Imaging breast cancer using hyperpolarized carbon-13 MRI

Ferdia A. Gallagher\(^{a,b,c,1}\), Ramona Woitek\(^{a,c,d,1,2}\), Mary A. McLean\(^c\), Andrew B. Gill\(^b\), Raquel Manzano García\(^{e,e}\), Elena Provenzano\(^{c,g}\), Frank Riemer\(^e\), Joshuaaggio\(^g\), Anita Chhabra\(^{b,e}\), Stephan Ursprung\(^{a,b}\), James T. Grif\(^g\), Charlie J. Daniels\(^g\), Fulvio Zaccagna\(^e\), Marie-Christine Laurent\(^e\), Matthew Locke\(^g\), Sarah Hilborne\(^g\), Amy Frary\(^g\), Turid Torheim\(^{c,e}\), Chris Boursnell\(^{c,e}\), Amy Schiller\(^e\), Ilse Patterson\(^b\), Rhys Slough\(^b\), Bruno Carmo\(^b\), Justine Kane\(^e\), Heather Biggs\(^e\), Emma Harrison\(^e\), Surrin S. Deena\(^e\), Ian B. Wilkinson\(^n\), Martin J. Graves\(^a,b\), Jean E. Abraham\(^c,f,k\), Fiona J. Gilbert\(^a,b,c\), Carlos Caldas\(^{c,e,f,k}\), and Kevin M. Brindley\(^{c,e,o}\)

\(^a\)Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; \(^b\)Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom; \(^c\)Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom; \(^d\)Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; \(^e\)Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; \(^f\)Cambridge Breast Cancer Research Unit, Addenbrooke’s Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom; \(^g\)Department of Histopathology, Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom; \(^h\)Pharmacy Department, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; \(^i\)RAPID Biomedical GmbH, 97222 Rimpar, Germany; \(^j\)Medical Genomics Research, Illumina, Great Abington, Cambridge CB21 6DF, United Kingdom; \(^k\)Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; \(^l\)Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; \(^m\)Institute of Health and Society, Newcastle University, Newcastle-upon-Tyne NE2 4AX, United Kingdom; \(^n\)Department of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; and \(^o\)Department of Biochemistry, University of Cambridge, Cambridge CB2 0QQ, United Kingdom

Edited by Matthew G. Vander Heiden, Charles Koch Institute, Massachusetts Institute of Technology, and accepted by Editorial Board Member Tak W. Mak

November 26, 2019 (received for review August 12, 2019)

Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using \(^13\)C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized \(^13\)C label exchange between injected [\(^1\)-\(^13\)C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). Dynamic \(^13\)C MRSI was performed following injection of hyperpolarized \(^13\)Cpyruvate. Expression of lactate dehydrogenase A (LDHA), catalyzing \(^13\)C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1\(\alpha\)), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized \(^13\)C MRI in early breast cancer. Both intratumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (\(R = 0.903, P = 0.005\)) and HIF1\(\alpha\) expression (\(R = 0.83, P = 0.043\)). Imaging of hyperpolarized \(^13\)Cpyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.

Carbon-13 MRI was used to assess exchange of hyperpolarized \(^13\)C label between injected [\(^1\)-\(^13\)C]pyruvate and the endogenous tumor lactate pool in breast cancer patients. Higher levels of \(^13\)C label exchange were observed in more-aggressive tumors, including all triple-negative cancers. The \(^13\)C label exchange correlated significantly with the expression of the transmembrane transporter mediating uptake of pyruvate into tumor cells and hypoxia inducible factor 1 (HIF1\(\alpha\)), but no significant correlation with the expression of lactate dehydrogenase, the enzyme that catalyzes the exchange. The study has shown that \(^13\)C MRI can be used for metabolic imaging of breast cancer patients in the clinic, creating possibilities for noninvasive cancer monitoring in this patient group.

