in many countries, and continues to spread in new geographical locations, indicating an ongoing dynamic process. Certain types of carbapenemases show geographical associations. KPC-producing *K. pneumoniae* isolates were first found in North Carolina, and subsequently emerged in Europe, Latin America, and China (Gundmann, 2010). In countries such as Greece and Israel, and in the eastern USA, KPC-producing *K. pneumoniae* isolates have become endemic (Bratu *et al.*, 2005).

The metallo-β-lactamases VIM and IMP are scattered globally, with VIM predominating in southern Europe and IMP in the Far East, and NDM being widespread in India and Pakistan. OXA-48-producing *K. pneumoniae* isolates were first described in Turkey, and subsequently emerged in the Middle East, India, Europe, and North Africa (Poirel *et al.*, 2004). CPKP isolates affect mainly hospitalized patients with underlying diseases and poor functional status (Mathers *et al.*, 2009). They often exhibit extensive drug resistance phenotypes, complicate therapy, and limit treatment options. These organisms generally have elevated carbapenem MICs, but, for some isolates, routine susceptibility testing may show low MIC values (≤4 mg/L) despite the production of a carbapenemase. It is also necessary to discuss about *Klebsiella oxytoca* which is an opportunistic pathogen involved in antibiotic-associated diarrhoea and in nosocomial infections. The chromosome of wild-type *K. oxytoca* carries a β-lactamase gene. This gene is constitutively expressed at low levels, which usually confers low-level resistance to amino- and carboxypenicillins but no significant resistance to other β-lactams. The β-lactamases of *K. oxytoca* have been divided into two main groups: blaOXY-1 and blaOXY-2. (Fournier, 1997) These two β-lactamases have been placed in functional group 2be in Bush’s scheme and in class A of Ambler’s classification. These two genes share 87% nucleotide sequence identity. Each β-lactamase group is represented by at least four different forms according to their pI values from 7.1 to 8.8 and 5.2 to 6.8 for OXY-1 and OXY-2, respectively. Two other groups of *K. oxytoca* genes have recently been reported and named blaOXY-3 and blaOXY-4. (46) The nucleotide sequence of the blaOXY-4 gene is 95% identical to that of the blaOXY-4 gene. The bla genes display...
the STFK and KTG sequences typically found in β-lactamases possessing a serine active site. Clinical isolates of *Klebsiella* spp. including *K. oxytoca*, resistant to broad-spectrum cephalosporins and aztreonam, have been increasingly reported and are due to the acquisition of plasmids encoding extended-spectrum β-lactamases (ESBLs). In addition, *K. oxytoca* isolates that overproduce the chromosomally-encoded β-lactamase have been found to be resistant to broad-spectrum cephalosporins (e.g. cefotaxime and ceftriaxone) and monobactams. Although β-lactamase production is not regulated, some mutations in the promoter region cause its overproduction. Various mutations have been reported in the −35 and −10 promoter regions. Strains that overproduce β-lactamase are resistant to cefuroxime, ceftriaxone and aztreonam. In contrast, these strains are not resistant to ceftazidime, distinguishing β-lactamase overproducers from strains of *K. oxytoca* with plasmid-borne ESBLs. A strain of *K. oxytoca* that produces a chromosomally-encoded β-lactamase conferring resistance to ceftazidime was recently reported (Mammeri *et al.*, 2003).

