Orchids of the State Park of Serra do Tabuleiro, Southern Brazil

Article in Anales del Jardín Botánico de Madrid - November 2015
DOI: 10.3989/ajbm.2345

CITATIONS
3

READS
113

4 authors, including:

Maurício Lenzi
79 PUBLICATIONS 4,168 CITATIONS
SEE PROFILE

Josy Matos
10 PUBLICATIONS 43 CITATIONS
SEE PROFILE

Manuel B. Crespo
University of Alicante
478 PUBLICATIONS 2,732 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Nomenclature View project

Project Insect-plant relationships: insights into biodiversity and new applications View project
Orchids of the State Park of Serra do Tabuleiro, Southern Brazil

Maurício Lenzi1*, Josy Zarur de Matos2, Angelo Martins Fraga3 & Manuel B. Crespo4

1Capes Foundation, Ministry of Education of Brazil, Cx. postal 250, Brasilia, DF, CEP: 70040-020, Brazil; mlenzi34@hotmail.com
2Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua: Dr. Salvador França, 1427, Porto Alegre, RS, Cep: 90.690-000, Brazil; josyzarur@gmail.com
3Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina, Campus Florianópolis, Av. Mauro Ramos, 950, Centro – Florianópolis, SC, CEP: 88020-300, Brazil; angelofraga@yahoo.com.br
4dCARN & CIBIO (Instituto de la Biodiversidad), Universidad de Alicante, P.O. Box 99, E-03009 Alicante, Spain; crespo@ua.es

Abstract

Lenzi, M., de Matos, J.Z., Fraga, A.M. & Crespo, M.B. 2015. Orchids of the State Park of Serra do Tabuleiro, Southern Brazil. Anales Jard. Bot. Madrid 72(2): e020.

Orchidaceae show a high diversity of species in Brazil, especially in the Atlantic Forest Biome. Over the course of a 12-month study in the State Park of Serra do Tabuleiro in Southern Brazil, collections were made of orchids occurring in areas of restinga and riparian vegetation. A total of 92 orchid species were registered, belonging to three subfamilies and 51 genera. Octomeria was the best represented genus with ten species. Among all collections, two species are new records for Santa Catarina state, and 20 species is reported for the first time in the studied region. Regarding to conservation, 17 species (19%) are currently included with different threat labellings in any of the red lists of threatened plant species of Brazil. Among the total of orchids registered, 55 species (59%) are characteristic holophiphites, 47 species (51%) are restricted to the Atlantic Forest, 77 species (84%) occur in the riparian vegetation, and only nine species (10%) are restricted to restinga vegetation. The remarkable richness of orchids found in the present study highlights the importance for conservation the studied forest remnants. The historical of environmental degradation of the restinga vegetation can be negatively influencing the current floristic composition of the orchid community.

Keywords: Orchidaceae, Atlantic Forest, biogeographic boundaries, forest conservation, fragmentation, restinga, riparian forest.

INTRODUCTION

Orchidaceae are usually considered to be one of the widest families of Angiosperms, with around 20000 species (Dressler, 1993). According to Barros & al. (2015), the family is well represented in Brazil with 238 genera and about 2553 species, 1636 of which are endemic to the country.

In the state of Santa Catarina, Southern Brazil, the family is still poorly known. In the most recent checklist of Orchidaceae published for that state, Klein & al. (1978) listed 295 species for the whole Florianópolis Island plus nine neighbouring municipalities.

The State Park of Serra do Tabuleiro covers an area of 87405 ha, which represents approximately 1% of the state of Santa Catarina, and is very close to Florianópolis Island. It reaches nine municipalities and several coastal islands. All these different areas comprise a great diversity of natural environments, ranging from coastal environments to inland habitats that represent five of the six phytoecographic regions found in the state. The park is still considered the southern boundary for many species with tropical distribution, thus constituting an important phytoecographic barrier (Klein, 1978; 1980; 1981). It comprises areas of Atlantic Forest (Mata Atlântica) formed by riparian and restinga vegetation.

The Atlantic Forest is considered as one of the richest biomes of the planet in biodiversity, and also one of the most severely threatened ecosystems; less than 10% of its original area remains well conserved (Galindo-Leal & Câmara, 2005). The state of Santa Catarina is totally included into this biome and at present possesses only 23.5% of its forest remnants in good estate of conservation (Fundação SOS Mata Atlântica, 2013). Studies with vascular species undertaken on plant communities growing close to water courses (riparian vegetation), although still scarce, show that they constitute very diverse ecosystems due to their high environmental heterogeneity (Kageyama & Gandara, 2000). According to Battilani & al. (2005), riparian vegetation is crucial to maintain the local ecosystem integrity and it plays an important role for conservation of high diversity sites.

* Corresponding author.
Littoral plant communities, that constitute the *restinga* vegetation, occur on the coastal flats and possess a wide diversity of habitats (Klein, 1980; Scherer & al., 2005). Recent studies (Fraga & Peixoto, 2004; Rocha & Waechter, 2010) highlighted the species richness of orchids in this ecosystem. However, Falkenberg (1999) and Scherer & al. (2005) noted that the impact of human activities has caused strong degradation and fragmentation of the coastal environments, hampering the current understanding of patterns of both abundance and distribution of the local flora.

These factors together increase the threat on the orchid flora of the State Park of Serra do Tabuleiro and also in the state of Santa Catarina as a whole, and point out the importance to take urgent steps for the study and maintenance of biodiversity in these areas. An inventory of the orchids of the State Park of Serra do Tabuleiro may help to determine species subjected to some threat and to prepare future red lists of species of threatened flora for Santa Catarina and other regions of Brazil.

The objectives of the present study were: 1) to record the diversity of Orchidaceae in remnants of *restinga* and riparian vegetation in the Atlantic Forest, and 2) to update and depict the current geographic distribution of these species, threat category in red lists and their life forms, as the basic step for future studies on conservation of local biodiversity.

