Antimicrobial Activities and Chemical Compositions of \textit{Daniellia oliveri} and \textit{Leptoderris micrantha} (Fabaceae) Essential Oils From Nigeria

Moses S. Owolabi1, Akintayo Ogundajo1, Nelly Ndukwe2, Noura S. Dosoky3, and William N. Setzer3,4

Abstract

The stem bark and leaves of \textit{Daniellia oliveri} were obtained from two sites, Batsari and Zurmi, in Nigeria. Leaves of \textit{Leptoderris micrantha} were obtained from Agbagi, Nigeria. Essential oils of these plants were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components in the bark essential oil of \textit{D. oliveri} were δ-cadinene (12.8%), α-muurolene (6.7%), α-calacorene (5.9%), and caryophyllene oxide (5.5%). The major components in the leaf essential oils from Batsari and Zurmi, respectively, were humulene epoxide II (8.0% and 16.3%), caryophyllene oxide (7.4% and 12.4%), pentadecanal (8.9% and 6.0%), phytone (6.5% and 2.2%), δ-cadinene (5.3% and 3.0%), and α-muurolene (5.3% and 2.6%). The major components in the leaf essential oil of \textit{L. micrantha} were incensole (16.2%), phytone (15.4%), pentadecanal (13.7%), α-pinene (7.7%), and iso-phytol (5.2%). The essential oils were screened for antibacterial activity against \textit{Bacillus cereus}, \textit{Clostridium acetobutylicum}, \textit{Staphylococcus aureus}, \textit{Staphylococcus epidermidis}, \textit{Streptococcus pyogenes}, \textit{Pseudomonas aeruginosa}, and \textit{Serratia marcescens}, and for antifungal activity against \textit{Aspergillus fumigatus}, \textit{Aspergillus niger}, \textit{Cryptococcus neoformans}, \textit{Microsporum canis}, \textit{Microsporum gypseum}, \textit{Trichophyton mentagrophytes}, \textit{Trichophyton rubrum}, and \textit{Candida albicans}, using the microbroth dilution method. The leaf essential oils of \textit{D. oliveri} and \textit{L. micrantha} showed only marginal activity against the panel of microorganisms. However, \textit{D. oliveri} bark essential oil showed notable antifungal activity against \textit{Aspergillus niger} and \textit{Trichophyton rubrum} with a minimum inhibitory concentration of 78.1 µg/mL for each. This is the first report on the essential oil compositions of \textit{D. oliveri} and \textit{L. micrantha} from Nigeria and their antimicrobial activities.

Keywords

essential oil, sesquiterpenoids, diterpenoids, antibacterial, antifungal

Received: July 23rd, 2020; Accepted: September 19th, 2020.

\textit{Daniellia oliveri} (Rolfe) Hutch. & Dalziel (Caesalpinioideae, Fabaceae) is a deciduous tree with a flat-topped crown.1 The tree ranges from Senegal to South Sudan and Uganda, south of Sahal, where it is the most widespread tree species of the Savannah.2 In Nigeria, the tree is known as “iya” in Yoruba, “maje” in Hausa, and “abwa” in Ibo.3 In northern Nigeria, leaves of \textit{D. oliveri} are used to treat diabetes, gastrointestinal problems, diarrhea, as a diuretic and an aphrodisiac,4 the bark and the resin are used as a mosquito repellent,5 and extracts of the bark are used in Burkina Faso to treat small ruminant gastrointestinal parasites.6 The resin of \textit{D. oliveri} has yielded the labdane diterpenoids daniellic acid7 and oliveric acid,8 while triterpenoids and flavonoids have been isolated from the leaves.9

\textit{Leptoderris micrantha} Dunn (Papilionoideae, Fabaceae) is a liana with brown bark and light pink or purple flowers. The plant is native to Guinea, Ghana, and Southern Nigeria and is called “ataro oboku” or “ewe awo”3 in southwestern Nigeria. A leaf decoction is taken as an aphrodisiac and treatment for male impotence,10 and as a treatment for psychosis, dropsy, swellings, edema, gout, and pulmonary troubles.11 The leaves of \textit{L. micrantha} have been reported to contain rotenone.12 As part of our continuing investigation on essential

1Department of Chemistry, Natural Products Research Unit, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
2Department of Chemistry, Mountain Top University, Prayer City, Ogun, Nigeria
3Aromatic Plant Research Center, Lehi, UT, USA
4Department of Chemistry, University of Alabama in Huntsville, AL, USA

Corresponding Authors:
William N. Setzer, Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA.
Moses S. Owolabi, Department of Chemistry, Faculty of Science, Natural Products Research Unit, Lagos State University, Badagry-Expressway, P.M.B. 8001 LASU Post Office, Ojo, Lagos, Nigeria.

