Observation of τ lepton pair production in ultraperipheral lead-lead collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

The CMS Collaboration*

Abstract

We present an observation of photon-photon production of τ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 μb$^{-1}$ collected by the CMS experiment at a center-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The $\gamma\gamma \rightarrow \tau^+\tau^-$ process is observed for $\tau^+\tau^-$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = 4.8 \pm 0.6 \pm 0.5, \mu$b, where the second (third) term corresponds to the statistical (systematic) uncertainty in $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-)$, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-)$, we estimate a model-dependent value of the anomalous magnetic moment of the τ lepton of $a_\tau = 0.001^{+0.055}_{-0.089}$.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.131.151803.
Ultrapерipheral collisions (UPCs) of nuclei, where the impact parameter is larger than the sum of the nuclear radii, provide an extremely clean environment to study various photon-induced processes [1]. For the case of lead-lead (PbPb) UPCs, the production cross section for two-photon fusion processes is enhanced by a factor of about Z^4 (where $Z = 82$ is the Pb charge number), relative to proton-proton collisions. The possibility of observing photon-induced τ lepton production in UPC events at a heavy ion collider was considered well before the LHC era [2]. Recently, theoretical studies [3, 4] have proposed that kinematic properties of τ lepton pairs produced in heavy ion UPCs at the LHC can be used to constrain the electromagnetic couplings of the τ lepton. These constraints allow for fundamental tests of quantum electrodynamics (QED) and for probing beyond the standard model (BSM) physics.

A contributing factor in the coupling of the lepton (ℓ) to the photon (γ) is the anomalous magnetic moment $a_\ell = (g - 2)_{\gamma}/2$, with the g-factor being the proportionality constant that relates the magnetic moment to the spin of the lepton. With 12 significant digits, the electron anomalous magnetic moment a_e is among the most precisely measured quantities [5], and differs from the standard model (SM) expectation by either -2.4 ± 1.6 standard deviations [5, 6], depending on the input value of the fine structure constant, a_{QED}. The value of a_e has been measured to 9 significant figures [7]. It shows a tension of $+4.2$ standard deviations with respect to SM predictions [8], although a calculation with a modified hadronic contribution [9] reduces the discrepancy between data and theory by a factor of more than 2, albeit with an uncertainty that is about 20\% larger. While the predicted value of a_e is $0.00117721 (5) [10, 11]$, with the number in parentheses denoting the uncertainty in the least significant figure, its best measured value is -0.018 ± 0.017 from the DELPHI Collaboration [12] (other existing limits on a_e can be found in Ref. [13]). The larger uncertainty in a_ℓ compared to a_μ and a_e measurements primarily results from the short τ lepton lifetime, which is of the order of 10^{-13} s, such that τ leptons cannot be stored long enough to measure their a_ℓ-dependent precession in a magnetic field. A more precise a_ℓ determination would facilitate tighter constraints on BSM physics models [14, 15], in which additional particles with mass M contribute with terms typically proportional to $(m_\ell/M)^2$. This motivates employing novel experimental approaches for measuring a_ℓ at current and potential future colliders, as undertaken in this Letter and in a recent measurement by the ATLAS Collaboration [16].

Here, we present an observation of τ lepton pairs in ultraperipheral PbPb collisions, $\gamma\gamma \rightarrow \tau^+\tau^-$, in events that may contain excitations of the outgoing Pb ions. The analysis is based on a data sample with an integrated luminosity of 404μb$^{-1}$ collected by the CMS experiment in 2015 at a center-of-mass energy per nucleon pair of $\sqrt{s_{NN}} = 5.02$ TeV. One τ lepton is reconstructed through its decay to one muon and two neutrinos, while the other is reconstructed through its “3 pronged” decay into hadrons plus a neutrino [13]. This choice of final state offers a clean experimental signature, with the muon used for online selection and the hadronically decaying τ candidate providing discrimination against dimuon photoproduction and an unambiguous reconstruction of τ lepton decay. The reconstruction of the τ leptons is performed over a fiducial phase space, defined by the transverse momentum (p_T) and pseudorapidity (η) of each particle. Tabulated results are provided in the HEPData record for this analysis [17].

The CMS apparatus [18] is a multipurpose, nearly hermetic detector, designed to trigger on [19, 20] and identify electrons, photons, muons, τ leptons, jets, and missing p_T [21–23]. A global reconstruction “particle-flow” algorithm [24] combines the information provided by the all-silicon inner tracker, the crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter, operating inside a 3.8T superconducting solenoid, with that from gas-ionization muon detectors embedded in the flux-return yoke outside the solenoid, to build τ lepton candidates and jets, and to measure the missing p_T [25–27]. Forward hadron (HF)
calorimeters [28], made of steel and quartz-fibers, extend the $|\eta|$ coverage from 3.0, provided by the barrel and endcap detectors, to 5.2. The HF calorimeters are segmented to form $\Delta \eta \times \Delta \phi$ “towers” of width 0.175×0.175, with ϕ being the azimuthal angle. Events are selected online using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors [19]. The second level, known as the high-level trigger [20], consists of a farm of processors running a version of the full event reconstruction software.

