Scheduling Resources for Executing a Partial Set of Jobs

Venkatesan T. Chakaravarthy1, Arindam Pal2, Sambuddha Roy1, and Yogish Sabharwal1

1IBM Research Lab, New Delhi, India, \{vechakra,sambuddha,ysabharwal\}@in.ibm.com
2Indian Institute of Technology, New Delhi, arindamp@cse.iitd.ernet.in

May 3, 2014

Abstract

In this paper, we consider the problem of choosing a minimum cost set of resources for executing a specified set of jobs. Each input job is an interval, determined by its start-time and end-time. Each resource is also an interval determined by its start-time and end-time; moreover, every resource has a capacity and a cost associated with it. We consider two versions of this problem.

In the partial covering version, we are also given as input a number \(k\), specifying the number of jobs that must be performed. The goal is to choose \(k\) jobs and find a minimum cost set of resources to perform the chosen \(k\) jobs (at any point of time the capacity of the chosen set of resources should be sufficient to execute the jobs active at that time). We present an \(O(\log n)\)-factor approximation algorithm for this problem.

We also consider the prize collecting version, wherein every job also has a penalty associated with it. The feasible solution consists of a subset of the jobs, and a set of resources, to perform the chosen subset of jobs. The goal is to find a feasible solution that minimizes the sum of the costs of the selected resources and the penalties of the jobs that are not selected. We present a constant factor approximation algorithm for this problem.

1 Introduction

We consider the problem of allocating resources to schedule jobs. Each job is specified by its start-time, end-time and its demand requirement. Each resource is specified by its start-time, end-time, the capacity it offers and its associated cost. A feasible solution is a set of resources satisfying the constraint that at any timeslot, the sum of the capacities offered by the resources is at least the demand required by the jobs active at that timeslot, i.e., the selected resources must cover the jobs. The cost of a feasible solution is the sum of costs of the resources picked in the solution. The goal is to pick a feasible solution having minimum cost. We call this the Resource Allocation problem (ResAll).

The above problem is motivated by applications in cloud and grid computing. Consider jobs that require a common resource such as network bandwidth or storage. The resource may be available under different plans; for instance, it is common for network bandwidth to be priced based on the time of the day to account for the network usage patterns during the day. The plans may offer different capacities of the resource at different costs. Moreover, it may be possible to
lease multiple units of the resource under some plan by paying a cost proportional to the number of units.

Bar-Noy et al. [2] presented a 4-approximation algorithm for the ResALL problem (See Section 4 therein). We consider two variants of the problem. The first variant is the partial covering version. In this problem, the input also specifies a number \(k \) and a feasible solution is only required to cover \(k \) of the jobs. The second variant is the prize collecting version wherein each job has a penalty associated with it; for every job that is not covered by the solution, the solution incurs an additional cost, equivalent to the penalty corresponding to the job. These variants are motivated by the concept of service level agreements (SLA’s), which stipulate that a large fraction of the client’s jobs are to be completed. We study these variants for the case where the demands of all the jobs are uniform (say 1 unit) and a solution is allowed to pick multiple copies of a resource by paying proportional cost. We now define our problems formally.

1.1 Problem Definition

We consider the timeline \(T \) to be uniformly divided into discrete intervals ranging from 1 to \(T \). We refer to each integer \(1 \leq t \leq T \) as a timeslot. The input consists of a set of jobs \(\mathcal{J} \), and a set of resources \(\mathcal{R} \).

Each job \(j \in \mathcal{J} \) is specified by an interval \(I(j) = [s(j), e(j)] \), where \(s(j) \) and \(e(j) \) are the start-time and end-time of the job \(j \). We further assume that \(s(j) \) and \(e(j) \) are integers in the range \([1, T]\) for every job \(j \). While the various jobs may have different intervals associated with them, we consider all the jobs to have uniform demand requirement, say 1 unit.

Further, each resource \(i \in \mathcal{R} \) is specified by an interval \(I(i) = [s(i), e(i)] \), where \(s(i) \) and \(e(i) \) are the start-time and the end-time of the resource \(i \); we assume that \(s(i) \) and \(e(i) \) are integers in the range \([1, T]\). The resource \(i \) is also associated with a capacity \(w(i) \) and a cost \(c(i) \); we assume that \(w(i) \) is an integer. We interchangeably refer to the resources as resource intervals. A typical scenario of such a collection of jobs and resources is shown in Figure 1.

We say that a job \(j \) (resource \(i \)) is active at a timeslot \(t \), if \(t \in I(j) \) (\(I(i) \)); we denote this as \(j \sim t \) (\(i \sim t \)). In this case, we also say that \(j \) (or \(i \)) spans \(t \).

We define a profile \(P : T \to \mathbb{N} \) to be a mapping that assigns an integer value to every timeslot. For two profiles, \(P_1 \) and \(P_2 \), \(P_1 \) is said to cover \(P_2 \), if \(P_1(t) \geq P_2(t) \) for all \(t \in T \). Given a set \(J \) of jobs, the profile \(P_J(\cdot) \) of \(J \) is defined to be the mapping determined by the cumulative demand of the jobs in \(J \), i.e. \(P_J(t) = \{|j \in J : j \sim t|\} \). Similarly, given a multiset \(R \) of resources, its profile is: \(P_R(t) = \sum_{i \in R : i \sim t} w(i) \) (taking copies of a resource into account). We say that \(R \) covers \(J \) if...
 covers . The cost of a multiset of resources is defined to be the sum of the costs of all the resources (taking copies into account).

We now describe the two versions of the problem.

- **PARTIALRESALL**: In this problem, the input also specifies a number \(k \) (called the *partiality parameter*) that indicates the number of jobs to be covered. A feasible solution is a pair \((R, J)\) where \(R \) is a multiset of resources and \(J \) is a set of jobs such that \(R \) covers \(J \) and \(|J| \geq k\). The problem is to find a feasible solution of minimum cost.

- **PRIZECOLLECTINGRESALL**: In this problem, every job \(j \) also has a penalty \(p_j \) associated with it. A feasible solution is a pair \((R, J)\) where \(R \) is a multiset of resources and \(J \) is a set of jobs such that \(R \) covers \(J \). The cost of the solution is the sum of the costs of the resources in \(R \) and the penalties of the jobs not in \(J \). The problem is to find a feasible solution of minimum cost.

Note that in both the versions, multiple copies of the same resource can be picked by paying the corresponding cost as many times.

1.2 Related Work and Our Results

Our work belongs to the space of *partial* covering problems, which are a natural variant of the corresponding full cover problems. There is a significant body of work that consider such problems in the literature, for instance, see [8, 3, 9, 10, 7].

In the setting where resources and jobs are embodied as intervals, the objective of finding a minimum cost collection of resources that fulfill the jobs is typically called the *full cover* problem. Full cover problems in the interval context have been dealt with earlier, in various earlier works [2, 4, 6]. Partial cover problems in the interval context have been considered earlier in [5].

Our Main Result. We present an \(O(\log(n + m)) \) approximation for the PARTIALRESALL problem, where \(n \) is the number of jobs and \(m \) is the number of resources respectively.

The work in existing literature that is closest in spirit to our result is that of Bar-Noy et al. [2], and Chakaravarthy et al. [5]. In [2], the authors consider the full cover version, and present a 4-approximation algorithm. In this case, all the jobs are to be covered, and therefore the demand profile to be covered is fixed. The goal is to find the minimum cost set of resources, for covering this profile. In our setting, we need to cover only \(k \) of the jobs. A solution needs to select \(k \) jobs to be covered in such a manner that the resources required to cover the resulting demand profile has minimum cost.

