Highlights of top-quark measurements in hadronic final states at ATLAS

Serena Palazzo
on behalf of the ATLAS collaboration

XLVII International Symposium on Multiparticle Dynamics
Tlaxcala, Mexico
September 12, 2017
Physics motivations

Top-quark pair production mechanisms and decays

Recent measurements:

Top-quark inclusive cross section
- Measurements of the $t\bar{t}$ production cross-section in the $\tau +$ jets channel at $\sqrt{s} = 7$ TeV \[\text{Eur.Phys.J.C(2013)73:2328}\]
- Measurements of the $t\bar{t}$ production cross-section with hadronically decaying τ lepton at $\sqrt{s} = 8$ TeV \[\text{Phys. Rev. D 95, 072003 (2017)}\]
- Measurements of the $t\bar{t}$ production cross-section with the $\tau +$ lepton at $\sqrt{s} = 7$ TeV \[\text{CERN-PH-EP-2012-102}\]
- Measurements of the $t\bar{t}$ production cross-section in the all-hadronic channel at $\sqrt{s} = 7$ TeV \[\text{ATLAS-CONF-2012-031}\]

Top-quark differential cross-sections
- Measurements of the $t\bar{t}$ differential cross-sections in the all-hadronic channel at $\sqrt{s} = 13$ TeV \[\text{ATLAS-CONF-2016-100}\]

Summary
Physics motivations

Why top-quark physics?

✈️ It is the heaviest elementary particle known;

\[m_t = 173.34 \pm 0.27 \text{(stat)} \pm 0.71 \text{(syst)} \text{ GeV} \]

✈️ its large mass is a fundamental parameter in the Standard Model ⇒ highest coupling to the Higgs boson;

✈️ due its very short lifetime, the top-quark decays before hadronizing:

\[t \rightarrow Wb \sim 10^{-24} \text{s vs hadronization } \sim 10^{-23} \text{s} \] ⇒ allows to study the properties of a bare quark;

✈️ its cross-section is large

♦ \(\sim 15 \text{ } t\bar{t} \text{ pairs/min}, \sim 5 \text{ milions } t\bar{t} \text{ at 8 TeV with } 20fb^{-1} \)

♦ \(\sim 500 \text{ } t\bar{t} \text{ pairs/min}, \sim 30 \text{ milions } t\bar{t} \text{ at 13 TeV with } 36fb^{-1} \)
Top-quark pair production

- Top-quark pairs production via strong interactions;
- the LO dominant process at $\sqrt{s} = 13$ TeV at LHC is the gluon-gluon fusion;

```
gluon-gluon fusion $\sim 87\%$
```

```
q\bar{q} \text{ annihilation } \sim 13\%
```

Why top pair studies?
- Stringent tests of pQCD;
- high sensitivity to gluon PDF;
- important background to Higgs and BSM processes;
- improvement in MC generators of the $t\bar{t}$ samples.
Top pair decay

- In the Standard Model, top quarks decay to Wb about 99.8% of the time;

- decay signatures are categorized according to the decay of the two W’s, semi-leptonically or hadronically:
 - **All-hadronic**: both W’s decay via $W \rightarrow qq$ (46%);
 - **$\ell+Jets$**: one W decays via $W \rightarrow \ell\nu$ (30%);
 - **dilepton**: both W’s decay via $W \rightarrow \ell\nu$ (4%).
Inclusive measurements \(\tau + \text{jets} \)

\(\tau + \text{jets} \) cross-section in the \(\tau + \text{jets} \) channel

\[
\begin{align*}
\tau + \text{jets} &: \sqrt{s} = 7\text{ TeV} \quad \mathcal{L} = 1.67\text{ fb}^{-1} \quad \text{Eur.Phys.J.C(2013)73:2328} \\
\tau + \text{jets} &: \sqrt{s} = 8\text{ TeV} \quad \mathcal{L} = 20.2\text{ fb}^{-1} \quad \text{arXiv:1702.08839v2}
\end{align*}
\]

- Final state with a **hadronically decaying** \(\tau \) lepton and jets;
- such an event topology correspond to \(\sim 10\% \) of \(t\bar{t} \) decays;
- this measurement is particularly important for charged Higgs boson production in top-quark decays
 - the existence of a \(H^{\pm} \) would lead to an enhancement in the cross-section for the considered \(t\bar{t} \) final state.
$t\bar{t}$ cross-section in the $\tau +$ jets channel at $\sqrt{s} = 7$ TeV
Inclusive measurements

τ +jet \(\sqrt{s} = 7 \) TeV: Event selection & τ decays

Event selection

- Require at least 5 jets with \(p_T > 20 \) GeV and \(|\eta| < 2.5 \):
 - 2 jets having originated from \(b - quark \);
 - 2 jets from the hadronic decay of one of the top quarks;
 - 1 \(\tau_{had} \) candidate (\(p_T > 40 \) GeV) from the other top-quark.

