Abstract. We show that if $n \geq 1$, $\Omega \subset \mathbb{R}^{n+1}$ is a connected domain that is porous around a subset $E \subset \partial \Omega$ of finite and positive Hausdorff \mathcal{H}^n-measure, and the harmonic measure ω is absolutely continuous with respect to \mathcal{H}^n on E, then $\omega|_E$ is concentrated on an n-rectifiable set.

1. Introduction

There is a strong connection between the rectifiability of the boundary of a domain in Euclidean space and the possible absolute continuity of harmonic measure with respect to Hausdorff measure. Recall that a set E is n-rectifiable if it can be covered by a countable union of (possibly rotated) n-dimensional Lipschitz graphs up to a set of zero n-dimensional Hausdorff measure \mathcal{H}^n. The local F. and M. Riesz theorem of Bishop and Jones [BJ] says that, if Ω is a simply connected planar domain and Γ is a curve of finite length, then $\omega \ll \mathcal{H}^1$ on $\partial \Omega \cap \Gamma$, where ω stands for harmonic measure. In the same paper, Bishop and Jones also provide an example of a domain Ω whose boundary is contained in a curve of finite length, but $\mathcal{H}^1(\partial \Omega) = 0 < \omega(\partial \Omega)$, thus showing that some sort of connectedness in the boundary is required.

A higher dimensional version of the theorem of Bishop and Jones does not hold, even when the analogous “connectivity” assumption holds for the boundary. In [Wu], Wu builds a topological sphere in \mathbb{R}^3 of finite surface measure bounding a domain whose harmonic measure charges a set of Hausdorff dimension 1 contained in \mathbb{R}^2. However, under some extra geometric assumptions, higher dimensional versions of the Bishop-Jones result do hold. For example, Wu shows in the same paper that if $\Omega \subset \mathbb{R}^{n+1}$ is a domain with interior corkscrews, meaning $\Omega \cap B(x, r)$ contains a ball of radius r/C for every $x \in \partial \Omega$ and $r \in (0, \text{diam } \partial \Omega)$, then $\omega \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$ whenever Γ is a bi-Lipschitz image of \mathbb{R}^n (or in fact a somewhat more general surface).

Many results that establish absolute continuity follow a similar pattern to the results of Bishop, Jones, and Wu by considering portions of the boundary that are contained in nicer (and usually rectifiable) surfaces. For example, if Ω is a Lipschitz domain (meaning the boundary is a union of Lipschitz graphs), then Dahlberg shows in [Da] that $\omega \ll \mathcal{H}^n \ll \omega$ on $\partial \Omega$. The works of [Ba] and [DJ] also establish various degrees of mutual absolute continuity in nontangentially accessible domains when $\mathcal{H}^n|_{\partial \Omega}$ is Radon. Recall that a domain

2010 Mathematics Subject Classification. 31A15, 28A75, 28A78.

Key words and phrases. Harmonic measure, absolute continuity, nontangentially accessible (NTA) domains, A_∞-weights, doubling measures, porosity.

The three authors were supported by the ERC grant 320501 of the European Research Council (FP7/2007-2013). X.T. was also supported by 2014-SGR-75 (Catalonia), MTM2013-44304-P (Spain), and by the Marie Curie ITN MAnET (FP7-607647).
is nontangentially accessible (or NTA) \[\Omega\] if it has exterior corkscrews (meaning \((\Omega)^c\) has interior corkscrews) and it is uniform, meaning there is \(C > 0\) so that for every \(x, y \in \Omega\) there is a path \(\gamma \subset \Omega\) connecting \(x\) and \(y\) such that

(a) the length of \(\gamma\) is at most \(C|x - y|\) and

(b) for \(t \in \gamma\), \(\text{dist}(t, \partial\Omega) \geq \text{dist}(t, \{x, y\})/C\).

In \[\text{AZ}\], the first author shows that, for NTA domains \(\Omega \subset \mathbb{R}^{n+1}\), if \(\Gamma \subset \partial\Omega\) is an \(n\)-Ahlfors regular set (meaning \(H^n(B(x, r) \cap \Gamma) \sim r^n\) for any ball \(B(x, r)\) centered on \(\Gamma\) with \(r \in (0, \text{diam } \Gamma)\)), then \(\omega \ll H^n\) on \(\partial\Omega \cap \Gamma\) and \(\omega|_{\partial\Omega \cap \Gamma}\) is supported on an \(n\)-rectifiable set.

Without knowing that the portion of the boundary in question is contained in a nice enough surrogate set, things can go wrong. In \[\text{AMT}\], we constructed an NTA domain \(\Omega \subset \mathbb{R}^{n+1}\) with very flat boundary, with \(\partial\Omega\) containing a set \(E\) so that \(\omega(E) > 0 = H^n(E)\). Observe that, in this case, while \(\partial\Omega\) is still \(n\)-rectifiable, by the results of \[\text{AZ}\] described earlier, it follows that such a set \(E\) cannot intersect a Lipschitz graph (or any Ahlfors regular set) in a set of positive \(\omega\)-measure.

We think the result of \[\text{AMT}\] is quite surprising in light of the previous results involving rectifiability and harmonic measure, as one might think that the rectifiability of \(\partial\Omega\) should be enough to guarantee \(\omega \ll H^n\).

It is a natural question to ask then if the rectifiability of \(\omega\) is actually necessary for absolute continuity, that is, if the support of \(\omega\) can be exhausted up to a set of \(\omega\)-measure zero by \(n\)-dimensional Lipschitz graphs.\(^1\) Some results of this nature already exist. Recall that if \(\Omega\) is a simply connected planar domain, \(\phi : \mathbb{D} \to \Omega\) is a conformal map, and \(G \subset \mathbb{D}\) is the set of points where \(\phi\) has nonzero angular derivative, then there is \(S \subset \partial\Omega\) with \(H^1(S) = 0\) and \(\omega(S \cup \phi(G)) = 1\) (see Theorem VI.1.1 in \[\text{GM}\]). Thus, if \(E \subset \partial\Omega\) is such that \(0 < H^1(E) < \infty\) and \(\omega \ll H^1\) on \(E\), then \(\omega(E \cap S) = 0\), so \(\omega\) almost every point in \(E\) is in \(\phi(G)\). Since all points in \(\phi(G)\) are cone points (p. 208 of \[\text{GM}\]) and the set of cone points is a rectifiable set (Lemma 15.13 in \[\text{Ma}\]), \(\phi(G) \cap E\) is 1-rectifiable and thus \(\omega|_E\) is 1-rectifiable.

