CURRENT OPINION

Vaccinations for rheumatoid arthritis

Marcia A. Friedman\(^a\) and Kevin Winthrop\(^b\)

Purpose of review

Rheumatoid arthritis (RA) patients experience increased infectious disease-related morbidity and mortality, and vaccinations represent an important element in their care. However, vaccine immunogenicity can be affected by disease-modifying antirheumatic drug (DMARD) therapy, such that vaccine choice and timing can be clinically challenging. We review the indications, safety, and immunogenicity of vaccines in the setting of RA.

Recent findings

Recent recommendations highlight the use of influenza, pneumococcal, and shingles vaccines in RA patients. Studies suggest influenza and pneumococcal vaccines are underutilized, but well tolerated in RA patients and generally immunogenic during DMARD use with the exception of rituximab. Though data for other nonlive vaccines are more limited, hepatitis B virus and human papilloma virus vaccines also appear well tolerated and immunogenic in this population. Live vaccines for shingles and yellow fever remain contraindicated in some RA patients; however, limited data suggest they might be well tolerated in certain individuals.

Summary

The review updates rheumatologists on the optimal use and timing of routine vaccinations in the care of RA.

Keywords

influenza, pneumococcal pneumonia, rheumatoid arthritis, shingles, vaccine

INTRODUCTION

Patients with rheumatoid arthritis (RA) suffer greater infectious morbidity and mortality [1,2]. This is attributable both to disease-related abnormalities of the immune system and to the RA patient’s immunosuppressive medications [2]. Specific risk factors for infection in RA include older age, extraarticular disease, certain comorbidities, lymphopenia, and corticosteroid and disease-modifying antirheumatic drug (DMARD) use [3,4]. Pneumonia, skin, and soft tissue infections are among the most common infectious complications in this population, with some of these infections being presumably vaccine preventable [5,6]. Despite this risk, vaccination rates for pneumococcal pneumonia, influenza, and shingles are suboptimal. In the United States, 28.5% of RA patients were optimally vaccinated for pneumococcal pneumonia, and 45.8% were optimally vaccinated against influenza [7]. Shingles vaccination is even less common, with US estimates in 2012 suggesting only 4.0% of patients with rheumatic diseases over the age of 60 were vaccinated [8]. The reasons for this poor uptake of vaccinations are unclear, and it remains a clinical practice gap within RA.

INFLUENZA VACCINATION

Background

RA patients should use the intramuscular influenza vaccine, as the live intranasal vaccine is contraindicated. The traditional vaccine is trivalent protecting against two influenza A and one influenza B strains, although now a quadrivalent form is available offering protection to an additional B strain [9]. Both the American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) recommend yearly vaccination of all RA patients [10,11]. Patients over the age of 65 should receive the high-dose vaccine (for now only the trivalent vaccine is available in high dose), which has been shown to be more effective than the standard dose.
KEY POINTS

- The yearly influenza vaccine should be given to all RA patients regardless of DMARD use, as the majority of DMARDs with the exception of rituximab have no significant impact on influenza vaccine immunogenicity.

- Anti-TNF therapy and most DMARDs do not significantly impact pneumococcal vaccine immunogenicity; however, rituximab, tofacitinib, and MTX negatively affect humoral response to PPSV-23; to date, no trials have evaluated PCV-13 in this population.

- For RA patients age more than 50 years on low-to-moderate doses of corticosteroids or traditional nonbiologic DMARDs, the shingles vaccine should be given as long as their immunosuppression is below the 2008 CDC thresholds; however, this vaccine remains contraindicated in the setting of biologic therapy.

- HBV and HPV vaccines have limited data in RA, however, should be given to RA patients when indicated.

- Primary yellow fever vaccinations is contraindicated in patients using immunosuppressives; however, limited studies of patients receiving booster vaccination in the setting of biologics or corticosteroid use have not shown adverse events; until further data are collected, this live vaccine remains contraindicated.

