A DIRECT METHOD OF MOVING PLANES FOR LOGARITHMIC SCHRÖDINGER OPERATOR

RONG ZHANG, VISHVESH KUMAR AND MICHAEL RUIZHANSKY

Abstract. In this paper, we study the radial symmetry and monotonicity of nonnegative solutions to nonlinear equations involving the logarithmic Schrödinger operator \((I - \Delta)^{\log}\) corresponding to the logarithmic symbol \(\log(1 + |\xi|^2)\), which is a singular integral operator given by

\[
(I - \Delta)^{\log}u(x) = c_N\text{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^N} \kappa(|x - y|) dy,
\]

where \(c_N = \pi^{-\frac{N}{2}}, \kappa(r) = 2^{1 - \frac{N}{2}}r^\frac{N}{2} K_{\frac{N}{2}}(r)\) and \(K_\nu\) is the modified Bessel function of the second kind with index \(\nu\). The proof hinges on a direct method of moving planes for the logarithmic Schrödinger operator.

1. Introduction

The study of Schrödinger equations received a great deal of attention from researchers in the past decades because of its vast applications in several areas of mathematics and mathematical physics. In particular, Schrödinger equations arise in quantum field theory and in the Hartree-Fock theory (see [8, 21, 22, 25]). Recently, there is a surge of interest to investigate integrodifferential operators of order close to zero and associated linear and nonlinear integrodifferential equations (see [2, 7, 18, 20, 23, 24]). In particular, the logarithmic Laplacian and the logarithmic Schrödinger operator are two interesting examples of such a class of operators. The logarithmic Laplacian was first introduced by Chen and Weth in [2] as a limit of fractional Laplacian (see also [3, 4] for the spectral properties of the logarithmic Laplacian). The logarithmic Schrödinger operator \((I - \Delta)^{\log}\) (see [13]) and the logarithmic Laplacian \(L_\Delta\) (see [2, 16, 14, 1]) have the similar behavior locally concerning to the singularity of kernels but the logarithmic Schrödinger operator eliminates the integrability problem of the logarithmic Laplacian at infinity. To define the logarithmic Schrödinger operator, let us begin with the following observation

\[
\lim_{s \to 0^+} (I - \Delta)^s u(x) = u(x), \quad \text{for } u \in C^2(\mathbb{R}^N),
\]

(1.1)

where for \(s \in (0, 1)\), the operator \((I - \Delta)^s\) stands for the relativistic Schrödinger operator, for sufficiently regular function \(u : \mathbb{R}^N \to \mathbb{R}\), which can be represented via hypersingular...
integral (1.1) (see [11]),

\[
(I - \Delta)^s u(x) = u(x) + c_{N,s} \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^N \setminus B_\epsilon(0)} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \omega_s(|x - y|) dy,
\]

(1.2)

where \(c_{N,s} = \frac{\pi^{\frac{N}{2}}}{\Gamma(-s)}\) is a normalization constant and the function \(\omega_s\) is given by

\[
\omega_s(r) = 2^{1 - \frac{N+2s}{2}} r^{\frac{N+2s}{2}} K_{\frac{N+2s}{2}}(r) = \int_0^{+\infty} t^{-1 + \frac{N+2s}{2}} e^{-t - \frac{r^2}{2t}} dt.
\]

(1.3)

Furthermore, if \(u \in C^2(\mathbb{R}^N)\), then \((I - \Delta)^s u(x)\) is well defined by (1.2) for every \(x \in \mathbb{R}^N\). Here the function \(K_\nu\) is the modified Bessel function of the second kind with index \(\nu > 0\) and it is given by

\[
K_\nu(r) = \frac{(\frac{\nu}{2})^{\frac{1}{2}} r^{\nu} e^{-r}}{\Gamma(\frac{\nu}{2} + 1)} \int_0^{\infty} (1 + \frac{t}{2})^{-\frac{\nu}{2}} e^{-rt} r^{\nu - 1} dt,
\]

for more properties of \(K_\nu\), see e.g. [13, 9, 10, 12, 17] and the references therein.

