Computation of M-Polynomial and Topological Indices of Boron Kagome Lattice

Idweep Jyoti Gogoi 1,*, Monjit Chamua 1, Ankur Bharali 2

1 Department of Mathematics, Dibrugarh University, igogoi1995@gmail.com (I.J.G.); monjitchamua1409@gmail.com (M.C.);
2 Department of Mathematics, Faculty of Science and Engineering, Dibrugarh University, a.bharali@dibru.ac.in (A.B.);
* Correspondence: igogoi1995@gmail.com (I.J.G.);

Abstract: In chemical graph theory, numerical encoding of chemical structure associated with topological indices is growing immensely. Prediction of the characteristics specified by the molecule's chemical structure is a salient feature of these topological indices. In this paper, we obtained the M-polynomial of the two-dimensional Boron Kagome Lattice. Some topological indices defined based on the degree of vertices can be computed gradually using the contemplated M-polynomial of this lattice. Further, we also provide the graphical representation of the M-polynomial and computed topological indices for the same.

Keywords: M-polynomial; Topological indices; Boron Kagome Lattice.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Topological indices, which Weiner in 1947 first started, is a logical process to convert the information of chemical compounds into some numbers. These indices provide many more chemical graph theory applications, especially in QSAR and QSPR studies. Topological indices can be categorized as degree-based, distance-based, eccentricity-based, spectrum-based, and so on. The degree-based topological indices are computed by degrees of the vertices of the chemical structures.

There are lots of degree-dependent topological indices introduced and studied [1-10]. Gutman and Trinajstić introduced two graph descriptors in 1972, named first Zagreb index and second Zagreb index. In 1982, A. T. Balaban introduced the Inverse sum-index of a graph. In 1987, S. Fajtlowicz introduced the Harmonic index. Bollobás and Erdös introduced the general randić index and the inverse randić index in 1998. In 2003, S. Nikoli introduced the Second modified Zagreb graph index. In 2010, D. Vukičević and M. Gasperov introduced the symmetric division deg index. In 2016 and 2017, V. R. Kulli introduced some new indices named first K-Banhatti index, second K-Banhatti index, modified first K-Banhatti index, modified second K-Banhatti index, and harmonic K-Banhatti index.

Graph polynomials encode the information of a graph and build up various algebraic methods to find out the hidden information of a graph. Several important graph algebraic polynomials have been introduced. Some of them are Hosoye polynomial [11], Matching polynomial [12], M-polynomial [13], and so on.
In 2015, the M-polynomial of a graph was introduced by E. Deutsch and S. Klavžar. To obtain the values of the topological indices, we can use another procedure by using derivatives or integral or both of the graph polynomials. M-polynomial is a polynomial that gives admirable results to determine degree-based topological indices.

The M-polynomial [13] of a graph G is illustrated as

$$M(G; x, y) = \sum_{\delta \leq a \leq b \leq \Delta} m_{ab}(G) x^a y^b$$

where $\delta = \min \{d_v | v \in V(G)\}$, $\Delta = \max \{d_v | v \in V(G)\}$ and $m_{ab}(G)$ is the number of edges $uv \in E(G)$ such that $(d_u, d_v) = (a, b)$.

Recently, many authors have studied the M-polynomials of several graph structures. In 2019, Raheem et al. [14] studied the M-polynomial of the two-dimensional three-layered single-walled titania nanotube lattice. In 2020, Khalaf et al. [15] obtained the book graph's M-polynomial and several topological indices. In 2020, Cancan et al. [16] introduced some topological indices via M-polynomial in the case of silicate networks. Some other important works can be found in [17-26].

In this current work, we study the M-polynomial of Boron Kagome Lattice and use it to derive some key degree-based topological indices of this lattice which is denoted by $BKL\{(m, n), x, y\}$. Here, a two-dimensional Boron Kagome Lattice(MgB_6) [27] has been considered. In the structure of Boron Kagome Lattice(MgB_6), between every pair of Boron Kagome layers, a triangular magnesium layer is sandwiched, which is shown in Figure 1(b). From the top view, Magnesium atoms are located at the centers of the hexagonal holes of the Boron Kagome layer. There is no direct connection between two Magnesium atoms; however, it is being surrounded by six boron atoms resulting in its degree-6. Whereas Boron atoms are of degree-4 as seen from the lattice structure.

The unique structures of this lattice promote electron transfer and stabilize the two-dimensional structure due to the formation of the covalent bond of the Boron Kagome layer and the ionic bond between Boron and Magnesium. In nanoelectronics, this material can be used as a super-thin electrode. The two-dimensional MgB_6 has superconductivity and hence can also be used as a superconductor besides MgB_2. Another use of this material is hydrogen energy storage in nano energy applications.

In the structure of Boron Kagome Lattice, as shown below, the green-colored vertices represent the Magnesium atoms, and the yellow-colored vertices represent the Boron atoms of the lattice.