Vaccinations for rheumatoid arthritis

Friedman and Winthrop

Effect of DMARD therapy on vaccine effectiveness and safety

Influenza vaccine immunogenicity is evaluated with hemagglutinin inhibition antibody titers, where at least 1:40 is considered protective [14]. In the majority of studies [15,16,17*,18–24,25*] evaluating the effect of methotrexate (MTX) or biologics, vaccine immunogenicity suggest that hemagglutinin inhibition titers are similar or sometimes slightly lower in such patients, but that the proportion of patients reaching protective titers is generally similar in patients taking DMARDs compared with control RA patients. Rituximab, however, significantly reduce the humoral response [25*,26–29]. Longer delays between rituximab and the vaccine of at least 6 months results in better humoral response than shorter delays of 4–6 weeks [27,28]. Studies [30,31*] with tocilizumab and tofacitinib suggest no significant effect of either drug on influenza vaccine immunogenicity. Abatacept significantly reduced the humoral response to the 2009 influenza A/H1N1 vaccine; however, the seasonal trivalent and quadrivalent vaccines, which may be more immunogenic, were not evaluated [17*,32].

Summary and recommendations

The intramuscular influenza vaccine should be given annually to all RA patients regardless of immunosuppressive therapy. It is relatively unaffected by DMARD use, except for rituximab (Table 1). When giving this vaccine to patients using rituximab, it ideally should be given prior to therapy start or as long after therapy administration as compatible with the influenza season.

PNEUMOCOCCAL VACCINATION

Background

Two pneumococcal vaccines are approved in the United States; pneumococcal conjugate vaccine 13-valent (PCV-13) is a 13-valent conjugated vaccine and pneumococcal polysaccharide vaccine 23-valent (PPSV-23) is a 23-valent polysaccharide vaccine. Conjugated vaccines are generally more immunogenic than polysaccharide vaccines. Studies of the prior conjugated pneumococcal vaccine PCV-7, however, did not suggest greater immunogenicity than PPSV-23 in RA patients [42]. PCV-13 immunogenicity in RA has not yet been directly evaluated. In pneumococcal vaccine-naïve individuals, Center for Disease Control (CDC) recommends PCV-13 followed by PPSV-23 at least 8 weeks later. For those who have already received PPSV-23, PCV-13 should be given at least 1 year later with and additional PPSV-23 booster given as usual 5 years from the first [43*].

Effect of DMARD therapy on vaccine immunogenicity and safety

Antitumor necrosis factor (TNF) therapy does not appear to reduce humoral response to pneumococcal vaccinations [22,24,25*,33–36]. Several studies [37,38,39*] looking at tocilizumab’s effect on the vaccine have similarly shown either unchanged or lower but statistically insignificant differences in humoral responses. Rituximab, tofacitinib, and MTX, however, have been shown to decrease humoral responses [25*,27,31*,33,34,38,44]. MTX-treated RA patients who were vaccinated with PPSV-23 or PCV-7 were found to have 12–29% lower rates of patients achieving an adequate humoral response, with greater decreases
Rheumatoid arthritis

Table 1. Impact of RA therapy on vaccine immunogenicity and indications for vaccination

	MTX	TNF inhibitors	Rituximab	Abatacept	Tofacitinib	Tocilizumab	Indications
Influenza	±	OK	↓ ↓ ↓	↓	OK	OK	All patients regardless of immunosuppression, ideally before biologics or MTX, yearly
Pneumococcus*	↓	OK	↓ ↓ ↓	↓ ↓ ↓	↓ ↓ ↓	OK	All patients regardless of immunosuppression, ideally before biologics or MTX
Hepatitis B	?	?	?	?	?	?	All at-risk patients regardless of immunosuppression
Human papilloma virus	?	?	?	?	?	?	All patients age ≤26, regardless of immunosuppression
Herpes zoster	?	?	?	?	?	?	All patients ≥50 not on biologics or high-dose corticosteroids; Should be given ≥2 weeks before starting biologics or ≥4 weeks after stopping biologics
Yellow fever	?	?	?	?	?	?	Contraindicated for patients using immunosuppressives

