A comparison of red blood cell transfusion utilization between anti-activated factor X and activated partial thromboplastin monitoring in patients receiving unfractionated heparin

K. W. BELK,* M. LAPOSATA† and C. CRAVER*‡
*MedAssets, Inc., Health Data Analytics, Charlotte, NC; †Department of Pathology, University of Texas Medical Branch-Galveston, Galveston, TX; and ‡College of Health and Human Services, University of North Carolina-Charlotte, Charlotte, NC, USA

To cite this article: Belk KW, Laposata M, Craver C. A comparison of red blood cell transfusion utilization between anti-activated factor X and activated partial thromboplastin monitoring in patients receiving unfractionated heparin. J Thromb Haemost 2016; 14: 2148–57.

Summary. Background: Anticoagulant activated factor X protein (Anti-Xa) has been shown to be a more precise monitoring tool than activated partial thromboplastin time (aPTT) for patients receiving unfractionated heparin (UFH) anticoagulation therapy. Objectives: To compare red blood cell (RBC) transfusions between patients receiving UFH who are monitored with Anti-Xa and those monitored with aPTT. Patients/Methods: A retrospective cohort study was conducted on patients diagnosed with acute coronary syndrome (ACS) (N = 14 822), diagnosed with ischemic stroke (STK) (N = 1568) or with a principal diagnosis of venous thromboembolism (VTE) (N = 4414) in the MedAssets data from January 2009 to December 2013. Anti-Xa and aPTT groups were identified from hospital billing details, with both brand and generic name as search criteria. Propensity score techniques were used to match Anti-Xa cases to aPTT controls. RBC transfusions were identified from hospital billing data. Multivariable logistic regression was used to identify significant drivers of transfusions. Results: Anti-Xa patients had fewer RBC transfusions than aPTT patients in the ACS population (difference 17.5%; 95% confidence interval [CI] 16.4–18.7%), the STK population (difference 8.2%; 95% CI 4.4–11.9%), and the VTE population (difference 4.7%; 95% CI 3.3–6.1%). After controlling for patient age and gender, diagnostic risks (e.g. anemia, renal insufficiency, and trauma), and invasive procedures (e.g. cardiac catheterization, hemodialysis, and coronary artery bypass graft), Anti-Xa patients were less likely to have a transfusion while hospitalized for ACS (odds ratio [OR] 0.16, 95% CI 0.14–0.18), STK (OR 0.41, 95% CI 0.29–0.57), and VTE (OR 0.35, 95% CI 0.26–0.48). Conclusion: Anti-Xa monitoring was associated with a significant reduction in RBC transfusions as compared with aPTT monitoring alone.

Keywords: activated partial thromboplastin time; anticoagulant factor Xa protein; cardiovascular diseases; red blood cell transfusions; unfractionated heparin.

Introduction

The accuracy of anticoagulation monitoring of patients receiving unfractionated heparin (UFH) is of critical importance to the treatment and safety of patients hospitalized for acute cardiovascular events [1]. Failure to consistently measure the anticoagulant effect of UFH has been linked to significantly higher rates of serious complications, including major bleeding, stroke, thrombocytopenia, and in-hospital mortality [1–3].

Recent studies have shown anticoagulant activated factor X protein (Anti-Xa) assays to constitute a more precise monitoring tool than activated partial thromboplastin time (aPTT) assays in hospitalized patients receiving UFH anticoagulation therapy [4]. Comparative analyses have shown that Anti-Xa monitoring of patients receiving UFH results in a higher percentage of within-range test results,
fewer monitoring tests for the patient to achieve results within the target range and fewer dose adjustments than a protocol based on UFH monitoring using aPTT [3]. With these advantages noted, the relationship between accurate UFH monitoring and improved clinical outcomes is less clear [4].

Previous analyses have shown that Anti-Xa monitored patients experience significantly fewer bleeding complications and lower rates of non-fatal myocardial infarction (MI) than patients monitored with aPTT [2,5]. The adoption of Anti-Xa monitoring in patients receiving UFH has also been shown to reduce both in-hospital stay and 30-day mortality rates in patients with a high risk of acute coronary syndrome (ACS) [5]. The impact of Anti-Xa monitoring on the need for blood and blood products is not yet clear [6].

The purpose of this study was to compare the need for red blood cell (RBC) transfusions among hospitalized UFH-treated cardiovascular patients receiving either anti-FXa or aPTT anticoagulation monitoring.

