Abstract

In this paper, we study the uniform Hölder continuity of the generalized Riemann function $R_{\alpha,\beta}$ (with $\alpha > 1$ and $\beta > 0$) defined by

$$R_{\alpha,\beta}(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^\beta x)}{n^\alpha}, \quad x \in \mathbb{R},$$

using its continuous wavelet transform. In particular, we show that the exponent we find is optimal. We also analyse the behaviour of $R_{\alpha,\beta}$ as β tends to infinity.

Keywords: Hölder continuity, Continuous wavelet transform, Riemann function

2010 Mathematical Subject Classification: 26A16, 42C40, 30B50

1 Introduction

In the 19th century, Riemann introduced the function R defined by

$$R(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^2 x)}{n^2}, \quad x \in \mathbb{R},$$

in order to construct a continuous but nowhere differentiable function (see [6] for some historical informations). The regularity of this function has been extensively studied by many authors. In 1916, Hardy [10] showed that R is not differentiable at irrational numbers and at some rational numbers. In the seventies, Gerver [9] and other people [14, 21, 22, 24, 13] proved that R is only differentiable at the rational numbers $(2p+1)/(2q+1)$ (with $p \in \mathbb{Z}$ and $q \in \mathbb{N}$) with a derivative equals to $-1/2$.

The Hölder spaces allow to define a notion of smoothness or regularity for a function. In some way, it is an “intermediate level” between continuity and differentiability. Following [16, 18, 5, 26], we adopt the next definition for Hölder spaces.

Definition 1. Let $\alpha \in [0,1)$, $f \in L^\infty(\mathbb{R})$ and $x_0 \in \mathbb{R}$.

1. The function f belongs to $C^\alpha(x_0)$ if there exists $C > 0$ and $\varepsilon > 0$ such that

$$|f(x) - f(x_0)| \leq C|x - x_0|^{\alpha}$$

for all $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$. In this case, we say that f is Hölder continuous with exponent α at x_0.

The function \(f \) belongs to \(C^\alpha(\mathbb{R}) \) if there exists \(C > 0 \) such that
\[
|f(x) - f(y)| \leq C|x - y|^\alpha
\]
for all \(x, y \in \mathbb{R} \). In this case, we say that \(f \) is uniformly Hölder continuous with exponent \(\alpha \) (on \(\mathbb{R} \)).

The spaces defined above are embedded: if \(\alpha < \beta \) for \(\alpha, \beta \in [0, 1) \), then \(C^\beta(x_0) \subset C^\alpha(x_0) \) for any \(x_0 \in \mathbb{R} \) and \(C^\beta(\mathbb{R}) \subset C^\alpha(\mathbb{R}) \). This property allows to define a notion of regularity, known as Hölder exponent.

Definition 2. Let \(f \in L^\infty(\mathbb{R}) \) and let \(x_0 \in \mathbb{R} \).

1. The Hölder exponent of \(f \) at \(x_0 \) is
\[
H_f(x_0) = \sup \{ \alpha \in [0, 1) : f \in C^\alpha(x_0) \}.
\]

2. The uniform Hölder exponent of \(f \) (on \(\mathbb{R} \)) is
\[
H_f(\mathbb{R}) = \sup \{ \alpha \in [0, 1) : f \in C^\alpha(\mathbb{R}) \}.
\]

Following this definition, if \(f \) is differentiable, then \(H_f(\mathbb{R}) = 1 \). Moreover, \(H_f(\mathbb{R}) < 1 \) implies that \(f \) is not differentiable. However, there exist non-differentiable functions with a uniform Hölder exponent equal to 1; the Takagi function (see [25, 23]) is a famous example.

Based on a work with Littlewood [11], Hardy [10] showed that \(R \) is not Hölder continuous with exponent 3/4 at irrational numbers and at some rational numbers. Using the continuous wavelet transform (of \(R \)), Holschneider and Tchamitchian [13] established that \(R \) is uniformly Hölder continuous with exponent 1/2 and gave some results about its Hölder continuity at some particular points. With some similar techniques, Jaffard and Meyer [16, 17] determined the Hölder exponent of \(R \) at each point and proved that \(R \) is a multifractal function, i.e. that the function \(x \mapsto H_R(x) \) is not constant.

A generalization of \(R \) is given by the function \(R_{\alpha,\beta} \) defined by
\[
R_{\alpha,\beta}(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^\beta x)}{n^\alpha}, \quad x \in \mathbb{R},
\]
with \(\alpha > 1 \) and \(\beta > 0 \). Other generalizations of \(R \) are possible; for example, one can replace the element \(n^\beta \) in the definition of \(R_{\alpha,\beta} \) by a polynomial with entire coefficients (see [3, 22]).

The function \(R_{\alpha,\beta} \) defined in (1) is clearly continuous and bounded on \(\mathbb{R} \). If \(\beta \in (0, \alpha - 1) \), it is easy to check that \(R_{\alpha,\beta} \) is continuously differentiable on \(\mathbb{R} \) (because the series of derivatives uniformly converge on \(\mathbb{R} \)). If \(\beta \geq \alpha + 1 \), Luther [20] proved that \(R_{\alpha,\beta} \) is nowhere differentiable. If \(\beta \in [\alpha - 1, \alpha + 1) \), several partial results about the differentiability of \(R_{\alpha,\beta} \) are known (see [22, 20]). Moreover, some results are also known for the cases \(\beta = 2 \) (see [10, 16]), \(\beta = 3 \) (see [8]) and \(\beta \in \mathbb{N} \setminus \{0\} \) (see [4]). Concerning the Hölder continuity and also the Hölder exponent of \(R_{\alpha,\beta} \), several particular cases have been studied (see [2, 16, 17, 19, 11, 27]).

In this paper, we study the uniform Hölder continuity of \(R_{\alpha,\beta} \) with \(\beta \geq \alpha - 1 \) in order to complete and generalize a result of Johnsen [19] in 2010 which claims that, if \(\beta > \alpha - 1 \), then \(R_{\alpha,\beta} \) is uniformly Hölder continuous with an exponent superior or equal to \((\alpha - 1)/\beta \). To achieve
this, we use some techniques different from the ones of Johnsen. Our approach is based on the continuous wavelet transform of \(R_{\alpha,\beta} \) related to the Lusin wavelet, and is similar to the ones used to obtain the Hölder continuity of \(R \) in [18, 16, 13]. This method has two advantages: we can consider both the cases \(\beta = \alpha - 1 \) and \(\beta > \alpha - 1 \) to study the uniform Hölder continuity of \(R_{\alpha,\beta} \) and then show the optimality of the so obtained exponent. In other words, we calculate the uniform Hölder exponent of \(R_{\alpha,\beta} \) for \(\beta \geq \alpha - 1 \). These results are summarized in the following theorem.

