Autonomic maturation from birth to 2 years normative values
Hugues Patural, Vincent Pichot, Sophie Flori, Antoine Giraud, Patricia Franco, Patrick Pladys, Alain Beuchée, Frédéric Roche, Jean-Claude Barthelemy

To cite this version:
Hugues Patural, Vincent Pichot, Sophie Flori, Antoine Giraud, Patricia Franco, et al.. Autonomic maturation from birth to 2 years normative values. Heliyon, 2019, 5 (3), pp.e01300. 10.1016/j.heliyon.2019.e01300. hal-02088218

HAL Id: hal-02088218
https://univ-rennes.hal.science/hal-02088218
Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Autonomic maturation from birth to 2 years: normative values

Hugues Patural, Vincent Pichot, Sophie Flori, Antoine Giraud, Patricia Franco, Patrick Pladys, Alain Beuchée, Frédéric Roche, Jean-Claude Barthelemy.

Abstract

Background: While heart rate variability (HRV) constitutes a relevant non-invasive tool to assess the autonomic nervous system (ANS) function with recognized diagnostic or therapeutic implications, there is still a lack of established data on maturation of autonomic control of heart rate during the first months of life. The Autonomic Baby Evaluation (AuBE) cohort was built to establish, the normal autonomic maturation profile from birth up to 2 years, in a healthy population of full-term newborns.

Methods: Heart rate variability analysis was carried out in 271 full-term newborns (mean gestational age 39 wGA + 5 days) from reliable polysomnographic recordings at 0 (n = 270) and 6 (n = 221) months and from a 24-hour ambulatory electrocardiogram (ECG) at 12 (n = 210), 18 (n = 197), and 24 (n = 190) months. Indices of HRV analysis were calculated through the ANSLabTools software.

Results: Indices are dissociated according a temporal, geometrical, frequency, Poincaré, empirical mode decomposition, fractal, Chaos and DC/AC and entropy analysis. Each index is presented for five different periods of time, 0, 6, 12, 18
and 24 months and with smoothed values in the 3rd, 10th, 50th, 90th and 97th percentiles. Data are also presented for the full cohort and individualized by sex to account for gender variability.

Discussion & conclusion: The physiological autonomic maturation profile from birth to 2 years in a healthy population of term neonates results in a fine-tuning autonomic maturation underlying progressively a new equilibrium and privileging the parasympathetic activity over the sympathetic activity.

Keyword: Neuroscience

1. Introduction

Whatever the age [1, 2], heart rate variability (HRV) referring to beat-to-beat variations of the RR interval length constitutes a relevant non-invasive tool to assess the autonomic nervous system (ANS) function with recognized diagnostic or therapeutic implications [3, 4, 5, 6, 7, 8, 9].

For the neonatologist, the interest in HRV lies in the perception of the status of congenital or acquired autonomic dysregulation, particularly the cardiorespiratory control as objective risk factor of Sudden infant death syndrome (SIDS) [10, 11, 12, 13, 14]. In the triple risk model of SIDS involving “vulnerable child, exogenous stress and critical developmental period”, the cardiorespiratory autonomic immaturity and abnormal awakening responses appear to be critical [11, 14]. The cardiorespiratory modulations observed during arousal are mediated by the cortico-hypothalamic pathways and cardiorespiratory nuclei of the brainstem, including the solitary tract, ambiguous and dorsal nucleus of the pneumogastric nerve. Kato et al. provided an epidemiological link between central abnormalities of cardiorespiratory response during awakening and sudden death, in a large survey including 20,000 children [15]. The links with molecular research analyzes contributions of inhibitors neurotransmitters of cardiorespiratory control, in the genesis of both apnea and bradycardia as GABA γ aminobutyric acid, adenosine, serotonin, endorphins and prostaglandins [16, 17] with the identification of an abnormal serotonergic response in the bulbar and arcuate nucleus of the hypothalamus in as much as 50% of the cases, presumably linked to genetic polymorphisms [18, 19, 20, 21]. In that view, overexpression of cardiac muscarinic receptors as well as an increased enzymatic acetylcholinesterase activity have been reported [22]. Regardless of the fetal risk associated with autonomic dysfunction, the study of the child autonomic status is also of great interest in many clinical situations as frequent as infections, sepsis [23, 24], chronic inflammatory [25] diseases or type 1 diabetes [26] in which impaired autonomic control and increased risk for cardiovascular disease are reported.
While there are advances on the biological regulations, there is still a lack of established data on maturation of autonomic, particularly during the first months of life. It has been established that at least 37 weeks of in utero maturation are needed to achieve full autonomic maturation at birth [2, 27, 28, 29, 30]. As a matter of fact, both cardiac autonomic responsiveness and baroreflex loop are altered in preterm infants regardless of gestational age (GA) and remain very low at theoretical term when compared with full-term newborns [27, 28]. In a recent review about ANS in newborns, an increasing postnatal age is related to a significant rise of HRV parameters, particularly for the high frequency (HF) parameter, recognized as a relevant representative of parasympathetic maturation [31].

While an autonomous imbalance in the first year of life implies inappropriate cardiorespiratory reactions to internal or environmental stress [11, 12, 13, 14], the lack of references data at that age makes clinical studies unrelated to the others. This may concern up to the premature adolescent, but focusing up the two first years of age may help monitoring the most at risk infants [32, 33, 34]. Therefore, describing the natural evolution of autonomous maturation in the first years of life may bring useful data to clinicians in search for a better interpretation of autonomic status and its clinical relationships. The Autonomic Baby Evaluation (AuBE) cohort was built to establish, for the first time, the normal autonomic maturation profile from birth. We here publish the first results of the cohort, up to 2 years, in that healthy population of full-term newborns [35].

2. Methods

2.1. Design

Autonomic Baby Evaluation (AuBE) study is a prospective single-center observational study conducted at the University Hospital of Saint-Etienne (France), a level III Maternity managing 3,500 births annually. The cohort of the consecutive full-term newborns was performed over a 24 months’ period, from September 2009 to September 2011 to assess the autonomic maturation profile during the first two years of life.

For the Heart rate variability analysis, polysomnographic recordings were realized at 0 and 6 months and due to the growing motor ability of children, the recordings were then performed through a 24-hour ambulatory electrocardiogram (ECG) at 12, 18, and 24 months. The first two-year follow-up of the cohort ended in September 2014. All the design of the study with the approval by our institute’s ethics committee, the inclusion and exclusion criteria and the technical procedure for acquiring recorded data have been published in a previous review [35]. The study was registered in the International Clinical Trials Registry under the label ClinicalTrials.gov ID NCT01583335 [29].
Among the 302 children recruited, we kept 271 (89.7%) of them as being full-term, excluding the 31 (10.3%) preterm born before 37 weeks of gestational age (wGA). They were recruited continuously according to the availability of the recorders independently of ethnicity, and sex. For term newborns \((n = 271) \), the median gestational age was 39 wGA + 5 days [37 wGA, 41 wGA + 6 d]. The ratio M/F was 1.22 (149/122). We did not retain alcohol exposure during fetal life, but 86 (31%) newborns were probably exposed to nicotine in utero without precision of intensity [35].

No child presented a dysmorphic syndrome. At birth the mean term newborn weight was 3256 g (2640–4410), the mean length was 49.6 cm (44–55), and the mean head circumference was 34.2 cm (33.0–38.5). The mean Apgar score was 9 at one, 10 at two, and 10 at ten minutes. The mean CRIB score [36] was 0. One child received a brief resuscitation in the delivery room requiring a short cardiac massage with immediate hemodynamic recovery. No child presented neonatal lung disease, or hemodynamics, gastrointestinal or neurological troubles. One child (0.2%) had been treated for a suspected neonatal infection. Hospital stays lasted an average of 3 days [2, 5] and 100% of the children were considered clinically normal. No home monitoring was recommended at discharge. In this cohort of 271 infants, one child (0.03%) died in the third month of life, probably because of asphyxiation in bed without further explanation despite an extensive research of etiologic factors and an autopsic procedure. As a result, he was not excluded from the first recording. We note an early loss to follow-up before two years of age for 68/271 (25%) infants. Reliable HRV recordings were 270 polysomnographic recordings (M0) 210 polysomnographic recordings and 11 Holter 24 hours ECG (M6) and 210, 197 and 190 Holter ECG recordings at, respectively M12, M18 and M24.

2.2. Materials

The 24-hour ECG recordings were obtained from the polysomnographic recordings (Dream® Medatec, Belgium), or from ECG Holter (Vista®, Novacor, Rueil Malmaison, France). The sampling frequency was 200 Hz for both materials. HRV calculations were performed through the ANSLabTools software [37].

First, ECG tracings were resampled at a frequency of 1000 Hz and each R peak was detected to provide the R-R interval series with a precision of 1 ms. Then, missing beats, isolated premature heart beats and artifacts were corrected using a spline cubic interpolation [38, 39].

2.3. Analysis of heart rate variability

Indices of HRV analysis were calculated through the ANSLabTools giving several types of indices according to the litterature [37, 38].
- **Time domain analysis.** They are based on means and standard deviations calculated on short-term to long-term variations in RR intervals. The standard deviation of normal-to-normal intervals (SDNN), the standard deviation of the mean of all normal RR intervals for 5-min segments (SDANN) and the mean of the standard deviation of all normal RR intervals for all 5-min segments (SDNNIDX) represents global and long-term variations [37, 38], and the percent difference between adjacent normal RR intervals greater than 50 ms (pNN50), the square root of the mean of the squared differences between adjacent normal RR intervals (rMSSD) represents fast changes linked to the parasympathetic activity. The geometrical indices calculated on the sample density distribution of the RR intervals, corresponds to the assignment of the number of equally long RR intervals to each value of their length.

Poincaré plot is a graphic tool using SD1 and SD2 index, calculated as the standard deviation of the distances of the RR intervals from they $x = x$ line and the $y = -x + 2$ mean (RR) line respectively. SD1 represents short-term and SD2 long-term RR intervals variability.

- **Frequency domain analysis.** For those analyses, the RR signal was resampled at 4 Hz and the high frequency (HF) bandwidth was extended up to 2 Hz as recommended for newborns and children analyses [37, 38, 39]. Whereas total power (Ptot) represents the global variability, ultra-low frequencies (ULF), very low frequencies (VLF), low frequencies (LF), and high frequencies (HF) represent specific bands of interest. HF power is modulated by parasympathetic modulation, LF power is controlled by both sympathetic and parasympathetic activity, and normalized indexes (LFnu, HFnu) or the LF/HF ratio (calculated has the mean of the LF/HF values of all successive 5-min epochs of the entire RR serie) are used to estimate sympathetic modulation and autonomic equilibrium.

- **Geometrical analysis.** The indices calculated are HRV triangular index (the integral of the density distribution divided by the maximum of the density distribution) and the TINN index (triangular interpolation of the RR interval histogram i.e. the baseline width of this triangle). These measures quantify overall HRV mainly influenced by slow, but not by rapid, oscillations of RR intervals.

- **Non-linear analysis.** The indices arising from nonlinear approach provide information on the complexity of the autonomic regulations. In this context, the fractality of heart rate variability consist in quantifying the repetition of patterns display at different scales. These indices were calculated using detrend fluctuation analysis (α_1, α_2, H), Hurst exponent, 1/f slope, Higuchi and Katz and largest Lyapunov exponent algorithms. In addition, entropy indices are an estimation of the regularity and complexity of pattern at different length. Many indices have been calculated as the Shanon entropy and its derived indices, conditional entropy, corrected conditional entropy, normalized corrected conditional entropy, the sample entropy and approximate entropy.
- **Deceleration and Acceleration Capacities.** In this last non-linear approach, these two indices are used to estimate the vagal and sympathetic capacities by analyzing heart deceleration capacity (DC: detection of sequences of two successive RR beats that increase) and acceleration capacity (AC: detection of all sequences that decrease).

