Phaeochromocytoma is a rare catecholamine-secreting neuroendocrine tumour of the chromaffin cells which occur predominantly in the adrenal medulla. To date, germline mutations in five genes have been isolated and implicated in familial phaeochromocytomas. The syndromes include von Hippel-Lindau syndrome, multiple endocrine neoplasia type 2 syndrome, and neurofibromatosis type 1 syndrome. More recently familial paraganglioma syndromes have been described in which mutations of the genes encoding succinate dehydrogenase subunits B, C and D occur. The presenting features of phaeochromocytomas are due to the catecholamine excess and are variable in their expression as there is diversity in the phenotypes of these tumours. These tumours may result in severe morbidity and mortality from cardiovascular complications ranging from a typical paroxysmal pattern of hypertension to overt cardiac failure and sometimes sudden death. Diagnosis of phaeochromocytoma requires the biochemical confirmation of excessive catecholamine production based on measurement of either catecholamines or their metabolites in the plasma or urine, following which the tumour is localised using imaging studies. The measurement of plasma free metanephrines has recently become available for routine use. This test has generated much controversy, but has been advocated as the test of choice in many studies. The management of a phaeochromocytoma is mainly surgical and requires careful patient preparation to avoid catecholamine-induced complications during surgery. This review provides an update on phaeochromocytomas.

Introduction

Phaeochromocytoma is a rare catecholamine-secreting neuroendocrine tumour of the chromaffin cells, which occurs predominantly in the adrenal medulla. The term phaeochromocytoma originates from the Greek words *phaios* (dusky) and *chromo* (colour). The incidence is approximately 2 - 8 per million of the population, and it is thought to be present in approximately 0.2% of patients with hypertension. More than 80% of these tumours are found in the adrenal gland, as this is the site where chromaffin cells remain viable after birth, the remainder being extra-adrenal. Extra-adrenal tumours are known as paragangliomas. Approximately 75% of paragangliomas occur in the organ of Zuckerkandl; however, they may also be found in the thorax, abdomen, pelvis, mediastinum and neck. Phaeochromocytomas have traditionally been described by the ‘rule of tens’, i.e. 10% malignant, 10% extra-adrenal, 10% familial, and 10% in children. However, recent studies using molecular techniques have found that approximately 25% of patients have germ-line mutations of one of four susceptibility genes for phaeochromocytoma. Furthermore, the prevalence of extra-adrenal disease as well as malignancy far exceeds 10%. The peak incidence of sporadic tumour occurrence is between the ages of 40 and 50 years, and there does not appear to be a gender preference. These tumours occur very rarely in children, and when they do occur they often present as extra-adrenal, multifocal, hereditary-type tumours. Phaeochromocytomas are associated with severe and fatal cardiovascular complications. The incidence of malignancy is low, but patients with a history of phaeochromocytoma appear to be at a greater risk of developing other tumours such as malignant melanoma, liver cancer, cervical cancer and central nervous system tumours.

Genetics

There is evidence to suggest that approximately 24% of phaeochromocytomas have a hereditary component. To date germline mutations in five genes have been isolated and implicated in familial phaeochromocytomas. The syndromes include von Hippel-Lindau syndrome with the tumour suppressor VHL gene, multiple endocrine neoplasia type 2 syndrome with the proto-oncogene RET gene, and neurofibromatosis type 1 syndrome with the tumour suppressor gene NF-1. More recently familial paraganglioma syndromes have been described in
which mutations of the genes encoding succinate dehydrogenase subunits B, C and D occur. These genes encode proteins of mitochondrial complex II of the electron transport chain. The mechanism by which these mutations result in tumours has yet to be elucidated.

