GUNNING-NARASIMHAN’S THEOREM WITH A GROWTH CONDITION

FRANC FORSTNERIČ AND TAKEO OHSAWA

Abstract. Given a compact Riemann surface X and a point $x_0 \in X$, we construct a holomorphic function without critical points on the punctured Riemann surface $R = X \setminus \{x_0\}$ which is of finite order at x_0.

1. The Statement

Let X be a compact Riemann surface, let x_0 be an arbitrary point of X, and let $R = X \setminus \{x_0\}$. The set of holomorphic functions on R will be denoted by $\mathcal{O}(R)$. Let $U \subset X$ be a coordinate neighborhood of the point x_0 and let z be a local coordinate on U with $z(x_0) = 0$. A holomorphic function $f \in \mathcal{O}(R)$ on R is said to be of finite order (at the point x_0) if there exist positive numbers λ and μ such that

\[|f(z)| \leq \lambda \exp |z|^{-\mu} \quad \text{holds on } U \setminus \{x_0\}.\]

We denote by $\mathcal{O}_{f.o.}(R)$ the set of all holomorphic functions of finite order on R. For any $f \in \mathcal{O}_{f.o.}(R)$, the order of f is defined as the infimum of all numbers $\mu > 0$ such that (1) holds for some $\lambda > 0$. By using Poisson-Jensen’s formula it is easy to see that, for any nonvanishing holomorphic function f on $U \setminus \{x_0\}$ satisfying (1), there exist a neighborhood $V \ni x_0$ and a number $\chi > 0$ such that

\[\frac{1}{|f(z)|} \leq \chi \exp |z|^{-\mu} \quad \text{on } V \setminus \{x_0\} \] (Hadamard’s theorem, c.f. [A, Chap. 5]).

In 1967 Gunning and Narasimhan proved that every open Riemann surface admits a holomorphic function without critical points [GN]. Our goal is to prove the following result for punctured Riemann surfaces.

Theorem 1.1. If X is a compact Riemann surface and $x_0 \in X$ then the punctured Riemann surface $R = X \setminus \{x_0\}$ admits a noncritical holomorphic function of finite order; that is, $\{ f \in \mathcal{O}_{f.o.}(R) : df \neq 0 \text{ everywhere} \} \neq \emptyset$.

We show that this result is the best possible one, except when $X = \mathbb{CP}^1$ is the Riemann sphere in which case $R = \mathbb{C}$.
Proposition 1.2. If \(X \) is a compact Riemann surface of genus \(g \geq 1 \) and \(x_0 \in X \) then every algebraic function \(X \setminus \{x_0\} \to \mathbb{C} \) has a critical point.

In the case when \(X \) is a torus, this was shown in [M, §4].

Proof. Assume that \(f : R = X \setminus \{x_0\} \to \mathbb{C} \) is an algebraic function. Then \(f \) extends to a meromorphic map \(X \to \mathbb{C}P^1 \) sending \(x_0 \) to the point \(\infty \). Let \(d \) denote the degree of \(f \) at \(x_0 \), so \(f \) equals the map \(z \mapsto z^d \) in a certain pair of local holomorphic coordinates at the points \(x_0 \) and \(\infty \). Since \(f^{-1}(\infty) = \{x_0\} \), \(d \) is also the global degree of \(f \). By the Riemann-Hurwitz formula (see [Ha]) we then have

\[
\chi(X) = d_X(\mathbb{C}P^1) - b,
\]

where \(\chi(X) \) is the Euler number of \(X \) and \(b \) is the total branching order of \(f \) (the sum of its local branching orders over the points of \(X \)). If we assume that \(f \) has no critical points on \(R \), then it only branches at \(x_0 \), and its branching order at \(x_0 \) is clearly \(b = d - 1 \). Hence the above equation reads \(2 - 2g = 2d - (d - 1) = d + 1 \geq 1 \) which is clearly impossible if \(g \geq 1 \).

