Species interactions in three *Lemnaceae* species growing along a gradient of zinc pollution

Lorena Lanthemann | Sofia J. van Moorsel

Abstract

Duckweeds (*Lemnaceae*) are increasingly studied for their potential for phytoremediation of heavy-metal polluted water bodies. A prerequisite for metal removal, however, is the tolerance of the organism to the pollutant, e.g., the metal zinc (Zn). Duckweeds have been shown to differ in their tolerances to Zn; however, despite them most commonly co-occurring with other species, there is a lack of research concerning the effect of species interactions on Zn tolerance. Here, we tested whether the presence of a second species influenced the growth rate of the three duckweed species *Lemna minor*, *Lemna gibba*, and *Lemna turionifera*. We used four different Zn concentrations in a replicated microcosm experiment under sterile conditions, either growing the species in isolation or in a two-species mixture. The response to Zn differed between species, but all three species showed a high tolerance to Zn, with low levels of Zn even increasing the growth rates. The growth rates of the individual species were influenced by the identity of the competing species, but this was independent of the Zn concentration. Our results suggest that species interactions should be considered in future research with duckweeds and that several duckweed species have high tolerance to metal pollution, making them candidates for phytoremediation efforts.

KEYWORDS

Lemnaceae, species interactions, tolerance, zinc

TAXONOMY CLASSIFICATION

Applied ecology; Biodiversity ecology; Botany; Community ecology

1 | **INTRODUCTION**

Duckweeds are small, floating aquatic plants with a simplistic morphology. Individual duckweeds consist of single fronds with zero to multiple roots attached to the bottom surface. Duckweeds can flower; however, they rarely do so (Hicks, 1932). Their main reproduction strategy consists of asexual budding, where several daughter fronds bud and then detach from the mother frond (Laird & Barks, 2018). An individual frond can produce up to a couple dozen of daughter fronds over its life, which is only a few weeks short. Duckweeds are found around the world in slow-flowing freshwater systems, when suitable anchoring possibilities are present (Landolt, 1986). Their fast reproduction cycle and their short life span make duckweeds useful model organisms for research in ecology and evolution (Laird & Barks, 2018). Duckweeds can tolerate high levels of nitrogen, phosphorus, and heavy metals, and different species can...
have different responses to temperature, light, nutrients, and tox-
icants (Landolt, 1996). In nature, duckweed species frequently co-
exist (Landolt, 1986).

Zn is an essential trace element for plant growth, but elevated concentrations inhibit growth and can lead to chlorosis. Therefore, elevated Zn levels are phytotoxic (Rout & Das, 2009). Zn is a com-
monly used building material and through run-off from roofs, gal-
vanized items, and pipes it finds its way into waters and sediments, leading to Zn pollution in urbanized areas (AWEL, 2006). Between 2006 and 2014, Zn concentration measurements exceeded the indicator value of 5 µg/L at 15 groundwater measuring stations across Switzerland, more than any other trace element measured (Bundesamt für Umwelt BAFU, 2019).

In the face of pollution of water systems, Lemnaceae are studied as potential organisms for phytoremediation (Liu et al., 2021). For example, one species of duckweed, *Lemna minor* L. (common duck-
weed), has shown to be a good accumulator of heavy metals such as cadmium, selenium, and copper (Zayed et al., 1998). Several stud-
ies have shown metal accumulation in different duckweed species (Lahive et al., 2011), which depended both on the species (Cardwell et al., 2002) and on the metal (Gaur et al., 1994). A prerequisite for metal accumulation, however, is the tolerance of a species to ele-
vated levels of heavy metals. Duckweed species differ in their toler-
ance to Zn: *L. minor* was shown to tolerate Zn concentrations above 100 mg/L but the gibbous duckweed *Lemna gibba* only tolerated concentrations up to 10 mg/L (Lahive et al., 2011). Zn tolerance of other duckweed species such as *Lemna turionifera* (red duckweed) was, to our knowledge, never investigated.

