INTRODUCTION

People living in poverty are particularly vulnerable to the risks of noncommunicable diseases (NCDs) due to health behaviors and disparities in access to health care (Bukhman et al., 2020; Pullar et al., 2018). This situation tends to worsen during emergency situations such as the COVID-19 pandemic (Kluge et al., 2020; Palmer et al., 2020). The implementation of public health measures in response to the pandemic, in particular physical distancing and lockdowns, affected society and resulted in a loss of income for many people (Gopalan & Misra, 2020; Pothisiri & Vicerra, 2021). Households’ lowered spending capacity affected their purchasing choices regarding healthier foods and their ability to attend to their health, such as going to a medical facility for consultation (Kluge et al., 2020; Kriaucioniene et al., 2020).

The abovementioned difficulties related to lifestyle changes due to pandemic control measures significantly affect individuals with NCDs and metabolic risk factors. Individuals with diabetes, myocardial diseases, and pulmonary issues, among other diseases, are part of a high-risk group in relation to COVID-19 (Gupta et al., 2020; Ruan et al., 2020). Besides having a higher risk of infection due to the presence of these factors, these individuals are also at higher risk of complications and deaths from COVID-19 (Gupta et al., 2020; Kriaucioniene et al., 2020).
NCDs and metabolic risk factors, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can further exacerbate these existing health conditions (Palmer et al., 2020). Further damage resulting from COVID-19 infection, such as myocardial, pancreatic, hepatic, and gastrointestinal injuries, have been recorded among older people (Stefan et al., 2021). Moreover, the overall health of older people is jeopardized due to COVID-19 infection because, as with other influenza diseases, functional decline is often noted and prolonged hospitalization becomes highly probable (Gozalo et al., 2012; Palmer et al., 2020).

In Thailand, the prevalence of NCDs has been increasing in past few decades (Kaufman et al., 2011; Nawamawat et al., 2020). This rise is partially attributed the country’s economic growth and modernization (Chavasit et al., 2017). Health behaviors, including smoking, drinking, less physical activity, and poor dietary choices, have been found to be associated with this escalating problem, including in the older population (Angkurawaranon et al., 2013; Areechokchai et al., 2017; Sari & Artsanthia, 2019). In light of the current public health situation, the country’s older population is at increased risk of illness. At the onset of COVID-19 pandemic, the older population in Thailand became one of the primary clusters of infection (Jindahra et al., 2021). Subsequent waves of infection have also seen a prevalence of cases within this age group. This has created a strain on the healthcare system due to the increased level of care needed by people with pre-existing conditions.

In the context of the pandemic, it is important to examine the health status of economically vulnerable people, particularly those in their later years. It is also important to know how members of this age group perceive the risks related to COVID-19, due to their higher risk of infection and exposure to the severe effects of COVID-19 (Clark et al., 2020). A similar study involving adults in China observed that people with diabetes had a greater perceived risk of being infected with COVID-19 compared with non-diabetics (Yan et al., 2020). This theme has yet to be explored in the Thai context. With the society’s aging population structure, it is important to ensure an equitable welfare status among those with vulnerabilities, particularly in regard to their economic and health statuses.

The current study is different from existing studies in that it focuses on later-life adults who have compounded vulnerabilities, particularly those living in poverty in urban areas. Although urban populations were perceived to have better access to health services in Thailand before the pandemic (Aekplakorn et al., 2011; Quashie & Pothisiri, 2019), notable challenges already existed in relation to access to health information and expenditures for basic needs such as food and housing at the onset of the pandemic (Pothisiri & Vicerra, 2021; Vicerra, 2021). Thus, the aim of this study was to further understand the confluence of urban poverty, NCDs, and advanced age to determine the concerns of people with multiple vulnerabilities.

2 | METHODS

2.1 | Data

This study relies on data from the 2021 Survey on Housing and Support Services for Poor Older Adults (Jumnianpol et al., 2021), which aimed to develop a policy framework to allow low-income older persons to age at home, and to identify the support systems currently available and those needed in the future to accommodate their needs. The survey explored the current living conditions, health, and well-being of men and women entering into late adulthood, that is, aged 55 or older at the time of the survey, and who either earned less than 40,000 THB (equivalent to US$1330) per year or were the beneficiaries of the government’s cash transfer program commonly known as the “Card of the Poor” program. Informed consent was obtained in writing, and participants were assured that the data collected were to remain anonymous.