It is well known that \(K_\nu\) is a real and positive function satisfying

\[
K'_\nu(r) = -\frac{\nu}{r} K_\nu(r) - K_{\nu-1}(r) < 0,
\]

(1.4)

for all \(r > 0\), \(K_\nu = K_{-\nu}\) for \(\nu > 0\). Furthermore, for \(\nu > 0\) (see [12, 17])

\[
K_\nu(r) \sim \begin{cases}
\frac{\Gamma(\nu)}{\sqrt{\pi}} \left(\frac{r}{2}\right)^\nu, & r \to 0, \\
\sqrt{\frac{\pi}{r}} e^{-r}, & r \to \infty.
\end{cases}
\]

(1.5)

It follows from (1.1) that one may expect a Taylor expansion with respect to parameter \(s\) of the operator \((I - \Delta)^s\) near zero for \(u \in C^2(\mathbb{R}^N)\) and \(x \in \mathbb{R}^N\) as

\[
(I - \Delta)^s u(x) = u(x) + s(I - \Delta)^{log}u(x) + o(s), \quad s \to 0^+.
\]

(1.6)

The logarithmic Schrödinger operator \((I - \Delta)^{log}\) appears as the first order term in the above expansion.

In this paper, we study the integrodifferential operator \((I - \Delta)^{log}\) corresponding to the logarithmic symbol \(\log(1 + |\xi|^2)\), which is a singular integral operator given by

\[
(I - \Delta)^{log} u(x) = c_N P.V. \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \kappa(|x - y|) dy,
\]

(1.7)

where \(c_N = \pi^{-\frac{N}{2}} \Gamma(\frac{N}{2})\), \(P.V.\) stands for the Cauchy principal value of the integral, \(\kappa(r) = 2^{1-\frac{N}{2}} r^{\frac{N}{2}} K_{\frac{N}{2}}(r)\) and \(K_\nu\) is the modified Bessel function of second kind with index \(\nu\). One can also easily deduce from (1.4) that \(\kappa'(r) < 0\) for \(r > 0\). Using the expression (1.7), one can define \((I - \Delta)^{log}\) for a quite large class of functions \(u\). To illustrate this, define the space \(L_0(\mathbb{R}^N)\) as the space of locally integrable functions \(u : \mathbb{R}^N \to \mathbb{R}\) such that

\[
\|u\|_{L_0(\mathbb{R}^N)} := \int_{\mathbb{R}^N} \frac{|u(x)| e^{-|x|}}{(1 + |x|)^{N+2s}} dx < +\infty.
\]
Then, it was proved by [13, Proposition 2.1] that for \(u \in L_0(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) which is also Dini continuous at some \(x \in \mathbb{R}^N \), the quantity \(\{(I - \Delta)\log u\}(x) \) is well defined by the formula (1.7). Let us recall the definition of Dini continuity. Let \(U \) be a measurable subset of \(\mathbb{R}^N \) and let \(u : U \to \mathbb{R} \) be a measurable function. The modulus of continuity \(\Psi_{u,x,U} : (0, +\infty) \to [0, +\infty) \) of \(u \) at a point \(x \in U \) is defined by

\[
\Psi_{u,x,U}(r) := \sup_{y \in U, |x-y| \leq r} |u(x) - u(y)|.
\]

We call the function \(u \) Dini continuous at \(x \) if

\[
\int_0^1 \frac{\Psi_{u,x,U}(r)}{r} \, dr < \infty.
\]

Using the generalized direct method of moving planes, in this note we obtain the radial symmetry and monotonicity of nonnegative solutions for the nonlinear equations involving the logarithmic Schrödinger operator (see Theorem 1.1), namely, we consider the nonlinear Schrödinger equation

\[
(I - \Delta)\log u(x) + mu(x) = u^p(x), \quad x \in \mathbb{R}^N, \tag{1.8}
\]

with \(m > 0 \) and \(u(x) \geq 0 \) for all \(x \in \mathbb{R}^N \).

