Substitutions over infinite alphabet generating \((-\beta)\)-integers

Daniel Dombek
Department of Mathematics FNSPE
Czech Technical University in Prague
Czech Republic
dombedan@fjfi.cvut.cz

1 Introduction

This contribution is devoted to the study of positional numeration systems with negative base introduced by Ito and Sadahiro in 2009, called \((-\beta)\)-expansions. We give an admissibility criterion for more general case of \((-\beta)\)-expansions and discuss the properties of the set of \((-\beta)\)-integers, denoted by \(\mathbb{Z}_{-\beta}\). We give a description of distances within \(\mathbb{Z}_{-\beta}\) and show that this set can be coded by an infinite word over an infinite alphabet, which is a fixed point of a non-erasing non-trivial morphism.

2 Numeration with negative base

In 1957, Rényi introduced positional numeration system with positive real base \(\beta > 1\) (see [7]). The \(\beta\)-expansion of \(x\in[0,1)\) is defined as the digit string \(d_\beta(x) = 0 \cdot x_1x_2x_3\cdots\), where

\[x_i = \lfloor \beta T_{i-1}^{-1}(x) \rfloor \quad \text{and} \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor. \]

It holds that

\[x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \cdots. \]

Note that this definition can be naturally extended so that any real number has a unique \(\beta\)-expansion, which is usually denoted \(d_\beta(x) = x_0x_1x_2\cdots\), where \(\cdot\), the fractional point, separates negative and non-negative powers of \(\beta\). In analogy with standard integer base, the set \(\mathbb{Z}_\beta\) of \(\beta\)-integers is defined as the set of real numbers having the \(\beta\)-expansion of the form \(d_\beta(x) = x_0x_1x_2\cdots\).

\((-\beta)\)-expansions, a numeration system built in analogy with Rényi \(\beta\)-expansions, was introduced in 2009 by Ito and Sadahiro (see [5]). They gave a lexicographic criterion for deciding whether some digit string is the \((-\beta)\)-expansion of some \(x\) and also described several properties of \((-\beta)\)-expansions concerning symbolic dynamics and ergodic theory. Note that dynamical properties of \((-\beta)\)-expansions were also studied by Frougny and Lai (see [4]). We take the liberty of defining \((-\beta)\)-expansions in a more general way, while an analogy with positive base numeration can still be easily seen.

Definition 1. Let \(-\beta < -1\) be a base and consider \(x\in[l,l+1)\), where \(l\in\mathbb{R}\) is arbitrary fixed. We define the \((-\beta)\)-expansion of \(x\) as the digit string \(d(x) = x_1x_2x_3\cdots\), with digits \(x_i\) given by

\[x_i = \lfloor -\beta T_{i-1}(x) - l \rfloor, \quad (1) \]

where \(T(x)\) stands for the generalised \((-\beta)\)-transformation

\[T : [l,l+1) \rightarrow [l,l+1), \quad T(x) = -\beta x - \lfloor -\beta x - l \rfloor. \quad (2) \]
It holds that
\[x = \frac{x_1}{-\beta} + \frac{x_2}{(\beta)^2} + \frac{x_3}{(\beta)^3} + \cdots \]
and the fractional point is again used in the notation, \(d(x) = 0 \cdot x_1 x_2 x_3 \cdots \).

The set of digits used in \((-\beta)\)-expansions of numbers (in the latter referred to as the alphabet of \((-\beta)\)-expansions) depends on the choice of \(l \) and can be calculated directly from (1) as
\[
\mathcal{A}_{-\beta,l} = \{ \lfloor -l(\beta + 1) \rfloor, \ldots, \lfloor -l(\beta + 1) \rfloor \}.
\]

We may demand that the numeration system possesses various properties. Let us summarise the most natural ones:

