Percutaneous Endoscopic Unilateral Laminotomy and Bilateral Decompression under 3D Real-Time Image-Guided Navigation for Spinal Stenosis in Degenerative Lumbar Kyphoscoliosis Patient: An Innovative Preliminary Study

Tsung-Yu Ho
China Medical University Hospital

Chung-Wei Lin
China Medical University Hospital

Chien-Chun Chang (ccchangmd@gmail.com)
China Medical University Hospital https://orcid.org/0000-0003-2571-9284

Hsien-Te Chen
China Medical University Hospital

Yen-Jen Chen
China Medical University Hospital

Yuan-Shun Lo
China Medical University Hospital

Pan-Hsuan Hsiao
China Medical University Hospital

Po-Chen Chen
Ministry of Health and Welfare, Changhua Hospital

Chih-Sheng Lin
National Chiao Tung University College of Biological Science and Technology

Hsi-Kai Tsou
Taichung Veterans General Hospital

Technical advance

Keywords: Navigation, Spinal stenosis, Lumbar spine, Endoscopic surgery, Kyphoscoliosis, Decompression alone

DOI: https://doi.org/10.21203/rs.3.rs-38840/v2
Abstract

Background: The aim of this study is to introduce a new method of percutaneous endoscopic decompression under 3D real-time image-guided navigation for spinal stenosis in degenerative kyphoscoliosis patients without instability or those who with multiple comorbidities. Decompression alone using endoscope for kyphoscoliosis patient is technical demanding and may result in unnecessary bone destruction leading to further instability. The O-arm/StealthStation system is popular for its ability to provide automated registration with intraoperative, postpositioning computed tomography (CT) with no radiation exposure to operative staffs.

Methods: In this study, we presented four cases. All patients were over seventy years old female with variable degrees of kyphoscoliosis and multiple comorbidities who could not endure major spine fusion surgery. Percutaneous endoscopic unilateral laminotomy and bilateral decompression under 3D real-time image-guided navigation were successfully performed. Patients’ demographics, image study parameters, and outcome measurements including pre- and post-operative serial Visual analog scale (VAS), and Oswestry Disability Index (ODI) were well documented. The follow-up time was one year.

Results: Pre- and post-operative MRI showed average dural sac cross sectional area (DSCSA) improved from 81.62 (range 67.34-89.07) to 153.27 (range 127.96-189.73). Preoperative neurological symptoms including radicular leg pain improved postoperatively. The mean ODI (%) were 85 (range 82.5-90) at initial visit, 35.875 (range 25-51) at 1 month post-operatively, 26.875 (range 22.5-35) at 6 months post-operatively and 22.5 (range 17.5-30) at 12 months post-operatively (p <0.05). The mean VAS score were 9 (range 8-10) at initial visit, 2.25 (range 2-3) at 1 month post-operatively, 1.75 (range 1-2) at 6 months post-operatively and 0.25 (range 0-1) at 12 months post-operatively (p <0.05). There was no surgery-related complication.

Conclusions: To the best of our knowledge, this is the first preliminary study of percutaneous endoscopic laminotomy under O-arm navigation with successful outcomes. The innovative technique may serve as a promising solution in treating spinal stenosis patients with lumbar kyphoscoliosis and multiple comorbidities.

Background

With aging of the population, spinal stenosis with degenerative kyphoscoliosis has become an increasingly common condition. Lumbar spinal stenosis with or without degenerative spondylolisthesis is a pathologic condition that is often observed in the geriatric population, which is the spinal canal narrowing caused by redundant ligamentum flavum and hypertrophic facet joints and osteophytes, and may present with clinical symptoms such as radicular leg pain or neurogenic claudication.[1, 2]
Recent studies have suggested that nonsurgical treatment may not be as effective.\cite{3, 4} The current medical evidence continues to support the role of surgery over non-operative therapies for symptomatic stenosis patients associated with spondylolisthesis.\cite{5} The prospective, randomized, multicenter Spine Patient Outcomes Research Trial (SPORT) also suggests that patients who are treated surgically present with a significantly greater improvement in pain, function, satisfaction, and self-rated progress over eight years compared to patients treated non-operatively.\cite{6-8}