The following result present symmetry and monotonicity properties of the Schrödinger equation (1.8).

Theorem 1.1. Let \(u \in L_0(\mathbb{R}^N) \) be a nonnegative Dini continuous solution of (1.8) with \(m > 0 \) and \(1 < p < \infty \). If

\[
\lim_{|x| \to \infty} u(x) = a < \left(\frac{m}{p} \right)^{\frac{1}{p-1}}, \tag{1.9}
\]

then \(u \) must be radially symmetric and monotone decreasing about some point in \(\mathbb{R}^N \).

Remark 1.2. The condition (1.9) in Theorem 1.1 is necessary for applying the method of moving planes using the decay at infinity principle (Theorem 2.3).

The paper is organized as follows: In Section 2, we prove some results for the logarithmic Schrödinger operator. By the direct method of moving planes, we obtain the symmetry and monotonicity of nonnegative solutions for the nonlinear equations involving logarithmic Schrödinger operator in Section 3.

2. Key ingredients for the method of moving planes

This section is devoted to developing basic and key results needed to apply the method of moving planes for establishing the proof of our main result in the next section. We first present some basic notation and nomenclatures which will be beneficial for rest of the paper.

Choose an arbitrary direction, say, the \(x_1 \)-direction. For arbitrary \(\lambda \in \mathbb{R} \), let

\[
T_\lambda = \{ x \in \mathbb{R}^N \mid x_1 = \lambda \}.
\]
be the moving plane, and let
$$\Sigma_\lambda = \{ x \in \mathbb{R}^N \mid x_1 < \lambda \}$$
be the region to the left of the plane \(T_\lambda \), and
$$x^\lambda = (2\lambda - x_1, x_2, \ldots, x_N)$$
be the reflection of \(x \) about the plane \(T_\lambda \).

By denoting \(u(x^\lambda) := u_\lambda(x) \), we define
$$\omega_\lambda(x) := u_\lambda(x) - u(x), \quad x \in \Sigma_\lambda,$$
to compare the values of \(u(x) \) and \(u_\lambda(x) \).

The following results on the strong maximum principle for the operator \((\mathcal{I} - \Delta)^{\log} \) can be deduced from [19, Theorem 1.1] (see also [15] and [13, Theorem 6.1]).

Lemma 2.1. (Strong maximum principle) Let \(\Omega \subset \mathbb{R}^N \) be a domain, and let \(u \in L_0(\mathbb{R}^N) \) be a continuous function on \(\bar{\Omega} \) satisfying
$$\begin{cases}
(\mathcal{I} - \Delta)^{\log} u(x) \geq 0, & \text{in } \Omega, \\
u(x) \geq 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \tag{2.1}$$
then \(u > 0 \) in \(\Omega \) or \(u = 0 \) a.e. in \(\mathbb{R}^N \).

Now, we will prove the following maximum principles for the logarithmic Schrödinger operator.

Theorem 2.2. (Maximum principle for antisymmetric functions) Let \(\Omega \) be a bounded domain in \(\Sigma_\lambda \). Assume that \(\omega_\lambda \in L_0(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) is Dini continuous on \(\Omega \) and is lower semi-continuous on \(\bar{\Omega} \). If
$$\begin{cases}
(\mathcal{I} - \Delta)^{\log} \omega_\lambda(x) \geq 0, & \text{in } \Omega, \\
\omega_\lambda(x) \geq 0, & \text{in } \Sigma_\lambda \setminus \Omega, \\
\omega_\lambda(x^\lambda) = -\omega(x), & \text{in } \Sigma_\lambda,
\end{cases} \tag{2.2}$$
then
$$\omega_\lambda \geq 0 \quad \text{in } \Omega. \tag{2.3}$$
Furthermore, if \(\omega_\lambda(x) = 0 \) at some point in \(\Omega \), then we have
$$\omega_\lambda = 0, \quad \text{a.e. in } \mathbb{R}^N. \tag{2.4}$$
These conclusions hold for unbounded region \(\Omega \) if we further assume that
$$\liminf_{|x| \to \infty} \omega_\lambda(x) \geq 0.$$