Theorem 3. We have

\[
H_{R_{\alpha,\beta}}(\mathbb{R}) = \begin{cases}
1 & \text{if } \beta = \alpha - 1 \\
\frac{\alpha - 1}{\beta} & \text{if } \beta > \alpha - 1
\end{cases}
\]

If we fix \(\alpha > 1 \), the uniform Hölder exponent of \(R_{\alpha,\beta} \) decreases to 0 as \(\beta \) increases to infinity. In order to illustrate this phenomenon, we give the graphical representation of \(R_{\alpha,\beta} \) for some particular values of \(\beta \). For \(\beta \) large enough, we can observe that \(R_{\alpha,\beta} \) seems to be the function \(x \mapsto \sin(\pi x) \) with some noise or fluctuations all around. In fact, this function is simply the first term of the series defining \(R_{\alpha,\beta} \). We show that \(R_{\alpha,\beta} \) can be, on average, compared to the function \(x \mapsto \sin(\pi x) \) and we measure the amplitude of these fluctuations.

The paper is organized as follows. In Section 2 we recall some helpful properties about the continuous wavelet transform and the tool that it provides to study the Hölder continuity of a function. We will extensively take advantage of the properties of the Lusin wavelet. The proof of Theorem 3 is given in Section 4. We analyse in Section 4 the behaviour of \(R_{\alpha,\beta} \) as \(\beta \) increases. We present the graphical representation of \(R_{2,\beta} \) for some particular values of \(\beta \). In section 5, we give some additional comments about the more general case of nonharmonic Fourier series. We also show the limitations of the Lusin wavelet to investigate the research of the maximal possible Hölder exponent of \(R_{\alpha,\beta} \) at a point.

2 Hölder continuity and continuous wavelet transform

Let us recall some notions about the continuous wavelet transform and the Hölder continuity of a function (see [5, 16, 18, 26, 12, 13]). The natural space associated to the continuous wavelet transform is the Hilbert space \(L^2(\mathbb{R}) \). Such a setting is of no interest for the function \(R_{\alpha,\beta} \), since it does not belong to \(L^2(\mathbb{R}) \). As \(R_{\alpha,\beta} \) is a continuous and bounded function on \(\mathbb{R} \), the continuous wavelet transform of a function of \(L^\infty(\mathbb{R}) \) is more appropriate.

Definition 4. The function \(\psi \) is a wavelet if \(\psi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) and \(\hat{\psi}(0) = 0 \), where \(\hat{\psi} \) denotes the Fourier transform of \(\psi \):

\[
\hat{\psi}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} \psi(x) \, dx, \quad \xi \in \mathbb{R}.
\]

Using the wavelet \(\psi \), the continuous wavelet transform of a function \(f \in L^\infty(\mathbb{R}) \) is the function \(\mathcal{W}_\psi f \) defined by

\[
\mathcal{W}_\psi f(a,b) = \int_{\mathbb{R}} f(x) \frac{1}{a} \overline{\psi} \left(\frac{x-b}{a} \right) \, dx, \quad a > 0, \ b \in \mathbb{R},
\]

where \(\overline{\psi} \) denotes the complex conjugate of \(\psi \).
In order to study the uniform Hölder continuity of \(R_{\alpha,\beta} \), we will use a peculiar wavelet, known as the Lusin wavelet:

\[
\psi(x) = \frac{1}{\pi(x+i)^2}, \quad x \in \mathbb{R}.
\]

Since

\[
\hat{\psi}(\xi) = \begin{cases}
-2\xi e^{-\xi} & \text{if } \xi \geq 0 \\
0 & \text{if } \xi < 0
\end{cases},
\]

this wavelet belongs to the second Hardy space

\[
H^2(\mathbb{R}) = \left\{ f \in L^2(\mathbb{R}) : \hat{f} = 0 \text{ a.e. on } (-\infty, 0) \right\}.
\]

Such a property will be useful to obtain a simple explicit expression of \(\mathcal{W}_\psi R_{\alpha,\beta} \) (in comparison with the derivatives of a gaussian function for example).

An exact reconstruction formula exists in such a situation: if \(\psi \) belongs to \(H^2(\mathbb{R}) \) and if \(f \) belongs to a certain class of continuous and bounded functions on \(\mathbb{R} \), we can recover \(f \) from \(\mathcal{W}_\psi f \) using a second wavelet satisfying some additional properties. This result is strongly inspired by Proposition 2.4.2 in [5] and Theorem 2.2 in [13]. For the sake of completeness, we give in the appendix a proof based on the ideas of [5, 13, 12] and adapted to our case.

Theorem 5. Let \(\psi \) be a wavelet which belongs to \(H^2(\mathbb{R}) \). Let \(\varphi \) be a differentiable wavelet such that \(x \mapsto x^\alpha \psi(x) \) is integrable on \(\mathbb{R} \), such that \(D\varphi \) is square integrable on \(\mathbb{R} \) and such that

\[
\int_0^{+\infty} \psi(\xi)\varphi(\xi) \frac{d\xi}{\xi} = 1.
\]

If \(f \) is a continuous and bounded function on \(\mathbb{R} \) and is weakly oscillating around the origin, i.e. such that

\[
\lim_{r \to +\infty} \sup_{x \in \mathbb{R}} \left| \frac{1}{2r} \int_{x-r}^{x+r} f(t) \, dt \right| = 0,
\]

then we have

\[
f(x) = \lim_{r \to +\infty} \lim_{\varepsilon \to 0^+} \frac{2}{r} \int_{-\varepsilon}^{+\varepsilon} \left(\int_{-\infty}^{+\infty} \mathcal{W}_\psi f(a,b) \frac{1}{a} \varphi \left(\frac{x-b}{a} \right) \, db \right) \, da
\]

for all \(x \in \mathbb{R} \).

Thanks to this reconstruction formula, the Hölder continuity of a function can be characterized with its continuous wavelet transform, provided that the wavelet satisfies some additional conditions. We will use the following result to study the Hölder continuity of the generalized Riemann function (see [18, 16, 13]).

Theorem 6. Let \(\alpha \in (0,1) \), let \(\psi \) be a wavelet such that \(x \mapsto x^{\alpha} \psi(x) \) is integrable on \(\mathbb{R} \) and let \(f \) be a function as in Theorem 5.

(1) We have \(f \in C_\alpha(\mathbb{R}) \) if and only if there exists \(C > 0 \) such that

\[
|\mathcal{W}_\psi f(a,b)| \leq C \, a^\alpha
\]

for all \(a > 0 \) and \(b \in \mathbb{R} \).
(2) Let \(x_0 \in \mathbb{R} \). If \(f \in C^\alpha(x_0) \), then there exist \(C > 0 \) and \(\eta > 0 \) such that

\[
|W_\psi f(a, b)| \leq C a^\alpha \left(1 + \left(\frac{|b - x_0|}{a} \right)^\alpha \right)
\]

for all \(a \in (0, \eta) \) and \(b \in (x_0 - \eta, x_0 + \eta) \). Conversely, if there exist \(\alpha' \in (0, \alpha) \), \(C > 0 \) and \(\eta > 0 \) such that

\[
|W_\psi f(a, b)| \leq C a^\alpha \left(1 + \left(\frac{|b - x_0|}{a} \right)^{\alpha'} \right)
\]

for all \(a \in (0, \eta) \) and \(b \in (x_0 - \eta, x_0 + \eta) \), then \(f \in C^\alpha(x_0) \). □

Remark 7. Let us note that the necessary conditions in Theorem 6 do not need all the hypotheses on the function \(f \): the continuity and the weak oscillation around the origin of \(f \) are not useful for these implications.

