Integral manifolds of the reduced system in the problem of inertial motion of a rigid body about a fixed point

M.P. Kharlamov

Mekh. Tverd. Tela (Russian Journal “Mechanics of Rigid Body”), 1976, No. 8, pp. 18–23

Let us point out one more property of manifolds \(J_h \). Let \(Q \) be the closed ball in \(\mathbb{R}^3 \) of radius \(\pi \) with the center at the coordinates origin. Declare the diametrically opposite points of the ball boundary equivalent and denote by \(P \) the quotient space of the topological space \(Q \) with respect to this equivalence. For each \(\nu \in P \), we denote by \(\nu_\nu \in SO(3) \) the element for which \(\nu \) is the defining vector (see [1]). Let \(\omega_0 \in T_1^*S^2 \) have the coordinates \(\xi = 1, \eta = \zeta = 0, p_\eta = 1, p_\xi = p_\zeta = 0 \). The map \(\beta : P \to J_h \) defined as \(\beta(\nu) = (\nu_\nu \circ \alpha)^{-1}(\omega_0) \) is a homeomorphism. We use the map \(\beta \) for a geometric interpretation.

*Submitted on January 9, 1974.

†Moscow State University.
Let λ, μ be the elliptic coordinates on E^2
\[x^2 = a \frac{(a - \lambda)(a - \mu)}{(a - b)(a - c)}, \quad y^2 = b \frac{(\lambda - b)(b - \mu)}{(a - b)(b - c)}, \quad z^2 = c \frac{(\lambda - c)(\mu - c)}{(a - c)(b - c)}, \]
where $a = 1/A, b = 1/B, c = 1/C$. The elliptic coordinates change in the regions $a \geq \lambda \geq b \geq \mu \geq c$. Denote $F(t) = (a - t)(b - t)(c - t)/t$. The Hamilton function (1) takes the form
\[H = 2 \frac{\lambda \mu}{\lambda - \mu} |F(\lambda)p_\lambda^2 - F(\mu)p_\mu^2|. \]
Let us introduce on E^2 the Liouville coordinates by the formulas
\[u = \int_b^\lambda \frac{dt}{\sqrt{F(t)}}, \quad v = \int_c^\mu \frac{dt}{\sqrt{F(t)}}. \]
For them, the regions are
\[0 \leq u \leq m = \int_b^a \frac{dt}{\sqrt{F(t)}}, \quad 0 \leq v \leq n = \int_c^b \frac{dt}{\sqrt{F(t)}}. \]
In Fig. 1 we show parametric curves of u and v on the ellipsoid. In the coordinates (u, v),
\[H = 2[V(v) - U(u))]^{-1}(p_u^2 + p_v^2), \]
where $U(u) = 1/\lambda(u), V(v) = 1/\mu(v)$. Note that $dU/du = -\lambda^{-2} \sqrt{F(\lambda)}$, i.e., $dU/du = 0$ at $u = 0$, $u = m$ and $dU/du < 0$ at $0 < u < m$. Similarly, $dV/dv = 0$ at $v = 0$, $v = n$ and $dV/dv < 0$ at $0 < v < n$.

Figure 1: Coordinates on the ellipsoid.

In the domain where u and v are local coordinates the restriction of the initial system to the manifold J_h admits the integrals
\[p_u^2 + hU(u) = h\kappa, \quad p_v^2 - hV(v) = -h\kappa. \]
Denote by $J_{h, \kappa}$ the subset of J_h defined by equations (2). The admissible values of κ are $A \leq \kappa \leq C$. Let us find out the topological type of the integral manifolds $J_{h, \kappa}$ in the following cases: 1) $A \leq \kappa \leq B$; 2) $B \leq \kappa \leq C$; 3) $\kappa = B$.

Let $\mathcal{W} = E^2 \setminus \{u = 0\}$ and $\mathcal{S} = E^2 \setminus \{v = n\}$ be the regions on the ellipsoid surface. In them, we introduce the local coordinates $\mathcal{W} = \{(w, \varphi \bmod 4n\}$, $\mathcal{S} = \{(s, \theta \bmod 4m\}$ similar to cylindrical ones putting

$w = \begin{cases} u & \text{при } x \leq 0; \\ 2m - u & \text{при } x \geq 0. \end{cases}$ \hspace{1cm} $s = \begin{cases} v & \text{при } z \leq 0; \\ -v & \text{при } z \geq 0. \end{cases}$

$\varphi = \begin{cases} v & \text{при } y \geq 0, z \geq 0; \\ 2n - v & \text{при } y \leq 0, z \geq 0; \\ 2n + v & \text{при } y \leq 0, z \leq 0; \\ 4n - v & \text{при } y \geq 0, z \leq 0, \end{cases}$ \hspace{1cm} $\theta = \begin{cases} u & \text{при } x \geq 0, y \geq 0; \\ 2m - u & \text{при } x \leq 0, y \geq 0; \\ 2m + u & \text{при } x \leq 0, y \leq 0; \\ 4m - u & \text{при } x \geq 0, y \leq 0. \end{cases}$
It is easily shown that these coordinates are compatible with the smooth structure of the ellipsoid.

