DQI: A Guide to Benchmark Evaluation

Swaroop Mishra Anjana Arunkumar Bhavdeep Sachdeva Chris Bryan Chitta Baral

Abstract
A ‘state of the art’ model A surpasses humans in a benchmark B, but fails on similar benchmarks C, D, and E. What does B have that the other benchmarks do not? Recent research provides the answer: spurious bias. However, developing A to solve benchmarks B through E does not guarantee that it will solve future benchmarks. To progress towards a model that ‘truly learns’ an underlying task, we need to quantify the differences between successive benchmarks, as opposed to existing binary and black-box approaches. We propose a novel approach to solve this underexplored task of quantifying benchmark quality by debuting a data quality metric: DQI.

1. Introduction
We evaluate progress in various AI domains such as NLP and Vision by building and solving increasingly harder benchmarks (and hence developing new models and architectures). Since this involves heavy investment in resources (time, money, hardware, etc.), it is reasonable to ask: Can we rely on these benchmarks? A growing number of recent works (Gururangan et al., 2018; Schwartz et al., 2017; Polliak et al., 2018; Kaushik and Lipton, 2018; Le Bras et al., 2020) reveal that models exploit spurious biases (unintended correlations between input and output (Torralba and Efros, 2011)) instead of the actual underlying features to solve many popular benchmarks. This begs a new question: How do we mitigate spurious biases in benchmarks?

Recently proposed approaches that address this include dataset pruning (Sakaguchi et al., 2019; Li and Vasconcelos, 2019; Li et al., 2018; Wang et al., 2018), residual learning (Clark et al., 2019; He et al., 2019; Mahabadi and Henderson, 2019), adversarial dataset creation (Zellers et al., 2018; Nie et al., 2019), and counterfactual data augmentation (Kaushik et al., 2019; Gardner et al., 2020). Each focuses on a specific part of the data-model loop, as illustrated in Figure 1, but all are limited by binary evaluation: (i) accepting or rejecting a data sample created by a crowdworker (Nie et al., 2019), (ii) retaining or removing data with adversarial filtering (Sakaguchi et al., 2019; Li and Vasconcelos, 2019; Li et al., 2018), (iii) augmenting only counter factual data (Kaushik et al., 2019; Gardner et al., 2020), and/or (iv) including data only if it can fool the model (Zellers et al., 2018; Nie et al., 2019).

Figure 1. Existing approaches to eliminate bias

Binary evaluation is restrictive as it only allows inclusion or deletion of data, and further appendes an overhead on human evaluators as there is uncertainty in class distinction. These approaches can also introduce new kinds of bias, and overfit to a specific model or task (Liu et al., 2019). Other limitations include: (i) wastage of resources invested in creating initial ‘biased’ data, (ii) a dataset creator does not learn what constitutes biased data, and is likely to repeat mistakes, (iii) important aspects of bias, like its dependency on a train-test split, are ignored, (iv) model training on each iteration increases time complexity, and (v) the absence of a suitable and illustrative feedback channel. A metric quantifying benchmark quality could address these issues, but remains underexplored.

As a solution, we propose a novel metric: Data Quality Index (DQI), building on a recent work (Mishra et al., 2020b) which identifies potential bias parameters based on a broad survey of AI literature. We construct an empirical formula for DQI based on these parameters with seven components and a varying number of sub-components and terms (e.g., NLI has 20 sub-components and 133 terms). In our study, lower bias and higher generalizability imply higher DQI.

DQI also captures a broad range of biases, unlike existing binary and black-box approaches (which only consider a specific set of biases). Specifically, we evaluate DQI against...
AFLite, a recent successful adversarial filtering approach, over NLI, QA, and RC datasets. In this paper, we focus on DQI for NLP, though our approach can be extended to other domains such as vision and speech.

DQI is inspired by successful quality indices in domains such as power (Bollen, 2000), air (Jones, 1999), food (Grunert, 2005) and water (Organization, 1993). On a related note, Data Shapley (Ghorbani and Zou, 2019) has been proposed as a metric to quantify the value of each training datum to the predictor performance, but follows a model and task-dependent approach and might fail when biases favor the predictor. So, we focus on building a generic DQI with minimal dependency on models and tasks.

2. DQI

DQI utilizes a generic parameter set (Mishra et al., 2020b) that captures bias properties—including origins, types and impact on performance, generalization, and robustness—for a hierarchy of datasets ranging from NLI to Text Summarization. We abstract this set and use appropriate mathematical transformations to algorithmically compute DQI. Our intuition is simple: a data quality metric should discourage biased samples and encourage samples with higher generalization capability (Mishra et al., 2020a). DQI has seven components corresponding to seven properties that cover various possible inter/intra-sample interactions in an NLP dataset, isolating those which lead to bias.

