Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe$_{1.23}$Te$_3$ Spin Ladder *

XU Min(徐敏)1, WANG Li-Min(王莉敏)2, PENG Rui(彭瑞)1,7, GE Qing-Qin(葛青亲)1, CHEN Fei(陈飞)1, YE Zi-Rong(叶子荣)1, ZHANG Yan(张燕)1, CHEN Su-Di(陈苏迪)1, XIA Miao(夏淼)1, LIU Rong-Hua(刘荣华)3, Arita M.4, Shimada K.4, Namatame H.4, Taniguchi M.5, Matsunami M.5, Kimura S.5, SHI Ming(史明)6, CHEN Xian-Hui(陈仙辉)3, YIN Wei-Guo(尹卫国)2, KU Wei(顾威)2,**, XIE Bin-Ping(谢斌平)1,**, FENG Dong-Lai(封东来)1,**

1State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433
2Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, New York 11973, USA
3Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026
4Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-8526, Japan
5UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
6Swiss Light Source, Paul-Scherrer Institute, Villigen 5232, Switzerland
7Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Gulou, Nanjing 210993

(Received 16 July 2014)

Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe$_{1.23}$Te$_3$, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe$_{1.23}$Te$_3$ serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.

PACS: 74.25.Jb, 71.20.–b, 74.70.–b DOI: 10.1088/0256-307X/32/2/027401

Several iron-based spin chain/ladder systems have been discovered recently, including TaFe$_{1.23}$Te$_3$, BaFe$_2$Se$_2$, Ce$_2$O$_2$FeSe$_2$, single-layer K$_x$Fe$_{2-y}$Se$_2$ (110) films and the signature of superconductivity and antiferromagnetic (AFM) order in the alkali-doped FeSe-ladder system resembles the parent compounds of iron-based superconductors. Meanwhile, all these materials share a similar structural character: a layered quasi-one-dimensional structure with edge sharing FeX$_4$ (X=Te, Se) plaquettes. For example, TaFe$_{1.23}$Te$_3$ can be viewed as a Fe–Fe zig-zag spin ladder compound with adjacent ladders connected by a Ta/Te network as illustrated in Figs. 1(a) and 1(b). It exhibits an AFM order with an unusual ferromagnetic (FM) coupling in the cleavage plane and an antiferromagnetic coupling out of plane as shown in Fig. 1(a), and the local moment of about 2 μ$_B$/Fe resembles that of FeTe. Due to their similarities, these ladder compounds can be considered as low-dimensional siblings of the iron-based superconductors. In addition to the interests in themselves as iron-based spin ladders, experimental study in combination with readily treatable theoretical modeling of these systems would deepen our understanding of magnetism in iron-based superconductors.

In this paper, we study the electronic structure of TaFe$_{1.23}$Te$_3$ by the angle-resolved photoemission spectroscopy (ARPES) and band calculations. Moreover, we find that features far below the Fermi energy (E_F) shift abruptly across the AFM transition, instead of opening a gap, resembling the electronic structure reconstruction across the AFM transition in two-dimensional (2D) iron pnictides. Our results suggest that the critical ingredients of the magnetism in the parent compounds of iron-based superconductors, such as local moments and Hund’s rule coupling, together with the itinerant kinetics across the in-plane ladders, conspire the novel ground state in TaFe$_{1.23}$Te$_3$.

Needle-shaped TaFe$_{1.23}$Te$_3$ single crystals were synthesized by the chemical vapor transport method. The resistivity shows metallic behavior and an anomaly at the Neel temperature (T_N) around 160 K, resembling the AFM transition of BaFe$_2$As$_2$. ARPES measurements were performed at beamline 9A of the Hiroshima Synchrotron Radiation Center (HSRC), the SIS beamline of the Swiss Light Source (SLS) with Scienta R4000 electron an-
alyzers, and BL7 of the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR) with an MBS A-1 electron analyzer. The overall energy resolution is \(\sim 15 \text{meV} \), and the angular resolution is \(\sim 0.3^\circ \).

TaFe\(_{1.23}\)Te\(_3\) crystalizes in a monoclinic \(\text{P2}_1/\text{m} \) structure with lattice constants \(a = 7.4262 \text{Å} \), \(b = 3.6374 \text{Å} \), \(c = 9.9925 \text{Å} \), and \(\beta = 109.166^\circ \) (Fig. 1(a)). On the (101) natural cleavage plane (Fig. 1(b)), there are two-leg ladders with two FeTe chains parallel to the short axis \(b \), which are separated by a Ta/Te network in-between. Therefore, TaFe\(_{1.23}\)Te\(_3\) possesses a quasi-one-dimensional crystal structure. Fig. 1(c) illustrates the three-dimensional Brillouin zone (BZ), and the corresponding surface BZ. We define the \(k_x \) and \(k_y \) axes to be parallel and perpendicular to the ladder/chain, respectively. The low-energy electron diffraction (LEED) pattern in Fig. 1(d) also manifests its twofold symmetry and confirms high sample quality.