![Figure 1](https://biointerfaceresearch.com/)

For better understanding, we provide the structure of this lattice for some specific values of m and n as follows. In Figure 2, green-colored edges represent the connection between Magnesium and Boron atoms, whereas the yellow-colored edges for the connection
of two Boron atoms. In Figure 3, we represent several colors for distinguishing the edge partitions like grey colored edges for the connection between 2-degree and 4-degree vertices and also for 3-degree and 3-degree vertices, green color for 2-degree and 5-degree vertices, orange color for 3-degree and 4-degree vertices, pink color for 3-degree and 6-degree vertices, yellow color for 4-degree and 4-degree vertices, blue color for 4-degree and 6-degree vertices, red color for 5-degree and 6-degree vertices, blue color for 6-degree and 7-degree vertices, and black color for 6-degree and 6-degree vertices.

![Figure 2. for m = 1, n = 1.](https://biointerfaceresearch.com/)

![Figure 3. for m = 1, n = 2.](https://biointerfaceresearch.com/)

2. Some Topological Indices Derivations from M-Polynomial

Some familiar degree-based topological indices and their association with M-Polynomial are given in Table 1.

Sr. no	Topological index	Derivation from \(M(G; x, y) \)
1	First Zagreb index	\((D_x + D_y)(g(x, y))_{x=y=1}\)
2	Second Zagreb index	\(D_xD_y(g(x, y))_{x=y=1}\)
3	Symmetric division deg index	\(S_xS_y(g(x, y))_{x=y=1}\)
4	Harmonic index	\(2S_xg(x, y)_{x=1}\)
5	Inverse Randić index	\(S_xS_yg(x, y)_{x=y=1}\)
6	General Randić index	\(D_xD_yg(x, y)_{x=y=1}\)
7	Modified first K-Banhatti index	\((D_x + D_y + 2D_xQ_{-2})(g(x, y))_{x=y=1}\)
8	Modified second K-Banhatti index	\((D_x + D_y + Q_{-2})(g(x, y))_{x=y=1}\)
9	Harmonic K-Banhatti index	\((D_x + D_y + 2D_xQ_{-2})(g(x, y))_{x=y=1}\)

Sr. no	Topological index	Derivation from \(M(G; x, y) \)
1	First Zagreb index	\((D_x + D_y)(g(x, y))_{x=y=1}\)
2	Second Zagreb index	\(D_xD_y(g(x, y))_{x=y=1}\)
3	Symmetric division deg index	\(S_xS_y(g(x, y))_{x=y=1}\)
4	Harmonic index	\(2S_xg(x, y)_{x=1}\)
5	Inverse Randić index	\(S_xS_yg(x, y)_{x=y=1}\)
6	General Randić index	\(D_xD_yg(x, y)_{x=y=1}\)
7	Modified first K-Banhatti index	\((D_x + D_y + 2D_xQ_{-2})(g(x, y))_{x=y=1}\)
8	Modified second K-Banhatti index	\((D_x + D_y + Q_{-2})(g(x, y))_{x=y=1}\)
9	Harmonic K-Banhatti index	\((D_x + D_y + 2D_xQ_{-2})(g(x, y))_{x=y=1}\)

Where, \(D_x = x \frac{\partial g(x, y)}{\partial x}, D_y = y \frac{\partial g(x, y)}{\partial y}, J(g(x, y)) = g(x, x), S_x = \int_0^x \frac{g(x, y)}{x} \, dx, S_y = \int_0^y \frac{g(x, y)}{y} \, dy, Q_a g(x, y) = x^a g(x, y), L_x = g(x^2, y) \) and \(L_y = g(x, y^2)\).

3. M-polynomial of Boron Kagome lattice.

Theorem 3.1. Let, \(BKL_{(m,n)}\) be the graph of Boron Kagome Lattice. Then, the \(M\)-polynomial of \(BKL_{(m,n)}\) is given by
\[M(BKL_{(m,n)}, x, y) \]
\[= 2x^2y^4 + 2x^2y^5 + 2x^3y^3 + 4mx^3y^4 + (2m + 2)x^3y^6 + (4n - 4)x^4y^4 + 4mx^4y^5 + (8m + 8n - 10)x^4y^6 + (6m - 2)x^5y^6 + (24mn - 20m - 10n + 8)x^6y^6. \]

Proof. From the graph of Boron Kagome Lattice, we found five vertex partitions as follows,
\[V_2 = \{ v \in V(BKL_{(m,n)})|d_v = 2 \}, \quad V_3 = \{ v \in V(BKL_{(m,n)})|d_v = 3 \}, \]
\[V_4 = \{ v \in V(BKL_{(m,n)})|d_v = 4 \}, \quad V_5 = \{ v \in V(BKL_{(m,n)})|d_v = 5 \}, \]
\[V_6 = \{ v \in V(BKL_{(m,n)})|d_v = 6 \}. \]