Various studies have evaluated the efficacy of decompression alone versus decompression with fusion for this condition, but the results are still controversial.\cite{9-13} Decompression alone have shown similar results in clinical outcomes compared to decompression with fusion.\cite{9, 11, 13} Open discectomy with laminotomy or laminectomy alone has been considered as standard treatment for lumbar spinal stenosis without instability during the last decades.\cite{14} Percutaneous endoscopic decompression which features minimal amount of tissue injury, less blood loss and a faster recovery serves as a solution to patients with multiple comorbidities. However, decompression alone using endoscope for kyphoscoliosis patient is technically demanding and may result in unnecessary bone destruction leading to iatrogenic instability.\cite{15, 16}

There have been studies discussing the limitation of fluoroscopy-based spinal surgery. A number of studies reveal inaccuracies in pedicle screw placement under fluoroscopy guidance especially when the anatomy is distorted and visual and tactile landmarks are not readily available to the spine surgeon.\cite{17-20} The concern of radiation exposure during C-arm fluoroscopy spinal surgery has also been addressed recently. The ionizing radiation can lead to cellular damage via the induction of DNA lesions and the production of reactive oxygen species. The amount of radiation exposure with C-arm fluoroscopy and O-arm navigation has been quantified and compared in the following studies. Higher levels of radiation for C-arm fluoroscopy lateral view (0.55 milli-Roentgen) and posterior-anterior view (0.101 milli-Roentgen) compared to O arm navigation (0.04 milli-Roentgen) has been noted.\cite{21} Another study compares the radiation exposure of percutaneous endoscopic lumbar discectomy between navigation and conventional technique also reveals significant difference in fluoroscopy time and usage, favoring the navigation group.\cite{22}

Considerable advances in 3D real-time image navigation have changed the nature of spine surgery.\cite{23, 24} The advantages with the use of 3D real-time image navigation include multiple level images in a single sequence, accuracy, and decreased radiation exposure.\cite{25} With the assistance of 3D real-time image navigation, the depth and location of endoscope trocar, high speed burr and relevant anatomy could be instantly demonstrated on the monitor during the procedure. The amount of bony structure removed could be well-visualized on the monitor. Thus, the risk of inadequate decompression and unnecessary bone destruction with iatrogenic instability could be thus limited. This is the first study reporting endoscopic decompression surgery under 3D real-time image navigation to treat degenerative kyphoscoliosis patients.
The purpose of this study is to describe a novel method which combined full-endoscopic spinal decompression and 3D real-time image navigation. The preliminary result showed adequate and precise decompression without leading to iatrogenic instability when treating spinal stenosis in degenerative kyphoscoliosis patients.

Methods

1. **Patient enrollment**

Four kyphoscoliosis patients diagnosed with lumbar spinal stenosis between March 2017 and January 2018 were enrolled in this study. (Fig. 1) Our inclusion criteria were as follows: lumbar central or lateral recess spinal stenosis with kyphoscoliosis, radicular leg pain or claudication refractory to conservative treatment for at least 6 months, absence of spinal instability confirmed by dynamic radiographs. Instability is considered as of sagittal angulation values >15°, values in millimeters of translation on the sagittal plane (or coronal plane) >4mm or shift >15% of the inferior vertebral endplate measure. We excluded patients with lumbar foraminal spinal stenosis, spondylolisthesis, compression or burst fracture, infection, tumor, previous lumbar surgery. The participants included four women with an average age of 80.25 years (range, 73-86 years). The average Body Mass Index (BMI) was 24.58 (range, 19.94-28.36). The affected levels ranged from L2-S1. The operation level was decided according to clinical presentation and MRI findings. As for the degree of spinal deformity, data were summarized in Table 1 According to Schwab Classification.[26]

2. **Outcome Evaluation**

Radiology outcome measurement including serial radiographs (Fig. 1) and dural sac cross sectional area (DSCSA) on MRI were well documented. (Fig. 2) (Table 2) As for the clinical outcome evaluation, the Oswestry Disability index (%) (ODI), Visual analogue scale (VAS) were collected at the initial visit and at 1 month, 6 months and 12 months post-operatively. (Table 3)

3. **Statistical Analyses**

Statistical Analyses were performed using SPSS for Windows, version 24 (SPSS Inc, Armonk, NY). The Friedman two-way analysis of variance (ANOVA) by ranks test was used as a non-parametric test. A $p < 0.05$ was considered statistically significant.

