Triatoma brasiliensis Neiva, 1911 and Triatoma pseudomaculata Corrêa and Espínola, 1964 (Hemiptera, Reduviidae, Triatominae) in rural communities in Northeast Brazil

Ana Laura da Silva Ferreira¹, Maricélia de Aquino Santana², Luan Victor Brandão dos Santos², Daniel Pereira Monteiro³, José Henrique Furtado Campos⁴, Layara Larice Jesuíno Sena⁵, Vagner José Mendonça¹

ABSTRACT

Chagas disease is an important endemic morbidity in Latin America affecting millions of people in the American continent. It is caused by the protozoan Trypanosoma cruzi, and transmitted through the feces of the insect vector belonging to the subfamily Triatominae. The present conducted an entomological survey of triatomines and analyzed entomological indicators, such as the rate of infestation, colonization, triatomine density and natural infection in rural communities in the municipality of Campinas do Piauí, Piauí State, in the Northeast region of Brazil. Data on the search of triatomines performed in 167 domiciliary units (DUs), harvested during the period of February to July 2019, in 12 rural communities were analyzed. The capture of triatomines occurred in all studied communities, being 76 the number of positive DUs, of the 167 surveyed, presenting a global rate of infestation of 45.51%. Two triatomines species were collected: Triatoma brasiliensis (98.49%) and T. pseudomaculata (1.51%), the first was found in the domiciliary and peridomiciliary areas, while the second was captured only in peridomiciliary areas. The index of colonization was 17.1%. Natural infection was observed only in 5.44% of T. brasiliensis samples. The entomological survey was conducted in rural communities, showing the risk of transmission of Chagas disease to the local population, requiring continuous entomological surveillance and vector control.

KEYWORDS: Chagas disease. Surveillance. Epidemiology. Complex Triatoma brasiliensis. Triatoma pseudomaculata. Trypanosoma cruzi.

INTRODUCTION

Chagas disease is endemic in Latin American countries. It is caused by the protozoan Trypanosoma cruzi Chagas, 1909 (Kinetoplastida: Trypanosomatidae), it is transmitted mainly through infected feces of the insect vectors belonging to the subfamily Triatominae (Hemiptera: Reduviidae)¹³. It is estimated that the disease affects, approximately, from 6 to 8 million people in the world and that 13% of the Latin American population is at risk of infection due to active transmission, with Brazil being among the countries with the highest risk of infection⁴. In Brazil, approximately one million people are infected with T. cruzi, the majority coming from rural areas, where the vector of transmission is still active and represents the main form of infection of the disease, being possible to find it in intradomiciliary environments that offer the conditions for the vectors colonization⁵.
Beyond the vector transmission, other forms of infection may represent important mechanisms to the disease dissemination, as is the case of the oral transmission, with a large number of cases in the Northern region of Brazil, due to the consumption of açai and sugarcane juice\(^5\). In addition, there are other means of transmitting the disease, such as: transfusion, organ transplantation, congenital and laboratory accidents.

Currently, there are 151 existing species of triatomines and three fossils assigned to five tribes and 19 genera, classified in the subfamily Triatominae; 65 of these species occurs in Brazil\(^3,6-10\). Approximately 10 of these species have epidemiological importance, because they are often found in the home environment\(^2,9\). With the elimination of disease transmission by *Triatoma infestans* (Klug, 1834) in Brazil, other species, previously considered of minor epidemiological importance, but with sufficient capacity to maintain the disease cycle, took on a more active role in the transmission of the parasite. Even with the eradication of the main species, the Northeast region of Brazil hosts a large number of secondary species with high potential for transmitting the etiological agent\(^11\), such as *Triatoma brasiliensis* Neiva, 1911, *Triatoma sordida* (Stål, 1859), *Triatoma pseudomaculata* Corrêa & Espínola, 1964 and *Panstrongylus megistus* (Burmeister, 1835). *Triatoma brasiliensis* is the main vector of Chagas disease in Northeastern Brazil, due to their habitat being held frequently in the home environment\(^12\).

