The TimeMachine for Inference on Stochastic Trees

Gianluca Campanella¹, Maria De Iorio², Ajay Jasra³, Marc Chadeau-Hyam¹

¹Department of Epidemiology and Biostatistics, Imperial College London
London W2 1PG, UK
²Department of Statistical Science, University College London
London WC1E 6BT, UK
³Department of Statistics and Applied Probability, National University of Singapore
Singapore 117546, SG

Abstract

The simulation of genealogical trees backwards in time, from observations up to the most recent common ancestor (MRCA), is hindered by the fact that, while approaching the root of the tree, coalescent events become rarer, with a corresponding increase in computation time. The recently proposed “Time Machine” tackles this issue by stopping the simulation of the tree before reaching the MRCA and correcting for the induced bias. We present a computationally efficient implementation of this approach that exploits multithreading.

Keywords: population genetics, importance sampling, algorithms, parallel computing

1. Introduction

There is currently much interest in performing ancestral inference from molecular data: experimental advances have led to new types and greater availability of data, giving rise to new challenges for the mathematical community. Advanced stochastic models have been developed to capture the complexity in this data, in turn leading to further challenges to achieve computational efficiency.

Many of these models are formulated as hidden (or unobserved) Markov chains, and the likelihood of the data is obtained by taking the expectation over all possible realizations of the underlying Markov process. An important example is the coalescent model: this hidden Markov chain is typically stopped at a random time, which usually corresponds to the time to reach the most recent common ancestor (MRCA). Computing the marginal likelihood associated with the observed data is, in general, not analytically tractable. Consequently, estimating unknown parameters by maximum likelihood requires a numerical approximation scheme, which is most conventionally based upon importance
sampling as in Stephens and Donnelly (2000). While tracking the tree backwards in time, the population size diminishes, leading to fewer coalescent events and thus to an increased stopping time. Furthermore, the information relevant to statistical inference also diminishes, resulting in importance weights with substantial variance. For these reasons, Jasra et al. (2011) proposed to stop the simulation before reaching the MRCA, and to account for the resulting bias in the likelihood estimates. This method brings about substantial reductions in both computation time and variance of the estimates.

The TimeMachine package is a computationally efficient implementation of the biased numerical likelihood approximation of Jasra et al. (2011). It provides estimates of the likelihood surface, and can additionally estimate the mutation rate $\mu$ by likelihood maximisation.

2. Algorithm

The algorithm simulates genealogical trees backwards in time, from a given initial population up to the point when there are $N \geq 1$ sequences left. The likelihood is estimated by averaging over many independent simulations. The special case $N = 1$ corresponds to the approach of Stephens and Donnelly (2000), whereas $N > 1$ corresponds to the “Time Machine” of Jasra et al. (2011).

The main steps of the iterative algorithm are described below; detailed calculations can be found in the software documentation.

1. Sample the offspring type $i$ with probability proportional to the number of individuals of that type in the population;

2. Sample the ancestor type $j$: an offspring of type $i$ might have arisen from an ancestor of type $j$ through either a coalescent event or a $j \to i$ mutation (with $j$ possibly equal to $i$);

3. Update the population size within each type;

4. Compute the contribution to the likelihood of the simulated event and update the likelihood;

5. Assess the stopping criterion: if $N > 1$, stop if the desired population size has been reached; otherwise, repeat the above steps until only two individuals are left in the population, at which point mutations are exclusively simulated until both remaining sequences are of the same type;

6. If $N > 1$, correct the likelihood to account for the bias induced by stopping the simulation before reaching the MRCA.

3. Implementation

The software is released as an R package, and is freely available on the Comprehensive R Archive Network (CRAN) package repository.
Most functions are internally implemented in C for optimal performance. Thanks to the OpenMP® API, simulations can be run in parallel threads on machines with multiple cores or processors. To ensure independence, each thread uses a different seed to initialise its copy of the pseudorandom number generator of Panneton et al. (2006).