4. **Navigation system and Instruments**

The O-arm/StealthStation system (Medtronic Inc., Minneapolis, MN, USA), a 3D real-time image-guided navigation system, is popular for its ability to provide automated registration with intraoperative, postpositioning computed tomography (CT). With SureTrak® II Universal Tracker (Medtronic Inc., Minneapolis, MN, USA) attached to the endoscope instrument, the depth and position of the endoscopic working channel could be observed in real-time fashion on the O-arm/StealthStation monitor.
The Vertebris® Spine Endoscope system (Richard and Wolf, Knittlingen, Germany) features high-resolution endoscope with a 6.9 x 5.6 mm diameter and a 4.1 mm intra-endoscopic working channel. The angle of vision is 25°. The working sleeve has an 8.0 mm outer diameter and a beveled opening, which enable visual and working fields creation in an area with a clear, anatomically preformed cavity.

Surgitron, a high-voltage bipolar probe (Ellman Innovations, New York, USA), is well-known for pinpoint coagulation in a wet field with simultaneously minimal burning or charring of soft tissue. The thermocoagulation device aims to maximized hemorrhage control and thus improves the visibility of the operative field.

5. Surgical Technique

5.1 Patient Preparation

The surgery was conducted under general anesthesia. The patient was positioned prone on a well cushioned and supportive radiolucent table with the abdomen hanging free. Bilateral knees were flexed to over 90 degrees as possible for the opening of interlaminar space. Back skin was then well prepared and draped.

5.2 Reference Pin Insertion and Image Acquisition

First, we made a small incision over the iliac crest. We inserted the reference pin through the cannula, and used an impactor to nail the pin into the bone until the tap cap bottoms out on the cannula. Then we removed the tap cap and cannula from the pin, placed the spine reference on the pin and rotated the assembly to lock the frame in place.

The spinal segment of interest was scanned using the O-arm navigation and the images were automatically registered to the Stealth Station. All the navigational instruments were registered.

5.3 3D Real-Time Image-Navigated Percutaneous Endoscopic Decompression

Interlaminar approach was chosen. The skin incision was made under O-arm navigation, which was under the spinal laminal junction. A dilator, 8.0 mm in outer diameter, was bluntly inserted to the edge of the interlaminar window. Then, an operative sleeve with a beveled opening was directed towards the ligamentum flavum. After attaching the SureTrak® II Universal Tracker to the Vertebris® Spine Endoscope (Fig. 3), the endoscope was inserted into the working channel (Fig. 3).

After introduction of the endoscope, the bony boundaries of superior lamina, inferior lamina and facet joint were identified and the soft tissues were removed with bipolar probe, punch and forceps. To broaden the working space, a minimal bone resection was made from medial to lateral. 3-4mm of bone around superior and inferior lamina was removed with a diamond burr. Then, the approach proceeded to the superior articular process, creating space for lateral recess decompression. The depth and location of the bony landmark could be well visualized through the O-arm navigation system. (Fig. 4) The O-arm
navigation system offered the real-time images as a warning sign before the facet joint was violated, which prevented the spinal column from instability. Not until the cranial, caudal, medial, and lateral bony boundaries of the operative field were well prepared should the ligamentum flavum being opened. A lateral window of approximately 4-6 mm was made on the ligamentum flavum. The neural structures and epidural fat tissues were exposed. The perineural membrane was dissected from the neural structure carefully under direct endoscopic visualization. The operating sleeve with beveled opening could be turned and used as a nerve hook. With the joystick technique, the hypertrophic ligamentum flavum could be removed by controlling endoscope in either direction. The contralateral lateral recess decompression was achieved through unilateral approach with bilateral decompression technique. Finally, epidural bleeding was checked and well-controlled by Surgitron bipolar probe. The whole procedure was done safely and effectively under precise O-arm navigation (Fig. 5).

Results

1. **Hospital Course**

Without unnecessary bone destruction, the spinal stenosis was successfully decompressed through endoscopic surgery. Average operation time was 243.5 minutes (range 154-315 minutes). Both the endoscopic insertion wound and the reference pin insertion wound were about 1cm (Fig. 6). All patients could stand and walk freely on a walker on postoperative day 1. The hospitalization time was within 3 days.

2. **Radiology Results**

The efficacy of decompression was confirmed by MRI at 12 months follow-up post-operatively. Average dural sac cross sectional area (DSCSA) improved from 81.62 (range 67.34-89.07) to 153.27 (range 127.96-189.73) (Fig. 2) (Table 2). The follow-up X-ray performed at 12 months post-operatively showed no obvious Cobb angle change which indicated no progress of the scoliosis (Fig. 1).

