Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Information technology in emergency management of COVID-19 outbreak

Afsoon Asadzadeh, Saba Pakkhooh, Mahsa Mirzaei Saeidabad, Hero Khezri, Reza Ferdousi

Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran

1. Introduction

Many disasters can be categorized into natural and human-made groups, and for dealing with them, collaboration, leadership, and management have a foundational role [1,2]. According to the literature, a crisis could be divided into four phases: prevention/mitigation, preparedness, response, and recovery, which refer to diminishing or eliminating the probability of disaster, preparing to handle, immediate reaction to safety, and return to normal situations. Therefore emergency management requires more consideration to control and manage the disaster [1,3–5]. Emergency management of health-related events can be achieved by considering the different aspects of knowledge, behavior, health care system, and public health system. Moreover, the operation and configuration of the emergency management systems should be considered [6].

When the community encounters infection outbreaks, it means the growth rate of illness becomes excess rather than of average expectancy [7]. In the 21st century emerging and re-emerging infectious disease outbreaks are rapidly increasing significantly in developing countries with devastating health, economic, and social consequences [8]. In recent years, viral outbreaks such as Pandemic Influenza A H1N1, Avian influenza A H7N9, Middle East respiratory syndrome MERS), and severe acute respiratory syndrome SARS), were epidemic [9–12]. Emergency management of infectious disease outbreaks is essential because they can negatively impact public health, travel, and economics [13]. Hence, numerous factors, such as the number of cases, risk factors, intensity, outcomes, and transmission speed, are required to manage infectious disease epidemics [14].

Recently, COVID-19 as an emerging virus has become a major international public health disaster because, in a short period, the number of cases increased significantly at first in China and then in several countries around the world [15]. COVID-19 occurs at a severity level of slight to imminent. The COVID-19 can transmit indirectly by contamination of objects, asymptomatic cases, and aerosolization. However, it...
can also transmit directly through symptomatic patients [16,17]. Fever, cough, myalgia or fatigue, chest tightness, shortness of breath, expectation, and dyspnea were reported as significant symptoms of COVID-19. There can be severe complications, including pneumonia, severe acute respiratory distress syndrome, and death [18,19]. There is a need to conduct a quickly targeted action and risk assessment, particularly at healthcare and social institutions with a high risk of transmission [20]. Using educational tools, health recommendations, infection control approaches, and infection prevention strategies could enhance healthcare providers’ safety protection [21–23]. Regarding the negative impact of COVID-19 on society, economy, and global value chains, the control of the virus in the early-stage has a critical role in preventing and managing the further outbreak [24,25].

The control of each phase of the crisis can be reached or facilitated using information technology (IT). IT has become popular to use in public health surveillance. Evidence indicates that IT could be a useful approach in each phase of the disaster, particularly in the response phase [4,26–29]. IT was used as a beneficial approach to increase the speed of diagnosis, improving epidemic management, save lives, and reduced the economic impact of outbreaks [30]. For example, surveillance cameras, drone-borne cameras, and portable digital recorders can monitor crowd gathering in public areas and are useful in monitoring diseases [31]. Many of these tools and techniques support emergency conditions and offer learning opportunities for providing healthcare in similar situations. For example, virtual reality-based training as a novel technology can be used to prepare and respond to different outbreaks [32]. Moreover, recent IT-based technologies e.g. digital communication technologies, data science, crisis informatics, bioinformatics, and computational modeling) provide new opportunities to reduce pandemics risk and response to international pandemics [33–35].

There are several reports and studies about the utilization of IT capabilities during the COVID-19 outbreak. The studies have used IT for different aims such as accurate diagnosis, statistical reporting, monitoring and controlling disease, forecasting, etc. [36–39]. Besides, technology startups are working with government agencies, clinicians, and academicians to prevent/control the outbreak [40]. Therefore, according to IT’s various advantages in the COVID-19 pandemic, presenting an overview of IT applications can help software designers, healthcare providers, researchers, policymakers, and governments obtain information and ideas in the management and control of the COVID-19 outbreak. In this regard, in this study, applications of IT in the emergency management of the COVID-19 are reviewed. However, the current study’s focus is on phases of emergency management. Moreover, a taxonomy of IT capabilities for response in COVID-19 was presented. Finally, expert opinions were collected to show the gaps, beneficial technologies, and future directions for each phase of the emergency management of COVID-19.

3. Results

3.1. Taxonomy of IT application in the response phase

In this review, applications of IT for the response to the COVID-19 outbreak were classified and summarized to the following core topics: 1) detection and diagnosis, 2) treatment approach, 3) protection strategies and, 4) management aims. Fig. 1. Shows these topics and involved technologies.

3.2. IT applications for COVID-19

Based on this review’s findings, there were no efforts for the pre-crisis phases of emergency management, including mitigation/prevention and preparedness. In contrast, many advantages of IT were studied and reported in the response phase. However, after the COVID-19 outbreak, studies for the recovery phase should be completed. Table 1 shows the IT applications in the response phase of the COVID-19 epidemic.

3.2.1. Bioinformatics systems

Bioinformatics systems using various methods such as deep learning, machine learning [120], virtual screening, etc. have been applied to quick drug discovery [121]. In other words, the immediate discovery of COVID-19 antiviral plays a critical role in overcoming outbreaks [40,41,43–54]. Virtual drug screening is a useful and affordable approach to rapidly identify effective antiviral agents and potential protein targets. Traditional drug investigation has high cost and needs time to develop [40,46–51,122]. Some of the protocols or methods used for computational drug discovery include ligand/target-based virtual screening, molecular docking, homology modeling, molecular dynamics simulations, small molecule docking, and machine intelligence-based GNC, homologous targets screening, and structure-based ab initio drug design [54,123].

