Spectrum of uropathogens and their susceptibility to antimicrobials in pregnant women: a retrospective analysis of 5-year hospital data

Ala’a Matalka1, Naser Al-Husban2, Oqba Alkuran2, Lama Almuhalis3, Asma Basha2, Mahmoud Eid4, Mohammad S Elmuhtaseb5 and Khaled Al Oweidat6

Abstract
Objective: Urinary tract infections (UTI) are common during pregnancy. Identification of antimicrobial susceptibility patterns of microorganisms in pregnant women is important to select the most appropriate antimicrobial. We assessed common uropathogens in pregnant women with UTI and antimicrobial susceptibility, to guide empirical antibiotic selection.

Methods: In this retrospective study, we analyzed mid-stream urine culture and antibiotic susceptibility data from pregnant women who attended Jordan University Hospital during 2014 to 2018. Data were collected from patients’ charts and urine cultures, and sensitivity results were extracted from the laboratory electronic system. We calculated descriptive statistics and determined correlations among pathogens and antibiotics.

Results: We examined 612 positive urine cultures from 559 pregnant women, including 163 (29.2%) inpatients. Escherichia coli (29.4%) was the most frequently identified microorganism, followed by coagulase-negative staphylococci (CoNS) (21.6%). All bacterial isolates were sensitive to aztreonam, chloramphenicol, fosfomycin, ofloxacin, pefloxacin, piperacillin, and colistin sulfate;
87.5% were sensitive to amikacin. Only 15.79%, 18.93%, and 17.91% were sensitive to oxacillin, nalidixic acid, and erythromycin, respectively.

Conclusion: *E. coli* and CoNS were the most commonly identified microorganisms in this study. We found increased antibiotic resistance in *Enterobacter* species. The chosen antimicrobial therapy in pregnancy should be determined by sensitivity/resistance and fetomaternal safety.

Keywords
Antimicrobial, culture, pregnancy, resistance, sensitivity, urine

Date received: 13 February 2021; accepted: 8 March 2021

Introduction

Pregnant women are at increased risk of urinary tract infections (UTIs) owing to physiological changes. Infections can cause pregnancy complications and may be transmissible to the fetus. UTIs are the most common type of infection during pregnancy, affecting up to 10% of pregnant women, and all UTIs during pregnancy, including asymptomatic infections, require treatment. Asymptomatic or symptomatic bacteriuria occurs in 5% to 10% and 1% to 3% of pregnant women, respectively. Screening for and treatment of asymptomatic bacteriuria in pregnancy is standard obstetric care, and most antenatal guidelines include routine screening for asymptomatic bacteriuria. Antimicrobial resistance represents a major global challenge that is largely attributed to widespread misuse and overuse of antimicrobials by physicians or by other health care workers in some countries and self-medication practices among individual patients to treat infections. The identification of frequently isolated pathogens in UTIs among pregnant women and antimicrobial susceptibility patterns of such microorganisms will help in guiding physicians with selecting the appropriate antimicrobial therapy, which will improve management outcomes and will help in reducing the emergence of resistant microbial strains. The presence of asymptomatic bacteriuria and antibiotic susceptibility testing results should be taken into consideration during the management of pregnant women who are visiting an antenatal care clinic.

Although infection with uropathogens among pregnant women is a common medical problem, there is a little information on these microorganisms in pregnancy, and very little is known about their antimicrobial susceptibility patterns. Investigation of this issue is needed, to identify the etiologic agents involved for subsequent treatment with the proper antimicrobial agent.

In this study, we aimed to determine the most frequent UTI pathogens and their antimicrobial susceptibility among pregnant women who attended Jordan University Hospital (JUH) from 2014 to 2018. The results will help guide the management of UTIs in pregnancy.

Methods

Study design

In this retrospective study, we collected urine culture and sensitivity results for pregnant women who were seen at JUH from
2014 to 2018. The pregnancy status of patients was confirmed in urine or blood pregnancy testing and ultrasound scan examination. Urine cultures were requested on the clinical grounds of suspected UTI, with symptoms of frequency, urgency, incontinence, suprapubic pain, low back pain, renal angle tenderness, fever, chills or rigors or in patients with asymptomatic bacteriuria in routine urinalysis as evidenced by white blood cell count more than 10 to 12/high power field.

This study was approved by the institutional review board at JUH (decision number 112/2019, dated 14 May 2019). The requirement for informed consent was waived as the study was retrospective and data were collected using patients’ files, and confidentiality and anonymity were maintained throughout the study process.

Study sample collection

The microbiological and antimicrobial susceptibility data in this study were obtained from records of the clinical microbiology laboratory and JUH electronic databases. Data from 2014 to 2018 were extracted using a data extraction sheet. The clinical microbiology laboratory of JOH uses a predefined procedure for culturing, bacterial identification, and susceptibility testing.

Urine sample collection, primary inoculation, and analysis

About 10 mL of mid-stream urine was collected by pregnant women, after appropriate instruction was given. Urine samples were delivered immediately to the microbiological laboratory. Women were given specific instructions to avoid contamination and avoid using of any kind of antiseptics on the vulva, vagina, and urethral orifice. Only mid-stream samples were taken.

