Review

2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review

Shaik Gouse Peera 1,*,‡, Ravindranadh Koutavarapu 2,‡, Liu Chao 3, Lakhveer Singh 4,5, Govindhasamy Murugadoss 6 and Gaddam Rajeshkhanna 7,*

1 Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
2 Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
3 Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
4 Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
5 Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
6 Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
7 Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
* Correspondence: gouse@kmu.ac.kr (S.G.P.); grkhanna@nitw.ac.in (G.R.)
‡ These authors contributed equally to this work.

Abstract: MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.

Keywords: 2D MXene; Ti$_3$C$_2$Tx; water splitting; hydrogen evolution reaction; Tafel slope

1. Introduction

Increased global demand for energy is expected to be doubled by 2035 due to increased economic advancements, both in developed and developing countries [1]. At present, most of the energy demands are fulfilled by nonrenewable energy sources, such as coal, fossil fuels and natural gas. However, their usage in the near future is going to be very limited due to increased consumption, scarcity and, most importantly, the emission of greenhouse gases that have a tremendous impact on global warming [2]. Therefore, it has become a serious and urgent issue to identify alternative, renewable energy sources than can replace/limit the use of the traditional nonrenewable energy supplies for the domestic, industrial and especially transportation sector [3]. Owing to its high gravimetric energy density (140 MJ/kg), hydrogen (H$_2$) is considered the best energy source for transportation applications. For example, energy conversion fuel cell uses gaseous H$_2$ as the
fuel source [4]. In addition, gaseous H₂ is also used in a wide variety of industries and chemical reactions, such as NH₃ production and the fertilizers manufacturing sector. To meet such a high demand, in general, gaseous H₂ is produced from steam reforming and coal gasification technologies [5]. However, the most popular steam reforming and coal gasification technologies cannot solve the problem of CO₂ emission. In addition, these technologies also use high temperature for H₂ production, selective catalysts, significant amount of CO₂ along with a small quantity of impurities, such as CO (Figure 1). By no means can steam reforming and coal gasification technologies be a long-term solution for gaseous H₂ production. In addition, they aggravate the rapid depletion of fossil fuels and contribute to elevated global warming issues [6]. Therefore, the search for alternative and green energy technology for gaseous H₂ production remains a challenging and interesting task for the scientific community.

As an alternative to the traditional technologies, H₂ production by electrochemical water splitting/water electrolysis has been gaining tremendous interest recently [7]. Electrochemical water splitting into O₂ and gaseous H₂ can be the best source of H₂ energy, as it is a carbon-free technology, unlike steam reforming and coal gasification techniques. Further, water electrolysis can be performed by a variety of renewable energy resources, such as solar, wind, etc. [8]. Water electrolysis is performed by applying external voltage, which enables the decomposition of water into O₂ and H₂ gases. The O₂ gas is produced at the anodes, whereas the H₂ gas is produced at the cathodes [9]. Put simply, H₂O oxidation occurs at the anodes, which leads to O₂ evolution, referred to as an oxygen evolution reaction (OER), and H₂O reduction occurs at the cathodes, which leads to H₂ evolution, referred to as a hydrogen evolution reaction (HER). Water oxidation takes place both in acidic and alkaline electrolytes, and their respective reactions are given below.

Water electrolysis in acidic medium

Anode: 2H₂O (l) → O₂ (g) + 4H⁺ + 4e⁻ E° = 1.23 V vs. SHE
Cathode: 4H⁺ + 4e⁻ → 2H₂ (g) E° = 0 V vs. SHE
Overall reaction: 2H₂O (l) → 2H₂ (g) + O₂ (g) ΔE° = 1.23 V,
ΔG° = +237.2 kJ H₂ mol⁻¹

Figure 1. The three major pathways for industrial hydrogen production.
Water electrolysis in alkaline medium

Anode: 4OH− → O2(g) + 2H2O + 4e− E° = 0.40 V vs. SHE

Cathode: 4H2O + 4e− → 2H2(g) + 4 OH− E° = −0.83 V vs. SHE

Overall reaction: 2H2O (l) → 2H2 (g) + O2 (g) ΔE° = 1.23 V,
ΔG° = +237.2 kJ H2 mol−1

From the above chemical reactions, it is to be noted that the ΔG° is positive (endothermic reaction) for water electrolysis reactions, irrespective of the electrolyte media. Therefore, the surplus external potential, known as the overpotential (η), greater than the thermodynamic potential (1.23 V vs. Reversible hydrogen electrode (RHE)) needs to be applied in order to achieve water electrolysis. In addition to the applied overpotential, a suitable, active and durable electrocatalyst is also essential in order to reduce the η, both at the anodes and the cathodes of the electrolyzer cell. Traditionally, various noble metal catalysts, such as Pt, Pd, Ru, Ir and Rh, and metal oxide catalysts, such as RuO2 and IrO2, have been considered as excellent catalysts for OER reactions, whereas for HER, Pt-based catalysts have been considered excellent [10]. However, the high cost and scarcity of noble metals hinder their commercial applications, in addition to their low stability and aggregation during electrochemical working conditions [11]. In this regard, various low-cost, transition-metal-based catalysts have been identified and explored for both OER and HER reactions. In particular, various 2D materials, such as graphene, layered double hydroxides (LDHs), graphitic carbon nitride (g-C3N4), transitional metal dichalcogenides (TMDs), have been explored [12–17].

2. Mechanism of Hydrogen Evolution Reaction

The traditional HER mechanism utilizes the Volmer–Heyrovsky or Volmer–Tafel pathways, characterized by their Tafel slopes [18] (Figure 2 and Table 1).

![Figure 2. Schematic illustration of the hydrogen evolution reaction mechanism in (a) acidic and (b) alkaline media. HER.](image)

Table 1. HER reactions in acidic and alkaline electrolytes and their respective Tafel slopes.
Reaction

Volmer step
Heyrovsky step
Tafel step
In the acidic medium, HER starts with the adsorption of atomic hydrogen onto the electrode surface by the reduction in H⁺ with the help of an electron. In the second step, another H⁺ is reduced with the help of an electron, together combining the previously adsorbed atomic H to form H₂. Alternatively, H₂ may also form by combining two adsorbed atomic H, directly [19]. In total, HER is a two-electron transfer reaction, as shown below. In the alkaline medium, HER begins with water reduction to H⁺ and OH⁻. In the second step, another water molecule dissociates to H* and OH⁻; simultaneously, two atomic H* combine to form H₂.

As per the chemical reactions stated above, the adsorption of hydrogen (H* ads) is an important step, and the Gibbs free energy (ΔG_H*) of hydrogen adsorption is the criterion/rate determining step for the initiation of the reaction. The ΔG_H* varies depending on the type of metallic electrocatalyst. An ideal electrocatalyst is one with the best compromise between the adsorption and desorption energies. Too strong adsorption leads to Heyrovsky/Tafel as the rate determining reaction, whereas weaker adsorption leads to a Volmer reaction as the rate determining step. Figure 3 shows the Sabatier volcano plot (ΔG_H* vs. their exchange current densities) for the adsorption and desorption of H on various metallic surfaces [20]. It can be seen that most of the Pt group/noble metals occupy the highest position in the volcano plots with the optimized ΔG_H* and high exchange current densities. This indicates that all the noble metal catalysts and Pt perform excellent HER kinetics, with nearly zero ΔG_H* values. While the metallic catalysts on the left of the Pt group metals adsorb too strongly ΔG_H* < 0, the metallic catalysts on the right of the volcano plots adsorb too weakly ΔG_H* > 0, affecting the desorption and adsorption of the H atoms, thus ultimately affecting the overall HER kinetics.

![HER Volcano plot for metals](image-url)

Figure 3. HER Volcano plot for metals (Reprinted with permission from Ref. [15]. Copyright 2010, American Chemical Society).

3. Effect of Support Materials on the HER

In addition to the type of metal as an active site (as shown in Figure 3), the kinetics of HER is also influenced by the support material on which the metallic nanoparticles are dispersed. Support materials plays a key role in improving HER catalytic activity in a number of ways. The support material helps in the even distribution on the nanoparticles, thereby mitigating nanoparticle aggregation and enhancing the electrochemical active surface area of the nanoparticles [21]. Catalyst support acts as a mediator for the electron transport pathway into/out of the catalyst. For any material to be considered as catalyst support, it should possess some prerequisites, such as (i) a suitable surface area for the dispersion of nanoparticles, (ii) high electronic conductivity to minimize the ohmic losses, (iii) electrochemical stability (corrosion resistance), (iv) good metal-support adhesion, (v) suitable porosity. Therefore, the type of catalyst support highly influences the kinetics and stability of the catalyst. In general, carbon materials, such as carbon black, carbon nanofibers, graphene, carbon nanotubes, heteroatom (N, B, P, S, F, etc.) doped carbons,
are used as support materials owing to their balanced electronic conductivity, surface area and porosity [22–26]. Nonetheless, carbon material materials are subjected to severe degradation (carbon corrosion) in the acidic and alkaline electrolytes [27]. Carbon corrosion leads to a loss of electronic contact, detachment of the supported nanoparticles and aggregation of nanoparticles, thereby reducing the kinetics of HER over longer periods of operation [28]. In this regard, various non-carbon supports have been explored as excellent and corrosion-resistant catalyst supports, such as transition metal oxides/carbides/nitrates. In comparison with traditional carbon-based supports, strong metal-support interactions between non-carbon supports and metallic nanoparticles have been found and well established by different researchers [29,30].

Novel 2D layered transition metal carbides/carbonitrides/nitrides, popularly known as MXenes, discovered by Drexel University, Philadelphia, United States researchers in 2011, have been gaining remarkable interest as support material for various electrochemical reactions, such as oxygen reduction reaction [31], methanol/ethanol oxidation reaction [32], nitrogen reduction reaction [33], sensors [34], carbon dioxide reduction reaction, supercapacitors [35], OER and HER [36], photocatalytic degradation of organic pollutants [37], improved mechanical and tribological properties [38], photooxidative performance for heavy metal removal [39] and hydrodeoxygenation reactions [40]. In this review article, we emphasized the importance of MXenes as catalyst/support material for HER catalysis. We briefly discussed the structure of MXenes, surface chemistry, stability and HER catalytic properties of MXenes-based electrocatalysts, followed by a summary of recent advances in MXenes electrocatalysts and HER kinetics, both from the theoretical and experimental point of view. Finally, we also proposed future research perspectives and directions for catalytic activity improvements.

4. MXene—Structure

MXenes are synthesized from their parent bulk material $M_{n+1}AX_n$, where $M =$ transition metal, A is an A-group element, and X is C and/or N, $n = 1, 2, 3$. These $M_{n+1}AX_n$ materials are then simplified with the term MAX. The bulk MAX materials are structurally hexagonal, where the layers of the edge-shared M_6X-octahedra are interleaved with layers of “A” elements, which are located at the center of the trigonal prisms. The “n” value indicates the number of “M” layers separating the A layers. The MAX phases possess unique properties, such as strong, mixed metallic-covalent M-X bonds on one side and weaker M-A bonds on the other sides. This unique structure enables breaking the weaker M-A bonds and maintaining the strong M-X bonds, selectively. Apparently, the MXenes are synthesized by treating the bulk parent material MAX with strong acids, such as NH$_4$HF$_2$, LiF + HCl and HF, which selectively etches the A layer to produce MXenes ($M_{n+1}X_nT_n$). MXenes are a type of layered materials composed of transition metal (TM) carbide/nitride/carbonitride, represented by an empirical formula $M_{n+1}X_nT_n$, (M = TM, X = carbon or nitrogen, T = -OH, -O and -F and n = integers 1, 2, 3) [41–43]. MXenes have three representative structures, namely, M_2XT_x, $M_3X_2T_x$ and $M_4X_3T_x$, with n layers of X elements covered by $n + 1$ layers of M [44]. There have been a number of review articles published in recent times describing the structure and properties of MAX phases and $M_{n+1}X_nT_n$; they can be found in References [45–47] for detailed information.

5. Surface Chemistry and Stability of MXenes

The surface of MXenes offers a wide variety of functionalities (-F, -OH, -O, etc.) that are originated from the synthesis process, especially during the HF etching of the MAX phase. Various DFT calculations suggest that MXenes show a significant gain in negative formation energies after HF treatment, which indicates the formation of strong bonds between the surface of the M layer and chemical functionalities [48] by the following reactions.
Ti$_3$AlC$_2$ + 3HF → AlF$_3$ + 3/2 H$_2$ + Ti$_3$C$_2$

Ti$_3$C$_2$ + 2H$_2$O → Ti$_3$C$_2$(OH)$_2$ + H$_2$

Ti$_3$C$_2$ + 2HF → Ti$_3$C$_2$F$_2$ + H$_2$

Recent studies revealed that some of the -OH terminations eventually undergo dehydrogenation reaction to form -O termination by the following reaction [49].