3.2.2. Artificial intelligence AI

Concerning the rapid spread of COVID-19, the use of AI with various capabilities is a useful technology in the faster diagnosis of positive cases, managing the outbreak, and reducing the further outbreak of COVID-19 [39,57–68,95]. AI-based analysis and diagnosis help physicians diagnose, judge, and improve patient safety by increasing accuracy, speed of diagnosis, and screening. AI could protect health care workers by giving information and by providing critical medical recommendations [62,63]. AI uses deep learning algorithms for solving complex problems to improve the accuracy of results. For example, Covid-19 symptoms are nonspecific. Hence, AI uses deep learning methods as a useful technique for accurate, timely, and sensitive extraction of unique medical images’ features that facilitate the diagnosis [61]. Many studies have used deep learning for various aims such as lung infection quantification, improving diagnosis, detection, patient monitoring, quick screening, and drug discovery [65,124–126].
3.2.3. Telemedicine

Face-to-face communication between people and healthcare providers is a serious challenge during the fast prevalence of COVID-19 [23]. However, limited access to specialists, particularly in rural hospitals, is another problem. Telemedicine services were used to remotely share the healthcare services by using a doctor-to-doctor approach to diagnosis and consulting aims [71]. Telecommunication and online education can be an unprecedented solution to reduce the destructive impact on this epidemic’s cultural and educational consequences, such as environmental risks, physical health, mental health, and social life [70]. Hence, the control and treatment of individuals’ psychological problems were facilitated by developing online mental health services [72].

3.2.4. Mobile phone

Mobile technology has been widely used in this period due to its accessibility [60,72,74–76,110]. For example, a phone-based online survey was used to assist in the early screening, diagnosis, and identification of COVID-19 infected individuals [60]. Moreover, mobile phones are the most popular tools for informing public health, performing telemedicine, educating, and training [60,72,74–76,110].

3.2.5. Decision support system

For administrative and clinical aims, DSSs could be developed to help decision-makers managers or healthcare providers) make the appropriate decisions. For example, determining the severity score of COVID-19 patients and supply chain management are two applications of DSS that were established to respond to the COVID-19 outbreak [78–80].

3.2.6. Infection control system

Health providers in hospitals particularly negative pressure isolated units) have the most exposure during patient care. The infection control systems by real-time monitoring are used as an influential tool for decreasing the infection, leading to immediate protection and corrective response [38].

3.2.7. Robotics

The primary purpose of designing robots is to perform the most hazardous actions, instead of medical staff, on COVID-19 patients. Robots could protect health care staff during medical procedures. However, robots also facilitated other tasks that could reduce transmission of infections e.g., disinfection, real-time monitoring, and early screening and diagnosis [80,82–86].

3.2.8. Online interactive dashboard/GIS

Various information types, including location, number of new cases, number of death, number of recovered cases, and controlling trends of the outbreak, are reported using the online Dashboards e.g., WHO, Johns Hopkins CSSE, and Early Alert Inc dashboard). As an essential data source, Dashboards are supervised by regional and local health departments [87–90]. Moreover, GISs are useful tools by providing various information could result in better management of the outbreak. Identifying the spreading sources, location-based data for analysis/modeling, informing public events, site selection, supply chain management, and resource locator are advantages of using GISs [91–93].

3.2.9. Internet of things IoT)

For screening and monitoring COVID-19 patients, health-related data such as body temperature are captured using smart sensors at different places such as airports, bus terminals, and health organizations in smart cities. Additionally, IoT applications such as collecting data and information, monitoring or tracking COVID-19 patients, monitoring infected regions, and information sharing could be beneficial in preventing further spreading [98–102].

3.2.10. Virtual reality VR)

Virtual reality technology is defined as a computerized simulation of the real world using various software and hardware [127]. According to human demands, VR has multiple applications by providing a virtual world for relaxation, traveling, video calls, improving mental disorders by reducing stress, and training healthcare providers [99,104,105].

3.2.11. Surveillance system

The safe city can be determined by adopting a terminal tracking system. Surveillance systems are useful to identify individuals with COVID-19 symptoms and quarantine them. In other words, by applying this technology, COVID-19 cases are screened and diagnosed quickly. Surveillance systems are capable tools for the safety protection of public
COVID-19 management. Information technology based approaches employed in the response phase of the COVID-19 management.

| IT types | Applications according to literature | Example | References |
|----------|--------------------------------------|---------|------------|
| Bioinformatics systems | ✓ Help to Drug discovery by various methods such as: To identify existence of therapeutic agents | ✓ In Italy, virtual screening of FDA approved databases indicated some of the HIV protease inhibitors might be useful in COVID-19 treatment | [40–57] |
| ✓ Rapid detection of COVID-19 | ✓ classifying and tracing the genomic sequence of COVID-19 | ✓ The discovery of COVID-19 antiviral and potential protein targets | ✓ Help to diagnosis |
| ✓ the development of diagnostic tools | ✓ To improve patient safety by increasing accuracy and speed of diagnosis and screening | ✓ Reducing healthcare providers’ workloads | ✓ Help to prevention |
| ✓ to protect health care workers by giving information and alarming about COVID-19, critical medical recommendation | ✓ in India, SARS-CoV-2 3CL and comparative homology modeling was used to probe the molecular architecture of SARS-CoV-2 RNA viruses | ✓ ia in China, Isothermal LAMP-based method iLACO adopted for rapid colorimetric detection of 2019 Novel Coronavirus | ✓ Lung Infection Quantification through CT images |
| ✓ to characterize new similar sequences and instability indices identified | ✓ in China, Isothermal LAMP-based method iLACO adopted for rapid colorimetric detection of 2019 Novel Coronavirus RNA viruses | ✓ In China, Isothermal LAMP-based method iLACO adopted for rapid colorimetric detection of 2019 Novel Coronavirus RNA viruses | ✓ In China, Emergency Telemedicine Consultation System (ETCS) has developed telemedicine services across connected hospitals to share health care services by using a doctor-to-doctor approach to diagnosis, treatment, and consulting aims |
| ✓ to diagnose | ✓ to reduce the impact on the cultural and educational consequences of this epidemic, especially for children who are vulnerable to environmental risks and their physical health, mental health, and productivity in adult life | ✓ To improve patient safety by increasing accuracy and speed of diagnosis and screening | ✓ Alternative for face-to-face communication between people and health care providers |
| ✓ to overcome to limited access to specialists, particularly in rural hospitals | ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ Reducing healthcare providers’ workloads |
| ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ Alternative for face-to-face communication between people and health care providers |
| ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ Reducing healthcare providers’ workloads |
| ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ to help physicians in the early detection of COVID-19 infection | ✓ Alternative for face-to-face communication between people and health care providers |
| ✓ Artificial intelligence/ deep learning and Machine learning | ✓ in quick detection and diagnosis of infection | ✓ in quick detection and diagnosis of infection | ✓ in quick detection and diagnosis of infection |
| ✓ practical surveillance in quick detection and diagnosis of infection | ✓ improving the CT diagnosis speed for each case even in some cases better than RT-PCR screening | ✓ improving the CT diagnosis speed for each case even in some cases better than RT-PCR screening | ✓ improving the CT diagnosis speed for each case even in some cases better than RT-PCR screening |
| ✓ early infection detection | ✓ to help physicians in quick diagnosis and judgment by the accurate screening of COVID-19 | ✓ to help physicians in quick diagnosis and judgment by the accurate screening of COVID-19 | ✓ to help physicians in quick diagnosis and judgment by the accurate screening of COVID-19 |
| ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication |
| ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication | ✓ AI tracking platform is interfaceted hospitals for efficient communication |

