Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine

Cheng Zhang, Mphil¹, Ning Wang, PhD¹, Hor-Yue Tan, PhD¹, Wei Guo, PhD¹, Sha Li, PhD¹, and Yibin Feng, PhD¹

Abstract

Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)—derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize (a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; (b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and (c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

Keywords

Tumor angiogenesis, traditional Chinese medicine, VEGF

Submitted January 25, 2018; revised March 29, 2018; accepted March 30, 2018

Introduction

The establishment of a circulatory system for the provision of oxygen and nutrient substances to all body tissues systematically exists in vertebrates. The system is founded in the early phase of embryogenesis via vasculogenesis and angiogenesis, which embrace the formation of capillary plexuses and blood vessels generated from progenitor cells (vasculogenesis) and the expansion and remodeling of preexisting vascular structure (angiogenesis).¹ It can be clearly understood that both vasculogenesis and angiogenesis proceed efficiently in response to physiological and pathological conditions. Factors of angiogenesis in multicellular organisms are under strict control and regulation. Accumulating attention has been paid to endothelial cells (EC) in relation to the angiogenesis, but vascularization in vivo requires a combination of pathogenesis such as tumorigenesis and release of proangiogenic factors, including vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), angiopoietin and platelet-derived growth factors (PDGFs).²,³ Among these, VEGF/VEGFRs are the critical mediators of vasculogenesis and angiogenesis in terms of their capacity to elicit a broad spectrum of signal transduction cascades in the induction of tumor angiogenesis.

Because of the positive pharmacological activities of traditional Chinese medicine (TCM) in combating tumor-induced angiogenesis, natural compounds as well as formulae derived from TCMs have demonstrated beneficial effects on the regulation of immune function, tumor proliferation and...
metastasis, accelerated angiogenesis and the inhibition of chemotherapy-induced adverse effects.5,6 This review summarizes the updated essential role of VEGF/VEGFRs-associated tumor angiogenesis in combination with the therapeutic functions of angiogenesis involved in various TCMs medicines in the past few years.

Interaction of VEGF/VEGFRs in Tumor Angiogenesis

Properties of VEGF Family in Tumor Angiogenesis

Accumulating attention has been paid to the function of receptor tyrosine kinases and growth factors originating from the VEGF family that possess angiogenic effects. Five glycoproteins, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PIGF), are the subtype members of VEGF family; VEGF-A is commonly known as the biologically active factor VEGF.7 The binding of the VEGFs with their transmembrane receptors VEGFR-1, VEGFR-2, and VEGFR-3 strengthens the regeneration of endothelial cell and vascular permeability, which leads to the initiation of tumor growth and physio-pathological characteristics of the vascular network.8 VEGF generation is widely detected in numerous types of tumors and especially overexpressed from benign to malignant lesions.9

It is generally believed that VEGF activity plays a critical role in the paracrine mechanism of tumor-induced neovascularization, that is, VEGF could be produced by tumors cells. On the contrary, VEGF receptors are abundant in endothelial cells.10 Accumulating studies indicated that VEGF/VEGFR-associated signaling pathways were the most relevant modulators of vasculogenesis, angiogenesis and mobilization of endothelial progenitor cells during development.11 The increase of the tumor secretion-induced VEGF is caused by the activation of hypoxia and multiple etiological factors involving the mediation of epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor–β (TGF-β), estrogen, and hereditary functional mutant oncogenes of Ras and Src.12 Pharmacological mechanisms and actions of drugs interfering in tumor-bearing angiogenesis have been extensively studied in the past decade. Bevacizumab, a humanized anti-VEGF monoclonal antibody, has been one of the most prevalent antiangiogenesis treatments, acting to normalize the vasculature and benefit the inhibitory effect of chemotherapeutic drugs, especially in malignant gliomas.13,14

The Biological Actions of VEGF Receptors

VEGFR1 has high affinity for binding VEGF, PIGF, and VEGF-B and is pivotal for the ignition of angiogenesis.10 VEGFR1 is also widely distributed on the cell-surface membrane of non-endothelial cells, including macrophage-lineage cells and vascular smooth muscle cells, and transduces a vital signal for the production of cytokines and chemokines.15 Intriguingly, the axis containing VEGFR1 and macrophage motivates the inflammatory or noninflammatory reactions in numerous tissues and gives rise to various illness such as cancer growth via the stimulation of angiogenesis, tumor metastasis, formation of lymphatic vessels and atherosclerosis. The VEGFR1-macrophage axis plays a significant role in the recovery of physiological functions such as the rehabilitation of spinal marrow and wound healing.16 It is noteworthy that VEGF-related autophosphorylation of VEGFR1 and activation of signaling pathways in endotheliocytes are relatively weak in comparison with signaling through VEGFR2.17 Nevertheless, with regard to the pathological alterations of tumorigenesis and angiogenic cascade, VEGFR1 is a critical mediator of both positive and negative functions in a context-dependent manner.18,19 In addition, VEGF/PIGF heterodimers have the property to promote intramolecular cross talk between VEGFR-1 and VEGFR-2.20

Transmembrane glycoprotein VEGFR2 is the principal signaling receptor for VEGF that mediates the VEGF-associated downstream effects of angiogenesis, including endothelial cell survival, invasion, tube formation and sprouting.21 VEGFR2 proteolytically processes and binds the VEGF-A, VEGF-C, and VEGF-D. Peak VEGFR2 expression occurs in vascular endothelial cells in the onset of embryonic vasculogenesis and angiogenesis.22 VEGFR2 level can be enhanced in both physiological and pathological neovascularization. For instance, during reproductive periodicity, mRNA expression of VEGFR2 is elevated in the middle and late stage of the luteal phase within the uterus.23 Depletion of the expression of Endomucin-1 impaired the migration, proliferation, angiogenesis as well as the tube formation of endothelial cell via the modulation of VEGFR2-related signaling, such as the ERK1/2 and p38 MAPK.24-26 The density of average microvessels fluctuated synchronously with the expression of VEGFR2 and fibroblast growth factor receptor 1 (FGFRI) in non–small cell lung cancer.27 Inactive embryos resulted from the devitalization of VEGFR2, leading to deficiencies in vasculogenesis and poor development of hematopoiesis.28

In contrast to the down-modulation of VEGFR2 against tumor angiogenesis, the spliced form of VEGFR2 suppressed the activation of VEGF-dependent endothelial cell proliferation. Alternative mRNA splicing of VEGFR2 contributed to the production of a soluble form of VEGFR2 (solVEGFR2) that appeared in numerous tissues including endothelial cell and cancer cells.29 Additionally, both the vessel maturation and the migration of mural cells are regulated by solVEGFR2. Perhaps because of the enormous overproduction of activated VEGF in numerous tissues, insufficient neutralizing expression of solVEGFR2 is
relatively common. As described above, VEGFR2 has a dominant proangiogenic activity irrespective of whether mildly increased soVEGFR2 binds VEGF. Specific negative regulation of VEGFR2 may efficiently attenuate endothelial cell proliferation and tumor survival.

A tyrosine-protein kinase, VEGFR3, preferentially binds VEGF-C and VEGF-D, and was initially cloned from human placental and leukemia cell lines. It is considered to be uniquely expressed in embryonic vascular endothelial cells and lymphatic endothelium, and plays a vital role in progression of tumor metastasis, lymphangiogenesis, and angiogenesis. The transcription of VEGFR3 is mediated by Sp1 and Sp3, known as zinc finger proteins, under epigenetic control. Under physiological conditions, VEGFR3 is expressed restrictively in certain fenestrated vascular endothelial cell proliferation and lymphangions, while massively emerging is expressed restrictively in certain fenestrated vascular endothelium and lymphangions, while massively emerging in pathological vessels as well as in the proliferation of various tumors involving lung and renal cancer. Deprivation of VEGFR3 expression led to cardiovascular failure and sparse vascular density, indicating the biological activity of VEGFR3 in the formation of blood vessels.

It was demonstrated that excessive production of VEGFR3 can be identified in the growth of endothelial tip cells during sprouting angiogenesis in both mouse and zebrafish. In particular, VEGFR3 restrained the activity of VEGFR2, along with the VEGF/VEGFR2 signaling pathway, and prevented excessive vascular permeability in endothelial cells. Additionally, during the development of angiosarcoma and other neoplastic growths, increases in vascular branches and endothelial sprouts could be reversed via the blockage of the VEGFR3-associated signaling pathway. Furthermore, activated VEGFR3 can promote the metastasis of breast tumors though regional lymph nodes. Neutralization of VEGFR3 signaling, which was involved in the VEGFC/VEGFR3 autocrine signaling pathway, results in the reduction of breast tumors and lung metastases. Thus, targeting VEGFR3 may afford an efficacious therapeutic method in the resistance of tumor-induced angiogenesis.

