Turán-Type Results for Complete h-Partite Graphs in Comparability and Incomparability Graphs

István Tomon

Received: 28 January 2015 / Accepted: 9 December 2015 / Published online: 5 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We consider an h-partite version of Dilworth’s theorem with multiple partial orders. Let P be a finite set, and let $<_1, \ldots, <_r$ be partial orders on P. Let $G(P, <_1, \ldots, <_r)$ be the graph whose vertices are the elements of P, and $x, y \in P$ are joined by an edge if $x <_i y$ or $y <_i x$ holds for some $1 \leq i \leq r$. We show that if the edge density of $G(P, <_1, \ldots, <_r)$ is strictly larger than $1 - 1/(2h-2)^r$, then P contains h disjoint sets A_1, \ldots, A_h such that $A_1 <_j \ldots <_j A_h$ holds for some $1 \leq j \leq r$, and $|A_1| = \ldots = |A_h| = \Omega(|P|)$. Also, we show that if the complement of $G(P, <)$ has edge density strictly larger than $1 - 1/(3h-3)$, then P contains h disjoint sets A_1, \ldots, A_h such that the elements of A_i are incomparable with the elements of A_j for $1 \leq i < j \leq h$, and $|A_1| = \ldots = |A_h| = |P|^{1-o(1)}$. Finally, we prove that if the edge density of the complement of $G(P, <_1, <_2)$ is α, then there are disjoint sets $A, B \subset P$ such that any element of A is incomparable with any element of B in both $<_1$ and $<_2$, and $|A| = |B| > n^{1-\gamma(\alpha)}$, where $\gamma(\alpha) \to 0$ as $\alpha \to 1$. We provide a few applications of these results in combinatorial geometry, as well.

Keywords Poset · Dilworth · Bipartite graph · Turan problem

1 Introduction

Let k and n be positive integers. A weak version of the widely used Dilworth’s theorem [2] states that every partially ordered set with n elements either contains a chain of size k or an antichain of size $\lceil n/k \rceil$. Applying Dilworth’s theorem multiple times, one can easily deduce the following result. Let P be an n element set, and let $<_1, \ldots, <_r$ be partial orders on P. There exists $H \subset P$ such that $|H| \geq \sqrt[3]{n}$, and H is either a $<_i$-chain for some $1 \leq i \leq r$ or any two elements of H are incomparable in any of the partial orders $<_1, \ldots, <_r$.
Bipartite versions of Dilworth’s theorem have been considered in a series of papers by Fox, Pach and Tóth. Before we state their results, we introduce some notation.

Let \(<_1, \ldots, <_r\) be partial orders on a set \(P\). If \(a, b \in P\), write \(a \perp_i b\) if \(a\) and \(b\) are incomparable in \(<_i\). Also, write \(a \perp b\) if \(a \perp_i b\) holds for \(i = 1, \ldots, r\). If \(A, B \subseteq P\) and \(1 \leq i \leq r\), let \(A <_i B\) if for every \(a \in A\) and \(b \in B\) we have \(a <_i b\). Define \(A \perp_i B\) and \(A \perp B\) analogously.

In [4], Fox proved the following theorem for a single partial order.

Theorem 1 ([4]) There exists \(n_0\) such that for all \(n > n_0\) and for all partially ordered sets \((P, <)\) on \(n\) elements, there exist \(A, B \subseteq P\) such that \(A\) and \(B\) are disjoint,
\[|A| = |B| > \frac{n}{4 \log_2 n},\]
and either \(A < B\) or \(A \perp B\).

In [5], Fox and Pach generalized this result for multiple partial orders.

Theorem 2 ([5]) Let \(r\) be a fixed positive integer and let \(<_1, \ldots, <_r\) be partial orders on the \(n\) element set \(P\). There exist \(A, B \subseteq P\) such that \(A\) and \(B\) are disjoint,
\[|A| = |B| > \frac{n}{2(1+o(1)) (\log_2 \log_2 n)^r},\]
and either \(A <_i B\) holds for some \(1 \leq i \leq r\) or \(A \perp B\).

In [6], Fox, Pach and Tóth proved a Turán-type version of these results. Before we state it we introduce some further notation. If \(<_1, \ldots, <_r\) are partial orders on the set \(P\), let \(G(P, <_1, \ldots, <_r)\) be the graph whose vertex set is \(P\) and in which two elements \(a, b \in P\) are joined by an edge if \(a <_i b\) or \(b <_i a\) holds for some \(1 \leq i \leq r\). Call this graph the \(r\)-comparability graph of \((P, <_1, \ldots, <_r)\), and call the complement of \(G(P, <_1, \ldots, <_r)\) the \(r\)-incomparability graph of \((P, <_1, \ldots, <_r)\). Similarly, the directed comparability graph of \((P, <_1, \ldots, <_r)\) is \(\overrightarrow{G}(P, <_1, \ldots, <_r)\), in which \(\overrightarrow{xy}\) is an edge if \(x <_i y\) for some \(1 \leq i \leq r\). We note that it is allowed to have both \(\overrightarrow{xy}\) and \(\overrightarrow{yx}\) in the directed edge set.

For positive integers \(h, r, n, m\), define \(f^{C}_{r,h}(n, m)\) and \(f^{I}_{r,h}(n, m)\) as follows. Let \(f^{C}_{r,h}(n, m)\) be the maximal \(s\) such that if \(P\) is an \(n\) element set with partial orders \(<_1, \ldots, <_r\), and \(G(P, <_1, \ldots, <_r)\) has exactly \(m\) edges, then there exist \(1 \leq i \leq r\) and \(A_1, \ldots, A_h \subseteq P\) pairwise disjoint subsets such that \(|A_1| = \ldots = |A_h| = s\), and \(A_1 <_i \ldots <_i A_h\).

Similarly, let \(f^{I}_{r,h}(n, m)\) be the maximal \(s\) such that if \(P\) is an \(n\) element set with partial orders \(<_1, \ldots, <_r\), and the incomparability graph of \((P, <_1, \ldots, <_r)\) has exactly \(m\) edges, then there exist \(A_1, \ldots, A_h \subseteq P\) pairwise disjoint subsets such that \(|A_1| = \ldots = |A_h| = s\), and \(A_j \perp A_l\) for all \(1 \leq j < l \leq h\).

Here is the promised theorem by Fox, Pach and Tóth [6].

Theorem 3 ([6])

(i) For every \(\epsilon > 0\), there exists \(c(\epsilon) > 0\) such that
\[f^{C}_{1,2}(n, \left(\frac{1}{4} - \epsilon\right) n^2) < c(\epsilon) \log n.\]
For every $\epsilon > 0$,

$$f_{1,2}^C \left(n, \left(\frac{1}{4} + \epsilon \right) n^2 \right) > \frac{\epsilon n}{2}.$$

There is a constant $c_2 > 0$ such that for every $0 < \lambda < 1/2$,

$$f_{1,2}^I(n, \lambda n^2) > \frac{c_2 \lambda n}{\log n \log 1/\lambda}.$$

The aim of this paper is to generalize the previous theorem and to understand the behavior of the functions $f_{r,h}^C$ and $f_{r,h}^I$. Let us note a few things about Theorem 3. The functions $f_{1,h}^I$ and $f_{1,2}^C$ behave quite differently. As we can see, $f_{1,2}^C(n, m)$ has a large jump at $m/n^2 = 1/4$, and for $m/n^2 > 1/4$ the function $f_{1,2}^C(n, m)$ is linear in n. We show that $f_{r,h}^C$ has a similar behavior.

However, as we shall see, $f_{1,h}^I$ also jumps at some value of m/n^2 for $h > 2$.

Our paper is organized as follows. In the next section, we prove bounds on $f_{r,h}^C$ for arbitrary r, h positive integers. We show that if $\alpha = 1/2 - 1/2(2h - 2)^r$, the function $f_{r,h}^C(n, m)$ jumps at the point $m/n^2 = \alpha$. If m/n^2 is strictly below the threshold α, then $f_{r,h}^C(n, m)$ is $O(\log n)$, while above this point $f_{r,h}^C(n, m)$ becomes linear in n.

An h-partite graph is balanced if its classes have the same size. In Section 3, we investigate the largest balanced h-partite graph of the 1-incomparability graph. We show that $f_{1,h}^I$ also jumps. If $m/n^2 < 1/2 - 1/2(h - 1)$, then $f_{1,h}^I(n, m) = 0$. However, for

$$\frac{m}{n^2} > \frac{1}{2} - \frac{1}{18(h - 1)} + \epsilon,$$

we have $f_{1,h}^I(n, m) = n^{1-o(1)}$.

In Section 4, we investigate the largest balanced bipartite graph of the 2-incomparability graph. As we shall see, $f_{2,2}^I$ behaves quite differently as $f_{1,2}^I$. We show that $f_{2,2}^I(n, m)$ is approximately n^α for some α satisfying $\alpha \to 1$ as $m/n^2 \to 1/2$.

In the last section, we provide applications of these results for two problems in combinatorial geometry.

Before we start, we introduce some of the standard notation we use. As usual, $[n]$ denotes the set $\{1, \ldots, n\}$. If G is a graph, $V(G)$ is the vertex set of G, $E(G)$ is the edge, $e(G) = |E(G)|$ is the number of edges, and $d(G) = e(G)/(\binom{|V(G)|}{2})$ is the edge density of G. If $X, Y \subseteq V(G)$, $G[X]$ is the subgraph of G induced on X, and $G[X, Y]$ is the induced bipartite subgraph of G with vertex classes X and Y. Also, K_s is the complete graph on s vertices and $K_{s,t}$ is complete bipartite graph with vertex classes having sizes s and t.