The UPCs producing two final-state τ leptons are uniquely characterized by low track multiplicity and the presence of very forward (i.e., high $|\eta|$) lead ions that are either scattered or dissociated in a direction so close to the beam as to be undetectable. Therefore, we select high-purity UPC events [29] by requiring in real time the presence of a single muon with no explicit p_T threshold requirement, at least one pixel detector track, and low event activity in the HF [19]. To further suppress background processes, such as hadronic PbPb collisions, it is required offline that the maximum energy measured in an HF tower is below 4 GeV.

Furthermore, the fiducial phase space region is constrained offline by selecting events with one muon and exactly three additional tracks. For the muon defining the “τ_μ” candidate, a selection is applied requiring $|\eta| < 2.4$ and that the muon satisfies the “soft” identification criteria described in Ref. [22], with $p_T > 3.5$ GeV for $|\eta| < 1.2$ and $p_T > 2.5$ GeV for $|\eta| > 1.2$, following the acceptance of the muon detector system. The three tracks that form the “$\tau_{3\text{prong}}$” candidate [25] are assumed to be pions and are selected within the tracker acceptance ($|\eta| < 2.5$). Along the direction of the two beams, they are required to have a common vertex within 2.5 mm relative to the vertex corresponding to the hardest scattering in the event [30]. In addition, they must be identified as charged hadrons by the particle-flow algorithm. The transverse momentum of the leading (i.e., the highest p_T) and two subleading pions must be greater than 0.5 and 0.3 GeV, respectively. The selected tracks are required to pass the “high-purity” requirements of Ref. [23]. The $\tau_{3\text{prong}}$ candidate is then required to be of opposite charge relative to the selected τ_μ, and to have $p_T^{\text{vis}} > 2$ GeV, where p_T^{vis} is the vector sum p_T of the three charged pions (the “visible” decay products of the $\tau_{3\text{prong}}$ candidate). Additionally, the invariant mass of the three pion candidates $m^{\tau_{3\text{prong}}}_{\text{vis}}$ is required to be less than 1.5 GeV. With these selections we identify 91 $\gamma\gamma \rightarrow \tau^+\tau^-$ candidate events.

Backgrounds arise from heavy quark photoproduction, UPC photon-photon and photon-pomeron interactions producing mesons that can decay to muons and charged hadrons. Dedicated samples of events from $\gamma\gamma \rightarrow \tau^+\tau^-$ [3], $\gamma\gamma \rightarrow c\bar{c}$, and $\gamma\gamma \rightarrow b\bar{b}$ processes are generated with MADGRAPH5_aMC@NLO (v2.6.5) [31], where PYTHIA8 (v2.1.2) [32] is used for the hadronization and decay, and GEANT4 [33] is used to emulate the full CMS detector response. All studied kinematic distributions of the muons and charged pions in simulated events are corrected using comparisons between the simulation and data, outside the signal region, as a function of the muon or track p_T and η. For muons, we use a “tag-and-probe” method with $J/\psi \rightarrow \mu^+\mu^-$ events [22]. For charged hadrons, we use the number of reconstructed D^0 meson decays to final states with four charged hadrons divided by those with two daughters. The simulated background processes produce a large number of tracks and hence sparsely populate the signal-dominated phase space region. They are only used to partly validate the expected $\gamma\gamma \rightarrow c\bar{c}$ and $\gamma\gamma \rightarrow b\bar{b}$ contributions to the background estimation as described in the following paragraph.

To properly estimate the background, we use a technique based on control samples in data, referred to as the “ABCD method”. Three phase space regions (“categories”) are used to derive the background in the fourth region, from which the signal is extracted. The four categories,
which have been found to be uncorrelated in data, are defined according to the value of the highest energy tower in HF, and the number of charged particle tracks per event \((n_{\text{ch}}) \), excluding the track associated with the \(\tau_\mu \) candidate. The low-\(n_{\text{ch}} \) categories (B and D) are defined by \(n_{\text{ch}} = 3 \), whereas the high-\(n_{\text{ch}} \) categories (A and C) must have \(5 \leq n_{\text{ch}} \leq 8 \) to avoid signal contamination while being similar to the signal region. The low-HF (C and D) and high-HF (A and B) categories are defined by energies below and above 4 GeV, respectively. Consequently, category D is the signal region (low-\(n_{\text{ch}} \) and low-HF category), and the background estimation is \(B_i/C_i/A_i \), where each of the categories is evaluated per kinematic-variable and category-dependent bin, as indicated by the subscript \(i \). Based on the simulated signal events, we find that the event selection described above removes all signal events from the control regions (A–C). The kinematic distributions showing the \(\gamma\gamma \rightarrow \tau^+\tau^- \) signal process, scaled to match the QED prediction of Ref. [3], as well as the background model based on control samples in data, are shown in Fig. 1. Good agreement is observed between the measured distributions and the sum of the signal simulation and background estimation.

