Plate tectonics drive tropical reef biodiversity dynamics

Fabien Leprieur, Patrice Descombes, Théo Gaboriau, Peter F. Cowman, Valeriano Parravicini, Michel Kulbicki, Carlos J. Melián, Charles N. de Santana, Christian Heine, David Mouillot, David R. Bellwood & Loïc Pellissier

The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

NATURE COMMUNICATIONS | 7:11461 | DOI: 10.1038/ncomms11461 | www.nature.com/naturecommunications
Tropical shallow reefs support the world’s greatest diversity of marine organisms and have experienced a long history of climate-driven habitat change. Sea level and temperature fluctuations during the Quaternary have strongly shaped the distribution of coral reefs and their associated fish faunas. Nevertheless, most of the diversification of tropical marine faunas predates the Quaternary, arguing for a major role of older historical events. Because plate tectonics modulate the distribution of seafloors through continental movement and collision over geological timescales, they are potentially one of the main determinants of tropical marine biodiversity. The fossil record indicates that the location of the major marine biodiversity hotspot has moved across the globe during the last 50 million years, transitioning from the western Tethys during the Eocene (55–33 Ma), to the Arabian Peninsula and Western Indian Ocean during the Late Eocene and Oligocene (37–15 Ma), and finally to the Indo-Australian Archipelago (IAA) in the Miocene (15–5 Ma). This movement was primarily driven by successive closure of the Tethys followed by the collision of the Arabian and Indian plates with Eurasia. Yet, the role of plate tectonics in shaping diversification and dispersal processes of tropical marine biodiversity still remains elusive. Correlative approaches have had limited success in disentangling alternative hypotheses and mechanistic models may provide a clearer understanding of the processes shaping marine biogeographic patterns.

We coupled a mechanistic model of species diversification to a model of synthetic paleobathymetry estimates for the past 140 Myr. The gridded paleobathymetry model is based on global ocean paleo-age grids merged with paleocoastline distributions for continental areas. The model outlines the absolute position of continents over time and the associated distribution and residence time of shallow epicontinental seas. Using a novel dynamic model that simulates clade dispersal, speciation and extinction from a single ancestral species, bounded by a temporal sequence of habitat availability, we show that plate motions predict the emergence and movement of diversity hotspots on tropical reefs. Incipient species emerge within (that is, sympatric) or adjacent (that is, parapatric) to the geographical range of its ancestor and disperse at a distance during each time step. Parapatric speciation arises when a species range is split into one or more distinct areas separated by a distance, while sympatric speciation arises within a cell with a probability. Consistent with the speciation-area hypothesis, species occupying a large area show higher sympatric speciation frequency. Regardless of the speciation mode, the models predict the emergence and movement from the western Tethys towards the IAA. The diversification model assumes that speciation and extinction are modulated exclusively by variations in habitat size and spatial distribution. The model is based on strict niche conservatism, but provides a realistic picture of the historical dynamic of marine reef fauna.

Results and Discussion

Hopping biodiversity hotspots. We show that the spatial distribution of tropical reef habitats over time (Fig. 1; Supplementary Fig. 1) explains the emergence and movement of coral reef biodiversity hotspots since the Cretaceous with both parapatric (Supplementary Fig. 2) and sympatric (Supplementary Fig. 3) speciation modes (Fig. 2; Supplementary Fig. 4). The parapatric model (d = 4, d = 5) provided better estimates of fossil biodiversity in the Eocene (40 Ma, R² = 0.26) and the Miocene (20 Ma, R² = 0.38) than the sympatric model (d = 5, P = 6e – 5, 40 Ma: R² = 0.12; 20 Ma: R² = 0.13). The paleobathymetry model suggests that the Tethys contained extensive but dissected reef habitats promoting both modes of speciation (Supplementary Fig. 5), but the biodiversity peak in the Western Tethys is most consistent with parapatric speciation fueled by waves of disconnection and reconnection of isolated reef regions (Supplementary Fig. 6). The highly dynamic and complex tectonics of the Western Tethys provided fertile ground for parapatric speciation. Modelled diversification, computed as speciation minus extinction rates, peaked at 85 Ma (Supplementary Figs 7 and 8) when fragmentation was highest, underpinning the biodiversity hotspot in Western Tethys (Supplementary Fig. 5). During the mid-late Eocene–Oligocene times, the closure of the Tethys was associated with a narrowing coastal corridor, that allowed Tethyan biodiversity to move eastward (Fig. 2), supporting the hypothesis of faunal migration into the IAA. Since high faunal turnover is expected at the transition across the Cretaceous–Paleogene (K/Pg) boundary, which is not considered in our habitat reconstructions, a sensitivity analysis demonstrated the robustness of this dynamic to a high degree of forced extinction at 66 Ma (80%, Supplementary Fig. 9). In addition, our results showed robustness in regards to the choice of plate kinematic model used to reconstruct plate positions (Supplementary Fig. 10). Together, these results indicate that the Tethys was a major diversification and emigration hotspot explaining the Tethyan origin of most tropical shallow reef lineages, here shown for corals, but with parallels in fishes and foraminifera.

