Increasing Health Benefit of Wild Yam (*Dioscorea hispida*) Tuber by Red Mold (Angkak) Fermentation

T Estiasih1, Irawati2, D E Kuliaharsari2, and V T Widayanti1

1Doctoral Program of Food Science-Faculty of Agricultural Technology- Universitas Brawijaya, Jl. Veteran, Malang
2Research Center for Local Food Development – Universitas Brawijaya, Jl. Veteran, Malang
2Master Program of Agricultural Product Technology - Faculty of Agricultural Technology- Universitas Brawijaya, Jl. Veteran, Malang

Corresponding author’s email address: teties@yahoo.co.id; teties@ub.ac.id

Abstract. Detoxification of cyanogen is very important in cyanide containing tubers such as wild yam (*Dioscorea hispida*). Principally, cyanogen detoxification is by converting cyanogenic glycoside into acetone cyanohydrin and further converted into free HCN that is easily removed by heating or soaking. Conversion of cyanogenic glycoside into free HCN is catalyzed by beta glucosidase enzyme (linamarase) in linamarin deglycosilation and alpha-hydroxynitril liase (HNL) in acetone cyanohydrin degradation into free HCN and acetone. Endogen linamarase is found in the tubers and exogenous linamarase might be from microbes. It is supposed that fermentation of wild yam by angkak will reduce cyanide level. Angkak or Red Mold Rice (RMR) is a product of rice fermentation using *Monascus sp* mainly *M. purpureus*. Beside red pigment, angkak fermentation also produces a variety of secondary metabolites such as lovastatin, mevinolin, and citrinin. Monacolin K (lovastatin) from *Monascus purpureus* is an inhibitor for HMG-CoA reductase in cholesterol biosynthesis. Monacolin K production is higher in *Dioscorea* substrate compared to rice. RMD (Red Mold Dioscorea) reveals higher anti-cholesterol activity and anti-hypertension than red mold rice. RMD also exhibits antioxidant, anti-diabetic, anti-obesity, and induces cancer cell apoptosis and does not reveal mutagenic and toxicity. In RMD, monascinin and ankaflavin have a role in reducing cholesterol. It is expected that wild yam fermentation by angkak will reduce cyanide level and produce health beneficial secondary metabolites.

Keywords: Angkak, Cyanide, Lovastatin, Red Mold *Dioscorea*, Wild Yam

1. Introduction
Wild yam (*Dioscorea hispida*) is a family of yam tubers or *Dioscorea* that contains bioactive compounds in the form of diosgenin of 96 ppm yam, 0.034% dioscorin, and water soluble polysaccharides (WSP) 3.02% [1]. Dioscorin is a tuber storage protein which has a function as an antioxidant, anti-inflammatory, anti-insect, and antipathogen [2]. Liu et al. [3] states that dicoscin shows antihypertensive activity in *vitro*. In addition, dioscorin shows ACE inhibitory activity in *vitro* which is important in inhibiting hypertension [4]. WSP has biological activity as an antioxidant to protect DNA [5], immunostimulant [6], and antihypertensive activity because it binds to dicoscorin [7].
Dioscorea also contains diosgenin as a bioactive compound [8] which plays a role in reducing plasma and liver triglycerides [9]. Diosgenin (3b, 25R-Spirost-5-en-3-ol), is a plant sterol with a cholesterol-like structure [10]. According to Son et al. [11], diosgenin (steroidal saponins) has been used industrially as a medicinal ingredient and has a hypocholesterolaemia effect because it suppresses cholesterol absorption and increases its secretion. Also inhibits the enzyme HMG Co A reductase in cholesterol synthesis [12].

One of the main problems is that the wild yam tuber contains HCN of 84.26 ppm [13] and 379 - 739 ppm [14], and the levels of the types of cyanogenic compounds in wild yam has not been studied. Cyanogenic compounds include cyanogenic glucosides, acetone cyanohydrin, and free HCN [15]. The safe level of cyanide consumption is 10 ppm [16]. Cyanide consumption of 50-100 ppm causes acute poisoning and is also lethal [17]. Cyanogenic residues cause neurological disorder or paralysis [18, 19].