- The most common requirement is that zero is an allowed digit. We see that \(0 \in \mathcal{A}_{-\beta,l} \) is equivalent to \(0 \in [l, l + 1) \) and consequently \(l \in (-1, 0) \). Note that this implies \(d(0) = 0 \cdot 0^a \).
- We may require that \(\mathcal{A}_{-\beta,l} = \{0, 1, \ldots, \lfloor \beta \rfloor \} \). This is equivalent to the choice \(l \in \left(-\frac{\lfloor \beta \rfloor + 1}{\beta + 1}, -\frac{\beta}{\beta + 1}\right] \).
- So far, \((-\beta)\)-expansions were defined only for numbers from \([l, l + 1)\). In Rényi numeration, the \(\beta \)-expansion of arbitrary \(x \in \mathbb{R}^+ \) (expansions of negative numbers differ only by \(\langle \rangle \) sign) is defined as \(d_\beta(x) = x_k x_{k-1} \cdots x_1 x_0 \cdot x_{-1} x_{-2} \cdots \), where \(k \in \mathbb{N} \) satisfies \(\frac{x_k}{\beta} \in [l, l + 1) \) and \(d_\beta \left(\frac{x_k}{\beta} \right) = 0 \cdot x_k x_{k-1} x_{k-2} \cdots \). The same procedure does not work for \((-\beta)\)-expansions in general. A necessary and sufficient condition for the existence of unique \(d(x) \) for all \(x \in \mathbb{R} \) is that \(-\frac{1}{\beta} [l, l + 1) \subset [l, l + 1) \).

This is equivalent to the choice \(l \in \left(-\frac{\beta}{\beta + 1}, -\frac{1}{\beta + 1}\right] \). Note that this choice is disjoint with the previous one, so one cannot have uniqueness of \((-\beta)\)-expansions and non-negative digits bounded by \(\beta \) at the same time.

Let us stress that in the following we will need 0 to be a valid digit. Therefore, we shall always assume \(l \in (-1, 0) \). Note that we may easily derive that the digits in the alphabet \(\mathcal{A}_{-\beta,l} \) are then bounded by \(\lfloor \beta \rfloor \) in modulus.

3 Admissibility

In Rényi numeration there is a natural correspondence between ordering on real numbers and lexicographic ordering on their \(\beta \)-expansions. In \((-\beta)\)-expansions, standard lexicographic ordering is not suitable anymore, hence a different ordering on digit strings is needed.

The so-called alternate order was used in the admissibility condition by Ito and Sadahiro and it will work also in the general case. Let us recall the definition. For the strings
\[
u, v \in (\mathcal{A}_{-\beta,l})^\mathbb{N}, \quad u = u_1 u_2 u_3 \cdots \quad \text{and} \quad v = v_1 v_2 v_3 \cdots
\]
we say that \(u \prec_{alt} v \) (\(u \) is less than \(v \) in the alternate order) if \(u_m (-1)^m < v_m (-1)^m \), where \(m = \min \{ k \in \mathbb{N} \mid u_k \neq v_k \} \). Note that standard ordering between reals in \([l, l + 1)\) corresponds to the alternate order on their respective \((-\beta)\)-expansions.

Definition 2. An infinite string \(x_1 x_2 x_3 \cdots \) of integers is called \((-\beta)\)-admissible (or just admissible), if there exists an \(x \in [l, l + 1) \) such that \(x_1 x_2 x_3 \cdots \) is its \((-\beta)\)-expansion, i.e. \(x_1 x_2 x_3 \cdots = d(x) \).

We give the criterion for \((-\beta)\)-admissibility (proven in [2]) in a form similar to both Parry lexicographic condition (see [6]) and Ito-Sadahiro admissibility criterion (see [5]).
Theorem 3. (2) An infinite string $x_1x_2x_3\cdots$ of integers is $(-\beta)$-admissible, if and only if
\[l_1l_2l_3\cdots \preceq_{alt} x_ix_{i+1}x_{i+2}\cdots \prec_{alt} r_1r_2r_3\cdots, \quad \text{for all } i \geq 1, \tag{4} \]
where $l_1l_2l_3\cdots = d(l)$ and $r_1r_2r_3\cdots = d^*(l+1) = \lim_{\epsilon \to 0^+} d(l+1 - \epsilon)$.

