Epithelial-mesenchymal transition in colorectal cancer tissue of patients with Lynch syndrome

Guo-Li Gu, Xiao-Quan Zhu, Xue-Ming Wei, Li Ren, De-Chang Li, Shi-Lin Wang

Guo-Li Gu, Xue-Ming Wei, Shi-Lin Wang, Department of General Surgery, the Air Force General Hospital PLA, Beijing 100142, China
Xiao-Quan Zhu, the Affiliated Hospital of Aviation Medical Institute, PLA Air Force, Beijing 100142, China
Li Ren, De-Chang Li, Department of Pathology, the Air Force General Hospital PLA, Beijing 100142, China

Author contributions: Gu GL and Wei XM designed the research; Gu GL, Ren L and Li DC performed the research; Gu GL, Zhu XQ and Ren L collected and analyzed the data; Gu GL wrote the paper; and Wei XM and Wang SL revised the paper.

Supported by Capital Citizen Health Cultivation Project, No. Z131100004013021; and General Projects of the Chinese PLA “Twelfth Five-Year” Logistics Research Subject, No. CWS11J193

Correspondence to: Xue-Ming Wei, Professor, Department of General Surgery, the Air Force General Hospital PLA, No.30, Fucheng Road, Haidian District, Beijing 100142, China. kzggl@163.com
Telephone: +86-10-66928302 Fax: +86-10-66928302
Received: September 9, 2013 Revised: October 29, 2013 Accepted: November 18, 2013 Published online: January 7, 2014

Abstract

AIM: To explore the epithelial-mesenchymal transition (EMT) in tissue from patients with Lynch syndrome, and to interpret biological behaviour of Lynch syndrome.

METHODS: Sixty-eight formalin-fixed and paraffin embedded tissue blocks were analyzed in this study, including tissues from Lynch syndrome (n = 30), sporadic colorectal carcinoma (CRC) (n = 30), and tumor-adjacent tissues (n = 8). Tissue sections were stained for human mutS homolog 2 (hMSH2), human mutL homolog 1 (hMLH1), transforming growth factor-β type II receptor (TGFβR II), E-cadherin, β-catenin, matrix metalloproteinase-7 (MMP-7) and tissue inhibitor of metalloproteinase-2 (TIMP-2) by immunohistochemical staining. Furthermore, clinical data such as age, gender and tumor-node-metastasis stage were also collected retrospectively.

RESULTS: The positive expression rates of hMSH2, hMLH1, TGFβR II, E-cadherin, β-catenin, MMP-7 and TIMP-2 were significantly related to the depth of invasion and lymph node metastasis, but not to sex or tumour size or location. The differences in the positive expression rates of hMSH2, hMLH1, TGFβR II, E-cadherin, cytomembrane β-catenin, cytoplasmic β-catenin, MMP-7 and TIMP-2 were significant between sporadic CRC and Lynch syndrome. The expression of hMSH2 had a positive correlation with that of hMLH1 in Lynch syndrome and sporadic CRC. The expression of TGFβR II had a positive correlation with that of hMSH2, hMLH1 and MMP-7, and a negative correlation with that of TIMP-2. The expression of MMP-7 had a negative correlation with that of TIMP-2 in Lynch syndrome and sporadic CRC. The expression of E-cadherin was positively correlated with that of cytomembrane β-catenin. However, the expression of cytomembrane β-catenin was negatively correlated with that of cytoplasmic β-catenin, and the expression of cytoplasmic β-catenin was positively correlated with that of MMP-7.

CONCLUSION: EMT may play an important role in the development and progression of Lynch syndrome. Lynch syndrome was caused by the mutations of mismatch repair genes, mainly hMSH2 and hMLH1, which also beget the mutational inactivation of TGFβR II. Therefore, the colorectal cancer of Lynch syndrome can escape the inhibitory effect of TGFβ1. However, TGFβ1 can up-regulate the expression of MMP-7 and down-regulate the expression of TIMP-2 in tumors by disassembling the E-cadherin/β-catenin complex in the cytomembrane.

