Universal bridge functional for infinitely diluted solutions: a case study for Lennard-Jones spheres of different diameter

Volodymyr P. Sergiievskyi,
Andrey I. Frolov
Max Planck Institute for Mathematics in the Sciences,
Inselstrasse 22, DE-04103, Leipzig, Germany,
e-mail: sergiiev@mis.mpg.de

November 10, 2011

Abstract

In the paper we propose an universal bridge functional for the closure of the Ornstein-Zernike (OZ) equation for the case of infinitely diluted solutions of Lennard-Jones spheres of different size in the Lennard-Jones fluid. Bridge functional is parameterized using the data of the Molecular Dynamics (MD) simulations. We show that for all investigated systems the bridge functional can be efficiently parameterized with the exponential function which depends only on the ratio of sizes of the solute and solvent atoms. To check the parameterization we solve the OZ equation with the closure which includes the parameterized functional and with the closure without the bridge functional (Hyper-netted chain closure). We show that introducing the bridge functional allows to obtain radial distribution functions (RDFs), which are close to the MD results and essentially improve predictions of the location and height of the first peak of the RDF.

Keywords: Ornstein-Zernike equation, Bridge functional, Molecular Dynamics, Lennard-Jones fluid

1 Introduction

Integral Equation Theory Of Liquids (IETL) is an effective instrument for description of structural and thermodynamic properties of solutions. The main equation of IETL is the Ornstein-Zernike integral equation [1], which connects the direct and the total correlation functions of the particles of the system. Another fundamental equation which connects the direct and the total correlation functions is the closure relation [2]. Ornstein-Zernike equation together with the closure relation allows to calculate the particle-to-particle correlation functions of the system which in turn gives an opportunity to calculate the main thermodynamic parameters of the system [3]. For the molecular systems one often uses approximations of the Ornstein-Zernike equation. The most popular of them are the reference interaction site model (RISM) [4, 2] and three-dimensional reference interaction site model (3DRISM) [5, 6]. There were developed efficient numerical algorithms for solving the
RISM and 3DRISM equations [7, 8, 9, 10]. Recently there were proposed number of methods of parameterizing the results of RISM and 3DRISM calculations. These methods allow to predict the free energy of solvation of organic and bioactive molecules with the average error 1 kcal/mol [11, 12, 13, 14, 15, 16].

Ornstein-Zernike, RISM and 3DRISM equations give a qualitatively correct description of the local structure of the liquid. For example, RISM equations can correctly predict asymmetry of ion solvation [17, 18], allow to predict the stability of molecular aggregates in solution [19, 20], and ligand-substrate binding [21, 22]. However, often OZ, RISM and 3DRISM equations cannot reproduce many quantitative parameters such as the radial distribution functions (RDF) or the solvation free energy (SFE) [23, 14, 24].

This is explained by the fact, that the closure relation contains so-called bridge functional which is represented as an infinite sum of integrals of correlation functions and thus is practically incomputable [3]. Usually, to obtain the numerical solution of the equations of IETL one uses the empirical closures. Not all of these closures give the good coincidence with experiments. Several closures was obtained for the simplified models. To name a few: the Hyper Netted Chain (HNC) closure, where the bridge functional is simply ignored, the Percus-Yevick closure [25], the Martynov-Sarkisov closure [26], the Verlet Modified closure [27] and others [28]. Parameterization of the molecular dynamics (MD) simulation data is another perspective method to obtain the bridge functional [29, 30]. In the paper [31] it was proposed to use the closure with the repulsive bridge correction where the atom-atom potentials contained an additional repulsive component.

