Evaluation of proposed cranial and maxillary bone alteration parameters in persons affected by Hansen’s disease

Rachel Bertolani do Espírito Santo¹, Dâmaris Versiani Caldeira Gonçalves², Rachel Azevedo Serafim¹, Rafael Maffei Loureiro³, Daniel Vaccaro Sumi³, Ricardo Andrade Fernandes de Mello², Simon M. Collin⁴, Patrícia Deps¹*

¹ Department of Social Medicine, Postgraduate Programme in Infectious Diseases, Federal University of Espírito Santo, Vitória-ES, Brazil, ² Department of Internal Medicine, Federal University of Espírito Santo, Vitória-ES, Brazil, ³ Imaging Department, Hospital Israelita Albert Einstein, São Paulo, Brazil, ⁴ National Infection Service, Public Health England, London, United Kingdom

* patricia.deps@ufes.br

Most of the 200,000 new cases of Hansen’s disease (HD, leprosy) diagnosed each year occur in India, Indonesia and Brazil [1]. The impact of HD on individual affected persons and the overall burden on health systems is amplified by delayed diagnosis, which increases the risk of patients presenting with HD-related impairments and disabilities [2,3]. These can include bone alterations, particularly in the hands, feet and face [4], leading to secondary complications [5], long-term disability and diminished quality-of-life [6–8], and contributing to stigmatization of persons affected by HD.

The degree of bone alteration correlates with the form of HD, ranging from limited or undetectable changes in the tuberculoid form to severe changes at the ‘lepromatous’ pole [9]. Although severe bone changes as a consequence of HD are less prevalent than in the pre-treatment era and population incidence of new cases presenting with disabilities has declined in many countries [10,11], disabilities related to Hansen’s disease in the age of modern medicine are not uncommon [12,13], affecting a relatively constant or increasing proportion of new cases [10,14]. Endemic and non-endemic countries also have elderly former and current HD patients who are affected by HD-related disabilities [15,16].

Rhino-maxillofacial changes caused by *Mycobacterium leprae* infection of the nasal passages and the palate include collapse of the bridge of the nose, resorption of the central part of the maxilla, inflammation of the floor and walls of the nasal cavity and hard palate and, ultimately, perforation of the palate [17]. A set of 7 maxillofacial bone alteration criteria define a ‘rhino-maxillary syndrome’ (RMS) [18]. Externally, RMS manifests in changes to the facial profile, including: 1) saddle nose, characterized by loss of nasal dorsal height and shortened length of nose, due to cartilaginous and/or bone collapse; 2) concave middle-third of the face with sunken (retracted) nose, caused by erosion of the zygomatic process and enlargement and loss of the pyriform shape of the nasal aperture; 3) reduced maxillary projection (maxillary retrognathia/reduced ANS); 4) inverted upper lip because of reduced maxillary height [19].

Maxillofacial bone changes assessed *in vivo* by computed tomography (CT) imaging have been described in two studies [20,21]. The first, by Kasai *et al*., was a study of 10 former HD patients (age 68–97 years) residing in a National Sanatorium in Japan and 5 adults (age 36–91 years) with no history of HD. The authors reported that 4/10 participants had substantial (severe) maxillary changes and saddle nose whilst 3/10 had no bone alterations. Kasai *et al* calculated two measures: a ratio of maxillary/cranial anterior-posterior length (Mₐ/Cₐ) and a ‘maxillary defect’ measure (calculated by subtracting the observed anterior-posterior maxillary
length from the observed cranial length multiplied by the mean M_{A-P}/C_{A-P} ratio in the non-HD group, with negative values indicating apparent defective length).

Kasai et al. found that the M_{A-P}/C_{A-P} ratio appeared to be lower in cases (mean 0.52 ± 0.07) than in controls (mean 0.57 ± 0.02) and was especially low in the 3 of the 4 cases with severe alterations. On this basis, Kasai et al. suggested that the M_{A-P}/C_{A-P} ratio could serve as a universal parameter to evaluate maxillofacial bone alterations among individuals with different cranial sizes. They also proposed that the maxillary defect value could be used to estimate the size of an implant, autologous bone or prosthesis for reconstruction of the deformed maxilla.

We conducted the second study, based on CT imaging of 16 former HD patients (age 60–89 years) resident at Pedro Fontes Hospital, Espírito Santo, Brazil. We reported that 4/16 former patients met the criteria for RMS, and we categorized a further 4 participants as having 'partial RMS' [21].