![Figure 1](image-url)

Figure 1: Left: Transverse momentum of the muon originating from the \(\tau_\mu \) candidate. Middle: Invariant mass of the three pions forming the \(\tau_{3\text{prong}} \) candidate. Right: \(\tau^+\tau^- \) invariant mass. In all plots, the signal component (magenta histogram) is stacked on top of the background component (green histogram), considering their initial normalizations, as described in the text. The sum of signal and background is displayed by a blue line and the shaded area shows the statistical uncertainty. The data are represented with black points and the uncertainty is statistical only. The lower panels show the ratios of data to the signal-plus-background prediction, and the shaded bands represent the statistical uncertainty in the prefit expectation.

A binned maximum likelihood fit of signal and background components is used for the signal extraction. The fit is performed on the binned distribution of the difference in azimuthal opening angle between the \(\tau_\mu \) and \(\tau_{3\text{prong}} \) candidates, \(\Delta\phi(\tau_\mu, \tau_{3\text{prong}}) \), exploiting the fact that the two signal \(\tau \) leptons are produced azimuthally back-to-back in UPCs [1, 34]. The signal distribution is derived from the \(\gamma\gamma \rightarrow \tau^+\tau^- \) simulation, while that of the background is obtained from the ABCD method described above, including its normalization as a constant parameter in the fit. The initial ("prefit") number of signal events is taken from the QED prediction of Ref. [3]. Systematic uncertainties may affect both the normalization and the shape of the \(\Delta\phi(\tau_\mu, \tau_{3\text{prong}}) \) distributions. These uncertainties, in addition to the bin-by-bin variations of the signal and background templates, are represented by nuisance parameters in the fit. Rate-changing nuisance parameters are represented as log-normal probability distribution functions, while shape-changing ones are represented with Gaussian probability distribution functions. The negative of the log likelihood is minimized by varying the nuisance parameters according to their uncertainties and by scaling the signal by a multiplicative factor \(r \).

Uncertainties arising from the HF energy threshold are evaluated by varying the HF energy by
The effect on the measured cross section due to this variation is dominated by the resulting variation in the background shape from the ABCD procedure, and is found to be 0.9%. An additional systematic uncertainty coming from the background shape and yield estimation is considered by reevaluating the background using the ABCD procedure, changing the high n_{ch} parameter to individual values of 5, 6, 7, and 8, as opposed to the range 5–8. The maximum variation with respect to the central value comes from the determination with $n_{ch} = 5$, resulting in a 0.2% variation of the fiducial cross section measurement.

The uncertainty in the muon efficiency, including the trigger response, identification and tracking efficiency, has an impact of 6.7%. The integrated luminosity is measured with the methods described in Refs. [36, 37], and has an uncertainty of 5%, which affects the yield from the QED simulation to which the signal is normalized. The uncertainty in the pion tracking efficiency results in an uncertainty of 3.6%. The simulated signal distribution has a finite number of events, resulting in a 3% uncertainty due to bin-by-bin statistical fluctuations, and a 1.1% weighted binomial uncertainty on the efficiency. The uncertainty in the τ lepton branching fraction measurements is 0.6% [13].

The total uncertainty, obtained by adding them in quadrature while taking into account their correlation, is found to be 9.7%.

The best fit value of the signal strength multiplicative factor is $r = 0.99^{+0.16}_{-0.14}$ with $N_{\text{sig}} = 77 \pm 12$ signal events in the integral of the postfit signal component. The fit result is shown in Fig. 2, along with the data, and signal and background templates. The observed (expected) signal significance, computed using the asymptotic approximation [38], is found to be 14.2 (14.5) standard deviations. These values indicate a clear observation of the $\gamma \gamma \rightarrow \tau^+ \tau^-$ process.

