VALUE DISTRIBUTION FOR THE DERIVATIVES OF THE LOGARITHM OF L-FUNCTIONS FROM THE SELBERG CLASS IN THE HALF-PLANE OF ABSOLUTE CONVERGENCE

TAKASHI NAKAMURA AND ŁUKASZ PAŃKOWSKI

Abstract. In the present paper, we show that, for every $\delta > 0$, the function $(\log L(s))^{(m)}$, where $m \in \mathbb{N} \cup \{0\}$ and $L(s) := \sum_{n=1}^{\infty} a(n)n^{-s}$ is an element of the Selberg class S takes any value infinitely often in any strip $1 < \Re(s) < 1 + \delta$, provided $\sum_{p \leq x} |a(p)|^2 \sim \kappa \pi(x)$ for some $\kappa > 0$. In particular, $L(s)$ takes any non-zero value infinitely often in the strip $1 < \Re(s) < 1 + \delta$, and the first derivative of $L(s)$ vanishes infinitely often.

1. Introduction and statement of main results

Let S_A be the set of functions defined, for $\sigma := \Re(s) > 1$, as

$$L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \prod_p \exp \left(\sum_{k=1}^{\infty} \frac{b(p^k)}{p^{ks}} \right),$$

where $a(n) \ll n^\varepsilon$ for any $\varepsilon > 0$ and $b(p^k) \ll p^{k\theta}$ for some $\theta < 1/2$. Then it is well known that both the Dirichlet series and the Euler product converge absolutely when $\Re(s) := \sigma > 1$ and $a(p) = b(p)$ for every prime p (e.g. [25, p. 112]). Moreover, the set S_A includes the Selberg class S (for the definition we refer to [13] or [25, Section 6]), which contains a lot of L-functions from number theory. As mentioned in [13, Section 2.1], the Riemann zeta function $\zeta(s)$, Dirichlet L-functions $L(s + i\theta, \chi)$ with $\theta \in \mathbb{R}$ and χ is a primitive character, L-functions associated with a holomorphic newforms of a congruence subgroup of $\text{SL}_2(\mathbb{Z})$ (after some normalization) are elements of the Selberg class. It should be noted that in fact $S \subsetneq S_A$, since for example $\zeta(s)/\zeta(2s) \in S_A$ but $\zeta(s)/\zeta(2s) \notin S$ by the fact that $\zeta(s)/\zeta(2s)$ has poles on the line $\Re(s) = 1/4$. Moreover, we can see that S_A makes an abelian group structure (see Lemma 2.7).

Many mathematicians have been studying the distribution of the logarithmic derivative of the Riemann zeta function (see eg. [11]). For instance it is known that there are some relationships between mean value of products of logarithmic derivatives of $\zeta(s)$ near the critical line, correlations of the zeros of $\zeta(s)$ and the distribution of integers representable as a product of a fixed number of prime powers (see [10] and [11]). Moreover, Stopple investigated recently zeros of the second derivative of the logarithm of the Riemann zeta function in [26]. He proved that $(\log \zeta(s))''$ appears in the pair correlation for the zeros of $\zeta(s)$ (see for example [5]). In the present paper, we show the following result on value distribution of the m-th derivative of the logarithm of L-function from S_A.

2010 Mathematics Subject Classification. Primary 11M06, 11M26.

Key words and phrases. Derivatives of the logarithm of L-functions, Selberg class, value-distribution, zeros.
Theorem 1.1. Let $m \in \mathbb{N} \cup \{0\}$, $z \in \mathbb{C}$ and $L(s) := \sum_{n=1}^{\infty} a(n)n^{-s} \in S_{\Lambda}$ satisfies
\[
\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \leq x} |a(p)|^2 = \kappa
\] for some $\kappa > 0$. Then, for any $\delta > 0$, we have
\[
\# \{s : 1 < \text{Re}(s) < 1 + \delta, \ \text{Im}(s) \in [0, T] \text{ and } (\log L(s))^{(m)} = z\} \gg T
\] for sufficiently large T.

Remark 1.2. The condition (1.2) is closely related to the well-known Selberg conjecture
\[
\sum_{p \leq x} \frac{|a(p)|^2}{p} = \kappa \log \log x + O(1), \quad (\kappa > 0)
\] (1.4)

Obviously, by partial summation, it is implied by (1.2), however, it is a slightly weaker assumption than (1.2), since, in order to deduce (1.2) we need to assume that the error term in (1.4) is $C_1 + C_2/\log x + O((\log x)^{-2})$ for $C_1, C_2 \geq 0$.

Remark 1.3. As we show in Lemma 2.2 the assumption (1.2) implies that the abscissa of absolute convergence of $L(s)$ is equal to 1, which is also a necessary condition for (1.3).

The main reason, why the assumption that the abscissa of absolute convergence is 1 is not enough in our case, is the fact that we need to estimate the number of primes p for which $a(p)$ is not too close to 0. Hence, if $|a(p)| > c$ for every prime p and some constant $c > 0$, then (1.3) is equivalent to the fact that the abscissa of absolute convergence is 1.

As an immediate consequence of Theorem 1.1 we obtain the following.

Corollary 1.4. Let $z \in \mathbb{C} \setminus \{0\}$ and $L(s) \in S_{\Lambda}$ satisfies (1.2). Then, for any $\delta > 0$, we have
\[
\# \{s : 1 < \text{Re}(s) < 1 + \delta, \ \text{Im}(s) \in [0, T] \text{ and } L(s) = z\} \gg T
\] for sufficiently large T.