In fact, we see that any algebraic function \(f : R = X \setminus \{x_0\} \to \mathbb{C} \) with degree \(d \) at \(x_0 \) must have precisely \((d + 1) - (2 - 2g) = d + 2g - 1 \) branch points in \(R \) when counted with algebraic multiplicities. \(\Box \)

2. Preliminaries

We assume that \(X \) and \(R = X \setminus \{x_0\} \) are as above.

Proposition 2.1. For any effective divisor \(\delta \) on \(X \) whose support does not contain the point \(x_0 \) there exists \(f \in O_{f.o.}(R) \) whose zero divisor \(f^{-1}(0) \) coincides with \(\delta \).

Proof. Since holomorphic vector bundles over noncompact Riemann surfaces are trivial by Grauert’s Oka principle, there exists a holomorphic function \(f_0 \) on \(R \) whose zero divisor equals \(\delta \). Let \(V \) be a disc neighborhood of the point \(x_0 \) in \(X \), with a holomorphic coordinate \(z \) in which \(z(x_0) = 0 \), such that \(f_0 \) does not vanish on \(V \setminus \{x_0\} \). Let \(m \in \mathbb{Z} \) denote the winding number of \(f \) around the point \(x_0 \). Choose a meromorphic function \(h \) on \(X \) such that \(h(z) = c(z)z^m \) on \(z \in V \) for some nonvanishing holomorphic function \(c \) on \(V \), and such that all remaining zeros and poles of \(h \) lie in \(X \setminus \overline{V} \). Then \(f_0/h \) is a nowhere vanishing holomorphic function with winding number zero in \(V \setminus \{x_0\} \), and hence \(\log(f_0/h) \) has a single valued holomorphic branch on \(V \setminus \{x_0\} \). Choose a smaller disc \(W \subset V \) centered at \(x_0 \). By solving a Cousin-I problem we find a holomorphic functions \(u_1 \) on \(X \setminus \overline{W} \) and \(u_2 \) on \(V \setminus \{x_0\} \) such that \(u_1 - u_2 = \log(f_0/h) \) holds on \(V \setminus \overline{W} \), and such that \(x_0 \) is a pole of the function \(u_2 \). Hence, letting \(f = he^{-u_2} \) on \(V \setminus \{x_0\} \) and \(f = f_0e^{-u_1} \) on \(R \setminus W \), we obtain a function \(f \in O_{f.o.}(R) \) satisfying \(f^{-1}(0) = \delta \). \(\Box \)
Let $L \to X$ be a holomorphic line bundle and let h be a fiber metric of L. A holomorphic section s of L over R is said to be of finite order if the length $|s|$ of s with respect to h satisfies on $U \setminus \{x_0\}$, as a function of the local coordinate z, that

$$|s|(z) \leq \lambda \exp |z|^{-\mu}$$

for some $\lambda, \mu \in (0, \infty)$. The order of s is defined similarly as in the case of holomorphic functions. Since every holomorphic line bundle over X is associated with a divisor, Proposition 2.1 implies the following:

Proposition 2.2. For any holomorphic line bundle L over X, there exists a holomorphic section s of the restricted bundle $L|_R$ such that s is of finite order and $s(x) \neq 0$ for all $x \in R$.

Proof. Let v be any meromorphic nonzero section of L. Let p_1, \ldots, p_m (resp. q_1, \ldots, q_n) be the poles (resp. the zeros) of v in R. By Proposition 2.1 there exist functions $f, g \in \mathcal{O}_{f.o.}(R)$ such that $p_1 + p_2 + \ldots + p_m$ (resp. $q_1 + \ldots + q_n$) is the zero divisor of f (resp. of g). Then the section $s = fv/g$ satisfies the stated properties. □

Corollary 2.3. There exists a holomorphic 1-form of finite order on R which does not vanish anywhere.

Let ω be a nowhere vanishing holomorphic 1-form of finite order on R guaranteed by Corollary 2.3. Then, Theorem 1.1 is equivalent to saying that there exists a function $g \in \mathcal{O}_{f,a}(R)$ such that $g^{-1}(0) = \emptyset$ and $\int_\gamma g \omega = 0$ holds for any 1-cycle γ on R, for the primitives of $g\omega$ will then be without critical points and clearly of finite order, the converse being obvious.

