QUANTIZATION OF POISSON-HOPF STACKS ASSOCIATED WITH GROUP LIE BIALGEBRAS

GILLES HALBOUT AND XIANG TANG

Abstract. Let G be a Poisson Lie group and \mathfrak{g} its Lie bialgebra. Suppose that \mathfrak{g} is a group Lie bialgebra. This means that there is an action of a discrete group Γ on G deforming the Poisson structure into coboundary equivalent ones. Starting from this we construct a non-trivial stack of Hopf-Poisson algebras and prove the existence of associated deformation quantizations. This non-trivial stack is a stack of functions on the formal Poisson group, dual of the starting Γ Poisson-Lie group. To quantize this non-trivial stack we use quantization of a Γ Lie bialgebra which is the infinitesimal of a Γ Poisson-Lie group (cf [MS] for simple Lie groups and Γ a covering of the Weyl group and [EH2] for quantization in the general case).

0. Introduction

In this paper, we study examples of Poisson Hopf stacks and its quantization. In [EH2], the first author and his author considered quantization of a Γ Lie bialgebra (LBA). As an outcome of this quantization, they constructed a functor from the category of Γ Lie bialgebra to the category of Γ quantized universal enveloping algebras (QUE). In this paper, we first study the dual of a Γ universal enveloping algebra. Similar to the duality between Lie bialgebras and Poisson-Lie groups, we discover a stack of Poisson formal series Hopf algebras (PFSHA), dual to a Γ Lie bialgebra. Then we study deformation quantization of this stack of Poisson formal series Hopf algebras. We construct the deformation quantization by applying the Drinfeld functor to a Γ quantized universal enveloping algebra, and obtain a stack of quantized formal series Hopf algebras (QFSHA). We summarize our results into the following commutative diagram.

\[
\begin{array}{c}
\Gamma \text{-LBA} \xrightarrow{\text{EH}} \Gamma \text{-QUE} \\
\approx \downarrow \downarrow \text{Dr}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \text{-PFSHA} \xrightarrow{\text{Quant}} \Gamma \text{-QFSHA}
\end{array}
\]

Let Γ be a discrete group, G a Lie group and \mathfrak{g} its Lie algebra. Suppose that \mathfrak{g} is a Γ Lie bialgebra (or equivalently that G is a Γ Poisson group), i.e. a Lie algebra $(\mathfrak{g}, \mu_\mathfrak{g})$ together with a Lie cobracket $\delta_\mathfrak{g}$, an action of Γ, $\theta : \Gamma \to \text{Aut}(\mathfrak{g}, \mu_\mathfrak{g})$ and $f : \Gamma \to \wedge^2(\mathfrak{g})$ a map satisfying compatibility rules such that Γ acts on the double. Precise definitions and equivalent categories corresponding to these objects will be recalled in Section 1. Examples of Γ Lie bialgebras arise from the following situation: G is a Poisson-Lie group with Lie bialgebra $(\mathfrak{g}, \mu_\mathfrak{g}, \delta_\mathfrak{g})$, and $\Gamma \subset G$ is a discrete subgroup. Another example is when \mathfrak{g} is a Kac-Moody Lie algebra \mathfrak{g}, and Γ is a covering of the Weyl group of \mathfrak{g}. In the latter case, a quantization was given ([MS]).

MSC2000 Subject Classification Number: 17B37(Primary), 58H05(Secondary); Keywords: stack, Poisson, Hopf, Lie bialgebra.
Quantization of a general \(\Gamma \) Lie bialgebra was done in [EH2]. We will also recall this quantization result in Section 1.

It is then a natural question to ask what structure one gets on the corresponding dual groups. Considering the function algebra of a formal group, we get a trivial stack of Poisson Hopf algebras. In the Section 3, we prove that we get a non-trivial stack of Poisson algebras of functions on the formal Poisson Lie group \(G^* \) dual to a \(\Gamma \) Poisson Lie group \(G \). To do so, we will construct “lifts” of the elements \((f(\gamma))_{\gamma \in \Gamma}\) in the function algebra on \(G^* \). In Section 2, we recall basic definitions of stacks and of their quantizations.

In Section 4, we construct a quantization of these non-trivial Poisson-Hopf stacks. To do so we use quantization (cf [EH2]) of a \(\Gamma \) Lie bialgebra. To deduce from it a quantization of a non-trivial Poisson-Hopf stack we use the Drinfeld functor and prove that quantization of the elements \((f(\gamma))_{\gamma \in \Gamma}\) can be made “admissible” that is to say they will give quantizations of the corresponding “lifts”. Definitions of the Drinfeld functor and admissibility will be recalled.

Finally, in section 5, we give an explicit example corresponding to the case where \(G \) is a simple Lie group and \(\Gamma \) a covering of the corresponding Weyl group. In this case, quantization of Majid and Soibelman [MS] will lead to an explicit quantization of the non-trivial Poisson-Hopf stack.

Our results in this paper fit very well in the Bressler-Gorokhovsky-Nest-Tsygan’s framework [BGNT] of deformation quantization of gerbes. On one hand, our results provide interesting examples of quantization of stacks, on the other hand, the problems we are dealing with in this paper are more special and complicated because we need to treat the Hopf algebra structure. In [KR] and [So] quantum Weyl groups are used to study R-matrices, and we hope that the results in this paper will shed a light on the general \(\Gamma \) R-matrices.

Acknowledgements. We thank Benjamin Enriquez for very useful discussions. The second author would like to thank Institut de Mathématiques et de Modélisation de Montpellier for the hospitality of his visit. The research of the second author is partially supported by NSF grant 0604552.

1. \(\Gamma \) Lie bialgebras and equivalent categories

In this section, we recall some results of [EH2]

1.1. \(\Gamma \) Lie algebras. Define a group Lie algebra as a triple \((\Gamma, \mathfrak{g}, \theta_{\mathfrak{g}})\), where \(\Gamma \) is a group, \(\mathfrak{g} \) is a Lie algebra and \(\theta_{\mathfrak{g}} : \Gamma \to \text{Aut}(\mathfrak{g}) \) is a group morphism. It is the infinitesimal version of a \(\Gamma \) action on a group \(G \). Group Lie algebras form a category.

If \(\Gamma \) is a discrete group, a \(\Gamma \) Lie algebra is a pair \((\mathfrak{g}, \theta_{\mathfrak{g}})\), such that \((\Gamma, \mathfrak{g}, \theta_{\mathfrak{g}})\) is a group Lie algebra. \(\Gamma \) Lie algebras form a subcategory of group Lie algebras. Such a \(\Gamma \) Lie algebra will be said to be the infinitesimal of a \(\Gamma \) group \(G \).

Define a group cocommutative bialgebra as a triple \((\Gamma, U, i)\), where \(\Gamma \) is a group, \(U \) is a cocommutative bialgebra, \(U = \bigoplus_{\gamma \in \Gamma} U_{\gamma} \) is a decomposition of \(U \), and \(i : k\Gamma \to U \) is a bialgebra morphism, such that \(U_{\gamma} U_{\gamma'} \subset U_{\gamma \gamma'} \), \(\Delta_U(U_{\gamma}) \subset U_{\gamma} \otimes U_{\gamma} \), and \(i \) is compatible with the \(\Gamma \) grading.

We then define a \(\Gamma \) cocommutative bialgebra as a pair \((U, i)\), such that \((\Gamma, U, i)\) is a group cocommutative bialgebra. \(\Gamma \) cocommutative bialgebras form a category.

The category of group (resp., \(\Gamma \)) cocommutative bialgebras contains as a full subcategory the category of group (resp., \(\Gamma \)) universal enveloping algebras, where \((U, \Gamma, i)\) satisfies the additional requirement that \(U_{\gamma} \) is a universal enveloping algebra.

Define a group commutative bialgebra (in a symmetric monoidal category \(S \)) as a triple \((\Gamma, \mathcal{O}, j)\), where \(\Gamma \) is a group, \(\mathcal{O} \) is a commutative algebra (in \(S \)) with a decomposition \(\mathcal{O} = \bigoplus_{\gamma \in \Gamma} \mathcal{O}_{\gamma} \).
⊕γ∈ΓΩγ, such that ΩγΩγ′ = 0 for γ ≠ γ′, algebra morphisms Δγγ′ : Ωγγ′ → Ωγ ⊗ Ωγ′, η : k → Oγ and ε : Oγ → k, satisfying axioms such that when Γ is finite, these morphisms add up to a bialgebra structure on Oγ; and j : O → kΓ is a morphism of commutative algebras, compatible with the Γ gradings and the maps Δγγ′ on both sides. We define Γ commutative bialgebras as above.

We define the category of group (resp., Γ) formal series Hopf (FSH) algebras as a full subcategory of the category of group (resp., Γ) commutative bialgebras in \(S = \{ \text{pro-vector spaces} \} \) by the condition the \(O_e \) (or equivalently, each \(O_γ \)) is a formal series algebra. Such FSH would correspond to functions on the formal dual group of a Γ group \(G \).

Proposition 1.1. \(\text{[EH2]} \) 1) We have (anti)equivalences of categories \{group Lie algebras\} ↔ \{group universal enveloping algebras\} ↔ \{group FSH algebras\} (the last map is an anti-equivalence).

2) If Γ is a group, these (anti)equivalences restrict to \{Γ-Lie algebras\} ↔ \{Γ-universal enveloping algebras\} ↔ \{Γ-FSH algebras\}.