And we found ten edge partitions as follows,
\[E_{(2,4)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 2, d_v = 4 \}, \]
\[E_{(2,5)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 2, d_v = 5 \}, \]
\[E_{(3,3)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 3, d_v = 3 \}, \]
\[E_{(3,4)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 3, d_v = 4 \}, \]
\[E_{(3,6)} = \{ e = uv \in E(BKL_{(m,n)})|d_v = 3, d_v = 6 \}, \]
\[E_{(4,4)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 4, d_v = 4 \}, \]
\[E_{(4,5)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 4, d_v = 5 \}, \]
\[E_{(4,6)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 4, d_v = 6 \}, \]
\[E_{(5,6)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 5, d_v = 6 \}, \]
\[E_{(6,6)} = \{ e = uv \in E(BKL_{(m,n)})|d_u = 6, d_v = 6 \}. \]

From the graph of Boron Kagome Lattice \(BKL_{(m,n)} \), we can scrutinize that \(|E_{(2,4)}| = 2, |E_{(2,5)}| = 2, |E_{(3,3)}| = 2, |E_{(3,4)}| = 4m, |E_{(3,6)}| = 2m + 2, |E_{(4,4)}| = 4n - 4, |E_{(4,5)}| = 4m, \]
\[|E_{(4,6)}| = 8m + 8n - 10, |E_{(5,6)}| = 6m - 2, |E_{(6,6)}| = 24mn - 20m - 10n + 8. \]

Thus, by the definition of \(M \)-polynomial, we have
\[M(BKL_{(m,n)}; x, y) = \sum_{i\leq j} m_{ij} (BKL_{(m,n)})x^iy^j \]
\[= m_{24}(BKL_{(m,n)})x^2y^4 + m_{25}(BKL_{(m,n)})x^2y^5 + m_{33}(BKL_{(m,n)})x^3y^3 + m_{34}(BKL_{(m,n)})x^3y^4 + m_{36}(BKL_{(m,n)})x^3y^6 + m_{44}(BKL_{(m,n)})x^4y^4 + m_{45}(BKL_{(m,n)})x^4y^5 + m_{46}(BKL_{(m,n)})x^4y^6 + m_{56}(BKL_{(m,n)})x^5y^6 + m_{66}(BKL_{(m,n)})x^6y^6 \]
\[= |E_{(2,4)}|x^2y^4 + |E_{(2,5)}|x^2y^5 + |E_{(3,3)}|x^3y^3 + |E_{(3,4)}|x^3y^4 + |E_{(3,6)}|x^3y^6 + |E_{(4,4)}|x^4y^4 + |E_{(4,5)}|x^4y^5 + |E_{(4,6)}|x^4y^6 + |E_{(5,6)}|x^5y^6 + |E_{(6,6)}|x^6y^6 \]
\[= 2x^2y^4 + 2x^2y^5 + 2x^3y^3 + 4mx^3y^4 + (2m + 2)x^3y^6 + (4n - 4)x^4y^4 + 4mx^4y^5 + (8m + 8n - 10)x^4y^6 + (6m - 2)x^5y^6 + (24mn - 20m - 10n + 8)x^6y^6. \]
Figure 4. M-Polynomial of Boron Kagome Lattice.

With the help of this M-polynomial, we compute some topological indices.

Theorem 3.2. Let, $BKL_{(m,n)}$ be the graph of Boron Kagome Lattice and $M(BKL_{(m,n)}; x, y)$ be the M-polynomial of this lattice, then

1. $M_1(BKL_{(m,n)}) = 288mn - 12m - 8n - 2$

2. $M_2(BKL_{(m,n)}) = 864mn - 184m - 104n + 14$

3. $\bar{M}_2(BKL_{(m,n)}) = \frac{121}{180} + \frac{120mn + 112m + 55n - 72}{180}$

4. $SDD(BKL_{(m,n)}) = \frac{74}{5} + \frac{720mn + 166m + 80n - 191}{15}$

5. $H(BKL_{(m,n)}) = \frac{40}{21} + \frac{13860mn + 6354m + 3234n - 5495}{3465}$

6. $I(BKL_{(m,n)}) = \frac{179}{21} + \frac{249480mn - 16252m - 9702n - 32760}{3465}$

7. $RR_a(BKL_{(m,n)}) = \left(\frac{\frac{1}{2a-1} + \frac{2}{2a-1} + \frac{3}{2a} + \frac{m}{4a-1.5}}{2a-1.3a} \right) + \frac{m+1}{2a-1.3a} + \frac{n-1}{2a-1.32a} + \frac{4a+4n-5}{2a-1.32a}$

8. $R_a(BKL_{(m,n)}) = \left(2^{3a+1} + 2^{a+1} \cdot 5^a + 2 \cdot 3^2a \right) + 4m \cdot 2^{4a} \cdot 3^a + 2(m + 1) \cdot 2^a \cdot 3^2a + (n - 1) \cdot 2^{4+4a} + m \cdot 2^{4+2a} \cdot 5^a + (4m + 4n - 5) \cdot 2^{3a+1} \cdot 3^a + (3m - 1) \cdot 2^{a+1} \cdot 3^a \cdot 5^a + (12mn - 10m - 5n + 4) \cdot 2^{1+2a} \cdot 3^{2a}$

