Neighborhoods are good communities

David F. Gleich
Purdue University
Computer Science Department
dgleich@purdue.edu

C. Seshadhri∗
Sandia National Laboratories†
Livermore, CA
scomand@sandia.gov

ABSTRACT
The communities of a social network are sets of vertices with more connections inside the set than outside. We theoretically demonstrate that two commonly observed properties of social networks, heavy-tailed degree distributions and large clustering coefficients, imply the existence of vertex neighborhoods (also known as egonets) that are themselves good communities. We evaluate these neighborhood communities on a range of graphs. What we find is that the neighborhood communities often exhibit conductance scores that are as good as the Fiedler cut. Also, the conductance of neighborhood communities shows similar behavior to the network community profile computed with a personalized PageRank community detection method. The latter requires sweeping over a great many starting vertices, which can be expensive. By using a small and easy-to-compute set of neighborhood communities as seeds for these PageRank communities, however, we find communities that precisely capture the behavior of the network community profile when seeded everywhere in the graph, and at a significant reduction in total work.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms, Theory

∗The author is supported by the Sandia LDRD program (under project 158477) and the applied mathematics program at the United States Department of Energy.

†Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

1. INTRODUCTION
Community detection, loosely speaking, is any process that takes a graph or network and picks out sets of related nodes. An incredibly variety of techniques exist for this single task, which has a variety of names as well: community detection, graph clustering, and graph partitioning. Throughout this manuscript, we shall use the term community and cluster interchangeably. For more information about approaches for this problem, see the recent survey by Schaffer [34]. In many techniques, a community is defined as a set with a good score under a quality measure that reflects the connectivity between the set and the rest of the network. Common measures are based on density of local edges, deviation from a random null model, the behavior of random walks, or graph cuts. Mostly, these measures are NP-hard to optimize.

To keep this manuscript simple, we shall evaluate communities using their conductance store. Schaeffer identified this measure as one of the most important cut-based measures and it has been studied extensively in a variety of disciplines [11, 17, 36]. Work by Leskovec et al. has recently demonstrated that, although different quality measures produce differences in terms of specific communities, strong communities persist under a variety of measures [26].

A vertex neighborhood of a vertex v is the set of vertices directly connected to v via an edge and v itself. For example, see the green and black vertices at right. What we show here is that the presence of two commonly observed properties of modern information networks—a large global clustering coefficient [99] and a power-law degree distribution [5]—implies the existence of vertex neighborhoods with good conductance scores. We make this statement precise in Theorem 4.6. These results can be seen as an extension of the simple observation that, in the extreme case when the global clustering coefficient of a network is 1, then the network must be a union of cliques. Neighborhoods define ideal communities in this case. We mathematically show that this argument can be extended to the case when the graph has a power-law degree distribution and a large clustering coefficient. The
significance of this finding is that robust community detection need not employ complicated algorithms. Instead, a straightforward approach that just involves counting triangles—a function that is easy to implement in MapReduce [12] and easy to approximate [21], suffices to identify communities. It is intriguing that arguably the two most important measurable quantities of social networks imply that communities are very easy to find. This may lead to more mathematical work explaining the success of community detection algorithms, given that the problem are in general NP-hard. We note that unfortunately, our theoretical bounds reflect a worst case behavior and are weaker than required for practical use. Consequently, in the remainder of the paper we explore the utility of neighborhood communities empirically.

Section 2. The technical discussion of the manuscript begins by introducing our notation and precisely defines the quantities we examine, such as clustering coefficients, due to variability in the definitions of these measures. We also discuss the Andersen-Chung-Lang personalized PageRank clustering scheme [2] and the network whiskers from Leskovec et al. [24, 25]. We utilize the latter two algorithms as reference points for the success of our community detection.

Section 3. We discuss some of the other observed properties of egonets, or vertex neighborhoods, along with other related work including overlapping communities.

Section 4. We state and prove the theoretical results that communities reflect the shape of the network community detection need not employ complicated algorithms. Instead, a graph whose shortest path distance from a vertex is less than a threshold is exactly the set of vertices within distance \(r \) or \(v \).

Table 1: A summary of the notation.

