Research on the Influencing Factors of College Students’ Use of Online Learning Platform from the Perspective of Customer Perception

Yao Wei¹, Jinjing Li¹ and Yong He²*
¹ School of Business, Sichuan Agricultural University, Chengdu, Sichuan, China
² Sports Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
*Corresponding author’s e-mail: 1045904533@qq.com

Abstract: [Aim] With the increasing number of users of the internet learning platform, in order to explore the influence factors (perceived usefulness, perceived ease of use, and the learning environment) of the internet learning platform from the perspective of customer perception, the impact of college students using the internet learning platform is the learning platform provides corresponding guidance. [Method] Based on the data of college students’ questionnaires, this research integrated technology acceptance model (TAM) model with customer perception theory to construct the structural equation model to evaluate the impact of perceived ease of use, and learning environment on college students’ use of online learning platform. [Conclusion] The study found that factors of the internet learning platform including perceived usefulness, perceived ease of use, and the learning environment of college students would have a significant impact on its use.

1. Introduction
With the advent of the “Internet +” era, and the learning patterns and methods of colleges and universities have undergone unprecedented changes. The online learning platform has become an important channel for learners to acquire knowledge, and factors of the learning platform affecting user behavior have diversified, for example, Sean B. Eom (2010) studied the factors of the various aspects of the learning platform affecting the users[1]. Moore MG (2011) designed online teaching from different perspectives, including the latest technology, learner characteristics, organizational structure, and current policies [2]. Allen IE (2010) studied online education from the perspective of class differences and maintained that differentiated education should be used [3]. However, the research found that there were still some problems: (1) the over-simplification of influencing factors, (2) the over-broadened research objects. Therefore, this research selected the main users of the online learning platform (college students) and applied the customer perception theory to comprehensively study both the individual personal perception and the external influence environment. This research methodology is conducive to the understanding of the real needs of users, providing a basis for improving the internet learning platform.

2. Research design and data collection

2.1 Research Design
Based on the TAM model, this research studied college students who used the internet learning platform. The TAM is an important theory for studying the degree of users’ acceptance and usage of information systems. In his study, Gefen added variables such as willingness to use, and confirmed that perceived usefulness and ease of use have a significant positive impact on the users’ willingness to use, and the willingness to use has a significant positive impact on the usage behavior; Tian Yang et al. studied education-based internet learning environment and discovered the important role and functions that the various elements in the design of the learning environment played to facilitate learning.

This study has reviewed the previous researches and theoretical hypotheses related to TAM model, and identified the individual perception factors containing two aspects (perceived usefulness and perceived ease of use), and external influence factors (the learning environment), so as to study the factors’ influence on the college students’ willingness to use and their usage behavior of online learning platform. A research model was constructed, as shown in Figure 1.

![Research model](image)

Figure 1. Research model

Based on the existing literature and interviews with college students, this research determined a variable system including the four factors (including perceived usefulness, perceived ease of use, usage behavior and willingness to use), and 21 observed variables. The following hypotheses were proposed:

- **H1**: Perceived usefulness has a significant positive impact on the willingness to use
- **H2**: Perceived ease of use has a significant positive impact on the willingness to use
- **H3**: The learning environment has a significant positive impact on usage behavior
- **H4**: Willingness to use has a significant positive impact on usage behavior

2.2 Data collection

The data of this study were mainly collected through questionnaires. Except for questions about respondents’ demography, the questionnaire uses the five-point scale of the Likert. For the pilot research, 50 questionnaires were distributed and recovered, and 26 questionnaire questions were deemed valid with others being deleted. A total of 300 questionnaires were distributed online and offline, and 257 valid questionnaires were returned. The effective rate of the questionnaire was 85.66%. The descriptive statistical analysis data of the questionnaire are shown in Table 1.

Demographic variables	Categorical variables	Frequency (%)	Effective percentage (%)	Cumulative percentage (%)
Gender	Male	83	32.3	32.3
	Female	174	67.7	100
Age	< 18 y/o	12	4.7	4.7
	18-25 y/o	225	87.5	92.2
	26-30 y/o	16	6.2	98.4
	31 y/o or older	4	1.6	100
3. Empirical analysis

3.1 Reliability analysis
This research conducted a reliability analysis and a validity test on the questionnaire data to further explore the rationality of the data. In this study, SPSS21.0 was used to analyze the questionnaire data, and the overall scale Alpha coefficient value was 0.956 > 0.90, which indicates that the internal consistency of the questionnaire was excellent. The reliability values of the dimensions/factors (including the perceptual usefulness 0.885 and perceived ease of use 0.871, the learning environment 0.784) were all greater than 0.6 and lower than the overall reliability value. Therefore, the internal consistency of the measurement data of the research scale is considered to be high.