Key words: Lynch syndrome; Mutations; Epithelial-mesenchymal transition; β-catenin; Mismatch repair gene

Core tip: As a subgroup of colorectal carcinoma (CRC), Lynch syndrome presents better prognosis than spor-
radic CRC for less invasion and metastasis. Our study found epithelial-mesenchymal transition may play an important role in the development and progression of Lynch syndrome. Lynch syndrome was caused by the mutations of mismatch repair genes, which also beg the mutational inactivation of transforming growth factor-β type II receptor. Therefore, the colorectal cancer of Lynch syndrome can escape the inhibitory effect of transforming growth factor-β type 1 (TGFβ1). However TGFβ1 can up-regulate the expression of matrix metalloproteinase-7 and down-regulate the expression of tissue inhibitor of metalloproteinase-2 in tumors by disassembling the E-cadherin/β-catenin complex in the cytomembrane.

Gu GL, Zhu XQ, Wei XM, Ren L, Li DC, Wang SL. Epithelial-mesenchymal transition in colorectal cancer tissue of patients with Lynch syndrome. World J Gastroenterol 2014; 20(1): 250-257 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i1/250.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i1.250

INTRODUCTION

Lynch syndrome is a dominant inherited disease characterized by vertical transmission and familial aggregation of colorectal cancer (CRC)[1-3]. As a subgroup of CRC, Lynch syndrome presents intriguing clinicopathological features[4-7], such as early onset, frequent localization in proximal colon, tendency to develop multiple primary carcinomas, and excessively mucinous and poor differentiation. Nevertheless, the prognosis of Lynch syndrome is known to be better than sporadic CRC. One of the possible explanations depends on the fact that patients with Lynch syndrome are less likely to suffer from metastasis[8].

Many factors have been raised to interpret oncogenesis, tumor invasion, and distant metastasis of CRC. Among these, epithelial-mesenchymal transition (EMT) might play an important role[9-11]. Recent studies have revealed that EMT is not only correlated with tumor growth and differentiation, but also influences tumor invasion and metastasis. Further investigation suggests that EMT might be the downstream of E-cadherin/β-catenin and Transforming growth factor (TGFB)β receptor type II (TGFβR II) in the cytomembrane[12]. As a multifunctional cytoplasmic protein β-catenin associates with E-cadherin and cytoskeleton, constituting an E-cadherin/β-catenin complex to maintain normal epithelial polarity and intercellular adhesion; besides, β-catenin also regulates cellular differentiation and proliferation[13]. When the degradation of β-catenin is interfered in the cytoplasm, β-catenin will accumulate in the cytoplasm, resulting in its translocation into the nucleus to promote the transcription of downstream genes involved in the Wnt/β-catenin signaling pathway. Matrix metalloproteinase-7 (MMP-7) is a target gene product of the Wnt/β-catenin signaling pathway[14]. MMP-7 can disassemble the E-cadherin/β-catenin complex to accelerate accumulation of β-catenin in the cytoplasm, resulting in cell proliferation, tumor invasion and metastasis[15,16]. As an endogenous inhibitor of MMP-7, tissue inhibitor of metalloproteinase (TIMP) can induce expression of the developmental EMT transcription factors and lead to down-regulation of epithelial markers and up-regulation of mesenchymal markers[17,18].

We performed this study to investigate whether a different mechanism for regulation of EMT exists in CRC tissues of patients with Lynch syndrome. Moreover, the correlation between EMT and biological behaviour of Lynch syndrome was also our target.

MATERIALS AND METHODS

Ethics

This work has been carried out in accordance with the Declaration of Helsinki (2000) of the World Medical Association. This study was approved ethically by Ethics Committee of the Air Force General Hospital, PLA. All patients provided informed written consent.

