Nyctanthes arbortristis an Important Medicinal Plant of Madhya Pradesh State - A Review

Ruchita Shrivastava1, Ajay Kumar Bharadwaj2

1N.M.B. Govt. College, Hoshangabad- 461001, MP, India
2Deptt. Of Biotechnology, Institute for Excellence in Higher Education, Bhopal- 462016, MP, India

Abstract

Medicinal plants are being widely used either as single drug or in combination for health care system. Nyctanthes arbortristis commonly known as night jasmine or Harshringar is an important medicinal plant mainly used in Ayurveda. It is one of the oldest system of medicines uses plants and their extracts for the treatment and management of various diseases. It has been reported as useful in sciatica, arthritis, fever, asthma, diabetes, cancer, etc. Plants contain various phytoconstituents belonging to the categories of glycosides, alkaloids, essential oils, tannins etc. Several studies are being carried towards its activities like antibacterial, antifungal, immunomodulatory, antipyretic, antioxidant and hepatoprotective properties. With all these potential benefits, this review is carried out to explore the hidden potential and its uses. This review explores the published scientific literature to compile all the traditional and scientific data of Nyctanthes arbortristis.

1 Introduction

Nyctanthes arbortristis is commonly known as Harshringar belonging to the family Oleaceae. The name Nyctanthes means “Night Flowering” is a shrub or small tree growing to 10 m tall flaky grey bark. Also known as Parjata, Shefali, Harshringar, Kannika, Coral Jasmine and Night Jasmine. The flowers start falling after midnight and by the day break, the plant appears dull. The generic name ‘Nyctanthes’ has been coined from two Greek words ‘Nykhta’ (Night) and ‘anthos’ (flower).

The specific name ‘arbortristis’ meaning ‘the sad tree’ is supposedly derived from dull looks of the tree during daytime1,2. It is mainly distributed to India, Bangladesh, Indo pak subcontinent and south east, grows naturally in Indo Malayan region and Burma, Thailand and Celon. The plant is native to India, widely distributed from sub Himalayan regions to Gogavari, and commonly grown as a garden boundary plant in Madhya Pradesh (M.P.) state3.

Various parts of the plant like seeds, leaves, flowers, bark and fruits have been investigated for their significant pharmacological activity. Phytochemicals like flavanoid, glycoside, oleanic acid, essential oils, tannic acid, carotene, friedeline, lupeol, glucose, benzoic acid have been reported for significant hair tonic, hepatoprotective, anti-leishmaniasis, anti-viral, antifungal, anti-pyretic, anti-histaminic, anti-malerial, anti-bacterial, anti-inflammatory and anti-oxidant activities4,5. The various parts of Nyctanthes arbortristis are illustrated in Fig 1.

2 Scientific classification

Kingdom :
Plantae

Class :
Eudicots

Division :
Angiosperm

Order :
Lamiales

Family :
Oleaceae

Genus :
Nyctanthes

Species :
N. arbortristis

3 Vernacular classification

Bengali :
Harsinghar, Sephalika, Seoli, Sheoli.

English :
Coral Jasmine, Night Jasmine.
N. arbortristis is a deciduous tree grows up to 10 m tall, with quadrangular branches and grey or greenish-white rough bark. Leaves are simple petiolate and exstipulate, opposite, 3-10 by 4-6.3 cm ovate, acute or acuminate, bears distant teeth on entire, short bulbous hairs rounded or slight cuneate, petiole 6cm long hairy. The flowers are originated at the tips of branches in the axils of leaves and are small in clusters of 5-7 fragrant delightfully, peduncles of 4 angled, slender, calyx are 6-8 mm long, narrow campanulate, hairy glabrous inside, truncate toothed or lobed, ciliated and Corolla are glabrous more than 13mm long, 6-8 mm long tube, orange colour, equaling limb, white lobes corolla with an orange red center, unequally obcordate.

Fruits are flat brown heart shaped to round capsule with two sections each containing a single seed. It grows well in loamy soils. The plant requires conditions varying from full sunlight to partial shade and needs to be watered regularly. Flowering usually occurs from July to October.

