Superoxide and Nitric Oxide Involvement in Enhancing of N-methyl-D-aspartate Receptor-Mediated Central Sensitization in the Chronic Post-ischemia Pain Model

Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu, Korea

Tae Ha Ryu, MD, Kyung Young Jung, PhD, Mi Jin Ha, MD, Kyung Hwa Kwak, MD, Dong Gun Lim, MD, and Jung Gil Hong, MD

Background:
Recent studies indicate that reactive oxygen species (ROS) are involved in persistent pain, including neuropathic and inflammatory pain. Since the data suggest that ROS are involved in central sensitization, the present study examines the levels of activated N-methyl-D-aspartate (NMDA) receptors in the dorsal horn after an exogenous supply of three antioxidants in rats with chronic post-ischemia pain (CPIP). This serves as an animal model of complex regional pain syndrome type-I induced by hindpaw ischemia/reperfusion injury.

Methods:
The application of tight-fitting O-rings for a period of three hours produced CPIP in male Sprague-Dawley rats. Allopurinol 4 mg/kg, allopurinol 40 mg/kg, superoxide dismutase (SOD) 4,000 U/kg, N-nitro-L-arginine methyl ester (L-NAME) 10 mg/kg and SOD 4,000 U/kg plus L-NAME 10 mg/kg were administered intraperitoneally just after O-ring application and on the first and second days after reperfusion. Mechanical allodynia was measured, and activation of the NMDA receptor subunit 1 (pNR1) of the lumbar spinal cord (L4-L6) was analyzed by the Western blot three days after reperfusion.

Results:
Allopurinol reduced mechanical allodynia and attenuated the enhancement of spinal pNR1 expression in CPIP rats. SOD and L-NAME also blocked spinal pNR1 in accordance with the reduced mechanical allodynia in rats with CPIP.

Conclusions:
The present data suggest the contribution of superoxide, produced via xanthine oxidase, and the participation of superoxide and nitric oxide as a precursor of peroxynitrite in NMDA mediated central sensitization. Finally, the findings support a therapeutic potential for the manipulation of superoxide and nitric oxide in ischemia/reperfusion related pain conditions. (Korean J Pain 2010; 23: 1-10)

Key Words:
central sensitization, nitric oxide, NMDA-receptor activation, persistent pain, reperfusion injury, superoxide.
INTRODUCTION

Complex regional pain syndrome (CRPS) is the disease appearing after tissue injury or nerve injury, such as trauma, fracture, and burn, and causing neuropathic pain, impairment of the autonomic nervous system and of motor function. Reactive oxygen species (ROS), secretion of cytokine, immunological and inflammatory responses, abnormal responses of the autonomic nerve system, and changes in the central nervous system have been suggested as the cause of CRPS, but the detailed mechanism has not yet been clarified [1].

Recently, Coderre et al. [2] reported a chronic postischemia pain (CPIP) model as the necessary model to investigate the pathophysiology of CRPS. This model, which is to induce four weeks of allodynia and hyperalgesia by causing ischemia/reperfusion (IR) injury on the hindpaw of a rat, has a similar pain pattern to that of ischemic injury-related CRPS caused after fractures, arthroscopic surgery, and overly tight casting. Coderre et al. [2] reported that ROS is correlated with the generation of allodynia by decreasing allodynia with the ROS scavenger in this model. In addition, Kwak et al. [3] showed the role of a more characteristic ROS, such as superoxide and nitric oxide (NO), on the generation of postischemic allodynia by using several drugs to block free-radical reaction pathways in a CPIP model. These results correspond with the results from the conventional animal pain model. In other words, in the peripheral nerve injury (spinal nerve ligation) model, it was reported that free radical scavengers, such as phenyl-N-t-butyl nitrate (PBN) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), decrease mechanical allodynia [4], and a systemically or intrathecally injected antioxidant reduces the formalin-induced nociceptive response in the hindpaws of mice [5]. In addition, after peripheral nerve injury (sciatic nerve transaction, SNT), the ROS generation in the spinal cord increases while the SOD activity decreases [6], and the mitochondrial ROS inside the spinal dorsal horn neurons increases in the spinal nerve ligation model [7]. These results show the important role of the ROS, increased inside the spinal cord or peripheral tissue, in generating and maintaining chronic persistent pain after nerve injury, inflammatory, or ischemic injury.

