Classification of Open Unemployment Rate in Indonesia with Mamdani Fuzzy Inference System

Y Kurniasari¹, B Suseta², N Hendiyani³, A M Abadi⁴
Bachelor Student of Mathematics Study Programme, Yogyakarta State University, Indonesia
Study Programme of Mathematics, Yogyakarta State University, Indonesia

E-mail: yori.kurniasari2016@student.uny.ac.id¹, nisabrilian13@gmail.com², noviahendiyani09@gmail.com³, agusmaman@uny.ac.id⁴

Abstract. Unemployment is a very common problem in developing countries such as Indonesia. One of the government’s efforts to overcome the problem is having skill training. However, the labor often faced difficulties in classifying unemployment in Indonesia. Therefore, the utilization of fuzzy logic is considered as an appropriate way to examine the state’s open unemployment rate by Mamdani method implementation. The input used in this case is the number of unemployment and labor force whereas the output of this system is the classification of open unemployment rate. Then the model output is compared to the classified data of the labor service and the result indicates that a matching percentage of 70.6 percent. It shows that the fuzzy model is able to determine the open unemployment rate in Indonesia.

1. Introduction

Unemployment is a key for macroeconomic variables and economic planning [1]. Indonesia as a developing country has complex problems which requires an appropriate policy to minimize its impact. One of the most challenging problems is the unemployment rate which influences the country’s economic rate of growth [2]. Unemployment may be concerned with individuals effort to look for job and their willingness to accept the market wage for a particular type of a job [3]. This problem arises because the economy does not reach the conditions of full employment so that a group of people who cannot work even though they want the job. The opportunity to work is low since companies, government organizations and other business entities have employed enough employees to produce goods and services. This resulted in a group of people who had to accept the fact that they could not work in the economic system.

Common reasons for unemployment is an ever-increasing labor force and growth in unequal employment opportunities. Furthermore, unemployment is also caused by the absence of employment and do not achieve the requirement to the terms set out. The labor forces who look for employment does not meet the qualifications requested by the business world because of low investment rates. Labor is a crucial factor in the economic development of each country [4]. The aim of increased job absorption is considered as a priority in building a country. Labor is a labor-age population. The population is classified as labor if the population has entered the labor age. The current labor-age in Indonesia is 15 to 64 years of age. It can be concluded that labor is one of the most important production factors in each country.
Indonesia has 34 provinces with different unemployment rates in each region. Solutions are proposed by the government to reduce the unemployment rate for one by providing skill and apprenticeship training[5]. However, it has not been to the maximum extent by Manpower in Indonesia since the difficulties are encountered in classifying the unemployment rate in Indonesia. Mamdani fuzzy inference system is one of the most famous applications of fuzzy logic and sets fuzzy theory [6-14]. These systems can be helpful to achieve classification tasks, offline process simulation, and diagnosis, online decision support tools and process control [15]. Therefore with fuzzy logic and the Mamdani method is proposed to deal with unemployment rate classification problem in Indonesia.

2. Research Methods
The research used data from Badan Pusat Statistik (Statistics Indonesia) in August 2018 [16]. The input used in this case is the number of unemployed and the labor force, while for the output from this system that is the classification of the open unemployment rate. Fuzzy sets theory is the base of materializing a fuzzy rule-based system that contains a rule base, a decision-making unit, and finally a defuzzification interface are shown in Figure 1. The function of each block is as follow [11,17-19].

a. A rule base containing a number of fuzzy if-then rules.
b. A database that defines the membership functions of the fuzzy sets used in the fuzzy rules.
c. A decision-making unit that performs the inference operation on the rules.
d. A fuzzification interface that transforms the crisp input to degrees of the match with linguistic values.
e. A defuzzification interface which transforms the fuzzy results of the interface into the crisp output.

