Table of Contents for Supplementary Material

I. Details of search terms used in systematic review
II. Details of extraction procedure
III. eTable 1: Description of Included Studies
IV. Assumptions required for point estimation
V. Interpretation of certain additional point-estimating assumptions in pregnancy Mendelian randomization

I. Details of search terms used in systematic review

Database	embase.com	Medline Ovid	Web of science	Cochrane CENTRAL	Google scholar	Total
Count	218	177	250	16	200	861
Unique Count	215	24	129	1	136	505

embase.com 218

('instrumental variable analysis'/exp OR ((mendelian* NEAR/3 random*) OR (instrumental* NEAR/3 variab*)):ab,ti) AND ('prenatal exposure'/exp OR 'prenatal drug exposure'/exp OR 'pregnant woman'/exp OR 'pregnancy'/exp OR 'prenatal disorder'/exp OR 'pregnancy disorder'/exp OR 'parameters concerning the fetus, newborn and pregnancy'/exp OR 'prenatal development'/exp OR 'maternal nutrition'/exp OR 'maternal smoking'/exp OR 'Maternal Exposure'/exp OR 'embryonic and placental structures'/exp OR (prenatal* OR perinatal* OR pregnan* OR in*-uter* OR intrauter* OR gestation* OR maternal* OR offspring OR birthweight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR placenta* OR embryo* OR fetomatern* OR PreEclampsia OR Eclampsia):ab,ti)

Medline Ovid 262

(Mendelian Randomization Analysis/ OR ((mendelian* ADJ3 random*) OR (instrumental* ADJ3 variab*)):ab,ti) AND (exp Pregnancy Complications/ OR Maternal Exposure/ OR pregnant women/ OR exp pregnancy/ OR exp Fetal Diseases/ OR exp Pregnancy Complications/ OR exp Birth Weight/ OR exp Infant, Low Birth Weight/ OR Perinatal Mortality/ OR Perinatal Death/ OR Embryology/ OR exp "Embryonic and Fetal Development"/ OR exp Maternal Nutritional Physiological Phenomena/ OR exp Embryonic Structures/ OR (prenatal* OR perinatal* OR pregnan* OR in*-uter* OR intrauter* OR gestation* OR maternal* OR offspring OR birthweight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR placenta* OR embryo* OR fetomatern* OR PreEclampsia OR Eclampsia):ab,ti.)
Cochrane CENTRAL 16

(((mendelian* NEAR/3 random*) OR (instrumental* NEAR/3 variab*)):ab,ti) AND ((prenatal* OR perinatal* OR pregnan* OR in*-uter* OR intrauter* OR gestation* OR maternal* OR offspring OR birthweight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR placenta* OR embryo* OR fetomaternal* OR PreEclampsia OR Eclampsia):ab,ti)

Web of science 250

TS=(((mendelian* NEAR/2 random*) OR (instrumental* NEAR/2 variab*)) AND ((prenatal* OR perinatal* OR pregnan* OR in*-uter* OR intrauter* OR gestation* OR (maternal* NEAR/3 (exposure* OR smoking OR drinking OR alcohol)) OR offspring OR birthweight OR birth-weight OR fetus OR fetal OR foetus OR foetal OR placenta* OR embryo* OR fetomaternal* OR PreEclampsia OR Eclampsia)))

Google scholar

"mendelian randomization|randomisation" |"instrumental variable" prenatal|perinatal|pregnancy|pregnant|"in-uterus"|intrauterine|gestational|maternal|offspring|birthweight |"birth-weight"|fetus|fetal|foetus|foetal|placenta|embryo|fetomaternal

II. Details of extraction procedure

Data points were extracted by the first author (ED); to ensure accuracy in extraction, 5 included studies were randomly chosen for independent extraction by a coauthor (JL). Data points on discussion of MR assumptions were considered in agreement when both authors agreed on the presence/absence of any discussion of violations of the assumption in question.

Sensitivity analyses and limitations were excluded from the comparison checking due to variability in how specific secondary analyses and limitations were categorized. This is because, rather than prespecifying sets of possible limitations and sensitivity analyses of interest, extraction of data points related to both sensitivity analyses and limitations discussed were open-ended to allow for unexpected or unknown analyses and perspectives. This approach meant that each independent extractor could generate an arbitrarily large number of reported limitations and sensitivity analyses based on the same article. Thus, it would be difficult to measure the degree to which independent extractors agreed on datapoints related to sensitivity analyses and limitations discussed, as it is not possible to measure the number of datapoints the two authors agreed were not present in the dataset.
Supplementary Table 1: Description of Included Studies

