Regulation of maternal phospholipid composition and IP₃-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in *C. elegans*

Marina Kniazeva, Huali Shen, Tetyana Euler, Chen Wang, and Min Han

Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA

Fatty acids (FAs) are highly diverse in their structure, and these structural variations contribute to the vast variety and complexity of higher-order lipids. Although the functional importance of FA variants in animal development and human health has been recognized by a limited number of studies using model organisms (e.g., Zhang et al. 2001; Kahn-Kirby et al. 2004; Kniazeva et al. 2008; Szafer-Glusman et al. 2008; Zuryn et al. 2010; Riquelme et al. 2011), mechanistic studies of how FA variants and numerous FA-modifying enzymes impact specific physiological functions are lacking. In a given organism, or even a given tissue, FA and lipid compositions are strictly regulated during development, but little is known about how it is accomplished. More specifically, zygotic lipids, like RNAs and proteins, are of maternal origin and are supplied during oogenesis. However, neither the functional importance nor the mechanism of achieving healthy lipid content in the zygote is known.

C17ISO, a monomethyl branched chain FA (mmBCFA) [Fig. 1A] present in many organisms from bacteria to humans, is involved in multiple processes in *Caenorhabditis elegans*, including initiation of post-embryonic development [Kniazeva et al. 2004, 2008; Entchev et al. 2008]. A loss-of-function mutation in the mmBCFA-specific elongation enzyme ELO-5 causes a deficiency in C17ISO that results in early larval arrest and lethality. Dietary C17ISO, but not straight chain FAs, fully rescues the ELO-5-null mutants to wild-type growth and proliferation. ACS-1, a member of the acyl-CoA synthetase (ACS) enzyme family, is also required for C17ISO biosynthesis and therefore for viability of the animals [Kniazeva et al. 2008].

In general, ACSs catalyze esterification (or activation) of FAs to coenzyme A to form activated intermediates, which are substrates for elongation, degradation, or incorporation into complex lipids. ACS enzymes have been proposed to regulate lipid-related functions and homeostasis through this biochemical reaction [Mashek et al. 2007; Ellis et al. 2010]. The conserved ACS family is encoded by a total of 22 predicted genes in *C. elegans* (26

Supplemental material is available for this article.

Received January 10, 2012; revised version accepted February 17, 2012.

Keywords: BCFA, branched chain fatty acid, acyl-CoA synthetase; somatic gonad; exocytosis; inositol trisphosphate]
BCFA and acyl-CoA synthetase in embryogenesis

C17ISO is indispensable for larval growth and development in C. elegans. RNAi inhibition of either elo-5 or acs-1 from the time of hatching causes early larval arrest and lethality, which can be rescued by including C17ISO in the diet [Kniazeva et al. 2004, 2008]. We found that with C17ISO supplementation, elo-5(RNAi) animals proliferated indefinitely, while acs-1(RNAi) animals grew as wild type for only one generation and produced only dead embryos (Emb phenotype) (Fig. 1B,C). The combination of acs-1(RNAi) treatment with C17ISO supplement is hereafter termed acs-1(RNAi)C17ISO. To exclude a possibility that the Emb phenotype of acs-1(RNAi)C17ISO was due to a nonspecific silencing effect on a secondary target, we carried out several control experiments and found no evidence for nonspecific targeting of acs-1(RNAi) [Materials and Methods].

We also examined whether acs-1(RNAi)C17ISO embryos remained deficient for C17ISO in the absence of acs-1 expression by comparing the FA compositions of lipid extracts from wild-type and acs-1(RNAi)C17ISO embryos using gas chromatography (GC). The GC data revealed the presence of C17ISO FA in the total lipid extracts from both samples [Supplemental Fig. S1], indicating that C17ISO could be delivered to embryos, in one form or another, in the absence of acs-1 expression.

We then examined whether the Emb phenotype is associated with an acs-1 deletion mutant [acs-1(gk3066)]. Because homozygous acs-1(gk3066) animals are larval-lethal, we generated a transgenic strain, acs-1(gk3066); Ex[acs-1(full)], that expressed an extra chromosomal array carrying wild-type copies of acs-1 that rescued the larval lethality. Some of the progeny of acs-1(gk3066); Ex[acs-1(full)] animals, but not all, did display the Emb phenotype observed in acs-1(RNAi)C17ISO animals [Fig. 1D]. We hypothesized that the Emb phenotype in the acs-1(gk3066); Ex[acs-1(full)] animals resulted from a loss of acs-1 expression in one or more tissues in parental worms with mosaic distribution of the extra chromosomal array.

Notably, analysis using either RNAi or the genetic mutation showed that the Emb phenotype was associated with the presence of C17ISO, supplied exogenously in acs-1(RNAi)C17ISO or synthesized endogenously in acs-1(gk3066); Ex[acs-1(full)] animals [see below]. These data suggested that in addition to the role in C17ISO biosynthesis, ACS-1 also promotes embryogenesis by regulating C17ISO metabolism.

Expression of acs-1 in the somatic gonad is necessary and sufficient for embryogenesis

To identify the tissue where acs-1 expression is essential for embryogenesis, we first examined wild-type expression of the gene by using an integrated transgene of acs-1(full)::GFP [a full-length ACS-1::GFP fusion protein driven by the acs-1 promoter] and in situ hybridization. In addition to the neuronal and intestinal expression previously detected using an acs-1 promoter-driven GFP expression construct [Kniazeva et al. 2004], we observed prominent GFP fluorescence in the somatic gonad of adults but not in that of larvae [Fig. 2A,B, Supplemental

Results

ACS-1 and C17ISO play an essential role in early embryogenesis

We previously showed that ELO-5 and ACS-1 are essential enzymes in de novo synthesis of C17ISO and that in mammals, each potentially generating multiple proteins via alternative splicing [Mashek et al. 2007, Watkins et al. 2007, http://www.wormbase.org]. It has been proposed that metabolic trafficking of each fatty acyl-CoA is determined by the ACS that esterifies the FA substrate (Coleman et al. 2002, Black and DiRusso 2007). It is conceivable that the production of a large number of ACSs accommodates the need for the diversification of lipid structures and functions. Since ACSs regulate FAs and lipid homeostasis, studying the specificity of FA–ACS interactions in living organisms is important for understanding their impact on cellular and organismic physiology and for the prevention and treatment of pathological conditions.