τ decays

- Hadronically decaying τ in:
 - 1 or 3 charged hadrons in the final state charged hadrons (+ other neutrals);
Inclusive measurements $\tau + \text{jets}$

$\tau + \text{jet} \sqrt{s} = 7 \text{ TeV}: \text{Data analysis}$

- Charged hadrons in the final state can be reconstructed as charged particle tracks in the inner-detector;
- number of tracks (n_{tracks}) associated to a τ_{had} used to separate τ_{had} contribution from misidentified jet background;
- Signal extraction from the n_{track} distribution \Rightarrow data sample fitted with 3 probability density functions (templates).

![Graph showing n_{track} distribution](image)

- **tau/electron template** (simulated $t\bar{t}$ events);
- **gluon-jet template** (Jet fakes from QCD multijet);
- **quark-jet template** (Jet fakes from $t\bar{t}$, $W+$jets, single-top-quark).
$\tau + \text{jet } \sqrt{s} = 7 \text{ TeV}: \text{ Fit results}$

- Binned-likelihood fit to n_{tracks} distribution with three templates.

\[
\sigma_{t\bar{t}} = \frac{N_T}{L \cdot \epsilon} \Rightarrow \sigma_{t\bar{t}} = 194 \pm 18 \text{ (stat.)} \pm 46 \text{ (syst.) pb}
\]

Leading uncertainties:
- QCD (ISR/FSR) (15%);
- event generator (11%).

Total systematic uncertainty on the cross-section is 24%.
$t\bar{t}$ cross-section in the $\tau +$ jets channel at $\sqrt{s} = 8$ TeV
Inclusive measurements \(\tau + \text{jets} \)

\(\tau + \text{jet} \sqrt{s} = 8 \text{ TeV}: \) Reconstructed object selection

Event selection

- Require 4 jets:
 - \(\geq 2 \) jets with \(E_T > 25 \text{GeV} \) and \(|\eta| < 2.5 \);
 - \(2 \) jets having originated from \(b - \text{quark} \), b-tagging efficiency \(70\% \);
- \(1 \) \(\tau_{\text{had}} \) candidate (\(E_T > 20 \text{GeV} \) and \(|\eta| < 2.5 \)) \(\Rightarrow \) decays into 1 or 3 charged particles:
 - single prong (\(\tau_{1-prong} \)) \(\Rightarrow \) decays to a single charged particle;
 - three prong (\(\tau_{3-prong} \)) \(\Rightarrow \) decays to a 3 charged particle.

Background estimation

- Events where the \(\tau_{\text{had}} \) in the final state is real;
- includes single top, W/Z+jets, diboson.

- Events where the \(\tau \) lepton in the final state is fake (misidentified);
- dominated by multi-jet processes.
Cross-section extraction for each τ_{had} and then combined:

$$\sigma_{t\bar{t}} = 239 \pm 4(\text{stat.}) \pm 28(\text{syst}) \pm 5(\text{lumi})\text{pb}$$

Data prediction agreement in the signal region;

total uncertainty 12%, agreement with the SM prediction.
$t\bar{t}$ cross-section in the $\tau +$ lepton channel at $\sqrt{s} = 7$ TeV

Phys. Lett. B717 (2012) 89-108
Inclusive measurements \(t\bar{t} \) cross-section in the \(\tau + \text{lepton} \) channel with \(\sqrt{s} = 7 \text{ TeV} \)

\[\tau + \text{lepton} : \, \sqrt{s} = 7 \text{ TeV} \, \mathcal{L} = 2.05 \text{fb}^{-1} \]

- Final states with an electron or a muon and a hadronically decaying \(\tau \) lepton;
- Searches for top-quark decays to b-quarks + charged Higgs, decaying to \(\tau + \) neutrino.

