Control of unstable steady states by extended time-delayed feedback

Thomas Dahms, Philipp Hövel, and Eckehard Schöll
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
(Dated: November 19, 2021)

Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system represents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable phase. We present an analysis of the domain of control and support our results by numerical calculations.

PACS numbers: 05.45.Gg, 02.30.Ks, 05.45.Ks
Keywords: control, time-delayed feedback, latency, coupling

I. INTRODUCTION

Since the last decade, the stabilization of unstable and chaotic systems has been a field of extensive research. A variety of control schemes have been developed to control periodic orbits as well as steady states [1, 2, 3]. A simple and efficient scheme, introduced by Pyragas [4], is known as time delay autosynchronization (TDAS). This control method generates a feedback from the difference of the current state of a system to its counterpart some time units behind. Thus, the control scheme does not rely on a reference system and has only a small number of control parameters, i.e., the feedback gain K and time delay τ. It has been shown that TDAS can stabilize both unstable periodic orbits, e.g., embedded in a strange attractor [1, 5, 6], and unstable steady states [7, 8, 9]. In the first case, TDAS is most efficient if τ corresponds to an integer multiple of the minimal period of the orbit. In the latter case, the method works best if the time delay is related to an intrinsic characteristic timescale given by the imaginary part of the system’s eigenvalue [8]. A generalization of the original Pyragas scheme, suggested by Socolar et al. [9], uses multiple time delays. This extended time delay autosynchronization (ETDAS) introduces a memory parameter R, which serves as a weight of states further in the past. A variety of analytic results about time-delayed feedback control are also known [10, 11, 12, 13], for instance, in the case of long time delays [14] or the odd number limitation [15], which was refuted recently [16].

Although there has been strong effort on the research on the original Pyragas method [17, 18], much less is known in the case of extended time-delayed feedback [19, 20, 21, 22, 23, 24]. Recently it was shown that the additional memory parameter introduces a second timescale which leads to a strong improvement of the stabilization ability, for instance, arbitrary large correlations of stochastic oscillations without inducing a bifurcation [25].

In the present paper, we apply the ETDAS control method, which was initially invented to stabilize periodic orbits, to an unstable steady state realized as an unstable focus. This can be seen as a system close to, but above, a supercritical Hopf bifurcation. As a modification, we consider also an additional control loop latency, a bandpass filter, and different couplings.

This paper is organized as follows: In Sec. II we introduce our model equations and develop the analytic tools used throughout the paper. Section III deals with a non-diagonal coupling implemented by a rotational matrix. In Sec. IV we consider latency time effects, which arise if a time lag exists between calculation of the control force and reinjection into the system. Section V introduces a specific modification of ETDAS that includes a bandpass filtering of the control signal. This is important if high frequency components are present in the system. Finally, we conclude with Sec. VI.

II. EXTENDED TIME-DELAYED FEEDBACK

We consider an unstable fixed point of focus type. Without loss of generality, the fixed point z* is located at the origin. In complex center manifold coordinates z the linearized system can be written as ˙z(t) = (λ + iω)z(t), where λ and ω are real numbers corresponding to the damping and oscillation frequency, respectively. The stability of the steady state is determined by the sign of the real part of the complex eigenvalue λ + iω. Since we consider an unstable focus, e.g., closely above a Hopf bifurcation, we choose the parameter λ to be positive and ω nonzero. Separated in real and imaginary parts, i.e., z(t) = x(t) + iy(t), the dynamics of the system is given by

\[\dot{x}(t) = A x(t) - F(t), \] \((1) \)

where \(x \) is the state vector composed of the real and imaginary part \(x \) and \(y \) of the variable \(z \), the matrix \(A \)
denotes the dynamics of the uncontrolled system,
\[\mathbf{A} = \begin{pmatrix} \lambda & \omega \\ -\omega & \lambda \end{pmatrix}, \]
(2)
and \(\mathbf{F} \) is the ETDAS control force, which can be written in three equivalent forms
\[\mathbf{F}(t) = K \sum_{n=0}^{\infty} R^n [x(t-n\tau) - x(t-(n+1)\tau)] \]
(3)
\[= K \left[x(t) - (1-R) \sum_{n=1}^{\infty} R^{n-1} x(t-n\tau) \right] \]
(4)
\[= K [x(t) - x(t-\tau)] + R\mathbf{F}(t-\tau), \]
(5)
where \(K \) and \(\tau \) denote the (real) feedback gain and the time delay, respectively. \(R \in (-1, 1) \) is a memory parameter that takes into account those states that are delayed by more than one time interval \(\tau \). Note that \(R = 0 \) yields the TDAS control scheme introduced by Pyragas [4].