Some efforts have been conducted to detoxify the wild yam tuber, such as by immersion and boiling [13], limited heating [20], boiling, roasting, and soaking in running water [21]. Another method to detoxify is through fermentation as in cassava. Decreasing cyanide in cassava occurs during spontaneous fermentation in the production of agelima, gari, atieke, lafun, bikedi, fufu, pupuru in Africa and wikau maombo in Indonesia [22, 23, 24, 25, 26, 27]. It is expected that fermentation of wild yam will also reduce cyanide. Dioscorea can be fermented using red mold rice (Monascus purpureus) to produce Red Mold Dioscorea (RMD) [28, 29, 30]. RMD shows the ability as a cholesterol-lowering and antiarterosclerotic agent [28,29] and lowering blood pressure [30]. This is due to higher monacolin K production compared to rice substrate [28] and RMD contains higher γ-aminobutyric acid (GABA) and contains yellow pigments (monascin and ankaflavin) which are anti-inflammatory [31]. Therefore, to improve the functional properties of yam flour on health, yam tubers needs to be fermented using red mold rice. Angkak pigment is a mixture of pigments consisting of at least 6 pigments grouped by color. Red pigment consists of rubropunctamine and monascorubramine and is the most pigment; orange pigments are rubropunctatin and monascorubrin; and yellow pigments are monascin and ankaflavin [32]. The composition of the pigment depends on the strain of Monascus sp and the media used.

This paper is aimed to review the bioactive compounds of wild yam and their physiological effects on health benefits, the method of detoxification, and the possibility to increase health benefits of wild yam by rice mold fermentation.

2. Bioactive Compounds of Wild Yam

2.1. Dioscorin

The tubers of the Dioscorea (yam) family have long been used in traditional Chinese medicine. The most water soluble protein in yam, which is dioscorin and its hydrolysate by using proteases reveal various biological activities. Dioscorin has the ability as an antioxidant even orally consumed, and approved as an anti-aging [33]. The stability of dioscorin has been approved by Liu and Lin [34] and shows that boiling and frying causes dioscorin to be denatured and difficult to dissolve. It means dioscorin changes during processing and this changes might affect its activity. Dioscorin is also reported to have immunomodulatory activity [3], antioxidants [35], improves metabolic metabolism in obese rats and decreases systolic blood pressure [36]. The results of hydrolysis of dioscorin with pepsin, also showed an ability to reduce blood pressure [37]. This means that the fermentation of yam with red mold rice might hydrolyze dioscorin and increases its activity. At present dioscorin has been studied in nanoparticle size that are easily absorbed in digestive tract [38].

Structurally, dioscorin from Dioscorea alata (greater yam) consists of dioscorin A (BM 33 kDa) and dioscorin B (BM 31 kDa) with the main structure of α helices for dioscorin A and antiparallel β sheets for dioscorin B. Dioscorin is known to have amino acid sequences N-terminal VEDFYSIEGNPNGPENWGN. In the yam protein there is an oligomeric structure that is possibly related to the disulfide bond (32 kDa) [39]. Hou et al. [40] mentioned the molecular weight of dioscorin from D. batatas is 28 kDa. Chen and Lin [41] reported BM 31 kDa for various cultivars.
2.2. Diosgenin
Diosgenin is an aglycone from steroidal saponins, dioscin, in yam. Diosgenin is the result of hydrolysis of saponins. Dioscin levels in yams can reach 2.7% while diosgenin is around 0.004% in yams that are cultivated, and 0.12-0.48% in wild yams. Diosgenin has long been used as a raw material for steroid medicines. Diosgenin is reported to have a hypocholesterolaemia effect by suppressing cholesterol absorption and increasing its secretion [11]. Diosgenin also has the ability to induce apoptosis of cancer cells [42], inhibits skin aging [43], is antithrombotic, lowers blood sugar, enhances the immune system and is antioxidant [44]. Yeast fermentation with red mold rice may increase diosgenin due to hydrolysis of dioscin during fermentation.

2.3. Water Soluble Polysaccharides or Mucilage
Water soluble polysaccharides (WSP) or water soluble fiber or mucilage from yam ia a complex between manan and protein [45] which contains glycoprotein and food fiber [46]. Mucilage from yam shows antioxidant activity [47, 48], inhibits the activity of angiotensin converting enzyme (ACE) [49], antimicrobial [46], and activity hypoglycemic [50] and immunomodulators [45]. The study of Zhang et al. [51] showed that the result of mucilage degradation of D. opposita increased its activity as an antioxidant and antimutagen because of lower molecular weight and more uronic acid. It is strongly supposed that fermentation of yam with red more rice might lead to hydrolysis of mucilage and increases its activity.