Urine samples were cultured on 5% blood agar and MacConkey agar using calibrated loops in semi-quantitative assessment and incubated in aerobic conditions at 35 to 37°C for 18 to 24 hours. Isolates were identified and confirmed using standard methods including Gram staining; colony morphology on media; growth on selective media; lactose and mannitol fermentation; hydrogen sulfide production; catalase, oxidase, coagulase, and indole tests; citrate utilization; and urease testing. Urine infection cultures were considered positive with bacterial counts ≥10^5/mL. All patients with positive urine cultures were treated.

Antimicrobial susceptibility testing

For reliable detection, laboratories may use conventional, quantitative susceptibility testing methods or specially developed, single concentration agar screening tests for some resistant species, as previously described.9 The antibiotic discs consisted of antibiotics, according to the type of bacteria; for gram-positive bacteria, the antimicrobials listed in Table 1 were tested; for gram-negative bacteria, antimicrobials listed in Table 2 were tested.

Antimicrobial susceptibility testing for UTIs in the laboratory is performed using two groups of antimicrobial discs for cascade reporting, a strategy recommended by the Clinical and Laboratory Standards Institute. In this strategy, the reporting of antimicrobial susceptibility test results for

Table 1. Antimicrobials for gram-positive bacteria.
Ring A (for gram-positive bacteria)
Ampicillin
Levofloxacin
Chloramphenicol
Clindamycin
Erythromycin
Gentamycin
Oxacillin
Vancomycin
*Tigecycline

Provided as single discs.
the second group of agents (e.g., broader-spectrum, more costly) may only be reported if an organism is resistant to primary agents within a particular drug class. If a pathogen shows resistance to all of these, the laboratory will move to the second stage for testing broad-spectrum antibiotics.

Identification and sensitivity testing were done if the culture was pure and growth was significant ($\geq 10^5$ CFU/mL). If the culture growth involved a mix of two pathogens and no isolate was dominant, or more than two types of colonies were grown, then it was reported as a mixed growth and clinical correlation was needed to make a determination. In such cases, no sensitivity testing was carried out.

Table 2. Antimicrobials for gram-negative bacteria.

Ring B (for gram-negative bacteria)	Augmentin	Cefuroxime	Cotrimoxazole	Gentamicin	Nalidixic acid	Nitrofurantoin	Norfloxacin	Cefixime	Amikacin	Cefepime	Cefoxitin	Ceftazidime	Ceftriazone	Ciprofloxacin
Imipenem	*Ertapenem*	*Tigecycline*	*Tigecycline*	Ampicillin	Cefalotin	Cefpodoxime	Meropenem	Piperacillin/tazobactam	Tobramycin	Colistin sulphate	Cefotaxime	*Provided as single discs.*		

Statistical analysis

Data were analyzed using IBM SPSS software version 22 (IBM Corp., Armonk, NY, USA). Chi-square or Fisher’s exact tests were used to identify any significant association between the most frequent pathogens and their antimicrobial susceptibility in pregnant women.

Results

A total of 612 urine samples from pregnant women with suspected UTI were selected for isolation and identification of bacteria and antimicrobial susceptibility testing. Among these, 11 patients showed recurrent infections. The mean age of patients who underwent urine testing was 32.3 ± 6.5 years. Of 559 patients, 29.2% (163/559) were inpatients and 70.8% (396/559) were outpatients (Table 3).

The most frequently identified microorganism identified was Escherichia coli (29.4%) followed by coagulase-negative staphylococci (CoNS; 21.7%); Candida was identified in 48 samples (7.8%) (Table 4).

All isolate were sensitive to aztreonam, chloramphenicol, fosfomycin, ofloxacin, pefloxacin, piperacillin, and colistin sulphate; 87.5% were sensitive to amikacin. Only 15.79%, 18.93%, and 17.91% of cultures were sensitive to oxacillin, nalidixic acid, and erythromycin, respectively (Table 5).

More than three-quarters (76.65%) of isolates were sensitive to nitrofurantoin (Table 5). Regarding E. coli, most cultures were sensitive to meropenem, ertapenem, imipenem, piperacillin/tazobactam, and cefotaxime. However, approximately two-thirds were resistant to nalidixic acid and ampicillin. All Klebsiella cultures were sensitive to amikacin, ertapenem, and imipenem. Nearly half of Klebsiella isolates were sensitive to different cephalosporins.
whereas only 20.9% were sensitive to nitrofurantoin. *Enterobacter* species showed 100% sensitivity to amikacin, ciprofloxacin, co-trimoxazole, ertapenem, and imipenem. These cultures were most resistant to augmentin, cefoxitin, and cefuroxime (Table 6).

