Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin

Itanna O. Fernandes‡, Jorge L.P. de Souza‡§

‡ Instituto Nacional de Pesquisas da Amazônia - INPA, Coordenação em Biodiversidade - CBio, Av: André Araújo, 2936. Petrópolis, 69067-375, Manaus, Brazil
§ Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos, Instituto de Ciências Exatas e Tecnologia (ICET), Itacoatiara, Brazil

Corresponding author: Itanna O. Fernandes (itanna.fernandes@gmail.com), Jorge L.P. de Souza (souza.jorge@gmail.com)

Academic editor: Francisco Hita Garcia
Received: 09 Feb 2018 | Accepted: 23 Mar 2018 | Published: 2 Apr 2018

Citation: Fernandes I, de Souza J (2018) Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin. Biodiversity Data Journal 6: e24375. doi: https://doi.org/10.3897/BDJ.6.e24375
ZooBank: urn:lsid:zoobank.org:pub:F0F77D85-2CDC-47A1-A60C-ED37E586AA8F

Abstract

Background

Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured
perpendicularly from the river margin towards the interior of the forest. For sampling the
ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is
standardized globally in the inventories of ant fauna. For the purpose of impact indicators,
the first two campaigns (September 2011 to November 2011) were carried out in the pre-
filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out
during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of
9,165 occurrences were accounted during the monitoring. The ants were distributed in 10
subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity
during the periods before and after filling was measured by ecological indicators and by the
presence and absence of some species/morphospecies. This is the first study, as far as we
know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric
power plant on ant fauna.

New information

Until recently, most studies conducted on hydroelectric plants, located in the Amazon
Basin, were carried out after the implementation of dams in order to assess their impacts
on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017,
Sá-Oliveira et al. 2015). Recent studies on dam impacts have begun to be conducted prior
to dam implementation (e.g. Bobrowiec and Tavares 2017, Fraga et al. 2014, Moser et al.
2014), thus providing a better overview of the impact and a better assessment of its
magnitude.

Keywords

Formicidae, biodiversity, species occurrence, standardized sampling protocol, tropical
forest.

Introduction

Biodiversity loss is accelerating rapidly in response to increasing human influence on the
Earth’s natural ecosystems (Pimm et al. 1995, Vitousek 1997). Knowing the spatial and
temporal organization of species in natural environments is essential for the understanding
and conservation of biodiversity (Barton et al. 2013), as well as fostering land management
decisions (Evans and Viengkham 2001). Large-scale, spatially structured sampling is a
powerful tool to help land managers decide where to pursue conservation action most
effectively (Turner et al. 1995). Even today, it is difficult to access accurate information on
the spatial distribution of most organisms and their relationships with environmental
variables at large scales, despite the availability of many methods for biodiversity planning
and conservation (Barlow et al. 2010, Gibson et al. 2011, Margules et al. 2002). There are
databases on species richness (Costello et al. 2013), but richness alone has limited use for
conservation, because it does not give information on many endemic species or the
complementarity of species compositions between regions (Groc et al. 2014, Lamoreux et al. 2005, Sarkar and Margules 2002). Furthermore, most assessments of species–habitat relationships can be compromised if the sampling design of surveys is not spatially clear (Gotelli et al. 2011).

Invertebrate populations can indicate longer-term general ecosystem change, such as restoration of mine sites or climate change (e.g., McGeoch 1998, Bisevac and Majer 1999, Parmesan et al. 1999, York 2000). However, despite recognition that monitoring invertebrates is an important endeavour, widely accepted by national and international funding agencies, monitoring efforts have rarely generated returns commensurate to their investment. All too frequently, insect monitoring lacks both specific goals and a framework detailing how results will be integrated into management decision-making.

One way to overcome these situations is by using good bioindicators taxa, as well as ants, considered particularly useful for monitoring for a number of reasons. Ants are one of the most successful groups of organisms on the planet (Hölldobler and Wilson 1990). To date, approximately 13,360 species of ants (antcat.org), all eusocial, have been described and hundreds of new species are described each year. Ant biologists estimate that the Formicidae family could include no fewer than 20,000 species (Hölldobler and Wilson 1990). All species of ants occupy a nest structure, either temporarily or permanently. These structures can be preexisting cavities or even made their own bodies (e.g. army ants) that do not involve much, if any, excavation or direct modification of the surrounding environments (Guénard 2013). They are abundant and ubiquitous in both intact habitat and disturbed areas (Andersen 1990, Majer 1983, Hoffmann et al. 2000), sampling is relatively easy without requiring enormous expertise (Greenslade and Greenslade 1984, Fisher 1999, Agosti and Alonso 2000, Alonso 2000), and ants have proven sensitive and rapid responders to environmental variables (Campbell and Tanton 1981, Major 1983, Andersen 1990). Moreover, ants are important functionally at many different trophic levels (Alonso 2000), and they play critical ecological roles in soil turnover and structure (Humphreys 1981, Lobry de Bruyn and Conacher 1994), nutrient cycling (Levieux 1983, Lal 1988), plant protection, seed dispersal, and seed predation (Ashton 1979, Beattie 1985, Christian 2001). Together, these qualities suggest ants merit monitoring for their own sake, as they provide high information content about an ecologically and numerically dominant group (Underwood and Fisher 2006). Despite the increased availability of methods for conservation planning, adequate information about the spatial distribution of biodiversity in large regions, such as the Amazon Basin, remains sparse for most biological groups (Margules et al. 2002).

More than a hundred hydropower dams have already been built in the Amazon Basin and numerous proposals for further dam constructions are under consideration (Latrubesse et al. 2017). Recent scientific reviews have considered the environmental impacts of damming Amazonian rivers (Davidson et al. 2012, Castello and Macedo 2015, Winemiller et al. 2016, Fearnside 2016). The accumulated negative environmental effects of existing dams, not to mention proposed dams (if constructed), have triggered massive hydrophysical and biotic disturbances affecting the Amazon Basin’s floodplains, estuaries...
and sediment plumes (Latrubesse et al. 2017), as well as causing losses in river connectivity (Anderson et al. 2018).

The Santo Antônio Hydroelectric Power Plant became operational at the beginning of 2016 in the Madeira River in Rondônia State. Prior to the construction of the Santo Antônio Plant, the fauna and flora of the impacted area were surveyed in environmental impact studies commissioned by the Brazilian Institute of Environment (IBAMA). The Santo Antônio Hydroelectric Power Plant and its accompanying reservoir represent the first time in history, as far as we know, in which a monitoring program of invertebrates was conducted to evaluate the influence before and after the total filling of the dam in the Amazon Basin.