If we denote the Γ universal enveloping algebra corresponding to a Γ Lie algebra \((\Gamma, g, \theta_g)\) as \(U(\mathfrak{g}) \times \Gamma \). It is isomorphic to \(U(\mathfrak{g}) \otimes k\Gamma \) as a vector space; if we denote by \(x → [x], γ → [γ] \) the natural maps \(g → U(\mathfrak{g}) \times \Gamma \), \(\Gamma → U(\mathfrak{g}) \times \Gamma \), then the bialgebra structure of \(U(\mathfrak{g}) \times \Gamma \) is given by \([γ][x][γ^{-1}] = [θ_γ(x)], [γ][γ′] = [γγ′], [c] = 1, [x][x′] − [x′][x] = [[x, x′]] \), \(Δ([x]) = [x] ⊗ 1 + 1 ⊗ [x] \), \(Δ([γ]) = [γ] ⊗ [γ] \).

When Γ is finite, the corresponding Γ FSH algebra is then \((U(\mathfrak{g}) \otimes k\Gamma)^{op}\), and in general, this is \(\oplus_{γ∈Γ}(U(\mathfrak{g}) \otimes kγ) \)

1.2. Γ Lie bialgebras.

Definition 1.2. A group Lie bialgebra is a 5-uple \((Γ, g, \theta_γ, θ_γ, f)\) where \((Γ, g, \theta_γ)\) is a group Lie algebra, \(θ_γ : g → \wedge^2(\mathfrak{g})\) is\(^1\) such that \((g, θ_γ)\) is a Lie bialgebra, and \(f : Γ → \wedge^2(\mathfrak{g})\) is a map \(γ → f_γ\), such that:

a) \(\wedge^2(θ_γ) \circ θ_γ^{-1} = δ(γ) + \{f_γ, x ⊗ 1 + 1 ⊗ x\}\) for any \(x \in \mathfrak{g}\),

b) \(f_γγ′ = f_γ + \wedge^2(θ_γ)(f_γ′)\),

c) \(\{θ_γ, id\}(f_γ) + \{f_γ, f_γ, f_γ\} + \text{cyclic permutations} = 0\).

Group Lie bialgebras form a category. When Γ is fixed, one defines the category of Γ Lie bialgebras as above.

A co-Poisson structure on a group cocommutative bialgebra \((Γ, U, i)\) is a co-Poisson structure \(δ_U : A → \wedge^2(U)\), such that \(δ_U(U_γ) ⊂ \wedge^2(U_γ)\). Co-Poisson group cocommutative bialgebras form a category.

Co-Poisson group universal enveloping algebras form a full subcategory of the latter category. One defines the full subcategories of co-Poisson Γ cocommutative bialgebras and co-Poisson Γ enveloping algebras as above.

A Poisson structure on a group commutative bialgebra \((Γ, O, j)\) is a Poisson bialgebra structure \{-, -\} : \(\wedge^2(O) → O\), such that \(\{O_γ, O_γ\} ⊂ O_γ\) and \(\{O_γ, O_γ\} = 0\) if \(γ ≠ γ′\). Poisson group bialgebras form a category, and Poisson group FSH algebras form a full subcategory when \(S = \{\text{pro-vector spaces}\} \). One defines the full subcategories of Poisson Γ bialgebras and Poisson Γ FSH algebras as above.

Example. Let \(G\) be a Poisson-Lie (e.g., algebraic) group, let \(Γ ⊂ G\) be a subgroup (which we view as an abstract group). We define \(θ_γ := \text{Ad}(γ)\), where \(\text{Ad} : G → \text{Aut}_{\text{Lie}}(\mathfrak{g})\) is the adjoint action. If \(P : G → \wedge^2(\mathfrak{g})\) is the Poisson bivector, satisfying \(P(gg′) = P(g′) + \wedge^2(\text{Ad}(g′))(P(g))\), then we set \(f_γ := −P(γ)\). Then \((g, Γ, f)\) is a Γ Lie bialgebra.

\(^1\)We view \(\wedge^2(V)\) as a subspace of \(V ⊗ V\).
Example. Assume that \((g, r_g)\) is a quasi-triangular Lie bialgebra and \(\theta : \Gamma \to \text{Aut}(g, t_\theta)\) is an action of \(\Gamma\) on \(g\) by Lie algebra automorphisms preserving \(t_\theta := r_g + r_g^{-1}\). If we set \(f_\gamma := \theta^{\otimes 2}(r) - r\), then \((g, \theta, f)\) is a \(\Gamma\) Lie bialgebra (we call this a quasi-triangular \(\Gamma\) Lie bialgebra). For example, \(g\) is a Kac-Moody Lie algebra, and \(\Gamma = \tilde{W}\) is a covering of the Weyl group of \(g\) (cf. [MS]).

Proposition 1.3. [EH2] 1) We have category (anti)equivalences \(\{\text{group bialgebras}\} \leftrightarrow \{\text{co-Poisson group universal enveloping algebras}\}\).

2) These restrict to category (anti)equivalences \(\{\Gamma\text{-bialgebras}\} \leftrightarrow \{\text{co-Poisson \(\Gamma\) universal enveloping algebras}\}\).

If \((g, \theta, \delta)\) is a \(\Gamma\) Lie bialgebra, then the co-Poisson structure on \(U := U(g) \times \Gamma\) is given by
\[
\delta_U([x]) = [\delta_g(x)], \quad \text{and} \quad \delta_U([\gamma]) = -[f_\gamma([\gamma] \otimes [\gamma])].
\]
(Here we also denote by \(x \mapsto [x]\) the natural map \(\wedge^2(g) \to \wedge^2(U(g) \times \Gamma)\).

1.3. Quantization of \(\Gamma\) Lie bialgebras. Let a \(\Gamma\) graded bialgebra (in a symmetric monoidal category \(S\)) be a bialgebra \(A\) (in \(S\)), equipped with a grading \(A = \oplus_{\gamma \in \Gamma} A_\gamma\), such that \(A_\gamma A_\gamma' \subset A_{\gamma\gamma'}\) and \(\Delta_A(A_\gamma) \subset A_\gamma \otimes S^2\).

Assume that \(A\) is a \(\Gamma\) graded bialgebra in the category of topologically free \(k[[h]]\)-modules, quasi-commutative (in the sense that \(A_0 := A/hA\) is cocommutative). Then we get a co-Poisson structure on \(A_0\). It is \(\Gamma\) graded, in the sense that \(\delta_A((A_0)_\gamma) \subset \Lambda^2((A_0)_\gamma)\). We therefore get a classical limit functor class: \(\{\text{\(\Gamma\)-graded quasi-commutative bialgebras}\} \to \{\text{\(\Gamma\)-graded co-Poisson bialgebras}\}\).

Definition 1.4. A quantization functor for \(\Gamma\) Lie bialgebras is a functor \(\{\text{co-Poisson \(\Gamma\) universal enveloping algebras}\} \to \{\text{\(\Gamma\)-graded quasi-commutative bialgebras}\}\), right inverse to class.

Assume that \((g, \theta, f)\) is a \(\Gamma\) Lie bialgebra. Let \((U, \ast, \Delta_e)\) be the (Etingof-Kazhdan) quantization of \((g, \delta)\)(we will also denote the multiplication by \(m_e\)). We get from [EH2]:

Proposition 1.5. There exist collections \((F_{\gamma, \gamma'}, \gamma, \gamma' \in \Gamma)\) of elements in \(U^{\otimes 2}\) (with \(F_{\gamma, \gamma'} = 1 + \hbar f_\gamma + O(h^2)\) with \(\text{Aut}(F_1) = \Lambda^2(\theta_\gamma)(f_\gamma)\)) \((v_{\eta, \gamma, \gamma'} \gamma, \gamma' \in \Gamma)\) of elements in \(1 + \hbar U\), \((U, m_e, \Delta_e)\) of \(\Gamma\)-graded bialgebras and \((v_{\eta, \gamma, \gamma'} \gamma, \gamma' \in \Gamma)\) of algebra morphisms: \((U, m_e) \to (U, m_e, \Delta_e)\) such that

\[
\bullet \Delta_e = i_{\gamma, \gamma'}^{\otimes 2} \circ \text{Ad}(F_{\gamma, \gamma'}) \circ \Delta_e \circ i_{\gamma, \gamma'}^{-1},
\]
\[
(F_{\gamma, \gamma'}) \ast (\Delta_e \otimes \text{id})(F_{\gamma, \gamma'}) = (1 \otimes F_{\gamma, \gamma'})(\text{id} \otimes \Delta_e)(F_{\gamma, \gamma'}),
\]
\[
F_{\gamma, \gamma'} - v_{\gamma, \gamma', \gamma'}^{\otimes 2}(i_{\gamma, \gamma'}^{-1}(F_{\gamma, \gamma'})) \ast F_{\gamma, \gamma'} \ast \Delta_e(v_{\gamma, \gamma', \gamma'})^{-1} - 1,
\]
\[
i_{\gamma, \gamma'} = i_{\gamma, \gamma'} \circ i_{\gamma, \gamma'} \circ \text{Ad}(v_{\gamma, \gamma', \gamma'}),
\]
\[
v_{\gamma, \gamma', \gamma''} \ast v_{\gamma, \gamma', \gamma'} = v_{\gamma, \gamma', \gamma''} \ast i_{\gamma, \gamma'}^{-1}(v_{\gamma, \gamma', \gamma''}).
\]

Here \(e\) is the unit of the group to make the formulas shorter but could be any element of \(e\) of the group and one would multiply \(\gamma\), \(\gamma'\) and \(\gamma''\) on the left by this elements in the formulas.

