Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP), a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi*

Jennifer N. Wingard1†, Jane Ladner1, Murugendra Vanarotti1, Andrew J. Fisher1, Howard Robinson†, Kathryn T. Buchanan1, David M. Engman1, and James B. Ames12

From the †Center for Advanced Research in Biotechnology, University of Maryland, National Institute of Standards and Technology, Rockville, Maryland 20850, §Department of Chemistry, University of California, Davis, California 95616, ¶Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Departments of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611

The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca2+-induced conformational changes important for membrane targeting, we report here the x-ray crystal structure of FCaBP in the Ca2+-free state determined at 2.2 Å resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26–37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a “closed configuration” similar to that seen in Ca2+-free calmodulin. The overall fold of FCaBP is closest to that of gran calcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca2+-free and Ca2+-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca2+-induced conformational changes may control its binding to membrane-bound target proteins.

Flagellar calcium-binding protein (FCaBP)3 is a 24-kDa highly immunogenic protein found in the flagellum of the protozoan parasite Trypanosoma cruzi (1). FCaBP contains four EF-hand calcium binding motifs (2, 3) (see Fig. 1), the third and fourth (EF-3 and EF-4) of which bind calcium (4). The protein is modified at the N terminus by covalent attachment of myristate at Gly-2 and palmitate at Cys-4, both of which are required for association with the inner leaflet of the flagellar membrane (5). Calcium is required for stable flagellar localization as well, as FCaBP can be washed out of detergent-permeabilized trypanosomes if calcium chelators are included in the wash solutions. The N-terminal acylation and calcium-dependent membrane localization of FCaBP suggested that the protein may possess a functional calcium-acyl switch, similar to the Ca2+-myristoyl switch observed previously for recoverin (6, 7) and other members of the neuronal calcium sensor family (8). Acyl switch proteins undergo calcium-dependent membrane association by virtue of calcium-regulated extrusion or sequestration of a myristate moiety that mediates membrane binding (9). However, an FCaBP mutant unable to bind calcium still maintains its flagellar localization, suggesting that FCaBP may not cycle the membrane on and off like some calcium acyl switch proteins (4).

The best studied calcium myristoyl switch protein is recover in, a calcium-binding protein in retinal rod cells that inhibits rhodopsin kinase only at high Ca2+ levels (10, 11) and regulates the recovery phase of phototransduction (12, 13). In the resting dark state, recoverin binds two calcium ions and associates with retinal rod outer segment membranes through its exposed myristoyl group (6, 7). Photoexcitation of the rod cell results in a lowering of cytosolic calcium (14), causing recoverin to lose its bound calcium and adopt a conformation in which the myristoyl group becomes sequestered within a hydrophobic cleft in the protein (9). Ca2+-free recoverin then dissociates from rhodopsin kinase at the membrane, allowing rhodopsin kinase to phosphorylate light-excited rhodopsin and promote receptor inactivation. The calcium-myristoyl switch mechanism allows...
Crystal Structure of FCaBP

calcium regulation of two proteins (rhodopsin kinase and rhodopsin) that do not themselves bind calcium. One major difference between FCaBP and recoverin is the presence of palmitate in FCaBP, which may or may not participate in a potential switch mechanism. A variety of FCaBP-like proteins are found in other trypanosomes: Trypanosoma rangeli, Trypanosoma lewisi, and Trypanosoma brucei (Fig. 1). A flagellar calmodulin has also been characterized in T. brucei (15). These Ca\(^{2+}\)-binding proteins all localize to the flagellum, a unique organelle that has many functions, including motility, chemotaxis, and cell signaling. In addition to the traditional \(9 + 2\) microtubule structure of the axoneme, there is a structure known as the paraflagellar rod that runs alongside the axoneme. The axoneme, paraflagellar rod, and flagelloplasm are encased by the flagellar membrane. It has been shown by freeze-fracture analysis that the flagellar membrane contains a higher concentration of sterols than does the pellicular (cell body) membrane (16), and the flagellum of T. brucei is highly enriched in lipid rafts. Flagellar membrane stability and function is also controlled by the recruitment of FCaBP to the membrane surface, where it is believed to interact with a variety of membrane-bound protein targets (4).