3. **Clinical Results**

As shown in table 3, the mean ODI (%) were 85 (range 82.5-90) at initial visit, 35.875 (range 25-51) at 1 month post-operatively, 26.875 (range 22.5-35) at 6 months post-operatively and 22.5 (range 17.5-30) at 12 months post-operatively ($p<0.05$). The mean VAS score were 9 (range 8-10) at initial visit, 2.25 (range 2-3) at 1 month post-operatively, 1.75 (range 1-2) at 6 months post-operatively and 0.25 (range 0-1) at 12 months post-operatively ($p<0.05$). There was no surgery-related complication such as inadequate decompression, dural tear, iatrogenic neurological injury, substantial blood loss unnecessary bone destruction with iatrogenic instability.

Discussion
To the best of our knowledge, this is the first clinical study utilizing the technique of percutaneous endoscope with O-arm navigation to treat spinal stenosis for kyphoscoliosis patients. The advantages of this combined technique are high precision with promising decompression effect, minimal invasive surgery with little soft tissue damage, and preservation of original spinal stability.

Recent studies have demonstrated that in patients whose primary complaint are radiculopathy with an underlying biomechanically stable spine, decompression surgery alone with a less invasive technique may be sufficient. Decompression with fusion does not appear to be more effective than decompression alone when considering pain relief, walking ability, or disability status.[27, 28]

The gold standard method of the decompression of lumbar spinal stenosis is laminectomy with or without lateral recess and foraminal decompression. A laminectomy removes the entire lamina and the underlying ligamentum flavum, while a laminotomy removes only a small bone window from the lamina, unilaterally or bilaterally, which could be accomplished through minimally invasive surgery, such as percutaneous endoscope technique.[29, 30] Minimally invasive decompression plays an important role for elderly patients. For elderly patients with focal lumbar spinal stenosis, outcomes and surgical morbidity have been shown to be similar to those in the younger demographics.[31]

Several studies have focused on the efficacy of percutaneous endoscopic surgery for spinal stenosis. Ito et al. demonstrated improved VAS, ODI and Japanese Orthopedic Association (JOA) score after conducting endoscopic decompression with sublaminar approach.[32] Kang et al. compared biportal endoscopic surgery with microscopic surgery and found that there was shorter hospitalization time, shorter operation time, less hemovac drainage and less opioid use in endoscopic surgery group.[33] Kim and Choi found satisfactory results at minimum 2-year follow-up with no wound infection or segmental spinal instability after conducting endoscopic decompression for lumbar spinal stenosis.[34] Qin et al. reported there was lower fluoroscopy, and access time with navigated percutaneous endoscopic lumbar discectomy compared with conventional techniques.[22] Comparative analysis between microscopic, tubular and endoscopic decompression also discovered that tubular and endoscopic surgery group showed less invasiveness with less increase of serum CPK enzyme level, shorter hospitalization time, and less immediate postoperative back pain.[35] The efficacy and safety of endoscopic decompression have been thoroughly investigated.

The original treatment plan for our patients was open surgery and correction of scoliosis with long fusion to sacrum (in order to avoid fusion above the apex of curve) with laminectomy. However, the adverse effect of long fusion brings certain early perioperative complications in old age patients with multiple comorbidities.[36] Therefore, decompression alone using percutaneous endoscope seemed to be a reasonable alternative. Decompression alone with laminectomy may lead to iatrogenic instability. However, with accurate O-arm guided navigated decompression, excessive bone removal could be successfully avoided. The O-arm navigation monitor could give a warning image before the facet joint is violated. With this combined technique, it was possible to overcome abnormal anatomical challenges.[37, 38] Decompression alone in old patients with multiple comorbidities was difficult to achieve adequate
decompression without unnecessary bony destruction. O-arm navigation provided a new option for this kind of patients, along with a reduction in radiation exposure for operating room staff. With O-arm navigation, this technique could be applied in even more complicated cases, particularly in the elderly or immunocompromised patients, as well as in patients with multiple comorbidities.[39]

However, the technique still carries some disadvantages. To begin with, additional wound is needed for reference pin placement. Then, there is prolonged anesthesia and surgical time due to individual surgical instrument registration with the navigation system. Furthermore, it is essential to assure the reference frame not being bumped to avoid navigation inaccuracy. The need to keep the tracking tools in line with the navigation system, will incur some restraints on the surgeon's movements during decompression steps thus further adding to surgical time. Finally, operative manipulation of endoscope and relevant instruments requires delicate surgical skills due to the limited operative field.

