Binary Optimization via Mathematical Programming with Equilibrium Constraints

Ganzhao Yuan, Bernard Ghanem

Abstract—Binary optimization is a central problem in mathematical optimization and its applications are abundant. To solve this problem, we propose a new class of continuous optimization techniques which is based on Mathematical Programming with Equilibrium Constraints (MPECs). We first reformulate the binary program as an equivalent augmented biconvex optimization problem with a bilinear equality constraint, then we propose two penalization/regularization methods (exact penalty and alternating direction) to solve it. The resulting algorithms seek desirable solutions to the original problem via solving a sequence of linear programming convex relaxation subproblems. In addition, we prove that both the penalty function and augmented Lagrangian function, induced by adding the complementarity constraint to the objectives, are exact, i.e., they have the same local and global minima with those of the original binary program when the penalty parameter is over some threshold. The convergence of both algorithms can be guaranteed, since they essentially reduce to block coordinate descent in the literature. Finally, we demonstrate the effectiveness and versatility of our methods on several important problems, including graph bisection, constrained image segmentation, dense subgraph discovery, modularity clustering and Markov random fields. Extensive experiments show that our methods outperform existing popular techniques, such as iterative hard thresholding, linear programming relaxation and semidefinite programming relaxation.

Index Terms—Binary Optimization, Convergence Analysis, MPECs, Exact Penalty Method, Alternating Direction Method, Graph Bisection, Constrained Image Segmentation, Dense Subgraph Discovery, Modularity Clustering, Markov Random Fields.

1 INTRODUCTION

In this paper, we mainly focus on the following binary optimization problem:

$$\min_{x} f(x), \ s.t. \ x \in \{-1,1\}^n, \ x \in \Omega$$

where the objective function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is convex (but not necessarily smooth) on some convex set Ω, and the non-convexity of (1) is only caused by the binary constraints. In addition, we assume $\{-1,1\}^n \cap \Omega \neq \emptyset$.

The optimization in (1) describes many applications of interest in both computer vision and machine learning, including graph bisection [25], [37], image (co-)segmentation [35], [37], [54], Markov random fields [8], permutation problem [22], graph matching [16], [59], [67], binary matrix completion [17], [31], hashing coding [42], [62], image registration [63], multimodal feature learning [57], multi-target tracking [55], visual alignment [56], and social network analysis (e.g. subgraphs discovery [2], [23], biclustering [1], planted k-disjoint-clique discover [4], planted clique and biclique discovery [3], community discovery [13], [29], etc.

The binary optimization problem is difficult to solve, since it is NP-hard. One type of method to solve this problem is continuous in nature. The simple way is to relax the binary constraint with Linear Programming (LP) relaxation constraints $-1 \leq x \leq 1$ and round the entries of the resulting continuous solution to the nearest integer at the end. However, not only may this solution not be optimal, it may not even be feasible and violate some constraint.

Another type of optimization focuses on the cutting-plane and branch-and-cut method. The cutting-plane method solves the LP relaxation and then adds linear constraints that drive the solution towards integers. The branch-and-cut method partially develops a binary tree and iteratively cuts out the nodes having a lower bound that is worse than the current upper bound, while the lower bound can be found using convex relaxation, Lagrangian duality, or Lipschitz continuity. However, this class of method ends up solving all 2^n convex subproblems in the worst case. Our algorithm aligns with the first research direction. It solves a convex LP relaxation subproblem iteratively, but it provably terminates in polynomial iterations.

In non-convex optimization, good initialization is very important to the quality of the solution. Motivated by this, several papers design smart initialization strategies and establish optimality qualification of the solutions for non-convex problems. For example, the work of [73] considers a multi-stage convex optimization algorithm to refine the global solution by the initial convex method; the work of [12] starts with a careful initialization obtained by a spectral method and improves this estimate by gradient descent; the work of [34] uses the top-k singular vectors of the matrix as initialization and provides theoretical guarantees through biconvex alternating minimization. The proposed method also uses a similar initialization strategy, as it reduces to convex LP relaxation in the first iteration.

The contributions of this paper are three-fold. (a) We reformulate the binary program as an equivalent augmented optimization problem with a bilinear equality constraint via a variational characterization of the binary constraint. Then, we propose two penalization/regularization methods (exact penalty and alternating direction) to solve it. The resulting algorithms seek desirable solutions to the original binary program. (b) We prove that both the penalty function and augmented Lagrangian function, induced by adding the complementarity constraint to the objectives, are

Table 1: Existing continuous methods for binary optimization.

Method and Reference	Description
spectral relaxation [15], [54]	\((-1, +1)^n \approx \{ x \mid \|x\|_2^2 = n \} \)
linear programming relaxation [31], [38]	\((-1, +1)^n \approx \{ x \mid -1 \leq x \leq 1 \} \)
SDP relaxation [37], [63], [64]	\(\{0, +1\}^n \approx \{ x \mid X \succeq xx^T, \text{diag}(X) = x \} \)
doubly positive relaxation [33], [64]	\(\{0, +1\}^n \approx \{ x \mid X \succeq xx^T, \text{diag}(X) = 1 \} \)
completely positive relaxation [10], [11]	\(\{0, +1\}^n \approx \{ x \mid X \succeq xx^T, \text{diag}(X) = x, x \geq 0, X \geq 0 \} \)
SOCP relaxation [24], [39]	\((-1, +1)^n \approx \{ x \mid \langle X - xx^T, LL^T \rangle \geq 0, \text{diag}(X) = 1 \}, \forall L \)

: Exact Optimization

Relaxed Approximation

- **Iterative hard thresholding** [5], [72] \(\min_x \|x - x^*\|_2^2, \text{s.t. } x \in \{-1, +1\}^n \)
- **\(\ell_0\)** norm reformulation [43], [70] \(\{-1, +1\}^n \iff \{ x \mid \|x + 1\|_0 + \|x - 1\|_0 \leq n \} \)
- **Piecewise separable reformulation** [74] \(\{-1, +1\}^n \iff \{ x \mid (1 + x) \odot (1 - x) = 0 \} \)
- **\(\ell_p\)** box non-separable reformulation [45], [51] \(\{-1, +1\}^n \iff \{ x \mid -1 \leq x \leq 1, \|x\|_p^p = n, 0 < p < \infty \} \)
- **\(\ell_\infty\)** box separable MPEC [This paper] \(\{-1, +1\}^n \iff \{ x \mid x \odot v = 1, \|x\|_\infty \leq 1, \|v\|_\infty \leq 1, \forall v \} \)
- **\(\ell_\infty\)** box separable MPEC [This paper] \(\{-1, +1\}^n \iff \{ x \mid x \odot v = 1, \|x\|_\infty \leq 1, \|v\|_\infty \leq 1, \forall v \} \)
- **\(\ell_\infty\)** box non-separable MPEC [This paper] \(\{-1, +1\}^n \iff \{ x \mid \langle x, v \rangle = n, \|x\|_\infty \leq 1, \|v\|_\infty \leq 1, \forall v \} \)
- **\(\ell_\infty\)** box non-separable MPEC [This paper] \(\{-1, +1\}^n \iff \{ x \mid \langle x, v \rangle = n, \|x\|_\infty \leq 1, \|v\|_\infty^2 \leq n, \forall v \} \)

2 Related Work

This paper proposes a new continuous method for binary optimization. We briefly review existing related work in this research direction in the literature (see Table 1).

There are generally two types of methods in the literature. One is the relaxed approximation method. Spectral relaxation [15], [41], [49], [54] replaces the binary constraint with a spherical one and solves the problem using eigen decomposition. Despite its computational merits, it is difficult to generalize to handle linear or nonlinear constraints. Linear programming relaxation [38], [39] transforms the NP-hard optimization problem into a convex box-constrained optimization problem, which can be solved by well-established optimization methods and software. Semi-Definite Programming (SDP) relaxation [33] uses a lifting technique \(X = xx^T\) and relaxes to a convex conic \(X \succeq xx^T\) to handle the binary constraint. Combining this with a unit-ball randomized rounding algorithm, the work of [25] proves that at least a factor of 87.8% to the global optimal solution can be achieved for the graph bisection problem. Since the original paper of [25], SDP has been applied to develop numerous approximation algorithms for NP-hard problems. As more constraints lead to tighter bounds for the objective, doubly positive relaxation considers constraining both the eigenvalues and the elements of the SDP solution to be nonnegative, leading to better solutions than canonical SDP methods. In addition, Completely Positive (CP) relaxation [10], [11] further constrains the entries of the factorization of the solution \(X = LL^T\) to be nonnegative \(L \geq 0\). It can be solved by tackling its associated dual co-positive program, which is related to the study of indefinite optimization and sum-of-squares optimization in the literature. Second-Order Cone Programming (SOCP) relaxes the SDP conic into the nonnegative orthant [39] using the fact that \(\langle X - xx^T, LL^T \rangle \geq 0\), \forall L, resulting in tighter bound than the LP method, but looser than that of the SDP method. Therefore it can be viewed as a balance between efficiency and efficacy.

