STUDIES ON SOME PHARMACOGNOSTIC PROFILES OF SWIETENIA MACROPHYLLA. King

K. Arumugasamy, K.V.Latha and N.H.Sathish kumar.
P.G. and research Department of Botany, Kongunadu Arts and Science College, Coimbatore -29.

Received: 28-04-2004 Accepted: 08-08-2004

ABSTRACT:

The aerial parts and seeds of *Swietenia macrophylla* King (*Meliaceae*) are used in exotic medicine systems. In the present study, a preliminary phytochemical and few pharmacological profiles were undertaken. The physical constants, extractive and ash values were examined. The presence of secondary metabolites in the aerial parts and seeds showed that *Swietenia macrophylla* is a good source of active principles. TLC studies were done by treating dry powder of *Swietenia macrophylla* with various acids, iodine and ferric chloride solution and UV and Visible light.

INTRODUCTION

The family, *Meliaceae* consists of 50 genera with 1400 species, which are mostly distributed in tropical regions of the 3rd countries. The members of this family are commercially important due to timber and calorific value. The Mahogany is an exotic plant of *Meliaceae* family and consists of three species Viz., *Swietenia macrophylla* king, *S mahogany* L. Jacq. and *S. humulis* Zucc. In India, the distribution of Mahogany is to limited Western and Eastern Ghats. The wild distribution of this genus is mostly in the humid zone of the new world and Amazon region of South America. These plants are extensively planted in South Asia and Pacific Islands. Mahogany is widely used in the tropics for reforestation programmes. Mahogany species could also be used as alternative source of timber products. Further Mahogany is included in endangered species by convention of International Trade in Endangered species (CITES). These potential characteristic features encouraged increased research effort focusing on the lacuna of estimating active principles present in the various parts of Mahogany.

MATERIALS AND METHODS

Leaves, stem bark and matured seeds of *Swietenia macrophylla* tree were collected from a thirty year old tree at coimbatore. The leaves and mature barks were and shade dried. The seeds were collected after maturation of compound fruit and dried. The ash values and extractive values were determined by pharmacopoeial methods. All the parts and seeds of *Swietenia macrophylla* were separately subjected under soxhlet extraction with various solvent systems for the presence of preliminary phytochemical constituents using specific reagents and methods. TLC studies of all the extracts including seeds were carried out for alkaloids at room temperature using the solvent systems, ethyl acetate: ethanol (80:20), and sprayed with...
Mayer’s reagent. The fluorescence characteristics were observed for all compounds under UV and Visible light.

RESULT AND DISCUSSION

The macroscopic characteristics of Swietenia macrophylla are shown in Table 1. The colour and density of the bark and leaves vary markedly with geographic origin, growth and environment. Extractive and ash values are presented in Tables II and III. The results of preliminary phytochemical tests for the presence of active constituents are given in Table III. It is confirmed from the qualitative tests that the seed and leaf have more alkaloid and flavanoid contents than stem and bark. The presence of saponins in all parts except leaves were high (Table IV). However, the remaining phytochemicals like phenol, steroids, glycosides resins, tannins and oils were present in more amount than the other biochemicals in Swietenia macrophylla. The Rf values of alkaloids present in the seeds Swietenia macrophylla are given in Table V. All parts of this plant showed the presence of three major sports of alkaloids with varied Rf values. The dry matter analysis of Swietenia macrophylla showed the presence of variety of phytochemicals and hence it could be used for curative purposes. Anti-inflammatory, anti-mutagenicity and anti-tumor activities of Mahogany seeds have already been well documented in the members of Meliaceae. The result of present study also supports the previous phytochemical findings in Meliaceae members.

References

1. Fahn, A. and R.F. Evert. 1974. Ultrastructure of the secretory ducts of Rhus glabra. Amer. J.Bot. 61 (1): 1-14.

2. Fahn, A. 1979. Secretory Tissues in Plants. Academic Press, London.

3. Mayhew, J.E. and A.C. Newton. 1998. The Silviculture of Mahogany. CVB International U.K. 226 PP.

4. TFF. 1994. Mahogany workshop: review and implications of the Convention of International Trade of Endangered Species. Tropical Forest Foundation, Virginia, USA.

5. Radan, BD. And Campbell, F.T. 1996. CITES and the sustainable management of Swietenia macrophylla King. Botanical Journal of the Linnean Society. 122: 83-87.

6. Anonymous. 1996. The Indian pharmacopoeia, 2nd Edn. Govt. of Indian Publication, Delhi. 947-948.

7. Johansen. D.A. 1940. Plant Microtechnique, Mc. Graw hill Book Co, Inc., Newyork, pp 182.

8. Harborne, J.B. 1973. Phytochemical methods, Capman and hall, London.

9. Rahunathan, K. and Mitra, R. 1982. Pharmacognosy of indigenous drug, Central Council for Research In Ayurveda & Siddha, New Delhi. Vol.II 752-754.
10. Amelia P. Guervara, Andrew, Apilado, Hiromu Sakurai, Mutsou Kozuka and Harukuni Tokuda. 1996. Anti inflammatory, antimutagenicity and Antitumor promoting Activities of Mahagony Seeds, Swietenia macrophylla (Meliaceae) PJSVol. 125(4).