Additionally, there is a lack of research concerning the influence of species interactions on duckweed resistance to metal pollution. Previous studies suggest that species interactions in duckweeds can influence growth rates (Clatworthy & Harper, 1962; Gopal & Goel, 1993; Peeters et al., 2016). Here, we hypothesized that the pres-
ence of a second species in a mixed setting could increase heavy metal tolerance because of facilitation. The stress-gradient hypo-
thesis predicts that interactions among plants are context-dependent, shifting from competition to facilitation as environmental stress in-
creases (Callaway, 1995). At high Zn concentrations, if the more tol-
erant duckweed species accumulate Zn present in the medium, this could facilitate the persistence or even growth of the co-occurring, less heavy-metal tolerant species. However, at low levels of Zn con-
centration, competition for nutrients could override any facilitative mechanisms, leading to a negative effect of the presence of a second species.

To test our hypothesis, we grew three Lemnaceae species in isolation and in two-species pairings along a zinc sulfate (ZnSO₄) concentration gradient (0, 0.45, 1.82, 11.35 mg/L Zn). We chose to use a gradient that is relevant in terms of Zn pollution in Europe (1.3 mg/L on average, Zhou et al., 2020). The lowest concentration used was below the European average, the second lowest just above but below the indicator level (5 mg/L), and finally, the highest concen-
tration level exceeded that found in a waterbody near a mining area in Turkey (7.23 mg/L, Sasmaz et al., 2015). Thus, the highest concentration used would represent a heavily polluted waterbody, where phytoremediation could be applied. We measured the Zn tolerance of three duckweeds species *L. minor*, *L. gibba*, and *L. turionifera* over 17 days in replicated microcosms under sterile and con-
trolled conditions.

2 | MATERIALS AND METHODS

2.1 | Duckweed cultures

Axenic cultures of the three duckweed species were maintained at the Department of Evolutionary Biology and Environmental Studies, University of Zürich. Three strains were delivered in July from the Landolt Duckweed Collection (www.duckweed.ch): *Lemna turionifera*, strain 9478, sourced from Racibórz, Silesian, Poland, *Lemna minor*, strain 9978, sourced from Oberegg, Appenzell Innerrhoden, Switzerland, and *Lemna gibba*, strain 9965, sourced from Schloss Wartensee, Rorschacherberg, St. Gallen, Switzerland. The axenic cultures were held on Hoagland’s E Medium (see Appendix Table S2 for the recipe used) in incubators at 18°C with a light regime of 14/10 h light/dark.

2.2 | Experimental set up

The three species occupy a similar ecological niche. They float on the water surface and are very similar in terms of their morphol-
ogy. In particular, non-gibbous *L. gibba* and *L. minor* fronds cannot be distinguished by eye (De Lange & Pieterse, 1973) but the differ-
entiation between *L. minor* and *L. turionifera* can be equally challeng-
ing (Seneverathna et al., 2021). Therefore, we separated the species using a floating ring (Figure S4). Thus, we could overcome previous limitations (Clatworthy & Harper, 1962) and investigate the competi-
tion between these closely related species.

For each treatment and the control, 18.250ml-bottles were

filled with 100 ml of Hoagland’s E Medium. To create the Zn pol-

ution gradient, ZnSO₄·7H₂O (Alfa Aesar, Thermofisher) was added (2, 8, 50 mg/L). Elemental Zn accounts for 65.38 g/mol (22.7%) of the

ZnSO₄·7H₂O compound, the final concentration of the metal Zn was consequently 0.45 mg/L Zn, 1.82 mg/L Zn, and 11.35 mg/L Zn. The medium was autoclaved before the experiment.

There were six different compositions (three isolated, three mixed), four Zn concentration levels, and every treatment was repli-
cated three times, thus in total, there were 72 bottles. At the begin-
ning of the experiment, we added 5–7 fronds to the 250 ml bottles according to the study design (Figure 1). In the isolated setting, the 5–7 fronds were added to the inner area (inside the plastic ring). No fronds were added to the outer area. In the mixed setting, 5–7 fronds from one species were added to the inner area and 5–7 fronds from a second species were added to the outer area. We could thus individu-
ally track the populations that were either growing alone in a cul-
ture bottle or with a population of a competing species (*n = 108*). The
inside/outside position of the two respective species was kept for the three replicas but changed depending on the concentration and the specific species composition. So was the position the same for 0 mg/L Zn and 1.82 mg/L Zn, and for 0.45 mg/L Zn and 11.35 mg/L Zn but this differed between the two mixed settings (Figure 1). The bottles were kept in an incubator (Appendix Figure S4) at 20°C with a light regime of 16/8h light/dark for 17 days. During the experiment, the species competed for the same nutrients in an uncrowded culture, but there was no competition for light.

