Phase metrology with multi-cycle two-colour pulses

C L M Petersson1,2, S Carlström1, K J Schafer3 and J Mauritsson1

1 Department of Physics, Lund University, PO Box 118, SE-22100 Lund, Sweden
2 Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
3 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

E-mail: leon.petersson@uam.es

Received 15 November 2015, revised 10 March 2016
Accepted for publication 15 March 2016
Published 13 April 2016

Abstract

Strong-field phenomena driven by an intense infrared (IR) laser depend on during what part of the field cycle they are initiated. By changing the sub-cycle character of the laser electric field it is possible to control such phenomena. For long pulses, sub-cycle shaping of the field can be done by adding a relatively weak, second harmonic of the driving field to the pulse. Through constructive and destructive interference, the combination of strong and weak fields can be used to change the probability of a strong-field process being initiated at any given part of the cycle. In order to control sub-cycle phenomena with optimal accuracy, it is necessary to know the phase difference of the strong and the weak fields precisely. If the weaker field is an even harmonic of the driving field, electrons ionized by the field will be asymmetrically distributed between the positive and negative directions of the combined fields. Information about the asymmetry can yield information about the phase difference. A technique to measure asymmetry for few-cycle pulses, called stereo-ATI (above threshold ionization), has been developed by Paulus et al (2003 Phys. Rev. Lett. 91 253004). This paper outlines an extension of this method to measure the phase difference between a strong IR and its second harmonic.

Keywords: attosecond physics, above-threshold ionization, phase metrology

(Some figures may appear in colour only in the online journal)

1. Introduction

Strong field processes such as high-order harmonic generation (HHG) and above threshold ionization (ATI) depend on the sub-cycle structure of the strong infrared (IR) field driving the process. By tailoring the sub-cycle structure of the field, one can control the processes. This can be done either by using very short laser pulses [1–3] or by mixing pulses with different colours [4–6]. HHG with few-cycle laser pulses has enabled the generation of isolated attosecond pulses [7] and in this case the process is controlled by changing the so-called carrier-envelope phase (CEP) [8–12]:

\[E(t) = E_0 f(t) \sin(\omega t + \phi_{\text{CEP}}), \]

where \(f(t) \) describes the envelope of the pulse with respect to which \(\phi_{\text{CEP}} \) is measured.

The CEP relates the phase of the driving frequency to the envelope of the pulse and changing it may lead to the generation of one or two attosecond pulses if the duration is sufficiently short [13]. The rapid change of amplitude of a short pulse broadens the pulse frequency distribution and breaks the symmetrical distribution of electron paths between the positive and negative directions of the field [14, 15]. How this depends on the CEP is illustrated in figure 1.

For two-coloured, multi-cycle fields with commensurate frequencies, the total electric is given by

\[E(t) = E_1 \sin(\omega t) + E_2 \sin(n\omega t + \phi), \]

where \(E_1, E_2 \) are the amplitudes of the fundamental frequency and its \(n \)th harmonic (in this letter, \(n = 2 \)), respectively, and \(\phi \) is the relative phase between the two fields. The CEP is neglected in (2), since it has a negligible effect on the symmetry for multi-cycle pulses. Changing the relative phase of the two-coloured field may for instance result in one or two pulses per cycle [16] (see figure 2). One would assume that maximizing the asymmetry would also maximize the
harmonic yield, since the harmonic yield scales with the field maximum, which is maximized at biggest asymmetry—when the maxima of the two harmonics coincide. However, strong field approximation calculations showed [16] that there is a phase offset between maximum asymmetry and maximum harmonic yield. To truly understand and measure the impact of the sub-cycle structure, and enable the comparison between theory and experiment, the relative phase has to be measured independently from the process being studied and it has to be measured ‘on target’, where the harmonics are being generated.

For few-cycle pulses the phase is measured using a method known as stereo-ATI [17, 18]. In stereo-ATI the direction of the ionized electrons is measured and related to the CEP. In this letter we show that the stereo-ATI technique can be used to measure the relative phase of a two-coloured field with commensurate frequencies and also the relative strength of the two fields, since varying \(\phi \) has an impact on the field structure very similar to that of the CEP on short pulses [4].