The Piauí State is endemic for Chagas disease, with the finding of 1.9% of seropositivity in a study conducted in 2002 in rural areas across the State. The highest rates of infection occurred in the municipalities of Cajazeiras do Piauí (10.8%), Capitao Gervasio de Oliveira (11.5%), Campinas do Piauí (11.5%) and Sao Joao do Piauí (11.6%), municipalities located in the Southeastern region of the state\(^13\). The entomological data recorded for this region found a large amount of vectors in the home environment.

According to an entomological survey carried out in Piauí State, 11 species of triatomines have been registered. The most representative species in the peridomiciliary and intradomiciliary environments is *T. brasiliensis* which is often found infected by *T. cruzi*\(^11\).

Due to the absence of immunization strategies to protect populations at risk of infection and the efficiency of existing drugs for the etiological treatment of Chagas disease that has been proven, only, in cases of recent infection, in addition to the large number of reservoir animals, making it impossible to exhaust sources of infection; it is necessary to carry out specific educational actions aimed at home hygiene and permanent entomological surveillance, through combating the domiciled vector, installations of Triatomine Information Stations (PIT), housing improvement and spraying houses in endemic areas\(^14\).

In the present study, we carried out an entomological survey of vectors of Chagas disease in rural communities in the city of Campinas do Piaui, Piaui State, as well as an evaluation of entomological indicators, such as infestation index, colonization rate, triatomine density and natural infection index.

MATERIALS AND METHODS

Field of study

The research was carried out in twelve communities in the municipality of Campinas do Piauí, Piaui State, during the period corresponding of February to July 2019. The municipality is located in the Southeastern region of Piauí State, 368.1 km from the capital Teresina and has 5,603 inhabitants, more than half of whom are residents of rural areas\(^15\). It is a region of warm, semi-arid tropical climate, with Caatinga trees and shrub vegetation, with the Tranqueira and Caninde rivers as the sources of water\(^16\).

The selection of the rural communities was carried out by the municipal supervision of the Chagas Disease Control Program (PCDCH) in Campinas do Piauí, Piaui State, according to established criteria and epidemiological priority for carrying out the previously scheduled activities.

Collection of triatomines

The visits to Domiciliary Units (DUs), in the locations chosen for the research, were accompanied by community health agents and combat endemic disease agents. The search for triatomines took place after authorization of a person responsible for the residence and in their presence. The search in intradomiciliary and peridomiciliary areas took place in an exhaustive way; every single room was thoroughly searched, including places like behind pictures, cracks on the walls, under mattresses, or heaps of clothes, as well as in the annexes, such as heaps of tiles, chicken coops, pigsties, fences and food stores. All of the houses in the surveyed locations were georeferenced and classified as “searched” or “not searched” (if the person responsible did not authorize the search for the triatomine or the house was closed at the time of the visit).

Bugs were collected by manual searches using forceps and lantern, in peridomiciliary and intradomiciliary areas, during daytime. All of the specimens found in the DUs were captured and were packed in plastic tubes lined with filter paper and paper cutouts folded in a “Z” shape to increase the contact surface of the insects. All of the packages were labeled and identified.
Data analysis

The specimens collected at each point were organized according to the instar of development, sex, species and capture ecotope. All of the data were tabulated in spreadsheets. The identification of triatomine species was performed at the Research Laboratory in Parasitic Biology (LaBioPar), located in the Department of Parasitology and Microbiology/CCS of Universidade Federal do Piauí (UFPI), according to the dichotomous key described by Dale et al.17

The entomological indicators adopted were the family infestation index, the colonization index, the triatomine density and the natural infection by \textit{T. cruzi}-related flagellates. Infestation is defined as the presence of any specimen of triatomine, detected by entomological search. It may be referred to any site or ecotope in relation to the total number of units investigated or covered by surveillance. Infestation rates related to DU, intradomicile (ID) or peridomicile (PD) are more commonly used. The Domiciliary Units is defined as the set consisting of human housing, its attachments and the space next to the house. The intradomicile corresponds to the dwelling, not only the internal space, but also the external walls; the peridomicile is defined as the external space, close to the house, which includes attachments and any other possible shelters for triatomines18.