Regulation of VEGF/VEGFRs-Related Signaling by TCMs

To date, TCM-derived compounds and formulas have represented their potential in attenuating tumor progression by the downregulation of VEGF-associated signaling pathways. Actein, a natural triterpene glycoside isolated from *Cimicifuga foetida*, exerts profound antiangiogenesis activity by inhibiting protein expression of VEGFR1, pAkt, p-mTOR, and COX-2 in xenografted mouse model of colon cancer. Moreover, suppression of VEGF, bFGF and HIF-1α can be demonstrated in HCT 116 colon cancer cells in a CoCl2-mimicked hypoxic microenvironment as well. Bufalin is a biologically active small molecule compound with dramatic anticancer characteristics in prostate, endometrial and ovarian cancers. The pathological status of angiogenesis, which is caused by the phosphorylation of VEGFR1/VEGFR2/EGFR, could be abolished on bufalin administration in human non–small cell lung cancer. H2-P is a synthetic derivative of honokiol and decreases glioblastoma growth by exerting potent anti-angiogenesis effects via the downregulation of the c-MYC/VEGFR2 signaling pathway. Catalpol, a major compound isolated from *Rehmannia glutinosa*, possesses multiple pharmacological functions, including anti-angiogenesis, anti-inflammation and antitumor growth properties. Catalpol attenuated the secretions of numerous proangiogenic markers including VEGF, VEGFR2, HIF-1α, bFGF, interleukin (IL)-1β, IL-6, IL-8, COX-2, and inducible nitric oxide synthase (iNOS), suggesting it as a promising ingredient in treating colon cancer. Neovalaconol, extracted from *Albatrellus confluens*, displayed inhibition of breast cancer activities associated with the induction of cell apoptosis by blocking EGER2/VEGF production and repressing the proliferation, invasion and migration of endothelial cells both in vitro and in vivo. Oridonin is the main terpene isolated from *Rabdosia rubescens*, and proved to be equipped with antiangiogenesis, antimetastasis, and antitumor growth properties by the diminution of claudin-1, -4, -7, VEGF-A, VEGFR2, and VEGFR3 expressions.

To further summarize the recent advances in studying the antiangiogenic effect of TCMs, the term “Chinese medicine” in combination with “tumor angiogenesis” was used to search PubMed and Google Scholar within the past 5 years (Table 1). Manual searches of in-text references from the selected articles were further performed. Included studies were to be used to create a table or network graph, respectively, if in vivo or in vitro study was aimed to investigate the antitumor angiogenesis effects and mechanisms of TCMs. Studies inconsistent with the above criteria were excluded. Furthermore, a hypothetical schematic with the aforementioned therapeutic mechanisms of TCMs in the attenuation of tumor angiogenesis is outlined in Figure 1. As illustrated in Figure 2, several intensively studied TCMs are elaborated below.

Salvia miltiorrhiza

Salvia miltiorrhiza (SM), an eminent Chinese herbal medicine composed of approximately 900 constituents, comprises a massive range of bioactivities with regard to
Natural Compound	Sources of TCMs	Tumor/Cell Line	Pharmacological Actions	Publication Date	Reference
Catalpol	*Rehmannia glutinosa*	Colon cancer; CT26 cells	VEGF, VEGFR2, HIF-1α, bFGF, IL-1β, IL-6, IL-8, COX-2, iNOS ↓	2017	45
Eriocalyxsin B	*Isodon eriocalyx*	Breast cancer; MCF-7 cells; MDA-MB-231 cells	LC3B-I↓, p62, ROS↓	2017	118
Astragloside IV;	*Astragalus membranaceus*	Hepatocellular carcinoma	FGF2, MMP-2, VEGF, HGF, TF, FVII, miR-221↓, miR-122↑	2017	119
Astragolside IV;	*Curcuma longa*				
Ginsenoside Rd	*Panax ginseng*	Breast cancer; MDA-MB-231 cells	VEGF↓	2017	120
Luteolin	Aromatic flowering plant	Gastric cancer; Hs-746T cells; HUVEC	Akt/mTOR/p70S6K pathway↓	2017	121
Neoalbaconol	*Albatrellus confusus*	Breast cancer; HUVEC	VEGF; EGFR2↓	2017	47
Ilexgenin A	*Ilex hainanensis*	Hepatocellular carcinoma; HepG2 cells; H22 cells; HUVECs	VEGF, TNF-α, IL-6↓, STAT3 and PI3K pathways↓; AST/ALT↓, Caspase-3/7↑; PI3K/Akt, VEGF/KDR↑, Angiopoietins (ANG)/Tie2↓	2017	122
Plumbagin	*Plumbago europaea*; *Plumbago rosea*	Hepatocellular carcinoma; EA. hy926 cells; SMMC-7721 cells; Hep3B cells	PCTGF, ET-1, bFGF↓; PI3K/Akt, VEGF/KDR↓, Angiopoietins (ANG)/Tie2↓	2017	123
Tanshinone IIA	*Salvia miltiorrhiza*	Colorectal cancer; Osteosarcoma	VEGF, bFGF, TGF-β1, Mn1/2, Opa1↓, HIF-1α/j-l-catenin/TCF3/LEF1 signaling pathway↓, Drp1↑	2017	60, 63
Imperatorin	*Angelica dahurica*	Colo rectal cancer; Cervical cancer; Hepatocellular carcinoma; HCT 116 cells; HeLa cells; Hep3B cells	HIF-1α↓↓, mTOR/p70S6K/4E-BPI and MAPK pathways↓	2017	124
Arctigenin	*Arctium lappa*	Breast cancer; MDA-MB-231 cells	MMP-2, MMP-9, Heparanase↓	2017	125
Danshensu	*Salvia miltiorrhiza*	Lewis Lung Carcinoma; LLC cells	HIF-1α, TXB2, 6-keto-PGFα↓	2017	126
Celastrus orbiculatus extract	*Celastrus orbiculatus*	Hepatocellular carcinoma; HCC cells	TGF-β1, Notch1, Hes1↓	2017	127
Marsdenia tenacissima extract	*Marsdenia tenacissima*	Lymphoma	MMP-2, MMP-9↓	2017	128
Gubenyiliu II (Formula)	*Celastrus orbiculatus*	Breast cancer	ERK and AKT pathways↓	2017	129
Curcumin	*Curcuma longa*	Glioma; U87 cells	VEGF, Ang-2, TSP-1↓	2016	130
Cryptotanshinone	*Salvia miltiorrhiza*	Melanoma; B16F10 cells; HUVEC	TNF-α, HuR, NF-κB, STAT3↓	2016	72

(continued)
Natural Compound	Sources of TCMs	Tumor/Cell Line	Pharmacological Actions	Publication Date	Reference
Eriocalyxin B	Isodon eriocalyx	Breast cancer; HUVEC	VEGFR2↓	2016	131
Paris saponins	Paris polyphylla	Lung adenocarcinoma; PC92D cells	Bcl-2↓; Caspase-3, Bax↑; p21 (Waf1,Cip1)↑	2016	132
Actein	Cimicifuga foetida	Breast cancer; HMEC cells	VEGFR1↓, pJNK, pERK, CXC4R4↓	2016	41
Sinomenine	Sinomenium acutum	Osteosarcoma; U2OS cells; HUVEC	CXC4R4, STAT3, MMP-2, MMP-9, RANKL, VEGF↓	2016	133
Isosteroidal alkaloid	Fritillaria pallidiflora	Ovarian cancer; Hepatocellular carcinoma; Lung carcinoma; A2780 cells; HepG2 cells; A549 cells.	Bcl-2↓; Caspase-3, Bax↑	2016	134
Gamabufotalin	Bufonid	Lung cancer; HUVEC	VEGF, VEGF↓	2016	135
Oleanolic acid	Olive oil, Syzygium spp, garlic, etc.	Colorectal cancer; HUVEC	VEGF, STAT3, FGF2↓	2016	136
Emodin	Rhubarb, buckthorn, etc.	Breast cancer	IRF4, STAT6, MCP1, CSF1, Thy-1↓, C/EBPβ↑ signaling pathway↑	2016	137
20(s)-Ginsenoside Rg3	Ginseng	Lewis lung cancer	VEGF, MMP-9, HIF-1α↓	2016	138
Baicalein	Scutellaria baicalensis	Non-small cell lung cancer; H4-460 cells	VEGF, FGR-2↓; RB-1↑	2016	108
Hedyotis diffusa Wild extract	Hedyotis diffusa	Colorectal cancer; HT-29 cells	LGR5, ATP-binding cassette subfamily B member 1 (ABCB1), β-catenin, c-Myc↓	2016	139
Ginkgo biloba exocarp extracts	Ginkgo biloba	Lewis lung cancer; LLC cells	Wnt(/)-catenin-VEGF signaling pathways↓	2016	5
Forsythia fructus aqueous extract	Forsythia Fructus	Melanoma; B16-F10 cells	ROS, MDA, TNF-α, IL-6↓, Nrf-2, HO-1, p53, p-PTEN↑	2016	140
Salvia triloba methanolic extract	Salvia triloba	Prostate cancer; PC-3 cells, DU-145 cells; HUVECs	ANG, ENA-78, BGF, EGF, IGF-1, VEGF-D, IL-8, LEP, RANTES, TIMP-1, TIMP-2, VEGF↓	2016	141
Xiaoan Sanjie decoction (Formula)	HUVECs	Gastric cancer; HUVECs	LGR5, ATP-binding cassette subfamily B member 1 (ABCB1), β-catenin, c-Myc↓	2016	142
Yang Zheng Xiao Ji (Formula)	Lung cancer; A549 cells; SK-MES-1 cells	VEGF↓	VEGF↓	2016	143
Buyang Huanwu decoction (Formula)	Hepatocellular carcinoma	VEGF, RG55, HIF-1α↓	VEGF, VEGFR2↓	2016	144
Danugui-Sayuk-Ga-Osuyu-Saenggung-Tang (Formula)	Pancreatic tumor	VEGF, VEGFR2↓	VEGF, VEGF↓	2016	145
Paris saponin II	Rhizoma paridis	Ovarian cancer; SKOV3 cells	NF-κB, VEGF, Bcl-2, Bcl-xL↓	2015	146
Scutellaria barbata D.	Scutellaria barbata	Lung cancer; Calu-3 cells	HER2, Akt, Erk↓	2015	147
Don polysaccharides					
Hydroxysafflor yellow A	Carthamus tinctorius	Hepatocellular carcinoma	CydinD1, C-myc, c-Fos↓	2015	148

