Long non-coding RNA DSCAM-AS1 contributes to the tumorigenesis of cervical cancer by targeting miR-877-5p/ATXN7L3 axis

Jie Liang¹,#, Shujuan Zhang²,#, Wei Wang³, Yan Xu¹, ATIKAN·Kawuli², Jiaqi Lu¹,* Xuemei Xiu²,*

¹Department of Gynaecology, Second People’s Hospital in Kashgar, Xinjiang Uyhur Autonomous Region, No.1, Health Road, Kashgar, Xinjiang, 844000, China
²Department of Medical Oncology, Second People’s Hospital in Kashgar, Xinjiang Uyhur Autonomous Region, No.1, Health Road, Kashgar, Xinjiang, 844000, China
³Department of Medical Oncology, The First People’s Hospital in Kashgar, Xinjiang Uyhur Autonomous Region, No.120, Yingbin road, Kashgar, Xinjiang 844000, China

*Correspondence to Jiaqi Lu, Department of Gynaecology, Second People’s Hospital in Kashgar, Xinjiang Uyhur Autonomous Region, No.1, Health Road, Kashgar, Xinjiang, 844000, China.
E-mail: pujiqinq5033@163.com
Xuemei Xiu, Department of Medical Oncology, Second People’s Hospital in Kashgar, Xinjiang Uyhur Autonomous Region, No.1, Health Road, Kashgar, Xinjiang, 844000, China
E-mail: huomeihe79651@163.com
Abstract

Cervical cancer (CC) is ranked the fourth most common cancer that occurs in women universally, which normally causes pain in the lower belly. Plenty of studies have stated that the expression of long non-coding RNAs (lncRNAs) is linked to the cellular development of many kinds of cancers. DSCAM-AS1 has been reported to act as an oncogene in other cancer types and the aim of our study was to uncover the function and regulatory mechanism of DSCAM-AS1 in CC. In this research, our findings presented that DSCAM-AS1 expression was up-regulated in CC cells. DSCAM-AS1 led to the development of CC by enhancing cell proliferation, migration and invasion ability. DSCAM-AS1 was verified to combine with miR-877-5p and down-regulate the expression of miR-877-5p. Results also showed that ATXN7L3 was a downstream target gene of miR-877-5p and it was unfavorably modulated by miR-877-5p. Enhanced expression of ATXN7L3 counterbalanced the DSCAM-AS1 knockdown effect on the progression of CC. This was the first time to analyze the underlying regulatory mechanism of the oncogenic DSCAM-AS1. Our findings clarified that DSCAM-AS1 played as an oncogenic lncRNA by targeting miR-877-5p/ATXN7L3 axis to promote CC progression, which may provide insights into the prevention of CC.

Keywords: cervical cancer, DSCAM-AS1, miR-877-5p, ATXN7L3
Introduction

Cervical cancer (CC) is regarded as one of the most successfully curable cancers, characterized by the abnormal growth of cervical cells (1). Fundamentally, CC originates from infection with the virus called HPV (human papillomavirus) (2). Women who have early sexual behavior, frequent sexual activity or birth control pills are more feasible to be infected by HPV, which means a high risk of getting CC (3). The survival rate of CC patients at terminal stage is quite low as well. It is of great significance to delve into the regulatory mechanism in CC, so as to come up with new tactics to treat this disease later on.

LncRNAs, a type of non-coding RNAs with over 200 nucleotides, have attracted many scholars’ attention in regard to its diverse functions in cancers. For instance, CRNDE strengthens neuropathic pain through regulating the expression of miR-136 and IL6R in CCI rat models (4). The LXR-623-induced lncRNA LINC01125 represses cell proliferation in breast cancer via the PTEN/AKT/p53 axis (5). LncRNA ENST00000547547 suppresses the proliferation, invasion, and migration of colorectal cancer cells (6). LncRNA DSCAM-AS1 has been validated to be oncogenic in different sorts of cancers. For example, LncRNA DSCAM-AS1 is related to unsatisfactory clinical prognosis and contributes to melanoma development by sponging miR-136 (7).
LncRNA DSCAM-AS1 promotes non-small cell lung cancer by targeting BCL11A (8). In recent years, an abundance of progress has been achieved in the identification of DSCAM-AS1 in cancer progression. Nonetheless, the function of DSCAM-AS1 in CC is still completely uncertain to us.

