Coulomb blockade of Majorana fermion induced transport

A. Zazunov,1 A. Levy Yeyati,2 and R. Egger1

1 Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
2 Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
(Dated: November 19, 2018)

We study Coulomb charging effects for transport through a topologically nontrivial superconducting wire, where Majorana bound states are present at the interface to normal-conducting leads. We construct the general Keldysh functional integral representation, and provide detailed results for the nonlinear current-voltage relation under weak Coulomb blockade conditions.

PACS numbers: 71.10.Pm, 73.23.-b, 74.50.+r

I. INTRODUCTION

Charge transport through topologically nontrivial materials is of great current interest, offering novel fundamental insights as well as potential applications in topological quantum computing. The recently discovered topological insulators as well as topological superconductors (TSs) are predicted to exhibit spectacular nonlocal transport phenomena and have consequently attracted a lot of attention. In particular, for one-dimensional TS quantum wires, the crucial role of Majorana bound states (MBSs) located near the interface to topologically trivial regions has been emphasized. Majorana fermions are special in that they are their own antiparticles, i.e., the fermion creation operator is equal to the annihilation operator, and the condensed-matter setup discussed below could offer experimental signatures for these elusive and hitherto unobserved particles.

We here study nonlinear electronic transport through a mesoscopic TS wire (also referred to as “dot”) containing a pair of MBSs. The wire is assumed to be contacted by conventional normal-conducting leads. The contacts correspond to thin insulating layers or barriers and will be modeled by a tunnel Hamiltonian. We include Coulomb interactions on the dot via the charging energy \(E_c = e^2/(2C) \). The schematic setup studied in this work is shown in Fig. 1 and we briefly outline possible experimental realizations below. The noninteracting \((E_c = 0)\) version of this setup was studied in detail before and one finds resonant Andreev reflection with the maximal (unitary) value \(G_L/R = 2e^2/h \) of the linear conductance through the left/right contact. For the interacting case \((E_c > 0)\), an important work by Fu13 has provided a general framework to address transport in this setup. The Hilbert space constraint introduced in Ref. 13 is, however, difficult to handle in actual calculations. In fact, the concrete results presented in Ref. 13 (see also below) were mostly restricted to the strong Coulomb blockade (CB) regime realized for large \(E_c \). We formulate an alternative Keldysh functional integral approach below, where the constraint is automatically satisfied. We give detailed results for the weak CB (small \(E_c \)) regime, where we find a pronounced interaction \((E_c \neq 0)\) induced suppression of the current.

Experimental realizations for the setup shown in Fig. 1 arise under several distinct physical scenarios. For instance, a nanowire made of a 3D topological insulator (e.g., Bi\(_2\)Se\(_3\)) with proximity-induced superconducting correlations is predicted to have MBSs at both ends. Similar setups can be realized in 2D topological insulators with “quantum spin Hall” edge states. An example is based on the vortex core states in \(p\)-wave superconductors or in 2D noncentrosymmetric superconductors. Finally, the MBS should also be realizable in semiconductor quantum wires with a Zeeman field and proximity-induced superconductivity. The stability of the MBS when including interactions in an isolated wire has also been addressed in several recent works. However, so far no experimental signature for the MBS has been reported in any system.

The structure of this paper is as follows. In Sec. II we describe the model employed in our study and briefly show that our formulation reproduces known results in the strong CB limit. We then construct a general Keldysh functional integral representation for the interacting problem in Sec. III. This theory is employed in Sec. IV to evaluate the current-voltage characteristics un-
nder weak CB conditions. We briefly summarize our main findings and provide an outlook in Sec. [V]. Technical details and derivations can be found in three appendices. Note that we often use units where $\hbar = k_B = 1$.

II. MODEL

We consider transport through a mesoscopic TS quantum wire contacted by normal-conducting leads, see Fig. [1]. We assume throughout this work that the superconducting gap Δ is the largest relevant energy scale, and thus no quasiparticles above the gap are involved. In particular, $\max(eV, E_c) < \Delta$. We study a “floating” (not grounded) TS dot, where current need not be conserved under steady-state conditions. In some previous works, see, e.g., Ref. [9], a grounded superconductor was considered, where current need not be conserved. Note also that the situation is different for conventional (topologically trivial) superconducting dots, where transport is typically mediated by cotunneling processes and the resulting conductance is much smaller. In the present case, two MBSs may host a fermion at no energy cost, and thus no even-odd parity effect arises.