Patient tissue

Thirty resected specimens of sporadic CRC, 30 CRC specimens of Lynch syndrome and 8 tumor-adjacent tissues were collected from patients that had undergone operations from May 2007 to June 2012 at the Department of General Surgery, General Hospital of Air Force. Clinical data (including age, gender, and tumor-node-metastasis stage) were collected retrospectively. None of the patients received radiotherapy or chemotherapy before surgery. The clinical diagnosis of Lynch syndrome were established using Amsterdam II criteria. Informed consent was obtained from patients prior to investigation. After surgical resection, all tissue samples were fixed in 4% formalin for 24 h, and then embedded routinely into paraffin for hematoxylin and eosin (H and E) and immunohistochemistry (IHC) staining. Sections were cut from paraffin blocks at 4 μm. H and E-stained samples were individually examined microscopically by two independent pathologists. Clinicopathological characteristics of tumors are provided in Table 1.

IHC for hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7 and TIMP-2 proteins

Mouse monoclonal antihuman antibodies were used for the detection of the hMSH2 (clone FE11; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.; Beijing, China), hMLH1 (clone 14; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.), E-cadherin (clone 1D2; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.; Beijing, China), hMLH1 (clone 14; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.), β-catenin (clone CAT-5H10; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.), hMLH1 (clone 14; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.), E-cadherin (clone 1D2; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.) and TIMP-2 (clone 3A4; 1:50 dilution; Zhongshan Golden Bridge Biotechnology Inc.), and rabbit polyclonal antihuman antibody was
The expression of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-2 in three groups

Table 2

Group	n	hMSH2	hMLH1	TGFβRII	E-cadherin	Cytomembrane β-catenin	Cytoplasmic β-catenin	MMP-7	TIMP-2
Lynch syndrome	30	23	7	9	18	8	4	26	5
Sporadic CRC	30	11	9	9	18	8	4	12	10
Adjacent tissues	8	0	0	0	0	0	0	0	0

1Lynch syndrome vs sporadic CRC; 2Sporadic CRC vs adjacent tissues; 3Lynch syndrome vs adjacent tissues. CRC: Colorectal carcinoma.

Statistical analysis

The results of IHC are expressed as mean ± SD and examined under a light microscope. The positive expression rates of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7 and TIMP-2 were significantly different between samples from sporadic CRC and Lynch syndrome (P < 0.05). The positive expression of cytoplasmic β-catenin declined from adjacent tissues, sporadic CRC vs Lynch syndrome (P < 0.05). The positive expression of E-cadherin and cytomembrane β-catenin declined from adjacent tissues, Lynch syndrome to sporadic CRC (P < 0.05). The positive expression of cytoplasmic β-catenin and MMP-7 increased significantly from adjacent tissues, Lynch syndrome to sporadic CRC (P < 0.05). The positive expression of TIMP-2 was significantly higher in Lynch syndrome than in adjacent tissues and sporadic CRC (P < 0.05).

Correlation between hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7, TIMP-2 expression levels and clinicopathological characteristics of tumors

The correlation between protein expression and clinicopathological factors is shown in Table 3. The positive expression rates of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7 and TIMP-2 were significantly related to the depth of invasion and lymph node metastasis, but not to gender or tumor size or location. Positive expression rates of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7 and TIMP-2 were significantly different between samples from sporadic CRC and those from Lynch syndrome.
Expression rates of hMSH2, hMLH1, TGFβR II, E-cadherin, β-catenin, MMP-7 and TIMP-2 between Lynch syndrome and sporadic CRC

The correlation between expression of hMSH2, hMLH1, TGFβR II, E-cadherin, β-catenin, MMP-7 and TIMP-2 is shown in Tables 4 and 5. The expression of hMLH2 had a positive correlation with that of hMLH1 in Lynch syndrome and sporadic CRC ($r_{Lynch\ syndrome} = 0.835$, $P = 0.000$; …
Table 3 The relation of expression of hMSH2, hMLH1, TGFβII, E-cadherin, β-catenin, matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-2 with clinicopathological characteristics of Lynch syndrome and sporadic colorectal carcinoma