**Table 1 (continued)**

| IT types | Applications according to literature | Example | References |
|----------|--------------------------------------|---------|------------|
| Mobile phone | ✓ Collecting the basic travel history along with the more common indexes | ✓ mHero Health as a mobile phone-based system was used for health worker communications by using SMS | [60, 72–76] |
| ✓ to assist in the early screening and identification of possible COVID-19 infected individuals | ✓ Community Health Toolkit was used for providing health communication between health workers and | | |
| ✓ Informing health-related news | ✓ Remote teleconsultation such as | | |
| ✓ Remote teleconsultation such as | ✓ sensitive extraction of unique features of images and facilitate the diagnosis in China. | ✓ In China, AI has improved the CT diagnosis speed for COVID-19 cases in some cases, it was better than RT-PCR screening | |
| ✓ telemonitoring and screening of Covid-19 cases | ✓ AI platform provides self-registration and crowd management modules for high-risk populations, as well, the AI tracking platform is interfaced with more than 400 hospitals for sharing information | | |

(continued on next page)
### Table 1 (continued)

| IT types | Applications according to literature | Example | References |
|----------|--------------------------------------|---------|------------|
| **Robotics** | to perform most of the hazard actions instead of health providers on COVID-19 patients | * A robot designed to diagnose COVID-19 by using smart sensors at different places such as airports, terminal buses, health organizations in smart cities | [98–103] |
| | to assist quickly identify COVID19 cases | | |
| | to facilitate information sharing | | |
| | Real-time monitoring and tracking | | |
| | To support diagnosis e., Smart Helmet) | | |
| | use in prevention and control of COVID-19 disease | | |
| | Reduce the workload in health care organization | | |
| | to assist surgery during the pandemic | | |
| | protecting by using | | |
| **Internet of things IoT** | Screening and monitoring health data by using smart sensors at different places such as airports, terminal buses, health organizations in smart cities | * a smart helmet with a combination of Mounted Thermal Imaging System, thermal camera technology, and IoT technology was designed to diagnose the COVID-19 from the thermal image automatically. IoT helps to detect infected cases by providing real-time data and monitoring the screening process | |
| Decision support system | Risk assessment for suspected individuals | * a mobile-based DSS was developed to assist GPs in gathering data, triaging, and risk assessment in China | [77–81] |
| | to assist GPs | | |
| | can help to demand management in the health care context | * a clinical DSS was developed for prediction of severity risk and triage of COVID-19 in China | |
| | for characterizing severity of COVID-19 | Patients at hospital admission at Wuhan China | |
| | Triage of COVID-19 | | |
| The infection control system in hospital | decrease of infection by real-time monitoring | * the initial infection control system was used as an influential tool for decreasing infection by real-time monitoring, providing immediate protection and corrective response in China. | [38] |
| | protecting the safety of staff | | |
| | mobile robots are useful for diagnosis and screening through temperature | * In China, the COVID-19 intelligent diagnosis and treatment assistant program nCapp7 based on the IoT was developed to diagnose infected cases early. | |
| | used to repetitively monitor temperatures of individuals in the hospitals with data sharing to hospital information systems | | |
| | to use instead of experts in remote areas, especially in quarantine conditions | | |
| | to assist surgery during the pandemic | | |
| | protecting by using | | |
Table 1 (continued)

| IT types                        | Applications according to literature                                                                                      | Example                                                                                   | References |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|
| Virtual reality VR              | ✓ Virtual reality Physical therapy, Cognitive Rehabilitation)                                                            | * a 360°-Degree VR Rendering of COVID-19 was used to visualize the better extent of COVID-19 inflicted damage to the lungs at Washington. | [99, 104-108] |
|                                 | ✓ using by patients in the hospital for controlling stress                                                               | * During the COVID-19 outbreak, PwC has increased its use of VR training for managers especially while managers are working remotely to support their mental health and wellbeing. |            |
|                                 | ✓ Mental health and psychological Disorders                                                                           | * the COVID-19 Laboratory-Based Surveillance System was used in Islamabad-Pakistan, which could provide the initial aims of the surveillance such as risk factor. | [98, 109-115] |
|                                 | ✓ Pain management                                                                                                      | * one health surveillance OHS system was developed for early identification of COVID-19 to break the chain of transmission in India. | [98, 109-115] |
|                                 | ✓ training purpose                                                                                                      | *Google trend was used to study correlation about loss-of-smell-related searches during the COVID-19 outbreak. | [116-119] |
|                                 | ✓ Palliative Care                                                                                                       |                                                                         |            |
|                                 | ✓ Virtual traveling                                                                                                     |                                                                         |            |
|                                 | ✓ Virtual communication and collaboration                                                                                |                                                                         |            |