In the work \[\text{HMU}\], Hofmann, Martell and Uriarte-Tuero show that if \(\Omega \subset \mathbb{R}^{n+1}\) is a uniform domain, \(\partial\Omega\) is Ahlfors regular, and harmonic measure satisfies the weak-A\(_\infty\) condition, then \(\partial\Omega\) is uniformly rectifiable. The weak-A\(_\infty\) condition is a stronger assumption than \(\omega\) being absolutely continuous, but \(\partial\Omega\) being uniformly rectifiable is a stronger conclusion than just being rectifiable. We omit the definitions of these terms and refer the reader to these references.

Our main result is the following.

Theorem 1.1. Let \(n \geq 1\) and \(\Omega \subset \mathbb{R}^{n+1}\) be a proper domain of \(\mathbb{R}^{n+1}\) and let \(\omega\) be the harmonic measure in \(\Omega\). Suppose that there exists \(E \subset \partial\Omega\) with \(0 < H^n(E) < \infty\) and that \(\partial\Omega\) is porous in \(E\), i.e. there is \(r_0 > 0\) so that every ball \(B\) centered at \(E\) of radius at most \(r_0\) contains another ball \(B' \subset \mathbb{R}^{n+1} \setminus \partial\Omega\) with \(r(B) \sim r(B')\), with the implicit constant depending only on \(E\). If \(\omega|_E\) is absolutely continuous with respect to \(H^n|_E\), then \(\omega|_E\) is \(n\)-rectifiable, in the sense that \(\omega\)-almost all of \(E\) can be covered by a countable union of \(n\)-dimensional (possibly rotated) Lipschitz graphs.

\(^1\)We stress that when we speak of a measure \(\omega\) being rectifiable, we mean that it may be covered up to a set of \(\omega\)-measure zero by \(n\)-dimensional Lipschitz graphs. This is a stronger criterion than rectifiability of measures as defined by Federer in \[\text{Fed}\], who defines this as being covered up to a set of \(\omega\)-measure zero by Lipschitz images of subsets of \(\mathbb{R}^n\).
We list a few observations about this result:

1. Theorem 1.1 is local: we don’t assume $H^n|_{\partial \Omega}$ is a Radon measure, only on the subset E.

2. We don’t assume any strong connectedness property like uniformity, or a uniform exterior or interior corkscrew property, which the higher dimensional results mentioned earlier all rely upon. Aside from basic connectivity in Theorem 1.1, we only need a large ball in the complement of $\partial \Omega$ in each ball centered on $E \subset \partial \Omega$ with no requirement whether that ball is in Ω or its complement.

3. Examples of domains with porous boundaries are uniform domains, John domains, interior or exterior corkscrew domains, and the complement of an n-Ahlfors regular set.

4. The theorem establishes rectifiability of the measure $\omega|_E$ and not of the set E: the set E may very well contain a purely n-unrectifiable subset, but that subset must have ω-measure zero.

5. As far as we know, in the case $n = 1$, the theorem is also new.

The following is an easy consequence of our main result.

Corollary 1.2. Suppose that $n \geq 1$, $\Omega \subset \mathbb{R}^{n+1}$ is a connected domain, and $E \subset \partial \Omega$ is a set such that $0 < H^n(E) < \infty$, $\partial \Omega$ is porous in E, and $H^n \ll \omega$ on E. Then E is n-rectifiable.

Indeed, by standard arguments, there is $E' \subset E$ such that $H^n(E \setminus E') = 0$ and $\omega \ll H^n \ll \omega$ on E'. By Theorem 1.1 $\omega|_{E'}$ is n-rectifiable, but since $H^n \ll \omega$ on E, we also have that E' is n-rectifiable, and thus E is n-rectifiable.

We also mention that from Theorem 1.1 in combination with the results of [Az] we obtain the next corollary.

Corollary 1.3. Let $\Omega \subset \mathbb{R}^{n+1}$ be an NTA domain, $n \geq 1$, and let $E \subset \partial \Omega$ be such that $0 < H^n(E) < \infty$. Then $\omega|_E \ll H^n|_E$ if and only if E may be covered by countably many n-dimensional Lipschitz graphs up to a set of ω-measure zero.

The forward direction is just a consequence of Theorem 1.1 and the reverse direction follows from the result from [Az] as described earlier since n-dimensional Lipschitz graphs are n-Ahlfors regular.

During the preparation of this manuscript, we received a preprint by Hofmann and Martell [HM] that shows that the result from [HMu] described above holds not only for uniform domains, but also for domains which are complements of Ahlfors regular sets, again under the assumption that harmonic measure is weak-A_{∞}. We thank Steve Hofmann for making his joint work available to us. We remark that our method of proof of Theorem 1.1 is completely independent of the techniques in [HM] and previous works such as [HMu]. We also mention that after having written a first version of the present paper, José María Martell informed us that in a joint work with Akman, Badger and Hofmann in preparation, they have obtained some result in the spirit of Corollary 1.2 under some stronger assumptions (in particular, assuming $\partial \Omega$ to be Ahlfors regular).
2. Some notation

We will write \(a \lesssim b \) if there is \(C > 0 \) so that \(a \leq Cb \) and \(a \lesssim_t b \) if the constant \(C \) depends on the parameter \(t \). We write \(a \sim b \) to mean \(a \lesssim b \lesssim a \) and define \(a \sim_t b \) similarly.

For sets \(A, B \subset \mathbb{R}^{n+1} \), we let

\[
\text{dist}(A, B) = \inf \{|x - y| : x \in A, y \in B\}, \quad \text{dist}(x, A) = \text{dist}(\{x\}, A),
\]

We denote the open ball of radius \(r \) centered at \(x \) by \(B(x, r) \). For a ball \(B = B(x, r) \) and \(\delta > 0 \) we write \(r(B) \) for its radius and \(\delta B = B(x, \delta r) \). We let \(\Upsilon(B) \) to be the \(\varepsilon \)-neighborhood of a set \(A \subset \mathbb{R}^{n+1} \). For \(A \subset \mathbb{R}^{n+1} \) and \(0 < \delta \leq \infty \), we set

\[
\mathcal{H}_\delta^n(A) = \inf \left\{ \sum_i \text{diam}(A_i)^n : A_i \subset \mathbb{R}^{n+1}, \text{diam}(A_i) \leq \delta, A \subset \bigcup_i A_i \right\}.
\]

Define the \(n \)-dimensional Hausdorff measure as

\[
\mathcal{H}^n(A) = \lim_{\delta \downarrow 0} \mathcal{H}_\delta^n(A)
\]

and the \(n \)-dimensional Hausdorff content as \(\mathcal{H}^n_\infty(A) \). See Chapter 4 of [Ma] for more details.

