Synthesis and characterization of novel iminobenzoates with terminal pyrazine moieties

Mushtaq Ahmad1*, Zahida Perveen2, Adailton J. Bortoluzzi3, Shahid Hameed4, Muhammad R. Shah5, Muhammad Tariq6, Ghias ud Din2, Muhammad T. Jan7, Muhammad Siddique1 and Muhammad Anwar1,8

Abstract
Apart from its numerous biological activities like antidiabetic, anti-inflammatory, antimicrobial, pyrazine moiety plays an important role in luminescent materials. Its role in luminescent materials is due to its highly electron deficient nature specially when it is in the centre along the mainstay of extended π-conjugated systems. Similarly, new liquid crystalline compounds are being made constantly where the central benzoaromatic moiety is being replaced with the heterocycles including pyrazine due to their more variable nature. Pyrazine derivatives can also be used in supramolecular assemblies due to their efficient hydrogen bonding, protonation and complexation properties. Keeping in view the enormous applications of pyrazine derivatives we planned to synthesize new extended iminobenzoates with pyrazine moieties at the terminal positions. The planned iminobenzoates with terminal pyrazine moieties were prepared following standard procedures. The pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared by refluxing their methyl esters with hydrazine hydrate in methanol. The esters (3a–3f) were synthesized by reacting 4-hydroxybenzaldehyde with differently substituted acid halides in tetrahydrofuran in the presence of triethyl amine. The target compounds that is, iminobenzoates with the pyrazine moieties at terminal positions (4a–4l), were obtained in good to excellent yields by the reaction of the hydrazides with the esters at reflux. The synthesized compounds were fully characterized using different spectroanalytical techniques including FT-IR, NMR, Mass, elemental analysis and single crystal X-ray diffraction analysis. The paper describes the synthesis of novel iminobenzoates following easy methods while utilizing commercially available starting materials. The synthesized iminobenzoates may possibly be converted to compounds with luminescent and liquid crystalline properties after making suitable changes to the pyrazine moieties. Properly substituted pyrazines on both sides, capable of further suitable extensions, may result in compounds with such properties.

Keywords: Pyrazine, Pyrazine-2-carbohydrazide, 5-Methylpyrazine-2-carbohydrazide, Triethyl amine, Iminobenzoates, X-ray crystallography

Introduction
Pyrazine belongs to the six members heterocyclic diazines with two nitrogen in the same ring at 1, 4 positions, the other members being the pyridazine and pyrimidine with the two nitrogens at 1, 2 and 1, 3 positions respectively [1–4]. Another pyrazine containing heterocycle is the quinoxaline or benzopyrazine. Both pyrazine and quinoxaline derivatives are quite important due to their crucial roles in natural and synthetic compounds [5–10].

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Melting points were determined via Bock-monoscop-M. Reagents and solvents used were of analytical grade.

Materials and methods

General

Reagents and solvents used were of analytical grade. Melting points were determined via Bock-monoscop-M.

Synthesis of pyrazine-2-carbohydrazides (1 and 2)

Pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared following the literature known procedure [24].

General procedure for the synthesis of esters (3a–3f)

Aldehyde (8.0 mmol) was dissolved in tetrahydrofuran (40 mL) and triethyl amine (24.0 mmol) was added to it. The mixture was stirred for 15 min and then kept in an...
ice bath. Acid halide (8.0 mmol) dissolved in tetrahydrofuran (40 mL) was added dropwise to the reaction mixture. Reaction was stirred for 2 h and then filtered. The filtrate was concentrated and the residue was recrystallized from chloroform in petroleum ether.

4-Formylphenyl 2-fluorobenzoate (3b)

Colour: off-white solid; yield: 1.67 g, 6.4 mmol, 80%; Rf: 0.45 (40% acetone in n-hexane); mp 92–93 °C; IR (υ, cm⁻¹): 1728, 1699, 1253, 732; ¹H NMR (300 MHz, CDCl₃): δ 7.41–7.49 (3H, m, H-3,4,5), 7.55–7.57 (2H, m, H-2,2'), 7.98–8.03 (2H, m, H-1,1'), 8.07–8.10 (1H, m, H-6), 10.05 (1H, s, CHO).