MiR-877-5p was proved to affect the progression of some cancers in several studies. For example, miR-877-5p inhibits cell proliferation, migration, and invasion via targeting cyclin-dependent kinase 14 and acts as a biomarker for prognosis in hepatocellular carcinoma (9). MiR-877-5p gets involvement in trovafloxacin-induced liver injury (10). Yet, the exact function of miR-877-5p in CC has never been inspected heretofore.

During this study, our objective was to analyze the underlying function of DSCAM-AS1 in CC progression. In the end, we substantiated that DSCAM-AS1 advanced the tumorigenesis of CC by functioning as a ceRNA to up-regulate ATXN7L3 expression through miR-877-5p. These incredible findings cast light on the road for future cures in CC.

Materials and methods

Tissue Samples

The study was carried out according to the Declaration of Helsinki and has been approved by the ethical committee of Second People’s Hospital in Kashgar, Xinjiang Uyghur Autonomous Region. No patients had
experienced any form of tumor specific treatment before diagnosis.

Informed consent was obtained from all patients. 40 CC tissues and corresponding normal cervical tissues were provided by patients who underwent primary surgery in Second People’s Hospital in Kashgar, Xinjiang Uyghur Autonomous Region. All tissue samples were immediately frozen in liquid nitrogen and kept under the condition of -80°C.

**Cell lines and plasmids transfection**

Human immortalized cervical epithelial cell line (H8) and CC cell lines (SiHa, HeLa, C-33A and CaSki) were bought from Cell Bank of Type Culture Collection (CBTCC, Shanghai, China) and were grown in DMEM culture medium (Gibco, Gaithersburg, MD, USA). All cell lines were cultivated with 10% FBS (fetal bovine serum) in 5% CO₂ at the temperature of 37°C. To investigate the knockdown impact of DSCAM-AS1, sh-DSCAM-AS1#1/2 and sh-NC were acquired from Obio Technology (Shanghai, China). MiR-877-5p mimics and NC mimics were purchased from Tingzhou Biological Engineering Co., Ltd (Shanghai, China). Full ATXN7L3 was cloned to pcDNA3.1 plasmid to overexpress ATXN7L3. And primers for plasmid construction were provided in Supplementary Table 1. Above plasmids from ATTC (Manassa, VA, USA) were transfected into SiHa and CaSki cells with
Lipofectamine 3000 Reagent (Thermo Fisher Scientific, CA, USA). All stably transfected cells were gathered for further study after 48 h.

Quantitative real-time polymerase chain reaction (qRT-PCR)

The extracted total cellular RNA from SiHa and CaSki cells by the Trizol reagent (Invitrogen, Carlsbad, CA, USA) was quantitated with NanoDrop 2000 (Wilmington, DE, USA). Taqman Advanced miRNA cDNA Synthesis Kit was used to generate cDNA (complementary DNA) templates in strict accordance with the recommendations provided by supplier. SYBR Green Master Mix Kit and Light Cycler 480 II system (Roche, Shanghai, China) were applied for real-time PCR analysis. GAPDH or U6 as a loading control was used for RNA qualification. The application of $2^{-\Delta\Delta C_t}$ comparative method was to analyze the relative RNA expression levels. Primers for qRT-PCR analysis were provided in Supplementary Table 1.

Cell counting kit-8 (CCK-8) assay

The transfected SiHa and CaSki cells were seeded ($2 \times 10^3$ cells/well) on the 96-well plates at the temperature of 37°C with 5% CO$_2$. Following 0, 1, 2, 3 and 4 days of culture, 20 μL of CCK8 solution (5 mg/mL) was put into the plates to assess modification in cell proliferation. Two hours later, absorbance at 450 nm was detected by a spectrophotometer.
EdU assay

In line with instructions, the Cell-Light EdU imaging detection kit obtained from RiboBio (Guangzhou, China) was utilized for EdU assay. The harvested SiHa and CaSki cells were rinsed twice in PBS and planted onto 96-well plates with 5,000 cells in each well for 6 h. Then, EdU labeling medium was added and cultured for 1 h until cells adhered to the culture plates. Cells fixed in 4% formaldehyde were subjected to 0.5% Triton X-100 and Apollo reaction cocktail. Cells in each well were stained by DAPI and finally visualized under a fluorescence microscope.

Wound healing assay

Forty-eight hours after transfection, the wounds were scratched on SiHa and CaSki cells by use of the ruler and pipette tip. Later medium was removed. After rinsed twice in PBS, cells were introduced into the medium with 1% FBS at 37°C with 5% CO₂. Images of wound-healing were taken with a microscope with the magnification of 50× at 0 and 24 h.

Transwell invasion and migration assay

Cell invasive or migrating ability was tested by the Transwell plates (24-well plate layout). Corning Costar Transwell plates with 8 μm pores
were pre-covered with (for invasion) or without (for migration) Matrigel (BD Biosciences, San Jose, CA, USA) on the upper surface of the filter, and used for culturing SiHa or CaSki cells in non-serum medium at 37°C for as long as 3 hours. The medium including 20% FBS was placed onto the lower chamber. After incubated for 48 h, the bottom invaded and migrated cells were fixed with 1% formaldehyde and marked with 0.1% of crystal violet. Colored cells were monitored by a microscope (Nikon, Tokyo, Japan).

RNA immunoprecipitation (RIP)

In this assay, the EZMagna RIP Kit (Millipore, Billerica, MA, USA) was exercised. SiHa or CaSki cell lines in complete RIP lysis buffer were cultivated with Magnetic beads conjugated with Ago2 or control IgG at 4°C for 6 hours. Once the beads were discarded, qRT-PCR analysis was performed for the purified RNA.

RNA pull-down

SiHa or CaSki cell lines were transfected with biotin-labeled DSCAM-AS1, DSCAM-AS1-Mut or NC control, followed by incubation with streptavidin-plated magnetic beads (Ambion, Life Technologies). The pulled-down biotin-coupled complex was analyzed by qRT-PCR to determine the enrichment of miR-877-5p in bound fractions.
Luciferase reporter assay

The DSCAM-AS1 or ATXN7L3 cDNA containing the predictive miR-877-5p binding sites was inserted into the pmirGLO plasmid (Promega, Madison, WI, USA) to form reporter DSCAM-AS1-Wt or ATXN7L3-Wt. DSCAM-AS1-Mut and ATXN7L3-Mut were generated using point mutations. SiHa or CaSki cells were co-transfected with the above wild-type or mutant type and miR-877-5p mimics or NC mimics. The Dual-Luciferase Reporter Assay System (Promega) was applied at 48 h after transfection as per the protocol.

Western blotting

Total proteins of SiHa or CaSki cells were isolated in RIPA lysate buffer (Solarbio, Beijing, China), the concentration of which was measured with BCA kit (Beyotime, Shanghai, China). After mixed with loading buffer, samples were separated on 10% SDS-PAGE gels and transferred onto the PVDF membranes. To block the non-specific binding, membranes were cultured in 5% skimmed milk and treated with anti-ATXN7L3 (ab99947, 1/2,000; Abcam, Cambridge, USA), anti-E-cadherin (ab15148; 1/1,000; Abcam), anti-N-cadherin (ab76057; 1/1,000; Abcam) and anti-GAPDH (ab37168; 1/1,000; Abcam) antibodies at 4°C overnight, followed by treatment with IgG secondary antibody (Abcam). The bands were
detected in ChemiDoc™ XRS + System (Bio-Rad, USA) using enhanced chemiluminescence.

**Statistical analyses**

All experimental data were exhibited as the mean ± standard deviation with no less than three independent samples. Both SPSS 22.0 statistical software package and GraphPad Prism 7.0 were utilized in this study for statistical analyses. Student’s t-test or one-way ANOVA was conducted for different analyses in two or more groups, with the significance of p < 0.05.

**Results**

**DSCAM-AS1 expression is remarkably up-regulated in cervix cancer**

Even though DSCAM-AS1 has been demonstrated to stimulate certain sorts of cancers (8, 11, 12), its role in CC is yet to be discovered. The qRT-PCR analysis showed that DSCAM-AS1 was most highly expressed in transcript NR_038896.1 in CC cell lines (SiHa, HeLa, C-33A and CaSki), rather than in the corresponding normal cell line (H8) (Figure 1A). DSCAM-AS1 was silenced by transfection with sh-DSCAM-AS1#1/#2 and the effectiveness of the silencing was validated by qRT-PCR (Figure 1B). Proliferation assays cell counting kit-8 and EdU depicted that DSCAM-AS1 expression could accelerate
the cell proliferation in CC (Figure 1C and 1D). As in Figure 1E and 1F, DSCAM-AS1 down-regulation suppressed the migration and invasion in SiHa and CaSki cells; in addition, knockdown of DSCAM-AS1 enhanced the protein level of E-cadherin, but declined that of N-cadherin (Figure S1A), indicating that DSCAM-AS1 promoted the cellular metastasis activity. In summary, DSCAM-AS1 had great expression levels in the CC cell lines, which improved a whole bunch of activities like proliferation, migration and invasion in CC.

**DSCAM-AS1 combines with miR-877-5p in cervix cancer**

Now that we had investigated the function of DSCAM-AS1 in CC, it was of necessity to analyze the interaction between DSCAM-AS1 and miRNA. In light of the starBase v2.0 database, we obtained that there might be a few miRNAs (miR-877-5p, miR-6875-5p, and miR-577) that had the likelihood to combine with DSCAM-AS1 (Figure 2A). RIP assay showed DSCAM-AS1 and miR-877-5p were enriched in the RISC combination, thereby proving that DSCAM-AS1 bound with miR-877-5p (Figure 2B). It was also determined that silence of DSCAM-AS1 would increase the expression levels of miR-877-5p (Figure 2C). Figure 2D implied that miR-877-5p was under-expressed in the CC cells, as compared to that in normal cells. Figure 2E displayed that miR-877-5p mimics was authenticated to have the effectiveness of overexpressing...
miR-877-5p. Additionally, bioinformatics hypothesized there were specific potential binding sites on DSCAM-AS1, with which miR-877-5p could bind (Figure 2F). Luciferase reporter and RNA pull-down assays validated the previous hypothesis that DSCAM-AS1 bound with miR-877-5p (Figure 2G and 2H). To recap, DSCAM-AS1 sponged miR-877-5p in CC, and the expression of miR-877-5p was negatively regulated by DSCAM-AS1.

**MiR-877-5p binds to ATXN7L3 in cervix cancer**

To discover the gene miR-877-5p targeted, database (PITA, RNA22, and PicTar) matched two potential target mRNAs (CBFA2T3 and ATXN7L3) for miR-877-5p (Figure 3A). By analyzing the composition of the RNA-induced silencing complex (RISC), it was discovered that the enrichment of ATXN7L3 and miR-877-5p was strikingly higher than that of CBFA2T3 and miR-877-5p (Figure 3B). In Figure 3C, overexpressing miRNA-877-5p tremendously inhibited the expression of ATXN7L3 mRNA as well as its transcriptional protein. Bioinformatics was applied again to predict the binding sites miR-877-5p had on ATXN7L3 mRNA (Figure 3D). And, the following luciferase reporter assay confirmed this prediction that miR-877-5p bound to ATXN7L3 mRNA (Figure 3E). Besides, results from qRT-PCR and western blotting suggested that DSCAM-AS1 shortage lowered the ATXN7L3 mRNA and protein
expression levels (Figure 3F). To sum up, miR-877-5p bound to 
ATXN7L3 mRNA and miR-877-5p could negatively work on the 
extression of ATXN7L3.

Enhanced expression of ATXN7L3 counterbalances the DSCAM-AS1 
insufficiency effect on the development of cervical cancer

On the foundation of earlier experiments, it needed further exploration 
about whether the oncogenic regulatory mechanism of DSCAM-AS1 was 
through the miR-877-5p/ATXN7L3 tunnel. As shown in Figure 4A, 
pcDNA3.1/ATXN7L3 was used to elevate the expression of ATXN7L3 
and the overexpression effect functioned as expected. Initially, results 
unveiled that DSCAM-AS1#1 insufficiency prohibited cellular growth in 
CC. In rescue experiments, a rise in the number of live CC cells was 
beheld by CCK8 and EdU assays after overexpressing ATXN7L3 (Figure 
4B-C). The data obtained in wound healing, transwell and western blot 
assays implied that enhanced expression levels of ATXN7L3 also 
countervailed the DSCAM-AS1 knockdown effect on invasive or 
migratory capability in CC (Figure 4D-E). In addition, EMT-related 
proteins were assessed and the results reflected that the decreased level of 
N-cadherin and increased level of E-cadherin induced by silenced 
DSCAM-AS1 was rescued by the upregulation of ATXN7L3 (Figure 
S1B). Finally, the expression level of DSCAM-AS1, miR-877-5p and
ATXN7L3 were separately detected in CC tissues and corresponding normal tissues. Unsurprisingly, we observed that both DSCAM-AS1 and ATXN7L3 were expressed higher in CC tissues, which were opposite with miR-877-5p (Figure S2A-C). Ultimately, we could reach a conclusion that DSCAM-AS1 accelerated the progression of CC by targeting the miR-877-5p/ATXN7L3 axis.

**Discussion**

CC is considered the second most commonly diagnosed cancer and the third prevailing cause of cancer death across female group, specifically with a high occurrence in developing countries (13, 14). So far, numerous IncRNAs (long non-coding RNAs) have been believed to have the role of promoting the growth of CC. For example, IncRNA SOX21-AS1 accelerates cervical cancer development by sponging miR-7 and targeting VDAC1 (15). LncRNA SBF2-AS1 contributes the development of CC by modulating the miR-361-5p/FOXM1 axis (16). LncRNA RP11-552M11.4 is conducive to oncogenesis and development of CC through regulating miR-3941/ATF1 signaling pathway (17). Upregulated expression of lncRNA CASC15 predicts bad prognosis and relates to tumor growth in CC (18). In this case, whether DSCAM-AS1 has the same function and plays as an oncogene in CC remains mysterious. In this study, we found out that DSCAM-AS1 expression was greatly up-regulated in CC cells.
and low expression level of DSCAM-AS1 prevented cell growth invasion
and migration, suggesting that DSCAM-AS1 had an encouraging effect
on the CC development.
Here, we recognized the regulatory mechanism behind the DSCAM-AS1
up-regulation in CC cells. MicroRNAs (miRNAs) are known as another
kind of non-coding RNAs that have a length of approximately 22
nucleotides. It was registered by some studies that lncRNAs act as
ceRNAs (competing endogenous RNAs) to hamper miRNAs from
binding with downstream messenger RNAs (mRNAs). For instance,
lncRNA CASC2 acts as a ceRNA of miR-21 to upregulate the expression
of PDCD4 in oral squamous cell carcinoma (19). LncRNA
LINC01234-induced by SP1 as a ceRNA promotes non-small cell lung
cancer by modulating OTUB1 (20). LncRNA GAS5 serves as a ceRNA
for miR-21 to repress PDGF-bb-activated proliferation and migration of
vascular smooth muscle cells (21). LncRNA SBF2-AS1 acts as a ceRNA
to affect acute myeloid leukemia cell proliferation through sponging with
miR-188-5p (22). LncRNA AGAP2-AS1, functioning as a ceRNA,
up-regulates the expression of ANXA11 via binding with miR-16-5p and
promotes cell proliferation and metastasis in hepatocellular carcinoma
(23). In our analysis, we discovered that DSCAM-AS1 bound with
miR-877-5p and DSCAM-AS1 modulated the expression of miR-877-5p
in a negative manner in CC.
To our knowledge, lncRNAs, miRNAs and mRNAs could comprise the so-called ceRNA (competing endogenous RNA) network in many studies. For instance, lncRNAs, mRNAs and miRNAs compose a ceRNA network in laryngeal squamous cell carcinoma and are identified as potential biomarkers (24). Previous study has indicated that ATXN7L3 exerts an important influence on cancer development. For example, ATXN7L3 and ENY2 stimulate activity of multiple H2B deubiquitinases that play a key role in cellular proliferation and tumor growth (25). However, whether ATXN7L3 can promote tumor development in CC is undiscovered yet. Our results displayed that ATXN7L3 was the downstream target of miR-877-5p. MiR-877-5p could also bind to ATXN7L3 and negatively adjusted the expression levels of ATXN7L3. Lastly, we found out that overexpressing ATXN7L3 could counteract the restraining impact of DSCAM-AS1 knockdown on the proliferation, migration and invasion of CC.

In outline, our work corroborated that DSCAM-AS1 facilitates the tumor growth of CC by targeting miR-877-5p/ATXN7L3 axis, which could deliver unbelievable methods for CC treatment.

Ethics approval and consent to participate
The study was carried out according to the Declaration of Helsinki and has been approved by the ethical committee of Second People’s Hospital.
in Kashgar, Xinjiang Uyhur Autonomous Region. All patients involved in this study were voluntary, and informed consent was obtained from them in advance.

Acknowledgements

The support of Second People’s Hospital in Kashgar is kindly appreciated.

Conflict of interest

All authors proclaim that this study involves no conflicts of interest.

Funding

Natural Science Foundation of Xinjiang Uygur Autonomous Region (2019D01C088)

Author Contributions

Project administration: Jie Liang, Shujuan Zhan
Data curation: Wei Wang
Formal analysis: Yan Xu
Writing original draft: ATIKAN·Kawuli
Investigation: Jiaqi Lu
Writing revised: Xuemei Xiu
References

1. Ji F, Wuerkenbieke D, He Y, Ding Y, Du R. Long Noncoding RNA HOTAIR: An Oncogene in Human Cervical Cancer Interacting With MicroRNA-17-5p. Oncology research. 2018;26(3):353-61.

2. Park S, Eom K, Kim J, Bang H, Wang HY, Ahn S, et al. MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC cancer. 2017;17(1):658.

3. Shrestha AD, Neupane D, Vedsted P, Kallestrup P. Cervical Cancer Prevalence, Incidence and Mortality in Low and Middle Income Countries: A Systematic Review. Asian Pacific journal of cancer prevention : APJCP. 2018;19(2):319-24.

4. Wu QQ, Zheng B, Weng GB, Yang HM, Ren Y, Weng XJ, et al. Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer. Journal of cellular biochemistry. 2019.

5. Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell death & disease. 2019;10(3):248.

6. Ai X, Lei Q, Shen X, Li J, Cen C, Xie G, et al. Long noncoding RNA ENST00000547547 inhibits cell proliferation, invasion and migration in colorectal cancer cells. Oncology reports. 2019;41(1):483-91.

7. Huang YL, Xu Q, Wang X. Long noncoding RNA DSCAM-AS1 is associated with poor clinical prognosis and contributes to melanoma development by sponging miR-136. European review for medical and pharmacological sciences. 2019;23(7):2888-97.

8. Liao J, Xie N. Long noncoding RNA DSCAM-AS1 functions as an oncogene in non-small cell lung cancer by targeting BCL11A. European review for medical and pharmacological sciences. 2019;23(3):1087-92.

9. Yan TH, Qiu C, Sun J, Li WH. MiR-877-5p suppresses cell growth, migration and invasion by targeting cyclin dependent kinase 14 and predicts prognosis in hepatocellular carcinoma. European review for medical and pharmacological sciences. 2018;22(10):3038-46.

10. Mitsugi R, Itoh T, Fujiwara R. MicroRNA-877-5p is involved in the trovafloxacin-induced liver injury. Toxicology letters. 2016;263:34-43.

11. Liang WH, Li N, Yuan ZQ, Qian XL, Wang ZH. DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2. Molecular carcinogenesis. 2019;58(4):461-73.

12. Li Y, Hao J, Jiang YM, Liu Y, Zhang SH. Long non-coding RNA DSCAM-AS1 indicates a poor prognosis and modulates cell proliferation, migration and invasion in ovarian cancer via upregulating SOX4. European review for medical and pharmacological sciences. 2019;23(10):4143-8.

13. Chang SC, Woo JS, Yau V, Gorkzalka BB, Broto LA. Cervical cancer screening and chinese women: insights from focus groups. Frontiers in psychology. 2013;4:48.