MATERIAL AND METHODS

Study region

The State Park of Serra do Tabuleiro (Fig. 1) is located in the central part of the coast of Santa Catarina state (Lat. 27°41′S to 28°12′42″S, Long. 48°49′20″W to 48°25′08″W), to SW of Florianópolis Island. The main orientation is on N-S direction and lesser in E-W direction, following the mountain ranges of Cambirela, Tabuleiro and Capivari. The altitude gradient ranges from the sea level in the coastal areas, up to over 1200 m in Serra do Tabuleiro (Klein, 1978; 1981).

The climate is characterized by mild and rainy summers, and humid and warm winters. The average annual rainfall is 1600 mm and the annual average temperature is 20.3°C (INMET, 2011).

The present study covered a total area of 34400 m² distributed along eight transects in eight sites (Appendix 1): two of them in *restinga* vegetation (20000 m²), and six of them in riparian vegetation (14400 m²). These transects were characterized according to their location, morphology and vegetation type, as indicated below:

i) Site 1, and Site 2, (Fig. 1 & Appendix 1), both transects were located so as to avoid sites disturbed by fires that occurred in the region between 2001 and 2008, as surveyed by Pereira & al. (2009). Sampling was settled with 100 m side squares, distancing a maximum of 100 m of the beach line and totalling 20000 m² of area. The areas are covered by *restinga* vegetation, with herbaceous and woody layers. This vegetation occurs exclusively in coastal flats, which are geomorphological units constituted by marine sediments, along the Brazilian coast at altitudes varying from sea level up to 30 m towards inland the continent (Klein, 1980). According to Falkenberg (1999), the herbaceous and subshrub layers of *restinga* vegetation are constituted mainly by small plants that endure higher luminosity and stronger sea influence, therefore comprising plant communities closer to the sea. The shrubby layer includes taller species (between 1 to 5 m in height).

ii) The other six transects (Fig. 1 & Appendix 1) were located along both sides of several rivers and around small river islands. Site 3, and Site 8, each with an extension of 800 m and a total area of 3200 m². Site 4, Site 5, Site 6, and Site 7, each with an extension of 500 m and a total area of 4000 m². Morphologically, all these areas are formed by deep river valleys with an intense dissection, with very steep slopes and with a drainage network of waterfalls. The Atlantic Forest is represented on the slopes of the Serra do Tabuleiro, between 30 and 400 m altitude; forming part of a set of mountain plant communities with physiognomic variations, which is known as *Floresta Ombróflia Densa* and which constituting the largest part of forest diversity in the region (Klein, 1980). The riparian vegetation is a characteristic type of plant community found along the river courses, which vary according to ecological and biogeographic features of territories, their altitudes, and the dominant plant community of each site (Rodrigues & Gandolfi, 2001).

Plant survey

Field work was carried out between March and October 2010. Orchid specimens were collected from soil, rocks and phorophytes (up to 5 m in height) in *restinga* (herbaceous, subshrubby and shrubby layers), and in riparian vegetation. All samples were deposited in the herbaria ABH and FLOR (acronyms according to Thiers, 2015).

Species identification was achieved by using specialized literature, namely Pabst & Dungs (1975; 1977), Miller & Warren (1996), Stancik (2004) and Miller & al. (2006). Herbarium materials from FLOR, FURB, HBR, ICN and MBM (acronyms according Thiers, 2015), were also used for comparison. Authors of plant names as well as the nomenclatural update of names follow IPNI (2015). The systematic position of the genera of Orchidaceae is according to Chase & al. (2003). However, Dendrobiinae and Bulbophyllinae are circumscribed following Dressler (1993).

Geographic distributions of species were updated through the list of Klein & al. (1978) and Barros & al. (2015).

Species classification into the different categories follows the existing information from the official lists of threatened plant species for the states (Santa Catarina: Klein, 1990; Paraná: SEMA, 1995; Rio Grande do Sul: SEMA, 2014; São Paulo: SEMA, 2004; Espírito Santo: IPEMA, 2007) and the whole country (Martinelli & Moraes, 2014). When categories of two or more lists were in conflict, the most recent (since updated) labelling was selected. Only those taxa identified to species rank were used to outline geographic distribution and threat categories.

The Ecological Category (EC) of each species was determined by direct visual observations in the field as being: (a) characteristic holoepiphyte (HLC), which occurs on phorophytes; (b) facultative holoepiphyte (HFL), based on the
type of relationship with the type of substrate (phorophytes or rocks); (c) hemiepiphyte (HEM) (Benzing 1990); and (d) terrestrial (TER) (Dressler, 1981).

All collections in the State Park of Serra do Tabuleiro were authorized by the Fundação do Meio Ambiente de Santa Catarina - FATMA (Aut. N° 002/2010/GERUC/DPEC).
Thematic cartography was made with QGIS (for geographic information system and treatment of orbital images). The location of transects on the field was determined using a GPS.

RESULTS

Species richness

A total of 92 taxa of Orchidaceae were identified, which belong to 51 genera distributed in three subfamilies, 11 tribes and 13 subtribes (Table 1). Subfamily Epidendroideae was the most representative with 41 genera (80%), followed by Orchidioideae with seven genera (16%), Vanilloideae with two genera (4%) (Table 1). Of the 92 recorded taxa, three were not identified at the species rank: *Campylocentrum* sp., *Pelexia* sp. and *Vanilla* sp. (probably an exemplar of *V. dieteschiiana* Edwall), as well as an adult plant of small size (±110 cm) that showed flower remnants insufficient for identification.

Octomeria was the best represented genus with 10 species, followed by *Epidendrum* with six species; *Bifrenaria* and *Stelis* each with five species; *Anathallis* and *Maxillaria* each with four species; *Gomesa*, *Pabstiella* and *Polystachya* each with three species; *Acianthera*, *Brasiliorchis*, *Campylocentrum*, *Christensonella*, *Dichaea*, *Dryadella*, *Phymatidium* and *Vanilla* each with two species. The remaining 33 genera were represented by one species (Table 2).