Given a signed Radon measure \(\nu \) in \(\mathbb{R}^{n+1} \) we consider the \(n \)-dimensional Riesz transform

\[
\mathcal{R}\nu(x) = \int \frac{x - y}{|x - y|^{n+1}} d\nu(y),
\]

whenever the integral makes sense. For \(\varepsilon > 0 \), its \(\varepsilon \)-truncated version is given by

\[
\mathcal{R}_\varepsilon \nu(x) = \int_{|x - y| > \varepsilon} \frac{x - y}{|x - y|^{n+1}} d\nu(y).
\]

For \(\delta \geq 0 \) we set

\[
\mathcal{R}_s, \delta \nu(x) = \sup_{\varepsilon > \delta} |\mathcal{R}_\varepsilon \nu(x)|.
\]

We also consider the maximal operator

\[
M_\delta^n \nu(x) = \sup_{r > \delta} \frac{|\nu|(B(x, r))}{r^n},
\]

In the case \(\delta = 0 \) we write \(\mathcal{R}_s \nu(x) := \mathcal{R}_{s,0} \nu(x) \) and \(M^n \nu(x) := M_0^n \nu(x) \).

3. The strategy

We fix a point \(p \in \Omega \) far from the boundary to be specified later. To prove that \(\omega^p|_E \) is rectifiable we will show that any subset of positive harmonic measure of \(E \) contains another subset \(G \) of positive harmonic measure such that \(\mathcal{R}_{s, \omega^p|_E} \) is bounded in \(L^2(\omega^p|_G_0) \).

Then from the results of Nazarov, Tolsa and Volberg in [NToV1] and [NToV2], it follows that \(\omega^p|_{G_0} \) is \(n \)-rectifiable. This suffices to prove the full \(n \)-rectifiability of \(\omega^p|_E \).

One of the difficulties of Theorem 1.1 is due to the fact that the non-Ahlfors regularity of \(\partial \Omega \) makes it difficult to apply some usual tools from potential of theory, such as the ones developed by Aikawa in [Ai1] and [Ai2]. In our proof we solve this issue by applying some stopping time arguments involving the harmonic measure and a suitable Frostman measure.
The connection between harmonic measure and the Riesz transform is already used, at least implicitly, in the work of Hofmann, Martell and Uriarte-Tuero [HMU], and more explicitly in the paper by Hofmann, Martell and Mayboroda [HMM]. Indeed, in [HMU], in order to prove the uniform rectifiability of $\partial \Omega$, the authors rely on the study of a square function related to the double gradient of the single layer potential and the application of an appropriate rectifiability criterion due to David and Semmes [DS]. Note that the gradient of the single layer potential coincides with the Riesz transform away from the boundary.

We think that the Riesz transform is a much more flexible tool than the square function used in [HMU]. Indeed, to work with the Riesz transform with minimal regularity assumptions one can apply the techniques developed in the last so many years in the area of the so-called non-homogeneous Calderón-Zygmund theory. However, it is not clear to us if the aforementioned square function behaves reasonably well without strong assumptions such as the n-Ahlfors regularity of $\partial \Omega$.

4. Harmonic and Frostman Measures

We start by reviewing a result of Bourgain from [Bo].

Lemma 4.1. There is $\delta_0 > 0$ depending only on $n \geq 1$ so that the following holds for $\delta \in (0, \delta_0)$. Let $\Omega \subseteq \mathbb{R}^{n+1}$ be a domain, $\xi \in \partial \Omega$, $r > 0$, $B = B(\xi, r)$, and set $\rho := \mathcal{H}^s_{\infty}(\partial \Omega \cap \delta B)/(\delta r)^s$ for some $s > n - 1$. Then

$$\omega^u_{\Omega}(B) \gtrsim n \rho \quad \text{for all } x \in \delta B.$$

Proof. We only prove the case $n \geq 2$, the $n = 1$ case is similar, although one uses $-\log |\cdot|$ instead of $|\cdot|^{1-n}$ to define Green’s function.

Without loss of generality, we assume $\xi = 0$ and $r = 1$. Let μ be a Frostman measure supported in $\delta B \cap \partial \Omega$ so that

- $\mu(B(x, r)) \leq r^s$ for all $x \in \mathbb{R}^{n+1}$ and $r > 0$,
- $\rho \delta^s \geq \mu(\delta B \cap \partial \Omega) \geq c \rho \delta^s$ where $c = c(n) > 0$.

Define a function

$$u(x) = \int \frac{1}{|x - y|^{n-1}} d\mu(y),$$

which is harmonic out of $\text{supp} \mu$ and satisfies the following properties:

(i) For $x \in \delta B$,

$$u(x) \geq 2^{1-n} \delta^{1-n} \mu(\delta B) \geq c 2^{1-n} \delta^{s-n+1} \rho.$$

(ii) For $x \in \delta B$,

$$u(x) \leq \sum_{j=0}^{\infty} \int_{\delta^{2-j} \leq |x-y| < \delta^{2-j+1}} \frac{1}{|x-y|^{n-1}} d\mu(x) \leq \sum_{j=0}^{\infty} (2^{-j} \delta^s)(2^{-j} \delta)^{1-n} \sim \delta^{s-n+1}.$$

(iii) For $x \in B^c$,

$$u(x) = \int \frac{1}{|x - y|^{n-1}} d\mu(x) \leq 2^{n-1} \mu(\delta B) \leq 2^{n-1} \rho \delta^s.$$

(iv) Thus, by the maximum principle, we have that $u(x) \leq \delta^{s-n+1}$ for all $x \in \mathbb{R}^{n+1}$.

Set

$$v(x) = \frac{u(x) - \sup_{\partial B} u}{\sup u}.$$

Then
(a) \(v \) is harmonic in \((\delta B \cap \partial \Omega)^c\),
(b) \(v \leq 1 \),
(c) \(v \leq 0 \) on \(B^c \),
(d) for \(x \in \delta B \) and \(\delta \) small enough,

\[
v(x) \gtrsim \frac{c_\delta^{s+1-n} \rho - 2^{n-1} \rho \delta^s}{c_\delta^{s-n+1}} \gtrsim \rho.
\]

Let \(\phi \) be any continuous compactly supported function equal to 1 on \(B \). Then \(\int \phi d\omega_\Omega^x \) is at least any subharmonic function \(f \) with \(\limsup_{x \in \Omega \to \xi} f(x) \leq \phi(\xi) \). The function \(v \) satisfies this, and so we have \(\int \phi d\omega_\Omega^x \geq v(x) \). Taking the infimum over all such \(\phi \), we get that \(\omega_\Omega^x(B) \geq v(x) \), and the lemma follows.