Materials and Methods

Sputum, urine, and pus, blood samples collected from inpatients admitted into clinical wards were sent to Microbiology laboratory within 6 hours of collecting samples. The samples were inoculated on blood agar and mac conkey agar, brain heart infusion broth and incubated according to the sample at 370°C. All the clinical isolates were examined morphologically for colony characteristics on agar media. Those exhibiting mucoid colonies were processed for biochemical testing. Biochemical test employed were urease production, citrate utilization and fermentation of sugars. Sugar fermentation tests performed were sucrose, glucose, mannitol, lactose, adonitol, dulcitol, melibiose and esculin. Indole test and H2S production on TSI agar, oxidase, catalase and nitrate were also carried out. Besides these tests, motility and growth of organism in potassium cyanide were also checked. For biochemical tests standard procedures were used. Antibiotic sensitivity testing was done for all the isolates on Mueller-hinton agar/Nutrient agar by modified Kirby-bauer disc diffusion technique. Antibiotic used were azithromycin (AZM), gentamicin (GM), augmentin(AUG),ceftriaxone (CTR), tobramycin(TOB), ceftazidime (OR), cefixime(CFM), piperacillin-tazobactam (PIT), imipenem(IMP), meropenem (MRO), chloramphanicol (C), ciprofloxacin (CIP), ofloxacin (OF), amikacin (AK), gentamycin (HLG), doxycycline(DO), cefoxitin (CX), norfloxacin (NX), nitrofurantoin (NIT), netilmicin (NIT), cotrimoxazole(COT).

Results and Discussion

Out of 100 samples, 52 were confirmed as *Klebsiella* spp. through microscopy, colony morphology, biochemical reactions. These includes 40 species of *K. pneumoniae* and remaining of *K. oxytoca*. These are differentiated on the basis of biochemical reactions including Indole reaction. *K. pneumoniae* gives negative indole reaction and *K. oxytoca* gives positive. Isolates further tested for antibiotic sensitivity on Mueller-hinton agar/Nutrient agar .In our studies we have found that *Klebsiella* spp. from clinical cases were highly susceptible to Netilmicin, Tobramycin, Azithromycin, Amikacin, Gentamicin Norfloxacin, Nitrofurantoin, Ofloxacin comparatively. Studies also shows that antibiotic such as Augmentin, Ceftazidine, Cefixime are 100 % resistant and Meropenem and imipenem were 11.5 % susceptible which is due to bacteria-producing *Klebsiella pneumoniae*.
carbapenemases (KPCs). Klebsiella isolates were found to show resistance to cefotaxime, ceftazidime, cefepime, cefoxitin, ceftriaxone.

Almost 10 isolates were 100% resistant to all antibiotics used which were like a superbug to those patients and eye opener for medical fraternity.

Our study shows that aminoglycosides like netilmicin, tobramycin, gentamicin, amikacin are potent antibiotics to some extent with susceptibility of 36.5%, 34.6%, 21.1%, 30.7% which is also not satisfactory and it indicates that Klebsiella is getting resistant to them also.

Clinical isolates of Klebsiella spp. including K. oxytoca, resistant to broad-spectrum cephalosporins and carbapenem, have been increasingly reported and are due to the acquisition of plasmids encoding extended-spectrum β-lactamases (ESBLs) and KPC producing bacteria. In vitro data showed a wide range of beta-lactams, aminoglycosides, quinolones and other antibiotics which are useful for treatment of Klebsiella infections. Both Gram positive and Gram negative bacteria have cell walls which is composed of heavily cross-linked peptidoglycan layers which are catalysed by cell-wall transpeptidases also known as penicillin binding protein(PBP). B-lactam antibiotics disturb peptide bond formation by acting as competitive inhibitors to these PBPs. These result in formation of irreversible covalent bonded penicilloyl-enzyme complexes with weak cross-linked peptidoglycans, thus ease bacteria lyases and death (Wilke et al., 2005). All the Klebsiella isolates were resistant to most of the antibiotics and ten among them were resistant to all the antimicrobial agents tested which is alarming and dangerous. In our studies we found that Klebsiella spp. from clinical cases were highly susceptible to Netilmicin, Tobramycin, Azithromycin, Amikacin, Gentamicin Norfloxacin, Nitrofurantoin, Ofloxacin. The emergence of multidrug resistant strains particularly those involved in nosocomial diseases and the alarming rise in resistance to SHV and ESBL producing groups of antibiotics result in high morbidity and mortality. Early identification of agent, therefore, is important for timely management of patients. Klebsiella has been associated with different types of infections and one of the important aspects of Klebsiella associated infection is the emergence of multi-drug resistant strains particularly those involved in nosocomial diseases. The alarming rise in resistance to SHV and ESBL producing groups of antibiotics result in high morbidity and mortality. TEM- and SHV type ESBL producing Klebsiella pneumoniae were extensively reported worldwide after it was first identified in enterobacterial isolates from India. The high prevalence of these drug resistant strains has further necessitated the requirement of a rapid and accurate identification system for K.pneumoniae. We have found that the isolates were highly susceptible to quinolones and the aminoglycosides. Carbapenem-resistant K. pneumoniae infection is associated with numerous healthcare-related risk factors and with high mortality. The mortality rate associated with carbapenem-resistant K. pneumoniae infection and the limited antimicrobial options for treatment of carbapenem-resistant K. pneumoniae infection highlight the need for improved detection of carbapenem-resistant K. pneumoniae infection, identification of effective preventive measures, and development of novel agents with reliable clinical efficacy against carbapenem-resistant K. pneumoniae. KPC-producing bacteria have emerged in multiple species of Gram-negative bacteria across the world.
They have created significant clinical challenges for clinicians as they are not consistently identified by routine screening methods and are highly drug-resistant, resulting in delays in effective treatment and a high rate of clinical failures. Effective antibiotics are limited to polymyxins, tigecycline and occasionally aminoglycosides. Hospitals must prepare so that they can identify these organisms early and institute enhanced infection control efforts when necessary. Clinical microbiology laboratories need to recognize the signature of ertapenem resistance as a marker for KPC-producing bacteria, and should alert physicians to assume cross resistance to all carbapenems when it is present.