Current biodiversity patterns. We examined whether the parapatric and sympatric models predicted realistic current biodiversity patterns for two globally distributed coral (Acroporidae) and fish (Labridae) clades. Parapatric (R² = 0.36 and R² = 0.42) and sympatric (R² = 0.46 and R² = 0.45) models both explain global variation in coral and fish species richness, which peaks in the Central Indo-Pacific region, and more particularly in the IAA, centred between Indonesia and Papua New Guinea (Fig. 2; Supplementary Fig. 4). The lower diversity in the Atlantic is not only the result of less extensive Quaternary refugia, but also lower opportunity for immigration and speciation since the Eocene than in the geologically complex Central Indo-Pacific region (Supplementary Fig. 5). The models also provided realistic values of between-assemblage diversity for both parapatric (Acroporidae: mantel r = 0.56; Labridae: r = 0.63) and sympatric (Acroporidae: r = 0.76; Labridae: r = 0.77) speciation modes. Observed and predicted values of assemblage dissimilarity increase with sea distance, and the model captures the high level of faunal turnover between the Atlantic and Indo-Pacific oceans (Supplementary Fig. 11), which were largely disconnected after the closure of the Tethys Sea. Overall, these results demonstrate the important role played by isolation and plate tectonics in shaping patterns of speciation and dispersal, and in explaining the present-day longitudinal gradient in tropical marine shallow reef biodiversity.

Nested patterns and the merging of lineages. The parapatric model accurately (Acroporidae, Spearman rank correlation: rₕ = 0.54; labr = 0.59, P < 0.001) mimicked the nested structure of assemblages in the Central Indo-Pacific region (Supplementary Fig. 12). (Parapatric model: NODF sites = 33.2, P < 0.001; fish: NODF sites = 82.9, P < 0.001; coral: NODF sites = 90.5, P < 0.001; Fig. 3). Assemblages in peripheral and species-poor cells are composed of species that constitute subsets of species that occur in successively richer cells of the IAA (Fig. 3). Furthermore, these peripheral areas display distinct tropical reef faunas, which are also mimicked by our mechanistic model (Supplementary Fig. 12). The mechanistic model predicts that two faunas...
previously separated, from Tethys and coastal Australia, fused when the Sunda and Sahul shelves entered in collision (Fig. 4; Supplementary Fig. 13). Among the candidate lineages of Australian origin, a biogeographic reconstruction based on the labrid phylogeny (Supplementary Fig. 14) suggests that the hypsigynine and pseudocheiline lineages became isolated in the Central Indo-Pacific region in the Eocene before the emergence of the IAA. Those may have colonized the Australian coast across the Southern Indian Ocean (Supplementary Fig. 15). In contrast, the scarines, a lineage with earliest fossils in Tethys, represents a more recent colonization in the Miocene from Tethys (Supplementary Fig. 15). This, together with other evidence for sharks22 and corals23 may suggest the existence of an Australian endemic marine fauna before the Miocene. The confluence of two major faunal elements, Tethyan and Australian (Fig. 4; Supplementary Fig. 14) shaped the accumulation of biodiversity in the IAA18, which provides a marine analogue to the juxtaposed terrestrial taxa across the Wallace line24.

