Fibered Correspondence

Aleks Kleyn

Abstract. Base of fibered correspondence is arbitrary correspondence. Fibered correspondence is interesting when we consider relationship between different bundles. However composition of fibered correspondences may not always be defined. Reduced fibered correspondence is defined only between fibers over the same point of base. Reduced fibered correspondence in bundle is called 2-ary fibered relation. We considered fibered equivalence and isomorphism theorem in case of fibered morphisms.

24 - 25 August 1883

Pushkin once said in the circle of his friends: ”Imagine what my Tat’iana has done - she’s got married. I should never have expected that of her.” I could say just the same about Anna Karenina. My characters sometimes do things that I would not wish. In general they do what is ordinarily done in actual life and not what I want.

- Reminiscences of V. I. Alekseev. The date is that given by G. A. Rusanov, who records the same saying. According to Alekseev it refers to Anna’s suicide. Tat’iana is the heroine of Pushkin’s ”novel in verse,” Eugenii Onegin.

[3], p 51

This story began many years ago. When I was 15 years old I got some money for minor expenses. I started buying math and physics books. When I entered university I collected library of favorite books. Among these books there was book ”Universal Algebra” by Cohn ([4]) that miraculously remained unsold. I was not thinking too hard that it might be too early for me to read this. Reading this book I had fallen in love with algebra. However I dedicated my life and research to geometry on the edge of geometry and physics.

After more then 30 years I suddenly returned to this book. I became curious about definition of universal algebra in fiber of bundle. When I started to write paper [2] I could swear that something similar I had read when I was young. I found the book that, as I supposed, was origin. However this book was dedicated only to vector bundles. When I started to write this paper I finally realized that I did not read something similar. I could not leave such facts unnoticed.

Key words and phrases. alg geometry, bundle, algebra.

Aleks_Kleyn@MailAPS.org.
It turns out that I thought about this when I was young. However why did I wait so long time? Why I initiated this research now? I will never get an answer to the first question. However the answer to the second question is very simple. For a long time I studied reference frame in general relativity. My interest was not only classical case, but possible deviations of geometry as well. Statements obtained in [2] show that in the field of my research there is a lot of unanswered questions.

I supposed to dedicate this paper to fibered equivalence relation, because I have certain interest to it in the future. However, the need for clear statements involved new definitions. Then events became unpredictable. I expected the paper to be extremely concise and written for a month. However this paper severely takes all my time, changes the title and direction of the research.\footnote{Thrill of hunt is one of the strongest passions of mankind. I catch myself that I keep solving problems which are new for me.} The paper dedicated to fibered equivalence relation turns into paper dedicated to fibered binary relations.

Fibered relation is one of the most complicated subjects in the theory of fibered algebra. Since an operation is a map, we extend unambiguously the definition of the operation to bundle and its sections and demand that operation is smooth. Relation is the subset of Cartesian product. Assuming that we defined relation only in the fiber, we are losing relationship between fibers.

I decided to repeat the procedure to determine a relation in universal algebra. When I started to study fibered correspondence, I realized, that I need to change definitions in [2]. The definition [2]-3.1 generates too narrow framework to define a fibered correspondence. May be sometimes it is enough to define correspondence only in fiber\footnote{In particular, we define a fibered relation introducing relation in a fiber}, however we losing fibered morphisms. The analysis of this situation exposes the myth with which I have comfortably lived for all those years. More exactly, all this time I have been trying to work out what the base of fibered map is like. Is it an injection or an arbitrary map? No one definition gives clear answer on this question. For the simplicity of perception I supposed that base of fibered map is injection. Actually, since we do not determine type of map of a base, this map may be arbitrary. This leads to more wide definition (definition [2]-2.2) of Cartesian product of bundles. On the other hand, the definition [2]-2.2 presents problems to determine fibered algebra. This brings to necessity to use two definitions of Cartesian product of bundle. Similar considerations bring to two definitions of fibered correspondence.

Finally I return to equivalence. However, my efforts were not wasted. My view on problem changed. From definition 2.2 it follows that notion of continuity is important in definition of fibered correspondence. After this definition I explain what does mean continuity of correspondence.

Where it is possible I use the same notation for operations and relations as we use them in the set theory. It does not bring to ambiguity because we use different notation for set and bundle. I use the same letter in different alphabets to denote bundle and fiber.

We assume that projection of bundle, section and fibered map are smooth maps. In mathematical literature there are two customs to write product of mappings and correspondences. Some authors write product of mappings in the same order as arrows follow on diagram. While others prefer to write mappings in opposite order.
When we read papers and books the first thing what we need is to put attention what order of factors is used by author.

The case is clearer when author writes an action of mapping over set. In this case the author writes set and mapping in such order that, when we write brackets, we gets right order. For instance, let us consider diagram

$$A \xrightarrow{f} B \xrightarrow{g} C$$

and let $D \subset A$. Since we write product of mappings as fg, then image of set D has form $Dfg = (Df)g$. Since we write product of mappings as gf, then image of set D has form $gfD = g(fD)$.

This is my start point. Based on convention from remark [1]-2.2.14, I will assume opportunity to read expression from right to left and from left to right.

1. Correspondence

Definition 1.1. Let

$$A \xrightarrow{\Psi} B \xrightarrow{\Phi} C$$

$$C \xrightarrow{\Theta} D$$

be diagram arrows of which represent correspondences. Diagram of correspondences is called commutative when image of any subset of set A in set D does not depend on way in diagram.

The definition of category is not specific on the question whether morphism is a map. We can study category, sets of which are objects and correspondences from one set into another are morphisms.

Definition 1.2. Let Φ be a correspondence from a set A to a set B. Let $C \subset A$.

The correspondence

$$\Phi/C = \{(c, b) \in \Phi : c \in C\}$$

is called a restriction of the correspondence Φ to the set C. correspondence Φ is called an extension of correspondence Φ/C.

Definition 1.3. Let sets A and B be topological spaces.

Correspondence Φ from set A to a set B is said to be continuous on the set $C \subset A$, if, given open set V, $\Phi C \subset V \subset B$, there is an open set U, $C \subset U \subset A$, such that $\Phi U \subset V$.

Correspondence Φ from set A to a set B is said to be continuous, if, given open set $V \subset B$, there is an open set $U \subset A$ such that $\Phi U \subset V$.

Following after [6], I define continuity based on definition of limit of filter. Since an image under correspondence is not a point, but a set, I little changed definitions and theorems.

Definition 1.4. Let X be a topological space and \mathcal{F} a filter on X. A set $A \subset X$ is said to be a limit set or limit of filter \mathcal{F}, if \mathcal{F} is finer then the neighborhood filter $\mathcal{B}(A)$ of set A. Filter \mathcal{F} is also said to converge to A, $\mathcal{F} \to A$.

The set A is said to be a limit of filter base \mathcal{B} on X and \mathcal{B} is said to converge to A, if the filter whose base is \mathcal{B} converges to A.

3We make this definition similar to the definition from [5], p. 82
Theorem 1.5. A filter base \(\mathcal{B} \) on topological space \(X \) converges to set \(A \subset X \) iff every set of fundamental system of neighborhoods of set \(X \) contains a set of \(\mathcal{B} \).

Proof. If a filter \(\mathfrak{F} \) converges to set \(A \), then every filter finer than \(\mathfrak{F} \) also converges to \(A \), by definition 1.4. Let \(\Phi \) be a set of filters on \(X \), all of which converges to set \(A \). The neighborhood filter \(\mathcal{B}(A) \) is coarser than all filters of \(\Phi \), hence \(\mathcal{B}(A) \) is coarser than their intersection \(\mathfrak{G} \). Therefore, \(\mathfrak{G} \) converges to set \(A \). \(\square \)

Definition 1.6. Let \(\Phi \) be a correspondence from set \(X \) to a topological space \(Y \). Let \(F \rightarrow A \) be a filter on \(X \). The set \(B \subset Y \) is said to be limit of correspondence with respect to the filter \(F \):

\[
\lim_{\mathfrak{F} \rightarrow A} \Phi(\mathfrak{F}) = B
\]

if \(B \) is limit of the filter base \(\Phi(\mathfrak{F}) \) \(\square \).

Theorem 1.7. A set \(B \subset Y \) is a limit of correspondence \(\Phi \) with respect to the filter \(F \) iff for each neighborhood \(V \) of set \(B \) in \(Y \), there is a set \(M \in F \) such that \(\Phi M \subset V \).

Proof. The statement is corollary of definition 1.6 and theorem 1.5. \(\square \)

Theorem 1.8. A correspondence \(\Phi \) from a topological space \(X \) to a topological space \(Y \) is continuous on the set \(A \subset X \) iff

\[
\lim_{\mathfrak{F} \rightarrow A} \Phi(\mathfrak{F}) = \Phi A
\]

Proof. The statement is corollary of definition 1.3 and theorem 1.7. \(\square \)

Let \(\Phi \) be continuous correspondence from topological space \(X \) to topological space \(Y \). Let \((a, b) \in \Phi \). Suppose \(V \subset Y \) is an open set, \(\Phi(a) \subset V \). In particular, \(b \in V \). According to definition 1.3 there exists an open set \(U \subset X \), \(a \in U \), \(\Phi U \subset V \). Therefore, there exist \(a' \in U \), \(b' \in V \), \((a', b') \in \Phi \).

2. Fibered Correspondence

Definition 2.1. Let \(a[A] : A \rightarrow N \) and \(b[B] : B \rightarrow M \) be bundles. Suppose bundle map is defined by diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
| & | & | \\
\uparrow a[A] & \uparrow & \uparrow b[B] \\
Y & \xrightarrow{F} & Y \\
N & \xrightarrow{F} & M \\
\end{array}
\]

where maps \(f \) and \(F \) are injections. Then bundle \(a[A] \) is called fibered subset or subbundle of \(b[B] \). We also use notation \(a[A] \subseteq b[B] \) or \(A \subseteq B \).

Suppose we defined the \(F \)-algebra on sets \(A \) and \(B \) and map \(f \) is homomorphism of fibered algebra. Then the bundle \(a[A] \) is called fibered subalgebra of fibered algebra \(b[B] \). \(\square \)

Without loss of generality we assume that \(A \subseteq B \), \(N \subseteq M \).

Definition 2.2. Let \(a[A] : A \rightarrow M \) and \(b[B] : B \rightarrow N \) be bundles. Fibered subset \(f[F] : \mathcal{F} \rightarrow \Phi \) of bundle \(A \times B \) is called fibered correspondence from \(A \) to \(B \).
If \(A = B \), then fibered correspondence \(F \) is called *fibered correspondence in* \(A \). □

According to definitions 2.1 and 2.2 we can represent fibered correspondence using the diagram

\[
\begin{array}{c}
\Phi \xrightarrow[i]{} M \times N \\
\downarrow \quad \downarrow \\
F \xrightarrow[j]{} A \times B
\end{array}
\]

where \(i \) and \(j \) are continuous injections. We assume that a set \(U \subset \Phi \) is open iff there exists an open set \(V \subset M \times N \) such that \(U = V \cap \Phi \). We assume that a set \(U \subset F \) is open iff there exists an open set \(V \subset A \times B \) such that \(U = V \cap F \).

Correspondence \(\Phi \) is called *base of fibered correspondence* \(F \), and fibered correspondence \(F \) is called *lift of correspondence* \(\Phi \).

We use diagrams of fibered correspondences as we use diagrams of maps and correspondences. In this case, in the diagram we can additionally show a projection on the base. Thus we can represent fibered correspondence using diagram

\[
\begin{array}{c}
M \xrightarrow[f]{} N \\
\downarrow \quad \downarrow \\
A \xrightarrow[p]{} B \xrightarrow[q]{}
\end{array}
\]

Choice of diagram (2.1) or (2.2) depends on problem which we consider.

To study fibered correspondence from \(A \) to \(B \) I use maps of the manifold \(M \) and \(N \) in which both bundles are trivial. This will make it possible to review fibered correspondence in detail without loss of generality.

According to definition 2.2, given \(x \in M \), \(y \in N \), I represent points of a fiber \((A \times B)_{(x,y)}\) of the bundle \(A \times B \) as tuple \((x, y, p, q)\), \(p \in A_x \), \(q \in B_y \). According to our assumption, \(\Phi \subseteq M \times N \), \(F \subseteq A \times B \). Therefore, we can consider \(\Phi \) as correspondence from \(M \) to \(N \) and \(F \) as correspondence from \(A \) to \(B \). In particular, \(F_{(x,y)} \subseteq A_x \times B_y \). The point \((x, p) \in A \) is in correspondence \(F \) with point \((y, q) \in B \), if point \(x \in M \) is in correspondence \(\Phi \) with point \(y \in N \) and point \(p \in A_x \) is in correspondence \(F_{(x,y)} \) with point \(q \in B_y \).