As the fieldwork was scheduled during the easing of the third phase of the coronavirus-triggered lockdown (May–June 2021), the survey sought further information regarding the effect of the COVID-19 pandemic on the health and well-being of the respondents. The survey utilized a stratified multistage cluster sampling design, in which 2,139 respondents residing in the sampled households in both urban and rural areas across five geographical regions of Thailand, including Bangkok, were interviewed.

2.2 | Sample

The total urban sample included 1,255 people aged at least 55 years. A restricted sample was then created by excluding cases in which (1) the respondent was bedridden and (2) a proxy answered the survey in its entirety. After consideration of these criteria, the resulting analytic sample was 1,155. Sample selectivity was assessed by comparing the unrestricted and restricted samples. No difference was observed concerning key characteristics, namely age, gender, and place of residence. The unrestricted sample was also tested against the Survey of Older Persons in Thailand, a nationally representative survey collected in 2017. There was no observed a statistically significant difference in characteristic distribution.
TABLE 1
Prevalence of noncommunicable diseases by sociodemographic, economic, and health-related characteristics

Age group	Total (N = 1,155)	Stroke (n = 39)	%	p	Dementia (n = 17)	%	p	CKD^b (n = 39)	%	p	Diabetes (n = 323)	%	p	At least one NCD (n = 374)	%	p
55–59	130	1.54	.532		0	.001		1.54	.286		15.38	.006		15.38	<.001	
60–69	496	3.43	0.2	2.42	29.84	32.86		34.45	34.45							
70–79	357	2.52	3.08	4.2	29.97	34.45										
80 and over	172	4.07	1.16	0.07	25.58	33.72										
Sex																
Male	372	5.11	.005		1.34	.778		4.03	.217		25.27	.218		31.45	.974	
Female	783	2.04	1.15	2.68	28.74	31.55										
Education attainment																
Lower than primary	176	3.41	.95	1.14	.787	3.98	.464	24.87	.06	30.68	.076					
Primary level	807	2.97	1.12	3.22	28.92	33.21										
Higher than primary	172	2.91	1.74	1.74	20.57	24.42										
Employment status																
Employed	378	0.53	.001	0.53	0.139	1.59	0.037	21.43	0.001	22.22	<.001					
Unemployed	777	4.25	1.54	3.86	30.63	36.04										
Income bracket																
≤2,600 Baht/month	760	3.95	.012	1.32	.655	3.68	.124	28.68	.261	33.68	.028					
>2,600 Baht/month	395	1.27	1.01	2.03	25.57	27.34										
Housing																
Other's house	380	2.63	.58	1.32	.822	3.95	.255	31.58	.035	35	.074					
Own house	775	3.23	1.16	2.71	25.68	29.81										
Subjective crowding																
No	1,068	3	.813	1.31	.283	3.09	.853	28.46	.024	32.58	.006					
Yes	87	3.45	0	3.45	17.24	18.39										
Smoked tobacco																
No	783	2.68	.316	1.53	.149	3.07	.883	28.22	.504	32.31	.398					
Yes	372	3.76	0.54	3.23	26.34	29.84										
Consumed alcohol																
No	715	1.96	.007	1.4	.46	3.78	.1	28.81	.248	32.59	.317					
Yes	440	4.77	0.91	2.05	25.68	29.77										
Total	1,155	3.03	1.21	3.12	27.62	31.52										

Source: Survey on Housing and Support Services for Poor Older Adults 2021.

^aSignificance level from χ² test.

^bClinic kidney disease.
2.3 | Measures

2.3.1 | Perceived health risks during the COVID-19 pandemic

Four items in the survey asked respondents about their worries during the pandemic. One item concerned the worry of being infected with COVID-19 itself. Another worry involved respondents’ health status becoming worse. Both items were dichotomous variables.

The other two areas of concern pertained to access, particularly worry about (1) a lack of economic resources for medical treatment and (2) reduced access to transportation to medical facilities. As these items are related, an index combining them was created. The Cronbach's alpha value for these items was 0.539. The final variable pertaining to worry about access to medical facilities was operationalized into a dichotomous variable, where having at least one concern was assigned a value of 1.