We have since obtained measurement data to calculate the M_{A-P}/C_{A-P} ratio and maxillary defect (Figs 1 and 2) in the 16 former HD patients in our original study, in 21 current HD

![Fig 1. Standardized cranium reference points.](https://doi.org/10.1371/journal.pntd.0009694.g001)

![Fig 2. Standardized anteroposterior measurements of the cranium and the maxilla represented in the median sagittal plane.](https://doi.org/10.1371/journal.pntd.0009694.g002)
patients (age 33–77 years) and in 37 non-HD controls (matched by age and sex to the 37 former and current HD patients) (Table 1). We compared the measurements reported by Kasai et al. between all cases (current and former patients) and non-HD controls (Table 1), between current and former HD patients (Table 1), and between former patients with and without full or partial RMS (Table 2).

We found no difference between any of the groups in the mean M_{A-P}/C_{A-P} ratio or in any of the measurements used to calculate the ratio (Table 1). One component of the cranial anterior-posterior length tended to be shorter in cases than controls, but this difference was not supported by statistical evidence ($p = 0.09$, linear regression adjusted for age and sex). Among former patients, the M_{A-P}/C_{A-P} ratio was higher in those with full or partial RMS ($p = 0.04$, linear regression adjusted for age and sex), but there were no differences in the components of the ratio (Table 2).

The mean M_{A-P}/C_{A-P} ratio in our control group (0.567 ± 0.047) was the same as reported by Kasai et al. in their control group (0.57 ± 0.02), albeit with more variation in our controls. Median or mean maxillary defect did not differ between patients and controls or between current and former HD patients, but former HD patients with RMS had a larger defect ($p = 0.05$, linear regression adjusted for age and sex) than former HD patients without RMS. This finding is consistent with Kasai et al., who found large defects in 3/4 severely-affected patients, although absolute defect values for our 16 former HD patients (median -0.49mm, range -4.57mm to 6.17mm) were less substantial than in the data reported by Kasai et al. for their 10 patients (median -3.11mm, range -17.94 to 2.47mm).

We conducted a statistical test of the results reported by Kasai et al. and found insufficient evidence for the apparent difference in mean M_{A-P}/C_{A-P} ratios between patients and controls.

Table 1. Demographic and cranial characteristics of current and former Hansen’s disease (HD) patients and non-HD controls.

	Non-HD control (n = 37)	Case (current or former HD patient) (n = 37)	P-value (cases vs. controls)†	Current HD patient (n = 21)	Former HD patient (n = 16)	P-value (former vs. current HD patients)†
Sex (male)	18 (48.7%)	18 (48.7%)	1.00	12 (57.1%)	6 (37.5%)	0.24
Age (years)	62 (57–70)	62 (58–70)	1.00	58 (47–60)	73 (66–78)	<0.001
n-alv distance (mm)	46.3 (44.3–48.4)	44.9 (42.0–47.2)	0.07	45.1 (42.0–47.2)	44.2 (41.9–46.8)	0.54
mean difference† (mm)	-1.35 (-2.92, 0.22)	0.09	-0.33 (-3.89, 3.23)	0.85	0.85	
alv-ba distance (mm)	42.5 (38.2–44.4)	41.8 (39.1–44.1)	0.82	41.8 (39.1–44.6)	41.7 (39.8–43.8)	0.67
mean difference† (mm)	0.17 (-1.57, 1.90)	0.85	-0.16 (-3.46, 3.13)	0.92	0.92	
Cranial anterior-posterior length (C_{A-P}) (mm)	88.3 (84.1–91.0)	86.2 (84.2–90.2)	0.31	86.2 (83.4–91.3)	86.3 (84.3–88.4)	0.56
mean difference† (mm)	-1.18 (-3.18, 0.81)	0.24	-0.49 (-4.84, 3.86)	0.82	0.82	
Maxilla anterior-posterior length (M_{A-P}) (mm)	49.8 (47.3–53.2)	49.5 (47.1–53.4)	0.98	51.0 (47.1–54.8)	49.0 (46.7–51.0)	0.11
mean difference† (mm)	-0.13 (-1.99, 1.73)	0.89	-0.24 (-3.99, 3.51)	0.90	0.90	
M_{A-P}/C_{A-P} ratio	0.57 (0.54–0.59)	0.58 (0.55–0.61)	0.43	0.58 (0.56–0.61)	0.57 (0.54–0.59)	0.37
mean difference† (mm)	0.007 (-0.013, 0.028)	0.49	-0.001 (-0.042, 0.040)	0.97	0.97	
Maxillary defect (mm)$^\#$	-0.11 (-2.48–2.02)	-0.93 (-3.61–1.95)	0.48	-1.44 (-3.76–0.90)	-0.49 (-1.81–2.82)	0.37
mean difference† (mm)	-0.54 (-2.36, 1.27)	0.55	-0.04 (-3.63, 3.55)	0.98	0.98	