Event Selection

- A primary vertex with \(\geq 5 \) tracks (each with \(p_T > 4 \text{GeV} \));
- \(\geq 1 \) \(\tau \) candidate;
- One isolated high-\(p_T \) \(\mu \) or \(e \);
- \(\geq 2 \) jets with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.5 \);
- \(E_T^{\text{miss}} > 30 \text{GeV} \) to reduce the multi-jet background.
Signal extraction

- discriminants employed which outputs are used to separate hadronic tau from jets;
 - use **boosted decision tree** (BDT) discriminants.
- Same sign (SS) and opposite sign (OS) BDT_j distributions.

Background methods

- Fit BDT shape with background and signal template (template fitting).
- Matrix method to extract background after a cut on BDT > 0.7.

	Background template 0 b-tag	W + 1 jet	MC	Signal	$\bar{\nu}$
$\mu + \tau$					
τ_1	490 ± 40	456 ± 32	432	388	
τ_3	135 ± 33	130 ± 50	126	116	
$e + \tau$					
τ_1	440 ± 50	430 ± 50	388	338	
τ_3	116 ± 32	120 ± 28	114	101	
Combined					
τ_1	930 ± 70	860 ± 50	820	726	
τ_3	260 ± 60	260 ± 40	239	217	

	Background template 0 b-tag	W + 1 jet
$\mu + \tau$		
τ_1	460 ± 50	440 ± 50
τ_3	130 ± 40	105 ± 35
$e + \tau$		
τ_1	420 ± 60	350 ± 50
τ_3	140 ± 40	160 ± 40
Combined		
τ_1	880 ± 70	800 ± 70
τ_3	270 ± 60	260 ± 60

Good agreement with the numbers obtained by the two methods.
Measuring the $t\bar{t}$ cross-section

- The cross-section is derived from the number of observed OS–SS signal events in the ≥ 1 b-tag data sample;
- the results are given separately for τ_1 (one track candidate) and τ_3 (> one tracks candidate) and then combined.

$$\sigma_{t\bar{t}} = 186 \pm 13\,(\text{stat.}) \pm 20\,(\text{syst.}) \pm 7\,(\text{lumi})\,\text{pb}$$
$t\bar{t}$ cross-section in the all-hadronic channel at $\sqrt{s} = 7 \text{ TeV}$
$t\bar{t}$ cross-section in the all-hadronic channel with $\sqrt{s} = 7 \, \text{TeV}$

all-hadronic channel : $\sqrt{s} = 7 \, \text{TeV}$ $\mathcal{L} = 4.7 \, \text{fb}^{-1}$

- Final state with both W’s decaying hadronically, six jets topology;
- such an event topology correspond to $\sim 46\%$ of $t\bar{t}$ decays, large BR but large multi-jet background;
- important test of pQCD, major background to many new physics scenarios.
Event Selection

Event selection

⇒ ≥ 1 reconstructed primary vertex with 5 or more associated tracks;
⇒ all jets reconstructed with $|JVF| < 0.75$;
 ♦ ≥ 5 jets with $p_T > 55\text{GeV}$ and $|\eta| < 2.5$;
 ♦ ≥ 1 additional jet with $p_T > 30\text{GeV}$ and $|\eta| < 2.5$;
 ♦ ≥ 2 of the jets should be b-tagged and have $p_T > 55\text{GeV}$ and $|\eta| < 2.5$.

Systematic uncertainties

Source of uncertainty	Contribution (%)
Jet energy scale (JES)	+20/−11
b-tagging	± 17
ISR, FSR	± 17
Parton shower and Hadronisation	± 13
Multi-jet trigger	± 10
Generator	± 7
PDF	+7/−4
Pile-up	+5/−7
Background model	± 4
Luminosity	± 4
Jet energy resolution	± 3
Jet reconstruction efficiency	< 1
Total	+36/−34

Dominant systematics

JES, b-tagging, ISR, FSR
Kinematic fit and cross-section extraction

- Kinematic fit performed to compute the top-quark mass ($m_{t\bar{t}}$) reconstruction of $t\bar{t}$ events;
- Kinematic fit based on a likelihood approach to find the correct association of jets with the final-state partons of the all-hadronic channel;
- m_t used to perform an unbinned likelihood fit and extract the cross-section;
- Measured cross-section compatible with the SM prediction.