(continued)
Natural Compound	Sources of TCMs	Tumor/Cell Line	Pharmacological Actions	Publication Date	Reference
Formononetin	*Astragalus membranaceus*	Breast cancer; T-47D cells; SK-BR-3 cells; MCF-7 cells; MDA-MB-231 cells; HCC1937 cells; HUVEC	FGF2, FGFR2, Akt, VEGFR2↓	2015	149
Curcumin	*Curcuma longa*	Fibrosarcoma cancer; Hepatocellular carcinoma; T241-VEGF cells; HepG2 cells; HUVEC	VEGF, VEGFR1, VEGFR2↓	2015	150, 151
Emodin	*Rheum palmatum*	Breast cancer; MDA-MB-231 cells; HUVEC	MMP-2, VEGFR2, Runx2↓	2015	152
Acetyltanshinone IIA	*Salvia miltiorrhiza*	Breast cancer; MDA-MB-453 cells; SK-BR-3 cells; BT-474 cells	RTKs, EGFR, HER2↑AMPK↑	2015	153
Raddeanin A	*Anemone raddeana*	Colorectal cancer; HCT-15 cells; HUVEC	VEGFR2, PLCγ1, JAK2, FAK, Src, Akt↓	2015	154
Liposomal curcumin	*Curcuma longa*	Hepatocellular carcinoma	HIF-1α, VEGF↓	2015	155
Saponins from *Abizia julibrissin*	*Abizia julibrissin*	Hepatocellular carcinoma; EA.hy926 cells; H22 cells	ERK and AKT pathways↓	2015	156
Alkaloids from Rubus dcefolius Poir	*Rubus alcefolius*	Hepatocellular carcinoma	VEGFA↓	2015	157
Alkaloids from Rubus dcefolius Poir	*Rubus alcefolius*	Hepatocellular carcinoma; HCC cells	VEGFA, VEGFR2, Notch1, Delta-like Ligand 4 (Dll4), Jagged 1↓	2015	158
Patrinia scabiosaefila extract	*Patrinia scabiosaefila*	Colorectal cancer; HT-29 cells	CyclinD1, CDK4↓	2015	159
Feijining decoction (Formula)		Lewis lung carcinoma; LLC cells	VEGF↓; CD4+, CD8+ cells↑	2015	160
Astragulus membranaceus-Curcuma wenyujin formula		Ovarian cancer	MMP-2, VEGF, FGF-2, Cox-2↓	2015	161
Huanglian Jiedu decoction		Hepatocellular carcinoma; HCC cells	eEF2↓; eEF2K↑	2015	162
Tou Nong San (Formula)		Colonic cancer; Colonic LoVo cells	p-PI3K, p-AKT, p-mTOR, p-p70S6K1, VEGF, CD31↓ Cleaved Caspase-3, -9↑	2015	163
BDL301 (Formula)		Colorectal cancer; HCT 116 cells	p65, IκBα, STAT3↓	2015	164
Pien Tze Huang (Formula)		Colorectal cancer; HCT-8 cells; HUVEC	HIF-1α, VEGFA, VEGFR2↓	2015	165
Betulinic acid	*Zizyphus mauritiana*	Breast cancer; MDA-MB-231 cells; MDA-MB-468 cells	Specificity protein (Sp) 1, Sp3, Sp4, ErbB2↓	2014	166

(continued)
Natural Compound	Sources of TCMs	Tumor/Cell Line	Pharmacological Actions	Publication Date	Reference
Genistein	Genista tinctoria	Hepatocellular carcinoma; HepG2 cells, Huh-7 cells; HA22T cells	MMP-9, AP-1, NF-kB, ERK↓	2014	167
Celastrol	Tripterygium wilfordii	Myeloma; LP-1 cells; NCI-H929 cells; HUVEC	TLR4, VEGF, NF-kB p65, IKKα, IκB-α↓	2014	168
PRP-S1 PRP-S2	Phellinus ribis	Hepatocellular carcinoma; Ovary cancer; VEGF↓		2014	169
Astragalus saponins	Astragalus membranaceus	Colon cancer; LoVo cells	VEGF, bFGF, MMP-2, MMP-9↓	2014	170
Vinca alkaloid	Catharanthus roseus	HCC cells	VEGF, bFGF, IL-8, PCNA↓	2014	171
Sulphated	Brown algae	Hepatocellular carcinoma; HCC cells	VEGF, bFGF, IL-8, PCNA↓	2014	172
Scutellaria barbata D. Don extract	Scutellaria barbata	Colon cancer; SW620 cells; HT-29 cells; HCT-8 cells	Bax/Bcl-2↑; Cyclin D1; CDK4↓	2014	173
PRP-S1 PRP-S2	Phellinus ribis	Hepatocellular carcinoma; Ovary cancer; VEGF↓		2014	174
Cardyceps militaris extract	Cardyceps militaris	Malignant melanoma; HTB-65 cells	VEGF, AKT, GSK-3β↓; p38α↑	2014	175
Livistana chinensis	Livistana chinensis seeds	Hepatocellular carcinoma; HepG2 cells	VEGFA, VEGFR2, Notch, Dll4, Jagged↓	2014	176
Anisi stellati fructus extract	Anisi stellati fructus	Lung cancer; B16F0 cells; HUVEC	MMP-9, NF-kB, p38 and JNK	2014	177
Xiaotan Sanjie decoction (Formula)	Scutellaria barbata	Lung cancer; CL-1-5 cells; HEL299 cells; 293T cells; LL2 cells	HIF-1α, AKT↓	2014	178
Pien Tze Huang (Formula)	Scutellaria barbata	Lung cancer; CL-1-5 cells; HEL299 cells; 293T cells; LL2 cells	HIF-1α, AKT↓	2014	179, 180
Norcantharidin	Blister beetles	Colon cancer; LoVo cells; HUVEC	VEGF, VEGFR2, MEK, ERK, p38 MAPK, Akt, Cox-2↓	2013	181
Bigelovin	Inula helianthus-aquatica	Leukemia; PBMC cells	Ang2, Tie2, IFN-γ, IL-2, IL-12, ICM-1, VCAM-1, E-selectin↓	2013	182
Saikosaponin D	Bupleurum falcatum	Cervical cancer; Hepatocellular carcinoma; Hela cells; HepG2 cells	NF-kB, NF-AT, AP-1, TNF-α↓	2013	183
Isoliquiritigenin	Licorice	Breast cancer; MCF-7 cells, MDA-MB-231 cells; HUVEC	VEGF, VEGFR2, HIF-1α↓	2013	184

(continued)
Natural Compound	Sources of TCMs	Tumor/Cell Line	Pharmacological Actions	Publication Date	Reference
Timosaponin A-III	Rhizoma Anemarrhenae	Pancreatic cancer;	VEGF↓; Caspase-3↑	2013	185
		PANC-1 cells			
Rosmarinic acid	Spica prunelloe	Colorectal cancer;	STAT3, Cyclin D1, CDK4, VEGFA, VEGFR2↓	2013	186
		HT-29 cells			
Ursolic acid	Mirabilis jalapa	Colorectal cancer;	VEGFA, bFGF, SHH, STAT3, p70S6K↓	2013	187
		HT-29 cells; HUVEC			
Wogonin	Scutellaria baicalensis	Osteosarcoma; LM8 cells; THP-1 cells	VEGFC, VEGFR3, COX-2, IL-1↓	2013	188
Oxymatrine	Sophora japonica	Pancreatic cancer;	NF-κB, VEGF↓	2013	189
		PANC-1 cells			
Hedysis diffusa Wild extract	Hedyatis diffusa	Colorectal cancer;	VEGFA, VEGFR2, SHH, PTCH↑, Gli-1↓	2013	190
		HT-29 cells			
Marsdenia tenacissima extract	Marsdenia tenacissima	Hepatocellular carcinoma;	VEGFA, VEGFR2↓	2013	191
		HepG2 cells; HUVEC			
Patrinia scabiosaefolia extract	Patrinia scabiosaefolia	Colorectal cancer;	VEGFA↓	2013	192
		HT-29 cells; HUVEC			
Pien Tze Huang (Formula)		Colorectal cancer;	STAT3, AKT, MAPKs, iNOS, eNOS, VEGFA, VEGFR2, bFGF, bFGFR↓	2013	193
		HT-29 cells			
Teng-Long-Bu-Zhong-Tang (Formula)		Colorectal cancer;	VEGF, XIAP, Survivin↓; Caspase-3, -8, -9, PARP↑	2013	194
		CT26 cells			
Jiedu Xiaozheng Yin (Formula)		Hepatocellular carcinoma; HepG2 cells; HUVEC	VEGFA, VEGFR2↓	2013	195
anti-cholinesterase, antitumor, anti-inflammatory, and anti-angiopathy properties in clinical application. Of note, numerous phytochemicals derived from SM attenuate tumor progression involving colorectal cancer, osteosarcoma, Lewis lung carcinoma, melanoma, and prostate cancer through both diminishing the proliferation and migration of vascular endothelial cells and reversing the release of angiogenic cytokines from various types of cancer. Three principal diterpene compounds derived from *S. miltiorrhiza*, including tanshinone I, tanshinone IIA and cryptotanshinone, have been extensively applied as natural flavonoids in combating cardiovascular diseases in China. Besides their efficiency in relation with the cardiovascular system, all the 3 compounds are demonstrated to exert distinct antitumor growth properties, including apoptosis induction, cell-cycle arrest and tumor angiogenesis suppression.

