Alteration of the Natural Killer Repertoire in H-2 Transgenic Mice: Specificity of Rapid Lymphoma Cell Clearance Determined by the H-2 Phenotype of the Target

By Petter Höglund, Rickard Glas, Claes Öhlén, Hans-Gustaf Ljunggren, and Klas Kärre

From the Department of Tumor Biology, Karolinska Institutet, Stockholm, Sweden

Summary

The mechanism behind natural tumor resistance conveyed by a H-2D^d transgene to C57Bl/6 (B6) mice was investigated. Transgenic D8 mice were more efficient than control mice in natural killer (NK) cell mediated rapid elimination of intravenously inoculated radiolabeled lymphoma cells of B6 origin, such as RBL5. There was no difference between D8 and B6 mice when elimination of YAC-1 targets was monitored. The effect of the transgene on the NK repertoire was related to the H-2 phenotype of the target: the differential elimination of RBL5 lymphoma cells in D8 and B6 mice was not seen when a H-2 deficient variant of this line was used (efficiently eliminated in both genotypes), nor was it seen with a H-2D^d transfectant (surviving in both genotypes). The data show that a MHC class I transgene can directly control natural killing in vivo by altering the repertoire rather than the general levels of NK activity. Since the NK mediated elimination seen after introduction of a novel gene in the host was neutralized by introducing the same gene (H-2D^d), but not an unrelated class I gene (H-2D^p), in the tumor, the data support the concept of NK surveillance against missing self. This combined transgenic/transfectant system may serve as a tool for a molecular dissection of the interactions between NK cells and their targets in vivo.

Several steps in immune responses are controlled by genes of the MHC. MHC class I and II genes educate, tolerize or activate the T cell subsets (1–5). There is also evidence for a MHC influence on NK cell function. F_r-hybrid resistance mediated by natural killer cells against tumor and bone marrow grafts is one example (6–9). This phenomenon is poorly understood in comparison with the detailed knowledge of how MHC genes control the T cell system (1–5). It is not clear whether the genetic control of natural immunity involves the classical MHC genes, but natural resistance against lymphoma grafts has been mapped close to MHC class I genes in linkage studies (8, 9). We have reported that a H-2D^d transgene introduced in C57Bl/6 (B6)¹ mice convey natural resistance to lymphoma grafts of B6 origin (10). This resistance was dependent on the presence of NK cells, since it was abrogated by treatment of transgenic mice with mAbs against NK1.1 or heteroantisemum against asialo-GM1 (10). The purpose of the present study was to investigate two aspects of this rejection. First, does the H-2D^d transgene directly influence rapid NK mediated elimination, or is the transgene effect indirect, i.e., does it recruit NK cells as effectors in a later stage of a rejection response. Second, if the transgene affects natural killing directly, does it control the general levels of NK activity or the specificity pattern in their "repertoire", i.e., killing of some but not all targets? In particular, is the H-2 phenotype of the target important?

We have studied these questions by following the early events after inoculation of radiolabeled lymphoma cells in transgenic and control mice. The clearance of 5'-[¹²⁵I]Iodo-2'-deoxyuridine ([¹²⁵I]-I UdR) labeled cells has previously been used to measure NK activity in vivo (11–14). One advantage of this rapid assay is that it allows in vivo tests of natural resistance without the interference of the slower T cell mediated reactions against allogeneic or strongly immunogeneic tumors. Our results show that introduction of the H-2D^d gene on B6 background affects early NK mediated elimination against some, but not all targets. Furthermore, the H-2 phenotype of the target appears to be crucial for the transgene effect, as shown most clearly in experiments with H-2 mutant and transfected subclones of the RBL5 lymphoma.

Materials and Methods

Mice. Mice were bred and maintained at the Department of Tumor Biology, Karolinska Institutet. B6 mice were also purchased from ALAB (Sollentuna, Sweden). The generation of the transgenic

1 Abbreviations used in this paper: B6, C57Bl/6; [¹²⁵I]-I UdR, 5'-[¹²⁵I]Iodo-2'-deoxyuridine.
DSstrain has been described earlier (15). Briefly, a 8.0-kb EcoR1
fragment from the plasmid pDd1 (16) containing the H-2D' gene
was microinjected into fertilized B6 embryos and reimplanted into
pseudo-pregnant B6 females. The expression and tissue distribution
of the H-2D' gene paralleled that of the endogenous Kb and Db
genes (17, 18). The DS strain was a kind gift from Dr. Gilbert Jay.