Symbol	Definition		
\(n =	V	\)	the number of vertices
\(m =	E	\)	the number of edges
\(d_v \)	the degree of vertex \(v \)		
\(f_d \)	the number of vertices of degree \(d \)		
\(W \)	the set of wedges in a graph		
\(W_v \)	the set of wedges centered at vertex \(v \)		
\(\kappa \)	the global clustering coefficient		
\(C \)	the mean local clustering coefficient		
\(C_v \)	the local clustering coefficient for vertex \(v \)		
\(N_r(v) \)	the set of vertices within distance \(r \) or \(v \)		
\(E(S,T) \)	the set of edges between \(S \) and \(T \)		
\(\text{cut}(S) \)	the size of the cut around vertex set \(S \)		
\(\text{vol}(S) \)	the sum of degrees (volume) of vertices in \(S \)		
\(\text{edges}(S) \)	twice the number of edges among vertices in \(S \)		
\(\phi(S) \)	the conductance of vertex set \(S \)		

www.cs.purdue.edu/homes/dgleich/codes/neighborhoods

These codes are easy to use. Given the adjacency matrix of a network \(A \), the single command

\[
\text{ncpneighs}(A)
\]

will produce a figure analyzing the neighborhood communities in comparison to the Fiedler community (formal definition in Section 2.3).

Summary of contributions.

- We theoretically motivate the study of neighborhood communities by showing they often have a low conductance in graphs with a power-law degree distribution and large clustering coefficients.
- We empirically evaluate these neighborhood communities and find them comparable to those communities found by other algorithms at small size scales.
- We find a small set of neighborhood communities that can be grown into larger communities using a PageRank-based community detection algorithm. The results match those communities found with a more expensive sweep over all communities.

2. FORMAL SETTING AND NOTATION

We first list out the various notations and formalisms used. All of the key notation is summarized in Table 1, and we briefly review it here. Let \(G = (V,E) \) be a loop-less, undirected, unweighted graph. We denote the number of vertices by \(n = |V| \) and the number of edges by \(m = |E| \). In terms of the adjacency matrix, \(m \) is half the number of non-zeros entries. For a vertex \(v \), let \(d_v \) be the degree of \(v \). For any positive integer \(d \), let \(f_d \) be the number of vertices of degree \(d \), that is, the frequency of \(d \) in the degree distribution. The maximum degree is denoted by \(d_{\text{max}} \). Let \(D_r(v) \) to be the distance \(r \)-neighborhood of \(v \). This is the set of vertices whose shortest path distance from \(v \) is exactly \(r \). Then, we define the ball of distance \(r \) around \(v \), denoted by \(N_r(v) \), as the set \(\bigcup_{r} D_r(v) \).

2.1 Clustering coefficients

A wedge is an unordered pair of edges that share an endpoint. The center of the wedge is the common vertex between the edges. A wedge \(\{(s,t),(s,u)\} \) is closed if the edge
(t, u) exists, and is open otherwise. We use W to denote the set of wedges in G, and Wv for the set of wedges centered at v. Note that |Wv| = \binom{dv}{2}. We set pv = |Wv|/|W|.

Social networks often have large clustering coefficients \cite{39}. Because of the varying definitions of this term that are used, we will denote by κ the global clustering coefficient. This quantity is basically a normalized count of triangles. In the following, we think of w drawn uniformly at random from W.

$$κ = \frac{Pr_{w\in W}[w \text{ is closed}]}{|W|} = \frac{\text{number of closed wedges}}{|W|}$$

In terms of triangles, κ = 3 · number of triangles/|W|. For any vertex v, Cv is the local clustering coefficient of v. We draw w uniformly at random from Wv.

$$C_v = \frac{Pr_{w\in W_v}[w \text{ is closed}]}{|W_v|} = \frac{\text{number of closed wedges in } W_v}{|W_v|}$$

2.2 Cuts and Conductance

Given a set of vertices S, the set \(\bar{S} = V \setminus S\) is the complement set, \(\bar{S} = V \setminus S\). For disjoint sets of vertices S, T, \(E(S, T)\) denotes the edges between S and T. For convenience, we denote the size of the cut induced by a set \(|E(S, \bar{S})|\) by \(\text{cut}(S)\).

The conductance of a cluster (a set of vertices) measures the probability that a one-step random walk starting in that cluster leaves that cluster. Let \(\text{vol}(S)\) denotes the sum of degrees of vertices in S and \(\text{edges}(S)\) denotes twice the number of edges among vertices in S so that

\[
\text{edges}(S) = \text{vol}(S) - \text{cut}(S).
\]

Then the conductance of set S, denoted φ(S), is

$$φ(S) = \frac{\text{cut}(S)}{\min(\text{vol}(S), \text{vol}(\bar{S}))}.$$

Conductance is measured with respect to the set S or \(\bar{S}\) with smaller volume, and is the probability of picking an edge from the smaller set that crosses the cut. Because of this property, conductance is preserved on taking complements: \(φ(S) = φ(\bar{S})\). For this reason, when we refer to the number of vertices in a set of conductance φ, we always use the smaller set \(\min(|S|, |\bar{S}|)\). Figure 1 shows a few communities and their associated cuts and conductance scores from our methods and two points of comparison.

