HARMONIC QUASI-ISOMETRIC MAPS INTO GROMOV HYPERBOLIC CAT(0)-SPACES

HUBERT SIDLER AND STEFAN WENGER

ABSTRACT. We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a locally compact, Gromov hyperbolic, CAT(0)-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist-Hulin.

1. Introduction

The well-known Schoen-Li-Wang conjecture asserts that every quasiconformal self-homeomorphism of the boundary at infinity of a rank one symmetric space M extends to a unique harmonic map from M to itself. This conjecture has recently been settled in the affirmative in a series of break-through papers by Markovic [21], [22], Lemm-Markovic [18], and Benoist-Hulin [2]. Earlier partial results were proved in [23], [27], [11], [20], [5], see also the references in [2]. Benoist-Hulin’s result [2], which goes beyond the Schoen-Li-Wang conjecture, shows that every quasi-isometric map between rank one symmetric spaces X and Y is at finite distance of a unique harmonic map. Even more recently, Benoist-Hulin [3] extended their result in [2] to the case when X and Y are Hadamard manifolds of pinched negative curvature, i.e. simply connected Riemannian manifolds of sectional curvature bounded by $-b^2 \leq K_X, K_Y \leq -a^2$ for some constants $a, b > 0$.

The aim of the present note is to further generalize the existence part of Benoist-Hulin’s result [3] by relaxing the curvature conditions on the target space Y. Our methods even work in the context of singular metric spaces Y. Recall that Korevaar-Schoen [15] developed a theory of Sobolev and harmonic maps from a Riemannian domain into a complete metric space. We refer to [15] and to Section 3 of the present note for the definition. Our main theorem is:

Theorem 1.1. Let X be a Hadamard manifold of pinched negative curvature and let Y be a locally compact, Gromov hyperbolic, CAT(0)-space. Then for every quasi-isometric map $f: X \to Y$ there exists an energy minimizing harmonic map $u: X \to Y$ which is globally Lipschitz continuous and at bounded distance from f.

The precise meaning of being at bounded distance from f is that

$$\sup_{x \in X} d_Y(u(x), f(x)) < \infty.$$

It follows in particular that u is also quasi-isometric. Recall that a map $f: X \to Y$ between metric spaces (X,d_X) and (Y,d_Y) is called (L,c)-quasi-isometric if

$$L^{-1} \cdot d_X(x,x') - c \leq d_Y(f(x), f(x')) \leq L \cdot d_X(x,x') + c.$$
for all \(x, x' \in X \). The map \(f \) is called quasi-isometric if it is \((L, c) \)-quasi-isometric for some \(L \geq 1 \) and \(c \geq 0 \). A quasi-isometric map is thus biLipschitz at large scales but no restriction is posed on small scales. In particular, \(f \) need not be continuous. Notice moreover that the image \(f(X) \) need not be quasi-dense in \(Y \).

Recall that a geodesic metric space \(Y \) is called CAT(0) if geodesic triangles in \(Y \) are at least as thin as their Euclidean comparison triangles. Every Hadamard manifold is CAT(0). A geodesic metric space \(Y \) is called Gromov hyperbolic if there exists \(\delta \geq 0 \) such that each side of a geodesic triangle in \(Y \) lies in the \(\delta \)-neighborhood of the other two sides. This is a large scale notion of negative curvature. It poses no restriction on small scales. We refer for example to [6], [10], [9] for comprehensive accounts on CAT(0)-spaces and Gromov hyperbolicity. Since every Hadamard manifold \(Y \) of pinched negative curvature is locally compact, Gromov hyperbolic, and CAT(0) our Theorem 1.1 in particular recovers the existence part of Benoist-Hulin’s result [3, Theorem 1.1].

Unlike in the setting of [6], energy minimizing harmonic maps at finite distance from a fixed quasi-isometric map need not be unique in our more general setting. Indeed, if \(X = \mathbb{H}^2 \) is the hyperbolic plane and \(Y := \mathbb{H}^2 \times [0,1] \) then the maps \(u_t(z) := (z,t) \) for \(t \in [0,1] \) are isometric and energy minimizing harmonic and have finite distance from each other. In the context of singular target spaces uniqueness was shown in [19] for harmonic maps at finite distance from a quasi-isometry between a cocompact Hadamard manifold and a cocompact CAT(0)-space with \(\kappa < 0 \).

The main strategy of proof of our Theorem 1.1 is the same as that in [3], and many of our arguments are in fact similar to those in [3]. On the one hand, existence and (local) Lipschitz regularity of energy minimizing harmonic maps is known in our more general context, see [15]. On the other hand, the smooth structure of the target space \(Y \) and the pinched negative curvature condition on \(Y \) are crucially used at several places in [3]. This is for example essential when establishing bounds on the distance between a quasi-isometric map \(f \) and a harmonic map. One of the principal new ingredients in our proof of similar bounds in our more general context is the use of the Bonk-Schramm embedding theorem [4]. This together with an argument about injective hulls, essentially due to [10], allows us to rough-isometrically embed the (non-geodesic) image \(f(X) \) into the hyperbolic \(k \)-space \(\mathbb{H}^k \) of constant curvature \(-1\) for some \(k \in \mathbb{N} \). The rough-isometric condition, which is much stronger than the quasi-isometric condition, then allows us to prove estimates on the distance between a quasi-isometric map \(f \) and an energy minimizing harmonic map similarly to [3]. A further but more minor difference between our arguments and those in [3] is that we consistently work with the Gromov product in the target space \(Y \) whereas the arguments in [3] rely on an interplay between estimates on the Gromov product and angle estimates. Such estimates on angles are not available in our setting since they require a strictly negative upper curvature bound.

2. Preliminaries

2.1. Basic notation. All metric spaces in our text will be complete. Let \((X,d)\) be a metric space. The open and closed balls in \(X \) centered at \(x \in X \) and of radius \(r > 0 \) are denoted by \(B(x,r) := \{ x' \in X : d(x,x') < r \} \) and \(\overline{B}(x,r) := \{ x' \in X : d(x,x') \leq r \} \), respectively. The distance sphere is \(S(x,r) := \{ x' \in X : d(x,x') = r \} \).