There is some controversy regarding the recommendations for genetic testing of patients with phaeochromocytoma. It is believed by some authors that since approximately 25% of sporadic phaeochromocytomas may carry mutations of the RET (multiple endocrine neoplasia type 2), VHL (von Hippel-Lindau syndrome), SDHD or SDHB (paraganglioma syndromes) genes, routine analysis for these mutations should be conducted on all patients presenting with phaeochromocytomas. Furthermore patients with the syndromic hereditary forms present more commonly with multiple phaeochromocytomas; they are also predisposed to develop other associated neoplasms as well as being subject to recurrences. They require more stringent follow-up, and screening of other family members is recommended.

However, others believe that screening of all patients is not cost-effective and recommend that only patients with a positive family history or those who present before 50 years of age, especially children, should have genetic testing.

Clinical presentation

The presenting features of phaeochromocytomas are due to catecholamine excess. The signs and symptoms may vary between patients, however, and can initially be fairly nonspecific resulting in a delay in diagnosis of up to 3 years. Phaeochromocytomas are heterogeneous with diverse phenotypes. They may be of an epinephrine-producing and adrenergic biochemical type or norepinephrine-producing and noradrenergic biochemical type. It is this variable nature of hormone production that accounts for the variable clinical presentation of the disease. The most commonly encountered signs and symptoms are hypertension, palpitations, diaphoresis, headache, pallor, anxiety, and metabolic effects such as hyperglycaemia, weight loss, and lactic acidosis. Increased availability of genetic testing and abdominal imaging studies have facilitated the detection of phaeochromocytomas in the preclinical phase.

The presentation of hypertension in these patients is variable. It may be paroxysmal in nature, either coupled with sustained hypertension or as paroxysms in between periods of normotension. Interestingly, some patients may present with orthostatic hypotension on the background of hypertension. The paroxysmal nature of the symptoms and signs is due to the episodic nature of catecholamine secretion from the tumour. These paroxysms can be induced by food, micturition, some drugs such as glucagon, metoclopramide and tricyclic antidepressants, and other chemical compounds such as radiographic contrast materials.

These tumours also cause severe morbidity and mortality from cardiovascular complications, which include sudden death, heart failure as a consequence of cardiomyopathy, cerebrovascular accidents, hypertensive encephalopathy, neurogenic pulmonary oedema, dissecting aortic aneurysm, myocardial infarction, and cardiac arrhythmias.

Phaeochromocytomas can secrete other hormones such as neuropeptide Y, parathyroid hormone-related protein, calcitonin, adrenocorticotropic hormone, neuron-specific enolase, interleukin-6, vasocactive intestinal peptide and chromogranin A. Patients can therefore present with additional symptoms and signs resulting from these secreted products.

Biochemical diagnosis

Diagnosis of phaeochromocytoma requires the biochemical confirmation of excessive catecholamine production based on measurement of catecholamines or their metabolites in the plasma or urine. (Fig. 1). Following biochemical diagnosis the tumour is localised using imaging studies. The associated morbidity and mortality of phaeochromocytomas demand the use of a sufficiently sensitive initial test to reliably exclude the diagnosis. There is, however, a lack of consensus regarding the most efficient and cost-effective test protocol for the diagnosis of this tumour.

The indications for biochemical testing include patients presenting with paroxysmal signs and symptoms that suggest phaeochromocytomas, recently diagnosed hypertension resistant to
therapy, paradoxical blood pressure readings during anaesthesia and surgery, any hereditary predisposition to phaeochromocytomas, sudden attacks of anxiety, and adrenal incidentalomas in asymptomatic patients.4