Tumors. H-2\(\text{b}\) tumors: RMA is a subline of the T cell lymphoma
RBL-5. RMA-S is a H-2 deficient variant of RMA, generated by repeated cycles of negative selection using mouse allo anti-
H-2\(\text{b}\) antisera and complement (19, 20). RMA-S has a defect in
the association between the class I heavy chains and \(\beta_2\) micro-
globulin (\(\beta_2\) m), resulting in a decreased expression of H-2 on the
cell surface (21). RBL-5pDd1 and RBL-5DP are RBL-5 sublines
transfected with the plasmids pDd1 (16) and pRM15 (22), respec-
tively. EL-4 is a benzpyrene induced, and ALC a RAD-LV in-
duced T cell leukemia. H-2\(\text{a}\) tumors: YAC-1 is a T cell lymphoma
induced by Moloney Leukemia Virus in the A/Sn strain. A.H-2-
\(\text{a}\) is a \(\beta_2\) m deficient variant of YAC-1 with no detectable cell surface
expression of class I antigens (21, 22). H-2\(\text{a}\) tumors: L1210 is a T cell
lymphoma and P815 is a mastocytoma, both induced by benzpyrene in the DBA/2 strain. All tumors were maintained as
ascites lines in the syngeneic strain and explanted to in vitro cul-
ture 1-4 wk before experiments were carried out. Table 1 lists the
different cell lines used in this study.

In Vivo Rapid Elimination Assay. Tumor cells (10\(^6\)/ml) were incubated over night in the presence of 0.5 \(\mu\)Ci/ml of 5'-[\(^{125}\)I]Iodo-
2'-deoxyuridine (\(^{125}\)I-IUdR; Amersham, Sweden AB, Solna, Sweden). Before inoculation, the radiolabeled cells were washed
3-4 times with large volumes of PBS and adjusted to 5 \times 10\(^6\)/ml
in PBS. The activity of the inoculation volume (10\(^6\) cells in 200
pl) was determined and was usually in the range of 2-4 \times 10\(^5\)
cpm. At different timepoints after inoculation, the mice were killed
and the lungs, livers and spleens removed. The remaining radioac-
tivity in each organ was measured in a gamma counter and ex-
pressed as percentage of the total activity inoculated.

Pretreatment of Mice with Anti-NK1.1 Antibody. One day be-
fore inoculation of tumor cells, the mice were given one single in-
jection of 200 \(\mu\)l ascites prepared anti-NK1.1 mAb (24). This treat-
ment has previously been shown to abrogate natural killer cell
activity in vivo (25).

Transfection. RBL-5 cells were electroporated together with the
plasmid pDd1, encoding the D\(\text{d}\) gene (16), or pRM15, coding for the
D\(\text{p}\) gene (22), in a BIO-RAD gene pulser (BIO-RAD, Rich-
mond, California). Electroporation was carried out in 0.4 ml PBS
at 250 Volts and 960 microFarads. After 10 min at room tempera-
ture the cells were put in RPMI with 10% FCS (normal culture
conditions). When the number of surviving cells were 5-10 \times
10\(^6\), the dead and live cells were separated using Ficoll/hypaque
(Pharmacia, Uppsala, Sweden) centrifugation, and subsequently
sorted on a Fluorescence Activated Cell Sorter (FACS® 4; Becton
Dickinson and Co., San Jose, California). In the case of D\(\text{p}\),
cotransfection with the neomycin resistance gene was performed,
and before sorting, a G418 resistant population was selected to en-
rich for clones expressing the class I gene. Cells were labeled with
H-2\(\text{d}\) specific (34-4-8S, reference 26) or H-2\(\text{d}\) specific (7-16.10,
reference 27) mAb and positive cells were sorted on the FACS. After
4-5 such rounds of selection, stable transfectants were obtained
that expressed H-2\(\text{d}\) or H-2\(\text{d}\) in addition to the endogenous
H-2\(\text{d}\) molecules. The resulting transfectants, RBL-5pDd1 and
RBL-5DP were sensitive to H-2\(\text{d}\) and H-2\(\text{d}\) specific CTL respec-
tively, and they were both sensitive to H-2\(\text{b}\) specific allo CTL
(not shown).

Indirect Immunofluorescence. 10\(^6\) tumor cells were incubated
with 100 \(\mu\)l of hybridoma supernatant 30-60 min on ice, washed
with PBS, and incubated with 100 \(\mu\)l FITC conjugated rabbit anti-
mouse Ig (Dakopatts, Hagersten, Sweden). After washing, the cells
were analyzed on the FACS.

Statistical Analysis. Statistical calculations were performed using
a two-tailed, non-paired t test. In cases where the variances be-
tween the groups were not comparable, the Cochran test was used.