Tanshinone I, an active ingredient of *S. miltiorrhiza*, demonstrated its clinical safety in terms of the high concentration in this herb and therapeutic effect on cardiovascular and inflammatory diseases. Tanshinone I efficiently devitalizes drug-resistant tumor cells probably as a result of decreasing the phosphorylated form of signal transducer and activator of transcription 3 (Stat3) at Tyr705 regardless of ambient oxygen conditions and hypoxia-induced HIF-1α accumulation. Additionally, tanshinone I inhibited the transcriptional activity of nuclear factor kappa B (NF-κB) induced by the stimulation of tumor necrosis factor–α (TNF-α) and IL-6. However, it is noteworthy that tanshinone I was identified to possess anti-angiogenesis activities in tumor metastasis at either hypoxic or normoxic condition by the direct impact on both endothelial and tumor cells. The proliferation, migration, as well as the differentiation of endothelial cells could be attenuated by tanshinone I, preventing tumor angiogenesis at its initial stage. In a transgenic mouse model of the human vascular endothelial growth factor-A165 (hVEGF-A165) gene-triggered lung cancer, tanshinone I significantly downregulated the over-expression of hVEGF-A165 in vivo, arresting cells at S and G2/M phases favorable for antivasculogenesis therapy. Furthermore, the attenuation of microvessel density in various xenograft tumors and the migration and tube formation capability of HUVEC were inhibited on tanshinone I treatment.

Tanshinone IIA, a comprehensively investigated compound in *S. miltiorrhiza*, was reported as a potent inhibitor of neovascularization in numerous cancer cell types, including lung cancer and osteosarcoma. Tanshinone IIA exerted antiangiogenic effects in various human colorectal cancer cell lines, such as LoVo, SW620, HT-29, HCT-116 as well as HUVEC, by blocking HIF-1α/β-catenin/TCF3/LEF1 signaling pathway in the hypoxic microenvironment. Tanshinone IIA inhibited angiogenesis via mediating the protein kinase domains of VEGF/VEGFR2 and triggered cell apoptosis and cell cycle arrest at the S phase in A549 cells. In addition, tanshinone IIA induced the impairment of HIF-1α and VEGF expression and

Figure 1. Proposed schematic of therapeutic mechanisms of traditional Chinese medicines in the treatment of tumor-induced angiogenesis.
Zhang et al. dephosphorylated the levels of mammalian target of rapamycin (mTOR) and its effectors like eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and ribosomal protein S6 kinase (p70S6K) to suppress the human breast cancer growth.\(^{63,64}\) Moreover, the secretion of matrix metalloproteinase-2 (MMP-2) is attenuated in combination with the increase of the tissue inhibitor of metalloproteinase-2 (TIMP-2) in vascular endothelial cells.\(^{65}\)

Cryptotanshinone, a principal lipophilic component extracted from \textit{S. miltiorrhiza}, has multiple biological functions involving anti-inflammatory, antineurodegeneration, antioxidative stress, antiplatelet aggregation, antibacterial, and antitumor angiogenesis activities.\(^{66-71}\) Cryptotanshinone inhibited cell proliferation and VEGF-induced angiogenesis in U2OS osteosarcoma cells.\(^{72}\) Cryptotanshinone delivered antiangiogenic effects against various cancer cells by destabilizing the mRNA level of TNF-α involving NF-κB and STAT3 pathways and diminishing the cytoplasmic translocation of mRNA stabilization factor HuR.\(^{73,74}\) In addition, cryptotanshinone repressed cell viability, tubular-like structure formation, migration, and invasion in HUVEC by blocking β-catenin dependent transcription and expression of VEGF and cyclin D1.\(^{70}\)

Curcuma longa

\textit{Curcuma longa}, a rhizomatous plant of the ginger family, has revealed profound anti-inflammatory and antioxidative functions for centuries.\(^{75}\) Clinical trials were organized by the 2005 National Institutes of Health to explore the usage of \textit{C. longa} in the treatment of multiple cancers, including pancreatic cancers, myelomas, as well as colorectal cancers.

Curcumin, as a principal compound in \textit{C. longa}, is a natural polyphenol with multiple effects on antioxidative, anti-inflammatory, and antiseptic properties in combating tumor growth and inflammation.\(^{76}\) Accumulating evidence revealed that curcumin possessed potential antiangiogenic property in vitro and in vivo by modulating expression of various genes.\(^{77,78}\) Curcumin attenuated VEGF-A secretion and mRNA synthesis and HIF-1α production in corticotroph AtT20 mouse, human pituitary adenoma cells, as well as in lactosomatotroph GH3 rat pituitary cancer cells under CoCl\(_2\)-induced hypoxia conditions.\(^{79}\) VEGF-associated angiogenesis in human intestinal microvascular endothelial cells (HIMEC) could be blocked through suppressing the expression of COX-2 and MAPK by curcumin treatment.\(^{80}\) Treatment with curcumin gave rise to the inhibition of
ovarian cancer growth and angiogenesis by regulation of NF-κB-related pathways.81 Furthermore, in a cervical cancer xenograft mouse model, the proliferation and angiogenic activities could be attenuated through downregulating the expression of COX-2, VEGF, and EGFR.82 In line with other studies, integrative therapy of curcumin and metformin could not only promote cancer cells into apoptosis by the activation of mitochondrial pathways but also ameliorate the metastasis and invasion of HCC cells as well as the angiogenic capability of HUVEC cells. These effects were correlated with the downregulation of MMP2/9, VEGF, and VEGFR-2 expression and inactivation of the PI3K/Akt/mTOR/NF-κB and EGFR/STAT3 signaling pathways, whereas protein levels of P53 and PTEN were increased on curcumin treatment.83 Similar results are also observed in a bladder cancer orthotopic mouse model and MB49 cells. Both expressions of Cox-2 and Cyclin D1 are decreased for the modulation of NF-κB-related genes.84 Tetrahydrocurcumin, a main metabolite of curcumin, has been shown to be more effective than curcumin in the prevention of carcinogenic and angiogenic effects in azoxymethane-induced colon carcinogenesis in vivo through mediating a decrease in the protein expression of Wnt-1 and β-catenin in cancerous colonic tissue.85,86

Ginseng

Ginseng is a herbal name mainly linked with 2 botanical species, Panax ginseng (Asian ginseng) and Panax quinquefolius (American ginseng), and has been regarded as a Chinese medicine for improving diabetes and cardiovascular diseases, as well as suppressing tumor growth and angiogenesis over centuries.87,88 Ginseng contains various active compounds involving ginsenosides, polysaccharides, mineral oils, fatty acids, as well as polysaccharides.89 Ginsenosides are extensively considered as the principal bioactive constituent derived from ginseng regardless of different species and are also responsible for the major pharmacological effects of anti-inflammatory and antiangiogenic activities.90,91 Ginsenosides could be classified and identified in 2 categories, the 20(S)-protopanaxadiol (eg, Rb1, Rb2, Rg3, Rh2) and the 20(S)-protopanaxatriol (eg, Rg1, Re, Rh1). Existing literature has demonstrated that ginsenosides Rb1 and Rg3 exhibit significant antiangiogenic actions in blocking the proliferation of numerous tumors, including pulmonary, gastric, and ovarian cancers.92

Ginsenoside Rb1, a major compound of ginseng, has been demonstrated to potently reverse the in vivo and in vitro angiogenic status. Rb1 reduced the formation of tube-like structures by HUVEC cells through modulating the expression of pigment epithelium-derived factor (PEDF) in association with the transfection of estrogen receptor β.93,94 The chemoinvasion and tubulogenesis of endothelial cells could be reversed on ginsenoside Rb1 treatment.95 Ginsenoside Rg3 could impair the proliferation and migration of colorectal cancer (CRC) in vitro by downregulating the levels of B7-H1 and B7-H3 and angiogenesis-related genes, such as ANGPT1, EGF, and TIMP1. Meanwhile, Rg3 enhanced the cytotoxic effect of oxaliplatin and 5-fluorouracil in a colorectal cancer-bearing orthotopic xenograft mouse model, resulting in suppression of angiogenesis and remodeling of the tumor microenvironment.96 Temozolomide treatment combined with Rg3 enhanced the inhibitory effect on the proliferation of both HUVEC and rat C6 glioma cells by arresting the cell cycle, inducing apoptosis and reducing the expression of Bcl-2 and VEGF-A in HUVEC. Furthermore, similar results were presented in an orthotopic glioma rat model where VEGF expression and microvessel density were attenuated on Rg3 treatment.97 In addition, after Rg3 administration, an elevated level of miR-520h may profoundly suppress the protein expression of EphB2 and EphB4, cell proliferation, tubulogenesis of HUVEC cells, as well as the formation of the subintestinal vessel in zebra embryos.98 The tumor progression, microvessel density, loss of body weight, and metastasis rate were inhibited in an orthotopic HCC transplantation mouse model by the attenuation of VEGF and VEGF receptor 2 and phosphor-VEGF receptor 2 levels.99 Moreover, in human lung squamous cancer SK-MES-1 cells, the expression of VEGF and its mRNA were reduced via Rg3 treatment.100 In terms of the result from a Matrigel plug assay, Rg3 apparently diminished the basic fibroblast growth factor (bFGF)-induced tumor neovascularization, owing to the decline of MMP-2 and MMP-9 expression, which contributed to the basement membrane degradation in the emergence of tumor angiogenesis.101

Compound K is an active metabolite originating from ginsenoside in the gut. Apart from the anti-apoptotic property of compound K in treating a variety of cancers, including human leukemia cell HL-60 by direct or indirect impact on decreasing the activation of caspase-3, compound K exhibited the characteristics of antiplatelet aggregation and antiangiogenesis through the decrease of primary tumor proliferation in a mouse model of spontaneous metastasis.92,102 Angiosuppressive property of compound K could be related with the decrease of MMP-9 mRNA expression, which was associated with the attenuation of MMP-9 promoter activity.103 Additionally, migration and tube-like structure formation of HUVEC have been significantly suppressed on compound K treatment, which may result from the reduction of VEGF, p38 MAPK and AKT expressions while upregulation of the expression of pigment epithelium-derived factor (PEDF) in HUVEC cells.104