In [5], the authors consider a scenario, wherein the timeslots have demands and a solution must satisfy the demand for at least \(k \) of the timeslots. In contrast, in our setting, a solution needs to satisfy \(k \) *jobs*, wherein each job can span multiple timeslots. A job may not be completely spanned by any resource, and thus may require multiple resource intervals for covering it.

We also show a constant factor approximation algorithm for the PRIZECOLLECTINGRESALL problem, by reducing it to the zero-one version of the RESALL problem. Jain and Vazirani [9] provide a general framework for achieving approximation algorithms for partial covering problems, wherein the prize collecting version is considered. In this framework, under suitable conditions, a
constant factor approximation for the prize collecting version implies a constant factor approximation for the partial version as well. However, their result applies only when the prize collecting algorithm has a certain strong property, called the Lagrangian Multiplier Preserving (LMP) property. While we are able to achieve a constant factor approximation for the PrizeCollectingResAll problem, our algorithm does not have the LMP property. Thus, the Jain-Vazirani framework does not apply to our scenario.

2 Outline of the Main Algorithm

In this section, we outline the proof of our main result:

Theorem 1 There exists an $O(\log(n+m))$-approximation algorithm for the PartialResAll problem, where n is the number of jobs and m is the number of resources.

The proof of the above theorem goes via the claim that the input set of jobs can be partitioned into a logarithmic number of mountain ranges. A collection of jobs M is called a mountain if there exists a timeslot t, such that all the jobs in this collection span the timeslot t; the specified timeslot where the jobs intersect will be called the peak timeslot of the mountain (see Figure 2 jobs are shown on the top and the profile is shown below). The justification for this linguistic convention is that if we look at the profile of such a collection of jobs, the profile forms a bitonic sequence, increasing in height until the peak, and then decreasing. The span of a mountain is the interval of timeslots where any job in the mountain is active. A collection of jobs \mathcal{M} is called a mountain range, if the jobs can be partitioned into a sequence M_1, M_2, \ldots, M_r such that each M_i is a mountain and the spans of any two mountains are non-overlapping (see Figure 3). The decomposition lemma below shows that the input set of jobs can be partitioned into a logarithmic number of mountain ranges. For a job j with start- and end-times $s(j)$ and $e(j)$, let its length be $\ell_j = (e(j) - s(j) + 1)$. Let ℓ_{\min} be the shortest job length, and ℓ_{\max} the longest job length. The proof of the lemma is inspired by the algorithm for the Unsplittable Flow Problem on a line, due to Bansal et al. [1], and it is given in Appendix A.

Lemma 2 The input set of jobs can be partitioned into groups, $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_L$, such that each \mathcal{M}_i is a mountain range and $L \leq 4 \cdot \lceil \log \frac{\ell_{\max}}{\ell_{\min}} \rceil$.

Theorem 3 (see below) provides a c-approximation algorithm (where c is a constant) for the special case where the input set of jobs form a single mountain range. We now prove Theorem 1 assuming Lemma 2 and Theorem 3.

Figure 2: A Mountain M

Figure 3: A Mountain Range $\mathcal{M} = \{M_1, M_2, M_3\}$
Proof of Theorem 1. Let J be the input set of jobs, R be the input set of resources and k be the partiality parameter. Invoke Lemma 2 on the input set of jobs J and obtain a partitioning of J into mountain ranges M_1, M_2, \ldots, M_L, where $L = 4 \cdot \lceil \log(\ell_{\text{max}}/\ell_{\text{min}}) \rceil$. Theorem 3 provides a c-approximation algorithm A for the PartialResAll problem wherein the input set of jobs form a single mountain range, where c is some constant. We shall present a (cL)-approximation algorithm for the PartialResAll problem.

For $1 \leq q \leq L$ and $1 \leq \kappa \leq k$, let $A(q, \kappa)$ denote the cost of the (approximately optimal) solution returned by the algorithm in Theorem 3 with M_q as the input set of jobs, R as the input set of resources and κ as the partiality parameter. Similarly, let $\text{OPT}(q, \kappa)$ denote the cost of the optimal solution for covering κ of the jobs in the mountain range M_q. Theorem 3 implies that $A(q, \kappa) \leq c \cdot \text{OPT}(q, \kappa)$.

The algorithm employs dynamic programming. We maintain a 2-dimensional DP table $\text{DP}[\cdot, \cdot]$. For each $1 \leq q \leq L$ and $1 \leq \kappa \leq k$, the entry $\text{DP}[q, \kappa]$ would store the cost of a (near-optimal) feasible solution covering κ of the jobs from $M_1 \cup M_2 \cup \cdots \cup M_q$. The entries are calculated as follows.

$$\text{DP}[q, \kappa] = \min_{\kappa' \leq \kappa} \{ \text{DP}[q-1, \kappa - \kappa'] + A(q, \kappa') \}.$$

The above recurrence relation considers covering κ' jobs from the mountain M_q, and the remaining $\kappa - \kappa'$ jobs from the mountain ranges M_1, \ldots, M_{q-1}. Using this dynamic program, we compute a feasible solution to the original problem instance (i.e., covering k jobs from all the mountain ranges M_1, M_2, \ldots, M_L); the solution would correspond to the entry $\text{DP}[L, k]$. Consider the optimum solution OPT to the original problem instance. Suppose that OPT covers k_q jobs from the mountain range M_q (for $1 \leq q \leq L$), such that $k_1 + k_2 + \cdots + k_L = k$. Observe that

$$\text{DP}[L, k] \leq \sum_{q=1}^{L} A(q, k_q) \leq c \cdot \sum_{q=1}^{L} \text{OPT}(q, k_q),$$

where the first statement follows from the construction of the dynamic programming table and the second statement follows from the guarantee given by algorithm A. However the maximum of $\text{OPT}(q, k_q)$ (over all q) is a lower bound for OPT (we cannot say anything stronger than this since OPT might use the same resources to cover jobs across multiple subsets M_q). This implies that $\text{DP}[L, k] \leq c \cdot L \cdot \text{OPT}$. This proves the (cL)-approximation ratio.

Theorem 3 There exists a constant factor approximation algorithm for the special case of the PartialResAll problem, wherein the input set of jobs form a single mountain range M.

The first step in proving the above theorem is to design an algorithm for handling the special case where the input set of jobs form a single mountain. This is accomplished by the following theorem. The proof is given in Section 3.

Theorem 4 There exists an 8-approximation algorithm for the special case of the PartialResAll problem wherein the input set of jobs for a single mountain M.

5
We now sketch the proof of Theorem 3. Let the input mountain range be \mathcal{M} consisting of mountains M_1, M_2, \ldots, M_r. The basic intuition behind the algorithm is to “collapse” each mountain M_q into a single timeslot. A resource interval i is said to intersect a mountain M if the interval i and the span of M overlap; the resource i is said to fully span the mountain M, if the span of M is contained in the interval i; the resource i is said to be contained in the mountain M, if the interval i is contained in the span of M. It may be possible that for a resource interval i and a mountain M, neither i fully spans M nor is i contained in M. However, at a factor three loss in the approximation ratio, we can transform an input instance into an instance satisfying the following property. The resource intervals in the modified instance can be classified into two categories: (1) narrow resources i having the property that the interval i is contained in the span of a specific single mountain M; (2) wide resources i having the property that if i intersects any mountain M, then it fully spans the mountain.

The notion of collapsing mountains into timeslots is natural when the input instance consists only of wide resources. This is because we can collapse the mountains M_1, M_2, \ldots, M_r into timeslots 1, 2, ..., r. Furthermore, for each wide resource i, consider the sequence of mountains $M_p, M_{p+1}, \ldots, M_q$ (for some $p \leq q$) that are fully spanned by the resource i; then we represent i by an interval that spans the timeslots $[p, q]$. However, the case of narrow resources is more involved because a narrow resource does not fully span the mountain containing it. Based on the above intuition, we define a problem called the Long Short Partial Cover (LSPC). The algorithm for handling a mountain range goes via a reduction to the LSPC problem.