When $L(s) = \zeta(s)$, Bohr [3] proved that one has (1.3) (see also Remark 2.6). It is expected that the assertion (1.3) is true for the zeta functions defined as
\[
L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \prod_{p} \prod_{j=1}^{m} \left(1 - \frac{\alpha_j(p)}{p^s}\right)^{-1}, \quad \sigma > 1,
\] where the $\alpha_j(p)$ are complex numbers with $|\alpha_j(p)| \leq 1$ (see [25, p. 188, l. 12–13]). Note that the coefficients $a(n)$ appeared in $L(s)$ satisfy $a(n) \ll n^\varepsilon$ for any $\varepsilon > 0$ by [25, Lemma 2.2]. Hence we obtain $L(s) \in S_{\Lambda}$. Therefore, we have (1.3) for not only $L(s)$ given above but also $L(s) \in S_{\Lambda}$ by Corollary 1.4 Related to the c-values theorem above, the following uniqueness theorem proved by Li [15, Theorem 1] should be mentioned. If two L-functions L_1 and L_2 (without the Euler product) satisfy the same functional equation, $a(1) = 1$, and $L_1^{-1}(c_j) = L_2^{-1}(c_j)$ for two distinct complex numbers c_1 and c_2, then one has $L_1 = L_2$. Furthermore, Ki showed in [14, Theorem 1] that if two functions L_1 and L_2 in the extended Selberg class $S^\#$ (see for instance [13, p. 160] or [25, p. 217]) satisfy the same functional equation with positive degree, if $a(1) = 1$ and $L_1^{-1}(c) = L_2^{-1}(c)$ for a nonzero complex number c, then we have $L_1 = L_2$. Now let $L(s) \in S_{\Lambda}$ satisfy the all
assumptions of Corollary 1.4. Then from Corollary 1.4 we can see that for any \(c \in \mathbb{C} \setminus \{0\} \) and sufficiently large \(T \), it holds that

\[
\# L^{-1}(c) \geq \# \{ s \in \mathbb{C} : L(s) = c, \ Re(s) > 1, \ \Im(s) \in [0, T] \} \gg T.
\]

Next, since \(L(s) \) has no zeros in the half-plane of absolute convergence and \((\log L(s))' = L'(s)/L(s)\), we obtain immediately the following result by using Theorem 1.1 for \(m = 1 \) and \(z = 0 \).

Corollary 1.5. Let \(L(s) \in \mathcal{S}_A \) satisfies (1.2). Then for any \(\delta > 0 \), it holds that

\[
\# \{ s : 1 < \Re(s) < 1 + \delta, \ \Im(s) \in [0, T] \ \text{and} \ L'(s) = 0 \} \gg T
\]

for sufficiently large \(T \).

It is well-known that the first derivative of the Riemann zeta function has an infinite number of zeros in the region of absolute convergence \(\sigma > 1 \) (see [27, Theorem 11.5 (B)]). Corollary 1.5 is a generalization of this result. It should be mentioned that there are a lot of papers on zeros of the derivatives of the Riemann zeta function (see for instance [2], [16], [24] and articles which cite them). On the other hand, there are few papers treat zeros of the derivatives of other zeta or \(L \)-functions. However, it is worth writing the following fact proved in [28, Theorem 2]. Let \(\chi \) be a Dirichlet character to the modulus \(q \) and \(m \) be the smallest prime that does not divide \(q \). Then the \(k \)-th derivatives of the Dirichlet \(L \)-function \(L^{(k)}(s, \chi) \) does not vanish for the half-plane \(\sigma > 1 + \frac{m}{2} \left(1 + \sqrt{1 + \frac{4k^2}{m \log m}} \right) \), \(k \in \mathbb{N} \).

As an application of Corollary 1.4 we show the following.

Corollary 1.6. Let \(c_1, c_2 \in \mathbb{C} \setminus \{0\} \) and \(L_j(s) := \sum_{n=1}^{\infty} a_j(n)n^{-s} \in \mathcal{S}_A \) for \(j = 1, 2 \). Assume

\[
\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \leq x} |a_1(p) - a_2(p)|^2 = \kappa, \qquad (\kappa > 0).
\]

Then for any \(\delta > 0 \), one has

\[
\# \{ s : 1 < \Re(s) < 1 + \delta, \ \Im(s) \in [0, T] \ \text{and} \ c_1L_1(s) + c_2L_2(s) = 0 \} \gg T
\]

for sufficiently large \(T \).

Now we mention earlier works related to zeros of zeta functions in the half-plane \(\sigma > 1 \). Davenport and Heilbronn [9] showed that if \(0 < \alpha \neq 1/2, 1 \) is rational or transcendental, the Hurwitz zeta-function \(\zeta(s, \alpha) = \sum_{n=0}^{\infty} (n+\alpha)^{-s} \) has infinitely many zeros in the region \(\Re(s) > 1 \). They also proved an analogue for the degree 2 Epstein zeta functions. Cassels [7] showed that \(\zeta(s, \alpha) \) has the same property when \(\alpha \) is algebraic and irrational. Saias and Weingartner [23] showed that a Dirichlet series with periodic coefficients \(F(s) \) does not vanish in the half-plane \(\sigma > 1 \) is equivalent to \(F(s) = P(s)L(s, \chi) \), where \(P(s) \) is a Dirichlet polynomial that does not vanish in \(\sigma > 1 \). Afterwards, Booker and Thorne [6], and very recently Righetti [22] generalized the work of Saias and Weingartner into general \(L \)-functions with bounded coefficients at primes.
By using Corollary 1.6, we obtain that the Euler-Zagier double zeta-function \(\zeta_2(s, s) = (\zeta^2(s) - \zeta(2s))/2 \) has zeros for \(\sigma > 1 \). Moreover, we can prove that the zeta-functions associated to symmetric matrices treated by Ibukiyama and Saito in [12, Theorem 1.2] vanish infinitely many times in the region of absolute convergence. In addition, some Epstein zeta functions, for example,

\[
\zeta(s; I_6) = -4(\zeta(s)L(s-2, \chi_4) - 4\zeta(s-2)L(s, \chi_4)),
\]

\[
\zeta(s; \mathcal{L}_{24}) = \frac{65520}{691}(\zeta(s)\zeta(s-11) - L(s; \Delta)),
\]

have infinitely many zeros for \(\sigma > 3 \) and \(\sigma > 12 \), respectively. It is known that \(\zeta_2(s, s) \) and \(\zeta(s; \mathcal{L}_{24}) \) vanish in the half-plane \(\sigma > 1 \) and \(\sigma > 12 \) from the numerical computations [18, Figure 1] and [21, Fig. 1]. Note that the examples above are mentioned in neither [6] nor [22]. Furthermore, we have to remark that these zeta functions mentioned above have infinitely many zeros outside of the region of absolute convergence (see [19, Main Theorem 1] and [20, Theorem 3.1]).