The proof of the next lemma is fairly standard but we include it for the sake of completeness.

Lemma 4.2. Let \(\Omega \subsetneq \mathbb{R}^{n+1} \) be an open Greenian domain, \(n \geq 1 \), \(\xi \in \partial \Omega \), \(r > 0 \) and \(B := B(\xi, r) \). Suppose that there exists a point \(x_B \in \Omega \) so that the ball \(B_0 := B(x_B, r/C) \) satisfies \(4B_0 \subset \Omega \cap B \) for some \(C > 1 \). Then, for \(n \geq 2 \),

\[
\omega_\Omega^x(B) \gtrsim \omega_\Omega^{x_B}(B)r^{n-1}G_\Omega(x, x_B) \quad \text{for all } x \in \Omega \setminus B_0.
\]

In the case \(n = 1 \),

\[
\omega_\Omega^x(B) \gtrsim \omega_\Omega^{x_B}(B)\left|G_\Omega(x, x_B) - G_\Omega(x, z)\right| \quad \text{for all } x \in \Omega \setminus B_0 \text{ and } z \in \frac{1}{2}B_0.
\]

Note that the class of domains considered in Theorem 4.1 are Greenian. Indeed, all open subsets of \(\mathbb{R}^{n+1} \) are Greenian for \(n \geq 2 \) (Theorem 3.2.10 [Hel]), and in the plane, if \(\mathcal{H}^1(\partial \Omega) > 0 \), then \(\partial \Omega \) is nonpolar (p. 207 Theorem 11.14 of [HKM]) and domains with nonpolar boundaries are Greenian by Myrberg’s Theorem (see Theorem 5.3.8 on p. 133 of [AG]). For the definitions of Greenian and polar sets, see [Hel].

Proof. First we consider the case \(n \geq 2 \). Without loss of generality, we assume that \(\omega_\Omega^{x_B}(B) > 0 \) since otherwise (4.1) is trivial. We define a new domain \(\Omega' := \Omega \setminus B_0 \subset \Omega \). From the definition of the Green function we have

\[
G_\Omega(x, x_B) \lesssim r(B)^{1-n} \quad \text{for } x \in \partial B_0.
\]

Since the set of Wiener irregular boundary points is polar (Corollary 4.5.5 [Hel]), it holds that \(G_\Omega(x, x_B) = 0 \) for all \(x \in \partial \Omega' \cap \partial \Omega \) apart from a polar set. Moreover, for \(x \in \partial B_0 \) we have from (4.3) that

\[
G_\Omega(x, x_B) \leq c_0 \frac{1}{|x - x_B|^{n-1}} \leq c_1 \omega_\Omega^{x_B}(B),
\]

for some purely dimensional constant \(c_1 > 0 \), where the fact that \(\omega^{x_B}(B)/\omega^{x_B}(B) \sim 1 \) follows from the standard interior Harnack’s inequality for \(2B_0 \).

Define now \(u(x) = c_1 r^{1-n} \omega^{x_B}(B)/\omega^{x_B}(B) - G_\Omega(x, x_B) \) for all \(x \in \Omega' \cup \partial \Omega' \), which is harmonic in \(\Omega' \). Using that \(G_\Omega(x, x_B) \lesssim |x - x_B|^{1-n} \lesssim r^{1-n} \) for any \(x \in \Omega' \), we obtain that \(u \geq -c_2 r^{1-n} \) in \(\Omega' \). Therefore, by [Hel] Theorem 4.2.21, in view of the fact that \(u \) is harmonic and bounded below in \(\Omega' \), \(u \geq 0 \) on \(\partial \Omega' \) except for a polar set, and \(\liminf_{|x| \to \infty} u(x) \geq 0 \), we conclude (4.1).
Now we deal with the case $n = 1$. Again we assume that $\omega^{1,2}(B) > 0$ and we take $\Omega' = \Omega \setminus B_0 \subset \Omega$, as above. From the definition of the Green function, for $x \in \partial B_0$ and $z \in \frac{1}{2} B_0$ we have

$$
(4.4) \quad |G_{\Omega}(x, x_B) - G_{\Omega}(x, z)| = \left| \log \frac{|x - z|}{|x - x_B|} - \int \log \frac{|\xi - z|}{|\xi - x_B|} \, d\omega^{1,2}(\xi) \right| \lesssim 1,
$$

since

$$
\frac{|x - z|}{|x - x_B|} \approx \frac{|\xi - z|}{|\xi - x_B|} \approx 1 \quad \text{for } x \in \partial B_0, \xi \in \partial \Omega, \text{ and } z \in \frac{1}{2} B_0.
$$

Arguing as in the case $n \geq 2$, we deduce that

$$
|G_{\Omega}(x, x_B) - G_{\Omega}(x, z)| \leq c'_0 \leq c'_1 \frac{\omega^{1,2}(B)}{\omega^{1,2}(B^{1,2})},
$$

for some absolute constant $c'_1 > 0$, where the fact that $\omega^{1,2}(B)/\omega^{1,2}(B) \sim 1$ follows from the standard interior Harnack’s inequality for $2B_0$.

For $x \in \Omega' \cup \partial \Omega'$ and a fixed $z \in \partial \frac{1}{2} B_0$, consider the function

$$
u(x) = c'_1 \frac{\omega^{1,2}(B)}{\omega^{1,2}(B^{1,2})} - |G_{\Omega}(x, x_B) - G_{\Omega}(x, z)|.
$$

This is superharmonic in Ω' and uniformly bounded. Therefore, since $\nu \geq 0$ on $\partial \Omega'$ except for a polar set and $\lim \inf_{|x| \to \infty} \nu(x) \geq 0$, we obtain (4.2).

From now on, Ω and E will be as in Theorem 1.1. Also, fix a point $p \in \Omega$ and consider the harmonic measure ω^p of Ω with pole at p. The reader may think that p is point deep inside Ω.

The Green function of Ω will be denoted just by $G(\cdot, \cdot)$.

Let $g \in L^1(\omega^p)$ be such that

$$\omega^p|_E = g \mathcal{H}^n|_{\partial \Omega}.$$

Given $M > 0$, let

$$E_M = \{x \in \partial \Omega : M^{-1} \leq g(x) \leq M\}.$$

Take M big enough so that $\omega^p(E_M) \geq \omega^p(E)/2$, say. Consider an arbitrary compact set $F_M \subset E_M$ with $\omega^p(F_M) > 0$. We will show that there exists $G_0 \subset F_M$ with $\omega^p(G_0) > 0$ which is n-rectifiable. Clearly, this suffices to prove that $\omega^p|_{E_M}$ is n-rectifiable, and letting $M \to \infty$ we get the full n-rectifiability of $\omega^p|_E$.