In many cases one perform the bridge parameterization for different parts of the phase diagram, in particular for the density and temperature near the critical point [32, 33]. In the current paper we consider the bridge functional for the two-component systems with the fixed density and temperature of the system. We consider only the case of the infinitely diluted solutions, because such systems are the most often used for the prediction of the thermodynamic properties of biological molecules. In our work we consider the simplified model, where the solvent is a liquid of Lennard-Jones balls which have the \( \sigma_{22} \) parameter coinciding with the \( \sigma \) parameter if the oxygen atom of the SPC/E water model [34] (we denote with the number 1 the solute and with the number 2 the solvent particles). As a solute we use the Lennard-Jones balls with diameters from \( 0.25\sigma_{22} \) to \( 2\sigma_{22} \), where \( \sigma_{22} \) is the diameter of the solvent (here and below we call the \( \sigma \) parameter of the LJ potential “the diameter”). The goal of the current paper is building the universal empirical bridge functional which the good coincidence with the data of the molecular dynamics (MD) simulations. In our work we perform the MD simulations for all of the investigated systems and obtain the radial distribution functions (RDF). By using the OZ equation we obtain the direct correlation functions and by using the closure relation we calculate the bridge functional for each of the systems. We parameterize the bridge functional with the exponential function which includes two empirical parameters and determine the dependency of these parameters on the size of the solvent \( \sigma_{11} \). In such a way, we obtain the universal formula for the bridge functional for the Lennard-Jones balls of different diameter. At the end we compare the solutions of the Ornstein-Zernike equations with two different closures: hyper-netted-chain (HNC) closure which ignores the bridge functional and the closure which includes the proposed empirical bridge functional. We show that introducing the bridge functional can essentially improve the results of the calculations and make them nearer to the results of the MD simulations. Our main interest is the accurate calculation of the thermodynamical and structural parameters of the aqueous solutions of bioactive compounds by using the IETL. We believe, that introducing the bridge functionals allows in many cases to substitute the computationally expensive MD simulations with the cheaper IETL method, for example for the description of the interaction of osmolites with the nanoobjects and surfaces [35, 36, 37, 38] and...
Figure 1: Distribution of $\sigma$ Lennard-Jones potential parameters of the atoms from the OPLS force-filed. The data is obtained form the Gromacs 4.5.3 program package\cite{43} (file oplsaa.ff/ffnonbonded.itp).

biomolecules \cite{39,40,41,42}.

2 Description of the method

2.1 Molecular dynamics simulations

2.1.1 Description of the investigated systems

For the molecular dynamics simulations we used the program package Gromacs 4.5.3 \cite{43}. We created eight systems which contain one particle with the Lennard-Jones (LJ) potential (see the equation (1)) with eight different values of $\sigma_{11}$. The particle was solved with infinite dilution in the LJ fluid with the fixed values $\sigma_{22}$ and $\epsilon_{22}$ (these values were the same for all systems). We denote the solute by the digit 1 and the solvent by the digit 2. The solute and the solvent had the same $\epsilon$ parameter: ($\epsilon_{11} = \epsilon_{22}$). In our work we simulated the systems with the following values of the $\sigma_{11}$ parameter: $\sigma_{11} = k \cdot \sigma_{22}$, $k = 0.25$, 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00. Such range of $\sigma_{11}$ parameters was used because in the popular OPLS (Optimized Potential for Liquid Simulations) force-field\cite{44} the most of $\sigma$ parameters lies in the range from 0.25 $\sigma_{22}$ to 2 $\sigma_{22}$, where $\sigma_{22} = 0.3166$ nm is the LJ parameter if the water oxygen (see Figure 1).

\begin{equation}
\epsilon_{ij}^{LJ}(r) = 4\epsilon_{ij} \left( \frac{\sigma_{ij}}{r} \right)^{12} - \left( \frac{\sigma_{ij}}{r} \right)^{6} \tag{1}
\end{equation}

where $i$ and $j$ denote the type of particles.

Mixed interaction parameters of the LJ particles of the solute and solvent were calculated using the OPLS methodology:

\begin{equation}
\epsilon_{12} = \sqrt{\epsilon_{11} \cdot \epsilon_{22}} \quad \sigma_{12} = \sqrt{\sigma_{11} \cdot \sigma_{22}} \tag{2}
\end{equation}

Varaing the $\sigma_{11}$ we can determine the influence of the solvent at the infinite dilution in the identical solvent on the structural characteristics (solute-solvent radial distribution function (RDF)) and the shape of the bridge functional.
2.1.2 Thermodynamical parameters, which are used in the simulations

In the current work we are looking for the bridge functional for the following solvent: LJ fluid, temperature \( T=300 \text{K} \), number density 33.3294 particles/nm\(^3\) (corresponds to the water density 997.09 g/l), with the LJ parameters which corresponds to the oxygen atom in the SPC/E water model \( (\sigma_{22}=0.316557 \text{nm}, \epsilon_{22}=0.6500194 \text{kJ/mol}) \) [34]. These parameters in the reduced units are the following: density=1.0573 particles/\( \sigma_{22}^3 \), \( T=3.8365 \epsilon_{22} \).

