Constrictor Action of Substances in the Pulmonary Artery in Newborn with the Amnional Fluid Aspiration Syndrome (MAS)

Hilmi Islami1*, Ragip Shabani2, Naim Haliti3, Gani Dragusha4, Bajram Nuraj5 and Salih Ahmeti6

1Department of Pharmacology, Faculty of Medicine, University of Prishtina, Kosova
2Department of Pathology, Faculty of Medicine, University of Prishtina, Kosova
3Department of Forensic Medicine, Faculty of Medicine, University of Prishtina, Kosova
4Department of Pharmacology, Faculty of Medicine, University of Prishtina, Kosova
5Department of Clinical Anatomy, Faculty of Medicine, University of Prishtina, Kosova
6Department of Infectology, Faculty of Medicine, University of Prishtina, Kosova

Summary

In this in vitro work, action of acetylcholine and histamine on pulmonary artery in live and dead newborn (250 up to 3000g of body weight) which have died due to aspiration of amnional fluid was studied. Response of tracheal rings and pulmonary artery preparations on acetylcholine 10⁻⁴, 10⁻⁵, 10⁻⁶ mol/dm²; and histamine: 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷ mol/dm² followed up. Response of tracheal smooth musculature was registered in a multi-channel registration (Watanabe HSE 6600) Statcham.

The action of acetylcholine in the pulmonary artery, in cases which has died due to aspiration of amnional fluid, has not experienced any significant change (p > 0.1), whilst histamine has caused constriction of the pulmonary artery in a significant manner (p < 0.01). Despite this, examination of tracheal rings in the controlling group with the meconial aspiration syndrome (MAS) and the group with lung atelectasis which have died from the distress respiratory syndrome (DRS), has caused significant response of tracheal smooth musculature (p < 0.01).

Aim of the work was to evaluate the effect of meconium at the newborn pulmonary artery. Results suggest that meconium does not increase in a significant manner the reactivity of the smooth musculature to acetylcholine but this reactivity is expressed in histamine. Relaxation can be explained with the fact that at the syndrome of meconial aspiration exist a high content of the magnesium in the meconium which can obstructs entry of the calcium in the cell interior by causing relaxant effect.

Keywords: Pulmonary artery; Trachea; Acetylcholine; Histamine

Introduction

Syndrome of the aspiration of the meconium fluid (MAS) is a complex severe disorder in newborn which manifest with respiratory distress, pulmonary hypertension and hypoxemia [1,2].

It is ascertained that meconium is present since 12th gestation week of fetus. It is a product being released at the amniotic cavity, prior birth, as a consequence of the relaxation of the anal sphincter of the fetus. This presence of the meconium in the amnionic fluid can have, as a consequence, the aspiration of this fluid and manifesting of the severe forms of pneumonitis in early neonatal stages immediately following the delivery [3].

Amnional fluid contains stem cells, secretion of vernix caseosa, it contains also gastrointestinal system cells [4]. Composition of the meconium includes 4 different biliar acids (e.g. choline, chenodeoxycholic and lithocholic acid) and minerals such copper, zinc, manganese, calcium, iron, and phosphorus as most often ones [5,6]. Continuously, it contains plasmatic proteins (alpha-1 antitrypsin) [7,8]. Meconium is also composed of other different substances such interleukins IL-1, IL-6 and IL8, necrotizing tumoral factor (TNF-alpha) [9] and phospholipases A₄ (PLA₄) [10] that might induce direct and indirect pulmonary inflammation by increasing the production of cytokines and by activating leukocytes or epithelial and endothelial cells of the lung. In vitro exposure of the meconium increases the release of IL-8, TNF-alpha [11], endothelium-1, trombocytes activating factor (PAF), leukotrienes, thromboxane A₂ inducing of synthetase NO [12], NO [13], PLA₄, and other substances that impact on reactivity of airways and inflammation.

It is supposed that in the early stages presence of the amnionic fluid can be associated with an increase of pulmonary resistance, dysfunction of surfactant, decrease of dynamic compliance of the lungs, hypoxemia with hypercapnia [14,15].

All these changes progress in the representation of inflammatory changes which affect in changeability of the smooth musculature contractility and development of pulmonary hypertension. Respectively, these pathophysiologic processes are associated with changes in the tissue of airways smooth musculature and pulmonary vessels in a newborn [16,17].

Epithelial cells of the airways in the presence of the amnional fluid react with the release of thromboxane A₂; respectively it is supposed that synthesis and/or activation of constrictor agonist in lung vascular vessels is stimulated [13].