Table 1 (continued)

| IT types                        | Applications according to literature                                                                                      | Example                                                                                   | References |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|
| Internet search queries         | ✓ Surveillance systems are useful to identify quarantine individuals with COVID-19 symptoms                               | The global epidemic surveillance BlueDot) were used for correctly predicting the COVID-19 pandemic. |            |
|                                 | ✓ Increase in response to COVID-19 cases                                                                               | * For the first time, NHS staff tackling Covid-19 on the front line are using virtual reality to support their mental health and wellbeing. | [98, 109-115] |
|                                 | ✓ Enhancing staff protection in a healthcare setting                                                                   | *the COVID-19 Surveillance System was used in Islamabad-Pakistan, which could provide the initial aims of the surveillance such as risk factor. | [98, 109-115] |
|                                 | ✓ Improving health surveillance policies                                                                              | * one health surveillance OHS system was developed for early identification of COVID-19 to break the chain of transmission in India. | [98, 109-115] |
|                                 | ✓ To estimate COVID-19 growth rate through surveillance systems                                                        |                                                                         |            |
|                                 | ✓ Early detection                                                                                                       |                                                                         |            |
|                                 | ✓ Timely updates of references and population’s data                                                                    |                                                                         |            |
|                                 | ✓ To help governments to create time for preparedness                                                                   |                                                                         |            |

3.2.12. Internet search queries

Internet search queries e.g., the Google search volume index) were used to capture the penetration of information related to the COVID-19 pandemic. For example, Sousa-Pinto et al. showed that COVID-19–related Google trend data are more related to media coverage than to epidemic trends. Furthermore, people’s web search behavior during the pandemic could be identified by analyzing internet search queries [116–119].

3.3. Experts opinion for IT applications in emergency management of COVID-19 outbreak

Table 2 shows existing gaps, future directions, and experts’ opinions regarding what technologies were suitable for each phase of emergency management in the COVID-19 outbreak.

According to experts’ opinions, all IT utilization in each phase of emergency management of pandemics depends on aims, IT infrastructure, IT literacy, economy, IT acceptance, and government support in each country.

4. Discussion

This review has presented IT applications in four-phases of emergency management, including mitigation/prevention, preparedness, response, and recovery for the COVID-19 epidemic. It seems that before the COVID-19 outbreak, there were not performed pre-crisis efforts mitigation/prevention, preparedness phases) for facilitating a pandemic, while IT advantages were already proven for other viral outbreaks such as SARS, MERS, and H1N1 [119,128–136]. In the mitigation/prevention phase of emergency management, IT was used for different aims. Optimal evaluation and selecting the best influenza mitigation strategies by Bayesian algorithm, providing the framework for modeling epidemic spreading and mitigation, comprehensive interactive model for predicting geographically epidemic progression, the control system for early detection of disease, the mathematical decision support tool for modeling mitigating infectious disease pandemics, deep learning short-term memory LSTM methods for influenza epidemic prediction, flood risk management information system to support natural disaster mitigation measures are some IT-based strategies for the mitigation/prevention phase [137–150].

In the preparedness phase of previous infectious disease pandemics, the AI prediction platform AIRBO and Canadian automatic infectious disease surveillance BlueDot were used for correctly predicting the location and the outbreak occurrence [60,128]. The mobile phone was used to report and reach local healthcare agencies. The global epidemic and mobility model GLEaM is a computational epidemic model used to
IT roles in each phase of emergency management according to experts opinions.

| Emergency management phase | Identified gaps | what tools are more powerful/useful | Future direction |
|----------------------------|-----------------|-------------------------------------|-----------------|
| Prevention/mitigation      | *inequitable education for societies against infection outbreak before occurrence | *virtual reality for training aims | *Communities should learn how to respond to stressful conditions so the use of a designed VR environment can immerse users in simulated situations to experience the adverse condition and learn how they should answer to the occurrence of them. |
|                            | *inadequate monitoring and controlling system in many countries | *mobile health capabilities for education aims | *Countries should be equipped with IoT and surveillance systems to screen and monitor the people and environmental factors to provide safe and healthy conditions. *development of robots can play an essential alternative for limited human resources and hazard tasks. |
|                            | *Lack of accurate predictive and forecasting models before the infection | *Internet of Things (IoT) and surveillance system for health monitoring aims | *Hospitals should be equipped with control systems to control the environment and patient condition automatically. *forecasting and predictive model should be used for predicting emergency conditions for conducting prevention efforts. *improvement of IT literacy in communities. |
| Preparedness               | *inequitable management of resources such as healthcare centers, human resource | *Robotics for monitoring purposes and using them as an alternative for human resources | *Mobile technologies can improve people skills for preparing people to respond to infection outbreaks when a pandemic occurs. *VR should be used for preparing people before pandemics to education response, prevention, and preparedness requirements. *cities should equip with smart technologies for early screening and diagnosis of patients. *improvement of IT infrastructure in countries. |
|                            | *inequitable education and informing about adverse effects of an infectious outbreak and efforts against the pandemic | *developing infection control system in hospital for alerting general symptoms of patients | *VR should be used for preparing people before the occurrence of them. *countries should be equipped with IoT and surveillance systems to screen and monitor the people and environmental factors to provide safe and healthy conditions. *development of robots can play an essential alternative for limited human resources and hazard tasks. |
|                            | *inefficient smart technologies to help early screening and | AI and deep learning methods for developing forecasting models | *In the response phase, all types of technologies must be used to achieve an effective response see Table 1. |

