On the prime factors of a quasiperfect number

V. Siva Rama Prasad¹ and C. Sunitha²

¹ Nalla Malla Reddy Engineering College, Divyanagar,
Ghatkesar Mandal, Ranga Reddy District, Telangana-501301, India
e-mail: vangalasrp@yahoo.co.in

²Department of Mathematics and Statistics,
RBVRR Women’s College, Narayanaguda, Hyderabad, Telangana-500027, India
e-mail: csunithareddy1974@gmail.com

Received: 16 July 2018 Revised: 14 May 2019 Accepted: 20 May 2019

Abstract: A positive integer N is said to be quasiperfect if \(\sigma(N) = 2N + 1 \) where \(\sigma(N) \) is the sum of the positive divisors of \(N \). So far no quasiperfect number is known. If such \(N \) exists, let \(\gamma(N) \) denote the product of the distinct primes dividing \(N \). In this paper, we obtain a lower bound for \(\gamma(N) \) in terms of \(r = \omega(N) \), the number of distinct prime factors of \(N \). Also, we show that every quasiperfect number \(N \) is divisible by a prime \(p \) with: (i) \(p \equiv 1 \pmod{4} \), (ii) \(p \equiv 1 \pmod{5} \) if \(5 \nmid N \) and (iii) \(p \equiv 1 \pmod{3} \), if \(3 \nmid N \).

Keywords: Quasiperfect number, Radical of an integer.

2010 Mathematics Subject Classification: 11A25.

1 Introduction

For any natural number \(N \) let \(\sigma(N) \) denote the sum of its positive divisors. W. Sierpinski [6] asked whether there is any natural number \(N \) satisfying

\[
\sigma(N) = 2N + 1,
\]

which is unanswered till date. Calling such \(N \), if it exists, a quasiperfect number, Cattaneo [2] initiated the study of such numbers. H. L. Abbott et. al. [1] continued the investigations and proved the following:
If a quasiperfect number \(N \) exists and if \(\omega(N) \) is the number of distinct prime factors of \(N \) then

\[
\omega(N) \geq 5 \text{ and } N > 10^{20} \ (\text{[1], Theorem 2 and 4}) \quad (1.2)
\]

and

\[
\omega(N) \geq 15 \text{ and } N > 10^{57} \text{ if } (N, 15) = 1 \ (\text{[3]}) \quad (1.3)
\]

In [4] M. Kishore improved (1.2) to \(\omega(N) \geq 6 \) and \(N > 10^{40} \) while a further refinement of it to \(\omega(N) \geq 7 \) and \(N > 10^{35} \) was obtained by G.L. Cohen and Peter Hagis Jr. [3].

For other details of research on quasiperfect numbers one can see the excellent book of J. Sandor and B. Crstici ([5], p. 38-39).

Recently the authors [7] have given a different proof for the first part of (1.3) for which Theorem 2.4 (given in Section 2 below) was used.

For any positive integer \(n \) let \(\gamma(n) \) denote the product of its distinct prime factors (\(\gamma(n) \) is called the radical of the integer \(n \); and it is the maximal squarefree divisor of \(n \), that is, the greatest divisor of \(n \) having no square factor > 1).

In this paper we obtain a lower bound for \(\gamma(N) \) in terms of \(r = \omega(N) \) for a quasiperfect number \(N \). Also we prove that every quasiperfect number is divisible by a prime \(p \) with

(i) \(p \equiv 1 \pmod{4} \),
(ii) \(p \equiv 1 \pmod{5} \) if \(5 \nmid N \) and
(iii) \(p \equiv 1 \pmod{3} \) if \(3 \nmid N \).

\section{Preliminaries}

Throughout the rest of the paper \(N \) stands for a quasiperfect number. We first state a theorem due to Cattaneo [2] needed for our purpose:

\textbf{Theorem 2.1.}

(a) If \(N \) exists, then it is of the form

\[
N = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r},
\]

where \(p_1, p_2, \ldots, p_r \) are distinct odd primes and \(e_i \geq 1 \) for \(i = 1, 2, 3, \ldots, r \).

