Biochemical tests and identification of potential indigenous bacteria from nickel post-mining land in Pomalaa

Syahri Y F*1, Baharuddin2, Fachruddin3, A. Yani2

1Department of Agrotechnology, Faculty of Agriculture, Universitas Sembilanbelas November Kolaka, Southeast Sulawesi, Indonesia
2Biotechnology Research and Development Center, Hasanuddin University, Makassar, Indonesia
3Department of Biology, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, Indonesia

*E-mail: yolandafitriasyahri@gmail.com

Abstract. The main problem in the nickel post-mining land in Pomalaa is the toxicity of nickel and chromium. The results of the analysis of soil samples showed that nickel levels reached 11103.74 mg/kg, and chromium reached 4030.17 mg/kg. The toxicity of nickel and chromium can cause the degradation of soil fertility. Bacteria are biological agents that are environmentally friendly, which can be used to reduce heavy metal toxicity and increase soil fertility on post-mining land. This study aims to examine biochemically six indigenous bacteria resistant to 10 ppm NiCl₂ and four indigenous bacteria resistant to 10 ppm CrCl₂ and identification. Based on the results of biochemical tests known indigenous bacteria from the genus Bacillus sp. is gram-positive bacteria that do not have the catalase enzyme, do not have the ability to use carbohydrates and produce endospores in their life cycle while indigenous bacteria from the genus Clostridium sp. is a gram-positive bacteria which in part has the enzyme catalase, all of which have the ability to use carbohydrates and only some of them produce endospores.

1. Introduction

Pomalaa is a nickel producing sub-district in Kolaka Regency, Southeast Sulawesi, Indonesia. The management of nickel post-mining land in Pomalaa is revegetation, various types of plants are planted in post-mining land, but the revegetation effort is not enough to restore soil fertility. The results of the nutrient analysis of plants on revegetated land showed deficiencies of K, Ca, Fe, Cu, Mn [1]. The results of the analysis of heavy metals are known to occur in the toxicity of nickel (Ni) and Chromium (Cr) [1]. The toxicity limit for plants for nickel is 100 ppm, and chromium is 20 ppm [2]. The limit of nickel metal content in the soil, water, and the human body is 4-80 ppm [3]. Nickel and chromium are included in heavy metals whose availability in high concentrations of soil can be toxic so they can degrade soil fertility and inhibit plant growth. High concentrations of heavy metals will inhibit growth, change morphology, and interfere with the metabolism of organisms invitro [4].

Indigenous bacteria are bacteria isolated from their habitat and then cultured in vitro. One effort to reduce heavy metal toxicity and increase soil fertility on post-mining land is by utilizing indigenous bacteria in the mine. Bacteria in site habitats contaminated with heavy metals develop several mechanisms of tolerance to heavy metals, most of the mechanisms of microbial tolerance to metals are...
by metal efflux outside the cell [5]. Bacteria isolated from an environment contaminated with heavy metals have resistance to heavy metals around them [6]. The use of bacteria to degrade polluted soil has been widely studied. Flavobacterium, Pseudomonas, and Azoarcus sp. carry out bioremediation of total petroleum hydrocarbons [7]. Bacillus sp. is capable of degrading toluene-contaminated soil [8]. Bacillus bacteria have a good ability to degrade heavy metal metals such as Fe, Zn, Ni, Cu, and Pb [9].

Biochemical tests and identification were carried out to characterize pure culture from isolation through its morphological and physiological properties. This study aims to examine biochemically six indigenous bacterial isolates that have been previously tested have the ability to grow and develop well in media added 10 ppm NiCl\textsubscript{2}, namely isolates R, Q, TLB1, TLB2, II, III and four indigenous bacterial isolates capable of growing and developing well on media added 10 ppm CrCl\textsubscript{2}, namely isolates G, TLB3, TLB4, and TTC. The bacterial isolate tested was a collection of Biotechnology Research and Development Center, Hasanuddin University, Makassar.

