A specialization of definitions in common knowledge logic

Aurimas Paulius Girčys, Regimantas Pliuškevičius

Institute of Mathematics and Informatics, Vilnius University
Akademijos 4, LT-08663 Vilnius
E-mail: aurimas.gircys@gmail.com; regimantas.pliuskevicius@mii.vu.lt

Abstract. It is known that one of main aims of specializations of derivations in non-classical logics is the various tools which allow us to simplify the searching of termination of derivations. The traditional techniques used to ensure termination of derivations in various non-classical logics are based on loop-checking. In this paper the reflexive common knowledge logic based on modal logic K_2 is considered. For considered logic a sequent calculus with specialized non-logical (loop-type) axioms is presented.

Keywords: sequent calculus, common knowledge logic, termination.

1 Introduction

The common knowledge logics are important class of non-classical logics and play a significant role in several areas of computer science, artificial intelligence, game theory, economics and etc.

Common knowledge logics are based on multi-modal logics extended with common knowledge operator. In this paper, a reflexive common knowledge logic (RCKL in short) based on multi-modal logic K_2 and reflexive common knowledge operator [3] is considered.

Common knowledge operator satisfies some induction like axioms. In derivation this induction-like tool is realized using loop-type axioms. Determination of these loop-type axioms involves creating a new “good loop” in contrast to “bad loops” and the new loop checking along with ordinary non-induction-type loop checking. Based on history method a method of determination of “good loops” for common knowledge logic is described in [1].

In this paper for reflexive common knowledge logic (based on multi-modal logic K_2), a sequent calculus with specialized non-logical (loop-type) axioms is presented. The specialization is achieved using some splitting rules.

2 Initial calculi for considered logic

The language of considered RCKL contains:

1. A set of propositional symbols $P_1, P_2, \ldots, Q_1, Q_2, \ldots$;
2. A finite set of agent constants i_1, i_2, \ldots, i_k ($I_i, i \in \{1, \ldots, n\}$, $1 \leq l \leq k$ for simplicity we assume than $n = 2$);
(3) Multi-agent knowledge operator K_i, where $i \in \{1, \ldots, n\}$ is an agent constant;

(4) Reflexive common knowledge operator C;

(5) Logical operators $\supset, \land, \lor, \lnot$.

Formulas of RCKL are defined as follows: every propositional symbol is a formula; if A, B are formulas then $A \supset B$, $A \land B$, $A \lor B$, $\lnot(A)$ are formulas; if i is an agent constant, A is a formula, then $K_i(A)$ is a formula; if A is a formula, then $C(A)$ is a formula. The formula $K_i(A)$ means “Agent i knows A” $(l \in \{1, 2\})$. The expression $E(A)$ means “every agent knows A” and is used as abbreviation of formula $K_1(A) \land K_2(A)$. The formula $C(A)$ means “A is common knowledge of all agents”. The formula $C(A)$ has the same meaning as the infinite conjunction $A \land E(A) \land E(E(A)) \land \cdots \land E^K(A) \land \cdots$ where $E^0(A) = A$. Formal semantics of the formulas $K_i(A)$ and $C(A)$ is defined as RCKL [3]. Hilbert-type calculus HRC is obtained from Hilbert-type calculus for propositional logic by adding the following postulates:

1. Infinitary calculus $G_w RC$ is obtained from classical propositional calculus (with invertible logical rules) by adding the following rules:

$$\Gamma \rightarrow A$$

$$\Pi_1, K_i \Gamma \rightarrow \Pi_2, K_i(A)(K_i)$$

where $K_i \Gamma$ is empty or consists of formulas of the shape $K_i(B)$.

$$\Gamma \rightarrow \Delta, K_i(A) \land K_2(A)(\rightarrow E),$$

$$\rightarrow E, \Gamma \rightarrow \Delta, K_i(A) \rightarrow \Delta, E(A),$$

$$\rightarrow E, \Gamma \rightarrow \Delta, K_i(A),$$

$$\rightarrow E, \Gamma \rightarrow \Delta, E(A),$$

$$\Gamma \rightarrow \Delta, A, E(C(A)),$$

$$\Gamma \rightarrow \Delta, C(A),$$
A specialization of definitions in common knowledge logic

\[
\begin{align*}
\Gamma \to \Delta, A; & \Gamma \to A, E(A); \ldots; \Gamma \to \Delta; E^k(A) \ldots (\to \negw), \\
\end{align*}
\]

where \(E^k(A) = E^{k-1}(E(A)) \) and \(E^0(A) = A \).

Analogously as in [2] one can prove that \(G_wRC \) is sound and complete.

2. Loop-type calculus \(G_LRC \) is obtained from the calculus \(G_wRC \) by replacing the infinity rule \((\rightarrow \Box w)\) by the following rule

\[
\begin{align*}
\Gamma \to \Delta, A; & \Gamma \to \Delta, E(C(A)), \\
\end{align*}
\]

and adding loop-type axioms as follows: a sequent \(S \) is a loop-type axiom if \(S \) is above a sequent \(S' \) and on the same branch of a derivation, such that \(S' \) can be obtained from \(S \) using structural rules of weakening and contraction and there is the right premise of the rule \((\rightarrow C)\) between \(S \) and \(S' \).