Proof. If \(\omega_\lambda \) is not nonnegative on \(\Omega \), then the lower semi-continuity of \(\omega_\lambda \) on \(\bar{\Omega} \) implies that there exists a \(x^\omega \in \Omega \) such that
$$\omega_\lambda(x^\omega) := \min_{\Omega} \omega_\lambda(x) < 0.$$
One can further deduce from (2.2) that \(x^o \) is in the interior of \(\Omega \). It follows that
\[
(I - \Delta)^{\log \omega}(x^o) = c_N \text{P.V.} \int_{\mathbb{R}^N} \frac{\omega(x^o) - \omega(y)}{|x^o - y|^N} \kappa(|x^o - y|)dy
\]
\[
= c_N \text{P.V.} \left(\int_{\Sigma} \frac{\omega(x^o) - \omega(y)}{|x^o - y|^N} \kappa(|x^o - y|)dy + \int_{\Sigma} \frac{\omega(x^o) - \omega(y^\lambda)}{|x^o - y^\lambda|^N} \kappa(|x^o - y^\lambda|)dy \right).
\] (2.5)
Since \(|x^o - y| \leq |x^o - y^\lambda|\) we have \(\frac{1}{|x^o - y|} \geq \frac{1}{|x^o - y^\lambda|} \) and \(\kappa(|x^o - y|) \geq \kappa(|x^o - y^\lambda|) \) as \(\kappa \) is a decreasing function, and, therefore,
\[
\frac{\omega(x^o) - \omega(y)}{|x^o - y|^N} \kappa(|x^o - y|) \leq \frac{\omega(x^o) - \omega(y^\lambda)}{|x^o - y^\lambda|^N} \kappa(|x^o - y^\lambda|),
\]
since \(\omega(x^o) - \omega(y^\lambda) \leq 0 \).

Thus, we obtain from (2.5) that
\[
(I - \Delta)^{\log \omega}(x^o) \leq c_N \text{P.V.} \int_{\Sigma} \left(\frac{\omega(x^o) - \omega(y)}{|x^o - y|^N} + \frac{\omega(x^o) - \omega(y^\lambda)}{|x^o - y^\lambda|^N} \right) \kappa(|x^o - y^\lambda|)dy
\]
\[
= c_N \text{P.V.} \int_{\Sigma} \frac{2\omega(x^o)}{|x^o - y^\lambda|^N} \kappa(|x^o - y^\lambda|)dy < 0,
\] (2.6)
which contradicts (2.2). Therefore, our assumption is wrong and consequently, we have \(\omega(x) \geq 0 \) in \(\Omega \).

Now we have proved that \(\omega(x) \geq 0 \) in \(\Omega \). If there is some point \(\bar{x} \in \Omega \) such that \(\omega(\bar{x}) = 0 \), then from Lemma 2.1, we derive immediately \(\omega = 0 \) a.e. in \(\mathbb{R}^N \).

For unbounded domain \(\Omega \), the condition
\[
\liminf_{|x| \to \infty} \omega(x) \geq 0,
\]
ensures that the negative minimum of \(\omega \) must be attained at some point \(x^o \), then we can derive the same contradiction as above.

This completes the proof of Theorem 2.2. \(\square \)

The following decay at infinity will also be necessary for proving subsequent results.

