Relationship between β-catenin expression and epithelial cell proliferation in gastric mucosa with intestinal metaplasia

Adriana Romiti, Angelo Zullo, Francesco Borrini, Ida Sarcina, Cesare Hassan, Simon Winn, Silverio Tomao, Aldo Vecchione, Sergio Morini, Pietro Mingazzini

Abstract

AIM: To investigate β-catenin expression in patients with intestinal metaplasia, and to look for a possible relationship between β-catenin expression and either epithelial proliferation values or Helicobacter pylori (H pylori) infection.

METHODS: Twenty patients with complete type intestinal metaplasia were studied. β-Catenin expression and epithelial cell proliferation in antral mucosa were assessed using an immunohistochemical analysis. H pylori infection was detected by histology and a rapid urease test.

RESULTS: Reduced β-catenin expression on the surface of metaplastic cells was detected in 13 (65%) out of 20 patients. Moreover, in eight (40%) patients intranuclear expression of β-catenin was found. When patients were analyzed according to H pylori infection, the prevalence of both β-catenin reduction at the cell surface and its intranuclear localization did not significantly differ between infected and uninfected patients. Cell proliferation was higher in patients with intranuclear β-catenin expression as compared to the remaining patients, although the difference failed to reach the statistical significance (36±8.9 vs 27.2±11.4, $P = 0.06$). On the contrary, a similar cell proliferation value was observed between patients with reduced expression of β-catenin on cell surface and those with a normal expression (28.1±11.8 vs 26.1±8.8, $P = 0.7$). H pylori infection significantly increased cell proliferation (33.3±10.2% vs 24.6±7.4%, respectively, $P = 0.04$).

CONCLUSION: Both cell surface reduction and intranuclear accumulation of β-catenin were detected in intestinal metaplasia. The intranuclear localization of β-catenin increases cell proliferation. H pylori infection does not seem to play a direct role in β-catenin alterations, whilst it significantly increases cell proliferation.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: β-Catenin; Intestinal metaplasia; Proliferation; Helicobacter pylori

INTRODUCTION

Catenins are a family of transmembrane proteins, which play a pivotal role in epithelial intercellular adhesion[1]. Moreover, β-catenin participates in the regulation of cell proliferation, being a critical component of the surface-to-nucleus WNT signal transduction pathways[2-3]. Alterations of β-catenin expression have been shown to be involved in cancer development[4]. Indeed, such alterations have been detected in gastric cancer, showing a correlation with tumor type, degree of differentiation, and poor survival of patients[5-9]. On the other hand, scanty data are available regarding β-catenin expression in precancerous conditions. Although alterations of some adhesion molecules have been detected in patients with intestinal metaplasia[10], no significant remarks emerged from the studies regarding β-catenin expression in these patients[10-11]. However, such studies were based on gastrectomy specimens of patients with gastric cancer and, therefore, only an advanced step of the carcinogenic process was evaluated.

Gastric carcinogenesis is a multistep process consisting of a cascade of alterations starting with chronic active gastritis and progressing to atrophy, metaplasia, and dysplasia[12]. In particular, intestinal metaplasia is widely recognized as being the most prevalent precursor of intestinal type gastric carcinoma[13]. Among environmental factors involved in carcinogenesis of the stomach, Helicobacter pylori (H pylori) infection appears to play an important role. Indeed, epidemiological studies have clearly demonstrated a significant association between this infection and gastric cancer development. Moreover, several changes involved in gastric carcinogenesis such as epithelial cell hyperproliferation,
The present study was designed in order to assess β-catenin expression in patients with intestinal metaplasia but with neither dysplasia nor gastric cancer, and to look for a possible relationship between β-catenin expression and either epithelial proliferation index of gastric mucosa or H pylori infection status.

MATERIALS AND METHODS

Patients

Patients with dyspeptic symptoms consecutively referred for upper endoscopy with presence of histology of intestinal metaplasia in the antrum and without concomitant evidence of either dysplasia in the stomach or neoplastic lesions in the upper gastrointestinal tract were selected. Patients were enrolled irrespectively of H pylori status. Patients who received proton pump inhibitors, H2-receptor antagonists, antibiotics or NSAIDs in the 4 wk preceding the study as well as those previously treated for H pylori infection were excluded from the study. Patients with either liver impairment or kidney failure were also excluded.