Geographic distribution and conservation of endangered species

With regard to the geographic distribution in the states of Brazil, all the specimens recorded to species rank (n=89) occur in two or more states of the country (Table 2).

Some species (n=6; 7%) can be found in at least four phyto-geographic domains, as is the case of *E. secundum*, *L. nervosa*, *O. grandiflora*, *O. maculata*, *P. concreta* and *S. lanceolata*. However, the Atlantic Forest (MA) has the largest number of exclusive species (n=47; 53%). Out of 89 taxa identified to species rank, 33 species (37%) are distributed through the state of Santa Catarina, but they do not reach the southern state of Rio Grande do Sul (Table 2).

Based on available checklists (Klein & al., 1978; Barros & al., 2015) and data from herbaria, of a total of 89 taxa identified to species rank, two species are recorded for the first time in the state of Santa Catarina, and 20 species are new for the municipalities of Palhoça and Santo Amaro da Imperatriz (Table 2), which are partially included within the limits of the State Park of Serra do Tabuleiro (Fig. 1).

According to all official lists of the Brazilian states, 17 species (19%) are labelled in some degree of threat: six species (7%) as endangered (ED), seven species (8%) as vulnerable (VU), two species (2%) as critically endangered (CE) and two species (2%) as presumably extinct (Table 2).

Habitat selectivity and ecological category

As for the distribution of species (n=92) in the different vegetation types, the largest number of species (n=77; 84%) occurred exclusively in riparian vegetation (RP), while only nine species (10%) exclusively in the restinga vegetation (RE) (Table 2 & Fig. 2). However, some species (n=6; 7%), namely...

Subfamilies	Tribe	Subtribe	Genus
Epidendroideae	Cymbidieae	Catasetinae	Cyrtopodium
		Eulophiinae	Oeceoclades
		Maxillariinae	Bifrenaria
			Christensonella
			Heterotaxis
			Maxillaria
			Ornithidium
			Rhetinantha
		Oncidiinae	Gomesa
			Ornithocephalus
			Phymatidium
			Rodriguesia
Dendrobieae	Dendrobiinae	Bulbophyllum	
Epidendreae	Laeliinae	Brassavola	
		Cattleya	
		Encyclia	
		Epidendrum	
Ponerinae	Isochilus		
		Anathallis	
		Barbosella	
		Dryadella	
		Lepanthopsis	
		Myxanthus	
		Octomeria	
		Pabstiella	
		Phloeophila	
		Platystele	
		Pleurothallis	
		Specklinia	
		Stelis	
		Trichosalpinx	
		Eleanthus	
Sobralieae	Zygopetalinae	Dichaea	
		Paradisanthus	
Malaxideae	Liparis		
		Malaxis	
Triphoreae	Psilocilus		
Vandeae	Angraecinae	Campylocentrum	
	Polystachyinae	Polystachya	
Orchidoideae	Orchideae	Habenaria	
		Eurystylis	
		Lankesterella	
		Mesadenella	
		Pelexia	
		Sacoila	
		Serapias	
		Cleistes	
		Vanilla	

Table 1. Systematic position of the genera of Orchidaceae recorded in the State Park of Serra do Tabuleiro, Santa Catarina, Brazil, according to Chase & al. (2003). Dendrobinae and Bulbophyllinae accord with circumscription by Dressler (1993)
Table 2. List of taxa recorded in the State Park of Serra do Tabuleiro, Santa Catarina, Brazil. Species are cited for the first time: 1=state of the Santa Catarina; 2=region studied, data based on lists of the Klein & al. (1978) and Barros & al. (2015). Vegetation type (VG): RE=restinga vegetation; RP=riparian vegetation. Categories of threatened (CT): ED=endangered, CE=critically endangered, and VU=vulnerable, EX=presumably extinct. Ecological category (EC): HLC=characteristic holoepiphyte, HLF=facultative holoepiphyte, HEM=hemiepiphyte (Benzing 1990) and TER=terrestrial (Dressler 1981). Geographic distribution by states of Brazil: RR=Roraima, AP=Amapá, PA=Pará, AM=Amazônia, TO=Tocantins, RO=Rondônia, PI=Piauí, CE=Ceará, RN=Rio Grande do Norte, PB=Paraíba, PE=Pernambuco, AL=Alagoas, SE=Sergipe, BA=Bahia, DF=Distrito Federal, GO=Goiás, MS=Mato Grosso, MG=Minas Gerais, SP=São Paulo, PR=Paraná, SC=Santa Catarina, and RS=Rio Grande do Sul. Phytogeographic domain (PD): AM=Amazônia, CA=Caatinga, CE=Cerrado, MA=Atlantic Forest.