Theorem 2.3. (Decay at infinity) Let \(\Omega \) be an unbounded domain in \(\Sigma \). Suppose that a Dini continuous \(\omega \in L_0(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) is a solution to
\[
\begin{cases}
(I - \Delta)^{\log \omega}(x) + c(x)\omega(x) \geq 0, & \text{in } \Omega, \\
\omega(\lambda) \geq 0, & \text{in } \Sigma \setminus \Omega, \\
\omega(x^\lambda) = -\omega(x), & \text{in } \Sigma_\lambda,
\end{cases}
\] (2.7)
with the measurable function \(c(x) \) such that
\[
\liminf_{|x| \to \infty} |x|^\frac{N+\lambda}{2} c(x) \geq 0.
\] (2.8)
Then there exists a constant $R_0 > 0$, such that if
\[\omega(x^0) = \min_\Omega \omega(x) < 0, \]
then
\[|x^0| \leq R_0. \]

Proof. We prove the assertion by contradiction. Suppose that \((2.10)\) is false, then by \((2.7)\) and \((2.9)\), we have
\[\omega(x^0) = \min_{\Sigma_\lambda} \omega(x) < 0. \]

After a direct calculation, we obtain
\[
(I - \Delta)^{\log\omega(x^0)} = c_N P.V. \int_{\mathbb{R}^N} \frac{\omega(x^0) - \omega(y)}{|x^0 - y|^N} \kappa(|x^0 - y|) dy \\
= c_N P.V. \int_{\Sigma_\lambda} \left(\frac{\omega(x^0) - \omega(y)}{|x^0 - y|^N} \kappa(|x^0 - y|) + \frac{\omega(x^0) - \omega(y^\lambda)}{|x^0 - y^\lambda|^N} \kappa(|x^0 - y^\lambda|) \right) dy \\
\leq c_N P.V. \int_{\Sigma_\lambda} \frac{2\omega(x^0)}{|x^0 - y^\lambda|^N} \kappa(|x^0 - y^\lambda|) dy < 0.
\]

(2.11)

Now, we fix λ and when $|x^0| \geq \lambda$, we have $B_{|x^0|}(\bar{x}) \subset \bar{\Sigma}_\lambda := \mathbb{R}^N \setminus \Sigma_\lambda$ with $\bar{x} = (3|x^0| + x_1^0, (x^0)')$. Then, for $y \in \bar{\Sigma}_\lambda$, if $|x^0| \geq R_\infty$, we can deduce that $|x^0 - y| \leq |x^0 - \bar{x}| + |\bar{x} - y| \leq |x^0| + 3|x^0| = 4|x^0|$ which together with the fact that κ is a decreasing function implies that
\[
\frac{\kappa(|x^0 - y|)}{|x^0 - y|} \geq \frac{\kappa(|4x^0|)}{4|x^0|}.
\]

Thus, from \((1.5)\) and $\kappa(r) = 2^{1-n/2} \mathcal{K}_N^N(r)$, if R_∞ is sufficiently large, we have
\[
\int_{\Sigma_\lambda} \frac{1}{|x^0 - y|^N} \kappa(|x^0 - y^\lambda|) dy = \int_{\Sigma_\lambda} \frac{\kappa(|x^0 - y|)}{|x^0 - y|^N} dy \geq \int_{B_{|x^0|}(\bar{x})} \frac{\kappa(|4x^0|)}{|4x^0|^N} dy \\
\geq \int_{B_{|x^0|}(\bar{x})} \frac{2^{1-n/2} \mathcal{K}_N^N(|4x^0|)}{|4x^0|^N} dy \\
\geq \frac{c_N \omega_N}{2^{1-n/2} |x^0|^{1+n/2} e^{4|x^0|}} := \frac{C}{|x^0|^{1+n/2} e^{4|x^0|}},
\]

where $C = c_N \omega_N 2^{-n/2}$ is a positive constant.

