Bridging the Chiral symmetry and Confinement with Singularity: Bag vs Holography

Yoon-Seok Choun, Sang-Jin Sin

aDepartment of Physics, Hanyang University, 222 Wangshimni-ro, Sungdong-gu, Seoul, 04763, South Korea

E-mail: ychoun@gmail.com, sangjin.sin@gmail.com

Abstract: We show that a holographic abelian Higgs model leads us to the Heun’s equation, which is the same one derived for the bag model studied by Lichtenberg et.al. The correspondence between two models resembles the AdS/CFT dictionary. The spectrum follows linear confinement for zero quark mass, while it is highly non-linear for finite quark mass. It can be traced back to the difference in the singularity class of equation of motion made by the quark mass. It suggests that the origin of the chiral symmetry is tied to the dynamics of color confinement.

Keywords: Holography, Weyl Semi-Metal, Topological Dipole
1 Introduction

One of the guiding picture of the low energy quantum chromo-dynamics (QCD) is that the vacuum works as a dual superconductor [1, 2] so that confined color flux forms a QCD string whose spectrum is linear in quantum number n,

$$\alpha' m^2 = n + \beta,$$

which is called the Regge trajectory or linear confinement. Another guiding symmetry principle for the low energy hadron dynamics is the chiral symmetry, for which the quarks mass should vanish at least approximately. Indeed, the current quark mass contributes less than 1% in counting the proton mass. However, little is understood whether these two are independent or related. While the confinement is certainly consequence of the QCD dynamics, the quark mass is usually considered as a initial condition and the its smallness is considered as a fine tuning problem. If we can relate the two then we would be able to understand the fine tuning problem in terms of the dynamics and two guiding principle would be combined into one.

In a semi-classical bag model of Lichtenberg et.al[4] for the meson, it has been known that the spectrum follows the Regge trajectory if the quark mass vanishes[5]. In a recent paper [3], the spectrum for non-vanishing quark mass was studied and found to be highly
non-linear. Since the model is consistent with the experiment only for the vanishing quark mass and the linear mass spectrum is tied to the dynamics of confinement, one may wonder whether the chiral symmetry is consequence of the confinement dynamics. However, one may also wonder if this is a feature of the specific model or true essence of the QCD dynamics. Therefore it would be nice if one can find such linked feature in other model or other context of reasoning.

In this paper, we consider a holographic fermion in AdS$_4$ interacting with a scalar in a symmetry broken phase. We will find that the Dirac equation in AdS space can be mapped to the Heun’s equation we considered earlier [3] in Bag model in flat space in spite of the difference of the space in which the systems are defined. Furthermore, it turns out that the correspondence between two models looks like a Dictionary of AdS/CFT. For example, the current quark mass in bag model should correspond to the source term of the scalar in holographic model and the string tension corresponds to the scalar condensation, which is precisely the known AdS/CFT dictionary.

We will see that in the presence of the source term, the holographic model has non-linear spectrum also as was the case for the Bag model. Such dynamical difference can be traced back to the difference of the singularity structure of the equation of motion caused by the presence of the quark mass or scalar source. Namely, the equation of motion which was hypergeometric type in the absence of the quark mass, becomes a Heun’s equation in the presence of quark mass. The singularity of the latter is one higher order than that of the former. Such higher order singularity requests higher regularity condition. As a consequence, not only the energy but also some other parameter of the theory should be quantized, which is rather surprising. Such extra quantization is the reason why the hadron spectrum in both models becomes highly non-linear in the presence of the current quark mass. However, such spectrum is not what is observed in the nature and this should be somehow forbidden by the dynamics of the confinement.