The control force applied to the \(n \)th component of the system consists only of contributions of the same component. Thus, this realization is called diagonal coupling. We will consider a generalization to a nondiagonal coupling scheme in Sec. III. The first form of the control force is given in units \(\text{R} \) of the intrinsic period \(T \), respectively.

While the stability of the fixed point in the absence of control is given by the eigenvalues of matrix \(\mathbf{A} \), i.e., \(\lambda \pm i\omega \), one has to solve the following characteristic equation in the case of an ETDAS control force:
\[\mathbf{A} + K \frac{1 - e^{-\lambda \tau}}{1 - Re^{-\lambda \tau}} = \lambda \pm i\omega. \]
(6)

Due to the presence of the time delay \(\tau \), this characteristic equation becomes transcendental and possesses an infinite but countable set of complex solutions \(\Lambda \). In the case of TDAS, i.e., \(R = 0 \), the characteristic equation can be solved analytically in terms of the Lambert function \(\mathbf{K} \) [24, 25, 26]. We stress that for nonzero memory parameter \(R \), however, such a compact analytic expression is not possible. Thus, one has to solve Eq. (6) numerically.

Figure 1 depicts the dependence of the largest real part of the eigenvalue \(\Lambda \) as a function of \(\tau \) for different values of \(R \). The red, green, black, blue, and magenta curves correspond to \(R = -0.7, -0.35, 0, 0.35, 0.7 \), respectively. The parameters of the unstable focus are chosen as \(\lambda = 0.1 \) and \(\omega = \pi \) which yields an intrinsic period \(T_0 = 2\pi/\omega = 2 \). The feedback gain \(K \) is fixed at \(KT_0 = 0.6 \).

Decreases and eventually changes sign. Thus, the fixed point becomes stable. Note that there is a minimum of Re(\(\Lambda \)) indicating strongest stability if the time delay \(\tau \) is equal to half the intrinsic period. For larger values of \(\tau \), the real part increases and becomes positive again. Hence, the system loses its stability. Above \(\tau = T_0 \), the cycle is repeated but the minimum of Re(\(\Lambda \)) is not so deep. The control method is less effective because the system has already evolved further away from the fixed point. For vanishing memory parameter \(R = 0 \) (TDAS), the minimum is deepest, however, the control interval, i.e., values of \(\tau \) with negative real parts of \(\Lambda \), increases for larger \(R \). Therefore the ETDAS control method is superior in comparison to the Pyragas scheme.

Figure 2 shows the domain of control in the plane parametrized by the feedback gain \(K \) and time delay \(\tau \) for different values of \(R : 0, 0.35, 0.7, -0.35 \) in panels (a), (b), (c), and (d), respectively. The color code indicates only negative values of the largest real parts of the complex eigenvalue \(\Lambda \). Therefore, Fig. 1 can be understood as a vertical cut through Fig. 2 for a fixed value of \(KT_0 = 0.6 \). Each panel displays several islands of stability which shrink for larger time delays \(\tau \). Note that no stabilization is possible if \(\tau \) is equal to an integer multiple of the intrinsic period \(T_0 \). The domains of control become larger if the memory parameter \(R \) is closer to 1.

In order to obtain some analytic information of the domain of control, it is helpful to separate the characteristic equation from into real and imaginary parts. This yields using \(\Lambda = p + iq \):
\[K (1 - e^{-p\tau} \cos q\tau) = \lambda - p - Re^{-p\tau} \times ([\lambda - p] \cos q\tau \pm (\omega - q) \sin q\tau) \]
(7)
Feedback gain at this optimal time delay in the following. The minimum domains of control in the \((K, \tau)\) plane for different values of \(R\): 0, 0.35, 0.7, -0.35 in panels (a), (b), (c), and (d), respectively. The greyscale (color online) shows only negative values of the largest real part of the complex eigenvalues \(\Lambda\) according to Eq. (8). The parameters of the system are as in Fig. [1].

\[
K e^{-p\tau} \sin q\tau = \pm (\omega - q) + Re^{-p\tau} \\
\times [(\lambda - p) \sin q\tau \pm (\omega - q) \cos q\tau].
\] (8)