2.3.2 | Covariates

Sociodemographic factors, including age and gender, have been identified in the literature on health behaviors and the prevalence of NCDs (Clark et al., 2020; Nawamawat et al., 2020; Pampel et al., 2010). Educational attainment is indicative of socioeconomic status. The categories used here were (1) lower than primary education level, which includes having no education, (2) primary level, indicating completion of 4th to 6th grades, and (3) higher than primary level.

Poverty is demonstrated through economic factors such as employment and income level (Nawamawat et al., 2020; Yan et al., 2020). An aspect of poverty that is often overlooked in the literature is related to housing, particularly home ownership and household crowding (Pampel et al., 2010; Pepin et al., 2018). Subjective household crowding was measured in the present study, as culture can affect the perception of the adequacy of a house's size relative to the number of household members (Lauster & Tester, 2010). Housing-related factors have been observed to affect stress levels, which can manifest in relation to physical and psychological health and well-being (Lauster & Tester, 2010; Pepin et al., 2018). These housing characteristics have been highlighted as especially important during the pandemic, as crowding is conducive to household transmission (Haroon et al., 2020), and the tenure, type, and quality of the home have been observed to affect health and well-being (Carmona et al., 2020).

Health-related factors included the health risk behaviors of smoking tobacco and consuming alcohol. Health status was determined among those who reported having been diagnosed by a medical doctor with an NCD or metabolic risk factors. The survey asked about the following NCDs: stroke, dementia, chronic kidney disease, and diabetes. Metabolic risk factors included hypertension and hyperlipidemia. Being overweight was also included among metabolic risk factors. Respondents' body mass index (BMI) was calculated from their self-reported weight and height in the survey. A BMI equal to or above 23 was classified as a high BMI, thus indicating that the respondent was overweight. Dichotomous variables were created for NCDs and metabolic risk factors, respectively, in which the outcome categories indicated whether the respondent had at least one disease or risk factor.

2.4 | Methods of analysis

The results were divided into two sections. The first focused on the bivariate analyses of the prevalence of NCDs and metabolic risk factors by the covariates. In the second section, the bivariate analyses of the perceived risks during the COVID-19 pandemic by the covariates along with the prevalence of NCDs and metabolic risk factors were performed. The binary logistic regression analyses for each of the respective perceived risks by the selected independent variables are presented in the following section. To assess the goodness of fit of the models, the Wald test and the Akaike information criterion (AIC) were performed.

3 | RESULTS

3.1 | Prevalence of NCDs and metabolic risk factors and their distribution by social characteristics

The NCD with the lowest reported prevalence within the sample was dementia at 1.21% (Table 1). Individuals who reported having had a stroke or chronic renal disease each comprised approximately 3% of the sample. Being diagnosed with diabetes had the highest prevalence at approximately 27%. Overall, the proportion of the sample with at least one NCD was estimated at almost 32%.

The prevalence of having at least one NCD was lowest, approximately 15%, within the youngest age group, 55–59 years. There was no correlation between the NCDs and gender, except for stroke, with 5% of men and only 2% of women reporting having had a stroke.
Individuals in the sample who were unemployed and belonged to the lower-income bracket reported a higher prevalence across all NCDs. Such a pattern was not observed among those who experienced housing poverty nor among individuals who engaged in either health risk behavior.

Table 2 shows the prevalence of metabolic risk factors. It was observed that among those in the sample, hypertension had the highest prevalence at almost 56%, while being overweight and having hyperlipidemia were observed at approximately 37% and 34%, respectively. Overall, 72% of the sample had at least one metabolic risk factor.