A linear extension of a partial order $<$ is a total order $<^*$ such that $x < y$ implies $x <^* y$. Also, the dual of $<$ is $<^d$, where $<^d$ is defined such that $x <^d y$ if $y < x$.

To avoid clutters, we omit floors and ceilings whenever they are not crucial.

2 The r-Comparability Graph

In this section, generalizing part (i) and (ii) of Theorem 3, we prove the following result about the behaviour of $f_{r,h}^C$.

[2] Springer
Let h, r, n be positive integers and $0 < \epsilon < 1/(2h - 2)^r$.

(i) We have

$$f_{r,h}^C\left(n, \left(\frac{1}{2} - \frac{1}{2(2h - 2)^r} - \epsilon\right)n^2\right) < 2\epsilon^{-1}(2h - 2)^r \log n.$$

(ii) There exists a constant $c(r, h, \epsilon) > 0$ such that

$$f_{r,h}^C\left(n, \left(\frac{1}{2} - \frac{1}{2(2h - 2)^r} + \epsilon\right)n^2\right) > c(r, h, \epsilon)n.$$ \hspace{1cm} (*)

Also, for $h = 2$, we have

$$f_{r,2}^C\left(n, \left(\frac{1}{2} - \frac{1}{2^{r+1}} + \epsilon\right)n^2\right) > \frac{\epsilon n}{r2^{r+1}}.$$ \hspace{1cm} (**)

Proof of (i). Let $G = (A, B, E)$ be a bipartite graph with

$$|A| = |B| = \frac{n}{(2h - 2)^r},$$

and $|E| > |A||B|(1 - \epsilon)$ such that G does not contain $K_{r,t}$ with $t > 2\epsilon^{-1} \log n$. A random bipartite graph, where the edges are chosen with probability $(1 - \epsilon/2)$, has this property with high probability, see [1].

Define $(P, <_1, \ldots, <_r)$ as follows. Let $\{P_t\}_{t \in [2h - 2]^r}$ be a partition of the n-element set P into $(2h - 2)^r$ equal sized parts, and let $f^r_t : P_t \rightarrow A$ and $g^r_t : P_t \rightarrow B$ be arbitrary bijections. Let $\overline{t} = (t_1, \ldots, t_r)$ and $\overline{u} = (u_1, \ldots, u_r)$ be two different elements of $[2h - 2]^r$ and suppose that the first coordinate they differ in is the q-th coordinate. Without loss of generality, $t_q < u_q$. If $t_q + 1 < u_q$, let $x <_q y$ for all $x \in P_t$ and $y \in P_u$. If $t_q + 1 = u_q$, let $x <_q y$ if $f^r_t(x)g^r_t(y) \in E$.

One can easily check that the relations $<_1, \ldots, <_r$ we have defined are partial orders. Also, $G(P, <_1, \ldots, <_r)$ contains at least

$$\left(\frac{(2h - 2)^r}{2}\right) \frac{(1 - \epsilon)n^2}{(2h - 2)^{2r}} > \left(\frac{1}{2} - \frac{1}{2(2h - 2)^r} - \epsilon\right)n^2$$

edges.

Suppose that A_1, A_2, \ldots, A_h are disjoint subsets of P such that $|A_1| = \ldots = |A_h| = t$ and $A_1 <_q \ldots <_q A_h$ with some $q \in [r]$. Then there exist $\overline{t}_1, \ldots, \overline{t}_h$ such that for $i = 1, \ldots, h$, we have

$$|P_{t_i} \cap A_i| > \frac{t}{(2h - 2)^r}.$$

Also, the q-th coordinates of $\overline{t}_1, \ldots, \overline{t}_h$ are strictly monotone increasing. Hence, there exists $1 \leq j < h$ such that the difference between the q-th coordinate of \overline{t}_j and \overline{t}_{j+1} is 1. But then $f^r_{t_j}(A_j \cap P_{t_j})$ and $g^r_{t_{j+1}}(A_{j+1} \cap P_{t_{j+1}})$ span a complete bipartite graph in G, so $t/(2h - 2)^r < 2\epsilon^{-1} \log n$. Hence,

$$f_{r,h}^C\left(n, \left(\frac{1}{2} - \frac{1}{2(2h - 2)^r} - \epsilon\right)n^2\right) < 2(2h - 2)^r \epsilon^{-1} \log n.$$

In the rest of this section, we shall prove part (ii) of the theorem. We are going to deduce part (ii) from a Turán-type result for multicolored directed graphs. But first, we need some definitions.
A directed graph $D = (V, E)$ is a k-diamond, if $V = \{a, a', b_1, ..., b_k\}$ and
\[E = \{ \overrightarrow{abi} : i = 1, ..., k \} \cup \{ \overrightarrow{b_ia'} : i = 1, ..., k \}. \]
Call the vertex a the bottom of D and a' the top of D.

The directed graph $S = (V', E')$ is an h-part spiral, if its vertex set can be partitioned as $V' = \{a_1, ..., a_{h-1}\} \cup B_1 \cup ... \cup B_h$ such that $|B_1| = ... = |B_h|$ and
\[E' = \{ \overrightarrow{bd_i} : i = 1, ..., h-1; b \in B_i \} \cup \{ \overrightarrow{a_ib'} : i = 1, ..., h-1; b' \in B_{i+1} \}. \]
Call $|B_1|$ the width of the spiral and $B_1, ..., B_h$ the classes of the spiral.

Also, a directed graph $R = (V'', E'')$ is an h-part rooted spiral, if its vertex set can be partitioned as $V'' = \{a_1, ..., a_h\} \cup B_2 \cup ... \cup B_{h+1}$ such that $|B_1| = ... = |B_{h+1}|$ and
\[E'' = \{ \overrightarrow{ai} : i = 1, ..., h; a \in B_{i+1} \} \cup \{ \overrightarrow{ba_j} : j = 2, ..., h; b \in B_j \}. \]
Call a_1 the root and $|B_1|$ the width of the rooted spiral (Fig. 1).

It is clear that if the directed comparability graph of a partially ordered set $(P, <)$ contains an h-part rooted spiral with classes $B_1, ..., B_h$, then $B_1 < ... < B_h$. Hence, it is enough to find an h-part spiral with large width in the directed comparability graph. To prove such a result, we need the following lemma first.

Lemma 5 Let $\epsilon > 0$ and q, n be positive integers. Let $G = (V, E)$ be a directed graph with $|V| = n$, $|E| > (1/2 - 1/2^{q+1} + \epsilon)n^2$. Let $\chi : E \to [q]$ be a q coloring of the edges. Then G contains a monochromatic k-diamond with
\[k > \frac{\epsilon^2 n}{q^2 2^{2q+2}}. \]

Proof Let $\lambda = \epsilon/q^{2q+1}$. For $W \subset V$, $x \in V$ and $i = 1, ..., q$, let
\[U^W_i(x) = \{ y \in W : \overrightarrow{xy} \in E, \chi(\overrightarrow{xy}) = i \}, \]
and let
\[D^W_i(x) = \{ z \in W : \overrightarrow{zx} \in E, \chi(\overrightarrow{zx}) = i \}. \]
For simplicity, write $U^V_i(x) = U^V_i(x)$ and $D^V_i(x) = D^V_i(x)$. Also, for all $H \subset [q]$, let
\[V_H = \{ x \in V(G) : |U_i(x)| > \lambda n \iff i \in H \}. \]
The sets \(\{V_H\}_{H \subset \{q\}} \) partition \(V \) into \(2^q \) parts. The number of edges connecting two different parts in this partition is at most

\[
\sum_{H_1, H_2 \subset \{q\} : H_1 \neq H_2} |V_{H_1}||V_{H_2}| \leq \left(\frac{2^q}{2} \right) \left(\frac{n}{2^q} \right)^2 = \left(\frac{1}{2} - \frac{1}{2^{q+1}} \right) n^2.
\]

Hence, there exists \(F \subset \{q\} \) such that \(G[V_F] \) contains at least \(\epsilon n^2/2^q \) edges. Let \(E' \) be the set of edges in \(G[V_F] \) whose color is in \(F \). Note that for every \(x \in V_F \) there are at most \(q \lambda n \) edges \(e \) containing \(x \) such that \(\chi(e) \notin F \). Thus,

\[
|E'| > \left(\frac{\epsilon}{2^q} - q \lambda \right) n^2 = \frac{\epsilon n^2}{2^{q+1}}.
\]

But then there exists \(p \in F \) such that \(G[V_F] \) contains at least \(\epsilon n^2/q2^{q+1} \) edges of color \(p \). So there exists \(a \in V_F \) with

\[
|U^V_F(a)| > \frac{\epsilon n}{q2^{q+1}}.
\]

Let \(A = U^V_F(a) \). There are at least

\[
\lambda n |A| > \frac{\epsilon^2 n^2}{q^{2^22(q+1)}}
\]

good edges of color \(p \) connecting an element of \(A \) with an element of \(V \), as every element of \(A \) has at least \(\lambda n \) edges of color \(p \) containing it. Hence, there exists \(a' \in V \) with

\[
|D^A_p(a')| > \frac{\epsilon^2 n}{q^{2^22(q+1)}}.
\]

Then the vertex set \(\{a, a'\} \cup D^A_p(a') \) spans a \(p \)-colored \(k \)-diamond with

\[
k > \frac{\epsilon^2 n}{q^{2^22(q+1)}}.
\]

Now we are ready to prove our key result about spirals.

