MHD Mixed Convection Flow and Heat Transfer of a Dual Stratified Micropolar Fluid Over a Vertical Stretching/Shrinking Sheet With Suction, Chemical Reaction and Heat Source

Ansab Azam Khan¹, Khairy Zaimi²,³,*, Suliadi Firdaus Sufahani⁴, Mohammad Ferdows⁵

¹ School of Quantitative Sciences, UUM College of Arts & Sciences, Universiti Utara Malaysia, UUM Sintok, Kedah Darul Aman, Malaysia
² Centre of Excellence for Social Innovation & Sustainability (CoESIS), Universiti Malaysia Perlis, Perlis, Malaysia
³ Boundary Layer Research Group, Institute of Engineering Mathematics, Faculty of Applied and Human Sciences, Universiti Malaysia Perlis, Perlis, Malaysia
⁴ Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
⁵ Research Group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics, University of Dhaka, Dhaka-1000, Bangladesh

ARTICLE INFO

The purpose of this study was to investigate the magnetohydrodynamic (MHD) mixed convection flow and heat transfer of a dual stratified micropolar fluid over a vertical permeable stretching/shrinking sheet with chemical reaction and heat source. The governing nonlinear partial differential equations are reduced into a system of nonlinear ordinary differential equations using an appropriate similarity transformation. Then, the obtained ordinary differential equations are solved numerically using the boundary value problem solver (bvp4c) in MATLAB software. The numerical results are tabulated and plotted for the heat transfer characteristics, namely, the skin friction coefficient, the local Nusselt number, the local Sherwood number as well as the velocity, temperature and concentration profiles for some values of the governing parameters. The present numerical results also have been compared with the previous reported results for a particular case and the comparisons are found to be in an excellent agreement. The results indicate that the skin friction coefficient and the local Nusselt number increase with chemical reaction and heat source. The magnitude of the local Sherwood number increases with the increasing of chemical reaction parameter. However, the magnitude of the local Sherwood number decreases with heat source effect.

Keywords:
Double stratified; micropolar fluid; stretching/shrinking sheet; chemical reaction; heat source

Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved

* Corresponding author,
E-mail address: khairy@unimap.edu.my (Khairy Zaimi)

https://doi.org/10.37934/cfdl.12.11.106120
1. Introduction

The theory and model of micropolar fluids were first introduced by Eringen [1-2] which describe the fluids with microstructure. This theory is able to explain the microscopic effects due to the local structure and micromotion of the fluid particles which are the main limitation in the classical Navier-Stokes equations. This model has been developed by considering an extra micro rotational momentum equation to the existing momentum equation. Lubricants, suspension solutions and animal blood are examples of liquids that use the micropolar fluid model (Ahmad et al., [3]). In the book by Lukaszewicz [4], he explains the theory of the micropolar fluid and its two applications in the theories of lubrication and porous media. Over the past few decades, the study of micropolar fluids has gained a lot of attention because of its usage in many processes that are taking place in the industry.

In recent years, several boundary layer flow problems consider the double stratification effect in a micropolar fluid. Thermal and concentration stratifications occur due to temperature variations, concentration differences, or the presence of different fluids. The investigations on double stratification have attracted many researchers around the world due to the wide variety of applications in engineering such as thermal energy storage systems in solar ponds and the condensers of power plant involving the heat transfer from thermal sources (Srinivasacharya & Upendar [5]). One of the related scholarly works on this topic is done by Srinivasacharya and Upendar [5]. In detail, Srinivasacharya and Upendar [5] have analyzed the effect of double stratification on free convection MHD micropolar fluid over a vertical permeable stretching/shrinking plate. The analysis showed that the velocity, skin friction coefficient, the local Nusselt number and the local Sherwood number decrease with the increasing magnetic parameter. In contrast, the temperature, concentration, and the local wall couple stress increase as the magnetic parameter increases. Besides that, another main finding indicates that the skin friction coefficient, Nusselt number and Sherwood number decreases and the wall couple stress increases as the magnetic parameter increases. It is also reported that the skin friction coefficient, Nusselt number and Sherwood number decreases and the wall couple stress increases as the solutal stratification parameter increases. Later, Rashad et al., [6] focused on the thermal and physical properties of the features of mixed convection flow of micropolar fluid over a continuously moving isothermal vertical surface immersed in a double stratification (thermal and concentration) medium taking into consideration the chemical reaction and magnetic field effects. It is perceived that the skin friction coefficient, Nusselt and Sherwood numbers are enhanced with the increasing of material parameter. It is additionally observed that the local Nusselt number decreases with the chemical reaction parameter, whereas the skin friction coefficient and the local Sherwood number increase with it. Furthermore, it was also reported that the increase in the values of the thermal stratification parameter implies that the Sherwood number decreases while the opposite way occurred for the skin friction coefficient and the local Nusselt number. By contrast, it is identified that the skin friction coefficient rises as the solutal stratification parameter increased while both the local Nusselt and the local Sherwood numbers decrease with it.