We shall show that such g can be found in a subset of $\mathcal{O}_{f,a}(R)$ consisting of functions of the form $\exp \int_{x_1}^x \eta$ where η are meromorphic 1-forms on X which are holomorphic on R and $x_1 \in R$ is an arbitrary fixed point in R.

Let us denote by $\Omega^1_{alg}(R)$ (resp. $\mathcal{O}_{alg}(R)$) the set of meromorphic 1-forms (resp. meromorphic functions) on X which are holomorphic on R. The general theory of coherent algebraic sheaves on affine algebraic varieties implies the following (c.f. [S] or [Ha]).

Proposition 2.4. Every element of $H^1(R; \mathbb{C})$ is represented by an element of $\Omega^1_{alg}(R)$ as a de Rham cohomology class.

Let K be a compact set in R and let $\mathcal{O}(K)$ denote the set of all continuous functions on K which are holomorphically extendible to some open neighborhoods of K in X. Then the Runge approximation theorem says the following in our situation.

Proposition 2.5. For any compact set $K \subset R$ such that $R \setminus K$ is connected, the image of the restriction map $\mathcal{O}_{alg}(R) \to \mathcal{O}(K)$ is dense with respect to the topology of uniform convergence.
The proof of Theorem 1.1 to be given below is basically a combination of Corollary 2.3, Proposition 2.4 and Proposition 2.5. In order to make a short cut argument, we shall apply a refined version of Proposition 2.5 (Mergelyan’s theorem) below.

3. Proof of Theorem 1.1

For any C^1 curve $\alpha: [0,1] \to X$ we denote by $|\alpha|$ its trace, i.e., $|\alpha| = \{\alpha(t): 0 \leq t \leq 1\}$. If α is closed ($\alpha(0) = \alpha(1)$), we denote by $[\alpha]$ its homology class in $H_1(X; \mathbb{Z})$.

Let g denote the genus of X. There exist simple closed real-analytic curves $\alpha_1, \ldots, \alpha_{2g}$ in R satisfying

\begin{equation}
H_1(X; \mathbb{Z}) = \sum_{i=1}^{2g} \mathbb{Z}[\alpha_i]
\end{equation}

such that $\cap_{i=1}^{2g} |\alpha_i| = \{p\}$ holds for some point $p \in R$ and such that, putting $\Gamma = \cup_{i=1}^{2g} |\alpha_i|$, the complement $R \setminus \Gamma$ is connected.

Let ω nowhere vanishing holomorphic 1-form of finite order on R furnished by Corollary 2.3. For each curve α_i there is a neighborhood $U_i \supset |\alpha_i|$ in R and a biholomorphic map φ_i from an annulus $A_r = \{w \in \mathbb{C}: 1 - r < |w| < 1 + r\}$ onto U_i for a sufficiently small $r > 0$ such that the positively oriented unit circle $\{|w| = 1\}$ is mapped by φ_i onto the curve α_i, with $\varphi_i(1) = p$. For $i = 1, \ldots, 2g$ put

\[\varphi_i^* \omega = H_i(w) \, dw, \quad n_i = \frac{1}{2\pi \sqrt{-1}} \int_{|w|=1} d \log H_i \in \mathbb{Z}. \]

By Proposition 2.4 there exists $\xi \in \Omega^1_{alg}(R)$ such that

\begin{equation}
(3) \quad n_i = \frac{1}{2\pi \sqrt{-1}} \int_{\alpha_i} \xi, \quad i = 1, \ldots, 2g.
\end{equation}

Let

\[u(x) = \exp \int_p^x \xi, \quad x \in R. \]