6 Phytoconstituents

The plant Nyctanthes arbortristis contains high amount of alkaloids specially in leaves and roots. The important active principle of this plant is iridoid arbortristoside. The whole plant and leaves also contains many important useful phytochemicals like β-sitosterol, nyctanthic acid, olenolic acid, ascorbic acid, saponins, flavonoids, anthannins and also many glycosides like D-mannitol, Astragaline, Nicotiflorine, flavonoglycosides.

6.1 Leaves

Leaves contain D-mannitol, flavone glycosides, β-sitosterol, astragalin, oleolic acid, nyctanthic acid, tannic acid, ascorbic acid, methyl salicylate, lupeol, volatile oil, glucose, fructose, carotene and benzoic acid.

6.2 Flowers

The flowers contain essential oils, nyctanthin, Dmannitol, tannins, glucose, carotenoids, glycosides including β-monogentiobioside ester of α-crocin (crocin 3), β-monogentiobioside –β-D-monoglucoside ester of α -crocin, and β-digentiobioside ester of α-crocin (crocin 1).

6.3 Seeds

The seeds contain arbortristosides A and B, glycerides of linoleic, oleic, lignoceric, stearic, palmitic and myristic acids, nyctanthic acid, 3,4-secoiterpene acid, and a water soluble polysaccharide composed of D-glucose and Dmannose.

6.4 Bark

The bark contains glycosides and alkaloids.
6.5 Stem

The stems contain the glycoside naringenin-4’-0-β-Dglucopyranosyl-α-D-xylpyranoside and B-sitosterol. Flower oil: The flower oil contains a-pinene, p-cymene, 1-hexanol, methylheptanone, phenyl acetaldehyde, 1-decenol and anisaldehyde3.6.9

7 Medicinal properties

Nyctanthes arbortristis is an identified and commonly used plant in medicinal field. Nyctanthes plant has known for various CNS (viz., hypnotic, local anesthetic, tranquillizing) and antihistaminic, anti-inflammatory, antidepressant, immunodulatory activities. Nyctanthes arbortristis used in various ailments like fever, enlargement of the spleen, malaria, blood dysentery, cough and gastritis. Juices of leaves is used as digestive, antidote to reptiles venom.

Seeds are used to cure scurfy infection of scalp, piles and skin diseases. Powdered stem bark is given in rheumatic joint pain, oil is used for pain in the eyes and with Arjuna bark it is rubbed on the body in internal injury. Flowers are bitter, astringent, carminative, stomachic and used in ophthalmic purposes. Barks are traditionally used as anti-dysentric and anti diarrhoeals3.12.

8 Pharmacologic activities

8.1 Antiallergy activity

The alcoholic extract of N. arbortristis leaves offered significant protection against the development of asphyxia. Arbortristoside A and arbortristoside C are present in N. arbortristis were reported to be antiallergic13.

8.2 Antianxiety

Hydroalcoholic extracts of N. arbortristis have anxiolytic potential14.

8.3 Anti-inflammatory activity

The aqueous extract of the whole plant, alcoholic extract of stem and seeds and water soluble portion of the alcoholic extract of leaves of N. arbortristis were reported to have acute and sub-acute antiinflammatory activity.

In the sub-acute models, N. arbortristis was found to check granulation tissue formation significantly in the granulomapouch and cotton pellet test. N. arbortristis is also found to inhibit the inflammation produced by immunological methods that are Freund’s adjuvant arthritis and purified tuberculin reaction15.

8.4 Antifilarial activity

The chloroform extract of the flowers and a pure compound isolated from N. arbortristis plant exhibit larvicidal activity against Culex quinquefasciatus, a common filarial vector16.

8.5 Antibacterial activity

Methanolic extract of leaves of N. arbortristis exhibited significant antibacterial activity against Staphylococcus aureus, Staphylococcus epidermis, Salmonella typhi, Salmonella paratyphi A with MIC value ranging between 1-8 mg/ml17. The zone of inhibition and minimum inhibitory concentration (MIC) of the extracts were determined and compared with the standard drugs ciprofloxacin and fluconazole. The chloroform extract was found to have both antibacterial and antifungal activity18.