4-Formylphenyl 3-chlorobenzoate (3c)

Colour: off-white solid; yield: 1.0 g, 3.8 mmol, 48%; Rf: 0.45 (40% acetone in n-hexane); mp 97–99 °C; IR (υ, cm⁻¹): 1728, 1699, 1253, 732; ¹H NMR (300 MHz, CDCl₃): δ 7.40 (2H, d, J = 8.4 Hz, H-2,2'), 7.47–7.49 (1H, m, H-5), 7.61–7.64 (1H, m, H-4), 7.97 (2H, d, J = 8.4 Hz, H-1,1'), 8.06–8.09 (1H, m, H-6), 8.17 (1H, s, H-3), 10.02 (1H, s, CHO).

4-Formylphenyl 4-chlorobenzoate (3d)

Colour: white crystals; yield: 1.57 g, 6.0 mmol, 75%; Rf: 0.45 (40% acetone in n-hexane); mp 116–118 °C; IR (υ, cm⁻¹): 1728, 1683, 1261, 746; ¹H NMR (300 MHz, CDCl₃): δ 7.43 (2H, d, J = 8.7 Hz, H-4,5), 7.53 (2H, d, J = 8.7 Hz, H-3,6), 8.00 (2H, d, J = 8.4 Hz, H-2,2'), 8.16 (2H, d, J = 8.4 Hz, H-1,1'), 10.05 (1H, s, CHO).

4-Formylphenyl 3-bromobenzoate (3e)

Colour: off-white solid; yield: 1.15 g, 3.8 mmol, 47%; Rf: 0.45 (40% acetone in n-hexane); mp 98–100 °C; IR (υ, cm⁻¹): 1728, 1697, 1253, 513; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (2H, d, J = 8.4 Hz, H-2,2'), 7.41–7.42 (1H, m, H-5), 7.77–7.79 (1H, m, H-4), 7.97 (2H, d, J = 8.4 Hz, H-1,1'), 8.11–8.13 (1H, m, H-6), 8.33 (1H, s, H-3), 10.02 (1H, s, CHO).

4-Formylphenyl 4-bromobenzoate (3f)

Colour: off-white solid; yield: 1.76 g, 5.8 mmol, 72%; Rf: 0.45 (40% acetone in n-hexane); mp 172–174 °C; IR (υ, cm⁻¹): 1741, 1699, 1265, 520; ¹H NMR (400 MHz, CDCl₃): δ 7.39 (2H, d, J = 8.4 Hz, H-2,2'), 7.66 (2H, d, J = 8.4 Hz, H-4,5), 7.96 (2H, d, J = 8.4 Hz, H-3,6), 8.05 (2H, d, J = 8.4 Hz, H-1,1'), 10.01 (1H, s, CHO).

General procedure for the synthesis of iminobenzoates (4a–4l)

The hydrazide (3.00 mmol) was dissolved in methanol (50 mL) and added dropwise to a methanolic (50 mL) solution of the ester (3.00 mmol). Reaction mixture was refluxed for 5 h. The solid formed was filtered, washed with cold methanol, dried over anhydrous CaCl₂ under vacuum and recrystallized from chloroform in n-hexane.

4-[(E)-(Pyrazine-2-carboxylimino)methyl]phenyl 2-fluorobenzoate (4a)

Colour: white shiny crystals; yield: 0.6 g, 1.6 mmol, 56%; Rf: 0.3 (40% acetone in n-hexane); mp 281–290 °C; IR (υ, cm⁻¹): 3300, 1728, 1674, 1600, 1290, 1018; ¹H NMR (300 MHz, DMSO): δ 7.41–7.48 (4H, m, H-1,1',2,2'), 7.76–7.87 (3H, m, H-3,4,5), 8.09–8.15 (1H, m, H-6), 8.68 (1H, s, H=CN=N), 8.80 (1H, d, J = 2.4 Hz, H-5 pyrazine), 8.93 (1H, d, J = 2.4 Hz, H-6 pyrazine), 9.28 (1H, s, H-3 pyrazine), 12.36 (1H, s, CONH); MS (EI, m/z): 364 [M⁺], 243, 123, 109, 81, 61.