2.4. Cyanogenic Compounds
Cyanogenic compounds in tubers are found in three forms which are cyanogenic glycosides, hydroxynitrile or acetone cyanohydrin, and free HCN [52]. Cyanogenic glycosides and endogenous enzymes are located in different locations (Figure 1). Linamarin and lotaustralin are present in cell vacuoles and endogenous enzymes (β-glucosidase or linamarase and liase) present in cell walls [53]. The characteristics of linamarin, acetone cyanohydrin, and free HCN from cassava are shown in Table 1.

Table 1. Characteristics of linamarin (cyanogenic glucoside), acetone cyanohydrin, and free HCN

Characteristics	Linamarin	Acetone Cyanohydrin	Free HCN
Optimum pH	5.5 – 7.3	> 5	No data
Optimum temperature (°C)	55	> 35	No data
Solubility in water	Soluble	Soluble	Soluble
Boiling point (°C)	No data	82	25.6
[55, 56, 57, 58, 59]			

The damage to the cell wall causes contact between linamarin and the linamarase enzyme and converts cyanogenic glucoside into glucose and cyanohydrin aglycone [57]. Cyanohydrin or hydroxynitrile acetone is relatively stable under acidic conditions, but spontaneously decomposes.
rapidly at pH> 5.0 or catalyzed by hydroxynitrile liase (HNL) which is found specifically in the leaves [56]. The boiling point of HCN is 26 °C causing HCN to evaporate easily in the drying process [60]. The changing of linamarin into free HCN is shown in Figure 2.

![Figure 2. The changing of linamarin to free HCN [61]](image)

2.5. Detoxification of Cyanogenic Compounds

The cyanogen detoxification process is very important in the processing of cyanide containing tubers such as wild yam. In principle, detoxification is changing of cyanogenic glycosides into acetone cyanohydrin which is then converted to free HCN, and then is removed by evaporation, heating, or dissolution. The process of converting cyanogenic glycosides to free HCN is catalyzed by the enzyme beta glucosidase (linamarase) in the process of deglycosylation of linamarin and the enzyme α-hydroxynitrile liase (HNL) in the process of acetone cyanohydrin degradation to free HCN and acetone, or spontaneously degraded (McMahon et al., 1995) [53]. Endogenous linamarase is found in tubers while exogenous linamarase can be derived from microbes. Microbes that are often associated with linamarase production during cassava fermentation are lactic acid bacteria (BAL) and yeast [62, 63].

Ferraro et al. [64] reviewed that the method includes grating, grinding (breaking down of tissue) is a very efficient method in removing cyanide due to cell breakdown. It leads linamarin in vacuoles to contact with beta glucosidase (linamarase) in the cell wall. Therefore, there is the conversion of cyanogenic glucoside into acetone cyanohydrin and then to free HCN that is easily removed by dissolving in water or evaporation. Drying and fermentation after drying (heap fermentation) is less efficient because the tubers are sliced so that some cells remain intact [65]. Heap fermentation helps break down cyanogenic glycosides by microbes during fermentation [66, 67]. Boiling is inefficient because linamarase is inactive, but boiling is far more efficient (% decrease in cyanide) than roasting, steaming, or frying (15-20% decrease in cyanogen). Pressing after fermentation or grating is efficient (70-95% decrease in cyanide) because free cyanide or residues can be removed [68].

Angkak (*Monascus purpureus*) is a fungi that also produces beta glucosidase enzyme in submerged fermentation with maximum activity at pH 5.5 and temperature 50°C [69]. This enzyme is produced extracellularly whose production is induced and controlled by the presence of carbon (glucose) [70]. It is strongly supposed that fermentation of yam with red mold rice can reduce cyanogen, one of which is caused by the extracellular beta-glucosidase enzyme produced by *M. purpureus*.

