Early season co-circulation of influenza A(H3N2) and B(Yamagata): interim estimates of 2017/18 vaccine effectiveness, Canada, January 2018

Danuta M Skowronski¹,², Catharine Chambers¹, Gaston De Serres³,⁴, James A Dickinson⁵, Anne-Luise Winter⁶, Rebecca Hickman⁷, Tracy Chan⁴, Agatha N Jassem²,⁵, Steven J Drews⁸,⁹, Hugues Charest³,⁴, Jonathan B Gubbay⁷,¹⁰, Nathalie Bastien¹¹, Yan Li¹¹, Mel Krajden¹,²

1. British Columbia Centre for Disease Control, Vancouver, Canada
2. University of British Columbia, Vancouver, Canada
3. Institut National de Santé Publique du Québec, Québec, Canada
4. Laval University, Quebec, Canada
5. Centre Hospitalier Universitaire de Québec, Québec, Canada
6. University of Calgary, Calgary, Canada
7. Public Health Ontario, Toronto, Canada
8. Alberta Provincial Laboratory, Edmonton, Canada
9. University of Alberta, Edmonton, Canada
10. University of Toronto, Toronto, Canada
11. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada

Correspondence: Danuta M Skowronski (danuta.skowronski@bccdc.ca)

Citation style for this article:
Skowronski Danuta M, Chambers Catharine, De Serres Gaston, Dickinson James A, Winter Anne-Luise, Hickman Rebecca, Chan Tracy, Jassem Agatha N, Drews Steven J, Charest Hugues, Gubbay Jonathan B, Bastien Nathalie, Li Yan, Krajden Mel. Early season co-circulation of influenza A(H3N2) and B(Yamagata): interim estimates of 2017/18 vaccine effectiveness, Canada, January 2018. Euro Surveill. 2018;23(5):pii=18-00035. https://doi.org/10.2807/1560-7917.ES.2018.23.5.18-00035

Using a test-negative design, we assessed interim vaccine effectiveness (VE) for the 2017/18 epidemic of co-circulating influenza A(H3N2) and B(Yamagata) viruses. Adjusted VE for influenza A(H3N2), driven by a predominant subgroup of clade 3C.2a viruses with T131K + R142K + R261Q substitutions, was low at 17% (95% confidence interval (CI): −14 to 40). Adjusted VE for influenza B was higher at 55% (95% CI: 38 to 68) despite prominent use of trivalent vaccine containing lineage-mismatched influenza B(Victoria) antigen, suggesting cross-lineage protection.

The 2017/18 influenza season in Canada has been characterised by co-circulation of influenza A(H3N2) and B(Yamagata) viruses, the latter unusual so early in the season [1]. Most European countries are also experiencing simultaneous influenza A and B epidemics, with B(Yamagata) predominating [2], whereas the United States (US) has experienced a substantial epidemic due predominantly to influenza A(H3N2) [3]. The 2017/18 trivalent influenza vaccine (TIV) includes influenza A/Hong Kong/4801/2014(H3N2)-like (clade 3C.2a) and B/Brisbane/60/2008(Victoria-lineage)-like (clade 1A) antigens. The quadrivalent influenza vaccine (QIV) contains an additional influenza B/Phuket/3073/2013(Yamagata-lineage)-like (clade 3) antigen. The same components were included in the 2016/17 northern and 2017 southern hemisphere vaccines [4].

Low vaccine effectiveness (VE) for the 2017/18 season has been anticipated following the interim report from Australia indicating VE of just 10% during its 2017 influenza A(H3N2) epidemic [5]. In the context of exclusive QIV use, Australia reported higher VE of 57% against co-circulating influenza B viruses [5]. Here we report interim 2017/18 VE estimates for influenza A(H3N2) and influenza B from participating provinces of the Canadian Sentinel Practitioner Surveillance Network (SPSN), where QIV comprised less than one third of vaccine doses distributed overall through the publicly funded campaign.