We report here the x-ray crystal structure of Ca\(^{2+}\)-free FCaBP as a first step toward understanding the Ca\(^{2+}\)-induced conformational changes that control membrane targeting. This is only the second atomic resolution structure of a Ca\(^{2+}\)-acyl switch protein in the Ca\(^{2+}\)-free state. The structure of Ca\(^{2+}\)-free recoverin first showed its covalently attached myristoyl group to be highly sequestered and buried deep inside the protein (17). Also, the recent crystal structure of Ca\(^{2+}\)-bound GCAP1 indicates a sequestered myristoyl group (18). By contrast, the structure of Ca\(^{2+}\)-free FCaBP in this study suggests a solvent-exposed N terminus, making its covalently attached acyl groups accessible to interact with membrane targets. We propose that the exposed acyl groups and N-terminal positively charged residues (Lys-19, -22, and -25) may promote the binding of FCaBP to the flagellar membrane and that Ca\(^{2+}\)-induced protein conformational changes may control its binding to membrane-bound protein targets.

EXPERIMENTAL PROCEDURES

Protein Expression and Puriﬁcation—To prepare recombinant unmyristoylated FCaBP (and Se-methionine-labeled FCaBP), FCaBP tagged with a C-terminal His\(_6\) tract was expressed in Escherichia coli strain BL21(DE3) carrying a derivative of the pET23d vector (Novagen) as previously described (4) grown in M9 minimal medium supplemented with or without Se-methionine, according to well established procedures (19–21).

Recombinant unmyristoylated FCaBP for the native crystal was expressed as above in LB media and was initially purified via nickel affinity chromatography. Peak fractions were pooled and diluted 3-fold with buffer containing 20 mM Tris, pH 7.5, 1 mM EDTA, 1 mM dithiothreitol, and applied to a Q-HP HiTrap column (Amersham Biosciences) at 5 ml/min. FCaBP was eluted with a 200-ml linear KCl gradient to a final concentration of 250 mM KCl. Peak fractions were pooled, and purified FCaBP was dialyzed and concentrated to 10 mg/ml in 20 mM Tris, pH 7.5, 1 mM dithiothreitol in a centrifugal filter device with a 10,000 molecular weight cutoff (Amicon).

Recombinant myristoylated FCaBP was generated by co-expressing FCaBP and N-myristoyl CoA transferase (pBB131-NMT) in BL21(DE3) cells grown on M9 medium supplemented with myristic acid (10 mg/liter). Myristoylated and non-myristoylated FCaBP was purified from the soluble fraction of bacterial cell lysates using Ni\(^{2+}\)-chelate affinity chromatography on a nitricloreticaceate resin (Qiagen) according the manufacturer’s instructions. Peak fractions were then applied to an anion-exchange column (Hi-Trap DEAE-FF, GE Healthcare) equilibrated in buffer A (1 mM EDTA, 1 mM diithiothreitol, 10 mM Tris-HCl, pH 7.4) and eluted with a linear salt gradient (0–0.2 M KCl) at flow rate of 5 ml min\(^{-1}\) over the course of 150 min. Peak fractions were concentrated to 5 ml and subjected to size exclusion chromatography (Sephacryl S-100, GE Healthcare) in buffer B (1 mM dithiothreitol, 2 mM CaCl\(_2\), 50 mM HEPES, pH 7.4). Final purity was greater than 98%, as judged by SDS-PAGE.

Protein Crystallization—Two different native crystals were grown by the hanging drop method (22). Crystal form #1 was

Protein Crystallization—Two different native crystals were grown by the hanging drop method (22). Crystal form #1 was

Crystal Structure of FCaBP

obtained by combining 900 μl of original well solution (3.2 M ammonium sulfate and 0.1 M MES, pH 6.0) with 100 μl of Opti-Salts (Qiagen) optimization solution (0.75 M magnesium chloride and 0.1 M sodium acetate, pH 4.6). Crystal form #2 was obtained using a well solution containing solely 3.2 M ammonium sulfate, 0.1 M MES, pH 6.0. The selenomethionine protein crystal was grown in a sitting drop with the well solution containing 3.2 M ammonium sulfate, 0.1 M MES, pH 5.7. The drop was made with 6 μl of protein (20 mg/ml) and 3 μl of well solution. All crystallizations were at room temperature.