Ti$_3$C$_2$(OH)$_2$ → Ti$_3$C$_2$O + H$_2$O

There are many ways these surface functionalities affect the properties of MXenes, such as hydrophilicity/hydrophobicity, stability and electronic conductivity [50–52]. The thermodynamic stability of MXenes highly depends on the type of surface functional groups and follows the order of Ti$_3$C$_2$O$_2$ > Ti$_3$C$_2$F$_2$ > Ti$_3$CH$_2$O > Ti$_3$C$_2$H$_2$ [53]. Further, long storage of MXenes also allows the structural phase transformations. A gradual oxidation of MXenes starts at the F-terminations into oxy-fluorides, leading to increased -O terminations along with the decreased -F terminations [54]. MXenes are also very sensitive toward oxygen, H$_2$O and temperature. In the presence of O$_2$, MXenes undergo structural phase transformations. For example, the colloidal Ti$_2$C$_2$Tx stored in an open atmosphere gradually transforms into TiO$_2$, even at room temperature. Further, the smaller the flake size of Ti$_2$C$_2$Tx, the faster the transformation. Therefore, it is always recommended that MXenes are stored in a colloidal form in dark and under low temperatures or as powdered MXenes in the inert atmosphere to ensure their intact structural stability [55]. Higher temperature is also known to have a definite effect on the structural phase of MXenes. A temperature of 200 °C and below is considered a safe temperature, without any disturbance to the layered Ti$_2$C$_2$Tx MXenes structure. Higher temperatures and oxygen atmosphere lead to the transformation of Ti$_2$C$_2$Tx to the anatase TiO$_2$. In contrast, heat treatment in reducing atmospheres, such as H$_2$/Ar, H$_2$/N$_2$, H$_2$, is found to induce very minimal structural change in MXenes [56].

The electronic conductivity of MXenes is highly dependent on the density of the surface functional groups; the higher the density, the lower the electronic conductivity. Because the introduction of surface functional groups is inevitable with etchants such as HF, a careful optimization of the synthesis conditions is very important for applications where the electronic conductivity of the materials matters. For this purpose, there have also been studies to tailor the electronic properties of MXenes by tailoring the terminations and intercalation of the other ions into MXenes structures. One of the best approaches is to post treat the MXenes after the etching process. For example, the post treatment of MXenes by KOH or CH$_3$CO$_2$K, is found to reduce the -F terminations [57]. The other way is to perform a post heat treatment of MXenes in H$_2$ atmosphere, which greatly reduces the -O or -OH terminations in the MXenes by the following equation [58].

Ti$_3$C$_2$(O)$_2$ + 2H$_2$ → Ti$_3$C$_2$ + 2H$_2$O

Recently, vacuum annealing of MXenes was found to be one of the best ways to defunctionalize the surface groups and restore the electronic conductivity of MXenes [59]. Therefore, choosing the right etchant, heat treatment temperatures, drying and storage of MXenes are very important to maintain their intact structure and stability for relevant applications.

6. MXene-Based Electrocatalysts for the HER

In general, high-cost precious metals, such as Pt and R/C, are used for HER due to their excellent kinetics and stability. However, high prices and low abundance are the major obstacles for the commercial use of precious metals. Therefore, research has been devoted to developing cheap electrocatalysts composed of non-precious metals/carbons, such as transition metal phosphides, nitrides, sulfides, oxides, and even electrocatalysts with no metal—so-called
metal-free catalysts—have been developed [60–64]. However, there are still problems with non-precious-metal catalysts, such as poor electronic conductivity and low stability. In this regard, MXenes could hold potential properties, such as (a) their excellent metallic conductivity (up to 10,000 S cm\(^{-1}\)), which facilitates faster charge-carrier transfer during HER that guarantees the high electronic density around the active sites; (b) structural integrity due to a layered structure; (c) corrosive resistance properties due to Ti, Mo, V in combination with C and N, which guarantee long-term stability in aqueous electrolytes; (d) intrinsic hydrophilicity, which ensures adequate contact with water molecules; (d) a large surface area to host the guest metal nanoparticles and expose maximum surface area for a reaction [27].

In addition, MXenes offer great stability over traditional Pt/C catalysts. In general, Pt/C catalysts are prone to undergo corrosion under acidic and alkaline conditions, which leads to Pt nanoparticle agglomeration. The traditional carbon, i.e., the Vulcan carbon, used as support for Pt nanoparticles is known to be extremely sensitive to carbon corrosion due to its poor crystallinity [65]. Further, it is well established that the interaction between the metal and carbon support is weaker in Pt/C [66]. In this regard, MXenes, as catalysts or catalyst supports, could offer potential stability due to the high crystallinity of MXenes and adequate bonding between C and M, and a lower density of unstable surface functionalities compared to Vulcan carbons. For example, Ti-based MXenes Ti\(_3\)C\(_2\)-T\(_X\) bond strongly between Ti and C, mitigating the corrosion of carbon. The Ti in the catalyst provides ample durability under oxidative and acidic environments. Further, the strong bonding between Ti and C generates unique electronic properties at the Ti-C heterojunctions. In addition, the -F termination has been proven to be highly stable under a wide range of operating potentials; therefore, it could prevent the corrosion and aggregation of metallic nanoparticles, thus offering long-term stability compared to the traditional Pt/non-Pt carbon catalysts. Considering the above-mentioned advantages, various MXenes-based electrocatalysts have been synthesized using various strategies, such as modifying the surface terminal groups, metal doping, metal nanoparticles deposition and hybridization of MXenes with other carbon and non-carbon 2D materials. This review summarizes the recent developments of MXene electrocatalysts for HER, both from the theoretical and experimental research point of view.

6.1. Theoretical Perspectives on Kinetics and HER Mechanism of MXenes

Ab initio theoretical analysis has been gaining special attention in recent years, especially the density functional theory (DFT) calculations. For energy conversion reactions, DFT calculations help in identifying and predicting the active electrocatalysts together with the possible reaction mechanism and pathway based on the Gibbs free energy diagram, formation energy and volcano plots [67]. This section highlights the theoretical studies on MXene electrocatalysts. Bai et al. [68] investigated the HER activity of 20 different MXenes of two different families of MXenes, namely M\(_2\)NO\(_2\), M\(_2\)CO\(_2\) (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W), using the Fermi abundance model. An ideal catalyst should have zero (ΔG_{H}). When the H coverage analysis (25%) reveals M\(_2\)NO\(_2\) (M = Ti, V, Cr, Nb and Ta) as the catalyst, the ΔG_{H} value is between \sim0.25 and 0.25 eV. In particular, Ti\(_2\)NO\(_2\) and Nb\(_2\)NO\(_2\) show close ΔG_{H} values with those of Pt (1 1 1), i.e., 0 eV, suggesting that Ti\(_2\)NO\(_2\) and Nb\(_2\)NO\(_2\) MXenes exhibit close HER activity to that of Pt, whereas M\(_2\)NO\(_2\) (M = Sc, Zr, Mo, Hf and W) show high ΔG_{H} values, suggesting their low intrinsic HER activity. In the case of the carbide type of M\(_2\)CO\(_2\) MXenes, the Ti\(_2\)CO\(_2\) and W\(_2\)CO\(_2\) catalysts show optimal ΔG_{H} (\sim0.12 eV). Similar observations are also drawn for the exchange current densities vs. ΔG_{H} volcano plots. Among all the catalysts, the Ti\(_2\)NO\(_2\) and Nb\(_2\)NO\(_2\) catalysts occupy the top of the curve, exhibiting larger exchange current densities (10^{-17} A/site) than the Pt (1 1 1) catalyst (10^{-18} A/site). In terms of the HER mechanism, Ti\(_2\)NO\(_2\) and Nb\(_2\)NO\(_2\), the Volmer–Heyrovsky mechanism is found to be preferred.
Huang et al. [69] investigated the transition metal carbonitrides M\textsubscript{3}CN type of MXene for ΔG_{H}, and the electronic charge transfer on the surface terminated and un-terminated for HER kinetics. A detailed analysis reveals that Ti- and Nb-based MXenes (Ti\textsubscript{3}CNO\textsubscript{2} and Nb\textsubscript{3}CNO\textsubscript{2}) show excellent HER kinetics. The calculated ΔG_{H} values are found to be negative (-1.173 to -0.709 eV) for all the investigated M\textsubscript{3}CN types. Further, the H adsorption is stronger on the N side of the MXene than on the C side. Further, the O-terminations are found to be beneficial for enhancing the HER, as can be seen from the smaller $\Delta G_{\text{H}} < 0.2$ eV for Nb\textsubscript{3}CNO\textsubscript{2} and Ti\textsubscript{3}CNO\textsubscript{2}, especially with Nb\textsubscript{3}CNO\textsubscript{2}. Further, the volcano plots suggest that Nb\textsubscript{3}CNO\textsubscript{2} positions close to Pt. Jin et al. [70] investigated 2D ordered double transition-metal carbides (MXenes) with the chemical composition of M\textsubscript{2}M’\textsubscript{2}C\textsubscript{2}T\textsubscript{x} and M\textsubscript{2}M’\textsubscript{2}C\textsubscript{3}T\textsubscript{x}; M’ and M” with two different metals (M’ = Cr, V, Ti, or Nb; M” = Nb, Ta, Ti or V; and T = O and/or OH) by a detailed DFT analysis. A total of 18 different carbide species of different combinations were investigated, of which a double transition-metal carbide Mo\textsubscript{2}NbC\textsubscript{2}O\textsubscript{2} showed the lowest overpotential. The volcano plots revealed that the HER performance of the double TM carbide MXenes strongly depends on the type of surface metal, and based on the performance, the investigated catalysts were grouped under three different categories, i.e., (i) O-terminated Mo-, Ti-based MXenes with moderate adsorption for hydrogen species, corresponding with higher HER activity; (ii) O-terminated V- and Cr-based MXenes with strong adsorption for hydrogen species, corresponding with lower HER activity; (iii) MXenes with Ta and Nb with too weak hydrogen adsorption energies, corresponding with their unsuitability as HER catalysts. Further, in the case of double layer transition-metal carbide MXenes, it is observed that the type of metal in the inner layer has no significant effect on the HER activity. Further, it is found that -O, -OH and -F terminations help more in hydrogen adsorption than the bare double TM MXenes. Figure 4 shows the optimal 18 types of MXenes with the ideal overpotential of less than 0.2 V, derived from the DFT analysis.

In another DFT study by Zeng et al. [71], they investigated 64 different types of double transition metal carbonitrides M’\textsubscript{2}M”\textsubscript{3}CNO\textsubscript{2} (M’ = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta; M” = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta). Among the 64 types, 11 types of M’\textsubscript{2}M”\textsubscript{2}CNO\textsubscript{2} catalysts were found highly active in terms of Pt, regarding stability, Ti\textsubscript{2}NbCNO\textsubscript{2}, Mo\textsubscript{2}TiCNO\textsubscript{2} and Ti\textsubscript{2}VCNO\textsubscript{2} were found to be highly stable. The screenings of the most stable catalysts for HER are based on the Gibbs free energy calculations, as per the flow chart given in Figure 5 volcano plots. Similar to the earlier study [70], the type of metal on the outer layer was more important for enhancing the HER activity than the inner metals; especially when the outer layer was Ti or Nb, the HER activity was found to be higher than the other metals. Furthermore, the MXenes M’\textsubscript{2}M”\textsubscript{2}CNO\textsubscript{2} with the C side are found to be optimum for H adsorption compared to the N side. Further, the volcano plots indicate that both on the C side and the N side, together, the 11 types of M’\textsubscript{2}M”\textsubscript{2}CNO\textsubscript{2} catalysts show the best HER activity, with the best pick of the M’\textsubscript{2}M”\textsubscript{2}CNO\textsubscript{2} catalyst with ΔG_{H} values close to 0.003 eV, which is the best catalyst with almost zero ΔG_{H}, showing its potential as an extraordinary HER catalyst. It is important to understand the formation energy and stability of the investigated MXenes due to the fact that the theoretically screened catalysts need to be able to synthesize in the laboratory conditions. The stability or formation energy analysis ($E_{\text{formation}}$) reveals that of the 11 best screened catalysts, Ti\textsubscript{2}NbCNO\textsubscript{2}, Ti\textsubscript{2}VCNO\textsubscript{2} and Mo\textsubscript{2}TiCNO\textsubscript{2} catalysts showed negative formation energies, indicating that these types of M’\textsubscript{2}M”\textsubscript{3}CNO\textsubscript{2} are thermodynamically stable and can be synthesized experimentally. In addition to the traditional DFT studies, recently, machine-learning and high-throughput studies have been employed to screen and identify various possible MXenes for HER [72,73]. In summary, the DFT analysis of the single/double layered transition metal carbides/nitride reveals that there are tremendous opportunities to explore the different types and combinations of MXenes experimentally based on the DFT clues.
Figure 4. (a) List of ordered double TM carbides investigated in this work. (b) Atomic structure of M₂M”C₂ and M₂M”C₃ viewed from the top. The “I site”, “II site” and “III site” represent three high-symmetry adsorption sites for -O and -OH termination on the outermost layer. Color code: M’ (blue), M” (purple), C (brown) and Tx (red). (c) Calculated Gibbs free energy (in eV) for single M₂C, M₃C₂ and M₄C₃ (M’ = Ti, V, Cr, Nb and Mo) carbide MXenes and corresponding values for investigated double TM MXenes. (Reprinted with permission from Ref. [70]. Copyright 2020, American Chemical Society).
6.2. Experimental Perspectives on Kinetics and HER Mechanism on MXenes

6.2.1. Pristine MXenes for HER

Kumar et al. [74] investigated the HER activity of the pristine MAX phase materials of seven different types, namely, Ti2AlC, Ta2AlC, Ti2SnC, Ti3SiC2, V2AlC, Mo2TiAlC2 and Cr2AlC in 0.5 M H2SO4. The MAX phases of the respective compounds are used as such without etching of the M layer to understand the intrinsic HER activity of MXenes (Figure 6a,b). Half-cell studies indicate that among the seven types of MXenes, double layer MXene Mo2TiAlC2 showed enhanced HER activity followed by V2AlC. The overall order is as follows: Mo2TiAlC2 > V2AlC > Cr2AlC > Ti2SnC > Ti2AlC > Ta2AlC > Ti3SiC2. This order clearly indicates that the MXenes HER activity is based on the type of surface metal atoms. Further, the double metal atom layer MXenes seem to outperform single atom layer MXenes, as evidenced by the higher HER activity of Mo2TiAlC2 than the V2AlC and traditional Ti2AlC. In the Mo2TiAlC2, the sandwiched Ti atoms between the two layers of Mo, which are, in turn, adjacent to the detachable Al, generate the potential stacking structure made up of Mo-Ti-Mo-Al-Mo-Ti-Mo. The exposure of the Mo atoms sandwiched by Ti generates unique surface and electronic properties compared to traditional Ti2AlC. This unique structural arrangement is found to be the responsible factor for the enhanced HER activity of the Mo2TiAlC2 compared to the other types of MXenes. The Mo2TiAlC2 showed an overpotential of −0.57 V vs. RHE, which was higher among all the other types of MXenes. This clearly indicates that MXenes composed of Mo, Ti, V are one of the best MXenes catalysts for HER activity.

