AN ELEMENTARY GREEN IMPRIMITIVITY THEOREM FOR INVERSE SEMIGROUPS

BERNHARD BURGSTALLER

Abstract. A Morita equivalence similar to that found by Green for crossed products by groups will be established for crossed products by inverse semigroups. More precisely, let G be an inverse semigroup, H a finite sub-inverse semigroup of G and A a G-algebra or a H-algebra. Then the crossed product $A \rtimes H$ is Morita equivalent to a certain crossed product $B \rtimes G$.

1. Introduction

In a classical paper [5], Green showed that for a closed subgroup H of a locally compact group G, and a G-algebra A there exits a Morita equivalence between $A \rtimes H$ and $C_0(G/H, A) \rtimes G$ via an imprimitivity bimodule over these algebras ([5, Prop. 3]). This useful result was discussed and generalized in many directions, for example, in [13, 17, 11, 4], but these are just a few samples.

In this note we shall establish an analogous imprimitivity theorem for an inverse semigroup G and a finite sub-inverse semigroup $H \subseteq G$ for crossed products in Sieben’s sense [16]. As a corollary of this, we show this holds true also for a given H-algebra A, and thus this may be usefully combined with induction like in Kasparov [8, 6]. Actually, this note was motivated by the fact that the Baum–Connes map [2] for groups G is a kind of extrapolation of Green–Julg isomorphisms for crossed products by G of induced algebras by compact subgroups $H \subseteq G$, as noted by Meyer and Nest in [10]. In establishing that, Kasparov’s induction plays a fundamental role. To potentially carry this result over from groups to inverse semigroups, we need induction for compact (and thus finite) sub-inverse semigroups $H \subseteq G$, and this is now provided in this note. Our proof is dedicated Section 2, and we give a short summary.

At first we rewrite the inverse semigroup crossed product $A \rtimes H$ as a groupoid crossed product $A \rtimes \mathcal{G}$ to have a group-like construction. Then we adapt and follow Green’s proof

1991 Mathematics Subject Classification. 46L55, 20M18, 46L08.

Key words and phrases. imprimitivity theorem, inverse semigroup, induction, Morita equivalence.
[5] p. 199-204] in a natural way. The action on a certain quotient space G_G/G (G/H in Green [5]) is similar to the regular representation action by Khoshkam and Skandalis [9]. After establishing Green’s imprimitivity Theorem 2.2, we apply it to the induced algebra (in the sense of Kasparov [3, 6]) A of a H-algebra D, and restrict to ideals to get the second Green imprimitivity theorem, Corollary 2.3.

2. The imprimitivity theorem

We begin by recalling crossed products in the sense of Khoshkam and Skandalis [9] and Sieben [16], but use several notions from [3]. Let G denote an inverse semigroup. A G-algebra A is a C^*-algebra A endowed with a G-action in the following sense: there exists a semigroup homomorphism $\alpha : G \to \text{End}(A)$, written as $g(a) := \alpha(g)(a)$, such that $g^*(a)b = agg^*(b)$ for all $a, b \in A$ and $g \in G$. Such a G-algebra (whose definition is equivalent to [3, Def. 3.1]) is a special case of G-algebras in the sense of [16] and [9].

Let $\mathbb{F}(G, A)$, or \mathbb{F} for brevity, be the universal $*$-algebra over \mathbb{C} generated by disjoint copies of A and G such that the $*$-relations of A are respected, the multiplication and involution of G are respected, and the relations $g(a)gg^* = gag^*$, $[gg^*, a] = 0$ (commutator) hold for all $a \in A$ and $g \in G$. The algebraic crossed product $A \rtimes_{alg} G$ denotes the linear span of elements of the form $ag (a \in A, g \in G)$, which are usually denoted by $a \rtimes g$, and is a $*$-subalgebra of \mathbb{F}. We denote by G_0 the idempotent elements of G, and by $E(G)$ the set of the projections $e_0(1 - e_1) \ldots (1 - e_n)$ in \mathbb{F} with $e_0, \ldots, e_n \in G_0$ and $n \geq 0$. The set $G_E := \{gp \in \mathbb{F} | g \in G, p \in E(G)\}$ is an inverse semigroup in \mathbb{F}. We also write $a \rtimes g := ag$ when $g \in G_E$. The identity $agp = gg^*(a)gp$ holds in \mathbb{F} for all $a \in A$ and $gp \in G_E$ ($g \in G, p \in E(G)$). An element (or more precisely, an expression) $a \rtimes gp$ with $a \in A_{gg^*} := gg^*(A)$ and $gp \in G_E$ is called standard.