**Table 2 (continued)**

| Emergency management phase | Identified gaps | what tools are more powerful/useful | Future direction |
|----------------------------|-----------------|-------------------------------------|-----------------|
| Response                   | *Lack in immediate response to pandemic | technologies for screening people across cities | *improvement of IT infrastructure in countries. *improvement of electronic-governments in each industry such as healthcare, business, education, and so on *improvement of IT infrastructure in countries. |
|                            | *inequitable in the use of all IT capabilities in some countries | *development of decision support system for clinical and administrative aims | *improvement of IT infrastructure in countries. *improvement of electronic-governments in each industry such as healthcare, business, education, and so on *improvement of IT infrastructure in countries. |
| Recovery                   | Need to planning at present for post-crisis | *Mobile technologies, telehealth, social media, and VR can be used for mental health recovery. *Use or continue the use of technology-based business and health services for saving time and cost e.g., telehealth, telemonitoring, online services, and so on) | *Effective response to a pandemic is related to good planning in the prevention and preparedness phases, which should be considered in communities. *developing IT-based services delivery in healthcare and business are essential issues in immediate response to pandemics. *mental disorders such as depression, stress, and phobia are common after infection outbreaks, and IT-based technologies such as telemedicine, telehealth, social media, and VR can play a critical role in the recovery phase. *Negative effects of outbreaks in economy and business could be improved by using IT-based solutions such as online services delivery and decision support systems for administrative and clinical aims. *Using databases and big data for... |
Table 2 (continued)

| Emergency management phase | Identified gaps | What tools are more powerful/useful | Future direction |
|----------------------------|-----------------|-------------------------------------|------------------|
|                            |                 | providing strategic planning in the future | Using decision systems can help managers make decisions by considering different dimensions such as time, place, cost, resources, etc. |
|                            |                 |                                     | Improvement of IT infrastructure and literacy |

simulate the worldwide spread of influenza-like illnesses [151,152]. Web-based systems as an immediate surveillance tool are useful in predicting epidemics and creating preparedness plans against outbreaks [153]. Accordingly, investigation of the previous experiences of epidemics is an essential issue; in other words, lack of appropriate planning to answer serious concerns such as COVID-19 has led to such disagreeable conditions in many countries.

Concerning the COVID-19 outbreak, most of the efforts were conducted after the crisis occurred. Currently, IT has a crucial role in the response phase of emergency management because there is a need for immediate reaction to disaster to reduce the hazard effect of the COVID-19 epidemic. Our review indicated that IT has a beneficial role in responding to emergency management by providing safety, immediate response, and easing the actions. Real-time control, monitoring and exchange information, response coordination, optimal use of time and cost, optimal screening, optimal diagnosis, and treatment are some benefits of IT during COVID-19 outbreak [38,40,45–52,61–63,71,72,74,82,83,87–93,98,105,109,110,131,132,140,154]. Furthermore, AI, computer-aided drug discovery, online service, robots, image processing, mobile health, and virtual reality are some other technologies that are used during the COVID-19 epidemic [44–47,60,61,83]. Portable analytical devices for point of care and easily screen of coronavirus infection [155], facilitating the detection of the adult respiratory virus by fully automated multiplex Polymerase chain reaction (PCR) system [156], support vector machines SVM for prediction of the severe acute respiratory syndrome [129], applying various computer-aided methods to drug discovery of epidemic infection [130,133,157–159], using IoT for Smart monitoring and management of MERS or SARS [131,136], cloud computing and social networks analysis with good accuracy as a useful tool for analyzing and monitoring H1N1 outbreak [134] are other experiences of IT in infectious disease management. Many smartphone apps for several aims, such as education, alerting, facilitating the data exchange, communication, and coordinated reaction to respond in an emergency disaster, were developed [160,161]. Therefore, many forms of IT applications could be used in disaster situations to achieve safety and reduce the viral outbreak’s hazard effect.

Finally, for the recovery phase of COVID-19, we have to wait for the disaster’s ends. However, IT’s role in the recovery phase of the previous disasters using social networks, mobile health, etc. in recovering mental health, economy, and organizations function is proven [162–169]. Indeed, mental disorders and economic problems will arise as important implications of COVID-19. Social networks for meditation, sport, healing, and sharing experiences with psychologists and social workers could play a useful role in the recovery of negative psychological effects of pandemics such as depression, anxiety, and phobia. Besides, mobile health tools such as cell phones, tablets, computers, personal digital assistants PDAs, and monitoring devices could be used to enhance health by providing self-care, self-management, and health-monitoring apps for managing stress, physical activity, and healthy eating behaviors. Economic problems due to decreased incomes is expected in this period. Therefore, information technologies could provide exciting tools for economic recovery during and after the COVID-19 pandemics. In other words, public organizations and agencies could consider social networks and online web-based solutions in their marketing program. Communities should use the experiences of the current condition for prevention aims in the future. Also, organizations could use databases with the content of COVID-19 data to change and improve their management strategies. Besides, Social network analysis of disaster conditions has a significant role in enhancing knowledge management, especially in the sharing, capturing, and using of knowledge. Data mining techniques can be used to predict and develop appropriate disaster management strategies from the collected information about epidemic diseases.

IT has proven its various capabilities for all phases of emergency management in previous infectious disease outbreaks. We should consider that facilitating and overcoming the crisis will be difficult without the use of IT. Unfortunately, more efforts to overcome infectious disease outbreaks such as COVID-19 usually are conducted after a crisis occurs. In other words, most IT applications were highlighted in the response phase, while the use of IT capabilities before the crisis has a critical role in reducing the destructive effect of infectious disease. For example, predicting, modeling, educating, training, informing, and automated alarming can be conducted before the crisis using various IT-based approaches. Many of the problems with COVID-19 are related to emergency management before it occurs. In addition to IT advantages in emergency management, some barriers i.e., lack of financial resources, poor organizational coordination, and collaboration of government, security problems, and privacy in e-government) should be addressed as much as possible.