Problem Definition (LSPC): We are given a demand profile over a range $[1, T]$, which specifies an integral demand d_t at each timeslot $t \in [1, T]$. The input resources are of two types, short and long. A short resource spans only one timeslot, whereas a long resource can span one or more timeslots. Each resource i has a cost $c(i)$ and a capacity $w(i)$. The input also specifies a partiality parameter k. A feasible solution S consists of a multiset of resources S and a coverage profile. A coverage profile is a function that assigns an integer k_t for each timeslot t satisfying $k_t \leq d_t$. The solution should have the following properties: (i) $\sum_i k_t \geq k$; (ii) at any timeslot t, the sum of capacities of the resource intervals from S active at t is at least k_t; (iii) for any timeslot t, at most one of the short resources spanning the timeslot t is picked (however, multiple copies of a long resource may be included). The objective is to find a feasible solution having minimum cost. See Figure 4 for an example (in the figure, short resources are shaded).

The advantage with the LSPC problem is that the demands are restricted to single timeslots; in contrast, in the PARTIALRESALL problem, the demands or jobs can span multiple timeslots. Theorem 5 (see below) shows that the LSPC problem can be approximated within a factor of 16. The reduction from the PARTIALRESALL problem restricted to a single mountain range (as in
Theorem 3 to the LSPC problem goes by representing each mountain in the input mountain range \(\mathcal{M} \) by a single timeslot in the LSPC instance; the wide resources will correspond to long resources in the LSPC instance. The reduction handles the narrow resources using the short resources; the constraint (iii) in the LSPC problem definition is crucially employed in this process. The reduction from the case of single mountain range to the LSPC problem shown in Appendix B and Theorem 3 is proved there.

Theorem 5 There exists a 16-approximation algorithm for the LSPC problem.

The algorithm claimed in the above theorem is inspired by the work of [5]. In that paper, the authors study a variant of the problem; in that variant, there are only long resources and a solution \(S \) must satisfy a set of \(k \) timeslots \(t_1, t_2, \ldots, t_k \in [1, T] \), where a timeslot \(t \) is satisfied, if the sum of capacities of the resources in \(S \) active at \(t \) is at least the demand \(d_t \); a solution is allowed to pick multiple copies of any resource (both long and short). The LSPC problem differs in two ways: first, a solution can satisfy the demand at a timeslot partially and secondly, only one copy of a short resource can be picked. These two differences give rise to complications and as a result, our algorithm is more involved. The algorithm is provided in Section 4.

Organization of the paper: Lemma 2 is proved in Appendix A. Theorem 4 and Theorem 5 are proved in Section 3 and Section 4 respectively. Assuming Theorem 5, we prove Theorem 3 in Appendix B.

3 A Single Mountain: Proof of Theorem 4

In this section, we give an 8-factor approximation algorithm for the case of the PartialResAll problem, where the input jobs form a single mountain.

The basic intuition is as follows. Given the structure of the jobs, we will show that there is a near-optimal feasible solution that exhibits a nice property: the jobs discarded from the solution are extremal either in their start-times or their end-times.

Lemma 6 Consider the PartialResAll problem for a single mountain. Let \(\mathcal{J} = \{j_1, j_2, \ldots, j_n\} \) be the input set of jobs. Let \(S = (R_S, J_S) \) be a feasible solution such that \(R_S \) covers the set of jobs \(J_S \) with \(|J_S| = k \). Let \(C_S \) denote its cost. Let \(L = < l_1, l_2, \ldots, l_n > \) denote the jobs in increasing order of their start-times. Similarly, let \(R = < r_1, r_2, \ldots, r_n > \) denote the jobs in decreasing order of their end-times. Then, there exists a feasible solution \(X = (R_X, J_X) \) having cost at most \(2 \cdot C_S \) such that

\[
\mathcal{J} \setminus J_X = \{l_i : i \leq q_1\} \cup \{r_i : i \leq q_2\}
\]

for some \(q_1, q_2 \geq 0 \) where \(|\mathcal{J} \setminus J_X| = n - k \).

Proof We give a constructive proof to determine the sets \(J_X \) and \(R_X \).

We initialize the set \(J_X = \mathcal{J} \). At the end of the algorithm, the set \(J_X \) will be the desired set of jobs covered by the solution. The idea is to remove the jobs that extend most to the right or the left from the consideration of \(J_X \). The most critical aspect of the construction is to ensure that whenever we exclude any job from consideration of \(J_X \) that is already part of \(J_S \), we do so in pairs of the leftmost and rightmost extending jobs of \(J_S \) that are still remaining in \(J_X \). We terminate
this process when the size of J_X equals the size of J_S, i.e., k. We also initialize the set $U = \emptyset$. At the end of the algorithm, this set will contain the set of jobs removed from J that belonged to J_S while constructing J_X.

We now describe the construction of J_X formally. We maintain two pointers l-ptr and r-ptr; l-ptr indexes the jobs in the sequence L and r-ptr indexes the jobs in the sequence R. We keep incrementing the pointer l-ptr and removing the corresponding job from J_X (if it has not already been removed) until either the size of J_X reaches k or we encounter a job (say l-job) in J_X that belongs to J_S; we do not yet remove the job l-job. We now switch to the pointer r-ptr and start incrementing it and removing the corresponding job from J_X (if it has not already been removed) until either the size of J_X reaches k or we encounter a job (say r-job) in J_X that belongs to J_S; we do not yet remove the job r-job. If the size of J_X reaches k, we have the required set J_X.

Now suppose that $|J_X| \neq k$. Note that both l-ptr and r-ptr are pointing to jobs in J_S. Let l-job and r-job be the jobs pointed to by l-ptr and r-ptr respectively (note that these two jobs may be same).

We shall remove one or both of l-job and r-job from J_X and put them in U. We classify these jobs into three categories: single, paired and artificially paired.

Suppose that $|J_X| \geq k+2$. In this case, we have to delete at least 2 more jobs; so we delete both l-job and r-job and add them to U as paired jobs. In case l-job and r-job are the same job, we just delete this job and add it to U as a single job. We also increment the l-ptr and r-ptr pointers to the next job indices in their respective sequence. We then repeat the same process again, searching for another pair of jobs.

Suppose that $|J_X| = k+1$. In case l-job and r-job are the same job, we just delete this job and get the required set J_X of size k; We add this job to the set U as a single job. On the other hand, if l-job and r-job are different jobs, we remove l-job from J_X and add it to U as artificially paired with its pair as the job r-job; note that we do not remove r-job from J_X.

This procedure gives us the required set J_X. We now construct R_X by simply doubling the resources of R_S; meaning, that for each resource in R_S, we take twice the number of copies in R_X. Clearly $C_X = 2 \cdot C_S$. It remains to argue that R_X covers J_X. For this, note that $U = J_S - J_X$ and hence $|U| = |J_X - J_S|$ (because $|J_X| = |J_S| = k$). We create an arbitrary bijection $f : U \rightarrow J_X - J_S$. Note that J_X can be obtained from J_S by deleting the jobs in U and adding the jobs of $J_X - J_S$.

We now make an important observation:

Observation 8 For any paired jobs or artificially paired jobs j_1, j_2 added to U, all the jobs in J_X are contained within the span of this pair, i.e., for any j in J_X, $s_j \geq \min\{s(j_1), s(j_2)\}$ and $e_j \leq \max\{e(j_1), e(j_2)\}$. Similarly for any single job j_1 added to U, all jobs in J_X are contained in the span of j_1.