Results

**Survival of H-2\(\text{b}\) Lymphomas after Intravenous Inoculation to
B6 and H-2\(\text{d}\) Transgenic Mice.** Radiolabeled lymphoma

Tumor cell	Parental tumor	Strain	Inducing agent
RBL-5	-	C57Bl/6	Raucher virus
RMA	RBL-5	C57Bl/6	Raucher virus
RMA-S	RBL-5	C57Bl/6	Raucher virus
RBL-5pDd1	RBL-5	C57Bl/6	Raucher virus
RBL-5DP	RBL-5	C57Bl/6	Raucher virus
EL-4	-	C57Bl/6	Benzpyrene
ALC	-	C57Bl/6	RAD-LV
YAC-1	-	A/Sn	Moloney virus (\(\text{d}\)
A.H-2\(\text{a}\)	YAC-1	A/Sn	Moloney virus
P815	-	DBA/2	Methylcholantrene
L1210	-	DBA/2	Methylcholantrene

* Weak but detectable expression.

Table 1. Cell Lines Used in this Study

MHC class I haplotype	Transfected gene
H-2\(\text{b}\)	(D\(\text{b}\))
H-2\(\text{a}\)	(D\(\text{a}\))
H-2\(\text{d}\)	(D\(\text{d}\))

Tumor cell	Parental tumor	Strain	Inducing agent
RBL-5	-	C57Bl/6	Raucher virus
RMA	RBL-5	C57Bl/6	Raucher virus
RMA-S	RBL-5	C57Bl/6	Raucher virus
RBL-5pDd1	RBL-5	C57Bl/6	Raucher virus
RBL-5DP	RBL-5	C57Bl/6	Raucher virus
EL-4	-	C57Bl/6	Benzpyrene
ALC	-	C57Bl/6	RAD-LV
YAC-1	-	A/Sn	Moloney virus
A.H-2\(\text{a}\)	YAC-1	A/Sn	Moloney virus
P815	-	DBA/2	Methylcholantrene
L1210	-	DBA/2	Methylcholantrene

328 Natural Killer Cells in H-2 Transgenic Mice
cells were inoculated into B6 and D8 mice. Survival of inoculated cells was estimated by measuring remaining radioactivity in different organs at different time points. There was a significant difference in pulmonary clearance of RBL-5 lymphoma cells between control B6 and transgenic D8 mice at 12 h after inoculation. The same pattern was seen in the liver, while there was a marginal difference in the spleen (Fig. 1 A). The terms clearance or elimination will be used for this difference in endpoint survival of lymphoma cells, since kinetic studies (further discussed below) showed that there was no difference in homing patterns of lymphoma cells in the different genotypes of mice. To study whether this differential elimination was a general phenomenon or unique to RBL-5, we inoculated two other lymphomas with high H-2b expression, ALC and EL4. The same selective elimination in the D8 mice was seen also for these lymphomas (Fig. 1 B).

Target Cell Specificity of the Transgene Effect. In contrast to the H-2b lymphomas, YAC-1 cells were eliminated equally efficiently in B6 and D8 mice at 12 h (Fig. 2 A). YAC-1 is known to be efficiently killed by NK cells within hours in vitro as well as in vivo (14). It was possible that the 12-h time point was suboptimal to detect a H-2Dd mediated difference in clearance, but we failed to observe any difference in survival in assays after 3 h (Fig. 2 B). The previously known genetic differences in NK activity between A/Sn (low), B6 (intermediate) and CBA (high) (14) were readily detectable at this time point.

The L1210 lymphoma and P815 mastocytoma, both of DBA/2 (H-2d) origin, gave the same pattern as YAC-1. They were equally well eliminated in D8 and B6 mice, whether tested after 3 (P815, Fig. 3 A), 12 (P815, Fig. 3 B) or 21 (L1210, Fig. 3 C) h. RMA (Fig. 3 B) or RBL-5 (Fig. 3 C) were included as a control for transgene induced elimination. Expression of H-2Dd was a common feature for the three tumors for which there was no difference in elimination between control and transgenic mice. To test whether the lack of transgene effect on clearance of YAC-1 cells was dependent on the H-2Dd product (or class I expression in general) at the tumor cell level, we inoculated cells from the YAC-1 variant line A.H-2- . This line does not express any class I gene products at the cell surface due to a translational block of the βm mRNA (21, 22). Nevertheless, this cell was equally well eliminated from D8 and B6 mice (Fig. 4). The
Figure 3. Remaining radioactivity in the lungs of B6 and D8 mice for P815 (A), RMA and P815 (B) and RBL-5 and L1210 (C). For each experiment, the different timepoints are indicated in parentheses. Data for RMA to D8 in (B) was obtained from three mice. The differences between B6 and D8 for RMA ($p < 0.01$ in Fig. 3 B) and RBL-5 ($p < 0.001$ in Fig. 3 C) were statistically significant.