Formalization: Let X represent a dataset with size as its number of samples. X has vocabulary v, over a set of sentences S, with s denoting sentence lengths across S. Let the set of granularities across X be referenced as $i \{\text{Words, Verbs, Adjectives, Nouns, Adverbs, Bigram, Trigram, Sentences}\}$, with v representing their respective frequencies, and c and d hyperparameters constraining v. Let l span S, and Sim_{lm} represent sentence similarity between the l^{th} sentence and m^{th} sentence of S, where m spans $S - \{l\}$. SIM is a hyperparameter that is a lower bound for Sim_{lm}. e is a hyperparameter that depends on size, which is the minimum threshold for the number of sentences spanned by m where $Sim_{lm} > SIM$, and max_{size} represents the similarity values for the top e sentences, for every $l \in S$. Let $WSim_{uw}$ stands for word similarity between the u^{th} word and the v^{th} word where u spans every word in a sentence $s' \in S$, and v spans $s' - \{u\}$, $WSIM$ is a hyperparameter dependent on size that represents the minimum threshold for $WSim_{uw}$. Let p represent sentences from one side and h represent sentences from the other side, such as premise and hypothesis respectively in NLI. ISIM is a hyperparameter that represents the lower bound for Sim_{ph}, which is the similarity between p and h, with s_p and s_h representing premise and hypothesis lengths respectively. u_w represents unique words in p and h, q spans the sample, and q_p and q_h span the premise and hypothesis respectively. Let g be the upper limit for respective $i \{\text{Words, Verbs, Adjectives, Nouns, Adverbs, Bigram, Trigram, Sentences}\}$ across any individual label. Count$_{label}$ is a vector of size labels, where labels represents the number of labels, which represents how many times each element of each i granularity has been assigned each of the labels, label. Let X_{train} and X_{test} represent the train and test splits respectively of X. $Sim_{train-test}$ stands for similarity between the train and test data and SSIM is a hyperparameter that represents the optimal value of $Sim_{train-test}$. Let sgn represent the signum function. DQI_c represents DQI components as follows:

Vocabulary:

$$DQI_{c1} = \frac{v(X)}{\text{size}(X)} + \frac{\text{sgn}(s(a(b-s)))}{\text{size}(S)}$$

(1)

Inter-Sample N-gram Frequency and Relation:

$$DQI_{c2} = \sum_i \left(\frac{1}{\text{size}(S)} * \sum_{ij} \frac{(u_i - c)(d - v_i)}{\text{size}(1)}\right)$$

(2)

Intra-Sample STS:

$$DQI_{c3} = \frac{\text{size}(S)}{\sum_i \max_{max} \|Sim_{lm} - SIM\| - (Sim_{lm} - SIM)\| + 1}$$

(3)

Intra- Sample Word Similarity:

$$DQI_{c4} = \frac{\text{size}(S)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}} - WSIM)) + 1}$$

(4)

Intra-Sample STS:

$$DQI_{c5} = \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}} - SIM)) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}} - SIM)) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}} - SIM)) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}} - SIM)) + 1}$$

(5)

N-Gram Frequency per Label:

$$DQI_{c6} = \sum_{\text{labels}} \left(\sum_i \frac{1}{\text{size}(S)} * \frac{\text{size}(\epsilon_{\text{Sim}_{lm}})) + 1}{\text{size}(\epsilon_{\text{Sim}_{lm}})) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}})) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}})) + 1} + \frac{\text{size}(X)}{\sum_i \text{size}(\epsilon_{\text{Sim}_{lm}})) + 1}
ight)$$

(6)

Inter-Split STS:

1More details about components and the intuition behind them are in supplemental materials.
We apply DQI to compare its performance to that of AFLite Failures:

AFLite on four datasets: SNLI (Bowman et al., 2015), MNLI (Williams et al., 2017), SQUAD 2.0 (Rajpurkar et al., 2018), and Story CLOZE Task (Mostafazadeh et al., 2016). AFLite divides samples into good and bad splits, i.e. samples retained and removed on filtering. Mishra et. al. (Mishra et al., 2020b) show that SNLI contains a large number of artifacts, and that the Story CLOZE Task also has a significant number of artifacts. MNLI and SQUAD 2.0 are shown to have a relatively smaller number of artifacts, thus ensuring an adversarial evaluation of DQI. We tune hyperparameters on 0.01% of data manually in a supervised manner, mimicking how humans learn quickly from a few samples. We perform two types of evaluation: (i) overall analysis of 133 terms, and 7 components to ascertain AFLite intricacies, and (ii) individual sample analysis across the most sensitive sub-components.

3. Comparing Performance Against AFLite

We apply DQI to compare its performance to that of AFLite on four datasets: SNLI (Bowman et al., 2015), MNLI (Williams et al., 2017), SQUAD 2.0 (Rajpurkar et al., 2018), and Story CLOZE Task (Mostafazadeh et al., 2016). AFLite divides samples into good and bad splits, i.e. samples retained and removed on filtering. Mishra et. al. (Mishra et al., 2020b) show that SNLI contains a large number of artifacts, and that the Story CLOZE Task also has a significant number of artifacts. MNLI and SQUAD 2.0 are shown to have a relatively smaller number of artifacts, thus ensuring an adversarial evaluation of DQI. We tune hyperparameters on 0.01% of data manually in a supervised manner, mimicking how humans learn quickly from a few samples. We perform two types of evaluation: (i) overall analysis of 133 terms, and 7 components to ascertain AFLite intricacies, and (ii) individual sample analysis across the most sensitive sub-components.

3.1. Overall Analysis:

By applying DQI to AFLite, we can analyze where AFLite fails and succeeds at sample splitting.

AFLite Failures: We specifically examine language features that AFLite fails to appropriately consider as artifacts. The DQI formulas are constructed such that the good split is expected to have higher sub-component values than the bad split.

Sentence length: We expect variation of sentence lengths to be high, as length has been found to be an important parameter related to bias in SNLI (Mishra et al., 2020b). We find that even though the second and third sub-components of the Vocabulary component are higher for the good split, the difference is less than expected. Sentence length variation follows a similar pattern for each split. This is confirmed by calculating the percentage differences of sentence lengths between the splits. The takeaway is that AFLite likely does not appropriately consider data with sentence length associated bias, as we would otherwise expect to see sentences with outlier length values mainly placed in the bad split.