There are different examples for each IT application during the COVID-19 outbreak. However, neglected tools for emergency management of COVID-19 should be extracted for each country according to their IT infrastructure, income level, etc. For example, smart city features could help in early screening and diagnosis of infected cases. However, it has not been provided in many cities. In this study, we tried to present an overview of the IT application and the existing gaps in the emergency management of the COVID-19 outbreak.

5. Conclusion

Applications of Information technology are an inevitable issue in any disaster situation, such as the COVID-19 outbreak. The crucial role of IT in the response phase of emergency management was highlighted during this period. Using IT could help manage the risk and hazardous effects of the outbreak and minimize the crisis damages. Successful experiences of various IT applications in countries during epidemics could enlighten the societies about infectious disease and outbreak management. There was no proper planning for emergency management of COVID-19 before the virus appeared, which could be a reason for the further spreading of this epidemic around the world. Improving technologies for predicting infectious disease outbreaks should be considered because they have an essential role in enhancing the country’s and government’s capabilities to cope with epidemics before they are involved in hazardous epidemics. Appropriate strategic planning will improve public health response to outbreaks, mitigate economic losses, and save lives. To sum up, the communities should utilize the maximum advantage of IT to support emergency management.

Sources of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Consent

Studies on patients or volunteers require ethics committee approval and fully informed written consent which should be documented in the paper.

CRediT authorship contribution statement

Afsoon Asadzadeh: Conceptualization, Verification, Investigation, Data collection, Resources, Writing - original draft, Writing - review & editing, Review & Editing, Visualization. Saba Pakkhoos: Investigation, Data collection, Resources. Mahsa Mirzaei Saeidabad: Investigation, Data collection, Resources. Hero Khezri: Investigation, Data collection, Resources. Reza Ferdousi: Conceptualization, Verification, Writing - review & editing, Visualization, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Not applicable.

References

[1] Khorram-Manesh A. Handbook of disaster and emergency management. 2017.
[2] Waugh Jr WL, Streib G. Collaboration and leadership for effective emergency management. Publ Adm Rev 2006;66:131–40.
[3] Dvo E, Trembanis AC, Dohner S, Grotti E, Cavola P. Local-scale post-event assessments with GIS and UAV-based rapid-consequence techniques: a pilot case from the Emilia-Romagna Italy) cost. Nat Hazards Earth Syst 2018;18(11):2969–89.
[4] Sakurai M, Murayama Y. Information technologies and disaster management-Benefits and issues. Progress in Disaster Science 2019;2:10012.
[5] Posen K, Dransch D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010;64(1):89–98.
[6] Lee AC, Phillips W, Challen K, Goodacre S. Emergency management in health: key issues and challenges in the UK. BMC Public Health 2012;12(1):384.
[7] Bellou M, Kokkinos P, Vantarakis A. Shellfish-borne viral outbreaks: a systematic review. Food Environ Virol 2013;5(1):13.
[8] Aylward B, Barbosa P, Bertherat E, Bilivogui P, Blake I, Brennan R, et al. Ebola virus disease in west africa - the first 9 Months of the epidemic and forward projection. N Engl J Med 2014;371:1481–95.
[9] Girard MP, Tam JS, Assossou OM, Kieny MP. The 2009 A H1N1) influenza virus pandemic: a review. Vaccine 2010;28(31):4985–92.
[10] Tanner W, Toth D, Gundlapalli A. The pandemic potential of avian influenza A H7N9) virus: a review. Epidemiol Infect 2015;143(16):3359–74.
[11] Zunla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;64(1):89.
[12] Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–41.
[13] Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
[14] Lipsitch M, Swerdlow DL, Finelli L. Assessing with GPS and UAV-based quick-response surveys: a pilot case from the Emilia-Romagna Italy) cost. Nat Hazards Earth Syst 2018;18(11):2969–89.
[15] Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
[16] Zunla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;64(1):89.
[17] Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–41.
[18] Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
[19] Zunla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;64(1):89.
[20] Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–41.
[21] Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
[22] Meng L, Hua F, Bian Z. Coronavirus disease 2019 COVID-19: emerging and future challenges for dental and oral medicine. Journal of dental research 2020. 2020;41(5):649–53.
[23] Meng L, Hua F, Bian Z. Coronavirus disease 2019 COVID-19: emerging and future challenges for dental and oral medicine. Journal of dental research 2020. 2020;41(5):649–53.
[24] Meng L, Hua F, Bian Z. Coronavirus disease 2019 COVID-19: emerging and future challenges for dental and oral medicine. Journal of dental research 2020. 2020;41(5):649–53.
[25] Meng L, Hua F, Bian Z. Coronavirus disease 2019 COVID-19: emerging and future challenges for dental and oral medicine. Journal of dental research 2020. 2020;41(5):649–53.

WHO. Report of the WHO-China joint mission on coronavirus disease 2019 COVID-19). Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf 2020.