A quantization of the \(\Gamma\) Lie bialgebra is then obtained as follows: Set \(U = S(g) \otimes k\Gamma[[h]]\) and \([x|\gamma] := x \otimes \gamma, [x \otimes \gamma']|\gamma'] := (x \otimes \gamma) \otimes (x' \otimes \gamma') \in U^{\otimes 2}\).

There are unique linear maps \(m : U^{\otimes 2} \to U\) and \(\Delta : U \to U^{\otimes 2}\), such that
\[
m : [x|\gamma][x'|\gamma'] \mapsto [x \ast i_{\gamma'}^{-1}(\theta_\gamma(x')) \ast v_{\gamma, \gamma', \gamma'}^{-1}|\gamma'\gamma']
\]
\[
\Delta : [x|\gamma] \mapsto [\Delta_e(x) \ast F_{\gamma, \gamma'}^{-1}|\gamma, \gamma].
\]
The unit for \(U\) is \([1|e]\), and the counit is the map \([x|\gamma] \mapsto \delta_{\gamma, e} e(x)\).

Proposition 1.6. [EH2] This defines a bialgebra structure on \(U\), quantizing the co-Poisson bialgebra structure induced by \((g, \theta, f)\).
2. Stack

Let M be a smooth manifold.

Definition 2.1. A stack on M is the following data:
- an open cover of $M = \bigcup U_i$,
- a sheaf of rings A_i on every U_i,
- an isomorphism of sheaves of rings $G_{ij}: A_j(U_i \cap U_j) \rightarrow A_i(U_i \cap U_j)$ for every i, j,
- an invertible element $c_{ijk} \in A_i(U_i \cap U_j \cap U_k)$ for every i, j, k satisfying
 - $G_{ij}G_{jk} = \text{Ad}(c_{ijk})G_{ik}$
 - and for every i, j, k, l, $c_{ijkl} = G_{ij}(c_{ikl})c_{ijk}$.

If two such data $(U'_i, A'_i, G'_{ij}, c'_{ijk})$ and $(U''_i, A''_i, G''_{ij}, c''_{ijk})$ are given on M, an isomorphism between them is
- an open cover $M = \bigcup U_i$ refining both $\{U'_i\}$ and $\{U''_i\}$
- isomorphisms $H_i: A'_i \rightarrow A''_i$ on U_i
- and invertible elements b_{ij} of $A'_i(U_i \cap U_j)$ such that
 - $G''_{ij} = H_i \text{Ad}(b_{ij})G'_{ij}H_j^{-1}$
 - and $H_i^{-1}(c''_{ijk}) = b_{ij}G'_{ij}(b_{jk})c_{ijk}b_{ik}^{-1}$

In what follows, we will still call a stack a collection of rings A_i, group elements G_{ij} and elements c_{ijk} satisfying the conditions above that is to say we will work without considering the manifold M. More precisely, we will prove the existence of a stack of Poisson Hopf algebras corresponding to functions on the formal dual group G^*.

Theorem 2.2. There exists a stack of Poisson Hopf algebras on G^*, i.e.:
- a collection $(\mathcal{O}_{G^*})_{\gamma \in \Gamma}$ of Poisson Hopf algebras $(\mathcal{O}_{G^*}, m_0, \Delta_\gamma, \{-,-\}_\gamma)_{\gamma \in \Gamma},$
- Poisson morphisms $j_{\gamma,\gamma': \mathcal{O}_{G^*} \rightarrow \mathcal{O}_{G^*}}$,
- elements $u_{\gamma,\gamma',\gamma''}$ of \mathcal{O}_{G^*} satisfying relations
 - $j_{\gamma,\gamma',\gamma''} = j_{\gamma',\gamma''} \circ \gamma \circ \text{Ad}_\gamma(u_{\gamma,\gamma',\gamma''})$,
 - $u_{\gamma,\gamma',\gamma''} \star u_{\gamma,\gamma',\gamma''} = u_{\gamma,\gamma,\gamma'}u_{\gamma,\gamma',\gamma''}$

The definition of the Baker-Campbell-Hausdorff product $\star \gamma$ will be recalled in the next section.

Note that in this theorem (and the next one), one has to take inverses of maps $j_{\gamma,\gamma'}$ and of elements $u_{\gamma,\gamma',\gamma''}$ to get equations compatible with the ones of Definition 2.1.

We will then prove the existence of a stack of algebras quantizing this stack of Poisson Hopf algebras:

Theorem 2.3. There exists a stack of algebras:
- $(\mathcal{A}_\gamma, \star \gamma)_{\gamma \in \Gamma}$ quantization2 of the Poisson algebras $(\mathcal{O}_{G^*}, \{-,-\}_\gamma)_{\gamma \in \Gamma},$
- algebra morphisms $i_{\gamma,\gamma': \mathcal{A}_\gamma \rightarrow \mathcal{A}_{\gamma'}}$,
- elements $v_{\gamma,\gamma',\gamma''}$ of \mathcal{A}_γ such that elements $ev_{\gamma,\gamma',\gamma''} := \exp \left(\frac{i_{\gamma,\gamma',\gamma''} \mathfrak{g}_\gamma}{\hbar} \right)$ satisfy relations
 - $i_{\gamma,\gamma',\gamma''} = i_{\gamma',\gamma''} \circ i_{\gamma,\gamma'} \circ \text{Ad}(ev_{\gamma,\gamma',\gamma''}^{-1}),$
 - $ev_{\gamma,\gamma',\gamma''} \star_e v_{\gamma,\gamma',\gamma''} = ev_{\gamma,\gamma',\gamma''} \star_e ev_{\gamma,\gamma',\gamma''}^{-1} \star_e i_{\gamma,\gamma',\gamma''}^{-1}$

2By quantization, we mean deformation quantization, such that $\mathcal{A}_\gamma/\hbar \mathcal{A}_\gamma = \mathcal{O}_{G^*}$, and $\{ , \}_\gamma = \{ , \}/\mathcal{O}(\hbar)$.

3. A Stack of Poisson bialgebras of functions on the formal group G^*

Let (g, θ, δ, f) be a Γ Lie bialgebra. In this section we will construct a stack of Poisson bialgebras of functions on a formal Poisson group G^*.

3.1. Notations. Let (g, δ) be a Lie bialgebra and $(U(g), \Delta, \delta)$ its corresponding coPoisson bialgebra. The latter can be seen as the dual of the function algebra of the formal Poisson Lie group G corresponding to (g, δ). In the same way, we will define O_{G^*} as the commutative Poisson Hopf algebra of functions of the formal Poisson Lie group G^* corresponding to the dual Lie bialgebra g^*. We define by $m_{G^*} \subset O_{G^*}$ the maximal ideal of this ring. If k is an integer ≥ 1, we denote by $O_{(G^*)^k}$ the ring of formal functions on $(G^*)^k$, by $m_{(G^*)^k}$ its maximal ideal and by $m_{(G^*)^k}^i$ the i-th power of this ideal.

If $f, g \in m_{(G^*)^k}$, then the series $f \ast g = f + g + \frac{1}{2}(f, g) + \cdots + B_3(f, g) + \cdots$ is convergent, where $\sum_{i \geq 1} B_i(x, y)$ is the Baker-Campbell-Hausdorff (BCH) series specialized to the Poisson bracket of $m_{(G^*)^k}$. The product \ast defines a group structure on $m_{(G^*)^k}$.

Let us recall a useful technical lemma (see [EGH], p. 2477), proven for m_g and still true for m_{G^*}:

Lemma 3.1. For any $k \geq 1$ and $n \geq 2$, $f, h \in m_{(G^*)^k}$ and $g \in m^n_{(G^*)^k}$, one has

$$f \ast (h + g) = f \ast h + g \mod m_{(G^*)^k}^{n+1}.$$

If $f \in O_{(G^*)^n}$ and P_1, \ldots, P_m are disjoint subsets of $\{1, \ldots, n\}$, one defines f^{P_1, \ldots, P_m} using the coproduct of O_{G^*}.

Definition 3.2. For I_1, \ldots, I_m disjoint ordered subsets of $\{1, \ldots, n\}$, (U, Δ) a Hopf algebra and $a \in U^\otimes m$, we define

$$a^{I_1, \ldots, I_m} = \sigma_{I_1, \ldots, I_m} \circ (\Delta|_{I_1} \otimes \cdots \otimes \Delta|_{I_m})(a),$$

with $\Delta(1) = \text{id}$, $\Delta(2) = \Delta$, $\Delta^{(n+1)} = (\text{id} \otimes \cdots \otimes \Delta) \circ \Delta$, and $\sigma_{I_1, \ldots, I_m} : U^\otimes \sum_i |I_i| \to U^\otimes n$ is the morphism corresponding to the map $\{1, \ldots, n\} \to \{1, \ldots, n\}$ taking $(1, \ldots, |I_1|)$ to I_1, $(|I_1| + 1, \ldots, |I_1| + |I_2|)$ to I_2, etc.

When U is commutative, this definition depends only on the underlying sets I_1, \ldots, I_m.

When (g, θ, δ, f) is a Γ Lie bialgebra we thus get a collection of Lie bialgebras and so a collection $(O_{G^*}, m_0, \Delta, \gamma, (-\gamma)_{\gamma} \in \Gamma$ of Poisson bialgebras. We will denote by \ast_{γ} the corresponding BCH products.