2.4. Statistical analysis

A preliminary analysis showed that many HRV indices did not follow a Gaussian distribution even when log-transformed. Thus, to construct the centiles for 24h HRV indices from 0 to 24 months, we first search for the distribution that better fits the data. For each index, we evaluated the goodness of fit of various distribution using maximum likelihood estimates of the parameters and by visual inspection of the quantile-quantile plots of sample data versus theoretical quantiles of the distribution. The analysis showed that the best fit was made by a generalized extreme value distribution. Such a distribution is often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. It combines three simpler distributions into a single form, allowing a continuous range of possible shapes that include all three of the simpler distributions. The three distribution types correspond to the limiting distribution of block maxima from different classes of underlying distributions: distributions whose tails decrease exponentially, such as the normal distribution; distributions whose tails decrease as a polynomial, such as Student’s t distribution; distributions whose tails are finite, such as the beta distribution.

From this chosen distribution, we extracted the median and the centiles (3rd, 10th, 90th, 97th) for each HRV index at each period (0, 6th, 12th, 18th and 24th months). Then, the curves were plotted using polynomial curve fitting technic. Values were calculated for all children and separately for girls and boys.

HRV differences between girls and boys were calculated using a Mann-Whitney U test. The Friedman test was utilized to compare the HRV indices measured at each period (0, 6th, 12th, 18th and 24th months), for all subject and separately for girls and boys. A p-value was considered as statistically significant when <0.05.

Statistics and graphs were computed using Statistics and Machine Learning Matlab toolbox 10.2 R2016a (The MathWorks Inc., Natick, MA, USA).

3. Results

The results of the HRV indices are presented according to the fields previously described as temporal (Table 1), geometrical (Table 2), frequency (Table 3), Poincaré (Table 4), empirical mode decomposition (Table 5), fractal (Table 6),
Table 1. HRV indices in the temporal domain (all 5-min segments).

Months	n	Smoothed centiles for Mean RR (ms) (All)	Smoothed centiles for Mean RR (ms) (Girls)	Smoothed centiles for Mean RR (ms) (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	420 432 466 514 542	0 117 420 430 460 506 536	0 143 421 435 472 520 546
6	205	425 442 483 533 558	6 95 423 439 477 525 551	6 110 428 445 488 537 560
12	198	434 455 505 561 586	12 86 433 452 500 554 580	12 112 436 459 511 564 586
18	187	447 473 534 599 628	18 82 448 472 528 593 624	18 105 447 475 538 601 626
24	182	464 495 567 646 682	24 80 470 496 561 642 683	24 102 460 495 572 647 678
	Total 1032	Total 460	Total 572	

Smoothed centiles for Mean HR (bpm) (All)	Smoothed centiles for Mean HR (bpm) (Girls)	Smoothed centiles for Mean HR (bpm) (Boys)
3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0 111.3 116.7 128.4 139.3 143.5	0 117 112.5 118.3 130.2 140.2 143.6	0 143 110.6 115.6 127.0 138.3 142.9
6 108.3 112.9 124.0 136.3 142.0	6 95 109.3 114.2 125.5 137.5 142.9	6 110 107.8 112.1 122.7 135.0 141.0
12 103.5 107.8 118.7 132.3 139.3	12 86 104.2 108.7 120.0 133.4 140.0	12 112 103.2 107.2 117.6 131.1 138.4
18 96.9 101.2 112.4 127.3 135.5	18 82 97.0 101.8 113.7 128.0 135.1	18 105 97.0 100.9 111.5 126.5 135.3
24 88.5 93.2 105.3 121.5 130.6	24 80 87.9 93.4 106.5 121.2 128.1	24 102 89.1 93.2 104.5 121.2 131.6
Total 1032	Total 460	Total 572

(continued on next page)
Months n	Smoothed centiles for pcNN20 (%) (All)	Smoothed centiles for pcNN20 (%) (Girls)	Smoothed centiles for pcNN20 (%) (Boys)
	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260 2.84 6.50 17.21 34.53 46.20	0 117 2.33 5.35 14.93 32.75 46.40	0 143 4.03 7.92 18.92 35.88 46.87
6	205 5.70 10.38 22.69 39.30 48.78	6 95 4.41 8.93 20.77 37.13 46.97	6 110 7.38 11.95 24.16 40.83 50.28
12	198 7.78 13.81 28.45 45.46 53.70	12 86 6.21 12.26 26.77 43.32 51.23	12 112 9.33 15.33 29.91 46.83 55.01
18	187 9.11 16.81 34.56 53.09 61.03	18 82 7.73 15.37 32.99 51.41 59.21	18 105 9.89 18.04 36.12 53.85 61.04
24	182 9.67 19.35 40.94 62.11 70.67	24 80 8.98 18.23 39.37 61.29 70.84	24 102 9.07 20.11 42.83 61.92 68.38
Total	1032 Total 460	Total 460	Total 572

Months n	Smoothed centiles for pcNN30 (%) (All)	Smoothed centiles for pcNN30 (%) (Girls)	Smoothed centiles for pcNN30 (%) (Boys)
	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260 1.27 2.90 8.88 23.45 37.84	0 117 1.32 2.38 7.12 22.57 41.97	0 143 1.57 3.60 10.29 24.25 36.40
6	205 1.91 4.25 11.64 25.95 37.79	6 95 1.54 3.54 10.12 24.43 38.16	6 110 2.62 5.08 12.79 27.17 38.40
12	198 2.36 5.78 15.45 30.73 41.11	12 86 1.81 4.95 14.03 29.00 39.68	12 112 3.11 6.64 16.57 32.01 42.33
18	187 2.63 7.49 20.34 37.84 47.85	18 82 2.12 6.64 18.90 36.33 46.53	18 105 3.04 8.27 21.59 38.72 48.15
24	182 2.70 9.38 26.27 47.19 57.94	24 80 2.47 8.58 24.66 46.34 58.65	24 102 2.42 9.98 27.87 47.33 55.89
Total	1032 Total 460	Total 460	Total 572

(continued on next page)
Months	Smoothed centiles for pcNN50 (%) (All)	Smoothed centiles for pcNN50 (%) (Girls)	Smoothed centiles for pcNN50 (%) (Boys)																	
	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th					
0	260	0.56	1.11	3.62	13.08	27.49	0	117	0.51	0.92	2.92	11.53	26.57	0	143	0.64	1.37	4.37	13.75	25.98
6	205	0.52	1.12	3.80	13.46	27.53	6	95	0.47	0.92	3.09	12.12	26.75	6	110	0.63	1.37	4.44	14.33	27.54
12	198	0.50	1.42	5.12	16.48	31.07	12	86	0.47	1.20	4.36	15.32	30.77	12	112	0.59	1.66	5.76	17.40	31.58
18	187	0.49	2.01	7.61	22.17	38.16	18	82	0.51	1.77	6.73	21.16	38.67	18	105	0.52	2.24	8.33	22.95	38.05
24	182	0.50	2.88	11.24	30.47	48.72	24	80	0.59	2.63	10.19	29.59	50.37	24	102	0.41	3.12	12.15	30.96	46.97
Total	1032	Total	460	Total	572															

Smoothed centiles for rMSSD (ms) (All)	Smoothed centiles for rMSSD (ms) (Girls)	Smoothed centiles for rMSSD (ms) (Boys)																		
Months	n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	13.5	16.6	26.8	47.5	65.1	0	117	13.2	15.8	24.6	43.2	59.7	0	143	14.1	17.6	28.8	50.4	68.3
6	205	13.0	15.9	25.8	48.2	69.6	6	95	12.4	15.0	24.0	44.1	62.9	6	110	14.0	16.9	27.2	51.4	75.4
12	198	13.1	16.3	27.9	55.0	81.5	12	86	12.3	15.4	26.2	50.7	74.3	12	112	14.0	17.3	29.2	58.3	88.2
18	187	13.6	18.0	33.1	67.7	100.8	18	82	13.1	17.1	31.2	63.3	94.0	18	105	14.3	18.8	34.6	71.2	106.4
24	182	14.6	20.7	41.4	86.4	127.3	24	80	14.5	20.0	38.9	81.5	121.8	24	102	14.7	21.4	43.5	89.9	130.3
Total	1032	Total	460	Total	572															

(continued on next page)
Months	n	Smoothed centiles for SDANN (ms) (All)	Smoothed centiles for SDANN (ms) (Girls)	Smoothed centiles for SDANN (ms) (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	25.5 31.8 47.5 66.4 75.9	0 117 24.0 30.3 46.2 65.7 75.7	0 143 26.3 33.1 49.1 66.4 74.1
6	205	32.1 39.5 57.6 79.5 90.4	6 95 32.6 38.9 55.5 77.1 88.9	6 110 32.1 40.2 59.6 80.7 90.3
12	198	35.5 44.1 65.3 90.1 102.2	12 86 36.6 43.9 62.7 86.6 99.3	12 112 35.2 44.8 67.5 92.3 103.5
18	187	35.7 45.9 70.6 98.5 111.6	18 82 36.0 45.3 67.8 94.2 107.2	18 105 35.6 46.8 73.0 101.0 113.5
24	182	32.7 44.8 73.4 104.5 118.5	24 80 30.9 43.1 70.9 99.8 112.4	24 102 33.5 46.3 76.0 107.0 120.4
Total	1032		Total 460	Total 572

Months	n	Smoothed centiles for SDNNIDX (ms) (All)	Smoothed centiles for SDNNIDX (ms) (Girls)	Smoothed centiles for SDNNIDX (ms) (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	24.5 29.2 42.0 60.7 72.1	0 117 27.9 39.1 57.6 70.4	0 143 25.8 30.9 44.4 62.8 73.4
6	205	23.3 27.1 37.8 54.9 66.4	6 95 22.8 26.1 35.8 51.9 63.2	6 110 24.5 28.3 39.3 56.8 68.7
12	198	22.9 26.6 37.6 56.5 70.1	12 86 22.5 25.9 36.1 53.5 66.3	12 112 23.7 27.4 38.8 58.5 72.8
18	187	23.2 27.8 41.5 65.6 83.3	18 82 23.3 27.4 40.0 62.6 79.6	18 105 23.4 28.2 42.8 67.7 85.6
24	182	24.3 30.6 49.6 82.2 105.7	24 80 25.1 30.5 47.6 79.0 103.2	24 102 23.6 30.7 51.3 84.5 107.0
Total	1032		Total 460	Total 572

HR (heart rate), SDNN (standard deviation of normal-to-normal intervals), SDNNIDX (mean of the standard deviation of all normal RR intervals for all 5-min segments). pNN (percent difference between adjacent normal RR intervals greater than 20 ms, 30 ms, 50 ms, greater than 50 ms). rMSSD (square root of the mean of the sum of the squared differences between adjacent normal RR intervals). SDANN (standard deviation of the mean of all normal RR intervals for 5-min segments), SDNNIDX (mean of the standard deviation of all normal RR intervals for all 5-min segments).
Table 2. HRV indices in the geometrical domain (all 5-min segments).