In this research, by means of a neuropathic pain model and an inflammatory pain model, the enhancement of N-methyl-D-aspartate (NMDA) receptor phosphorylation by ROS has drawn attention as an important mechanism of central sensitization [8-11]. From this, it is suggested that the development of the allodynia mechanism, expressed in the CPIP model, may result in the increased ROS in spinal cord or peripheral tissue enhances NMDA receptor phosphorylation to induce central sensitization.

Therefore, in this study, we have performed two animal experiments to examine whether the increased ROS is involved in central sensitization through NMDA receptor phosphorylation in CPIP model. First, in order to investigate the role of superoxide produced by xanthine oxidase (XO), which has drawn attention as a main ROS that causes post-IR injury tissue damage in the CPIP model, the degree of NMDA receptor phosphorylation in the spinal cord was measured in the rats, which were given allopurinol (an XO inhibitor) to examine the involvement of superoxide mediated by XO in central sensitization by NMDA receptor phosphorylation. Second, in order to clarify the role of superoxide and nitric oxide, which produce peroxynitrite (known to have strong post-IR injury pro-inflammatory action and cytotoxicity), we have used superoxide dismutase (SOD), which dismutates superoxide and N-nitro-L-arginine methyl ester (L-NAME) (a NO synthase inhibitor), to investigate whether superoxide and NO are involved in the phosphorylation of NMDA receptor and the expression of allodynia that is related with post-ischemic injury.

MATERIALS AND METHODS

All the housing conditions and experimental procedures were approved by the Institutional Animal Care and Use Committee and were in accordance with the National Institutes of Health guidelines on laboratory animal welfare.

Male Sprague–Dawley rats (280–320 g) were housed in the animal room, where temperature, humidity, light, and noise were automatically maintained, and they received water and food ad libitum. They were placed in the animal room for three days prior to the experiment in order to adjust to the environment.

The CPIP model induced by hindpaw IR injury (created by Coderre et al.) [2] was applied to the animals for the experiment. After the rats were anesthetized with sodium pentobarbital, a 7/32 inch of Nitrile 70 Durometer O-ring
drawal threshold. The mechanical allodynia was examined by the Dynamic plantar aesthesiometer (DPA, Ugo Basile, Comerio, Italy), operated in an automated von Frey method. The measured data was indicated as the mean ± SEM and analyzed by a paired t-test and analysis of variance (ANOVA) with an SPSS 12.0 program. The post-hoc test was performed with Tukey's HSD method.

RESULTS

1. Hindpaw mechanical allodynia

The pre-IR mechanical withdrawal threshold (baseline) measured at contralateral hindpaw and ipsilateral hindpaw had no significant difference between the groups. Although there was no difference with the baseline in the mechanical...
withdrawal threshold measured in the sham group on the third day after reperfusion, the vehicle group showed significant decrease from the baseline, and the measurement at the ipsilateral hindpaw showed an even lower mechanical withdrawal threshold than that of the contralateral hindpaw (paired T-test, $P < 0.05$, Fig. 1).

When compared to the vehicle group, the LA group and HA group on the third day after reperfusion showed significant increase in the ipsilateral mechanical withdrawal threshold ($F_{3,12} = 10,984.1, P < 0.05$, Fig. 1A), as well as the contralateral mechanical withdrawal threshold ($F_{3,12} = 13,519.6, P < 0.05$, Fig. 1B). The HA group had a more significant increase than the LA group regarding the ipsilateral mechanical withdrawal threshold ($F_{3,12} = 10,984.1, P < 0.05$, Fig. 1A), as well as the contralateral mechanical withdrawal threshold ($F_{3,12} = 13,519.6, P < 0.05$, Fig. 1B).