Paralleling major radiations in terrestrial systems associated to island formation25 or orogeny26, our study highlights how the dispersal and amalgamation of continental plates since the Cretaceous has shaped the dynamics of biodiversity for two major groups of tropical marine organisms, namely corals and fishes. Both speciation modes emphasize that diversification of shallow reef biodiversity and its movement across the globe was contingent on habitat configuration (Fig. 2; Supplementary Fig. 2). Our model corroborating the nestedness pattern of assemblages suggests that the marine fauna in IAA was formed, at least in part, by the merging of Australian and Tethyan faunas. Yet, determining the exact origin of extant lineages will remain challenging given the potential for long distance dispersal in the marine realm, which, together with extinction, may blur phylogeographical inferences18. Together, our next-generation dynamic macroecological model provides new hypotheses with which to explore and to interpret empirical patterns, such as the fusion of the Tethyan and Australian faunas in the IAA (Figs 3 and 4). While our model assumes niche conservatism, ecological diversification is also expected to have driven diversification on tropical11,27 but bounded by available tropical reef habitat through time. Incorporating ecological niche evolution together with habitat changes into a mechanistic model of species diversification would be a new avenue of research for understanding tropical marine biodiversity.

Our results remain contingent on the quality of the synthetic paleobathymetry, reconstructed from multiple data sources with their own uncertainty, propagating up from simple navigational errors for the marine surveys collecting magnetic anomaly data6 to larger spatio-temporal uncertainties associated to the location of paleo-shorelines. We used two absolute plate kinematic models based on absolute moving hotspot reference frames, one of them corrected for the effects of true polar wander (TPW) before 100 Ma (ref. 28). TPW is an effect that causes the whole mantle and lithosphere to rotate latitudinally with respect to the Earth’s spin axis, commonly only detectable by paleomagnetic reference frames and not visible in mantle/hotspot reference frames29. However, the magnitude of TPW over the past 140 Ma is debated29. Our two input plate kinematic models result in identical paleolatitudinal positions for a hypothetical point (20°E 33°N) on the northern edge of Africa for the time from 100 Ma to the present (Supplementary Fig. 16), where most of the species diversification occurred (Supplementary Fig. 7). Comparison with a pure paleomagnetic model29 shows that there are up to 700–800 km (at 60 Ma) of potential paleolatitudinal difference in the location of this point between our models and the

Figure 1 | Distribution of shallow and deep ocean sea floor across the past 140 Myr. The latitudinal tropical limit was obtained from the fossil distribution of coral species. Light blue represents deep tropical ocean, while yellow represents tropical shallow reefs. White and light grey represent deep ocean and shallow waters outside the tropical boundary, respectively.
paleomagnetic model (Supplementary Fig. 16). The habitat complexity shaping reef biodiversity would still remain in the tropical climate zones even considering a paleomagnetic reference frame and our results are robust to this uncertainty. Moreover, our models are corroborated by fossil records, indicating a prolonged state of tropical climatic conditions associated to habitat complexity in the Western Tethys at the end of Cretaceous to Eocene, fuelling species diversification. Here, we highlight the major role of plate tectonics in shaping biodiversity patterns in the tropical marine realm, but we acknowledge that other shifts in oceanic conditions such as episodic high temperature, acidity levels, or ecological conditions such as habitat complexity have also influenced biodiversity dynamics. In addition, even though our process-based model provides realistic patterns of tropical marine biodiversity dynamics, this does necessarily mean that the process is realistic, arguing for further validation. Overall, our study paves the way toward a new generation of spatially explicit diversification models, integrating paleo-environmental changes, providing a potential mechanistic understanding of extant biodiversity patterns.

Methods

Bathymetry layers and tropical limit across time. Plate tectonics drive the evolution of oceanic basins and mountain chains through the motions of continental plates across the surface of the Earth. Plate kinematic models provide insights on whether and when plates are located in favourable latitudes for the establishment of tropical marine biodiversity associated with shallow water reef systems. We used two different absolute plate motion models extending back to 140 Ma, constructed using relative plate motions derived from current marine magnetic anomalies and oceanic fracture zones. Different choices of reference frames determine the absolute positions of plates back in time for each model. The first model (Model 1), is based on a combined moving Indian/Atlantic Hotspot reference frame back until 100 Ma, and a fixed hotspot reference frame back to 140 Ma. For the Pacific Plate, we used the absolute reference frame from Wessel et al. The second model (Model 2) uses a plate kinematic framework published by Seton et al. This second model uses a hybrid reference frame, which merges a moving Indian/Atlantic hotspot reference frame back to 100 Ma with a paleomagnetically derived true polar wander corrected reference frame back to 140 Ma.