9. $B_1(BKL_{(m,n)}) = 768mn - 52m - 32n - 6$

10. $B_2(BKL_{(m,n)}) = 2880mn - 648m - 368n + 62$

11. $\bar{B}_1(BKL_{(m,n)}) = \frac{25}{21} + \frac{540540mn + 281428m + 141999n - 147741}{180180}$

12. $\bar{B}_2(BKL_{(m,n)}) = \frac{17}{24} + \frac{60480mn + 65100m + 31500n - 18607}{75600}$
13. $H_b(BKL_{(m,n)}) = \frac{50}{21} + \frac{540540mn+281428m+141999n-147741}{90090}$

Proof. From the definition of D_x, D_y, $Jg(x,y)$, S_x, S_y, $Q_a(g(x,y))$, L_x, L_y we have,

$$(D_x + D_y)(g(x,y)) = 12x^2y^4 + 14x^2y^5 + 12x^3y^3 + 28mx^3y^4 + (18m + 18)x^3y^6 + (32n - 32)x^4y^4 + 36mx^4y^5 + (80m + 80n - 100)x^4y^6 + (66m - 22)x^5y^6 + (288mn - 240m - 120n + 96)x^6y_6, \nonumber$$

$$(S_x + S_y)(g(x,y)) = \left(\frac{3}{2}\right) \cdot x^2y^4 + \left(\frac{7}{3}\right) \cdot x^2y^5 + \left(\frac{4}{3}\right) \cdot x^3y^3 + \left(\frac{7m}{3}\right) \cdot x^3y^4 + (m + 1) \cdot x^3y^6 + (2n - 2)x^4y^4 + \left(\frac{9m}{5}\right) \cdot x^4y^5 + \left(\frac{20m+20m-25}{6}\right) \cdot x^4y^6 + \left(\frac{33m-11}{15}\right) \cdot x^5y^6 + \left(\frac{24mn-20m-10n+8}{3}\right) \cdot x^6y^6, \nonumber$$

$$(L_x + L_y)(g(x,y)) = 2x^2y^4 + 2x^4y^5 + 2x^6y^3 + 4m \cdot x^6y^4 + (2m + 2) \cdot x^6y^6 + (4n - 4) \cdot x^8y^4 + 4m \cdot x^8y^5 + (8m + 8n - 10) \cdot x^8y^6 + (6m - 2) \cdot x^{10}y^6 + (24mn - 20m - 10n + 8) \cdot x^{12}y^6 + 2x^2y^{10} + 2x^3y^6 + 4m \cdot x^3y^8 + (2m + 2) \cdot x^3y^{12} + (4n - 4) \cdot x^4y^6 + 4m \cdot x^4y^{10} + (8m + 8n - 10) \cdot x^4y^{12} + (6m - 2) \cdot x^5y^{12} + (24mn - 20m - 10n + 8) \cdot x^6y^{12}, \nonumber$$

$$(D_xD_y)(g(x,y)) = 16x^2y^4 + 20x^2y^5 + 18x^3y^3 + 48m \cdot x^3y^4 + (36m + 36) \cdot x^3y^6 + (64n - 64) \cdot x^4y^4 + 80m \cdot x^4y^5 + (192m + 192n - 240) \cdot x^4y^6 + (180m - 60) \cdot x^5y^6 + (864mn - 720m - 360n + 288) \cdot x^6y^6, \nonumber$$

$$(S_xS_y)(g(x,y)) = \left(\frac{1}{4}\right) \cdot x^2y^4 + \left(\frac{1}{5}\right) \cdot x^2y^5 + \left(\frac{2}{5}\right) \cdot x^3y^3 + \left(\frac{m}{3}\right) \cdot x^3y^4 + \left(\frac{m+1}{9}\right) \cdot x^3y^6 + \left(\frac{n-1}{15}\right) \cdot x^4y^4 + \left(\frac{m}{5}\right) \cdot x^4y^5 + \left(\frac{4m+4n-5}{12}\right) \cdot x^4y^6 + \left(\frac{3m-1}{15}\right) \cdot x^5y^6 + \left(\frac{12mn-10m-5n+44}{18}\right) \cdot x^6y^6, \nonumber$$

$$(D_xS_y)(g(x,y)) = x^2y^4 + \left(\frac{1}{5}\right) \cdot x^2y^5 + 2x^3y^3 + 3m \cdot x^3y^4 + (m + 1) \cdot x^3y^6 + 4(n - 1) \cdot x^4y^4 + \left(\frac{16m}{5}\right) \cdot x^4y^5 + \left(\frac{16m+16n-20}{3}\right) \cdot x^4y^6 + \left(\frac{15m-5}{3}\right) \cdot x^5y^6 + (24mn - 20m - 10n + 8) \cdot x^6y^6, \nonumber$$