When compared to the vehicle group, the ipsilateral mechanical withdrawal threshold of the SOD group, L-NAME group, and SOD + L-NAME group on the third day after reperfusion had significant increase ($F_{4,15} = \ldots$).
The average gel density ratio of pNR1 and β-actin in ipsilateral spinal cord (A) and contralateral spinal cord (B) and an example of Western blot gel (bottom). The data are presented as average ± SEM. Sham: non invasive sham control, Vehicle: normal saline i.p., LA: allopurinol 4 mg/kg i.p., HA: allopurinol 40 mg/kg i.p., *P < 0.05 compared with sham group, †P < 0.05 compared with vehicle group, ‡P < 0.05 compared with LA group.

2. Measurement of phosphorylated NMDA-receptor subunit 1 (pNRI)

The ipsilateral and contralateral spinal cord pNR1 of the vehicle group showed significant increase when compared with the ipsilateral and contralateral spinal cord pNR1 of the sham group, respectively. When compared to the vehicle group, the ipsilateral spinal cord pNR1 of the LA group and HA group showed significant decrease (F₃,₁₂ = 699.8, P < 0.05, Fig. 3A), as well as the contralateral spinal cord pNR1 (F₃,₁₂ = 1045.7, P < 0.05, Fig. 3B). The ipsilateral pNR1 of the HA group decreased significantly compared to the LA group (F₃,₁₂ = 699.8, P < 0.05, Fig. 3A), as well as the contralateral pNR1 compared to the LA group (F₃,₁₂ = 1,045.7, P < 0.05, Fig. 3B).

The ipsilateral spinal cord pNR1 of the SOD + L-NAME group showed significant decrease with that of the SOD group and L-NAME group, while the ipsilateral spinal cord pNR1 of SOD group showed significant increase compared to the L-NAME group (F₂,₉ = 635.7, P < 0.05, Fig. 4A). The contralateral pNR1 of the SOD + L-NAME group and SOD group showed significant decrease with that of the L-NAME group (F₂,₉ = 1,209.1, P < 0.05, Fig. 4B), but no significant difference in contralateral pNR1 was found between the SOD + L-NAME group and SOD group.

DISCUSSION

The main findings of this study are as followings:

First, in the CPIP model where mechanical allodynia was developed by rat hindpaw IR injury, allopurinol significantly decreased the ipsilateral and contralateral spinal cord pNR1. This suggests that the superoxide mediated by post-IR injury XO may cause ipsilateral and contralateral allodynia by inducing NMDA receptor phosphorylation in spinal cord cells. Second, SOD and L-NAME, which block generation of superoxide and NO, also decreased ipsilateral
Fig. 4. The average gel density ratio of pNR1 and β-actin in ipsilateral spinal cord (A) and contralateral spinal cord (B) and an example of Western blot gel (bottom). The data are presented as average ± SEM. Sham: non invasive sham control, Vehicle: normal saline i.p., SOD: superoxide dismutase (SOD) 4,000 U/kg i.p., L-NAME: N-nitro-L-arginine methyl ester 10 mg/kg i.p., SOD + L-NAME: SOD 4,000 U/kg plus L-NAME 10 mg/kg i.p., *P < 0.05 compared with sham group, †P < 0.05 compared with vehicle group, ‡P < 0.05 compared with SOD group, §P < 0.05 compared with L-NAME group.

and contralateral spinal cord pNR1. This shows that increased superoxide and NO are important ROS in causing ipsilateral and contralateral allodynia, as they enhance NMDA receptor phosphorylation in the spinal cord to induce central sensitization.