Scutellaria baicalensis

Scutellaria baicalensis has been known as a traditional Chinese medicine to treat numerous medical conditions,
including cardiovascular disease and tumors. Studies on the efficacy of *S. baikalenis* have disclosed that various flavonoids isolated from the herb have beneficial antineoplastic, antioxidant, antiplatelets aggregation, and antiangiogenesis properties.105

Baicalein, a natural active flavonoid derived from *S. baikalenis*, is widely used for its anti-inflammation, anti-tumor, and neural protective effects.106 Baicalein treatment induced B16F10 and LLC cell death by the activation of caspase-3 and blockage of tube formation and cell migration of HUVEC cells. Moreover, the reduction of tumor caspase-3 and blockage of tube formation and cell migration of endothelial cells and human prostate tumor growth in vivo and in vitro.109

Wogonoside, a major flavonoid isolated from *S. baikalenis*, has been demonstrated to be an inhibitor of VEGF and possesses anticancer and antiangiogenesis activities.110 Therapeutic effects of wogonoside in breast cancer MCF-7 cells and xenografted mouse illustrated that the secretion of VEGF and intracellular level of Wnt3a were decreased, which in turn boosted the expression of GSK-3β, AXIN and phosphorylated β-catenin for proteasomal degradation. Meanwhile, DNA-binding activity of β-catenin/TCF/LEF1 complex was attenuated by wogonoside treatment as well.111 Wogonin, the metabolite of wogonoside, enhanced the DNA-binding activity of β-catenin/TCF/LEF1 complex.112 Oral administration of baicalein exerted beneficial effect on repressing the aggregation of endothelial cells and human prostate tumor growth in vivo and in vitro.110

With regard to clarifying the potential pathogenic factors and the regulatory mechanisms of TCMs for the treatment of tumor angiogenesis, a database for network pharmacology was established as previously described.115 Hands-on literature mining in PubMed and Google Scholar with keywords as “Chinese medicine” integrated with “Tumor angiogenesis” was performed. All the data were searched for the past 5 years (2013-2017), as summarized in Table 1. After a comprehensive screening, approximately 200 entities, including TCMs and biological factors, have been enrolled in the construction of the network. After comprehensive screening, all the filtered data were imported into Cytoscape, a professional software package in bioscience research for the analysis of network pharmacology (available online at http://www.cytoscape.org/).116,117 The detailed relationships regarding the well-accepted ideology of “multitarget, multidrug” among each factor can be straightforwardly observed in Figure 3. More specifically, the nodes represent the TCMs-related compounds, refined extracts and biological factors (protein or mRNA). Since edges encode the TCM-target interactions, a relationship between 2 targets can be directly observed though edge-combined 2 nodes. The degree of correlation between 2 nodes could be analyzed by Cytoscape. Notably, nodes with high centrality and edges represented as more indispensable in the network.114 The top 10 influential factors have been identified in Figure 3, such as VEGF, VEGFR2, MMP-2, STAT3, and so on, indicating that targeting VEGF/VEGFRs pathway acts as the dominant role for TCMs in treating tumor angiogenesis.

Ethnopharmacology-Related Challenges and Threats

Up until now, it remains unclear if the complicated and abnormal conditions of tumor vasculature are coupled with the multiple paths for the formation of blood vessels. In accordance with combination of both the theory of TCMs and aforementioned research findings, rigorous challenges and threats have been considered into 6 aspects, which include the following: (a) The identification standards of certain TCMs with antitumor angiogenesis property is
ambiguous. (b) Only a minority of TCMs have been screened and validated as potential inhibitors in combating the establishment of tumor vasculature at present. (c) The majority of studies focus on TCM-derived herbal compounds rather than the formulae, targeting the occurrence of tumor angiogenesis. Of note, in the theory of TCMs, formulae with multiple combinations of herbs are the dominant form and more frequently used for cancer therapy. Therefore, studies of Chinese formulae against tumor-induced neovascularization should be comparatively enhanced to explore more TCMs with potent therapeutic effects. (d) Monotherapy of suppressing angiogenesis can merely inhibit the tumor proliferation and metastasis instead of directly eliminating the existing tumor cells, which is attributable to tumor heterogeneity and the diversity of proangiogenic cytokines released from cancer cells with different species. (e) Studies of antiangiogenic mechanisms of TCMs are mostly at the experimental stage, lacking in large-scale samples and multicenter clinical trials. (f) An extensive range of mechanisms may be involved together; for instance, baicalein inhibits tumor-triggered angiogenesis mainly through 3 potential mechanisms, the induction of apoptosis, antimigratory and antiendotheliocyte growth. Thus, similar to other TCMs, it is uncertain to confirm which functional mechanism has the dominant and uncontestable impact on the alleviation of tumor angiogenesis.

Conclusion and Perspective

Systematic screening of pathological factors contributing to the activity of tumor-associated angiogenesis has given rise to the progression of TCM-associated therapeutic modalities, which probably function through the amelioration of overexpressed VEGF/VEGFRs (Appendix). Numerous herbal compounds and formulae originating from TCMs afford an affluent source for exploring efficient anti-tumor angiogenesis agents. Because of the multiple genes conducive to the initiation of angiogenesis in burgeoning tumors and the multitarget characteristic of TCMs, the application of TCMs should be superior to agents aiming at a single molecular target, even though the prevention of tumor angiogenesis using TCMs is still in its infant period. Therefore, TCMs may provide permanent and attractive effects on inhibiting tumor angiogenesis as underlying chemopreventive agents in the treatment of diversified cancers.
Schematic flowchart on the strategy of elaborating the underlying anti-tumor angiogenesis mechanism treated by traditional Chinese medicine

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by the Research Council of the University of Hong Kong (project codes: 104003919, 104004092, 104004460, 104004462, 104004745, and 104004746), Gaia Family Trust (project code: 200007008), Wong's donation (project code: 200006276), the Research Grants Committee (RGC) of Hong Kong, HKSAR (Project Codes: 740608, 766211 and 17152116), National Natural Science Foundation of China (NSFC) - Science Fund for Young Scholars (Project Codes: 81302808) and Shenzhen Basic Research program (project code: JCYJ2014090311295964).

References
1. D’Alessio A, Moccia F, Li JH, Micera A, Kyriakides TR. Angiogenesis and vasculogenesis in health and disease. Biomed Res Int. 2015;2015:126582.
2. Guo D, Wang Q, Li C, Wang Y, Chen X. VEGF stimulated the angiogenesis by promoting the mitochondrial functions. Oncotarget. 2017;8:77020-77027.
3. Yan ZX, Luo Y, Liu NF. Blockade of angioptietin-2/Tie2 signaling pathway specifically promotes inflammation-induced angiogenesis in mouse cornea. Int J Ophthalmol. 2017;10:1187-1194.
4. Al-Aqtash RA, Zhibif MA, Hammad H, Nassar ZD, Meliti JA, Taha MO. Ligand-based computational modelling of platelet-derived growth factor β receptor leading to new angiogenesis inhibitory leads. Comput Biol Chem. 2017;71:170-179.
5. Han D, Cao C, Su Y, et al. Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/β-catenin-VEGF signaling pathway in Lewis lung cancer. J Ethnopharmacol. 2016;192:406-412.
6. Chao J, Dai Y, Verpoorte R, et al. Major achievements of evidence-based traditional Chinese medicine in treating major diseases. Biochm Pharmacol. 2017;139:94-104.
7. Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Saftoiu A. VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med. 2015;53:199-208.
8. Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenic effects. Biomed Pharacoether. 2017;89:949-956.
9. Li S, Xu G, Gao F, Bi J, Huo R. Expression and association of VEGF-Notch pathways in infantele hemangiomas. Exp Ther Med. 2017;14:3737-3743.
10. Zerbini G, Lorenzi M, Palini A. Tumor angiogenesis. N Engl J Med. 2008;359:763.
11. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2:1097-1105.
12. Song G, Li Y, Jiang G. Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (review). Oncol Rep. 2012;28:1935-1944.
13. Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 2012;124:763-775.
14. Galanopoulos M, Ladias S, Tzanetzakou X, et al. A rectovaginal fistula after treatment with bevacizumab. A dangerous side effect needing emergency treatment. Clin Case Rep. 2016;4:449-450.
15. Wang L, Zhou L, Reille-Seroussi M, et al. Identification of peptidic antagonists of vascular endothelial growth factor receptor-1 by scanning the binding epitopes of its ligands. J Med Chem. 2017;60:6598-6606.
16. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39:469-478.
17. Shibuya M. VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets. 2015;15:135-144.
18. Shen Y, Zeng L, Novosyadlyy R, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-945.
19. Boucher JM, Clark RP, Chong DC, Citrin KM, Wylie LA, Bautch VL. Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nat Commun. 2017;8:15699.
20. Skirnisdottir I, Seidal T, Akerud H. The relationship of the angiogenesis regulators VEGF-A, VEGF-R1 and VEGF-R2 to p53 status and prognostic factors in epithelial ovarian carcinoma in FIGO-stages I-II. Int J Oncol. 2016;48:998-1006.
21. Gyurkovics M, Lohinai Z, Gyorfi A, et al. Investigation of the venodilatory effect of vascular endothelial growth factor...
(VEGF) in rat gingiva [in Hungarian]. Fogorv Sc. 2013;106:53-59.