8.6 Antioxidant activity

The free radical scavenging potential of the different extracts of leaves of N. arbortristis was evaluated. The scavenging effect of plant extracts and standard on the DPPH radical decreases in the following manner: Ascorbic acid > Butanol > Ethyl acetate > BHT > Pet ether, and it was found to be 93.88% for ascorbic acid at concentration of 10 mg, for BHT, Butanol, Ethyl acetate and Pet ether was found to be 97.42 %, 95.22%, 84.63% and 82.04% at concentration of 100 mg respectively. In this investigation different extract of N. arbortristis leaves possess concentration dependant free radical scavenging activity19.

8.7 Anticancer activity

Moderate activity was observed at 30mg/ml conc. with 71% inhibition of dried N. arbortristis leaf methanol extract and least inhibitory activity was observed at 10mg/ml conc. With 86% inhibition of breast cancer cell lines free of pathogens. A high degree of against human breast cancer cell lines was observed with N. arbortristis dried fruit methanol. The phytochemicals isolated from N. arbortristis dried fruit methanol are glycosides, tannins, phenols and steroids and are predicted to be responsible for this anticancer activity20.

8.8 Antidiabetic activity

Methanol extract of root of N. arbortristis poses safe and strong anti-diabetic activity. It reduces blood glucose level after seven days at the 500 mg/Kg in rats compare with standard drug. It was found that methanolic extract of N. arbortristis roots were more effective in reducing the blood glucose level compare to the standard drug21.

8.9 Antimalarial activity

The clinical study of N. arbortristis of malaria was performed on 120 patients. Administration of fresh paste of medium sized 5 leaves of N. arbortristis thrice a day for 7-10 days has cured the disease in 92 (76.7%) patients within 7 days. Other 20 patients were cured by 10 days while the remaining 8 patients did not respond to the treatment22.

8.10 Antileishmanial Activity

The antileishmanial activity of N. arbortristis has been attributed to iridoid glucosides, arbortristosides A, B, and C and 6-b-hydroxyloganin. The arbortristosides A, B, C, and 6-b-hydroxy-loganin exhibited both in vitro and in vivo
antileishmanial activity against amastigotes in macrophage cultures and hamster test systems, respectively\(^{23}\).

8.11 Antihistaminic and Antitryptaminergic activity

The alcoholic extract of *N. arbortristis* leaves significantly protect against histamine aerosol-induced asphyxia in guinea pigs. The arbortristosid A and arbortristosid C present in *N. arbortristis* was reported to be antiallergic\(^{24}\).

8.12 Anticholinesterase activity

The aqueous extract of *N. arbortristis* stimulated the activity of acetylcholine esterase in mice, it antagonize the inhibition of this enzyme by malathion. The low anti muscarinic activity against acetylcholine induced contractions of isolated rabbit ileum was already reported\(^{25}\).

8.13 Antinociceptive and Antipyretic activity

The extract exhibited antipyretic effect against brewer’s yeast-induced pyrexias in rats. The aqueous soluble fraction of ethanolic extract of the leaves exhibited significant aspirin-like anti-nociceptive activity which was evidenced by inhibition of acetic acid induced writhing in albino mice but fails to elicit morphone like analgesia\(^{26}\).

8.14 Antianemic activity

Hematological study on the ethanolic extracts of the flowers, barks, seeds and leaves of *N. arbortristis*, noticed the dose dependent rise in hemoglobin content and red blood cells count in rats. The extracts also protect the decline of hemogram profile in anemic rats\(^{27}\).

8.15 CNS depressant activity

*N. arbortristis* exhibited significant and dose dependent prolongation of onset and duration of sleep and found to cause decrease in dopamine and increase serotonin level from which it can be resolved that the CNS depressant activity of the ethanol extracts of seeds, leaves and flowers may be due to the decrease in dopamine and increase in serotonin level\(^{28}\).

8.16 Hepatoprotective activity

The aqueous extracts of the leaves and seeds of *N. arbortristis* were found to have hepatoprotective activity against carbon tetrachloride (CCl\(_4\)) induced hepatotoxicity\(^{29}\).

The alcoholic and aqueous extracts showed significant hepatoprotective activity by reducing the levels of SGPT (serum glutamic pyruvic transaminase), SGOT (serum glutamic oxaloacetate transaminase) and serum bilirubin (total and direct). The results were supported by histopathological studies of liver samples which showed regeneration of hepatocytes by the extracts\(^{30}\).