The measurement of plasma free normetanephrine and metanephrine has recently become available for routine use. (The combined measurement of unconjugated normetanephrine and metanephrine is referred to as plasma free metanephrines.) This test has generated much controversy, but has been advocated as the test of choice in many studies.4,25,26 Other studies, however, have shown that plasma metanephrines lack the specificity necessary for this to be recommended as a first-line screening test.27-29 They suggest that this test is the test of choice in high-risk patients with familial syndromic forms of this disease and that in lower-risk patients measurement of 24-hour urinary catecholamines and total metanephrines are more specific and yield fewer false-positive results. Other researchers suggest that the measurement of plasma free metanephrines or urinary fractionated metanephrines are the most sensitive tests for diagnosis, with sensitivities of 99% and 97%, respectively.4 The exceptions are small tumours < 1 cm in size, microscopic recurrences and rare dopamine-secreting paraganagliomas.25 The measurement of catecholamines either in plasma or urine is not as sensitive owing to its episodic release, in contrast to metanephrine production, which occurs on a continuous basis via O-methylation by the tumour. Furthermore, some tumours do not always produce catecholamines. Although the sensitivity of these tests is high, false-positive results can complicate the reliability of these tests to exclude the diagnosis (Table I).4

Goldstein et al.29 have suggested an algorithmic approach to the diagnosis of phaeochromocytoma, commencing with the measurement of plasma free metanephrines as the first-line diagnostic test. They also suggested using a negative plasma metanephrine result as a rule-out test for phaeochromocytoma. High results are consistent with the diagnosis of phaeochromocytoma, and one should then proceed to imaging studies to localise the tumour. If the plasma metanephrine results are only moderately increased (approximately four times the upper reference level), then a confirmatory test such as the clonidine stimulation test is indicated. Clonidine suppresses the release of catecholamines from the sympatho-adrenal axis, and failure to cause suppression of this axis is required for the diagnosis of a phaeochromocytoma. A decrease of < 50% from baseline or a consistently increased baseline of > 3 nmol/l after clonidine administration is diagnostic.4,29

Interference	Outcome	Recommendation
Physiological stimuli	Plasma epinephrine increase 100 times during hypoglycaemia, Plasma norepinephrine increases 2 - 3 times during standing, Plasma epinephrine and norepinephrine increase several times during vigorous exercise	Sampling of blood must be done after an overnight fast in a supine position to negate the effects of diet and physical activity on plasma measurements of catecholamines and their metabolites
Pharmacological agents	Increase sympathetic stimulation and therefore, increase in catecholamine levels	See Table II
Medical conditions (heart failure, stroke, cardiogenic shock, renal insufficiency.) Minor increases occur in hypothyroidism, and chronic obstructive pulmonary disease)	See Table II	
Diet	See Table III	See Table III
Incorrect urine sampling		Correct for incomplete or time exceeded collections by using the urine creatinine levels. 24-hour urine collections for catecholamine measurement should be acidified
Direct interference with analytical method	See Table III	See Table III
One of the major difficulties in the diagnosis of phaeochromocytoma is distinguishing between true-positive and false-positive results. In general terms these can be distinguished by the magnitude of the increase of the test results above the reference range. The difficulty resides in those patients who show increases less than 2 - 3 times the upper reference limit. Similar patterns of increase in both plasma and urinary metanephrines and or similarities in increases on repeat or alternative method testing are likely to be true-positive results.

There is some indication from the literature that a strong positive relationship exists between tumour diameter and the summed plasma concentrations of free metanephrines that might be useful for predicting tumour size. The pattern of catecholamine secretion is dependent on the underlying mutation. It has been found that patients with von Hippel-Lindau syndrome secrete predominantly norepinephrine, while patients with multiple endocrine neoplasia type 2 syndrome produce a mixture of norepinephrine and epinephrine. It is thought that there are distinct gene expression patterns that result in different tumorigenesis pathways and therefore the possibility of tumours arising from different populations of chromaffin cells.

Chromogranin A levels are increased in 80% of patients with phaeochromocytomas, but this is less specific and sensitive than catecholamine and or their metabolites for diagnosis. It is therefore recommended for use as an adjuvant test.