4-[(E)-(Pyrazine-2-carboxylimino)methyl]phenyl 2-chlorobenzoate (4b)

Colour: white shiny flakes; yield: 0.9 g, 2.4 mmol, 80%; Rf: 0.82 (50% acetone in n-hexane); mp 262–265 °C; IR (υ, cm⁻¹): 3288, 1743, 1674, 1560, 1244, 1199, 1020, 750; ¹H NMR (400 MHz, DMSO): δ 7.44 (2H, d, J = 8.4 Hz, H-2,2'), 7.54–7.58 (1H, m, H-3), 7.84–7.86 (2H, m, H-4,5), 7.85 (2H, d, J = 8.4 Hz, H-1,1'), 8.10–8.12 (1H, m, H-6), 8.69 (1H, s, H=CN=N), 8.80 (1H, d, J = 2.4 Hz, H-5 pyrazine), 8.93 (1H, d, J = 2.4 Hz, H-6 pyrazine), 9.27 (1H, s, H-3 pyrazine), 12.33 (1H, s, CONH); MS (EI, m/z): 380 [M⁺], 139, 123, 111, 75, 52.

4-[(E)-(Pyrazine-2-carboxylimino)methyl]phenyl 3-chlorobenzoate (4c)

Colour: Lemon green powder; yield: 1.0 g, 2.6 mmol, 89%; Rf: 0.41 (40% acetone in n-hexane); mp 265–272 °C; IR (υ, cm⁻¹): 3302, 1728, 1678, 1610, 1261, 1020, 736; ¹H NMR (400 MHz, DMSO): δ 7.44 (2H, d, J = 8.4 Hz, H-2,2'), 7.64–7.68 (1H, m, H-3), 7.83–7.85 (3H, m, H-4,5,6), 8.10 (2H, d, J = 8.4 Hz, H-1,1'), 8.69 (1H, s, H=CN=N), 8.80 (1H, d, J = 2.4 Hz, H-5 pyrazine), 8.93 (1H, d, J = 2.4 Hz, H-6 pyrazine), 9.27 (1H, s, H-3 pyrazine), 12.32 (1H, s, CONH); MS (EI, m/z): 380 [M⁺], 139, 123, 111, 80, 52.
4-(E)-(Pyrazine-2-carboxylimino)methyl[phenyl]

3-bromobenzoate (4e)

Colour: white crystals; yield: 0.55 g, 1.3 mmol, 44%; Rf: 0.5 (40% acetone in n-hexane); mp 252–260 °C; IR (v, cm⁻¹): 3292, 1732, 1674, 1591, 1253, 1197, 1012, 738; ¹H NMR (400 MHz, DMSO): δ 7.42 (2H, d, J = 8.4 Hz, H-2,2'), 7.70 (2H, d, J = 8.4 Hz, H-1,1'), 7.84 (2H, d, J = 8.4 Hz, H-4,5'), 8.15 (2H, d, J = 8.4 Hz, H-3,6'); 8.68 (1H, s, HNC=N), 8.80 (1H, d, J = 2.4 Hz, H-5 pyrazine), 8.93 (1H, d, J = 2.4 Hz, H-6 pyrazine), 9.27 (1H, s, H-3 pyrazine), 12.32 (1H, s, CONH); MS (El, m/z): 380 [M⁺], 139, 123, 111, 80, 44.

4-(E)-(Pyrazine-2-carboxylimino)methyl[phenyl]

4-bromobenzoate (4f)

Colour: white shiny crystals; yield: 0.92 g, 2.3 mmol, 77%; Rf: 0.41 (40% acetone in n-hexane); mp 253–260 °C; IR (v, cm⁻¹): 3302, 1728, 1678, 1602, 1257, 1199, 1020, 721; ¹H NMR (400 MHz, DMSO): δ 7.43 (2H, d, J = 8.4 Hz, H-2,2'), 7.64–7.68 (1H, m, H-3), 7.82–7.85 (3H, m, H-4,5,6), 8.10 (2H, d, J = 8.4 Hz, H-1,1'), 8.68 (2H, s, HNC=N, H-6 pyrazine), 9.13 (1H, s, H-3 pyrazine), 12.25 (1H, s, CONH); MS (El, m/z): 394 [M⁺], 139, 121, 111, 94, 75.

