Effects of Low-dose Irradiation on Enhancement of Immunity by Dendritic Cells

Akio SHIGEMATSU1,5, Yasushi ADACHI1,2,3, Naoko KOIKE-KIRIYAMA1, Yasuhiro SUZUKI1, Masayoshi IWASAKI1, Yasushi KOIKE1, Keiji NAKANO1, Hiromi MUKAIDE1, Masahiro IMAMURA5 and Susumu IKEHARA1–4*

Low-dose Irradiation/Dendritic cell/T cell activation/Th1.

Low-doses of irradiation have been reported to have beneficial effects, particularly anti-tumor effects. In this paper, we show the effects of the low-dose irradiation on T cell activation induced by dendritic cells (DCs). DCs, which had been pre-irradiated at 0.02–1.0 Gy from a 137Cs source, were cultured with allogeneic T cells, and the proliferation of T cells was then examined. The 0.05Gy-pre-irradiated DCs showed the highest proliferation capacity of T cells. The 0.05Gy-irradiation does not augment the expression of major histocompatibility complexes (MHCs) or costimulatory molecules on DCs, as with non-irradiated DCs or 1Gy-irradiated DCs, but does augment the production of IL-2, IL-12 and IFN-γ DCs. These results suggest that the low-dose irradiation augments T cell-activation capacity through cytokine production by DCs, which might shift naïve helper T cells to Th1 cells.

INTRODUCTION

Dendritic cells (DCs), which differentiate from hematopoietic stem cells in the BM, are well known to have the strong capacity to present antigens to T cells and induce the activation of T cells.1 Although DCs reside in all organs, their numbers are very small.2 However, DCs play a central role in the orchestration of the various forms of immunity and tolerance.3

It has been stated that low-dose irradiation has stimulating effects on not only plant growth but also the proliferation of mammalian cells.4–6 It has also been reported that low-dose irradiation might activate the immunological network7 and have some anti-tumor effects. Experimentally, low-dose irradiation can suppress the metastasis of cancer cells8 and the generation of cancers.9,10 In epidemiological studies, atomic bomb survivors who had been exposed to low-level irradiation have been reported to have significantly lower mortality from cancerous diseases.11 Hashimoto et al. have reported that low-doses of irradiation histologically accelerate the infiltration of lymphocytes into tumors, resulting in the suppression of metastasis of the tumor.8 It has also been reported that low-dose irradiation augments the activity of T cells, NK cells and B cells.12,13 Kojima et al. have also reported that low-dose irradiation induces the proliferation of spleen cells, and that it shows anti-tumor effects via the induction of glutathione.14,15 However, the role of DCs in low-dose irradiation has not been clarified.

In this paper, we show that the low-dose irradiation given to DCs augments the stimulatory activity of the DCs on allogeneic T cells, resulting from augmented production of IL-2, IL-12 and IFN-γ.

MATERIALS AND METHODS

Mice

Eight-week-old male C57BL/6 (B6) and BALB/c mice were purchased from Japan SLIC inc. (Shizuoka, Japan). All animal use was conducted in accredited facilities and was approved by the Animal Care Committee of Kansai Medical University.

Isolation of mononuclear cells from spleens

To obtain single-cell suspensions from the spleens of mice, we injected PBS containing 150 U/ml collagenase into the spleens. The spleens were cut into small pieces, and then digested in the PBS with collagenase. These cells were
resuspended in PBS.

Irradiation

Splenic DCs from B6 mice were exposed to various irradiation doses (0.02, 0.05, 0.1, 0.5, or 1 Gy at 1.0 Gy/min) from a 137Cs source (Gammacell 40 Exactor; MDS Nordion International Inc., Ottawa, Ontario, Canada). Irradiated cells were incubated for indicated periods for further studies, as described below.