† Value shown are frequency (%), median (IQR) or mean difference (95% CI); p-value from Chi-squared test for categorical variables (Fisher’s exact if n \(\leq 5\)), Kruskal-Wallis test for continuous variables, t-statistic for linear regression mean difference.

† Mean difference from linear regression adjusted for age and sex.

† $C_{A-P} = n$-alv distance + alv-ba distance.

$^\#$ Maxillary defect = ($C_{A-P} \times 0.567$) – M_{A-P} where 0.567 = mean M_{A-P}/C_{A-P} ratio in non-HD controls.

https://doi.org/10.1371/journal.pntd.0009694.t001
We also fitted their data to a model adjusted for age and sex and found no differences between patients and controls in M_{A-P}/C_{A-P} ratio ($p = 0.16$), its component measurements ($M_{A-P} p = 0.48$, $C_{A-P} p = 0.31$) or maxillary defect ($p = 0.18$).

We have therefore mostly replicated null findings, with the exception of some evidence for a higher M_{A-P}/C_{A-P} ratio in former HD patients who had RMS (counter to Kasai et al.’s hypothesis that the ratio would be lower in more severely affected persons). We did confirm that the ‘maxillary defect’ measurement indicated persons with more substantial maxillary bone alterations, but whether this measure is of utility in planning corrective surgery is uncertain given that absolute differences were small and found in a group of elderly former HD patients in whom the risks of surgical intervention might outweigh any potential benefits.

The main limitation to our and Kasai et al.’s studies is that both were limited by small sample sizes. Definitive answers as to which radiological measurements might be most reliably associated with cranial and maxillary bone alterations caused by HD requires a larger study, ideally involving persons affected by HD from the main endemic countries. Although we controlled for age and sex, confounding by processes related to ageing and disease could affect our results.

Ultimately, future studies must aim to provide benefit to persons affected by HD by improving our understanding of how HD-related bone alterations progress before, during and after treatment, and by suggesting improvements to clinical practice. The latter could include enhanced assessment and follow-up to prevent secondary complications. In settings where provision of radiological services is resource-constrained, approaches based on otorhinolaryngological evaluation and examination of facial profile changes may suffice [19]. However, the

Table 2. Demographic and cranial characteristics of former Hansen’s disease (HD) patients with and without rhinomaxillary syndrome (RMS).
Former HD patient without RMS (n = 8)
Sex (male)
Age (years)
n-alv distance (mm)
mean difference‡ (mm)
alv-ba distance (mm)
mean difference‡ (mm)
Cranial anterior-posterior length (C_{A-P})‡ (mm)
mean difference‡ (mm)
Maxilla anterior-posterior length (M_{A-P}) (mm)
mean difference‡ (mm)
M_{A-P}/C_{A-P} Ratio
mean difference‡ (mm)
Maxillary defect (mm)‡
mean difference‡ (mm)

* Value shown are frequency (%), median (IQR) or mean difference (95% CI); p-value from Chi-squared test for categorical variables (Fisher’s exact if n ≤ 5), Kruskal-Wallis test for continuous variables, t-statistic for linear regression mean difference
‡ Mean difference from linear regression adjusted for age and sex
¶ $C_{A-P} = n$-alv distance + alv-ba distance
Maxillary defect = (C_{A-P} x 0.567)−M_{A-P} where 0.567 = mean M_{A-P}/C_{A-P} ratio in non-HD controls

https://doi.org/10.1371/journal.pntd.0009694.t002

(p = 0.15, Student’s t-test). We also fitted their data to a model adjusted for age and sex and found no differences between patients and controls in M_{A-P}/C_{A-P} ratio ($p = 0.16$), its component measurements ($M_{A-P} p = 0.48$, $C_{A-P} p = 0.31$) or maxillary defect ($p = 0.18$).