Most recently, Khashi’ie et al., [7] investigated suction, magnetic field, and double stratifications effects on the mixed convection boundary layer flow over a stretching/shrinking sheet in micropolar fluid. They reported that dual solution exists in a certain range of suction and stretching/shrinking parameters. It is found that the velocity gradient, temperature gradient and concentration gradient increase with the increase in the suction parameter. Opposite trend is found with the addition of the material parameter where the velocity gradient, temperature gradient and concentration gradient decrease with it. Apart from that, they stated that the temperature of the fluid is enhanced with the
thermal stratification parameter while the concentration is reduced with the increasing solutal stratification parameter. Also, it is further pointed out that both velocity and angular velocity have decreased with the increase in the magnetic parameter strength. Since then, there are numerous studies working on micropolar fluid under different physical conditions.

The impacts of heat source on the fluid flow problem over the stretching/shrinking sheet condition have been discussed in many studies. The heat source effects have significant applications in physics and engineering applications. The heat source effects evident in different flow problems are very useful in the particle deposition rate in nuclear reactors, electronic chips and semiconductor wafers (Ibrahim & Suneetha [8]). Ibrahim and Suneetha [8] also mentioned the importance of study in the chemical reaction effect for example in an evaporation at the surface of a water body, energy transfer in a wet cooling tower and the flow in a desert cooler.

Motivated by the above mentioned study by Khashi’ie et al., [7], the present work seeks to analyze the heat and mass transfer of MHD micropolar fluid flow involving double stratification through a stretching/shrinking vertical sheet under chemical reaction and heat source effect. To the best of author’s knowledge, no such studies are like the proposed study in the presence of heat source together with thermal and concentration stratifications. The governing equations in partial differential form are converted into a set of combined ordinary differential equations which are in nonlinear form. These resulting nonlinear ordinary differential equations are solved using bvp4c solver in MATLAB. The impacts of the governing parameters on the velocity, angular velocity, temperature, and concentration profiles as well as the skin friction coefficient, the local Nusselt number and the local Sherwood number have been plotted and analyzed wisely.

2. Problem Formulation

Consider the steady boundary layer flow and heat transfer of micropolar fluid over a linear stretching/shrinking vertical sheet in the presence of the magnetic field, suction, chemical reaction, and double stratification effects as illustrated in Figure 1. The stretching/shrinking sheet is assumed to have linear velocity \( u_w(x) = ax \), a variable surface temperature \( T_w(x) = T_0 + Ax \), concentration \( C_w(x) = C_0 + Ex \) where \( a \), \( A \), and \( E \) are constants with \( T_w(x) > T_0 \) and \( C_w(x) > C_0 \). The ambient temperature and concentration are assumed to be linearly stratified given by \( T(x) = T_0 + Hx \) and \( C(x) = C_0 + Px \) where \( H \) and \( P \) are constants whilst \( T_0 \) and \( C_0 \) are initial ambient temperature and concentration. Under the boundary layer approximations, the corresponding boundary layers equation with the above-mentioned effects is (see Srinivasacharya & Upendar [5], Rashad et al., [6], Khashi’ie et al., [7])

