A combinatorial identity on Galton-Watson process

Linyuan Lu ∗ Arthur L.B. Yang †

June 30, 2015

Abstract

Let $f(m, c) = \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}e^{-c(km+1)/m}}{m^k k!}$. For any positive integer m and positive real c, the identity $f(m, c) = f(1, c)^{1/m}$ arises in the random graph theory. In this paper, we present two elementary proofs of this identity: a pure combinatorial proof and a power-serial proof. We also proved that this identity holds for any positive reals m and c.

1 Introduction

Erdős and Rényi wrote a series of remarkable papers on the evolution of random graphs around 1960 [1, 2]. Erdős and Rényi first considered the uniform model $G_{n,f}$ where a random graph G is selected uniformly among all graphs with n vertices and f edges. It is remarkable that phase transition happens as f passes through the threshold $f \approx n/2$. It is convenient to write $f = cn/2$ where c is the average degree. When $0 < c < 1$, almost surely all connected components are of order $O(\ln n)$. When $c = 1$, the largest component has the order of $\Theta(n^{2/3})$. When $c > 1$, almost surely there is a unique giant component of order $(g(c) + o(1))n$, where

$$g(c) = 1 - \sum_{k=0}^{\infty} \frac{(k + 1)^{k-1}c^k}{k!} e^{-(k+1)c}.$$

∗University of South Carolina, Columbia, SC 29208, (lu@math.sc.edu). This author was supported in part by NSF grant DMS 1300547 and ONR grant N00014-13-1-0717.
†Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China (yang@nankai.edu.cn).
Here the term \(\frac{(k+1)^{k-1}c^k e^{-(k+1)c}}{k!}\) in the summation above is the probability that a random vertex belongs to a connected component of order \(k + 1\).

For a positive integer \(m\) and a positive real \(c\), define
\[
f(m, c) = \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}c^k}{m^k k!} e^{-(km+1)/m}.
\]

Observe that \(f(1, c) = 1 - g(c)\). So \(f(1, c)\) measures the probability that a vertex \(v\) is in small components. This probability can be computed using the Branching Process, which reveals the neighbors \(v\), and the neighbors of its neighbors iteratively, until the whole component containing \(v\) is revealed. This branching process can be coupled by the Poisson Process, a special case of a Galton-Watson process. In general, a Galton-Watson process is a stochastic process \(\{Y_t\}_{t=0}^{\infty}\) which evolves according to the recursive formula
\[
Y_t = Y_{t-1} - 1 + Z_t, \quad \text{for } t \geq 1, \tag{1.1}
\]
where \(Y_0 = 1\). The Poisson Process is a special Galton-Watson process with \(Z_t\) ensembling the Poisson distribution (\(\Pr(Z_t = k) = \frac{c^k e^{-c}}{k!}\) for \(k = 0, 1, 2 \ldots\)). For simplicity, let \(z = f(1, c)\), be the probability that the Poisson Process stops after finite steps. Suppose that the root node has \(k\) children nodes. The subprocesses starting at each child node are independent to each other, and are identical to the main process on the distribution. Thus the probability that a subprocess terminates in finite steps is also \(z\). By the independency, all \(k\) subprocesses terminates in some finite steps is exactly \(z^k\). This leads the following recursive formula for \(z\):
\[
z = \sum_{k=0}^{\infty} \Pr(Z_1 = k) z^k
= \sum_{k=0}^{\infty} \frac{c^k e^{-c}}{k!} z^k
= e^{-c(1-z)}. \tag{1.2}
\]

In summary, we have the following proposition from the random graph theory.

Proposition 1.1. If \(0 \leq c \leq 1\), then \(f(1, c) \equiv 1\). If \(c > 1\), then \(f(1, c)\) is the unique root of Equation (1.2) in the interval \((0, 1)\).