Another type of methods for binary optimization relates to equivalent optimization. The iterative hard thresholding method directly handles the non-convex constraint via projection and it has been widely used due to its simplicity and efficiency [72]. However, this method is often observed to obtain sub-optimal accuracy and it is not directly applicable, when the objective is non-smooth. A piecewise separable reformulation has been considered in [74], which can exploit existing smooth optimization techniques. Binary optimization can be reformulated as an \(\ell_0\) norm.
semi-continuous optimization problem. Thus, existing \(\ell_0 \) norm sparsity constrained optimization techniques such as quadratic penalty decomposition method \(^{43}\) and multi-stage convex optimization method \(^{70}, 73\) can be applied. A continuous \(\ell_2 \) box non-separable reformulation \(^{44}\) has been used in the literature \(^{36}, 50, 51\). A second-order interior point method \(^{13}, 45\) has been developed to solve the continuous reformulation optimization problem. A continuous \(\ell_p \) box non-separable reformulation has recently been used in \(^{66}\), where an interesting geometric illustration of \(\ell_p \)-box intersection has been shown. In addition, they infuse this equivalence into the optimization framework of Alternating Direction Method of Multipliers (ADMM). However, their guarantee of convergence is weak. In this paper, to tackle the binary optimization problem, we propose a new framework illustrated of \(\ell_p \)-box non-separable reformulation \(^{3}\) and mathematical treatment are similar.

Mathematical programs with equilibrium constraints \(^{4}\) are optimization problems where the constraints include complementarities or variational inequalities. They are difficult to deal with because their feasible region may not necessarily be convex or even connected. Motivated by recent development of MPECs for non-convex optimization \(^{6}, 44, 68, 69, 70\), we consider continuous MPEC reformulations of the binary optimization problem. Since our preliminary experimental results show that \(\ell_2 \) box non-separable MPEC in Table I often presents the best performance in terms of accuracy, we only focus on this specific formulation in our forthcoming algorithm design and numerical experiments. For future references, other possible separable/non-separable MPEC reformulations are presented here. Their mathematical derivations and mathematical treatment are similar.

3 Proposed Optimization Algorithms

This section presents our MPEC-based optimization algorithms. We first propose an equivalent reformulation of binary optimization program, and then we consider two algorithms (exact penalty method and alternating direction method) to solve it.

3.1 Equivalent Reformulation

First of all, we present a variational reformulation of the binary constraint. The proofs for other reformulations of binary constraints can be found in Appendix A.

Lemma 1. \(\ell_2 \) box non-separable MPEC. We define \(\Theta \triangleq \{ (x, v) | x^T v = n, \|x\|_\infty \leq 1, \|v\|_2 \leq n \} \). Assume that

1. One can rewrite the \(\ell_0 \) norm constraint \(\|x + 1\|_0 + \|x - 1\|_0 \leq n \) in a compact matrix form \(\|Ax - b\|_0 \leq n \) with \(A = [I_n | -I_n] \in \mathbb{R}^{2n \times n}, b = [1^T | -1^T]^T \in \mathbb{R}^{2n} \).
2. They replace \(x \in (0, 1)^n \) with \(0 \leq x \leq 1, x^T (1-x) = 0 \). We extend this strategy to replace \(-1, +1 \) with \(-1 \leq x \leq 1, (1+x)^T (1-x) = 0 \) which reduces to \(\|x\|_\infty \leq 1, \|x\|_2 = n \). Appendix \(^{6}\) provides a simple proof.
3. We adapt their formulation to our \((-1, +1) \) formulation.
4. In fact, we focus on mathematical programs with complementarity constraints (MPCC), a subclass of MPECs where the original discrete optimization problem can be formulated as a complementarity problem and therefore as a nonlinear program. Here we use the term MPECs for the purpose of generality and historic conventions.
5. Note that separable MPEC has \(n \) complementarity constraints and non-separable MPEC has one complementarity constraint. The terms separable and non-separable are related to whether the constraints can be decomposed to independent components.
6. (x, v) \(\in \Theta \), then we have \(x \in \{ -1, +1 \}^n, v \in \{ -1, +1 \}^n, v = x \).

Proof. (i) Firstly, we prove that \(x \in \{ -1, +1 \}^n \). Using the definition of \(\Theta \) and the Cauchy-Schwarz Inequality, we have: \(n = x^T v \leq \|x\|_2 \|v\|_2 \leq \|x\|_2 \sqrt{n} = \sqrt{n} \|x\|_1 \|x\|_\infty \leq \sqrt{n} \|x\|_1 \). Thus, we obtain \(\|x\|_1 \geq n \). We define \(z = |x| \). Combining \(\|x\|_\infty \leq 1 \), we have the following constraint sets for \(z \): \(\sum_i z_i \geq n, 0 \leq z \leq 1 \). Therefore, we have \(z = 1 \) and it holds that \(x \in \{ -1, +1 \}^n \). (ii) Secondly, we prove that \(v \in \{ -1, +1 \}^n \). We have:

\[
\begin{align*}
 n &= x^T v \leq \|x\|_\infty \|v\|_1 \leq \|v\|_2 = \|v\|_2 \leq 1 \\
\end{align*}
\]

(2) Thus, we obtain \(\|v\|_2 \geq \sqrt{n} \). Combining \(\|v\|_2 \leq n \), we have \(\|v\|_2 = \sqrt{n} \) and \(\|v\|_2 \|1\|_2 = n \). By the Squeeze Theorem, all the equalities in (2) hold automatically. Using the equality condition for Cauchy-Schwarz Inequality, we have \(|v| = 1 \) and it holds that \(v \in \{ -1, +1 \}^n \).

(iii) Finally, since \(x \in \{ -1, +1 \}^n \), \(v \in \{ -1, +1 \}^n \), and \((x, v) = n \), we obtain \(x = v \).

Using Lemma 1, we can rewrite (1) in an equivalent form as follows.

\[
\begin{align*}
\min_{-1 \leq x \leq 1} \min_{\|v\|_2 \leq n} f(x), \text{ s.t. } x^T v = n, x \in \Omega \\
\end{align*}
\]

(3) We remark that \(x^T v = n \) is called complementarity (or equilibrium) constraint in the literature \(^{44}, 52, 58\) and it always holds that \(x^T v \leq \|x\|_\infty \|v\|_1 \leq \sqrt{n} \|v\|_2 \leq n \) for any feasible \(x \) and \(v \).

3.2 Exact Penalty Method

We now present our exact penalty method for solving the optimization problem in (3). It is worthwhile to point out that there are many studies on exact penalty for MPECs (refer to \(^{32}, 44, 52\), examples), but they do not afford the exactness of our penalty problem. In an exact penalty method, we penalize the complementary error directly by a penalty function. The resulting objective \(J : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \) is defined in (4), where \(\rho \) is the penalty parameter that is iteratively increased to enforce the bilinear constraint.

\[
\begin{align*}
J_\rho(x, v) &= f(x) + \rho (n - x^T v) \\
\text{s.t. } -1 \leq x \leq 1, \|v\|_2 \leq n, x \in \Omega \\
\end{align*}
\]

(4) In each iteration, we minimize over \(x \) and \(v \) alternatingly \(^{7}, 60\), while fixing the parameter \(\rho \). We summarize our exact penalty method in Algorithm 1. The parameter \(T \) is the number of inner iterations for solving the biconvex problem and the parameter \(L \) is the Lipschitz constant of the objective function \(f(\cdot) \). We make the following observations about the algorithm.

(a) **Initialization.** We initialize \(v^0 \) to 0. This is for the sake of finding a reasonable local minimum in the first iteration, as it reduces to LP convex relaxation \(^{38}\) for the binary optimization problem.

(b) **Exact property.** One remarkable feature of our method is the boundedness of the penalty parameter \(\rho \) (see Theorem 1). Therefore, we terminate the optimization when the threshold is reached (see \(^{7}\) in Algorithm 1). This distinguishes it from the quadratic penalty method \(^{43}\), where the penalty may become arbitrarily large for non-convex problems.
Algorithm 1 MPEC-EPM: An Exact Penalty Method for Solving MPEC Problem (3)

(S.0) Set $t = 0$, $x^0 = v^0 = 0$, $\rho > 0$, $\sigma > 1$.

(S.1) Solve the following x-subproblem [primal step]:

$$x^{t+1} = \arg\min_{x} J(x, v^t), \ s.t. \ x \in [-1, 1] \cap \Omega \quad (5)$$

(S.2) Solve the following v-subproblem [dual step]:

$$v^{t+1} = \arg\min_{v} \ J(x^{t+1}, v), \ s.t. \ \|v\|^2 \leq n \quad (6)$$

(S.3) Update the penalty in every T iterations:

$$\rho \leftarrow \min(2L, \rho \times \sigma) \quad (7)$$

(S.4) Set $t := t + 1$ and then go to Step (S.1)

(c) v-Subproblem. Variable v in (6) is updated by solving the following convex problem:

$$v^{t+1} = \arg\min_{v} \langle v, -x^{t+1} \rangle, \ s.t. \ \|v\|^2 \leq n \quad (8)$$

When $x^{t+1} = 0$, any feasible solution is also an optimal solution; when $x^{t+1} \neq 0$, the optimal solution will be achieved in the boundary with $\|v\|^2 = n$ and (8) is equivalent to solving:

$$\min_{v} \|v\|^2 - \langle v, x^{t+1} \rangle. \quad (9)$$

(d) x-Subproblem. Variable x in (5) is updated by solving box constrained convex problem which has no closed-form solution. However, it can be solved using Nesterov’s proximal gradient method [45] or classical/linearized ADM [28].

Theoretical Analysis. In the following, we present some theoretical analysis of our exact penalty method. The following lemma is very crucial and useful in our proofs.

Lemma 2. We define:

$$h(x) = \begin{cases} \min_{x \in \mathbb{R}^n, \ -1 \leq x \leq 1, \ sign(x) \neq x} h(x) & \text{if } x \neq x \neq x \\ \infty & \text{otherwise} \end{cases} \quad (10)$$

It holds that $h^* \geq 1/2$.