Months n	Smoothed centiles for Tri ind (All)	Smoothed centiles for Tri ind (Girls)	Smoothed centiles for Tri ind (Boys)																	
	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th					
0	260	11.7	14.1	20.5	28.5	32.9	0	117	13.4	19.8	28.3	33.1	0	143	12.0	14.8	21.2	28.2	31.4	
6	205	12.4	14.9	21.1	28.5	32.1	6	95	12.6	14.7	20.3	27.7	31.8	6	110	12.4	15.2	21.7	28.8	32.0
12	198	12.8	15.5	22.2	29.6	33.1	12	86	13.3	15.6	21.3	28.5	32.3	12	112	12.8	15.7	22.7	30.4	33.9
18	187	12.9	16.1	23.6	32.1	35.9	18	82	13.1	16.0	22.9	30.8	34.6	18	105	12.9	16.3	24.2	32.9	36.9
24	182	12.7	16.5	25.5	35.7	40.5	24	80	12.0	16.0	25.0	34.4	38.6	24	102	13.0	16.9	26.2	36.4	41.1
Total	1032						Total	460						Total	572					

Smoothed centiles for TINN (ms) (All)	Smoothed centiles for TINN (ms) (Girls)	Smoothed centiles for TINN (ms) (Boys)																		
Months n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th					
0	260	183	221	320	446	513	0	117	170	209	310	443	516	0	143	189	231	331	442	493
6	205	193	233	330	445	502	6	95	196	230	318	433	497	6	110	195	238	339	451	501
12	198	199	242	346	463	518	12	86	208	243	333	446	505	12	112	199	245	355	475	529
18	187	201	251	369	501	562	18	82	206	250	357	481	541	18	105	202	254	378	515	577
24	182	199	258	399	558	633	24	80	189	250	390	538	604	24	102	204	265	409	569	643
Total	1032						Total	460						Total	572					

(continued on next page)
Table 2. (Continued)

Smoothed centiles for X (ms) (All)	Smoothed centiles for X (ms) (Girls)	Smoothed centiles for X (ms) (Boys)				
	Months n		Months n		Months n	
	3rd 10th 50th 90th 97th		3rd 10th 50th 90th 97th		3rd 10th 50th 90th 97th	
0	260 396 418 472 539 575	0 117	392 415 471 537 571	0 143	398 420 474 540 574	
6	205 375 405 476 551 585	6 95	373 403 472 545 578	6 110	376 408 480 555 588	
12	198 371 407 490 575 610	12 86	370 405 483 564 599	12 112	371 409 496 582 616	
18	187 382 422 515 610 650	18 82	384 421 506 596 635	18 105	381 425 523 620 659	
24	182 409 451 551 657 704	24 80	414 451 539 639 686	24 102	406 453 560 669 715	
Total	1032	Total 460	Total 572			

Smoothed centiles for Y (n) (All)	Smoothed centiles for Y (n) (Girls)	Smoothed centiles for Y (n) (Boys)				
	Months n		Months n		Months n	
	3rd 10th 50th 90th 97th		3rd 10th 50th 90th 97th		3rd 10th 50th 90th 97th	
0	260 2517 3651 6457 9798 11433	0 117	2494 3764 6798 10188 11756	0 143	2560 3587 6189 9422 11071	
6	205 2513 3483 5913 8911 10472	6 95	2517 3613 6279 9369 10859	6 110	2501 3415 5672 8398 9807	
12	198 2414 3235 5360 8195 9830	12 86	2439 3370 5705 8587 10082	12 112	2367 3161 5151 7706 9178	
18	187 2219 2903 4792 7643 9498	18 82	2260 3034 5071 7835 9419	18 105	2161 2825 4630 7349 9182	
24	182 1929 2491 4215 7260 9481	24 80	1982 2607 4382 7121 8875	24 102	1881 2408 4104 7322 9814	
Total	1032	Total 460	Total 572			

(continued on next page)
Months	n	Smoothed centiles for M (ms) (All)	Smoothed centiles for M (ms) (Girls)	Smoothed centiles for M (ms) (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	521 549 624 722 776	0 117 518 641 711 774	0 143 524 557 636 728 772
6	205	534 566 646 750 805	6 95 532 634 738 797	6 110 539 573 656 758 808
12	198	549 586 678 789 845	12 86 549 667 777 836	12 112 553 592 687 797 850
18	187	565 611 720 840 896	18 82 569 690 710 830	18 105 564 614 728 846 897
24	182	583 640 771 902 957	24 80 593 642 761 896	24 102 574 639 779 904 950
Total	1032	Total 460 Total 572		

Smoothed centiles for N (ms) (All)	Smoothed centiles for N (ms) (Girls)	Smoothed centiles for N (ms) (Boys)		
Months	n	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	226 251 305 354 371	0 117 222 249 304 350 365	0 143 228 253 307 355 373
6	205	243 266 318 371 393	6 95 245 267 317 368 389	6 110 242 266 320 373 395
12	198	256 279 332 392 419	12 86 262 282 332 390 418	12 112 252 276 333 392 419
18	187	264 289 347 416 449	18 82 273 295 349 417 452	18 105 259 284 346 414 446
24	182	268 296 363 444 483	24 80 279 304 369 449 491	24 102 262 290 359 438 475
Total	1032	Total 460 Total 572		

HRV triangular index (integral of the density distribution divided by the maximum of the density distribution (Y)).
TINN (Triangular interpolation of the RR interval histogram width of a triangle using the minimum square difference).
Table 3. HRV indices in the frequency domain (all 5-min segments).

Smoothed centiles for Ptot (ms²/Hz) (All)	Smoothed centiles for Ptot (ms²/Hz) (Girls)	Smoothed centiles for Ptot (ms²/Hz) (Boys)	
Months n	Months n	Months n	
	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260 1266 1862 3712 7107 9723	0 117 1134 1662 3341 6449 8645	0 143 1399 2080 4081 7468 9957
6	205 1171 1714 3507 7243 10514	6 95 1171 1621 3172 6817 10598	6 110 1226 1835 3781 7585 10727
12	198 1106 1662 3607 8102 12435	12 86 1194 1628 3246 7669 12944	12 112 1105 1730 3865 8551 12824
18	187 1069 1705 4011 9693 15505	18 82 1201 1684 3564 9015 15709	18 105 1037 1763 4331 10353 16226
24	182 1061 1844 4716 11999 19692	24 80 1193 1788 4122 10838 18861	24 102 1022 1934 5178 12995 20939
Total 1032	Total 460	Total 572	

Smoothed centiles for ULF (ms²/Hz) (All)	Smoothed centiles for ULF (ms²/Hz) (Girls)	Smoothed centiles for ULF (ms²/Hz) (Boys)	
Months n	Months n	Months n	
	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260 473 806 1865 3895 5517	0 117 399 716 1729 3626 5017	0 143 549 895 1990 4080 5758
6	205 467 807 1956 4451 6741	6 95 511 793 1791 4250 6907	6 110 462 838 2077 4640 6869
12	198 451 801 2031 4908 7733	12 86 551 814 1815 4636 8047	12 112 407 813 2187 5174 7896
18	187 424 787 2091 5271 8502	18 82 520 780 1801 4788 8448	18 105 386 822 2320 5679 8832
24	182 387 765 2137 5537 9041	24 80 418 691 1750 4705 8106	24 102 398 863 2476 6159 9683
Total 1032	Total 460	Total 572	

(continued on next page)
Table 3. (Continued)

Months	n	3rd	10th	50th	90th	97th
6	205	241	350	690	1322	1815
12	198	218	314	605	1113	1487
18	187	227	342	688	1286	1722
24	182	267	433	938	1840	2517
Total	1032					

Months	n	3rd	10th	50th	90th	97th
6	205	241	350	690	1322	1815
12	198	218	314	605	1113	1487
18	187	227	342	688	1286	1722
24	182	267	433	938	1840	2517
Total	1032					

Smoothed centiles for LF (ms²/Hz) (All)

Months	n	3rd	10th	50th	90th	97th
6	205	137	203	435	980	1513
12	198	135	201	445	1058	1703
18	187	130	214	523	1298	2110
24	182	122	236	648	1669	2723
Total	1032					

(continued on next page)
Table 3. (Continued)

Months	n	Smoothed centiles for HF (ms²/Hz) (All)	Smoothed centiles for HF (ms²/Hz) (Girls)	Smoothed centiles for HF (ms²/Hz) (Boys)	
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	
0	260	66.7 100.0 247.5 779.0 1554.4	0 117 63.5 88.6 202.5 625.8 1247.8	0 143 72.8 115.8 294.4 876.2 1676.1	
6	205	67.5 102.0 263.0 902.1 1916.2	6 95 62.6 91.4 228.6 805.1 1783.7	6 110 74.3 114.4 295.5 968.7 1961.0	
12	198	68.8 114.8 343.5 3192.8	12 86 64.6 106.7 315.6 1259.2 2963.8	12 112 74.1 123.2 367.8 1461.7 3385.3	
18	187	70.6 138.5 489.7 2185.6 5398.1	18 82 69.7 134.9 464.4 1993.1 4801.1	18 105 72.3 142.1 510.2 2349.2 5931.7	
24	182	73.0 172.9 700.1 3342.2 8508.2	24 80 77.7 175.6 673.3 2998.8 7275.5	24 102 68.8 171.0 723.0 3632.9 9605.0	
Total	1032			Total 460	Total 572

Months	n	Smoothed centiles for LF/HF (All)	Smoothed centiles for LF/HF (Girls)	Smoothed centiles for LF/HF (Boys)	
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	
0	260	0.99 1.46 2.69 4.34 5.26	0 117 0.94 1.45 2.79 4.60 5.61	0 143 1.04 1.47 2.61 4.11 4.93	
6	205	0.89 1.24 2.23 3.79 4.85	6 95 0.91 1.29 2.36 3.91 4.88	6 110 0.88 1.20 2.13 3.67 4.76	
12	198	0.77 1.04 1.84 3.29 4.39	12 86 0.82 1.11 1.96 3.33 4.27	12 112 0.74 0.98 1.75 3.23 4.42	
18	187	0.64 0.86 1.53 2.84 3.88	18 82 0.68 0.91 1.62 2.86 3.79	18 105 0.62 0.82 1.47 2.80 3.92	
24	182	0.50 0.70 1.30 2.43 3.33	24 80 0.48 0.68 1.31 2.49 3.43	24 102 0.52 0.71 1.29 2.38 3.25	
Total	1032			Total 460	Total 572

Ptot (total power), ULF (ultra-low frequencies), VLF (very low frequencies), LF (low frequencies), and HF (high frequencies).
Table 4. HRV indices by Poincaré plot (all 5-min segments).

Months	n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th
0	260	420	433	467	515	544	0	117	420	430	460	508	539	0	143	421
6	205	425	442	483	532	556	6	95	423	439	477	524	549	6	110	428
12	198	435	455	504	558	583	12	86	432	452	499	551	575	12	112	436
18	187	448	473	532	595	623	18	82	448	472	527	589	618	18	105	447
24	182	464	494	565	642	677	24	80	470	496	560	638	677	24	102	461
Total	1032															
0	260	7.41	9.14	14.64	25.27	33.89	0	117	7.21	8.58	13.24	23.64	33.51	0	143	7.95
6	205	8.05	9.86	15.77	27.65	37.71	6	95	7.62	9.24	14.59	25.76	35.65	6	110	8.70
12	198	8.52	10.76	18.11	33.22	46.25	12	86	8.05	10.14	17.01	31.19	43.53	12	112	9.12
18	187	8.83	11.83	21.71	42.03	59.59	18	82	8.50	11.28	20.53	40.02	57.24	18	105	9.22
24	182	8.98	13.07	26.51	54.00	77.60	24	80	8.97	12.65	25.11	52.13	76.62	24	102	8.98
Total	1032															
Smoothed centiles for SD1 (ms)	Smoothed centiles for SD1 (ms)	Smoothed centiles for SD1 (ms)														
(All)	(Girls)	(Boys)														
3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th		
0	143	9.88	15.79	26.43	34.53	6	105	9.22	12.37	22.66	43.46	61.12	24	102	8.98	
Total	572															

(continued on next page)
Table 4. (Continued)