6.2.2. Effect of Surface Functionalization of MXenes for HER

It is well known that the etching of the parent MAX phase inevitably introduces various functional groups to MXenes, which includes -F, -O and -OH. These surface functional groups are known to enhance the stability and metal support interaction for several
electrochemical reactions, such as ORR, OER and HER. DFT studies described in the above sections also evidenced that the surface terminated/functionalized MXenes’ lower HER overpotential than the bare MXenes. Li et al. [75] investigated the effect of F-terminated nanosheets of MXenes on HER and found a direct relationship with the content of -F. In a comparison study, the Ti$_3$CT$_x$ with less -F termination and the etched Ti$_2$CT$_x$ are reacted with KOH to remove the -F terminations and to remove the -O/-OH functional groups. The Ti$_2$CT$_x$ is further annealed at high temperatures (200 °C for 2 h). The HER analysis of the three catalysts shows that the Ti$_2$CT$_x$ terminated with -F shows better ORR activity, indicating that the presence of -F terminations is quite significant for HER activity. The Ti$_2$CT$_x$, devoid of the -O/-OH functional groups did not show significant change in the overpotential, whereas alkali Ti$_2$CT$_x$ showed a drastically reduced overpotential, clearly indicating the significance of -F terminations. F-surface termination not only affects pristine MXenes’ HER activity; it also affects the supported metal nanoparticles. Zhang et al. [76] investigated the effect of -O/-OH and -F terminated Pd-supported Nb$_2$CT$_x$ on HER activity. From the DFT studies, it was revealed that Pd$_4$ clusters absorbed on Nb$_2$CF$_2$-F$_v$ and Nb$_2$CO$_2$-O$_v$ supported the binding energy of -3.3 eV and -3.6 eV. On the contrary, Bader charge analysis revealed that there were 0.32 and 0.03 e$^{-}$ transferred between Pd$_4$ and Nb$_2$CF$_2$-F$_v$ and Nb$_2$CO$_2$-O$_v$, respectively (Figure 6c–e). Experimental HER analysis also revealed that the HER activity of the Pd$_4$-supported Nb$_2$CF$_2$-F$_v$ was strongly dependent on the surface functional groups. The obtained HER η of Pd/Nb$_2$C-HF, Pd/Nb$_2$C-H$_2$SO$_4$ and Pd/Nb$_2$CHNO$_3$ were 34, 43 and 46 mV. The HER performance of the catalysts decreased either with increased -O content or decreased -F contents, clearly suggesting that the HER kinetics are dependent on the content and type of surface functional groups. The optimized Pd/Nb$_2$C-HF catalyst also showed excellent stability, both in chronoamperometric and potential cycling analyses (Figure 6f,g).

![Figure 6](image-url)

Figure 6. (a) Linear sweep voltammograms of GC, MAX phases at a scan rate of 5 mV s$^{-1}$. (b) Tafel plots of MAX phases (Adapted from Ref. [74], Open Access). Charge density differences, binding energies, and Bader charges of Pd$_4$ cluster supported with O-terminated Nb$_2$C (c), O-terminated Nb$_2$C with one O vacancy (d), F-terminated Nb$_2$C with one F vacancy (e), cyan (yellow) isosurfaces indicate depletion (addition) of 0.005e/Å$^{-3}$. The cyan, gray, red, silver, deep-blue spheres represent the Nb, C, O, F and Pd, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). Electrochemical performance of the supported nano catalysts (f) HER polarization curves (g) Polarization curves Pd/Nb$_2$C-HF before and after 1000 cycles testing (Reprinted with permission from Ref. [76] Copyright, Elsevier).
6.2.3. Heteroatom Doped MXenes for HER

It is believed that doping of the heteroatoms, such as N, S and P, etc., with the MXenes enhances the chemical, electrochemical and electronic properties, which are beneficial for HER reactions. Doping of the heteroatoms not only creates defects but also exerts a synergistic interaction with the deposited metal nanoparticles for enhanced HER kinetics. Yoon et al. [77] successfully doped N into the Ti$_3$CT$_x$ by the process of nitridation by using sodium amide (NaNH$_2$) as the source of N at the temperature of 500 °C. The XPS analysis clearly revealed the successful introduction of N by the appearance of Ti-N$_x$ bonding states. It is observed that N doping with the Ti$_3$CT$_x$ changes the electronic properties, which results in increased HER activity of N-Ti$_3$CT$_x$ compared to pristine Ti$_3$CT$_x$. At the current density of 10 mA cm$^{-2}$, the N-Ti$_3$CT$_x$ exhibits the η of −215 mV, whereas the pristine N-Ti$_3$CT$_x$ shows the η of −645 mV vs. NHE, which represents a more than three-fold enhancement over the pristine N-Ti$_3$CT$_x$. In another study, Le et al. [78] synthesized N-doped Ti$_3$C$_2$Tx by using NH$_3$ heat treatment at 800 °C (Figure 7a). The SEM images show a sheet-like structure of N-doped Ti3C2Tx along with the successful doping of N ascertained from the SEM elemental mapping analysis (Figure 7b,c). It is found that N doping with Ti$_3$C$_2$Tx introduces different bonding possibilities, such as N-H, Ti-N and O-Ti-N. In addition to the Ti-N configurations, it is observed that N-H and O-Ti-N also change the electronic properties of Ti$_3$C$_2$Tx, which leads to the optimized ΔH$^{\text{ad}^*}$ value close to zero (0) eV by DFT calculations, indicating the potential of N-doped Ti$_3$C$_2$Tx as excellent HER catalyst. In support of the DFT calculations, the N-doped Ti$_3$C$_2$Tx@600 catalyst showed the η of 198 mV at 10 mA cm$^{-2}$, several orders higher than the pristine Ti$_3$C$_2$Tx catalyst. The enhanced HER activity was associated with the synergistic effect on the electronic modification of the Ti$_3$C$_2$Tx due to N-doped active sites, such as N-H, Ti-N and O-Ti-N. Through a detailed XPS analysis, it was revealed that among the three possible N-doped active sites, N-H and O-Ti-N were found to be more important than Ti-N due to the fact that the % Ti-N in Ti$_3$C$_2$Tx@800 was higher than Ti$_3$C$_2$Tx@600; the former HER activity was less than the latter (Figure 7d,e). Further, higher calcination temperature was found to affect the % of N-H and O-Ti-N, as seen from the lower % of them in Ti$_3$C$_2$Tx@800 than in Ti$_3$C$_2$Tx@600. Therefore, it is reasonable to conclude that the optimized calcination temperature of 600 °C is essential for the optimized HER activity.

Han et al. [79] recently developed a simple ultrasonication strategy to precisely control the N doping with the Ti$_3$C$_2$Tx catalyst. The N doping is performed by ultrasonication Ti$_3$C$_2$Tx in the presence of a mixture of ammonia and sodium borohydride solution at the temperature of 35 °C. With no further heat treatment, the N-doped Ti$_3$C$_2$Tx is obtained. It is believed that ultrasonic waves create tremendous defects for the adsorption of NH$_3$ molecules. During ultrasonication, the removal of oxygen-containing functionalities provides the space for the doping of N atoms to create various N-containing functionalities, such as C-NH$_2$, C-NH, Ti-N and Ti-NH$_2$. Therefore, N doping occurs at the thermodynamically and kinetically unstable -O functional groups removed by the long ultrasonication process at 35 °C. SEM revealed that long-term sonication did not change the layered, structural stability of Ti$_3$C$_2$Tx. When electrochemically evaluated for HER, the pristine Ti$_3$C$_2$Tx catalyst showed a large η of 575 mV, whereas N-Ti$_3$C$_2$Tx@35 showed excellent enhancement, with a η of 163 mV. The Tafel slope analysis revealed a slope of 69 mV dec$^{-1}$, indicating that the HER reaction mechanism in N-Ti$_3$C$_2$Tx@35 is a type of Volmer–Heyrovsky reaction. Impedance spectroscopy also revealed the lowest resistance for N-Ti$_3$C$_2$Tx@35 due to the doping of N, which helped in faster charge transfer during the electrochemical reactions. In addition to the enhanced HER activity, N-Ti$_3$C$_2$Tx@35 also showed excellent stability, with almost zero degradation in the overpotential after 24 h, and a stable current with almost no loss in potential for 35 h. In summary, the doping of N with the Ti$_3$C$_2$Tx-based MXenes is proved to be beneficial for enhanced HER kinetics and stability.
(0) eV by DFT calculations, indicating the potential of N-doped Ti$_3$C$_2$Tx as excellent HER catalyst. In support of the DFT calculations, the N-doped Ti$_3$C$_2$Tx@600 catalyst showed the η of 198 mV at 10 mA cm$^{-2}$, several orders higher than the pristine Ti$_3$C$_2$Tx catalyst. The enhanced HER activity was associated with the synergistic effect on the electronic modification of the Ti$_3$C$_2$Tx due to N-doped active sites, such as N-H, Ti-N and O-Ti-N. Through a detailed XPS analysis, it was revealed that among the three possible N-doped active sites, N-H and O-Ti-N were found to be more important than Ti-N due to the fact that the % Ti-N in Ti$_3$C$_2$Tx@800 was higher than Ti$_3$C$_2$Tx@600; the former HER activity was less than the latter (Figure 7d,e). Further, higher calcination temperature was found to affect the % of N-H and O-Ti-N, as seen from the lower % of them in Ti$_3$C$_2$Tx@800 than in Ti$_3$C$_2$Tx@600. Therefore, it is reasonable to conclude that the optimized calcination temperature of 600 °C is essential for the optimized HER activity.

Figure 7. (a) Illustration of synthesis of N-doped MXene from the Ti$_3$AlC$_2$ MAX phase. (b) SEM–EDX elemental mapping of N-Ti$_3$C$_2$Tx600 and (c) SEM image of delaminated N-Ti$_3$C$_2$Tx@600. (d) HER polarization curves of Ti$_3$C$_2$Tx and a series of different N-doped Ti$_3$C$_2$Tx catalysts. (e) Test at a constant overpotential of −0.19 V (inset: photo of a rotating disk electrode (RDE) with the produced H$_2$ bubbles on its surface). Reprinted with permission from Ref. [78]. Copyright 2019, American Chemical Society.

6.2.4. Pt/Ti$_3$C$_2$Tx-Based MXenes for HER

In general, Pt/C catalysts with Pt wt% ~20 are used in the current technology and as a comparative benchmark for assessing the other types of catalysts. However, 20 wt% of Pt is still high for practical application due to its high cost. Efforts have been undertaken to reduce the loading of Pt several-fold while at the same time maintain the high HER kinetics. Zhnag et al. [80] investigated the HER activity of low Pt loading supported on Ti$_3$C$_2$Tx. The Pt deposition was carried out by the atomic layer deposition (ALD) technique. Pt NPs of 2 nm in diameter are deposited by controlled ALD cycles, and the obtained Pt/Ti$_3$C$_2$Tx of Pt wt% 1.7 catalyst showed almost equal HER activity to that of Pt/C 20 wt%. The TEM images clearly show that the Pt nanoparticles are homogeneously dispersed on the Ti$_3$C$_2$Tx support with a lattice fringe of 0.23 nm, corresponding to Pt (1 1 1). The 40Pt-TBA-Ti$_3$C$_2$Tx catalysts showed an overpotential of 67.8 mV@10 mA cm$^{-2}$, whereas it was 64.2 mV for Pt/C catalysts, a mere 3.6 mV inferiority. This indicates that the low loading of Pt by ALD could deliver similar HER activity as that of a high loading of Pt/C. The high HER activity of 40Pt-TBA-Ti$_3$C$_2$Tx is further ratified by measuring the ECSA, which show a calculated value of 16.6 and 16.6 μF cm$^{-2}$, which is almost close to the Pt/C catalyst (19.7 μF cm$^{-2}$), despite the 18-times-lower Pt loading due to the fact the ALD
gives homogeneous dispersion compared to the traditional wet impregnation of Pt, which results in agglomerations. The 1.7 wt% Pt-Ti$_3$C$_2$T$_x$ catalyst showed excellent stability over 3000 cycles, with no visible change in the voltage (Figure 8a,b).