Correspondence in fiber depends on selected fiber. For instance, let \(a[R] : A \to R^2 \) and \(b[R] : B \to R \) be bundles. Let \((x, y) \in M = R^2 \) and \(z \in N = R \). Assume that point \((x, y, p) \in A \) is in correspondence \(F \) with point \((z, q) \in B \), if we can represent \(q \) as

\[q = (z^2 + x^2 + y^2 + p^2 + 1) \]
Fibered Correspondence

Aleks Kleyn

where \(n \) is an arbitrary integer. The relation is different in different fibers, however we can define bijection between \(F \) and \(F_{(x,y,z)} \) for arbitrary fiber.\(^4\)

Let us consider set \(\Gamma(F) \). Since we choose clutching functions of bundles \(A \) and \(B \), we may represent an element \(\Gamma(F) \) as \((x, p(x), q(y))\). Little permutation leads to the record \((x, p(x)), (y, q(y))\). This leads one to assume that we wrote correspondence from set \(\Gamma(A) \) to set \(\Gamma(B) \). However this is not so. Let us choose value of \(x \). Then when we change \(y \), tuple \((y, q(y))\) describes section \(q \in \Gamma(B) \). Since this section depends on choice of tuple \((x, p(x))\), we cannot establish correspondence from set \(\Gamma(A) \) to set \(\Gamma(B) \).

Fibered correspondence loses some important properties of correspondence. For instance, if \(C \subseteq A \) and \(\Phi \) is correspondence from \(A \) to \(B \), then we can define the image of the set \(C \) under correspondence \(\Phi \) using law

\[
\Phi C = \{ b \in B : (a, b) \in \Phi, a \in C \}
\]

However in the case of a fibered correspondence the image of a bundle is not necessarily a bundle, which is due to the fact that there exists a possibility that \((x_1, y) \in \Phi, (x_2, y) \in \Phi \). At the same time, generally speaking,

\[
\Phi_{(x_1, y)} A_{x_1} \neq \Phi_{(x_2, y)} A_{x_2}
\]

even

\[
\Phi_{(x_1, y)} A_{x_1} \subseteq B_y \\
\Phi_{(x_2, y)} A_{x_2} \subseteq B_y
\]

Corollary of this is impossibility to define a composition of fibered correspondences in general case. Similar statement holds for fibered morphisms when base of morphism is not injection.

Theorem 2.3. Let us consider fibered correspondence \(\mathcal{F} \)

\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{F}} & B \\
\downarrow^{p[A]} & & \downarrow^{q[B]} \\
M & \xrightarrow{f} & N
\end{array}
\]

from bundle \(A \) to bundle \(B \), base \(f \) of which is injection. Let the bundle

\[
a[C] : C \longrightarrow L
\]

is subbundle of bundle \(A \). We define the image of the bundle \(C \) under fibered correspondence \(\mathcal{F} \) according to law

\[
\mathcal{FC} = \{ (y, b) : y \in N, \exists x \in M, y = f(x), \\
b \in B_y, \exists a \in A_x, (a, b) \in F_{(x,y)} \}
\]

Image of bundle \(C \) under fibered correspondence \(\mathcal{F} \) is subbundle of bundle \(B \).

Proof. To prove the statement, we need to show that all \(D_y = F_{(x,y)} C_x \) are homeomorphic.

\(^4\)One can easily observe that small change in correspondence may bring to fact that in some fibers correspondence will be singular.
Let us consider the following diagram

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{
C_x \ar[r]_{F_{(x,y)/C_x}} \ar[d]_{i_x} & D_y = F_{(x,y)}C_x \\
A_x \ar[r]_{F_{(x,y)}} & B_y \\
C \ar[u]_{k} \ar[r]^{F/C} & D \ar[u]_{D} \\
A \ar[r]_{F} & B \ar[l]_{j} \\
C \ar[r]_{i_x} & A_x \ar[u]_{l} \\
\}
\end{array}
\end{array}
\]

\(i, i_x, j, \) and \(j_y\) are injections, \(k, l, \) and \(n\) are bijections. We need to prove, that \(m\) is bijection. We assume that correspondence \(F\) is nonsingular in selected fiber.

Bijection \(l\) means that we can enumerate points of set \(A_x\) using points of set \(A\). Bijection \(k\) means that we can enumerate points of set \(C_x\) using points of set \(C\). Injection \(i\) means that \(C \subseteq A\). Injection \(i_x\) means that \(C_x \subseteq A_x\). Therefore, for each point \(p \in A\), point \(p_x \in A_x\) is defined uniquely. Commutativity of diagram (1) means that

\((2.3)\)

\(p \in C \iff p_x \in C_x\)

Bijection \(n\) means that we can enumerate points of the set \(B_x\) using points of the set \(B\). Injection \(j\) means that \(D \subseteq B\). Injection \(j_y\) means that \(D_y \subseteq B_y\). Therefore, for each point \(q \in B\), point \(q_y \in B_y\) is defined uniquely.

Bijections \(l\) and \(n\) and commutativity of diagram (5) means that we can enumerate points of correspondence \(F_{(x,y)}\) using points of correspondence \(F\).

\((2.4)\)

\((p, q) \in F \iff (p_x, q_y) \in F_{(x,y)}\)

According to definition, \((p, q) \in F/C\) when \(p \in C\) and \((p, q) \in F\). According to \((2.3)\) \(p_x \in C_x\). According to \((2.4)\) \((p_x, q_y) \in F_{(x,y)}\). According to definition, \((p_x, q_y) \in F_{(x,y)/C_x}\). Therefore, \(q_y \in D_y\), and map \(m\) is injection.

\(\square\)

Theorem 2.4. Let us consider fibered correspondence \(s[F]\)

\[
\begin{array}{c}
\xymatrix{
A \ar[r]_{s[F]} & B \\
| p[A] \ar[d] & | q[B] \\
M \ar[r]_{f} & N
\end{array}
\]

from bundle \(A\) to bundle \(B\) and fibered correspondence \(t[H]\)

\[
\begin{array}{c}
\xymatrix{
B \ar[r]_{t[H]} & C \\
| q[B] \ar[d] & | r[C] \\
N \ar[r]_{h} & K
\end{array}
\]

\(5\)Requirement of nonsingularity of correspondence in fiber is very important. Commutativity of diagram is broken when correspondence in a fiber is singular.
from bundle B to bundle C. Let bases of fibered correspondences $s[F]$ and $t[H]$ are injections. We define a composition of fibered correspondences \(t[H] \circ s[F] \) by:

\[
t[H] \circ s[F] = \{(x, z, a, c) : x \in M, z \in K, \exists y \in N, y = f(x), z = h(y), a \in A_x, c \in C_z, \exists b \in B_y, (a, b) \in F(x, y), (b, c) \in H(y, z)\}
\]

Proof. Let us consider the following diagram:

\[
\begin{array}{c}
A_x \xrightarrow{F(x, y)} B_y \xrightarrow{H(y, z)} C_z \\
\downarrow{k} \quad \quad \downarrow{n} \quad \quad \downarrow{l} \\
A \xrightarrow{F} B \xrightarrow{H} C
\end{array}
\]

k, l, and n are bijections. We assume that correspondence F is nonsingular in a selected fiber.

Like in the proof of theorem 2.3 commutativity of vertical diagram means that we can enumerate points of correspondence $F(x, y)$ using points of correspondence F, points of correspondence $H(y, z)$ using points of correspondence H, points of correspondence $G_{(x, z)}$ using points of correspondence G.

Commutativity of lower diagram means that $G = H \circ F$. Commutativity of upper diagram means that $G_{(x, z)} = H_{(y, z)} \circ F_{(x, y)}$.

Theorem 2.5. Let $s[F]$ be fibered correspondence from bundle A to bundle B, $t[H]$ be fibered correspondence from bundle B to bundle C and $r[G]$ be fibered correspondence from bundle C to bundle D. If there exist compositions of fibered correspondences

\[
(2.5) \quad t[H] \circ s[F]
\]

and

\[
(2.6) \quad r[G] \circ t[H]
\]

then there exists compositions $r[G] \circ (t[H] \circ s[F])$ and $(r[G] \circ t[H]) \circ s[F]$. In this case composition of fibered correspondences holds associative law

\[
r[G] \circ (t[H] \circ s[F]) = (r[G] \circ t[H]) \circ s[F]
\]

Proof. Existence of composition (2.5) and (2.6) means that base f of fibered correspondence $s[F]$, base h of fibered correspondence $t[H]$ and base g of fibered correspondence $r[G]$ are injections. In this case there exist compositions of mappings $h \circ f$ and $g \circ h$ which also are injections. Therefore, there exist compositions of mappings $g \circ (h \circ f)$ and $(g \circ h) \circ f$ which are injections and satisfy to law

\[
g \circ (h \circ f) = (g \circ h) \circ f
\]

Proof. Let us consider the following diagram:

\[
\begin{array}{c}
A_x \xrightarrow{F(x, y)} B_y \xrightarrow{H(y, z)} C_z \\
\downarrow{k} \quad \quad \downarrow{n} \quad \quad \downarrow{l} \\
A \xrightarrow{F} B \xrightarrow{H} C
\end{array}
\]

k, l, and n are bijections. We assume that correspondence F is nonsingular in a selected fiber.

Like in the proof of theorem 2.3 commutativity of vertical diagram means that we can enumerate points of correspondence $F(x, y)$ using points of correspondence F, points of correspondence $H(y, z)$ using points of correspondence H, points of correspondence $G_{(x, z)}$ using points of correspondence G.

Commutativity of lower diagram means that $G = H \circ F$. Commutativity of upper diagram means that $G_{(x, z)} = H_{(y, z)} \circ F_{(x, y)}$.

Theorem 2.5. Let $s[F]$ be fibered correspondence from bundle A to bundle B, $t[H]$ be fibered correspondence from bundle B to bundle C and $r[G]$ be fibered correspondence from bundle C to bundle D. If there exist compositions of fibered correspondences

\[
(2.5) \quad t[H] \circ s[F]
\]

and

\[
(2.6) \quad r[G] \circ t[H]
\]

then there exists compositions $r[G] \circ (t[H] \circ s[F])$ and $(r[G] \circ t[H]) \circ s[F]$. In this case composition of fibered correspondences holds associative law

\[
r[G] \circ (t[H] \circ s[F]) = (r[G] \circ t[H]) \circ s[F]
\]

Proof. Existence of composition (2.5) and (2.6) means that base f of fibered correspondence $s[F]$, base h of fibered correspondence $t[H]$ and base g of fibered correspondence $r[G]$ are injections. In this case there exist compositions of mappings $h \circ f$ and $g \circ h$ which also are injections. Therefore, there exist compositions of mappings $g \circ (h \circ f)$ and $(g \circ h) \circ f$ which are injections and satisfy to law

\[
g \circ (h \circ f) = (g \circ h) \circ f
\]

\[6\]Composition of correspondences Φ and Ψ is determined even when Φ is correspondence to set B, and Ψ is correspondence from set C. However we assume without loss of generality that Φ is correspondence to set $B \cap C$, and Ψ is correspondence from set $B \cap C$. This allows establishing connection between composition of correspondences and composition of fibered correspondences.
Therefore, there exist mapping of base of bundle A to base of bundle D, and this mapping is injection.

Existence of compositions (2.5) and (2.6) means that there exist compositions of correspondences $H \circ F$ and $G \circ H$. Therefore, there exist compositions of correspondences $G \circ (H \circ F)$ and $(G \circ H) \circ F$ which hold to the associative law. Therefore, correspondence from fiber of the bundle A to fiber of the bundle D is determined uniquely. □

Definition 2.6. Let $s[F] : F \rightarrow f$ be fibered correspondence

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
| & | & | \\
p & | & q \\
\downarrow & & \downarrow \\
M & \xrightarrow{f} & N
\end{array}
\]

from bundle A to bundle B and mapping f be injection. Then there exist inverse fibered correspondence $s[F^{-1}] : F^{-1} \rightarrow f^{-1}$

\[
\begin{array}{ccc}
B & \xleftarrow{f^{-1}} & A \\
| & | & | \\
p & | & q \\
\downarrow & & \downarrow \\
N & \xleftarrow{f^{-1}} & M
\end{array}
\]

Definition 2.7. Let $p[A] : A \rightarrow M$ be bundle. Fibered correspondence

\[
r_\Delta[\Delta_A] : \Delta_A \rightarrow \Delta_M
\]

where projection $r_\Delta[\Delta_A]$ is defined by law

\[
r_\Delta((x, p), (x, p)) = (x, x)
\]

is called diagonal in bundle A. □

Theorem 2.8. Let F be fibered correspondence from bundle A to bundle B, H be fibered correspondence from bundle B to bundle C, projections of fibered correspondences F and H be injections. The following laws are valid for fibered correspondences F and H

\[
(H \circ F)^{-1} = F^{-1} \circ H^{-1} \\
(F^{-1})^{-1} = F \\
F \circ \Delta_A = \Delta_B \circ F = F
\]

Proof. The proof of theorem is similar to proof of theorem 2.5. We check each statement for base and fiber. □
3. Fibered Correspondence of Homomorphism

Let transition functions $f_{\alpha\beta}$ determine bundle A over base M. Let us consider maps $U_\alpha \in M$ and $U_\beta \in M$, $U_\alpha \cap U_\beta \neq \emptyset$. Point $p \in A$ has representation (x, p_α) in map U_α and representation (x, p_β) in map U_β. Let transition functions $g_{\epsilon\delta}$ determine bundle B over base N. Let us consider maps $V_\epsilon \in N$ and $V_\delta \in N$, $V_\epsilon \cap V_\delta \neq \emptyset$. Point $q \in B$ has representation (y, q_ϵ) in map V_ϵ and representation (y, q_δ) in map V_δ. Therefore,

\[p_\alpha = f_{\alpha\beta}(p_\beta) \]
\[q_\epsilon = g_{\epsilon\delta}(q_\delta) \]

When we move from map U_α to map U_β and from map V_ϵ to map V_δ, representation of correspondence changes according to the law

\[(x, y, p_\alpha, q_\epsilon) = (x, y, f_{\alpha\beta}(p_\beta), g_{\epsilon\delta}(q_\delta)) \]

This is consistent with the transformation when we move from map $U_\alpha \times V_\epsilon$ to map $U_\beta \times V_\delta$ in the bundle $A \times B$.