(b) If \(p_i \equiv 1 \pmod{8} \), then \(e_i \equiv 0 \) or \(1 \pmod{4} \); if \(p_i \equiv 3 \pmod{8} \), then \(e_i \equiv 0 \pmod{2} \) and if \(p_i \equiv 5 \pmod{8} \), then \(e_i \equiv 0 \) or \(-1 \pmod{4} \).

(c) If \(M \) is a natural number such that \(\sigma(M) \geq 2M \), then no non-trivial multiple of \(M \) is quasiperfect.

\textbf{Remark 2.3.} It follows from Theorem 2.1 that every quasiperfect number is the square of an odd integer and that \(\sigma(d) < 2d \) for every divisor \(d \) of \(N \).

In [7] the authors have proved:

\textbf{Theorem 2.4.} If \(N \) exists and is of the form (2.2), then an odd number of \(p_i^{2e_i} \) are such that either \(p_i \equiv 1 \pmod{8} \) and \(e_i \equiv 1 \pmod{4} \) or \(p_i \equiv 5 \pmod{8} \) and \(e_i \equiv -1 \pmod{4} \).

(Such \(p_i^{2e_i} \) are called special factors of \(N \) in [7])
3 Lower bound for $\gamma(N)$

Suppose $A = \{a_1, a_2, \ldots, a_r\}$ is a set of positive real numbers and for any $k (1 \leq k \leq r)$ suppose $S_k(A)$ is the sum of the products of the elements in the k-element subsets of A. That is,

$$S_k(A) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq r} a_{i_1}a_{i_2}\ldots a_{i_k} \tag{3.1}$$

For example, $S_1(A) = \sum_{i=1} r a_i$ and $S_2(A) = \sum_{1 \leq i_1 < i_2 \leq r} a_{i_1}a_{i_2}$.

Note that

$$\prod_{i=1}^r (1 + a_i) = 1 + \sum_{k=1}^r S_k(A) \tag{3.2}$$

Observe that $S_k(A)$ has $\binom{r}{k}$ terms and that each $a_j \in A$ occurs exactly in $\binom{r-1}{k-1}$ terms of it. Therefore the product $P_k(A)$ of the terms in $S_k(A)$ is given by

$$P_k(A) = (a_1a_2\ldots a_r)^{\binom{r-1}{k-1}} \tag{3.3}$$

Therefore, the inequality between the arithmetic mean and the geometric mean gives

$$\frac{S_k(A)}{\binom{r}{k}} > (P_k(A))^{\frac{1}{\binom{r}{k}}}$$

(the strict inequality is due to the fact that a_j are distinct)

which, in view of (3.3), shows that

$$S_k(A) > \binom{r}{k} (a_1a_2\ldots a_r)^{\frac{1}{r}} \tag{3.4}$$

Theorem 3.5. If N exists and is of the form (2.2), then

$$\gamma(N) > A_r,$$

where $A_r = \frac{1}{(2^r - 1)^r}$

Proof. Here $\gamma(N) = p_1p_2\ldots p_r$ is a divisor of N so that by Remark 2.3 and (3.2) we have

$$2 > \frac{\sigma(\gamma(N))}{\gamma(N)} = \prod_{i=1}^r \frac{\sigma(p_i)}{p_i} = \prod_{i=1}^r \left(1 + \frac{1}{p_i}\right) = 1 + \sum_{k=1}^r S_k(B),$$

where $B = \left\{ \frac{1}{p_1}, \frac{1}{p_2}, \ldots, \frac{1}{p_r} \right\}$. Therefore, by (3.4), it follows that

$$2 > 1 + \sum_{k=1}^r \binom{r}{k} \left(\frac{1}{p_1p_2\ldots p_r} \right)^{\frac{1}{k}}$$

$$= 1 + \sum_{k=1}^r \binom{r}{k} \left\{ \gamma(N)^{-\frac{1}{r}} \right\}^k$$

$$= \left\{ 1 + \gamma(N)^{-\frac{1}{r}} \right\}^r,$$

which proves the theorem. \(\square\)
Remark 3.6. One of the reviewers has pointed out that a better lower bound for $\gamma(N)$ than A_r can be obtained by using known estimates for some functions over primes and this will be investigated later. Another reviewer has observed that the proof of Theorem 3.5 bears a close resemblance to the proof of a result of Anirudh Prabhu’s paper available online via arXiv at https://arxiv.org/pdf/1008.1114.pdf and the authors were not aware of the paper earlier.

