Analysis of the prevalence and species of Anisakis nematode in Sekisaba, Scomber japonicus caught in coastal waters off Saganoseki, Oita in Japan.

Shinya Hidano, Kazuhiro Mizukami, Takaaki Yahiro, Kohei Shirakami, Hideyuki Ito, Sotaro Ozaka, Shimpei Ariki, Benjawan Saechue, Astri Dewayani, Thanyakorn Chalalai, Yasuhiro Soga, Mizuki Goto, Akira Sonoda, Takashi Ozaki, Nozomi Sachi, Naganori Kamiyama, Akira Nishizono, Kazunari Murakami, and Takashi Kobayashi

Received: October 22, 2020. Accepted: December 17, 2020. Published online: January 29, 2021. DOI:10.7883/yoken.JJID.2020.859
Analysis of the prevalence and species of *Anisakis* nematode in Sekisaba, *Scomber japonicus* caught in coastal waters off Saganoseki, Oita in Japan.

Shinya Hidano¹, Kazuhiro Mizukami²,³, Takaaki Yahiroyo⁴, Kohei Shirakami¹, Hideyuki Ito¹, Sotaro Ozaka¹,³, Shimpei Ariki¹,³, Benjawan Saechue¹, Astri Dewayani¹, Thanyakorn Chalalai¹, Yasuhiro Soga¹, Mizuki Goto¹, Akira Sonoda¹,³, Takashi Ozaki¹, Nozomi Sachi¹, Naganori Kamiyama¹, Akira Nishizono⁴, Kazunari Murakami³, Takashi Kobayashi¹

¹Department of Infectious Disease Control,
²Clinical Training Institute for Interns.
³Department of Gastroenterology
⁴Department of Microbiology, Faculty of Medicine

Oita University. 1-1 Idaigaoka, Hasama, Yufu-shi Oita 879-5593, Japan.

Corresponding author:

Takashi Kobayashi Ph.D.

Department of Infectious Disease Control, Faculty of Medicine, Oita University.

1-1 Idaigaoka, Hasama-machi Yufu-shi, Oita 879-5593, Japan

Phone: +81-97-586-5702

Fax: +81-97-586-5197

E-mail address: takashik@oita-u.ac.jp
Keywords: *Anisakis simplex* sensu stricto, *Anisakis pegreffi*, *Scomber japonicus*, PCR-RFLP, Sekisaba.

Running head
The infection states of *Anisakis* in Sekisaba.
飛弾野真也1、水上一弘2,3、八尋隆明4、白神浩平1、伊藤秀幸1、小坂聡太郎1,3、
有木晋平1,3、Benjawan Saechue1、Astri Dewarinya1、Thanyakorn Chalalai1、曽我泰裕1、後藤美月1、園田光1,3、尾崎貴士1、佐知望美1、神山長慶1、西園晃4、村上和成3、小林隆志1

1大分大学医学部感染予防医学講座
2大分大学医学部卒後臨床研究センター
3大分大学医学部消化器内科学講座
4大分大学医学部微生物学講座

〒879-5593 大分県由布市挾間町医大ヶ丘1丁目1番地
Summary

Anisakidosis is developed by ingesting *Anisakis* in marine fish including the chub mackerel, *Scomber japonicus* without proper pre-treatment such as cooking or freezing. Two sibling species of *Anisakis* are found in *S. japonicus* from Japanese waters and the prevalence and species of *Anisakis* in the fish depend on sea area. For example, *Anisakis simplex* sensu stricto is found in the Pacific stock of *S. japonicus*, while *Anisakis pegreffii* is found in the Tsushima Warm Current stock. *S. japonicus* caught in the Bungo Channel, off the coast of Saganoseki in Oita Prefecture, which is branded as Sekisaba, inhabits a very limited area; however, the infection states of *Anisakis* found in Sekisaba remain unclear. In this study, we compared the infection states of *Anisakis* in Sekisaba with those in *S. japonicus* caught in South Oita area and Nagasaki Prefecture. All of *Anisakis* from Nagasaki Prefecture were *A. pegreffii*, while most of them found in Sekisaba and fish from South Oita area were *A. simplex s.s.*. Interestingly, the prevalence of *Anisakis* in Sekisaba was significantly lower than those of two other areas. This may be reflected that Sekisaba might belong to a distinct stock of *S. japonicus* varying from other stocks.
Introduction