8.17 Sedative Activity

Sedative potential of a hot infusion of the flowers was examined in rats. Male rats exhibited a dose dependent conscious sedative activity while female rats remained unaffected. Glucose absorption from the small intestine was significantly reduced. The sedation was attributed, in part, to the antioxidant and membrane stabilizing activity of the extract\(^{31}\).

8.18 Toxicity

*N. arbortristis* showed toxic effect of ethanolic extract of leaves in rats. The median lethal dose (LD) 16 gm/kg was observed in rats. No mortality was at 2.0 gm/kg while 75% mortality was seen at a 32 gm/kg dose. When extract instilled into the rabbit’s eye produced conjunctival congestion with oedema, while the person who grounded the dried leaves developed vesicles on both palms\(^{32}\).

9 Conclusions

The plant *Nyctanthes arbortristis* is one of the most important source of medicinally important constituents widely experimented by scientists. Most of the scientific works have been conducted on the leaves and seeds of *Nyctanthes arbortristis* plant although there are reports about using bark powder and root extract in folk medicines. The main thrust of this review is to compile a number of uses of all the parts of plants. So far the major uses have been found on the leave extract of *Nyctanthes arbortristis* including from bitter tonic to digestive, laxative, diuretic, in spleen enlargement, as anti-oxidant, anthelmintic, expectorant, bronchiodilatory, even as anti-dote to reptiles venom. The powered seeds have been used to cure scalp and in piles and skin diseases. Flowers are used as astringents and carminatives. From the above study, it is revealed that the leaves of plant *Nyctanthes arbortristis* are extensively exhausted for the study purpose but there is a need to pay attention on the flowers and stem also.

10 Conflict of Interest

Nil

11 Author’s contributions

RS and AKB collected the data and drafted the manuscript. Both authors have read and approved the final manuscript.

12 References

1. Meshram MM, Rangari SB, Kshirsagar SB, Gajbiye S, Trivedi MR. *Nyctanthes arbortristis* A herbal panacea. International Journal of pharmaceutical sciences and research. 2012; 3(8): 2432-2440.

2. Suresh V, Jaikumar S, Arunachalam G. Antidiabetic activity of ethanolic extract of stem bark of *Nyctanthes arbortristis* Linn. Research journal of pharmaceutical, biological and chemical sciences. 2010; 1(4): 311-317.
3. Sandhar HK, Kaur M, Kumar B, Prasher S. An update on Nyctanthes arbor-tristis Linn. Internationale Pharmaceutica Scientia. 2011; 1(1): 77-86.

4. Amarite O, Bhaskat P, Patel N, Gadgoli C. Evaluation of antioxidant activity of carotenoid from Nyctanthes arbor-tristis. Int J Pharmacol Biol Sci. 2007; 2:57-59.

5. Omkar A, Jeeja T, Chhaya G. Evaluation of antiinflammatory activity of Nyctanthes arbor-tristis and Onosma echoides. Phrmacog. mag., 2006; 8:258-60.

6. Sasmal D, Das S, Basu SP. Phytoconstituents and therapeutic potential of Nyctanthes arbor-tristis Linn., Pharmacog. Rev. 2007; 1(2):344-49.

7. Jain PK, Pandey A. The wonder of Ayurvedic medicine - Nyctanthes arbor-tristis International Journal of Herbal Medicine. 2016; 4(4): 09-17

8. Iyer RI, Mathuram V, Gopinath PM. Establishment of callus cultures of Nyctanthes arbor-tristis from juvenile explants and detection of secondary metabolites in the callus. Curr. Sci. 1999; 74: 243-246.

9. Sasmal D, Das S, Basu SP. Phytoconstituents and therapeutic potential of Nyctanthes arbor-tristis L. Pharmacog. Rev. 2007; 1: 344-349.

10. Kirtikar KR, Basu BD. Indian Medicinal Plants, vol. VII, Sri Satguru Publication, New Delhi. 2000; pp. 2110-2113.

11. Girach RD, Aminuddin. Ethnomedicinal Studies on Harshringar-A Less known medicinal plant in Unani Medicines, Hamdard Med. 1994;37(2):60-66.

12. Saikia B, Saikia N. Medico-ethnobotany of bodo tribes in Gohpur of Sonitpur district, Assam, Indian journal of traditional knowledge. 2008; 9(1):52-54.