The results of biochemical tests can be a recommendation in future research to obtain potential bacteria as biological agents that can be used to reduce metal toxicity on post-mining land and increase soil fertility. This research is expected to add the treasure of science, especially in the field of environmental biotechnology, where the use of indigenous bacteria can be one of the technological choices that can restore contaminated soil conditions through biological processes that are economically and functionally able to compete with other remediation technologies.

2. Methods

This study began with an analysis of soil samples where indigenous bacteria were isolated. Furthermore, the research is divided into two stages. The first stage is a gram test (3% KOH), and a biochemical characteristic test. Biochemical characteristic tests include catalase (3% H\textsubscript{2}O\textsubscript{2}), Oxidation-Fermentation (O-F) test, and endospores test. The second stage is morphological observation and identification.

2.1. Analysis of soil at the sampling location

Analysis of soil samples was carried out to obtain the latest data on the levels of nickel and chromium in the post-mining land where indigenous bacteria were isolated. Sampling was taken at depths of 0-30 cm, 30-60 cm and 60-90 cm at eleven mining locations, namely locations G, R, S, Q, TLB, TTC, TLE, Virgin, I, II, III. The soil sample is then composite. Furthermore, soil samples were analyzed at the Integrated Chemistry Laboratory of the Bogor Agricultural University. Analysis of soil samples using the United States Environment Protection Agency (USEPA) method: 7000B (1996).

2.2. Gram test (KOH 3%)

Gram test method with 3% KOH [10]. The gram test is carried out by taking one bacterial isolate and then mixing it with two drops of 3% KOH solution on top of the object glass, stirring circularly for 5-10 seconds with one needle, observed the formation of mucus. If the mucus is formed on top of the glass, the object indicates the isolate is a gram-negative bacterium, if it is not slimy it indicates gram-positive bacteria.

2.3. Catalase test (H\textsubscript{2}O\textsubscript{2} 3%)

Catalase test method with (3% H\textsubscript{2}O\textsubscript{2}) [11]. The H\textsubscript{2}O\textsubscript{2} test was carried out by piping 100µ of 30% H\textsubscript{2}O\textsubscript{2} in the object's glass, taken by one bacterial isolate and then streaked on the object's glass, observing the formation of bubbles. If there are bubbles indicating positive catalase bacteria if there are no bubbles, including negative catalase bacteria [12].

2.4. Oxidation - Fermentation test (O-F)

The oxidation-fermentation test is carried out to determine the ability of bacteria to metabolize. Oxidation-Fermentation (O-F) test uses Hugh Leifson's media [13]. Hugh Leifson's media which was made into the test tube as much as 9 ml, the media was then autoclaved, cooled, 10% sterile glucose
was added. Obtained by one bacterial isolate and then inoculated into the media, one bacterial isolate was inoculated on two tubes; fermentative bacteria will produce an acidic reaction on the closed or no tubes. Whereas oxidative bacteria will only produce acidic reactions in tubes that are not closed and a little acid formation in the closed tube. The media was incubated for two days and then observed the color change. The acid produced from fermentation will reduce the pH of the media so that the bromothymol blue indicator becomes yellow [14].

2.5. Endospores test
Endospores test is done by coloring. Endospores test is carried out to determine the ability of bacteria to produce endospores. The fixed preparations are placed on a water bath then covered with filter paper. Green malachite drops are dropped and left for 5 minutes. The preparation is then washed with running water. Then re-color with safranin then leave for 60 seconds. The preparation was washed and then observed under a microscope. Positive test if the endospores are green while vegetative cells are red [15].

2.6. Identification
Identification was carried out to determine the genus of indigenous bacterial isolates tested. Identification is done through characterization observations of bacterial morphology including pigmentation, colony form, colony margin, and elevation.

