Article

Light-Load Efficiency Improvement for Ultrahigh Step-Down Converter Based on Skip Mode

Yeu-Torng Yau 1,2, Chao-Wei Wang 3,4 and Kuo-Ing Hwu 3*

1 Department of Ph.D. Program, Prospective Technology of Electrical Engineering and Computer Science, National Chin-Yi University of Technology, Taichung 41170, Taiwan; tsnc35@yahoo.com.tw
2 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
3 Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; terrywang0106@gmail.com
4 Electronics and Optoelectronics System Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
* Correspondence: eaglehwu@ntut.edu.tw; Tel.: +886-2-27712171 (ext. 2159)

Abstract: In this paper, two light-load efficiency improvement methods are presented and applied to the ultrahigh step-down converter. The two methods are both based on skip mode control. Skip Mode 1 only needs one half-bridge driver integrated circuit (IC) to drive three switches, so it has the advantages of easy signal control and lower cost, whereas Skip Mode 2 requires one half-bridge driver integrated circuit IC, one common ground driver IC, and three independent timing pulse-width-modulated (PWM) signals to control three switches, so the cost is higher and the control signals are more complicated, but Skip Mode 2 can obtain slightly higher light-load efficiency than Skip Mode 1. Although the switching frequency used in these methods are reduced, the transferred energy is unchanged, but the output voltage ripple is influenced to some extent.

Keywords: light-load efficiency; skip mode; ultrahigh step-down; PWM

1. Introduction

1.1. Motivation and Incitement

Nowadays, the 48 V direct bus (DC) bus is very popular in the telecom system and networking communication equipment. The front-end AC-DC converter generates a stable 48 V DC bus from the alternating current (AC) grid. The traditional two-stage step-down converter architecture generates a low output voltage (usually under 3.3 V) from 48 V to feed the digital circuit. The 48 V DC bus is first stepped down by the first-stage converter to the 12 V DC bus to supply the power on load (POL) converter, and then the POL converter creates a low voltage to the load. Two-stage DC-DC converter requires a relatively large component count and provides relatively low efficiency.

1.2. Literature Review

The methods proposed in [1–4] use a two-stage buck converter to obtain a high step-down voltage gain, but the methods used in [1–4] require a lot of active switches, passive components, and driving circuits. The method mentioned in [5] is to use a first-order high-efficiency open-loop bus converter, which converts from a 48 V DC high voltage to a 12 V DC intermediate bus, and then generates low voltage from the POL to supply the load. In addition, the bus converter requires four active switches and two magnetic elements. If the second-stage buck converter is added, six switches and three magnetic elements are required, and a separate control integrated circuit (IC) is required. The methods proposed in [6–11] need to use multiple sets of switching regulators in parallel and to adopt interleaved pulse-width-modulated (PWM) signals to improve the conversion ratio of input and
output. Compared with the traditional buck converter, under the same input and output voltage conditions, these converters can operate in a larger duty cycle and the corresponding switching loss can be reduced. In addition, this kind of architectures requires interleaved operation with at least two phases, which is more suitable for high output current applications.

The methods proposed in [7,12–19] use coupled inductors to achieve high step-down ratio output. These circuits are relatively simple, but there will be leakage inductances to generate high voltage spikes on the switches. To reduce the breakdown risk from high voltage spikes, passive snubbers must be used to absorb and suppress the leakage energy of the winding, making the efficiency lower. Although the authors of [19] proposed that active snubbers can recover the leakage energy of the windings, these circuits are quite complicated. In the schemes in [6,13], there are many switching elements and magnetic elements, making the circuits too complicated and the corresponding cost high, and they are not suitable for low and medium power applications.

1.3. Contribution and Paper Organization

The above research results have many limitations and shortcomings in practical applications, so the authors of [20,21] proposed a new high step-down converter, which, compared with the traditional buck converter, has the following three advantages: (i) the use of a single coupled inductor only requires the addition of an active switch with common ground and a small-capacity capacitor, and this switch can be driven by an existing buck control IC; (ii) the voltage gain of this circuit does not contain nonlinear components, and hence the control is simple; and (iii) although the circuit shown in [20,21] has high efficiency at rated load, this circuit has the problem of lower efficiency at light load.