A. Model

For realistical TS wire length, the two MBSs located near the left/right ($j = L/R$) contact correspond to decoupled Majorana fermion operators, $\gamma_j = \gamma_j^\dagger$, with anticommutator relation $\{\gamma_i, \gamma_j\} = \delta_{ij}$. In the low-energy sector of interest here, only the MBSs provide available fermion states to tunnel through the superconductor. It is convenient to introduce the complex auxiliary fermion $d = (\gamma_L + i\gamma_R)/\sqrt{2}$, i.e.,

$$\gamma_L = (d + d^\dagger)/\sqrt{2}, \quad \gamma_R = -i(d - d^\dagger)/\sqrt{2}. \quad (1)$$

For an isolated wire, the fermion parity $(-)^n$ of the two degenerate ground states with even ($n = 2N$) or odd ($n = 2N + 1$) number of electrons fixes the occupation of the d fermion level,

$$2i\gamma_L\gamma_R = 2\hat{n}_d - 1 = (-)^{n+1}, \quad \hat{n}_d = d^\dagger d. \quad (2)$$

This imposes a constraint on the Hilbert space and the Majorana fermion dynamics cannot be taken as independent of the charge (or the dual phase) dynamics. Below, we instead formulate an alternative but essentially equivalent approach free of any Hilbert space constraint, see also Ref. [20] which is technically easier to handle. To that end, consider the number operator \hat{N} for Cooper pairs conjugate to the condensate phase χ on the dot, $[\chi, \hat{N}] = i$. The dot’s instantaneous charge state is then fully determined by specifying the configuration (N, n_d), where $N \in \mathbb{N}_0$ and $n_d = 0, 1$ are eigenvalues of \hat{N} and \hat{n}_d, respectively. Importantly, Eq. (2) tells us that the fermion parity of the dot is determined by n_d only and not affected by changes of N. By construction, both N and χ commute with γ_j, and therefore no constraint on the Hilbert space arises.

The full Hamiltonian describing transport through the dot, $H = H_c + H_t$, contains the Coulomb charging term

$$H_c = E_c(2\hat{N} + \hat{n}_d - n_0)^2, \quad (3)$$

where $n_0 \in \mathbb{R}$ is tunable by the backgate voltage V_g indicated in Fig. [4]. Electrons in the leads correspond to effectively spinless fermion operators $c_{j=L/R,k}$ with momentum k, where for given j, c_{jk} and c^\dagger_{jk} are tunnel-coupled to the respective Majorana fermion γ_j only. For simplicity, we assume a k-independent tunnel matrix element λ_j encoding the overlap of the lead state with the respective MBS wavefunction. As detailed in App. [A] the tunnel Hamiltonian then takes the form

$$H_t = \frac{1}{\sqrt{2}} \sum_k \left[\lambda_L c^\dagger_{L,k}(d + e^{-i\chi}d^\dagger) \right. \quad (4)$$

$$- i\lambda_R c^\dagger_{R,k}(d - e^{-i\chi}d^\dagger) \left] + \text{h.c.}, \right.$$

which is charge conserving. In particular, the different terms in H_t describe electron tunneling from the dot to lead j, either by destroying the d state without changing N, i.e., $(N,1) \rightarrow (N,0)$, or by occupying the d state together with a splitting of a Cooper pair, i.e., $(N,0) \rightarrow (N-1,1)$, plus the conjugate processes. As elaborated in Appendix B we treat the lead Hamiltonian H_L within the standard wide-band approximation. The applied bias voltage V corresponds to the chemical potential difference in both leads, $eV = \mu_L - \mu_R$. For further reference, we also define the hybridization energy scales

$$\Gamma_j = 2\pi\nu_j|\lambda_j|^2, \quad (5)$$

where ν_j is the density of states in lead $j = L/R$.

It is now straightforward to rederive the well-known results[23] for the noninteracting $(E_c = 0)$ limit from the above Hamiltonian, see also Sec. [V]. Before turning to the construction of the Keldysh functional integral for the interacting problem in Sec. [III], let us briefly show that the above formulation easily reproduces previous result[24] reporting electron “teleportation” under strong CB conditions, i.e., for $\max(eV, \Gamma_{L,R}) \ll E_c$.

B. Strong Coulomb Blockade

Under strong CB conditions, the charging energy is dominant and needs to be examined first. We focus on the resonant situation realized for half-integer values for n_0, where two different cases arise: (i) For $n_0 = 2\ell + 1/2$ with integer ℓ, degeneracy is achieved for fixed Cooper pair number $N = \ell$, where the d state is either occupied
(n_d = 1) or empty (n_d = 0). (ii) When n_0 = 2\ell - 1/2, the degeneracy point is achieved for different Cooper pair numbers, namely for (N_n, n_d) = (\ell - 1, 1) and (\ell, 0). We conclude that the low-energy description needs to keep only two states, either of type (i) or (ii) depending on n_0. For case (i), N remains constant and all terms \propto e^{\pm i\chi}

(where N is raised or lowered by one unit) can be omitted in Eq. (4). The tunnel Hamiltonian then takes the form

$$H_t^{(\ell)} = \frac{1}{\sqrt{2}} \sum_{k} \left(\lambda_L c_{L,k}^\dagger - i\lambda_R c_{R,k}^\dagger \right) d + \text{h.c.}$$

Under scenario (ii) only transitions (\ell - 1, 1) \leftrightarrow (\ell, 0) are possible. Using \(f = e^{-i\chi}d^\dagger \) as effective single-charge fermion, we arrive at

$$H_t^{(\ell)} = \frac{1}{\sqrt{2}} \sum_{k} \left(\lambda_L c_{L,k}^\dagger + i\lambda_R c_{R,k}^\dagger \right) f + \text{h.c.}$$

In both cases, we recover the resonant tunneling model describing teleportation. This leads to the unitary conductance value \(G_L = G_R = e^2/h \) instead of the resonant Andreev reflection value \(2e^2/h \) found when \(E_c = 0 \).