4 On prime factors of N

Theorem 4.1. If N is of the form (2.2), then $p_i \equiv 1 \pmod{4}$ for some i.

Proof. If not, $p_i \equiv 3$ or $7 \pmod{8}$ for each i, contradicting Theorem 2.4. \hfill \Box

Theorem 4.2. If N is of the form (2.2) and $(N, 5) = 1$, then $p_i \equiv 1 \pmod{5}$ for some i.

Proof. If $(N, 5) = 1$ then $p_i \equiv \pm 1$ or $\pm 2 \pmod{5}$

First suppose $p_i \equiv \pm 1 \pmod{5}$ so that $p_i^2 \equiv 1 \pmod{5}$ and therefore

$$\sigma(p_i^{2e_i}) = (1 + p_i)(1 + p_i^2 + \ldots + p_i^{2e_i - 2}) + p_i^{2e_i} \equiv (1 + p_i)e_i + 1 \pmod{5}$$

$$\equiv \begin{cases} 2e_i + 1 \pmod{5} & \text{if } p_i \equiv 1 \pmod{5} \\ 1 \pmod{5} & \text{if } p_i \equiv -1 \pmod{5} \end{cases} \tag{4.3}$$

If $p_i \equiv \pm 2 \pmod{5}$, then $p_i^2 \equiv -1 \pmod{5}$ and therefore

$$\sigma(p_i^{2e_i}) = (1 + p_i)(1 + p_i^2 + \ldots + p_i^{2e_i - 2}) + p_i^{2e_i}$$

$$\equiv (1 + p_i)\{1 + (-1) + (-1)^2 + \ldots + (-1)^{e_i - 1}\} + (-1)^{e_i} \pmod{5}$$

$$\equiv \begin{cases} 1 \pmod{5} & \text{if } e_i \text{ is even} \\ 2 \pmod{5} & \text{if } e_i \text{ is odd, } p_i \equiv 2 \pmod{5} \\ -2 \pmod{5} & \text{if } e_i \text{ is odd, } p_i \equiv -2 \pmod{5} \end{cases} \tag{4.4}$$

If possible, suppose no $p_i \equiv 1 \pmod{5}$, then either $p_i \equiv -1 \pmod{5}$ or $p_i \equiv \pm 2 \pmod{5}$. Therefore, by (4.3) and (4.4), we get

$$\sigma(N) \equiv \prod_{\substack{p_i \equiv 2 \pmod{5} \\ e_i \text{ is odd}}} (2) \times \prod_{\substack{p_i \equiv -2 \pmod{5} \\ e_i \text{ is odd}}} (-2) \pmod{5}$$

$$\equiv 2^{k+k'} \cdot (-1)^{k'} \pmod{5}, \tag{4.5}$$

where $k = \#\{p_i^{2e_i} : p_i \equiv 2 \pmod{5}, e_i \text{ odd}\}$ and $k' = \#\{p_i^{2e_i} : p_i \equiv -2 \pmod{5}, e_i \text{ odd}\}$.

Also

$$2N + 1 \equiv 2 \prod_{i=1}^{r} (p_i^2)^{e_i} + 1 \equiv 2(-1)^{k+k'} + 1 \pmod{5}. \tag{4.6}$$
Now (4.5) and (4.6) imply that
\[2.(-1)^{k+k'} + 1 \equiv 2^{k+k'}.(-1)^{k'} \pmod{5}, \] \hspace{1cm} (4.7)
which reduces to
\[2.(-1)^k + (-1)^{k'} \equiv 2^{k+k'} \pmod{5}, \] \hspace{1cm} (4.8)
and this congruence is impossible for all choices of integers \(k \) and \(k' \), a contradiction, proving the theorem.