Actually this is unusual fact. It is enough to consider at least one operation in algebra to demand transition functions to be homomorphisms of algebra. However, we have here arbitrary condition, arbitrary correspondence. And everything is OK.

As opposed to operation, the only property which correspondence holds is belonging of point to a certain set. There is no reason to search for constraint for type of map until we consider one-to-one map. On the other hand, an operation in the algebra can be represented as correspondence. For instance, given vector space, we can consider correspondence of vector a to vector b such, that $a = 3b$. According to definition a linear transformation holds this correspondence. What happens in case of nonlinear transformation. Let us consider coordinate transformation $a_i \rightarrow a_i'$. Does linear relation between vectors hold? No. Does the correspondence hold? Yes, however it is expressed by another way. Vectors are the same, even their coordinates change.

From this follows, that we apply constraints to transition functions only when we apply constraints to correspondence.

Definition 3.1. Correspondence Φ from \mathcal{F}-algebra A into \mathcal{F}-algebra B is called **correspondence of homomorphism**, if

\[(\omega(a_1, ..., a_n), \omega(b_1, ..., b_n)) \in \Phi \]

for each n-ari operation ω and any set of elements $a_1, ..., a_n \in A$, $b_1, ..., b_n \in B$ such that

\[(a_1, b_1) \in \Phi, ..., (a_n, b_n) \in \Phi \]

\[\square \]

Definition 3.2. Correspondence Φ from \mathcal{F}-algebra A into \mathcal{F}-algebra B is called **fibered correspondence of homomorphism**, if

\[(\omega(a_1, ..., a_n), \omega(b_1, ..., b_n)) \in \Phi \]

for each n-ari operation ω and any set of elements $a_1, ..., a_n \in A$, $b_1, ..., b_n \in B$ such that

\[(a_1, b_1) \in \Phi, ..., (a_n, b_n) \in \Phi \]

\[\square \]
4. Reduced Fibered Correspondence

Definition 4.1. Let \(a[A] : A \rightarrow M \) and \(b[B] : B \rightarrow M \) be bundles over \(M \). Fibered subset \(f[F] : F \rightarrow N \) of bundle \(A \odot B \) is called **reduced fibered correspondence from \(A \) to \(B \).**

If \(A = B \), then reduced fibered correspondence \(F \) is called **reduced fibered correspondence in \(A \).** □

According to definition 2.1 and 4.1 we can represent reduced fibered correspondence using diagram

\[
\begin{array}{ccc}
F & \xrightarrow{j} & A \odot B \\
\downarrow\downarrow & & \downarrow \downarrow \\
\downarrow & & \downarrow \\
f[F] & \xrightarrow{a[A]} & B \\
\downarrow & & \downarrow \\
M & \xrightarrow{id} & M
\end{array}
\]

where \(j \) is continuous injection. We suppose, that the set \(U \subset F \) is open iff there exists set \(V \subset A \odot B \) such that \(U = V \cap F \).

We define reduced fibered correspondence only for points of the same fiber. To study reduced fibered correspondence from \(A \) to \(B \) I use maps of the manifold \(M \) in which both bundles are trivial. This will make it possible to review reduced fibered correspondence in detail without loss of generality.

According to definition 2.1-3.1, I represent points of a fiber \((A \times B)_x\) of the bundle \(A \odot B \) as tuple \((x, p, q)\), \(p \in A_x, q \in B_x \). We define reduced fibered correspondence only for points of the same fiber. The point \((x, p) \in A \) is in reduced fibered correspondence \(F \) with point \((x, q) \in B \), if \(x \in N \subseteq M \) and point \(p \in A_x \) is in correspondence \(F_x \) with point \(q \in B_x \). Therefore, we can consider \(F_x \) as correspondence from \(A_x \) to \(B_x \). In particular, \(F_x \subseteq A_x \times B_x \).

Since reduced fibered correspondence inherits topology of bundle \(A \odot B \), we can consider topology of reduced fibered correspondence. Let point \(p \in A_x \) be in correspondence \(F_x \) with point \(q \in B_x \). Let \(V \subset A \odot B \) be an open set such that \((x, p, q) \in V \). According to [6], page 44, there exist open sets \(U \subset M \), \(V \subset A \times B \) such that \(x \in U \), \((p, q') \in V \cap F \). Therefore, there exist \(x' \in U \), \((p', q') \in V \cap F \). If \(x \neq x' \), then we can express this fact as the statement about continuous dependence of correspondence on fiber. However continuity of correspondence in fiber does not follow from continuous dependence of correspondence on fiber.

Theorem 4.2. Given reduced fibered correspondence \(f[F] : F \rightarrow N \), we determine uniquely a fibered correspondence \(f_f[F] : F \rightarrow \Delta_N \), which is lift of diagonal \(\Delta_N \), and isomorphism of bundles

\[
\begin{array}{ccc}
F & \xrightarrow{id} & F \\
\downarrow f_f[F] & & \downarrow f[F] \\
\Delta_N & \xrightarrow{\pi} & N
\end{array}
\]

over base \(\pi : \Delta_N \rightarrow N \).
Proof. According to design, \(F(x,x) = F_x \).

We will write diagram (4.2) in more compact form

\[
\begin{array}{ccc}
\Delta_N & \xrightarrow{\pi} & N \\
\downarrow & \downarrow & \downarrow \\
F & \xrightarrow{f} & \Delta_M \\
\downarrow & \downarrow & \downarrow \\
A & \xrightarrow{f} & B
\end{array}
\]

Theorem 4.2 gives an opportunity to build two categories:

- **category of reduced fibered correspondences**: its objects are bundles over selected base and its morphisms are reduced fibered correspondences
- **category of fibered correspondences over diagonal**: its objects are bundles over selected base \(M \) and its morphisms are fibered correspondences base of which is diagonal in \(M \)

Functor between these categories is trivial. It maps objects and morphisms into themselves, however in case of morphisms we substitute a projection on base by a projection on diagonal.

Remark 4.3. As evidenced by the foregoing, we can assume without loss of generality that \(N = M \). Like in section[2]-5 we may not indicate the base on diagram of reduced fibered correspondences. According to theorem 4.2 it is not important for us whether we use the set \(M \) as base or we use the set \(\Delta_M \).

Let transition functions \(f_{\alpha\beta} \) determine bundle \(A \) over base \(M \) and transition functions \(g_{\alpha\beta} \) determine bundle \(B \) over base \(M \). Let us consider maps \(U_\alpha \in M \) and \(U_\beta \in M \), \(U_\alpha \cap U_\beta \neq \emptyset \). Point \(p \in A \) has representation \((x, p_\alpha) \) in map \(U_\alpha \) and representation \((x, p_\beta) \) in map \(U_\beta \). Point \(q \in B \) has representation \((x, q_\alpha) \) in map \(U_\alpha \) and representation \((x, q_\beta) \) in map \(U_\beta \). Therefore,

\[
\begin{align*}
p_\alpha &= f_{\alpha\beta}(p_\beta) \\
q_\alpha &= g_{\alpha\beta}(q_\beta)
\end{align*}
\]

When we move from map \(U_\alpha \) to map \(U_\beta \), representation of correspondence changes according to the law

\[
(x, p_\alpha, q_\alpha) = (x, f_{\alpha\beta}(p_\beta), g_{\alpha\beta}(q_\beta))
\]

This is consistent with the transformation when we move from map \(U_\alpha \) to map \(U_\beta \) in the bundle \(A \odot B \).

Theorem 4.4. Given reduced fibered correspondence \(F \) from \(A \) to \(B \), set \(\Gamma(F) \) determines correspondence from \(\Gamma(A) \) to \(\Gamma(B) \).

Proof. By remark [2]-3.2 we can represent section of bundle \(A \odot B \) as tuple \((f, g) \) where \(f \) is section of bundle \(A \) and \(g \) is section of bundle \(B \). For each fiber, \(f(x) \in A_x \) is in correspondence \(F \) with \(g(x) \in B_x \) iff section \((f, g) \in \Gamma(F) \).

The properties of reduced fibered correspondence are closer to properties ordinary correspondence.

Theorem 4.5. Let \(F \) be reduced fibered correspondence from \(A \) to \(B \). Suppose the bundle \(A' \subseteq A \). We define the image of the bundle \(A' \) under reduced fibered correspondence \(F \) according to law

\[
FA' = \{ (x, b) : x \in N, (a, b) \in F_x, a \in A_x \}
\]
Image of bundle \mathcal{A}' under reduced fibered correspondence \mathcal{F} is subbundle of bundle \mathcal{B}.

Proof. Let us consider\(^7\) commutative diagram of fibered correspondences

\[(4.3)\]

\[
\begin{array}{c}
\mathcal{A}' \xrightarrow{i} \mathcal{A} \\
\downarrow{F/A'} \quad \downarrow{F} \\
\mathcal{B}' \xrightarrow{j} \mathcal{B}
\end{array}
\]

Depending on projections selected, this diagram represents either the relationship between reduced fibered correspondences over base \mathcal{M}, or the relationship between fibered correspondences over base Δ_M. However, these correspondences are identical. All the relationships that hold for the base Δ_M hold for base \mathcal{M} as well. □

Remark 4.6. Diagram (4.3) has simple representation. However, if we draw this diagram without considering remark 4.3, this diagram will have representation

\[
\begin{array}{c}
\mathcal{A}' \xrightarrow{I} \mathcal{A} \\
\downarrow{F/A'} \quad \downarrow{F} \\
\mathcal{B}' \xrightarrow{J} \mathcal{B}
\end{array}
\]

On diagram we use convention

\[i_\Delta(a, a) = (i(a), i(a))\]

\[\Box\]

Theorem 4.7. Let us consider reduced fibered correspondence $s[F]$ from bundle \mathcal{A} to bundle \mathcal{B} and reduced fibered correspondence $t[H]$ from bundle \mathcal{B} to bundle \mathcal{C}. We define a composition of reduced fibered correspondences $s[F]$ and $t[H]$

\[t[H] \circ s[F] = \{(x, a, c) : x \in \mathcal{M}, (a, b) \in F_x, (b, c) \in H_x\}\]

Proof. From commutativity of diagram of fibered correspondence

\[
\begin{array}{c}
\mathcal{A} \xleftarrow{A_x} \mathcal{F} \xrightarrow{B_x} \mathcal{B} \xleftarrow{B} \mathcal{G} \\
\downarrow{G_x} \quad \downarrow{H_x} \\
\mathcal{C} \xleftarrow{C_x}
\end{array}
\]

\(\Box\)

\(^7\)I can repeat, up to notation, proof of theorem 2.3. However I want to give another proof in order to show how theorem 4.2 works.
over base Δ_M follows $G_x = H_x \circ F_x$. Therefore this equation holds also over base M. □

Definition 4.8. Let $s[F] : \mathcal{F} \rightarrow \rightarrow M$ be reduced fibered correspondence

![Diagram](image)

from bundle A to bundle B. Then there exist **inverse reduced fibered correspondence** $s[F^{-1}] : \mathcal{F}^{-1} \rightarrow \rightarrow M$

![Diagram](image)

Theorem 4.9. Diagonal Δ_A in bundle $p[A] : A \rightarrow \rightarrow M$ is reduced fibered correspondence $r[\Delta_A] : \Delta_A \rightarrow M$ where projection $r[\Delta_A]$ is determined by law

$$r[\Delta_A](x, (p, p)) = x$$

□

Theorem 4.10. Let \mathcal{F} be reduced fibered correspondence from bundle A to bundle B, \mathcal{H} be reduced fibered correspondence from bundle B to bundle C. The following laws are valid for reduced fibered correspondences \mathcal{F} and \mathcal{H}

$$(\mathcal{H} \circ \mathcal{F})^{-1} = \mathcal{F}^{-1} \circ \mathcal{H}^{-1}$$

$$(\mathcal{F}^{-1})^{-1} = \mathcal{F}$$

$\mathcal{F} \circ \Delta_A = \Delta_B \circ \mathcal{F} = \mathcal{F}$$

Proof. The proof of theorem is similar to proof of theorem 2.5. We check each statement for base and fiber. □

5. Fibered Relation

Definition 5.1. Let $p[A] : A \rightarrow \rightarrow M$ be bundle and ω be n-ary relation in the set A. Fibered subset $r[\omega]$ of bundle \mathcal{E}^n is **n-ary fibered relation** in bundle A. □

Theorem 5.2. 2-ary fibered relation in bundle A is reduced fibered correspondence in bundle A.