Reagents

Phycoerythrin (PE)-labeled anti-CD11c, fluorescein isothiocyanate (FITC)-labeled anti-IAb, FITC-labeled anti-B7.1 (CD80), FITC-labeled anti-B7.2 (CD86), FITC-labeled anti-ICAM-1, FITC-labeled CD11a (LFA-1), FITC-labeled anti-CD1d, biotin-labeled anti-CD19 antibodies (Abs), isotype matched control Abs and Via-Probe (cell viability solution) were purchased from BD Biosciences (San Jose, CA, USA). Biotin-labeled anti-CD3 and allophycocyanin (APC)-labeled anti-B220 Abs were from Caltag (Burlingame, CA, USA), and FITC-labeled anti-CD40 Ab was from Sumitomo Electric Industries, Ltd (Osaka, Japan). FITC-labeled anti-rat IgG Ab was from Biosource International (Camarillo, CA, USA). Red PE-Cy5-labeled streptavidin was from DakoCytomation Japan (Kyoto, Japan). Collagenase was from Sigma Chemical (St. Louis, MO, USA). MACS magnetic microbeads and the column for cell separation were from Miltenyi Biotec (Bergisch Gladbach, Germany).

Enrichment of DCs and T cells from spleen

For the enrichment of the splenic DCs from the B6 mice, we used anti-CD11c Ab-coupled MACS magnetic beads and the column for MACS magnetic beads. Isolated spleen cells were incubated with anti-CD11c Ab-coupled MACS, followed by passing through a MACS cell sorter (Miltenyi Biotec) for positive selection of CD11c$^+$ cells. Thus obtained cells, which showed more than 80% positive for CD11c, were used as DCs.

To obtain T cells as responders, spleen cells from BALB/c (H2d) mice were incubated with anti-Thy1.2 Ab-coupled MACS magnetic beads, followed by passing through a MACS cell sorter. More than 90% of the thus selected cells were positive for CD3.

Allogeneic mixed lymphocyte reaction

After irradiation of DCs at various doses, the indicated stimulator cells (DCs) (1×10^5 cells) were cultured in each well of a 96-well flat-bottomed culture-plate (Corning, New York, NY, USA) for 48 hours. After 25 Gy irradiation of DCs, T cells (1×10^5 cells) were added to the DCs in each well. After incubation at 37°C for another 48 hours in a CO$_2$ incubator, cell proliferation was examined using 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8; Nakarai, Kyoto, Japan). Twenty µl of WST-8 (10 mM) was added to each well and the plates were incubated at 37°C for an additional 4 hours. The resultant absorbance at 450 nm was read using a microplate reader (Bio-Rad Laboratories; Hercules, CA, USA).

Cell surface staining

For flow cytometric analyses, cells were stained with biotin-labeled anti-CD3, biotin-labeled anti-CD19, APC-labeled anti-B220, PE-labeled anti-CD11c and FITC-labeled indicated Abs, followed by staining with Red PE-Cy5-avidin and Via-Probe. The samples were analyzed using a FACScan flow cytometer (Becton Dickinson).

Reverse transcriptase polymerase chain reaction (RT-PCR) for detection of mRNA expression

RNA preparation, cDNA synthesis, and PCR were carried out. Total cellular RNA was prepared using a nucleic acid extractor (TRIZOL Reagent, Invitrogen Life Technologies; Carisbad, CA, USA) followed by chloroform extraction and isopropanol precipitation. cDNA was synthesized using RT (M-MLV Rtese in RT-PCR high [RT-PCR Kit], TOYOBO; Tokyo, Japan) and Oligo(dT)$_{20}$-P7 primers (RT-PCR high). PCR was performed on the cDNA using the following primers for G3PDH (RT-PCR high), interleukin-12 (IL-12) primer for p40 subunit, IL-2 IFN-γ, CCRI6 and CCR7 (Maxim Biotech, Inc.; San Francisco, CA, USA) with thermal cycling amplification using Takara PCR Thermal Cycler MP (Takara Bio, Otsu, Japan). PCR products were separated on a 1.2% agarose gel (Invitrogen Life Technologies) and visualized by ethidium bromide (Nakarai) staining.

ELISA assays for supernatant IL-12 and IL-10

IL-12 and IL-10 levels in culture supernatants of cultured DCs (1×10^5/ml) from B6 splenic cells were measured 48 hours after exposure to radiation by using enzyme-linked immunosorbent assay (ELISA) kits (Immunoassay Kit from Biosource International) following the manufacturer’s instructions.