The present study has some limitations. For one thing, there are a limited number of patients with no control group for comparison. For another, the follow-up is relative short, lacking long-term follow-up data. However, the purpose of this study is to describe the combined technique and assess its clinical and radiological results. Decompression alone using endoscope under O-arm navigation could be considered in patients with multiple comorbidities who could not endure major surgery and surgery-related hazardous complication.

Conclusions

To the best of our knowledge, this is the first preliminary study of percutaneous endoscopic laminotomy under O-arm navigation with successful outcomes. Percutaneous endoscopic laminotomy under O-arm navigation is a minimal invasive procedure compared to open posterior surgery, such as decompression surgery plus fusion surgery, with no excessive bone and soft tissue destruction, smaller cosmetic wound, shorter hospitalized duration, but similar treatment effects. We believe this novel technique is promising for spinal stenosis patients with lumbar kyphoscoliosis and multiple comorbidities. Further studies on larger sample are required to support these preliminary results.

Abbreviations

BMI: Body Mass Index; 3D: Three-Dimensional; AP: Anteroposterior; CT: Computed Tomography; MRI: Magnetic Resonance Imaging; T2WI: T2-Weighted Image; ODI: Oswestry Disability Index (%); VAS: Visual Analogue Scale; JOA: Japanese Orthopedic Association

Declarations

Ethics approval and consent to participate

This research did not increase the risk and economic burden of patients, the patients’ rights were fully protected, and the project design was conducted in line with scientific and ethical principles. This study
was approved by China Medical University & Hospital Research Ethics Committee (reference number: 1673) (CMUH107-REC2-173). All participants in this study have provided informed written consent prior to enrollment.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The authors received no specific funding for this work.

Authors’ contributions

HTC, YJC and CCC participated in the design of the study. CCC was responsible for performing the clinical procedures. TYH and CWL contributed to manuscript drafting. CWL, YSL and PHH contributed to data collection. CWL, CSL, PCC and HKT contributed to manuscript editing. All authors read and approved the final manuscript.

Acknowledgments

None

References

1. Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Blood E, Hanscom B, Herkowitz H, Cammisa F, Albert T, Boden SD et al: *Surgical versus nonsurgical therapy for lumbar spinal stenosis*. *The New England journal of medicine* 2008, 358(8):794-810.

2. Davis N, Hourigan P, Clarke A: *Transforaminal epidural steroid injection in lumbar spinal stenosis: an observational study with two-year follow-up*. *British journal of neurosurgery* 2017, 31(2):205-208.

3. Ammendolia C, Stuber K, de Bruin LK, Furlan AD, Kennedy CA, Rampersaud YR, Steenstra IA, Pennick V: *Nonoperative treatment of lumbar spinal stenosis with neurogenic claudication: a systematic review*. *Spine* 2012, 37(10):E609-616.

4. Friedly JL, Comstock BA, Turner JA, Heagerty PJ, Deyo RA, Sullivan SD, Bauer Z, Bresnahan BW, Avins AL, Nedeljkovic SS et al: *A randomized trial of epidural glucocorticoid injections for spinal stenosis*.
5. Resnick DK, Watters WC, 3rd, Sharan A, Mummaneni PV, Dailey AT, Wang JC, Choudhri TF, Eck J, Ghogawala Z, Groff MW et al.: Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: lumbar fusion for stenosis with spondylolisthesis. *Journal of neurosurgery Spine* 2014, 21(1):54-61.

6. Lurie JD, Tosteson TD, Tosteson A, Abdu WA, Zhao W, Morgan TS, Weinstein JN: Long-term outcomes of lumbar spinal stenosis: eight-year results of the Spine Patient Outcomes Research Trial (SPORT). *Spine* 2015, 40(2):63-76.

7. Pearson A, Blood E, Lurie J, Abdu W, Sengupta D, Frymoyer JW, Weinstein J: Predominant leg pain is associated with better surgical outcomes in degenerative spondylolisthesis and spinal stenosis: results from the Spine Patient Outcomes Research Trial (SPORT). *Spine* 2011, 36(3):219-229.