Materials and methods

Study population

A retrospective cohort study was conducted on patients receiving intravenous UFH, monitored with either anti-FXa or aPTT assays, and diagnosed with ACS (N = 14 822), diagnosed with ischemic stroke (STK) (N = 1568) or with a principal (condition primarily responsible for admission) diagnosis of venous thromboembolism (VTE) (N = 4,414) in the MedAssets Health System database (MAHSD) from January 2009 to December 2013. The MAHSD is a nationally representative administrative patient-level database with billing details from ~ 400 hospitals across 43 states in the USA.

Intravenous UFH treatment was identified from detailed billing description records, which identified dose, strength and day of service for each administration of UFH. The disease-based subpopulations were identified by use of the International Classification of Disease Category version 9 (ICD-9CM) codes for ACS, STK, and VTE (Table S1).

The anti-FXa and aPTT comparison cohorts were identified from a combination of detailed billing records and Current Procedural Terminology version 4 (CPT-4) codes (85520 and 85730). Each patient was assigned independently to the monitoring groups by use of a recursive text search algorithm of billing detail records or by the presence of the appropriate CPT-4 code. This process discretely assigned 99.99% of the 343 922 patients to either the anti-FXa group or the aPTT group. The 12 patients who were assigned to both groups were included in the anti-FXa group. Sensitivity analyses were conducted to examine the impact of dual assignment.

Study variables

The primary outcome of interest was in-hospital RBC transfusion risk. RBC transfusions were defined according to hospital billing records, and constructed as a binary variable. Salient patient-level covariate data were collected for the UFH treatment population, including patient demographics (age and gender) and encounter-specific variables (source of admission, discharge status, and length of stay). Age was reported as both a continuous variable and in 10-year cohorts. Patient comorbidities were identified by use of the Charlson–Deyo version of the Charlson Comorbidity Index [7,8]. Hospital-specific variables were also collected, including number of beds, teaching status, and geographic region. For analytic purposes, bed number was converted to standard categories similar to those reported by the American Hospital Association Annual Survey of Hospitals and Medicare.

Additional disease-specific comorbidities and complications were added to the ACS and VTE subpopulation cohorts. For the VTE population, these included: pneumonia, respiratory disease, urinary tract infections, and sepsis. In addition, the occurrence of pulmonary embolism (PE) and the coexistence of PE and deep vein thrombosis (DVT) were included as comorbidities in this population, given that PE is clinically more severe and often more resource-intensive than DVT. For the ACS population, disease-specific comorbidities and complications included: metabolic immunity disorders, cardiac dysrhythmias, obesity, ST-elevated MI (STEMI), hypertensive heart and chronic kidney disease (CKD), stroke, and major cardiac procedures, including coronary artery bypass graft (CABG). In addition, comorbidities affecting the risk of RBC transfusion were included in the analyses. These comorbidities included both invasive procedures such as heart valve procedures, pacemaker insertions, and chest drainage, and non-invasive procedures such as wound care. Clinical conditions affecting the likelihood of transfusion, such as anemia and coagulation defects, thrombocytopenia, diabetes, and trauma, were also included as comorbidities. All additional comorbidities were defined by the use of ICD-9CM codes, and are outlined in Tables S2 and S3.

Statistical analysis

Unadjusted bivariate descriptive analyses were performed, comparing the baseline population characteristics and the RBC transfusion outcome variable between the anti-FXa and aPTT groups in both the pre-match and post-match patient populations. Chi-squared tests (Fisher’s exact tests were used for low cell counts) were used to test for significant differences between the anti-FXa and aPTT groups and disease-specific cohorts for categorical variables. Analysis of variance was used for continuous variables (Mann–Whitney test for non-normal distributions).
Multivariate analysis for each disease-specific cohort was accomplished with a two-step process. First, within each cohort, anti-FXa patients were propensity-matched to aPTT controls at a 1:1 ratio by use of a Greedy matching algorithm [9–11]. The algorithm required probability scores to match to a minimum of four decimal places. This method was chosen to provide the optimal match for the greatest number of the exposed population, given the number of covariates included in the matching algorithm [9,12]. Cohort matching criteria included age, gender, discharge status (left against medical advice [AMA] and transfer to another facility), hospital demographics, and patient comorbidities for all disease groups, as well the VTE-specific and ACS-specific complications and comorbidities mentioned previously.