1. Khorram-Manesh A. Handbook of disaster and emergency management. 2017.
2. Waugh Jr WL, Streib G. Collaboration and leadership for effective emergency management. Publ Adm Rev 2006;66:131–40.
3. Dvo E, Trembanis AC, Dohner S, Grotti E, Cavola P. Local-scale post-event assessments with GIS and UAV-based rapid-consequence techniques: a pilot case from the Emilia-Romagna Italy) cost. Nat Hazards Earth Syst 2018;18(11):2969–89.
4. Sakurai M, Murayama Y. Information technologies and disaster management-Benefits and issues. Progress in Disaster Science 2019;2:10012.
5. Posen K, Dransch D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010;64(1):89–98.
6. Lee AC, Phillips W, Challen K, Goodacre S. Emergency management in health: key issues and challenges in the UK. BMC Public Health 2012;12(1):384.
7. Bellou M, Kokkinos P, Vantarakis A. Shellfish-borne viral outbreaks: a systematic review. Food Environ Virol 2013;5(1):13–23.
8. Aylward B, Barbosa P, Bertherat E, Bilivogui P, Blake I, Brennan R, et al. Ebola virus disease in west africa - the first 9 Months of the epidemic and forward projection. N Engl J Med 2014;371:1481–95.
9. Girard MP, Tam JS, Assossou OM, Kieny MP. The 2009 A H1N1) influenza virus pandemic: a review. Vaccine 2010;28(31):4985–92.
10. Tanner W, Toth D, Gundlapalli A. The pandemic potential of avian influenza A H7N9) virus: a review. Epidemiol Infect 2015;143(16):3359–74.
11. Zunla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;64(1):89.
12. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–41.
13. Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
14. Lipsitch M, Swerdlow DL, Finelli L. Assessing with GPS and UAV-based quick-response surveys: a pilot case from the Emilia-Romagna Italy) cost. Nat Hazards Earth Syst 2018;18(11):2969–89.
15. Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
16. Zunla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;64(1):89.
17. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–41.
18. Lam W, Zhong N, Tan W. Overview on SARS in asia and the world. Respirology 2003;8(Suppl1):S2–5.
[51] Kong R, Yang G, Xue R, Liu M, Wang F, Hu J, et al. COVID-19 Docking Server: an interactive server for docking small molecules, peptides and antibodies against SARS-CoV-2 targets of interests COVID-19. arXiv preprint arXiv:200300163. 2020.

[52] Contini A. Virtual screening of an FDA approved drugs database on two COVID-19 coronavirus proteins. Preprint 2020.

[53] Kim J, Cha Y, Kotila S, Funt J, Escalante Chong R, Barrett S, et al. Advanced bioinformatics tools for identification of promising candidates for therapeutic interventions against COVID-19. J Trans Med 2020;18:257.

[54] Mohamed K, Yazdanpanah N, Rezaei N. Computational drug discovery and repurposing for the treatment of Covid-19: a systematic review. Available at SSRN 3587476(preprint).

[55] Contini A. Virtual screening of an FDA approved drugs database on two COVID-19 coronavirus proteins. 2020.

[56] Antin SA, Ghosh K, Gope S, A T. Chemical informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors. J Bioi Mstruct Dyn 2020:1–10.

[57] Yu L, Wu S, Hao X, Dong M, Loe P, Pelechano V, et al. Rapid detection of COVID-19 coronavirus using a reverse transcription loop-mediated isothermal amplification RT-LAMP) diagnostic platform. Clin Vaccine Immuno 2020;66(7):975–7.

[58] Xue C, Lao X, Yu C, Cao S J. The 2019 novel coronavirus epidemic control strategies and future challenges of building healthy smart cities. Indoor Built Environment 2020;29:639–44.

[59] Xie Z, Zheng Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology 2020. 200343.

[60] Rao A, Vazquez JA. Identification of COVID-19 can be quickly through artificial intelligence framework using a mobile phone-based survey in the population when cities/towns are under quarantine. Infect Contr Hosp Epidemiol 2020;1–8.

[61] Xu B, Meng X. A deep learning algorithm using CT images to screen for Corona Virus Disease COVID-19. Preprint.

[62] Peng M, Yang J, Yang X, Liu H, Zhu H, Gu G. Artificial intelligence application in COVID-19 diagnosis and prediction. Preprint 2020.

[63] McColl B. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet Digit Health 2020;2(4):e166–7.

[64] Vaiyada E, Javidal M, Huang JH, Hamed A, Shamsuddin H. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr 2020;14(4):337–9.

[65] Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Lung infection quantification of covid-19 in ct images with deep learning. arXiv preprint arXiv:200304655. 2020.

[66] Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronary artery disease (CAD) diagnosis. J Med Imaging 2020;7.

[67] Zhang J, Xie Y, Li Y, Shen C, Xie Y. COVID-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:200312338. 2020.

[68] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[69] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[70] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[71] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[72] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[73] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[74] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[75] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[76] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[77] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[78] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[79] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[80] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[81] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[82] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[83] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[84] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[85] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[86] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[87] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.

[88] Huang L, Han R, Al T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct assessment of covid-19: deep-learning approach. Radiol Cardiothorac Imaging 2020;2(2):e200075.

[89] Aragon B, Hanne A, Razavi B, Nguyen C, Harish L, Nguyen H, et al. Early detection of covid-19 through a citywide pandemic surveillance platform. medRxiv preprint. 2020.
11

A. Asadzadeh et al.  Informatics in Medicine Unlocked 21 (2020) 100475

[114] Mustaqq A, Ikrarn A, Chaudhry A, Sandhu M, Khalid F, Hussain S, et al. Evaluation of the COVID-19 laboratory-based surveillance system in Isambad-Pakistan Global Biosecurity 2020;1:14.

[115] Yasobant A, Patel K, Saxena D, Balkingen T. COVID-19 in India: making a case for the one health surveillance system. Indian J Publ Health 2020;64(6):1135.

[116] Chaudhri D, Kavindran R. Information flow and COVID-19 recovery. World Dev 2020;136:105112.

[117] The use of google trends to investigate the loss of smell related searches during COVID-19 outbreak Walker A, Hopkins C, Surda P, editors. International Forum of Allergy & Rhinology 2020; Wiley Online Library.

[118] Sooja Finto B, Amo A, Ciarletowski W, Anto J, Foncema JA, Bouquet J. Assessment of the impact of media coverage on COVID-19-related google trends data: infodemiology study. J Med Internet Res 2020;22(8):e19611.

[119] Waratta A, Bhagavathula AS. COVID-19-related web search behaviors and infodemic attitudes in Italy: infodemiological study. JMIR public health and surveillance 2020;22(2):e19374.