Project description

Title: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of the Santo Antônio Hydroelectric Power Plant in the Madeira River in the Brazilian Amazon

Personnel: Itanna Oliveira Fernandes, Jorge Luiz Pereira de Souza

Study area description: The study was conducted at six sites associated with the Brazilian Biodiversity Research Program (PPBio) — Pedras, Búfalos, Morrinhos, Jaci-Paraná MD, Jaci-Paraná ME and Teotônio modules — within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State.

Design description: Ants were sampled in permanent plots with five samples per sampling method. We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each module, transects have a 1 km distance from each other, following the same spatial design.

Sampling methods

Study extent: The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects (Pedras, Búfalos, Morrinhos, Jaci-Paraná MD, Jaci-Paraná ME and Teotônio modules), each totalling 30 sampling plots. The transects were distributed 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km from the river's edge, measured perpendicularly from the river margin towards the interior of the forest. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out after the filling of the hydroelectric reservoir. The campaigns were conducted during the dry and
rainy seasons of the Amazon over four years, with intervals of three months between each campaign (whenever possible).

Sampling description: Ants were sampled in permanent plots with five samples per sampling method along the transects 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km (Fig. 1). We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each site, plots were 1 km apart from each other, following the same spatial design.

![Image of transects and sampling plots](image)

Figure 1. Transects of each module to collect ants in the influence areas of the Santo Antônio Hydroelectric Power Plant, Porto Velho - RO, with perpendicular distances from the river margin. In details are each transect with a 1 km distance from each other following the same spatial design and each sampling plot in the permanent plots of 250 m length.

The protocol adopted for collection of litter ants is called the ALL protocol (leaflet ants), which is globally standardized on inventories of a litter of ant fauna (Agosti and Alonso 2000). Ground-dwelling ants collected in plots using litter samples were processed in Winkler extractors. Litter-dwelling ants were sampled from a 1 m² litter in sampling plots located at 50 m intervals along the center line of each transect. Using a Winkler extractor with a 1 cm² mesh sieve, the leaves were sifted through a wire sieve of 1 cm² mesh size by shaking the sifter vigorously at least 15 times. The ants were extracted from the sifted litter and placed in a mesh bag inside a cotton bag for 24 hours (Fig. 2). If the sifted leaf litter volume exceeded the capacity of a single mini-Winkler extractor, a second extractor was used. In behavioural response to litter drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag (Agosti et al. 2000, Bestelmeyer et al. 2000) (Fig. 3). The litter-sampling procedures were undertaken...
between 8:00 am and 5:00 pm. All ants were first identified to genus using the taxonomic keys provided by Baccaro et al. 2015. Then, they were sorted into species and morphospecies. We used available taxonomic keys or compared with specimens in collections previously identified by experts. A unique identification was given for each morphospecies based on morphological differences from related species. The morphotyping was the same for all collection sites. Vouchers are deposited in the invertebrate collection of the National Institute of Amazonian Research (INPA).

Figure 2. doi
Sample from 1 m² leaf litter of each sampling plot located at 50 m intervals along the transect and mesh sieve used to separate the leaves from the invertebrates.

Figure 3. doi
Mini-Winkler extractors composed by a mesh bag filled with sifted sample inside and a cotton bag outside. In response to the drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag.
Geographic coverage

Description: Areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.

Coordinates: -9.25 and -8.59 Latitude; -64.45 and -63.88 Longitude.

Taxonomic coverage

Description: The ants were identified by species and morphospecies, as well as subfamily. Some genera were recorded for the first time in South America (*Syscia* Roger, 1861) and others in Rondônia State (*Nylanderia* Emery, 1906; *Eurhopalothrix* Brown & Kempf, 1961; *Lachnomyrnex* Wheeler, 1910; *Mycetarotes* Emery, 1913; *Mycetophylax* Emery, 1913; *Nesomyrmex* Wheeler, 1910; and *Rhopalothrix* Mayr, 1870). We also obtained new records of the following species for Rondônia State: *Fulakora degenerata*, *Tapinoma melanocephalum*, *Neivamyrnex adenpos*, *Gnamptogenys acuminata*, *Gnamptogenys caelata*, *Gnamptogenys kempfi*, *Cephalotes pellans*, *Hylomyrma immanis*, *Rogeria blanda*, *Strumigenys deinomastax*, *Strumigenys infidelis*, *Wasmannia rochai*, *Wasmannia scrobifera*, *Anochetus mayri*, *Anochetus neglectus*, *Anochetus targionii* and *Leptogenys unistimulosa*. A total of 46,342 individuals were collected during four years of field collections. A list of all the ants identified in subfamilies (10), genera (68) and species/morphospecies (324). More information about the ecological data and occurrence is available in Suppl. materials 1, 2.

Taxa included:

