Field-Induced gap due to four-spin exchange in a spin ladder

Atsushi Nakasu†, Keisuke Totsuka‡, Yasumasa Hasegawa†, Kiyomi Okamoto§ and Tôru Sakai†

† Faculty of Science, Himeji Institute of Technology, Ako-gun, Hyogo 678-1297, Japan
‡ Department of Physics, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
§ Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

Abstract. The effect of the four-spin cyclic exchange interaction at each plaquette in the $S = 1/2$ two-leg spin ladder is investigated at $T = 0$, especially focusing on the field-induced gap. The strong rung coupling approximation suggests that it yields a plateau at half of the saturation moment ($m = 1/2$) in the magnetization curve, which corresponds to a field-induced spin gap with a spontaneous breaking of the translational symmetry. A precise phase diagram at $m = 1/2$ is also presented based on the level spectroscopy analysis of the numerical data obtained by Lanczos method. The boundary between the gapless and plateau phases is confirmed to be of the Kosterlitz-Thouless (KT) universality class.

PACS numbers: 75.10.Jm, 75.40.Cx, 75.50.Ee, 75.50.Gg
1. Introduction

The multiple-spin exchange interaction has attracted a lot of interest in the condensed matter physics. Such many-body exchange interactions are realized in the two-dimensional (2D) solid 3He \[1,2\] and the 2D Wigner solid of electrons formed in a silicon inversion layer \[3\], as well as the bce 3He \[4\]. Recently the four-spin cyclic exchange interaction, called ring exchange, has been revealed to be important even in the strongly correlated electron systems like the high-temperature cuprate superconductors. The analysis on the low-lying excitation spectrum of the d-p model indicated that the ring exchange should be taken into account in the simplified spin Hamiltonian describing the CuO$_2$ plane \[5\]. The study based on the Heisenberg Hamiltonian also revealed an evidence of the ring exchange in the Raman scattering spectrum \[6\]. In fact such a four-spin interaction was derived from the fourth-order perturbation expansion of the square lattice Hubbard Hamiltonian with respect to t/U near half-filling \[7\]. The neutron scattering experiment also suggested that the effect of the ring exchange appeared in the spin wave excitation spectrum of La$_2$CuO$_4$ \[8\].

Recently the ring exchange has been supposed to be important also in the spin ladder systems. The significant difference between observed leg and rung bi-linear exchange coupling constants ($J_{\text{leg}} \sim 2J_{\text{rung}}$) of Sr$_{14}Cu_{24}O_{41}$ was explained, assuming the existence of the ring exchange with the amplitude of about 14% of J_{rung} \[9\]. A four-spin exchange interaction described by a product of two-spin exchanges in a spin ladder was investigated by a field theoretical approach \[10\], where the possibility of a different type of massive phase from the Haldane phase is indicated \[11,12\] in the nonmagnetic ground state. The recent density matrix renormalization group study suggested that increasing ring exchange constant J_4 brings about a quantum phase transition about $J_4 \sim 0.3J_{\text{rung}}$ for $J_{\text{leg}} = J_{\text{rung}}$ \[13\]. However, the feature of the large-J_4 phase is still an open problem. We note that there exist integrable spin ladder models with four-spin exchange interactions \[14,15\]. But these models are somewhat different from our model.

![Figure 1](image)

Figure 1. Illustration of a two-leg spin ladder with four-spin exchange interaction at every plaquette.

As another interesting phenomenon caused by the ring exchange, a field-induced spin gap \[16\], which should be observed as a plateau in the magnetization curve, was proposed in an $S = 1/2$ antiferromagnet on the triangular lattice \[17\]. It was verified by the exact diagonalization \[18\]. In the spin ladder system, besides the original spin
Field-Induced gap due to four-spin exchange in a spin ladder