The cross section is measured in the fiducial phase space region, following the kine-
matics requirements previously described. The formula used is \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = N_{\text{sig}} / (2\epsilon L_{\text{int}} B_{r_{\gamma}} B_{3\text{prong}}) \), where \(N_{\text{sig}} \) is the number of signal events estimated by the fit process, \(\epsilon \) is the total signal efficiency, \(L_{\text{int}} = 404 \pm 20 \mu b^{-1} \) is the total integrated luminosity, and \(B_{r_{\gamma}} = (17.39 \pm 0.04)\% \) and \(B_{3\text{prong}} = (14.55 \pm 0.06)\% \) [13] are the branching fractions for the two \(\tau \) lepton decay modes. The factor of two accounts for the two potential \(\tau \) lepton decay combinations yielding the same final state, whereas 3-prong decays could include additional neutral pions. The efficiency is the product of the pion and muon reconstruction, the trigger, and the analysis selection efficiencies, and is evaluated using simulated signal events. The efficiency is calculated as the number of reconstructed events passing the analysis selection criteria divided by the number of generated events inside the fiducial phase space region, and is found to be \(\epsilon = (78.5 \pm 0.8)\% \).

Combining all of the above, the fiducial cross section is found to be \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = 4.8 \pm 0.6 \pm 0.5 \mu b \), where the second (third) term corresponds to the statistical (systematic) uncertainty in \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) \). The result, summarized in Fig. 3, is compared to leading-order QED predictions [3, 4]. The analytical calculation from Ref. [4] results in a cross section which is 20% higher than that found in Ref. [3]. This is explained in Ref. [4] as mainly stemming from the different requirements applied in the modeling of single-photon fluxes. In both cases, although further theory advancements are needed for a proper uncertainty evaluation, a conservative uncertainty of 10% is considered following the approach from Ref. [29] given the similarity of final states and phase-space volumes.

Recent calculations have evaluated the impact of BSM processes on the \(\gamma\gamma \rightarrow \tau^+\tau^- \) cross section. The BSM coupling variations in \(a_\tau \) can change the expected cross section and alter the \(\tau \) lepton \(p_T \) spectrum [3, 4]. We assume the correction factor of Ref. [3] to extrapolate the fiducial cross section measurement to the full phase space region, after taking into account an extra factor of \(1/\sqrt{4\pi} \) for the electron charge in Heaviside-Lorentz units. We then use the dependency of the total \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) \) as a function of \(a_\tau \) [3] to extract a model-dependent
value of \(a_\tau \) at the LHC. The measured value is \(a_\tau = 0.001^{+0.055}_{-0.089} \), which is consistent with the current best measurement [12]. The ATLAS Collaboration has also recently reported a measurement of \(\gamma\gamma \rightarrow \tau^+\tau^- \) using a larger PbPb data sample with an integrated luminosity of 1.44 nb\(^{-1} \) [16]. With respect to the ATLAS measurement, we cover a larger phase space with muon \(p_T > 2.5 \text{ GeV} \), while Ref. [16] uses \(p_T > 4 \text{ GeV} \), and we make no restrictions on neutron emission. Because of the larger fiducial phase space region comprised by our measurement, the attained precision in \(a_\tau \) for the studied final state is comparable to that of \(a_\tau = 0.98^{+0.14}_{-0.13} \) obtained in Ref. [16]. The approaches followed by the two collaborations in the measurement of \(a_\tau \) are complementary to each other: we extract \(a_\tau \) from \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) \), while Ref. [16] extracts \(a_\tau \) from a shape analysis of the \(\tau \mu \).

In summary, an observation of \(\tau \) lepton pair production in ultraperipheral nucleus-nucleus collisions is reported. Events with a final state of one muon and three charged hadrons assumed to be pions are reconstructed from a lead-lead data sample with an integrated luminosity of 404 \(\mu \text{b}^{-1} \) collected by the CMS experiment at \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \) in 2015. The statistical significance of the signal relative to the background-only expectation is far above five standard deviations. The cross section for the \(\gamma\gamma \rightarrow \tau^+\tau^- \) process, within a fiducial phase space region, is \(\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = 4.8 \pm 0.6 \pm 0.5, \text{ \(\mu \text{b} \)} \), in agreement with leading-order quantum electrodynamics predictions. Using the measured cross section and its corresponding uncertainties, we estimate a model-dependent value of the anomalous magnetic moment of the \(\tau \) lepton of \(a_\tau = 0.001^{+0.055}_{-0.089} \). This measurement provides a novel experimental probe of the \(\tau \) anomalous magnetic moment using heavy ion collisions at the LHC.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, ME and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKF HU (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and U (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MEXT (Russia); MCI/ AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); NNSF and NSTDA (Thailand); TUBITAK and TUK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] A. J. Baltz, “The physics of ultraperipheral collisions at the LHC”, Phys. Rep. 458 (2008) doi:10.1016/j.physrep.2007.12.001, arXiv:0706.3356.
[2] F. del Aguila, F. Cornet, and J. I. Illana, “The possibility of using a large heavy ion collider for measuring the electromagnetic properties of the τ lepton”, *Phys. Lett. B* **271** (1991) 256, doi:10.1016/0370-2693(91)91309-J.