The number of fronds was counted eight times over the course of 17 days. Completely white (dead) fronds were not included in the total number of fronds. During the experiment, the species got mixed in a small number of bottles. Due to their morphological similarity, the species could not be reliably distinguished anymore and consequently any data from these bottles post the mixing event were excluded.

2.3 Data analysis

Four populations were excluded from all analyses because they declined rapidly and went extinct despite growing in the medium without the addition of ZnSO₄. The excluded populations had high leverage on the results but were qualitatively very different from all other populations. The four populations were each a replicate of the pairing *L. gibba* and *L. minor* at 0 mg/L Zn (two populations), of *L. turionifera* in the pairing *L. turionifera* and *L. minor* at 0 mg/L Zn (one population), and of *L. minor* in the isolated setting at 0 mg/L Zn (one population). Subsequently, population growth rates for each individual population (n = 104) were calculated as ln(N₂/N₁)/(t₂ - t₁). We used the initial population abundance at the start of the experiment (t₁ = 20.07.2021) and the final time point after 17 days (t₂ = 6.8.2021) to calculate total growth rates. In the mixed setting, we calculated growth rates for each species separately. Because most other studies examining the influence of Zn on duckweed growth were conducted over less than 10 days, we additionally calculated initial growth rate comparing the first day of the experiment (t₁) with day 8 (t₂ = 28.7.2021). Initial growth rates represent growth rates for when we can be confident that nutrients were not limiting but nutrients were likely not limiting throughout the experiment due to the combination of small populations sizes and the nutrient-rich medium used in the experiment.

Linear models with abundance over time and total growth rate as response terms and position as explanatory variable showed that there was, on average, no significant effect of position (inside vs. outside area, Appendix Figure S1). Due to the study design (Figure 1), position was confounded with the Zn × composition interaction; however, this interaction was never significant (see Appendix Table S1).

Total and initial growth rates were then used as response variables in the linear models. We did analyses of variances (ANOVAS) for each species separately but also the full linear models (see Appendix). The treatment variables were species identity (*L. gibba* (Lg), *L. minor* (Lm), or *L. turionifera* (Lt)), Zn concentration (0, 0.45, 1.82, and 11.35 mg/L Zn), the setting (isolated vs. mixed) and composition (isolated, pairing with species 1, pairing with species 2). lmertest (Bates et al., 2015; Kuznetsova et al., 2017) was used for the mixed models. Composition and position were included as random factors where appropriate. All analyses were done in R (R version 4.1.0, R Development Core Team, 2021).
3 | RESULTS

Over all concentrations and compositions, we found that *L. turionifera* had the highest total growth rate, followed by *L. minor* and *L. gibba* (Appendix Figures S2, Appendix Figures S3). However, initial growth rate was greatest for *L. minor* (Appendix Figures S2, Appendix Figures S3). All three species showed an overall high tolerance to Zn (Figure 2). *L. turionifera* was not influenced by Zn pollution. In contrast, the addition of ZnSO₄ to the experimental cultures significantly influenced *L. gibba* and *L. minor* but only at the beginning of the experiment (Table 1; Figure 3). *L. gibba* profited from intermediate levels of ZnSO₄ (Figure 3). Similarly, *L. minor* grew best at the second-highest level of Zn concentration (1.82 mg/L), but in contrast to *L. gibba*, the second-lowest level (0.45 mg/L) did not increase growth (Figure 3).