For subducted ocean crust, the marine magnetic anomalies of in situ oceanic crustal remnants are utilized in combination with geological information and paleomagnetic data from accreted terranes and microcontinents along with the rules of plate tectonics to generate sets of synthetic paleo-age grids for oceanic lithosphere for the past 140 Myr. Due to the age-depth relationship related to the cooling of oceanic crust, one can compute the paleobathymetry of oceanic crust, assuming either no sedimentation or relatively simple sedimentation patterns based on present-day observations. We used the GDH-1 cooling model to compute the
paleobathymetry grids for each time step. Estimates for continental topography, including continental margins, however, do not follow such relatively simple rules due to the effects of tectonic deformation, sediment loading and erosion. We used a set of newly digitized paleo-shorelines from the compilation of Smith et al. to generate simple continental shelf topography fringing continental plates at each reconstruction time step. For both models, the depth at the continent–ocean boundary is determined by age of the adjacent oceanic crust. We combine both data sets to generate synthetic paleobathymetry models with a spatial resolution for the past 140 Myr in 1 million year time steps. Shelfal area are assigned a constant bathymetry of 200 m in the grids, but this represents a coarse depth approximation of the entire shelfal area which in reality displays a much more complex bathymetry. The bathymetric reconstructions only partially considers volcanic activity leading to shelf emergence and we did not model the biodiversity of the Tropical Eastern Pacific that contains many islands of volcanic origin.

Since the study focuses on the history of tropical shallow reef fauna and because climate strongly fluctuated in the last 140 millions of years, we also reconstructed the paleo-latitudes of tropical ocean limits from reef-forming coral fossil records. Reef-forming coral species can only develop at warm water temperature (>25°C (ref. 42) and thus the paleo-distribution of this group constitutes a good indicator of the past latitudinal tropical borders. We collected fossil occurrences of scleractinian corals from paleoDB (www.paleodb.org) corresponding to 31,392 occurrences from 140 Ma to the present (Supplementary Fig. 17). From the reconstructed paleo-latitude for each million year time slice, we computed the 95th percentile of the paleo-latitude at which corals were living to inform on the latitudinal border of tropical oceans across time. By combining reconstructed shelfal areas with tropical limits, we generated 1 map per million years of tropical shallow marine habitats for the last 140 Myr (Supplementary Fig. 1).

Mapping current and past biodiversity patterns. Current biodiversity patterns were extracted from a global-scale distribution database for tropical reef fishes and from the IUCN (http://www.iucnredlist.org/technical-documents/spatial-data)
for Scleractinian corals. By examining almost 500 references and extracting information from published works, regional checklists, monographs on specific families or genera, and reports, we obtained occurrence data for 6,316 reef fishes in grid cells of 5° x 5°, corresponding to 555 to 555 km in the Equator. To compare model simulations and observed biodiversity gradients, we focused on one coral clade and one fish clade based on two criteria: the clade should show a global distribution and have a stem age within the time frame of the simulation. For the coral clade, we selected the Labridae family (n = 559 species) with a median age of 76 ± 10 Myr obtained from the dated phylogeny. For the corals, we considered the Acroporidae family (n = 274 species) also with a global distribution and with the earliest fossil in the data set dating to 131 ± 5 Ma. To compare simulated and observed biodiversity patterns, we used observed cell with the dispersal distance, it will go extinct only if all the habitat cells inhabited by the species at time t disappear at time t + 1.

The model can account for the parapatric mode (two parameters), the sympatric mode (two parameters) or both (three parameters) and can make inferences about assemblage properties (alpha-, beta-diversity), diversification rates (that is, speciation and extinction rates) and phylogenetic branching (that is, phylogenetic richness). We ran the simulations with a range of dispersal (d = 1°40′) and speciation (P_s, e^{-1e^{-5} \cdot 4}-^e^{-1e^{-4}}) rates. Values beyond these ranges were unrealistic as they predict no species (full extinction), too many species (for example, >20,000, especially when d > dₚ) or predict all species everywhere. The model was run until 1 Ma (and not to the current period) since we were interested in highlighting the geological contingencies on tropical reef assemblages.

The effects of glaciations during the Quaternary (2.6 Ma to Present) have been studied elsewhere. Therefore, we did not consider Quaternary climatic fluctuations in the current study. Parameter combinations (d, dₚ, Pₚ) were run 20 times, the stochastic component in the dispersal kernel of the parapatric model and a larger stochastic component linked to the speciation probability in the sympatric model. We ran a total of 16,000 simulations.