After matching, cohort-specific logistic regression models were created to compare the transfusion outcome between anti-FXa and aPTT control groups. All matching criteria variables were included in the final models to account for any uncontrolled variation between the matched cohorts, and to adjust for their impact on the outcome variable. Watkins–Durbin tests for collinearity were performed to identify any confounding relationships between the independent variables. Additional disease-specific surgical procedures (e.g. CABG and valve replacements) that could affect the likelihood of transfusion were added to the models to control for population heterogeneity unaccounted for in the matching process (Tables S2 and S3). For the adjusted analyses, patients with missing data elements were excluded pairwise from the regression models. Post-match analysis required the removal of one matched pair, because of missing gender information. Significance levels for the model parameter estimates were set at 0.05. All data analyses were performed and statistical models for this study were generated with SAS/STAT software, Version 9.3 of SAS for Windows (SAS Institute, Cary, NC, USA).

Results

The initial study population included 343,922 patient discharges in the ACS cohort (72.5%), accounting for the largest portion of the group (Table 1). Anti-FXa-monitored patients accounted for just over 3% of the total population (Table 1). Among the individual cohorts, anti-FXa monitoring accounted for 5.2% of VTE discharges, 1.8% of STK discharges, and 3.2% of ACS discharges (Table 1).

Population characteristics

The average age of the anti-FXa group was slightly higher in the ACS (66.7 years versus 66.2 years), STK (68.1 years versus 67.7 years) and VTE (63.3 years versus 62.5 years) populations than that of the aPTT group (Table 2). Within the anti-FXa group, both the ACS (61.0%) and the STK (49.3%) populations contained more males than females, whereas the VTE population was 50.3% female (Table 2). By comparison, the aPTT group contained 61.7%, 49.3% and 47.3% males, respectively, in the ACS, STK and VTE subpopulations (Table 2). The proportion of patients transferred to another facility was < 2% for all cohorts, and < 1% of patients left AMA (Table 2). For both the anti-FXa and aPTT groups, the majority of discharges were treated in larger facilities (≥ 300 beds) that were non-teaching and located in urban settings (Table 2).

Although the Charlson Comorbidity Index profile varied across and within the anti-FXa and aPTT groups, congestive heart failure, chronic pulmonary disease, diabetes and renal disease were common among all three disease populations (Table 3). Additionally, among ACS patients, MI (anti-FXa, 79.4%; aPTT, 65.4%) was prevalent as compared with cerebrovascular disease (anti-FXa, 99.3%; aPTT, 89.8%), hemiplegia or paraplegia (anti-FXa, 28.9%; aPTT, 28.2%) in the STK population, and malignancy and tumors (anti-FXa, 29.3%; aPTT, 25.9%) in the VTE population. Overall, among the anti-FXa group patients, those in the STK population had the highest average Charlson Comorbidity Index score (4.70), followed by those in the ACS population (3.83) and those in the VTE population (2.86) (Table 2). In the aPTT group, similar rankings were found among the subpopulations; however, the Charlson Comorbidity Index scores were significantly lower than in the anti-FXa group (Table 3).

In the anti-FXa group, metabolic immunity disorders (82.4%), cardiac dysrhythmias (38.2%), obesity (21.4%), STEMI (16.2%), CABG (20.3%), hypertensive heart disease and CKD (26.2%) were the most prevalent ACS-

Table 1 Cohort patient populations
Cohort

Venous thromboembolism
Stroke
Acute coronary syndrome
Total

aPTT, activated partial thromboplastin time; Anti-FXa, anticoagulant activated factor X protein.

© 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Table 2: Base population demographic characteristics