2.1.3 Parameters of the molecular dynamics simulations

We used the "leap-frog" scheme [45] for the numerical integration of the equation of motion. Integration step corresponded to the 0.002 ps. Cutoff radius for the LJ potential \( r_{\text{cutoff}} \) was 1.2 nm, while the LJ potential was corrected to be zero at the distance \( r_{\text{cutoff}} \):

\[
\begin{align*}
  u_{ij}(r) &= u_{ij}^{LJ}(r) - u_{ij}^{LJ}(r_{\text{cutoff}}), \quad r < r_{\text{cutoff}}, \\
  u_{ij}(r) &= 0, \quad r \geq r_{\text{cutoff}}.
\end{align*}
\]

(3)

The neighbour list was created using the "cell list" method [46], which is referenced in the Gromacs package as the "grid search" method [45]. The neighbour list was re-newed each tenth step with the cutoff radius 1.4 nm. We performed the simulations in the canonical ensemble (NVT). We used the Berendsen thermostat [47] for preserving the temperature of the system \( (T=300 \text{K}) \) with the parameter \( \tau=2 \text{ ps} \).

2.1.4 Preparing the systems and calculationg the RDF functions

Initially we prepared the cubic cell which contained 4168 solvent LJ particles of size 5.0007 nm\(^3\) using the packmol program [48]. Coordinates of the particles were optimized using the gradient descent method [45]. After that the system was simulatated during the 1 ns in the NVT ensemble to establish the equilibrium. In the final configuration one of the solvent atoms was changed to the solute atom (LJ particle with the given \( \sigma_{11} \)). The systems with different solute atoms were optimized using the gradient descent method [45]. After that each of the systems was simulated during the 25 ns to obtain the necessary statistics. Coordinates of the particles were saved each 0.2 ps for the further calculation of the solute-solvent RDF. RDF was calculated using the "g_rdf" tool from the Gromacs 4.5 package.

2.2 Obtaining the bridge functional from the molecular dynamic simulation data

For the bridge functional calculation we used the RDF functions which were obtained from the MD simulations. For the bridge functional calculation two types of RDF were used: solute-solvent RDFs \( (g_{12}(r)) \) and solvent-solvent RDFs \( (g_{22}(r)) \). Using these functions the total correlation functions were calculated: \( h_{i2}(r) = g_{i2}(r) - 1, i = 1, 2 \). To calculate the bridge functional one also needs to know the solute-solvent direct correlation functions \( c_{12}(r) \). We used the Ornstein-Zernike equation [11, 3] to obtain these functions:

\[
\tilde{c}_{12}(k) = \frac{\hat{h}_{12}(k)}{1 + \rho \hat{h}_{22}(k)}
\]

(4)
where \( \rho \) is the solvent number density (number of solvent of particles in the unit volume), \( \hat{c}_{12}(k) \), \( \hat{h}_{12}(k) \), \( \hat{h}_{22}(k) \) are the Fourier-Bessel transforms of the functions \( c_{12}(r) \), \( h_{12}(r) \), \( h_{22}(r) \) correspondingly. The Fourier-Bessel transform of the total correlation functions \( h_{ij}(r) \) is given by the following formula [49]:

\[
\hat{h}_{ij}(k) = \mathcal{F}[h_{ij}(r)] = \frac{4\pi}{k} \int_0^\infty h_{ij}(r) r \sin(kr) dr
\]  

(5)

The Fourier-Bessel transform on the discrete grid can produce artefacts which are seen as some oscillations of the \( \hat{h}_{ij}(k) \) function near the \( k = 0 \). In the current work these artefacts were removed by the following method: For each pair of the neighbouring local minimum and maximum points \( k_{\text{min}} \) and \( k_{\text{max}} \) of the high-frequency oscillations the value in the point \( \frac{1}{2}(k_{\text{min}} + k_{\text{max}}) \) was taken to be equal to the mean value in the extremum points: \( \hat{h}_{ij}(\frac{1}{2}(k_{\text{min}} + k_{\text{max}})) = \frac{1}{2}(\hat{h}_{ij}(k_{\text{min}}) + \hat{h}_{ij}(k_{\text{max}})) \), and afterwards the function was interpolated in the vicinity of \( k = 0 \) using the cubic splines basing on these mean values (see fig:denoise??).

**Figure 2:** Removing the high-frequency oscillations of the functions \( \hat{h}_{ij}(k) \) in the vicinity of \( k = 0 \). In the picture is presented the function for \( \sigma_{11} = \sigma_{22} \).