The magnetization plateau was also revealed to appear in the presence of an additional leg \[22\], a bond alternation \[23, 24\] or some frustrated interactions \[25–31\]. In the previous work \[32\] by two of the present authors (TS and YH), such a field induced gap due to the ring exchange in the spin ladder was investigated. In that work, the phenomenological renormalization study \[33\] suggested that a plateau appeared at half of the saturation magnetization in the spin ladder for a realistic parameter \(J_4 > (0.05 \pm 0.04)J_{\text{rung}}\) in the case of \(J_{\text{leg}} = J_{\text{rung}}\). However, the critical point \(J_{4c}\) estimated by the one-magnon analysis did not agree well with that by the two-magnon one. The critical index at \(J_{4c}\) was also different from that of the Kosterlitz-Thouless transition \[34\] predicted by the behavior of the energy gap. Thus some better studies are necessary to determine the critical point \(J_{4c}\) and the universality class for the transition between the plateau and gapless states due to the ring exchange in the spin ladder. In the present paper, the perturbation expansion from the strong rung coupling limit is performed to clarify the mechanism of the plateau formation and the quantum critical behavior around the phase boundary. Also, a precise phase diagram is presented, using the size scaling analysis based on the conformal field theory \[35–37\] and the recently-developed level spectroscopy method \[38–41\]. The parameter space is also more generalized than that of the previous work.

2. Spin Ladder with Ring Exchange

We consider the \(S = 1/2\) uniform antiferromagnetic spin ladder with the four-spin cyclic exchange at every plaquette, as shown in figure 1. The Hamiltonian of our model is

\[
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_Z,
\]

\[
\mathcal{H}_0 = \sum_{j=1}^{L} (J_1 S_{1,j} \cdot S_{1,j+1} + J_1 S_{2,j} \cdot S_{2,j+1} + J_\perp S_{1,j} \cdot S_{2,j})
\]

\[+ J_4 \sum_{j=1}^{L} (P_{4,j} + P_{4,j}^{-1}), \tag{1}\]

\[
\mathcal{H}_Z = -H \sum_{j=1}^{L} (S_{1,j}^z + S_{2,j}^z),
\]

where \(J_1\) and \(J_\perp\) are the bi-linear leg and rung exchange constants, respectively. We set \(J_\perp = 1\) throughout this paper. \(P_{4,j}\) is the cyclic permutation operator which exchanges the four spins around the \(j\)-th plaquette as \(S_{1,j} \rightarrow S_{1,j+1} \rightarrow S_{2,j+1} \rightarrow S_{2,j} \rightarrow S_{1,j}\),

\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}

\rightarrow

\begin{pmatrix}
 d & a \\
 c & b \\
 a & d \\
 b & c
\end{pmatrix},

\hspace{1cm}

\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}

\rightarrow

\begin{pmatrix}
 b & c \\
 a & d \\
 d & a \\
 c & b
\end{pmatrix} \tag{2}\]

where the \((1,1)\) component denotes the spin state of \(S_{1,j}\) and the \((2,2)\) component that of \(S_{2,j+1}\). The strength of the four-spin ring exchange \(J_4\) is assumed to be positive, as it is in the Cu oxides. The applied magnetic field is denoted by \(H\). The magnetization of the bulk system is defined as \(m = M/L\), where \(M \equiv \langle \sum_j (S_{1,j}^z + S_{2,j}^z) \rangle\). We focus on a possible plateau at half of the saturation \((m = 1/2)\) in the magnetization curve at \(T = 0\).
3. Strong rung coupling approximation

The condition of the quantization of the magnetization \[Q(S - m)\text{-integer}\] is necessary for the appearance of the plateau at \(m\), where \(Q\) is the period of the ground state and \(S\) is the total spin per unit cell. Thus the plateau at \(m = 1/2\) should require a spontaneous breakdown of the translational symmetry which results in the period of the two unit cells like the Néel state.

In order to investigate the possibility and the mechanism of the plateau at \(m = 1/2\) in the spin ladder with the ring exchange, we consider the strong rung coupling limit \((J_\perp \gg J_1, J_4)\) \[27, 28\] at first. The system is separated into isolated rung dimers when \(J_1 = J_4 = 0\). In this case, at \(m = 1/2\), half of the rung pairs are triplet with \(S^z = 1\), and the remaining half are singlet. Since other possible selections have higher energies, we may restrict ourselves to these two states for each rung dimer and represent them by states \(|\uparrow\rangle\) and \(|\downarrow\rangle\) of pseudo-spin \(\tilde{S}\)

\[
\begin{pmatrix}
|\uparrow\rangle \\
|\downarrow\rangle
\end{pmatrix} \Rightarrow \begin{pmatrix}
\uparrow \\
\downarrow
\end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix}
|\uparrow\rangle \\
|\downarrow\rangle
\end{pmatrix} \Rightarrow \begin{pmatrix}
\uparrow \\
\downarrow
\end{pmatrix}.
\]