The setting (isolated vs. mixed) only significantly influenced *L. gibba* growth rates (Table 1), specifically, *L. gibba* profited from growing alone and showed significantly lower growth rates (initial and total) when paired with either *L. minor* or *L. turionifera* (also mirrored

Species	Total growth rate	Initial growth rate						
	numDF, dDF	F	p	numDF, dDF	F	p		
Lemna gibba	3, 28	1.700	.190	3, 29	3.227	.037		
Lemna minor	3, 27	2.742	.063	3, 28	3.660	.024		
Lemna turionifera	3, 29	0.073	.974	3, 31	1.454	.246		
Setting (mix vs. Mono)					F	p		
Lemna gibba	1, 31	5.096	.040	1, 33	11.394	.002		
Lemna minor	1, 14.48	0.017	.898	1, 23.65	0.377	.544		
Lemna turionifera	1, 31	0.065	.800	1, 32	0.017	.897		
Composition					F	p	F	p
Lemna gibba	2, 21.62	3.291	.057	2, 31	6.842	.003		
Lemna minor	2, 30	34.052	.000	2, 32	35.594	.000		
Lemna turionifera	2, 30	0.371	.693	2, 27.81	0.334	.719		

Significant (<.05) and near-significant (<.06) p-values are in bold. The linear mixed models for setting and composition included position (outer vs. inner) as random factor, the linear mixed model for concentration included composition as random factor. Within species, interaction terms were never significant and thus not shown here (but see Appendix Table S1). numDF: numerator degrees of freedom, dDF: denominator degrees of freedom.

FIGURE 2 Growth of the three duckweed species in the four zinc (Zn) treatments over 17 days. Shown are means and standard errors for each sampling date, across settings and compositions. Orange lines, 0 mg/L Zn, blue lines, 0.45 mg/L Zn, green lines, 1.82 mg/L Zn, yellow lines, 11.35 mg/L Zn
in significant effects of composition, Table 1). For *L. minor* it depended on the pairing (significant effects of composition on the individual species’ growth rate, Table 1; Figures 3, 4). *L. minor* performed better when paired with *L. turionifera* and worse when paired with *L. gibba*. *L. turionifera* showed no difference in growth rate when paired with either *L. gibba* or *L. minor* (Table 1; Figure 4). The positive and negative effects of the three species on each other are summarized in Table 2.

4 | DISCUSSION

4.1 | Zn tolerance was high in all three studied species

Contrary to expectations, growth rates were not highest in the treatments without the addition of Zn. Low levels of Zn even increased growth rates for two of the species studied (*L. gibba* and *L. minor*). Zn is an essential plant nutrient, and Zn deficiency has been shown to reduce fresh weight production in *L. gibba* (Vaughan et al., 1982). Zn is present in the Hoagland’s E Medium; nevertheless, it is possible that the *Lemna* species are Zn-limited in this medium and, therefore, show a lower growth rate as a sign of Zn deficiency. All three *Lemnaceae* species showed a very high tolerance to Zn. Only *L. minor* exhibited reduced growth rates in the highly polluted environment (11.35 mg/L). The high Zn tolerance for *L. gibba* contrasts previous work showing that concentrations of 4 mg/L of Zn inhibited growth by 50% (Lahive, O’Halloran, et al., 2011; Megateli et al., 2009) and 10 mg/L of Zn reduced specific biomass growth by 90% (Lahive, O’Halloran, et al., 2011).

For *L. minor*, the results partially confirm previous work. Jayasri and Suthindhiran (2017) showed that *L. minor* increased biomass yield in fronds treated with a lower concentration (0.5 mg/L) of Zn by 30% compared to the control. However, in their 4-day experiment 10 mg/L had little effect on growth (Jayasri & Suthindhiran, 2017).
Only 20 mg/L started inhibiting growth of *L. minor*. This contrasts our results that found that 11.35 mg/L reduced growth rates of *L. minor* (significantly so in comparison with 1.82 mg/L). However, our findings also suggest that at lower concentrations Zn promotes the growth of *L. minor*, but inhibits its growth at concentrations higher than 10 mg/L. Lahive, O’Callaghan, et al. (2011) reported that *L. minor* tolerated Zn concentration above 100 mg/L, but specific biomass growth rate was reduced significantly at low concentrations of 3 mg/L (reduction by 20%). Whether some of these discrepancies could also have been due to different culture mediums used (e.g., Hoagland’s medium used in our experiment vs. Hutners medium used in Lahive, O’Halloran, et al., 2011 vs. Coic and Lessaint solution used in Jayasri & Suthindhiran, 2017) remains untested.