Vaccine effectiveness evaluation
VE was derived using a test-negative design [6-9]. Nasal/nasopharyngeal specimens and epidemiological data were collected from patients presenting within 7 days of onset of influenza-like illness (ILI) to community-based sentinel practitioners in Alberta, British Columbia, Ontario and Quebec. ILI was defined as acute onset of fever and cough and at least one other symptom including sore throat, myalgia, arthralgia or prostration. Fever was not a requirement for elderly adults 65 years of age and older. Vaccination status was based on patient and/or practitioner reporting of 2017/18 vaccination at least 2 weeks before symptom onset; patients vaccinated less than 2 weeks before onset or with unknown vaccination status/timing were...
excluded. Institutional review boards in each province provided ethical approval for the study.

Specimens collected from week 45 (starting 5 November 2017) to week 3 (ending 20 January 2018) were tested for influenza type/subtype by real-time RT-PCR at provincial public health reference laboratories. Sanger sequencing of the viral haemagglutinin gene was undertaken on a subset of original patient specimens collected up to 13 January 2018 to assess the contribution of genetic clades to VE estimates.

Odds ratios (OR) comparing test-positivity for influenza A(H3N2) or B between vaccinated and unvaccinated participants who were at least 1-year-old were calculated using logistic regression, adjusted for relevant covariates. VE was derived as $(1 − OR) \times 100\%$.

Virological findings
Among 1,408 eligible specimens, 689 (49%) tested positive for influenza, including 338 (49%) influenza A and 351 (51%) influenza B (Figure 1). Among the 330 (98%) subtyped influenza A viruses, 302 (92%) were A(H3N2) and 28 (8%) were A(H1N1)pdm09. Most sequenced influenza A(H3N2) viruses belonged to genetic clade 3C.2a (213/229; 93%) and of these most (204/213; 96%) belonged to a single genetic subgroup of 3C.2a (denoted subgroup 3 by nextflu.org [10]), bearing antigenic site A substitutions T131K and R142K and antigenic site E substitution R261Q (Table 1). Overall 89% of influenza A(H3N2) viruses belonged to clade 3C.2a subgroup 3, which is similar to other surveillance observations from Canada (83%) (Figure 2) and to recent reports from Europe [11]. However, this profile for the 2017/18 season is different from that found by the Canadian SPSN during 2016/17 or by Australia during its 2017 epidemic, when a greater mix of genetic variants contributed to interim analyses and only 14% and 7%, respectively, of influenza A(H3N2) viruses belonged to subgroup 3 (Figure 2).

Virtually all sequenced influenza B viruses were B(Yamagata) clade 3 (227/233; 97%) and all but one had L172Q + M251V non-antigenic site substitutions, the dominant genetic variant circulating globally since 2015 [11]; one virus had M251V without L172Q. Six viruses were influenza B(Victoria) clade 1A (five with a deletion at position 162–163) [11].

Epidemiological findings
Most (64%) participants were adults 20–64-years-old. More influenza B cases (20%) than controls (11%) were children 9–19-years-old ($p<0.01$) (Table 2). More cases of influenza A(H3N2) (25%; $p=0.07$) and influenza B (27%; $p<0.01$) were 50–64-years-old compared with controls (18%).

Adjusted VE against influenza A(H3N2) was 17% (95% confidence interval (CI): −14 to 40) overall and 10%
Sequencing of the haemagglutinin gene was attempted on a subset of available influenza-positive original patient specimens from the Canadian SPSN contributing to interim 2017/18 vaccine effectiveness evaluation (collection dates: 1 November 2017 to 10 January 2018). Sequences were publicly available from the Global Initiative on Sharing All Influenza Data (GISAID) as acknowledged in Supplement 1. Of these 228 A(H3N2) viruses, 199 (87%) belonged to clade 3C.2a, and 189 (83%) overall belonged to the clade 3C.2a subgroup bearing T131K + R142K + R261Q substitutions (nextflu subgroup 3). Furthermore, a single subgroup of clade 3C.2a with T131K + R142K + R261Q substitutions (i.e. nextflu subgroup 3 [10]) is currently predominating (89% of influenza A(H3N2) viruses), whereas a more heterogeneous mix of genetic variants contributed in Canada during 2016/17 [9] and in Australia during their 2017 epidemic [5]. Changes in the proportionate contribution and emerging predominance of clade 3C.2a variants among circulating influenza A(H3N2) viruses are important to monitor globally. The World Health Organization will decide in February 2018 whether to update the current clade 3C.2a vaccine antigen for the 2018/19 northern hemisphere vaccine, having already chosen a clade 3C.2a strain for the southern hemisphere’s 2018 vaccine [4].