X-ray Crystallography—Diffraction data for the native structure (from crystal #1) were collected using a Rigaku Micro Max 007 rotating anode generator (Rigaku/MSC, The Woodlands, TX). The crystal was cooled to 100 K with a Cryocool low temperature probe (Cryo Industries of America) and was cryoprotected by pulling the loop mounted crystal through immersion oil. The diffraction data were processed with CrystalClear/d*Trek (23). Statistics are shown in Table 1 (crystal #1). Single wavelength anomalous dispersion data for the selenomethionine protein were collected at Brookhaven National Laboratory on beamline X29 using the wavelength 0.9790 Å and processed with HKL2000 (24). When the anomalous data were processed in space group P212121, 15,413 measurements were rejected. With space group P1, only 442 reflections were rejected. With space group P21, only 33 Å axis was identified as the screw axis. When processed in space group P21, 504 reflections were rejected, and the 33 Å axis was identified as the screw axis. When processed in space group P212121, 15,413 measurements were rejected. With space group P1, only 442 reflections were rejected. With space group P21, only 33 Å axis was identified as the screw axis. When processed in space group P21, 504 reflections were rejected, and the 33 Å axis was identified as the screw axis.

TABLE 1
Data statistics table

	Native	SeMet
Space group	P2, P2, P1	P2, P2
Cell parameters (a, b, c) (Å)	32.91, 37.67, 141.33	37.71, 32.91, 140.88
Cell parameters (α, β, γ) (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0
Wavelength of data collection (Å)	1.541	0.979
No. of measured intensities	53,305	52,133
No. of unique reflections	12,558	18,011
Resolution of data (Å)	29.8-2.0	30.0-2.1
Highest resolution shell (Å)	2.07-2.0	2.18-2.1
Rmerge (overall/high resolution shell)	0.070/0.308	0.059/0.261
Completeness (%) (overall/high resolution shell)	99.8/97.9	87.3/45.6
Redundancy (overall/high resolution shell)	4.2/4.1	5.9/2.4
Mean I/σ (overall/high resolution shell)	10.9/4.1	11.1/2.5

TABLE 2
Refinement statistics table

	Native	SeMet
Resolution limits (Å)	20.0-2.0	
Number of reflections used/for Rmerge	11,896/600	
R-factor (overall/high resolution shell)	0.211/0.251	
Rmerge (overall/high resolution shell)	0.289/0.339	
Number of water molecules	65	
r.m.s.d. bond length (Å)	0.019	
r.m.s.d. angle (°)	1.73	
Average B main chain/side chain/water (Å²)	30.3/31.7/32.4	

RESULTS AND DISCUSSION

Protein Crystallization—Recombinant FCaBP crystallized in the orthorhombic space group, P212121, with one molecule of
FCaBP in the asymmetric unit. It is seen to be monomeric in the crystal, as measured in solution by NMR and dynamic light scattering analysis. The polypeptide structure derived from diffraction data on crystal #1 (in the presence of saturating Mg$^{2+}$) and crystal #2 (apo-form) appear virtually identical except for very minor differences in the EF2 loop structure (residues, 102–113), suggesting that Mg$^{2+}$ has almost no effect on the overall structure. In each crystal form, the first 17 residues from the N terminus appear disordered. Amino acid sequencing of the protein from dissolved crystals showed that all 17 N-terminal residues remained intact in both crystal forms and, therefore, were not cleaved by proteolysis during crystallization.

Three-dimensional Structure

The x-ray crystal structure of FCaBP was solved at 2.2 Å resolution, with a final R-factor of 16.95% and R-free of 21.97% (Fig. 2). The entire polypeptide chain has been traced except for the first 17 residues from the N terminus. High temperature factors for the N-terminal residues suggest they may be dynamically disordered. NMR relaxation studies and heteronuclear 15N nuclear Overhauser effect (NOE) analysis on FCaBP also confirms that the first 17 N-terminal residues are indeed unstructured (data not shown) and the N-terminal myristoyl group is solvent-exposed (see below). The overall main chain structure for residues 17–208 of FCaBP determined by x-ray crystallography was consistent with and nearly identical to a much lower resolution NMR solution structure (not shown).