2 Holographic models with a scalar interaction

2.1 Holographic Abelian Higgs model with scalar source

For the meson spectrum, we consider the holographic abelian Higgs model in the fixed AdS$_{d+1}$ of radius $L = 1$. The action is given by

$$S = \int d^{d+1}x \sqrt{-g} \left(-\frac{1}{4} F_{\mu\nu}^2 - |D_\mu \Phi|^2 - m_\Phi^2 |\Phi|^2 \right),$$

(2.1)

where $D_\mu = \nabla_\mu - iqA_\mu$ is the covariant derivative. The metric is

$$ds^2 = (dz^2 + \eta_{\mu\nu} dx^\mu dx^\nu)/z^2, \quad \text{with } \eta^{00} = -1.$$

(2.2)

Bulk mass m_Φ^2 is given in terms of the conformal dimension of the dual operator: $m_\Phi^2 = \Delta(\Delta - d)$. We will fix it such that $\Delta = 2$, so that $m_\Phi^2 = -2$ in $d = 2 + 1$ and $m_\Phi^2 = -4$
for $d = 3 + 1$. For the latter case, $\Delta_{qq} = 2$ is realized in 4 at the lower boundary of conformal window of N_f/N_c [6]. In the rest of this paper, we consider 2+1 case only. The field equation then gives

$$\Phi = M_0 z + M z^2, \text{ in AdS}_4,$$

which is an exact solution of the scalar field equation in the probe limit. In [7], the case $M_0 = 0$ case was considered. In this paper, we consider general $M_0 \neq 0$ case where source is also included. The Maxwell equation then is given by

$$\nabla^\mu F_{\mu \nu} = J_\nu$$

and for the real solution of Φ, the current is simplified to the London equation similarly to the superconductivity,

$$J_\mu = \Phi^2 A_\mu.$$

For the transverse components with $\vec{k} \cdot \vec{A} = 0$, it can be rewritten as Schrödinger equation [8] via $\Psi = \frac{A_x}{\sqrt{d-3/2}}$:

$$-\Psi''_n + V \Psi_n = E_n \Psi_n,$$

$$V = p^2 - \frac{1}{4} + |\Phi|^2, \text{ where } p = (d-2)/2,$$

and $E_n = \omega^2 - k^2 \equiv m_n^2$. Notice that for $d = 3$,

$$V = (M z + M_0)^2.$$

The $M_0 = 0$ case was analyzed previously in [7, 9] with the result $m_n^2 = M^2(4n + 3)$ for vector mesons.

2.2 Fermion with scalar interaction in holography

For the baryon spectrum, we consider following fermion action in AdS space.

$$S_\psi = \int d^{d+1}x \sqrt{-g} \bar{\psi} \left(\Gamma^\mu D_\mu - m - \Phi \right) \psi,$$

where $D_\mu = \partial_\mu + \frac{1}{2} \omega_{ab\mu} \Gamma^{ab}$. In this paper, we consider only $d = 3$. The equation of motion of (2.9) is given by

$$\left(\Gamma^\mu D_\mu - m - \Phi \right) \psi = 0,$$

which can be written as a Schrödinger form Eq.(2.6) with

$$V(z) = \frac{m(m-1) + \Phi^2}{z^2} = \frac{m(m-1)}{z^2} + (M z + M_0)^2.$$

For $M_0 = 0$, the above equations can be shown to have a linear spectrum [7], for example for the fermion case, $E_n = m_n^2 - 2M(m + \frac{1}{2})$. We interpret m_n^2 as the constituent quark mass inside a Hadron in confining phase and it was shown that [7]

$$m_n^2 = 4M^2(n + m + 1/2).$$

For $M_0 \neq 0$, we will show in the next section, the above equations of motion will lead to a type of Heun’s equation.
3 Heun’s equation and regularity condition