Proof. We define B and N as the index set of the binary and non-binary variable for any $x \in \mathbb{R}^n$, respectively. Therefore, we have $|B| = 1$, $\forall i \in B$ and $|B| \neq 1$, $\forall j \in N$. Moreover, we define $s \triangleq |B|$ and we have $|B| = n - s$. We can rewrite $h(x)$ as

$$h(x) = \frac{n - \sqrt{n}}{\|\text{sign}(x) - x\|_2}$$

$$= \frac{n - \sqrt{n}}{\|\text{sign}(x) - x\|_2}$$

We have the following problem which is equivalent to (10)

$$\min_{z \in \mathbb{R}^n} \ h'(z) = \frac{n - \sqrt{n}}{\|\text{sign}(z) - z\|_2} \quad (11)$$

s.t. $-1 \leq z \leq 1, \ |z|_i \neq 1, \forall i$

We notice that the function $h'(z)$ has the property that $h'(z) = h'(Pz)$ for any perturbation matrix P with $P \in \{0, 1\}^{s \times s}$, $P1 = 1$, $1P = 1$. Therefore, the optimal solution z^* for problem (11) will be achieved with $|z|_i = |z^*_i| = \ldots = |z_n| = \delta$ for some unknown constant δ with $0 < \delta < 1$. Therefore, we have the following optimization problem which is equivalent to (10) and (11)

$$\min_{s, \delta} \ J(s, \delta) \triangleq \frac{n - \sqrt{n} \sqrt{n - s + s\delta^2}}{\sqrt{s(1 - \delta)^2}}, \ s.t. \ s \in \{1, 2, \ldots, n\} \quad (12)$$

Since $J(s, \delta)$ is an increasing function for any $\delta \in (0, 1)$, the optimal solution $s^* \frac{1}{12} \ 1 \text{ with be achieved with } s^* = 1$. Therefore, we derive the following inequalities:

$$h^* \geq \frac{n - \sqrt{n}}{\sqrt{n - 1 + \delta^2}} = p(\delta) \quad (13)$$

In what follows, we prove that $p(\delta) > 1/2$ on $0 < \delta < 1$ for any n. First of all, it is not hard to validate that $p(\delta)$ is a decreasing function on $0 < \delta < 1$ for any n. We now consider the two limit points for $p(\delta)$ in (13). (i) We have $\lim_{\delta \to 0^+} p(\delta) = n - \sqrt{n^2 - n} > 1/2$ due to the following inequalities:

$$1/4 > 0 \Rightarrow n^2 - n + 1/4 > n^2 - n = (n - 1/2)^2 > n^2 - n \Rightarrow \frac{(n - 1/2)^2}{\sqrt{n^2 - n} - \sqrt{n^2 - n} > 1/2}.$$

(ii) Moreover, we have $\lim_{\delta \to 1^-} p(\delta) = \lim_{\delta \to 1^-} \frac{n - \sqrt{n^2 - 1 + \delta^2}}{\sqrt{(1 - \delta)^2}} = \lim_{\delta \to 1^-} \frac{n - \sqrt{n^2 - n + \delta^2}}{\sqrt{(1 - \delta)^2}} > 1/2$. Hereby we finish the proof of this lemma.

The following lemma is useful in establishing the exactness property of the penalty function in Algorithm 1.

Lemma 3. Consider the following optimization problem:

$$(x^*_p, v^*_p) = \arg\min_{-1 \leq x \leq 1, \ |v|^2 \leq n} \ J_p(x, v) \quad (14)$$

Assume that $f(\cdot)$ is a L-Lipschitz continuous convex function on $-1 \leq x \leq 1$. When $\rho > 2L$, $(x^*_p, v^*_p) = n$ will be achieved for any local optimal solution of (14).

Proof. To finish the proof of this lemma, we consider two cases: $x = \text{sign}(x)$ and $x \neq \text{sign}(x)$. For the first case, $x = \text{sign}(x)$ implies that the solution is binary, any ρ guarantees that the complimentary constraint is satisfied. The conclusion of this lemma clearly holds. Now we consider the case that $x \neq \text{sign}(x)$.

First of all, we focus on the v-subproblem in the optimization problem in (14).

$$v^*_p = \arg\min_{v} - x^Tv, \ s.t. \ |v|^2 \leq n \quad (15)$$

Assume that $x^*_p \neq 0$, we have $v^*_p = \sqrt{n} \cdot x^*_p/\|x^*_p\|_2$. Then the biconvex optimization problem reduces to the following:

$$x^*_p = \arg\min_{-1 \leq x \leq 1} \rho(x) \triangleq f(x) + \rho(n - \sqrt{n}\|x\|_2) \quad (16)$$

For any $x^*_p \in \Omega$, we derive the following inequalities:

$$0.5\rho(\|x^*_p\| - |x^*_p|_2) \leq \rho(n - \sqrt{n}\|x^*_p\|_2)$$

$$\leq |\rho(n - \sqrt{n}\|x^*_p\|_2)| + f(x^*_p)$$

$$\leq |\rho(n - \sqrt{n}|\text{sign}(x^*_p)|_2| + f(|x^*_p|)|f(x^*_p)|$$

$$\leq f(\text{sign}(x^*_p)) - f(x^*_p)$$

$$= L\|\text{sign}(x^*_p) - x^*_p\|_2 \quad (17)$$

where the first step uses Lemma 2 that $\|\text{sign}(x) - x\|_2 \leq 2(n - \sqrt{n}\|x\|_2)$ for any x in $\|x\|_\infty \leq 1$; the third steps uses
the optimality of x^* in (1) that $p(x^*) \leq p(y)$ for any y with $-1 \leq y \leq 1$, $y \in \Omega$, the fourth step uses the fact that \(\text{sign}(x^*_p) \in \{-1, +1\}^n \) and \(\sqrt{n} \|\text{sign}(x^*_p)\|_2 = n \); the last step uses the Lipschitz continuity of $f(\cdot)$.

From (17), we have \(\|x^*_p - \text{sign}(x^*_p)\|_2 : (\rho - 2L) \leq 0 \). Since $\rho > 2L > 0$, we conclude that it always holds that \(\|x^*_p - \text{sign}(x^*_p)\|_2 = 0 \). Thus, $x^*_p \in \{-1, 1\}^n$. Finally, we have $x^*_p = \sqrt{n} \cdot x^*_p/\|x^*_p\|_2 = v^*_p$ and $(x^*_p, v^*_p) = n$.

The following theorem shows that when the penalty parameter ρ is larger than some threshold, the biconvex objective function in (3) is equivalent to the original constrained MPEC problem in (3). This essentially implies the theoretical convergence of the algorithm since it reduces to block coordinate descent in the literature.

Theorem 1. Exactness of the Penalty Function. Assume that $f(\cdot)$ is a L-Lipschitz continuous convex function on $-1 \leq x \leq 1$. When $\rho > 2L$, the biconvex optimization in (2) has the same local and global minima with the original problem in (3).

Proof. Let x^* be any optimal minimizer of (3) and (x^*_p, v^*_p) be any optimal minimizer of (4) for some $\rho > 2L$.

(i) We now prove that x^* is also a global minimizer of (3). For any feasible x and v that $\|x\|_\infty \leq 1$, $\|v\|_2 \leq n$, we derive the following inequalities:

$$
\mathcal{J}(x, v, v^*, \rho) \geq \min_{\|x\|_\infty \leq 1, \|v\|_2 \leq n, x \in \Omega} \min f(x) + \rho(n - x^T v^n) = \|x\|_\infty \leq 1, \|v\|_2 \leq n, x \in \Omega \min f(x), s.t. x^T v = n = f(x^*), \rho(n - x^*^T v^*) = \mathcal{J}(x^*, v^*, \rho)
$$

where the first equality holds due to the fact that the constraint $x^T v = n$ is satisfied at the local optimal solution when $\rho > 2L$ (see Lemma 3). Therefore, we conclude that any optimal solution of (3) is also an optimal solution of (4).

(ii) We now prove that x^*_p is also a global minimizer of (3).

For any feasible x and v that $\|x\|_\infty \leq 1$, $\|v\|_2 \leq n$, $x^T v = n$, $x \in \Omega$, we naturally have the following inequalities:

$$
f(x^*_p) - f(x) \geq f(x^*_p) + \rho(n - x^*_p^T v^*_p) - f(x) - \rho(n - x^T v) = J_p(x^*_p, v^*_p) - J_p(x, v) \leq 0
$$

where the first equality uses Lemma 3. Therefore, we conclude that any optimal solution of (4) is also an optimal solution of (3).

Finally, we conclude that when $\rho > 2L$, the biconvex optimization in (4) has the same local and global minima with the original problem in (3).

The following theorem characterizes the convergence rate and asymptotic monotone property of the algorithm.

Theorem 2. Convergence Rate and Asymptotic Monotone Property of Algorithm 1. Assume that $f(\cdot)$ is a L-Lipschitz continuous convex function on $-1 \leq x \leq 1$. Algorithm 1 will converge to the first-order KKT point in at most \(\left[(\ln(L\sqrt{n}) - \ln(\epsilon^p)) / \ln \sigma \right] \) outer iterations with the accuracy at least $n - x^*^T v \leq \epsilon$.

Moreover, after $(x, v) = n$ is obtained, the sequence of \(\{f(x^n)\} \) generated by Algorithm 1 is monotonically non-increasing.

Proof. We denote s and t as the outer iterations counter and inner iteration counter in Algorithm 1, respectively.