Email: wsetzer@chemistry.uah.edu
Email: moses.owolabi@lasu.edu.ng

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
oils from Nigerian medicinal plants and their biological activities, this investigation was focused on the analysis and antimicrobial properties of the leaf and bark essential oils of *D. oliveri* and the leaf essential oil of *L. micrantha*.

Results and Discussion

Chemical Compositions

D. oliveri. Leaf and stem bark essential oils of *D. oliveri* were obtained from Batsari (Katsina State) in yields of 1.54% and 1.94%, respectively. The leaf essential oil of *D. oliveri* from Zurmi (Zamfara State) was obtained in 1.62% yield. The essential oils were pale-yellow in color.

Sesquiterpenoids dominated the essential oils of *D. oliveri* (Table 1). The bark essential oil from Batsari was composed largely of δ-cadinene (12.8%), α-muurolene (6.7%), α-calacorene (5.9%), and caryophyllene oxide (5.5%). The major components in the leaf essential oils from Batsari and Zurmi, respectively, were humulene epoxide II (8.0% and 16.3%), caryophyllene oxide (7.4% and 12.4%), pentadecanal (8.9% and 6.0%), phytone (6.5% and 2.2%), δ-cadinene (5.3% and 3.0%), and α-muurolene (5.3% and 2.6%).

Menut and co-workers had previously obtained and analyzed the bark essential oils of *D. oliveri* from Benin and Burkina Faso. Although qualitatively similar, there are some notable differences between the bark essential oil from Nigeria and those from Benin and Burkina Faso. Germacrene D was one of the dominant sesquiterpenoids in the essential oil from Burkina Faso (29.5%) and a major component in the leaf essential oil from Nigeria. Conversely, caryophyllene oxide (8.0%) and α-calacorene (1.1%) showed antifungal activity against *Xenophyllum puniceum* with an MIC of 25 µg/mL and *T. rubrum* (MIC = 50 µg/mL). However, *D. oliveri* bark essential oil showed notable antifungal activity against *Aspergillus niger* and *Trichophyton rubrum* with an MIC of 78.1 µg/mL for each.

Antimicrobial Activity

The bark and leaf essential oils of *D. oliveri* (Batsari) and the leaf essential oil of *L. micrantha* have been screened for activity against a panel of 7 bacteria and 8 fungi (Table 3). The leaf essential oils of *D. oliveri* and *L. micrantha* showed only marginal activity against the panel of microorganisms with minimum inhibitory concentration (MIC) values ≥156 µg/mL. However, *D. oliveri* bark essential oil showed notable antifungal activity against *Aspergillus niger* and *Trichophyton rubrum* with an MIC of 78.1 µg/mL for each. It is difficult to speculate as to what components in the bark essential oil of *D. oliveri* may be responsible for the antifungal activity. The major components were δ-cadinene (12.8%), α-muurolene (6.7%), α-calacorene (5.9%), and caryophyllene oxide (5.5%). CARYOPHYLLENE OXIDE IS KNOWN TO SHOW ANTI-FUNGAL ACTIVITY AGAINST *Aspergillus niger* (MIC = 625 µg/mL).

*Menut and co-workers have previously obtained and analyzed the bark essential oils of *D. oliveri* from Benin and Burkina Faso.* Although qualitatively similar, there are some notable differences between the bark essential oil from Nigeria and those from Benin and Burkina Faso. Germacrene D was one of the dominant sesquiterpenoids in the essential oil from Burkina Faso (29.5%) and a major component in the leaf essential oil from Nigeria. Conversely, caryophyllene oxide (8.0%) and α-calacorene (1.1%) showed antifungal activity against *Xenophyllum puniceum* with an MIC of 25 µg/mL and *T. rubrum* (MIC = 50 µg/mL). However, *D. oliveri* bark essential oil showed notable antifungal activity against *Aspergillus niger* and *Trichophyton rubrum* with an MIC of 78.1 µg/mL for each. It is difficult to speculate as to what components in the bark essential oil of *D. oliveri* may be responsible for the antifungal activity. The major components were δ-cadinene (12.8%), α-muurolene (6.7%), α-calacorene (5.9%), and caryophyllene oxide (5.5%). CARYOPHYLLENE OXIDE IS KNOWN TO SHOW ANTI-FUNGAL ACTIVITY AGAINST *Aspergillus niger* (MIC = 625 µg/mL). As far as we are aware, neither δ-cadinene, α-muurolene, nor α-calacorene have been individually screened for antifungal activity. However, essential oils with these components have shown antifungal activity. For example, the essential oil of *Xenophyllum poposum*, with δ-cadinene (16.5%), α-muurolene (3.0%), and α-calacorene (1.1%), showed antifungal activity against *A. fumigatus* (MIC = 25 µg/mL) and *T. rubrum* (MIC = 50 µg/mL). *Teucrium montanum* essential oil, with δ-cadinene (17.2%), α-muurolene (1.7%), and α-calacorene (5.0%), was active against *Fusarium oxysporum* in a zone-of-inhibition assay.