Let μ be an n-dimensional Frostman measure for F_M. That is, μ is a non-zero Radon measure supported on F_M such that

$$\mu(B(x, r)) \leq C r^n \quad \text{for all } x \in \mathbb{R}^{n+1}.
$$

Further, by renormalizing μ, we can assume that $\|\mu\| = 1$. Of course the constant C above will depend on $\mathcal{H}^n(0)$, and the same may happen for all the constants C to appear, but this will not bother us. Notice that $\mu \ll \mathcal{H}^n|_{F_M} \ll \omega^p$. In fact, for any set $H \subset F_M$,

$$
(4.5) \quad \mu(H) \leq C \mathcal{H}^n(H) \leq C \mathcal{H}^n(H) \leq C M \omega^p(H).
$$
5. The Dyadic Lattice of David and Mattila

Now we will consider the dyadic lattice of cubes with small boundaries of David-Mattila associated with ω^p. This lattice has been constructed in [DM, Theorem 3.2] (with ω^p replaced by a general Radon measure). Its properties are summarized in the next lemma.

Lemma 5.1 (David, Mattila). Consider two constants $C_0 > 1$ and $A_0 > 5000 C_0$ and denote $W = \text{supp} \omega^p$. Then there exists a sequence of partitions of W into Borel subsets $Q, Q \in D_k$, with the following properties:

- For each integer $k \geq 0$, W is the disjoint union of the “cubes” $Q, Q \in D_k$, and if $k \leq l$, $Q \in D_k$, and $R \in D_k$, then either $Q \cap R = \emptyset$ or else $Q \subset R$.

- The general position of the cubes Q can be described as follows. For each $k \geq 0$ and each cube $Q \in D_k$, there is a ball $B(Q) = B(z_Q, r(Q))$ such that

$$ z_Q \in W, \quad A_0^{-k} \leq r(Q) \leq C_0 A_0^{-k}, $$

$$ W \cap B(Q) \subset Q \subset W \cap \{28 r(Q)\}, $$

and the balls $5 B(Q), Q \in D_k$, are disjoint.

- The cubes $Q \in D_k$ have small boundaries. That is, for each $Q \in D_k$ and each integer $l \geq 0$, set

$$ N_l^{\text{ext}}(Q) = \{x \in W \setminus Q : \text{dist}(x, Q) < A_0^{-k-l}\}, $$

$$ N_l^{\text{int}}(Q) = \{x \in Q : \text{dist}(x, W \setminus Q) < A_0^{-k-l}\}, $$

and

$$ N_l(Q) = N_l^{\text{ext}}(Q) \cup N_l^{\text{int}}(Q). $$

Then

$$ \omega^p(N_l(Q)) \leq (C^{-1} C_0^{-3d-1} A_0)^{-l} \omega^p(90 B(Q)). $$

(5.1)

- Denote by D_k^{db} the family of cubes $Q \in D_k$ for which

$$ \omega^p(100 B(Q)) \leq C_0 \omega^p(B(Q)). $$

(5.2)

We have that $r(Q) = A_0^{-k}$ when $Q \in D_k \setminus D_k^{\text{db}}$ and

$$ \omega^p(100 B(Q)) \leq C_0^{-1} \omega^p(100^{l+1} B(Q)) \quad \text{for all } l \geq 1 \text{ such that } 100^l \leq C_0 \text{ and } Q \in D_k \setminus D_k^{\text{db}}. $$

(5.3)

We use the notation $D = \bigcup_{k \geq 0} D_k$. Observe that the families D_k are only defined for $k \geq 0$. So the diameter of the cubes from D are uniformly bounded from above. We set $\ell(Q) = 56 C_0 A_0^{-k}$ and we call it the side length of Q. Notice that

$$ \frac{1}{28} C_0^{-1} \ell(Q) \leq \text{diam}(Q) \leq \ell(Q). $$

Observe that $r(Q) \sim \text{diam}(Q) \sim \ell(Q)$. Also we call z_Q the center of Q, and the cube $Q' \in D_{k-1}$ such that $Q' \supset Q$ the parent of Q. We set $B_Q = 28 B(Q) = B(z_Q, 28 r(Q))$, so that

$$ W \cap \frac{1}{28} B_Q \subset Q \subset B_Q. $$
We assume A_0 big enough so that the constant $C^{-1}C_0^{-3d-1}A_0$ in (5.1) satisfies

$$C^{-1}C_0^{-3d-1}A_0 > A_0^{1/2} > 10.$$

Then we deduce that, for all $0 < \lambda \leq 1$,

$$\omega^p\left(\{x \in Q : \text{dist}(x, W \setminus Q) \leq \lambda \ell(Q)\}\right) + \omega^p\left(\{x \in 3.5B_Q : \text{dist}(x, Q) \leq \lambda \ell(Q)\}\right) \leq c\lambda^{1/2}\omega^p(3.5B_Q).$$

(5.4)

We denote $D_{db} = \bigcup_{k \geq 0} D_k$. Note that, in particular, from (5.2) it follows that

$$\omega^p(3B_Q) \leq \omega^p(100B(Q)) \leq C_0\omega^p(Q)$$

if $Q \in D_{db}$.

(5.5)

For this reason we will call the cubes from D_{db} doubling.

As shown in [DM, Lemma 5.28], every cube $R \in D$ can be covered ω^p-a.e. by a family of doubling cubes:

Lemma 5.2. Let $R \in D$. Suppose that the constants A_0 and C_0 in Lemma 5.1 are chosen suitably. Then there exists a family of doubling cubes $\{Q_i\}_{i \in I} \subset D_{db}$, with $Q_i \subset R$ for all i, such that their union covers ω^p-almost all R.

The following result is proved in [DM, Lemma 5.31].

Lemma 5.3. Let $R \in D$ and let $Q \subset R$ be a cube such that all the intermediate cubes S, $Q \subset S \subset R$ are non-doubling (i.e. belong to $D \setminus D_{db}$). Then

$$\omega^p(100B(Q)) \leq A_0^{-10n(J(Q)-J(R)-1)}\omega^p(100B(R)).$$

(5.6)

Given a ball $B \subset \mathbb{R}^{n+1}$, we consider its n-dimensional density:

$$\Theta_\omega(B) = \frac{\omega^p(B)}{r(B)^n}.$$

From the preceding lemma we deduce:

Lemma 5.4. Let $Q, R \in D$ be as in Lemma 5.3. Then

$$\Theta_\omega(100B(Q)) \leq C_0 A_0^{-9n(J(Q)-J(R)-1)}\Theta_\omega(100B(R))$$

and

$$\sum_{S \in D : Q \subset S \subset R} \Theta_\omega(100B(S)) \leq c \Theta_\omega(100B(R)),$$

with c depending on C_0 and A_0.