Genus and species	Geographic distribution	PD	CT	VG	EC	Voucher
Acianthera ramosa	GO,DF,MG,SP,SC²	CE,MA	RE/RE	HLC	ABH 57597 – FLOR 39574	
F.Barros						
Acianthera saundersiana	BA,MG,RJ,SPPR,SC,RS	CA,CE,MA	RP	HLC	ABH 57598 – FLOR 8661	
Pridgeon & M.W.Chase						
Anathallis paraanaensis	BA,RJ,PR,SC,RS	CA,MA		HLC	ABH 57601	
Pridgeon & M.W.Chase						
Anathallis rubens	PE,BA,MG,RJ,SPPR,SC,RS	CA,CE,MA	RP	HLC	ABH 57599	
Barros & al. (2015)						
Anathallis sororcula	RO,CE,PE,BA,RJ,SPPR,SC	CA,CE,MA	RP	HLC	ABH 57600 – FLOR 38479	
Pridgeon & M.W.Chase						
Acianthera ramosa	GO,DF,MG,SP,SC²	CE,MA	RE/RE	HLC	ABH 57597 – FLOR 39574	
F.Barros						
Acianthera saundersiana	BA,MG,RJ,SPPR,SC,RS	CA,CE,MA	RP	HLC	ABH 57598 – FLOR 8661	
Pridgeon & M.W.Chase						
Anathallis paraanaensis	BA,RJ,PR,SC,RS	CA,MA		HLC	ABH 57601	
Pridgeon & M.W.Chase						
Anathallis rubens	PE,BA,MG,RJ,SPPR,SC,RS	CA,CE,MA	RP	HLC	ABH 57599	
Barros & al. (2015)						
Anathallis sororcula	RO,CE,PE,BA,RJ,SPPR,SC	CA,CE,MA	RP	HLC	ABH 57600 – FLOR 38479	
Pridgeon & M.W.Chase						
Bifrenaria aureofulva	ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57609 – FLOR 9575	
Linder & Otto ex Rchb.f.						
Bifrenaria inodora	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57609 – FLOR 9575	
Lindl.						
Bifrenaria tetragona	ES,RJ,SPPR,SC,RS	MA	ED	HLF	FLOR 41618	
(Lindl.) Schlt.						
Brasiliorchis marginata	BA,MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57609 – FLOR 9575	
Linder & Otto ex Rchb.f.						
Brassavola tuberculata	ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57609 – FLOR 9575	
Hook.						
Bulbophyllum glutinosum	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57609 – FLOR 9575	
(Barb.Rodr.) Cogn.						
Campylocentrum aromaticum	MG,RJ,SPPR,SC,RS	CE,MA	RP	HLC	ABH 57610	
Barb.Rodr.						
Campylocentrum sp.	Di	Di	Di	Ed	HLC	FLOR 9559
Cattleya intermedia	RJ,SPPR,SC,RS	MA	VU	RP	HLC	ABH 57611 – FLOR 9559
Graham ex Hook.						
Christensonella paranaensis	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57613 – FLOR 9560	
(Barb.Rodr.) S.Koeher						
Christensonella subulata	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57613 – FLOR 9560	
Słach., Mytnik, Górnik & Smiszek						
Cleistes liboni	BA,MG,RJ,SPPR,SC,RS	MA	VU	RP	TER	ABH 57615 – FLOR 41636
(Rchb.f.) Schlt.						
Cyrtopodium flavum	PB,PE,BA,AL,SE,MG,ES,RJ,SPPR,SC,RS	CE,MA	RE	TER	ABH 57616 – FLOR 38483	
Link & Otto ex Rchb.f.						
Dickea cogniauxiana	BA,MG,RJ,ES,RJ,SPPR,SC,RS	CE,MA	ED	RP	HLC	ABH 57617
Schltr.						
Dickea pendula	RO,AM,PA,BA,CE,PE,PA,ME,ES,RJ,SPPR,SC,RS	AM,MA	RP	HLC	ABH 57618 – FLOR 38476	
(Aubl.) Cogn.						
Dryadella edwallii	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57620 – FLOR 9561	
(Cogn.) Luer						
Dryadella zebrina	ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57619 – FLOR 8467	
(Porsch) Luer						
Elleanthus brasiliensis	MG,ES,RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57621 – FLOR 8647	
(Lindl.) Rchb.f.						
Encyclia patens	PB,PE,BA,AL,SE,MG,ES,RJ,SPPR,SC,RS	CE,MA	RE	TER	ABH 57622 – FLOR 41415	
Hook.						
Epidendrum fulgens	RJ,SPPR,SC,RS	MA	RE	HLF	ABH 57623 – FLOR 4138	
Brongn.						
Epidendrum geniculatum	ES,RJ,SPPR,SC	MA	RE	HLF	FLOR 22777	
Barb. Rodr.						
Epidendrum latilabre	ES,RJ,SPPR,SC,RS	MA	RE	HLF	FLOR 22777	
Lindl.						
Epidendrum paranaense	BA,MG,ES,RJ,SPPR,SC,RS	CA,CE,MA	ED	RP	HLC	ABH 57615 – FLOR 41636
Barb. Rodr.						
Epidendrum proligerus	AL,PE,BA,MG,ES,RJ,SPPR,SC,RS	MA	VU	RP	HLC	ABH 57627
Table 2. (Continued)

