1. Introduction

Soft magnetic materials are essential for increasing the efficiency of electrical and electronic equipment, such as transformers, memories, magnetic shields, and sensors [1,2]. Thereinto, Fe-based amorphous alloys have drawn much attention as a result of their outstanding soft magnetic performances, such as excellent saturation magnetization (B_s), high effective permeability, extremely low coercivity (H_c), and low core loss [3,4]. Fe-Si-B amorphous alloys are typically representative, with broad practical applications in transformers and inductors [5]. The newly developed Fe-P-C-B amorphous alloys have drawn more attention because of their superior comprehensive properties, including excellent soft magnetic properties, large electric resistivity, good processibility, and low cost [6–9]. For the green development of the next-generation devices, soft magnetic amorphous materials with lower H_c will play a significant role.

The chemical composition design has been widely applied in Fe-based amorphous alloys to improve the performance of glass-forming ability (GFA) and various properties. For this reason, multiple elements have been adopted to enhance B_s and decrease H_c values [10–12]. Typically, the addition of high-melting-point metals with large atoms, such as Mo, Nb, and W, can significantly affect the microstructure of the melt-spun alloys, which is helpful for obtaining good soft magnetic properties [13–15]. Tungsten, which shows the highest melting point among all metals, can strengthen thermal stability, extend the supercooled liquid region, and enhance the GFA of Fe-based amorphous alloys [16–19]. Moreover, W alloying can enhance the soft magnetic performances of Fe-based metallic glass and amorphous alloys. For example, the addition of the W element in Fe-Y-B amorphous alloys leads to low H_c values below 2 A/m [20]. With the addition of W, Fe$_{86}$Co$_{10}$Zr$_3$W$_4$B$_{20}$

Abstract: In this work, the thermal behavior, soft magnetic properties, and structure of Fe$_{66-x}$P$_{11}$C$_2$B$_7$W$_x$ ($x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2,$ and 4) amorphous alloys were researched by several experimental methods and ab initio molecular dynamics. The addition of W improved the thermal stability of the alloy system when the first onset crystallization temperature (T_{x1}) increased from 655 K to 711 K, significantly reduced the coercivity H_c and decreased the saturation magnetization B_s. The Fe$_{66.6}$P$_{11}$C$_2$B$_7$W$_{0.4}$ alloy showed optimal soft magnetic performance, with low H_c of 1.4 A/m and relatively good B_s of 1.52 T. The simulation results suggested that W atoms increased the distance of the neighboring Fe-Fe pair, reduced the coordination number, narrowed the gap between the spin-up and spin-down electrons of each atom, and decreased the average magnetic moment of the Fe atoms. This work demonstrates a micro-alloying strategy to greatly reduce H_c while maintaining high B_s.

Keywords: amorphous alloys; Tungsten addition; soft magnetic property; ab initio molecular dynamics simulation
showed a very low H_c of 1.4 A/m [21]. However, the influences of the W element on the Fe-P-based amorphous alloys, especially in newly developed Fe-P-C-B alloy systems, is unclear and has not been systematically studied.

In this work, the authors have attempted to investigate the soft magnetic performances and structure of the newly developed Fe-P-C-B amorphous alloys concerning W addition. The results suggest that the H_c of the Fe-P-C-B amorphous alloy decrease obviously with the minor addition of W. Moreover, the Vienna ab initio simulation package (VASP) was used to investigate the evolution of atomic and electronic structures caused by the composition adjustment.

2. Experimental

Alloys with nominal atomic compositions of $Fe_{86-x}P_{11}C_2B_1W_x$ ($x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, \text{ and } 4$) were prepared by the induction-melting method in an Ar atmosphere. The specific crude materials were as follows: Fe (99.9 wt.%), C (99.9 wt.%), W (99.95 wt.%), Fe-B prealloy (B: 20.0 wt.%), and Fe-P prealloy (P: 22.1 wt.%). The ingots were remelted many times to guarantee the uniformity of composition. Amorphous ribbons with a width of approximately 1.5 mm and a thickness of approximately 20 μm were produced by single roller melt-spinning method in an Ar atmosphere. The corresponding samples were annealed at different temperatures in evacuated and sealed quartz tubes in a muffle furnace (TKD-1400, Beijing, China) to obtain inner-stress relief samples. The annealing processes of ribbons were performed in the presence of Earth’s field, and no extra external field was applied during the annealing process.