Theorem 6 Let \(r, h \) be positive integers and \(\epsilon > 0 \). There exists \(c(r, h, \epsilon) > 0 \) with the following property. Let \(G = (V, E) \) be a directed graph with \(|V| = n \) and

\[
|E| > \left(\frac{1}{2} - \frac{1}{2(2h - 2)r} + \epsilon \right) n^2,
\]

and let \(\chi : E \to [r] \) be an \(r \)-coloring of the edges of \(G \). Then \(G \) contains a monochromatic \(h \)-part spiral of width at least \(c(r, h, \epsilon)n \).

Proof Let \(\lambda \) be the unique solution of the quadratic equation

\[
\sqrt{\epsilon/h^r(\epsilon/h^r - r \lambda)^2} = \lambda
\]

satisfying \(\lambda < \epsilon/h^r \). We shall prove that \(G \) contains an \(h \)-part spiral of width at least \(\lambda n \).

Suppose to the contrary that \(G \) does not contain an \(h \)-part spiral of width at least \(\lambda n \). For \(W \subset V, x \in V \) and \(i \in [r] \), define \(U^W_i(x) \) and \(D^W_i(x) \) as in the previous proof. For \(x \in V \) and \(i \in [r] \), let \(l_i(x) \) be the largest \(l \) such that \(G \) contains an \(l \)-part rooted spiral with root \(x \) and width \(\lambda n \) in color \(i \). Note that if there exists \(x \in V \) and \(i \in [r] \) with \(l_i(x) \geq h \), we are
done as an h-part rooted spiral of width λn trivially contains an h-part spiral of width λn. Hence, we can suppose that $0 \leq l_i(x) < h$.

For $\overline{t} = (t_1, \ldots, t_r) \in \{0, \ldots, h-1\}^r$, define

$$V_{\overline{t}} = \{x \in V : l_i(x) = t_i, i \in [r]\}.$$

The sets $\{V_{\overline{t}}\}_{\overline{t} \in \{0, \ldots, h-1\}^r}$ partition V into h^r parts. Let $n_{\overline{t}} = |V_{\overline{t}}|$. Also, let

$$I(\overline{t}) = \{i \in [r] : t_i \not\in \{0, h-1\}\},$$

and $\epsilon' = \epsilon / h^r$. We show that $G[V_{\overline{t}}]$ contains at most

$$\left(\frac{1}{2} - \frac{1}{2|I(\overline{t})|+1}\right)n_{\overline{t}}^2 + \epsilon' n^2$$

edges.

Suppose that $G[V_{\overline{t}}]$ has more than

$$\left(\frac{1}{2} - \frac{1}{2|I(\overline{t})|+1}\right)n_{\overline{t}}^2 + \epsilon' n^2$$

edges. First of all, this forces n_{t_i} to be at least $\sqrt{\epsilon' n}$, as $G[V_{\overline{t}}]$ has more than $\epsilon' n^2$ edges. If $t_i = 0$ for some i, then the number of edges of color i in $G[V_{\overline{t}}]$ is at most λn^2. Otherwise, there exists $x \in G[V_{\overline{t}}]$ with $|U_i(x)| > \lambda n$, and $x \cup U_i(x)$ spans a 1-part rooted spiral of width λn, contradicting $t_i = 0$.

Similarly, if $t_i = h-1$ for some i, then the number of edges of color i in $G[V_{\overline{t}}]$ is also at most λn^2, otherwise there exist $x \in G[V_{\overline{t}}]$ with $|D_i(x)| > \lambda n$. Taking the union of $D_i(x)$ and an $(h-1)$-part rooted spiral with root x and width λn, we get an h-part spiral of width λn.

Hence, the number of edges in $G[V_{\overline{t}}]$ with color in $I(\overline{t})$ is at least

$$\left(\frac{1}{2} - \frac{1}{2|I(\overline{t})|+1}\right)n_{\overline{t}}^2 + (\epsilon' - r\lambda)n^2 > \left(\frac{1}{2} - \frac{1}{2|I(\overline{t})|+1} + \epsilon' - r\lambda\right)n_{\overline{t}}^2.$$

Applying Lemma 5 with $q = |I(\overline{t})|$, we get that there exists a monochromatic k-diamond in $G[V_{\overline{t}}]$ with color in $p \in I(\overline{t})$, where

$$k > \frac{(\epsilon' - r\lambda)^2n_{t_i}}{q^2r^{2q+2}} > \frac{(\epsilon' - r\lambda)^2\sqrt{\epsilon' n}}{r^22^{2q+2}} = \lambda n.$$

Let $a, a', b_1, \ldots, b_k \in V_{\overline{t}}$ be the vertices of this k-diamond, where the vertex a is the bottom and a' is the top of the diamond. Let S be a t_p-part rooted spiral with root a' and width λn, then taking the union of this k-diamond and S, we get a p colored $t_p + 1$-part rooted spiral with root a and width λn, contradicting $t_p(a) = t_p$.

So far, we showed that the graph induced on $V_{\overline{t}}$ can contain at most

$$\left(\frac{1}{2} - \frac{1}{2|I(\overline{t})|+1}\right)n_{\overline{t}}^2 + \epsilon' n^2$$

edges. Hence, the complement of G contains at least

$$-\epsilon n^2 + \sum_{\overline{t}\in\{0,\ldots, h-1\}^r} \frac{n_{\overline{t}}^2}{2|I(\overline{t})|+1}$$
edges. Using the Cauchy-Schwarz inequality, we have
\[
\sum_{t \in \{0, \ldots, h-1\}} r_n \frac{n_t}{2^{t(h)+1}} \geq \left(\sum_{t \in \{0, \ldots, h-1\}} n_t \right)^2 \left(\sum_{t \in \{0, \ldots, h-1\}} 2^{t(h)+1} \right)^{-1} = \frac{n^2}{2(2h-2)^r}.
\]
Hence, \(G \) contains less than
\[
\left(\frac{1}{2} - \frac{1}{2(2h-2)^r} + \epsilon \right) n^2
\]
edges, which is a contradiction.

Solving the quadratic equation in the beginning of the proof yields
\[
c(r, h, \epsilon) = \Omega \left(\frac{\epsilon^{5/2}}{r^{2}2^{2r}h^{5r/2}} \right).
\]
However, in the case \(h = 2 \), we can get a better bound. In this special case, while we repeat the previous proof, we do not need to use Lemma 5 at any point. We can deduce the following result.

Proposition 7 Let \(r \) be a positive integer and \(\epsilon > 0 \). Let \(G = (V, E) \) be a directed graph with \(|V| = n \) and \(|E| > (1/2 - 1/2^{r+1} + \epsilon)n^2 \). Any \(r \) coloring of the edges of \(G \) contains a monochromatic 2-part spiral of width at least \(\epsilon n / r^{2^{r+1}} \).

Proof We shall proceed similarly as in the previous proof and in the proof of Lemma 5. Let \(\lambda = \epsilon / r^{2^{r+1}}. \) For any \(H \subset [r] \) let
\[
V_H = \{ x \in V : |U_i(x)| \geq \lambda n \iff i \in H \}.
\]
The set system \(\{ V_H \}_{H \subset [r]} \) partitions \(V \) into \(2^r \) parts. Thus, the number of edges connecting two different parts is at most \((1/2 - 1/2^{r+1})n^2 \). Hence, there exists \(H_0 \subset [r] \) such that \(e(G[V_{H_0}]) > \epsilon n^2 / 2^r \). Let \(f \) be the number of edges of \(G[V_{H_0}] \) whose color is not in \(H_0 \). Then
\[
f < (r - |H_0|)|V_{H_0}| \lambda n < r \lambda n^2.
\]
Hence, the number of edges of \(G[V_{H_0}] \) whose color is in \(H_0 \) is at least
\[
\left(\frac{\epsilon}{2^r} - r \lambda \right) n^2 = r \lambda n^2.
\]
But then, there exists \(i \in H_0 \) and \(v \in V_{H_0} \) such that
\[
|D_i(v)| \geq |D^V_{H_0}(v)| > \lambda n.
\]
Setting \(B_1 = D_i(v), a_1 = v \) and \(B_2 = U_i(x) \), the set \(\{a_1\} \cup B_1 \cup B_2 \) spans a 2-spiral of width \(\lambda n \) of color \(i \) in \(G \). \(\square \)

After these preparations, the proof of Theorem 4 is immediate.

Proof of Theorem 4, part (ii). Let \(<_1, \ldots, <_r \) be partial orders on the \(n \) element set \(P \). Define the directed graph \(G = (P, E) \) and the coloring \(\chi : E \rightarrow [r] \) as follows: if \(x, y \in P \) are comparable in at least one of the partial orders \(<_1, \ldots, <_r \), then choose one of them, say \(<_i. \) Without loss of generality, \(x <_i y \). Let \(xy \in E \) and \(\chi(xy) = i \). By Theorem 6, there
exists a color \(p \) such that the directed graph \(G \) contains a \(p \)-colored \(h \)-part spiral of width \(c(r, h, \epsilon)n \), let its vertex set be \(\{a_1, ..., a_{h-1}\} \cup B_1 \cup ... \cup B_h \). But then \(B_1 <_p ... <_p B_h \) and \(|B_1| = ... = |B_h| > c(r, h, \epsilon)n \). Hence, (*) is proved.