3. Results and Discussions

3.1. Analysis of soil at the sampling location
Soil analysis was carried out using the USEPA method: 7000B (1996). Analysis of soil samples at the eleven sampling locations showed the highest nickel content reached 11103.74 mg/kg in sample III and the highest chromium content reached 4030.17 mg/kg in sample S. Based on the results of this analysis it can be concluded that nickel and chromium levels in nickel post-mining land in Pomalaa far above the threshold. Nickel and chromium are forms of heavy metals whose solubility in the soil can be toxic to plants and the environment. The results of the analysis of soil samples from the nickel post-mining land in Pomalaa are presented in Table 1.

Sample	Laboratory No.	Nickel, Ni Result**	Chromium, Cr Unit	Method
G	BM/VII/17/1638	10783.85 mg/Kg	USEPA: 7000B (1996)	
R	BM/VII/17/1636	2844.59 mg/Kg	USEPA: 7000B (1996)	
S	BM/VII/17/1637	5334.88 mg/Kg	USEPA: 7000B (1996)	
Q	BM/VII/17/1640	5497.92 mg/Kg	USEPA: 7000B (1996)	
TLB	BM/VII/17/1641	6186.43 mg/Kg	USEPA: 7000B (1996)	
TTC	BM/VII/17/1642	9130.32 mg/Kg	USEPA: 7000B (1996)	
TLE	BM/VII/17/1643	9606.37 mg/Kg	USEPA: 7000B (1996)	
virgin	BM/VII/17/1644	8986.82 mg/Kg	USEPA: 7000B (1996)	
I	BM/VII/17/1645	5613.10 mg/Kg	USEPA: 7000B (1996)	
II	BM/VII/17/1646	6402.34 mg/Kg	USEPA: 7000B (1996)	
III	BM/VII/17/1647	11103.74 mg/Kg	USEPA: 7000B (1996)	

*) Outside the scope of accreditation
**) Dry Basis
3.2. Gram test (KOH 3%) and catalase test (H₂O₂ 3%)
Gram tests are used to distinguish gram-positive and gram-negative bacteria. The ten indigenous bacterial isolates that were tested, all of them were gram-positive (+) bacteria which were characterized by the absence of mucus formed on the object of observation. Catalase test using 3% hydrogen peroxide (H₂O₂) was carried out to determine the presence or absence of the catalase enzyme in bacteria. Catalase is an enzyme produced by living organisms, including bacteria to catalyze H₂O₂ into H₂O and O₂. Hydrogen peroxide is formed during aerobic metabolism, so microorganisms that grow in an aerobic environment can emit these toxic substances. The catalytic test uses 3% H₂O₂ because H₂O₂ is one of the components produced by bacteria during the aerobic respiration process. Gram test results and catalase tests on ten indigenous bacterial isolates varied results. Gram test and catalase test on ten indigenous bacterial isolates are presented in Table 2.

Table 2. Gram test and catalase test on ten indigenous bacterial isolates

Isolates	Gram test (KOH 3%)	Catalase test (H₂O₂ 3%)		
	Observation	Results	Observation	Results
R	mucus is not formed	+	there are bubbles	+
Q	mucus is not formed	+	there are no bubbles	-
TLB1	mucus is not formed	+	there are no bubbles	-
TLB2	mucus is not formed	+	there are no bubbles	-
II	mucus is not formed	+	there are no bubbles	-
III	mucus is not formed	+	there are bubbles	+
G	mucus is not formed	+	there are no bubbles	-
TLB3	mucus is not formed	+	there are no bubbles	-
TLB4	mucus is not formed	+	there are bubbles	+
TTC	mucus is not formed	+	there are bubbles	+

3.3. Oxidation - Fermentation (O-F) test and endospores test
Oxidation-Fermentation (O-F) are two important processes in the metabolism of microorganisms. O-F test is carried out to determine the level of ability of microorganisms to use carbohydrates while endospores are carried out to distinguish bacterial spores from vegetative cells. *Clostridium*, *Desulfovomaculatum*, and *Bacillus* are bacteria that produce endospores in their life cycle. Endospore is a dormant form of vegetative cells, so its metabolism is inactive and is able to withstand environmental stresses such as heat, dryness, cold, radiation and pollutants. The results of O-F and endospores tests on ten indigenous bacterial isolates showed mixed results. The O-F and endospores tests on ten indigenous bacterial isolates are presented in Table 3.