TABLE 2	Prevalence of metabolic risk factors by sociodemographic, economic, and health-related characteristics								
	Total (N = 1,155)	Overweight (n = 437)	Hypertension (n = 663)	Hyperlipidemia (n = 408)	At least 1 risk factor (n = 865)				
Age group	%	p^a	%	p^a	%	p^a	%	p^a	
55–59	130	42.31	<.001	35.38	<.001	17.69	<.001	58.46	.002
60–69	496	42.54	53.02	35.48	72.98				
70–79	357	33.33	62.75	38.38	75.07				
80 and over	172	22.67	63.95	36.05	76.16				
Sex									
Male	372	28.49	<.001	48.92	.001	27.96	.001	63.44	<.001
Female	783	40.61	58.88	37.55	76.76				
Education attainment									
Lower than primary	176	36.93	.876	57.39	.419	29.55	.038	69.89	.103
Primary level	807	36.31	56.26	36.8	74.23				
Higher than primary	172	38.37	51.16	28.49	66.86				
Employment status									
Employed	378	39.68	.144	48.41	.001	27.25	<.001	67.99	.017
Unemployed	777	35.26	59.2	37.97	74.65				
Income bracket									
≤2,600 Baht/month	760	33.82	.005	58.03	.025	36.84	.018	73.03	.555
>2,600 Baht/month	395	42.28	51.14	29.87	71.39				
Housing									
Other’s house	380	35.26	.475	57.37	.416	37.37	.145	71.58	.636
Own house	775	37.42	54.84	33.03	72.9				
Subjective crowding									
No	1,068	37.08	.362	56.37	.095	35.3	.035	73.13	.079
Yes	87	32.18	47.13	24.14	64.37				
Smoked tobacco									
No	783	41	<.001	57.98	.022	36.53	.032	75.61	.001
Yes	372	27.69	50.81	30.11	65.86				
Consumed alcohol									
No	715	39.3	.02	57.48	.114	35.1	.556	74.97	.015
Yes	440	32.5	52.73	33.41	68.41				
Total	1,155	36.71	55.67	34.46	72.47				

Source: Survey on Housing and Support Services for Poor Older Adults 2021.

^aSignificance level from χ^2 test.
Age, gender, income level, and smoking behavior were each observed to be correlated with all three metabolic risk factors. Each of these characteristics was also correlated with having at least one risk factor, along with employment status, home crowding, and alcohol consumption.

3.2 Perceived risks during the COVID-19 pandemic

The perceived risks among individuals according to their social characteristics are shown in Table 3. Around 62% of the sample were worried about being infected with COVID-19. The age group with the highest level of concern, at 65%, were those 55–59 years old, and those in the oldest age group had the lowest level of concern at 55%. Men, those with a primary education level, employed individuals, and those at a higher income level were found to have an increased concern of being infected within their respective categories. Respondents’ views of home crowdedness were observed to have a correlation with this perceived risk.

Approximately 53% of respondents indicated that they were worried about their health status worsening. The respondents who most perceived this specific risk were those aged 70–79 years, those with lower than a primary education, unemployed individuals, those with a lower-income level, those who smoked tobacco, and those with at least one NCD or metabolic risk factor.

Finally, those who were worried about access to health care during the pandemic made up approximately 22% of the respondents. The characteristics of the sample correlated with this concern included age, gender, educational attainment, income, home crowding, and both health risk behaviors.

Table 4 presents the odds ratios (ORs) from the logistics regression analyses for perceived risks during the pandemic. The results of the Wald test show the goodness of fit for the three model outcomes. The covariates used for the perceived risk related to accessing health care were found to have the lowest AIC value.

Educational attainment was observed to be statistically significant for all areas of worry, although there were differences in the direction of the association. Having a primary level of education (OR = 1.32) or a higher than primary level (OR = 1.15) was associated with being worried about getting infected with COVID-19. On the contrary, the odds of being worried about worsening health and access to healthcare were lower among those with higher educational attainment levels. Being in the higher income level was observed to have associations in similar directions. Having a higher income was positively associated with being concerned about infection (OR = 1.22) and negatively associated with worries about worsening health (OR = 0.84) and accessing health care (OR = 0.58).

The other factor consistently associated with each of the three perceived risks was related to housing poverty, particularly the opinion that one was living in a crowded home. The odds of being worried about infection, worsening health, and having access to health care were approximately 3.39, 2.12, and 5.52, respectively.

The relationship between being worried about a worsening health condition and age was statistically significant for those from 70 to 79 years of age (OR = 1.43) and 80 years and over (OR = 1.15). Having at least one metabolic risk factor was also observed to be positively associated (OR = 1.23) with the perceived risk of worsening health. Worry about access to healthcare was also found to be associated with having at least one metabolic risk factor (OR = 1.10) and alcohol consumption (OR = 1.36).