Imaging procedures

The tumour is localised only once there is unequivocal biochemical evidence for the presence of the disease. The initial investigation is a computed tomography...
(CT) scan of the abdomen and pelvis with or without the use of contrast material. The sensitivity of the CT scan for detecting adrenal phaeochromocytomas is greater than 90%, but lower for extra-adrenal phaeochromocytomas. Some authors suggest the use of combined alpha- and beta-blockade prior to the use of intravenous contrast material, as it is thought that this could stimulate epinephrine and precipitate hypertensive crisis or cardiac arrhythmias. This is still controversial and requires further investigation.\(^\text{31,32}\)

Nuclear magnetic resonance imaging (MRI) has the same sensitivity (90 - 100%) and specificity (70 - 80%) as CT scanning. MRI is preferred, however, as patients do not require adrenoreceptor blockade.\(^\text{31}\)

For improved specificity of tumour detection an MIBG (\(^{123}\)I-metaiodobenzylguanidine) is recommended (\(^{123}\)I-MIBG). MIBG scans are most useful in patients with large adrenal tumours, i.e. > 5 cm, extra-adrenal tumours or possible multifocal lesions, since MIBG scanning allows for whole-body imaging. Some cautionary measures have to be followed as certain drugs interfere with the tumour uptake or retention of \(^{123}\)I-MIBG and will need to be withdrawn or substituted before the scan. These results in false-negative results that are a commoner problem than false-positive results. False-negative results can be due to variability in the tumour’s capacity for uptake of the MIBG and also the turnover within the tumour.\(^\text{33,34}\)

Other imaging techniques include \(^{111}\)In-octreotide scanning and positron emission tomography (PET) imaging. These are used if the other recommended initial techniques are negative or not available.\(^\text{4}\)

Management

Preoperative management

This is crucial to prevent catecholamine-induced complications during surgery. These complications constitute medical emergencies and include hypertensive crisis, cardiac arrhythmias, pulmonary oedema and cardiac ischaemia. Alpha- and or beta-adrenoreceptor blockade is generally used, each regimen having advantages and disadvantages.\(^\text{4}\)

Surgical management

Currently the experts recommend laparoscopic removal of intra- and extra-adrenal tumours with a possible lower complication rate. In patients with bilateral adrenal tumours, adrenal cortex-sparing surgery is advocated to prevent glucocorticoid deficiency.\(^\text{4}\)

Malignant disease

Malignancy is difficult to determine histologically.\(^\text{37,38}\)

Predictors of malignant disease include the presence of metastases in regions where no chromaffin cells are present, tumours that measure > 5 cm, extra-adrenal sites of tumours and pargangliomas.\(^\text{39}\) There is currently no effective treatment available for malignant phaeochromocytomas.\(^\text{40-42}\)

Postoperative care

Postoperative complications include hypotension and hypoglycaemia. Patients require close observation in an intensive care facility. The hypotension is due to the abrupt fall in catecholamine levels and the hypoglycaemia is due to rebound hyperinsulinaemia from the recovery of insulin release following the removal of the tumour.\(^\text{4}\)

Conclusion

Prompt diagnosis and management of phaeochromocytomas is essential since these tumours are associated with severe morbidity and mortality from cardiovascular complications. A thorough understanding of the variable nature of both the clinical presentation and excess hormone production, as well as the biochemical diagnostic testing and imaging studies, is vital for the successful diagnosis and location of this tumour. Recent advances in molecular biology have allowed for the detection of the gene mutations involved, particularly in the syndromic, hereditary-type phaeochromocytomas. The prognosis in benign-type tumours is generally favourable. Treatment for the malignant variety, however, has to date been fairly ineffective.

\(^{1}\) Khorram-manesh A, Ahlman H, Oden A, Janzon S. Mortality associated with phaeochromocytoma in a large Swedish cohort. Eur J Surg Oncol 2004; 30: 556-559.

\(^{2}\) Whalen RK, Althausen AF, Daniels GH. Extra-adrenal pheochromocytoma. J Urol 1992; 147: 1-5.

\(^{3}\) Neumann HP, Beusch R, McWhitney SR, et al. Germ-line mutations in non-syndromic phaeochromocytoma. Br J Radiol 2002; 75: 1465-1468.