Theorem 4.9. If \(N \) is of the form (2.2) and \((N, 3) = 1 \), then \(p_i \equiv 1 \pmod{3} \) for some \(i \).

Proof. If \((N, 3) = 1 \) then \(p_i \equiv \pm 1 \pmod{3} \) for each \(i \) and since each \(p_i \) is odd it follows \(p_i \equiv \pm 1 \pmod{6} \) for each \(i \) so that \(p_i^2 \equiv 1 \pmod{6} \). Therefore,
\[2N + 1 \equiv 2 \prod_{i=1}^{r} (p_i^{2e_i} + 1) \equiv 3 \pmod{6} \] \hspace{1cm} (4.10)
and for each \(i \),
\[\sigma(p_i^{2e_i}) = (1 + p_i)(1 + p_i^2 + \ldots + p_i^{2e_i-2}) + p_i^{2e_i} \equiv (1 + p_i)e_i + 1 \pmod{6} \]
\[\equiv \begin{cases}
2e_i + 1 & \text{if } p_i \equiv 1 \pmod{6} \\
1 & \text{if } p_i \equiv -1 \pmod{6}
\end{cases} \]

If possible, suppose no \(p_i \equiv 1 \pmod{6} \). Then
\[\sigma(N) = \prod_{i=1}^{r} \sigma(p_i^{2e_i}) \equiv 1 \pmod{6} \] \hspace{1cm} (4.11)
Now, by (4.10) and (4.11), we have
\[1 \equiv 3 \pmod{6} \] \hspace{1cm} (4.12)
a contradiction. This proves the theorem.

Under certain stronger conditions we have a more general result given below:

Theorem 4.13. If \(N \) is of the form (2.2) and \((N, m) = 1 \) for some odd \(m > 2 \) and if \(p_i \equiv \pm 1 \pmod{m} \) for all \(i \), then \(p_j \equiv 1 \pmod{m} \) for some \(j \) \((1 \leq j \leq r)\). Also if there is exactly one \(j \) with this property then \(e_j \equiv 1 \pmod{m} \).

Proof. Similar to the proof of Theorem 4.9 for the first part. If there is exactly one \(j \) with \(p_j \equiv 1 \pmod{m} \) then \(2e_j + 1 \equiv 3 \pmod{m} \) giving \(e_j \equiv 1 \pmod{m} \) since \(m \) is odd.

Acknowledgements

The authors would like to thank the learned reviewers for their valuable suggestion and useful observation on Theorem 3.5.
References

[1] Abbott, H. L., Aull, C. E., Brown, E. & Suryanarayana, D. (1976). Quasiperfect numbers, *Acta Arithmetica*, XXII(1973),439-447; correction to the paper, *Acta Arithmetica*, XXIX (1976), 636–637.

[2] Cattaneo, P. (1951). Sui numeri quasiperfetti, *Boll. Un. Mat. Ital.*., 6 (3), 59–62.

[3] Cohen G. L. & Hagis Jr., P. (1982). Some results concerning quasiperfect numbers, *J. Austral. Math. Soc. (Ser.A)*, 33, 275–286.

[4] Kishore, M. (1975). Quasiperfect numbers are divisible by at least six distinct divisors, *Notices. AMS*, 22, A441.

[5] Sándor, J. & Crstici, B. (2004). *Hand book of Number Theory II*, Kluwer Academic Publishers, Dordrecht/ Boston/ London.

[6] Sierpinski, W. (1964). *A Selection of problems in the Theory of Numbers*, New York, (see page 110).

[7] Siva Rama Prasad, V. & Sunitha, C. (2017). On quasiperfect numbers, *Notes on Number Theory and Discrete Mathematics*, 23 (3), 73–78