ROS are involved in an intracellular signal transduction pathway, as the normal derivatives of oxygen metabolism. They are balanced by the antioxidant capacity in the body, but when the balance is lost, ROS rapidly increases and causes oxidative stress. Particularly, during ischemia, hypoxanthine is accumulated by ATP depletion, and superoxide and hydrogen peroxide are generated in the process of hypoxanthine oxidation by XO during reperfusion [19]. Superoxide acts as a proinflammatory by increasing endothelial permeability, generating chemotactic factors, such as leukotriene B4, and inducing neutrophil [20,21]. Reacting with NO, superoxide forms peroxynitrite, which has strong cytotoxicity and acts as a pro-inflammatory substance. Peroxynitrite is involved in post-ischemia cellular injury by continuously generating superoxide, inactivating intrinsic MnSOD by means of nitration [22]. Clarifying the pain-related role of ROS involved in such IR injury, Kim et al. [23] revealed that plasma superoxide mediated by XO was blocked with a high dose of allopurinol before ischemia in the CPIP model; furthermore, Kwak et al. [3] reported that allodynia was reduced as a superoxide and NO was selectively blocked in the CPIP model. Khalil and Khodr [24] reported that the activity of XO, which catalyzes superoxide generation, significantly increased in the sciatic nerve of the CCI model rats and the thermal threshold was decreased. These results suggest that ROS is related to the increase of nociceptor sensitivity, as well as pain transmission pathway and mechanism, and may serve as the proofs that show the action of ROS in peripheral tissue on chronic pain.

The development and maintenance of chronic pain is known to be related with central sensitization. Superoxide and NO have drawn attention as the ROS mainly involved in central sensitization, and the role of superoxide in relation with mitochondrial MnSOD has been focused. Park et al. [7] reported that mitochondrial ROS increased in the spinal dorsal horn of the spinal nerve ligation model. Wang et al. [25] reported that intraplantar injection of carrageenan in rats caused hyperalgesia and increased MnSOD nitration in the spinal cord, and M40403, the SOD analog, decreased hyperalgesia and MnSOD nitration. Schwartz et al. [26] measured mitochondrial superoxide of the spinal dorsal horn in the inflammatory pain model rats (capsaicin induced secondary hyperalgesia) and reported that the increased superoxide was important in the sensory process—
ing of hyperalgesia in the spinal cord and maintained by MnSOD nitration. Alternatively, Xu et al. [27] reported that NO, as a retrograde messenger, released glutamate through the presynaptic cGMP–PKG pathway and increased the neuronal NO synthase (nNOS) activity; then NO itself increased NO generation to neuropathic pain along with continued afferent stimuli. After peripheral nerve injury, release of excitatory amino acids, including glutamate, in the dorsal horn stimulates NMDA receptor; then superoxide and NO are produced by activation of enzymatic cascades through NMDA receptor. MnSOD nitration by peroxinitrite, reactants of superoxide and NO, maintain high level of superoxide, then spinal cord hyper-sensitivity and central sensitization mediated by NMDA are increased [8,28].

Physiologically, spinal cord central sensitization is defined as the increased reactivity of the spinal dorsal horn to the peripheral nociceptor stimuli [29], and induction of the spinal cord central sensitization is well known to be related with NMDA receptor activity. The NMDA receptor is a complex, and five NMDA receptor subtypes have previously been categorized. Among them, NMDA receptor subtype 1 is the subtype that constitutes functional receptor channel complex and plays the original function of the NMDA receptor. The NMDA receptor is activated by phosphorylation of NMDA receptor subtype 1 [30,31]. In spinothalamic tract of the inflammatory pain model, pNR1 is increased by the intradermal injection of capsaicin [9]. In the inflammatory pain model, injection of NMDA induced by formalin increases pain behavior, and the NMDA receptor antagonist decreases hyperalgesia [10]. Gao et al. [8,11] reported that pNR1 immunoreactive neurons increased in the spinal dorsal horn of rats with nerve injury, and the decrease of pNR1 immunoreactive neurons in the spinal dorsal horn is consistent with the decrease of hyperalgesia after the injection of PBN, which was the antioxidant in the neuropathic pain model and inflammatory pain model. They thus concluded that ROS is involved in the central sensitization through NMDA receptor activation.