Here we report the discovery and analysis of an intriguing interaction between C17ISO and ACS-1 in C. elegans that takes place in the somatic gonad but subsequently regulates lipid composition and membrane dynamics essential for embryogenesis.

Expression of acs-1 in the somatic gonad is necessary and sufficient for embryogenesis

To identify the tissue where acs-1 expression is essential for embryogenesis, we first examined wild-type expression of the gene by using an integrated transgene of acs-1(full)::GFP [a full-length ACS-1::GFP fusion protein driven by the acs-1 promoter] and in situ hybridization. In addition to the neuronal and intestinal expression previously detected using an acs-1 promoter-driven GFP expression construct [Kniazeva et al. 2004], we observed prominent GFP fluorescence in the somatic gonad of adults but not in that of larvae [Fig. 2A,B, Supplemental

Results

ACS-1 and C17ISO play an essential role in early embryogenesis

We previously showed that ELO-5 and ACS-1 are essential enzymes in de novo synthesis of C17ISO and that
somatic tissues with regard to its embryonic function, we created an *acs-1*(gk3066);*Ex[acs-1(full)::GFP]*) strain in which the *ACS-1*(full)::GFP protein rescued larval lethality associated with the deletion mutation to an extent similar to that of the *acs-1*(gk3066);*Ex[acs-1(full)]:*strain. Microscopic evaluation of *acs-1*(gk3066);*Ex[acs-1(full)]:*GFP* adults revealed a prominent GFP fluorescence in the intestinal cells of all rescued animals (*n > 500*), whereas CAN neuron expression was only apparent in some (Fig. 2C,D). This indicated that the expression of *acs-1* in the gut was necessary to overcome larval lethality. GC analysis confirmed that rescued animals regained the ability to synthesize C17ISO (data not shown).

Remarkably, somatic gonad expression of the *acs-1*(full)::GFP transgene was tightly correlated with the occurrence of wild-type embryos, 100% of the gonads positive for GFP (*n = 156*) produced wild-type embryos, and 100% of the GFP-negative gonads (*n = 68*) produced dead eggs (Fig. 2H–M). Moreover, the expression of *acs-1*(full)::GFP in only one of the two gonads did not rescue the Emb phenotype in the other (Fig. 2H–M). These observations indicated that ACS-1 functions locally in the somatic gonad to influence embryonic development.

Results of additional experiments reinforced the above conclusion. Briefly, when *acs-1* expression was disrupted

images of the gonads in H–I and K–M were obtained from the same adult animal. All (100%) GFP-negative gonads (*n = 68*) (*H*) produced wild-type embryos (*I*). Arrows in *H* and *I* point to fluorescence in the somatic gonad. In *I*, 1c and 4c mark a one-cell and a four-cell embryo, respectively. All (100%) GFP-negative gonads (*n = 68*) (*L*) produced embryos with the Emb phenotype (*M*). (Int) Intestine. Bar, 15 μm.

Fig. S2A–L,S,T). Results from RNA in situ hybridization confirmed *acs-1* expression in the somatic gonad, while no expression was detected in the germline (Supplemental Fig. S2M–R).

Since transgenic GFP expression may be silent in the germline, and RNA in situ hybridization may not be sensitive enough to detect very low levels of *acs-1* germline expression, we performed germline-specific RNAi analysis to determine whether there was a requirement for *acs-1* germline expression. We treated *rf-1*(pk1417), which is resistant to somatic RNAi but sensitive to germline RNAi [Sijen et al. 2001], with *acs-1*(RNAi)*C17ISO*, *pos-1*(RNAi), *pop-1*(RNAi), and *par-1*(RNAi) were used as positive controls for germline-specific RNAi [Sijen et al. 2001]. We found that *rf-1* animals fed control RNAi laid 100% dead eggs, indicating that RNAi was highly effective in the germline of this strain [Fig. 2E,F]. In contrast, *rf-1;acs-1*(RNAi)*C17ISO* animals developed normally for at least three generations [Fig. 2G]. These results indicated that expression of *acs-1* in the germline, if any, was not essential for embryogenesis and that its expression in somatic cells was necessary and sufficient for this function.

To investigate the requirement for *acs-1* in specific somatic tissues with regard to its embryonic function, we
in the intestine [but not in the somatic gonad] in the presence of dietary C17ISO, it did not result in Emb (Supplemental Fig. S2W–ac; Supplemental Material). In contrast, when acs-1 expression was inhibited in the somatic gonad by somatic gonad-specific RNAi, the remaining expression of acs-1 in the intestine, neurons, and possibly other tissues was insufficient to prevent the Emb phenotype [Materials and Methods; Supplemental Fig. S2ad–ag].

Together, these results indicate that [1] C17ISO, both supplied exogenously and synthesized endogenously, can become “toxic” to the embryo in the absence of acs-1; [2] the somatic gonad is the tissue where expression of acs-1 eliminates this “toxicity”; and [3] ACS-1 functions in a local intercellular pathway between the somatic gonad and the germline (as indicated by the fact that the somatic gonad arm expressing acs-1 can only protect embryos developing from its associated germline).

ACS-1–C17ISO interaction ensures proper membrane dynamics in early embryos

Prominent cellular events in the wild-type zygote include formation of the perivitelline space and vigorous movement of plasma membrane during ruffling, pseudocleavage, and furrowing [Fig. 3A–E]. Strikingly, none of these post-fertilization hallmarks were observed in either acs-1[RNAi]C17ISO or embryos from acs-1(gk3066);Ex[acs-1(full)::GFP] animals that lost acs-1 expression in the somatic gonad. Instead, the cytoplasm of these embryos appeared to occupy the entire egg [i.e., egg-filling phenotype] without any sign of wild-type membrane dynamics [Fig. 3F–I]. This phenotype did not represent a quiescent state because the cell cycle proceeded at a nearly normal rate, but the separation of divided nuclei failed at the first or subsequent cell divisions. Since acs-1[RNAi]C17ISO Emb mimicked that of embryos from acs-1(gk3066);Ex[acs-1(full)::GFP] animals that lost acs-1 expression in the somatic gonad, the residual C17ISO in this organ was insufficient to ensure proper membrane dynamics. These observations, together with those from other experiments, indicate that the ACS-1–C17ISO interaction is required to maintain normal membrane dynamics in early embryos.