Anisakidosis is a fish-borne parasitic zoonosis caused by the accidental ingestion of larval nematodes including *Anisakis* and *Pseudoterranova* found in raw fish such as chub mackerel (*Scomber japonicus*) (1, 2). *Anisakis* Type I larvae penetrate the gastric mucosa resulting in acute epigastric pain, occasionally accompanied by nausea and vomiting in patients (3). At present, the most effective treatment is an endoscopic removal of the nematode, though a recent report has shown that an over-the-counter medicine containing wood creosote (Seirogan) ameliorates the symptoms (4).

Anisakis simplex sensu lato (s.l.) is highly associated with amisakidosis and presently comprises three sibling species, *Anisakis simplex* sensu stricto (s.s.), *Anisakis pegreffii* and *Anisakis berlandi*. It has become possible to identify the species of *A. simplex* s.l. using polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) (5). PCR-RFLP analysis of the ribosomal DNA internal transcribed spacer (rDNA ITS) provides a useful approach for the specific identification of both distantly and closely related ascaridoid species including *Anisakis* Type I larvae since these spacers show high levels of interspecific sequence differences with low-level intraspecific variation (5-7).

Scomber japonicus is one of the most common fish in Japanese coastal waters and forms two stocks, the Tsushima Warm Current (TWC) stock (found in the East China Sea and the Sea of Japan) and the Pacific stock (found off the Pacific coast of Japan). *S. japonicus* from Nagasaki Prefecture on the Sea of Japan coast and the East China Sea coast belong to the TWC stock, while those from the southern area of Oita Prefecture on...
the Pacific Ocean coast (South Oita area) belong to the Pacific stock (8). As previously reported, the species of *Anisakis* Type I larvae found in *S. japonicus* differed between these two stocks. Umehara *et al.* revealed that *A. simplex* s.s. was found in the Pacific stock of *S. japonicus*, while *A. pegreffii* was predominantly found in the TWC stock (9).

Scomber japonicus caught in the Bungo Channel, off the coast of Saganoseki in Oita Prefecture is called Sekisaba, a brand of chub mackerel which is frequently eaten raw in Japan. Sekisaba inhabits the Bungo Channel which is a geomorphologically unique strait separating the Kyushu and Shikoku islands and connecting the western part of the Seto Inland Sea to the Pacific Ocean (Fig. 1A). Thus far, the prevalence (the proportion of fish infected), mean intensity (the average number of parasites per infected fish) and the species of *Anisakis* Type I larvae in Sekisaba have not been investigated.

In this study, we compared the prevalence of *Anisakis* Type I larvae found in *S. japonicus* captured from three different areas of Kyushu Island including Nagasaki Prefecture (representative of the TWC stock), South Oita area (representative of the Pacific stock) and Saganoseki (Sekisaba). We found that the prevalence of *Anisakis* Type I larvae in Sekisaba was significantly lower than that seen in *S. japonicus* from the other two areas. A possible explanation for the fact of a low prevalence is that Sekisaba may form a unique stock which is distinguishable from the other stocks of *S. japonicus* in Japanese waters.
Materials and Methods