2.6. Rice Mold Fermentation and Health Benefits

Angkak or Red Mold Rice (RMR) is a rice fermentation product using *Monascus* sp, especially *M. purpureus*. Angkak is originated from China and is widely used as a food colouring. In addition to red pigment, red mold rice fermentation produces various secondary metabolites such as lovastatin, mevinolin, citrinin, and vitamins [71, 72]. Angkak pigments also have antioxidant activity which activity depends on the intensity of the pigment colour [73]. Monacolin K (lovastatin) from Monascus purpureus is an inhibitor for HMG-CoA reductase in biosynthesis of cholesterol. Lovastatin also shows inhibition of cancer cells [74], potential use for autoimmune therapy [75], protecting endothelial cells [76] form oxidized LDL [77], improve osteoporosis [78], and prevent inflammation [79]. Angkak pigments also show antioxidant activity [80].
Besides lovastatin, Monascus purpureus also produces pigments including two yellow pigments, monascin and ankaflavin; two orange pigments, rubropunctatin and monascorubrin; and two red pigments, rubropunctamine and monascorubramine. Solid and submerged fermentation is a fermentation process for the production of Monascus pigments. The advantage of solid fermentation is that it can be directly used as a colouring agent. Factors that influence red mold rice fermentation are the source of carbon, nitrogen, pH, temperature, minerals, the presence of oxygen, and the presence of other microorganisms [72].

Fermentation medium is a critical factor in the growth of M. purpureus which also influences pigment production. Metal ions such as Zn$^{2+}$ and Mg$^{2+}$, and a number of amino acids (glycine, leucine, tryptophan) might improve the carbon source transfer process. Zn is a cofactor for enzymes in carbohydrate and nitrogen metabolism by Monascus sp [72]. Factors that must be controlled in red mold rice fermentation is the presence of citrinin. Citrinin is a mycotoxin polyketide produced by Monascus sp and is usually a contaminant for RMR [81]. Substrate with too high or low water content is not suitable for Monascus growth [28, 82].

2.7. Rice Mold Dioscorea

Monacolin K production is higher in Dioscorea substrate compared to rice [28]. RMD (Red Mold Dioscorea) shows higher anticholesterol activity compared to rice substrate [29], higher antihypertensive activity compared to RMR [31], has antioxidant and antidiabetic ability (Shi et al, 2012) [83], induces apoptosis of oral cancer cells [84, 85], and antiobesity [86], and does not show mutagenic and toxic properties [87]. In RMD, monascin and ankaflavin play a role in reducing cholesterol [88].

3. Conclusions

Wild yam contains some bioactive compounds such as dioscorin, diosgenin, and water soluble polysaccharides. However, this tuber also contains cyanogenic compounds as a toxicant. Detoxification of wild yam involves the changing of cyanogenic glycosides into acetone cyanohydrin which is then converted to free HCN. Free HCN is easily removed by evaporation, heating, or dissolution. However, the main problem is the conversion from cyanogenic glucoside into acetone cyanohydrin and then into free HCN. Fermentation is supposed to decrease cyanogenic compounds of wild yam. Fermentation of wild yam with red mold rice is expected to increase the activity of its bioactive compounds and also decrease cyanides. It is supposed that health beneficial effects of wild yam also increase by red mold fermentation.

Acknowledgements

The authors are grateful to Universitas Brawijaya for funding the research related to this topic through Penelitian Hibah Profesor 2019.

References

[1] Estiasih T, Ginting E, Ahmadi K, Putri WDR, Maligan JM 2014 Mie dan Beras Sehat Fungsional dari Umbi-umbian Lokal Inferior Laporan Penelitian KKP3N - LPPM (Malang: Brawijaya University)
[2] Ko YH, KW Hsu 2009 Dioscorin protects tight junction protein expression in a549 human airway epithelium cells from dust mite damage J Microbiol. Immunol. Infect 42: 457-63
[3] Liu Y-W, Liu J-C, Huang C-Y, Wang C-K, Shang H-F, Hou W-C 2009 Effects of oral administration of yam tuber storage protein, dioscorin, to BALB/c mice for 21-days on immune responses J. Agric. Food Chem. 57(19): 9274–79
[4] Hsu FH, Lin YH, Lee MH, Lin CL, Hou WC 2002 Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities J. Agric. Food Chem. 50: 6109-13
[5] Wang TS, Li CK, Huang YC, Chang JY, Yang FY 2011 Anticlastogenic effect of aqueous extract from water yam (Dioscorea alata L.) J. Med. Plants Res. 5: 6192-202
[6] Liu JY, Yang FL, Lu CP, Yang YL 2008 Polysaccharides from Dioscorea batatas induce tumor necrosis factor-R secretion via toll-like receptor 4-mediated protein kinase signaling pathways. J. Agric. Food Chem. 56: 9892–8