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]  

\[
\rho \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \left( \mu + \kappa \right) \frac{\partial^2 u}{\partial y^2} + \kappa \frac{\partial \omega}{\partial y} - \sigma_m B_0^2 u + \rho g \left( \beta_T (T - T_0) + \beta_C (C - C_0) \right)
\]  

\[
\rho \left( u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} \right) = \gamma \frac{\partial^2 \omega}{\partial y^2} - \kappa \left( 2\omega + \frac{\partial u}{\partial y} \right),
\]
\[
\begin{align*}
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} &= \alpha \frac{\partial^2 T}{\partial y^2} + \frac{Q_0}{\rho C_p} (T - T_{\infty}) \quad (4) \\
\frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} &= D \frac{\partial^2 C}{\partial y^2} - k_0 (C - C_{\infty}). \quad (5)
\end{align*}
\]

Here, \(u\) and \(v\) are the velocity components along \(x\) and \(y\) directions, \(T\) and \(C\) are the temperature and concentration of the fluid respectively, \(\omega\) is the component of micro-rotation where the direction of rotation lies in the \(xy\) plane, \(\rho\) is the fluid density, \(\mu\) is the dynamic coefficient of the viscosity of the fluid, \(\kappa\) is the vortex viscosity, \(g\) is the gravitational acceleration, \(\beta_T\) is the coefficient of thermal expansion, \(\beta_C\) is the coefficient of solutal expansion, \(B_h\) is the coefficient of the magnetic field, \(j\) is the micro-inertia density, \(\gamma\) is the spin-gradient viscosity, \(\sigma_M\) is the magnetic permeability of the fluid, \(\alpha\) is the thermal diffusivity, \(Q_0\) is the uniform volumetric heat source and absorption, \(C_p\) is the specific heat at constant pressure, \(D\) is the molecular diffusivity and \(k_0\) is the chemical reaction.

![Physical model and coordinate system](image)

**Fig. 1.** Physical model and coordinate system: (a) Stretching sheet; (b) Shrinking sheet

The corresponding boundary conditions are

\[
\begin{align*}
u &= \varepsilon u_w, \quad v = v_w, \quad \omega = \frac{m \partial u}{\partial y}, \quad T = T_w, \quad C = C_w \quad \text{as} \quad y = 0 \quad (6) \\
u \rightarrow 0, \quad \omega \rightarrow 0, \quad T \rightarrow T_\infty, \quad C \rightarrow C_\infty \quad \text{as} \quad y \rightarrow \infty, \quad (7)
\end{align*}
\]

where \(m\) is a positive constant between 0 and 1. As reported by Guram and Smith [9], the case \(m = 0\) represent strong concentration. Furthermore, the case \(m = 1/2\) is referred as weak concentration (Ahmadi [10]) while case \(m = 1\) is used to formulate the turbulent boundary layer flows modeling (Peddieson [11]). In addition, \(v_w\) is a constant mass flux velocity. The parameter \(\varepsilon\) is the stretching/shrinking parameter where \(\varepsilon > 0\) corresponds to the stretching case and \(\varepsilon < 0\) corresponds to the shrinking case.
The set of governing boundary layers Eqs. (1)-(5) in partial differential equation (PDE) form is reduced to set the coupled ordinary differential equation (ODE) by using the following similarity transformation

$$\eta = (a/v)^{1/2} y, \quad \psi = (a/v)^{1/2} \, x f (\eta), \quad \omega = a (a/v)^{1/2} g (\eta),$$
$$\theta = (T - T_o)/(T_w - T_o), \quad \phi = (C - C_o)/(C_w - C_o),$$

where $\eta$ is the similarity variable, $v$ is the kinematic viscosity and $\psi$ is the stream function defined as $u = \partial \psi/\partial y$ and $v = -\partial \psi/\partial x$, altogether satisfying Eq. (1). By substituting Eq. (8) in Eqs. (2)-(5), the following ODEs are obtained

$$\left( 1 + K \right) f'''' + 2ff' + Kg' + Mf' + \lambda \theta + N\phi = 0,$$  
(9)

$$\left( 1 + \frac{K}{2} \right) g'' + f'g + gK' - K(2g + f'') = 0,$$  
(10)

$$\frac{1}{Pr} \theta'' + \left[ f \theta' - (\theta + \delta_1) f' + Q\theta \right] = 0,$$  
(11)

$$\frac{1}{Sc} \phi'' + \left[ f \phi' - (\phi + \delta_2) f' - Cr\phi \right] = 0.$$  
(12)

