Managing malaria in the intensive care unit

M. Marks¹,², A. Gupta-Wright¹,², J. F. Doherty¹, M. Singer³ and D. Walker³*

¹ The Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street, London, UK
² Department of Clinical Research, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
³ Department of Critical Care, University College London Hospital NHS Foundation Trust, 3rd Floor, 235 Euston Road, London NW1 2BU, UK
* Corresponding author. E-mail: david.walker@uclh.nhs.uk

The number of people travelling to malaria-endemic countries continues to increase, and malaria remains the commonest cause of serious imported infection in non-endemic areas. Severe malaria, mostly caused by Plasmodium falciparum, often requires intensive care unit (ICU) admission and can be complicated by cerebral malaria, respiratory distress, acute kidney injury, bleeding complications, and co-infection. The mortality from imported malaria remains significant. This article reviews the manifestations, complications and principles of management of severe malaria as relevant to critical care clinicians, incorporating recent studies of anti-malarial and adjunctive treatment. Effective management of severe malaria includes prompt diagnosis and early institution of effective anti-malarial therapy, recognition of complications, and appropriate supportive management in an ICU. All cases should be discussed with a specialist unit and transfer of the patient considered.

Keywords: ARDS; ICU; imported infections; malaria

Epidemiology

Malaria is endemic throughout most of the tropics and sub-tropics and is one of the commonest causes of febrile illness in returning travellers.³⁻⁵ There were 6749 cases of imported malaria reported within the European Union in 2010 (0.99 cases per 100 000)³ and 1688 cases reported in the USA (0.55 cases per 100 000).³ In Europe, four countries (France, UK, Germany, and Italy) account for 80% of all cases. Surveillance from both Europe and the USA show that most cases of falciparum malaria are acquired in sub-Saharan Africa.³⁻¹² Compared with malaria in endemic settings, where children are most commonly affected, imported malaria is predominantly a disease of young- and middle-aged adults—the median age of cases in the UK is 31 years.¹³

Survveillance data demonstrate that individuals originating from endemic regions who travel to ‘visit friends and relatives’ are more likely to develop malaria than people who travel for other reasons (relative risk 3.65).³⁻¹³ although these individuals may be at reduced risk of developing severe disease because of partial immunity.¹¹⁻¹⁴ Anti-malarial chemoprophylaxis is very effective but surveillance data consistently demonstrate that most travellers do not take it appropriately.³⁻¹³ Reasons for poor adherence include an assumption of low risk, particularly among individuals who grew up in endemic regions, and concerns about potential drug side effects.

Nearly all severe disease is caused by falciparum malaria; ~10% of patients with imported falciparum malaria are reported to develop severe disease.³⁻¹⁶ The case fatality rate is ~1%.³⁻¹³ UK surveillance data demonstrate significantly higher mortality (odds ratio 10.68) in patients aged >65 yr compared with adults aged 18–35 yr and among tourists compared with patients originally from endemic countries (odds ratio 8.2).³ Death from non-falciparum malaria is extremely rare with a case fatality rate of 0.05%.³
Malaria is caused by infection with the protozoan parasite *Plasmodium* and is transmitted by female Anopheline mosquitoes. Four species are classically considered to cause disease in humans (*P. falciparum*, *Plasmodium vivax*, *P. ovale*, and *P. malariae*) although a fifth, *P. knowlesi*, is now recognized as a zoonotic cause of malaria in parts of Malaysia. After the bite of an infected Anopheline mosquito, the inoculated sporozoites are taken up by hepatocytes where they mature over 7–10 days to form schizonts. These then rupture to release variable numbers of merozoites into the blood. Merozoites rapidly invade erythrocytes, forming trophozoites, which again mature into schizonts over a period of 24–72 h, depending on the species. The mature schizonts then rupture causing haemolysis, releasing further merozoites into the blood where they invade more erythrocytes. With *P. falciparum*, each schizont that ruptures releases 16 merozoites into the blood. Most schizonts adhere to the lining of small blood vessels in deep tissues, a process known as sequestration. The presence of schizonts in peripheral blood implies that the parasitaemia is likely to increase significantly and is itself a marker of severe disease. Human disease is caused by these asexual stages. Gametocytes, the sexual stage, develop some days later and it is these that are taken up by mosquitoes in endemic areas, where they breed and multiply in the mid-gut, ultimately leading to sporozoites found in the mosquitoes’ salivary glands. Gametocytes are frequently seen on blood films but, by themselves, are of no clinical significance.

The incubation period for falciparum malaria is usually 12–14 days and slightly longer for non-falciparum species. One series of imported malaria reported a median of 9.5 days (IQR 3–14) between return from a malaria-endemic area and hospital admission. Progression to severe disease is variable; however, the largest series of severe imported malaria found a mean duration of symptoms of 5.5 days before ICU admission.

Infection with *P. falciparum* results in the expression of *P. falciparum* erythrocyte membrane protein 1 (*Pfemp1*), an important virulence factor, on the surface of red blood cells. *Pfemp1* mediates binding of infected red blood cells to endothelial surfaces and sequestration in capillary beds. *Pfemp1* is encoded by the var family of genes and the parasite regularly switches between ~60 variants of this gene resulting in
significant antigenic variation and an impaired immune response. Release of pro-inflammatory cytokines, including TNF-α and IL-1, in response to infection leads to an up-regulation of endothelial receptors including Intracellular-Adhesion Molecule 1 resulting in further sequestration. Occlusion of capillary beds leads to microvascular obstruction, tissue hypoperfusion, and lactic acidosis. Capillary sequestration also impairs splenic clearance of infected red blood cells. The severity of disease is associated with both a higher total body parasite biomass and a higher biomass of sequestered parasites.