Trichophyton rubrum is a common dermatophytic fungus and is commonly involved in tinea pedis (athlete’s foot), tinea cruris (jock itch), and tinea corporis (ringworm). *Microsporum canis* and *T. mentagrophytes* are also dermatophytic fungi responsible for ringworm. Essential oils have been examined as potential alternatives to conventional drugs for treatment of tinea infections, and the observed antifungal activity of *D. oliveri* bark essential oil suggests that it may also serve as a treatment option for athlete’s foot, ringworm, or other tinea infections.

Conclusions

This investigation has revealed the compositions of the essential oils from *D. oliveri* and *L. micrantha*, two members of the Fabaceae.
Table 1. Chemical Compositions of the Stem Bark and Leaf Essential Oils of *Daniellia oliveri* From Nigeria.

RIcalc	RIdb	Compound	Percent composition ± standard deviations
932	933	α-Pinene	1.25 ± 0.03
1347	1349	α-Cubebene	4.67 ± 0.20
1368	1367	Cyclosativene	0.69 ± 0.06
1375	1375	α-Copaene	2.98 ± 0.01
1384	1382	β-Bourbonone	0.29 ± 0.04
1387	1392	α-Cubebene	1.70 ± 0.16
1389	1390	trans-β-Elemene	0.49 ± 0.04
1401	1405	Sesquithujene	0.67 ± 0.09
1412	1413	cis-α-Bergamotene	0.62 ± 0.11
1419	1424	(E)-Caryophyllene	4.67 ± 0.17
1429	1433	β-Copaene	1.70 ± 0.16
1433	1432	trans-α-Bergamotene	0.91 ± 0.03
1442	1449	α-Himachalene	0.47 ± 0.09
1446	1447	Geranyl acetone	2.95 ± 0.08
1448	1453	trans-Muurola-3,5-diene	0.51 ± 0.02
1453	1451	(Z)-β-Farnesene	0.64 ± 0.08
1455	1454	α-Humulene	1.64 ± 0.09
1457	1455	Sesquisabinene	1.41 ± 0.09
1458	1458	allo-Aromadendrene	1.33 ± 0.03
1471	1472	trans-Cadina-1(6),4-diene	0.98 ± 0.19
1474	1478	γ-Muurolene	4.70 ± 0.37
1476	1481	(E)- β-Ionone	1.51 ± 0.06
1478	1480	γ-Himachalene	0.84 ± 0.18
1480	1480	α-Curcumene	4.56 ± 0.09
1483	1483	trans-β-Bergamotene	1.20 ± 0.19
1488	1487	β-Selinene	2.00 ± 0.05
1489	1490	γ-Amorphene	1.53 ± 0.02
1495	1497	Bicyclogermacrene	3.57 ± 0.07
1495	1497	α-Selinene	1.67 ± 0.39
1497	1497	α-Muurolene	6.71 ± 0.15
1499	1501	(Z)-α-Bisabolene	0.50 ± 0.07
1507	1508	β-Bisabolene	2.82 ± 0.03
1508	1511	β-Curcumene	0.74 ± 0.06
1512	1512	γ-Cadinene	2.33 ± 0.11
1517	1518	δ-Cadinene	12.82 ± 0.27
1520	1521	trans-Calamenene	2.72 ± 0.03
1522	1521	Zonarene	1.08 ± 0.11
1523	1523	β-Sesquiphellandrene	1.14 ± 0.13
1532	1536	trans-Cadina-1,4-diene	1.14 ± 0.08
1540	1544	α-Calacorene	5.91 ± 0.08
1554	—	Unidentifiedb	1.65 ± 0.32
1567	1566	1,5-Epoxysalval-4(14)-ene	—
1581	1587	Caryophyllene oxide	5.54 ± 0.12
1591	1593	Salvia-4(14)-en-1-one	0.89 ± 0.13
1607	1607	Humulene epoxide I	1.63 ± 0.04
1612	1614	Tetradecanol	1.77 ± 0.02
1631	1635	(Z,Z)-Geranyl linalool	—
1642	1643	Cabenenol	1.67 ± 0.20
1671	1677	Cadalene	4.45 ± 0.11
1698	1702	10-nor-Calamen-10-one	1.48 ± 0.09

(Continued)
Fabaceae growing in Nigeria. Antimicrobial screening has shown *D. oliveri* bark essential oil to have promising antifungal properties and may be useful in treating dermal fungal infections such as athlete’s foot or ringworm.

