Particularities of Using Contrast Agents in Diagnosis of Stroke

DAN IULIAN CUCIUREANU1, CRISTIAN STATESCU2*, RADU ANDY SASCAU2*, VICTOR ALEXANDRU CONSTANTINESCU3, DELIA HINGANU4, CRISTINA PREDA5, MARIUS VALERIU HINGANU6, MIHAELA DANA TURLIUC7

1Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, III-rd Medical Department, 16 Universitatii Str., 700115, Iasi, Romania
2Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, II-nd Medical Department, 16 Universitatii Str., 700115, Iasi, Romania
3Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, I-st Medical Department, 16 Universitatii Str., 700115, Iasi, Romania
4Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, Department of Morpho-Functional Sciences I, 16 Universitatii Str., 700115, Iasi, Romania
5Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, II-nd Medical Department, 16 Universitatii Str., 700115, Iasi, Romania
6Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, II-nd Surgical Department, 16 Universitatii Str., 700115, Iasi, Romania

Stroke is the first cause of disability, the second cause of dementia and the third cause of mortality in industrialized countries. Due to its increasing incidence, there is a need to study the possibilities of early prevention and diagnosis. Our study was conducted on a group of 165 selected patients diagnosed with different forms of ischemic strokes, aged between 25 and 50 years. We explored them using contrast injected MRI technique, to show the usefulness of this radiologic method and to propose a protocol for the investigation of clinically diagnosed patients with stroke. Contrast injected MRI is demonstrated to be a gold technique in exploring early cases of ischemic stroke with different anomalies. Special agents combined with this technique allows assessment of the functionality of the blood-brain barrier, revealing the real ischemic penumbra.

Keywords: ischemic stroke, blood-brain barrier, MRI with contrast agents
Experimental part

Material and methods

Our study was conducted on a group of 165 selected patients diagnosed with different forms of IS, aged between 25 and 50 years, admitted to the I-st Neurology Clinic of the “Prof. Dr. Nicolae Oblo” Clinical Hospital in the period 2014-2018.

The 165 cases were analyzed taking into account all aspects of the epidemiological and etiopathogenic data suggested by the clinical examination and revealed by the laboratory examinations.

The examination was performed following the clinic protocol, with particular attention to clinical, ophthalmic, cardiological, ECG, and ECHO Doppler vascular examinations.

All the selected patients were examined by MRI contrast technique after initial native scan. This was performed after entire routine examination protocol.

We must emphasize that patients or their owners have previously signed the informed consent forms on the methods of investigation and treatment.

The contrast agent routinely used in MRI examinations is based on iodine in various combinations and concentrations, with lately developing isosomolar and hypoallergenic compounds in order to reduce the frequency of possible side effects.

The radiologist will decide upon the need to use the contrast agent in the course of the investigation, depending on the pathology of the patient and of course the changes encountered during the initial native scan and taking into account the benefit/risk ratio of each case.

Routine contrast agents are used in MRI examinations to increase the natural contrast of blood vessels and certain portions of the encephalus, resulting in a diagnosis of certainty. In the case of highlighted injuries, their particular vascular criteria give additional information for diagnosis.

For this we used the following exam protocol:
- weight ratio in sagittal section (number of slots 30, slice thickness 4mm, matrix 218x256, TA 3:20)
- weighted t2 sagittal iso 1.0 (3D sequence, sagittal acquisition and axial and coronal reconstruction, 1mm acquisition and reconstruction slice, matrix 202x256, TA 5:17)
- ep2d_diff_3scan_trace_p2 (diffusion, slice number 30, slice thickness 4mm, matrix 192x192, TA 2:18)
- t2_sw1d_tra (slice number 30, slice thickness 2mm, matrix 186x256, TA 3:38)
- spc_ir_cor_p2_iso (oblique, perpendicular to the hippocampus) (3D sequence, coronal acquisition and axial reconstruction, 1mm acquisition and reconstruction slice, 202x256 array, TA 4:26)
- t2_tse_cor (oblique, perpendicular to the hippocampus) (slice number 50, slice thickness 2mm, TA 4:26, matrix 307x256)
- t1_mprage_tra (3D sequence, axial acquisition and sagittal and coronal reconstruction, 1mm reconstruction acquisition slice, 246x256 array, TA 5:34) Contrast agent injected
- t1_mprage_tra (3D sequence, axial acquisition and sagittal and coronal reconstruction, 1mm acquisition and reconstruction slice, 246x256 matrix, TA 5:34)
- t1_se_tra_320_MTC (slice number 30, slice thickness 4mm, matrix 256x320, TA 3:25)

Device Type: Siemens Essenza Tim-Dot, 1.5T

Abbreviations list: TA = acquisition time; Total TA = 45min; FOV = field of view = 230-250mm.

