Isolation and screening test of indigenous endophytic bacteria from areca nut rhizosphere as plant growth promoting bacteria

G A K Sutariati1*, N M Rahni1, L Mudi1, Nurlina1, Hamriani1, D N Yusuf2, Muhidin1 and Zahrima3

1Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, Southeast Sulawesi, Indonesia.
2Department of Soil Sciences, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia.
3Department of Agronomy, Postgraduate Programme, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia.

E-mail: *sutariati69@yahoo.co.id

Abstract. The study aimed was to find out the endophytic bacteria isolated from areca nut rhizosphere in Southeast Sulawesi. The study was conducted at the Agronomy Laboratory, Faculty of Agriculture, Halu Oleo University. It using a completely randomized design (CRD) consist of four serial treatment of isolates isolated from 4 regencies. The isolates have tested their ability to improve viability and vigour of rice seed. The rice seeds before application, treated with endophytic bacteria isolates and then germinated. The germination rate was recorded daily by seven days. Each treatment using three replications, and data result were analysed using analysis of variance (ANOVA) and followed with DMRT (Duncan's Multiple Range Test). The result showed that the treatment of endophytic bacteria on rice seed has significantly increased the viability and vigour of rice seed. It also found four selected isolates which have potential to increase of rice seed growth, namely ME4, WSE4, WSE15, LE7, and LAE2. The future research is needed to find out the isolate that has effectivity on increase of areca nut seedling growth.

1. Introduction
Increasing public awareness of the negative impacts of chemical pesticides using in the production process of agricultural crops and the importance of consuming healthy and safe food from chemical pesticide residues, must be accompanied by a variety of technological innovations in plant cultivation based environmentally friendly technology. Currently, microbial-based plant cultivation technology products receive special attention and are widely developed because it is proven to be quite effective and efficient in replacing the role of fertilizers and even chemical pesticides. One type of microbe which has recently been studied is endophytic microbes (bacteria). These types of microbes are generally saprophytic and are in plant tissue, so they can directly interact and provide benefits for plant growth. It was stated that interactions between plants and endophytic bacteria could help plants adapt to various environmental conditions which are less conducive to plant growth [1].
Different plant species may be hosts of different endophytic bacterial species. Therefore, it is necessary to study continuously related to exploration and isolation of the endophytic bacteria, in different plants type and environmental conditions to obtain potential isolates that could be used as growth promoters and agent for biological control. Very limited information about the utilization of endophytic bacteria originating from areca nut plants. In general, the mechanism of action of endophytic bacteria is almost the same as rhizosphere bacteria, among others through its ability to fix nitrogen, dissolve phosphate and synthesize growth hormones such as IAA [2] [3-4]. Endophytic bacteria inoculation from group Klebsiella sp. and Enterobacter sp. in sugarcane can increase its growth through nitrogen fixation [5]. The role of endophytic bacteria and their interactions with plants have also related to their ability in improving plant health, growth and yields, and also improve soil quality [6-10]. This natural association of endophytic bacteria-plant provides positive benefits not only for endophytic bacterial species and their hosts (plants), but also more broadly on the sustainability of agroecosystems, increasing farmers' income through significantly increasing crop production [2, 11]. It was further mentioned that in addition to increasing plant growth, the utilization of endophytic bacteria can also increase plant tolerance to environmental stress [12].

2. Materials and methods

2.1. Place and time
The study was conducted at the agronomy Laboratory, Faculty of Agriculture, University of Halu Oleo from March to June 2019.

2.2. Research design
The study arranged in a completely randomized design, carried out serially with a number of different test isolates based on sampling locations namely Lainea (7 isolates), Benua (13 isolates), Mowila (7 isolates) and Landono (15 isolates). There were 42 test isolates, then each added 1 control, so that in total there were 129 treatment units.