The full crossed product $A \rtimes G$ is the closure of the image of $A \rtimes_{alg} G$ under the universal $*$-representation π of \mathbb{F} on Hilbert space ([9, Def. 5.4] or [3, 5.16, 6.2, 8.4]). It is easy to see with the reduced representations [9, p. 271] that π is injective on $A \rtimes_{alg} G$, and so the latter is a pre-C^*-algebra with a C^*-norm. Sieben’s crossed product $A \hat{\rtimes} G$ is defined to be the image of $A \rtimes_{alg} G$ under the universal $*$-representation τ of \mathbb{F} on Hilbert space satisfying $\tau(g(a) - gag^*) = 0$ (see [16]). We write $a \hat{\rtimes} g$ for $\tau(ag)$. Note, in particular, that $\hat{\rtimes}$ is compatible: $e(a) \hat{\rtimes} g = a \hat{\rtimes} eg$ for all $g \in G_E$ and $e \in E(G)$.

Let us be given a finite sub-inverse semigroup H' of G. Denote by H the groupoid associated to H' (cf. [11]). More precisely, let $H^{(0)}$ be the set of nonzero minimal projections of $E(H')$ and $H = \{te \in \mathbb{F} | t \in H', e \in H^{(0)}\} \setminus \{0\}$.
Define \(G_H = \{ ge \in F \mid g \in G, e \in H^{(0)}, g^*g \geq e \} \setminus \{ 0 \} \). We endow \(G_H \) with an equivalence relation: \(g \equiv h \) if and only if there exists \(t \in H \) such that \(gt = h \) (\(g, h \in G_H \)). We denote by \(G_H/H \) the set-theoretical quotient of \(G_H \) by \(\equiv \). We shall exclusively work with representatives in this quotient; writing \(g \in G_H/H \) means implicitly that \(g \in G_H \) and we use no class brackets; if then \(g \in G_H \) is meant or the class \(g \in G_H/H \) becomes apparent from the context.

Let \(C_0(G_H/H) \) denote the commutative \(C^* \)-algebra of (continuous) complex-valued functions vanishing at infinity of the (discrete) set \(G_H/H \) with the pointwise operations. The delta function \(\delta_g \) in \(C_0(G_H/H) \) is denoted by \(g \) (\(g \in G_H/H \)). For an assertion \(\mathcal{A} \) we let \([\mathcal{A}]\) be the real number 0 if \(\mathcal{A} \) is false, and 1 if \(\mathcal{A} \) is true. \(C_0(G_H/H) \) is endowed with the \(G \)-action \(g(h) := [gh \in G_H] \, gh \), where \(g \in G \) and \(h \in G_H/H \) (of course, \(gh \in G_H \) is equivalent to \(g^*g \geq hh^* \)). We let \(A \otimes C_0(G_H/H) \) be the \(C^* \)-algebraic tensor product endowed with the diagonal action by \(G \).

Lemma 2.1. (i) If \(g_1, \ldots, g_n \in G_H \) are mutually different then \(\sum_{i=1}^n a_i \times g_i = 0 \) (sum of standard elements) implies \(a_1 = \ldots = a_n = 0 \).

(ii) The \(G \)-action on a \(G \)-algebra \(A \) extends canonically to a \(G_E \)-action on \(A \).

(iii) The formulas \((a \times g)(b \times h) = ag(b) \times gh \) and \((b \times h)^* = h^*(b^*) \times h^* \) hold in \(F \) for all \(g, h \in G_E \), \(a \in A_{gg^*} := gg^*(A) \) and \(b \in A \).

