Symmetries of Sasakian Generalized Sasakian-Space-Form Admitting Generalized Tanaka-Webster Connection

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The object of this paper is to study certain symmetric properties of Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection. We studied semi-symmetry and Ricci semi-symmetry of Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection. Further we obtain results for Ricci pseudosymmetric and Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form.

1 Introduction

In a Riemannian manifold, a curvature tensor given by $K(X, Y) = R(X, Y, Y, X)$ for an orthonormal pair of vectors (X, Y), is known as the sectional curvature. A Riemannian manifold with constant sectional curvature c is called a real-space-form, and its curvature tensor R satisfies

$$R(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y\}.$$ |

A Sasakian manifold with constant ϕ-sectional curvature c is called a Sasakian-space-form and its curvature tensor R is given by

$$R(X, Y)Z = \frac{c + 3}{4}[g(Y, Z)X - g(X, Z)Y] + \frac{c - 1}{4}[g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z] + \frac{c - 1}{4}[\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X] + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi.$$ (1.1)
In 2004, Alegre et al. [2] generalized the Sasakian-space-form by replacing the constant quantities $\frac{c+3}{4}$ and $\frac{c-1}{4}$ with differentiable functions. Such space is called generalized Sasakian-space-form.

The generalized Sasakian-space-form have been studied by many authors such as Sarkar and De ([17, 10, 11]), Singh ([18, 19]), De and Majhi ([8, 9, 12]), Kishor et al. [15], Alegre and Carriazo [3, 4], Akbar and Sarkar [1], Sular and Ozgur [20, 21] and many others.

In 2008, Alegre and Carriazo studied structures on generalized Sasakian-space-form [4] and studied generalized Sasakian-space-form admitting trans-Sasakian structure. In this paper we studied generalized Sasakian-space-form admitting Sasakian structure and we called such manifold as Sasakian generalized Sasakian-space-form.

In 1989, Tanno [23] defined the generalized Tanaka-Webster connection for contact metric manifolds, which generalized the connection given by Tanaka [22] and Webster [24]. The generalized Tanaka-Webster connection have been studied by De [7], de Dios Pérez [16] and others.

A manifold is said to be semi-symmetric and Ricci semi-symmetric [26, 27] if the Riemannian curvature tensor R and Ricci tensor S satisfies $R.R = 0$ and $R.S = 0$ respectively. That is

$$R(X, Y).R(U, V)W = 0$$ \hspace{1cm} (1.2)

and

$$R(X, Y).S(U, V) = 0$$ \hspace{1cm} (1.3)

for all $X, Y, U, V, W \in \chi(M)$.

There are two notions of pseudosymmetric manifolds which are defined by Chaki in 1987 [6] and Deszcz in 1992 [13]. Throughout the paper we consider pseudosymmetric manifolds defined by Deszcz. An n-dimensional Riemannian manifold $M, n > 2$, is called pseudosymmetric manifolds if $R.R$ and $Q(g, R)$ are are linearly dependent, i.e.,

$$R.R = FQ(g, R),$$ \hspace{1cm} (1.4)

holds on the set $U_R = \{x \in M : Q(g, R) \neq 0 \text{ at } x\}$, where F is some function on U_R.

And the manifold is called Ricci pseudosymmetric and Ricci-generalized pseudosymmetric manifold if

$$R.S = f'Q(g, S)$$ \hspace{1cm} (1.5)

and

$$R.R = fQ(S, R)$$ \hspace{1cm} (1.6)
holds on the set \(U_S = \{ x \in M : Q(g, S) \neq 0 \text{ at } x \} \) and \(U_R = \{ x \in M : Q(g, R) \neq 0 \text{ at } x \} \) respectively, where \(f' \) and \(f \) are some function on \(U_S \) and \(U_R \).