Therefore, based on the circuit structure in [20,21], this paper presents two skip mode control methods to improve the light-load efficiency. Although the switching frequency used in these methods are reduced, the transferred energy is unchanged, but the output ripple is affected to some extent. In addition, the mode exchange is very smooth. The rest of this paper is organized as follows. Section 2 briefly describes the used circuit. Section 3 elaborates on basic circuit operating principles, containing Normal Mode, Skip Mode 1, and Skip Mode 2. Section 4 gives some experimental results to verify that the light-load efficiency can be improved based on the proposed PWM control strategies. Section 5 gives some discussions. Some conclusions are drawn in Section 6.

2. Used Circuit

Figure 1 shows the circuit used herein, which contains three active switches Q_1, Q_2, and Q_3; capacitors C_b and C_a; one coupled inductor L with two windings N_1 and N_2; one magnetizing inductance L_{ab} and two leakage inductances L_{1k1} and L_{1k2}. In addition, Q_1 and Q_3, with both gates of Q_1 and Q_3 connected together, are driven synchronously. Accordingly, only one half-bridge driver is needed to drive three active switches. In addition, this circuit is always operated in the continuous current mode (CCM), and the illustrated waveforms shown in Figure 2a–c are for Normal Mode, Skip Mode 1, and Skip Mode 2, respectively.

Figure 1. Circuit architecture in [20,21].
Figure 2. (a) Illustrated waveforms of Normal Mode; (b) Illustrated waveforms of Skip Mode 1; (c) Illustrated waveforms of Skip Mode 2.
3. Basic Circuit Operating Principles

There are six operating states in this circuit, which are described with reference to Figures 3–8. In all figures utilized to describe basic circuit operating behavior, orange is used to define the original current direction, whereas blue is used to indicate actual current direction.

3.1. Normal Mode

3.1.1. State 1

As shown in t0–t1 of Figure 3, Q1 is turned on, but Q2 and Q3 are turned off. The input voltage \(V_{in} \) charges the capacitor \(C_B \) and magnetizes the magnetizing inductor \(L_m \). Both the currents \(i_{N1} \) and \(i_{N2} \) are equal and increasing. During this stage, the input voltage \(V_{in} \) transmits energy to the output voltage \(V_o \).

![Figure 3. Current path in State 1 under Normal Mode.]

3.1.2. State 2

As shown in t1–t2 of Figure 4, Q1 is turned-off, and Q2 and Q3 remain off. This is the deadtime interval, and the currents \(i_{N1} \) and \(i_{N2} \) continue due to the leakage inductances \(L_{K1} \) and \(L_{K2} \). The currents \(i_{N1} \) and \(i_{N2} \) flow through the body diodes of Q2 and Q3.

![Figure 4. Current path in State 2 under Normal Mode.]

3.1.3. State 3

As shown in t2–t3 of Figure 5, Q1 remains off, but Q2 and Q3 are turned on. The currents \(i_{N1} \) and \(i_{N2} \) flow through body diodes of Q2 and Q3. At this instant, Q2 and Q3 are turned on with zero voltage switching (ZVS). As the current \(i_{N1} \) finally drops to zero, the circuit enters the next state.

![Figure 5. Current path in State 3 under Normal Mode.]
3.1.4. State 4

As shown in t3–t4 of Figure 6, Q₁ remains off, and Q₂ and Q₃ remain on. During this stage, the energy stored in Cₘ will magnetize the winding N₁ in the opposite direction and transfer the energy to the winding N₂ and then to the output terminal in the transformer mode, so the currents iₙ₁ and iₙ₂ increase.

![Figure 6. Current path in State 4 under Normal Mode.](image)

3.1.5. State 5

As shown in t₄–t₅ of Figure 7, Q₁, Q₂, and Q₃ are turned off. During this stage, the free-wheeling current in the leakage inductance Linkel of the winding N₁ will flow through the body diode of Q₁, so the voltage vₙ₁ reduces to zero. Linkel is demagnetized continuously, and the energy stored in Linkel is returned to the input voltage Vᵢᵣ and gradually decreases. During this interval, iₙ₁ < iₙ₂. Since Q₁ is turned off, there is still excess current flowing through the body diode of Q₂. As iₙ₁ rises to zero, it enters State 6.