III. KELDYSH FUNCTIONAL INTEGRAL

We now turn to the general Keldysh functional integral for the interacting problem. This corresponds to the Majorana generalization of the (real-time version of the) Ambegaokar-Eckern-Schön (AES) action for a conventional metallic grain.

A. AES action for Majorana induced transport

The relevant low-energy degree of freedom characterizing the interacting problem is the single-electron (half Cooper pair) counting phase field \(\phi(t) \equiv \chi/2 \). For the nonequilibrium problem at hand, we employ the textbook Keldysh functional integral formulation and double the phase field \(\phi(t) \rightarrow \phi_\pm(t) \) according to the forward and backward branch of the Keldysh time contour. Technically, the phase field is introduced through a Hubbard-Stratonovich transformation of the charging energy in Eq. (3), see App. B for details. Physically, \(\phi \) is the dual variable to the Cooper pair charge \(N \). We then introduce classical/quantum phase fields

$$\phi_c(t) = \frac{1}{2}(\phi_+ + \phi_-), \quad \phi_q(t) = \phi_+ - \phi_-.$$ (6)

The charging energy (3) yields the action contribution

$$S_c = \int dt \phi_q \left(\frac{\dot{\phi}_c}{2E_c} + n_0 \right)$$ (7)

encoding Coulomb blockade effects. By virtue of the Hubbard-Stratonovich transformation, the fields corresponding to the lead fermions and to the Majorana fermions effectively become noninteracting. In the functional integral, those fields can therefore be integrated out analytically; for technical details, see Appendix B.

The final (phase representation of the) functional integral for the Keldysh partition function reads

$$Z = \int \mathcal{D}(\phi_c, \phi_q) e^{i(S_\chi + S_f)}.$$. (8)

The fermion field integrations result in the action piece

$$S_f = -i \sum_{j=L/R} \ln \text{Pf} \left[\tau_{x,y,z} \delta(t - t') + \hat{A}_j(t, t') \right],$$ (9)

where “Pf” denotes the Pfaffian and \(\tau_{x,y,z} \) are Pauli matrices in (rotated Keldysh) Keldysh space. Moreover, we define the antisymmetric (time and Keldysh) matrix

$$\hat{A}_j(t, t') = 2\Gamma_j F(t - t') \begin{pmatrix} c(t)c(t') \cos \Phi_j(t, t') & c(t)s(t') \sin \Phi_j(t, t') \\ -s(t)c(t') \sin \Phi_j(t, t') & s(t)s(t') \cos \Phi_j(t, t') \end{pmatrix} + i\Gamma_j \begin{pmatrix} 0 & c^2(t)\delta_+(t - t') + s^2(t)\delta_-(t - t') \\ -c^2(t)\delta_+(t - t') + s^2(t)\delta_-(t - t') & 0 \end{pmatrix}$$ (10)

with \(c(t) = \cos[\phi_q(t)/2], s(t) = \sin[\phi_q(t)/2], \) and \(\delta_\pm(t) \equiv \delta(t \pm 0^+) \), where the infinitesimal shifts reflect the proper causality features. At temperature \(T \), the distribution function \(F(t - t') \) has the Fourier transform

$$F(\epsilon) = \tanh \left[\epsilon/(2T) \right],$$ (11)

and the phase function \(\Phi_j \) appearing in Eq. (10) is

$$\Phi_j(t, t') = \mu_j(t - t') + \phi_c(t) - \phi_c(t').$$ (12)

Finally, the hybridizations \(\Gamma_j \) were defined in Eq. (5).

While Eq. (5), with the action in Eqs. (7) and (9), provides a general representation of the interacting nonequilibrium Majorana transport problem, approximations are necessary in order to obtain concrete analytical results.
B. Semiclassical expansion

We here are mostly interested in the weak CB regime, where standard arguments\cite{22} imply that a semiclassical approximation in the phase representation is appropriate. In particular, fluctuations of \(\phi_q \) around zero are small, i.e., we can expand the action in Eq. (8) to quadratic order in \(\phi_q \). Keeping the full nonlinear \(\phi_q \) dependence, the matrix (10) is thus approximated by \(\hat{\Lambda}_j^{0} = \hat{\Lambda}_j^{(0)} + \hat{\Lambda}_j^{(1)} + \hat{\Lambda}_j^{(2)} \). Specifically, the matrices \(\hat{\Lambda}_j^{(m)}(t,t') \) of order \(\phi_q^m \) are

\[
\hat{\Lambda}_j^{(0)} = i\Gamma_j \begin{pmatrix} 2F(t - t') \cos \Phi_j(t,t') & \delta_-(t - t') \\ -\delta_+(t - t') & 0 \end{pmatrix},
\]

\[
\hat{\Lambda}_j^{(1)} = i\Gamma_j F(t - t') \sin \Phi_j(t,t') \begin{pmatrix} 0 & \phi_q(t') \\ -\phi_q(t) & 0 \end{pmatrix},
\]

\[
\hat{\Lambda}_j^{(2)} = -i\frac{\Gamma_j}{4} F(t - t') \cos \Phi_j(t,t') \begin{pmatrix} \phi_q^2(t) + \phi_q^2(t') & 0 \\ 0 & -2\phi_q(t)\phi_q(t') \end{pmatrix} + \frac{\Gamma}{2}\phi_q^2(t)\delta(t - t')\hat{\tau}_y.
\]