2.3. Seed treatment with endophytic bacteria
Endophytic bacterial isolates were grown in solid TSA media, after that incubated for 48 hours. The growing bacterial colony was suspended in liquid medium until a population density reached of 10^9 cfu ml$^{-1}$ [13]. The upland rice seeds were sanitized for five minutes using 2% sodium hypochlorite, and then washed times with sterile water, and dried for 60 minutes in a laminar air flow cabinet. A ten grams of dried seeds doused in the suspension of each endophytic bacterial isolate (50 ml) at 28 °C for 24 hours. The seeds are re-dried after the treatment, in a laminar wind current bureau until they arrive at the underlying weight and the seeds are prepared to use for testing.

2.4. Viability and vigour test
The upland rice seed that have been treated using endophytic bacterial isolates, are germinated in a plastic tub estimating 20 cm x 15 cm x 10 cm (length x width x stature), in media of sterile husk charcoal as a germination pad. Every treatment were planted 25 seeds and using three replications. The count of these observational factors is completed utilizing an equation:
1. Maximum growth potential (MGP), observed by calculated the number of seed germinated in the latest observation (7 DAP).
2. Germination rate (GP), delineating seed potential viability, was estimated dependent on the level of ordinary seedlings (NS) in the late perception (7 DAP).
3. Relative growth rate (RG-r), is the proportion of growth rate (RG) to maximum growth rate (RG-m). The maximum growth rate was obtained from the supposition that in the first observation, that normal seedlings had arrived 100%. RG was determined dependent on the collection of every day development rate:
4. Vigour index (VI), delineating the growth rate of vigour. It was measured based on the percentage of normal seedlings at the first time of observation (i.e. 5 DAP).

5. Dry weight of normal seedling (DWNS), depicting seed vigour and calculated in the end of the observation. All normal seedling are removed, wrapped using aluminium foil and then dried for 3 days in an oven at 60 °C. After that the seedling are put into desiccator for 30 minutes and weighed.

2.5. Data analysis

Data were analysed using ANOVA, if the treatment had a significant effect, then continued with different tests using Duncan's Multiple Range Test (DMRT) α 0.05.

3. Results and discussion

3.1. Results

3.1.1. Evaluation of endophytic bacteria from areca nut rhizosphere which explored from Mowila Sub-district. Inoculation of endophytic bacterial isolates from areca nut rhizosphere (explored from Mowila sub-district) on rice seeds was able to increase viability and vigour of seed. Among the treatments, ME4 isolates were consistently increase the viability and vigour of rice seeds compared to other isolates (Table 1). The ME4 isolates could increase the parameter of maximum seedling growth potential (MGP), percentage of germination (GP), vigour index (VI), relative growth rate (RG-r) and dry weight of normal seedlings (DWNS) respectively 72%, 131%, 70%, 118%, 169% if compared with control (Table 1).

Isolate code	MGP (%)	GP (%)	VI (%)	RG-r (%/etmal)	DWNS (mg)
Control	48.00 c	34.67 c	17.33 c	33.02 c	36.33 c
ME1	76.00 ab	65.33 bc	48.33 ab	61.65 ab	56.33 bc
ME2	76.00 ab	71.33 ab	49.33 a	63.78 ab	70.67 bc
ME3	64.00 b	58.67 b	34.00 ac	53.87 b	38.00 c
ME4	82.67 a	80.00 a	45.33 ab	72.11 a	97.67 a
ME5	74.67 ab	65.33 bc	32.00 ac	59.3 ab	67.67 bc
ME6	77.33 a	61.33 b	32.00 ac	55.65 ab	67.33 bc
ME7	70.67 ab	64.00 b	26.67 bc	55.87 ab	43.00 c

Note: Number in the same column followed by the different suffixed are significantly different at DMRT.
3.1.2. Evaluation of endophytic bacteria from areca nut rhizosphere which explored from Landono Sub-district. The result showed that inoculation of endophytic bacterial isolates from areca nut rhizosphere (explored from Landono sub-district) on rice seeds was also able to increase seed viability and vigour in all observed variables. Among the treatments of endophytic bacterial isolates tested, two isolates (WSE4 and WSE15) were consistently and able to increase the rice seed viability and vigour (Table 2). Both of isolates could increase the parameter of MGP, GP, VI, RG-r and DWNS respectively 67%, 123%, 99%, 117%, 162% for WSE4 and 80%, 131%, 50%, 117%, 189% for WSE15 if compared with control (Table 2).