The protein structure visible in the crystal has a globular fold with overall dimensions of 32 × 23 × 21 Å (Fig. 2). The first structured residue in the crystal begins at Ala-18 that marks the start of an exposed, 5-residue conformation (residues 18–23), resembling a hook that forms a right angle with an adjacent α-helix (residues 24–37). After this N-terminal helix is a compact arrangement of four EF-hands: EF1 (residues 49–77, green); EF2 (residues 98–126, red); EF3 (residues 131–159, cyan); EF4 (residues 168–196, yellow). Overall, FCaBP contains a total of eight α-helices and four β-strands: α1 (residues 24–37), α2 (residues 44–57), α3 (residues 67–76), α4 (residues 87–105), α5 (residues 116–139), α6 (149–162), α7 (residues 169–176), α8 (residues 186–201), β1 (residues 64–66), β2 (residues 113–115), β3 (residues 146–148), and β4 (residues 183–185) (Fig. 1). The four EF-hands of FCaBP associate into two pairs through a characteristic, short, two-stranded β-sheet arrangement, EF1 (green) pairs with EF2 (red), whereas EF3 (cyan) pairs with EF4 (yellow). The two pairs of EF-hands are connected by a long, central helix (α5) formed by merging the exit helix of EF2 into the entering helix of EF3. This topology causes three long, central helices (α4, α5, and α8) to interact closely as a twisted, vertical bundle. As a consequence, EF2 and EF4 make close contact with one another. This globular arrangement of EF-hands is most similar to that seen for the first four EF-hands in the penta-EF-hand proteins, grancalcin (37) and domain IV of calpain (38). However, unlike penta-EF-hand proteins, FCaBP lacks a fifth EF-hand and is not dimeric.

EF-hands and Ca$^{2+}$ Binding

The individual metal-free EF-hands in FCaBP each consist of a helix-turn-helix structure similar to the closed conformation of EF-hands seen in previous Ca$^{2+}$-free structures of calmodulin (39, 40), troponin C (41), and grancalcin (37). The interhelical angles for the “closed” EF-hands in FCaBP are 119° (EF1), 128° (EF2), 122° (EF3), and 120° (EF4). The binding of Ca$^{2+}$ to each EF-hand in calmodulin causes a marked decrease in interhelical angle that promotes formation of an open conformation, leading to the exposure of many hydrophobic residues that interact with protein targets (42, 43). Functional Ca$^{2+}$ binding to EF3 and EF4 in FCaBP (4) may cause a similar Ca$^{2+}$-induced exposure of hydrophobic residues and might explain the observed Ca$^{2+}$-induced binding of FCaBP to protein phosphatase 2A4 and various other protein activities.

4 D. Engman, unpublished results.
targets (4). Indeed, Ca\(^{2+}\)/H11001-dependent membrane binding by FCaBP might arise in part by its Ca\(^{2+}\)/H11001-induced binding to protein targets localized on the flagellar membrane surface.

The 12-residue Ca\(^{2+}\) binding loop of EF2 in FCaBP appears loosely structured in crystal form #1 and adopts an unusual, distorted conformation in crystal form #2, which may explain why EF2 is not able to bind Ca\(^{2+}\) (4). The instability and/or structural distortion of the EF2 loop may be due in part to the presence of G109 at position 3 in the binding loop, which lacks an acidic side chain required for Ca\(^{2+}\) chelation at this key position.

The lack of Ca\(^{2+}\) binding at EF2 may also explain why Ca\(^{2+}\) is not able to bind to EF1, as the helices of EF1 and EF2 interlock to form a four-helix bundle, causing both EF-hands to be cooperatively locked in the Ca\(^{2+}\)-free closed conformation. In addition, Cys-66 at position 9 in the EF1 loop is not able to form a hydrogen bond with Glu-69, which may destabilize the binding-loop structure and prevent Ca\(^{2+}\) binding at EF1.

By contrast, EF3 and EF4 both adopt a more favorable conformation for binding Ca\(^{2+}\), consistent with functional Ca\(^{2+}\) binding measured at these sites (4). In the Ca\(^{2+}\) binding loop of EF3, side-chain oxygen atoms from residues Asp-140, Ser-142, Asn-144, and Glu-151 are held in a cage-like arrangement surrounding a bound H\(_2\)O molecule (Fig. 2A) that resembles the binding of Ca\(^{2+}\) with the familiar pentagonal bipyramid geometry (3). For EF4, side-chain oxygen atoms from residues Asp-177, Asn-179, Thr-181, and Glu-188 are also prearranged with a similar geometry that surrounds a bound H\(_2\)O. In addition, the main-chain nitrogen of the sixth residue in the Ca\(^{2+}\) binding loops of EF3 (M145) and EF4 (G182) both form hydrogen bonds with aspartate at the one position, forming a loop conformation characteristic of Ca\(^{2+}\)-bound calmodulin and troponin C. Therefore, the Ca\(^{2+}\) binding loops in EF3 and EF4 both adopt a favorable, preformed local conformation that should promote rapid and functional Ca\(^{2+}\) binding.