Author	Year	Title	Exposure	Outcome	Instrument	Maternal or Offspring Instrument	Design	Recruited Based on Presence of a Pregnancy
Allard	2015	Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns	2 step: maternal fasting glucose, methylation	2 step: methylation, cord blood leptin	2 step: glucose GRS, methylation GRS	1st step: maternal cohort	cohort	yes
Alwan	2012	Exploring the relationship between maternal iron status and offspring's blood pressure and adiposity: A Mendelian randomization Study	iron	blood pressure, waist circumference, BMI	C282Y	maternal cohort	cohort	No
Bech	2006	Stillbirth and slow metabolizers of caffeine: Comparison by genotypes.	caffeine	stillbirth	NAT2, CYP1A2, GSTA1	maternal nested case-control	yes (nested in recruited that way)	
Study	Year	Description	Gene/Marker	Outcome	Cohort Type	Results		
-------	------	-------------	-------------	---------	-------------	---------		
Bedard	2018	Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: A Mendelian randomisation study	hemoglobin	wheezing, asthma, atopy, low lung function	maternal cohort	Yes		
Bernard	2018	Long-chain polyunsaturated fatty acids, gestation duration, and birth size: A Mendelian randomization study using fatty acid desaturase variants	omega 3 and omega 6 PUFAs	gestational duration, birthweight, birth length	maternal and offspring cohort	yes		
Binder	2013	The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach	folate	genome-wide methylation	maternal cross-sectional	Yes		
Bonilla	2012	Maternal and offspring fasting glucose and type 2 diabetes-associated genetic variants and cognitive function at age 8: A Mendelian randomization study in the Avon Longitudinal Study of Parents and Children	fasting glucose, type 2 diabetes	IQ at age 8 genetic risk score	maternal and offspring cohort	Yes		
First Name	Year	Title	Outcome	SNP	Study Type	Cohort	Causal Inference	
------------	------	--	---------	-----	------------	--------	------------------	
Bonilla	2012	Vitamin B-12 Status during Pregnancy and Child's IQ at Age 8: A Mendelian Randomization Study in the Avon Longitudinal Study of Parents and Children	vitamin B12, IQ at age 8	rs492602, rs1047781, rs96-6756	maternal cohort	Yes		
Caramaschi	2017	Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child's IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study.	2 step: vitamin B12, methylation	2 step: rs492602 + rs1047781 for vitamin b12, rs5750236, rs1890131 for methylation	maternal, offspring in 2nd stpe	cohort	Yes	
Caramaschi	2018	Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study	smoking heaviness, autism spectrum disorder	rs1051730	maternal cohort	Yes		
Evans	2018	Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization	maternal type 2 diabetes, birthweight	403 SNP GRS	maternal and offspring	cross-sectional, UK biobank	No	
Author	Year	Title	Outcome Measures	Methodology	Population	Study Design	Result	
----------	------	--	---	--	------------	--------------	--------	
Geng	2018	Maternal central obesity and birth size: A Mendelian randomization analysis	waist-to-hip ratio adjusted for BMI, hip circumference adjusted for BMI, waist circumference adjusted for BMI	birth weight, birth length, head circumference	maternal	2 sample cross-sectional, seems to be same studies that developed GRS in?	No	
Granell	2008	The association between mother and child MTHFR C677T polymorphisms, dietary folate intake and childhood atopy in a population-based, longitudinal birth cohort	folate	atopy, asthma	MTHFR C677T	maternal	cohort	yes
Howe	2019	Prenatal alcohol exposure and facial morphology in a UK cohort	alcohol	facial morphology	rs1229984	maternal	cohort	Yes
Humphriss	2013	Prenatal alcohol exposure and childhood balance ability: Findings from a UK birth cohort study	alcohol	3 composite balance scores (dynamic balance, static balance eyes open, static balance eyes closed)	ADH1B rs1229984	maternal	cohort	Yes
Author	Year	Title	Outcomes/Variables	Methodology	Study Design	Results	Data Sources	
--------	------	--	--------------------	-------------	-------------	---------	--------------	
Hwang	2019	Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight	HDL cholesterol, LDL cholesterol, triglycerides	birthweight 96, 82, and 60 SNP GRS	maternal, controlled for offspring using SEM	2 sample summary results, UK biobank and EGG	uK biobank no, EGG mostly yes	
Korevaar	2014	Soluble Flt1 and Placental Growth Factor are novel determinants of newborn thyroid dysfunction: the generation r study.	TSH, FT4, sFlt1, PIGF	GRS	offspring	cohort	yes	
Lawlor	2008	Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable	BMI, fat mass at age 9-11	FTO	maternal	cohort	Yes	
Lawlor	2017	Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them	BMI, BMI, fat mass index	GRS	maternal	cohort	Yes	
Last Name	Year	Title	Index	Outcome 1	Outcome 2	Index 2	Cohort	Status
-----------	------	--	-------	----------------------------------	----------------------------------	---------	--------	--------
Lee	2013	Mendelian randomization analysis of the effect of maternal homocysteine during pregnancy, as represented by maternal MTHFR C677T genotype, on birth weight	homocysteine	birthweight	MTHFR C677T	maternal	cohort	Yes
Lewis	2009	Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype	folate intake	total weight, total body fat mass, total lean mass	MTHFR C677T	maternal and offspring	cohort	yes