The infection rate of triatomines for trypanosomatid forms, found in their feces, was performed only for adult specimens and nymphs of the fourth and fifth instar. The parasitological technique applied was the abdominal compression of the insect to collect fecal material in a drop of saline solution (NaCl 0.9%), on a slide and examined under an optical microscope at 400 x magnification19.

For entomological indicators, the recommended guidelines from the Pan American Health Organization were used20. To calculate entomological indicators, the following formulas were adopted:

\begin{align*}
\text{Infestation Index (INFEST\%) } & = \frac{\text{number of DU positive}}{\text{number of DU surveyed}} \times 100 \\
\text{Colonization Index (COLON\%) } & = \frac{\text{number of DU with triatomine nymphs}}{\text{number of DU with triatomine}} \times 100 \\
\text{Triatomine density per DU (TD) } & = \frac{\text{number of captured triatomine}}{\text{number of DU surveyed}} \times 100 \\
\text{Natural Infection Index (N\%) } & = \frac{\text{number of triatomine infected with } T. \text{ cruzi}}{\text{number of triatomine examined}} \times 100
\end{align*}

RESULTS

Between February and July 2019, 12 rural communities in the municipality of Campinas do Piauí, Piauí State, were visited, among them Aroeiras, Carnaíbas, Castelo, Chapadinha, Joaquim Pequeno, Moco de Cima, Olho D’Água das Ovelhas, Olho D’Água dos Bois, Peixe, Retiro Velho, Vaca Brava and Volta do Campo Grande. Altogether, 167 DUs were investigated (Figure 1).

A total of 1,063 specimens were collected, 1,047 (98.49%) identified as \textit{T. brasiliensis} and 16 (1.51%) as \textit{T. pseudomaculata}. \textit{Triatoma brasiliensis} was found in the 12 communities surveyed, while \textit{T. pseudomaculata} was collected in the communities of Aroeiras, Chapadinha,
Joaquim Pequeno and Volta do Campo Grande. Out of the 167 DUs surveyed, triatomines were collected in 76, and in 13, the presence of vectors in the intradomicile was confirmed (Figure 2).

Out of the total specimens collected in the rural communities of Campinas do Piauí, 917 came from the peridomicile and 146 from the intradomicile (Table 1).

In three DUs, two in Castelo and one in Aroeiras, triatomines were found in both, inside and around the intradomicile.

In relation to the surveyed peridomestic environments, a larger number of specimens were found in chicken coops and pile of tiles. Other ecotopes surveyed with the presence of triatomines were: pig pens, cattle pens, debris, piles of bricks and piles of wood (Table 2).

In relation to the total number of triatomines collected, a global index of infestation of 45.51% was observed, with the locations Olho D’Aguas dos Bois, Castelo, Carnaibas and Moco de Cima having the highest indexes. The observed general triatomin density was 6.36, with Olho D’Aguas dos Bois, Vaca Brava and Carnaibas having the highest indexes. Out of the 13 positive DUs for the presence of *T. brasiliensis* in the intradomicile, 11 had nymphs inside, representing a general colonization rate of 17.1% (11/76). For the species *T. pseudomaculata*, all of the captured specimens were collected in the peridomicile (Table 3).

![Figure 2](image)

Figure 2 - (A and B) Peridomestic ecotope (A = Chicken coops; B = Pile of tiles); (C) Intradomestic ecotope (under the bed); (D) Collected species (*T. brasiliensis* and *T. pseudomaculata*).