The \( c_{12}(r) \) can be restored from its Fourier image using the inverse Fourier-Bessel transform [49]:

\[
c_{12}(r) = \mathcal{F}^{-1}[\hat{c}_{12}(k)] = \frac{1}{2\pi^2 r} \int_0^\infty \hat{c}_{12}(k) k \sin(kr) dk
\]  

(6)

The bridge functional \( B_{12}(r) \) can be obtained from the closure relation using the following formula:

\[
B_{12}(r) = \ln g_{12}(r) + \beta U_{12}(r) - g_{12}(r) + c_{12}(r) + 1
\]  

(7)

Bridge functionals for the different solute/solvent size ratios are given in Figure 3. Despite the quite complicated shape of the bridge functionals in the first approximation they can be sufficiently good approximated with the exponential function \( B_{12}(a_1, a_2, r) \) with two fitting parameters \( a_1 \) and \( a_2 \):

\[
B_{12}(a_1, a_2, r) = -a_1 \exp(-a_2(r - r_0))
\]  

(8)
Figure 3: The bridge functionals $B_{12}$ obtained from the MD simulations for the different solute/solvent size ratios (see equation (7))

The distance $r_0$ is chosen in such a way that $U_{12}(r_0) = 13.8k_BT$, where $U_{12}(r)$ is the solute-solvent LJ potential, $k_B$ is the Boltzmann constant, $T$ is the temperature. The parameters $a_1$ and $a_2$ were chosen to minimize the difference between the RDF obtained from the MD simulations and the RDF obtained using the closure relation:

$$a_1, a_2 = \text{argmin} \| g_{12}(r) - g_{\text{closure}}(a_1, a_2, r) \|$$  \quad (9)

where $g_{\text{closure}}(a_1, a_2, r) = \exp(-\beta U_{12}(r) + g_{12}(r) - c_{12}(r) + B_{12}(a_1, a_2, r) - 1)$ and the norm is defined by the following expression:

$$\| g_{12}(r) - g_{\text{closure}}(a_1, a_2, r) \| = \int_0^\infty (g_{12}(r) - g_{\text{closure}}(a_1, a_2, r))^2 dr$$  \quad (10)

The coefficients $a_1$ and $a_2$ were parameterized as the functions from the solute/solvent size ratio: $a_1 = a_1(\sigma_{11}/\sigma_{22})$, $a_2 = a_2(\sigma_{11}/\sigma_{22})$. In such a way we obtain the effective bridge functional, which depends on one parameter - the solute/solvent size ratio.

$$B_{12}(\sigma_{11}/\sigma_{22}) = -a_1(\sigma_{11}/\sigma_{22}) \exp(-a_2(\sigma_{11}/\sigma_{22})(r - r_0))$$  \quad (11)

To check the effectiveness of the parameterization we compared the solutions of the Ornstein-Zernike equation with the hyper netted chain closure ($B_{12}(r) = 0$), the solutions of the OZ equation with the closure which includes the empirical bridge functional (11) and the results of the MD simulations. The Ornstein-Zernike equations were solved using the iterative algorithm. To do this the functions $\gamma_{12}(r) = h_{12}(r) - c_{12}(r)$ were introduced. The following algorithm was used: the first approximation was chosen to be $\gamma_{12}^{(0)}(r) = 0$. The $(n+1)$-st approximation $\gamma_{12}^{(n+1)}(r)$ was obtained from the $n$-th approximation using the following algorithm[7]:

- **Step 1:** $c_{12}(r) = \exp(-\beta U_{12}(r) + \gamma_{12}^{(n)}(r) + B_{12}(r)) - \gamma_{12}(r) - 1$
- **Step 2:** $\hat{c}_{12}(k) = \mathcal{F}[c_{12}(r)]$
- **Step 3:** $\hat{\gamma}_{12}^{(n+1)}(k) = \rho \hat{c}_{12}(k) \cdot \hat{h}_{22}(k)$
- **Step 4:** $\gamma_{12}^{(n+1)}(r) = \mathcal{F}^{-1}[\hat{\gamma}_{12}^{(n+1)}(k)]$
3 Results

We performed the MD calculations for the infinitely diluted solutions of the LJ balls of diameter $\sigma_{11}$ in the LJ fluid which consists of the balls of diameter $\sigma_{22}$. The following solute/solvent size ratios were used: $\sigma_{11}/\sigma_{22} = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2$. From the MD simulation results the bridge functionals presented on the Figure 3 were obtained by using the expressions (4)-(7). For each ratio $\sigma_{11}/\sigma_{22}$ the obtained bridge functional was fitted with the function (8) where coefficients $a_1, a_2$ were obtained as a result of solving the minimization problem (9).