The boundary of the domain of controls is determined by a vanishing real part of \(\Lambda\), i.e., \(p = 0\). With this constraint, Eqs. (7) and (8) can be rewritten as

\[
K(1 - \cos q\tau) = \lambda - R[\lambda \cos q\tau \pm (\omega - q) \sin q\tau],
\] (9)

\[
K \sin q\tau = \pm (\omega - q) + R[\lambda \sin q\tau \pm (\omega - q) \cos q\tau].
\] (10)

At the threshold of control \((p = 0, q = \omega)\), there is a certain value of the time delay, which will serve as a reference in the following Section, given by

\[
\tau = \frac{(2n + 1)\pi}{\omega} = \left(n + \frac{1}{2}\right) T_0
\] (10)

where \(n\) is any nonnegative integer. For this special choice of the time delay, the range of possible feedback gains \(K\) in the domain of control becomes largest as can be seen in Fig. [2]. Hence, we will refer to this \(\tau\) value as optimal time delay in the following. The minimum feedback gain at this \(\tau\) can be obtained:

\[
K_{\text{min}}(R) = \frac{\lambda(1 + R)}{2}. \tag{11}
\]

Extracting an expression for \(\sin(q\tau)\) from Eq. (9) and inserting it into the equation for the imaginary part leads after some algebraic manipulation to a general dependence of \(K\) on the imaginary part \(q\) of \(\Lambda\)

\[
K(q) = \frac{(1 + R) [\lambda^2 + (\omega - q)^2]}{2\lambda}. \tag{12}
\]

Taking into account the multivalued properties of the arcsine function, this yields in turn analytical expressions of the time delay in dependence on \(q\)

\[
\tau_1(q) = \frac{\arcsin \left(\frac{2\lambda(1-R^2)(\omega-q)}{\lambda^2(1-R^2)^2+(\omega-q)^2(1+R)^2}\right) + 2n\pi}{q}, \tag{13}
\]

\[
\tau_2(q) = \frac{-\arcsin \left(\frac{2\lambda(1-R^2)(\omega-q)}{\lambda^2(1-R^2)^2+(\omega-q)^2(1+R)^2}\right) + (2n + 1)\pi}{q},
\]

where \(n\) is a nonnegative integer. Together with Eq. (12), these formulas describe the boundary of the domain of control in Fig. [2]. Note that two expressions \(\tau_1\) and \(\tau_2\) are necessary to capture the complete boundary. The case of TDAS control was analyzed in [14] and is included as special choice of \(R = 0\).

For a better understanding of effects due to the memory parameter \(R\), it is instructive to consider the domain of control in the plane parametrized by \(R\) and the feedback gain \(K\). The results can be seen in Fig. [3] where the blue, red, green, and yellow domains correspond to \(\lambda T_0 = 0.2, 1, 5,\) and 10, respectively. The other system parameter is chosen as \(\omega = \pi\). We keep the time delay constant at \(\tau = T_0/2\) and \(\omega = \pi\). We keep the time delay constant at \(\tau = T_0/2\) and \(\omega = \pi\). We keep the time delay constant. The upper left boundary corresponds to Eq. (11). The lower right boundary can be described by a parametric representation which can be derived from the characteristic equation (11):

\[
R = \frac{\lambda \tau - \vartheta \tan (\vartheta/2)}{\lambda \tau + \vartheta \tan (\vartheta/2)}, \tag{14}
\]

\[
K\tau = \frac{\vartheta^2 + (\lambda \tau)^2}{\lambda \tau + \vartheta \tan (\vartheta/2)}, \tag{15}
\]

where we used the abbreviation \(\vartheta = (q - \omega) \tau\) for notational convenience. The range of \(\vartheta\) is given by \(\vartheta \in [0, \pi]\).
A linear approximation leads to an analytic dependence of \(R \) on the feedback gain \(K \) given by a function \(R(K) \) instead of the parametric equations [14] and [15]. A Taylor expansion around \(\vartheta = \pi \) yields

\[
K_{\text{max}}(R) = \frac{\lambda^2 + \pi^2}{2\lambda} (R + 1) + 2(R - 1). \tag{16}
\]

Another representation of the superior control ability of ETDAS is depicted in Fig. 4. The domain of control is given in the \((K, \lambda)\) plane for different memory parameters \(R \). The yellow, red, green, and blue areas refer to \(R = -0.35, 0 \) (TDAS), 0.35, and 0.7, respectively. The time delay is fixed at \(\tau = T_0/2 \).