Endoscopic procedure

After overnight fasting, all patients underwent upper endoscopy and three biopsies were taken from the antrum and three from the gastric body. Two biopsies from the antrum and two from the gastric body were used for histological assessment. Biopsy specimens of the antrum were also used for immunohistochemical analysis. The remaining two biopsies (one each from the antrum and gastric body) were used to carry out a rapid urease test (CP-test, Yamanouchi, Milan, Italy). H pylori infection was considered to be present when both the histological assessment on Giemsa staining revealed the presence of bacteria and rapid urease test was positive, as suggested in current guidelines[3].

Immunohistochemical analysis

For β-catenin and proliferation assessment, immunohistochemistry was carried out by the avidin–biotin–peroxidase method. Briefly, the sections were deparaffinized in xylene and rehydrated through a graded alcohol series to distilled water. Antigen retrieval was performed by immersing the slides in 10 mol/L citrate buffer (pH 6.0) and heating them in a microwave for 3 cycles, 5 min each, at 750 W. Endogenous peroxidase activity and non-specific bindings were blocked by incubation with 3% hydrogen peroxide and nonimmune serum, respectively. Sections were then incubated with mAbs against β-catenin (Clone 14, 1:500 dilution; Transduction Laboratories, Lexington, KY, USA) and mAbs against Ki-67 (Clone MIB-1, 1:100 dilution YLEM, Italy) for 1 h at room temperature. Immunoreactivity was revealed with the chromogen DAB solution and the sections were counterstained with Mayer hematoxylin solution for 7 min. Negative control sections were prepared by substituting primary antibody with buffered saline.

A semiquantitative approach was used for scoring the β-catenin expression according to the method previously described by Minghao[10]. Briefly, the staining pattern of the intestinal metaplastic areas was compared with that of the adjacent normal gastric mucosa. Expression of β-catenin in metaplastic areas was considered ‘normal’ when both the intensity and the frequency of the cell membrane stains were equivalent to those found on the bordering nonmetaplastic gastric mucosa, ‘reduced’ when the staining was less than the adjacent mucosa, and ‘negative’ in the absence of staining. In addition, when β-catenin stained clearly in the nuclei of more than 10% of gastric epithelial cells, expression was judged to be positive for nuclear staining.

A quantitative approach was used instead for scoring the Ki67 expression. The number of cells was determined by counting the positively-stained nuclei on 10-20 randomly selected fields at 400×.

All immunostaining evaluations were performed blindly and by two independent observers. All sections for which the two observers disagreed were re-evaluated and, after opportune discussion, a final agreement was achieved.

Statistical analysis

Data between patient subgroups were compared using the Student’s t-test for unpaired data, and the Fisher’s exact test with Yates’s correction for small numbers. A P value less than 0.05 was considered statistically significant.

RESULTS

Overall, 20 consecutive patients (9 male and 11 female; mean age: 60.8 ± 8.4 years) were enrolled. At endoscopy, no macroscopic alterations of the gastric mucosa were detected, whilst two patients showed erosions in the duodenal bulb. H pylori infection was present in 13 (65%) patients and absent at both rapid urease test and histology in the seven remaining patients. Intestinal metaplasia was graded as complete type in all cases.

β-catenin expression in gastric mucosa

No case of completely negative β-catenin immunostaining was observed. A reduced expression of β-catenin on the surface of metaplastic cells as compared to adjacent normal glands was detected in 13 (65%) out of 20 patients. Moreover, in eight (40%) patients an intranuclear expression of β-catenin was detected. Among this group, six (75%) patients also showed reduced β-catenin expression. When patients were analyzed according to H pylori infection, β-catenin expression was decreased in 8 out of 13 infected patients as well as in 5 out of 7 uninfected cases (P = 0.5).

Similarly, the prevalence of intranuclear localization of β-catenin expression did not significantly differ between infected and uninfected patients (4/13 vs 4/7, respectively; P = 0.2).