At this stage, it is convenient to introduce the interacting Keldysh-Majorana Green’s function (GF)

\[
\hat{G}_j(t,t') = \left(\tau_x i\partial_t + \hat{\Lambda}_j^{(0)} \right)^{-1}.
\]

This has a triangular representation in (rotated) Keldysh space, \(\hat{G}_j = \begin{pmatrix} 0 & G_j^R \\ G_j^R & G_j^K \end{pmatrix} \), with retarded/advanced GFs \(G_j^{R/A} \) and Keldysh GF \(G_j^K \). Note that in this representation, the Majorana GF has a bosonic Keldysh structure, see also Ref. \cite{12}. According to Eq. (13), \(G_j^{R/A} \) obeys the noninteracting (\(\phi_c = 0 \)) equation of motion and thus has the Fourier representation \(G_j^{R/A}(\epsilon) = 1/(\epsilon \pm i\Gamma_j) \). This implies the spectral function

\[
A_j(\epsilon) = -\text{Im} [G_j^R(\epsilon)] = \frac{\Gamma_j}{\epsilon^2 + \Gamma_j^2}.
\]

Only \(G_j^K \) is affected by interactions encoded in \(\phi_c \). The action \((9) \) now takes the form

\[
S_f = -i \sum_j \ln \text{Pf} (\hat{G}_j^{-1}) + S_f^{(1)} + S_f^{(2)} + O(\phi_q^3),
\]

where the first (\(\phi_q = 0 \)) term vanishes as a result of the unitary time evolution along the closed Keldysh contour. The first-order (in \(\phi_q \)) contribution is

\[
S_f^{(1)} = -\frac{i}{2} \sum_j \text{Tr} \left(\hat{G}_j \hat{\Lambda}_j^{(1)} \right) = \int dt \mathcal{I}_j,
\]

where the trace \(\text{Tr} \) extends both over time and Keldysh space, and \(\mathcal{I} \) denotes the total current flowing into the dot. Some algebra yields

\[
\mathcal{I}(t) = \sum_j \Gamma_j \int dt' G_j^R(t - t') \left\{ F_j, c(t' - t) \cos [\phi_c(t') - \phi_c(t)] + F_j, a(t' - t) \sin [\phi_c(t') - \phi_c(t)] \right\}
\]

with the time-symmetric (-antisymmetric) functions

\[
F_j, c(t) = F(t) \sin(\mu_j t), \quad F_j, a(t) = F(t) \cos(\mu_j t).
\]

Finally, the second-order term in Eq. (15) reads

\[
S_f^{(2)} = -\frac{i}{2} \sum_j \text{Tr} \left[\hat{G}_j \hat{\Lambda}_j^{(2)} - \frac{1}{2} \left(\hat{G}_j \hat{\Lambda}_j^{(1)} \right)^2 \right].
\]

IV. WEAK COULOMB BLOCKADE LIMIT

A. Langevin approach

When the charging energy \(E_c \) is sufficiently small, fluctuations of the phase fields \(\phi_{c,q} \) are small and allow for a quadratic expansion of the action \(S_f \) in both fields.\cite{22} This expansion is detailed in Appendix C and allows to reformulate the functional integral \(S_f \) in terms of the
equivalent semiclassical Langevin equation,
\[
\frac{1}{2E_c} \dddot{\phi}_c(t) + \int dt' \eta(t - t') \dot{\phi}_c(t') = \xi(t). \tag{20}
\]

The damping kernel \(\eta(t - t')\) has the Fourier representation
\[
\eta(\omega) = \sum_{j=\text{L/RC}} \frac{\Gamma_j}{\omega} \int \frac{d\epsilon}{2\pi} (A_j(\epsilon + \omega/2) + A_j(\epsilon - \omega/2)) \left[F_{j,a}(\epsilon + \omega/2) - F_{j,a}(\epsilon - \omega/2) \right]. \tag{21}
\]

The Gaussian noise field \(\xi(t)\) has zero mean value and the correlation function \(\langle \xi(t)\xi(t') \rangle = K(t - t')\), where the fluctuation kernel has the Fourier representation
\[
K(\omega) = \sum_{j=\text{L/RC}} \frac{\Gamma_j}{2} \int \frac{d\epsilon}{2\pi} (A_j(\epsilon + \omega/2) + A_j(\epsilon - \omega/2)) \left[1 - F_{j,a}(\epsilon + \omega/2)F_{j,a}(\epsilon - \omega/2) \right] \tag{22}
\[
- \sum_j \Gamma_j^2 \int \frac{d\epsilon}{2\pi} \text{Re} \left[G_{j}^R(\epsilon + \omega/2)G_{j}^R(\epsilon - \omega/2) \right] F_{j,a}(\epsilon + \omega/2)F_{j,a}(\epsilon - \omega/2).
\]

In equilibrium \((\mu_{L,R} = 0)\), \(F_{j,s} = 0\) and \(F_{j,a} = F\), and hence the fluctuation-dissipation relation
\[
K_{\text{eq}}(\omega) = \frac{\omega}{\pi} \coth \left(\frac{\omega}{2T} \right) \eta_{\text{eq}}(\omega) \tag{23}
\]
is satisfied, providing an important consistency check.