Diagnosis

Microscopic examination of a blood film remains the gold standard for diagnosis of malaria (Fig. 3). This allows speciation, quantification of parasitaemia, and detection of other markers of severity such as the presence of schizonts. In a non-endemic setting, a parasite count >2% of infected red cells is usually considered a marker of severe disease although lower counts do not exclude this. Both thick and thin films should be examined. Thick films have a higher sensitivity for diagnosis while thin films allow more accurate speciation and quantification of parasitaemia. Rapid diagnostic tests (RDTs) are used in many settings. RDTs detect circulating parasite-associated proteins and enzymes. Most tests detect both a pan-species target and a falciparum-specific target. RDTs allow diagnosis of malaria without a trained microscopist but do not usually provide speciation nor quantification of parasitaemia. As such, these tests should be considered an adjunct rather than a replacement for blood film analysis. The use of PCR to diagnose malaria remains a research tool, but may occasionally be useful, particularly when there is doubt about the infecting species, for example in the differentiation of P. knowlesi from P. malariae.

Criteria for severe or complicated malaria

Criteria for severe malaria in both endemic and non-endemic settings have been defined by the World Health Organisation (WHO) (Table 1). In imported malaria, the commonest reasons for ICU admission are cerebral malaria, acute respiratory distress syndrome (ARDS), and acute kidney injury (AKI), either alone or in combination. As parasitized erythrocytes sequester in deep capillaries, the peripheral parasitaemia may not accurately reflect the true burden of infection.
Managing malaria in the intensive care unit

Important information
- Malaria occurs in the tropics and sub-tropics
- Adherence to chemoprophylaxis does not exclude malaria
- Patients with malaria may deteriorate rapidly
- All cases should be discussed with a specialist with current experience of managing malaria
- Notify all cases to the local health protection unit, send blood films to reference laboratories
- All febrile or ill patients with a history of travel to a malaria area in the prior 6 months should be assessed urgently (incubation for non-falciparum infection may occasionally be greater than 6 months)
- For those within 3 weeks of return, discuss infection control requirements [e.g. viral haemorrhagic fever (VHF), avian influenza or SARS] with the duty microbiologist but do NOT delay blood film

Triage

Early diagnosis and assessment of severity is vital to avoid malaria death

Key points in history and examination—no symptoms or signs can accurately predict malaria
- Symptoms are non-specific, but may include: fever/sweats/chills, malaise, myalgia, headache, diarrhoea, cough, jaundice, confusion, and seizures
- Consider country of travel, including stopovers, and date of return; falciparum malaria is most likely to occur within 3 months of return, but this may be longer in those who have taken chemoprophylaxis or partial treatment. The incubation period for malaria is at least 6 days

Urgent investigations—all patients should have:
- Thick and thin blood films and malaria rapid antigen tests. Send to laboratory immediately and ask for a result within 1 h
- Full blood count (FBC) for thrombocytopenia, anaemia and electrolytes (U&Es), liver function tests (LFTs), and blood glucose
- Blood cultures(s) for typhoid other, bacillus or both
- Urine dipstick for haemoglobinuria and culture, if the patient has diarrhoea, send faeces for microscopy and culture
- Chest radiograph to exclude community-acquired pneumonia
- Parasite count >2% (lower counts do not exclude severe malaria)

Falciparum malaria
- Falciparum
- Mixed infection
- Species not characterised

Complicated malaria=one or more of:
- Impaired consciousness (measure GCS and MISO) or sequestration check blood glucose urgently
- Hypoglycaemia
- Parasite count >2% (lower counts do not exclude severe malaria)
- Haemoglobin <10 g/dl
- Spontaneous bleeding/disseminated intravascular coagulation
- Haemoglobinuria (without G6PD deficiency)
- Renal impairment or electrolyte/acid—base disturbance (pH <7.3)
- Pulmonary oedema or adult respiratory distress syndrome
- Shock (algal malaria) may be due to Gram negative bacteraemia

If falciparum malaria is confirmed
- Ask the laboratory to estimate the parasite count—% of RBCs parasitised
- Clotting screen, arterial blood gases, and 12-lead ECG are required in complicated infection (see below)
- Do a pregnancy test if there is a possibility of pregnancy; pregnant women are at higher risk of severe malaria

Non-falciparum antimalarials
- Vivax
- Ovale
- Malariae

Non-falciparum antimalarial
- Chlороquine (base) 600 mg followed by 300 mg at 6, 24, and 48 h. In vivax and ova after treatment of acute infection use primaquine (30 mg base/day for vivax, 15 mg/day for ova) for 14 days to eradicate liver parasites; G6PD must be measured before primaquine is given—seek expert advice if low

Non-falciparum antimalarials
- Office therapy usually appropriate depending on clinical judgement
- Admit all case to hospital
- Assess severity on admission

Complicated malaria=one or more of:
- Impaired consciousness (measure GCS and MISO) or sequestration check blood glucose urgently
- Hypoglycaemia
- Parasite count >2% (lower counts do not exclude severe malaria)
- Haemoglobin <10 g/dl
- Spontaneous bleeding/disseminated intravascular coagulation
- Haemoglobinuria (without G6PD deficiency)
- Renal impairment or electrolyte/acid—base disturbance (pH <7.3)
- Pulmonary oedema or adult respiratory distress syndrome
- Shock (algal malaria) may be due to Gram negative bacteraemia

Essentials features of general management
- Commence antimalarials immediately (see boxes)
- Severe malaria
- Consider admission to high dependency/intensive care
- Seek early expert advice from an infection or tropical unit
- Oxygen therapy
- Careful fluid balance (observe JVP, CVP; avoid BP, RR, SO2, urine output, and GCS. Regular medical review until stable
- Monitor blood glucose regularly (especially during i.v. quinine)
- ECG monitoring (especially during i.v. quinine)
- Four-hourly observations until stable: that is, pulse, temperature, BP, RR, SaO2, urine output, and GCS. Regular medical review until stable
- Repeat FBC, clotting, U&Es, LFTs, and parasite count daily
- In shock, treat for Gram negative bacteraemia

Eventual advice
- Local infectious disease unit or Liverpool: 0151 766 2000
- Ask for duty tropical doctor

Useful information
- British National Formulary
- UK malaria treatment guidelines: Laloo DG et al. J Infect 2007; 50: 111–21
- From www.bpa.org.uk or www.britishinfectionsociety.org