Remark 4. Ito and Sadahiro have described the admissibility condition for their numeration system considered with $l = -\frac{\beta}{\beta + 1}$. This choice imply for any β the alphabet of the form $\mathcal{A}_{-\beta,1} = \{0,1,\ldots, [\beta]\}$. They have shown that in this case the reference strings used in the condition in Theorem 3 (i.e. $d(l) = l_1l_2l_3\cdots$ and $d^*(l+1) = r_1r_2r_3\cdots$) are related in the following way:
\[r_1r_2r_3\cdots = 0l_1l_2l_3\cdots \]
if $d(l)$ is not purely periodic with odd period length, and,
\[r_1r_2r_3\cdots = (0l_1l_2\cdots l_q-1(l_q-1))^{\omega}, \]
if $d(l) = (l_1l_2\cdots l_q)^{\omega}$, where q is odd.

Remark 5. Besides Ito-Sadahiro case and the general one, we may consider another interesting example, the choice $l = -\frac{1}{2}$, $\beta \notin 2\mathbb{Z} + 1$. This leads to a numeration defined on “almost symmetric” interval $[-\frac{1}{2}, \frac{1}{2})$ with symmetric alphabet
\[\mathcal{A}_{-\beta,-\frac{1}{2}} = \left\{ \left[-\frac{\beta + 1}{2}, \frac{\beta + 1}{2}\right], 0, 1, \ldots, \left[-\frac{\beta + 1}{2}\right] \right\}. \]

Note that we use the notation $(-a) = \overline{a}$ for shorter writing of negative digits. If we denote the reference strings as usual, i.e. $d\left(-\frac{1}{2}\right) = l_1l_2l_3\cdots$ and $d^*(\frac{1}{2}) = r_1r_2r_3\cdots$, the following relation can be shown:
\[r_1r_2r_3\cdots = \overline{l_1l_2l_3}\cdots \]
if $d(l)$ is not purely periodic with odd period length, and,
\[r_1r_2r_3\cdots = (\overline{l_1l_2\cdots l_q-1(l_q-1)}l_1l_2\cdots l_q-1(l_q-1))^{\omega}, \]
if $d(l) = (l_1l_2\cdots l_q)^{\omega}$, where q is odd.

4 \hspace{1cm} \hspace{0.5cm} (-\beta)-\text{integers}

We have already discussed basic properties of $(-\beta)$-expansions and the question of admissibility of digit strings. In the following, $(-\beta)$-admissibility will be used to define the set of $(-\beta)$-integers.

Let us define a “value function” γ. Consider a finite digit string $x_1x_2\cdots x_q$, then $\gamma(x_1,\cdots, x_q) = \sum_{i=1}^{k-1} x_i(-\beta)^i$.

Definition 6. We call $x \in \mathbb{R}$ a $(-\beta)$-integer, if there exists a $(-\beta)$-admissible digit string $x_kx_{k-1}\cdots x_00^{\omega}$ such that $d(x) = x_kx_{k-1}\cdots x_1x_0 \bullet 0^{\omega}$. The set of $(-\beta)$-integers is then defined as
\[\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid x = \gamma(a_{k-1}a_{k-2}\cdots a_1a_0), a_{k-1}a_{k-2}\cdots a_1a_00^{\omega} \text{ is } (-\beta)-\text{admissible} \}, \]
or equivalently
\[\mathbb{Z}_{-\beta} = \bigcup_{i \geq 0} (-\beta)^i T^{-i}(0). \]
Note that \((-\beta)\)-expansions of real numbers are not necessarily unique. As was said before, uniqueness holds if and only if \(l \in (-\frac{1}{\beta+1}, -\frac{1}{\beta+1}]\). Let us demonstrate this ambiguity on the following example.

Example 7. Let \(\beta\) be the greater root of the polynomial \(x^2 - 2x - 1\), i.e. \(\beta = 1 + \sqrt{2}\), and let \([l, l+1) = \left(-\frac{1}{\beta+1}, \frac{1}{\beta+1}\right)\). Note that \([l, l+1)\) is not invariant under division by \((-\beta)\).

If we want to find the \((-\beta)\)-expansion of number \(x \notin [l, l+1)\), we have to find such \(k \in \mathbb{N}\) that \(\frac{1}{\beta^k} x \in [l, l+1)\), compute \(d\left(\frac{1}{\beta^k} x\right)\) by definition and then shift the fractional point by \(k\) positions to the right. The problem is that, in general, different choices of the exponent \(k\) may give different \((-\beta)\)-admissible digit strings which all represent the same number \(x\).