By (2) and (3) the integral is independent of the path in R. (Note that the cycle around the deleted point x_0 is homologous to zero in R.) Hence the function u is well defined, single-valued and nonvanishing on R, and $u \in \mathcal{O}_{f,0}(R)$ because $\xi \in \Omega^1_{alg}(R)$. Replacing ω by ω/u we obtain a nowhere vanishing 1-form of finite order on R, still denoted ω, for which the winding numbers n_i in (3) equal zero. It follows that for every $i = 1, \ldots, 2g$ we have

\[\varphi_i^* \omega = e^{h_i(w) + c_i} \, dw \]

for some constants $c_i \in \mathbb{C}$ and holomorphic function h_i on the annulus $A_r \subset \mathbb{C}$ with $h_i(1) = 0$. Note that the functions $h_i \circ \varphi_i^{-1}: |\alpha_i| \to \mathbb{C}$ agree at
the unique intersection point p of the curves $|\alpha_i|$, and hence they define a continuous function H on $\Gamma = \cup_i |\alpha_i|$. For every $h \in \mathcal{O}_{alg}(R)$ we have
\[
\int_{\alpha_i} e^{-h} \omega = e^{c_i} \int_{|w|=1} e^{h_i - h \circ \varphi_i} \, dw.
\]
These numbers can be made arbitrarily small by choosing h to approximate H uniformly on Γ (which is equivalent to asking that $h_i - h \circ \varphi_i$ is small on $\{|w| = 1\}$ for every $i = 1, \ldots, 2g$). Such h exist by Mergelyan’s theorem: Since $R \setminus \Gamma$ is connected, every continuous function on Γ is a uniform limit of functions in $\mathcal{O}_{alg}(R)$ (c.f. [G, Chap. 3]).

We assert that there exist functions $f_i \in \mathcal{O}_{alg}(R)$ for $i = 1, \ldots, 2g$ and a number $\epsilon > 0$ such that, for any $h \in \mathcal{O}_{alg}(R)$ satisfying
\[
\sup_{|\alpha_i|} |h_i \circ \varphi_i^{-1} - h| < \epsilon, \quad i = 1, \ldots, 2g,
\]
there exist numbers $\zeta_i \in \mathbb{C}$ ($i = 1, \ldots, 2g$) such that
\[
\int_{\alpha_j} \left(\sum_{i=1}^{2g} \zeta_i f_i - h \right) \omega = 0, \quad j = 1, \ldots, 2g.
\]

To prove this assertion, which clearly implies Theorem 1.1 (the potential of the 1-form under the integral in (5) is a holomorphic function of finite order and without critical points on R), choose functions $f_i \in \mathcal{O}_{alg}(R)$ for $i = 1, \ldots, 2g$ satisfying
\[
e^{c_j} \int_{|w|=1} f_i \circ \varphi_j(w) \, dw = \delta_{ij},
\]
where δ_{ij} denotes the Kronecker’s delta. Such f_i exist by Proposition 2.5 applied with $K = \Gamma$. After fixing the f_i’s, let us choose numbers $0 < \epsilon_0 < 1$ and $C_0 > 1$ in such a way that
\[
\sup_{\Gamma} \left| \exp \left(\sum_{i=1}^{2g} \tau_i f_i \right) - 1 - \sum_{i=1}^{2g} \tau_i f_i \right| \leq C_0 \max_i |\tau_i|^2
\]
holds if $\tau_i \in \mathbb{C}$ and $\max_i |\tau_i| \leq \epsilon_0$.

Let $c = \max_i |c_i|$. By decreasing the number $\epsilon_0 > 0$ if necessary we can assume that
\[
8\pi C_0 e^{1+c} \epsilon_0 < 1.
\]
Choose a constant $C_1 > 0$ such that
\[
|e^t - 1| < C_1 |t| \quad \text{if } |t| < \epsilon_0.
\]
Then, by (6) and (7), it is easy to see that, for any positive number $\epsilon > 0$ satisfying
\[
8\pi C_1 \left(1 + \sup_{\Gamma} \sum_{i=1}^{2g} |f_i| \right) \epsilon < \epsilon_0
\]
and for any $h \in O_{\text{alg}}(R)$ satisfying (4), the inequality

$$\left| \tau_j - \int_{\alpha_j} \exp \left(\sum \tau_i f_i - h \right) \omega \right| \leq \frac{\epsilon_0}{2}$$

holds for every $j = 1, \ldots, 2g$ whenever $\max_i |\tau_i| \leq \epsilon_0$. Hence, for such a choice of h, the map

