Enhanced adsorption of Congo red using chitin suspension after sonoenzymolysis

Furong Hou, Danli Wang, Xiaobin Ma, Lihua Fan, Tian Ding, Xingqian Ye, Donghong Liu

ABSTRACT

In the present work, chitin suspensions after enzymolysis and sonoenzymolysis were taken as adsorbents to evaluate the adsorption properties of Congo red (CR) dyes. Compared with untreated chitin suspension, the CR adsorption performance was significantly improved after enzymolysis and even more after sonoenzymolysis. According to different adsorption kinetic and isotherm models, Langmuir isotherm and the pseudo-second order model were more reliable to describe the adsorption process of CR onto different chitin samples and demonstrated a monolayer and favorable physisorption process. What’s more, negative values of ΔG (Gibbs free energy change) and the shifts to higher negative values with the temperature increasing from adsorption thermodynamic study proved a spontaneous CR adsorption process. The structural characterization before and after adsorption further verified the physical adsorption between chitin and CR, and a larger specific area and higher porosity of chitin suspension was obtained after sonoenzymolysis with more available active sites.

ARTICLE INFO

Keywords:
Chitin suspension
Sonoenzymolysis
Congo red
Adsorption properties

1. Introduction

Chitin, the second most abundant natural polysaccharide following to cellulose, is one of the most fascinating sustainable polymers coming from various marine creatures, such as shrimp and crab shells [1]. While most of them are regarded as the wastes and discarded in nature, causing serious resource wastes and environmental pollutions [2]. Coupled with the highly crystalline and low solubility of chitin, it further limits its application. Therefore, many studies were focused on exploring potential ways to reduce the pollution and obtain value added chitin products. For example, GlcNAc and (GlcNAc)2 were obtained by enzymatic degradation from pretreated grinding chitin shells, which could be used as skin moisturizers and antimicrobial agents [3]. Instant catapult steam explosion treatment could lower chitin crystallinities and increase surface areas and pore volumes, this was benefited to dye adsorption by increasing the binding surface area [4,5].

Colored compounds are widely used in textile and dye industries as esthetic materials, while the direct release of effluents without treatment is one of the main sources of water pollution, in which dyes into the natural environment will led to life-threatening diseases for the creatures living in the world [6]. Congo red (CR), as one of the anionic direct diazo dyes, is possessed with the physicochemical, thermal and optical stability owing to the aromatic structure [7], which are usually used to evaluate the specific surface areas of cellulosic substrates [5]. However, it’s precisely because of the stability, making it difficult to be degraded. The presence of these residual dyes in effluents could contaminate the environment and do harm to organisms and human health even at low concentrations [8]. Therefore, the removal of the dye has attracted much attention of many researchers. Adsorption is regarded as one of the most promising decontamination techniques due to its simple operation, low cost as well as the wide source of adsorbents [9].

Recently, chitin-based products have been found that it could be as an adsorbent for dye removal. It was reported that α-chitin after acidic treatment and ultrasonication could adsorb organic dye easily from the aqueous solution, which was ascribed to its lowered crystallinity index and increased specific surface area [10]. Chitin–AC (activated carbon) exhibited a higher adsorption capacity of cephalin antibiostreated compared with other ACs from agricultural and industrial origins, resulted from the featured functional multi-sites of antibiotic adsorption [11]. What’s more, fluoride could be removed by modified chitin with bimetallic oxide powder (Ca–Zn @Chitin). Compared with the original Ca–Zn and chitin, this composite was thermally more stable and porous, which enhanced the adsorption capacity through the surface hydroxyl groups, electrostatic and ion-dipole interaction between fluoride and...
The removal efficiency (R%) and adsorption capacity (Qe, mg/g) were calculated by Eqs. (1) and (2), respectively.

\[R(\%) = \frac{C_0 - C_e}{C_0} \times 100\% \]
(1)

\[Q_e = \frac{(C_0 - C_e)}{m} \times V \]
(2)

where \(C_0 \) and \(C_e \) are the initial and equilibrium concentrations of CR (mg/L) respectively, \(m \) is the weight of the chitin samples (g) and \(V \) is the volume of the CR (L) [19].

2.4. Adsorption isotherms of CR with different chitin samples

The adsorption isotherms indicate the relationship between the adsorption saturation and the adsorption concentration with specific temperature, which could reflect the adsorption ability of chitin and help to reveal the adsorption process mechanism [20].