4-(E)-(5-Methylpyrazine-2-carboxylimino)methyl[phenyl]

3-chlorobenzoate (4i)

Colour: Lemon green powder; yield: 0.92 g, 2.3 mmol, 77%; Rf: 0.42 (40% acetone in n-hexane); mp 250–257 °C; IR (v, cm⁻¹): 3302, 1728, 1678, 1560, 1261, 1012, 752; ¹H NMR (400 MHz, DMSO): δ 7.43 (2H, d, J = 8.4 Hz, H-2,2'), 7.64–7.68 (1H, m, H-3), 7.82–7.85 (3H, m, H-4,5,6), 8.10 (2H, d, J = 8.4 Hz, H-1,1'), 8.68 (2H, s, HNC=N, H-6 pyrazine), 9.13 (1H, s, H-3 pyrazine), 12.25 (1H, s, CONH); MS (El, m/z): 394 [M⁺], 139, 121, 111, 94, 75.
Results and discussion

The target compounds (4a–4l) were successfully synthesized by reacting hydrazides (1 and 2) with the esters (3a–3f) formed themselves by the reaction of 4-hydroxybenzaldehyde with differently substituted benzoyl chlorides (Scheme 1).

Synthesis of the target compounds was carried out according to scheme 1. Hydrazides 1 and 2 were synthesized following the literature known method [24]. The esters (3a–3f) were synthesized by reacting 4-hydroxybenzaldehyde with different halogenated benzoyl chlorides in an equimolar ratio. Ranges for the C=O moiety of the ester linkage in the IR spectra of different esters were observed at 1728–1745 cm$^{-1}$ while for its C–O linkage the peaks were noticed at 1253–1265 cm$^{-1}$. Similarly, aldehydic C=O bond displayed the peaks in the range of 1683–1699 cm$^{-1}$ in different esters. C–X (X = halogens) bonds gave their peaks at 513–1207 cm$^{-1}$. Further confirmation to the successful synthesis of the esters was made with NMR studies and the data was consistent with the literature known data [33–35].

The synthesized esters were treated with the hydrazides 1 and 2 in an equimolar ratio resulting in the target iminobenzoates (4a–4l) in good to excellent yields. Their successful synthesis was confirmed using different spectroanalytical techniques. In the IR spectra, prominent peaks were observed for the NH group of amide linkages in the range of 3284–3304 cm$^{-1}$ while its carbonyl moiety (C=O) displayed peaks in the range of 1670–1683 cm$^{-1}$. The carbonyl group of the ester functionality in different iminobenzoates gave very strong peaks in the range of 1716–1743 cm$^{-1}$. The peaks for the aldehydic moiety were not observed in the final products after being converted to the imine (C=N) group which is also a strong proof for the successful synthesis of the target compounds. Peaks for the new imine functionality were observed in the range of 1560–1610 cm$^{-1}$ in different final products. NMR studies further confirmed the successful synthesis of our target compounds. The proton of the newly formed azomethine (HC=N) functionality resonated in the proton NMR spectra in the

![Scheme 1](image-url)

Scheme 1 Synthesis of extended iminobenzoates with terminal pyrazine moieties

$\text{CHO} + \text{COCl} \rightarrow \text{Et}_3\text{N} \rightarrow \text{THF} \rightarrow \text{OHC} + \text{O} \rightarrow \text{CH}_3\text{OH} \rightarrow \text{N} \rightarrow \text{N} \rightarrow \text{R}