The generalized Riemann function and the Lusin wavelet satisfy the conditions of the two previous theorems. Indeed, we know that \(R_{\alpha,\beta} \) is continuous and bounded and that the Lusin wavelet \(\psi \) belongs to \(H^2(\mathbb{R}) \). Moreover, \(R_{\alpha,\beta} \) is weakly oscillating around the origin because

\[
\left| \frac{1}{2r} \int_{x-r}^{x+r} R_{\alpha,\beta}(t) \, dt \right| \leq \left| \frac{1}{2r} \sum_{n=1}^{+\infty} \frac{\cos((x-r)\pi n^\beta) - \cos((x+r)\pi n^\beta)}{\pi n^\alpha + \beta} \right| \leq \frac{\zeta(\alpha + \beta)}{\pi r}
\]

for all \(x \in \mathbb{R} \) and \(r > 0 \), and \(x \mapsto x^\alpha \psi(x) \) is clearly integrable for \(\alpha \in (0, 1) \). Besides, it is easy to find a differentiable wavelet \(\varphi \) such that \(x \mapsto x^\alpha \varphi(x) \) is integrable on \(\mathbb{R} \), such that \(D\varphi \) is square integrable on \(\mathbb{R} \) and such that

\[
\int_0^{+\infty} \hat{\varphi}(\xi) e^{-\xi} \, d\xi = -\frac{1}{2}.
\]

In the following, \(\psi \) will systematically denote the Lusin wavelet (see (2)).

3 Hölder continuity of generalized Riemann function

Since we know that the function \(R_{\alpha,\beta} \) is continuously differentiable on \(\mathbb{R} \) if \(\alpha > 1 \) and \(\beta \in (0, \alpha - 1) \), we may assume \(\beta \geq \alpha - 1 \) in the study of the uniform Hölder continuity of \(R_{\alpha,\beta} \). To prove Theorem 3 we first need to determine the continuous wavelet transform of \(R_{\alpha,\beta} \) related to the Lusin wavelet, as in [18, 16, 13] where the case \(\alpha = \beta = 2 \) is treated.

Proposition 8. We have

\[
W_\psi R_{\alpha,\beta}(a, b) = i a \pi \sum_{n=1}^{+\infty} \frac{e^{i n^\beta(b+ia)}}{n^{\alpha - \beta}}
\]

for all \(a > 0 \) and \(b \in \mathbb{R} \).

Proof. We can write

\[
R_{\alpha,\beta}(x) = \frac{1}{2} \left(T_{\alpha,\beta}(x) - \tilde{T}_{\alpha,\beta}(x) \right)
\]

for \(x \in \mathbb{R} \) with

\[
T_{\alpha,\beta}(x) = -i \sum_{n=1}^{+\infty} \frac{e^{i n^\beta x}}{n^\alpha} \quad \text{and} \quad \tilde{T}_{\alpha,\beta}(x) = T_{\alpha,\beta}(-x).
\]
In other words, $R_{\alpha, \beta}$ is the odd part of $T_{\alpha, \beta}$.

Let us fix $a > 0$ and $b \in \mathbb{R}$. We have

$$W_\psi T_{\alpha, \beta}(a, b) = \int_{\mathbb{R}} T_{\alpha, \beta}(x) \left(\frac{x - b}{a} \right) dx = \frac{a}{\pi} \int_{\mathbb{R}} \frac{T_{\alpha, \beta}(x)}{(x - (b + ia))^2} dx.$$

For $\eta > 0$ and $r > 0$, let us denote by $\gamma_{\eta, r}$ the closed path formed by the juxtaposition of the two following ones: the first path describes the segment $[-r + i\eta, r + i\eta]$ and the second one the half-circle of center $i\eta$ and radius r included in $H = \{ z \in \mathbb{C} : 3z > 0 \}$. The function $T_{\alpha, \beta}$ is holomorphic on H because the series uniformly converges on every compact set of H. As the point $b + ia$ is situated inside the curve described by $\gamma_{\eta, r}$ for $\eta \in (0, a)$ and $r > a$, we obtain

$$W_\psi T_{\alpha, \beta}(a, b) = \frac{a}{\pi} \lim_{r \to \infty} \lim_{\eta \to 0^+} \int_{\gamma_{\eta, r}} T_{\alpha, \beta}(z) \left(\frac{z}{z - (b + ia)} \right)^2 dz = 2ia (DT_{\alpha, \beta})(b + ia) = 2ia \pi \sum_{n=1}^{+\infty} \frac{e^{i\pi n^2(b + ia)}}{n^{\alpha - \beta}},$$

thanks to Cauchy’s integral formula. Similarly, the continuous wavelet transform of $\tilde{T}_{\alpha, \beta}$ is given by

$$W_\psi \tilde{T}_{\alpha, \beta}(a, b) = \int_{\mathbb{R}} T_{\alpha, \beta}(-x) \left(\frac{x - b}{a} \right) dx = \frac{a}{\pi} \lim_{r \to \infty} \lim_{\eta \to 0^+} \int_{\gamma_{\eta, r}} T_{\alpha, \beta}(z) \left(\frac{z}{z - (-b + ia)} \right)^2 dz = 0$$

by homotopy invariance, because the point $-b - ia$ does not belong to H. We thus have the conclusion.

Let us now analyse $W_\psi R_{\alpha, \beta}$ in order to study the uniform Hölder continuity of $R_{\alpha, \beta}$ with Theorem 6. We have

$$|W_\psi R_{\alpha, \beta}(a, b)| \leq a \pi \sum_{n=1}^{+\infty} \frac{e^{-a\pi n^2}}{n^{\alpha - \beta}} = |W_\psi R_{\alpha, \beta}(a, 0)|$$

(5)

for $a > 0$ and $b \in \mathbb{R}$. The function $f_{\alpha, \beta} : x \mapsto x^{\beta - \alpha} e^{-a\pi x^2}$ is differentiable on $(0, +\infty)$ and

$$Df_{\alpha, \beta}(x) = e^{-a\pi x^2} x^{\beta - \alpha - 1} \left((\beta - \alpha) - a\pi x^2 \right), \quad x > 0.$$

Then, $f_{\alpha, \beta}$ is decreasing on $(0, +\infty)$ if $\beta \in (\alpha - 1, \alpha)$ and on $*((\beta - \alpha)/a\pi)^{1/\beta}, +\infty)$ if $\beta \geq \alpha$. The next developments are mainly based on the classical comparison principle between series and integral (when the general term is decreasing), which we recall in the following lemma.