The duration of our experiment exceeded that of previous experiments, which were conducted over 4–7 days (e.g., Jayasri & Suthindhiran, 2017; Lahive, O’Halloran, et al., 2011; Megateli et al., 2017).

TABLE 2 Overview facilitative (+) and inhibiting (−) effects between the species in the experiment (effect of species on the left on the species on the right)

	on *L. gibba*	on *L. minor*	on *L. turionifera*
Total growth rates			
Effect of *L. gibba*	− *	− ns	no effect
Effect of *L. minor*	− *	− ns	− ns
Effect of *L. turionifera*	− ns	+ **	
Initial growth rates			
Effect of *L. gibba*	− *	− ns	no effect
Effect of *L. minor*	− ***	− ns	− ns
Effect of *L. turionifera*	− *	+ ***	

Note: Significant effects are labelled with *p < .1, *p < .05, **p < .01, ***p < .001. See also Figure 4.
We speculated that these previous studies may have underestimated the toxicity of Zn (and overestimated the duckweed Zn tolerance) because the plants may become more sensitive over time, as their tissue accumulates more Zn. However, the overall high tolerance to Zn we found after 17 days suggests that toxicity does not increase over time. The high tolerance of duckweed to polluted environments might be an explanation as to why duckweeds are common all around the world (Landolt, 1986).

4.2 | Mixing two species can have contrasting effects on the focal species

Based on the stress-gradient hypothesis (e.g., Callaway et al., 2002), we hypothesized that in a more stressful environment we would observe more facilitative interactions while in the medium without Zn pollution we would observe more competitive interactions. We did not find evidence for this hypothesis, since the levels of Zn pollution we used in our experiment were not high enough to impact duckweed growth rates. Instead, we found that species interactions were highly dependent on focal species identity and competitor identity. For example, the effect of the setting on growth rate was only consistent for one of the three species, _L. gibba_. However, contrary to expectations, it did not profit from growing in the presence of a second species that could have helped it to accumulate Zn. Instead, _L. gibba_ grew the best alone. Previous research with _L. gibba_ competing against a different duckweed species, the greater duckweed _Spirodela polyrhiza_, showed that _L. gibba_ was highly competitive due to its gibbous fronds which could overgrow _S. polyrhiza_ (Clatworthy & Harper, 1962). However, in our experiment there was no physical contact between the species and _L. gibba_ only produced non-gibbous fronds. The outcome of species pairings could, therefore, be dependent on frond morphology, which in turn is dependent on the environmental conditions. Gibbosity in _L. gibba_ depends on the environmental conditions, and may be restricted to optimal growth conditions, including very high nutrient availability (Vaughan & Baker, 1994). Under our conditions in the experiment, _L. gibba_ may have had a disadvantage due to the lack of gibbous fronds and the inability to overgrow the competitor.

For the other two species, growth performance depended on the pairing, but there was no evidence of facilitation. Instead, we observed strong competition between _L. minor_ and _L. turionifera_, with _L. minor_ outcompeting _L. turionifera_. To the best of our knowledge, this is the first study investigating _L. turionifera_ growth rates in the presence or absence of a competitor. Recently, it has been found that some populations previously thought to be _L. minor_ were in fact _L. turionifera_ (Senevirathna et al., 2021). It is thus possible that _L. turionifera_ has a wider geographic distribution than previously thought and is, therefore, a good candidate for phytoremediation in many regions of the world.

For _L. minor_, we found that, even though it profited from growing with _L. turionifera_, the presence of _L. gibba_ had a negative impact on its growth. Simultaneously, _L. gibba_ was negatively influenced by the presence of _L. minor_. Thus, this pairing had a negative effect on both interacting species, which is surprising given that they frequently coexist in nature. Due to their morphological similarity, _L. gibba_ and _L. minor_ have rarely been used in competition experiments. In instances where they did compete in experiments the analysis was not completed (Clatworthy & Harper, 1962; Wolek, 1972), or the two species were even grouped together (Peeters et al., 2016). As an exception, Rejmánková (1975) found that in gibbous form, _L. gibba_ was always the stronger competitor, overgrowing _L. minor_ (Rejmánková, 1975).