2.4.1. Langmuir isotherm model

The Langmuir isotherm, a semi-empirical model, is hypothesized as a monolayer adsorption phenomenon without interaction between adsorbed neighboring molecules on a homogeneous surface [20].

\[C_e = \frac{1}{K_L Q_m} + \frac{C_0}{Q_m} \]
(3)

where \(Q_m \) is the Langmuir maximum adsorption of the CR (mg/g) and \(K_L \) is the Langmuir constant (L/mg), \(Q_e \) and \(C_e \) are mentioned above. \(R_L \) is a basic characteristic parameter for evaluating the Langmuir isotherm adsorption process:

\[R_L = \frac{1}{1 + K_L C_0} \]
(4)

where \(b \) and \(C_0 \) are the same as mentioned above. The shapes for \(R_L = 0, 0 < R_L < 1, R_L = 1 \) and \(R_L > 1 \) are represented as irreversible, favorable, linear and unfavorable adsorption, respectively.

2.4.2. Freundlich isotherm model

The Freundlich isotherm, an empirical model, could be used to describe both monolayer and multilayer adsorption because of its effectiveness on heterogeneous surfaces [21].

\[\log Q_e = \log K_f + \frac{n \log C_0}{n} \]
(5)

where \(n \) is an indication of the adsorption favorability of different chitin samples and \(K_f \) is the adsorption capacity. Generally, the shapes of the isotherms for \(0 < 1/n < 1 \), \(1/n = 1 \) and \(1/n > 1 \) are favorable, linear and unfavorable adsorption, respectively.

2.4.3. Dubinin–Radushkevich (DR) model

D-R model is usually used to distinguish whether the adsorption is physical or chemical adsorption with a Gaussian energy distribution on a heterogeneous surface, which could be evaluated by the mean free energy \(E \) (kJ/mol). The process is physisorption if \(E < 8 \) kJ/mol, while is chemisorption if \(8 < E < 16 \) kJ/mol [22].

\[\ln Q_e = \ln Q_0 - K_{ad} \varepsilon^2 \]
(6)

\[\varepsilon = R T \ln \left(1 + \frac{1}{C_s} \right) \]
(7)

\[E = \frac{1000}{\sqrt{2K_{ad}}} \]
(8)

where \(K_{ad} \) is D-R isotherm constant (mol²/kJ²).

2.5. Adsorption kinetics of CR with different chitin samples

Adsorption kinetics is to study the rate control of the process when...
the adsorbent’s adsorption of the adsorbate reaches to the equilibrium, including the spread of the adsorbate to the adsorbent and the adsorption of the adsorbate on the adsorbent’s surface. It’s dependent on the physical and chemical characteristics of the adsorbent (e.g. the existence of active sites of the adsorbent) as well as the favorability of the adsorbate to access to the sorbent’s surface [23]. In this adsorption process, pseudo-first order, pseudo-second order and Weber-Morris kinetic models were used to describe the adsorption behavior of CR from aqueous solution on to the chitin.

2.5.1. Pseudo-first-order kinetic model

The pseudo-first-order kinetic model refers to a linear relationship between the reaction rate and the concentration of a reactant, based on the assumption that adsorption is controlled by a diffusion step [20].

\[
\ln \left(\frac{Q_e - Q_t}{Q_e - Q_i} \right) = \ln K_1 t
\]

where \(K_1 \) (g/min) is the rate constant of adsorption and \(Q_i \) is the adsorption capacity (mg/g) at time \(t \), \(Q_e \) is the same as mentioned above.

2.5.2. Pseudo-second-order kinetic model

The pseudo-second-order model reveals that the rate of sorption depends linearly on the square of the unoccupied sites, based on the assumption of following a second-order mechanism [24].

\[
t = \frac{1}{K_2 Q_e^2} + \frac{1}{Q_e} t
\]

where \(K_2 \) is the rate constant of the pseudo-second-order model (g/mg/min), \(Q_e \) and \(Q_i \) are the same as mentioned above.

2.5.3. Weber–Morris model

The Weber–Morris is a model that is used to explain intra-particle diffusion [25]:

\[
Q_t = K_d t^{1/2} + C
\]

where \(K_d \) (mg/g min\(^{1/2}\)) is the intra-particle diffusion rate constant, and \(C \) (mg/g) is an indicator that can reflect the boundary layer thickness [6].