This is further supported by sub-component three (fails for contradiction labels) and sub-component four (fails for contradiction label) of the N-gram Frequency per Label component—responsible for ensuring that models do not overfit towards a fixed-length difference.

Sentence Similarity: For the Inter-sample STS component, sub-component one dictates that the number of sentences that cross the threshold set for spurious bias should have lower variance: if the distributions of similarity for all sentences are skewed, this leads to spurious bias. We find that the bad split outperforms the good split, which indicates that AFLite might not be not considering imbalance due to sentence similarity.

Premise-Hypothesis Similarity The Intra-sample STS component quantifies: (i) how far premise-hypothesis pairs are from a particular similarity threshold, (ii) how much the length variation, word overlap, and maximum word similarity between premise and hypothesis are, and (iii) how much is the variation in similarities across all pairs in the dataset. We expect significant differences for sub-components between the good and bad splits. However, both sub-component and overall component values do not show a significant difference across splits. This is surprising, as this component captures several major bias-related parameters (Mishra et al., 2020b). This indicates AFLite might not be accurately filtering data with high premise-hypothesis similarity and length difference.

Bigrams, Trigrams: We expect a non-skewed distribution of granularities both within and across labels. We find that the first sub-component for N-gram Frequency per Label fails for bigrams, and trigrams. AFLite is likely not handling these granularities appropriately. For bigrams and trigrams, the fifth sub-component again has a lower value for the good split, indicating AFLite is not effectively identifying artifacts for bigrams and trigrams.

Neutral Category: For the N-gram Frequency per Label component, the second sub-component fails in the neutral label for the sentence, adjective, adverb, verb, bigram, and trigram granularities. This indicates that AFLite is potentially not filtering appropriately for neutral category samples.

Train-Test Split: For the Inter-Split STS component, we find no significant difference in train-test similarity between the good and bad splits, though it is expected that the bad split will show much higher similarity, as inter-split similarity has been identified as an important source of bias in SNLI (Mishra et al., 2020b). This indicates AFLite is potentially not overfit towards a fixed-length difference.

We propose the empirical formula of DQI as a function of the size of all components.

\[
DQI = f(DQI_1, DQI_2, DQI_3, DQI_4, DQI_5, DQI_6, DQI_7)
\]

Since \(f \) depends on both task and dataset, it needs to be experimentally tuned.
DQI: A Guide to Benchmark Evaluation

Components	DQI-C1	DQI-C2	DQI-C3	DQI-C4	DQI-C5	DQI-C6	DQI-C7
Sub Components	SC-1	SC-2	SC-3	SC-4	SC-5	SC-6	SC-7
SNLI							
MNLI							
SQUAD 2.0							
Story CLOZE							N/A

Figure 2. Summarized results for SNLI, MNLI, SQUAD 2.0, and Story CLOZE Task. Green indicates that the sub-component, SC, has a higher value for the good split, and red for the bad split. Yellow indicates that a tie is seen between the good and bad splits. Inter-Split Similarity is not evaluated in Story CLOZE Task due to the absence of training data.

tially not properly incorporating artifacts related to the train-test split, such as data leakage.

AFLite Pass Cases: For the Vocabulary component, the good split has a higher overall value than the bad split. Of the three sub-components in this component, the first shows the most significant difference. The granularity variation in the Inter-Sample N-Gram Frequency and Relation component passes for all granularities except sentences, which we attribute to lower repetition of sentences compared to the other granularities. We also calculate this sub-component without normalization and find that it holds for sentences without normalization; the second sub-component passes in all cases. The second sub-component for Inter-Sample STS also passes. We also observe that the Intra-Sample Word Similarity component passes, indicating that AFLite captures Word Noise in SNLI. We note that contradiction samples seem more prone to spurious bias, due to a high ratio between the bad and good split sample counts in comparison to the entailment and neutral labels.

Other Datasets: Figure 2 summarizes results for SNLI, MNLI, SQUAD 2.0, and Story CLOZE Task. The number of sub-components for which the good split has higher DQI values than the bad split reduces as we move in order between SNLI, Story CLOZE Task, MNLI, and SQUAD 2.0. This is likely due to the decrease in the number of artifacts.

We individually evaluate a subset of samples to quantify inconsistencies in AFLite. We set a minimum threshold value for DQI components to bin samples in the good split, by following the same steps as that of hyperparameter tuning (mentioned at the top of this section). Next, we calculate the DQI of samples in the good and bad splits and look for inconsistencies. Figure 3 summarizes the results, showing that 47.26% and 24.51% of SNLI samples are misclassified in the good and bad splits. The percentages for the other datasets are MNLI 28.60%/27.30%, SQUAD 2.0 50.47%/50.15%, and Story CLOZE Task 27.36%/15.00%.

4. Discussion: Towards a Paradigm Shift in Benchmarks and Models

DQI’s ability to quantify data quality can: (i) be leveraged to repair biased legacy datasets, (ii) provide realtime feedback to crowdworkers when creating samples for benchmarks, (iii) provide flexibility in controlling the ‘hardness’ of a benchmark by tuning relevant sub-components out of the 133 terms, (iv) help better utilize the investment of resources in creating datasets, as it does not require the deletion of biased data at a later stage, and (v) help understand which language properties are important to solve a dataset.