3a: X = 2-F
3b: X = 2-Cl
3c: X = 3-Cl
3d: X = 4-Cl
3e: X = 3-Br
3f: X = 4-Br

4a: R = H; X = 2-F
4b: R = H; X = 2-Cl
4c: R = H; X = 3-Cl
4d: R = H; X = 4-Cl
4e: R = H; X = 3-Br
4f: R = H; X = 4-Br
4g: R = CH$_3$; X = 2-F
4h: R = CH$_3$; X = 2-Cl
4i: R = CH$_3$; X = 3-Cl
4j: R = CH$_3$; X = 4-Cl
4k: R = CH$_3$; X = 3-Br
4l: R = CH$_3$; X = 4-Br
range of 8.68–8.69 ppm. Similarly, the proton of the amide linkage gave prominent resonance in the range of 12.24–12.36 ppm.

Mass spectra (EIMS) displayed the exact molecular ion peaks for all the synthesized compounds while elemental analysis (Table 1) further aided in the confirmation of the successful synthesis of the target molecules.

X-ray diffraction analysis stamped well the successful synthesis of the final compounds. Figure 1 and Table 2 shows the XRD structures and main structural parameters of compounds 4d and 4j—a further proof to the successful synthesis of these compounds.

Both structures show similar spatial conformation, but with different structural behavior for each side of the central phenyl group (Fig. 1). The pyrazine ring and carbohydrazide system are almost coplanar, with calculated dihedral angles between mean planes of 9.63° and 9.35° for compounds 4d and 4j, respectively, and these groups are also coplanar with respect to central phenyl ring. On the other side of the molecule, the dihedral angles between mean planes of central phenyl ring and benzoate moiety is 48.23° for 4d of 56.25° for 4j. Packing of 4d is governed by weak hydrogen bond, which builds a one-dimensional polymeric structure parallel to [100] direction, and by π–π-stacking interactions between two units of neighboring pyrazine rings intercalated by one central phenyl ring, forming a layer parallel to crystallographic plane (Fig. 1). In the case of 4j, packing is

Compound	Molecular formula	Molecular weight	Calculated (%)	Found (%)				
			C	H	N	C	H	N
4a	C_{19}H_{13}FN_{4}O_{3}	364.33	62.64	3.60	15.38	62.83	3.78	15.10
4b	C_{19}H_{13}ClN_{4}O_{3}	380.78	59.93	3.44	14.71	59.64	3.08	14.89
4c	C_{19}H_{13}ClN_{4}O_{3}	380.78	59.93	3.44	14.71	60.13	3.21	14.93
4d	C_{19}H_{13}ClN_{4}O_{3}	380.78	59.93	3.44	14.71	60.30	3.70	14.84
4e	C_{19}H_{13}ClN_{4}O_{3}	425.24	53.67	3.08	13.18	53.58	2.90	13.32
4f	C_{19}H_{13}BrN_{4}O_{3}	425.24	53.67	3.08	13.18	53.79	3.21	13.35
4g	C_{20}H_{15}FN_{4}O_{3}	378.36	63.49	4.00	14.81	63.67	4.19	14.69
4h	C_{20}H_{15}ClN_{4}O_{3}	394.81	60.84	3.83	14.19	60.68	3.59	14.40
4i	C_{20}H_{15}ClN_{4}O_{3}	394.81	60.84	3.83	14.19	60.72	3.97	14.51
4j	C_{20}H_{15}ClN_{4}O_{3}	394.81	60.84	3.83	14.19	61.13	4.09	14.01
4k	C_{20}H_{15}BrN_{4}O_{3}	439.26	54.69	3.44	12.75	54.38	3.35	12.98
4l	C_{20}H_{15}BrN_{4}O_{3}	439.26	54.69	3.44	12.75	54.82	3.71	12.53

Fig. 1 X-ray diffraction structures of compounds 4d and 4j
mainly governed π–π-stacking interactions, which were observed between neighboring pyrazine rings forming pairs of molecules related by center of symmetry (Fig. 2).