In case \(h = 2 \), we repeat the proof of (*), but we use Proposition 7 instead of Theorem 6. This yields

\[
\begin{align*}
\frac{f_{r,2}(n, \left(\frac{1}{2} - \frac{1}{2^{r+1}} + \epsilon\right)n^2)}{\frac{r}{2^{r+1}}} > \frac{\epsilon n}{r^{2^r+1}}.
\end{align*}
\]

\[\blacksquare \]

3 Balanced Complete \(h \)-Partite Subgraph in the Incomparability Graph

In this section, we prove a result about large balanced complete \(h \)-partite subgraphs in the incomparability graph of \((P, <) \). Note that if \(P \) is the disjoint union of \(h - 1 \) chains, each of size \(n/(h - 1) \), then there is no \(K_h \) in the incomparability graph of \((P, <) \). Hence, the incomparability graph of \((P, <) \) needs to have density at least \(1 - 1/(h - 1) \) if we hope to find a large balanced complete \(h \)-partite graph in it. Our next result shows that if we are slightly above this density, we do find a large balanced complete \(h \)-partite graph in the incomparability graph.

Theorem 8 Let \(h \geq 2 \) be a positive integer and let \(s = \lceil\log_2 h\rceil \).

(i) For \(m < (1/2 - 1/2(h - 1))n^2 \), we have \(f_{1,h}^I(n, m) = 0 \).

(ii) For every \(\epsilon > 0 \), there exists \(c(h, \epsilon) > 0 \) such that

\[
\begin{align*}
f_{1,h}^I \left(n, \left(\frac{1}{2} - \frac{1}{18(h - 1)} + \epsilon\right)n^2\right) > \frac{c(h, \epsilon)n}{(\log n)^s}.
\end{align*}
\]

In the proof, we shall use the following easy corollary of Theorem 3 and Theorem 4.

Proposition 9 Let \(h, n \) be positive integers. Let \(s \) be the smallest integer such that \(h \leq 2^s \). There exists \(c(h) > 0 \) with the following property. Let \(< \) be a partial order on the \(n \) element set \(P \). If \(n \) is sufficiently large, then either

(i) there exist \(A_1, ..., A_h \subset P \) disjoint sets such that

\[
|A_1| = ... = |A_s| > \frac{c(h)n}{(\log n)^s},
\]

and \(A_i \perp A_j \) for \(1 \leq i < j \leq h \);

(ii) or there exist \(B_1, B_2, B_3 \subset P \) disjoint sets such that

\[
|B_1| = |B_2| = |B_3| > \frac{c(h)n}{(\log n)^s},
\]

and \(B_1 < B_2 < B_3 \).

Proof Let \(c = c(1, 3, 1/16) \), where \(c(r, h, \epsilon) \) is the constant defined in Theorem 4. If the comparability graph of a poset \((Q, <) \), with \(|Q| = m \) has more than \(7m^2/16 \) edges, then by Theorem 4 there exists \(B_1, B_2, B_3 \subset Q \) satisfying \(|B_1| = |B_2| = |B_3| > cm \) and \(B_1 < B_2 < B_3 \). Hence, we can suppose that the comparability graph of \(P \) does not contain a subgraph of size at least \(n/(\log n)^s \) with edge density larger than \(7/8 \), otherwise (ii) holds.
if $c(h) < c$. But then, applying Theorem 3, every subgraph of size $n' > n/\log n$ contains two sets, A and A' such that $|A| = |A'| > c_0 n'/\log n'$ with a suitable constant $c_0 > 0$, and $A \perp A'$.

For $k = 0, \ldots, s$ and $i = 1, \ldots, 2^k$, we shall define the sets $X_{k,1}, \ldots, X_{k, 2^k} \subset P$ with the following properties: $X_{0,1} = P$; $|X_{k,1}| = \ldots = |X_{k, 2^k}| > \varepsilon_0 n/\log n^k$, and $X_{i,k} \perp X_{j,k}$ for $1 \leq i < j \leq 2^k$. Suppose that $X_{k,1}, \ldots, X_{k, 2^k}$ are already defined satisfying those properties. We define $X_{k+1,1}, \ldots, X_{k+1, 2^k+1}$ as follows. As $|X_{i,k}| > \varepsilon_0 n/\log n^k > n/\log n^k$ if n is sufficiently large, there exist $X_{k+1, 2i-1}, X_{k+1, 2i} \subset X_{i,k}$ such that

$$|X_{k+1, 2i-1}| = |X_{k+1, 2i}| > \frac{c_0 |X_{i,k}|}{\log |X_{i,k}|} > \frac{\varepsilon_0^{k+1} n}{\log n^{k+1}},$$

and $X_{k+1, 2i-1} \perp X_{k+1, 2i}$. Then $X_{k+1, 1}, \ldots, X_{k+1, 2^k+1}$ also satisfy the properties. Set $A_i = X_{x,i}$ for $i = 1, \ldots, h$. Then (i) holds.

Proof of Theorem 8. We shall prove part (ii) of the theorem. Let (P, \prec) be a partially ordered set n elements such that

$$e(G(P, \prec)) < \left(\frac{1}{18(h-1)} - \varepsilon\right) n^2.$$

Let $k = \lceil 2\varepsilon^{-1}\rceil$. Let \prec' be any linear extension of \prec, and let $x_1 \prec' \ldots \prec' x_n$ be the enumeration of the elements of P by \prec'. Partition P into k equal \prec' intervals P_1, \ldots, P_k. Namely, for $i = 1, \ldots, k$, let $P_i = \{x_{(i-1)n/k+1}, \ldots, x_{in/k}\}$.

Let $c_0 = c(h)$ be the constant defined in Proposition 9, and set $c(h, \varepsilon) = c_0 \varepsilon/k$. Also, let $z = c(h, \varepsilon)n/(\log n)^k$. Suppose that P does not contain A_1, \ldots, A_h disjoint sets such that

$$|A_1| = \ldots = |A_h| > z,$$

and $A_i \perp A_j$ for $1 \leq i < j \leq h$. By Proposition 9, every subset of P of size at least $\varepsilon n/k$ contains three sets B_1, B_2, B_3 of size z such that $B_1 < B_2 < B_3$. Let

$$m = \frac{(1 - \varepsilon)n}{3kz}. \quad (1)$$

Picking greedily, for $i = 1, \ldots, k$, we can find $3m$ disjoint sets

$$\{B_{i,j,t}\}_{j=1,\ldots,m; t=1,2,3}$$

in P_i, such that $|B_{i,j,t}| = z$ and $B_{i,j,1} < B_{i,j,2} < B_{i,j,3}$.

Define a new graph $H = ([k] \times [m], E)$ as follows: join (i, j) and (i', j') by an edge if $i = i'$ or there is an edge in $G(P, \prec)$ between $B_{i,j,2}$ and $B_{i', j', 2}$.

Suppose H has d edges. If (i, j) and (i', j') are joined by an edge, where $i < i'$, then $G(P, \prec)$ contains every edge between $B_{i,j,1}$ and $B_{i', j', 3}$. This is true as there exists $x \in B_{i,j,2}$ and $y \in B_{i', j', 2}$ with $x < y$, so for any $x' \in B_{i,j,1}$ and $y' \in B_{i', j', 3}$, we have $x' < x < y < y'$. The number of edges of H of the form $\{(i, j), (i', j')\}$ is $k(\binom{m}{2})$. Hence, the number of edges $\{(i, j), (i', j')\}$ of H with $i \neq i'$ correspond to at least

$$\binom{d - k \binom{m}{2}}{2} z^2$$

edges in $G(P, \prec)$. But $G(P, \prec)$ has at most $1/18(h-1) - \varepsilon)n^2$ edges, so

$$dz^2 - k z^2 \binom{m}{2} < \left(\frac{1}{18(h-1)} - \varepsilon\right) n^2.$$
Here, \(kz^2/m^2 < n^2/18k < \epsilon n^2/2 \). Hence, we have

\[
dz^2 < \left(\frac{1}{18(h - 1)} - \frac{\epsilon}{2} \right) n^2.
\]

Thus, using Eq. 1, we get

\[
d < 9k^2m^2 \left(\frac{1}{18h} - \frac{\epsilon}{2} \right) n^2(1 - \epsilon)^{-2} < \left(\frac{1}{2(h - 1)} - \epsilon \right) (km)^2.
\]

Applying Turán’s theorem [13] to \(H \) there is a complete graph on \(h \) vertices in the complement of \(H \). Let the vertices of this \(Kh \) be \((i_1, j_1), \ldots, (ih, jh)\). For \(l = 1, \ldots, h \), let \(A_l = B_{il, jl} \). Then \(|A_1| = \ldots = |Ah| = c(h, \epsilon) n/(\log n)^s\), and \(A_l \perp A_{l'} \) for \(1 \leq l < l' \leq h \), which is a contradiction.

Slightly modifying the proof above, one can show that we can replace \(1/2 - 1/18(h - 1) \) in (ii) with \(1/2 - 1/8(h - 1) \). However, we conjecture that \(1/2 - 1/2(h - 1) \) is the sharp threshold.