In Sections 2, we prove Theorem 1.1 and its corollaries. Some topics related to almost periodicity are discussed in Section 3. More precisely, we prove that for any \(\Re(\eta) > 0 \), the function \(\zeta(s) \pm \zeta(s + \eta) \) has zeros when \(\sigma > 1 \) (see Corollary 3.1) but for any \(\delta > 0 \), there exists \(\theta \in \mathbb{R} \setminus \{0\} \) such that the function \(\zeta(s) + \zeta(s + i\theta) \) does not vanish in the region \(\sigma \geq 1 + \delta \) (see Proposition 3.2).

2. Proofs of Theorem 1.1 and its corollaries

Lemma 2.1. Let \(r_1, \ldots, r_n \in \mathbb{C} \) be such that \(0 < |r_1| \leq |r_2| \leq \cdots \leq |r_n| \) and \(R_0 = 0 \), \(R_j = |r_1| + \cdots + |r_j| \). Then

\[
\left\{ \sum_{j=1}^n c_j r_j : |c_j| = 1, \ c_j \in \mathbb{C} \right\} = \{ z \in \mathbb{C} : T_n \leq z \leq R_n \},
\]

where

\[
T_n = \begin{cases}
|r_n| - R_{n-1} & \text{if } R_{n-1} \leq |r_n|, \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. From [8, Proposition 3.3] every complex number \(z \) with \(T_n \leq |z| \leq R_n \) can be written as

\[
z = \sum_{j=1}^n c_j' r_j, \quad |c_j'| = 1.
\]

Hence, taking \(c_j = c_j' |r_j| / r_j \) completes the proof. \(\square \)

Lemma 2.2. Let \(L(s) = \sum_p \sum_{k \geq 1} b(p^k)p^{-ks} \) for \(\sigma > 1 \) be such that \(b(p^k) \ll p^{k\theta} \) for some \(\theta < 1/2 \), \(b(p) \ll p^\varepsilon \) for every \(\varepsilon > 0 \) and

\[
\lim_{x \to \infty} \frac{1}{(\log x)^m \pi(x)} \sum_{p \leq x} |b(p)|^2 = \kappa
\]

for some \(\kappa > 0 \) and a non-negative integer \(m \). Then the abscissa of absolute convergence of \(\log L(s) \) is \(1 \).
Proof. Assume that the abscissa of absolute convergence is smaller than 1. Then for some \(\theta + 1/2 < \sigma < 1 \) we have \(\sum_p \sum_{k \geq 1} |b(p^k)| p^{-k\sigma} < \infty \), and hence \(\sum_{p \leq x} |b(p)| p^{-\sigma} = O(1) \). Therefore, by Cauchy-Schwarz inequality we get for sufficiently small \(\varepsilon > 0 \) that

\[
\left(\sum_{p \leq x} \frac{|b(p)|^2}{p} \right)^2 \leq \sum_{p \leq x} \frac{|b(p)|}{p^\sigma} \sum_{p \leq x} \frac{|b(p)|^3}{p^{2-\sigma}} \ll \sum_{p \leq x} p^{3\varepsilon+\sigma-2} = o \left(\sum_{p \leq x} p^{-1} \right) = o(\log \log x).
\]

On the other hand, by partial summation and (2.1), we obtain that

\[
\sum_{p \leq x} \frac{|b(p)|^2}{p} \gg \log \log x,
\]

and hence we get a contradiction. \(\square \)

Lemma 2.3. Let \(b(p) \) be a sequence of complex numbers indexed by primes. Assume that \(b(p) \ll p^\varepsilon \) for every \(\varepsilon > 0 \) and

\[
\lim_{x \to \infty} \frac{1}{(\log x)^m \pi(x)} \sum_{p \leq x} |b(p)|^2 = \kappa
\]

for some \(\kappa > 0 \) and a non-negative integer \(m \). Then for any \(c > 1, \eta > 0 \) and \(\varepsilon > 0 \) we have

\[
\sum_{x < p \leq cx} 1 \gg x^{1-\varepsilon}.
\]

Proof. One can easily get that

\[
\sum_{x < p \leq cx} |b(p)|^2 \ll \sum_{x < p \leq cx} 1 + x^{-2\eta} \sum_{x < p \leq cx} 1 \ll \sum_{x < p \leq cx} 1 + \frac{x^{1-2\eta}}{\log x}.
\]

On the other hand, we have

\[
\sum_{x < p \leq cx} |b(p)|^2 \gg x (\log x)^{l-1}.
\]

Hence the proof is complete. \(\square \)