Table 3. Oxidation – Fermentation (O-F) test and endospores test on ten indigenous bacterial isolates

Isolates	O-F test	Endospores test
3.4. Identification

Identification was carried out to determine the genus of indigenous bacterial isolates tested. Based on the results of identification of ten indigenous bacterial isolates which tested were obtained two genera of bacteria, namely *Bacillus* sp. and *Clostridium* sp. The identification results of the ten indigenous bacterial isolates are presented in Table 4.

| Table 4. The identification results of ten indigenous bacterial isolates |
|----------------------------------|---------------|----------------|--------------|-----------------|-----------------------------|
Isolates	Pigmentation	Colony form	Colony margin	Elevation	Identification
R	brownish yellow	irregular	undulate	raised	*Clostridium* sp
Q	white cloudy	irregular	undulate	raised	*Clostridium* sp
TLB1	white	irregular	undulate	raised	*Bacillus* sp
TLB2	brownish white	irregular	undulate	raised	*Clostridium* sp
II	white cloudy	irregular	undulate	raised	*Clostridium* sp
III	white	rhizoid	filamentous	raised	*Clostridium* sp
G	brownish white	irregular	undulate	raised	*Clostridium* sp
TLB3	white cloudy	irregular	entire	raised	*Clostridium* sp
TLB4	white cloudy	irregular	undulate	raised	*Clostridium* sp
The ten isolates of selected bacteria identified, nine bacterial isolates were identified as *Clostridium* sp. and one bacterial isolate as *Bacillus* sp. Microbes that are tolerant of the environment contaminated with heavy metals potentially become biological agents for heavy metal accumulation. This bacterium can be used to overcome environmental pollution caused by heavy metals. Bacteria, molds, algae, and yeast can accumulate heavy metals Au, Ag, Cu, Cd, Fe, Zn and Ni [16]. Pseudomonas, Thiobacillus, Bacillus, and N2 fixing bacteria are reported to be able to accumulate heavy metals [17]. Also, bacteria are soil microorganisms that play an important part in the process of reforming organic matter and procuring minerals for high-level plant growth processes [18]. Bacteria on the soil also play a role as producers of additives. Soil microbes are capable of producing additives such as antibiotics, biopesticides, microbial toxins, growth regulators (ZPT), and enzymes [19].

A bacillus is a group of bacteria that can act as phosphate solvents in the soil. Clostridium is a group of bacteria that can bind free nitrogen from the air. Based on the results of the research known indigenous bacteria from the genus *Bacillus* sp. is gram-positive (+) bacteria that do not have the catalase enzyme, do not have the ability to use carbohydrates and produce endospores in their life cycle while indigenous bacteria from the genus *Clostridium* sp. is a gram-positive (+) bacteria which in part has the enzyme catalase, all of which have the ability to use carbohydrates and only some of them produce endospores. This *Bacillus* sp. and *Clostridium* sp. will be further tested for its capability to reduce nickel and chromium metals with spectrophotometric analysis method and their ability to produce auxin and gibberellin hormones, phosphate dissolution, and nitrogen fixation. Field studies and the making of bioremediator formulations are research sustainability plans so that these indigenous bacteria can be used as biological agents to reduce metal toxicity on post-mining land and increase soil fertility.

4. Conclusion
The results of this study obtained two types of indigenous bacteria from the genus *Bacillus* sp. and *Clostridium* sp., which have varied characterizations of biochemical tests. These bacteria are potential to be further tested so this indigenous bacteria can be used as biological agents to reduce metal toxicity on post-mining land and to increase soil fertility.