Genus and species	Geographic distribution	PD	CT	VG	EC	Voucher
Epidendrum secundum Jacq.	RO, AP, PA, AL, AM, TO, CE, PB, SE, PE, BA, MT, GO, DF, MG, ES, RS, SP, PR, SC, RS	AM, CA, CE, MA	ED	RE/ RP	HLF	ABH 57624 – FLOR
Eurystylis coryledon Wawra	PE, MG, ES, SP, RJ, PR, RC, RS	MA	RP	HLC	ABH 57628	
Gomesa ciliata (Lindl.) M.W.Chase & N.H.Williams	CE, BA, MG, ES, RJ, SP, PR, SC, RS	MA	RP	HLC	ABH 57629 – FLOR 39562	
Gomesa hookeri (Rolfe) M.W.Chase & N.H.Williams	PE, BA, MG, RJ, SP, PR, RS, SC	MA	RP	HLC	ABH 57631 – FLOR 39563	
Gomesa praetexta (Rchb.f.) M.W.Chase & N.H.Williams	BA, ES, RJ, SP, PR, SC	MA	VU	RP	HLC	ABH 57630
Habenaria pleiophylla Hoehne & Schltr.	MG, RJ, SP, PR, SC	MA	RE	TER	ABH 57632 – FLOR 9564	
Heterotaxis brasiliensis (Brieger & Ilg) F.Barros	RN, PE, BA, MG, ES, RJ, SP, PR, SC, RS	MA	RE	TER	FLOR 8636 – ABH 57633	
Isochilus linearis (Jacq.) R.Br.	RO, AL, CE, PE, BA, DF, MG, ES, SP, RJ, PR, SC, RS	CE, MA	RP	HLF	FLOR 0215	
Lankesterella ceracifolia (Barb.Rodr.) Mansf.	BA, ES, RJ, SP, PR, SC, RS	CA, MA	VU	RP	HLC	ABH 57634
Lepanthopsis floripuncta (Rchb.f.) Ames	PE, ES, RJ, SP, PR, SC	MA	EX	RP	HLC	ABH 57635
Liparis nervosa (Thunb.) Lindl.	AM, RO, RO, RP, PE, BA, AL, SE, MT, GO, DF, MG, ES, RJ, SP, PR, SC	AM, CA, CE, MA	RE/ RP	TER	ABH 57636 – FLOR 8642	
Malaxis excavata (Lindl.) Kuntze	PE, BA, DF, MG, ES, RJ, SP, PR, SC, RS	CE, MA	VU	RP	TER	ABH 57637 – FLOR 8494
Maxillaria bradei Schltr. ex Hoehne	MG, RI, SP, PR, SC	MA	RP	HLF	ABH 57638 – FLOR 9565	
Maxillaria leucaimata Barb.Rodr.	PA, AM, CE, PE, BA, MG, ES, RJ, SP, PR, SC	AM, MA	RP	HLC	ABH 57639	
Maxillaria lindleyana Schltr.	MG, ES, RJ, SP, PR, SC	MA	RP	HLF	FLOR 9566	
Maxillaria ochroleuca Lodd. ex Lindl.	RR, PE, AL, BA, MG, ES, RJ, SP, PR, SC	AM, CE, MA	RP	HLF	ABH 57640 – FLOR 9576	
Mesadenella cuspidata (Lindl.) Garay	MT, CE, PE, GO, DF, MG, ES, RJ, SP, PR, SC, RS	CE, MA	RE/ RP	TER	ABH 57642 – FLOR 9577	
Myoxanthus exasperatus (Lindl.) Luer	PE, BA, MG, ES, RJ, SP, PR, SC	CE, MA	RP	HLF	ABH 67643 – FLOR 43893	
Octomeria alexandri Schltr.	PE, BA, ES, RJ, SP, SC, RS	CE, MA	EX	RP	HLF	ABH 57644 – FLOR 9678
Octomeria chloidophylla (Rchb.f.) Garay	RJ, SC	MA	RP	HLF	ABH 57649	
Octomeria crassifolia Lindl.	BA, MT, MG, ES, RJ, SP, PR, SC, RS	MA	RP	HLC	ABH 67652 – FLOR 9568	
Octomeria diaphana Lindl.	MG, ES, RJ, SP, PR, SC, RS	MA	RP	HLC	ABH 57653	
Octomeria gracilis Lodd. ex Lindl.	MG, ES, RJ, SP, PR, SC, RS	MA	RP	HLC	ABH 57648 – FLOR 9567	
Octomeria grandiflora Lindl.	RR, AP, PA, AM, AC, MA, PB, BA, MG, ES, RJ, SP, PR, SC	AM, CA, CE, MA	RP	HLC	ABH 57646 – FLOR 8628	
Octomeria juncifolia Barb.Rodr.	MG, ES, RJ, SP, PR, SC, RS	MA	RP	HLC	ABH 57651 – FLOR 8632	
Octomeria oxychela Barb.Rodr.	MS, MG, ES, RJ, SP, PR, SC, RS	CE, MA	RP	HLC	ABH 57650	
Octomeria riograndensis Schltr.	PR, SC, RS	MA	RP	HLC	ABH 57645	
Octomeria umbonulata Schltr.	SP, PR, SC, RS	MA	RP	HLC	ABH 57647	
Oeceoclades maculata (Lindl.) Lindl.	RR, PA, AM, TO, AC, RO, MA, PL, CE, RN, PB, PE, AL, SE, MT, GO, DF, MG, ES, RJ, SP, PR, SC	AM, CA, CE, MA	RE/ RP	TER	ABH 57654 – FLOR 8666	
Ornithidium pendens (Pabst) Senghäs	AM, RO, MG, ES, RJ, SP, PR, SC, RS	AM, MA	RP	HLC	ABH 57655	
Ornithocephalus myrticola Lindl.	BA, MG, ES, RJ, SP, PR, SC, RS	AM, MA	CE	RP	HLC	ABH 57656 – FLOR 41649
Pabstiella campestris (Barb.Rodr.) Luer	MG, RJ, SP, PR, SC, RS	MA	RP	HLC	FLOR 8613	
Pabstiella fusca (Lindl.) Chiron & Xim.Bols.	BA, MG, ES, RJ, SP, PR, SC, RS	CE, MA	RP	HLC	ABH 57657	
Pabstiella matinhensis (Hoehne) Luer	PR, SC, RS	MA	RP	HLC	ABH 57664	
Paradisanthus micranthus (Barb.Rodr.) Schltr.	BA, ES, RJ, SP, PR, SC	MA	RP	TER	ABH 57658	
Pelexia sp.	Ro	Di	RE	TER	ABH 57659	
Phloeophila nummularia (Rchb.f.) Garay	MG, RJ, SP, SC	MA	RP	HLC	ABH 57660	
A. ramosa, E. secundum, L. nervosa, M. caspitata, O. maculata and V. chamissonis, occur in both habitats (Table 2).

The predominant ecological category was the characteristic holoepiphyte (HLC) (Table 2), represented by 55 species (60%), which was followed by facultative holoepiphyte (HLF) with 21 species (23%) and terrestrial (TER) with 14 species (15%). The hemiepiphytes were less common, with only two species (2%) (Fig. 2), both belonging to the genus Vanilla (Table 2).

Characteristic holoepiphytes (HLC) and facultative holoepiphytes (HLF) were better represented in riparian vegetation (n=53; 58% and n=18; 20%, respectively). Terrestrial species (TER) were better represented in restinga vegetation (n=10; 11%). Characteristic holoepiphyte (HLC) were not exclusive in restinga vegetation (Table 2 & Fig. 2).