Characteristic	VTE	Stroke	ACS												
	Anti-FXa	aPTT	P-value	Anti-FXa	aPTT	P-value	Anti-FXa	aPTT	P-value						
Age group (years)	Patients	%													
< 18	13	0.5	203	0.4	8	1.0	412	0.9	1	0.0	71	0.0			
18–29	97	3.8	1973	4.3	7	0.9	549	1.2	19	0.2	714	0.3			
30–39	142	5.5	3192	6.9	18	2.2	1124	2.5	129	1.6	4379	1.8			
40–49	297	11.6	5590	12.1	65	8.0	3298	7.3	619	7.8	21310	8.8			
50–59	407	15.9	7948	17.2	114	14.0	7224	16.1	1453	18.4	50324	20.8			
60–69	535	20.9	9420	20.3	178	21.8	10129	22.6	2192	27.8	65654	27.2			
70–79	533	20.8	8999	19.4	200	24.5	10532	23.5	1885	23.9	55422	23.0			
80–89	380	14.8	7214	15.6	178	21.8	9232	20.6	1150	14.6	35888	14.9			
≥ 90	93	3.6	1698	3.7	32	3.9	2335	5.2	211	2.7	7219	3.0			
Unknown	68	2.7	99	0.2	17	2.1	52	0.1	238	3.0	439	0.2			
Total	2565	100.0	46336	100.0	817	100.0	44887	100.0	7897	100.0	241420	100.0			
Mean (SD)	63.27	17.39	62.51	17.74	68.06	15.89	67.68	16.09	66.06	15.89	66.15	13.35			
Gender	Female	1290	50.3	24256	52.3	397	48.6	22690	50.5	2838	35.9	91702	38.0		
	Male	1207	47.1	21897	47.3	403	49.3	22122	49.3	4820	61.0	148989	61.7		
	Unknown	68	2.7	183	0.4	17	2.1	75	0.2	239	3.0	729	0.3		
Total	2565	100.0	46336	100.0	817	100.0	44887	100.0	7897	100.0	241420	100.0			
Urban and rural	Rural	0	0.0	230	0.5	0	0.0	117	0.3	0	0.0	857	0.4		
	Urban	2565	100.0	46106	99.5	817	100.0	44770	99.7	7897	100.0	240563	99.6		
	Unknown	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0		
Total	2565	100.0	46336	100.0	817	100.0	44887	100.0	7897	100.0	241420	100.0			
Hospital bed number	< 100	4	0.2	1605	3.5	2	0.2	1378	3.1	5	0.1	8888	3.7		
	100–199	21	0.8	6525	14.1	6	0.7	4850	10.8	28	0.4	27390	11.3		
	200–299	68	2.7	6323	13.6	26	3.2	5465	12.2	106	1.3	27801	11.5		
	300–499	1420	55.4	14973	32.3	330	40.4	12421	27.7	2824	35.8	80256	33.2		
	≥ 500	1052	41.0	15355	33.1	453	55.4	19754	44.0	4934	62.5	90698	37.6		
Unknown	0	0.0	0	0.0	0	0.0	1019	2.3	0	0.0	6387	2.6			
Total	2565	100.0	46336	100.0	817	100.0	44887	100.0	7897	100.0	241420	100.0			
Teaching status	Major teaching	228	8.9	12148	26.2	189	23.1	16884	37.6	1207	15.3	78064	32.3		
	Minor teaching	734	28.6	14483	31.3	96	11.8	12356	27.5	534	6.8	61351	25.5		
	Non-teaching	1603	62.5	19705	42.5	532	65.1	15647	34.9	6156	78.0	101805	42.2		
Unknown	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0			
Total	2565	100.0	46336	100.0	817	100.0	44887	100.0	7897	100.0	241420	100.0			
Discharge status	Transfer to another healthcare facility	12	0.5	757	1.6	13	1.6	977	2.2	0.2290	51	0.6	11797	4.9	
	Left against medical advice	12	0.5	235	0.5	6550	1	0.1	162	0.4	0.2488	42	0.5	1486	0.6

ACS, acute coronary syndrome; Anti-FXa, anticoagulant activated factor X protein; aPTT, activated partial thromboplastin time; VTE, venous thromboembolism.

*Fisher's exact was used for low volume in some cells.
Table 3 Base population comorbidities