Lemma 2.4. Let \(L(s) = \sum_p \sum_{k \geq 1} b(p^k) p^{-ks} \) for \(\sigma > 1 \) be such that \(b(p^k) \ll p^{k\theta} \) for some \(\theta < 1/2 \), \(b(p) \ll p^\varepsilon \) for every \(\varepsilon > 0 \) and

\[
\lim_{x \to \infty} \frac{1}{(\log x)^m \pi(x)} \sum_{p \leq x} |b(p)|^2 = \kappa \tag{2.2}
\]

for some \(\kappa > 0 \) and a non-negative integer \(m \). Then, for every complex \(z \) and \(\delta > 0 \) there exist \(1 < \sigma < 1 + \delta \) and a sequence \(\chi(p) \) of complex number indexed by primes such that \(|\chi(p)| = 1 \) and

\[
\sum_p \sum_{k \geq 1} \frac{\chi(p)^k b(p^k)}{p^{k\sigma}} = z.
\]
Proof. We follow the idea introduced by Cassels in [7].
Assume that N_1 is a positive integer, $\varepsilon > 0$ and $c_0 > 0$; we precise these parameters later. Put $M_j = [c_0 N_j]$ and $N_{j+1} = N_j + M_j$. We shall show that there exist $\sigma \in (1, 1 + \delta)$ and a sequence $\chi(p)$ with $|\chi(p)| = 1$ such that

$$
\left| \sum_{(p,k): p^k \leq N_j} \chi(p)^k b(p^k) \frac{p^{\sigma k}}{p^{k\sigma}} - z + \sum_{(p,k): \delta(p) \leq p^{-\varepsilon}} \frac{b(p^k)}{p^{k\sigma}} \right| \leq 10^{-2} \sum_{(p,k): p^k > N_j} |b(p^k)| \frac{p^{k\sigma}}{p^{k\sigma}},
$$

(2.3)

where \sum^* denotes the double sum over (p, k) satisfying $|\delta(p)| > p^{-\varepsilon}$, p is prime and $k \in \mathbb{N}$. Let us note that for every $\sigma \in (1, 1 + \delta)$ we have

$$
\sum_{(p,k): \delta(p) \leq p^{-\varepsilon}} \frac{|b(p^k)|}{p^{k\sigma}} \leq \sum_{p: \delta(p) \leq p^{-\varepsilon}} \frac{1}{p^{1+\varepsilon}} + \sum_{p} \sum_{k \geq 2} \frac{|b(p^k)|}{p^k} =: S_0 < \infty.
$$

By (2.2) and Lemma 2.2, the abscissa of convergence of $\sum_p \sum_{k \geq 1} |b(p^k)| p^{-k\sigma}$ is 1, then by Landau’s theorem, this series has a pole at $\sigma = 1$, which implies that

$$
\sum_{(p,k)} |b(p^k)| p^{-k\sigma} \to \infty \quad \text{as} \quad \sigma \to 1^+.
$$

(2.4)

Therefore, we can find $\sigma \in (1, 1 + \delta)$ such that

$$
\sum_{(p,k): p^k \leq N_1} |b(p^k)| p^{-k\sigma} + |z| + S_0 \leq 10^{-2} \sum_{(p,k): p^k > N_1} |b(p^k)| p^{-k\sigma},
$$

and hence (2.3) holds for $j = 1$ and arbitrary $\chi(p)$’s with $p \leq N_1$.

Now, let us assume that complex numbers $\chi(p)$ are chosen for all $p \leq N_j$. We shall find $\chi(p)$ with $N_j < p \leq N_{j+1}$ and $|b(p)| > p^{-\varepsilon}$ such that (2.3) holds with $j + 1$ instead of j.

Let \mathfrak{A} denote the set of pairs $(p, 1)$ satisfying $p \in (N_j, N_{j+1}]$ is a prime number and $|b(p)| > p^{-\varepsilon}$. Moreover, define

$$
\mathfrak{B} = \{(p, k) : p^k \in (N_j, N_{j+1}], \text{ p is prime, } k \geq 2, \ |b(p)| > p^{-\varepsilon}\}.
$$

Note that $\chi(p)^k$’s are already defined for $(p, k) \in \mathfrak{B}$, since for suitable N_1 and c_0 we have $p \leq \sqrt{N_{j+1}} < N_{j}$ if $(p, k) \in \mathfrak{B}$.

Using Lemma 2.3 gives that

$$
|\mathfrak{A}| \gg N_j^{1-\varepsilon}
$$

and since $k \geq 2$ for every $(p, k) \in \mathfrak{B}$ we have

$$
|\mathfrak{B}| \ll N_j^{\frac{1}{2}}.
$$

Moreover, note that for every p_1, p_2 satisfying $(p_1, 1), (p_2, 1) \in \mathfrak{A}$, by Ramanujan’s conjecture, we have

$$
\frac{|b(p_1)|}{b(p_2)} \ll N_j^{2\varepsilon} \quad \text{and} \quad \left(\frac{p_2}{p_1} \right)^{\sigma} \leq \left(\frac{N_{j+1}}{N_j} \right)^{\sigma} \leq (c_0 + 1)^{1+\delta},
$$

so

$$
\frac{|b(p_2)|}{p_2^{\sigma}} \gg N_j^{-2\varepsilon} \frac{|b(p_1)|}{p_1^{\sigma}}.
$$
Hence, using Lemma 2.1 with the sequence $b(p)p^{-\sigma}$, where $(p, 1) \in \mathfrak{A}$, we obtain that

$$\sum_{(p, 1) \in \mathfrak{A}}^* \frac{b(p)\chi(p)}{p^\sigma}, \quad |\chi(p)| = 1,$$

takes all values z_0 with $|z_0| \leq \sum_{(p, 1) \in \mathfrak{A}}^* |b(p)p^{-\sigma}| =: S_3$, since for sufficiently large N_1 and arbitrary p_0 satisfying $(p_0, 1) \in \mathfrak{A}$, we have

$$\sum_{(p_0, 1) \neq (p, 1) \in \mathfrak{A}}^* \frac{|b(p)|}{p^\sigma} \gg N_j^{1-3\varepsilon} \frac{|b(p_0)|}{p_0^\sigma} > \frac{|b(p_0)|}{p_0^\sigma},$$

so the inner radius $T[\mathfrak{A}]$ in Lemma 2.1 is 0.