Lemma 9. Let $N \in \mathbb{N}$ and let f be a decreasing and positive function defined on $[N, +\infty)$. The series $\sum_{n=N+1}^{+\infty} f(n)$ converges if and only if f is integrable on $[N, +\infty)$; in this case we have

$$\int_{N+1}^{+\infty} f(x) dx \leq \sum_{n=N+1}^{+\infty} f(n) \leq \int_{N}^{+\infty} f(x) dx.$$

We note that $f_{\alpha, \beta}$ is integrable on $(0, +\infty)$ only if $\beta > \alpha - 1$. We therefore split the study of the uniform Hölder continuity and the calculus of the uniform Hölder exponent of $R_{\alpha, \beta}$ into two cases: $\beta > \alpha - 1$ and $\beta = \alpha - 1$.

6
Proposition 10. If $\beta > \alpha - 1$, then

$$H_{R_{\alpha,\beta}}(\mathbb{R}) = \frac{\alpha - 1}{\beta}.$$

Proof. 1. Let us first consider the case $\beta \in (\alpha - 1, \alpha)$. The function $f_{\alpha,\beta}$ is decreasing on $[1, +\infty)$ and we have

$$|W_{R_{\alpha,\beta}}(a,b)| \leq a\pi \left(e^{-a\pi} + \sum_{n=2}^{+\infty} \frac{e^{-a\pi n^\beta}}{n^\alpha} \right) \leq a\pi \left(e^{-a\pi} + \int_{1}^{+\infty} \frac{e^{-a\pi x^\beta}}{x^\alpha} dx \right)$$

for $a > 0$ and $b \in \mathbb{R}$. For the second term of the right hand side of the last inequality, we obtain

$$\int_{1}^{+\infty} \frac{e^{-a\pi x^\beta}}{x^\alpha} dx \leq \int_{0}^{+\infty} \frac{e^{-a\pi x^\beta}}{x^\alpha} dx = \frac{1}{\beta} \pi^{\frac{a - 1}{\beta}} \Gamma \left(\frac{1 + \beta - \alpha}{\beta} \right) a^{\frac{1}{\beta} - 1}$$ (6)

for $a > 0$, where Γ is defined by

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt, \quad x > 0,$$

as usual. For the first term, we note that the function $a \mapsto e^{-a\pi} a^{1 - \frac{a - 1}{\beta}}$ is bounded on $(0, +\infty)$ because $\alpha - 1 < \beta$. Then, there exists $C_{\alpha,\beta} > 0$ such that

$$|W_{R_{\alpha,\beta}}(a,b)| \leq C_{\alpha,\beta} a^{\frac{a - 1}{\beta}}$$

for all $a > 0$ and $b \in \mathbb{R}$, which implies $R_{\alpha,\beta} \in C^{\frac{a - 1}{\beta}}(\mathbb{R})$ using Theorem 6.

Let us show the optimality of this exponent $(\alpha - 1)/\beta$ related to the uniform Hölder continuity. Let $C > 0$ and $\eta > 0$; we have

$$|W_{R_{\alpha,\beta}}(a,0)| = a\pi \sum_{n=1}^{+\infty} \frac{e^{-\pi n^\beta a}}{n^{\alpha - \beta}} \geq a\pi \int_{1}^{+\infty} \frac{e^{-a\pi x^\beta}}{x^\alpha} dx = \frac{1}{\beta} (a\pi)^{\frac{a - 1}{\beta}} \Gamma \left(\frac{\beta - \alpha + 1}{\beta}, a\pi \right)$$

for $a > 0$, where Γ is the incomplete Gamma function defined by

$$\Gamma(x,y) = \int_{y}^{+\infty} e^{-t} t^{x-1} dt, \quad (x,y) \in (0, +\infty) \times [0, +\infty).$$

Let us recall that $\Gamma(x,0) = \Gamma(x)$ and $\Gamma(x,y)$ converges to $\Gamma(x)$ as $y \to 0^+$ for all $x > 0$. Since $\Gamma((\beta - \alpha + 1)/\beta, a\pi) \to \Gamma((\beta - \alpha + 1)/\beta)$ and $a^\eta \to 0$ as $a \to 0^+$, there exists $A > 0$ such that, for all $a \in (0, A)$, we have

$$|W_{R_{\alpha,\beta}}(a,0)| > C a^{\frac{a - 1}{\beta} + \eta}.$$

Hence the conclusion using Theorem 6.

2. Let us now consider the case $\beta \geq \alpha$ and let us write $N_a = \left\lfloor \left((\beta - \alpha)/a\pi \beta \right)^{1/\beta} \right\rfloor + 1$, where $\lfloor x \rfloor$ denotes the largest integer smaller than or equal to the real x. If $a > 1$, then $N_a = 1$.
and we can proceed as in the previous case. Let us therefore suppose that \(a \in (0, 1]\). We have

\[
|W_\psi R_{\alpha, \beta}(a, b)| \leq a \pi \left(\sum_{n=1}^{N_a} \frac{e^{-\pi n^\beta a}}{n^{\alpha - \beta}} + \sum_{n=N_a+1}^{+\infty} \frac{e^{-\pi n^\beta a}}{n^{\alpha - \beta}} \right)
\]

\[
\leq a \pi \left(N_a N_a^{\beta - \alpha} + \int_{N_a}^{+\infty} \frac{e^{-\alpha \pi x^\beta}}{x^{\alpha - \beta}} \, dx \right)
\]

\[
\leq a \pi \left(\left(\frac{\beta - \alpha}{\pi \beta} \right)^{1/\beta} + a^{1/\beta} \right)^{\beta - 1} + \frac{1}{\beta} \int_{0}^{+\infty} \frac{e^{-\alpha \pi x^\beta}}{x^{\alpha - \beta}} \, dx
\]

\[
\leq a^{\frac{\alpha - 1}{\beta}} \pi \left(\left(\frac{\beta - \alpha}{\pi \beta} \right)^{1/\beta} + 1 \right) + \frac{1}{\beta} a^{\frac{\alpha}{\beta}} \Gamma \left(\frac{1}{\beta} \right)
\]

where we have used relation (6) to obtain the last inequality. We then have

\[R_{\alpha, \beta} \in C^{\frac{\alpha - 1}{\beta}}(\mathbb{R})\]

using Theorem 6.

Let us show the optimality of the exponent related to the uniform Hölder continuity. Let \(C > 0\) and \(\eta > 0\); we have

\[
\sum_{n=1}^{+\infty} \frac{e^{-\pi n^\beta a}}{n^{\alpha - \beta}} \geq \sum_{n=N_a}^{+\infty} \frac{e^{-\pi n^\beta a}}{n^{\alpha - \beta}}
\]

\[
\geq \int_{N_a}^{+\infty} \frac{e^{-\alpha \pi x^\beta}}{x^{\alpha - \beta}} \, dx
\]

\[
= \frac{1}{\beta} (a \pi)^{\frac{\alpha - 1}{\beta}} \Gamma \left(\frac{\beta - 1}{\beta} \right)
\]

for \(a > 0\). As in the case \(\beta \in (\alpha - 1, \alpha)\), there exists \(A > 0\) such that, for all \(a \in (0, A)\), we have

\[
|W_\psi R_{\alpha, \beta}(a, 0)| > C a^{\frac{\alpha - 1}{\beta} + \eta},
\]

hence the conclusion using once again Theorem 6.

