Digital Protection of Historic Buildings in Urban Planning

Shan He, Wei Wu, and Xuan Wang

He Xiangning College of Art and Design, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China

Correspondence should be addressed to Wei Wu; wuwei1@zhku.edu.cn

Received 15 July 2022; Revised 10 August 2022; Accepted 25 August 2022; Published 12 September 2022

Academic Editor: Zaira Zaman Chowdhury

Copyright © 2022 Shan He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of urbanization, urban land has been expropriated and developed on a large scale. Moreover, people's awareness of the protection of historical buildings is relatively weak, so some historical buildings have been demolished or rebuilt. Historical buildings have played an important role in the spread of national culture, so how to use some methods to protect historical buildings from being destroyed has become an urgent problem to be solved. The protection of historical buildings includes a series of complicated and rigorous procedures, such as on-site drawing and mapping, survey and design, and scheme discussion and construction. The surveying and mapping of traditional historical buildings require people to do it by themselves, so it is inevitably time-consuming and labor-intensive. This paper first discussed and analyzed the significance of historical building protection, and then used digital technology to make up for the shortcomings of traditional manual surveying and mapping and historical building protection methods. Modern technologies such as three-dimensional laser scanning technology and virtual reality technology are used to restore the style and appearance of historical buildings. Among them, in terms of the color of historical buildings, the restoration degree of buildings based on digital protection technology has reached 56.1%; at the same time, the efficiency of information collection and processing, and virtual model construction has also been improved. Thus, the ultimate goal of historical building protection is achieved, and it provides a reference for the digital protection of historical buildings.

1. Introduction

Various historical buildings in the process of urbanization construction and development are the representative carriers of the city, and they carry the changing history of the entire city. The historical buildings have accumulated valuable culture and art, and fully reflect the regional traditional characteristics. In recent years, the rapid development of tourism has caused many historical buildings to be damaged to varying degrees, both man-made and natural. Therefore, the protection of historical buildings faces a relatively severe situation and challenges. With the rapid development of related digital technologies such as computers, surveying, and mapping, the digital protection methods of historical buildings based on technologies such as digital images, virtual reality, and 3D laser scanning measurement are gradually becoming the focus of attention. Digital technology is a powerful tool and effective means. It provides new ways and methods for the protection and research of historical buildings, and also greatly improves the efficiency of historical building protection work.

Strengthening the protection of historical buildings has played an extremely important role in the future development of the city. Many scholars have conducted research on this topic. Mager and Hein discovered through ongoing projects that the project is at the forefront of the history of the built environment. He showed how the combination of crowdsourcing, historical big data, and deep learning can simultaneously raise questions and provide solutions in the fields of architecture and urban planning history [1]. Antonio applied the test model to a specific case involving the definition of a portfolio of items for the valuation of buildings with historic architectural value in a southern Italian city. It confirmed the potential of the tool in the analysis [2]. For the protection and management of urban historical buildings, Guo et al. studied the management and
utilization methods of historical building information based on mobile GIS and introduced the use of mobile GIS terminals to quickly collect and manage historical building attribute information, multimedia information, historical archives information, and spatial information [3]. Sun et al. used the method of historical research to review and summarize the urban structure changes and design trends of representative buildings along Shennan Road in different periods. Based on the transfer path of the city center, he analyzed the unique roles played by streets and buildings in the urban construction and development of Shenzhen, and expounded other urban functions and symbolic meanings [4]. The above scholars have analyzed the effective methods of historical building protection. However, they have not evaluated and tested the effectiveness of these methods. Therefore, it lacks reliability.