We first consider the confluent Heun’s equation\[10–12\] in the context of radial Schrödinger equation
\[
- \left(\frac{1}{r} \frac{d^2}{dr^2} r \right) + V(r) \right] R(r) = E R(r) \tag{3.1}
\]
where \(V\) is the potential given by
\[
V(r) = c^2 r^2 + br - \frac{a}{r} + \frac{L(L+1)}{r^2}. \tag{3.2}
\]
Factoring out the behaviour near \(r = 0\) by \(R(r) = r^L f(r)\), above equation becomes
\[
\frac{d^2 f(r)}{dr^2} + \frac{2(L+1)}{r} \frac{df(r)}{dr} + \left(E - c^2 r^2 - br + \frac{a}{r} \right) f(r) = 0. \tag{3.3}
\]
Factoring out the behaviour near \(\infty\) by \(f(r) = \exp\left(-\frac{c^2 r^2}{2} - \frac{b}{2x} r\right) y(r)\) and redefining \(\rho = \sqrt{cr}\), we get
\[
\rho \frac{d^2 y}{d\rho^2} + \left(-2\rho^2 - b_0 \rho + 2(L+1) \right) \frac{dy}{d\rho} + \left((\mathcal{E} + b_0^2/4 - (2L+3)) \rho + a_0 - b_0(L+1) \right) y(\rho) = 0 \tag{3.4}
\]
where \(a_0 = a/c^3/2, b_0 = b/c^3/2\) and \(\mathcal{E} = E/c\), which is a bi-confluent Heun (BCH) equation whose canonical form is
\[
\rho \frac{d^2 y}{d\rho^2} + \left(\mu \rho^2 + \varepsilon \rho + \nu \right) \frac{dy}{d\rho} + (\Omega \rho + \varepsilon \omega) y = 0 \tag{3.5}
\]
\(\mu, \varepsilon, \nu, \Omega\) and \(\omega\) are parameters. It has a regular singularity at the origin and an irregular singularity at the infinity of rank 2 [10–12]. Substituting \(y(\rho) = \sum_{n=0}^\infty d_n \rho^n\) into (3.5), we obtain the following recurrence relation:
\[
d_{n+1} = A_n d_n + B_n d_{n-1} \quad \text{for } n \geq 1, \tag{3.6}
\]
where
\[
A_n = -\frac{\varepsilon(n+\omega)}{(n+1)(n+\nu)}, \quad B_n = -\frac{\Omega + \mu(n-1)}{(n+1)(n+\nu)}.
\tag{3.7}
\]
and \(d_1 = A_0 d_0\) for \(n = 0\). Comparing (3.4), (3.5), the former is a special case of the latter with \(\mu = -2, \varepsilon = -b_0, \nu = 2L+2\) and
\[
\omega = L + 1 - \frac{a_0}{b_0}, \quad \Omega = \mathcal{E} + \frac{b_0^2}{4} - (2L+3). \tag{3.8}
\]
Unless \(y(\rho)\) is a polynomial, \(R(r)\) is divergent as \(\rho \to \infty\). Therefore we need to impose regularity conditions by which the solution is normalizable. Through (3.6), we can see that a series expansion becomes a polynomial of degree \(N\) if we impose two conditions
\[
B_{N+1} = d_{N+1} = 0 \quad \text{where } N \in \mathbb{N}_0. \tag{3.9}
\]
Eq. (3.9) is sufficient to give
\[d_{N+2} = d_{N+3} = \cdots = 0 \] successively and the solution to eq.(3.4) becomes a polynomial of order \(N \),
\[y_N(\rho) = \sum_{i=0}^{N} d_i \rho^i. \] (3.10)

Whether imposing both of the equations in eq(3.9) is necessary or not was studied numerically in our previous paper [3].

In general, \(d_{N+1} = 0 \) will define a \(N \)-th order polynomial \(P_{N+1} \) in \(a_0, b_0 \), so that Eq. (3.9) gives
\[E_{N,L} = 2N + 2L + 3 - b_0^2/4, \]
\[P_{N+1}(a_0, b_0) = 0. \] (3.11)

where the first comes from \(B_{N+1} = 0 \) or equivalently \(\Omega = -\mu N = 2N \).

