On Magnetic Catalysis and Gauge Symmetry Breaking

E. J. FERRER∗

Institute for Space Studies of Catalonia, CSIC, Edif. Nexus 201, Gran Capita 2-4, 08034 Barcelona, Spain

and

V. de la INCERA∗

University of Barcelona, Department of Structure and Constituents of Matter, Diagonal 647, 08028 Barcelona, Spain

Non-perturbative effects of constant magnetic fields in a Higgs-Yukawa gauge model are studied using the extremum equations of the effective action for composite operators. It is found that the magnetic field induces a Higgs condensate, a fermion-antifermion condensate, and a fermion dynamical mass, hence breaking the discrete chiral symmetry of the theory. The results imply that for a non-simple group extension of the present model, the external magnetic field would either induce or reinforce gauge symmetry breaking. Possible cosmological applications of these results in the electroweak phase transition are suggested.

Symmetry behavior in quantum field theories under the influence of external fields has long been a topic of intensive study in theoretical physics [1]. In the present paper we are interested in particular in non-perturbative effects produced by external magnetic fields in gauge theories with scalars. Our main claim is that for theories with non-simple gauge group, scalar-scalar and scalar-fermion interactions, the magnetic field reinforces gauge symmetry breaking.

The observation of large-scale galactic magnetic fields in a number of galaxies, in galactic halos, and in clusters of galaxies [2] has recently stimulated a large number of works trying to explain the physical mechanism responsible for the origin of these fields. Many of the proposed generating mechanisms have compelling arguments in favor of the existence of strong primordial magnetic fields (for a review of cosmological generating mechanisms see [3] and references therein). Since primordial magnetic fields could play a significant role in particle cosmology, the investigations on the theme have recently boomed. In this context, the implications of a magnetic-field-driven gauge symmetry breaking mechanism may be important.

Several years before this renewed interest in cosmological magnetic fields, Ambojrn and Olesen [4] considered the electroweak model in the presence of a constant magnetic field. Assuming certain special values of the couplings, they obtained a W- and Z-condensate solution forming a lattice of abelian vortex lines for a range of magnetic fields lying between $\frac{m^2_W}{e}$ and $\frac{m^2_W}{e} \cos^2 \theta$. At even larger values of the magnetic fields they found that the phase transition to a symmetric phase can be reached at temperatures lower than the critical one at zero field. This result realizes, although due to a totally different reason, an old suggestion [5] that large magnetic fields could induce the transition from the broken to the unbroken phase in the electroweak system.

More recently, the ground state of the electroweak theory in the presence of a hypermagnetic field has been investigated using either numerical or perturbative calculations [6]–[10]. The main motivation of these papers was to study the possibility that a hypermagnetic field could allow the realization of baryogenesis within the Standard Model [6]. Even though the original results [6] for the upper bound of the Higgs mass needed to have baryogenesis in the SM were quite optimistic, it was quickly realized that higher loop effects [7], [10] and numerical non-perturbative calculations [8] would significantly weaken the transition. Moreover, posterior studies on which certain subtleties of the theory- like the magnetic dipole moment of the sphaleron [9] or ring diagrams contributions to the high-temperature effective potential [10] - were taken into account, concluded that albeit the hypermagnetic field strengthen the first order character of the phase transition, it is not enough to satisfy the SM baryogenesis condition [11]

$$\frac{v(T_c)}{T_c} \geq 1,$$

(1)

with $v(T_c)$ the Higgs vacuum expectation value (vev) at the critical temperature T_c of the electroweak phase transition.

When a non-perturbative analytic approach is used to study field theories in external magnetic fields, new non-trivial effects are found. An important example of these non-perturbative effects is the formation of a chiral symmetry breaking fermion condensate $\langle \psi \psi \rangle$ and of a dynamically generated fermion mass in the presence of an external

∗On leave from Department of Physics, SUNY-Fredonia, NY 14063, USA
magnetic field, known in the literature as magnetic catalysis [12]. This phenomenon, which has proven to be rather universal and model independent, has recently attracted a lot of attention [13]-[18].

On normal circumstances massless fermions can condensate and acquire a dynamical mass, but the condensate appears only for sufficiently strong coupling between fermions. The new feature when a magnetic field is present is that it favors (catalyzes) the symmetry breaking by reducing to the weakest attractive coupling the strength of the interaction needed to break the symmetry. The essence of this effect is that the fermions in the lowest Landau level (LLL) constitute the effective fermionic degrees of freedom whose dynamics dominates the long wavelength behavior of the system. The phenomenon is driven by the fact that massless fermions acquire an energy gap in the presence of a magnetic field, but there is no energy gap between the vacuum and the LLL fermions. Then, in the infrared region, the dynamics of the LLL fermions dominates the fermion propagator, making it essentially D-2 dimensional. This effective dimensional reduction strengthen the fermion pairing dynamics [12], [19], giving rise to a fermion condensate.