Clinopathological parameter	n	hMSH2	hMLH1	TGFβII	E-cadherin	Cytomembrane β-catenin	Cytoplasmic β-catenin	MMP-7	TIMP-2
Lynch syndrome	30	7	16	12	26	25	14	14	19
Male	23	4	10	10	21	20	9	12	14
Female	7	3	6	2	5	5	5	2	5
Tumor size									
< 4 cm	16	4	8	7	14	13	8	8	10
≥ 4 cm	14	3	8	5	12	12	6	6	9
Position									
Right half of colon	18	4	9	7	16	16	9	10	11
Left half of colon	3	1	2	1	3	2	1	1	2
Rectum	9	1	5	4	7	7	4	3	6
Invasion									
Inner chorion	21	5	10	11*	21*	20*	7	7	17*
Outer chorion	9	2	6	1	5	5	7*	7	2*
Metastasis									
No	21	4	11	11*	21*	20*	7	6	18*
Yes	9	3	5	1	5	5	7*	8	1*
Sporadic CRC	30	19	25	22	18	15	24	26	6
Male	20	12	17*	14	11	10	17	18	4
Female	10	7	8	8	7	5	7	8	2
Tumor size									
< 4 cm	13	9	11*	9	8	7	11	10	4
≥ 4 cm	17	10	14	13	10	8	13	16	2
Position									
Right half of colon	14	8	11	12	9	9	12	13	3
Left half of colon	5	4	4	3	3	2	3	4	1
Rectum	11	7	10	7	6	4	9	9	2
Invasion									
Inner chorion	14	7	11	13*	12*	10*	9	10	5*
Outer chorion	16	12	14	9	6	5	15*	16*	1*
Metastasis									
No	12	7	10	12*	10*	9*	7	8	5*
Yes	18	12	15	10*	8	6	17*	18*	1*

*Compared within the group; †Compared between groups, P < 0.05. CRC: Colorectal carcinoma; TGFβII: Transforming growth factor-β type II receptor; MMP-7: Matrix metalloproteinase-7.

\[\beta \text{-catenin} = -0.389, P = 0.000 \]
\[\text{TIMP-2} = 0.000 \]
\[r = 0.002 \]
\[MMP-7: \text{Matrix metalloproteinase-7.} \]

DISCUSSION

Lynch syndrome is caused by germline mutations in mismatch repair genes, mainly hMSH2 and hMLH1[19-21]. Patients with Lynch syndrome have better prognosis due to less metastases compared with sporadic CRC. However, specimens from Lynch syndrome patients are reported to be less differentiated than sporadic CRC, and the survival benefits of Lynch syndrome remain unexplained. Immunological response of intraepithelial cytotoxic T lymphocytes against tumor cells in Lynch syndrome has been proposed as a possible explanation. Studies also demonstrated that EMT might also be an important regulator in tumorigenesis[22]. The EMT status in Lynch syndrome was investigated in the present study, and we demonstrated significantly lower expression levels of hMSH2, hMLH1, cytoplasmic β-catenin, TGFβII and MMP-7, and higher expression levels of E-cadherin, cytomembrane β-catenin and TIMP-2 in Lynch syndrome. The mutations of hMSH2 and hMLH1 in Lynch syndrome are in accordance with Amsterdam II criteria. So ICH might be an easy and cheap way to detect hMLH1 and hMSH2 expression for the diagnosis of Lynch syndrome.

Many alterations of structural or functional genes may exist in tumorigenesis. TGFβII is a downstream gene of AMMR[23]. When the mutations of hMSH2 and hMLH1 results in Lynch syndrome tumorigenesis, mutations of TGFβII often occur. This may make the tumors escape...
the inhibition by TGF-β and promote the development of tumors. The anti-mitogenic and pro-metastatic effects of TGF-β can co-exist simultaneously with TGF-β to accelerate metastatic tumour progression. According to this theory, the onset age of Lynch syndrome will be earlier than sporadic CRC, and the developing speed of Lynch syndrome tumours will be faster than sporadic CRC. This may be a reason why Lynch syndrome has an early onset, tendency to develop multiple primary carcinomas, and excessively mucinous and poor differentiation. Our study showed that the abnormal expression of TGFβRII is significantly correlated to the depth of invasion and lymph node metastasis. This indicates that the mutation of TGFβRII not only associates with carcinogenesis of colorectal cancer, but also affects the invasion and metastasis of the tumors.