![Research Flowchart](image)

Figure 1. Research Flowchart

This research used the data of labor force and number of open unemployment rates in 34 provinces in Indonesia which are listed in Table 1 below:

No	The province	Unemployment	Labor Force	Open Unemployment Rate (%)
1	Aceh	63,985	898,523	7.12
2	North Sumatra	171,104	3,012,319	5.68
3	West Sumatra	67,815	1,048,676	6.47
4	Riau	82,787	1,058,323	7.82
	Province	Population (thousand)	Labour Force (thousand)	Unemployment Rate
---	--------------	-----------------------	-------------------------	-------------------
5	Jambi	31,020	664,203	4.67
6	Sumsel	67,540	1,591,886	4.24
7	Bengkulu	16,666	392,970	4.24
8	Lampung	68,443	1,524,827	4.49
9	Bangka Belitung	9,993	256,996	3.89
10	Kep. Riau	18,888	340,655	5.54
11	DKI Jakarta	107,184	1,919,612	5.58
12	West Java	656,956	7,548,649	8.70
13	Central Java	308,727	7,572,268	4.08
14	DIY	32612	981,475	3.32
15	East Java	324,111	8,699,117	3.73
16	Banten	160,396	2,025,197	7.92
17	Bali	9,478	1,156,011	8.2
18	NTB	32,058	967,601	3.31
19	NTT	31,749	1,084,437	2.93
20	West Kalimantan	41,751	931,997	4.48
21	Central Kalimantan	24,372	475,758	5.12
22	South Kalimantan	31,001	826,272	3.75
23	East Kalimantan	41,438	569,751	7.27
24	North Kalimantan	5,987	116,413	5.14
25	North Sulawesi	35,867	414,060	8.66
26	Central Sulawesi	22,955	571,426	4.02
27	South Sulawesi	84,236	1,552,467	5.43
28	Southeast Sulawesi	19,900	502,025	3.96
29	Gorontalo	11,775	221,652	5.31
30	West Sulawesi	9,588	251,889	3.81
31	Maluku	26,992	297,234	9.08
32	North Maluku	13,103	202,649	6.47
33	West Papua	8,495	161,224	5.27
34	Papua	21,750	767,658	2.83

a. Fuzzification
The fuzzification process is an early stage where there is a crisp value in a fuzzy set [19]. In the other words turn a crisp value into a value ranging from 0 to 1 in the available fuzzy set. The set of variables used in this case is as follows:

1. Number of Unemployment: \{small, medium, large\}
2. Labor Force: \{small, medium, large\}
3. Open Unemployment Rate: \{low, medium, high\}

The membership functions of fuzzy sets in the variable of number of unemployment (in the hundreds of thousands) in each category are formulated as follows:
The graph of membership functions of fuzzy sets in the variable of number of unemployed is shown in Figure 2.

![Figure 2. Membership functions of fuzzy sets in the variable of number of unemployed](image)

The membership functions of fuzzy sets in the variable of labor force (in million units) are defined as follows.

\[
\mu_{LF_{small}}(x) = \begin{cases}
1, & 0 \leq x \leq 1 \\
1,5-x & 1 \leq x \leq 1,5 \\
0, & x \geq 1,5
\end{cases}
\]

\[
\mu_{LF_{medium}}(x) = \begin{cases}
0, & x \leq 1 \\
1, & 1 \leq x \leq 3 \\
1,5-x & 3 \leq x \leq 5 \\
1, & 5 \leq x \leq 6 \\
0, & x \geq 6
\end{cases}
\]

\[
\mu_{LF_{large}}(x) = \begin{cases}
0, & x \leq 1 \\
1, & 1 \leq x \leq 3 \\
1,5-x & 3 \leq x \leq 5 \\
1, & 5 \leq x \leq 8 \\
0, & x \geq 8
\end{cases}
\]
The graph of membership functions of fuzzy sets in the variable of labor force is shown in Figure 3.

![Figure 3. Membership functions of fuzzy sets in the variable of labor force](image)

The membership functions of fuzzy sets in the variable of open unemployment rate (in units of millions) are defined as follows.

\[
\mu_{OUR_{low}}(x) = \begin{cases}
1, & 0 \leq x \leq 2 \\
\frac{4-x}{2}, & 2 \leq x \leq 4 \\
0, & x \geq 4
\end{cases}
\]

\[
\mu_{OUR_{medium}}(x) = \begin{cases}
0, & x \leq 2 \\
\frac{x-2}{2}, & 2 \leq x \leq 4 \\
1, & 4 \leq x \leq 8 \\
\frac{8-x}{2}, & 6 \leq x \leq 8 \\
0, & x \geq 8
\end{cases}
\]

\[
\mu_{OUR_{high}}(x) = \begin{cases}
0, & x \leq 6 \\
\frac{x-6}{2}, & 6 \leq x \leq 8 \\
1, & x \geq 8
\end{cases}
\]

The graph of membership function of fuzzy sets in the variable of open employment rate is shown in Figure 4.