Let us find possible \((-\beta)\)-expansions of 1. It can be shown that \(\frac{1}{\beta^k} x \in [l, l+1)\) if and only if \(k \in \mathbb{N} \setminus \{0, 2, 4, 6, 8\}\) and there are 5 \((-\beta)\)-admissible digit strings representing 1, computed from \((-\beta)\)-expansions of \(\frac{1}{\beta^k} x\) for \(k = 1, 3, 5, 7, 9\) respectively:

\[
1 \cdot 0^\omega = 120 \cdot 0^\omega = 13210 \cdot 0^\omega = 132210 \cdot 0^\omega = 13222210 \cdot 0^\omega.
\]

Let us mention some straightforward observations on the properties of \(\mathbb{Z}_{-\beta}\):

- \(\mathbb{Z}_{-\beta}\) is nonempty if and only if 0 \(\in \mathcal{A}_{-\beta,l}\), i.e. if and only if \(l \in (-1, 0]\).
- The definition implies \(-\beta \mathbb{Z}_{-\beta} \subset \mathbb{Z}_{-\beta}\).
- A phenomenon unseen in Rényi numeration arises, there are cases when the set of \((-\beta)\)-integers is trivial, i.e. when \(\mathbb{Z}_{-\beta} = \{0\}\). This happens if and only if both numbers \(\frac{1}{\beta}\) and \(-\frac{1}{\beta}\) are outside of the interval \([l, l+1)\). This can be reformulated as

\[
\mathbb{Z}_{-\beta} = \{0\} \iff \beta < -\frac{1}{l} \quad \text{and} \quad \beta \leq \frac{1}{l+1},
\]

and it can be seen that the strictest limitation for \(\beta\) arises when \(l = -\frac{1}{2}\). This implies for any choice of \(l \in \mathbb{R}\):

\[
\mathbb{Z}_{-\beta} \neq \emptyset \quad \text{and} \quad \beta \geq 2 \Rightarrow \mathbb{Z}_{-\beta} \supseteq \{0\}.
\]

- It holds that \(\mathbb{Z}_{-\beta} = \mathbb{Z}\) if and only if \(\beta \in \mathbb{N}\).

Remark 8. As was shown in Example 7 in a completely general case of \((-\beta)\)-expansions, there is a problem with ambiguity. Because of this, in the following we shall limit ourselves to the choice \(l \in \left(-\frac{1}{\beta+1}, -\frac{1}{\beta+1}\right]\). Note that we allow Ito-Sadahiro case \(l = -\frac{1}{\beta+1}\), which also contains ambiguities, but only in countably many cases, which can be avoided by introducing a notion of strong \((-\beta)\)-admissibility.

Definition 9. Let \(x_1x_2x_3 \cdots \in \mathcal{A}_{-\beta,l}\). We say that

\[
x_1x_2x_3 \cdots \text{ is strongly } (-\beta)\text{-admissible} \quad \text{if} \quad 0x_1x_2x_3 \cdots \text{ is } (-\beta)\text{-admissible}.
\]

Remark 10. Note that if \(l \in \left(-\frac{1}{\beta+1}, -\frac{1}{\beta+1}\right]\), the notions of strong admissibility and admissibility coincide. In the case \(l = -\frac{1}{\beta+1}\), the only numbers with non-unique expansions are those of the form \((-\beta)^k l\), which have exactly two possible expansions using digit strings \(l_1l_2l_3 \cdots\) and \(1l_1l_2l_3 \cdots\). While both are \((-\beta)\)-admissible, only the latter is also strongly \((-\beta)\)-admissible.
In order to describe distances between adjacent \((-\beta)-\)integers, we will study ordering of finite digit strings in the alternate order. Denote by \(\mathcal{S}(k)\) the set of infinite \((-\beta)-\)admissible digit strings such that erasing a prefix of length \(k\) yields \(0^\omega\), i.e. for \(k \geq 0\), we have