[7] Estiasih T, Rachman F 2011 The in vivo antihypertension effect of water soluble polysaccharide from wild yam (Dioscorea hispida Dennst.) Research Report (Malang: Brawijaya University)

[8] Sautotur M, Mitaine-Offe A, Lacaille-Dubois M 2007 The Dioscorea genus: a review of bioactive steroid saponins J. Nat. Med. 61(2): 91-101

[9] Uemura T, Goto T, Kang MS, Mizoguchi N, S Hirai, Lee JY, Nakano Y, Shono J, Hoshino S, Taketani K, Tsuge N, Narukami T, Makishima M, Takahashi N, Takada T 2011 Diosgenin, the main aglycon of fenugreek, inhibits LXRA activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice J. Nutr. 141: 17-23

[10] Koste A, Frijters RJJ, Kunne C, Vink E, Schneiders MS, Schaap FG, Nibbering CP, Patel SB, Groen AK. 2014 Diosgenin-induced biliary cholesterol secretion in mice requires Abcg8 Hepatology 41: 141-50

[11] Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS 2007 Antioxidative and hypolipidemic effects of diosgenin, a steroidal sapogenin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci. Biotechnol. Biochem. 71: 3063-71

[12] Raju J, Bird RP 2007 Diosgenin, a naturally occurring furostanol sapogenin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells Cancer Lett. 255: 194-204

[13] Kumoro AC, Retnowati DS, Budyati CS 2011 Removal of cyanides from gadung (Dioscorea hispida Dennst.) tuber chips using leaching and steaming techniques J. Appl. Sci. Res. 7(12):2140–46

[14] Saleha S, Saidi N, Saiful, Murniana, Rasnovi S, Iqbalsyah TM 2018 Nutritional composition of Dioscorea hispida from different locations around Leuser ecosystem area Jurnal Natural 18(1): 1-6

[15] Indrastuti YE, Estiasih T, Christanti RA, Pulungan MH, Zubaedah E, Harijono 2018 Microbial and some chemical constituent changes of high cyanide cassava during simultaneous spontaneous submerged and solid state fermentation of “gadungan pohung” Int. Food Res. J/ 25(2): 487-98

[16] FAO/WHO. Joint FAO/WHO 2012 Food Standards Programme Codex Alimentarius Commission 35th (Rome: FAO)

[17] Bandna C 2012 Effect of processing on the cyanide content of cassava products in Fiji J. Microbiol. Biotechnol. Food Sci. 2(3): 947-58

[18] Siritunga D and Sayre R 2004 Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta) Plant Mol. Biol. 56: 661–9

[19] Kambale KJ, Ali ER, Sadiki NH, Kayembe KP, Mvumbi LG, Yandju DL, Boivin MJ, Boss GR, Stardler DD, Lambert WE, Lasarev MR, Okitundu LA, Ngoyi DM, Banea JP, Tshala-Katumbay DD 2017 Lower sulfurtransferase detoxification rates of cyanide in konzo—A tropical spastic paralysis linked to cassava cyanogenic poisoning Neurotoxicology 59: 256–62

[20] Harijono, Sari TA, Martati E 2012 Detoksifikasi umbi gadung (Dioscorea hispida dennst.) dengan pemanasan terbatas dalam pengolahan tepung gadung Jurnal Teknologi Pertanian 9(2): 75-82

[21] Ashri A, Sukeri M, Yusof M, Jamil MS, Abdullah A, Fairus S, Yusoff M, Nasir M, Arip M, Lazim AM 2014 Physicochemical characterization of starch extracted from Malaysian wild yam (Dioscorea hispida Dennst.) Emirate J. Food Agric. 26(8): 652-8