2.3 Finding good conductance communities

We briefly review three ways of identifying a community with a good conductance score.

Fiedler set.

The well-known Cheeger inequality defines a bound between the second smallest eigenvalue of the normalized Laplacian matrix and the set of smallest conductance in a graph \cite{11}. Formally,

$$\left(\frac{1}{2}\right)λ_2 \leq \min_{S \subset V} φ(S) \leq \sqrt{2λ_2}$$

where \(λ_2\) is the second smallest eigenvalue of the normalized Laplacian. The proof is constructive. It identifies a set of vertices that obeys the upper-bound using a sweep cut. This is the smallest conductance cut among all cuts induced by ordering vertices by increasing values of \(\sqrt{2}\lambda_2 x_v\), where \(x_v\) is the component of the eigenvector associated with \(λ_2\). This is the same idea used in normalized cut procedures \cite{36}. We refer to the set identified by this procedure as the Cheeger community or Fiedler community. The latter term is based on Fiedler’s work in using the second smallest eigenvalue of the combinatorial Laplacian matrix \cite{14}. Figure 1b shows the Fiedler community for the Les Misérables network.

Personalized PageRank communities.

Another highly successful scheme for community detection based on conductance uses personalized PageRank vectors. A personalized PageRank vector is the stationary distribution of a random walk that follows an edge of the graph with probability α and “teleports” back to a fixed seed vertex with probability 1 − α. We use α = 0.99 in all experiments. The essence of the induced community is that an inexact personalized PageRank vector, computed via an algorithm that “pushes” rank round the graph, will identify good bottlenecks nearby a seed vertex. These bottlenecks can be formalized in a Cheeger-like bound \cite{2}. The procedure to find a personalized PageRank community is: i) specify a value of α, a seed vertex v, and a desired clustered size σ; ii) solve the personalized PageRank problem using the algorithm from \cite{2} until a degree-weighted tolerance of \(τ = 1/(10σ)\); and iii) sweep over all cuts induced by the ordering of the personalized PageRank vector (normalized by degrees) and choose the best. Personalized PageRank communities (PPR communities, for short) were used to identify an interesting empirical property of communities in large networks \cite{24,25}. To generate these plots, those authors examined a range of values of σ for a large number of vertices of the graph and summarized the best communities found at any size scale in a network community plot. Figure 1d shows the best personalized PageRank community for the network of character interactions in Les Misérables.

Whisker communities.

Perhaps the best point of comparison with our approach are the whisker communities defined by Leskovec et al. \cite{24,25}. These communities are small dense subgraphs connected by a single edge. They can be found by looking at any subgraph connected to the largest biconnected component by a single edge. A biconnected component remains connected after the removal of any vertex. Note that the largest biconnected component is not necessarily a 2-core of the graph. Leskovec et al. observed that many of these subgraphs are rather dense. Each subgraph has a cut of exactly one, and consequently, a productive means of finding sets with low conductance is to sort these subgraphs by their volume. The best whisker cut is the single subgraph with largest volume.

3. RELATED WORK

We are hardly the first to notice that vertex neighborhoods have special properties.

Egonets, homophily, and structural holes.

In the context of social networks, vertex neighborhoods are often called egonets because they reflect the the state of the network as perceived by a single vertex. Their analysis is a key component in the study of social networks \cite{38}, especially in terms of data collection. Studies of these networks often focus on the theory of structural holes, which is the notion that an individual can derive an advantage from serv-
Predictable behavior in the structure of ego-nets makes them a useful tool for detecting anomalous patterns in the structure of the network. For instance, Akgulu et al. [1] compute a small collection of measures on each egonet, such as the average degree and largest eigenvalues. Outliers in this space of vertices are often rather anomalous vertices. Our work is, in contrast, a precise statement about the regularity of the ego-nets, and says that we always expect a large ego-net to be a good community.

Summary.

Although we are not the first to study neighborhood based communities, the relationship between the local clustering, power-law degree distributions, and large neighborhoods with small conductance does not appear to have been noticed before.