Proof. The theorem is corollary of definitions 4.1 and 5.1. □

Definition 5.3. 2-ary fibered relation \mathcal{F} in bundle A is said to be

- **transitive**, if $\mathcal{F} \circ \mathcal{F} \subseteq \mathcal{F}$
- **symmetric**, if $\mathcal{F}^{-1} = \mathcal{F}$
- **antisymmetric**, if $\mathcal{F} \cap \mathcal{F}^{-1} \subseteq \Delta_A$
- **reflexive**, if $\mathcal{F} \supseteq \Delta_A$
Definition 5.4. A transitive reflexive 2-ary fibered relation \(F \) in bundle \(\mathcal{A} \) is called a fibered preordering of \(\mathcal{A} \). \(F^{-1} \) is then also a fibered preordering of \(\mathcal{A} \); it is said to be opposite to \(F \). An antisymmetric fibered preordering in bundle \(\mathcal{A} \) is called a fibered ordering of \(\mathcal{A} \). □

Definition 5.5. A transitive reflexive symmetric 2-ary fibered relation \(F \) in bundle \(\mathcal{A} \) is called a fibered equivalence on bundle \(\mathcal{A} \). □

6. Fibered Morphism

Theorem 6.1. Let us consider fibered equivalence \(s[S] : S -\rightarrow M \) on the bundle \(p[E] : \mathcal{E} -\rightarrow M \). Then there exists bundle \(t[E/S] \colon \mathcal{E}/S -\rightarrow M \)
called quotient bundle of bundle \(\mathcal{E} \) by the equivalence \(S \). Fibered morphism \(\text{nat}\mathcal{S} : \mathcal{E} -\rightarrow \mathcal{E}/S \)
is called fibered natural morphism or fibered identification morphism.

Proof. Let us consider the commutative diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\text{nat}\mathcal{S}} & \mathcal{E}/S \\
\searrow & & \searrow \\
p[E] & \xrightarrow{t[E/S]} & M
\end{array}
\]

We introduce in \(\mathcal{E}/S \) quotient topology ([6], page 33), demanding continuity of mapping \(\text{nat}\mathcal{S} \). According to proposition [6]-I.3.6 mapping \(t[E/S] \) is continuous.

Because we defined equivalence \(S \) only between points of the same fiber \(E \), equivalence classes belong to the same fiber \(E/S \) (compare with the remark to proposition [6]-I.3.6). □

Let \(f : \mathcal{A} \rightarrow \mathcal{B} \) be fibered morphism, base of which is identity mapping. According to definition 4.8 there exists inverse reduced fibered correspondence \(f^{-1} \). According to theorems 4.7 and 5.2 \(f^{-1} \circ f \) is 2-ary fibered relation.

Theorem 6.2. Fibered relation \(S = f^{-1} \circ f \) is fibered equivalence on the bundle \(\mathcal{A} \). There exists decomposition of fibered morphism \(f \) into product of fibered morphisms

\[
f = ij
\]

\[
\begin{array}{ccc}
\mathcal{A}/S & \xrightarrow{i} & f(\mathcal{A}) \\
\searrow & & \searrow \\
\mathcal{A} & \xrightarrow{f} & \mathcal{B}
\end{array}
\]

One may be tempted to define fibered total ordering \(\mathcal{F} \) using equation \(\mathcal{F} \cup \mathcal{F}^{-1} = \mathcal{A}^2 \)

However, if we consider this relation on the set of sections, then we can find two section which we cannot compare.

\(^8 \)
Aleks Kleyn
Fibered Correspondence

\(j = \text{nat} \mathcal{S} \) is the natural homomorphism
\[
(6.3) \quad j(a) = j(a)
\]
t is isomorphism
\[
(6.4) \quad r(a) = t(j(a))
\]
i is the inclusion mapping
\[
(6.5) \quad r(a) = i(r(a))
\]

Proof. We verify the statement of theorem in fiber. We need also to check that equivalence depends continuously on fiber. \(\square \)

7. Free \(T^* \)-Representation of Fibered Group

Mapping \(\text{nat} \mathcal{S} \) does not create bundle, because different equivalence classes are not homeomorphic in general. However the proof of theorem 6.1 suggests to the construction which reminds the construction designed in [7], pages 16 - 17.

Definition 7.1. Consider \(T^* \)-representation \(f \) of fibered group \(p[G] \) in bundle \(\mathcal{M} \). A fibered little group or fibered stability group of \(h \in \Gamma(\mathcal{M}) \) is the set
\[
\mathcal{G}_h = \{ g \in \Gamma(\mathcal{G}) : f(g)h = h \}
\]

Definition 7.2. \(T^* \)-representation \(f \) of group \(G \) is said to be free, if for any \(x \in M \) stability group \(G_x = \{ e \} \).

Theorem 7.3. Given free \(T^* \)-representation \(f \) of group \(G \) in the set \(A \), there exist 1 – 1 correspondence between orbits of representation, as well between orbit of representation and group \(G \).

Proof. \(\square \)

Let us consider covariant free \(T^* \)-representation \(f \) of fibered group \(p[G] \) in fiber \(p[E] \). This \(T^* \)-representation determines fibered equivalence \(\mathcal{S} \) on \(a[E] \), \((p, q) \in \mathcal{S} \) when \(p \) and \(q \) belong to common orbit. Since the representation in every fiber is free, all equivalence classes are homeomorphic to group \(G \). Therefore, the mapping \(\text{nat} \mathcal{S} \) is projection of the bundle \(\text{nat} \mathcal{S}[G] : \mathcal{E} \to \mathcal{E}/\mathcal{S} \). We also use notation \(\mathcal{S} = \mathcal{G}^* \). We may represent diagram (6.1) in the following form

\[
\begin{array}{c}
\mathcal{E} \\
\downarrow \text{nat} \mathcal{S}[G] \\
p[E] \\
\downarrow \mathcal{E}/\mathcal{S} \\
M \\
\downarrow \text{t}[E/\mathcal{S}]
\end{array}
\]

Bundle \(\text{nat} \mathcal{S}[G] \) is called bundle of level 2.

Example 7.4. Let us consider the representation of rotation group \(SO(2) \) in \(R^2 \). All points except the point \((0,0)\) have trivial little group. Hence, we defined free representation of group \(SO(2) \) in set \(R^2 \setminus \{(0,0)\} \).
We cannot use this idea in case of bundle $p[R^2]$ and representation of fibered group $t[SO(2)]$. Let S be relation of fibered equivalence. The bundle $p[R^2 \setminus \{(0, 0)\}]/t[SO(2)] \star$ is not complete. As a consequence passage to the limit may bring into non-existent fiber. Therefore we prefer to consider bundle $p[R^2]/t[SO(2)] \star$, keeping in mind, that fiber over point $(x, 0, 0)$ is degenerate. □

We simplify the notation and represent this construction as

$$p[E_2, E_1] : E_2 - \rightarrow E_1 - \rightarrow M$$

where we consider bundles

$$p_2[E_2] : E_2 - \rightarrow E_1 \quad \quad p_1[E_1] : E_1 - \rightarrow M$$

Similarly we consider bundle of level n

$$(7.1) \quad p[E_n, \ldots, E_1] : E_n - \rightarrow \ldots - \rightarrow E_1 - \rightarrow M$$

The sequence of bundles (7.1) is called tower of bundles. I made this definition by analogy with Postnikov tower ([8]). Postnikov tower is the tower of bundles. Fiber of bundle of level n is homotopy group of order n. Such definitions are well known, however I gave definition of tower of bundles, because it follows in a natural way from the text above.

One more example of tower of bundles attracted my attention ([9], [10], chapter 2). We consider the set $J^0(n, m)$ of 0-jets of functions from R^n to R^m as base. We consider the set $J^p(n, m)$ of p-jets of functions from R^n to R^m as bundle of level p.

8. References

[1] Aleks Kleyn, Lectures on Linear Algebra over Skew Field, eprint arXiv:math.GM/0701238 (2007)
[2] Aleks Kleyn, Algebra Bundle, eprint arXiv:math.DG/0702561 (2007)
[3] Tolstoi about Anna Karenina, in book A Karenina Companion, by C. J. G. Turner, published by Wilfrid Laurier University Press (August 1993)
[4] Paul M. Cohn, Universal Algebra, Springer, 1981
[5] N. Bourbaki, Theory of sets, Springer, 2004
[6] N. Bourbaki, General Topology, Chapters 1 - 4, Springer, 1989
[7] Postnikov M. M., Geometry IV: Differential geometry, Moscow, Nauka, 1983
[8] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
[9] Vinogradov, A. M., Krasil’shchik, I. S., and Lychagin, V. V., Introduction to geometry of nonlinear differential equations, Nauka, Moscow, 1986
[10] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, American Mathematical Society, 2001
9. Index

2-ary fibered relation 14
antisymmetric 2-ary fibered relation 14
associative law of composition of fibered correspondences 8
base of fibered correspondence 5
bundle of level 2 16
bundle of level n 17
category of fibered correspondences over diagonal 12
category of reduced fibered correspondences 12
commutative diagram of correspondences 3
composition of fibered correspondences 8
composition of reduced fibered correspondences 13
continuous correspondence 3

correspondence continuous on the set 3
correspondence of homomorphism 10
diagonal in bundle 9
diagram of correspondences 3

extension of correspondence 3
fibered correspondence from \mathcal{A} to \mathcal{B} 4
fibered correspondence in \mathcal{A} 5
fibered correspondence of homomorphism 10
fibered equivalence 15
fibered identification morphism 15
fibered little group 16
fibered natural morphism 15
fibered ordering 15
fibered preordering 15
fibered stability group 16
fibered subset 4
filter \mathcal{F} converges to \mathcal{A} 3
free T^*-representation of fibered group 16

inverse fibered correspondence 9
inverse reduced fibered correspondence 14

lift of correspondence 5
limit of correspondence with respect to the filter 4
limit of filter 3
limit set of filter 3

n-ary fibered relation 14
opposite fibered preordering 15
quotient bundle 15
reduced fibered correspondence from \mathcal{A} to \mathcal{B} 11
reduced fibered correspondence in \mathcal{A} 11
reflexive 2-ary fibered relation 14
restriction of correspondence Φ to set \mathcal{C} 3
subbundle 4
symmetric 2-ary fibered relation 14
tower of bundles 17
transitive 2-ary fibered relation 14
10. Special Symbols and Notations

- $\mathfrak{F} \to A$ filter \mathfrak{F} converges to set A
- \mathfrak{F}^{-1} inverse fibered correspondence
- \mathfrak{F}^{-1} inverse reduced fibered correspondence

- \mathcal{G}_h fibered little group of section h
- \mathcal{G}_h fibered stability group of section h

- $\lim_{\mathfrak{F} \to A} \Phi(\mathfrak{F})$ limit of correspondence Φ with respect to the filter \mathfrak{F}

- $p[E_2, E_1]$ bundle of level 2
- $p[E_n, \ldots, E_1]$ bundle of level n

- $r[\Delta_A]$ diagonal in bundle $p[A]$
- $r[\Delta_A]$ diagonal in bundle A

- $t[H] \circ s[F]$ composition of fibered correspondences
- $s[F^{-1}]$ inverse fibered correspondence
- $s[F^{-1}]$ inverse reduced fibered correspondence

- Δ_A diagonal in bundle A

- Φ/C restriction of correspondence Φ to set C

- $a[A] \subseteq b[B]$ fibered subset
- $A \subseteq B$ subbundle
Расслоенное соответствие

Александр Клейн

Аннотация. База расслоенного соответствия может быть произвольным соответствием. Расслоенное соответствие интересно при изучении отношений между различными расслоениями. Однако расслоенное соответствие не всегда определено. Приведенное расслоенное соответствие определено только между двумя, проектирующимися в одну и тут же точку базы. Приведенное расслоенное соответствие в расслоении называется 2-фундаментальным отношением. Рассмотрены расслоенные эквивалентность и теорема об изоморфизмах для расслоенных морфизмов.

Кто-то из посетителей Ясной Поляны обвинил Толстого в том, что он жестоко поступил с Анной Карениной заставив ее броситься под поезд.

Толстой улыбнулся и ответил: - Это мне напоминает мне случай с Пушкиным. Однажды он сказал кому-то из своих приятелей: «Представь, какую штуку удрала со мной Татьяна. Она замуж вышла. Этого я никак не ожидал от нее». То же самое и я могу сказать про Анну Каренину. Вообще герои и героини мои делают иногда такие штуки, каких я не желал бы! Они делают то, что должны делать в действительной жизни и как бы в действительной жизни, а не то, что мне хочется.

[3], с. 517

Эта история началась много лет назад. В 15 лет у меня появились карманные деньги на расход. Я стал покупать книги по математике и физике. К тому моменту, когда я поступил в университет, я собрал библиотеку любимых книг. Среди этих книг была книга "Универсальная алгебра"Кона ([4]), которая чудом надержалась в магазине. Я не очень задумывался, что мне ещё рано читать об этом. Читая эту книгу я полюбил алгебру. Однако свою жизнь и исследование я начал с геометрии, работая на стыке геометрии и физики.