It is worth to mention that the phenomenon of magnetic catalysis is not only interesting from a purely fundamental point of view, but it has potential application in condensed matter [20]-[23] and cosmology [16]. For instance, it has been recently speculated that the generation of mass through magnetic catalysis in lower dimensional models [21], [22], or in four-dimensional models with boundaries [23], could be behind the physical mechanism explaining the observed scaling of the thermal conductivity in superconducting cuprates with an externally applied magnetic field [24]. On the other hand, the magnetic catalysis could influence the character of the electroweak phase transition as suggested by the results of ref. [16].

In the present paper we consider a simple model field theory with the aim of investigating in a self-consistent way how scalar-scalar and fermion-scalar interactions in the presence of an external magnetic field can influence the stability of the vacuum. It is not intended as a realistic theory, but rather as an example of a large class of theories with scalar fields, on which dynamical symmetry breaking (either chiral or gauge) can be catalyzed by an external magnetic field. In this sense, it could be useful for condensed matter, as well as for cosmological applications. If this toy model is extended to include a non-simple gauge group theory, as for instance the electroweak model, the results of this paper could provide a scenario on which, in contrast to the effect found by Ambojørn and Olesen [4], an external magnetic field could either induce gauge symmetry breaking or reinforce it, in the case it already exists, through non-perturbative effects.

Let us consider the following theory of gauge, fermionic and real scalar fields described by the Higgs-Yukawa Lagrangian density

\[L = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi + g \bar{\psi} \gamma^{\mu} \psi A_{\mu} - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{\lambda}{4!} \varphi^4 - \frac{\mu^2}{2} \varphi^2 - \lambda \varphi \bar{\psi} \psi \]

(2)

This theory has a U(1) gauge symmetry,

\[A_{\mu} \rightarrow A_{\mu} + \frac{1}{g} \partial_{\mu} \alpha(x) \]

\[\psi \rightarrow e^{\text{i} \alpha(x)} \psi, \]

(3)

a fermion number global symmetry

\[\psi \rightarrow e^{\text{i} \theta} \psi, \]

(4)

and a discrete chiral symmetry

\[\psi \rightarrow \gamma_5 \psi, \]

\[\bar{\psi} \rightarrow -\bar{\psi} \text{\gamma}_5, \]

\[\varphi \rightarrow -\varphi \]

(5)

Note that a fermion mass term \(m \bar{\psi} \psi \) is forbidden, since it is invariant under (3) and (4), but not under the discrete chiral symmetry (5).

To study the vacuum solutions that could arise in the theory (2) under the influence of an external constant magnetic field \(B \), we need to solve the extremum equations of the effective action \(\Gamma \) for composite operators [25], [26]

\[\frac{\delta \Gamma(\varphi_c, G)}{\delta G} = 0, \]

(6)

\[\frac{\delta \Gamma(\varphi_c, G)}{\delta \varphi_c} = 0 \]

(7)

where \(G(x, \varphi) = \alpha(x) = \langle 0 | \bar{\psi}(x) \psi(x) | 0 \rangle \) is a composite fermion-antifermion field, and \(\varphi_c \) represents the vev of the Higgs field. Thanks to the discrete chiral symmetry (5), it is enough to consider only one composite field. We choose
the composite field $\bar{G}(x,x)$, ignoring the second possible one, $\pi(x) = \langle 0 \mid \psi(x) i \gamma_5 \psi(x) \mid 0 \rangle$, since the effective action can be a function only of the chirally invariant combination $\rho^2 = \sigma^2 + \pi^2$.

The loop expansion of the effective action Γ for composite operators [23], [26] can be expressed as

$$\Gamma (G, \varphi_c) = S (\varphi_c) - iT \ln (G^{-1} + i \frac{1}{2} T \ln D^{-1} + i \frac{1}{2} T \ln \Delta^{-1} - iT \left[G^{-1} (\varphi_c) G \right] + \Gamma_2 (G, \varphi_c) + C$$ \(8\)

In Eq. (8) C is a constant and $S (\varphi_c)$ is the classical action evaluated in the scalar vev (Higgs condensate) φ_c. The bar on the fermion propagator $\bar{G}(x,y)$ means that it is taken full, while the non-bar notation indicates free propagators, as it is the case for the gauge propagator $D_{\mu\nu}(x-y) = \int \frac{d^4 q}{(2\pi)^4} \frac{e^{i q \cdot (x-y)}}{q^2 - i\epsilon} \left(g_{\mu\nu} - \frac{\lambda}{q^2 - i\epsilon} \right)$, and the scalar one $\Delta(x-y) = \int \frac{d^4 q}{(2\pi)^4} \frac{e^{i q \cdot (x-y)}}{M^2 + M^2 - \frac{i}{2} \frac{q^2}{q^2 - i\epsilon}}$, with $M^2 = \frac{3}{2} \varphi_c^2 + \mu^2$. In general $\Gamma_2 (G, \varphi_c)$ represents the sum of two and higher loop two-particle irreducible vacuum diagrams. In the current approximation, as all propagators but the fermion’s are taken free, Γ_2 is two-particle irreducible with respect to fermion lines only [26]. In the present weakly coupled theory one can use the lowest (two-loop) approximation for Γ_2. This corresponds to the so-called quenched ladder approximation, on which all vertices are taken bare. In this case Γ_2 is