Analogously as in [1] one can prove that \(G_LRC \) is sound and complete. Therefore the calculi \(G_wRC \) and \(G_LRC \) are equivalent.

Let us introduce a canonical form of sequents. A sequent \(S \) is a primary sequent, if \(S \) is of the following shape \(\Sigma_1, K\Gamma_1, C\Delta_1 \to \Sigma_2, K\Gamma_2, C\Delta_2 \), where for every \(i (i \in \{1, 2\}) \) \(\Sigma_i \) is empty or consists of propositional symbols; \(K\Gamma_i \) is empty or consists of formulas of the shape \(K_l(A) (l \in \{1, 2\}) \); \(C\Delta_i \) is empty or consists of formulas of the shape \(CA \).

It is easy to see that bottom-up applying logical rules each sequent can be reduced to a set of primary sequents.

The primary sequent \(\Sigma_1, K\Gamma_1, C\Delta_1 \to \Sigma_2, K\Gamma_2, C\Delta_2 \) is a \(K \)-primary one; the primary sequent \(\Sigma_1, K\Gamma_1, C\Delta_1 \to \Sigma_2, C\Delta_2 \) is a \(C \)-primary one. The primary sequent \(S \) is a non-splittable primary one if \(S \) is either a \(K \)-primary or \(C \)-primary sequent. Otherwise, the primary sequent \(S \) is a splittable primary one.

Let \(G^S_LRC \) be a calculus obtained from the calculus \(G_LRC \) by following transformations:

1. Adding the following splitting rule

\[
\begin{align*}
\Sigma_1, K\Gamma_1, C\Delta_1 \to \Sigma_2, K\Gamma_2, C\Delta_2 (Sp) \\
\end{align*}
\]

where the conclusion of the rule \((Sp)\) is splittable primary sequent; \(\Sigma_1 \cap \Sigma_2 = \emptyset \) (i.e. the sequent \(\Sigma_1 \to \Sigma_2 \) is not an axiom); \(S_1 \) is \(K \)-primary sequent \(\Sigma_1, K\Gamma_1, C\Delta_1 \to \Sigma_2, K\Gamma_2; S_2 \) is \(C \)-primary sequent;

2. Replacing a loop-type axiom by specialized loop-type axiom. A specialized loop-type axiom is a loop-type axiom, which is a \(C \)-primary sequent;

3. Using that the rule \((Sp)\) is admissible in the calculus \(I \in \{G_wRC, G_LRC\} \) we can prove that the calculi \(G^S_LRC \) and \(I \in \{G_wRC, G_LRC\} \) are equivalent, therefore the calculus \(G^S_LRC \) is sound and complete.
In construction of derivation it is convenient to use the following (admissible in G^S_LRC) rule:

$$
\frac{\Gamma \rightarrow A}{\Sigma_1, \Sigma_2 \rightarrow \Sigma_1, \Sigma_2 \rightarrow E(A), \Sigma_2 (E)}
$$

where $\Sigma_1 \cap \Sigma_2 = \emptyset$.

Example 1. Let $S = P, C(P \supset E(P)) \rightarrow C(P), K_1(Q)$. Let’s construct a derivation of S in G^S_LRC. Since S is splittable primary sequent let us backward apply to S the rule (Sp) and let us try to construct a derivation of C-primary sequent. $S_1 = P_1 C(P \supset E(P)) \rightarrow C(P)$.

$$
\begin{align*}
S_1^* &= P_1 C(P \supset E(P)) \rightarrow C(P) \\
\frac{P \rightarrow P; P_1 E(P), E(C(P \supset E(P)) \rightarrow E(C(P))}{\frac{P_1 (P \supset E(P), E(C(P \supset E(P)) \rightarrow E(C(P))}{(\supset \rightarrow)}}{S_1 = P_1 C(P \supset E(P)) \rightarrow C(P)}
\end{align*}
$$

Since $S_1 = S_1^*$, S_1^* is a loop type axiom. Therefore $G^S_LRC \vdash S$.

References

[1] P. Aleate and R. Gore. Cut-free single pass tableaux for the logic of common knowledge. In *Proc. of Workshop on Agents and Deduction at Tableaux 2007*, 2007.

[2] K. Brunlez and T. Studne. Symantatic cut-elimination for common knowledge. In *Proc. of Methods for Modalities*, vol. 5, 2007.

[3] J.J.Ch. Meyer and W. von der Hoek. *Epistemie Logic for AI and Computer Science*. Cambridge University Press, Cambridge, 1995.

REZIUMĖ

Išvedimų specializacija bendrojo žinojimo logikai

A.P. Girčys, R. Pliuškevičius

Straipsnyje pateikiama ciklinių aksiomų specializacija refleksyviai bendro žinojimo logikai.

Raktiniai žodžiai: sekvencinis skaičiavimas, bendrojo žinojimo logika, ciklinės aksiomos.