In the zero-temperature limit, both \(\eta(\omega)\) and \(K(\omega)\) can be evaluated in closed form. Specifically, we find for the damping kernel
\[
\eta_{T=0}(\omega) = \sum_{j,\pm} \frac{\Gamma_j}{\pi\omega} \tan^{-1} \left(\frac{\omega \pm \mu_j}{\Gamma_j} \right), \tag{24}
\]
while the fluctuation kernel is
\[
K_{T=0}(\omega) = \frac{|\omega|\eta(\omega)}{2} + \sum_j \frac{\Gamma_j}{2\pi} \Theta(2|\mu_j| - |\omega|) \left[\tan^{-1} \left(\frac{|\mu_j|}{\Gamma_j} \right) + \tan^{-1} \left(\frac{|\mu_j| - |\omega|}{\Gamma_j} \right) + \frac{\Gamma_j}{|\omega|} \ln \left(\frac{|\mu_j| - |\omega|^2 + \Gamma_j^2}{\mu_j^2 + \Gamma_j^2} \right) \right], \tag{25}
\]
where \(\Theta\) is the Heaviside function.

The Langevin equation \([20]\) allows for an intuitive interpretation of the charge dynamics in this interacting Majorana system in terms of an effective RC circuit. Its solution is used below in order to compute the current-voltage relation.

B. Current-voltage relation

Next we outline the calculation of the dc current, \(I \equiv I_L = -I_R\). By using Eq. \([17]\) and the noise average \(\langle \cdots \rangle_{\xi} = \int D\xi \langle \cdots \rangle e^{-\frac{1}{2}K-\xi}\), we find the (indeed \(t\)-independent) result
\[
I_j = \int dt' G_{j}(t' - t') \left[F_{j,s}(t' - t) \langle \cos[\phi_c(t') - \phi_c(t)] \rangle_{\xi} + F_{j,a}(t' - t) \langle \sin[\phi_c(t') - \phi_c(t)] \rangle_{\xi} \right]. \tag{26}
\]

The noise correlations are encoded in \(J(t) = J(-t)\), similar to the standard \(P(E)\) theory of dynamical CB\([20]\)
\[
J(t - t') = \frac{1}{2} \left(\langle \phi_c(t) - \phi_c(t') \rangle^2 \right)_{\xi}. \tag{28}
\]

Note that in order to obtain \(J(t - t')\) one first has to solve the Langevin equation \([20]\) for a given noise trajectory, and then average over all noise realizations.
Since $J(t - t') \geq 0$, interactions always decrease the current $j_j(0)$ with respect to the noninteracting solution, $J_j(0)$. The latter follows by setting $J \to 0$ in Eq. (27). In fact, after Fourier transformation, we get the known result:

$$J_j(0) = \Gamma_j \int \frac{d\epsilon}{2\pi} F(\epsilon - \mu_j) A_j(\epsilon)$$

(29)

with the Lorentzian spectral function in Eq. (14). In linear response ($\mu_j \to 0$) and taking the zero-temperature limit, we recover resonant Andreev reflection with quantized conductance $G_j = e^2/\mu_j^2 = 2e^2/h$.

Equation (27) for the current-voltage relation in the weak Coulomb blockade regime is one of the main results of this work. We use this expression later on to quantify the effect of Coulomb interactions ($E_c \neq 0$) on the transport properties in this Majorana system.

C. Retardation effects

The Langevin equation (20) in general contains memory effects because of the frequency-dependence of the damping kernel. These are most pronounced for $T = 0$, where $\eta(\omega)$ takes the form in Eq. (24). For $\omega \to 0$, this gives the finite value

$$\eta_0 = \frac{2}{\pi} \sum_j \frac{1}{1 + (\mu_j/\Gamma_j)^2},$$

(30)

while for $|\omega| \to \infty$, we have $\eta(\omega) \approx \Gamma/|\omega|$ with $\Gamma = \Gamma_L + \Gamma_R$. On low frequency scales, $|\omega| < \min\left(\sqrt{\mu^2_j + \Gamma^2_j}\right)$, the kernel $\eta(\omega)$ can be approximated by $\eta(\omega) \approx \eta_0$. This approximation corresponds to the absence of retardation in the damping kernel $\eta(t)$. This approximation works even better for finite T, where

$$\eta_0 = \sum_j \frac{\Gamma_j}{T} \int \frac{d\epsilon}{2\pi} \frac{1}{\cosh^2(\frac{\epsilon}{T})} \left(\frac{\Gamma_j}{\epsilon - \mu_j/2 + \Gamma_j}\right),$$

(31)

yields a damping suppression, $\eta_0 \approx \Gamma/(2T)$, in the high-$T$ limit.