$$\sigma_{t\bar{t}} = 168 \pm 12\,(\text{stat.})^{60}_{-57}\,(\text{syst.}) \pm 7\,(\text{lumi})\text{pb}$$
$t\bar{t}$ differential cross-section in the all-hadronic channel at $\sqrt{s} = 13$ TeV
$t\bar{t}$ differential cross-section in the all-hadronic channel with $\sqrt{s} = 13\,\text{TeV}$

all-hadronic channel: $\sqrt{s} = 13\,\text{TeV}$ $\mathcal{L} = 14.7\,\text{fb}^{-1}$

พฤศจิกายน 12, 2017 23 / 27

- Boosted all-hadronic $t\bar{t}$ decay mode \Rightarrow only top-quark candidates with high p_T selected;
- detailed studies of high-p_T SM processes;
- searches of anomalies that could be signals for new physics.
Event selection

- Primary vertex with five or more charged tracks;
- No reconstructed electron/µon with $p_T > 25$ GeV;
- At least 2 large-R jets with $p_T > 350$ GeV and $|\eta| < 2.0 \Rightarrow$ leading jet $p_T > 500$ GeV;
- ≥ 2 small-R jets with $p_T > 25$ GeV and $|\eta| < 2.5$;
- ≥ 2 small-R b-tagged jets \Rightarrow each associated with just one of the top-tagged large-R jets;

	$t\bar{t}$ (all-hadronic)	$t\bar{t}$ (non all-hadronic)	Single top quark	Multijet events	Prediction	Data (14.7 fb$^{-1}$)
0 t	1190 \pm 240	60 \pm 15	9 \pm 5	300 \pm 20	1570 \pm 260	1512

Large background \Rightarrow multi-jet events $S_{bg} = \frac{1}{2}(\frac{G}{A} + \frac{H}{B}) \times C$

S: signal region;
G,A,H,B: regions multi-jet dominated;
Fiducial phase-space differential cross-section

Variables: $p_{T}^{1,1}, p_{T}^{1,2}, |y^{1,1}, |y^{1,2}, p_{T}^{t\bar{t}}, m^{t\bar{t}}, |y^{t\bar{t}}, \cos \theta \ast, |H_{T}^{t\bar{t}}, y_{B}^{t\bar{t}}, \Delta \phi(t_{1}, t_{2}), \chi^{t\bar{t}}, |p_{out}^{t\bar{t}}$

Hadronic top-quark variables

Dominant uncertainties: Large R-jets, signal modelling, b-tagging
Fiducial phase-space differential cross-section

tt system variables

Dominant uncertainties
Large R-jets
signal modelling
b-tagging

\[\sigma_{\text{fid}} = 374 \pm 13 \text{ (stat.)}^{+111}_{-92} \text{ (syst.) fb} \]
Conclusions

- Results agree well with latest SM theory predictions;
- ATLAS is testing the SM at high precision with cross section measurements;
- shown a small set of the Top-quark ATLAS results;
- full set of top-quark measurements available at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults.

All the measurements will benefit with the incoming data allowing to do more precision measurements.

Thank you for the attention!
BACKUP
$\tau + \text{jets } \sqrt{s} = 7 \text{ TeV}: \text{systematics uncertainties}$

Source of uncertainty	Relative uncertainty
ISR/FSR	15%
Event generator	11%
Hadronisation model	6%
PDFs	2%
Pile-up	1%
b-jet tagging efficiency	9%
Jet energy scale	5%
E_T^{miss} significance mismodelling	5%
b-jet trigger efficiency	3%
Jet energy resolution	2%
Fit systematic uncertainties	4%
Luminosity	4%
Total uncertainty	**24%**
$\tau + \text{jets}$ $\sqrt{s} = 8\text{ TeV}$: number of events yield