Data from the researches in experimental animals are quite contradictory by referring that tracheal segments in rabbit exposed in vivo...
vitro” with meconium react with hyper-reactivity; whilst at tracheal segments in pre-contracted rat presence of meconium is associated with the relaxation of smooth musculature of these segments [18,19].

Whereas in researches of human umbilical vessels exposed in the meconium are presented opposite data and thus in one research was declared that meconium does not contract the smooth musculature of umbilical vessels [20], whilst in another research was reported for direct vasoconstrictor effect of meconium in umbilical vessels [21].

Considering that structure of innervations, respectively contractility of airways smooth musculature and respiratory vascular vessels in human has some special features, we can conclude that the effect of amnional fluid in the smooth musculature of pulmonary vascular vessels respectively in the pulmonary artery and human tracheal segments is quite complex and is not yet entirely defined.

Therefore, aim of the work is to evaluate the effect of meconium in the pulmonary artery and tracheal segments at newborn through the action of vasoconstrictor substances such acetylcholine and histamine.

Materials and Methods

Research was conducted in cooperation with the Institute of Pharmacology, Pathologic Anatomy and Experimental Unit of the Faculty of Medicine in Pristina, with the approval of the Ethic Committee by respecting principles of the Helsinki Declaration.

Classification was done based on histopathological analyses:

First controlling group (7) in recently dead children from: meconial fluid aspiration syndrome (MAS) is histopathologically characterized with changes as follows: presence of the amnional fluid in airways, with proteic eosinophilic granular material and epithelial squama.

Second controlling group (8) in recently dead children from: pneumonia, bronchopneumonia, atelectasis and cerebral haemorrhage (RDS) is histopathologically characterized with changes as follows: within air spaces, up to the level of alveoli, many inflammatory infiltrates of the granulocyte, mastocyte and erythrocytary extravasate are noticed. In the bronchiole and peribronchially, proteinic infiltrates of the granulocyte, mastocyte and erythrocytary extravasate within air spaces,

(DRS) is histopathologically characterized with changes as follows: presence of the amnional fluid in the smooth musculature of pulmonary vascular vessels respectively in the pulmonary artery and tracheal segments is quite complex and is not yet entirely defined.

Results of the in vitro research in isolated tracheal preparations in newborn shows that acetylcholine and histamine were applied in different molar concentrations (acetylcholine: 10⁻¹, 10⁻², 10⁻³ mol/dm³; histamine: 10⁻¹, 10⁻², 10⁻³ mol/dm³) which act in a different manner depending from the applied dose to the pulmonary artery and tracheas in newborn with MAS and RDS syndrome.

In Figure 1, 2, 3 and 4, acetylcholine and histamine action in the pulmonary artery and isolated tracheas in the MAS and RDS syndrome are presented.

Discussion

Increase of the airways resistance is considered as an important component in MAS syndrome, despite the fact that some other mechanisms are involved also in causing of this syndrome. Composition
of amniotic fluid is also quite heterogenic by mentioning here different tissue cells [22], plasmatic proteins (α-antitripsin and phospholipase A₂ [23, 24]), different biliar acids and different minerals such calcium salts, magnesium, zinc, and copper [25].

This composition of amniotic fluid, especially of minerals, may affect in terms of possibility that response of vascular vessels and tracheal segments in human can be complex.

Results of functional researches of isolated preparation of the pulmonary artery in dead newborn because of MAS syndrome in our research has showed that acetylcholine has not caused any significant vasoconstrictor effect (p > 0.1), whilst histamine has caused constriction of the pulmonary artery in a significant manner (p < 0.01). Acetylcholine and histamine has caused significant constrictor reaction of the smooth muscle of the tracheal segments in the group of dead newborn due to MAS and the group of newborn that have died due to distress respiratory syndrome (DRS) in human material.

Relying in the results of our research and of other authors, we can conclude that the effect of the amniotic fluid in the vascular and airways smooth musculature in newborn is an important effect and it has impact on reaction of these tissues.

Difference in the contractile response of the smooth musculature of the pulmonary artery and the tracheal segments in controlling groups is considered that it may be as a result of differences of the action of mineral substances in the composition of amniotic fluid and eventual differences in the neuronal structure of the respiratory vascular vessels and airways.