We therefore employ the simplification $\eta(\omega) = \eta_0$ from now on, which is appropriate to describe low-energy transport. This implies from Eq. (20) that we now have a Markovian Langevin equation,

$$\dot{\phi}_c(t) + \Omega \dot{\phi}_c(t) = 2E_c \xi(t),$$

(32)

and $D^R(t)$ in Eq. (26) simplifies to

$$D^R(t) = \frac{1}{\eta_0} \left(1 - e^{-\Omega t}\right) \Theta(t).$$

(33)

The inverse "RC time" in Eq. (32) is given by

$$\Omega = (RC)^{-1} = \eta_0 E_c.$$

(34)

Since $\eta_0 \leq 4/\pi$, see Eq. (30), and using $E_c = e^2/(2C)$, the effective resistance R in Eq. (34) always fulfills $R \geq h/(4e^2)$. Note that this corresponds to a parallel resistance as seen by the dot.

However, at the same time it is essential to keep the full frequency-dependence in the fluctuation kernel $K(\omega)$ when evaluating $J(t)$ in Eq. (28). Using Eq. (33), some algebra yields

$$J(t) = \frac{1}{\pi\eta_0^2} \int_0^\infty d\omega K(\omega) \frac{1 - \cos(\omega t)}{\omega^2 + \omega^2/\Omega^2},$$

(35)

where the current $I = I_L$ follows from Eq. (27).

D. Zero-bias anomaly

We now present results for the IV relation in the zero-temperature limit, where MBS effects are most pronounced. We adopt the Markovian approximation described in Sec. IV C and study a symmetric system, where $\Gamma_L = \Gamma_R = \Gamma/2$ and $\mu_j = -\mu_j = eV/2$. As relevant transport quantity, we define the dimensionless nonlinear conductance

$$g(V) = \frac{I(V)}{e^2V/h}.$$

(36)

For $E_c = 0$, the exact solution [Eq. (29)] yields

$$g^{(0)}(V) = \frac{\Gamma}{eV} \tan^{-1}\left(\frac{eV}{\Gamma} \right).$$

(37)

Note that the unitary limit (resonant Andreev reflection) corresponds to $g = 1$, which is reached for $V \to 0$ in Eq. (37).

We now write $J(t) = J_0 + J_1$, where

$$J_0(t) = \frac{1}{2\pi\eta_0} \int_0^\infty \frac{d\omega}{\omega} \frac{1 - \cos(\omega t)}{1 + \omega^2/\Omega^2}$$

(38)

comes from the first term ($\propto \eta(\omega) = \eta_0$) in Eq. (25). J_1 is a pure nonequilibrium term: the relevant kernel contribution scales as $\sim V^3$. Let us then first consider the linear response regime, where J_1 can be discarded. To logarithmic accuracy, $J_0(t) \approx (2\pi\eta_0)^{-1} \ln(\Omega t)$ for $\Omega t > 1$, where $\eta_0 = 4/\pi$ within linear response, see Eq. (30). Equation (27) then yields the dimensionless linear conductance in analytical form,

$$g(V \to 0) = c_0 (E_c/\Gamma)^{-1/8}, \quad c_0 \approx 0.96.$$

(39)

This result holds for $\Gamma < E_c$. As a function of E_c/Γ, Eq. (39) reveals a power-law suppression of the linear conductance with the universal exponent 1/8, reminiscent of a zero-bias anomaly. For arbitrary E_c/Γ, the current given by Eq. (27) can be evaluated numerically. The resulting linear conductance is shown in Fig. 2 and the analytical result (39) is quite accurate in describing the
interaction ($E_c \neq 0$) induced suppression of the current for $E_c \gtrsim \Gamma$.

Next we turn to the nonlinear conductance $g(V)$ in Eq. (36). Numerical results for several values of E_c/Γ are shown in Fig. 3, where the exact result [Eq. (37)] for $E_c = 0$ is also depicted. We find a clear suppression of $g(V)$ when the applied bias voltage increases. This suppression becomes stronger with increasing E_c. In fact, we observe that the interaction induced suppression of the current is more pronounced for small voltage. We therefore interpret our results as a zero-bias anomaly caused by the (weak) Coulomb blockade of Majorana fermion induced transport.

Figure 3: (Color online) Dimensionless nonlinear conductance $g(V)$ vs eV/Γ for several values of the charging energy. Results for $E_c > 0$ were obtained by numerical integration, the result for $E_c = 0$ is exact.

V. CONCLUDING REMARKS

In this work, we have presented a general theory of transport through a mesoscopic superconductor containing a pair of MBSs. We have studied the regime of low-energy transport, where metallic leads are attached and all relevant energy scales are small compared to the superconducting gap. The case of weak Coulomb blockade, where the charging energy E_c does not significantly exceed the typical hybridization scale Γ, has been investigated in some detail, and we found clear signatures for an interaction ($E_c \neq 0$) induced suppression of both the linear and the nonlinear conductance.