Conjecture 10 Let \(h \) be a positive integer, \(\epsilon > 0 \). There exists \(c(h, \epsilon) > 0 \) such that

\[
f\left(n, \left(\frac{1}{2} - \frac{1}{2(h - 1)} + \epsilon \right) n^2 \right) > \frac{c(h, \epsilon)n}{(\log n)^s}
\]

holds.

4 Balanced Complete Bipartite Graph in the 2-Incomparability Graph

In this section, we investigate the size of the largest balanced complete bipartite graph in the 2-incomparability graph of \((P, <_1, <_2)\).

Fix a positive integer \(h \). By our previous results, if the edge density of the incomparability graph of \((P, <)\) exceeds some threshold strictly less than 1, we have a complete balanced \(h \)-partite graph of size \(n^{1-o(1)} \) in the incomparability graph. However, as we shall see, this is no longer true for the 2-incomparability graph, or in general, for the \(r \)-incomparability graph, where \(r \geq 2 \).

However, we show that if the incomparability graph of \((P, <_1, <_2)\) has edge density \((1 - \epsilon + o(1))\), there is a complete balanced bipartite graph of size \(n^{\beta(\epsilon)} \), where \(\beta(\epsilon) \rightarrow 1 \) as \(\epsilon \rightarrow 0 \). This is still much larger than the size of the largest balanced complete bipartite graph of a random graph, whose edges are chosen with probability \(1 - \epsilon \). With high probability, such a graph has edge density \((1 - \epsilon + o(1))\), and its largest balanced bipartite graph has size \(O(\epsilon^{-1} \log n) \).

We prove the following result.

Theorem 11 (i) For every \(0 < \epsilon < 1 \) and positive integer \(k \geq 2 \), we have

\[
f^{I}_{2,2} \left(n, \left(\frac{1}{2} - \frac{1}{2k} - \epsilon \right) n^2 \right) < 2\epsilon^{-1}kn^{1-1/(k-1)} \log n.
\]

(ii) For every \(\delta > 0 \), if \(n \) is a sufficiently large positive integer, there exists \(\gamma(\delta) > 0 \) such that

\[
f^{I}_{2,2} \left(n, \left(\frac{1}{2} - \gamma(\delta) \right) n^2 \right) > n^{1-\delta}.
\]
The proof of part (i) is a probabilistic construction. We shall only briefly sketch the idea, the reader can find more about random graphs in [1].

Proof of (i). Our task is to construct partial orders \(\prec_1, \prec_2 \) on an \(n \) element set \(P \), such that the complement of \(G(P, \prec_1, \prec_2) \) does not contain a large complete bipartite graph.

For any positive integer \(N \), let \(G_N = (X_N, Y_N, E_N) \) be a bipartite graph with the following properties:

1. \(|X_N| = |Y_N| = N; \)
2. for every \(x \in X_N \cup Y_N \) we have \(\deg(x) < \epsilon N^{1/(k-1)} \);
3. the complement of \(G \) does not contain a \(K_{t, t} \) with \(t > 2e^{-1}N^{1/(k-1)} \log n \);
4. \(G_N \) has a complete matching \(M_N \).

If the edges of \(G \) are chosen independently with probability \(\epsilon N^{1/(k-1)} - 1/2 \), then with positive probability \(G \) satisfies conditions (2), (3) and (4).

Let \(A_1, \ldots, A_k \) be disjoint sets of size \(n/k \), and let \(P = A_1 \cup \ldots \cup A_k \). Let \(\prec_1 \) be any partial order such that \(A_1, \ldots, A_k \) are \(\prec_1 \)-chains, and \(A_i \perp_1 A_j \) for \(1 \leq i < j \leq k \).

Now define \(\prec_2 \) as follows: for \(i = 1, \ldots, k \), let \(f_i : A_i \to X_{n/k} \) and \(g_i : A_i \to Y_{n/k} \) be arbitrary bijections. Define the relation \(<_{2}^{*} \) such that for any \(a \in A_i \) and \(b \in A_{i+1} \), where \(1 \leq i \leq k - 1 \), we have \(a <_{2}^{*} b \) if \(f_i(a)g_{i+1}(b) \in E_{n/k} \). Let \(\prec_2 \) be the partial order induced by the relation \(<_{2}^{*} \).

First of all, we shall bound the number of edges of \(G(P, \prec_1, \prec_2) \) from above. Note that

\[
e(G(P, \prec_1)) = k \binom{n/k}{2} < n^2/2k.
\]

Also, \(e(G(P, \prec_2)) < \epsilon n \). This is true as for every \(1 \leq i < j \leq k \) and \(x \in A_i, y \in A_j \), we have \(x \prec y \) iff there exists a sequence \(x_0, \ldots, x_{j-i} \) such that \(x_0 = a, x_{j-i} = y, x_l \in X_{i+l} \) for \(l = 1, \ldots, j-i-1 \), and \((x_{i+l-1})g_{i+l-1}(x_{i+l}) \in E(G_{n/k}) \) for \(l' = 0, \ldots, j-i-1 \).

As every vertex in \(G_{n/k} \) has degree less than \(\epsilon N^{1/(k-1)} \), the number of such sequences with \(x_0 = a \) is at most

\[
e^{i-j/2} \binom{n/k}{l-j/(k-1)} < \epsilon n.
\]

Hence, for every \(x \in P \) there are at most \(\epsilon n \) elements \(y \in P \) such that \(x \prec y \). Thus,

\[
e(G(P, \prec_2)) < \epsilon n^2.
\]

We deduce that \(e(G(P, \prec_1, \prec_2)) < (1/2k + \epsilon)n^2 \).

Also, let \(X, Y \subseteq P \) be disjoint sets such that \(X \perp Y \) and \(|X| = |Y| \). Then, there exist positive integers \(t \) and \(u \) such that \(1 \leq t, u \leq k \), \(|X \cap A_t| \geq |X|/k \) and \(|Y \cap A_u| \geq |Y|/k \).

We cannot have \(t = u \), otherwise, there exist \(x \in X \cap A_t \) and \(y \in Y \cap A_u \) with \(x \prec y \) or \(y \prec x \), contradicting \(X \perp Y \). Hence, \(t \neq u \). Without loss of generality, suppose that \(t < u \).

Let \(H \) be the bipartite subgraph of \(G(P, \prec_2) \) induced on \(A_t \cup A_u \). We show that \(H \) contains a subgraph isomorphic to \(G_{n/k} \). Let \(x \in A_t \), arbitrary, and let \(a_0(x), \ldots, a_{u-t-1}(x) \) be the unique sequence such that \(a_0(x) = x, a_l(x) \in A_{t+l} \) for \(l = 1, \ldots, u-t-1 \), and \(f_{t+l'}(a_l'(x))g_{t+l'+1}(a_{l+1}(x)) \in M_{n/k} \). As \(M_{n/k} \) is a complete matching, every \(a_l : A_t \to A_{t+l} \) is a bijection. Also, the subgraph of \(G(P, \prec_2) \) induced on \(A_{u-1} \cup A_u \) is isomorphic to \(G_{n/k} \). If \(x' \in A_{u-1} \) and \(x'' \in A_u \) with \(x' \prec x'' \), then \(a_{u-1}^{-1}(x') \prec x'' \). Hence, the subgraph of \(G(P, \prec_2) \) induced on \(A_t \cup A_u \) contains a subgraph isomorphic to \(G_{n/k} \).
Thus, the complement of H does not contain $K_{t,t}$ with
\[t > 2\varepsilon^{-1}N^{1-1/(k-1)}\log n, \]
so
\[|X| = |Y| < 2kN^{1-1/(k-1)}\log n < 2\varepsilon^{-1}kn^{1-1/(k-1)}\log n. \]

Our next aim is to prepare the proof of part (ii) of Theorem 11. It turns out, our proof would be simpler if $<_1$ and $<_2$ had a common linear extension, which is not the case in general. However, the next lemma shows that we can find a constant number of large subsets in our poset such that between these subsets $<_1$ and $<_2$ behave as if they had a common linear extension.