3.2. “Lifts” and functional equations. We will now construct “lifts” $\tilde{f}_{\gamma, \gamma'}$ in $\tilde{m}_{G^*}^2$ of the elements $\wedge^2(\theta_{\gamma})(f_{\gamma'})$, $\gamma, \gamma' \in \Gamma$ that will satisfy similar relation as $F_{\gamma, \gamma'}$ in Proposition 1.3.

Proposition 3.3. Let γ, γ' be in Γ. Then there exists $\tilde{f}_{\gamma, \gamma'}$ in $\tilde{m}_{G^*}^2$ the image of which in g^2 under the square of the projection $m_{G^*} \to m_{G^*}/m_{G^*}^2 = g = \wedge^2(\theta_{\gamma})(f_{\gamma'})$, and such that

$$\tilde{f}_{\gamma, \gamma'} \otimes 1 \ast_{\gamma} (\Delta_{\gamma} \otimes \text{id})(\tilde{f}_{\gamma, \gamma'}) = (1 \otimes \tilde{f}_{\gamma, \gamma'}) \ast_{\gamma} (\text{id} \otimes \Delta_{\gamma})(\tilde{f}_{\gamma, \gamma'}).$$

Such a $\tilde{f}_{\gamma, \gamma'}$ is unique up to the action of $m_{G^*}^2$ by $\lambda \cdot \tilde{f} = \lambda^1 \ast_{\gamma} \lambda^2 \ast_{\gamma} \tilde{f} \ast_{\gamma} (-\lambda)^{12}$. We will call such a \tilde{f} a twist for Δ_{γ}.

Proof. Let us construct $\tilde{f}_{\gamma, \gamma'}$ by induction: we will construct a convergent sequence $\tilde{f}_N \in m_{G^*}^2 (N \geq 2)$ satisfying (1) in $m_{G^*}^3/(m_{G^*}^3 \cap m_{G^*}^N)$, where $m_{G^*}^{N}$ is the N-th power of $m_{(G^*)^3}$. When $N = 3$, we take for \tilde{f}_2 any lift of $\wedge^2(\theta_{\gamma})(f_{\gamma'})$ to $m_{G^*}^3$, then equation (1) is automatically satisfied.
To shorten the notation, we will write \(\tilde{f}_{1,2} \) for \(\tilde{f}_{\gamma,\gamma'}, \tilde{f}_{2,3} \) for \(\tilde{f}_{\gamma',\gamma''} \), and so on and the same thing for \(\tilde{\alpha}, \ldots, \).

Let \(N \) be an integer \(\geq 3 \); assume that we have constructed \(\tilde{f}_N \) in \(m_{G^*}^{\otimes 2} \), satisfying equation (1) in \(m_{G^*}^{\otimes 3}/(m_{G^*}^{\otimes 3} \cap m_{G^*}^{N}) \). Set \(\alpha_{1,2,3} := \tilde{f}_{1,2} * \gamma \tilde{f}_{1,23} - \tilde{f}_{2,3} * \gamma \tilde{f}_{1,23} \). Then \(\alpha_{1,2,3} \) belongs to \(m_{G^*}^{\otimes 3} \cap m_{G^*}^{(G^*)^3} \), and the following equalities hold in \(m_{G^*}^{\otimes 4}/(m_{G^*}^{\otimes 4} \cap m_{G^*}^{N+1}) \):

\[
\alpha_{1,2,3,4} = \tilde{f}_{1,2} * \gamma \alpha_{1,2,3,4} = \tilde{f}_{1,2} * \gamma \tilde{f}_{1,23} * \gamma \tilde{f}_{1234} - \tilde{f}_{2,3} * \gamma \tilde{f}_{1234} * \gamma \tilde{f}_{1,234}
\]

(\text{using Lemma 3.1})

\[= \alpha_{1,2,3} + \tilde{f}_{2,3} * \gamma (\alpha_{1,2,3,4} + \tilde{f}_{2,3} * \gamma \tilde{f}_{1,234})
- \alpha_{1,2,3,4} - \tilde{f}_{1,234} * \gamma \tilde{f}_{2,3} * \gamma \tilde{f}_{1,234}
\]

(\text{using the definition of \(\alpha_{1,2,3,4} \) and Lemma 3.1})

\[= \alpha_{1,2,3} + \alpha_{1,2,3,4} + \tilde{f}_{2,3} * \gamma \tilde{f}_{1,234} * \gamma \tilde{f}_{1,234}
- \alpha_{1,2,3,4} - \tilde{f}_{1,234} * \gamma \tilde{f}_{2,3} * \gamma \tilde{f}_{1,234}
\]

(\text{using the definition of \(\alpha_{2,3,4} \) and Lemma 3.1})

\[= \alpha_{1,2,3} + \alpha_{1,2,3,4} - \alpha_{1,2,3,4} + \alpha_{2,3,4}
\]

(\text{using Lemma 3.1}).

Let us denote by \(\overline{\alpha} \) the image of \(\alpha \) in \((m_{G^*}^{\otimes 3} \cap m_{G^*}^{N})/(m_{G^*}^{\otimes 3} \cap m_{G^*}^{N+1}) \) = \((S^0\mathfrak{g})^{\otimes 3} \), then we get

\[\overline{\alpha}_{1,2,3,4} + \overline{\alpha}_{1,2,3,4} = \overline{\alpha}_{1,2,3,4} + \overline{\alpha}_{1,2,3,4} + \overline{\alpha}_{2,3,4} + \overline{\alpha}_{2,3,4} + \overline{\alpha}_{2,3,4} + \overline{\alpha}_{2,3,4}.
\]

This means that \(\overline{\alpha} \) is a cocycle for the subcomplex \((S^0\mathfrak{g})^{\otimes 3}, d \) of the co-Hochschild complex. Using [Dr2], Proposition 3.11, one proves that the \(k \)-th cohomology group of this subcomplex is \(\wedge^k(\mathfrak{g}) \), and that the antisymmetrization map coincides with the canonical projection from the space of cocycles to the cohomology group. For \(N = 3 \), the equations of Definition 1.2 implies \(\text{Alt}(\overline{\alpha}^3) = 0 \), and hence \(\overline{\alpha}^3 \) is the coboundary of an element \(\overline{\beta}^3 \in (S^0\mathfrak{g})^{\otimes 2} \). For \(N > 3 \), \(\overline{\alpha}^N \) is the coboundary of an element \(\overline{\beta}^N \in (S^0\mathfrak{g})^{\otimes 2} \), since the degree part of the cohomology vanishes. We then set \(\tilde{f}^N + 1 := \tilde{f} + \beta^N \), where \(\beta^N \in m_{G^*}^{\otimes 2} \cap m_{G^*}^{(G^*)^2} \) is a representative of \(\overline{\beta}^N \).

Then \(\tilde{f}^N + 1 \) satisfies (1) in \(m_{G^*}^{\otimes 3}/(m_{G^*}^{\otimes 3} \cap m_{G^*}^{N+1}) \).

The sequence \((\tilde{f}^N)^{N+2} \) has a limit \(\tilde{f} \), which then satisfies (1).

The second part of the theorem can be proved in the same way or by analyzing the choices for \(\overline{\beta}_N \) in the above proof. \(\square\)
3.3. Isomorphism of formal Poisson manifolds $G^*_\gamma \simeq G^*_\gamma'$.

Proposition 3.4. Let $\gamma, \gamma' \in \Gamma$ and let G^*_γ and G^*_γ' be the formal Poisson-Lie groups associated to the corresponding Lie cobrackets. There exists an isomorphism of Poisson algebras $j_{\gamma,\gamma'}$:

$$ O_{G^*_\gamma} \simeq O_{G^*_\gamma'} $$

Proof. Let $P : \wedge^2(O_{G^*_\gamma}) \to O_{G^*_\gamma}$ be the Poisson bracket on $O_{G^*_\gamma}$ corresponding to the Lie-Poisson Poisson structure on G^*_γ. Then $(O_{G^*_\gamma}, m_0, P, \Delta_\gamma)$ is a Poisson formal series Hopf (PFSH) algebra; it corresponds to the formal Poisson-Lie group G^*_γ equipped with its Lie-Poisson structure.

Set $f_{\gamma,\gamma'}(a) = \tilde{f}_{\gamma,\gamma'} \star \gamma \Delta_\gamma(a) \star (-\tilde{f}_{\gamma,\gamma'})$ for any $a \in O_{G^*_\gamma}$. It follows from the fact that $\tilde{f}_{\gamma,\gamma'}$ satisfies the equation (1) that $(O_{G^*_\gamma}, m_0, P, \tilde{f}_{\gamma,\gamma'} \Delta_\gamma)$ is a PFSH algebra.

Let us denote by PFSHA and LBA the categories of PFSH algebras and Lie bialgebras. We have a category equivalence $c : \text{PFSHA} \to \text{LBA}$, taking (O, m, P, Δ) to the Lie bialgebra $(\mathfrak{c}, \mu, \delta)$, where $\mathfrak{c} = m/m^2$ (m ⊂ O is the maximal ideal), the Lie cobracket of \mathfrak{c} is induced by $\Delta - \Delta^2 : \mathfrak{c} \to \wedge^2(\mathfrak{c})$, and the Lie bracket of \mathfrak{c} is induced by the Poisson bracket $P : \wedge^2(\mathfrak{c}) \to \mathfrak{c}$. The inverse of the functor c takes $(\mathfrak{c}, \mu, \delta)$ to $O = \hat{S}(\mathfrak{c})$ equipped with its usual product; Δ depends only on δ and P depends on (μ, δ).