![Figure 7. Current path in State 5 under Normal Mode.](image)

3.1.6. State 6

As shown in t₅–t₁₀ of Figure 8, Q₁ is turned on, but Q₂ and Q₃ are still kept turned-off. Since the voltage vₙ₁ is zero in State 5, if Q₁ is turned on during this state, then Q₁ has ZVS turned on. In addition, due to the leakage inductance and iₙ₁ being smaller than iₙ₂, there is still excess current flowing through Q₂, but Q₃ has been turned off, so the body diode of Q₃ is forced to conduct. As iₙ₁ = iₙ₂, the current no longer flows through the body diode of Q₃ and it returns to State 1.

![Figure 8. Current path in State 6 under Normal Mode.](image)
3.2. Skip Mode 1

When this circuit is in Skip Mode 1 at light-load operation, there are nine operating states, which are described in Figure 9a–e. Among them, the behavior of t0–t5 is the same as Normal Mode, so only the actions of t5–t0 are described.

Figure 9. Current path in different state under Skip Mode 1: (a) State 1; (b) State 2; (c) State 3; (d) State 4; (e) State 5.
3.2.1. State 6

As shown in t5–t6 of Figure 10, after the demagnetizing of L_{K1} in State 5 is completed, Q_1, Q_2, and Q_3 are all turned off at this time, but i_{LL1} and i_{LL2} continue to flow through the windings N_1 and N_2, so there is still current flowing through the body diode of Q_3.

![Figure 10](image1)

Figure 10. Current path in State 6 under Skip Mode 1.

3.2.2. State 7

As shown in t6–t7 of Figure 11, at this time Q_2 and Q_3 are turned on for the second time, the capacitor C_B magnetizes L_m, causing i_{im} to rise, and at the same time C_B is discharged to the output through the N_1 and N_2, which are under the transformer mode.

![Figure 11](image2)

Figure 11. Current path in State 7 under Skip Mode 1.

3.2.3. State 8

As shown in t7–t8 of Figure 12, Q_2 and Q_3 are turned off for the second time, so i_{LL1} flows through the body diode of Q_1, making V_{ds1} zero. Hence, Q_3 is turned on with ZVS.

![Figure 12](image3)

Figure 12. Current path in State 8 under Skip Mode 1.

3.2.4. State 9

As shown in t8–t9 of Figure 13, when V_{ds1} is zero, Q_1 is turned on, and Q_3 can be turned on with ZVS.
3.3. Skip Mode 2

When this circuit is in Skip Mode 2 at light-load operation, there are nine operation states, which are described in Figure 14a–d. Among them, the behavior of t0–t4 is the same as Skip Mode 1, so only the actions of t4–t0 are described.

Figure 13. Current path in State 9 under Skip Mode 1.

Figure 14. Current path in different state under Skip Mode 2: (a) State 1; (b) State 2; (c) State 3; (d) State 4.
3.3.1. State 5

As shown in t4–t5 of Figure 15, Q₁ and Q₂ are turned off. During this state, the freewheeling current in leakage inductance L_{LK1} of the winding $N₁$ flows through the body diode of $Q₁$, so the voltage v_{d1} reduces to zero. If $Q₁$ is turned on at this moment, ZVS is turned on. Although $Q₂$ is turned on, L_{LK1} is demagnetized continuously, and the energy stored in L_{LK1} is returned to V_o and gradually decreases. During this state, $i_{d1} < i_{d2}$. Since $Q₃$ is kept at the turned-on state, there is still excess current flowing through $Q₃$. As i_{d1} rises to zero, it enters State 6.

![Figure 15. Current path in State 5 under Skip Mode 2.](image)

3.3.2. State 6

As shown in t5–t6 of Figure 16, after the demagnetizing of L_{LK1} in State 5 is completed, $Q₁$, $Q₂$, and $Q₃$ are all turned off at this time, but i_{LK1} and i_{LK2} continue to flow through the windings $N₁$ and $N₂$, so there is still current flowing through the body diode of $Q₃$.

![Figure 16. Current path in State 6 under Skip Mode 2.](image)

3.3.3. State 7

As shown in t6–t7 of Figure 17, at this time, $Q₂$ is turned on for the second time, the capacitor C_b magnetizes L_{m1}, causing L_{m1} to rise, and at the same time C_b discharges the output through $N₁$ and $N₂$, which are under the transformer mode.

