EIGENFUNCTIONS OF MACDONALD’S q-DIFFERENCE OPERATOR FOR THE ROOT SYSTEM OF TYPE C_n

KATSUHISA MIMACHI

Abstract. We construct an integral representation of eigenfunctions for Macdonald’s q-difference operator associated with the root system of type C_n. It is given in terms of a restriction of a q-Jordan-Pochhammer integral. Choosing a suitable cycle of the integral, we obtain an integral representation of a special case of the Macdonald polynomial for the root system of type C_n.

1. Introduction

Macdonald introduced the q-difference operators \([5] \) to define his orthogonal polynomials associated with root systems. In the case of a root system of type C_n, his q-difference operator is given by

\[
E = \sum_{a_1, \ldots, a_n = \pm 1} \prod_{1 \leq i < j \leq n} \frac{1 - ty_i y_j}{1 - y_i y_j} \prod_{1 \leq i \leq n} \frac{1 - ty_i^{2i}}{1 - y_i^{2i}} T_{yi}^{a_i} \frac{1}{a_i},
\]

where \((T_y f)(y_1, \ldots, y_n) = f(y_1, \ldots, qy_i, \ldots, y_n)\).

The present paper is devoted to study the eigenvalue problem associated with this operator \(E \). In particular, we construct an integral representation, which is given by a restriction of a q-Jordan-Pochhammer integral, of eigenfunctions in some special cases. It turns out that, taking a suitable cycle, such an integral expresses the Macdonald polynomial of C_n type parametrized by the partition \((\lambda, 0, \ldots, 0)\). This representation leads to a more explicit expression.

Here we recall the definition of the Macdonald polynomial \(P_\mu(y|q,t) \) associated with the root system of type C_n. It is the eigenfunction of E with respect to the eigenvalue

\[
c_\mu = q^{-\frac{1}{2}(\mu_1 + \cdots + \mu_n)} \prod_{i=1}^n (1 + q^{\mu_i} t^{n-i+1})
\]

of the form

\[
P_\mu(y|q,t) = m_\mu + \sum_{\nu < \mu} a_\mu \nu \nu \nu,
\]

where \(\mu = (\mu_1, \ldots, \mu_n) \) is a partition, a sequence of non-negative integers in decreasing order, \(m_\mu = \sum_{\nu \in W(C_n) \mu} e^\nu \) with \(W(C_n) \) the Weyl group of type C_n and \(\nu < \mu \) is defined to be \(\mu - \nu \in Q^+ \) with \(Q^+ \) the positive cone of the root lattice.

Besides the A_{n-1} case, the solution of the eigenvalue problem for the Macdonald operator is not well studied (See \([9, 10, 11]\) and \([7]\)). We expect that this paper

1991 Mathematics Subject Classification. Primary 33D45; Secondary 33D55, 33D70, 33D80.

Key words and phrases. Macdonald’s q-difference operator, Macdonald polynomials, q-Jordan-Pochhammer integral.
For related works on references therein. It is noteworthy that even in the classical \((q=1)\) case was not previously known that such an integral gives spherical functions associated with the root system \(BC_n\). For related works on \(BC_n\) type spherical functions, we refer the reader to [3] and references therein.

Throughout this paper, \(q\) is regarded as a real number satisfying \(0 < q < 1\), and \(t = q^k\) where \(k \in \mathbb{Z}_{\geq 1}\).

2. A RESTRICTION OF A \(q\)-JORDAN-Pochhammer INTEGRAL

Let us introduce a 1-form
\[
\Phi = x^\lambda \prod_{1 \leq j \leq n} \frac{(ty_j/x; q)_\infty (ty_j^{-1}/x; q)_\infty}{(y_j/x; q)_\infty (y_j^{-1}/x; q)_\infty} \frac{dx}{x},
\]
where \(\lambda \in \mathbb{Z}_{\geq 0}, (a; q)_\infty = \prod_{i \geq 0} (1 - aq^i)\) and \((a; q)_m = (a; q)_\infty / (q^m a; q)_\infty\). This can be regarded as a 1-form corresponding to a restriction of a \(q\)-Jordan-Pochhammer integral
\[
x^\lambda \prod_{1 \leq j \leq 2n} \frac{(ty_j/x; q)_\infty}{(y_j/x; q)_\infty} \frac{dx}{x},
\]
which is studied in [3] and [11].