$$\Gamma_2 (G, \varphi_c) = \frac{g^2}{2} \int d^4 x d^4 y tr \left[G(x,y) \gamma^\nu G(y,x) \gamma^\mu D_{\mu\nu}(x,y) \right]$$

$$- \frac{g^2}{2} \int d^4 x d^4 y tr \left(\gamma^\nu \bar{G}(x,y) \right) D_{\mu\nu}(x-y) tr (\gamma^\mu \bar{G}(y,x))$$

$$+ \frac{\lambda^2}{2} \int d^4 x d^4 y tr \left[\bar{G}(x,y) \bar{G}(y,x) \Delta(x,y) \right]$$

$$- \frac{\lambda^2}{2} \int d^4 x d^4 y tr \left(\bar{G}(x,x) \right) \Delta(x-y) tr \left(\bar{G}(y,y) \right)$$ \(9\)

The extremum equations \(9\) and \(10\) correspond, respectively, to the Schwinger-Dyson (SD) equation for the fermion self-energy operator Σ (gap equation), and to the usual minimum equation for the expectation value of the scalar field, which in the presence of the magnetic field has to be determined in a self-consistent way, that is, simultaneously with the gap equation.

Although we have introduced a bare scalar mass μ in \(2\), because we are interested in the possibility of a dynamically generated scalar mass, we take the limit $\mu \rightarrow 0$ at the end of our calculations.

The second to fifth terms in the effective action \(8\) correspond to one-loop contribution. Their evaluation is quite straightforward (the scalar self-interaction can be renormalized in the usual way [27]), with the exception of the fermion contribution coming from the term

$$\Gamma^{(1)} = -iT \left[G^{-1} (\varphi_c) G \right]$$ \(10\)

in \(8\). Here $\bar{G}(x,y)$ denotes the full fermion propagator, which can be written as \(13\)

$$\bar{G}(x,y) = \sum_k \int \frac{dp_0 dp_2 dp_3}{(2\pi)^4} E_p (x) \left(\frac{1}{\gamma \cdot \overline{p} + \Sigma(p)} \right) \bar{T}_p (y)$$ \(11\)

and $G^{-1} (\varphi_c)$ is the free fermion inverse propagator in the presence of a constant magnetic field B along the third axis,

$$G^{-1} (x,y,\varphi_c) = \sum_k \int \frac{dp_0 dp_2 dp_3}{(2\pi)^4} E_p (x) (\gamma \cdot \overline{p} + m_0) \bar{T}_p (y),$$ \(12\)

with $\overline{p} = (p_0, 0, -\sqrt{2} g B k, p_3)$, and $m_0 = \lambda_{\gamma} \varphi_c$, the fermion mass appearing after the shift $\varphi \rightarrow \varphi + \varphi_c$ in the Higgs field.

In the above equations we have introduced the Ritus’ E_p functions [28]. These orthonormal function-matrices provide an alternative method to the Schwinger’s approach to problems of QFT on electromagnetic backgrounds.1

1For an application of Ritus’ method to the QED Schwinger-Dyson equation in a magnetic field see ref. [14].
The E_p representation is obtained forming the eigenfunction-matrices of the fermion mass operator

$$E_p(x) = \sum_\sigma E_{p\sigma}(x) \Delta(\sigma),$$

(13)

where

$$\Delta(\sigma) = \text{diag}(\delta_{\sigma 1}, \delta_{\sigma -1}, \delta_{\sigma 1}, \delta_{\sigma -1}), \quad \sigma = \pm 1,$$

(14)

and the $E_{p\sigma}$ functions are given by

$$E_{p\sigma}(x) = N(n)e^{i(p_0x^0+p_2x^2+p_3x^3)}D_n(\rho)$$

(15)

with $D_n(\rho)$ being the parabolic cylinder functions [29] of argument $\rho = \sqrt{2gB}(x_1 - \frac{p_2}{gB})$ and positive integer index

$$n = n(k, \sigma) \equiv k + \frac{\sigma}{2} - \frac{1}{2} \quad n = 0, 1, 2, \ldots,$$

(16)

and $N(n) = (4\pi gB)^{\frac{1}{2}}/\sqrt{n!}$ being a normalization factor. Here p represents the set (p_0, p_2, p_3, k), which determines the eigenvalue $p^2 = -p_0^2 + p_3^2 + 2gBk$ in $(\gamma^\mu (i\partial_\mu - gA_\mu))^2\psi_p = p^2\psi_p$ (for details and notation see [13] and [16]). In Eq. (12) we are considering the case of a purely magnetic field background (crossed field case) directed along the z-direction (without loss of generality we assume that $\text{sign}(gB) = 1$).