$$(S_xD_y)(g(x,y)) = 4x^2y^4 + 5x^2y^5 + 2x^3y^3 + \left(\frac{16m}{3}\right) \cdot x^3y^4 + (4m + 4) \cdot x^3y^6 + 4(n - 1) \cdot x^4y^4 + 5mx^4y^5 + (12m + 12n - 15) \cdot x^4y^6 + \left(\frac{36m-12}{5}\right) \cdot x^5y^6 + (24mn - 20m - 10n + 8) \cdot x^6y^6, \nonumber$$

$$J(D_x + D_y)(g(x,y)) = 24x^6 + (14 + 28m) \cdot x^7 + (32n - 32) \cdot x^8 + (18 + 54m) \cdot x^9 + (80m + 80n - 100) \cdot x^{10} + (66m - 22) \cdot x^{11} + (288mn - 240m - 120n + 96) \cdot x^{12}, \nonumber$$

$$J(S_x + S_y)(g(x,y)) = \left(\frac{17}{6}\right) \cdot x^6 + \left(\frac{21+35m}{15}\right) \cdot x^7 + (2n - 2) \cdot x^8 + \left(\frac{42m+15}{15}\right) \cdot x^9 + \left(\frac{20m+20n-25}{6}\right) \cdot x^{10} + \left(\frac{33m-11}{15}\right) \cdot x^{11} + \left(\frac{24mn-20m-10n+8}{3}\right) x^{12}, \nonumber$$
\[J(D_x D_y)(g(x,y)) = 34x^6 + (20 + 48m) \cdot x^7 + (64n - 64) \cdot x^8 + (36 + 116m) \cdot x^9 + (192m + 192n - 240) \cdot x^{10} + (180m - 60) \cdot x^{11} + (864mn - 720m - 360n + 288) \cdot x^{12}, \]

\[S_x J D_x D_y(g(x,y)) = \left(\frac{17}{3} \right) \cdot x^6 + \left(\frac{20 + 48m}{7} \right) \cdot x^7 + (8n - 8) \cdot x^8 + \left(\frac{36 + 116m}{9} \right) \cdot x^9 + \left(\frac{96m + 96n - 120}{5} \right) \cdot x^{10} + \left(\frac{18m - 60}{11} \right) \cdot x^{11} + (72mn - 60m - 30n + 24) \cdot x^{12}, \]

\[(S_x^a S_y^a)(g(x,y)) = \left(\frac{1}{2a-1} \right) \cdot x^2y^4 + \left(\frac{1}{2a-1.5a} \right) \cdot x^2y^5 + \left(\frac{2}{3a^2} \right) \cdot x^3y^3 + \left(\frac{m}{4a-1.3a} \right) \cdot x^3y^4 + \left(\frac{m + 1}{2a-1.32a} \right) \cdot x^3y^6 + \left(\frac{n - 1}{2a^2 - 2a} \right) \cdot x^4y^4 + \left(\frac{m}{4a-1.5a} \right) \cdot x^4y^5 + \left(\frac{m + 4m - 5}{2a^3 - 1.3a} \right) \cdot x^4y^6 + \left(\frac{3m - 1}{2a-1.3a5a} \right) \cdot x^5y^6 + \left(\frac{12mn - 10m - 5n + 4}{2a^2 - 1.32a} \right) \cdot x^6y^6, \]

\[(D_x D_y^a)(g(x,y)) = 2^{3a+1}x^2y^4 + 2a^{1+1} \cdot 5a^2x^2y^5 + 2 \cdot 32a^3x^3y^3 + 4m \cdot 2a^{2}a \cdot 3a^3x^3y^4 + 2(m + 1) \cdot 2a^{1+1} \cdot 32a^3x^3y^6 + (n - 1) \cdot 2^{4+4a}.a^4y^4 + m \cdot 2^{2+2}a \cdot 5a^4x^4y^5 + (4m + 4n - 5) \cdot 2a^{3+1}.a^3x^4y^6 + (3m - 1) \cdot 2a^{1+1}.a^3 \cdot 5a^5x^5y^6 + (12mn - 10m - 5n + 4) \cdot 2^{1+2}a \cdot 3^2a^6x^6, \]

\[D_x Q_{-2}J(g(x,y)) = 16x^4 + (10 + 20m) \cdot x^5 + (24n - 24) \cdot x^6 + (14 + 42m) \cdot x^7 + (64m + 64n - 80) \cdot x^8 + (54m - 18) \cdot x^9 + (240mn - 200m - 100n + 80) \cdot x^{10}, \]

\[Q_{-2}J(D_x + D_y)(g(x,y)) = 24x^4 + (14 + 28m) \cdot x^5 + (32n - 32) \cdot x^6 + (18 + 54m) \cdot x^7 + (80m + 80n - 100) \cdot x^8 + (66m - 22) \cdot x^9 + (288mn - 240m - 120n + 96) \cdot x^{10}, \]

\[D_x Q_{-2}J(D_x + D_y)(g(x,y)) = 96x^4 + (70 + 140m) \cdot x^5 + (192n - 192) \cdot x^6 + (378 + 126m) \cdot x^7 + (640m + 640n - 800) \cdot x^8 + (594m - 198) \cdot x^9 + (288mn - 2400m - 1200n + 960) \cdot x^{10}, \]