2.6. Adsorption thermodynamic parameters of CR with different chitin samples

In order to understand the adsorption nature of CR onto different chitin samples, the basic thermodynamic characteristics of entropy change (\(\Delta S \)), enthalpy change (\(\Delta E \)) and Gibbs free energy change (\(\Delta G \)) were determined during the adsorption according to Eqs. (13) and (14) [26]:

\[
\ln (K_v) = \frac{\Delta G}{RT}
\]

\[
\Delta G = \Delta H - T \Delta S
\]

\[
\ln (K_v) = \frac{\Delta H}{RT} + \frac{\Delta S}{R}
\]

where \(R \) is the gas constant (8.314 J/mol/K) and \(T \) is the degree Kelvin. \(K_v \) is the ratio of \(C_{ae} \) (the concentration of CR adsorbed on the adsorbent) to \(C_e \) (the equilibrium concentration of CR in solution).

2.7. Goodness of model fit

The fit goodness of the applied isotherm models to the experimental data could be reflected through these following parameters: the correlation coefficient (R\(^2\)) after the linear regression, the composite fractional error function (CFEF) and the chi-square statistic (\(\chi^2 \)) [25]:

\[
\text{CFEF} = \sum_{n=1}^{n} \left[\frac{(Q_{e,\text{exp}} - Q_{e,\text{cal}})^2}{Q_{e,\text{exp}}} \right]
\]

\[
\chi^2 = \sum_{n=1}^{n} \left[\frac{(Q_{e,\text{exp}} - Q_{e,\text{cal}})^2}{Q_{e,\text{cal}}} \right]
\]

where \(n \) is the number of experimental samples, \(Q_{e,\text{cal}} \) (mg/g) and \(Q_{e,\text{exp}} \) (mg/g) are the model calculated and experimental values of adsorption capacity, respectively.

2.8. Characterization of chitin samples

2.8.1. Fourier transform infrared spectroscopy (FTIR)

The functional groups were measured by a Nicolet 5700 FTIR spectrometer (Thermo Fisher Scientific, MA, USA), at a resolution of 4 cm\(^{-1}\) with a wavenumber range of 4000 to 400 cm\(^{-1}\). The spectra were recorded after a total of 32 scans with three repeated measurements with the samples preparing into KBr pellets.

2.8.2. Surface area

The specific surface areas and pore volumes of different chitin samples were measured by the Autosorb-1-C (Quantachrome Ins, USA) from the N\(_2\) adsorption-desorption isotherms at −196 °C (liquid nitrogen temperature), and were calculated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) method [12].

2.8.3. X-ray photoelectron spectroscope (XPS)

The XPS spectra (ESCALAB 250Xi, Thermo Scientific, CA, USA) were obtained to determine the functional groups of the different chitin samples. The contents of C, O, N, S and Na were analyzed with an Al K\(\alpha \) X-ray (\(h\nu = 1486.6 \text{ eV} \)) excitation source, each of detected element were obtained after 12 scans. These spectra were calibrated to C (1s) signal at the binding energy of 284.80 eV.

2.8.4. UV-absorbance measurement

The absorbance of CR solutions before and after adsorption by different chitin samples were measured, carrying out by a spectrophotometer (UV-2550, SHIMADZU Co., Japan) ranging from 200 to 800 nm.

2.9. Statistical analysis

All results were presented as mean ± standard deviation after three repeated times. Statistical analysis was performed by SPSS 18.0 (SPSS Inc., Chicago, IL, USA) and Origin Software 8.5 (Origin Lab Corp., MA, USA).