\[\mathcal{S}(k) = \{a_{k-1}a_{k-2} \cdots a_00^\omega \mid a_{k-1}a_{k-2} \cdots a_00^\omega \text{ is } (-\beta)-\text{admissible}\}, \]

in particular \(\mathcal{S}(0) = \{0^\omega\}\). For a fixed \(k\), the set \(\mathcal{S}(k)\) is finite. Denote by \(\text{Max}(k)\) the string \(a_{k-1}a_{k-2} \cdots a_00^\omega\) which is maximal in \(\mathcal{S}(k)\) with respect to the alternate order and by \(\text{max}(k)\) its prefix of length \(k\), i.e. \(\text{Max}(k) = \text{max}(k)0^\omega\). Similarly, we define \(\text{Min}(k)\) and \(\text{min}(k)\). Thus,

\[\text{Min}(k) \preceq_{\text{alt}} r \preceq_{\text{alt}} \text{Max}(k), \quad \text{for all digit strings } r \in \mathcal{S}(k). \]

With this notation we can give a theorem describing distances in \(\mathbb{Z}_{-\beta}\) valid for cases \(l \in \left[-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right]\).

Note that for case \(l = \frac{\beta}{\beta+1}\) it was proven in \([I]\).

Theorem 11. Let \(x < y\) be two consecutive \((-\beta)-\)integers. Then there exist a finite string \(w\) over the alphabet \(\mathcal{A}_{-\beta,1}\), a non-negative integer \(k \in \{0, 1, 2, \ldots\}\) and a positive digit \(d \in \mathcal{A}_{-\beta,1} \setminus \{0\}\) such that \(w(d-1)\text{Max}(k)\) and \(wd\text{Min}(k)\) are strongly \((-\beta)-\)admissible strings and

\[
\begin{align*}
 x &= \gamma(w(d-1)\text{max}(k)) &< & y = \gamma(wd\text{min}(k)) &\text{ for } k \text{ even,} \\
 x &= \gamma(wd\text{min}(k)) &< & y = \gamma(w(d-1)\text{max}(k)) &\text{ for } k \text{ odd.}
\end{align*}
\]

In particular, the distance \(y - x\) between these \((-\beta)-\)integers depends only on \(k\) and equals to

\[
\Delta_k := \left|(-\beta)^k + \gamma(\text{min}(k)) - \gamma(\text{max}(k))\right|. \tag{5}
\]

5 Coding \(\mathbb{Z}_{-\beta}\) by an infinite word

Note that in order to get an explicit formula for distances from Theorem\([\text{X}]\) knowledge of reference strings \(\text{min}(k)\) and \(\text{max}(k)\) is necessary. These depend on both reference strings \(d(l)\) and \(d^*(l+1)\). Concerning the form of \(\text{min}(k)\) and \(\text{max}(k)\) we provide the following proposition.

Proposition 12. Let \(\beta > 1\). Denote \(d(l) = l_1l_2l_3 \cdots, d^*(l+1) = r_1r_2r_3 \cdots\).

- \(\text{min}(0) = \text{max}(0) = \varepsilon\).
- For \(k \geq 1\) either \(\text{min}(k) = l_1l_2 \cdots l_k\) or there exists \(m(k) \in \{0, \ldots, k-1\}\) such that
 \[
 \text{min}(k) = \begin{cases}
 l_1l_2 \cdots (l_{k-m(k)}+1)\text{min}(m(k)) & \text{if } k-m(k) \text{ even} \\
 l_1l_2 \cdots (l_{k-m(k)}-1)\text{max}(m(k)) & \text{if } k-m(k) \text{ odd}
 \end{cases}
 \]
- For \(k \geq 1\) either \(\text{max}(k) = r_1r_2 \cdots r_k\) or there exists \(m'(k) \in \{0, \ldots, k-1\}\) such that
 \[
 \text{max}(k) = \begin{cases}
 r_1r_2 \cdots (r_{k-m'(k)}-1)\text{max}(m'(k)) & \text{if } k-m'(k) \text{ even} \\
 r_1r_2 \cdots (r_{k-m'(k)}+1)\text{min}(m'(k)) & \text{if } k-m'(k) \text{ odd}
 \end{cases}
 \]
Computing \(\min(k) \) and \(\max(k) \) for a general choice of \(l \) may lead to difficult discussion, however, in special cases an important relation between \(d(l) \) and \(d^*(l+1) \) arises and eases the computation. Examples were given in Remarks \([\text{4,5]}\).