Surface Properties of FCaBP

A space-filling representation of FCaBP reveals multiple charged residues in FCaBP unevenly distributed on one side of the protein surface (Fig. 3) with an exposed hydrophobic patch on the opposite side (Fig. 3B). Most striking is the arrangement of N-terminal Arg and Lys residues (Lys-19, -22, -25, -28 and Arg-33 and -35) whose side chains form a cluster of positive charge on the protein surface (highlighted in blue in Fig. 3A). Some of these N-terminal basic residues (Lys-19, Lys-22, and Lys-25) have been implicated previously in membrane binding (4). We propose that the exposed patch of N-terminal Arg and

FIGURE 3. Surface representation of FCaBP protein structure. Space-filling models of FCaBP depicting the positively charged, membrane-binding interface (A) and exposed hydrophobic surface (B). The orientations are similar to those in Fig. 2B. Exposed hydrophobic, basic, and acidic residues are highlighted in yellow, blue, and red, respectively.
Lys residues may promote electrostatic interactions with negatively charged head groups on the surface of the flagellar membrane. A similar electrostatic membrane interaction has also been proposed for the myristoyl switch proteins, recoverin (44) and the Src protein (45). The additional electrostatic attraction helps augment membrane anchoring by the N-terminal myristoyl group and can increase the membrane binding affinity by more than 10-fold (45, 46).

The protein surface on the opposite face (Fig. 3B) contains an exposed patch of hydrophobic residues near the C terminus (Ala-170, Ala-171, Leu-172, Ala-176, Ala-191, Trp-192, Ala-195, Val-196, Ala-198, and Ala-200, highlighted in yellow in Fig. 3B). The exposed hydrophobic residues are primarily located on the helices of EF4 (α7 and α8). Ca^{2+}-induced conformational changes expected in EF4 therefore might alter the arrangement and environment of these hydrophobic residues. We propose that the exposed hydrophobic patch in Fig. 3B may represent a binding site for the interaction with membrane-bound protein targets.

NMR Analysis of Myristoylation—The absence of detectable electron density from the first 17 residues of FCaBP suggested that the N-terminal region and myristoyl group may be structurally disordered. To more directly examine the structural role of the myristoyl group, we recorded two-dimensional (1H,15N HSQC) NMR spectra of both myristoylated and unmyristoylated FCaBP, demonstrating that both spectra are nearly identical (Fig. 4). Hence, the presence of the myristoyl group does not appear to affect the overall structure of Ca^{2+}-free FCaBP, in contrast to the large structural changes in Ca^{2+}-free recoverin that result from N-terminal myristoylation (17, 31). The similarity in the spectra of FCaBP and myr-FCaBP suggests that the fatty acyl chain may be exposed to solvent and, hence, not interacting significantly with the protein.

NMR experiments were also performed on FCaBP containing a 13C-labeled myristoyl group to directly probe the structural environment and disposition of the N-terminal myristoyl group. Previously, two-dimensional (13C,1H HMQC) and three-dimensional (13C-filtered NOESY-HMQC) NMR experiments on samples of recoverin that contained a 13C-labeled myristoyl group were used to selectively probe the chemical environment around the N-terminal myristoyl group (31, 34). These studies revealed that the covalently attached fatty acyl chain in recoverin is sequestered in a hydrophobic pocket in the Ca^{2+}-free protein and that binding of Ca^{2+} leads to conformational changes that extrude the N-myristoyl group into solvent.

Similar NMR experiments were performed on samples of FCaBP that contained a 13C-labeled myristoyl group (Fig. 5). Because the HMOC experiment selectively probes protons that are covalently attached to 13C, only the methylene and methyl proton resonances of the fatty acyl chain appear in these spectra. Weak extraneous peaks near 0.9, 1.4, and 1.7 ppm (1H
Crystal Structure of FCaBP

The spectrum of the N-myristoyl group in Ca\(^{2+}\)-free FCaBP (Fig. 5B) looks quite similar to the spectrum of free myristic acid in solution (Fig. 5A), and the resonance frequencies of corresponding peaks are nearly identical. Assignments of the myristoyl group of the fatty acyl chain were, therefore, derived from assignments of those for free myristic acid, which were determined previously (31). The similarity in the spectrum of the myristoyl group in Ca\(^{2+}\)-free FCaBP to that of free myristic acid in solution indicates that in Ca\(^{2+}\)-free FCaBP the fatty acyl chain is solvent-exposed, in contrast to Ca\(^{2+}\)-free recoverin where the myristoyl chain is deeply buried inside the core of the protein (9).