Indications for vaccination based on ACR and EULAR guidelines [10,11]. Methotrexate decreases humoral response to pneumococcal vaccine, and may also decrease humoral response to influenza vaccination [25*,33,34]. TNF inhibitors do not significantly impact response to influenza or pneumococcal vaccines, though two small studies showed a negative effect on hepatitis B vaccine response [15–24,25*,33–36,40,41]. Rituximab significantly decreases humoral response to both influenza and pneumococcal vaccines [25*,26–29]. Abatacept decreases humoral response to influenza and pneumococcal vaccines [17*,22,38]. Tofacitinib does not have a negative effect on influenza vaccine but does decrease immunogenicity of pneumococcal vaccines [31*]. Tocilizumab has shown to have no detrimental effect on influenza or pneumococcal vaccine immunogenicity [30,37,38,39*].

*No data regarding vaccine immunogenicity in this setting; +/-: Limited data suggests this medication might negatively impact immunogenicity, though more data is needed; MTX, methotrexate; OK, Vaccine does not impair immunogenicity; TNF, Tumor necrosis factor.

*Polyvalent pneumococcal vaccine data only, the 13-valent conjugate vaccine immunogenicity has not been evaluated in the setting of RA.

*Abatacept diminished immunogenicity to the H1N1 influenza vaccine. Seasonal trivalent or quadrivalent influenza vaccines were not evaluated.

for the 6B than the 23F strain [25*,33,34]. A recent study [38] of rituximab and PCV-7 found that of 29 patients on rituximab monotherapy only 10.3% had an adequate humoral response to the two antigens evaluated, and of 26 patients on rituximab plus MTX none achieved an adequate response to both antigens. Tofacitinib appears to lower immune responses to a similar extent to MTX, and greater reductions were noted when the drugs were used together. For patients already taking tofacitinib, however, the majority of patients achieve satisfactory responses and temporary drug discontinuation prior to vaccination had little effect upon humoral response [31*]. Very limited data exist with abatacept, and of 26 patients on rituximab plus MTX none achieved an adequate response to both antigens. Tofacitinib appears to lower immune responses to a similar extent to MTX, and greater reductions were noted when the drugs were used together. For patients already taking tofacitinib, however, the majority of patients achieve satisfactory responses and temporary drug discontinuation prior to vaccination had little effect upon humoral response [31*]. Very limited data exist with abatacept, and of 26 patients on rituximab plus MTX none achieved an adequate response to both antigens. Tofacitinib appears to lower immune responses to a similar extent to MTX, and greater reductions were noted when the drugs were used together. For patients already taking tofacitinib, however, the majority of patients achieve satisfactory responses and temporary drug discontinuation prior to vaccination had little effect upon humoral response [31*].

Summary and recommendations

TNF inhibitors and tocilizumab have little or no effect upon PPSV-23 immunogenicity. Rituximab, tofacitinib, and MTX negatively affect humoral response to PPSV-23 (Table 1). There are currently no data regarding the influence of RA medication on PCV-13, or on the efficacy of using PCV-13 to prime responses to PPSV-23 in the setting of RA. Lastly, the ACR guidelines stress that whenever possible the pneumococcal vaccines should be given prior to initiation of RA therapy [11].

SHINGLES VACCINATION

Background

Shingles is more common in older patients and those with compromised immune systems [45]. A recent study [46*] observed incidence rates between 1.61 and 2.45/100 person-years for RA patients, with similar risk observed for all biologics, although similar to other studies, a dose-dependent risk with corticosteroids was observed. The shingles vaccine is a live attenuated vaccine approved for immunocompetent patients over the age of 50 [47]. The CDC, however, recommends the vaccine only after age 60, citing difference in cost-effectiveness between the 50+ and 60+ age groups and concerns for decreased vaccine efficacy over time; however, no cost–benefit analysis has done specifically for RA [48]. Given the higher risk of shingles in RA, the 2015 ACR guidelines recommended shingles vaccinations for RA patients at least 50 years [11].