III. PHASE DEPENDENT COUPLING

Time-delayed feedback has been widely used in optical systems both to study the intrinsic dynamics and to control the stabilization of, for instance, a laser device [30, 31, 32, 33, 54, 55]. In these systems, the optical phase is an additional degree of freedom. We consider this additional control parameter as a generalization of the ETDAS feedback scheme using a nondiagonal coupling as opposed to the diagonal coupling discussed in the previous Section. This nondiagonal coupling is realized by introducing a coupling matrix containing a variable phase \(\varphi \):

\[
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
\lambda & \omega \\
-\omega & \lambda
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix} - \begin{pmatrix}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{pmatrix} \mathbf{F}(t), \tag{20}
\]

In optical systems like semiconductor lasers with external optical feedback [36, 37], this feedback phase can be seen as the phase of the electric field. Experimentally, this phase of the feedback can be varied by tuning an external Fabry-Perot cavity. It has also been demonstrated that a feedback phase plays an important role in the suppression of collective synchrony in a globally coupled oscillator network [38].

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = \begin{pmatrix}
\lambda & \omega \\
-\omega & \lambda
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix} - \begin{pmatrix}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{pmatrix} \mathbf{F}(t), \tag{20}
\]

The stability of the fixed point is again given by the largest value of the complex eigenvalues \(\Lambda \), which are calculated as the solutions of the following modified characteristic equation:

\[
\Lambda + Ke^{i\varphi} \frac{1 - e^{-\lambda\tau}}{1 - Re^{-\lambda\tau}} = \lambda + i\omega. \tag{21}
\]
Note that this equation differs from the characteristic equation in the diagonal case (see Sec. II) by an additional exponential term. This is due to the choice of phase dependent coupling by a rotational matrix. We stress that a similar phase factor has recently been used to overcome some topological limitation of time-delayed feedback control known as the odd number limitation theorem, which refers to the case of an unstable periodic orbit with an odd number of real Floquet multipliers larger than unity.[16, 39]

In analogy to Sec. II a minimum feedback gain can be calculated:

\[K_{\text{min}} = \frac{\lambda (1 + R)}{2 \cos \varphi}. \] (22)

Note that the time delay that corresponds to this value of \(K_{\text{min}} \) is no longer given by Eq. (10) and is not the optimal time delay in the general case of nonzero phase. Nevertheless, Eq. (22) can be used as a coarse estimate of the minimum feedback gain for the regime of small values of \(\varphi \), if the time delay is chosen as Eq. (10).

FIG. 6: (Color online) Domain of control in the \((\varphi, K)\) plane for optimal time delay \(\tau = T_0/2 \). Panels (a), (b), (c), and (d) correspond to a memory parameter \(R \) of 0, 0.35, 0.7, and \(-0.35\), respectively. The color code shows the largest real part of the complex eigenvalues \(\Lambda \) as given by Eq. (21). The parameters of the system are as in Fig. 1.

FIG. 7: (Color online) Domain of control in the \((\varphi, K)\) plane for time delay \(\tau = 0.1 T_0 \). Panels (a), (b), (c), and (d) correspond to a memory parameter \(R \) of 0, 0.35, 0.7, and \(-0.35\), respectively. The color code shows the largest real part of the complex eigenvalues \(\Lambda \) as given by Eq. (21). Only negative values are depicted. The parameters of the system are as in Fig. 1.

FIG. 8: (Color online) Domain of control in the \((K, R)\) plane for different values of the feedback phase \(\varphi \). The blue, green, red, and yellow areas correspond to \(\varphi = 0, \pi/8, \pi/4, \) and \(3\pi/8 \), respectively. Panel (a) displays the domain of control for optimal \(\tau = T_0/2 \); panel (b) for \(\tau = 0.1 T_0 \). The parameters of the system are as in Fig. 1.

