Radiomics and gene expression profile to characterize the disease and predict outcome in patients with lung cancer

Margarita Kirienko
Fondazione IRCCS Istituto Nazionale dei Tumori

Martina Sollini (martinasollini@man.com)
Humanitas University https://orcid.org/0000-0003-2214-6492

Marinella Corbetta
Humanitas University

Emanuele Voulaz
Istituto Clinico Humanitas - Ospedale a Milano: Humanitas Research Hospital

Noemi Gozzi
Istituto Clinico Humanitas - Ospedale a Milano: Humanitas Research Hospital

Matteo Interlenghi
Consiglio Nazionale delle Ricerche

Francesca Gallivanone
Consiglio Nazionale delle Ricerche

Isabella Castiglioni
Consiglio Nazionale delle Ricerche

Rosanna Asseita
Humanitas University

Stefano Duga
Humanitas University

Giulia Soldà
Humanitas University

Arturo Chiti
Humanitas University

Research Article

Keywords: Artificial intelligence, Image analysis, Lung cancer, Radiogenomics, PET/CT, mutation, gene expression.

DOI: https://doi.org/10.21203/rs.3.rs-157951/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives The objectives of our study were to assess the association of radiomic and genomic data with histology and patient outcome in non-small cell lung cancer (NSCLC).

Methods In this retrospective single-centre observational study, we selected 151 surgically treated patients with adenocarcinoma or squamous cell carcinoma who performed baseline [18F]-FDG PET/CT. A subgroup of patients with cancer tissue samples at the Institutional Biobank (n=74/151) was included in the genomic analysis. Features were extracted from both PET and CT images using an in-house tool. The genomic analysis included detection of genetic variants, fusion transcripts, and gene expression. Generalized linear model (GLM) and machine learning (ML) algorithms were used to predict histology and tumour recurrence.

Results Standardized Uptake Value (SUV) and kurtosis (among the PET and CT radiomic features, respectively), and the expression of TP63, EPHA10, FBN2, and IL1RAP were associated with the histotype. No correlation was found between radiomic features/genomic data and relapse using GLM. The ML approach identified several radiomic/genomic rules to predict the histotype successfully. The ML approach showed a modest ability of PET radiomic features to predict relapse, while it identified a robust gene expression signature able to predict patient relapse correctly. The best-performing ML radiogenomic rule in predicting the outcome resulted in an Area Under the Curve (AUC) of 0.87.

Conclusions Radiogenomic data provided clinically relevant information in NCSCL patients, regarding the histotype, aggressiveness, and progression. Gene expression may provide additional valuable information to guide patient management. The application of ML allows to increase the efficacy of radiogenomic analysis and provide novel insights into cancer biology.

Introduction

Lung cancer is a leading global cause of cancer-related deaths, with more than 2.2 million people diagnosed and 1.9 million deaths documented worldwide in 2017 [1]. The five-year survival rate is less than 25% when diagnosis occurs at a locally advanced or metastatic disease stage. The survival rate rises above 50% if the disease is diagnosed early when local treatment is feasible [2]. In inoperable disease, systemic therapy with cytotoxic and targeted drugs are often recommended [3, 4]. Targeted therapy requires the molecular profiling of tumour tissue to identify specific biomarkers to tailor treatments [5]. Cancer cells are characterized by high genomic instability, responsible for accumulating somatic mutations in crucial oncogenic/oncogene suppressor genes, driving uncontrolled cancer cell proliferation [6]. Genetic information may be used to predict survival, as a prognostic biomarker, or response to treatment, as a predictive biomarker to support clinical decisions [7]. In particular, in lung cancer genetic mutations in ALK, BRAF, EGFR, and ROST1 guide treatment decisions in patients affected by advanced disease and recurrence [3, 4]. Beyond these alterations, other oncogenic driver mutations - even if currently not targetable - include RET, HER2, KRAS, and MET [8].

In cancer patients, features of tumours identified from imaging data (e.g., CT and PET) can be used as biomarkers to reveal diagnostic, predictive, and prognostic associations, based on the identification of correlations with pathological or molecular reference, response to treatment, or survival outcomes: this process is defined radiomics. Within this framework, image features extracted and used as predictors include lesion volume, shape, and texture descriptors [9]. Radiogenomics refers to the integration of imaging-derived parameters and genomic data to find clinically relevant associations. Imaging-based typing has the advantage that it can capture information from the whole tumour lesion, can be performed at multiple time points for treatment monitoring, and can be carried out when a biopsy is not feasible. It is cost-effective, relying on routinely acquired clinical imaging.

On the other hand, imaging-genomic maps may be valuable for predicting targeted therapies' efficacy [10]. Additionally, the integration of data generated from complementary "omics" sources can improve the performance of single-domain predictive models [11]. Current data supporting the efficacy of radiomics in lung cancer predicting diagnosis, prognosis, and optimal therapy are ample and promising and supports a future role for computer-assisted diagnosis and management in clinical oncology [12]. Nonetheless, radiogenomics in lung cancer patients is still in its early stages, and extensive data studies are needed to validate the concept [5].

The objectives of our study were to assess: 1) the association of [18F]-FDG PET/CT radiomic features with histology and patient outcome; 2) the association of mutations and gene expression data with histology and patient outcome, and 3) the association of radiogenomics with histology and patient outcome.