Digital technology has made people more efficient at doing things, while also enabling things that were simply impossible to do before. Some scholars have done a lot of research on digital technology. Huo and Zhang proposed a new all-digital protection system component importance model and new measures. He further derived the function of the total cost of the all-digital protection system as a function of system reliability, and analyzed and discussed the importance of the components of a typical all-digital protection system [5]. Wang et al. proposed a technique to quantitatively analyze the reliability of digital protection. He defined protection availability and protection economic indicators, and established hardware and software failure models for digital protection devices. The results showed that the technique is suitable for quantitative assessment of digital protection reliability [6]. Pan and Dong-Ming proposed a series of mural preservation and restoration technologies, and then introduced the computer-aided mural reproduction system and computer-aided mural preservation and restoration system. Suggestions are given for future work on the digitization, conservation, research, restoration, and further application of cultural relics [7]. Zhao proposed a new method for digital protection of cultural heritage based on web technology, and adopted an improved four-tier architecture design pattern to plan a network-based digital protection platform for cultural heritage. On this basis, he combined web technology to reconstruct digital images of cultural heritage [8]. The above scholars applied digitization to various fields, but do not compare this technology with other technologies. The research is not comprehensive enough.

A series of experimental results show that the error fluctuation of the three-dimensional laser scanning method based on digital technology is small, and the concentration is between 0.2 and 0.59. In addition, there are obvious differences in the restoration degree of historical buildings under different protection methods. Among them, in the restoration of the exterior walls of historical buildings, the restoration performance of digital protection technology is slightly stronger, and the restoration degree reaches 44.7%. Under the unified urban planning, great progress has been made in restoring the color of historical buildings. In terms of the color of historical buildings, the restoration degree of buildings based on digital protection technology reached 56.1%. With the help of computer-aided restoration techniques, different bodies of the historic building have been restored. The restoration rate of historical buildings based on digital technology reached 44.1%. At the same time, since roofs and railings belong to the category of cultural protection, the restoration degree of these two aspects is relatively high, up to 52.5%. It can be seen that in the process of restoration of historical buildings, digital protection technology has incomparable advantages. With the blessing of digital technology, great progress has been made in the protection of historical buildings. Among them, in terms of history and culture, the development of communication technology has greatly promoted the spread of historical architectural culture, and the acceptance rate of the group has also risen from 33.9% to 42.6%.

2. Digital Technology and Historic Building Protection

2.1. Importance and Realization Method of Digital Technology in the Protection of Historical Buildings. The concept of historic buildings was proposed in the 15th century. After the 19th century, it specifically referred to buildings that needed to be protected. In the 1960s, it is referred to buildings of great historical significance and value. Today, historic buildings represent all architectural heritages. The value of historical buildings is reflected in the following three points: the historical stories it carries, the political background it reflects, and the national culture it contains. Historical buildings are a relatively special carrier of cultural information, representing the traces of urban development. Over time, historical buildings have gradually become the artistic treasures of human civilization. Therefore, people need to shoulder the great responsibility of effectively protecting historical buildings. The protection of historical buildings has the following basic principles, namely, authenticity, integrity, functional diversity, and sustainable development. Historic buildings have outstanding historical and cultural value, high architectural art characteristics, and certain scientific and cultural value. Some of the current historical buildings have a history of more than 100 years, and the process they have gone through is shown in Figure 1.

Under normal circumstances, the protection work framework of historical buildings is mainly divided into the following five stages, as shown in Figure 2. With the rapid development of digital technology, there are new ideas, approaches, and platforms for the protection of historical buildings. This technology has laid an important foundation for the continuous preservation and recording of information and materials of historical buildings. Specifically, it can be divided into three points. First, digital technology solved the problem of preservation and comprehensiveness of historical building information; second, digital technology can transform the data information of historical buildings into data suitable for computers, and provide historical information for different regions. Third, the development of digital technology can not only respect the authenticity of historical buildings but also help to better
Nowadays, the use of digital technology to protect historical buildings has become the mainstream development direction, and the application fields and prospects are very wide, such as education, medical care, and urban construction [11]. The digitization of historical buildings refers to the collection and restoration of basic information of historical buildings by means of a series of digital technologies of image acquisition and reorganization, so as to achieve the ultimate goal of protecting historical buildings. It includes 3D scanning technology, virtual reality technology, and real-time interactive technology. The basic goals and framework of the research on the digital protection of historical buildings are shown in Table 1. Digital technology is a kind of associated technology, which is produced with the development of computer information technology. Digital technology combines the mathematical theory of formal logic with electronic technology and computers. In essence, digitization is a formalized logical reasoning with symbols of 0 and 1 [12]. Digital technology has high precision, good confidentiality, and strong versatility. Digital technology is the driving force behind the current information technology revolution. The reason for this is that information technology is based on computers and networks, and computers and networks are premised on digitization.