Materials and Methods

Plant Material

Daniellia oliveri leaf and stem bark samples were taken directly from source trees in 2 sites in northern Nigeria, Batsari (Katsina State, 12°45’19.84” N, 7°14’53.12” E, 472 m elevation) and Zurmi (Zamfara State, Zurmi Local Government, 12°45’59.99” N, 6°47’5.99” E, 390 m elevation). Both leaves and stem bark of *D. oliveri* were obtained in the month of April, 2019. The plants were taxonomically identified and authenticated by Namadi Sunusi. A voucher specimen (number 01186) has been deposited in the Department of Biological Sciences, Ahmadu Bello University, Nigeria. The leaves and stem bark were manually removed, air-dried in the laboratory for 7-10 days, and then pulverized using an electric blender.

Samples (450 g each) of both leaves and stem bark of *D. oliveri* were subjected to hydrodistillation in an all-glass Clevenger-type apparatus. Each of the *D. oliveri* samples and water were mixed in a ratio of 2:6, and the mixture was stirred constantly during hydrodistillation for 3 hours until no more essential oil was apparent in the distillate. The oils were dried over anhydrous sodium sulfate and stored in sealed amber vials under refrigeration (4 °C) prior to analysis.

The fresh leaves of *Leptoderris micrantha* (1.5 kg) were collected in the month of July, 2019, from Agbagi, Ikire (7°43’0” N, 4°14’0” E, 425 m elevation) in Irewole Local Government Area, Osun state, Nigeria. The plant was taxonomically identified and authenticated by Mr S. A. Odewo at the Forest Research Institute of Nigeria (FRIN) Jericho Ibadan, Oyo state, where a voucher specimen (FHI 112550) was deposited. The leaves of *L. micrantha* were air-dried in the laboratory for 5 days and then pulverized using a blender before hydrodistillation.

The essential oil from the leaves of *L. micrantha* was obtained by hydrodistillation. The plant materials (500 g) were introduced into a 5-L flask and distilled water was added until it covered the sample. Hydrodistillation was carried out twice for 3-4 hours in an all-glass modified Clevenger apparatus. The essential oil isolated in the arm of Clevenger apparatus was carefully isolated and transferred to a preweighed amber sample bottle, dried with anhydrous sodium sulfate, and stored under refrigeration (4 °C) until ready for analysis. Hydrodistillation of *L. micrantha* leaves yielded a pale-yellow essential oil in 0.53% (w/w) yield.

Table 1.

RI_{calc}	RI_{db}	Compound	Batsari bark	Batsari leaf	Zurmi leaf
1714	1715	Pentadecaline	1.98 ± 0.16	8.93 ± 0.21	6.00 ± 0.36
1836	1836	Neophytadiene	—	2.83 ± 0.74	1.92 ± 0.18
1837		Unidentified^e	1.48 ± 0.06	—	—
1840	1841	Phytoene	0.63 ± 0.08	6.53 ± 0.23	2.22 ± 0.09
1861	1861	3-Phytadiene	—	0.59 ± 0.19	0.46 ± 0.19
1879	1879	4-Phytadiene	—	1.02 ± 0.49	0.70 ± 0.16
1884	1886	(Z)-Hexadecatrienial	—	0.64 ± 0.11	0.81 ± 0.14
1889	1891	(E)-Hexadecatrienial	—	0.48 ± 0.13	0.81 ± 0.12
1892	1899	N-heptadecanin	—	0.86 ± 0.21	0.65 ± 0.02
1907	1902	(5E,9E)-Farnesyl acetone	—	2.45 ± 0.08	0.95 ± 0.15

^aRI_{calc} = Retention index calculated with respect to a homologous series of n-alkanes on a ZB-5ms column.

^bRI_{db} = Retention index from the databases.13-16

^cAverage of 3 injections of each essential oil.

^dMS (EI): 220 (8%), 164 (7%), 149 (9%), 138 (90%), 123 (31%), 121 (30%), 120 (30%), 110 (45%), 109 (62%), 105 (37%), 96 (100%), 95 (74%), 93 (30%), 82 (38%), 79 (36%), 67 (84%), 55 (38%), 53 (25%), 43 (16%), 41 (46%).