Remark 11. In fact, by taking \(b = 2k\) with \(k \in \mathbb{Z}\), we can show that \(R_{\alpha, \beta} \in C^{\frac{\alpha - 1}{\beta}}(2k)\) and that the exponent cannot be improved because \(W_\psi R_{\alpha, \beta}(a, 2k) = W_\psi R_{\alpha, \beta}(a, 0)\) for all \(a > 0\). In other words, we have

\[
H_{R_{\alpha, \beta}}(2k) = \frac{\alpha - 1}{\beta}.
\]

Since this quantity is strictly smaller than 1, \(R_{\alpha, \beta}\) is consequently not differentiable at \(2k\).

Proposition 12. We have \(H_{R_{\alpha, \alpha - 1}}(\mathbb{R}) = 1\).

Proof. We have

\[
|W_\psi R_{\alpha, \alpha - 1}(a, b)| \leq a \pi \left(e^{-a \pi} + \int_{1}^{+\infty} \frac{e^{-a \pi x^\alpha}}{x} \, dx \right) = a \pi \left(e^{-a \pi} + \frac{1}{\alpha - 1} E_1(a \pi) \right)
\]
for $a > 0$ and $b \in \mathbb{R}$, where E_1 is the exponential integral defined by

$$E_1(x) = \int_1^{\infty} e^{-xt} \frac{dt}{t}, \quad x > 0.$$

Since we have

$$\frac{1}{2} e^{-x} \ln \left(1 + \frac{2}{x} \right) < E_1(x) < e^{-x} \ln \left(1 + \frac{1}{x} \right)$$

for all $x > 0$ (see [1] p. 229), we obtain

$$|W_\psi R_{\alpha,\alpha-1}(a,b)| \leq a \pi e^{-a \pi} \left(1 + \frac{1}{a \pi} \ln \left(1 + \frac{1}{a \pi} \right)\right)$$

for $a > 0$ and $b \in \mathbb{R}$. Let us fix $\delta \in (0,1)$. There exists $A > 0$ such that, for all $a \in (0, A)$, we have

$$\frac{1}{\alpha - 1} \frac{\ln \left(1 + \frac{1}{a \pi} \right)}{(1 + \frac{1}{a \pi})^\delta} < 1$$

and then

$$|W_\psi R_{\alpha,\alpha-1}(a,b)| \leq a \pi e^{-a \pi} \left(1 + \left(1 + \frac{1}{a \pi}\right)^\delta\right) \leq a \pi \left(1 + 2^\delta \left(1 + \frac{1}{a \pi}\right)^\delta\right).$$

There also exists $A' \in (0, A)$ such that, for all $a \in (0, A')$, we have

$$|W_\psi R_{\alpha,\alpha-1}(a,b)| \leq C'_\delta a^{1-\delta},$$

where C'_δ is a positive constant (depending only on δ). Since the function

$$a \mapsto a^\delta e^{-a \pi} \left(1 + \frac{1}{a \pi} \ln \left(1 + \frac{1}{a \pi} \right)\right)$$

is bounded on $[A', +\infty)$, we also have

$$|W_\psi R_{\alpha,\alpha-1}(a,b)| \leq C''_\delta a^{1-\delta}$$

for $a \in [A', +\infty)$, where C''_δ is a positive constant. We thus obtain

$$|W_\psi R_{\alpha,\alpha-1}(a,b)| \leq C_\delta a^{1-\delta}$$

for all $a > 0$ and $b \in \mathbb{R}$ where $C_\delta = \max\{C'_\delta, C''_\delta\}$, which implies $R_{\alpha,\alpha-1} \in C^{1-\delta}(\mathbb{R})$ using Theorem 6.

Let us now show that this exponent of uniform Hölder continuity is optimal. Let $C > 0$; we have

$$|W_\psi R_{\alpha,\alpha-1}(a,0)| \geq a \pi \int_1^{+\infty} e^{-a \pi x a^{-1}} \frac{dx}{x} = a \pi \frac{\pi}{2(\alpha - 1)} E_1(a \pi) \geq a \pi \frac{\pi}{2(\alpha - 1)} e^{-a \pi} \ln \left(1 + \frac{2}{a \pi}\right)$$

for all $a > 0$ thanks to (7) and so, there exists $A > 0$ such that, for all $a \in (0, A)$, we have

$$|W_\psi R_{\alpha,\alpha-1}(a,0)| > Ca,$$

hence the conclusion using one last time Theorem 6.

\[\square\]
4 Behaviour of $R_{\alpha,\beta}$ as β increases

If we fix $\alpha > 1$, we know that the uniform Hölder exponent of $R_{\alpha,\beta}$ decreases as β increases, thanks to Theorem 3. Moreover, we know that this exponent is exactly the Hölder exponent of $R_{\alpha,\beta}$ at the origin. This phenomenon is clearly illustrated in Figure 1 in the case $\alpha = 2$.

As β tends to infinity, we note that the graphical representation of $R_{\alpha,\beta}$ looks like to the one of the function $s : x \mapsto \sin(\pi x)$ (in a certain sense to establish), with some noise or fluctuations all around. In the next two propositions, we give a convergence result and show that the fluctuations have a constant amplitude (i.e. independent from β). To do so, let us recall the usual definition of the mean of an integrable function over a bounded interval.

Definition 13. Let $a, b \in \mathbb{R}$ be such that $a < b$ and let f be an integrable function on (a, b).

"Figure 1: Graphical representation of $R_{2,1}$, $R_{2,3/2}$, $R_{2,2}$, $R_{2,4}$ and $R_{2,10}$"
The mean of the function f over the interval (a, b) is defined by
\[m_{f}^{a,b} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx. \]

Proposition 14. Let $\alpha > 1$. For all $a, b \in \mathbb{R}$ such that $a < b$, we have
\[\lim_{\beta \to +\infty} m_{R_{\alpha,\beta}}^{a,b} = m_{s}^{a,b}. \]

Proof. We have
\[
\left| \int_{a}^{b} (R_{\alpha,\beta}(x) - \sin(\pi x)) \, dx \right| = \left| \sum_{n=2}^{+\infty} \frac{\cos(\pi n^{\beta} a) - \cos(\pi n^{\beta} b)}{\pi n^{\alpha+\beta}} \right| \leq \frac{2}{\pi} (\zeta(\alpha + \beta) - 1)
\]
and we know that $\zeta(x) \to 1$ as $x \to +\infty$, hence the conclusion. \hfill \Box

Proposition 15. Let $\alpha > 1$ and let $\beta \in \mathbb{N} \setminus \{0\}$. The function $R_{\alpha,\beta}$ is periodic of period 2 and we have
\[
\int_{-1}^{1} (R_{\alpha,\beta}(x) - \sin(\pi x))^{2} \, dx = \zeta(2\alpha) - 1.
\]