Erdős and Rényi’s classical work on random graphs can be generalized to random hypergraphs. Let \(H_{n,f}^r\) be the random \(r\)-uniform hypergraph such that each \(r\)-uniform hypergraph with \(n\) vertices and \(f\) edges is selected
with the same probability. The phase transition of the random hypergraph $H_{n,f}^r$ was analyzed by Schmidt-Pruzan-Shamir [7] and Karoński-Luczak [3]. Namely, they proved that for $f < \frac{n}{r(r-1)}$, almost surely the largest connected component in $H_{n,f}^r$ is of size $O(\ln n)$; for $f \sim \frac{n}{r(r-1)}$, almost surely the largest connected component is of order $\Theta(n^{2/3})$; for $f > \frac{n}{r(r-1)}$, almost surely there is a unique giant connected component. Write $f = c \frac{r(r-1)}{n}$ so that $c = 1$ is the threshold. Then the order of the unique giant connected component is $(g_r(c) + o_n(1))n$, where

$$g_r(c) = 1 - \sum_{k=0}^{\infty} \frac{(k(r-1) + 1)^{k-1}e^k}{(r-1)^kk!}e^{-(kr-k+1)c}.$$

Setting $m = r - 1$, we observe that $g_r(c) = 1 - f(m,c)$. So $f(m,c)$ is the probability that a vertex v belongs to small components in $H_{n,f}^r$ (with $r = m + 1$ and $f = c \frac{n}{(m+1)m}$).

Similarly, the branching process on $H_{n,f}^r$ can be coupled by an m-fold Poisson Process: a special Galton-Watson process with Z_t ensembling the following m-fold Poisson distribution with the expected value c:

$$\Pr(Z_t = k) = \begin{cases} e^{-c \frac{(c/m)^{k/m}}{(k/m)!}} & \text{if } k \text{ is a multiple of } m \\ 0 & \text{otherwise.} \end{cases}$$

Let $y = f(m,c)$. A similarly argument shows that y satisfies the following recursive formula:

$$y = \sum_{k=0}^{\infty} \Pr(Z_1 = k)y^k
= \sum_{j=0}^\infty \Pr(Z_1 = mj)y^{mj}
= \sum_{j=0}^\infty e^{-c \frac{(c/m)^j}{j!}}y^{mj}
= e^{-c(1-y^m)/m}. \quad (1.3)$$

This leads the following proposition for $f(m,c)$:

Proposition 1.2. Suppose that m is a positive integer. If $0 \leq c \leq 1$, then $f(m,c) \equiv 1$. If $c > 1$, then $f(m,c)$ is the unique root of Equation (1.3) in the interval $(0,1)$.

From equation (1.3), we have

$$y^m = e^{-c(1-y^m)}. \quad (1.4)$$
Setting $z = y^m$, then y satisfies Equation (1.2). Thus we have the following identity.

Theorem 1.3. For any integer $m \geq 1$ and any real $c > 0$, we have

$$f(m, c)^m = f(1, c).$$

The goal of this paper is to give two elementary proofs of this identity without using any random graph theory. In section 2, we will give a pure combinatorial proof. In section 3, we will give a power-series proof. In the last section, we will extend this identity to any real $m > 0$.

2 Useful Lemmas

2.1 Convergence of $f(m, c)$

Lemma 2.1. For any positive reals m and c, the series in the definition of $f(m, c)$ converges. Moreover, $f(m, c)$ is a continuous function.

Proof. We can rewrite $f(m, c)$ as follows:

\[
f(m, c) = \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}e^k}{m^k k!} e^{-(kc+c/m)}
\]

(2.1)

\[
e^{-c/m} \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}}{m^k k!} e^{-kc}
\]

(2.2)

\[
e^{-c/m} \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}}{m^k k!} (ce^{-c})^k.
\]

(2.3)

Let $g(m, x)$ be the following power series:

\[
g(m, x) = \sum_{k=0}^{\infty} \frac{(km + 1)^{k-1}}{m^k k!} x^k.
\]

(2.4)

One can easily show that the radius of convergence of $g(m, x)$ is $\frac{1}{e}$. Also using the Sterling formula $k! = (1 + o_k(1)) \sqrt{2\pi} k^{k+1/2} e^k$, one can show that $g(m, x)$ also absolutely converges at $x = \pm \frac{1}{e}$. Thus $g(m, x)$ converges for all $x \in [-1/e, 1/e]$.