Survival of RBL-5 in Transgenic and Normal B6 Mice; Role of NK1.1 Positive Cells and Lymphoma Class I Expression. Another property that distinguishes the B6 lymphomas from YAC-1, P815 and L1210 is that only the former expresses H-2k. To test whether the transgene induced difference in clearance was dependent on H-2K^Dd expression in RBL-5, we inoculated the class I low variant line RMA-S. There was no difference between B6 and (D8 x B6)F_1 mice for this variant, which has a 95% reduction in H-2k expression compared to RBL-5 (19, 20). It was efficiently cleared from the lungs in both genotypes (Fig. 5).

The difference between (D8 x B6)F_1 and B6 mice in lung clearance of RBL-5 cells was abrogated by pretreatment of hosts with anti-NK1.1 mAb (Fig. 5). This treatment also greatly reduced the difference in clearance between RBL-5 and H-2 deficient RMA-S cells in B6 hosts.

The NK mediated elimination of normal RBL-5 cells in D8 or (D8 x B6)F_1 mice and of syngeneic but H-2 deficient RBL-5 cells (RMA-S) in B6 mice suggested that self match with respect to H-2 phenotype prevented natural killing (Fig. 5, references 19, 20). The effect of the transgene would then be a consequence of a redefinition of “self” in the transgenic mice, creating a situation of incomplete match to the H-2k lymphomas. This predicted that the difference in elimination of these lymphomas between D8 and B6 mice should disappear if the H-2K^Dd gene was introduced in the

![Figure 4](image_url) Figure 4. Elimination of H-2 negative YAC-1 variant A.H-2-. The figure shows remaining radioactivity in the lungs of B6, D8, CBA and A/Sn mice 3 h after inoculation. Mean of two experiments. The difference between A/Sn and CBA was significantly different ($p < 0.01$).

![Figure 5](image_url) Figure 5. Effect of anti-NK1.1 treatment on 12-h survival of RMA and H-2 deficient variant RMA-S in the lungs of B6 and (D8 x B6)F_1 mice. In this experiment all data for B6 and data for RMA-S in untreated (D8 x B6)F_1 were obtained from groups of three mice. The difference between B6 and (D8 x B6)F_1 for RMA was statistically significant ($p < 0.01$).

![Figure 6](image_url) Figure 6. Remaining radioactivity (after 12 h) of normal, H-2Dd transfected RBL-5 or H-2Dd transfected RBL-5 in the lungs of B6 and D8 mice. The figure is a summary of two independent experiments. The number of mice in each host/tumor combination was 8 except for RBL-5 to B6 where 9 mice were used. The difference between B6 and D8 was statistically significant for RBL-5 ($p < 0.05$) and RBL-5Dd ($p < 0.01$), but not for RBL-5Dd1. Just before the experiments, the transfected cells were analyzed for the expression of the transfected genes, as described in materials and methods. Fluorescence values (lin) from a representative analysis were for K^b, D^d, D^d, D^d and no antibody respectively; RBL-5 (353, 453, 24, 12, 13), RBL-5Dd (267, 312, 217, n.d., 15) and RBL-5Dd1 (310, 370, n.d., 147, 11). n.d. = not determined.
lymphoma; it should now survive in both hosts. To test this, the RBL5 lymphoma was transfected with the H-2Dd gene. When the resulting transfectant (RBL5pDd1) was used, the selective elimination in the D8 mice was abrogated (Fig. 6). As a control, RBL5 was transfected with the H-2Dp gene and used in the same experiments. For this transfectant the pattern of elimination was similar to that of untransfected RBL5.

H-2 Transgene in the Host Versus H-2 Deficiency in the Target. Kinetics and Organ Distribution of Clearance in Two Different Situations. The survival of RBL5 in B6 mice at different time points was used as a control for elimination caused by the H-2Dd transgene in the host (comparison with RBL5 into (D8 × B6)F1 or D8 elimination caused by the H-2 deficiency of the target (comparison with RMA-S into B6). Neither comparison revealed any significant differences at 15 min or 4 h after inoculation (Fig. 7 A–C). However, at 12 h, a significant difference between B6 and (B6 × D8)F1 (Fig. 7 A, Exp. 1), or between B6 and D8 (Fig. 7 D, Exp. 2) in the ability to eliminate RMA was seen in the lungs. In the same comparison, there was also a significantly better elimination of RMA-S than of RMA in normal B6 mice (Fig. 7, A and D). In all cases this difference was more pronounced than the difference between RMA in B6 and transgenic mice. The differences were smaller in the liver and could not be seen in the spleen (Fig. 7 B, E, C, and F).