Write

$$\Lambda := \sum_{(p, k): p^k \leq N_j}^* \frac{\chi(p)k b(p^k)}{p^{k\sigma}} - z + \sum_{(p, k): |b(p)| \leq p^{\varepsilon}}^* \frac{b(p^k)}{p^{k\sigma}} + \sum_{(p, k) \in \mathfrak{B}}^* \frac{\chi(p)k b(p^k)}{p^{k\sigma}}$$

and put

$$z_0 = \begin{cases} -\Lambda & \text{if } 0 < |\Lambda| \leq S_3, \\ -S_3\Lambda/|\Lambda| & \text{if } |\Lambda| > S_3, \\ 0 & \text{if } \Lambda = 0. \end{cases}$$

Then, from Lemma 2.1 we can choose $\chi(p)$ for $(p, 1) \in \mathfrak{A}$ such that

$$\left| \sum_{(p, k): p^k \leq N_j + M_j}^* \frac{\chi(p)k b(p^k)}{p^{k\sigma}} - z + \sum_{(p, k): |b(p)| \leq p^{\varepsilon}}^* \frac{b(p^k)}{p^{k\sigma}} \right| = \left| \Lambda + \sum_{(p, 1) \in \mathfrak{A}}^* \frac{b(p)\chi(p)}{p^\sigma} \right| \leq \max(0, S_1 + S_2 - S_3),$$

where

$$S_1 := \left| \sum_{(p, k): p^k \leq N_j}^* \frac{\chi(p)k b(p^k)}{p^{k\sigma}} - z + \sum_{(p, k): |b(p)| \leq p^{\varepsilon}}^* \frac{b(p^k)}{p^{k\sigma}} \right|$$

and

$$S_2 := \sum_{(p, k) \in \mathfrak{B}}^* \frac{|b(p^k)|}{p^{k\sigma}},$$

so $|\Lambda| \leq S_1 + S_2$.

Now, let us notice that

$$\frac{S_3}{S_2} \geq \frac{N_j^{\sigma-\theta} |\mathfrak{A}|}{N_j^{\sigma+\varepsilon} |\mathfrak{B}|} \gg N_j^{1/2-\theta-2\varepsilon} \geq \frac{101}{99}$$

for sufficiently small $\varepsilon > 0$ and sufficiently large N_1. Hence

$$S_2 - S_3 \leq -10^{-2}(S_2 + S_3).$$

Moreover, from (2.3) we have

$$S_1 \leq 10^{-2}(S_2 + S_3 + S_4),$$
where
\[S_4 := \sum_{(p,k) : p^k > N_{j+1}} |b(p^k)| \frac{1}{p^{k\sigma}}. \]
Thus \(S_1 + S_2 - S_3 < 10^{-2}S_4 \) and, by induction, (2.3) holds for all \(j \in \mathbb{N} \). So letting \(N_j \to \infty \) completes the proof. \(\square \)

Kronecker’s approximation theorem (see for example [25, Lemma 1.8]) plays an important role in the proof of the following lemma.

Lemma 2.5. Let \(L(s) = \sum_p \sum_{k \geq 1} b(p^k)p^{-ks} \) for \(\sigma > 1 \) be such that \(b(p^k) \ll p^{k\theta} \) for some \(\theta < 1/2 \), \(b(p) \ll p^z \) for every \(\varepsilon > 0 \) and
\[\lim_{x \to \infty} \frac{1}{(\log x)^m \pi(x)} \sum_{p \leq x} |b(p)|^2 = \kappa \]
for some \(\kappa > 0 \) and a non-negative integer \(m \). Then, for every \(z \) and \(\delta > 0 \), the set of real \(\tau \) satisfying
\[L(s + i\tau) = z \quad \text{for some } 1 < \text{Re}(s) < 1 + \delta, \]
has a positive lower density. In particular, \(\text{the Lebesgue measure of } \tau \in [0, T] \text{ satisfying the above equation is greater than } CT, \) where \(C \) is a some positive constant and \(T \) is sufficiently large.

Proof. By Lemma 2.4 we choose \(\sigma \in (1, 1 + \delta) \) and a sequence \(\chi(p) \) with \(|\chi(p)| = 1 \) such that
\[\sum_p \sum_{k \geq 1} \chi(p)^k b(p^k) \frac{1}{p^{k\sigma}} = z. \]
Next, since \(F(s) = \sum_p \sum_{k \geq 1} \chi(p)^k b(p^k)p^{-ks} \) is analytic in the half-plane \(\text{Re}(s) > 1 \), we can find \(r \) with \(0 < r < \sigma - 1 \) such that \(F(s) - z \neq 0 \) if \(|s - \sigma| = r \). Then we put \(\varepsilon := \min_{|s - z| = r} |F(s) - z| \).

Since the series \(\sum_p \sum_{k=1}^\infty |b(p^k)|p^{-k(\sigma - r)} \) converges absolutely, we can take a positive integer \(M \) such that
\[\sum_{p \leq M} \sum_{k \geq M} |b(p^k)| \frac{1}{p^{k(\sigma - r)}} + \sum_{p > M} \sum_{k=1}^\infty |b(p^k)| \frac{1}{p^{k(\sigma - r)}} < \frac{\varepsilon}{4}. \quad (2.5) \]

Moreover, if we assume that
\[\max_{p \leq M} |p^{-ir} - \chi(p)| < \varepsilon_1 \quad (2.6) \]
for \(\varepsilon_1 > 0 \), then
\[|p^{-ikr} - \chi(p)^k| = |p^{-ir} - \chi(p)||p^{-i(k-1)r} + p^{-i(k-2)r} \chi(p) + \cdots + p^{-ir} \chi(p)^{k-2} + \chi(p)^{k-1}| \]
\[< k\varepsilon_1 \leq M\varepsilon_1, \quad 1 \leq k \leq M. \]

Therefore, for sufficiently small \(\varepsilon_1 \) and \(s \) satisfying \(|s - \sigma| = r \), we obtain
\[\left| \sum_{p \leq M} \sum_{k=1}^M \frac{b(p^k)}{p^{k(s+ir)}} - \sum_{p \leq M} \sum_{k=1}^M \frac{b(p^k)\chi(p)^k}{p^{ks}} \right| < M\varepsilon_1 \sum_{p \leq M} \sum_{k=1}^M |b(p^k)| \frac{\varepsilon}{2}, \]
and
\[|L(s + i\tau) - z - (F(s) - z)| = |L(s + i\tau) - F(s)| < \varepsilon \leq |F(s) - z|, \]
provided (2.6) holds.