In another study by Yuan et al. [81], the Pt nanoparticles are supported on the Ti$_3$C$_2$T$_x$ catalyst by a simple reduction in metallic precursors by a web impregnation method (NaBH$_4$ reduction method), and the Pt-deposited Ti$_3$C$_2$T$_x$ catalyst is then studied for HER reaction (Figure 8c). Various samples were synthesized, such as K-intercalated, tetrabutylammonium hydroxide (TBA) and the heat-treated (at 400 °C) samples. Among all the samples, the TBA-Ti$_3$C$_2$T$_x$-Pt-20 (corresponding to 1 wt% of Pt) samples showed the best HER activity, whereas the heat-treated samples at 400 °C showed the worst activity due to
the partial damage to the Ti–C layers of the supports. XPS analysis revealed that the Pt 4f peaks are shifted to higher binding energies, indicating the strong interaction between Pt and the Ti$_3$C$_2$Tx support, which in turn helps in the fast charge transfer burning the HER. The TBA-TC-Pt-20 catalyst showed a η of 55 mV, much higher than the other Pt catalysts. In addition, the TBA-TC-Pt-20 catalyst also showed admirable durability, with just 10 mV of the potential decrease after 1000 cycles (Figure 8d,e).

In a similar attempt to reduce the Pt loading, Wu et al. [82] developed a spray drying route to synthesize 3D crumbled Ti$_3$C$_2$Tx supported with the atomic Pt clusters as highly active HER catalysts. The spray drying technique could avoid the unsuccessful re-stacking of Ti$_3$C$_2$Tx and mitigate the agglomeration of the Ti$_3$C$_2$Tx nanosheets during the catalyst deposition process, thereby increasing the exposure of the electrochemical active surface area. The colloidal tetrabutylammonium hydroxide intercalated Ti$_3$C$_2$Tx nanosheets are mixed with the chloroplatinic acid solution, and the mixture is spray dried. Due to the presence of low-valance Ti$^{2+}$/Ti$^{3+}$, spontaneous reductions in the Pt$^{4+}$ ions into Pt single atom/cluster are deposited on the Ti$_3$C$_2$Tx nanosheets. SEM and TEM images clearly showed the 3D crumpled Ti$_3$C$_2$Tx structure, on which the Pt clusters with homogeneous distribution were noticed. The Pt/Ti$_3$C$_2$Tx MXene catalyst showed extraordinary HER activity, with nearly zero onset potential and a η of 34 mV @ 10 mA cm$^{-2}$, nearly equal to Pt/C (37 mV). Further, the Pt loading of 2.9 wt% was achieved by the spray drying technique. When the HER activity is normalized by the mass, the Pt/MXene catalyst exhibits seven times over Pt/C. This is due to the high surface area of Ti$_3$C$_2$Tx and the subatomic/clusters of Pt, which can expose more Pt surface area for HER than typical Pt nanoparticles on carbon support. Such a high HER mass activity was also supported by the DFT calculations. The PDOS analysis revealed that the d-band center shifted nearer to the ideal fermi level, indicating that the Pt on TiCO-F offered optimized binding energy for hydrogen atoms, which was neither too strong/too weak for the chemical reaction. In addition, $\Delta G_{1/1}^*$ for Pt/TiCO-F was lower than the Pt (111), i.e., 0.05 eV vs. −0.18 eV. The shift in the d-band center and lower $\Delta G_{1/1}^*$ for Pt/TiCO-F demonstrated the high HER activity of it.

6.2.5. Non-Pt/Ti$_3$C$_2$Tx-Based MXenes for HER

Among the non-Pt-based catalysts, the transition metal-based sulfides, phosphides, nitrides and carbides have attracted attention recently due to a variety of electrochemical reactions, including HER. Especially when hybridizing the transition metal derivatives with the support materials, such as carbon and 2D materials, e.g., carbon nanotubes, graphene, etc., it is found that the support materials offer essential surface area and electronic conductivity, which together expose the catalytic active sites [83]. In this regard, a variety of transition metal derivatives are hybridized with MXenes and are explored as efficient electrocatalysts in efforts to reduce the Pt catalyst price. Lu et al. [84] synthesized a Co$_2$P/N@Ti$_3$C$_2$Tx supported on nickel foam (CPN@TC) as an ultra-efficient HER catalyst. The Co$_2$P/N@Ti$_3$C$_2$Tx with the industrial potential is synthesized by an electrodeposition method on Ni foam as the substrate. The SEM images show the Ni foam is covered by the nanosheets of Ti$_3$C$_2$Tx. When the electrode potential is applied, the Co$_2$P nanoparticles are grown in the Ti$_3$C$_2$Tx nanosheets (Co$^{3+}$ + 2e$^-$ → Co, 2Co + H$_2$PO$_{2}^-$ + 2H$^+$ + e$^-$ → Co$_2$P + 2H$_2$O). Further, the Co$_2$P nanostructures are then converted into nitrides by the process of nitridation by using ammonium carbonate decomposition. Nitridation is known to increase conductivity, and hence, it results in a better electrocatalytic activity. Nitridation also replaces some of the surface functional groups, such as -F, -O and -OH, together with the doping of N into the Co$_2$P to form N-doped Co$_2$P. Such multi-heterojunction interfaces in the Co$_2$P/N@Ti$_3$C$_2$Tx could offer unique 3D interfacial electron transfer pathways for improved HER activity. The resulting Co$_2$P/N@Ti$_3$C$_2$Tx showed extraordinary HER activity with a η of 15 mV @ −10 mAcm$^{-2}$ and a Tafel slope close to 30 mV dec$^{-1}$. In terms of durability, the Co$_2$P/N@Ti$_3$C$_2$Tx catalyst showed no obvious change in potential for 60 h of operation at −10 mAcm$^{-2}$, and under potential cycling conditions, it
showed a marginal loss of just 2 mV after 3000 cycles, indicating the potentiality of this catalyst in industrial applications (Figure 9). In another study, Han et al. [85] synthesized multi-dimensional hierarchical CoS$_2$@MXene through a hydrothermal reaction followed by the sulfurization process. Nanowires of CoS$_2$ were attached to Ti$_3$C$_2$Tx with no obvious agglomerations. XPS analysis showed the Co and S peaks shifted to a high binding energy when hybridized with Ti$_3$C$_2$Tx, indicating the strong interaction between CoS$_2$ and Ti$_3$C$_2$Tx. However, the CoS$_2$@MXene catalyst still showed a large overpotential of 175 mV at 10 mA cm$^{-2}$. Jiang et al. [86] synthesized transition metal-based chalcogenide core shell nanostructure Ti$_3$CNCl$_2$@CoS$_2$ as an excellent HER catalyst. The Cl-terminated MXenes were synthesized by the molten salt method, and the CoS$_2$ nanostructures were deposited by a hydrothermal synthesis process. Through a DFT analysis, the hybridization of CoS$_2$ with Ti$_3$CNCl$_2$ effectively brought down the ΔG^*_H to -0.1 eV from their individual constituents of -0.89 and $+1.86$ eV, respectively. SEM images and elemental mapping indicated that the Ti, N, Cl were present at the center, whereas the Co and S elements were seen on the peripheral part of the core shell nanoparticles. With the optimized 7.63% of CoS$_2$, the Ti$_3$CNCl$_2$@CoS$_2$ catalyst showed improved HER activity compared to its constituent CoS$_2$ with Ti$_3$CNCl$_2$.

Another transition metal, Ni, and its derivatives, such as NiP and NiSe$_2$, have also attracted a lot of attention due to the fact that Ni derivatives are chemically stable and accelerate the HER kinetics [87]. Lu et al. [88] synthesized NiP/Ti$_3$C$_2$Tx supported by a 3D Ni foam by a hydrothermal method, followed by phosphorylation. The ultraviolet photoelectron spectroscopy (UPS) was used to understand the band structure and work function. It was observed that the valence band maximum (E_v) of the NiP/Ti$_3$C$_2$Tx catalyst showed a larger value than Ti$_3$C$_2$Tx. In addition, the work function of NiP/Ti$_3$C$_2$Tx was found to be lower (2.13 eV) than Ti$_3$C$_2$Tx (2.2 eV). Both the E_v and work function proved that the electrons in the NiP/Ti$_3$C$_2$Tx are more easily accessible for electrochemical reactions. The NiP/Ti$_3$C$_2$Tx catalyst showed a η of 135 mV @10 mA cm$^{-2}$. Through a DFT analysis, the ΔG^*_H of NiP/Ti$_3$C$_2$Tx was found to be -0.28 eV, close to that of ΔG^*_H of Pt (-0.09 eV). In another study, Jiang et al. [89] synthesized octahedral NiSe$_2$-supported Ti$_3$C$_2$Tx by a one-pot hydrothermal synthesis. The Ti$_3$C$_2$Tx nanosheets were mixed with the NiCl$_2$-EDTA and the Se (KOH) solution, which forms the Ni-EDTA chelated complex, which, upon the hydrothermal conditions, forms the octahedra NiSe$_2$ supported by MXenes. HRTEM images show the perfect single-crystal nature of NiSe$_2$ with a d spacing of 0.27 nm corresponding to a (210) plane and 1.0 nm of Ti$_3$C$_2$Tx corresponding to a (002) plane. The strong coupling interaction between the Ti$_3$C$_2$Tx and NiSe$_2$ is further established by the XPS analysis in which the Ni 2p peaks shift to a higher binding energy by 0.3 and 0.6 eV Ni 2p$_{3/2}$ and Ni 2p$_{1/2}$, respectively. Nevertheless, NiSe$_2$/Ti$_3$C$_2$Tx showed a large overpotential (200 mV @10 mA cm$^{-2}$) when compared to all the other types of catalysts discussed in the earlier sections, indicating that selenides might have a lower HER activity over sulphides, phosphides and nitrides.

Guided by the DFT calculations, the doping of Nb with Ti$_3$C$_2$Tx modified the electronic conductivity of the support by lifting the fermi level, and, at the same time, alloying Ni and Co efficiently adjusted the M-H attraction, synergistically enhancing the HER activity (Du et al. [90]). The ΔG^*_H of the Ti$_3$C$_2$ and Nb-doped Ti$_3$C$_2$ catalysts is found to be -0.25 eV and -0.14 (O site nearby Nb-doped atoms) and -0.23 eV (O site nearby Nb-doped atoms), indicating that Nd-doped Ti$_3$C$_2$ could deliver enhanced HER activity. Further, by adding Co and Ni atoms, the ΔG^*_H values further decreased to more than half of the Nb-doped Ti$_3$C$_2$ catalyst. HR-TEM images show the multilayered, crumbled nanosheet morphology of Ti$_2$$_2Nb_{0.5}Co_{0.5}C_2$Tx and Ni$_{0.95}Co_{0.1}$ alloy nanoparticle of 5 nm are deposited. Electrocatalytic HER of the NiCo@NTM is evaluated in 1 M KOH. The IR corrected NiCo@NTM LSV curves show a η of 43.4 mV @10 mA cm$^{-2}$, which is almost close to the benchmark Pt/C (34.4 mV). Further, when the current densities are normalized by the double layer capacitance (C_{dl}) I_{cdl} @ 1000 mA F$^{-1}$, the NiCo@NTM catalyst exhibits a lower overpotential of 55.5 mV, higher than the Pt/C. Impedance spectroscopy also suggests a lower resistance to the NiCo@NTM
catalyst. During the stability test, the NiCo@NTM catalyst also showed excellent durability over 50 h in the chronopotentiometry test. Therefore, it is reasonable that the NiCo@NTM catalyst is a promising non-precious-metal catalyst for HER in alkaline medium.

![Figure 9](image_url)

Figure 9. (a) Schematic illustration of the catalyst synthesis strategy. (b–d) SEM images of (b–d) CPN@TC. (e) Polarization curves and (f) corresponding Tafel slopes of CPN@TC, CP@TC, CP@NF, NF, CPN@NF and TC@NF. (g) Comparison of CPN@TC with reported electrocatalysts. (h) EIS patterns and (i) the C\textsubscript{dl} of CPN@TC, CP@TC, CP@NF, NF, CPN@NF and TC@NF. (j) Long-term chronopotentiometry response of CPN@TC at different current densities (+10, −20, −40, −60, −80 mA cm−2) and polarization curves for CPN@TC before and after 3000 cycles (Reprinted with permission from Ref. [84]. Copyright 2021, John Wiley and Sons).

6.2.6. Nb\textsubscript{2}CT\textsubscript{x}-Based MXenes for HER

It is considered that the research on MXenes is in its infancy. Theoretical simulations suggest more than 70 types of MXenes are possible; however, until now, very few MXenes have been successfully synthesized and explored for electrochemical reactions. Among them, Ti\textsubscript{3}C\textsubscript{2}Tx has been the most explored MXene. However, recently, there have been other types of MXenes also gaining special attention. For example, Tan et al. [91] investigated the HER performance of pristine Nb\textsubscript{4}C\textsubscript{3}T\textsubscript{x} in acidic and alkaline electrolytes. Similar to Ti\textsubscript{3}C\textsubscript{2}Tx, the Nb\textsubscript{4}C\textsubscript{3}T\textsubscript{x} MXene was synthesized from Nb\textsubscript{4}AlC\textsubscript{3} by HF etching. The SEM images show that the compact Nb\textsubscript{4}AlC\textsubscript{3} structure is loosened and exhibit the layered structure in Nb\textsubscript{4}C\textsubscript{3}T\textsubscript{x}, indicating the successful etching of the Al layer. The etching process was carried out at room temperature at different times in the HF solution, which was varied.
between 140 h to 220 h. An optimum time of 180 h was found suitable for sufficiently removing the Al layer, analyzed by calculating the ratio of $I_{\text{MAX}}/I_{\text{MAXene}}$ (I_{MAX} and I_{MAXene} represents the diffraction peak intensity of (103) for Nb$_4$AlC$_3$ and (002) for Nb$_4$C$_3$Tx, respectively). The Nb$_4$C$_3$Tx-180 sample showed the lowest $I_{\text{MAX}}/I_{\text{MAXene}}$, which indicated that the Al layer was removed by stirring for 180 h. When comparing the HER activity of all the Nb$_4$C$_3$Tx treated at different time intervals, Nb$_4$C$_3$Tx-180 showed better HER activity (398 mV @ 10 mA cm$^{-2}$) than the other catalysts. However, the Nb$_4$C$_3$Tx-180 HER activity was far behind the Pt/C catalyst. However, when the Pt nanoparticles were introduced to Nb$_4$C$_3$Tx, the HER activity was enhanced by several-fold (Figure 10a,b).