To further test whether the myristoyl group of FCaBP is solvent-exposed, three-dimensional (13C/F1)-edited and (13C/F3)-filtered NOESY experiments (31) were performed on unlabeled FCaBP protein containing a 13C-labeled myristate. These spectra selectively probed atoms of residues in the protein that lie within 5 Å of the labeled CH\(_3\) group of the myristoyl chain. NOE interactions between the myristate methyl group and the protein could not be detected (data not shown). The lack of observable NOEs in this experiment suggests that the methyl group of the fatty acyl chain is more than 5 Å away from atoms in the protein, providing additional support for the conclusion that the N-myristoyl group of FCaBP is solvent-exposed and does not interact intimately with the protein.

The addition of Ca\(^{2+}\) to myr-FCaBP caused no discernable change in the NMR spectrum of the myristoyl group (Fig. 5C). In addition, NOE interactions between the myristate and protein could not be detected (data not shown) in three-dimensional (13C/F1)-edited and (13C/F3)-filtered NOESY spectra of Ca\(^{2+}\)-bound [\(^{13}\)C\]Myr-FCaBP, suggesting that the methyl group of the fatty acyl chain does not interact closely with the Ca\(^{2+}\)-bound protein. Hence, the myristoyl group of Ca\(^{2+}\)-bound FCaBP appears solvent-exposed and does not undergo a calcium-induced change in environment, in contrast to what has been observed previously in recoverin (31).

Structural Relationship with Penta EF-hand (PEF) Proteins—The N-terminal myristoylation and four EF-hands in FCaBP would suggest that it might be structurally similar to recoverin (9, 47) and related Ca\(^{2+}\)-myristoyl switch proteins (48, 49). However, the overall three-dimensional structures of FCaBP and recoverin are surprisingly quite different and unrelated. Instead, the overall main chain fold of Ca\(^{2+}\)-free FCaBP is most similar to that of apograncalcin (37) and related proteins that belong to the PEF family (50). Interestingly, FCaBP bears very little sequence homology to the PEF proteins (<20% identity). The root mean square deviation (r.m.s.d.) was 3.5 Å when comparing the main chain atoms of the four EF-hands of FCaBP with those of the first four EF-hands of granalcain (Fig. 6). The structural similarity is even more striking when comparing the main chain atoms from EF1, EF3, and EF4 (r.m.s.d. = 2.9 Å), whereas the structure of EF2 was much more divergent between the two (r.m.s.d. = 4.5 Å). The second helix of EF2 and first helix of EF3 in FCaBP are merged into a long, 23-residue helix (α5) that is flanked in an antiparallel fashion by helices α4 and α8, forming a twisted bundle. A similar helical bundle and overall topology is also seen in granalcain and seems to be a structural hallmark of all PEF proteins. The similarity of the main chain conformations between FCaBP and PEF proteins suggests that their functions might be related. Indeed, granalcain and PEF proteins exhibit Ca\(^{2+}\)-induced membrane binding (51–53) and interact with target proteins such as L-plastin (54), annexins (55), and integrins (56).
implicated in cytoskeletal dynamics. FCaBP also binds to membranes and has been shown recently to interact with several candidate target proteins (4). Future studies are needed to determine whether any of the FCaBP target proteins might be related to L-plastin or other PEF protein targets that regulate cytoskeletal adhesion and migration.