Table 2. Reliability test
Survey scale
PU
PEOU
AE
UI
UB

3.2 Validity test

3.2.1 KMO and Bartlett Spherical Tests. The data obtained from the survey were tested by KSS and sphere test using SPSS software. The results are shown in Table 3. The KMO value of the sample was 0.955, and the degree of correlation between the items was good, which was suitable for analysis. The significance probability value was 0.000, less than 0.05, so the null hypothesis was rejected, which also indicates that it was suitable for factor analysis.

Table 3. KMO and Bartlett test
KMO and Bartlett test
Sampling a sufficient Kaiser-Meyer-Oklin metric.
Approximate chi-square
Bartlett ‘s sphericity test
Df
Sig.

3.2.2 Factor analysis. The cumulative explanatory power of the common factors extracted in the factor analysis was above 70%, and the load of each item in the questionnaire was greater than 0.6. The scale had a good structural validity. It can be seen from Table 4 that the extraction of 5 common factors had a cumulative explanatory power of 73.773%, which was greater than 60%, indicating that the extraction of these five factors was effective and feasible.
Table 4. The total variance explained

Components	Initial eigenvalue	Extract square sum loading	Rotation square sum loading						
	Total	Variance %	Accumulation %	Total	Variance %	Accumulation %	Total	Variance %	Accumulation %
1	11.347	54.034	54.034	11.347	54.034	54.034	4.930	23.477	23.477
2	1.338	6.371	60.405	1.338	6.371	60.405	3.560	16.953	55.875
3	1.164	5.544	65.949	1.164	5.544	65.949	3.243	15.445	55.875
4	.906	4.316	70.265	.906	4.316	70.265	2.542	12.107	67.982
5	.736	3.506	73.772	.736	3.506	73.772	1.216	5.790	73.772
6	.625	2.975	76.747						
7	.563	2.682	79.429						
8	.516	2.458	81.888						
9	.446	2.126	84.013						
10	.415	1.974	85.988						
11	.358	1.707	87.695						
12	.338	1.609	89.304						
13	.321	1.530	90.833						
14	.298	1.417	92.250						
15	.283	1.346	93.596						
16	.268	1.276	94.872						
17	.255	1.216	96.088						
18	.243	1.155	97.244						
19	.215	1.024	98.268						
20	.184	.876	99.144						
21	.180	.856	100.000						

Note: Extraction method: principal component analysis.

Table 5. Rotation component matrix

Component	1	2	3	4	5
PU1	.721	.419	.319	.101	.175
PU2	.638	.158	.309	.274	.304
PU3	.713	.156	.203	.241	.314
PU4	.704	.166	.299	.332	.228
PU5	.702	.241	.363	.264	.131
PEOU1	.191	.363	.198	.219	.669
PEOU2	.132	.523	.103	.076	.601
PEOU3	.201	.278	.223	.273	.657
PEOU4	.122	.351	.198	.056	.729
AE1	.202	.164	.163	.627	.356
AE2	.273	.175	.087	.841	.047
AE3	.177	.241	.159	.759	.185
AE4	.234	.196	.286	.734	.734
UI1	.357	.769	.163	.214	.124
UI2	.362	.629	.442	.187	.026
UI3	.357	.704	.330	.229	.083
UI4	.189	.721	.313	.306	.111
UB1	.238	.423	.701	.166	.156
UB2	.300	.486	.712	.170	.134
UB3	.004	.453	.784	.180	.131
UB4	.030	.412	.783	.167	.172

3.3 Hypothetical model test

3.2.1 Establishment of structural equation model. In this research, the structural equation model was used to process the data of the variables, and the path coefficients and saliency of each path were calculated, so as to analyze the causal relationship between the variables and to construct the path relationship diagram between the variables. In this study, the software package AMOS was used to perform structural equation modeling operations, and the results as shown in Figure 2 were obtained.
The evaluation of the model is shown in Table 6. It can be seen that the ratio of the chi-square value to the degree of freedom, the absolute fitting index, the relative fitting index, and the information index were basically qualified.