Significance

Breast cancer accounts for ~25% of all cancer cases and is the leading cause of cancer death among women worldwide (1). Breast tumors show considerable heterogeneity, both within and between tumors, which partly accounts for the variable clinical course of the disease and response to treatment. Some of this heterogeneity is captured by hormone receptor expression and HER2 overexpression, which can be used to guide targeted treatment options. Genomic and transcriptional information can also indicate prognosis and may be used to select therapy pathways (2). Alterations in tumor metabolic pathways, which drive tumor growth, can influence treatment response but metabolic imaging | magnetic resonance imaging | cancer metabolism | breast cancer

Author contributions: F.A.G., R.W., M.A.M., A.C., S.U., J.T.G., S.S.D., B.B., R.B., D.J.J., E.S., S.F.C., I.B.W., M.J.G., J.E.A., F.M.C., C.C., and K.M.B. designed research; F.A.G., R.W., M.A.M., A.B.G., R.F., J.K., S.U., F.Z., M.C.L., M.L., S.H., A.F., A.S., I.P., R.S., B.C., J.K., H.E., E.H., J.E.A., C.C., and K.M.B. performed research; M.A.M., A.P., T.L., M.J.G., and K.M.B. contributed new reagents/analytic tools; R.W., M.A.M., A.B.G., R.F., J.K., S.U., F.Z., M.C.L., M.L., S.H., A.F., A.S., I.P., R.S., B.C., J.K., H.E., E.H., J.E.A., C.C., and K.M.B. performed research; M.A.M., A.P., T.L., M.J.G., and K.M.B. contributed new reagents/analytic tools; R.W., M.A.M., A.B.G., R.F., J.K., S.U., F.Z., M.C.L., M.L., S.H., A.F., A.S., I.P., R.S., B.C., J.K., H.E., E.H., J.E.A., C.C., and K.M.B. performed research; M.A.M., A.P., T.L., M.J.G., and K.M.B. contributed new reagents/analytic tools; R.W., M.A.M., A.B.G., R.F., J.K., S.U., F.Z., M.C.L., M.L., S.H., A.F., A.S., I.P., R.S., B.C., J.K., H.E., E.H., J.E.A., C.C., and K.M.B. wrote the paper.

Competing interest statement: A research agreement is in place between GE Healthcare and K.M.B. and F.A.G.

This article is a PNAS Direct Submission. M.G.V.H. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: raw imaging data are deposited at the European Phenome-genome Database (EGA ID EGAS000001004118) under a controlled license policy. The Data Access Committee can be contacted via radiology-13c-mri-breast@lists.cam.ac.uk. Imaging raw data and MATLAB scripts described in this manuscript can be obtained from radiology-13c-mri-breast@lists.cam.ac.uk.

1F.A.G. and R.W. contributed equally to this work.

2To whom correspondence may be addressed. Email: rw585@cam.ac.uk.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913841117/-/DCSupplemental.

First published January 21, 2020.
are not easily assessed in a routine clinical setting (3, 4). A clinical tool that measures spatial and temporal variations in tumor metabolism may further stratify patients in ways that are complementary to histological and molecular profiling.

A major metabolic change in most cancer types is a switch to aerobic glycolysis, known as the Warburg effect, which results in increased lactate formation (5, 6). Hyperpolarized 13C MRI (HP 13C MRI), which increases the MRI signal acquired from 13C-labeled substrates by more than 10,000-fold (7), is an emerging clinical tool that can be used to probe this altered metabolism. The most widely used hyperpolarized 13C-labeled substrate is [1,13C]pyruvate, which is the product of glycolysis, and lies at the intersection of several key metabolic pathways (8). Pyruvate is reduced to lactate in the reaction catalyzed by lactate dehydrogenase (LDH), which, in tumors, is predominantly the A isofrom (LDHA) (9). The massive gain in sensitivity afforded by hyperpolarization means that the spatial distribution of intravenous (i.v.) injected hyperpolarized 13C-pyruvate and the hyperpolarized 13C-lactate formed from it, can be imaged in real time (10).