Figure 3. Formation of the perivitelline space, normal membrane biogenesis and dynamics, and exocytosis of GAGs are disrupted in acs-1[RNAi]C17ISO embryos. [A–E] DIC and fluorescent images of wild-type [A–E] and acs-1[RNAi]C17ISO [F–K] embryos at matching developmental stages. [A–D] Wild-type embryos form the perivitelline space (arrowheads) and undergo vigorous membrane remodeling during ruffling [A], pseudocleavage [B], and first cytokinesis [C] that are clearly visible. [E] Wild-type plasma membrane contours in one-cell to six-cell embryos are highlighted with the PHPLC1::GFP reporter. [F–I] acs-1[RNAi]C17ISO embryos shown at the same stages corresponding to those in A–D fail to form the perivitelline space and lack any visible membrane activity. [I] Cell divisions do not properly follow nuclei divisions. See also Supplemental Figure S3. [J–L] Plasma membrane fails to elongate after the first [J] or subsequent [K,L] cell cycles and forms unusual membranous structures [arrows]. Nuclei in L are highlighted with DAPI stain. [M–O] Electron micrographs show the cell membrane of dividing wild-type [M] and acs-1[RNAi]C17ISO [N,O] blastomeres. [M] Cell membranes after completion of cytokinesis look like a single straight line in this section. [N,O] In contrast to M, interrupted, branched plasma membranes with unusual membranous structures are observed in acs-1[RNAi]C17ISO embryos. Black arrows point to the membrane from the sides of two fully [M] or partially [N,O] separated blastomeres. Short arrows indicate unusual membranous formations, and the T-bar in N shows a discontinuance of a dividing membrane. [P–S] DIC and fluorescence images of wild-type [P,Q] and acs-1[RNAi]C17ISO [R,S] embryos stained with an anti-chondroitin sulfate antibody [Ab]. All images capture the surface of the embryos, illustrating that chondroitin sulfate is delivered to the perivitelline space in wild-type but not acs-1[RNAi]C17ISO embryos [cf. Q and S]. [T,U] The distribution of chondroitin sulfate in the gonad appears to be similar in wild type [T] and acs-1[RNAi]C17ISO (U), indicating that the synthesis of this GAG is not disrupted. Bars, 15 μm.
Ex[acs-1(full)::GFP] animals that lost acs-1 expression in the somatic gonad, we carried out further detailed phenotypic analysis using RNAi that is more technically efficient.

Using a PH\textsubscript{PLC101}::GFP reporter (PH, pleckstrin homology domain from phospholipase C that binds to phosphatidylinositol lipids in plasma membranes) [Hurley and Meyer 2001; Audhya et al. 2005], we showed that the cell cleavage could be initiated in some embryos despite the complete absence of ruffling and pseudocleavage, but proper elongation of the dividing membrane often ceased [Fig. 3J, Supplemental Fig. S3A–C]. In other embryos, cellular cleavage reached completion but enclosed more than one nucleus within a single daughter cell [Fig. 3I,K,L]. As a result, these embryos displayed the Emb phenotype with characteristic formation of multinucleated cells and accumulation of peculiar membranous structures in the cytoplasm [Figs. 3I–L, 4F].

Electron microscopy [EM] analysis of dividing blastomeres in acs-1[RNAi]C17ISO embryos confirmed instances of unusual membrane formation, revealing membrane branching, multiple breaks, and the presence of various membranous shapes alongside the cleavage furrow [Fig. 3M–O]. These data indicated that membrane biogenesis took place in acs-1[RNAi]C17ISO zygotes but that it was severely disordered. This phenotype has not been previously reported in any C. elegans mutant. This finding demonstrated that the ACS-1–C17ISO interaction critically impacts membrane properties important for membrane-related cellular events during early embryogenesis.

acs-1[RNAi]C17ISO embryos do not display obvious defects in eggshell structure, osmotic sensitivity, or anterior–posterior (A–P) polarity

The egg-filling phenotype and the failure to undergo ruffling, pseudocleavage, and cytokinesis are known characteristics of a number of mutants defective in the formation of the extracellular matrix (ECM), which constitutes the eggshell and perivitelline space [Tagawa et al. 2001; Hwang et al. 2003; Mizuguchi et al. 2003; Rappleye et al. 2003; Wang et al. 2005; Olson et al. 2006; Sato et al. 2008]. It has also been shown that actomyosin contractility is essential for membrane remodeling during ruffling, pseudocleavage, and cytokinesis [Gönczy and Rose 2005; Maddox et al. 2005, 2007]. We thus analyzed the eggshell structure and tested cellular processes, such as osmotic sensitivity and establishment of A–P polarity. We did not obtain any evidence that would indicate that a defect in these processes causes the acs-1[RNAi]C17ISO embryonic phenotype (Supplemental Fig. S3; Supplemental Material).

Exocytosis of glycosaminoglycans (GAGs) essential for ECM formation is defective in acs-1[RNAi]C17ISO embryos

Work by several laboratories has shown that GAGs and proteoglycans, delivered by exocytosis to the ECM shortly after fertilization, are essential for the generation of the perivitelline space and cytokinesis [Hwang and Horvitz 2002; Hwang et al. 2003; Mizuguchi et al. 2003; Wang et al. 2005; Olson et al. 2006; Sato et al. 2008]. Since one of the prominent features of acs-1[RNAi]C17ISO embryos is an absence of a visible perivitelline space, we examined the possibility that exocytosis was impaired in acs-1[RNAi]C17ISO embryos.

An anti-chondroitin sulfate antibody has been previously used to detect the presence of chondroitin [one of the secreted GAGs] on the cell surface of embryonic cells and gonad [Mizuguchi et al. 2003]. Using this antibody, we observed the reported staining for wild-type embryos [Fig. 3P,Q] but did not detect the antigen on the acs-1[RNAi]C17ISO embryo cell surface [Fig. 3R,S]. Biosynthesis of chondroitin was not disrupted in the acs-1[RNAi]C17ISO animals, as it was readily detectable in the gonads [Fig. 3T,U].