Proof. (i) Note first that the claim was true for \(g_i \in G \) by the reduced representation in [9, p. 271]. For the stated case, we may assume that all \(g_i \) have the same source projection in \(H^{(0)} \). Write \(g_i = h_i (1 - e_1) \ldots (1 - e_n) \) with \(h_i \in G \) and \(e_i \in G_0 \). Note that the \(h_i \) are mutually different. Expanding, we get \(0 = \sum_{i=1}^n a_i g_i = \sum_{i=1}^n a_i h_i - \sum_{i=1}^n a_i h_i e_1 + \ldots \) in \(F \). If, for example, we had \(a_i h_i = a_j h_j e_1 \) then we would have \(a_i g_i = 0 \) and so \(g_i = 0 \) (however \(0 \notin G_H \)). Consequently, \(\sum_{i=1}^n a_i h_i = 0 \), which yields the claim. (ii) It easy to see that we have a well-defined semigroup homomorphism \(\alpha : E(G) \to \text{End}(A) \) with \(\alpha_{1-e} = id_A - \alpha_e \) and extending the \(G \)-action \(\alpha \) on \(A \). If \(gp = hq \neq 0 \) for \(h, g \in G \) and \(p, q \in E(G) \) then \(gpq = hpq \) and so \(g = h \) by a similar argument as in (i). Then \(g^* gp = g^* gq \) in \(E(G) \). Hence, \(\alpha_{gp} := \alpha_g \alpha_p = \alpha_h \alpha_q \) is well-defined. (iii) We have \(agp bhq = gpq^*(a) g(b) gphq = agp(b) gphq \) in \(F \) for \(g, h \in G \), \(p, q \in E(G) \), \(a \in A_{gg^*} \) and \(b \in A \). \(\square \)
We introduce the spaces
\[B_0 = A \rtimes_{alg} H := \text{span}\{ a \rtimes t \in A \rtimes_{alg} G | a \in A_{tt^*}, \ t \in H \}, \]
\[X_0 = \text{span}\{ a \rtimes g \in A \rtimes_{alg} G | a \in A, g \in G_H \}, \]
\[E_0 = (A \otimes C_0(G_H/H)) \rtimes_{alg} G. \]

The spaces \(B_0 \subseteq A \rtimes G \) and \(E_0 \) are regarded as pre-\(C^* \)-algebras. We make \(X_0 \) to a right pre-Hilbert module over \(B_0 \) (cf. \[14\], Def. 2.8]) by the following operations
\[X_0 \times B_0 \longrightarrow X_0 : (a \rtimes g)(c \rtimes t) := ag(c) \rtimes gt, \]
\[X_0 \times X_0 \longrightarrow B_0 : (a \rtimes g, b \rtimes h)_{B_0} := [g^* h \in H] g^*(a^* b) \rtimes g^* h \]
for \(a, b \in A, c \in A_{tt^*}, g, h \in G_H \) and \(t, h \), and to a left pre-Hilbert module over \(E_0 \) by
\[E_0 \times X_0 \longrightarrow X_0 : (a \otimes r \rtimes s)(b \rtimes h) := [s^r \in G_H] [r \equiv s^r] as(b) \rtimes s^r, \]
\[X_0 \times X_0 \longrightarrow E_0 : (a \rtimes g, b \rtimes h)_{E_0} := a gh^*(b^*) \otimes g \rtimes gh^* \]
for \(a, b \in A, r \in G_H/H, s \in G \) and \(j, g, h \in G_H \). Note that standard elements go to standard elements and we extend the above formulas by linearity on sums of standard elements.

Straightforward computations show that we have
\[(x, yb)_{B_0} = (x, y)_{B_0} b, \quad (x, y)_{B_0}^* = (y, x)_{B_0}, \]
\[(fx, y)_{E_0} = f(x, y)_{E_0}, \quad (x, y)_{E_0} = (y, x)_{E_0}, \]
\[(fx, y)_{B_0} = (x, f^* y)_{B_0}, \quad (x, yb)_{E_0} = (xb^*, y)_{E_0}, \quad x(y, z)_{B_0} = (x, y)_{E_0} z \]
for all \(x, y, z \in X_0, b \in B_0 \) and \(f \in E_0 \) (cf. \[14\], Def. 6.10]).

