Many have stridently recommended banning markets like the one where coronavirus disease 2019 (COVID-19) originally spread. We highlight that millions of people around the world depend on markets for subsistence and the diverse use of animals globally defies uniform bans. We argue that the immediate and fair priority is critical scrutiny of wildlife trade.

Novel COVID-19

Classified as a pandemic by the World Health Organization on 11 March 2020, a marketplace in Wuhan, China has been identified as a hotspot for the early spread, and perhaps origin, of COVID-19 [1]. Since the outbreak began in December 2019, the virus has spread to more than 200 countries with global fatalities presently exceeding 367,000 as of 31 May 2020 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019). Extreme forecasts predicted that >2.7 million people could die of COVID-19 in the US and UK alone (https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf). The restrictive measures implemented to limit disease spread have involved evacuated schools and university campuses, cancelled sporting events and public gatherings, broad-scale travel bans, and stay-at-home ordinances. Byproducts of these measures include widespread unemployment, closure of many small and independent businesses, geopolitical discourse about globalization, and an economic recession sweeping the world almost as swiftly as the disease itself. This calamity leaves the world’s governments and thought leaders searching for answers. Such answers are urgent not only for human health but also for conservation.

Zoonotic Origins of Many Pandemics

What COVID-19 has made clear is that we have not learned the lessons from past pandemics. Approximately three-quarters of emerging infectious diseases in humans are zoonotic in origin [2]. The COVID-19 outbreak is but one of many pandemics that have been triggered by human–animal interaction (Figure 1). The plagues were likely spread by the Yersinia pestis bacterium associated with rats (Rattus spp.) and their fleas [3]. Cohabitation with rats killed hundreds of millions of people in these pandemics (Figure 1). Even more directly, many others have been initiated by the handling or consumption of wildlife as meat or medication, real or imagined (Figure 1).

Such pathways of zoonotic disease transmission have been vociferously highlighted as a prime trigger of pandemics [4].

HIV, for instance, which has killed upwards of 35 million people to date, derived from the butchery of wild chimpanzees (Pan troglodytes) as meat [5] (Figure 1). The 2009 novel H1N1 influenza virus, which passed from infected pigs to humans at a meat production facility in Mexico [6], killed a (confirmed) minimum of 18,500 people, with the actual toll likely an order of magnitude, or more, higher [7] (Figure 1). Today, several wild animals are candidates for the reservoir of COVID-19 [8]. Although the source species has yet to be formally identified, bats (Order Chiroptera) and pangolins (Family Manidae) have been implicated as intermediate hosts [9] (Figure 1). Prized for their meat and purported medicinal value, several species of pangolin are now endangered and the marketplaces where they, and countless other species, are traded are prime for zoonotic disease transmission [4].

At one such market in Malaysia, animals were found to be hosts for 19 bacteria, 16 parasites, and 16 viruses that could be passed to people [10]. Thus, even in the absence of pandemics, diseases borne from human–animal interaction in markets can kill people and initiate epidemics [11].
Trends in Ecology & Evolution, September 2020, Vol. 35, No. 9

Box 1. Interconnectedness of the World

The COVID-19 pandemic has illustrated the extent to which human communities are linked. Diseases emanating from a single marketplace can spread around the globe in months. Members of both science and society have now stridently called for the outright banning of markets like the one where COVID-19 originally spread. Such calls are understandable, both as humane reactions to the gravity of the COVID-19 pandemic and as tactical efforts to rapidly promote changes that might otherwise take decades to enact. However, in the desire to make the post-COVID-19 world a better one, both for humans and animals, the details matter [12]. We note here that millions of people around the world depend on meat, often wild caught, traded in markets and rural communities for subsistence or ceremonial (Box 1). As global citizens it is in our shared interest then, to preserve human health and conserve the natural world. The development, wellbeing, and biodiversity of coupled human and natural systems must be adopted as a shared but differentiated global obligation, not least because building the wealth of more economically advantaged countries was associated with extirpation of biodiversity. This realization should only increase the obligation to preserve the rapidly dwindling biodiversity.