D/max-2500 PC Rigaku X-ray diffractometer (XRD, D/MAX 2500pc, Tokyo, Japan) with Cu Kα radiation was used to investigate the amorphous nature of the melt-spun ribbons and the microstructure of annealed samples. The scanning range was from 30° to 90°, and the scanning rate was 2 degrees per minute. Thermodynamic parameters of melt-spun ribbons were identified by using a differential scanning calorimetry (DSC, PerkinElmer DSC 8000, Waltham, MA, USA) under an Ar gas flow with a heating rate of 0.33 K/s. The Archimedes principle has been used to measure the density of alloys at normal atmospheric temperatures. The hysteresis loops identified the B_s of the melt-spun and annealed ribbons, which were measured by Lakeshore 7407 vibrating sample magnetometer (VSM, Lake Shore 7407, Westerville, OH, USA) under an applied field of 800 kA/m. A DC B-H loop tracer (MATS-2010SA, Loudi, China) was used to measure the H_c of the ribbons under a field of 800 A/m. Moreover, the bright field and the high-resolution transmission electron microscope (HRTEM) microstructure of the samples were characterized via TEM (JEM-2100 F, Tokyo, Japan). The TEM samples were prepared by ion thinning. The magnetic domain structure was observed by the magneto-optical Kerr effect microscope.

By means of density functional theory, the structure of $Fe_{86-x}P_{11}C_2B_1$, $Fe_{85.5}P_{11}C_2B_1W_{0.5}$, and $Fe_{85}P_{11}C_2B_1W_1$ amorphous alloys was simulated by using the Vienna Ab initio simulation package (VASP) [22]. The projected augmented wave method was used to describe electron-ion interactions [23]. Exchange-correlation potentials were calculated by Perdew–Burke–Ernzerh mode with a generalized gradient approximation [24]. The primitive volume of the cubic periodic supercell containing 200 atoms was decided by the experimental density of $Fe_{86}P_{11}C_2B_1$, $Fe_{85.5}P_{11}C_2B_1W_{0.5}$, and $Fe_{85}P_{11}C_2B_1W_1$ amorphous alloys at a normal atmospheric temperature. The systems were melted and well equilibrated for 6000 steps (2 fs for each step) at 2000 K and subsequently quenched to 300 K at a cooling rate of 5×10^{14} K/s. In the end, the systems were equilibrated for 5000 steps at 300 K, and at least 1000 configurations were collected to analyze the structure.

3. Results and Discussion

3.1. Amorphous Nature and Thermal Behavior

In order to identify the optimal content of the W element in the Fe-P based amorphous alloys, $Fe_{86-x}P_{11}C_2B_1W_x$ ($x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, \text{ and } 4$) (also denoted as W_x
hereafter) ribbon samples were prepared. Figure 1a exhibits XRD patterns of all melt-spun ribbons with different proportions of W elements. All patterns show broad humps without undetectable crystalline features at the 2θ of about 45°, which indicates the amorphous nature of these samples.

![XRD patterns and DSC curves](image)

Figure 1. (a) XRD patterns and (b) DSC curves of the melt-spun Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ribbons.

As shown in Figure 1b, the crystallization of the melt-spun Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, and 4) amorphous alloys was investigated by DSC with a heating rate of 0.33 K/s. Each DSC curve exhibits two exothermic peaks with similar heat release, indicating a two-step crystallization process for these samples. It was reported that the first exothermic peak relates to the precipitation of the soft magnetic phase (α-Fe), while the second peak relates to the hard magnetic phase [25]. No distinct glass transition phenomenon can be observed for all the samples. The relevant thermal parameters, including the first crystallization onset temperature (T_{x1}), the second crystallization onset temperature (T_{x2}), and the temperature interval ΔT ($\Delta T = T_{x2} - T_{x1}$), are listed in Table 1. Moreover, it can be seen that T_{x1} (from 655K to 711 K) and T_{x2} (from 736 K to 773 K) rise with the addition of the W element. This shows that the content of W significantly affects the thermostability of the amorphous phase. Considering the ΔH_{mix} (enthalpy of mixing) of W-P, W-C, and W-B are -46.5 kJ/mol, -60 kJ/mol, and -31 kJ/mol, respectively [26], it is not surpris-
ing because the W atom can strengthen the cohesive energy through the formation of W-metalloid bonds within Fe-based amorphous alloys, which reduce the diffusion ability of metalloid elements in the amorphous structure and impede the precipitation of α-Fe from the amorphous phase [27].

Table 1. Thermal parameters of Fe_{86−x}P_{11}C_{2}B_{1}W_{x} amorphous alloys.