Event counts	$\tau_{1\text{-prong}}$	$\tau_{3\text{-prong}}$	τ_{had}
$t\bar{t} \rightarrow e/\mu + \text{jets}$	21.8 ± 4.7	6.8 ± 2.5	28.3 ± 5.3
Single top	107 ± 10	33.9 ± 5.8	141 ± 12
$W + \text{jets}$	71.7 ± 8.5	27.1 ± 5.2	99 ± 10
$Z + \text{jets}$	7.2 ± 2.7	1.6 ± 1.3	8.7 ± 3.0
Diboson	1.0 ± 1.0	0.4 ± 0.6	1.5 ± 1.2
Misidentified-τ_{had}	46.6 ± 6.8	24.9 ± 5.0	74.9 ± 8.7
Expected $t\bar{t} \rightarrow \tau + \text{jets}$	1084 ± 33	312 ± 18	1398 ± 37
Total Expected	1339 ± 37	407 ± 20	1751 ± 42
Data	1278	395	1678
\(\tau + \text{jets} \sqrt{s} = 8 \text{ TeV}: \text{systematic uncertainties} \)

Uncertainty	\(\tau_{1\text{-prong}} \)	\(\tau_{3\text{-prong}} \)	\(\tau_{\text{had}} \)
Total Systematic	-11/+11	-16/+14	-12/+12
Jet energy scale	-4.0/+/+4.2	-8.4/+/+5.7	-5.0/+/+4.5
\(b \)-tag efficiency	-4.7/+/+5.0	-4.8/+/+5.0	-4.7/+/+5.0
\(c \)-mistag efficiency	-1.6/+/+1.6	-1.5/+/+1.5	-1.6/+/+1.6
Light-jet mistag efficiency	-0.3/+/+0.3	-0.5/+/+0.5	-0.4/+/+0.4
\(E_T^{\text{miss}} \)	-0.3/+/+0.5	-1.7/+/+0.5	-0.6/+/+0.4
\(\tau_{\text{had}} \) identification	-3.5/+/+3.4	-6.0/+/+5.6	-4.1/+/+3.9
\(\tau_{\text{had}} \) energy scale	-2.1/+/+2.0	-1.2/+/+1.4	-1.9/+/+1.9
Jet vertex fraction	-0.1/+/+0.3	-0.3/+/+0.3	-0.2/+/+0.3
Jet energy resolution	-1.4/+/+1.4	-0.2/+/+0.2	-1.1/+/+1.1
Generator	-1.5/+/+1.5	-2.5/+/+2.5	-2.1/+/+2.1
Parton Shower	-2.0/+/+2.0	-2.6/+/+2.6	-2.1/+/+2.1
ISR/FSR	-6.2/+/+6.2	-8.5/+/+8.5	-6.7/+/+6.7
Misidentified-\(\tau_{\text{had}} \) background	-1.3/+/+1.4	-2.0/+/+2.2	-1.6/+/+1.6
\(W + \text{jets} \) background	-2.9/+/+2.9	-3.6/+/+3.6	-3.0/+/+3.0
Statistics	-2.2/+/+2.2	-5.6/+/+5.6	-1.7/+/+1.7
Luminosity	-2.3/+/+2.3	-2.3/+/+2.3	-2.3/+/+2.3
$\tau + \text{lepton} \sqrt{s} = 7\;\text{TeV}: \text{systematic uncertainties}$

Source	$\mu + \tau$	$e + \tau$
μ (ID/Trigger)	$-1.1^{+1.5}_{-1.1}$	$-1.9^{+2.8}_{-1.9}$
e (ID/Trigger)	$-2.0^{+2.2}_{-2.0}$	$-1.9^{+2.8}_{-1.9}$
JES	$+2.0^{+5.0}_{-2.0}$	$+2.1^{+7.1}_{-1.0}$
JER	$+4.8^{+4.8}_{-4.8}$	$+3.5^{+3.5}_{-3.5}$
ISR/FSR	$+0.7^{+0.7}_{-0.7}$	$+0.7^{+0.7}_{-0.7}$
Generator	$+2.0^{+2.0}_{-2.0}$	$+2.1^{+2.1}_{-2.1}$
b-tag	$-7.7^{+9.0}_{-7.7}$	$-7.5^{+8.9}_{-7.5}$
τ_1 ID	$-3.0^{+3.2}_{-3.0}$	$-2.7^{+3.0}_{-2.7}$
τ_3 ID	$-3.1^{+3.4}_{-3.1}$	$-2.9^{+3.2}_{-2.9}$
τ + lepton $\sqrt{s} = 7$ TeV: BDT fit
$\tau + \text{lepton} \sqrt{s} = 7 \text{ TeV}: \text{matrix method}$
$t\bar{t}$ differential cross-section $\sqrt{s} = 13$ TeV: fiducial phase-space distributions