The Hausdorff \(n \)-measure on \(X \) will be denoted by \(\mathcal{H}^n \). The normalization factor
is chosen in such a way that \mathcal{H}^n equals the Lebesgue measure on Euclidean \mathbb{R}^n. In particular, if X is a Riemannian manifold of dimension n then \mathcal{H}^n equals the Riemannian volume. The averaged integral will be denoted by

$$
\int_A f \, d\mathcal{H}^n := (\mathcal{H}^n(A))^{-1} \cdot \int_A f \, d\mathcal{H}^n.
$$

2.2. Some Riemannian preliminaries. Let M be a Riemannian manifold. The differential of a smooth function $f: M \to \mathbb{R}$ will be denoted by Df. The hessian D^2f of f is the 2-tensor satisfying

$$
D^2f(X, X') = X(X'(f)) - \langle \nabla_X X', f \rangle
$$

for all vector fields X, X' on M. The trace of the hessian of f is the Laplace of f and denoted Δf. The function f is called harmonic if $\Delta f \equiv 0$. If M is an n-dimensional Hadamard manifold of sectional curvature $\leq -b^2 \leq K_M \leq -a^2$ for some $a, b > 0$ then the hessian of the distance function $d(x_0) \to x_0 \in M$ satisfies

$$
(1) \ a \coth(ad_{x_0}) \cdot (g - Dd_{x_0} \otimes Dd_{x_0}) \leq D^2d_{x_0} \leq b \coth(bd_{x_0}) \cdot (g - Dd_{x_0} \otimes Dd_{x_0})
$$

on $M \setminus \{x_0\}$, where g denotes the Riemannian metric on M. This follows from the hyperbolic law of cosines and comparison estimates, see e.g. [2]. In particular, the laplacian of d_{x_0} satisfies $\Delta d_{x_0} \geq a \cdot (n - 1)$ on $M \setminus \{x_0\}$.

Let $\varphi: M \to N$ be a smooth map into another Riemannian manifolds N. We denote by $D\varphi$ the differential of φ. The second covariant derivative of φ is the vector-valued 2-tensor which satisfies

$$
D^2\varphi(X, X') = \nabla_X (D\varphi(X')) - D\varphi(\nabla_X X')
$$

for all vector fields X, X' on M, where ∇ denotes the pullback under φ of the Riemannian connection on N. The trace of $D^2\varphi$ is called the tension field of φ and denoted $\tau(\varphi)$. If $\varphi: M \to N$ and $h: N \to \mathbb{R}$ are smooth then one calculates that

$$
(2) \ \Delta (h \circ \varphi) = Dh(\tau(\varphi)) + \sum_{i=1}^n D^2h(D\varphi(e_i), D\varphi(e_i)),
$$

where $\{e_1, \ldots, e_n\}$ is an orthonormal basis in a tangent space of M. The map φ is called harmonic if $\tau(\varphi) \equiv 0$.

2.3. Gromov hyperbolicity. Let (Y, d) be a metric space. Recall that the Gromov product of $x, y \in Y$ with respect to a basepoint $w \in Y$ is defined by

$$
(x \mid y)_w := \frac{1}{2} \left[d(x, w) + d(y, w) - d(x, y) \right].
$$

\textbf{Definition 2.1.} A metric space Y is called δ-hyperbolic, $\delta \geq 0$, if

$$
(x \mid z)_w \geq \min \{ (x \mid y)_w, (y \mid z)_w \} - \delta
$$

for all $x, y, z, w \in Y$. The space is called Gromov hyperbolic if it is δ-hyperbolic for some $\delta \geq 0$.

A geodesic metric space Y is Gromov hyperbolic in the sense of the definition above if and only if there exists $\bar{\delta} \geq 0$ such that every side of a geodesic triangle in Y is contained in the $\bar{\delta}$-neighborhood of the other two sides, see [6] Proposition III.H.1.22.

For a proof of the following lemma see for example [28] Theorem 3.21.
Lemma 2.2. Let $f: X \to Y$ be an (L, c)-quasi-isometric map between geodesic δ-hyperbolic metric spaces X and Y. Then there exists a constant c' only depending on $L, c,$ and δ such that for all $x, x', w \in X$ we have

$$L^{-1} \cdot (x | x')_w - c' \leq (f(x) | f(x'))_{f(w)} \leq L \cdot (x | x')_w + c'.$$

The next lemma is also known as exponential divergence of geodesics.

Lemma 2.3. Let (Y, d) be a geodesic δ-hyperbolic metric space. Then there exists $\delta' > 0$ depending only on δ with the following property. Let $r_1, r_2 \geq 1$ and let $\gamma, \eta: [0, r_1 + r_2] \to Y$ be two geodesics parametrized by arc-length with $\gamma(0) = \eta(0)$. If $d(\gamma(r_1), \eta(r_1)) > 3\delta'$ then any curve connecting $\gamma(r_1 + r_2)$ and $\eta(r_1 + r_2)$ outside the ball $B(\gamma(0), r_1 + r_2)$ has length at least $2^{r_2 - 1} \delta'^{-1}$.

This follows for example from the proof of [6, Proposition III.H.1.25].

2.4. Injective hulls of metric spaces. We will need the following construction of an injective hull due to Isbell [14]. Given a metric space (Z, d), denote by $E(Z)$ the space of all functions $f: Z \to \mathbb{R}$ satisfying

$$f(z) + f(z') \geq d(z, z')$$

for all $z, z' \in Z$ and such that f is extremal in the following sense. If $g: X \to \mathbb{R}$ is another function satisfying (4) and $g \leq f$ then $g = f$. The space $E(Z)$, when equipped with the supremum norm, is called the injective hull of Z. It is an injective metric space in the sense that for every subset A of a metric space B and every 1-Lipschitz map $\varphi: A \to E(Z)$ there exists a 1-Lipschitz extension $\tilde{\varphi}: B \to E(Z)$ of φ. In particular, it follows that $E(Z)$ is a geodesic metric space. The space Z embeds isometrically into $E(Z)$ via the map $z \mapsto d(z, \cdot)$. Moreover, if Z is a subset of another metric space Z' then there exists an isometric embedding $h: E(Z) \to E(Z')$ such that $h(f)|_Z = f$ for all $f \in E(Z)$, see [16, Proposition 3.5]. It was proved in [15, Proposition 1.3] that if Z is Gromov hyperbolic then so is $E(Z)$ and that if Z is moreover geodesic then $E(Z)$ also lies in finite Hausdorff distance of Z.

3. Sobolev maps into metric spaces

There are several equivalent definitions of Sobolev maps from a Riemannian domain to a complete metric space, see for example [14] and the approaches described therein. We will use the definition given by Korevaar-Schoen in [15]. As we will only deal with Sobolev maps of exponent $p = 2$ and defined on open balls in a Hadamard manifold, we will restrict to this setting.