Compared with traditional historical building protection technology, digital technology has the following advantages. First, the technology greatly improved the efficiency of data information processing of historical buildings. After the use of digital technology, the protection of historical buildings can be more deeply integrated with computers, and the powerful computing power of computers can improve the efficiency of historical building protection. Second, digital technology can make the protection of historical buildings more refined [13]. Traditional historical building protection work requires experienced professional and technical personnel to make judgments and evaluations. However, this judgment is generally subjective. After the use of digital technology, all the information of the historical building can be displayed, and the follow-up work also has detailed data for reference, instead of only some general information as before. Third, digital technology greatly reduced the talent standards required for the protection of historical buildings, and also saved and relieved a lot of labor costs and financial pressures.

There are many ways to protect historical buildings, such as strengthening publicity to raise people’s awareness of protection, improving urban planning, and increasing investment in restoration funds. With the application of digital protection technology, historical buildings can be better integrated into modern society and truly achieve sustainable development. Digital technology can be used for the management protection and restoration protection of historical buildings [14]. Among them, the former mainly refers to the platform or system that provides digitization and informatization. And the latter mainly refers to the restoration of historic buildings that have been damaged. Computer-aided restoration technology refers to the use of computers to improve the technical level of historical building restoration.
and the effectiveness of restoration and protection work. It can reduce the period of protection and restoration of historic buildings and improve the efficiency and quality of restoration and protection of historic buildings [15]. In addition, digital technology can also analyze the damage causes of historical buildings, provide corresponding and feasible repair methods, simulate the entire repair process, and clarify the final repair effect. The basic functional structural modules of the historical building digital protection system are shown in Figure 3.

2.1.1. Information Collection and Processing of Historical Buildings. People can use digital technology to perform a series of operations on the data information of historical buildings. Through the sorting of information materials, the digitization of historical building materials is realized. The information levels for historic buildings are shown in Table 2. The 3D laser measurement technology can scan the object through laser. It adopts the method of pulsed laser ranging and can obtain the basic information of the object without direct contact with the object. The measurement accuracy is also relatively high. This technology quantifies the data information of historical buildings and provides a detailed and comprehensive information support for the construction of digital technology systems [16]. If the damage of the historical building is serious, the technology can scan this area separately, so as to obtain the detailed information and basic situation of this area. It can carry out accurate measurement from the level of physical form, so as to carry out subsequent repair work.

In the process of information collection and processing, digitization mainly has the following functions. One is the digitization of documents, that is, converting the textual information related to historical buildings into digital information. Then, the cultural background of the historical building is supplemented by means of sound recording. The second is the digital imaging of entity information. This step can evolve into digital imaging through some photosensitive devices, such as scanners, digital cameras, and home camcorders. The latter two devices can directly convert historical buildings into digital information such as pictures and DV. Scanners are used for planning and design drawings and surveying drawings in historical buildings. The specific work organization is shown in Figure 4. The 3D laser scanner is divided into three parts, a high-definition camera, a reflective prism, and a laser range-finder [17]. The accuracy and efficiency of 3D laser scanning and mapping technology are relatively high, and it has the characteristics of rich information, saving money, high data value, and wide application, so it is conducive to the construction of a digital database system for historical buildings. The third is to digitize the survey drawing and sort out the analysis drawing and detail drawing on the drawing. This kind of survey drawing can lay a good foundation for the construction of the virtual model. However, there is some historical building information that cannot be displayed through digital pictures, such as the size of the vertical section and the basic size of the components. At this time, it is necessary to use drawing software technology, such as Auto CAD technology [18].