Discussion

Our results indicate a direct influence of a MHC transgene on rapid elimination of tumor grafts mediated by NK cells. This extends previous studies with MHC congenic mice, where elimination within 4–36 h after inoculation of radio-labeled cells has been shown to be T cell independent (11–13). Another main conclusion is that the transgene effect varied depending on the target cell, i.e., it affected the repertoire rather than general levels of killing. The effect of the transgene could be seen against several lymphomas of H-2b background, but could not be detected against three allogeneic lymphomas (P815, L1210, and YAC-1), nor against a completely H-2 negative lymphoma variant (A.H-2-') and a H-2 deficient mutant of the H-2b lymphoma RBL5 (RMA-S). We interpret this as a consequence of efficient natural killing of these cells in control as well as in transgenic mice, rather than absence of NK effects in both genotypes. The recovered levels of radioactivity were low and YAC-1, L1210, and RMA-S
are known to be efficiently cleared by NK cells in B6 and B10 mice (11, 13, 14, 28). Efficient NK mediated elimination of RMA-S in both (D8 x B6)F1 and B6 mice was also demonstrated directly by the use of host treatment with anti–NK1.1 mAb (Fig. 5).

Why was the elimination efficient against some cells in normal B6 mice, while other targets were killed only in the B6 mice carrying the H-2Dd gene? In previous studies, the match or mismatch of H-2 between host and target has been emphasized as an important factor contributing to rapid elimination (11, 13, 29). There were two possible explanations of the data in that respect: (a) Expression of a particular class I molecules on the target (e.g., H-2Dd, common for P815, L1210, and YAC-1) triggered the NK elimination in B6 as well as D8 mice, resulting in equally efficient elimination in both strains. (b) Complete H-2 class I match between target and host (e.g., RBL-5 to B6) prevented elimination. Our data support the second alternative. The differences in elimination between D8 and B6 mice seen for tumor cells of the H-2 genotype could be abrogated by interfering with this match, either by reducing endogenous H-2 expression in the lymphoma cells, or by introducing the “transgene” (H-2Dd) in the lymphoma cells by transfection. In the former case efficient elimination occurred in both hosts, while in the latter lymphoma cells survived in both hosts. Thus, the H-2 match in the syngeneic (RBL-5 to B6) or “transsyngeneic” (RBL-5pDd1 to D8) situation prevented elimination.

A recent survey of multiple host/donor combinations supports a role for self match in prevention of rapid elimination of grafted lymphocytes in the rat (30). However, also active recognition of allogeneic MHC by NK cells has been postulated in the rat (30, 31). It is unlikely that the allogeneic lymphomas in our study were actively recognized and eliminated in B6 mice because they expressed foreign MHC. The H-2 negative YAC-1 variant A.H-2- does not translate its β_{2m} transcripts, and is therefore unable to express any class I molecules on the cell surface (21). Yet, it was at least as efficiently eliminated as YAC-1 in D8 and B6 mice. This showed that expression of H-2Dd (or any class I molecules) on the cell surface was not required for elimination. Furthermore, introduction of foreign MHC genes (H-2Dd or H-2Dp) did not result in increased elimination in B6 (Fig. 6). Thus, we find no evidence that allogeneic H-2 in the target cell can trigger a response. However, it must be noted that in bone marrow graft experiments, H-2Dd introduced as a transgene to B6 mice resulted in a NK mediated rejection by non transgenic B6 mice (32). The reasons for this differential effect of H-2Dd on lymphoma and bone marrow cells are not known. One possibility is that the transgene suppresses expression of endogenous H-2Kb, Db molecules in bone marrow but not in lymphoma cells, a possibility that is now being tested. Another possibility is that different subsets of NK1.1+ cells are active in marrow and lymphoma rejection. Recently, a CD3+, NK1.1+ cell has been shown to mediate marrow graft rejection (33). Our results do not distinguish between CD3+, NK1.1+, and CD3+, NK1.1+ as responsible effector cells. However, the latter are thymus dependent (33, 34), while the rapid elimination of H-2 mismatched lymphoma cells has been demonstrated also in nude mice (11).

The allogeneic tumors used in this study share one allele with the D8 mice, H-2Dd, but none with B6. However, they did not survive better in H-2Dd positive D8 than in B6 mice. We propose that the partial match with respect to H-2Dd is insufficient to compensate for the lack of match with respect to H-2Kb and D$. A prediction from this is that H-2$ cells, such as L1210, transected with the relevant H-2$ sequences should become resistant to elimination in both D8 and B6 mice.

A.H-2- showed differential sensitivity to elimination by CBA and A/Sn mice (Fig. 4), two strains with a known difference in levels of NK activity against YAC-1 (14). Since A.H-2- lacks MHC expression at the cell surface, it can be regarded as an “indicator” of NK activity, irrespective of match or mismatch between host and target MHC genotypes. Since there was no difference between D8 and B6 for A.H-2-, we conclude that the the H-2Dd transgene has not altered the general levels of NK activity in the B6 strain.