All *Proteus* species showed resistance to augmentin, cefepime, cefixime, cefuroxime, nalidixic acid, nitrofurantoin, and norfloxacin. These microorganisms were sensitive to colistin sulphate. Of these species, 75% were sensitive to co-trimoxazole and gentamycin (Table 5). All CoNS isolates were sensitive to tigecycline, vancomycin, ampicillin, and linezolid, and most were sensitive to quinupristin (93.3%), gentamicin (91.4%), and augmentin (86.7%). These microorganisms were less sensitive to cefixime, nalidixic acid, benzylpenicillin, and oxacillin, compared with other antibiotics (Table 7). *Staphylococcus aureus* isolates were 100% sensitive to ciprofloxacin, levofloxacin, linezolid, moxifloxacin, tigecycline, vancomycin, and quinupristin. *Enterococcus* species were sensitive to augmentin, cefixime, nitrofurantoin, linezolid, oxacillin, tetracycline, and

Microorganism	Number	Percent
Escherichia coli	180	29.4
Coagulase-negative staphylococci	132	21.7
Enterococcus spp.	80	13.1
Streptococcus agalactiae (Group B)	48	7.8
Candida	48	7.8
Klebsiella	43	7.0
Staphylococcus spp. (other non-CoNS or *S. aureus*)	15	2.4
Group D streptococci (*Enterococcus faecalis*)	14	2.3
Staphylococcus aureus	14	2.3
Proteus	6	0.9
Enterobacter spp.	6	0.9
Acinetobacter	4	0.7
No bacterial growth	4	0.7
Other microorganisms (*Corynebacterium, Pseudomonas*)	12	2.0
Coliforms, unlabeled, broken, contaminated samples	6	1.0

CoNS, coagulase-negative staphylococci.
Table 5. Overall sensitivity of antimicrobial agents.

Antimicrobial agent	Sensitive		Resistant		Intermediate		Total
	No.	%	No.	%	No.	%	
Amikacin	98	87.5	14	12.5	112		
Ampicillin	66	48.18	70	51.09	137		
Augmentin	321	68.3	137	29.15	12	2.55	470
Aztreonam	1	100	1				1
Benzylpenicillin	37	48.05	40	51.95			77
Cefalotin	41	41.41	41	41.41	17	17.17	99
Cefepime	41	36.28	72	63.72			113
Cefixime	129	41.88	179	58.12			308
Cefotaxime	132	60	88	40			220
Cefoxitin	179	84.83	29	13.74	3	1.42	211
Cefpodoxime	61	62.24	37	37.76			98
Ceftazidime	133	62.74	79	37.26			212
Ceftiraxone	73	59.35	50	40.65			123
Cefuroxime	260	64.52	142	35.24	1	0.25	403
Chloramphenicol	6	100	1				6
Ciprofloxacin	218	80.15	50	18.38	4	1.47	272
Clindamycin	22	39.29	31	55.36	3	5.36	56
Co-trimoxazole	283	62.47	170	37.53			453
Colistin Sulphate	2	100	1				2
Ertapenem	110	98.21	2	1.79			112
Erythromycin	12	17.91	47	70.15	8	11.94	67
Fosfomycin	1	100	1				1
Gentamicin	358	70.06	152	29.75	1	0.2	511
Imipenem	203	96.67	7	3.33			210
Levofloxacin	66	84.62	7	8.97	5	6.41	78
Linezolid	68	98.55	1	1.45			69
Meropenem	101	98.06	2	1.94			103
Minocycline	1	50	1	50			2
Moxifloxacin	44	88	2	4	4	8	50
Nalidixic acid	71	18.93	304	81.07			375
Nitrofurantoin	417	76.65	102	18.75	25	4.6	544
Norfloxacin	273	57.96	198	42.04			471
Ofloxacin	1	100	1				1
Oxacillin	6	15.79	32	84.21			38
Pefloxacin	1	100	1				1
Piperacillin	1		1				1
Piperacillin/tazobactam	99	96.12	2	1.94	2	1.94	103
Quinupristin	21	72.41	8	27.59			29
Tetracycline	80	47.06	90	52.94			170
Ticarcillin	1	33.3	2	66.7			3
Ticarcillin/clavulanic acid	1	50	1	50			2
Tigecycline	59	95.16	3	4.84			62
Tobramycin	82	84.54	9	9.28	6	6.45	97
Vancomycin	89	97.8	2	2.2			91
Table 6. Antimicrobial sensitivity in gram-negative bacterial isolates.