\(^{4}\) Lenders JW, Eisenhofer G, Manfredi M, Pacak K. Pheochromocytoma. Lancet 2005; 366: 665-675.

\(^{5}\) O’Shea-Dufour DF, Young WF Jr, Grant CS, Carney JA, van Heerden JA. Clinical spectrum and outcome of functional extra-adrenal paraganglioma. World J Surg 1998; 20: 116-21.

\(^{6}\) Neumann HP, Beusch R, Sigmond G, et al. Pheochromocytoma, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N Engl J Med 1993; 329: 1531-1538.

\(^{7}\) Mangen WM, Giriffo RW. Clinical and Experimental Pheochromocytoma. Cambridge: Blackwell Scientific, 1986.

\(^{8}\) Manfredi M, Ianni L, Cinti A, Cinti A. Pheochromocytoma in Italy: a multivariate retrospective study. Eur J Endocrinol 1993; 129: 619-624.

\(^{9}\) Brown EL, Tagle B. Pheochromocytoma: state-of-the-art and future prospects. Endocrin Rev 2003; 24: 539-563.

\(^{10}\) Wroblewski SA. Diagnosis of a pheochromocytoma. Am J Med Sci 2005; 329(3): 18-21.

\(^{11}\) Bryant J, Farmer J, Townsend RR, Nathanson KL. Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 2003; 95: 1196-204.

\(^{12}\) Maher ER, Young WF Jr. The presence case: update on the genetics of pheochromocytoma. Hum Mut Genet 2002; 11: 2247-2254.

\(^{13}\) Hartmut PH Neumann MD, Birke Bausch SR, O’Shea-Dufour DF, Young WF Jr, et al. Germ-line mutations in syndromic phaeochromocytoma. N Engl J Med 2002; 346: 1469-1486.

\(^{14}\) Ho Y, Pazmuto Y, Oksala T. The role of dopamine, noradrenaline, and somatostatin in
blood pressure disturbances in patients with pheochromocytoma. World J Surg 1992; 16: 750-63, discussion: 763-764.

15. Kimm H, Muray Y, Bajpai I, Sagar H. Catecholamines synthesizing enzymes in 70% of functioning and non-functioning pheochromocytomas and extra-adrenal paragangliomas. Virchows Arch A Pathol Anat Histopathol 1992; 421: 25-32.

16. Mannelli F, Turiel M, Amlhal G, et al. A survey on adrenal incidentalomas in Italy: Study Group in Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 2000; 85: 637-644.

17. Béghéard RE. Pheochromocytomas presenting as shock. Am J Emerg Med 1989; 7: 44-48.

18. Shaw JA, Joos BD, Klein G. Diagnostic evaluation of pheochromocytoma. Endocrinol Metab Clin North Am 1996; 25: 174-189.

19. Pacak K, Chrousos GP, Koch CA, Lenders JWM, Eisenhofer G. Pheochromocytoma. J Clin Endocrinol Metab 2003; 88: 553-568.

20. Goldstein DB, Eisenhofer G, Flynn JA et al. Diagnosis and localization of pheochromocytomas. Hypertension 2004; 43: 907-913.

21. Pausen RT, Wenzluehe C. Measurement of catecholamines and their metabolites. Ann Clin Biochem 2004; 41: 27-36.

22. Eber S, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 2004; 89: 479-491.

23. Freuler JR, Kerschlin M. Pheochromocytoma. Radiol Clin North Am 1998; 34: 1109-1112.

24. Khayat FA, Shapiro B, Fig LM, et al. Catecholamine-induced mitral regurgitation in pheochromocytomas and normal tissues. J Nucl Med 1993; 34: 401-403.

25. Pacak K, Linzen WM, Eisenhofer G, Walther MM, Goldstein DS, Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med 2001; 134: 315-326.