Discussion

In most other interim analyses by the Canadian SPSN, type B viruses comprised less than 10% of influenza detections, whereas in 2017/18, they were identified in an equal proportion with influenza A(H3N2) [7-9]. Although the reasons for an earlier influenza B onset are unclear, Canada experienced a substantial influenza A(H3N2) epidemic in 2016/17 that may have altered population immunity and the overall 2017/18 influenza A(H3N2) contribution [9].

Nearly all (93%) characterised influenza A(H3N2) viruses were clade 3C.2a, a change from 2016/17 when most (80%) of the A(H3N2) viruses instead belonged to clade 3C.2a1 [9]. Furthermore, a single subgroup of clade 3C.2a with T131K + R142K + R261Q substitutions (nextflu subgroup 3) is currently predominating (89% of influenza A(H3N2) viruses), whereas a more heterogeneous mix of genetic variants contributed in Canada during 2016/17 [9] and in Australia during their 2017 epidemic [5]. Changes in the proportionate contribution and emerging predominance of clade 3C.2a variants among circulating influenza A(H3N2) viruses are important to monitor globally. The World Health Organization will decide in February 2018 whether to update the current clade 3C.2a vaccine antigen for the 2018/19 northern hemisphere vaccine, having already chosen a clade 3C.2a strain for the southern hemisphere’s 2018 vaccine [4].

Our 2017/18 interim VE estimate of 17% (95% CI: −14 to 40) is less than half that reported for the same A(H3N2) vaccine in 2016/17, including interim analyses by the Canadian SPSN (42%; 95% CI: 18 to 59) [9], the US Flu VE Network (43%; 95% CI: 29 to 54) [12] and the European I-MOVE Network (38%; 95% CI: 21 to 51) [13]. Our estimate is also lower than end-of-season estimates from Canada (37%; 95% CI: 20 to 51) [14] and the US (34%; 95% CI: 24 to 42) for 2016/17 [15], and lower than is expected generally for influenza A(H3N2) vaccines (33%; 95% CI: 26 to 39) [16].

Our 2017/18 interim VE for influenza A(H3N2) is more comparable to the 2017 southern hemisphere interim VE of 10% (95% CI: −16 to 31) reported from Australia [5]. Differences in virological and participant profiles, as well as the stage of the epidemic, have to be taken into account when comparing VE estimates across studies. Working-age adults comprised the majority of

Figure 2

Clade distribution of influenza A(H3N2) variants, Canada, 2017/18 interim vaccine effectiveness evaluation vs other sources of data

Clade	Description	Proportion
3C.2a	with T131K + R142K + R261Q (nextflu subgroup 3)	60%
3C.2a	with N35 + D53N + R142G + S144R + N171K + I192T + Q197H (nextflu subgroup 4)	30%
3C.2a	with N123K + K90R + H311Q (nextflu subgroup 5)	10%
3C.2a	with T131K + R142K + R261Q (nextflu subgroup 3)	40%
3C.2a	with T131K + R142K + R261Q (nextflu subgroup 3)	20%
3C.2a	with T131K + R142K + R261Q (nextflu subgroup 3)	10%

NML: National Microbiology Laboratory; SPSN: Sentinel Practitioner Surveillance Network.
participants in both studies and the 2017/18 interim VE against influenza A(H3N2) among Canadian SPSN participants 20–64-years-old (10%; 95% CI: −31 to 39) is also comparable to the 2017 estimate reported from Australia for 15–64-year-olds (16%; 95% CI: −11 to 36). Sample size for other age groups (e.g. children, elderly adults) was too limited to derive reliable interim estimates or to inform protection in specific high-risk groups.

All influenza vaccine manufacturing in Canada is egg-based. Mutations that arise from egg adaptation of the vaccine strain may affect VE, an issue also identified for the current season’s A(H3N2) vaccine component [17,18]. In Canada this season, antigenic characterisation of influenza A(H3N2) viruses has only been presented in relation to a cell-propagated version of the vaccine reference strain; characterisation against an egg-based version has not been reported [1]. Among the small subset of Canadian viruses that could be successfully characterised, all were considered antigenically similar to the cell-propagated vaccine strain [1]. Conversely, where relatedness to the egg-propagated version of the vaccine strain has been specifically explored elsewhere, more variability has been identified, with a greater proportion of viruses considered antigenically distinct from the egg-propagated version [5,11,19].