In Figure 4 and Figure 5 one can see the dependencies of the coefficients $a_1$ and $a_2$ on the $\sigma_{11}/\sigma_{22}$ ratio. As one can see in Figure 5 coefficient $a_2$ weakly depend on the $\sigma_{11}/\sigma_{22}$ (standard deviation from the mean value is 3.3 nm$^{-1}$, while the mean value is 30 nm$^{-1}$). The coefficient $a_2$ can be approximated by its mean value: $a_2 \approx 30$ nm$^{-1}$. Coefficient $a_1$ have an exponential dependence from the parameter $\sigma_{11}/\sigma_{22}$ and thus $\ln(a_1)$ linearly depend on $\sigma_{11}/\sigma_{22}$. In Figure 4 for all $\sigma_{11}/\sigma_{22}$ ratios from 0.5 to 2 the clear linear dependence of $\ln(a_1)$ on $\sigma_{11}/\sigma_{22}$ is seen:

$$\ln(a_1) = C \cdot \sigma_{11}/\sigma_{22}$$
The exception is the ratio $\sigma_{11}/\sigma_{22} = 0.25$, which we do not use for the parameterization. For the values of $a_1$, which correspond to the $\sigma_{11}/\sigma_{22} = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2$ using the latest squares method the value of the $C$ coefficient in the equation $\log(a_1) = C \sigma_{11}/\sigma_{22}$ as determined: $C = 1.1754$. In such a way, the final formula of the empirical bridge functional is the following:

$$B_{12}(\sigma_{11}/\sigma_{22}) = -\exp(-a_1(r - r_0) + C \sigma_{11}/\sigma_{22})$$

(13)

where $a_1 = 30 \text{ nm}^{-1}$, $C = 1.1754$, $U_{12}(r_0) = 13.8k_B T$.

To check the empirical functional (13) for each of the ratios $\sigma_{11}/\sigma_{22}$ we solve the Ornstein-Zernike equation with two different closures: hyper-netted chain, where the bridge functional $B_{12}(r) \equiv 0$, and with the closure, which includes the empirical functional built using the formula (13) (the $h_{22}(r)$ was taken from the MD simulation of the pure solvent). In Figure 6 the RDF obtained as a result of solving the OZ equation with the closure which includes the empirical bridge functional (13), the RDF obtained as a result of solving the OZ equation with the closure without the bridge functional and the results of the MD simulation are shown. The solute/solvent size ratio is $\sigma_{11}/\sigma_{22} = 1.75$. One can see, that the RDF, obtained without the bridge functional predicts incorrectly the position of the first peak of the RDF and also overestimate the height of the peak, while the RDF, obtained with the empirical bridge functional predicts correctly the position of the peak and more accurately predicts its height. In Table 1 the comparison of the first peak height obtained by using the different closures (with the bridge functional and without it) with the MD results is presented. One can see that both of the closures overestimate the height of the first peak of RDF, but in average the error of the closure with the bridge functional is 0.109, which is approximately 2.5 times lower than the error of the closure without the bridge. In Table 2 the comparison of the first peak position of RDF, obtained with the two different closures (with the bridge functional and without it) with the MD results is presented. One can see, that the closure without the bridge functional gives the systematic error of the first peak of RDF position around 0.01 nm (0.1 Å), while the closure, which includes the bridge functional, determines the first peak position with the error which is 10 times lower (0.001 nm or 0.01 Å). This error is negligible, because it is 10 times lower than the grid size which was used for the discretization of RDFs.
| $\frac{\sigma_{11}}{\sigma_{22}}$ | peak height in MD | without the bridge functional | with the empirical bridge functional |
|-------------------------------|-------------------|-------------------------------|-----------------------------------|
|                              | peak height       | difference from MD            | peak height                       | difference from MD |
| 0.25                         | 1.853             | 1.943                         | 0.090                            | 1.831             |
|                              |                   |                               |                                  | -0.023            |
| 0.5                          | 2.377             | 2.646                         | 0.268                            | 2.473             |
|                              |                   |                               |                                  | 0.096             |
| 0.75                         | 2.490             | 2.833                         | 0.342                            | 2.650             |
|                              |                   |                               |                                  | 0.160             |
| 1                            | 2.500             | 2.875                         | 0.375                            | 2.701             |
|                              |                   |                               |                                  | 0.201             |
| 1.25                         | 2.521             | 2.842                         | 0.320                            | 2.673             |
|                              |                   |                               |                                  | 0.152             |
| 1.5                          | 2.505             | 2.793                         | 0.287                            | 2.619             |
|                              |                   |                               |                                  | 0.113             |
| 1.75                         | 2.456             | 2.728                         | 0.272                            | 2.556             |
|                              |                   |                               |                                  | 0.100             |
| 2                            | 2.445             | 2.662                         | 0.217                            | 2.522             |
|                              |                   |                               |                                  | 0.077             |
| Average                       |                   | 0.272                         |                                  | 0.109             |

Table 1: Comparison of the heights of the first peak of RDFs which were obtained by using the different closures with the MD simulations.