(3)

When \(J_1 = J_4 = 0\), each pseudospin \(\tilde{S}\) can take either \(|\uparrow\rangle\) or \(|\downarrow\rangle\) completely freely, which means high degeneracy of the \(m = 1/2\) ground states. The introduction of weak \(J_1\) and \(J_4\) resolves the degeneracy. The effect of a weak inter-dimer coupling can be taken into account by the perturbation expansion with respect to \(J_1\) and \(J_4\), resulting in the following matrix elements by straightforward calculation

\[
\begin{pmatrix}
\langle \uparrow_j \uparrow_{j+1} | & \langle \uparrow_j \downarrow_{j+1} | & \langle \downarrow_j \uparrow_{j+1} | & \langle \downarrow_j \downarrow_{j+1} |
\end{pmatrix}
\begin{pmatrix}
-(1/4)J_1 + 2J_4 & 0 & 0 & 0 \\
0 & -(1/4)J_1 - J_4 & (1/2)J_1 + J_4 & 0 \\
0 & (1/2)J_1 + J_4 & -(1/4)J_1 - J_4 & 0 \\
0 & 0 & 0 & (1/4)J_1 + J_4
\end{pmatrix}
\]

(4)

By comparing equation (3) with an \(XXZ\)-type Hamiltonian including an effective magnetic field \(\tilde{H}\)

\[
\begin{pmatrix}
\langle \uparrow_j \uparrow_{j+1} | & \langle \uparrow_j \downarrow_{j+1} | & \langle \downarrow_j \uparrow_{j+1} | & \langle \downarrow_j \downarrow_{j+1} |
\end{pmatrix}
\begin{pmatrix}
(1/4)\tilde{J}^z - \tilde{H} + a & 0 & 0 & 0 \\
0 & -(1/4)\tilde{J}^z + a & (1/2)\tilde{J}^{xy} & 0 \\
0 & (1/2)\tilde{J}^{xy} & -(1/4)\tilde{J}^z + a & 0 \\
0 & 0 & 0 & (1/4)\tilde{J}^z + \tilde{H} + a
\end{pmatrix}
\]

(5)

we obtain the effective Hamiltonian for \(\tilde{S}\)

\[
\tilde{\mathcal{H}} = \sum_j \left\{ \tilde{J}^{xy}(\tilde{S}_j^x \tilde{S}_{j+1}^x + \tilde{S}_j^y \tilde{S}_{j+1}^y) + \tilde{J}^z \tilde{S}_j^z \tilde{S}_{j+1}^z \right\} + \tilde{\mathcal{H}}_Z
\]

(6)

with \(\tilde{J}^{xy} = J_1 + 2J_4\) and \(\tilde{J}^z = J_1/2 + 5J_4\).

The effective Zeeman term \(\tilde{\mathcal{H}}_Z\) and the effective \(XXZ\) anisotropy are given respectively by

\[
\tilde{\mathcal{H}}_Z = \tilde{H} \sum_j \tilde{S}_j^z \
\tilde{H} = \frac{J_1}{4} - \frac{J_4}{2}\]

(7)
and

\[\lambda_{\text{eff}} \equiv \frac{\tilde{J}^z}{J_{xy}} = \frac{J_1/2 + 5J_4}{J_1 + 2J_4} \].