4. THEORETICAL JUSTIFICATION FOR NEIGHBORHOOD COMMUNITIES

The aim of this section is to provide some mathematical justification for the success of neighborhood cuts. Our aim is to show that heavy tailed degree distributions and large clustering coefficients imply the existence of neighborhood cuts with low conductance and large dense cores. As mentioned earlier, the exact bounds we get are somewhat weak and only hold when the clustering coefficient is extremely large. Nonetheless, the proofs give significant intuition into why neighborhoods are good communities.

We begin with the extreme case when the value of \(\kappa \) is 1 (so every wedge is closed). Then we have the following simple claim.

Claim 4.1. Suppose the global clustering coefficient of \(G \) is 1. Then \(G \) is the union of disjoint cliques.

Proof. Consider two vertices \(u \) and \(v \) that are connected. Suppose the shortest path distance between them is \(\ell > 1 \). Then the shortest path has at least 3 distinct vertices (including \(u \) and \(v \)). Take the last three vertices on this path, \(v_1, v_2, v \). This forms a wedge at \(v_2 \), and must be closed (since the clustering coefficient is 1). Hence, the edge \((v_1, v)\)
exists and there exists a path between \(u \) and \(v \) of length less than \(\ell \). This is a contradiction.

Hence, any two connected vertices have a shortest path distance of 1, i.e., are connected by an edge. The graph is a disjoint union of cliques. \(\square \)

Note that the neighborhood of any vertex in the above claim forms a clique disconnected from the rest of \(G \). Therefore, all neighborhoods form perfect communities, in this extremely degenerate case. We prove this for more general settings. The quantities \(p_v = |W_v|/|W| \) form a distribution over the set of vertices. Since we are performing an asymptotic analysis, we will use \(o(1) \) to denote any quantity that becomes negligible as the graph size increases. We will choose \(\beta \) to be a constant less than 1. It is quite unimportant for the asymptotic analysis what this constant is. From a pratical standpoint, think of \(\beta \) as a constant such that most edges are incident to a vertex of degree at least \(d_{\max}^\beta \) (2/3 is usually a reasonable value). Also, we will assume that the power law exponent is at most 3, a fairly acceptable condition.

Claim 4.2. Let \(S \) be the set of vertices with degrees more than \(d_{\max}^\beta \). Then, \(\sum_{v \in S} p_v = 1 - o(1) \).

Proof. We can set \(p_v = (2|W_v|)/(2|W|) \). For convenience, set \(d_1 = d_{\max}^\beta \) and \(d_2 = d_{\max} \). We have \(f_d \approx an/d^\gamma \), for some constant \(\alpha \) and \(\gamma < 3 \).

\[
\sum_{v \in S} 2|W_v| \approx \sum_{d=d_1}^{d_2} d^2 f_d = o(n) \sum_{d=d_1}^{d_2} d^{2-\gamma} \approx O(n(d_1^{3-\gamma} - d_2^{3-\gamma}))
\]

The total number of wedges behaves like \(\alpha' n d_1^{3-\gamma} \) and hence, \(2 \sum_{v \in S} |W_v| = 2|W| - o(|W|) \). \(\square \)

Claim 4.3. \(\sum_v p_v C_v = \kappa \)

Proof.

\[
\sum_v p_v C_v = \sum_v \frac{|W_v|}{|W|} \text{ number of closed wedges in } W_v = \sum \frac{(\# \text{ closed wedges in } W_v)}{|W|} = \kappa. \quad \square
\]

We come to our important lemma. This argues that on the average, neighborhood cuts must have a low conductance.

Lemma 4.4.

\[
\sum_v \left(p_v \frac{\text{cut}(N_1(v))}{|W_v|} \right) = 2(1 - \kappa)
\]

Proof. We express the sum of \(\text{cut}(N_1(v)) \) as a double summation, and perform some algebraic manipulations.

\[
\sum_v \text{cut}(N_1(v)) = \sum_v \sum_u \text{cut}(N_1(u)) = \sum_u \sum_v \text{cut}(N_1(u) \cup \{v\}) = \sum_u \text{cut}(N_1(u) \setminus (N_1(u) \cup \{v\}))
\]

\[
= \sum_u \text{cut}(N_1(u) \setminus (N_1(u) \cup \{v\})) = 2 \sum_u (\# \text{ open wedges centered at } u \text{ involving edge } (u, v))
\]

\[
= 2(\# \text{ open wedges centered at } u)
\]

\[
= 2(1 - \kappa)|W|
\]

We complete the proof with the following simple observation:

\[
\sum_v \left(p_v \frac{\text{cut}(N_1(v))}{|W_v|} \right) = \sum_v \frac{\text{cut}(N_1(v))}{|W|} \quad \square
\]

Theorem 4.5. There exists a k-core in \(G \) for \(k \geq k_{\max}^\beta/2 \).