We highlighted the best model (BM) among all simulations across a set of empirical validations including (1) current alpha and beta-diversity of corals and fishes globally and for the Central Indo-Pacific region, (2) past species richness 70, 40 and 20 Ma based on fossil data (Supplementary Fig. 2), and (3) taxonomic turnover. We summed the BIC to rank the simulations (Supplementary Fig. 21). We obtained general models of marine faunal dynamics explaining shared properties in the historical biodiversity dynamics of both corals and fishes.

Nestedness and species turnover patterns. The IAA also called the coral triangle (that is, the Indonesian archipelago, the Malaysian peninsula, the Philippines, New Guinea and northern Australia) is widely recognized as the global centre of modern marine biodiversity. At the scale of the Central Indo-Pacific region, the number of reef fishes and corals was found to decrease with increasing distance from the coral triangle, with the tendency that distant assemblages being nested within those of the coral triangle. Therefore, we evaluated if the parapatric and sympatric models faithfully reproduced this biogeographical pattern. To do so, we used the NODF index based on paired overlap and decreasing fill to measure the extent to which species present in species-poor cells constitute proper subsets of those ones present at species-rich cells. More specifically, we calculated the NODF index and its variance (hereafter NODF) for grid cells from 0 cells (cells are not nested) to 100 cells (cells are perfectly nested). To determine the probability that nestedness could be obtained by chance, we compared the observed NODF to value obtained by a null model where species-poor cells are considered as missing values.

For both corals and fishes, the model was run until 1 Ma (and not to the current period) since we were interested in highlighting the geological contingencies on tropical reef assemblages. The model was run 20 times, the stochastic component in the dispersal kernel of the parapatric model and a larger stochastic component linked to speciation probability in the sympatric model. We ran a total of 16,000 simulations.

We highlighted the best model (BM) among all simulations across a set of empirical validations including (1) current alpha and beta-diversity of corals and fishes globally and for the Central Indo-Pacific region, (2) past species richness 70, 40 and 20 Ma based on fossil data (Supplementary Fig. 2, Supplementary Figs 4 and 20). For each of the comparisons (fossil diversity gradients, current alpha and beta diversities), we summed the BIC to rank the simulations (Supplementary Fig. 21). We obtained general models of marine faunal dynamics explaining shared properties in the historical biodiversity dynamics of both corals and fishes.