(8)

Thus the problem of magnetized states with \(m = 1/2 \) of the original system is mapped onto that of nonmagnetic states of the Hamiltonian (6). It is well-known for the \(\tilde{S} = 1/2 \) XXZ chain that the ground state has the Néel order for \(\lambda_{\text{eff}} > 1 \) and magnetic/non-magnetic excitations are gapped. The ordered phase is separated from the gapless one by a critical point \(\lambda_{\text{eff}} = 1 \); the transition at the critical point is of the Kosterlitz-Thouless type with \(\eta = \eta^z = 1 \), where \(\eta \) and \(\eta^z \) are critical indices defined by

\[\langle S_0^x S_r^x \rangle \sim (-1)^r r^{-\eta} \quad \text{and} \quad \langle S_0^z S_r^z \rangle \sim (-1)^r r^{-\eta^z} \quad (r \to \infty) \]

(9)

respectively. Turning back to the original system, this implies that the original ladder (1) has a magnetization plateau at \(m = 1/2 \) under the condition

\[J_4 > \frac{1}{6} J_1. \]

(10)

The plateau state is Néel ordered in the language of the pseudo-spin \(\tilde{S} \), as shown in figure 2.

![Figure 2](image)

Figure 2. Physical picture of the \(m = 1/2 \) plateau state. Open ellipses represent \(|\uparrow\rangle \) and shadowed ellipses \(|\downarrow\rangle \) in the language of the pseudo-spin \(\tilde{S} \).

4. Numerical approach

The phase boundary \(J_4 = (1/6)J_1 \) obtained in the previous section is valid for \(J_1, J_4 \ll 1 \). To obtain a phase diagram for wider range of the parameters, we have performed the numerical diagonalization of the original Hamiltonian (1) by the Lanczos method.

The most powerful method at the present stage to determine the KT phase boundary is the level spectroscopy (LS), which was developed by one of the present authors (KO) and Nomura [38–41]. In the LS analysis the critical point is determined from the level cross between the two relevant low-lying excitation gaps with a common scaling dimension, that is, the same dominant size correction including the logarithmic
Field-Induced gap due to four-spin exchange in a spin ladder

one. In the present case, we use the following three gaps

\[\Delta_1 = \frac{1}{2} [E_\pi(L, M + 1) + E_\pi(L, M - 1) - 2E_0(L, M)] \]
\[\Delta_\pi = E_\pi(L, M) - E_0(L, M) \]
\[\Delta^{(2)}_\pi = E^{(2)}_\pi(L, M) - E_0(L, M) \]

where \(E_k(L, M) \) and \(E^{(2)}_k(L, M) \) respectively denote the lowest- and the second lowest eigenvalues of the Hamiltonian \(H_0 \) with the system size \(L, \left< \sum_j (S^z_{1,j} + S^z_{2,j}) \right> = M \). These gaps \(\Delta_1, \Delta_\pi \) and \(\Delta^{(2)}_\pi \) govern the long-distance behaviors the \(S^x - S^x, S^z - S^z \) and dimer correlations, respectively, in the language of the pseudo-spin \(\tilde{S} \). The critical indices \(\eta \), \(\eta^z \) and \(\eta^d \) can be connected with \(\Delta_1 \) and \(\Delta_\pi \) by

\[\eta = \frac{L \Delta_1}{\pi v_s}, \quad \eta^z = \frac{L \Delta_\pi}{\pi v_s}, \quad \eta^d = \frac{L \Delta^{(2)}_\pi}{\pi v_s} \quad (L \to \infty) \]

respectively, where \(v_s \) is the spin-wave velocity estimated by

\[v_s = \frac{L}{2\pi} (E_{k_1}(L, M) - E_0(L, M)) \quad (L \to \infty) \]

with \(k_1 \equiv 2\pi/L \).

The behaviors of \(\eta \) and \(\eta^z \) near the KT critical point for large \(L \) are

\[\eta = 1 - \frac{1}{2} y_0, \quad \eta^z = 1 - \frac{1}{2} y_0 (1 + 2t) \]

respectively, where \(t \) denotes the distance from the KT critical point, and \(y_0 \) represents the lowest order finite-size correction, which leads to the logarithmic size correction of \(1/\log L \) at the KT critical point. Thus the KT critical point can be obtained from \(\eta = \eta^z \) within the lowest order of the finite-size corrections. As shown in equation (16), the logarithmic corrections to \(\eta \) and \(\eta^z \) are serious for finite systems. Then the relation \(\eta = 1 \) (or \(\eta^z = 1 \)) is not a good indicator for the KT critical point.