5. Conclusion

We introduce a novel metric Data Quality Index (DQI) to evaluate the quality of data in benchmarks. We build upon existing studies on bias and propose a formula for generic DQI. In contrast to existing binary and black-box approaches that only cover a specific set of biases, DQI captures a broad range of biases. DQI can serve as an automated mechanism to provide continuous feedback, neither overloading humans nor risking the possibility of bias associated with human validation. We use DQI to evaluate AFLite, a state of the art approach for adversarial filtering of NLP benchmarks. Our results show that DQI captures varieties of biases that AFLite does not capture. We show the efficacy of DQI in datasets spanning NLI, QA, and RC tasks. DQI already empowers the novel benchmarking paradigms in a series of recent works, and can further serve to inspire and validate the next generation of datasets and models.

3.2. Sample-Wise Analysis

Figure 3. Misclassification percentages of AFLite, post evaluation using word overlap, word similarity and sentence length.

3Detailed results are in supplemental materials
Acknowledgements

We thank the anonymous reviewers for their thoughtful feedback. We also thank Jason Yalim and ASU HPC for their consistent support. The support of DARPA SAIL-ON program (W911NF2020006) is gratefully acknowledged.

References

M. H. Bollen. Understanding power quality problems. In Voltage sags and Interruptions. IEEE press, 2000.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

C. Clark, M. Yatskar, and L. Zettlemoyer. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. arXiv preprint arXiv:1909.03683, 2019.

M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua, Y. Elazar, A. Gottomukkala, et al. Evaluating nlp models via contrast sets. arXiv preprint arXiv:2004.02709, 2020.

A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. arXiv preprint arXiv:1904.02868, 2019.

K. G. Grunert. Food quality and safety: consumer perception and demand. European review of agricultural economics, 32(3):369–391, 2005.

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. R. Bowman, and N. A. Smith. Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324, 2018.

H. He, S. Zha, and H. Wang. Unlearn dataset bias in natural language inference by fitting the residual. arXiv preprint arXiv:1908.10763, 2019.

A. P. Jones. Indoor air quality and health. Atmospheric environment, 33(28):4535–4564, 1999.

D. Kaushik and Z. C. Lipton. How much reading does reading comprehension require? a critical investigation of popular benchmarks. arXiv preprint arXiv:1808.04926, 2018.

D. Kaushik, E. Hovy, and Z. C. Lipton. Learning the difference that makes a difference with counterfactually-augmented data. arXiv preprint arXiv:1909.12434, 2019.

R. Le Bras, S. Swayamdipta, C. Bhagavatula, R. Zellers, M. E. Peters, A. Sabharwal, and Y. Choi. Adversarial filters of dataset biases. arXiv, pages arXiv–2002, 2020.

Y. Li and N. Vasconcelos. Repair: Removing representation bias by dataset resampling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9572–9581, 2019.

Y. Li, Y. Li, and N. Vasconcelos. Resound: Towards action recognition without representation bias. In Proceedings of the European Conference on Computer Vision (ECCV), pages 513–528, 2018.

N. F. Liu, R. Schwartz, and N. A. Smith. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2171–2179, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1225. URL https://www.aclweb.org/anthology/N19-1225.

R. K. Mahabadi and J. Henderson. Simple but effective techniques to reduce biases. arXiv preprint arXiv:1909.06321, 2019.

S. Mishra, A. Arunkumar, C. Bryan, and C. Baral. Our evaluation metric needs an update to encourage generalization. arXiv preprint arXiv:2007.06898, 2020a.

S. Mishra, A. Arunkumar, B. Sachdeva, C. Bryan, and C. Baral. Dqi: Measuring data quality in nlp. arXiv preprint arXiv:2005.00816, 2020b.

N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and J. Allen. A corpus and evaluation framework for deeper understanding of commonsense stories. arXiv preprint arXiv:1604.01696, 2016.

Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial nli: A new benchmark for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.

W. H. Organization. Guidelines for drinking-water quality. World Health Organization, 1993.

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. Van Durme. Hypothesis only baselines in natural language inference. arXiv preprint arXiv:1805.01042, 2018.

P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822, 2018.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winograd: An adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.
6. Supplementary

Figure 4. Sentences in SNLI visualized according to whether AFLite puts it in the good or bad split respectively. Each sentence is one dot; its vertical position denotes its length, and color indicates its DQI rating based on its Vocabulary component (green = good, orange = acceptable, red = bad).

Figure 5. Semantic Textual Similarity plots where both row and column span all sentences in the dataset for C3 and rows represent train split and columns represent test split for C7. Color represents the similarity value. For C3 in the top two figures for the good and bad splits respectively, yellow represents zero similarity, and as the color moves towards red, the similarity increases. For C7 in the bottom two figures for the good and bad splits respectively, blue represents zero similarity, and as the color moves towards yellow, the similarity increases.