2.1.2. Construction of Virtual Models of Historical Buildings. In recent years, virtual reality technology (VR) has been widely concerned and applied in many fields. It integrates a series of advanced technologies, such as image processing and pattern recognition, intelligent interface technology, artificial intelligence technology, multisensor technology, and real-time computing technology. Therefore, the computer digital mapping technology, multimedia information technology, and virtual reality technology can be used to process and handle various data of historical buildings, and establish three-dimensional digital models of historical buildings, so as to make the original appearance of historical buildings and the surrounding environment. The reproduction has the characteristics of multifaceted, multilayer, objective, and vivid images [19]. The role of digital media technology in the protection of historical buildings is mainly shown in Figure 5. The models constructed by these digital technologies can truly, intuitively, and comprehensively reflect the actual situation of historical buildings, so as to improve the efficiency of information interpretation. The process of using virtual reality technology to restore historical buildings is mainly divided into the following three steps. First, it is necessary to plan the entire restoration project in the early stage and clarify the presentation methods.
of virtual reality, such as three-dimensional experience and picture browsing. In addition, it includes placements for historic building systems such as platforms on the Web and PC. Second, in the midterm, it is necessary to conduct on-the-spot investigation of historical buildings and record the internal and external structures and detailed textures of historical buildings. Third, in the later stage, it is necessary to test and adjust the virtual works on different operating system platforms and hardware configuration machines.

2.1.3. Information Integration and Database of Historical Buildings. Information integration refers to the coding of user information in the system using unified standards and specifications, so as to achieve the ultimate goal of system-wide information sharing [20]. “Standards” here includes standardization of protocols, data, networks, documents, and graphics. Integrated objects include various digital media such as images, documents, sounds, animations, and videos. The digital information of historical buildings generally appears in the form of multimedia such as text, audio, and video. In order to achieve accurate digital protection of historical buildings, it is extremely necessary to establish a database of historical buildings. The details of historical buildings are shown in Table 3. The extraction of these materials requires the use of many digital technologies, which are used to construct 3D models and video animations of historic buildings. The database technically helps the dynamic supervision of historical buildings and can play the role of the historical building database to the greatest extent.

The basic information of historical buildings combines spatial location information and attribute information, which are the important basis for the database of historical buildings. Spatial location information includes the following three parts, namely, remote sensing image map, building plan, and spatial data of 3D model. The spatial database of historical buildings includes point cloud data, and its basic structure is shown in Table 4. The attribute information mainly includes the statistical data of historical documents and the material, component type, size area, and geometric composition of historical buildings. The attribute database structure of historical buildings is shown in Table 5.

2.2. 3D Laser Scanning Mapping of Historical Buildings and Restoration Evaluation. The 3D laser scanner uses a special coordinate system, called the instrument coordinate system, in which the coordinate of the scanning point is \((L, M, N)\), and the calculation formula is as follows:

\[
\begin{align*}
L &= R \sin \alpha \cos \beta, \\
M &= R \sin \alpha \sin \beta, \\
N &= R \cos \alpha.
\end{align*}
\]