We found higher VE of 55% (95% CI: 38 to 68) against influenza B despite prominent use of TIV containing a B(Victoria) antigen that was lineage-mismatched to almost exclusively B(Yamagata) viruses. Approximately 70% of vaccine doses distributed in SPSN provinces during the 2017/18 season were TIV, albeit with regional variation that will be explored in end-of-season analyses. Substantial cross-lineage VE for influenza B has been observed previously [20], including during the prior 2016/17 season in Canada when VE against lineage-mismatched influenza B using the same B(Victoria) TIV component was 73% (95% CI: 52 to 84) [14] and QIV comprised an even smaller proportion (< 25%) of vaccine doses distributed. Our estimate for the current season is comparable to the interim VE of 57% (95% CI: 41 to 69) for influenza B reported from Australia, despite exclusive use of QIV in that country [5].

Other agent–host and immuno–epidemiological interactions, including birth cohort effects induced by differential prime–boost exposures, may also play a role in VE [21]. The effect of prior vaccination history was

| TABLE 1 Virological profile of influenza specimens contributing to interim 2017/18 vaccine effectiveness evaluation based on Sanger sequencing, Canadian Sentinel Practitioner Surveillance Network, 5 November 2017–13 January 2018 (n = 462) |

Genetic clade with substitutions (nextflu subgroup)	Alberta	British Columbia	Ontario	Quebec	Overall																			
	n	%	n	%	n	%	n	%	n	%														
Influenza A(H3N2)																								
Clade 3C.2a	114	100	38	100	50	100	27	100	229	100														
+ N31S+D53N+R142G+S144R+L142T+Q197H (subgroup 1)	2	2	0	0	0	1	4	3	1	3														
+ N121K+S144K (subgroup 2)	1	1	1	1	3	6	1	4	6	3														
+ T131K+R142K+R261Q (subgroup 3)	102	89	35	92	45	90	22	82	204	89														
Clade 3C.3a	9	8	2	5	1	2	3	11	15	7														
+ N121K+T135K (subgroup 4)	2	2	1	3	0	0	0	3	3	1														
+ N121K+K92R+H311Q (subgroup 5)	7	6	1	3	1	2	3	11	12	5														
Clade 3C.3a1	0	0	0	0	0	1	2	0	0	1														
Influenza B	76	100	83	100	63	100	11	100	233	100														
Yamagata lineage clade 3	76	100	82	99	62	98	7	64	227	97														
Victoria lineage clade 1A	0	0	1	1	1	2	4	36	6	33														
Characteristic	All participants (column %)	% vaccinateda (row %)	Overall	na	%	na	%	Negative controls	Overall	na	%	Negative controls	Overall	na	%	Negative controls	Overall	na	%	Negative controls	Overall	na	%	Negative controls
--------------------------------------	----------------------------	-----------------------	---------	----	----	----	----	------------------	---------	----	----	------------------	---------	----	----	------------------	---------	----	----	------------------	---------	----	----	------------------
Overall	302 100	NA	351 100	719	100	33	NA	80 23	253 35	NA	NA	NA												
Age group (years)																								
1–8	18 6		21 6	64 9	2	11	0 0	0 0	0 0	1 1	1 1	15 18												
9–19	31 10	0.07	70 20	82 11	7 23	1 1	1 1	15 18																
20–49	126 42	< 0.01	117 33	325 45	34 27	21 18	21 18	91 28																
50–64	77 25	0.53	95 27	131 18	26 34	30 32	30 32	48 37																
≥ 65	50 17		48 14	117 16	31 62	28 58	28 58	89 76																
Median (range)	43 (2–87)	0.17	43 (9–15)	39 (1–96)	53.5 (3–87)	61.5 (12–91)	52 (1–96)	< 0.01																
Sex																								
Female	185 62	0.45	205 59	421 59	71 38	0.02	55 27	0.03	162 38															
Male	115 38		143 41	291 41	29 25	0.02	24 17	0.02	90 31															
Unknown	2 NA		NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0															
Co-morbiditya																								
No	226 77	0.57	262 80	524 76	63 28	< 0.01	46 18	< 0.01	155 30															
Yes	66 23	0.12	65 20	168 24	33 50	< 0.01	31 48	< 0.01	92 55															
Unknown	10 NA		NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0															
Province																								
Alberta	127 42	< 0.01	91 26	201 28	40 31	0.10	14 15	< 0.01	75 37															
British Columbia	48 16		107 30	200 28	16 33	0.10	31 29	< 0.01	70 35															
Ontario	77 25	< 0.01	114 32	203 28	33 43	< 0.01	33 29	< 0.01	84 41															
Quebec	50 17		39 11	115 16	11 22	0.02	2 5	0.02	24 21															
Specimen collection interval from ILI onset (days)f																								
≤ 4	239 79	< 0.01	252 72	499 69	78 33	0.73	58 23	0.87	170 34															
5–7	63 21	0.42	220 31	22 22	0.34	83 38																		
Median (range)	3 (0–7)	< 0.01	3 (0–7)	3 (0–7)	3 (0–7)	0.18	3 (1–7)	0.96	3 (0–7)	0.88														
Specimen collection month																								
November	38 13	0.10	23 7	129 18	6 16	0.04	1 4	0.03	27 21															
December	124 41	< 0.01	117 33	259 37	47 38	0.04	23 20	0.03	99 37															
January	140 46		211 60	321 45	47 34	0.04	23 20	0.03	127 40															
2017/18 vaccination status																								
Vaccination without regard to timingg	112/314	0.48	87/398	285/751	38 NA	NA 0																		
≥ 2 weeks before ILI onset	100 33	0.52	80 23	253 35	NA 0																			