Then c restricts to a category equivalence $c_{\text{fd}} : \text{PFSHA}_{\text{fd}} \to \text{LBA}_{\text{fd}}$ of subcategories of finite-dimensional objects (in the case of PFSH, we say that O is finite-dimensional if and only if m/m^2 is).

Let dual : $\text{LBA}_{\text{fd}} \to \text{LBA}_{\text{fd}}$ be the duality functor. It is a category antiequivalence; we have dual$(\mathfrak{g}, \mu, \delta) = (\mathfrak{g}^*, \delta^*, \mu')$. Then dual $c_{\text{fd}} : \text{PFSHA}_{\text{fd}} \to \text{LBA}_{\text{fd}}$ is a category antiequivalence. Its inverse is the usual functor $\mathfrak{g} \mapsto U(\mathfrak{g})^*$. If G is the formal Poisson-Lie group with Lie bialgebra \mathfrak{g}, one sets $O_G = U(\mathfrak{g})^*$.

Let us apply the functor c to $(O_{G^*_\gamma}, m_0, P, f_{\gamma,\gamma'})$. We obtain $\mathfrak{c} = m/m^2 = \mathfrak{g}$; the Lie bracket is unchanged with respect to the case $\tilde{f}_{\gamma,\gamma'} = 0$, so it is the Lie bracket of \mathfrak{g}; the Lie cobracket is given by $\delta_\gamma'(\mathfrak{c})(x) = \delta_\gamma + [\wedge^2(\theta_\gamma)(f_{\gamma'}), x \otimes 1 + 1 \otimes x]$ since the reduction of $\tilde{f}_{\gamma,\gamma'}$ modulo $(m_{G^*_\gamma})^2 \otimes m_{G^*_\gamma} + m_{G^*_\gamma} \otimes (m_{G^*_\gamma})^2$ is equal to $\wedge^2(\theta_\gamma)(f_{\gamma'})$.

Then applying dual c_{fd} to $(O_{G^*_\gamma}, m_0, P, \tilde{f}_{\gamma,\gamma'} \Delta_\gamma)$, we obtain the Lie bialgebra $(\mathfrak{g}^*, \delta_\gamma')$. So this PFSH algebra is isomorphic to the PFSH algebra of the formal Poisson-Lie group G^*_γ. Let us call this PFSH algebra morphism $j_{\gamma,\gamma'}$.

In particular, the Poisson algebras $O_{G^*_\gamma}$ and $O_{G^*_\gamma'}$ are isomorphic. \square

Remark 3.5. It is easy to check that the map $\mathfrak{g} = m_{G^*_\gamma}/m^2_{G^*_\gamma} \to m_{G^*_\gamma'}/m^2_{G^*_\gamma'} = \mathfrak{g}$ induced by the isomorphism $j_{\gamma,\gamma'}$ is the identity.

Remark 3.6. We have proven a stronger result than the existence of a Poisson algebra morphism $j_{\gamma,\gamma'}$:

$$ O_{G^*_\gamma} \simeq O_{G^*_\gamma'} $$

This morphism intertwines the coproducts in the following way:

$$ \Delta_{\gamma'} = j_{\gamma,\gamma'}^\otimes \circ \tilde{f}_{\gamma,\gamma'} \Delta_\gamma \circ j_{\gamma,\gamma'}^{-1} $$

3.4. Composition of equivalences. Let us first prove the following lemma:

Lemma 3.7. For $\gamma, \gamma' \in \Gamma$, the element $(j_{\gamma,\gamma'}^\otimes)^{-1}(\tilde{f}_{\gamma,\gamma'} \Delta_\gamma \tilde{f}_{\gamma,\gamma'})$ is a solution of the equation

$$ (\tilde{f} \otimes 1) \star \gamma (\Delta_\gamma \otimes \text{id})(\tilde{f}) = (1 \otimes \tilde{f}) \star \gamma (\text{id} \otimes \Delta_\gamma)(\tilde{f}). $$

Proof. One can check that directly or notice that $\tilde{f}_{\gamma,\gamma'} \Delta_\gamma \tilde{f}_{\gamma,\gamma'}$ is a twist for $\Delta_{\gamma'}$. Therefore $(j_{\gamma,\gamma'}^\otimes)^{-1}(\tilde{f}_{\gamma,\gamma'} \Delta_\gamma \tilde{f}_{\gamma,\gamma'})$ is a twist for $(j_{\gamma,\gamma'})^{-1} \Delta_{\gamma'} \circ j_{\gamma,\gamma'} = \tilde{f}_{\gamma,\gamma'} \Delta_\gamma$. Accordingly $(j_{\gamma,\gamma'}^\otimes)^{-1}(\tilde{f}_{\gamma,\gamma'} \Delta_\gamma \tilde{f}_{\gamma,\gamma'}) \ast \gamma \tilde{f}_{\gamma,\gamma'}$ is a twist for Δ_γ. \square
Let us then notice that the image of \((f_{\gamma',\gamma''})^{1}(\tilde{f}_{\gamma',\gamma''})\ast_{\gamma} \tilde{f}_{\gamma',\gamma''}\) under the square of the projection \(m_{\mathcal{G}} / m_{\mathcal{G}}^{2} = g\) equals \(\Lambda^{2}(\theta_{\gamma})(f_{\gamma'}) + \Lambda^{3}(\theta_{\gamma})(f_{\gamma''}) = \Lambda^{2}(\theta_{\gamma})(f_{\gamma'}) + \Lambda^{3}(\theta_{\gamma})(f_{\gamma''})\). Thanks to Proposition \(\text{3.3}\) there exists an element \(u_{\gamma,\gamma',\gamma''\gamma'''}\) in \(1 + m_{\mathcal{G}}^{2}\), such that
\[
\tilde{f}_{\gamma,\gamma',\gamma''} = u_{\gamma,\gamma',\gamma''\gamma'''}^{\circ} \ast_{\gamma} (f_{\gamma',\gamma''})^{-1}(\tilde{f}_{\gamma',\gamma''}) \ast_{\gamma} \tilde{f}_{\gamma',\gamma''} \ast_{\gamma} \Delta_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''})^{-1}.
\]

Finally, from the previous section, we defined \(j_{\gamma,\gamma',\gamma''\gamma'''}\) and \(j_{\gamma,\gamma',\gamma''}\) such that
\[
\Delta_{\gamma'\gamma''} = j^{\circ2}_{\gamma,\gamma',\gamma''} \circ \tilde{f}_{\gamma,\gamma',\gamma''} \ast_{\gamma} j^{-1}_{\gamma,\gamma',\gamma''} = j^{\circ2}_{\gamma,\gamma',\gamma''} \circ u^{\circ2}_{\gamma,\gamma',\gamma''\gamma'''}(f_{\gamma',\gamma''})^{-1}(\tilde{f}_{\gamma',\gamma''}) \ast_{\gamma} \tilde{f}_{\gamma,\gamma',\gamma''} \ast_{\gamma} \Delta_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''}^{-1})^{-1} \circ j^{\circ2}_{\gamma,\gamma',\gamma''} = (j_{\gamma,\gamma',\gamma''} \circ \text{Ad}_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''})) \circ (f_{\gamma',\gamma''})^{-1}(\tilde{f}_{\gamma',\gamma''}) \ast_{\gamma} \tilde{f}_{\gamma,\gamma',\gamma''} \ast_{\gamma} \Delta_{\gamma} \circ j^{\circ2}_{\gamma,\gamma',\gamma''}
\]
\[
\circ (j_{\gamma,\gamma',\gamma''} \circ \text{Ad}_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''})) \circ j^{-1}_{\gamma,\gamma',\gamma''} \circ j^{-1}_{\gamma,\gamma',\gamma''} \circ j^{-1}_{\gamma,\gamma',\gamma''} = (j_{\gamma,\gamma',\gamma''} \circ \text{Ad}_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''})) \circ j^{-1}_{\gamma,\gamma',\gamma''} \circ j^{-1}_{\gamma,\gamma',\gamma''} \circ j^{-1}_{\gamma,\gamma',\gamma''}.
\]

By the equivalence \(c_{\mathcal{G}}\) between the category \(\text{PFSH}_{\mathcal{G}}\) and \(\text{LBA}_{\mathcal{G}}\) we get
\[
j_{\gamma,\gamma',\gamma''} = j_{\gamma,\gamma',\gamma''} \circ \text{Ad}_{\gamma}(u_{\gamma,\gamma',\gamma''\gamma'''}^{-1}).
\]

3.5. Cocycle relation for the \(u_{\gamma,\gamma',\gamma''\gamma'''}\). We will end this section by proving the following proposition that will prove Theorem \(\text{2.2}\).

Proposition 3.8. For any \(\gamma, \gamma', \gamma'', \gamma'''\) in \(\Gamma\), we have
\[
u_{\gamma,\gamma',\gamma''\gamma'''\gamma'''} = u_{\gamma,\gamma',\gamma''\gamma'''\gamma'''} \ast_{\gamma} j^{-1}_{\gamma,\gamma',\gamma''\gamma'''\gamma'''}(u_{\gamma,\gamma',\gamma''\gamma'''\gamma'''}).
\]

Proof. To shorten the notation, we will write \(\tilde{f}_{1,2}\) for \(\tilde{f}_{\gamma,\gamma',\gamma''}\) and \(\tilde{f}_{2,3}\) for \(\tilde{f}_{\gamma,\gamma',\gamma''}\) and so on and the same thing for the \(j_{\gamma,\gamma',\gamma''}\) and the \(u_{\gamma,\gamma',\gamma''}\). We will omit the BCH product \(*_{\gamma}\) and write \(*\) for the product \(*_{\gamma}\) for the coproduct \(\Delta_{\gamma}\) and \(\Delta\) for the coproduct \(\Delta_{\gamma'}\). We will also write \(j(-)\) instead of \(j^{\circ2}(-)\) when no confusion is possible.