Conclusion

The novel iminobenzoates with terminal pyrazine moieties were successfully synthesized while using easily available starting materials. The synthesized compounds were characterized with the help of different spectroanalytical techniques (IR, MS, NMR CHNS, and XRD). The synthesis may provide a useful route to extended π-conjugated systems having central pyrazine moieties in their backbone. Intramolecular charge transfer (ICT) resulted due to the highly π-electron deficient nature of pyrazines would ultimately cause these compounds luminescent. These compounds may also display LC
properties if central pyrazines are properly substituted on both the sides.

Authors’ contributions
MA devised, supervised the whole work and wrote the manuscript. AJB run and interpreted the XRDs and contributed to manuscript writing. All the other authors ZP, SH, MRS, MT, GD, MS, MTJ, and MA contributed to one and/or other part of experimental and spectroscopic studies. All authors read and approved the final manuscript.

Author details
1 Medicinal Botanic Centre PCSIR Labs Complex, University Road, Peshawar 25120, Pakistan. 2 Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan. 3 Departamento de Química, Universidade Federal
References

1. Bartln GB (1982) In chemistry of heterocyclic compounds, vol 41. Wiley, New York.

2. Mangalagiu I (2011) Recent achievements in the chemistry of 1,2-diazines. Curr Org Chem. https://doi.org/10.2174/1385272711794519050

3. Brown J (1962) In chemistry of heterocyclic compounds, vol 16. Wiley, New York.

4. Castle RN (1962) In chemistry of heterocyclic compounds, vol 23. Wiley, New York.

5. Pettit GR, Mendonca RF, Knight JC, Pettit RK (2011) The cephalostatins. 21. Synthesis of bis-sterylaldehyde pyrazine rhamnosides. J Nat Prod. https://doi.org/10.1021/np200411p

6. Moser BR (2008) Review of cytotoxic cephalostatins and ritterazines: isolation and synthesis. J Nat Prod. https://doi.org/10.1021/np070536z

7. Takahashi Y, Inuma Y, Kubota T, Tsuda M, Sekiguchi M, Mikami Y, Fromont J, Kobayashi JI (2011) Hytrosieragamines A and B, new alkaloids from the sponge Hyrtiosa species. Org Lett. https://doi.org/10.1021/ol102867x

8. Maier HG (1970) Volatile flavoring substances in foodstuffs. Angew Chem Int Ed. https://doi.org/10.1002/anie.197009171

9. Sloat D, Hofman HJ (1975) Alkylpyrazines in emmental cheese. J Agric Food Chem. https://doi.org/10.1021/jf60198a027

10. Flament I, Kohler M, Aschiero R (1976) Sur l’arôme de viande de boeuf grillée. Dihydro-6,7-5Hcyclopenta[b]pyrazines, identification et mode de formation. Helv Chim Acta. https://doi.org/10.1002/hc.19760507073

11. Meher CP, Rao AM, Omar Md (2013) Piperazine–pyrazine and their multiple biological activities. Asian J Pharm Sci Res 3:43–60

12. Chandrakant GB, Naresh JG (2004) Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2004.02.024

13. Lingappa M, Kikkeri NM (2011) Synthesis, antimicrobial and antioxidant activities of 1-[(4-benzodioxane-2-carbonyl)pyrrolazine derivatives. Eur J Chem. https://doi.org/10.10515/eurjchem.2.2.193-199.282

14. Pranab G, Golum RM, Madhumitha C, Amitava M, Aniruddha S (2011) Microwave assisted one pot synthesis of pyrazine derivatives of pentacyclic triterpenoids and their biological activity. Ind J Chem 50:1519–1523

15. Martin D, Jan Z, Zdenek O, Jim K, Marcela V, Vladimir B, Jiri D, Josef J, Kata-rina K (2010) Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxanilides. Molecules. https://doi.org/10.3390/molecules15128567

16. Matsumoto M, Sano Y, Ogasawara M, Nagashi T, Yoshinaga S (1992) Liquid crystallinity of the unsymmetrical substituted pyrazine derivatives with alkoxy chain length. Chem Express 7:857

17. Brown JW, Hurst DT, O’Donovan JP, Coates D (1994) Some three-ring esters containing a pyrazine ring. A comparison of their liquid crystal properties. Liq Cryst. https://doi.org/10.1080/02678299508031097