![Figure 17. Current path in State 7 under Skip Mode 2.](image)

3.3.4. State 8

As shown in t7–t8 of Figure 18, $Q₂$ and $Q₃$ are turned off for the second time, so i_{LK1} flows through the body diode of $Q₁$, making v_{d1} zero. Hence, $Q₃$ is turned on with ZVS.
3.3.5. State 9

As shown in t8–t0 of Figure 19, when \(\tau_{da1} \) is zero, \(Q_1 \) is turned on at this time, and \(Q_1 \) can be turned on with ZVS.

4. Experimental Results

The system parameters and component specifications are presented in Table 1.

Table 1. System requirements and component specifications.

Requirement	Specification
Input voltage \(V_{in} \)	48 V
Output voltage \(V_o \)	2.5 V
Output rated current \(I_o \)	20 A
Switching frequency \(f_s \)	100 kHz
Capacitor \(C_B \)	20 uF/50 V TDK MLCC
Coupled inductor	\(N_1:N_2 = 24:8 \) with \(L_w = 87.1 \) uH, \(L_{LX1} = 3.94 \) uH, and \(L_{LX2} = 0.69 \) uH MPP core of Micromets Co., model T106-M125
Capacitor \(C_o \)	2 \times 1000 uF solid electrolytic capacitor
\(Q_1, Q_2 \)	AON6244, withstand voltage 60 V, 4.7 mΩ, Alpha and Omega Co.
\(Q_3 \)	AON6512, withstand voltage 30 V, 1.7 mΩ, Alpha and Omega Co.

First, the conversion efficiency in Normal Mode, Skip Mode 1, and Skip Mode 2 are measured. As shown in Figure 20, both Skip Mode 1 and Skip Mode 2 can provide better conversion efficiency than Normal Mode when the load is below 15% of rated load, so the controller can enter skip mode to improve conversion efficiency up to 5%.
Figure 20. Efficiency comparison at light load among Normal Mode, Skip Mode 1, and Skip Mode 2: (a) from zero to 30% of rated load; and (b) from zero to rated load.

Figures 21–23 show the gate driving signals for Normal Mode, Skip Mode 1, and Skip Mode 2. Figure 24 shows the waveforms \(i_{n1} \) and \(i_{n2} \) in Normal Mode under different load levels. Figure 24 shows that, as the output current increases, the current ripples of \(i_{n1} \) and \(i_{n2} \) also increase. Figure 25 shows the waveforms \(i_{n1} \) and \(i_{n2} \) under different load levels in Skip Mode 1. After \(Q_1 \) is turned off, \(Q_2 \) is turned on twice in succession. When \(Q_2 \) is turned on for the first time, \(i_{n1} \) is higher and transmits more energy to the output terminal. At the second ON, \(i_{n2} \) is lower and transmits less energy to the output terminal. Figure 26 shows the waveforms \(i_{n1} \) and \(i_{n2} \) under different load levels in Skip Mode 2. After \(Q_1 \) is turned off, \(Q_2 \) is turned on twice in succession. When \(Q_2 \) is turned on for the first time, \(i_{n1} \) is higher and transmits more energy to the output terminal. At the second ON, \(i_{n2} \) is lower and transmits less energy to the output terminal. Figure 27 shows the waveforms \(v_{c1} \) and \(i_{c1} \) under different loads in Normal Mode. Figure 28 shows the waveforms \(v_{c1} \) and \(i_{c1} \) under different load levels in Skip Mode 1. Figure 29 shows that \(v_{c1} \) and \(i_{c1} \) under different loads in Skip Mode 2. In Figures 27–29, the voltages across \(C_S \) are almost the same.
Figure 21. \(v_{gs1}, v_{gs2}, \) and \(v_{gs3} \) under Normal Mode: (a) 0.2 A; (b) 1 A; (c) 2 A; (d) 4 A; (e) 10 A; and (f) 20 A.

Figure 22. \(v_{gs1}, v_{gs2}, \) and \(v_{gs3} \) under Skip Mode 1: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.
Figure 23. v_{gs1}, v_{gs2}, and v_{gs3} under Skip Mode 2: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.
Figure 24. \(v_{gs1}, v_{gs2}, i_{CB}, \) and \(i_{N2}\) under Normal Mode: (a) 0.2 A; (b) 1 A; (c) 2 A; (d) 4 A; (e) 10 A; and (f) 20 A.