	Escherichia coli (180)	Klebsiella (43)	Enterobacter (6)	Proteus (6)	Acinetobacter (4)															
	S	R	I	S	R	I	S	R	I	S	R	I	S	R	I					
Amikacin	71	84.5	13	15.5	14	100	4	100	4	100	1	50	1	50						
Augmentin	86	48	85	47.6	6	3.4	23	56.1	12	29.3	6	14.6	1	16.7	5	83.3				
Cefepime	53	63.8	30	36.2	7	50	7	50	3	75	1	25	4	100	2	100				
Cefixime	68	59.7	46	40.3	10	52.6	9	47.4	1	25	3	75	5	100	2	100				
Cefotaxime	88	57.9	62	42.1	17	47.2	19	52.8	4	66.7	2	33.3	5	100	2	50	2	50		
Cefoxitin	132	86.8	18	11.8	2	1.3	35	94.6	2	5.4	1	16.7	5	83.3	5	100	1	50	1	50
Ceftriaxone	95	62.1	68	37.9	18	48.6	19	51.4	5	83.3	1	16.7	4	100	2	50	2	50		
Cefuroxime	45	52.9	40	47.1	8	53.3	7	46.7	2	50	2	50	4	100	2	50	2	50		
Ciprofloxacin	107	60.5	69	39	1	0.5	21	50	21	50	1	16.7	5	83.3	6	100	2	100		
Co-trimoxazole	116	75.8	38	31.2	36	97.3	1	2.7	6	100	5	100	1	25	3	75				
Ertapenem	101	55.1	79	43.9	35	58.1	18	41.9	6	100	5	83.3	1	16.7	3	75	1	25		
Gentamicin	83	98.8	1	1.2	15	100	4	100	4	100	1	50	1	50						
Imipenem	152	84.4	27	15.0	1	0.6	35	81.4	8	16.6	5	83.3	1	16.7	6	100	3	75	1	25
Nalidixic acid	130	75.0	36	20.0	9	5.0	9	20.9	19	44.2	34.9	1	66.7	6	100	2	100			
Nitrofurantoin	132	73.9	46	26.1	40	95.2	2	4.8	5	83.3	1	16.7	6	100	2	100				
Norfloxacin	41	64.6	22	35.4	11	64.7	6.0	35.3	33.3	66.7	1	100	1	50	1	50				
Tetracycline	3	60.0	2	40.0	3	75	1	25	1	100										
Tigecycline	25	35.7	42	62.8	1	1.4	23	100	1	100										
Ampicillin	28	35.7	33	35.7	17	24.3	11	47.8	12	52.2	2	100	1	100						
Cefpodoxime	46	65.7	22	34.3	11	47.8	12	52.2	2	100	1	100								
Meropenem	68	100	22	100	2	100	1	100	1	50	1	50								
Piperacillin/	65	95.7	1	2	2.9	24	100	2	100	1	100	1	50	1	50					
Tazobactam																				
Tobramycin	45	88.5	4	7.7	1	2	14	77.8	3	22.2	2	100	1	100						
Colistin sulphate	1	100																		

S, sensitive; R, resistant; I, intermediate.
Table 7. Antimicrobial sensitivity in gram-positive bacterial isolates.

Gram-positive bacteria	Coagulase-negative staphylococci (98)	Enterococcus spp.	Streptococcus agalactiae (Group B)	Staphylococcus spp.	Enterococcus faecalis	Staphylococcus aureus																		
S	R	I	S	R	I	S	R	I	S	R	I	S	R	I	S	R	I	S	R	I	S	R	I	
Augmentin	85	86.7	13	13.3	80	100	30	100	7	46.7	8	53.3	2	100	6	60	4	40						
Cefixime	11	11.2	87	88.8	4	100	26	96.3	3	3.7	1	6.7	14	83.3	1	50	1	50	1	10	9	90		
Cefuroxime	80	81.6	18	18.4	1	25	3	75	29	100	6	40	9	60	1	50	1	50	3	30	7	70		
Ciprofloxacin	28	80	4	11.4	3	8.6	7	77.8	1	11.1	1	11.1	9	75	3	25	4	100						
Cotrimoxazole	88	68.2	41	31.8	1	25	3	75	29	76.3	9	23.7	10	66.7	5	33.3	2	100	9	64.3	5	35.7		
Gentamycin	117	91.4	9	8.6	2	2.8	68	97.2	13	41.4	17	58.6	6	46.7	8	53.3	2	66.7	1	33.3	8	57.1	6	42.9
Nalidixic acid	2	2	96	98	1	4.7	70	98.6	1	3.4	28	96.6	1	6.7	14	83.3	2	100	10	100				
Nitrofurantoin	115	87.9	16	12.1	76	95	4	5	38	95	2	5	14	93.3	1	6.7	14	100	10	71.4	4	28.6		
Norfloxacin	61	62.2	38	37.8	2	3	65	97	4	13.3	26	86.7	10	66.7	5	33.3	2	100	4	40	6	60		
Benzylpenicillin	2	5.7	34	94.3	8	88.9	1	11.1	18	100	9	75	3	25	100									

| Table 7. Antimicrobial sensitivity in gram-positive bacterial isolates. |
vancomycin (Table 7); all were resistant to nalidixic acid, benzylpenicillin, and oxacillin. All *Enterococcus faecalis* cultures were sensitive to augmentin, nitrofurantoin, linezolid, tigecycline, vancomycin, and ampicillin, but all isolates were resistant to cotrimoxazole, nalidixic acid, norfloxacin, tetracycline, and quinupristin (Table 7). Most *Streptococcus agalactiae* (Group B) isolates were sensitive to augmentin, cefixime, cefuroxime, nitrofurantoin, benzylpenicillin, levofloxacin, linezolid, moxifloxacin, tigecycline, vancomycin, ampicillin, and quinupristin (Table 7). All *Candida* isolates were sensitive to micafungin and voriconazole, and most were sensitive to amphotericin B, fluconazole, fluconazole, and caspofungin (Table 8). A history of antibiotic therapy was the only variable that remained an independent factor for the occurrence of multi-drug resistant bacterial infection among pregnant women (odds ratio [OR] 5.461, 95% confidence interval [CI] 1.622–17.578; *p* < 0.05) (Table 9).