22. Meyer M, Clauss M, Lepple-Wienhues A, et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 1999;18:363-374.

23. Tasaki Y, Nishimura R, Shibaya M, Lee HY, Acosta TJ, Okuda K. Expression of VEGF and its receptors in the bovine endometrium throughout the estrous cycle: effects of VEGF on prostaglandin production in endometrial cells. J Reprod Dev. 2010;56:223-229.

24. Li Z, Zhu Y, Li C, et al. Anti-VEGFR2-interferon-α2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer. Oncoimmunology. 2017;6:e1290038.

25. Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2(+) regulatory T cells in tumor immunity. Onco Targets Ther. 2017;10:4315-4319.

26. Park-Windhol C, NgYS, Yang J, Primo V, Saint-Geniez M, D’Amore PA. Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci Rep. 2017;7:17138.

27. Pu D, Liu J, Li Z, Hou M. Fibroblast growth factor receptor 1 (FGFR1), partly related to vascular endothelial growth factor receptor 2 (VEGFR2) and microvessel density, is an independent prognostic factor for non–small cell lung cancer. Med Sci Monit. 2017;23:247-257.

28. Denbeigh JM, Nixon BA, Hudson JM, Puri MC, Foster FS. VEGFR2-targeted molecular imaging in the mouse embryo: an alternative to the tumor model. Urosonad Med Biol. 2014;40:389-399.

29. Sallinen H, Heikura T, Koponen J, et al. Serum angiopoietin-2 and soluble VEGF-2 levels predict malignancy of ovarian neoplasm and poor prognosis in epithelial ovarian cancer. BMC Cancer. 2014;14:696.

30. Lorquet S, Berndt S, Blacher S, et al. Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment. FASEB J. 2010;24:3782-3795.

31. Hertel J, Hirche C, Wissmann C, Ebert MP, Hocker M. Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control: transcription of vascular endothelial growth factor receptor 3. Cell Oncol (Dordr). 2014;37:131-145.

32. Li Y, Weng Y, Zhong L, et al. VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN. Oncol Rep. 2017;38:2761-2773.

33. Virman J, Bono P, Luukkaala T, Sunela K, Kujala P, Kellokumpu-Lehtinen PL. VEGFR3 and CD31 as prognostic factors in renal cell cancer. Anticancer Res. 2015;35:921-927.

34. Padera TP, Jain RK. VEGFR3: a new target for antiangiogenesis therapy? Dev Cell. 2008;15:178-179.

35. Tammela T, Zarkada G, Nurmi H, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13:1202-1213.

36. Abbas OL, Ozatik O, Terzi YK, Ozatik FY, Nar R, Turna G. The Notch signaling system is involved in the regulation of reparative angiogenesis in the zone of stasis. J Burn Care Res. 2017;38:e923-e933.

37. Karroum A, Mirshahi P, Faussat AM, Therwath A, Mirshahi M, Hatmi M. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGFR-3 over-expressions. Eur J Pharmacol. 2012;685:1-7.

38. Heinolainen K, Karaman S, D’Amico G, et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling. Circ Res. 2017;120:1414-1425.

39. Ravi V, Sanford EM, Wang WL, et al. Antitumor response of VEGFR2- and VEGFR3-amplified angiosarcoma to pazopanib. J Natl Compr Canc Netw. 2016;14:499-502.

40. Varney ML, Singh RK. VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am J Cancer Res. 2015;5:616-628.

41. Yue GG, Xie S, Lee JK, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263.

42. Law PC, Auyeung KK, Chan LY, Ko JK. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells. BMC Complement Altern Med. 2012;12:160.

43. Jiang Y, Zhang Y, Luan J, et al. Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology. 2010;62:573-583.

44. Wang T, Chen W, Wu J. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma. J Cell Biochem. 2018;119:3142-3148.

45. Zhu P, Wu Y, Yang A, Fu X, Mao M, Liu Z. Catalpol suppresses proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis. Biomed Pharmacother. 2017;95:68-76.

46. Yu X, Li W, Deng Q, et al. Neoalbaconol inhibits angiogenesis and tumor growth by suppressing EGFR-mediated VEGF production. Mol Carcinog. 2017;56:1414-1426.

47. Tian L, Xie K, Sheng D, Wan X, Zhu G. Antiangiogenic effects of oridonin. BMC Complement Altern Med. 2017;17:192.

48. Chan HH, Hwang TL, Su CR, Reddy MV, Wu TS. Anti-inflammatory, anticholinesterase and antioxidative constituents from the roots and the leaves of Salvia nipponica Miq. var.formosana. Phytomedicine. 2011;18:148-150.

49. Fiore G, Nencini C, Cavallo F, et al. In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytother Res. 2006;20:701-703.

50. Zhang Y, Wei RX, Zhu XB, Cai L, Jin W, Hu H. Tanshinone IIA induces apoptosis and inhibits the proliferation, migration, and invasion of the osteosarcoma MG-63 cell line in vitro. Anticancer Drugs. 2012;23:212-219.

51. Wei X, Zhou L, Hu L, Huang Y. Tanshinone IIA arrests cell cycle and induces apoptosis in 786-O human renal cell carcinoma cells. Oncol Lett. 2012;3:1144-1148.

52. Gong Y, Li Y, Lu Y, et al. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer. 2011;129:1042-1052.
53. Gong Y, Li YL, Abdulmaleky HM, Li LL, Zhou JR. Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of Aurora A expression and function. *PloS One*. 2012;7:e33656.

54. Xu L, Feng JM, Li JX, et al. Tanshinone-I induces tumor cell killing, enhanced by inhibition of secondary activation of signaling networks. *Cell Death Dis*. 2013;4:e905.

55. Wei Y, Gao QJ, Qin LL, et al. Tanshinone-I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1 pathway. *Biomed Pharmacother*. 2017;93:352-358.

56. Nizamutdinova IT, Lee GW, Lee JS, et al. Tanshinone I supresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. *Carcinogenesis*. 2008;29:1885-1892.

57. Wang Y, Li JX, Wang YQ, Miao ZH. Tanshinone-I inhibits tumor angiogenesis by reducing STAT3 phosphorylation at TYR705 and hypoxia-induced HIF-1α accumulation in both endothelial and tumor cells. *Oncotarget*. 2015;6:16031-16042.

58. Tung YT, Chen HL, Lee CY, et al. Active component of Danshen (*Salvia miltiorrhiza* Bunge), tanshinone I, attenuates lung tumorigenesis via inhibitions of VEGF, cyclin A, and cyclin B expressions. *Evid Based Complement Alternat Med*. 2013;2013:319247.

59. Li Y, Gong Y, Li L, Abdulmaleky HM, Zhou JR. Bioactive tanshinone-I inhibits the growth of lung cancer in part via downregulation of Aurora A function. *Mol Carcinog*. 2013;52:535-543.

60. Xie J, Liu J, Liu H, et al. The antitumor effect of tanshinone-IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. *Acta Pharm Sin B*. 2015;5:554-563.

61. Huang ST, Huang CC, Huang WL, et al. Tanshinone-IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. *Sci Rep*. 2017;7:40382.

62. Sui H, Zhao J, Zhou L, et al. Tanshinone-IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. *Cancer Lett*. 2017;403:86-97.

63. Li G, Shan C, Liu L, et al. Tanshinone-IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K signaling pathway. *PLoS One*. 2015;10:e0117440.

64. Xing Y, Tu J, Zheng L, Guo L, Xi T. Anti-angiogenic effect of tanshinone-IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. *Oncol Rep*. 2015;33:163-170.

65. Tsai MY, Yang RC, Wu HT, Pang JH, Huang ST. Anti-angiogenic effect of tanshinone-IIA involves inhibition of matrix invasion and modification of MMP-2/TIMP-2 secretion in vascular endothelial cells. *Cancer Lett*. 2011;310:198-206.

66. Rahman N, Jeon M, Song HY, Kim YS. Cryptotanshinone, a compound of *Salvia miltiorrhiza* inhibits pre-adipocytes differentiation by regulation of adipogenesis-related genes expression via STAT3 signaling. *Phytomedicine*. 2016;23:58-67.

67. Mei Z, Yan P, S itu B, Mou Y, Liu P. Cryptotanshinone inhibits β-amyloid aggregation and protects damage from β-amyloid in SH-SY5Y cells. *Neurochem Res*. 2012;37:622-628.

68. Feng H, Xiang H, Zhang J, et al. Genome-wide transcriptional profiling of the response of *Staphylococcus aureus* to cryptotanshinone. *J Biomed Biotechnol*. 2009;2009:617509.

69. Fei YX, Wang SQ, Yang LJ, et al. *Salvia miltiorrhiza* Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats. *J Ethnopharmacol*. 2017;207:57-66.

70. Cha JD, Lee JH, Choi KM, Choi SM, Park JH. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant *Staphylococcus aureus*. *Evid Based Complement Alternat Med*. 2014;2014:450572.
cervical cancer xenografts in nude mice. *Biomed Res Int*. 2014;2014:817972.

83. Zhang HH, Zhang Y, Cheng YN, et al. Metformin combination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. *Mol Carcinog*. 2018;57:44-56.

84. Leite KR, Chade DC, Sanudo A, Sakiyama BY, Batocchio G, Srougi M. Effects of curcumin in an orthotopic murine bladder tumor model. *Int Braz J Urol*. 2009;35:599-606.

85. Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: beneficial effects of curcumin and tetrahydrocurcumin. *Tohoku J Exp Med*. 2016;239:25-38.

86. Lai CS, Wu JC, Yu SF, et al. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. *Mol Nutr Food Res*. 2011;55:1819-1828.