| $\frac{\sigma_{11}}{\sigma_{22}}$ | peak position in MD [nm] | without the bridge | with the empirical bridge |
|-----------------------------------|---------------------------|---------------------|---------------------------|
|                                   | peak position [nm]        | difference from MD [nm] | peak position [nm]        | difference from MD [nm] |
| 0.25                              | 0.170                     | 0.173               | 0.003                     | 0.179               |
|                                   |                           |                     |                           | 0.009               |
| 0.5                               | 0.230                     | 0.226               | -0.004                    | 0.230               |
|                                   |                           |                     |                           | 0.000               |
| 0.75                              | 0.280                     | 0.268               | -0.012                    | 0.274               |
|                                   |                           |                     |                           | -0.006              |
| 1                                 | 0.310                     | 0.304               | -0.006                    | 0.311               |
|                                   |                           |                     |                           | 0.001               |
| 1.25                              | 0.350                     | 0.336               | -0.014                    | 0.345               |
|                                   |                           |                     |                           | -0.005              |
| 1.5                               | 0.380                     | 0.364               | -0.016                    | 0.378               |
|                                   |                           |                     |                           | -0.002              |
| 1.75                              | 0.410                     | 0.390               | -0.020                    | 0.409               |
|                                   |                           |                     |                           | -0.001              |
| 2                                 | 0.430                     | 0.415               | -0.015                    | 0.437               |
|                                   |                           |                     |                           | 0.007               |
| Average                           |                           | -0.011              |                           | 0.001               |

Table 2: Comparison of the positions of the first peak of RDFs which was obtained using the different closures with the MD simulations.
obtained from the MD simulations. Additionally, one needs to stress the importance of the accurate approximations of the first peak position of the RDF for the solvation free energy calculations, because for that application small changes in the first peak position lead to the essential errors in the calculations.

4 Conclusions

In the paper the new universal bridge functional for the infinitely diluted solutions of the LJ spheres of different size in the LJ fluid is proposed. The investigated systems were the simplified model of the important case of aqueous solutions of different bioactive compounds. $\sigma$-parameter of the solvent LJ particles was chosen to be equal to $\sigma$ parameter of the water oxygen in the SPC/E water model. The ratios of the solute/solvent particle sizes $\sigma_{11}/\sigma_{22}$ varied in the range from 0.25 to 2, which approximately corresponds to the distribution of the $\sigma$ parameters of different atoms in the OPLS force-field.

For the mentioned above systems the MD simulations were performed. Using the RDFs, obtained from the MD simulations, and using the Ornstein-Zernike equation, the bridge functionals were obtained, which in turn were fitted by the exponential function (8), which depends on two parameters $a_1$ and $a_2$.

Dependency of the parameters $a_1$ and $a_2$ on the $\sigma_{11}/\sigma_{22}$ ratio was investigated. It was shown that the $a_2$ parameter weakly depends on the size of the solute, and for all of the investigated systems it can be put to be equal $a_2 = 30$ nm$^{-1}$. It was shown that $\ln(a_1)$ correlates to the parameter $\sigma_{11}/\sigma_{22}$, and it can be estimated with good accuracy using the formula (12). The final empirical bridge functional (13) was determined. This functional depends only on the solute/solvent particle size ratio.

Using the iterative algorithm the solutions of the Ornstein-Zernike equation for the closure with the empirical bridge functional were obtained. It was shown that introducing the bridge functional into the closure relation reduces by 2.5 times the error in the calculation of the first peak height of the RDF and, in contrast to the closure without the bridge, predicts accurately the position of the first peak of the RDF (with the error which is 10 times smaller than the grid discretization step). We have shown that introducing the empirical bridge functional into the closure relation can essentially improve the accuracy the predictions of the first peak of RDF position.

5 Acknowledgements

Authors would like to acknowledge the scientific supervisor Maxim V. Fedorov for organizing the research. Authors also would like to acknowledge the Max Planck Institute for Mathematics in the Sciences for the financial support of the research.

The molecular dynamics simulations were carried out on the supercomputer “HECToR the UKs national high-performance computing service”, which is supported by the following organizations: UoE HPCx Ltd in the University of Edinburgh, Cray Inc. and NAG Ltd, and is financing by the “Office of Science and Technology” organization within the framework of “EPSRCs High End Computing Programme”.
References

[1] L. S. Ornstein and F. Zernike. Accidental deviations of density and opalescence at the critical point of a simple substance. *Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam*, 17:793–806, 1914.