^eMS (EI): 186 (27%), 172 (18%), 171 (100%), 156 (22%), 145 (12%), 129 (12%), 119 (11%), 115 (10%), 105 (7%), 95 (8%), 91 (7%), 82 (7%), 68 (10%), 57 (8%), 55 (8%), 43 (27%), 41 (8%).
Gas Chromatographic-Mass Spectral Analysis

The essential oils were analyzed by gas chromatography-mass spectrometry as previously reported using a Shimadzu GCMS-QP2010 Ultra, electron impact mode with electron energy = 70 eV, scan range = 40-400 atomic mass units, scan rate = 3.0 scans/s, and Shimadzu GC-MS solution software v. 4.45 (Shimadzu Scientific Instruments, Columbia, MD, USA); ZB-5ms fused silica capillary GC column Phenomenex, Torrance, CA, USA; (5% phenyl)-polymethylsiloxane stationary phase, 0.25 µm film thickness; helium carrier gas, column head pressure = 552 kPa, flow rate = 1.37 mL/min; injector temperature = 260 °C, ion source temperature = 260 °C; GC oven temperature program: initial temperature = 50 °C, temperature increased 2 °C/min to 260 °C. For each sample, a 5% w/v solution in CH₂Cl₂ was prepared, 0.1 µL was injected using a split ratio of 30:1. Retention indices (RIs) were determined using a homologous series of n-alkanes. Identification of the essential oil components was carried out by comparison of mass spectral fragmentation patterns in addition to RI comparison with those reported in the databases using the LabSolutions GCMS solution software version 4.45 (Shimadzu Scientific Instruments, Columbia, MD, USA) and with matching factors >90%.

Antimicrobial Screening

The essential oils were screened for antibacterial activity against Gram-positive bacteria (Bacillus subtilis [ATCC No. 14579], Staphylococcus aureus [ATCC No. 29213], and Streptococcus pyogenes [ATCC No. 19615]) and Gram-negative bacteria (Pseudomonas aeruginosa [ATCC No. 27853], and Serratia marcescens [ATCC No. 14756]), and for antifungal activity against the molds (Aspergillus fumigatus [ATCC No. 96918], and A. niger [ATCC No. 1571]).

Table 2. Chemical Composition of the Leaf Essential Oil of Leptoderris micrantha From Nigeria.

RI_{calc}^a	RI_{db}^b	Compound	%_{ave} ± standard deviation^c
932	933	α-Pinene	7.71 ± 0.41
1022	1025	p-Cymene	1.53 ± 0.10
1027	1030	Limonene	1.17 ± 0.09
1343	1349	α-Cubebene	1.37 ± 0.03
1372	1375	α-Copaene	2.02 ± 0.14
1417	1417	(E)-Caryophyllene	1.35 ± 0.11
1419	1429	(E)-α-Ionone	2.02 ± 0.18
1444	1447	Geranyl acetone	0.52 ± 0.11
1453	1454	Geranial	0.34 ± 0.21
1473	1478	γ-Muurolene	0.33 ± 0.16
1476	1481	(E)-β-Ionone	0.39 ± 0.14
1479	1480	Germacrene D	0.62 ± 0.15
1481	1480	γ-Himachalene	0.37 ± 0.03
1487	1487	β-Selinene	0.23 ± 0.09
1491	1492	trans-Muurola-4(14),5-diene	0.20 ± 0.11
1494	1497	Bicyclogermacrene	1.16 ± 0.01
1498	1500	α-Muurolene	0.73 ± 0.09
1510	1516	Tridecanal	0.54 ± 0.13
1512	1512	γ-Cadinene	0.29 ± 0.09
1518	1518	δ-Cadinene	1.75 ± 0.13
1521	1519	trans-Calamenene	0.93 ± 0.27
1541	1544	α-Calacorene	0.76 ± 0.36
1567	1573	Tridec-(2E)-enal	0.83 ± 0.09
1578	1578	Spathulenol	0.43 ± 0.21
1584	1587	Caryophyllene oxide	1.09 ± 0.23
1614	1614	Tetradecan	2.36 ± 0.46
1630	1631	1-ε-Cubenol	0.81 ± 0.05
1646	1643	Cubenol	0.55 ± 0.15
1647	1645	γ-Muurolol	0.33 ± 0.13
1673	—	Unidentified	1.49 ± 0.07
1677	1677	Cadalene	0.41 ± 0.16
1678	1681	Mustakone	0.53 ± 0.10
1718	1715	Pentadecan	13.74 ± 0.61
1761	1758	Myristic acid	0.69 ± 0.25
1822	1818	Hexadecan	0.70 ± 0.09
1846	1841	Phytone	15.38 ± 0.63
1926	1920	Heptadecan	1.67 ± 0.24
1952	1946	iso-Phytol	5.23 ± 0.11
1962	1961	(3Z)-Cembrene A	1.14 ± 0.08
2110	2106	Phytol	2.40 ± 0.12
2145	—	Unidentified	5.74 ± 0.57
2159	2159	Incensole	16.17 ± 1.21
2348	2342	4,8,12,16-Tetramethylheptadecan-4-olide	1.52 ± 0.05