In this study, the result that pNR1 was decreased by blocking the superoxide mediated by XO, as well as the superoxide and NO (the precursors of peroxynitrite), showed that ROS is involved in the central sensitization mechanism related with the NMDA receptor in this IR injury model, as in the previous reports based on the inflammatory pain model and neuropathic pain model [8–11], and central sensitization that contributes to continued neuropathic pain, such as mechanical allodynia, can be reduced by blocking superoxide and NO. However, NO is the type of molecule that can have dual effects depending on its concentration, NOS isofrom, and redox balance, etc [32,33]. As contrasting research results show that NO is the molecule acting on the development of neuropathic pain, NO has been reported to be involved in analgesia. With respect to this, there are reports that the L-arginine–NO pathway was involved in peripheral and central analgesia [34]. NO reduced hyperalgesia by carrageenan, and NO donor, such as nitroglycerine, reduced hyperalgesia [34,35]. In addition, the L-arginine–NO–cGMP pathway was reported to be involved with analgesia of morphine, clonidine, codeine, ketamine, and gabapentin, etc [34–41]. Furthermore, Xanthos et al. [42] reported that the NOS inhibitor and NO donor injected on the second day after reperfusion in the CPIP model relieved vasoconstriction and ischemia, and thus, reduced the pain. Therefore, in the post-IR injury animal pain model of this study, blocking NO, which is the precursor of peroxynitrite, can contribute to pain development by reducing peripheral and central sensitization and/or cancel the vasoconstriction and ischemia-relieving effect of NO through an alpha receptor. In particular, blocking a superoxide was more effective than blocking NO in reducing the expression of mechanical allodynia and central sensitization, which is assumed to be the possible action of NO which has such dual effects.

Of the CRPS-I patients, 10% showed mirror image pain, which is diffused to other limbs that are not injured [43], and allodynia and hyperalgesia were also found in a contralateral part in the CPIP model [2,3,23]. Mirror image pain is found not only in the CPIP model, but also in the neuropathic pain model and inflammatory pain model, and such theories as central mechanism and humoral mechanisms have been postulated. One suggested opinion is that activation of a glial cell in the spinal cord and the discharge of cytokine may cause the distant or mirror image pain [44,45], and Gordh and Sharma reported that structural change was observed in the contralateral spinal cord two weeks after the nerve injury and continued for eight weeks [46]. Since sensory response in the peripheral afferent nerve is not directly projected to the contralateral spinal dorsal horn [47], the contralateral sensitization in the spinal cord is assumed to be caused by commissural inter-
neurons [48,49]. In the recent study of Kwak et al. [50], the mirror image pain in the CPIP model was reportedly due to central sensitization related to the activation of the NMDA receptor; and through this study, the mechanical allodynia by such contralateral central sensitization was confirmed to be caused by ROS.

The two possibilities that must be considered are that the ROS scavenger, which was intraperitoneally injected before and after the IR injury, when mechanical allodynia was generated, may have reduced the afferent stimuli that cause central sensitization and thus central sensitization in spinal cord, or reduced sensitization of the spinal cord through direct blocking of superoxide and NO in the spinal dorsal horn cell. However, the exact part of the action could not be determined. Thus, various approaches, including intrathecal drug injection, should be used in the study to clarify the exact action parts of the pain mechanism where ROS acts in the post–IR injury animal pain model.

In conclusion, superoxide by xanthine oxidase, and superoxide and NO, which are the precursors of peroxynitrite, are assumed to be involved in central sensitization related to NMDA receptor phosphorylation in the CPIP model and contribute in causing and maintaining mechanical allodynia.

These results suggest the possibility of using ROS scavengers, such as SOD and L–NAME blocking superoxide and NO, which are the precursors of allopurinol and peroxynitrite, as effective therapeutics for patients of chronic pain related to ischemic injury.

