Comparison of the efficacy of an infusion pump or standard IV push injection to deliver naloxone in treatment of opioid toxicity

Bita Dadpour¹, Maryam Vahabzadeh¹, Babak Mostafazadeh²,³

¹Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad; ²Toxicological Research Center and ³Department of Forensic Medicine and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Background: The optimal goal of naloxone infusion in intensive care units is to ameliorate opioid-induced side effects in therapy or eliminate the symptoms of opioid toxicity in overdoses. Accurately monitoring and regulating the doses is critical to prevent adverse effects related to naloxone administration. The present study aimed to compare treatment outcomes when using two methods of intravenous naloxone infusion: an infusion pump or the standard method.

Methods: This study involved 80 patients with signs and symptoms of opioid overdose. The patients were randomly assigned into two groups with respect to intravenous infusion of naloxone by either an infusion pump or the standard method.

Results: Comparison of study parameters between the two groups at 12 and 24 hours after intervention showed significantly more compensatory acid-base imbalance in the naloxone infusion pump group. In the group that received naloxone by pump, only one patient experienced withdrawal symptoms, but withdrawal symptoms appeared in 12 patients (30.0%) in the standard intravenous infusion group within 12 hours and in seven additional patients (17.5%) within 24 hours of intervention. In the group receiving pump-based naloxone infusion therapy, no another complications were reported; however in the standard infusion group, the 12-hour and 24-hour complication rates were 55.0% and 32.5%, respectively. The length of hospital stay was 2.85 ± 1.05 and 4.22 ± 0.92 days for the pump and standard infusion groups, respectively (P < 0.001).

Conclusions: Naloxone infusion using an infusion pump may be safer with regard to hemodynamic stability, resulting in shorter hospitalization periods, and fewer posttreatment complications.

Key Words: Acid-base imbalance; Infusion pumps; Intensive care unit; Naloxone; Opioid; Treatment outcome

INTRODUCTION

The establishment of pragmatic, yet personalized, approaches for the management of opioid toxicity remains a priority: these approaches should consider both the benefits as well as the safety of therapeutic regimens, while also allowing for precise monitoring of the dosages of antidotal agents. Naloxone is the primary therapeutic agent administered to opioid overdose...
patients worldwide and is used in both addiction treatment clinics and emergency centers [1,2]. With the aim of successfully eliminating opioid toxicity, the first step in patient management is to establish an accurate history of their opioid usage, and the second step is to schedule appropriate naloxone therapy by monitoring the infusion dose [3]. Naloxone is a highly effective antidote, the use of which is potentially lifesaving [4-6]: however, its use may also introduce potential risks [7]. According to the current guidelines, naloxone treatment regimens should be based on balancing the need for treatment against the risk of inappropriate use. In this regard, continuous titration of the naloxone dose is considered ideal. As a rule, when addressing toxicity due to opioids with long half-lives or high receptor affinity, continuous naloxone infusion may be required to prevent a relapse into sedation following initial treatment of acute toxicity [8,9]. One of the drawbacks of the standard naloxone infusion method is lack of confidence in the calculated hourly rate, which if not determined accurately, can lead to under-dosing and consequent withdrawal symptoms and reappearance of symptoms of drug poisoning, and occasionally may also result in prolonged hospitalization or even death. The lack of certainty and consistency with respect to naloxone dosage can be the result of a variety of factors, including the manipulation of the patient’s serum access, or lack of available time for nurse to administer intravenous naloxone at an appropriate rate [10]. In this regard, we postulated that using an infusion pump to administer naloxone may prevent these problems and ensure the patient receives the appropriate dose of naloxone with the highest accuracy. The present study aimed to compare the outcomes of treatment of opioid poisoning using two methods of naloxone infusion: an infusion pump or the standard method.

MATERIALS AND METHODS

This study involved 80 patients with the signs and symptoms of opioid overdose (with different doses and routes of exposure) that were scheduled for naloxone therapy in the Clinical Toxicology Department of Payambaran Hospital in Tehran from January to September 2019. The sample size was calculated with Cochran’s sample size formula: the parameters for this calculation were \(p = q = 0.5, \ d = 0.11, \) and \(z = 1.96 \). All patients were admitted to the intensive care unit. In this study, patients with any history of systemic disorders, such as cardiovascular or cerebrovascular disorders, or respiratory problems, such as pneumonia or chronic obstructive pulmonary disease, and who had positive urinary tests for amphetamines, methamphetamines, or tetrahydrocannabinol were all excluded from the study. Also, patients who required intubation upon admission to the hospital emergency department were not included in the study. The family members of the patients gave written informed consent on admission, and the study protocols were approved by the hospital-based institutional ethics committee. The baseline characteristics, including patient demographics and the type and route of exposure of the drug used, were collected by reviewing the hospital records and by interviewing the family members. Using a computerized random number generator, the patients were randomly assigned into two groups with respect to intravenous infusion of naloxone using either an infusion pump or the standard method (direct intravenous infusion: naloxone added into the crystalloid fluids or through the infusion Microset). A 0.04-mg naloxone dose is considered a reasonable starting intravenous dose in most patients, with additional 0.04-mg doses administered as necessary (up to a maximum dose of 0.12 mg); throughout naloxone infusion, patient ventilation and oxygenation are supported as required. In patient who fail to respond to the standard initial treatment, the dose may be increased by 0.2- or 0.4-mg increments up to a total dose of 2 mg. Typically, hourly administration of two-thirds of the total bolus dose of naloxone that initially resulted in reversal will maintain the desired effect [11].