Let X be a Hadamard manifold of dimension $n \geq 2$ and let $\Omega \subset X$ be an open, bounded ball. Let (Y, d_Y) be a complete metric space. We denote by $L^2(\Omega, Y)$ the space of all essentially separably valued Borel maps $u: \Omega \to Y$ such that for some and thus every $y_0 \in Y$ we have

$$\int_{\Omega} d_Y^2(y_0, u(x)) \, d\mathcal{H}^n(x) < \infty.$$
whenever \(x \in \Omega \) satisfies \(d(x, \partial \Omega) > \varepsilon \) and \(e_\varepsilon(x) = 0 \) otherwise. The map \(u \) is said to belong to \(W^{1,2}(\Omega, \gamma) \) if its energy, defined by

\[
E(u) := \sup_{f \in C_c(\Omega), 0 \leq f \leq 1} \left(\limsup_{\varepsilon \to 0} \int_\Omega f(x)e_\varepsilon(x) \, d\mathcal{H}^n(x) \right),
\]

is finite. If \(u \in W^{1,2}(\Omega, X) \) then there exists a function \(e_u \in L^1(\Omega) \), called the energy density function of \(u \), such that \(e_\varepsilon \, d\mathcal{H}^n \to e_u \, d\mathcal{H}^n \) as \(\varepsilon \to 0 \) and

\[
E(u) = \int_\Omega e_u(x) \, d\mathcal{H}^n(x),
\]

see [15, Theorems 1.5.1 and 1.10]. In the case that \(Y \) is a Riemannian manifold and \(u \) is smooth the energy defined in (5) coincides with the usual energy as defined for example in [3].

The trace of a Sobolev map \(u \in W^{1,2}(\Omega, \gamma) \) is denoted \(\text{tr}(u) \), see [15, Definition 1.12] for the definition. We mention here that if \(u \) has a continuous representative which has a continuous extension to \(\overline{\Omega} \), again denoted \(u \), then \(\text{tr}(u) = u|_{\partial \Omega} \).

Definition 3.1. A map \(u \in W^{1,2}(\Omega, \gamma) \) is said to be energy minimizing harmonic if \(E(u) \leq E(v) \) for all \(v \in W^{1,2}(\Omega, \gamma) \) with \(\text{tr}(v) = \text{tr}(u) \). A map \(u : X \to Y \) is called energy minimizing harmonic if its restriction to every bounded, open ball is energy minimizing harmonic.

It is well-known that if \(Y \) is a Hadamard manifold then a map \(u \in W^{1,2}(\Omega, \gamma) \) is energy minimizing harmonic in the sense above if and only if \(u \) is a harmonic map in the classical sense (vanishing tension field), see [24] and [25].

Now, let \(Y \) be a CAT(0)-space. It follows from [15, Theorem 2.2] that for every Lipschitz map \(f : \partial \Omega \to Y \) there exists a unique energy minimizing harmonic map \(u \in W^{1,2}(\Omega, \gamma) \) with \(\text{tr}(u) = f \). By [15, Theorem 2.4.6] and [26], the map \(u \) is locally Lipschitz continuous in \(\Omega \) and Hölder continuous up to the boundary, in particular \(u|_{\partial \Omega} = f \).

If \(u \in W^{1,2}(\Omega, \gamma) \) is energy minimizing harmonic then, by [7, Lemma 10.2], for every \(y_0 \in Y \) the function \(h : \Omega \to \mathbb{R} \) given by \(h(z) := d_Y(y_0, u(z)) \) is weakly subharmonic in the sense that \(\Delta h \geq 0 \) weakly. Recall that a function \(h \in W^{1,2}(\Omega) \) is said to satisfy \(\Delta h \geq \rho \) weakly for some function \(\rho \in L^1(\Omega) \) if

\[
-\int_\Omega (\nabla h, \nabla \varphi) \, d\mathcal{H}^n \geq \int_\Omega \rho \varphi \, d\mathcal{H}^n
\]

for all non-negative \(\varphi \in C_0^\infty(\Omega) \). By [13, Theorem 1], a continuous and weakly subharmonic function \(h : \overline{\Omega} \to \mathbb{R} \) with \(h|_{\partial \Omega} \leq 0 \) satisfies \(h \leq 0 \) on \(\overline{\Omega} \).

The following result will be used in the proof of Theorem 1.1

Proposition 3.2. Let \(X \) be a Hadamard manifold with sectional curvature bounded from below and let \(B = B(x, r) \) be an open ball in \(X \). Let \(u : B \to Y \) be an energy minimizing harmonic map into some CAT(0)-space \(Y \). If the image of \(u \) lies in some ball of radius \(R \) then \(u \) is CR-Lipschitz on the ball \(B(x, r/3) \), where \(C \geq 1 \) only depends on \(r \), the lower bound on sectional curvature of \(X \), and the dimension of \(X \).

Proof. Suppose the curvature of \(X \) is bounded by \(-b^2 \leq K_X \leq 0 \) for some \(b > 0 \). By [30, Theorem 1.4], there exists a constant \(C_1 \) depending only on \(r \), the dimension \(n \),
of X, and b such that u is λ-Lipschitz on $B(x, r/3)$ with $\lambda \leq C_1 \cdot E(u|_{B(x,s)})^{\frac{1}{2}}$, where we have set $s := \frac{r}{2}$. It thus suffices to show that $E(u|_{B(x,s)})$ is bounded by R^2 times a constant depending only on r, n, and b. Let $y \in Y$ be such that the image of u lies in the ball $B(y, R)$. It is not difficult to show that there exists a smooth function $\eta: X \to \mathbb{R}$ supported in $B(x, r)$ with $0 \leq \eta \leq 1$ everywhere, such that $\eta = 1$ on $B(x, s)$, and $|\Delta \eta| \leq K$ everywhere for some constant K depending only on r, b, and n.

By [26 Equation (6)], we have $\Delta d^2_B(y, u(x')) \geq 2e_u(x')$ weakly, where e_u denotes the energy density of u. We thus obtain

$$2E(u|_{B(x,s)}) \leq 2 \int_{B(x,r)} \eta(x')e_u(x') \, d\mathcal{H}^n(x')$$

$$\leq \int_{B(x,r)} \Delta \eta(x') \cdot d^2_B(y, u(x')) \, d\mathcal{H}^n(x')$$

$$\leq K \cdot R^2 \cdot \mathcal{H}^n(B(x, r)).$$

It follows that the Lipschitz constant λ of u on $B(x, r/3)$ is bounded by

$$\lambda \leq C_1 \cdot E(u|_{B(x,s)})^{\frac{1}{2}} \leq CR$$

for some constant C depending on r, b, and n. This completes the proof. \hfill \Box

4. Lipschitz quasi-isometric maps

We will need:

Proposition 4.1. Let X be a Hadamard manifold with sectional curvature bounded from below and let Y be a CAT(0)-space. Then every quasi-isometric map $f: X \to Y$ is at finite distance from a quasi-isometric map $\tilde{f}: X \to Y$ which is moreover Lipschitz.

We first show the following lemma which will also be used later.

Lemma 4.2. Let X be a Hadamard manifold with sectional curvature bounded from below. Then for every $0 < r < R < \infty$ there exists $N \in \mathbb{N}$ such that every ball in X of radius R can be covered by N balls of radius r.