Thus, by Rouché’s theorem (see for example [25, Theorem 8.1]), for every \(\tau \) satisfying (2.6) there is a complex number \(s \) with \(|s - \sigma| \leq r \) such that \(L(s + i\tau) = z \). But, by the classical Kronecker approximation theorem, the set of \(\tau \) satisfying (2.6) has a positive density, so the number of solutions of the equation \(L(s + i\tau) = z \) with \(1 < \text{Re}(s) < 1 + \delta \) and \(\tau \in [0, T] \) is \(\gg T \) for sufficiently large \(T > 0 \). \hfill \Box

Now we are in a position to show Theorem 1.1.

Proof of Theorem 1.1. Obviously, the case \(m = 0 \) follows immediately from Lemma 2.5 since \(a(p) = b(p) \) for every prime \(p \). Thus it suffices to show that for every \(m \geq 1 \) the function \((\log \mathcal{L}(s))^{(m)}\) satisfies the assumption of Lemma 2.5.

Note that
\[
(-1)^m (\log \mathcal{L}(s))^{(m)} = \sum_p \sum_{k=1}^{\infty} \frac{b(p^k)(k \log p)^m}{p^{ks}}, \quad \sigma > 1.
\]

Obviously, one has \(b(p)(\log p)^m = a(p)(\log p)^m \ll p^\varepsilon \) for every \(\varepsilon > 0 \), and \(b(p^k)(k \log p)^m \ll p^{\theta k} \) for some \(\theta \) with \(\theta < \theta_1 < 1/2 \) by the assumption \(b(p^k) \ll p^{\theta k} \) for some \(\theta < 1/2 \).

Moreover, by partial summation and (1.2), we get
\[
\sum_{p \leq x} |b(p)|^2 (\log p)^{2m} = \sum_{p \leq x} |a(p)|^2 (\log p)^{2m} = \kappa(\log x)^{2m} \pi(x)(1 + o(1)),
\]
which completes the proof. \hfill \Box

Remark 2.6. In Bohr’s proof of Corollary 1.4 for \(\mathcal{L}(s) = \zeta(s) \), the convexity of
\[-\log(1 - p^{-s}) = \sum_{k=1}^{\infty} \frac{1}{kp^{ks}} \]
plays a crucial role (see also [25, Theorem 1.3] and [27, Theorem 11.6 (B)]). However, we prove Corollary 1.4 without using the convexity since the closed curve described by \(\sum_{k=1}^{\infty} b(p^k)p^{-ks} \) is not always convex when \(t \) runs through the whole \(\mathbb{R} \) (see also [17]).

In order to prove Corollary 1.6, we show the following lemma. It should be mentioned that one has \(\mathcal{L}_1\mathcal{L}_2 \in \mathcal{S}_A \) when \(\mathcal{L}_1, \mathcal{L}_2 \in \mathcal{S}_A \) as well as in the case of the Selberg class \(\mathcal{S} \).

Lemma 2.7. Let \(\mathcal{L}(s) \in \mathcal{S}_A \). Then we have \(1/\mathcal{L}(s) \in \mathcal{S}_A \).

Proof. Suppose that \(\mathcal{L}(s) \in \mathcal{S}_A \) is expressed as (1.1). It is known that \(a(1) = 1 \), by (1.1) for \(s \rightarrow \infty \). Then we have
\[
\frac{1}{\mathcal{L}(s)} = \sum_{n=1}^{\infty} \frac{a^{-1}(n)}{n^s} = \prod_p \exp \left(\sum_{k=1}^{\infty} \frac{-b(p^k)}{p^{ks}} \right),
\]
where \(a^{-1}(n) \) is the Dirichlet inverse of \(a(n) \) given by
\[
a^{-1}(1) = \frac{1}{a(1)} = 1, \quad a^{-1}(n) = -\sum_{d|n, d<n} a(n/d)a^{-1}(d), \quad n > 1
\]
(see for instance [1, Theorem 2.8 and Example 2 in Section 11.4]). By (1.1) and the assumption \(L(s) \in S_A \), we can see that \(-b(p^k) \ll p^k\theta \) for some \(\theta < 1/2 \) and the Euler product of \(1/L(s) \) converges absolutely when \(\sigma > 1 \). Hence we only have to show \(a^{-1}(n) \ll n^\varepsilon \) for any \(\varepsilon > 0 \). Suppose \(a^{-1}(d) \ll d^\varepsilon \) for all divisors \(d < n \). From the expression of \(a^{-1}(n) \) and the assumption \(a(n) \ll n^\varepsilon \), it holds that

\[
a^{-1}(n) \ll n^\varepsilon \sum_{d|n, d<n} a^{-1}(d) \ll n^\varepsilon \sum_{d|n, d<n} 1 \ll n^\varepsilon d(n),
\]

where \(d(n) \) is the divisor function. On the other hand, it is well-known that \(d(n) \ll n^\varepsilon \) (see for example [1, Theorem 13.12]). Therefore we have Lemma 2.7. \(\square \)

Proof of Corollary 1.6. Obviously, the statement \(c_1L_1(s) + c_2L_2(s) = 0 \) is equivalent to \(L_1(s)/L_2(s) = -c_2/c_1 \) when \(L_1(s), L_2(s) \in S_A \) and \(c_1, c_2 \in \mathbb{C} \setminus \{0\} \). Furthermore, if \(L_1, L_2 \in S_A \), then one has \(L_1/L_2 \in S_A \) from Lemma 2.7. Therefore, we obtain Corollary 1.6 from Corollary 1.4 since (1.6) means exactly that (1.2) holds for the function \(L_1/L_2 \). \(\square \)

Remark 2.8. Note that

\[
\sum_{p \leq x} |a_1(p) - a_2(p)|^2 = \sum_{p \leq x} |a_1(p)|^2 + \sum_{p \leq x} |a_2(p)|^2 - 2 \text{Re} \sum_{p \leq x} a_1(p)\overline{a_2(p)}.
\]

(2.7)

Therefore, if the abscissa of absolute convergence for both \(L \)-functions \(L_1 \) and \(L_2 \) is 1, then the assumption (1.6) in Corollary 1.6 can be replaced by Selberg’s orthonormality conjecture in the following stronger form

\[
\forall j=1,2 \lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \leq x} |a_j(p)|^2 = \kappa_j, \quad \lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \leq x} a_1(p)\overline{a_2(p)} = 0,
\]

for some \(\kappa_1, \kappa_2 > 0 \).