Proof. The periodicity of $R_{\alpha,\beta}$ is easy to check. Let us calculate the integral. By developing $x \mapsto R_{\alpha,\beta}(x) - \sin(\pi x)$ in Fourier series, we have
\[
R_{\alpha,\beta}(x) - \sin(\pi x) = \frac{a_{0}}{2} + \sum_{m=1}^{+\infty} (a_{m} \cos(\pi mx) + b_{m} \sin(\pi mx))
\]
in $L^{2}([-1, 1])$ where $a_{0} = a_{m} = 0$ and
\[
b_{m} = 2 \int_{0}^{1} (R_{\alpha,\beta}(x) - \sin(\pi x)) \, dx \\
= \sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}} \int_{0}^{1} \left(\cos(x\pi(n^{\beta} - m)) - \cos(x\pi(n^{\beta} + m)) \right) \, dx \\
= \left\{ \begin{array}{ll}
\frac{1}{m^{\alpha/\beta}} & \text{if } m = k^{\beta} \text{ for one } k \in \mathbb{N} \setminus \{0, 1\} \\
0 & \text{otherwise}
\end{array} \right.
\]
for all $m \in \mathbb{N} \setminus \{0\}$. Consequently, by Parseval formula, we obtain
\[
\int_{-1}^{1} (R_{\alpha,\beta}(x) - \sin(\pi x))^{2} \, dx = \sum_{m=1}^{+\infty} b_{m}^{2} = \sum_{k=2}^{+\infty} \frac{1}{k^{2\alpha}} = \zeta(2\alpha) - 1.
\]
\hfill \Box

The two previous propositions are illustrated in Figure 2. Let us end this section with a simple remark about the behaviour of $R_{\alpha,\beta}$ as α tends to infinity.

Remark 16. Proposition [14] is also “satisfied” for α: we have
\[
\lim_{\alpha \to +\infty} m_{R_{\alpha,\beta}}^{a,b} = m_{s}^{a,b}
\]

The two previous propositions are illustrated in Figure 2. Let us end this section with a simple remark about the behaviour of $R_{\alpha,\beta}$ as α tends to infinity.

Remark 16. Proposition [14] is also “satisfied” for α: we have
\[
\lim_{\alpha \to +\infty} m_{R_{\alpha,\beta}}^{a,b} = m_{s}^{a,b}
\]
Figure 2: Mean value and amplitude of fluctuations of $x \mapsto R_{2,10}(x) - \sin(\pi x)$

for all $\beta > 0$ and all $a, b \in \mathbb{R}$ such that $a < b$. Moreover, by Proposition 15, we have

$$\lim_{\alpha \to +\infty} \int_{-1}^{1} (R_{\alpha,\beta}(x) - \sin(\pi x))^2 \, dx = 0$$

for all $\beta \in \mathbb{N} \setminus \{0\}$. In fact, a stronger result holds: for any fixed $\beta > 0$, $R_{\alpha,\beta}$ uniformly converges on \mathbb{R} to s as α tends to infinity because we have

$$|R_{\alpha,\beta}(x) - \sin(\pi x)| \leq \sum_{n=2}^{+\infty} \frac{1}{n^\alpha} = \zeta(\alpha) - 1$$

for all $x \in \mathbb{R}$.

5 Final remarks

5.1 About nonharmonic Fourier series

A part of Theorem 3 can be adapted for particular nonharmonic Fourier series. Let us first recall the notion of nonharmonic Fourier series (see [20, 28, 15]).

Definition 17. Let $a = (a_n)_{n \in \mathbb{N} \setminus \{0\}}$ be a sequence of complex numbers and let $\lambda = (\lambda_n)_{n \in \mathbb{N} \setminus \{0\}}$ be an increasing sequence of positive numbers which converges to infinity. A nonharmonic Fourier series (related to the sequences a and λ) is a function S defined by

$$S(x) = \sum_{n=1}^{+\infty} a_n e^{i\lambda_n x}, \quad x \in \mathbb{R},$$

if the series converges.

If the series $\sum_{n=1}^{+\infty} a_n$ is absolutely convergent, then the above series (related to S) uniformly converges on \mathbb{R}. We will assume that this is the case in the remainder of this discussion. Such a function S is then continuous and bounded on \mathbb{R}. As for $R_{\alpha,\beta}$, we can calculate the continuous wavelet transform of S (related to the Lusin wavelet).

Since $\lambda_n > 0$ for all $n \in \mathbb{N} \setminus \{0\}$, S is a holomorphic function on H and we have

$$\mathcal{W}_\psi S(a, b) = -2a \sum_{n=1}^{+\infty} a_n \lambda_n e^{i\lambda_n (b+ia)}$$
for \(a > 0 \) and \(b \in \mathbb{R} \), similarly to [4]. If we assume that there exist positive constants \(C_1, C_2 \) and \(C_3, \alpha > 1 \) and \(\beta > 0 \) such that
\[
|a_n| \leq \frac{C_1}{n^\alpha} \quad \text{and} \quad C_2 n^\beta \leq \lambda_n \leq C_3 n^\beta
\]
for all \(n \in \mathbb{N} \setminus \{0\} \), we then obtain
\[
|W_\psi S(a, b)| \leq 2aC_1C_3 \sum_{n=1}^{+\infty} \frac{e^{-C_2 a n^\beta}}{n^{\alpha - \beta}}
\]
for \(a > 0 \) and \(b \in \mathbb{R} \) and we recover an expression similar to the one obtained for \(|W_\psi R_\alpha \beta(a, b)| \) in [3]. Using the same reasoning as in the study of the uniform Hölder continuity of \(R_\alpha \beta \) with \(\alpha > 1 \) and \(\beta \geq \alpha - 1 \), we can formulate the following result.

Corollary 18. With the previous assumptions on \(a \) and \(\lambda \), we have \(S \in C^{\alpha-1} (\mathbb{R}) \) if \(\beta > \alpha - 1 \) and \(S \in C^{1-\delta} (\mathbb{R}) \) for all \(\delta \in (0, 1) \) if \(\beta = \alpha - 1 \).

5.2 About the Lusin wavelet

If \(\alpha = \beta = 2 \), we know that the largest Hölder exponent of \(R = R_{2,2} \) at a point is 3/2 and that it is attained at the rational numbers \((2p + 1)/(2q + 1) \) with \(p \in \mathbb{Z} \) and \(q \in \mathbb{N} \) (see [14]). The continuous wavelet transform related to the Lusin wavelet of \(R \) does not allow to find this exponent.

