Identifying urban food trees in campus green spaces

A B Rangkuti¹, A Susilowati¹, M M Harahap¹ and A H Iswanto¹

¹Faculty of Forestry, Universitas Sumatera Utara, Jl. Tridharma Ujung No 1, Kampus USU, Medan, North Sumatera 20155, Indonesia

E-mail: baiqunirangkuti@usu.ac.id

Abstract. The environmental impact of food is one of the drivers of cities' growing interest in the developed food system in urban areas, one of which is campus green space. Green spaces (GS) on campus accompany native trees, landscaping, and water features for nurturing wildlife and people in the surrounding campus. In addition, GS can provide food sources such as fruit, alternative food, seeds, and nuts. This study aims to identify food trees in 120 hectares of the University Sumatera Utara campus area through field inventory methods. Our research showed that 49 species belong to 18 families and 1536 individuals USU campus produce beneficial food for people surrounding campus, either fruit, nuts, and alternative food. Thus, we conclude that the university’s green space can support the urban area's vision as food providers and ecological services for achieving urban sustainability. Furthermore, gathering and gleaning from green space provides opportunities for inhabitants to maintain urban resources and deeply interact with nature.

1. Introduction

The University campuses in the world today have implemented the concept of green open space to create a lot of comfort in teaching and learning activities [1]. The pattern of utilization and development of green open space on campus is now increasingly diverse. It pays attention to the academic zone and pays attention to the existence of non-academic zones that will support teaching and learning activities [2]. The university is likened to an economic engine that has a major impact on the surrounding area. As universities are areas of innovation and learning, campuses are ideal locations to test the concept of sustainable development on a small scale [3]. Thus, universities also play an important role in realizing the Sustainable Development Goals, in particular, SDG 15, which seeks to protect forests and biodiversity and their sustainable management, and SDG 4, which aims to ensure qualitative education by promoting a culture of environmental awareness in students [4].

The University of Sumatera Utara (USU) campus is one of the green spaces (GS) in the urban area of Medan. The USU campus has an area of 120 hectares consisting of academic and non-academic zones. The research conducted by [5] found 121 tree species on the USU campus and belonged to 37 families. These species have various functions: producing food [6], wood [7], medicine [8], fiber [9], energy [10], absorbing pollutants [11], aesthetics [12], and bioherbicides [13]. Related to the function of GS as a means of food security in urban areas, the presence of trees on the USU campus is also a potential source of food for this purpose. Furthermore, it is well known that urban food forestry is considered to be able to more efficiently integrate ecosystem services into a landscape of species exchange and realize urban forestry services in improving air quality, air and climate regulation, oxygen production, erosion control, and biodiversity [14]. Therefore, our research aimed to identify food
producing trees in 120 hectares of the USU campus area to support the sustainability of Urban food forestry in the small-scale area.

2. Material and methods

2.1 Research location
This research was conducted in the University of Sumatera Utara campus (3.330 N and 98.390 E), located at Padang Bulan, Medan, with an area of 120 hectares. The Padang Bulan campus is located in the city of Medan with an altitude of 2.5-37.5 m above sea level with a range of 23.2°C-33.2°C. The average air humidity in the city of Medan is between 84-85%, and the average wind speed is 0.48 m/s, and the soil type is inceptisol [15].

2.2 Data collection
The field inventory method was applied for the diversity of food-producing trees data collection. An inventory was carried out on all tree species found in the campus area of 120. Each species was observed and measured for morphological characters, diameters, and heights. Identification of tree species was carried out using a tree identification manual. Local names were used to identify the taxonomy of species. Specimens that are ambiguous and have not been appropriately identified were taken for further identification in the Botany and Taxonomy laboratory, FORDIA (Forestry Research and Innovation Agency), Ministry of Environment, and Forestry-Bogor.

3. Result and discussion

3.1 Species abundance
The integration of urban food forests into urban infrastructure can provide many benefits for urban dwellers. There is evidence that urban food forests can motivate management practices and provide opportunities for people to interact with nature and one another [16]; enabling the development of more resilient food systems and promoting social and environmental sustainability [17]; increasing social cohesion and well-being and strengthening local communities [18]; increasing biodiversity [19]; and provide economic benefits for the municipality and its citizens [20].