Table 2. The effect of endophytic bacterial isolates from the rhizosphere of areca nut explored from Landono sub-district on seedling rice parameters

Isolate code	MGP (%)	GP (%)	VI (%)	RG-r (%/etmal)	DWNS (mg)
Control	48.00 b	34.67 c	26.67 bc	33.01 c	36.33 c
WSE1	62.67 ab	52.00 bc	21.33 bc	45.30 bc	28.00 cd
WSE2	76.00 ab	66.67 ab	34.67 a-c	61.17 ab	46.33 bd
WSE3	76.00 ab	70.67 ab	28.00 bc	61.17 ab	59.67 bc
WSE4	80.00 a	77.33 ab	53.33 a	71.74 a	95.67 a
WSE5	78.67 ab	69.33 ab	13.33 c	58.09 ab	78.67 ab
WSE6	74.67 ab	58.67 ac	25.33 bc	51.52 ac	56.67 bc
WSE7	74.67 ab	68.00 ab	40.00 ab	62.22 ab	59.33 bc
WSE8	72.00 ab	61.33 ab	29.33 bc	57.68 ac	50.67 bd
WSE9	70.67 ab	62.67 ab	20.00 bc	53.49 ac	38.67 cd
WSE10	60.00 ab	54.67 ac	25.33 bc	48.19 ac	39.00 cd
WSE11	69.33 ab	66.67 ab	16.00 bc	57.75 ab	17.67 d
WSE12	73.33 ab	64.00 ab	22.67 bc	55.37 ac	75.00 ab
WSE13	69.33 ab	53.33 ac	20.00 bc	46.83 bc	46.33 bd
WSE14	66.67 ab	60.00 ac	28.00 bc	53.56 ac	46.33 bd
WSE15	86.67 a	80.00 a	40.00 a	71.59 a	105.00 a

Note: Number in the same column followed by the different suffixed are significantly different at DMRT

3.1.3. Evaluation of endophytic bacteria from areca nut rhizosphere which explored from Benua Sub-district.

Table 3. The effect of endophytic bacterial isolates from the rhizosphere of areca nut from Benua sub-district on seedling rice parameters

Isolate code	MGP (%)	GP (%)	VI (%)	RG-r (%/etmal)	DWNS (mg)
Control	48.00 bc	34.67 cd	26.67 ab	33.02 cd	20.00 c
LE1	34.67 c	24.00 d	4.00 b	20.51 d	18.33 c
LE2	50.67 bc	42.67 ac	21.33 ab	38.95 bd	56.67 ac
LE3	70.67 ab	60.00 ac	32.00 ab	54.54 ab	56.00 ac
LE4	58.67 ac	56.00 ac	17.33 ab	47.81 ad	59.67 ac
LE5	74.67 ab	65.33 ac	30.67 ab	58.29 ac	45.67 ac
LE6	82.67 ab	72.00 ab	44.00 a	66.85 ab	73.00 ab
LE7	88.00 a	77.33 a	45.33 a	72.89 a	84.00 a
LE8	73.33 ab	69.33 ab	30.67 ab	65.33 ab	68.67 ab
PE1	74.67 ab	64.00 ac	36.00 a	59.02 ac	43.00 ac
PE2	68.00 ac	60.00 ac	21.33 ab	52.13 ac	49.67 ac
PE3	61.33 ac	56.00 ac	16.00 ab	47.59 ad	59.00 ac
PE4	69.33 ab	66.67 ab	38.67 a	61.05 ac	43.33 ac
PE5	70.67 ab	61.33 ac	26.67 ab	54.60 ac	36.33 bc
Seed treatment with endophytic bacterial isolates isolated from areca nut rhizosphere (explorated from Benua sub-district) significantly increased of seed viability and seed vigour. Among the 13 isolates tested, LE7 isolate has better effect on increase of seed viability and seed vigour compared that others. Inoculation LE7 isolates on seeds were consistently increase all parameter tested. The average of MGP, GP, VI, RG-r and DWNS reached 83%, 123%, 70%, 121%, and 320% when compared to controls (Table 3).