While few data exist regarding this vaccine’s safety during immunosuppressive use, the CDC advises that the vaccine can be used safely with:
MTX (<0.4 mg/kg/week, e.g. 25 mg/week), low-to-moderate doses of glucocorticoids (<20 mg/day prednisone or equivalent), intraarticular, bursal, or tendon corticosteroid injections, and azathioprine (<3.0 mg/kg/day). The CDC and Infectious Disease Society of America both currently recommended avoiding this vaccine in patients taking biologics or high-dose corticosteroids, and waiting at least 1 month after discontinuation of these drugs before giving the shingles vaccine [49,50]. The ideal time is to vaccinate prior to biologic start, and a gap of 2–4 weeks is recommended between vaccine and drug start.

Effect of DMARDs on shingles vaccine immunogenicity and safety

To this date, no prospective trials exist evaluating the safety or efficacy of the shingles vaccine in RA patients [51]. An observational study [8] using US Medicare data identified 633 patients who were inadvertently vaccinated while using biologics found no cases of shingles or varicella in the 6 weeks after vaccination, and long-term the patients vaccinated had approximately a 40% reduction in shingles risk. Another analysis of claims data from a nationwide US health plan looked at 47 patients with rheumatic conditions who were exposed to biologics (primarily anti-TNF) at the time of vaccination, and again found no cases of shingles within 30 days of vaccination [51].

Summary and recommendations

For RA patients aged at least 50 years on low-to-moderate doses of corticosteroids or traditional non-biologic DMARDs, the shingles vaccine should be given as long as their immunosuppression is below the 2008 CDC thresholds listed above. Even though early observational data suggest that vaccination in the setting of biologics may not result in shingles, more robust prospective data are needed to determine whether this is truly safe. For now, in the author’s opinion, it is optimal to vaccinate patients 4 weeks before starting a biologic or tofacitinib, or 1 month after discontinuing such therapy [11].

OTHER VACCINES: HUMAN PAPILLOMA VIRUS, HEPATITIS B VIRUS, AND YELLOW FEVER VACCINES

Human papilloma virus

There are three available human papilloma virus (HPV) vaccines: a bivalent vaccine approved only for women, a quadrivalent vaccine covering strains 6, 11, 16, and 18, and as of 2014, a 9-valent vaccine that covers strains 6, 11, 16, 18, 31, 33, 45, 52, and 58, which is now the preferred vaccine. The CDC recommends vaccination for boys and girls aged 11 or 12, previously unvaccinated females aged 13 through 26, and males aged 13 through 21, but extends the recommendation to age 26 in immunocompromised men [52].

The burden of disease of HPV in RA is not well established, though one population-based cohort study [53] showed an increased risk of high-grade cervical dysplasia and cervical cancer in women with RA compared with healthy controls, which was significant even after adjustment for immunosuppressant use. Higher rates of HPV and cervical cancer have been observed in inflammatory bowel disease and systemic lupus erythematosus (SLE) patients as well [54–57]. Data for HPV vaccine immunogenicity in rheumatic illnesses are limited. A prospective observational cohort of the bivalent HPV vaccine in juvenile idiopathic arthritis (JIA) patients, including nine on TNF inhibitors and 24 on MTX, found no difference in rates of seroconversion, though the JIA patients tended to have lower rates of antibody and B-cell responses [58]. In another study [59], 50 SLE patients receiving the quadrivalent vaccine compared with healthy controls found slightly lower seroconversion rates associated with SLE and that mycophenolate mofetil use was a risk factor for inadequate humoral response. A recent systematic review of the available data in SLE, JIA, and inflammatory bowel disease concluded that the vaccine is well tolerated and efficacious in most of these patients, though large studies evaluating the effect of medications on immunogenicity are lacking [60].