14. Ferlay J, Forman D, Mathers CD, Bray F. Breast and cervical cancer in 187 countries between 1980 and 2010. Lancet (London, England). 2012;379(9824):1390-1.

15. Zhang X, Zhao X, Li Y, Zhou Y, Zhang Z. Long noncoding RNA SOX21-AS1 promotes cervical cancer progression by competitively sponging miR-7/VDAC1. Journal of cellular physiology. 2019.

16. Gao F, Feng J, Yao H, Li Y, Xi J, Yang J. lncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):776-82.
17. Xu Y, Zhou W, Zhang C, Liu X, Lv J, Li X, et al. Long non-coding RNA RP11-552M11.4 favors tumorigenesis and development of cervical cancer via modulating miR-3941/ATF1 signaling. International journal of biological macromolecules. 2019;130:24-33.

18. Shan S, Li HF, Yang XY, Guo S, Guo Y, Chu L, et al. Higher IncRNA CASC15 expression predicts poor prognosis and associates with tumor growth in cervical cancer. European review for medical and pharmacological sciences. 2019;23(2):507-12.

19. Pan L, Chen H, Bai Y, Wang Q, Chen L. Long non-coding RNA CASC2 serves as a ceRNA of microRNA-21 to promote PDCD4 expression in oral squamous cell carcinoma. OncoTargets and therapy. 2019;12:3377-85.

20. Xie JJ, Guo QY, Jin JY, Jin D. SP1-mediated overexpression of lncRNA LINC01234 as a ceRNA facilitates non-small-cell lung cancer progression via regulating OTUB1. Journal of cellular physiology. 2019.

21. Liu K, Liu C, Zhang Z. lncRNA GAS5 acts as a ceRNA for miR-21 in suppressing PDGF-bb-induced proliferation and migration in vascular smooth muscle cells. Journal of cellular biochemistry. 2019.

22. Tian YJ, Wang YH, Xiao AJ, Li PL, Guo J, Wang TJ, et al. Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):1730-7.

23. Liu Z, Wang Y, Wang L, Yao B, Sun L, Liu R, et al. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. Journal of experimental & clinical cancer research : CR. 2019;38(1):194.

24. Kong X, Qi J, Yan Y, Chen L, Zhao Y, Fang Z, et al. Comprehensive analysis of differentially expressed profiles of lncRNAs, mRNAs, and miRNAs in laryngeal squamous cell carcinoma in order to construct a ceRNA network and identify potential biomarkers. Journal of cellular biochemistry. 2019.

25. Atanassov BS, Mohan RD, Lan X, Kuang X, Lu Y, Lin K, et al. ATXN7L3 and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular Proliferation and Tumor Growth. Molecular cell. 2016;62(4):558-71.

Figure legends

Figure 1 DSCAM-AS1 is immensely up-regulated and promotes cellular proliferation and metastasis in CC.

(A) DSCAM-AS1 expression levels in CC cells and related normal cells.

(B) DSCAM-AS1 knockdown efficiency was tested by qRT-PCR (Quantitative real-time polymerase chain reaction) after cells were transfected with sh-DSCAM-AS1#1 and sh-DSCAM-AS1#2. (C-D) CCK8 (Cell counting kit-8) and EdU (5-ethynyl-2’-deoxyuridine)
proliferation analyses with DSCAM-AS1 knocked down in SiHa and CaSki cells. (E-F) Wound healing, transwell invasion and migration experiments were performed with DSCAM-AS1 deduction. *P< 0.05, **P< 0.01.

**Figure 2 DSCAM-AS1 sponges miR-877-5p in CC cells.**

(A) The starBase v2.0 database matched certain miRNAs that might bind with DSCAM-AS1. (B) Relative enrichment of the aforementioned miRNAs and DSCAM-AS1 in RISC (RNA-induced silencing complex) were tested by RIP (radioimmunoprecipitation) assay using Ago2 antibody and anti-IgG. (C) The impact DSCAM-AS1 of on miR-877-5p expression in SiHa and CaSki cells was detected by qRT-PCR. (D) qRT-PCR tested miR-877-5p expression levels in CC cells and relative normal cells. (E) The effectiveness of overexpressing miR-877-5p with miR-877-5p mimics was evaluated by qRT-PCR. (F) Bioinformatics predicted specific sites on miR-877-5p that bind to DSCAM-AS1. (G) Luciferase activities of DSCAM-AS1-Wt and DSCAM-AS1-Mut in a luciferase reporter assay after miR-877-5p overexpression. (H) During an RNA pull-down assay, miR-877-5p expression was perceived by the biotinylated DSCAM-AS1 pull down in CC cells. *P< 0.05, **P< 0.01.