For every paired jobs, j_1, j_2, Observation 8 implies that taking 2 copies of the resources covering $\{j_1, j_2\}$ suffices to cover $\{f(j_1), f(j_2)\}$. Similarly, for every single job j, the resources covering $\{j\}$ suffice to cover $\{f(j)\}$. Lastly for every artificially paired jobs j_1, j_2 where $j_1 \in U$ and $j_2 \notin U$, taking 2 copies of the resources covering $\{j_1, j_2\}$ suffices to cover $\{f(j_1), f(j_2)\}$.

Hence the set R_X obtained by doubling the resources R_S (that cover J_S) suffices to cover the jobs in J_X.

Recall that Bar-Noy et al. [2] presented a 4-approximation algorithm for the RESALL problem (full cover version). Our algorithm for handling a single mountain works as follows. Given a mountain consisting of the collection of jobs J and the number k, do the following for all possible
pairs of numbers \((q_1, q_2)\) such that the set \(J_X\) defined as per Equation\(^1\) in Lemma\(^6\) has size \(k\). For the collection of jobs \(J_X\), consider the issue of selecting a minimum cost set of resources to cover these jobs; note that this is a full cover problem. Thus, the 4-approximation of \([2]\) can be applied here. Finally, we output the best solution across all choices of \((q_1, q_2)\). Lemma\(^6\) shows that this is an 8-factor approximation to the PARTIALRESALL problem for a single mountain.

4 LSPC Problem: Proof of Theorem\(^5\)

Here, we present a 16-approximation algorithm for the LSPC problem.

We extend the notion of profiles and coverage to ranges contained within \([1, T]\). Let \([a, b]\) contained in \([1, T]\) be a timerange. By a profile over \([a, b]\), we mean a function \(Q\) that assigns a value \(Q(t)\) to each timeslot \(t \in [a, b]\). A profile \(Q\) defined over a range \([a, b]\) is said to be good, if for all timeslots \(t \in [a, b]\), \(Q(t) \leq d_t\) (where \(d_t\) is the input demand at \(t\)). In the remainder of the discussion, we shall only consider good profiles and so, we shall simply write “profile” to mean a “good profile”. The measure of \(Q\) is defined to be the sum \(\sum_{t \in [a, b]} Q(t)\).

Let \(S\) be a multiset of resources and let \(Q\) be a profile over a range of timeslots \([a, b]\). We say that \(S\) is good, if it includes at most one short resource active at any timeslot \(t\). We say that \(S\) covers the profile \(Q\), if for any timeslot \(t \in [a, b]\), the sum of capacities of resources in \(S\) active at \(t\) is at least \(Q(t)\). Notice that \(S\) is a feasible solution to the input problem instance, if there exists a profile \(Q\) over the entire range \([1, T]\) such that \(Q\) has measure \(k\) and \(S\) is a cover for \(Q\). For a timeslot \(t \in [1, T]\), let \(Q^\text{sh}_S(t)\) denote the capacity of the unique short resource from \(S\) active at \(t\), if one exists; otherwise, \(Q^\text{sh}_S(t) = 0\).

Let \(S\) be a good multiset of resources and let \(Q\) be a profile over a range of timeslots \([a, b]\). For a long resource \(i \in S\), let \(f_S(i)\) denote the number of copies of \(i\) included in \(S\). The multiset \(S\) is said to be a single long resource assignment cover (SLRA cover) for \(Q\), if for any timeslot \(t \in [a, b]\), there exists a long resource \(i \in S\) such that \(w(i)f_S(i) \geq Q(t) - Q^\text{sh}_S(t)\) (intuitively, the resource \(i\) can cover the residual demand by itself, even though other long resources in \(S\) may be active at \(t\)).

We say that a good multiset of resources \(S\) is an SLRA solution to the input LSPC problem instance, if there exists a profile \(Q\) over the range \([1, T]\) having measure \(k\) such that \(S\) is an SLRA cover for \(Q\). The lemma below shows that near-optimal SLRA solutions exist.

Lemma 9 Consider the input instance of the LSPC problem. There exists an SLRA solution having cost at most 16 times the cost of the optimal solution.

The lemma follows from a similar result proved in \([3]\) and the proof is deferred to Appendix\(^C\). Surprisingly, we can find the optimum SLRA solution \(S^*\) in polynomial time, as shown in Theorem\(^10\) below. Lemma\(^9\) and Theorem\(^10\) imply that \(S^*\) is a 16-factor approximation to the optimum solution. This completes the proof of Theorem\(^5\).

Theorem 10 The optimum SLRA solution \(S^*\) can be found in time polynomial in the number of resources, number of timeslots and \(H\), where \(H = \max_{t \in [1, T]} d_t\).

The rest of the section is devoted to proving Theorem\(^10\). The algorithm goes via dynamic programming. The following notation is useful in our discussion.
Let S be a good set consisting of only short resources, and let $[a, b]$ be a range. For a profile Q defined over $[a, b]$, S is said to be an h-free cover for Q, if for any $t \in [a, b]$, $Q^h_S(t) \geq Q(t) - h$. The set S is said to be an h-free q-cover for $[a, b]$, if there exists a profile Q over $[a, b]$ such that Q has measure q and S is a h-free cover for Q.

Let S be a good multiset of resources and let $[a, b]$ be a range. For a profile Q defined over $[a, b]$, the multiset S is said to be an h-free SLRA cover for Q, if for any timeslot $t \in [a, b]$ satisfying $Q(t) - Q^h_S(t) > h$, there exists a long resource $i \in S$ such that $w(i)f_S(i) \geq Q(t) - Q^h_S(t)$. For an integer q, we say S is an h-free SLRA q-cover for the range $[a, b]$, if there exists a profile Q over $[a, b]$ such that Q has measure q and S is a h-free SLRA cover for Q.

Intuitively, h denotes the demand covered by long resources already selected (and their cost accounted for) in the previous stages of the algorithm; thus, timeslots whose residual demand is at most h can be ignored. The notion of “h-freeness” captures this concept.

We shall first argue that any h-free SLRA cover S for a profile Q over a timerange $[a, b]$ exhibits certain interesting decomposition property. Intuitively, in most cases, the timeline can be partitioned into two parts (left and right), and S can be partitioned into two parts S_1 and S_2 such that S_1 can cover the left timerange and S_2 can cover the right timerange (even though resources in S_1 may be active in the right timerange and those in S_2 may be active in the left timerange). In the cases where the above decomposition is not possible, there exists a long resource spanning almost the entire range. The lemma is similar to a result proved in [5] (see Lemma 4 therein). The proof is deferred to Appendix C.

Lemma 11 Let $[a, b]$ be any timerange, Q be a profile over $[a, b]$ and let h be an integer. Let S be a good set of resources providing an h-free SLRA-cover for Q. Then, one of the following three cases holds:

- **The set of short resources in S form a h-free cover for Q.**

- **Time-cut:** There exists a timeslot $a \leq t^* \leq b - 1$ and a partitioning of S into S_1 and S_2 such that S_1 is an h-free SLRA-cover for Q_1 and S_2 is an h-free SLRA-cover for Q_2, where Q_1 and Q_2 profiles obtained by restricting Q to $[a, t^*]$ and $[t^* + 1, b]$, respectively.

- **Interval-cut:** There exists a long resource $i^* \in S$ such that the set of short resources in S forms a h-free cover for both Q_1 and Q_2, where Q_1 and Q_2 are the profiles obtained by restricting Q to $[a, s(i^*) - 1]$ and $[e(i^*) + 1, b]$ respectively.