Lewis	2012	Fetal Alcohol Exposure and IQ at Age 8: Evidence from a Population-Based Birth-Cohort Study	alcohol	cognitive score (IQ at age 8)	10 SNP in ADH4, ADH1A, ADH1B, ADH7 (rs4699714, rs3763894, rs4148884, rs2866151, rs975833, rs1229966, rs2066701, rs4147536, rs1229984, rs284779)	both	cohort	Yes
Lewis	2014	Maternal iron levels early in pregnancy are	iron	IQ at age 8	GRS based on maternal	maternal	cohort	Yes
Study	Year	Description	Indexes/References					
------------------------------	------	---	--					
Mamasoulia	2013	Association between C677T Polymorphism of Methylene Tetrahydrofolate reductase and Congenital Heart Disease: Meta-Analysis of 7697 Cases and 13,125 Controls. Circ Cardiovasc Genet	rs1799945, rs1800562, rs4820268					
Morales	2011	Maternal C-reactive protein levels in pregnancy are associated with wheezing and lower respiratory tract infections in the offspring	CRP, wheezing, LRTI, rs1205, rs1983204, rs344008, rs6795327, rs7637701, rs11929637					
Morales	2016	Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy	methylation at top-ranked cpg site for placental methylation in smokers, rs1799945, rs1800562, rs4820268					
Murray	2016	Moderate alcohol drinking in pregnancy increases risk for children's persistent alcohol conduct problem trajectories (6 measures of GRS ADH1A, AHD1B)	alcohol, conduct problem trajectories, GRS ADH1A rs2866151, rs975833, AHD1B					
Study	Year	Title	Substance	Outcomes	Genotype	Study Design	Findings	
------------------------------	------	--	-----------	--	-----------	--------------	----------------	
Richmond	2016	DNA methylation and BMI: Investigating identified methylation sites at HIF3A in a causal framework	BMI	HIF3A methylation	GRS	maternal	cohort	Yes
Richmond	2017	Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study	BMI	BMI, fat mass index	GRS	maternal	cohort	yes
von Hinke Kessler Scholder	2014	Alcohol Exposure In Utero and Child Academic Achievement	alcohol	academic achievement (KS1, KS2, KS3, GCSE)	ADH1B rs1229984	maternal, controlling for offspring	cohort	Yes
Shaheen	2014	Prenatal alcohol exposure and childhood atopic disease: A Mendelian randomization approach	alcohol	childhood atopic disease	ADH1B rs1229984	maternal	cohort	Yes
Steenweg-de Graaff	2012	Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study	folate	CBCL emotional and behavioral score	MTHFR C677T	maternal	cohort	yes
Author	Year	Study Title	Exposure	Outcome	SNP	Analysis Method	COHORTS	
-----------	------	--	----------	--------------------------	----------------	---	--	
Steer	2011	Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC)	folate	BMC, BMD, BA	MTHFR C677T	maternal cohort	yes	
Taylor	2014	Maternal smoking during pregnancy and offspring smoking initiation: assessing the role of intrauterine exposure	smoking	latent class of offspring smoking initiation	rs1051730	maternal cohort	yes	
Thompson	2019	Association of maternal circulating 25(OH)D and calcium with birth weight: A mendelian randomisation analysis	vitamin D, calcium	birth weight	separate 7 SNP GRS	maternal	2 sample: various GWAS+ UKB cross-sectional, sensitivity analyses: ALSPAC/EFSOC H cohort	ALSPAC/EFSOC H yes, UKB no
Tyrell	2016	Genetic evidence for causal relationships between maternal obesity related traits and birth weight.	BMI, fasting glucose, diabetes, triglycerids, HDL, blood pressure, vitamin D, adiponectin	birthweight	GRS	maternal	meta-analysis of multiple cohorts	yes for all
Wehby	2011	A genetic instrumental variables analysis of the effects of prenatal smoking on birth weight: Evidence from two samples	smoking	birthweight	14 SNPs	maternal	1 cohort, 1 cross-sectional	yes for Norway, no for AddHealth
Author	Year	Title	Outcome(s)	SNPs	Study Design	Study Design Type	All	
----------	------	--	-----------------------------------	---	----------------	-------------------	-------	
Wehby	2011	Genes as instruments for studying risk behavior effects: An application to maternal smoking and orofacial clefts	smoking, orofacial cleft	4 SNPs (rs1435252, rs1930139, rs1547272, rs2743467)	maternal	case-control	yes	
Wehby	2013	Genetic instrumental variable studies of effects of prenatal risk factors	smoking, Alcohol use, obesity, birthweight	smoking: rs12914385, rs1051730, alcohol: ADH1B rs1229984, BMI: rs8050136	maternal	cohort (multiple)	yes for both	
Yajnik	2014	Maternal homocysteine in pregnancy and offspring birthweight: Epidemiological associations and Mendelian randomization analysis	homocysteine, birthweight	MTHFR rs1801133	maternal	2 cohorts	yes	
Zerbo	2016	Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study	CRP, autism spectrum disorder	rs3116656, rs2794520	maternal	nested case-control	yes	
Zhang	2015	Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at	maternal height, birth weight, GRS	GRS	maternal	3 case-control nested w/in cohorts	yes for all	
Authors	Year	Title	Exposure	Outcome	SNP	Analysis Type	Cohort	Sensitivity
----------	------	--	-----------	----------------------------------	------------	---------------------------------------	---------	-------------
Zuccolo	2013	Prenatal alcohol exposure and offspring cognition and school performance. A 'Mendelian randomization' natural experiment	alcohol (1st trimester)	IQ at age 8, educational attainment	rs1229984	maternal, sensitivity analysis with offspring	yes	
Table 1 Continued