Table 1 - Triatomin species collected in relation to the capture ecotopes.

Species	Peridomicle	Intradomicle		
	N (%)	DU +	N (%)	DU +
Triatoma brasiliensis	901 (86)	66	146 (14)	13
Triatoma pseudomaculata	16 (100)	5	-----	-----
Total	917 (86.26)	66	146 (13.74)	13

N = number of specimens; DU+ = positive domiciliary units.
In the analysis of natural infection (NI) by trypanosomatid forms similar to *T. cruzi*, only adult individuals and nymphs of the fourth and fifth instar were evaluated. The parasitological research was carried out in 211 specimens and presented an IN of 5.44%, making it possible to observe *T. cruzi* only in specimens of *T. brasiliensis* (Table 4).

DISCUSSION

Despite the elimination of Chagas disease transmission by *T. infestans* in Brazil, Piauí State still has a wide distribution of triatomines, remaining a risk area for vector transmission, a condition evidenced by autochthonous and potentially vector species, especially *T. brasiliensis*, found colonizing households in rural communities, as shown by the results of this study.

The high number of *T. brasiliensis* captured in this work are in accordance with the study by Costa *et al.*\(^{12}\) in which, among all the States in the Northeast region, Piauí had the highest index of home infestation by this species. Gurgel-Gonçalves *et al.*\(^{11}\) performed collections in Piauí State and, as in this work, *T. brasiliensis* (65%) was the most captured species, followed by *T. pseudomaculata* (28%). These are the species most widely distributed in the State and with the highest colonization index. Similar results to those presented here were reported by Coutinho *et al.*\(^{21}\), in a similar study developed in Russas (CE), which found a predominance of *T. brasiliensis* (77.1%) followed by *T. pseudomaculata* (19.8%) among the collected species.

As in the study by Gurgel-Gonçalves *et al.*\(^{11}\), our results points to *T. brasiliensis* that is still the most captured species in the home environment, and the second most captured species remaining *T. pseudomaculata*.

The two species occupy a variety of domestic, peridomestic and wild ecotopes, with *T. brasiliensis* frequently associated with small rodents found in rocky outcrops and *T. pseudomaculata* most commonly associated with bird nests and hollow trees\(^{22}\).

In the present study, *T. brasiliensis* and *T. pseudomaculata* were found cohabiting different artificial peridomestic structures (chicken coop, bovine corral and piles of tiles).
This phenomenon can be justified by the juxtaposition of natural and artificial ecotopes, which constitute a unique environment in which species benefit from a good food supply, provided by domestic animals, mainly chickens, and still live in their natural substrates.

On the other hand, the lower occupation of triatomines in the home environment should not be ignored and serves as an indication of the need of routine surveillance in homes in locations with high amounts of triatomines in the peridomicile. Thus, analysis of the invasive capacity of vector species is of great importance to assess and monitor the domiciliation process and also to direct control measures against Chagas disease vectors.

In accordance with the statement by Oliveira-Lima et al. that triatomines have a significantly higher prevalence in animal shelters and debris, in the present study the results showed chicken coops (25.68%) and pile of tiles (27.03%) as the most infested annexes in the surveyed communities. Still, in this same study, the highest incidence of triatomines was observed in piles of wood, tiles and bricks (46%), followed by animal shelters (28%).

In this study, the home infestation indicator (ID) showed that all communities had high indexes, ranging from 30.77 to 100%, and the home colonization index (COLON %) from 9.5 to 100%, with an average index of colonization of 17.1%. These indicators evaluated in the rural communities studied in Campinas do Piauí are inferior to the results of Costa et al. for Piauí State. In this study, the home infestation indicator was equal to 125.7% and the colonization index was equal to 46.3%, for 626,290 DUs investigated in 71 municipalities in the State, between 1993 and 1999.