We now discuss our dynamic programming algorithm. Let $H = \max_{t \in [1, T]} d_t$ be the maximum of the input demands. The algorithm maintains a table M with an entry for each triple $([a, b], q, h)$, where $[a, b] \subseteq [1, T]$, $0 \leq q \leq k$ and $0 \leq h \leq H$. The entry $M([a, b], q, h)$ stores the cost of the optimum h-free SLRA q-cover for the range $[a, b]$; if no solution exists, then $M([a, b], q, h)$ will be ∞. Our algorithm outputs the solution corresponding to the entry $M([1, T], k, 0)$; notice that this is optimum SLRA solution S^*.

In order to compute the table M, we need an auxiliary table A. For a triple $[a, b]$, q and h, let $A([a, b], q, h)$ be the optimum h-free q-cover for $[a, b]$, (using only the short resources); if no solution exists $A([a, b], q, h)$ is said to be ∞. We first describe how to compute the auxiliary table A. For a triple consisting of $t \in [1, T]$, $q \leq k$ and $h \leq H$, define $\gamma(t, q, h)$ as follows. If $q > d_t$, set $\gamma(t, q, h) = \infty$. Consider the case where $q \leq d_t$. If $q \leq h$, set $\gamma(t, q, h) = 0$. Otherwise, let i be
\[
E_1 = A([a, b], q, h).
\]
\[
E_2 = \min_{t \in [a, b-1] \atop q_1 \leq q} M([a, t], q_1, h) + M([t+1, b], q - q_1, h).
\]
\[
E_3 = \min_{(i \in \mathcal{L}, \alpha \leq H) : \alpha w(i) > h \atop q_1, q_2, q_3 : q_1 + q_2 + q_3 = q} \left(\begin{array}{c}
\alpha \cdot c(i) \\
A([a, s(i) - 1], q_1, h) + M([s(i), e(i)], q_2, \alpha w(i)) + A([e(i) + 1, b], q_3, h)
\end{array} \right)
\]

Figure 5: Recurrence relation for \(M \)

The minimum cost short resource active at \(t \) such that \(w(i) \geq q - h \); set \(\gamma(t, q, h) = c(i) \); if no such short resource exists, set \(\gamma(t, q, h) = \infty \).

Then, for a triple \(([a, b], q, h) \), the entry \(A([a, b], q, h) \) is governed by the following recurrence relation. Of the demand \(q \) that need to be covered, the optimum solution may cover a demand \(q_1 \) from the timeslot \(t \), and a demand \(q - q_1 \) from the range \([a, b - 1] \). We try all possible values for \(q_1 \) and choose the best:

\[
A([a, b], q, h) = \min_{q_1 \leq \min(q, d_i)} A([a, b-1], q - q_1, h) + \gamma(b, q_1, h).
\]

It is not difficult to verify the correctness of the above recurrence relation.

We now describe how to compute the table \(M \). Based on the decomposition lemma (Lemma 11), we can develop a recurrence relation for a triple \([a, b], q \) and \(h \). We compute \(M([a, b], q, h) \) as the minimum over three quantities \(E_1, E_2 \) and \(E_3 \) corresponding to the three cases of the lemma. Intuitive description of the three quantities is given below and precise formulas are provided in Figure 5. In the figure, \(\mathcal{L} \) is the set of all long resources.

- **Case 1:** No long resource is used and so, we just use the corresponding entry of the table \(A \).
- **Case 2:** There exists a time-cut \(t^* \). We consider all possible values of \(t^* \). For each possible value, we try all possible ways in which \(q \) can be divided between the left and right ranges.
- **Case 3:** There exists a long resource \(i^* \) such that the timeranges to the left of and to the right of \(i^* \) can be covered solely by short resources. We consider all the long resources \(i \) and also the number of copies \(\alpha \) to be picked. Once \(\alpha \) copies of \(i \) are picked, \(i \) can cover all timeslots with residual demand at most \(\alpha w(i) \) in an SLRA fashion, and so the subsequent recursive calls can ignore these timeslots. Hence, this value is passed to the recursive call. We also consider different ways in which \(q \) can be split into three parts - left, middle and right. The left and right parts will be covered by the solely short resources and the middle part will use both short and long resources. Since we pick \(\alpha \) copies of \(i \), a cost of \(\alpha c(i) \) is added.

We set \(M([a, b], q, h) = \min\{E_1, E_2, E_3\} \). For the base case: for any \([a, b], q = 0 \) or \(h = H \), then the entry is set to zero.

We now describe the order in which the entries of the table are filled. Define a partial order \(\prec \) as below. For pair of triples \(z = ([a, b], q, h) \) and \(z' = ([a', b'], q', h') \), we say that \(z \prec z' \), if one of

\(^1\)The input demands \(d_t \) are used in computing the table \(A(\cdot, \cdot, \cdot) \)
the following properties is true: (i) $[a', b'] \subseteq [a, b]$; (ii) $[a, b] = [a', b']$ and $q < q'$; (iii) $[a, b] = [a', b']$, $q = q'$ and $h > h'$. Construct a directed acyclic graph (DAG) G where the triples are the vertices and an edge is drawn from a triple z to a triple z', if $z < z'$. Let π be a topological ordering of the vertices in G. We fill the entries of the table M in the order of appearance in π. Notice that the computation for any triple z only refers to triples appearing earlier than z in π.

Using Lemma 11, we can argue that the above recurrence relation correctly computes all the entries of M. For the sake of completeness, a proof is included in Appendix C.3.

5 The PrizeCollectingResAll problem

In this section, we consider the PrizeCollectingResAll problem. We prove the following:

Theorem 12 There is a 4-factor approximation algorithm for the PrizeCollectingResAll problem.

The proof proceeds by exhibiting a reduction from the PrizeCollectingResAll problem to the following full cover problem.

Problem Definition: We are given a demand profile which specifies an integral demand d_t at each timeslot t. The input resources are of two types, called S-type (short for single) and M-type (short for multiple). A resource i has a capacity $w(i)$, and cost $c(i)$. A valid solution consists of a multiset of resources such that it includes at most 1 copy of any S-type resource; however arbitrarily many copies of any M-type resource may be picked. A feasible solution S is a valid solution such that at any timeslot t, the total capacity of the resources in S, active at the timeslot t, is at least the demand d_t of the timeslot. The objective is to find a feasible solution having minimum cost.

Call this problem the Single Multiple Full Cover (SMFC) problem.

The full cover problem, (0-1)-ResAll is considered in [5]. The (0-1)-ResAll problem specifies demands for timeslots, and feasible solutions consist of a set of resources such that every timeslot is fulfilled by the cumulative capacity of the resources active at that timeslot. The main qualification is that in this problem setting, any resource may be picked up at most once. In [5], it is shown that this problem admits a 4-factor approximation algorithm. The SMFC problem easily reduces to the (0-1)-ResAll problem: S-type resources may be picked up at most once, and keep copies of the M-type resources so that it suffices to select any one of the copies. Thus the algorithm and the performance guarantee claimed in [5] also implies the following:

Theorem 13 There is a 4-factor approximation to the SMFC problem.

We proceed to exhibit our reduction from the PrizeCollectingResAll problem to the SMFC problem. Given an instance I of the PrizeCollectingResAll problem, we will construct an instance O of the SMFC problem, such that any optimal solution $\text{OPT}(I)$ can be converted (at no extra cost) into an optimal solution $\text{OPT}(O)$ for the instance O. Consider any job j in the instance I; we will create a S-type resource $r(j)$ in the instance O corresponding to j. The resource $r(j)$ will have the same length, start- and end-times as the job j, and will have a cost p_j (the penalty associated with job j). The resources in instance I will be labeled as M-type resources in the instance O. The other parameters, such as demands at timeslots, are inherited by O from the instance I.