Our first result is the following:

Theorem 1. For any cycle \(C\), the function \(\int_C \Phi\) satisfies the equation
\[
E \int_C \Phi = c(\lambda, 0, \ldots, 0) \int_C \Phi.
\]

This implies that linearly independent solutions are obtained by choosing several cycles. Indeed, if we put \(C_i^{(+)}\) (or \(C_i^{(-)}\)) for each \(i = 1, \ldots, n\) to be a path with the counterclockwise direction so that the poles at \(w = y_i, y_i q, \ldots, y_i q^{k-1}\) (or \(w = y_i^{-1}, y_i^{-1} q, \ldots, y_i^{-1} q^{k-1}\), respectively) are inside the path and other poles from \(\Phi\) are outside, we have the following rational solutions:

\[
\frac{1}{2\pi \sqrt{-1}} \int_{C_i^{(+)}} \Phi = y_i^\lambda \frac{1}{(q; q)_k \prod_{1 \leq j \leq n} (y_j/y_i; q)_k} \prod_{1 \leq j \leq n} (y_j^{-1} y_i^{-1}; q)_k \times \sum_{l=0}^{k-1} \prod_{j=1}^n \frac{(t^{-1} q y_j/y_i; q)_l (t^{-1} q y_i y_j; q)_l (t^{2n} q^\lambda)_l}{(q y_j/y_i; q)_l (q y_i y_j; q)_l (t^{2n} q^\lambda)_l} (2.2)
\]

and

\[
\frac{1}{2\pi \sqrt{-1}} \int_{C_i^{(-)}} \Phi = y_i^{-\lambda} \frac{1}{(q; q)_k \prod_{1 \leq j \leq n} (y_i/y_j; q)_k} \prod_{1 \leq j \leq n} (y_j y_i; q)_k \times \sum_{l=0}^{k-1} \prod_{j=1}^n \frac{(t^{-1} q y_j/y_i; q)_l (t^{-1} q y_i y_j; q)_l (t^{2n} q^\lambda)_l}{(q y_j/y_i; q)_l (q y_i y_j; q)_l (t^{2n} q^\lambda)_l} (2.3)
\]
The calculation is carried out by means of the residue calculus.

Since \(\lambda \) is a non-negative integer, the sum of the pathes \(\sum_{i=1}^{n} C_i^+ + \sum_{i=1}^{n} C_i^- \) is homologous to a path \(C \) which circles the origin in the positive sense so that all poles from \(\Phi \) are inside the path. The integral on this cycle \(C \) gives the Macdonald polynomial \(P_{(\lambda,0,...,0)}(y|q,t) \).

Theorem 2. If the cycle \(C \) is that above, we have

\[
\frac{1}{2\pi i} \oint_C \Phi = \frac{(t;q)_\lambda}{(q;q)_\lambda} P_{(\lambda,0,...,0)}(y|q,t). \tag{2.4}
\]

Moreover, applying the \(q \)-binomial theorem

\[
\sum_{i \geq 0} \frac{(a;q)_i}{(q;q)_i} z^i = \frac{(az;q)_\infty}{(z;q)_\infty} (|z| < 1)
\]

with the residue calculus to our integral, we obtain an exact expression of \(P_{(\lambda,0,...,0)}(y|q,t) \).

Corollary.

\[
P_{(\lambda,0,...,0)}(y|q,t) = \frac{(q;q)_\lambda}{(t;q)_\lambda} \sum_{\sum_{i \in I} a_i \pm 1} \prod_{1 \leq i < j \leq n} \frac{1 - t y_i^{a_i} y_j^{a_j}}{1 - y_i^{a_i} y_j^{a_j}} \prod_{1 \leq i \leq n} \frac{1 - t y_i^{2a_i}}{1 - y_i^{2a_i}} = \prod_{i=1}^{n} (1 + t^i). \tag{2.2}
\]

From the formula by Macdonald [4] about the Poincaré series of Coxeter systems, we have

\[
\sum_{w \in W(C_n)} w \left\{ \prod_{1 \leq i < j \leq n} \frac{1 - t y_i y_j}{1 - y_i y_j} \prod_{1 \leq i \leq n} \frac{1 - t y_i}{1 - y_i} \right\} = \prod_{i=1}^{n} \frac{(1 - t^{2i})}{(1 - t)^n} \tag{3.1}
\]

and

\[
\sum_{w \in W(A_{n-1})} w \left\{ \prod_{1 \leq i < j \leq n} \frac{1 - t y_i/y_j}{1 - y_i/y_j} \right\} = \prod_{i=1}^{n} \frac{(1 - t^i)}{(1 - t)^n}. \tag{3.2}
\]

Here \(W(C_n) \) or \(W(A_{n-1}) \) denotes the Weyl group of the root system of type \(C_n \) or \(A_{n-1} \), respectively. By applying the formula (3.2) to (3.1), we obtain

\[
\sum_{w \in W(C_n)} w \left\{ \prod_{1 \leq i < j \leq n} \frac{1 - t y_i y_j}{1 - y_i y_j} \prod_{1 \leq i \leq n} \frac{1 - t y_i}{1 - y_i} \right\} = \prod_{i=1}^{n} \frac{(1 - t^i)}{(1 - t)^n} \sum_{a_1,...,a_n = \pm 1} \prod_{1 \leq i \leq n} \frac{1 - t y_i^{a_i} y_j^{a_j}}{1 - y_i^{a_i} y_j^{a_j}} \prod_{1 \leq i \leq n} \frac{1 - t y_i^{2a_i}}{1 - y_i^{2a_i}}.
\]