1: Author	2: Year	3: Title	10: Point Estimation?	11: F-statistic	12: Assumption 1 Violations Discussed	13: Assumption 2 Violations Discussed	14: Assumption 3 Violations Discussed
Allard	2015	Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns	point estimate				Population Stratification
Alwan	2012	Exploring the relationship between maternal iron status and offspring's blood pressure and adiposity: A Mendelian randomization Study.	point estimate	10 Weak Instrument Bias	Pleiotropy, Exposure Measurement Error, Offspring Genotype Path		
Bech	2006	Stillbirth and slow metabolizers of caffeine: Comparison by genotypes.	instrument-outcome association	Weak Instrument Bias			
Bedard	2018	Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: A Mendelian randomisation study	point estimate		Pleiotropy, Exposure Measurement Error, Offspring Genotype Path		
Bernard	2018	Long-chain polyunsaturated fatty acids, gestation duration, and birth size: A Mendelian randomization study using fatty acid desaturase variants	instrument-outcome association	Weak Instrument Bias	Pleiotropy, Exposure Measurement Error		
Binder	2013	The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach	point estimate	4.876 Weak Instrument Bias	2nd or 3rd Assumption - General		
Bonilla	2012	Maternal and offspring fasting glucose and type 2 diabetes-associated genetic variants and	instrument-outcome association		Offspring Genotype Path	Population Stratification	
Study	Year	Description	Methodology	Confounding Factors			
-------	------	-------------	-------------	---------------------			
Bonilla	2012	Vitamin B-12 Status during Pregnancy and Child's IQ at Age 8: A Mendelian Randomization Study in the Avon Longitudinal Study of Parents and Children	instrument-outcome association	Exposure Measurement Error, Offspring Genotype Path, Population Stratification			
Caramaschi	2017	Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child's IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study.	point estimate	Pleiotropy, Exposure Measurement Error, Population Stratification			
Caramaschi	2018	Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study	instrument-outcome association	Pleiotropy, Exposure Measurement Error			
Evans	2018	Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization	point estimate	Weak Instrument Bias, Pleiotropy, Offspring Genotype Path, Population Stratification			
Geng	2018	Maternal central obesity and birth size: A Mendelian randomization analysis	point estimate	Weak Instrument Bias, Pleiotropy, Postnatal Effects of Genotype, Offspring Genotype Path, Population Stratification			
Granell	2008	The association between mother and child MTHFR C677T polymorphisms, dietary folate intake and childhood atopy in a population-based, longitudinal birth cohort	instrument-outcome association	Weak Instrument Bias			
Author	Year	Title	Methodology	Instrument-Outcome Association	Bias Assumptions	Assortative Mating	
----------	------	--	--	--------------------------------	---	-----------------------------	
Howe	2019	Prenatal alcohol exposure and facial morphology in a UK cohort	instrument-outcome association		Pleiotropy, Offspring Genotype Path	Assortative Mating	
Humphriss	2013	Prenatal alcohol exposure and childhood balance ability: Findings from a UK birth cohort study	instrument-outcome association	Weak Instrument Bias, Cannot Prove Assumption 1 (Reduced Form)	Pleiotropy	Population Stratification	
Hwang	2019	Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight	point estimate		Pleiotropy, Postnatal Effects of Genotype, Exposure Assumed Constant Over Pregnancy, Offspring Genotype Path	Population Stratification	
Korevaar	2014	Soluble Flt1 and Placental Growth Factor are novel determinants of newborn thyroid dysfunction: the generation r study. J clin Endocrinol Metab	instrument-outcome association		Exposure Assumed Constant Over Pregnancy		
Lawlor	2008	Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable	point estimate	12.9, 10.1 after adjustment for offspring genotype	Pleiotropy, Postnatal Effects of Genotype, Offspring Genotype Path	Population Stratification	
Lawlor	2017	Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them	point estimate	>45	Weak Instrument Bias	Pleiotropy, Postnatal Effects of Genotype, Offspring Genotype Path	Population Stratification, Assortative Mating
Author	Year	Description	Type	Assumption			
---------	------	---	-----------------------	--------------------------------			
Lee	2013	Mendelian randomization analysis of the effect of maternal homocysteine during pregnancy, as represented by maternal MTHFR C677T genotype, on birth weight	point estimate	Pleiotropy, 2nd or 3rd Assumption - General			
Lewis	2009	Body composition at age 9 years, maternal folate intake during pregnancy and methylenetetrahydrofolate reductase (MTHFR) C677T genotype	instrument-outcome association	Exposure Measurement Error			
Lewis	2012	Fetal Alcohol Exposure and IQ at Age 8: Evidence from a Population-Based Birth-Cohort Study	instrument-outcome association	Weak Instrument Bias			
Lewis	2014	Maternal iron levels early in pregnancy are not associated with offspring IQ score at age 8, findings from a Mendelian randomization study	instrument-outcome association	Pleiotropy, Offspring Genotype Path			
Mamasoula	2013	Association between C677T Polymorphism of Methylene Tetrahydrofolate reductase and Congenital Heart Disease: Meta-Analysis of 7697 Cases and 13,125 Controls. Circ Cardiovasc Genet	instrument-outcome association	2nd or 3rd Assumption - General			
Morales	2011	Maternal C-reactive protein levels in pregnancy are associated with wheezing and lower respiratory tract infections in the offspring	instrument-outcome association	Weak Instrument Bias			
Morales	2016	Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy	point estimate	Pleiotropy, Exposure Assumed Constant Over Pregnancy, 2nd or 3rd Assumption - General			
			Winner's Curse	Pleiotropy, Exposure Measurement Error,			