Landscape-based model of biodiversity dynamics. The use of correlative approaches in macroecological studies does not provide a mechanistic understanding of the way historical processes have shaped the distribution of alpha- and beta-diversity. To disentangle causalties for emergent patterns, the application of dynamic simulation models provide more understanding on the processes that statistical models cannot. In addition, phylogenetic history of lineages, and historical biodiversity information which can be compared with palaeontological or phylogenetic evidences. Therefore, we used existing occurrence data from published works, regional checklists, monographs on specific families or genera, and reports, we obtained information on presence/absence for 6,316 reef fishes in grid cells of 5° x 5°, corresponding to 555 to 555 km at the Equator. To compare model simulations and observed biodiversity gradients, we focused on one coral clade and one fish clade based on two criteria: the clade should show a global distribution and have a stem age within the time frame of the simulation. For the coral clade, we selected the Labridae family (n = 559 species) with a median age of 76 ± 10 Myr obtained from the dated phylogeny. For the corals, we considered the Acroporidae family (n = 274 species) also with a global distribution and with the earliest fossil in the data set dating to 131 ± 5 Ma. To compare simulated and observed biodiversity gradients, we used observed biodiversity patterns. The model starts with a unique ancestral species and new species are randomly drawn until the number of species reaches 559. Each simulated species originating either within (that is, sympatric) or adjacent to (that is, parapatric) the region of interest. Therefore, we used existing occurrence data from published works, regional checklists, monographs on specific families or genera, and reports, we obtained information on presence/absence for 6,316 reef fishes in grid cells of 5° x 5°, corresponding to 555 to 555 km at the Equator. To compare model simulations and observed biodiversity gradients, we focused on one coral clade and one fish clade based on two criteria: the clade should show a global distribution and have a stem age within the time frame of the simulation. For the coral clade, we selected the Labridae family (n = 559 species) with a median age of 76 ± 10 Myr obtained from the dated phylogeny. For the corals, we considered the Acroporidae family (n = 274 species) also with a global distribution and with the earliest fossil in the data set dating to 131 ± 5 Ma. To compare simulated and observed biodiversity gradients, we used observed biodiversity patterns.
Biogeographic reconstructions using the phylogeny. Due to the lack of knowledge of the sister family of the Labridae, we confined our biogeographic analyses to within the Labridae. Based on a global-scale distribution database, we classified the distribution of the species belonging to the Labridae into three main areas, namely Atlantic, Western Indian Ocean and Central Indo-Pacific. We performed a maximum-likelihood biogeographic estimation on the reconstructed phylogeny using the R package BioGeoBEARS\(^5\). BioGeoBEARS is designed to perform inference of biogeographic history on time-calibrated phylogenies using models of dispersal, extinction and cladogenesis (DEC)\(^6\) with the addition of several other biogeographic parameters that can be combined to form other biogeographic models (e.g., DIVA, BAYLAM) in a likelihood framework. In addition, it allows the inclusion of founder-event speciation scenarios through the inclusion of the ‘jump’ (+1) parameter. Alternate models can be compared using Akaiake information criterion (AIC). We estimated the biogeographic range evolution under a DEC model which allowed many alternative biogeographic scenarios. In addition, we compared the inclusion of the ‘+1’ parameter for the empirical data using AIC. Species ranges were categorized into three separate biogeographic regions – Atlantic, West Indian Ocean and Central Indo-Pacific. To reflect the tectonic history of marine habitat we allowed a fourth area to only exist in the past – the Tethys. Lineages were only permitted to occupy, or include the Tethys as part of their tree, after the time boundary that signifies the final closure of the Tethys seaway\(^7\). To reflect the fossil and paleogeographic record, we constrain the deeper nodes in the tree (before 7 Ma) to include the Tethys region in the node range estimation (but not exclude other adjacent area combinations). Dispersal was only allowed between adjacent areas and a dispersal matrix was constructed to reflect the information of land separation at different time periods. The presence of the Tethys Seaway – 12 Ma; Isthmus of Panama – 3.1 Ma. Recent geologic evidence points to earlier closures of the Isthmus of Panama and its extended evolutionary influence on marine and terrestrial biotas\(^8\). Here, we model our dispersal matrix on the final closure of the Isthmus, but earlier vicariance events are reported in the labrids\(^9\). Under the DEC + J model, we identified the age of colonization of the central Indo-Pacific among the different lineages of Labridae.

Diversification rates. To compare to the simulated diversification rate to empirical patterns, we estimated extinction and speciation rates shaping diversification for the coral family Acroporidae using fossils occurrences following the method of PyRate proposed by Silvestro et al.\(^{10}\). The PyRate model is a stochastic model that estimates diversification rates through time. We examined the posterior samples using Tracer v1.6 (ref. 64) and combined it after removing an inappropriate burn-in to get a good estimation of speciation and extinction rates.

Because missing extinct lineages in the most ancient section of the phylogeny of Labridae are unknown, we used a combination of fossil occurrence and biogeographic estimation to estimate the diversification rates. We computed the rate of diversification from a phylogeny containing 18 tropical reef fish families (that is, Labridae including Scaridae, Pomacentridae).

Data availability. The R script to run the species diversification model together with the bathymetry reconstructions are available online on FigShare (DOI: 10.6084/m9.657317413). Species diversity data and fossils are made available through the IUCN (http://www.iucnredlist.org/) and fossilworks.org/.

References.

1. Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. *Science* 295, 1280–1284 (2002).

2. Renema, W. et al. Hopping hotspots: global shifts in marine biodiversity. *Science* 321, 654–657 (2008).

3. Pillai, S. et al. Quaternary coral reef refuge preserved species diversity. *Science* 344, 1016–1020 (2014).

4. Williams, S. T. & Duda, T. F. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific? *Evolution* 62, 1618–1634 (2008).

5. Wilson, M. E. J. & Rosen, R. B. In *Biogeography and Geological Evolution of SE Asia*, eds. Hall, R. & Holloway, J. D. 165–195 (Backhuys Publishers, 1998).

6. Müller, R. D., Sáridas, M., Gama, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. *Science* 319, 1357–1362 (2008).

7. Munepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. *Nature* 453, 220–223 (2008).

8. Gotelli, N. J. et al. Patterns and causes of species richness: a general simulation model for macroecology. *Ecol. Lett.* 12, 873–886 (2009).

9. Heine, C., Yeo, L. G. & Müller, R. D. Evaluating global paleoshoreline models of the Cretaceous and Cenozoic. *Aust. J. Earth Sci.* 62, 275–287 (2015).

