Alkaloids, Nitric Oxide, and Nitrite Reductases: Evolutionary Coupling as Key Regulators of Cellular Bioenergetics with Special Relevance to the Human Microbiome

George B. Stefano
Richard M. Kream

Corresponding Author: George B. Stefano, e-mail: gbstefano@yahoo.com

Source of support: Departmental sources

Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of “morphinergic” signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.

MeSH Keywords: Alkaloids • Evolution, Molecular • Microbiota • Mitochondria • Morphine • Nitric Oxide • Nitrite Reductases

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/909409
Background

Pathophysiological expression of aberrant cellular and molecular events in response to prolonged excitatory processes has been functionally linked to the initiation and persistence of human sensory and metabolic disorders [1]. Within this context, the historical primacy of opium and its biologically active compounds, codeine and morphine, as medicinal agents with potent inhibitory/calming actions at the behavioral and cellular level has reinforced the importance of opiate alkaloids as frontline analgesic agents [2]. From a teleological perspective, morphine represents a relatively low molecular mass heterocyclic alkaloid that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule mediating diverse physiological responses in animal cellular systems. As an essential corollary, requisite expansion of stereo-selective signaling complexes responsive to morphine and its chemical congeners has reinforced the biological roles of opiates as potent inhibitory regulators of diverse excitatory processes in peripheral organ systems and in the CNS.

Outside the realm of pain and analgesia, it has also been established that opiate regulatory processes extend to homeostatic maintenance of basal levels of cellular and organ-specific excitation required for optimal realization of essential metabolic processes linked to efficient energy utilization [2–4]. A key aspect of “morphinergic” signaling mediated by mu opiate receptor activation is realized as a functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Amplification and biochemical diversification of opiate action via recruitment of NO signaling systems provides fine-tuned, temporally dependent, regulation of cellular micro-domains in differentially defined activation states [3,4]. Relatively recent lines of investigation have introduced an additional level of regulatory complexity into a developing model of opiate action whereby “morphinergic” stimulation of NO expression is mediated by activation of L-arginine-dependent NO synthase (NOS) and/or by enzymatic reduction of nitrite by cellular and mitochondrial nitrite reductases.

Evolution of Nitric Oxide as a Pluripotent Chemical Intermediate and Signaling Molecule

It has been previously hypothesized that the spectrum of nitrogenous chemicals found in the primordial atmosphere that includes elemental N2, ammonia, nitrogen oxides, and the short-lived free radical NO, was dynamically modified by the increasing presence of O2 generated by the evolving biosphere [5]. Consistent with the physiological demands of developing biological processes, limited abiotic generation of NO from N2 and O2 via lightning discharge [6] was superseded by multiple enzymatic pathways of nitrification and denitrification by primordial microbial systems. Interestingly, evolutionary transition of largely anaerobic to microbial-based aerobic nitrogen cycles by the late Archean period approximately 2.5 billion years ago may have preceded significant atmospheric O2 accumulation generated by Cyanobacteria before the great oxygenation event at the end of Proterozoic period [7,8].

Evolutionary development of major enzymatic components of microbial denitrification and aerobic respiration drives NO and N2O formation by nitrite reductase (NIR) and nitric oxide reductase (NOR) activities, respectively [8]. Furthermore, co-evolution of denitrification and aerobic respiratory complexes within hybrid prokaryotic respiratory chains provide strong putative evidence for the operationally-dependent amplification of the chemical diversity of NO as a pluri potent effector molecule within eukaryotic biological systems [9], including its potential role as chemico mediators of microbial symbioses with diverse eu karyotic hosts [10]. Accordingly, NOR mediating a key step in anaerobic denitrification is suggested to provide an evolutionary prototype for the development of mitochondrial cytochrome C oxidases (COXs) on based shared amino acid sequence homology [11]. The preeminen of nitrate, nitrite, and NO and as oxidizing substrates within the prokaryotic nitrogen cycle most likely facilitated evolutionary development of eukaryotic enzyme-mediated aerobic respiratory chains employing O2 reduction by heme/copper dioxygen reductases as the terminal enzymatic step [12,13].