Here, prime denote differentiation with respect to the similarity variable $\eta$, $f(\eta)$ is the dimensionless stream function, $g(\eta)$, $\theta(\eta)$ and $\phi(\eta)$ are the dimensionless angular velocity, the dimensionless temperature and the dimensionless concentration of the fluid in the boundary layer region, respectively. The parameter $K = \kappa/\mu$ is the material parameter where $K = 0$ and $K > 0$ represent Newtonian fluid and micropolar fluid. The parameter $M = \sigma_w B_o^2 / \rho a$ is the magnetic field parameter, $Q = Q_o / \rho C_p a$ is the heat source parameter, $\lambda = Gr / \text{Re}_x^2$ is the thermal buoyancy parameter with $\lambda > 0$ corresponding to the assisting flow and $\lambda < 0$ refers to the opposing flow, $N = Gr^*/\text{Re}_x^2$ $N$ is the solutal buoyancy parameter where $Gr^* = g \beta_c \Delta T x^3 / \nu^2$ is the local Grashof number due to temperature and $Gr^* = g \beta_c \Delta C x^3 / \nu^2$ is the local Grashof number due to concentration. The parameter $Pr = \nu/\alpha$ is the Prandtl number, $\delta_1 = H/A$ is the thermal stratification parameter, $\delta_2 = P/E$ refers to the solutal stratification parameter, $Sc = \nu/D$ is the Schmidt number and $Cr = k_o/\alpha$ is the chemical reaction parameter.

Following the similarity transformation from Eq. (8), the associated boundary condition in Eqs. (6) and (7) turn into

$$f (0) = S, \quad f'(0) = \varepsilon, \quad g (0) = -mf'''(0), \quad \theta(0) = 1 - \delta_1, \quad \phi(0) = 1 - \delta_2,$$
$$f'(\eta) \rightarrow 0, \quad g(\eta) \rightarrow 0, \quad \theta(\eta) \rightarrow 0, \quad \phi(\eta) \rightarrow 0,$$

where $S = v_w / -{(av)^{1/2}}$ is the suction parameter with $v_w < 0 (S > 0)$ for suction and $v_w > 0 (S < 0)$ for injection. The quantities of interest in this study are
\[ C_f = \frac{\tau_w}{\rho u_w^2}, \quad M_w = \frac{m_w}{\rho u_w^2}, \quad Nu_x = \frac{xq_w}{k(T_w - T_0)}, \quad Sh_x = \frac{xq_m}{D_h(C_w - C_0)} \]  
\tag{14}

where \( k, \tau_w, m_w, q_w \) and \( q_m \) are fluid thermal conductivity, the wall shear stress, the wall couple stress, the surface heat flux and the surface mass flux, respectively as given

\[ \tau_w = \left( \mu + \kappa \right) \left( \frac{\partial u}{\partial y} \right)_{y=0}, \quad m_w = -\gamma \left( \frac{\partial \omega}{\partial y} \right)_{y=0}, \quad q_w = -k \left( \frac{\partial T}{\partial y} \right)_{y=0}, \quad q_m = -D \left( \frac{\partial C}{\partial y} \right)_{y=0}. \]  
\tag{15}

By substituting Eq. (15) into Eq. (14), we obtain the reduced skin friction coefficient \( \text{Re}_x^{1/2} C_f \), the local Nusselt number \( \text{Re}_x^{1/2} Nu_x \) and the local Sherwood number \( \text{Re}_x^{1/2} Sh_x \) as follow

\[ \text{Re}_x^{1/2} C_f = \left( 1 + (1-m)K \right) f''(0), \quad \text{Re}_x M_w = \left( 1 + \frac{K}{2} \right) g'(0), \]  
\[ \text{Re}_x^{1/2} Nu_x = -\theta'(0), \quad \text{Re}_x^{1/2} Sh_x = -\phi'(0). \]  
\tag{16}

3. Results and Discussion

The nonlinear ordinary differential equations in Eqs. (9)-(12) accompanying the boundary equations in Eq. (13) are solved numerically with assistance of bvp4c solver in MATLAB software. This method has been widely used by several researchers in solving fluid flow and heat transfer problems, for example by Zaimi and Ishak [12], Yusof et al., [13], Yashkun et al., [14], Kamal et al., [15], and Ferdows et al., [16]. For the purpose of obtaining the mathematical results, we have fixed the values of several parameters \( K = M = N = 1, \ Pr = 7, \lambda = -1, \ Sc = 0.78, \delta_1 = 0.1, \delta_2 = 0.2, \ S = 2 \) and \( m = 0 \).