In this paper we studied symmetries of Sasakian generalized Sasakian-space-form admitting generalized Tanaka-Webster connection. After introduction in preliminaries section, we showed some known relation in Sasakian manifold and generalized Sasakian-space-form. In the third section, we have given the expression for curvature tensor with respect to genaralized Tanaka-Webster connection in generalized Sasakian-space-form. The next section is dedicated for the study of semi-symmetry and Ricci semi-symmetry. In the last two sections we studied Ricci pseudosymmetric and Ricci-generalized pseudosymmetric manifolds.

2 Preliminaries

An \(n \)-dimensional smooth manifold \(M \) is said to be an almost contact metric manifold if it admits an almost contact metric structure \((\phi, \xi, \eta, g) \) consisting of a tensor field \(\phi \) of type \((1, 1) \), a vector field \(\xi \), a 1-form \(\eta \) and a Riemannian metric \(g \) satisfying [5]

\[
\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0,
\]

and

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y). \tag{2.1}\]

On such a manifold, the fundamental \(\Phi \) of \(M \) is defined as

\[
\Phi(X, Y) = g(\phi X, Y), \quad X, Y \in \Gamma(TM).
\]

An almost contact metric manifold is called a Sasakian manifold if and only if [25]

\[
(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X, \quad \nabla_X \xi = -\phi X. \tag{2.2}\]

On a Sasakian manifold \(M \), the following relations are held [25]

\[
R(X, Y)\xi = \eta(Y)X - \eta(X)Y, \tag{2.3}
\]

\[
R(X, \xi)Y = \eta(Y)X - g(X, Y)\xi, \tag{2.4}
\]

\[
\eta(R(X, Y)Z) = \eta(X)g(Y, Z) - \eta(Y)g(X, Z), \tag{2.5}
\]

\[
\eta(R(X, Y)\xi) = 0. \tag{2.6}
\]
\[S(X, \xi) = (n - 1)\eta(X), \]
\[Q\xi = (n - 1)\xi, \]
\[(\nabla_X \eta) Y = g(X, \phi Y). \]

In a generalized Sasakian-space-form the following properties holds \[2\]

\[R(X, Y)Z = f_1 [g(Y, Z)X - g(X, Z)Y] \]
\[+ f_2 [g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z] \]
\[+ f_3 [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi] \]
\[- g(Y, Z)\eta(X)\xi, \]
\[S(X, Y) = [(n - 1)f_1 + 3f_2 - f_3]g(X, Y) \]
\[- [3f_2 + (n - 2)f_3]\eta(X)\eta(Y), \]
\[QX = [(n - 1)f_1 + 3f_2 - f_3]X - [3f_2 + (n - 2)f_3]\eta(X)\xi, \]
\[S(X, \xi) = (n - 1)(f_1 - f_3)\eta(X), \]
\[Q\xi = (n - 1)(f_1 - f_3)\xi, \]
\[R(X, Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\}, \]
\[R(\xi, Y)Z = (f_1 - f_3)\{g(Y, Z)\xi - \eta(Z)Y\}, \]
\[R(\xi, Y)\xi = (f_1 - f_3)\{\eta(Y)\xi - Y\}. \]
\[r = n(n - 1)f_1 + 3(n - 1)f_2 - 2(n - 1)f_3, \]
where \[r = \sum_{i=1}^{n} S(e_i, e_i) \] is the scalar curvature.
3 Generalized Tanaka-Webster connection

Tanno [23], defined the generalized Tanaka-Webster connection \(\tilde{\nabla} \) for contact metric manifolds by

\[
\tilde{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi - \eta(X)\phi(Y)
\]

(3.1)

for all \(X, Y \in \chi M \), and \(\nabla \) is the Riemannian connection.