Note that for all real $c > 0$, $ce^{-c} \leq 1/e$. This implies the convergence of the infinite series in $f(m, c)$. The continuity of $f(m, c)$ is deduced from the continuity of $g(m, x)$ for all $m > 0$ and all $x \in [-1/e, 1/e]$. \blacksquare
2.2 Labeled trees and rooted m-forest

Cayley’s formula states that for any positive integer n, the number of trees on n labeled vertices is n^{n-2}.

A rooted forest on $[n]$ is a graph on the vertex set $\{1, 2, \ldots, n\}$ for which every connected component is a rooted tree. It is well-known that there are $(n + 1)^{n-1}$ rooted forests on $[n]$.

A rooted m-forest is a rooted forest on vertices $\{1, 2, \ldots, n\}$ with edges colored with the colors $0, 1, \ldots, m - 1$. There is no additional restriction on the possible colors of the edges. This definition is due to Stanley, see [10, 8]. It is easy to see by standard enumerative arguments that there are $(mn + 1)^{n-1}$ rooted m-forests on $[n]$.

Lemma 2.2. For any two positive integers m and n, we have

$$\sum_{k_1 + k_2 + \cdots + k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} \prod_{i=1}^{m}(k_i m + 1)^{k_i - 1} = (n + 1)^{n-1}m^n. \quad (2.5)$$

Proof. Consider the labeled trees on $n + 1$ vertices $\{0, 1, 2, \ldots, n\}$ with edges colored with the colors $0, 1, \ldots, m - 1$. It is clear that there are $(n + 1)^{n-1}m^n$ such trees. Each labeled tree can be considered as a rooted tree with the root 0. By deleting all the edges away from the root, taking the children of 0 as roots, and grouping the subtrees by the colors of the edges linked with 0, we get a collection of rooted m-forests. This completes the proof. \qed

Following Yan [11], let B_n be the set of all sequences (S_1, S_2, \ldots, S_q) of length q such that

(1) each S_i is a rooted p-forest,

(2) S_i and S_j are disjoint if $i \neq j$, and

(3) the union of the vertex sets of S_1, S_2, \ldots, S_a is $[n]$.

Alternatively, B_n can be considered as the set of rooted forests on $[n]$ with root vertices colored with $0, 1, \ldots, q - 1$ and non-root vertices colored with $0, 1, \ldots, p - 1$. The elements of B_n are called rooted (p, q)-forests.

As remarked by Yan, the cardinality of the set B_n is $q(q + np)^{n-1}$. This result can be obtained by using a simple generalization of the Prüfer code on rooted forests [9, Chap. 5.3].

Lemma 2.3. For any positive integers n, p, and q, we have

$$\sum_{j_1 + j_2 + \cdots + j_p = n} \binom{n}{j_1, j_2, \ldots, j_p} \prod_{t=1}^{p} q(j_tp + q)^{j_t - 1} = \sum_{i_1 + i_2 + \cdots + i_q = n} \binom{n}{i_1, i_2, \ldots, i_q} p^n \prod_{t=1}^{q}(i_t + 1)^{i_t - 1}. \quad (2.6)$$
Proof. Let A_n denote the set of rooted forests on $[n]$ with vertices colored with $0, 1, \ldots, p-1$ and root vertices also colored with $0, 1, \ldots, q-1$. (Namely, each root will have a pair of two colors (i, j), and each non-root will have only one color i, for some $i \in \{0, 1, \ldots, p-1\}$ and $j \in \{0, 1, \ldots, q-1\}$). There are two ways to count A_n:

1. For each colored forest in A_n, we group trees according to the first color of their roots. There are $(\frac{n}{j_1, j_2, \ldots, j_p})$ ways to divide the vertex set $[n]$ into p blocks $A_{n1}, A_{n2}, \ldots, A_{np}$ with respective size j_1, j_2, \ldots, j_p. Each A_{nt} is a rooted (p, q)-forest. By Yan’s result, the number of choices of A_{nt} with size j_t is given by $q(j_t p + q)^{j_t - 1}$. Thus the total number of objects in A_n is

$$\sum_{j_1+j_2+\ldots+j_p=n} \binom{n}{j_1, j_2, \ldots, j_p} \prod_{t=1}^{p} q(j_t p + q)^{j_t - 1}.$$