For the easy proof, see [To3, Lemma 4.4], for example.

From now on we will assume that C_0 and A_0 are some big fixed constants so that the results stated in the lemmas of this section hold. Further, we will choose the pole $p \in \Omega$ of the harmonic measure ω^p so that $\text{dist}(p, \partial \Omega) \geq 10C_0$. The existence of such point p can be assumed by dilating Ω by a suitable factor if necessary.
6. The Bad Cubes

Now we need to define a family of bad cubes. We say that $Q \in \mathcal{D}$ is bad and we write $Q \in \text{Bad}$, if $Q \in \mathcal{D}$ is a maximal cube satisfying one of the conditions below:

(a) $\mu(Q) \leq \tau \omega^p(Q)$, where $\tau > 0$ is a small parameter to be fixed below, or

(b) $\omega^p(3B_Q) \geq A r(B_Q)^n$, where A is some big constant to be fixed below.

The existence of maximal cubes is guaranteed by the fact that all the cubes from \mathcal{D} have side length uniformly bounded from above (since \mathcal{D}_k is defined only for $k \geq 0$). If the condition (a) holds, we write $Q \in \text{LM}$ (little measure μ) and in the case (b), $Q \in \text{HD}$ (high density).

On the other hand, if a cube $Q \in \mathcal{D}$ is not contained in any cube from Bad, we say that Q is good and we write $Q \in \text{Good}$.

Notice that

$$\sum_{Q \in \text{LM}} \mu(Q) \leq \tau \sum_{Q \in \text{LM}} \omega^p(Q) \leq \tau \|\omega\| = \tau \mu(F_M).$$

Therefore, taking into account that $\tau \leq 1/2$ and that $\omega^p|_{F_M} = g(x) \mathcal{H}^n|_{F_M}$ with $g(x) \geq M$, we have by (4.5)

$$\frac{1}{2} \omega^p(F_M) \leq \frac{1}{2} = \frac{1}{2} \mu(F_M) \leq \mu\left(F_M \setminus \bigcup_{Q \in \text{LM}} Q\right) \leq C \mathcal{H}^n\left(F_M \setminus \bigcup_{Q \in \text{LM}} Q\right) \leq C M \omega^p\left(F_M \setminus \bigcup_{Q \in \text{LM}} Q\right).$$

On the other hand, since $\Theta^{n,*}(x, \omega^p) := \limsup_{r \to 0} \frac{\omega^p(B(x,r))}{(2r)^n} < \infty$ for ω^p-a.e. $x \in \mathbb{R}^{n+1}$, it is also clear that for A big enough

$$\omega^p\left(\bigcup_{Q \in \text{HD}} Q\right) \ll \omega^p(F_M).$$

From the above estimates it follows that

$$(6.1) \quad \omega^p\left(F_M \setminus \bigcup_{Q \in \text{Bad}} Q\right) > 0$$

if τ and A have been chosen appropriately.

For technical reasons we have now to introduce a variant of the family \mathcal{D}^{db} of doubling cubes defined in Section 5. Given some constant $T \geq C_0$ (where C_0 is the constant in Lemma 5.1) to be fixed below, we say that $Q \in \tilde{\mathcal{D}}^{db}$ if

$$\omega^p(100B(Q)) \leq T \omega^p(Q).$$

We also set $\tilde{\mathcal{D}}^{db}_k = \tilde{\mathcal{D}}^{db} \cap \mathcal{D}_k$ for $k \geq 0$. From 5.5 and the fact that $T \geq C_0$, it is clear that $\mathcal{D}^{db} \subset \tilde{\mathcal{D}}^{db}$.

Lemma 6.1. If the constant T is chosen big enough, then

$$\omega^p\left(F_M \cap \bigcup_{Q \in \tilde{\mathcal{D}}^{db}_0} Q \setminus \bigcup_{Q \in \text{Bad}} Q\right) > 0.$$

Notice that above $\tilde{\mathcal{D}}^{db}_0$ stands for the family of cubes from the zero level of $\tilde{\mathcal{D}}^{db}$.
Proof. By the preceding discussion we already know that

\[\omega^p \left(F_M \setminus \bigcup_{Q \in \text{Bad}} Q \right) > 0. \]

If \(Q \not\in \tilde{D}^{db} \), then \(\omega^p(Q) \leq T^{-1} \omega^p(100B(Q)) \). Hence by the finite overlap of the balls \(100B(Q) \) associated with cubes from \(D_0 \) we get

\[\omega^p \left(\bigcup_{Q \in D_0 \setminus \tilde{D}^{db}} Q \right) \leq \frac{1}{T} \sum_{Q \in D_0} \omega^p(100B(Q)) \leq \frac{C}{T} \| \omega^p \| = \frac{C}{T}. \]

Thus for \(T \) big enough we derive

\[\omega^p \left(\bigcup_{Q \in D_0 \setminus \tilde{D}^{db}} Q \right) \leq \frac{1}{2} \omega^p \left(F_M \setminus \bigcup_{Q \in \text{Bad}} Q \right), \]

and then the lemma follows. \(\square \)

Notice that for the points \(x \in F_M \setminus \bigcup_{Q \in \text{Bad}} Q \), from the condition (b) in the definition of bad cubes, it follows that

\[\omega^p(B(x, r)) \lesssim A r^n \quad \text{for all } 0 < r \leq 1. \]

Trivially, the same estimate holds for \(r \geq 1 \), since \(\| \omega^p \| = 1 \). So we have

(6.2) \[M^n \omega^p(x) \lesssim A \quad \text{for } \omega^p\text{-a.e. } x \in F_M \setminus \bigcup_{Q \in \text{Bad}} Q. \]

7. **The Key Lemma about the Riesz Transform of \(\omega^p \) on the Good Cubes**

Lemma 7.1 (Key lemma). Let \(Q \in \text{Good} \) be contained in some cube from the family \(\tilde{D}^{db}_0 \), and \(x \in B_Q \). Then we have

(7.1) \[|R_{r(B_Q)} \omega^p(x)| \leq C(A, M, T, \tau, d_p), \]

where, to shorten notation, we wrote \(d_p = \text{dist}(p, \partial \Omega) \).