Alloys	Thermal Parameters			
	T_{x1} (K)	T_{x2} (K)	ΔT (K)	
Fe_{86}P_{11}C_{2}B_{1}	665	736	81	
Fe_{85.9}P_{11}C_{2}B_{1}W_{0.1}	661	746	84	
Fe_{85.8}P_{11}C_{2}B_{1}W_{0.2}	660	749	89	
Fe_{85.6}P_{11}C_{2}B_{1}W_{0.4}	680	758	78	
Fe_{85.4}P_{11}C_{2}B_{1}W_{0.6}	682	760	78	
Fe_{85.2}P_{11}C_{2}B_{1}W_{0.8}	687	763	76	
Fe_{85}P_{11}C_{2}B_{1}W_{1}	688	766	78	
Fe_{84}P_{11}C_{2}B_{1}W_{2}	692	768	76	
Fe_{82}P_{11}C_{2}B_{1}W_{4}	711	773	62	

3.2. Magnetic Properties and Microstructure Analysis

For magnetic Fe-based amorphous alloys, the soft magnetic performances can be enhanced after annealing at the proper temperature [28,29]. All samples were annealed at different annealing temperatures (T_{a}) for 10 min. After the annealing process, the magnetic performance and corresponding microstructure of Fe_{86−x}P_{11}C_{2}B_{1}W_{x} alloys were analyzed. All H_{c} curves exhibit V-shaped features, as shown in Figure 2a, which shows low H_{c} for T_{a} ≤ T_{x1} and two H_{c} maxima at low and high temperature ends. The high H_{c} of the melt-spun ribbons is considered to originate from the internal stress caused by rapid solidification during the melt-spinning process, which can be reduced by a proper annealing process [30]. When T_{a} is higher than T_{x1}, H_{c} increases rapidly when T_{a} is higher than T_{x1}, as a result of the rapid growth of α-Fe grains and the precipitation of Fe_{5}(P, C, B) compounds [31]. The appropriate addition of the W element can reduce the H_{c} values of Fe_{86−x}P_{11}C_{2}B_{1}W_{x} alloys. According to previous research, structural defects and surface irregularities have a great influence on H_{c} [32–34]. The addition of W may reduce the structural defects and surface irregularities of FePCB amorphous alloys, which lead to the reduction in H_{c} values. The lowest H_{c} value and corresponding T_{a} and B_{s} values for each alloy are listed in Table 2. Compared to the original Fe_{86}P_{11}C_{2}B_{1} alloy, W_{x} (≤2 at.%) alloys show lower H_{c} values after a proper annealing process. Specifically, the W_{0.4}, W_{0.6}, and W_{0.8} alloys exhibit relatively low H_{c} of 1.4 A/m, 1.9 A/m, and 1.6 A/m, respectively, when T_{a} is around T_{x}. In addition, the B_{s} of all alloys was also investigated at different annealing temperatures, as shown in Figure 2b. The B_{s} values monotonically decrease with the increase in W addition at most temperatures. These characteristics can be explained by the reduction in Fe content and the distance increase between Fe-Fe atoms caused by W addition [35].

Considering the relationships between magnetic domain structure and magnetic property, the MOKE microscopy characterization of different Fe_{86−x}P_{11}C_{2}B_{1}W_{x} ribbons was carried out. Table 2 lists the specific composition and related annealing temperature. The annealing time is 10 min. As can be seen from Figure 3a–i, the wide straight strip domains with smooth edges can be observed, which indicates a homogeneous magnetic structure, a low pinning effect, and small anisotropy of the annealed ribbons. Some defects in domains can be attributed to the edge effect, which is mainly induced by the surface quality and change of inner-stress direction [36]. In contrast, mazing fingerprint-like domains can be seen in Figure 3j,k. The formation of maze domains is mainly due to the
non-uniformity internal stress induced by rapid solidification during the preparation of amorphous alloys [37]. The near-field image also shows the sensitive direction representing the vibration direction of incident polarized light and the strip axis. Accordingly, the results provide solid evidence for the low H_c of all annealed ribbons, especially for $W_{0.4}$, $W_{0.6}$, and $W_{0.8}$ ribbons. The lower domain wall energy γ_B causes the widening of the domain, which is correlated to the weak pinning effects induced by the anisotropy fluctuations of the materials and internal stress [38].

Figure 2. Annealing temperatures dependence of (a) H_c and (b) B_s for $Fe_{86-x}P_{11}C_2B_1W_x$ alloy ribbons.

Table 2. The H_c and B_s values of $Fe_{86-x}P_{11}C_2B_1W_x$ alloys annealed at optimal temperature for 10 min.