Charlson comorbidities	VTE	Stroke	ACS							
	Anti-FXa	aPTT	P-value	Anti-FXa	aPTT	P-value	Anti-FXa	aPTT	P-value	
Myocardial infarction	105	4.1	1520	3.3	0.0253	180	22.0	4932	11.0	< 0.0001
Old myocardial infarction	208	8.1	3281	7.1	0.0489	108	13.2	4501	10.0	0.0027
Congestive heart failure	446	17.4	7532	16.3	0.1307	323	39.5	1110	24.8	< 0.0001
Peripheral vascular disease	216	8.4	3551	7.7	0.1614	137	16.8	5190	11.6	< 0.0001
Cerebrovascular disease	287	11.2	4196	9.1	0.0003	811	99.3	40304	89.8	< 0.0001
Dementia	40	1.6	552	1.2	0.0970	21	2.6	1016	2.3	0.5593
Chronic pulmonary disease	680	26.5	10780	23.3	0.0002	214	26.2	8464	18.9	< 0.0001
Rheumatic disease	128	5.0	1856	4.0	0.0139	38	4.7	1313	2.9	0.0039
Peptic ulcer disease	74	2.9	1216	2.6	0.4226	37	4.5	1076	2.4	< 0.0001
Diabetes without chronic complications	667	26.0	11214	24.2	0.0383	295	36.1	14706	32.8	0.0436
Diabetes with chronic complications	62	2.4	1258	2.7	0.3650	43	5.3	2423	5.4	0.8657
Hemiplegia or paraplegia	42	1.6	817	1.8	0.6369	236	28.9	12647	28.2	0.6544
Renal disease	512	20.0	8195	17.7	0.0034	242	29.6	10611	23.6	< 0.0001
Any malignancy	489	19.1	7982	17.2	0.0167	96	11.8	3516	7.8	< 0.0001
Moderate/severe liver disease	17	0.7	367	0.8	0.4703	8	1.0	341	0.8	0.4751
Metastatic solid tumor	262	10.2	4027	8.7	0.0079	27	3.3	1186	2.6	0.2429
AIDS/HIV	0	0.0	0	0.0	NA	0	0.0	0	0.0	NA
Mean Charlson score (SD)	2.86	3.24	2.56	3.08	< 0.0001	4.70	2.96	3.86	2.89	< 0.0001
Other comorbidities										
Concurrent antiplatelet use	1965	76.6	31162	67.3	< 0.0001	549	67.2	32176	71.7	0.0048
Antiphospholipid syndrome	0	0.0	0	0.0	NA	0	0.0	0	0.0	NA
Vitamin K deficiency	2	0.1	19	0.0	0.3025	0	0.0	1	0.0	0.6545
VTE in prior 12 months	327	12.7	7895	17.0	< 0.0001	20	2.4	884	2.0	0.3302
ICU at first heparin administration	786	30.6	12993	28.0	0.0043	427	52.3	19916	44.4	< 0.0001
Atrial fibrillation	329	12.8	4874	10.5	0.0002	372	45.5	12373	27.6	< 0.0001
Cardiomyopathy	85	3.3	1569	3.4	0.8437	81	9.9	3016	6.7	0.0003
Coronary artery disease	477	18.6	8151	17.6	0.1935	318	38.9	13907	31.0	< 0.0001
Hyperlipidemia	879	34.3	14440	31.2	0.0010	432	52.9	21600	48.1	0.007
Hypertension	1113	43.4	20205	43.6	0.8318	411	50.3	24128	53.8	0.0502

ACS, acute coronary syndrome; Anti-FXa, anticoagulant activated factor X protein; aPTT, activated partial thromboplastin time; ICU, intensive care unit; NA, Not applicable; VTE, venous thromboembolism.
specific comorbidities and procedures (Table 4). In the VTE population, 37% of anti-FXa patients experienced a PE only, and 30.8% experienced a DVT only. Nearly one-third (32.2%) of the VTE population had both a PE and a DVT. In VTE patients monitored with anti-FXa, bacterial infections, including pneumonia (9.6%), other respiratory disease (19.7%), urinary tract infection (8.9%), and sepsis (2.8%), were common (Table 4).

Post-match analysis

The matching algorithm collectively assigned nearly 94% of the anti-FXa group to aPTT control discharges. Individually, the match rate for VTE was 86.0%, and STK and ACS were matched at 96.0% and 93.8%, respectively (Table 1).

The post-match comparison showed no significant difference between the anti-FXa study group and the aPTT comparison group across patient demographic characteristics among the disease-specific patient populations (Table S4). With the exception of concurrent antiplatelet use, other comorbidities and CABG procedures in the ACS population, and atrial fibrillation and hyperlipidemia in both the ACS and STK populations, no significant differences were found among patient comorbidities and procedures (Tables S5 and S6).

The results of post-match unadjusted outcome comparisons showed that anti-FXa patients had fewer RBC transfusions than aPTT patients in the ACS (7.0% versus 24.6%, \(P < 0.0001 \)), STK (13.8% versus 21.9%, \(P = 0.0001 \)), and procedures (Tables S5 and S6).

Table 4 Pre-match population-specific comorbidities and procedures

Comorbidity	Anti-FXa Patients	aPTT Patients	\(P \)-value	
ACS-specific comorbidities				
Metabolic immunity disorders	6508	180 515	74.8	\(< 0.0001\)
Cardiac dysrhythm	3019	78 351	32.5	\(< 0.0001\)
Obesity	1692	37 785	15.7	\(< 0.0001\)
Hypertensive heart and chronic kidney disease	2069	53 520	22.2	\(< 0.0001\)
Stroke	196	5299	2.2	0.0873
ST-elevated myocardial infarction	1278	51 040	21.1	\(< 0.0001\)
Coronary artery bypass graft	1601	38 376	15.9	\(< 0.0001\)
VTE-specific comorbidities				
Pneumonia	245	3123	6.7	\(< 0.0001\)
Other respiratory disease	506	8482	18.3	0.0704
Urinary tract infection	227	3858	8.3	0.3507
Sepsis	72	800	1.7	\(< 0.0001\)

ACS, acute coronary syndrome; Anti-FXa, anticoagulant activated factor X protein; aPTT, activated partial thromboplastin time; VTE, venous thromboembolism.