On the other hand, if the abscissa of absolute convergence of one of them, say \(L_2 \), is less than 1, then as in the proof of Lemma 2.2, we get

\[
\sum_{p \leq x} |a_2(p)|^2 \leq \sqrt{\sum_{p \leq x} \frac{|a_2(p)|}{p^{\sigma_0}}} \sqrt{\sum_{p \leq x} |a_2(p)|^3 p^{\sigma_0} \ll x^{1/2+\sigma_0/2+\varepsilon}}
\]

for some \(\sigma_0 < 1 \) and every \(\varepsilon > 0 \). Moreover, by Cauchy-Schwarz inequality, we have

\[
\text{Re} \sum_{p \leq x} a_1(p)\overline{a_2(p)} \leq \sqrt{\sum_{p \leq x} |a_1(p)|^2} \sqrt{\sum_{p \leq x} |a_2(p)|^2} \ll x^{3/4+\sigma_0/4+\varepsilon}
\]

for every \(\varepsilon > 0 \).

Therefore, by (2.7), we obtain

\[
\sum_{p \leq x} |a_1(p) - a_2(p)|^2 = \sum_{p \leq x} |a_1(p)|^2 + O(x^{3/4+\sigma_0/4+\varepsilon}),
\]

and assuming (1.2) for \(L_1 \) implies Corollary 1.6.
3. Almost periodicity and Corollary 1.6

We quote the notion of almost periodicity from [25, Section 9.5]. In 1922, Bohr [4] proved that every Dirichlet series $f(s)$, having a finite abscissa of absolute convergence σ_a is almost periodic in the half-plane $\sigma > \sigma_a$. Namely, for any given $\delta > 0$ and $\varepsilon > 0$, there exists a length $l := l(f, \delta, \varepsilon)$ such that every interval of length m contains a number τ for which

$$|f(\sigma + it + ir) - f(\sigma + it)| < \varepsilon$$

holds for any $\sigma \geq \sigma_a + \delta$ and for all $t \in \mathbb{R}$. From the Dirichlet series expression, the zeta function $\mathcal{L}(s) \in \mathcal{S}_A$ is almost periodic when $\sigma > 1$. By using Corollary 1.6, we have the following corollary as a kind of analogue of the almost periodicity.

Corollary 3.1. Let $\mathcal{L}(s) := \sum_{n=1}^{\infty} a(n)n^{-s} \in \mathcal{S}_A$ satisfies (1.2). Suppose $c_1, c_2 \in \mathbb{C} \setminus \{0\}$ and $\text{Re}(\eta) > 0$. Then one has

$$\# \{s : \text{Re}(s) > 1, \ \text{Im}(s) \in [0, T] \text{ and } c_1\mathcal{L}(s) + c_2\mathcal{L}(s + \eta) = 0\} \gg T$$

for sufficiently large T.

Proof. The corollary follows from Remark 2.8 since the abscissa of absolute convergence of $\mathcal{L}(s + \eta)$ is smaller than 1. \hfill \square

On the contrary, we have the following proposition when $\text{Re}(\eta) = 0$.

Proposition 3.2. Let $\mathcal{L}(s) \in \mathcal{S}_A$. Then for any $\delta > 0$, there exists $\theta \in \mathbb{R} \setminus \{0\}$ such that the function

$$\mathcal{L}(s) + \mathcal{L}(s + i\theta)$$

does not vanish in the region $\sigma \geq 1 + \delta$.

Proof. For any $\varepsilon > 0$, we can find $\theta \in \mathbb{R} \setminus \{0\}$ which satisfies

$$|\mathcal{L}(s) - \mathcal{L}(s + i\theta)| < \varepsilon, \quad \text{Re}(s) \geq 1 + \delta$$

from almost periodicity of $\mathcal{L}(s) \in \mathcal{S}_A$. Hence we have

$$|\mathcal{L}(s) + \mathcal{L}(s + i\theta)| = |2\mathcal{L}(s) + \mathcal{L}(s + i\theta) - \mathcal{L}(s)| \geq |2\mathcal{L}(s)| - |\mathcal{L}(s) - \mathcal{L}(s + i\theta)|$$

$$> 2 \prod_p \exp\left(-\sum_{k=1}^{\infty} \frac{|b(p^k)|}{p^{k(1+\delta)}}\right) - \varepsilon, \quad \text{Re}(s) \geq 1 + \delta.$$

From the assumption for $\mathcal{L}(s) \in \mathcal{S}_A$, the sum $\sum_p \sum_{k=1}^{\infty} |b(p^k)| p^{-k(1+\delta)}$ converges absolutely when $\delta > 0$. Hence, by taking suitable $\varepsilon > 0$, we have

$$|\mathcal{L}(s) + \mathcal{L}(s + i\theta)| > 0, \quad \text{Re}(s) \geq 1 + \delta.$$

This inequality implies Proposition 3.2. \hfill \square

Remark 3.3. Proposition 3.2 should be compared with the following fact. Let $\theta \in \mathbb{R} \setminus \{0\}$ and $c_1, c_2 \in \mathbb{C} \setminus \{0\}$. Then the function

$$c_1\zeta(s) + c_2\zeta(s + i\theta)$$

vanishes in the strip $1/2 < \sigma < 1$. This is an easy consequence of [25, Theorem 10.7].
Hence, for any \(\delta > 0 \), there exist \(\theta \in \mathbb{R} \setminus \{0\} \) such that the function
\[
\zeta(s) + \zeta(s + i\theta)
\]
does not vanish in the half-plane \(\sigma \geq 1 + \delta \), but has infinitely many zeros in the vertical strip \(1/2 < \sigma < 1 \).