[3] L. Beresford and J. Liu, “New physics and τ g − 2 using LHC heavy ion collisions”, *Phys. Rev. D* **102** (2020) 113008, doi:10.1103/PhysRevD.102.113008, arXiv:1908.05180. [Erratum: doi:10.1103/PhysRevD.106.039902].

[4] M. Dyndal, M. Klusek-Gawenda, M. Schott, and A. Szczurek, “Anomalous electromagnetic moments of τ lepton in γγ → τ⁺τ⁻ reaction in PbPb collisions at the LHC”, *Phys. Lett. B* **809** (2020) 135682, doi:10.1016/j.physletb.2020.135682, arXiv:2002.05503.

[5] R. H. Parker et al., “Measurement of the fine-structure constant as a test of the standard model”, *Science* **360** (2018) 191, doi:10.1126/science.aap7706, arXiv:1812.04130.

[6] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khelifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion”, *Nature* **588** (2020) 61, doi:10.1038/s41586-020-2964-7.

[7] Muon g − 2 Collaboration, “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm”, *Phys. Rev. Lett.* **126** (2021) 141801, doi:10.1103/PhysRevLett.126.141801, arXiv:2104.03281.

[8] T. Aoyama et al., “The anomalous magnetic moment of the muon in the standard model”, *Phys. Rep.* **887** (2020) 1, doi:10.1016/j.physrep.2020.07.006, arXiv:2006.04822.

[9] S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from lattice QCD”, *Nature* **593** (2021) 51, doi:10.1038/s41586-021-03418-1, arXiv:2002.12347.

[10] M. Passera, “Precise mass-dependent QED contributions to leptonic g − 2 at order α² and α³νν”, *Phys. Rev. D* **75** (2007) 013002, doi:10.1103/PhysRevD.75.013002, arXiv:hep-ph/0606174.

[11] S. Eidelman and M. Passera, “Theory of the τ lepton anomalous magnetic moment”, *Mod. Phys. Lett. A* **22** (2007) 159, doi:10.1142/S0217732307022694, arXiv:hep-ph/0701260.

[12] DELPHI Collaboration, “Study of τ pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the τ lepton”, *Eur. Phys. J. C* **35** (2004) 159, doi:10.1140/epjc/s2004-01852-y, arXiv:hep-ex/0406010.

[13] Particle Data Group, “Review of Particle Physics”, *PTEP* **2020** (2020) 083C01, doi:10.1093/ptep/ptaa104.

[14] A. Crivellin, M. Hoferichter, and J. M. Roney, “Towards testing the magnetic moment of the τ at one part per million”, 2021. arXiv:2111.10378.

[15] A. Crivellin and M. Hoferichter, “Consequences of chirally enhanced explanations of (g − 2)μ for h → μμ and Z → μμ”, *JHEP* **07** (2021) 135, doi:10.1007/JHEP07(2021)135, arXiv:2104.03202.
[16] ATLAS Collaboration, “Observation of the $\gamma\gamma \rightarrow \tau\tau$ process in PbPb collisions and constraints on the τ lepton anomalous magnetic moment with the ATLAS detector”, Phys. Rev. Lett. 131 (2023) 151802, doi:10.1103/PhysRevLett.131.151802, arXiv:2204.13478.

[17] CMS. HEPData record for this analysis, 2022. doi:10.17182/hepdata.129600.

[18] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[19] CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.

[20] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[21] CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, doi:10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.

[22] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[23] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[24] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[25] CMS Collaboration, “Performance of reconstruction and identification of τ leptons decaying to hadrons and ν_τ in pp collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P10005, doi:10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.

[26] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[27] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector”, JINST 14 (2019) P07004, doi:10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.

[28] CMS Collaboration, “Calibration of the CMS hadron calorimeters using proton-proton collision data at $\sqrt{s} = 13$ TeV”, JINST 15 (2020) P05002, doi:10.1088/1748-0221/15/05/P05002, arXiv:1910.00079.

[29] CMS Collaboration, “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s}_{NN} = 5.02$ TeV”, Phys. Lett. B 797 (2019) 134826, doi:10.1016/j.physletb.2019.134826, arXiv:1810.04602.

[30] CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
[31] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[32] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[33] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[34] CMS Collaboration, “Observation of forward neutron multiplicity dependence of dimuon acoplanarity in ultraperipheral PbPb Collisions at $\sqrt{s_{\text{NN}}} = 5.02\text{TeV}$”, *Phys. Rev. Lett.* 127 (2021) 122001, doi:10.1103/PhysRevLett.127.122001, arXiv:2011.05239.