Fish samples and method for detecting anisakid nematodes

Scomber japonicus were obtained in batches from fish markets in Oita, Japan from October 2014 and April 2016. We purchased 40 fish (in a pool of n=4-13 whole-bodies of fish) caught in coastal waters off South Oita area and Nagasaki Prefecture. For *S. japonicus* from Saganoseki (Sekisaba), 10 whole bodies of fish and the viscera from 64 fish were provided by the Oita fishermen's cooperative association (Saganoseki branch) (Fig. 1A). Each sample of fish was weighed and measured. *S. japonicus* from Nagasaki Prefecture (n = 40, mean fork length: 36.7 cm, range: 33- 41 cm, mean body weight 582.6g range: 416-835g), South Oita area (n = 40, mean fork length: 37.7 cm, range: 34- 42 cm, mean body weight 582.1g range: 435-775g) and Saganoseki (n = 10, mean fork length: 38.9 cm, range: 32- 46 cm, mean body weight 604.8g range: 528-693g) were used for examination. The fish samples were examined within 24 hours of purchase. After separating the viscera and muscles from the fish body, anisakid larvae were detected by visual inspection, removed using forceps and the morphology of the isolated larvae was observed by using a stereomicroscope. Particularly, anisakid larvae in the muscle were detected by gently pressing the muscle between two glass plates. The Anisakis type I larvae were used for further investigation.

Epidemiological data of *Anisakis* Type I larvae in *S. japonicus*

Epidemiological data including the prevalence and mean intensity of Anisakis Type I larvae in *S. japonicus* were analyzed by method described by Bush et al. (1997) (10).
The prevalence was defined as the proportion of fish hosts infected with *Anisakis* species. The mean intensity was determined as the average number of parasites found in the infected hosts. Differences in the prevalence and mean intensity values of *Anisakis* Type I larvae infection between the *S. japonicus* from three areas were assessed respectively with the Fisher’s exact test using the GraphPad Prism software ver.8.42 (GraphPad Software Inc. San Diego, CA) and the bootstrap t-test using the QPweb software (11).

PCR-RFLP

Genomic DNA from *Anisakis* Type I larvae was prepared by alkaline extraction method. The larva was boiled in 180 µl of 50 mM NaOH for 60 min and then 20 µl of 1 M Tris-HCl (pH 8.0) was added. PCR-RFLP analysis was performed to identify the species of *A. simplex* as previously described (5). Briefly, PCR amplification of rDNA ITS region (ITS-1 and ITS-2 plus their spanning regions) was performed in a 25 µl reaction volume containing 10 ng template DNA, 0.25 units of KOD FX neo (TOYOBO, Osaka, Japan), 12.5 µl of 2 x buffer (provided with the polymerase by the manufacturer), 5 µl of dNTPs (2 mM), 0.75 µl of forward primer (5’-GTAGGTGAACCTGCGGAAGGATCATT-3’, 10 µM), 0.75 µl of reverse primer (5’-TTAGTTTCTTTTCCTCCGC-3’, 10 µM). The PCR condition was as follows: 95 ºC for 2 min for 1 cycle; 95 ºC for 15 sec, 60 ºC for 30 sec and 68 ºC for 1min for 30 cycles and a final extension of 5 min at 68 ºC. The PCR products were then digested by restriction endonuclease, Hha I (Takara, Shiga, Japan) or Hinf I (Takara) according to
manufacturer’s recommendations for RFLP analysis of rDNA ITS. The digested products were resolved in 2% agarose gel electrophoresis, stained with ethidium bromide, visualized by illumination with short wave UV light and photographed.
Results

In this study, all anisakid nematodes were detected from the viscera, and no nematodes were found in muscle tissues. *Anisakis* Type I larvae were counted among the detected anisakid nematodes. The prevalence of *Anisakis* Type I larvae in *S. japonicus* from Nagasaki Prefecture was 75% (30/40) (Fig. 1B). Conversely, the prevalence of *Anisakis* Type I larvae in *S. japonicus* from South Oita area was 38% (15/40). Surprisingly, the prevalence of *Anisakis* Type I larvae in Sekisaba was only 6.8% (5/74). This difference in prevalence was statistically significant between the groups; Nagasaki versus South Oita area: \(P<0.005 \), South Oita area versus Saganoseki: \(P<0.0001 \) and Nagasaki versus Saganoseki: \(P<0.0001 \).