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI reflects disease aggressiveness (11) and provides rapid assessment of [1-13C]pyruvate, which is the product of glycolysis, and lies at the clinical tool that can be used to probe this altered metabolism. HP 13C MRI (HP MRI) can be used to plan the 13C MRI. Following 13C MRI, diagnostic quality proton breast images were acquired at this early time point. The aims of this study were, firstly, to demonstrate the feasibility of translating this imaging technique into the clinic with lactate labeling demonstrated in prostate cancer (14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Methods

Patient Recruitment. Local research ethics committee approval was obtained for this prospective study (National Research Ethics Committee East of England, Cambridge South, Research Ethics Committee number 15/EE/0378; National Institute for Health Research [NIHR] portfolio number 30388). Seven women diagnosed with invasive carcinoma of the breast measured at least 1.5 cm in maximum diameter on ultrasound or mammogram were consented between November 2016 and June 2018.

Proton MRI. Patients were imaged in a clinical 3T scanner (MR750; GE Healthcare). The MRI system inbuilt 1H body coil was used to acquire three-dimensional (3D) fast gradient echo scan images and, subsequently, T-weighted axial and coronal fast spoiled gradient echo images, which were used to plan the 13C MRI. Following 13C MRI, diagnostic quality proton breast imaging was undertaken in the prone position in a dedicated eight-channel phased array receive-only breast coil (SI Appendix, Methods). For dynamic contrast-enhanced (DCE) MRI, a 3D fast spoiled gradient echo sequence with k-space data sharing was used (volume image breast assessment–time-resolved imaging of contrast kinetics [VIBRANT-TRICKS]) as described previously (21, 22) and reconstructed using an in-plane voxel-size of 0.68 × 0.68 mm (slice thickness = 1.4 mm), Gadobutrol (Gadovist; Bayer, Schering) was injected at 0.1 ml/kg body weight and a flow rate of 3.0 ml/s followed by a 25-mL saline flush. In total, 48 VIBRANT-TRICKS volumes were acquired, over 8 min with a temporal resolution of 9.4 s. Contrast agent injection was started between phases 2 and 3.

Preparation and Injection of 13C-Pyruvate. Hyperpolarization of samples containing 1.47 g of [1-13C]pyruvic acid (Sigma Aldrich) and 15 mM electronic paramagnetic agent (EPA; Syncom) was performed in a clinical hyperpolarizer (SPINlab; ST Research Circle Technology) by microwave irradiation at 139 GHz at ∼0.8 K for 3–4 h followed by rapid dissolution in 38 mL of superheated sterile water and filtration to remove EPA to a concentration below 53 μM. The filtered formulation was neutralized with a buffer solution (SI Appendix, Methods). Sample pH, temperature, pyruvate and EPA concentrations, polarization means that the spatial distribution of intravenous (i.v.) injected hyperpolarized 13C-pyruvate and the hyperpolarized 13C-lactate formed from it, can be imaged in real time (10).

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.

Preclinical studies have shown that the tumor metabolic phenotype revealed by hyperpolarized 13C-lactate labeling can reflect disease aggressiveness (11) and provide rapid assessment of treatment response, with multiple studies demonstrating an early reduction in 13C-lactate labeling following therapy (12, 13). MRI has hyperpolarized 13C-pyruvate metabolism has translated into the clinic with lactate labeling demonstrated in prostate cancer and brain tumors and preliminary data show that it can be used for treatment response assessment in prostate cancer (7, 14, 15). The latter studies suggest that the technique could also be used for treatment response assessment in prostate cancer.
that had low summed SNRLAC, the LAC/PYR was chosen as a more robust measure of pyruvate to lactate conversion.