4 DISCUSSION

The COVID-19 preventive measures implemented in many countries, including Thailand, were centered on preventing transmission among people. Early on, one segment of the population that was identified as highly vulnerable were adults of advanced age. This age group is particularly at risk of having severe effects if they contract COVID-19; however, they also have additional vulnerabilities, as shown in the current study. Poverty and the prevalence of NCDs and metabolic risk factors were found to be notable, and this has subsequently affected the worries of later-life adults during the pandemic.

Based on the present analysis, being 70 years old or older and having a metabolic risk factor were associated with worry about worsening health status. At the onset of the pandemic, worsening health was the main concern of older individuals in Thailand (Pothisiri & Vicerra, 2021). Disruptions to social life, including the capacity to attend to medical needs, were noted as a strain experienced in general by this age group (Le Couteur et al., 2020). The strain among older individuals was exacerbated by the further risks brought on by particular health statuses such as metabolic risk factors (Ayalon et al., 2020).

The abovementioned effects on social life and health are also linked with the nature of the COVID-19 infection situation. SARS-CoV-2 developed into different variants of concern with dissimilar transmissibility and effects on infected individuals (Tani-Sassa et al., 2022). At the time the survey used in this study was collected, the number of new cases was relatively low (Rajatanavin et al., 2021). The variants present in Thailand were alpha, beta, gamma, and delta, although the latter two had fewer cases and were not considered dominant. Due to the perception of these variants, many continued to be wary of becoming infected and concerned about their respective health effects, as observed in
This may have contributed to the perception of the virus and the development of worries among the older population related to the COVID-19 pandemic situation.

Different aspects of socioeconomic status and poverty were observed to have particular effects in terms of perceived risks. Higher educational attainment and higher income level were differently associated with the worry of being infected with COVID-19 and worries concerning...
health status and healthcare access. Shortcomings in income and loss of employment were found to be associated with psychological distress among older adults (Pothisiri & Vicerra, 2021). Maintaining sufficient earnings is important and may result in people continuing to work despite the pandemic, thereby increasing their exposure to the virus. Income has been noted as a factor affecting the health gradient in Thailand's urban locations (Zimmer & Prachuabmoh, 2012). Social welfare policies were thought to be more beneficial in rural areas, since the cost of living in urban locations was higher. People have continued to prioritize essentials other than health care, which may help to explain the greater worry about infection as opposed to worry about health status and healthcare access.

Housing characteristics such as ownership and comfort level have been found to be associated with health behavior and status (Pampel et al., 2010; Pepin et al., 2018). These factors were considered to be associated with the experience of poverty. During the pandemic, stress due to a lack of or inadequate living space has been linked with lower well-being and having greater exposure to COVID-19 (Carmona et al., 2020). As residential spaces in urban areas in Thailand tend to be costly, people with a lower socioeconomic status often resort to living in close proximity (Bhikhoo et al., 2017). Interpersonal dynamics may also have been a contributing factor to stress in older people.

Several caveats must be mentioned concerning this study. All items studied were self-reported. The prevalence of diseases and risk factors was based on individuals’ responses regarding previous diagnoses. Information such as height and weight were also self-reported. The survey used here was cross-sectional; therefore, no causation was established in terms of the covariates and the perceived risks related to COVID-19. Despite these limitations, this study offers a dynamic and timely analysis during the unprecedented pandemic situation.

5 | CONCLUSION

The sample studied here was different from the samples in the literature in terms of age, and it was observed in this study that the NCDs of individuals within the sample were not associated with perceived risks related to COVID-19. However, a relationship was found between metabolic risk factors and concerns about worsening health status and access to healthcare services and facilities. Factors related to socioeconomic status and poverty were associated with all perceived risks. This shows that vulnerability is multifaceted and compounded for urban-dwelling older people living in poverty.

The findings presented here highlight the heterogeneity of the lived experience among Thai older population. Vulnerabilities are linked not only because of these individuals' ages and perceived health status but also because, for some, their socioeconomic status exacerbates...
the precariousness of their standard of living. The government’s welfare support programs must be reassessed in consideration of the current situation. These programs need to be sufficient to support the everyday needs of vulnerable segments of the population while also guaranteeing that when economic shocks occur in society, these individuals can be better protected from abject poverty and worsening strains on their physical and mental health.