3. Results and discussions

3.1. Effect of CR initial concentration and adsorbent dosage

3.1.1. Effect of CR initial concentration

The effect of initial concentration of CR to the adsorption by different chitin samples was shown in Fig. 1A. With the increase of CR concentration varied from 100 to 300 mg/L, \(Q_e \) of different chitin samples was increased. This was due to the higher the CR concentration (before the saturation of active sites), the more available to be adsorbed on the surface area of chitin [27], by overcoming the mass transfer resistance and increasing the driving force between the soluble phase and the adsorbent. What’s more, the adsorption process was also enhanced due to the increasing number of collisions between CR and adsorbent [28]. The removal efficiency was decreased with the increase of initial CR concentration. With the adsorption sites got saturated, the percentage removal of CR would not increase when the CR concentration increased, attributing to the certain amount of available active sites on the surface area to the dye molecules [29], thereby exhibiting a
negative effect. Further it can be seen that CSSE and CSE demonstrating a higher adsorption capacity than CS, indicating more active sites were generated during enzymolysis and even more in sonoenzymolysis. It’s assuming that amorphous region could generate during enzymolysis, increasing the pore number and size on the specific surface area of chitin, resulting in the increment in CR adsorption [13]. Ultrasound treatment could accelerate this process due to its cavitation effect, adding the potential by decreasing the granularity and creating smoother surfaces, both of which led to a higher adsorption capacity of the CSSE than of CSE and CS [30].

3.1.2. Effect of adsorbent dosage

The effect of adsorbent dosage on CR (1 to 5 mg) removal efficiency and adsorption capacity were studied (Fig. 1B). The results showed that the removal percentage of CR was considerably increased with increasing amount of the adsorbents in the range of 1–2 mg, where more surface area containing adsorption sites was obtainable for adsorption and thereby making easier penetration of CR to adsorption sites [31]. While over the adsorbent dosage of 2 mg, the removal percentage reached to a constant value, because the available CR were almost fixed. Besides, according to Fig. 1B, adsorption capacity illustrated a decrease with the increasing adsorbent dosage, attributing to the increased unsaturated and overlapped adsorption sites during the process [32]. The same as Fig. 1A, the CSSE showed a higher adsorbent capacity compared with CSE and CS. This was ascribed to the increasing amount of the adsorption sites on adsorbent surfaces due to the loosen interchain structure during enzymolysis and sonoenzymolysis, which was discussed in the section 3.1.1.

3.2. Adsorption isotherms studies

The mathematical fittings of three isotherms were shown in Fig. 2 and isotherm fitting results were shown in Tables S1, Supporting Information.

Obviously, the Langmuir model was better than other isotherms to describe the adsorption of CR on chitin, based on the fact that the R² (correlation coefficients) of Langmuir isotherm was larger than that of Freundlich and D-R models. Furthermore, the lowest CFEF and ÿ values suggested the most similarity as the calculated data to the experiment [25]. It also could be observed a favorable adsorption process through the R² from the Langmuir model and 1/n (from Freundlich model) values, which were both in the range from 0 to 1. The Qm (maximum monolayer adsorption capacity) calculated from the Langmuir isotherm was found to be increased with temperature from 293 K to 323 K, indicating higher temperature caused a swelling effect inside the internal structure of the chitin and benefited to the penetrating of CR in a naturally endothermic adsorption process [33]. All the R² values calculated at a CR concentration of 100 mg/L were very close to the lower acceptable range (Tables S1), implying a high degree of irreversibility of the adsorption process [34]. In addition to the values of E from the D-R model were lower than 8 kJ/mol, indicating the CR adsorption on different chitin samples was physisorption. Therefore, it could be concluded that the Langmuir isotherm was the best fitted to describe the adsorption of CR by chitin, exhibiting a monolayer and favorable physisorption process, involving the physical forces, like van der Waals force and hydrogen bonding [34].

The maximum adsorption capacity of CSSE as adsorbent for CR adsorption had a higher value than that of CS and CSE (Tables S1). More flexible polymer chains and active hydroxyl could be obtained in the case of sonoenzymolysis, indicating an enhanced adsorption capacity [14].

3.3. Adsorption kinetics

In order to examine the controlling mechanism of adsorption, three adsorption kinetic models were studied. The plots with various initial CR concentrations were shown in Fig. 3 and corresponding experimental results were listed in Tables S2.

It could be seen that the pseudo-second order model was more favorably to predict the adsorption process than the other two models due to the higher values of R² (all concentrations are above 0.999). Furthermore, a relatively good agreement between the experimental Qe values and the calculated Qe values could be obtained because of the low CFEF and ÿ values (Tables S2). For the pseudo-second order kinetic model, the Qe and K2 values increased with the increase of initial CR concentration, which demonstrated the driving force between the solid and the liquid phase was enhanced at higher CR concentrations thereby decreasing the diffusion time of dye molecules onto the adsorbent binding sites [35].