Numerical results were obtained for different values \( \varepsilon, Cr \) and \( Q \) in order to see their influence on the flow field and the quantities of physical interest in the presents study. Table 1 elucidates the values of \( -\theta'(0) \) and \( -\phi'(0) \) highlighted in the paper by Srinivasacharya and Upendar [5], and Khashi’ie et al., [7] for different values of \( M \) for \( K = N = \lambda = \Pr = 1, \delta_1 = 0.1, \ Sc = \delta_2 = 0.2, \ S = \varepsilon = m = 0 \) and \( \eta_w = 25 \) in Eqs. (9)-(13). The comparison is drawn by neglecting the heat source and chemical reaction effects (by setting \( Q = 0 \) and \( Cr = 0 \) in Eqs. (11)-(12)). The comparison is in excellent agreement and leads to the confidence of the present numerical results to be reported further. Further, Tables 2 and 3 tabulated the values of \( f''(0), \ g'(0), \ -\theta'(0) \) and \( -\phi'(0) \) for different values of \( Cr \) and \( Q \) when \( K = M = N = 1, \ Pr = 7, \lambda = -1, \ Sc = 0.78, \delta_1 = 0.1, \delta_2 = 0.2, \ S = 2, \ m = 0 \) and \( \varepsilon = -2 \).
Table 1
Comparison values of $-\theta'(0)$ and $-\phi'(0)$ for different values of $M$ for 

$K = N = \lambda = Pr = 1$, $\delta_1 = 0.1$, $Sc = \delta_2 = 0.2$, $S = \varepsilon = m = 0$ and $\eta_\infty = 2.5$ in the absence of heat source and chemical reaction effects ($Q = 0$, $Cr = 0$)

| $M$  | $-\theta'(0)$  | $-\phi'(0)$  |
|------|----------------|--------------|
| 0    | 0.62576        | 0.62289      |
| 0.5  | 0.58929        | 0.55941      |
| 1    | 0.559410       | 0.23958      |
| 1.5  | 0.534243       | 0.224371     |
| 2    | 0.512573       | 0.258241     |
| 2.5  | 0.493592       | 0.21172      |
| 3    | 0.476742       | 0.191774     |
| 3.5  | 0.461623       | 0.183774     |
| 4    | 0.447938       | 0.176634     |
| 4.5  | 0.435460       | 0.170320     |
| 5    | 0.424013       | 0.164654     |
| 10   | 0.344640       | 0.128504     |

Table 2
The values of $f''(0)$, $g'(0)$, $-\theta'(0)$ and $-\phi'(0)$ for different values of $Q$ when 

$K = M = N = 1$, $Pr = 7$, $\lambda = -1$, $Sc = 0.78$, $\delta_1 = Cr = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$

| $Q$  | $f''(0)$  | $g'(0)$  | $-\theta'(0)$  | $-\phi'(0)$  |
|------|------------|----------|----------------|--------------|
| 0    | 2.003328   | -1.051363| 8.319752       | -0.936619    |
| 0.1  | 2.020590   | -1.052411| 8.871766       | -0.906988    |
| 0.2  | 2.056005   | -1.054243| 10.171305      | -0.855279    |
| 0.3  | 2.117810   | -1.057211| 12.587756      | -0.776627    |
| 0.4  | 2.208256   | -1.061485| 16.251232      | -0.672434    |

Table 3
The values of $f''(0)$, $g'(0)$, $-\theta'(0)$ and $-\phi'(0)$ for different values of $Cr$ when 