It follows that
\[0 \leq (I - \Delta)^{\log\omega(x^0)} + c(x^0)\omega(x^0) \leq \left(\frac{C}{|x^0|^{1+n/2} e^{4|x^0|}} + c(x^0) \right) \omega(x^0), \]
A DIRECT METHOD OF MOVING PLANES FOR LOGARITHMIC SCHRODINGER OPERATOR

or equivalently,

\[
C \frac{1}{|x'|^{\frac{N-N}{2}}} e^{4|x'|} + c(x^o) \leq 0.
\]

Now, if \(|x^o|\) is sufficiently large, this would contradict (2.8). Therefore, (2.10) holds.

This completes the proof of Theorem 2.3. \(\square\)

3. PROOF OF THE MAIN THEOREM

Proof of Theorem 1.1. Let \(T_\lambda, \Sigma_\lambda, x^\lambda\) and \(\omega_\lambda\) be defined as in the previous section. Then at the points where \(\omega_\lambda(x) < 0\), it is easy to verify that, for \(\xi_\lambda(x) \in (u_\lambda(x), u(x))\), we have

\[
(I - \Delta)^{\log \omega_\lambda(x)} + m \omega_\lambda(x) = u_\lambda - u(x) = pu^{p-1}(x) \omega_\lambda(x) \geq pu^{p-1}(x) \omega_\lambda(x),
\]

because \(\omega_\lambda(x) < 0\), and \(\xi_\lambda(x) < u(x)\).

Step 1. We will show that for sufficiently negative \(\lambda\),

\[
\omega_\lambda(x) \geq 0, \quad x \in \Sigma_\lambda.
\]

First, from the assumption (1.9), for each fixed \(\lambda\), \(\lim_{|x| \to \infty} \omega_\lambda(x) = 0\). In fact, by (1.9), we have \(\lim_{|x| \to \infty} u(x) = a\), and \(\lim_{|x| \to \infty} u_\lambda(x) = a\) implying that \(\lim_{|x| \to \infty} \omega_\lambda(x) = 0\).

Thus, if (3.2) is false, then the negative minimum of \(\omega_\lambda\) can be obtained at some point, say, \(x^o\) in \(\Sigma_\lambda\), that is,

\[
\omega_\lambda(x^o) = \min_{\Sigma_\lambda} \omega_\lambda(x) < 0.
\]

Set \(c(x) := m - pu^{p-1}(x)\) in (3.1) and then, the assumption (1.9) implies that \(c \in L^\infty(\mathbb{R}^N)\) and

\[
\lim_{|x| \to \infty} c(x) \geq 0.
\]

Consequently, from Theorem 2.3 it follows that there exists \(R_o > 0\) (independent of \(\lambda\)), such that

\[
|x^o| \leq R_o.
\]

Therefore, by choosing \(\lambda < -R_o\) and consequently, \(|x^\lambda| > R_o\) for \(x \in \Sigma_\lambda\), we obtain by (3.3) that

\[
\omega_\lambda(x) \geq 0, \quad x \in \Sigma_\lambda.
\]

Step 2. Step 1 provides a starting point, from which we can now move the plane \(T_\lambda\) to the right as long as (3.2) holds to its limiting position. Define

\[
\lambda_o := \sup\{\lambda \mid \omega_\mu(x) \geq 0, \forall x \in \Sigma_\mu, \forall \mu \leq \lambda\}.
\]

By (3.3), we know \(\lambda_o < \infty\).

Next, we will show via a contradiction argument that

\[
\omega_{\lambda_o}(x) \equiv 0, \quad \forall x \in \Sigma_{\lambda_o}.
\]

Suppose, on the contrary, that

\[
\omega_{\lambda_o}(x) \geq 0, \quad \text{and} \quad \omega_{\lambda_o}(x) \neq 0, \quad \text{in} \Sigma_{\lambda_o},
\]

\[
(3.6)
\]
then we must have
\[\omega_{\lambda_o}(x) > 0, \quad \forall \ x \in \Sigma_{\lambda_o}. \] (3.7)

In fact, if (3.7) is violated, then there exists a point \(\hat{x} \in \Sigma_{\lambda_o} \) such that
\[\omega_{\lambda_o}(\hat{x}) = \min_{\Sigma_{\lambda_o}} \omega_{\lambda_o}(x) = 0. \]