For the RBC transfusion outcome, the logistic regression model reinforced the post-match unadjusted results. Anti-FXa patients were less likely to receive a transfusion than aPTT patients in the ACS (odds ratio [OR] 0.16, 95% confidence interval [CI] 0.14–0.18), STK (OR 0.41, 95% CI 0.29–0.57) and VTE (OR 0.35, 95% CI 0.26–0.48) populations (Table 6).

Within the ACS population, patients diagnosed with anemia were nearly three times more likely to receive an RBC transfusion (OR 2.80, 95% CI 2.49–3.14). Likewise, patients undergoing cardiovascular procedures, including CABG (OR 9.12, 95% CI 7.45–11.16), heart valve procedures (OR 2.04, 95% CI 1.47–2.84), other vascular catheterization procedures (OR 2.07, 95% CI 1.79–2.38), and endarterectomy (OR 1.69, 95% CI 1.02–2.81), were significantly more likely to receive a transfusion. ACS patients undergoing other (non-cardiac) surgical procedures (OR 2.78, 95% CI 2.14–3.61) and wound care (OR 1.69, 95% CI 1.12–2.56) were also more likely to require RBC transfusions, whereas diagnostic procedures such as diagnostic cardiac catheterizations (OR 0.87, 95% CI 0.76–1.00) and spinal tap (OR 0.32, 95% CI 0.13–0.83), as well as extracorporeal membrane oxygenation (ECMO) (OR 0.79, 95% CI 0.65–0.95), were associated with a significantly lower probability of requiring a transfusion (Table 6).

Among patients in the STK study population, those with anemia (OR 3.09, 95% CI 2.15–4.43), trauma (OR 1.66, 95% CI 1.14–2.41), cancer (OR 2.78, 95% CI 1.68–4.62), infectious disease (OR 1.92, 95% CI 1.27–2.92), CABG (OR 3.51, 95% CI 1.74–7.08), other heart procedures (OR 3.34, 95% CI 1.75–6.40), other surgical procedures (OR 2.32, 95% CI 1.32–4.07), and other (non-cardiac) vascular catheterization (OR 1.98, 95% CI 1.36–2.88) had significantly higher probabilities of receiving a transfusion (Table 6). Only age in years (OR 0.99, 95% CI 0.98–0.99) was significantly associated with a lower probability of transfusion (Table 6).

In the VTE population, males were more likely than females to require a RBC transfusion (OR 1.39,
95% CI 1.04–1.86), as were patients with anemia (OR 5.01, 95% CI 3.70–6.79), renal insufficiency (OR 1.65, 95% CI 1.17–2.33), prior VTE/PE (OR 1.48, 95% CI 1.04–2.10), cancer (OR 2.51, 95% CI 1.85–3.40), and trauma (OR 1.82, 95% CI 1.25–2.65). Patients who received diagnostic and therapeutic procedures, including biopsy (OR 1.81, 95% CI 1.17–2.79), chest drainage (OR 2.57, 95% CI 1.32–4.99), other (non-head or neck) vessel procedures (OR 2.40, 95% CI 1.73–3.34), and other (non-cardiac) vascular catheterization (OR 2.18, 95% CI 1.52–3.12), as well as patients receiving ECMO (OR 6.27, 95% CI 1.43–27.44), were also significantly more likely to receive a transfusion than patients who did not (Table 6).

Post hoc analysis

Additional potential confounding factors considered after the completion of the initial protocol included the...
The modified models showed no significant changes in the associations found in the original analysis. Anti-FXa patients were still less likely to receive an RBC transfusion in the ACS (OR 0.16, 95% CI 0.14–0.18), STK (OR 0.39, 95% CI 0.27–0.55), and VTE (OR 0.34, 95% CI 0.25–0.46) populations. Mirroring results from recent studies, the modified models also indicated that patients in the ACS population were less likely to receive a transfusion in 2013 than in 2009 (OR 0.87, 95% CI 0.68–0.97).

Furthermore, sensitivity analyses were performed on dual-monitored patients by removing these patients pairwise from the study population, with no significant difference in the transfusion outcomes. In the sensitivity analysis, anti-FXa patients were less likely to receive a transfusion than aPTT patients in the ACS (OR 0.16, 95% CI 0.14–0.18), STK (OR 0.41, 95% CI 0.29–0.57) and VTE (OR 0.35, 95% CI 0.26–0.48) populations.