$K = M = N = 1$, $Pr = 7$, $\lambda = -1$, $Sc = 0.78$, $\delta_1 = Q = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$

| $Cr$ | $f''(0)$  | $g'(0)$  | $-\theta'(0)$  | $-\phi'(0)$  |
|------|------------|----------|----------------|--------------|
| 0    | 1.937599   | -1.040979| 8.424528       | -0.779911    |
| 0.1  | 2.020590   | -1.052411| 8.871766       | -0.906988    |
| 0.2  | 2.104432   | -1.064297| 9.224810       | -1.049855    |
| 0.3  | 2.190522   | -1.076444| 9.512989       | -1.209996    |
| 0.4  | 2.279882   | -1.089842| 9.754033       | -1.389385    |

Influences of heat source $Q$ on fluid velocity $f'(\eta)$, temperature $\theta(\eta)$ and concentration $\phi(\eta)$ are demonstrated in Figures 2-4. From Figure 2, it is seen that the fluid velocity is increased as the values of the heat source parameter $Q$ arises. This trend is obtained because heat source increases the momentum boundary layer thickness as portrayed in Figure 2.

The impact of the heat source parameter on the fluid temperature is elucidated in Figure 3. It is concluded that the temperature and the thermal boundary layer thickness decrease when the heat source arises.
Fig. 2. The velocity profile $f' (\eta)$ for different values of $Q$ with $\lambda = -1$, $K = M = N = 1$, $Pr = 7$, $Sc = 0.78$, $\delta_1 = C r = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$.

Fig. 3. The temperature profile $\theta (\eta)$ for different values of $Q$ with $\lambda = -1$, $K = M = N = 1$, $Pr = 7$, $Sc = 0.78$, $\delta_1 = C r = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$.

From Figure 4, it is observed that an increase in the heat source parameter creates a reduction in the fluid concentration. This situation happens due to the heat source effect which leads to the reduction in the concentration boundary layer thickness by increasing the values of $Q$. 
Fig. 4. The concentration profile $\phi(\eta)$ for different values of $Q$ with $\lambda = -1$, $K = M = N = 1, Pr = 7, Sc = 0.78, \delta_1 = Cr = 0.1, \delta_2 = 0.2, S = 2, m = 0$ and $\varepsilon = -2$

Figures 5–7 display the variation of $f''(0)$, $-\theta'(0)$ and $-\phi'(0)$ with stretching/shrinking parameter $\varepsilon$ for different values of $Cr$ for the opposing flow ($\lambda = -1$), respectively. The critical values of $\varepsilon$ denoted by $\varepsilon_c$ for $Q = 0, 0.1$ and $0.3$ are $\varepsilon_c = -2.3305, -2.2617$ and $-2.1643$ in a way that the similarity solution of ODEs in Eqs. (9)-(13) exists.

It is clear in Figure 5 that the heat source effect increases the velocity gradient $f''(0)$ and as a result, the skin friction coefficient along the surface of the vertical sheet increases. This phenomenon occurs because of the increased rate of velocity with the heat source parameter. This finding is consistent with the graph presented in Figure 2.
Figure 6 is sketched to see the effect of the heat source on the temperature gradient $-\theta'(0)$. Imposing the heat source effect leads to an increase in the temperature gradient $-\theta'(0)$ and in turn increasing the local Nusselt number which represents the heat transfer rate at the surface.

On the other hand, the magnitude of the concentration gradient $-\phi'(0)$ is reduced by imposing the heat source effect as illustrated in Figure 7. These findings Figures 5-7 are supported by the values of $f''(0), -\theta'(0)$ and $-\phi'(0)$ presented in Table 2.

Figures 8-10 are drawn to investigate the influence of the chemical reaction parameter $Cr$ on the profiles of velocity $f'(\eta)$, temperature $\theta(\eta)$ and concentration $\phi(\eta)$ of the fluid, respectively. Similar to heat source effect on velocity, it is found that the rise in the value of the chemical reaction
has increased the velocity of the fluid as shown in Figure 8. This phenomenon occurs as the momentum boundary layer thickness becomes thinner as the chemical reaction effect is imposed in the flow and in turn increases the value of the velocity gradient at the surface. As a result, the skin friction coefficient at the surface increases as can be seen in Figure 11.