The relationship between infestation and home colonization rates showed that the 12 communities are affected by adult triatomines and, with the exception of Chapadinha, Olho D’Água dos Bois, Retiro Velho, Vaca Brava and Volta do Campo Grande communities, the others are also affected by triatomin nymphs. Although the communities had a general triatomin density index of 6.36, the results indicated a high prevalence of vectors in the studied areas, when compared to the general result of the present study.

The prevalence of nymphs among the captured specimens characterizes the adaptation of triatomines to the artificial ecotope, consolidating the domiciliation process. Usually, the finding of insects in the DUs is associated with the lack of hygiene, indoor disorder and the presence of animals inside the dwellings, which are conditions that favor the persistence of triatomines in rural areas.

The general analysis of the results showed that the correct interpretation of the data through entomological indicators helps to determine the risk of home transmission of T. cruzi. According to Soares et al., T. brasiliensis and T. pseudomaculata are the most important vectors of T. cruzi in the arid Caatinga region of Northeastern Brazil. Epidemiological studies indicate that T. pseudomaculata is less efficient than T. brasiliensis as a vector for T. cruzi, however, it is still one of the pertinent concerns in relation to the vector transmission of Chagas disease, considering the degree to which vector species potentially colonize new areas and are, thus, capable of expanding risk areas of transmission.

The analysis of natural infection (NI) by parasitological research showed an IN of 5.44%, a very high value when compared to the general average of natural infection by T. cruzi-like flagellates found by Gurgel-Gonçalves et al., for Piauí State (0.8%).

The absence of natural infection in T. pseudomaculata can be explained by its frequent feeding in birds and, probably, by eliminating few parasites in the feces, in addition, the lower number of individuals of this species that were captured must be considered.

Xavier et al., described that the human impact on the local environment can lead to an increase in the rate of infection by T. cruzi in certain species of mammals, reinforcing the need to obtain detailed information on specific local conditions to effectively evaluate the potentials risk factors for the occurrence of the disease.

The entomological and reservoir investigation process must be associated with sustained environmental surveillance actions, making it necessary to understand the habitat selection processes by triatomines for the construction of epidemiological evidence, aiming at planning and developing the local epidemiological surveillance systems and control, so that the improvement of the estimates of eco-epidemiological indicators may significantly reinforce the strategies of integrated surveillance and vector control.

The results found in the 12 rural communities of Campinas do Piauí, Piauí State, showed the colonization of domestic environments by T. brasiliensis and T. pseudomaculata, both species with great epidemiological importance in Southeastern Piauí regarding the vector transmission of Chagas disease.
Chagas disease, due to the high indices of infestation, colonization and density of triatomines in households, aside from the presence of vectors infected with trypanosomatid forms similar to T. cruzi, modifying the risk of transmission of Chagas disease to residents of the region.

ACKNOWLEDGMENTS

To the Health Department of the Campinas do Piaui city for making available community health agents and combat endemic diseases agents.

AUTHORS’ CONTRIBUTIONS

ALSF, MAS, JHFC, LLJS, VJM: performed the collection of material; ALSF, MAS, LVBS, DPM: performed the experiments; ALSF, MAS, LVBS, DPM: analyzed the data; ALSF, VJM: wrote the paper.