Restoration of MHC class I expression by transfection has been reported to protect from NK lysis in several MHC deficient targets, even if this is not a general rule (reviewed in reference 35). The present study extends these findings by two original observations: (a) The transected gene protected from NK mediated elimination in vivo, and (b) The recipient line did not from the start have a primary general H-2 deficiency. Furthermore, we show that the protective effect was specific for a class I allele that corrected the transgene induced mismatch, since the control transfectant RBL-5pDd was not accepted in D8 mice. Presence of the H-2Dd transgene in D8 donor mice also led to protection of their bone marrow from rejection in H-2Dd expressing B10.D2 mice (32), although it was not formally shown that the protective effect of the transgene was exerted in the grafted cell, as in the present study. Conversely, bone marrow (reference 36, Högglund, manuscript submitted for publication) and Con A induced T cell blasts (Högglund, P., C. Öhlén, E. Carbone, L. Franksson, H.-G. Ljunggren, A. Latour, B. Koller, and K. Kärre, manuscript submitted for publication) from mice deficient in β_{2m}/MHC class I, are recognized and killed by NK cells from β_{2m} expressing mice. Interestingly, β_{2m} deficient NK cells failed to kill the β_{2m} deficient bone marrow and Con A blasts, further supporting the role of the class I environment in calibrating the NK repertoire (Högglund, P., C. Öhlén, E. Carbone, L. Franksson, H.-G. Ljunggren, A. Latour, B. Koller, and K. Kärre, manuscript submitted for publication, C. Öhlén, manuscript in preparation).

“Protective epitopes” have been mapped to the α-1 and α-2 domains in a study of HLA transfected human NK targets (37), but the mechanism behind the effect is not known. It could occur either through a MHC class I mediated/presented negative signal to effector cells - the “effector inhibition” model (35) - or by interference with another NK target antigen - the “target interference” model (35). If the target antigen interfered with in the latter case was polymorphic and MHC
linked, this model can be reconciled with the recessive Hh
antigen model (7). A recessive target antigen has recently
been proposed for recognition of PHA blasts by alloreactive
CD3- , CD16+ human NK cells. Resistance to lysis was
dominantly inherited and segregated with HLA haplotype
in a family study of lymphocyte target donors (38). If resis-
tance is controlled by an HLA class I (like) gene in this human
system, it may represent an analogue to the H-2D^d medi-
ated protection from NK mediated rejection of bone marrow
(32) and lymphoma grafts (this study) in allogeneic or trans-
genic recipients expressing H-2D^d.

The rejection of H-2^b lymphomas in the D8 strain was
most pronounced in the lungs but was also observed in the
liver. The small difference in splenic clearance was surprising,
since the spleen is the standard source of NK cells for in vitro
assays. For some previously studied tumors, the spleen was
the primary organ for in vivo clearance by NK cells (13),
while other tumors were cleared more efficiently in the lungs
as in this study (14). The reasons for these differences are
not known but they may reside in the choice of strains or
tumor cells under study. Some tumor cells may express adhe-
sion molecules specific for capillaries of the lung or liver, while
others home primarily to the spleen. It is also possible that
tumor cells arrested in the lungs can recruit NK cells from the
circulation and the spleen, leaving fewer cells for tumor
elimination in this organ. It should also be noted that highly
active NK cells can be isolated from the liver as well as from
the lungs (39).

The elimination of RMA-S in B6 resembled that of RBL-5
in D8 mice both with respect to organ distribution and ki-
netics (Fig. 7). The main difference was in the strength of killing, which was one order of magnitude higher for elimi-
nation of RMA-S in B6 than for RBL-5 in D8 (in both cases
using RBL-5 to B6 as control). This fits well with the rejec-
tion potential of subcutaneous lymphoma grafts in the cor-
responding host/tumor combinations (up to 10^5 RBL-5 cells
rejected by D8 mice, but up to 10^6 RMA-S cells rejected in
B6) (19, 20, 28). The degree of H-2 mismatch between host
and target in the two combinations may contribute to this
differential strength. For RMA to D8 the only mismatch is
the transgene, H-2D^d, while RMA-S lacks both K^b and
D^d in comparison with D8 and B6. The NK mediated re-
jection potential against totally MHC class I/β2m deficient
bone marrow grafts is also remarkably strong (36).

We conclude that an H-2D^d transgene can alter the NK
repertoire in a specific manner in B6 mice, as most clearly
demonstrated by the experiments with the RBL-5 lymphoma
and its mutant and transfected sublines. How then can the
H-2D^d gene instruct NK cells in mice of B6 background to
kill targets they would spare in non transgenic mice? One
step towards the answer will be to determine the cell type
in which the H-2D^d gene must be expressed. An interesting
possibility is that MHC genes determine the repertoire of
NK cells in situ, i.e., transgene expression in the NK1.1^+
cell itself is necessary and sufficient. This and other alterna-
tives can be tested through expression of transgenes controlled
by tissue or cell type specific controlling regions. The neu-
tralizing effect seen after introduction of the H-2D^d gene
also to the target can be further explored with other trans-
fectants expressing totally allogeneic, mutant or chimeric H-2
genes. Thus, our combined transgenic/transfectant system,
may contribute to a molecular understanding of interactions
between NK cells and targets in vivo.