Below we give a few lower order polynomial in \(a_0 \) and \(b_0 \) which will be used in next section.

\[
\begin{align*}
P_1(a_0, b_0) &= b_0(L + 1) - a_0, \\
P_2(a_0, b_0) &= (b_0(L + 1) - a_0)(b_0(L + 2) - a_0) - 4(L + 1), \\
P_3(a_0, b_0) &= (L + 1)(L + 2)(L + 3)b_0^3 - (3L(L + 4) + 11)a_0b_0^2 \\
&\quad + \left(3(L + 2)a_0^2 - 4(L + 1)(4L + 9)\right)b_0 - a_0^3 + 4(4L + 5)a_0, \\
P_4(a_0, b_0) &= (L + 1)(L + 2)(L + 3)(L + 4)b_0^4 - 2(2L + 5)(L(L + 5) + 5)a_0b_0^3 \\
&\quad + \left((6L(L + 5) + 35)a_0^3 - (L + 1)(5L(2L + 11)) + 72\right)b_0^2 \\
&\quad - \left(2(2L + 5)a_0^3 + 4(20L(L + 4) + 69)a_0\right)b_0 - 20(2L + 3)a_0^2 \\
&\quad + 144(L + 1)(L + 2), \\
P_5(a_0, b_0) &= (L + 1)(L + 2)(L + 3)(L + 4)(L + 5)b_0^5 \\
&\quad - \left(5L(L + 6)(L(L + 6) + 15) + 274\right)a_0b_0^4 \\
&\quad + \left(5(L + 3)(2L(L + 6) + 15)a_0^2 \\
&\quad - 4(L + 1)(L(5L(4L + 39) + 607) + 600)\right)b_0^3 \\
&\quad - \left(5(2L(L + 6) + 17)a_0^3 - 4(L(15L(4L + 31) + 1096) + 763)a_0\right)b_0^2 \\
&\quad + \left(5(L + 3)a_0^3 - 12(5L(4L + 19) + 98)a_0^2 \\
&\quad + 32(L + 1)(16L(2L + 11) + 225)\right)b_0 \\
&\quad + 20(4L + 7)a_3 - 32(16L(2L + 7) + 89)a_0 - a_5. \\
\end{align*}
\] (3.12)

4 Extra Quantization

We have seen that two parameters \(a_0, b_0 \) should be quantized for polynomial solutions in the modified BCH equation [3]. Here, we consider the case of quantization of \(a_0 \) and \(E \).
We examine a few low order N. If we choose $d_0 = 0$ the whole series solution vanishes. So we set $d_0 = 1$ for simplicity.

1. For $N = 0$, Eq. (3.9) gives $B_1 = \frac{-\Omega}{2(2L+3)} = 0$ and $d_1 = A_0 d_0 = 0$. Therefore for a_0 and b_0 satisfying

\[P_1(a_0, b_0) = b_0(L + 1) - a_0 = 0, \]

we have $E = 2L + 3 - \frac{b_0^2}{4}$. The polynomial for its eigenfunction is $y_0(\rho) = 1$.

2. For $N = 1$, $B_2 = \frac{-\Omega + 2}{3(2L+4)}$ and $d_2 = A_1 d_1 + B_1 d_0 = (A_0 A_1 + B_1) d_0$. Requesting $B_2 = d_2 = 0$, we get a relation between a_0 and b_0, we get

\[P_2(a_0, b_0) = 0, \]

which defines a hyperbola in a_0, b_0 such that there are always two branches because the discriminant is always positive, $D = b_0^2 + 16(L+1) > 0$: for a given b_0, a_0 always has real solutions: $2a_0 = b_0(2L + 3) \pm \sqrt{b_0^2 + 16(L+1)}$ and $E = 2L + 5 - \frac{b_0^2}{4}$ as usual. In this case, $y_1(\rho) = 1 + d_1 \rho$ with $d_1 = \left(-b_0 \pm \sqrt{b_0^2 + 16(L+1)} \right)/(4L + 4)$.