Figure 5 depicts the dependence of the largest real part of the eigenvalues \(\Lambda \) on the time delay \(\tau \) for fixed values of \(R = 0.7 \) and \(KT_0 = 0.6 \), but different values of the phase. The black, red, green, and blue curves correspond to \(\varphi = 0, \pi/8, \pi/4, \) and \(3\pi/8 \), respectively. It can be observed that the control is overall less effective for larger \(\varphi \), as the curves are shifted up towards positive real parts for increasing the phase. The range of possible values for the time delay shrinks. The optimal time delay is shifted towards smaller values for larger \(\varphi \), which can be seen for the case of \(\varphi = 3\pi/8 \), where the optimal time delay is in the range of \(\tau = 0.1 T_0 \) instead of \(0.5 T_0 \), which was the optimal time delay for \(\varphi = 0 \) according to Eq. (10).
The four-dimensional parameter space is now given by the feedback gain K, time delay τ, memory parameter R, and feedback phase φ. At first, we consider the domain of control in the plane parametrized by K and φ. Hence, we keep the other remaining control parameters R and φ fixed. Figures 6 and 7 show the domain of control for a time delay of $T_0/2$ and $0.1T_0$, respectively. In each figure, the memory parameter R is chosen as $R = 0, 0.35, 0.7,$ and -0.35 in panels (a), (b), (c), and (d), respectively. The color code corresponds to the largest real part of the complex eigenvalues which are calculated from Eq. (21). Only negative values are depicted, i.e., those combinations of K and φ for which the control scheme is successful. Note that the case $R = 0$ corresponds to the TDAS control method [37]. An increase of the memory parameter R leads to a larger domain of control. Even though the system can be stabilized for a larger range of K and φ, the system becomes over all less stable, since the real part of Λ is closer to zero. For negative values of τ, the system becomes over all less stable, since the real part of Λ is closer to zero. For negative values of τ, the system becomes over all less stable, since the real part of Λ is closer to zero.

For a better understanding of the effects of the feedback phase, Fig. 8 depicts the domain of control in the (R, φ) plane. The blue, green, red, and yellow areas correspond to successful control for $\varphi = 0$, $\pi/8$, $\pi/4$, and $3\pi/8$, respectively. Panel (a) shows the case of optimal time delay, i.e., $\tau = T_0/2$; panel (b) displays the case of $\tau = 0.1T_0$. Note that an increase of φ leads to a smaller domain of control in the case of $\tau = T_0/2$. This effect, however, is reversed for non-optimal choices of τ, where the phase φ compensates for the bad choice of the time delay. Thus, control is possible again, for instance, in the TDAS case ($R = 0$). Following the strategy introduced in Sec. III, one can derive also in the case $\varphi \neq 0$ parametric formulas for the the boundary of the domain of control:

$$R = \frac{\varphi \left[\cos (\omega \tau + \vartheta + \varphi) - \cos \varphi \right] - \lambda \tau \left[\sin \varphi - \sin (\omega \tau + \vartheta + \varphi) \right]}{\varphi \left[\cos \varphi - \cos (\omega \tau + \vartheta + \varphi) \right] - \lambda \tau \left[\sin \varphi + \sin (\omega \tau + \vartheta + \varphi) \right]},$$

$$K\tau = -\frac{\left(\varphi^2 + \lambda^2 \tau^2 \right) \cos \left[\frac{1}{2} (\omega \tau + \vartheta) \right]}{\lambda \tau \cos \left[\frac{1}{2} (\omega \tau + \vartheta) - \varphi \right] - \vartheta \left[\frac{1}{2} (\omega \tau + \vartheta) - \varphi \right]}$$

We stress that it is possible to derive expression of $K(q)$ and $\tau(q)$ similar to Eqs. (12) and (17) also in the case of $\varphi \neq 0$. These calculations are lengthy and do not produce more insight and thus are omitted here.

IV. CONTROL LOOP LATENCY

After the investigation of nondiagonal coupling, we consider in this Section an additional control loop latency. This latency is associated with time required for the generation of the control force and its reinsertion into the system. In an optical realization, for instance, the latency time is given by the propagation time of the light between the laser and the Fabry-Perot control device. We stress that in the case of unstable periodic orbits, Just has shown that longer latency times reduce the control abilities of the time-delayed feedback of TDAS type [29]. Similar results were found for ETDAS [24].

The latency time δ acts as an additional time delay in all arguments of the control force of Eq. (3). Using the recursive form of F as given by Eq. (4), this yields

$$F(t) = [x(t-\delta) - x(t-\delta - \tau)] + RF(t-\tau).$$

The characteristic equation (6) is now modified by an additional exponential factor

$$\lambda \pm i \omega = \Lambda + Ke^{-\Lambda \tau} \frac{1 - e^{-\Lambda \tau}}{1 - Re^{-\Lambda \tau}}.$$

In contrast to the previous Section, this exponential term depends on the eigenvalue Λ itself.