Proof. To prove the lemma, clearly we may assume that \(r(B_Q) \ll \text{dist}(p, \partial \Omega) \) and that \(r(P) < r_0 \) for any \(P \in \text{Good} \), where \(r_0 \) is as in the statement of Theorem 1.1. First we will prove \((7.1) \) for \(Q \in \tilde{D}^{db} \cap \text{Good} \). In this case, by definition we have

\[\mu(Q) > \tau \omega^p(Q) \quad \text{and} \quad \omega^p(3B_Q) \leq T \omega^p(Q). \]

We consider a ball \(B \) centered on \(Q \cap \text{supp } \mu \) with \(\delta^{-1}B \subset 2B_Q \) (where \(\delta \) is the constant in Lemma 4.1) such that \(\mu(B) \gtrsim \mu(Q) \) and \(r(B) \sim r(B_Q) \). Also, appealing to the porosity condition of \(\partial \Omega \) in \(E \) and the fact that \(\text{supp } \mu \subset E \), we may take another ball \(B_0 \) such that \(B_0 \subset B \setminus \partial \Omega \) with

\[r(B_0) \sim r(B) \sim r(B_Q). \]

Here (as well as in the rest of the lemma) all implicit constants may depend on \(\delta \).

Denote by \(\mathcal{E}(x) \) the fundamental solution of the Laplacian in \(\mathbb{R}^{n+1} \), so that the Green function \(G(\cdot, \cdot) \) of \(\Omega \) equals

(7.2) \[G(x, p) = \mathcal{E}(x - p) - \int \mathcal{E}(x - y) d\omega^p(y). \]
Notice that the kernel of the Riesz transform is
\begin{equation}
K(x) = c_n \nabla E(x),
\end{equation}
for a suitable absolute constant \(c_n\). For \(x \in \mathbb{R}^{n+1} \setminus \overline{\Omega}\), since \(K(x - \cdot)\) is harmonic in \(\Omega\), we have
\begin{equation}
\mathcal{R}\omega^p(x) = \int K(x - y) \, d\omega^p(y) = K(x - p).
\end{equation}

For \(x \in \Omega\), by (7.3) and (7.2) we have
\begin{equation}
\mathcal{R}\omega^p(x) = c_n \nabla \int E(x - y) \, d\omega^p(y) = c_n \nabla x (E(x - p) - G(x, p))
\end{equation}
\begin{equation}
= K(x - p) - c_n \nabla x G(x, p).
\end{equation}

So if \(B_0 \subset \mathbb{R}^{n+1} \setminus \overline{\Omega}\), then (7.4) holds for all \(x \in B_0\), while if \(B_0 \subset \Omega\), then every \(x \in B_0\) satisfies (7.5). We claim that, in any case, for the center \(z_{B_0}\) of \(B_0\) we have
\begin{equation}
|\mathcal{R}\omega^p(z_{B_0})| \lesssim 1.
\end{equation}
This is clear if \(B_0 \subset \mathbb{R}^{n+1} \setminus \overline{\Omega}\), since in this case
\begin{equation}
|\mathcal{R}\omega^p(z_{B_0})| = |K(p - z_{B_0})| \sim \text{dist}(p, \partial\Omega)^{-n}.
\end{equation}

Suppose now that \(B_0 \subset \Omega\). From (7.5) we infer that for all \(x \in B_0\) we have
\begin{equation}
|\mathcal{R}\omega^p(x)|^2 \lesssim 1 + |\nabla x G(x, p)|^2.
\end{equation}
Averaging this with respect to the Lebesgue measure \(m\) on \(\frac{1}{2}B_0\) and applying Caccioppoli’s inequality,
\begin{equation}
\int_{\frac{1}{2}B_0} |\mathcal{R}\omega^p|^2 \, dm \lesssim 1 + \int_{\frac{1}{2}B_0} |\nabla x G(x, p)|^2 \, dm(x)
\end{equation}
\begin{equation}
\lesssim 1 + \int_{\frac{1}{2}B_0} \frac{|G(x, p) - G(z_{B_0}, p)|^2}{r(B_0)^2} \, dm(x).
\end{equation}

For \(x \in \frac{1}{2}B_0\), in the case \(n = 1\), by Lemma 4.2 we have
\begin{equation}
|G(x, p) - G(z_{B_0}, p)| \lesssim \frac{\omega^p(\delta^{-1}B)}{r(\delta^{-1}B)^{n-1}} \frac{1}{\omega^{z_{B_0}}(\delta^{-1}B)}
\end{equation}
The same estimate holds for \(n \geq 2\) using that
\begin{equation}
|G(x, p) - G(z_{B_0}, p)| \lesssim |G(x, p)| + G(z_{B_0}, p) \lesssim G(z_{B_0}, p),
\end{equation}
by Harnack’s inequality, and then plugging Lemma 4.2 again. Also, from Bourgain’s Lemma 4.1 and 4.5 we get
\begin{equation}
\omega^{z_{B_0}}(\delta^{-1}B) \geq \frac{\mu(B)}{r(B)^n}.
\end{equation}
Therefore,
\begin{equation}
|G(x, p) - G(z_{B_0}, p)| \lesssim \frac{\omega^p(\delta^{-1}B)}{r(\delta^{-1}B)^{n-1}} \frac{r(B)^n}{\mu(B)} \lesssim \frac{\omega^p(2B_Q) \, r(B)}{\mu(Q)}.
\end{equation}
From the fact that \(Q\) is doubling (from \(D^{db}\) and good), we deduce that \(\omega^p(2B_Q) \lesssim \omega^p(Q) \lesssim \tau^{-1} \mu(Q)\), and so
\begin{equation}
|G(x, p) - G(z_{B_0}, p)| \leq C(\tau) \, r(B) \quad \text{for all } x \in \frac{1}{2}B_0.
\end{equation}
Thus, by the harmonicity of $R \omega^p$ in B_0, Hölder’s inequality, (7.8), and the last estimate, we get
\[|R \omega^p(z_{B_0})| = \left| \int_{\frac{1}{2}B_0} R \omega^p dm \right| \lesssim \int_{\frac{1}{2}B_0} |R \omega^p|^2 dm \lesssim 1 + \int_{\frac{1}{2}B_0} \frac{|G(x, p) - G(z_{B_0}, p)|^2}{r(B_0)^2} dm(x) \lesssim 1 \]
with the implicit constant depending on τ and other parameters of the construction, and so (7.6) holds in this case too.

From standard Calderón-Zygmund estimates and the fact that
\[|R_r(B_0)\omega^p(z_{B_0})| = |R_{r(B_0)}\omega^p| \lesssim 1, \]
we derive that, for all $y \in B_Q$,
\[|R_r(B_Q)\omega^p(y)| \lesssim |R_{r(B_0)}\omega^p(z_{B_0})| + M'_{\ell(Q)}\omega^p(z_{B_Q}) \lesssim A 1, \]
where z_{B_Q} is the center of B_Q. In the last estimate we took into account that Q and hence all its ancestors are good and thus $Q \not\in \text{HD}$. Hence the lemma holds when $Q \in \tilde{D}^{db} \cap \text{Good}$.