Indeed, for \(a > 0 \), we have
\[
W_\psi R(a, 1) = ia \pi \sum_{n=1}^{+\infty} e^{i \pi n^2 (1+i a)} = ia \pi \sum_{n=1}^{+\infty} (-1)^n e^{-a \pi n^2} = \frac{ia \pi}{2} \left(\frac{\sum_{n=1}^{+\infty} e^{i \pi n} e^{-a \pi n^2}}{2} - 1 \right)
\]
and, by the Poisson summation formula,
\[
|W_\psi R(a, 1)| = \frac{a \pi}{2} \left| \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{a}} e^{-\frac{(\pi + n)^2}{4a \pi}} - 1 \right| = \frac{a \pi}{2} \left| \frac{e^{-\frac{\pi}{\sqrt{a}}}}{\sqrt{a}} \left(1 + 2 \sum_{n=1}^{+\infty} e^{-\frac{n^2}{4a \pi} \cosh \left(\frac{n}{2a} \right)} \right) - 1 \right|
\]
Let \(C > 0 \) and \(\eta > 0 \). We have
\[
\lim_{a \to 0^+} \frac{e^{-\frac{\pi}{\sqrt{a}}}}{\sqrt{a}} \left(1 + 2 \sum_{n=1}^{+\infty} e^{-\frac{n^2}{4a \pi} \cosh \left(\frac{n}{2a} \right)} \right) = 0
\]
since we have
\[
2 \sum_{n=8}^{+\infty} e^{-\frac{n^2}{4a \pi} \cosh \left(\frac{n}{2a} \right)} \leq \int_{7}^{+\infty} e^{-\frac{x^2}{2\pi \sqrt{a}}} \left(1 + e^{\frac{x^2}{2\pi}} \right) dx \leq \pi \sqrt{a} + \int_{7}^{+\infty} e^{-\frac{x}{2\pi \sqrt{a}}} x dx
\]
for all \(a \in (0, 1) \). The sum begins with the term related to \(n = 8 \) for two reasons. On the one hand, the function \(g : x \mapsto e^{-\frac{x^2}{2\pi \sqrt{a}}} \cosh \left(\frac{x}{2a} \right) \) is differentiable on \(\mathbb{R} \) and
\[
Dg(x) = e^{-\frac{x^2}{2\pi \sqrt{a}}} \left(-\frac{x}{\pi} \cosh \left(\frac{x}{2a} \right) + \sinh \left(\frac{x}{2a} \right) \right) \leq 0 \quad \Leftrightarrow \quad x \geq \pi \tanh \left(\frac{\pi}{2a} \right),
\]
which implies that \(g \) is decreasing on \([4, +\infty)\). On the other hand, the function \(x \mapsto \frac{x^2}{2\pi} - x \) is positive on \([7, +\infty)\). Consequently, there exists \(A \in (0, 1) \) such that, for all \(a \in (0, A) \), we have

\[
\frac{\pi}{2C} \left| \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{a}} \left(e^{\frac{(a+n)^2}{4\pi}} - 1 \right) \right| > a^\eta
\]

and then

\[
|W_\psi R(a, 1)| > Ca^{1+\eta}.
\]

(8)

In fact, the Lusin wavelet has only one vanishing moment since \(\hat{\psi}(0) = 0 \) and \((D\hat{\psi})(0) \neq 0\), because the function \(x \mapsto x\psi(x) \) is not integrable on \(\mathbb{R} \). Inequality (8) thus shows that the second vanishing moment is essential for the study of the Hölder continuity of \(R \) when the exponent is (strictly) greater than 1. We could otherwise find \(D > 0 \) and \(\delta > 0 \) such that

\[
|W_\psi R(a, b)| \leq Da^{3/2} \left(1 + \left(\frac{|b - 1|}{a} \right)^{3/2} \right)
\]

for all \(a \in (0, \delta) \) and \(b \in (1 - \delta, 1 + \delta) \) and then \(|W_\psi R(a, 1)| \leq D a^{3/2} \) for all \(a \in (0, \delta) \), which is in contradiction with (8) by taking \(C = D, \eta = 1/2 \) and \(a \in (0, \min\{\delta, A\}) \).

6 Appendix

Let us give a proof of Theorem 5. It is based on the ideas of [5, 13, 12] and adapted to the case of the continuous wavelet transform related to a wavelet \(\psi \) which belongs to \(H^2(\mathbb{R}) \).

Proof of Theorem 5. Let us fix \(x \in \mathbb{R} \) and \(r > \varepsilon > 0 \). We write

\[
f_{\varepsilon, r}(x) = \int_{\varepsilon}^{r} \left(\int_{-\infty}^{+\infty} \mathcal{W}_\psi f(a, b) \frac{1}{a} \varphi \left(\frac{x - b}{a} \right) \, db \right) \frac{1}{a} \, da
\]

and we have

\[
f_{\varepsilon, r}(x) = (M_{\varepsilon, r} \ast f)(x)
\]

by Fubini’s theorem, where \(M_{\varepsilon, r} \) is defined by

\[
M_{\varepsilon, r}(t) = \int_{\varepsilon}^{r} \left(\int_{-\infty}^{+\infty} \hat{\psi} \left(\frac{-b}{a} \right) \varphi \left(\frac{t - b}{a} \right) \, db \right) \frac{1}{a^3} \, da, \quad t \in \mathbb{R}.
\]

Since \(M_{\varepsilon, r} \in L^1(\mathbb{R}) \) and the support of \(\hat{\psi} \) is included in \((0, +\infty)\), we have

\[
\hat{M}_{\varepsilon, r}(\xi) = \int_{\varepsilon}^{r} \hat{\psi}(a\xi) \hat{\varphi}(a) \frac{1}{a} \, da = \begin{cases} 0 & \text{if } \xi \leq 0 \\ \int_{\varepsilon\xi}^{r} \hat{\psi}(a) \hat{\varphi}(a) \frac{1}{a} \, da & \text{if } \xi > 0 \end{cases}
\]

Moreover, we have

\[
\hat{M}_{\varepsilon, r}(\xi) = m(\varepsilon \xi) - m(r \xi)
\]

for all \(\xi \in \mathbb{R} \), where \(m \) is defined by

\[
m(\xi) = \begin{cases} \int_{\xi}^{+\infty} \hat{\psi}(a) \hat{\varphi}(a) \frac{1}{a} \, da & \text{if } \xi \geq 0 \\ \int_{-\varepsilon}^{\xi} \hat{\psi}(a) \hat{\varphi}(a) \frac{1}{a} \, da & \text{if } \xi < 0 \end{cases}
\]
It is easy to check that $m(0) = 1$, $m = 0$ on $(-\infty, 0)$ and that m is continuous only on $\mathbb{R} \setminus \{0\}$. Since we have the three following properties: $\hat{\psi}$ is bounded, ϕ is differentiable and $D\phi \in L^2(\mathbb{R})$, we obtain

$$|m(\xi)| \leq \left(\int_0^{+\infty} |a\hat{\phi}(a)|^2 \, da \right)^{1/2} \left(\int_\xi^{+\infty} |\hat{\psi}(a)|^2 \, da \right)^{1/2} \leq \frac{C'}{\xi^{3/2}}$$

for all $\xi > 0$, by Cauchy-Schwarz inequality, where C' is a positive constant. Then, m is bounded and there exists $C > 0$ such that

$$|m(\xi)| \leq \frac{C}{(1 + |\xi|)^{3/2}}$$

for all $\xi \in \mathbb{R}$. So $m \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and we can define M by $M(\xi) = \hat{m}(-\xi)/\pi$ for all $\xi \in \mathbb{R}$. By definition, M is continuous and bounded on \mathbb{R}.