Mechanistically, functional adaptation of NO as an important signaling molecule/chemical effector capable of reversible post-translational protein modification may be illustrated by biochemical and molecular studies of the Rrf2 family transcription factor NsrR in a wide range of bacteria following exposure to cytotoxic concentrations of NO [14–16]. Interestingly, studies of Streptomyces coelicolor NsrR (ScNsrR), a transcriptional regulator of hmpA gene expression encoding NO-detoxifying flavohemoglobin, indicate that ScNsrR evolved as a specialized regulatory protein focused on NO detoxification [14]. Selective high affinity binding of ScNsrR to receptive sequences within promoter regions of these same target genes was abolished following NO exposure via formation of reversible, iron-nitrosyl, chemical species within critically important iron-sulfur [4Fe-4S] clusters [15]. In sum, the reversible loss of high affinity binding of ScNsrR to targeted DNA sequences with subsequent elimination of transcriptional repression and selective activation of NO-responsive genes was empirically determined to be functionally dependent on the chemical integrity of critically important iron-sulfur [4Fe-4S] clusters within the primary protein sequence [15,16]. Finally, relatively recent studies have established NO as a significant epigenetic regulatory molecule via its observed effects on posttranslational modifications of...
histones, DNA methylation, and selective recruitment of regulatory microRNAs [17].

Focal Modulation of Cellular Bioenergetics within the Mitochondrial Inner Membrane by Nitric Oxide: Critical Significance of Nitrite Reductases

Requisite enhancement of eukaryotic cellular energy requirements indicates a convergence of metabolic processes within the mitochondrial matrix for optimal synthesis of ATP from ADP and inorganic phosphate via chemiosmotic H+ gradient formation and utilization. Accordingly, positive evolutionary pressure has apparently provided overwhelming existential advantages to the host eukaryotic cell by segregating this physiochemical process to the organelle’s inner membrane via coordinate expression of complexes I, III, and IV of the respiratory chain [18]. Mitochondrial rotor-stator type ATP synthases (F-ATPases) require a defined membrane potential to achieve a transductive proton-motive force across the inner mitochondrial membrane that effectively drives high efficiency ATP production [19] and recent elegant work has demonstrated an enhanced efficiency of 2.7 vs. 3.3–5 protons per synthesized ATP molecule by eukaryotic vs. prokaryotic F-ATPases, respectively [20]. Complex regulatory mechanisms based on temporally variable physiological demands are required to operationally define states of cellular excitation to titratable rates of mitochondrial ATP production. As discussed above, it appears that the fundamental chemical reactivity of NO within narrow spatial and temporal domains supported its evolutionary retrofit of from a transiently expressed intermediate substrate within prokaryotic nitrogen cycling pathways into a pluripotent chemical effector/regulator of flavonoid-, quinone-, and cytochrome-catalyzed electron transport within eukaryotic mitochondria [19].

Within this functional context, empirical studies have demonstrated that tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption [18,19,21] by engendering reversible post-translational modification of discrete subunits of complexes I, III, and IV of the respiratory chain [22]. For example, the inhibitory effects of NO on complex I activity are selectively mediated by reversible S-nitrosation of Cys39 exposed on the surface of the ND3 subunit with a relatively slow onset of greater than 60 seconds [23–25]. In contrast, the reaction of NO with Complex IV/COX proceeds with a rapid onset of milliseconds to seconds and results in a reversible blockade of a critical binuclear heme a3/CuB active site within the COX complex via formation of nitrosyl- or nitrite-heme adducts that are preferentially driven by the intra-mitochondrial redox state [23–25]. Mechanistically, reverse oxidation of heme-bound NO to nitrite within the COX binuclear heme a3/CuB active site proceeds via formation of heme-Fe(III)-O-Cu(II) complexes. COX-mediated NO oxidation provides a molecular mechanism for retention of physiologically important NO equivalents within a dynamically changeable intra-mitochondrial free nitrite pool that is critically important for maintaining cellular bioenergetics parameters during periods of severe physiological stress [26,27]. Conversely, enzymatic reduction of nitrite to NO within the reduced COX heme a3/CuB active site COX provides a significant physiological advantage during hypoxic/anoxic environmental conditions via O2 sparing that is sufficient to maintain normalized electron transport within compromised mitochondria [26].