Both the ACR and EULAR recommend considering the HPV vaccine in selected patients where the vaccine is indicated, regardless of concurrent immunosuppressant [10,11]. More data are certainly needed regarding the disease burden of HPV in RA patients, and the role of immunosuppressive therapy on cervical cancer risk and vaccine immunogenicity.

Hepatitis B virus

The hepatitis B virus (HBV) vaccine is available in the United States for use in adults as either a single antigen vaccine, or as a combination vaccine with hepatitis A virus. Vaccination is recommended for all nonimmune adults who are at risk for HBV or request vaccination. At-risk individuals are persons with a household contact or sexual partner who is hepatitis B surface antigen (HBsAg) positive, more
than one sexual partner in the last 6 months, those seeking evaluation for treatment of a sexually transmitted disease, MSM, current or recent IV drug users, resident or staff of a facility for the developmentally disabled, healthcare workers, patients with end-stage renal disease, travelers to endemic areas, patients with chronic liver disease, diabetic patients using glucometers, and patients with HIV [61]. RA patients who contract or carry HBV may reactivate in the setting of RA therapy. Reactivation is well established during treatment with anti-TNF drugs and rituximab, more recently reported with abatacept and tocilizumab, and reported in a small number of cases with nonbiologic DMARDs [62–67]. Reactivation has been demonstrated mostly in HBsAg-positive patients, and less commonly in HBsAg-negative patients who lack hepatitis B surface antibody and are hepatitis B core antibody positive [68,69]. The CDC, American Association for the study of Liver Diseases, ACR, and National Institute of Health all recommend screening for HBV prior to initiation of immunosuppressive therapy [11,70–72]. Patients lacking natural or vaccine-induced immunity who are at risk for acquiring HBV should be vaccinated [73]. The impact of DMARDs upon this vaccine is largely unstudied, although limited data suggest that treatment with TNF inhibitors may impair humoral response [40,41] (Table 1).

Yellow fever
The yellow fever vaccine is a live vaccine that is recommended for all immunocompetent adults who travel or live in endemic areas, and is contraindicated in the setting of immunosuppressants [74]. During a recent outbreak in Brazil, a number of patients were inadvertently revaccinated while on immunosuppressive medications. These patients had been vaccinated previously, such that they had primary immunity at the time of booster. Of those vaccinated while using DMARDs or biologics (n = 31), including 23 with RA, investigators found no major adverse events and lower, yet adequate, antibody titers following vaccination [75]. In another group of patients using infliximab and MTX (n = 17) who were revaccinated, all but one achieved satisfactory antibody levels, and none experienced adverse reactions [76]. A separate study [77] of 34 travelers using 5–20 mg/day (median 7 mg/day, median duration 10 months) of corticosteroids receiving the vaccine, 18 of whom were vaccine naive, found an increase in local reactions to the vaccine but no major adverse events and satisfactory immunogenicity. Taken together, these small studies suggest yellow fever vaccine might be well tolerated in the setting of TNF blockers or corticosteroids when given to patients who have received prior immunization; however, both the CDC and EULAR recommend avoiding yellow fever vaccine in RA patients using biologics regardless of a prior history of vaccination [10].

CONCLUSION
There remain numerous gaps in our understanding of vaccinations in the RA population. At present, there are very few efficacy or effectiveness studies for vaccinations in this setting. With regard to immunogenicity, it is unclear how DMARDs affect PCV-13, HPV, and HBV vaccines. Although the live shingles and yellow fever vaccines are contraindicated in RA patients using biologics or tofacitinib, early data indicate that they might be safer in the setting of immunosuppression than previously thought, but large prospective trials are needed to evaluate this question. In RA where shingles risk is elevated, the ability to prevent disease represents an important clinical practice gap. There are nonlive shingles vaccines in development that might one day be useful in this setting [78]. Although the body of data available is growing, many recommendations are still dependent on small case series or expert opinion. In this review, we have discussed the available safety and immunogenicity data for influenza, pneumococcal, and shingles vaccines, as well as HPV, HBV, and yellow fever vaccine data, and important gaps in data leaving unanswered questions. Unfortunately, despite the high rates of infectious disease-related morbidity and mortality, vaccination rates in RA remain poor. It is extremely important for the treating rheumatologist to understand the safety and efficacy of these vaccinations to educate patients, advocate for vaccination in clinic, and ultimately help prevent serious infectious disease complications in this vulnerable population.