Name	Year	Description	Associated Variables	Weak Instrument Bias	Bias Assumptions	Population Stratification
Murray	2016	Moderate alcohol drinking in pregnancy increases risk for children's persistent conduct problems: causal effects in a Mendelian randomisation study	instrument-outcome association	Cannot Prove Assumption 1 (Reduced Form)	Pleiotropy, Exposure Measurement Error, Offspring Genotype Path	Population Stratification
Richmond	2016	DNA methylation and BMI: Investigating identified methylation sites at HIF3A in a causal framework	point estimate	45.7 in offspring	Pleiotropy, Exposure Measurement Error, Offspring Genotype Path	Population Stratification
Richmond	2017	Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study	point estimate	minimum 45	Weak Instrument Bias	Population Stratification
Scholder	2014	Alcohol Exposure In Utero and Child Academic Achievement	point estimate	1.38-24.76	Weak Instrument Bias	Population Stratification
Shaheen	2014	Prenatal alcohol exposure and childhood atopic disease: A Mendelian randomization approach	instrument-outcome association		Offspring Genotype Path	Population Stratification
Steenweg-de Graaff	2012	Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study	instrument-outcome association		Exposure Assumed Constant Over Pregnancy, Offspring Genotype Path, 2nd or 3rd Assumption - General	Population Stratification
Steer	2011	Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC)	instrument-outcome association		Offspring Genotype Path	Population Stratification
Authors	Year	Title	Type	Point Estimate	Bias Issues	Stratification Issues
----------	------	---	-----------------------------	----------------	---	---
Taylor	2014	Maternal smoking during pregnancy and offspring smoking initiation: assessing the role of intrauterine exposure	instrument-outcome association		Pleiotropy, Exposure Measurement Error, Postnatal Effects of Genotype	Population Stratification
Thompson	2019	Association of maternal circulating 25(OH)D and calcium with birth weight: A mendelian randomisation analysis	point estimate		Weak Instrument Bias	Pleiotropy, Exposure Measurement Error, Exposure Assumed Constant Over Pregnancy, Offspring Genotype Path
Tyrell	2016	Genetic evidence for causal relationships between maternal obesity related traits and birth weight. JAMA	point estimate		Weak Instrument Bias	Pleiotropy, Postnatal Effects of Genotype, Offspring Genotype Path
Wehby	2011	A genetic instrumental variables analysis of the effects of prenatal smoking on birth weight: Evidence from two samples	point estimate	3.3-4.4	Weak Instrument Bias	Pleiotropy
Wehby	2011	Genes as instruments for studying risk behavior effects: An application to maternal smoking and orofacial clefts	point estimate	3.33	Weak Instrument Bias	Pleiotropy, Exposure Measurement Error
Wehby	2013	Genetic instrumental variable studies of effects of prenatal risk factors	point estimate	0.66-35.486	Weak Instrument Bias	Pleiotropy, Postnatal Effects of Genotype
Yajnik	2014	Maternal homocysteine in pregnancy and offspring birthweight: Epidemiological associations and Mendelian randomization analysis	point estimate		Pleiotropy, Offspring Genotype Path	Population Stratification
Zerbo	2016	Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study	instrument-outcome association			Population Stratification
Author	Year	Title	Approach	Pleiotropy, Offspring Genotype Path	Population Stratification	
---------	------	--	----------	------------------------------------	---------------------------	
Zhang	2015	Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis	point estimate	Pleiotropy, Offspring Genotype Path	Assortative Mating	
Zuccolo	2013	Prenatal alcohol exposure and offspring cognition and school performance. A 'Mendelian randomization' natural experiment	instrument-outcome association	Cannot Prove Assumption 1 (Reduced Form)	Pleiotropy, Exposure Measurement Error, Postnatal Effects of Genotype, 2nd or 3rd Assumption - General	Population Stratification
Table 1 Continued