We thank Dr. Gilbert Jay and coworkers, who provided the D8 strain.

This study was supported by United States Public Service Grants 5RO1 CA-25250-06 and RO1 CA-
44882-01 awarded by the National Cancer Institute and by grants from the Swedish Cancer Society, the
Swedish Society for Medicine, and the Bristol Myers Company.

Address correspondence to Petter Höglund, Department of Tumor Biology, Karolinska Institutet, Box
60 400, S-104 01 Stockholm, Sweden.

Received for publication 20 August 1990 and in revised form 24 April 1991.

References
1. Sha, W.C., C.A. Nelson, R.D. Newberry, D.M. Kranz, J.H.
Russel, and D.Y. Loh. 1988. Positive and negative selection
of an antigen receptor on T cells in transgenic mice. Nature
(Lond.). 336:73.
2. Blackman, M., J. Kappler, and P. Marrack. 1990. The role of
the T cell receptor in positive and negative selection of de-
veloping T cells. Science (Wash. DC). 248:1335.
3. Kisielow, P., H. Blüthmann, U.D. Staerz, M. Steinmetz, and
H. von Boehmer. 1988. Tolerance in T cell receptor transgenic
mice involves deletion of nonmature CD4^+8^+ thymocytes.
Nature (Lond.). 333:742.
4. Lanzavecchia, A. 1990. Receptor-mediated antigen uptake and
its effect on antigen presentation to class II restricted T lymph-
ocytes. Annu. Rev. Immunol. 8:773.
5. Townsend, A.R.M., and H. Bodmer. 1989. Antigen recogni-
tion by class I restricted T lymphocytes. Annu. Rev. Immunol.
7:601.
6. Cudkowicz, G., and M. Bennett. 1971. Peculiar immunobi-
ology of bone marrow allografts. II. Rejection of parental grafts by resistant F1 hybrid mice. J. Exp Med. 134:1513.
7. Bennett, M. 1987. Biology and genetics of hybrid resistance. Adv. Immunol. 41:333.
8. Snell, G.D., and L. Stevens. 1961. Histocompatibility genes of mice. III. H-1 and H-4, two histocompatibility loci in the first linkage group. Immunology. 4:366.
9. Klein, G.O., G. Klein, R. Kiessling, and K. Kärre. 1978. H-2 associated control of natural cytotoxicity and hybrid resistance against RBL-5. Immunogenetics. 6:561.
10. Höglund, P., H.-G. Ljunggren, C. Öhlmén, L. Åhrlund-Richter, G. Scangos, C. Bieberich, G. Jay, G. Klein, and K. Kärre. 1988. Natural resistance to lymphoma grafts conveyed by H-2D\(^4\) transgene to C57Bl mice. J. Exp. Med. 168:1469.
11. Carlson, G.A., D. Melnychuk, and M.-J. Meeker. 1980. H-2 associated resistance to leukemia transplantation: natural killing in vivo. Int. J. Cancer. 25:111.
12. Kärre, K., G.O. Klein, R. Kiessling, G. Klein, and J. Roder. 1980. In vitro NK activity and in vivo resistance to leukaemia: studies of beige, beige/nude and wild-type hosts on C57Bl background. Int. J. Cancer. 26:799.
13. Carlson, G.A., and T.G. Wegmann. 1977. Rapid in vivo destruction of semisynthetic and allogeneic cells by nonimmunized mice as a consequence of nonidentity at H-2. J. Immunol. 118:2130.
14. Riccardi, C., A. Santoni, T. Barlozzari, P. Puccetti, and R.B. Herberman. 1980. In vitro natural reactivity of mice against tumor cells. Int. J. Cancer. 25:475.
15. Bieberich, C., G. Scangos, K. Tanaka, and G. Jay. 1986. Regulated expression of a murine class I gene in transgenic mice. Mol. Cell. Biol. 6:1339.
16. Evans, G.A., D.A. Margulies, B. Shykind, J.G. Seidman, and K. Ozato. 1982. Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens. Nature (Lond.). 300:755.
17. Yoshioka, T., C. Bieberich, G. Scangos, and G. Jay. 1987. A transgenic class I antigen is recognized as self and functions as a restriction element. J. Immunol. 139:3861.
18. Bieberich, C., T. Yoshioka, K. Tanaka, G. Jay, and G. Scangos. 1987. Functional expression of a heterologous major histocompatibility complex class I gene in transgenic mice. Mol. Cell. Biol. 7:4003.
19. Kärre, K., H.-G. Ljunggren, G. Piontek, and R. Kiessling. 1986. Selective rejection of H-2 deficient lymphoma variant suggests alternative immune defense strategy. Nature (Lond.). 319:675.