[35] CMS Collaboration, “Measurement of exclusive Υ photoproduction from protons in pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02\text{TeV}$”, *Eur. Phys. J. C* 79 (2019) 277, doi:10.1140/epjc/s10052-019-6774-8, arXiv:1809.11080.

[36] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13\text{TeV}$ in 2015 and 2016 at CMS”, *Eur. Phys. J. C* 81 (2021) 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.

[37] CMS Collaboration, “CMS luminosity measurement using nucleus-nucleus collisions at $\sqrt{s_{\text{NN}}} = 5.02\text{TeV}$ in 2018”, CMS Physics Analysis Summary CMS-PAS-LUM-18-001, 2022.

[38] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan1

Institut für Hochenergiephysik, Vienna, Austria
W. Adam1, J.W. Andrejkovic1, T. Bergauer1, S. Chatterjee1, K. Damanakis1, M. Dragicevic1, A. Escalante Del Valle1, P.S. Hussain1, M. Jeitler2, N. Krammer1, L. Lechner1, D. Liko1, I. Mikulec2, P. Paulitsch, F.M. Pitters, J. Schieck2, R. Schönbeck1, D. Schwarz1, S. Tempel1, W. Waltenberger1, C.-E. Wulz2

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish3, T. Janssen1, T. Kello4, H. Rejeb Sfar, P. Van Mechelen

Vrije Universiteit Brussel, Brussel, Belgium
E.S. Bols1, J. D’Hondt2, A. De Moor2, M. Delcourt2, H. El Faham2, S. Lowette2, S. Moortgat2, A. Morton2, D. Müller6, A.R. Sahasransu1, S. Tavernier2, W. Van Doninck, D. Vannerom

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux1, G. De Lentdecker2, L. Favart2, D. Hohov1, J. Jaramillo2, K. Lee2, M. Mahdavikhorrami2, I. Makarenko2, A. Malara2, S. Paredes2, L. Pétré5, N. Postiau, E. Starling2, L. Thomas2, M. Vanden Bemden, C. Vander Velde2, P. Vanlaer

Ghent University, Ghent, Belgium
D. Dobos2, J. Knolle2, L. Lambrecht2, G. Mestdach, M. Niedziela1, C. Rendón, C. Roskas2, A. Samalan, K. Skovpen2, M. Tytgat2, N. Van Den Bossche2, B. Vermassen, L. Wezenbeek

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke1, G. Bruno1, F. Bury1, C. Caputo1, P. David1, C. Delaere1, I.S. Donertas1, A. Giammanco1, K. Jaffel1, Sa. Jain1, V. Lemaitre, K. Mondal1, J. Prisciandaro, A. Taliercio1, T.T. Tran1, P. Vischia1, S. Wertz1

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves1, E. Coelho1, C. Hensel1, A. Moraes1, P. Rebelo Teles1

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior1, M. Alves Gallo Pereira1, M. Barroso Ferreira Filho1, H. Brandao Malbouisson1, W. Carvalho1, J. Chinellato5, E.M. Da Costa1, G.G. Da Silveira6, D. De Jesus Damiao1, V. Dos Santos Sousa1, S. Fonseca De Souza1, J. Martins7, C. Mora Herrera1, K. Mota Amarilo1, L. Mundim1, H. Nogima1, A. Santoro1, S.M. Silva Do Amaral1, A. Sznajder1, M. Thiel1, F. Torres Da Silva De Araujo8, A. Vilela Pereira1

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes6, L. Calligaris1, T.R. Fernandez Perez Tomei1, E.M. Gregores1, P.G. Mercadante1, S.F. Novaes1, Sandra S. Padula1

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov1, G. Antchev1, R. Hadjiiska1, P. Iaydjiev1, M. Misheva1, M. Rodozov, M. Shopova1, G. Sultanov1

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, Z. Hu, S. Lezki, K. Yi

Institute of High Energy Physics, Beijing, China
G.M. Chen, H.S. Chen, M. Chen, F. Iemmi, C.H. Jiang, A. Kapoor, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, C. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, X. Sun, D. Wang, J. Xiao, H. Yang

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, D. Leggat, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, C. Lu, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, D.A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, B.K. Chitroda, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, K. Ehatu, M. Kadastik, T. Lange, S. Nandan, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar, E. Brücker, F. García, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Myllymäki, J. Ott, M. Rantanen, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrov, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, P. Gras, G. Hamel de Monchenault, P. Jarry, V. Lohezic, J. Malcles, J. Rander, A. Rosowsky, M.O. Sahin, A. Savoy-Navarro, P. Simkina, M. Titov