Falciparum antimalarial
- Uncomplicated:
 - (a) Oral quinine 600 mg/8h plus doxycycline 200 mg daily (or clindamycin 450 mg/8h) for 7 days
 - (b) Malarone®: four ‘standard’ tablets daily for 3 days
 - (c) Riamet®: if weight >35 kg, four tablets over 4 h and then 10 mg/kg as IVI over 4 h
- Complicated malaria:
 - OR If available, artesunate intravenously
 - EITHER Quinine 20 mg/kg loading dose (no loading dose if patient taking quinine or methohexital already) as IVI in 5% dextrose over 4 h and then 10 mg/kg as IVI over 4 h for every 8 h plus oral doxycycline 200 mg daily for 7 days (in pregnancy, use IV/oral clindamycin 450 mg/8h). Max quinine dose 1.4 g
 - OR if available, artesunate intravenously 2.4 mg/kg at 0, 12, and 24 h then daily to complete a course of 7 days plus doxycycline or clindamycin as above

Fig 3 Health Protection Agency and British Infection Associated Algorithm for Initial Assessment and Management of Malaria in Adults.25 © Crown copyrighted. Reproduced with permission of Public Health England.
Hyperparasitaemia is therefore not a consistent finding in patients with severe malaria, and may not be a feature in a substantial proportion of patients requiring ICU admission.\(^{11}\)

Differential diagnosis

The differential diagnosis of severe malaria is broad and varies depending on the patient’s travel history.\(^{31}\) Major considerations include the common causes of community-acquired Gram-positive and Gram-negative bacterial sepsis, enteric fever, severe rickettsial infections, and leptospirosis, and also arboviral infections (including dengue fever) and the viral haemorrhagic fevers. Consultation with a specialist is recommended if there is any doubt as to the diagnoses or in any patient considered to be at risk of viral haemorrhagic fever.

Anti-malarial drugs

Since the emergence of chloroquine resistance in the 1970s, parenteral quinine has been the mainstay of treatment for severe malaria (Table 2). The commonest dose-related side effect of quinine is *cinchonism*, which comprises tinnitus, blurred vision, reversible hearing loss, headache, and nausea. Quinine may also cause hypoglycaemia and prolongation of the QTc interval on an electroencephalography (EEG) necessitating regular monitoring, but is usually well tolerated. Artemisinin derivative artemesunate has recently been shown to be more effective than quinine for the treatment of severe falciparum malaria in two large randomized trials.\(^{32,33}\) The SEAQUAMAT study randomized 1461 mostly adult patients with severe malaria in South and South-East Asia, and showed a significant reduction in mortality in patients treated with artemesunate compared with quinine (15% vs 22%, \(P=0.0002\)).\(^{32}\) The subsequent AQUAMAT study randomized 5425 children (\(<15\) years) with severe malaria across eleven countries in sub-Saharan Africa and again showed a significant reduction in mortality with artemesunate (8.5% vs 10.9% for quinine, \(P=0.0022\)).\(^{33}\)

Exchange transfusion

Several anecdotal reports and some case series have supported the use of exchange transfusion in severe malaria, especially in patients with high parasitaemia; it continues to be recommended in some national guidelines.\(^{45}\) The rationale is that exchange transfusion removes both infected red cells, lowering parasite burden and parasite-derived antigen load, and circulating pro-inflammatory cytokines. A recent report from a single-centre reported no deaths among 25 patients who had an exchange performed.\(^{39}\) However, a meta-analysis in 2002 found only eight quasi-experimental studies of the efficacy of exchange transfusion and demonstrated no overall survival benefit, a finding echoed in a recent study of US patients.\(^{40}\) The WHO states that no recommendation regarding exchange transfusion is possible based on the paucity of current evidence.\(^{27,41}\) At our centre, exchange transfusion...
has not been used since the introduction of artesunate-based therapy for all patients with severe malaria.

Fluids and cardiac function

The traditional adage is that patients with severe malaria should be managed with relatively restricted fluid volumes because of concerns about the risk of capillary leak and lung and cerebral oedema. This practice is supported by the movement in critical care to a more fluid restrictive practice in patients with acute lung injury (ALI). However, this restrictive fluid regimen commences only after initial resuscitation has been completed. No large trials have assessed fluid resuscitation strategies in patients with severe malaria in a developed world ICU setting; current data are derived only from trials in endemic areas and from small physiological studies.

The fluid expansion as supportive therapy study randomized 3141 African children presenting with severe febrile illness to maintenance fluids with or without boluses of either crystalloid (0.9% saline) or colloid (5% human albumin solution). Malaria was the reason for admission in 57% of these children. The trial was stopped early because of a significant increase in mortality in both groups who received fluid boluses compared with the group receiving maintenance fluids only (4 week mortality 8.7% vs 12.0% and 12.2%, P = 0.004 for comparison of maintenance with bolus). In a post hoc analysis, there was an increase in terminal cardiovascular events related to fluid resuscitation. There were no differences in mortality between the sub-groups of children with malarial and bacterial infections. There are obvious limitations in applying these findings to critical care settings in the developed world as the children could not be offered mechanical ventilation, renal replacement therapy, nor inotropic support. Furthermore, time to hospital presentation, while not formally measured, was likely to be significantly longer than in a developed world setting, so the potential risk of an exaggerated reperfusion injury after aggressive resuscitation cannot be discounted.

Although not considered a traditional manifestation of severe malaria, there is emerging evidence that cardiac dysfunction may complicate severe disease. A number of studies have found evidence of increased circulating levels of cardiac enzymes including BNP in individuals with severe malaria. Intravascular haemolysis as a result of severe malaria has been shown in one small study to result in decreased levels of nitric oxide, increased pulmonary pressures, and myocardial wall stress. Further studies to understand the clinical importance of cardiac dysfunction in severe malaria are warranted.

Previous studies have demonstrated that traditional markers of fluid balance correlate poorly with acid–base status and respiratory function. The argument against aggressive fluid loading is strengthened by recent data on the physiological response of 28 adult ICU patients with severe malaria to fluid expansion guided by invasive cardiac monitoring. Despite trans-pulmonary thermodilution (PiCCO) guided therapy, acid–base status deteriorated in 68% and no improvement in renal function was observed after volume expansion. Significant increases in extravascular lung water occurred in 17 of 22 (77%) patients who were liberal resuscitated, with eight developing frank pulmonary oedema despite being hypo- or euvalaemic. Five patients died, all of whom developed pulmonary oedema. The authors found that the degree of lactataemia correlated with the degree of parasite microvascular sequestration, but not with hypovolaemia.