Let us consider the cases 1 – 3.

If $A \leq \kappa < B$, then the motion takes place in the region \mathfrak{M} and the equations admit the first integrals
\[H_w = p_w^2 + hW(w) = h\kappa, \quad H_\varphi = p_\varphi^2 - h\Phi(\varphi) = -h\kappa, \]
where $W(w) = U(u(w))$, $\Phi(\varphi) = V(v(\varphi))$. The qualitative picture of the functions W and Φ is shown in Fig. 2.

In Fig. 3 we show the phase portraits of one-dimensional systems corresponding to the Hamilton functions H_w and H_φ. Each manifold $J_{h,\kappa}$ is the product of level lines of the functions H_w and H_φ defined by (3). Thus, $J_{h,A}$ is two non-intersecting circles (they correspond to the cross section of the ellipsoid by the plane $x = 0$ with two different directions of motion). If $A < \kappa < B$, then $J_{h,\kappa}$ consists of two two-dimensional tori each of which concentrically envelopes one of the circles out of $J_{h,A}$.

In Fig. 4, where the diametrically opposite points of the ball boundary are identified, we show the sets corresponding to the manifolds $J_{h,A}$ and $J_{h,C}$ under the homeomorphism $\beta : P \to J_h$. The union of the circles 1 and 2 is the set $\beta^{-1}(J_{h,C})$. The set $\beta^{-1}(J_{h,A})$ consists of the circles 3 and 4.

Now let us consider the case $\kappa = B$. We denote by K_1, K_2, K_3, and K_4 the umbilical points $(u = 0, v = n)$ on the ellipsoid surface lying respectively in the regions $\{x > 0, z > 0\}$, $\{x < 0, z > 0\}$, $\{x < 0, z < 0\}$, and $\{x > 0, z < 0\}$.
Proposition 2. The cross section of the ellipsoid by the plane $y = 0$ is a closed geodesic of the metric $d\Sigma$. All geodesics starting from an umbilical point at $t = 0$ meet simultaneously at the opposite umbilical point.

Proof. Let us use the coordinates (w, φ). Introducing the “reduced time” τ by the formula $d\tau = [\Phi(\varphi) - W(w)]^{-1}dt$ and using equations (3) with $\kappa = B$, we get the equations of geodesics in the form

$$\frac{dw}{d\tau} = \pm \sqrt{h(B - W(w))}, \quad \frac{d\varphi}{d\tau} = \pm \sqrt{h(\Phi(\varphi) - B)}.$$

(4)

Denote

$$F(w, w_0) = \int_{w_0}^{w} \frac{dw}{\sqrt{h(B - W(w))}}, \quad G(\varphi, \varphi_0) = \int_{\varphi_0}^{\varphi} \frac{d\varphi}{\sqrt{h(\Phi(\varphi) - B)}}.$$

Let $w = f(\tau, w_0)$ and $\varphi = g(\tau, w_0)$ be the inverse for the dependencies $\tau = F(w, w_0)$ and $\tau = G(\varphi, \varphi_0)$ respectively. Equations (4) admit the solutions

$$(w \equiv 0, \varphi = g(\pm \tau, \varphi_0)), \quad (w \equiv 2m, \varphi = g(\pm \tau, \varphi_0)),$$

$$(w = f(\pm \tau, w_0), \varphi \equiv n), \quad (w = f(\pm \tau, w_0), \varphi \equiv 3n).$$

This proves the first statement.

Consider an arbitrary trajectory of equations (4) starting at a point $\{w_0, \varphi_0\}$ not belonging to the cross section $y = 0$. Let, for definition, this point lie in the first octant, i.e., $m < w_0 < 2m$, $0 < \varphi_0 < n$. The initial velocity may have four directions according to the choice of the signs in (4). Suppose, for example, that $dw/d\tau|_{\tau=0} > 0$, $d\varphi/d\tau|_{\tau=0} > 0$. Then (see Fig. 3) as $\tau \to +\infty$, the coordinates w and φ monotonously increase and $w \to 2m$, $\varphi \to n(\mod 4n)$. As $\tau \to -\infty$ we have monotonous decreasing $w \to 0$ and $\varphi \to -n(\mod 4n)$.