Rank	Scientific Name	Common Name	
family	Formicidae Latreille, 1809	ant	
subfamily	Agroecomyrmecinae Carpenter, 1930	ant	
genus	Tatuidris Brown & Kempf, 1968	ant	
species	Tatuidris tatusia Brown & Kempf, 1968	ant	
subfamily	Amblyoponinae Forel, 1893	ant	
genus	Fulakora Mann, 1919	ant	
species	Fulakora degenerata (Borgmeier, 1957)	ant	
genus	Prionopelta Mayr, 1866	ant	
species	Prionopelta sp. 1	ant	
subfamily	Dolichoderinae Forel, 1878	ant	
genus	Azteca Forel, 1878	ant	
species	Azteca cf. chartifex Emery, 1896	ant	
species	Azteca sp. 1	ant	
species	Azteca sp. 2	ant	
species	Azteca sp. 3	ant	
species	Azteca sp. 4	ant	
species	Azteca sp. 5	ant	
genus	Dolichoderus Lund, 1831	ant	
species	Dolichoderus bidens (Linnaeus, 1758)	ant	
species	Dolichoderus bispinosus (Olivier, 1792)	ant	
species	Dolichoderus cogitans Forel, 1912	ant	
species	Dolichoderus debilis Emery, 1890	ant	
species	Dolichoderus decollatus Smith, 1858	ant	
species	Dolichoderus imitator Emery, 1894	ant	
species	Dolichoderus longicollis MacKay, 1993	ant	
species	Dolichoderus septemspinosus Emery, 1894	ant	
species	Dolichoderus sp. 1	ant	
genus	Linepithema Mayr, 1866	ant	
species	Linepithema sp. 1	ant	
genus	Tapinoma Foerster, 1850	ant	
species	Tapinoma melanocaphalus (Fabricius, 1793)	ant	
species	Tapinoma sp. 1	ant	
subfamily	Dorylinae Leach, 1815	ant	
genus	Cheliomyrmex Mayr, 1870	ant	
species	Cheliomyrmex megalonyx Wheeler, 1921	ant	
genus	Eciton Latreille, 1804	ant	
species	Eciton burchelli (Westwood, 1842)	ant	
genus	Labidus Jurine, 1807	ant	
species	Labidus praedator (Smith, 1858)	ant	
species	Labidus spininodis (Emery, 1890)	ant	
genus	Neivamyrmex Borgmeier, 1940	ant	
species	Neivamyrmex adnepos (Wheeler, 1922)	ant	
species	Neivamyrmex angustinodis (Emery, 1888)	ant	
species	Neivamyrmex sp. 3	ant	
---------------	-------------------	------	
genus	Neocerapachys	Neocerapachys sp. 3 ant	
genus	Borowiec, 2016		
species	Neocerapachys	Neocerapachys splendens (Borgmeier, 1957) ant	
genus	Roger, 1861		
species	Syscia	Syscia augustae (Wheeler, 1902) ant	
subfamily	Ectatomminae	Ectatomminae Emery, 1895 ant	
genus	Emery, 1895		
species	Ectatomma	Ectatomma brunneum Smith, 1858 ant	
genus	Smith, 1858		
species	Ectatomma edentatum	Roger, 1863 ant	
species	Ectatomma lugens	Ectatomma lugens Emery, 1894 ant	
genus	Emery, 1894		
species	Gnamptogenys	Gnamptogenys Roger, 1863 ant	
genus	Roger, 1863		
species	Gnamptogenys	Gnamptogenys acuminata (Emery, 1896) ant	
species	Gnamptogenys caelata	Kempf, 1967 ant	
species	Gnamptogenys ericae	(Forel, 1912) ant	
species	Gnamptogenys	Gnamptogenys homi (Santschi, 1929) ant	
species	Gnamptogenys kempf	Lenko, 1964 ant	
species	Gnamptogenys	Gnamptogenys moelleri (Forel, 1912) ant	
species	Gnamptogenys	Gnamptogenys pleurodon (Emery, 1896) ant	
species	Gnamptogenys	Gnamptogenys relicta (Mann, 1916) ant	
species	Gnamptogenys sp. 1		
species	Gnamptogenys	Gnamptogenys sp. 11 ant	
species	Gnamptogenys	Gnamptogenys sp. 3 ant	
species	Gnamptogenys	Gnamptogenys sp. 5 ant	
species	Gnamptogenys	Gnamptogenys tortuolosa (Smith, 1858) ant	
genus	Typhlomyrmex	Typhlomyrmex Mayr, 1862 ant	
species	Typhlomyrmex sp. 1		
subfamily	Formicinae	Formicinae Latreille, 1809 ant	
genus	Acropyga	Acropyga Roger, 1862 ant	
species	Acropyga sp. 1		
genus	Brachymyrmex	Brachymyrmex Mayr, 1868 ant	
Species	Description	Ant species	
------------------	--	-------------	
Brachymyrmex	sp. 1	ant	
Brachymyrmex	sp. 2	ant	
Brachymyrmex	sp. 3	ant	
Brachymyrmex	sp. 4	ant	
Brachymyrmex	sp. 5	ant	
Brachymyrmex	sp. 6	ant	
Camponotus	Mayr, 1861.	ant	
Camponotus	atriceps (Smith, 1858)	ant	
Camponotus	blandus (Smith, 1858)	ant	
Camponotus	cameranoi Emery, 1894	ant	
Camponotus	crassus Mayr, 1862	ant	
Camponotus	fastigatus Roger, 1863	ant	
Camponotus	femoratus (Fabricius, 1804)	ant	
Camponotus	novogranadensis Mayr, 1870	ant	
Camponotus	rapax (Fabricius, 1804)	ant	
Camponotus	rectangularis Emery, 1890	ant	
Camponotus	serieiventris (Guérin-Méneville, 1838)	ant	
Camponotus	sp. 5	ant	
Camponotus	sp. 6	ant	
Gigantiops	Roger, 1863	ant	
Gigantiops	destructor (Fabricius, 1804)	ant	
Nylanderia	Emery, 1906	ant	
Nylanderia	cf. caeciliae (Forel, 1899)	ant	
Nylanderia	cf. fulva (Mayr, 1862)	ant	
Nylanderia	cf. guatemalensis (Forel, 1885)	ant	
Nylanderia	sp. 3	ant	
Nylanderia	sp. 5	ant	
Myrmicinae	Lepeletier de Saint-Fargeau, 1835	ant	
Acromyrmex	Mayr, 1865	ant	
Acromyrmex	cf. subterraneus (Forel, 1893)	ant	
Allomerus	Mayr, 1878	ant	
species	genus	year	
------------------	-------------------------	----------	
Allomerus octoarticulatus	Apterostigma Mayr, 1865	ant	
Apterostigma auriculatum	Mayr, 1925	ant	
Apterostigma gr. pilosum			
Atta Fabricius, 1804	Apterostigma Mayr, 1865	ant	
Atta cephalotes (Linnaeus, 1758)		ant	
Atta sexdens (Linnaeus, 1758)		ant	
Basiceros Schulz, 1906	Carebara Westwood, 1840	ant	
Basiceros militaris (Weber, 1950)		ant	
Blepharidatta Wheeler, 1915		ant	
Blepharidatta brasiliensis Wheeler, 1915		ant	
Carebara Westwood, 1840	Carebara Westwood, 1840	ant	
Carebara gr. lignata		ant	
Carebara sp. 1		ant	
Carebara sp. 2		ant	
Carebara sp. 5		ant	
Carebara urichi (Wheeler, 1922)		ant	
Cephalotes Latreille, 1802		ant	
Cephalotes atratus (Linnaeus, 1758)		ant	
Cephalotes minutus (Fabricius, 1804)		ant	
Cephalotes pellans De Andrade, 1999		ant	
Cephalotes pusillus (Klug, 1824)		ant	
Cephalotes sp. 1		ant	
Cephalotes sp. 2		ant	