Figure 10. (a) Schematic of Nb4C3Tx. (b) Polarization curves of the Nb4C3Tx-180 electrode before and after 1000 cycles at 100 mV s$^{-1}$ under an alkaline onset potential and overpotential at j @10 mA cm$^{-2}$ in different MXenes conditions (Reprinted with permission from Ref. [91]. Copyright 2021, Elsevier) (c) Schematic for the fabrication of Pt QDs on Nb2CTx NWs. (b,c) Structural investigation of various Pt QDs on MXene by their (d) XRD patterns and (e) Raman spectra. (f) LSV for 3D Pt@Nb2CTx with different synthesis times (g) The LSV for 3D 3h-Pt@Nb2CTx in different electrolytes (Adapted from Ref. [92], Open access).

Pang et al. [92] reported the nanowire morphology of 1D Nb$_2$CT$_x$ as a HER catalyst. The nanowire morphology of 1D Nb$_2$CT$_x$ was obtained by the electrochemical etching process. The 1D Nb$_2$CT$_x$ has a length of 100–400 nm and a width of 50 nm. The Pt is impregnated onto 1D Nb$_2$CT$_x$ by a process of wet impregnation, with Pt nanoparticle size of 2 nm. The resulting Pt@Nb$_2$CT$_x$ exhibited an overpotential of 33.3 mV in acidic
and 65.1 mV in basic electrolytes @ 10 mA cm$^{-2}$. The high HER activity was attributed to the strong metal support interaction between Pt and Nb$_2$CT$_x$, evidenced structurally, morphologically and through spectroscopic methods. The strong interaction also offers robustness and stability (Figure 10c–g). In another study, Fan et al. [93] mechanochemically synthesized Pt/Nb$_2$CT$_x$ and obtained excellent HER activity, close to the commercial Pt/C catalyst. Typically, the Nb$_2$CT$_x$ powder was mixed with the solution of PtCl$_6^{2-}$ and ball milled at the speed of 150 rpm for about 30 min. Then, the powder was subjected to annealing at 600 °C for 2 h under the Ar gas. The TEM images show the nanoclusters of Pt were introduced on the Nb$_2$CT$_x$ of about 1.5 nm. During the annealing process, the Pt also alloyed with Nb to five Pt$_3$Nb nanoparticles. The HER analysis shows that the Pt/Nb$_2$CT$_x$-600 catalyst showed excellent activity compared to the Pt/Nb$_2$CT$_x$ and Pt/C catalysts. At the current density of 10 mA cm$^{-2}$, the Pt/Nb$_2$CT$_x$-600 catalyst exhibited a η of 5 mV, lower than the 6.2 mV for Pt/C. In addition, the Pt/Nb$_2$CT$_x$-600 catalyst also exhibited excellent durability, with no loss in η after 5000 cycles and a marginal loss in the relative current after 20 h. The excellent HER activity of the Pt/Nb$_2$CT$_x$-600 catalyst is attributed to the strong metal support interaction and homogeneous distribution of Pt and Pt$_3$Nb nanoparticles on the Nb$_2$CT$_x$ support.

6.2.7. V$_4$C$_3$Tx-Based MXenes for HER

A new class of V$_4$C$_3$Tx MXenes has gained special interest in recent years due to its applications in lithium-ion batteries, as a positive electrode in sodium ion capacitors and as an electrocatalyst for CO$_2$ capture [94]. However, for HER, it has been very rarely investigated. Ling et al. [95] predicted that highly catalytically active V$_2$CO$_2$ MXene supported Fe, Co and Ni for HER catalysis. As it is known that a synthesis of any type of MXenes needs to have obvious oxygen functionalities, therefore, the modeling was performed with oxygen terminations. When H adsorbs on V$_2$CO$_2$, the H 1s orbital and terminated O 2p$_x$ orbital hybridize to form the bonding orbital and the antibonding orbital (σ and σ^*). When the σ^* occupancy is higher, the bonding strength of H will be higher. By introducing the metal atoms, which act as metal donors, a higher electron transfer occurs from metal atoms to -O, and thereby, there is a higher occupancy in the σ^* that leads to O-H bonding. The higher charge on the O atom due to electron transfer from the metal center leads to decreased charge transfer from H to O; therefore, the interaction between O and H will be weakened. This promotes the optimal adsorption for HER kinetics (Figure 11a,b). When the transition metal (TM) supported V$_2$CO$_2$, the binding energies (E_b) were observed to be higher than 1.0 eV, indicating a strong interaction between V$_2$CO$_3$ and TM. Among all the investigated TM, a significant promotional effect (0.7 e$^-$ from TM to V$_2$CO$_2$) is observed for Fe, Co and Ni, and the calculated ΔG_{H_2} is from Fe to Co to Ni-V$_2$CO$_2$; therefore, it is concluded that the HER activity of Fe-V$_2$CO$_2$ is to be higher than the other TM-V$_2$CO$_2$ catalysts. Not many experimental studies are found to investigate the Vanadium-based MXenes. Tran et al. [96] investigated the HER activity of pristine V$_4$C$_3$Tx. It is seen that the pristine V$_4$C$_3$Tx showed a η of 200 mV @ 10 mA cm$^{-2}$. Park et al. [97] reported the atomic Pt deposited V$_2$CT$_x$. It is believed that HF etching creates the V vacancies, which act as metal immobilizing sites for Pt deposition (Figure 11c). A loading as low as ~0.88 wt% and the identification of Pt-C bonding are responsible for the excellent, Pt-like HER activity of the Pt/V$_2$CT$_x$ catalyst. The V vacancies that are naturally formed during the Al etching process are known to be highly unstable and reductive in nature. When PtCl$_6^{2-}$ ions are added to the exfoliated V$_2$CT$_x$, the PtCl$_6^{2-}$ are spontaneously adsorbed on the V vacancies and are reduced by the reductive nature of V vacancies to metallic Pt. The atomic distribution of the Pt atoms is revealed by the HAADF-STEM analysis in which the Pt atomic sites are seen with bright spots on the V$_2$CT$_x$ nanosheets. Further, it is seen that the Pt atoms are located at the V lattice plane, evidencing that V vacancies attract and stabilize the Pt atoms. The HER analysis reveals that the Pt-V$_2$CT$_x$ catalyst showed higher activity (27 mV of η @ 10 mA cm$^{-2}$) than the Pt/C (36.5 mV of η @ 10 mA cm$^{-2}$). While the Pt loading on V$_2$CT$_x$ is ~19 times (~0.88 wt%) lower than the commercial Pt/C (20 wt%), when
normalizing the HER mass activity, extraordinarily, the Pt-V2CTx catalyst was 50 times higher (7.88 A mg⁻¹ @ η of −30 mV) than the commercial Pt/C catalyst (0.157 A mg⁻¹ @ η of −30 mV). Similar statistics were also drawn, in turn, over the frequency analysis, in which the Pt-V2CTx showed a TOF of 4.74 and 1.16 H₂ S⁻¹, whereas for Pt/C, it was 0.156 and 0.0226 H₂ S⁻¹ (Figure 11d–i). The HER activity obtained in this study is one of the best among several other types of MXenes, even higher than the P-doped V₂CTx [98].

Figure 11. The scheme of modulating the HER performance of V₂CO₂ by introducing transition metal onto the surface. (a) The combination of H 1s orbital and O 2pz orbital forms a fully filled bonding orbital and a partially filled anti-bonding orbital, in which the occupancy of anti-bonding orbital will determine the strength of H O bond. (b) Structural characteristics of Pt-V₂CTx nanosheets (Adapted from Ref. [95] Open access). (c) Schematic illustration for synthesis of Pt-V₂CTx nanosheets. Electrocatalytic performance for Pt-V₂CTx and reference HER electrocatalysts. (d) HER polarization curves of pristine V₂CTx, Pt/C (20%) and Pt-V₂CTx, acquired using graphite rod as the counter electrode in 0.5 M H₂SO₄ solution (left) and in 1 M KOH solution (right). (e) Corresponding Tafel slope derived from a. (f) Comparison of overpotential (10 mA cm⁻²) and mass activity for Pt/C (20%) and Pt-V₂CTx catalysts in 0.5 M H₂SO₄ (blue) and 1 M KOH (red). (g) Turnover frequency (TOF) of Pt/C (20%) and Pt-V₂CTx in 0.5 M H₂SO₄ solution (top) and in 1 M KOH solution (bottom). (h) Comparative graph for overpotential of related MXene-based HER electrocatalysts in acidic media. (i) Stability test of Pt-V₂CTx in 0.5 M H₂SO₄ solution (top) and 1 M KOH (bottom). (Reprinted with permission from Ref. [97]. Copyright 2021, Elsevier).
6.2.8. Mo2CTx-Based MXenes for HER

Among the other MXenes, the Mo-based MXenes are gaining particular interest due to the fact that the Mo-based-MAX phases can be easily converted into catalytically active 2D MoS2. It is well known that, theoretically, 2D MoS2 show ideal an ΔGΗ2 close to zero. Further synthesis of a solid solution or substitution of cobalt in Mo2CTx is found to be one of the effective ways to fine tune the Mo2CTx HER activity, especially in alkaline medium. DFT calculations also reveal that the substitution of Co significantly changes the thermodynamics and adsorption energies that favor enhanced HER activity [99]. Liu et al. [100] synthesized CoP-supported Mo2CTx for HER reaction. The NH4F-etched Mo2Ga2C produced the layered Mo2CTx. Mo2CTx was negatively charged due to the surface terminations; the Co2+ ions were attracted electrostatically. The hydrothermal treatment and subsequent phosphorylation produced the CoP catalyst supported on Mo2CTx. The CoP/Mo2CTx showed a HER activity with an overpotential of 78 mV at a current density of 10 mA cm\(^{-2}\). Figure 10a shows the LSV curves of CoP/Mo2CTx, comparing its performance with CoP, Co(OH)F/Mo2CTx, and Mo2C precursor materials. It shows that CoP/Mo2CTx had the lowest overpotential at all current densities. It signifies that the synergistic effect between CoP and Mo2C MXene promoted the HER catalytic activity compared to the individual materials. Furthermore, to check the reaction kinetics, the Tafel slopes were obtained from the LSV curves, as shown in Figure 12b,c. The obtained Tafel slope values for CoP/Mo2CTx, CoP, Co(OH)F/Mo2CTx, and Mo2C MXene were 66, 95, 158 and 192 mV dec\(^{-1}\), respectively. Among them, CoP/Mo2CTx had the lowest Tafel slope, and it was close to the value of Pt/C (40 mV dec\(^{-1}\)), signifying the identical reaction pathway. The rate determining step was the desorption of H2. To test the stability, the CoP/Mo2CTx electrode was kept at the current density of 10 mA cm\(^{-2}\) for 50 h and observed 89% retention of the initial current, as shown in Figure 12d-f.

Tan et al. [101] developed a mesh carbon-coated MoSe2/Mo2CTx hybrid material (MoSe2/Mo2CTx@C), which took an overpotential of 108.3 mV to reach 10 mA cm\(^{-2}\) current density in acidic medium (0.5 M H\(_2\)SO\(_4\) solution). The LSV curves of the MoSe2/Mo2CTx@C catalyst are shown along with the individual MoSe2 (η = 296.3 mV) and Mo2CTx (η = 325.3 mV) catalysts; MoSe2/Mo2CTx@C show good catalytic activity. The obtained Tafel slopes of MoSe2/Mo2CTx@C, MoSe2/Mo2CTx, Mo2CTx and Mo2CTx catalysts were found to be 70.7, 122.1, 108.7 and 152.1 mV dec\(^{-1}\), respectively. Among them, MoSe2/Mo2CTx@C showed the lowest Tafel slope compared to the individual components, and its value showed that it performed the HER via the Volmer–Heyrovsky mechanism. The enhanced reaction kinetics was due to improved conductivity from MoSe2/Mo2CTx and the carbon coating layer composite. The stability of the MoSe2/Mo2CTx@C catalyst was evaluated using cyclic voltammogram and chronoamperometry techniques. In addition, after 1000 cycles, there was no considerable loss in the activity compared to the initial curve. The chronoamperometric curve of MoSe2/Mo2CTx@C also showed a stable current density up to 24 h, indicating that the good structural stability of MoSe2/Mo2CTx@C was durable. This could be due to the mixed MoSe2/Mo2CTx@C composite. Lim et al. [102] reported Mo2CTx/2HMoS2 nanohybrid catalytic activity in 0.5 M H\(_2\)SO\(_4\) electrolyte. Due to the intimate epitaxial coupling at the Mo2CTx/2H-MoS2 nanohybrid interface, it afforded superior HER activities, taking only 119 or 182 mV overpotential to reach -10 or -100 mA cm\(^{-2}\) current densities, respectively. It is observed that the Tafel slope of Mo2CTx/2HMoS2 was 60 mV dec\(^{-1}\), which was significantly lower compared to the bare untreated d Mo2CTx (91 mV dec\(^{-1}\)) and a physical mixture of d-Mo2CTx with 2H-MoS2 NPs (85 mV dec\(^{-1}\)). Noticeably, the Mo2CTx/2H-MoS2 nanohybrid’s Tafel slope was maintained up to -450 mA cm\(^{-2}\), unlike other metal catalysts, which exhibited increased Tafel slopes, and hence, steeply increasing overpotentials, at higher current densities. In addition, Mo2CTx/2HMoS2 also exhibited excellent stability up to 10,000 cycles (Figure 12g–i).
Figure 12. (a) LSV curves, (b) Tafel plots, (c) The Tafel slope and overpotential @10 mA cm\(^{-2}\) for Pt/C, CoP/Mo\(_2\)CT\(_x\), CoP, Co(OH)\(_2\)/Mo\(_2\)CT\(_x\), Mo\(_2\)C MXene in 1 M KOH. (d) The electrochemical impedance spectra (EIS). (e) Chronoamperometric curves of CoP/Mo\(_2\)CT\(_x\) and Pt/C at the current density of 10 mA cm\(^{-2}\) for 50 h. (f) LSV curves of CoP/Mo\(_2\)CT\(_x\) catalyst before and after 3000 CV cycles, and inset is the corresponding LSV curves before and after 3000 CV cycles for Pt/C. Reprinted with permission from Ref. [100]. Copyright 2021, Royal Society of Chemistry. (g) iR-corrected CV polarization curves for Mo\(_2\)CT\(_x\)/2H-MoS\(_2\) nanohybrid in 0.5 M H\(_2\)SO\(_4\) after (h) 10-day CP (constant current at \(-10 \) mA cm\(^{-2}\) for 50 h. (i) 100,000 accelerated CV cycling at 100 mV s\(^{-1}\). HER electrochemical stability results of (Reprinted with permission from Ref. [102] Copyright 2020 American Chemical Society).