1: Author	2: Year	3: Title	15: Other Limitations Discussed	16: Falsification Techniques	17: Exposure Stratification/Testing
Allard	2015	Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns	Outcome Measurement Error, Low Power	Alternative MR Methods	No
Alwan	2012	Exploring the relationship between maternal iron status and offspring’s blood pressure and adiposity: A Mendelian randomization Study.	Low Power	Covariate Balance	No
Bech	2006	Stillbirth and slow metabolizers of caffeine: Comparison by genotypes.	Low Power	Covariate Balance	Yes
Bedard	2018	Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: A Mendelian randomisation study	Selection Bias, Low Power	Covariate Balance, Alternative MR Methods	No
Bernard	2018	Long-chain polyunsaturated fatty acids, gestation duration, and birth size: A Mendelian randomization study using fatty acid desaturase variants	Outcome Measurement Error, Low Power		No
Binder	2013	The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach	Modeling Assumptions, Outcome Measurement Error, Low Power		No
Bonilla	2012	Maternal and offspring fasting glucose and type 2 diabetes-associated genetic variants and cognitive function at age 8: A Mendelian randomization study in the Avon Longitudinal Study of Parents and Children	Modeling Assumptions, Low Power	Covariate Balance	No
Supplementary Material: Prenatal Mendelian Randomization Systematic Review