[2] F. Hirata, editor. *Molecular theory of solvation*. Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

[3] J.-P. Hansen and I. R. McDonald. *Theory of Simple Liquids, 4th ed*. Elsevier Academic Press, Amsterdam, The Netherlands, 2000.

[4] D. Chandler and H. C. Andersen. Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. *Journal of Chemical Physics*, 57(5):1930–1937, 1972.

[5] D. Beglov and B. Roux. Numerical-solution of the hypernetted-chain equation for a solute of arbitrary geometry in 3 dimensions. *Journal of Chemical Physics*, 103(1):360–364, July 1995.

[6] A. Kovalenko. *Molecular theory of solvation*, chapter Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

[7] V. P. Sergieievskyi, W. Hackbusch, and M. V. Fedorov. Multigrid solver for the reference interaction site model of molecular liquids theory. *Journal of Computational Chemistry*, 32(9):1982–1992, 2011.

[8] M. V. Fedorov and W. Hackbusch. A multigrid solver for the integral equations of the theory of liquids. Preprint 88, Max-Planck-Institut fuer Mathematik in den Naturwissenschaften, 2008.

[9] G. N. Chuev and M. V. Fedorov. Wavelet algorithm for solving integral equations of molecular liquids. a test for the reference interaction site model. *Journal of Computational Chemistry*, 25(11):1369–1377, August 2004.

[10] A. Kovalenko, S. Ten-No, and F. Hirata. Solution of three-dimensional reference interaction site model and hypernetted chain equations for simple point charge water by modified method of direct inversion in iterative subspace. *Journal of Computational Chemistry*, 20(9):928–936, July 1999.

[11] E. L. Ratkova, G. N. Chuev, V. P. Sergieievskyi, and M. V. Fedorov. An accurate prediction of hydration free energies by combination of molecular integral equations theory with structural descriptors. *Journal of Physical Chemistry B*, 114(37):12068–12079, 2010.

[12] S. Palmer, A. I. Frolov, E. L. Ratkova, and M. V. Fedorov. Towards a universal method to calculate hydration free energies: a 3d reference interaction site model with partial molar volume correction. *Journal of Physics: Condensed Matter*, 22(49):492101, 2010.

[13] D. S. Palmer, G. N. Chuev, E. L. Ratkova, and M. V. Fedorov. In silico screening of bioactive and biomimetic solutes by integral equation theory. *Current Pharmaceutical Design*, 2011.
[14] E. L. Ratkova and M. V. Fedorov. Combination of rism and cheminformatics for efficient predictions of hydration free energy of polyfragment molecules: Application to a set of organic pollutants. *Journal of Chemical Theory and Computation*, 7(5):1450–1457, 2011.

[15] A. I. Frolov, E. L. Ratkova, D. S. Palmer, and M. V. Fedorov. Hydration thermodynamics using the reference interaction site model: Speed or accuracy? *The Journal of Physical Chemistry B*, 115(19):6011–6022, 2011.

[16] a) V.P. Sergievskyi. Model for calculating the free energy of hydration of bioactive compounds based on integral equations of the theory of liquids. *Russian Journal of Physical Chemistry B*, 5(2):326–331, 2011; b) . . . . , 30(4): 7883, 2011.

[17] M. V. Fedorov and A. A. Kornyshev. Unravelling the solvent response to neutral and charged solutes. *Molecular Physics*, 105(1):1–16, January 2007.

[18] V. A. Kolombet and V. P. Sergievskii. The special features of the thermodynamic characteristics of hydration of univalent ions according to the reference interaction site model. *Russian Journal of Physical Chemistry A*, 84(9):1467–1472, 2010.

[19] G. N. Chuev and M. V. Fedorov. Reference interaction site model study of self-aggregating cyanine dyes. *The Journal of Chemical Physics*, 131:074503, 2009.

[20] T. Yamazaki, H. Fenniri, and A. Kovalenko. Structural water drives self-assembly of organic rosette nanotubes and holds host atoms in the channel. *Chemphyschem*, 11(2):361–367, February 2010.

[21] S. Genheden, T. Luchko, S. Gusarov, A. Kovalenko, and U. Ryde. An mm/3d-rism approach for ligand binding affinities. *Journal of Physical Chemistry B*, 114(25):8505–8516, July 2010.

[22] V. A. Kolombet and A. I. Frolov. Na+/k+ selectivity in the formation of ion pairs in aqueous solutions. *Russian Journal of Physical Chemistry B*, 4(6):875–882, December 2010.

[23] S. Ten-no, J. Jung, H. Chuman, and Y. Kawashima. Assessment of free energy expressions in rism integral equation theory: theoretical prediction of partition coefficients revisited. *Molecular Physics*, 108(3-4):327–332, 2010.