8. Pearson A, Blood E, Lurie J, Tosteson T, Abdu WA, Hillibrand A, Bridwell K, Weinstein J: Degenerative spondylolisthesis versus spinal stenosis: does a slip matter? Comparison of baseline characteristics and outcomes (SPORT). *Spine* 2010, 35(3):298-305.

9. Ahmad S, Hamad A, Bhalla A, Turner S, Balain B, Jaffray D: The outcome of decompression alone for lumbar spinal stenosis with degenerative spondylolisthesis. *Eur Spine J* 2017, 26(2):414-419.

10. Austevoll IM, Gjestad R, Brox JI, Solberg TK, Storheim K, Rekeland F, Hermansen E, Indrekvam K, Hellum C: The effectiveness of decompression alone compared with additional fusion for lumbar spinal stenosis with degenerative spondylolisthesis: a pragmatic comparative non-inferiority observational study from the Norwegian Registry for Spine Surgery. *Eur Spine J* 2017, 26(2):404-413.

11. Chang W, Yuwen P, Zhu Y, Wei N, Feng C, Zhang Y, Chen W: Effectiveness of decompression alone versus decompression plus fusion for lumbar spinal stenosis: a systematic review and meta-analysis. *Arch Orthop Trauma Surg* 2017, 137(5):637-650.

12. Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, Magge SN, Coumans JV, Harrington JF, Amin-Hanjani S, Schwartz JS et al.: Laminectomy plus Fusion versus Laminectomy Alone for Lumbar Spondylolisthesis. *N Engl J Med* 2016, 374(15):1424-1434.

13. Forsth P, Olafsson G, Carlsson T, Frost A, Borgstrom F, Fritzell P, Ohagen P, Michaelsson K, Sanden B: A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. *N Engl J Med* 2016, 374(15):1413-1423.

14. Li X, Han Y, Di Z, Cui J, Pan J, Yang M, Sun G, Tan J, Li L: Percutaneous endoscopic lumbar discectomy for lumbar disc herniation. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia* 2016, 33:19-27.

15. Ahmed SI, Javed G, Bareeqa SB, Shah A, Zubair M, Avedia RF, Rahman N, Samar SS, Aziz K: Comparison of Decompression Alone Versus Decompression with Fusion for Stenotic Lumbar Spine: A Systematic Review and Meta-analysis. *Cureus* 2018, 10(8):e3135.

16. Donnarumma P, Tarantino R, Nigro L, Rullo M, Messina D, Diacinti D, Delfini R: Decompression versus decompression and fusion for degenerative lumbar stenosis: analysis of the factors influencing the outcome of back pain and disability. *J Spine Surg* 2016, 2(1):52-58.
17. Hartl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L: **Worldwide survey on the use of navigation in spine surgery.** *World neurosurgery* 2013, **79**(1):162-172.

18. Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO: **Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery.** *Neurosurg Focus* 2010, **28**(3):E11.

19. Kast E, Mohr K, Richter HP, Borm W: **Complications of transpedicular screw fixation in the cervical spine.** *Eur Spine J* 2006, **15**(3):327-334.

20. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA: **Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques.** *Eur Spine J* 2012, **21**(2):247-255.

21. Nelson EM, Monazzam SM, Kim KD, Seibert JA, Klineberg EO: **Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery.** *Spine J* 2014, **14**(12):2985-2991.

22. Qin H, Huang S, Xu L, Wei P, Jiang J, Xie Z, Luo X, Tan H, Huang W: **Radiation Exposure and Operation Time in Percutaneous Endoscopic Lumbar Discectomy Using Fluoroscopy-Based Navigation System.** *World neurosurgery* 2019, **127**:e39-e48.

23. Lin CW, Chang CC, Chen HT, Chen YJ, Lin CS, Hsu HC, Tsou HK: **3D Real-Time Image-Guided Navigation Spine Corpectomy with Ultrasonic Bone Cutter: Technical Note.** *World neurosurgery* 2020, **135**:197-204.

24. Baaj AA, Beckman J, Smith DA: **O-Arm-based image guidance in minimally invasive spine surgery: technical note.** *Clin Neurol Neurosurg* 2013, **115**(3):342-345.

25. Rahmathulla G, Nottmeier EW, Pirris SM, Deen HG, Pichelmann MA: **Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance.** *Neurosurg Focus* 2014, **36**(3):E3.