Ren et al. [103] reported 2D organ-like molybdenum carbide (MXene) coupled with MoS\(_2\) (MoS\(_2@\)Mo\(_2\)CT\(_x\)) nanoflowers. The LSV curves of MoS\(_2@\)Mo\(_2\)CT\(_x\) were recorded in aqueous 1.0 M KOH solution along with Mo\(_2\)Ga\(_2\)C, Mo\(_2\)CT\(_x\), MoS\(_2\) and Pt/C for comparison purpose. The observed overpotential of MoS\(_2@\)Mo\(_2\)CT\(_x\) was 176 mV at a current density (j) of 10 mA cm\(^{-2}\), which was less compared to the values of Mo\(_2\)Ga\(_2\)C (897 mV), Mo\(_2\)CT\(_x\) (533 mV) and MoS\(_2\) (394 mV) electrocatalysts. The Tafel slopes of the corresponding as-prepared catalysts were calculated to be 308, 208, 186, 207 and 98 mV dec\(^{-1}\) for Mo\(_2\)Ga\(_2\)C, MoS\(_2\), Mo\(_2\)CT\(_x\), MoS\(_2@\)Mo\(_2\)CT\(_x\) and Pt/C, respectively. The smaller Tafel slope of MoS\(_2@\)Mo\(_2\)CT\(_x\) indicated that the HER may follow the Volmer–Heyrovsky mechanism. The obtained results show that MoS\(_2@\)Mo\(_2\)CT\(_x\) had a good electrocatalytic activity toward HER, which was due to a greater number of active sites and good electrical conductivity. For useful information to the readers, we summarized the HER performance of MXene catalysts [89,104–142] in Table 2. In addition, to compare the status of MXene-based catalysts
with the other 2D materials, the HER performances of the catalysts are given in Table 3. After analyzing the HER performance, it was observed that the activities of pristine MXenes were much lower than the other 2D materials. However, the Pt and non-Pt deposited MXenes showed comparable HER performances to other 2D materials, such as graphene, TMDs, LDHs and g-C_{3}N_{4}-based catalysts, and in some cases, better HER performance. Figure 13 shows the benchmark figures of the MXene catalysts with respect to commercial Pt/C. The benchmark Figure 13 shows that several MXene-based catalysts showed nearing performance with Pt/C, and some Pt-supported Ti_{3}C_{2}Tx showed an even lower overpotential than Pt/C (indicated by green color in Figure 13). This comparison clearly indicates that with further improvements, MXenes-based catalysts could be potential HER catalyst alternative to traditional Pt/C-based catalysts.

Table 2. Summary of electrochemical performance of MXene-supported catalysts for HER.

Catalyst	Overpotential (mV) @ 10 mA cm^{-2}	Electrolyte	Ref
Pristine/Functionalized/Heteroatom-doped MXenes			
Mo_{2}CT_{x}	189	0.5 M H_{2}SO_{4}	[104]
Ti_{3}C_{2}Tx	538	0.5 M H_{2}SO_{4}	[105]
F-Ti_{2}CT_{x}	170	0.5 M H_{2}SO_{4}	[75]
O-Ti_{3}C_{2}Tx	190	0.5 M H_{2}SO_{4}	[106]
V_{4}C_{3}Tx	200	0.5 M H_{2}SO_{4}	[96]
Nb_{4}C_{3}T	398	1.0 M KOH	[91]
Ti_{3}C_{2}Tx nanofibers	169	0.5 M H_{2}SO_{4}	[107]
VOOH/Ti_{3}C_{2}Tx	100	1.0 M KOH	[108]
N-Ti_{3}C_{2}Tx	215	0.5 M H_{2}SO_{4}	[77]
N-Ti_{3}C_{2}Tx@600	198	0.5 M H_{2}SO_{4}	[78]
P-Mo_{2}CT_{x}	114	0.5 M H_{2}SO_{4}	[109]
N-Ti_{3}C_{2}Tx-35	162	0.5 M H_{2}SO_{4}	[79]
P-V_{2}CT_{x}	220	0.5 M H_{2}SO_{4}	[102]
P-TiO_{2}@Ti_{3}C_{2}	97	1.0 M KOH	[110]
Pt/Ti_{3}C_{2}Tx-based catalysts			
Pt/C	29	0.5 M H_{2}SO_{4}	[102]
Pt/Ti_{3}C_{2}Tx-550	32.7	1.0 M HClO_{4}	[111]
TBA-Ti_{3}C_{2}Tx-Pt-20	70	0.5 M H_{2}SO_{4}	[81]
TBA-Ti_{3}C_{2}Tx-Pt	55	0.5 M H_{2}SO_{4}	[81]
PtNPs/Ti_{3}C_{2}Tx	226	0.1 M H_{2}SO_{4}	[112]
Pt_{3}21Ni@Ti_{3}C_{2}	18.55	0.5 M H_{2}SO_{4}	[106]
Pt_{3}21Ni@Ti_{3}C_{2}	55.6	0.1 M KOH	[113]
Ti_{3}C_{2}Tx@Pt/SWCNTs	62	0.5 M H_{2}SO_{4}	[114]
Pt NCs-MXene	40	0.5 M H_{2}SO_{4}	[115]
40Pt-TBA-Ti_{3}C_{2}Tx	67.8	0.5 M H_{2}SO_{4}	[80]
Ti_{3}C_{2}Tx@0.1Pt	43	0.5 M H_{2}SO_{4}	[116]
PtO_{2}PdO_{2}NPts@Ti_{3}C_{2}Tx	26.5	0.5 M H_{2}SO_{4}	[117]
Mo_{2}TiC_{2}Tx-Pt_{5}A	30	0.5 M H_{2}SO_{4}	[118]
Ru_{5}A-N-S-Ti_{3}C_{2}Tx	76	0.5 M H_{2}SO_{4}	[119]
Ru@B-Ti_{3}C_{2}Tx	62.9	0.5 M H_{2}SO_{4}	[120]
Catalyst	Overpotential (mV) @ 10 mA cm2	Electrolyte	Ref
----------	----------------------------------	-------------	-----
Ni$_{0.9}$Co$_{0.1}$@Nb-Ti$_3$C$_2$Tx	43.4	1.0 M KOH	[90]
Co$^{3+}$-Ti$_3$CTx	458	1.0 M KOH	[121]
Ni$_{0.9}$Fe$_{0.1}$P$_3$@ Ti$_3$C$_2$Tx	196	1.0 M KOH	[122]
MoS$_2$/Ti$_3$C$_2$-MXene@C	135	0.5 M H$_2$SO$_4$	[123]
MoS$_2$/Ti$_3$C$_2$T$_x$ nanoroll	168	0.5 M H$_2$SO$_4$	[124]
CoP@3D Ti$_3$C$_2$T$_x$	168	1.0 M KOH	[125]
MoSe$_2$/Ti$_3$C$_2$T$_x$	95	1 M KOH	[126]
Co$_x$Mo$_{2-x}$C/Ti$_3$C$_2$T$_x$	75	1.0 M KOH	[127]
Co$_x$Mo$_{2-x}$C/Ti$_3$C$_2$T$_x$	81	0.5 M H$_2$SO$_4$	[127]
Mo$_2$C/Ti$_3$C$_2$T$_x$@NC	53	0.5 M H$_2$SO$_4$	[128]
Mo$_2$C/Ti$_3$C$_2$T$_x$@NC	75	1.0 M KOH	[128]
NiFe-LDH/Ti$_3$C$_2$T$_x$	132	1.0 M KOH	[129]
NiFe-LDH/MXene/NF	205	1.0 M KOH	[129]
P-MoS$_2$/Ti$_3$C$_2$T$_x$	177	0.5 M H$_2$SO$_4$	[130]
CoP/Ti$_3$C$_2$	71	0.5 M H$_2$SO$_4$	[131]
CoP/Ti$_3$C$_2$ MXene	102	1.0 M KOH	[131]
TiOF$_2$@Ti$_3$C$_2$T$_x$	103	0.5 M H$_2$SO$_4$	[132]
Co$_{0.31}$Mo$_{1.69}$C/MXene/NC	75	1.0 M KOH	[133]
Ag@N-Ti$_3$C$_2$T$_x$	153	1.0 M KOH	[134]
3D CNTs@Ti$_3$C$_2$T$_x$	93	1.0 M KOH	[135]
NiSe$_2$/Ti$_3$C$_2$T$_x$	200	2.0 M KOH	[89]
Co-CoO/Ti$_3$C$_2$-MXene	45	1.0 M KOH	[136]
MoS$_2$/Ti$_3$C$_2$	110	0.5 M H$_2$SO$_4$	[137]
MoS$_2$-Ti$_3$C$_2$	98	0.5 M H$_2$SO$_4$	[138]
NiFe$_2$O$_4$/Ti$_3$C$_2$	173	0.5 M KOH	[139]
Nb$_2$CT$_x$ / V$_4$C$_3$T$_x$ / Mo$_2$CT$_x$-based catalysts			
Pd/Nb$_2$C-HF	34	0.5 M H$_2$SO$_4$	[76]
Co$^{3+}$-V$_2$CT$_x$	460	1.0 M KOH	[122]
NiS$_2$/V$_2$CT$_x$	179	1 M KOH	[140]
Co-MoS$_2$/Mo$_2$CT$_x$	112	1.0 M KOH	[141]
Mo$_2$CT$_x$Co	180	1 N H$_2$SO$_4$	[99]
MoS$_2$/Mo$_2$CT$_x$	176	1.0 M KOH	[103]
MoS$_2$/2H-MoS$_2$	119	0.5 M H$_2$SO$_4$	[102]
NiSe$_2$/Ti$_3$C$_2$T$_x$	200	0.5 M H$_2$SO$_4$	[89]
2D Material	2D Materials-Based Catalysts	Electrolyte	Overpotential (mV) at 10 mA cm$^{-2}$	Ref
MoS$_2$@pr-GO		0.5 M H$_2$SO$_4$	263	[143]
P-doped WN/r-GO		0.5 M H$_2$SO$_4$	85	[144]
NG@Co@Zn@NF-850		1 M KOH	34	[145]
Ni$_3$S$_2$@NGCLs/NF		1 M KOH	134	[146]
Porous MoSe$_2$ Nanosheets		0.5 M H$_2$SO$_4$	150	[147]
ReSe$_2$ nanoflakes/rGO		0.5 M H$_2$SO$_4$	145	[148]
Ni$_{0.85}$Se nanosheets/rGO		1 M KOH	128	[149]
Conducting scaffold-supported 3D rGO-CNT/MoS$_2$ nanostructure		0.5 M H$_2$SO$_4$	123 @ 100 mA cm$^{-2}$	[150]
Conducting scaffold-supported 3D rGO-CNT/MoS$_2$ nanostructure		1 M KOH	217 @ 50 mA cm$^{-2}$	[150]
3D Pd nanosponge-shaped networks wrapped by graphene dots		0.5 M H$_2$SO$_4$	32	[151]
3D graphene hollow nanospheres		1 M KOH	25.5	[152]
Ru Nanoclusters/N-graphene		1 M KOH	25.6	[153]
FeCoNiB@Boron-doped vertically aligned graphene arrays		1 M KOH	31	[154]
Plasma-etched, S-doped graphene		0.5 M H$_2$SO$_4$	178	[155]
3D porous NG derivative integrated MoS$_2$ nanosheet		0.5 M H$_2$SO$_4$	157	[156]
3D FeP NT/PG		0.5 M H$_2$SO$_4$	69	[157]
A self-supporting P-Fe$_3$O$_4$@3DG bulk composite		1 M KOH	123	[158]
Ni$_3$P nanoparticles/N,B-graphene		1 M KOH	92	[159]
Dispersed tungsten (W)-optimized MoP nanoparticles on N,P-doped graphene oxide		1 M KOH	70	[160]
Ni-Ni$_3$P@NPC/rGO		0.5 M H$_2$SO$_4$	113 @ 20 mA cm$^{-2}$	[161]
Cobalt phosphate decorated/N,B-3D-graphene		0.5 M H$_2$SO$_4$	118	[162]
V-SACs@ 1T-WS$_2$		0.5 M H$_2$SO$_4$	185	[163]
NiS@ MoS$_2$-20		1 M KOH	146	[164]
MoS$_2$/GO		0.5 M H$_2$SO$_4$	13.1	[165]
VS$_2$@V$_2$C		1 M KOH	138	[166]
Ni$_2$Cr$_1$-LDH		1 M KOH	67	[167]
Co$_3$Mn$_1$-DH		1 M KOH	187	[168]
V-Ce/CoFe LDH		1M KOH	73	[169]
g-C$_3$N$_4$		0.5 M H$_2$SO$_4$	193	[170]

Graphene

TMDs

LDHs

TMDs

LDHs

Table 3. Comparison of MXenes HER performance with the other 2D-layered non-precious-based electrocatalysts in acidic and alkaline media.
3. After analyzing the HER performance, it was observed that the activities of pristine MXenes were much lower than the other 2D materials. However, the Pt and non-Pt deposited MXenes showed comparable HER performances to other 2D materials, such as graphene, TMDs, LDHs and g-C3N4-based catalysts, and in some cases, better HER performance. Figure 13 shows the benchmark figures of the MXene catalysts with respect to commercial Pt/C. The benchmark Figure 13 shows that several MXene-based catalysts showed nearing performance with Pt/C, and some Pt-supported Ti3C2Tx showed an even lower overpotential than Pt/C (indicated by green color in Figure 13). This comparison clearly indicates that with further improvements, MXenes-based catalysts could be potential HER catalyst alternatives to traditional Pt/C-based catalysts.