Months	n	Smoothed centiles for SD2 (ms) (All)	Smoothed centiles for SD2 (ms) (Girls)	Smoothed centiles for SD2 (ms) (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	52.08	62.74	89.66	123.07	140.36	0	117	49.50	59.68	86.19	121.23	140.64	0	143	52.27	65.32	94.21	122.09	133.11
6	205	59.46	70.42	97.69	130.71	147.41	6	95	59.66	69.11	93.80	126.68	145.05	6	110	60.31	72.27	100.89	133.07	148.12
12	198	63.53	75.83	106.03	141.78	159.44	12	86	65.24	75.32	101.64	136.58	156.04	12	112	64.29	77.29	108.98	145.71	163.35
18	187	64.36	79.02	114.78	156.40	176.56	18	82	66.29	78.39	109.81	151.05	173.72	18	105	64.22	80.38	118.43	159.92	178.72
24	182	61.92	79.98	123.84	174.40	198.60	24	80	62.81	78.27	118.20	169.92	197.90	24	102	60.13	81.57	129.28	175.78	194.32
Total	1032						Total	460						Total	572					

Months	n	Smoothed centiles for SD1/SD2 ratio (All)	Smoothed centiles for SD1/SD2 ratio (Girls)	Smoothed centiles for SD1/SD2 ratio (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	0.095	0.113	0.168	0.260	0.325	0	117	0.089	0.107	0.161	0.253	0.320	0	143	0.102	0.120	0.173	0.264	0.330
6	205	0.096	0.113	0.165	0.259	0.330	6	95	0.094	0.110	0.158	0.247	0.316	6	110	0.098	0.116	0.171	0.267	0.338
12	198	0.098	0.117	0.173	0.275	0.353	12	86	0.099	0.115	0.167	0.263	0.338	12	112	0.098	0.118	0.179	0.284	0.361
18	187	0.102	0.125	0.192	0.310	0.395	18	82	0.101	0.123	0.188	0.301	0.385	18	105	0.102	0.126	0.197	0.315	0.400
24	182	0.107	0.136	0.222	0.361	0.456	24	80	0.103	0.133	0.220	0.362	0.459	24	102	0.110	0.139	0.223	0.360	0.453
Total	1032						Total	460						Total	572					
Months	SD1nu (All)	Months	SD1nu (Girls)	Months	SD1nu (Boys)															
--------	-------------	--------	---------------	--------	--------------															
	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th					
0	260	1.68	2.03	3.12	5.14	6.69	0	1.62	1.92	2.88	4.84	6.54	0	1.80	2.18	3.32	5.35	6.89		
6	205	1.76	2.13	3.27	5.48	7.25	6	1.69	2.01	3.07	5.16	6.91	6	1.88	2.26	3.44	5.71	7.57		
12	198	1.82	2.24	3.58	6.22	8.41	12	1.74	2.14	3.40	5.89	7.97	12	1.93	2.35	3.73	6.48	8.79		
18	187	1.86	2.38	4.05	7.39	10.17	18	1.79	2.28	3.87	7.06	9.74	18	1.94	2.47	4.19	7.64	10.53		
24	182	1.87	2.53	4.68	8.95	12.53	24	1.83	2.45	4.48	8.64	12.20	24	1.90	2.60	4.83	9.20	12.79		
Total	1032						Total	460					Total	572						

SD2nu (All)	SD2nu (Girls)	SD2nu (Boys)																	
Months	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	11.96	13.98	19.04	25.28	28.48	0	11.42	13.43	18.57	25.11	28.60	0	14.06	14.43	19.72	24.94	27.06	24 05-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
6	205	13.11	15.16	20.16	25.96	28.77	6	13.21	15.02	19.62	25.37	28.35	6	13.12	15.40	20.65	26.20	28.62	2049-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
12	198	13.46	15.71	21.03	26.86	29.49	12	13.80	15.73	20.46	26.00	28.69	12	13.45	15.85	21.45	27.44	30.09	24 05-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
18	187	13.00	15.63	21.68	27.97	30.66	18	13.22	15.57	21.07	27.00	29.65	18	13.05	15.79	22.10	28.66	31.47	24 05-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
24	182	11.74	14.91	22.08	29.28	32.27	24	11.45	14.54	21.47	28.37	31.20	24	11.92	15.23	22.62	29.86	32.76	24 05-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
Total	1032						Total	460					Total	572					2049-8440 C2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.

SD1 and SD2 (standard deviation of the distances of the RR intervals from the y = x line and the y = −x + 2 mean (RR) line, respectively).
Table 5. HRV indices by an empirical mode decomposition (all 5-min segments).

Months	n	Smoothed centiles for pLF1 (All)	Smoothed centiles for pLF1 (Girls)	Smoothed centiles for pLF1 (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	76.2 112.5 237.6 518.3 781.7	0 117 68.8 200.7 457.4 726.8	0 143 91.0 270.8 555.0 803.5
6	205	83.4 119.1 245.2 541.9 833.6	6 95 81.2 219.0 495.9 795.6	6 110 93.3 266.3 572.0 866.1
12	198	86.3 128.5 277.8 631.1 980.6	12 86 88.6 255.3 582.0 930.6	12 112 90.5 295.3 666.7 1029.3
18	187	85.0 140.7 335.7 787.0 1224.5	18 82 91.2 310.0 716.9 1133.5	18 105 82.6 357.4 837.8 1291.3
24	182	79.5 155.8 418.4 1007.9 1562.5	24 80 89.0 382.4 898.9 1401.9	24 102 69.6 452.7 1085.7 1652.6
Total	1032	Total 460	Total 572	

Months	n	Smoothed centiles for pLF2 (All)	Smoothed centiles for pLF2 (Girls)	Smoothed centiles for pLF2 (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	85.8 128.3 263.4 525.1 738.4	0 117 78.5 234.1 493.6 736.6	0 143 93.0 293.5 532.4 694.4
6	205	89.4 129.1 255.5 499.0 695.8	6 95 88.8 231.6 465.7 673.9	6 110 94.4 276.3 518.6 699.9
12	198	92.4 137.7 279.8 545.7 754.5	12 86 95.5 250.9 502.0 700.5	12 112 94.6 296.4 579.4 799.5
18	187	94.6 154.0 336.6 665.8 915.2	18 82 98.8 316.6 602.8 816.7	18 105 93.6 353.1 713.9 992.0
24	182	96.0 178.0 425.3 857.8 1176.1	24 80 98.5 403.7 767.0 1021.2	24 102 91.4 446.6 922.2 1277.6
Total	1032	Total 460	Total 572	

(continued on next page)
Table 5. (Continued)

Smoothed centiles for pHF1 (All)	Smoothed centiles for pHF1 (Girls)	Smoothed centiles for pHF1 (Boys)			
Months n	3rd 10th 50th 90th 97th	Months n	3rd 10th 50th 90th 97th	Months n	3rd 10th 50th 90th 97th
0	260 60.5 88.7 197.5 497.7 837.9	0	117 60.3 79.8 161.0 427.1 785.2	0	143 68.7 104.0 230.6 546.2 890.1
6	205 54.7 78.0 172.3 460.5 824.3	6	95 51.7 70.1 145.6 391.4 731.6	6	110 64.1 89.9 193.8 516.9 940.6
12	198 52.4 79.4 197.1 613.3 1214.7	12	86 49.8 73.5 175.8 539.8 1085.6	12	112 59.5 87.3 213.0 677.1 1363.4
18	187 53.4 92.7 272.1 957.5 2013.2	18	82 54.5 90.1 251.9 874.1 1851.0	18	105 54.8 96.3 287.8 1024.4 2153.1
24	182 57.8 117.9 396.4 1489.6 3211.2	24	80 65.8 119.7 373.2 1390.5 3019.5	24	102 50.0 116.6 418.0 1559.1 3311.0
Total	1032 Total	460 Total	572 Total		

Smoothed centiles for pHF2 (All)	Smoothed centiles for pHF2 (Girls)	Smoothed centiles for pHF2 (Boys)			
Months n	3rd 10th 50th 90th 97th	Months n	3rd 10th 50th 90th 97th	Months n	3rd 10th 50th 90th 97th
0	260 57.0 88.9 213.5 537.5 813.3	0	117 57.2 82.0 178.4 405.4 509.2	0	143 61.7 100.5 247.5 638.9 1065.1
6	205 54.5 86.5 238.6 890.3 2045.0	6	95 48.5 76.4 210.0 803.8 1907.7	6	110 65.4 99.4 261.2 963.5 2221.3
12	198 56.5 100.6 333.5 1510.0 3843.1	12	86 49.8 90.6 302.2 1365.8 3506.6	12	112 67.4 112.3 357.3 1643.6 4235.1
18	187 63.1 131.5 499.2 2403.4 6227.1	18	82 61.2 124.8 456.0 2097.5 5323.5	18	105 67.8 139.0 534.5 2672.7 7088.4
24	182 74.3 178.9 734.1 3560.7 9171.2	24	80 82.4 178.8 669.7 2990.9 7338.4	24	102 66.4 179.6 793.2 4053.5 10790.1
Total	1032 Total	460 Total	572 Total		

(continued on next page)
Table 5. (Continued)

Months	n	Smoothed centiles for IMAI1 (All)	Smoothed centiles for IMAI1 (Girls)	Smoothed centiles for IMAI1 (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	0.383 0.501 0.819 1.262 1.522	0.389 0.517 0.857 1.328 1.604	0.384 0.493 0.787 1.202 1.449
6	205	0.382 0.487 0.774 1.192 1.451	0.402 0.513 0.807 1.220 1.468	0.370 0.469 0.747 1.163 1.426
12	198	0.349 0.442 0.702 1.100 1.359	0.372 0.469 0.729 1.106 1.342	0.333 0.423 0.681 1.089 1.362
18	187	0.284 0.367 0.604 0.986 1.246	0.298 0.383 0.621 0.985 1.224	0.275 0.355 0.591 0.983 1.258
24	182	0.189 0.262 0.479 0.849 1.113	0.179 0.257 0.485 0.858 1.115	0.196 0.265 0.475 0.843 1.114
Total	1032	Total 460	Total 572	

Months	n	Smoothed centiles for IMAI2 (All)	Smoothed centiles for IMAI2 (Girls)	Smoothed centiles for IMAI2 (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th
0	260	0.356 0.513 0.962 1.682 2.167	0.372 0.548 1.054 1.859 2.402	0.346 0.492 0.899 1.513 1.902
6	205	0.352 0.482 0.851 1.435 1.824	0.377 0.516 0.909 1.518 1.919	0.337 0.460 0.809 1.354 1.712
12	198	0.320 0.430 0.746 1.256 1.605	0.344 0.458 0.780 1.281 1.613	0.306 0.410 0.718 1.228 1.586
18	187	0.260 0.357 0.645 1.142 1.505	0.274 0.375 0.667 1.145 1.479	0.252 0.345 0.628 1.137 1.524
24	182	0.172 0.263 0.551 1.095 1.526	0.165 0.265 0.570 1.112 1.520	0.176 0.262 0.538 1.080 1.526
Total	1032	Total 460	Total 572	

Nonlinear and non-stationary time series are decomposed into a limited number of oscillatory components (modes), pLF1, pLF2, pHF1, and pHF2 (Low and high frequencies power associated to the selected mode). IMAI1 and IMAI2 (ratios between low and high frequency indices).
Table 6. HRV indices by a fractal analysis (all 5-min segments).