Let us now describe how we can code the set of \((\beta)-\)integers by an infinite word over the infinite alphabet \(\mathbb{N} \).

Let \((z_n)_{n \in \mathbb{Z}} \) be a strictly increasing sequence satisfying
\[
 z_0 = 0 \quad \text{and} \quad \mathbb{Z}_{-\beta} = \{z_n \mid n \in \mathbb{Z}\}.
\]
We define a bidirectional infinite word over an infinite alphabet \(v_{-\beta} \in \mathbb{N}^\mathbb{Z} \), which codes the set of \((\beta)-\)integers. According to Theorem \([\text{11]}\) for any \(n \in \mathbb{Z} \) there exist a unique \(k \in \mathbb{N} \), a word \(w \) with prefix 0 and a letter \(d \) such that
\[
 z_{n+1} - z_n = |\gamma(w(d-1)\max(k)) - \gamma(wd\min(k))|.
\]
We define the word \(v_{-\beta} = (v_i)_{i \in \mathbb{Z}} \) by \(v_n = k \).

Theorem 13. Let \(v_{-\beta} \) be the word associated with \((\beta)-\)integers. There exists an antimorphism \(\Phi : \mathbb{N}^* \to \mathbb{N}^* \) such that \(\Psi = \Phi^2 \) is a non-erasing non-identical morphism and \(\Psi(v_{-\beta}) = v_{-\beta} \). \(\Phi \) is always of the form
\[
 \Phi(2l) = S_2l(2l+1)\bar{R}_{2l} \quad \text{and} \quad \Phi(2l+1) = R_{2l+1}(2l+2)\bar{S}_{2l+1},
\]
where \(\bar{u} \) denotes the reversal of the word \(u \) and words \(R_j, S_j \) depend only on \(j \) and \(\min(k), \max(k) \) with \(k \in \{j, j+1\} \).

The proof is based on the self-similarity of \(\mathbb{Z}_{-\beta} \), i.e. \(\beta \mathbb{Z}_{-\beta} \subset \mathbb{Z}_{-\beta} \), and on the following idea. Let \(x = \gamma(w(d-1)\max(k)) < y = \gamma(wd\min(k)) \) be two neighbours in \(\mathbb{Z}_{-\beta} \) with gap \(\Delta_k \) and suppose only \(k \) even. If we multiply both \(x \) and \(y \) by \((\beta)\), we get a longer gap with possibly more \((\beta)-\)integers in between. It can be shown that between \(-\beta y \) and \(-\beta x \) there is always a gap \(\Delta_{k+1} \). Hence the description is of the form \(\Phi(k) = S_k(k+1)\bar{R}_k \), where the word \(S_k \) codes the distances between \((\beta)-\)integers in \(\gamma(\min(k)\beta) ; \gamma(wd\min(k+1)) \) and, similarly, \(R_k \) encodes distances within the interval \(\gamma(w(d-1)\max(k)\beta) ; \gamma(w(d-1)\max(k+1)) \).

As it turns out, in some cases (mostly when reference strings \(l_1l_2l_3 \cdots \) and \(r_1r_2r_3 \cdots \) are eventually periodic of a particular form) we can find a letter-to-letter projection to a finite alphabet \(\Pi : \mathbb{N} \to \mathcal{B} \) with \(\mathcal{B} \subset \mathbb{N} \), such that \(u_{-\beta} = \Pi v_{-\beta} \) also encodes \(\mathbb{Z}_{-\beta} \) and it is a fixed point of a non-erasing antimorphism \(\varphi = \Pi \circ \Phi \) over the finite alphabet \(\mathcal{B} \). Clearly, the square of \(\varphi \) is then a non-erasing morphism over \(\mathcal{B} \) which fixes \(u_{-\beta} \).