Proof. Fix $0 < r < R < \infty$ and $x \in X$. Let $A \subset B(x, R)$ be a maximally r-separated subset. Thus, distinct points in A have distance at least r and the union of open r-balls centered at points in A covers the ball $B(x, R)$. The open balls centered at points in A and with radius $\frac{r}{2}$ are pairwise disjoint and contained in the ball $B(x, R + \frac{r}{2})$. Let $a_1, \ldots, a_k \in A$ be distinct points and denote by m the volume of the ball of radius $\frac{r}{2}$ in Euclidean \mathbb{R}^n, where n is the dimension of X. Volume comparison with Euclidean space yields $\mathcal{H}^n(B(a_i, \frac{r}{2})) \geq m$ for every i, see [8 Theorem 3.101]. By the same theorem, applied to a model space of constant negative curvature, we obtain

$$\mathcal{H}^n \left(B \left(x, R + \frac{r}{2} \right) \right) \leq M$$

for some M depending only on R, n, and the lower bound on sectional curvature. We conclude that

$$k \cdot m \leq \sum_{i=1}^{k} \mathcal{H}^n \left(B \left(a_i, \frac{r}{2} \right) \right) = \mathcal{H}^n \left(\bigcup_{i=1}^{k} B \left(a_i, \frac{r}{2} \right) \right) \leq \mathcal{H}^n \left(B \left(x, R + \frac{r}{2} \right) \right) \leq M$$

If we set $\tilde{f}(x) := \sum_{i=1}^{k} \frac{1}{k} f(a_i)$, then \tilde{f} is comparable to f and \tilde{f} is Lipschitz with constant $K \cdot \frac{1}{k}$, where K is the Lipschitz constant of f. Thus, we have shown that f is at finite distance from a Lipschitz map \tilde{f}. We conclude that f is Lipschitz. \hfill \Box

4. Lipschitz quasi-isometric maps

We will need:

Proposition 4.1. Let X be a Hadamard manifold with sectional curvature bounded from below and let Y be a CAT(0)-space. Then every quasi-isometric map $f: X \to Y$ is at finite distance from a quasi-isometric map $\tilde{f}: X \to Y$ which is moreover Lipschitz.

We first show the following lemma which will also be used later.

Lemma 4.2. Let X be a Hadamard manifold with sectional curvature bounded from below. Then for every $0 < r < R < \infty$ there exists $N \in \mathbb{N}$ such that every ball in X of radius R can be covered by N balls of radius r.

Proof. Fix $0 < r < R < \infty$ and $x \in X$. Let $A \subset B(x, R)$ be a maximally r-separated subset. Thus, distinct points in A have distance at least r and the union of open r-balls centered at points in A covers the ball $B(x, R)$. The open balls centered at points in A and with radius $\frac{r}{2}$ are pairwise disjoint and contained in the ball $B(x, R + \frac{r}{2})$. Let $a_1, \ldots, a_k \in A$ be distinct points and denote by m the volume of the ball of radius $\frac{r}{2}$ in Euclidean \mathbb{R}^n, where n is the dimension of X. Volume comparison with Euclidean space yields $\mathcal{H}^n(B(a_i, \frac{r}{2})) \geq m$ for every i, see [8 Theorem 3.101]. By the same theorem, applied to a model space of constant negative curvature, we obtain

$$\mathcal{H}^n \left(B \left(x, R + \frac{r}{2} \right) \right) \leq M$$

for some M depending only on R, n, and the lower bound on sectional curvature. We conclude that

$$k \cdot m \leq \sum_{i=1}^{k} \mathcal{H}^n \left(B \left(a_i, \frac{r}{2} \right) \right) = \mathcal{H}^n \left(\bigcup_{i=1}^{k} B \left(a_i, \frac{r}{2} \right) \right) \leq \mathcal{H}^n \left(B \left(x, R + \frac{r}{2} \right) \right) \leq M$$

If we set $\tilde{f}(x) := \sum_{i=1}^{k} \frac{1}{k} f(a_i)$, then \tilde{f} is comparable to f and \tilde{f} is Lipschitz with constant $K \cdot \frac{1}{k}$, where K is the Lipschitz constant of f. Thus, we have shown that f is at finite distance from a Lipschitz map \tilde{f}. We conclude that f is Lipschitz. \hfill \Box
and hence that $k \leq \frac{4d}{m}$. This shows that A has at most $\frac{4d}{m}$ points. Since the union of the open r-balls centered at points in A covers the ball $B(x, R)$ the proof is complete. □

We now prove Proposition 4.2.

Proof. Let $f : X \to Y$ be an (L, c)-quasi-isometric map and let $Z \subset X$ be a maximally 1-separated subset of X. It is easy to show that the family of balls given by $\{ B(z, 4) : z \in Z \}$ has bounded multiplicity. Indeed, let $x \in X$ and let $z_1, \ldots, z_k \in Z$ be distinct points such that $d(x, z_i) \leq 4$ for all i. By Lemma 4.2, the ball $B(x, 4)$ can be covered by N open balls of radius $\frac{4}{L}$, where N only depends on the lower bound on sectional curvature and the dimension of X. Since each of these balls can contain at most one element of Z our claim follows.

Now, the restriction $f|_Z$ of f to Z is $(L + c)$-Lipschitz. Moreover, Y is Lipschitz k-connected for every $k \in \mathbb{N}$. Thus, [29, Lemma 5.3] implies that the map $f|_Z$ has a Lipschitz extension $\tilde{f} : X \to Y$ whose Lipschitz constant only depends on N. By the triangle inequality, the map \tilde{f} is at bounded distance from f and hence also quasi-isometric. This concludes the proof. □

5. The boundary estimate

Let (X, d_X) be a Hadamard manifold of dimension $n \geq 2$ and of pinched negative curvature $-b^2 \leq K_X \leq -a^2$ for some $a, b > 0$. Let (Y, d_Y) be a CAT(0)-space which is locally compact and Gromov hyperbolic. Suppose $f : X \to Y$ is a quasi-isometric map which is moreover Lipschitz. Thus there exist $L \geq 1$ and $c > 0$ such that

$$L^{-1} \cdot d_X(x, x') - c \leq d_Y(f(x), f(x')) \leq L \cdot d_X(x, x')$$

for all $x, x' \in X$. Let $x_0 \in X$ and set $\bar{B}_R := B(x_0, R)$ whenever $R > 0$. We furthermore set $S_R := S(x_0, R)$. There exists a unique continuous energy minimizing harmonic map $u_R : \bar{B}_R \to Y$ which coincides with f on S_R, see Section 3. The main aim of this section is to establish:

Proposition 5.1. There exist constants $\alpha, \beta \geq 1$ such that for every $R > 0$ and $x \in \bar{B}_R$ we have

$$d_Y(f(x), u_R(x)) \leq \alpha \cdot d_X(x, S_R) + \beta.$$

The proof of the analogous result [3, Proposition 3.7] when Y is a Hadamard manifold with curvature bounded from below heavily depends on the existence, established in [3, Proposition 2.4], of a smooth map at finite distance of f with bounded first and second covariant derivative. In the singular setting we work in, such a result is of course not available. We circumvent this problem by using the following lemma.