We have by definition \(\tilde{f}_{1,4} \Delta_{0} u_{1,3,4} = u^{\circ2}_{1,3,4} \ast_{\gamma} j^{-1}_{1,3,4}(\tilde{f}_{3,4}) \tilde{f}_{1,3}\). Multiplying this equality on the right by \(\Delta_{0} u_{1,2,3}\) and using the fact that \(\tilde{f}_{1,4} \Delta_{0} u_{1,2,3} = u^{\circ2}_{1,2,3} j_{1,2}^{-1}(\tilde{f}_{2,3}) \tilde{f}_{1,2}\), we get
\[
\tilde{f}_{1,4} \Delta_{0} u_{1,3,4} = u^{\circ2}_{1,3,4} j_{1,3}^{-1}(\tilde{f}_{3,4}) \ast_{\gamma} j^{-1}_{1,2,3}(\tilde{f}_{2,3}) \tilde{f}_{1,2}.
\]

Using now that \(j^{-1}_{1,3}(-) = u_{1,2,3} j_{1,2}^{-1} \ast_{\gamma} j^{-1}_{2,3}(-)\), we get
\[
j_{1,4} \Delta_{0} u = u^{\circ2}_{1,2,3} j_{1,2}^{-1} \circ j^{-1}_{2,3}(\tilde{f}_{3,4}) j^{-1}_{1,2}(\tilde{f}_{2,3}) \tilde{f}_{1,2},
\]
where \(u = u_{1,3,4} u_{1,2,3}\). On the other hand, we have \(\tilde{f}_{2,4} \ast \Delta_{0} u_{2,3,4} = u^{\circ2}_{2,3,4} \ast_{\gamma} j^{-1}_{2,3}(\tilde{f}_{3,4}) \ast_{\gamma} \tilde{f}_{2,3}\). Using the Poisson algebra morphism \(j_{1,2}\) and the fact that \(j^{-1}_{1,2} \circ \Delta = \tilde{f}_{1,2} \Delta_{0} (j_{1,2}^{-1}(-)) \tilde{f}_{1,2}\), we get
\[
j_{1,2}^{-1}(\tilde{f}_{2,4}) \ast_{\gamma} \Delta_{0} (j^{-1}_{1,2}(u_{2,3,4})) \tilde{f}_{1,2} = j_{1,2}^{-1}(u^{\circ2}_{2,3,4}) j_{1,2}^{-1} \circ j^{-1}_{2,3}(\tilde{f}_{3,4}) j^{-1}_{1,2}(\tilde{f}_{2,3}).
\]
From \(\tilde{f}_{1,4} \Delta_{0} u_{1,2,4} = u^{\circ2}_{1,2,4} j_{1,2}^{-1}(\tilde{f}_{2,3}) \tilde{f}_{1,2}\), using Equation \(\text{4.5}\), we get
\[
j_{1,4} \Delta_{0} u' = (u')^{\circ2}_{1,2,4} j_{1,2}^{-1} \circ j^{-1}_{2,3}(\tilde{f}_{3,4}) j^{-1}_{1,2}(\tilde{f}_{2,3}) \tilde{f}_{1,2},
\]
where \(u' = u_{1,2,4}^{-1}(u_{2,3,4}) \). Then Equations 4 and 5 imply that if \(w = u(u')^{-1} \) then \(f_{1,4} \Delta_0(w) = w f_{1,4} \), and so if \(w' = j_{1,4}(w) \) then \(\Delta_0(w') = w' \). Recall that by similar properties of \(n_{i,j,k} \), \(w' \in 1 + m_{G}^2 \). Suppose that \(w' \neq 1 \) and set \(i \geq 2 \) the largest possible \(i \) such that \(w' \in 1 + m_{G}^{i+1} \), but not in \(1 + m_{G}^i \). Let \(\tilde{w}' \) be the projection of \(w' \) in \(m_{G}^{i+1} \). Relation \(\Delta_0(w') = w' \) implies that \(\tilde{w}' \) is in \(g \) and so in \(m_{G}^{i+1} \), which is a contradiction. Thus we have proved that \(w = w' = 1 \) and so that \(u = u' \).

4. QUANTIZATION

4.1. Duality of QUE and QFSH algebras. In this subsection, we recall some facts from [Dr1] (proofs can be found in [Gav]). Let us denote by \(\text{QUE} \) the category of quantized universal enveloping (QUE) algebras and by \(\text{QFSH} \) the category of quantized formal series Hopf (QFSH) algebras. We denote by \(\text{QUE}_{\text{id}} \) and \(\text{QFSH}_{\text{id}} \) the subcategories corresponding to finite dimensional Lie bialgebras.

We have contravariant functors \(\text{QUE}_{\text{id}} \to \text{QFSH}_{\text{id}}, U \to U^* \) and \(\text{QFSH}_{\text{id}} \to \text{QUE}_{\text{id}}, O \to O^* \). These functors are inverse to each other. \(U^* \) is the full topological dual of \(U \), i.e., the space of all continuous (for the \(h \)-adic topology) \(\mathbb{K}[\hbar] \)-linear maps \(U \to \mathbb{K}[\hbar] \). \(O^* \) the space of continuous \(\mathbb{K}[\hbar] \)-linear forms \(O \to \mathbb{K}[\hbar] \), where \(O \) is equipped with the \(m \)-adic topology (here \(m \subset O \) is the maximal ideal).

We also have covariant functors \(\text{QUE} \to \text{QFSH}, U \to U' \) and \(\text{QFSH} \to \text{QUE}, O \to O' \). There functors are also inverse to each other. \(U' \) is a subalgebra of \(U \), while \(O' \) is the \(h \)-adic completion of \(\sum_{k \geq 0} \hbar^{-k} m^k \subset \mathbb{O}[\hbar] / \mathbb{O}[\hbar] \).

We also have canonical isomorphisms \((U')^o \simeq (U^*)^\vee \) and \((O')^* \simeq (O^o)^\vee \).

If \(a \) is a finite dimensional Lie bialgebra and \(U = U_h(a) \) is a QUE algebra quantizing \(a \), then \(U^* = O_{A,h} \) is a QFSH algebra quantizing the Poisson-Lie group \(A \) (with Lie bialgebra \(a \)), and \(U' = O_{A,h}^* \) is a QFSH algebra quantizing the Poisson-Lie group \(A^* \) (with Lie bialgebra \(a^* \)). If now \(O = O_{A,h} \) is a QFSH algebra quantizing \(A \), then \(O^* = U_h(a) \) is a QUE algebra quantizing \(a \) and \(O^* = U_h(a^*) \) is a QFSH algebra quantizing \(a^* \).

We now compute these functors explicitly in the case of cocommutative QUE and commutative QFSH algebras. If \(U = U(a)[\hbar] \) with cocommutative coproduct (where \(a \) is a Lie algebra), then \(U' \) is a completion of \(U(ha)[\hbar] \); this is a flat deformation of \(S(a) \) equipped with its linear Lie-Poisson structure. If \(G \) is a formal group with function ring \(O_G \), then \(O := O_G[\hbar] \) is a QFSH algebra, and \(O^* \) is a commutative QUE algebra; it is a quantization of \((S(g^*), \text{commutative product, cocommutative coproduct, co-Poisson structure induced by the Lie bracket of } g) \).

4.2. Proof that “twists” can be made admissible.

Definition 4.1. An element \(x \) in a QUE algebra \(U \) is admissible if \(x \in 1 + hU \), and if \(h \log x \) is in \(U' \subset U \).

In this subsection, we will prove that for \(\gamma, \gamma' \) in \(\Gamma \), the twist \(F_{\gamma,\gamma'} \) defined in Proposition 5.3 is twist equivalent to an admissible one. More precisely, we have

Proposition 4.2. Let \(F_{\gamma,\gamma'} \) be as Proposition 5.3. Then there exists elements \(b_{\gamma,\gamma'} \) in \(U \) such that \(b_{\gamma,\gamma'} F_{\gamma,\gamma'} := b_{\gamma,\gamma'}^2 F_{\gamma,\gamma'} \Delta_0(b_{\gamma,\gamma'}^{-1}) \) is admissible.

Proof. Let us denote \(F_0 = F_{\gamma,\gamma'} \). We will follow the proof of Proposition 5.2. in [EH3]; let us construct \(b = b_{\gamma,\gamma'} \) as a product \(\cdots b_2 b_1 \), where \(b_n \in 1 + h^n U_0 \), in such a way that if \(F_n := b_{\gamma,\gamma'} F_0 \), then \(h \log(F_n) \in U_0^{\otimes 2} + h^{n+2} U_0^{\otimes 2} \) (here \(U_0 \) denotes the augmentation ideal).

We have already \(h \log(F_0) \in h^2 U_0^{\otimes 2} \).
Expand $F_0 = 1 \otimes 2 + h f_1 + \cdots$, then $\text{Alt}(f_1) = r$. Moreover, the coefficient of h in $F_0^{12,3} = F_0^{1} F_0^{123}$ yields $d(f_1) = 0$, where $d : U(g)_0 \otimes U(g)_0 \to U(g)_0 \otimes U(g)_0$ is the co-Hochschild differential. It follows that for some $a_1 \in U(g)_0$, we have $f_1 = r + d(a_1)$. Then if we set $b_1 := \exp(ha_1)$ and $F_1 = b_1 F_0$, we get $F_1 \in U(g)_0^{123} + hU(g)_0^{12}$. Then $h \log(F_1) \in h^r + h^3U_0^{12} + h^3U_0^{13}$.