Months	n	Smoothed centiles for alpha1 DFA (All)	Smoothed centiles for alpha1 DFA (Girls)	Smoothed centiles for alpha1 DFA (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
-																				
0	260	0.96	1.04	1.20	1.35	1.40	0	117	0.95	1.04	1.22	1.36	1.41	0	143	0.96	1.04	1.19	1.33	1.38
6	205	0.92	0.99	1.15	1.31	1.37	6	95	0.92	1.00	1.17	1.32	1.37	6	110	0.92	0.99	1.14	1.30	1.36
12	198	0.87	0.94	1.10	1.27	1.34	12	86	0.88	0.95	1.11	1.28	1.34	12	112	0.87	0.93	1.09	1.26	1.34
18	187	0.81	0.88	1.05	1.23	1.32	18	82	0.81	0.89	1.06	1.24	1.32	18	105	0.82	0.88	1.04	1.23	1.31
24	182	0.75	0.82	1.00	1.20	1.29	24	80	0.73	0.81	1.01	1.21	1.31	24	102	0.76	0.83	1.00	1.19	1.28
Total	1032						Total	460						Total	572					

Months	n	Smoothed centiles for alpha2 DFA (All)	Smoothed centiles for alpha2 DFA (Girls)	Smoothed centiles for alpha2 DFA (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
-																				
0	260	0.87	0.93	1.05	1.16	1.20	0	117	0.88	0.94	1.07	1.18	1.22	0	143	0.87	0.92	1.03	1.14	1.18
6	205	0.80	0.84	0.94	1.04	1.09	6	95	0.80	0.85	0.95	1.05	1.10	6	110	0.79	0.84	0.93	1.03	1.07
12	198	0.75	0.79	0.88	0.98	1.03	12	86	0.75	0.79	0.89	0.98	1.03	12	112	0.75	0.79	0.88	0.98	1.02
18	187	0.74	0.77	0.87	0.98	1.03	18	82	0.73	0.78	0.88	0.98	1.02	18	105	0.73	0.77	0.87	0.98	1.03
24	182	0.75	0.80	0.91	1.03	1.09	24	80	0.75	0.80	0.92	1.02	1.06	24	102	0.75	0.79	0.90	1.03	1.10
Total	1032						Total	460						Total	572					

(continued on next page)
Table 6. (Continued)

Months	n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	0.94	0.97	1.04	1.11	1.14	0	117	0.95	0.98	1.04	1.12	1.15	0	143	0.94	0.97	1.03	1.10	1.14
6	205	0.93	0.95	1.01	1.07	1.10	6	95	0.92	0.95	1.01	1.07	1.09	6	110	0.93	0.95	1.00	1.07	1.10
12	198	0.91	0.93	0.98	1.04	1.07	12	86	0.90	0.93	0.98	1.04	1.06	12	112	0.91	0.93	0.98	1.05	1.08
18	187	0.89	0.91	0.97	1.03	1.06	18	82	0.89	0.91	0.97	1.02	1.05	18	105	0.90	0.92	0.97	1.03	1.07
24	182	0.88	0.90	0.96	1.03	1.07	24	80	0.89	0.91	0.96	1.03	1.06	24	102	0.88	0.90	0.96	1.03	1.07
Total	1032	Total 460	Total 572																	

Months	n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	1.45	1.49	1.61	1.75	1.82	0	117	1.45	1.50	1.61	1.75	1.81	0	143	1.45	1.49	1.60	1.75	1.82
6	205	1.52	1.57	1.70	1.83	1.89	6	95	1.52	1.57	1.69	1.83	1.89	6	110	1.51	1.57	1.70	1.84	1.89
12	198	1.57	1.63	1.76	1.90	1.95	12	86	1.57	1.62	1.75	1.89	1.95	12	112	1.57	1.63	1.77	1.90	1.95
18	187	1.61	1.67	1.80	1.94	2.00	18	82	1.60	1.66	1.79	1.93	1.99	18	105	1.62	1.68	1.81	1.94	2.00
24	182	1.64	1.69	1.81	1.96	2.03	24	80	1.63	1.68	1.80	1.95	2.03	24	102	1.65	1.70	1.82	1.96	2.02
Total	1032	Total 460	Total 572																	
Table 6. (Continued)

Months	n	3rd	10th	50th	90th	97th	Months	n	3rd	10th	50th	90th	97th	Months	n	3rd	10th	50th	90th	97th
0	260	1.26	1.30	1.41	1.56	1.65	0	117	1.26	1.29	1.39	1.54	1.63	0	143	1.27	1.31	1.42	1.57	1.65
6	205	1.30	1.34	1.44	1.61	1.72	6	95	1.29	1.32	1.43	1.58	1.68	6	110	1.31	1.35	1.45	1.62	1.74
12	198	1.32	1.36	1.48	1.68	1.81	12	86	1.31	1.35	1.47	1.65	1.75	12	112	1.33	1.37	1.50	1.70	1.83
18	187	1.33	1.38	1.54	1.77	1.91	18	82	1.32	1.37	1.52	1.73	1.86	18	105	1.34	1.39	1.55	1.79	1.95
24	182	1.32	1.40	1.59	1.87	2.04	24	80	1.32	1.39	1.57	1.83	1.98	24	102	1.32	1.40	1.61	1.90	2.07
Total	1032	0.198	0.253	0.370	0.476	0.515	0	117	0.202	0.256	0.372	0.478	0.518	0	143	0.196	0.251	0.368	0.474	0.514
0	260	0.198	0.253	0.370	0.476	0.515	0	117	0.202	0.256	0.372	0.478	0.518	0	143	0.196	0.251	0.368	0.474	0.514
6	205	0.142	0.191	0.304	0.421	0.471	6	95	0.146	0.198	0.313	0.424	0.468	6	110	0.139	0.186	0.297	0.416	0.470
12	198	0.097	0.144	0.254	0.376	0.433	12	86	0.102	0.152	0.267	0.381	0.429	12	112	0.093	0.137	0.244	0.370	0.430
18	187	0.063	0.109	0.220	0.343	0.400	18	82	0.070	0.119	0.233	0.351	0.401	18	105	0.057	0.102	0.210	0.335	0.394
24	182	0.039	0.088	0.202	0.321	0.372	24	80	0.050	0.099	0.213	0.332	0.384	24	102	0.032	0.081	0.194	0.311	0.362
Total	1032	0.198	0.253	0.370	0.476	0.515	0	117	0.202	0.256	0.372	0.478	0.518	0	143	0.196	0.251	0.368	0.474	0.514

(continued on next page)
Table 6. (Continued)

Months	n	Smoothed centiles for Beta 1/f Slope (All)	Months	n	Smoothed centiles for Beta 1/f Slope (Girls)	Months	n	Smoothed centiles for Beta 1/f Slope (Boys)
		3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th	3rd 10th 50th 90th 97th				
-	0	260 -1.63 -1.49 -1.15 -0.73 -0.51	117	-1.65 -1.49 -1.14 -0.78 -0.62	143	-1.62 -1.49 -1.15 -0.71 -0.48		
	6	205 -1.80 -1.62 -1.21 -0.76 -0.55	95	-1.78 -1.61 -1.20 -0.76 -0.56	110	-1.80 -1.62 -1.21 -0.78 -0.58		
	12	198 -1.91 -1.71 -1.23 -0.74 -0.52	86	-1.89 -1.69 -1.23 -0.71 -0.47	112	-1.93 -1.71 -1.24 -0.78 -0.59		
	18	187 -1.98 -1.75 -1.22 -0.67 -0.43	82	-1.96 -1.74 -1.22 -0.64 -0.36	105	-1.99 -1.75 -1.22 -0.71 -0.50		
	24	182 -2.00 -1.75 -1.17 -0.55 -0.27	80	-2.00 -1.75 -1.17 -0.53 -0.23	102	-2.01 -1.75 -1.16 -0.57 -0.32		
Total	1032	Total 460		Total 572				

DFA (detrended fluctuation analysis to quantify the degree of self-similarity (fractuality) of the RR signal.

\(\alpha_1 \) and \(\alpha_2 \) (the slope of short-and long-term fluctuations, respectively).

Higuchi and Katz algorithms and \(H \) (Hurst exponent) measure the self-similarity of the RR signal.

\(\beta \) 1/f slope index (calculated on the PSD plotted on a log-log scale from \(10^{-4} \) to \(10^{-2} \) Hz).
Table 7. HRV indices by a Chaos and DC or AC analysis (all 5-min segments).

Months	n	Smoothed centiles for Skewness (All)	Smoothed centiles for Skewness (Girls)	Smoothed centiles for Skewness (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	-0.292	-0.116	0.389	1.194	1.732	0	117	-0.280	-0.106	0.396	1.202	1.748	0	143	-0.300	-0.123	0.383	1.187	1.726
6	205	-0.179	-0.015	0.472	1.289	1.862	6	95	-0.181	-0.020	0.449	1.204	1.712	6	110	-0.174	-0.008	0.493	1.354	1.974
12	198	-0.151	0.025	0.530	1.339	1.890	12	86	-0.144	0.024	0.498	1.228	1.700	12	112	-0.151	0.030	0.557	1.422	2.025
18	187	-0.209	0.002	0.562	1.344	1.814	18	82	-0.167	0.026	0.545	1.276	1.712	18	105	-0.233	-0.010	0.577	1.389	1.881
24	182	-0.351	-0.082	0.569	1.303	1.636	24	80	-0.250	-0.014	0.588	1.348	1.747	24	102	-0.419	-0.127	0.552	1.258	1.543
Total	1032						Total	460						Total	572					

Months	n	Smoothed centiles for Kurtosis (All)	Smoothed centiles for Kurtosis (Girls)	Smoothed centiles for Kurtosis (Boys)																
		3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th				
0	260	2.84	3.41	5.82	13.97	25.19	0	117	2.66	3.27	5.94	15.63	30.27	0	143	3.07	3.56	5.66	13.00	23.37
6	205	3.31	3.97	6.45	13.20	20.95	6	95	3.19	3.91	6.43	12.81	20.09	6	110	3.44	4.05	6.46	13.56	22.26
12	198	3.50	4.19	6.62	12.23	17.59	12	86	3.42	4.17	6.58	11.07	14.28	12	112	3.58	4.24	6.68	13.06	19.97
18	187	3.42	4.09	6.34	11.07	15.07	18	82	3.34	4.08	6.39	10.39	12.77	18	105	3.49	4.11	6.33	11.52	16.53
24	182	3.06	3.65	6.23	9.72	13.42	24	80	2.97	3.63	5.86	10.78	15.58	24	102	3.16	3.69	5.42	8.93	11.92
Total	1032						Total	460						Total	572					

(continued on next page)
Table 7. (Continued)

Months	n	3rd	10th	50th	90th	97th		3rd	10th	50th	90th	97th		3rd	10th	50th	90th	97th			
Smoothed centiles for Lyapunov exponent (All)							Smoothed centiles for Lyapunov exponent (Girls)							Smoothed centiles for Lyapunov exponent (Boys)							
0	260	0.136	0.161	0.233	0.347	0.422		0	0.135	0.155	0.215	0.322	0.404		0	0.143	0.171	0.248	0.363	0.437	
6	205	0.130	0.152	0.217	0.323	0.395		6	0.125	0.147	0.207	0.302	0.365		6	0.110	0.137	0.199	0.225	0.336	0.417
12	198	0.129	0.153	0.222	0.328	0.397		12	0.124	0.149	0.216	0.310	0.365		12	0.112	0.134	0.158	0.227	0.341	0.420
18	187	0.132	0.164	0.249	0.364	0.429		18	0.130	0.161	0.242	0.346	0.403		18	0.105	0.134	0.168	0.256	0.375	0.446
24	182	0.139	0.185	0.298	0.428	0.490		24	0.143	0.183	0.284	0.412	0.479		24	0.102	0.136	0.188	0.310	0.440	0.496
Total	1032							Total							Total						
Smoothed centiles for Acceleration Capacity (AC) (All)							Smoothed centiles for Acceleration Capacity (AC) (Girls)							Smoothed centiles for Acceleration Capacity (AC) (Boys)							
0	260	-5.93	-5.10	-3.38	-1.94	-1.45		0	-5.89	-4.98	-3.18	-1.79	-1.36		0	-5.90	-5.16	-3.57	-2.10	-1.56	
6	205	-7.18	-6.28	-4.35	-2.55	-1.86		6	-7.17	-6.22	-4.22	-2.44	-1.79		6	-7.13	-6.30	-4.47	-2.65	-1.91	
12	198	-8.43	-7.42	-5.19	-3.03	-2.17		12	-8.43	-7.39	-5.11	-2.97	-2.16		12	-8.38	-7.43	-5.28	-3.08	-2.15	
18	187	-9.69	-8.52	-5.92	-3.39	-2.39		18	-9.70	-8.50	-5.87	-3.41	-2.47		18	-9.65	-8.53	-5.99	-3.39	-2.29	
24	182	-10.97	-9.58	-6.54	-3.64	-2.50		24	-10.96	-9.53	-6.48	-3.73	-2.72		24	-10.94	-9.61	-6.61	-3.58	-2.32	
Total	1032							Total							Total						