(i) We now prove the convergence rate of Algorithm 1. Assume that Algorithm 1 takes s outer iterations to converge. We denote $f'(x)$ as the sub-gradient of $f(\cdot)$ in x. According the the x-subproblem in (16), if x^* solves (16), then we have the following variational inequality (28):

$$
\forall x \in \{-1, +1\}^\cap \Omega, \langle x - x^*, f'(x^*) \rangle + \rho(n - \sqrt{n} \|x\|_2) - \rho(n - \sqrt{n} \|x^*\|_2) \geq 0
$$

Letting x be any feasible solution that $x \in \{-1, +1\}^\cap \Omega$, we have the following inequalities:

$$
\begin{align*}
(n - \sqrt{n} \|x\|_2) &\geq (n - \sqrt{n} \|x^*\|_2) + \rho(n - \sqrt{n} \|x^*\|_2) \\
&\geq \frac{1}{\rho} \|x - x^*\|_2 \cdot \|f'(x^*)\|_2 \\
&\leq \frac{L}{\sqrt{2}n/\rho}
\end{align*}
$$

where the second inequality is due to the Cauchy-Schwarz Inequality, the third inequality is due to the fact that $\|x - y\|_2 \leq \sqrt{2}n$, $\forall x, y \leq 1$ and the Lipschitz continuity of $f(\cdot)$ that $\|f'(x^*)\|_2 \leq L$.

The inequality in (18) implies that when $\rho^* \geq L\sqrt{2n}/\epsilon$, Algorithm 1 achieves accuracy at least $n - \sqrt{n} \|x\|_2 \leq \epsilon$. Noticing that $\rho^* = \sigma^* \rho^0$, we have that ϵ accuracy will be achieved when

$$
\sigma^* \rho^0 \geq \frac{L\sqrt{2n}}{\epsilon} \\
\Rightarrow \sigma^* \geq \frac{L\sqrt{2n}}{\epsilon \rho^0} \\
\Rightarrow s \geq \ln(\ln(L\sqrt{2n}) - \ln(\epsilon \rho^0)) / \ln \sigma
$$

(ii) We now prove the asymptotic monotone property of Algorithm 1. We naturally derive the following inequalities:

$$
\begin{align*}
f(x^{t+1}) - f(x^t) &\leq \rho(n - (x^t, v^t)) - \rho(n - (x^{t+1}, v^{t+1})) \\
&= \rho((x^{t+1}, v^{t+1}) - (x^t, v^t)) \\
&\leq \rho((x^{t+1}, v^{t+1}) - (x^t, v^t)) = 0
\end{align*}
$$

where the first step uses the fact that $f(x^{t+1}) + \rho(n - (x^{t+1}, v^{t+1})) \leq f(x^t) + \rho(n - (x^t, v^t))$ holds due to x^{t+1} is the optimal solution of (4); the third step uses the fact $- (x^{t+1}, v^{t+1}) \leq -(x^{t+1}, v^{t+1})$ holds due to v^{t+1} is the optimal solution of (4); the last step uses $(x, v) = n$ together with the feasible set $-1 \leq x \leq 1$, $\|v\|_2 \leq n$ also implies that $x \in \{-1, +1\}^n$.

We have a few remarks on the theorems above. We assume that the objective function is L-Lipschitz continuous. However, such

8. Every time we increase ρ, we call it one outer iteration.
Algorithm 2 MPEC-ADM: An Alternating Direction Method for Solving MPEC Problem (3)

(S.0) Set $t = 0$, $x^0 = v^0 = 0$, $\rho^0 = 0$, $\alpha > 0$, $\sigma > 1$.
(S.1) Solve the following x-subproblem [primal step]:

$$x^{t+1} = \arg \min_x \mathcal{L}(x, v^t, \rho^t), \ s.t. \ x \in [-1, +1]^n \cap \Omega \tag{19}$$

(S.2) Solve the following v-subproblem [dual step]:

$$v^{t+1} = \arg \min_v \mathcal{L}(x^{t+1}, v, \rho^t), \ s.t. \ \|v\|_2 \leq n \tag{20}$$

(S.3) Update the Lagrange multiplier:

$$\rho^{t+1} = \rho^t + \alpha(n - \langle x^{t+1}, v^{t+1} \rangle) \tag{21}$$

(S.4) Update the penalty in every T iterations (if necessary):

$$\alpha \leftarrow \alpha \times \sigma \tag{22}$$

(S.5) Set $t := t + 1$ and then go to Step (S.1).

The theoretical bound $2L$ (on the penalty parameter ρ) heavily depends on the specific structure of the optimization problem. Moreover, we also establish the convergence rate and asymptotic monotone property of our algorithm.

3.3 Alternating Direction Method

This section presents an alternating direction method (of multipliers) (ADM or ADMM) for solving (3). This is mainly motivated by the recent popularity of ADM in the optimization literature [28, 64, 68, 69].

We first form the augmented Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ in (23) as follows:

$$\mathcal{L}(x, v, \rho) = f(x) + \rho(n - x^T v) + \frac{\alpha}{2}(n - x^T v)^2 \tag{23}$$

s.t. $-1 \leq x \leq 1$, $\|v\|_2 \leq n$, $x \in \Omega$

where ρ is the Lagrange multiplier associated with the complementarity constraint $n - \langle x, v \rangle = 0$, and $\alpha > 0$ is the penalty parameter. Interestingly, we find that the augmented Lagrangian function can be viewed as adding an elastic net regularization to the complementarity error. We detail the ADM iteration steps for (23) in Algorithm 2 which has the following properties.

(a) Initialization. We set $v^0 = 0$ and $\rho^0 = 0$. This finds a reasonable local minimum in the first iteration, as it reduces to LP relaxation for the x-subproblem.

(b) Monotone property. For any feasible solution x and v in (23), it holds that $n - x^T v \geq 0$. Using the fact that $\alpha^2 > 0$ and due to the ρ^t update rule, ρ^t is monotone increasing.

9 For example, for the quadratic function $f(x) = 0.5x^T Ax + x^T b$ with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, the Lipschitz constant is bounded by $L \leq \|A\| + |b| \leq \|A\|_2 \|x\|_2 + |b|$. For the ℓ_1 regression function $f(x) = \|Ax - b\|_1$, with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the Lipschitz constant is bounded by $L \leq \|A\|_2 \|x\|_2 + |b| \leq \|A\|_2 \sqrt{m}$.

(c) v-Subproblem. Variable v in (20) is updated by solving the following problem:

$$v^{t+1} = \arg \min_v \frac{1}{2} v^T A^T v + \langle v, b \rangle, \ s.t. \ \|v\|_2 \leq \sqrt{n}$$

where $a \triangleq x^{t+1}/\sqrt{n}$ and $b \triangleq -(\rho + \alpha n) \cdot x^{t+1}$. This problem is also known as constrained eigenvalue problem in the literature [23], which has efficient solution. Since the quadratic matrix is of rank one, this problem has nearly closed-form solution (please refer to Appendix B for detailed discussions).

(d) x-Subproblem. Variable x in (23) is updated by solving a box constrained optimization problem. Similar to [5], it can be solved using Nesterov’s proximal gradient method or classical/linearized ADM.

Theoretical Analysis. In the following, we present some theoretical analysis of our alternating direction method. The proofs of theoretical convergence are similar to our previous analysis for the exact penalty method. The following lemma is useful in building the exactness property of the augmented Lagrangian function in Algorithm 2.

Lemma 4. Consider the following optimization problem:

$$(x^*_\rho, v^*_\rho) = \arg \min_{-1 \leq x \leq 1, \|v\|_2 \leq n, x \in \Omega} \mathcal{L}(x, v, \rho). \tag{24}$$

Assume that $f(\cdot)$ is a L-Lipschitz continuous convex function on $-1 \leq x \leq 1$. When $\rho > 2L$, $(x^*_\rho, v^*_\rho) = n$ will be achieved for any local optimal solution of (24).

Proof. The proof of this theorem is based on Lemma 3. We observe that $n - x^T v = 0 \iff (n - x^T v)^2 = 0$. We define $h(x) \triangleq f(x) + \frac{\rho}{2}(n - x^T v)^2$ and denote L_h as the Lipschitz constant of $h(\cdot)$. We replace $f(\cdot)$ with $h(\cdot)$ in Lemma 3 and conclude that when $\rho > 2L_h$, we have $n - x^T v = 0$. Thus, the term $\frac{\rho}{2}(n - x^T v)^2$ in $h(x)$ reduces to zero and $L_h = L$. We conclude that when $\rho > 2L$, $(x^*_\rho, v^*_\rho) = n$ will be achieved for any local optimal solution.

Our MPEC-ADM has excellent convergence property. The following theorem shows that when the multiplier ρ is larger than some threshold, the biconvex objective function in (23) is equivalent to the original constrained MPEC problem in (3).

Theorem 3. Exactness of the augmented Lagrangian Function. Assume that $f(\cdot)$ is a L-Lipschitz continuous convex function on $-1 \leq x \leq 1$. When $\rho > 2L$, the biconvex optimization problem

$$\min_{x, v} \mathcal{L}(x, v, \rho), \ s.t. \ -1 \leq x \leq 1, \|v\|_2 \leq n, x \in \Omega$$

in (23) has the same local and global minima with the original problem in (3).

Proof. The proof of this theorem is similar to Theorem 4. We let x^* be any global minimizer of (3) and (x^*_ρ, v^*_ρ) be any global minimizer of (4) for some $\rho > 2L$.