[22] Obilic EM, Tano-Debrah K, Amoa-Awua WK 2004 Sourcing and breakdown of cyanogenic glycosidess during the processing of cassava into akyeke Int. J. Food Microbiol. 93: 115–21
[23] Kobawila SC, Louembe D, Keleke S, Hounhouigan J, Gamba C 2005 Reduction of the cyanide content during fermentation of cassava roots and leaves to produce bikedi and ntoba mbodi, two food products from Congo Afr. J. Biotechnol. 4(7): 689-96
[24] Agbor-Egbe T and Mbome LL 2006 The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods J. Food Compos. Anal. 19: 354-63
[25] Padonou SW, Hounhouigan JD, Nago MC 2009 Physical, chemical and microbiological characteristics of lafun produced in Benin Afr. J. Biotechnol. 8(14): 3320-25
[26] Adeniyi OT, Adekola YG, Mustapha SO, Ogunola SI 2010 Effect of processing methods on nutrient retention and contribution of cassava (Manihot spp) to nutrient intake of Nigerian consumers Afr. J. Food Agric. Nutr. Dev. 10 (2): 2099-111
[27] Wahyuni S, Ansharullah, Saeeduddin, Holilah, Asranudin 2016 Physico-chemical properties of Wikau maombo flour from cassava (Manihot esculenta Crantz) J. Food Meas. Charact. 11(1): 329–36
[28] Lee C-L, Wang J-Je, Kuo S-L, Pan T M 2006 Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin Appl. Microbiol. Biotechnol. 72: 1254–62
[29] Lee C-L, Hung H-Kai, Wang J-J, Pan T-M 2007 Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters J. Agric. Food Chem. 55(17): 7162–69
[30] Chen C-L and Pan T-M 2013 Red mold dioscorea decreases blood pressure when administered alone or with amlodipine and is a potentially safe functional food in SHR and WKY rats J. Funct. Foods 5(3): 1456-1465
[31] Wu C-L, C-L Lee, T-M Pan. 2009. Red mold dioscorea has a greater antihypertensive effect than traditional red mold rice in spontaneously hypertensive rats. J. Agric. Food Chem. 57(11):5035-41
[32] Arunachalam C and Narmadha Priya D 2011 Monascus fermented rice and its beneficial aspects: a new review Asian J. Pharm. Clin. Res. 4: 29-31.
[33] Han C-H, Lin Y-F, Lin Y-S, Lee T-L, Huang W-J, Lin S-Y, Hou W-C 2014 Effects of yam tuber protein, dioscorin, on attenuating oxidative status and learning dysfunction in d-galactose-induced BALB/c mice Food Chem. Toxicol. 65(3): 356-63
[34] Liu YM and Lin KW 2009 Antioxidative ability, dioscorin stability, and the quality of yam chips from various yam species as affected by processing method J. Food Sci. 74(2): C118-C125
[35] Han C-H, Liu J-C, Fang S-U, Hou W-C 2013 Antioxidant activities of the synthesized thiol-containing peptides derived from computer-aided pepsin hydrolysis of yam tuber storage protein, dioscorin Food Chem. 138: 923–30
[36] Shih S-L, Lin Y-S, Lin S-Y, Hou W-C 2015 Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats Bot. Stud. 56(4)
[37] Lin Y-S, Lu Y-L, Wang G-J, Liang H-J, Hou W-C 2014 Vasorelaxing and antihypertensive activities of synthesized peptides derived from computer-aided simulation of pepsin hydrolysis of yam dioscorin Bot. Stud. 55: 49
[38] Hsieh H-L, Lee C-H, Lin K-C 2018 Development of yam dioscorin-loaded nanoparticles for paracellular transport across human intestinal Caco-2 cell monolayers J. Agric. Food Chem. 66(5): 1175–83
[39] Liao, YH, Wang CH, Tseng CY, Chen HL, Lin LL, Chen W 2004 Compositional and conformational analysis of yam proteins by near infrared fourier transform raman spectroscopy J. Agric. Food Chem 52: 8190-96
[40] Hou WC, Liu JS, Chen HJ, Chen TE, Chang CF, Lin YH 1999 Dioscorin, the major tuber storage protein of yam (Dioscorea batatas Decne) with carboxy anhydrase and trypsin inhibitor activities J. Agric. Food Chem. 47:2168-72
[41] Chen Y-T and Lin K-W 2007 Effects of heating temperature on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars Food Chem. 101(3): 955-63

[42] Hou R, Zhou QL, Wang BX, Tashiro S, Onoderia S, Ikejima T 2004 Diosgenin induces apoptosis in HeLa cells via activation of caspase pathway Acta Pharmacol. Sin. 25(8): 1077-82

[43] Tada Y, Kanda N, Haratake A, Tobiishi M, Uchiwa H, Watanabe S 2009 Novel effects of diosgenin on skin aging Steroids 74(6): 504-11

[44] Patel K, Gadewar AM, Tahilyani BV, Patel DK 2012 A review on pharmacological and analytical aspects of diosgenin: a concise report Nat. Prod. Bioprospect 2: 46–52