DISCUSSION

The richness of orchid species found in the present study can be considered high when compared to other studies on Orchidaceae in different regions of Brazil. In the Southern region, Rocha & Waechter (2006) studied terrestrial orchids in the area of restinga vegetation and found 42 species distributed in 24 genera. In the same area, Buzatto & al. (2007) cited 50 species and 35 genera from an area of riparian vegetation. In the Southeast region, Fraga & Peixoto (2004) cited 73 species distributed in 41 genera, in the restinga vegetation; and Cunha & Forzza (2007) in an area covered by Atlantic Forest and restinga vegetation found 26 species in 18 genera. In other regions, Pansarin & Pansarin (2008) recorded 125 species in an area mesophytic-semideciduous forest, and Menini-Neto & al. (2009) cited 89 species in three areas of Atlantic Forest, montane forest and semi-deciduous forest at different altitudes.

For the state of Santa Catarina, no recent floristic surveys on Orchidaceae are available and those extant are outdated, a fact that makes further precise comparisons extremely difficult. Nonetheless, if the results are compared to that of Klein & al. (1978), it is noticeable that the species richness found here appears to be not very much representative. However, some relevant factors must be considered for a better understanding of the results. The studied area was limited to a few remnants of herbaceous and shrubby vegetation and found 42 species distributed in 24 genera. In the same area, Buzatto & al. (2007) cited 50 species and 35 genera from an area of riparian vegetation. In the Southeast region, Fraga & Peixoto (2004) cited 73 species distributed in 41 genera, in the restinga vegetation; and Cunha & Forzza (2007) in an area covered by Atlantic Forest and restinga vegetation found 26 species in 18 genera. In other regions, Pansarin & Pansarin (2008) recorded 125 species in an area mesophytic-semideciduous forest, and Menini-Neto & al. (2009) cited 89 species in three areas of Atlantic Forest, montane forest and semi-deciduous forest at different altitudes.
both geographic and ecologic terms. However, we report 20 new records for the same region of the study, demonstrating that there is still a great diversity. Undoubtedly, if the studied area were greater, including other types of vegetation, and also the canopy of the forest, the number of species recorded probably would be much greater.

The State Park of Serra do Tabuleiro was created to preserve an area that had already undergone processes of environmental defacement, generated by logging, agriculture and urbanizing activities. Certainly, when taken into account the study of Orchidaceae by Fraga & Peixoto (2004) and Rocha & Waechter (2006), made in areas of restinga vegetation in the state of Rio Grande do Sul, also in southern Brazil, the specific diversity found in our study is extremely low. The fragmentation and haphazard occupation of coastal areas are identified by those authors as negative factors for the conservation of restinga vegetation and for orchids themselves. According to Rocha & Waechter (2006), when performed in a short period of time studies on herbaceous terrestrial species in the restinga vegetation probably underestimate the total specific richness of Orchidaceae. This mainly occurs because of the difficulty to observe many species that often are represented by tiny and isolated individuals, with low frequency and/or without leaves during anthesis.

Orchids occur in up to two phytogeographic domains, although the great majority is found only in Atlantic Forest. It is believed that for species of Atlantic Forest there would be a continuum in their distributions in the N-S direction (Klein, 1980). However, this is not always the rule. Some species such as *P. falcifolium, P. nummularia* and *S. parvifolia* occur without gaps up to the state of São Paulo, and they only reappear in the state of Santa Catarina to the south. It is also possible that the lack of detailed studies on Orchidaceae in the states of Paraná and Santa Catarina make difficult a more accurate phytogeographic understanding of their distribution patterns. Furthermore, our results show that 37% of the studied species are found continuously from the northern states southwards to Santa Catarina, but they do not reach the state of Rio Grande do Sul (in the very South of Brazil). According to Klein (1978; 1980), Serra do Tabuleiro is the most important phytogeographic barrier in southern Brazil impeding that many plants species can move in a north-south direction. In fact, Orchidaceae are among the leading families that are not able to cross this geographic boundary, so that one-third of the orchid species growing in the north, disappear in the southern part of that mountain range (Klein, 1980).

Although up to seventeen of the studied species are listed on any of the Brazilian regional red lists of endangered species list, only one of them is included in the most recent list of endangered species of the Brazilian flora, published by Ministério do Meio Ambiente (MMA, 2015). Nonetheless, at a local scale a number of those species (as well as others not included in the lists) can be in serious concern. It is therefore urgent to generate regional and local lists as an effective conservation tool for threatened species. Provided that many changes have occurred in the last 18 years that affected areas of natural vegetation through the whole country, it can be assumed that the threat degree for many species should also change. Galindo-Leal & Câmara (2005) suggested that the entire Biome of Atlantic Forest is seriously threatened. According to a survey of Fundação SOS Mata Atlântica...
REFERENCES

de Pessoal de Nível Superior) - Postdoctoral scholarship first author was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) - Postdoctoral scholarship

ACKNOWLEDGEMENTS

We thank José Carlos Cristóbal (ABH) and Silvia Venturi (FLOR) for their help in preparing and recording specimens for their herbaria. The first author was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) - Postdoctoral scholarship (Proc. 5328-09-8).

REFERENCES

Barros, F. 2004. Distribuição geográfica de orquídeas do Planalto Central do Brasil. In: Barros, F., Korbera, G.B. (eds.). Orquidologia sul-americana: uma compilação científica: 147-153. São Paulo.