These data suggested that the absence of the perivitelline space in acs-1[RNAi]C17ISO embryos may have been caused, at least in part, by defective exocytosis of GAGs.
However, other features of the \textit{acs-1(RNAi)}C17ISO Emb phenotype could not be explained solely by failed delivery of GAGs. For example, the prominent accumulation of abnormal membranous structures in \textit{acs-1(RNAi)}C17ISO embryos was not observed in \textit{sqv} mutants defective in GAG biosynthesis [Hwang and Horvitz 2002; Hwang et al. 2003; Mizuguchi et al. 2003; Wang et al. 2005; Olson et al. 2006; Sato et al. 2008; data not shown). In addition, there was a significant difference in the dynamics of attempted cleavage between the \textit{sqv} mutants and \textit{acs-1(RNAi)}C17ISO embryos; while the cleavage furrow retracted after initiation in the \textit{sqv} embryos, the cleavage furrow failed to elongate properly but did not retracted in \textit{acs-1(RNAi)}C17ISO embryos \textit{(n > 300)} (Supplemental Fig. S3A–C).

Moreover, the failure of cleavage in \textit{acs-1(RNAi)}C17ISO embryos did not always occur during the very first cell division, and cleavage failure in subsequent cell divisions was always accompanied by erratic membrane formations [Figs. 3K, L, N, O, 4F]. These differences suggested that the alterations in membrane properties in \textit{acs-1(RNAi)}C17ISO embryos affected more than just exocytosis of GAGs.

\textit{The \textit{acs-1(RNAi)}C17ISO affects plasma membrane behavior without globally disrupting formation of endocytic and exocytic vesicles}

It is conceivable that some vesicle compartments involved in ECM formation and cytokinesis might be altered in \textit{acs-1(RNAi)}C17ISO embryos. To examine subcellular compartments that might be affected in \textit{acs-1(RNAi)}C17ISO embryos, we analyzed several fluorescence-labeled reporters specific for endocytic and exocytic vesicles. However, no differences were detected between wild-type and \textit{acs-1(RNAi)}C17ISO embryos in the localization of caveolin-enriched (CAV-1::GFP reporter) or RAB-11::GFP-labeled secretory cortical granules or in their plasma membrane receptor (SYN-4::GFP reporter) [Sato et al. 2006, 2008] with regard to the vesicles’ distribution and morphology. Similarly, no difference was observed in the distribution and morphology of RAB-5::GFP-positive endocytotic compartments [Sato et al. 2005] or in the endoplasmic reticulum (ER) structures (SP12::GFP reporter highlighting an ER resident protein, signal peptidase SP12) [Rolls et al. 2002; Poteryaev et al. 2005]. Therefore, the defects in \textit{acs-1(RNAi)}C17ISO embryos appeared to be restricted to the plasma membrane as described above.

\textit{Penetrance of the Emb phenotype in \textit{acs-1(RNAi)}C17ISO animals correlates with C17ISO concentration, but not with C17ISO-independent changes in lipid composition}

As mentioned above, \textit{acs-1(RNAi)} and \textit{acs-1[gk3066]; Ex[acs-1[full::GFP]} animals reach adulthood only in the presence of C17ISO that is supplied exogenously or synthesized endogenously, respectively. To investigate the effect of C17ISO on embryonic lethality, we examined the phenotypes of \textit{acs-1(RNAi)}\textit{C17ISO} animals growing in the presence of different C17ISO concentrations. Wild-type worms were treated with \textit{acs-1(RNAi)} from the time of hatching on plates supplemented with 0.0 mM, 0.17 mM, 0.34 mM, 0.5 mM, or 1.0 mM C17ISO. We observed at low concentrations [0.17 mM and 0.34 mM] that only a small number of animals reached adulthood, but these rescued adults produced wild-type embryos. At higher concentrations, the effect was reversed; more animals developed to wild-type adults, but these rescued adults produced fewer or no wild-type embryos [Fig. 4A–E].

Using a PHPCLC11::GFP reporter, we tested the effect of C17ISO depletion on plasma membrane dynamics. \textit{acs-1(RNAi)}\textit{C17ISO} young adults were transferred to \textit{acs-1(RNAi)} plates without supplement to deplete the next generation of C17ISO. We found that a decrease in accumulated C17ISO (confirmed by GC analysis of the FA composition in eggs) [data not shown] was associated with a prominent increase in the instances of successful cell divisions and decreased vesiculation [Fig. 4F, G]. These results indicated that the presence of C17ISO or its metabolite correlated with the Emb phenotype in \textit{acs-1(RNAi)}-treated animals.

We did not observe the specific Emb phenotype associated with \textit{acs-1(RNAi)}\textit{C17ISO} in animals treated with RNAI targeting several other FA- and energy metabolism-related genes, even though prominent changes in lipid composition and embryonic lethality were observed in many of these animals [Supplemental Fig. S4A–I; Supplemental Material].

\textit{Distinctive changes in phospholipid composition correlating with the Emb phenotype are present in lipid extracts from \textit{acs-1(RNAi)}C17ISO embryos}

The findings that C17ISO affects embryonic development and does so only in the absence of \textit{acs-1} expression in the somatic gonad suggested that ACS-1 may act on C17ISO by directing its incorporation into particular lipids. To test this hypothesis, we compared lipid extracts isolated from wild-type and \textit{acs-1(RNAi)}C17ISO embryos using mass spectrometry (MS) analysis. We specifically screened for changes in the lipid composition that correlated with the penetrance of the Emb phenotype by analyzing samples isolated from \textit{acs-1(RNAi)}C17ISO embryos that had developed in adults fed with 1 mM or 0.1 mM C17ISO. Total ion chromatograms indicated a glycerophospholipid (PL) fraction that was consistently greater in \textit{acs-1(RNAi)}C17ISO embryos than in \textit{acs-1(RNAi)}0.1 mM C17ISO or untreated wild-type samples (Fig. 5A). MS spectra resolved individual peaks in a range of 680–760 m/z in this fraction [Supplemental Fig. S4]. Tandem electrospray ionization (ESI)-MS spectra of PLs within this mass range obtained by precursor scan of 269.2 in negative mode [loss of C17ISO ion scan] confirmed that these lipids contained C17ISO [Fig. 5B].