As part of GS, the university campus can implement this concept on a small scale on food sustainability, one of which is promoting food-producing trees in the area. As part of GS in Medan city, the USU campus has regular planting for this purpose. Our study in USU Campus showed that 49 species belong to 18 families and 1536 individuals in the USU campus produce beneficial food for people surrounding campus, either fruit, nuts, and alternative food table 1. Some of the trees producing food are presented in figure 1.
Table 1. Food producing tree in USU Campus

No	Latin name	Family	Species abundance	Type of product	Native/exotic
1	*Mangifera odorata*	Anacardiaceae	2	fruit	exotic
2	*Mangifera foetida*	Anacardiaceae	2	fruit	exotic
3	*Mangifera indica*	Anacardiaceae	272	fruit	native
4	*Anacardium occidentale*	Annonaceae	3	nut	native
5	*Annona muricata*	Annonaceae	29	fruit	exotic
6	*Annona squamosa*	Annonaceae	1	fruit	exotic
7	*Annona montana*	Annonaceae	2	fruit	exotic
8	*Garcinia atroviridis*	Clusiaceae	14	fruit	native
9	*Garcinia dulcis*	Clusiaceae	1	fruit	native
10	*Garcinia mangostana*	Clusiaceae	37	fruit	native
11	*Diospyros discolor*	Ebenaceae	4	fruit	native
12	*Muntingia calabura*	Elaocarpaceae	38	fruit	exotic
13	*Aleurites moluccana*	Euphorbiaceae	22	nut	native
14	*Antidesma bunius*	Euphorbiaceae	28	fruit	native
15	*Cynometra cauliflora*	Fabaceae	2	fruit	native
16	*Pithecellobium dulce*	Fabaceae	1	nut	exotic
17	*Theobroma cacao*	Fabaceae	19	nut	exotic
18	*Parkia speciosa*	Fabaceae	2	nut	native
19	*Tamarindus indica*	Fabaceae	305	fruit pulp	exotic
20	*Gnetum gnemon*	Gentianaceae	29	bean	native
21	*Persea americana*	Lauraceae	17	fruit	exotic
22	*Durio zibethinus*	Malvaceae	66	fruit	native
23	*Theobroma cacao*	Malvaceae	5	nut	exotic
24	*lansium domesticum*	Meliaceae	13	fruit	native
25	*Sondoricum koetjape*	Meliaceae	9	fruit	exotic
26	*Artocarpus integer*	Moraceae	2	fruit,nut	native
27	*Artocarpus heterophylla*	Moraceae	120	fruit,nut	native
28	*Artocarpus artilis*	Moraceae	31	food alternative	exotic
29	*Syzygium aqueum*	Myrtaceae	56	fruit	native
30	*Syzygium malaccensis*	Myrtaceae	28	fruit	native
31	*Syzygium cumini*	Myrtaceae	24	fruit	native
32	*Syzygium polyantum*	Myrtaceae	9	fruit	native
33	*Psidium guajava*	Myrtaceae	65	fruit	exotic
34	*Psidium guajava Red.*	Myrtaceae	1	fruit	exotic
35	*Myristica fragrans*	Myristaceae	6	nut	native
36	*Averrhoa carambola*	Phyllanthaceae	12	fruit	native
37	*Averrhoa bilimbi*	Phyllanthaceae	13	fruit	native
38	*Baccaurea deflexa*	Phyllanthaceae	1	fruit	native
39	*Morinda citrifolia*	Rubiaceae	11	fruit	exotic
40	*Flacourtia rukam*	Salicaceae	6	fruit	native
41	*Dimocarpus longan*	Sapindaceae	44	fruit	exotic
42	*Nephelium lapaceum*	Sapindaceae	126	fruit	native
43	*Pometia pinnata*	Sapindaceae	40	fruit	native
44	*Manilkara zapotilla*	Sapindaceae	7	fruit	exotic
45	*Manilkara kauki*	Sapindaceae	3	fruit	exotic
46	*Chrysophyllum cainito*	Sapotaceae	1	fruit	exotic
Tamarindus indica is the most abundant species found on the USU campus, with 305 individual trees (19.85%). Tamarindus indica served a variety of functions and uses. The functions of tamarind trees cover not only small fruit of tamarind, which are tasted sourly for candy, food, and drink, but also as birds’ habitat. The high tree provides shading for cooling effects [21]. Tamarindus indica trees also provided shade in homes, public places for crops, and livestock. The tamarind trees are the big tree prospected in plant selection of urban greenery [22].

The second abundant species is Mangifera indica, with the individual number 272 trees (17.70%). Mango (Mangifera indica L.) is a member of the Anacardiaceae family and is known as the most popular, edible tropical fruit due to its unique taste, attractive color and taste, and high nutritional quality [23]. Mangoes are rich in vitamins, organic acids, carbohydrates, amino acids, phenolic acids (e.g., gallic acid, caffeic acid, and tannic acid), and certain volatile compounds. Pharmacological studies found the phenolic acid content in mangoes, considered a strong antioxidant, anti-diabetic, anti-inflammatory, antilytic, and anti-carcinogenic [24].