Lemma 5.2. The set $f(X)$, equipped with the metric from Y, admits a rough-isometric map $\psi : f(X) \to \mathbb{H}^k$ for some $k \in \mathbb{N}$.

Recall that a map $\psi : Z \to W$ between metric spaces (Z, d_Z) and (W, d_W) is called (λ, c)-rough-isometric if

$$\lambda \cdot d_Z(z, z') - c \leq d_W(\psi(z), \psi(z')) \leq \lambda \cdot d_Z(z, z') + c$$

for all $z, z' \in Z$. The idea is to use the well-known Bonk-Schramm embedding theorem [4]. We cannot use their embedding theorem directly since $f(X)$ is not...
Proposition 2.4] constants A_0 and B_0.

Proof. Denote by Z the set $f(X)$ equipped with the induced metric from Y. Denote by $E(Z)$ the injective hull of Z and recall that $E(Z)$ is a geodesic metric space and that Z embeds isometrically into $E(Z)$. Since Z is Gromov hyperbolic (as a subset of Y) it follows from [16, Proposition 1.3] that $E(Z)$ is also Gromov hyperbolic.

We claim that $E(Z)$ is in finite Hausdorff distance of Z. For this, notice first that the space $E(Z)$ can be viewed as a subset of the injective hull $E(Y)$ of Y, see Section 2.2 above, and so the function ψ isometrically into $E(Y)$, see also Section 3.1. By the stability of quasi-geodesics [6, Theorem III.H.1.7], the quasi-geodesic $f(x, x')$ is at distance at most δ_2 from the geodesic $[z, z']$, where δ_2 only depends on the Gromov hyperbolicity constant of Y and the quasi-isometric constants of f. Thus p lies at distance at most $\delta_1 + \delta_2$ from a point in Z. This proves our claim.

Since $E(Z)$ is at finite distance from Z and f is quasi-isometric it easily follows from Lemma 5.2 that $E(Z)$ has bounded growth at some scale as defined in [4]. That is, there exist $0 < r < R < \infty$ and $N \in \mathbb{N}$ such that every ball of radius R in $E(Z)$ can be covered by at most N balls of radius r. Since $E(Z)$ is also geodesic and Gromov hyperbolic it follows from the Bonk-Schramm embedding theorem [4] that $E(Z)$ admits a rough-isometric map $\psi: E(Z) \to \mathbb{H}^k$ for some $k \in \mathbb{N}$. Since $E(Z)$ contains Z isometrically, the proof is complete.

We are now ready for the proof of Proposition 5.1. It uses Lemma 5.2 but is otherwise very similar to that of [3, Proposition 3.7].

Proof. Denote by Z the set $f(X)$ equipped with the induced metric from Y. By Lemma 5.2 there exists a (λ, \tilde{c})-rough-isometric map $\psi: Z \to \mathbb{H}^k$ for some $\lambda, \tilde{c} > 0$ and $k \in \mathbb{N}$. Since the composition $\psi \circ f$ is quasi-isometric there exist by [3, Proposition 2.4] constants A and M and a smooth map $\tilde{f}: X \to \mathbb{H}^k$ such that

$$d_{\mathbb{H}^k}(\psi \circ f(x), \tilde{f}(x)) \leq M$$

for all $x \in X$ and such that the $\|D\tilde{f}\| \leq A$ and $\|\tau(\tilde{f})\| \leq A^2$.

Fix $R > 0$ and $x \in B_R$ and define two continuous functions $\varphi_1, \varphi_2: B_R \to \mathbb{R}$ by

$$\varphi_1(z) := \lambda \cdot d_Y(f(x), u_R(z))$$

and

$$\varphi_2(z) := \frac{2nA^2}{(n-1)} \cdot (d_X(x_0, z) - R).$$

By [7, Lemma 10.2] the function φ_1 is weakly subharmonic, see also Section 3 above. Furthermore, the function $d_{\mathbb{H}^k}(z) := d_X(x_0, z)$ satisfies $\Delta d_{\mathbb{H}^k} \geq a \cdot (n-1)$ away from x_0, see Section 2.2 above, and so the function φ_2 satisfies $\Delta \varphi_2 \geq 2nA^2$ weakly.

Now, we define a third function $\varphi_3: B_R \to \mathbb{R}$ as follows. Set $y_0 := \psi(f(x))$ and embed \mathbb{H}^k isometrically into \mathbb{H}^{k+1}. We pick a point y_1 on the geodesic in \mathbb{H}^{k+1} passing through y_0 perpendicular to \mathbb{H}^k which is sufficiently far from y_0 and define

$$\varphi_3(z) := -d_{\mathbb{H}^{k+1}}(y_1, \tilde{f}(z)) + d_{\mathbb{H}^{k+1}}(y_0, y_1).$$
From (1) and (2) we see that the function \(\varphi_3 \) satisfies
\[
|\Delta \varphi_3| = |\Delta (d_{f_1} \circ \tilde{f})| \leq \|Dd_{f_1}\| \cdot \|\tau(\tilde{f})\| + n \cdot \coth(d_{\mathbb{H}^{k+1}}(y_0, y_1)) \cdot \|D\tilde{f}\|^2
\]
everywhere on \(B_R \), where \(d_{f_1} : \mathbb{H}^{k+1} \to \mathbb{R} \) is given by \(d_{f_1}(w) := d_{\mathbb{H}^{k+1}}(y_1, w) \). If \(y_1 \) is chosen sufficiently far from \(y_0 \) then it follows that \(|\Delta \varphi_3| \leq 2nA^2 \) everywhere on \(B_R \). Consequently, the continuous function \(\varphi : B_R \to \mathbb{R} \) defined by \(\varphi := \varphi_1 + \varphi_2 + \varphi_3 \) is weakly subharmonic.