(i) We now prove that x^* is also a global minimizer of (4). For any feasible x and v with $\|x\|_{\infty} \leq 1, \|v\|_2 \leq n, x \in \Omega$, we derive the following inequalities:

$$\mathcal{L}(x, v, \rho) \geq \min_{\|x\|_{\infty} \leq 1, \|v\|_2 \leq n} f(x) + \rho(n - x^T v) + \frac{\alpha}{2}(n - x^T v)^2$$

$$= \min_{\|x\|_{\infty} \leq 1, \|v\|_2 \leq n} f(x), \ s.t. \ x^T v = n$$

$$= \min_{\|x\|_{\infty} \leq 1, \|v\|_2 \leq n} f(x^*), \ s.t. \ x^* v^* = n$$

$$= f(x^*) + \rho(n - x^* v^*) + \frac{\alpha}{2}(n - x^* v^*)^2$$

$$= \mathcal{L}(x^*, v^*, \rho).$$
Therefore, we conclude that any optimal solution of (4) is also an original problem in (3).

(ii) We now prove that x_0^* is also a global minimizer of (3).

For any feasible x and v that $\|x\|_\infty \leq 1$, $\|v\|_2^2 \leq n$, $x^T v = n$, $x \in \Omega$, we naturally have the following inequalities:

\[
\begin{align*}
 f(x_0^*) - f(x) &= f(x_0^*) + \rho(n - x_0^T v_0^*) + \frac{\alpha}{2} (n - x_0^T v_0^*)^2 \\
 &- f(x) - \rho(n - x^T v) - \frac{\alpha}{2} (n - x^T v)^2 \\
 &= \mathcal{L}(x_0^*, v_0^*, \rho) - \mathcal{L}(x, v, \rho) \\
 &\leq 0
\end{align*}
\]

Therefore, we conclude that any optimal solution of (3) is also an optimal solution of (4).

Finally, we conclude that when $\rho > 2L$, the biconvex optimization in (3) has the same local and global minima with the original problem in (3).

We have some remarks on the theorem above. We use the same assumption as in the exact penalty method. Although alternating direction method has been used in the literature [40], [66], their convergence results are much weaker than ours. The main novelties of our method is the self-penalized feature owning to the boundedness and monotone property of multiplier.

4 DISCUSSIONS

This section discusses the comparisons of MPEC-EPM and MPEC-ADM, the merits of our methods, and the extensions to zero-one constraint and orthogonality constraint.

MPEC-EPM vs. MPEC-ADM. The proposed MPEC-EPM and MPEC-ADM have their own advantages. (a) MPEC-EPM is more simple and elegant and it can directly use existing LP relaxation optimization solver. (b) MPEC-ADM may be less adaptive since the penalty parameter ρ is monolithically increased until a threshold is achieved. In comparison, MPEC-ADM is more adaptive, since a constant penalty also guarantees monotonically non-decreasing multipliers and convergence.

Merits of our methods. There are several merits behind our MPEC-based penalization/regularization methods. (a) They exhibit strong convergence guarantees since they essentially reduce to block coordinate descent in the literature [7], [60]. (b) They seek desirable solutions since the LP convex relaxation methods in the first iteration provide good initializations. (c) They are efficient since they are amenable to the use of existing convex methods to solve the sub-problems. (d) They have a monotone/greedy property due to the complimentary constraints brought on by MPECs. We penalize the complimentary error and ensure that the error is decreasing in every iteration, leading to binary solutions.

Extensions to Zero-One Constraint and Orthogonality Constraint. For convenience, we define $\Delta = \{0, 1\}^n$ and $\emptyset = \{X \in \mathbb{R}^{n \times r} \mid X^T X = I, (n \geq r)\}$. Noticing that $y = (x + 1/2) / \in \{0, 1\}^n$, we can extend ℓ_∞ box non-separable MPEC and ℓ_2 box non-separable MPEC to handle zero-one binary optimization. Moreover, observing that binary constraint $x \in \{-1, +1\}^n \Leftrightarrow |x| = 1$ is analogous to orthogonality constraint since $X \in \emptyset \Leftrightarrow \sigma(X) = 1$, we can extend our ℓ_∞ box non-separable MPEC and ℓ_2 box non-separable MPEC to the optimization problem with orthogonality constraint [14], [65].

5 EXPERIMENTAL VALIDATION

In this section, we demonstrate the effectiveness of our algorithms (MPEC-EPM and MPEC-ADM) on 5 binary optimization tasks, namely graph bisection, constrained image segmentation, dense subgraph discovery, modularity clustering and Markov random fields. All codes are implemented in MATLAB using a 3.20GHz CPU and 8GB RAM. For the purpose of reproducibility, we provide our MATLAB code at: http://isee.sysu.edu.cn/~yuanganzhao/.

5.1 Graph Bisection

Graph bisection aims at separating the vertices of a weighted undirected graph into two disjoint sets with minimal cut edges with equal size. Mathematically, it can be formulated as the following optimization problem [37], [63]:

\[
\min_{x \in \{-1,+1\}^n} x^T L x, \text{ s.t. } x^T 1 = 0
\]

where $L = D - W \in \mathbb{R}^{n \times n}$ is the Laplacian matrix, $W \in \mathbb{R}^{n \times n}$ is the affinity matrix and $D = \text{diag}(W 1) \in \mathbb{R}^{n \times n}$ is the degree matrix.

Compared Methods. We compare MPEC-EPM and MPEC-ADM against 5 methods on the ‘4gauss’ data set (see Figure 1). (i) LP relaxation simply relaxes the binary constraint to $-1 \leq x \leq 1$ and solves the following problem:

\[
\text{LP: } \min_{x} x^T L x, \text{ s.t. } x^T 1 = 0, \quad -1 \leq x \leq 1
\]

(ii) Ratio Cut (RCUT) and Normalize Cut (NCUT) relax the binary constraint to $\|x\|_2^2 = n$ and solve the following problems [15], [54]:

\[
\begin{align*}
 \text{RCUT: } & \min_{x} x^T L x, \text{ s.t. } x \cdot 1 = 0, \quad \|x\|_2^2 = n \\
 \text{NCUT: } & \min_{x} x^T L x, \text{ s.t. } x \cdot (D^{1/2})^T 1 = 0, \quad \|x\|_2^2 = n
\end{align*}
\]

where $L = D^{-1/2} L D^{-1/2}$. The optimal solution of RCUT (or NCUT) is the second smallest eigenvectors of L (or L), see e.g. [37], [63]. (iv) SDP relaxation solves the following convex optimization problem [14]:

\[
\text{SDP: } \min_{x} \langle L, X \rangle, \text{ s.t. } \text{diag}(X) = 1, \quad (X, 11^T) = 0
\]

Finally, we also compare with L2box-ADMM [66] which applies ADMM directly to the ℓ_2 box non-separable reformulation:

\[
\min_{x} x^T L x, \text{ s.t. } x^T 1 = 0, \quad -1 \leq x \leq 1, \quad \|x\|_2^2 = n
\]

We remark that it is a splitting method that introduces auxiliary variables to separate the two constrained set and then performs block coordinate descend on each variable.

10. $\Delta \Leftrightarrow \{x \mid 0 \leq x_1 \leq 1, 0 \leq v \leq 1, \langle 2x - 1, 2v - 1 \rangle = n, \forall v\}$
11. $\Delta \Leftrightarrow \{x \mid 0 \leq x_1 \leq 1, \|2v - 1\|_2^2 \leq n, \langle 2x - 1, 2v - 1 \rangle = n, \forall v\}$
12. $0 \Leftrightarrow \{X \mid \|X^T X \leq 1, \forall V \}, \forall V \}$
13. $0 \Leftrightarrow \{X \mid \|X^T X \leq 1, \forall V \}, \forall V \}$
14. For SDP method, we use the randomized rounding strategy in [25], [63] to get a discrete solution from X. Specifically, we sample a random vector $x \in \mathbb{R}^n$ from a Gaussian distribution with mean 0 and covariance X, and perform $x^* = \text{sign}(x - \text{median}(x))$. This process is repeated many times and the final solution with the largest objective value is selected.
Experimental Results. Several observations can be drawn from Figure 1. (i) The LP, RCUT and NCUT relaxation methods fail to appropriately separate the ‘4gauss’ data set and they result in large objective values. (ii) SDP relaxation provides a good approximation and achieves a lower objective value than LP, RCUT, NCUT and L2box-ADMM. (iii) The proposed methods MPEC-EPM and MPEC-ADM achieve the same lowest objective values among all the compared methods.

5.2 Constrained Image Segmentation

In graph-based partition, image is modeled as a weighted undirected graph where nodes corresponds to pixels (or pixel regions) and edges encode feature similarities between the node pairs. Image segmentation can be treated as seeking a partition \(x \in \{-1, +1\}^n \) to cut the edges of the graph with minimal weights. Prior label information on the vertices of the graph can be incorporated to improve performance, leading to the following optimization problem:

\[
\min_{x \in \{-1, +1\}^n} x^T L x, \quad s.t. \quad x_F = 1, \quad x_B = -1
\]

where \(F \) and \(B \) denote the index of foreground pixels set and background pixels set, respectively; \(L \in \mathbb{R}^{n \times n} \) is the graph Laplacian matrix. Since SDP method can not solve large scale image segmentation problems, we over-segment the images into SLIC pixel regions using the ‘VLFeat’ toolbox [61]. The affinity matrix \(W \) is constructed based on the color similarities and spatial adjacencies between pixel regions.