ACKNOWLEDGMENTS

PMMV appreciates the support from the Ratchadaphisek Somphot Postdoctoral Fund of the Graduate School, Chulalongkorn University. This work was also done with support from the Population, Family Dynamics, and Social Policy research unit of the same university.

ORCID

Paolo Miguel Manalang Vicerra https://orcid.org/0000-0003-3076-7440

REFERENCES

Aekplakorn, W., Chariyalertsak, S., Kessomboon, P., Sangthong, R., Inthawong, R., Putawanata, P., Taneepanichskul, S., & Thai National Health Examination Survey IV Study Group. (2011). Prevalence and management of diabetes and metabolic risk factors in Thai adults: The Thai National Health Examination Survey IV, 2009. *Diabetes Care*, 34(9), 1980–1985. https://doi.org/10.2337/DC11-0099

Angkurawaranon, C., Wattanacharita, N., Doyle, P., & Nitsch, D. (2013). Urbanization and non-communicable disease mortality in Thailand: An ecological correlation study. *Tropical Medicine & International Health*, 18(2), 130–140. https://doi.org/10.1111/TMI.12038

Areechokchai, D., Vjitsoonthornkul, K., Pongpan, S., & Maeakshian, S. (2017). Population attributable fraction of stroke risk factors in Thailand: Utilization of non-communicable disease surveillance systems. *Journal of Outbreak, Surveillance, and Investigation Reports*, 10(1), 1–6. https://osirjournal.net/index.php/osir/article/view/96

Awijen, H., Ben Zaied, Y., & Nguyen, D. K. (2022). Covid-19 vaccination, fear and anxiety: Evidence from Google search trends. *Social Science & Medicine*, 297, 114820. https://doi.org/10.1016/J.SOCSCIMED.2022.114820

Ayalon, L., Chasteen, A., Diehl, M., Levy, B., Neupert, S. D., Rothermund, K., Tesch-Römer, C., & Wahl, H. W. (2020). Aging in times of the COVID-19 pandemic: Avoiding ageism and fostering intergenerational solidarity. *The Journals of Gerontology: Series B*, 76(2), e49–e52. https://doi.org/10.1093/geronb/gbaa051

Bhikhoo, N., Hashemi, A., & Cruickshank, H. (2017). Improving thermal performance of low-income housing in Thailand through passive design strategies. *Sustainability*, 9(8), 1440. https://doi.org/10.3390/SU9081440

Bukhman, G., Mocumbi, A. O., Atun, R., Becker, A. E., Bhutta, Z., Binagwaho, A., Clinton, C., Coates, M. M., Dain, K., Ezzati, M., Gottlieb, G., Gupta, I., Gupta, N., Hyder, A. A., Jain, Y., Kruk, M. E., Makani, J., Marx, K., Miranda, J. J., … Wroe, E. B. (2020). The lancet NCDI poverty commission: Bridging a gap in universal health coverage for the poorest billion. *Lancet*, 396(10256), 991–1044. https://doi.org/10.1016/S0140-6736(20)31907-3

Carmona, M., Giordano, V., Nayyar, K., Kurland, J., & Buddle, C. (2020). *Home comforts: How the design of our homes and neighbourhoods affected our experience of the COVID-19 lockdown and what we can learn for the future*. PLACE Alliance. https://www.housinglin.org.uk/_,Assets/Resources/Housing/OtherOrganisation/Report_Home-Comforts-Report.pdf

Chavasit, V., Kriengsinyos, W., Phothi, J., & Tontisirin, K. (2017). Trends of increases in potential risk factors and prevalence rates of diabetes mellitus in Thailand. *European Journal of Clinical Nutrition*, 71(7), 839–843. https://doi.org/10.1038/ejcn.2017.52

Clark, A., Jit, M., Warren-Gash, C., Guthrie, B., Wang, H. H. X., Mercer, S. W., Sanderson, C., McKee, M., Treozer, C., Ong, K. L., Chechhi, F., Perel, P., Joseph, S., Gibbs, H. P., Banerjee, A., Eggo, R. M., Nightingale, E. S., O’Reilly, K., Jombart, T., … Jarvis, C. I. (2020). Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. *Lancet Global Health*, 8(8), e1003–e1017. https://doi.org/10.1016/S2214-109X(20)30264-3