Discussion

Pregnant women are at increased risk of developing UTI, mainly because of a shift in the position of the urinary tract and

Table 8. Anti-fungal sensitivity and resistance patterns.

Anti-fungal	S (%) (n)	R (%) (n)	I (%) (n)
Amphotericin B	95.8% (46)	4.2% (2)	
Caspofungin	87.5% (42)	4.2% (20)	8.3% (4)
Fluconazole	90% (43)	10% (5)	
Flucytosine	90.1% (43)	9.9% (5)	
Voriconazole	100% (48)		
Micafungin	100% (48)		

S, sensitive; R, resistant; I, intermediate.

Table 9. Multi-drug resistance among pregnant women.

Variable	Yes	No	COR (95% CI)	AOR (95% CI)
No. of pregnancies				
Primigravida	31	10	1	
Multigravida	17	17	0.318 (0.114–1.011)	0.441 (0.019–1.558)
History of UTI				
Yes	24	10	2.578 (0.955–8.615)	2.513 (0.565–12.250)
No	20	20	1	
Antibiotic therapy				
Yes	25	8	5.375 (1.760–18.20)	5.461 (1.622–17.578)*
No	20	25	1	

* p-value < 0.05.

COR, crude odds ratio; AOR, adjusted odds ratio; CI, confidence interval; MDR, multi-drug resistant; UTI, urinary tract infection.
hormonal changes throughout pregnancy, making it easier for bacteria to reach the kidney and leading to both symptomatic and asymptomatic bacteriuria. UTIs can adversely affect both the woman and her fetus, without timely intervention.1–3 Initial screening and antimicrobial treatment are the preferred interventions. The findings of this study showed that \textit{E. coli} was the most commonly identified pathogen, which was in line with the findings of previous studies, such as that by Tandan et al.10 in which \textit{E. coli} was found to be the commonest UTI-causing organism. In addition, Gessese et al.5 found that \textit{E. coli} was the most frequently identified pathogen in 46.4\% of study participants with mean age 25 years. Those authors also identified \textit{S. aureus} in 14.3\% of participants, CoNS in 14.3\%, and \textit{Proteus} in 10.6\%. Souza et al.11 found that \textit{E. coli} and \textit{S. aureus} were the most commonly identified species, and 89\% of isolates were sensitive to fosfomycin. All cultures in this study were sensitive to fosfomycin. Assefa et al.12 also found high susceptibility to amoxicillin/clavulanic acid (70\%), chloramphenicol (83.3\%), gentamicin (93.3\%), kanamycin (93.3\%), nitrofurantoin (87.7\%), and cotrimoxazole (73.3\%).

Regarding \textit{E. coli} susceptibility and resistance, Kibret et al.13 found results similar to the findings of this study. Those authors identified high resistance rates to amoxicillin (86.0\%) and tetracycline (72.6\%) and a high degree of sensitivity to nitrofurantoin (96.4\%), gentamicin (90.6\%), and ciprofloxacin (79.6\%). Most \textit{E. coli} isolates in this study were susceptible to norfloxacin, which is relatively safe for use in pregnancy and breastfeeding.14–18 \textit{E. coli} is considered to be the predominant uropathogenic bacteria because of a number of virulence factors related to invasion and colonization of the urinary epithelium. \textit{E. coli} is also related to ascent from perirethral regions contaminated by fecal flora because of the close proximity of the perianal area. Chloramphenicol, tetracyclines, and cotrimoxazole should be avoided in pregnancy.19 However, during early pregnancy chloramphenicol treatment presents little, if any, teratogenic risk to the fetus in humans.20