DCE-MRI Analysis. In-house-developed MATLAB software was used to generate T₁ maps. MIStar (Apollo Medical Imaging) was used to generate B₁-corrected T₁ maps, to perform motion correction of the DCE-MRI data using a 3D affine model, and for pharmacokinetic modeling using the standard Tofts model (26). Tumor ROIs were drawn on the DCE-MRI data by a consultant radiologist specialized in breast imaging with 10 y of experience (V8.5.2 Pixmeo SARL; OsiriX). These ROIs were used to calculate tumor volumes and to extract voxel-wise pharmacokinetic parameters (Ktrans, kep, Ve, and AUC90) using in-house software written in MATLAB. Only voxels with an adequate goodness of fit were included in the analyses.

Immunohistochemistry and Quantification of Monocarboxylate Transporters 1 and 4. For six patients, immunohistochemical (IHC) staining for the monocarboxylate transporters 1 and 4 (MCT1 and MCT4) was performed on formalin-fixed, paraffin-embedded tumor blocks using Leica’s Polymer Refine Detection System (DS9800) in combination with their Bond automated system (Leica Biosystems Newcastle Ltd) (SI Appendix, Methods). Insufficient tissue was available for analysis in one patient.

HALO v2.2.1870.15 (Indica Labs) and the area quantification v1 module were used for automated analysis of scanned sections (optical densities are provided in SI Appendix, Methods). Areas of weak, moderate, and strong staining were summed and divided by the total tissue area to obtain the percentage of positive tissue for MCT1 and MCT4 expression.

RNA Sequencing. RNA from frozen tumor tissue sections from six patients was extracted using the QIAGEN miRNeasy Mini Kit (catalog no. 217004; QIAGEN; details in SI Appendix, Methods). RNA quantification was performed using Nanodrop technology (ThermoFisher Scientific). Assessment of the RNA integrity number was performed using a high-sensitivity RNA assay and a 2100 Bioanalyzer (Agilent Technologies).

RNA sequencing libraries were constructed using the TruSeq Stranded Total RNA Gold library preparation kit (Illumina). The libraries were sequenced as paired-end reads (2 × 75 cycles) on an Hiseq2500 platform to give a mean coverage of ×150. Postprocessing of the gene count data included normalization, scaling, and the correction of library preparation effects (details provided in SI Appendix, Methods).

Statistical Analysis. The lactate signal is likely to be dominated by the intracellular compartment, particularly at early time points, whereas experiments in vitro and in vivo (27–29) have shown that, at later time points, there is substantial export of hyperpolarized 13C-labeled lactate into the extracellular space. The pyruvate signal is derived mainly from the extracellular pool, which includes intravascular pyruvate. Therefore, the summed SNRPYR lactate signal from the tumor and the LAC/PYR are likely to reflect vascular delivery of pyruvate, expression of the transporters mediating cellular pyruvate uptake (MCT1 and MCT4), and expression of LDHA, which catalyzes exchange of the hyperpolarized 13C label between pyruvate and lactate. The correlation of LAC/PYR, summed pyruvate signal (SNRPYR), and summed lactate signal (SNRAC) with tumor volume and IHC markers of hypoxia (hypoxia-inducible factor 1-alpha [HIF1α]) were analyzed to assess the contributions of hypoxia, pyruvate uptake, and metabolism to the observed hyperpolarized 13C signals.

Data Availability. Transcriptomic data are deposited at the European Genome-phenome Archive (EGA ID EGAS00001004118; https://www.ebi.ac.uk/ega/studies/EGAS00001004118). Imaging raw data, and MATLAB scripts for data in this manuscript can be obtained from radiology-13c-mri-breast@lists.cam.ac.uk.

Results

The feasibility of using HP 13C MRI in breast cancer was demonstrated in seven patients with a histopathological diagnosis of the disease. These included one grade 2 (G2) invasive lobular carcinoma (ILC), which was estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2−); two invasive carcinomas of no specific type (IC NST), which were ER/PR+.
HER2− (one G2 and one G3); and four IC NST ER/PR− HER2− G3 (triple-negative breast cancer [TNBC]; ER and PR negativity defined as Allred score 0 to 3) (Fig. 1). Patient characteristics (age, body mass index, breast parenchymal density) are shown in SI Appendix, Table S2. No adverse effects were observed when the patients were monitored for 1.5 h after injection of the hyperpolarized agent. In all patients, HP 13C-lactate signal was observed exclusively in the tumors but not in other areas of the breast. Fibroglandular breast tissue demonstrated low HP 13C-pyruvate signal in some patients, whereas adipose breast tissue showed no signal. No other metabolite signals were observed in breast tissue.

Intratumoral and Intertumoral Metabolic Heterogeneity. Intratumoral metabolic heterogeneity was observed with variation in the summed LAC/PYR, summed SNRPYR, and summed SNRLAC. The LAC/PYR ranged from 0.021 to 0.473 (mean ± SD, 0.145 ± 0.164), summed SNRPYR ranged from 6.2 to 74.3 (43.8 ± 25.8), and summed SNRLAC ranged from −0.1 to 22.3 (6.5 ± 7.8) (Fig. 2). Hyperpolarized lactate signal was observed in all of the G3 tumors (TNBC and IC NST). There was no discernable lactate signal in the two G2 tumors despite detectable pyruvate in all seven tumors (Fig. 1). In addition, there was significant variation in the LAC/PYR and summed SNRLAC within the TNBC subgroup (ranges 0.031 to 0.473 and 1.1 to 22.3, respectively).

Fig. 2. Correlation of hyperpolarized 13C MRI data with tumor volume and expression of the MCT1 and HIF1α. (A) Each patient is represented by an individual point, with the size of each circle proportional to the respective tumor size. (B and C) Correlation of LAC/PYR and summed SNRLAC with tumor volume. (D–G) Correlation of LAC/PYR and summed SNRLAC with expression of MCT1, determined by both (D and E) IHC and (F and G) RNA sequencing. (H and I) Correlation of LAC/PYR and summed SNRLAC with expression of HIF1α determined by RNA sequencing. Abbreviations: IHC [% pos tissue], percentage of formalin fixed paraffin embedded tissue positive for IHC staining; RNAseq, normalized expression based on RNA sequencing.
Intratumoral metabolic heterogeneity was observed in the largest TNBC. The summed SNR_{LAC} and summed SNR_{PYR} were higher in the tumor periphery than in the tumor core, which was similar to the pattern of rim-like contrast enhancement on DCE-MRI, suggesting that the rate of pyruvate delivery to the tumor has a significant influence on lactate labeling. (Fig. 3).

Correlation of Lactate Labeling with Tumor Volume and MCT1 and HIF1α Expression. The summed SNR_{LAC} and LAC/PYR showed significant correlations with tumor volume (R = 0.974, P < 0.001 and R = 0.903, P = 0.005, respectively; Fig. 2 A–C). The LAC/PYR was also significantly correlated with the expression of MCT1 on IHC (R = 0.85, P = 0.032), and the summed SNR_{LAC} was significantly correlated with MCT1 on RNA sequencing (R = 0.907, P = 0.013; Fig. 2 D–G). HIF1α expression determined by RNA sequencing was significantly correlated with the LAC/PYR (R = 0.83, P = 0.043; Fig. 2 H and I). However, a 42-gene RNA-based hypoxia signature that had been developed in breast cancer (30) did not correlate significantly with the LAC/PYR (R = 0.39, P = 0.442) or summed SNR_{LAC} (rho = 0.23, P = 0.658; Fig. 2 F–I). There were no significant correlations between the LAC/PYR or summed SNR_{LAC} and MCT4 expression, where this was determined by IHC (rho = 0.54, P = 0.297 and rho = 0.14, P = 0.803, respectively) or by RNA sequencing (R = 0.41, P = 0.420 and rho = −0.54, P = 0.297, respectively; SI Appendix, Fig. S4 A–D), nor with the expression of LDHA determined by RNA sequencing (R = 0.439, P = 0.383 and rho = 0.257, P = 0.658, respectively; SI Appendix, Fig. S4 E and F).

Correlation of ¹³C MRI with DCE-MRI. A significant correlation was observed between v_e and the LAC/PYR (R = 0.84, P = 0.035). However, this correlation was driven mainly by one tumor showing low v_e and high LAC/PYR (SI Appendix, Fig. S3) and is thus unlikely to be representative of the entire cohort. No other significant correlations were observed between DCE parameters (K_{trans}, k_{ep}, V_e, or IAUC090) and the LAC/PYR, summed SNR_{PYR}, and summed SNR_{LAC}.

Discussion

Previous clinical studies have demonstrated ¹³C MRI with hyperpolarized [1-¹³C]pyruvate in human prostate cancer and in a range of brain tumors (7, 14, 15). Here we investigated the metabolism of hyperpolarized [1-¹³C]pyruvate in breast cancer patients and demonstrated the feasibility and safety of the technique, as well as significant intertumoral metabolic heterogeneity. Hyperpolarized ¹³C-lactate signal was observed in the summed spectra from all of the TNBCs and in all of the higher-grade (G3) tumors, whereas there was no discernable hyperpolarized ¹³C-lactate signal in the two lower-grade (G2) tumors. This is consistent with previous preclinical studies in prostate cancer, which have shown higher lactate signal in more-aggressive tumors, and suggests that increased lactate labeling can be used as a biomarker for aggressive disease (11). In addition, we observed intratumoral heterogeneity in lactate labeling in a single large triple-negative breast tumor, where the level of lactate labeling was correlated with delivery of a gadolinium-based contrast agent. Extensive preclinical studies have shown that hyperpolarized ¹³C-pyruvate metabolism is frequently modulated following treatment (31). The high levels of lactate labeling in TNBC, which commonly undergo NAT, would make them suitable for response assessment using this technique.

Previous studies showing that intertumoral metabolic heterogeneity is more pronounced than intratumoral metabolic heterogeneity (32) and that core biopsy samples can be used to reliably assess intertumoral differences (33–37) provided us with a rationale for comparing global imaging-based metrics (mean LAC/PYR and mean summed SNR_{LAC}) with the results from IHC and RNA sequencing of single tumor biopsies. The strong correlation between the LAC/PYR with tumor volume, which is known to correlate with hypoxia (38), led us to investigate the contribution of hypoxia to the measured lactate signal. In tumors with a high LAC/PYR, there was a significant increase in HIF1α expression on RNA sequencing (R = 0.83, P = 0.043) (SI Appendix, Fig. S4), suggesting that hypoxia may account for the correlation between LAC/PYR and tumor volume.

Metabolic reprogramming of cancer cells is often the downstream effect of oncogene activation or deletion of tumor suppressor genes (39–41). MCT1, which imports pyruvate into cells, and LDHA, which catalyzes hyperpolarized ¹³C label exchange between the injected pyruvate and endogenous lactate pool, can be up-regulated by the transcription factors HIF-1α and c-Myc, either constitutively, such as following activation of the