We show that any feasible solution S_I to the PrizeCollectingResAll problem corresponds to a feasible solution S_O (of the same cost) for the SMFC problem. Let J' denote the set of jobs
that are not covered by the solution \(S_I \) (thus, the solution pays the penalty for each of the jobs in \(J' \)).

The multiset of resources in \(SO \) consists of the (M-type) resources that exist in the solution \(S_I \), and the S-type resources \(r(j) \) in \(O \) corresponding to every job \(j \) in \(J' \). Any job \(j \) that is actually covered by the set of resources in \(S_I \) is also covered in the solution \(SO \), and the resources utilized to cover the job are the same. A job \(j \) that is not covered by the resources in \(S_I \) pays a penalty \(p_j \) in the solution \(S_I \); however this job \(j \) in \(O \) can be covered by the S-type resource \(r(j) \) in the solution \(SO \). Thus, the solution \(SO \) is a feasible solution to the instance \(O \), and has cost equal to the cost of the solution \(S_I \).

In the reverse direction, suppose we are given a solution \(SO \) to the instance \(O \). We will convert the solution into a standard form, i.e. a solution in which if a S-type resource \(r(j) \) (for some job \(j \)) is included, then this resource is used to cover job \(j \). Suppose job \(j \) is covered by some other resources in the solution \(SO \), while resource \(r(j) \) covers some other jobs (call this set \(J' \)). We can clearly exchange the resources between job \(j \) and the set of jobs \(J' \) so that job \(j \) is covered by resource \(r(j) \). So we may assume that the solution \(SO \) is in standard form. But now, given a standard form solution \(SO \), we can easily construct a feasible solution \(S_I \) for the PrizeCollectingResAll instance \(I \): if a job \(j \) in \(SO \) is covered by the S-type resource \(r(j) \), then in \(S_I \), this job will not be covered (and a penalty \(p_j \) will be accrued); all jobs \(j \) in \(SO \) that are covered by M-type resources will be covered by the corresponding resources in \(S_I \).

This completes the reduction, and the proof of Theorem 13.

References

[1] N. Bansal, Z. Friggstad, R. Khandekar, and M. Salavatipour. A logarithmic approximation for unsplittable flow on line graphs. In SODA, 2009.

[2] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approximating resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090, 2001.

[3] R. Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem. J. Algorithms, 39(2):137–144, 2001.

[4] R. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading. ACM Transactions on Algorithms, 3(1), 2007.

[5] V. Chakaravarthy, A. Kumar, S. Roy, and Y. Sabharwal. Resource allocation for covering time varying demands. In ESA, 2011.

[6] D. Chakrabarty, E. Grant, and J. Könemann. On column-restricted and priority covering integer programs. In IPCO, pages 355–368, 2010.

[7] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial covering problems. J. Algorithms, 53(1):55–84, 2004.

[8] N. Garg. Saving an \(\epsilon \): a 2-approximation for the k-MST problem in graphs. In STOC, 2005.
A Proof of Lemma 2

We first categorize the jobs according to their lengths into r categories C_1, C_2, \ldots, C_r, where $r = \lceil \log \frac{\ell_{\text{max}}}{\ell_{\text{min}}} \rceil$. The category C_i consists of all the jobs with lengths in the range $[2^{i-1}\ell_{\text{min}}, 2^i\ell_{\text{min}})$. Thus all the jobs in any single category have comparable lengths: any two jobs j_1 and j_2 in the category satisfy $\ell_1 < 2\ell_2$, where ℓ_1 and ℓ_2 are the lengths of j_1 and j_2 respectively.

Consider any category C and let the lengths of the jobs in C lie in the range $[\alpha, 2\alpha)$. We claim that the category C can be partitioned into 4 groups G_0, G_1, G_2, G_3, such that each G_i is a mountain range. To see this, partition the set of jobs C into classes $H_1, H_2, \ldots, H_q\ldots$ where H_q consists of the jobs active at timeslot $q \cdot \alpha$. Note that every job belongs to some class since all the jobs have length at least α; if a job belongs to more than one class, assign it to any one class arbitrarily. Clearly each class H_q forms a mountain. For $0 \leq i \leq 3$, let G_i be the union of the classes H_q satisfying $q \equiv i \mod 4$. Since each job has length at most 2α, each G_i is a mountain range. Thus, we get a decomposition of the input jobs into $4r$ mountain ranges.

B Single Mountain Range: Proof of Theorem 3

In this section, we prove Theorem 3 via a reduction to LSPC. The reduction proceeds in two steps.

B.1 First Step

Let the input instance be A, wherein the input set of jobs form a mountain range $M = \{M_1, M_2, \ldots, M_r\}$. We will transform the instance A to an instance B, with some nice properties: (1) the input set of jobs in B also form a mountain range; (2) every resource i in the instance B is either narrow or wide (see Section 2 for the definitions); (3) the cost of the optimum solution for the instance B is at most 3 times the optimal cost for the instance A; (4) given a feasible solution to B, we can construct a feasible solution to A preserving the cost.

Consider each resource i in A and let $M_p, M_{p+1}, \ldots, M_q$ (where $1 \leq p \leq q \leq r$) be the sequence of mountains that i intersects. Clearly, i fully spans the mountains M_{p+1}, \ldots, M_{q-1}. We will split the resource i into at most 3 new resources i_1, i_2, i_3; we say that i_1, i_2 and i_3 are associated with i. The resource i_2 will fully span the mountains M_{p+1}, \ldots, M_{q-1}. The span of the resource i_1 is the intersection of the span of i with the mountain M_p. Likewise, the span of the resource i_3 is the intersection of the span of i with the mountain M_q. The capacities and the costs of i_1, i_2 and i_3 are declared to be the same as that of i. We include i_1, i_2, i_3 in B. The input set of jobs and the partiality parameter k, in B are identical to that of A. This completes the reduction.

It is easy to see that the first two properties are satisfied by B. Let us now consider third property. Given any solution S for the instance A, we can construct a solution S' for B as follows. For each copy of resource i picked in S, include a single copy of i_1, i_2 and i_3 in S'. Clearly, the
cost of the solution \(S' \) is at most thrice that of the cost of \(S \). Regarding the fourth property, given a solution \(S \) to \(B \), we can construct a solution \(S' \) to \(A \) as follows. Consider any resource \(i \) in \(A \) and let \(i_1, i_2 \) and \(i_3 \) be the resources in \(B \) associated with \(i \). Let \(f_1, f_2, f_3 \) be the number of copies of \(i_1, i_2, i_3 \) picked by solution \(S \). Let \(f = \max\{f_1, f_2, f_3\} \). Include \(f \) copies of the resource \(i \) in the solution \(S' \). It is easy to see that \(S' \) is a feasible solution to \(A \) and that the cost of \(S' \) is at most the cost of \(S \).

B.2 Second Step

In this step we reduce the problem instance \(B \) to an LSPC instance \(C \), with the following properties:

1. The cost of the optimum solution for the instance \(C \) is at most 8 times the optimal cost for the instance \(A \);
2. Given a feasible solution to \(C \), we can construct a feasible solution to \(B \) preserving the cost.

Reduction

In the instance \(C \), retain only the peak timeslots of the various mountains in the instance \(B \) so that the number of timeslots in \(C \) is the same as the number of mountains \(r \) in \(B \). For any peak timeslot \(t \) in the instance \(B \), let \(d_t \) be the number of jobs in \(B \) that are active at the timeslot \(t \); we assign the demand \(d_t \) to timeslot \(t \) in the instance \(C \). For any wide resource \(i \) in \(B \), fully spanning mountains \(M_p, M_{p+1}, \ldots, M_q \), create a long resource \(i' \) in \(C \) with the span \([p, q]\). The cost and capacity of \(i' \) are the same as that of \(i \).