1.1. Multi-cycle pulses

For multi-cycle pulses, the asymmetry due to variations in amplitude is very small from half-cycle to half-cycle. By approximating the amplitude as constant, the path of a directly ionized electron, leaving the atom at time \(t_0 \), can be seen as depending on the instant of ionization. This also decides its final energy, which is the same as the energy of an electron leaving the atom one half-cycle later, but in the opposite direction so that they do not overlap. The classical paths of electrons ionized by a strong one-coloured field are shown in figure 3(a). In this figure, the blue lines correspond to directly ionized electrons, which may reach a maximum energy of \(U_{p} \), where \(U_{p} \) is the ponderomotive energy given by

\[
U_{p} = \frac{q^2 |E|^2}{4m\omega^2},
\]

where \(q \) is the elementary charge, \(|E| \) the field amplitude, \(m \) the electron mass and \(\omega \) the field frequency. The green lines, instead, correspond to electrons that return to the ion core, where they may rescatter. The maximum energy attainable for the rescattered electrons is reached by elastic scattering when the velocity is completely reversed [19]. In this way, the electron may reach final electron energies up to \(10U_{p} \). Figure 3(b) shows the energy of directly ionized electrons and the maximum classical energy of rescattered electrons as a function of ionization time.

The acceleration of the free electrons is proportional to the field strength, and when the second harmonic is much weaker than the driving field, the electron paths through the field are approximately the same as for the monochromatic
The nonlinear ionization probability, however, is significantly influenced by the second harmonic \([6]\). As the electron energy depends on the ionization time, the same principle that was used for short pulses can be utilized for the two-colour case \([5, 22]\). This paper outlines a method for measuring the phase difference between the first and second harmonic of a multi-cycle, two-coloured field, by studying the asymmetry of the ATI spectrum.

2. Numerical computations

The calculations were done using a newly developed version of the code described in \([23]\), designed to run on graphical processing units. It solves the time-dependent Schrödinger equation in the single active electron approximation and a combined basis consisting of a radial grid and spherical harmonics.

Unless otherwise stated, the pulses were modeled using trapezoidal pulse envelopes. This is advantageous as the asymmetry due to the frequency mixing is present during a majority of the simulated pulse. To study the asymmetry for different \(\phi\), the CEP of the high-frequency wave was varied between pulses. Due to the relatively low intensity of the high-frequency pulse, changes to the asymmetry due to boundary effects caused by changing CEP are relatively small. The simulated pulse is illustrated in figure 4.

3. Theory

3.1. Asymmetry as a basis for phase metrology

The force, \(F\), on an electron in a two-colour laser field can for non-relativistic velocities be approximated as

\[
F = -qE_\omega [\sin(\omega t) + \sqrt{I_{\text{rel}}} \sin(2\omega t + \phi)],
\]

(4)

where \(E_\omega\) is the envelope of the driving field, \(I_{\text{rel}}\) the relative intensity of the second harmonic, \(q\) the elementary charge, \(\omega\) the driving field frequency. The carrier waves are shown for four different values of \(\phi\) in figure 2.

In figure 5 a schematic ATI spectrum is shown in red. In the monochromatic case, there would be an approximate symmetry between the directions of the field. The addition of the second harmonic, however, breaks that symmetry.

The energy of the electrons depend on when during the half-cycle of the field they are ionized, as shown in the right of figure 3. This means that the energy distribution of electrons in the positive direction of the field, \(P_+(E)\), will be different from that in the negative direction of the field, \(P_-(E)\).

If \(\sin(\omega t)\) and \(\sin(2\omega t + \phi)\) constructively interfere at \(t = t'\) they interfere destructively at \(t = t' + \pi\). This is shown in figure 2. As a result, the parts of the sub-half cycle when the driving field is positive, for which there is constructive interference, are the same parts of the sub-half cycle when the driving field is negative, for which the interference is
destructive, and vice versa. This will in turn mean that an overrepresentation, due to constructive interference, of electrons with energy E in one direction of the field will coincide with an underrepresentation, due to destructive interference, in the other.

In order to gain information about ϕ, the asymmetry between $P_s(E)$ and $P_p(E)$ can be studied. Analogously with [17, 18], the asymmetry of two energy ranges, ε_l and ε_h, of the ATI spectrum will be studied in this paper. The subscripts l and h will below be used to differentiate between the low and the high energy range.

To provide metrics for the respective asymmetries of ε_l and ε_h, $A_l = A(\varepsilon_l)$ and $A_h = A(\varepsilon_h)$ were used, where

$$A(\varepsilon) = \frac{\int_{\varepsilon} dE [P_s(E) - P_p(E)]}{\int_{\varepsilon} dE [P_s(E) + P_p(E)]}$$

(5)

is the asymmetry over an energy interval ε of the ATI spectrum.

For different values of ϕ, a two-colour pulse can be represented in the A_l-A_h plane. Figure 6(a) illustrates this for a hypothetical wave and $\phi \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}\}$. As can be seen in figure 2, changing the value of ϕ by π completely inverts the asymmetry coming from the second harmonic. Because of this, figure 6(a) can be extrapolated to give the values in figure 6(b).