Table 2. Anti-malarial therapy at the Hospital for Tropical Diseases. The Hospital for Tropical Diseases’ treatment guidelines are based on part of the UK malaria treatment guidelines but have been updated to reflect the growing importance of artesunate since the guidelines were published. *Quinine therapy should not be delayed if artesunate is not immediately available. Patients do not require treatment with both artesunate and quinine. Once the first dose of artesunate has been given, quinine can be stopped.*

Route of administration	Quinine l.v.	Artesunate l.v.
Dosing	20 mg kg⁻¹ loading dose (max 1400 mg) Subsequently 10 mg kg⁻¹ (max 700 mg) given 8 hourly Cinchonism—tinnitus, visual blurring, and nausea. Reversible and not an indication to stop quinine Hypoglycaemia Prolongation of the QT interval	2.4 mg kg⁻¹ at 0, 12, and 24 h and then once daily Normally well tolerated although posttreatment haemolysis is recognized
Side effects	Capillary blood sugar 2–4 h ECG monitoring of QTc Continuous cardiac monitoring advised in patients with underlying cardiac disease	Not required
Monitoring	Oral quinine 10 mg kg⁻¹ (max 700 mg) TDS to complete 7 days total course with either Doxycycline 200 mg for 1 week or Clindamycin 450 mg TDS for 1 week Doxycycline of clindamycin can be given either simultaneously (with both i.v./oral quinine) or after completion of quinine therapy	Artemether/Lumefantrine (Riamet, Co-Artem) four tablets at 0, 8, 24, 36, 48, and 60 h. Quinine (10 mg kg⁻¹ max 700 mg) with doxycycline or clindamycin for a total of 7 days Atovaquone/Proguanil (Malarone) four tablets OD for 3 days
Follow-on therapy	Therapy can be switched once the patient is improving clinically, the parasite count is <2%, and they can tolerate oral medication. Discuss with an expert	
It would appear that, in the absence of prospective, randomized trial data, liberal fluid therapy is best avoided in the context of severe malaria. Because of the propensity of these patients towards capillary leak and thus a greater risk of ARDS and cerebral oedema, our own management approach is to target significant hypovolaemia with concurrent tissue hypoperfusion, that is, clinical markers of organ dysfunction (e.g. oliguria) with biochemical markers (e.g. lactate and central venous oxygen saturation). Fluid loading is guided by a goal-directed algorithm using both the stroke volume response to a fluid challenge (measured by minimally invasive oesophageal Doppler) and markers of tissue perfusion as therapeutic endpoints. Otherwise, fluid balance is kept neutral, in line with studies in critically ill patients showing a strong association between positive fluid balance and worse outcomes. Where vasopressor, inotrope, or both requirements persist, we maintain an acceptable cardiac output, avoiding fluid overload but targeting tissue perfusion and have a low threshold for diuresis in the haemodynamically stable patient in the postinflammatory phase of illness.

Respiratory manifestations

The WHO defines respiratory manifestations of severe malaria in terms of deep breathing, respiratory distress, and pulmonary oedema. Cough is a common symptom, and tachypnoea may be caused by fever, anaemia, and a metabolic acidosis, and also primary lung pathology such as the ARDS and pneumonia. ARDS has clear diagnostic criteria that have been recently redefined, with the previous clinical distinction between ALI and ARDS being replaced by mild, moderate, and severe levels of ARDS. This condition is more common among adults than children. The reported incidence of ‘respiratory distress’ in severe malaria varies between 2 and 30%, with differences in definitions accounting for some of this variation. ARDS and respiratory distress are poor prognostic signs in both endemic and imported malaria.

The mechanisms underlying ARDS are not entirely understood, but likely causes include endothelial dysfunction and altered capillary permeability because of parasitized erythrocyte adherence and sequestration and exaggerated host immune and inflammatory responses, particularly TNF-α, IL-1, IL-6, and IL-8. However, ARDS can develop after apparently successful treatment and after the disappearance of parasites from the blood. In these cases, ARDS may reflect persistence of inflammatory cytokines in the absence of any infected erythrocytes. There is emerging evidence that free parasite antigens may persist after treatment suggesting that these may represent a potential on-going stimuli for inflammation. Concurrent bacterial pneumonia and cardiogenic pulmonary oedema (which may be iatrogenic, the result of renal failure, severe anaemia, or heart failure related to a sepsis-induced myocardial depression) are other important causes of respiratory distress.

As there are no specific trials addressing ARDS treatment in malaria, strategies are based on evidence-based ARDS management, including the use of low tidal volume ‘protective’ ventilation and moderate levels of PEEP. Fluid balance is kept neutral, or negative if the patient is considered to be volume overloaded. Cerebral oedema and raised intracranial pressure associated with cerebral malaria may limit permissive hypercapnia and the use of high PEEP strategies; however, pragmatic clinical decision-making should be used. Successful use of extracorporeal membrane oxygenation for severe respiratory failure has been reported in malaria. Bacterial co-infection is relatively common suggesting that a low threshold for starting antibiotics, when supported by clinical and laboratory investigations, may be appropriate.

Hypoglycaemia

Hypoglycaemia, defined as blood glucose values <2.2 mmol litre^{-1} (<40 mg d^{-1}), is a common complication of malaria and can be a marker of severe disease, particularly in children. Case series of imported malaria report a prevalence of hypoglycaemia between 1 and 20% at admission, with a higher rate among those who die. The pathogenesis is poorly understood but is thought to be related both to parasite glucose consumption and to impaired host gluconeogenesis rather than to malnutrition or hyper-insulinaemia. Hypoglycaemia may be exacerbated by parenteral quinine (an insulin secretagogue). A meta-analysis reported a significantly lower incidence during treatment with artemisinins compared with quinine (combined HR 0.55 (95% CI 0.41–0.74)). Clinical features include a reduced level of consciousness and seizures. Blood glucose should be routinely and regularly assessed and monitored, especially during treatment with quinine. Early enteral feeding has been established as beneficial in a wide range of patients requiring intensive care, and may mitigate against hypoglycaemia in severe malaria.