Strikingly, the major peaks in the \textit{acs-1(RNAi)}1.0 mM C17ISO samples differed from those in untreated wild-type samples by 4 m/z [Fig. 5B]. These shifts could have resulted from structural differences in either fatty acyl chains or the phosphate head group attached to a glycerol backbone
Subsequent tandem MS and normal phase liquid chromatography (NPLC-MS) analyses revealed that the major PL in the wild-type and acs-1(RNAi)C17ISO samples contained the same combination of acyl chains. For example, PLWT [730.6(-H)/C0] and PLacs-1(C17ISO) [726.6(-H)/C0] were both composed of C17ISO and C18:1, whereas PLWT [750.6(-H)/C0] and PLacs-1(C17ISO) [746.6(-H)/C0] contained C17ISO and C20:5 (Fig. 5C–F). In the wild-type sample, the head group of the major C17ISO-containing PL was identified as ethanolamine (data not shown), and therefore these lipids were phosphatidylethanolamine (PE) species (termed C17ISO-PE). The identity of the head group of the major C17ISO-containing PL species in acs-1(RNAi)C17ISO [termed C17ISO-PLacs-1(-)] remains to be determined (Fig. 5G).

The difference in the levels of C17ISO-PE and C17ISO-PLacs-1(-) between wild-type and acs-1(-)C17ISO embryos indicated that C17ISO-PE biosynthesis required ACS-1 function, while the synthesis of C17ISO-PLacs-1(-) did not. The synthesis of C17ISO-PLacs-1(-) thus depends on other ACS enzymes. Therefore, in wild-type worms, ACS-1 may compete with other ACSs for the C17ISO substrate to produce C17ISO-PE, and possibly other C17ISO-containing lipids, and indirectly decrease the relative levels of C17ISO-PLacs-1(-) that are present at minute levels in wild-type samples (Fig. 5B, top and middle panels). Since a decrease of both C17ISO-PE and C17ISO-PLacs-1(-) species did not cause Emb in acs-1(RNAi)C17ISO animals (Fig. 5B), the dominant presence of C17ISO-PLacs-1(-) is likely necessary for the manifestation of the embryonic phenotype.
While the exact structure of C17ISO-PLacs-1(\textminus) is being currently investigated, the current data clearly indicated that ACS-1 and C17ISO affected a specific aspect of PL composition that may play important roles in early embryogenesis. Importantly, no significant differences in lipid profiles were detected between the lipid extracts obtained from wild-type or \textit{acs-1(RNAi)}C17ISO adults, and no changes in the levels of C17ISO-containing triacylglycerols (i.e., triacylglycerols or TAGs, fats) were observed between the embryonic samples (Supplementary Fig. S4K).

The embryonic phenotype of \textit{acs-1(RNAi)}C17ISO is suppressed by mutations causing hyperactive IP\textsubscript{3} signaling

Exocytosis of the embryonic ECM has been shown to depend on IP\textsubscript{3}-regulated calcium signaling in many organisms (Becchetti and Whitaker 1997; Chang et al. 1999; Stricker 1999; Abbott and Ducibella 2001; Webb et al. 2008). Although a link between the IP\textsubscript{3} pathway and embryonic exocytosis has not been thoroughly investigated in \textit{C. elegans}, an observation of egg-filling multinucleated embryos resembling \textit{acs-1(RNAi)}C17ISO embryos was reported in mutants with decreased IP\textsubscript{3} signaling (Walker et al. 2002). In addition, disrupting the function of RAB-11 GTPase [a major regulator of Ca2+-induced exocytosis located on the membrane of excretory vesicles] or SYN-4 (calcium-sensing target SNARE located on plasma membranes) was shown to mimic the blockage of chondroitin biosynthesis that also results in the egg-filling phenotype, failed cytokinesis, and multinucleated blastomeres (Jantsch-Plunger and Glotzer 1999; Sato et al. 2008). As reported above, we observed that the expression and subcellular localization of RAB-11 and SYN-4 in \textit{acs-1(RNAi)}C17ISO embryos were not different from wild type.

We then investigated whether a potential failure of IP\textsubscript{3} signaling could cause the \textit{acs-1(RNAi)}C17ISO Emb phenotype. If IP\textsubscript{3} production at the plasma membrane in \textit{acs-1(RNAi)}C17ISO embryos is reduced, then raising the level of IP\textsubscript{3} or enhancing the sensitivity of the IP\textsubscript{3} receptor may rescue the Emb phenotype. To test this hypothesis, we carried out a genetic analysis using a loss-of-function \textit{[f]} mutation in \textit{ipp-5} [encoding a type I phosphatase that converts IP\textsubscript{3} to inositol 1,4 bisphosphate [IP\textsubscript{2}]] and a gain-of-function \textit{[g]} mutation in the only IP\textsubscript{3} receptor gene, \textit{itr-1} (Clandinin et al. 1998; Baylis et al. 1999; Dal Santo et al. 1999; Bui and Sternberg 2002). Specifically, mutants and wild-type controls were treated with \textit{acs-1(RNAi)} in the presence or absence of C17ISO supplementation (Supplemental Fig. S5). We found that Emb was suppressed in both mutants with hyperactive IP\textsubscript{3} signaling (Fig. 6A).

Microscopic evaluation revealed that the rescue effect of the \textit{ipp-5} mutation on the Emb phenotype in \textit{acs-1(RNAi)}C17ISO was, in fact, much stronger than that indicated by the number of hatched progeny per adult shown in Figure 6A. The \textit{ipp-5}[f] mutation alone frequently produced dead embryos with phenotypes distinctly different from the phenotype of \textit{acs-1(RNAi)}C17ISO embryos (Fig. 6B,C). The majority of the embryos in the uterus of \textit{ipp-
containing phospholipids in **acs-1(RNAi)**~C17ISO~ embryos were not detected in adults. We propose that activation of C17ISO by ACS-1 in gonadal sheath cells allows transport of C17ISO-containing metabolites from somatic cells to oocytes, where they are stored until after early embryogenesis (Fig. 7).