![Fig. 1](Color online) Crystal structure and Brillouin zone (BZ) of TaFe\(_{1.23}\)Te\(_3\). (a) Schematic illustration of crystal structure and spin structure following neutron scattering result.\(^4\) The Fe2 atoms partially and randomly occupy the interstitial sites. (b) A projection of the ladder structure onto the natural cleavage (101) plane. The Fe–Fe zig-zag two-leg ladders are encircled by dashed lines. Note that the interstitial Fe2 is not shown here. (c) Three-dimensional BZ of TaFe\(_{1.23}\)Te\(_3\) with the monoclinic structure. The direction of vector \(\vec{n} \) is normal to the cleaved surface (101) in the reciprocal space. The bottom part gives the surface BZ. Hereafter, we define the \(\Gamma X \) and \(\Gamma Y \) axes to be parallel to and perpendicular to the ladder, respectively. Here \(\Gamma X = 0.863 \text{Å}^{-1} \) and \(\Gamma Y = 0.305 \text{Å}^{-1} \). (d) The LEED pattern of TaFe\(_{1.23}\)Te\(_3\) taken at 250 K in the paramagnetic state with 100 eV incident electrons. Note that \(\Gamma X/\Gamma Y \approx 2.8 \) is consistent with the LEED pattern.

The photoemission intensity map in Fig. 2(a) indicates two Fermi surface sheets. The periodic undulation-like Fermi surface along \(\Gamma Y \) suggests sizable in-plane inter-ladder interactions. Figure 2(b) plots the momentum distribution curves (MDCs) along \(\Gamma X \), and two bands \(\alpha \) and \(\alpha' \) could be observed near \(E_F \). The Fermi surface of \(\alpha' \) seems to have the same shape as that of \(\alpha \), while judging from their dispersions, \(\alpha' \) is not a folded band of \(\alpha \). Moreover, the negligible photon energy dependence (Figs. 2(a), 2(c) and 2(d)) demonstrates the weak inter-plane coupling or the quasi-2D nature of TaFe\(_{1.23}\)Te\(_3\).

Three more bands \(\beta, \gamma, \) and \(\delta \) can be identified along \(\Gamma X \) (along the ladder) (Figs. 3(a) and 3(b)). The \(\beta \) and \(\gamma \) bands disperse from 0.3 to 0.7 eV below \(E_F \), while \(\delta \) shows a parabola-like dispersion with a larger bandwidth. Along \(\Gamma Y \) (perpendicular to the ladder), one could only observe the \(\beta, \gamma, \) and \(\delta \) bands (Figs. 3(d) and 3(e)). Along #1–#3 which are off the \(\Gamma Y \) direction, dispersions of band \(\alpha \) perpendicular to the ladder can be resolved (Figs. 3(g)–3(i)). By fitting the dispersions by \(E = E_0 + 2t \cos(\delta k_0^z) \) (Figs. 3(g)–3(i)), we can extract the interladder hopping integral \(t \), which is 0.054 eV for the band \(\alpha \). We note that for FeTe, in the nonmagnetic state, the features are very broad, and the quasiparticle peak is undistinguishable even at \(E_F \). However, in its bicollinear AFM state, when the magnetic fluctuations are gapped out, coherent quasi-particles show up.\(^{13,14}\) A sharp quasiparticle peak is not observed in the AFM states of TaFe\(_{1.23}\)Te\(_3\), which may be attributed to the strong and ungapped magnetic fluctuations in the ladders.

![Fig. 2](Color online) The Fermi surface of TaFe\(_{1.23}\)Te\(_3\). (a) Photoemission intensity maps integrated within 10 meV around Fermi energy (\(E_F \)) with 24 eV photons at 30 K. (b) Momentum distribution curves (MDCs) near \(E_F \) along \(\Gamma X \). The marks are a guide to the eye of the dispersions. (c,d) Photoemission intensity maps integrated within 10 meV around \(E_F \) taken with 27, and 21 eV photons, respectively. The red dashed lines are a guide to the eye for the Fermi surface, which show weak \(k_z \) dependence. Data were taken with horizontally polarized photons at 13 K at UVSOR.