Discussion

The results of the study indicate a significant relationship between the use of anti-FXa levels to monitor UFH in hospitalized cardiovascular patients and a reduction in RBC transfusions as compared with similar patients monitored with aPTT. This association was most prevalent within the ACS population, specifically among patients undergoing major heart procedures. In the STK and VTE populations, anti-FXa monitoring also had a significant impact on the number of patients receiving transfusions.

The impact of a reduced need for blood transfusions could greatly lessen the risk of complications among hospitalized UFH-treated patients, as well the intensity and duration of UFH treatment [15,16]. Previous studies have found that transfusions significantly increase the risks for all types of complications and for adverse outcomes, including mortality, cardiac events (atrial fibrillation), infections (pneumonia and sepsis), renal failure, and pulmonary hypertension [15–17].

From a resource utilization perspective, transfusions have been associated with increased total hospitalization costs, driven by increased length of stay, prolonged dependence on mechanical ventilation, and treatment costs associated with the complications described previously [17–19]. The economic impact of unnecessary RBC transfusion imposes a significant burden on this patient population. Estimated incremental hospitalization costs associated with RBC transfusions range from $4408 for intraoperative transfusions to over $10 000 for postoperative transfusions [17,20]. Among stroke patients, transfusions have been shown to be significantly associated with an increased use of thrombolytic drugs and with an associated increase in resource utilization [21].

It should be noted that these results suggest only a strong association between anti-FXa use and a reduction in RBC transfusions in this population, and do not imply causation. It is likely that other factors combined with the use of the anti-FXa assay for UFH treatment play a role in the reduction in bleeding complications [22,23]. Chief among these may be that the higher level of accuracy of the anti-FXa test provides a more concrete foundation for treatment modifications, which may lead to more timely and appropriate action [2,5].

Limitations

Given the robust sample size, the demographic and geographic diversity of the patient population, and the clinical capabilities of the sample hospitals, these results can be considered to be representative of treatment patterns within the USA. However, there are some limitations of this study that warrant mention. The data source is subject to those limitations known to be associated with the use of large-scale administrative data, including inconsistent coding and billing practices, and incomplete records [24,25]. The study was also limited to the analysis of the acute inpatient hospitalizations, and did not account for all levels and settings of care required for patient management. Finally, this study does not account for the presence of any differences in hematologic expertise in the use and monitoring of anticoagulants, potentially increased vigilance for bleeding by physicians comfortable with the anti-FXa assay, hospital protocols designed to optimize anticoagulation treatment or minimize transfusions, or programs designed to minimize the loss of blood during and after major surgical procedures [22,23].

Conclusions

The use of the anti-FXa assay was associated with a significant reduction in RBC transfusions as compared with the use of aPTT. Implementation of an anticoagulation protocol based on anti-FXa monitoring could serve to reduce the need for transfusions among hospitalized cardiovascular patients, as well as associated complications.
However, to better understand the critical factors associated with UFH treatment monitoring and the role that anti-FXa plays, future studies should employ more rigorous observational or prospective methods that could address factors not included in this study, such as differences in hospital expertise.

Addendum
In addition to meeting all ICMJE requirements for authorship, specific author contributions were as follows: K.W. Belk conceptualized the study design, was responsible for implementation, and contributed to manuscript writing and editing. M. Laposata provided clinical guidance during and after study design, and editorial support during manuscript preparation. C. Craver provided statistical methods support during study design, assisted with statistical analysis, and served as the technical writer during preparation of the manuscript.

Acknowledgements
The authors would like to thank T. E. Warkentin of McMaster University and A. M. Winkler of Emory University for their clinical guidance during the editorial and review process for this study. Funding for this analysis was provided by Instrumentation Laboratory, Bedford, MA, USA.

Disclosure of Conflict of Interests
K. W. Belk and C. Craver report receiving grants from Instrumentation Laboratory, during the conduct of the study. M. Laposata sat on an advisory board and acted as a consultant for Instrumentation Laboratory, during the conduct of the study.

Supporting Information
Additional Supporting Information may be found in the online version of this article:

Table S1. Population cohort code listing.
Table S2. Comorbidities and procedure definitions.
Table S3. Disease-specific comorbidities and procedure definition.
Table S4. Post-match patient characteristics.
Table S5. Post-match patient comorbidities.
Table S6. Post-match population-specific comorbidities and procedures.