![Benchmark figure](image)

Figure 13. Benchmark figure (a) pristine MXene (b) Pt-supported Ti3C2Tx (c) non-precious metal supported Ti3C2Tx (d) Pt and non-precious metal supported on other types of MXenes, other than Ti3C2Tx showing the overpotential status of various MXene-based catalysts with respect to standard Pt/C (for overpotential values of the catalysts, refer to Table 2. The Pt/C reference values were taken from Ref. [102]).

7. Conclusions and Future Perspectives

As a “rising star”, MXene-based catalysts have been emerging as potential materials for electrocatalytic hydrogen evolution reaction. The unique 2D structure, chemical, surface and electronic properties provide tremendous opportunities to explore MXenes for various electrochemical reactions, including HER. A number of families of MXenes are currently being explored for HER electrocatalysis, which include N-doped MXenes, surface-functionalized MXenes, Ti, V, Nb and Mo based MXenes. Among them, Mo and Ti based MXenes showed better HER activities, which can be further improved by developing effective synthesis strategies, by surface modification, lattice substitution, modulating the defects and controlling the morphology of the supported metal nanoparticles. Among the various surface functional groups (-OH, -O and -F), the -F terminations are found to be important and essential for HER kinetics. Therefore, adjusting the surface functional groups on MXenes might have a direct effect on the HER kinetics. Various Pt and non-Pt metal nanoparticles deposited MXenes were investigated. Among them, Pt-supported MXenes showed excellent HER activity, surpassing the commercial, benchmarking Pt/C catalyst in acidic electrolytes (in a few studies). However, non-Pt-supported MXenes, heteroatom-doped MXenes still showed lower HER kinetics, resulting in high overpotential.

In addition, a number of problems exist in the commercialization aspects of MXene-based electrocatalysts.

1. For example, the high surface energy of 2D MXene leads to re-stacking and agglomeration during catalyst synthesis. Re-stacking reduces the active surface area that needs to be exposed during electrochemical reactions. Therefore, avoiding re-stacking is one of the important factors for obtaining desirable HER activity. The use of intercalating...
agents, such as large-sized organic molecules, use of ionic surfactants and conducting polymers are some of the strategies.

2. The productivity of the obtained MXenes is highly dependent on the type of synthesis process used, the composition and the number of layers. Further, MXene spontaneous oxidation or thermal-induced structural transformation to TiO$_2$ are some of the critical problems that need to be addressed.

3. Increasing MXenes’ intrinsic activity is one of the important issues. Intrinsic activity depends on the type of metal atoms, density of C and N, and the type of surface functional groups and their interactions with the reaction intermediates is vital to obtain better catalysts. For example, -F and -OH functional groups are important for HER and other reactions, such as ORR and OER.

4. One of the major problems associated with MXenes lies in the synthesis process. For example, universally accepted fluoride etching is harmful to the environment and the structure of the MAX phases. The dissolved oxygen present in the aqueous HF can impart structural defects and promote their degradation into TiO$_2$.

5. Alternative synthesis strategies, such as electrochemical etching, produce a low yield, and molten salt requires high temperature, making it difficult to industrialize.

6. Careful tuning and reproducible density of surface functional groups are very difficult to achieve due to the fact that the type and density of surface functional groups highly depend on the type of the etchant and reaction conditions.

Despite the excellent progress, MXene-based electrocatalysts are in the nascent stage. The following strategies are recommended for improved HER kinetics of MXenes.

1. Strategies for controlling surface functional groups, creating porous structures, heteroatom doping, thereby optimizing the electronic and surface properties for selective HER kinetics, should be discovered.

2. Efforts are needed to increase the electronic conductivity of pristine MXenes by producing composite structures with carbon, graphene or by coating of the carbon on MXenes layers, by making 3D architectures that can act as ideal support for dispersing metal nanoparticles and creating interstitial pores for enhancing mass transport issues.

3. It is important to develop 3D porous network structures in MXene and MXenes-composite catalysts to enhance the mass transport properties of the catalysts.

4. While processing the MXenes is also one of the difficult tasks, as the MXenes are sensitive to oxidation, controlled etching, flake structure and heat treatment are required. Treating MXenes at higher temperatures leads to structural transformation of MXenes; for example, Ti$_3$C$_2$Tx converts into TiO$_2$ upon heat treatment. Novel synthesis protocols are badly needed for processing MXenes at high temperatures.

5. Environmentally friendly etching processes need to be developed with a high yield and low structural defects. The currently used HF etching is found to be environmentally unfriendly, owing to the acute toxicity of HF.

6. Studies are required to find out if any pre-processing of the MAX phases has any effect on the subsequent etching step.

7. Efforts are needed to understand the effect of surface functionalities (other than -F, -OH and -O), such as -Cl, -Br, -I, -S, -B, -P, -Se, -Te, etc., on the HER activity of MXenes.

8. The durability of MXenes needs to be investigated in long-term operations. Most of the studies performed short-term stability tests, which cannot be guaranteed for long-term cycling operations. DFT calculations explored a number of possible MXenes catalysts as potential candidates for HER, especially the M$'$$'$/M'CNO$_2$ type of catalysts. Therefore, it is an interesting task for the experimental scientists to synthesize and study the M$'$$'$/M'CNO$_2$ type of MXenes experimentally in order to validate the DFT studies.

9. Advanced strategies, such as lattice substitution of M and X, metal-ion/non-metal ion substitution, defect engineering, morphology control, constructing stable heterojunctions of MXenes with other carbon and conductive 2D materials, are some of the approaches that can be explored.
With increased attention and continuous research evidenced by the rapidly increasing publications on MXenes, there is no doubt that MXene electrocatalysts will gather pace and will be explored for practical HER applications in the near future.

Author Contributions: Conceptualization, methodology, S.G.P. and R.K.; validation, formal analysis, G.R.; writing—original draft preparation, S.G.P. and R.K.; writing—review and editing, L.C., L.S. and G.M.; funding acquisition, S.G.P. and G.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Research Foundation of Korea (NRF) funded by the Korean government, Ministry of Science and ICT (MSIT) (Grant No. 2021R1F1A1046648), Republic of Korea. Dr. Gaddam Rajeshkhanna would like to acknowledge the Science and Engineering Research Board (SERC), Department of Science and Technology (DST), India (sanction order no: SRG/2021/001028) for providing the funding. Author, Liu Chao, acknowledge Natural Science Foundation of Jiangxi Province (Grant no. 20212BCJ23053 and 20212BAB203015), the Research Foundation of the Education Department of Jiangxi Province (Grant no. GJJ200808) for funding this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. *Nature* 2012, 488, 294–303. [CrossRef] [PubMed]
2. Zhang, Y.; Luo, M.; Yang, y.; Li, Y.; Guo, S. Advanced multifunctional electrocatalysts for energy conversion. *ACS Energy Lett.* 2019, 4, 1672–1680. [CrossRef]
3. York, R. Do alternative energy sources displace fossil fuels? *Nat. Clim. Change* 2012, 2, 441–443. [CrossRef]
4. Peera, S.G.; Liu, C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. *Coord. Chem. Rev.* 2022, 463, 214554. [CrossRef]
5. Cai, Z.; Bu, X.; Wang, P.; Ho, J.C.; Yang, J.; Wang, X. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. *J. Mater. Chem. A* 2019, 7, 5069–5089. [CrossRef]
6. Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. *Catal. Today* 2019, 139, 244–260. [CrossRef]
7. Vazhayil, A.; Vazhayal, L.; Thomas, J.; Ashok, C.; Thomas, N. A comprehensive review on the recent developments in transition-metal-based electrocatalysts for oxygen evolution reaction. *Appl. Surf. Sci.* 2021, 6, 100184. [CrossRef]
8. Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From Electrode to Green Energy System. *Nanomicro. Lett.* 2020, 12, 131. [CrossRef]
9. Peera, S.G.; Koutavarapu, R.; Liu, C.; Rajeshkhhanna, G.; Asokan, A.; Reddy, C.V. Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis. *Energies* 2021, 14, 1320. [CrossRef]
10. You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. *Acc. Chem. Res.* 2018, 51, 1571–1580. [CrossRef]
11. Lee, J.E.; Jeon, K.J.; Show, P.L.; Leed, I.H.; Jung, S.C.; Choi, Y.J.; Rhee, G.H.; Lin, K.Y.A.; Park, Y.K. Mini review on H production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts. *Fuel* 2022, 308, 122048. [CrossRef]
12. Anantharaj, S.; Ede, S.R.; Sakhikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. *ACS Catal.* 2016, 6, 8069–8097. [CrossRef]
13. Hwapyung, J.; Arun, K.; Arindam, A.; Rajkumar, P.; Subrata, K. Graphene-based materials as electrocatalysts for the oxygen evolution reaction: A review. *Sustain. Energy Fuels* 2022, 6, 640–663. [CrossRef]
14. Qin, X.; Ola, O.; Zhao, J.; Yang, Z.; Tiwari, S.K.; Wang, N.; Zhu, Y. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. *Nanomaterials* 2022, 12, 1806. [CrossRef]
15. Zhou, D.; Li, P.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W.-F.; Sun, X.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. *Chem. Soc. Rev.* 2021, 50, 8790–8817.
16. Xingshuai, L.; Wei, W.; Hao, W.; Baibiao, H.; Ying, D. Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting. *Appl. Catal. B Environ.* 2020, 264, 118521.
17. Wang, F.; Shifa, T.A.; Zhan, X.; Huang, Y.; Liu, K.; Cheng, Z.; Jiang, C.; He, J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. *Nanoscale* **2015**, 7, 19764–19788. [CrossRef]

18. Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. *Sci. Rep.* **2015**, 5, 13801. [CrossRef]

19. Luo, Y.; Wang, S.; Ren, K.; Chou, J.P.; Yu, J.; Sun, Z.; Sun, M. Transition-metal dichalcogenides/Mg(OH)$_2$ van der waals heterostructures as promising water-splitting photocatalysts: A first-principles study. *Phys. Chem. Chem. Phys.* **2019**, 21, 1791–1796. [CrossRef]

20. Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jarermillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. *Science* **2017**, 355, 4998. [CrossRef] [PubMed]

21. Sui, X.; Zhang, L.; Li, J.; Davis, K.D.; Li, R.; Wang, Z.; Sun, X. Advanced Support Materials and Interactions for Atomically Dispersed Noble-Metal Catalysts: From Support Effects to Design Strategies. *Adv. Energy Mater.* **2022**, 12, 2102556. [CrossRef]

22. Peera, S.G.; Arunchander, A.; Sahu, A.K. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: An efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. *Nanoscale* **2016**, 8, 14650–14664. [CrossRef] [PubMed]

23. Huanyu, J.; Xin, L.; Shuangming, C.; Anthony, V.; Laiquan, L.; Yan, J.; Li, S.; Yao, Z.; Shi-Zhang, Q. Heteroatom-Doped Transition Metal Electro catalysts for Hydrogen Evolution Reaction. *ACS Energy Lett.* **2019**, 4, 805–810.

24. Yen, J.; Yao, Z.; Kenneth, D.; Shi-Zhang, Q. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. *Nat. Energy* **2016**, 1, 16130.

25. Srini, A.; Parthiban, V.; Peera, S.; Singh, B.P.; Dhakate, S.R.; Sahu, A.K. Simultaneous Co-Doping of Nitrogen and Fluorine into MWCNTs: An In-Situ Conversion to Graphene Like Sheets and Its Electro-Catalytic Activity toward Oxygen Reduction Reaction. *J. Electrochem. Soc.* **2017**, 164, F568.