Cephalotes sp. 3		ant	
Crematogaster Lund, 1831		ant	
Crematogaster acuta (Fabricius, 1804)		ant	
Crematogaster brasiliensis Mayr, 1878		ant	
Crematogaster carinata Mayr, 1862		ant	
Crematogaster curvispinosa Mayr, 1862		ant	
Crematogaster flavosensitiva Longino, 2003		ant	
species	Crematogaster limata Smith, 1858	ant	
species	Crematogaster longispina Emery, 1890	ant	
species	Crematogaster nigropilosa Mayr, 1870	ant	
species	Crematogaster sotobosque Longino, 2003	ant	
species	Crematogaster sp. 2	ant	
species	Crematogaster stollii Forel, 1885	ant	
species	Crematogaster tenuicula Forel, 1904	ant	
genus	Cyphomyrmex Mayr, 1862	ant	
species	Cyphomyrmex laevigatus Weber, 1938	ant	
species	Cyphomyrmex minutus Mayr, 1862	ant	
species	Cyphomyrmex peltatus Kempf, 1966	ant	
species	Cyphomyrmex rimosus (Spinola, 1851)	ant	
species	Cyphomyrmex cf. salvini Forel, 1899	ant	
species	Cyphomyrmex sp. 12	ant	
species	Cyphomyrmex sp. 13	ant	
species	Cyphomyrmex sp. 3	ant	
species	Cyphomyrmex sp. 4	ant	
genus	Eurhopalothrix Brown & Kempf, 1961	ant	
species	Eurhopalothrix pilulifera Brown & Kempf, 1960	ant	
genus	Hylomyrma Forel, 1912	ant	
species	Hylomyrma dentiloba (Santschi, 1931)	ant	
species	Hylomyrma cf. dolichops Kempf, 1973	ant	
species	Hylomyrma immanis Kempf, 1973	ant	
species	Hylomyrma longiscapa Kempf, 1961	ant	
species	Hylomyrma cf. reitteri (Mayr, 1887)	ant	
species	Hylomyrma sp. 2	ant	
species	Hylomyrma sp. 3	ant	
genus	Lachnomyrmex Wheeler, 1910	ant	
species	Lachnomyrmex sp. 1	ant	
genus	Megalomyrmex Forel, 1885	ant	
species	Megalomyrmex balzani Emery, 1894	ant	
species	Genus	Ant species	
---------------------------------	--	-------------	
Megalomyrmex cuatiara	*Monomorium*	*M. pharaonis* (Linnaeus, 1758)	
Megalomyrmex drifti	*Mycetarotes*	*M. goeldii* (Forel, 1911)	
Megalomyrmex goeldii	*Mycetarotes*	*M. strigatus* (Mayr, 1887)	
Megalomyrmex leoninus	*Mycetaphylax*	*M. cf. lectus* (Forel, 1911)	
Megalomyrmex sp. 2	*Mycetaphylax*	*M. sp. 1*	
Megalomyrmex sp. 5	*Mycetaphylax*	*M. sp. 2*	
Megalomyrmex sp. 8	*Mycetaphylax*	*M. sp. 3*	
Megalomyrmex wallacei	*Mycocepurus*	*M. goeldii* (Forel, 1893)	
Megalomyrmex sp. 2	*Mycocepurus*	*M. sp. 1*	
Megalomyrmex sp. 5	*Mycocepurus*	*M. sp. 2*	
Megalomyrmex sp. 8	*Mycocepurus*	*M. sp. 3*	
Myrmicocrypta	*Nesomyrmex*	*N. pleuriticus* (Kempf, 1959)	
Myrmicocrypta sp. 1	*Ochetomyrmex*	*O. semipolitus* (Mayr, 1878)	
Myrmicocrypta sp. 2	*Octostruma*	*O. balzani* (Emery, 1894)	
Myrmicocrypta sp. 3	*Octostruma*	*O. iheringi* (Emery, 1888)	
Nesomyrmex		*N. wheeler* (1910)	
Mycocepurus		*M. goeldii* (Forel, 1893)	
Mycocepurus sp. 1		*M. sp. 1*	
Mycocepurus sp. 2		*M. sp. 2*	
Mycocepurus sp. 3		*M. sp. 3*	
Myrmicocrypta		*M. pleuriticus* (Kempf, 1959)	
Ochetomyrmex		*O. semipolitus* (Mayr, 1878)	
Octostruma		*O. balzani* (Emery, 1894)	
Octostruma iheringi		*O. iheringi* (Emery, 1888)	
Octostruma sp. 1		*O. sp. 1*	
species	Octostruma sp. 2	ant	
species	Octostruma sp. 3	ant	
genus	Oxyepoecus	Santschi, 1926	ant
species	Oxyepoecus ephippiatus Albuquerque & Brandão, 2004	ant	
genus	Pheidole Westwood, 1839	ant	
species	Pheidole fracticeps Wilson, 2003	ant	
species	Pheidole biconstricta Mayr, 1870	ant	
species	Pheidole flavens Roger, 1863	ant	
species	Pheidole vorax (Fabricius, 1804)	ant	
species	Pheidole sp. 1	ant	
species	Pheidole sp. 4	ant	
species	Pheidole sp. 6	ant	
species	Pheidole sp. 4	ant	
species	Pheidole sp. 6	ant	
species	Pheidole sp. 10	ant	
species	Pheidole sp. 11	ant	
species	Pheidole sp. 12	ant	
species	Pheidole sp. 14	ant	
species	Pheidole sp. 15	ant	
species	Pheidole sp. 16	ant	
species	Pheidole sp. 17	ant	
species	Pheidole sp. 18	ant	
species	Pheidole sp. 19	ant	
species	Pheidole sp. 2	ant	
species	Pheidole sp. 20	ant	
species	Pheidole sp. 21	ant	
species	Pheidole sp. 22	ant	
species	Pheidole sp. 23	ant	
species	Pheidole sp. 24	ant	
species	Pheidole sp. 26	ant	
species	Pheidole sp. 27	ant	
species	Pheidole sp. 28	ant	
----------	----------------	---------	
species	Pheidole sp. 29	ant	
species	Pheidole sp. 3	ant	
species	Pheidole sp. 30	ant	
species	Pheidole sp. 32	ant	
species	Pheidole sp. 40	ant	
species	Pheidole sp. 41	ant	
species	Pheidole sp. 42	ant	
species	Pheidole sp. 43	ant	
species	Pheidole sp. 44	ant	
species	Pheidole sp. 45	ant	
species	Pheidole sp. 46	ant	
species	Pheidole sp. 47	ant	
species	Pheidole sp. 48	ant	
species	Pheidole sp. 49	ant	
species	Pheidole sp. 5	ant	
species	Pheidole sp. 50	ant	
species	Pheidole sp. 51	ant	
species	Pheidole sp. 52	ant	
species	Pheidole sp. 53	ant	
species	Pheidole sp. 54	ant	
species	Pheidole sp. 55	ant	
species	Pheidole sp. 7	ant	
species	Pheidole sp. 8	ant	
species	Pheidole sp. 9	ant	
genus	Rhopalothrix Mayr, 1870	ant	
species	Rhopalothrix sp. 1	ant	
species	Rhopalothrix sp. 2	ant	
genus	Rogeria Emery, 1894	ant	
species	Rogeria alzatei Kugler, 1994	ant	
species	Rogeria cf. betti Mann, 1922	ant	
species	name	ant	
---------	------	-----	
species	R. blanda (Smith, 1858)	ant	
species	R. cf. cornuta Kugler, 1994	ant	
species	R. cf. cuneola Kugler, 1994	ant	
species	R. leptonana Kugler, 1994	ant	
species	R. sp. 1	ant	
species	R. sp. 2	ant	
genus	Sericomymex Mayr, 1865	ant	
species	S. sp. 1	ant	
species	S. sp. 2	ant	
genus	Solenopsis Westwood, 1840	ant	
species	S. cf. castor Forel, 1893	ant	
species	S. cf. clytemnestra Emery, 1896	ant	
species	S. geminata (Fabricius, 1804)	ant	