3. For $N = 2$, the contour plot of $P_3 = 0$ is given in figure 1. For any given a_0, three different b_0’s exist. Apart from the region where $a_0, b_0 \sim O(1)$ the curves are approximately linear. Such linearity can be confirmed by drawing the same figure by including asymptotic region as we can see in figure 2, where we used $L = 0$. Notice that the slope of the lines are $b_0/a_0 = 1, 1/2, 1/3$. It is also worthwhile to note that the medium curve with asymptotic slope $1/2$ pass through $a_0 = 0, b_0 = 0$. This happens for all even integer N.

4. Similar story holds for $N = 3$ using the equation $P_4 = 0$. See figure 3 and figure 4, where we also used $L = 0$ and the slope of the lines can be read off to give $b_0/a_0 = 1, 1/2, 1/3, 1/4$.

For general N, we can show that for large enough a_0, b_0, following relation holds.

\[\frac{a_0}{b_0} = \frac{ac}{b} = L + 1 + K, \]

for $K = 0, 1, \ldots, N$.

This means that for any L, there are $N+1$ branches of solution satisfying eq. (3.11). This is the quantization of a_0 (or b_0) for the given value of b_0 (or a_0). Such extra quantization is an interesting consequence of the Heun’s differential equation. For the hypergeometric type, the differential equation is reduced to two term recurrence relation so that we need to fine tune only one parameter, the energy, to have a normalizable solution. For the Heun’s equation, its higher singularity requests higher regularity: the three term recurrence relation is not reduced to the two term, which in turn leads to an extra quantization of system parameter apart from the energy eigenvalue.
4.1 Quantization of a_0, b_0 in the non-linear regime

In the previous section, we analized the asymptotic regime of the potential parameter a_0, b_0 and learned that there are extra quantization given by $a_0/b_0 = L + 1 + K$, for integer $K \leq N$. Here we consider the regime where both $|a_0|, |b_0| \leq O(1)$. If we set $a_0 = 0$, the allowed values of b_0 are given by the crossing points of $N + 1$ branches of the $P_{N+1} = 0$ with the vertical line $a_0 = 0$. We call such fixing b-quantization. See figure 5. Previously we examined the solutions numerically and found that due to the N, L dependence of b_0, \mathcal{E} is NOT linear in N.

On the other hand, if we fix b_0 to the value we want, say 1, the allowed values of a_0 are given by the crossing points of $N + 1$ branches of the $P_{N+1} = 0$ with the horizontal
Figure 5: Definition of a-(b-) quantization. It depends on whether we fix b or a.

Line $b_0 = 1$. We call such fixing as a-quantization. See figure 5. In this case, \mathcal{E} is linear in N, L and does not depend on a quantized value of a_0 as far as it is given by the quantized value that depends on N, L and b_0. Table 1 tells us all possible roots of a_0’s for each L when $N = 4$ and $b_0 = 1$. Similarly, Table 2 shows us all possible roots of a_0’s for each L when $N = 5$ and $b_0 = 1$. As you can see easily from the table, most of the quantized values are in the linear regime where $a_0 \approx (N + L + K)b_0$.

a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	
$L=0$	-7.50342	-2.26852	2.5487	7.93985	14.2834
$L=1$	-9.22584	-2.68053	3.72372	10.4374	17.7452
$L=2$	-10.4722	-2.80774	4.79946	12.6207	20.8598
$L=3$	-11.4284	-2.78208	5.84226	14.6311	23.7371
$L=4$	-12.1842	-2.65493	6.8699	16.5287	26.4406

Table 1: Roots of a_0 for $b_0 = 1$, $N = 4$.

From the explicit calculation, we found the following pattern: List N+1 a_0 in the increasing order so that let a_{0K} is K-th a_0, $K = 0, 1, \ldots, N$. Then the polynomial solution for the a_{0K} has K nodes. The number of nodes does not depend on L.