[120] Raef B, Ferdouri R. A review of machine learning approaches in assisted reproductive technologies. Acta Inf Med 2019;27(3):205-11.

[121] Ferdouri R, Jamali AA, Ferdouri R. Computational predictive approaches for interaction and structure of aptamers. J Theor Biol 2020:497:110268.

[122] Raef B, Maleki M, Ferdouri R. Computational prediction of implantation outcome after embryo transfer. Health Inf J 2020;26(3):1810-26.

[123] Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, et al. Rapidai development cycle for the coronavirus covid-19 pandemic: initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037. 2020.

[124] Wang S, Zhu Y, Li X, Li J. COVID-19: a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020.

[125] Patankar S. Deep learning-based computerized iagnosis to inhibit the RNA Dependent RNA Polymerase: application to SARS-CoV and COVID-19. Preprint. 2020.

[126] De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, et al. COVID-19-Related web search behaviors and infodemic attitudes in Italy: infodemiological study. JMIR public health and surveillance 2019;5(2):e12383.

[127] Kim Y-J, Yura E, Kim T-W, Yoon J-S. Development of disaster prevention system based on deep neural network using deep learning with dropout. J Coast Res 2019;91(1):86-90.

[128] Yang C, Yang J, Luo X, Gong P. Use of mobile phones in an emergency reporting system for infectious disease surveillance after the Sichuan earthquake in China. Bull World Health Organ 2019;87(6):213-22.

[129] Balcan D, Gonzalez B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling the spatial spread of infectious diseases: the Global Epidemic and Mobility computational model. J Comput Sci 2010;1(3):132-45.

[130] Chishtie E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 2015;6(6):558-65.

[131] Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JT, et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus 2019-nCoV: a systematic review. J Clin Med 2020;9(3).

[132] Romao VC, Martins SAM, Germano J, Cardoso FA, Cardoso S, Freitas PP. Lab-on-Chip devices: gaining ground losing size. ACS Nano 2017(11):10659-64.

[133] Branche AR, Walsh EE, Formica MA, Falsey AR. Detection of respiratory viruses in spum from adults by use of automated multiplex PCR. J Clin Microbiol 2014;52(10):3950-6.

[134] Chou KC, Wei DQ, Ds QS, Sirou S, Zhong WZ. Progress in computational approach to drug development against SARS. Curr Med Chem 2006;13(27):3263-70.

[135] Law GL, Tiongco-Go J, Korth MJ, Katze MG. Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol 2015;25(5):588-92.

[136] Nur SM, Hasan MA, Amin MA, Hosain M, Sharmin T. Design of potential RNAi miRNA and siRNA molecules for Middles East respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdisciplinary sciences: computational life sciences 2015;7(3):257-65.

[137] Bachmann DJ, Jamison NK, Martin A, Delgado J, Kman NE. Emergency surveillance 2020;6(2):e19374.

[138] Zlojutro A, Rey D, Gardner L. A decision-support framework to optimize border control for global outbreak mitigation. Sci Rep 2019;9:2216.

[139] Sood SK, Mahajan L. Fog-cloud based cyber-physical system for dingecting, and preventing mosquito borne diseases. Future Gener Comput Syst 2018;88:764-75.

[140] Zhou X, Fu B, Yang Y, Ma Y, Hao J, Chen S, et al. Attention-based recurrent neural network for influenza epidemic prediction. BMC Bioinf 2019;20:575.

[141] Alessa A, Faezipour M. Preliminary flu outbreak prediction using twitter posts classification and linear regression with historical centers for disease control and prevention reports: prediction framework study. JMIR public health and surveillance 2019;5(2):e12383.

[142] Patankar S. Deep learning-based computerized iagnosis to inhibit the RNA Dependent RNA Polymerase: application to SARS-CoV and COVID-19. Preprint. 2020.

[143] De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, et al. Making vaccines ‘on demand’: a potential solution for emerging pathogens and biodefense? Hum Vaccines Immunother 2013;9(9):1877-84.

[144] Fondaci P, Ansari-A, Greenman H, Browning PO, Zhang H, Ji W, et al. Rapidai development cycle for the coronavirus covid-19 pandemic: initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037. 2020.

[145] Wang S, Zhu Y, Li X, Li J. COVID-19: a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020.

[146] De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, et al. Making vaccines ‘on demand’: a potential solution for emerging pathogens and biodefense? Hum Vaccines Immunother 2013;9(9):1877-84.

[147] Francis F, Ishengoma DS, Mmbando BP, Rutta ASM, Malecela MN, Mayala B, et al. The use of google trends to investigate the loss of smell related searches during COVID-19 outbreak Walker A, Hopkins C, Surda P, editors. International Forum of Allergy & Rhinology 2020; Wiley Online Library.

[148] Sooja Finto B, Amo A, Ciarletowski W, Anto J, Foncema JA, Bouquet J. Assessment of the impact of media coverage on COVID-19-related google trends data: infodemiology study. J Med Internet Res 2020;22(8):e19611.

[149] Waratta A, Bhagavathula AS. COVID-19-related web search behaviors and infodemic attitudes in Italy: infodemiological study. JMIR public health and surveillance 2020;22(2):e19374.

[150] Raef B, Maleki M, Ferdouri R. Computational prediction of implantation outcome after embryo transfer. Health Inf J 2020;26(3):1810-26.

[151] Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, et al. Rapidai development cycle for the coronavirus covid-19 pandemic: initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037. 2020.

[152] Wang S, Zhu Y, Li X, Li J. COVID-19: a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020.

[153] Patankar S. Deep learning-based computerized iagnosis to inhibit the RNA Dependent RNA Polymerase: application to SARS-CoV and COVID-19. Preprint. 2020.

[154] De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, et al. Making vaccines ‘on demand’: a potential solution for emerging pathogens and biodefense? Hum Vaccines Immunother 2013;9(9):1877-84.