87. Dai D, Zhang CF, Williams S, Yuan CS, Wang CZ. Ginseng on cancer: potential role in modulating inflammation-mediated angiogenesis. *Am J Chin Med*. 2017;45:13-22.

88. Wang Y, Xie Q, Liang CL, Zeng Q, Dai Z. Chinese medicine *Ginseng* and *Astragalus* granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells. *Oncotarget*. 2017;8:60201-60209.

89. Ma SW, Benzie IF, Chu TT, Fok BS, Tomlinson B, Critchley LA. Effect of *Panax ginseng* supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. *Diabetes Obes Metab*. 2008;10:1125-1127.

90. Yang W, Qiao X, Li K, et al. Identification and differentiation of *Panax ginseng*, *Panax quinquefolium*, and *Panax notoginseng* by monitoring multiple diagnostic chemical markers. *Acta Pharm Sin B*. 2016;6:568-575.

91. Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. *Nat Prod Rep*. 2015;32:256-272.

92. Wang CZ, Cai Y, Anderson S, Yuan CS. Ginseng metabolites on cancer chemoprevention: an angiogenesis link? *Diseases*. 2015;3:193-204.

93. Leung KW, Cheung LW, Pon YL, et al. Ginsenoside Rh1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen β receptor. *Br J Pharmacol*. 2007;152:207-215.

94. Papapetropoulos A. A ginseng-derived oestrogen receptor β (ERβ) agonist, Rh1 ginsenoside, attenuates capillary morphogenesis. *Br J Pharmacol*. 2007;152:172-174.

95. Sengupta S, Toh SA, Sellers LA, et al. Modulating angiogenesis: the yin and the yang in ginseng. *Circulation*. 2004;110:1219-1225.

96. Tang YC, Zhang Y, Zhou J, et al. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. *Int J Oncol*. 2018;52:127-138.

97. Sun C, Yu Y, Wang L, et al. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro. *J Exp Clin Cancer Res*. 2016;35:32.

98. Keung MH, Chan LS, Kwok HH, Wang RN, Yue PY. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiogenesis. *J Ginseng Res*. 2016;40:151-159.

99. Zhou B, Wang J, Yan Z. Ginsenoside Rg3 attenuates hepatic VEGF overexpression after hepatic artery embolization in an orthotopic transplantation hepatocellular carcinoma rat model. *Onco Targets Ther*. 2014;7:1945-1954.

100. Wang X, Zheng YL, Li K, Lin N, Fan QX. The effects of ginsenosides Rg3 on the expressions of VEGF and KDR in human lung squamous cancer cells [In Chinese]. *Zhong Yao Cai*. 2009;32:1708-1710.

101. Yue PY, Wong DY, Wu PK, et al. The angiogenesis of 20(R) -ginsenoside Rg3. *Biochem Pharmacol*. 2006;72:437-445.

102. Cho SH, Chung KS, Choi JH, Kim DH, Lee KT. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells. *BMC Cancer*. 2009;9:449.

103. Jung SH, Woo MS, Kim SY, et al. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglialoma cells. *Int J Cancer*. 2006;118:490-497.

104. Jeong A, Lee HJ, Jeong SJ, et al. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. *Biol Pharm Bull*. 2010;33:945-950.

105. Kowalczyk E, Krzesinski P, Kura M, Niedworok J, Kowalski J, Blaszczyk J. Pharmacological effects of flavonoids from *Scutellaria baicalensis* [In Polish]. *Przegl Lek*. 2006;63:95-96.

106. Park YG, Choi J, Jung HK, et al. Baicalein inhibits tumor progression by inhibiting tumor cell growth and tumor angiogenesis. *Onco Rep*. 2017;38:3011-3018.

107. Huang Y, Miao Z, Hu Y, et al. Baicalein reduces angiogenesis in the inflammatory microenvironment via inhibiting the expression of AP-1. *Oncotarget*. 2017;8:883-899.

108. Cathcart MC, Useckaite Z, Drakeford C, et al. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo. *BMC Cancer*. 2016;16:707.

109. Miocinovic R, McCabe NP, Keck RW, Jankun J, Hampton JA, Selman SH. In vivo and in vitro effect of baicalein on human prostate cancer cells. *Int J Oncol*. 2005;26:241-246.

110. Lu N, Gao Y, Ling Y, et al. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibition of tyrosine phosphorylation of VEGFR2. *Life Sci*. 2008;82:956-963.

111. Huang Y, Zhao K, Hu Y, et al. Wogonoside inhibits angiogenesis in breast cancer via suppressing Wnt/β-catenin pathway. *Mol Carcinog*. 2016;55:1708-1712.

112. Song X, Yao J, Wang F, et al. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein. *Toxicol Appl Pharmacol*. 2013;271:144-155.

113. Zhou M, Song X, Huang Y, et al. Wogonin inhibits H2O2-induced angiogenesis via suppressing P38/ Akt/NF-kB signaling pathway. *Vascu Pharmacol*. 2014;60:110-119.

114. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. *Chin J Nat Med*. 2013;11:110-120.
115. Zhang GB, Li QY, Chen QL, Su SB. Network pharmacology: a new approach for Chinese herbal medicine research. *Evid Based Complement Alternat Med*. 2013;2013:621423.

116. Hong M, Li S, Wang N, Tan HY, Cheung F, Feng Y. A biomedical investigation of the hepatoprotective effect of *Radix salviae miltiorrhizae* and network pharmacology-based prediction of the active compounds and molecular targets. *Int J Mol Sci*. 2017;18:E620.

117. Hong M, Zhang Y, Li S, et al. A network pharmacology-based study on the hepatoprotective effect of *Fructus Schisandrae*. *Molecules*. 2017;22:E1617.

118. Zhou X, Yue GG, Chan AM, et al. *Eriocalyxin B*, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer. *Biochem Pharmacol*. 2017;142:58-70.

119. Zhang S, Tang D, Zang W, et al. Synergistic inhibitory effect of traditional Chinese medicine astragaloside IV and curcumin on tumor growth and angiogenesis in an orthotopic nude-mouse model of human hepatocellular carcinoma. *Anticancer Res*. 2017;37:465-473.

120. Zhang E, Shi H, Yang L, Wu X, Wang Z. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. *Oncol Rep*. 2017;38:359-367.

121. Zhang M, Hu L, Zhang B, et al. Luteolin suppresses angiogenesis and vasculogenic mimicry formation by inhibiting Notch1-VEGF signaling in gastric cancer. *Biochem Biophys Res Commun*. 2017;490:913-919.

122. Yang H, Wang J, Fan JH, et al. Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with sorafenib on hepatoma growth. *Toxicol Appl Pharmacol*. 2017;315:90-101.

123. Wei Y, Yang Q, Zhang Y, et al. Plumbagin restrains hepatocellular carcinoma angiogenesis by suppressing the migration and invasion of tumor-derived vascular endothelial cells. *Oncotarget*. 2017;8:15230-15241.

124. Mi C, Ma J, Wang KS, et al. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. *J Ethnopharmacol*. 2017;203:27-38.

125. Lou CH, Zhu ZH, Zhao YP, Zhu R, Zhao HJ. Arctigenin, a lignan from *Arctium lappa* L., inhibits metastasis of human breast cancer cells through the downregulation of MMP2/9 and heparanase in MDA-MB-231 cells. *Oncol Rep*. 2017;37:179-184.

126. Cao HY, Ding RL, Li M, et al. Danshensu, a major water-soluble compound of *Salvia miltiorrhiza*, enhances the radioresponse for Lewis lung carcinoma xenografts in mice. *Oncol Lett*. 2017;13:605-612.

127. Jue C, Min Z, Zhisheng ZS, et al. COE inhibits vascularogenic mimicry in hepatocellular carcinoma via suppressing Notch1 signaling. *J Ethnopharmacol*. 2017;208:165-173.

128. Dai XB, Ji YH, Jiang PJ, Sun XM. *Marsdenia tenacissima* extract suppresses tumor growth and angiogenesis in A20 mouse lymphoma. *Oncol Lett*. 2017;13:2897-2902.

129. Zhang Y, Zhang GL, Sun X, et al. *Gubenyiliu II* inhibits breast tumor growth and metastasis associated with decreased heparanase expression and phosphorylation of ERK and AKT pathways. *Molecules*. 2017;22:E787.

130. Zhang ZQ, Li C, Tan QJ, et al. Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/angiopoietin-2/thrombospondin-1 signaling. *CNS Neurol Disord Drug Targets*. 2017;16:346-350.

131. Zhou YA, Yue GGL, Liu MH, et al. *Eriocalyxin B*, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling. *Oncotarget*. 2016;7:82820-82835.

132. Zhao PJ, Song SC, Du LW, et al. Paris saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G(2)/M cell cycle phase arrest. *Mol Med Rep*. 2016;13:2878-2884.

133. Xie T, Ren HY, Lin HQ, et al. Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway. *Int J Oncol*. 2016;48:2098-2112.

134. Yang DD, Li Z, Zhang L, Atanasov AG, Wang S. Characterization of the isosteroidal alkaloid chuanbeinone from bulbus of *Fritillaria pallidiflora* as novel antitumor agent in vitro and in vivo. *Planta Medica*. 2016;82:195-204.

135. Tang N, Shi L, Yu ZL, et al. *Gambahufotalin*, a major derivative of bufadienolide, inhibits VEGF-induced angiogenesis by suppressing VEGFR-2 signaling pathway. *Oncotarget*. 2016;7:3533-3547.

136. Li L, Lin JM, Sun GD, et al. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways. *Mol Med Rep*. 2016;13:5276-5282.

137. Iwanowycz S, Wang JF, Hodge J, Wang YZ, Yu F, Fan DP. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. *Mol Cancer Ther*. 2016;15:1931-1942.