In the formula, \(R\) refers to the distance from the 3D laser scanner to the target historical building, \(\beta\) refers to the...
horizontal direction angle, and α refers to the vertical direction angle. Next, we calculate the accuracy of the 3D laser scanner. The calculation formula is as follows:

$$\bar{\phi}_H = (\phi_{H1} + U_{H1}) + B_H + H_{H1}. \quad (2)$$

In the formula, $\bar{\phi}_H$ refers to the horizontal angle obtained by the 3D laser scanner, and U_{H1} refers to the adjusted value. The formula for calculating the error is as follows:

$$q_0 = \pm \sqrt{\frac{\sum H_{H1}^2}{M - S}}. \quad (3)$$

In the formula, U_{H1}^2 refers to the plane data of the three-dimensional laser scanning, and $M - S$ refers to the surrounding brightness. After three-dimensional laser scanning and mapping, the basic information of historical buildings can be obtained, and the digital technology can be used to build their models. The resolution, clarity, and size of this virtual work model are as follows:

$$O(T) = \sum_{H=0}^{T} \beta_{H} v_{H}(T). \quad (4)$$

Among them, β_{H} refers to the resolution of the virtual model of the historical building, v_{H} refers to the resolution of the virtual model of the historical building, and T refers to the size of the model. After the virtual model of the historical building is constructed, the degree of protection of the historical building needs to be evaluated. Therefore, three concepts of restoration coefficient, restoration degree, and public acceptance are introduced. Their calculation formulas are as follows:

$$I = \sum_{j=0}^{G} G_j |O(T_j) - O_j|^2 = G (I_A + I_B + I_C),$$

$$P_H = \sum_{i=1}^{M} D^{-\gamma} ||O_H - O_i||^2,$$

$$T_{ij} = \frac{1}{\sum M (C_i^2/C_H^2)^{(T-1)}}. \quad (5)$$

In the formula, I refers to the restoration coefficient of the historic building, P_H refers to the restoration degree of the historic building, and T_{ij} refers to the acceptance of the public after the restoration of the historic building, and $I_A + I_B + I_C$ refers to the restoration degree of the different damaged areas of the historic building.
3. Effect of Digital Technology on the Protection of Historical Buildings

3.1. 3D Laser Scanning Error Based on Digital Protection Technology. 3D laser scanning technology is an important support for digital technology. In the process of realization, the use of 3D laser scanning can accurately map the relevant information of historical buildings and realize the protection of buildings. The 3D laser scanning error based on digital protection technology is shown in Figure 6.

Figure 6 shows that in the actual 3D laser scanning process, due to the comprehensive interference of external factors, laser scanning is prone to inevitable errors. Among them, during the first three experiments, the traditional 3D laser scanning method had different degrees of error, and the error fluctuated from 1.08 to 2.33. By contrast, the error fluctuation of the 3D laser scanning method based on digital technology is small, and the error is concentrated between 0.2 and 0.59.

3.2. Restoration Degree of Historical Buildings Based on Digital Protection Technology. With the introduction of relevant policies, historical buildings have been properly resettled.

![Figure 5: Role of digital media technology on the protection of historic buildings.](image)

Table 3: Data on historic buildings.

Items	Concrete contents	Items	Concrete contents
Basic building information	Name, Construction age, Address, Owner, Present situation	Historical features of architecture and changes in the development process	Change, Damage, Repair, Transfer, Sell
Historical anecdotes related to architecture, introduction to architects, and related design ideas			

Journal of Environmental and Public Health 7
and protected. Digital protection technology can restore historical buildings without losing buildings. The restoration of historical buildings under digital protection technology is shown in Figure 7.

Figure 7 shows that there are obvious differences in the restoration degree of historical buildings under different protection methods. Among them, in the restoration of the exterior walls of historical buildings, the restoration performance of digital protection technology is slightly stronger, and the restoration degree reaches 44.7%. Under the unified urban planning, great progress has been made in restoring the color of historical buildings. In terms of the color of historical buildings, the restoration degree based on digital protection technology reached 56.1%, and the restoration degree of traditional protection technology also reached 55.3%. In terms of the structure and material of historical buildings, due to the long history, the restoration degree of these two aspects is relatively low, with an average of 42.25%. In addition, it can be seen from the building restoration coefficient that with the acceleration of urban planning, the restoration process of historical buildings is also speeding up, and the restoration coefficient of the building color alone has reached 3.4. The reason is that in the context of urban planning, historical buildings have been better protected and restored.