Assume that for $n \geq 2$, we have constructed b_1, \ldots, b_{n-1} such that $\alpha_{n-1} := h \log(F_{n-1}) \in U_0^{123} + h^{n+1}U_0^{13}$.

Let us recall to technical lemmas from [EH3]:

Lemma 4.3. The quotient $(U^r + h^nU)/(U^r + h^{n+1}U)$ identifies with $U(g)/U(g)_{\leq n}$. In the same way, the quotient $(U_0^{123} + h^rU_0^{12})/(U_0^{123} + h^{n+1}U_0^{12})$ identifies with $U(g)_0^{123}/U(g)_0^{123}$ and the quotient of g-invariant subspaces $(U_0^{123} + h^nU_0^{12})/(U_0^{123} + h^{n+1}U_0^{12})$ identifies with $(U(g)_0^{123}/U(g)_0^{123})_{\leq n}$.

Lemma 4.4. Assume that $n \geq 2$. If $f_1, f_2 \in (U_0^{12})^2 + h^{n+1}U_0$ and $g, h \in h^rU_0$, then $(f_1 + g) \ast h (f_2 + h) = g + h \mod \text{U}(U_0^{12})^2 + h^{n+1}U_0$, where $\ast h$ is the CBH product for the Lie bracket $[a, b]_h = [a, b]/h$.

Let us denote by α the image of the class of α_{n-1} in $U(g)_0^{123}/(U(g)_0^{123})_{\leq n+1}$ under the isomorphism of this space with $(U_0^{123} + h^{n+1}U_0^{123})/(U_0^{123} + h^{n+2}U_0^{123})$ (see Lemma 4.3). Let $\alpha \in U(g)_0^{12}$ be a representative of α, then $\alpha_{n-1} = \alpha' + h^{n+1}\alpha$, where $\alpha' \in U_0^{123} + h^{n+2}U_0^{123}$. Then the twist equation gives

\begin{equation}
(-\alpha' - h^{n+1}\alpha)^{123} \ast h (-\alpha' - h^{n+1}\alpha)^{23} \ast h (\alpha' + h^{n+1}\alpha)^{12} \ast h (\alpha' + h^{n+1}\alpha)^{123} = 0.
\end{equation}

According to Lemma 4.4, the image of equality (7) in $(U_0^{123} + h^{n+1}U_0^{123})/(U_0^{123} + h^{n+2}U_0^{123}) \simeq U(g)_0^{123}/(U(g)_0^{123})_{\leq n+1}$ is $d(\tilde{\alpha}) = 0$, where d is the co-Hochschild differential on the quotient $U(g)_0^{123}/(U(g)_0^{123})_{\leq n+1}$. Since $n \geq 2$, the relevant cohomology group vanishes, so $\tilde{\alpha} = d(\tilde{\beta})$, where $\tilde{\beta} \in U(g)_0/(U(g)_0)^{123}_{\leq n+1}$. Let $\tilde{\beta} \in U(g)_0$ be a representative of $\tilde{\beta}$ and set $b_n := \exp(h \tilde{\beta})$, $F_n := b_n F_{n-1}$, $\alpha_n := h \log(F_n)$. Then

\[\alpha_n = (h^{n+1}\beta_1)^{12} \ast h (h^{n+1}\beta_2)^{23} \ast h \alpha_{n-1} \ast h (-h^{n+1}\beta_1)^{12}. \]

According to Lemma 4.4, the image of α_n in

\[(U_0^{123} + h^{n+1}U_0^{123})/(U_0^{123} + h^{n+2}U_0^{123}) \simeq U(g)_0^{123}/(U(g)_0^{123})_{\leq n+1} \]

is $\tilde{\alpha} - d(\tilde{\beta}) = 0$. So α_n belongs to $U_0^{123} + h^{n+2}U_0^{123}$, as required. This proves the induction step.

4.3. Proof of Theorem 2.3. Thanks to the previous subsection, we now know that there exists an element $b_{\gamma, \gamma'}$ in U such that $b_{\gamma, \gamma', \gamma''} := b_{\gamma, \gamma'} \cdot F_{\gamma, \gamma''} \cdot \Delta_{\gamma} (b_{-1, \gamma, \gamma''})$ is admissible. Let us define

\[F'_{\gamma, \gamma''} = b_{\gamma, \gamma'} F_{\gamma, \gamma''}, \quad \iota'_{\gamma, \gamma''} = b_{1, \gamma, \gamma'} \circ \text{Ad}(b_{-1, \gamma, \gamma''}) \]

and

\[v'_{\gamma, \gamma''} = b_{\gamma, \gamma''} v_{\gamma, \gamma''} v_{\gamma, \gamma''}^{-1} i_{\gamma, \gamma''} (b_{-1, \gamma, \gamma''}^{-1}) b_{-1, \gamma, \gamma''}^{-1}. \]

Then it is clear that $F'_{\gamma, \gamma''}$, $\iota'_{\gamma, \gamma''}$ and $v'_{\gamma, \gamma''}$ still satisfy the conclusion of Theorem 1.5.

Thanks to the first subsection of this section, applying the functor $\text{QUE} \to \text{QFSH}$ to the algebras (U_0^{123}, Δ_0) we get algebras $(\text{QUE}_0^{123}, \ast_0, \Delta_0)$ which are quantizations of the Poisson algebras $(O_G, \{-\cdot, -\cdot\}_G)$. Since the twists $F'_{\gamma, \gamma''}$ are admissible, the algebra morphisms $\iota'_{\gamma, \gamma''}$ restrict to the QFSH algebras U_0'. Then to end the proof of Theorem 2.3 one has to prove:

Proposition 4.5. The elements $v'_{\gamma, \gamma'', \gamma'''}$ are admissible.
Proof. Let us denote \(v = \nu'_{\gamma',\gamma'',\gamma'''} \). Suppose \(v \) is not admissible and let \(n \) be the bigger \(i \) such that \(\alpha_0 := h \log(v) \in U_0 + h^{n+1}U_0 \). By the assumption on \(v \), we know that \(n \geq 2 \). Let us denote by \(\bar{\alpha} \) the image of the class of \(\alpha_0 \) in \(U(\mathfrak{g})_0/(U(\mathfrak{g})_0)_{\leq n+1} \) under the isomorphism of this space with \((U_0 + h^{n+1}U_0)/(U_0 + h^{n+2}U_0) \) (see Lemma [1,3]). Let \(\alpha \in U(\mathfrak{g})_0 \) be a representative of \(\bar{\alpha} \), then \(\alpha_0 = \alpha' + h^{n+1} \alpha \), where \(\alpha' = U_0 + h^{n+2}U_0 \). Let \(f, f' \) and \(f'' \) be respectively the \(h \)-log of \(F'_{\gamma',\gamma''}, F'_{\gamma',\gamma''}, \) and \(F_{\gamma',\gamma''} \). Then the compatibility equation for composition of twists gives

\[
(f'') = (\alpha' + h^{n+1} \alpha)^{\otimes 2} \ast_h i^{-1}_{\gamma'\gamma''}(f') \ast_h f (-\alpha' - h^{n+1} \alpha)^{12} = 0.
\]

According to Lemma [4.4] the image of equality \((8)\) in \((U(\mathfrak{g})^{\otimes 2} + h^{n+1}U(\mathfrak{g})^{\otimes 2} + h^{n+2}U^{\otimes 2}) \simeq U(\mathfrak{g})^{\otimes 2}/(U(\mathfrak{g})^{\otimes 2})_{\leq n+1} \) is \(d(\bar{\alpha}) = 0 \). So \(\bar{\alpha} \in \mathfrak{g} \) which is a contradiction with \(n \geq 2 \).

\(\square \)

5. Example of Simple Group with Action of the Weyl Group

5.1. Quantization of Majid and Soibelman [MS]. We start with briefly recalling the Majid and Soibelman’s approach to quantum Weyl group. Let \(\mathfrak{g} \) be a complex simple Lie algebra, \(U_h(\mathfrak{g}) \) be the natural deformation of the universal enveloping algebra \(U(\mathfrak{g}) \). Lustig [Lu] and Soibelman [So] first independently noticed that a simple reflection \(w \) in the Weyl group \(W \) of \(\mathfrak{g} \) defines an automorphism \(\alpha_w \) on \(U_h(\mathfrak{g}) \). Then one can extend \(U_h(\mathfrak{g}) \) by elements \(\tilde{w} \) with \(\alpha_w(\tilde{w}) = \tilde{w} g \tilde{w}^{-1} \) for all simple reflections in \(W \). The extended algebra is called by “quantum Weyl group” and denoted by \(U_h(\mathfrak{g}) \). In [KR] and [So], \(U_h(\mathfrak{g}) \) is used to construct explicit formulas for solutions to the Yang-Baxter equation.

In [MS], Majid and Soibelman discovered the bicrossed product structure on \(U_h(\mathfrak{g}) \). Let \(w_i \) be simple reflections in \(W \) and \(t_j \) is elements in the maximal torus corresponding to \(\phi_j \) with \(\phi_j : sl_2 \rightarrow \mathfrak{g} \) embedding to the \(j \)-th vertex of the Dynkin diagram. Define \(\tilde{W} \) be the group generated by \(w_i \) and \(t_j \), which is a covering of the Weyl group \(W \) with the kernel isomorphic to the direct sum of \(k \)-copies of \(\mathbb{Z}_2 \) (\(k = \text{rank}(\mathfrak{g}) \)).