\[Q_{-2}J(L_x + L_y)(g(x,y)) = 2x^6 + 6x^7 + (2 + 4m) \cdot x^8 + 4m \cdot x^9 + (2m + 8n - 4) \cdot x^{10} + 4m \cdot x^{11} + (12m + 8n - 10) \cdot x^{12} + (2m + 2) \cdot x^{13} + (14m + 8n - 12) \cdot x^{14} + (6m - 2) \cdot x^{15} + (480mn - 40m - 40n - 20n + 16) \cdot x^{16}, \]

\[S_x Q_{-2}J(L_x + L_y)(g(x,y)) = \left(\frac{1}{3} \right) \cdot x^6 + \left(\frac{6}{7} \right) \cdot x^7 + \left(\frac{1+2m}{4} \right) \cdot x^8 + \left(\frac{4m}{9} \right) \cdot x^9 + \left(\frac{m+4m-2}{5} \right) \cdot x^{10} + \left(\frac{4m}{11} \right) \cdot x^{11} + \left(\frac{6+4m-5}{6} \right) \cdot x^{12} + \left(\frac{2m+2}{13} \right) \cdot x^{13} + \left(\frac{7m+4m-6}{7} \right) \cdot x^{14} + \left(\frac{6m-2}{15} \right) \cdot x^{15} + \left(\frac{12mn-10m-5n+4}{4} \right) \cdot x^{16}, \]

\[Q_{-2}J(S_x + S_y)(g(x,y)) = \left(\frac{12}{6} \right) \cdot x^4 + \left(\frac{21+35m}{15} \right) \cdot x^5 + (2n - 2) \cdot x^6 + \left(\frac{42m+15}{15} \right) \cdot x^7 + \left(\frac{20m+20n-25}{6} \right) \cdot x^8 + \left(\frac{33n-11}{15} \right) \cdot x^9 + \left(\frac{24mn-20m-10n+8}{3} \right) \cdot x^{10}, \]
Now, using these above data and Table 1, we have the following indices:

1. First Zagreb index
 \[M_1(BKL_{(m,n)}) = (D_x + D_y)(g(x,y))_{x=y=1} = 288mn - 12m - 8n - 2 \]

2. Second Zagreb index
 \[M_2(BKL_{(m,n)}) = (D_xD_y)(g(x,y))_{x=y=1} = 864mn - 184m - 104n + 14 \]

3. Second modified Zagreb index
 \[\bar{M}_2(BKL_{(m,n)}) = (S_xS_y)(g(x,y))_{x=y=1} = \frac{121}{180} + \frac{120mn + 112m + 55n - 72}{180} \]

4. Symmetric division deg index
 \[SDD(BKL_{(m,n)}) = (D_xS_y + S_xD_y)(g(x,y))_{x=y=1} = \frac{74}{5} + \frac{720mn + 166m + 80n - 191}{15} \]

5. Harmonic index
 \[H(BKL_{(m,n)}) = 2S_xJ(g(x,y))_{x=1} = \frac{40}{21} + \frac{13860mn + 6354m + 3234n - 5495}{3465} \]

6. Inverse sum index
 \[I(BKL_{(m,n)}) = S_xJD_y(g(x,y))_{x=1} = \frac{179}{21} + \frac{249480mn - 16252m - 9702n - 32760}{3465} \]

7. Inverse Randić index
 \[RR_{a}(BKL_{(m,n)}) = (S_x^aS_y^a)(g(x,y))_{x=y=1} = \left(\frac{1}{2a^a-1} + \frac{1}{2a_{a-1}5^a} + \frac{2}{3^a}\right) + \frac{m}{4a_{a-1}3^a} + \frac{n-1}{2a_{a-1}2^a} + \frac{m}{4a_{a-1}5^a} + \frac{4m+4n-5}{2a_{a-1}3^a} + \frac{3m-1}{2a_{a-1}5^a} + \frac{12mn-10m-5n+4}{2a_{a-1}3^a} \]

8. General Randić index
 \[R_{a}(BKL_{(m,n)}) = (D_x^aD_y^a)(g(x,y))_{x=y=1} = (2^a+1 + 2^a + 5^a + 2 \cdot 3^2a) + 4m \cdot 2^a \cdot 3^a + 2(m+1) \cdot 2^a \cdot 3^2a + (n-1) \cdot 2^a+4a + m \cdot 2^2+2a \cdot 5^a + (4m + 4n - 5) \cdot 2^3a+1 \cdot 3^a + (3m-1) \cdot 2^a+1 \cdot 3^a \cdot 5^a + (12mn - 10m - 5n + 4) \cdot 2^1+2a \cdot 3^2a \]