Proof. By Claims 4.2 and 4.3, \(\kappa = \sum_v p_v C_v = \sum_{v \in S} p_v C_v + \sum_{v \not\in S} p_v C_v \leq \sum_v p_v C_v + o(1) \)

This implies that there exists some vertex \(v \) such that \(d_v > d_{\max}^\beta \) and \(C_v \geq \kappa - o(1) \) (for convenience, we are going to drop the \(o(1) \) lower order term). Consider \(G' \), the induced subgraph of \(G \) on \(N_1(v) \). The total number of vertices is exactly \(d_v + 1 \). Because a \(\kappa \)-fraction of the wedges centered at \(v \) are closed, the number of edges in \(G' \) is at least \(\kappa (d_v - 1) \). So \(G' \) is a dense graph, and we will show that it contains a large core. Perform a core decomposition on \(G' \). We iteratively remove the vertex of min-degree until the graph has no edges left. The total number of iterations is atmost \(d_v \). Let the degree of the removed vertex at iteration \(i \) be \(e_i \). We have \(\sum_{i \leq i \leq d_v} e_i = \kappa (d_v - 1)/2 \). By an averaging argument, there exists some \(i \) such that \(e_i \geq \kappa (d_v - 1)/2 \). At this point, all (unremoved) vertices of \(G' \) must have a degree of at least \((d_v - 1)/2 \), forming a k-core with \(k \geq k_{\max}^\beta/2 \). \(\square \)

We come to our main theorem that proves the existence of a neighborhood cut with low conductance. When \(\kappa = 1 \), we get back the statement of Claim 4.1, since we have a set of conductance 0. But this theorem also gives non-trivial bounds for large values of \(\kappa \). As we mentioned earlier, when \(\kappa \) becomes small, this bound is not useful any longer.

Theorem 4.6. There exists a neighborhood cut with conductance at least \(4(1 - \kappa)/(3 - 2\kappa) \).

Proof. The proof uses the probabilistic method, given the bounds of Lemma 4.4 and Claim 4.3. Suppose we choose a vertex \(v \) according to the probability distribution given by \(p_v \). Let \(X \) denote the random variable \(\text{cut}(N_1(v))/|W_v| \), so \(E[X] = 2(1 - \kappa) \) (Lemma 4.4). By Markov’s inequality, \(\Pr[X > 4(1 - \kappa)] \leq 1/2 \).

Set \(\alpha = 2\kappa - 1 \), and set \(\Pr[C_v < \alpha] = p \).

\[
\kappa < \alpha \Rightarrow \kappa < p < (1 - \kappa)/(1 - \alpha) = 1/2
\]

By the union bound, the probability that \(\text{cut}(N_1(v))/|W_v| > 4(1 - \kappa) \) or \(C_v < \alpha \) is less than 1. Hence, there exists some vertex \(v \) such that \(\text{cut}(N_1(v))/|W_v| > 4(1 - \kappa) \) or \(C_v < \alpha \) (we can also show that \(d_v \geq \sqrt{\kappa} \)). Let \(E \) be the set of edges in the subgraph induced on \(N_1(v) \). Since \(C_v \geq \alpha \), \(\alpha |W| \geq |W_v| \).

We can bound the conductance of \(N_1(v) \),

\[
\frac{\text{cut}(N_1(v))}{|E| + \text{cut}(N_1(v))} \leq \frac{4(1 - \kappa)|W_v|}{\alpha |W| + 4(1 - \kappa)|W_v|} = \frac{4 - 4\kappa}{3 - 2\kappa}. \quad \square
\]

5. DATA

Before we begin our empirical comparison, we first discuss the data we use to compare and evaluate algorithms. These come from a variety of sources. See Table 2 for a summary of the networks and their basic statistics. All networks are undirected and were symmetrized if the original data were directed. Also, any self-loops in the networks were
Table 2: Datasets for our experiments. The five types are: collaboration networks, social networks, technological networks, web graphs, and forest fire models.