Figure 9 depicts the dependence of the largest real part of the eigenvalues Λ on the time delay τ for fixed values of $R = 0.7$ and $K T_0 = 0.6$, but different latency times. The black, red, green, and blue curves correspond to $\delta = 0, 0.1, 0.3,$ and 0.5, respectively. It can be seen that the control scheme is less successful for longer latency times. The τ interval with negative real parts of Λ becomes smaller. In the case of $\delta = 0.25T_0$, for instance, control can only be achieved in a narrow range of small τ and the second minimum does not reach down to negative $\text{Re}(\Lambda)$ anymore. In addition, the minima of the real parts are distorted and shifted towards smaller time delays.

Taking also a varying feedback gain K into account, the domain of control can be seen in Fig. 10. The other control parameters are fixed at $\tau = T_0/2$ and $R = 0.7$. Panels (a), (b), (c), and (d) correspond to values of $\delta = 0, 0.1\tau, 0.2\tau,$ and 0.3τ, respectively. As in Figs. 8 and 7 of the previous Section, the color code corresponds to the largest real part of the complex eigenvalues which are calculated from Eq. (24). Note that only negative values are depicted. For increasing latency time, the domains
FIG. 9: (Color online) Largest real part of the eigenvalues Λ as a function of τ for different latency times δ. The black, red, green, and blue curves correspond to $\delta = 0, 0.05T_0, 0.15T_0,$ and $0.25T_0$, respectively. The other control parameters are fixed as $R = 0.7$ and $KT_0 = 0.6$. The parameters of the system are as in Fig. 1.

Separating the characteristic equation into real and imaginary part, one can derive, in analogy to Sec. II, an expression for the minimum feedback gain

$$K_{\text{min}}(\delta) = \frac{\lambda(1 + R)}{\cos[(2n + 1)\pi \delta / \tau]},$$ \hspace{1cm} (27)

which is consistent with the TDAS case investigated in [8].

FIG. 10: (Color online) Domain of control in the (τ, K) plane for different values of the latency time δ and fixed $R = 0.7$. Panels (a), (b), (c), and (d) correspond to values of $\delta = 0, 0.05T_0, 0.1T_0,$ and $0.15T_0$, respectively, where the time delay is fixed at $\tau = T_0/2$. The parameters of the system are as in Fig. 1.

As another two-dimensional projection of the parameter space, Fig. 11 displays the domain of control in the (K, R) plane for different values of the latency time δ. The blue, green, red, and yellow areas refer to values of $\delta = 0, 0.05T_0, 0.1T_0,$ and $0.15T_0$, respectively. Panel (a) corresponds to an optimal time delay $\tau = T_0/2$, panel (b) to $\tau = T_0/8$. The parameters of the system are as in Fig. 1.

Similar to the previous Sections, it is possible to derive a parametric expression for the boundary of the domain of control $[R(\delta) \text{ and } K(\delta)]$.

FIG. 11: (Color online) Domain of control in the (K, R) plane for different values of the latency time δ. The blue, green, red, and yellow areas refer to values of $\delta = 0, 0.05T_0, 0.1T_0,$ and $0.15T_0$, respectively. Panel (a) corresponds to an optimal time delay $\tau = T_0/2$, panel (b) refers to $\tau = T_0/8$. In the first case, the domain of control shrinks considerably for increasing δ, whereas in the latter case, this change is less pronounced.
V. BANDPASS FILTERING

In the context of semiconductor lasers, it has been shown both theoretically and experimentally that delayed, bandpass filtered optical feedback is able to suppress the undamping of relaxation oscillations \[26,40\]. Recently, filtering of an optical feedback signal \[41\] was also investigated for laser models of Lang-Kobayashi type \[42\]. In addition, filtered feedback has also been proven important in the investigation of a Hopf bifurcation \[43\], and in the stabilization of unstable periodic orbits by ETDAS in semiconductor superlattices \[44\]. In order to model this type of modification of the control force, a bandpass filter acting on the feedback force is introduced as a Lorentzian in the frequency domain with the transfer function

\[
T(\omega) = \frac{1}{1 + i\frac{\omega - \omega_0}{\gamma}},
\]

where \(\omega_0\) denotes the peak of the transfer function and \(\gamma\) is half the full width at half maximum of the function. To introduce the filter into the system in the time domain, one can add two additional differential equations to Eq. (11) such that the original two-dimensional system becomes four-dimensional:

\[
\begin{align*}
\dot{x}(t) &= A x(t) - F(\bar{x}(t)), \\
\dot{\bar{x}}(t) &= \gamma (x(t) - \bar{x}(t)) - \omega_0 \bar{y}(t), \\
\dot{\bar{y}}(t) &= \gamma (y(t) - \bar{y}(t)) + \omega_0 \bar{x}(t),
\end{align*}
\]

where \(\bar{x}\) and \(\bar{y}\) denote the filtered versions of \(x\) and \(y\), respectively. Note that the feedback force \(F(\bar{x}(t))\) is now generated from the filtered state vector \(\bar{x}(t)\) which consists of the two filtered variables \(\bar{x}\) and \(\bar{y}\):

\[
F(\bar{x}(t)) = K \sum_{n=0}^{\infty} R^n \left[\bar{x}(t - n\tau) - \bar{x}(t - (n+1)\tau) \right].
\]