Regarding use of nitrofurantoin in pregnancy, there is no increased risk for cardiovascular malformations, oral cleft, or craniostenosis but the risk of hypoplastic left heart syndrome has been demonstrated (OR 3.07, 95\% CI 1.59–5.93).20 Muanda et al.21 found that exposure in utero to clindamycin, doxycycline, quinolones, macrolides, and phenoxymethylpenicillin was linked to organ-specific malformations whereas exposure to amoxicillin, cephalosporins, and nitrofurantoin was not associated with major congenital malformations. Bookstaver et al.22 concluded that beta-lactams, vancomycin, nitrofurantoin, metronidazole, clindamycin, and fosfomycin were generally considered safe and effective in pregnancy whereas fluoroquinolones and tetracyclines should generally be avoided in pregnancy. Among gram-positive bacteria, CoNS showed higher resistance rates to ciprofloxacin, norfloxacin, kanamycin, gentamicin, nitrofurantoin, erythromycin, and amoxicillin/clavulanic acid. The resistance to nitrofurantoin of gram-positive and gram-negative bacteria was comparatively low in this study. The reason might be owing to less frequent use of nitrofurantoin in the study area. In the present study, gram-negative \textit{Enterobacter} species showed significant resistance to cefuroxime, cefoxitin, and cefalotin. This finding indicates that the recognized practice of oral empirical treatment with these agents should be abandoned. Emerging resistant \textit{Enterobacter} species have also been identified in other studies.23–26 Napier et al.27 identified colistin-heteroresistant \textit{Enterobacter cloacae} in the United States. In the present study, all
bacterial isolates were sensitive to colistin sulphate. Ceftazidime–avibactam, colistin, polymyxin B, fosfomycin, aztreonam, aminoglycosides, and tigecycline are treatment options for UTIs caused by carbapenem-resistant Enterobacteriaceae.28

Contrary to Enterobacter, Proteus species were very sensitive to most cephalosporins, except ceftriaxone. Resistance to tetracycline is of little importance in our study as this antibiotic is contraindicated in pregnancy. For better management, detection of extended-spectrum beta-lactamases (ESBL) should be conducted routinely for Proteus isolates and the genotype surveyed periodically.29 A high prevalence of ESBL and AmpC β-lactamases has been found in Proteus infections.30 Phenotypic methods could be implemented in routine diagnostic laboratories along with susceptibility testing, to help in the control of infections.31 The low resistance levels observed in the present study might be associated with the relative inaccessibility and high prices of these drugs compared with other antimicrobials. Thus, these drugs can be used as adjunct medications in the management of UTIs.

The second most common uropathogen identified in our study was Staphylococcus species. The findings of the antimicrobial resistance profile are supported by the findings of numerous previous studies showing that Staphylococcus species are highly resistant gram-negative bacteria. In addition, most isolated gram-negative bacteria are sensitive to gentamicin, ceftazidime, and ciprofloxacin whereas these bacteria are resistant to ampicillin, chloramphenicol, and amoxycillin.32,33

CoNS are sensitive to a wide range of antimicrobials but are resistant to benzylpenicillin and oxacillin. Taponen et al.34 found that penicillin resistance was the most common type of antimicrobial resistance in CoNS, and Staphylococcus epidermidis was the most resistant among the four major species. Those authors also found that phenotypic oxacillin resistance was found in all four main species. CoNS are challenging owing to the large proportion of methicillin-resistant strains and increasing number of isolates with less susceptibility to glycopeptides.35 Our study findings indicated high sensitivity of CoNS to gentamicin, vancomycin, and linezolid, which was in agreement with the findings of Cui et al.36 The virulent nature of this infection justifies the use of such agents in pregnancy.

Enterococcus species were susceptible to augmentin, nitrofurantoin, linezolid, tigecycline, vancomycin, and ampicillin. According to Fallah et al.,37 linezolid, chloramphenicol, and nitrofurantoin are the most effective agents against Enterococcus species. All E. faecalis cultures were sensitive to a wide range of antimicrobials; they were all resistant to cotrimoxazole, nalidixic acid, norfloxacin, tetracycline, and quinupristin. Hussain et al.38 found that 90.09% of E. faecalis strains exhibited resistance to gentamicin, 86.95% to norfloxacin, and 85.71% exhibited multi-drug resistance. Among the urine cultures tested, 7.8% were Streptococcus agalactiae (Group B), and recto–vaginal swab samples showed a 25.5% carriage rate in the third trimester, as reported by Slotved et al.39 Most Streptococcus agalactiae (Group B) cultures were sensitive to a wide range of antibiotics including augmentin, cefuroxime, and benzylpenicillin. Among 481 recto–vaginal cultures from pregnant women in a study by Shore et al.,40 all were sensitive to penicillin and 19% were resistant to clindamycin. The rate of recurrent infection in this study was 1.8%. In a national sample of non-pregnant women in the United States with uncomplicated UTI, the overall incidence of recurrence was 102/100,000 women.41

Candida accounted for only 7.8% of all infections in this study. Candida showed
sensitivity to most antifungals tested. Pregnancy is a risk factor for UTIs owing to *Candida* species.\(^\text{42}\) Pregnant women are mainly treated with fluconazole and amphotericin B deoxycholate because other drugs have extremely low concentrations in urine.\(^\text{43}\)

There are some limitations to this study. Routine screening and treatment are still a matter of debate and depend on the prevalence of pathogens. Antimicrobial treatment has not yet shown any benefit for the outcomes of pregnancy,\(^\text{44,45}\) and overtreatment with antibiotics should be prevented owing to the development of resistance. Our choice of the study period of 2014 to 2018 was owing to JUH having begun using an electronic database in 2014. Additionally, this study was only conducted in one hospital. These may be possible sources of bias in this study. Bacterial resistance is currently at a very high rate, which is often associated with the misuse or inappropriate use of antimicrobial drugs, the absence of stringent drug control and monitoring, and failure to follow standard treatment guidelines.