E-cadherin, β-catenin, MMP-7 and TIMP-2 are proteins correlating with EMT in CRC. Our study showed that as tumour invasion became deeper and lymph node metastasis occurred, the expression of E-cadherin and plasmamembrane β-catenin markedly decreased, and the expression of MMP-7 and cytoplasmic β-catenin markedly increased. Moreover, there have been significant differences in the expression of E-cadherin, β-catenin, MMP-7 and TIMP-2 between Lynch syndrome and sporadic CRC. The proportional unbalance

Table 4 The correlation of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-2 expression in Lynch syndrome

Lynch syndrome	hMSH2	hMLH1	TGFβRII	E-cadherin	Cytomembrane β-catenin	Cytoplasmic β-catenin	MMP-7
	(+ +)	(+)	(-)	(+ +)	(+)	(+)	(+ +)
hMLH1 (+)	0	7	0				
*	0	0	9				
(-)	0	0	14				
TGFβRII (+)	0	2	2	0	0	4	
(*)	0	4	4	0	0	8	
(-)	0	1	7	9	2		
E-cadherin (+)	0	7	19	6	7	13	3
(*)	0	4	1	2	1	1	1
(-)	0	0	4	1	2	1	1
Cytomembrane β-catenin (+)	0	5	20	4	8	13	3
(*)	0	2	3	3	1	1	2
(-)	0	0	4	1	2	1	1
TIMP-2 (+)	0	2	2	1	1	0	4
(*)	0	1	2	3	2	3	4
(-)	0	3	8	3	0	8	4

Table 5 The correlation of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-2 expression in sporadic colorectal carcinoma

Sporadic CRC	hMSH2	hMLH1	TGFβRII	E-cadherin	Cytomembrane β-catenin	Cytoplasmic β-catenin	MMP-7
	(+ +)	(+)	(-)	(+ +)	(+)	(+)	(+ +)
hMLH1 (+)	0	14	0				
(*)	0	5	6				
(-)	0	0	5				
TGFβRII (+)	0	4	4	7	0	1	
(*)	0	10	4	7	5	2	
(-)	0	5	3	6	0	2	
E-cadherin (+)	0	12	6	12	4	2	6
(*)	0	7	5	2	7	3	2
(-)	0	0	3	6	0	2	5
Cytomembrane β-catenin (+)	0	13	2	9	5	1	6
(*)	0	6	9	5	6	4	2
(-)	0	0	5	6	4	2	6
Cytoplasmic β-catenin (+)	0	14	10	13	8	3	7
(*)	0	5	1	1	3	2	1
(-)	0	0	5	1	3	2	3
MMP-7 (+)	0	6	4	6	2	2	7
(*)	0	12	4	6	9	1	1
(-)	0	1	3	2	0	2	0
TIMP-2 (+)	0	0	0	0	0	0	0
(*)	0	4	2	4	0	2	2
(-)	0	15	9	10	11	3	6

Gu GL et al. EMT and Lynch syndrome

WJG | www.wjgnet.com
255
January 7, 2014 | Volume 20 | Issue 1 |
of MMP-7(+) /TIMP-2(-) and cytoplasmic β-catenin/cytomembrane β-catenin was obviously heightened. This may explain why Lynch syndrome has less invasive/metastasis and better prognosis than sporadic CRC. First, sporadic CRC is mainly caused by the mutation of the APC gene, and the inactive APC protein cannot disassemble the cytoplasmic β-catenin complex. As a consequence, β-catenin will accumulate in the cytoplasm and promote the expression of MMP-7, and this will accelerate the invasion and metastasis of tumours. Second, there is cross-talk between TGF-β/Smad and Wnt/β-catenin signalling pathways, and TGF-β can make use of Smad2 to disassemble the E-cadherin/β-catenin complex. But in Lynch syndrome, the mutations of MMR lead to mutational inactivation of TGFβR II. This will reduce the function of TGF-β to disassemble the E-cadherin/β-catenin complex, so the expression of E-cadherin and plasmamembrane β-catenin will increase in Lynch syndrome than in sporadic CRC. Recently there is a study reporting that exon 3 of the β-catenin gene in Lynch syndrome is more likely to be mutated than in sporadic CRC without functional inhibition.