Let \(R \) and \(\tilde{R} \) denotes the Riemannian curvature tensors of Sasakian manifold with respect to \(\nabla \) and \(\tilde{\nabla} \) respectively. A relation between \(R \) and \(\tilde{R} \) is given by [7]

\[
\tilde{R}(X, Y)Z = R(X, Y)Z + \left[g(X, Z)\eta(Y) - g(Y, Z)\eta(X) \right] \xi \\
+ g(Y, \phi Z)\phi X + g(X, \phi Z)\phi Y + 2g(Y, \phi X)\phi Z \\
- \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y.
\]

(3.2)

Contracting (3.2) we obtain

\[
\tilde{S}(Y, Z) = S(Y, Z) - g(Y, Z) - (n - 3)\eta(X)\eta(Y).
\]

(3.3)

Using (2.10) and (2.11) in the above equations we have

\[
\tilde{R}(X, Y)Z = (f_1 - 1)\left[g(Y, Z)X - g(X, Z)Y \right] \\
+ f_2\left[g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z \right] \\
+ f_3\left[\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi \\
- g(Y, Z)\eta(X)\xi - g(Y, \phi Z)\phi X + g(X, \phi Z)\phi Y \\
+ 2g(Y, \phi X)\phi Z - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y, \right.
\]

(3.4)

and

\[
\tilde{S}(Y, Z) = \left[(n - 1)f_1 + 3f_2 - f_3 \right] g(X, Y) \\
- \left[3f_2 + (n - 2)f_3 \right] \eta(X)\eta(Y) \\
- g(Y, Z) - (n - 3)\eta(X)\eta(Y).
\]

(3.5)

Now we have

\[
\tilde{R}(X, Y)\xi = (f_1 - f_3 - 1)\left\{ \eta(Y)X - \eta(X)Y \right\},
\]

(3.6)

\[
\tilde{R}(\xi, X)Y = (f_1 - f_3 - 1)\left\{ g(Y, Z)\xi - \eta(Z)Y \right\},
\]

(3.7)

\[
\tilde{R}(\xi, X)\xi = (f_1 - f_3)\left\{ \eta(Y)\xi - Y \right\},
\]

(3.8)

\[
\tilde{S}(X, \xi) = (n - 1)(f_1 - f_3 - 1)\eta(X),
\]

(3.9)

\[
\tilde{S}(\xi, \xi) = (n - 1)(f_1 - f_3 - 1).
\]

(3.10)

4 Semi-symmetric and Ricci semi-symmetric

Suppose that the Sasakian generalized Sasakian-space-form is semi-symmetric with respect to generalized Tanaka-Webster connection, then from (1.2) we get

$$\tilde{R}(X, Y) \tilde{R}(U, V)W = 0.$$ \hspace{1cm} (4.1)

It is well known that

$$\tilde{R}(X, Y) \tilde{R}(U, V)W = \tilde{R}(Y, V)W - \tilde{R}(Y, U)W - \tilde{R}(X, Y)U, V)W.$$ \hspace{1cm} (4.2)

Now setting $X = U = \xi$ in (4.1) and using (4.2) we get

$$(f_1 - f_3 - 1)^2 \{g(Y, W)V - g(V, W)Y\} + (f_1 - f_3 - 1)\tilde{R}(Y, V)W = 0,$$

which can be written as

$$\tilde{R}(Y, V)W = (f_1 - f_3 - 1)\{g(V, W)Y - g(Y, W)V\},$$ \hspace{1cm} (4.3)

provided $f_1 - f_3 - 1 \neq 0$.

Thus we have

Theorem 4.1. In a semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection, we have

$$\tilde{R}(Y, V)W = (f_1 - f_3 - 1)\{g(V, W)Y - g(Y, W)V\},$$

provided $f_1 - f_3 - 1 \neq 0$.

Now using (3.2) in (4.3) we get

$$R(Y, V)W = (f_1 - f_3 - 1)\{g(V, W)Y - g(Y, W)V\}$$

$$- \left[g(Y, W)\eta(Y) - g(V, W)\eta(Y) \right] \xi + g(V, \phi W)\phi Y$$

$$- g(Y, \phi W)\phi V - 2g(V, \phi Y)\phi W$$

$$+ \eta(V)\eta(W)Y - \eta(Y)\eta(W)V,$$ \hspace{1cm} (4.4)

provided $f_1 - f_3 - 1 \neq 0$. Thus we can state that:

Theorem 4.2. In a semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection the Riemannian curvature tensor is given by (4.4), provided $f_1 - f_3 - 1 \neq 0$.