Alloys	T_a (K)	H_c (A/m)	B_s (T)
$Fe_{86}P_{11}C_2B_1$	643	3.6	1.62
$Fe_{85.5}P_{11}C_2B_1W_{0.1}$	643	3.5	1.61
$Fe_{85.5}P_{11}C_2B_1W_{0.2}$	663	3.7	1.55
$Fe_{85.4}P_{11}C_2B_1W_{0.4}$	683	1.4	1.52
$Fe_{85.4}P_{11}C_2B_1W_{0.6}$	683	1.9	1.48
$Fe_{85.2}P_{11}C_2B_1W_{0.8}$	683	1.6	1.45
$Fe_{85}P_{11}C_2B_1W_1$	683	2.0	1.41
$Fe_{84}P_{11}C_2B_1W_2$	671	2.3	1.38
$Fe_{82}P_{11}C_2B_1W_4$	691	6.3	1.17

Figure 4 presents the XRD images of annealed samples listed in Table 2. Crystalline peaks can be clearly seen from the $W_{0.2}$ and $W_{0.4}$ ribbons, and minor peaks can be observed from $W_{0.6}$ and $W_{0.8}$ XRD patterns. According to G. Herzer's effective magnetic random anisotropy model, the precipitation of fine and regular nanocrystalline can reduce the H_c of amorphous alloys [39]. This helps explain why W_x ($x = 0.2, 0.4, 0.6, 0.8$, and 1) ribbons show the lowest H_c when T_a is around T_x. Furthermore, TEM is adopted to investigate the phase structure of the annealed $Fe_{85.5}P_{11}C_2B_1W_{0.4}$ and $Fe_{85.2}P_{11}C_2B_1W_{0.8}$ alloy ribbons (683 K for 10 min). As exhibited in Figure 5a,c, the bright field TEM image shows the primary amorphous phase for the annealed ribbons, as also confirmed by the inset selected area electron diffraction (SAED) pattern. As shown in Figure 5b,d, crystallographic planes indicating the presence of nanocrystals can be seen in HRTEM images, which is consistent with the XRD results.
Figure 3. Magnetic domains of (a,b) W0 and W0.1 ribbon annealed at 643 K; (c) W0.2 ribbon annealed at 663 K; (d–g) W0.4, W0.6, W0.8 and W1 ribbon annealed at 683 K; (h) W2 ribbon annealed at 671 K; (i) W4 ribbon annealed at 691 K; (j,k) as-spun W0.4 and W0.8 ribbon. The annealing time is 10 min. The magnitude of the field is 20 Oe, and the orientation of this field is perpendicular to the direction of the long axis of the ribbon.

Figure 4. XRD patterns of the annealed Fe86−xP11C2B1Wx ribbons.

Figure 5. (a) Bright-field TEM and (b) HRTEM pictures of Fe85.6P11C2B1W0.4 sample annealed at 683 K for 10 min. (c) Bright-field TEM and (d) HRTEM pictures of Fe85.6P11C2B1W0.8 sample annealed at 683 K for 10 min. The insets in (a,c) are the corresponding SAED patterns.

3.3. Simulation of Amorphous Structure and Magnetic Properties

To characterize the structure and magnetic performances of amorphous alloys, AIMD is an effective approach. According to the experimental results, the minor addition of the W element causes large changes in magnetic properties. Therefore, Fe86P11C2B1, Fe85.5P11C2B1W0.5, and Fe85P11C2B1W1 are selected as representative alloy components for comparison. The pair correlation function (PCF) of Fe86−xP11C2B1Wx (x = 0, 0.5 and 1) amorphous alloys at a normal atmospheric temperature (300 K) is shown in Figure 6a. The prominent first peak indicates the characteristics of short-range order, while the second one with splitting feature indicates mid-range order, which indicates the amorphous...
3.3. Simulation of Amorphous Structure and Magnetic Properties