We now estimate \(\varphi \) on \(S_R \). For this let \(z \in S_R \) and notice that \(\varphi_1(z) = \lambda \cdot d_Y(f(x), f(z)) \) and \(\varphi_2(z) = 0 \). Since \(y_1 \in \mathbb{H}^{k+1} \) is on the geodesic from \(y_0 \) perpendicular to \(\mathbb{H}^k \) it follows from the hyperbolic law of cosines that
\[
d_{\mathbb{H}^{k+1}}(y, y_1) \geq d_{\mathbb{H}^{k+1}}(y, y_0) + d_{\mathbb{H}^{k+1}}(y_0, y_1) - \log(4)
\]
for every \(y \in \mathbb{H}^k \subset \mathbb{H}^{k+1} \). From this we conclude that
\[
\varphi_3(z) = -d_{\mathbb{H}^{k+1}}(y_1, \tilde{f}(z)) + d_{\mathbb{H}^{k+1}}(y_0, y_1)
\leq -d_{\mathbb{H}^{k+1}}(y_0, \tilde{f}(z)) + \log(4)
\leq -d_{\mathbb{H}^{k+1}}(\psi(f(x)), \psi(f(z))) + M + \log(4)
\leq -\lambda d_Y(f(x), f(z)) + M',
\]
where \(M' := \tilde{c} + M + \log(4) \). It follows that \(\varphi(z) \leq M' \) for every \(z \in S_R \). Since \(\varphi \) is weakly subharmonic and continuous we thus obtain from (13) Theorem 1] or from Section [5] above that \(\varphi(z) \leq M' \) for all \(z \in B_R \) and, in particular, also for \(z = x \). Since \(|\varphi_3(x)| \leq M \) we conclude that
\[
d_Y(f(x), u_R(x)) \leq \frac{2nA^2}{\lambda a(n - 1)} \cdot d_X(x, S_R) + \frac{M' + M}{\lambda},
\]
which completes the proof. \(\square \)

6. Distance between harmonic and quasi-isometric maps

The proof of the following proposition is almost identical to that of [3] Proposition 3.5] except that we use the Gromov product instead of angle estimates. The latter are not available in our setting. Let \((X, d_X), (Y, d_Y), f, x_0, B_R, \) and \(u_R \) be as in Section [5].

Proposition 6.1. There exists \(\rho \geq 1 \) such that for every \(R \geq 1 \) we have
\[
d_Y(u_R(x), f(x)) \leq \rho
\]
for all \(x \in B_R \).

We turn to the proof and let \(a, b > 0 \) be such that the sectional curvature of \(X \) satisfies \(-b^2 \leq K_X \leq -a^2 \). Let \(C \geq 1 \) be as in Proposition [3] for the radius \(r = 3 \).

Let \(\delta > 0 \) be such that \(Y \) is \(\delta \)-hyperbolic in the sense of Definition [2.1] and let \(\delta' > 0 \) be the constant from Lemma [2.3]. Denote by \(L \) and \(c \) the constants from [6] and by \(c' \) the constant from Lemma [2.2]. Let \(\alpha, \beta \geq 1 \) be as in Proposition [5.1]. Finally, let \(M \) and \(N \) be the constants appearing in the uniform estimates on the harmonic measure on distance spheres in \(X \) proved in (15) Theorem 1.1].

We choose \(T > 3 \) so large that inequality (12) below holds and that \(\gamma \), as defined in (9) below, satisfies \(\gamma < \frac{\delta}{4} \). We argue by contradiction and assume Proposition [6.1] is false. There then exists a sequence \(R_k \to \infty \) such that
\[
\rho_k := \sup \left\{ x \in B_{R_k} : d_Y(u_{R_k}(x), f(x)) \right\} \to \infty
\]

as \(k \to \infty \). We now abbreviate \(u_k := u_{R_k} \). Let \(k \geq 1 \) be sufficiently large so that
\[
\rho_k > \max \left\{ 2T \alpha + \beta, 2LT + 6 \delta', 4LMT \gamma^{-N} \right\}
\]
and so that \(\rho_k \) satisfies inequality (11) below. Since \(u_k \) and \(f \) are continuous on \(\tilde{B}_{R_k} \), the supremum in (7) is achieved at some point \(x \in \tilde{B}_{R_k} \). By Proposition 5.1 and the choice of \(\rho_k \) we have
\[
d_x(x, S_{R_k}) \geq \frac{\rho_k - \beta}{\alpha} > 2T.
\]
In particular, the ball \(\tilde{B}(x, 2T) \) is contained in \(B_{R_k} \). We first prove:

Lemma 6.2. The map \(u_k \) is \(2C \rho_k \)-Lipschitz on \(\tilde{B}(x, T) \) and satisfies
\[
\frac{\rho_k}{2} \leq d_Y(f(x), u_k(z)) \leq \rho_k + LT
\]
for all \(z \in \tilde{B}(x, T) \).

Proof. For every \(z \in X \) with \(d(x, z) \leq 2T \) we have
\[
d_Y(f(x), u_k(z)) \leq d_Y(f(x), f(z)) + d_Y(f(z), u_k(z)) \leq Ld(x, z) + \rho_k,
\]
which implies in particular the second inequality in (8) and that \(u(\tilde{B}(x, 2T)) \subset B(f(x, 2\rho_k)) \) because \(2LT < \rho_k \). Now, let \(z \in \tilde{B}(x, T) \). Since \(\tilde{B}(z, 3) \subset \tilde{B}(x, 2T) \) it thus follows from Proposition 5.2 applied with \(r = 3 \), that \(u_k \) is \(2C \rho_k \)-Lipschitz on the ball \(\tilde{B}(z, 1) \) and hence also on the ball \(\tilde{B}(x, T) \) since balls in \(X \) are geodesic.

It remains to verify the first inequality in (8). Suppose it does not hold everywhere. Then there exists \(z_1 \in \tilde{B}(x, T) \) such that
\[
h(z_1) := d_Y(f(x), u_k(z_1)) = \frac{\rho_k}{2}.
\]
Set \(r_1 := d(x, z_1) > 0 \). The Lipschitz continuity just proved implies
\[
h(z) \leq h(z_1) + d_Y(u_k(z_1), u_k(z)) \leq \frac{3\rho_k}{4}
\]
for all \(z \) in the set \(\Sigma := S(x, r_1) \cap \tilde{B}(z_1, \frac{1}{4\rho_k}) \). Using the hyperbolic law of cosines and comparing with the hyperbolic plane of curvature \(-b^2\) we see that \(\Sigma \) contains the intersection of \(S(x, r_1) \) with a geodesic cone \(C_\gamma \) based at \(x \) and with angle
\[
\gamma = \sqrt{\cosh\left(\frac{bT}{\rho_k}\right) - 1} \frac{\sinh(bT)}{\sinh(bT)}.
\]
Let \(\sigma \) denote the harmonic measure on \(S(x, r_1) \). See [1] for the definition. Since \(h \) is continuous and weakly subharmonic the harmonic function \(\xi \) on \(\tilde{B}(x, r_1) \) which equals \(h \) on \(S(x, r_1) \) satisfies
\[
\rho_k = h(x) \leq \xi(x) = \int_{S(x, r_1)} \xi \, d\sigma = \int_{S(x, r_1)} h \, d\sigma
\]
and hence
\[
\int_{S(x, r_1)} (h - \rho_k) \, d\sigma \geq 0.
\]
Since \(h - \rho_k \leq LT \) on \(S(x, r_1) \) and \(h - \rho_k \leq -\frac{\rho_k}{4} \) on \(C_\gamma \cap S(x, r_1) \) it follows that \(\sigma(C_\gamma) \leq \frac{4LT}{\rho_k} \). From the uniform lower bound on the harmonic measure of geodesic cones proved in [1] Theorem 1.1] we thus obtain
\[
\frac{1}{M} \cdot \gamma^N \leq \sigma(C_\gamma) \leq \frac{4LT}{\rho_k},
\]
which contradicts the choice of \(\rho_k \). The proof is complete. \(\square \)