5. References
[1] Widiatmaka, Suwarno, Kusmaryanti, N. 2010. Karakteristik Pedologi dan Pengelolaan Revegetasi Lahan Bekas Tambang Nickel; Studi Kasus Lahan Bekas Tambang Nikel Pomalaa, Sulawesi Tenggara. *Journal Tanah Link*. 12 (2) Oktober :1-10
[2] Charman, P.E.V. & Murphy, B.W. 1991. *Soils, their Properties, and Management*. A Soil Conservation Handbook for New South Wales. University Press, Sidney
[3] U.S. Department of Health and Human Services. 2005. Toxicological Profile for Nickle, Public Health Service, Agency for Toxic Substances and Disease Registry. Atlanta. Available at www.atrdr.cdc.gov/toxprofiles/tp15.pdf
[4] Blaudez, D., Botton, B. & Chalot, M. 2000. Effects of heavy metals on nitrogen uptake by mycorrhizal birch seedlings. *FEMS Microbiol. Ecol.* 33: 61-67
[5] Spain, A. 2003. Implication of microbial heavy metal tolerance in the environment. Review in Undergraduate Research. 2: 1-6
[6] Chojnacka, K. 2010. Biosorption dan Bioaccumulation, the prospect of partial application. *Environment International*, 36: 299-307
[7] Kitts, L.C. & Kaplan, W.C. 2004. Bacterial Succession in a Petroleum Land Treatment. *Appl. Environ. Microb*. 70 (3):1777-1786
[8] Komar, M.S. & Irianto. 2000. Pengaruh Penambahan Kultur Bacillus UK 41 dan UK 44 Terhadap Biodegradasi Fenol pada Proses Bioremediasi Tanah Tercemar Minyak Bumi.
Rahayu, S. P., Sumingkrat, Siti, N. T., Siti, A., Trinity, A., Rofienda & Deni. 2006. Penelitian Bioremediation (Ex-situ) Tanah Terkontaminasi Limbah B3 yang mengandung Logam Berat. *Bulletin Penelitian*. 28 (1): 8-17

Abegaz, K. 2007. Isolation, characterization, and identification of lactic acid bacteria involved in traditional fermentation of border Ethiopian cereal beverages. *African Journal of Biotechnology*. 6 (12): 1469-1478

Jay, J. M. 1992. *Modern Food Microbiology*. 4th edition. New York: Chapman and Hall

Hadioetomo. 1990. *Mikrobiologi Dasar Dalam Praktek*. PT. Gramedia. Jakarta

MacFaddin, J.F. 1985. *Media for Isolation Cultivation-Identification Maintenance of Medical Bacteria*. Williams & Wilkins, Baltimore

Winn, W. C. & Koneman, E. W. 2006. *Koneman’s Color Atlas and Textbook of Diagnostic Microbiology*. Lippincott Williams & Wilkins, Philadelphia, United States

Harley, J. P. 2005. *Laboratory Exercises in Microbiology*. Sixth Edition. New York: The McGraw-Hill Companies, Inc.

Gadd, G.M. & White, C. 1993. Microbial treatment of metal pollution working biotechnology. *Trends in Biotechnology*. 3 (2): 353-359

Mullen, M.D., Wolf, D.C., Ferris, F.G., Beveridge, J., Fleming, C.A & Bailey, G.W. 1989. Bacterial sorption of heavy metal. *Environ. Microbial*. 55: 3143-3149

Abercrombie, M., Hickman, M., Jhonsoan, M.L. & Thain, M. 1993. *Kamus lengkap Biologi*. Penerjemah: T. Siti Sutarni dan Nawangsari Sugiri. Jakarta. Erlangga

Hanafiah, A.K. 2010. *Dasar-Dasar Ilmu Tanah*. PT. Grafindo Persada. Jakarta. Rajawali Press