ILI: influenza-like illness; NA: not applicable.

The number of participants with unknown sex or comorbidity are shown in table but excluded from the denominator for calculating percentages.

a Vaccination status based on patient and/or practitioner report; defined as receipt of 2017/18 seasonal influenza vaccine ≥ 2 weeks before symptom onset. Patients vaccinated ≤ 2 weeks before onset or with unknown vaccination status/timing were excluded.

b p value for comparison of influenza A(H3N2) cases to negative controls. Differences were compared using the chi-squared test or Wilcoxon rank-sum test.

c p value for comparison of influenza B cases to negative controls. Differences were compared using the chi-squared test or Wilcoxon rank-sum test.

d p value for comparison of vaccinated participants to unvaccinated participants. Differences were compared using the chi-squared test or Wilcoxon rank-sum test.

e Includes chronic co-morbidities that place individuals at higher risk of serious complications from influenza as defined by Canada’s National Advisory Committee on Immunization (NACI), including: heart, pulmonary (including asthma), renal, metabolic (such as diabetes), blood, cancer or immunocompromising conditions, conditions that compromise management of respiratory secretions and increase risk of aspiration, or morbid obesity (body mass index ≥ 40).

f Missing specimen collection dates were imputed as the laboratory accession date minus 2 days, the average time between specimen collection and accession dates among specimens with complete information for both values.

g Participants who received seasonal 2017/18 influenza vaccine ≤ 2 weeks before ILI onset or for whom vaccination timing was unknown were excluded from the primary analysis. They are included here for assessing vaccination regardless of timing for comparison to other sources of vaccination coverage.
not assessed here owing to sample size limitations, but will be explored as part of the end-of-season analyses.

Conclusions
As reported from Australia for the 2017 southern hemisphere vaccine, interim estimates from Canada for the 2017/18 northern hemisphere vaccine indicate low VE of less than 20% against influenza A(H3N2), notably among working-age adults. While the influenza A(H3N2) epidemic continues, adjunct protective measures should be reinforced to minimise the associated disease burden in high-risk individuals [22]. Interim 2017/18 VE estimates against influenza B are higher at 55% despite prominent TIV use, suggesting cross-lineage protection.