3.2. Discussion

The results showed that endophytic bacteria isolate from areca nut rhizosphere explored from 4 subdistricts in South Konawe district, namely Mowila, Landono, Benua and Lainea have significantly effect in increasing of rice seed viability and vigour. The result is in line with the previous results reported that the application of endophytic bacteria could increase the seed viability and vigour [14]; corn [15] and onion [4].

The increasing of viability and vigour of rice seeds that has inoculated with endophytic bacteria is caused by the role of endophytic bacteria as plant growth promotor. Endophytic bacteria could synthesize growth hormones in the form of IAA, dissolve phosphate and fix nitrogen [3,16]. Endophytic bacteria could be obligate, facultative or passive associated with plants which act as phyto stimulators of biofertilizers and biocontrol agents so that they are beneficial to host plants [17,18]. Improved of seed viability and vigour are related to the capability of endophytic bacteria to synthesize IAA [19,20,21,22,23], fix nitrogen [24,25,26] and dissolve phosphate [25,26]. The results of other studies also showed that endophytic bacteria have ability in producing of IAA hormone and dissolve phosphate [27,28]. The endophytic bacteria could increase the rice plants growth [29]. The use of endophytic bacteria as plant growth promoting is very important in order to increase crop production [30]. Application of endophytic bacteria A3 and A6 was reported to contribute N equivalent to urea [31]. It was further reported that the application of endophytic bacteria by immersion methods in seeds showed that MSJ1H and AGS1F isolates could increase tomato plant growth by up to 60% when compared to controls [19].

Table 4. The effect of endophytic bacterial isolates from the rhizosphere of areca nut from Lainea sub-district on seedling rice parameters

Isolate code	MGP (%)	GP (%)	VI (%)	RG-r (%/etmal)	DWNS (mg)
Control	48.00 b	34.67 c	26.67 ab	33.02 c	36.33 b
LAE1	80.00 a	72.00 ab	37.33 ab	64.63 ab	51.00 ab
LAE2	80.00 a	85.33 a	54.67 a	78.95 a	100.33 a
LAE3	73.33 a	68.00 ab	37.33 ab	61.46 ab	81.00 ab
LAE4	80.00 a	77.33 ab	50.67 ab	71.78 ab	38.00 b
LAE5	77.33 a	68.00 ab	56.00 a	65.68 ab	69.67 ab
LAE6	76.00 a	60.00 b	34.67 ab	54.82 bc	74.33 ab
LAE7	65.33 ab	58.67 b	22.67 b	50.92 bc	51.67 ab

Note: Means in the same column suffixed with different lower case letters are different at 5% levels of significance according to DMRT

3.1.4. Evaluation of endophytic bacteria from areca nut rhizosphere which explored from Lainea Sub-district. The result showed that seed treatment with endophytic bacterial isolates from areca nut rhizosphere (explorated from Lainea sub-district) also has significantly effect on seed viability and vigour. Among the 7 isolates tested, LAE2 isolate has better effect on increasing the rice seed viability and vigour. Inoculation LAE7 isolates on seeds were consistently increase all parameter tested. The average increase in MGP, GP, VI, RG-r and DWNS reached 67%, 146%, 105%, 139%, and 176% when compared to controls (Table 4).
Related to the ability of endophytic bacteria to synthesize IAA growth hormone, a study on green bean plants showed that from 16 isolates that have the ability to produce IAA with different concentrations, the application of isolates that produce high IAA concentrations affected the number of lateral roots but did not affect the sprout length. The results of further analysis showed that all isolates significantly influenced the formation of lateral roots except AT and control isolates. DM and K1K1 isolates give the best results in lateral root formation [32]. The results of other studies also reported that Ke03 isolate endophytic bacteria isolated from local onion Wakatobi gave the best results in increasing germination, root length and number of roots with an average increase of 145%, 46% and 78% when compared to controls.