10. Budd, A. F. & Pandolfi, J. M. Evolutionary novelty is concentrated at the edge of the Tethys seaway. *Proc. Natl. Acad. Sci. U.S.A.* 1095–1106 (2010).

11. van Hinsbergen, D. J. J. et al. Restoring of Cenozoic deformation in Asia and the size of Greater India. *Tectonics* 30, TC0303 (2011).

12. Heindel, A., Moore, J., Bouli, J. R. & Müller, R. T. J. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocenocene (squirrelfishes and soldierfishes). *Evolution* 69, 146–161 (2015).

13. Goffrey, C. H. R., Bellwood, D. R. & Bellwood, O. Fishes on coral reefs: changing roles over the past 240 million years. *Paleobiology* 36, 415–427 (2010).

14. Aberhan, M. & Kisielius, W. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. *Proc. Natl. Acad. Sci. U.S.A.* 112, 7207–7212 (2015).

15. Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition in the Indo-Pacific coral reef zone: the role of tectonics, environment and habitat distribution. *Proc. R. Soc. B* 280, 2013–0188 (2013).

16. Kubicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. *PLoS ONE* 8, e81847 (2013).
21. Moullec, D. et al. The challenge of delineating biogeographical regions: nesting matters for Indo-Pacific coral reef fishes. J. Biogeogr. 40, 2228–2237 (2013).

22. Last, P. R. & White, W. T. Biogeographic patterns in the Australian chondrichthyan fauna. J. Fish Biol. 79, 1193–1213 (2011).

23. Santini, F. & Winterbottom, R. Historical biogeography of Indo-western Pacific coral reef biota: is the Indonesian region a centre of origin? J. Biogeogr. 29, 189–205 (2002).

24. Barber, P. H., Palumbi, S. R., Erdmann, M. V. & Moosa, M. K. Biogeography: a marine wallace’s line? Nature 406, 692–693 (2000).

25. Losos, J. B. & Ricklefs, R. E. The Theory of Island Biogeography Revisited (Princeton University Press, 2009).

26. Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

27. Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas of tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

28. van Hinsbergen, D. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS One 10, e0126946 (2015).

29. Torresv, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).

30. Wallace, C. C. & Rosen, B. R. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals. Proc. Biol. Sci. 273, 975–982 (2006).

31. Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat. Geosci. 3, 196–200 (2010).

32. Gower, D. et al. Biotic evolution and environmental change in Southeast Asia (Cambridge University Press, 2012).

33. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and hotspot tracks for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

34. O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochim. Geophys. Geosyst. 9, Q00406 (2008).

35. Müller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993).

36. Wessel, P., Harada, Y. & Kroenke, L. W. Toward a self-consistent, high-resolution absolute plate motion model for the Pacific. Geochim. Geophys. Geosyst. 7, Q03L12 (2006).

37. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

38. Steinberger, B. & Torresv, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008).

39. Stein, C. A. & Scot, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

40. Smith, A. G., Smith, D. G. & Funnell, B. M. Atlas of Mesozoic and Cenozoic coastlines (2004).

41. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and matters for Indo-Pacific coral reef fishes. J. Biogeogr. 30, 2930–2947 (2011).

42. van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS One 10, e0126946 (2015).

43. Santini, F. & Winterbottom, R. Historical biogeography of Indo-western Pacific coral reef biota: is the Indonesian region a centre of origin? J. Biogeogr. 29, 189–205 (2002).

44. Last, P. R. & White, W. T. Biogeographic patterns in the Australian chondrichthyan fauna. J. Fish Biol. 79, 1193–1213 (2011).

45. Santini, F. & Winterbottom, R. Historical biogeography of Indo-western Pacific coral reef biota: is the Indonesian region a centre of origin? J. Biogeogr. 29, 189–205 (2002).

46. Barber, P. H., Palumbi, S. R., Erdmann, M. V. & Moosa, M. K. Biogeography: a marine wallace’s line? Nature 406, 692–693 (2000).

47. Losos, J. B. & Ricklefs, R. E. The Theory of Island Biogeography Revisited (Princeton University Press, 2009).

48. Kauffman, E. G. in Parravicini, V. et al. The Theory of Island Biogeography Revisited (Princeton University Press, 2009).

49. Hennig, C. Fixed point clusters, clusterwise regression and discriminant plots. The Theory of Island Biogeography Revisited (Princeton University Press, 2009).

50. Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).