Figs. 6 shows us polynomials y_4 with a_{0K}, $K = 0, 1, 2, 3, 4$ has K nodes in $N = 4$ in $\rho > 0$ regime. We fixed $L = 0$ and $b_0 = 1$. Figs. 7 shows us polynomials y_5 with a_{03} has 3 nodes in $N = 5$ in $\rho > 0$ regime independent of the value of $L = 0, 1, 2, 3, 4, 5$. There are two nodes in the unphysical region $\rho < 0$.
Table 2: Every roots of a_0 for $b_0 = 1$, $N = 5$.

L = 0	a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	a_{05}
-10.5701	-4.75187	0.363597	5.60184	11.6841	18.6724	
-12.7643	-5.82539	0.801156	7.5262	14.7189	22.5434	
-14.4605	-6.49042	1.30825	9.19107	17.3924	26.0593	
-15.834	-6.93228	1.86483	10.7358	19.8467	29.319	
-16.9777	-7.22567	2.45866	12.2089	22.1509	32.3849	

Figure 6: Polynomial y_4 for each a_{0K}, K = 0, · · · , 4. There are K nodes for a_{0K}. Here $N = 4$, $L = 0$ and $b_0 = 1$.

Figure 7: Polynomials y_5 for various a_{03} with $N = 5$ & $L = 0,1, · · · , 5$. $b_0 = 1$. There are 3 nodes in positive ρ region regardless of L.

5 Bag model vs Holography

In this section, we will see that two very different physics leads to the same Heun’s equation studied in the previous section. The first one is the bag model studied in [3, 5] and the other is the holographic model.

5.1 Quark-antiquark system with only scalar interaction

A spin-free Hamiltonian with scalar interaction for the meson ($q\bar{q}$) system satisfy the equation [3–5]

$$\left[\left(m + \frac{1}{2} br \right)^2 + P^2 + \frac{L(L+1)}{r^2} \right] R(r) = \frac{E^2}{4} R(r)$$

(5.1)

where we used $\vec{p}^2 = P^2 + \frac{L(L+1)}{r^2}$ with $P_r = -i \frac{1}{r} \partial_r r$ and L is the angular momentum and b is the string tension. Introducing the reduced radial wave function $u(r) = r R(r)$ and
arrive at
\[-u'' + Vu = \frac{E^2}{4} u, \tag{5.2}\]
\[V = \left(m + \frac{1}{2}br \right)^2 + \frac{L(L+1)}{r^2}. \tag{5.3}\]

For \(m = 0\), the spectrum was obtained in [5] and it is linear in quantum number:
\[E^2 = 4b(N + L + 3/2). \tag{5.4}\]

For \(m \neq 0\), \(b\) cannot be an arbitrary value. It has to be determined by \(b\)-quantization because \(a = 0\) from (3.2) and (5.3). In [3], the value \(b\) for given \(N, L\) was determined numerically, which can be approximately summarized by
\[b \approx 8.72m^2 \left(\frac{4}{7}N + L + \frac{10}{7} \right) \frac{1}{N^2 + \frac{1}{5}N - \frac{1}{30}}, \tag{5.5}\]

which is non-linear in quantum number \(N\) or \(L\).

At the first looking, it is rather surprising that presence of one more parameter \(m\) changes the spectrum so much. As we described earlier, this is because the quark mass is encoded such that its presence changes the singularity type of the equation of motion. Non-vanishing quark mass gives spectrum which is inconsistent with the confinement of color which tied to the Regge trajectory.

5.2 Holographic model

Finally we come back to the holographic theory whose equation of motion can be written as
\[\left[-\frac{d^2}{dz^2} + V(z) \right] u(z) = Eu(z) \tag{5.6}\]

where
\[V(z) = (M_0 + Mz)^2 + \frac{m(m-1)}{z^2}. \tag{5.7}\]

where \(0 \leq z < \infty\) and \(m \in [-1/2, 0]\). If replace \(L \to -m\) and \(rR(r) \to u(z)\) in (3.1), it turns to be (5.6). Now, comparing (5.3) with (5.7), two equations are equivalent to each other with correspondence
\[m \leftrightarrow M_0, \quad b/2 \leftrightarrow M, \quad \text{and} \quad E^2/4 \leftrightarrow E_n. \tag{5.8}\]

It is quite remarkable that two completely different approaches to the Hadron gave almost identical differential equation. Even the spaces in which the differential equations are setup are different. Furthermore above mapping is not just resembling but actually is a dictionary of the AdS/CFT. Indeed, the quark mass corresponds to the source term in the bulk and the condensation corresponds to the string tension.