To characterize the structure and magnetic performances of amorphous alloys, AIMD is an effective approach. According to the experimental results, the minor addition of the W element causes large changes in magnetic properties. Therefore, Fe$_{86}$P$_{11}$C$_2$B$_1$, Fe$_{85.5}$P$_{11}$C$_2$B$_1$W$_{0.5}$, and Fe$_{85}$P$_{11}$C$_2$B$_1$W$_1$ are selected as representative alloy components for comparison. The pair correlation function (PCF) of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) amorphous alloys at a normal atmospheric temperature (300 K) is shown in Figure 6a. The prominent first peak indicates the characteristics of short-range order, while the second one with splitting feature indicates mid-range order, which indicates the amorphous nature of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) alloys. Moreover, the relative strength of the first peak shows a slight decrease, and the second peak increases after adding the W element. This indicates that the adjacent structure of the atoms is changed after W addition. Figure 6b exhibits the distribution of bond pairs (BPs) of the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5, and 1) amorphous alloys. The BPs analysis proposed by previous researchers is an effective method for describing the local atomic structure [40]. The BPs between the central and nearest-neighbor atoms are characterized by the first valley of the related partial PCF curve. 1551, 1541, and 1431 BPs represent icosahedral order, while the 1441 and 1661 BPs are features of the body-centered cubic (bcc) structures [41]. The percentage of icosahedral clusters is positively related to the enhanced GFA [42]. With the addition of W, the proportion of icosahedral BPs increases, while the proportion of bcc crystalline BPs decreases significantly. The results indicate that W can enhance the GFA of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ amorphous alloys, which is in agreement with previous research [18–20,27].
nature of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0, 0.5$ and 1) alloys. Moreover, the relative strength of the first peak shows a slight decrease, and the second peak increases after adding the W element. This indicates that the adjacent structure of the atoms is changed after W addition. Figure 6b exhibits the distribution of bond pairs (BPs) of the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0, 0.5$, and 1) amorphous alloys. The BPs analysis proposed by previous researchers is an effective method for describing the local atomic structure [40]. The BPs between the central and nearest-neighbor atoms are characterized by the first valley of the related partial PCF curve. 1551, 1541, and 1431 BPs represent icosahedral order, while the 1441 and 1661 BPs are features of the body-centered cubic (bcc) structures [41]. The percentage of icosahedral clusters is positively related to the enhanced GFA [42]. With the addition of W, the proportion of icosahedral BPs increases, while the proportion of bcc crystalline BPs decreases significantly. The results indicate that W can enhance the GFA of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ amorphous alloys, which is in agreement with previous research [18–20, 27].

Figure 6. (a) Pair correlation functions and (b) bond pairs distribution of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0$, 0.5, and 1) amorphous alloys.

To further understand the effects of W addition on soft magnetic performances, atomic magnetic moments were analyzed. The average magnetic moments of the Fe, P, C, B, and W atoms were calculated by AIMD for the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0, 0.5$ and 1) amorphous alloys. As summarized in Table 3, the electronic magnetic moment of the Fe atoms dominates the total magnetic moments of the whole alloy system. The average magnetic moment of the Fe atoms decreases from 2.225 μ_B to 2.096 μ_B with the addition of the W element. In addition, W exhibits a more negative magnetic moment ($-0.578 \mu_B$) than other constituent elements. This can explain the previous experimental phenomenon that the B_s values monotonically decrease with the addition of W. Furthermore, the Fe magnetic moment distribution with the corresponding coordination number was concerned. The average magnetic moment of Fe in Table 3 can be calculated from the weighted average of the data in Figure 7. The coordination number is defined as the number of the first nearest neighbor Fe atoms near the central Fe atoms. The proportion of the high coordination number in the first nearest neighbor was reported to correlate positively with the magnetic moment [43]. This is because the increase in the proportion of high coordination numbers in the first nearest neighbor indicates more neighboring Fe atoms taking part in the ferromagnetic coupling, which increases saturated magnetization [44]. It can be seen in Figure 7 that the proportion of high coordination numbers (13, 14) decreases. In contrast, the proportion of
low coordination numbers (10, 11, and 12) increases with the addition of W. This result shows that the addition of W expands the nearest neighbor Fe-Fe spacing and diminishes the percentage of high coordination numbers. Thus, the average magnetic moment of Fe atoms decreases, which leads to a decrease in the B_g of the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) amorphous alloys.

Table 3. Average magnetic moments of each atomic orbital for the Fe, P, C, B, and W atoms in the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) amorphous alloys.

Alloys	Element	s (μB)	p (μB)	d (μB)	Total (μB)
Fe$_{86}$P$_{11}$C$_2$B$_1$	Fe	−0.009	−0.034	2.268	2.225
	P	−0.005	−0.082	0.000	−0.087
	C	−0.015	−0.126	0.000	−0.141
	B	−0.026	−0.137	0.000	−0.164
Fe$_{85.5}$P$_{11}$C$_2$B$_1$W$_{0.5}$	Fe	−0.008	−0.035	2.250	2.207
	P	−0.006	−0.084	0.000	−0.090
	C	−0.015	−0.126	0.000	−0.141
	B	−0.027	−0.134	0.000	−0.161
	W	−0.027	−0.093	−0.521	−0.587
Fe$_{85}$P$_{11}$C$_2$B$_1$W$_1$	Fe	−0.008	−0.033	2.137	2.096
	P	−0.005	−0.077	0.000	−0.082
	C	−0.013	−0.108	0.000	−0.121
	B	−0.026	−0.127	0.000	−0.153
	W	−0.027	−0.039	−0.513	−0.578

Figure 7. Fe magnetic moment distribution with corresponding coordination number in the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5, and 1) amorphous alloys.