Next, we compared the average numbers of *Anisakis* Type I larvae found in an infected fish from the three groups. Although Sekisaba showed a relatively low intensity, there was no significant difference in mean intensity between the groups (Nagasaki Prefecture: 16.2±5.97 (n=30), South Oita area: 5.9±1.54 (n=15), Saganoseki: 2.8±1.61 (n=5) [larvae per fish]) (Fig. 1C).

To identify the species of *Anisakis* Type I larvae found in *S. japonicus* from the three areas, we performed PCR-RFLP analysis. The amplification of the rDNA ITS resulted in approximately 1,000 bp of fragment (Fig. 2A) which was followed by digestion with either Hha I (Fig. 2B) or Hinf I (Fig. 2C) to enable identification between the seven closely related *Anisakis* species.

Hha I digestion of a PCR product amplified from the ITS region of rDNA of *A. simplex s.s.* resulted in two fragments of 530 and 420 bp (Fig. 2B left) and Hinf I
digestion yielded 620, 250 and 80 bp fragments, though the 80 bp band was too faint to be seen in the photograph (Fig. 2C left). Hha I digestion of *A. pegreffii* showed 530 and 420 bp fragments (Fig. 2B right) and 370, 300 and 250 bp fragments by Hinf I digestion (Fig. 2C right). As shown in Fig. 2D, all of the *Anisakis* Type I larvae collected from Nagasaki Prefecture were identified as *A. pegreffii*, while 93% of the larvae collected from the South Oita area were *A. simplex* s.s.. Identification of *Anisakis* Type I larvae in Sekisaba resulted in a similar trend with that of South Oita area. Namely, 13 larvae out of 14 analyzed (93%) were *A. simplex* s.s. and the remaining one was *A. pegreffii*. Recently Umehara *et al.* reported that hybrid genotypes possibly generated by natural interspecific hybridization between *A. simplex* s.s. and *A. pegreffii* have been identified in *S. japonicus* (6). However, no hybrid genotype of larvae was identified in this study.
Discussion

According to the annual report of the National Institute of Infectious Diseases in Japan, it is estimated that more than 7,000 cases of anisakidosis occur annually in Japan due to the Japanese food habit of eating fish raw such as sushi and sashimi (12). Particularly, chub mackerel is frequently eaten raw in Kyushu Island, further adding to the importance of investigating the prevalence of Anisakis Type I larvae in S. japonicus. In Kyushu, there is easy access to fish from both the Pacific and TWC stocks of S. japonicus. In this study, we sought to investigate the prevalence and species of Anisakis Type I larvae in Sekisaba, a brand of chub mackerel from Oita Prefecture in Kyushu.

First of all, Anisakis Type I larvae that found in this study were most prevalently detected in the viscera of the S. japonicus we inspected; however, they were never found in the fish muscle in this surveillance study. In this study, we examined Anisakis Type I larvae by means of visual inspection of the viscera under a stereomicroscope and of the muscle between two glass plates, respectively. However, the inspection method had a limitation to detect anisakid larvae, due to a low sensitivity. To more accurately detect Anisakis Type I larvae in S. japonicus, it is necessary to employ more sensitive methods, such as the artificial peptic digestion method and the UV-press method. To achieve more accurate results, we need to use the above methods in future study. Next, we found that most of the Anisakis Type I larvae found in Sekisaba was A. simplex s.s., while all of the Anisakis Type I larvae collected from Nagasaki Prefecture were A. pegreffii suggesting that Sekisaba does not belong to the TWC stock of S. japonicus. This was also supported by the finding that no hybrid genotypes were detected in
Sekisaba. Consistent with a previous report, the prevalence of *Anisakis* Type I larvae in *S. japonicus* from South Oita area was lower than that from Nagasaki Prefecture (8). Notably, the prevalence of *Anisakis* Type I larvae in Sekisaba (6.8%) was even lower than that of South Oita area (38%), which may be due to the different habitats of the two populations of *S. japonicus*. Indeed, the main feeding grounds of chub mackerel of the Pacific stock are thought to be located in the waters off of northeastern Japan, and their spawning grounds are in the coastal waters around the Izu Islands and off of southwestern Japan (13). However, Sekisaba is thought to use the waters around the Bungo Channel for both feeding and spawning (14). In the Bungo Channel there are two depressions in the seafloor of the strait and the tides induce strong upwelling followed by the blooming of phytoplankton with a high concentration of nutrients (15). Thus, the geomorphological factors of the Bungo Channel provide a unique marine ecological environment that may in turn create a unique local chub mackerel population; and this may partially explain the low prevalence of *Anisakis* Type I larvae in fish from that area.