Duckweeds have great potential for heavy metal removal in wastewaters (Abdel-Gawad et al., 2020) but many questions remain, in particular in terms of how polycultures of multiple species may improve efficiency. Our study is a first assessment of the interaction between competition and tolerance to Zn pollution for a subset of Lemnaceae species. We do acknowledge that there might be large variation among ecotypes (genotypes) from the same species (Ziegler et al., 2015). Thus, a next step should be to test the accumulation of Zn not only for species in an isolated setting across different metal concentrations (Lahive, O’Callaghan, et al., 2011) but also in a mixed setting and, importantly, in a natural environment with duckweed populations representing also natural genetic variation. In addition, due to their fast growth, it is possible that duckweed species will evolve in response to their competitor, especially when there is intraspecific genetic diversity present (Hart et al., 2019). For future phytoremediation efforts, species mixing could be interesting, but the effects of a second species need to be evaluated first as they cannot be readily predicted from the performance in individual cultures.

ACKNOWLEDGMENTS

We thank Prof. Walter Lämmler for his efforts in maintaining the Landolt duckweed collection and for providing us with the strains used in this experiment. Thanks to Owen Petchey and the whole Petchey group for advice and Yves Choffat for technical support in the lab. Sofia Vámos provided helpful feedback on the manuscript. We are grateful for the support of the URPP Global Change and Biodiversity of the University of Zurich. This study was funded by the University of Zurich (Forschungskredit 31259 awarded to S.J.V.M.).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Lorena Lanthemann: Conceptualization (equal); Data curation (equal); Formal analysis (supporting); Investigation (equal); Methodology (equal); Project administration (supporting); Visualization (supporting); Writing – original draft (equal); Writing – review & editing (supporting).

Sofia J. van Moorsel: Conceptualization (equal); Data curation (equal); Formal analysis (lead); Funding acquisition (lead); Investigation (lead); Methodology (equal); Project administration (supporting).
DATA AVAILABILITY STATEMENT
Data is available on Data Dryad (https://doi.org/10.5061/dryad.h9w0vt4kj).