Neurological involvement

Cerebral malaria is strictly defined as coma [Glasgow Coma Score (GCS) < 9] in a patient with malaria in whom other aetiologies have been excluded. In clinical practice, a decrease in GCS < 11 or the occurrence of seizures should be taken to represent cerebral malaria once hypoglycaemia and other potential causes of reduced consciousness have been excluded. As with respiratory distress, cerebral malaria is associated with worse outcomes. The pathogenesis remains incompletely understood. Electroencephalography has previously found sub-clinical seizure activity in a proportion of patients with cerebral malaria which prompted three anti-epileptic trials. However, despite a reduction in seizure frequency, mortality was increased in patients receiving routine anti-convulsant therapy with phenobarbital. This increased mortality is postulated to occur as a result of respiratory depression. The extent to which these findings can be generalized to other classes of anti-epileptics, in particular those that cause less respiratory depression, is unknown. In view of these findings, there is currently no role for routine EEG monitoring and the use of anti-epileptics in patients with cerebral malaria should be limited to those with clinically overt seizure activity.
Cerebral oedema is a well-recognized component of cerebral malaria and strategies to reduce this have been assessed in controlled trials. Warrell and colleagues randomized patients with cerebral malaria to receive either dexamethasone or placebo. Mortality did not differ between the two groups (P=0.8) but coma was prolonged in those who received dexamethasone [63.2 (5.9) h vs 47.4 (3.2) h, P=0.02]. This finding is consistent with other studies of corticosteroids in cerebral oedema because of other aetiologies such as head injury. Complications, including gastrointestinal bleeding and pneumonia, were also more common in patients receiving dexamethasone (P=0.004). Mohanty and colleagues randomized 61 adult patients with cerebral malaria and CT-confirmed cerebral oedema to adjunctive treatment with mannitol. There was a non-significant trend towards a higher mortality in those receiving mannitol (30% vs 13%, HR 2.4 95% CI 0.8–7.3, P=0.11). Mannitol was also associated with a significant increase in the duration of coma (90 h compared with 32 h with placebo, P=0.02). Other adjunctive treatments including N-acetyl cysteine, heparin, aspirin, deferoxamine, anti-TNF therapy, and pentoxifylline have all been trialled but none has been shown to be of benefit. No adjunctive treatments are currently recommended for cerebral malaria.

Acute kidney injury

AKI in malaria is usually caused by *P. falciparum*, although it has been reported with other species. The WHO uses a serum creatinine of >265 μmol litre^{-1} (or >3 mg dl^{-1}) as a criterion for severe malaria, although this definition is at variance with commonly applied definitions of AKI. AKI is particularly common among individuals who did not grow up in endemic regions, suggesting that it may be more common in the malaria-naïve. The incidence of AKI in severe malaria varies from 1 to 5% in endemic areas, but the rate of AKI is much higher in series of imported malaria (ranging from 23 to >50%). Cytoadherence of parasitized erythrocytes to glomerular and tubular vascular beds, cytokine release, immune complex deposition, hypovolaemia, and haemolysis may all be contributory. Histopathological findings of AKI in severe malaria include acute tubular necrosis, interstitial nephritis, and glomerulonephritis, although tubular changes are the most common findings.

All patients with falciparum malaria should be screened for AKI, which may not develop until several days after the onset of fever and can be non-oliguric. Management is supportive with maintenance of fluid balance and electrolytes and renal replacement therapy as indicated. Trips of both dopamine and epinephrine have been performed in severe malaria, but neither has been shown to improve renal oxygen metabolism nor function. Artemisinin doses do not need adjusting in AKI; however, quinine may accumulate, so doses should be reduced by one-third after 48 h of established renal failure, unless renal replacement therapy has been initiated. The prognosis of AKI associated with severe malaria is usually good, and it inevitably resolves in days to weeks. A recent UK series found that even those patients with persisting renal impairment at discharge from ICU ultimately recovered their renal function.

Co-infection

In endemic areas, concurrent community-acquired Gram-negative bacteraemia, in particular with non-typhoidal Salmonellae, has been shown to occur in 5–12% of children with malaria. Recent studies have suggested that almost two-thirds of cases of community bacteraemia in endemic regions may be the result of malaria. Furthermore, invasive bacterial disease is associated with a worse prognosis. One proposed mechanism is induction of heme oxygenase-1, which mediates tolerance to malaria-induced haemolysis, resulting in reduced resistance to infection with non-typhoidal Salmonellae. However, few data are available on the frequency of bacteraemia in adult patients or returned travellers.

Rates of microbiologically confirmed community-acquired bacterial infections have been reported as 5–10% in patients with imported malaria requiring ICU admission. Pneumonia was the commonest co-infection. Community-acquired bacteraemia has been reported in 1.5–3% of cases requiring ICU admission. However, these studies were all retrospective and a failure to take blood cultures before antibiotics were administered may have resulted in an under-estimate of the true frequency of bacteraemia. The possibility of co-infection in returning travellers is an additional reason for early liaison with a specialist unit. High rates of co-infection with HIV have also been reported in some series.

The use of empiric antibiotics remains controversial, but bacterial co-infection should be suspected in any patient with focal signs or symptoms of sepsis or significant neutrophilia. In such cases, blood cultures should be taken and broad-spectrum antibiotics commenced, albeit de-escalating quickly or stopping treatment if bacterial infection is subsequently not confirmed. Clinicians should also remain alert to the possibility of nosocomial infection. Ventilator-associated pneumonia and catheter-related sepsis are well recognized in this setting and frequently contribute to poor outcomes despite adequate anti-malarial treatment.