Moreover, m is differentiable on $\mathbb{R} \setminus \{0\}$ and

$$Dm(\xi) = \left\{ \begin{array}{ll}
0 & \text{if } \xi < 0 \\
-\hat{\psi}(\xi)\hat{\phi}(\xi)\frac{1}{\xi} & \text{if } \xi > 0.
\end{array} \right.$$

Since $\hat{\phi}(0) = 0$ and $x \mapsto x\phi(x)$ is integrable on \mathbb{R}, we have

$$\hat{\phi}(\xi) = \left| \int_{\mathbb{R}} \phi(x) \left(e^{-ix\xi} - 1 \right) \, dx \right| = \left| \int_{\mathbb{R}} x\phi(x) \left(\int_0^\xi -ie^{-ixt} \, dt \right) \, dx \right| \leq C''|\xi|$$

for all $\xi \in \mathbb{R}$, where C'' is a positive constant. Consequently, $Dm \in L^2(\mathbb{R})$ because $\psi \in L^2(\mathbb{R})$. So $M \in L^1(\mathbb{R})$ since we can write M as the product of two square integrable functions: for all $x \in \mathbb{R}$, we have

$$M(x) = \frac{1}{\sqrt{1 + x^2}} \left(\sqrt{1 + x^2} M(x) \right),$$

where the second factor is square integrable, because m and Dm are square integrable on \mathbb{R}. Moreover, by the Dirichlet condition for Fourier inversion theorem (since m and Dm are piecewise continuous), we have

$$\int_{\mathbb{R}} M(x) \, dx = \hat{M}(0) = m(0^+) + m(0^-) = 1$$

using (3) where $m(0^\pm) = \lim_{\epsilon \to 0^\pm} m(\xi)$.

By definition of M and by Fourier inversion theorem in (9), we have

$$M_{\epsilon,r}(t) = \frac{1}{2} \left(\frac{1}{\epsilon} \int_{\mathbb{R}} M \left(\frac{x-t}{\epsilon} \right) \, dx - \frac{1}{r} \int_{\mathbb{R}} M \left(\frac{x-t}{r} \right) \, dx \right)$$

for all $t \in \mathbb{R}$ and we then obtain

$$f_{\epsilon,r}(x) = \frac{1}{2} \left(\int_{\mathbb{R}} \frac{1}{\epsilon} M \left(\frac{x-t}{\epsilon} \right) f(t) \, dt - \int_{\mathbb{R}} \frac{1}{r} M \left(\frac{x-t}{r} \right) f(t) \, dt \right).$$

The first integral converges to $f(x)$ as ϵ tends to 0^+ by Lebesgue theorem. The second integral converges to 0 as r tends to $+\infty$ thanks to Lemma 6.3.3 in [12], because f is bounded and weakly oscillating around on the origin, and $M \in L^1(\mathbb{R})$ is of integral equal to 1. The conclusion follows.
References

[1] M. Abramovitz, I. Stegun, *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards Applied Mathematics Series 55, New York, 1972.

[2] D. Boichu, *Analyse 2-microlocale et développement en série de chirps d’une fonction de Riemann et de ses généralisations*, Colloquium Mathematicum LXVII (2), 1994.

[3] F. Chamizo, A. Ubiś, *Multifractal Behavior of Polynomial Fourier Series*, Advances in Mathematics 250, 1-34, 2014.

[4] F. Chamizo, A. Ubiś, *Some Fourier series with gaps*, Journal d’analyse mathématique 101, 179-197, 2007.

[5] I. Daubechies, *Ten Lectures on Wavelets*, SIAM, Philadelphia, 1992.

[6] P. du Bois-Reymond, *Versuch einer Klassifikation der willkürlichen Funktionen reeller Argumente nach ihren Änderungen in den kleinsten Intervallen*, Journal für die reine und angewandte Mathematik 79, 21-37, 1875.

[7] J. J. Duistermaat, *Self-Similarity of “Riemann’s Nondifferentiable Function”*, Nieuw Archief voor Wiskunde 9 (3), 303-337, 1991.

[8] J. L. Gerver, *On Cubic Lacunary Fourier Series*, Transactions of the American Mathematical Society 355 (11), 4297-4347, 2003.

[9] J. L. Gerver, *The Differentiability of the Riemann Function at Certain Rational Multiples of π*, American Journal of Mathematics 92, 33-55, 1970.

[10] G. H. Hardy, *Weierstrass’s Non-Differentiable Function*, Transactions of the American Mathematical Society 17, 301-325, 1916.

[11] G. H. Hardy, J. E. Littlewood, *Some Problems of Diophantine Approximation (II)*, Acta Mathematica 37 (1), 193-239, 1914.

[12] M. Holschneider, *Wavelets, an Analysis Tool*, Oxford Mathematical Monographs, Oxford Science Publications, 1995.

[13] M. Holschneider, P. Tchamichian, *Pointwise Analysis of Riemann’s “Nondifferentiable” Function*, Inventiones Mathematicae 105, 157-175, 1991.

[14] S. Itatsu, *Differentiability of Riemann’s Function*, Proceedings of the Japan Academy, Series A 57 (10), 492-495, 1981.

[15] S. Jaffard, *Pointwise and Directional Regularity of Nonharmonic Fourier Series*, Applied and Computational Harmonic Analysis 28, 251-266, 2010.

[16] S. Jaffard, *The Spectrum of Singularities of Riemann’s Function*, Revista Matematica Iberoamericana 12 (2), 441-460, 1996.

[17] S. Jaffard, Y. Meyer, *Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions*, Memoirs of the American Mathematical Society (Book 587), 1996.

[18] S. Jaffard, Y. Meyer, R. D. Ryan, *Wavelets: Tools for Science and Technologies*, SIAM, 2001.
[19] J. Johnsen, Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth, Journal of Fourier Analysis and Applications 16, 17-33, 2010.

[20] W. Luther, The Differentiability of Fourier Gap Series and “Riemann’s Example” of a Continuous, Nondifferentiable Function, Journal Approximation Theory 48, 303-321, 1986.

[21] E. Mohr, Wo ist die Riemannsche Funktion nicht differenzierbar?, Annali di Matematica Pura ed Applicata 123 (1), 93-104, 1980.

[22] H. Queffelec, Dérivabilité de certaines sommes de séries de Fourier lacunaires, Comptes rendus de l’Académie des sciences de Paris 273, 291-293, 1971.

[23] A. Shidfar, K. Sabetfakhri, On the Continuity of van der Waerden’s Function in the Hölder Sense, American Mathematical Monthly 93, 375-376, 1986.

[24] A. Smith, The Differentiability of Riemann’s Function, Proceedings of the American Mathematical Society 34 (2), 463-468, 1972.

[25] T. Takagi, A Simple Example of the Continuous Function without Derivative, Proceedings of the Physico-Mathematical Society of Japan 1, 176-177, 1903.

[26] B. Torrésani, Analyse continue par ondelettes, CNRS Editions, Paris, 1995.

[27] A. Ubis, Questions of Arithmetic and Harmonic Analysis, PhD-Thesis, Madrid, 2006.

[28] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego, 2001.

L. Simons
Institute of Mathematics
University of Liège
Grande Traverse 12 (Bât. 37)
4000 Liège, Belgium
e-mail: L.Simons@ulg.ac.be