4
Therefore the chosen trajectory of \(\Phi \) asymptotically approaches \(K_1 \) as \(\tau \to +\infty \) and \(K_3 \) as \(\tau \to -\infty \). Another possible cases of the inial directions are considered analogously.

So, since the geodesics starting at an umbilical point can correspond only to the value \(\kappa = B \), each such geodesic meets the cross section \(y = 0 \) for the first time at the opposite umbilical point.

Let \(\gamma_1(t) \) and \(\gamma_2(t) \) be two geodesics such that \(\gamma_1(0) = \gamma_2(0) = K_3 \). Suppose that some time value \(t = t_0 > 0 \) corresponds to the value \(\tau = 0 \) of the “reduced time”. Let \(\gamma_1(t_0) = (w_1, \varphi_1) \), \(\gamma_2(t_0) = (w_2, \varphi_2) \). Then the dependency of \(\gamma_1 \) on the “reduced time” is \(w = f(\tau, w_1) \), \(\varphi = g(\tau, \varphi_1) \), and the equations of \(\gamma_2 \) are \(w = f(\tau, w_2) \), \(\varphi = g(\tau, \varphi_2) \). Denote by \(t_1 \) and \(t_2 \) the minimal positive values of \(t \) for which \(\gamma_1(t_1) = \gamma_2(t_2) = K_1 \). Then

\[
\begin{align*}
 t_1 &= \int_{-\infty}^{+\infty} \left[\Phi(g(\tau, \varphi_1)) - W(f(\tau, \varphi_1)) \right] d\tau, \\
 t_2 &= \int_{-\infty}^{+\infty} \left[\Phi(g(\tau, \varphi_2)) - W(f(\tau, \varphi_2)) \right] d\tau.
\end{align*}
\]

The integrals in (5) and (6) converge since the metric \(d\Sigma \) does not have singularities.

Let us show that \(t_1 = t_2 \). For this purpose we use the obvious relations

\[
f(\tau, w_1) = f(\tau - F(w_1, w_2), w_2), \quad g(\tau, w_1) = g(\tau - G(w_1, w_2), w_2)
\]

and the following almost obvious statement. Suppose that for a function \(\psi(\tau) (-\infty < \tau < +\infty) \) there exists such a point \(\tau_0 \) that \(\chi(\tau) = \psi(\tau + \tau_0) \) is an even function. If the integral

\[
\int_{-\infty}^{+\infty} [\psi(\tau) - \psi(\tau + k)] d\tau,
\]

with some constant \(k \) converges, then it equals zero. Using (7), we transform (6) as follows

\[
t_1 = \int_{-\infty}^{+\infty} \left[\Phi(f(\tau, \varphi_2)) - W(f(\tau + G(\varphi_2, \varphi_1)) - F(w_2, w_1)) \right] d\tau.
\]

Then we subtract the equality (6):

\[
t_1 - t_2 = \int_{-\infty}^{+\infty} [W(f(\tau, w_2)) - W(f(\tau + k, w_2))] d\tau.
\]

Here

\[k = G(\varphi_2, \varphi_1) - F(w_2, w_1) \]

does not depend on \(\tau \).

It is easy to check that \(W(f(\tau, w_2)) \) as a function of \(\tau \) satisfies the condition of the just formulated statement. For this, it is sufficient to choose \(\tau_0 \) in such a way that \(f(\tau_0, w_2) = m \). Consequently, \(t_1 = t_2 \). The proposition is proved.

Let us now describe the type of the set \(J_{h,b} \). The curves \(O_i = J_h \cap T_h^* E^2 \) \((i = 1, 2, 3, 4)\) are topological circles. According to Proposition 2, all trajectories starting at \(O_1 \) simultaneously cross \(O_3 \) and simultaneously return to \(O_1 \). Therefore this family of trajectories fills a closed flow tube, i.e., they fill a two-dimensional torus \(T_1 \) in \(J_h \). In the same way the family of geodesics crossing \(K_2 \) and \(K_4 \) fills a two-dimensional torus \(T_2 \) in \(J_h \). The tori \(T_1 \) and \(T_2 \) intersect by two circles corresponding to the cross section of the ellipsoid by the plane \(y = 0 \) with two different directions of motion.

In Fig. 3 we show how the set \(\beta^{-1}(J_{h,b}) \) is embedded in \(P \) (the diametrically opposite points of the ball boundary are identified). The regions \(I - IV \) are filled with the one-parameter families of the integral tori enveloping concentrically the circles \(I - 4 \) respectively (see Fig. 4).

References

[1] Kharlamov M.P. Reduction in mechanical systems with symmetry // Mekh. Tverd. Tela. – 1976. – N 8. – P. 4–18. \texttt{arXiv:1401.4393}