The quantum Weyl group \(U_h(\mathfrak{g}) \) is proved in [MS][Corollary 3.4] to isomorphic to the bicrossed product

\[
k\tilde{W} \triangleright \triangleleft \alpha, \psi U_h(\mathfrak{g}),
\]

where \(\alpha : U_h(\mathfrak{g}) \otimes k\tilde{W} \rightarrow U_h(\mathfrak{g}) \), \(\chi : k\tilde{W} \otimes k\tilde{W} \rightarrow U_h(\mathfrak{g}) \), and \(\psi : k\tilde{W} \rightarrow U_h(\mathfrak{g}) \otimes U_h(\mathfrak{g}) \) are linear maps defined by

\[
(\alpha(a \otimes t)) = t^{-1} \alpha_w(a) t,
\]

\[
\chi(w_1 t_1, w_2 t_2) = x^{-1},
\]

\[
\psi(wt) = (\tilde{w}^{-1} \otimes \tilde{w}^{-1}) \Delta \tilde{w}.
\]

In the above equation of \(\chi, x \) is defined to be an element in \(U_h(\mathfrak{g}) \) such that \(\alpha_{x w_1 t_1} a w_2 t_2 A_x^{-1} \) with \(x \in U_h(\mathfrak{g}) \).

Proposition 5.1. The quantum Weyl group \(U_h(\mathfrak{g}) \) is a quantization of the \(\Gamma = \tilde{W} \) Lie bialgebra \((\mathfrak{g},[,] , \delta) \), where \((\mathfrak{g},[,] , \delta) \) is the Lie bialgebra structure on \(\mathfrak{g} \) corresponding to the deformation \(U_h(\mathfrak{g}) \), and \(\tilde{W} \) acts on \(\mathfrak{g} \) as the Weyl group (it acts on \(\mathfrak{g} \) by adjoint action), and \(f_{\gamma} = \wedge^2(\gamma) \circ \delta \circ \gamma^{-1} - \delta \) for \(\gamma \in \tilde{W} \).

Proof. Inspired by the above bicrossed product structure on \(U_h(\mathfrak{g}) \), we introduce the following \(\Gamma \) quantized universal enveloping algebras for \(\Gamma = \tilde{W} \) generated by the following data.

- \((U_h(\mathfrak{g})_{\gamma}, m_{\gamma}, \Delta_{\gamma}) = (U_h(\mathfrak{g}), m, \Delta) \), where \(m \) is the canonical multiplication on \(U_h(\mathfrak{g}) \) and \(\Delta_{\gamma} = \alpha(-, \gamma) \otimes \Delta \circ \alpha^{-1}(-, \gamma) \) with \(\Delta \) the canonical coproduct on \(U_h(\mathfrak{g}) \).
• \(i_{\gamma,\gamma'} : (U_h(\mathfrak{g}), m_{\gamma}) \rightarrow (U_h(\mathfrak{g}), m_{\gamma,\gamma'}) \) by \(i_{\gamma,\gamma'} = \alpha(- \otimes \gamma) : U_h(\mathfrak{g}) \rightarrow U_h(\mathfrak{g}) \) and \(i_{\gamma,\gamma'} = i_{\gamma,\gamma'}' \).
• \(F_{\gamma} \in U_h(\mathfrak{g}) \) is set to be \(\psi(\gamma) \). According to \[\text{Lemma 3.3,} \]
\[\text{for any reflection} \ w_i \in W, \ F_{\gamma,\gamma'} = \psi(w_i) = e^{\Delta \hbar H_i / (\langle \alpha_i, \alpha_i \rangle)}(R_i)^{-1} = 1 + f_1 + O(\hbar^2). \]
\(\text{(Here} \ (H_i, X^+_i, X^-_i) \text{corresponds to the embedding} \ \phi : \mathfrak{sl}_2 \rightarrow \mathfrak{g} \text{for the} \ i-th \ \text{root} \ \alpha_i \ \text{with normal} \ (\alpha_i, \alpha_i). \text{Because the part of} \ e^{\Delta \hbar H_i / (\langle \alpha_i, \alpha_i \rangle)} \text{is symmetric,} \)
\(\text{the antisymmetrization of} \ f_1 \ \text{is equal to the antisymmetrization of the first order term of} \ (R_i)^{-1}, \ \text{which is equal to the definition of} \ F_{w_i} \ \text{by the asymptotic expansion of} \ R_i. \)
• \(v_{\gamma,\gamma',\gamma''} = \chi(\gamma,\gamma') \in U_h(\mathfrak{g}) \) is set to be \(\psi(\gamma) \). According to \(\chi(\gamma,\gamma') \)
\(\text{we see that} \ v \text{can be chosen be an element in} \ 1 + \hbar^2 U_h(\mathfrak{g}) \ \text{because} \ \alpha \ \text{action is associative up to the} \ h \text{-linear terms by [KR] [Formula (13)] and [KS] [Prop 1.4.10].} \)

It is straightforward to check that the cocycle conditions for \(\alpha, \chi, \psi \), and their compatibilities are equivalent to the conditions for \((U_h, \mathfrak{m}, \Delta, i_{\gamma,\gamma'}, F_{\gamma,\gamma'}, v_{\gamma,\gamma',\gamma''}) \) to be a \(\Gamma = \hat{W} \text{-quantized universal enveloping algebra. Therefore, the corresponding} \ \Gamma \text{-quantized universal enveloping algebra is isomorphic to} \ U_h(\mathfrak{g}). \)

\[\Box\]

5.2. Admissibility of the twists.

Corollary 5.2. The twists \(F_{\gamma,\gamma'} \text{ and } v_{\gamma,\gamma',\gamma''} \) defined in Proposition 5.1 are admissible. Therefore, the quantum Weyl group defines a stack of formal series Hopf algebras quantizing the corresponding stack of Poisson Hopf algebras dual to \((\hat{W}, \mathfrak{g}, [\ , \], \delta, f_\gamma) \).

Proof. We look at the formulas for \(F_{e,w_i} \).

According to \(\psi \)'s formula, if \(w_i \) is a simple reflection, then
\[F_{e,w_i} = e^{\Delta \hbar H_i / (\langle \alpha_i, \alpha_i \rangle)}(R_i)^{-1} = 1 + f_1 + O(\hbar^2). \]

Taking log on \(F_{e,w_i} \), we have
\[h \log R_i^{-1}. \]

The first term is primitive as \(H_i \) is primitive. And the second term \(h \log R_i^{-1} \) is primitive because \(h \log R_i^{-1} \) is primitive which was proved in \[\text{[EH]}\ [\text{Theorem 0.1}. \]

Therefore, we conclude that \(F_{e,w_i} \) is admissible when \(w \) is a simple reflection. And this property extends to a general element \(\gamma \) directly by products.

By Proposition 5.3, we also know that \(v \) is admissible because \(F \) is admissible.

We conclude the corollary by Theorem 2.3. \[\Box\]

References

[BGNT] P. Bressler, A. Gorokhovsky, R. Nest, B. Tsygan, *Deformation quantization of gerbes, math.QA/0512136*

[Dr1] V. Drinfeld, *Quantum groups*, Proceedings of the ICM-86 (Berkeley), 798-820, Amer. Math. Soc., Providence, RI, 1987.

[Dr2] V. Drinfeld, *Quasi-Hopf algebras*, Leningrad Math. J., 1 (1990), no. 6, 1419-1457.

[EGH] B. Enriquez, F. Gavarini, G. Halbout, *Uniqueness of braiding of quasi-triangular Lie bialgebroids and lifts of classical r-matrices*, Internat. Math. Res. Notices, 46 (2003), 2461-2486.

[EHI] B. Enriquez, G. Halbout, *An h-adic valuation property of universal R-matrices*, J. Algebra 261 (2003), no. 2, 434–447.

[EH2] B. Enriquez, G. Halbout, *Quantization of Gamma-Lie bialgebroids*, math.QA/0507817

[EH3] B. Enriquez, G. Halbout, *Coboundary Lie bialgebroids and commutative subalgebras of universal enveloping algebras*, Pacific J. of Math. 229 (2007) no. 1, 161–184.

[Gav] F. Gavarini, *The quantum duality principle*, Ann. Inst. Fourier (Grenoble), 52 (2002), no. 3, 809-834.

[KS] S.Z. Levendorskii and Y.S. Soibelman, *Some applications of the quantum Weyl groups*, J. Geom. Phys. 7 (1990), no. 2, 241–254.
[KR] A.N. Kirillov and N. Reshetikhin, *q*-Weyl group and a multiplicative formula for universal R-matrices, Commun. Math. Phys. 134, 421-431 (1990).

[Lu] G. Lustig, Quantum groups at roots of 1, Geom. Dedicata 35, (1990), 89-114.

[MS] S. Majid, Y. Soibelman, Bicrossproduct structure of the quantum Weyl group. J. Algebra 163 (1994), no. 1, 68–87.

[So] Y. S. Soibelman, Quantum Weyl group and some of its applications, Suppl. Rend. Circ. Mat. Palermo II 26 (1991).

Institut de Mathématiques et de Modélisation de Montpellier, Université de Montpellier 2, CC5149, Place Eugène Bataillon, F-34095 Montpellier CEDEX 5, France

E-mail address: halbout@math.univ-montp2.fr

Department of Mathematics, Washington University, St. Louis, Missouri, USA, 63130

E-mail address: xtang@math.wustl.edu