species	S. gr. molest	ant	
species	S. cf. loretana Santschi, 1936	ant	
species	S. cf. saevissima (Smith, 1855)	ant	
species	S. sp. 3	ant	
species	S. sp. 5	ant	
species	S. sp. 7	ant	
species	S. substituta Santschi, 1925	ant	
genus	Stegomyrmex Emery, 1912	ant	
species	S. cf. olindae Feitosa, Brandão & Diniz, 2008	ant	
genus	Strumigenys Smith, 1860	ant	
species	S. appretiata (Borgmeier, 1954)	ant	
species	S. beebei (Wheeler, 1915)	ant	
species	S. deinomastax (Bolton, 2000)	ant	
species	S. denticulata Mayr, 1887	ant	
species	S. elongata Roger, 1863	ant	
species	S. infidelis Santschi, 1919	ant	
species	S. inusitata (Lattke, 1992)	ant	
species	S. cf. perparva Brown, 1958	ant	
Species	Scientific Name		
---------	----------------		
species	*Strumigenys smithii* Forel, 1886		
species	*Strumigenys* sp. 1		
species	*Strumigenys* sp. 10		
species	*Strumigenys* sp. 13		
species	*Strumigenys* sp. 14		
species	*Strumigenys* sp. 15		
species	*Strumigenys* sp. 2		
species	*Strumigenys* sp. 3		
species	*Strumigenys* sp. 4		
species	*Strumigenys* sp. 5		
species	*Strumigenys* sp. 6		
species	*Strumigenys* sp. 7		
species	*Strumigenys* sp. 8		
species	*Strumigenys* sp. 9		
species	*Strumigenys* cf. *trinidadensis* Wheeler, 1922		
species	*Strumigenys trudifera* Kempf & Brown, 1969		
species	*Strumigenys zeteki* (Brown, 1959)		
genus	*Trachymyrmex* Forel, 1893		
species	*Trachymyrmex* cf. *bognioni* (Forel, 1912)		
species	*Trachymyrmex* cf. *cornetzi* (Forel, 1912)		
species	*Trachymyrmex* cf. *diversus* Mann, 1916		
species	*Trachymyrmex* cf. *farinosus* (Emery, 1894)		
species	*Trachymyrmex* cf. *mandibularis* Weber, 1938		
species	*Trachymyrmex* cf. *opulentus* (Mann, 1922)		
species	*Trachymyrmex* cf. *ruthae* Weber, 1937		
species	*Trachymyrmex* sp. 10		
species	*Trachymyrmex* sp. 3		
species	*Trachymyrmex* sp. 7		
species	*Trachymyrmex* sp. 8		
species	*Trachymyrmex* sp. 9		
genus	*Tranopelta* Mayr, 1866		
species	Tranopelta gilva Mayr, 1866	ant	
--------------	-----------------------------	-----------	
species	Tranopelta sp. 1	ant	
genus	Wasmannia Forel, 1893	ant	
species	Wasmannia auropunctata (Roger, 1863)	ant	
species	Wasmannia rochii Forel, 1912	ant	
species	Wasmannia scrobifera Kempf, 1961	ant	
species	Wasmannia sp. 1	ant	
subfamily	Ponerinae Lepeletier de Saint-Fargeau, 1835	ant	
genus	Anochetus Mayr, 1861	ant	
species	Anochetus diegensis Forel, 1912	ant	
species	Anochetus emarginatus (Fabricius, 1804)	ant	
species	Anochetus horridus Kempf, 1964	ant	
species	Anochetus mayri Emery, 1884	ant	
species	Anochetus neglectus Emery, 1894	ant	
species	Anochetus targionii Emery, 1894	ant	
genus	Dinoponera Roger, 1861	ant	
species	Dinoponera gigantea (Perty, 1833)	ant	
genus	Hypoponera Santschi, 1938	ant	
species	Hypoponera sp. 1	ant	
species	Hypoponera sp. 16	ant	
species	Hypoponera sp. 2	ant	
species	Hypoponera sp. 3	ant	
species	Hypoponera sp. 4	ant	
species	Hypoponera sp. 5	ant	
species	Hypoponera sp. 6	ant	
species	Hypoponera sp. 7	ant	
species	Hypoponera sp. 8	ant	
species	Hypoponera sp. 9	ant	
genus	Leptogenys Roger, 1861	ant	
species	Leptogenys unistimulosa Roger, 1863	ant	
genus	Mayaponera Schmidt & Shattuck, 2014	ant	
species	Mayaponera constricta (Mayr, 1884)	ant	
--------------	-------------------------------------	-----	
genus	Neoponera Emery, 1901	ant	
species	Neoponera apicalis (Latreille, 1802)	ant	
species	Neoponera caviniolus Mann, 1916	ant	
species	Neoponera commutata (Roger, 1860)	ant	
species	Neoponera laevigata (Smith, 1858)	ant	
species	Neoponera unidentata (Mayr, 1862)	ant	
species	Neoponera venusta Forel, 1912	ant	
species	Neoponera verenae Forel, 1922	ant	
genus	Odontomachus Latreille, 1804	ant	
species	Odontomachus bauri Emery, 1892	ant	
species	Odontomachus caelatus Brown, 1976	ant	
species	Odontomachus chelifer (Latreille, 1802)	ant	
species	Odontomachus haematodus (Linnaeus, 1758)	ant	
species	Odontomachus hastatus (Fabricius, 1804)	ant	
species	Odontomachus laticeps Roger, 1861	ant	
species	Odontomachus meinerti Forel, 1905	ant	
species	Odontomachus sp. 1	ant	
species	Odontomachus sp. 2	ant	
genus	Pachycondyla Smith, 1858	ant	
species	Pachycondyla crassinoda (Latreille, 1802)	ant	
species	Pachycondyla harpax (Fabricius, 1804)	ant	
species	Pachycondyla impressa (Roger, 1861)	ant	
species	Pachycondyla sp. 1	ant	
species	Pachycondyla sp. 2	ant	
species	Pachycondyla sp. 3	ant	
species	Pachycondyla striata Smith, 1858	ant	
genus	Pseudoponera Emery, 1900	ant	
species	Pseudoponera stigma (Fabricius, 1804)	ant	
genus	Rasopone Schmidt & Shattuck, 2014	ant	
species	Rasopone arhuaca (Forel, 1901)	ant	
genus Simopelta Mann, 1922 ant
species Simopelta anomma Fernandes et al., 2015 ant
species Simopelta jeckylli (Mann, 1916) ant
genus Thaumatomyrmex Mayr, 1887 ant
species Thaumatomyrmex atrox Weber, 1939 ant
subfamily Proceratiinae Emery, 1895 ant
genus Discothyrea Roger, 1863 ant
species Discothyrea denticulata Weber, 1939 ant
species Discothyrea humilis Weber, 1939 ant
species Discothyrea sexarticulata Borgmeier, 1954 ant
subfamily Pseudomyrmecinae Smith, 1952 ant
genus Pseudomyrmex Lund, 1831 ant
species Pseudomyrmex ita (Forel, 1906) ant
species Pseudomyrmex simplex (Smith, 1877) ant
species Pseudomyrmex sp. 2 ant
species Pseudomyrmex sp. 3 ant
species Pseudomyrmex tenuis (Fabricius, 1804) ant
species Pseudomyrmex termitarius (Smith, 1855) ant

Temporal coverage

Notes: 2011-09-02 through 2011-09-09, 2011-11-17 through 2012-12-03, 2012-02-28 through 2012-03-12, 2012-05-30 through 2012-06-11, 2013-09-19 through 2013-01-31, 2013-04-18 through 2013-04-28, 2013-06-28 through 2013-07-05, 2013-10-20 through 2013-09-26, 2014-01-17 through 2014-01-27, 2014-11-13 through 2014-11-23

Collection data

Collection name: Instituto Nacional de Pesquisas da Amazônia - INPA/ Coleção de Invertebrados/ HYM

Specimen preservation method: alcohol, pinned
Usage rights

Use license: Other

IP rights notes: This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License.

Data resources

Data package title: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.

Alternative identifiers: 914c3b86-f2a1-4d5e-b343-b2597b9d4542, https://ipt.sibbr.gov.br/sibbr/resource?r=ant_monitoring_in_santo_antonio_hydroelectric_power_plant_rondonia

Number of data sets: 2

Data set name: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.

Character set: Event

Data format: Darwin Core

Description: Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River, Rondônia. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects in each module, totaling 30 sampling plots in each module. Transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km, and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, we used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera, and 324 species/morphospecies (Fig. 4). The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna.
Figure 4. doi
Species occurrence before and after reservoir filling in the Santo Antônio Hydroelectric Power Plant. Dotted lines mark the 95% confidence intervals.

Column label	Column description
eventID	An identifier for the set of information associated with an Event (something that occurs at a place and time).
eventDate	The date-time or interval during which an Event occurred. For occurrences, this is the date-time when the event was recorded.
eventTime	The time or interval during which an Event occurred.
habitat	A category or description of the habitat in which the Event occurred.
samplingProtocol	The name of, reference to, or description of the method or protocol used during an Event.
samplingEffort	The amount of effort expended during an Event.
eventRemarks	Comments or notes about the Event.
sampleSizeUnit	The unit of measurement of the size (time duration, length, area or volume) of a sample in a sampling event.
sampleSizeValue	A numeric value for a measurement of the size (time duration, length, area or volume) of a sample in a sampling event.
fieldNotes	The text of notes taken in the field about the Event.
continent	The name of the continent in which the Location occurs.
country	The name of the country or major administrative unit in which the Location occurs
countryCode	The standard code for the country in which the Location occurs.
stateProvince	The name of the next smaller administrative region than country (state, province, canton, department, region, etc.) in which the Location occurs.
Column label	Column description
------------------	--
county	The full, unabbreviated name of the next smaller administrative region than stateProvince (county, shire, department, etc.) in which the Location occurs.
locality	The specific description of the place.
locationRemarks	Comments or notes about the Location.
decimalLongitude	The geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location.
decimalLatitude	The geographic latitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location.
modified	The most recent date-time on which the resource was changed.
datasetName	The name identifying the data set from which the record was derived.
type	A list of nomenclatural types.
language	A language of the resource.
institutionID	An identifier for the institution having custody of the material referred to in the record.
institutionCode	The acronym in use by the institution having custody of the material referred to in the record.
rightsHolder	The organization owning the rights over the resource.

Data set name: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.

Character set: Occurrence

Column label	Column description
ID	An identifier for the Identification (an identifier specific to the data set).
type	A list of nomenclatural types.
modified	The most recent date-time on which the resource was changed.
language	A language of the resource.
license	A legal document giving official permission to do something with the resource.
rightsHolder	The organization owning the material rights over the resource.
institutionID	An identifier for the institution having custody of the material referred to in the record.
institutionCode	The acronym in use by the institution having custody of the material referred to in the record.
datasetName	The name identifying the data set from which the record was derived.
basisOfRecord	The specific nature of the data record.
dynamicProperties	A list of additional measurements, facts, characteristics, or assertions about the record.
occurrenceID	An identifier for the Occurrence.
Field	Description
----------------------	---
recordNumber	An identifier given to the Occurrence at the time it was recorded.
recordedBy	A list of names of people responsible for recording the original Occurrence.
organismQuantity	A number for the quantity of organisms.
organismQuantityType	The type of quantification system used for the quantity of organisms.
sex	The sex of the biological individual(s) represented in the Occurrence.
lifeStage	The age class or life stage of the biological individual(s) at the time the Occurrence was recorded.
reproductiveCondition	The reproductive condition of the biological individual(s) represented in the Occurrence.
preparations	A list of preparations and preservation methods for a specimen.
disposition	The current state of a specimen with respect to the collection identified in collectionCode or collectionID.
eventID	An identifier for the set of information associated with an Event (something that occurs at a place and time).
identifiedBy	A list of names of people who assigned the Taxon to the subject.
scientificName	An identifier for the nomenclatural details of a scientific name.
kingdom	The full scientific name of the kingdom in which the taxon is classified.
phylum	The full scientific name of the phylum or division in which the taxon is classified.
class	The full scientific name of the class in which the taxon is classified.
order	The full scientific name of the order in which the taxon is classified.
family	The full scientific name of the family in which the taxon is classified.
genus	The full scientific name of the genus in which the taxon is classified.
specificEpithet	The name of the first or species epithet of the scientificName.
taxonRank	The taxonomic rank of the most specific name in the scientificName.
vernacularName	A common or vernacular name.