Figure 3 shows the behaviors of \(\eta \) and \(\eta^z \) as functions of \(J_4 \) for two cases (a) \(J_1 = 0.5 \) and (b) \(J_1 = 1.0 \) for the length of the ladder \(L = 16 \). From the crossing points between \(\eta \) and \(\eta^z \), we see that the critical point \(J_{4c} = 0.10 \) for \(J_1 = 0.5 \), and \(J_{4c} = 0.22 \) for \(J_1 = 1.0 \). The quantity \(1 - \eta = 1 - \eta^z \) at \(J_{4c} \) represents the magnitude of the logarithmic size correction \(y_0/2 \) around \(L = 8 \sim 16 \). If we determine the KT critical points from the condition \(\eta = 1 \), we obtain \(J_{4c} = 0.18 \) for \(J_1 = 0.5 \), and \(J_{4c} = 0.36 \) for \(J_1 = 1.0 \), which are fairly larger than those by use of the LS.

To check the KT universality class, we also calculated the central charge \(c \) by use of

\[\frac{E_0(L, M)}{L} = \epsilon_g - \frac{\pi c v}{6L^2} \left(1 + O \left(\frac{1}{(\log L)^3} \right) \right) \]

where \(\epsilon_g \) is the ground-state energy per one rung at \(m = 1/2 \) for an infinite system. As can be seen from figure 3, the central charge is \(c = 1 \) near the KT critical point and rapidly decreases in the gapped region, as is expected from [12, 13]. This fact supports the KT nature of this transition.
Field-Induced gap due to four-spin exchange in a spin ladder

Figure 3. Critical exponents η and η^z as functions of J_4 for (a) $J_1 = 0.5$ and (b) $J_1 = 1.0$ cases. The central charge c (see equation (17)) and the quantity η (see equation (18)) are also shown.

We also checked the KT nature by calculating

$$\bar{x} = \frac{(\eta^z + \eta^d)\eta}{2}$$ \hspace{1cm} (18)

which should be $1/2$ in the lowest order of the renormalization equation in the gapless region, as was shown by Kitazawa and Nomura [44]. We can clearly read from figure 3 that the quantity \bar{x} is very close to $1/2$ in the gapless region, also verifying the KT nature.

In figure 4 we show the KT critical points estimated by the LS (i.e. $\eta = \eta^z$), as well as those obtained by assuming $\eta = 1$ (conventional method), for the system sizes $L = 8, 12, 16$. We see that the LS result is consistent with that by strong coupling approach in §2, while the result obtained by the relation $\eta = 1$ is not.

5. Discussion

In the previous section, we have obtained the phase diagram from the numerical diagonalization data through the LS analysis, and shown the KT nature of the transition between the plateau and gapless states. Our numerical results are quite consistent with those of the strong coupling approach in §3.

In our previous work [32], where we restricted ourselves to the case of $J_1 = 1$, the KT transition was also suggested by the the ROOMANY-WYLD approximation for the CALLEN-SYMANZIK β-function [45]. However, the critical exponent η calculated numerically on the basis of the conformal field theory indicated a different value $\eta \sim 0.5$ around $J_{4c} \simeq 0.05$ estimated by the phenomenological renormalization. Since, as already
shown in §3, the critical exponent η should be unity at the KT transition point, our previous result was not self-consistent. This inconsistency has been completely solved by the present analysis. Namely, our previous result $J_{4c} = 0.05 \pm 0.04$ for $J_1 = 1$ significantly deviates from the reliable result obtained above. It is consistent with the criticism [38, 39, 41] that the phenomenological renormalization leads to serious underestimation of the gapless region for the KT transition.

The phase diagram suggests that, for larger J_1, the critical value J_{4c} becomes larger than the limit of a strong rung coupling. It implies that the quantum fluctuation due to the leg coupling (J_1) suppresses the plateau formation. In the special case $J_1 = 1$, the critical value is $J_{4c} \simeq 0.24$. Since Sr$_{14}$Cu$_{24}$O$_{41}$ is expected to have $J_1 = 1$ and $J_4 \sim 0.14$ as explained in §1, it is not enough for the appearance of the plateau at $m = 1/2$.

An example of the magnetization curve was already shown in our previous work [32], to which readers should refer. At finite temperatures the magnetization plateau will be smeared, which remains for future investigations.