Cell proliferation in gastric mucosa

The mean value of Ki67 labeling index proved to be distinctly higher in eight patients with intranuclear β-catenin expression as compared to the remaining 13 patients, although the difference failed to reach statistical significance (36 ± 8.9 vs 27.2 ± 11.4, P = 0.06). On the contrary, by
excluding those patients with intranuclear localization of β-catenin, a similar cell proliferation value was observed between the seven patients with reduced membranous expression of β-catenin and the five patients with normal expression (28.1±11.8 vs 26.1±8.8, P = 0.7). As far the role of H pylori infection is concerned, data found that patients with infection had a significantly increased cell proliferation value than that of uninfected patients (33.3±10.2% vs 24.6±7.4%, respectively, P = 0.04).

DISCUSSION

The integrity of the function of adhesion molecules, such as E-cadherin and α, β, γ-catenins, allows the maintenance of normal interactions between cells necessary during embryogenesis, cell growth, and differentiation[5,8-18]. Loss of intercellular adhesiveness plays a role in the early steps of neoplastic transformation, and it is implicated in invasive growth and metastasization[5,19-20]. β-catenin participates in the adhesion process by binding the cytoplasmic domain of E-cadherin and it has been involved in the surface-to-nucleus WNT signal transduction pathways. Its translocation into the nucleus may contribute to accelerated cell proliferation[5]. β-catenin mutations in exon 3, interfering with the GSK-3β phosphorylation domain and leading to intranuclear accumulation of the protein, have been reported in intestinal gastric carcinoma as well as in colorectal cancer[20-23]. Moreover reduced β-catenin expression was recorded both in intestinal type of gastric cancer[5,6,24], and in intestinal metaplasia surrounding cancer lesions[5], although data are controversial[20,12,24]. In order to determine whether β-catenin alterations could be detected early in gastric carcinogenesis, the present study focused on β-catenin expression in intestinal metaplasia not associated with gastric cancer. Unlike previous study[25], in our series a reduction of β-catenin on the epithelial surface was observed in more than half of the patients. Intriguingly, a nuclear accumulation of β-catenin expression in 40% of patients with intestinal metaplasia was also found, and it was associated with reduced immunostaining at the intercellular boundaries in 75% of these cases. A previous study reported a nuclear accumulation of β-catenin in about 10% of 401 gastric carcinomas, all but one exhibiting reduced membranous staining[26]. Similarly, an inverse correlation between decreased membranous and increased nuclear staining of β-catenin was also observed in colorectal cancer[27,28]. Interestingly, we observed that patients with intranuclear β-catenin expression showed higher values of cell proliferation in the gastric mucosa as compared to those without it. This is a noteworthy remark in keeping with previously reported studies focused on the role of nuclear localization of β-catenin[5]. Indeed, in an experimental model, colonocyte hyperproliferation was associated with immunohistochemical alterations in subcellular distribution of β-catenin and with accumulation of the protein in the nuclear compartment[5]. This finding, however, has been not observed in gastric cancer[22,24]. Therefore, it could be hypothesized that the nuclear β-catenin expression may be linked to the early stage of carcinogenesis, as seen in colorectal polyps[29]. Conversely, loss of membranous expression could allow regenerating cells to dedifferentiate and lose cell-cell cohesiveness, properties that would facilitate the process of epithelial regeneration, as reported for E-cadherin expression during the reparative process of peptic ulcer[31]. Similarly, in endometrial glandular cells in the mid-to-late proliferative phase, nuclear accumulation of β-catenin was described, suggesting that it could play a physiological role in the rapid turnover of the cell cycle without gene mutation[32].

As far the role of H pylori infection is concerned, we failed to observe a significant difference in β-catenin expression between infected and uninfected patients, suggesting that this infection is not directly implicated in this phenomenon. On the contrary, in agreement with the results of several studies[4,15], a significant increase in the epithelial cell proliferation index was detected in H pylori-positive patients as compared to uninfected patients.

In conclusion, in the present immunohistochemical study, we described alterations in β-catenin expression in the gastric mucosa with intestinal metaplasia not associated to other more advanced histological lesions. β-catenin alterations consisted of both a weakness of membrane staining and an intranuclear accumulation of the protein. Moreover, we observed a distinct increase in cell proliferation in those patients with intranuclear localization of β-catenin expression. H pylori infection does not seem to play a role in β-catenin alterations, whilst it significantly increases cellular proliferation in gastric mucosa with intestinal metaplasia.