One can easily check that the E_p functions are orthonormal

$$\int d^4x \overline{E}_p(x)E_p(x) = (2\pi)^4\delta^{(4)}(p - p') \equiv (2\pi)^4\delta_{kk'}\delta(p_0 - p'_0)\delta(p_2 - p'_2)\delta(p_3 - p'_3)$$

(17)

and complete

$$\sum_k \int d^4p E_p(x)\overline{E}_p(y) = \sum_k \int dp_0 dp_2 dp_3 E_p(x)\overline{E}_p(y) = (2\pi)^4\delta^{(4)}(x - y)$$

(18)

Here we have used $\overline{E}_p(x) = \gamma^0 E^{\dagger}_p \gamma^0$.

Using Eqs. (12) and (13) in (16), the last one can be expressed as

$$\Gamma_f^{(1)} = -i \int d^4x d^4y \sum_k \int \frac{d^3p}{(2\pi)^3} \sum_k' \int \frac{d^3p'}{(2\pi)^3} Tr\{E_p(x)(\gamma_\parallel + m_0)\overline{E}_p(y)$$

$$\times E_{p'}(y) \left(\frac{1}{\gamma_\parallel + \Sigma(\mathbf{p})}\right)\overline{E}_{p'}(x)\}$$

(19)

Making use of the property (15) one can easily integrate in y and p' to obtain

$$\Gamma_f^{(1)} = -i \int d^4x \sum_k \int \frac{d^3p}{(2\pi)^3} Tr\left\{E_p(x) \left(\frac{\gamma_\parallel + m_0}{\gamma_\parallel + \Sigma(\mathbf{p})}\right)\overline{E}_p(x)\right\}$$

(20)

At this point we need to consider the structure of the mass operator Σ introduced in ref. [17]

$$\Sigma(\mathbf{p}) = Z_\parallel(\mathbf{p})\gamma_\parallel \cdot \mathbf{p}_\parallel + Z_\perp(\mathbf{p})\gamma_\cdot \mathbf{p}_\perp + m(\mathbf{p})$$

(21)

where $\mathbf{p}_\parallel = (p_0, 0, 0, p_3), \mathbf{p}_\perp = (0, 0, -\sqrt{2gBk}, 0).$ The coefficients $Z_\parallel(\mathbf{p}), Z_\perp(\mathbf{p})$and $m(\mathbf{p})$ are functions of \mathbf{p}^2. Notice the usual separation in the presence of a magnetic field between parallel and perpendicular variables. Then, taking into account (21), the contribution (20) can be written as

$$\Gamma_f^{(1)} = -i \int d^4x \sum_k \int \frac{d^3p}{(2\pi)^3} Tr\left\{E_p(x) \left(\frac{\gamma_\parallel + m_0}{(1 + Z_\parallel)\gamma_\parallel \cdot \mathbf{p}_\parallel + (1 + Z_\perp)\gamma_\cdot \mathbf{p}_\perp + m(\mathbf{p})}\right)\overline{E}_p(x)\right\}$$

(22)

The integral in x yields

4
\[\Gamma \left(f^{(1)} \right) = -i \left(2\pi \right)^4 \delta^{(3)}(0) \sum_k \int \frac{d^4p}{(2\pi)^4} Tr \left\{ \frac{\gamma \cdot \mathbf{p} + m_0}{(1 + Z_i) \gamma \cdot \mathbf{p} + (1 + Z_\perp) \gamma \cdot \mathbf{p}_\perp + m(f)} \right\} \]

(23)

where the notation \(\delta^{(3)}(k) = \delta(k_0)\delta(k_2)\delta(k_3) \) is understood. After taking the trace, integrating in \(p_2 \) and doing the Wick rotation to Euclidean coordinates, we obtain

\[\Gamma \left(f^{(1)} \right) = 8\pi g B \delta^{(4)}(0) \sum_k \int dp_4 dp_3 \frac{(1 + Z_i)p_{\parallel}^2 + (1 + Z_\perp)p_{\perp}^2 + m(f)m_0}{(1 + Z_i)^2 p_{\parallel}^2 + (1 + Z_\perp)^2 p_{\perp}^2 + m^2(f)} \]

(24)

We are interested in the contribution of \(\Gamma \left(f^{(1)} \right) \) to the minimum equations (1) and (2). In the case of the gap equation, such a contribution can be found directly from Eq. (10), differentiating with respect to \(\mathcal{G} \). On the other hand, the contribution of \(\Gamma \left(f^{(1)} \right) \) to the scalar vev extremum equation takes the form

\[\frac{\partial \Gamma \left(f^{(1)} \right)}{\partial \phi_c} = 8\pi \lambda_\gamma g B \delta^{(4)}(0) \sum_k \int dp_4 dp_3 \frac{m(f)}{p_{\parallel}^2 + (1 + Z_\perp)^2 p_{\perp}^2 + m^2(f)} \]

(25)

where the solution \(Z_\parallel = 0 \) of the SD equation (3) was explicitly used.