Again suppose that the Sasakian generalized Sasakian-space-form is Ricci semi-symmetric with respect to generalized Tanaka-Webster connection, then from (1.3) we get

\[\tilde{R}(X,Y)\tilde{S}(U,V) = 0. \]

(4.5)

It implies

\[\tilde{S}(\tilde{R}(X,Y).U,V) + \tilde{S}(U,\tilde{R}(X,Y)V) = 0. \]

(4.6)

Setting \(X = U = \xi \) in (4.6) we get

\[(f_1 - f_3 - 1)\{(n - 1)(f_1 - f_3 - 1)g(Y,V) - S(Y,V)\} = 0. \]

Which implies

\[S(Y,V) = (n - 1)(f_1 - f_3 - 1)g(Y,V), \]

(4.7)

provided \(f_1 - f_3 - 1 \neq 0 \).

We have

Theorem 4.3. A semi-symmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided \(f_1 - f_3 - 1 \neq 0 \).

5 Ricci-generalized pseudosymmetric manifold

Suppose that the Sasakian generalized Sasakian-space-form is Ricci-generalized pseudosymmetric with respect to generalized Tanaka-Webster connection, then from (1.6)

\[\tilde{R}(X,Y)\tilde{R}(U,V)W = fQ(\tilde{S},\tilde{R})(U,V;W;X,Y). \]

This is equivalent to

\[\tilde{R}(X,Y)\tilde{R}(U,V)W = f\{(X \wedge \tilde{S} Y)\tilde{S}(U,V)\}, \]

(5.1)

where \(((X \wedge \tilde{S} Y))Z = \tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y \) for all \(X, Y, Z \).

Thus we get

\[
\begin{align*}
\tilde{R}(X,Y)\tilde{R}(U,V)W & = \tilde{R}(\tilde{R}(U,V)X,Y)W - \tilde{R}(X,\tilde{R}(U,V)Y)W \\
-\tilde{R}(X,Y)\tilde{R}(U,V)W & = f\{(X \wedge \tilde{S} Y)\tilde{R}(U,V)W - \tilde{R}((X \wedge \tilde{S} Y)U,V)W \\
& \quad - \tilde{R}(U,(X \wedge \tilde{S} Y)V)W - \tilde{R}(U,V)(X \wedge \tilde{S} Y)W\}.
\end{align*}
\]
or

\[
\begin{align*}
\bar{R}(X,Y)\bar{R}(U,V)W &= \bar{R}(\bar{R}(U,V)X,Y)W - \bar{R}(X,\bar{R}(U,V)Y)W \\
-\bar{R}(X,Y)\bar{R}(U,V)W &= f\{\bar{S}(Y,\bar{R}(U,V)W)X - \bar{S}(X,\bar{R}(U,V)W)Y \\
&- \bar{S}(Y,U)\bar{R}(X,V)W + \bar{S}(X,U)\bar{R}(Y,V)W \\
&- \bar{S}(Y,W)\bar{R}(U,V)X + \bar{S}(X,W)\bar{R}(U,V)Y\}.
\end{align*}
\]

(5.2)

Setting \(X = U = \xi \) in (5.2) we get

\[
(f_1 - f_3 - 1)^2 \{ g(Y,W)V - g(V,W)Y \} + (f_1 - f_3 - 1)\bar{R}(Y,V)W \\
= f\left[(n-1)(f_1 - f_3 - 1)\{ \bar{R}(Y,V)W - g(V,W)Y \} \\
+ g(Y,W)\eta(V)\xi + g(V,Y)\eta(W)\xi \right] \\
- \bar{S}(Y,V)\eta(W)\xi - \bar{S}(Y,W)\{ \eta(V)\xi - V \}.
\]

(5.3)

Again setting \(V = \xi \) in (5.3) we get

\[
f(f_1 - f_3 - 1)[g(Y,W)\xi - \eta(W)Y] \\
= f(f_1 - f_3 - 1)^2[g(Y,W)\xi - \eta(W)Y].
\]

(5.4)

We have either

\[
(f_1 - f_3 - 1) = 0, \tag{5.5}
\]

or

\[
(f_1 - f_3 - 1) = 1, \tag{5.6}
\]

provided \(f \neq 0 \).