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
C. Baldenegro Barrera, F. Beaudette, A. Buchot Perraguin, P. Busson, A. Cappati, C. Charlot, F. Damas, O. Davignon, B. Diab, G. Falmagne, B.A. Fontana Santos Alves, S. Ghosh, R. Granier de Cassagnac, A. Hakimi, B. Harikrishnan, G. Liu, J. Motta, M. Nguyen, C. Ochando, L. Portales, R. Salerno, U. Sarkar, J.B. Sauvan, Y. Sirois, A. Tarabini, E. Vernazza, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, D. Darej, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
S. Beauceron, C. Bernet, B. Blancou, G. Boudoul, A. Carle, N. Chanon, J. Choi, D. Contardo, P. Depasse, C. Dozen, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, I.B. Laktineh, M. Lethuillier, L. Mirabito, S. Perries, L. Torterotot, M. Vander Donckt, P. Verdier, S. Viret

Georgian Technical University, Tbilisi, Georgia
I. Bagaturia, I. Lomidze, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
S. Diekmann, A. Dodonova, N. Eich, D. Eliseev, M. Erdmann, P. Fackeldey
National Technical University of Athens, Athens, Greece
G. Bakas, T. Chatzistavrou, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
K. Adamidis, I. Bestintzanos, I. Evangelou, C. Foudas, P. Gianneios, C. Kamtsikis, P. Katsoulis, P. Kokkas, P.G. Kosmoglou Kioseoglou, N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanád, K. Farkas, M.M.A. Gadallah, S. Lökkös, P. Major, K. Mandal, G. Pázsztor, A.J. Rádó, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Benze, C. Hajdu, D. Horváth, F. Sikler, V. Veszprémi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, B. Ujvari

Karoly Robert Campus, MATE Institute of Technology, Gyöngyös, Hungary
T. Csorgó, F. Nemes, T. Novak

Panjab University, Chandigarh, India
J. Babbar, S. Bansal, B.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhiraj, R. Gupta, A. Kaur, A. Kaur, H. Kaur, M. Kaur, S. Kumar, P. Kumari, M. Meena, K. Sandeep, T. Sheokand, J.B. Singh, A. Singla, A. K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, S. Saumya, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
S. Baradia, S. Barman, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber, M. Maity, P. Palit, PK. Rout, G. Saha, B. Sahu, S. Sarkar

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, J.R. Komaragiri, D. Kumar, A. Muhammad, L. Panwar, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar, P.C. Tiwari, S. Verma

Bhabha Atomic Research Centre, Mumbai, India
K. Naskar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, I. Das, S. Dugad, M. Kumar, G.B. Mohanty, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National
C.S. Moon, Y.D. Oh, S.I. Pak, M.S. Ryu, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
E. Asilar, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Choi, S. Han, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Korea
J. Goh

Sejong University, Seoul, Korea
H. S. Kim, Y. Kim, S. Lee

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, W. Jun, J. Kim, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, J. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, D. Kim, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, D. Song, Watson, I.J., S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, M.R. Kim, H. Lee, Y. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
K. Dreimanis, A. Gaile, A. Potrebko, M. Seidel, T. Torims, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, S.Y. Hoh, I. Yusuff, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, H.A. Encinas Acosta, L.G. Gallegos Maríñez, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sánchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
C. Oropeza Barrera, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
I. Bubanja, J. Mijuskovic, N. Raicevic

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, M. Gul, H.R. Hoorani, W.A. Khan, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, M. Pisanò, J. Seixas, J. Varela

VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, D. Fernández Del Val, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, D.D. Redondo Ferrero, L. Romero, S. Sánchez Navas, J. Sastre, L. Urda Gómez, J. Vazquez Escobar, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, A. Soto Rodriguez, A. Trapote, C. Vico Villalba

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazo, A. García Alonso, G. Gomez, C. Lasoasoa García, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Priels, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna
Y. Guler, E. Gurpinar Guler, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, E. Uslan, I.S. Zorbakir.

Middle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar, K. Ocalan, M. Yalvac.

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özcelik, S. Tekten.

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen.

Istanbul University, Istanbul, Turkey
O. Aydilek, S. Cerci, B. Hacisahinoglu, I. Hos, B. Isildak, B. Kaynak, S. Ozkorucuklu, D. Simsek, D. Sunar Cerci.

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv, Ukraine
B. Grynyov.

National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
L. Levchuk.

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, M. Glowacki, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White.

Rutherford Appleton Laboratory, Didcot, United Kingdom
A.H. Ball, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.-L. Holmberg, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, G. Salvi, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams.

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, B. Bonomally, J. Borg, S. Breeze, C.E. Brown, O. Buchmuller, V. Cachio, V. Cepaitis, G.S. Chahal, D. Colling, J.S. Dancu, P. Dauncey, G. Davies, J. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, A. Howard, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, M. Mieskolainen, D.G. Monk, J. Nash, M. Pesaresi, B.C. Radburn-Smith, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shiptiysi, R. Shukla, A. Tapper, K. Uchida, G.P. Uttley, L.H. Vage, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom.