Vocabulary:

Term	T1	T2	T3	DQI C1
Good	1.8996	6.0409	0.9532	7.6578
Bad	0.6416	5.8135	0.9494	6.1609

Table 1. SNLI Sub-Component and Overall Values for DQI_c1
DQI: A Guide to Benchmark Evaluation

Table 2. MNLI Sub-Component and Overall Values for DQI_{e_1}

Granularity	Split	T1	T2	T3	DQI C1
Words	Good	121.9512	0.7269	88.6463	
	Bad	52.3560	0.6500	34.0314	
Adjectives	Good	31.7460	0.2966	9.4159	
	Bad	16.9205	0.3590	6.0745	
Adverbs	Good	21.0970	0.1847	3.8966	
	Bad	10.7875	0.1732	1.8684	
Verbs	Good	43.6681	0.2349	10.2576	
	Bad	16.5289	0.1893	3.1289	
Nouns	Good	49.2611	0.4531	21.4335	
	Bad	21.0084	0.3685	7.7416	
Bigrams	Good	1296.3443	0.9374	1215.1931	
	Bad	873.2862	0.9355	816.8959	
Trigrams	Good	7686.3951	0.9546	7337.4328	
	Bad	6119.9510	0.9422	5766.2178	
Sentences	Good	9070.7189	0.6607	5993.0856	
	Bad	14537.0541	0.2705	3932.2731	
Sentences	(Not Normalized)	3.0565	0.6607	3.7263	
	(Not Normalized)	1.2655	0.2705	1.0607	

Table 4. Story-CLOZE Sub-Component and Overall Values for DQI_{e_1}

Table 5. SNLI Sub-Component and Overall Values for DQI_{e_2}

Granularity	Split	T1	T2	T3	Contribution
Words	Good	299.2489	0.9223	275.9972	
	Bad	1826.2828	1.0000	1926.2828	
Adjectives	Good	147.7382	1.0000	147.7382	
	Bad	333.8001	1.0000	333.8001	
Adverbs	Good	14.9467	0.5166	7.7214	
	Bad	54.2488	0.7318	39.6992	
Verbs	Good	76.0906	0.6931	52.4492	
	Bad	182.7695	0.7130	130.3146	
Nouns	Good	225.1162	0.9726	218.9480	
	Bad	477.9051	0.9704	463.3709	
Bigrams	Good	4391.8985	1.0000	4391.8985	
	Bad	5615.4581	1.0000	5615.4581	
Trigrams	Good	16628.8816	0.9907	16474.2330	
	Bad	35285.2261	0.9735	34580.1676	
Sentences	Good	15197.5684	0.0049	74.4860	
	Bad	11085.6756	0.9680	10730.9339	
Sentences	(Not Normalized)	1.2314	0.0049	0.0060	
	(Not Normalized)	11.1732	0.9680	10.8156	
DQIC2	Good	-	-	27168.8335	
	Bad	-	-	52700.84312	

Table 6. MNLI Sub-Component and Overall Values for DQI_{e_2}

Table 7. SQUAD 2.0 Sub-Component and Overall Values for DQI_{e_2}

Table 8. Story-CLOZE Sub-Component and Overall Values for DQI_{e_2}

Table 9. SNLI Term 1 for DQI_{e_3}

Table 10. SNLI Term 2 for DQI_{e_3}, with SIM=0.4

Table 11. SNLI DQI_{e_3}

Inter-Sample N-Gram Frequency and Relation:

Inter-Sample N-Gram Frequency and Relation:
Granularity

Words
Adjectives
Adverbs
Verbs
Nouns
Trigrams
Sentences
Sentences
DQIC2

Inter-Sample STS:
Table 12. MNLI Term 1 for DQI_c3

Split	SIML=0.3	SIML=0.35	SIML=0.4
Good	334.2215	695.0839	1040.5209
Bad	312.4744	643.3304	953.5445

Table 13. MNLI Term 2 for DQI_c3, with SIML=0.4

Sample Set	DQI_C (e=0.5)
Good	129.8631 171.7143 228.9135
Bad	88.9812 110.6907 141.2765

Table 14. MNLI DQI_C3

Sample Set	DQI_C (e=0.5)
Good	285.1348 513.1720 820.2552
Bad	209.0823 368.5646 594.0969

Table 15. SQUAD 2.0 Term 1 for DQI_c3

Split	e=0.25	e=0.3	e=0.5
Good	0.0051	0.0039	0.0026
Bad	0.0055	0.0042	0.0094

Table 16. SQUAD 2.0 Term 2 for DQI_c3, with SIML=0.4

Sample Set	DQI_C (e=0.5)
Good	253.1364 513.1756 820.2552
Bad	209.0839 368.5646 594.0969

Table 17. SQUAD 2.0 DQI_C3

Split	e=0.25	e=0.3	e=0.5
Good	0.0060	0.0053	0.0036
Bad	0.0060	0.0053	0.0036

Table 19. Story CLOZE Term 2 for DQI_c3, with SIML=0.4

Sample Set	DQI_C (e=0.5)
Good	285.1348 513.1720 820.2552
Bad	209.0823 368.5646 594.0969

Table 20. Story CLOZE DQI_C3

Intra-Sample Word Similarity:

Split	DQI₄
Good	0.0004
Bad	0.0001

Table 21. SNLI DQI_C4

Split	DQI₄
Good	0.0197
Bad	0.0011

Table 22. MNLI DQI_C4

Split	DQI₄
Good	5.2208
Bad	0.4577

Table 23. SQUAD 2.0 DQI_C4

Split	DQI₄
Good	0.0025
Bad	0.0008

Table 24. Story CLOZE DQI_C4

Intra-Sample STS:

Split	T2	T3	T4	T5	T6
Good	0.0143	0.0038	6.4064E-05	20.3518	0.0903
Bad	0.1430	0.0007	1.2711E-05	19.9288	0.0900

Table 25. SNLI Term 1 for DQI_c5

Split	T2	T3	T4	T5	T6
Good	2.2233	2.8585	3.9884	6.3364	
Bad	2.1256	2.6986	3.6843	5.5845	