It means that \(u_{\lambda_o}(\hat{x}) = u(\hat{x}) \). Then it follows from (3.1) that
\[(I - \Delta)^{\log \omega_{\lambda_o}}(\hat{x}) = u_{\lambda_o}^p(\hat{x}) - u^p(\hat{x}) = u^p(\hat{x}) - u^p(\hat{x}) = 0. \]

Hence, Theorem 2.2 implies that \(\omega_{\lambda_o}(\hat{x}) \equiv 0 \) in \(\Sigma_{\lambda_o} \), which contradicts (3.6). Thus (3.7) holds.

Now, we will show that the plane \(T_{\lambda} \) can be moved further right. More precisely, there exists an \(\epsilon > 0 \) such that, for any \(\lambda \in [\lambda_o, \lambda_o + \epsilon) \), we have
\[\omega_{\lambda}(x) \geq 0, \quad x \in \Sigma_{\lambda}. \] (3.8)

Once it is proved this will contradict the definition of \(\lambda_o \). Therefore, (3.5) must be valid.

Let us now prove (3.8). In fact, by (3.7), we have \(\omega_{\lambda_o}(x) > 0, \ x \in \Sigma_{\lambda_o} \), which in turn implies that there is a constant \(c_o > 0 \) and \(\delta > 0 \) such that
\[\omega_{\lambda_o}(x) \geq c_o > 0, \quad x \in \Sigma_{\lambda_o - \delta} \cap B_{R_o}(0). \]

Since \(\omega_{\lambda} \) is continuous with respect to \(\lambda \) there exists an \(\epsilon > 0 \) such that for \(\lambda \in [\lambda_o, \lambda_o + \epsilon) \) we have
\[\omega_{\lambda}(x) \geq 0, \quad x \in \Sigma_{\lambda_o - \delta} \cap B_{R_o}(0). \] (3.9)

Moreover, combining (3.3) with (3.9), we deduce that \(w_{\lambda}(x) \geq 0 \) on \(\Sigma_{\lambda_o - \delta} \).

To proceed with the proof, we need the following small volume maximum principle ([13, Theorem 6.1 (iii)] and [19, Theorem 1.3]).

Lemma 3.1. Let \(\Omega \) be a open set of \(\mathbb{R}^N \). Consider the following problem on \(\Omega \):
\[
\begin{cases}
(I - \Delta)^{\log u}(x) \geq c(x)u, & \text{in } \Omega, \\
u \geq 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\] (3.10)

with \(c \in L^\infty(\mathbb{R}^N) \).

Then, there exists \(\delta > 0 \) such that for every open set \(\Omega \subset \mathbb{R}^N \) with \(|\Omega| \leq \delta \) and any solution \(u \in \mathcal{V}_{\omega}(\Omega) \) of (3.10) in \(\Omega \), where the space \(\mathcal{V}_{\omega}(\Omega) \) is given in [13, Section 6], we have \(u \geq 0 \) in \(\mathbb{R}^N \).

Consequently, according to Lemma 3.1 (by taking \(\Omega = (\Sigma_{\lambda} \setminus \Sigma_{\lambda_o - \delta}) \cap B_{R_o}(0) \)), we obtain that (3.8) holds.

The arbitrariness of the \(x_1 \)-direction leads to the radial symmetry of \(u(x) \) about some point in \(\mathbb{R}^N \), and the monotonicity is a consequence of the fact that (3.4) holds.

This completes the proof of the Theorem 1.1. \(\square \)
ACKNOWLEDGMENTS

RZ is supported by the Postdoctoral Fellowship Program of CPSF under Grant No GZC20232913. VK and MR are supported by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations, the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021) and by FWO Senior Research Grant G011522N. MR is also supported by EPSRC grant EP/R003025/2.