26. Terran J, Schwab F, Shaffrey CI, Smith JS, Devos P, Ames CP, Fu KM, Burton D, Hostin R, Klineberg E et al: **The SRS-Schwab adult spinal deformity classification: assessment and clinical correlations based on a prospective operative and nonoperative cohort.** *Neurosurgery* 2013, **73**(4):559-568.

27. Omidi-Kashani F, Hasankhani EG, Ashjazadeh A: **Lumbar spinal stenosis: who should be fused? An updated review.** *Asian spine journal* 2014, **8**(4):521-530.

28. Thomas K, Faris P, McIntosh G, Manners S, Abraham E, Bailey CS, Paquet J, Cadotte D, Jacobs WB, Rampersaud YR et al: **Decompression alone vs. decompression plus fusion for claudication secondary to lumbar spinal stenosis.** *Spine J* 2019, **19**(10):1633-1639.

29. Alimi M, Hofstetter CP, Pyo SY, Paulo D, Hartl R: **Minimally invasive laminectomy for lumbar spinal stenosis in patients with and without preoperative spondylolisthesis: clinical outcome and reoperation rates.** *Journal of neurosurgery Spine* 2015, **22**(4):339-352.

30. Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lonne G, Solberg TK, Salvesen O, Carlsen SM, Nygaard OP et al: **Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study.** *Bmj* 2015, **350**:h1603.
31. Aleem IS, Rampersaud YR: Elderly patients have similar outcomes compared to younger patients after minimally invasive surgery for spinal stenosis. *Clinical orthopaedics and related research* 2014, 472(6):1824-1830.

32. Ito F, Ito Z, Shibayama M, Nakamura S, Yamada M, Yoshimatu H, Takeuchi M, Shimizu K, Miura Y: Step-by-Step Sublaminar Approach With a Newly-Designed Spinal Endoscope for Unilateral-Approach Bilateral Decompression in Spinal Stenosis. *Neuros spine* 2019, 16(1):41-51.

33. Li XF, Jin LY, Lv ZD, Su XJ, Wang K, Shen HX, Song XX: Efficacy of percutaneous transforaminal endoscopic decompression treatment for degenerative lumbar spondylolisthesis with spinal stenosis in elderly patients. *Experimental and therapeutic medicine* 2020, 19(2):1417-1424.

34. Kim JE, Choi DJ: Clinical and Radiological Outcomes of Unilateral Biportal Endoscopic Decompression by 30 degrees Arthroscopy in Lumbar Spinal Stenosis: Minimum 2-Year Follow-up. *Clin Orthop Surg* 2018, 10(3):328-336.

35. Lee C-W, Yoon K-J, Ha S-S: Comparative Analysis between Three Different Lumbar Decompression Techniques (Microscopic, Tubular, and Endoscopic) in Lumbar Canal and Lateral Recess Stenosis: Preliminary Report. *BioMed Research International* 2019, 2019:1-11.

36. Cho KJ, Suk SI, Park SR, Kim JH, Kim SS, Lee TJ, Lee JJ, Lee JM: Short fusion versus long fusion for degenerative lumbar scoliosis. *European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society* 2008, 17(5):650-656.

37. Schouten R, Lee R, Boyd M, Paquette S, Dvorak M, Kwon BK, Fisher C, Street J: Intra-operative cone-beam CT (O-arm) and stereotactic navigation in acute spinal trauma surgery. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia* 2012, 19(8):1137-1143.

38. Ammirati M, Salma A: Placement of thoracolumbar pedicle screws using O-arm-based navigation: technical note on controlling the operational accuracy of the navigation system. *Neurosurg Rev* 2013, 36(1):157-162; discussion 162.

39. Li X, Zhang F, Zhang W, Shang X, Han J, Liu P: A new method to precisely control the depth of percutaneous screws into the pedicle by counting the rotation number of the screw with low radiation exposure: technical note. *European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society* 2017, 26(3):750-753.