Anaemia and coagulopathy

Malarial anaemia is caused by a combination of haemolysis, dyserythropoiesis, and removal of infected erythrocytes from the circulation by the spleen. Parasite antigens, antibody activation, and subtle alterations in red cell membranes may also result in a similar fate for uninfected cells. WHO defines severe anaemia as a haemoglobin concentration of <5 g dl^{-1}. WHO defines severe anaemia as a haemoglobin concentration of <5 g dl^{-1}. However, severe malarial anaemia is mostly seen in endemic areas, especially among children and pregnant women, and is likely to be multifactorial. Only one series of imported malaria reported patients presenting with severe anaemia as defined by the WHO. Transfusion is recommended in severe anaemia, although no specific studies have addressed transfusion targets in malaria. Current critical care practice supports a restrictive use of red cell
transfusions, and this is supported by WHO recommendations of a haemoglobin threshold of 7 g dl⁻¹, taking into account individual clinical circumstances.²⁷ ¹⁰⁰ ¹⁰¹

Clinically apparent abnormal bleeding and coagulopathy is commonly seen in severe imported malaria, with a reported frequency ranging from <5% to 20% or more.¹⁰⁻¹² ⁵² Profound thrombocytopenia is common in both severe and non-severe falciparum malaria and is probably caused by increased platelet consumption, sequestration within the spleen, or both. Disseminated intravascular coagulation, which occurs in about 5–10% of severe imported malaria, should be treated conventionally with transfusion of screened blood products (whole blood, cryoprecipitate, fresh frozen plasma, and platelets) and guided by haematological expertise, but there is no evidence to support empirical platelet transfusion.¹¹ ¹² ⁵⁰

Prognosis

Mortality from severe malaria varies enormously by setting and clinical context. A mortality of >30% has been reported in children with respiratory distress and impaired consciousness.⁵⁵ In the UK, the overall case fatality rate from falciparum malaria is ~1%.⁸ Increased age and management at a centre with less experience of managing malaria have both been identified as risk factors for increased mortality, while individuals born in endemic countries had a lower mortality.⁶ In studies of artesimisinins, overall mortality was 10–19%.³² ³³ Case series of patients with imported malaria requiring ICU admission have reported mortality rates between 5 and 29%.¹¹ ¹⁰⁴ Older age, reduced GCS, and higher parasitaemia at ICU admission were significantly associated with an increased mortality in the largest cohort,²⁰ albeit not consistently replicated in other studies.¹¹ ³⁰

Risk stratification

Two scoring systems have been proposed for the stratification of adult patients with severe malaria.¹⁰⁵ ¹⁰⁶ Hanson and colleagues¹⁰⁵ derived a simple score (coma–acidosis–malaria score) using arterial base deficit and GCS derived from SEAQUAMAT trial data.³² Patients score 0–2 points for their GCS level and 0–2 points for base deficit. A total score of <2 accurately identified patients who survived (positive predictive value 95.8%). However, the positive predictive value of CAM scores for mortality is more limited.

Mishra and colleagues¹⁰⁶ derived the malaria score for adults (MSA) based on the presence or absence of severe anaemia (1 point), AKI (2 points), respiratory distress (3 points), and cerebral malaria (4 points). Mortality increased steadily with an increasing MSA, from 2% for MSA scores of 0–2 to 90% for those scoring ≥7. Taking MSA scores of 5 as a cut-off, they reported a sensitivity of 89.9% for mortality and a positive predictive value of 94.1%. As with the CAM score, patients with imported malaria having a low score (≤5) had good predictive power for survival, whereas high scores had a limited predictive power for death.¹¹ The utility of both these scores is likely to vary significantly between resource-rich and resource-scarce settings.

Conclusions

Rates of international travel continue to increase and the ‘febrile returned traveller’ is an increasingly common clinical problem. Malaria remains the most important cause of imported fever and cases requiring ICU admission continue to be associated with a high mortality. While there have been significant advances in our understanding of the management of malaria in the last decade, high-quality data to guide management of imported malaria remain scarce, with most derived from endemic settings or retrospective series. The emergence of artemisinin-based therapy has translated into a significant improvement in outcomes in endemic countries and is likely to improve outcomes in imported malaria in the future. Despite numerous studies, no adjunctive therapy has been shown yet to confer a survival advantage and several have proved harmful. ICU management remains supportive and improved outcomes may be attributable more to advances in multi-disciplinary team working, mechanical ventilation strategies, careful fluid management, and infection control. Despite these advances, the mortality from imported malaria remains significant; all cases should be discussed with a specialist unit and transfer of the patient considered.

Authors’ contributions

M.M. and A.G.-W. wrote the first and subsequent drafts of the paper. M.S. reviewed and redrafted the paper. J.F.D. and D.W. conceived of the article, reviewed, and redrafted the paper.

Declaration of interest

The authors declare that they have no relevant conflicts of interest.

Funding

This study was supported by the Special Trustees of the Hospital for Tropical Diseases. All the authors are supported by the UCLH/UCL Biomedical Research Centre Infection, Immunity and Inflammation Theme. Michael Marks is a Wellcome Trust Clinical Research Fellow (WT102807) at the London School of Hygiene and Tropical Medicine. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1 United Nations World Tourism Organization (UNWTO). UNWTO Tourism Highlights, 2012 Edn. Madrid, Spain UNWTO, 2012
2 World Health Organization. World Malaria Report 2012. WHO. Geneva, 2012
3 Mali S, Kachur SP, Arquin PM. Malaria surveillance—United States, 2009. MMWR Surveill Summ 2012; 61: 1
4 Odolini S, Parola P, Gkrania-Klotsas E, et al. Travel-related imported infections in Europe, EuroTravNet 2009. Clin Microbial Infect 2012; 18: 468–74
Managing malaria in the intensive care unit