Conclusion

Based on gained results, it can be ascertained as follows:

1. *In vitro*, acetylcholine does not cause significant reaction of the pulmonary artery in cases of aspiration of the amnion fluid (p > 0.1).
2. Histamine in *vitro* in cases of death from the aspiration of the amnion fluid cause significant contraction of the pulmonary artery (p < 0.01).
3. Tracheas in newborn, as a controlling group, which has died from the MAS and DRS syndromes, acetylcholine remains currently unclear.

Exposure of epithelial cells of the airways in the meconium induces the release of thromboxane (A-2) [13], by suggesting that MAS syndrome in the pulmonary hypertension is related with the activation of agonists with constrictor action of the smooth vascular musculature.

High content of the magnesium in meconium plays an important role and hinders the entry of calcium in cells by causing relaxant effect of the smooth musculature in dogs [26]. Superoxide also increases the relaxation of musculature by entering into reaction with oxygen and by reducing bioavailability of the nitric oxide. Role of the oxygen in changing of the reaction of the smooth musculature of pulmonary artery is related with the syndrome of aspiration of the meconial fluid; this is also reported by other authors [27-31].

Results of the action of histamine in pulmonary artery in our research are not in compliance with the results of the author Tessler R with bp., which ascertains that human meconium has relaxing effect in the airways smooth musculature and vascular tissue of newborn and grown rats [32].

Even though, some author has ascertained the vasoconstrictor effect of the meconium in human umbilical vein [20, 21].

Results of the action of histamine in the pulmonary artery in human material and results of acetylcholine and histamine action in tracheal segments in controlling groups in our research are in compliance with the abovementioned author.

Whilst, in researches “in vitro” in rats by author Collins [33], with bp. it is ascertained that meconium has no significant impact in increase of the airways smooth musculature tonus.

This conclusion of the abovementioned author also does not comply with results of our research where is ascertained that acetylcholine and histamine manifest significant response in ‘in vitro’ conditions in tracheal segments in the group of dead newborn due to MAS and the group of newborn that have died due to distress respiratory syndrome (DRS) in human material.

Conflict of Interest

None.

References

1. Islami H, Shabani R, Haliti N, Dragusha G, Nuraj B, et al. (2011) Constrictor Action of Substances in the Pulmonary Artery in Newborn with the Amnion Fluid Aspiration Syndrome (MAS). Clin Exp Pharmacol 1:104. doi:10.4172/2161-1459.1000104

Figure 3: Action of acetylcholine and histamine in the pulmonary artery and isolated tracheas in the MAS and RDS syndrome.

Figure 4: Action of acetylcholine and histamine in the pulmonary artery and isolated tracheas in the MAS and RDS syndrome.
and histamine, have caused significant response at in vitro conditions \((p < 0.01)\).

4. In the syndrome of the aspiration of the amniotical fluid exists a high content of the magnesium in meconium, which plays an important role and obstructs the entry of calcium in cells by causing relaxant effect. Superoxide also increases the relaxation of musculature by entering into reaction with oxygen and by reducing bioavailability of the nitric oxide. Role of the oxygen in changing of the reaction of the smooth musculature of pulmonary artery is closely related with the syndrome of aspiration of the meconial fluid.

References

1. Tølløfsrud PA, Medbø S, Solás AB, Robertson B, Speer CP, et al. (2004) Albumin mixed with meconium attenuates pulmonary dysfunction in a newborn piglet model with meconium aspiration. Pediatr Res 52: 545-53.
2. Montgomery LD, Belfort MA, Saade GR, Moise KJ, Vedernikov YP (1995) Meconium inhibits the contraction of umbilical vessels induced by the thromboxane A2 analog U46619. Am J Obstet Gynecol 173: 1075–1078.
3. Altshuler G, Hyde S (1989) Meconium-induced vasoconstriction: a potential cause of cerebral and other fetal hypoperfusion and of poor pregnancy outcome. J Child Neurol 4: 137–142.
4. Holopainen R, Aho H, Laine J, Peuravuori H, Soukka H, et al. (1999) Human meconium has high phospholipase A2 activity and induces cellular injury and apoptosis in piglet lungs. Pediatr Res 46: 626-632.
5. Zagariya AM, Bhat R, Zhabotynsky E, Chari G, Navale S, et al. (2005) Characterization of serine/cysteine protease inhibitor alpha1-antitripsin from meconium-instilled rabbit lungs. J Cell Biochem 96: 137-144.
6. Aaltonen M, Soukka H, Halkola L, Jalonen J, Holopainen IE, et al. (2005) Magnesium as a relaxing factor of airway smooth muscles. J Aerosol Med 14: 587–591.