Setting \(W = \xi \) in (5.3) and using (5.5) we get

\[
S(Y,V) = 0, \tag{5.7}
\]

for all \(Y, V \in \chi M \), provided \(f \neq 0 \) and \(f_1 - f_3 - 1 \neq 1 \).

Thus we have

Theorem 5.1. A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Ricci flat provided \(f \neq 0 \) and \(f_1 - f_3 - 1 \neq 1 \).
Again setting $W = \xi$ in (5.3) and using (5.6) we get

$$S(Y, V) = (n - 1)g(V, Y),$$

(5.8)

for all $Y, V \in \chi M$, provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 0$.

We have

Theorem 5.2. A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided $f \neq 0$ and $f_1 - f_3 - 1 \neq 0$.

6 Ricci-pseudosymmetric manifold

Suppose that the Sasakian generalized Sasakian-space-form is Ricci-pseudosymmetric with respect to generalized Tanaka-Webster connection, then from (1.5)

$$\tilde{R}(X, Y).\tilde{S}(U, V) = f'Q(g, \tilde{R})(U, V; X, Y).$$

This is equivalent to

$$\tilde{R}(X, Y).\tilde{S}(U, V) = f'\{(X \wedge g Y).\tilde{S}(U, V)\},$$

(6.1)

where $(X \wedge g Y) Z = g(Y, Z) X - g(X, Z) Y$ for all X, Y, Z.

Thus we get

$$\tilde{S}(\tilde{R}(X, Y).U, V) + \tilde{S}(U, \tilde{R}(X, Y)V) = f'\{\tilde{S}((X \wedge g Y)U, V) + \tilde{S}(U, (X \wedge g Y)V)\}.$$

or

$$\tilde{S}(\tilde{R}(X, Y).U, V) + \tilde{S}(U, \tilde{R}(X, Y)V) = f'\{g(Y, U)\tilde{S}(X, V) - g(X, U)\tilde{S}(Y, V) + g(Y, V)\tilde{S}(U, X) - g(X, V)\tilde{S}(U, Y)\}.$$

(6.2)

Setting $X = U = \xi$ in (6.2) we get

$$(f_1 - f_3 - f' - 1)\{S(Y, V) - (n - 1)(f_1 - f_3 - 1)g(Y, V)\} = 0.$$

Which implies

$$S(Y, V) = (n - 1)(f_1 - f_3 - 1)g(Y, V),$$

(6.3)

for all $Y, V \in \chi M$, provided $(f_1 - f_3 - f' - 1) \neq 0$.

We have
Theorem 6.1. A Ricci-pseudosymmetric Sasakian generalized Sasakian-space-form with respect to generalized Tanaka-Webster connection is Einstein manifold provided $f_1 - f_3 - f' - 1 \neq 0$.

Now using Theorem 4.2 of [4] and (6.3) we get the following corollary

Corollary 6.2. An n-dimensional connected Sasakian generalized Sasakian-space-form, ($n \geq 5$), which is Ricci-pseudosymmetric with respect to generalized Tanaka-Webster connection is Ricci flat provided $f' \neq 0$.

ACKNOWLEDGEMENT

The second author is thankful to the University Granta Commission, India for financial support in the form of JRF fellowship (award letter number 2061641132).

References

[1] A. Akbar and A. Sarkar. Some results on a generalized Sasakian space forms admitting trans Sasakian structure with respect to generalized Tanaka Webster okumara connection, Romanian Journal of Mathematics and Computer Science 5(2) (2015), 130–137.

[2] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel journal of mathematics 141(1) (2004), 157–183.