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid.

Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson.

Catholic University of America, Washington, DC, USA
Princeton University, Princeton, New Jersey, USA
F.M. Addesa, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, Indiana, USA
A.S. Bakshi, V.E. Barnes, R. Chowla, S. Das, L. Gutay, M. Jones, A.W. Jung, D. Kondratyev, A.M. Koshy, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen, N. Parashar

Rice University, Houston, Texas, USA
D. Acosta, A. Baty, T. Carnahan, M. Decaro, S. Dildick, K.M. Ecklund, P.J. Fernández Manteca, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Rotter, W. Shi, S. Yang, E. Yigitbasi, L. Zhang, Y. Zhang, X. Zuo

University of Rochester, Rochester, New York, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus, G.P. Van Onsem

The Rockefeller University, New York, New York, USA
K. Goulianos

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, D. Jaroslawski, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, T. Holmes, E. Nibigira, S. Spanier

Texas A&M University, College Station, Texas, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, Texas, USA
N. Akchurin, J. Damgov, V. Hegde, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltona, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, Tennessee, USA
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, J. Viinikainen

University of Virginia, Charlottesville, Virginia, USA
B. Cardwell, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce,
17 Also at Université de Haute Alsace, Mulhouse, France
18 Also at Department of Physics, Tsinghua University, Beijing, China
19 Also at Ilia State University, Tbilisi, Georgia
20 Also at Erzincan Binali Yildirim University, Erzincan, Turkey
21 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
22 Also at University of Hamburg, Hamburg, Germany
23 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
24 Also at Isfahan University of Technology, Isfahan, Iran
25 Also at Brandenburg University of Technology, Cottbus, Germany
26 Also at Forschungszentrum Jülich, Juelich, Germany
27 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
28 Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
29 Also at Wigner Research Centre for Physics, Budapest, Hungary
30 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
31 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
32 Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
33 Also at Faculty of Informatics, University of Debrecen, Debrecen, Hungary
34 Also at Punjab Agricultural University, Ludhiana, India
35 Also at UPES - University of Petroleum and Energy Studies, Dehradun, India
36 Also at University of Visva-Bharati, Santiniketan, India
37 Also at University of Hyderabad, Hyderabad, India
38 Also at Indian Institute of Science (IISc), Bangalore, India
39 Also at Indian Institute of Technology (IIT), Mumbai, India
40 Also at IIT Bhubaneswar, Bhubaneswar, India
41 Also at Institute of Physics, Bhubaneswar, India
42 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
43 Also at Sharif University of Technology, Tehran, Iran
44 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
45 Also at Helwan University, Cairo, Egypt
46 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
47 Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
48 Also at Scuola Superiore Meridionale, Università di Napoli ‘Federico II’, Napoli, Italy
49 Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA
50 Also at Università di Napoli ‘Federico II’, Napoli, Italy
51 Also at Ain Shams University, Cairo, Egypt
52 Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
53 Also at Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
54 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
55 Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
56 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
57 Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
58 Also at INFN Sezione di Pavia, Universitá di Pavia, Pavia, Italy
59 Also at National and Kapodistrian University of Athens, Athens, Greece
60 Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
61 Also at Universität Zürich, Zurich, Switzerland
62 Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey
Also at Konya Technical University, Konya, Turkey
Also at Izmir Bakircay University, Izmir, Turkey
Also at Adiyaman University, Adiyaman, Turkey
Also at Istanbul Gedik University, Istanbul, Turkey
Also at Necmettin Erbakan University, Konya, Turkey
Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey
Also at Marmara University, Istanbul, Turkey
Also at Milli Savunma University, Istanbul, Turkey
Also at Kafkas University, Kars, Turkey
Also at Hacettepe University, Ankara, Turkey
Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
Also at Yıldız Technical University, Istanbul, Turkey
Also at Vrije Universiteit Brussel, Brussels, Belgium
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Also at University of Bristol, Bristol, United Kingdom
Also at IPPP Durham University, Durham, United Kingdom
Also at Monash University, Faculty of Science, Clayton, Australia
Also at Università di Torino, Torino, Italy
Also at Bethel University, St. Paul, Minnesota, USA
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
Also at California Institute of Technology, Pasadena, California, USA
Also at United States Naval Academy, Annapolis, Maryland, USA
Also at Bingol University, Bingol, Turkey
Also at Georgian Technical University, Tbilisi, Georgia
Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Also at Yerevan Physics Institute, Yerevan, Armenia
Now at University of Florida, Gainesville, Florida, USA
Also at Imperial College, London, United Kingdom
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan