Globally elevated chemical weathering rates beneath glaciers

Xiangying Li1,2,3,17✉, Ninglian Wang1,2,4,17✉, Yongjian Ding5,6,7,17✉, Jon R. Hawkings9, Jacob C. Yde9, Robert Raiswell10, Jintao Liu11, Shiqiang Zhang1,2, Shichang Kang5,6, Rongjun Wang5, Qiao Liu12, Shiyin Liu13, Roland Bol14,15, Xiaoni You16 & Guoyu Li3,6

Physical erosion and chemical weathering rates beneath glaciers are expected to increase in a warming climate with enhanced melting but are poorly constrained. We present a global dataset of cations in meltwaters of 77 glaciers, including new data from 19 Asian glaciers. Our study shows that contemporary cation denudation rates (CDRs) beneath glaciers (2174 ± 977 Σ+ meq m−2 year−1) are ~3 times higher than two decades ago, up to 10 times higher than ice sheet catchments (~150-2000 Σ+ meq m−2 year−1), up to 50 times higher than whole ice sheet means (~30-45 Σ+ meq m−2 year−1) and ~4 times higher than major non-glacial riverine means (~500 Σ+ meq m−2 year−1). Glacial CDRs are positively correlated with air temperature, suggesting glacial chemical weathering yields are likely to increase in future. Our findings highlight that chemical weathering beneath glaciers is more intense than many other terrestrial systems and may become increasingly important for regional biogeochemical cycles.

1 Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an, China. 2 College of Urban and Environmental Sciences, Northwest University, Xi’an, China. 3 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China. 4 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China. 5 State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China. 6 University of Chinese Academy of Sciences, Beijing, China. 7 China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, Pakistan. 8 Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, USA. 9 Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, Norway. 10 Cohen Biogeochemistry Laboratory, School of Earth and Environment, University of Leeds, Leeds, UK. 11 College of Hydrology and Water Resources, Hohai University, Nanjing, China. 12 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China. 13 Institute of International Rivers and Eco-security, Yunnan University, Kunming, China. 14 Forschungszentrum Jülich IBG-3, Wilhelm-Johnen-Straße, Jülich, Germany. 15 School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, UK. 16 College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, China. 17 These authors contributed equally: Xiangying Li, Ninglian Wang, Yongjian Ding. ✉email: shaanxilxy@163.com; nlwang@nwu.edu.cn; dyj@lzb.ac.cn

https://doi.org/10.1038/s41467-022-28032-1
Glaciers (here defined to include all glaciers but exclude ice sheets) and ice sheets play a substantial role in the global cycles of water1-3, sediment4-6, and elements7-12. The highly efficient physical erosion beneath glaciers creates an abundance of reactive mineral surfaces3,14,15, and the resultant glacier flour is susceptible to rapid chemical weathering because of very high microparticle surface areas15 and amorphous mineral coatings16-18. Chemical weathering associated with glaciers (and ice sheets) may also be a CO\textsubscript{2} sink or source via dissolution of bedrock minerals (e.g., silicate, carbonate, and sulfide), thereby influencing carbon cycles and global climate16,19-23.

Chemical weathering rates can be estimated using cation yields derived from mineral weathering reactions (referred to as crustal cation denudation rate or CDR)16,23,27-32. Because major cations (K+, Na+, Mg2+, and Ca2+) in meltwaters are predominantly derived from crustal mineral weathering (with the proportion of \textapprox\textmark{70–99\%} being of total four cations)16,22,27-32, the majority of previously published data from 28 glaciers in Asia and from other glaciers worldwide (Supplementary Fig. 2). However, mean cation concentrations for the 19 Asian glaciers are generally higher than previously published cation means for Asian glaciers and worldwide glaciers. For the 77 glaciers in the current global data set mean cation concentrations vary over two to three orders of magnitude (3.38 to 1323 \textmu eq L−1 for Na+, 2.31 to 177 \textmu eq L−1 for K+, 6.50 to 2605 \textmu eq L−1 for Mg2+, and 11.5 to 1701 \textmu eq L−1 for Ca2+; Fig. 2b). Mean concentrations from glaciers (93.3 \textpm 177 \textmu eq L−1 for Na+, 34.6 \textpm 29.0 \textmu eq L−1 for K+, 191 \textpm 321 \textmu eq L−1 for Mg2+, and 472 \textpm 366 \textmu eq L−1 for Ca2+; Supplementary Table 5) are comparable to those from global non-glacial rivers (265 \textmu eq L−1 for Na+, 59.0 \textmu eq L−1 for K+, 342 \textmu eq L−1 for Mg2+, and 900 \textmu eq L−1 for Ca2+) after accounting for the uncertainty53-56.

Diurnal variations in cation concentration. For the 19 Asian glaciers, hourly cation concentrations differ between one to three orders of magnitude (Fig. 3a, d, g, j) and display strong diurnal trends, with higher values in the morning hours (22:00–12:00 h the following day) and lower values in the afternoon and evening hours (13:00–21:00 h; Fig. 3b, e, h, k). Compared with seasonal change of glacial cations30,45,46,57-59, the diurnal changes reflect the interaction time between water and rock/sediment coupled with meltwater dilution26,60,61. Field observation showed that during the morning hours lower air temperature reduces the supraglacial melt, leading to less meltwater, lower proglacial runoff, and higher cation concentrations26,60-62. Conversely, cation concentrations are diluted by increasing meltwater discharge and reduced transit times in the subglacial hydrological system later in the day (Fig. 3b, e, h, k). Our data are consistent with the diurnal changes for glacial runoff cations and/or electrical conductivity from Haut Glacier d’Arolla in Central Europe61, and from Qyti Glacier and Dongkemadi Glacier in Asia26,60,62. To identify the “most representative” daily sampling time, the ratios of hourly to daily mean cation concentrations were calculated (Fig. 3c, f, i, l). The hourly ratios range from 0.88 to 1.44 (with an average of 1.11) for Na+, 0.91 to 1.37 (1.08) for K+, 0.90 to 1.42 (1.11) for Mg2+, and 0.94 to 1.32 (1.07) for Ca2+ during the morning hours with high cation concentration and low runoff, in comparison to from 0.73 to 0.94 (0.85) for Na+, 0.83 to 0.98 (0.90) for K+, 0.73 to 0.98 (0.86) for Mg2+, and 0.85 to 1.04 (0.93) for Ca2+ during the afternoon and evening hours with low cation concentration and high runoff. The daily amplitude of these ratios provides a template that sampling at \textpm13:00 h or \textpm21:00 h can capture the “most representative” meltwater (Fig. 3c, f, i, l). This can be used to help estimate the daily mean concentrations and therefore the fluxes of glacial cations in future work on similar glacial systems.

Glacial chemical weathering and cation sources. Glacier meltwater chemistry is related to the principle weathering reactions, rock mineralogy, and drainage system configuration19,21,41,57,63. The Gibbs plots and elemental stoichiometry were used to identify the sources of cations13,63,64. Cation weathering products from glacial basins and regions confirm the dominance of rock weathering as the major source (Fig. 4a, b). Notably samples from MKG and YZG plot away from the other glaciers, which may be related to differences in the underlying geology. Na-normalized ratios for Ca2+ and Mg2+ are a useful tool for exploring the relative importance of different weathering processes26,33,65. Clusters from the 19 Asian glaciers are widely distributed between silicate and carbonate end-members, but MKG and YZG are close to the silicate end-member (Fig. 4c). This suggests that glacial chemical weathering in the Kunlun has a higher relative

Results and discussion

Glacial cation concentrations. We developed a global database of major cation concentrations from 77 glaciers (63 mountain/valley glaciers and 14 ice sheet outlet glaciers) containing 5465 samples generated in this study and published literature (Fig. 1A and Supplementary Tables 1–3). For our 19 Asian glaciers, the dominant cation is Ca2+ for 14 of the 19 glaciers, followed by Mg2+, Na+, and K+ (Fig. 1B). This is consistent with published cation data from glaciers in Asia (Supplementary Fig. 1). However, at SG2, SG3, and SG4 in the Qilian and at MKG and YZG in the Kunlun, meltwater compositions are dominated by Mg2+ (Fig. 1B), suggesting the contribution of magnesium-rich minerals32-54. Globally, Ca2+ is also the dominant cation in most glacial basins (Supplementary Fig. 1b). However, the dominant cation is Mg2+ in some basins within Asia, and Na+ and K+ in Scandinavia and Svalbard. The basin-mean cation concentrations range between one and two orders of magnitude, with arithmetic mean of 159 \textpm 341 \textmu eq L−1 for Na+, 42.7 \textpm 46.0 \textmu eq L−1 for K+, 393 \textpm 655 \textmu eq L−1 for Mg2+, and 581 \textpm 225 \textmu eq L−1 for Ca2+ for the 19 Asian glaciers (Fig. 2a and Supplementary Table 4).

The range of cation concentrations for the 19 Asian glaciers (where data from 4 glaciers extended existing records) overlaps
proportion of silicate to carbonate weathering than in other mountain ranges within Asia. In detail, carbonate weathering dominates the weathering regime for glaciers in Asia, Low Latitudes, Arctic Canada and Europe; however, in Svalbard, Iceland, Scandinavia, Greenland, and Antarctic and Subantarctic silicate weathering appears to be comparatively more important (Fig. 4d and Supplementary Table 6).

The chemical composition of meltwaters has been shown to be typically controlled by the presence of carbonate weathering in most glacial environments.6,13,26,27,32,41,45,46,60,66 Carbonate minerals (e.g., calcite, dolomite, and siderite) are preferentially weathered from glacial flour even if bulk bedrock is dominated by silicate minerals (e.g., potash feldspar, plagioclase, and illite).13 Previous studies also indicate that Ca$^{2+}$ and Mg$^{2+}$ are primarily derived from carbonate weathering and Na$^+$ and K$^+$ from silicate weathering in glacial environments.19,27,67–69 Our data set is consistent with this, reflected by higher contributions of Ca$^{2+}$ and Mg$^{2+}$ to total cation load from the 19 Asian glaciers (71–97%) and from previously published glaciers (51–98%; except for Scott Turnerbreen with 49%; Supplementary Tables 3–5). In detail, dolomite may be a source of Ca$^{2+}$ and Mg$^{2+}$ at SG2, SG3, and SG4 which is supported by their similar concentrations (Supplementary Table 3 and Table 7). However, at MKG and YZG silicate and evaporite may be a key source of Mg$^{2+}$ and Na$^+$ which fits with higher concentrations of Mg$^{2+}$ and Na$^+$ than Ca$^{2+}$ in glacial meltwaters (Fig. 4c, d).

Export of cations from glaciers. Estimates of cation fluxes should ideally be based on the discharge-weighted or mid-summer normalized cation data (to correct for variable flow and associated concentration effects; Figs. 2 and 3).26,45,46,57,61 However, our global compilation of glacial cations (Supplementary Table 3) shows that discharge data are sparse and available for only a few glaciers. Future studies need to address this...
omission which will seriously hamper attempts to compare the regional weathering rates and generate accurate flux (and CDRs) estimates. Here we proceed to use our mean cation concentration data in combination with modeled meltwater flux data to produce a first-order estimate of regional cation fluxes from glaciers in Asia and other glacial regions and then generate a global estimate (Table 1). This approach is tested against estimates based on the methods of regional discharge-weighted cation concentration and regional discharge extrapolation using all data in nine non-ice sheet glacial regions (apart from Greenland Periphery, and Antarctic and Subantarctic) and the mid-summer data in six non-ice sheet glacial regions (apart from Alaska, Arctic Canada, and Svalbard), respectively, in the current global data set (Fig. 1A and Supplementary Table 8).

Within Asia, the highest cation flux of 337 Gg year$^{-1}$ is found in the Kunlun, which has the largest glacier cover (11,524 km2) and mean cation concentrations (apart from K$^+$), despite the lowest specific discharge (0.43 m year$^{-1}$) of mountain ranges (Fig. 5a and Table 1). The other two mountain ranges with large glacier cover, the Tianshan (7180 km2) and Himalayas (6821 km2), also have high cation fluxes of 156 Gg year$^{-1}$ and 271 Gg year$^{-1}$, respectively, compared to all other Asian glaciers. The smaller glacier-covered mountain ranges of Hengduan (1395 km2) and Altai (179 km2) have the lowest cation fluxes of 14.9 Gg year$^{-1}$ and 11.8 Gg year$^{-1}$, respectively (Fig. 5a). For the Asian glacial region (121,694 km2) we estimate a regional cation flux of 6305 ± 5843 Gg year$^{-1}$ from Asian glaciers (Fig. 5b and Table 1). The glacial region with the highest glacier cover, Arctic Canada (145,767 km2), is also the region with the highest cation flux (7796 ± 321 Gg year$^{-1}$). The lowest cation flux of 37.0 ± 36.4 Gg year$^{-1}$ is found in Scandinavia, one of glacial regions with least glacier cover (2851 km2; Fig. 5b and Table1).

Fig. 2 Mean cation concentrations in meltwaters for glaciers globally. a 19 glaciers in Asia generated in this study (Supplementary Table 4); b 77 glaciers in eleven glacial regions (Supplementary Tables 3 and 5). The boxes and horizon lines above indicate the mean cation concentration and standard deviations, respectively.

For eight mountain ranges in Asia, glacial cation fluxes are linearly related to glacial area ($R^2 = 0.90$, $p < 0.01$; Supplementary Fig. 3a). This indicates a relationship between glacial area and runoff for mountain ranges ($R^2 = 0.65$, $p < 0.02$; Supplementary Fig. 3b). There are some exceptions to these trends. The Kunlun has a higher cation flux (337 Gg year$^{-1}$) than the Himalayas (271 Gg year$^{-1}$) even though glacier runoff is smaller (by around 5 km3 year$^{-1}$; Table 1). For ten glacial regions (including Greenland Periphery), cation fluxes are also closely related to glacial area ($R^2 = 0.74$, $p < 0.01$; Supplementary Fig. 3c), suggesting a close relationship between glacial area and melt ($R^2 = 0.95$, $p < 0.01$; Supplementary Fig. 3d). Notably, cation export from Asia only accounts for 25% of that from nine non-ice sheet glacial regions (see above) despite its relatively large percentage (32%) of total runoff (Table 1). Conversely, glacial runoff from Arctic Canada accounts for 19% of total runoff yet appears to account...
for 31% of cation export. This indicates that using a single glacier or even a few glaciers to represent a whole glacial region may introduce large uncertainties into the calculations of cation export owing to large spatial variations of cation yield and/or weathering processes.

Given that glacial runoff from these nine non-ice sheet glacial regions (1130 km3 year$^{-1}$; Table 1) accounts for 79.0% of total glacial runoff globally (excluding ice sheets)70, we can crudely estimate worldwide glacial cation export as 32,035 ± 14,446 Gg year$^{-1}$ based on the discharge extrapolation (Table 1). This equals that calculated by the regional discharge-weighted mean cation concentrations from all glaciers in these nine non-ice sheet glacial regions multiplied by total glacial runoff (Supplementary Table 8). Based on mean cation concentrations from nine outlet glaciers in the Greenland Periphery$^{22,54,71–73}$ (Supplementary Table 5) multiplied by total runoff (542–652 km3 year$^{-1}$)9,74,75, total cation export from the Greenland Ice Sheet (GIS) was estimated as ranging from 2158 to 2595 Gg year$^{-1}$ (Table 1), consistent with another recent estimate of cation release from the GIS (2386 Gg year$^{-1}$)76. Cation release from the Antarctic Ice Sheet (AIS) was estimated as 1209 to 5584 Gg year$^{-1}$ based on mean cation concentrations from five outlet glaciers in the Antarctic and Subantarctic multiplied by total runoff (55–254 km3 year$^{-1}$)77,78 (Table 1 and Supplementary Table 5).

Cation export from glaciers worldwide is ~3% of that from global non-glacial rivers (1,172,786 Gg year$^{-1}$; Table 1). However, we estimate it is currently higher (3.9–9.5 times) than the combined GIS and AIS, even though total runoff70 is only 1.6 to 2.4 times higher (Fig. 5c and Table 1).

Our estimates contain substantial uncertainties, especially in the absence of catchment discharge-weighted mean cation concentration data from glaciers worldwide.

(i) The largest source of uncertainty is the scarcity of data on cation concentration from non-ice sheet glaciers outside of Asia (43 glaciers and 3561 samples in Asia versus 20 glaciers and 1080 samples in the rest of the world; Fig. 1A and Table 1).
(ii) There is considerable regional variability and the data assembled here do not allow for any statistically valid interpretation about how glacier size, sampling location/season/duration, and sample size at basins with similar bedrock as well as diverse geology spatially influence the cation concentration. The timing and duration of sampling may result in large errors owing to the high fluctuation of seasonal cation concentrations and/or meltwater runoff26,45,46,57,61. For example, daily mean Mg2+ concentration during 7–8 June is 9.4 times higher than during 8–9 August of 2013 at Dongkemadi Glacier in the Tanggula26. Monthly mean concentration of Mg2+ during July is 0.8 times lower than during an entire melt season (June to September) of 2013 at Urumqi Glacier No.1 in the Tianshan45.

(iii) Proglacial chemical weathering occurs rapidly and may play an important role in the cation concentration and export26,79–81, but the distance of 80% of sampling sites is below 2 km from ice margin in the current global data set (Supplementary Fig. 4) suggesting that the proglacial weathering will have relatively minor effects on cation exports in most cases.

(iv) If only the mid-summer data (\(n = 593\)) is used from 24 non-ice sheet glaciers worldwide, the estimated glacier cation flux is ~64% of that using all data (\(n = 4641\)) from all non-ice sheet glaciers, which is lower but does not significantly change the conclusions of this study (Fig. 1A and Supplementary Tables 8, 9).

(v) Geochemical data is currently not available for the large glaciers in Patagonia and Southern Andes (Fig. 1A). Although total runoff is comparatively small compared to global glacier runoff, glaciers in these regions are among the most rapidly retreating on Earth, and are likely to be regionally important in cation denudation.

Despite these reservations, our findings provide evidence that glaciers play a key role in catchment geochemical weathering and associated elemental mobilization.

Glacial chemical weathering rates. Chemical weathering rates for glaciers within Asia appear to be controlled by several variables. Glacial weathering in the Altai is impacted by a very high discharge (3.63 m year\(^{-1}\))82,83, and the high observed Ca2+ concentration (750 μeq L\(^{-1}\)) is the main component of the very high CDR (3425 Σ* meq\(^{+}\) m\(^{-2}\) year\(^{-1}\)) (Fig. 5d and Table 1). The lowest CDR of 486 ± 105 Σ* meq\(^{+}\) m\(^{-2}\) year\(^{-1}\) is found in the Hengduan, where the specific discharge (0.65 m year\(^{-1}\)) and cation concentration are relatively low. Higher CDR from the Himalayas (2000 ± 1586 Σ* meq\(^{+}\) m\(^{-2}\) year\(^{-1}\); Fig. 5d) is also consistent with a positive relationship between CDRs and specific discharge (Table 1). Lower CDRs and specific discharge along with slow glacier mass loss for mountain ranges on the Tibetan Plateau84,85 is further evidence of a link between meltwater generation and chemical weathering rates. On a regional scale, glacial CDR for Asia (2655 ± 2565 Σ* meq\(^{+}\) m\(^{-2}\) year\(^{-1}\)) is similar to Arctic Canada, Svalbard and Jan Mayen, Alaska,
-1) and crustal-derived cation denudation rate (CDR; ± std; m year$^{-1}$) for glaciers in eight mountain ranges within Asia, for glaciers in ten glacial regions globally, and for glaciers and ice caps over the world in comparison to the latitude (LAT; °C), glacier area (ARE; km2), and mean annual precipitation (MAP; mm).

Table 1. Cation flux (±std; Gg year$^{-1}$) for glaciers in eight mountain ranges within Asia, for glaciers in ten glacial regions globally, and for glaciers and ice caps over the world in comparison to the latitude (LAT; °C), glacier area (ARE; km2), and mean annual precipitation (MAP; mm).

Ranges	ATG	KLG	TSG	PAG	HDG	GPG	Global Glacier	Global Ice Cap	Global River
Area	179	37	48	39	29	32	52	61	72
MAT	5.00	6.56	7.00	6.56	6.65	6.90	1430	112	112
MAP	1070	1260	1150	1260	1390	1390	38,452	285,000	1172
N1	0.30	0.63	0.30	0.63	0.30	0.63	0.30	0.30	0.30
N2	0.30	0.63	0.30	0.63	0.30	0.63	0.30	0.30	0.30
N3	0.30	0.63	0.30	0.63	0.30	0.63	0.30	0.30	0.30

The eight mountain ranges within Asia include the Altai (ATG), the Tianshan (TSG), the Qilian (QLG), the Kunlun (KLG), the Pamir (PAG), the Hengduan (HDG), and the Himalayan (HMG) mountain ranges. The ten glacial regions globally include Asia (ASG), the Arctic (GIS), and the Americas (AMS). The global glaciers and ice caps include the Global (Global), the Arctic (GIS), and the Americas (AMS). The global rivers include the Global (Global).
Western Canada and USA, Central Europe and Iceland, and in the intermediate range of regional CDRs (285 to 9683 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$; Fig. 5e and Table 1).

Our data indicate that regional variability in glacial chemical weathering rates is related to the hydrological regime. We find a positive linear relationship between glacial CDRs and specific discharge on both mountain range (for eight mountain ranges in Asia; $R^2 = 0.77$, $p < 0.01$) and regional (for ten glacial regions worldwide; $R^2 = 0.46$, $p < 0.04$) scales (Fig. 6a, b). The highest CDR of 9683 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$ is estimated for glaciers in the low latitude region, where the specific discharge is very high (6.39 m year$^{-1}$). The lowest regional glacial CDR of 285 ± 233 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$ we estimated occurs in Greenland Periphery (with a specific discharge of 1.66 m year$^{-1}$; Fig. 5e and Table 1). The disproportionately high denudation rates from low latitude glaciers reflect high rates of mass loss30,70,88 as well as potentially higher rates of physical erosion compared to glaciers at high latitudes14,87, creating an abundance of reactive mineral surfaces.

Glacial cation denudation rates in glacial catchments appear to be globally elevated. Current CDR from glaciers globally (2174 ± 977 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$) is ~3 times higher than previous mean glacial CDR (740 ± 830 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$, see above). Furthermore, glacial CDR is ~3 times higher than the mean cation yield (~800 meq$^{-1}$ m$^{-2}$ year$^{-1}$) for Greenland Ice Sheet catchments (~150 to 2000 meq$^{-1}$ m$^{-2}$ year$^{-1}$), which is estimated by the discharge-weighted cation yield of 14.8 tons km$^{-2}$ year$^{-1}$ for Greenland Ice Sheet catchments (~150 to 2000 meq$^{-1}$ m$^{-2}$ year$^{-1}$, which is estimated by 2.6–37.6 tons km$^{-2}$ year$^{-1}$ from Leverett Glacier, Watson River, Proglacial zone of Watson River, Kiatnuut Sermiat and “N” Glacier25, and is approaching two orders of magnitude higher than CDR when compared to the whole ice sheet (29.5–43.1 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$; Fig. 5f and Table 1). Glacial CDR is also ~4 times higher than the average CDR (~500 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$) for the major world’s rivers (~200 to 1000 Σ^*meq$^{-1}$ m$^{-2}$ year$^{-1}$ from Kolyma, Mackenzie, Ob, Nile, and Mississippi rivers)88 and ~6 times higher than the global river mean CDR (see above)$^{16,41–43}$.

CDRs from glacial basins worldwide also show a linear relationship to specific discharge on a basin scale (for >29 glacial basins globally; $R^2 = 0.25$, $p < 0.01$; Fig. 6c and Supplementary Table 10). Glacial CDRs are positively related to mean annual temperature (0.18 < $R^2 < 0.51$, $p < 0.03$) and mean annual precipitation (0.26 < $R^2 < 0.42$, $p < 0.05$) on both basin and regional scales (Fig. 6e, f, h, i). This indicates that climate warming driven meltwater runoff increase30,51 is a key control of glacier chemical denudation. The inverse CDR response to increasing latitude on both basin and regional scales (0.40 < $R^2 < 0.69$; $p < 0.01$; Fig. 6k, l and Supplementary Table 10) is further evidence of the link between climatic warming, meltwater generation (specific discharge), and chemical weathering rates. This suggests that cation export will increase as glacier and ice sheet melt accelerates, while it will decrease as glaciers and/or ice sheets are removed from the landscape (or reaches a critical threshold). Geographically widespread studies are needed to further constrain estimates.

Fig. 5 Cation flux and cation denudation rate for glaciers and ice sheets globally. a, d Glaciers in eight mountain ranges within Asia; b, e Glaciers in ten glacial regions (excluding ANG; Fig. 1); c, f Glaciers (GLA), Greenland Ice Sheet (GIS) and Antarctic Ice Sheet (AIS; Table 1). Note that L and H in the bottom plots (c, and f) denote the high- and low-end estimates, respectively, and the horizontal lines above the bars indicate the standard deviations.
and help further address these relationships. Over the next few decades, non-ice sheet glaciers are likely to become increasingly important in chemical weathering budgets and related regional elemental cycles. This study highlights the role of glaciers on the catchment scale chemical weathering rates and emphasizes the poorly understood biogeochemical consequences of waning glacier cover with predicted warming of the Earth’s climate.

Methods

Study area. Fieldwork was conducted at the 19 glaciers in Asia, including four glaciers (KOG, DGG, BGG, and HGG) in the Tianshan, six glaciers (SG2, SG3, SG4, YG1, YG5, and LHG) in the Qilian, two glaciers (MKG, and YZG) in the Kunlun, one glacier (DKG) in the Tanggula, three glaciers (GG1, GG2, and GG3) in the Pamir, two glaciers (HLG, and HG2) in the Hengduan, and one glacier (RBG) in the Himalayan mountain ranges (Figs. 1B, and Supplementary Fig. 5 and Tables 1, 2). In this area, the regional climate is influenced by Indian monsoon and westerlies, with limited influence from East Asian monsoon on the Tibetan Plateau. In addition, mineral compositions of proglacial deposits at KOG are dominated by potash feldspar, quartz, and plagioclase (93.4%), followed by illite, calcite, dolomite, kaolinite, and siderite (6.4%), and chlorite, pyrite, and gypsum (0.2%) (Supplementary Table 6). This is similar to the dominance of mineral compositions at DKG in the Tanggula26, at HLG in the Hengduan46, at Urumqi Glacier No.1 in the Tianshan45, and at Qiyi Glacier in the Qilian60 within Asia.

Sampling and laboratory analysis. Glacier outflows from the 19 Asian glaciers were sampled manually at locations as close to ice margin as possible during
For debris-free glaciers, the glacier surface ablation \((a_d) \) was calculated based on a degree-day model, in which snow/ice melt is considered as a linear correlation to monthly air temperature. Here, monthly \(a_d \) (mm w.e.) was expressed as
\[
a_d = f_{snow/ice} \int \max(T_i, 0) \, dt
\]
where \(f_{snow/ice} \) denotes degree-day factor for snow/ice (mm w.e. d\(^{-1}\) °C\(^{-1}\)), and \(T_i \) denotes monthly air temperature (°C) above the glacier surface.

For debris-covered glaciers, the relationship between debris thickness and glacier surface ablation\(^{35} \) was used to calculate the effect of debris cover on glacier surface ablation. In detail, an averaged curve for debris thickness and surface ablation was used in the mass balance model to calculate the reduction of ice ablation due to debris cover. To calculate the ablation of debris-covered glaciers, the ablation factor \(k_\text{d} \) was introduced to quantify the effect of debris on glacier surface ablation. Thus, monthly glacier surface ablation due to debris ablation \((a_\text{d,ablat}) \) was calculated as
\[
a_\text{d,ablat} = k_\text{d} \times f_{snow/ice} \int \max(T_i, 0) \, dt
\]
where \(k_\text{d} \) denotes the scale factor of each elevation band (i) which depends on the debris thickness.

Monthly glacier mass accumulation for each elevation band \(c_i \) (mm w.e.) was calculated as
\[
c_i = \delta_i \times P_i \times \phi_i \times (l_{\text{max}} - h) + \delta_i \times R_{\text{snow}}
\]
where \(\delta_i \) is a constant, \(T_i \) denotes air temperature at each elevation band, and \(T_{\text{snow}} \) represents the threshold temperature. If \(T_i < T_{\text{snow}} \), \(P_i \) is assumed to be snow; if not, \(P_i \) is regarded as liquid precipitation.

Based on the relationship between annual potential refreezing \(R_{\text{pot}} \) (cm) and air temperature \(T_d \) (°C) at each elevation band\(^{45}, \) \(R_{\text{pot}} \) was calculated as
\[
R_{\text{pot}} = -0.69 \times T_d + 0.0096
\]
where the lower boundary of annual snowmelt refreezing over the whole glacier is zero, while an upper boundary is applied in the ablation zone and assumed equal to the accumulated snow. Monthly snow meltwater frozen on glacier surface \((R_d) \) does not flow away until accumulated melt in a mass balance year exceeds the annual potential refreezing \((R_{\text{pot}}) \).

To interpolate the climatic runoff, using the CRU TS monthly temperature at each elevation band, two temperature lapse rates \((T_{\text{ls}} \text{, } G_{\text{max}}) \) were utilized. \(T_{\text{ls}} \) is a parameter similar to a ‘statistical lapse rate’ between the CRU TS altitude of grid cell with glacier location \((h_{\text{CRU}}) \) and the highest elevation of glacier \((h_{\text{max}}) \), while \(G_{\text{max}} \) denotes glacier surface temperature mainly taking into account glacier surface difference, such as orientation and glacier surface climate environment. Monthly air temperature at each elevation band \(T_i \) was calculated as
\[
T_i = T_{\text{CRU}} + T_{\text{ls}} \times (h_{\text{max}} - h_{\text{CRU}}) + G_{\text{max}} \times (h - h_{\text{max}})
\]
where \(T_{\text{CRU}} \) denotes the CRU TS monthly air temperature during the period of 1952–2014, and \(h \) represents the altitude of glacier elevation band.

To interpolate the CRU TS monthly precipitation to \(h_{\text{max}} \), a precipitation correction factor \((k_p) \) was used, while a precipitation gradient \((d_p) \) was used to interpolate precipitation to each elevation band (the percentage of precipitation decreases every 50 m decreases in elevation) from the highest to lowest elevation of the glacier. Thus, monthly precipitation at each elevation band was calculated as
\[
P_i = k_p \times P_{\text{CRU}} \times (1 + d_p \times (h - h_{\text{max}}))
\]

Glossary:
- **Glacier mass balance model**: The monthly-scale mass balance model\(^{89,90} \) was used in this study to model glacier mass balance for mountain ranges in High Mountain Asia during 1952–2014. In detail, the input data involved in this model includes monthly precipitation and air temperature. Glacier area-weighted specific mass balance \((B) \) for the whole glacier in each mountain range was computed as a sum of specific mass balance of each elevation band on a glacier.

\[
B = \sum_{i=1}^{n} \frac{b_i \times S_i}{S_{\text{GL}}}
\]
where \(b_i \) and \(S_i \) denote specific mass balance and glacier area, respectively, and \(S_{\text{GL}} \) denotes glacier area of each elevation band. To calculate \(b_i \), we used the ice core data from Brun and others\(^{75} \) and the statistical lapse rate \((\delta) \) were used to constrain the modeled results. In detail, the glacier mass balance model was run on a monthly timescale\(^{89,90} \), driven by monthly precipitation and air temperature. For debris-free glaciers, ice surface ablation was calculated based on a degree-day model. But for the debris- covered glaciers, an ablation influencing factor was introduced to the degree-day model based on a relationship between the debris thickness and sub-ice ice melt rate\(^{91} \). The runoff model was proposed by Bliss and others\(^{70} \), in which the evaporation, sublimation, and any storage changes (groundwater, englacial water, and subglacial water) were assumed to be negligible\(^{92} \). Notably, glacier mass balance is the basis of the runoff model, and all variables involved are integrated over an entire glacier-covered area. The input data, calibrated parameters for the mass balance model were utilized to drive the glacier runoff model, and the observations from 45 monitored glaciers were used to calibrate related parameters\(^{93} \), following the method of Radic and Hock\(^{89} \). To improve the accuracy of modeling results, the ASTER DEM and ASTER-derived geodetic glacier mass balance from Brun and others\(^{75} \) were used to further constrain the modeled results. In detail, the glacier mass balance and glacier runoff models are briefly illustrated below.

Glacier mass balance model: The monthly-scale mass balance model\(^{89,90} \) was used in this study to model glacier mass balance for mountain ranges in High Mountain Asia during 1952–2014. In detail, the input data involved in this model includes monthly precipitation and air temperature. Glacier area-weighted specific mass balance \((B) \) for the whole glacier in each mountain range was computed as a sum of specific mass balance of each elevation band on a glacier.

\[
B = \sum_{i=1}^{n} \frac{b_i \times S_i}{S_{\text{GL}}}
\]
where \(b_i \) and \(S_i \) denote specific mass balance and glacier area, respectively, and \(S_{\text{GL}} \) denotes glacier area of each elevation band. Monthly specific mass balance \((b_i) \) of each elevation band on a glacier (with an interval of 50 m) was calculated as
\[
b_i = a_i + c_i + R_i
\]
where \(a_i \) denotes glacier surface ablation (negative), \(c_i \) represents glacier mass accumulation (positive), and \(R_i \) refers to snowmelt refreezing (positive) at each elevation band.
glacial region (Table 1). Annual cation flux from all glaciers worldwide was estimated by two methods: (i) the discharge extrapolation of annual Na+, K+, Mg2+, and Ca2+ from non-ice sheet glacial regions based on the percentage of annual glacial runoff from these nine glacial regions to annual glacial runoff globally60 and then the extrapolated annual Na+, K+, Mg2+, and Ca2+ fluxes were summed, and (ii) the multiplication of regional discharge-weighted mean Na+, K+, Mg2+, and Ca2+ concentrations (as the mean cation concentrations for glaciers worldwide divided by annual glacial runoff globally60) and then annual Na+, K+, Mg2+, and Ca2+ fluxes were summed (Table 1 and Supplementary Table 8). In order to evaluate the effect of discharge-concentration seasonality on estimated cation flux from global glaciers, annual cation flux from global glaciers was also estimated by the discharge-weighted method as described above based on the mid-summer (July–August) data (n = 593) from 24 glaciers worldwide in six non-ice sheet glacial regions (ASG, CEG, ICG, LLG, SCG, and CUGC; Supplementary Tables 8 and 9). Similar extrapolations have been adopted in recent estimates of element flux from glaciers and/or ice sheets12-12,36,46. The approaches are simplistic but provide a first-order estimate of cation fluxes on the mountain range and regional scales. The approaches taken assume that glaciers with available data are representative of entire mountain ranges or glacial regions, which is unlikely given the differences in geology, glacial hydrology, and temporal variation in sampling. Error estimates of cation fluxes were calculated from the standard deviation of data set mean cation concentrations multiplied by annual glacial runoff (Table 1).

Cation denudation rate estimates. To calculate the crustal CDRs we used the annual Na+, K+, Mg2+, and Ca2+ fluxes divided by glacial area11,12 (asterisks indicate crustal-derived solutes; Table 1). The annual Na+, K+, Mg2+ and Ca2+ fluxes were estimated by the annual Na+, K+, Mg2+, and Ca2+ fluxes as described above multiplied by the mean contribution (%) of the annual Na+, K+, Mg2+, and Ca2+ fluxes to the annual total Na+, K+, Mg2+, and Ca2+ fluxes which is calculated based on published data from 2 glaciers in Asia, more than 8 glaciers in Svalbard, 1 glacier in Central Europe and 1 outlet glacier in Greenland for each mountain range or glacial region (Table 1). In detail, for eight mountain ranges in Asia and the Asian glacial region, the mean contributions of the annual Na+, K+, Mg2+, and Ca2+ fluxes to the annual total Na+, K+, Mg2+, and Ca2+ fluxes were calculated based on the contributions of crustal-derived cations to total cations at Batura Glacier22 and Hailuogou Glacier32. For the SIG, the mean contributions were calculated based on the crustal-derived cation contributions at Scott Turnerbreen23, Austre Broggerbreen26, Erdmannbreen26, Midre Lovénbreen26, Hannabreina26, Erikkreina26, Longyearebreen30, and Bayelva River39 in Svalbard. For the CEG, the mean contributions were calculated on the crustal-derived cation contributions at Haut Glacier d’Arolla21 in Central Europe. For the GIS and AIS, the mean contributions were calculated based on the crustal-derived cation contributions at Kuannersuit Glacier53 in the Greenland. For the other six glacial regions (ASG, CEG, ICG, LLG, SCG, and CUGC) and global glaciers, the mean contributions were calculated based on the crustal-derived cation contributions at all non-ice sheet glaciers (apart from Kuannersuit Glacier) because data are not available in these six regions (Table 1).