Additional information

Fernandes I (2017): Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil. v1.7. Sistema de Informação sobre a Biodiversidade Brasileira - SiBBr. Dataset/Samplingevent. https://ipt.sibbr.gov.br/sibbr/resource?r=ant_monitoring_in_santo_antonio_hydroelectric_power_plant_rondonia&v=1.7
Acknowledgements

We thank Adriano Henrique Oliveira for his help in sampling ants, as well as Fernando Fernández, Jacques Delabie, John Longino, José Vilhena, and Rodrigo Feitosa for confirming some species identifications for this study. The concessionaires responsible for building and operating the Santo Antônio Hydroelectric Plant, SAE and Probiota Consultoria Ambiental, provided financial and logistical support. J.L.P.S. was supported by the CNPq and FAPEAM post-doctoral scholarship; I.O.F. was supported by the CNPq and CAPES doctoral scholarship. We also thank the INPA for providing the facilities for the sorting and identification of the species. I.O.F. is grateful for all support offered by SiBBr, as well as the assistance offered by Nayara Tartari Soto (SiBBr) with the spreadsheet standardization instructions in DwC. I.O.F. is also grateful for the award offered by GBIF in 2017, the Young Research Award, which enabled the present publication.

Author contributions

All the authors have wrote, edited, built and analyzed the database.

References

• Agosti D, Alonso LE (2000) The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (Eds) Ants. Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, DC, USA, 204-206 pp.
• Agosti D, Majer JD, Alonso L, Schultz TR (2000) Ants standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, USA.
• Alonso LE (2000) Ants as indicators of diversity. In: Agosti D, Majer JD, Alonso LE, Schultz TR (Eds) Ants. Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, DC, USA, 80-88 pp.
• Andersen AN (1990) The use of ant communities to evaluate change in Australian terrestrial ecosystems: a review and a recipe. Proceedings of the Ecological Society of Australia 16: 347-357.
• Anderson EP, Jenkins CN, Heilpern S, Maldonado-Ocampo JA, Carvajal-Vallejos FM, Encalada AC, Rivadeneira JF, Hidalgo M, Cañas CM, Ortega H, Salcedo N, Maldonado M, Tedesco PA (2018) Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances 4 (1): eaao1642. https://doi.org/10.1126/sciadv.aao1642
• Ashton DH (1979) Seed harvesting by ants in forests Eucalyptus regnans F. Muell. in central Victoria. Australian Journal of Ecology 4: 265-277. https://doi.org/10.1111/j.1442-9993.1979.tb01218.x
• Baccaro F, Feitosa R, Fernández F, Fernandes IO, Izzo T, Souza JP, Solar RC (2015) Guia para os gêneros de formigas do Brasil. Editora INPA, 388 pp. https://doi.org/10.5281/ZENODO.32912
• Barlow J, Ewers RM, Anderson L, Aragao LEOC, Baker TR, Boyd E, Feldpausch TR, Gloor E, Hall A, Malhi Y, Milliken W, Mulligan M, Parry L, Pennington T, Peres CA, Phillips OL, Roman-Cuesta RM, Tobias JA, Gardner TA (2010) Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews 86 (2): 457-474. https://doi.org/10.1111/j.1469-185x.2010.00155.x

• Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, Didham RK (2013) The spatial scaling of beta diversity. Global Ecology and Biogeography 22 (6): 639-647. https://doi.org/10.1111/geb.12031

• Beattie AJ (1985) The Evolutionary Ecology of Ant–Plant Mutualisms. Cambridge University Press, New York, USA.

• Benchimol M, Peres C (2015) Data from: Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. Dryad Digital Repository https://doi.org/10.5061/DRYAD.C301H

• Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WLJ, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground-dwelling ant: an overview, description, and evaluation. Ants. Standard Methods for Measuring and Monitoring Biodiversity. 122-144 pp.

• Bisevac L, Major JD (1999) Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia. Restoration Ecology 7: 117-126. https://doi.org/10.1046/j.1526-100X.1999.72002.x

• Bobrowiec PED, Tavares VdC (2017) Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon. PLoS ONE 12 (9): e0183036. https://doi.org/10.1371/journal.pone.0183036

• Campbell AJ, Tanton MT (1981) Effects of fire on the invertebrate fauna of soil and litter of a eucalypt forest. In: Gill AM, Groves RH, Noble IR (Eds) Fire and the Australian Biota. Australian Academy of Sciences, Canberra, Australia, 215-241 pp.

• Castello L, Macedo MN (2015) Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990-1007. https://doi.org/10.1111/gcb.13173

• Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413: 635-639. https://doi.org/10.1038/35098093

• Costa FRC, Magnusson WE (2010) The need for large-scale, integrated studies of biodiversity - the experience of the Program for Biodiversity Research in Brazilian Amazonia. Natureza & Conservação 8 (1): 3-12. https://doi.org/10.4322/natcon.0081001

• Costello MJ, Michener WK, Gahegan M, Zhang ZQ, Bourne PE (2013) Biodiversity data should be published, cited, and peer reviewed. Trends in Ecology & Evolution 28 (8): 454-461. https://doi.org/10.1016/j.tree.2013.05.002

• Davidson E, de Araújo A, Artaxo P, Balch J, Brown IF, Bustamante MC, Coe M, DeFries R, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho B, Souza C, Wofsy S (2012) The Amazon basin in transition. Nature 481 (7381): 321-328. https://doi.org/10.1038/nature10717

• Evans TD, Viengkham OV (2001) Inventory time-cost and statistical power: a case study of a Lao rattan. Forest and Ecology Management 150: 313-322.