(continued on next page)
Table 7. Continued

Smoothed centiles for Deceleration Capacity (DC) (All)	Smoothed centiles for Deceleration Capacity (DC) (Girls)	Smoothed centiles for Deceleration Capacity (DC) (Boys)																		
Months	n	3rd	10th	50th	90th	97th	Months	n	3rd	10th	50th	90th	97th	Months	n	3rd	10th	50th	90th	97th
--------	---	-----	-----	-----	-----	-----	--------	---	-----	-----	-----	-----	-----	--------	---	-----	-----	-----	-----	-----
0	260	1.70	2.30	3.73	5.31	6.04	0	117	1.49	2.09	3.50	5.08	5.82	0	143	1.49	2.01	3.50	5.06	5.79
6	205	2.13	2.83	4.52	6.41	7.29	6	95	2.33	2.89	4.33	6.17	7.18	6	110	2.05	2.86	4.68	6.47	7.20
12	198	2.45	3.04	4.73	6.62	7.52	12	86	2.77	3.34	5.01	7.01	8.01	12	112	2.53	3.31	5.18	6.95	7.85
18	187	2.95	3.54	5.23	7.12	8.12	18	82	3.27	3.84	5.51	7.51	8.51	18	105	3.84	4.61	6.58	7.58	8.58
24	182	3.56	4.15	5.85	7.74	8.74	24	80	3.96	4.63	6.60	8.60	9.60	24	102	4.53	5.30	7.27	8.27	9.27
Total	102	102	102	102	102	102	Total	460	460	460	460	460	460	Total	572	572	572	572	572	572

Skewness, Kurtosis and Lyapunov exponent used in nonlinear analysis of physiological signals for detecting chaos. DC (deceleration capacity calculated by the difference between the mean of the 2 beats following deceleration and the mean of the 2 beats before deceleration). AC (acceleration capacity calculated by detecting all sequences that decrease).
Table 8. Entropy analysis (all 5-min segments).

Months	n	3rd	10th	50th	90th	97th
0	260	0.72	0.78	0.94	1.13	1.23
6	205	0.90	0.95	1.09	1.23	1.30
12	198	1.00	1.06	1.17	1.29	1.34
18	187	1.04	1.09	1.21	1.32	1.36
24	182	1.00	1.05	1.18	1.31	1.36
Total	1032					

| Smoothed centiles for AppEn (approximate entropy) (Girls) |
|---------------|-----|------|------|------|------|------|
| 0 | 117 | 0.70 | 0.77 | 0.94 | 1.11 | 1.18 |
| 6 | 95 | 0.89 | 0.95 | 1.08 | 1.21 | 1.27 |
| 12 | 86 | 1.00 | 1.05 | 1.16 | 1.28 | 1.33 |
| 18 | 82 | 1.04 | 1.09 | 1.19 | 1.31 | 1.36 |
| 24 | 80 | 1.01 | 1.05 | 1.16 | 1.30 | 1.36 |
| Total | 460 | | | | | |

| Smoothed centiles for AppEn (approximate entropy) (Boys) |
|---------------|-----|------|------|------|------|------|
| 0 | 143 | 0.73 | 0.79 | 0.95 | 1.14 | 1.25 |
| 6 | 110 | 0.91 | 0.96 | 1.10 | 1.24 | 1.31 |
| 12 | 112 | 1.01 | 1.06 | 1.19 | 1.30 | 1.35 |
| 18 | 105 | 1.04 | 1.09 | 1.22 | 1.33 | 1.37 |
| 24 | 102 | 0.99 | 1.06 | 1.19 | 1.31 | 1.36 |
| Total | 572 | | | | | |

| Smoothed centiles for SampEn (Sample entropy) (All) |
|---------------|-----|------|------|------|------|------|
| 0 | 117 | 0.51 | 0.56 | 0.71 | 0.89 | 0.99 |
| 6 | 95 | 0.75 | 0.81 | 0.96 | 1.15 | 1.25 |
| 12 | 86 | 0.89 | 0.95 | 1.10 | 1.30 | 1.41 |
| 18 | 82 | 0.95 | 1.00 | 1.14 | 1.35 | 1.48 |
| 24 | 80 | 0.92 | 0.96 | 1.08 | 1.30 | 1.46 |
| Total | 460 | | | | | |

| Smoothed centiles for SampEn (Sample entropy) (Girls) |
|---------------|-----|------|------|------|------|------|
| 0 | 143 | 0.56 | 0.56 | 0.73 | 0.96 | 1.09 |
| 6 | 110 | 0.74 | 0.81 | 0.98 | 1.19 | 1.30 |
| 12 | 112 | 0.88 | 0.95 | 1.12 | 1.33 | 1.43 |
| 18 | 105 | 0.93 | 1.00 | 1.17 | 1.38 | 1.48 |
| 24 | 102 | 0.88 | 0.95 | 1.12 | 1.33 | 1.45 |
| Total | 572 | | | | | |

| Smoothed centiles for SampEn (Sample entropy) (Boys) |
|---------------|-----|------|------|------|------|------|
| 0 | 143 | 0.73 | 0.79 | 0.96 | 1.14 | 1.25 |
| 6 | 110 | 0.91 | 0.96 | 1.10 | 1.24 | 1.31 |
| 12 | 112 | 1.01 | 1.06 | 1.19 | 1.30 | 1.35 |
| 18 | 105 | 1.04 | 1.09 | 1.22 | 1.33 | 1.37 |
| 24 | 102 | 0.99 | 1.06 | 1.19 | 1.31 | 1.36 |
| Total | 572 | | | | | |

(continued on next page)
Months	n	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th
0	260	2.32	2.45	2.76	3.07	3.20	0.53	0.57	0.66	0.77	0.83	0.52	0.56	0.66	0.76	0.80
6	205	2.49	2.61	2.89	3.17	3.28	0.61	0.65	0.73	0.83	0.87	0.61	0.64	0.73	0.82	0.86
12	198	2.59	2.71	2.97	3.24	3.36	0.66	0.70	0.78	0.87	0.91	0.66	0.69	0.77	0.86	0.90
18	187	2.62	2.74	3.01	3.30	3.42	0.67	0.71	0.80	0.89	0.93	0.67	0.71	0.79	0.88	0.92
24	182	2.57	2.70	3.00	3.32	3.47	0.65	0.69	0.79	0.89	0.93	0.65	0.70	0.78	0.88	0.93
Total	1032															

Smoothed centiles for SE (Shanon entropy) (All)

Smoothed centiles for SE (Shanon entropy) (Girls)

Smoothed centiles for SE (Shanon entropy) (Boys)

(continued on next page)
Table 8. (Continued)

Months	n	Smoothed centiles for CCE (Corrected conditional entropy) (All)	Smoothed centiles for CCE (Corrected conditional entropy) (Girls)	Smoothed centiles for CCE (Corrected conditional entropy) (Boys)												
	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	
0	260	0.56	0.60	0.71	0.84	0.90	0	117	0.55	0.60	0.71	0.82	0.88	0	143	0.57
6	205	0.64	0.68	0.78	0.89	0.94	6	95	0.64	0.68	0.77	0.88	0.93	6	110	0.65
12	198	0.69	0.73	0.82	0.92	0.98	12	86	0.69	0.72	0.81	0.92	0.97	12	112	0.69
18	187	0.70	0.74	0.84	0.94	0.99	18	82	0.70	0.74	0.83	0.94	0.99	18	105	0.70
24	182	0.67	0.72	0.83	0.95	1.00	24	80	0.68	0.72	0.82	0.94	1.00	24	102	0.66
Total	1032						Total	460						Total	572	

Months	n	Smoothed centiles for NCCE (Normalized CCE) (All)	Smoothed centiles for NCCE (Normalized CCE) (Girls)	Smoothed centiles for NCCE (Normalized CCE) (Boys)												
	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	3rd	10th	50th	90th	97th	
0	260	0.43	0.46	0.53	0.62	0.67	0	117	0.42	0.45	0.52	0.61	0.64	0	143	0.44
6	205	0.50	0.52	0.59	0.67	0.70	6	95	0.49	0.52	0.58	0.65	0.69	6	110	0.50
12	198	0.53	0.56	0.63	0.70	0.72	12	86	0.53	0.56	0.62	0.69	0.71	12	112	0.53
18	187	0.54	0.58	0.64	0.71	0.73	18	82	0.55	0.57	0.63	0.70	0.73	18	105	0.54
24	182	0.53	0.56	0.63	0.70	0.73	24	80	0.54	0.56	0.63	0.70	0.73	24	102	0.53
Total	1032						Total	460						Total	572	

(continued on next page)
Months	n	Smoothed centiles for rho (Entropy) (All)	Smoothed centiles for rho (Entropy) (Girls)	Smoothed centiles for rho (Entropy) (Boys)														
		3 rd	10 th	50 th	90 th	97 th	3 rd	10 th	50 th	90 th	97 th	3 rd	10 th	50 th	90 th	97 th		
0	260	0.34	0.38	0.47	0.54	0.57	0	117	0.35	0.39	0.48	0.55	0.58	0	143	0.33	0.38	0.47
6	205	0.30	0.33	0.41	0.48	0.51	6	95	0.31	0.34	0.42	0.48	0.51	6	110	0.29	0.33	0.40
12	198	0.28	0.30	0.37	0.44	0.47	12	86	0.28	0.31	0.38	0.44	0.47	12	112	0.27	0.30	0.36
18	187	0.27	0.29	0.35	0.43	0.46	18	82	0.27	0.30	0.37	0.43	0.45	18	105	0.26	0.29	0.35
24	182	0.27	0.30	0.36	0.44	0.47	24	80	0.28	0.31	0.37	0.44	0.47	24	102	0.27	0.30	0.36
Total	1032	0.95	0.97	1.00	1.03	1.03	0	117	0.95	0.97	1.00	1.02	1.03	0	143	0.95	0.97	1.01

Months	n	Smoothed centiles for LZC (Lempel-Ziv Complexity) (All)	Smoothed centiles for LZC (Lempel-Ziv Complexity) (Girls)	Smoothed centiles for LZC (Lempel-Ziv Complexity) (Boys)														
		3 rd	10 th	50 th	90 th	97 th	3 rd	10 th	50 th	90 th	97 th	3 rd	10 th	50 th	90 th	97 th		
0	260	0.95	0.97	1.00	1.03	1.03	0	117	0.95	0.97	1.00	1.02	1.03	0	143	0.95	0.97	1.01
6	205	0.90	0.92	0.96	1.00	1.01	6	95	0.89	0.91	0.96	1.00	1.01	6	110	0.90	0.92	0.96
12	198	0.84	0.87	0.93	0.97	0.99	12	86	0.84	0.87	0.93	0.97	0.99	12	112	0.85	0.88	0.93
18	187	0.80	0.84	0.91	0.96	0.97	18	82	0.78	0.83	0.91	0.96	0.97	18	105	0.81	0.85	0.91
24	182	0.76	0.81	0.89	0.96	0.97	24	80	0.74	0.79	0.89	0.95	0.96	24	102	0.78	0.82	0.90
Total	1032	0.76	0.81	0.89	0.96	0.97	0	117	0.74	0.79	0.89	0.95	0.96	0	143	0.78	0.82	0.90

Entropy is a measure of the regularity and complexity of pattern of different length.
Fig. 1. Fitted 3rd, 10th, 90th, and 97th smoothed centil curves (full lines) for mean heart rate according to age, for all children (upper panel) and separately for girls (middle panel) and boys (lower panel).
Chaos and DC/AC (Table 7), and entropy analysis (Table 8). Each index is presented for 5 different periods of time, 0, 6, 12, 18 and 24 months and with smoothed values in the 3rd, 10th, 50th, 90th and 97th percentiles. Data are also presented for the full cohort (left) and individualized by sex to account for gender variability (center and right).