We calculated the band structure of TaFeTe\(_3\) in the non-magnetic state without the interstitial Fe2 atoms. The calculation was conducted by using the WIEN2K implementation of the full potential linearized augmented plane wave method in the local density approximation.\(^{15}\) The \(k \)-point mesh was taken to be \(4 \times 5 \times 11 \). The lattice constants were taken from Ref. \(^{16}\). To compare with the APRES spectra...
directly, the band structure in the 2-Fe zone is unfolded to the 1-Fe zone by applying the recent developed unfolding method.\(^{[17]}\) Figs. 3(c) and 3(f) exhibit the corresponding calculated band dispersions along \(I\bar{X}\) and \(I\bar{Y}\), respectively. The thickened part of the bands in the calculation are likely to be the bands observed in the experiment. The calculations partially qualitatively agree with the experiments, when considering some moderate band renormalization and the Fermi level shift due to the interstitial iron atoms in the real material (shown by the thick dashed lines). Note that the \(\alpha'\) band is absent in our calculations, and its origin is still mysterious. There are several discrepancies between the experiment and the calculations, which demands further investigations, such as scanning tunneling microscope or transmission electron microscope studies on the roles of interstitial irons.

![Figure 3](image_url) (Color online) Band structure of TaFe\(_{1.23}\)Te\(_3\). (a) Photoemission intensity along \(I\bar{X}\). (b) Plot of energy distribution curves (EDCs) along \(I\bar{X}\) in panel (a). (c) The calculated band structure along \(I\bar{X}\) without interstitial iron atoms Fe\(_2\), where the thickened part of the bands have been observed in our data. (d)–(f) The same as panels (a)–(c) but for data along \(I\bar{Y}\). The marks are a guide to the eye of the band dispersion which are determined by the local maxima of the EDCs. (g)–(i) Photoemission intensity along \#1–\#3, respectively. The momentum locations are shown in Fig. 2(a). The red markers show the experimental dispersions which are determined by the local maxima of the MDCs. The green curves show the fittings of the dispersions by \(E = E_0 + 2t \cos(k_l)\), where \(b\) is the surface lattice constant perpendicular to the ladder, and \(t\) is the interladder hopping integral. Data in panels (a), (b), (g), (h) and (i) were taken with horizontally polarized 24 eV photons at 13 K at UVSOR. Data in panels (d) and (e) were taken with circularly polarized 24 eV photons at 10 K at SLS. The red dashed lines in panels (c) and (f) indicate where the experimental Fermi energy is located.

In the paramagnetic state (Fig. 4(a)) and the AFM state (Fig. 4(b)), the Fermi surface intensity maps exhibit negligible change within the experimental uncertainty except some thermal broadening, and there is no AFM gap at the Fermi surface. The temperature dependence of the MDCs along \(I\bar{X}\) also shows negligible fluctuations of \(\alpha\) and \(\alpha'\) (Figs. 4(c) and 4(d)), suggesting the AFM transition is not driven by the Fermi surface instability. Although the AFM coupling is out of plane, the nesting condition would be fulfilled due to the weak \(k_{\perp}\) dependence. However, the \(\beta\) and \(\gamma\) bands shift towards lower binding energy as the temperature decreases and shift back again without hysteresis when warming up (Fig. 4(e)), indicating the second order nature of the transition. Figs. 4(f) and 4(g) display the spectra at two representative momenta \(k_1\) and \(k_2\) as marked in Fig. 4(a), at temperatures across the AFM transition. The peak positions as a function of temperature are summarized in Figs. 4(h)–4(j). The shifts of their peak positions all begin around the bulk \(T_N\), and saturate quickly below 145 K.\(^{[1]}\) Since the structural transition at \(T_N\) in TaFe\(_{1.23}\)Te\(_3\) is absent, such an intrinsic electronic structure reconstruction should be related to the AFM transition. The shift is about +50 meV for \(\beta\) and −18 meV for \(\gamma\) at \(k_1\), and +80 meV for \(\beta\) and −50 meV for \(\gamma\) at \(k_2\), in quantity. They are comparable with the \(k_3\) energy scale and those band shifts observed in the parent compounds of the iron-based superconductors.\(^{[9,11]}\) We note that the upward shifts are larger than the downward shifts, and it seems that the electronic energy is not reduced in the AFM state, different from the observations made in 2D iron pnictides\(^{[8,9]}\) and FeTe.\(^{[13]}\) Presumably, the bands would shift towards higher binding energy to reduce energy; however, further studies are needed to fully understand this issue.