For convenience of the reader we sketch the first identity of line \[11\]. We have
\[\langle (a \otimes r \rtimes s)(b \rtimes g), c \rtimes h \rangle_{B_0} \]
\[= [sg \in G_H] [r \equiv sg] [g^* s^* h \in H] g^* s^* (s(b^*)a^*) \rtimes g^* s^* h \]
for \(a, b, c \in A, r \in G_H/H, s \in G \) and \(g, h \in G_H \), and
\[\langle b \rtimes g, (a \otimes r \rtimes s^*)(c \rtimes h) \rangle_{B_0} \]
\[= \langle b \rtimes g, ([s^* r \in G_H] s^*(a^*) \otimes s^* r \rtimes s^*)(c \rtimes h) \rangle_{B_0} \]
\[= [g^* s^* h \in H] [s^* r \equiv s^* h] [s^* h \in G_H] [s^* r \in G_H] g^* (b^* s^*(a^*) s^*(c)) \rtimes g^* s^* h. \]
The reader checks easily that line (2) is nonzero if and only if line (3) is nonzero, and so both expressions are identical. One just uses implications like, if $s^*h \in G_H$ then $ss^* \geq hh^*$ (as $h \in G_H$), or if $g^*s^*h \in H$ and $g, s^*h \in G_H$ then $gg^* = (s^*h)(s^*h)^*$ and so $s^*h \equiv g$.

Let $(a_\alpha)_\alpha$ be an approximate identity of A. Let $x = \sum_{s=1}^{m} b_s \cdot h_s$ in X_0 and choose for every different equivalence class h_sH in G_H/H exactly one representative $g_i := h_s$. Set $x_{i,\alpha} = a_\alpha \cdot g_i \in X_0$. Set $x_\alpha = \sum_{i=1}^{n} (x_{i,\alpha}, x_{i,\alpha})_{E_0} x$. Then a straightforward computation shows that $x = \lim_{\alpha} x_\alpha$ in the norm of E_0. Consequently,

$$\langle x, x_\alpha \rangle_{B_0} = \sum_{i=1}^{n} \langle x, x_{i,\alpha} \rangle_{B_0} \langle x, x_{i,\alpha} \rangle_{B_0}^* \geq 0$$

as in Green [5], page 202. The positivity $\langle x, x \rangle_{B_0} \geq 0$ follows by computing that also $\langle x, x_\alpha \rangle_{B_0}$ tends to $\langle x, x \rangle_{B_0}$ in the norm of B_0. The argument for the positivity of $\langle x, x \rangle_{E_0}$ is similar (choose, for example, $x_\alpha = x \sum_{e \in H(0)} (a_\alpha \cdot e, a_\alpha \cdot e)_{B_0}$).

We need to verify the identities

$$\langle f, f \rangle_{B_0} \leq \|f\|_{E_0}^2 \langle x, x \rangle_{B_0}, \quad \langle x, x \rangle_{E_0} \leq \|b\|_{B_0}^2 \langle x, x \rangle_{E_0}$$

for all $x \in X_0$, $f \in E_0$ and $b \in B_0$ (cf. [14] Def. 6.10]). For a standard element $f = a \otimes r \otimes s \in E_0$ and $x \in X_0$ we have

$$\|f\|_{E_0} \langle x, x \rangle_{E_0} - \langle f, f \rangle_{E_0} = \langle \|f\|_{E_0} - f^*f, x \rangle_{E_0}$$

$$= \langle zx, zx \rangle_{E_0} + \langle (1-p)x, (1-p)x \rangle_{E_0} \geq 0,$$

where $z := (\|f\|_{E_0} - s^*(a^*a))^{1/2} \otimes s^*r \otimes s^*s$ and $p := \|f\|_{E_0} \otimes s^*r \otimes s^*s$ are elements in $\mathcal{M}(A) \otimes C_0(G_H/H) \ltimes G$; we have (easily) extended the action of E_0 on X_0 and the first identity of (1) to this space.

We have shown that $\|fx\| \leq \|f\|_{E_0} \|x\|$ (where $\|x\| := \|(x, x)_{B_0}\|^{1/2}$) for elementary elements $f \in E_0$, and by taking sums of such elements we readily obtain $\|fx\| \leq \|f\|_{\ell^1(G, A \otimes C_0(G_H/H))} \|x\|$ for all $f \in E_0$. Since $E_0 \to \mathcal{L}(X_0)$ is an ℓ^1-contractive representation into a pre-C^*-algebra, and the norm closure of E_0 is the enveloping C^*-algebra of ℓ^1 (cf. [2]), we get $\|f\|_{\mathcal{L}(X_0)} \leq \|f\|_{E_0}$ and so the first inequality of (1). The second inequality of (1) is proved similar (but is easier as B_0 is norm-closed).