On admission to the intensive care unit, the level of consciousness of our study patients was assessed according to the Richmond agitation sedation scale (RASS) as +4 (combative), +3 (very agitated), +2 (agitated), +1 (restless), 0 (alert and calm), -1 (drowsy), -2 (light sedation), -3 (moderate sedation), -4 (deep sedation), or -5 (unarousable). Prior to naloxone intervention, as well as 12 and 24 hours after, the doses of naloxone used, continuing requirement for orotracheal intubation, arterial blood gas measurements, and probable complications, such as opioid withdrawal symptoms, were all assessed. In addition, the total duration of naloxone infusion, total hospi-
tval stay, improvement without further complications, or inhospital death were evaluated in both groups. In this study, the complications of naloxone therapy considered were as follows: opioid withdrawal symptoms, subsequent return of symptoms of opioid toxicity and apnea.

The results were summarized as the mean ± standard deviation for quantitative variables and as absolute frequencies and percentages for categorical variables. Normality of data was analyzed using the Kolmogorov-Smirnoff test. Categorical variables were compared using the chi-square test, or using Fisher’s exact test when more than 20% of cells with expected counts of less than 5 were observed. Quantitative variables were also compared with Student t-test or the Mann-Whitney U-test. Multivariable regression modeling was used to determine the differences in study outcomes between the two groups. For the statistical analyses SPSS ver. 16.0 (SPSS Inc., Chicago, IL, USA) was used. P-values of 0.05 or less were considered statistically significant.

Table 1. Clinical characteristics of the study patients

Variable	Pump infusion (n=40)	Direct infusion (n=40)	P-value
Male sex	32 (80.0)	36 (90.0)	0.210
Mean age (yr)	44.62 ± 15.80	48.18 ± 17.71	0.347
Type of substance			0.852
Opiate	12 (30.0)	11 (27.5)	
Methadone	25 (62.5)	27 (67.5)	
Heroin	3 (7.5)	2 (5.0)	
Chronic use	28 (70.0)	32 (80.0)	
Amount of use (mg)	1,668 ± 2,679	1,226 ± 1,874	0.394
Route of administration			0.999
Oral	37 (92.5)	38 (95.0)	
Injection	3 (7.5)	2 (5.0)	
RASS score, point (%)			0.314
–5	2 (5.0)	0	
–4	7 (17.5)	4 (10.0)	
–3	13 (32.5)	18 (45.0)	
–2	15 (37.5)	17 (42.5)	
–1	3 (7.5)	1 (2.5)	
Vital sign			
Blood pressure (mm Hg)	112.19 ± 24.32	111.39 ± 17.80	0.867
Heart rate (/min)	71.32 ± 16.91	66.58 ± 16.29	0.205
Respiratory rate (/min)	8.78 ± 2.10	8.40 ± 2.57	0.477
Body temperature (°C)	36.70 ± 0.45	36.57 ± 0.44	0.195
Arterial blood gas analysis			
pH	7.24 ± 0.04	7.25 ± 0.04	0.577
HCO₃⁻ (meq/L)	18.80 ± 2.00	18.10 ± 1.93	0.116
PaCO₂ (mm Hg)	62.32 ± 5.11	62.75 ± 5.00	0.708
PaO₂ (mm Hg)	70.52 ± 8.12	68.60 ± 6.18	0.237
Naloxone doses administered			
Initial dose (mg)	0.83 ± 0.71	0.77 ± 0.65	0.635
Maintenance dose per hour (mg)	0.54 ± 0.50	0.54 ± 0.48	0.953

Values are presented as number (%) or mean ± standard deviation.
RASS: Richmond agitation sedation scale.
RESULTS