Previous ARPES results of iron pnictides\(^{[9,11,18]}\) and FeSe/SrTiO\(_3\) thin films\(^{[19]}\) show that electronic structure reconstruction rather than Fermi surface nesting drives the AFM transition. Theoretical studies on iron-based superconductors suggest that Hund’s rule coupling is a key factor for the correlations and local moments.\(^{[20–22]}\) The recent transport measurement on detwined FeTe suggests that Hund’s rule coupling dominates magnetism in FeTe.\(^{[23]}\) For FeTe, the system is largely characterized by a polaronic electronic structure,\(^{[14,15]}\) and the bicollinear antiferromagnetic transition there corresponds to large energy (≈0.6 eV) and momentum (over the entire BZ) scale spectral weight transfer. For TaFe\(_{1.23}\)Te\(_3\), its large local moment of 2\(\mu_B\)/Fe is comparable to that of FeTe.\(^{[7]}\) The difference is that TaFe\(_{1.23}\)Te\(_3\) possesses a 2D Fermi surface and significant in-plane dispersions. Therefore, the key electronic character here is the coexistence of itinerant and localized 3d states, and Hund’s rule coupling between them is the main source of electronic correlation, just like in the iron based superconductors. In analogy to the double-exchange ferromagnetism observed in the manganites, Hund’s rule coupling here would introduce similar effects. This gives a natural interpretation of the magnetic order in TaFe\(_{1.23}\)Te\(_3\), as the in-plane
magnetic order is determined by the competition between double exchange ferromagnetism and superexchange antiferromagnetism.\cite{21} The chain-like structure of TaFe$_{1.23}$Te$_3$ significantly blocks the inter-chain super-exchange between the in-plane localized spins as they are too far away, while the inter-chain hoppings of the itinerant electrons can still be mediated by the intermediate Ta (nonmagnetic 5d^1) structure. Therefore, the in-plane FM coupling wins over the AFM one, resulting in the in-plane FM order shown in Fig. 1(b). On the other hand, the intra-ladder Fe–Fe or Fe–Te–Fe structure and the distance between planes (Fig. 1(a)) are similar to those of FeTe, and the direct FM exchange within a ladder and the inter-plane AFM super-exchange may work similarly as in FeTe. Therefore, these conspire the so-called A-type AFM order in TaFe$_{1.23}$Te$_3$.

In summary, the quasi-2D Fermi surface and band structure have been observed for TaFe$_{1.23}$Te$_3$, which is in partial and qualitative agreement with the band calculations. Our results suggest that TaFe$_{1.23}$Te$_3$ is the second kind of novel quantum material in addition to the parent compounds of iron-based superconductors, whose AFM transition directly correlates with the electronic structure reconstruction at high binding energies. The commonalities among TaFe$_{1.23}$Te$_3$, FeTe, and other parent compounds of iron-based superconductors suggest that they are just the different manifestations out of the competition among the same set of physical ingredients, such as Hund’s rule coupling and antiferromagnetic superexchange interactions between localized spins.\cite{21} Particularly, this spin ladder system would provide a simpler testing ground to study the essence of magnetism in iron pnictides and chalcogenides.

We are grateful to Professor Jiangping Hu and Professor Hua Wu for helpful discussions.

References

[1] Liu R H et al 2011 Phys. Rev. B 84 184432
[2] Lei H et al 2011 Phys. Rev. B 84 214511
[3] Caron J M et al 2011 Phys. Rev. B 84 180409
[4] McCabe E E, Free D G and Evans J S O 2011 Chem. Commun. 47 1261
[5] Li W et al 2012 in preparation (arXiv:1210.4619) [cond-mat.supr-con]
[6] Ke X et al 2012 Phys. Rev. B 85 214404
[7] Li S et al 2009 Phys. Rev. B 79 054503
[8] Zhang Y et al 2012 Phys. Rev. B 85 085121
[9] Yang L X et al 2009 Phys. Rev. Lett. 102 107002
[10] Ge Q Q et al 2013 Phys. Rev. X 3 011020
[11] Yi M et al 2011 Proc. Natl. Acad. Sci. USA 108 6878
[12] Wang X F et al 2009 Phys. Rev. Lett. 102 117005
[13] Zhang Y et al 2010 Phys. Rev. B 82 165113
[14] Liu Z K et al 2013 Phys. Rev. Lett. 110 037003
[15] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[16] Liu S X, Cai G L and Huang J L 1993 Acta Crystallogr. C 49 4
[17] Ku W, Berlijn Tom and Lee Chi-Cheng 2010 Phys. Rev. Lett. 104 216401
[18] He C et al 2010 Phys. Rev. Lett. 105 117002
[19] Tan S Y et al 2013 Nat. Mater. 12 634
[20] Haule K and Kotliar G 2009 New J. Phys. 11 025021
[21] Yin W G, Lee C C and Ku W 2010 Phys. Rev. Lett. 105 107004
[22] Yin W G, Lin C H and Ku W 2012 Phys. Rev. B 86 081106(R)
[23] Ong T Tzen and Coleman Piers 2012 Phys. Rev. Lett. 108 107201
[24] Jiang J et al 2013 Phys. Rev. B 88 115130