[3] P. Alegre and A. Carriazo, Semi-Riemannian Generalized Sasakian Space Forms, Bulletin of the Malaysian Mathematical Sciences Society (2018), 1–14.

[4] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications 26(6) (2008), 656–666.

[5] D. E. Blair, Contact manifolds in Riemannian geometry, Springer-Verlag Berlin, Heidelberg, (1976).

[6] M. C. Chaki, On pseudosymmetric manifolds, An. S.,tiint., Univ. AL.I. Cuza din Ia,si Sect. I-a Math. N.S. 33(1) (1987), 53–58.

[7] U. C. De and G. Ghosh, On generalized Tanaka-Webster connection in sasakian manifold, Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III 9(2) (2016), 13pp.

[8] U. C. De and P. Majhi, Certain curvature properties of generalized Sasakian-space-forms, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 83(2) (2013), 137–141.
[9] U. C. De and P. Majhi, On the Q curvature tensor of a generalized Sasakian-space-form, Kragujevac Journal of Mathematics 43(3) (2019), 333–349.

[10] U. C. De, and A. Sarkar, On the conharmonic turvature tensor of generalized Sasakian-space-forms, ISRN Geometry, https://doi:10.5402/2012/876276,(2012).

[11] U. C. De, and A. Sarkar, On the projective turvature tensor of generalized Sasakian-space-forms, Quaestiones Mathematicae 33(2) (2010), 245–252.

[12] U. C. De, and P. Majhi, ϕ-semisymmetric generalized Sasakian space-forms, Kragujevac Journal of Mathematics 21(1) (2015), 170–178.

[13] R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc., Ser. A 44 (1992), 1–34.

[14] A. Friedmann and J. C. Schouten, Uber die Geometric der halbsymmetrischen Ubertragung, Math. Zeitschr. 21 (1924), 211–223.

[15] S. Kishor, P. Verma and P. K. Gupt, On W_9-Curvature Tensor of Generalized Sasakian-Space-Forms, Int. J. of Math. Appl 5 (2017), 103–112.

[16] J. de Dios Pérez and Y. J. Suh, Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space, Monatshefte für Mathematik 177(4) (2015), 637–647.

[17] A. Sarkar and U. C. De, Some curvature properties of generalized Sasakian-space-forms, Lobachevskii Journal of Mathematics 33(1) (2012), 22–27.

[18] J. P. Singh, Generalized Sasakian space forms with m-projective curvature tensor, Acta Math. Univ. Comenianae 85(1) (2016), 135–146.

[19] J. P. Singh, On a type of generalized Sasakian space forms, Journal of the Indian Math. Soc. 83(3–4) (2016), 363–372.

[20] S. Sular and C. Ozgur, Generalized Sasakian space forms with semi-symmetric metric connections, Annals of the Alexandru Ioan Cuza University-Mathematics, 60(1) (2014), 145–156.

[21] S. Sular and C. Ozgur, Generalized Sasakian space forms with semi-symmetric non-metric connections, Proceedings of the Estonian Academy of Sciences, 60(4)(2011), 251–257.

[22] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japanese journal of mathematics. New series, 2(1) (1976), 131–190.

[23] S. Tanno, Variational problems on contact Riemannian manifolds, Transactions of the American Mathematical society 314(1) (1989), 349–379.
[24] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differ. Geom. 13 (1978), 25–41.

[25] K. Yano and M. Kon, Structures on manifolds, World scientific, (1985).

[26] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y).R = 0$. I. The local version, J. Differential Geom. 17 (1982), 531–582.

[27] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y).R = 0$. II. Global versions, Geometriae Dedicata 19(1) (1985), 65–108.

Jay Prakash Singh Department of Mathematics and Computer Science, Mizoram University, Tanhril, Aizawl-796004, India.

E-mail: jpsmaths@gmail.com

Chawngthu Lalmalsawma Department of Mathematics and Computer Science, Mizoram University, Tanhril, Aizawl-796004, India.

E-mail: sweezychawngthu@gmail.com