More frequently used data are illustrated for HR, SDNN, LF and HF (Figs. 1, 2, 3, and 4).

3.1. HRV temporal and frequential approaches

In the temporal-domain (Table 1), the resting heart rate decreases regularly by 5 bpm on average every 6 months of age and is moderately lower, although not significantly, for boys than for girls, regardless of age.

In parallel, pNN20 increases regularly by 5% on average every 6 months of age, whereas pNN50 only increases by 1–2% over these same periods. These values are physiologically higher, although not significantly, for boys than for girls, regardless of age.

For the geometrical indices (Table 2), both the HRV triangular index and the TINN grow regularly from birth to age 2 regardless of gender.

In the frequency domain (Table 3), Ptot increases moderately in the first year while progressed exponentially afterwards, with a very large inter-individual variability. From birth, boys have a higher Ptot, which also progresses faster than girls (4081–5178 ms²/Hz vs 3341–4122 ms²/Hz). VLF values are very stable whatever the period considered and the gender. LF, which represents 12–13% of the entire frequency spectrum at this age, presents with a slow and steady increase of these values (435–648 ms²/Hz) between 0 and 2 years, with no noticeable peak and no major influence of gender, even if basal values are moderately higher for boys. The kinetics of maturation of the HF values is remarkable and very different from the LF values as, while it begins at low values, only 6–7% of the total spectrum, their progression is much faster and the values exceed the LF values at 2 years (14–15%), regardless of the genre. As a result, the LF/HF ratio decreases between birth and 2 years for both boys and girls (see Fig. 5).

3.2. HRV complexity by nonlinear approach

Poincaré plot SD1 increases regularly between 0 and 24 months (Table 4), being slightly higher in boys regardless the period. While SD1/SD2 ratio seems to increase with age, SD2 representing long-term variability has always values 4 to 6 times larger than SD1, as evidenced by the clear predominance of SD2nu and increases regularly with age.
Fig. 2. Fitted 3rd, 10th, 90th, and 97th smoothed centil curves for SDNN according to age, for all children (upper panel) and separately for girls (middle panel) and boys (lower panel).
Fig. 3. Fitted 3rd, 10th, 90th, and 97th smoothed centile curves for LF according to age, for all children (upper panel) and separately for girls (middle panel) and boys (lower panel).
Fig. 4. Fitted 3rd, 10th, 90th, and 97th smoothed centil curves for HF according to age, for all children (upper panel) and separately for girls (middle panel) and boys (lower panel).
Fig. 5. Fitted 3rd, 10th, 90th, and 97th smoothed centil curves for LF/HF ratio according to age, for all children (upper panel) and separately for girls (middle panel) and boys (lower panel).
Considering the Empirical Mode Decomposition (Table 5), we can observe that both low (pLF1, pLF2) and high (pHF1, and pHF2) frequencies increase from birth to age 2, as the ratio between low and high frequency indices (IMAI1 and IMAI2) decrease.

Indices of fractality (Table 6) decrease regularly with age, whatever the gender: the 2 exponents α_1 and α_2 of the detrended fluctuation analysis (DFA) used to quantify the degree of self-similarity of RR fluctuation [α_1 for short-term fluctuation decreasing from 1.20 to 1, and α_2 for long-term fluctuations decreasing from 1.05 to 0.9], H DFA decreasing 1.04 to 0.96 and Hurst exponent from 0.37 to 0.20.

Conversely, Higuchi and Katz algorithms proposed to determine the fractal dimension of heart rate variability signal increases respectively from 1.6 to 1.8 and from 1.4 to 1.6 over the same period.

The power-law slope (β) influenced mainly by autonomic input to the heart quantifies the complexity of the RR interval. While the smaller the slope, the greater the loss of complexity, this index is however difficult to interpret in that population.

The “chaotic” exponent (Skewness, kurtosis and largest Lyapunov exponent) in our population increase respectively (0.39–0.57–5.82 to 6.23–0.23 to 0.3) meaning higher variations of the RR with age (Table 7).

If we consider the heart Deceleration and Acceleration Capacities indices used to estimate the vagal and sympathetic capacities, it is interesting to note that these two indices also progress with age in the same proportion, with a usual aspect in mirror.

What is remarkable in our population is the fact that all these entropy markers regularly increase by 20% on average between birth and 2 years (Table 8).

Another way to measure the rate of patterns recurrences in RR series is the Lempel-Ziv complexity. This last index decreases by 10% with age in our population.

4. Discussion

The main objective of the Autonomic Baby Evaluation cohort (AuBE) was to determine the physiological autonomic maturation profile from birth to 2 years in a healthy population of term neonates. This the first time such longitudinal survey was conducted in a large newborns healthy population.

In summary, during these two years of maturation, there is a large gain in global autonomic maturation giving progressively a new equilibrium privileging the parasympathetic activity over the sympathetic activity. This underlines a gain in fine-tuning autonomic modulations.
Thus the balance of the autonomic nervous system (ANS), essential for homeostasis and cardiorespiratory control, depends closely not only on states of wakefulness (awakening, quiet sleep, active sleep) [40, 41, 42, 43, 44] but also on postnatal age.

This study has provided a comprehensive analysis of HRV indices which may serve as reference data, are of interest in assessing global autonomic maturation. These markers have also gain some interest in pathological conditions as growth restricted and prematurity status [45], sepsis [23], inflammation [25], as well as in particular physiological settings as skin-to-skin [46], and stress or pain [47, 48].

The difference in values we measured from birth according to gender is notable. All HRV values in any field of analysis are slightly higher in boys. We do not have a rational explanation. This does not explain the higher risk of SIDS in premature male infants [49]. Conversely, it has been shown that girls presented significantly higher values than boys for SDNN and absolute high frequency (HF; p < 0.05) in the supine position, the most significant indices of the vagal activity [50]. We do not know when this occurs during childhood. For adults, females showed significantly lower mean RR interval and SDNN power spectral density but a significantly greater vagal activity [51].

There may be some limitations to our study. The first is related to the technical design of the study forcing us to analyze the data over 24 hours thus mixing waking and sleeping periods and day and night periods, which could change the basal values of HRV. In fact, we have dissociated sleep-wake data from polysomnography at birth and at 6 months of life, but it was no longer possible to obtain them on such a cohort, on an ambulatory basis and at an age when child is not compliant for physiological explorations. Nevertheless, the accumulation of 24-hour global data has the advantage of allowing measurements on a much larger number of RRs (more than 150,000 per day per child) and thus of attenuating the impact of brain activity stages on the results.

Mothers’ sleep and mood could interfere with the child’s sleep quality [52], while this was not taken into account in this results which thus includes such variations. There could be also unmeasured confounding factors as the impact of nicotine exposure during pregnancy which may target different organs of the fetus, particularly the lung and the central nervous system [53, 54], including learning disorders, hyperactivity and attentional deficits or moderate intellectual disabilities [55, 56, 57, 58, 59, 60]. Another limitation lies in the large standard deviations of normal values. For some indices, the data can vary from 1 to 20. It is therefore necessary to integrate this when used for a personalized follow-up. Each individual probably has his own autonomic resources predefined by his gender, and genetics as well as environmental factors. A human being his thus also its own witness able to improve his autonomic balance.
Using these tools may allow a complete non-invasive neurophysiological approach of the cardiorespiratory self-regulation. The innovative the longitudinal follow-up of healthy child allowed establishing normative data useful for the evaluation of an autonomic risk at a critical age of faintness and unexpected sudden death occurrence. Persistent dysautonomia in the neonatal period, as a biomarker of neuronal dysfunction, may warrant early and prolonged neurodevelopmental follow-up and perhaps corrective actions.

5. Conclusion

The physiological autonomic maturation profile from birth to 2 years in a healthy population of term neonates results in a fine autonomic maturation underlying increasingly a new equilibrium and benefitting the parasympathetic activity over the sympathetic activity.

Declarations

Author contribution statement

Hugues Patural: Conceived and designed the experiments; Wrote the paper.

Vincent Pichot: Analyzed and interpreted the data.

Sophie Flori, Antoine Giraud: Performed the experiments.

Patricia Franco, Patrick Pladys, Alain Beuchée: Contributed reagents, materials, analysis tools or data.

Jean-Claude Barthelemy, Frédéric Roche: Conceived and designed the experiments.

Funding statement

The AuBE study is allowed through consecutive grants from the French Ministry of Health: PHRC interrégional, 2009 and AOL 2010.

Competing interest statement

The authors declare no conflict of interest.

Additional information

The clinical trial described in this paper was registered at ClinicalTrials.gov under the registration number NCT01583335.
References

[1] D.M. Kaye, M.D. Esler, Autonomic control of the aging heart, Neuromol. Med. 10 (3) (2008) 179–186. Epub 2008 Mar 13. Review.

[2] H. Patural, G. Teyssier, V. Pichot, J.C. Barthelemy, Normal and changed heart rate maturation of the neonate, Arch. Pediatr. 15 (5) (2008 Jun) 614–616.

[3] B.P. Kovatchev, L.S. Farhy, H. Cao, M.P. Griffin, et al., Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome, Pediatr. Res. 54 (6) (2003 Dec) 892–898. Epub 2003 Aug 20.

[4] K.D. Fairchild, T.M. O’Shea, Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis, Clin. Perinatol. 37 (3) (2010 Sep) 581–598. Review.

[5] J. Mattei, G. Teyssier, V. Pichot, J.C. Barthélémy, et al., Autonomic dysfunction in 2009 pandemic influenza A (H1N1) virus-related infection: a pediatric comparative study, Auton. Neurosci. 162 (1–2) (2011 Jul 5) 77–83. Epub 2011 Apr 8.

[6] H. Klein, G. Ferrari, Vagus nerve stimulation: a new approach to reduce heart failure, Cardiol. J. 17 (6) (2010) 638–644.

[7] L.V. Borovikova, S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature 405 (6785) (2000) 458–462.

[8] C.E.B. McCormick, S.J. Sheinkopf, T.P. Levine, L.L. LaGasse, et al., Diminished respiratory sinus arrhythmia response in infants later diagnosed with autism spectrum disorder, Autism Res. 11 (5) (2018 May) 726–731. Epub 2018 Jan 23.

[9] S.S. Sivakumar, A.G. Namath, I.E. Tuxhorn, S.J. Lewis, R.F. Galán, Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy, J. Neurophysiol. 115 (4) (2016 Apr) 1988–1999. Epub 2016 Feb 17.

[10] D.E. Weese-Mayer, E.M. Berry-Kravis, I. Ceccherini, C.M. Rand, Congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS): Kindred disorders of autonomic regulation, Respir. Physiol. Neurobiol. 164 (1-2) (2008 Dec 10) 38–48. Review.

[11] R.Y. Moon, R.S. Horne, F.R. Hauck, Sudden infant death syndrome, Lancet 370 (9598) (2007) 1578–1587.
[12] V.L. Schechtman, R.M. Harper, K.A. Kluge, A.J. Wilson, H.J. Hoffman, D.P. Southall, Heart rate variation in normal infants and victims of the sudden infant death syndrome, Early Hum. Dev. 19 (1989) 167–181.

[13] K.A. Kluge, R.M. Harper, V.L. Schechtman, A.J. Wilson, H.J. Hoffman, D.P. Southall, Spectral analysis assessment of respiratory sinus arrhythmia in normal infants and infants who subsequently died of sudden infant death syndrome, Pediatr. Res. 24 (1988) 677–682.