Compared Methods. We compare MPEC-EPM and MPEC-ADM against 4 methods on the Weizman horses and MSRC datasets [63] (see Figure 2). (i) Biased normalized cut (BNCut) [15] extends Normalized Cut [54] to encode the labelled foreground pixels as a quadratic constraint on the solution \(x \). The solution of BNCut is a linear combination of the eigenvectors of normalized Laplacian matrix [54]. (ii) LP relaxation simply replaces the binary constraint with a soft constraint and solves a quadratic programming problem: \(\min_x x^T L x, \quad s.t. \quad -1 \leq x \leq 1, \quad x_F = 1, \quad x_B = -1 \). (iii) SDP relaxation method considers the following optimization problem:

\[
\min_{X \succeq 0} (L, X), \quad s.t. \quad \text{diag}(X) = 1, \quad X_I = 1, \quad X_J = -1
\]

with \(X \in \mathbb{R}^{n \times n} \), and \(I \) and \(J \) are the index pairs of similarity and dissimilarity, respectively. Therefore, it contains \(n + \left(\frac{n^2}{2} \right) + \left(\frac{n^2}{2} \right) + |B| \cdot |F| \) linear equality constraints. We use ‘cvx’ optimization software [26] to solve this problem. (iv) L2box-ADMM considers the following optimization problem: \(\min_x x^T L x, \quad s.t. \quad -1 \leq x \leq 1, \quad x_F = 1, \quad x_B = -1, \quad ||x||_2^2 = n \).

Experimental Results. Several observations can be drawn from Figure 3. (i) LP relaxation generates better image segmentation results than BNCUT except in the second image. Moreover, we found that a lower objective value does not always necessarily result in better view for image segmentation. We argue that the parameter in constructing the similarity graph is responsible for this result. (ii) SDP method and L2box-ADMM method generate
better solutions than BNCUT and LP. (iii) The proposed MPEC-EPM and MPEC-ADM generally obtain lower objective values and outperform all the other compared methods.

5.3 Dense Subgraph Discovery

Dense subgraphs discovery [21], [53], [72] is a fundamental graph-theoretic problem, as it captures numerous graph mining applications, such as community finding, regulatory motifs detection, and real-time story identification. It aims at finding the maximum density subgraph on \(k \) vertices, which can be formulated as the following binary program:

\[
\max_{x \in \{0,1\}^n} \quad x^T W x, \quad s.t. \quad x^T 1 = k
\]

where \(W \in \mathbb{R}^{n \times n} \) is the adjacency matrix of the graph. Although the objective function in (25) may not be convex, one can append an additional term \(\lambda x^T x \) to the objective with a sufficiently large \(\lambda \) such that \(\lambda I - W \succeq 0 \). This is equivalent to adding a constant to the objective since \(\lambda x^T x = \lambda k \) in the effective domain. Therefore, we have the following optimization problem which is

\[
\min_{x \in \{0,1\}^n} \quad \lambda x^T x + x^T W x, \quad s.t. \quad x^T 1 = k
\]

Table 2: The statistics of the web graph data sets used in our dense subgraph discovery experiments.

Graph	# Nodes	# Arcs	Avg. Degree
wordassociation	10617	72172	6.80
enron	69244	276143	3.99
uk-2007-05	100000	3050615	30.51
cmr-2000	325557	3216152	9.88
dblp-2010	326186	1615400	4.95
in-2004	1382908	16917053	12.23
amazon-2008	735323	5158388	7.02
dblp-2011	986324	6707236	6.80
equivalent to (25):

$$\min_{x \in \{0,1\}^n} x^T (\lambda I - W)x, \text{ s.t. } x^T 1 = k$$

In the experiments, λ is set to the largest eigenvalue of W.

Compared Methods. We compare MPEC-EP and MPEC-ADM against 5 methods on 8 datasets 15 (see Table 5). (i) Feige’s greedy algorithm (GEIGE) 21 is included in our comparisons. This method is known to achieve the best approximation ratio for general k. (ii) Ravi’s greedy algorithm (RAVI) 53 starts from a heaviest edge and repeatedly adds a vertex to the current subgraph to maximize the weight of the resulting new subgraph. It has asymptotic performance guarantee of $\pi / 2$ when the weights satisfy the triangle inequality. (iii) LP relaxation solves a capped simplex problem by standard quadratic programming technique: $\min_{x} x^T (\lambda I - W)x$, s.t. $0 \leq x \leq 1$, $x^T 1 = k$. (iv) L2-box-ADMM solves a spherical constraint optimization problem: $\min_{x} x^T (\lambda I - W)x$, s.t. $0 \leq x \leq 1$, $x^T 1 = k$, $\|2x - 1\|_2 = n$. (iv) Truncated Power Method (TPM) 72 considers an iterative procedure that combines power iteration and hard-thresholding truncation. It works by greedily decreasing the objective while maintaining the desired binary property for the intermediate solutions. We use the code provided by the authors. As suggested in 72, the initial solution is set to the indicator vector of the vertices with the top k weighted degrees of the graph in our experiments.

Experimental Results. Several observations can be drawn from Figure 4: (i) Both FEIGE and RAVI generally fail to solve the dense subgraph discovery problem and they lead to solutions with low density. (ii) LP relaxation gives better performance than state-of-the-art technique TPM in some cases. (iii) L2-box-ADMM outperforms LP relaxation for all cases but it generates unsatisfying accuracy in ‘enron’, ‘cnr-2000’ and ‘dplb-2010’. (iv) Our proposed method MPEC-EP and MPEC-ADM generally outperforms all the compared methods, while MPEC-EP seems to present slightly better results than MPEC-ADM in this group of experiments.

TABLE 3: The statistics of the web graph data sets used in our modularity clustering experiments.

Graph	# Nodes	# Arcs	Avg. Degree
karate	34	78	4.59
collab	235	415	3.53
dolphins	62	159	5.13
email	1133	5451	9.62
lemsis	77	820	21.30
polbooks	105	441	8.40
afootball	115	616	10.71
jazz	198	2742	27.70

5.4 Modularity Clustering.

Modularity was first introduced in 43 as a performance measure for the quality of community structure found by a clustering algorithm. Given a modularity matrix $Q \in \mathbb{R}^{n \times n}$ with $Q_{ij} = W_{ij} - \deg(v_i)\deg(v_j)/(2m)$, modularity clustering can be formulated as the following optimization problem 9, 13:

$$\min_{X \in \{-1,+1\}^{n \times n}} \frac{1}{8m} tr(X^T QX), \text{ s.t. } X1 = (2 - k)1 \quad (26)$$

Observing that $Y = (X + 1)/2 \in \mathbb{R}^{n \times n}$, we obtain $Y \in \{0,1\}^{n \times n}$. Combining the linear constraint $X1 = (2 - k)1$, we have $Y1 = 1$ and $XXT = (2Y - 1)(2Y - 1)^T = 4YY^T - 311^T$. Based on these analyses, one can rewrite (26) as the following equivalent optimization problem:

$$\min_{Y \in \{0,1\}^{n \times n}} \frac{1}{8m} tr(Y^T QY) + \text{constant}, \text{ s.t. } Y1 = 1.$$

Compared Methods. We compare against 4 methods on 8 network data sets (See Table 3). (i) Iterative rounding algorithm (IRA) 13 in every stage solves a convex quadratic program.
and picks a fixed number of the vertices with largest values to assign to the cluster. However, such heuristic algorithm does not have any convergence guarantee. We use the code provided by the authors [2] and set the parameter $\rho = 0.5$ in this method. (ii) LP relaxation solves a capped simplex problem. (iii) L2box-ADMM solves a spherical constrained optimization problem. (iv) Iterative Hard Thresholding (IHT) considers setting the current solution to the indicator vector of its top-k entries while decreasing the objective function. Due to its suboptimal performance in our previous experiment, LP relaxation is used as its initialization.

Experimental Results. Several observations can be drawn from Figure 5. (i) IHT does not necessarily improve upon the result to IRA. (ii) Our proposed methods generally outperform LP in all the experiments. (iii) L2box-ADMM gives comparable performance to IRA and L2box-ADM in the experiments. (iv) Our proposed methods generally outperform IRA and L2box-ADM in the experiments.

TABLE 4: CPU time (in seconds) comparisons.

Graph	LP	L2box-ADMM	MPEC-EPM	MPEC-ADM
wordassociation	1	7	2	14
enron	2	40	29	85
uk-2007-05	6	75	65	77
cnr-2000	16	210	209	245
dblp-2010	15	234	282	253
in-2004	79	834	1023	1301
amazon-2008	49	501	586	846
dblp-2011	59	554	621	1007

5.5 Markov Random Fields

The Markov Random Field (MRF) optimization [8], [15], [33] is widely used in many labeling applications, including image restoration, edge detection, and image segmentation. Generally speaking, it involves solving the following problem:

$$\min_{x \in \{0,1\}^n} \frac{1}{2} x^T L x + x^T b$$

where $b \in \mathbb{R}^n$ is determined by the unary term defined for the graph and $L \in \mathbb{R}^{n \times n}$ is the Laplacian matrix, which is based on the binary term relating pairs of graph nodes together. The quadratic term is usually considered a smoothness prior on the node labels.

Compared Methods. We perform image segmentation on the ‘cat’ image and ‘flower’ images. (i) Graph cut method [3] is included in our experiments. This method is known to achieve the global optimal solution for this specific class of binary problem. (ii) LP relaxation solves a box constrained quadratic programming problem. (iii) L2box-ADMM solves the ℓ_2 box non-separable reformulation directly using classical alternating direction method of multipliers (ADMM) [66]. (iv) L0-QPM norm solves the semi-continuous ℓ_0 norm reformulation of the binary optimization problem by quadratic penalty method [43], [70].