• Fearnside PM (2016) Brazilian politics threaten environmental policies. Science 353 (6301): 746-748. https://doi.org/10.1126/science.aag0254
- Fisher BL (1999) Improving inventory efficiency: a case study of leaf litter ant diversity in Madagascar. Ecological Applications 9: 714-731. https://doi.org/10.1890/1051-0761(1999)009[0714:IEACS]2.0.CO;2
- Fraga Rd, Stow A, Magnusson W, Lima A (2014) The costs of evaluating species densities and composition of snakes to assess development impacts in Amazonia. PLoS ONE 9 (8): e105453. https://doi.org/10.1371/journal.pone.0105453
- Gibson L, Lee TM, Koh LP, Brook B, Gardner T, Barlow J, Peres C, Bradshaw CA, Laurance W, Lovejoy T, Sodhi N (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478 (7369): 378-381. https://doi.org/10.1038/nature10425
- Gotelli NJ, Ellison AM, Dunn RR, Sanders N (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News 15: 13-19.
- Greenslade PJ, Greenslade P (1984) Invertebrates and environmental assessment. Environment and Planning 3: 13-15.
- Groc S, Delabie JH, Fernandez F, Leponce M, Orivel J, Silvestre R, Vasconcelos HL, Dejean A (2014) Leaf-litter ant communities (Hymenoptera: Formicidae) in a pristine Guianese rain-forest: stable functional structure versus high species turnover. Myrmecological News 19: 43-51.
- Guénard B (2013) An Overview of the Species and Ecological Diversity of Ants. eLS. https://doi.org/10.1002/9780470015902.a0023598
- Hoffmann BD, Griffiths AD, Andersen AN (2000) Responses of ant communities to dry sulfur deposition from mining emissions in semi-arid tropical Australia, with implications for the use of functional groups. Austral Ecology 25: 653-663. https://doi.org/10.1111/j.1442-9993.2000.tb00071.x
- Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge, 732 pp.
- Humphreys GS (1981) The rate of ant mounding and earthworm casting near Sydney. N.S.W. Search 12: 129-131.
- Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agriculture, Ecosystems, and Environment 24: 101-116. https://doi.org/10.1016/0167-8809(88)90059-X
- Lamoreux J, Morrison J, Ricketts T, Olson D, Dinerstein E, McKnight M, Shugart H (2005) Global tests of biodiversity concordance and the importance of endemism. Nature 440 (7081): 212-214. https://doi.org/10.1038/nature04291
- Latrubesse E, Arima E, Dunne T, Park E, Baker V, d’Horta F, Wight C, Wittmann F, Zuanon J, Baker P, Ribas C, Norgaard R, Fillizola N, Ansar A, Flyvbjerg B, Stevaux J (2017) Damming the rivers of the Amazon basin. Nature 546 (7658): 363-369. https://doi.org/10.1038/nature22333
- Levieux J (1983) The soil fauna of tropical savannas. IV. The ants Tropical Savannas. Elsevier. In: Bourliere F (Ed.) Tropical Savannas. Amsterdam, Holland, 525-540 pp.
- Lobry de Bruyn L, Conacher A (1994) The bioturbation activity of ants in agricultural and naturally vegetated habitats in semi-arid environments. Australian Journal of Soil Research 32: 555-570. https://doi.org/10.1071/SR9940555
- Magnusson WE, Lima AP, Luizão R, Luizão F, Costa FR, Castilho CV, Kinupp VF (2005) Rapeld: a modification of the gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica 5: 1-6.
• Magnusson WE, Braga-Neto R, Pezzini F, Baccaro FB, Bergallo H, Penha J, Rodrigues D, Verdade LM, Lima A, Albernaz AL, Hero JM, Lawson B, Castilho CV, Drucker DP, Franklin E, Mendonça FP, Costa FR, Galdino G, Castley G, Zuanon J, Vale J, Santos JL, Luizão FJ, Cintra R, Barbosa RI, Lisboa A, Koblitz R (2013) Biodiversidade e Monitoramento Ambiental Integrado. In: Editorial (Ed.) Biodiversity and Integrated Environmental Monitoring. Manaus.

• Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environmental Management 7: 375-385. https://doi.org/10.1007/BF01866920

• Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. Journal Bioscience 27: 309-326. https://doi.org/10.1007/BF02704962

• McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews 73: 181-201. https://doi.org/10.1017/S000632319700515X

• Moser P, Oliveira W, Medeiros M, Pinto J, Eisenlohr P, Lima I, Silva G, Simon M (2014) Tree species distribution along environmental gradients in an area affected by a hydroelectric dam in southern Amazonia. Biotropica 46 (3): 367-376. https://doi.org/10.1111/btp.12111

• Parmesan C, Ryholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, B. H, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579-583. https://doi.org/10.1038/21181

• Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269 (5222): 347-350. https://doi.org/10.1126/science.269.5222.347

• Sá-Oliveira J, Hawes J, Isaac-Nahum V, Peres C (2015) Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology 60 (10): 2037-2050. https://doi.org/10.1111/fwb.12628

• Sarkar S, Margules C (2002) Operationalizing biodiversity for conservation planning. Journal of Biosciences 27: 299-308. https://doi.org/10.1007/BF02704961

• Turner MG, Arthaud GJ, Engstrom RT, Hejl SJ, Liu J, Loeb S, McKelvey K (1995) Usefulness of spatially explicit population models in land management. Ecological Applications 5: 12-16. URL: http://www.jstor.org/stable/1942046

• Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: If, when, and how. Biological Conservation 132: 166-182. https://doi.org/10.1016/j.biocon.2006.03.022

• Vitousek PM (1997) Human domination of Earth's ecosystems. Science 277 (5325): 494-499. https://doi.org/10.1126/science.277.5325.494

• Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbuster J, Thieme ML, Petry P, Zuanon J, Vilara GT, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, Soesbergen Av, Saenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351 (6269): 128-129. https://doi.org/10.1126/science.aac7082
York A (2000) Long-term effects of frequent low-intensity burning on ant communities in coastal blackbutt forests of southeastern Australia. Austral Ecology 25: 83-98. https://doi.org/10.1046/j.1442-9993.2000.01014.x

Supplementary materials

Suppl. material 1: A total of 253 events of collection in the influence areas of Santo Antônio Hydroelectric Power-Plant. [doi]

Authors: Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza
Data type: metadata (DwC-A) event
Filename: Event_collection.xlsx - Download file (91.17 kb)

Suppl. material 2: A total of 9,165 occurrences in the influence areas of Santo Antônio Hydroelectric Power-Plant. [doi]

Authors: Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza
Data type: metadata (DwC-A) occurrences
Filename: Occurrence_species:morphospecieslist.xlsx - Download file (1.71 MB)