Methods

Study design

In this retrospective single-centre observational study, we applied the following criteria to select patients from the Institutional database. Inclusion criteria were: i) age > 18 years, ii) pathologic diagnosis of non-small cell lung cancer (NSCLC), iii) enrolment from November 2011 to April 2018; iv) availability of baseline [18F]-FDG PET/CT, v) surgical treatment, and vi) availability of cancer tissue sample at the Institutional Biobank for those patients to be included in a subpopulation of the study cohort. Exclusion criteria were: i) diagnosis of other malignancies, but non-melanoma skin cancer, in the previous three years; ii) interval time between PET/CT and surgery > 3 months; iii) neoadjuvant treatment; iv) NSCLC other than squamous cell carcinoma (SQC) and adenocarcinoma (AC) to avoid homogeneity within the patient cohort. The selection workflow is reported in Fig. 1. Demographic parameters such as age and sex were collected for all patients. Smoking habits were recorded. Performance status was not considered in this analysis.

The institutional ethics committee approved the study (study number 1751). All the patients who donated their tissue samples to the biobank signed informed consent to use their data, imaging and samples for research purposes; for the remaining patients, because of the observational and retrospective study design, a specific, informed consent was waived.
Image acquisition and processing

[18F]FDG PET/CT image acquisition was performed according to versions 1.0 [13] and 2.0 [14] of the European Association of Nuclear Medicine (EANM) guidelines until and from February 2015, respectively. Briefly, patient preparation with fasting at least 4 hours before [18F]FDG injection and blood glucose levels below 200 mg/dl were requested. Images were acquired 60 ± 5 min after injection of [18F]FDG, using either a Siemens Biograph 6 LSO (Siemens, Erlangen, Germany) or a General Electric Discovery 690 (General Electric Healthcare, Waukesha, WI, USA) PET/CT scanner. All PET images were corrected for attenuation using the acquired CT data. Image acquisition parameters are reported in Supplementary Table 1.

The primary lung cancer lesions were delineated on PET images applying a fully automatic segmentation method, combining an automatic threshold-based algorithm to define the tumour volume and a k-means clustering algorithm for estimation of the background [15]. CT target lesion was delineated using 3-D Slicer application FastGrowCut implementing a competitive region growing algorithm using cellular automata [16]. The images were resampled to have isometric voxels with 2 mm length. Calculation of PET parameters (n = 60) was performed using an in-house image processing tool, running on MATLAB [17, 18]. The partial volume effect correction was used for Standardized Uptake Value (SUV) calculation. CT radiomic features (n = 57) was extraction was performed using HeterogeneityCAD tool implemented in the 3-D Slicer, according to Aerts et al. [19]. Image processing and calculation of image-derived parameters are reported in Supplementary Table 1, according to the imaging biomarker standardization initiative (IBSI) reporting guidelines [20].

Pathology

Histological type and staging classification were assessed according to good clinical practice on pathology samples obtained at surgery (AJCC manual). Fresh-frozen samples were collected and stored according to the Biological Biobank’s Institutional procedures for those patients who donated their tissue.

Molecular analyses (mutations and gene expression)

Molecular analysis of 74 tumour samples (21 SQC, 53 AC) was performed using a targeted RNAseq approach. Besides, six normal tissue samples were evaluated as reference. Molecular analyses by targeted RNAseq included: 1) detection of genetic variants (both single nucleotide variants, SNVs, and small insertions/deletions, indels); 2) detection of fusion transcripts; 3) gene expression analysis. RNA extraction from fresh-frozen lung tissues, preserved in RNALater-ICE (Thermo Fisher Scientific, Waltham, MA, USA), was performed using either an automated procedure with the Maxwell RSC miRNA Tissue kit (Promega, Madison, WI, USA) or a standard protocol using the Euregolod TriFast reagent (Euroclone, Wetherby, UK). RNA quality was assessed on an Agilent 4200 TapeStation (Agilent Technologies; Santa Clara, CA, USA), obtaining a mean RNA integrity number (RIN) of 6.7 (max: 9, min: 4). Libraries were prepared starting from 55 ng of total RNA with the TruSight RNA Pan-Cancer Panel (Illumina, San Diego, CA, USA), following the manufacturer’s instructions. This panel allows the simultaneous detection of fusion transcripts, point mutations, and gene expression changes, and it is characterized by a broad dynamic range, which can robustly detect RNAs of low abundance; it covers a total of 1,385 genes, including all major ones found mutated in lung cancer. Sequencing (76-bp paired-end reads) was performed on a NextSeq500 platform (Illumina). Data were analyzed using the RNAseq alignment v. 2.0.10 pipeline on BaseSpace (Illumina). Briefly, input reads were filtered against abundant sequences, such as mitochondrial or ribosomal sequences, using Bowtie 0.12.9, and then aligned to the reference human genome (UCSC hg19) and the RefSeq annotation of transcripts with the Spliced Transcripts Alignment to a Reference (STAR) program (v. 2.6.1a). SNVs were identified with the Strelka Variant Caller v.2.9.9, and the presence of fusion transcripts was detected with the Manta Structural Variant Caller v.1.4.0. Gene/transcript expression was quantified by Salmon v.0.11.2. Differential expression analysis among histotypes (SQC, AC, and normal tissue) was evaluated with a likelihood ratio test (LRT) for significance using the DeSeq2 Bioconductor package [21]. We looked for known and possibly recurrent oncogenic variants to extract meaningful information to correlate with imaging and clinical data. Therefore, we selected variants with the following features: SNV: nonsynonymous (missense, nonsense, splice variants mapping at +/-2 position of the splice sites), and annotated in the Clinvar database (https://www.ncbi.nlm.nih.gov/clinvar/) as pathogenic or likely pathogenic. Concerning indels, we selected rare frameshift variants occurring only in cancer samples, covered by at least 10 reads, and with a Combined Annotation Dependent Depletion, CADD, score > 15 [22].