Fig. 3. The ¹³C-pyruvate and ¹³C-lactate images acquired following i.v. injection of hyperpolarized [1-¹³C]pyruvate in a patient with TNBC. (A) Coronal T1 3D spoiled gradient echo (SPGR) image. (B) Coronally reformatted DCE image at peak enhancement after i.v. injection of a gadolinium-based contrast agent. (C) Summed hyperpolarized ¹³C-pyruvate and (D) summed hyperpolarized ¹³C-lactate images: area of low ¹³C-pyruvate and ¹³C-lactate signals in the center of the tumor, likely corresponding to an area with low enhancement on DCE. (E) LAC/PYR map showing intratumoral heterogeneity (background removed by thresholding). The dominant intratumoral heterogeneity was concordant between the DCE-MRI and HP ¹³C MRI images and represents decreased delivery of both the gadolinium-based contrast agent and ¹³C-pyruvate to the center of the tumor. (F and G) Dynamic hyperpolarized ¹³C-pyruvate and ¹³C-lactate images acquired over 15 time points after i.v. injection of hyperpolarized [1-¹³C]pyruvate (delay = 12 s; temporal resolution = 4 s).
suggests that the hyperpolarized [1-13C]pyruvate experiment expected. The lack of correlation between the other parameters tissue perfusion, the correlation with summed SNR PYR is to be PYR and summed SNR LAC. The expression of MCT1 is elevated vate in preference to lactate, can be explained by the influence of pyruvate transport on the rate of exchange. A number of studies have demonstrated that the tumor cell pyruvate transport can have a significant influence on 13C label exchange and the apparent exchange rate, including experiments on the effects of pyruvate concentration (44), cell lysis (45), modulations of LDH activity (45), and MCT1 inhibition (29), and a recent study in prostate cancer patients which analyzed MCT1 expression (46). Hyperpolarized 13C MRI was complementary to the DCE-MRI measurements, with a correlation between k ρ and the summed SNR PYR but no correlation between the other parameters derived from the DCE-MRI and the hyperpolarized 13C magnetic resonance spectroscopic imaging data. Since k ρ is related to tissue perfusion, the correlation with summed SNR PYR is to be expected. The lack of correlation between the other parameters suggests that the hyperpolarized [1-13C]pyruvate experiment reflects the specific aspects of tumor biology that are not captured by DCE-MRI. The combination of the two imaging strategies could be exploited for early response assessment, where quantitative DCE-MRI has demonstrated the potential to increase accuracy in the prediction of pCR compared to standard clinical MRI, but the results still depend on the molecular tumor subtype (47, 48). Response assessment using proton magnetic resonance spectroscopy (1H-MRS) has proven challenging in the breast, due to overlap of the lactate resonance with the intense lipid signals from adipose tissue (49). A recent multicenter study on the assessment of early treatment response in breast cancer using 1H-MRS showed very limited feasibility (50). Although uptake of the glucose analog 18F-FDG imaged with positron emission tomography is widely used in oncological imaging for cancer detection, staging, and response assessment, ionizing radiation should ideally be minimized in women of reproductive age, and it is not used routinely in the assessment of primary breast cancer. In addition, it reflects cellular uptake via the glucose transporters and phosphorylation by hexokinase, but it does not allow the assessment of the downstream metabolism that can be probed with hyperpolarized [1-13C]pyruvate.

This study, although in a relatively small cohort, demonstrates the feasibility and safety of hyperpolarized 13C MRI in patients with early breast cancer and that metrics obtained from 13C MRS measurements of hyperpolarized [1-13C]pyruvate metabolism are correlated with the molecular characteristics of the tumors. Increased hyperpolarized [1-13C]lactate signal in larger and more-aggressive tumors appears to be driven by hypoxia, through increased MCT1 expression.

ACKNOWLEDGMENTS. This work was supported by a Wellcome Trust Strategic Award, Cancer Research UK (CRUK: Grants C8742/A18097, C19212/A16628, C19212/A191376, and C197/A14665), the Austrian Science Fund (Grant J3406-B26), the CRUK Cambridge Centre, the CRUK & Engineering and Physical Sciences Research Council Cancer Imaging Centre in Cambridge and Manchester, the Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre (Grant C9685/A25177), Addenbrooke’s Charitable Trust, the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, and Cambridge University Hospitals National Health Service Foundation Trust.