Table 26. SNLI Terms 2,3,4,5,6 for DQI_c5

Split	DQI_C5
Good	24.6024
Bad	24.1409

Table 27. SNLI DQI_c5, with ISIM=0.5

Split	T2	T3	T4	T5	T6
Good	2.5071	3.3460	5.0031	9.1300	
Bad	2.5379	3.4012	5.1352	9.6189	

Table 28. MNLI Term 1 for DQI_c5

Split	T2	T3	T4	T5	T6
Good	0.0819	0.0307	20.9407E-05	12.3932	17.6181
Bad	0.0791	0.0307	20.9407E-05	12.3932	17.6181

Table 29. MNLI Terms 2,3,4,5,6 for DQI_c5

Split	DQI_C5
Good	34.2219
Bad	33.8006

Table 30. MNLI DQI_c5, with ISIM=0.5

Split	T2	T3	T4	T5	T6
Good	3.1105	4.5013	7.7337	14.4898	
Bad	3.0639	4.4163	7.5943	14.7772	

Table 31. SQUAD 2.0 Term 1 for DQI_c5

Split	DQI_C5
Good	7.8164
Bad	7.6824

Table 32. SQUAD 2.0 Terms 2,3,4,5,6 for DQI_c5

Split	ISIM=0.3	ISIM=0.4	ISIM=0.5	ISIM=0.6
Good	3.1103	4.5013	7.7337	14.4898
Bad	3.0639	4.4163	7.5943	14.7772

Table 33. SQUAD 2.0 DQI_c5, with ISIM=0.5

Split	ISIM=0.3	ISIM=0.4	ISIM=0.5	ISIM=0.6
Good	0.0400	0.0027	3.193E-05	2.6199E-06
Bad	0.0398	0.0084	9.7664E-05	7.6306E-06

Table 34. Story CLOZE Term 1 for DQI_c5

Split	T2	T3	T4	T5	T6
Good	7.8164				
Bad	7.6824				

Table 35. Story CLOZE Terms 2,3,4,5,6 for DQI_c5

N-Gram Frequency Per Label

Split/Label	Entailment	Neutral	Contradiction
Good	1110	1430	708
Bad	5626	5008	6118

Table 37. SNLI Sample counts for splits across labels
Table 38. SNLI Terms 1 and 2 for DQI₆, Sentence Granularity

Split-Label	T1	T2
Good-Entailment	42.1230	0.34114
Bad-Entailment	26.4201	0.30551
GoodNeutral	48.8998	0.46865
Bad-Neutral	38.1534	0.47497
Good-Contradiction	43.1593	0.31019
Bad-Contradiction	29.2826	0.32385

Table 39. SNLI Terms 1 and 2 for DQI₆, Word Granularity

Split-Label	T1	T2
Good-Entailment	41.4128	0.205911
Bad-Entailment	11.0963	0.05816
GoodNeutral	8.6798	0.09709
Bad-Neutral	14.6135	0.43124
Good-Contradiction	37.7975	0.34286
Bad-Contradiction	23.7192	0.21583

Table 40. SNLI Terms 1 and 2 for DQI₆, Adjective Granularity

Split-Label	T1	T2
Good-Entailment	59.2768	0.49650
Bad-Entailment	34.3643	0.38238
GoodNeutral	62.7353	0.44534
Bad-Neutral	46.4253	0.40586
Good-Contradiction	66.5709	0.45653
Bad-Contradiction	39.9202	0.37431

Table 41. SNLI Terms 1 and 2 for DQI₆, Adverb Granularity

Split-Label	T1	T2
Good-Entailment	1131.7133	0.93307
Bad-Entailment	1173.5409	0.93206
GoodNeutral	1261.2663	0.93783
Bad-Neutral	1598.1514	0.94117
Good-Contradiction	1100.8597	0.94325
Bad-Contradiction	1349.0528	0.93837

Table 42. SNLI Terms 1 and 2 for DQI₆, Verb Granularity

Split-Label	T1	T2
Good-Entailment	5921.2942	0.94072
Bad-Entailment	7757.5306	0.93496
GoodNeutral	6414.5349	0.94517
Bad-Neutral	10229.7186	0.95015
Good-Contradiction	5478.1014	0.95389
Bad-Contradiction	8984.3224	0.94430

Table 43. SNLI Terms 1 and 2 for DQI₆, Noun Granularity

Split-Label	T1	T2
Good-Entailment	8829.2425	0.93977
Bad-Entailment	21665.2868	0.85711
GoodNeutral	7467.5349	0.86999
Bad-Neutral	31616.2545	0.91411
Good-Contradiction	4932.7421	0.92110
Bad-Contradiction	2041.9597	0.87832

Table 44. SNLI Terms 1 and 2 for DQI₆, Bigram Granularity

Split-Label	T1	T2
Good-Entailment	9.40E+02	0.965482191
Bad-Entailment	6.74E+02	0.794573643
GoodNeutral	9.48E+02	0.957116548
Bad-Neutral	5.67E+02	0.970607701
Good-Contradiction	3.47E+02	0.783416225
Bad-Contradiction	2.67E+02	0.783416225

Table 45. SNLI Terms 1 and 2 for DQI₆, Trigram Granularity

Split-Label	T1	T2
Good-Entailment	9.40E+02	0.965482191
Bad-Entailment	6.74E+02	0.794573643
GoodNeutral	9.48E+02	0.957116548
Bad-Neutral	5.67E+02	0.970607701
Good-Contradiction	3.47E+02	0.783416225
Bad-Contradiction	2.67E+02	0.783416225
Table 55. MNLI Terms 1 and 2 for DQI_{G6}, Adverb Granularity