Disruption of PL metabolism in the acs-1(RNAi)~C17ISO~ somatic gonad is a plausible mechanism underlying the Emb phenotype

PLs are major constituents of plasma membranes. Most PLs are composed of two FA acyl chains and a polar head group attached to a glycerol backbone, and PL properties strongly depend on the properties of their structural components. Alterations in PL composition potentially could have a profound influence on membrane properties and membrane-dependent cellular processes, including inter- and intracellular signaling. MS analysis revealed that wild-type and **acs-1(RNAi)**~C17ISO~ embryos had different PL compositions in a specific lipid fraction, and the changes in their levels correlated with the Emb phenotype. In wild-type samples, this fraction was composed mainly of C17ISO-containing PE (C17ISO-PE), whereas in **acs-1(RNAi)**~C17ISO~ samples, it mainly contained PL with the same acyl chain structures as in C17ISO-PE but with a yet unidentified polar head group [C17ISO-PL~acs-1~(C0)]. However, a reduction of C17ISO-PE per se did not correlate with Emb, suggesting that a change in PL composition or, more specifically, the enrichment in C17ISO-PL~acs-1~(C0) were the key factors associated with the embryonic defect. Because low levels of C17ISO-PL~acs-1~(C0) were also detected in wild-type samples, it is conceivable that they may carry out certain normal cellular functions but can negatively impact certain membrane properties when C17ISO-PEs are absent.

A direct way to examine the potential effect of C17ISO-PL~acs-1~(C0) in embryos would be by feeding or injection of this lipid fraction into wild-type animals, aiming to reproduce the Emb phenotype. Feeding and microinjec-
tion techniques are widely used in *C. elegans* to introduce exogenous DNA and RNA. However, this approach may not be effective for introducing lipids of complex structures. Complex lipids do not freely spread between cells, but instead are delivered through highly controlled mechanisms. For example, the transport of fat from the intestine to oocytes in *C. elegans* involves specific lipid-binding proteins and receptors (Kimble and Sharrock 1983; Grant and Hirsh 1999; Hall et al. 1999; Greenstein 2005). Attempts to recapitulate the Emb phenotype in our experiments was most likely obstructed by the inability to deliver the metabolites to the right place at the right time, a common and difficult problem of targeted drug delivery. Despite this limitation, the proposed property of these C17ISO-PLs is reasonable, based on solid correlation studies, and warrants future structural and functional analysis.

Embryos affected by C17ISO-related lipid composition change are defective in plasma membrane dynamics

In *acs-1(RNAi)*C17ISO embryos, an absence of any visible membrane contractions, along with their egg-filling appearance, were the earliest and the most prominent features. Several lines of evidence suggested that this phenotype was unlikely to be derived from abnormal eggshell formation that could have resulted in the swollen embryo phenotype and failed cytokinesis. First, EM analysis revealed a wild-type eggshell structure. Second, the eggshell was not sensitive to osmotic stress. Third, the establishment of A–P polarity, which depends on proper eggshell composition, was unaffected in *acs-1(RNAi)*C17ISO zygotes. Finally, an observed impairment in exocytosis of GAGs, which is critical for the formation of the perivitelline space, was alone sufficient to account for the egg-filling appearance.

All features of the Emb phenotype in *acs-1(RNAi)*C17ISO—including failed exocytosis of GAGs, absence of ruffling, pseudocleavage, and cleavage; and the accumulation of disordered membranous structures—indicate severe impairment of membrane dynamics. They could have resulted from changes in the physical/chemical property of the plasma membranes affecting fusion and/or fission (Bowerman and Severson 1999; Jantsch-Plunger and Glotzer 1999; Finger and White 2002; Sato et al. 2005, 2006, 2008). Remarkably, no differences in the morphology and distribution of endocytic and exocytic vesicles or ER structures were observed between wild type and *acs-1(RNAi)*C17ISO, indicating that biogenesis of secretory and internalizing carriers was not, or not significantly, affected. It is conceivable to suggest that the membrane dynamics defect in *acs-1(RNAi)*C17ISO embryos could be the secondary consequence of altered C17ISO-PL composition that negatively affects membrane-dependent regulatory events.

The C17ISO-PL composition changes may affect phospholipid-dependent IP3 signaling in *acs-1(RNAi)*C17ISO embryos

In *C. elegans*, IP3 signaling is involved in multiple cellular processes from ovulation to late embryonic events (Bui and Sternberg 2002; Walker et al. 2002; Greenstein 2005; Pilipiuk et al. 2009), but its role in early embryonic stages...
is less clear. An inhibition of the IP₃ pathway via overexpression of an IP₃-binding domain [i.e., a sponge] has been shown to cause mostly late embryonic lethality [Walker et al. 2002]. However, a small percentage of the embryos were reported to display the phenotype similar to that associated with \(\text{acs-1(RNAi)}^{C17ISO} \) [egg-filling appearance, cytokinesis defects, and multinucleated blastomeres] [Walker et al. 2002]. We further showed that silencing \(\text{itr-1} \) by RNAi causes similar erratic vesiculation of plasma membranes in early embryos and proximal gonads. These results revealed a new critical role of IP₃ signaling in membrane dynamics during pre- and post-fertilization events.

Because hyperactivity of IP₃ signaling overcomes Emb, it is reasonable to propose a model in which the \(\text{acs-1} \)-dependent composition of C17ISO-PL in zygotes provides optimal conditions for IP₃ signaling, which in turn regulates membrane functions during embryogenesis (Fig. 7).

Materials and methods

Terminology

(C17ISO) 15-methyl hexadecanoic acid, \(\text{acs-1(RNAi)}^{C17ISO} \) animals fed \(\text{acs-1(RNAi)} \) and 1 mM C17ISO in 10% DMSO (in a bacterial lawn) from the time of hatching, \(\text{C17ISO-PE} \) C17ISO-containing PE, \(\text{C17ISO-PL}^{\text{acs-1(RNAi)}}(\text{PE}) \) C17ISO-containing phospholipids synthesized in the absence of \(\text{acs-1} \) expression.

Strains and constructs

The \(\text{acs-1(gk3066)} \) deletion strain obtained from the \(C. \text{elegans} \) Gene Knockout Consortium is homozygous-lethal. The allele contains an 800-base-pair (bp) deletion that eliminates exons 4, 5, and 6 and half of exon 7. See the Supplemental Material for more information regarding strains and plasmid constructs.