Lemma 12 Let $r, h \geq 2$ be positive integers. There exists $c(r, h) > 0$ with the following property. Let $<_1^0, \ldots,<_r^0$ be partial orders on the n element set P, and for $s = 1, \ldots, r$, let $<_s^0$ be the dual of $<_s^0$. There exist $A_1, \ldots, A_h \subset P$ pairwise disjoint sets and $\alpha_1, \ldots, \alpha_r \in \{0, 1\}$ such that
\begin{enumerate}[(i)]
 \item $|A_1| = \ldots = |A_h| > c(r, h)n$;
 \item if $x \in A_i$ and $y \in A_j$ with $1 \leq i < j \leq h$, and x and y are comparable in $<_s$, then $x < _s^{\alpha_s} y$.
\end{enumerate}

Proof For $s = 1, \ldots, r$, let $<_s^r$ be a linear extension of $<_s^0$. It is enough to prove our lemma for $<_1^r, \ldots,<_r^r$ instead of $<_1^0, \ldots,<_r^0$. We shall deduce Lemma 12 from the following claim. \hfill \Box

Claim 13 Let p and r be positive integers. There exists $c'(p, r) > 0$ with the following property. Let $<_1, \ldots,<_r$ be total orders on the n element set P. There exist $B_1, \ldots, B_p \subset P$ pairwise disjoint subsets such that
\begin{enumerate}[(i)]
 \item $|B_1| = \ldots = |B_p| > c'(p, r)n$;
 \item for $s = 1, \ldots, r$ and $1 \leq i < j \leq r$, we have either $B_i <_s B_j$ or $B_j <_s B_i$.
\end{enumerate}

Proof We shall proceed by induction on r. In case $r = 1$, the statement is trivial with $c'(p, 1) = 1/p$. Let $r \geq 2$ and suppose the statement holds for $r - 1$ instead of r. Let $C_1, \ldots, C_p \subset P$ be disjoint sets such that
\[|C_1| = \ldots = |C_p| > c'(p, r - 1)n, \]
and for every $1 \leq i < j \leq p$ and $s = 1, \ldots, r - 1$, we have $C_i <_s C_j$ or $C_j <_s C_i$. Let $P' = \bigcup_{i=1}^p C_i$, and for $x \in P'$, let $\tau(x)$ be the position of x in the order $<_r$ in P'. For $i = 1, \ldots, p$, let
\[D_j = \left\{ x \in P : \frac{(j-1)|P'|}{p} < \tau(x) \leq \frac{j|P'|}{p} \right\}. \]
We have $D_i <_r D_j$ for any $1 \leq i < j \leq p$. Our B_1, \ldots, B_p are going to be suitable subsets of C_1, \ldots, C_p and D_1, \ldots, D_p.

\section*{Order (2016) 33:537–556 549}
Let S, T be two disjoint copies of $[p]$, and define the bipartite graph $G = (S, T, E)$ as follows: for $i \in S$ and $j \in T$, let $ij \in E$ if

$$|C_i \cap D_j| > \frac{|P'|}{p^2(p + 1)}.$$

We show that G has a complete matching. By Hall’s theorem [7], we only need to check if Hall’s condition holds. Let $X \subset [p]$ be arbitrary and let $\Gamma(X)$ denote the set of neighbours of X in G. Let $U = \bigcup_{i \in X} D_i$, then

$$|U| = \frac{|X||P'|}{p}.$$

Also, the elements of $\Gamma(X)$ cover at most $|\Gamma(X)||P'|/p$ elements in U, while the elements not in $\Gamma(X)$ cover at most $p|X|(|P'|/p^2(p + 1)) = |P'||X|/p(p + 1)$ elements in U. Hence, we obtain

$$\frac{|X||P'|}{p} \leq \frac{|\Gamma(X)||P'|}{p} + \frac{|P'||X|}{p(p + 1)}.$$

Thus, we have

$$|X|\left(1 - \frac{1}{(p + 1)}\right) \leq |\Gamma(X)|.$$

But $|X|$ and $|\Gamma(X)|$ are integers not larger than p. Hence, $|X| \leq |\Gamma(X)|$ also holds. So, Hall’s condition is satisfied and there exists a complete matching in G. Let the edge set of such a matching be $\{ix_i : i \in S\}$. Setting $B_i = C_i \cap D_{x_i}$ and $c'(p, r) = c'(p, r - 1)/p^2(p + 1)$, we have both (i) and (ii) satisfied. \hfill \Box

Let $p = (h - 1)^{2r-1} + 1$ and let $B_1, ..., B_p \subset P$ be disjoint sets such that $|B_1| = \cdots = |B_p| > c'(p, r)n$, and for $1 \leq i < j \leq p$ and $1 \leq s \leq r$, we have either $B_i <_s B_j$ or $B_j <_s B_i$. Define the partial orders $\{<_\pi\}_{\pi \in [0, 1]^{r-1}}$ on $[p]$ as follows: for $i, j \in [p]$ and $\pi \in [0, 1]^{r-1}$, let $i <_\pi j$ if $B_i <_s B_j$, and for $s = 1, ..., r - 1$, we have $B_i <_s B_j$ in case $v_s = 0$, and $B_j <_s B_i$ in case $v_s = 1$. Then any two different elements of $[p]$ are comparable in at least one of the partial orders $\{<_\pi\}_{\pi \in [0, 1]^{r-1}}$. Hence, by repeated applications of Dilworth’s theorem, there exist $\pi \in \{0, 1\}^{r-1}$ and $C \subset [p]$ such that

$$|C| \geq [p^{1/2r-1}] = h,$$

and C is a $<_\pi$ chain. Let $i_1 <_\pi \cdots <_\pi i_h$ be h elements of this chain, and for $j = 1, ..., h$, let $A_j = B_{i_j}$. Also, for $s = 1, ..., r$, let $a_s = w_j$. Finally, let $c(r, h) = c'(h, p)$. Then the conditions of the theorem are satisfied. \hfill \Box

Before we start the proof of part (ii) of Theorem 11, we still need the following two lemmas.

Lemma 14 Let $A_0, ..., A_k$ be pairwise disjoint sets of size m, and let

$$P = \bigcup_{i=1}^k A_i.$$

Let $<$ be a partial order on P such that whenever $x < y$ for some $x \in A_i$ and $y \in A_j$, then $i < j$. Suppose that $G(P, <)\{A_0, A_k\}$ has less than $m^2/4$ edges. There exist $0 \leq l \leq k - 1$ and $X \subseteq A_l, Y \subseteq A_{l+1}$ such that $|X|, |Y| > m^{1-1/k}$, and $X \perp Y$.

\hfill Springer
Proof For any $X \subset P$ and $i = 1, ..., k$, let

$$U_i(X) = \{ y \in A_i : \exists x \in X, x < y \}. $$

Let $B = \{ x \in A_0 : |U_k((x))| < m/2 \}$. Then $|B| > m/2$, otherwise $G(P, <)[A_0, A_k]$ has more than $m^2/4$ edges. Suppose that there is no $l \in \{0, ..., k - 1\}$ and subsets $X \subset A_l, Y \subset A_{l+1}$ such that $|X| = |Y| > m^{1-1/k}$, and $X \perp Y$.

We show that we can find a decreasing sequence of sets $B \supseteq B_1 \supseteq \ldots \supseteq B_k$ with the following properties: $|B_i| = 2^{k-i}m^{1-1/k}$, and $|U_i(B_i)| > m/2$. Note that B_k is a one element set. Hence, writing x for that one element, we have

$$|U_k((x))| > \frac{m}{2},$$

contradicting $x \in B$, finishing our proof.

We shall define our sets $B_1, ..., B_k$ recursively. Let B_1 be any subset of B of size $2^{k-1}m^{1-1/k}$. If $|U_1(B_1)| \leq m/2$, then choosing $X = B_1$ and $Y = A_1 \setminus U_1(B_1)$, we have $X \perp Y$ and $|X|, |Y| > m^{1-1/k}$. Hence, we have $|U_1(B_1)| \leq m/2$. \qed

Suppose that B_i is already defined satisfying $|B_i| = 2^{k-i}m^{1-1/k}$ and $|U_i(B_i)| > m/2$.

Claim 15 For any positive integer $t \leq |B_i|$, we can choose a set $C \subset B_i$ such that $|C| = t$ and $|U_i(C)| \geq |U_i(B)|t/|B_i|.$

Proof Let $x_1, ..., x_p$ be the elements of B_i. Let $S_1, ..., S_p$ be a partition of $U(B_i)$ such that $S_j \subset U_i((x_j))$ for $j = 1, ..., p$. Without the loss of generality, $|S_1| \geq \ldots \geq |S_p|$. Set $C = \{x_1, ..., x_t\}$, then

$$|U_i(C)| \geq |S_1| + \ldots + |S_t| \geq \frac{|U_i(C)|t}{|B_i|}. $$

\qed

Setting $t = 2^{k-i}m^{1-(i+1)/k}$, we get a set C such that

$$|C| = 2^{k-i}m^{1-(i+1)/k},$$

and $|U_i(C)| \geq m^{1-1/k}$. If $|U_{i+1}(C)| \leq m/2$, then set $X = C$ and $Y = A_{i+1} \setminus U_{i+1}(C)$. Then, we have $X \perp Y$ and $|X|, |Y| > m^{1-1/k}$, which is a contradiction. Hence, $|U_{i+1}(C)| > m/2$, and $B_{i+1} = C$ satisfies our conditions. \qed

We also need the following easy corollary of Theorem 2, which we shall state without proof.

Proposition 16 Let $<_1, <_2$ be partial orders on the n element set P. At least one of the following holds:

(i) there exist $A_1, A_2 \subset P$ such that $|A_1| = |A_2| > n^{1-o(1)}$, and $A_1 \perp A_2$;
(ii) there exist $B_1, B_2, B_3 \subset P$ such that $|B_1| = |B_2| = |B_3| > n^{1-o(1)}$, and $B_1 <_1 B_2 <_2 B_3$ or $B_1 <_1 B_2 <_1 B_3$.