Based on families, Myrtaceae and Fabaceae are the most common families found on the USU campus. The Syzygium genus is quite dominant for fruit-producing trees from the Myrtaceae family. All Syzygium species are shown rich medicinal applications, and some studies have shown that this genus possesses useful therapeutic agents such as anti-diabetic, anti-cancer, antioxidant, and antimicrobial properties [25]. Besides the fruit and medicinal properties, Syzygium plays an important role in the forest ecosystem to maintain the balance of the components inside. This could mean the relationship is complementary and mutually beneficial among components in the ecosystem. Chrome (1985) stated that one form of this relationship is the system of pollination and fertilization of Syzygium cormiflorum with bats, birds, and insects as pollinator agents [26]. Fabaceae is known as a cosmopolitan family. Fabaceae has the advantage of nitrogen fixation for protein synthesis. This advantage causes the protein concentration in leaves and seeds to vary between 20% and 40% dry weight, depending on the species [27]. Local people also recognize Fabaceae as a source of amino acids and food beverages in the seeds and fruits they contain. In addition, Fabaceae are also a major provider of non-animal protein, along with carbohydrates provided by cereals [28].

![Figure 1](image_url)

Figure 1. Trees producing food in USU campus: (a) Tamarindus indica, (b) Flacourtia rukam, (c) Mangifera indica, (d) Anacardium occidentale
Based on their origin, food-producing trees on the USU Campus are divided into exotic species and native species. Among the 48 species found, 26 are native species, while 22 are exotic species from other tropical regions. Another study conducted by [29] found 34 edible fruit trees comprised of native and exotic in planted along the road of Yogyakarta with the dominant species T. indica (tamarind tree), A. heterophyllus, M. calabura, T. trifolla, and M. indica. Fruit trees are preferred as greenery plants that have more prospects for benefiting the city and society. These trees are categorized as productive trees, providing food and having other productive functions such as climate improvement, pollution control, and biodiversity.

Apart from being a means of food security, the planting of food-producing tree species must also pay attention to certain aspects of the risks posed. Furthermore, [30] recommends a study of the toxicological profile of the soil before planting food-producing trees to avoid the health risks posed by the uptake of pollutants such as heavy metals by plants. Species selection and culture techniques can also help prevent the accumulation of contaminants in the edible parts of the plant: translocation pollutants absorbed by roots to the edible parts, as well as the amount of air pollutants penetrating the fruit epicarp, proved to be very different for each species [31]. Technically, harvestable fruit is harmless and unsightly when it falls from the tree and can also attract pests and pests. Therefore, programs for maintaining and managing fruit trees are essential in developing a productive urban landscape. The limited use of space in the city is also the only reason for developing food security in urban areas; however, technical matters and important matters concerning population security and consumption safety also need to be considered.

4. Conclusion
Our research showed that 49 species belong to 18 families and 1536 individuals in the USU campus produce beneficial food for people surrounding campus, either fruit, nuts, and alternative food. Thus, we conclude that the university green space can support the urban area’s vision as food providers and ecological services for achieving urban sustainability. Furthermore, gathering and gleaning from green space provides the opportunities to increase people-nature experiences that help conserve urban resources.

5. References
[1] Gulwadi G B, Mishchenko E D, Hallowell G, Alves S and Kennedy M 2019 The restorative potential of a university campus: Objective greenness and student perceptions in Turkey and the United States Landsc Urban Plan. 187 36-46
[2] Hanan H 2013 Space as Meaningful place for students in ITB campus. Proc Soc Behav Sci. 85 308-317
[3] Tudorie C A M, Planells M V, Eric G E, Arroyo R and Galiana F 2020 Towards a greener university: Perceptions of landscape services in campus open space Sustainability 12 6047
[4] Zsóka A, Szerényi Z M, Széchy A and KocsišT 2013 Greening due to environmental education? Environmental knowledge, attitudes, consumer behavior and everyday pro-environmental activities of Hungarian high school and university students J. Clean Prod. 48 126–138
[5] Susilowati A, Rangkuti A B, Rachmat H H, Iswanto A H, Harahap M M, Elfati D, Slamet B and Ginting I M 2021 Maintaining tree biodiversity in urban communities on the university campus Biodiversitas 22 (5) 2839-2847
[6] Carol U, Colin R and John W 2005 Trees Dorling Kindersley Limited, London
[7] Sudha P and Ravindranath N H 2000 A study of Bangalore urban forest Landsc. Urban Plan 47 47-63
[8] Scholl K, Gulwadi G and Betrabet G 2015 Recognizing campus landscapes as learning spaces J Learn Spaces 4 (1) 16-24
[9] Webb R 1999 Urban and peri-urban forestry in South-East Asia: A comparative study of
Hong Kong, Singapore and Kuala Lumpur In: El-Lakany H (eds.) Urban and Peri-Urban Forestry: Case Studies in Developing Countries. FAO Rome, Rome.

[10] Kuchelmeister G 1998 Urban forestry in the Asia-Pacific Region-status and Prospects. Food and Agriculture Organization, Rome.