Infection	% of infections caused by Klebsiella	Rank²	References
UTI	6–17	5–7	61,62,63,64
Pneumonia	7–14	2–4	61,65,63
Septicemia	4–15	3–8	66,67,68-70,71, 72,73,74,64,75
Wound infections	2–4	6–11	63,76,64
Nosocomial infections in intensive care unit patients	4–17	4–9	61,63,77,64
Neonatal septicemia	3–20	2–8	78,79,80,81,82, 83

Table 1.

Table 1. Hospital-acquired bacterial infections caused by Klebsiella spp.

a Ranking of Klebsiella compared to all other bacterial pathogens.
Furthermore, clinicians need to appreciate that KPC-production can occur in many Gram-negative bacilli and become familiar with the limited effective antibiotics against KPC-producing bacteria as the frequency of KPC-producing bacteria is expected to continue to increase. Recently, WHO warned society during press release and stated that antibiotics may lose their power to cure disease if action is not taken now against antimicrobial resistance problem. WHO also recommended six ways to overcome multi drug resistant problem, those are:

1. Committing to a comprehensive, financed national plan with lines of accountability and community engagement;
2. Strengthening surveillance and laboratory capacity;
3. Ensuring a regular supply of good-quality medicines;
4. Regulating and promoting rational use of medicines and proper patient care;
5. Enhancing infection prevention and control in health settings; and
6. Fostering innovation, research and development

Acknowledgement

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organization. I would like to extend my sincere thanks to all of them. I am highly indebted to Dr. Pushpa Mehta, HOD Department of Microbiology for their guidance and constant supervision as well as for providing necessary information regarding the project & also for their support
in completing the project. I would like to express my gratitude towards my parents & member of medical college for their kind co-operation and encouragement which help me in completion of this project. I would like to express my special gratitude and thanks to Dr. Dileep Sharma, Asst. Prof. Dept. of Microbiology, for giving me such attention and time. My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities.

References

Adams-Haduch, B. A. Potoski, H. E. Sidjabat, D. L. Paterson and Y. Doi. Activity to Temocillin against KPC-Producing Klebsiella pneumonia and Escherichia coli. Antimicrob Agents Chemother, 30, (Medline)

Ambler, R. P., Coulsen, A. F. W., Frère, J. M. et al. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J., 276, 269–70.

Antoniadou, A, Kontopidou F, Poulakou F et al. Colistin-resistant Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multinational cluster. J Antimicrob Chemother 2007; 59: 786–790.

Arakawa, Y., Ohta, M., Kido, N. et al. 1989. Chromosomal β-lactamase of Klebsiella oxytoca, a new class A enzyme that hydrolyzes broad-spectrum β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 33, 63–70.