The tunable electronic performances of Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) alloys were also researched by the density of states (DOS). The total electron DOS of the Fe atom in Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5, and 1) amorphous alloy is illustrated in Figure 8a. The Fermi level lay right above the majority spin band and close to the minimum value of the spin-down band, indicating that ferromagnetism exists in the alloy [45]. Figure 8b shows the partial electron DOS (3d orbital) of Fe atoms for Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ (x = 0, 0.5 and 1) amorphous alloys. Two dominant peaks separated from the 3d band states can be seen, which were reported as the lower-energy t_{2g} orbital and the higher-energy e_g
orbital [46]. According to previous research, ferromagnetism is caused by the distinction in the magnetic moments of the upper and lower spin electrons induced by the asymmetry of band splitting [47]. With the addition of the W element, the number of spin-up electrons N^\uparrow decreases slightly, while the number of occupied spin-down electrons N^\downarrow is almost unchanged. Therefore, the gap becomes much closer, which leads to a decreased Fe atomic magnetic moment of the Fe atom in the alloy system.

Figure 8. (a) Total electron DOS and (b) partial electron DOS of Fe atoms (3d orbital) in the Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0, 0.5$ and 1) amorphous alloys. The arrows indicate the spin direction of the electron.

4. Conclusions

Fe$_{86-x}$P$_{11}$C$_2$B$_1$W$_x$ ($x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2,$ and 4) amorphous alloys were developed by melt spinning, and the influences of W addition on the amorphous structure, thermal behavior, and soft magnetic performances were researched by several experiments and AIMD simulation. The addition of W enhances the thermal stability, with T_{x1} and T_{x2} increasing up to 711 K and 731 K, respectively, consistent with the BP analysis of the simulation, which suggests that the GFA of the amorphous alloy can be improved with W addition. The amorphous alloy systems exhibit good B_s and low H_c in the range of 1.17–1.62 T and 1.4–6.3 A/m. The low H_c of annealed ribbons was proved by straight wide stripy magnetic domains. Especially, the Fe$_{85.6}$P$_{11}$C$_2$B$_1$W$_{0.4}$ alloy shows optimal soft magnetic performances, with low H_c of 1.4 A/m and relatively good B_s of 1.52 T. The
magnetic moment and electron DOS analysis demonstrates that the decrease in B_s via W addition results from the distance increase in nearest neighboring Fe-Fe, gap narrowing between spin-up $N_{↑}$ and spin-down $N_{↓}$ electrons, diminishment of the coordination number, and a reduction in the average magnetic moment of the Fe atoms.

Author Contributions: C.S.: methodology, investigation, data curation, visualization, and writing—original draft. H.X.: methodology, writing—review and editing. Y.M.: methodology, writing—review and editing. X.W.: simulation, software. M.H.: investigation, data curation. B.Q.: investigation, resources. Y.W.: investigation. T.Z.: conceptualization, methodology, supervision, resources, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 51971006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to the data also forms part of an ongoing study.

Conflicts of Interest: The authors state that they do not have any competing financial interest or personal relationships that could have appeared to influence the work reported herein.