4. Features

The TimeMachine can be used on: (a) a user-specified initial population; (b) a population sampled from a multinomial model with probability vector corresponding to the stationary distribution associated with a given unit transition matrix.

The main output returned by the TimeMachine is a list containing the (possibly corrected) log-likelihoods and corresponding correction terms, as well as the per-simulation and total computation times. To allow the reconstruction of each simulated tree, the sequential event number (SEN) of each coalescent event and the distribution of types at the last iteration are also stored. An extensive description of all available outputs is given in the documentation.

The TimeMachine package also includes a maximum-likelihood estimation procedure for the mutation rate \( \mu \) based on the R built-in optimize function.

![Figure 1: Outputs based on populations of 100 individuals sampled under a PDM and six values of \( N \): (a) estimated log-likelihood surfaces for a fixed population and different values of \( \mu \); (b) density of \( \hat{\mu} \) over 1,000 populations; (c) median population size as a function of SEN (grey lines correspond to extrema for \( N = 1 \)).](image)

5. Application

We illustrate the use of the TimeMachine package on a set of 1,000 initial populations, each comprising 100 individuals divided into \( 2^{10} = 1024 \) types, sampled under the parent-dependent model (PDM) already introduced in Jasra et al. (2011). We investigated several scenarios corresponding to \( N = 1, 2, 5, 10, 25, 50 \).

In Fig. 1, we plot the estimated log-likelihoods (averaged over 10,000 independent simulations) for a fixed population and 60 values of \( \mu \), ranging from 0.1 to 30.1. As shown, the log-likelihood surfaces for \( N \leq 10 \) closely match the exact case \( N = 1 \), suggesting that stopping simulations beforehand only marginally
affects the precision and reliability of the estimates, while bringing about sig-
nificant improvements in computation time (two-fold reduction in computation
time for \(N = 10\)).

Fig. 1b shows the density of the maximum-likelihood estimates of the mu-
tation rate \(\hat{\mu}\) obtained for the 1,000 initial populations and different values of \(N\) (as above). Distributions are narrow, with a dispersion that increases with \(N\). Moreover, they share the same mode for \(N \leq 10\), again suggesting that the accuracy of the estimation is only marginally affected in these cases.

Finally, in Fig. 1c we summarise the history of each simulation for a fixed
population by plotting the median population size as a function of the sequential
event number (SEN). As expected, trajectories are consistently simulated across
different values of \(N\), with a plateau towards bigger SEN that is associated to
rarer coalescent events and greater variation.

6. Conclusion

We have presented a computationally efficient \(R\) implementation of the “Time
Machine” recently proposed by [Jasra et al. (2011)]. Given the ability to remove
the random time for the hidden Markov chain, this implementation is amenable
to practical testing of the bias that was theoretically and empirically investigated
in [Jasra et al. (2011)].

The main limiting factor of the software is the memory required to store the
transition matrix between types, which is of size \(2^L \times 2^L\) for \(L\) loci. This re-
stricts usage on modern personal computers to approximately 15 loci. This issue
could be addressed here by only considering a subset of biologically meaningful
types. The current implementation could incorporate this change at the cost of
minimal edits, and thus represents a first step towards the development of
a general framework for approximate inference in population genetics based on
the stopping principle. It is our hope that our contribution will allow biologists
and experimental scientists to analyse their data more efficiently.

References

Ajay Jasra, Maria De Iorio, and Marc Chadeau-Hyam. The time machine: a
simulation approach for stochastic trees. *Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science*, 2011.

François Panneton, Pierre L’Ecuyer, and Makoto Matsumoto. Improved long-
period generators based on linear recurrences modulo 2. *ACM Transactions
on Mathematical Software*, 32(1):1–16, 2006.

Matthew Stephens and Peter Donnelly. Inference in molecular population ge-
netics. *Journal of the Royal Statistical Society: Series B (Statistical Method-
ology)*, 62(4):605–635, 2000.