In total, 40 patients who suffered opioid toxicity randomly received naloxone using pump infusion and the remaining 40 were treated using direct intravenous infusion. Table 1 summarizes the baseline characteristics of the study population. The two groups were matched for demographics, type, amount and route of exposure of the substance used, initial hemodynamic status, arterial blood gas analysis results, as well as initial dose of naloxone used. Both groups were followed up for 12 and 24 hours after naloxone infusion. Comparison of study parameters between the two groups at 12 and 24 hours after naloxone intervention (Table 2) indicated acid-base imbalance was significantly worse among patients who received naloxone by infusion pump than in those who received naloxone by the standard direct intravenous infusion method. The mean dose of naloxone infused per hour was also significantly lower in the direct infusion group. In the group that received naloxone by infusion pump, only one patient experienced withdrawal symptoms, but in the group that received naloxone by intravenous infusion, withdrawal symptom appeared in 12 patients (30.0%) within 12 hours and in seven patients (17.5%) within 24 hours of intervention. No other complications were reported in the infusion-pump-based naloxone therapy group; however in the direct infusion group, 12-hour and 24-hour complication rates were 55.0% and 32.5%, respectively. In this regard, the complications appearing within 12 hours of intervention included restlessness in 10 patients (25.0%), drowsiness or loss of consciousness in 11 patients (27.5%) and need for intubation in one patient (2.5%). Within 24 hours of naloxone administration, restlessness, or loss of consciousness, and need for intubation were evident in three (7.5%), seven (17.5%), and three (7.5%) of patients, respectively. The mean total duration of naloxone treatment was significantly longer in those who were administered naloxone by direct infusion than in the infusion pump group (28.70 ± 11.32 hours as compared to 40.65 ± 10.56 hours, respectively; P < 0.001). The length of hospital stay was also longer in the group receiving standard treatment than in the infusion pump group (2.85 ± 1.05 days as compared to 4.22 ± 0.92 days, respectively; P < 0.001). The complication-free improvement of opioid toxicity was shown to be 100% and 92.5% respectively (P = 0.241). In addition, in-hospital death was reported in 5.0% of patients who received naloxone by direct intravenous infusion, but no patients in the infusion pump group died during their hospital stay (P = 0.494). Using multivariable linear regression modeling (Table 3), the use of an infusion pump to administer naloxone was found to be associated with shorter in-hospital stays following treatment of opioid toxicity (beta = 0.559, P < 0.001). In a multivari-

Table 2. Outcomes of naloxone infusion 12 and 24 hours after initial infusion

Variable	Pump infusion (n=40)	Direct infusion (n=40)	P-value
12 Hours after infusion			
Orotracheal intubation	0 (0.0%)	2 (5.0%)	0.494
ABG analysis			
pH	7.33 ± 0.02	1.00 ± 0.03	<0.001
HCO3 (meq/L)	23.02 ± 2.06	19.68 ± 1.65	<0.001
PaCO2 (mm Hg)	48.65 ± 3.69	53.98 ± 4.43	<0.001
PaO2 (mm Hg)	87.78 ± 4.16	80.55 ± 5.62	<0.001
Dose of naloxone per hour (mg)	0.25 ± 0.33	0.47 ± 0.43	0.014
Complication	1 (2.5%)	2 (5.0%)	<0.001
24 Hours after infusion			
Orotracheal intubation	0 (0.0%)	3 (7.5%)	0.120
ABG analysis			
pH	7.38 ± 0.02	7.32 ± 0.05	<0.001
HCO3 (meq/L)	23.62 ± 1.33	20.10 ± 2.22	<0.001
PaCO2 (mm Hg)	41.75 ± 3.05	51.08 ± 6.74	<0.001
PaO2 (mm Hg)	92.68 ± 2.85	83.55 ± 7.81	<0.001
Dose of naloxone per hour (mg)	0.07 ± 0.15	0.34 ± 0.40	<0.001
Complication	1 (2.5%)	16 (40.0%)	<0.001

Values are presented as number (%) or mean ± standard deviation. ABG: arterial blood gas.

Table 3. Multivariable linear regression analysis to assess the difference in length of hospital stay between the two methods of infusion of naloxone

Factor	Unstandardized coefficient	Standardized coefficient	t	P-value	
(Constant)	3.245	1.497	2.168	0.034	
Method	1.333	0.221	6.038	<0.001	
Sex	-0.406	0.378	-1.073	0.287	
Age	0.008	0.010	0.117	0.854	0.396
Type	0.557	0.481	0.255	1.158	0.251
Chronic	0.487	0.361	1.350	0.181	
Amount	2.166	0.001	0.042	0.255	0.800
Route	-1.708	0.820	-0.346	-2.084	0.041
RASS	-0.099	0.131	-0.071	-0.753	0.454

R-square = 0.424.
RASS: Richmond agitation sedation scale.
Our study was the first to assess the efficacy of infusion pumps in achieving better therapeutic outcomes after naloxone therapy for opioid toxicity. Although some previous studies have assessed the use of similar pumps for infusion of naloxone in individual cases, such protocols had not been tested in randomized clinical trials and thus could not directly demonstrate the efficacy of using infusion pumps on posttreatment outcomes. Some previous studies have recommended intermittent infusion of small doses of naloxone when using an infusion pump to deliver postsurgical intravenous patient-controlled analgesia in order to minimize some of the side effects of morphine. In some trials in which the antagonist was ineffective, morphine and naloxone were mixed together in saline and delivered via an infusion pump [12-15]. Infusion of low-dose naloxone using an infusion pump may therefore help to improve patient outcomes while minimizing drug-related side effects. More recently, computer-based perfusion pumps have been developed to maximize the efficacy of drugs [16,17]. These measures make it possible to precisely control the overall doses of drugs administered or to compare the predictive performance of such protocols which differ in either general approach. The utility of such devices for delivery of antidotal therapies such as naloxone should be examined further in future studies.