^aRI_{calc} = Retention index calculated with respect to a homologous series of n-alkanes on a ZB-5ms column.
^bRIdb = Retention index from the databases.
^cAverage of 3 injections of the essential oil.
Cryptococcus neoformans [ATCC No. 32045], Microsporum canis [ATCC No. 11621], Microsporum gypseum [ATCC No. 24102], Trichophyton mentagrophytes [ATCC No. 18748], and 1 yeast (Candida albicans [ATCC No. 18804]) using the microbroth dilution technique as previously reported.

Acknowledgments
NSD and WNS participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID
William N. Setzer https://orcid.org/0000-0002-3639-0528

References
1. Fern K. Daniellia oliveri. Useful tropical plants database. Published 2015. Accessed June 23, 2020. http://tropical.theferns.info/viewtropical.php?id=Daniellia+oliveri
2. de la Estrella M, Aedo C, Mackinder B, Velayos M. Taxonomic revision of Daniellia (Leguminosae: Caesalpinioideae). Syst Bot. 2010;35(2):296-324. doi:10.1600/036364410791638414
3. Jegede IA, Nwinyi FC, Muazzam I, Akumka DD, Njan AA. Micromorphological, anti-nociceptive and anti-inflammatory investigations of stem bark of Daniellia oliveri. African J Biotechnol. 2006;5(10):930-935.
4. Ahmadua AA, Zezi AU, Yaro AH. Anti-diarrheal activity of the leaf extracts of Daniellia oliveri Hutch and Dalz (Fabaceae) and Ficus sycomorus Miq (Moraceae). Afr J Trad Compl Alt Med. 2007;4(4):524-528. doi:10.4314/ajtcam.v4i4.31246
5. Atoh ON, Olatunji GA. Chemical composition, antioxidant and cytotoxicity potential of Daniellia oliveri (Rolfe) Hutch. Dalz. Turk J Pharm Sci. 2016;13(1):41-46.
6. Kabore A, Tamboura HH, Traore A, et al. Phytochemical analysis and acute toxicity of two medicinal plants (Anogeissus leiocarpus and Daniellia oliveri) used in traditional veterinary medicine in Burkina Faso. Arch Appl Sci Res. 2010;2(6):47-52.
7. Haecuer J, Lombard R, Lederer F, Ourisson G. Isolement et structure d’un nouveau diterpène: L’acide daniellique: Stéréochimie de l’acide daniellique. Tetrahedron. 1961;12(4):205-214.
8. Haecuer J, Hall SF, Oechslager AC, Ourisson G. The structure and stereochemistry of oliveric acid. Tetrahedron. 1970;26(14):3461-3465.
9. Ahmadu AA, Baba H, Agana A. Triterpenoids from Daniellia oliveri leaves, Hutch and Dalz (Fabaceae). Niger J Pharm Appl Sci Res. 2014;3(1):10-14.

Table 3. Antibacterial and Antifungal Activities (MIC, µg/mL) of Daniellia oliveri (Batsari) and Leptoderris micrantha Essential Oils From Nigeria.

Organism	Daniellia oliveri	Leptoderris micrantha	Positive controla	
	Bark	Leaf	Leaf	
Gram-positive bacteria				
Bacillus cereus	625	625	625	1.22
Cathebacterium acnes	313	313	313	<19.5
Staphylococcus aureus	625	1250	1250	0.61
Staphylococcus epidermidis	156	625	156	<19.5
Streptococcus pyogenes	156	625	313	<19.5
Gram-negative bacteria				
Pseudomonas aeruginosa	313	625	313	1.22
Serratia marcescens	625	625	625	<19.5
Molds				
Aspergillus fumigatus	156	313	156	<19.5
Aspergillus niger	78	313	156	1.56
Cryptococcus neoformans	313	313	313	0.78
Microsporum canis	156	313	313	<19.5
Microsporum gypseum	313	313	313	<19.5
Trichophyton mentagrophytes	156	156	313	<19.5
Trichophyton rubrum	78	313	313	<19.5
Yeast				
Candida albicans	313	313	313	1.56

Abbreviation: MIC, minimum inhibitory concentration.
aGentamicin for bacteria, amphotericin B for fungi.