ORCID
Sofia J. van Moorsel https://orcid.org/0000-0003-1947-8971

REFERENCES
Abdel-Gawad, F. K., Khalili, W. K. B., Bassem, S. M., Kumar, V., Parisi, C., Inglese, S., Temraz, T. A., Nassar, H. F., & Guerriero, G. (2020). The Duckweed, Lemna minor modulates heavy metal-induced oxidative stress in the Nile Tilapia, Oreochromis niloticus. Water, 12(11), 2983. https://doi.org/10.3390/w12112983
AWEL. (2006). Wasserqualität der Seen, Fliessgewässer und des Grundwassers im Kanton Zürich. Baudirektion Kanton Zürich.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Callaway, R. M. (1995). Positive interactions among plants. The Botanical Review, 61(4), 306–349. https://doi.org/10.1007/BF02912621
Callaway, R. M., Brooker, R. W., Choler, P., Kirkwood, Z., Lortie, C. J., Michalek, R., Paolini, L., Pugnaire, F. I., Newingham, B., Aschehoug, E. T., Armas, C., Kikodze, D., & Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature, 417(6891), 844–848. https://doi.org/10.1038/nature00812
Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48(7), 653–663. https://doi.org/10.1016/s0045-6535(02)00164-9
Clatworthy, J. N., & Harper, J. L. (1962). The comparative biology of closely related species living in the same area: V. Inter-and intra-specific interference within cultures of Lemna spp. and Salvinia Natans. Journal of Experimental Botany, 13(2), 307–324. https://doi.org/10.1093/jxb/13.2.307
De Lange, L., & Pieterse, A. H. (1973). A comparative study of the morphology of Lemna gibba L. and Lemna minor L. Acta Botanica Neerlandica, 22(5), 510–517. https://doi.org/10.1111/j.1399-3054.1982.tb00271.x
Gaur, J. P., Noraho, N., & Chauhan, Y. S. (1994). Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany, 49(2), 183–192. https://doi.org/10.1016/0304-3770(94)90037-X
Gopal, B., & Goel, U. (1993). Competition and allelopathy in aquatic plant communities. Botanical Review, 59(3), 155–210. https://doi.org/10.1007/BF02856599
Hart, S. P., Turcotte, M. M., & Levine, J. M. (2019). Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences, 116(6), 2112-2117. https://doi.org/10.1073/pnas.1801629116
Hicks, L. E. (1932). Flower production in the Lemnaceae. The Ohio Journal of Science, 32(2), 16.
Jayasri, M. A., & Suthindhiran, K. (2017). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: Its potential role in phytoremediation. Applied Water Science, 7(3), 1247-1253. https://doi.org/10.1007/s13201-015-0376-x
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImeTest Package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Lahive, E., O’Halloran, J., & Jansen, M. (2011). Differential sensitivity of four Lemnaceae species to zinc sulphate. Environmental and Experimental Botany, 71(1), 25–33. https://doi.org/10.1016/j.envex.2010.10.014
Lahive, E., O’Callaghan, M. J. A., Jansen, M. A. K., & O’Halloran, J. (2011). Uptake and partitioning of zinc in Lemnaceae. Ecotoxicology, 20(8), 1992. https://doi.org/10.1007/s10646-011-0741-y
Laird, R. A., & Barks, P. M. (2018). Skimming the surface: Duckweed as a model system in ecology and evolution. American Journal of Botany, 105(12), 1962–1966. https://doi.org/10.1002/ajb2.1194
Landolt, E. (1986). Biosystematic investigation in the family of duckweeds (“Lemnaceae”). Vol. 2: The family of “Lemnaceae”: a monographic study. Volume 1 [Text/html,application/pdf]. doi:https://doi.org/10.5169/SEALS-308748
Landolt, E. (1996). Duckweeds (Lemnaceae): Morphological and ecological characteristics and their potential for recycling of nutrients. In J. Staudemann, A. Schonborn, & C. Et nier (Eds.), Recycling the Resource: Proceedings of the Second International Conference on Ecological Engineering for Wastewater Treatment (Vol. 5-6, pp. 289–296). Trans Tech Publications Ltd.
Liu, Y., Xu, H., Yu, C., & Zhou, G. (2021). Multifaceted roles of duckweed, Wu, X., and Leakey, G. (2019). Competition between free-floating plants is strongly driven by previously experienced phosphorus concentrations in the water column. PLoS One, 11(9), e0162780. https://doi.org/10.1371/journal.pone.0162780
R Development Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
Rejmanková, E. (1975). Comparison of Lemna gibba and Lemna minor from the production ecological viewpoint. Aquatic Botany, 1, 423–427. https://doi.org/10.1016/0304-3770(75)90042-X
Rout, G. R., & Das, P. (2009). Effect of metal toxicity on plant growth and metabolism: I. Zinc. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Ecotoxicology and Environmental Safety, 72(6), 1774–1780. https://doi.org/10.1016/j.jecoen.2009.05.004
Nationale Grundwasserbeobachtung NAQUA. (2019). Zustand Und Entwicklung Grundwasser Schweiz p. 138. Bundesamt für Umwelt BAFU.
Peeters, E. T. H. M., Neefjes, R. E. M., & van Zuidam, B. G. (2016). Competition between free-floating plants is strongly driven by previously experienced phosphorus concentrations in the water column. PLoS One, 11(9), e0162780. https://doi.org/10.1371/journal.pone.0162780
Wołek, J. (1972). A preliminary investigation on interactions (competition, allelopathy) between some species of Lemna, Spirodela, and Wolffia. https://doi.org/10.5169/SEALS-377679

Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27(3), 715–721. https://doi.org/10.2134/jeq1998.00472425002700030032x

Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925. https://doi.org/10.1016/j.gecco.2020.e00925

Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., & Appenroth, K.-J. (2015). Relative in vitro growth rates of duckweeds (Lemnaceae) – The most rapidly growing higher plants. Plant Biology, 17(s1), 33–41. https://doi.org/10.1111/plb.12184

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Lanthemann, L., & van Moorsel, S. J. (2022). Species interactions in three Lemnaceae species growing along a gradient of zinc pollution. Ecology and Evolution, 12, e8646. https://doi.org/10.1002/ece3.8646