In addition to COX, the critical role of molybdenum-dependent nitrite reductases in maintaining intra-mitochondrial NO/nitrite cycling has been established, as previously reviewed [28]. A key example is xanthine oxidoreductase (XO), a multipurpose enzyme that catalyzes the two main hydroxylation steps involved in the metabolism of purines, i.e., hypoxanthine to xanthine and xanthine to uric acid, utilizing either NAD+ or O2 [29]. Importantly, XO plays a dual role as a key cellular provider of intra-mitochondrial NO derived from nitrite stores. Furthermore, molybdenum is an essential cofactor in XO and must be contained within an enzymatically synthesized molybdopterin cofactor whose synthesis requires four distinct enzymatic activities [30]. The biological importance of molybdenum cofactor (MOCO)-dependent nitrite reductases in realized in the case of genetically determined MOCO deficiencies representing a severe autosomal recessive neonatal metabolic disease that causes seizures and death or severe brain damage [31]. It has also been established that inorganic nitrate which is converted to inorganic nitrite via the action of nitrate reductases will provide additional synergistic production of physiologically desirable intra-mitochondrial NO [32,33].

In sum, inorganic nitrite, previously thought to represent an inert metabolite of cellular nitrogen metabolism, has been established as an essential precursor to dynamic production of NO in response to physiological demands [28,34,35]. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions.

Evolution of Morphin from a Plant Alkaloid into Pluripotent Signaling Molecule: Coordinate Development of Cognate

Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating
biological activities via receptor-mediated signaling pathways or stereo-selective effects on enzymatic activities [36–39]. In many cases, the protonated nitrogen groups contained within the alkaloid structure are contributed by one or more primary amino acids incorporated as biosynthetic intermediates. Accordingly, the great diversity in alkaloid structure may be selectively realized by biosynthetic pathways employing standardized stereo-chemical reactions in conjunction with cellular reservoirs of relatively simple nitrogen-containing precursors. Based these criteria, the wealth and diversity of alkaloid structure are predictive measures of the expansive evolutionary headroom required for stereo-selective matching of related classes of these small heterocyclic compounds with receptive protein signaling complexes throughout prokaryotic and eukaryotic phyla [40–43].

Morphine, the prototype opiate alkaloid, is synthesized by Papaver somniferum as a major phytoalexin devoted to antibacterial host defense. Interestingly, the prototype catecholamine dopamine (DA) derived from the amino acid L-tyrosine serves as an essential precursor in the morphine biosynthetic pathway in Papaver and in the biosynthetic pathways of approximately 2500 chemically distinct benzylisoquinoline (B1Q) alkaloids expressed by plant orders Ranunculales, Eumagnoliids, Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae [44,45]. With this in mind, concerted scientific effort can only provide potentially validating empirical and bioinformatics data bases to provide evolutionary justification of the exponentially expanded role of morphine, outside of the restricted realm of pain and analgesia, as a pluperfect chemical regulator of diverse physiological processes involved in normative maintenance of cellular bioenergetics. Additionally, these contentions are elegantly supported by concerted empirical findings that have demonstrated 1) the presence of low, sub-analgesic concentrations, chemically authentic morphine in eukaryotic cells and organ systems, 2) the presence of a de novo biosynthetic pathway responsible for eukaryotic morphine expression, with striking similarities to the extensively characterized multi-enzyme plant pathway, and 3) the presence of a cognate 6-transmembrane helical (TMH) domain opiate receptor expressed from the µ opioid receptor (MOR) gene that is exclusively responsive to morphine alkaloid, as reviewed [46,47].

In light of the above, potential validation of the primordial role of morphine as a secreted plant alkaloid with host-defense recognition capabilities has been provided by early studies demonstrating marked inhibition of growth parameters in cultures of E. coli following administration of the morphine-related opiate alkaloid levorphanol [48–50]. Subsequently, a provocative biochemical study demonstrated that the envelope protein expressed by E. coli envY gene represents a stereospecific, saturable, and high affinity morphine binding site [51]. A later study observed that administration of the morphine analogue, levorphanol, markedly diminished E. coli chemotaxis to serine, aspartic acid and galactose, although pharmacological characterization and attribution of opiate alkaloid responsiveness to the E. coli envY envelope protein was inconclusive [52].