Denote the angular coordinate in the A_l-A_h plane θ. As is shown in figure 6(c), there exists for certain A_l-A_h representations a bijective mapping between ϕ and θ. By choosing ε_l and ε_h that result in such a mapping, it is possible to gain a measure of ϕ.

It is interesting to note that neither $\phi \rightarrow A_l$ or $\phi \rightarrow A_h$ are injective, which can easily be seen in figure 6(c). As injectivity is a requirement for inversion, it would not be possible to determine a non-ambiguous measure of ϕ by observing the asymmetry of a single range of the ATI spectrum, which justifies the previous selection of two energy ranges.

3.2. Measurement of the absolute phase difference

The second harmonic gives rise to constructive and destructive interference during predetermined parts of each cycle. During experiments it is important to be certain of which data point in the A_l-A_h plane corresponds to which ϕ. However, even if the values of θ in the mapping

$$\theta(\phi) \in \{\theta(\phi_0), \theta\left(\phi_0 + \frac{2\pi}{N}\right), \ldots, \theta\left(\phi_0 - (N - 1)\frac{2\pi}{N}\right)\}$$

(6)

have been ascertained for given ε_l and ε_h by changing ϕ in increments of $\frac{2\pi}{N}$, it can be risky to speculate on the value of ϕ_0.

One solution to this problem is found in the right-hand side of figure 3, which shows that there is only one ionization time per half-cycle, here called t_π, for which electrons can classically obtain energies as high as $10U_p$. Due to quantum mechanical effects, it is possible for electrons with other ionization times to obtain equally high energies, but the probability of doing so is small for ionization times which notably differ from t_π. Because of this, the highest asymmetry near $10U_p$ is observed when the peak of the second harmonic occur at t_π. In other words, for some small δ, $A([10U_p - \delta, 10U_p + \delta])$ will be maximized when the peak of the second harmonic in the positive field direction occurs at t_π. The peak of the second harmonic occurring at $t_\pi + \pi$, on the other hand, maximizes $-A([10U_p - \delta, 10U_p + \delta])$.

3.3. Selection of ε_l and ε_h

Because the asymmetries of ε_l and ε_h are measured to determine ϕ, it is important how the ATI spectrum is divided — the effect of the second harmonic on $P_s(E)$ and $P_p(E)$ is not equal for all E. To make the selection of ε_l and ε_h, $[0, 10U_p]$ was sectioned into 10 equally spaced sections, as illustrated in figure 5. The energy was cut at $10U_p$, because it is the highest energy the electrons can classically obtain [19], as illustrated in figure 3(b).
The intensity of the pulse used to generate the spectrum was \(I_{\text{at}} = 0.15 \) and the phase difference was \(\phi = \frac{\pi}{4} \).

Figure 7. The ATI spectra in the positive and negative directions of a two-colour field, \(P_+ \) and \(P_- \), shown in blue and green respectively. The peaks of the spectra are outlined in darker colours. The relative field, which can be seen by observing the peaks of the spectra. For high energies, \(P_+ \) is dominant, whereas \(P_- \) dominates for low energies. When \(\phi \) is varied, the asymmetry of electrons with an energy of 10\(U_p \) is largest when the peak of the second harmonic occurs slightly after \(\tau \).

Figure 8(a) shows the \(A_1-A_0 \) representation of a two-colour pulse. In figure 8(b), the \(\theta-\phi \) mapping can be seen, where \(\theta \) is defined as in figure 6(c). For the pulse and energy ranges selected in figure 8,

\[
\frac{d\phi}{d\theta} \bigg|_{\theta \in (0, \pi)} \ll \frac{d\phi}{d\theta} \bigg|_{\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4} \right]},
\]

giving a lower error \(e_\phi \) of \(\phi \) for a given error \(e_\theta \) in \(\theta \) when \(\phi \) is close to 0 and \(\pi \). If \(\phi \) is close to \(\frac{\pi}{4} \) or \(\frac{3\pi}{4} \), another selection of energy ranges might be preferable.

A problem which might arise due to careless selection of the energy ranges is that \(\theta(\phi) \) stops being bijective. This can be seen in figure 9(c), where neither \(\phi(0) \) nor \(\phi(\pi) \) are unique. This can always be circumvented by proper selection of energy ranges.

As illustrated in figure 9, where \(I_{\text{at}} \) is increased exponentially between figures (a)–(c), the asymmetry increases with \(I_{\text{at}} \). This is to be expected, as the addition of the second harmonic is the cause of the asymmetry, and the radius of the \(A_1-A_0 \) representation can be used to give information about the relative intensity. Note that the \(A_1-A_0 \) representation can change shape as the relative intensity increases. In figure 9(c), the \(\theta(\phi) \) has lost the bijectivity it had for the cases shown in figures 9(a) and (b).