Fig. 3 G, H I described the Weber-Morris model of CS, CSE and CSSE at different initial CR concentrations, where the fitting results were grouped into two steps. On the whole, a relatively fast adsorption stage (10–30 min) and a slow adsorption stage (30–180 min). In the first phase, the adsorption rate was fast, representing the external liquid film diffusion of the adsorbate to the adsorbent surface, while in the second phase, the adsorption rate gradually decreased resulted from the particle diffusion [25].

Moreover, additional fitting results were obtained that the two fitting linear steps did not pass through the origin (C = 0) at any concentrations, indicating that the adsorption of CR was controlled not only by the liquid film diffusion but also by the particle diffusion [36]. With the initial CR concentration increasing, for the same linear section, the values of C were increased, implying an enhanced boundary
layer effect as well as a greater participation of the liquid film diffusion at higher CR concentrations at the given time range [25]. On the basis of the results from the pseudo-second order model, CSSE had a higher value of Qe compared with CSE and CS, implying an acceleration of adsorption induced by ultrasound.

Therefore, the pseudo-second order model could be more suitable to represent the adsorption process of CR onto different chitin samples, and CSSE exhibited a higher adsorption capacity.

3.4. Adsorption thermodynamic study

The corresponding thermodynamic parameters were listed in Table 1. It could be obtained that the CR adsorption process was endothermic naturally illustrated by the positive values of ΔH [37]. In addition, the values of ΔH were all less than 40 kJ/mol, implying the physical adsorption [38], which was agreed well with the results of D-R model (Fig. S1). The obtained positive values of ΔS displayed an affinity between the CR and chitin surface, and an increase of the randomness at the solid-solution interface with temperature rise during the adsorption process [26]. The adsorbed solvent molecules substituted the adsorbate, obtaining more translation entropy than the adsorbate molecules loss, thus making the randomness in the system universal. The negative values of ΔG at all temperatures and the shifts to higher negative values with increasing the temperature proved the spontaneous nature as well as the feasibility of the CR adsorption process with chitin [19].

3.5. Characterization of different chitin samples

3.5.1. FTIR analysis

The FT-IR spectra before and after adsorption in Fig. 4 were used to study the functional groups of CR and adsorbent. The peaks at 1177 and 1062 cm⁻¹ were ascribed to the SO_3^- group of CR [39]. Moreover, the band at 1612 cm⁻¹ and at 1347 cm⁻¹ were associated to the presence of $\text{C}=\text{O…H}$ intra-sheet H-bonding [41], indicating that no obvious changes were found in the enzymolysis and sonoenzymolysis process. These results implied that the interaction between chitin and CR molecules was physical adsorption without breakage or formation of new bonds.
which was consistent with the results of D-R model.

3.5.2. BET analysis

In order to determine the characteristic of the pores of chitin samples, the specific surface area, total pore volume and average pore diameter of different chitin samples were obtained through N2 adsorption-desorption measurements and results were listed in Table 2. It showed that CS, CSE and CSSE were all in mesoporous structure, where all the average pore diameters were between 2 and 50 nm. It’s reported that pore diameter could be divided into micropores (d < 2 nm), mesopores (2 < d < 50 nm) and macropores (d > 50 nm), and it’s a basis of the total porosity [42]. Besides, the CSSE displayed a larger specific area and higher porosity, indicating that the presence of ultrasound treatment modified the porous structure of the adsorbent and made the active sites more available [43]. Therefore, it was benefited to accelerate the mass transfer and to obtain the equilibrium of adsorption reaction by improving the adsorption efficiency.

3.5.3. XPS analysis

In order to further reveal the effect of ultrasound and chitinase on the CS of adsorbing CR, XPS was applied to determine the existence of particular elements and the percentage of each content by exhibiting the binding energies (BE) and intensities [4]. The scan spectra of elements of O, C, N, S and Na were analyzed (Fig. 5), the existence of S2p and Na 1s only on the surface of CR and the chitin samples after adsorption, indicating the presence of adsorption of CR. Meanwhile, the intensity of S and Na in CSSE was higher than CS and CSE, manifesting a strong adsorption of CSSE. The three marked 1, 2 and 3 peaks of chitin samples in C 1s spectra were assigned as C—C/C=H, C—O/C=N, and C=O/O—C—O groups [44]. Coupled with the other elemental scans, no significant changes of the BE of the elements before and after adsorption could be attributed to the weak interaction between CR and chitin.