We have previously hypothesized that the evolution of the morphine as a multi-faceted signaling molecule is functionally dependent on the diversity of expression of cellular receptors capable of stereo-selective, high affinity, binding of the opiate alkaloid based on strict molecular parameters that include its rigid heterocyclic backbone and protonated amine and hydroxylated recognition sites [46,47]. The successful transition and exponential adaptation of a primordial prokaryotic “morphinergic” signaling pathway to accommodate complex regulatory activities in cellular and organ systems of higher animals are clearly dependent on the retention and further development of specialized receptor complexes that selectively mediate transducing effects of morphine and related opiate alkaloids. Collected work from our group has provided important molecular, biochemical, and pharmacological characterization of cognate µ3 opiate receptors that are selectively tailored to mediate the cellular regulatory effects of morphine and related morphinan alkaloids via stimulation of NO production and release [47,53,54]. The µ3 opiate receptor is a Class A rhodopsin-like member of the superfamily of G-protein coupled receptors (GPCRs) that has been genetically modified to eliminate an N-terminal amino acid sequence of approximately 90 amino acids that constitute the extracellular and TMH1 domains and part of the first intracellular loop (IL) of the classic µ1 opioid receptor. Importantly, the µ3 opiate receptor retain the empirically defined ligand-binding pocket distributed across conserved TMH2, TMH3, and TMH7 domains of the µ1 opioid receptor that provides a recognition profile that is restricted to rigid BIQ/morphinan alkaloids typified by morphine and its extended family of chemical congeners. Mechanistically, elimination of the extended extracellular N-terminal protein domain within the primary sequence of the µ3 opiate receptor confers strict selectivity for morphine and related opiate alkaloids by removing secondary extracellular binding and conformational stabilization required for recognition of endogenous opioid peptides.

Regulatory Coupling of Morphine and Nitric Oxide in Mediating Mitochondrial Function and Cellular Bioenergetics: Functional Relevance to the Human Microbiome

Relatively recent lines of investigation have introduced an additional level of regulatory complexity into a developing model of opiate action whereby “morphinergic” stimulation of NO expression is mediated by activation of L-arginine-dependent constitutive NOS (cNOS) [55–61]. Additionally, collected empirical
data indicate that the potent pharmacological effects of mor-
phine on mitochondrial respiration and O2 consumption are
mediated via functional activation of NO production and in-
tra-mitochondrial release [28,62]. Interestingly, biochemical
studies published over 30 years ago reported the presence of
functionally active opiate binding sites on rat liver mitochon-
drial outer membranes that putatively mediated potent inhib-
itory actions on oxidative phosphorylation [63,64]. These prior
observations relating to mitochondrial opiate receptors were
functionally confirmed by a recent publication from our lab-
oratory demonstrating morphine/μ3 opiate receptor mediat-
ed NO release from isolated human mitochondria [65]. As dis-
cussed in depth above, we propose the regulatory effects of
“morphinergic” coupling to cNOS activation on mitochondrial
function and cellular bioenergetics are synergistically ampli-
cfied by coordinate activation of cellular and mitochondrial ni-
trite reductases [27,28,35,66].

The evolutionary development and functional presence of a
morphine, opiate alkaloid-selective, μ3 opiate receptor across
animal species, its functional coupling to cNOS and mitochon-
drial nitrite reductases, raises provocative questions relating to
the existence of a similar regulatory pathway within class-
es of human gut microbiota [67]. Along these lines, we may
speculate that primordial opiate-alkaloid effects on bacterial
growth and energy production have been evolutionary modi-
fied in concert with NO production and release to mediate
regulatory activities within classes of human gut microbiota.
Accordingly, dynamic interactions within communities of gut
modulate GI motility which is functionally associated with
intestinal survival [40,41,68]. Interestingly, the COOH-terminal
domain of μ3 opiate receptor resembles a primitive chemo-
kine-like receptor, including functional clustering of cysteine
residues indicative of NO involvement [54]. If so, vertical mu
opiate gene evolution may have occurred from its chemokine
origin. This conclusion is now supported by the empirical evi-
dence from other related studies, demonstrating a chemokine
presence and involvement with communication between bac-
teria and with their host [40,41,43].

Conclusions

It appears opiate alkaloid selectivity, as noted earlier, was main-
tained in evolution because so many other biochemical mole-
cules are really alkaloid in nature, thus representing a branch-
ing from the common origin [36,39,69]. In this regard, amino
acids, dopamine, cocaine, nicotine, nucleic acids, etc, may also
be considered to be alkaloid in nature [36–39]. Morphine may
have fit into its dynamic life sustaining role because it is an
alkaloid and has a relatively long half-life, just one of many
such compounds incorporated into the nitrogen rich frame-
work of molecular “information” [36–39]. Given this, one can
better understand and predict the inter-phyla level of chem-
ical communication that arises especially with alkaloid com-
ounds since some of this information may have arisen from
horizontal gene transfer and much later in evolution [40–43].
The chance occurrence of NO association with the nitrogenous
alkaloids, especially morphine, probably enhanced the signifi-
cance of NO coupling in cellular processes involving its purpose-
ful generation, e.g., via nitrite reductase. This level of insight
allows one to suggest that newer variations of the common
chemical alkaloid theme will emerge and be both commer-
cially and functionally efficacious.