Acknowledgements
None.

Financial support and sponsorship
None.

Conflicts of interest
K.W. receives research support from Pfizer and Bristol-Myers Squibb, and consultant fees from AbbVie, UCB, Pfizer, Bristol-Myers Squibb, and Eli Lilly. The remaining authors have no conflicts of interest.

Rheumatoid arthritis
Vaccinations for rheumatoid arthritis Friedman and Winthrop

25. Hu C, Barretche T, Combe B, Morel J. Effect of methotrexate, antitumor necrosis factor α, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 2014; 66:1016–1026.

26. Meta-analysis of effect of methotrexate, TNF inhibitors, and rituximab on influenza and pneumococcal vaccine immunogenicity in RA.

27. Arad U, Tzadok S, Amir S, et al. The cellular immune response to influenza vaccination is preserved in rheumatoid arthritis patients treated with rituximab. Vaccine 2011; 29:1643–1648.

28. Rehnborg M, Brissert M, Amu S, et al. Vaccination response to protein and carbohydrate antigens in patients with rheumatoid arthritis after rituximab treatment. Arthritis Rheum Ther 2010; 12:R111.

29. van Assen S, Holvast A, Berne CA, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum 2010; 62:75–81.

30. Oren S, Mandelboim M, Braun-Moscovici Y, et al. Vaccination against influenza in patients with rheumatoid arthritis: the effect of rituximab on the humoral response. Ann Rheum Dis 2008; 67:937–941.

31. Mori S, Ueki Y, Hikata N, et al. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. Ann Rheum Dis 2012; 71:2006–2010.

32. Winthrop KL, Silverfield J, Racewicz A, et al. The effect of tocilizumab on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann Rheum Dis 2015.

33. Tocilizumab has a deleterious effect on PPSV-23 but not influenza vaccine.

34. Miller S, Krishna A, Wox J, et al. PPSV-23 and PPSV-10 in elderly patients with autoimmune disease. J Infect Dis 2014; 210:144–149.

35. Zhang J, Xie F, Delzell E, et al. Association between vaccination for herpes zoster and risk of herpes zoster infection among older patients with selected immune-mediated diseases. JAMA 2012; 308:1479–1488.

36. Grosholzp LF, Sokolow LZ, Olsen SJ, et al. Prevention and control of influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2015–16 Influenza Season. MMWR Morb Mortal Wkly Rep 2015; 64:818–825.

37. van Assen S, Agmon-Levin N, Etkayom O, et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2011; 70:414–422.

38. Singh JA, Saag KG, Burrell SL Jr, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:1–26.

39. DiazGranados CA, Dunnig AJ, Kimmel M, et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med 2014; 371:635–645.

40. Izuiha HS, Thadani N, Shay DK, et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccines in US residents aged 65 years and older from 2012 to 2013 using Medicare data: a retrospective cohort analysis. Lancet Infect Dis 2015; 15:293–300.

41. Couch RB, Atmar RL, Franco LM, et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis 2013; 207:974–981.

42. França IL, Ribeiro AC, Akawa NE, et al. TNF blockers show distinct patterns of immune response to the pandemic influenza A H1N1 vaccine in inflammatory arthritis patients. Rheumatology (Oxford) 2012; 51:2081–2089.

43. Kober JJ, Zheng B, Breyk P, et al. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with antitumor necrosis factor α. Arthritis Res Ther 2011; 13:R298.