$$C^{2g} \ni \tau = (\tau_1, \ldots, \tau_{2g}) \xrightarrow{\Phi} (\Phi_1(\tau), \ldots, \Phi_{2g}(\tau)) \in C^{2g},$$

whose j-th component is defined by

$$\Phi_j(\tau) = \int_{\alpha_j} \exp \left(\sum_{i=1}^{2g} \tau_i f_i - h \right) \omega,$$

maps the polydisc $P = \{ \tau \in C^{2g} : \max |\tau_i| < \epsilon_0 \}$ onto a neighborhood of the origin in C^{2g}. In particular, we have $\Phi(\zeta) = 0$ for some point $\zeta = (\zeta_1, \ldots, \zeta_{2g}) \in P$, and for this ζ the equations (5) hold. This concludes the proof of Theorem 1.1.

4. Concluding remarks

By a minor adjustment of the proof of Theorem 1.1 one can construct a nowhere vanishing holomorphic 1-form of finite order, ω, on R whose periods $\int_{\alpha_j} \omega$ over the basis curves $[\alpha_j]$ of $H_1(R;\mathbb{Z})$ are arbitrary given complex numbers. In other words, one can prove the following result. (See Kusunoki and Sainouchi [KS] and Majcen [M] for the corresponding result on open Riemann surface and without the finite order condition.)

Theorem 4.1. Let X be a compact Riemann surface and $x_0 \in X$. Every element of the de Rham cohomology group $H^1(X;\mathbb{C})$ is represented by a nowhere vanishing holomorphic 1-form of finite order on $R = X \setminus \{x_0\}$.

Since every affine algebraic curve $A \subset \mathbb{C}^N$ is obtained by deleting finitely many points from a compact Riemann surface, Theorem 1.1 implies that every affine algebraic curve admits a noncritical holomorphic function of finite order. One may ask whether the same result also holds on higher dimensional algebraic manifolds:

Problem 4.2. Does every affine algebraic manifold $A \subset \mathbb{C}^N$ of dimension $\dim A > 1$ admit a noncritical holomorphic function $f : A \to \mathbb{C}$ of finite order?

Here we say that f is of finite order if $|f(z)| \leq \lambda \exp |z|^\mu$ holds for all $z \in A$ and for some pair of constants $\lambda, \mu > 0$.

Since such A is a Stein manifold, it admits a noncritical holomorphic function according to [1]. The construction in that paper is quite different from the one presented here even for Riemann surfaces, and it does not necessarily give a function of finite order when A is algebraic. The main
difficulty is that the closedness equation $d\omega = 0$ for a holomorphic 1-form, which is automatically satisfied on a Riemann surface, becomes a nontrivial condition when $\dim A > 1$. In particular, this condition is not preserved under multiplication by holomorphic functions, and hence one can not hope to adjust the periods in the same way as was done above.

References

[A] Ahlfors, L. V., Complex analysis: An introduction to the theory of analytic functions of one complex variable. Second edition. McGraw-Hill Book Co., New York-Toronto-London, 1966.

[F] Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math., 191, 143–189 (2003)

[G] Gaier, D., Lectures on complex approximation. Translated from the German by Renate McLaughlin. Birkhäuser Boston, Inc., Boston, MA, 1987.

[GN] Gunning, R. C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann., 174, 103–108 (1967)

[Ha] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag, 1977.

[Hö] Hörmander, L.: L^2 estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math., 113, 89–152 (1965)

[KS] Kusunoki, Y., Sainouchi, Y.: Holomorphic differentials on open Riemann surfaces. J. Math. Kyoto Univ., 11, 181–194 (1971)

[M] Majcen, I.: Closed holomorphic 1-forms without zeros on Stein manifolds. Math. Z., 257, 925–937 (2007)

[S] Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math., (2) 61, 197–278 (1955)

Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

E-mail address: franc.forstneric@fmf.uni-lj.si

Graduate School of Mathematics, Nagoya University, Chikusaku Furocho, 464-8602 Nagoya, Japan

E-mail address: ohsawa@math.nagoya-u.ac.jp