References

1. Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. *Science* 2018, 362, eea0195. [CrossRef]
2. Li, F.C.; Liu, T.; Zhang, J.Y.; Shuang, S.; Wang, Q.; Wang, A.D.; Wang, J.G.; Yang, Y. Amorphous–nanocrystalline alloys: Fabrication, properties, and applications. *Mater. Today Adv.* 2019, 4, 100027. [CrossRef]
3. Shi, L.; Yao, K. Composition design for Fe-based soft magnetic amorphous and nanocrystalline alloys with high Fe content. *Mater. Des.* 2020, 189, 108511. [CrossRef]
4. Azuma, D.; Ito, N.; Ohta, M. Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials. *J. Magn. Magn. Mater.* 2020, 501, 166373. [CrossRef]
5. Liu, Z.; Yu, D.; Li, K.; Luo, Y.; Yuang, C.; Wang, Z.; Sun, l.; Men, K. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe$_78$Si$_4$B$_{13}$ ribbons. *J. Magn. Magn. Mater.* 2017, 436, 17–20.
6. Liu, Z.Q.; Shi, M.J.; Zhang, T. Composition dependences and optimization of the magnetic properties of Fe-based metallic glasses. *Mater. Res. Express* 2014, 1, 046110. [CrossRef]
7. Shi, M.; Li, R.; Wang, J.; Liu, Z.; Luo, X.; Zhang, T. Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization. *Philos. Mag.* 2013, 93, 2182–2189. [CrossRef]
8. Shi, Z.; Li, R.; Li, X.; Wang, C.; Zhang, T. Controllable brittleness in soft-magnetic Fe-P-C-B metallic glasses through composition design. *Mater. Sci. Eng. A* 2019, 766, 138385. [CrossRef]
9. Li, W.; Yang, Y.; Xie, C.; Yang, Y.; Liu, H.; Wang, K.; Liao, Z. Glass formation, crystallization and magnetic properties of high-Fe Fe-metalloid (B, C, and P) melt-spun ribbons. *J. Magn. Magn. Mater.* 2020, 498, 166128. [CrossRef]
10. Lashgari, H.R.; Chu, D.; Xie, S.; Sun, H.; Berry, M.; Li, S. Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study. *J. Non-Cryst. Solids* 2014, 391, 61–82. [CrossRef]
11. Lu, Z.P.; Liu, C.T. Role of minor alloying additions in formation of bulk metallic glasses: A Review. *J. Magn. Mater.* 2004, 3965–3974. [CrossRef]
12. Kotan, H.; Darling, K.A.; Saber, M.; Koch, C.C.; Scatteringood, R.O. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy. *J. Alloys Compd.* 2013, 551, 621–629. [CrossRef]
13. Xu, M.; Yi, J.; Quan, M.; Wang, Y.; Zuo, L. Effect of Nb on crystallization kinetics of Fe-Co-Nd-B amorphous alloys. *Acta Metall. Sin.* 2009, 45, 91–96.
14. Han, B.-K.; Jo, H.-I.; Lee, J.K.; Kim, K.B.; Yim, H. Thermal stability, mechanical properties and magnetic properties of Fe-based amorphous ribbons with the addition of Mo and Nb. *J. Magn.* 2013, 18, 395–399. [CrossRef]
15. Zhang, Y.; Wang, Y.; Makino, A. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system. *AIP Adv.* 2018, 8, 047703. [CrossRef]
16. Inoue, A.; Zhang, T.; Koshiba, H.; Makino, A. New bulk amorphous Fe-(Co,Ni)–M–B (M = Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties. *J. Appl. Phys.* 1998, 83, 6326–6328. [CrossRef]
17. Nabialek, M.G.; Dospiäl, M.J.; Szota, M.; Pietrusiewicz, P.; Jedryka, J. Investigation of the thermal and magnetic properties of Fe_{80}Co_{10}Zr_{2}Fe_{6}Co_{40}Zr_{2}Fe_{2}Si_{5}H_{2}Fe_{5}W_{2}B_{20} (Me = Y, Nb, W, Ti, Mo, Ni) bulk amorphous alloys obtained by an induction suction method. J. Alloys Compd. 2011, 509, 3382–3386. [CrossRef]

18. Zhang, X.; Lai, L.; Xiao, S.; Zhang, H.; Zhang, F.; Li, N.; Guo, S. Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass. Intermetallics 2022, 143, 107485. [CrossRef]

19. Li, X.; Shi, Z.; Zhang, T. Atomic structure and magnetic properties of Fe_{79}B_{12}Si_{9} amorphous alloy surface. J. Magn. Magn. Mater. 2012, 324, 3721–3723. [CrossRef]

20. Huang, X.M.; Chang, C.T.; Chang, Z.Y.; Inoue, A.; Jiang, J.Z. Glass forming ability, mechanical and magnetic properties in Fe–W–Y–B alloys. Mater. Sci. Eng. A 2010, 527, 952–956. [CrossRef]

21. Pawlik, P.; Davies, H.A.; Gibbs, M.R.J. Magnetic properties and glass formability of Fe_{61}Co_{10}Zr_{5}W_{4}B_{20} bulk metallic glassy alloy. Acta Mater. 2003, 51, 7375–7384. [CrossRef]

22. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 54, 11169–11186. [CrossRef]

23. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 134–138. [CrossRef]

24. Wang, Y.; Perdew, J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298–13307. [CrossRef] [PubMed]

25. Li, Y.L.; Dou, Z.X.; Chen, X.M.; Lv, K.; Li, F.S.; Hui, X.D. Improving the amorphous forming ability and magnetic properties of Fe_{6}Si_{8}B_{10}Cu amorphous and nanocrystalline alloys by utilizing carbon. J. Alloys Compd. 2020, 844, 155767. [CrossRef]

26. Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [CrossRef]

27. Öztürk, P.; Hitt, A. Effects of Tungsten and Boron Contents on Crystallization Temperature and Microhardness of Tungsten Based Metallic Glasses. Acta Metall. Sin. 2015, 28, 733–738. [CrossRef]