18. Rusjan M, Donnio B, Guillon D, Cukemik FD (2002) Liquid-crystalline materials based on rhodium carboxyate coordination polymers: synthesis, characterization and mesomorphic properties of tetraalkoxybenzoato(dipheny) complexes and their pyrazine adducts. Chem Mater. https://doi.org/10.1021/cm010999s

19. Frederic T, Arnaut M (2003) Regioselective synthesis and metallation of tributylstannylnifluoropyrazines. Application to the synthesis of some new fluorinated liquid crystals diazines. Part 34. Tetrahedron. https://doi.org/10.1016/s0040-4020(03)00849-4

20. Brown JW, Hurst DT, O’Donovan JP, Coates D, Bunning JD (1995) Liquid crystal properties of some substituted pyrazines. Liq Cryst. https://doi.org/10.1080/02678299508031097

21. Hameed S, Ahmad M, Tahir MN, Shaq MA, Shad HA (2013) M(4)-1-(2-(4-Bromobenzylidene)pyrazine-2-carboxyhydrazide. Acta Cryst. https://doi.org/10.1107/s1600536813016917

22. Hameed S, Ahmad M, Tahir MN, Israr M, Anwar M (2013) M(4)-1-(2-(2-Hydroxyphenyl)ethylidyne)pyrazine-2-carboxyhydrazide. Acta Cryst. https://doi.org/10.1107/s1600536813022137

23. Ahmad M, Hameed S, Tahir MN, Israr M, Israr M (2013) M(4)-2-(3-Bromobenzylidene)pyrazine-2-carboxyhydrazide. Acta Cryst. https://doi.org/10.1107/s1600536813027426

24. Ahmad M, Hameed S, Tahir MN, Israr M, Anwar M, Shaq MA, Khan SA, Din G (2016) Synthesis, characterization and biological evaluation of some 5-methylpyrazine carboxyhydrazide based hydrazones. Pak J Pharm Sci 29:811–817

25. Chesseeman GWH, Werstuk ESG (1972) Recent advances in pyrazine chemistry. Adv Heterocycl Chem 14:99–209

26. Touidc F, Heynderickx A, Plei N, Turk A, Queguiner G (2003) Regioselective synthesis and metallation of tributylstannylnifluoropyrazines. Application to the synthesis of some new fluorinated liquid crystals diazines. Part 34. Tetrahedron. https://doi.org/10.1016/s0040-4020(03)00849-4

27. Chevallier F, Mongin F (2008) Functionalization of diazines and benzo derivatives through deprotonated intermediates. Chem Soc Rev. https://doi.org/10.1039/b709416g

28. Gohi P, Mandal A (2012) Greener approach toward one pot route to pyrazine synthesis. Green Chem Lett Rev. https://doi.org/10.1080/17518122.2011.585197

29. Baillie SE, Blair VL, Blakemore DC, Hay D, Kennedy AR, Pryde DC, Hevia E (2002) Chemical modification of coumarin dimer and HIV-1 integrase inhibitory activity. Org Lett. https://doi.org/10.1021/ol020277d

30. Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst. https://doi.org/10.1107/s090744490850362X

31. Pc-M MAO, Mouscadet J-F, Leh H, Auclair C, Hsu L-Y (2002) Chemical modification of coumarin dimer and HIV-1 integrase inhibitory activity. Org Lett. https://doi.org/10.1021/ol020277d

32. Sheldrick GM (2008) A short history of SHELX. Acta Cryst. https://doi.org/10.1107/s090744400804362x

33. Kiec-Kononowicz K, Karolak-Wojciechowska J, Michalak B, Kala E, Schuchacer B, Muller EC (2004) Imidazo[2,1-b][1,4]thiazepines: synthesis, structure and evaluation of benzodiazipine receptor binding. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2003.11.009

34. Muhammad K, Hameed S, Tan J, Liu R (2011) Facile synthesis and mesomorphic properties of 4-hydroxybutyl-4-(4-alkoxybenzoyloxy) benzocate mesogens. Liq Cryst. https://doi.org/10.1080/02678292.2010.547610