REFERENCES

1. Jelling W, Baron R. Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res 2002; 12: 150–64.
2. Coderre TJ, Xanthos DN, Francis L, Bennett GJ. Chronic post–ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I: reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and repertusion in the rat. Pain 2004; 112: 94–105.
3. Kwak KH, Han CG, Lee SH, Jeon Y, Park SS, Kim SO, et al. Reactive oxygen species in rats with chronic post–ischemia pain. Acta Anaesthesiol Scand 2009; 53: 648–56.
4. Kim HK, Park SK, Zhou JL, Taglialetela G, Chung K, Coggshall RE, et al. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004; 111: 116–24.
5. Hacimutuglu A, Handy CR, Goettl VM, Lin CG, Dane S, Stephens RL Jr. Antioxidants attenuate multiple phases of formalin induced nociceptive response in mice. Behav Brain Res 2006; 173: 211–6.
6. Guedes RP, Bosco LD, Teixeira CM, Araújo AS, Lopes S, Betiô-Klein A, et al. Neurogenic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 2006; 31: 603–9.
7. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 2006; 391: 108–11.
8. Gao X, Kim HK, Chung JM, Chung K. Reactive oxygen species (ROS) are involved in enhancement of NMDA–receptor phosphorylation in animal models of pain. Pain 2007; 131: 262–71.
9. Zou X, Lin Q, Willis WD. Enhanced phosphorylation of NMDA receptor 1 subunits in spinal cord dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. J Neurosci 2000; 20: 6989–97.
10. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin–induced tissue injury. J Neurosci 1992; 12: 3665–70.
11. Gao X, Kim HK, Chung JM, Chung K. Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 2005; 116: 62–72.
12. Tripatha P, Patel NS, Webb A, Rathod K, Lecomte FM, Mazzon E, et al. Nitrite–derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol 2007; 18: 570–80.
13. Radovic M, Miloradovic Z, Popovic T, Mihailovic-Stanojevic N, Jovovic D, Tomovic M, et al. Allopurinol and enalapril failed to conserve urinary NOx and sodium in ischemic acute renal failure in spontaneously hypertensive rats. Am J Nephrol 2006; 26: 398–99.
14. Lee WY, Lee SM. Synergistic protective effect of ischemic preconditioning and allopurinol on Ischemia/reperfusion injury in rat liver. Biochem Biophys Res Commun 2006; 348: 1087–93.
15. Nemeth N, Lesznyak T, Szokoly M, Furka I, Miko I. Allopurinol prevents erythrocyte deformability impairing but not the hematological alterations after limb ischemia reperfusion in rats. J Invest Surg 2006; 19: 47–56.
16. Albuquerque RG, Rangelow NA, Malaengoni MA. Allopurinol protects enterocytes from hypoxia–induced apoptosis in vivo. J Trauma 2002; 53: 415–20.
17. Levy D, Zochodne DW. Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci 1998; 10: 1846–55.
18. Caban A, Oczkowicz G, Abdel-Samad O, Cierpka L.
Influence of ischemic preconditioning and nitric oxide on microcirculation and the degree of rat liver injury in the model of ischemia and reperfusion. Transplant Proc 2006; 38: 196–8.

19. Hallward B, Gutteridge JC. Free radicals in biology and medicine. 4th ed. New York, Oxford University Press, 2007, p 22.

20. Salvemini D, Riley DP, Lennon PJ, Wang ZQ, Currie MG, Macarthur H, et al. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin–induced intestinal damage. Br J Pharmacol 1999; 127: 685–92.

21. Xia ZF, Holyoak M, Barrow RE, He F, Muller MJ, Herndon DN. Superoxide dismutase and leupeptin prevent delayed reperfusion injury in the rat small intestine during burn shock. J Burn Care Rehabil 1995; 16: 111–7.

22. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia–reoxygenation injury. Am J Physiol Cell Physiol 2002; 282: C227–41.

23. Kim KW, Ha MJ, Jung KY, Kwak KH, Park SS, Lim DG. Reactive oxygen species and N-methyl-D-aspartate receptor–mediated central sensitization in hindlimb ischemia/reperfusion injury–induced neuropathic pain rats. Korean J Anesthesiol 2009; 56: 186–94.

24. Khalil Z, Khodr B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Radic Biol Med 2001; 31: 430–9.

25. Wang ZQ, Porreca F, Cuzzocrea S, Lightbott R, Maesini E, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 2004; 309: 869–78.

26. Schwartz ES, Kim HY, Wang J, Lee I, Klaun E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 2009; 29: 159–68.

27. Xu L, Mabuchi T, Katano T, Matsumura S, Okuda-Ashitaka E, Sakimura K, et al. Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Ann N Y Acad Sci 1993; 707: 153–64.

28. Muscoli C, Molace V, Wheatley J, Maesini E, Ndengele M, Wang ZQ, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate–mediated hyperalgesia. Pain 2004; 111: 96–103.