28. Xie, L.; Liu, T.; He, A.; Li, Q.; Gao, Z.; Wang, A.; Chang, C.; Wang, X.; Liu, C.-T. Development of soft magnetic amorphous alloys with wide supercooled liquid region. Acta Metall. Sin. 2001, 37, 637–642. [CrossRef]

29. Ba, Q.; Zhu, J.; Zeng, G.; Liu, G. Effect of heat treatment on the magnetic aftereffect in Fe-based amorphous alloys. J. Magn. Magn. Mater. 1996, 163, 327–330. [CrossRef]

30. Zhang, Z.; Sharma, P.; Makino, A. Role of Si in high Bs and low core-loss Fe_{85.2}B_{10–x}P_{x}Cu_{0.8}Si_{x} nano-crystalline alloys. J. Appl. Phys. 2012, 112, 103902. [CrossRef]

31. Hou, L.; Fan, X.; Wang, Q.; Yang, W.; Shen, B. Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys. J. Mater. Sci. Technol. 2019, 35, 1655–1661. [CrossRef]

32. Kronmüller, H. Theory of the coercive field in amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 1981, 24, 159–167. [CrossRef]

33. Horvat, J.; Babič, E. The variation of the domain wall pinning strength with the depth within the Co_{74}Fe_{6}B_{20} amorphous alloy. J. Magn. Magn. Mater. 1991, 96, L13–L16. [CrossRef]

34. Sato, T.; Yamada, T. Improvement of core loss by chemical thinning in a thick amorphous alloy surface. J. Magn. Magn. Mater. 2011, 324, 1641–1645. [CrossRef]

35. Zhang, Y.N.; Wang, Y.J.; Kong, L.T.; Li, J.F. Influence of Y addition on the glass forming ability and soft magnetic properties of FeCoPCCu nanocrystalline alloys. J. Appl. Phys. 2012, 111, 083902. [CrossRef]

36. Xie, L.; Liu, T.; He, A.; Li, Q.; Gao, Z.; Wang, A.; Chang, C.; Wang, X.; Liu, C.T. High Bs Fe-based nanocrystalline alloy with high impurity tolerance. J. Mater. Sci. 2017, 53, 1437–1446. [CrossRef]

37. Chen, P.; Wang, A.; Zhao, C.; He, A.; Wang, G.; Chang, C.; Wang, X.; Liu, C.-T. Development of soft magnetic amorphous alloys with distinctly high Fe content. Sci China Phys. Mech. 2017, 60, 1–6. [CrossRef]

38. Bitoh, T.; Makino, A.; Inoue, A. Origin of Low Coercivity of Fe-(Al, Ga)-(P, C, Si, Ge) Bulk Glassy Alloys. Mater. Trans. 2003, 44, 2020–2024. [CrossRef]

39. Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013, 61, 718–734. [CrossRef]

40. Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Chem. Phys. 1987, 91, 4950–4963. [CrossRef]

41. Li, X.; Zuo, L.; Zhang, X.; Zhang, T. Atomic structure and magnetic properties of the Fe_{78}B_{12}Si_{9} amorphous alloy surface. J. Phys. Chem. C 2018, 122, 28613–28618. [CrossRef]

42. Narayan, R.L.; Raut, D.; Ramamurthy, U. A quantitative connection between shear band mediated plasticity and fracture initiation toughness of metallic glasses. Acta Mater. 2018, 150, 69–77. [CrossRef]

43. Li, X.; Shi, Z.; Zhang, T. Effect of similar element substitution on Fe–B–Si–Mo bulk metallic glasses studied by experiment and ab initio molecular dynamics simulation. J. Alloys Compd. 2019, 784, 1139–1144. [CrossRef]

44. Lu, L.; Guo, Y.; Li, X.; Zhang, T. The atomic structure, magnetic properties and bending ductility of a novel Fe–P–C–B–Si amorphous alloy investigated by experiments and ab initio molecular dynamics. J. Alloys Compd. 2022, 904, 164101. [CrossRef]

45. Ganesh, P.; Widom, M. Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass. Phys. Rev. B 2008, 77, 014205. [CrossRef]
46. Zhu, L.; Wang, Y.G.; Cao, C.C.; Yang, M. Study of structural and magnetic properties of Fe$_{80}$P$_9$B$_{11}$ amorphous alloy by ab initio molecular dynamic simulation. *Chin. Phys. B* **2017**, *26*, 067101. [CrossRef]

47. Wang, H.; Hu, T.; Zhang, T. Atomic, electronic and magnetic properties of Fe$_{80}$P$_{11}$C$_9$ amorphous alloy: A first-principles study. *Physica B* **2013**, *411*, 161–165. [CrossRef]