Tables

Table 1. Profiles of Patient with Kyphoscoliosis
Case 1	Case 2	Case 3	Case 4	
Age (years)	73	86	82	80
BMI (kg/m²)	28.36	23.37	19.94	26.63
Comorbidities	Diabetes Mellitus, Chronic Kidney Disease Stage III, Paroxysmal atrial fibrillation, Hypertension, Diabetes Mellitus	Chronic Kidney Disease Stage III, Hypertension, Diabetes Mellitus, Congestive Heart Failure	Chronic Kidney Disease Stage II, Hypertension, Diabetes Mellitus	Hypertension, Diabetes Mellitus
Operation Time (minutes)	272	315	154	233

Schwab Classification for Adult Spinal Deformity

Type and Location of Deformity	Type V Lumbar Major Curve			
Lordosis Modifier: Sagittal Cobb angle from T12 to S1	20.36 degrees	20.31 degrees	21.14 degrees	**21.6 degrees**
Subluxation Modifier: Frontal or Sagittal Plane (Anterior or Posterior), Maximum Value	++ Frontal subluxation 16mm (>7mm)	+Frontal subluxation 6mm (1-6mm)	++ Frontal subluxation 9.4mm (>7mm)	+ Frontal subluxation 5.53mm (1-6mm)
Global Balance Modifier: Sagittal Offset from Posterior Superior Corner S1	Positive: 7.98cm	Positive: 7.13cm	Positive: 7.01cm	Positive: 4.63cm

Table 2. Patient Radiology Results

Operation Level	Pre-OP DSCSA (mm²)	Post-OP DSCSA (mm²)	
Case 1	**Case 2**	**Case 3**	**Case 4**
L3/L4	89.07	189.73	
L4/L5	84.39	143.05	
L2/L3	85.68	152.34	
L3/L4	67.34	127.96	
Table 3. Patient Clinical Results

Case	Diagnosis	Pre-OP	Post-OP
		ODI 1M	VAS 1M
Case 1	Kyphoscoliosis with Spinal Stenosis L3-L4	87.5	9
Case 2	Kyphoscoliosis with Spinal Stenosis L3/L4/L5	82.5	10
Case 3	Kyphoscoliosis with Spinal Stenosis L2/L3/L4	90	9
Case 4	Kyphoscoliosis with Spinal Stenosis L3/L4	80	8

VAS Visual Analogue Scale, ODI Oswestry Disability index, Pre-OP Preoperative, Post-OP Postoperative

Figures
Figure 1

(a) Preoperative AP X-ray shows 21.85° Cobb angle scoliosis from L3-L5. (b) Preoperative lateral X-ray reveals mild spondylolisthesis over L4-L5. (c) Postoperative AP X-ray shows 21.84° Cobb angle scoliosis from L3-L5. (a)(c) Serial images demonstrate no progression of the scoliosis.
Figure 2

(a) Preoperative sagittal section of T2WI MRI shows severe stenosis over L4-L5. (b) Postoperative sagittal section of T2WI MRI shows stenosis being relieved with intact posterior elements. The decompression level (White line) on axial section of T2WI MRI is shown in (c) and (d). Comparing (c) preoperative and (d) postoperative T2WI axial section MRI, dura sac cross-sectional area (DSCSA) increases significantly after endoscopic laminotomy at L4-5 under O-arm navigation (1) without any facet joints damage, via (2) interlaminar approach.
Figure 3

(a) Intraoperative photo shows the attachment of (1) SureTrak® II Universal Tracker, Small Passive Fighter to the (2) Vertebris® Spine Endoscope. (b) Photos reveal the setting of surgery, including (1) patient positioning, (2)(3) O-arm setting, (4) endoscope monitoring, (5) navigation monitoring and (6) reference pin position. (c) Photo shows the relative position of (1) the endoscope in the sleeve, and (2) the percutaneous reference pin (in the area over the iliac crest).
Figure 4

Pattern diagram shows (a) the navigational instrument set-up with universal tracker attached to the endoscope. The burr tip docks on the lamina. (b)(c) The depth of the endoscope in the working field can be simultaneously seen on the navigation monitor. The blue bar indicates the tip of endoscope and the yellow bar points out the trajectory of burr.
Figure 5

Combining (1) Endoscopic images and (2) O-arm navigation images, the trajectory of the burr is navigated. The depth of burr could be adjusted precisely during laminotomy under 3D real-time O-arm navigation.
Figure 6

Surgeon performs endoscopic laminotomy under precise O-arm navigation. Intraoperative photos show (a) O-arm navigation images (b) Endoscopic images and (c) its introduction: (1) base of spinous process, (2) interlaminar space, (3) right side lateral recess, (4) dura, (5) left side lateral recess, (6) ligamentum flavum.

Figure 7
(a) Surgical wounds on postoperative day 1 with a Hemovac drainage in the endoscope insertion wound; (b) Both (1) the endoscope insertion wound and (2) the percutaneous reference pin insertion wound are about 1 cm.