Beauserie, L., Petit, J. C. 2004. Antibiotic-associated diarrhoea. Best Practice & Research. Clinical Gastroenterology 18, 337–52.

Bush, K. 2010. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol., 13; 558–564.

Bush, K., Jacoby, G.A. Meideros, A. A. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39; 1211–33.

Chan, J. S. Liu, D. A. Pociask, M. Zheng, T. A. Mietzner, and T. Berger. Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol., 15, 182(8): 4947-56.
fimbriae. J. Bacteriol. 169:934–938.

Combe, M.L., Pons, J.L., Sesboe, R., Martin J. P. (1994) Electrophoretic transfer from polyacrylamide gel to nitrocellulose sheets: a new method to characterize multilocus enzyme genotypes of Klebsiella strains. Appl. Environ. Microbiol., 60:26–30.

Cooke, E.M., Pool, R., Brayson, J.C., Edmondson A.S., Munro M.E., Shinebaum R. 1979. Further studies on the source of Klebsiella aerogenes in hospital patients. J. Hyg. Camb. 83:391–395. MedlineGoogle Scholar

Coque, T.M., Baquero, F., Canton, R. 2008. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveil 2008; 13: pii: 19044.

Cruickshank, R. Medical Microbiology 1980, 12th eds. (revised reprint) Edinburg: Churchill Livingston. 170 – 189.

Cryz, S.J., Furer, R., Germanier, R. 1985. “Protection against fatal Klebsiella pneumonia burn wound sepsis by passive transfer of anticapsular polysaccharide, Infect. Immun., 45: 139-142.

Cuzon, G., Naas, T., Truong, H., et al. 2010. Worldwide diversity of Klebsiella pneumoniae that produces β-lactamase blaKPC-2 gene. Emerg. Infect. Dis., 16: 1349–1356.

Daikos, GL, Karabinis A, Paramithiotou E et al. VIM-1 producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int J Antimicrob Agents 2007; 29: 471–483.

Daikos, GL, Petrikkos P, Psychogiou M et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 2009; 53: 1868–1873.

Daly, MW, Riddle DJ, Ledeboer NA et al. Tigecycline for treatment of pneumonia and empyema caused by carbapenemase-producing Klebsiella pneumoniae. Pharmacotherapy 2007; 27 : 1052–1057.

Elek, A, Rahimian J, Mandell W. Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clin Infect Dis 2009; 49: 271–274.

Fournier, B., Arlet, G., Lagrange, P. H. et al. 1994. Klebsiella oxytoca: resistance to aztreonam by overproduction of the chromosomally encoded β-lactamase. FEMS Microbiology Letters, 116, 31–6.

Fournier, B., Lagrange, P. & Philippon, A. 1996. β-Lactamase gene promoters of 71 clinical strains of Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy, 40, 460–3.

Fournier, B., Lu, C. Y., Lagrange, P. et al. 1995. Point mutation in the prbnow box, the molecular basis of β-lactamase overproduction in Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy, 39, 1365–8.

Fournier, B., Roy, P. H. 1997. Variability of chromosomally encoded β-lactamases from Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy, 41, 1641-8.

Fournier, B., Roy, P. H., Lagrange, H. et al. 1996. Chromosomal β-lactamase genes of Klebsiella oxytoca are divided into two main groups: blaOXY-1 and blaOXY-2. Antimicrobial Agents and Chemotherapy, 40, 454–9.

Freedman, R.M., Ingram, D.L., Gross, I., Granier, S. A., Leflon-Guibout, V., Goldstein, F. W. et al. 2003. New Klebsiella oxytoca β-lactamase genes blaOXY-3 and blaOXY-4 and a third genetic group of K. oxytoca based on blaOXY-3. Antimicrobial Agents and
Chemotherapy, 47, 2922–8.

Graybill, J.R., Marshall, L.W., Charache, P., Wallace, C.K., Melwin, V.K. 1973. Nosocomial pneumonia: A continuing major problem, Am. Rev. Respir. Dis., 108: 1130-1140.

Gundmann, H., Livermore, D.M., Giske, G.G. et al. 2010. Carbapenem non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveil, 15: pii: 19711.