3.3. Restoration Degree of Historical Buildings Based on Digital Protection Technology. There will inevitably be many damages and problems in historical buildings. At this time, just the right repair can solve the urgent need. Digital technology can analyze the damage of the building without touching the building and without damaging the building, and then provide technical support for building repair. Among them, the restoration of historical buildings under the digital protection technology is shown in Figure 8.

Figure 8 shows that with the help of computer-aided restoration techniques, different bodies in the historic building were restored. Among them, for the walls and main walls of the building, the building restoration degree under the traditional protection method reached 31.9%. Affected by urban planning, the wall protection of historical buildings has been greatly improved, and the restoration rate of historical buildings based on digital technology has reached 44.1%. At the same time, since roofs and railings belong to the category of cultural protection, the building restoration degree in these two aspects is relatively high, up to 52.5%. It can be seen that in the process of restoration of historical buildings, digital protection technology has incomparable advantages.

3.4. Acceptance of Historical Building Protection Based on Digital Technology. On the one hand, digital protection technology can reproduce the splendor of historical buildings and realize the restoration and restoration of historical buildings. On the other hand, digital technology can also broaden the publicity channels for the protection of historical buildings, and set off a wave of cultural protection. Among them, the acceptance level of historical building protection under digital technology is shown in Figure 9.

Figure 9 shows that with the blessing of digital technology, great progress has been made in the protection of historical buildings. Among them, in terms of history and culture, the development of communication technology has greatly promoted the spread of historical architectural culture, and the acceptance rate of the group has also risen from 33.9% to 42.6%. In the symbolic aspect of historical buildings, digital technology combined with digital media
Figure 6: 3D laser scanning error.

Figure 7: Restoration degree of historical buildings under digital protection technology.

Figure 8: Restoration degree of historical buildings under digital protection technology.
means further publicizes the cultural heritage of historical buildings and promotes the prosperity of culture. It can be seen that digital technology not only promotes historical buildings to the public but also enhances people’s cultural self-confidence.

4. Conclusion

With the accelerating pace of urbanization, the protection of historical buildings is also facing extremely severe challenges. The application of digital technology in the protection of historical buildings provides new ways and ideas for the development of protection. The 3D and VR technologies in digitalization make up for the deficiencies and defects of traditional protection methods, and provide help for the comprehensive display of historical buildings. It builds a three-dimensional historical building restoration, virtual interaction, and electronic data database. At the same time, this paper made full use of digital surveying and mapping technology to establish a three-dimensional digital model of historical buildings, which makes historical buildings more intuitively displayed in front of people. It also injects new vitality into historical buildings, making them have historical, cultural, and economic values. It not only realized the data recording and storage of historical buildings but also realized the development and utilization value of historical buildings. The experiment in this paper confirmed the feasibility of digital technology in the protection of historical buildings and provided a reference for future digital protection work. After the 3D modeling of historical buildings in this paper, the rendering of the model is insufficient and the effect is average.

Data Availability

The data used to support the findings of this study can be obtained from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the 2022 Guangzhou Social Science Planning Project (2021WTSCX038) and the 2022 Guangzhou Social Science Planning Project (project no. (2022GZGJ313)).