2. For each colored forest in A_n, we group trees according to the second color of their roots. There are $(\frac{n}{i_1, i_2, \ldots, i_q})$ ways to divide the vertex set $[n]$ into q blocks $A'_{n1}, A'_{n2}, \ldots, A'_{nq}$ with respective size i_1, i_2, \ldots, i_q. Each A'_{nt} is a rooted (p, p)-forest, which has $p(i_t p + p)^{i_t - 1} = p^2(i_t + 1)^{i_t - 1}$ choices. Thus the total number of objects in A_n is

$$\sum_{i_1+i_2+\ldots+i_q=n} \binom{n}{i_1, i_2, \ldots, i_q} \prod_{t=1}^{q} p(i_t p + p)^{i_t - 1}.$$

The identity follows since both sides count the same set A_n.

3 Two elementary proofs of Theorem 1.3

3.1 A Combinatorial Proof

Proof. Note that $f(m, c) = e^{-c/m} g(m, ce^{-c})$. To show $f(m, c)^m = f(1, c)$, it is sufficient to show $g(m, x)^m = g(1, x)$ for all $x \in [0, 1/e]$, namely

$$\left(\sum_{k=0}^{\infty} (km + 1)^{k-1}/(m!k!)(x)^k\right)^m = \sum_{k=0}^{\infty} (k + 1)^{k-1}/k!x^k. \quad (3.1)$$

Taking the coefficients of x^n on both sides, we obtain that

$$\sum_{k_1+k_2+\ldots+k_m=n} \prod_{i=1}^{m} (k_im + 1)^{k_i-1}/(m!k_i)! = (n + 1)^{n-1}/n!, \quad (3.2)$$
which can be written as
\[
\sum_{k_1+k_2+\ldots+k_m=n} \binom{n}{k_1, k_2, \ldots, k_m} \prod_{i=1}^{m}(k_i m + 1)^{k_i - 1} = (n + 1)^{n-1} m^n. \tag{3.3}
\]

By Lemma 2.2 the proof is complete. \hfill \square

3.2 A Power-Series Proof

Here we use the following version of the well-known Lagrange inversion formula [5]:

Lagrange inversion formula

Suppose that \(z \) is a function of \(x \) and \(y \) in terms of another analytic function \(\phi \) as follows:

\[
z = x + y \phi(z).
\]

Then \(z \) can be written as a power series in \(y \) as follows:

\[
z = x + \sum_{k=1}^{\infty} \frac{y^k}{k!} D^{(k-1)} \phi^k(x)
\]

where \(D^{(t)} \) denotes the \(t \)-th derivative.

Lemma 3.1. The function \(f(m, c) \) satisfies Equation (1.4).

Proof. Write Equation (1.4) as

\[
z = e^{-c/m} e^{cz/m}.
\]

Applying the Lagrange inversion formula with \(x = 0 \), \(y = e^{-c/m} \), and \(\phi(z) = e^{cz/m} \). Note that \(\phi^k(z) = e^{kc z/m} = \sum_{j=0}^{\infty} (kc/m)^j z^m / j! \). Thus,

\[
D^{(k-1)} \phi^k(0) = \begin{cases} (k - 1)! (kc/m)^j / j! & \text{if } k = mj + 1 \\
0 & \text{otherwise.} \end{cases}
\]

We have

\[
z = x + \sum_{k=1}^{\infty} \frac{y^k}{k!} D^{(k-1)} \phi^k(x)
\]

\[
\begin{align*}
\sum_{j=0}^{\infty} & \frac{e^{-c(mj+1)/m} (mj)! ((mj+1)c/m)^j}{(mj+1)! j!} \\
= & \sum_{j=0}^{\infty} \frac{(mj+1)^{j-1}}{m^j j!} \cdot \epsilon^j e^{-c(mj+1)/m} \\
= & f(m, c).
\end{align*}
\]
Proof. Proof of Theorem 1.3: Let \(z = f(m, c) \). By Lemma 3.1, we have
\[
z = e^{-(1-z^m)c/m}.
\]
Thus
\[
z^m = e^{-(1-z^m)c}.
\]
Applying Lemma 3.1 again, we get
\[
z^m = f(1, c).
\]

4 Extending Theorem 1.3 to Real \(m \)

We will extend Theorem 1.3 to real \(m \) as follows.