Denote by $E_X \subseteq E_0$ the closure of $\langle X_0, X_0 \rangle_{E_0}$, and by $B_X \subseteq B_0$ the closure of $\langle X_0, X_0 \rangle_{B_0}$. We now apply the argument following [15] Prop. 3.1 to see that X_0 may be completed in semi-norm $\|x\| = \|(x, x)_{B_0}\|^{1/2}$ (after factoring out the elements of norm 0) to obtain an $E_X - B_X$ imprimitivity bimodule X. The C^*-algebra $B_X = B_0$ is canonically isomorphic.
to the groupoid crossed product $A \rtimes H$, which is canonically isomorphic to $A \hat{\rtimes} H'$ by [12 Thm. 7.2]. To meet exactly the assumptions in [12], switch to the carrier algebra $\tilde{A} = p(A)$ for $p = \sum_{e \in H(0)} e$ of A, which does not change the crossed product, that is, $\tilde{A} \hat{\rtimes} H'$. Denote by $C_0(G_H/H, A)$ the G-invariant C^*-subalgebra generated by \{a \otimes r \in A \otimes C_0(G_H/H) | a \in A_{rr^*}, r \in G_H/H\}. Note that $C_0(G_H/H, A)$ is an ideal in $A \otimes C_0(G_H/H)$ and so $C_0(G_H/H, A) \hat{\rtimes} G$ embeds in $(A \otimes C_0(G_H/H)) \hat{\rtimes} G$, as can be seen by extending a G-action on a C^*-algebra to the multiplier algebra (completely analog as in [7 §1.4]).

Let $\sigma : E_X \to C_0(G_H/H, A) \hat{\rtimes} G$ be the canonical map. It is surjective, because given an elementary element $aa^* \otimes r \hat{\rtimes} g$ with $rr^* = gg^*$ (in P) in $C_0(G_H/H, A) \hat{\rtimes} G$ ($a \in A_{rr^*}, r \in G_H/H, g \in G_E$), we have

$$aa^* \otimes r \hat{\rtimes} g = \sigma(\langle a \rtimes r, g^*(a) \rtimes g^*r \rangle_{E_0}).$$

If σ were not injective, then its kernel J were nonzero, and so would correspond to a nonzero ideal I in \hat{B}_X via the imprimitivity module (see [13 Cor. 3.1]), which then would contain a nonzero element of the form $a \rtimes e$ with $e \in H^{(0)}$. The element $f = \langle a \rtimes e, a \rtimes e \rangle_{E_0}$ would be in J, however σ is nonzero on f. We have obtained our result:

Theorem 2.2. Let H' be a finite sub-inverse semigroup of an inverse semigroup G, and A a G-algebra. Then X is an $E_X - B_X$ imprimitivity bimodule, where $E_X \cong C_0(G_H/H, A) \hat{\rtimes} G$ and $B_X \cong A \hat{\rtimes} H'$.

Now assume that D is a H'-algebra. Define, similar as in [8 §5 Def. 2],

$$\text{Ind}_{H'}^G(D) := \{f : G_H \to D | \forall g \in G_H, t \in H \text{ with } gt \in G_H : f(gt) = t^*(f(g)),$$

$$\|f(g)\| \to 0 \text{ for } gH \to \infty \text{ in } G_H/H \}.\text{ }$$

Let A denote $\text{Ind}_{H'}^G(D)$. It is a C^*-algebra under the pointwise operations and the supremum’s norm and becomes a G-algebra under the G-action $(gf)(h) := [g^*h \in G_H] f(g^*h)$ for $g \in G, h \in G_H$ and $f \in A$. Consider the H'-invariant ideal A_0 of A consisting of all functions which vanish on G_H/H. Then $A_0 \rtimes H$ embeds canonically as an ideal J in $A \rtimes H$, and by [15 Cor. 3.1], associated to J is the submodule in X generated by $X_0 = \langle y \in X_0 \mid (y, y)_{X_H} \in J \rangle = \text{span} \{g(a) \rtimes g \in X_0 | a \in A_0, g \in G_H\}$, and the ideal I in E_X generated by $\langle Y_0, X_0 \rangle_{E_X} = \text{span} \{g(a) \otimes g \hat{\rtimes} gh^* \in E_X | a \in A_0, g, h \in G_H\}$.