It was also further reported that endophytic bacteria could increase growth of lateral roots, adventitious roots and primary roots [33]. The mechanism of action of the IAA hormone is directly related to the elongation of cells in the coleoptile and vertical segment of the plant so that it directly affects the increase in plant wet weight [34].

Relevant research shows that DnAr4 isolates treated by watering the endophytic bacterial suspension one day after planting showed the best results with an increase in plant height reaching 47.69%, canopy 68.9%, root wet weight 62.9%, canopy dry weight 19% and root dry weight of 52.93% [35]. Another study also reported that EKN2.1.1 isolate was the best isolate which could increase growth reaching 22.5% with the ability to produce the highest IAA hormone reaching 22.73 ppm [36].

4. Conclusions
It concluded that the isolates of endophytic bacteria isolated from the areca nut rhizosphere that explored from South Konawe district, have showed a significant effect on the rice seed viability and vigour. Five endophytic bacterial isolates were selected as potential growth promoters, namely ME4 isolate (from Mowila sub-district), WSE4 and WSE15 (from Landono sub-district), LE7 (from Benua sub-district) and LAE2 (from Lainea sub-district).

References
[1] Chebotar V, Natalia M, Andrey S, Ahtemova G, Alexey B, Ben L and Tikhonovich I 2015 Endophytic bacteria in microbial drugs that improve plant development (Review) Applied Biochemistry and Microbiology 51 3 271-277
[2] Etesami H, Alikhani H A and Hosseini H M 2015 Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents MethodsX 2 72–78
[3] Ilyas S, Asie K V and Sutariati G A K 2015 Biomatriconditioning or biopriming with biofungicides or biological agents applied on hot pepper (Capsicum annuum L.) seeds reduced seedborne Colletotrichum capsici and increased seed quality and yield ISHS Acta Horticulturae 1105 89-96
[4] Sutariati G A K, Khaeruni A, Muhidin, Madiki A, Rakian T C, Mudi L and Fadillah N 2019 Seed biopriming with indigenous endophytic bacteria isolated from Wakatobi rocky soil to promote the growth of onion (Allium ascalonicum L.) IOP Conf. Series: Earth and Environmental Science 260 012144
[5] Lin L, Wei C, Chen M, Wang H, Li Y and Li Y 2015 Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E Stand. Genomic Sci. 10 22
[6] Compant S, Kaplan H, Sessitsch A, Nowak J, Barka E and Clément C 2008 Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues FEMS Microbiol. Ecol. 63 1 84-93
[7] Sutariati G A K, Jusoff K, Sadimantara, Khaeruni A, Muhidin and Meisanti 2013 Effectiveness of Bio-Invigouration Technologies on Seed Viability and Vigour of Cocoa (Theobroma cacao L.) World Applied Sciences Journal 26 26 31-6
[8] Sutariati G A K, Muhidin, Rakian T C, Afa L O, Widanta I M, Mudi L, Sadimantara G R and Leomo S 2018 The effect of integrated application of pre-plant seed bio-invigouration, organic and inorganic fertilizer on the growth and yield of local upland rice Bioscience Research 15 1 160-5

[9] Sutariati G A K, Arif N, Muhidin, Rakian T C, Mudi L and Nuralam 2017 Persistency and seed breaking dormancy on local upland rice of Southeast Sulawesi, Indonesia Pakistan Journal of Biological Sciences 20 11 563-70