29. Woll CJ. Evidence for a central component of post–injury pain hypersensitivity. Nature 1983; 306: 866–8.

30. Maey M, Nakajima Y, Moriyoshi K, Ishii T, Akazawa C, Nakanishi S. Molecular characterization of NMDA and metabotropic glutamate receptors. Ann N Y Acad Sci 1993; 707: 153–64.

31. Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995; 34: 1219–37.

32. Guix FX, Uribeosalg L, Coma M, Muñoz FJ. Physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76: 126–52.

33. Zhang XC, Zhang YQ, Zhao ZQ. Different roles of two nitric oxide activated pathways in spinal long–term potentiation of C–fiber–evoked field potentials. Neuropharmacology 2006; 50: 748–54.

34. Duarte ID, dos Santos IR, Lorenzetti BB, Ferreira SH. Analgesia by direct antagonism of nociceptor sensitization involves the arginine–nitric oxide cGMP pathway. Eur J Pharmacol 1992; 217: 225–7.

35. Ferreira SH, Lorenzetti BB, Facioi LH. Blockade of hyperalgesia and neurogenic edema by topical application of nitroglycerin. Eur J Pharmacol 1992; 217: 207–9.

36. Bulutcu F, Dogru A, Güc MO. The involvement of nitric oxide in the analgesic effects of ketamine. Life Sci 2002; 71: 841–53.

37. Granados–Soto V, Rufino MO, Gomes Lopes LD, Ferreira SH. Evidence for the involvement of the nitric oxide–cGMP pathway in the antinociception of morphine in the formalin test. Eur J Pharmacol 1997; 340: 177–80.

38. Mixcoatl–Zecua A, Flores–Murrieta FJ, Granados–Soto V. The nitric oxide–cyclic GMP–protein kinase G–K+ channel pathway participates in the antialdolnic effect of spinal galabapentin. Eur J Pharmacol 2006; 531: 87–95.

39. Ortiz MI, Castro–Olguin J, Peña–Samaniego N, Castaño–Hernández G. Probable activation of the opioid receptor–nitric oxide–cyclic GMP–K+ channels pathway by codeine. Pharmacol Biochem Behav 2005; 82: 695–703.

40. Ortiz MI, Granados–Soto V, Castaño–Hernández G. The NO–cGMP–K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin, Pharmacol Biochem Behav 2003; 76: 187–95.

41. de Moura RS, Rios AA, Santos EJ, Nascimento AB, de Castro Resende A, Neto ML, et al. Role of the NO–cGMP pathway in the systemic antinociceptive effect of clonidine in rats and mice. Pharmacol Biochem Behav 2004; 78: 247–53.

42. Xanthos DN, Bennett GJ, Codere TJ. Norepinephrine–induced nociception and vasoconstrictor hypersensitivity in rats with chronic post–ischemia pain. Pain 2008; 137: 640–51.

43. Kim YC. Complex regional pain syndrome. Korean J Pain 2004; 17(Suppl): 104–8.

44. Milligan ED, Twining C, Biedenkapp J, O’Connor K, Poole S, et al. Spinal glia and proinflammatory cytokines mediate mirror–image neuropathic pain in rats. J Neurosci 2003; 23: 1026–40.

45. Twining CM, Stoane EM, Milligan ED, Chacur M, Martin D, Poole S, et al. Peri–sciatric proinflammatory cytokines, reactive oxygen species, and complement induce mirror–image neuropathic pain in rats. Pain 2004; 110: 299–309.

46. Gorod T, Sharma HS. Chronic spinal nerve ligation induces microvascular permeability disturbances, astrocytic reaction,
and structural changes in the rat spinal cord, Acta Neurochir Suppl 2006; 96: 335–40.
47. Light AR, Perl ER. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers, J Comp Neurol 1979; 186: 117–31.
48. Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci 1999; 22: 122–7.
49. Donaldson LF. Unilateral arthritis: contralateral effects, Trends Neurosci 1999; 22: 495–6.
50. Kwak KH, Jung KY, Choi JY, Ryu T, Yeo JS, Park SS, et al. Contralateral allodynia and central change in the chronic post–ischemic pain model rats, Korean J Anesthesiol 2009; 56: 419–24.