Results and discussions

The cases investigated by the mentioned protocol were diagnosed as follows:
- 82 patients with atherosclerotic stroke (49.70%);
- 78 with embolic stroke (47.27%);
- 5 with haemorrhagic stroke (3.03%).

Five of them died shortly after paraclinical investigation due to the severity of stroke and associated comorbidities. 58% of the patients were male and 42% females.

The obtained images emphasizes the utility of contrast agents in MRI examination and the particularly high degree of acuity of this technique.

In patients with atherosclerotic disease, 92.13% of the strokes occurred in the territory of the internal carotid artery (fig. 1).

In the case of patients with embolic strokes, the territory of the internal carotid artery was also predominantly affected but with lesser extent - 53.85% (fig. 2).

Most of the haemorrhagic strokes (80%) occurred in the territory of the internal carotid artery (fig. 3).
In the case of vascular accidents due to atherosclerosis and embolic causes, the MRI contrast technique shows with high acuity the affected blood vessel and its segment.

In the case of haemorrhagic vascular accidents, besides the objection of the affected blood vessel, the MRI with the contrast substance shows the degree of extravasation of the blood flow.

This is performed in T1-weighted images, left field without and right field with contrast medium administration. We have used Omniscan which is a gadodiamide and Magnevist which is a gadopentetate substance.

T2-based arterial spin labeling (ASL) method with 3D readout could be used to measure the water transfer processes between arterial blood and brain tissue based on a 3D-GRASE (gradient and spin echo) pulsed ASL sequence with multiecho readout. Also, these agents are used for highlighting the blood vessels in MRI angiography and/or brain tumor associated with the degradation of the blood–brain barrier. In case of large blood vessels gadolinium dose could be lowered to 0.1 mmol/kg body mass and higher concentrations are used for thinner vasculature. This great utility of the paramagnetic agents is given by the chelates they contain which do not pass the intact blood–brain barrier because they are hydrophilic. Thus, these are useful in enhancing lesions and tumors where blood-brain barrier is compromised and the Gd leaks out. After a while the contrast agent will distribute into the interstitial space and will be eliminated by the kidneys.

Apart from the already known advantages of the IRM radiological investigation technique, particularly in the case of brain exploration, it has some great advantages [14-16]. These include the high acuity and sensitivity of this technique, the possibility of functional explorations and 3D reconstruction.

Native exploration is important in highlighting the affected brain territory [17, 18].

Applying these notions to patients diagnosed with stroke, MRI is of particular interest.

In MRI, the very recent hematoma is iso-intense in T1 and hypointense in T2. Gadolinium (Gd/paramagnetic) are the most common agents used to detect the effect upon the blood–brain barrier [19-21] of a stroke shown in MRI. These signals change differently to become hyperintense on T1 and T2 from day 5. From day 15, a hyposignal ring appears at T1 and T2, corresponding to hemosiderin deposits.

Exploration includes blood and tissue compartment, T1 and T2 relaxation, and a blood-to-tissue transfer sequence [22, 23]. T1 sequences are extremely useful in detecting transient ischemic strokes and their differentiation from epilepsy attacks or other causes of loss of consciousness [24, 25].

Even if gadolinium-based contrast agents appear to be safe in pregnancy, none of the female patients in our group were pregnant. There is no rigorous method for assessing the risk of bleeding. In this regard, a micellar polymeric MRI contrast agent is used [26-29].

Knowing the functional anatomy of the blood-brain barrier is of utmost importance for the understanding of ischemia-reperfusion injuries that are directly related to haemorrhagic transformation. rtPA (the recombinant human plasminogen activator) increases the risk of symptomatic post-reperfusion intracranial haemorrhage. Modern radiological techniques allow understanding of the pathological disorders of blood-brain barrier, and MRI can be a rigorous method for assessing the risk of bleeding. In this regard, a micellar polymeric MRI contrast agent is used [30-32].

Conclusions

MRI with contrast substance is a basic technique in diagnosing and evaluating the prognosis of patients diagnosed with stroke. The use of special contrast agents opens the way for their MRI functional exploration and monitoring.