We now define a subset \(U \subset X \) by

\[
U := \left\{ z \in S(x, T) : d_Y(f(x), u_k(z)) \geq \rho_k - \frac{T}{2L} \right\}
\]

and prove:

Lemma 6.3. For all \(z_1, z_2 \in U \) we have

\[
(f(z_1) \mid f(z_2))_{f(x)} \geq \frac{T}{4L} - \frac{c}{2} - 2\delta.
\]

Proof. Let \(z_1, z_2 \in U \) and notice that for \(i = 1, 2 \), we have

\[
2 \cdot (f(z_i) \mid u_k(z_i))_{f(x)} = d_Y(f(x), f(z_i)) + d_Y(f(x), u_k(z_i)) - d_Y(f(z_i), u_k(z_i))
\]

\[
\geq \frac{T}{L} - c + \rho_k - \frac{T}{2L} - \rho_k
\]

\[
= \frac{T}{2L} - c.
\]

We next claim that

\[
(10) \quad (u_k(z_i) \mid u_k(x))_{f(x)} \geq \frac{\rho_k}{4} - \frac{3\delta'}{2}.
\]

In order to show this, fix \(i \) and set \(y := f(x) \), \(y_1 := u_k(z_i) \), and \(y_2 := u_k(x) \) and recall that \(d_Y(y, y_1) \geq \rho_k - \frac{T}{L} \geq \frac{\rho_k}{2} \) and \(d_Y(y, y_2) = \rho_k \). For \(j = 1, 2 \), let \(y_j' \) be the point on the geodesic from \(y \) to \(y_j \) with \(d_Y(y, y_j') = \frac{T}{2L} \). Let \(\xi \) be the geodesic in \(X \) from \(x \) to \(z_i \). By Lemma 6.2, the curve \(u_k \circ \xi \) stays outside the ball \(B(y, \frac{T}{L}) \) and has length bounded from above by \(2CT\rho_k \). Since \(\rho_k \) was chosen so large that

\[
(11) \quad \rho_k + LT + 2CT\rho_k < \frac{\rho_k - 4\delta'}{4}
\]

it follows from Lemma 2.3 that \(d_Y(y_1', y_2') \leq 3\delta' \). This is easily seen to imply (10), which proves our claim.

Finally, we use the definition of \(\delta \)-hyperbolicity of \(Y \), the estimates above, and the fact that \(\frac{T}{2L} - \frac{L}{4} \geq \frac{T}{2L} - \frac{7}{12} \) to conclude that

\[
(f(z_1) \mid u_k(x))_{f(x)} \geq \min \left\{ (f(z_1) \mid u_k(z_i))_{f(x)} , (u_k(z_i) \mid u_k(x))_{f(x)} \right\} - \delta \geq \frac{T}{4L} - \frac{c}{2} - \delta
\]

and hence

\[
(f(z_1) \mid f(z_2))_{f(x)} \geq \min \left\{ (f(z_1) \mid u_k(x))_{f(x)} , (f(z_2) \mid u_k(x))_{f(x)} \right\} - \delta \geq \frac{T}{4L} - \frac{c}{2} - 2\delta.
\]

This completes the proof. \(\square \)

The next lemma provides a contradiction to the previous lemma since we had chosen \(T \) so large that

\[
(12) \quad \frac{L}{a} \cdot \log \left(4M^N(2L^2 + 1)^N \right) + c' < \frac{T}{4L} - \frac{c}{2} - 2\delta.
\]

The lemma will thus finish the proof of Proposition 6.1.

Lemma 6.4. There exist \(z_1, z_2 \in U \) such that

\[
(f(z_1) \mid f(z_2))_{f(x)} \leq \frac{L}{a} \cdot \log \left(4M^N(2L^2 + 1)^N \right) + c'.
\]
Proof. Denote by σ the harmonic measure on $S(x,T)$. Let h be the continuous and weakly subharmonic function given by $h(z) := d_Y(f(x), u_k(z))$. Comparing with a harmonic function exactly as in the proof of Lemma 6.2, we obtain that

$$\int_{S(x,T)} (h - \rho_k) \, d\sigma \geq 0.$$

By the definition of U and by Lemma 6.2, we have $h(z) - \rho_k \leq LT$ for all $z \in S(x,T)$ and $h(z) - \rho_k < -\frac{L}{2}$ whenever $z \in S(x,T) \setminus U$. This together with the above integral inequality yields

$$\sigma(U) \geq \frac{1}{2L^2 + 1}.$$

The uniform upper bound on the harmonic measure proved in [1, Theorem 1.1] thus shows that there exist $z_1, z_2 \in U$ such that the angle γ' between them, as seen from the point x, satisfies

$$\gamma' \geq \frac{(\sigma(U))^N}{M^N - (2L^2 + 1)^N}.$$

From this, [2 Lemmas 2.1 and 2.2] it follows that

$$(f(z_1) \mid f(z_2))(x_1) \leq L(z_1 \mid z_2) \cdot e' \leq \frac{L}{a} \cdot \log \left(4M^N(2L^2 + 1)^N\right) + c',$$

which concludes the proof.

7. Completing the proof of the main theorem

We complete the proof of Theorem 1.1. Let (X, d_X) and (Y, d_Y) be spaces as in the statement of the theorem and let $f: X \to Y$ be a quasi-isometric map. By Proposition 4.1, we may assume that f is also L-Lipschitz continuous for some $L > 0$. Fix a basepoint $x_0 \in X$ and set $B_R := B(x_0, R)$ and $S_R := S(x_0, R)$ whenever $R > 0$. Let furthermore $u_R: \bar{B}_R \to Y$ be the unique continuous energy minimizing harmonic map which coincides with f on S_R, see Section 3. Proposition 6.1 shows that there exists ρ such that

$$(13) \quad d_Y(u_R(x), f(x)) \leq \rho$$

for all $R \geq 1$ and every $x \in \bar{B}_R$. From this and the Lipschitz continuity of f it follows that for every $x \in B(x_0, R - 4)$ the image of $u_R(B(x, 3))$ is contained in a ball of radius $\rho + 3L$. Proposition 3.2 implies that u_R is L'-Lipschitz on $B(x_1, 1)$ for some L' which does not depend on x or R. Consequently, u_R is L'-Lipschitz on $B(x_0, R - 4)$.