Barros, F., Vinhos, F., Rodrigues, V.T., Barberena, F.F.V.A., Fraga, C.N., Pessoa E.M., Forster, W., Menini Neto, L., Furtado, S.G., Nardy, C., Azevedo, C.O., Guimarães, L.R.S. 2015 (updated continuously). Orbichaeaceae. Lista de Espécies da Flora do Brasil on line. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabott/floradobrasil/FB179

Battilani, J.L., Scremin-Dias, E. & Souza, A.L.T. 2005. Fitossociologia de um trecho da mata ciliar do rio da Prata, Jardim, M.S., Brasil. Acta Botanica Brasilia 19: 597-608. http://dx.doi.org/10.1590/S0102-33062005000300021

Benzing, D.H. 1990. Vascular epiphytes. General biology and related biota. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511525438

Buzatto, C.R., Freitas, E.M., Silva, A.P.M. & Lima, L.F.P. 2007. Levantamento florístico das Orquidaceae ocorrentes na Fazenda São Maximiano, Município de Guabir, Rio Grande do Sul. Revista Brasileira de Biodiversidade 5: 19-25.

Chase, M.W., Cameron, K.M., Barrett, R.L. & Freundstein, J.V. 2003. DNA data and Orquidaceae systematics: a new phylogenetic classification. In: Dixon, K.W., Kell, S.P., Barrett, R.L. & Cribb, P.J. (eds.). Orchid Conservation Natural History Publications: 69-89. Sabah.

Cunha, M.E.B. & Forzza, R.C. 2007. Orquidaceae no Parque Natural Municipal da Prainha, RJ, Brasil. Acta Botanica Brasilica 21: 383-400. http://dx.doi.org/10.1590/S0102-33062007000200013

Dressler, R.L. 1981. The orchids. Natural history and classification. Harvard University Press, Cambridge.

Dressler, R.L. 1993. Phylogeny and classification of the orchid family. Dioscories, Portland.

Falkenberg, D.B. 1999. Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, Sul do Brasil. Insula 28: 1-30.

Falkenberg, D.B. 2003. Matinizas nebulares e vegetação rupícola dos Aparados da Serra Geral (SC/RS). Sul do Brasil. Doctoral thesis, Universidade Estadual de Campinas, São Paulo.

Fraga, C.N. & Peixoto, A.L. 2004. Floristic and ecologia das Orquidaceae das restingas do Estado do Espírito Santo. Rodriguesia 55: 5-20.

Fundação SOS Mata Atlântica. (ed.). 2013. Atlas dos remanescentes Florestais da Mata Atlântica (2008-2010). http://maps.sosma.org.br/site_media/download/atlas_2008-10_relatorio_final.pdf

Galinlo-Leal, C. & Câmara, I.G. 2005. Status do Hotspot Mata Atlântica: uma síntese. In: Galinlo-Leal, C. & Câmara, I.G. (eds.). Mata Atlântica: biodiversidade, ameaças e perspectivas: 3-12. Belo Horizonte.

IBGE. 2014. Instituto Brasileiro de Geografia e Estatística. Base Cartográfica Contínua do Brasil 1: 1000000. http://downloads.ibge.gov.br/downloads_geociencias.htm

INMET. (ed.). 2011. Instituto Nacional de Meteorologia. Banco de dados meteorológicos. http://www.inmet.gov.br/projetos/rede/pesquisa/

IPEMA. (ed.). 2007. Instituto de Pesquisas da Mata Atlântica/Instituto de Espécies Ameaçadas. Lista de espécies ameaçadas do Espírito Santo (2007). http://www.biodiversitas.org.br/lists-mg/ES-species-ameacadas.pdf

IPNI. 2015. The International Plant Names Index. Published on the Internet. http://www.ipni.org [continuously updated].

Kageyama, P. & Gandara, F.B. 2000. Recuperação de áreas ciliares. In: Rodrigues, R.L. & Leitão Filho, H.F. (eds.). Matas ciliares: conservação e recuperação: 249-269. São Paulo.

Klein, R.M. 1978. Mapa fotográfico do Estado de Santa Catarina. Flora Ilustrada Catarinense, Itajaí.

Klein, R.M. 1980. Ecologia da flora e vegetação do vale do Iraí. Selinnoa 31/32: 9-389.

Klein, R.M. 1981. Fisionomia, importância e recursos da vegetação do Parque Estadual da Serra do Tabuleiro. Selinnoa 33: 5-54.

Klein, R.M. 1990. Espécies raras ou ameaçadas de extinção do estado de Santa Catarina. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro.

Klein, R.M., Bresolin, A. & Reis, A. 1978. Distribuição de orquídeas da Ilha de Santa Catarina e arredores. Insula 9: 3-29.

Laguna, E. 2001. The micro-reserves as a tool for conservation of threatened plants in Europe. [Nature and Environment 121]. Council of Europe Publishing, Strasbourg.

Laguna, E., Delorto, V., Pêrez-Botella, J., Pérez-Rovira, P., Serra, L., Olives, A. & Fabregat, C. 2004. The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biological Conservation 119: 421-426. http://dx.doi.org/10.1016/j.biocon.2004.01.001

Medeiros, T.D.S. & Jardim, M.A.G. 2011. Distribuição vertical de orquídeas epífitas na Área de Proteção Ambiental (APA) Ilha do Combu, Belém, Pará, Brasil. Revista Brasileira de Biodiversidade 9: 33-38.

Menini-Neto, L., Forzza, R.C. & Zappi, D. 2009. Angiosperm epiphytes as conservation indicators in forest fragments: A case study from southeastern Minas Gerais, Brazil. Biodiversity and Conservation 18: 3785-3807. http://dx.doi.org/10.1007/s10531-009-9679-2

Miller, D. & Warren, R. 1996. Orquídeas do Alto da Serra da Mata Atlântica. R. Bras. Zool., 9: 349-356.

Miller, D., Warren, R., Miller, I.M. & Seehawer, H. 2006. Serra dos Órgãos: sua história e suas orquídeas. Scari, Nova Friburgo.