RNAi analysis and specificity of \(\text{acs-1(RNAi)} \)

All RNAi HT115 \(E. \text{coli} \) strains were obtained from the Ahringer RNAi library [Kamath et al. 2001] except \(\text{acs-1(RNAi)}^{G96} \) by, which was made for this study [Supplemental Material]. For all RNAi and control [HT115 \(E. \text{coli} \) transformed with the L4440 empty vector] experiments, eggs were released from parents by bleaching and plated on freshly prepared bacterial lawns unless otherwise specified. For the RNAi and control experiments requiring FA supplements, 450 \(\mu \text{L} \) of bacterial suspension was mixed with 50 \(\mu \text{L} \) of 10 mM FA in 100% DMSO per plate prior to spotting. In control plates without supplement, DMSO was mixed in bacterial suspension prior to plating at the same ratio. Since the effectiveness of RNAi may vary depending on various factors, we scored the \(\text{acs-1(RNAi)}^{C17ISO} \) phenotype only when we observed the L3 Sck (sick) and Lva (larval arrest) phenotypes on control \(\text{acs-1(RNAi)}^{G96} \) plates. Each experiment involving RNAi feeding was repeated at least three times.

To ensure the specificity of \(\text{acs-1(RNAi)} \), the \(\text{acs-1(RNAi)} \) construct obtained from the RNAi library was sequenced and checked for potential secondary targets by Blast search. Two more nonoverlapping \(\text{acs-1(RNAi)} \) constructs targeting the \(\text{acs-1} \) coding sequence were made and tested by feeding [data not shown]. They all reproduced the originally observed phenotypes. Temperature had no effect on the RNAi phenotypes.

Analysis of the effects of C17ISO depletion and supplementation on the \(\text{acs-1(RNAi)} \) phenotype, tissue-specific RNAi targeting a short sequence in the 3’ untranslated region (UTR) of \(\text{acs-1} \), and tissue-specific RNAi using an \(\text{acs-1} \) hairpin RNA expressed under a \(\text{lim-7} \) promoter are described in the Supplemental Material.

GC analysis

To obtain eggs for lipid analysis, worms were washed from the plates, bleached using standard hypochlorite treatment, and monitored for egg release from corpses under microscope. When eggs were prevalent, the samples were spun down and rinsed three times in M9. The nearly dry pellets of worms or eggs were used for lipid extraction and FA methyl ester preparation, as described [Miquel and Browse 1992]. This procedure does not fully eliminate carcasses of the hermaphrodites but sufficiently decreases their potential contribution to the analysis. This simpler method replaced our previous one involving separation of eggs using a sucrose gradient. The two methods generated comparable GC results. GC was performed on an HP6890N [Agilent Technologies] apparatus equipped with a DB-23 column (30 m \(\times \) 250 \(\mu \text{m} \) \(\times \) 0.25 \(\mu \text{m} \) [Agilent Technologies] and flame ionization detector [FID]. Each experiment was repeated at least three times.

Lipid analysis by MS

Lipid extracts were dissolved in 1 mL of methanol with 2 mM ammonium acetate and subjected to quantitative lipid analysis using a 4000 Q-Trap mass spectrometer [MDS Sciex]. Samples were infused at a flow rate of 8 \(\mu \text{L} \text{min}^{-1} \) using a Harvard Apparatus syringe pump [Harvard Apparatus]. PEs, phosphatidylycerines, phosphatidylinositols, phosphatidic acid, acyl-CoAs, and phosphatidylcholines were analyzed with multiple precursor ion (PI) scans and neutral loss [NL] scans in positive and negative modes [Han and Gross 2005]. PEs were also scanned with a NL scanning of \(m/z \) 141 in positive mode. C17-sphingosine and C17-sphinganine were identified with PI scanning of \(m/z \) 250 and 252 in positive mode. Fatty acyl chain identification and normal phase HPLC-MS are described in the Supplemental Material.

Other methods

Examination of the eggshell structure and osmotic response, evaluation of \(\alpha-P \) polarity and actomyosin meshwork formation, microscopy and GFP expression analysis, reagents, and lipid extraction for MS analysis, EM analysis, RNA in situ hybridization, and immunohistochemistry are described in the Supplemental Material.

Acknowledgments

We thank Jane Hubbard, Karen Oegema, Ahna Skop, Paul Mains, William Wood, and the \(Caenorhabditis \) Genetics Center (CGC) for strains, and Andy Fire for vectors. We are grateful to Thomas Giddings for technical help and guidance with EM. We thank Robert Murphy, William Wood, Tom Blumenthal, Cornelia Bargmann, Thomas Cech, and our laboratory members for helpful discussions, and Aileen Sewell for editing the manuscript. The project was supported by the Howard Hughes Medical Institute, of which M.K., H.S., T.E., and M.H. are a research specialist, research associate, research technician, and investigator, respectively.

References

Abbott AL, Ducibella T. 2001. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci 6: D792–D806. doi: 10.2741/abbott.
Audhya A, Hyndman F, McLeod IX, Maddox AS, Yates JR III, Desai A, Oegema K. 2005. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171: 267–279.

Baylis HA, Furuchi T, Yoshikawa F, Mikoshiba K, Sattelle DB. 1999. Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene [it-1]. Mol Biol 294: 467–476.

Becchetti A, Whitaker M. 1997. Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol. Development 124: 1099–1107.

Black PN, DiRusso CC. 2007. Vectorial acylation: Linking fatty acid transport and activation to metabolic trafficking. Novartis Found Symp 286: 127–138.

Bowerman B, Severson AF. 1999. Cell division: Plant-like properties of animal cell cytokinesis. Curr Biol 9: R658–R660. doi: 10.1016/S0960-9822(99)80417-5.

Bui YK, Sternberg PW. 2002. Inositol 1,4,5-trisphosphate signaling in ovulation. Mol Biol Cell 13: 1641–1651.

Chang P, Perez-Mongioli D, Houlston E. 1999. Organization of Xenopus oocyte and egg cortices. Microsc Res Tech 44: 415–429.

Clandinin TR, DeModena JA, Sternberg PW. 2002. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-trisphosphate signaling in ovulation. Mol Biol Cell 13: 2123–2126.

Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM. 1999. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98: 757–767.

Ellis JM, Frahm JL, Li LO, Coleman RA. 2010. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol 21: 212–217.

Entchev EV, Schwudke D, Zagoni V, Matyash V, Bogdanova A, Habermann B, Zhu L, Shevchenko A, Kurzchalia TV. 2008. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J Biol Chem 283: 17550–17560.

Finger FP, White JC. 2002. Fusion and fission: Membrane trafficking in animal cytokinesis. Cell 108: 727–730.

Gönczy P, Rose LS. 2005. Asymmetric cell division and axis formation in the embryo. In WormBook. doi: 10.1895/wormbook.1.30.1; http://www.wormbook.org.

Grant B, Hirsh D. 1999. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10: 4311–4326.

Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, Schulman M, Schlossig S, Niessen S, Laband K, et al. 2011. A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 145: 470–482.

Greenstein D, Kaliman Z, Varghese S, Sartorie D, Georgiev I, Ben-Jacob E. 2004. Receptor-mediated endocytosis in C. elegans. Curr Opin Cell Biol 16: 228–235.

Hall DH, Winfrey VP, Blaauw G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D. 1999. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans:

Relations between the germ line and soma. Dev Biol 212: 101–123.

Han X, Gross RW. 2005. Shotgun lipidomics: Multidimensional MS analysis of cellular liposomes. Expert Rev Proteomics 2: 253–264.

Hurley JH, Meyer T. 2001. Subcellular targeting by membrane lipids. Curr Opin Cell Biol 13: 146–152.

Hwang HY, Horvitz HR. 2002. The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci 99: 12418–12423.

Hwang HY, Olson SK, Esko JD, Horvitz HR. 2003. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423: 439–443.

Jantsch-Plunger V, Glotzer M. 1999. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol 9: 738–745.

Kahn-Kirby AH, Dantzer JL, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL. 2004. Specific polysaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119: 889–900.

Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2: research0002–research0002. doi: 10.1186/gb-2000-2-1-research0002.

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, et al. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237.

Kimble J, Sharrock WJ. 1983. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 96: 189–196.

Kniazeva M, Crawford QT, Seibert M, Wang CY, Han M. 2004. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol 2: e257. doi: 10.1371/journal.pbio.0020257.

Kniazeva M, Euler T, Han M. 2008. A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feed-back-regulated in C. elegans. Genes Dev 22: 2102–2110.

Maddox AS, Habermann B, Desai A, Oegema K. 2005. Distinct roles for two C. elegans anillin in the gonad and early embryo. Development 132: 2837–2848.

Maddox AS, Lewellyn L, Desai A, Oegema K. 2007. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell 12: 823–835.

Mashek DG, Li LO, Coleman RA. 2007. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol 2: 465–476.

Miquel M,Browse J. 1992. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267: 1502–1509.

Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, Mitani S, Sugahara K, Nomura K. 2003. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423: 443–448.

Olson SK, Bishop JR, Yates JR, Oegema K, Esko JD. 2006. Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: Embryonic cell division depends on CPG-1 and CPG-2. J Cell Biol 173: 985–994.

Pilipiuk J, Lefebvre C, Wiesenfahrt T, Legouis R, Bossinger O. 2009. Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Dev Biol 327: 34–47.
Poteryaev D, Squirrell JM, Campbell JM, White JG, Spang A. 2005. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell 16: 2139–2153.

Rappleye CA, Tagawa A, Le Bot N, Ahringer J, Aroian RV. 2003. Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev Biol 3: 8. doi: 10.1186/1471-213X-3-8.

Riquelme CA, Magida JA, Harrison BC, Wall CE, Marr TG, Secor SM, Leinwand LA. 2011. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334: 528–531.

Rolls MM, Hall DH, Victor M, Stelzer EH, Rapoport TA. 2002. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol Biol Cell 13: 1778–1791.

Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD. 2005. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7: 559–569.

Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD. 2006. Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 17: 3085–3094.

Sato M, Grant BD, Harada A, Sato K. 2008. Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J Cell Sci 121: 3177–3186.

Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107: 465–476.

Stricker SA. 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211: 157–176.

Szafer-Glusman E, Giansanti MG, Nishihama R, Bolival B, Pringle J, Gatti M, Fuller MT. 2008. A role for very-long-chain fatty acids in furrow ingression during cytokinesis in Drosophila spermatocytes. Curr Biol 18: 1426–1431.

Tagawa A, Rappleye CA, Aroian RV. 2001. Pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo. Dev Biol 233: 412–424.

Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA. 2002. Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13: 1329–1337.

Wang H, Spang A, Sullivan MA, Hryhorenko J, Hagen FK. 2005. The terminal phase of cytokinesis in the Caenorhabditis elegans early embryo requires protein glycosylation. Mol Biol Cell 16: 4202–4213.

Watkins PA, Maiguel D, Jia Z, Pevsner J. 2007. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48: 2736–2750.

Webb SE, Li WM, Miller AL. 2008. Calcium signalling during the cleavage period of zebrafish development. Philos Trans R Soc Lond B Biol Sci 363: 1363–1369.

Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z, Li Y, Metzker ML, Allikmets R, Zack DJ, et al. 2001. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27: 89–93.

Zuryn S, Kuang J, Tuck A, Ebert PR. 2010. Mitochondrial dysfunction in Caenorhabditis elegans causes metabolic restructuring, but this is not linked to longevity. Mech Ageing Dev 131: 554–561.
Regulation of maternal phospholipid composition and IP₃-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in *C. elegans*

Marina Kniazeva, Huali Shen, Tetyana Euler, et al.

Genes Dev. 2012, 26:
Access the most recent version at doi:10.1101/gad.187054.112

Supplemental Material

http://genesdev.cshlp.org/content/suppl/2012/03/16/26.6.554.DC1

Related Content

Emerging roles for specific fatty acids in developmental processes
Tracy L. Vrablik and Jennifer L. Watts
Genes Dev. April, 2012 26: 631-637

References

This article cites 52 articles, 20 of which can be accessed free at:
http://genesdev.cshlp.org/content/26/6/554.full.html#ref-list-1

Articles cited in:
http://genesdev.cshlp.org/content/26/6/554.full.html#related-urls

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.