REFERENCES

1. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. *Cell* 1996; 84: 345-357
2. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor. *Nature* 1996; 382: 638-642
3. Barker N, Clevers H. Beta-catenins WNT signaling and cancer. *Bioessays* 2000; 22: 961-965
4. Hugh TJ, Dillon SA, O’Dowd G, Getty B, Pignatelli M, Poston GJ, Kinsella AR. Beta-catenin expression in primary and metastatic colorectal carcinoma. *Int J Cancer* 1999; 82: 504-511
5. Shun CT, Wu MS, Lin MT, Chang MC, Lin JT, Chuang SM. Immunohistochemical evaluation of cadherin and catenin expression in early gastric carcinomas: correlation with clinicopathologic characteristics and *Helicobacter pylori* infection. *Oncology* 2001; 60: 339-345
6. Joo YE, Rew JS, Choi SK, Bom HS, Park CS, Kim SJ. Expression of E-cadherin and catenins in early gastric cancer. *J Clin Gastroenterol* 2002; 35: 35-42
7. Ougolkov A, Yamashita K, Bilim V, Takahashi Y, Mai M, Minamoto T. Abnormal expression of E-cadherin, β-catenin, and e-cerbB-2 in advanced gastric cancer: its association with liver metastasis. *Int J Colorectal Dis* 2003; 18: 160-166
8. Utsunomiya T, Doki Y, Takemoto H, Shiozaki H, Yano M, Inoue M, Yasuda T, Fujiwara Y, Monden M. Clinical significance of disordered beta-catenin expression pattern in human gastric cancers. *Gastric Cancer* 2003; 3: 193-201
9. Karatzas G, Karayiannakis AJ, Syrigos KN, Chatzigiani E, Papanikolaou S, Simatos G, Papanikolaou D, Bogris S. Expression pattern of the E-cadherin-catenin cell-cell adhesion complex in gastric cancer. *Hepatogastroenterology* 2000; 47: 1465-1469
10. Ma MC, Devereux TR, Stockton P, Sun K, Sills RC, Clayton N, Portier M, Flake G. Loss of E-cadherin expression in gastric intestinal metaplasia and later stage p53 altered expression in gastric carcinogenesis. *Exp Toxic Pathol* 2001; 53: 237-246
11. Jawhari A, Jordan S, Poole S, Browne P, Pignatelli M, Far-
thing JG. Abnormal immunoreactivity of the E-cadherin-
catenin complex in gastric carcinoma: relationship with pa-

tient survival. Gastroenterology 1997; 112: 48-54

12 Correa P. Human gastric carcinogenesis: a multistep and

multifactorial process - First American cancer society award

lecture on cancer epidemiology and prevention. Cancer Res

1992; 52: 6735-6740

13 Leung WK, Sung JJ. Review article: intestinal metaplasia and
gastric carcinogenesis. Aliment Pharmacol Ther 2002; 16:

1209-1216

14 Ierardi E, Francavilla A, Balzano T, Traversa A, Principi M,

Monno RA, Amoroso A, Ingrasso M, Pisani A, Panella C.

Effect of Helicobacter pylori eradication on gastric epithelial

proliferation. Relationship with ras oncogene p21 expression.