MMA. 2015. Ministério do Meio Ambiente. Mapa dos biomas brasileiros. http://mapas.mma.gov.br/mapas/aplic/probio/databoahdownload.htm

(2013), the deforestation rate in the state of Santa Catarina increased up to 7% between 2000 and 2005. Although a reduction in that rate was recorded between 2008 and 2010, deforestation continues to be a significant threat in the state. In relation to the forest remnants of 2008, currently 0.17% (3626 ha) of forests have already been lost, the restinga vegetation being the most seriously affected with 0.10% (75 ha) of its cover deforested (Fundação SOS Mata Atlântica, 2013).

The characteristic holohypophyte was the most common ecologic category among the studied specimens and this agrees with other studies on Orchidaceae in Brazil (Barros, 2004; Fraga & Peixoto, 2004; Cunha & Forzza, 2007; Buzzato & al., 2007; Menini-Neto & al., 2009; Medeiros & Jardim, 2011). According to Benzing (1990), Orquidaceae are well known for their success in tree colonization, being orchids about two out of three epiphytes on every tree. However, many of them behave as facultative holohypophytes, commonly also found growing on rocks on the banks of rivers and in small river islands, as demonstrated by the present study. Similarly, Falkenberg (2003) describes that the epiphytic habitats can easily be compared to the rocky habitats since both share a similar ecological situation, and in many cases epiphytic species can even grow best on rocks, if light conditions are satisfactory.

In terms of conservation, it is of paramount importance to preserve all diversity of vegetation types found in the State Park of Serra do Tabuleiro this would ensure the maintenance of different habitats suitable for colonization and perpetuation of orchid populations. Conservation figures for the State Park of Serra do Tabuleiro this would ensure the main-
APPENDIX 1. Characteristics of the collection sites

Sites	Coordinates	Elevation	Sampling date	Voucher
1 BRAZIL. Palhoça: Mouth river Maciambú, Sonho beach. Restinga vegetation.	27°49′30.3″S 48°35′34.5″W	0-10 m	23-III-2010	ABH-57597 - ABH-57616 - ABH-7629 - ABH-57632 - ABH-57654 - ABH-57673 - ABH-57681 - FLOR-38483 - FLOR-39564 - FLOR-38642 - FLOR-39570 - FLOR-39577 - FLOR-4138
2 BRAZIL. Palhoça: Mouth the river Maciambú, Sonho beach. Restinga vegetation.	27°49′27.5″S 48°35′35.6″W	0-10 m	10-IV-2010	ABH-57611 - ABH-57623 - ABH-57631 - ABH-57633 - ABH-57659 - ABH-57671 - FLOR-39574 - FLOR-39562 - FLOR-39569
3 BRAZIL. Palhoça: River Maciambú Pequeno. Riparian vegetation.	27°48′02.2″S 48°39′11.16″W	100-125 m	3-IV-2010	ABH-57598 - ABH-57614 - ABH-57645 - ABH-57656 - ABH-57658 - ABH-57675 - FLOR-38661 - FLOR-39560 - FLOR-39678 - FLOR-40215 - FLOR-43893
4 BRAZIL. Palhoça: River Cachoeira do Amarinho. Riparian vegetation.	27°43′33.3″S 48°41′46.0″W	75-100 m	1-V-2010	ABH-57601 - ABH-57609 - FLOR-39575 - ABH-39559 - FLOR-44005 - ABH-38649 - ABH-57624 - ABH-57636 - FLOR-39565 - ABH-57640 - ABH-57642 - ABH-57652 - ABH-57679 - ABH-57672 - FLOR-38561 - FLOR-39610 - ABH-57676 - FLOR-41636 - FLOR-41649
5 BRAZIL. Palhoça - Santo Amaro da Imperatriz: River Cachoeira do Amarinho. Riparian vegetation	27°44′05.0″S 48°41′46.0″W	200-250 m	3-V-2010	ABH-57604 - FLOR-38475 - ABH-57606 - FLOR-38476 - FLOR-39561 - FLOR-39562 - ABH-57638 - ABH-57639 - ABH-57646 - FLOR-38666 - ABH-57665 - ABH-57667 - FLOR-39579 - ABH-57669 - ABH-57670 - FLOR-41817 - FLOR-44005 - FLOR-43895
6 BRAZIL. Santo Amaro da Imperatriz: Tributary river Vargem do Braço. Riparian vegetation.	27°47′45.5″S 48°50′01.4″W	345-385 m	17-V-2010	ABH-57602 - FLOR-3922 - FLOR-39559 - ABH-57613 - ABH-57617 - ABH-57620 - FLOR-38467 - ABH-57619 - ABH-57626 - FLOR-39563 - ABH-57649 - ABH-57668 - ABH-57650 - ABH-57657 - ABH-57664 - ABH-57668 - FLOR-38643 - ABH-57672 - FLOR-38487 - ABH-57677 - ABH-57680 - FLOR-41819 - FLOR-41415 - FLOR-41825
7 BRAZIL. Santo Amaro da Imperatriz: Tributary river Vargem do Braço. Riparian vegetation.	27°47′39.5″S 48°50′06.5″W	354-390 m	16-V-2010	ABH-57599 - ABH-57603 - ABH-57607 - ABH-57615 - FLOR-38647 - ABH-57621 - FLOR-39576 - ABH-57653 - FLOR-39567 - ABH-57648 - ABH-57655 - ABH-57663 - FLOR-41618
8 BRAZIL. Santo Amaro da Imperatriz: Tributary river Vargem do Braço. Riparian vegetation.	27°48′42.9″S 48°51′03.1″W	360-400 m	16-X-2010	ABH-57600 - FLOR-38479 - ABH-57605 - ABH-57608 - ABH-57610 - ABH-57622 - FLOR-22777 - ABH-57627 - ABH-57628 - ABH-57620 - ABH-57634 - ABH-57635 - FLOR-38494 - ABH-57637 - FLOR-38632 - ABH-57651 - ABH-57666 - FLOR-38613 - ABH-57660 - ABH-57662 - FLOR-38482 - ABH-57674 - FLOR-38582 - ABH-57678 - FLOR-39583