44. Ribeiro AC, Laurindo IM, Guedes LK, et al. Abatacept and reduced immune response to pandemic 2009 influenza A/H1N1 vaccine in patients with rheumatoid arthritis. Arthritis Res Ther 2011; 13:R298.

45. Only trial of abatacept influence on the immunogenicity of the influenza vaccine.

46. Elkayom O, Bashkin A, Mandelboim M, et al. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin Arthritis Rheum 2010; 39:442–447.

47. Salemi S, Picchiotti-Diamanti A, Germano V, et al. Influenza vaccine administration in rheumatoid arthritis patients under treatment with TNFα blockers: safety and immunogenicity. Clin Immunol 2010; 134:113–120.

48. Gelnick LB, van der Bijl AE, Beyer WE, et al. The effect of antitumor necrosis factor α blockers on the antibody response to influenza vaccination. Ann Rheum Dis 2008; 67:713–716.

49. Gabay C, Bel M, Combescure C, et al. Impact of synthetic and biologic disease-modifying anti-rheumatic drugs on antibody response to the AS03-adjuvanted pandemic influenza vaccine: a prospective, open-label, parallel-cohort, single-center study. Arthritis Rheum 2011; 63:1486–1496.

50. Kaene JL, Kivitz AJ, Birbara C, Luo AY. Immune responses following administration of influenza and pneumococcal vaccines to patients with rheumatoid arthritis receiving adalimumab. J Rheumatol 2007; 34:272–279.

51. Foran I, Caspi D, Levy V, et al. Vaccination against influenza in rheumatoid arthritis: the effect of disease-modifying drugs, including TNF α alpha blockers. Ann Rheum Dis 2006; 65:191–194.

52. Kivitz AJ, Schechtman J, Tzadok S, et al. Vaccine responses in patients with rheumatoid arthritis treated with certolizumab pegol: results from a blinded randomized phase IV trial. J Rheumatol 2014; 41:648–657.
Rheumatoid arthritis

48. Hales CM, Harpaz R, Ortega-Sanchez I, Blakely SR. Centers for Disease Control and Prevention CDC. Update on recommendations for use of herpes zoster vaccine. MMWR Morb Mortal Wkly Rep 2014; 63:729–731.

49. Harpaz R, Ortega-Sanchez IR, Seward JF. Advisory Committee on Immunization Practices (ACIP) Centers for Disease Control and Prevention CDC. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2008; 57:1–30.

50. Rubin LG, Levin MJ, Lijmpan G, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014; 58:309–318.

51. Zhang J, Debell E, Xie F, et al. The use, safety, and effectiveness of herpes zoster vaccination in individuals with inflammatory and autoimmune diseases: a longitudinal observational study. Arthritis Res Ther 2011; 13:R174.

52. Petrosky E, Bocchini JA, Hariri S, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep 2015; 64:300–304.

53. Kim SC, Glynn RJ, Giovannucci E, et al. Risk of high-grade cervical dysplasia and cervical cancer in women with systemic inflammatory diseases: a population-based cohort study. Ann Rheum Dis 2015; 74:1360–1367.

54. Kane S, Khattab B, Reddy D. Higher incidence of abnormal Pap smears in women with inflammatory bowel disease. Am J Gastroenterol 2008; 103:631–636.

55. Santana RJ, Gomes AN, Lyrio LD, et al. Systemic lupus erythematosus, human papillomavirus infection, cervical premalignant and malignant lesions: a systematic review. Clin Rheumatol 2011; 30:665–672.

56. Dreyer L, Fauschou M, Mogensen M, Jacobsen S. High incidence of potentially virus-induced malignancies in systemic lupus erythematosus: a long-term followup study in a Danish cohort. Arthritis Rheum 2011; 63:3002–3007.

57. Zard E, Amadou L, Mathian A, et al. Increased risk of high grade cervical squamous intraepithelial lesions in systemic lupus erythematosus: a meta-analysis of the literature. Autoimmun Rev 2014; 13:730–735.