26. Shapiro B, Cope JE, Baron JC, Efeh PL, Wallis J, Besser WW. Iodine-131 metaiodobenzylguanidine uptake by pheochromocytoma and normal tissues. J Nucl Med 1990; 31: 591-594.

27. Yeo H, Roman S. Pheochromocytoma and functional paraganglioma. Endocrinol Metab Clin North Am 2001; 30: 189-205.

28. Sawka AM, Jaeschke R, Singh RJ. A Comparison of biochemical tests for pheochromocytoma: Measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab 2000; 85: 155-158.

29. Lenders JW, Pacak K, Walther MM, Eisenhofer G, Brouwers FM, Pheochromocytoma as an endocrine emergency. Rev Endoc Metab Disord 2003; 4: 121-128.

30. Bravo EL, Tezuka H, Gifford RW jun. Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. N Engl J Med 1970; 303: 682-686.

31. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytomas in 400 cases. J Nucl Med 1990; 31: 567-568.

32. Forfar PE. Diagnoses of the sympathoadrenal system. In: Felip F, Fuchman LA, eds. Endocrinology and Metabolism. 4th ed. New York: McGraw Hill, 2001; 526-551.

33. Lehnert H, Mundschenk J, Hahn K. Malignant pheochromocytoma. Front Hem Rev 2004; 31: 115-132.

34. Eisenhofer G, Rosenzweig BR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. J Endocrinol Endocr Relat Cancer 2004; 11: 423-438.

35. Bravo EL, Dagal P. Pheochromocytoma: state-of-the-art and future prospects. J Endocrinol 2001; 4: 535-553.

36. Ashtari HD, Seshayy CE, Young RC, et al. Malignant pheochromocytoma: effective treatment with a combination of chemotherapy, radiation, and desacetylators. Ann Intern Med 1998; 129: 267-275.

37. Shapiro B, Groce MD, Shulkin B, Radiographic diagnosis and therapy of malignant pheochromocytoma. J Nucl Med 2004; 45: 461-465.

38. Baron JC, Radiopharmaceutical treatment of pheochromocytoma. Ann N Y Acad Sci 2002; 970: 54-60.

39. Sato M, Terakawa M, Taniwaki K. Combined primary and secondary resistance in malignant pheochromocytoma. Jpn J Cancer Res 1993; 84: 142-144.

40. Brouwers FM, Lenders JW, Eisenhofer G, Pacak K, Pheochromocytoma as an endocrine emergency. Rev Endoc Metab Disord 2003; 4: 121-128.

41. Bravo EL, Tezuka H, Gifford RW jun. Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. N Engl J Med 1970; 303: 682-686.

42. Eisenhofer G, Rosenzweig BR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. J Endocrinol Endocr Relat Cancer 2004; 11: 423-438.

43. Lehnert H, Mundschenk J, Hahn K. Malignant pheochromocytoma. Front Hem Rev 2004; 31: 115-132.

44. Eisenhofer G, Rosenzweig BR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. J Endocrinol Endocr Relat Cancer 2004; 11: 423-438.

45. Bravo EL, Dagal P. Pheochromocytoma: state-of-the-art and future prospects. J Endocrinol 2001; 4: 535-553.

46. Ashtari HD, Seshayy CE, Young RC, et al. Malignant pheochromocytoma: effective treatment with a combination of chemotherapy, radiation, and desacetylators. Ann Intern Med 1998; 129: 267-275.

47. Shapiro B, Groce MD, Shulkin B, Radiographic diagnosis and therapy of malignant pheochromocytoma. J Nucl Med 2004; 45: 461-465.

48. Baron JC, Radiopharmaceutical treatment of pheochromocytoma. Ann N Y Acad Sci 2002; 970: 54-60.

49. Sato M, Terakawa M, Taniwaki K. Combined primary and secondary resistance in malignant pheochromocytoma. Jpn J Cancer Res 1993; 84: 142-144.