The narrow resources in the instance \(B \) are used to construct the short resources in the instance \(C \) as follows. Consider any specific mountain \(M \) in the instance \(B \) along with the collection of narrow resources \(R \) that are contained in the span of \(M \), and let \(t \) be the peak timeslot of \(M \). For any integer \(\kappa \) \((1 \leq \kappa \leq d_t)\), we will apply the algorithm implied in Theorem 4 for the single mountain \(M \), with \(\kappa \) as the partiality parameter, and the set of narrow resources \(R \) as the only resources. Then, Theorem 4 gives us a solution of cost \(C \) consisting of a multiset \(R' \) of some resources in \(R \), that covers \(\kappa \) of the jobs in the mountain \(M \). Corresponding to each \(\kappa \), we will include a short resource \(i_s \) in the instance \(C \) with capacity \(\kappa \), and cost \(C \). We will call the (multi)set of narrow resources \(R' \subseteq R \) in the instance \(B \) as associated with the short resource \(i_s \). This completes the description of the instance \(C \) of the LSPC problem.

Validity of the reduction

We will now argue the validity of the reduction. Let us consider the first property: the cost of the optimum solution to the instance \(C \) has cost at most 8 times the cost of the optimum solution to the instance \(B \). The following lemma is useful for this purpose.

Lemma 14 Let \(J \) be a subset of jobs and \(R \) be multiset of resources in the instance \(B \) such that \(R \) covers \(J \) (note that \(R \) contains only narrow or wide resources and \(J \) forms a mountain range). Let \(R_1 \) and \(R_2 \) be narrow and wide resources in \(R \). Let \(R'_2 \) be a multiset constructed by picking twice the number of copies of each resource in \(R_2 \). Then, \(J \) can be partitioned into two sets \(J_1 \) and \(J_2 \) such that \(J_1 \) is solely covered by the resources in \(R_1 \) and \(J_2 \) is solely covered by the resources in \(R'_2 \).

Proof 15 For now, we assume that the mountain range comprises of a single mountain.
Let $P_R(t), P_{R_1}(t), P_{R_2}(t), P_{R_2'}(t)$ denote the profile of the resources in R, R_1, R_2 and R_2' respectively. Note that $P_{R_2}(t)$ is a uniform bandwidth profile having uniform height, say h. Let J_L be the first h jobs among all the jobs in J sorted in ascending ordered by their start-times. Similarly, let J_R be the first h jobs among all the jobs in J sorted in descending order by their left end-times. Intuitively, J_L and J_R correspond to the h left-most and the h right-most jobs in the mountain.

Let J_L and J_R denote the h left-most and h right-most jobs in the job profile J respectively (these sets may not be disjoint). Let $J_2 = J_L \cup J_R$ and $J_1 = J \setminus J_2$. Let $P_J(t), P_{J_1}(t)$ and $P_{J_2}(t)$ denote the profiles of the jobs in J, J_1 and J_2 respectively.

Note that the profile $P_{R_2}(t)$ has height $2h$ throughout the span of the mountain whereas the profile $P_{J_2}(t)$ has height at most $2h$ at any timeslot. Thus R_2' covers J_2.

We will now show that R_1 covers J_1. Note that $P_{J_1}(t) = P_J(t) - P_{J_2}(t)$. We partition the timeslots into two parts: $T_0 = \{ t : P_{J_1}(t) = 0 \}$ and $T_{>0} = \{ t : P_{J_1}(t) > 0 \}$. For the timeslots in T_0, there are no jobs remaining in J_1 for R_1 to cover. For the timeslots in $T_{>0}$, we note that $P_{J_1}(t) \leq P_J(t) - h$ (because J_2 comprises of the left-most h and right-most h jobs of the mountain). Also note that the profile $P_{R_1}(t) = P_R(t) - P_{R_2}(t) = P_R(t) - h$. Since, R covers J, this implies that R_1 is sufficient to cover J_1.

The proof can easily be extended to a mountain range as the mountains within a mountain range are disjoint.

Let $\text{OPT} = (R, J)$ denote the optimal solution for the problem instance \mathcal{B}, where J is the set of jobs picked by the solution and R is the set of resources covering J (we have $|J| = k$). Let R_1 and R_2 be the set of narrow and wide resources in R. Apply Lemma 14 for the solution (R, J) and obtain a partition of J into J_1 and J_2 along with R_1 (covering J_1) and R_2' (covering J_2). Let $M = M_1, M_2, \ldots, M_r$ be the input mountain range in the instance \mathcal{B} with peak timeslots t_1, t_2, \ldots, t_r, respectively. Consider any mountain M_q. Let k_q be the number of jobs picked in J from the mountain M_q. Let $R_{1,q}$ be the set of (narrow) resources from R_1 contained within the span of M_q. Thus, the set of resources $R_{1,q}$ cover the set of jobs in $M_q \cap J_1$ and let $k_q' = |M_q \cap J_1|$. Corresponding to the value k_q', we would have included a short resource, say i_q in the instance \mathcal{C}; cost of i_q is at most 8 times the cost of $R_{1,q}$ (as guaranteed by Theorem 14). The set of long resources in R_2' cover at least $k_q - k_q'$ jobs within the mountain M_q.

Construct a solution to the instance \mathcal{C} by including i_1, i_2, \ldots, i_q; and for each copy of a wide resource i in R_2', include a copy of its corresponding long resource. Notice that this is a feasible solution to the instance \mathcal{C}. The cost of the short resources $\{i_1, i_2, \ldots, i_q\}$ is at most 8 times the cost of $R_{1,q}$ and the cost of the long resources is the same as that of R_{2}', which is at most twice that of R_2. Cost of OPT is the sum of costs of R_1 and R_2. Hence, cost of the constructed solution is at most 8 times the cost of OPT.

We now prove the second property: Let S be a given a solution to the instance \mathcal{C} of the LSPC problem of cost c; the solution also provides a coverage profile, k_t for each timeslot t (such that $\sum_t k_t = k$). We produce a feasible solution $S' = (R', J')$ to the instance \mathcal{B} with the same cost c. For each long resource picked by S, we retain the corresponding wide resource in R' (maintaining the number of copies). Consider any timeslot t in the LSPC instance and let M be the corresponding mountain in the instance \mathcal{B}. The solution S contains at most one short resource i active at t of capacity $k_t' = w(i)$. Consider the multiset of short resources R' in the instance \mathcal{B} associated with the resource i_t. The multiset R' covers a set of k_t' jobs contained in the mountain M. Include all these k_t' jobs in J'. Choose any other $k_t - k_t'$ jobs contained in M and add these to J'; notice that the wide resources retained in R' can cover these jobs. This way we get a solution S' for the
Proof of Theorem 3: By composing the reductions given the two steps, we get a reduction from the PartialResAll problem on a single mountain range to the LSPC problem. The first step and the second step incur a loss in approximation of 3 and 8, respectively. Thereby, the combined reduction incurs a loss of 24. Theorem 5 provides a 16-approximation algorithm for the LSPC problem. Combining the reduction and the above algorithm, we get an algorithm for the PartialResAll for a single mountain range with an approximation ratio of $16 \times 24 = 384$.

C Details for LSPC Algorithm

In this section, we present proofs and other details omitted in the main body of the paper.

C.1 Proof of Lemma 9

The following lemma is a reformulation of Theorem 1 in [5]. For a multiset of resources S, let $c(S)$ denote its cost.