Author	Year	Title	Modeling Assumptions	Alternative MR Methods	Covariate Balance	Notes		
Bonilla	2012	Vitamin B-12 Status during Pregnancy and Child's IQ at Age 8: A Mendelian Randomization Study in the Avon Longitudinal Study of Parents and Children	Selection Bias, Low Power, Limited Generalizability		Yes			
Caramaschi	2017	Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child's IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study.	Low Power, Limited Generalizability		No			
Caramaschi	2018	Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study	Low Power		Yes			
Evans	2018	Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization	Modeling Assumptions	Alternative MR Methods	No			
Geng	2018	Maternal central obesity and birth size: A Mendelian randomization analysis	Modeling Assumptions, Limited Generalizability	Alternative MR Methods	No			
Granell	2008	The association between mother and child MTHFR C677T polymorphisms, dietary folate intake and childhood atopy in a population-based, longitudinal birth cohort	Modeling Assumptions, Selection Bias, Outcome Measurement Error		Yes			
Howe	2019	Prenatal alcohol exposure and facial morphology in a UK cohort	Outcome Measurement Error		No			
Humphriss	2013	Prenatal alcohol exposure and childhood balance ability: Findings from a UK birth cohort study	Outcome Measurement Error, Low Power, Limited Generalizability		No			
Author	Year	Title	Limitations and Methods	Covariate Balance	Alternative MR Methods	Low Power	Selection Bias	No
------------	------	--	--	-------------------	------------------------	-----------	----------------	----
Hwang	2019	Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight	Limited Generalizability, Alternative MR Methods	No				
Korevaar	2014	Soluble Flt1 and Placental Growth Factor are novel determinants of newborn thyroid dysfunction: the generation r study. J clin Endocrinol Metab	Low Power	No				
Lawlor	2008	Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable	Selection Bias, Low Power, Covariate Balance	No				
Lawlor	2017	Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them	Low Power, Covariate Balance, Alternative MR Methods	No				
Lee	2013	Mendelian randomization analysis of the effect of maternal homocysteine during pregnancy, as represented by maternal MTHFR C677T genotype, on birth weight	Selection on Pregnancy, Low Power, Limited Generalizability	Yes				
Lewis	2009	Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype		No				
Lewis	2012	Fetal Alcohol Exposure and IQ at Age 8: Evidence from a Population-Based Birth-Cohort Study	Selection Bias	Yes				
Lewis	2014	Maternal iron levels early in pregnancy are not associated with offspring IQ score at age 8, findings from a Mendelian randomization study	Modeling Assumptions, Low Power, Covariate Balance	No				
Mamasoula	2013	Association between C677T Polymorphism of Methylene Tetrahydrofolate reductase and Congenital Heart Disease: Meta-Analysis of 7697 Cases and 13,125 Controls. Circ Cardiovasc Genet	Modeling Assumptions	No				
Morales	2011	Maternal C-reactive protein levels in pregnancy are associated with wheezing and lower respiratory tract infections in the offspring	Low Power	No				
Name	Year	Title	Issues	Alternative MR Methods	Covariate Balance			
--------------------	------	---	---	-------------------------	-------------------			
Morales	2016	Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy	Low Power		No			
Murray	2016	Moderate alcohol drinking in pregnancy increases risk for children's persistent conduct problems: causal effects in a Mendelian randomisation study	Selection Bias, Low Power	Covariate Balance	Yes			
Richmond	2016	DNA methylation and BMI: Investigating identified methylation sites at HIF3A in a causal framework	Modeling Assumptions, Selection Bias, Low Power	Covariate Balance	No			
Richmond	2017	Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study	Modeling Assumptions, Selection Bias, Low Power	Covariate Balance, Alternative MR Methods	No			
Scholder	2014	Alcohol Exposure In Utero and Child Academic Achievement	Modeling Assumptions	Weight Function, Covariate Balance	No			
Shaheen	2014	Prenatal alcohol exposure and childhood atopic disease: A Mendelian randomization approach	Selection Bias, Low Power	Covariate Balance	Yes			
Steenweg-de Graaff	2012	Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study	Modeling Assumptions, Selection Bias		Yes			
Steer	2011	Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC)	NA		No			
Taylor	2014	Maternal smoking during pregnancy and offspring smoking initiation: assessing the role of intrauterine exposure	Low Power, Limited Generalizability		Yes			
Thompson	2019	Association of maternal circulating 25(OH)D and calcium with birth weight: A mendelian randomisation analysis	Outcome Measurement Error	Alternative MR Methods	No			
Tyrell	2016	Genetic evidence for causal relationships between maternal obesity related traits and birth weight. JAMA	Modeling Assumptions, Low Power	Covariate Balance	No			
Author	Year	Title	Modeling Assumptions	Overidentification Tests	Covariate Balance			
-------------	------	--	--	--------------------------	-------------------			
Wehby	2011	A genetic instrumental variables analysis of the effects of prenatal smoking on birth weight: Evidence from two samples	Model Assumptions	No				
Wehby	2011	Genes as instruments for studying risk behavior effects: An application to maternal smoking and orofacial clefts	Model Assumptions	No				
Wehby	2013	Genetic instrumental variable studies of effects of prenatal risk factors	Model Assumptions, Low Power, Limited Generalizability	No				
Yajnik	2014	Maternal homocysteine in pregnancy and offspring birthweight: Epidemiological associations and Mendelian randomization analysis	Low Power	No				
Zerbo	2016	Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study	Outcome Measurement Error, Low Power	No				
Zhang	2015	Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis	Selection Bias	Alternative MR Methods	No			
Zuccolo	2013	Prenatal alcohol exposure and offspring cognition and school performance. A 'Mendelian randomization' natural experiment	Low Power	Covariate Balance	Yes			
IV. Assumptions required for point estimation