[10] Sutariati G A K, Bande L O S, Khaeruni A, Muhidin, Mudi L and Savitri R M 2018 The effectiveness of preplant seed bio-invigouration techniques using Bacillus sp. CKD061 to improving seed viability and vigour of several local upland rice cultivars of Southeast Sulawesi IOP Conf. Ser.: Earth Environ. Sci. 122 012031

[11] Mei C and Flinn B S 2010 The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement Recent Patents on Biotechnology 4 81-95

[12] Akkopru A, Cakar K and Hussein A 2018 Effects of endophytic bacteria on disease and growth in plants under biotic stress IVUJ A Gr Sci 28 2 200-8

[13] Bai Y, Panb B, Charlesc T and Smith D 2002 Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media Soil Biology and Biochemistry 34 1953-7

[14] Lestari P, Suryadi Y, Susilowati D N, Priyatno T P and Samudra I M 2015 Karakterisasi bakteri penghasil asam indol asetat dan pengaruhnya terhadap vigour benih padi (Characterization of bacteria producing of indole acetic acid and their effect on rice seed vigour) Berita Biologi 14 1 19-28

[15] Daryanto S, Wang L and Jacinthe P A 2016 Global synthesis of drought effects on maize and wheat production PLoS ONE 11 1-15

[16] Nongkhlaw F W and Joshi S R 2014 Epiphytic and endophytic bacteria that promote growth of ethomedicinal plants in the subtropical forests of Meghalaya, India Rev biotrop 62 4 1295-308

[17] Lagner dos Santos M, Berlitz D L, West S L F, Schinenmann R, Knaak N and Fiuza L M 2018 Benefits associated with the interaction of endophytic bacteria and plants Braz. Arch. Biol. Technol. 61, Epub, Nov 08, 2018 http://dx.doi.org/10.1590/1678-4324-2018160431

[18] Munif A, Wibowo A and Herliyana E N 2015 Bakteri endofit dari tanaman kehutanan sebagai pemacu pertumbuhan tanaman tomat dan agens pengendali Meloidogyne sp. (Endophytic bacteria from forestry plants as a growth booster for tomatoes and controlling agents Meloidogyne sp.) Jurnal Fitopatologi Indonesia 11 6 179-86

[19] Anggara B S, Yuliani and Lisdiana L 2014 Isolasi dan karakterisasi bakteri endofit penghasil hormon indole acetic acid dari akar tanaman ubi jalar (Isolation and characterization of endophytic bacteria producing the hormone indole acetic acid from the roots of sweet potato plants) LenteraBio 3 3 160-7

[20] Duangpaeng A, Phetcharat P, Chanthapho S, Boonkatong N and Okuda N 2012 The study and development of endophytic bacteria for enhancing organic rice growth Procedia engineering 32 172–6

[21] Costa L E O, Queiroz M V, Borges A C, Moraes C A and Araújo E F 2012 Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris) Braz J Microbiol 43 1562-75

[22] Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Qiang, Zeng G, Liu C and Chen J 2010 Isolation and characterization of endophytic bacterium LRE07 from Solanum nigrum L. cadmium hyperaccumulator and its potential for remediation Appl Microbiol Biotechnol 89 1637–44

[23] Doty S L, Oakley B, Xin G, Kang J W, Singleton G, Khan Z, Vajzovic A dan Staley J T 2009 Diazotrophic endophytes of native black cottonwood and willow Symbiosis 47 23–33

[24] Kaaria P, Matiru V and Ndungu M 2012 Antimicrobial activities of secondary metabolites produced by endophytic bacteria from selected indigenos Kenyan plant Afr Microbial Journal Res 6 45 7253–8
[25] Jalgaonwala R E and Mahaja R T 2011 Isolation and characterization of endophytic bacteria from roots of Pongamia glabra Vent. Int. J. Pharma and Bio Sci 1 280-7