26. Peera, S.G.; Koutavaranu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S.O.; Liu, C.; Sahu, A.K. Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. *Energy Fuels* **2021**, 35, 11761–11799. [CrossRef]

27. Shi, Y.; Ma, Z.R.; Xiao, Y.Y.; Yin, Y.C.; Huang, W.M.; Huang, Z.C.; Zheng, Y.Z.; Mu, F.Y.; Huang, R.; Shi, G.Y.; et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. *Nat. Commun.* **2021**, 12, 3021. [CrossRef]

28. Oh, H.S.; Nong, H.N.; Reier, T.; Bergmann, A.; Gleich, M.; de Araújo, J.F.; Willinger, E.; Schögl, R.; Teschner, D.; Strasser, P. Electrochemical Catalyst—Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction. *J. Am. Chem. Soc.* **2016**, 138, 12552–12563. [CrossRef]

29. Peera, S.G.; Liu, C.; Sahu, A.K.; Selvaraj, M.; Rao, M.C.; Lee, T.G.; Koutavaranu, R.; Shim, J.; Singh, L. Recent Advances on MXene-Based Electro catalysts toward Oxygen Reduction Reaction: A Focused Review. *Adv. Mater. Interfaces* **2021**, 8, 2100975. [CrossRef]

30. Peera, S.G.; Liu, C.; Shim, J.; Sahu, A.K.; Lee, T.G.; Selvaraj, M.; Koutavaranu, M. MXene ($\text{Ti}_3\text{C}_2\text{Tx}$) supported electro catalysts for methanol and ethanol electrooxidation: A review. *Ceram. Int.* **2021**, 47, 28106–28121. [CrossRef]

31. Zhu, H.; Xue, S.; Liang, Z.; Liang, X.; Li, G.; Ren, X.; Gao, L.; Li, Q.; Ma, T.; Liu, A. Self-assembly synthesis of Ni-decorated Nb$_3$C MXene as an efficient and stable catalyst towards electrochemical nitrogen reduction. *Ceram. Int.* **2022**, 48, 20599–20604. [CrossRef]

32. Soomro, R.A.; Jawaid, S.; Zhu, Q.; Abbas, Z.; Xu, B. A mini review on MXenes as versatile substrate for advanced sensors, *Chin. Chem. Lett.* **2020**, 31, 922–930.

33. Xu, B.; Ye, F.; Chen, R.; Luo, X.; Chang, G.; Li, R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. *Ceram. Int.* **2022**, 48, 10220–10226. [CrossRef]

34. Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. Recent advances of MXenes as electro catalysts for hydrogen evolution reaction. *NPJ 2D Mater. Appl.* **2021**, 5, 78. [CrossRef]

35. Liu, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. 2D MXene-Based Materials for Electrocatalysis. *Trans. Tianjin Univ.* **2020**, 26, 149–171. [CrossRef]

36. Gonzalez-Poggini, S.; Rosenkranz, A.; Colet-Lagrille, M. Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. *Processes* **2021**, 9, 2160. [CrossRef]

37. Brian, C. Wyatt, Andrea Rosenkranz, Babak Anasori, 2D MXenes: Tunable Mechanical and Tribological Properties. *Adv. Mater.* **2021**, 33, 2007973.

38. Maibelin, R.; Andreina, G.; Victor, M.F.; Rodrigo, E.-G.; Guichen, S.; Bo, W.; Jinhong, Y.; Francisco, G.; Andreas, R. Unprecedented arsenic photo-oxidation behavior of few- and multi-layer Ti$_3$C$_2$Tx nano-sheets. *Appl. Mater. Today* **2020**, 20, 100769.

39. Elodie, B.; Andreas, R.; Rodrigo, E.-G.; Victor, M.F.; Zhenyu, Z.; Sebastián, S.; Néstor, E. Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds. *Catal. Commun.* **2020**, 133, 105833.

40. Gogotsi, Y.; Anasori, B. The Rise of MXenes. *ACS Nano.* **2019**, 13, 8491–8494. [CrossRef] [PubMed]

41. Kim, Y.J.; Kim, S.J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C.W.; Jung, H.T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. *Chem. Mater.* **2021**, 33, 6346–6355. [CrossRef]

42. Sang, X.; Xie, Y.; Lin, M.W.; Alhabeb, M.; Aken, K.L.V.; Gogotsi, Y.; Kent, P.R.C.; Xiao, K.; Unocic, R.R. Atomic Defects in Monolayer Titanium Carbide (Ti$_3$C$_2$Tx) MXene. *ACS Nano.* **2016**, 10, 9193–9200. [CrossRef]
44. Ashton, M.; Mathew, K.; Hennig, R.G.; Sinnott, S.B. Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution. J. Phys. Chem. C 2016, 120, 3550–3556. [CrossRef]
45. Jesus, G.J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021, 104, 659–690.
46. Rodrigo, M.R.; Jeverson, T.A.; Sydney, F.S. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188.
47. Pogorelov, M.; Smyrnova, K.; Krylyenko, S.; Gogotsi, O.; Zahorodna, V.; Pogrebniak, A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials 2021, 11, 3412. [CrossRef]
48. Hu, T.; Hu, M.; Gao, B.; Li, W.; Wang, X. Screening Surface Structure of MXenes by High-Throughput Computation and Vibrational Spectroscopic Confirmation. J. Phys. Chem. C 2018, 122, 18501–18509. [CrossRef]
49. Persson, P.O.A.; Rosen, J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100774. [CrossRef]
50. Mohammad, M.; Masoud, S. Surface functionalization of MXenes. Mater. Adv. 2021, 2, 7277–7307.
51. Aamir, I.; Junpyo, H.; Tae, Y.K.; Chong, M.K. Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions. Nano. Converg. 2021, 8, 9.
52. Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy metal of select multi-layered transition carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [CrossRef]
53. Li, X.; Huang, Z.; Zhi, C. Environmental Stability of MXenes as Energy Storage Materials. Front. Mater. 2019, 6, 312–321. [CrossRef]
54. Persson, I.; Näslund, L.A.; Halim, J.; Barsoum, M.W.; Darakchieva, V.; Palaisaitis, J.; Rosen, J.; Persson, P.O.A. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 2017, 5, 015002. [CrossRef]
55. Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.Y.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [CrossRef]
56. Peera, S.G.; Sahu, A.K.; Arunchander, A.; Nath, K.; Bhat, S.D. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells. J. Power Sources 2016, 305, 10584–10592. [CrossRef]
57. Parra-Puerto, A.; Ng, K.L.; Fahy, K.; Goode, A.E.; Ryan, M.P.; Kucernak, A. Supported transition metal phosphides: Activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515–11529. [CrossRef]
58. Hao, C.; Wu, Y.; An, Y.; Cui, B.; Lin, J.; Li, X.; Wang, D.; Jiang, M.; Cheng, Z.; Hu, S. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy 2019, 12, 453–462. [CrossRef]
59. Fu, G.; Lee, J.-M. Ternary metal sulfides for electrocatalytic energy conversion. J. Mater. Chem. A 2019, 7, 9386–9405. [CrossRef]
60. Peng, X.; Pi, C.; Zhang, X.; Li, S.; Huo, K.; Chu, P.K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366–381. [CrossRef]
61. Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.H.; Ascaso, A.S.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [CrossRef]
62. Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.Y.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [CrossRef]
63. Peera, S.G.; Sahu, A.K.; Arunchander, A.; Nath, K.; Bhat, S.D. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells. J. Power Sources 2016, 305, 10584–10592. [CrossRef]
64. Zhu, Y.; Liu, X.; Jin, S.; Chen, H.; Lee, W.; Liu, M.; Chen, Y. Anionic defect engineering of transition metal oxides for oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5875–5897. [CrossRef]
65. Peera, S.G.; Arunchander, A.; Sahu, A.K. Platinum nanoparticles supported on nitrogen and fluorine co-doped graphite nanofibers as an excellent and durable oxygen reduction catalyst for polymer electrolyte fuel cells. Carbon 2016, 107, 667–679. [CrossRef]
66. Peera, S.G.; Sahu, A.K.; Arunchander, A.; Nath, K.; Bhat, S.D. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells. J. Power Sources 2015, 297, 379–387. [CrossRef]
67. Wu, X.; Kang, F.; Duan, W.; Li, J. Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Prog. Nat. Sci. Mater. Int. 2019, 29, 247–255. [CrossRef]
68. Bai, X.; Ling, C.; Shi, L.; Ouyang, Y.; Li, Q.; Wang, J. Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Sci. Bull. 2018, 63, 1397–1403. [CrossRef]
69. Huang, B.; Zhou, N.; Chen, X.; Ong, W.; Li, N. Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two-Dimensional Transition-Metal Carbonitrides (MXene). Chem. A Eur. J. 2018, 24, 18479–18486. [CrossRef]
70. Jin, D.; Johnson, L.R.; Raman, A.S.; Ming, X.; Gao, Y.; Du, F.; Wei, Y.; Chen, G.; Vojvodic, A.; Gogotsi, Y.; et al. Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. J. Phys. Chem. C 2020, 124, 10584–10592. [CrossRef]
71. Zeng, Z.; Chen, X.; Wang, C.; Li, W.; Zhi, C.; Su, Y. Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J. Mater. Chem. A 2020, 8, 23488–23497. [CrossRef]
98. Yoon, Y.; Tiwari, A.P.; Choi, M.; Novak, T.G.; Song, W.; Chang, H.; Zying, T.; Lee, S.S.; Jeon, S.; An, K.S. Precious-Metal-Free Electrocatalysts for Hydrogen Evolution with Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene. *Adv. Funct. Mater.* **2019**, *29*, 1903443. [CrossRef]

99. Kuznetsov, D.A.; Chen, Z.; Kumar, P.V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P.M.; Safonova, O.V.; Fedoron, A.; Müller, C.R. Single Site Cobalt Substitution in 2D Molybdenum Carbide (MXene) Enhances Catalytic Activity in the Hydrogen Evolution Reaction. *J. Am. Chem. Soc.* **2019**, *141*, 17809–17816. [CrossRef]

100. Liu, S.; Lin, Z.; Wan, R.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tang, Z.; Lu, X.; Tian, Y. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. *J. Mater. Chem. A* **2021**, *9*, 21229–21269. [CrossRef]

101. Tan, Y.; Yi, M.; Zhu, Z.; Zhang, X.; Qin, K.; Zhang, J.; Zhu, R. Carbon-coated MoSe$_2$/Mo$_2$CT$_x$ (MXene) heterostructure for efficient hydrogen evolution. *Mater. Sci. Eng. B* **2021**, *271*, 115239. [CrossRef]

102. Bat-Erdene, M.; Batmunkh, M.; Sainbileg, B.; Hayashi, M.; Bati, A.S.R.; Qin, J.; Zhao, H.; Zhong, Y.L.; Shapter, J.G. Highly Dispersed Ru Nanoparticles on Boron-Doped Ti$_3$C$_2$T$_x$ (MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution. *Small* **2021**, *17*, 2102218. [CrossRef]
148. Yan, Y.; Xu, S.; Li, H.; Selvam, N.C.S.; Lee, J.Y.; Lee, H.; Yoo, P.J. Perpendicularly anchored ReSe2 nanoflakes on reduced graphene oxide support for highly efficient hydrogen evolution reactions. *Chem. Eng. J.* 2021, 405, 126728. [CrossRef]

149. Zhu, M.; Yan, Y.; Yang, Z.; Cheng, K.; Ye, K.; Zhou, K.; Yan, J.; Cao, D.; Wang, G. In situ growth of Ni@8Se on graphene as a robust electrocatalyst for hydrogen evolution reaction. *Int. J. Hydrogen Energy* 2020, 45, 10486–10493. [CrossRef]

150. Bolar, S.; Shit, S.; Samanta, P.; Murmu, N.C.; Kolya, H.; Kang, C.-W.; Kuila, T. Conducting scaffold supported defect rich 3D rGO-CNT/MoS2 nanostructure for efficient HER electrocatalyst at variable pH. *Compos. Part B Eng.* 2022, 230, 109489. [CrossRef]

151. Nguyen, V.-T.; Ha, H.; Nguyen, N.-A.; An, H.; Kim, H.Y.; Choi, H.-S. In situ engineering of Pd nanosponge armored with graphene dots using Br toward high-performance and stable electrocatalyst for the hydrogen evolution reaction. *ACS Appl. Mater. Interfaces* 2020, 12, 15500–15506. [CrossRef] [PubMed]

152. Li, J.-S.; Li, J.-Y.; Huang, M.-J.; Kong, L.-X.; Wu, Z. Anchoring RuXP on 3D hollow graphene nanospheres as efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. *Carbon* 2020, 161, 44–50. [CrossRef]

153. Li, Y.; Luo, Y.; Zhang, Z.; Yu, Q.; Li, C.; Zhang, Q.; Zheng, Z.; Liu, H.; Liu, B.; Dou, S. Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution. *Carbon* 2021, 183, 362–367. [CrossRef]

154. Jiang, B.; Liang, K.; Yang, Z.; Guo, K.; Shaik, F.; Zheng, J. FeCoNiB@Boron-doped vertically aligned graphene arrays: A self-supported electrocatalyst for overall water splitting in a wide pH range. *Electrochim. Acta* 2021, 386, 138459. [CrossRef]

155. Tian, Y.; Wei, Z.; Wang, X.; Peng, S.; Zhang, X.; Liu, W.-m. Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. *Int. J. Hydrogen Energy* 2021, 46, 4184–4192. [CrossRef]

156. Li, G.; Wang, J.; Yu, J.; Hou, Q.; Cao, N. 1T/2H mixed phase MoS2 nanosheets integrated by a 3D nitrogen-doped graphene derivative for enhanced hydrogen evolution. *ACS Appl. Mater. Interfaces* 2020, 12, 55884–55893. [CrossRef]

157. Li, Y.; Zhu, S.; Xu, Y.; Ge, R.; Qu, J.; Zhu, M.; Li, W. FeS2 bridging function to enhance charge transfer between MoS2 and g-C3N4 for efficient hydrogen evolution reaction. *Chem. Eng. J.* 2020, 2021, 3639–3649. [CrossRef]