20. Ljunggren, H.-G., and K. Kärre. 1985. Host resistance directed selectively against H-2 deficient lymphoma variants. J. Exp. Med. 162:1745.
21. Ljunggren, H.-G., S. Pålbo, M. Cochet, G. Kling, P. Kourilsky, and K. Kärre. 1989. Molecular analysis of H-2 deficient lymphoma lines; distinct defects in biosynthesis and association of MHC class I heavy chains and \(\beta_2\)-microglobulin observed in cells with increased sensitivity to NK cell lysis. J. Immunol. 142:2911.
22. Macchi, M.J., J.G. Woodward, E. McLaughlin-Taylor, J. Griffin, L. Hood, and J.A. Frelinger. 1984. Cloning and identification of the H-2D\(^\alpha\) gene. Immunogenetics. 19:195.
23. Piontek, G.E., K. Taniguchi, H.-G. Ljunggren, A. Grönberg, R. Kiessling, G. Klein, and K. Kärre. 1985. YAC-1 MHC class I variants reveal an association between decreased NK sensitivity and increased H-2 expression after interferon treatment or in vivo passage. J. Immunol. 135:4281.
24. Koo, G.C., and J.R. Peppard. 1984. Establishment of monoclonal anti NK 1.1 antibody. Hybridoma. 3:301.
25. Seaman, W.E., M. Sleisenger, E. Eriksson, and G.C. Koo. 1987. Depletion of natural killer cells in mice by monoclonal antibody to NK 1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 138:4539.
26. Ozato, K., N.M. Mayer, and D.H. Sachs. 1982. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation (Baltimore). 34:113.
27. Harmon, R.C., N. Stein, and J.A. Frelinger. 1983. Monoclonal antibodies reactive with H-2 determinants. Immunogenetics. 18:541.
28. Ljunggren, H.-G., C. Öhlmén, P. Höglund, T. Yamasaki, G. Klein, and K. Kärre. 1989. Afferent and efferent cellular interactions in natural resistance directed against MHC class I deficient tumor grafts. J. Immunol. 140:671.
29. Snell, G.D. 1976. Recognition structures determined by the H-2 complex. Transpl. Proc. 8:147.
30. Heslop, B.F., and L.J. McNeilage. 1989. The F\(_4\) hybrid effect in allogeneic lymphocyte cytotoxicity. Points of similarity between hybrid resistance and ALC. Transplantation (Baltimore). 48:634.
31. Rolstad, B., and S. Fossum. 1987. Allogeneic lymphocyte cytotoxicity (ALC) in rats: establishment of an in vitro assay, and direct evidence that cells with natural killer activity are involved in ALC. Immunology. 60:151.
32. Öhlmén, C., G. Kling, P. Höglund, M. Hansson, G. Scangos, C. Bieberich, G. Jay, and K. Kärre. 1989. Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science (Wash. DC). 246:666.
33. Yankelevich, B., C. Knobloch, M. Nowicki, and G. Dennert. (1989). A novel cell type responsible for marrow graft rejection in mice. T cells with NK phenotype cause acute rejection of marrow grafts. J. Immunol. 142:3423.
34. Levitsky, H.I., P.T. Goulmbek, and D.M. Pardoll. 1991. The fate of CD4\(^+\)CD8\(^-\) T cell receptor-alpha/beta\(^+\) thymocytes. J. Immunol. 146:1113.
35. Ljunggren, H.-G., and K. Kärre. 1990. In search of the “missing self”? MHC class I molecules and NK cell recognition. Immunol. Today. 11:237.
36. Bix, M., N.-S. Liao, M. Zijlstra, J. Loring, R. Jaenisch, and D. Raulet. 1991. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature (Lond.). 349:329.
37. Storkus, W., J. Alexander, J. Payne, P. Cresswell, and J. Dawson. 1989. The alpha/alpha2 domains of class I HLA molecules confer resistance to natural killing. J. Immunol. 143:3853.
38. Ciccone, E., D. Pende, O. Viale, G. Tambussi, S. Ferrini, R. Biassoni, A. Longo, J. Guardiola, A. Moretta, and L. Moretta. 1989. Allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science (Wash. DC). 261:666.
39. Stein-Streilein, J., M. Bennett, D. Mann, and V. Kumar. 1983. Natural killer cells in mouse lungs: surface phenotype, target preference, and response to local influenza virus infection. J. Immunol. 131:2699.