We have introduced a formulation to analyze interaction effects in electronic transport through MBSs which does not rely on the Hilbert space constraints of previous approaches and thus is easier to handle in general. We are presently extending this formulation to study several other situations of current interest. In particular, relevant questions include the full counting statistics and the nonequilibrium dephasing in multi-terminal transport geometries containing MBSs, and the Josephson effect with superconducting leads. Furthermore, the strong Coulomb blockade regime also allows for the detailed study of the full Keldysh functional integral \cite{8} in terms of a rate equation approach.

To conclude, we are confident that the characteristic features reported here, i.e., the suppression of the linear conductance with increasing E_c/Γ and of the nonlinear conductance with V/Γ in the limit of weak Coulomb blockade, can be observed experimentally once MBSs have been detected. The setup studied here may allow to find signatures of the elusive Majorana fermions in transport properties, including phenomena such as resonant Andreev reflection, teleportation, and the universal power-law suppression of the linear conductance, $g \sim (E_c/\Gamma)^{-1/8}$, for intermediate values of the ratio E_c/Γ.

Acknowledgments

This work was supported by the SFB TR 12 of the DFG and by the Spanish MICINN under contract FIS2008-04209.

Appendix A: Derivation of the tunnel Hamiltonian

In order to keep the paper self-contained, we here provide a derivation of the tunnel Hamiltonian \cite{11}. Following Flensberg\cite{12} the field operator $\Psi_\sigma(x)$ for electrons with spin projection $\sigma = \uparrow, \downarrow$ in a TS wire of length L (with $0 < x < L$) defines the Majorana fermion operators

$$\gamma_{j=L/R} = \sum_\sigma \int_0^L dx \ [f_\sigma(x)\Psi_\sigma(x) + f_\sigma(x)\Psi_\sigma^\dagger(x)]$$
with the MBS wavefunction $f_{j\sigma}(x)$. Projecting the full Nambu spinor onto the MBS subspace, one obtains\[\Psi_{\sigma}(x) \rightarrow \sum_j f_{j\sigma}(x) \gamma_j.\]
The tunnel Hamiltonian now reads
$$H_t = \sum_{jk\sigma} \int_0^L dx \, t_{\sigma}(x) \, C_{jk\sigma}^\dagger \Psi_{\sigma}(x) + \text{h.c.}$$
$$= \sum_{jk\sigma} V_{j\sigma}^* C_{jk\sigma}^\dagger \gamma_j + \text{h.c.,}$$
where $C_{jk\sigma}^\dagger$ creates an electron in lead $j = L/R$ with momentum k and spin projection σ. Here $t_{\sigma}(x)$ is assumed k-independent for simplicity, which defines the tunnel matrix elements $V_{j\sigma} = \int dx \, t_{\sigma}(x) f_{j\sigma}^\dagger(x)$. Note that one can always form suitable linear combinations of $C_{jk\uparrow}$ and $C_{jk\downarrow}$ to form spinless lead fermions c_{jk} coupled to the MBSs,
$$\sum_{\sigma} V_{j\sigma}^* C_{jk\sigma}^\dagger \rightarrow \lambda_{jk}^\dagger c_{jk}.$$ The other (orthogonal) linear combination then decouples from the problem. Finally, inserting the auxiliary fermion representation[1] and taking into account charge conservation, we arrive at the tunnel Hamiltonian quoted in Eq. [4].

Appendix B: On the Keldysh functional integral

Here we provide a detailed derivation of the AES action in Sec. [III A]. We start by constructing the Lagrangian L_c for the isolated dot in terms of $\phi(t)$ and the Grassmann variable $d(t)$, plus the corresponding “velocities" $\dot{\phi} = \frac{i}{\hbar} \frac{\partial H_c}{\partial N}$ and \dot{d}. Noting that for Grassmann variables, $i\dot{d}$ is canonically dual to d, we have
$$L_c = -\frac{\dot{\phi}^2}{4E_c} + n_0 \dot{\phi} + \bar{d}(i\dot{d} - \dot{\phi})d.$$ Adding the tunnel contribution and performing the gauge transformation $d \rightarrow e^{-i\phi}d$, we obtain
$$L_c + L_t = -\frac{\dot{\phi}^2}{4E_c} + n_0 \dot{\phi} + \frac{i}{2} \sum_j \gamma_j \bar{\gamma}_j$$
$$- \sum_{jk} (\lambda_{jk}^\dagger \Psi_{jk} e^{-i\phi} \gamma_j + \text{h.c.}).$$
where we switched back from the auxiliary d fermion to the Majorana field γ_j. Note that up to a full time derivative, $i\ddot{d} \rightarrow (i/2) \sum_j \gamma_j \bar{\gamma}_j$. The Grassmann fields $(\psi_{jk}, \bar{\psi}_{jk})$ correspond to the lead fermion operators (c_{jk}, c_{jk}^\dagger). Using the Keldysh formulation, we double all fields according to the forward and backward branch of the Keldysh time contour, i.e., $\gamma_j(t) \rightarrow (\gamma_j,+)(t), \gamma_j,-(t))^T$ and so on. It is also convenient to gauge out the chemical potentials μ_j in the leads, $\psi_{jk,+}(t) \rightarrow e^{i\mu_j t} \psi_{jk,+}(t)$. We now use the Keldysh matrix notation $\phi(t) = \phi_c + \bar{\tau}_c \phi_q/2$, see Eq. [6]. The complete Keldysh action, $S = S_\gamma + S_c + S_t + S_l$, contains S_c in Eq. [7] and the pieces
$$S_\gamma = \frac{i}{2} \sum_j \int dt \, \gamma_j \bar{\gamma}_j,$$
$$S_t = -\sum_{jk} \lambda_{jk} \int dt \, \bar{\psi}_{jk} \bar{\gamma}_j e^{-i[\mu_j t + \phi(t)]} \gamma_j + \text{h.c.},$$
$$S_l = \sum_{jk} \int dt \, \bar{\psi}_{jk} \bar{\tau}_c (i\dot{d} - \epsilon_{jk}) \psi_{jk},$$
where ϵ_{jk} refers to the dispersion relation in lead j.