[45] Shang H-F, Cheng H-C, Liang H-J, Liu H-Y, Liu S-Y, Ho W-C 2007 Immunostimulatory activities of yam tuber mucilages Bot. Stud. 48: 63-70

[46] Chandrasekara A and Kumar TJ 2011 Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits Int. J. Food Sci. ID 3631647 15

[47] Hou WC, Hsu FL, Lee MH 2002 Yam (Dioscorea batatas Decne) tuber mucilagin exhibited antioxidant activities in vitro Planta Med. 68: 1072-76

[48] Lin SY, Liu HY, Lu YL, Hou WC 2005 Antioxidant activities of mucilages from different Taiwanese yam cultivars Bot. Bull. Acad. Sin. 46: 183-8

[49] Lee MH, Lin YS, Lin YH, Hsu FL, Hou WC 2003 The mucilage of yam (Dioscorea batatas Decne) tuber exhibited angiotensin converting enzyme inhibitory activities Bot. Bull. Acad. Sin. 44: 267-73

[50] Bailey CJ and Day C 1989 Traditional plant medicines as treatments for diabetes Diabetes Care 12: 553-64

[51] Zhang Z, Wang X, Liu C, Li J 2016 The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita Carbohydr. Polym. 150(5): 227-3

[52] Djazuli M and Bradbury JH 1999 Cyanogen content of cassava roots and flour in Indonesia Food Chem. 65: 523–5

[53] McMahon JM, White WLB, Sayre RT 1995 Cyanogenesis in cassava (Manihot esculenta Crantz) J. Exp. Bot. 46(288): 731–41

[54] Heuberger C 2005 Cyanide content of cassava and fermented products with focus on attieke and attieke garba Dissertation (Zurich: Swiss Federal Institute of Technology)

[55] Yeoh HH 1989 Kinetic properties of β-glucosidase from cassava Phytochemistry 28(3): 721-4

[56] Bradbury JH and Denton IC 2010 Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein Food Chem. 158: 417–20

[57] White WLB, McMahon JM, Sayre RT 1994 Regulation of cyanogenesis in cassava Acta Hortic. 375: 69–78

[58] Haque MR and Bradbury JH 2004 Preparation of linamarin from cassava leaves for use in a cassava cyanide kit Food Chem. 85: 27–9

[59] Westby A 2002 Cassava Utilization, Storage and Small-scale Processing in Cassava: Biology, Production and Utilization ed R.J. Hillocks, J.M. Thresh and A.C. Bellotti (CAB International) p281-300

[60] Essers AJA, Van der Grift RM, Voragen AGJ 1996 Cyanogen removal from cassava roots during sun-drying Food Chem. 55(4): 319–25

[61] Nzwalo H and Cliff J 2011 Konzo: from poverty, cassava, and cyanogen intake to toxiconutritional neurological disease PLoS Neglected Tropical Disease 5(6): 1–8

[62] Lacerda ICA, Miranda RL, Borelli BM, Nunes AC, Nardi RMD, Lachance M, Rosa CA 2005 Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil International J. Food Microbiol. 105: 213–9

[63] Nwokoro O and Anya FO 2011 Linamarase enzyme from Lactobacillus delbrueckii NRRL B-763: purification and some properties of a β-glucosidase J. Mex. Chem. Soc. 55(4): 246–50
[64] Ferraro V, Piccirillo C, Tomlin K, Pintado ME 2016 Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) crops and their derived foodstuffs: safety, security and nutritional value Crit. Rev. Food Sci. Nutr. 56: 2714–2727 DOI: 10.1080/10408398.2014.922045

[65] Cardoso AP, Mirione E, Ernesto M, Massaza F, Cliff J, Haque MR, Bradbury JH 2005 Processing of cassava roots to remove cyanogens J. Food Compos. Anal. 18: 451–60

[66] Padmaja G, George M, Moorthy SN 1993 Detoxification of cassava during fermentation with a mixed culture inoculum J. Sci. Food Agric. 63: 473–81

[67] Essers AJ 1994 Making safe flour from bitter cassava by indigenous solid substrate fermentation. Acta Hortic. 375: 217–24

[68] Hahn SK 1988 Proc. of Workshop of the Potential Utilisation of Cassava as Livestock Feed in Africa Overview of Traditional Processing and Utilisation in Africa ed SK Hahn, L Reynolds, GN Egbunike, IITA/ILCA/Univ. Ibadan, NG p.16–27