The ideal I is canonically isomorphic to $K \hat{\rtimes} G$, where K denotes the G-invariant ideal in $C_0(G_H/H, A)$ generated by \{$(g(a) \otimes g \in C_0(G_H/H, A)) | a \in A_0, g \in G_H/H\}$. To see that $I \to K \hat{\rtimes} G$ is surjective, write a nonzero element $g(a) \otimes g \hat{\rtimes} s \in K \hat{\rtimes} G$ as $ss^*(g(a) \otimes g) \hat{\rtimes} gg^*s$.
We have a G-equivariant isomorphism $\psi : A \to K$ defined by $\psi(f) = \sum_{g \in G_H/H} f \cdot 1_{gH} \otimes g = \sum_{g \in G_H/H} g^*(f) \cdot 1_H \otimes g$. There is a H'-equivariant epimorphism $\Phi : D \to A_0$ given by $\Phi(d)(t) = t^*(d)$ for $t \in H$ and $d \in D$. It is an isomorphism on the carrier algebras of D, so that $D \hat{\otimes} H' \cong A_0 \hat{\otimes} H'$. Consequently we have obtained, by restricting to the ideals I and J in Theorem 2.2 and applying [15, Cor. 3.1]:

Corollary 2.3. Let $H' \subseteq G$ be a finite sub-inverse semigroup and D a H'-algebra. Then $\text{Ind}_{H'}^G(D) \hat{\otimes} G$ and $D \hat{\otimes} H'$ are Morita equivalent.

References

[1] A. an Huef, I. Raeburn, and D. P. Williams. Proper actions on imprimitivity bimodules and decompositions of Morita equivalences. *J. Funct. Anal.*, 200(2):401–428, 2003.

[2] P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of group C^*-algebras. Contemp. Math. 167, 241-291 (1994).

[3] B. Burgstaller. A descent homomorphism for semimultiplicative sets. *Rocky Mountain J. Math*, to appear. preprint arXiv:1111.4160.

[4] S. Echterhoff, S. Kaliszewski, J. Quigg, and I. Raeburn. A categorical approach to imprimitivity theorems of C^*-dynamical systems. *Mem. Am. Math. Soc.*, 850, 2006.

[5] P. Green. The local structure of twisted covariance algebras. *Acta Math.*, 140:191–250, 1978.

[6] G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. *Invent. Math.*, 91:147–201, 1988.

[7] G.G. Kasparov. Hilbert C^*-modules: Theorems of Stinespring and Voiculescu. *J. Oper. Theory*, 4:133–150, 1980.

[8] G.G. Kasparov. K-theory, group C^*-algebras, and higher signatures (conspectus). In *Novikov conjectures, index theorems and rigidity. Vol. 1.*, pages 101–146. Cambridge University Press, 1995.

[9] M. Khoshkam and G. Skandalis. Crossed products of C^*-algebras by groupoids and inverse semigroups. *J. Oper. Theory*, 51(2):255–279, 2004.

[10] R. Meyer and R. Nest. The Baum-Connes conjecture via localisation of categories. *Topology*, 45(2):209–259, 2006.

[11] A.L.T. Paterson. *Groupoids, inverse semigroups, and their operator algebras*. Progress in Mathematics (Boston, Mass.), 170. Boston, MA: Birkhäuser., 1999.

[12] J. Quigg and N. Sieben. C^*-actions of σ-discrete groupoids and inverse semigroups. *J. Aust. Math. Soc., Ser. A*, 66(2):143–167, 1999.

[13] I. Raeburn. Induced C^*-algebras and a symmetric imprimitivity theorem. *Math. Ann.*, 280(3):369–387, 1988.

[14] M. A. Rieffel. Induced representations of C^*-algebras. *Adv. Math.*, 13:176–257, 1974.

[15] M. A. Rieffel. Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner. Studies in analysis, Adv. Math., suppl. Stud., Vol. 4, 33-82 (1979), 1979.
[16] N. Sieben. C^*-crossed products by partial actions and actions of inverse semigroups. *J. Aust. Math. Soc., Ser. A*, 63(1):32–46, 1997.

[17] S. Vaes. A new approach to induction and imprimitivity results. *J. Funct. Anal.*, 229(2):317–374, 2005.

Departamento de Matematica, Universidade Federal de Santa Catarina, CEP 88.040-900 Florianopolis-SC, Brasil

E-mail address: bernhardburgstaller@yahoo.de