Figure 25. \(v_{gs1}, v_{gs2}, i_{CB}, \) and \(i_{N2}\) under Skip Mode 1: (a) 0.2A; (b) 1A; (c) 2A; and (d) 4A.
Figure 26. v_{gs1}, v_{gs2}, i_{CB}, and i_{N2} under Skip Mode 2: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.

Figure 27. v_{gs1}, v_{gs2}, i_{CB}, and i_{CB} under normal Mode 2: (a) 0.2 A; (b) 1 A; (c) 2 A; (d) 4 A; (e) 10 A; and (f) 20 A.
Figures 30–32 show the output voltage ripples $v_{o(AC)}$ operating in Normal Mode, Skip Mode 1, and Skip Mode 2, respectively. In these three figures, the difference in output voltage ripple between Normal Mode and Skip Mode 1 below the output current of 2 A is slight, but Skip Mode 1 has a little higher output voltage ripple at 4 A than Normal Mode.
Below the output current of 1 A, Skip Mode 2 has a slightly higher voltage ripple than Skip Mode 1, but both are similar above the output current of 2 A.

Figure 30. v_{gs1}, v_{gs2}, Skip_EN, and $v_{vo(AC)}$ under Normal Mode: (a) 0.2 A; (b) 1 A; (c) 2 A; (d) 4 A; (e) 10 A; and (f) 20 A.
Figure 31. $v_{gs1}, v_{gs2}, \text{Skip}_\text{EN},$ and $v_{o(AC)}$ under Skip Mode 1: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.

Figure 32. $v_{gs1}, v_{gs2}, \text{Skip}_\text{EN},$ and $v_{o(AC)}$ under Skip Mode 2: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.

Figures 33 and 34 are the waveforms for the mode exchange between Normal Mode and Skip Mode 1 under different load levels. Under different output current levels, the mode exchange has a slight effect on v_o.
Figures 35 and 36 are the waveforms for the mode exchange between Normal Mode and Skip Mode 2 under different output current levels. Under different output current levels, the mode exchange has a slight effect on \(v_o \).

Accordingly, the transient responses due to mode exchange between Normal Mode and Skip Mode 1 and between Normal Mode and Skip Mode 2 are quite similar.
Figure 35. SkipEN and v_{DO} under Normal Mode switched to Skip Mode 2: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.

Figure 36. SkipEN and v_{DO} under Skip Mode 2 switched Normal Mode: (a) 0.2 A; (b) 1 A; (c) 2 A; and (d) 4 A.
5. Discussion

The light-load efficiency and the output voltage ripple discussed herein are under the condition that the traditional PWM control strategy used in [20,21] is considered as Normal Mode. Therefore, based on the same circuit structure as in [20,21], this paper presents two skip mode control strategies to improve the light-load efficiency. Although the switching frequency used in these two strategies is reduced, the transferred energy is unchanged, but the output voltage ripple is influenced to some extent as compared to Normal Mode. In addition, the mode exchange among the three control strategies is very smooth. The proposed PWM control strategies can be applied to the structures in [20,21] to improve the light-load efficiency.

6. Conclusions

This paper presents two PWM control strategies to increase the efficiency at the light-load condition for the high step-down converter. The experimental results show that the light-load efficiency can be effectively improved without generating a larger output voltage ripple. The skip mode is provided to improve the light-load efficiency up to 5% when the load is below 15% of rated load. The light-load efficiency can be improved by two types of modified PWM control sequence as Skip Mode 1 and Skip Mode 2. Furthermore, the mode exchange is quite smooth, and the output voltage ripple does not change significantly.

Author Contributions: Conceptualization, Y.-T.Y.; methodology, Y.-T.Y.; software, C.-W.W.; validation, Y.-T.Y.; formal analysis, Y.-T.Y.; investigation, C.-W.W.; resources, Y.-T.Y.; data curation, C.-W.W.; writing—original draft preparation, K.-I.H.; writing—review and editing, K.-I.H.; visualization, C.-W.W.; supervision, K.-I.H.; project administration, K.-I.H.; and funding acquisition, Y.-T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, under the Grant Number: MOST 109-2222-E-167-003-MY3.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
AC	Alternating Current
CCM	Continuous Current Mode
DC	Direct Current
IC	Integrated Circuit
POL	Power on Load
PWM	Pulse-Width-Modulated
ZVS	Zero Voltage Switching