Fix a sequence $R_k \to \infty$ and set $u_k := u_{R_k}$. By Arzela-Ascoli theorem, a diagonal subsequence argument, and by (13) we may thus assume that there exists an L'-Lipschitz map $u: X \to Y$ such that u_k converges to u uniformly on compact sets and that $d_Y(u(x), f(x)) \leq \rho$ holds for every $x \in X$.

It remains to show that u is energy minimizing harmonic. Fix $s > 0$. The restriction of u to B_s is in $W^{1,2}(B_s, Y)$ since u is Lipschitz. Now, suppose there exist $\varepsilon > 0$ and $v \in W^{1,2}(B_s, Y)$ such that $\text{tr}(v) = u|_{S_s}$ and $E(v) \leq E(u|_{B_s}) - \varepsilon$. Let $\delta \in (0, 1)$ be sufficiently small, to be determined later. For k sufficiently large (depending on δ) the map $h: S_s \cup S_{s+\delta} \to Y$ defined by $h(u)$ on S_s and $h(u_k)$ on $S_{s+\delta}$ is $2L'$-Lipschitz. Since the ball B_{s+1} is doubling and hence also $A_\delta := B_{s+\delta} \setminus B_s$ and Y is Lipschitz m-connected for every m it follows from [17, Theorem 1.5] that h has an L''-Lipschitz extension $\hat{h}: A_\delta \to Y$ with Lipschitz constant L'' not
depending on δ or k. We now define a map $v_k : \bar{B}_{s+\delta} \to Y$ as follows. For $x \in B_s$ set $v_k(x) := v(x)$ and for $x \in A_\delta$ set $v_k(x) = \bar{h}(x)$. Then $v_k \in W^{1,2}(B_{s+\delta}, Y)$ with $\text{tr}(v_k) = u_k|_{B_{s+\delta}}$, see [15] Theorem 1.12.3]. Since u_k is energy minimizing harmonic we have

$$E((v_k)|_{B_{s+\delta}}) \leq E(v_k) \leq E(v) + n(L'')^2 \cdot \mathcal{H}^n(A_\delta) \leq E(u|_{B_{s+\delta}}) - \epsilon + n(L'')^2 \cdot \mathcal{H}^n(A_\delta).$$

However, the right-hand side is strictly smaller than $E(u|_{B_{s+\delta}}) - \frac{\epsilon}{S}$ whenever $\delta > 0$ is sufficiently small and k is sufficiently large. This contradicts the lower semi-continuity of the energy [15] Theorem 1.6.1]. We conclude that u is indeed energy minimizing harmonic. This completes the proof.

References

[1] Yves Benoist and Dominique Hulin. Harmonic measures on negatively curved manifolds. preprint, 2017.
[2] Yves Benoist and Dominique Hulin. Harmonic quasi-isometric maps between rank one symmetric spaces. Ann. of Math. (2), 185(3):895–917, 2017.
[3] Yves Benoist and Dominique Hulin. Harmonic quasi-isometric maps II: negatively curved manifolds. preprint [arXiv:1702.04369], 2017.
[4] M. Bonk and O. Schramm. Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal., 10(2):266–306, 2000.
[5] Francesco Bonsante and Jean-Marc Schlenker. Maximal surfaces and the universal Teichmüller space. Invent. Math., 182(2):279–333, 2010.
[6] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999.
[7] J. Eells and B. Fuglede. Harmonic maps between Riemannian polyhedra, volume 142 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001. With a preface by M. Gromov.
[8] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext. Springer-Verlag, Berlin, third edition, 2004.
[9] Étienne Ghys and Pierre de la Harpe. Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), volume 83 of Progress in Mathematics. Birkhäuser Boston, Boston, MA, 1990.
[10] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.
[11] Robert Hartl and Michael Wolf. Harmonic extensions of quasiconformal maps to hyperbolic space. Indiana Univ. Math. J., 46(1):155–163, 1997.
[12] Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson. Sobolev spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. An approach based on upper gradients.
[13] Rose-Marie Hervé. Un principe du maximum pour les sous-solutions locales d’une équation uniformément elliptique de la forme $LU = -\sum a_{ij} \frac{\partial^2}{\partial x_i \partial x_j}$ ($a_{ij} \geq 0$). Ann. Inst. Fourier (Grenoble), 14(fasc. 2):493–507, 1964.
[14] J. R. Isbell. Six theorems about injective metric spaces. Comment. Math. Helv., 39:65–76, 1964.
[15] Nicholas J. Korevaar and Richard M. Schoen. Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1(3-4):561–659, 1993.
[16] Urs Lang. Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal., 5(3):297–331, 2013.
[17] Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not., (58):3625–3655, 2005.
[18] Marius Lemm and Vladimir Markovic. Heat flows on hyperbolic spaces. J. Differential Geom., 108(3):495–529, 2018.
[19] Peter Li and Jiaping Wang. Harmonic rough isometries into Hadamard space. *Asian J. Math.*, 2(3):419–442, 1998.

[20] Vladimir Markovic. Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces. *J. London Math. Soc. (2)*, 65(1):103–114, 2002.

[21] Vladimir Markovic. Harmonic maps between 3-dimensional hyperbolic spaces. *Invent. Math.*, 199(3):921–951, 2015.

[22] Vladimir Markovic. Harmonic maps and the Schoen conjecture. *J. Amer. Math. Soc.*, 30(3):799–817, 2017.

[23] Pierre Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. *Ann. of Math. (2)*, 129(1):1–60, 1989.

[24] Richard Schoen and Karen Uhlenbeck. A regularity theory for harmonic maps. *J. Differential Geom.*, 17(2):307–335, 1982.

[25] Richard M. Schoen. Analytic aspects of the harmonic map problem. In *Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983)*, volume 2 of *Math. Sci. Res. Inst. Publ.*, pages 321–358. Springer, New York, 1984.

[26] Tomasz Serbinowski. Boundary regularity of harmonic maps to nonpositively curved metric spaces. *Comm. Anal. Geom.*, 2(1):139–153, 1994.

[27] Luen-Fai Tam and Tom Y. H. Wan. Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space. *J. Differential Geom.*, 42(2):368–410, 1995.

[28] Jussi Väisälä. Gromov hyperbolic spaces. *Expo. Math.*, 23(3):187–231, 2005.

[29] Stefan Wenger. Filling invariants at infinity and the Euclidean rank of Hadamard spaces. *Int. Math. Res. Not.*, pages Art. ID 83090, 33, 2006.

[30] Hui-Chun Zhang, Xiao Zhong, and Xi-Ping Zhu. Quantitative gradient estimates for harmonic maps into singular spaces. *preprint* [arXiv:1711.09245], 2017.

Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland

E-mail address: hubert.sidler@unifr.ch

Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland

E-mail address: stefan.wenger@unifr.ch