Follow-up and outcome assessment

After surgery, further treatment and follow-up were performed according to standard procedures and guidelines after discussion at the multidisciplinary lung tumour board. As for outcome prediction, the endpoints of this study were disease recurrence, disease-free survival (DFS), and overall survival (OS). Disease recurrence was defined as relapse occurrence during follow-up. DFS was defined as the time between the date of surgery and either the date of recurrence or tumour-related death (event) or the date of last patient access (censored). OS was defined as the time between surgery and death (event) or the date of last patient access (censored).

Statistical analyses

All statistical procedures were carried out using specific R program packages, release 3.6.1 (http://www.r-project.org/). All P values were two-sided. P values of < 0.05 were considered statistically significant.

Conventional statistics

Patient characteristics were summarized in frequency tables, and descriptive statistics were provided. Principal component analysis (PCA) was used to explore data.

The Kaplan–Meier method was used to generate survival curves for the subgroups in each dataset, and the log-rank test was used to determine the statistical significance of differences (survminer R package).

For KRAS/TP53/EGFR mutations, analyses of carrier frequency data were performed using the Fisher exact test.

For data analysis, we first performed an unsupervised clustering, using the heatmap R package on log-transformed data, evaluating whether patients are distinguishable in the feature space (either by histotype or the tumour recurrence). After that, we used variables to fit a Generalized Linear Model (GLM), after
having checked for the correct normal distribution of residuals and the homogeneity of variance across the fitted values of the model. We used either the histotype (SQC or AC) or the tumour recurrence (yes or no) as the output variable. More specifically, for gene expression analysis, differentially expressed genes were selected using a false discovery rate (FDR) ≤ 0.001, a fold change ≥ 2, and a minimum average expression (baseMean) of at least 50 counts. Differential expression analyses identified genes specifically altered in cancer status compared to normal tissues and genes specifically altered in each histotype (SQC and AC). Differential expression analysis to identify transcriptional signatures associated with tumour recurrence (yes or not) was evaluated with a Wald test for significance and the DeSeq2 package. In this case, differentially expressed genes were selected using a FDR ≤ 0.05 and no threshold for fold change.

For radiogenomic analysis, we focused on the top differentially expressed genes, setting a stringent threshold for significance of FDR ≤ 0.001, fold change ≥ 2, and average expression (baseMean) among samples of at least 50 counts.

Machine learning analysis

The significance of classical statistical analysis (e.g. univariate analysis and GLM previously introduced) decreases for high dimensional datasets (i.e. large number of features), especially when the biological/clinical significance of features is unknown [23]. In recent years, the quantitative nature and the multitude of omics data have driven research towards the application of ML for the analysis [24]. ML is one of the major subfields in artificial intelligence and may be defined as a set of algorithms, developed on input data, able to infer a prediction of labels on unseen observations (e.g. a diagnosis or outcome prediction). The advantage of ML lies in learning directly from data and improving the prediction process [25]. Therefore, we decided to apply the Forecast environment of the Rulex (RULe eXtractor) 4.0 suite (www.rulex-inc.com), an integrated suite for the analysis of data through statistical/ML approaches. Rulex can manage all data types, including categorical/continuous variables, variables showing a high degree of correlation, or characterized by any type of data distribution.

Three datasets were used for analyses: 1) a dataset including only complete radiomic data (149 patients; two additional patients were not included because they were missing either PET or CT data); 2) a dataset using only molecular data (gene expression and KRAS/TP53/EGFR mutational status), comprising 74 patients; and 3) a dataset including only those 73 patients for which both radiomic and molecular data were available.

We applied the Logic Learning Machine (LLM) algorithm to our datasets using as output variable either the histotype (SQC or AC) or the patient outcome (tumour recurrence yes or no). Each dataset was split into a training cohort and a test set (70% and 30%, respectively). Rulex LLM takes as input the features and returns a series of “rules” characterized by n conditions. For each rule, the algorithm provides the percentage of exact output predictions (i.e. covering) and the error percentage.

We used the radiogenomic rule (integrating gene expression and radiomic data) which best predicted tumour recurrence to build a score, and we calculated the corresponding receiving operating characteristic (ROC) curve and the area under the curve (AUC). For each condition, the score corresponded to the sum of 1 or 0 points.

Results

Overall, 151 patients were included. Patient characteristics are reported in Table 1. 70% of patients developed an AC, 30% an SQC; the ratio between those that relapsed versus those that did not was exactly 1:1.