Спустя более чем 30 лет, я вдруг вернулся к этой книге. Мне стало любопытно, что будет, если универсальная алгебра определена в случае расслоения. Когда я начал писать статью [2] меня не покидало ощущение, что носил подобное я читал в молодости. Я разыскал книгу, которая, как я полагал, была первоисточником. Но в этой книге были только векторные расслоения. Но лишь, когда

Key words and phrases. алгебраическая топология, расслоение, алгебра.
Aleks_Kleyn@Mail.IAPS.org.
я начал писать эту статью, я окончательно понял, что ничего подобного я не читал. Я не смог бы пройти мимо подобных фактов.

Выходит, что в молодости я об этом думал. Но почему я ждал столько лет? И почему именно сейчас я начал это исследование? На первый вопрос я никогда не найду ответа. А ответ на второй вопрос очень прост. На протяжении многих лет я изучал систему отсчёта в общей теории относительности. При этом меня интересовал не только классический случай, но и возможные отклонения геометрии. Результаты, полученные в [2], показали, что в области моего исследования есть ещё много оставшихся без ответа вопросов.

Я планировал посвятить эту статью изучению расслоенного отношения эквивалентности, так как оно представляет для меня определённый интерес в будущем. Однако необходимость дать чёткие формулировки включала новые определения. Далее события приняли совершенно неожиданный оборот. Статья, которая планировалась быть предельно короткой и занять месяц работы, безжалостно отнимает у меня время, меняет название и направление исследования.1 Статья, посвящённая расслоенному отношению эквивалентности, превращается в статью, посвящённую расслоенным бинарным отношениям.

Расслоенное отношение - пожалуй, одна из самых точных тем в теории расслоенной алгебры. Определение операции практически однозначно переносится на расслоения, так как определение является отображением, и отношения нетрудно распространить операцию на сечения и, если надо, потребовать непрерывность. Отношение - это подмножество декартова произведения. Если мы просто определим его послойно, то скорее всего мы потеряем связь между слоями.

Я решил полностью повторять путь, который необходим для определения отношения в универсальной алгебре. Когда я начал изучать расслоенные соответствия, я понял, что многие формулировки в [2] должны быть изменены. Определение [2]-3.1 порождает слишком тесные рамки для определения расслоенных отношений. Определение, задающее отношение только в слое, может не получить в некоторых случаях2, но за бортом остаются расслоенные морфизм. Анализ сложившейся ситуации разоблачает миф, с которым я спокойно жил все годы. Точнее, я всегда пытался понять, что из себя представляет база послойного отображения. Является ли это отображение инъекцией, или оно может быть произвольным. Ни одно определение не даёт ясного ответа на этот вопрос. Для простоты восприятия я полагал, что база послойного отображения является инъекцией. На самом деле, раз характер отображения базы не оговорен, это отображение может быть произвольным. Это приводит к более широкому определению (определение [2]-2.2) декартова произведения расслоений. С другой стороны, определение [2]-2.2 приводит к трудностям в определении расслоенных алгебр. Это приводит к необходимости пользоваться двумя определениями декартова произведения расслоения. Аналогичные соображения приводят к двум определениям расслоенного соответствия.

В конце концов я вернулся к отношению эквивалентности. Но мой труд не прошае декарт. Мой взгляд на проблему изменился.

1А за руку Состоял - одна из самых сильных страстей человечества. Я ждал, чтобы на том, что я постоянно решал новые задачи.
2В частности, мы определили расслоенное отношение, определяя отношение в слое
Александр Клейн
Расслоенное соответствие

Из определения 2.2 следует, что понятие непрерывности является существенной компонентой определения расслоенного соответствия. Вслед за этим определением я разъясню, что означает непрерывность соответствия.

Обозначения операций и отношений по возможности сохраняются как они введены в теории множеств. Это не приходит к недоразумениям, так как обозначения расслоений отличны от обозначений множеств. Для обозначения расслоения и слоя я буду пользоваться одной и той же буквой в разных алфавитах.

Проекция расслоения, сечение, морфизм расслоений предполагаются непрерывными отображениями.

В математической литературе существует две традиции записывать произведение отображений и соответствий. Одни авторы записывают произведение отображений в том порядке, в каком стрелки следуют на диаграмме. Другие авторы предпочитают записывать отображения в противоположном порядке. При чтении статей и книг на первом делом обращают внимание, какой порядок сомножителей использует автор.

Ситуация становится проще, когда автор записывает действие отображения на множество. В этом случае автор записывает множество и отображение в таком порядке, что расставив скобки, мы получим правильный порядок. Например, рассмотрим диаграмму

\[
A \xrightarrow{f} B \xrightarrow{g} C
\]

и пусть \(D \subset A \). Если мы произведение отображений записываем в виде \(fg \), то образ множества \(D \) имеет вид \(Dfg = (Df)g \). Если мы произведение отображений записываем в виде \(gf \), то образ множества \(D \) имеет вид \(gfd = g(fD) \).

Это и является моей отправной точкой. Опираясь на соглашение из замечания [1]-2.2.14, я буду предполагать возможность читать выражение как справа налево, так и слева направо.

1. Соответствие

Определение 1.1. Пусть дана диаграмма

\[
\begin{array}{ccc}
A & \overset{\Phi}{\longrightarrow} & B \\
\downarrow{\Phi} & & \downarrow{\Sigma} \\
C & \overset{\Theta}{\longrightarrow} & D
\end{array}
\]

стрелки которой изображают соответствия. Диаграмма соответствий называется коммутативной, если образ любого подмножества множества \(A \) в множестве \(D \) не зависит от пути в диаграмме.

В определении категории мы не уточняем, является ли морфизм отображением. Поэтому мы можем изучать категорию, объектами которой являются множества, а морфизмами - соответствия из одного множества в другое.

Определение 1.2. Пусть \(\Phi \) - соответствие из множества \(A \) в множество \(B \). Пусть \(C \subseteq A \). Мы будем говорить, что соответствие

\[
\Phi/C = \{(c, b) \in \Phi : c \in C\}
\]
является сужением соответствия Φ на множество C.

Определение 1.3. Предположим, что на множествах A и B определена топология.

Соответствие Φ из множества A в множество B называется непрерывным на множестве $C \subseteq A$, если для любого открытого множества V, $\Phi(C) \subseteq V \subseteq B$, существует открытое множество U, $C \subseteq U \subseteq A$, такое, что $\Phi(U) \subseteq V$.

Соответствие Φ из множества A в множество B называется непрерывным, если для любого открытого множества $V \subseteq B$ существует открытое множество $U \subseteq A$, такое, что $\Phi(U) \subseteq V$.

Следуя [6], я определяю непрерывность, опираясь на понятие предела по фильтру. Так как образ при соответствия является не точкой, а множеством, определения и теоремы слегка изменены.

Определение 1.4. Пусть X - топологическое пространство. Пусть \mathfrak{F} - фильтр в X. Множество $A \subseteq X$ называют предельным множеством или пределом фильтра \mathfrak{F}, если \mathfrak{F} мажорирует фильтр $\mathcal{V}(A)$ окрестностей множества A. Говорят также, что фильтр \mathfrak{F} сходится к A, $\mathfrak{F} \to A$.

Множество A называют пределом базиса фильтра \mathcal{V} в X и говорят, что \mathcal{V} сходится к A, если фильтр с базисом \mathcal{V} сходится к A.

Теорема 1.5. Для того чтобы базис фильтра \mathcal{V} в топологическом пространстве X сходился к множеству $A \subseteq X$, необходимо и достаточно, чтобы всякое множество из фундаментальной системы окрестностей множества X содержало множество из \mathcal{V}.

Доказательство. Если фильтр \mathfrak{F} сходится к множеству A, то в силу определения 1.4 всякую фильтр, мажорирующий \mathfrak{F}, также сходится к A. Пусть Φ - множество фильтров в X, сходящихся к множеству A. Так как фильтр окрестностей $\mathcal{V}(A)$ мажорируется всем фильтром из Φ, то $\mathcal{V}(A)$ мажорируется их пересечением Φ. Следовательно, Φ сходится к множеству A.

Определение 1.6. Пусть Φ - соответствия из множества X в топологическое пространство Y. Пусть $\mathfrak{F} \to A$ - фильтр в X. Множество $B \subseteq Y$ называют пределом соответствия по фильтру \mathfrak{F}

$$\lim_{\mathfrak{F} \to A} \Phi(\mathfrak{F}) = B$$

если базис фильтра $\Phi(\mathfrak{F})$ сходится к B.

Теорема 1.7. Для того чтобы множество $B \subseteq Y$ было пределом соответствий Φ по фильтру \mathfrak{F}, необходимо и достаточно, чтобы для любой окрестности V множества B в Y существовало такое множество $M \subseteq \mathfrak{F}$, что $\Phi(M) \subseteq V$.

Доказательство. Следствие определения 1.6 и теоремы 1.5.

Теорема 1.8. Для того чтобы соответствия Φ из топологического пространства X в топологическое пространство Y было непрерывным на множестве $A \subseteq X$, необходимо и достаточно, чтобы

$$\lim_{\mathfrak{F} \to A} \Phi(\mathfrak{F}) = \Phi A$$

Определение дано по аналогии с определением в [5], с. 92.
Доказательство. Следствие определения 1.3 и теоремы 1.7.

Пусть Φ - непрерывное соответствие из топологического пространства X в топологическое пространство Y. Пусть $(a, b) \in \Phi$. Положим $V \subset Y$ - открытое множество, $\Phi \{a\} \subset V$. В частности, $b \in V$. Согласно определению 1.3 существует открытое множество $U \subset X$, $a \in U$, $\Phi U \subset V$. Следовательно, существуют $a' \in U$, $b' \in V$, $(a', b') \in \Phi$.

2. Расслоенное соответствие

Определение 2.1. Пусть $a[A] : A \rightarrow \rightarrow N$ и $b[B] : B \rightarrow \rightarrow M$ - расслоения. Пусть морфизм расслоений определён диаграммой

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow a[A] & & \downarrow b[B] \\
N & \xrightarrow{F} & M
\end{array}
$$

где отображения f и F инъективны. Тогда мы называем расслоение $a[A]$ расслоенным подмножеством или подраслоением расслоения $b[B]$. Мы будем также пользоваться записью $a[A] \subseteq b[B]$ либо $A \subseteq B$.

Если на множествах A и B определена \mathcal{F}-алгебра и отображение f является гомоморфизмом расслоенных алгебр, то расслоение $a[A]$ называется расслоенной подалгеброй расслоенной алгебры $b[B]$.

Не нарушая общности, мы можем полагать $A \subseteq B$, $N \subseteq M$.

Определение 2.2. Пусть $a[A] : A \rightarrow \rightarrow M$ и $b[B] : B \rightarrow \rightarrow M$ - расслоения. Расслоенное подмножество $f[F] : \mathcal{F} \rightarrow \rightarrow \Phi$ расслоения $A \times B$ называется расслоенным соответствие из A в B.

Если $A = B$, расслоенное соответствие \mathcal{F} называется расслоенным соответствием в A.

Согласно определениям 2.1 и 2.2 расслоенное соответствие может быть представлено с помощью диаграммы

$$
\begin{array}{ccc}
\mathcal{F} & \xrightarrow{j} & A \times B \\
\downarrow f[F] & & \downarrow a[A] \times b[B] \\
\Phi & \xrightarrow{i} & M \times N
\end{array}
$$

где i и j - непрерывные инъекции. Мы полагаем, что множество $U \subseteq \Phi$ открыто тогда и только тогда, когда существует открытое множество $V \subset M \times N$ такое, что $U = V \cap \Phi$. Мы полагаем, что множество $U \subseteq \mathcal{F}$ открыто тогда и только тогда, когда существует открытое множество $V \subset A \times B$ такое, что $U = V \cap \mathcal{F}$.

Мы будем называть соответствие Φ базой расслоенного соответствия \mathcal{F}, и расслоенное соответствие \mathcal{F} мы будем называть лифтом соответствия Φ.

Александр Клейн
Расслоенное соответствие
Александр Клейн
Расслоенное соответствие

Мы будем пользоваться диаграммами расслоенных соответствий также, как мы пользуемся диаграммами отображений и соответствий. При этом мы можем дополнительно указать на диаграмме проекцию на базу. Таким образом расслоенное соответствие может быть так же представлено с помощью диаграммы

(2.2)

\[\begin{array}{ccc}
A & \xrightarrow{p(F)} & B \\
\downarrow & a & \downarrow b \\
\downarrow y & \downarrow & \downarrow \\
M & \xrightarrow{f} & N
\end{array} \]

Вывор диаграммы (2.1) или (2.2) будет зависеть от задачи, которую мы решаем.

Чтобы изучить расслоенное соответствие из \(A \) в \(B \), я буду пользоваться картами многообразий \(M \) и \(N \), в которых оба расслоения тривиальны. Это позволит, не нарушая общности, в деталях изучить расслоенные соответствия.