Conclusion

E. coli and CoNS were the most common microorganisms identified in this study. Empirical therapy with meropenem, ertapenem, imipenem, piperacillin/tazobactam, cefoxitin, tigecycline, vancomycin, ampicillin, amikacin, or linezolid are very appropriate. Most of these antibiotics are relatively safe to be used in pregnancy and breastfeeding. We found increased antibiotic resistance in *Enterobacter* species. Oxacillin, nalidixic acid, tetracycline, and erythromycin should not be used empirically owing to increased resistance. The choice of antimicrobial therapy in pregnancy should be determined according to sensitivity/resistance and fetomaternal safety.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Naser Al-Husban https://orcid.org/0000-0002-5896-9848

Mohammad S Elmuhtaseb https://orcid.org/0000-0002-4190-3797

References

1. Leeper C and Lutzkanin A 3rd. Infections during pregnancy. *Prim Care* 2018; 45: 567–586.
2. Szweda H and Jóźwik M. Urinary tract infections during pregnancy - an updated overview. *Dev Period Med* 2016; 20: 263–272.
3. Gilstrap LC 3rd and Ramin SM. Urinary tract infections during pregnancy. *Obstet Gynecol Clin North Am* 2001; 28: 581–591.
4. Schnarr J and Smaill F. Asymptomatic bacteriuria and symptomatic urinary tract infections in pregnancy. *Eur J Clin Invest* 2008; 38: 50–57.
5. Gessese YA, Damessa DL, Amare MM, et al. Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, Central Ethiopia: a cross-sectional study. *Antimicrob Resist Infect Control* 2018; 29: 2597–2601.
6. Muhammed M. Urinary tract infections amongst pregnant women attending a medical centre in Kaduna, Nigeria. *African Journal of Clinical and Experimental Microbiology* 2015; 16: 7–11.
7. Sabharwal ER. Antibiotic susceptibility patterns of uropathogens in obstetric patients. *N Am J Med Sci* 2012; 4: 316–319.
8. Ali IE, Gebrecherkos T, Gizachew M, et al. Asymptomatic bacteriuria and antimicrobial susceptibility pattern of the isolates among pregnant women attending Dessie referral
hospital, Northeast Ethiopia: A hospital-based cross-sectional study. Turk J Urol 2018; 44: 251–260.

9. Jorgensen JH and Ferraro MJ. Antimicrobial susceptibility testing: special needs for fastidious organisms and difficult-to-detect resistance mechanisms. Clin Infect Dis 2000; 30: 799–808. doi: 10.1086/313788. Epub 2000 Apr 28.

10. Tandan M, Sloane PD, Ward K, et al. Antimicrobial resistance patterns of urine culture specimens from 27 nursing homes: Impact of a two-year antimicrobial stewardship intervention. Infect Control Hosp Epidemiol 2019; 40: 780–786. doi: 10.1017/ice.2019.108. Epub 2019 May 6.

11. Souza RB, Trevisol DJ and Schuelter-Trevisol F. Bacterial sensitivity to fosfomycin in pregnant women with urinary infection. Braz J Infect Dis 2015; 19: 319–323.

12. Assefa A, Asrat, D, Woldeamanuel Y, et al. Bacterial profile and drug susceptibility pattern of urinary tract infection in pregnant women at Tikur Anbessa Specialized Hospital Addis Ababa, Ethiopia. Ethiop Med J 2008; 46: 227–235.

13. Kibret M and Abera B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr Health Sci 2011; 11: S40–S45.

14. Product Information. Vabomere (meropenem-vaborbactam). Parsippany, NJ: The Medicines Company.

15. United States National Library of Medicine. Toxnet. Toxicology Data Network. Available from: URL: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?LACT.

16. Product Information. Invanz (ertapenem). West Point, PA: Merck & Company Inc, 2001.

17. Erić M, Leppée M, Sabo A, et al. Beta-lactam antibiotics during pregnancy: a cross-sectional comparative study Zagreb-Novi Sad. Eur Rev Med Pharmacol Sci 2012; 16: 103–110.

18. Nardiello S, Pizzella T and Ariviello R. [Risks of antibacterial agents in pregnancy]. Infez Med 2002; 10: 8–15.

19. Czeizel AE. The estimation of human teratogenic/fetotoxic risk of exposures to drugs on the basis of Hungarian experience: a critical evaluation of clinical and epidemiological models of human teratology. Expert Opin Drug Saf 2009; 8: 283–303. doi: 10.1517/14740330902916459.

20. Goldeberg O, Moretti M, Levy A, et al. Exposure to nitrofurantoin during early pregnancy and congenital malformations: a systematic review and meta-analysis. J Obstet Gynaecol Can 2015; 37: 150–156.

21. Muanda FT, Sheehy O and Berard A. Use of antibiotics during pregnancy and the risk of major congenital malformations: a population-based cohort study. Br J Clin Pharmacol 2017; 83: 2557–2571.