Characteristics	**Whole dataset (N = 151)**	**Genetics (n = 74)**
Age - median (range)	70 (41–84) years	70 (41–80) years
Sex (M: F)	95:56	47:27
Histology (AC: SQC)	106:45	53:21
Smoking status (Yes: No: Ex-smokers)***	42:31:77	23:14:36
Outcome		
Lost at follow-up	7/151	6/74
Relapse Yes: No	72:72	31:37
Follow-up/OS - median (range)	39 (1-102) months	24 (3–79) months
DFS	44(1-102) months	40 (4–81) months

* The whole dataset consisted of 151 patients, for 2 of them either PET or CT data were missing and hence not included in the ML analysis. ** This category indicates the subset of patients submitted to mutational and differential gene-expression analyses (for 1 of them, we did not have radiomics data, and hence not included in the ML analysis of combined radiomics and transcriptomics data). *** For one person, we do not have data on smoking status. AC, adenocarcinoma; DFS, disease-free survival; F, females; M, males; OS, overall survival, SQC, squamous cell carcinoma.

No correlations were observed between patients’ age and the histotype of the relapse status (P = 0.078 and P = 0.538, respectively). As for sex, a weak correlation was observed with histotype (being the male sex more common among SQC, with a male: female ratio = 3.5, P = 0.016). Instead, no correlation was evident between sex and relapse. Finally, we observed a weak correlation between the histotype and the relapse status, with AC cases more prone to relapse than SQC patients (P = 0.032; the significance was also retained after correction for age, sex, and smoking status, P = 0.026) (Supplementary Fig. 1).

The two histotypes did not show any significant difference in the overall survival rate of patients, nor on their tendency to relapse (Supplementary Fig. 2).
Mutation screening by targeted RNAsequencing identified more than 130,500 variants in the 80 analyzed samples (74 tumours + 6 normal), with a mean of 1,632 variants per sample (1,577 SNVs, 27 deletions and 28 insertions). Each variant was covered on average by 162 reads (min: 3, max: 12,592). We obtained a list of the 142 topmost pathogenic variants, although very few of them were present in more than one sample. We found a missense KRAS mutation at codon 12 in 28% (21/74) of tumour samples, and a TP53 mutation in 55% (41/74) of cases (Supplementary Fig. 3).

No known pathogenic variants or hotspot mutations were detected in EGFR, although eight samples carried rare nonsynonymous SNVs of uncertain significance (Fig. 2). Based on the variant type, location within the gene/protein, and predicted deleteriousness (evaluated by CADD, score > 15), at least 6 (75%) of them might represent a likely pathogenic mutation. No recurrent gene fusions in the ALK, ROS, and RET1 were detected.

Gene expression analysis on RNAseq data on 80 samples (21 SQC, 53 AC, and 6 non-tumoral tissues) showed a prevalent clusterization based on histotype at PCA, with normal tissues separating from tumour samples (Supplementary Fig. 4). Samples were not separated based on relapse status, at least when considering the first two principal components (data not shown).

1. Association of PET/CT radiomic data with histology and outcome

A total of 60 PET and 57 CT radiomic features were extracted in 149 patients (see Table 1).

Unsupervised hierarchical clustering, based on log-transformed data of extracted radiomic features, showed a good clusterization based on histotype (Supplementary Fig. 5). Conversely, the same analysis did not perform well when discriminating patients based on relapse (data not shown).

PET and CT features were further independently analyzed using GLM. GLM showed that among the 117 analyzed features, two outperformed in discriminating AC vs SQC patients. SUV and kurtosis resulted in the best PET and CT features, respectively, in predicting histology (Fig. 3A). SUV resulted

Rule	Output	Covering (%)*	Error (%)**	Cond 1	Cond 2	Cond 3	Cond 4	Cond 5	Cond 6	Cond 7	Cond 8		
A - HISTOTYPE													
1	Histotype = AC	48.7	3.6	Max_Intensity	PET ≤ 11.91	CT ≤ 373	CT ≤ 73						
2	Histotype = AC	43.4	3.6	PVC_SUV	PET ≤ 16.946515	Spherical_disp	GLV	Voxel_Count	PET ≤ 0.065135	CT > 799	CT ≤ 140		
3	Histotype = AC	42.1	3.6	Kurtosis	PET ≤ 2.654415	Uniformity	Stand_Deviation	PET ≤ 0.099197	CT > 43.485000				
4	Histotype = SQC	85.7	3.6	Min	PET > 1.312135	Uniformity	GLN	Compactness_2	Min_Intensity	CT ≤ 0.179247	CT > 69		
											Clust		
B - RELAPSE													
1	Relapse = NO	66.7	3.7	Energy	PET ≤ 17375	Energy	SRLGE	PET ≤ 0.039183	SZLGE	PET > 0.002677	0.009156 < LRLGE PET ≤ 0.092522	Complexity	PET ≤ 11892
2	Relapse = YES	61.1	4.2	Mean	PET ≤ 15.503765	Mean abs dev	Energy	Correlation	SZE	PET > 0.316205	0.1262	HGZE	PET ≤ 1262

* Covering: the percentage of the training patterns that satisfy the rule whose output value is equal to the rule's output; ** the percentage of the training pattern whose output value is different from the output of the rule. The best-performing rule in each section is highlighted in grey.
Table 3

Association between KRAS/TP53/EGFR mutational status and histotype/relapse.