![Figure 4. Membership functions of fuzzy sets in the variable of open unemployment rate](image)

b. Rule
Based on the number fuzzy sets on variable of number of unemployment and labor force, there are rules of Mamdani which should taken into account:
1. If (Number of Unemployment is small) and (Labor Force is medium), then (Open Unemployment Rate is medium) (1)
2. If (Number of Unemployment is medium) and (Labor Force is small), then (Open Unemployment Rate is high) (1)
3. If (Number of Unemployment is high) and (Labor Force is small), then (Open Unemployment Rate is high) (1)
4. If (Number of Unemployment is high) and (Labor Force is medium), then (Open Unemployment Rate is high) (1)
5. If (Number of Unemployment is medium) and (Labor Force is medium), then (Open Unemployment Rate is high) (1)
6. If (Number of unemployment is small) and (Labor Force is high) then, (Open Unemployment Rate is medium) (1)
7. If (Number of Unemployment is medium) and (Labor Force is high), then (Open Unemployment Rate is medium) (1)
8. If (Number of Unemployment is small) and (Labor Force is small), then (Open Unemployment Rate is medium) (1)
9. If (Number of Unemployment is high) and (Labor Force is high), then (Open Unemployment Rate is high) (1)

c. Defuzzification
Defuzzification is a process to transform the fuzzy sets to real number. Center of Gravity (centroid) CoG is used as the Defuzzification [19]. This method aims to find the balance point of fuzzy solutions by calculating the average and output areas of fuzzy. This method is the most well-known one and widely used in previous studies.

3. Results and Discussion
Table 2 shows the results of defuzzification:

No	The province	Total Unemployment	Labor Force	Open Unemployment Rate (%)	Classification of Open Unemployment Rate from Manpower Office	Open Unemployment Rate Defuzzification	Conclusion fuzzy logic
1	Aceh	63,985	898,523	7.12	high	5.00	medium
2	Sumatra Utara	171,104	3,012,319	5.68	high	8.2	high
3	Sumatra Barat	67,815	1,048,676	6.47	high	5.00	medium
4	Riau	82,787	1,058,323	7.82	high	5.00	medium
5	Jambi	31,020	664,203	4.67	medium	5.00	medium
6	Sumsel	67,540	1,591,886	4.24	medium	5.00	medium
7	Bengkulu	16,666	392,970	4.24	medium	5.00	medium
8	Lampung	68,443	1,524,827	4.49	medium	5.00	medium
9	Bangka Belitung	9,993	256,996	3.89	medium	5.00	medium
10	Kep. Riau	18,888	340,655	5.54	medium	5.00	medium
11	DKI Jakarta	107,184	1,919,612	5.58	medium	5.13	medium
The Table 2 shows the comparison results of the classification of open unemployment rate from manpower in Indonesia with classification from conclusion fuzzy logic. In order to find out the accuracy, a suitable amount of data is required. The amount of suitable data can be seen from the same amount of data between the classification from manpower and conclusion fuzzy logic. The percentage of accuracy of the fuzzy logic system with the actual conditions in the Labor Department as follow:

\[
\text{Accuracy} = \frac{\text{the amount of data being suitable}}{\text{the amount of all data}} \times 100% = \frac{24}{34} \times 100% = 70.6%.
\]

This percentage match proves that the fuzzy logic method with the Mamdani method which aims to determine the classification of open unemployment rate in 34 provinces in Indonesia is able to be used as an appropriate support tool [20]. It indicates that classification of open unemployment rate in Indonesia comes the conclusion fuzzy logic. The province in Indonesia that has high classification is