Statistical analyses

Differences between groups were evaluated using the Student’s t-test. p values of less than 0.05 were considered to be statistically significant.

RESULTS

Low-dose-irradiated DCs accelerate proliferation of T cells

First, we examined the stimulator activity of DCs irradiated with various doses (0 Gy, 0.02 Gy, 0.05 Gy, 0.1 Gy, 0.5 Gy and 1 Gy), using WST-8 (Figs. 1A). The wells in which T cells were cocultured with the DCs irradiated at low doses (0.02, 0.05 and 0.1 Gy) showed higher density of WST-8
Effects of Low-dose Irradiation on DCs

than in non-irradiated DCs or DCs irradiated at higher doses (0.5Gy and 1Gy). In this experiment, we used irradiated DCs at 25 Gy before coculture with T cells to inhibit the proliferation of DCs. Therefore, the augmented cell numbers should reflect an increase in T cell numbers.

Next, we examined the effects of low dose irradiation on the proliferation of DCs. As shown in Fig. 1B, the low-dose irradiation has no effects on the proliferation of DCs. Therefore, the increased cell numbers at the low-dose irradiation were attributable not to the proliferation of DCs but to the proliferation of T cells. The peak dose of irradiation for DC activation is 0.05Gy, while the effects of irradiation decreased gradually in a dose dependent manner. These results suggest that DCs irradiated at low doses accelerated

Fig. 1. Low-dose irradiation enhances T cell-activation capacity of DCs. A. DCs (1x10^5 cells), which had been enriched from spleen cells of B6 using anti-CD11c coated MACS magnetic beads, were irradiated at several low doses. After 2 days of culture, the DCs were irradiated at 25 Gy to inhibit their proliferation. T cells (1 x 10^5 cells) from spleen of BALB/c were added the DCs, and they were cultured for another 2 days, followed by the analyzes of T cell proliferation to examine the T cell activation capacity of DCs using WST-8, as described in the “Materials and Methods”. Means and SDs are shown. n.=4. Representative data from 3 independent experiments are shown. B. DCs, which had been enriched from spleen cells of B6 using anti-CD11c coated MACS magnetic beads, were irradiated at several low doses. After 2 days of culture, WST-8 was added to the DCs to analyze cell number of DCs for the examination of the proliferation of DCs. Means and SDs are shown. n.=6. Representative data from 3 independent experiments are shown.

Fig. 2. Low-dose irradiation significantly augments the production of IL-12 but not IL-10. DCs (1 x 10^5/ml), which had been irradiated at 0, 0.05 or 1.0 Gy, were cultured for 2 days, and the supernatants were collected and the concentrations of IL-12 (A) and IL-10 (B) were measured using ELISA kit, as described in the “Materials and Methods”. Means and SDs are shown in each group. n.=4. Representative data from 2 independent experiments are shown. C. DCs, which had been irradiated at 0, 0.05 or 1.0 Gy, were cultured for 8 hours and then the DCs were collected for extraction of RNA. Next, RT-PCR using the extracted RNA was carried out, as described in the “Materials and Methods”. Representative data from 2 independent experiments are shown.
the proliferation of T cells and the effect cannot be attributed to the proliferation of DCs.