References

[1] T. Mager and C. Hein, “Digital excavation of mediatized urban heritage: automated recognition of buildings in image sources,” Urban Planning, vol. 253, no. 5, pp. 119–149, 2020.
[2] N. Antonio and M. Pierluigi, “A model to support the public administration decisions for the investments selection on historic buildings,” Journal of Cultural Heritage, vol. 33, no. 6, pp. 201–207, 2018.
[3] L. Guo, Z. Zeng, H. He, and W. Yang, “Research on the application of Mobile GIS in the intelligent protection of historical buildings,” Journal of Physics: Conference Series, vol. 1550, no. 2, Article ID 022042, 2020.
[4] C. Sun, C. Xue, and L. Zhang, “Shennan Road and the modernization of shenzhen architecture,” KnE Social Sciences, vol. 1, no. 1, pp. 171–188, 2019.
[5] C. Huo and P. Zhang, “An analysis of component importance considering the cost for all-digital protection systems,” Automation of Electric Power Systems, vol. 148, no. 4, pp. 481–489, 2017.
[6] G. Wang, M. S. Ding, and L. I. Xiao-Hua, “Reliability analysis of digital protection,” Proceedings of the Csee, vol. 50, no. 3, pp. 2173–2185, 2017.
[7] Y. H. Pan and L. U. Dong-Ming, “Digital protection and restoration of dunhuang mural,” Simplified Chinese Simulation Act, vol. 32, no. 5, pp. 468–472, 2019.
[8] Y. Zhao, “Digital protection of cultural heritage based on web technology,” Mathematical Problems in Engineering, vol. 34, no. 7, pp. 42–44, 2022.
[9] T. Liu, H. Yao, and T. Jiang, “Digital protection test platform based on RTDS,” Applied Mechanics and Materials, vol. 380, no. 4, pp. 3417–3420, 2019.
[10] T. Hong, X. Li, and F. Zhang, “Digital protection and display research of revolutionary sites in dabie mountain area—taking the dawang temple as an example,” IOP Conference Series: Earth and Environmental Science, vol. 510, no. 4, pp. 2–3, 2020.
[11] M. I. Gilamya, O. P. Malik, and G. S. Hope, “A digital protection technique for parallel transmission lines using a single relay at each end,” IEEE Transactions on Power Delivery, vol. 7, no. 1, pp. 118–125, 1992.
[12] K. Jiang and C. Singh, “Reliability modeling of all-digital protection systems including impact of repair,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 579–587, 2010.
[13] A. M. Ranjbar and B. J. Cory, “An improved method for the digital protection of high voltage transmission lines,” IEEE Transactions on Power Apparatus and Systems, vol. 94, no. 2, pp. 544–550, 1975.
[14] A. A. Girgis, D. G. Hart, and W. B. Chang, “An adaptive scheme for digital protection of power transformers,” Power Delivery IEEE Transactions on, vol. 7, no. 2, pp. 546–553, 2022.
[15] M. A. Rahman and P. K. Dash, “Fast algorithm for digital protection of power transformers,” IEEE Proceedings C -

![Figure 9: Acceptance of historical building protection under digital technology.](image-url)
[16] S. A. Saleh, A. Aktaibi, R. Ahshan, and M. A. Rahman, “The development of a d–q Axis WPT-based digital protection for power transformers,” *IEEE Transactions on Power Delivery*, vol. 27, no. 4, pp. 2255–2269, 2012.

[17] M. A. Rahman, P. K. Dash, and E. R. Downton, “Digital protection of power transformer based on weighted least square algorithm,” *Power Engineering Review IEEE*, vol. 2, no. 11, pp. 20-21, 2022.

[18] M. I. Gilany, O. P. Malik, and G. Hope, “A laboratory investigation of a digital protection technique for parallel transmission lines,” *IEEE Transactions on Power Delivery*, vol. 10, no. 1, pp. 187–193, 1995.

[19] S. Mirsaedi, D. M. Said, and M. W. Mustafa, “Modeling and simulation of a communication-assisted digital protection scheme for micro-grids,” *Renewable and Sustainable Energy Reviews*, vol. 57, no. 5, pp. 867–878, 2019.

[20] M. Shi, D. Li, and C. Ma, “R&D and reliability analysis of a digital protection system for nuclear heating reactors,” *Tsinghua Science and Technology*, vol. 4, no. 4, pp. 1652–1655, 2019.