The chemosynthetic inhibitors of MMP and β-catenin, such as batimatstat and marimatstat, have been used in clinical treatment for the invasion and metastasis of tumours. But this kind of drug is very expensive now. Our study shows that MMP-7 and cytoplasmic β-catenin were not expressed in all CRC specimens, and their expression levels are not similar in different stages of tumogenesis. So it is worthy to optimize the timing to use the inhibitors of MMP and β-catenin to cure patients with CRC. We think it is feasible to examine the levels of MMP-7 and β-catenin in tumour tissue and (or) serum before the prescription of inhibitors of MMP-7 and β-catenin to patients. In a word, our study suggests that MMP-7 and β-catenin inhibitors might be tomorrow agents for the treatment of tumour invasion and metastasis.

REFERENCES
1. Petersen HV, Ladelund S, Carlsson C, Nilbert M. Sense of coherence and self-concept in Lynch syndrome. Hered Cancer Clin Pract 2013; 11: 7 [PMID: 23830140 DOI: 10.1186/1897-4287-11-7]
2. Bansidhar BJ, Silinsky J. History and pathogenesis of Lynch syndrome. Clin Colon Rectal Surg 2012; 25: 63-66 [PMID: 23730220 DOI: 10.1016/s-0032-1313776]
3. Vesan HF, de Vos Tot Nederveen Cappel WH. A hundred years of Lynch syndrome research (1913-2013). Fam Cancer 2013; 12: 141-142 [PMID: 23670342 DOI: 10.1007/ s10689-013-9654-7]
4. Bansidhar BJ. Extracolonic manifestations of Lynch syndrome. Clin Colon Rectal Surg 2012; 25: 103-110 [PMID: 23730225 DOI: 10.1016/s-0032-1313781]
5. Mishra N, Hall J. Identification of patients at risk for hereditary colorectal cancer. Clin Colon Rectal Surg 2012; 25: 67-82 [PMID: 23730221 DOI: 10.1016/s-0032-1313777]
6. Bleiker EM, Espljen MJ, Meiser B, Petersen HV, Patenaude AF. 100 years Lynch syndrome: what have we learned about psychosocial issues? Fam Cancer 2013; 12: 325-339 [PMID: 23609456 DOI: 10.1007/ s10689-013-9653-8]
7. Lynch HT, Lynch PM. Colorectal cancer: Update on the clinical management of Lynch syndrome. Nat Rev Gastroenterol Hepatol 2013; 10: 323-324 [PMID: 23609465 DOI: 10.1038/ nrgastro.2013.70]
8. Barrow E, Hill J, Evans DG. Cancer risk in Lynch Syndrome. Fam Cancer 2013; 12: 229-240 [PMID: 23604856 DOI: 10.1007/ s10689-013-9615-1]
9. Todosi AM, Gavrieliuc MM, Anuței GM, Filip B, Scripcariu V. Colon cancer at the molecular level—usefulness of epithelial-mesenchymal transition analysis. Rev Med Chir Soc Med Nat Iasi 2012; 116: 1106-1111 [PMID: 23700897]
10. Peláez-García A, Baderas R, Torres S, Hernández-Varas P, Teixidó J, Bonilla F, de Herreros AG, Casal JL. FGFR4 role in epithelial-mesenchymal transition and its therapeutic value in colorectal cancer. PLoS One 2013; 8: e63695 [PMID: 23668489 DOI: 10.1371/journal.pone.0063695]
11. Takahashi Y, Sawada G, Kurashige J, Matsumura T, Uchi R, Ueo H, Ishibashi M, Takano Y, Akiyoshi S, Iwata Y, Eguchi H, Sudo T, Sugiuchi H, Yamamoto H, Doki Y, Mori M, Mi-mori K. Tumor-derived tenasin-C promotes the epithelial-mesenchymal transition in colorectal cancer cells. Anticancer Res 2013; 33: 1927-1934 [PMID: 23645740]
12. Zheng D, Song T, Zhongliu X, Wu M, Liang J, Liu Y. Down-regulation of transforming growth factor-β type II receptor prohibit epithelial-mesenchymal transition in less epithelial. Mol Vis 2012; 18: 1238-1246 [PMID: 22665970]
13. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, Yoshida K, Ichida JK, Yamada M, Hamatani T, Kuji N, Miyado K, Yoshimura Y, Umezawa A. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryoderived stem cells. PLoS One 2013; 8: e61306 [PMID: 23691016 DOI: 10.1371/journal.pone.0063265]
14. He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal
Wnt/β-catenin activity in CKD. J Am Soc Nephrol 2012; 23: 294-304 [PMID: 22095947 DOI: 10.1681/ASN.2011050490]