At large magnetic field, the main contribution to the sum in \(k \) comes from the LLL, i.e. \(p_{\parallel}^2 = 2gBk = 0 \). Then, in this approximation Eq. (25) becomes

\[\frac{\partial \Gamma \left(f^{(1)} \right)}{\partial \phi_c} = 8\pi \lambda_\gamma g B \delta^{(4)}(0) \int dp_4 dp_3 \frac{m(f)}{p_{\parallel}^2 + m^2(f)} \]

(26)

In general, the dynamical mass \(m(f) \) depends on the momentum. However, we can expect that, similarly to QED (12), \(m(f) \) behaves as a constant in the infrared region, and diminishes with increasing \(p_{\parallel} \). Therefore, the main contribution to the integral in Eq. (20) will come from the infrared region \(p_{\parallel} < \sqrt{gB} \). From the above discussion, it is reasonable to approximate the function \(m(f) \) by a constant solution \(m(f) \approx m(o) = m \) and use \(\sqrt{gB} \) as a natural cutoff. This leads us to the final result

\[\frac{\partial \Gamma \left(f^{(1)} \right)}{\partial \phi_c} = V^{(4)} \frac{\lambda_\gamma}{2\pi^2 g B m} \ln \left(\frac{gB}{m^2} \right) = -V^{(4)} \lambda_\gamma \frac{\bar{\psi} \psi}{2\pi^2} \]

(27)

where \(V^{(4)} \) represents an infinite four dimensional volume, and \(\bar{\psi} \psi = i Tr \{ \mathcal{G}(x, x) \} = -\frac{aBm}{2\pi^2} \ln \left(\frac{aB}{m^2} \right) \) denotes the fermion-antifermion condensate induced by the external magnetic field.

It is worth to notice the following. It is a well known fact that in the present model, in the absence of a magnetic field, the effective action (potential) has a non-zero minimum at the one-loop level, but this minimum lies far outside the expected range of validity of the one-loop approximation, even for arbitrarily small coupling constant, so it must be rejected as an artifact of the used approximation (30). When a magnetic field is present, the term \(\frac{\partial \Gamma \left(f^{(1)} \right)}{\partial \phi_c} \), being proportional to the fermion condensate, dominates the radiative corrections in the minimum equation (2). Due to this, the dynamically generated fermion condensate gives rise to a non-zero scalar minimum that is in agreement with the used approximation. In other words, thanks to the magnetic field, a consistent minimum solution can be generated by radiative corrections. In this sense, a sort of non-perturbative Coleman-Weinberg mechanism takes place, with the difference that in the present case no dimensional transmutation is needed. Since the theory already contains a dimensional parameter, the magnetic field \(B \), there is no need to include scalar-gauge interactions in order to trade a dimensionless coupling for the dimensional parameter \(\phi_c \) (30). No constraint between the couplings has to be assumed, except that they are all sufficiently weak.

\(^2\)The demonstration that \(Z_\parallel = 0 \) is a solution of the gap equation in the present theory can be done along the same line of reasoning followed in the Appendix of the first paper of ref. (18).
The two-loop contributions are a little more involved. As we have not enough space in a letter to give all the detailed calculations, we will explicitly show, for the sake of understanding, the evaluation of one term. The others can be found in a similar way. The complete calculation will be published elsewhere.

First, notice that the second and fourth term in Eq. (11) generate tadpole diagrams in the SD equation (9). It is easy to realize that the tadpole diagram with the gauge-fermion vertex vanishes. However, the tadpole associated to one can integrate in \(x \) to the delta \(\delta \) which can be justified by the presence of the exponential factor in detailed calculations, we will explicitly show, for the sake of understanding, the evaluation of one term. The others

\[
\sum^T(x, y) = i\frac{\delta^T}{\delta G} = -i\lambda_y^2 \delta(x - y) \int d^4z \Delta(x - z) \text{tr} \left[\overline{G}(z, z) \right]
\]

(28)

We can transform Eq. (28) to momentum space with the help of the \(E_p(x) \) functions to obtain

\[
\int d^4x d^4y E_p(x) \sum^T(x, y) E_{p'}(y) = (2\pi)^4 \delta(4)(p - p') \sum^T(\overline{p})
\]

\[
= -i\lambda_y^2 \int d^4x d^4z E_p(x) \int \frac{d^4q}{(2\pi)^4} \frac{e^{iq(x - z)}}{q^2 + M^2 + i} \times \sum_{k'} \int d^4p' \left\{ \text{Tr} \left[E_{p'}(z) \left(\frac{1}{\gamma \overline{p'} + \sum(\overline{p'})} \right) E_{p'}(z) \right] \right\} E_{p'}(x)
\]

(29)

Taking into account that

\[
\int d^4x e^{iqx} E_p(x) E_{p'}(x) = (2\pi)^4 \delta(3)(p' + q - p) e^{iq(\vec{p}_2' + \vec{p}_2)/2gB} e^{-\vec{q}_2^2/2} \times \sum_{\sigma, \sigma'} e^{i(n - n')\varphi} \sqrt{n(k, \sigma) n'(k', \sigma')}! J_{nn'}(\vec{q}_\perp) \Delta(\sigma) \delta_{\sigma \sigma'}
\]