Data availability All data used in this study are present in supplementary materials and have been deposited in the National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/en/disallow/s5a1eb9ec-462a-4840-ad81-98caef37386651).
38. Wadhams, J. L., Hodson, A. J., Tranter, M. & Dowdeswell, J. A. The rate of chemical weathering beneath a quiescent, surge-type, polythermal-based glacier, southern Spitsbergen, Svalbard. Ann. Glaciol. 24, 27–33 (1997).
39. Axtell, E. & Stallard, R. in Proc. Biogeochemistry of Seasonally Snow-covered Catchments (eds Tonnessen, K., Williams, M.W., & Tranter, M.) Vol. 228 (1995).
40. Eyles, N., Nasseville, D. R., Slat, R. M. & Rogerson, R. J. Geochemical denitrification rates and solute transport mechanisms. Can. J. Earth Sci. 19, 1570–1581 (1982).
41. Brown, G. H. Glacier meltwater chemistry. Appl. Geochim. 17, 855–883 (2002).
42. Livingstone, D. A. Chemical Composition of Rivers and Lakes: Professional Paper 440-G (United States Geological Survey, Washington, 1963).
43. Moreybe, M. Concentrations des eaux fluviatives en éléments majeurs et apports en solution aux océans: Revue Géologie Dynamique et Géophysique Physique. Vol. 21, 215–246 (1979).
44. Hodson, A., Heaton, T., Langford, H. & Newsham, K. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry 98, 89–110 (2010).
45. Li, X. et al. Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrof. Process. 33, 3258–3281 (2019).
46. Li, X. et al. Intense chemical weathering at glacier meltwater-dominated Hailuogou basin in the southeastern Tibetan Plateau. Water. 11, 1209 (2019).
47. Stoffel, M. R. & Gletscher globaler Massenverlust in der ersten 2000 Jahre. Geophys. Res. Lett. 37, 615–630 (2010).
48. Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the Greenland Ice Sheet from 1956 to 2016. Geophys. Res. Lett. 47, e2019GL086926 (2020).
49. Hoss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change. 8, 135–140 (2018).
50. IPCC. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge University Press, 2019).
51. Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge University Press, 2019).
52. Kumar, K. et al. Solute dynamics of meltwater of Gangotri Glacier, Garhwal Himalaya, India. Environ. Geol. 58, 1151–1159 (2009).
53. Stumpf, A. R. et al. Glacier meltwater stream chemistry in Wright and Taylor Valleys, Antarctica: Significant roles of drift, dust and biological processes in chemical weathering in a polar climate. Chem. Geol. 322–323, 79–90 (2012).
54. Hindmarsh, R. S., Rickson, J., Leuthold, J., Wadhams, J. & Bourdon, B. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochimica et Cosmochimica Acta 145, 50–71 (2014).
55. Langmuir, D. Aqueous Environmental Geochemistry 600 (Prentice-Hall, New Jersey, 1997).
56. Bustranne, C. & de Caritat, P. Chemical Elements in the Environment-Factsheets for the Geochemist and Environmental Scientist (Springer, 1998).
57. Mitchell, A. C., Brown, G. H. & Fuge, R. Minor and trace element export from the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 66, 3397–3416 (2002).
58. Wu, W., Xu, S., Yang, J. & Yin, H. Sillicate weathering and CO2 consumption deduced from the seven rivers originating in the Qinghai-Tibet Plateau. Chem. Geol. 249, 307–320 (2008).
59. Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. 119, 717–730 (2014).
60. Aciego, S. M., Stevenson, E. I. & Arendt, C. A. Climate versus geological controls on glacial meltwater micronutrient production in southern Switzerland. Earth Planet. Sci. Lett. 424, 51–58 (2015).
61. Wimpenny, J. et al. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet. Sci. Lett. 290, 427–437 (2010).
62. Yde, J. C. & Knudsen, N. The importance of oxygen isotope provenance in relation to solute content of bulk meltwaters at Imeruqau Glacier, West Greenland. Hydrol. Process. 18, 125–139 (2004).
63. Lenaerts, J. T. M. et al. Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett. 42, 6373–6381 (2015).
64. Tesedmo, M. et al. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Geophys. Res. Lett. 40, 6229–6234 (2013).
65. Hasholt, R. et al. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland. J. Glaciol. 105, 9–23 (2019).
66. Bhatia, M. P. et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274–278 (2013).
67. Wadhams, J. L. et al. Biogeochemical weathering under ice: Size matters. Glob. Biogeochem. Cycles 24, GB3025 (2010).
68. Talvi, T., Krisdi, N. & Srin, M. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 66, 3397–3416 (2002).
69. Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. 119, 717–730 (2014).
70. Aciego, S. M., Stevenson, E. I. & Arendt, C. A. Climate versus geological controls on glacial meltwater micronutrient production in southern Switzerland. Earth Planet. Sci. Lett. 424, 51–58 (2015).
71. Wimpenny, J. et al. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet. Sci. Lett. 290, 427–437 (2010).
72. Yde, J. C. & Knudsen, N. The importance of oxygen isotope provenance in relation to solute content of bulk meltwaters at Imeruqau Glacier, West Greenland. Hydrol. Process. 18, 125–139 (2004).
73. Lenaerts, J. T. M. et al. Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett. 42, 6373–6381 (2015).
74. Tesedmo, M. et al. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Geophys. Res. Lett. 40, 6229–6234 (2013).
75. Hasholt, R. et al. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland. J. Glaciol. 105, 9–23 (2019).
76. Bhatia, M. P. et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274–278 (2013).
97. Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
98. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).
99. Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 11, 1655–1674 (2019).

Acknowledgements
This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0207, 2019QZKK020102), the National Natural Science Foundation of China (42171053, 41671053, 41761017, 42171124, 41871069), the Open Foundation of State Key Laboratory of Frozen Soil Engineering (SKLFSE201901), and the Research Start-up Foundation of Northwest University. We thank S. Liu, C. Yang and Y. Wang for help in collecting published glacial cation data, Alejandra Urra and J. Wang for sharing their raw data, D. Zhang and Z. Li for help in the process of drawing Fig. 1, and Q. Yang for drawing Supplementary Fig. 1.

Author contributions
X.L. designed the research and wrote the paper, and X.L., N.W. and Y.D. performed the research with substantial input from J.R.H., J.C.Y. and R.R. Research ideas were contributed by X.L., J.L., S.Z., Q.L., S.K., S.L., R.B., X.Y. and G.L. X.L. developed a global data set of glacial runoff cations, and R.W. provided glacial runoff data for the Asian mountain ranges. All authors commented on and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28032-1.

Correspondence and requests for materials should be addressed to Xiangying Li, Ninglian Wang or Yongjian Ding.

Peer review information Nature Communications thanks Benjamin Linoff, Virendra Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022