5 Leder K, Torresi J, Libman MD, et al. GeoSentinel surveillance of illness in returned travelers, 2007–2011. Ann Intern Med 2013; 158: 456–68
6 Baird JK. Severe and fatal vivax malaria challenges ‘benign tertian malaria’ dogma. Ann Trop Paediatr 2009; 29: 251–2
7 Cox-Singh J, Hiu J, Lucas SB, et al. Severe malaria—a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar J 2010; 9: 10
8 Checkley AM, Smith A, Smith V, et al. Risk factors for mortality from imported falciparum malaria in the United Kingdom over 20 years: an observational study. Br Med J 2012; 344: e2116
9 European Centre for Disease Prevention and Control. Annual Epidemiological Report 2012: Reporting on 2010 Surveillance Data and 2011 Epidemic Intelligence Data. Stockholm. Available from http://www.ecdc.europa.eu/en/publications/_layouts/forms/PublicationDispForm.aspx?List=4f55ad51-4aed-4d32-b960-a70113dbb906&ID=7536&RootFolder=%2F%2Fpublications%2FPublications&Web=270275b7-419a-4452-8bfc-f0c75d92e66
10 González A, Nicolós JM, Muñoz J, et al. Severe imported malaria in adults: retrospective study of 20 cases. Am J Trop Med Hyg 2009; 81: 595–9
11 Marks ME, Armstrong M, Suvari MM, et al. Severe imported falciparum malaria among adults requiring intensive care: a retrospective study at the hospital for tropical diseases, London. BMC Infect Dis 2013; 13: 118
12 Santos LC, Abreu CF, Xerinda SM, Tavares M, Lucas R, Sarmento AC. Severe imported malaria in an intensive care unit: a review of 59 cases. Malar J 2012; 11: 96
13 Smith AD, Bradley DJ, Smith V, et al. Imported malaria and high risk groups: observational study using UK surveillance data 1987–2006. Br Med J 2008; 337: a120–a120
14 Phillips A, Bassett P, Zeki S, Newman S, Pasvol G. Risk factors for severe disease in adults with falciparum malaria. Clin Infect Dis 2009; 48: 871–8
15 Ericsson CD, Hatz C, Leder K, et al. Illness in travelers visiting friends and relatives: a review of the GeoSentinel surveillance network. Clin Infect Dis 2006; 43: 1185–93
16 Kain KC, Harrington MA, Tennyson S, Keystone JS. Imported malaria: prospective analysis of problems in diagnosis and management. Clin Infect Dis 1998; 27: 142–9
17 Warrell D, Gilles H. Essential Malariology, 4th Edn. London: Hodder Arnold, 2002
18 Doneshvar C, Davis TME, Cox-Singh J, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 2009; 49: 852–60
19 Roberts C, Armstrong M, Zatyka E. Gametocyte carriage in Plasmodium falciparum-infected travellers. Malar J 2013; 12: 31
20 Bruneel F, Tubach F, Corne P, et al. Severe imported falciparum malaria: a cohort study in 400 critically ill adults. PLoS ONE 2010; 5: e13236
21 Flick K, Chen Q, var genes, PFEMP1 and the human host. Mol Biochem Parasitol 2004; 134: 3–9
22 Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341: 57–9
23 Hansen JP, Lam SWK, Mohanty S, et al. Fluid resuscitation of adults with severe falciparum malaria: effects on acid–base status, renal function, and extravascular lung water. Crit Care Med 2013; 41: 972–81
24 Dondorp AM, Desakorn V, Pongtavrinnnyo W, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2005; 2: e204
25 Health Protection Agency. Malaria—Algorithm for Initial Assessment and Management in Adults. Available from http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1240212774627 (accessed September 2013)
26 Laloo DG, Shingadia D, Pasvol G, et al. UK malaria treatment guidelines. J Infect 2007; 54: 111–21
27 World Health Organization. Guidelines for the Treatment of Malaria, 2nd Edn. Geneva, 2011
28 Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ 1988; 66: 621–6
29 World Health Organization. Severe falciparum malaria. Trans R Soc Trop Med Hyg 2000; 94(Suppl.): 1–90
30 Bruneel F, Hocqueloux L, Alberti C, et al. The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med 2003; 167: 684–9
31 Johnston V, Stockley JM, Dockrell D, et al. Fever in returned travellers presenting in the United Kingdom: recommendations for investigation and initial management. J Infect 2009; 59: 1–18
32 Dondorp A, Nosten F, Stepniewska K, Day N, White N. South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Lancet 2005; 366: 717–25
33 Dondorp AM, Fanella CI, Hendriksen ICE, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 2010; 376: 1647–57
34 DTB. Artemisinins in malaria treatment in the UK. Drug Ther Bull 2010; 48: 129–32
35 Lin JT, Juliano JJ, Wongsrichanalai C. Drug-resistant malaria: the era of ACT. Curr Infect Dis Rep 2010; 12: 165–73
36 Amarutunga C, Seng S, Suon S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis 2012; 12: 851–8
37 Phylo AP, Nkhoma S, Stepniewska K, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 2012; 379: 1960–6
38 Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. New Engl J Med 2009; 361: 455–67
39 Van Genderen PJ, Hesselink DA, Bezemer JM, Wismans PJ, Overbosch D. Efficacy and safety of exchange transfusion as an adjunct therapy for severe Plasmodium falciparum malaria in non-immune travelers: a 10-year single-center experience with a standardized treatment protocol. Transfusion 2010; 50: 787–94
40 Tan KR, Wiegang RE, Arguin PM. Exchange transfusion for severe malaria: evidence base and literature review. Clin Infect Dis 2013; 57: 923–8
41 Riddle MS, Jackson JL, Sanders JW, Blazes DL. Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis. Clin Infect Dis 2002; 34: 1192–8
42 Wiedermann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. New Engl J Med 2006; 354: 2564–75
43 Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. New Engl J Med 2011; 364: 2483–95
44 Maitland K, George EC, Evans JA, et al. Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Med 2013; 11: 68
45 Ehrhardt S, Wichmann D, Hemmer CJ, Burchard GD, Brattig NW. Circulating concentrations of cardiac proteins in complicated
and uncomplicated Plasmodium falciparum malaria. *Trop Med Int Health* 2004; 9: 1099 – 103
56 Herr J, Mehrafar P, Schmiedel S, et al. Reduced cardiac output in imported Plasmodium falciparum malaria. *Malar J* 2011; 10: 160
57 Janka JJ, Kito OA, Traore B, et al. Increased pulmonary pressures and myocardial wall stress in children with severe malaria. *J Infect Dis* 2010; 202: 791 – 800
58 Nguyen HP, Hansen J, Bethell D, et al. A retrospective analysis of the haemodynamic and metabolic effects of fluid resuscitation in Vietnamese adults with severe falciparum malaria. *PLoS ONE* 2011; 6: e25523
59 Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. *Crit Care Med* 2011; 39: 259 – 65
60 Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. *Intensive Care Med* 2012; 38: 1573 – 82
61 Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM. Respiratory manifestations of malaria. *Chest* 2012; 142: 492 – 505
62 Badiaga S, Brouqui P, Carpentier JP, et al. Clinical presentation at the time of hospital admission and outcome in 42 cases diagnosed from 1996 to 2002. *J Emerg Med* 2005; 29: 375 – 82
63 Sahu S, Mohanty NK, Rath J, Patnaik SB. Spectrum of malaria complications in an intensive care unit. *Singapore Med J* 2010; 51: 226 – 9
64 Marsh K, Forster M, Waruiru C, et al. Indicators of life-threatening malaria in African children. *New Engl J Med* 1995; 332: 1399 – 404
65 Jaffar S, Van Hensbroek MB, Palmer A, Schneider G, Greenwood B. Prophylactic role of single dose phenobarbitone in preventing convulsions in cerebral malaria. *Am J Trop Med Hyg* 1997; 57: 20 – 4
66 White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. *Int J Parasitol* 2006; 36: 569 – 82
67 Crawford J, Smith S, Muthini P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. *Arch Dis Child* 2001; 86: 247 – 53
68 Crawford J, Waruiru C, Mithwani S, et al. Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. *Lancet* 2000; 355: 701 – 6
69 Koczor D, Kumawat B, Bajya H, Chauhan S, Kocsor S, Agarwal R. Prophylactic role of single dose phenobarbitone in preventing convulsions in cerebral malaria. *J Assoc Physicians India* 1997; 45: 123 – 4
70 White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. Single dose phenobarbitone prevents convulsions in cerebral malaria. *Lancet* 1982; 2: 64 – 6
71 Meremikwu M, Marson AG. Routine anticonvulsants for treating cerebral malaria. *Cochrane Database Syst Rev* 2002; (2): CD002152
72 Warrell DA, Looareesuwan S, Warrell MJ, et al. Dexamethasone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients. *New Engl J Med* 1982; 306: 313 – 9
73 Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. *Lancet* 2004; 364: 1321 – 8
74 Mohanty S, Mishra SK, Patnaik R, et al. Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. *Clin Infect Dis* 2011; 53: 349 – 55
75 Charunwatthana P, Faiz MA, Rungweerayut R, et al. N-acetylcysteine as adjunctive treatment in severe malaria: A randomized, double-blinded placebo-controlled clinical trial. *Crit Care Med* 2009; 37: 516 – 22
Managing malaria in the intensive care unit