Hence we derive the desired relation. \qed
Firstly, let us take the residue of the left-hand side of (3.3) at $x = t^i$:

$$\prod_{a_1, \ldots, a_n = \pm 1} 1 - ty_i^{a_i} y_j^{a_j} \prod_{1 \leq i \leq n} \frac{1 - ty_i^{2a_i} y_i^{-1}/x}{1 - y_i^{a_i} y_i^{-a_i}/x}$$

$$= \prod_{i=1}^{n-1} (1 + t^i) \left\{ 1 + t^n \prod_{i=1}^{n} \frac{(1 - ty_i/x)(1 - y_i^{-1}/x)}{(1 - ty_i/x)(1 - y_i^{-1}/x)} \right\}.$$

Proof. We prove the desired equality by means of partial fraction decompositions. Firstly, let us take the residue of the left-hand side of (3.3) at $x = ty_1$:

$$\text{Res}_{x=ty_1} \left\{ \sum_{a_1, \ldots, a_n = \pm 1} \prod_{1 \leq i < j \leq n} \frac{1 - ty_i^{a_i} y_j^{a_j}}{1 - y_i^{a_i} y_j^{a_j}} \prod_{1 \leq i \leq n} \frac{(1 - ty_i^{2a_i})(1 - ty_i^{2a_i}/x)}{(1 - y_i^{a_i} y_i^{-a_i})(1 - ty_i^{a_i}/x)} \right\} dx$$

$$= \frac{(1 - t^{-1})(1 - ty_1^2)}{1 - ty_1} \prod_{2 \leq i < j \leq n} \frac{1 - ty_1 y_j^{a_j}}{1 - y_j^{a_j}} \prod_{2 \leq i \leq n} \frac{(1 - ty_1^{2a_i})(1 - ty_1^{2a_i}/y_1)}{(1 - y_1^{a_i} y_1^{-a_i})(1 - ty_1^{a_i}/y_1)}$$

$$= t^{1-n} \left(1 - t^{-1})(1 - ty_1^2) \right) \prod_{2 \leq j \leq n} \frac{1 - ty_1 y_j^{a_j}}{1 - y_j^{a_j}} \prod_{2 \leq i \leq n} \frac{1 - ty_1^{2a_i}}{1 - y_1^{a_i}}.$$

This is equal to

$$t^{1-n} \left(1 - t^{-1})(1 - ty_1^2) \right) \prod_{i=1}^{n-1} (1 + t^i) \prod_{2 \leq j \leq n} \frac{(1 - ty_1 y_j)(1 - y_1 y_j)}{(1 - y_1 y_j)(1 - y_1 y_j)}.$$

from Lemma 1.

Secondly, by noticing that

$$\text{Res}_{x=ty_1} \prod_{1 \leq i \leq n} \frac{(1 - y_i/x)(1 - y_i^{-1}/x)}{(1 - ty_i/x)(1 - ty_i^{-1}/x)} dx$$

$$= t^{1-2n} \left(1 - t^{-1})(1 - ty_1^2) \right) \prod_{2 \leq j \leq n} \frac{(1 - ty_1 y_j)(1 - y_1 y_j)}{(1 - y_1 y_j)(1 - y_1 y_j)},$$

we know that the residue of the right-hand side of (3.3) at $x = ty_1$ is equal to (3.4). Hence, the symmetry of (3.3) with respect to the variables $y_1^{\pm 1}, \ldots, y_n^{\pm 1}$ leads to the fact that the residues of both sides of (3.3) at each $x = ty_i$ ($i = 1, \ldots, n$) or $x = ty_i^{-1}$ ($i = 1, \ldots, n$) are equal.

On the other hand, if x goes to ∞, the left-hand side of (3.3) tends to

$$\sum_{a_1, \ldots, a_n = \pm 1} \prod_{1 \leq i < j \leq n} \frac{1 - ty_i^{a_i} y_j^{a_j}}{1 - y_i^{a_i} y_j^{a_j}} \prod_{1 \leq i \leq n} \frac{1 - ty_i^{2a_i}}{1 - y_i^{a_i} y_i^{-a_i}},$$

which is equal to $\prod_{i=1}^{n} (1 + t^i)$ by Lemma 1, and the right-hand side of (3.3) tends also to $\prod_{i=1}^{n} (1 + t^i)$. This completes the proof of Lemma 2.