REFERENCES

1. Chagas C. Nova tripanozomiae humane: estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909;1:159-218.
2. Costa J, Lorenzo M. Biology, diversity and strategies for the monitoring and control of triatomines - Chagas disease vectors. Mem Inst Oswaldo Cruz. 2009;104 Suppl 1:46-51.
3. Mendonça VJ, Alevi KC, Pinotti H, Gurgel-Gonçalves R, Pita S, Guerra AL, et al. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species complex. Zootaxa. 2016;4107:239-54.
4. World Health Organization. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec. 2015;90:33-43.
5. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de vigilância em saúde: volume único. 3ª ed. Brasília: Ministério da Saúde; 2019. [cited 2020 Aug 26]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_3ed.pdf
6. Peixoto SR, Rocha DS, Dale C, Galvão C. Panstrongylus geniculatus (Latreille, 1811) (Hemiptera, Reduviidae, Triatominae): first record on Ilha Grande, Rio de Janeiro, Brazil. Check List. 2020;16:391-4.
7. Poinar Jr G. Panstrongylus hispaniolae sp. n. (Hemiptera: Reduviidae: Triatominae), a new fossil triatome in Dominican amber, with evidence of gut flagellates. Palaeodiversity. 2013;6:1-8.
8. Galvão C, organizador. Vetores da doença de Chagas no Brasil. Curitiba: Sociedade Brasileira de Zoologia; 2014.
9. Souza ED, Von Atzingen NC, Furtado MB, Oliveira J, Nascimento JD, Vendrami DP, et al. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil. Zookeys. 2016;45:62.
10. Rosa JA, Justino HH, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, et al. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys. 2017:1-25.
11. Gurgel-Gonçalves R, Pereira FD, Lima IP, Cavalcante RR. Distribuição geográfica, infestação domiciliar e infecção natural de triatomíneos (Hemiptera: Reduviidae) no Estado do Piauí, Brasil. 2008. Rev Pan-Amaz Saude. 2010;1:57-64.
12. Costa J, Almeida CE, Dotson EM, Lins A, Vinhaes M, Silveira AC, et al. The epidemiologic importance of Triatoma brasiliensis as a Chagas disease vector in Brazil: a revision of domiciliary captures during 1993-1999. Mem Inst Oswaldo Cruz. 2003;98:443-9.
13. Borges-Pereira J, Castro JA, Silva AG, Zauza PL, Bulhões TP, Gonçalves ME, et al. Soroprevalência da infecção chagásica no Estado do Piauí, 2002. Rev Soc Bras Med Trop. 2006;39:530-9.
14. Silveira AC, Dias JC. O controle da transmissão vetorial. Rev Soc Bras Med Trop. 2011;44 Suppl 2:52-63.
15. Instituto Brasileiro de Geografia e Estatística. Campinas do Piauí. [cited 2020 Aug 26]. Available from: http://www.cepro.pi.gov.br/br/pia/campinas-do-piaui/panorama
16. Fundação Centro de Pesquisas Econômicas e Sociais do Piauí. Diagnóstico socioeconômico: município Campinas do Piauí. [cited 2020 Aug 26]. Available from: http://www.cepro.pi.gov.br/download/201102/CEPRO16_bfd938fee9.pdf
17. Dale C, Almeida CE, Mendonça VJ, Oliveira J, Rosa JA, Galvão C, et al. An updated and illustrated dichotomous key for the Chagas disease vectors of Triatoma brasiliensis species complex and their epidemiologic importance. ZooKeys. 2018:33-43.
18. World Health Organization. Manual for indoor residual spraying: application of residual sprays for vector control. 3ª ed. Geneva: WHO; 2007. [cited 2020 Aug 26]. Available from: http://apps.who.int/iris/bitstream/10665/69664/1/WHO_CDS_NTD_GHOPES_GCDPP_2007_3_eng.pdf
19. Dias JC, Ramos Jr AN, Gontijo ED, Luquetti A, Shikanai-Yasuda MA, Coura JR, et al. II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiol Serv Saude. 2016;25:7-86.