Fig. 8. The velocity profile $f'(\eta)$ for different values $Cr$ of with $\lambda = -1$, $K = M = N = 1$, $Pr = 7$, $Sc = 0.78$, $\delta_1 = Q = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$

Fig. 9. The temperature profile $\theta(\eta)$ for different values $Cr$ of with $\lambda = -1$, $K = M = N = 1$, $Pr = 7$, $Sc = 0.78$, $\delta_1 = Q = 0.1$, $\delta_2 = 0.2$, $S = 2$, $m = 0$ and $\varepsilon = -2$
Fig. 10. The concentration profile $\phi(\eta)$ for different values $Cr$ of with
$
\lambda = -1, K = M = N = 1, Pr = 7, Sc = 0.78, \delta_1 = Q = 0.1, \delta_2 = 0.2, S = 2, m = 0$ and $\varepsilon = -2$

The curves of the temperature profile for some values of $Cr$ are shown in Figure 9. It can be assured that the increasing chemical reaction strength has decreased the dimensionless temperature. As the consequence, the thermal boundary layer thickness decreases and hence enhances the heat transfer rate at the surface as depicted in Figure 12.

The influence of the chemical reaction on the concentration profile is delineated in Figure 10. It can be noted that imposing chemical reaction leads to an additional heat to the fluid flow and hence enhances the concentration as portrayed in Figure 10.

Figures 11-13 are plotted in order to see the impacts of the chemical reaction parameter on the velocity gradient at the surface, $f''(0)$, the temperature gradient at the surface, $-\theta'(0)$ and the concentration gradient at the surface, $-\phi'(0)$. These Figures 11-13 are directly representing the skin friction coefficient, the local Nusselt number and the local Sherwood number, respectively.

It is observed that as the chemical reaction parameter increases, the skin friction coefficient, the local Nusselt number and the magnitude of the local Sherwood number increase. This is because as the chemical reaction parameter increases, the velocity and concentration increase (see Figures 8 & 10) while the temperature act in the opposite manner (see Figure 9). As a result, the skin friction, heat, and mass transfer at the surface are enhanced by way of imposing the chemical reaction parameter as illustrated in Figures 11-13. Finally, it is important to highlight that all the velocity, temperature and concentration distributions are presented in Figures 2-4 and Figures 8-10 satisfy the far field boundary conditions in Eq. (13) asymptotically and indirectly leading to the confidence to the present numerical results obtained.
Fig. 11. Variation of $f''(0)$ with $\varepsilon$ for different values of $Cr$ with $\lambda = -1$, $K = M = N = 1, Pr = 7, Sc = 0.78, \delta_1 = Q = 0.1, \delta_2 = 0.2, S = 2, m = 0$

Fig. 12. Variation of $-\theta'(0)$ with $\varepsilon$ for different values of $Cr$ with $\lambda = -1$, $K = M = N = 1, Pr = 7, Sc = 0.78, \delta_1 = Q = 0.1, \delta_2 = 0.2, S = 2, m = 0$
4. Conclusions

A steady MHD micropolar fluid flow on double stratification over a permeable a stretching/shrinking vertical sheet with the existence of chemical reaction and heat source effects are studied. The investigations have been conducted numerically by using bvp4c solver in MATLAB software. The present numerical results have also been compared with the published work for limited case and the comparison are in good agreement. The major outcomes of the present study are as follows

i. Fluid velocity increases while both the temperature and concentration decrease due to the heat source effect.

ii. Both velocity and concentration of the fluids increase with the increasing of chemical reaction parameter while the fluid temperature acts in the opposite behavior.

iii. The skin friction coefficient and local Nusselt number which represent the heat transfer rate at the surface are enhanced in the presence of the chemical reaction and heat source effect.

iv. In contrast, the magnitude of the Sherwood number which represents the mass transfer rate at the surface decreases as the heat source parameter arises while it increases with the chemical reaction effect.

Acknowledgement

The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia.