An important structural difference between FCaBP and PEF proteins is that FCaBP is monomeric in solution and does not have a fifth EF-hand like the dimeric PEF proteins. The fifth EF-hand of FCaBP may have been deleted during evolution perhaps to allow for the exposure of hydrophobic residues in EF4 (Fig. 3B) that otherwise would be inaccessible if the fifth EF-hand were present. Another difference is the presence of the lipophilic N-terminal extension region in PEFs that have variable Gly-Pro-Ala sequences implicated in membrane targeting (57). By contrast, FCaBP has conserved basic residues (Lys-19, Lys-22, Lys-25) in the N-terminal region that we suggest might be important for membrane binding in addition to N-terminal myristoylation and palmitoylation sites (Figs. 1 and 7). We propose that the four EF-hand of FCaBPs are evolutionarily related to the first four EF-hand of PEF proteins and that FCaBPs may represent a sub-branch of the PEF family that lacks their binding to protein targets (42, 43). A similar Ca$^{2+}$-dependent exposure of hydrophobic residues in EF4 may promote association of Ca$^{2+}$-bound FCaBP with a membrane-bound target protein and preferentially localize FCaBP at the flagellar membrane at high Ca$^{2+}$ levels (Fig. 7B). Alternatively, the Ca$^{2+}$-free state of FCaBP might preferentially bind to a cytosolic target protein that would localize FCaBP in the cytosol at low Ca$^{2+}$ levels (Fig. 7A). The binding of a cytosolic target protein to Ca$^{2+}$-free FCaBP might help to sequester the N-terminal fatty acyl groups inside a protein environment (perhaps involving exposed hydrophobic residues in EF4) like that seen for Ca$^{2+}$-free recoverin (17) or GCAP1 (18). Sequestration of the myristoyl group would stabilize cytosolic FCaBP and, therefore, promote its membrane dissociation only at low Ca$^{2+}$ levels. Last, reversible cleavage of the labile palmitoyl group attached to FCaBP (by a thioester linkage) may further modulate its membrane anchoring capacity. The enzyme-catalyzed cleavage of palmitate may also be regulated by Ca$^{2+}$.

In short, both the Ca$^{2+}$-free and Ca$^{2+}$-bound FCaBP have exposed myristoyl groups (Fig. 5) that we propose anchor the protein to the flagellar membrane. Thus, FCaBP does NOT exhibit Ca$^{2+}$-induced extrusion of the myristoyl group to control membrane localization like what is seen for recoverin (6) and related Ca$^{2+}$-myristoyl switch proteins (58). Instead, we propose that Ca$^{2+}$-induced protein conformational changes in FCaBP (4) may modulate its interaction with target proteins.
Crystal Structure of FCaBP

that control membrane localization as depicted in Fig. 7. Future structural studies on Ca\(^{2+}\)-bound FCaBP bound to various target proteins are needed to further test and refine the proposed membrane-targeting mechanism.

Acknowledgments—We thank Jeff de Ropp for help with NMR experiments, Dr. Frits Abildgaard for providing NMR pulse-sequence programs, John Cieslak for producing the E. coli strains coexpressing FCaBP and yeast N-myristoyltransferase, and Frank Delaglio and Dan Garrett for writing computer software for NMR data processing and analysis.

REFERENCES

1. Engman, D. M., Krause, K. H., Blumin, J. H., Kim, K. S., Kirchoff, L. V., and Donelson, J. E. (1989) *J. Biol. Chem.* 264, 18627–18631
2. Moncrief, N. D., Kretzinger, R. H., and Goodman, M. (1990) *J. Mol. Evol.* 30, 522–562
3. Ikura, M. (1996) *Trends Biochem. Sci.* 21, 14–17
4. Buchanan, K. T., Ames, J. B., Asfaw, S. H., Wingard, J. N., Olson, C. L., Campana, P. T., Araujo, A. P., and Engeman, D. M. (2005) *J. Biol. Chem.* 280, 40104–40111
5. Godsel, L. M., and Engman, D. M. (1999) *EMBO J.* 18, 2057–2065
6. Zozulya, S., and Stryer, L. (1992) *Biochemistry* 31, 22182–22190
7. Erickson, M. A., Lagnado, L., Zozulya, S., Neubert, T. A., Stryer, L., and Ikura, M. (1997) *Nature* 389, 198–202
8. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
9. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
10. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
11. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
12. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
13. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
14. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
15. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
16. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
17. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
18. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
19. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
20. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
21. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
22. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
23. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
24. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
25. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
26. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
27. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
28. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
29. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
30. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
31. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
32. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
33. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
34. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
35. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
36. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
37. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
38. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
39. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
40. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
41. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
42. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
43. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
44. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
45. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
46. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
47. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
48. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
49. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
50. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
51. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
52. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
53. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
54. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
55. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
56. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
57. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
58. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
59. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
60. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
61. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
62. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
63. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
64. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447
65. Tetley, L. (1986) *Q. Rev. Biophys.* 19, 389–447