The habitat of the intermediate hosts as well as the final hosts is a critical factor influencing the prevalence of *Anisakis* Type I larvae in the paratenic hosts. The most important first intermediate hosts in the life cycle of *Anisakis* Type I larvae species are Euphausiids (krill) (16) that transmit the infective larvae along the food chain into paratenic hosts such as *S. japonicus*. The prevalence of infection in Euphausiids is generally low (17), but it is uncertain whether the prevalence of *Anisakis* Type I larvae in the first intermediate hosts is relatively low in the Bungo Channel. On the other hand,
the adult stages of *Anisakis* Type I larvae reside in the stomach of marine mammals such as dolphins and whales (16). It is known that dolphins (*Delphinus capensis*, *Tursiops truncatus*), finless porpoises (*Neophocaena phocaenoides*), and whales (*Megaptera novaeangliae*) inhabit the Bungo Channel (18), however, the prevalence of *Anisakis* Type I larvae in the final hosts in that area is still unknown. Thus, the distribution and abundance of the intermediate and final hosts infected with *Anisakis* Type I larvae in the Bungo Channel should be investigated. To fully elucidate this complex relationship, it is necessary to integrate the knowledge of various fields including parasitology, gastroenterology, ecology, oceanography and fisheries science.

“In conclusion, we revealed that the prevalence of *Anisakis* Type I larvae in Sekisaba was significantly lower than that seen in *S. japonicus* from the other two areas. Our findings provide a possibility that Sekisaba forms a unique stock that is distinguishable from the other stocks of *S. japonicus* in Japanese waters.”.
Acknowledgements

The viscera of *S. japonicus* from Saganoseki in Oita Prefecture were provided from Japanese restaurant “B-dama” (Oita, Japan) and the Fisheries Cooperative Association of Saganoseki, Oita Prefecture. This work was supported by GSK Japan Research Grant 2016 [grant number H-47]; Lotte Research Promotion Grant; Taiju Life Social Welfare Foundation, Kamizono Kids Clinic Research Grant, Four Seasons Ladies Clinic Research Grant, and Japan Society for the Promotion of Science [grant number 17K16346, 17K08889, 17H04649, 17K15680, 17K15954, 18K16155, 18K08009, 20K18482]. The authors declare no competing financial interests.

Conflict of interest

None to declare.
Reference

1. Ruitenberg EJ, van Knapen F, Weiss JW. Food-borne parasitic infections - old stories and new facts. Vet Q 1979;1: 5-13.

2. Bouree P, Paugam A, Petithory JC. Anisakidosis: report of 25 cases and review of the literature. Comp Immunol Microbiol Infect Dis 1995;18: 75-84.

3. Gomez B, Tabar AI, Tunon T, et al. Eosinophilic gastroenteritis and Anisakis. Allergy 1998;53: 1148-1154.

4. Sekimoto M, H Nagano, Y Fujiwara, et al. Two cases of gastric Anisakiasis for which oral administration of a medicine containing wood creosote (Seirogan) was effective. Hepatogastroenterology 2011;58: 1252-1254.

5. D'Amelio S, Mathiopoulos KD, Santos CP, et al. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int J Parasitol 2000;30: 223-226.