References

1. AMARENCO, P., BOGOUSSLAVSKY, J., CAPLAN, L.R., DONNAN, G.A., HENNENERICI, M.G., Cerebrovasc Dis., 27, no. 5, 2009, p. 493.
2. BAMFORD, J., SANDERCOCK, P.A., DENNIS, M.S., BURN, J., WARLOW, C.P., Lancet, 337, 1991, p. 1521.
3. ADAMS, H.P., BENDIXEN, B.H., KAPPELLE, L.J., BILLET, J., LOVE, B.B., GORDON, D.L., MARSH, E.E., Stroke, 24, 1993, p. 35.
4. AY, H., FURIE, K.L., SINGHAL, A., SMITH, W.S., SORENSEN, A.G., KOROSHEZT, W.J., Ann Neurol, 58, 2005, p. 688.
5. GOLDSTEIN, L.B., JONES, M.R., MATCHAR, D.B., LLOYD, J.E., HOFF, J., CHILUKURI, V., ARMSTRONG, S.B., HORNER, R.D., Stroke, 32, 2001, p. 1091.
6. MOHR, J.P., CAPLAN, L.R., MELSKI, J.W., GOLDSTEIN, R.J., DUNCAN, G.W., KISTLER, J.P., PESSIN, M.S., BLEICH, H.L., Neurology, 28, 1978, p. 754.
7. MINDRUTA, I.R., BAJENARU, O.A., PANE, C.A., et al. Experience with lacosamide in treating focal epilepsy patients in Romania: efficacy, safety and time to reach treatment (abstract no. p.332). Epilepsia. 2014;55(Suppl 2):110.
8. HINGANU, D., HINGANU, M.V., Mihalceanu, E., CALIN, A.M., PANGAL, A., Costachescu, G., Romila, A., RevChim.(Bucharest), 69, no. 2, 2018, p. 714.
9. SALARU, D.L., MACOVEI, L., STATESCU, C., ARSENESCU-GEORGESCU, C., Assessment of microalbuminuria in hypertensive patients with established coronary artery disease. REVISTA ROMANA DE MEDICINA DE LABORATOR, 21, no.4, 2013, p. 407. DOI: 10.2478/ rrlm-2013-0041.
10. VASILCU, T.F., STATESCU, C., SASCARU, R., ROCA, M., COSTEA, C.F., ZOTTA, M., BARARU, I., CONSTANTIN, M.L., MITU, F., RevChim.(Bucharest), 69, no.8, 2018, p. 2283.
11. KILINC, Y., SASMAZ, I., BOZKURT, A., ANTEMEN, B., ACARTÜRK, E., Curr Ther Res Clin Exp, 64, no.7, 2003, p. 461.
12. ING, J.J., SMITH, D.C., BULL, B.S., Radiology, 172, 1989, p.:345.
13. RUSU, A.R.G., TARTAU, I.M., STASESCU, C., BOANCA, M., POROCH, V., LIPUSORU, R.V., DIMA, N., BADESCU, C., REZUS, E., REZUS, C., LIPUSORU, C.E., Rev.Chim.(Bucharest), 69, no.6, 2018, p. 1493.
14. HINGANU, D., SCUTARIU, M.M., HINGANU, M.V., The existence of labial SMAS — Anatomical, imaging and histological study. Annals of Anatomy-Anatomischer Anzeiger, 218, 2018, p. 271. https://doi.org/10.1016/j.aanat.2018.04.009.
15. HINGANU, M.V., D. HINGANU, D., COZMA, S.R., ASIMIONOAIEI-SIMIONESCU, C., SCUTARIU, I.A., IONESIE, D.S., HABA, D., Annals of Anatomy, 220, 2018, p.1; https://doi.org/10.1016/j.aanat.2018.06.008.
16. CUCIUREANU, D.I., CONSTANTINESCU, I.M., CUCIUREANU, T., Brain tuberculomas revealed by epileptic generalized seizures after tuberculostatic treatment: a case report. [abstract no. p0516]. Epilepsia; 2015; 56(suppl. 1): 128.
17. LENTSCHIG, M.G., REIMER, P., RAUSCH-LENTSCHIG, U.L., ALLKEMPER, T., REICHENBACH, A., HARTIG, W., MICHALSKI, D., J Cereb Blood Flow Metab., 35, no.2, 2015, p. 292.
18. WHITELEY, W.N., THOMPSON, D., MURRAY, G., COHEN, G., LINDELEY, R.I., WARDLAW, J., Stroke, 45, 2014, p. 1000.
19. HINGANU, M.V., SALAHORU, P., HINGANU, D., Rev Med Chir Soc Med Nat Iasi, 122, no.3, 2018, p. 522.
20. HINGANU, D., HINGANU, M.V., CIUPILAN, C., Rev.Chim.(Bucharest), 69, no.4, 2018, p. 1002.

Manuscript received 8.08.2018