The asymmetry caused by the second harmonic in the two-colour case can be compared to that caused by rapid change of amplitude during few-cycle pulses—changing the CEP affects the asymmetry of the short pulse just as changing \(\phi \) affects the asymmetry of the two-colour field. The similarities of two-colour fields to short pulses can be seen in figure 10, where the \(A_1-A_0 \) representation of two short pulses is shown. The pulse shown in figure 10(a) is of half the duration of the one in figure 10(b). It also has significantly higher asymmetry. For short pulses the rapid amplitude change is the cause of the asymmetry. As the amplitude gradient is greater for short pulses, the asymmetry is as well.

5. Conclusions

By adding the second harmonic to a strong field, it is possible to control the effects it has on matter. To control the effects to an as accurate degree as possible, it is important to know the phase difference, \(\phi \), between the two harmonics with good precision. We have shown that it is possible to measure \(\phi \) by using stereo-ATI. The process consists of selecting two ranges of the ATI spectrum and mapping their respective asymmetry to different relative phases. As the asymmetry is caused by the second harmonic, it is also possible to determine the relative intensity of the pulses by measuring the magnitude of the asymmetry.

The second harmonic of a two-colour field can be compared to the rapid change of amplitude of a short pulse. In both cases, the asymmetry of each cycle results in an asymmetry.
asymmetrical distribution of ionized electrons. The effect is strengthened by increasing the intensity of the second harmonic and decreasing the pulse width respectively. The asymmetry of the electron distribution can be used to measure f and the CEP respectively.

Acknowledgments

The calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc, Lund University, in project no. SNIC 2014/1-276.

This work was supported in part by funding from the Swedish Foundation for Strategic Research, the Swedish Research Council and the NSF under grant PHY-1307083.

Note added in proof. After this paper was accepted, a closely related experimental work was published by Prince K C et al [26].

References

[1] Perry M D and Crane J K 1993 Phys. Rev. A 48 R4051–4
[2] Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S and McIver J K 1995 Phys. Rev. A 51 R3414–7
[3] Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M and Corkum P B 2006 Nat. Phys. 2 781–6
[4] Mauritsson J, Dahlström J M, Mansten E and Fordell T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134003
[5] Nguyen H S, Bandrauk A D and Ullrich C A 2004 Phys. Rev. A 69 1094–622
[6] Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlström J M, Mauritsson J, Johnsson P, Arnold C L and L’Huillier A 2013 Sci. Rep. 3 2045–322
[7] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509–13
[8] Reichert J, Holzwarth R, Udem T and Hänsch T 1999 Opt. Commun. 172 59–68
[9] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233–7
[10] Goulielmakis E 2004 Science 305 1267–9
[11] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545–91
[12] Jones D J 2000 Science 288 635–9
[13] Baluška A et al 2003 Nature 421 611–5
[14] Paulus G G, Grasbon F, Walther H, Villenesi P, Nisoli M, Stagira S, Priori E and De Silvestri S 2001 Nature 414 182–4
[15] Paulus G G, Lindner F, Walther H, Baluška A, Goulielmakis E, Lezzi M and Krausz F 2003 Phys. Rev. Lett. 91
[16] Mauritsson J, Johnsson P, Gustafsson E, L’Huillier A, Schäfer K J and Gaarde M B 2006 Phys. Rev. Lett. 97 013001

[17] Wittmann T, Horvath B, Helml W, Schäetzl M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nat. Phys. 5 357–62

[18] Rathje T, Johnson N G, Möller M, Süßmann F, Adolph D, Kübel M, Kienberger R, Kling M F, Paulus G G and Sayler A M 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074003

[19] Paulus G, Becker W and Walther H 1995 Phys. Rev. A 52 4043–53

[20] Dahlström J M, Fordell T, Mansten E, Ruchon T, Swoboda M, Klünser K, Gisselbrecht M, L’Huillier A and Mauritsson J 2009 Phys. Rev. A 80 033836

[21] Dahlström J M, L’Huillier A and Mauritsson J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 095602

[22] Yin Y Y, Chen C, Elliott D S and Smith A V 1992 Phys. Rev. Lett. 69 2353–6

[23] Schäfer K J 2009 Numerical Methods in Strong Field Physics vol Strong Field Laser Physics (Berlin: Springer) pp 111–45

[24] Paulus G G, Lindner F, Milosevic D B and Becker W 2004 Phys. Scr. 110 120

[25] Petersson C L M 2014 Above-threshold ionisation with two-colour laser fields Master’s Thesis Lund University(URL http://lup.lub.lu.se/student-papers(record/4856377/file/4856382.pdf)

[26] Prince K C et al 2016 Nature Photonics 10 179–9