Experimental Results. Figure 6 demonstrates a qualitative result for image segmentation. MPEC-EPM and MPEC-ADM produce solutions that are very close to the globally optimal one. Moreover, both our methods achieve lower objectives than the other compared methods.

5.6 Convergence Curve and Computational Efficiency

This subsection demonstrates the convergence curve and computational efficiency of the proposed algorithms. We only report the results on dense subgraph discovery.

Convergence Curve: We demonstrate the convergence curve of the methods \{LP, L2box-ADMM, MPEC-EPM, MPEC-ADM\} for dense subgraph discovery on different data sets. As can be seen in Figure 7 and Figure 8, the proposed MPEC-based methods converges within 100 iterations. Moreover, we observe that the objective values generally decrease monotonically, and we attribute this to the greedy property of the penalty method for MPEC-EPM and monotone property of the dual variable ρ update for MPEC-ADM.

Computational Efficiency: We provide some running time comparisons for the methods \{LP, L2box-ADMM, MPEC-EPM, MPEC-ADM\} on different data sets with different $k \in$.

17. [Link](http://www.cse.ust.hk/~dyyeung/paper/publist.html)
{100, 1000, 2000, 3000, 4000, 5000}. As can be seen in Table 4, even for the data set such as ‘dblp-2011’ that contains about one million nodes and 7 million edges, all the methods can terminate with in 15 minutes. Moreover, the runtime efficiency of our methods are several times slower than LP and comparable with and L2box-ADMM. This is expected, since (i) our methods MPEC-EPM and MPEC-ADM need to call the LP procedure multiple times, and (ii) all the methods are all alternating methods and have the same computational complexity.

5.7 Some Implementation Details

This subsection presents some implementation details of MPEC-EPM and MPEC-ADM, including method of solving the x-subproblems and parameters setting of the algorithms.

The convex x-subproblems can be solved using Nesterov’s projective gradient methods. For the applications of constrained image segmentation and Markov random fields, the projection step involved in the x-subproblems is easy since it only contains box constraints\(^{18}\) for the applications of dense subgraph discovery, modularity clustering and graph bisection, the projection step can be hard since it contains an additional linear constraint besides box constraints (also known as capped simplex constraint\(^ {19}\)). Fortunately, this projection step can be solved by a break point search algorithm\(^ {50}\) exactly in \(n \log(n)\) time. In our experiments, we use the Matlab implementation provided in the appendix of\(^ {70}\).

The following parameters are used in our algorithms. For all

\(^{18}\) It solves: \(\min_{0 \leq x \leq 1} \|a - x\|^2_2\), where \(a\) is given.

\(^{19}\) It solves: \(\min_{0 \leq x \leq 1, x^T 1 = k} \|a - x\|^2_2\), where \(a\) and \(k\) are given.
methods, we use proximal gradient descent algorithm to solve the inner x subproblems. We stop the proximal gradient descent procedure when a relative change is smaller than $\epsilon = 10^{-5}$, i.e. $\|x^{k+1} - x^k\|/\|x^k\| \leq \epsilon$, where k is the iteration counter for the x-subproblem. In addition, we set $\rho^0 = 0.01$, $T = 10$, $\sigma = \sqrt{10}$ for MPEC-EP and set $\alpha^0 = 0.001$, $T = 10$, $\sigma = \sqrt{10}$ for MPEC-ADM. Finally, for L2box-ADM, we update the penalty parameter by a factor of $\sqrt{10}$ in every $T = 10$ iterations with initial value set to 0.1\(^{20}\).

20. We tune this parameter in the range \{0.01, 0.1, 1\} and find the value 0.1 generally gives comparable results.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a new class of continuous MPEC-based optimization methods to solve general binary optimization problems. Although the optimization problem is non-convex, we design two methods (exact penalty and alternating direction) to solve the equivalent problem. We also shed some theoretical lights to the equivalent formulations and optimization algorithms. Experimental results on binary problems demonstrate that our methods generally outperform existing solutions in terms of solution quality.

Our future work focuses on several directions. (i) We will investigate the optimality qualification of our multi-stage convex relaxation method for some specific objective functions, e.g., as is done in [12], [25], [34], [73]. (ii) We are also interested in...
extending the proposed algorithms to solve orthogonality and spherical optimization problems \[14, 65\] in computer vision and machine learning.

ACKNOWLEDGMENTS

We would like to thank Prof. Shaohua Pan and Dr. Li Shen (South China University of Technology) for their valuable discussions on the MPEC techniques. Research reported in this publication was supported by competitive research funding from King Abdullah University of Science and Technology (KAUST).

REFERENCES

[1] B. P. Ames. Guaranteed clustering and biclustering via semidefinite programming. *Mathematical Programming*, 147(1-2):429–465, 2014.

[2] B. P. Ames. Guaranteed recovery of planted cliques and dense subgraphs by convex relaxation. *Journal of Optimization Theory and Applications*, 167(2):653–675, 2015.

[3] B. P. Ames and S. A. Vavasis. Nuclear norm minimization for the planted clique and biclique problems. *Mathematical Programming*, 129(1):89–126, 2011.

[4] B. P. Ames and S. A. Vavasis. Convex optimization for the planted k-disjoint-clique problem. *Mathematical Programming*, 143(1):299–337, 2014.

[5] A. Beck and Y. C. Eldar. Sparsity constrained nonlinear optimization: Optimality conditions and algorithms. *SIAM Journal on Optimization (SIOP)), 23(3):1480–1509, 2013.

[6] S. Bi, X. Liu, and S. Pan. Exact penalty decomposition method for zero-norm minimization based on mpec formulation. *SIAM Journal on Scientific Computing (SISC)*, 36(4):A1451–A1477, 2014.

[7] R. Bredereck, S. Sabach, and M. Teo. Partial and convex programming for max-cut and minimum graph bisection. *Mathematical Programming*, 146(1-2):459–494, 2014.

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 23(11):1222–1239, 2001.

[9] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. On modularity clustering. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 20(2):172–188, 2008.

[10] S. Burer. On the copositive representation of binary and continuous non-convex quadratic programs. *Mathematical Programming*, 120(2):479–499, 2009.

[11] S. Burer. Optimizing a polyhedral-semidefinite relaxation of completely positive programs. *Mathematical Programming Computation*, 2(1):1–19, 2010.

[12] E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and algorithms. *IEEE Transactions on Information Theory*, 61(4):1985–2007, 2015.

[13] E. Y. K. Chan and D. Yeung. A convex formulation of modularity maximization for community detection. In *International Conference on Machine Learning (ICML)*, pages 2445–2453, 2015.

[14] X. Hu and D. Ralph. Convergence of a penalty method for mathematical programming with complementarity constraints. *Journal of Optimization Theory and Applications*, 123(2):365–391, 2004.

[15] Q. Huang, Y. Chen, and L. J. Guibas. Scalable semidefinite relaxation for maximum A posterior estimation. In *International Conference on Machine Learning (ICML)*, pages 64–72, 2014.

[16] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating minimization. In *ACM Symposium on Theory of Computing (STOC)*, pages 665–674, 2013.

[17] A. Joulin, F. R. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1943–1950, 2010.

[18] B. Kalantari and J. B. Rosen. Penalty for zero-one integer equivalent problems. *Mathematical Programming*, 24(1):229–232, 1982.

[19] J. Keuchel, C. Schnorr, C. Schellewald, and D. Cremers. Binary partitioning, perceptual grouping, and restoration with semidefinite programming. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 25(11):1364–1379, 2003.

[20] N. Komodakis and G. Tziritas. Approximate labeling via graph cuts based on linear programming. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 28(8):1436–1453, 2007.

[21] M. P. Kumar, V. Kolmogorov, and P. H. S. Torr. An analysis of convex relaxations for MAP estimation of discrete mrf s. *Journal of Machine Learning Research (JMLR)*, 5:1361–1398, 2006.

[22] R. Lai and S. Osher. A splitting method for orthogonality constrained problems. *Journal of Scientific Computing, 58(2):431–449, 2014.

[23] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general two-step approach to learning-based hashing. In *International Conference on Computer Vision (ICCV)*, pages 2552–2559, 2013.

[24] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with graphs. In *International Conference on Machine Learning (ICML)*, pages 1–8, 2011.

[25] Z. Lu and Y. Zhang. Sparse approximation via penalty decomposition methods. *SIAM Journal on Optimization (SIOP)), 23(4):2448–2478, 2013.

[26] Z.-Q. Luo, J.-S. Pang, and D. Ralph. *Mathematical programs with equilibrium constraints*. Cambridge University Press, 1996.

[27] Z. Lu and Y. Zhang. Sparse approximation via penalty decomposition methods. *SIAM Journal on Optimization (SIOP)), 23(4):2448–2478, 2013.

[28] M. E. Newman. Modularity and community structure in networks. *Proceedings of the national academy of sciences*, 103(23):8577–8582, 2006.

[29] M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. *Physical review E*, 69(2):026113, 2004.

[30] C. Olsson, A. P. Eriksson, and F. Kahl. Solving large scale binary quadratic problems: Spectral methods vs. semidefinite programming. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1–8. IEEE, 2007.

[31] P. M. Pardalos and J. B. Rosen. *Introduction to global optimization*. Kluwer Academic Publishers, 1996.