(30)

one can integrate in \(x \) and \(z \) to find

\[
(2\pi)^4 \delta(4)(p - p') \sum^T(\overline{p}) = -i\lambda_y^2 \int d^4q \sum_{k'} \int d^4p' \delta(3)(q) \delta(3)(p' + q - p)
\]

\[
\times e^{-\vec{q}_2^2} \frac{e^{iq(\vec{p}_2' + \vec{p}_2 - 2p_2)/2gB}}{q^2 + M^2 + i} \sum_{\sigma} \frac{e^{i(n - n')\varphi}}{\sqrt{n(k, \sigma) n'(k', \sigma')}! J_{nn'}(\vec{q}_\perp) \Delta(\sigma)}
\]

\[
\times \sum_{\sigma'} \left\{ \text{Tr} \left[\Delta(\sigma') \frac{1}{\gamma \overline{p'} + \sum(\overline{p'})} \right] \frac{1}{n'(k', \sigma')}! J_{n'n'}(\vec{q}_\perp) \right\},
\]

(31)

This equation can be further simplified after taking the trace and using the small \(\delta_{\perp} \) approximation of the \(J \)–functions

\[
J_{nn'}(\vec{q}_\perp) \rightarrow \frac{[\max(n, n')!!]}{|n - n'!!|} |i\vec{q}_\perp|^{n-n'} \rightarrow n! \delta_{nn'},
\]

(32)

which can be justified by the presence of the exponential factor \(e^{-\vec{q}_2^2} \) in the integrand of Eq. (31). Moreover, thanks to the delta \(\delta(3)(q) \), the integrations in \(q_0, q_2, q_3 \) are trivial. Thus, from the previous considerations and using the properties of the \(\Delta \) matrices [13], we arrive at

\[
(2\pi)^4 \delta(4)(p - p') \sum^T(\overline{p}) = -2i\lambda_y^2 \delta(4)(p' - p) \int dq \sum_{k'} \int d^4p' e^{-\vec{q}_2^2} \frac{e^{iq(\vec{p}_2' + \vec{p}_2 - 2p_2)/2gB}}{q_1^2 + M^2 + i} \times \left\{ \frac{2m(\overline{p'})}{(1 + Z_1)^2 \overline{p}_\parallel \ \overline{n}_2^2 + (1 + Z_2)^2 \overline{p}_\perp \ \overline{n}_2^2 + m^2(\overline{p'})} \right\}
\]

(33)
Finally, after integrating in q_1 and p_2'', and transforming to Euclidean space, we get

$$\sum^T = \frac{\lambda^2_y gB}{2\pi^3 M^2} \sum_{k'} \int dp_1'' dp_3'' \frac{m(p')}{(1 + Z_{\parallel})^2 p''_{\parallel}^2 + (1 + Z_{\perp})^2 p''_{\perp}^2 + m^2(p'')}$$

(34)

Similarly to the analysis done in the one-loop case, it can be seen that the main contribution to Eq. (34) comes from the $k'' = 0$ term of the sum. Taking into account this and using the solution $Z_{\parallel} = 0$, the tadpole contribution to the gap equation reduces to

$$\sum^T = \frac{\lambda^2_y gB}{2\pi^3 M^2} \int dp_1'' dp_3'' \frac{m(p'')}{p''_{\parallel}^2 + m^2(p'')}$$

(35)

One can recognize here the same integral that led us to the fermion condensate in Eq. (26). Therefore, we find

$$\sum^T \simeq \frac{1}{\pi^2} \frac{\lambda^2_y}{\lambda\varphi_c^2} gBm \ln \left(\frac{gB}{m^2} \right) = -2 \frac{\lambda^2_y}{\lambda\varphi_c^2} \left< \overline{\psi}\psi \right>,$$

(36)

Note that the tadpole term is proportional to the magnetic field and inversely proportional to the scalar mass. This functional dependence will be responsible for the notorious increment of the mass solution in this model as compared to other theories, as discussed below.

Taking into account the leading contributions to Eqs. (6) and (7) at large magnetic field, one arrives at the following minimum equations for the fermion mass and the scalar vev respectively,

$$m \simeq m_0 + \left(\frac{g^2}{4\pi} - \frac{\lambda^2_y}{8\pi} \right) \frac{m}{4\pi} \ln^2 \left(\frac{gB}{m^2} \right) + \frac{1}{\pi^2} \frac{\lambda^2_y}{\lambda\varphi_c^2} gBm \ln \left(\frac{gB}{m^2} \right)$$

(37)

$$\frac{\lambda}{6} \varphi_c^3 + \frac{\lambda^2}{64\pi^2 \varphi_c^3} \left(\ln \left(\frac{\varphi_c^2}{gB} \right) - \frac{11}{3} \right) - \lambda_y gB \frac{1}{2\pi^2} m \ln \left(\frac{gB}{m^2} \right) \simeq 0$$

(38)

Eq. (38) can be further simplified by noting that at large B one can neglect the terms $\sim \lambda^2$ coming from the one-loop scalar self-interaction, compared to the term coming from the fermion condensate contribution $\sim \left< \overline{\psi}\psi \right>$. Then, the scalar minimum satisfies

$$\varphi_c^3 \simeq \frac{\lambda_y gB}{\lambda} \frac{3}{\pi^2} m \ln \left(\frac{gB}{m^2} \right)$$