Split-Label	T1	T2
Good-Entailment	2.58E+01	0.4803
Bad-Entailment	5.20E+01	0.6531
Good-Neutral	3.61E+01	0.6991
Bad-Neutral	7.15E+01	0.6521
Good-Contradiction	3.43E+01	0.5017
Bad-Contradiction	5.19E+01	0.3939

Table 56. MNLI Terms 1 and 2 for DQI_{G6}, Verb Granularity

Split-Label	T1	T2
Good-Entailment	2.61E+02	0.8994
Bad-Entailment	4.52E+02	0.9447
Good-Neutral	4.68E+02	1.0000
Bad-Neutral	2.61E+02	0.7235
Good-Contradiction	4.84E+02	1.0000
Bad-Contradiction	2.80E+02	0.9287

Table 57. MNLI Terms 1 and 2 for DQI_{G6}, Noun Granularity

Split-Label	T1	T2
Good-Entailment	3.38E+03	0.9361
Bad-Entailment	4.83E+03	1.0000
Good-Neutral	9.21E+03	1.0000
Bad-Neutral	1.91E+03	1.0000
Good-Contradiction	1.04E+04	1.0000
Bad-Contradiction	2.97E+03	1.0000

Table 58. MNLI Terms 1 and 2 for DQI_{G6}, Bigram Granularity

Split-Label	T1	T2
Good-Entailment	9.27E+03	0.9573
Bad-Entailment	2.93E+04	1.0000
Good-Neutral	4.54E+04	0.9913
Bad-Neutral	1.91E+03	1.0000
Good-Contradiction	1.04E+05	1.0000
Bad-Contradiction	6.96E+03	0.9937

Table 59. MNLI Terms 1 and 2 for DQI_{G6}, Trigram Granularity

Split-Repetition	1	2	
Good-Entailment	0.9572	0.0484	0.0033
Bad-Entailment	0.9884	0.0115	0.0000
Good-Neutral	0.9612	0.0363	0.0024
Bad-Neutral	1.0000	0.0000	0.0000
Good-Contradiction	0.9844	0.0150	0.0005
Bad-Contradiction	1.0000	0.0000	0.0000

Table 60. MNLI Sentence Granularity Repetitions

Split-Label	T3
Good-Entailment	0.0647
Bad-Entailment	0.0860
Good-Neutral	0.0926
Bad-Neutral	0.0390
Good-Contradiction	0.0000
Bad-Contradiction	0.2290

Table 61. MNLI T3 for DQI_{G6}

Split-Label	T4
Good-Entailment	0.0003
Bad-Entailment	0.0202
Good-Neutral	0.0041
Bad-Neutral	0.0484
Good-Contradiction	0.2018
Bad-Contradiction	0.0326

Table 62. MNLI T4 for DQI_{G6}

Split-Label	DQI G6
Good	2.74E+05
Bad	1.53E+17

Table 63. MNLI DQI_{G6}

Split-Label	T5
Good	1.0000
Bad	0.9999

Table 64. MNLI T5 for DQI_{G6}

Split-Label	True	False
Good	1.0000	1.0000
Bad	0.914	1.0000

Table 65. SQUAD 2.0 Sample counts for Splits across Labels

Split-Label	T1	T2
Good-True	4431.2159	0.0000
Bad-True	1921.2960	0.0464
Good-False	4412.2037	0.0014
Bad-False	1853.6963	0.5009

Table 66. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Sentence Granularity

Split-Label	T1	T2
Good-True	253.8776	1.0000
Bad-True	954.5225	1.0000
Good-False	259.3381	0.3105
Bad-False	776.2031	1.0000

Table 67. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Word Granularity

Split-Label	T1	T2
Good-True	75.3820	1.0000
Bad-True	244.8719	1.0000
Good-False	70.8219	1.0000
Bad-False	222.5754	1.0000

Table 68. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Adjective Granularity

Split-Label	T1	T2
Good-True	6.31677	0.6666
Bad-True	27.6740	0.6494
Good-False	6.4805	0.6632
Bad-False	24.6482	0.6878

Table 69. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Adverb Granularity

Split-Label	T1	T2
Good-True	55.2850	0.8789
Bad-True	219.8726	0.8851
Good-False	59.0344	0.9066
Bad-False	208.3646	0.9113

Table 70. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Verb Granularity

Split-Label	T1	T2
Good-True	110.8118	1.0000
Bad-True	415.9473	1.0000
Good-False	109.7139	1.0000
Bad-False	307.1137	1.0000

Table 71. SQUAD 2.0 Terms 1 and 2 for DQI_{G6}, Noun Granularity

Split-Label	T1	T2
Good-True	35.633144	1.0000
Bad-True	4907.7258	1.0000
Good-False	34076.1381	1.0000
Bad-False	40854.1931	1.0000
DQI: A Guide to Benchmark Evaluation

Table 74. SQUAD 2.0 T3 for DQI_{c6}

Split-Label	Good	Bad
Good-True	0.0085	
Bad-True	0.0082	
Good-False	0.0079	
Bad-False	0.0078	

Table 75. SQUAD 2.0 T4 for DQI_{c6}

Granularity/Split	Good	Bad
Sentences	20.5287	9.6533
Words	0.0711	0.0682
Adjectives	0.6497	1.1487
Verbs	0.4012	0.6832
Nouns	0.4918	0.8153
Bigrams	0.1262	0.0560
Trigrams	0.1366	0.0942