Conflict of interest

None.

References:

1. Esch T, Stefano GB: Proinflammation: A common denominator or initiator of
different pathophysiological disease processes. Med Sci Monit, 2002; 8(5): HY1–9
2. Stefano GB, Scharrer B: Endogenous morphine and related opiates, a new
class of chemical messengers. Adv Neuroimmunol, 1994; 4: 57–68
3. Stefano GB, Goumon Y, Casares F et al: Endogenous morphine. Trends
Neurosci, 2000; 9: 436–42
4. Stefano GB, Goumon Y, Bilfinger TV et al: Basal nitric oxide limits immune,
nervous and cardiovascular excitation: Human endothelia express a mu
opiate receptor. Prog Neurobiol, 2000; 60(6): 513–30
5. Navarro-Gonzalez R, McKay CP, Mvondo DN: A possible nitrogen crisis for
Archaean life due to reduced nitrogen fixation by lightning. Nature, 2001;
412(6842): 61–64
6. Nna Mvondo D, Navarro-Gonzalez R, McKay CP et al: Production of nitro-
gen oxides by lightning and coronae discharges in simulated early Earth,
Venus and Mars environments. Adv Space Res, 2001; 27(2): 217–23
7. Garvin J, Buick R, Anbar AD et al: Isotopic evidence for an aerobic nitrogen
cycle in the latest Archean. Science, 2009; 323(5917): 1045–48
8. Santana MM, Gonzalez JM, Cruz C: Nitric oxide accumulation: The evolu-
tionary trigger for phytopathogenesis. Front Microbiol, 2017; 8: 1947
9. Chen J, Strous M: Denitrification and aerobic respiration, hybrid electron
transport chains and co-evolution. Biochim Biophys Acta, 2013; 1827(2):
136–44
10. Wang Y, Ruby EG: The roles of NO in microbial symbioses. Cell Microbiol,
2011; 13(4): 518–26
11. Toshia T, Shiro Y: Crystal structures of nitric oxide reductases provide key
insights into functional conversion of respiratory enzymes. IUBMB Life.
2013; 65(3): 217–26
12. Ducluzeau AL, van Lis R, Duval S et al: Was nitric oxide the first deep elec-
tron sink? Trends Biochem Sci, 2009; 34(1): 9–15
13. Gribaldo S, Tallai E, Brochier-Armanet C: Evolution of the haem copper ox-
dases superfamily: A rooting tale. Trends Biochem Sci, 2009; 34(8): 375–81
14. Crack JC, Munnoch J, Dodd EL et al: NsrR from Streptomyces coelicolor is a
nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory
function. J Biol Chem, 2015; 290(20): 12689–704
15. Serrano PN, Wang H, Crack JC et al: Nitrosylation of nitric-oxide-sensing
regulatory proteins containing [4Fe-4S] clusters gives rise to multiple iron-
nitrosyl complexes. Angewandte Chemie, 2016; 55(47): 14575–79
16. Volbeda A, Dodd EL, Darnault C et al: Crystal structures of the NO sensor
NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun,
2017; 8: 15052
17. Socco S, Bovee RC, Palczewski MB et al. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res, 2017; 121: 52–58.

18. Bates TE, Leech A, Burnstock G, Clark JB: Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun, 1996; 218(1): 40–44.

19. Brown GC: Nitric oxide and mitochondrial respiration. Biochem Biophys Acta, 1999; 1411(2–3): 351–69.

20. Watt IN, Montgomery MG, Runswick MJ et al: Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA, 2010; 107(9): 16823–27.

21. Shen W, Xu X, O choa M et al: Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res, 1994; 75(6): 1086–95.

22. Schweizer M, Richter C: Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun, 1994; 204(1): 169–75.

23. Sarti P, Giffa r e A, Barone MC et al: Nitric oxide and cytochrome oxidase: Reaction mechanisms from the enzyme to the cell. Free Radiol Biol Med, 2003; 34(5): 509–20.

24. Sarti P, Arese M, Forte E et al: Mitochondria and nitric oxide: Chemistry and pathophysiology. Adv Exp Med Biol, 2012; 945: 72–95.

25. Sarti P, Forte E, Giffare A et al: The chemical interplay between nitric oxide and mitochondrial cytochrome c oxidase: Reactions, effectors and pathophysiology. Int J Cell Biol, 2012; 2012: 571067.