We have therefore mostly replicated null findings, with the exception of some evidence for a higher M_{A-P}/C_{A-P} ratio in former HD patients who had RMS (counter to Kasai et al.’s hypothesis that the ratio would be lower in more severely affected persons). We did confirm that the ‘maxillary defect’ measurement indicated persons with more substantial maxillary bone alterations, but whether this measure is of utility in planning corrective surgery is uncertain given that absolute differences were small and found in a group of elderly former HD patients in whom the risks of surgical intervention might outweigh any potential benefits.

The main limitation to our and Kasai et al.’s studies is that both were limited by small sample sizes. Definitive answers as to which radiological measurements might be most reliably associated with cranial and maxillary bone alterations caused by HD requires a larger study, ideally involving persons affected by HD from the main endemic countries. Although we controlled for age and sex, confounding by processes related to ageing and disease could affect our results.

Ultimately, future studies must aim to provide benefit to persons affected by HD by improving our understanding of how HD-related bone alterations progress before, during and after treatment, and by suggesting improvements to clinical practice. The latter could include enhanced assessment and follow-up to prevent secondary complications. In settings where provision of radiological services is resource-constrained, approaches based on otorhinolaryngological evaluation and examination of facial profile changes may suffice [19]. However, the
increasing availability of CT scanning even in endemic countries means that these approaches can be supplemented, where cranial bone changes are suspected, by radiological imaging as a component of specialist care for persons affected by HD.

Ethics statement

The studies from which data were obtained were approved by the Research Ethics Committee of the Health Sciences Center of the Federal University of Espírito Santo (1.101.787 on 10th June 2015 and 4.248.419 on 31st August 2020). Formal written informed consent was obtained from all participants.

References

1. WHO. Weekly epidemiological record Nos 35/36. Geneva: WHO, 2019 30/08/2019. Report No.
2. Nanjan Chandran SL, Tiwari A, Lustosa AA, Demir B, Bowers B, Albuquerque RGR, et al. Revised estimates of leprosy disability weights for assessing the global burden of disease: A systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis. 2021; 15(3):e0009209. Epub 2021/03/03. https://doi.org/10.1371/journal.pntd.0009209 PMID: 33651814; PubMed Central PMCID: PMC7954345.
3. Srinivas G, Muthuvel T, Lal V, Vaikundanathan K, Schwienhorst-Stich EM, Kasang C. Risk of disability among adult leprosy cases and determinants of delay in diagnosis in five states of India: A case-control study. PLoS Negl Trop Dis. 2019; 13(6):e0007495. Epub 2019/06/28. https://doi.org/10.1371/journal.pntd.0007495 PMID: 31247040; PubMed Central PMCID: PMC7008326.
4. Mohammad W, Malhotra SK, Garg PK. Clinico-radiological Correlation of Bone Changes in Leprosy Patients Presenting with Disabilities/Deformities. Indian J Lepr. 2016; 88(2):83–95. Epub 2016/04/01. PMID: 29757540.
5. Serafim RA, do Espirito Santo RB, de Mello RA, Collin SM, Deps PD. Case Report: Nasal Mucosis in an Elderly Patient with Atrophic Rhinitis and Facial Sequelae of Leprosy. Am J Trop Med Hyg. 2020; 102(2):448–50. Epub 2019/12/06. https://doi.org/10.4269/ajtmh.19-0708 PMID: 31802737; PubMed Central PMCID: PMC7537907.
6. Abdela SG, van Henten S, Abegaz SH, Bayuh FB, Zewdu FT, Berhe FT, et al. Activity limitation and social participation restriction among leprosy patients in Boru Meda Hospital, Amhara Region, Ethiopia. PLoS Negl Trop Dis. 2020; 14(9):e0008702. Epub 2020/09/25. https://doi.org/10.1371/journal.pntd.0008702 PMID: 32970717; PubMed Central PMCID: PMC7537907.
7. Govindasamy K, Jacob I, Solomon RM, Darlong J. Burden of depression and anxiety among leprosy affected and associated factors-A cross sectional study from India. PLoS Negl Trop Dis. 2021; 15(1): e0009030. Epub 2021/01/23. https://doi.org/10.1371/journal.pntd.0009030 PMID: 33481790; PubMed Central PMCID: PMC7857628.
8. do Espirito Santo RB, Serafim RA, Bitran JBG, Collin SM, Deps P. Case Report: Leprosy Osteoarticular Alterations Mimicking Rheumatoid Arthritis. Am J Trop Med Hyg. 2020; 102(6):1316–8. Epub 2020/04/02. https://doi.org/10.4269/ajtmh.19-0723 PMID: 32228782; PubMed Central PMCID: PMC7253102.
9. de Paula HL, de Souza CDF, Silva SR, Martins-Filho PRS, Barreto JG, Gurgel RQ, et al. Risk Factors for Physical Disability in Patients With Leprosy: A Systematic Review and Meta-analysis. JAMA dermatology. 2019; 155(10):1120–8. Epub 2019/08/08. https://doi.org/10.1001/jamadermatol.2019.1768 PMID: 31389998; PubMed Central PMCID: PMC6686771.
10. Souza CDF, Paiva JPS, Leal TC, Urashima GDS. Leprosy in Brazil in the 21st century: analysis of epidemiological and operational indicators using inflection point regression. An Bras Dermatol. 2020; 95 (6):743–7. Epub 2020/10/05. https://doi.org/10.1016/j.abd.2019.09.031 PMID: 33010990; PubMed Central PMCID: PMC6762489.
11. Alberts CJ, Smith WC, Meima A, Wang L, Richardus JH. Potential effect of the World Health Organization’s 2011–2015 global leprosy strategy on the prevalence of grade 2 disability: a trend analysis. Bull World Health Organ. 2011; 89(7):487–95. Epub 2011/07/08. https://doi.org/10.2471/BLT.10.085662 PMID: 21734762; PubMed Central PMCID: PMC3127268.
12. Raposo MT, Reis MC, Caminha AVQ, Heukelbach J, Parker LA, Pastor-Valiero M, et al. Grade 2 disabilities in leprosy patients from Brazil: Need for follow-up after completion of multidrug therapy. PLoS Negl Trop Dis. 2018; 12(7):e0006645. Epub 2018/07/17. https://doi.org/10.1371/journal.pntd.0006645 PMID: 30012898; PubMed Central PMCID: PMC6062121.
13. Chukwu JN, Ekeke N, Nwafor CC, Meka AO, Alphonsus C, Mbah OK, et al. Worsening of the disability grade during leprosy treatment: prevalence and its determinants in Southern Nigeria. Trans R Soc Trop
14. Rao PN, Suneetha S. Current Situation of Leprosy in India and its Future Implications. Indian dermatology online journal. 2018; 9(2):83–9. Epub 2018/04/13. https://doi.org/10.4103/idoj.IDOJ_282_17 PMID: 29644191; PubMed Central PMCID: PMC5885632.