[14] P. Franco, D. Verheulpen, F. Valente, et al., Autonomic responses to sighs in healthy infants and in victims of sudden infant death, Sleep Med. 4 (2003) 569–577.

[15] I. Kato, P. Franco, J. Groswasser, S. Scaillet, I. Kelmanzon, H. Togari, A. Kahn, Incomplete arousal processes in infants with sudden death, Am. J. Respir. Crit. Care Med. 168 (11) (2003 Dec 1) 1298–1303. Epub 2003 Aug 13.

[16] J.M. Abu-Shaweesh, Maturation of respiratory reflex responses in the fetus and neonate, Semin. Neonatol. 9 (3) (2004) 169–180.

[17] C.G. Wilson, J.M. Abu-Shaweesh, M.A. Haxhiu, Role of inhibitory neurotransmitter interactions in the pathogenesis of neonatal apnea: implications for management, Semin. Perinatol. 28 (4) (2004) 273–278.

[18] H.C. Kinney, J.J. Filiano, W.F. White, Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset, J. Neuropathol. Exp. Neurol. 60 (3) (2001) 228–247.

[19] D.S. Paterson, F.L. Trachtenberg, E.G. Thompson, R.A. Belliveau, et al., Multiple serotonergic brainstem abnormalities in sudden infant death syndrome, JAMA 296 (17) (2006) 2124–2132.

[20] D.E. Weese-Mayer, E.M. Berry-Kravis, B.S. Maher, J.M. Silvestri, et al., Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene, Am. J. Med. Genet. A 117A (3) (2003) 268–274.

[21] D.E. Weese-Mayer, M.J. Ackerman, M.L. Marazita, E.M. Berry-Kravis, Sudden infant death syndrome: review of implicated genetic factors, Am. J. Med. Genet. A 143A (8) (2007) 771–788.

[22] A. Livolsi, N. Niederhoffer, N. Dali-Youcef, C. Rambaud, et al., Cardiac muscarinic receptor overexpression in sudden infant death syndrome, PLoS One 5 (3) (2010 Mar 1) e9464.

[23] J.R. Moorman, J.B. Delos, A.A. Flower, H. Cao, et al., Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate
characteristics monitoring, Physiol. Meas. 32 (11) (2011 Nov) 1821—1832. Epub 2011 Oct 25.

[24] C.M. Badke, L.E. Marsillio, D.E. Weese-Mayer, Sanchez-pinto LN autonomic nervous system dysfunction in pediatric sepsis, Front. Pediatr. 6 (2018 Oct 9) 280., eCollection 2018.

[25] T. Al-Shargabi, R.B. Govindan, R. Dave, M. Metzler, Y. Wang, A. du Plessis, Massaro inflammatory cytokine response and reduced heart rate variability in newborns with hypoxic-ischemic encephalopathy, AN J. Perinatol. 37 (6) (2017 Jun) 668—672. Epub 2017 Mar 2.

[26] K.A. Metwalley, S.A. Hamed, H.S. Farghaly, Cardiac autonomic function in children with type 1 diabetes, Eur. J. Pediatr. 177 (6) (2018 Jun) 805—813. Epub 2018 Mar 2.

[27] K.L. Fyfe, S.R. Yiallourou, F.Y. Wong, A. Odoi, A.M. Walker, R.S. Horne, Gestational age at birth affects maturation of baroreflex control, J. Pediatr. 166 (3) (2015 Mar) 559—565. Epub 2014 Dec 30. PMID: 25556016.

[28] K.L. Fyfe, S.R. Yiallourou, F.Y. Wong, A. Odoi, A.M. Walker, R.S. Horne, The effect of gestational age at birth on post-term maturation of heart rate variability, Sleep 38 (10) (2015 Oct 1) 1635—1644.

[29] S.B. Mulkey, S. Kota, C.B. Swisher, L. Hitchings, et al., Autonomic nervous system depression at term in neurologically normal premature infants, Early Hum. Dev. 123 (2018 Aug) 11—16. Epub 2018 Jul 17.

[30] M. Lucchini, N. Burtchen, W.P. Fifer, M.G. Signorini, Multi-parametric cardiorespiratory analysis in late-preterm, early-term, and full-term infants at birth, Med. Biol. Eng. Comput. 57 (1) (2019 Jan) 99—106. Epub 2018 Jul 10.

[31] S. Cardoso, M.J. Silva, H. Guimarães, Autonomic nervous system in newborns: a review based on heart rate variability, Childs Nerv. Syst. 33 (7) (2017 Jul) 1053—1063. Epub 2017 May 13. Review.

[32] I. De Rogalski-Landrot, F. Roche, V. Pichot, G. Teyssier, J.M. Gaspoz, J.C. Barthelemy, H. Patural, Autonomic nervous system activity in premature and full-term infants from theoretical term to 7 years, Auton. Neurosci. 136 (1—2) (2007) 105—109.

[33] W. Aziz, F.S. Schlindwein, M. Wailoo, T. Biala, et al., Heart rate variability analysis of normal and growth restricted children, Clin. Auton. Res. 22 (2) (2012 Apr) 91—97. Epub 2011 Nov 2.
[34] J.P. Finley, S.T. Nugent, W. Hellenbrand, Heart-rate variability in children. Spectral analysis of developmental changes between 5 and 24 years, Can. J. Physiol. Pharmacol. 65 (10) (1987 Oct) 2048–2052.

[35] H. Patural, S. Flori, V. Pichot, P. Franco, P. Pladys, et al., Autonomic nervous system: a biomarker of neurodevelopmental comportment — the AuBE study, J. Clin. Trials 4 (2014) 176.

[36] The CRIB (Clinical Risk Index for Babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units, Lancet 342 (8865) (1993 Jul 24) 193–198.

[37] V. Pichot, F. Roche, S. Celle, J.C. Barthélémy, F. Chouchou, HRV analysis: a free software for analyzing cardiac autonomic activity, Front. Physiol. 7 (2016 Nov 22) 557.

[38] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability. Standards of measurement, physiological interpretation, and clinical use, Circulation 93 (1996) 1043–1065.

[39] U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C.M. Lim, J.S. Suri, Heart rate variability: a review, Med. Biol. Eng. Comput. 44 (12) (2006 Dec) 1031–1051.

[40] P. Franco, E. Montemitro, Scaillet, J. Grosbower, I. Kato, J.S. Lin, M.P. Villa, Fewer spontaneous arousals in infants with life threatening event, Sleep 34 (6) (2011 Jun 1) 733–743.

[41] P. Franco, B. Kugener, J.S. Lin, F. Dijoud, J. Grosbower, A. Kahn, M.J. Challamel, Sudden death in infants during sleep, Handb. Clin. Neurol. 98 (2011) 501–517. Review.

[42] P. Franco, I. Kato, H.L. Richardson, J.S.C. Yang, E. Montemitro, R.S.C. Horne, Arousal mechanisms in infants, Sleep Med. 11 (7) (2010 Aug) 603–614. Epub 2010 Jul 13. Review.

[43] E. Montemitro, P. Franco, S. Scaillet, I. Kato, J. Grosbower, M.P. Villa, A. Kahn, J.P. Sastre, R. Ecochard, G. Thiriez, J.S. Lin, Maturation of spontaneous arousals in healthy infants, Sleep 31 (2008) 47–54. PMCID: PMC2225547.

[44] The International Paediatric North Group on Arousals, The scoring of arousals in healthy term infants (between the ages of 1 and 6 months), J. Sleep Res. 14 (2005) 37–41.
[45] S.R. Yiallourou, E.M. Wallace, C. Whatley, A. Odoi, S. Hollis, A.J. Weichard, J.S. Muthusamy, S. Varma, J. Cameron, O. Narayan, R.S.C. Horne, Sleep: a window into autonomic control in children born preterm and growth restricted, Sleep 40 (5) (2017 May 1).

[46] X. Cong, R.M. Cusson, N. Hussain, D. Zhang, et al., Kangaroo care and behavioral and physiologic pain responses in very-low-birth-weight twins: a case study, Pain Manag. Nurs. 13 (3) (2012 Sep) 127–138. Epub 2011 May 31.

[47] C. Cremillieux, A. Makhlouf, V. Pichot, B. Trombert, H. Patural, Objective assessment of induced acute pain in neonatology with the Newborn Infant Parasympathetic Evaluation index, Eur. J. Pain 22 (6) (2018 Jul) 1071–1079. Epub 2018 Mar 24.

[48] L. Butruille, J. De Jonckheere, M. Jeanne, B. Tavernier, R. Logier, Analysing heart rate variability to improve the monitoring of pain, Rev. Infirm. 65 (226) (2016 Dec) 38–39. Review.

[49] F.M. Bright, R. Vink, R.W. Byard, J.R. Duncan, H.F. Krous, D.S. Paterson, Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex, PLoS One 12 (9) (2017 Sep 20) e0184958., eCollection 2017.

[50] C.C. Silva, M. Bertollo, F.F. Reichert, D.A. Boullosa, F.Y. Nakamura, Reliability of heart rate variability in children: influence of sex and body position during data collection, Pediatr. Exerc. Sci. 29 (2) (2017 May) 228–236. Epub 2016 Sep 6.

[51] J. Koenig, J.F. Thayer, Sex differences in healthy human heart rate variability: a meta-analysis, Neurosci. Biobehav. Rev. 64 (2016 May) 288–310. Epub 2016 Mar 7. Review.

[52] P. Franco, N. Seret, J.N. Van Hees, J.P. Lanquart, J. Groswasser, A. Kahn, Cardiac changes during sleep in sleep-deprived infants, Sleep 26 (2003) 845–848.

[53] G. Thiriez, M. Bouhaddi, L. Mourot, F. Nobili, J.O. Fortrat, A. Menget, P. Franco, J. Regnard, Heart rate variability in preterm infants and maternal smoking during pregnancy, Clin. Aut. Res. 19 (3) (2009 Jun) 149–156. Epub 2009 Mar 3.

[54] O. Hafström, J. Milerad, K.L. Sandberg, H.W. Sundell, Cardiorespiratory effects of nicotine exposure during development, Respir. Physiol. Neurobiol. 149 (1-3) (15 nov 2005) 325–341. Review.
[55] J.L. Cavalcante Neto, A.R. Zamunér, B.C. Moreno, E. Silva, E. Tudella, Linear and nonlinear analyses of the cardiac autonomic control in children with developmental coordination disorder: a case-control study, Front. Physiol. 9 (2018 Mar 22) 267., eCollection 2018.

[56] A. Fily, V. Pierrat, V. Delporte, G. Breart, P. Truffert, EPIPAGE Nord-Pas-de-Calais Study Group, Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-Pas-de-Calais EPIPAGE cohort, Pediatrics 117 (2) (2006 Feb) 357–366.

[57] P.Y. Ancel, F. Livinec, B. Larroque, S. Marret, et al., EPIPAGE Study Group, Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE cohort study, Pediatrics 117 (3) (2006 Mar) 828–835.

[58] M. Delobel-Ayoub, M. Kaminski, S. Marret, A. Burguet, et al., EPIPAGE Study Group, Behavioral outcome at 3 years of age in very preterm infants: the EPIPAGE study, Pediatrics 117 (6) (2006 Jun) 1996–2005.

[59] B. Larroque, M. L. Marchand, Kaminski and the epipage study group cognitive deficits of 5-year-old preterm children: the Epipage study, Dev. Med. Child. Neurol. 47 (Suppl. 103) (2005) 33.

[60] S.E. Crowell, T.P. Beauchaine, L. Gatzke-Kopp, P. Sylvers, H. Mead, J. Chipman-Chacon, Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children, J. Abnorm. Psychol. 115 (1) (2006) 174–178.