[11] Ives C D, Lentini P E, Threlfall C G, Ikin K, Shanahan D F, Garrard G E, Bekessy S A, Fuller R A, Mumaw L and Rayner L 2016 Cities are hotspots for threatened species Glob Ecol Biogeogr. 25 117-126

[12] Poursafer Z 2016 The functions of plants in Asian gardens: A review on Asian landscape architecture Int. J. Appl. Environ. Sci. 11 525-533

[13] Wania A, Bruse M, Blond N and Weber C 2012 Analyzing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations J Environ Manag. 94 (1) 91-101

[14] Clark K H and Nicholas K A 2013 Introducing urban food forestry: a multi-functional approach to increase food security and provide ecosystem services Landscape Ecology 28 (9) 1649–1669

[15] BPS Statistic of Medan Municipality 2020 Medan Municipality in Figure 2020 BPS-Statistic of Medan Municipality, Medan

[16] McLainR, Poe M, Hurley P T, Lecompte-Mastenbrook J and Emery M R 2012 Producing edible landscapes in Seattle’s urban forest Urban Forestry and Urban Greening 11 (2) 187–194

[17] Yates E 2014 Can’t see the fruit for the trees: how social norms and discourses affect fruit-picking behaviour in Copenhagen. Master’s Thesis Series in Environmental Studies and Sustainability Science Lund, Sweden, Lund University Centre for Sustainability Studies

[18] Lwasa S, Muggaga F, Wahab B, Simon D, Conners J P and Griffith C 2015 A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change Current Opinion in Environmental Sustainability 13 68–73

[19] DennisM and James P 2016 User participation in urban green commons: exploring the links between access, voluntarism, biodiversity and wellbeing Urban Forestry and Urban Greening 15 22–31

[20] Lafontaine-Messier M, Gélinas N and Olivier A 2016 Protability of food trees planted in urban public green areas Urban Forestry and Urban Greening. 16 197–207

[21] Khairunnur F A, Zulkhairi A, Azrini A, Moklas M A M, Khairullizam S, Zamree M S and Shahidan M A 2009 Nutritional composition, in vitro antioxidant activity and Artemia salina L. Lethality of pulp and seed of Tamarindus indica L. extracts Mal. J Nutr. 15 (1) 65-75

[22] Aengwanich W, Suttajit M, Srikhun T and Boonson T 2009 Antibiotic effect of Polyphenolic compound extracted from tamarind (Tamarindus indica L) seed coat on productive performance of broilers Int. J. Poutry Sci. 8 (8) 749–51

[23] Jahurul M H A, Zaidul I S M, Ghafoor K, Al-Juhaimi F A, Nyam K L, Norulaini N A N, Sahena F and Omar A K M 2015 Mango (Mangifera indica L.) by-products and their valuable components: A review Food Chemistry 183 173-180

[24] Noratto G D, Bertoldi M C, Krenek K, Talcott S T, Stringheta P C and Mertens-Talcott S U 2010 Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties Journal of Agricultural and Food Chemistry 58 (7) 4104-4112

[25] Ahmad B, Baidar C, Bernardini B 2016 Syzygium (Myrtaceae): Monographing a taxonomic giant via 22 coordinated regional revisions Peer. J. Prepr. 4 1-13

[26] Mala Ranghoo-Sanmukhiya V, ChellanY, Govinden-Soulange J, Lambrechts I, Stapelberg J, Crampton B G and Lall N 2019 Biochemical and phylogenetic analysis of Eugenia and Syzygium species from Mauritius J. Appl. Res. Med. Aromat Plants. 12 21–29 [CrossRef]

[27] AH Ladio and M Lozada 2009 Human ecology, ethnobotany and traditional practices in rural populations inhabiting the Monte region: resilience and ecological knowledge,” Journal of Arid Environments. 73 (2) 222–227

[28] Molares S and Ladio A 2012 The Usefulness of Edible and Medicinal Fabaceae in Argentine and
Chilean Patagonia: Environmental Availability and Other Sources of Supply Evidence- Based Complementary and Alternative Medicine

[29] Sarwadi A, Irwan S N R, Utami N R and Raya A B 2019 side greenery in Yogyakarta City towards development of productive urban landscape IOP Conf. Series: Earth and Environmental Science 361 012008

[30] Poe M R, McLain R J, Emery M and Hurley P T 2013 Urban forest justice and the rights to wild foods, medicines, and materials in the city Human Ecology. 41 (3) 409–422.

[31] Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F and Kowarik I 2012 How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany Environmental Pollution. 165 124–132

Acknowledgement
This research was supported by the Indonesian Ministry of Research, Technology/ BRIN through scheme Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) grant number 161/UN5.2.3.2/PPM/KP-DRPM/2021.