[32] P. M. Pardalos and J. B. Rosen. *Constrained global optimization: Algorithms and Applications*. Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[33] M. RagHAVACHARI. On connections between zero-one integer programming and concave programming under linear constraints. *Operations Research*, 15(3):583–588, 1967.

[34] M. RagHAVACHARI. On connections between zero-one integer programming and concave programming under linear constraints. *Operations Research*, 15(3):583–588, 1967.
[52] D. Ralph and S. J. Wright. Some properties of regularization and penalization schemes for mpecs. *Optimization Methods and Software*, 19(5):527–556, 2004.

[53] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. *Operations Research*, 42(2):299–310, 1994.

[54] J. Shi and J. Malik. Normalized cuts and image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 22(8):888–905, 2000.

[55] X. Shi, H. Ling, J. Xing, and W. Hu. Multi-target tracking by rank-1 tensor approximation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2387–2394, 2013.

[56] F. Shokrollahi Yanchsheme, K. Chen, and J.-K. Kumaran. Unsupervised visual alignment with similarity graphs. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2901–2908, 2015.

[57] A. Shrivastava, M. Rastegari, S. Shekhar, R. Chellappa, and L. S. Davis. Class consistent multi-modal fusion with binary features. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2292–2291, 2015.

[58] S. Steffensen and M. Ulbrich. A new relaxation scheme for mathematical programs with equilibrium constraints. *SIAM Journal on Optimization (SIOPT)*, 20(5):2504–2539, 2010.

[59] A. Toshev, J. Shi, and K. Daniilidis. Image matching via saliency region correspondences. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1–8. IEEE, 2007.

[60] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. *Journal of Optimization Theory and Applications*, 109(3):475–494, 2001.

[61] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of computer vision algorithms. In *ACM International Conference on Multimedia (ACM MM)*, pages 1469–1472, 2010.

[62] J. Wang, W. Liu, S. Kumar, and S. Chang. Learning to hash for indexing big data - a survey. *Proceedings of the IEEE*, 104(1):34–57, 2016.

[63] P. Wang, C. Shen, A. van den Hengel, and P. Torr. Large-scale binary quadratic optimization using semidefinite relaxation and applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2016.

[64] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented lagrangian methods for semidefinite programming. *Mathematical Programming Computation*, 2(3):203–230, 2010.

[65] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. *Mathematical Programming*, 142(1-2):397–434, 2013.

[66] B. Wu and B. Ghanem. S\ell_p\ell_q-box ADMM: A versatile framework for integer programming. In *arXiv preprint*, 2016.

[67] X. Yuan, C. Zhang, H. Zha, W. Liu, X. Yang, and S. M. Chu. Discrete hyper-graph matching. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1520–1528, 2015.

[68] G. Yuan and B. Ghanem. tolw: A new method for image restoration in the presence of impulse noise. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 5369–5377, 2015.

[69] G. Yuan and B. Ghanem. A proximal alternating direction method for semi-definite rank minimization. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2016.

[70] G. Yuan and B. Ghanem. Sparsity constrained minimization via mathematical programming with equilibrium constraints. In *arXiv preprint*, 2016.

[71] G. Yuan and B. Ghanem. An exact penalty method for binary optimization based on MPEC formulation. In *AAAI Conference on Artificial Intelligence (AAAI)*, pages 2867–2875, 2017.

[72] X. Yuan and T. Zhang. Truncated power method for sparse eigenvalue problems. *Journal of Machine Learning Research (JMLR)*, 14(1):899–925, 2013.

[73] T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. *The Journal of Machine Learning Research (JMLR)*, 11:1081–1107, 2010.

[74] Z. Zhang, T. Li, C. Ding, and X. Zhang. Binary matrix factorization with applications. In *IEEE International Conference on Data Mining (ICDM)*, pages 391–400. IEEE, 2007.

[75] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 67(2):301–320, 2005.
APPENDIX A: PROOFS OF EQUIVALENT REFORMULATIONS

This section presents the proofs of the other equivalent separable/non-separable reformulations for binary constraint which are claimed in Table 1.

Lemma 1. ℓ_∞ box non-separable MPEC. We define

$$\Pi \triangleq \{(x, v) \mid x^Tv = n, \|x\|_\infty \leq 1, \|v\|_\infty \leq 1\}.$$ Assume that $(x, v) \in \Pi$, then we have $x \in \{-1, +1\}^n$, $v \in \{-1, +1\}^n$, and $x = v$.

Proof. The proof of this lemma is similar to the proof of ℓ_2 box non-separable MPEC. Firstly, we prove that $x \in \{-1, +1\}^n$. We have: $n = x^Tv \leq \|x\|_1 \cdot \|v\|_\infty \leq \|x\|_1$. Thus, we obtain $\|x\|_1 \geq n$. We define $z = \|x\|_1$. Combining $\|x\|_\infty \leq 1$, we have the following constraint sets for z: $\sum_i z_i \geq n$, $0 \leq z \leq 1$. Therefore, we have $z = 1$ and it holds that $x \in \{-1, +1\}^n$. Secondly, using the same methodology, we can prove that $v \in \{-1, +1\}^n$. Finally, we have $x = v$ since $x \in \{-1, +1\}^n$, $v \in \{-1, +1\}^n$ and $(x, v) = n$.

Lemma 2. ℓ_∞ box separable MPEC. We define

$$\Psi \triangleq \{(x, v) \mid x \odot v = 1, \|x\|_\infty \leq 1, \|v\|_\infty \leq 1\}.$$ Assume that $(x, v) \in \Psi$, then we have $x \in \{-1, +1\}^n$, $v \in \{-1, +1\}^n$, and $x = v$.

Proof. We observe that all the constraints in Ψ can be decomposed into n independent components. We now focus on ith component.

(i) Assuming that $x_i \geq 0$, we have $0 \leq x_i \leq 1$ and $0 \leq 1/x_i \leq 1$, we have $x_i = 1$ and $v_i = 1/x_i = 1$. (ii) Assuming that $x_i \leq 0$, we have $-1 \leq x_i \leq 0$ and $-1 \leq 1/x_i \leq 0$, we have $x_i = -1$ and $v_i = 1/x_i = -1$. This finishes the proof.

Lemma 3. ℓ_2 box separable MPEC. We define

$$\Upsilon \triangleq \{(x, v) \mid x \odot v = 1, \|x\|_\infty \leq 1, \|v\|_2^2 \leq n\}.$$ Assume that $(x, v) \in \Upsilon$, then we have $x \in \{-1, +1\}^n$, $v \in \{-1, +1\}^n$, and $x = v$.

Proof. We notice that $v = 1/\|v\|_2$. We define $z = \|v\|_2$. Combining $-1 \leq x \leq 1$, we obtain $z \geq 1$. We have the following constraint sets for z: $z \geq 1$, $z^Tz \leq n$. Therefore, we have $z = 1$. Finally, we achieve $v \in \{-1, +1\}^n$ and $x = \frac{1}{z}v = v$.

Lemma 4. ℓ_2 box non-separable reformulation. The following equivalence holds:

$$\{-1 + 1\}^n \Leftrightarrow \{x \mid -1 \leq x \leq 1, \|x\|_2^2 = n\}$$

Proof. First, it holds that: $n = x^T\times \leq \|x\|_1 \cdot \|x\|_\infty \leq \|x\|_1$. Therefore, we have $-1 \leq x \leq 1$, $\|x\|_1 \geq n$. Note that these constraint sets are symmetric. Letting $z = \|x\|_1$, we obtain: $0 \leq z \leq 1$, $\sum_i z_i \geq n$. Thus, we have $z = 1$ and it holds that $x \in \{-1, +1\}^n$.

APPENDIX B: SOLVING THE RANK-ONE SUBPROBLEM

This subsection describes a nearly closed-form solution for solving the rank-one subproblem which is involved in our alternating direction method. For general purpose, we consider the following optimization problem:

$$\min_{x, \theta \geq 0} \frac{1}{2}x^T(\gamma I + \beta b^T) x + \langle x, c \rangle$$ \hspace{1cm} (27)$$

where $\gamma, \beta \in \mathbb{R}$, $b, c \in \mathbb{R}^n$ are given. We assume $\beta \neq 0$ or $\gamma \neq 0$. Clearly, (27) is equivalent to the following minimax optimization problem:

$$\min_{x, \theta \geq 0} \max_{\theta \geq 0} \left(\frac{1}{2}x^T(\gamma I + \beta b^T) x + \langle x, c \rangle + \frac{\theta}{n} \right)$$ \hspace{1cm} (28)$$

Setting the gradient respect to x to zero, we obtain:

$$x = -(\gamma I + \beta I + \beta b^T)^{-1}c$$ \hspace{1cm} (29)$$

Putting this equality into (28), we have the following maximization with respect to θ:

$$\max_{\theta \geq 0} \left(\frac{1}{2}c^T(\gamma I + \beta I + \beta b^T)^{-1}c - \frac{1}{2}\theta \beta^2 \right)$$ \hspace{1cm} (30)$$

Using the well-known Sherman-Morrison inverse formula [27] (30) reduces to the following optimization problem:

$$\max_{\theta \geq 0} \frac{1}{2} \left(\frac{t^2}{(\gamma + \theta)(\gamma + \theta + r)} - \frac{s}{\gamma + \theta} - s \theta \beta^2 \right)$$

where $r = b^Tb$, $s = c^Tc$, $t = c^Tb$. The optimal solution θ^* can be found using a simple one-dimensional bisection line search procedure. After that, the optimal solution x^* for the original optimization problem in (27) can be recovered using (29).