16888], Cryptococcus neoformans [ATCC No. 32045], Microsporum canis [ATCC No. 11621], Microsporum gypseum [ATCC No. 24102], Trichophyton mentagrophytes [ATCC No. 18748], and Trichophyton rubrum [ATCC No. 28188], and 1 yeast (Candida albicans [ATCC No. 18804]) using the microbroth dilution technique as previously reported.

Acknowledgments
NSD and WNS participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID
William N. Setzer https://orcid.org/0000-0002-3639-0528

References
1. Fern K. Daniellia oliveri. Useful tropical plants database. Published 2015. Accessed June 23, 2020. http://tropical.theferns.info/viewtropical.php?id=Daniellia+oliveri
2. de la Estrella M, Aedo C, Mackinder B, Velayos M. Taxonomic revision of Daniellia (Leguminosae: Caesalpinioideae). Syst Bot. 2010;35(2):296-324. doi:10.1600/036364410791638414
3. Jegede IA, Nwinyi FC, Muazzam I, Akumka DD, Njan AA. Micromorphological, anti-nociceptive and anti-inflammatory investigations of stem bark of Daniellia oliveri. African J Biotechnol. 2006;5(10):930-935.
4. Ahmadua AA, Zezi AU, Yaro AH. Anti-diarrheal activity of the leaf extracts of Daniellia oliveri Hutch and Dalz (Fabaceae) and Ficus sycomorus Miq (Moraceae). Afr J Trad Compl Alt Med. 2007;4(4):524-528. doi:10.4314/ajtcam.v4i4.31246
5. Atoh ON, Olatunji GA. Chemical composition, antioxidant and cytotoxicity potential of Daniellia oliveri (Rolfe) Hutch. Dalz. Turk J Pharm Sci. 2016;13(1):41-46.
6. Kabore A, Tamboura HH, Traore A, et al. Phytochemical analysis and acute toxicity of two medicinal plants (Anogeissus leiocarpus and Daniellia oliveri) used in traditional veterinary medicine in Burkina Faso. Arch Appl Sci Res. 2010;2(6):47-52.
7. Haecuer J, Lombard R, Lederer F, Ourisson G. Isolement et structure d’un nouveau diterpène: L’acide daniellique: Stéréochimie de l’acide daniellique. Tetrahedron. 1961;12(4):205-214.
8. Haecuer J, Hall SF, Oechslager AC, Ourisson G. The structure and stereochemistry of oliveric acid. Tetrahedron. 1970;26(14):3461-3465.
9. Ahmadu AA, Baba H, Agana A. Triterpenoids from Daniellia oliveri leaves, Hutch and Dalz (Fabaceae). Niger J Pharm Appl Sci Res. 2014;3(1):10-14.
10. Famobuwa OE, Oloyede HO, Bello IJ. Synergistic antioxidant and anti-bacterial activities of *Crouton zambesicus* Müll.-Arg. (Euphorbiaceae) *Leptoderris microantha* Dunn (Fabaceae) and *Carpolobia latex* G. Don (Polygalaceae). *Int J Pharm Sci Res*. 2016;1(4):5-8.

11. Sonibare MA, Oke TA, Soladoye MO. A pharmacobotanical study of two medicinal species of Fabaceae. *Asian Pac J Trop Biomed*. 2014;4(2):131-136. doi:10.1016/S2221-1691(14)60221-5

12. Sonibare MA, Soladoye MO, Subuloye TO. Ethnobotanical survey of anti-psychotic plants in Lagos and Ogun states of Nigeria. *Eur J Sci Res*. 2008;19(4):634-644.

13. Adams RP. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th ed. Allured Publishing; 2007.

14. Mondello L. *FFNSC 3*. Shimadzu Scientific Instruments; 2016.

15. National Institute of Standards and Technology. *NIST17*

16. Satyal P. *Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils* [Ph.D Thesis]. University of Alabama in Huntsville; 2015.

17. Menut C, Lamaty G, Bessière JM, et al. Aromatic plants from tropical West Africa. II. Volatile constituents of *Daniellia oliveri* (Rolfe) Hutch & Dalz. from Benin and Burkina Faso. *J Essent Oil Res*. 1994;6(6):647-649. doi:10.1080/10412905.1994.9699362

18. Laffont-Schwob I, Viano J, Bessière J-M, Haddad C. Comparison of essential oil composition of *Daniellia oliveri* (Rolfe) Hutch et Dalz. (Caesalpiniaeaceae) leaves from Senegal and Ivory Coast. *J Essent Oil Res*. 2008;20(2):155-157.