20. Organização Pan-Americana da Saúde. Doença de Chagas: guia para vigilância, prevenção, controle e manejo clínico da doença de Chagas aguda transmitida por alimentos. Rio de Janeiro: OPAS; 2009. [cited 2020 Aug 26]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_prevencao_doenca_chagas.pdf
21. Coutinho CF, Souza-Santos R, Teixeira NF, Georg I, Gomes TF, Boia MN, et al. Investigação entomopatogênica da doença de Chagas no estado do Ceará, região nordeste do Brasil. Cad Saúde Pública. 2014;30:785-93.
22. Forattini OP, Barata JM, Santos JL, Silveira AC. Hábitos alimentares, infeção natural e distribuição de triatomíneos domiciliados na região nordeste do Brasil. Rev Saúde Pública. 1981;15:113-64.
23. Sarquis O, Carvalho-Costa FA, Toma HK, Georg I, Burgoa MR, Lima MM. Eco-epidemiology of Chagas disease in northeastern Brazil: Triatoma brasiliensis, T. pseudomaculata and Rhodnius nasutus in the sylvatic, peridomestic and domestic environments. Parasitol Res. 2012;110:1481-5.
24. Silva RA, Bonifácio PR, Wanderley DM. Doença de Chagas no Estado de São Paulo: comparação entre pesquisa ativa de triatomíneos em domicílio e notificação de sua presença pela população em área sob vigilância entomológica. Rev Soc Bras Med Trop. 1999;32:653-9.
25. Oliveira-Lima JW, Faria Filho OF, Vieira JB, Gadelha FV, Oliveira Filho AM. Alterações do peridomicílio e suas implicações para o controle do Triatoma brasiliensis. Cad Saude Publica. 2000;16 Suppl 2:75-81.
26. Barreto MA, Cavalcanti MA, Andrade CM, Nascimento EG, Pereira WO. Entomological triatomine indicators in the State of Rio Grande do Norte, Brazil. Cien Saude Colet. 2019;24:1483-93.
27. Garcia-Zapata MT, Marsden PD. Enfermedad de Chagas: control y vigilancia con insecticidas y participacion comunitaria en Manabi, Goias, Brasil. Bol Of Sanit Panam. 1994;116:97-110.
28. Soares RP, Evangelista LG, Laranja LS, Diotaiuti L. Population dynamics and feeding behavior of Triatoma brasiliensis and Triatoma pseudomaculata, main vectors of chagas disease in Northeastern Brazil. Mem Inst Oswaldo Cruz. 2000;95:151-5.
29. Costa J, Dornak LL, Almeida CE, Peterson AT. Distributional potential of the Triatoma brasiliensis species complex at present and under scenarios of future climate conditions. Parasit Vectors. 2014;7:238.
30. Assis GF, Azeredo BV, Carbajal AL, Diotaiuti L, Lana M. Domestication of Triatoma pseudomaculata (Côrrea & Espínola 1964) in the Jequitinhonha Valley of State of Minas Gerais. Rev Soc Bras Med Trop. 2007;40:391-6.
31. de la Fuente AL, Minoli AS, Lopes CM, Noireau F, Lazzari CR, Lorenzo MG. Flight dispersal of the Chagas Disease Vectors Triatoma brasiliensis and Triatoma pseudomaculata in Northeastern Brazil. Acta Trop. 2007;101:115-9.
32. Xavier SC, Roque AL, Lima VS, Monteiro KJ, Otaviano JC, Silva LF, et al. Lower richness of small wild mammal species and Chagas disease risk. PLoS Negl Trop Dis. 2012;6:e1647.
33. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Guia de vigilância em saúde: volume único. Brasília: Ministério da Saúde; 2014. [cited 2020 Aug 26]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_unificado.pdf
34. Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, Aguilar HM, et al. Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis. 2010;4:e620.
35. Abad-Franch F, Valença-Barbosa C, Sarquis O, Lima MM. All that glitters is not gold: sampling-process uncertainty in disease-vector surveys with false-negative and false-positive detections. PLoS Negl Trop Dis. 2014;8:e3187.
36. Valença-Barbosa C, Lima MM, Sarquis O, Bezerra CM, Abad-Franch F. Modeling disease vector occurrence when detection is imperfect II: drivers of site occupancy by synanthropic Triatoma brasiliensis in the Brazilian northeast. PLoS Negl Trop Dis. 2014;8:e2861.