Proof of Theorem 11, (ii). We have to prove that there exists a constant $\gamma(\delta)$ such that if P is a set with n elements, and $<_1, <_2$ are partial orders on P satisfying $e(G(P, <_1, <_2)) < \gamma(\delta)n^2$, then P contains two disjoint subsets A, B of size at least $n^{1-\gamma}$ such that $A \perp B$. For simplicity, let $G_1 = G(P, <_1)$ and $G_2 = G(P, <_2)$.
Suppose that \(P \) does not contain two disjoint subsets \(A, B \) of size at least \(n^{1-\delta} \) such that \(A \perp B \). Let \(k = \lfloor 2/\delta \rfloor \) and \(h = 128k \), and let \(c_1 = c(2, h) \), where \(c(r, h) \) is the constant defined in Lemma 12. Then there exist \(L_1, \ldots, L_h \subset P \) pairwise disjoint sets with the following properties: \(|L_1| = \ldots = |L_h| = c_1n \); replacing \(<2 \) with its dual if necessary, if \(x \in L_i \) and \(y \in L_j \) for some \(1 \leq i < j \leq h \), and \(x, y \) are comparable in \(<1 \) or \(<2 \), then \(x < y \) or \(y < x \), respectively.

Let \(m = n^{1-\delta/2} \). By Proposition 16, if \(n \) is sufficiently large, every subset of \(P \) of size at least \(c_1n/2 \) contains three disjoint subsets \(B_1, B_2, B_3 \) of size \(m \) such that \(B_1 < B_2 < B_3 \) or \(B_1 < B_2 < B_3 \). Hence, we can cover at least half of \(L_i \) with disjoint triples of subsets such that each set has size \(m \) and each triple spans a balanced complete 3-partite graph in \(G_1 \) or in \(G_2 \).

More precisely, let \(s = c_1n/2m \). Then, for \(i = 1, \ldots, h \), there is a system of disjoint sets \(\{B_{i,j,l}\}_{j=1, \ldots, s_i=1, 2, 3} \) such that \(B_{i,j,l} \subset L_i \), \(|B_{i,j,l}| = m \), and \(B_{i,j,1} < B_{i,j,2} < B_{i,j,3} \) or \(B_{i,j,1} < B_{i,j,2} < B_{i,j,3} \). Call the pair \((i, j)\) in \([h] \times [s] \) type 1, if \(B_{i,j,1} < B_{i,j,2} < B_{i,j,3} \), and call it type 2 otherwise. Without the loss of generality, we can suppose that there are at least \(sh/2 \) type 1 pairs in \([h] \times [s] \), and let \(S \) be the set of such pairs.

Let \(H = (S, E) \) be the complete graph on \(S \), and let \(w \) be a weight function defined on \(E \) as follows. Let \((i, j), (i', j') \in S\), and let \(f \) be the edge joining \((i, j)\) and \((i', j')\). If \(i = i' \), or there exist \(x \in B_{i,j,2} \) and \(y \in B_{i',j',2} \) such that \(x < y \), then let \(w(f) = 1 \); otherwise, let

\[
w(f) = \frac{e(G_2[B_{i,j,2}, B_{i',j',2}])}{m^2}.
\]

Note that if there exist \(x \in B_{i,j,2} \) and \(y \in B_{i',j',2} \) such that \(x < y \), then \(B_{i,j,1} < B_{i',j',1} \). Hence, there are at least \(m^2 \) edges between \(B_{i,j,1} \cup B_{i,j,2} \cup B_{i,j,3} \) and \(B_{i',j',1} \cup B_{i',j',2} \cup B_{i',j',3} \) in \(G_1 \). Thus, if \(i \neq i' \), there are at least \(w(f)m^2 \) edges between \(B_{i,j,1} \cup B_{i,j,2} \cup B_{i,j,3} \) and \(B_{i',j',1} \cup B_{i',j',2} \cup B_{i',j',3} \). Also, the number of edges \(\{(i, j), (i', j')\} \) in \(H \), where \(i = i' \), is at most

\[
h\left(\frac{s}{2}\right) < hs^2.
\]

Let \(w(E) = \sum_{f \in E} w(f) \). Then the number of edges of \(G(P, <1, <2) \) is at least

\[
(w(E) - hs^2)m^2.
\]

Let \(t \) be the number of edges \(f \in E \) such that \(w(f) \leq 1/4 \). We show that

\[
t \leq |S|^2 \left(\frac{1}{2} - \frac{1}{2k}\right).
\]

Suppose that \(t > |S|^2(1/2 - 1/2k) \). Consider the graph \(H' \) with vertex set \(S \), and edge set \(E' = \{f \in E : w(f) \leq 1/4\} \). By Turán’s theorem [13], there exists \(T \subset S \) of size \(k + 1 \) such that \(H'[T] \) is a complete graph. Let \((i_0, j_0), \ldots, (i_k, j_k)\) be the elements of \(T \) and suppose that \(i_0 < \ldots < i_k \). First, note that \(A_{i_l,j_l,1} \perp A_{i_l',j_l',2} \) for all \(0 \leq l < l' \leq k \), as the weight of the edge \(\{(i_l, j_l), (i_l', j_l')\} \) is less than 1.

Set \(A_l = B_{i_l,j_l,2} \) for \(l = 0, \ldots, k \). Then \(e(G_2[A_0, A_k]) \leq m^2/4 \). Hence, by Lemma 14, there exist \(0 \leq l \leq k - 1 \) and \(X \in A_l, Y \in A_{l+1} \) such that \(|X| = |Y| = m^{1-1/k} \), and \(X \perp Y \). But then \(X \perp Y \), and

\[
m^{1-1/k} > n(1-\delta/2)^2 > n^{1-\delta},
\]
contradiction. Thus, we must have

\[t \leq |S|^2 \left(\frac{1}{2} - \frac{1}{2k} \right). \]

Then

\[w(E) = \sum_{f \in E} w(f) > \frac{|E| - t}{4} > \]

\[> \frac{1}{4} \left(\left(\frac{|S|}{2} \right) - |S|^2 \left(\frac{1}{2} - \frac{1}{2k} \right) \right) = \frac{|S|^2}{8k} - \frac{|S|}{8} > \frac{|S|^2}{16k}, \]

where the last inequality holds if \(n \) is sufficiently large. Plugging this result in Eq. 2, we get the following lower bound on the number of edges of \(G(P, <_1, <_2) \):

\[e(G(P, <_1, <_2)) > (w(E) - hs^2)m^2 > \left(\frac{|S|^2}{16k} - hs^2 \right) m^2 > \]

\[\left(\frac{h^2s^2}{64k} - hs^2 \right) m^2 = \frac{h^2s^2m^2}{128k} > 256c^2_1n^2\delta^{-1}. \]

Thus, setting \(\gamma(\delta) = 256c^2_1\delta^{-1} \) finishes the proof of the theorem.

We remark that if \(<_1 \) and \(<_2 \) have a common linear extension, which is often the case in applications, then we do not need to use Lemma 12 in the previous proof and we can simply write \(1/h \) instead of \(c_1 \). Then we get the bound \(\gamma(\delta) = \delta/256 \), which almost matches the constant of part (i) in Theorem 11. However, we conjecture that an even stronger bound holds in general.

Conjecture 17 Let \(k \) be a positive integer. If \(1 - 1/k \leq \alpha < 1 - 1/(k + 1) \), we have

\[f^{l_1}_{2,2}(n, \alpha n^2/2) = n^{1-1/k+o_\alpha(1)}, \]

where \(o_\alpha(1) \) is some function of \(n \) satisfying \(o_\alpha(1) \to 0 \) as \(n \to \infty \), with \(\alpha \) fixed.

We also conjecture that \(f^{l_1}_{r,h}(n, m) \) has a similar growth as \(f_{2,2}(n, m) \) for \(r \geq 3 \) or \(r = 2 \) and \(h \geq 3 \), but we cannot even quantify a precise conjecture for these cases.

5 Applications

Partial orders naturally arise in some geometric problems. The intersection graph of a set system \(C \) is the graph \(G = G(C, E) \), where \(A, B \in C \) forms an edge if \(A \cap B \neq \emptyset \). The intersection graph of convex sets in the plane was investigated in a series of papers. Larman et. al. [8], and Pach and Törőcsik [10] showed that the intersection graph of convex sets is a 4-incomparability graph. Hence, by an immediate application of Dilworth’s theorem yields that amongst \(n \) convex sets there are always at least \(n^{1/5} \) such that they are pairwise disjoint, or any two of them intersects. Also, as it was noted in [5], Theorem 2 implies a bipartite version of this theorem, namely that if \(C \) is a family of \(n \) convex sets, then there are \(A, B \subseteq C \) of size \(n^{1-o(1)} \) such that for any \(A \in A \) and \(B \in B \), we have \(A \cap B = \emptyset \), or for any \(A \in A \) and \(B \in B \), we have \(A \cap B \neq \emptyset \). In [6], this result was improved, showing that we can find two linear sized families \(A, B \subseteq C \) with the same property.

Call a set in \(\mathbb{R}^2 \) vertically convex, if every vertical line intersects the set in an interval. The intersection graph of connected, vertically convex sets is also a 4-incomparability graph.
Hence, Theorem 2 also implies the existence of a complete bipartite graph of size \(n^{1-o(1)} \) either in the intersection graph or its complement. However, we can no longer guarantee a linear sized complete bipartite graph in the intersection graph or in its complement. In [9], it is shown that for any \(\epsilon > 0 \), there is a collection of \(n \) continuous functions on \([0, 1]\) such that the largest bipartite graph in the intersection graph has size \(O(n/ \log n) \), and the largest complete bipartite graph in its complement has size \(O(n^\epsilon) \).

Nevertheless, Theorem 4 immediately implies that if the intersection graph of vertically convex sets is sparse enough, then we have a linear sized complete bipartite graph in its complement.