The current I_j flowing from lead j into the dot follows from the Heisenberg equation of motion. The currents obey the relation $(I_L + I_R)(t) = \delta S_t/\delta \phi_q(t)$. Current conservation implies $(I_L) = -(I_R)$, which fixes the mean value $\langle \phi_c \rangle$ to the chemical potential μ_c of the superconducting dot. The latter has to be determined self-consistently from current conservation. We then redefine $\phi_c \rightarrow \mu_c t + \phi_a(t)$, i.e., $\phi_a(t)$ now refers to fluctuations around the mean-field value $\langle \mu_c^b \rangle$ of the classical phase variable. The ensuing changes in S_c and S_t can be absorbed in a renormalization of n_c and μ_j. In particular, denoting their bare values by n_0 and μ_j, respectively, we find $n_0 = n_0 + \mu_c^b/2E_c$ and $\mu_j = \mu_j + \mu_c$. The next step is to integrate out the Grassmann fields $(\psi_{jk}, \bar{\psi}_{jk})$. This is a standard step[21,22,23] and leads to the effective Majorana action S_{eff} replacing $S_t + S_c + S_l$. Before turning to the result, we perform the usual rotation in Keldysh space in order to have triangular Green’s function (GF) representations, using the unitary matrix[24] $L = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. The rotated Majorana fields are $\tilde{\gamma}_j = L \gamma_j$. Evaluating the resulting momentum integrals for the leads in wide-band approximation, we find the effective Majorana action.
The hybridizations Γ_j are defined in Eq. 3 with lead density of states $n_j = \sum_k \delta(\epsilon_{jk})$. $F(t)$ has the Fourier transform $F(q)$, and the phase function Φ_j is specified in Eq. 12.

Now we are ready to also integrate out the Majorana fields. This finally yields Eq. (8) where

$$S_{\text{eff}} = \frac{1}{2} \sum_j \int dt dt' \tilde{\gamma}_j^T(t) \left[\hat{x}_j \partial_t \delta(t-t') + \hat{Q}_j(t,t') \right] \tilde{\gamma}_j(t')$$

$$\hat{Q}_j(t,t') = i \Gamma_j e^{i\tau_x \Phi_q(t)/2} \left(\begin{array}{cc} \delta_-(t-t') & 2F(t-t')e^{i\Phi_j(t,t')} \\ 0 & -\delta_+(t-t') \end{array} \right) \hat{r}_x e^{-i\tau_x \Phi_q(t')/2}.$$

where $\eta(t-t')$ is determined by Eq. (21). Next we note that $S_j^{(2)}$, which is already of order ϕ_q, can be evaluated by replacing the interacting Keldysh GF G^K_j with its noninteracting ($\phi_c = 0$) version. After some algebra, we find from Eq. (19)

$$S_j^{(2)} = \frac{i}{2} \int dt dt' \phi_q(t) K(t-t') \phi_q(t')$$

with $K(t-t')$ determined by Eq. (22). The Fourier-transformed kernel $K(\omega)$ directly describes finite-frequency current noise correlations for $E_c = 0$, a question that has been studied for $\omega \to 0$ in Ref. 12. Finally, we complete the derivation by Hubbard-Studenmire transformation of the ϕ_q^2 term in the generating functional [Eq. (3)],

$$e^{i\phi_q^2} = \int D\xi \ e^{-\frac{1}{2} \int dt dt' \xi(t) K^{-1}(t-t') \xi(t') + i \int dt \phi_q \xi(t)}.$$
G. Schön and A.D. Zaikin, Phys. Rep. 198, 237 (1990).

Yu.V. Nazarov, Phys. Rev. Lett. 82, 1245 (1999); D.S. Golubev and A.D. Zaikin, Phys. Rev. Lett. 86, 4887 (2001); Phys. Rev. B 69, 075318 (2004); P.W. Brouwer, A. Lamacraft, and K. Flensberg, Phys. Rev. B 72, 075316 (2005).

A. Altland and R. Egger, Phys. Rev. Lett. 102, 026805 (2009).

H. Grabert and M.H. Devoret (eds.), Single Charge Tunneling, NATO ASI Series B, Physics v.294 (Plenum Press, New York, 1992).

The weak CB regime is eventually left for $\Gamma \ll E_c$, where Eq. (39) ceases to be valid.