Согласно определению [2]-2.2, для произвольных \(x \in M \), \(y \in N \) точки слоя \((A \times B)(x,y) \) расслоения \(A \times B \) можно представить в форме картецца \((x,y,p,q) \), \(p \in A_x \), \(q \in B_y \). Согласно нашему допущению, \(\Phi \subseteq M \times N \), \(F \subseteq A \times B \). Следовательно, мы можем рассматривать \(\Phi \) как соответствие из \(M \) в \(N \) и \(F \) как соответствие из \(A \) в \(B \). В частности, \(F(x,y) \subseteq A_x \times B_y \). Точка \((x,p) \in A \) находится в соответствии \(F \) с точкой \((y,q) \in B \), если точка \(x \in M \) находится в соответствии \(\Phi \) с точкой \(y \in N \) и точка \(p \in A_x \) находится в соответствии \(F(x,y) \) с точкой \(q \in B_y \).

Соответствие в слое зависит от выбора слоя. Например, пусть заданы расслоения \(a[R] : A \longrightarrow R^2 \) и \(b[R] : B \longrightarrow R \). Пусть \((x,y) \in M = R^2 \) и \(z \in N = R \). Будем полагать, что точка \((x,y,p) \in A \) находится в соответствии \(F \) с точкой \((z,q) \in B \), если \(q \) можно представить в виде

\[q = (z^2 + x^2 + y^2 + p^2 + 1)n \]

где \(n \) - произвольное целое число. В разных слоях отношение различно, однако мы можем определить биекцию между \(F \) и \(F(x,y,z) \) для произвольного слоя.

Рассмотрим множество \(\Gamma(F) \). Если мы выберем тривиализации расслоений \(A \) и \(B \), то мы можем представить элемент \(\Gamma(F) \) в виде \((x,y,p(x),q(y)) \). Небольшая перестановка элементов приводит к записи \(((x,p(x)),(y,q(y))) \). Возникает вопрос, что мы записали соответствие из множества \(\Gamma(A) \) в множество \(\Gamma(B) \). Однако это не так. Зафиксировав \(x \), то есть картеж \((y,q(y)) \) при изменении \(y \) порождает сечение \(q \in \Gamma(B) \). Так как это сечение зависит от выбора пары \((x,p(x)) \), то мы не можем устаноавливать соответствия из множества \(\Gamma(A) \) в множество \(\Gamma(B) \).

Расслоенное соответствие теряет некоторые важные свойства соответствия. Например, если \(C \subseteq A \) и \(\Phi - \) соответствие из \(A \) в \(B \), то мы можем определить образ множества \(C \) при соответствия \(\Phi \) с помощью равенства

\[\Phi C = \{ b \in B : (a,b) \in \Phi, a \in C \} \]

4. Легко видеть, что небольшие изменения в соответствии может привести к тому, что в некоторых слоях соответствие будет выражено.
Однако в случае расслоенного соответствия образ расслоения, вообще говоря, расслоением не является. Причина состоит в том, что существует возможность, что \((x_1, y) \in \Phi, (x_2, y) \in \Phi\). При этом, вообще говоря,
\[\Phi(x_1, y)A_{x_1} \neq \Phi(x_2, y)A_{x_2} \]
хотя
\[\Phi(x_1, y)A_{x_1} \subseteq B_y \]
\[\Phi(x_2, y)A_{x_2} \subseteq B_y \]
Следствием этого является невозможность определить в общем случае произведение расслоенных соответствий. Аналогичное утверждение справедливо для морфизмов расслоений, если база морфизма не является инъекцией.

Теорема 2.3. Пусть определены расслоенное соответствие \(\mathcal{F} \)

\[
\begin{array}{c}
A \xrightarrow{\pi} B \\
\downarrow p \downarrow \pi & \downarrow s \downarrow \pi \\
M \xrightarrow{f} N
\end{array}
\]

из расслоения \(A \) в расслоение \(B \), база \(f \) которого является инъекцией. Пусть расслоение

\[a[C] : C \rightarrow L \]

является подрасслоением расслоения \(A \). Мы определим образ расслоение \(C \) при рассложном соответствии \(\mathcal{F} \) согласно равенству

\[\mathcal{F}C = \{(y, b) : y \in N, \exists x \in M, y = f(x), b \in B_y, \exists a \in A_x, (a, b) \in \mathcal{F}(x, y)\} \]

Образ расслоения \(C \) при рассложном соответствии \(\mathcal{F} \) является подрасслоением расслоения \(B \).

Доказательство. Что бы доказать утверждение, мы должны показать, что все \(D_y = \mathcal{F}(x, y)C_x \) гомеоморфны.

Рассмотрим следующую диаграмму

\[
\begin{array}{cccc}
C_x & \xrightarrow{F(x, y)/C_x} & D_y & D_y = \mathcal{F}(x, y)C_x \\
\downarrow i_x & & \downarrow j_y & \\
A_x & \xrightarrow{F(x, y)} & B_y & \\
\downarrow k & \downarrow l & \downarrow n & \downarrow m \\
C & \xrightarrow{F/C} & \downarrow j & D \xrightarrow{D = FC}
\end{array}
\]

\(i, i_x, j, j_y \) - инъекции, \(k, l, n, b \) - биекции. Нам надо доказать, что \(m \) - биекция. Мы предполагаем, что в выбранном слое соответствие \(F \) не выражено.

Биекция \(l \) означает, что мы можем перенумеровать точки множества \(A_x \) точками множества \(A \). Биекция \(k \) означает, что мы можем перенумеровать
Александр Клейн

Расслоенное соответствие

точки множества C_x точками множества C. Инъекция i означает, что $C \subseteq A$. Инъекция i_x означает, что $C_x \subseteq A_x$. Следовательно, для каждой точки $p \in A$ однозначно определена точка $p_x \in A_x$. Коммутативность диаграммы (1) означает, что

$$p \in C \iff p_x \in C_x$$

Биекция n означает, что мы можем перенумеровать точки множества B_x точками множества B. Инъекция j означает, что $D \subseteq B$. Инъекция j_y означает, что $D_y \subseteq B_y$. Следовательно, для каждой точки $q \in B$ однозначно определена точка $q_y \in B_y$.

Биекция l и n и коммутативность диаграммы (5) означает, что мы можем перенумеровать точки множества $F(x,y)$ точками множества F.

(2.4) $$(p, q) \in F \iff (p_x, q_y) \in F(x,y)$$

Po определению, $(p, q) \in F/C$, если $p \in C$ и $(p, q) \in F$. Согласно (2.3) $p_x \in C_x$.

Согласно (2.4) $(p_x, q_y) \in F(x,y)$. По определению, $(p_x, q_y) \in F(x,y)/C_x$. Следовательно, $q_y \in D_y$, и отображение m является инъекцией.

Теорема 2.4. Пусть определены расслоенное соответствие $s[F]$ и расслоенное соответствие $t[H]$.

из расслоения A в расслоение B и расслоенное соответствие $s[F]$ из расслоения B в расслоение C, и баймы расслоенных соответствий $s[F]$ и $t[H]$ являются инъекциями. Мы определим произведение расслоенных соответствий H и F

$$t[H] \circ s[F] = \{(x, z, a, c): x \in M, z \in K, \exists y \in N, y = f(x), z = h(y), a \in A_x, c \in C_z, \exists b \in B_y, (a, b) \in F(x,y), (b, c) \in H(y,z)\}$$

Требование невырожденности соответствия в слое очень важно. Если соответствие в слое будет вырождено, то коммутативность диаграммы будет нарушена.

Для соответствий Φ и Ψ произведение определено даже в том случае, когда Φ - соответствие в множество B, а Ψ - соответствие из множества C. Однако мы не нарушим общности, если будем полагать, что Φ - соответствие в множество $B \cap C$, а Ψ - соответствие из множества $B \cap C$. Это позволяет установить связь между произведением соответствий и произведением расслоенных соответствий.

5 Требование невырожденности соответствия в слое очень важно. Если соответствие в слое будет вырождено, то коммутативность диаграммы будет нарушена.

6 Для соответствий Φ и Ψ произведение определено даже в том случае, когда Φ - соответствие в множество B, а Ψ - соответствие из множества C. Однако мы не нарушим общности, если будем полагать, что Φ - соответствие в множество $B \cap C$, а Ψ - соответствие из множества $B \cap C$. Это позволяет установить связь между произведением соответствий и произведением расслоенных соответствий.
Доказательство. Рассмотрим следующую диаграмму

![Diagram](image)

к, l, n - биекции. Мы предполагаем, что в выбранном слое соответствие F - не выражено.

Так же как и в доказательстве теоремы 2.3 коммутативность вертикальных диаграмм означает, что мы можем перенумеровать точки соответствия \(F(x,y)\) точками соответствия \(F\), точки соответствия \(H(y,z)\) точками соответствия \(H\), точки соответствия \(G(x,z)\) точками соответствия \(G\).

Коммутативность нижней диаграммы означает, что \(G = H \circ F\). Коммутативность верхней диаграммы означает, что \(G(x,z) = H(y,z) \circ F(x,y)\).

Теорема 2.5. Пусть \(s[F]\) - расслоенное соответствие из расслоения \(A\) в расслоение \(B\), \(t[H]\) - расслоенное соответствие из расслоения \(B\) в расслоение \(C\) и \(r[G]\) - расслоенное соответствие из расслоения \(C\) в расслоение \(D\). Если определены произведения расслоенных соответствий

\[
\begin{align*}
(2.5) & \quad t[H] \circ s[F] \\
(2.6) & \quad r[G] \circ t[H]
\end{align*}
\]

то так же определены произведения \(r[G] \circ (t[H] \circ s[F])\) и \((r[G] \circ t[H]) \circ s[F]\). В этом случае производение расслоенных соответствий удовлетворяет закону ассоциативности

\[
(2.6)
\]

Доказательство. Существование произведений (2.5) и (2.6) означает, что база \(f\) расслоенного соответствия \(s[F]\), база \(h\) расслоенного соответствия \(t[H]\) и база \(g\) расслоенного соответствия \(r[G]\) являются инъекциями. При этом определены произведения отображений \(h \circ f\) и \(g \circ h\), которые также являются инъекциями. Следовательно, определены произведения отображений \(g \circ (h \circ f)\) и \((g \circ h) \circ f\), которые являются инъекциями и удовлетворяют равенству

\[
g \circ (h \circ f) = (g \circ h) \circ f
\]

Следовательно, определено отображение базы расслоения \(A\) в базу расслоения \(D\), и это отображение является инъекцией.

Существование произведений (2.5) и (2.6) означает, что существует произведение соответствий \(H \circ F\) и \(G \circ H\). Следовательно, существуют произведения...
Александр Клейн
Расслоенное соответствие

соответствий $G \circ (H \circ F)$ и $(G \circ H) \circ F$, которые удовлетворяют закону ассоциативности. Следовательно, соответствие из слоя расслоения A в слой расслоения B определено однозначно. □

Определение 2.6. Пусть $s[F] : F \to \to f$ - расслоенное соответствие

\[
\begin{array}{c}
A \xrightarrow{f} B \\
| p \downarrow | s[F] \downarrow q \\
M \xrightarrow{f} N
\end{array}
\]

из расслоения A в расслоение B и отображение f является инъекцией. Тогда определено обратное расслоенное соответствие $s[F^{-1}] : F^{-1} \to \to f^{-1}$

\[
\begin{array}{c}
B \xrightarrow{f^{-1}} A \\
| p \downarrow | s[F^{-1}] \downarrow q \\
N \xrightarrow{f^{-1}} M
\end{array}
\]

Определение 2.7. Пусть $p[A] : A \to \to M$ - расслоение. Расслоенное соответствие

\[
r_{\Delta}[\Delta_A] : \Delta_A \to \to \Delta_M
\]

где проекция $r_{\Delta}[\Delta_A]$ определена равенством

\[
r_{\Delta}((x,p),(x,p)) = (x,x)
\]

называется диагональю в расслоении A. □

Теорема 2.8. Пусть F - расслоенное соответствие из расслоения A в расслоение B, H - расслоенное соответствие из расслоения B в расслоение C, проекции расслоенчих соответствий F и H являются инъекциями. Следовательно тезисы справедливы для расслоенных соответствий F и H

\[
(H \circ F)^{-1} = F^{-1} \circ H^{-1}
\]

\[
(F^{-1})^{-1} = F
\]

\[
F \circ \Delta_A = \Delta_B \circ F = F
\]

Доказательство. Доказательство теоремы аналогично доказательству теоремы 2.5. Каждое утверждение проверяется на базе и в слое. □

3. Расслоенное соответствие гомоморфизма

Допустим функции перехода $f_{\alpha\beta}$ определяют расслоение A над базой M. Рассмотрим карты $U_{\alpha} \in M$ и $U_{\beta} \in M$, $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Точка $p \in A$ имеет представление (x,p_α) в карте U_{α} и представление (x,p_β) в карте U_{β}. Допустим функции перехода $g_{\alpha\beta}$ определяют расслоение B над базой N. Рассмотрим карты $V_\alpha \in N$ и $V_\beta \in N$, $V_\alpha \cap V_\beta \neq \emptyset$. Точка $q \in B$ имеет представление (y,q_α) в карте V_α и представление (y,q_β) в карте V_β. Следовательно,

\[
p_\alpha = f_{\alpha\beta}(p_\beta)
\]
Данное означает, что при переходе от карты \(U_\alpha \) к карте \(U_\beta \) и от карты \(V_e \) к карте \(V_b \) изменение согласно закону:

\[
(x, y, p_\alpha, q_e) = (x, y, f_\alpha(p_\beta), g_\beta(q_b))
\]

Это согласуется с преобразованием при переходе от карты \(U_\alpha \times V_e \) к карте \(U_\beta \times V_b \) в расслоении \(A \times B \).