13. Rathee JS, Hassarajani SA, Chattopadhyay S. Antioxidant activity of Nyctanthes arbor-tristis leaf extract. Food Chem. 2007; 103:1350-57.

14. Abraham A. Anti anxiety evaluation of Nyctanthes arbor-tristis Lin. Indian journal of Phytoconstituents. 2010; 6:77-79.

15. Balasubramanian M. Study on phytochemical screening and antibacterial activity of Nyctanthes arbor-tristis. J Chem Pharm Res. 2012; 4(3):1686-95.

16. Khatu NA, Haue ME, Mosaddik MA. Laboratory evaluation of Nyctanthes arbo-tristis linn. Flower extract and its isolated compound against common filarial vector, culex quinquefasciatus say (diptera:fulicidea) larvae. pak. J bio sci. 2001; 4(5):585-87.

17. Mahida Y, Mohan JSS. Screening of plants for their potential antibacterial activity against Staphylococcus and Salmonella sp. Natural Product Radiance. 2007; 6:301-05.

18. Sandhya Kumari TD. Antioxidant and Anticancer Activities of Nyctanthes Arbor-Trists, International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(4):212-15.

19. Kusum S Akki. Phytochemical investigation and in vitro evaluation of Nyctanthes arbor-tristis leaf extract for antioxidant property. J Pharm Res. 2009; 2(4):752-55.

20. Khatune NA, Islam ME, Abdur Rahman MA, Mosaddik MA, Haque ME. In-vivo cytotoxic evaluation of a new benzofuran derivative isolated from Nyctanthes arbor-tristis L. on ehrlich ascite carcinoma cells (EAC) in mice. J Med Sci. 2003; 3(2):169-73.

21. Akah PA, Uzodinma SU, Okolo CE. Antidiabetic activity of aqueous and methanol extract and fractions of Gongronema latilium (Asclepiadaceae) leaves in Alloxan Diabetic Rats. Journal of Applied Pharmaceutical Science. 2011; 1: 99-102.

22. Sah AK. Phytochemicals and Pharmacological Potential of Nyctanthes arbor-tristis Inter Nyctanthes arbor-tristis. Journal of Research in Pharmaceutical and Biomedical Sciences. 2012; 3(2):34-37.

23. Singh UK, Guru PY, Sen AB, Tandon JS. Antileishmanial activity of traditional plants against Leishmania donovani in golden hamsters. Int J Pharmacog. 1992; 30:289-95.

24. Chatterjee SK, Bhattacharjee I. Bactericidal Activities of some common herbs of India, Pharmaceutical Biology. 2007; 45(5):350-54.

25. Tandon JS, Srivastava V, Guru PY. Iridoids: A New Class of Leishmanicidal Agents from Nyctanthes arbor-tristis. J Nyctanthes arbor-tristis Prod. 1991; 4:1102-04.

26. Champa R. Nyctanthes arbor-tristis Linn (Night Jasmine): A Scared Ornament Plant with Immense Medicinal Potentials. Indian Journal of Traditional Knowledge. 2012; 11(3):427-35.

27. Jain R, Mittal M. A review on pharmacological and chemical documentation of Nyctanthes arbor-tristis Linn. Asian Journal of Traditional Medicine. 2011; 6(5):187-02.

28. Das S, Sasmal D, Basu SP. Evaluation of CNS depressant activity of different parts of Nyctanthes

UK J Pharm & Biosci, 2018: 6(6); 14
arbortristis. Indian Journal of Pharmaceutical Science. 2008; 70:803-06.

29. Hukkeri VI, Akki KS, Sureban RR, Gopalakrishna B, Byahatti VV, Rajendra SV. Hepatoprotective activity of the leaves of Nyctanthes arbortristis Linn. Ind J Pharm Sci. 2006; 68(4):542-43.

30. Lucas DS, Sekhar RAR. A review of experimental studies on antihepatoprotective activity of certain medicinal plants used in Ayurveda. Phytomedicine, Supplement-II 2000; 23.

31. Ratnasooriya WD, Jayakody JRAC, Hettiarachchi ADI, Dharmasiri MG. Sedative effects of hot flower infusion of Nyctanthes arbortristis on Rats. Pharmaceut Biol. 2005; 43(2):140-46.