Table 6. Evaluation of the model

Index	Evaluation standard	The value of this model
Chi-Square/df ratio	1-3 Very good, 3-5 Good, 5-8 Acceptable	2.268
Absolute fit index	GFI: [0/7, 0.9) >0.9	0.868
	AGFI: [0/7, 0.9) >0.9	0.833
	RMSEA <0.01, <0.08	0.070
Relative fit index	NFI: [0/7, 0.9) >0.9	0.897
	TLI: [0/7, 0.9) >0.9	0.930
	CFI: [0/7, 0.9) >0.9	0.939
Information index	AIC: The smaller, the better	510.818
	CAIC: The smaller, the better	733.723

Regardless of the influence of the control variables, it can be seen from the significance results in Table 7 that the relationship between the variables was significant (P < 0.05). The proposed hypotheses H1, H2, H3, and H4 were all accepted.

Table 7. Related indicators of structural equations

variable	Influencing factor	Estimate	SE	CR	P	STD
UI	PU	0.536	0.27	1.983	0.037	0.507
UI	PEOU	0.42	0.298	1.409	***	0.36
UB	UI	0.693	0.069	9.968	***	0.766
UB	AE	0.175	0.086	2.035	0.042	0.137
PU5	PU	1				0.805
PU4	PU	0.981	0.073	13.405	***	0.753
PU3	PU	0.93	0.065	14.228	***	0.787
PU2	PU	0.829	0.059	14.149	***	0.784
PU1	PU	0.875	0.062	14.166	***	0.784
PEOU4	PEOU	1				0.8
PEOU3	PEOU	1.002	0.07	14.314	***	0.801
It can be seen from Table 7 that based on the research model of the influencing factors of college students using the internet learning platform, the load value of each factor was greater than 0.5, indicating that the basic fit of the model was good, having a high structural validity.

Figure 3. Research model of influencing factors of college students using online learning platform

From the above analysis, it is known that perceived usefulness, perceived ease of use, learning environment, and attitude of use could directly or indirectly affect the attitude of college students toward the use of the internet learning platform, and thus indirectly affect the user's usage behavior, but the learning environment did not affect the usage behavior significantly.

Since the usage behavior was only directly affected by the attitude of use, and the usage behavior was directly or indirectly affected by each variable, the direct or indirect effect of each variable on the use intention was calculated based on the calculated path coefficient between the variables. The results are shown in Table 8.

variable	Direct effect	Indirect effect	Total effect
PU	Null	0.51*0.77=0.3927	0.393
PEOU	Null	0.36*0.77=0.2772	0.277
AE	0.14	Null	0.140
UI	0.77	Null	0.770

According to the results of this study, the two factors influencing the willingness to use are (from a high degree of influence to low): perceived useful, and perceived easy of use. Through the calculation of the path coefficient, the variables that had an influence on the usage behavior were sorted as follows (with the influence effect from large to small): use attitude, perceived usefulness, perceived ease of use, and learning environment.
4. Conclusions and implications
According to the research results, this research put forward the following suggestions for designing an internet learning platform: (1) Improve the platform quality of the internet learning platform, thereby improving the user’s perceived usefulness and perceived ease of use; (2) Improve the hardware and software facilities of the internet platform, establish a standardized management system for the platform content, and ensure the quality of the platform; (3) Create a good platform image and establish a good reputation.

This research used the original TAM model to explore the factors influencing users of the e-learning platform. It has identified the influencing factors on college students’ use of e-learning platform. According to the influence degree of different factors, the related improvement strategies were discussed. However, this study still has the following shortcomings: (1) It mainly focuses on the research of college students, and the college students can be further divided, so that the influence of different factors can be explored more specifically; (2) Although the influence of internal and external factors was explored in this study, other factors may exist due to the complexity of perception.

References
[1] Eom SB, Wen HJ, Ashill N. The Determinants of Students’ Perceived Learning Outcomes and Satisfaction in University Online Education: An Empirical Investigation* [J]. Decision Sciences Journal of Innovative Education, 2010, 4(2): 215-235.
[2] Moore MG, Kearsley G. Distance education: a systems view of online learning [J]. 2011.
[3] Allen IE, Seaman J. Class Differences: Online Education in the United States, 2010[J]. Sloan Consortium, 2010:30.