Hansen, D.S., Gottschau, A., Kolmos, H.J. 1998. Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J. Hosp. Infect., 38: 119-132. (PubMed)

Hirsch, EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 2010; 65: 1119–1126. CrossRef, PubMed, CAS, Web of Science® Times Cited: 18

Horan, T., Culver, D., Jarvis, W., Emori, G., Banerjee, S., Martone, W., Thornsberry, C. 1988. Pathogens causing nosocomial infections. Antimicrob. Newslett., 5: 65-67.

Jeong, S. H., Kim, W. M., Chang, C. L. et al. 2001. Neonatal intensive care unit outbreak caused by a strain of Klebsiella oxytoca resistant to aztreonam due to overproduction of chromosomal β-lactamase. J. Hospital Infection 48, 281–8. CrossRef, Medline

Johanson, W.G., Pierce A., Sanford J. P. (1969) Changing pharyngeal bacterial flora of hospitalized patients. Emergence of gram-negative bacilli. N. Engl. J. Med., 281:1137–1140. Google Scholar

Kontopoulou, K, Protonariou, E, Vasilakos K et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J Hosp Infect 2010; 76: 70–73.

Kurnarasamy, K.K., Toleman, M.A., Walsh, T.R. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: a molecular, biological and epidemiological study. Lancet Infect Dis 2010; 10: 597–602.

Livermore, D.M. 1995. β-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews, 8, 557–84.

Lomaestro, BM, Tobin EH, Shang W, Gootz T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin Infect Dis 2006; 43: e26–e28.

Mammeri, H., Poirel, L. & Nordmann, P. 2003. In vivo selection of a chromosomally encoded β-lactamase variant conferring ceftazidime resistance in Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy, 47, 3739–42.

Mathers, AJ, Cox HL, Bonatti H et al. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. Transpl Infect Dis 2009; 11: 257–265.

Mathur, N.B., Khalib, A., Sarkar, R., Puri, R.K. Mortality in neonatal septicaemia with involvement of mother in management, Ind. J. Pediatr., 28(ii): 1259-1264.

Mobley, H.L.T., Chippendale, G.R., Tenney J. H., Mayrer A. R., Crisp L. J., Penner J. L., Warren J. W. (1988) MR/K hemagglutination of Providencia stuartii correlates with adherence to catheters and with persistence in catheter-associated bacteriuria. J. Infect. Dis., 157:264–271.

Mouloudi, E, Protonariou E, Zagorianou A et al. Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patient in Greece:
risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol 2010; 31: 1250–1256.

Nordmann, P., Cuzon, G., Naas, T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria, Lancet Infect. Dis., 9(4): 228-236.

Nordmann, P., Cuzon, G., Nas, T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 9: 228–236.

Ohlsson, A., Bailey, T., Takieddine, F. 1986. Changing etiology and outcome of neonatal septicemia in Riyadh, Saudi Arabia. Acta Paediatr. Scand., 75: 540–544.Medline

Orskov, I. 1984. Genus v. Klebsiella, p. 461-465. In Krieg NR and Holt JG(ed.), Bergey's manual of systematic bacteriology, vol. 1. Williams & Wilkins, Baltimore, Md.

Paterson, D.L., Bonomo, R.A. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev., 18: 657–686.

Philippon, A., Labia, R. & Jacoby, G. 1989. Extended-spectrum β-lactamas. Antimicrobial Agents and Chemother., 33, 1131–6.

Podschun, R., Ullmann, U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev., 11: 589-603. (PMC free article)

Poirel, L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004; 48: 15–22

Qi, Y., Wei, Z., Li, S., et al. ST1, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother., 66: 307–312.

Quenan, E.M., Bush, K. 2007. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev., 20: 440-458. CrossRef, Pu bMe d, CAS, Web of Science® Times Cited: 251.

Schwaber, M.J., Carmeli, Y. 2008. Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA, 300: 2911–2913.

Souli, M, Kontopidou FV, Papadomichelakis E et al. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek university hospital. Clin Infect Dis 2008; 46: 847–854.