22. Bookstaver PB, Bland CM, Griffin B, et al. A Review of Antibiotic Use in Pregnancy. Pharmacotherapy 2015; 35: 1052–1062.

23. Orighen J, Fernández-Ruiz M, López-Medrano F, et al. Progressive increase of resistance in Enterobacteriaceae urinary isolates from kidney transplant recipients over the past decade: narrowing of the therapeutic options. Transpl Infect Dis 2016; 18: 575–584.

24. Petrikkos G, Markogiannakis A, Papaparaskevas J, et al. Differences in the changes in resistance patterns to third- and fourth-generation cephalosporins and piperacillin/tazobactam among Klebsiella pneumoniae and Escherichia coli clinical isolates following a restriction policy in a Greek tertiary care hospital. Int J Antimicrob Agents 2007; 29: 34–38.

25. Modi N, Damjanovic V and Cooke RW. Outbreak of cephalosporin resistant Enterobacter cloacae infection in a neonatal intensive care unit. Arch Dis Child 1987; 62: 148–151.

26. Meini S, Tascini C, Cei M, et al. AmpC β-lactamase-producing Enterobacteriales: what a clinician should know. Infection 2019; 47: 363–375. doi: 10.1007/s15010-019-01291-9.

27. Napier BA, Band V, Burd EM, et al. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme. Antimicrob Agents Chemother 2014; 58: 5594–5597.
28. Bader SM, Loeb M and Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. *Postgrad Med* 2017; 129: 242–258.

29. Caubey M and Suchitra MS. Occurrence of TEM, SHV and CTX-M β-Lactamases in Clinical Isolates of Proteus Species in a Tertiary Care Center. *Infect Disord Drug Targets* 2018; 18: 68–71.

30. Pal N, Hooja S, Sharma R, et al. Phenotypic Detection and Antibiogram of β-lactamase-producing Proteus Species in a Tertiary Care Hospital, India. *Ann Med Health Sci Res* 2016; 6: 267–273.

31. Mohammed MA, Alnour TM, Shakurfo OM, et al. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. *Asian Pac J Trop Med* 2016; 9: 771–776.

32. Habibi A and Khameneie MK. Antibiotic resistance properties of uropathogenic Escherichia coli isolated from pregnant women with history of recurrent urinary tract infections. *Trop J Pharm Res* 2016; 15: 1745–1750.

33. Kline KA and Lewis AL. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. *Microbiol Spectr* 2016; 4. doi: 10.1128/microbiolspec.UTI-0012-2012.

34. Taponen S, Nykäsenoja S, Pohjanvirta T, et al. Species distribution and in vitro antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitic milk. *Acta Vet Scand* 2016; 58: 12. doi: 10.1186/s13028-016-0193-8

35. Becker K, Heilmann C and Peters G. Coagulase-negative staphylococci. *Clin Microbiol Rev* 2014; 27: 870–926.

36. Cui J, Liang Z, Mo Z, et al. The species distribution, antimicrobial resistance and risk factors for poor outcome of coagulase-negative staphylococci bacteremia in China. *Antimicrob Resist Infect Control* 2019; 8: 65.

37. Fallah F, Yousefi M, Pourmand MR, et al. Phenotypic and genotypic study of biofilm formation in Enterococci isolated from urinary tract infections. *Microb Pathog* 2017; 108: 85–90.

38. Hussain A, Sohail M and Abbas Z. Prevalence of Enterococcus faecalis mediated UTI and its current antimicrobial susceptibility pattern in Lahore, Pakistan. *J Pak Med Assoc* 2016; 66: 1232–1236.

39. Slotved HC, Dayie NTKD, Banini JAN, et al. Carriage and serotype distribution of Streptococcus agalactiae in third trimester pregnancy in southern Ghana. *BMC Pregnancy Childbirth* 2017; 17: 238.

40. Shore EM and Yudin MH. Choice of antibiotic for group B streptococcus in women in labour based on antibiotic sensitivity testing. *J Obstet Gynaecol Can* 2012; 34: 230–223.

41. Suskind AM, Saigal CS, Hanley JM, et al. Incidence and Management of Uncomplicated Recurrent Urinary Tract Infections in a National Sample of Women in the United States. *Urology* 2016; 90: 50–55.

42. Tomczak H, Szałek E and Grześkowiak E. The problems of urinary tract infections with Candida spp. aetiology in women. *Postepy Hig Med Dosw (Online)* 2014; 68: 1036–1039.

43. Etienne M and Caron F. Management of fungal urinary tract infections. *Presse Med* 2007; 36: 1899–1906.

44. Angelescu K, Nussbaumer-Streit B, Sieben W, et al. Benefits and harms of screening for and treatment of asymptomatic bacteriuria in pregnancy: a systematic review. *BMC Pregnancy Childbirth* 2016; 16: 336.

45. Smaill FM and Vazquez JC. Antibiotics for asymptomatic bacteriuria in pregnancy. *Cochrane Database Syst Rev* 2019; 2019: CD000490.