	Non-carriers (N)	Carriers (N)	P-value *
KRAS			
AC	33	20	0.0040
SQC	20	1	
TP53			
AC	24	29	0.80
SQC	9	12 (1 case with 2 mutations)	
EGFR			
AC	48	5	0.43
SQC	18	3	

B - RELAPSE **

	YES	NO	P-value **
KRAS			
YES	18	13	0.029
NO	31	6	(0.086)
TP53			
YES	15	16	0.80
NO	16	21 (1 case with 2 mutations)	(1)
EGFR			
YES	31	0	0.028
NO	31	6	(0.17)

* Fisher exact test. ** Analysis performed on a total of 68 cases; in this analysis, the P-value presented in parenthesis are corrected for the histotype. Significant P values are indicated in bold.

2. Association of genomic data with histology and outcome

Mutation and gene expression data on the 74 cases were used to search for possible correlations with histotype and the relapse status. Genes specifically altered by relapse were investigated on the 68 samples with available data (31 relapses, 37 no relapse). Only four genes resulted differentially expressed with an FDR ≤ 0.05. Mutation analysis focused on the two genes most commonly mutated in our cohort (KRAS, TP53), as well as on the EGFR gene, i.e. the sole among genes guiding treatment decision in lung cancer patients [3, 4] - being mutated in the analyzed cases. Concerning histotype, we evidenced a profound difference in the frequency of KRAS mutation carriers between AC and SQC (37.7% and 4.8%, respectively; P = 0.0040) (Table 3A). We also observed a significant association between KRAS/EGFR mutations and relapse status, not retained after correction for histotype (values between parentheses in Table 3B).

Gene expression analysis focused on the 238 genes that resulted differentially expressed (at FDR ≤ 0.001 and a fold change ≥ 2) according to different tissue samples (normal tissue, AC, SQC; 187 genes), tumour histotypes (47 genes), and recurrent status (4 genes). Among these 238 genes, TP63, FBN2, EPHA10, and IL1RAP emerged as strongly associated with the histotype (P < 1.5*10^{-4}; all genes survive the Bonferroni corrections for multiple tests) (Fig. 4).

None among the analyzed genes was associated below the Bonferroni threshold (P = 0.00021) with the relapse status. The comprehensive analysis performed by the Rulex LLM approach focused on all the 238 genes, and the data on KRAS/TP53/EGFR mutational status are summarized in Table 5. Rulex LLM proved to be very powerful both in predicting the histotype (rule number 1 reached a coverage > 94%) and, above all, in predicting the outcome (rule number 4 reached a coverage = 92%). In all cases, no conditions related to the mutational status emerged. The best-performing rule predicting the histotype was based only on two conditions (one related to expression levels of TP63), whereas the best rule predicting relapse stem on the expression levels of 5 different genes (AURKA, HIST1H2AM, IL12Rb2, CXXC4, and RYR3).
Table 5

Histotype and relapse predictions based on mutation and gene expression data - Rulex analysis results.

Rule	Output	Covering (%)	Error (%)	Cond 1	Cond 2	Cond 3	Cond 4	Cond 5
A - HISTOTYPE								
1	Histotype = AC	94.3	0	*HIF1A* ≤ 12.662616	*TP63* ≤ 7.748115			
2	Histotype = AC	74.3	0	*EPCAM* > 10.788665				
3	Histotype = SQC	88.2	0	*TP63* > 7.142827	*EPCAM* ≤ 10.788665			
4	Histotype = SQC	29.4	0	*HIF1A* > 12.627919				
B - RELAPSE								
1	Relapse = NO	58.3	2.6	*HIF1A* > 11.268115	*RYR3* > 5.052014			
2	Relapse = NO	54.2	2.6	*CDK4* ≤ 9.801157	*GNAQ* ≤ 8.387779			
3	Relapse = NO	37.5	2.6	*CXXC4* ≤ 2.124897				
4	Relapse = YES	91.7	0	*AURKA* > 6.211039	*HIST1H2AM* ≤ 9.677214	*IL12RB2* ≤ 7.370931	*CXXC4* > 1.892740	*RYR3* ≤ 5.160035
5	Relapse = YES	20.8	4.6	*ECT2L* > 4.866101				

* Covering: the percentage of the training patterns that satisfy the rule whose output value is equal to the rule's output; ** the percentage of the training patterns that satisfy the rule whose output value is different from the output of the rule. The best-performing rule in each section is highlighted in grey.

3. Association of radiogenomic with histology and outcome

Finally, we used the Rulex LLM approach for analyzing the 73 cases having the entire set of variables available (i.e. all PET and CT features) and data on *KRAS/TP53/EGFR* mutational status and on 238 differentially expressed genes.