6. Umehara A, Kawakami Y, Araki J, et al. Multiplex PCR for the identification of Anisakis simplex sensu stricto, Anisakis pegreffii and the other anisakid nematodes. Parasitol Int 2008;57: 49-53.

7. Zhu X, Gasser RB, Podolska M, et al. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int J Parasitol 1998;28: 1911-1921.

8. Suzuki J, Murata R, Hosaka M, et al. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int J Food Microbiol 2010;137: 88-93.

9. Umehara A, Kawakami Y, Matsu T, et al. Molecular identification of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) from fish and cetacean in Japanese waters. Parasitol Int 2006;55: 267-271.

10. Bush AO, Lafferty KD, Lotz JM, et al. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 1997;83: 575-583.

11. Reiczigel J, Rozsa L. Quantitative parasitology 3.0. 2005; http://www.zoologia.hu/qp/qp.html.

12. Sugiyama H, Morishima Y, Ohmae H, et al. Anisakis food poisoning: the annual number of cases noticed by ordinance for enforcement of the food sanitation act
and estimated through healthcare claim data analysis Clinical Parasitology 2013;24: 44 - 46. Japanese.

13. Watanabe C and Yatsu A. Effects of density-dependence and sea surface temperature on interannual variation in length-at-age of chub mackerel (*Scomber japonicus*) in the Kuroshio-Oyashio area during 1970–1997. Fish. Bull. 2004;102:196–206.

14. Yamada H, Onoue S, Sanada Y. Spawning Season of Chub mackerel *Scomber japonicus* in the Hoyo Strait and adjacent waters, south-western waters of Japan. Fisheries biology and oceanography in the Kuroshio 2009;105-109. Japanese.

15. Hashimoto T, Matsuda O, Takeoka H, et al. Shelf slope upwelling of high nutrient bottom water in the Bungo Channel. J Fac Appl Biol Sci, Hiroshima Univ. 1995;34: 161-165. Japanese.

16. Pozio E. Integrating animal health surveillance and food safety: the example of Anisakis. Rev sci tech Off int Epiz, 2013;32: 487-496.

17. Hays R, Measures LN, Huot J. 1998. Euphausiids as intermediate hosts of *Anisakis simplex* in the St. Lawrence estuary. Canadian Journal of Zoology 1998;76: 1226-1235.

18. "Progress report of cetacean sighting survey off the coast of Oita Prefecture" (2017) Umitama Experience Park "Tsukumi irukajima" and Oita Prefectural Agriculture, Forestry and Fisheries Research Center, (Hoshino, K and Imai, K. ed., 2017 Annual Report - Oita Marine Palace Aquarium Umitamago) (https://www.umitamago.jp/wp-content/themes/umitamago/assets/pdf/2017-annual_report-1.pdf), 17pp. Japanese.
Figure legend

Fig. 1. (A) A map showing the collection sites of *S. japonicus* in Japanese waters around Kyushu Island. (B) Bar graph shows prevalence (%) of *Anisakis* Type I larvae in each group of *S. japonicus*. Statistical significance of differences between experimental groups of *S. japonicus* was determined using the Fisher's exact test. (C) Mean Intensity of *Anisakis* Type I larvae in *S. japonicus* from the three different areas in Kyushu, Japan. Data are presented as mean ±SE. Statistical significance of differences between groups was determined using the bootstrap t-test. *: *P* < 0.005. **: *P* < 0.0001. NS: not significant.

Fig. 2. PCR-RFLP analysis for the identification of *Anisakis* Type I larvae species in *S. japonicus*. (A) The ITS region of rDNA of either *A. simplex* s.s. or *A. pegreffii* was amplified by PCR and the products were separated by agarose gel electrophoresis. M indicates DNA size maker (GeneRuler DNA Ladder, Thermo Fisher Scientific). (B) PCR products in A were digested with Hha I and separated by agarose gel electrophoresis. (C) PCR products in A were digested with Hinf I and separated by agarose gel electrophoresis. (D) Percentage of genotypes of *Anisakis* Type I larvae species determined by PCR-RFLP analysis.