REFERENCES

[1] H. A. Chang-Lara, A. Saldaña, Classical solutions to integral equations with zero order kernels. Math. Ann., (2023).
[2] H. Chen, T. Weth, The Dirichlet problem for the logarithmic Laplacian. Comm. in Part. Diff. Eq. 44(11) 1100-1139 (2019).
[3] H. Chen, L. Véron, Bounds for eigenvalues of the Dirichlet problem for the logarithmic Laplacian. Adv. Calc. Var. 16(3) 541-558 (2023).
[4] H. Chen, D. Hauer, T. Weth, An extension problem for the logarithmic Laplacian. arXiv:2312.15689 (2023).
[5] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991): 615-622.
[6] W. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian. Adv. Math., 308 (2017): 404-437.
[7] E. Correa, A. de Pablo, Nonlocal operators of order near zero, Journal of Mathematical Analysis and Applications, 461 (2018): 837-867.
[8] T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Soc., 2003.
[9] A. Elgart, B. Schlein, Mean field dynamics of boson stars. Commun. Pure Appl. Math., 60 (2007): 500-545.
[10] J. Fröhlich, B. Jonsson, E. Lenzmann, Boson stars as solitary waves, Commun. Math. Phys., 274 (2007): 1-30.
[11] M. Fall, V. Felli, Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential. Journal of Functional Analysis, 267 (2014): 1851-1877.
[12] M. Fall, V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst. A, 35 (2015): 5827-5867.
[13] P. Feulefack, The Logarithmic Schrödinger operator and Associated Dirichlet Problems, J. Math. Anal. Appl., 517 (2023), no. 2, Paper No. 126656, 33 pp.
[14] P. A. Feulefack, S. Jarohs, Nonlocal operators of small order, Annali di Matematica. 202, 1501-1529 (2023).
[15] R. L. Frank and E. Lenzmann, On ground states for the L^2-critical boson star equation. Preprint (2009). arXiv:0910.2721
[16] R. L. Frank, T. König and H. Tang, Classification of solutions of an equation related to a conformal log Sobolev inequality. Adv. Math. 375 (2020): 107395.
[17] Y. Guo, S. Peng, Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations, Z. Angew. Math. Phys., 72, 120 (2021).
[18] V. Hernández-Santamaría, A. Saldaña, Small order asymptotics for nonlinear fractional problems, Calc. Var. Partial Differential Equations 61 (2022), no. 3, Paper No. 92, 26 pp.
[19] S. Jarohs, T. Weth, On the maximum principle for nonlocal operators, Mathematische Zeitschrift, 293 (1) (2019): 81-111.
[20] M. Kassmann, A. Mimica, Intrinsic scaling properties for nonlocal operators, Journal of the European Mathematical Society, 19 4 (2017): 983-1011.
[21] G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
[22] W. Liu, E. Kengne, Schrödinger Equations in Nonlinear Systems, Springer Nature Singapore Pte Ltd., 2019.
[23] A. Laptev, T. Weth, Spectral properties of the logarithmic Laplacian, Anal. Math. Phys., 133, 24, (2021).
[24] A. Mimica, On harmonic functions of symmetric Lévy processes, In Annales de l'IHP Probabilités et statistiques, 50 (2014): pp. 214–235.
[25] C. Sulem, P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer Science and Business Media, 2007.
[26] G. Wang, X. Ren, Z. Bai, W. Hou, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Applied Mathematics Letters, 96 (2019): 131-137.
[27] L. Zhang, X. Nie, A direct method of moving planes for the Logarithmic Laplacian, Applied Mathematics Letters, 118 (2021): 107141.

(Rong Zhang) HLM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China and
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium

Email address: zhangrong@nnu.edu.cn

(Vishvesh Kumar) Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium

Email address: vishveshmishra@gmail.com / vishvesh.kumar@ugent.be

(Michael Ruzhansky) Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium and
School of Mathematical Sciences, Queen Mary University of London, United Kingdom

Email address: michael.ruzhansky@ugent.be