Acknowledgments. The first author was partially supported by JSPS grant 24740029. The second author was partially supported by (JSPS) KAKENHI grant no. 26004317 and the grant no. 2013/11/B/ST1/02799 from the National Science Centre.

References

[1] T. M. Apostol, *Introduction to Analytic Number Theory*, Undergraduate Texts in Mathematics, Springer, New York, 1976.

[2] B. C. Berndt, *The number of zeros for \(\zeta^{(k)}(s) \)*, J. London Math. Soc. 2 (1970), 577–580.

[3] H. Bohr, *Über das Verhalten von \(\zeta(s) > 1 \) in der Halbebene \(\sigma > 1 \)*, Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. (1911), 409–428.

[4] H. Bohr, *Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwendung auf die Dirichletschen \(L \)-Funktionen*, Math. Ann. 85 (1922), no. 1, 115–122.

[5] E. B. Bogomolny and J. P. Keating, *Gutzwiller’s trace formula and spectral statistics: beyond the diagonal approximation*, Phys. Rev. Lett. 77 (1996), no. 8, 1472–1475.

[6] A. Booker and F. Thorne, *Zeros of \(L \)-functions outside the critical strip*, Algebra & Number Theory (2014), no. 9, 2027–2042. (arXiv:1306.6362).

[7] J. W. S. Cassels, *Footnote to a note of Davenport and Heilbronn*. J. London Math. Soc. 36 (1961) 177-184.

[8] T. Chatterjee, S. Gun, *On the zeros of generalized Hurwitz zeta functions*, J. Number Theory 145 (2014), 352–361.

[9] H. Davenport and H. Heilbronn, *On the zeros of certain Dirichlet series I, II*, J. London Math. Soc. 11 (1936), 181-185, 307-312.

[10] D. W. Farmer, S. M. Gonek, Y. Lee and S. J. Lester, *Mean values of \(\zeta'/\zeta(s) \), correlations of zeros and the distribution of almost primes*, Q. J. Math. 64 (2013), no. 4, 1057–1089.

[11] D. A. Goldston, S. M. Gonek and H. L. Montgomery, *Mean values of the logarithmic derivative of the Riemann zeta-function with applications to primes in short intervals*, J. Reine Angew. Math. 537 (2001), 105–126.

[12] T. Ibukiyama and H. Saito, *On zeta functions associated to symmetric matrices, I. An explicit form of zeta functions*, Amer. J. Math. 117 (1995), no. 5, 1097–1155.

[13] J. Kaczorowski, *Axiomatic theory of \(L \)-functions: the Selberg class*. Analytic number theory, 133–209, Lecture Notes in Math., 1891, Springer, Berlin, 2006.

[14] H. Ki, *A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation*, Adv. Math. 231 (2012), no. 5, 2484–2490.

[15] B. Q. Li, *A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation*, Adv. Math. 226 (2011), no. 5, 4198–4211.

[16] N. Levinson and H. L. Montgomery, *Zeros of the derivatives of the Riemann zeta function*, Acta Math. 133 (1974), 49–65.

[17] K. Matsumoto, *Probabilistic value-distribution theory of zeta-functions*, Sugaku 53 (2001), 279–296 (in Japanese); English Transl.: Sugaku Expositions 17 (2004), 51–71.

[18] K. Matsumoto and M. Shōji, *Numerical computations on the zeros of the Euler double zeta-function I*, arXiv:1403.3765.

[19] T. Nakamura and L. Pańkowski, *On complex zeros off the critical line for non-monomial polynomial of zeta-functions*, arXiv:1212.5890.
[20] T. Nakamura and L. Pańkowski, *On zeros and c-values of Epstein zeta-functions*, Šiauliai Mathematical Seminar (Special volume celebrating the 65th birthday of Professor Antanas Laurinčikas) 8 (2013), 181–196.

[21] N. V. Proskurin, *On the zeros of the zeta function of the Leech lattice*, J. Math. Sci. (N. Y.) 193 (2013), no. 1, 124–128.

[22] M. Righetti, *Zeros of combinations of Euler products for \(\sigma > 1 \)*, arXiv:1412.6331.

[23] E. Saias and A. Weingartner, *Zeros of Dirichlet series with periodic coefficients*, Acta Arith. 140 (2009), no. 4, 335–344.

[24] A. Speiser, *Geometrisches zur Riemannschen Zetafunktion*, Math. Ann. 110 (1935), no. 1, 514–521.

[25] J. Steuding, *Value-Distribution of L-functions*, Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.

[26] J. Stopple, *Notes on \(\log(\zeta(s))' \)*, arXiv:1311.5465 (to appear in the Rocky Mountain Journal of Mathematics).

[27] E. C. Titchmarsh, *The theory of the Riemann zeta-function*, Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986.

[28] C. Y. Yildirim, *Zeros of derivatives of Dirichlet L-functions*, Turk. J. of Mathematics 20, (1996), 521–534.

(T. Nakamura) **DEPARTMENT OF LIBERAL ARTS, FACULTY OF SCIENCE AND TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE, 2641 YAMAZAKI, NODA-SHI, CHIBA-KEN, 278-8510, JAPAN**

E-mail address: nakumuratakashis@rs.tus.ac.jp

URL: https://sites.google.com/site/takashinakumurazeta/

(L. Pańkowski) **FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, ADAM MICKIEWICZ UNIVERSITY, UMULTOWSKA 87, 61-614 POZNAŃ, POLAND, AND GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA, 464-8602, JAPAN**

E-mail address: lpan@amu.edu.pl