**Figure 3 MiR-877-5p combines with ATXN7L3 in CC.**
(A) Potential target mRNAs (CBFA2T3 and ATXN7L3) for miR-877-5p were discovered by databases PITA, RNA22 and PicTar. (B) RIP assays were carried out by adding antibodies of Ago2 and IgG, and relevant enrichment of miR-877-5p and mRNAs in SiHa and CaSki cells were examined by the qRT-PCR assay. (C) qRT-PCR observed the alteration in ATXN7L3 mRNA expression level after miRNA-877-5p was overexpressed. (D) Binding sites on ATXN7L3 mRNA for miR-877-5p were speculated with bioinformatics. (E) Luciferase activities of ATXN7L3-Wt and ATXN7L3-Mut were observed by luciferase reporter assay after enhancing the miR-877-5p expression. (F) qRT-PCR and western blot assays were applied to figure out the relative expression of ATXN7L3 after DSCAM-AS1 deficiency. GAPDH was an internal control. *P< 0.05, **P< 0.01, ***P< 0.001.

**Figure 4 ATXN7L3 overexpression partly retrieved DSCAM-AS1 influence on CC progression.**

(A) ATXN7L3 mRNA and protein overexpression effectiveness were assessed by qRT-PCR and western blot assays. (B-C) The change in cell proliferation ability (after silencing DSCAM-AS1 and overexpressing ATXN7L3) was estimated by CCK8 and EdU analyses. (D-E) Cellular metastasis capability subsequent to DSCAM-AS1 knockdown and ATXN7L3 overexpression was evaluated by wound healing, transwell
invasion and migration experiments. GAPDH was utilized as an internal control. *P< 0.05, **P< 0.01.

**Figure S1** (A-B) Western blot assays detected the expression level of E-cadherin and N-cadherin in differently transfected groups. **P< 0.01.

**Figure S2** (A-C) qRT-PCR measured the expression of DSCAM-AS1, miR-877-5p and ATXN7L3 in CC and normal tissues (n=40). **P< 0.01.
DSCAM-AS1 (F)
DSCAM-AS1 (R)
mir-877-5p (F)
mir-877-5p (R)
ATXN7L3 (F)
ATXN7L3 (R)
CBFA2T3 (F)
CBFA2T3 (R)
GAPDH (F)
GAPDH (R)
U6 (F)
U6 (R)

Primers for plasmid construction:
sh-NC
sh-DSCAM-AS1#1
sh-DSCAM-AS1#2
NC mimics
miR-877-5p mimics
Primers for qRT-PCR analyses

GATCGGGAAAGCCAACCA
TGGAGGAGGACAGAGAAGG
GTAGAGGAGATGGCGCAGG
CTCTACAGCTATATTGCCAGCCAC
CAGGCACTTCTCCAGATGGG
CGGGCTTGGACATCTTTGGA
CAAACCTGCAGTGTTGGT
CCACTCAACACAGCCATCA
CCACAGTCCATGCCATCAC
CGTTCACTCAGGGATGAC
CTCGCTTGCCGACAGACA
AACGCTTCACGAAATTTCGT

CCGCGTAACACTGAGTCATTTTTCCTGACGACAAATTGAGTCAAGTTTTACTTTTTTG
CCGCTTACAAAACCACAACACTCACTCGAGTTGTTGTGTTGTTTGTAGTTTTTG
CCGCTTAACATTTTGTGAAATTGTCTCGAGCAAATTACACCAAAATGTTAACCTTTTTG
GAAAAAGGGAUGGCGCGAGGG
GUAGAGGAGAUGGCGCGAGGG