Это действительно необычный факт. Если на алгебре определена хоть одна операция, уже достаточно потребовать, чтобы функции перехода были гомоморфизмами алгебры. А здесь произвольные функции перехода, произвольное соответствие. И всё в порядке.

В отличии от операций единственное свойство, которое соответствие сохраняет, - это принадлежность точки некоторому множеству. И до тех пор, пока мы имеем дело с взаимно однозначными отображениями, нет оснований искать ограничения на тип отображения. С другой стороны, операция в алгебре может быть представлена в виде соответствия. Например, вектором пространства мы можем рассматривать соответствие вектора \(a \) в векторе \(b \) такое, что \(a = 3b \). Линейное преобразование по определению сохраняет это соответствие. Что происходит в случае нелинейного преобразования. Допустим мы примием преобразование координат \(a_i \rightarrow a_i^2 \). Сохраняется ли линейное отношение между векторами? Нет. Сохраняется ли само соответствие? Да, хотя выражено оно будет иначе. Векторы остались те же, несмотря на изменение координат.

Однако вывод, что только в случае наложения на соответствие специальных ограничений, мы накладываем ограничения на функции перехода.

Определение 3.1. Соответствие \(\Phi \) из \(\mathcal{F} \)-алгебры \(A \) в \(\mathcal{F} \)-алгебру \(B \) называется **соответствием гомоморфизма**, если для каждой \(n \)-арной операции \(\omega \) и любого набора элементов \(a_1, ..., a_n \in A, b_1, ..., b_n \in B \) таких, что

\[
(a_1, b_1) \in \Phi, ..., (a_n, b_n) \in \Phi
\]

соответствие

\[
(\omega(a_1, ..., a_n), \omega(b_1, ..., b_n)) \in \Phi
\]

Определение 3.2. Соответствие \(\Phi \) из \(\mathcal{F} \)-алгебры \(A \) в \(\mathcal{F} \)-алгебру \(B \) называется **расслоенным соответствием гомоморфизма**, если для каждой \(n \)-арной операции \(\omega \) и любого набора элементов \(a_1, ..., a_n \in A, b_1, ..., b_n \in B \) таких, что

\[
(a_1, b_1) \in \Phi, ..., (a_n, b_n) \in \Phi
\]

соответствие

\[
(\omega(a_1, ..., a_n), \omega(b_1, ..., b_n)) \in \Phi
\]

4. Приведенное расслоенное соответствие

Определение 4.1. Пусть \(a[A] : A \to M \) и \(b[B] : B \to M \) - расслоения на базах \(M \). Расслоенное подмножество \(f[F] : \mathcal{F} \to N \) расслоения \(A \circ B \) называется **приведенным расслоенным соответствием из \(A \) в \(B \).** Если \(A = B \), приведенное расслоенное соответствие \(\mathcal{F} \) называется **приведенным расслоенным соответствием в \(A \).**

\[\square\]
Александр Клейн
Расслоенное соответствие

Согласно определениям 2.1 и 4.1 приведенное расслоенное соответствие может быть представлено с помощью диаграммы

\[
\begin{array}{c}
\mathcal{F} \\
\downarrow j \\
A \odot B
\end{array}
\begin{array}{c}
\downarrow f[F] \\
\downarrow a[A] \odot b[B] \\
M
\end{array}
\begin{array}{c}
\downarrow \text{id} \\
\downarrow \pi \\
M
\end{array}
\]

где \(j \) - непрерывная инъекция. Мы полагаем, что множество \(U \subset \mathcal{F} \) открыто тогда и только тогда, когда существует открытое множество \(V \subset A \odot B \) такое, что \(U = V \cap \mathcal{F} \).

Приведенное расслоенное отношение определено только для точек одного слоя. Чтобы изучать приведенное расслоенное соответствие из \(A \) в \(B \), и будем пользоваться картами многообразия \(M \), в которых оно расслоения тривиальны. Это позволит, не нарушая общности, в деталях изучить приведенные расслоенные соответствия.

Согласно определению [2]-3.1, точки слоя \((A \times B)_x\) расслоения \(A \odot B \) можно представить в форме кортежа \((x, p, q)\), \(p \in A_x, q \in B_x \). Точка \((x, p) \in A \) находится в приведенном расслоенном соответствии \(\mathcal{F} \) с точкой \((x, q) \in B \), если \(x \in N \subseteq M \) и точка \(p \in A_x \) находится в соответствии \(F_x \) с точкой \(q \in B_x \). Следовательно, мы можем рассматривать \(F_x \) как соответствие из \(A_x \) в \(B_x \). В частности, \(F_x \subseteq A_x \times B_x \).

Поскольку приведенное расслоенное соответствие наследует топологию расслоения \(A \odot B \), то мы можем проанализировать какую роль играет топология приведенного расслоенного соответствия. Пусть точка \(p \in A_x \) находится в соответствии \(F_x \) с точкой \(q \in B_x \). Пусть \(V \subset A \odot B \) - открытое множество такое, что \((x, p, q) \in V \). Согласно [6], стр. 38, существуют открытые множества \(U \subseteq M \), \(V \subseteq A \times B \) такие, что \(x \in U \), \((p, q) \in V \cap F \). Следовательно, существуют \(x' \in U \), \((p', q') \in V \cap F \). Если \(x \neq x' \), то мы можем выразить этот факт как утверждение о непрерывной зависимости соответствия от слоя. Однако из непрерывной зависимости соответствия от слоя не следует непрерывность соответствия в слое.

Теорема 4.2. Для приведенного расслоенного соответствия \(f[F] : \mathcal{F} \to N \) однозначно определено расслоенное соответствие \(f_\Delta[F] : \mathcal{F} \to \Delta_N \) - левый диагонали \(\Delta_N \) и изоморфизм расслоений

\[
\begin{array}{c}
\mathcal{F} \\
\downarrow f_\Delta[F] \\
\downarrow f[F] \\
\downarrow \Delta_N \\
\downarrow \pi \\
N
\end{array}
\]

над базой \(\pi : \Delta_N \to N \).

Доказательство. Согласно построению, \(F_{(x, x)} = F_x \). \(\square \)
Мы будем записывать диаграмму (4.2) в более компактной форме

\[
\begin{array}{c}
\Delta_N \\
\pi \\
N
\end{array}
\]

Теорема 4.2 позволяет построить две категории:

- **категория приведенных расслоенных соответствий**, объектами которой являются расслоения над заданной базой и морфизмами которой являются приведенные расслоенные соответствия
- **категория расслоенных соответствий над диагональю**, объектами которой являются расслоения над заданной базой \(M \) и морфизмами которой являются расслоенные соответствия база, которых является диагонально в \(M \)

Функтор между этими категориями определяется тривиальным образом. Он отображает объекты и морфизмы в самих себя, однако в случае морфизмов проекция на базу заменяется проекцией на диагональ.

Замечание 4.3. Из вышеприведенного следует, что не нарушая общности мы можем положить, что \(N = M \). Так же как в сечении [2]-5 мы можем не указывать базу на диаграмме приведенных расслоенных соответствий. Согласно теореме 4.2 для нас не имеет значение используем ли мы в качестве базы множество \(M \) или множество \(\Delta_M \).

Допустим функции перехода \(f_{\alpha\beta} \) определяют расслоение \(A \) над базой \(M \) и функции перехода \(g_{\alpha\beta} \) определяют расслоение \(B \) над базой \(M \). Рассмотрим на \(M \) две карты \(U_\alpha \) и \(U_\beta \), \(U_\alpha \cap U_\beta \neq \emptyset \). Точка \(p \in A \) имеет представление \((x, p_\alpha)\) в карте \(U_\alpha \) и представление \((x, p_\beta)\) в карте \(U_\beta \). Точка \(q \in B \) имеет представление \((x, q_\alpha)\) в карте \(U_\alpha \) и представление \((x, q_\beta)\) в карте \(U_\beta \). Следовательно,

\[
\begin{align*}
p_\alpha &= f_{\alpha\beta}(p_\beta) \\
q_\alpha &= g_{\alpha\beta}(q_\beta)
\end{align*}
\]

Представление соответствия при переходе от карты \(U_\alpha \) к карте \(U_\beta \) изменяются согласно закону

\[
(x, p_\alpha, q_\alpha) = (x, f_{\alpha\beta}(p_\beta), g_{\alpha\beta}(q_\beta))
\]

Это согласуется с законом преобразования при переходе от карты \(U_\alpha \) к карте \(U_\beta \) в расслоении \(A \circ B \).

Теорема 4.4. Если определено приведенное расслоенное соответствие \(\mathcal{F} \) из \(A \) в \(B \), то множество \(\Gamma(\mathcal{F}) \) определяет соответствие из \(\Gamma(A) \) в \(\Gamma(B) \).

Доказательство. Согласно замечанию [2]-3.2, сечение расслоения \(A \circ B \) можно представить в форме кортежа \((f, g)\), где \(f \) сечение расслоения \(A \) и \(g \) сечение расслоения \(B \). В каждом слое \(f(x) \in A_x \) находится в соответствии \(F \) и \(g(x) \in B_x \) тогда и только тогда, когда сечение \((f, g) \in \Gamma(\mathcal{F})\).

Свойства приведенного расслоенного соответствия ближе к свойствам обычного соответствия.
Александр Клейн
Расслоенное соответствие

Теорема 4.5. Пусть определено приведенное расслоенное соответствие \(F \) из \(A \) в \(B \), и расслоение \(A' \subseteq A \). Мы определим образ расслоения \(A' \) при приведенном соответстве \(F \) согласно равенству

\[
FA' = \{(x, b) : x \in M, (a, b) \in F_x, a \in A_x\}
\]

Образ расслоения \(A' \) при приведенном расслоенном соответстве \(F \) является подрасслоем расслоения \(B \).

Доказательство. Рассмотрим коммутативную диаграмму расслоенных соответствий

(4.3)

В зависимости от выбранных проекций эта диаграмма представляет взаимодействие приведенных расслоенных соответствий над базой \(M \), либо взаимодействие расслоенных соответствий над базой \(\Delta_M \). Однако это один и те же соответствия. Все соотношения, справедливые для базы \(\Delta_M \), справедливы также для базы \(M \).

Замечание 4.6. Диаграмма (4.3) выглядит просто. Однако, если мы её запишем без учёта замечания 4.3, эта диаграмма примет вид

На диаграмме принято соглашение

\[
i_\Delta(a, a) = (i(a), i(a))
\]

Теорема 4.7. Пусть определены приведенное расслоенное соответствие \(s[F] \) из расслоения \(A \) в расслоение \(B \) и приведенное расслоенное соответствие \(t[H] \) из расслоения \(B \) в расслоение \(C \). Мы определим произведение приведенных расслоенных соответствий \(s[F] \) и \(t[H] \)

\[
t[H] \circ s[F] = \{(x, a, c) : x \in M, (a, b) \in F_x, (b, c) \in H_x\}
\]

\(^7\)Я могу сложить в слово с точностью до обозначений повторить доказательство теоремы 2.3. Однако я хочу привести другое доказательство, чтобы показать как работает теорема 4.2.
Доказательство. Из коммутативности диаграммы расслоенных соответствий

на базе Δ_M следует $G_x = H_x \circ F_x$. Следовательно это равенство справедливо также на базе M.

Определение 4.8. Пусть $s[F] : \mathcal{F} - \Rightarrow M$ - приведенное расслоенное соответствие

из расслоения A в расслоение B. Тогда определено обратное приведенное расслоенное соответствие $s[F^{-1}] : \mathcal{F}^{-1} - \Rightarrow M$

Теорема 4.9. Диагональ Δ_A в расслоении $p[A] : A - \Rightarrow M$ является приведенным расслоенным соответствием

где проекция $r[\Delta_A]$ определена равенством

$$ r[\Delta_A](x, (p, p)) = x $$

Теорема 4.10. Пусть \mathcal{F} - приведенное расслоенное соответствие из расслоения A в расслоение B, \mathcal{H} - приведенное расслоенное соответствие из расслоения B в расслоение C. Следующие тождества справедливы для приведенных расслоенных соответствий \mathcal{F} и \mathcal{H}

$$ (\mathcal{H} \circ \mathcal{F})^{-1} = \mathcal{F}^{-1} \circ \mathcal{H}^{-1} $$

$$ (\mathcal{F}^{-1})^{-1} = \mathcal{F} $$

$$ \mathcal{F} \circ \Delta_A = \Delta_B \circ \mathcal{F} = \mathcal{F} $$

Доказательство. Доказательство теоремы аналогично доказательству теоремы 2.5. Каждое утверждение проверяется на базе и в слое.

15
5. РАССЛОЕНОЕ ОТНОШЕНИЕ

Определение 5.1. Пусть \(p[A] : A \rightarrow M \) - расслоение и \(\omega \) - \(n \)-арное отношение в множестве \(A \). Расслоенное подмножество \(r[\omega] \) расслоения \(E^n \) называется \(n \)-арным расслоенным отношением в расслоении \(A \).