(39)

Similarly, the gauge and scalar bubble diagram contributions to the gap equation, (second term in (25)), are negligible compared to the tadpole contribution, (third term in (35)), so the equation becomes

$$m \simeq m_0 + \frac{1}{\pi^2} \frac{\lambda^2_y}{\lambda\varphi_c^2} gB m \ln \left(\frac{gB}{m^2} \right)$$

(40)

Substituting (39) in Eq. (40), it is found

$$m \simeq \frac{1}{\sqrt{\lambda}} \sqrt{gB}$$

(41)

where the coefficient κ satisfies

$$\kappa \ln \kappa \simeq 1.4 \frac{\lambda}{\lambda_y}$$

(42)

The corresponding solution for the Higgs vev is

$$\varphi_c \approx 0.8 \frac{\kappa^{1/2}}{\lambda_y} \sqrt{gB}$$

(43)
It is easy to check that for weak couplings the solutions (11) and (13) are in agreement with the used approximations. Note that there is no zero solution for the scalar vev in this large field approximation. Both, the minimum of the scalar field and the dynamically generated mass are driven by the external magnetic field. As the dynamical fermion mass breaks the discrete chiral symmetry (1), this model might be considered as one more example of the phenomenon of magnetic catalysis. However, if the current model is extended to include complex scalars (complex scalars do not change at all the conclusions of this paper) and non-simple gauge groups, as $SU(2) \times U(1)$ in the electroweak model, the symmetry breaking phenomenon will have a different nature. There, we do not have chiral symmetry, but the magnetic-field-driven scalar minimum will break the gauge symmetry by giving mass to the gauge fields coupled to it. Thus, as we claimed at the beginning of the paper, in richer models with scalar fields, the magnetic field can either reinforce gauge symmetry breaking if it is already broken, or induce it, through non-perturbative effects.

Comparing the induced fermion dynamical mass Eq. (11) with the mass generated when no scalar field is present
\[m \approx \sqrt{|gB|} \exp \left[-2\pi/g \right], \]
and the one obtained when the couplings are fine-tuned so the scalar vev is set to zero \[m \approx \sqrt{|gB|} \exp \left[-2\pi \sqrt{1/\left(g^2 + \lambda^2 \right)} \right], \]
we find
\[m \approx \sqrt{|gB|} \exp \left[-2\pi \right], \]
which is an open question whether the effect found in this paper can influence the recent conclusions (6)–(10) about baryogenesis in the presence of primordial magnetic fields.

ACKNOWLEDGMENTS

It is a pleasure to thank V. Gusynin and V. Miransky for enlightening discussions on the phenomenon of magnetic catalysis, and M. Laine, M. Shaposhnikov and G. Veneziano for useful discussions and remarks. The authors wish to acknowledge the warm hospitality extended to them at the University of Barcelona (VI), and the Institute for Space Studies of Catalonia (EF), during the last stage of this work. This work has been supported in part by NSF grant PHY-9722059 (EF and VI) and NSF POWRE grant PHY-9973708 (VI).