No.	Province	Population	Unemployment Rate	Level	Classification	Open Unemployment Rate
12	West Java	656,956	7,548,649	8.70	high	8.38
13	Central Java	308,727	7,572,268	4.08	medium	5.00
14	DIY	326,12	981,475	3.32	medium	5.00
15	East Java	324,111	8,699,117	3.73	medium	5.00
16	Banten	160,396	2,025,197	7.92	high	8.17
17	Bali	9,478	1,156,011	0.82	low	5.00
18	NTB	32,058	967,601	3.32	medium	5.00
19	NTT	31,749	1,084,437	2.93	low	5.00
20	West Kalimantan	41,751	931,997	4.48	medium	5.00
21	Central Kalimantan	24,372	475,758	5.12	medium	5.00
22	South Kalimantan	31,001	826,272	3.75	medium	5.00
23	East Kalimantan	41,438	569,751	7.27	high	5.00
24	North Kalimantan	5,987	116,413	5.14	medium	5.00
25	North Sulawesi	35,867	414,060	8.66	high	5.00
26	Central Sulawesi	22,955	571,426	4.02	medium	5.00
27	South Sulawesi	84,236	1,552,467	5.43	medium	5.00
28	Southeast Sulawesi	19,900	502,025	3.96	medium	5.00
29	Gorontalo	11,775	221,652	5.31	medium	5.00
30	West Sulawesi	9,588	251,889	3.81	medium	5.00
31	Maluku	26,992	297,234	9.08	high	5.00
32	North Maluku	13,103	202,649	6.47	high	5.00
33	West Papua	8,495	161,224	5.27	medium	5.00
34	Papua	21,750	767,658	2.83	low	5.00
Sumatra, West Java, and Banten. In addition, the other 31 provinces had medium classification and the province had low classification did not exist.

4. Conclusions
The Mamdani model on fuzzy logic can be used to determine the classification of open unemployment rate in Indonesia with input comes the number of unemployed and labor force. The model application in the research test data produced a 70.6 percent match so that it could be used to determine the classification of open unemployment rate in Indonesia.

5. References
[1] Claveria O 2019 Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations J Labour Market Res 53:3
[2] Mahmudah U 2017 Predicting unemployment rates in indonesia Econ J Emerg Mark 9 20
[3] Maierhofer E, Fischer M 2001 The tyranny of regional unemployment rates 41st Congress of the European Regional Science Association
[4] Doretteus L Rahakbauw, M I 2018 sistem prediksi tingkat pengangguran di provinsi maluku menggunakan ANFIS (adaptive neuro fuzzy inference system) Barekeng 12 99
[5] P.V.S.S.Gangadhar D 2013 Evaluation of goverment officer performance using fuzzy logic techniques IJCS 319
[6] Slavyanov K and Minchev C 2017 An algorithm of fuzzy inference system for ISAR image classification Proceedings of the 11th International Scientific and Practical Converence 2 154
[7] Aida Ali, S M 2011 Fuzzy classifier for classification of medical data International Conference on Hybrid Intelligent Systems 173
[8] Navila Teguh Pambudi N N 2017 Klasifikasi kemiskinan menggunakan fuzzy inference system (FIS) metode mamdani Seminar Matematika dan Pendidikan Matematika UNY T-20
[9] Oscar C P M 2014 Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics (Mexico: Springer)
[10] Pablo P J. H.-N.-E 2018 A fuzzy logic-based personalized method to classify perceived exertion in workplaces using a wearable heart rate sensor Hindawi Article ID 4216172
[11] Patricia Melin O C 2015 Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization (Mexico: Springer)
[12] Pierapolo D’Urso M A 2017 Special issue in memoriam of professor lotfi a. zadeh, father of fuzzy logic Editorial Fuzzy Data Analysis and Classification
[13] Yogesh G A S 2015 A new fuzzy logic based ranking function for efficient information retrieval system Expert Systems with Appications 1223
[14] Kabirian M A, Taheri S M, Ghadim F I 2019 Application of fuzzy inference systems in archeology 7th Iranian Joint Congress on Fuzzy and Intelligent Systems 148
[15] Guillaume S 2001 Designing fuzzy inference systems from data: an interpretability-oriented review IEEE Transactions on Fuzzy Systems 9 pp 426
[16] Statistics Indonesia 2018 Labor Force Situation in Indonesia August 2018 (Jakarta: BPS RI)
[17] Moallem P and Mousavi B 2012 Gender classification by fuzzy inference system Int J Adv Robotic Sy 10 89
[18] Permatasari D, Azizah I N, Hadiat H L, Abadi A M 2017 Classification of toddler nutritional status using fuzzy inference system (FIS) AIP Conference Proceedings 1868
[19] Wang L 1996 A course in fuzzy systems and control (Hongkong: Pretince Hell)
[20] Dewanti N A and Abadi A M 2019 Fuzzy logic application as a tool for classifying water quality status in Gajahwong River, Yogyakarta, Indonesia IOP Conf Series: Materials Science and Engineering 546