Теорема 5.2. 2-арное расслоенное отношение в расслоении \(A \) является приведенным расслоенным соответственно в расслоении \(A \).

Доказательство. Теорема является следствием определений 4.1 и 5.1.

Определение 5.3. 2-арное расслоенное отношение \(F \) в расслоении \(A \) называется

- транзитивным, если \(F \circ F \subseteq F \)
- симметричным, если \(F^{-1} = F \)
- антисимметричным, если \(F \cap F^{-1} \subseteq \Delta_A \)
- рефлексивным, если \(F \supseteq \Delta_A \)

Определение 5.4. Транзитивное рефлексивное 2-арное расслоенное отношение \(F \) в расслоении \(A \) называется расслоенной предпорядоченностью в \(A \). В этом случае \(F^{-1} \) также является расслоенной предпорядоченностью в \(A \), которая называется \(F \)-противоположной к \(F \). Антисимметричная расслоенная предпорядоченность в расслоении \(A \) называется расслоенной упорядоченностью в \(A \).

Определение 5.5. Транзитивное рефлексивное симметричное 2-арное расслоенное отношение \(F \) в расслоении \(A \) называется расслоенной эквивалентностью на расслоении \(A \).

Рассмотрим расслоенную эквивалентность \(F \) расслоения \(A \). Для каждого \(x \in M \) в слое \(A_x \) определено отношение эквивалентности \(F_x \).

6. РАССЛОЕННЫЙ МОРФИЗМ

Теорема 6.1. Пусть на расслоении \(p[E] : E \rightarrow M \) определена расслоенная эквивалентность \(s[S] : S \rightarrow M \). Тогда существует расслоение

\[
t[E/S] : E/S \rightarrow M
\]

называемое фактор расслоением расслоения \(E \) по эквивалентности \(S \). Морфизм расслоений

\[
natS : E \to E/S
\]

называется расслоенным естественным морфизмом или расслоенным морфизмом отождествления.

8Было бы заманчиво определить расслоенную линейную упорядоченность \(F \) с помощью равенства

\[
F \cup F^{-1} = A^2
\]

Однако, если мы рассмотрим это отношение на множестве сечений, то мы можем найти пару сечений, которые мы не можем сравнить.

16
Доказательство. Рассмотрим коммутативную диаграмму

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\text{nat}S} & \mathcal{E}/S \\
\downarrow \scriptstyle p[E] & & \downarrow \scriptstyle t[E/S] \\
M & & M
\end{array}
\]

Мы определим в \(\mathcal{E}/S\) фактортопологию \((6)\), стр. 39), требуя непрерывность отображения \(\text{nat}S\). Согласно предложению \([6] - \text{I.3.6}\) отображение \(t[E/S]\) непрерывно.

Так как эквивалентность \(S\) определена только между точками одного слоя \(E\), то классы эквивалентности принадлежат одному и тому же \(E/S\) (сравни с замечанием к предложению \([6] - \text{I.3.6}\)).

Пусть \(f : A \to B\) - расслоенный морфизм, база которого является тождественным отображением. Согласно определению 4.8 существует обратное приложенное расслоенное соответствие \(f^{-1}\). Согласно теоремам 4.7 и 5.2 \(f^{-1} \circ f\) является 2-арным расслоенным отношением.

Теорема 6.2. Расслоенное отношение \(S = f^{-1} \circ f\) является расслоенной эквивалентностью на расслоении \(A\). Существует разложение расслоенного морфизма \(f\) в произведение расслоенных морфизмов

\[
f = \text{id} j\]

\[
\begin{array}{ccc}
A/S & \xrightarrow{t} & f(A) \\
\downarrow j & & \downarrow i \\
A & \xrightarrow{f} & B
\end{array}
\]

\(j = \text{nat}S - \text{естественный гомоморфизм}\)

\(6.3\)

\(j(a) = j(a)\)

\(t\) - \(\text{изоморфизм}\)

\(6.4\)

\(r(a) = t(j(a))\)

\(i\) - \(\text{вложение}\)

\(6.5\)

\(r(a) = i(r(a))\)

Доказательство. Утверждение теоремы проверяется в слое. Необходимо также проверить, что эквивалентность непрерывно зависит от слоя.

\(\square\)

7. Свободное \(T^\ast\)-представление расслоенной группы

Отображение \(\text{nat}S\) не порождает расслоения, так как разные классы эквивалентности, вообще говоря, не гомоморфны. Однако доказательство теоремы 6.1 подзывает конструкцию, очень напоминающую построение, предложенное в \([7]\), стр. 16 - 17.
Определение 7.1. Рассмотрим $T*$-представление f расщепленной группы $p[G]$ в расщеплении M. Расщепленная малая группа или расщепленная группа стабилизации сечения $h \in \Gamma(M)$ — это множество
$$G_h = \{ g \in \Gamma(G) : f(g)h = h \}$$

Доказательство. Выберем сечение $g \in \Gamma(G_h)$ так, что преобразование $f(g)$ оставляет неподвижным сечение $h \in \Gamma(E)$. Следовательно, преобразование $f(h(x))$ оставляет неподвижным $h(x) \in E_x$.

Определение 7.3. Мы будем называть $T*$-представление f расщепленной группы $p[G]$ свободным, если для любого $x \in M$ $T*$-представление f_x группы G_x в слое E_x свободно.

Теорема 7.2. Рассмотрим $T*$-представление f расщепленной группы $p[G]$ в расщеплении $r[E] : E \rightarrow M$. Допустим G_h — расщепленная малая группа сечения h. Для любого $x \in M$ слой $G_{h,x}$ расщепленной малой группы сечения h является подгруппой малой группы $G_{h(x)}$ элемента $h(x) \in E_x$.

Доказательство. Выберем сечение $g \in \Gamma(G_h)$ так, что преобразование $f(g)$ оставляет неподвижным сечение $h \in \Gamma(E)$. Следовательно, преобразование $f(h(x))$ оставляет неподвижным $h(x) \in E_x$.

Определение 7.3. Мы будем называть $T*$-представление f расщепленной группы $p[G]$ свободным, если для любого $x \in M$ $T*$-представление f_x группы G_x в слое E_x свободно.

Теорема 7.4. Если определено свободное $T*$-представление f расщепленной группы $p[G]$ в расщеплении $r[E] : E \rightarrow M$, то определено взаимно однозначное соответствие между орбитой представления в слое и группой G. Если группа G — топологическая группа, то орбита представления в слое гомеоморфна группе G.

Доказательство.

Рассмотрим ковариантное свободное $T*$-представление f расщепленной группы $p[G]$ на расщеплении $r[E]$. Это $T*$-представление определяет на $a[E]$ расщепленное отношение эквивалентности S, $(p, q) \in S$ если p и q принадлежат общей орбите. Так как представление в каждом слое свободно, все классы эквивалентности гомеоморфны группе G. Следовательно, отображение natS является проекцией расслоения $\text{natS}[G] : E \rightarrow \Gamma(E/S)$. Мы также будем пользоваться символом $S = G$. Мы можем представить диаграмму (6.1) в виде конструкции

$$\begin{array}{ccc}
E & \xrightarrow{\text{natS}[G]} & E/S \\
\downarrow & & \downarrow \\
p[E] & \xrightarrow{\tau[E/S]} & I/E/S \\
\downarrow & & \downarrow \\
M
\end{array}$$

Мы будем называть расслоение $\text{natS}[G]$ расслоением уровня 2.

Пример 7.5. Рассмотрим представление группы вращений $SO(2)$ в R^2. Все точки, кроме точки $(0, 0)$, имеют тривиальную малую группу. Таким образом, на множестве $R^2 \setminus \{(0, 0)\}$ определено свободное представление группы $SO(2)$.

Мы не можем воспользоваться этой операцией в случае расслоения $p[R^2]$ и представления расслойной группы $t[SO(2)]$. Пусть S — отношение расслоенной эквивалентности. Расслоение $p[R^2 \setminus \{(0, 0)\}]/t[SO(2)]$ не является полным.
В результате предельный переход может привести в несуществующий слой. Поэтому мы предпочитаем рассматривать расслоение \(p[R^2]/t[SO(2)]^* \), имея в виду, что слой над точкой \((x, 0, 0)\) - выраженный.

Мы упростим обозначения и представим полученную конструкцию в виде

\[
p[E_2, E_1] : \mathcal{E}_2 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow M
\]

где мы предполагаем расслоение

\[
p_2[E_2] : \mathcal{E}_2 \rightarrow \mathcal{E}_1 \\
p_1[E_1] : \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow M
\]

Аналогичным образом мы можем рассматривать расслоение уровня \(n \)

(7.1)

\[
p[E_n, ..., E_1] : \mathcal{E}_n \rightarrow ... \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_1 \rightarrow M
\]

Последовательность расслоений (7.1) мы будем называть башней расслоений. Это определение я дал по аналогии с башней Постника (\([8]\)). Башня Постника - это башня расслоений. Слой расслоения уровня \(n \) - это гомотопическая группа порядка \(n \). Подобные конструкции известны, однако я привёл определение башни расслоений, поскольку оно естественным образом возникает из вышеизложенного текста.

Я хочу рассмотреть ещё один пример башни расслоений, который привлек моё внимание (\([9]\), \([10]\), часть 2). В качестве базы выберем множество \(J^p(n, m) \) 0-джех отображений из \(R^n \) в \(R^m \). В качестве расслоения уровня \(p \) выберем множество \(J^p(n, m) p \)-джех отображений из \(R^n \) в \(R^m \).

8. Список литературы

[1] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2007)
[2] Александр Клейн, Расслоенная алгебра, eprint arXiv:math.DG/0702561 (2007)
[3] Константин Паустовский. Золотая роза, в сборнике Книга сказаний. Картина моложенска, Кишинёв, 1978
[4] П. Кон, Универсальная алгебра, М., Мир, 1968
[5] Н. Бурбаки, Теория множеств, перевод с французского Г. Н. Поварова и Ю. А. Шихановича под редакцией В. А. Успенского, М. Мир, 1965
[6] Н. Бурбаки, Общая топология, основные структуры, перевод с французского Д. А. Райкова, М. Наука, 1968
[7] Постников М. М., Лекции по геометрии, семестр IV, Дифференциальная геометрия, М. Наука, 1983
[8] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
[9] A. M. Vinogradov, I. S. Krasilshchik, V. V. Lychagin, Введение в геометрию нелинейных дифференциальных уравнений, М. Наука, 1986
[10] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, American Mathematical Society, 2001
9. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

2-арное расслоенное отношение 16
n-арное расслоенное отношение 16
антисимметричное 2-арное расслоенное отношение 16
база расслоенности 5
башня расслоений 19
dиагональ в расслоении 10
dиаграмма соответствий 3
закон ассоциативности произведения расслоенных соответствий 9
категория приведенных расслоенных соответствий 13
категория расслоенных соответствий над диагональю 13
коммутиативная диаграмма соответствий 3
лифт соответствия 5
непрерывное соответствие 4
обратное приведенное расслоенное соответствие 15
обратное расслоенное соответствие 10
подрасслоение 5
предел соответствия по фильтру 4
предел фильтра 4
пределное множество фильтра 4
приведенное расслоенное соответствие из A в B 11
приведенное расслоенное соответствие в A 11
предел соответствия 4
произведение приведенных расслоенных соответствий 14
произведение расслоенных соответствий 8
противоположная расслоенность предупреждённость 16
расслоение уровня n 19
расслоение уровня 2 18
расслоенная группа стабилизации 18
расслоенная муль группа 18
10. СПЕЦИАЛЬНЫЕ СИМВОЛОЫ И ОБОЗНАЧЕНИЯ

\(\mathfrak{F} \rightarrow A \) фильтр \(\mathfrak{F} \) сходится к множеству \(A \)

\(\mathcal{F}^{-1} \) обратное расслоенное соответствие

\(\mathcal{F}^{-1} \) обратное приведенное расслоенное соответствие

\(\mathcal{G}_h \) расслоенная малая группа сечения \(h \)

\(\mathcal{G}_h \) расслоенная группа стабилизации сечения \(h \)

\(\lim_{\mathfrak{F} \rightarrow A} \Phi(\mathfrak{F}) \) предел соответствия \(\Phi \) по фильтру \(\mathfrak{F} \)

\(p[E_2, E_1] \) расслоение уровня 2

\(p[E_n, ..., E_1] \) расслоение уровня \(n \)

\(r_\Delta[A] \) диагональ в расслоении \(p[A] \)

\(r_\Delta[A] \) диагональ в расслоении \(A \)

\(t[H] \circ s[F] \) произведение рассложенных соответствий

\(s[F^{-1}] \) обратное расслоенное соответствие

\(s[F^{-1}] \) обратное приведенное расслоенное соответствие

\(\Delta_A \) диагональ в расслоении \(A \)

\(\Phi/C \) сужение соответствия \(\Phi \) на множество \(C \)

\(a[A] \subseteq b[B] \) расслоенное подмножество

\(A \subseteq B \) подрасслоение