Let us mention that \((\beta)-\)integers in the Ito-Sadahiro case \(l_2 = \frac{1\beta}{l+1} \) are also subject of \([\text{8]}\). For \(\beta \) with eventually periodic \(d(l) \), Steiner finds a coding of \(\mathbb{Z}_{-\beta} \) by a finite alphabet and shows, using only the properties of the \((\beta)-\)transformation, that the word is a fixed point of a non-trivial morphism. Our approach is of a combinatorial nature, follows a similar idea as in \([\text{11]}\) and shows existence of an antimorphism for any base \(\beta \).

To illustrate the results, let us conclude this contribution by an example.

Example 14. Let \(\beta \) be the real root of \(x^3 - 3x^2 - 4x - 2 \) (\(\beta \) Pisot, \(\approx 4.3 \)) and \(l = -\frac{1}{2} \). The admissibility condition gives us for any admissible digit string \((x_i)_{i \geq 0} \):
\[
 201^a_\text{alt} x_ix_{i+1}x_{i+2} \cdots \leq_\text{alt} 20_{\Pi_0} \quad \text{for all} \ x \geq 0.
\]

We obtain
\[
 \min(0) = \varepsilon, \quad \min(1) = 2, \quad \min(2) = 20
\]
and
\[
\min(2k+1) = 20(11)^{k-1}0, \quad \min(2k+2) = 20(11)^k \quad \text{for} \ k \geq 1.
\]
Clearly it holds that \(\max(i) = \min(i)\) for all \(i \in \mathbb{N}\).

Theorem [7] gives us the following distances within \(\mathbb{Z}_{-\beta}\):
\[
\Delta_0 = 1, \quad \Delta_1 = -1 + \frac{4}{\beta} + \frac{2}{\beta^2}, \quad \text{and} \quad \Delta_{2k} = 1 - \frac{2}{\beta} - \frac{2}{\beta^2}, \quad \Delta_{2k+1} = 1 + \frac{2}{\beta} + \frac{2}{\beta^2} \quad \text{for} \ k \geq 1.
\]

Finally, the antimorphism \(\Phi : \mathbb{N}^* \to \mathbb{N}^*\) is given by
\[
0 \to 0^210^2, \\
1 \to 2, \\
2 \to 3,
\]
and for \(k \geq 1\)
\[
2k+1 \to 0^210(2k+2)010^2, \\
2k+2 \to 2k+3.
\]

It can be easily seen that a projection from \(\mathbb{N}\) to a finite alphabet exists and a final antimorphism \(\varphi : \{0,1,2,3\}^* \to \{0,1,2,3\}^*\) is of the form
\[
0 \to 0^210^2, \\
1 \to 2, \\
2 \to 3, \\
3 \to 0^2102010^2.
\]

Bibliography

[1] P. Ambrož, D. Dombek, Z. Masáková, E. Pelantová, Numbers with integer expansion in the numeration system with negative base, preprint (2011), 25pp. [arXiv:0912.4597v3 [math.NT]]
[2] D. Dombek, Z. Masáková, E. Pelantová, Number representation using generalized \((-\beta)\)-transformation, preprint (2011), 22pp. [arXiv:1102.3079v1 [cs.DM]]
[3] S. Fabre, Substitutions et \(\beta\)-systèmes de numération, Theoret. Comput. Sci. 137, 219–236 (1995). doi:10.1016/0304-3975(95)91132-A
[4] Ch. Frougny and A. C. Lai, On negative bases, Proceedings of DLT 09, Lectures Notes in Computer Science 5583 (2009). doi:10.1007/978-3-642-02737-6_20
[5] S. Ito and T. Sadahiro, Beta-expansions with negative bases, INTEGERS 9, 239–259 (2009). doi:10.1515/INTEG.2009.023
[6] W. Parry, On the \(\beta\)-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11, 401–416 (1960).
[7] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8, 477–493 (1957).
[8] W. Steiner, On the structure of \((-\beta)\)-integers, preprint (2010), 15pp. arXiv:1011.1755v1 [math.NT]
[9] W. P. Thurston, Groups, tilings, and finite state automata, AMS Colloquium Lecture Notes, American Mathematical Society, Boulder (1989).