References

[1] Eringen, A. Cemal. "Theory of micropolar fluids." Journal of Mathematics and Mechanics (1966): 1-18. https://doi.org/10.1512/iumj.1967.16.16001

[2] Eringen, A. Cemal. "Theory of thermomicrofluids." Journal of Mathematical Analysis and Applications 38, no. 2 (1972): 480-496. https://doi.org/10.1016/0022-247X(72)90106-0
Ahmad, Kartini, Anuar Ishak, and Roslinda Nazar. "Micropolar fluid flow and heat transfer over a nonlinearly stretching plate with viscous dissipation." *Mathematical Problems in Engineering* 2013 (2013). https://doi.org/10.1155/2013/257161

Lukaszewicz, Grzegorz. *Micropolar fluids: theory and applications*. Springer Science & Business Media, 1999. https://doi.org/10.1007/978-1-4612-0641-5_5

Srinivasacharya, D., and Mendu Upendar. "Effect of double stratification on MHD free convection in a micropolar fluid." *Journal of the Egyptian Mathematical Society* 21, no. 3 (2013): 370-378. https://doi.org/10.1016/j.joems.2013.02.006

Rashad, A. M., S. Abbasbandy, and Ali J. Chamkha. "Mixed convection flow of a micropolar fluid over a continuously moving vertical surface immersed in a thermally and solutally stratified medium with chemical reaction." *Journal of the Taiwan Institute of Chemical Engineers* 45, no. 5 (2014): 2163-2169. https://doi.org/10.1016/j.jtice.2014.07.002

Khashi’ie, Najiyah Safwa, Norihan Md Arifin, Roslinda Nazar, Ezad Hafidz Hafidzuddin, Nadihah Wahi, and Ioan Pop. "Mixed convective flow and heat transfer of a dual stratified micropolar fluid induced by a permeable stretching/shrinking sheet." *Entropy* 21, no. 12 (2019): 1162. https://doi.org/10.3390/e21121162

Ibrahim, S. Mohammed and K. Suneetha. "Heat source and chemical effects on MHD convection flow embedded in a porous medium with Soret, viscous and Joules dissipation." *Ain Shams Engineering Journal* 7, no. 2 (2016): 811-818. https://doi.org/10.1016/j.asej.2015.12.008

Guram, G.S. and A.C. Smith. "Stagnation flows of micropolar fluids with strong and weak interactions." *Comp. Math. Appl.* 6, no. 2 (1980): 213–233. https://doi.org/10.1016/0898-1221(80)90030-9

Ahmadi, Goodarz. "Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate." *Int. J. Eng. Sci.* 14, no. 7 (1976): 639–646. https://doi.org/10.1016/0020-7225(76)90006-9

Peddieson, J. Jr. "An application of the micropolar fluid model to the calculation of a turbulent shear flow." *Int. J. Eng. Sci.* 10, no. 1 (1972): 23–32. https://doi.org/10.1016/0020-7225(72)90072-9

Zaimi, Khairy, and Anuar Ishak. "Stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet in a micropolar fluid." In *Abstract and Applied Analysis*, vol. 2014. Hindawi, 2014. https://doi.org/10.1155/2014/261630

Nur Syamil Yusof, Siti Khuzaimah Soid, Mohd Rijal Illias, Ahmad Sukri Abd Aziz, and Nor Ain Azeany Mohd Nasir. "Radiative Boundary Layer Flow of Casson Fluid Over an Exponentially Permeable Slippery Riga Plate with Viscous Dissipation." *Journal of Advanced Research in Applied Sciences and Engineering Technology* 21, no. 1 (2020): 41-51. https://doi.org/10.37934/araset.21.1.4151

Yashkun, Ubaidullah, Khairy Zaimi, N. A. Abu Bakar, and Mohammad Ferdows. "Nanofluid stagnation-point flow using Tiwari and Das model over a stretching/shrinking sheet with suction and slip effects." *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences* 70, no. 1 (2020): 62-76. https://doi.org/10.37934/arfmlts.70.1.6276

Kamal, Fatinnabila, Khairy Zaimi, and Anuar Ishak. "Analisis kestabilan aliran genangan bagi bendalir mikrokutub terhadap permukaan mencancang dengan flusu haba ditetapkan." *Sains Malaysiana* 49, no. 4 (2020): 899-908. https://doi.org/10.17576/jsm-2020-4904-19

Ferdows, Mohammad, Khairy Zaimi, Ahmed M. Rashad, and Hossam A. Nabwey. "MHD bioconvection flow and heat transfer of nanofluid through an exponentially stretchable sheet." *Symmetry* 12, no. 5 (2020): 692. https://doi.org/10.3390/sym12050692