Figure 1. The Novel COVID-19 Is among Scores of Pandemics That Have Gripped the World since AD 165. The number of deaths and probable origins of these diseases are depicted. Abbreviations: COVID-19, coronavirus disease 2019; MERS, Middle East respiratory syndrome; SARS, severe acute respiratory syndrome.
that remains. Therefore, without taking our eyes off the long game (e.g., carbon neutrality, strategic agriculture, reduced meat dependence, and greater appreciation of conservation value), there is an obvious need, and opportunity, for immediate change. Less obvious, but gravely important, is how best to attend to the details of that change, and these details matter greatly. We suggest that a socially just analysis of the diverse risks and ramifications of trade in wildlife, illegal and legal, should be the priority starting point.

Acknowledgments
We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

1Research on the Ecology of Carnivores and their Prey (RECaP) one anonymous reviewer for editorial comments.

2Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

3We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

4We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

5We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

6We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

7We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

8We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

9We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

10We thank H. Bauer, D. Burnham, P.J. Johnson, E.A. Macdonald, and T. Moorhouse for insightful comments. Thanks to J. Raupp for accuracy and fact-checking support and to A. Stephens, D. Parker, and one anonymous reviewer for editorial comments.

References
1. Wu, F. et al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.
2. Taylor, L.H. et al. (2001) Risk factors for human disease emergence. Philos. Trans. R. Soc. B 356, 983–989.
3. Bramanti, B. et al. (2016) Plague: a disease which changed the path of human civilization. In Yersinia pestis: Retrospective and Perspective, pp. 1–28. Springer.
4. Macdonald, D.W. and Laurenson, M.K. (2006) Infectious disease: inextricable linkages between human and ecosystem health. Biol. Conserv. 2, 143–150.
5. Faria, N.R. et al. (2014) The early spread and epidemic ignition of HIV-1 in human populations. Science 346, 56–61.
6. Fraser, C. et al. (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324, 1557–1561.
7. Dawood, F.S. et al. (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A (H1N1) virus circulation: a modelling study. Lancet Infect. Dis. 12, 637–695.
8. Wang, Y. et al. (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e0127–20.
9. Andersen, K.G. et al. (2020) The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452.
10. Cantlay, J.C. et al. (2017) A review of zoonotic infection risks associated with the wild meat trade in Malaysia. EcoHealth 14, 361–388.

Science & Society
Reframing the Wilderness Concept can Bolster Collaborative Conservation
Álvaro Fernández-Llamazares,1,2,* Julien Terrabe,1,2 Michael C. Gavin,3,4 Alii Pyhälä,1,5 Sacha M.O. Siani,6 Mar Cabeza,1,2 and Eduardo S. Brondizio7

Indigenous territories represent ~45% of land categorized as wilderness in the Amazon, but account for <15% of all forest loss on this land. At a time when the Amazon faces unprecedented pressures, overcoming polarization and aligning the goals of wilderness defenders and Indigenous peoples is paramount, to avoid environmental degradation.

The Wilderness Debate Revisited
While the notion of wilderness dates back centuries in popular culture, the arts, and ecology, it has frequently resurfaced at the heart of the contentious history of conservation policy across much of the Global South, up to this day [1,2]. In fact, the idea of protecting large areas in which humans have theoretically had little or no ecological impact has exercised a strong role in the history of the conservation movement, and remains appealing to some sectors [2]. Yet, the notion of wilderness is rooted in Western and idealized visions of a pristine nature devoid of the destructive impacts of human activity [3,4]. Not surprisingly, and linked to ongoing disagreements around approaches to nature conservation, debates around the concept of wilderness have been polarized and acrimonious [1,2,5].

On the one hand, conservationists using a wilderness framing claim that wilderness areas are critical strongholds for endangered biodiversity, underpinning key regional- and planetary- scale ecological functions, and acting as refugia where ecological and evolutionary processes operate with minimal outside interference [6,7]. However, the implementation of these wilderness preservation agendas has often led to local communities’ displacement, land alienation, and restrictions on both livelihood activities and access to resources [3,4]. On the other hand, detractors of the wilderness concept claim that some of the best-conserved forest ecosystems in the world have been actively shaped and managed by humans over millennia [8,9].

The assumption underlying mainstream conceptualizations of wilderness is that a dichotomy exists between people and nature, and that humans have inherently negative impacts on nature [10]. As such, the continuing use of wilderness as a conservation framing has been seen as reifying the long-standing nature–culture dualism, and conflicting with Indigenous understandings of nature as an interconnected web of life, linking humans and non-humans in complex relationships [4]. However, these conceptualizations of wilderness have not been universally applied, and more recently some conservationists calling for wilderness preservation have emphasized that its core notion does not necessarily exclude people and does not always mean pristine ecosystems.