Lemma 16 Let \hat{S} be a multiset of long resources covering a profile \hat{Q} over a timerange $[1, T]$. Then, there exists a multiset of long resources S' such that S' is a SLRA cover for Q and $c(S') \leq 16 \cdot c(\hat{S})$.

Let OPT be the optimum solution and let Q be the profile of measure k covered by OPT. Let OPT_l and OPT_s be the multiset of long and short resources contained in OPT, respectively. Define Q_l to be the residual profile over $[1, T]$: $Q_l(t) = Q(t) - Q_{sh}(t)$. The multiset OPT_l covers the profile Q_l. Invoke Lemma 16 on OPT_l and Q_l (taking $\hat{S} = OPT_l$ and $\hat{Q} = Q_l$) and obtain a multiset of long resources S' which forms a SLRA cover for Q_l. Construct a new multiset S, by taking the union of S' and OPT_s. Notice that S is a SLRA solution. The cost of S' is at most 16 times the cost of OPT_l. So, S has cost at most 16 times the cost of OPT.

C.2 Proof of Lemma 11

We first extend the notion of SLRA covers to subsets of timeslots. Let $T \subseteq [1, T]$ be a set of timeslots and let \hat{Q} be a profile over the set T. A good multiset of resources S is said to be a SLRA cover for T, if for any timeslot $t \in T$, there exists a long resource $i \in S$ such that $w(i)f_S(i) \geq Q(t) - Q_{sh}(t)$. The following lemma is a reformulation of a result in [5] (see Section 2.2 therein).

Lemma 17 Let \hat{S} be a multiset consisting of only long resources. Let \hat{Q} be a profile over a non-empty set of timeslots $T' \subseteq [a, b]$, for some a and b. Suppose \hat{S} is a SLRA cover for \hat{Q}. Then one of the following properties is true:

- There exists a timeslot $t^* \in [a, b - 1]$ and a partition of \hat{S} into \hat{S}_1 and \hat{S}_2 such that \hat{S}_1 is a SLRA cover for \hat{Q}_1 and \hat{S}_2 is a SLRA cover for \hat{Q}_2, where \hat{Q}_1 and \hat{Q}_2 are the profiles obtained by restricting \hat{Q} to the timeslots in $T' \cap [a, t^*]$ and $T' \cap [t^* + 1, b]$, respectively.

- There exists a resource $i^* \in \hat{S}$ spanning all timeslots in T'.
We now prove Lemma 11. Consider a good multiset of resources S forming a h-free SLRA cover for a profile Q over a range $[a, b]$. Define the set of timeslots \mathcal{T}':

$$
\mathcal{T}' = \{ t \in [a, b] : Q(t) - Q_S^h(t) > h \}.
$$

If \mathcal{T}' is empty, then S is a h-free cover for Q; this corresponds to the first case of Lemma 11. So, assume $\mathcal{T}' \neq \emptyset$. Define a profile \hat{Q} over the timeslots in \mathcal{T}': for any $t \in \mathcal{T}'$, let $\hat{Q}(t) = Q(t) - Q_S^h(t)$. Notice that S is a SLRA cover for the profile \hat{Q}. Invoke Lemma 17 (with $\hat{S} = S$) Let us analyze the two cases of the above lemma. Consider the first case in Lemma 17. In this case, there exists a timeslot t^* and a partitioning of S into S_1 and S_2, with the stated properties. In this case, we see that S_1 and S_2 are h-free SLRA covers for $[a, t^*]$ and $[t^* + 1, b]$, respectively. This corresponds to the second case of Lemma 11. Consider the second case in Lemma 17. In this case, there exists a long resource $i^* \in S$ such that i^* spans all the timeslots in \mathcal{T}'. This means that any $t \in [a, s(i^*) - 1]$ or $t \in [e(i^*) + 1, b]$, $Q(t) - Q_S^h(t) \leq h$. This corresponds to the third case of Lemma 11. □

C.3 Correctness of the Recurrence Relation (Figure 5)

We prove the lemma by induction on the position in which a triple appears in the topological ordering π. The base case corresponds to triples that do not have a parent in G. The lemma is trivially true in this case.

Consider any triple $z = ([a, b], q, h)$. Let S be the optimum h-free SLRA q-cover for $[a, b]$. There exists a profile Q over $[a, b]$ such that Q has measure q and S is a h-free SLRA cover for Q. Let us invoke Lemma 11 and consider its three cases.

Suppose the first case of the lemma is true. Let S_s be the set of short resources contained in S. Then, S_s is a h-free cover for Q. Therefore $E_1 = A([a, b], q, h) \leq c(S_s) \leq c(S)$.

Suppose the second case of the lemma is true. Let t^* be the timeslot and S_1 and S_2 be the partition given by the lemma. Let Q_1 and Q_2 be the profiles obtained by restricting Q to the timeranges $[a, t^*]$ and $[t^* + 1, b]$, respectively. Let the measures of Q_1 and Q_2 be q_1 and q_2, respectively. Then S_1 is a h-free q_1-cover for $[a, t^*]$ and S_2 is a h-free q_2-cover for $[t^* + 1, b]$. Therefore, by induction, $M([a, t^*], q_1, h) \leq c(S_1)$ and $M([t^* + 1, b], q_2, h) \leq c(S_2)$. In computing the quantity E_2, we try all possible ways of partitioning the range $[a, b]$ and dividing the number q. Hence, $E_2 \leq c(S_1) + c(S_2)$. Since $c(S) = c(S_1) + c(S_2)$, we see that $E_2 \leq c(S)$.

Suppose the third case of lemma is true. Let i^* be the long resource given by the lemma. Let S_1 be the set of short resources contained in S that are active at a timeslot $t \in [a, s(i^*) - 1]$. Similarly, let S_3 be the set of short resources contained in S that are active at a timeslot $t \in [e(i^*) + 1, b]$. Let S_2 be the multiset of long resources contained in S and the set of short resources contained in S that are active at a timeslot $t \in [a, b]$. Let Q_1, Q_2 and Q_3 be the profiles obtained by restricting Q to the ranges $[a, s(i^*) - 1]$, $[s(i^*), e(i^*)]$ and $[e(i^*) + 1, b]$, respectively. The lemma guarantees that S_1 and S_2 are h-free covers for Q_1 and Q_3 respectively. Let q_1, q_2 and q_3 be the measures of Q_1, Q_2 and Q_3, respectively. We see that $A([a, s(i^*) + 1], q_1, h) \leq c(S_1)$ and $A([e(i^*) + 1, b], q_3, h) \leq c(S_3)$. Let $\alpha^* = f_S(i^*)$ be the number of copies of i^* present in S. Notice that if $\alpha^* w(i^*) \leq h$, then i^* is not a useful resource, because i^* will be covering only timeslots in $[s(i^*), e(i^*)]$ with residual demands at most h; but all such timeslots are free and need not be covered. So, without loss of generality, assume that $\alpha^* w(i^*) > h$. Since i^* spans the entire range $[s(i^*), e(i^*)]$, the resource i^* can cover all timeslots in the above range with residual demands at most $\alpha^* w(i^*)$. Let $S'_2 = S_2 - \{i^*\}$. Notice that S'_2 is a $(\alpha^* w(i))-free SLRA cover for the profile Q_2. Therefore, S'_2 is a $(\alpha^* w(i))-free q_2-cover
for the range \([s(i^*), e(i^*)]\). Hence, by induction, \(M([s(i^*), e(i^*)], q_2, \alpha^* w(i^*)) \leq c(S'_2)\). Therefore,
\[E_3 \leq c(S_1) + c(S_2) + c(S_3) = c(S).\]

The quantity \(E = \min\{E_1, E_2, E_3\}\); so \(E \leq c(S)\). The proof is now complete. \(\square\)