[69] Daroit DJ, Silveira ST, Hertz PF, Brandell A 2008 Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates Author links open overlay panel Process Biochem. 42(5): 904–8

[70] Daroit DJ, Simonetti A, Hertz PF, Brandelli A 2008 Purification and characterization of an extracellular β-glucosidase from Monascus purpureus J. Microbiol. Biotechnol. 18(5): 933–41

[71] Panda PB, Javed S, Ali M 2010 Production of angkak through co-culture of Monascus Purpureus and Monascus ruber Braz. J. Microbiol. 41: 757–64

[72] Feng Y, Shao Y, Chen F 2012 Monascus pigments Appl. Microbiol. Biotechnol. 96: 1421–40

[73] Chairote E, Chairote G, Lumyong S 2009 Red mold rice prepare from Thai glutinous rice and the antioxidant activities Chiang Mai J. Sci. 36: 42–49

[74] Herman FG, Debora DR, Daniel AF, Daniel AG 2002 Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells Clin. Exp. Metastasis 19: 551–99

[75] Bartosik-pсуjek H, Tabarkiewicz J, Pocinska K, Radej S, Stelmasiak Z 2010 Immunomodulatory effects of IFN-[beta] and lovastatin on immunophenotype of monocyte-derived dendritic cells in multiple sclerosis Arch. Immunol. Ther. Exp. 58: 313–9

[76] Chu W, Guan L, Huang D, Ren Y, Zhou Y 2016 Lovastatin exerts protective effects on endothelial cells via upregulation of PTK2EB Exp. Ther. Med. 12: 1741–49

[77] Ma F, Fang C, Qian R, Zhong-chao H 2009 Acta Lovastatin restores the function of endothelial progenitor cells damaged by oxLDL Pharmacologica Sinica 30: 545–52

[78] Ibrahim NI, Khamis MF, Faridz M, Shahrum AMY, Mohamed N 2014 Targeted delivery of lovastatin and tocol trotilon to fracture site promotes fracture healing in osteoporosis model: micro-computed tomography and biomechanical evaluation. PLoS One 9:e115595

[79] Chauhan NB, Siegel GJ, Feinstein DL 2004 Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain Neurochem. Res. 29: 1897–911

[80] Vendruscolo F, Bühler RMM, Carvalho JC, de Oliveira D, Moritz DE, Schmiedl W, Ninow JL 2016 Monascus: a reality on the production and application of microbial pigments Appl. Biochem. Biotechnol. 178: 211–23

[81] Doughari JH 2015 The occurrence, properties and significance of citrinin mycotoxin J. Plant Pathol. Microbiol. 6: 11

[82] Lee C-L and Pan T-M 2012 Development of Monascus fermentation technology for high hypolipidemic effect Appl. Microbiol. Biotechnol. 94: 1449–59

[83] Shi Y-C, Liao VH-C, Pan T-M 2012 Monascin from red mold dioscorea as a novel anti diabetic and antioxidantive stress agent in rats and Caenorhabditis elegans Free Radical Bio. Med. 52(1): 109–17

[84] Hsu W-H, Lee B-H, Pan T-M 2010 Red mold dioscorea-induced G2/M arrest and apoptosis in human oral cancer cells J. Sci. Food Agr. 90(15): 2709–15
[85] Hsu W-H, Lee B-H, Pan T-M 2011 Effects of red mold dioscorea on oral carcinogenesis in DMBA-induced hamster animal model Food Chem. Toxicol. 49(6): 1292-97
[86] Wang L-C, Lung T-Y, Kung Y-H, Wang J-J, Tsai T-Y, Wei B-L, Pan T-M, Lee C-L 2013 Enhanced anti-obesity activities of red mold Dioscorea when fermented using deep ocean water as the culture water Mar. Drugs 11: 3902-25
[87] Hsu L-C, Hsu Y-W, Hong C-C, Pan T-M 2014 Safety and mutagenicity evaluation of red mold dioscorea fermented from Monascus purpureus NTU 568 Food Chem. Toxicol. 67: 161-8
[88] Lee C-L, Kung Y-H, Wu C-L, Hsu Y-W, Pan T-M 2010 Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold Dioscorea J. Agric. Food Chem. 58 (16): 9013–19