Equivalently to the additional differential equations in Eq. (31), the filtering, for instance in the case of a low pass filter, \textit{i.e.}, \(\omega_0 = 0\), can be expressed by convolution integrals, where the filtered counterparts of \(x(t)\) and \(y(t)\) are given as follows:

\[
\begin{align*}
\bar{x}(t) &= \gamma \int_{-\infty}^{t} x(t') e^{-\gamma(t-t')} dt', \\
\bar{y}(t) &= \gamma \int_{-\infty}^{t} y(t') e^{-\gamma(t-t')} dt'.
\end{align*}
\]

The system of differential equations (31) yields a characteristic equation of the form

\[
\pm i \left[\omega_0 (\lambda - \Lambda) + \omega (\gamma + \Lambda) \right] = \gamma K \frac{1 - e^{-\Lambda \tau}}{1 - Re^{-\Lambda \tau}} + \omega_0 \omega - (\lambda - \Lambda) (\gamma + \Lambda).
\]

The minimum feedback gain can be calculated in dependence on \(\omega_0\) and \(\gamma\) in similarity to Eq. (11):

\[
K_{\text{min}}(\omega_0, \gamma) = \frac{\lambda (1 + R)}{2 \left[1 + \frac{(\omega_0 + \omega)^2 + 2 \omega_0 \omega \Lambda}{(\gamma + \lambda)^2} \right]}. \tag{36}
\]

Note that at this special value of the feedback gain \(K\), the time delay is no longer given by the intrinsic value \(\tau = \pi/\omega\), neither is it the optimal time delay in the general case of nonzero \(\omega_0\) and finite values of \(\gamma\). Adjusting the time delay according to the choice of \(\omega_0\) and \(\gamma\) leads to boundaries of the domain of control that can only be understood in the scope of a parametric representation of the boundaries in the \((K, R)\)-plane. Such parametric equations can be derived in analogy to Eq. (14). However, the resulting equations for the case of the filtered system are not shown here due to the complexity of the terms.

![FIG. 12: (Color online) Largest real part of the eigenvalues \(\Lambda\) as a function of \(\tau\) for different filter widths \(\gamma\) and fixed \(\omega_0 = 0\). The black, red, green, and blue curves correspond to \(\gamma T_0 = 2000, 40, 10,\) and \(2\), respectively. The other control parameters are fixed as \(R = 0.7\) and \(K T_0 = 0.6\). The parameters of the system are as in Fig. 11](image_url)
Therefore, no control is possible for the case of curves and shifts them up towards positive real parts. The black, red, green, and blue curves correspond to are fixed as $\omega_0 T_0 = 0, \pi, 2\pi$, and 4π, respectively. The other control parameters are fixed as $R = 0.7$ and $K T_0 = 0.6$. The parameters of the system are as in Fig. 1.

The range of the time delay for successful control shrinks. The lower right boundary is shifted up towards larger values of R. The left boundary, which corresponds to K_{min}, is shifted towards larger values of K. This effect is very small for $\gamma T_0 = 40$ and 10. For $\gamma T_0 = 2$, the effect is much more pronounced.

FIG. 13: (Color online) Largest real part of the eigenvalues Λ as a function of τ for different mean values of the filter ω_0 and fixed $\gamma T_0 = 10$. The black, red, green, and blue curves correspond to $\omega_0 T_0 = 0, \pi, 2\pi$, and 4π, respectively. The other control parameters are fixed as $R = 0.7$ and $K T_0 = 0.6$. The parameters of the system are as in Fig. 1.

FIG. 14: (Color online) Domain of control in the (K, R) plane for different values of the filter width γ and fixed $\omega_0 = 0$. The blue, green, red, and yellow areas refer to values of $\gamma T_0 = 2000, 40, 10$, and 2, respectively. The other control parameters are fixed as $R = 0.7$ and $\tau = T_0/2$. The parameters of the system are as in Fig. 1.