Gopalan, H. S., & Misra, A. (2020). COVID-19 pandemic and challenges for socio-economic issues, healthcare and National Health Programs in India. *Diabetes & Metabolic Syndrome: Clinical Research and Reviews*, 14(3), 757–759. https://doi.org/10.1016/J.DSXR.2020.05.041

Gozalo, P. L., Pop-Vicas, A., Feng, Z., Gravenstein, S., & Mor, V. (2012). Effect of influenza on functional decline. *Journal of the American Geriatrics Society*, 60(7), 1260–1267. https://doi.org/10.1111/J.1532-5415.2012.04048.X

Gupta, R., Ghosh, A., Singh, A. K., & Misra, A. (2020). Clinical considerations for patients with diabetes in times of COVID-19 epidemic. *Diabetes & Metabolic Syndrome*, 14(3), 211–212. https://doi.org/10.1016/J.DSXR.2020.03.002

Haroon, S., Chandan, J. S., Middleton, J., & Cheng, K. K. (2020). Covid-19: Breaking the chain of household transmission. *BMJ*, 370. https://doi.org/10.1136/BMJ.M3181

Jindahra, P., Wongboonsin, K., & Wongboonsin, P. (2021). Demographic and initial outbreak patterns of COVID-19 in Thailand. *Journal of Population Research*, 1, 22. https://doi.org/10.1016/S2156-021-09276-7/TABLES/3

Jumnanpol, S., Chimmanee, M., Chiangchasukthai, K., Buathong, T., & Tuangvirutkorn, N. (2021). The study of demand and supply for housing and supportive services for older adults who are poor and in need of government assistance: Final report [in Thai]. Foundation of Thai Gerontology Research and Development Institute.

Kaufman, N. D., Chasombat, S., Tanomsingh, S., Rajatarama, B., & Potempa, K. (2011). Public health in Thailand: Emerging focus on non-communicable diseases. *The International Journal of Health Planning and Management*, 26(3), e197–e212. https://doi.org/10.1002/HPM.1078

Kluge, H. H. P., Wickramasinghe, K., Rippin, H. L., Mendes, R., Peters, D. H., Kontsevaya, A., & Breda, J. (2020). Prevention and control of non-communicable diseases in the COVID-19 response. *Lancet*, 395(10238), 1678–1680. https://doi.org/10.1016/S0140-6736(20)30679-9

Kriauciuniene, V., Bagdonaviciene, L., Rodriguez-Perez, C., & Petkeviciene, J. (2020). Associations between changes in health behaviours and body weight during the COVID-19 quarantine in Lithuania: The Lithuanian COVIDiet study. *Nutrients*, 12(10), 1–9. https://doi.org/10.3390/nu12103119

Lauster, N., & Tester, F. (2010). Culture as a problem in linking material inequality to health: On residential crowding in the Arctic. *Health & Place*, 16(3), 523–530. https://doi.org/10.1016/J.HEALTHPLACE.2009.12.010
Le Couteur, D. G., Anderson, R. M., & Newman, A. B. (2020). COVID-19 through the lens of gerontology. The Journals of Gerontology: Series A, 75(9), e119–e120. https://doi.org/10.1093/gerona/glaa077

Nawamawat, J., Prasittichok, W., Prompradit, T., Chatchawanteerapong, S., & Sittisart, V. (2020). Prevalence and characteristics of risk factors for non-communicable diseases in semi-urban communities: Nakhonsawan, Thailand. Journal of Health Research, 34(4), 295–303. https://doi.org/10.1108/JHR-03-2019-0058

Palmer, K., Monaco, A., Kiviipelto, M., Onder, G., Maggi, S., Michel, J.-P., Prieto, R., Sykara, G., & Donde, S. (2020). The potential long-term impact of the COVID-19 outbreak on patients with non-communicable diseases in Europe: Consequences for healthy ageing. Aging Clinical and Experimental Research, 32, 1189–1194. https://doi.org/10.1007/s40520-020-01601-4