9. First K Banhatti index
 \[B_1(BKL_{(m,n)}) = (D_x + D_y + 2D_x Q_{-2})(g(x,y))_{x=y=1} = 768mn - 52m - 32n - 6 \]

10. Second K Banhatti index
 \[B_2(BKL_{(m,n)}) = (D_x Q_{-2}J(D_x + D_y))(g(x,y))_{x=1} = 2880mn - 648m - 368n + 62 \]

11. Modified First K Banhatti index
 \[\bar{B}_1(BKL_{(m,n)}) = S_xQ_{-2}J(L_x + L_y)(g(x,y))_{x=1} = \frac{25}{21} + \frac{540540mn + 281428m + 141999n - 147741}{180180} \]
12. Modified Second K Banhatti index

\[
\bar{B}_2(BKL_{(m,n)}) = Q_2^{-1}(S_x + S_y)(g(x,y))_{x=1} = \frac{17}{24} + \frac{60480mn + 65100m + 31500n - 18607}{75600}
\]

13. Harmonic K Banhatti index

\[
H_b(BKL_{(m,n)}) = 2S_xQ_2^{-1}(L_x + L_y)(g(x,y))_{x=1} = \frac{50}{21} + \frac{540540mn + 281428m + 141999n - 147741}{90090}
\]

It will be more interesting to represent these indices by graphical notations. Therefore, we provide the visualization of the three-dimensional graphical representations for each of these indices.

Figure 5. First Zagreb, second Zagreb, and Second modified Zagreb indices of Boron Kagome Lattice.

Figure 6. Symmetric division deg index, Harmonic index, and Inverse sum index of Boron Kagome Lattice.

Figure 7. Inverse Randić index, General Randić index, and First K-Banhatti index of Boron Kagome Lattice.

Figure 8. Second K-Banhatti index, Modified First K-Banhatti index, and Modified Second K-Banhatti index of Boron Kagome Lattice.
4. Conclusions

In this paper, we obtain the M-polynomial of two-dimensional Boron Kagome Lattice, and with the help of this polynomial, we have computed some topological indices of this lattice. We also provide the three-dimensional graphical representation of the M-polynomial and the degree-based topological indices calculated. These graphical representations allow us to understand results against parameters. All indices are increases with respect to the graph parameter increases. Among the computed topological indices, the second K-Banhatti index grows fast while the inverse randić index grows slowly. For future directions, we can use the same technique to obtain the M-polynomial and topological indices of other chemical structures.

Funding

This research received no external funding.

Acknowledgments

The authors are thankful to the anonymous reviewers for their inputs to improve the presentation.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Randić, M. Characterization of molecular branching. *Journal of the American Chemical Society* **1975**, *97*, 6609-6615, http://dx.doi.org/10.1021/ja00856a001.
2. Gutman, I. Degree-based topological indices, *Croat. Chem. Acta* **2013**, *86*, 351-361, http://dx.doi.org/10.5562/cca2294.
3. Kulli, V.R. Hyper Zagreb-K-Banhatti Indices of Graphs. *International Journal of Mathematics Trends and Technology* **2020**, *66*, 123-130, http://dx.doi.org/10.14455/22315373/IJMTT-V66I8P513.
4. Vignesh, R.; Siddique, M.K.; Chidambaram, N.; Desikan, K. On Topological Descriptors and Curvilinear Regression Analysis of Antiviral Drugs Used in COVID-19 Treatment. *Polycyclic Aromatic Compounds* **2021**, https://doi.org/10.1080/10406638.2021.1993941.
5. Chaluvaraju, B.; Shaikh, A.B. Different Versions of Atom-Bond Connectivity Indices of Some Molecular Structures: Applied for the Treatment and Prevention of COVID-19. *Polycyclic Aromatic Compounds* **2021**, https://doi.org/10.1080/10406638.2021.1872655.
6. Ahmad, A.; Hasni, R.; Elahi, K.; Asim, M.A. Polynomials of Degree-Based Indices for Swapped Network Modeled by Optical Transpose Interconnection System **2020**, *IEEE Access*, *8*, 214293-214299, https://doi.org/10.1109/ACCESS.2020.3039298.
7. Pegu, A.; Deka, B.; Gogoi, I.J.; Bharali, A. Two generalized topological indices of some graph structures. *J. Math. Comput. Sci.* 2021, 11, 5549-5564, http://dx.doi.org/10.28919/jmcs/6040.

8. Sridhara, G.; Kanna, M.R.R.; Indumathi, R.S. Computation of Topological Indices of Graphene. *Journal of nanomaterials* 2015, 969348, https://doi.org/10.1155/2015/969348.

9. Anjum, M.S.; Safdar, M.U.K Banhatti and K hyper-Banhatti indices of nanotubes. *Engineering and Applied Science Letters* 2019, 2, 19-37, https://doi.org/10.30538/presp-easl2019.0013.

10. Saeed, N.; Long, K.; Mufti, Z.S.; Sajid, H.; Rehman, A. Degree-Based Topological Indices of Boron B_{12}. *Journal of Chemistry* 2021, 5563218, https://doi.org/10.1155/2021/5563218.