Results of radiogenomics analysis are summarized in Table 6. Interestingly, using hystotype as an output variable results almost entirely overlapping with those already obtained for the predictions based on genomic data (Table 5A). The slightly different covering values depended on the missing sample.
investigation to better characterize this protein's role in lung cancer as a prognostic biomarker or potential therapeutic target.

is expressed many breast cancers (subfamily of receptor tyrosine kinases and involved in cell-cell communication, regulating cell attachment, shape, and mobility in neuronal and epithelial cells) to gene amplification, is frequently found in SQC and has been associated with prolonged survival.

We identified the levels of expression of several genes (e.g., TP63 and EPHA10) to be associated with AC vs SQC. In particular, TP63 overexpression, often due to gene amplification, is frequently found in SQC and has been associated with prolonged survival [31]. EPHA10 (the ephrin receptor A10 belonging to the subfamily of receptor tyrosine kinases and involved in cell-cell communication, regulating cell attachment, shape, and mobility in neuronal and epithelial cells) is expressed many breast cancers [32]. Conversely, it has never been described to be associated with lung cancer subtypes. This finding needs further investigation to better characterize this protein's role in lung cancer as a prognostic biomarker or potential therapeutic target.

The best-performing rule in predicting the outcome (covering rate > 73%) combined conditions based on gene expression data and a PET-derived feature (i.e. LRHGE). This rule's ROC curve resulted in an area under the curve of 0.87 (Fig. 5).

Discussion

Our study showed the ability of radiomics, genomics, and radiogenomics to provide clinically relevant information in lung cancer patients. We found that image-derived features were able to discriminate between NSCLC histotype (Fig. 3). Several studies have successfully demonstrated an association between radiomic features and NSCLC tumour histology based on both CT and PET radiomic features. In the study by Wu et al. [26] 53 CT radiomic features from lung tumours of 350 patients were significantly associated with tumour histological subtype. Applying multivariate classifiers using radiomic features as input tumour histological subtype could be reliably predicted (AUC = 0.72) [26].

Similarly, Aerts et al. [19] reported a radiomic analysis of 440 features extracted from CT data of 1,019 patients affected by NSCLC and head-and-neck cancer. They found a significant association with histology (P = 0.019, Chi-square test). While in the study by Koyasu et al., the authors found PET-based models to identify histological lung cancer subtype with an AUC up to 0.84 [27]. In a previous cohort of 534 patients with lung nodules, we have demonstrated radiomic features’ ability to potentially classify primary lung cancer subtypes (AUC = 0.59–0.70 for CT and = 0.61–0.88 for PET)[28]. SUV appeared to be the best predictor in the present work, following literature data [29], regardless of the statistical approach (i.e. conventional statistics and ML). Indeed, SUVmax was recognized by GLM as significant, and minimum SUV was included in the best radiomic rule to predict histology. Randomness due to high correlation and the inherent redundancy among SUVs parameters was probably at the basis of the model's selection of SUVmax instead of the minimum.

Even though PET and CT features failed in predicting tumour recurrence when analyzed with classical statistics, we found a couple of rules through the Rulex LLM approach capable of correctly prognosticating the outcome in a good percentage of cases (61–67% of covering). These findings underlined that one radiomic feature might efficiently differentiate tumour subtypes, but it is not sufficient to explain the complexity of the disease (i.e. biological phenotyping). Conversely, combining more radiomic features, enclosing several - complementary - information, may summarize all those biological properties beyond the histotype that contributes to disease aggressiveness. Notably, the best-performing rule to predict tumour relapse comprised a total of 6 conditions all related to PET features. The inclusion of conditions related to CT-derived parameters determined a drop of performances, confirming literature data [30].