Our study demonstrates that the infusion of naloxone using an infusion pump can be safer with regard to achieving proper hemodynamic stability, reducing the duration of hospitalization, and limiting posttreatment complication. In fact, this approach can prevent unintentional and nontherapeutic interventions by both staff and patient companions.

CONFlict OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to the Clin-
ORCID

Bita Dadpour https://orcid.org/0000-0001-6004-0344
Maryam Vahabzadeh https://orcid.org/0000-0002-6234-1834
Babak Mostafazadeh https://orcid.org/0000-0003-4872-9610

AUTHOR CONTRIBUTIONS

Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Visualization, Writing - original draft, review & editing: all authors.

REFERENCES

1. Centers for Disease Control and Prevention (CDC). Community-based opioid overdose prevention programs providing naloxone: United States, 2010. MMWR Morb Mortal Wkly Rep 2012;61:101-5.
2. Rzasa Lynn R, Galinkin JL. Naloxone dosage for opioid reversal: current evidence and clinical implications. Ther Adv Drug Saf 2018;9:63-88.
3. Smith JO, Malinowski SS, Ballou JM. Public perceptions of naloxone use in the outpatient setting. Ment Health Clin 2019;9:275-9.
4. World Health Organization. Community management of opioid overdose. Geneva: World Health Organization; 2014.
5. Ramrakha PS, Moore KP, Sam AH. Oxford handbook of acute medicine. 4th ed. Oxford: Oxford University Press; 2019.
6. Nolan J. Advanced life support. 5th ed. London: Resuscitation Council (UK); 2006.
7. Twycross R, Wilcock A, Howard P. Palliative care formulary. 5th ed. Nottingham: PalliativeCareDrugs.com; 2014.
8. Hameln Pharmaceuticals Ltd. Summary of product characteristics: Naloxone 400 micrograms/ml solution for injection or infusion [Internet]. Gloucester: Wockhardt UK Ltd.; 2019 [cited 2020 Jan 12]. Available from: https://www.medicines.org.uk/emc/product/6344/smpc.
9. Hameln Pharmaceuticals Ltd. Naloxone 400 micrograms/ml solution for injection/infusion [Internet]. Gloucester: Hameln Pharmaceuticals Ltd.; 2019 [cited 2020 Jan 12]. Available from: https://www.medicines.org.uk/emc/product/6344/smpc.
10. Wermeling DP. Review of naloxone safety for opioid overdose: practical considerations for new technology and expanded public access. Ther Adv Drug Saf 2015;6:20-31.
11. Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS. Goldfrank’s toxicologic emergencies. 11th ed. New York: McGraw-Hill Education; 2019.
12. Cepeda MS, Africano JM, Manrique AM, Fragoso W, Carr DB. The combination of low dose of naloxone and morphine in PCA does not decrease opioid requirements in the postoperative period. Pain 2002;96:73-9.
13. Cepeda MS, Alvarez H, Morales O, Carr DB. Addition of ultralow dose naloxone to postoperative morphine PCA: unchanged analgesia and opioid requirement but decreased incidence of opioid side effects. Pain 2004;107:41-6.
14. Sartain JB, Barry JJ, Richardson CA, Branagan HC. Effect of combining naloxone and morphine for intravenous patient-controlled analgesia. Anesthesia 2003;99:148-51.
15. Monitto CL, Kost-Byerly S, White E, Lee CK, Rudak MA, Thompson C, et al. The optimal dose of prophylactic intravenous naloxone in ameliorating opioid-induced side effects in children receiving intravenous patient-controlled analgesia morphine for moderate to severe pain: a dose finding study. Anesth Analg 2011;112:834-42.
16. Nuckols TK, Bower AG, Paddock SM, Hillborne LH, Wallace P, Rothschild JM, et al. Programmable infusion pumps in ICUs: an analysis of corresponding adverse drug events. J Gen Intern Med 2008;23 Suppl 1:41-5.
17. Waterson J, Bedner A. Types and frequency of infusion pump alarms and infusion-interruption to infusion-recovery times for critical short half-life infusions: retrospective data analysis. JMIR Hum Factors 2019;6:e14123.