58. Heijstek MW, Scherpenisse M, Groot N, et al. Immunogenicity and safety of the bivalent HPV vaccine in female patients with juvenile idiopathic arthritis: a prospective controlled observational cohort study. Ann Rheum Dis 2014; 73:1500–1507.

59. Mok CC, Ho LY, Fong LS, To CH. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: a case-control study. Ann Rheum Dis 2013; 72:659–664.

60. Pellegrino P, Radice S, Clementi E. Immunogenicity and safety of the human papillomavirus vaccine in patients with autoimmune diseases: a systematic review. Vaccine 2015; 33:3444–3449.

61. Mast EE, Weinbaum CM, Fiore AE, et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: immunization of adults. MMWR Recomm Rep 2006; 55:1–33.

62. Nard FD, Todori M, Grosso V, et al. Risk of hepatitis B virus reactivation in rheumatoid arthritis patients undergoing biologic treatment: extending perspective from old to newer drugs. World J Hepatol 2015; 7:344–361.

63. Ryu HH, Lee EY, Shin K, et al. Hepatitis B virus reactivation in rheumatoid arthritis and ankylosing spondylitis patients treated with anti-TNFα agents: a retrospective analysis of 49 cases. Clin Rheumatol 2012; 31:931–936.

64. Mori S, Fujimura S. Hepatitis B virus reactivation associated with antirheumatic therapy: risk and prophylaxis recommendations. World J Gastroenterol 2015; 21:10274–10289.

65. Perez-Alvarez R, Diaz-Lagares C, Garcia-Hernández F, et al. Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: analysis of 257 cases. Medicine (Baltimore) 2011; 90:359–371.

66. Carroll MB, Forgione MA. Use of tumor necrosis factor alpha inhibitors in hepatitis B surface antigen-positive patients: a literature review and potential mechanisms of action. Clin Rheumatol 2010; 29:1021–1029.

67. Tan J, Zhou J, Zhao F, Wei J. Prospective study of HBV reactivation risk in rheumatoid arthritis patients who received conventional disease-modifying antirheumatic drugs. Clin Rheumatol 2012; 31:1169–1175.

68. Yeo W, Chan TC, Leung NW, et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol 2006; 27:805–811.

69. Pei SN, Chen CH, Lee CM, et al. Reactivation of hepatitis B virus following rituximab-based regimens: a serious complication in both HBsAg-positive and HBsAg-negative patients. Am Hematol 2010; 89:255–262.

70. Lok AS, McMahon BJ. Chronic hepatitis B: update 2009. Hepatology 2009; 50:661–662.

71. Sorrell MF, Belongia EA, Costa J, et al. National Institutes of Health Consensus Development Conference Statement: management of hepatitis B. Ann Intern Med 2009; 150:104–110.

72. Weinbaum CM, Williams I, Mast EE, et al. Recommendations for identification and public health management of persons with chronic hepatitis B virus infection. MMWR Recomm Rep 2008; 57:1–20.

73. Singh JA, Furst DE, Bharat A, et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2012; 64:625–639.

74. Staples JE, Gershman M, Fischer M. Centers for Disease Control and Prevention CDC. Yellow fever vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010; 59:1–27.

75. Oliveira AC, Mota LM, Santos-Neto LL, et al. Seroconversion in patients with rheumatic diseases treated with immunomodulators or immunosuppressants, who were inadvertently revaccinated against yellow fever. Arthritis Rheumatol 2015; 67:582–583.

76. Scheinberg M, Guedes-Barbosa LS, Manguiera C, et al. Yellow fever re-vaccination during infliximab therapy. Arthritis Care Res (Hoboken) 2010; 62:896–898.

77. Kemeis S, Launya O, Ancelle T, et al. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study. Arthritis Care Res (Hoboken) 2013; 65: 1522–1528.

78. Lai H, Cunningham AL, Godaux O, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 2015; 372:2087–2096.