We identified the levels of expression of several genes (e.g. TP63 and EPFA10) to be associated with AC vs SQC. In particular, TP63 overexpression, often due to gene amplification, is frequently found in SQC and has been associated with prolonged survival [31]. EPFA10 (the ephrin receptor A10 belonging to the subfamily of receptor tyrosine kinases and involved in cell-cell communication, regulating cell attachment, shape, and mobility in neuronal and epithelial cells) is expressed many breast cancers [32]. Conversely, it has never been described to be associated with lung cancer subtypes. This finding needs further investigation to better characterize this protein's role in lung cancer as a prognostic biomarker or potential therapeutic target.
Gene expression data - analyzed by Rulex LLM - proved to be very powerful both in predicting the histotype (rule number 1 reached a coverage > 94%) and, above all, in predicting the outcome (rule number 4 reached a coverage = 92%). The best-performing genomic rule in predicting relapse stems on the expression levels of \textit{AURKA}, \textit{HIST1H2AM}, \textit{IL12Rb2}, \textit{CXXC4}, and \textit{RYR3}. The expression of \textit{AURKA} - a gene that contributes to the regulation of cell cycle progression [33] - has been reported to be associated with poor prognosis in smoking-related lung AC [34]. Histones variants \textit{HIST1H2}, \textit{HIST1H3}, and \textit{HIST1H4}, acting as transcriptional promoters or repressors of cancer-related genes, have been reported to be involved in tumour progression and metastasis [35]. In particular, in lung AC, \textit{HIST1H2AM} has been counted among genes differentially expressed between smoking and non-smoking [36]. Our data suggested that the smoking habits induced changes in \textit{AURKA} and \textit{HIST1H2AM} genes, and their upregulation or downregulation might play a pivotal role in determining the outcome. Literature data supported the involvement of IL-12Rb2 in tumour cell proliferation, apoptosis, and metastasis. The down-regulation of IL-12Rb2 in lung AC seems to be a tumour escape mechanism [37], and the IL-12Rb2 expression has been negatively associated with tumour progression [38]. The Disheveled (Dvl) inhibitor Idax, coded by the \textit{CXXC4} gene [39], seems to be involved in tumour cell invasiveness and proliferation [40, 41], and its expression is associated with poor prognosis [42]. Furthermore, \textit{CXXC4}, being capable of inhibiting the mitogen-activated protein kinases (MAPK) signalling pathway [43], is emerging as a novel tumour suppressor [44]. Moreover, the downregulation of the MAPK signalling pathway seems to reduce the expression of programmed cell death 1 ligand 1 (PD-L1) in lung AC cells [45]. The \textit{RYR3} gene encodes for a ryanodine receptor which mediates the calcium release for many cellular processes. Ryanodine receptor has been reported to be involved in epithelial-mesenchymal transition, in tumour cell apoptosis and treatment resistance in some cancers, including lung AC [46–48]. These data may provide the rationale for post-operative risk stratification with a differential follow-up scheme. The patients operated on a more aggressive tumour may be closely investigated during follow-up to identify recurrence at an earlier time point. However, molecular testing to identify molecular biomarkers are currently performed on tumour samples collected from biopsies or cytological specimens; these are invasive procedures which are not always feasible, may result in inadequate sampling, and cannot characterize intra- and inter-tumour heterogeneity. Moreover, in the case of recurrence, repetition of a biopsy is not mandatory. Indeed, targeted therapies may be administered based on the molecular testing on the specimens obtained at diagnosis, assuming that no molecular modification arises between disease onset and recurrence [49]. Consequently, other methods to identify actionable biomarkers in NSCLC are emerging to address the need for complementing or replacing traditional testing on tissue and cytological samples.

From the Rulex LLM analysis on radiogenomics, our study emerged that gene expression data alone prevail on those coming from [18F]-FDG PET/CT analyses in predicting histology. Interestingly, the best-performing rule in predicting the outcome (covering rate > 73%) combined conditions based on gene expression data and PET-derived feature (i.e. LRHGE). Though this rule - less performing than the one found when analyzing only gene expression data (Table S5) - it was noteworthy to underline that: i) the number of conditions for this rule was lower, ii) we “forced” the software to give priority to radiomic features (which indeed only came up for relapse predictions), and iii) the corresponding ROC curve gave an overall significant AUC of 0.87.

The study is limited by the retrospective design that determined using routinely acquired PET/CT images on two different scanners. However, in our previous study, we demonstrated radiomics analysis’s reliability since the predictive models performed in the same way when considering and not considering significantly different features among scanners [28]. Secondly, the outcome has been evaluated in terms of occurrence or not of disease. This evaluation may have determined a modest prognostic ability. Future analyses will take into account time information related to recurrence and overall survival.

In conclusion, the radiogenomic approach promises the extraction of relevant information regarding lung cancer histotype, aggressiveness, and progression. Gene expression may provide additional valuable information to guide patient management and follow-up. ML algorithms’ application allows to increase the efficacy of transcriptomic and radiogenomic analysis and provides novel insights into cancer biology.

Declarations

Funding: The present project was supported by the grant won by AC (IG-2016-18585) funded by the AIRC (Italian Association for Cancer Research).

Authors’ contributions: AC, MK, and MS conceptualized the study; AC, SD, GS, RA, MK, and MS designed the study; MK screened patients; EV enrolled patients; MS and MK collected the clinical data; MK, FG, IC, and MI, performed image analysis; MC and GS performed the genomic analysis; RA performed data analysis; AC, SD, MS, MK, RA, GS and NG critically interpreted results; AC, RA, MK, MS, GS, and NG drafted the paper. AC coordinated and supervised the project’s activities. All the authors critically revised the paper and approved the submitted version of the manuscript.

Availability of data and material: The manuscript represents valid work, and neither this manuscript nor one with substantially similar content under the same authorship has been published or is being considered for publication elsewhere. Arturo Chiti had full access to all the data in the study and takes responsibility for the data integrity and the accuracy of the data analysis. Raw data are available on specific request to the corresponding author.

Code availability: not applicable.

Compliance with ethical standards:

Consent to participate and consent for publication: All the patients who donated their tissue samples to the biobank signed informed consent for the usage of their data, imaging and samples for a research purpose; for the remaining patients, because of the observational and retrospective study design, a specific, informed consent was waived.

Ethics approval: The Ethics Committee of the Humanitas Clinical and Research Centre IRCCS approved the study on 18 April 2017, with the authorization number 1751.

Conflict of interest: Chiti reports a fellowship grant from Sanofi, personal fees from AAA, Blue Earth Diagnostics and General Electric Healthcare, outside the submitted work. The other authors do not report any conflict of interest.
References

1. Fitzmaurice C, Abate D, Abbasi N, Abastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncol. American Medical Association; 2019;5:1749.

2. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WEE, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016;11:39–51.

3. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iiv1–21.

4. Planchar D, Popat S, Kerr K, Novello S, Smit EF, Favre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iiv192–237.

5. Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-Based Prediction of Molecular Therapy Targets in NSCLC by Radiogenomics and AI Approaches: A Systematic Review. Diagnostics. 2020;10:359.

6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

7. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. 2018;15:353–65.

8. Kalenkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leigh NB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American society of clinical oncology endorsement of the college of American pathologists/international association for the. J Clin Oncol. 2018;36:911–9.

9. Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Eur J Nucl Med Mol Imaging. 2019;46:2656–72.

10. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.

11. Vezhnoves V, Konushin V. “GrowCut” - Interactive Multi-Label ND Image Segmentation By Cellular Automata. Proc Graph. 2004;1:150–6.

12. Stefano A, Gallivanone F, Grosso E, Messa C, Gianolli L, Gilardi C, et al. TOUCH-SUV: a Touchscreen-Assisted Tool for Quantitative, Reproducible, Clinically Feasible and Collaborative Diagnostic Reporting of Whole-Body PET-CT. Softw Eng. 2011;1:1–8.

13. Stefano A, Gallivanone F, Grosso E, Messa C, Gianolli L, Gilardi MC, et al. TOUCH-SUV: a Touchscreen-Assisted Tool for Quantitative, Reproducible, Clinically Feasible and Collaborative Diagnostic Reporting of Whole-Body PET-CT Studies. Int J Softw Eng. 2012;1:24–31.

14. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative.

15. Jansen RW, van Amstel P, Martens RM, Kool IE, Wesseling P de Langen AJ, et al. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget. Oncotarget; 2018;9:20134–55.

16. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44:1960–84.

17. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46:2656–72.

18. Gallivanone F, Interlenghi M, Canervari C, Castiglioni I. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions. J Instrum. 2016;11:C01022–C01022.

19. Vezhnoves V, Konushin V. “GrowCut” - Interactive Multi-Label ND Image Segmentation By Cellular Automata. Proc Graph. 2004;1:150–6.

20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. BioMed Central; 2014;15:550.

21. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.

22. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46:2656–72.

23. Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJAJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4:24.

24. Kirienko M, Birol M, Gelardi F, Seregni E, Chiti A, Sollini M. CNN-based approaches for PET/CT and PET/MR. Where do we stand?”. Clin Transl Imaging. 2021;
29. Groheux D, Quere G, Blanc E, Lemarignier C, Vercellino L, de Margerie-Mellon C, et al. FDG PET-CT for solitary pulmonary nodule and lung cancer: Literature review. Diagn Interv Imaging. Elsevier Masson; 2016;97:1003–17.

30. Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45:207–17.

31. Nagano K, Maeda Y, Kanasaki S, Watanabe T, Yamashita T, Inoue M, et al. Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. J Control Release. 2014;189:72–9.

32. Wang Y-T, Pan S-H, Tsai C-F, Kuo T-C, Hsu Y-L, Yen H-Y, et al. Phosphoproteomics Reveals HMG1A1, a CK2 Substrate, as a Drug-Resistant Target in Non-Small Cell Lung Cancer. Sci Rep. 2017;7:44021.

33. Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, et al. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Zheng Y, editor. Mol Biol Cell. 2015;26:3424–38.

34. Zhang M-Y, Liu X-X, Li H, Li R, Liu X, Qu Y-Q. Elevated mRNA Levels of AURKA, CDC20 and TPX2 are associated with poor prognosis of smoking related lung adenocarcinoma using bioinformatics analysis. Int J Med Sci. 2018;15:1676–85.

35. Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015;34:229–41.

36. Sui Q, Liang J, Hu Z, Chen Z, Bi G, Huang Y, et al. Genetic and microenvironmental differences in non-smoking lung adenocarcinoma patients compared with smoking patients. Transl Lung Cancer Res. Transl Lung Cancer Res; 2020;9:1407–21.

37. Airoldi I, Di Carlo E, Cocco C, Caci E, Cilli M, Sorrentino C, et al. IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions. Ng IO-L, editor. PLoS One. 2009;4:e6119.

38. Liu Z, Yang W, Yang S, Cai K. The close association between IL-12Rβ2 and p38MAPK, and higher expression in the early stages of NSCLC, indicates a good prognosis for survival. Mol Med Rep. 2018;19:817–21.

39. Kojima T, Shimazui T, Hinotsu S, Joraku A, Oikawa T, Kawai K, et al. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene. 2009;28:297–305.

40. Wisssmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenchkhaus M, et al. WiFi1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 2003;201:204–12.

41. Lu H, Jin W, Sun J, Feng L, Lan H, Shen Q, et al. New tumor suppressor CXXC finger protein 4 inactivates mitogen activated protein kinase signaling. FEBS Lett. 2014;588:3322–6.

42. Law BYK, Michelangeli F, Qu YQ, Xu S-W, Han Y, Mok SWF, et al. Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca2+-dependent mechanism. Sci Rep. 2019;9:20034.

43. Davis FM, Parsonage MT, Cabot PJ, Parat M-O, Thompson EW, Roberts-Thomson SJ, et al. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int. 2013;13:76.

44. Vansteenkiste J, Crino L, Dooms C, Douillard JY, Faitre-Finn C, Lim E, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014;25:1462–74.