[24] Y. Karino, M. V. Fedorov, and N. Matubayasi. End-point calculation of solvation free energy of amino-acid analogs by molecular theories of solution. *Chemical Physics Letters*, 496(4-6):351–355, August 2010.

[25] J. K. Percus and G. J. Yevick. Analysis of classical statistical mechanics by means of collective coordinates. *Physical Review*, 110(1):1–13, 1958.

[26] G. A. Martynov and G. N. Sarkisov. Exact equations and the theory of liquids .5. *Molecular Physics*, 49(6):1495–1504, 1983.

[27] S. Labik, A. Malijevsky, and W. R. Smith. An accurate integral-equation for molecular fluids .2. hard heteronuclear diatomics. *Molecular Physics*, 73(3):495–502, June 1991.

[28] G. A. Martynov. *Fundamental theory of liquids : method of distribution functions*. Bristol: Hilger, A., 1992.
[29] Q. H. Du, D. Beglov, and B. Roux. Solvation free energy of polar and nonpolar molecules in water: An extended interaction site integral equation theory in three dimensions. *Journal of Physical Chemistry B*, 104(4):796–805, February 2000.

[30] M. Francova, A. Malijevsky, S. Labik, and J. Kolafa. An accurate analytical representation of the bridge function of hard spheres and a question of existence of a general closure to the Ornstein-Zernike equation. *Collection of Czechoslovak Chemical Communications*, 76(1):51–64, 2011.

[31] A. Kovalenko and F. Hirata. Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. *Journal of Chemical Physics*, 113:2793–2805, 2000.

[32] V. N. Bondarev. Ising-like criticality derived from the theory of fluids. *Physical Review E*, 77(5):050103, May 2008.

[33] V. N. Bondarev. Critical scaling in the theory of real fluids. *European Physical Journal B*, 77(2):153–165, September 2010.

[34] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. *Journal of Physical Chemistry*, 91(24):6269–6271, November 1987.

[35] A. I. Frolov, A. G. Rozhin, and M. V. Fedorov. Ion interactions with the carbon nanotube surface in aqueous solutions: Understanding the molecular mechanisms. *ChemPhysChem*, 11(12):2612–2616, 2010.

[36] M. V. Fedorov and A. A. Kornyshev. Ionic liquid near a charged wall: Structure and capacitance of electrical double layer. *Journal of Physical Chemistry B*, 112(38):11868–11872, 2008.

[37] Maxim V. Fedorov and Alexei A. Kornyshev. Towards understanding the structure and capacitance of electrical double layer in ionic liquids. *Electrochimica Acta*, 53(23):6835–6740, 2008.

[38] N. Georgi, A. A. Kornyshev, and M. V. Fedorov. The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: Electrostriction vs. lattice saturation. *Journal of Electroanalytical Chemistry*, 649(1-2):261–267, 2010.

[39] M. V. Fedorov, J. M. Goodman, and S. Schumm. To switch or not to switch: The effects of potassium and sodium ions on alpha-poly-l-glutamate conformations in aqueous solutions. *Journal of the American Chemical Society*, 131(31):10854–10856, August 2009.

[40] M.V. Fedorov, J.M. Goodman, and S. Schumm. Solvent effects and hydration of a tripeptide in sodium halide aqueous solutions: an in silico study. *Physical Chemistry Chemical Physics*, 9(40):5423–5435, 2007.

[41] M. V. Fedorov, J. M. Goodman, D. Nerukh, and S. Schumm. Self-assembly of trehalose molecules on a lysozyme surface: the broken glass hypothesis. *Physical Chemistry Chemical Physics*, 13(6):2294–2299, 2011.
[42] I. V. Terekhova, A. O. Romanova, R. S. Kumeev, and M. V. Fedorov. Selective Na\textsuperscript{+}/K\textsuperscript{+} effects on the formation of alpha-cyclodextrin complexes with aromatic carboxylic acids: Competition for the guest. Journal of Physical Chemistry B, 114(39):12607–12613, September 2010.

[43] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3):435–447, March 2008.

[44] W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45):11225–11236, November 1996.

[45] D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen, and H. J. C. Berendsen. Gromacs User Manual version 4.5, 2010. GROMACS - Groningen Machine for Chemical Simulations; User Manual.

[46] Daan Frenkel and Berend Smit. Understanding molecular simulation. Academic Press, 2002.

[47] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8):3684–3690, 1984.

[48] L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez. Packmol: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13):2157–2164, October 2009.

[49] http://pyoz.vrbka.net/theory/fourier_transformation