15. Matos TS, Carmo RFD, Santos FGB, de Souza CDF. Leprosy in the elderly population and the occurrence of physical disabilities: Is there cause for concern? An Bras Dermatol. 2019; 94(2):243–5. Epub 2019/01/01. https://doi.org/10.1590/abd1806-4841.20198067 PMID: 31090837.

16. Oliveira JSS, Reis A, Margalho LP, Lopes GL, Silva ARD, Moraes NS, et al. Leprosy in elderly people and the profile of a retrospective cohort in an endemic region of the Brazilian Amazon. PLoS Negl Trop Dis. 2019; 13(9):e0007709. Epub 2019/09/04. https://doi.org/10.1371/journal.pntd.0007709 PMID: 31479442; PubMed Central PMCID: PMC6743788.

17. Andersen JG, Manchester K, Roberts C. Septic bone changes in leprosy: a clinical, radiological and palaeopathological review. Int J Osteoarchaeol. 1994; 4:21–30.

18. Andersen JG, Manchester K. The rhinomaxillary syndrome in leprosy. Int J Osteoarchaeol. 1992; 2:121–9.

19. Deps P, do Espírito Santo RB, Charlier P, Collin SM. Rhinomaxillary syndrome in Hansen’s disease: a clinical perspective. Int J Dermatol. 2020; 59(11):e404–e6. Epub 2020/09/25. https://doi.org/10.1111/ijd.15202 PMID: 32970834.

20. Kasai N, Kondo O, Suzuki K, Aoki Y, Ishii N, Goto M. Quantitative evaluation of maxillary bone deformation by computed tomography in patients with leprosy. PLoS Negl Trop Dis. 2018; 12(3):e0006341. Epub 2018/03/10. https://doi.org/10.1371/journal.pntd.0006341 PMID: 29522533; PubMed Central PMCID: PMC5862504.

21. do Espírito Santo RB, Serafim RA, Loureiro RM, Sumi DV, De Mello RAF, Nascimento IF, et al. Clinical and radiological assessment of rhinomaxillary syndrome in Hansen’s disease. Indian J Dermatol Venereol Leprol. 2021 [In Press].