Tessin, I., Trollfors, B., Thiringer, K. 1990. Incidence and etiology of neonatal septicaemia and meningitis in Western Sweden 1975–1986. Acta Paediatr. Scand., 79: 1023–1030.

Torre, D.E., LA, M.G., Romero-Vivas, J., Martínez-Bentrán, J., Guerrero, A., Meseguer, M., Bouza. E. 1985. Klebsiella bacteremia: an analysis of 100 episodes. Rev. Infect. Dis., 7: 143-150. (Pub Med)

Tullus, K., Berglund, B., Fryklund, B., Kühn, I., Burman, L.G. 1988. Epidemiology of fecal strains of the family Enterobacteriaceae in 22 neonatal wards and influence of antibiotic policy. J. Clin. Microbiol., 26: 1166–1170.

Tullus, K., Olsson-Liljequist, B., Lundström G., Burman, L.G. 1991. Antibiotic susceptibility of 629 bacterial blood and CSF isolates from swedish infants and the therapeutic implications. Acta Paediatr. Scand., 80: 205–212.

Vatopoulos, A. 2008. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece—a review of the current evidence. Euro Surveil 2008; 13: pii: 8023. Available at: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=8023 (last accessed 12 May 2011).PubMed,CAS
Vesikari, T., Isolauri, E., Tuppurainen, N., Renlund, M., Koivisto, M., Janas, M., Ikonen, R.S., Kero, P., Heinonen, Nyman, R., Kunnas, M. 1989 Neonatal septicaemia in Finland 1981–85. Acta Paediatr. Scand., 78: 44–50.

Watanakunakorn, C. 1991. *Klebsiella* bacteremia: a review of 196 episodes during a decade (1980-1989). *Scand. J. Infect. Dis.*, 23: 399-405.

Weisenberg, S. A., D.J. Morgan, R. Espinal-Witter and D. H. Larone.Clinical outcomes of patients with *Klebsiella pneumonia* carbapenemase-producing K.pneumoniae after treatment with imipenem or meropenem. *Diagn. Microbiol. Infect. Dis.*, 1, (Medline).

Weisenberg, SA, Morgan DJ, Espinal-Witter R, Larone DH. Clinical outcomes of patients with KPC-producing *Klebsiella pneumonia* following treatment with imipenem or meropenem. *Diagn Microbiol Infect Dis* 2009; 64: 233–235.

Wilke, L. Andrew, L. Natalie and C.J. Strynadka “B-lactam antibiotic resistant: a current structural prospective” *Current Opinion in Microbiology*, 2005, 8:525-533

Wu, S. W., Dornbusch, K. & Kronvall, G. 1999. Genetic characterization of resistance to extended-spectrum β-lactams in *Klebsiella* oxytoca isolates recovered from patients with septicemia at hospitals in the Stockholm area. *Antimicrobial Agents and Chemotherapy* 43, 1294–7.

Yan, J.J., Ko, W.C., Tsai, S.H.. Outbreak of infection with multidrug-resistant *Klebsiella pneumoniae* carrying *blaIMP*-8 in a university medical center in Taiwan. *J Clin Microbiol* 2001; 39: 4433–4439.

Yancey, R.J., Breeding S.A. L., Lankford C. E. 1979. Enterochelin (enterobactin): virulence factor for *Salmonella typhimurium*. *Infect. Immun.*, 24: 174–180.

Yinnon, A.M., Butnaru, A., Raveh, D., Jerassy, Z., Rudensky B. (1996) *Klebsiella* bacteremia: community versus nosocomial infection. *Monthly J. Assoc. Physicians*, 89: 933–941.

Young Soo, WHO, Western Pacific region, press release, 7 April 2011.

How to cite this article:

Manish Pokra, Dileep Kumar Sharma, Pushpa Mehta, Harsha Rani Verma, Smariti Pundir, Jyoti Rana and Durgalal Kulmi. 2016. Its Alarming, *Klebsiella spp.* towards Multidrug Resistance. *Int.J.Curr.Microbiol.App.Sci.* 5(6): 150-160. doi: http://dx.doi.org/10.20546/ijcmas.2016.506.019