138. Geng L, Fan J, Gao QL, Yu J, Hua BJ. Preliminary study for the roles and mechanisms of 20(R)-ginsenoside Rg3 and PEG-PLGA-Rg3 nanoparticles in the Lewis lung cancer mice [in Chinese]. *Beijing Da Xue Xue Bao Yi Xue Ban*. 2016;48:496-501.

139. Sun GD, Wei LH, Feng JY, Lin JM, Peng J. Inhibitory effects of *Hedyotis diffusa* Willd. on colorectal cancer stem cells. *Oncol Lett*. 2016;11:3878-3881.

140. Bao JL, Ding RB, Zou LD, et al. Forsythiae fructus inhibits colorectal cancer stem cells and macrophages. *Mol Cancer*. 2016;15:1931-1942.

141. Atmaca H, Bozkurt E. Apoptotic and anti-angiogenic effects of *Hedyotis diffusa* Willd. on colorectal cancer stem cells. *Oncol Lett*. 2016;11:3878-3881.

142. Shi J, Lu Y, Wei P. *Xiaoan Sanjie* decoction inhibits angiogenesis in gastric cancer through interleukin-8-linked regulation of the vascular endothelial growth factor pathway. *J Ethnopharmacol*. 2016;189:230-237.

143. Geng L, Fan J, Gao QL, Yu J, Hua BJ. Preliminary study for the roles and mechanisms of 20(R)-ginsenoside Rg3 and PEG-PLGA-Rg3 nanoparticles in the Lewis lung cancer mice [in Chinese]. *Beijing Da Xue Xue Bao Yi Xue Ban*. 2016;48:496-501.

144. Sun GD, Wei LH, Feng JY, Lin JM, Peng J. Inhibitory effects of *Hedyotis diffusa* Willd. on colorectal cancer stem cells. *Oncol Lett*. 2016;11:3878-3881.

145. Shi J, Lu Y, Wei P. *Xiaoan Sanjie* decoction inhibits angiogenesis in gastric cancer through interleukin-8-linked regulation of the vascular endothelial growth factor pathway. *J Ethnopharmacol*. 2016;189:230-237.
and their response to avastin. Anticancer Res. 2016;36:1181-1192.

144. Min L, Ling W, Hua R, et al. Anti-angiogenic therapy for normalization of tumor vasculature: a potential effect of Buyang Huanwu decoction on nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential. Mol Med Rep. 2016;13:2518-2526.

145. Choi HS, Lee K, Kim MK, et al. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis. Oncotarget. 2016;7:21775-21785.

146. Yang M, Zou J, Zhu H, et al. Paris saponin II inhibits human ovarian cancer cell-induced angiogenesis by modulating NF-κB signaling. Oncol Rep. 2015;33:2190-2198.

147. Yang J, Yang G, Hou G, et al. Scutellaria barbata D. Don polysaccharides inhibit the growth of Calu-3 xenograft tumors via suppression of the HER2 pathway and angiogenesis. Oncol Lett. 2015;9:2721-2725.

148. Yang F, Li J, Zhu J, Wang D, Chen S, Bai X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur J Pharmacol. 2015;754:105-114.

149. Wu XY, Xu H, Wu ZF, et al. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget. 2015;6:44563-44578.

150. Wang F, He Z, Dai W, et al. The role of the vascular endothelial growth factor/vascular endothelial growth factor receptor 2-mediated angiogenesis in curcumin-loaded nanostructured lipid carriers induced human HepG2 cells apoptosis. J Cancer Res Ther. 2015;11:597-605.

151. Fu Z, Chen X, Guan S, Yan Y, Lin H, Hua ZC. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget. 2015;6:19469-19482.

152. Ma J, Lu H, Wang S, et al. The anthraquinone derivative emodin inhibits angiogenesis and metastasis through downregulating Runx2 activity in breast cancer. Int J Oncol. 2015;46:1619-1628.

153. Gueram M, Jiang ZZ, Yousef BA, et al. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget. 2015;6:21865-21877.

154. Guan YY, Liu HJ, Luan X, et al. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. Phytomedicine. 2015;22:103-110.

155. Dai F, Zhang X, Shen W, Chen J, Liu L, Gao G. Liposomal curcumin inhibits hypoxia-induced angiogenesis after trans-catheter arterial embolization in VX2 rabbit liver tumors. Onco Targets Ther. 2015;8:2601-2611.

156. Cai W, Li Y, Yi Q, et al. Total saponins from Albizia julibrissin inhibit vascular endothelial growth factor-mediated angiogenesis in vitro and in vivo. Mol Med Rep. 2015;11:3405-3413.

157. Zhao J, Lin W, Zhuang Q, et al. Total alkaloids of Rubus alcefolius Poir shows anti-angiogenic activity in vivo and in vitro. Integr Cancer Ther. 2014;13:520-528.

158. Zhao J, Lin W, Cao Z, et al. Total alkaloids of Rubus alcefolius Poir inhibit tumor angiogenesis through suppression of the Notch signaling pathway in a mouse model of hepatocellular carcinoma. Mol Med Rep. 2015;11:357-361.

159. Zhang M, Sun G, Shen A, Liu L, Ding J, Peng J. Patrinia scabiosaeformis inhibits the proliferation of colorectal cancer in vitro and in vivo via G1/S cell cycle arrest. Oncol Rep. 2015;33:856-860.

160. Zhou L, Pan Y, Xing Y, Gao H, Xie X, Yin D. Effects of Feijin decoction on vascular endothelial growth factor protein expression and changes of T cell subsets in Lewis lung carcinoma-bearing mice. Biomed Rep. 2015;3:403-407.

161. Yin G, Tang D, Dai J, et al. Combination efficacy of Astragalus membranaceus and Curcuma wenyujin at different stages of tumor progression in an imageable orthotopic nude mouse model of metastatic human ovarian cancer expressing red fluorescent protein. Anticancer Res. 2015;35:3193-3207.

162. Wang N, Feng Y, Tan HY, et al. Inhibition of eukaryotic elongation factor-2 confers to tumor suppression by a herbal formulation Huanglian-Jiedu decoction in human hepatocellular carcinoma. J Ethnopharmacol. 2015;164:309-318.

163. Fang LH, Wang RP, Hu SY, Teng YH, Xie WB. The effect of tou nong san on transplanted tumor growth in nude mice. Evid Based Complement Alternat Med. 2015;2015:518454.

164. Chu L, Zhao H, Fang J, et al. The traditional Chinese medicinal formula BDL301 suppresses tumor growth by inhibiting STAT3 pathway and inducing apoptosis in colorectal cancer cells. DNA Cell Biol. 2015;34:178-188.

165. Chen H, Feng J, Zhang Y, et al. Pien Tze Huang inhibits hypoxia-induced angiogenesis via HIF-1α/VEGF-A pathway in colorectal cancer. Evid Based Complement Alternat Med. 2015;2015:454279.

166. Weber D, Zhang M, Zhuang P, et al. The efficacy of betulinic acid in triple-negative breast cancer. SAGE Open Med. 2014;2:205031214551974.

167. Wang SD, Chen BC, Kao ST, Liu CJ, Yeh CC. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement Altern Med. 2014;14:26.

168. Ni H, Zhao W, Kong X, Li H, Ouyang J. Celasitol inhibits lipopolysaccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-kappa B activation. Acta Haematol. 2014;131:102-111.

169. Liu Y, Liu Y, Jiang H, et al. Preparation, antiangiogenic and antitumoral activities of the chemically sulfated glucan from Phellinus ribis. Carbohydr Polym. 2014;106:42-48.

170. Auyeung KK, Law PC, Ko JK. Combined therapeutic effects of vinblastine and Astragalus saponins in human colon cancer cells and tumor xenograft via inhibition of tumor growth and proangiogenic factors. Nutr Cancer. 2014;66:662-674.

171. Zhou C, Cao R, Zhang SX, Man YN, Wu XZ. Fucoidan inhibits the growth of hepatocellular carcinoma independent of angiogenesis. Evid Based Complement Alternat Med. 2013;2013:692549.

172. Zhang L, Cai Q, Lin J, et al. Chlorofuran fraction of Scutellaria barbata D. Don promotes apoptosis and suppresses proliferation in human colon cancer cells. Mol Med Rep. 2014;9:701-706.
173. Tan HY, Wang N, Tsao SW, Zhang Z, Feng Y. Suppression of vascular endothelial growth factor via inactivation of eukaryotic elongation factor 2 by alkaloids in Coptidis rhizome in hepatocellular carcinoma. *Integr Cancer Ther*. 2014;13:425-434.

174. Shiau AL, Shen YT, Hsieh JL, Wu CL, Lee CH. *Scutellaria barbata* inhibits angiogenesis through downregulation of HIF-1α in lung tumor. *Environ Toxicol*. 2014;29:363-370.

175. Ruma IM, Putranio EW, Kondo E, et al. Extract of *Cordyceps militaris* inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells. *Int J Oncol*. 2014;45:209-218.

176. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

177. Kim A, Im M, Yim NH, Ma JY. Reduction of metastatic and angiogenic potency of malignant cancer by *Eupatorium fortunei* via suppression of MMP-9 activity and VEGF production. *Sci Rep*. 2014;4:6994.

178. Yan B, Liu L, Zhao Y, et al. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells. *World J Gastroenterol*. 2014;20:13105-13118.

179. Wei L, Chen P, Chen Y, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

180. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

181. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

182. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

183. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.

184. Lin W, Zhao J, Cao Z, et al. *Livistona chinensis* seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. *Oncol Rep*. 2014;31:1723-1728.