[1] Y. J. Ng and Y. Kikuchi, in Vacuum Structure in Intense Fields, edited by H. M. Fried and B. Müller, (Plenum, New York, 1991); D. M. Gitman, E. S. Fradkin and Sh. M. Shvartsman, in Quantum Electrodynamics with Unstable Vacuum, edited by V. L. Ginzburg (Nova Science, Commack, New York, 1995); J. K. Jain, in Perspectives in Quantum Hall Effects, edited by S. D. Sarma and A. Pinczuk, (John Wiley & Sons, New York, 1997).
[2] P. P. Kronberg, Rep. Prog. Phys. 57 (1994) 325; R. Beck et. al., Ann. Rev. Astron. Astrophys. 34 (1996) 153.
[3] K. Enquist, Int. J. Mod. Phys. D 7 (1998) 331.
[4] J. Ambjørn and P. Olesen, Nucl. Phys. B 315 (1989) 606, ibid. B 330 (1990) 193.
[5] A. Salam and J. Strathdee, Nucl. Phys. B 90 (1975) 203; A. D. Linde, Phys. Lett. B 62 (1976) 435; B. J. Harrington and H. K. Shepard, Nucl. Phys. B 105 (1976) 527.
[6] M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57 (1998) 2186.
[7] P. Elmfors, K. Enqvist and K. Kainulainen, hep-ph/9806403.
[8] M. Giovannini, J. Kajantie, M. Laine, J. Peisa, K. Rummukainen and M. Shaposhnikov, hep-lat/9809004; M. Laine, hep-ph/9902282.
[9] D. Comelli, D. Grasso, M. Pietroni and A. Riotto, hep-ph/9903227.
[10] V. Skalashub and M. Bordag, hep-ph/9904333.
[11] M. E. Shaposhnikov, JETP Lett. 4 (1986) 465; Nucl. Phys. B 287 (1987) 757.
[12] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. Lett. 73 (1994) 3499; Phys.Lett. B 349 (1995) 477; Phys. Rev. D 52 (1995) 4718; ibid 4747; Nucl. Phys. B 462(1996) 249.
[13] C. N. Leung, Y. J. Ng, and A. W. Ackley, Phys. Rev. D 54 (1996) 4181. D.-S Lee, C. N. Leung, and Y. J. Ng, Phys. Rev. D 55 (1997) 6504.
[14] I. A. Shushpanov and A. V. Smilga, Phys. Lett. B 402 (1997) 351.
[15] V. Elias, D. G. C. McKeon, V. A. Miransky, and I. A. Shovkovy, Phys. Rev D 54 (1996) 7884; I. A. Shovkovy and V. M. Turkovskyy, Phys. Lett. B 367 (1996) 213; D. K. Hong, Y. Kim, and S-J. Sin, Phys. Rev. D 54 (1996) 7879; D. M. Gitman, S. D. Odintsov, and Yu. I. Shil’nov, Phys. Rev. D 54 (1996) 2968; A. V. Shapayev, hep-ph/9611412; B. Geyer, L.N. Granda, and S.D. Odintsov, Mod.Phys.Lett.A 11 (1996) 2053; I. Brevik, D. M. Gitman, S. D. Odintsov, Grav.Cosmol. 3 (1997) 100; V. P. Gusynin and I. A. Shovkovy, Phys. Rev. D 56 (1997) 5251; D. Ebert and V. Ch. Zhukovsky, Mod. Phys. Lett. A 12 (1997) 2567; D. K. Hong, Phys.Rev. D 57 (1998) 3759; E. Elizalde, Yu. I. Shil’nov and V. V. Chitov, Class. Quant. Grav. 15 (1998) 735; V. P. Gusynin, D. K. Hong and I. A. Shovkovy, Phys. Rev D 57 (1998) 5230; V. A. Miransky, hep-th/9805159.
[16] I. N. Leung, Proceedings of Particle Physics and Cosmology First Tropical Workshop and High Energy Physics Second Latin American Symposium, San Juan, Puerto Rico, Apr 1998, pag. 443 (AIP Conference Proceedings 444, Woodbury, New York, 1998, edited by J. Nieves); V. P. Gusynin and A. V. Smilga, Phys.Lett. B 450 (1999) 267; D. Ebert, K. G. Klimenko, M. A. Vdovichenko and A. S. Vshivtsev, hep-ph/9905253; K. Farakos, G. Koutsoumbas, N. E. Mavromatos and A. Momen, hep-lat/9902017; K. Farakos, G. Koutsoumbas, N. E. Mavromatos and A. Momen, hep-ph/9905272; G. W. Semenoff, I. A. Shovkovy and L.C. R. Wijewardhana, hep-th/9905116; V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. Lett. 83 (1999) 1291; hep-ph/9908320.
[17] E. J. Ferrer and V. de la Incera, Int. J. Mod. Phys. A 14 (1999) 3963; Proceedings of Particle Physics and Cosmology First Tropical Workshop and High Energy Physics Second Latin American Symposium, San Juan, Puerto Rico, Apr 1998, pag. 452 (AIP Conference Proceedings 444, Woodbury, New York, 1998, edited by J. Nieves).
[18] E. J. Ferrer and V. de la Incera, Phys. Rev D 58 (1998) 065008.
[19] D.-S Lee, P. N. McGraw, Y. J. Ng, and I. A. Shovkovy, Phys. Rev. D 59 (1999) 085008.
[20] B. Simon, Ann. Phys. 97 (1976) 279.
[21] K. Farakos, G. Koutsoumbas and N. E. Mavromatos, Phys. Lett. B 431 (1998) 147; N. E. Mavromatos and A. Momen, Mod. Phys. Lett. A 13 (1998) 1765.
[22] K. Farakos and N. E. Mavromatos, Phys. Rev. B 57 (1998) 3017; Int. J. Mod. Phys. B 12 (1998) 2475; G. W. Semenoff, I. A. Shovkovy, and L.C. R. Wijewardhana, Mod. Phys. Lett. A 13 (1998) 1143; W. V. Liu, cond-mat/9808133.
[23] E. J. Ferrer, V. P. Gusynin and V. de la Incera, Phys. Lett. B 455 (1999) 217.
[24] K. Krishana et al., Science 277 (1997) 83; N. P. Ong, K. Krishana, Y. Zhang ad Z. A. Xu, cond-mat/9904160.
[25] J. M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10 (1974) 2428.
[26] V. A. Miransky, “Dynamical Symmetry Breaking in Quantum Field Theory” (World Scientific, Singapore, 1993).
[27] R. Jackiw, Phys. Rev. D 9 (1974) 1686.
[28] V. I. Ritus in Issues in Intense-Field Quantum Electrodynamics, ed. V. L. Ginzburg (Nova Science, Commack, 1987).
[29] Handbook of Mathematical Functions, eds. M. Abramowitz and I. A. Stegun (Dover, New York, 196).
[30] S. Coleman and E. Weinberg, Phys. Rev. D 7 (1973) 1888.