References
1 Hoffman M. Heparin: clinical use and laboratory monitoring. Labmedicine 2010; 41: 621–6.
2 Hamilton LA, Abbott GV, Cooper JB. High-risk non-ST elevation acute coronary syndrome outcomes in patients treated with unfractionated heparin monitored using anti-Xa concentrations versus activated partial thromboplastin time. Hospital Pharmacy 2013; 48: 389–95.
3 Cuker A, Ptashkin B, Konkle BA, Pipe SW, Whinna HC, Zheng XL, Cines DB, Pollak ES. Interlaboratory agreement in the monitoring of unfractionated heparin using the anti-factor Xa-correlated activated partial thromboplastin time. J Thromb Haemost 2009; 7: 80–6.
4 Vandiver JW, Vondracek TG. A comparative trial of anti-factor Xa levels versus the activated partial thromboplastin time for heparin monitoring. Hospital Practice 1995; 2013: 16–24.
5 Price EA, Jin J, Nguyen H, Krishnan G, Bowen R, Zehnder JL. Discordant aPTT and Anti-Xa values and outcomes in hospitalized patients treated with intravenous unfractionated heparin. Ann Pharmacother 2013; 47: 151–8.
6 Tanaka KA, Thourani VH, Williams WH, Duke PG, Levy JH, Guyton RA, Puskas JD. Heparin anticoagulation in patients undergoing off-pump and on-pump coronary bypass surgery. J Anesth 2010; 21: 297–303.
7 Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45: 613–19.
8 D’Hoore W, Bouckaert A, Tilquin C. Practical considerations on the use of the Charlson comorbidity index with administrative data bases. J Clin Epidemiol 1996; 49: 1429–33.
9 Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984; 79: 516–24.
10 Parsons LS. Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques. SAS® USERS GROUP INTERNATIONAL 04/22; Long Beach, California 2001. p. 214–26.
11 Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects Biometrika 1983; 70: 41–55.
12 Rosenbaum PR. Optimal matching for observational studies. J Am Stat Assoc 1989; 84: 1024–32.
13 IPRO tMQIOfNY, State. Preventing Oral Anticoagulant Adverse Events. 2010.
14 Sherwood MW, Wang Y, Curtis JP, Peterson ED, Rao SV. Patterns and outcomes of red blood cell transfusion in patients undergoing percutaneous coronary intervention. JAMA 2014; 311: 836–43.
15 Gerber DR. Risks of packed red blood cell transfusion in patients undergoing cardiac surgery. J Crit Care. 2012;27:737e1–e9.
16 Alameddine AK, Visintainer P, Alimov VK, Rousou JA. Blood transfusion and the risk of atrial fibrillation after cardiac surgery. J Card Surg 2014; 29: 593–9.
17 Ferraris VA, Davenport DL, Saha SP, Austin PC, Zwischenberger JB, Rich JB, Kasirajan V, Fonner E, Kron IL, Speir AM. Blood product conservation is associated with improved outcomes and reduced costs after cardiac surgery. J Thorac Cardiovasc Surg 2013; 145: 796–804.
18 Ferraris VA, Davenport DL, Saha SP, Austin PC, Zwischenberger JB. Surgical outcomes and transfusion of minimal amounts of blood in the operating room. Arch Surg 2012; 147: 49–55.
19 Tulay Isil C, Yazici P, Bakir I. Risk factors and outcome of increased red blood cell transfusion in cardiac surgical patients aged 65 years and older. Thorac Cardiovasc Surg 2015; 63: 39–44.
20 Christensen MC, Krupf S, Kempel A, von Heymann C. Perioperative management: costs of excessive postoperative hemorrhage in cardiac surgery. J Thorac Cardiovasc Surg 2009; 138: 687–93.
21 Kumar M, Boland T, Baiou M, Moussouttas M, Herman J, Bell R, Rosenwasser R, Kasner S, Dechant V. Red blood cell
transfusion increases the risk of thrombotic events in patients with subarachnoid hemorrhage. *Neurocrit Care* 2014; **20**: 84–90.

22 Mazer CD. Review: blood conservation in cardiac surgery: guidelines and controversies. *Transfus Apheres Sci.* 2014; **50**: 20–5.

23 John T, Rodeman R, Colvin R. Blood conservation in a congenital cardiac surgery program. *AORN J* 2008; **87**: 1180–90.

24 Enomoto L, Hollenbeak C, Bhayani N, Dillon P, Gusani N. Measuring surgical quality: a national clinical registry versus administrative claims data. *J Gastroint Surg* 2014; **18**: 1416–22.

25 Welke KF, Karamlou T, Diggs BS. Databases for assessing the outcomes of the treatment of patients with congenital and paediatric cardiac disease—a comparison of administrative and clinical data. *Cardiol Young* 2008; **18**: 137–44.