Let us proceed to prove our Theorem 1.
Here, to derive the third equality, we have used the relation
\[\prod_{1 \leq i \leq n} T_{y_i}^\frac{\lambda}{x} \int \Phi = \int_C x^\lambda \prod_{i=1}^n \left(\frac{q^{\frac{\lambda}{2} t y_i}}{x} \right)_\infty \left(\frac{q^{-\frac{\lambda}{2} t y_i^{-1}}}{x} \right)_\infty \frac{dx}{x} \]
\[= q^{-\frac{\lambda}{2}} \int_C x^\lambda \prod_{i=1}^n \left(\frac{q^{\frac{\lambda}{2} (1-a_i) t y_i}}{x} \right)_\infty \left(\frac{q^{-\frac{\lambda}{2} (1-a_i)} y_i^{-1}}{x} \right)_\infty \frac{dx}{x} \]
\[= q^{-\frac{\lambda}{2}} \int_C \prod_{i=1}^n \frac{1 - y_i^{n_i}/x}{1 - t y_i^{n_i}/x} \Phi, \]
where the second equality is given by the change of integration variable such that \(x \mapsto q^{-\frac{\lambda}{2}} x \).

Therefore, by using Lemma 2, we obtain
\[E \int_C \Phi = q^{-\frac{\lambda}{2}} \int_C \left\{ \sum_{a_1, \ldots, a_n = 1} \prod_{1 \leq i < j \leq n} \frac{1 - t y_i^{a_i} y_j^{a_j}}{1 - y_i^{a_i} y_j^{a_j}} \prod_{1 \leq i \leq n} \frac{(1 - t y_i^{n_i})(1 - y_i^{a_i}/x)}{(1 - t y_i^{n_i})(1 - y_i^{n_i}/x)} \right\} \Phi \]
\[= q^{-\frac{\lambda}{2}} \prod_{i=1}^{n-1} (1 + t^i) \int_C \left\{ 1 + t^n \prod_{i=1}^n \frac{(1 - y_i/x)(1 - y_i^{-1}/x)}{(1 - t y_i/x)(1 - t y_i^{-1}/x)} \right\} \Phi \]
\[= (q^{-\frac{\lambda}{2}} + q^{\frac{\lambda}{2}} t^n) \prod_{i=1}^{n-1} (1 + t^i) \int_C \Phi. \]

Here, to derive the third equality, we have used the relation
\[\int_C \Phi = q^{-\lambda} \int_C \prod_{i=1}^n \frac{(1 - y_i/x)(1 - y_i^{-1}/x)}{(1 - t y_i/x)(1 - t y_i^{-1}/x)} \Phi, \]
which is given by the change of integration variable such that \(x \mapsto q^{-1} x \).

This completes the proof of Theorem 1.

References

[1] Aomoto, K., Kato, Y., Mimachi, K.: A solution of the Yang-Baxter equation as connection coefficients of a holonomic q-difference system. Internat. Math. Res. Notices 1992, No.1, 7-15
[2] Debiard, A. and Gaveau, B.: Integral formulas for the spherical polynomials of a root system of type BC2. Jour. of Funct. Anal. 119, 401-454 (1994)
[3] Koornwinder, T. H.: Askey-Wilson polynomials for root systems of type BC, in Hypergeometric functions on domains of positivity, Jack polynomials and applications, D.St.P.Richards(ed.), Contemp. Math. 138, Amer. Math. Soc. (1992), pp.189-204
[4] Macdonald, I.G.: The Poincaré series of a Coxeter group, Math. Ann. 199, 161-174 (1972)
[5] Macdonald, I.G.: A new class of symmetric functions, in Actes Séminaire Lotharingen, Publ. Inst. Rech. Math. Adv., Strasbourg, 1988, 131-171
[6] Macdonald, I.G.: Affine Hecke algebras and orthogonal polynomials. Séminaire BOURBAKI, 47ème année, 1994-95, n°797
[7] Macdonald, I.G.: Symmetric Functions and Hall Polynomials (Second Edition), Oxford Mathematical Monographs, Clarendon Press, Oxford, 1995.
[8] Mimachi, K.: Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan-Pochhammer type. Nagoya Math. J. 116, 149-161 (1989)
[9] Mimachi, K.: A solution to quantum Knizhnik-Zamolodchikov equations and its application to eigenvalue problems of the Macdonald type, Duke Math. J. 85, 635-658 (1996).

[10] Mimachi, K.: Rational solutions to eigenvalue problems of the Macdonald type, in preparation.

[11] Mimachi, K. and Noumi, M.: An integral representation of eigenfunctions for Macdonald’s q-difference operators, Tôhoku Math. J. 49, 517-525 (1997).

KATSUHISA MIMACHI
DEPARTMENT OF MATHEMATICS
KYUSHU UNIVERSITY 33
HAKOZAKI, FUKUOKA 812-81
JAPAN

E-mail address: mimachi@math.kyushu-u.ac.jp