Table 76. SQUAD 2.0 T5 for DQI_{c6}

Split-Label	DQI_{c6}
Good	75918.2760
Bad	105949.3404

Table 78. Story CLOZE Sample counts for Splits across Labels

Split-Label	T1	T2
Good-True	5.47E+05	0.9792
Bad-True	5.22E+05	0.8618
Good-False	5.47E+05	0.5316
Bad-False	4.96E+05	0.8537

Table 79. Story CLOZE Terms 1 and 2 for DQI_{c6}, Sentence Granularity

Split-Label	T1	T2
Good-True	325188.3	0.7800
Bad-True	133.5904	0.7711
Good-False	121.0435	0.7459
Bad-False	128.3632	0.8014

Table 80. Story CLOZE Terms 1 and 2 for DQI_{c6}, Word Granularity

Split-Label	T1	T2
Good-True	325188.3	0.7800
Bad-True	133.5904	0.7711
Good-False	121.0435	0.7459
Bad-False	128.3632	0.8014

Table 82. Story CLOZE Terms 1 and 2 for DQI_{c6}, Adverb Granularity

Split-Label	T1	T2
Good-True	103.8261	0.5283
Bad-True	115.6968	0.5828
Good-False	112.3307	0.5946
Bad-False	113.4481	0.5155

Inter-Split STS:

Split	SSML=0.2	SSML=0.3	SSML=0.4
Good	0.0004	0.0005	0.0002
Bad	0.0009	0.0011	0.0005

Table 90. Story CLOZE DQI_{c6}

Split-Label	T1	T2
Good-True	531.2272	0.8898
Bad-True	458.9138	0.8862
Good-False	520.3204	0.9047
Bad-False	462.2876	0.9252

Table 91. MNLI DQI_{c7}

Split	SSML=0.2	SSML=0.3	SSML=0.4
Good	0.0004	0.0005	0.0002
Bad	0.0009	0.0011	0.0005
Table 93. Intuitions behind DQI components and sub-components.

Component	Sub-Component	Effect on Quality (Q)	Explanation
Vocabulary	Vocabulary Magnitude	$\propto Q$	Low vocabulary provides lesser options to express thoughts, and may result in high repetition, leading to misunderstanding and potential bias
	Variation in Sentence Length	$\propto Q$	Lack of variation in sentence length may act as a cue for a model to overfit
	Anomalies in Sentence Length	$\propto 1/Q$	Longer sentences go to neutral, and shorter ones to entailment, so they may not contribute towards the total variation in sentence length
Inter-Sample N-Gram Frequency and Relation	Variation in Granularities	$\propto 1/Q$	For Words, POS Tags, Bigrams, Trigrams, and Sentences, skewed distributions may allow overfitting
	Anomalies in Granularity Distribution	$\propto 1/Q$	Both too much repetition and lack of usage may result in spurious bias.
	Inter-Sample Semantic Textual Similarity (STS)		
	Variation of Degree of Isolation of a Sentence	$\propto 1/Q$	Higher variation in the number of dissimilar sentences for each sentence may produce bias
	Characterization of Sentence Neighborhood	$\propto 1/Q$	Absence of some minimum number of similar sentences may result in insufficient inductive bias to understand the sentence
	Degree of Word Noise	$\propto 1/Q$	This prevents adversarial attacks; a noisy sentence may be formed by repeating similar words many times, or by using very different words
	Balancing Difficulty	$\propto 1/Q$	Too similar or dissimilar a premise and hypothesis pair might reveal the label as either entailment or neutral, respectively
	Balancing Length Variation	$\propto 1/Q$	If hypothesis length is too low or too high in comparison to the premise length, it can be an artifact
	Variation in Length Mismatch	$\propto Q$	If length mismatch across the dataset does not vary significantly, a model can use it as a cue
	Variation In Difficulty	$\propto Q$	Lesser variation in premise-hypothesis sentence similarity across a dataset may produce bias
	Word Overlap	$\propto 1/Q$	Higher word overlap between the premise and hypothesis leads to bias
	Word Similarity	$\propto 1/Q$	Similar words in the premise and hypothesis in NLI allows a model to overfit
	N-Gram Frequency Per Label		
	Variation in Granularities Across Labels	$\propto 1/Q$	A distribution skewed towards a specific label allows a model to exploit it as bias
	Anomalies in Granularity Distribution Across Labels	$\propto 1/Q$	A highly frequent granularity element associated with a label may give rise to artifacts
	Balancing Length Variation Across Labels	$\propto Q$	Frequent occurrence of premise-hypothesis length variation within a label leads to artifacts
	Variation In Length Mismatch Across Labels	$\propto 1/Q$	A pattern in premise-hypothesis length variation for a label can cause bias
	Attachment with Label	$\propto 1/Q$	A word or n-gram of any granularity becomes an artifact if it is associated with a specific label
Inter-Split STS	Balancing Splits	$\propto 1/Q$	Data leakage happens if a test sample is very similar to the train sample; if they are too dissimilar there is a lack of necessary inductive bias

Figure 6. Each bar shows the relative contribution amounts of four features: word overlap (hypothesis only, and hypothesis+premise), maximal word similarity, and sentence lengths, for good and bad split samples. Each bar stacks the four features, which are sized by their relative impact percent (raw contribution values are numbers inside each feature bar).