Theorem 18 Let \(\epsilon > 0 \) and let \(C \) be a collection of \(n \) connected, vertically convex sets in the plane. If the number of unordered pairs \(\{A, B\} \in C(2) \) with \(A \cap B \neq \emptyset \) is less than \(n^2(1/32 - \epsilon) \), then there are \(A, B \subset C \) such that

\[
|A| = |B| > \frac{\epsilon n}{128},
\]

and for every \(A \in \mathcal{A}, B \in \mathcal{B} \) we have \(A \cap B = \emptyset \).

Proof As we aim for the self-containment of the paper, we shall define the 4-partial orders on \(C \), whose incomparability graph is the intersection graph. For any \(C \in C \), let

\[
l(C) = \inf\{x \in \mathbb{R} : \exists y : (x, y) \in C\}
\]

and let

\[
r(C) = \sup\{x \in \mathbb{R} : \exists y : (x, y) \in C\}.
\]

Define the relations \(<_1, <_2, <_3 \) on \(C \) as follows:

- \(C <_1 D \), if \(l(C) \leq l(D) \) and \(r(C) \leq l(D) \);
- \(C <_2 D \), if \(l(C) \leq l(D) \) and \(r(D) \leq r(C) \);
- \(C <_3 D \), if for every vertical line \(l \) which intersects both \(C \) and \(D \), the interval \(l \cap C \) is below \(l \cap D \).

Note that \(<_1, <_2, <_3 \) are not partial orders, as it is possible that \(C <_i D \) and \(D <_i C \) both hold.

However, define the relations \(<_1, <_2, <_3, <_4 \) on \(C \) as follows:

- \(C <_1 D \), if \(C <_1 D \) and \(C <_3 D \);
- \(C <_2 D \), if \(C <_1 D \) and \(D <_3 C \);
- \(C <_3 D \), if \(C <_2 D \) and \(C <_3 D \);
- \(C <_4 D \), if \(C <_2 D \) and \(D <_3 C \).

One can easily check that \(<_1, <_2, <_3, <_4 \) are partial orders on \(C \), and \(C \) and \(D \) are comparable in some \(<_i \) if and only if \(C \) and \(D \) are disjoint.

Now, if there are less than \((1/32 - \epsilon)n^2 \) unordered pairs \(\{A, B\} \in C(2) \) such that \(A \) and \(B \) intersect, then \(G(P, <_1, <_2, <_3, <_4) \) has more than

\[
\left(\frac{1}{2} - \frac{1}{32} + \epsilon \right)n^2
\]

edges. Hence, by Theorem 4, there exists \(i \in [4] \) and \(A, B \subset C \) such that \(|A| = |B| > \frac{\epsilon n}{128} \) and \(A <_i B \). But then for every \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \), we have \(A \cap B = \emptyset \).

We note that these results have no analogue in higher dimensions: Tietze [11] proved that any graph can be realized as the intersection graph of 3-dimensional convex sets.
We also show an application of Theorem 4 for a variant of a classical problem of Erdős: let $\alpha < \pi$ be a positive real. Let $g_d(\alpha)$ be the smallest integer m such that in any configuration of m points in the d-dimensional space there is an angle larger than α. Erdős and Szekeres [3] proved that

$$g_2\left(\pi - \frac{\pi}{r} + \epsilon\right) = 2^r + 1,$$

if $r \geq 2$ is an integer and $\epsilon > 0$ is sufficiently small. They also proved that

$$2^{(1/\beta)^{d-1}} < g_d(\pi - \beta) < 2^{(4/\beta)^{d-1}}$$

for any $0 < \beta < \pi$.

The author of this paper [12] considered the following generalization of this problem: given $0 < \alpha < \pi$ and positive integers m and d, what is the maximal s such that any configuration of m points in the d-dimensional space contains s points, where every triangle has an angle larger than α. It was proved that any configuration of $t+1$ points in the plane contains $t+1$ points, where every triangle has an angle larger than $\pi - \pi/r$.

We prove a tripartite version of this result.

Theorem 19 Let $0 < \alpha < \pi$ and let d be a positive integer. There exists a constant $c(\alpha, d) > 0$ with the following property. Suppose that n is a sufficiently large positive integer and S is a configuration of n points in the d-dimensional space. There exist three pairwise disjoint sets $A, B, C \subset S$ such that

$$|A| = |B| = |C| > c(\alpha, d)n,$$

and for every $X \in A$, $Y \in B$, $Z \in C$, the angle $XYZ \angle$ is larger than α.

Proof Let $s = \lceil 1/(\pi - \alpha) \rceil$, and let V be a finite set of unit vectors with the property that for any $w \in \mathbb{R}^d$, there exists $v \in V$ such that the angle of v and w is less than $(\pi - \alpha)/2$. Such V trivially exists. For each $v \in V$, define the relation $<v$ on \mathbb{R}^d as follows: if $X, Y \in \mathbb{R}^d$, then $X <v Y$ if the angle of v and \overrightarrow{XY} is less than $(\pi - \alpha)/2$. Then $<v$ is a partial order: $X <v Y$ is equivalent to the inequality

$$\langle v, \overrightarrow{XY} \rangle > |\overrightarrow{XY}| \sin(\alpha/2).$$

Hence, if $X <v Y$ and $Y <v Z$, then

$$\langle v, \overrightarrow{XZ} \rangle = \langle v, \overrightarrow{XY} \rangle + \langle v, \overrightarrow{YZ} \rangle > (|\overrightarrow{XY}| + |\overrightarrow{YZ}|) \sin(\alpha/2) \geq |\overrightarrow{XZ}| \sin(\alpha/2),$$

so $X <v Z$.

Also, if $X <v Y <v Z$ holds for some $X, Y, Z \in \mathbb{R}^d$, then by elementary geometry, the angle $XYZ \angle$ is larger than α.

Let $S \subset \mathbb{R}^d$, $|S| = n$. Then $G(S, \{<v\}_{v \in V})$ is the complete graph on n vertices, because we choose V such that for any $X, Y \in \mathbb{R}^d$, there exists $v \in V$ with $X <v Y$. Let

$$c(\alpha, d) = c(|V|, 3, 2^{-2|V|-2}),$$

where $c(r, h, \epsilon)$ is the constant defined in Theorem 4. If n is sufficiently large, then

$$\binom{n}{2} > \left(\frac{1}{2} - \frac{1}{22|V|+2}\right)n^2.$$
Hence, by Theorem 4, there exist \(v \in V \) and \(A, B, C \subset S \) such that \(A, B, C \) are pairwise disjoint, \(|A| = |B| = |C| > c(\alpha, d)n \), and \(A <_v B <_v C \). But then, for any \(X \in A, Y \in B \) and \(Z \in C \), we also have \(XYZ \angle > \alpha \). □

Consider the case \(d = 2 \) and \(\alpha < \pi - \pi/r \). In the proof above, we can choose \(V \) to be a \(2r \) element set, so using the bound in the remark after Theorem 6, we can show that \(c(\alpha, 2) > e^{-cr} \) with some constant \(c > 0 \). However, we conjecture that an even stronger bound holds.

Conjecture 20 Let \(0 < \alpha < \pi - \pi/r \) and let \(n \) be a positive integer. Let \(S \) be a set of \(n \) points in the plane. There exist \(A, B, C \subset S \) disjoint subsets such that \(|A| = |B| = |C| = \Omega(\sqrt{n/r}) \), and for every \(X \in A, Y \in B, Z \in C \), we have \(XYZ \angle > \alpha \).

Taking \(S \) to be the \(\lfloor \sqrt{n} \rfloor \times \lfloor \sqrt{n} \rfloor \) square grid, one can easily show that the dependence on \(r \) in the conjecture cannot be improved.

Acknowledgments The author wishes to thank Béla Bollobás and the anonymous referee for their helpful comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bollobás, B. Random Graphs, 2nd edn. Cambridge University Press (2001)
2. Dilworth, R.P.: A Decomposition Theorem for Partially Ordered Sets. Ann. Math. 51(1), 161–166 (1950)
3. Erdős, P., Szekeres, Gy.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
4. Fox, J.: A Bipartite Analogue of Dilworth’s Theorem. Order 23, 197–209 (2006)
5. Fox, J., Pach, J.: A Bipartite Analogue of Dilworth’s Theorem for Multiple Partial Orders. Eur. J. Comb. 30, 1846–1853 (2009)
6. Fox, J., Pach, J., Tóth, Cs.D.: Turán-type Results for Partial Orders and Intersection Graphs of Convex Sets. Israel Journal of Mathematics 178, 29–50 (2010)
7. Hall, P.: On Representatives of Subsets. London Math. Soc. 10(1), 26–30 (1935)
8. Larman, D., Matoušek, J., Pach, J., Törőcsik, J.: A Ramsey-type result for convex sets. Bull. London Math. Soc. 26, 132–136 (1994)
9. Pach, J., Tóth, G.: Comments on Fox News. Geombinatorics 15, 150–154 (2006)
10. Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete Comput. Geom. 12, 1–7 (1994)
11. Tietze, H.: Über das Problem der Nachbargebiete im Raum. Monatshefte für Mathematik 16, 211–216 (1905)
12. Tomon, I.: Point sets with every triangle having a large angle, Moscow Journal of Combinatorics and graph theory, to appear
13. Turán, P.: On an extremal problem in graph theory (in Hungarian). Math. Fiz. Lapok 48, 436–452 (1941)