References

1. Ren, Y.; Xu, M.; Yao, K.; Meng, Y.; Lee, F.C.; Guo, J. Two-stage approach for 12 V VR. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’04), Anaheim, CA, USA, 22–26 February 2004; pp. 1306–1312.
2. Ren, Y.; Xu, M.; Yao, K.; Lee, F.C. Two-stage 48V power pod exploration for 64-bit microprocessor. In Proceedings of the Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’03), Miami Beach, FL, USA, 9–13 February 2003; pp. 426–431.
3. Ren, Y.; Xu, M.; Yao, K.; Lee, F.C. 12V VR efficiency improvement based on two-stage approach and a novel gate driver. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005; pp. 2635–2641.
4. Mao, H.; Abu-Qahouq, J.A.; Luo, S.; Batarseh, I. Zero-voltage-switching (ZVS) two-stage approaches with output current sharing for 48 V input DC-DC converter. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’04), Anaheim, CA, USA, 22–26 February 2004; Volume 2, pp. 1078–1082.
5. Hwu, K.I.; Yau, Y.T. Resonant voltage divider with bidirectional operation and startup considered. *IEEE Trans. Power Electron.* 2012, 27, 1996–2006.

6. Li, W.; Xiao, J.; Wu, J.; Liu, J.; He, X. Application summarization of coupled Inductors in DC-DC converters. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 1487–1492.

7. Li, W.; He, X. A family of interleaved DC-DC converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions. *IEEE Trans. Power Electron.* 2008, 23, 1791–1801.

8. Lee, I.; Cho, S.; Moon, G. Interleaved buck converter having low switching losses and improved step-down conversion ratio. *IEEE Trans. Power Electron.* 2012, 27, 3664–3675.

9. Tsai, C.; Shen, C. Interleaved soft-switching buck converter with coupled inductors. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Singapore, 24–27 November 2008; pp. 877–882.

10. Zhang, Z.; Meyer, E.; Liu, Y.; Sen, P.C. A non-isolated ZVS self-driven current tripler topology for low voltage and high current applications. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 1983–1990.

11. Jang, Y.; Jovanovic, M.M.; Panov, Y. Multiphase buck converters with extended duty cycle. In Proceedings of the Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’06), Dallas, TX, USA, 19–23 March 2006; pp. 8–44.

12. Grant, D.A.; Darroman, Y.; Suter, J. Synthesis of tapped-inductor switched-mode converters. *IEEE Trans. Power Electron.* 2007, 22, 1964–1969.

13. Ye, S.; Eberle, W.; Liu, Y. A novel non-isolated full bridge topology for VRM applications. *IEEE Trans. Power Electron.* 2008, 23, 427–437.

14. Cheng, H.; Smedley, K.M.; Abramovitz, A. A wide-input–wide-output (WIWO) DC–DC converter. *IEEE Trans. Power Electron.* 2010, 25, 280–289.

15. Batarseh, M.; Wang, X.; Batarseh, I. Non-isolated half bridge buck based converter for VRM application. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2393–2398.

16. Nishijima, K.; Ishida, D.; Harada, K.; Nabeshima, T.; Sato, T.; Nakano, T. A novel two-phase buck converter with two cores and four windings. In Proceedings of the INTELEC 07 - 29th International Telecommunications Energy Conference, 30 September–4 October 2007; pp. 861–866.

17. Yao, K.; Ren, Y.; Wei, J.; Xu, M.; Lee, F.C. A family of buck-type DC-DC converters with autotransformers. In Proceedings of the Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’03), Miami Beach, FL, USA, 9–13 February 2003; pp. 114–120.

18. Yang, Z.; Ye, S.; Liu, Y. A new transformer-based non-isolated topology optimized for VRM application. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005; pp. 447–453.

19. Vafaie, M.H.; Adib, E.; Farzanehfard, H. A self powered gate drive circuit for tapped inductor buck converter. In Proceedings of the 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), Tehran, Iran, 15–16 February 2012; pp. 379–384.

20. Hwu, K.I.; Jiang, W.; Yau, Y.T. Ultra high step-down converter. *IEEE Trans. Power Electron.* 2015, 30, 3262–3274.

21. Yau, Y.T.; Jiang, W.Z.; Hwu, K.I. Analysis and design of a high-step-down ratio resonant converter. *Power Electron.* 2016, 9, 864–873.