[26] Ikade S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H and Minamisawa K 2010 Community and genome based views of plant associated bacteria: plant – bacterial interactions in soybean and rice Plant cell physiol 51 9 1398-1410

[27] Mbai F N, Magiri E N, Matiru V N, Ng’ang’a J and Nyambati V C S 2013 Isolation and characterisation of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice American International Journal of Contemporary Research 3 4 25-40

[28] Gholamalizadeh R G, Khodakaramian and Ebadi A A 2017 Assessment of rice associated bacterial ability to enhance rice seed germination and rice growth promotion Braz. Arch. Biol. Technol. 60 1-13

[29] Yurnaliza, Siregar M W and Priyani N 2011 Peran bakteri endofit penghasil iaa (indol acetic acid) terseleksi terhadap pertumbuhan tanaman padi (Oryza sativa L.) (The role of selective endophytic bacteria (indol acetic acid) on the growth of rice plants (Oryza sativa L.)) Prosiding Seminar Nasional Biologi pp 219-228

[30] Chaturvedi H, Singh V and Gupta G 2016 Potential of bacterial endophytes as plant growth promoting factors Journal of Plant Pathology & Microbiology 7 376

[31] Zain N M, Bachtiar T and Sugoro I 2018 Kontribusi nitrogen dari bakteri endofit pada tanaman padi (The contribution of nitrogen from endophytic bacteria to rice plants) Jurnal Ilmiah Aplikasi Isotop dan Radiasi 14 1 1-10

[32] Herlina L, Pukan K K and Mustikaningtyas D 2016 Kajian bakteri endofit penghasil IAA (Indole Acetic acid) untuk pertumbuhan tanaman [Study of endophytic bacteria that produce IAA (Indole Acetic acid) for plant growth] Jurnal Sains dan Teknologi (Sainteknol) 14 1 51-8

[33] Saylendra A and Fitria D 2013 Bacillus sp. dan Pseudomonas sp. asal endofit akar jagung (Zea mays L.) yang berpotensi sebagai pemacu pertumbuhan tanaman [Bacillus sp. and Pseudomonas sp. origin of corn root endophytes (Zea mays l.) which have the potential as a plant growth booster] Jurnal Ilmu Pertanian dan Perikanan 2 1 19-27

[34] Joko T, Koentjoro M P, Somowiyarjo S, Rohman M S, Liana A and Ogawa N 2012 Response of rhizobacterial communities in watermelon to infection with Cucumber Green Mottle Mosaic Virus as revealed by cultivation-dependent RISA Archives of Phytopathology and Plant Protection 45 15 1810-8

[35] Istiqomah D and Joko T 2014 Keefektifan bakteri endofit dalam meningkatkan pertumbuhan tanaman jagung secara in vitro [The effectiveness of endophytic bacteria in increasing the growth of corn plants in vitro] Pros. Seminar Nasional Dies Natalis KE-68 Fakultas Pertanian UGM [Proc. of the 68th National Anniversary Seminar of the Faculty of Agriculture UGM] https://www.researchgate.net/publication/316188920

[36] Yanti Y, Warnita, Reflin, Noffianti Z and Nasution C R 2017 Kajian aplikasi bakteri endofit indigenos dalam meningkatkan, pertumbuhan dan mengendalikan Ralstonia Solanacearum pada kentang [Study of the application of endogenic bacteria indigenos in enhancing, growing and controlling Ralstonia Solanacearum in potatoes] Pros. Seminar Nasional BKS PTN Wilayah Barat Bidang Pertanian 2017 (Proc. of the National Seminar on Western Region PTN BKS in Agriculture) pp 647-652

Acknowledgements
The authors extend the gratitude to the Rector of Halu Oleo University and the Ministry of Research, Technology and Higher Education of the Republic of Indonesia for research grant and financial support on the scheme Penelitian Dasar in the fiscal year 2019.