Table 1

	ΔH (kJ/mol)	ΔS (J/mol·K)	ΔG (kJ/mol)			
	293 K	303 K	313 K	323 K		
CS	26.41	94.86	-27.77	-28.72	-29.67	-30.61
CSE	31.55	113.94	-33.35	-34.49	-35.63	-36.77
CSSE	33.12	119.81	-35.07	-36.27	-37.47	-38.67

Fig. 3. Pseudo-first-order (CS:A, CSE:B, CSSE:C), pseudo-second-order (CS:D, CSE:E, CSSE:F) and Weber-Morris model (CS:G, CSE:H, CSSE:I) of CS, CSE and CSSE for the adsorption of CR (50 °C, pH 6, 60 min).

which was consistent with the results of D-R model.

3.5.2. BET analysis

In order to determine the characteristic of the pores of chitin samples, the specific surface area, total pore volume and average pore diameter of different chitin samples were obtained through N2 adsorption-desorption measurements and results were listed in Table 2. It showed that CS, CSE and CSSE were all in mesoporous structure, where all the average pore diameters were between 2 and 50 nm. It’s reported that pore diameter could be divided into micropores (d < 2 nm), mesopores (2 < d < 50 nm) and macropores (d > 50 nm), and it’s a basis of the total porosity [42]. Besides, the CSSE displayed a larger specific area and higher porosity, indicating that the presence of ultrasound treatment modified the porous structure of the adsorbent and made the active sites more available [43]. Therefore, it was benefited to accelerate the mass transfer and to obtain the equilibrium of adsorption reaction by improving the adsorption efficiency.

3.5.3. XPS analysis

In order to further reveal the effect of ultrasound and chitinase on the CS of adsorbing CR, XPS was applied to determine the existence of particular elements and the percentage of each content by exhibiting the binding energies (BE) and intensities [4]. The scan spectra of elements of O, C, N, S and Na were analyzed (Fig. 5), the existence of S 2p and Na 1s only on the surface of CR and the chitin samples after adsorption, indicating the presence of adsorption of CR. Meanwhile, the intensity of S and Na in CSSE was higher than CS and CSE, manifesting a strong adsorption of CSSE. The three marked 1, 2 and 3 peaks of chitin samples in C 1s spectra were assigned as C—C/C=H, C—O/C=N, and C=O/O—C—O groups [44]. Coupled with the other elemental scans, no significant changes of the BE of the elements before and after adsorption could be attributed to the weak interaction between CR and chitin.

Table 1

	ΔH (kJ/mol)	ΔS (J/mol·K)	ΔG (kJ/mol)			
	293 K	303 K	313 K	323 K		
CS	26.41	94.86	-27.77	-28.72	-29.67	-30.61
CSE	31.55	113.94	-33.35	-34.49	-35.63	-36.77
CSSE	33.12	119.81	-35.07	-36.27	-37.47	-38.67
samples, which resulted from the physical adsorption and was consistent with Chatterjee et al. [34]. The BE, full width half maximum (FWHM) and percentage content of elements of different chitin samples before and after adsorption were also listed (Tables S3).

3.5.4. UV-VIS

The UV–VIS spectra of CR (300 mg/L) solution before and after adsorption by different chitin samples for 60 min were presented and the corresponding photo was inset (Fig. 6). Typically, the maximum absorbance of CR was 488 nm, after addition of chitin the color of the dye solution became lighter and the absorbance intensity was decreased at all wavelength due to adsorption of CR. It was noticed that CSSE obtained the maximum adsorption compared with CS and CSE at the same reaction time and this effect before and after adsorption could be furtherly intuitively demonstrated by the inset digital photo. The enhanced adsorption of CSSE was due to the application of ultrasound.

Fig. 4. FTIR spectra of different chitin samples before and after adsorption of CR.
which was benefited to the increment of the interaction binding sites because of the increased specific surface area, total pore volume and average pore size volume, thereby increasing the diffusion and filling through mesoporous inter-channels [45]. This result was in agreement with the previous discussion in BET analysis.