Investigators can test whether there is a non-null effect of the exposure on the outcome for at least one individual in the study population, and can estimate bounds for the average causal effect using only the 3 instrumental variable assumptions discussed in the main text [1, 2].

To estimate the average causal effect of an exposure X on an outcome Y, using an instrument Z in the total study population, investigators must assume one of the following conditions hold [2].

4a. The effect of X on Y is identical (constant) for all individuals in the population:
\[E(Y_{x=x} - Y_{x=0} | X=x) = E(Y_{x=x} - Y_{x=0} | X=0) \]

4b. No effect modification by the instrument Z in all levels of the exposure X:
\[E(Y_{x=x} - Y_{x=0} | X=x, Z=z) = E(Y_{x=x} - Y_{x=0} | X=x, Z=z̅) \]
Or equivalently
\[E(Y_{x=x} - Y_{x=0} | X=x, Z=z) = E(Y_{x=x̅} - Y_{x=0} | X=x, Z=z) \]

Recent research has found that the average causal effect can also be identified, even in the presence of violations of the second and third assumption, under one of two alternative assumptions by an additional variable J, as can be seen in Supplemental Figure 1 [3]. In this case, the usual 3 IV assumptions are replaced by the following:

1'. \(Z \perp X | J \)

2'. \(Z \perp U | X \)

3'. \(Z \perp Y | (J, U, X) \)

4'. \(Y^X \perp (Z, X) | (J, U) \)

Under these conditions, point estimation of the average causal effect is possible if one of the two following conditions hold:

4c. No additive U-Z interaction on \(E(X | Z, J, U) \):
\[E(X | Z = z, J, U) - E(X | Z = 0, J, U) = E(X | Z = z, J) - E(X | Z = 0, J) \]

4d. No additive U-X interaction on the average causal effect of \(X \) on \(Y \):
\[E(Y^{X=x} - Y^{X=0} | J, U) = E(Y^{X=x} - Y^{X=0} | J) \]
If the above assumptions are not plausible for a particular analysis, researchers can estimate the average causal effect within the compliers, those individuals for whom $X^{Z=a} > X^{Z=b}$ for all $a > b$ [2]. This value is also known as the local average treatment effect, or LATE. In order to estimate this quantity, researchers must assume:

4e. The causal effect of Z on X is monotonic, that is, it only works in one direction for every individual in the study population. Formally, X^Z is a nondecreasing function of z on the support of Z.

V. Interpretation of certain additional point-estimating assumptions in pregnancy Mendelian randomization

Four studies in this review reported additional point-estimating assumptions and their targeted estimand. Of these, 3 assumed monotonicity (assumption 4e) in order to estimate the average causal effect among the compliers, and 1 assumed no effect modification by the instrument in all levels of the exposure (assumption 4b) to estimate the average causal effect in the total study population.

In the context of certain pregnancy exposures, there is evidence that conditions 4a, 4b, 4c, and 4d are unreasonable. When genes related to alcohol metabolism are used as instruments for maternal drinking during pregnancy, fetal exposure to alcohol and alcohol metabolites will depend on maternal intake and the speed at which the mother can metabolize alcohol, as well as other environmental factors. For the same level of maternal alcohol intake, offspring of slow metabolizers will have a longer exposure to alcohol, and would be at greater risk of negative health outcomes [5]. This means that the average causal effect of alcohol exposure on offspring outcomes will be modified by the level of the maternal genetic variant proposed as an instrument, violating conditions 4a, 4b, 4c, and 4d. For this reason, most studies of alcohol use during pregnancy in this review focused on a testing approach, rather than point estimation. The same logic applies to other metabolism-related genetic variants proposed as instruments for substance use behaviors, like smoking and caffeine use. In these cases, studies may choose to focus on approaches with weaker assumptions, such as the complier average treatment effect, testing approaches, or bounds.

It is important to note that, in prenatal MR proposing maternal genetic factors as instruments, the interpretation of “compliers” and the complier average causal effect (described in Appendix III above) are different than the usual interpretation in MR studies or most studies using instrumental variable analyses[4]. This is because a mother-child pair’s compliance status is determined by the relationship between a mother’s genetics and exposure, while the average causal effect of interest occurs in the offspring of those mothers. In typical MR and instrumental variable studies, the proposed instrument, exposure, and outcome are all measured within the same individual. In those cases, under condition 4e, researchers can estimate the average causal effect among the compliers. In contrast, in pregnancy MR designs, under condition 4e, researchers can estimate the average...
causal effect among the offspring of mothers who are compliers, although the offspring themselves would not necessarily be compliers.

Supplemental Figure 1: DAG representing an instrumental variable model with violation of assumption 3 by J. Under this model, valid estimation of $E(Y_{X=x} - Y_{X=0})$ is possible using the alternative assumptions presented by Wang and Tchetgen Tchetgen [3].
Works Cited

1. Hernán MA and R. JM, *Causal Inference*. 2018, Boca Raton: Chapman & Hall/CRC.
2. Hernán, M.A. and J.M. Robins, *Instruments for causal inference: an epidemiologist's dream?* Epidemiology, 2006. 17(4): p. 360-372.
3. Wang, L. and E.T. Tchetgen, *Bounded, efficient and triply robust estimation of average treatment effects using instrumental variables*. arXiv preprint arXiv:1611.09925, 2016.
4. Swanson, S.A. and M.A. Hernán, *The challenging interpretation of instrumental variable estimates under monotonicity*. International journal of epidemiology, 2017.
5. Smith, G.D., *Mendelian randomization for strengthening causal inference in observational studies: application to genex environment interactions*. Perspectives on Psychological Science, 2010.