Consider now the case $Q \in \text{Good} \setminus \tilde{D}^{db}$. Let $Q' \supset Q$ be the cube from \tilde{D}^{db} with minimal side length. The existence of Q' is guarantied by the assumption in the lemma regarding the existence of some cube from D_0^{db} containing Q. For all $y \in B_Q$ then we have
\[|R_{r(B_Q)}\omega^p(y)| \leq |R_{r(B_0)}\omega^p(y)| + C \sum_{P \in D : Q \subset P \subset Q'} \Theta_\omega(2B_P). \]
The first term on the right hand side is bounded by some constant depending on A, M, τ, \ldots. To bound the last sum we can apply Lemma 5.4 (because the cubes that are not from \tilde{D}^{db} do not belong to D^{db} either) and then we get
\[\sum_{P \in D : Q \subset P \subset Q'} \Theta_\omega(2B_P) \lesssim C \Theta_\omega(4B'_{Q'}). \]
Finally, since $Q' \not\in \text{HD}$, we have $\Theta_\omega(4B'_{Q'}) \lesssim C A$. So (7.1) also holds in this case. \square

From the lemma above we deduce the following corollary.

Lemma 7.2. For $Q \in \text{Good}$ and $x \in B_Q$, we have
\[(7.9) \quad R_{r(B_Q)}\omega^p(x) \leq C(A, M, \tau, d_p), \]
where, to shorten notation, we wrote $d_p = \text{dist}(p, \partial \Omega)$.

8. The end of the proof of Theorem 1.1

Set
\[G = F_M \cap \bigcup_{Q \in \tilde{D}^{db}} Q \setminus \bigcup_{Q \in \text{Bad}} Q. \]
and recall that, by Lemma 6.1
\[\omega^p(G) > 0. \]
As shown in (6.2), we have
\begin{equation}
M^\alpha \omega^p(x) \lesssim A \quad \text{for } \omega^p\text{-a.e. } x \in G.
\end{equation}
On the other hand, from Lemma 7.2 is also clear that
\begin{equation}
R_* \omega^p(x) \leq C(A, M, \tau, d_p) \quad \text{for } \omega^p\text{-a.e. } x \in G.
\end{equation}

Now we will apply the following result.

Theorem 8.1. Let \(\sigma \) be a Radon measure with compact support on \(\mathbb{R}^d \) and consider a \(\sigma \)-measurable set \(G \) with \(\sigma(G) > 0 \) such that
\[
G \subset \{ x \in \mathbb{R}^d : M^\alpha \sigma(x) < \infty \text{ and } R_* \sigma(x) < \infty \}.
\]
Then there exists a Borel subset \(G_0 \subset G \) with \(\sigma(G_0) > 0 \) such that \(\sup_{x \in G_0} M^\alpha \sigma|_{G_0}(x) < \infty \) and \(R_\sigma|_{G_0} \) is bounded in \(L^2(\sigma|_{G_0}) \).

This result follows from the deep non-homogeneous Tb theorem of Nazarov, Treil and Volberg in [NTrV] (see also [Vol]) in combination with the methods in [To1]. For the detailed proof in the case of the Cauchy transform, see [To2, Theorem 8.13]. The same arguments with very minor modifications work for the Riesz transform.

From (8.1), (8.2) and Theorem 8.1 applied to \(\sigma = \omega^p \) in case that \(\partial \Omega \) is compact, we infer that there exists a subset \(G_0 \subset G \) such that the operator \(R_\omega^p|_{G_0} \) is bounded in \(L^2(\omega^p|_{G_0}) \).

If \(\partial \Omega \) is non-compact, then we consider a ball \(B(0, R) \) such that \(\omega^p(G \cap B(0, R)) > 0 \) and we set \(\sigma = \chi_{B(0,2R)} \omega^p \). Since
\[
R_*(\chi_{B(0,2R)} \omega^p)(x) \leq \frac{\omega^p(B(0,2R)^c)}{R} < \infty \quad \text{for all } x \in B(0, R),
\]
from (8.2) we infer that \(R_\omega^p(x) < \infty \) for all \(x \in G \cap B(0, R) \), and so we can argue as above.

References

[Ai1] H. Aikawa. *Boundary Harnack principle and Martin boundary for a uniform domain*. J. Math. Soc. Japan. Vol. 53, no. 1 (2001), 119–145.

[Ai2] H. Aikawa. *Equivalence between the boundary Harnack principle and the Carleson estimate*. Math. Scand. 103 (2008), 61–76.

[AG] D. H. Armitage and S. J. Gardiner, *Classical potential theory*, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253 (2001m:31001)

[AMT] J. Azzam, M. Mourgoglou, and X. Tolsa. *Singular sets for harmonic measure on locally flat domains with locally finite surface measure*, arXiv:1501.07585

[Az] J. Azzam. *Sets of absolute continuity for harmonic measure in NTA domains*, arXiv:1410.2782

[Ba] M. Badger, *Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited*, Math. Z. 270 (2012), no. 1-2, 241–262. MR 2875832 (2012k:31008)

[BJ] C. J. Bishop and P. W. Jones, *Harmonic measure and arclength*, Ann. of Math. (2) 132 (1990), no. 3, 511–547. MR 1078268 (92c:30026)

[BL] B. Bennewitz and J. L. Lewis, *On weak reverse Hölder inequalities for nondoubling harmonic measures*, Complex Var. Theory Appl. 49 (2004), no. 7-9, 571–582. MR 2088048 (2005f:31005)

[Bo] J. Bourgain, *On the Hausdorff dimension of harmonic measure in higher dimension*, Invent. Math. 87 (1987), no. 3, 477–483. MR 874032 (88b:31004)
DEPARTAMENT DE Matemàtiques, Universitat Autònoma de Barcelona, Edifici C Facultat de Ciències, 08193 Bellaterra (Barcelona)
E-mail address: jazzam@mat.uab.cat

DEPARTAMENT DE Matemàtiques, Universitat Autònoma de Barcelona and Centre de Reserch Matemàtica, Edifici C Facultat de Ciències, 08193 Bellaterra (Barcelona)
E-mail address: mmourgoglou@crm.cat

ICREA and DEPARTAMENT DE Matemàtiques, Universitat Autònoma de Barcelona, Edifici C Facultat de Ciències, 08193 Bellaterra (Barcelona)
E-mail address: xtolsa@mat.uab.cat