Acknowledgements
The authors gratefully acknowledge the contribution of sentinel sites whose regular submission of specimens and data provide the basis of our analyses. We wish to acknowledge the administrative, coordination and data entry support in each participating province including: Lisan Kwindt and Kaitlyn Shaw for the British Columbia Centre for Disease Control; Dylan Kendrick and Manish Ranpara for TARRANT in Alberta; Romy Olsha and Kathleen Parris for Public Health Ontario; and Sophie Auger for the Institut national de santé publique du Québec. We thank those who provided laboratory and technical support in each province at the British Columbia Centre for Disease Control Public Health Laboratory, the Alberta Provincial Laboratory for Public Health (ProvLab), the Public Health Ontario Laboratory, and the Laboratoire de santé publique du Québec (LSPQ), including Joel Menard of LSPQ for sequencing support. We would also like to acknowledge William Hsiao and Diane Eisler of the British Columbia Centre for Disease Control Public Health Laboratory for their help in automating genomic sequencing analyses. Funding was provided by the British Columbia Centre for Disease Control, Alberta Health and Wellness, Public Health Ontario, Ministère de la santé et des services sociaux du Québec, and l’Institut national de santé publique du Québec. We also acknowledge the authors, originating and submitting laboratories of the virus sequences from GISAID’s EpiFlu Database (www.gisaid.org) (Supplement 1). Genbank accession numbers (SPSN sequences) Pending.

Conflict of interest
GDS has received grants unrelated to influenza from GSK and Pfizer and travel reimbursement to attend an ad hoc advisory board meeting of GSK also unrelated to influenza; he has provided paid expert testimony in a grievance against a vaccine-or-mask healthcare worker influenza vaccination policy for the Ontario Nurses Association. JBG has received research grants from GlaxoSmithKline Inc. and Hoffman-La Roche Ltd to study antiviral resistance in influenza, and from Pfizer Inc. to conduct microbiological surveillance of Streptococcus pneumoniae. MK has received research grants from Roche, Merck, Siemens, Hologic, and Boehringer Ingelheim for unrelated studies. Other authors have no conflicts of interest to declare.

Table 3
Interim 2017/18 vaccine effectiveness estimates, Canadian Sentinel Practitioner Surveillance Network, 5 November 2017–20 January 2018 (n = 1,408)

Model	Influenza A(H3N2)	Influenza B	Overall (A and B)				
	% vac	n vac / N	% vac	n vac / N	% vac	n vac / N	% vac
All participants							
Sample size							
Cases	100/302	33	80/351	23	186/689	27	
Controls	253/719	35	253/719	35	253/719	35	
Vaccine effectiveness							
Unadjusted	9	−21 to 31	46	27 to 59	32	14 to 46	
Age group	15	−15 to 38	49	30 to 63	36	18 to 50	
Province	8	−23 to 31	49	31 to 62	34	16 to 47	
Specimen collection interval	8	−23 to 31	46	27 to 59	31	14 to 45	
Calendar time	13	−16 to 35	52	35 to 64	38	21 to 51	
Full covariate adjustment	17	−14 to 40	55	38 to 68	42	25 to 55	
Participants 20–64 years-old							
Sample size							
Cases	60/203	30	51/212	24	113/439	26	
Controls	139/456	30	139/456	30	139/456	30	
Vaccine effectiveness							
Unadjusted	4	−37 to 33	28	−5 to 50	21	−6 to 41	
Full covariate adjustment	10	−31 to 39	40	10 to 60	31	6 to 49	

CI: confidence interval; n vac: number vaccinated; N: number total; % vac: percentage vaccinated; VE: vaccine effectiveness.

*Analyses adjusted for age group (categorical: 1–8, 9–19, 20–49, 50–64 or ≥ 65 years), province (categorical: Alberta, British Columbia, Ontario or Quebec), specimen collection interval (categorical: ≤ 4 or 5–7 days) and calendar time (categorical: 2-week intervals based on week of specimen collection).
Authors’ contributions
Principal investigators (epidemiological): DMS (National and British Columbia); JAD (Alberta); ALW (Ontario); and GDS (Québec). Principal investigator (laboratory): ANJ and MK British Columbia; SJD (Alberta); JBG (Ontario); HC (Québec); and NB and YL (National Microbiology Laboratory). Genomic sequencing and analysis: RH and TC. Epidemiological data analysis: CC and DMS. Preparation of first draft: CC and DMS. Draft revision and approval: all.