In conclusion, we physically explained the plateau formation scenario of the $S = 1/2$ spin ladder with the ring exchange interaction at each plaquette, and also obtained the plateau-gapless phase diagram by both analytical- and numerical methods. The present phase diagram is more reliable and covers a wider range of parameters than our previous one [32].
Acknowledgement

We wish to thank Koyohide Nomura, Yasushi Honda, Takeshi Horiguchi for fruitful discussions. We also thank the Supercomputer Center, Institute for Solid State Physics, University of Tokyo for computer facilities. This work was supported in part by Grant-in-Aid for the Scientific Research Fund from the Ministry of Education, Science, Sports and Culture (11440103).

References

[1] Ishida K, Morishita M, Yawata K and Fukuyama H 1997 Phys. Rev. Lett. 79 3451
[2] Roger M, Bäuerle, Bunkov Yu M, Chen A-S and Godfrin H 1998 Phys. Rev. Lett. 80 1308
[3] Okamoto T and Watanabe T preprint.
[4] See for reviews, Osheroff D D 1992 J. Low Temp. Phys. 87 297; Roger M, Hetherington J H and Delrieu J M 1983 Rev. Mod. Phys. 55 1; Cross M C and Fisher D S 1985 Rev. Mod. Phys. 57 881
[5] Schmidt H J and Kuramoto Y 1990 Physica C 167 263
[6] Honda Y, Kuramoto Y and Watanabe T 1993 Phys. Rev. B 47 11329
[7] Takahashi M 1977 J. Phys. C: Solid State Phys. 10 1289
[8] Codlea R, Hayden S M, Aeppli G, Perring T G, Frost C D, Mason T E, Cheong S-W and Fisk Z 2000 cond-mat/0006384.
[9] Brehmer S, Mikeska H-J, Müller M, Nagaosa N and Uchida S 1999 Phys. Rev. B 60 329
[10] Nersesyan A A and Tsvelik A M 1997 Phys. Rev. Lett. 80 2130
[11] Schmidt H J and Kuramoto Y 1990 Physica C 167 263
[12] Honda Y and Horiguchi T preprint.
[13] Wang W 1999 Phys. Rev. B 60 9236
[14] Links J and Foerster A 2000 Phys. Rev. B 62 65
[15] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 3939
[16] Haldane F D M 1983 Phys. Lett. 93A 464
[17] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[18] Honda Y and Horiguchi T preprint.
[19] Wang W 1999 Phys. Rev. B 60 9236
[20] Links J and Foerster A 2000 Phys. Rev. B 62 65
[21] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 3939
[22] Haldane F D M 1983 Phys. Lett. 93A 464
[23] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[24] Honda Y and Horiguchi T preprint.
[25] Wang W 1999 Phys. Rev. B 60 9236
[26] Links J and Foerster A 2000 Phys. Rev. B 62 65
[27] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 3939
[28] Haldane F D M 1983 Phys. Lett. 93A 464
[29] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[30] Honda Y and Horiguchi T preprint.
[31] Wang W 1999 Phys. Rev. B 60 9236
[32] Links J and Foerster A 2000 Phys. Rev. B 62 65
[33] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 3939
[34] Haldane F D M 1983 Phys. Lett. 93A 464
[35] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[36] Honda Y and Horiguchi T preprint.
[37] Wang W 1999 Phys. Rev. B 60 9236
Field-Induced gap due to four-spin exchange in a spin ladder

[38] Okamoto K and Nomura K 1992 Phys. Lett. A 169 433
[39] Nomura K and Okamoto K 1993 J. Phys. Soc. Jpn. 62 1123
[40] Nomura K 1995 J. Phys. A: Math. Gen. 28 5451
[41] Nomura K and Okamoto K 1994 J. Phys. A: Math. Gen. 27 5773
[42] Inoue H and Nomura K 1999 Phys. Lett. A 262 96
[43] Inoue H 2000 Phys. Lett. A 270 359
[44] Kitazawa K and Nomura K 1997 J. Phys. Soc. Japan 66 3944
[45] Roomany H H and Wyld H W 1980 Phys. Rev. D 21 3341