Pampel, F. C., Krueger, P. M., & Denney, J. T. (2010). Socioeconomic disparities in health behaviors. Annual Review of Sociology, 36, 349–370. https://doi.org/10.1146/ANNUREV.SOC.012809.102529

Pepin, C., Muckle, G., Moisan, C., Forget-Dubois, N., & Riva, M. (2018). Household overcrowding and psychological distress among Nunavik Inuit adolescents: A longitudinal study. International Journal of Circumpolar Health, 77(1), 1541395. https://doi.org/10.1080/22423982.2018.1541395

Pothisiri, W., & Vicerra, P. M. M. (2021). Psychological distress during COVID-19 pandemic in low-income and middle-income countries: A cross-sectional study of older persons in Thailand. BMJ Open, 11(4), e047650. https://doi.org/10.1136/bmjopen-2020-047650

Pullar, J., Allen, L., Townsend, N., Williams, J., Foster, C., Roberts, N., Rayner, M., Mikkelsen, B., Branca, F., & Wickramasinghe, K. (2018). The impact of poverty reduction and development interventions on non-communicable diseases and their behavioural risk factors in low and lower-middle income countries: A systematic review. PloS One, 13(2), e0193378. https://doi.org/10.1371/JOURNAL.PONE.0193378

Quashie, N. T., & Pothisiri, W. (2019). Rural-urban gaps in health care utilization among older Thais: The role of family support. Archives of Gerontology and Geriatrics, 81, 201-208. https://doi.org/10.1016/j.archger.2018.12.011

Rajatanavin, N., Tuangratananon, T., Suphanchaimat, R., & Tangcharoensathien, V. (2021). Responding to the COVID-19 second wave in Thailand by diversifying and adapting lessons from the first wave. BMJ Global Health, 6(7), e006178. https://doi.org/10.1136/bmjgh-2021-006178

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 46(5), 846–848. https://doi.org/10.1007/S00134-020-05991-X

Sari, N. P., & Artsanthia, J. (2019). Lifestyle profile of elderly living with non-communicable disease in Bangkok and Surabaya. International Journal of Public Health Science, 8(4), 432–440. https://doi.org/10.11591/UPHS.V8I4.20371

Stefan, N., Birkenfeld, A. L., & Schulze, M. B. (2021). Global pandemics interconnected—Obesity, impaired metabolic health and COVID-19. Nature Reviews Endocrinology, 17(3), 135–149. https://doi.org/10.1038/s41574-020-00462-1

Tani-Sassa, C., Iwasaki, Y., Ichimura, N., Nagano, K., Takatsuki, Y., Yuasa, S., Takahashi, Y., Nakajima, J., Sonobe, K., Nukui, Y., Takeuchi, H., Tanimoto, K., Tanaka, Y., Kimura, A., & Tohda, S. (2022). Viral loads and profile of the patients infected with SARS-CoV-2 Delta, alpha, or R.1 variants in Tokyo. Journal of Medical Virology, 94(4), 1707–1710. https://doi.org/10.1002/JMV.27479

Vicerra, P. M. M. (2021). Knowledge-behavior gap on COVID-19 among older people in rural Thailand. Gerontology and Geriatric Medicine, 7, 1–7. https://doi.org/10.1177/2333721421997207

Yan, A. F., Sun, X., Zheng, J., Mi, B., Zuo, H., Ruan, G., Hussain, A., Wang, Y., & Shi, Z. (2020). Perceived risk, behavior changes and health-related outcomes during COVID-19 pandemic: Findings among adults with and without diabetes in China. Diabetes Research and Clinical Practice, 167, 108350. https://doi.org/10.1016/J.DIABRES.2020.108350

Zimmer, Z., & Prachuabmoh, V. (2012). Comparing the socioeconomic status—Health gradient among adults 50 and older across rural and urban areas of Thailand in 1994 and 2007. Social Science and Medicine, 74(12), 1921-1928. https://doi.org/10.1016/J.JSOCSCIMED.2012.02.015

How to cite this article: Pothisiri, W., Vicerra, P. M. & Buathong, T. (2022). Poverty, noncommunicable diseases, and perceived health risks among older adults during the COVID-19 pandemic in urban Thailand. Asian Social Work and Policy Review, 16, 126-135. https://doi.org/10.1111/aswp.12253