Kang YJ, Park HJ, Chung HJ, Min HY, Park EJ, Lee MA, Shin TK, Lee HY, Kim SJ, Lee WS. Matrix metalloproteinases and their role in the renal epithelial mesenchymal transition. Histol Histopathol 2011; 26: 317-313 [PMID: 21210343]

Jung YS, Liu XW, Chirco R, Warner RB, Fridman R, Kim HR. TIMP-1 induces an EMT-like phenotypic conversion in MDCK cells independent of its MMP-inhibitory domain. PLoS One 2012; 7: e38773 [PMID: 22701711 DOI: 10.1371/journal.pone.0038773]

Tanyi M, Olasz J, Tanyi L, Tóth L, Antal-Szalmás P, Bubán T, András C, Urbanicske H, Garami Z, Csuka O, Damjanovich L. Q88P mutation in the hMLH1 gene associated with Lynch syndrome in three Hungarian families. Fam Cancer 2012; 11: 519-524 [PMID: 22395473 DOI: 10.1007/s10602-012-9515-9]

Wei W, Liu F, Liu L, Li Z, Zhang X, Jiang F, Shi Q, Zhou X, Sheng W, Cai S, Li X, Xu Y, Nan P. Distinct mutations in MLH1 and MSH2 genes in hereditary colorectal cancer susceptibility through denaturing gradient gel electrophoresis (DGGE). Methods Mol Biol 2010; 653: 193-205 [PMID: 20721744 DOI: 10.1007/978-1-60761-759-4_11]

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. β-catenin/TCF4 complex induces Ikaros, in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2011; 108: 19204-19209 [PMID: 22080605 DOI: 10.1073/pnas.1108977108]

Liu T, Xian H, Gama P, Young H. Novel inhibitor-resistant colorectal cancer susceptibility with denaturing gradient gel electrophoresis (DGGE). Methods Mol Biol 2010; 633: 297-311 [PMID: 20721744 DOI: 10.1007/978-1-60761-759-4_11]

Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor β beta signaling impairs Neuroinduced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003; 100: 8430-8435 [PMID: 12808151 DOI: 10.1073/pnas.0309263100]

Drabsch Y, ten Dijke P. TGF-β signaling in breast cancer cell invasion and bone metastasis. J Mammary Gland Biol Neoplasia 2011; 16: 97-108 [PMID: 21494783 DOI: 10.1007/s10995-011-9217-1]

Ludwig K, Tse ES, Wang JY. Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer 2013; 13: 221 [PMID: 23630973 DOI: 10.1186/1471-2407-13-221]

Kousou I, Tani Y, Maruyama R, Nakanuma Y, Okamoto T, Haro A, Kakeji Y, Maehara Y. Differences in the expression of epithelial-mesenchymal transition related molecules between primary tumors and pulmonary metastatic tumors in colorectal cancer. Surg Today 2013; 43: 73-80 [PMID: 23052737 DOI: 10.1007/s00595-012-0344-0]

Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, Lee JH, Kim HR. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol 2012; 41: 211-218 [PMID: 22552741 DOI: 10.3892/ijo.2012.1453]

Forysth CB, Tang Y, Shaikh M, Zhang L, Keshavarzian A. Alcohol stimulates activation of Snail, epidermal growth factor receptor signaling, and biomarkers of epithelial-mesenchymal transition in colon and breast cancer cells. Alcohol Clin Exp Res 2010; 34: 19-31 [PMID: 19860811 DOI: 10.1111/j.1530-0270.2009.00961.x]

Curia MC, De Iure S, De Lellis L, Veschi S, Mammarella S, White MJ, Bartlett J, Di Iorio A, Amatetti C, Lombardo M, Di Gregorio P, Battista P, Marianni-Costantini R, Williams SM, Cama A. Increased variance in germline allele-specific expression of APC associates with colorectal cancer. Gastroenterology 2012; 142: 71-77.e1 [PMID: 21959949 DOI: 10.1053/j.gastro.2011.09.048]

Roy S, Majumdar AP. Cancer Stem Cells in Colorectal Cancer: Genetic and Epigenetic Changes. J Stem Cell Res Ther 2012; (6): piii: 10342 [PMID: 23563347 DOI: 10.4172/2157-6733. S7-006]

Mauvel A, Nallet-Staub F, Varelas X. Integrating developmental signals: a Hippo in the (path)way? Oncogene 2012; 31: 1743-1756 [PMID: 21874093 DOI: 10.1038/onc.2011.363]

Hirot A, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS. Smad2 functions as a co-activator of canonical Wnt/β-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell Signal 2008; 20: 1632-1641 [PMID: 18595660 DOI: 10.1016/j.cellsig.2008.05.003]

Osaki IJ, Lu Y, Saito R. MAPKs and Signal Transduction in the Control of Gastrointestinal Epithelial Cell Proliferation and Differentiation. Int J Mol Sci 2013; 14: 10143-10161 [PMID: 23670955 DOI: 10.3390/ijms140510143]

Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I, Truinger K, Martin J, Jass J, Houlston R, Atkin W, Tomlinson IP, Silver AR. Exon 3 β-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 2005; 54: 264-267 [PMID: 15647192 DOI: 10.1136/gut.2004.048132]

Park CH, Shin TK, Lee HY, Kim SJ, Lee WS. Matrix metalloproteinase inhibitors attenuate neuroinflammation following focal cerebral ischemia in mice. Korean J Physiol Pharmacol 2011; 15: 115-122 [PMID: 21660512 DOI: 10.4196/jkyp.2011.15.2.115]

Chaudhary AK, Pandya S, Ghosh K, Nadkarni A. Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat Res Rev 2013; 753: 7-23 [PMID: 23370482 DOI: 10.1016/j.mrrev.2013.01.002]

Sinno M, Biagioni S, Ajmone-Cat MA, Pafumi I, Caramanica P, Medda V, Toniti G, Minghetti L, Mannello F, Cacci E. The matrix metalloproteinase inhibitor marinastat promotes neural progenitor cell differentiation into neurons by gelatinase-independent TIMP-2-dependent mechanisms. Stem Cells Dev 2013; 22: 345-358 [PMID: 23089139 DOI: 10.1089/scd.2012.0299]

Benjamin MM, Khalil RA. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXS 2012; 103: 209-279 [PMID: 22422194 DOI: 10.1007/978-3-7643-8270-7_11]

Halbedl S, Kratzer MC, Rahm K, Crosta N, Masters KS, Zippert J, Bräse S, Gradl D. Synthesis of novel inhibitors blocking Wnt signaling downstream of β-catenin. FEBS Lett 2013; 587: 522-527 [PMID: 23357029 DOI: 10.1016/j.febslet.2013.01.034]