11. Hosoya, H. On Some Counting Polynomials in Chemistry. *Discrete Applied Mathematics* 1988, 19, 239-257, https://doi.org/10.1016/0166-218X(88)90017-0.

12. Farrell, E.J. An introduction to Matching polynomial. *Journal of Combinatorial Theory* 1979, 27, 75-86, https://doi.org/10.1016/0095-8956(79)90070-4.

13. Iqbal, Z.; Aslam, A.; Ishaq, M.; Gao, W. On Computations of Topological Descriptors of Kagome Lattice. *Polycyclic Aromatic Compounds* 2021, https://doi.org/10.1080/10406638.2021.1923537.

14. Raheem, A.; Javaid, M.; Teh, W.C.; Wang, s.; Liu, J.B. M-polynomial method for topological indices of 2D-lattice of three-layered single-walled titania nanotubes. *Journal of Information and Optimization Sciences* 2019, 41, 743-753, https://doi.org/10.1080/02522667.2019.1565446.

15. Khalaf, A.J.M.; Hussain, S.; Afzal, D.; Afzal, F.; Maqbool, A. M-Polynomial and topological indices of book graph. *Journal of Discrete Mathematical Science and Cryptography* 2020, 23, 1217-1237, https://doi.org/10.1080/09720529.2020.1809115.

16. Cancan, M.; Afzal, D.; Hussain, S.; Maqbool, A.; Afzal, F. Some new topological indices of silicate network via M-polynomial. *Journal of Discrete Mathematical Science and Cryptography* 2020, 23, 1157-1171, https://doi.org/10.1080/09720529.2020.1809776.

17. Afzal, F.; Hussain, S.; Afzal, D.; Razaq, S. Some new degree based topological indices via M-polynomial. *Journal of information and Optimization Sciences* 2020, 41, 1061-1076, https://doi.org/10.1080/02522667.2020.1744307.

18. Afzal, D.; Ali, S.; Afzal, F.; Cancan, S.; Ediz, S.; Farahani, M.R. A study of newly defined degree-based topological indices via M-polynomial of Jahangir graph. *Journal of Discrete Mathematical Sciences and Cryptography* 2021, 24, 427-438, https://doi.org/10.1080/09720529.

19. Jagadesh, R.; Kanna, M.R.R.; Indumathi, R.S. Some results on topological indices of graphene. *Nanomaterials and Nanotechnology* 2016, 6, 1-6, https://doi.org/10.1177%2F218X(88)90017

20. Kumar, R.P.; Nanadappa, S.D.; Kanna, M.R.R. Redefined Zagreb, Randic, Harmonic and GA Indices of Graphehe. *International Journal of Mathematical Analysis* 2017, 11, 493-502, https://doi.org/10.12988/ijma.2017.7454.

21. Parashivamurthy, H.L.; Kanna, M.R.R.; Jagadeesh, R. Some Topological Indices and Their Polynomials of Graphene. *Oriental Journal of Chemistry* 2019, 35, 1514-1518, http://dx.doi.org/10.13005/ojc/350506.

22. Irfan, M.; Rehman, H.U.; Almusawa, H.; Rasheed,S.; Baloch, I.A. M-Polynomials and Topological Indices for Line Graphs of Chain Silicate Network and H-Naphtalenic Nanotubes. *Journal of Mathematics* 2021, 2021, 5551825, https://doi.org/10.1155/2021/5551825.

23. Mondal, S.; Siddique, M.K.; De, N.; Pal, A. Neighbourhood M-polynomial of Crystallographic Structures. *Biointerface Research in Applied Chemistry* 2020, 11, 9372-9381, https://doi.org/10.33263/BRIAC112.93729381.

24. Mondal, S.; Siddique, M.K.; De, N.; Pal, A. Neighbourhood M-polynomial of titanium compounds. *Arabian Journal of Chemistry* 2021, 21, 1878-5352, https://doi.org/10.1016/j.arabjc.2021.103244.

25. Mondal, S.; De, N.; Siddique, M.K.; Pal, A. Topological Properties of Para-line Graph of Some Convex Polytopes using Neighbourhood M-polynomial. *Biointerface Research in Applied Chemistry* 2021, 11, 9915-9927, https://doi.org/10.33263/BRIAC113.99159927.

26. Saleh, A.; Shalini; G.B.S.; Dhananjayamurthy, B.V. The Reduced Neighbourhood Topological Indices and RNM-Polynomial for the Treatment of COVID-19. *Biointerface Research in Applied Chemistry* 2021, 11, 11817-11832, https://doi.org/10.33263/BRIAC114.1181711832.

27. Xie, S.Y.; Li, X.B.; Tian, W.Q.; Chen, N.K.; Wang, Y.; Zhang, S.; Sun, H.B. A novel two-dimensional MgB_6 crystal: metel-layer stabilized boron kagome lattice. *Phys. Chem. Chem. Phys.* 2015, 17, 1093-1098, https://doi.org/10.1039/C4CP03728F.

https://biointerfaceresearch.com/