11. Indamdar, J.A., R.B. Subramanian and J>S>S> Mohan 1986. Studies on the resin glands of Azadirachta indica A. Juss (Meliaceae). Ann Bot.425-429.

12. Nair, M.N.B., J.J. Shah and S.V. Subramaniyas, 1983. Ultrastructure and histochemistry of traumatic gum ducts in the wood of Azadirachta indica A. Juss (meliaceae). IAWA. Bull.N.S4. (2, 3): 103-112.

13. Arumugasamy, K.K. Udaiyan, S.Manian, C. Balasubramanian and P.S. Mohan 1993. Studies on Resin Canals and Ducts of Azadirachta indica A. Juss (meliaceae). In (Eds.)R.P. Singh, M.S. Chari, A.K. Raheja and W.Krus. Neem and Environment Vol.1. 151-157.

14. Tewari. D.N. 1992. Monograph on Neem (Azadirachta indica A. Juss). International Book Distributors, Dehardun, India.

15. Balasubramaniam, C., P.S. Mohan, K.Arumugasamy and K. Udaiyan, 1993. Flavanoid form resin glands of Azadirachta indica. Phytochemistry. Vol.34(4): 1194-1195.

Table 1 : Macroscopic characteristics of Swietenia macrophylla.

S.no	Character	Nature
1.	Seed colour	Chestnut
2.	Seed length	7.5-15 cm
3.	Seed odour	Bitter in taste
4.	Seed colour	Light brown
5.	Bark colour	Dark brown
6.	Leaf colour	Dark brown
7.	Leaf size	16-30 cm

Table 2 :Extractive value of Swietenia macrophylla

S.no	Solvent	Part used			
		Seed	Stem	Bark	Leaf
1.	Petroleum ether	21.0	12.3	16.0	14.2
2.	Chloroform	18.2	14.5	13.8	13.5
3.	Methanol	14.8	16.8	14.2	11.5
4.	Ethanol	17.4	21.4	20.2	212
5.	Water	14.2	14.8	11.8	14.7
Table 3: Percentage (w/w) of ash values in different parts of Swietenia macrophylla

S.No	Content	Ash(%)	Seed	Stem	Bark	Leaf
1.	Total ash	6.4	3.2	4.0	5.4	
2.	Acid insoluble	6.1	18	8.0	3.3	
3.	Water soluble	1.0	2.5	4.0	38	
4.	Sulphated ash	4.3	3.6	3.3	3.5	

Table 4: Preliminary phytochemical tests for the presence of active constituents in Swietenia macrophylla

S.no	Compound	Seed	Leaf	Stem	Bark
1.	Alkaloids	++	++	+	-
2.	Flavonoids	++	++	+	-
3.	Saponins	++	+	++	++
4.	Phenols	++	+	-	-
5.	Steroids	++	-	-	-
6.	Glycosides	++	+	+	-
7.	Resins	++	+	-	-
8.	Tannins	++	+	+	-
9.	Oils	++	-	-	-

Table 5: Thin layer chromatographic separation of alkaloid content

S.N	Material	R'values		
		Spot 1	Spot 2	Spot 3
1.	Seed	042	0.54	0.81
2.	Stem	0.21	0.50	0.89
3.	Bark	0.28	0.53	0.78
4.	Leaf	0.49	0.69	0.89
Table 6

Flourescence characteristic of powdered samples of Swietenia macrophylla under UV and Visible lights.

S.no	Treatment	Observation							
		Seed	Stem	Bark	Leaf				
		UV light	Visible light	UV light	Visible light	UV light	Visible light		
1	Powder	White	Dirty white	Light green	Light brown	Brown	Pale green	Pista green	
2	Powder +NaOH	Brownish	White	Dark brown	Light brown	Dark brown	Green	Yellowish green	
3	Powder +HCl	White	Pale White	Dark brown	Light brown	Brown	Dark green	Light green	
4	Powder +glacial acetic acid	White	Light yellow	Light cream	Light yellow	Brownish	Dark brown	Pale green	Light brown
5	Powder +H2PO4	Dark brown	Light black	Black	Light brown	Brown	Dark green	Dark green	
6	Powder + picric acid	Yellow	Light brown	Yellow	Green	Light brown	Green	Green	
7	Powder + H2SO4	Reddish brown	Dark brown	Brown	Yellowish brown	Dark black	Dirty green	Brown	Olive green
8	Powder +HNO3	Yellow	Yellow	Light brown	Brownish yellow	Light brown	Reddish green	Reddish green	Yellowish green
9	Powder +iodine solution	Cream	White	Black	Light brown	Black brown	Light brown	Brown	Light green
10	Powder + 5% FeCl3	Light yellow	Dark brown	Green	Dark green	Dark green	Dark brown	Blackish green	