4. Conclusions

Different chitin samples were applied for adsorption of CR. CSSE exhibited a relatively high adsorption capacity and removal efficiency, showing ultrasound was benefited to expose more active sites by increasing the specific surface area and by decreasing the granularity of chitin. Through the analysis of isotherms and kinetics, it could be concluded that the Langmuir as well as pseudo-second order kinetic model was the best fitted isotherm and kinetic model representing CR adsorption on CS. Combined with the results of the thermodynamics study, adsorption of CR by different chitin samples was a monolayer, endothermic and favorable physisorption process. The FTIR and XPS results of CS before and after adsorption were further confirm a natural physical adsorption could be occurred between chitin and CR. Besides, a larger specific area and higher porosity of CSSE were obtained according to the BET and UV–VIS analysis, indicating that ultrasound made CS porous thereby increasing the diffusion and filling. In a whole, these findings reveal the CR adsorption properties by different chitin samples, proving and providing that CSSE could be an excellent candidate for removal dyes from industrial wastewaters.

CRediT authorship contribution statement

Furong Hou: Conceptualization, Methodology, Formal analysis, Writing - original draft. Danli Wang: Methodology, Software. Xiaobin Ma: Methodology, Investigation. Lihua Fan: Investigation. Tian Ding: Validation, Writing - review & editing. Xingqian Ye: Validation. Donghong Liu: Supervision, Project administration, Funding acquisition.

Table 2
Specific surface area, total pore volume and average size of different chitin samples.

Sample	Specific surface area (m²/g)	Average pore diameter (nm)	Total pore volume (cm³/g)
CS	0.50	4.32	5.36 × 10⁻³
CSE	0.97	5.17	6.79 × 10⁻³
CSSE	1.22	9.33	8.53 × 10⁻³

Fig. 6. UV–VIS spectra of different chitin samples before and after adsorption of CR.

Fig. 5. XPS spectra of different chitin samples before and after adsorption of CR: (A) S 2p spectra; (B) C 1s; (C) N 1s; (D) O 1s; (E) Na 1s.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0400031), the Key Research and Development Program of Zhejiang Province (2017C02015) and National Natural Science Foundation of China (Grant No. 31901822).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ultrasch.2020.105327.