1. L. A. Torre et al., Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).
2. S. Paik et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).
3. D. Hanahan, R. A. Weinberg, Hallmarks of cancer. The next generation. Cell 144, 646–674 (2011).
4. D. Hanahan, R. A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000).
5. S. Kim, D. H. Kim, W.-H. Jung, J. S. Koo, Metabolic phenotypes in triple-negative breast cancer. Tumour Biol. 34, 1699–1712 (2013).
6. V. Cappelletti et al., Metabolic footprints and molecular subtypes in breast cancer. Dis. Markers 2017, 1–19 (2017).
7. S. J. Nelson et al., Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).
8. J. Kurhanewicz et al., Hyperpolarized 13C MRI: Path to clinical translation in oncology. Magn. Reson. Med. 15, 1–16 (2019).
9. P. Dutta et al., Evaluation of LDHA and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. Cancer Res. 73, 4190–4195 (2013).
10. K. Gotman, R. T. Zandt, M. Thaning, Real-time metabolic imaging. Proc. Natl. Acad. Sci. U.S.A. 103, 11270–11275 (2006).
11. M. J. Albers et al., Hyperpolarized 13C lactate, pyruvate, and alamine: Noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 68, 8607–8615 (2008).
12. S. E. Day et al., Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387 (2007).
13. T. H. Withey et al., Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarized [1-13C]pyruvate and [1,4-13C]fumarate. Br. J. Cancer 100, 1400–1406 (2009).
14. I. Park et al., Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn. Reson. Med. 80, 864–873 (2018).
15. R. Aggarwal, D. B. Vigneron, J. Kurhanewicz, Hyperpolarized 1-13C-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur. Urol. 72, 1028–1029 (2017).
16. A. Pennisi, T. Kiefer-Emmons, I. Makhoul, L. Hutchins, Relevance of pathological complete response after neoadjuvant therapy for breast cancer. Breast Cancer Res. Treat. 103–104 (2016).
17. P. Rastogi et al., Preoperative chemotherapy: Updates of national surgical advanced breast and bowel project protocols B-8 and B-27. J. Clin. Oncol. 26, 778–785 (2008).
18. P. Cortazar et al., Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).
19. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 19, 27–39 (2018).
38. J. Dunst et al., Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlenther. Onkol. 179, 521–526 (2003).

39. M. P. Ogrodzinski, J. J. Bernard, S. Y. Lunt, Deciphering metabolic rewiring in breast cancer subtypes. Transl. Res. 189, 105–122 (2017).

40. R. J. Deberardinis, N. Sayed, D. Ditsworth, C. B. Thompson, Brick by brick: Metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

41. I. Elia, S.-M. Fendt, In vivo cancer metabolism is defined by the nutrient microenvironment. Transl. Cancer Res. 5, S1284–S1287 (2016).

42. R. Courtnay et al., Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep. 42, 841–851 (2015).

43. C. S. Hong et al., MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 14, 1590–1601 (2016).

44. T. Harris, G. Eliyahu, L. Frydman, H. Degani, Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 106, 18131–18136 (2009).

45. T. H. Witney, M. I. Kettunen, K. M. Brindle, Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J. Biol. Chem. 286, 24572–24580 (2011).

46. K. L. Granlund et al., Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab., 10.1016/j.cmet.2019.08.024 (2019).

47. A. M. Fowler, D. A. Mankoff, B. N. Joe, Imaging neoadjuvant therapy response in breast cancer. Radiology 285, 358–375 (2017).

48. S. Drisis et al., Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: The impact of breast cancer subtypes on the diagnostic accuracy. Eur. Radiol. 26, 1474–1484 (2016).

49. P. J. Bolan, Magnetic resonance spectroscopy of the breast: Current status. Magn. Reson. Imaging Clin. N. Am. 21, 625–639 (2013).

50. P. J. Bolan et al.; ACRIN Trial team ISPY-1 Investigators, MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J. Magn. Reson. Imaging 46, 290–302 (2017).