82 Hemmer CJ, Kern P, Holst FG, Nawroth PP, Dietrich M. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study. Am J Trop Med Hyg 1991; 45: 608–12

83 Gondek V, Thuma P, Brittenham G, et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. New Engl J Med 1992; 327: 1473–7

84 Van Hensbroek MB, Palmer A, Onyiorah E, Gordeuk V, Thuma P, Brittenham G, Hemmer CJ, Kern P, Holst FG, Nawroth PP, Dietrich M. Neither managing malaria in the intensive care unit

85 Looareesuwan S, Wilairatana P, Vannaphan S, Day NPJ, Hien TT, Nguansangiam S, Day NPJ, Hien TT, Nadjm B, Amos B, Mtove G, Das BS. Malaria and acute kidney injury. Semin Nephrol 2003; 23: 21–33

86 Das BS. Renal failure in malaria. J Assoc Physicians India 2000; 48: 1353–62

87 Prakash J, Singh AK, Kumar NS, Saxena RK. Acute renal failure in Plasmodium falciparum malaria. J Assoc Physicians India 2003; 51: 265–7

88 KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012; 2: 19–36

89 Barsoum RS. Malarial acute renal failure. J Am Soc Nephrol 2000; 11: 2147–54

90 Eiam-Ong S. Malarial nephropathy. Semin Nephrol 2003; 23: 21–33

91 Mishra SK, Das BS. Malaria and acute kidney injury. Semin Nephrol 2008; 28: 395–408

92 MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119: 385–401

93 Nguansangiam S, Day NP, Hien TT, et al. A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Trop Med Int Health 2007; 12: 1037–50

94 Day NP, Phu NH, Mai NT, et al. Effects of dopamine and epinephrine infusions on renal hemodynamics in severe malaria and severe sepsis. Crit Care Med 2000; 28: 1353–62

95 Nadje, B, Amos B, Mtwe, G, et al. WHO guidelines for antimicrobial treatment in children admitted to hospital in an area of intense Plasmodium falciparum transmission: prospective study. Br Med J 2010; 340: c1350

96 Berkley J, Mwarumba S, Bramham K, Lowe B, Marsh K. Bacteraemia complicating severe malaria in children. T Roy Soc Trop Med H 1999; 93: 283–6

97 Scott JAG, Berkley JA, Mwangi L, et al. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case–control study and a longitudinal study. Lancet 2011; 378: 1316–23

98 Cunnington AJ, de Souza JB, Walther R-M, Riley EM. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med 2011; 18: 120–7

99 Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematology Am Soc Hematol Educ Program 2009; 1: 87–93

100 Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian Critical Care Trials Group. New Engl J Med 1999; 340: 409–17

101 Carson JL, Terrin ML, Noveck H, et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. New Engl J Med 2011; 365: 2453–62

102 Thierfelder C, Schill C, Hatz C, Nüesch R. Trends in imported malaria transmission: prospective study. Nat Med 2008; 15: 432–6

103 Schowe L, Streit JP, Edler L, Encke J, Stremmel W, Junghanss T. Early treatment of imported falciparum malaria in the intermediate and intensive care unit setting: an 8-year single-center retrospective study. Crit Care 2008; 12: R22

104 Blumberg L, Lee RP, Lipman J, Beards S. Predictors of mortality in severe malaria: a two year experience in a non- endemic area. Anaesthesia Intensive Care 1996; 24: 217–23

105 Hansen J, Lee SJ, Mohanty S, et al. A simple score to predict the outcome of severe malaria in adults. Clin Infect Dis 2010; 50: 679–85

106 Mishra SK, Panigrahi P, Mishra R, Mohanty S. Prediction of outcome in adults with severe falciparum malaria: a new scoring system. Malar J 2007; 6: 24

Handling editor: J. G. Hardman