Low-dose irradiation augments IL-12 production from DCs

To clarify the mechanisms underlying the augmentation of T cell activation by the low-dose irradiated DCs, we first examined the expressions of activation markers and costimulatory molecules of DCs, such as CD1d, CD40, CD80, CD86, ICAM-1, LFA-1 and MHC class II. It has been reported that DCs present the fragments of antigen peptides through interactions between MHC molecules and T cell receptor (TCR), and that costimulatory molecules (CD40, CD80, CD86 etc.) augment the effects. However, the expression of these antigens remained unchanged in the low-dose irradiated DCs in comparison with non-irradiated DCs. It has also been reported that DCs activate T cells through several cytokines. IL-10 from DCs is notable in that it directs helper T cells toward Th2, while IL-12 from DCs directs helper T cells toward Th1 cells. Therefore, we examined the production of IL-10 and IL-12 from the low-dose-irradiated DCs. As shown in Fig. 2 A and B, the supernatants of the low-dose irradiated DCs contain higher concentrations of IL-10 and IL-12. However, there was no significant difference in the concentrations of IL-10 among non-irradiated DCs, the low-dose irradiated DCs and high-dose irradiated DCs (Fig. 2B). The supernatants of the low-dose irradiated DCs contain significantly higher concentrations of IL-12 than those of non-irradiated DCs or high-dose irradiated DCs. Therefore, we further examined the production of Th1 cytokines (IL-12, IL-2 and IFN-γ) using RT-PCR. As shown in Fig. 2C, even 8 hours after irradiation, 0.05Gy-irradiated DCs expressed relatively high mRNA levels of IL-2, IL-12 and IFN-γ. These results suggest that the low-dose irradiation induces Th1 cytokines. We also examined the mRNA expression of CCR6 and CCR7, since it has been reported that immature DCs express CCR6, while mature DCs express CCR7. However, the mRNA expression of CCR6 or CCR7 remained unchanged after irradiation (data not shown).

DISCUSSION

Muller HJ reported that X-rays are mutagenic, and that there is a linear relationship between mutation rates and irradiation doses. The International Commission on Radiological Protection (ICRP) also proposes that there is no safe level of irradiation- the so-called linear no threshold (LNT) model. From this theory, damage from irradiation increases in a dose-dependent manner. However, there are many contradictory experimental results and epidemiological research data indicating the beneficial effects of low-dose irradiation. The low-dose irradiation has been reported to activate T cells, NK cells and B cells, resulting in activation of the immune system and suppression of tumor growth.

DCs have been reported to be able to activate not only T cells but also NK cells and B cells, and have also been reported to be important for the regulation of the immune system, like the conductor of an orchestra. These facts encouraged us to examine the effects of low-dose irradiation on activation of DCs. Kojima et al. have reported that the low-dose irradiation augments the Con A-induced proliferation of spleen cells through an increase in the glutathione level. Ina et al. have shown that chronic low-dose-rate irradiation does not alter the total cell number of the spleen but augments the percentage of CD4+ T cells and reduces the percentage of CD40+ B cells in the spleens of mice. In the present paper, we have shown that low-dose irradiation does not induce the proliferation of DCs, suggesting that low-dose irradiation has different effects depending on the kind of cells. Ina et al. have also reported that low-dose irradiation augments the expression of CD8 but does not alter the expression of CD 80 or CD86 in spleen cells. These results are consistent with our results. In our experiments, the low-dose irradiation had no effect on the expression of the maturation markers of DCs, such as CD40, CD80, CD86, MHC class II, or CCR7, etc. These results suggest that the low-dose irradiation has no effect on the maturation of DCs. It is well known that helper T cells can be divided into at least 2 subsets (Th1 and Th2, etc.), and that Th1 is important for tumor immunity. It has been reported that some DCs producing IL-12 induce Th1 from naive helper T cells (DC1), while some DCs producing IL-10 induce Th2 from naive helper T cells (DC2), and that Th1 is important for tumor immunity. DCs derived from bone marrow hematopoietic stem cells and immature DCs differentiate into mature DCs (DC1 or DC2) under several kinds of stimulation, such as components of microbes, etc. These data suggest that the low-dose irradiation polarized the immature DCs in the spleen into DC1. These findings may explain the mechanisms underlying the effects of the low dose irradiation on tumor immunity.

In conclusion, low-dose irradiation activates T cells though the production of Th1 cytokines from DCs, resulting in the induction of Th1 cells from naive T cells.

ACKNOWLEDGEMENTS

We thank Ms. S. Miura, Ms. Y Tokuyama, Ms. K. Hayashi and Ms. A. Kitajima for their expert technical assistance, and also Mr. Hilary Eastwick-Field and Ms. K. Ando for the preparation of this manuscript.

REFERENCES

1. Inaba K., Metlay J. P., Crowley M. T., Steinman R. M. (1990) Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med. 172: 631–640.
2. Steinman R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271–296.

3. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C. (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med. 188: 373–386.

4. Upton A. C. (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol. 31: 681–695.

5. Sax K. (1963) The stimulation of plant growth by ionizing radiation. Radiat Botany. 3: 179–186.

6. Wang G. J. and Cai L. (2000) Induction of cell-proliferation frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res. 151: 717–724.

7. Ina Y, Sakai K. (2005) Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol. 81:721–729.

8. Hashimoto S., Shirato H., Hosokawa M., Nishioka T., Kuramitsu Y., Matsushita K., Kobayashi M. and Miyasaka K. (1999) The suppression of metastases and change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat Res. 151: 717–724.

9. Bhattacharjee D. (1996) Role of radioadaptation on radiation-induced thymic lymphoma in mice. Mutat Res. 358: 231–235.

10. Azzam E. I., de Toledo S. M., Raaphorst G. P. and Mitchel R. E. (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res. 4: 369–373.

11. Okajima S., Mine M. and Nakamura T. (1985) Mortality of registered A-bomb survivors in Nagasaki, Japan. Radiat Res. 103: 419–431.

12. Liu S. Z. (1989) Radiation hormesis: A new concept in radiological science. Chin Med J. 102: 750–755.

13. Liu S. Z., Liu W and Sun J. B. (1987) Radiation hormesis: its expression in the immune system. Health Physics. 52: 579–583.

14. Kojima S., Matsumori S., Ishida H., Yamaoka K. (2000) Possible role of elevation of glutathione in the acquisition of enhanced proliferation of mouse splenocytes exposed to small-dose gamma-ray. Int J Radiat Biol. 76: 1641–1647.

15. Kojima S, Nakayama K, Ishida H. (2004) Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. J Radiat Res. 45: 33–39.

16. Muller H. J. (1928) Artificial transmutations of the gene. Science. 66: 84–87.

17. Bloom E. T., Akiyama M., Kusunoki Y. and Makinodan T. (1987) Delayed effects of low dose radiation on cellular immunity in atomic bomb survivors residing in the United States. Health Physics. 52: 585–591.

18. Makinodan T. and James J. S. (1990) T cell potentiation by low dose ionizing radiation: possible mechanisms. Health Physics. 59: 29–34.

19. Liu Y. J. and Arpin C. (1997) Germinal center development. Immunol Rev. 156: 111–126.

20. Fernandez N. C., Lozier A., Flament C., Ricciardi-Castagnoli P., Bellet D., Suter M., Perricaudet M., Tursz T., Maraskovsky E. and Zitvogel L. (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med. 5: 405–411.

21. Ngo VN, Tang HL, Cyster JG. (1998) Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naïve T cells and activated B cells. J Exp Med. 188: 181–191.

22. Schaniel C, Pardali E, Sallusto F, Spetetas M, Ruedl C, Shimizu T, Seidl T, Andersson J, Melchers F, Rolink AG, Sideras P. (1998) Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med. 188: 451–463.

23. Sato M., Iwakabe K., Kimura S. and Nishimura T. (1999) Functional skewing of bone marrow-derived dendritic cells by Th1- or Th2- inducing cytokines. Immunol Lett. 67: 63–68.

24. Sato M., Iwakabe K., Ohta A., Sekimoto M., Nakui M., Koda T., Kimura S. and Nishimura T. (2000) Functional heterogeneity among bone marrow-derived dendritic cells conditioned by Th1- and Th2- biasing cytokines for the generation of allogeneic cytotoxic T lymphocytes. Int Immunol. 12: 335–342.

25. Nishimura T., Iwakabe K., Sekimoto M., Ohmi Y., Yahata T., Nakui M., Sato T., Habu S., Tashiro H., Sato M. and Ohta A. (1999) Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med. 190: 617–627.

Received on July 5, 2006
1st Revision received on September 5, 2006
2nd Revision received on October 12, 2006
Accepted on October 26, 2006

J-STAGE Advance Publication Date: December 28, 2006

Effects of Low-dose Irradiation on DCs