FIG. 15: (Color online) Domain of control in the (τ, K) plane for different values of the filter width γ and fixed $\omega_0 = 0$. Panels (a), (b), (c), and (d) correspond to values of $\gamma T_0 = 2000, 40, 10$, and 2, respectively, where the time delay is fixed at $\tau = T_0/2$ and $R = 0.7$. The parameters of the system are as in Fig. 1.

Figure 15 shows the domain of control in the (K, τ) plane for different values of the filter width γ and fixed $\omega_0 = 0$. Panels (a), (b), (c), and (d) correspond to values of $\gamma T_0 = 2000, 40, 10$, and 2, respectively, where the time delay is fixed at $\tau = T_0/2$ and $R = 0.7$. The case of $\gamma T_0 = 2000$ looks very similar to the case of the unfiltered system, as shown in Fig. 2. For decreasing value of γ, the tongues shrink in K direction. The minimum value of K increases and the maximum value becomes smaller.
Additionally, the tongues are bent down towards smaller values of the time delay τ with decreasing γ. This leads to an optimal τ that is smaller than in the unfiltered case.

In Fig. 16 the filter width is fixed to $\gamma T_0 = 10$, the domain of control is shown for different values of the filter’s mean value ω_0. Panels (a), (b), (c), and (d) correspond to values of $\omega_0 T_0 = 0, \pi, 2\pi$, and 4π, respectively, where the time delay is fixed at $\tau = T_0/2$ and $R = 0.7$. The parameters of the system are as in Fig. 1.

VI. CONCLUSION

In conclusion, we have shown that extended time-delayed feedback can be used to stabilize unstable steady states of focus type. By introduction of an additional memory parameter, this method is able to control a larger range of unstable fixed points compared to the original TDAS scheme. However, the degree of stability, measured by the absolute value of the real part of the eigenvalue, is generally decreased. We have investigated the domain of control in various one- and two-dimensional projections of the space spanned by the control parameters. Furthermore, we have discussed also effects of nondiagonal coupling, nonzero control loop latency, and bandpass filtering of the control signal, which are relevant in an experimental realization of the ETDAS control method. We found that a proper adjustment of the time delay is able to compensate for reducing stabilization abilities of the control method, for instance, due to latency or feedback phase.

We point out that the results obtained in this paper are accessible for applications in the context of all-optical control of intensity oscillations of semiconductor lasers as investigated in [37].

VII. ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsgemeinschaft in the framework of Sfb 555.
[24] P. Hövel and J. E. S. Socolar, Phys. Rev. E 68, 036206 (2003).
[25] J. Pomplun, A. G. Balanov, and E. Schöll, Phys. Rev. E 75, 040101 (2007).
[26] E. M. Wright, Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci. 62, 387 (1949).
[27] J. K. Hale, Functional Differential Equations (Applied Mathematical Sciences Vol. 3, Springer, New York, 1971).
[28] A. Amann, E. Schöll, and W. Just, Physica A 373, 191 (2007).
[29] W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst, Phys. Lett. A 254, 158 (1999).
[30] S. Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux, Phys. Rev. A 47, 3276 (1993).
[31] D. Pieroux, T. Erneux, and K. Otsuka, Phys. Rev. A 50, 1822 (1994).
[32] O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004).
[33] S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziumas, J. Sieber, H. J. Wünsche, and F. Henneberger, Phys. Rev. E 69, 016206 (2004).
[34] V. Z. Tronciu, H. J. Wünsche, M. Wolfrum, and M. Radziumas, Phys. Rev. E 73, 046205 (2006).
[35] A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, Optics Lett. 31, 2006 (2006).
[36] A. Fischer, O. Andersen, M. Yousefi, S. Stolte, and D. Lenstra, Quantum Electronics, IEEE Journal of 36, 375 (2000).
[37] S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006).
[38] M. G. Rosenblum and A. Pikovsky, Phys. Rev. E 70, 041904 (2004).
[39] H. Nakajima and Y. Ueda, Physica D 111, 143 (1998).
[40] M. Yousefi and D. Lenstra, Quantum Electronics, IEEE Journal of 35, 970 (1999).
[41] H. Erzgräber, B. Krauskopf, D. Lenstra, A. P. A. Fischer, and G. Vemuri, Phys. Rev. E 73, 055201 (2006).
[42] R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[43] L. Illing and D. J. Gauthier, Physica D 210, 180 (2005).
[44] J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll, Phys. Rev. E 68, 066208 (2003).