References

[1] K.C. Li, R.G. Xing, S. Liu, P.C. Li, Advances in preparation, analysis and biological activities of single chitinoligosaccharides, Carbohydr. Polym. 139 (2016) 178–190.
[2] G.G. Wei, A.L. Zhang, K.Q. Chen, P.K. Goyang, Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization, Carbohydr. Polym. 171 (2017) 236–241.
[3] Y.S. Nakagawa, Y. Oyama, N. Kon, M. Nkaido, K. Tanno, J. Kogowa, A. Matsumo, A. Yamamura, M. Kawaguchi, Y. Maitzura, T. Totani, Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: Mechaenochemical grinding and enzymatic degradarion, Carbohydr. Polym. 83 (2011) 1843–1849.
[4] Q.Q. Tian, S.K. Wang, X.F. Hu, Z.M. Zhang, L. Liang, Crystalline reduction, surface area enlargement and pore generation of chitin by instant catapult steam explosion, Carbohydr. Polym. 200 (2018) 255–261.
[5] J.D. Goodrich, W.T. Winter, α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement, Biomacromolecules 8 (2007) 252–257.
[6] J. Zolgharni, S.D. Farahani, M. Baghtas, S. Aman, Application of a new metal-organic framework of [Ni4F4(4,4’-bipy)(H2O)]2[VO3]·8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization, Environ. Res. 182 (2020) 109054.
[7] G. Barman, A. Kumar, P. Kharie, Removal of Congo red by carbonized low-cost adsorbents: process parameter optimization using a Taguchi experimental design, J. Chem. Eng. Data 56 (2011) 4102–4108.
[8] Z.C. Li, H. Hanzdy, L. Zhang, L. Sellaoui, M.S. Neto, M.L.S. Oliveira, M.K. Selim, G.L. Dotto, A. Bonilla-Petriciolet, Q.L. Li, Adsorption of Congo red and methylene blue dyes on a anshibaka waste and a walnut shell-based activated carbon from aqueous solutions: Experiment, characterization and physical interpretations, Chem. Eng. J. 388 (2020) 124263.
[9] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Fröhlich, A.B. Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286.
[10] E.H. Abboh, R. Jalal, S. Jazaeri, M. Taourirte, Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochem. 40 (2005) 1347–1361.
[11] D.K. Mahmoud, M.A.M. Salleh, W.A.W.A. Karim, A. Idris, Z.Z. Abdin, Batch adsorption of basic dye using activated konafel fibre: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J. 181–182 (2012) 449–457.
[12] B. Sajjadi, J.W. Broomy, W.Y. Chen, D.L. Mattem, N.O. Egiebor, N. Hammer, C.L. Smith, Urea functionalization of ultrason-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity, Ultrason. 50 (2019) 20–30.
[13] M.S. Derakhshan, O. Moradi, The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution, J. Ind. Eng. Chem. 20 (2014) 3168–3194.
[14] R. Nodheji, H. Shayanfekr, A.R. Khosravi, Enhanced adsorption of congo red using cationic surfactant functionalized zeolite particles, Microchem. 153 (2020) 104281.
[15] A. Dibka, S. Bentahar, M.E.I. Khomri, N.E.I. Messaoudi, A. Lachera, Adsorption of Congo red dye from aqueous solutions using tunics of the corsof the saffron, Mater. Today. Proc. 22 (2020) 134–139.
[16] S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics, Colloids Surf., A Physicochem. Eng. Aspects 297 (2009) 146–152.
[17] V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Methylene blue adsorption by algal biomasses from aquatic biowastes: Batch kinetic characterization and process behavior, J. Hazard. Mater. 147 (2007) 120–132.
[18] S. Nethaji, A. Sivasamy, A.B. Mandal, Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr III/VI from wastewater, Rsc Adv. 3 (2013) 94–100.
[19] C.Y. Wei, Y. Huang, Q. Liao, A. Xia, X. Zhu, X.Q. Zhu, Adsorption thermodynamic characteristics of Chlorella vulgaris with organic polymer adsorbent cationic starch: Effect of temperature on adsorption capacity and rate, Biosorres. Technol. 293 (2019) 120556.
[20] R. Kumar, M.A. Barakat, Decolorization of hazardous brilliant green from aqueous solution using binary oxidized citrus fruit peel, Chem. Eng. J. 226 (2013) 377–383.
[21] R. Lafi, K. Charradi, M.A. Djebbi, A. Ben Haij Amara, A. Hafiane, Adsorption study of Congo red dye from aqueous solution to Mg-Al layered double hydroxide, Adv. Powder Technol. 27 (2016) 232–237.
[22] B. Acemigol, Adsorption of Congo red from aqueous solution onto calcium-rich fly ash, J. Colloid Interface Sci. 274 (2004) 371–379.
[23] J.M. Najafa, M.Y. Yeh, K.S. Koothami, Farine watto as a functional biomaterial: Green facile synthesis of modified-β-chitin from Uroehinidae (wattoula) pens (glands), International J. Biol. Macromol. 154 (2020) 1565–1575.
[24] A.E.S. Choi, S. Roces, N. Dugos, A. Arcega, M.W. Wan, Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents, J. Cleaner Prod. 39 (2019) 397–407.
[25] C.L. Smith, Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity, Ultrason. 50 (2019) 20–30.
[26] A. Deb, M. Kamnani, A. Deb Nath, K.B. Bhowmik, B. Saha, Ultrasonic assisted en-
[27] [12] R.L. Tseng, P.H. Wu, F.C. Wu, R.S. Jiang, A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-first-order equation, Chem Eng J. 237 (2014) 153–161.
[28] D. Mitrogiannis, G. Markou, A. Cekeli, H. Bozkurt, Biosorption of methylene blue onto Arthropoda planulae biomass: Kinetic, equilibrium and thermodynamic studies, J. Environ. Chem. Eng. 3 (2015) 670–680.
[29] M. Austa, B.H. Hameed, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chem. Eng. J. 237 (2014) 355–361.
[30] J.A. Gonzalez, M.E. Villanueva, L.L. Piehl, G.J. Copello, Development of a chitin- graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study, Chem. Eng. J. 280 (2015) 41–48.
[31] S. Debnath, M.K. Bhowmik, B. Saha, Ultrasonic assisted enzymatic production of N-acetyl-d-glucosaminylated chitosan for the removal of Congo red dye, Ultrason. Sonochem. 32 (2016) 307–313.
[32] A.E.S. Choi, S. Roces, N. Dugos, A. Arcega, M.W. Wan, Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents, J. Cleaner Prod. 39 (2019) 397–407.