Theorem 4.1. For any two positive reals \(m \) and \(c \), we have
\[
f(m, c)^m = f(1, c).
\]

Proof. Observe that \(f(m, c) \) is continuous on \(m \). It is sufficient to show that \(f(m, c)^m = f(1, c) \) holds for rational \(m > 0 \). Equivalently, it suffices to show that \(g(m, x)^m = g(1, x) \), namely
\[
\left(\sum_{k=0}^{\infty} (km + 1)^{k-1}/(m^k k!)(x)^k \right)^m = \sum_{k=0}^{\infty} (k+1)^{k-1}/k!x^k. \tag{4.1}
\]
Suppose that \(m = p/q \). Then
\[
\left(\sum_{k=0}^{\infty} (kp + q)^{k-1}/(p^k k!)(x)^k \right)^p = \left(\sum_{k=0}^{\infty} (k+1)^{k-1}/k!x^k \right)^q. \tag{4.2}
\]
Comparing the coefficients of \(x^n \) on both sides, we obtain
\[
\sum_{j_1+j_2+\cdots+j_p=n} \prod_{t=1}^{p} (j_t p + q)^{j_t-1}/(p^j j_t!) = \sum_{i_1+i_2+\cdots+i_q=n} \prod_{t=1}^{q} (i_t + 1)^{i_t-1}/(i_t!).
\]
or equivalently
\[
\sum_{j_1+j_2+\cdots+j_p=n} \left(\sum_{j_1, j_2, \ldots, j_p} \prod_{t=1}^{p} q(j_t p + q)^{j_t-1} \right)^p = \sum_{i_1+i_2+\cdots+i_q=n} \left(\sum_{i_1, i_2, \ldots, i_q} \prod_{t=1}^{q} (i_t + 1)^{i_t-1} \right)^p.
\]
By Lemma 2.3 this completes the proof.
References

[1] P. Erdős and A. Rényi, On random graphs, I, *Publ. Math. Debrecen* 6 (1959), 290-297.

[2] P. Erdős and A. Rényi, On the evolution of random graphs, *Magyar Tud. Akad. Mat. Kutató Int. Közl.* 5 (1960), 17-61.

[3] M. Karoński and T. Łuczak, The phase transition in a random hypergraph, *Journal of Computational and Applied Mathematics*, 142 (2002), 125–135.

[4] M. Krivelevich and B. Sudakov, The phase transition in random graphs - a simple proof, *Random Structures and Algorithms*, 43 (2013), 131–138.

[5] Lagrange, Joseph-Louis, Nouvelle méthode pour résoudre les équations littérales par le moyen des séries”, *Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin* 24 (1770), 251326.

[6] Sebastián M. Ruiz, An algebraic identity leading to Wilson’s theorem, Math. Gaz. 1996, P. 579.

[7] J. Schmidt-Pruzan and E. Shamir, Component structure in the evolution of random hypergraphs, *Combinatorica* 5 (1985), 81-94.

[8] Richard P. Stanley, Hyperplane arrangements, parking functions, and tree inversions, in *Mathematical Essays in Honor of Gian-Carlo Rota* (B. Sagan and R. Stanley, eds.), Birkhäuser, Boston/Basel/Berlin, 1998, pp. 259-375.

[9] Richard P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, New York/Cambridge, 1999.

[10] Catherine H. Yan, Generalized tree inversions and k-parking functions, J. Combinatorial Theory, Ser. A, 79(1997), 268–280.

[11] Catherine H. Yan, Generalized tree inversions and k-parking functions, Adv. in Appl. Math., 27(2001), 641–670.