References
1. Public Health Agency of Canada (PHAC). FluWatch: Influenza weekly reports 2017-18 season. Ottawa: PHAC; 2018. [Accessed 15 January 2018]. Available from: https://www.canada.ca/en/public-health/services/diseases/flu-influenza/influenza-surveillance/weekly-reports-2017-2018-season.html.
2. European Centre for Disease Prevention and Control (ECDC). Flu New Europe: Joint ECDC-WHO/Europe weekly influenza update. [Accessed 15 January 2018]. Stockholm: ECDC; 2018. Available from: http://fluneweurope.org/.
3. Centers for Disease Control and Prevention (CDC). FluView: Weekly U.S. influenza surveillance report. Atlanta; CDC; 2018. [Accessed 15 January 2018]. Available from: https://www.cdc.gov/flu/fluweekly/.
4. World Health Organization (WHO). WHO recommendations on the composition of influenza virus vaccines. Geneva: WHO. Available from: http://www.who.int/influenza/vaccines/virus/recommendations/en/.
5. Sullivan SG, Chilver MB, Carville KS, Deng YM, Grant KA, Higgins G, et al. Low interim influenza vaccine effectiveness, Australia, 1 May to 24 September 2017. Euro Surveill. 2017;22(4):pii=17–0007.
6. Chambers C, Skowronski DM, Sabaiduc S, Winter AL, Dickinson JA, De Serres G, et al. Interim estimates of 2015/16 vaccine effectiveness against influenza A(H1N1)pdm09, Canada, February 2016. Euro Surveill. 2016;21(31):30168. https://doi.org/10.2807/1560-7917.ES.2016.21.11.30168 PMID: 27020673.
7. Skowronski D, Chambers C, Sabaiduc S, De Serres G, Dickinson J, Winter A, et al. Interim estimates of 2015/14 vaccine effectiveness against influenza A(H1N1)pdm09 from Canada s sentinel surveillance network, January 2014. Euro Surveill. 2014;19(5):20690. https://doi.org/10.2807/1560-7917.ES2014.19.5.20690 PMID: 24524234.
8. Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Dickinson JA, Winter AL, et al. Interim estimates of 2014/15 vaccine effectiveness against influenza A(H3N2) from Canada’s Sentinel Physician Surveillance Network, January 2015. Euro Surveill. 2015;20(4):21022. https://doi.org/10.2807/1560-7917.ES2015.20.4.21022 PMID: 25655053.
9. Skowronski DM, Chambers C, Sabaiduc S, Dickinson JA, Winter AL, De Serres G, et al. Interim estimates of 2016/17 vaccine effectiveness against influenza A(H3N2), Canada, January 2017. Euro Surveill. 2017;22(6):30460. https://doi.org/10.2807/1560-7917.ES2017.22.6.30460 PMID: 28205053.
10. Neher RA, Bedford T. nextflu: real-time tracking of seasonal influenza virus evolution in humans. Bioinformatics. 2015;31(21):3546-8. Available from: http://nextflu.org/h3n2/3y/ https://doi.org/10.1093/bioinformatics/btv381 PMID: 2615986.
11. European Centre for Disease Prevention and Control (ECDC). Influenza virus characterization, summary Europe, December 2017. Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/en/publications-data/influenza-virus-characterisation-summary-europe-december-2017.
12. Flannery B, Chung JR, Thaker SN, Monto AS, Martin ET, Belongia EA, et al. Interim estimates of 2016-17 seasonal influenza vaccine effectiveness – United States, February 2017. MMWR Morb Mortal Wkly Rep. 2017;66(6):167–71. https://doi.org/10.15585/mmwr.mm6606a3 PMID: 28206789.
13. Kissling E, Rondy MI-MOVE/i-MOVE+ study team. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): i-MOVE multicentre case control studies at primary care and hospital levels in Europe. Euro Surveill. 2017;22(7):30464. https://doi.org/10.2807/1560-7917.ES.2017.22.7.30464 PMID: 28230524.
14. British Columbia Centre for Disease Control (BCCDC). Canadian Sentinel Practitioner Surveillance Network (SPSN) vaccine effectiveness (VE) estimates (95%CI), 2004-05 to 2016-17 seasons. Vancouver: BCCDC; [Accessed: 15 Jan 2018]. Available from: http://www.bccdc.ca/resource-gallery/Documents/Statistics%20and%20Research/Publications/