Notice here also in the presence of the scalar source \(M_0\), the resulting constituent quark masses or Hadron masses are not consistent with the Linear spectrum tied to the color confinement.
6 Conclusion

In this paper, we consider the holographic hadrons in 2+1 dimension as toy models. The spectrum follows linear confinement with zero quark mass, while it is highly non-linear with finite quark mass. The origin of such non-linearity can be traced to the difference in the singularity class of equation of motion that is made by the quark mass. For spinless quarks, 3+1 dimensional bag model of Lichtenberg et.al has the same behavior.

Although it is still too early to say that this is an intrinsic property of light hadrons, the agreement of models of different category suggests that the small quark mass is tied to the confinement dynamics of QCD. It also suggests that the presence of non-zero quark mass is non-trivial from the low energy point of view, because color flux would not allow the quark mass. It could be that the finite quark mass is phenomena of high energy only where neither bag model nor holography is relevant. The real 3+1 dimensional physics is more subtle because the equation of motion involve the logarithmic potential. We want to comeback to this problem in near future.

Acknowledgements

We appreciate the useful discussion with Eunseok Oh and the hospitality of the APCTP during the workshop “Quantum Matter from the Entanglement and Holography”. This work is supported by Mid-career Researcher Program through the National Research Foundation of Korea grant No. NRF-2016R1A2B3007687.

References

[1] S. Mandelstam, Vortices and Quark Confinement in Nonabelian Gauge Theories, Phys. Rept. 23 (1976) 245–249.
[2] G. ’t Hooft, Gauge Theory for Strong Interactions, in New Phenomena in Subnuclear Physics: Proceedings, International School of Subnuclear Physics, Erice, Sicily, Jul 11-Aug 1 1975. Part A, p. 0261, 1975.
[3] Y. S. Choun and S. J. Sin, “Why the quark mass is so small: the chiral symmetry and Heun’s equation,” arXiv:1909.07215 [hep-ph].
[4] Lichtenberg, D. B., Namgung, W., Predazzi, E. and Wills, J. G., “Baryon masses in a relativistic quark-diquark model,” Phys. Lett. 48, 1653(1982).
[5] Gürsey, F., Comments on hardronic mass formulae, in A. Das., ed., From Symmetries to Strings: Forty Years of Rochester Conferences, World Scientific, Singapore, (1990).
[6] D. B. Kaplan, J.-W. Lee, D. T. Son and M. A. Stephanov, Conformality Lost, Phys. Rev. D80 (2009) 125005, [0905.4752].
[7] E. Oh and S. J. Sin, “Holographic Abelian Higgs model and the Linear confinement,” arXiv:1909.13801 [hep-ph].
[8] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, *Linear confinement and AdS/QCD*, Phys. Rev. D74 (2006) 015005, [hep-ph/0602229].

[9] R. Argurio, A. Marzolla, A. Mezzalira and D. Musso, JHEP 1603, 012 (2016) doi:10.1007/JHEP03(2016)012 [arXiv:1512.03750 [hep-th]].

[10] NIST Digital Library of Mathematical Functions, “Confluent Forms of Heun Equation,” http://dlmf.nist.gov/31.12

[11] Ronveaux, A., *Heun Differential Equations*, Oxford University Press, (1995).

[12] Slavyanov, S. Yu., Lay W. *Special Functions: A Unified Theory Based on Singularities*, Oxford Mathematical Monographs, Oxford University Press, Oxford, (2000).