Ital J Gastroenterol Hepatol 1997; 29: 214-219

15 Zullo A, Rinaldi V, Hassan C, Dina F, Winn S, Castagna G,

Attili AF. Ascorbic acid and intestinal metaplasia in the

stomach: a prospective, randomised study. Aliment Pharmaco-

l Ther 2000; 14: 1303-1309

16 Zullo A, Romiti A, Rinaldi V, Vecchione A, Hassan C, Winn

S, Tomao S, Attili AF. Gastric epithelial cell proliferation in

patients with liver cirrhosis. Dig Dis Sci 2001; 46: 550-554

17 Caselli M, Parente F, Pelli D, Covacci A, Alvisi V, Gasbarrini

G, Bianchi Porro G. Cervia Working Group Report: guidelines

on the diagnosis and treatment of Helicobacter pylori infec-

tion. Digest Liver Dis 2001; 33: 7-80

18 Frenette PS, Wagner DD. Adhesion molecules. N Engl J Med

1996; 334: 1526-1529

19 Guilford P. E-cadherin downregulation in cancer: fuel on the

fire? Mol Med Today 1999; 5: 172-177

20 Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS, Kim SY,

Lee HK, Kim PJ, Oh ST, Yoo NJ, Lee JY. Frequent somatic

mutations of the beta-catenin gene in intestinal-type gastric

cancer. Cancer Res 1999; 59: 4257-4260

21 Iwao K, Nakamori S, Kameyama M, Imoaka S, Kinoshita M,

Fukui T, Ishiguro S, Nakamura Y, Miyoshi Y. Activation of

the beta-catenin gene by interstitial deletions involving exon 3 in

primary colorectal carcinomas without adenomatous poly-

posis coli mutations. Cancer Res 1998; 58: 1021-1026

22 Miyaki M, Iijima T, Kinura J, Yasuno M, Mori T, Hayashi Y,

Koike M, Shitara N, Iwama T, Kuroki T. Frequent mutation of

beta-catenin and APC genes in primary colorectal tumors

from patients with hereditary nonpolyposis colorectal cancer.

Cancer Res 1999; 59: 4506-4509

23 Miyazawa K, Iwaya K, Kuroda M, Harada M, Serizawa H,

Koyanagi Y, Sato Y, Mizokami Y, Matsuoka T, Mukai K.

Nuclear accumulation of beta-catenin in intestinal-type gas-

tric carcinoma: correlation with early tumor invasion. Virchows

Arch 2000; 437: 508-513

24 Grabsch H, Takeno S, Nogushi T, Hommel G, Gabbert HE,

Mueller W. Different patterns of beta-catenin expression in

gastric carcinomas: relationship with clinicopathological

parameters and prognostic outcome. Histopathology 2001;

39: 141-149

25 Chan AO, Wong BC, Lan HY, Loke SL, Chan WK, Hui WM,

Yuen Ng I, Hou I, Wong WM, Yuen MF, Luk JM, Lam SK.

Deregulation of E-cadherin-catenin complex in precancerous

lesions of gastric adenocarcinoma. J Gastroenterol Hepatol

2003; 18: 534-539

26 Gulmann C, Grace A, Leader M, Butler D, Patchett S, Kay E.

Adenomatous polyposis coli gene, beta-catenin, and E-cadherin

expression in proximal and distal gastric cancers precursor

lesions: an immunohistochemical study using tissue microarray.

Appl Immunohistochem Mol Morphol 2003; 11: 230-237

27 Inomata A, Ochiai A, Akimoto S, Hirobashi S. Alteration of

beta-catenin expression in colonic epithelial cells of familial

adenomatous polyposis patients. Cancer Res 1996; 56:

2213-2217

28 Hao X, Tomlinson I, Ilyas M, Palazzo JP, Talbot IC. Reciproc-

ity between membranous and nuclear expression of beta-

catenin in colorectal tumors. Virchows Arch 1997; 431:

167-172

29 Sellin JH, Umar S, Xiao J, Morris AP. Increased beta-

catenin expression and nuclear translocation accompany cellular

hyperplophorization in vitro. Cancer Res 2001; 61:

2899-2906

30 Barker N, Huls G, Korinek V, Clevers H. Restricted high level

expression of Tcf-4 protein in intestinal and mammary gland

epithelium. Am J Pathol 1999; 154: 29-35

31 Hanby AM, Chinery R, Poulsom R, Playford RJ, Pignatelli M.

Downregulation of E-cadherin in the reparative epithelium

of the human gastrointestinal tract. Am J Pathol 1996; 148:

723-729

32 Nei H, Saito T, Yamasaki H, Mizumoto H, Ito E, Kudo R.

Nuclear localization of beta-catenin in normal and carcino-
genic endometrium. Mol Carcinog 1999; 25: 207-218

Science Editor Guo SY Language Editor Elsevier HK