26. Shiva S: Mitochondria as metabolizers and targets of nitrite. Nitric Oxide, 2010; 22(2): 64–74.

27. Stefano GB, Kream RM: Nitric oxide regulation of mitochondrial processes: Commonality in medical disorders. Ann Transplant, 2015; 20: 402–7.

28. Kream RM, Stefano GB: Endogenous morphine and nitric oxide coupled regulation of mitochondrial processes. Med Sci Monit, 2009; 15(12): RA263–68.

29. Hille R, Nishino T, Bittner F: Molybdenum enzymes in higher organisms. Coord Chem Rev, 2011; 255(9–10): 1179–205.

30. Gray TA, Nichols RD: Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames. RNA, 2000; 6(7): 928–36.

31. Edwards M, Roeper J, Allgood C et al: Investigation of molybdenum cofactor synthesis and biology. New York: Wiley-VCH, 2008.

32. Salloum FN, Sturz GR, Yin C et al: Beetroot juice reduces infarct size and improves functional recovery in a rat model of myocardial ischemia-reperfusion injury: The role of nitric oxide. J Int Med Res, 2015; 43(6): 669–81.

33. Kapil V, Khambata RS, Robertson A et al: Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension, 2015; 65(2): 320–27.

34. A report of the Surgeon General: Smoking and health. US Government Printing Office: 1979 1979. Report No

35. Stefano GB, Kream RM: Dysregulated mitochondrial and chloroplast bioenergy: Primordial six-transmembrane helical domain mu opiate receptors select for metabolic disease. Adv Exp Med Biol, 2012; 942: 75–92.

36. Liscombe DK, Facchini PJ: Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Adv Biochem Psychopharmacol, 1989; 51: 877–83.

37. Kream RM, Stefano GB: De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit, 2006; 12(10): RA207–19.

38. Stefano GB, Ptacek R, Kuzelova H, Kream RM: Endogenous morphine: Up-to-date review 2011. Folia Biol (Praha), 2012; 58(2): 49–56.

39. Simon EJ, Vanpraag D: Inhibition of RNA synthesis in Escherichia coli by levophorpan. Proc Natl Acad Sci USA, 1964; 51: 877–83.

40. Stefano G.B. et al.: Evolutionary significance of opiate alkaloids. © Med Sci Monit, 2018; 24: 3153-3158

41. Moncada S, Palmer RM, Higgs EA: The discovery of nitric oxide as the endothelium-derived relaxing factor. Physiol Rev, 1991; 71(3): 401–18.

42. Cabon F, Moher J, Parmentier E et al: The cell env gene encodes a high affinity opioid binding site. Neurochem Res, 1983; 18(7): 795–800.

43. Persky-Bosh S, Young JR, Holland MJ, Simon EJ: Effect of morphine analogues on chemotaxis in Escherichia coli. J Gen Microbiol, 1978; 107(1): 53–58.

44. Liscombe DK, MacLeod BP, Loukanina N et al: Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 2005; 66(11): 1374–93.

45. Liscombe DK, Facchin PI: Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis.Curr Opin Biotechnol, 2008; 19(2): 173–80.

46. Stefano GB, Kream RM: De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit, 2006; 12(10): RA207–19.

47. Stefano GB, Ptacek R, Kuzelova H, Kream RM: Endogenous morphine: Up-to-date review 2011. Folia Biol (Praha), 2012; 58(2): 49–56.

48. Simon EJ, Vanpraag D: Inhibition of RNA synthesis in Escherichia coli by levophorpan. Proc Natl Acad Sci USA, 1964; 51: 877–83.

49. Simon EJ, Vanpraag D: Selective inhibition of synthesis of ribosomal RNA in Escherichia coli by levophorpan. Proc Natl Acad Sci USA, 1964; 51: 1151–58.

50. Wurster N, Elsbach P, Rand J, Simon EJ: Effects of levophorpan on phospholipid metabolism and composition in Escherichia coli. Biochem Biophys Acta, 1971; 248(1): 282–92.

51. Cabon F, Morser J, Parmentier E et al: The e. coli env gene encodes a high affinity opioid binding site. Neurochem Res, 1983; 18(7): 795–800.

52. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

53. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

54. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

55. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

56. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

57. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

58. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

59. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

60. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

61. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

62. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

63. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.

64. Cadet P, Mantione KJ, Zhu W et al: A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J Immunol, 2007; 179(9): 5839–44.