19. Raju G, Subash N, Maridass M. GC-MS analysis of chemical constituents and antibacterial activity of *Indigofera aspalathoides* DC stem. *Nat Pharm Technol*. 2013;3(2):1-5.

20. Al-Quhah MA. Chemical composition of essential oil from *Jordanian Lapinus varius* L. *Arab J Chem*. 2013;6(2):225-227.

21. Lopez EM, Craft JD, Setzer WN. Volatile composition of *Vicia caroliniana* growing in Huntsville, Alabama. *Am J Essent Oils Nat Prod*. 2017;5(1):8-10.

22. Schmidt JM, Noleto JA, Vogler B, Setzer WN. Abaco bush medicine: chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. *J Herbs Spices Med Plants*. 2007;12(3):43-65. doi:10.1300/J044v12n03_04

23. González AM, Tracana MI, Amani SM, et al. Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of *Xenophyllum paposum*. *Nat Prod Commun*. 2012;7(12):1663-1666. doi:10.1177/1934578X120701230

24. Vukovic N, Milosevic T, Suk dolak S, Solujic S. Antimicrobial activities of essential oil and methanol extract of *Tectura montana*. *Evid Based Complement Alternat Med*. 2007;4(Suppl 1):17-20. doi:10.1093/ecam/nem108

25. Zaia N, Rebell G. Chronic dermatophytosis caused by *Trichophyton rubrum*. *J Am Acad Dermatol*. 1996;35(3 Pt 2):S17-S20. doi:10.1016/S0190-9622(96)90065-1

26. Gorani A, Schiera A, Oriani A. Case report. Widespread tinea corporis due to *Trichophyton rubrum*. *Mycoses*. 2002;45(5-6):195-197. doi:10.1046/j.1439-0507.2002.00759.x

27. Gupta AK, Chaudhry M, Elewski B. Tinea corporis, tinea cruris, tinea nigra, and piedra. *Dermatol Clin*. 2003;21(3):395-400. doi:10.1016/S0733-8635(03)00031-7

28. Jeske J, Lupa S, Seneczko F, Glowacka A, Ochecka-Szymańska A. Epidemiology of dermatomycoses of humans in Central Poland. Part V. Tinea corporis. *Mycoses*. 1999;42(11-12):661-663. doi:10.1016/j.mycott.2019.00533.x

29. Cafarchia C, Romito D, Capelli G, Guillor J, Ortranto D. Isolation of *Microsporum canis* from the hair coat of pet dogs and cats belonging to owners diagnosed with *M. canis* tinea corporis. *Vet Dermatol*. 2006;17(5):327-331. doi:10.1111/j.1365-3164.2006.00533.x

30. Kishore N, Mishra AK, Chansouria JPN. Fungitoxicity of essential oils against dermatophytes. *Mycoses*. 2020;63(5-6):211-215. doi:10.1111/1439-0507.1993;1901400139

31. Orchard A, van Vuuren SF, Vlijmoen AM. Commercial essential oil combinations against topical fungal pathogens. *Nat Prod Commun*. 2019;14(1):151-158. doi:10.1177/1934578X1901400139

32. Orchard A, van Vuuren S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid Based Complement Alternat Med. 2017;2017:1-92. doi:10.1155/2017/4517971

33. Owolabi MS, Ogunjado AL, Dosoky NS, Setzer WN. Chemical composition and antimicrobial potential of essential oils of leaf and stem bark of *Haematomatopsis borerti* Hook. f. (Anacardiaceae). *J Essent Oil Bear Plants*. 2020;23(3):583-593. doi:10.1080/0972060X.2020.1787688

34. Van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *J Chromatogr*. 1963;11:463-471. doi:10.1016/S0021-9673(01)80947-X

35. Sahm DH, Washington JA. Antibacterial susceptibility tests: Dilution methods. In: Balows A, Hausler WJ, Herrmann KL, Isenberg HD, Shamody HJ, eds. Manual of Clinical Microbiology. 5th ed. American Society for Microbiology; 1991.

36. EUCAST. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. *Clin Microbial Infect*. 2003;9(8):ix-0.

37. Setzer MC, Setzer WN,Jackes BR, Gentry GA, Mortarity DM. The medicinal value of tropical rainforest plants from Paluma, North Queensland, Australia. *Pharm Biol*. 2001;39(1):67-78.

38. Satyal P, Paudel P, Poudel A, Dosoky NS, Pokharel KK, Setzer WN. Bioactivities and compositional analyses of *Cinnamomum* essential oils from Nepal: *C. camphora*, *C. tamala*, and *C. glaucescens*. *Nat Prod Commun*. 2013;8(12):1777-1784. doi:10.1177/1934578X1300801232