Graph	Verts	Edges	Avg.	Max	κ	C
Graph	Deg.	Deg.				
ca-AstroPh	17903	196972	22.0	504	0.318	0.633
email-Enron	33696	180811	10.7	1383	0.085	0.509
cond-mat-2005	36458	171735	9.4	278	0.243	0.657
arxiv	86376	517563	12.0	1253	0.560	0.678
dblp	226413	71640	6.3	238	0.383	0.635
hollywood-2009	1096126	5630653	105.3	11467	0.310	0.766
fb-Penn94	41536	136220	65.6	4410	0.098	0.212
fb-A-oneyear	1138557	4404989	7.7	695	0.038	0.060
fb-A	3097165	23667394	15.3	4915	0.048	0.097
soc-LiveJournal1	4843953	42845684	17.7	20333	0.118	0.274
oregon2-010526	11461	32730	5.7	2432	0.037	0.352
p2p-Gnutella25	22663	54693	4.8	66	0.005	0.005
as-22july06	22963	48436	4.2	2390	0.011	0.230
itdk0304	199914	607610	6.4	1071	0.061	0.158
web-Google	855802	4291352	10.0	6342	0.055	0.519
ff-0.4	25000	56071	4.5	112	0.283	0.412
ff-0.49	25000	254180	20.3	1722	0.148	0.447

6. EMPIRICAL NEIGHBORHOOD COMMUNITIES

To compute the conductance scores for each neighborhood in the graph, we adapt any procedure to compute all local clustering coefficients. Most of the work to compute a local clustering coefficient is performed when finding the number of triangles at the vertex. We can express the number of triangles as $\text{edges}(D_1(v))/2 = (\text{edges}(N_1(v))/2 - 2\Delta_v)$, that is, half the number of edges between immediate neighbors of v (recall that we double-count edges). Then $\text{cut}(N_1(v)) = \text{vol}(N_1(v)) - \text{edges}(N_1(v))$. And so, given the number of triangles, we can compute the cut assuming we can compute the volume of the neighborhood. This is easy to do with any graph structure that explicitly stores the degrees. We also note that it’s easy to modify Cohen’s procedure for computing triangles with MapReduce [12] to compute neighborhood conductance scores. Two extra steps are required: i) map each triangle back to its constituent nodes, then reduce to find the number of triangles at each node; and ii) map the joined edge and degree graph to both vertices in the edge, then sum the degrees of the neighborhood in the reduce.

We use the network community plot from Leskovec et al. [24] to show the information on all of the neighborhood communities. Given the conductance scores from all the neighborhood communities and their size in terms of number of vertices, we first identify the best community at each size. The network community plot shows the relationship between best community conductance and community size on a log-log scale. In Leskovec et al., they found that these plots had a characteristic shape for modern information networks: an initial sharp decrease until the community size reaches between 100 and 1000, then a considerable rise in the conductance scores for larger communities. In our case, neighborhood communities cannot be any larger than the maximum degree plus one, and so we mark this point on the graphs. We always look at the smaller side of the cut, so no community can be larger than half the vertices of the graph. We also mark this location on the plots. Each subsequent figure utilizes this size-vs-conductance plot. Note that we deliberately attempt to preserve the axes limits across figures to promote comparisons. However, some of the figures do have different axis limits to emphasize the range of data.

First, we show these network community plots, or perhaps better termed neighborhood community plots for our purposes, for six of the networks in Figure 2. These figures are representative of the best and worst of our results. As a reminder, we make all summary data and codes available online. Plots for other graphs are available on the website given in the introduction.

The three graphs on the left show cases where a neighborhood community is or is nearby the best Fiedler community (the red circle). The three graphs on the right highlight instances where the Fiedler community is much better than any neighborhood community. We find it mildly surprising that these neighborhood communities can be as good as the Fiedler community. The structure of the plot for both fb-A-oneyear and soc-LiveJournal1 is instructive. Neighborhoods of the highest degree vertices are not community-like — suggesting that these nodes are somehow exceptional. In fact, by inspection of these communities, many of them are nearly a star graph. However, a few of the large degree nodes define strikingly good communities (these are sets with a few
hundred vertices with conductance scores of around 10^{-2}). This evidence concurs with the intuition from Theorem 4.6.

Note that all of these plots show the same shape Leskovec et al. observed. Consequently, in the next set of figures, and in the remainder of the empirical investigation, we compare our neighborhood communities against those computed via the personalized PageRank community scheme employed in that work and described in Section 2.3.

Second, Figure 3 compares the neighborhood communities to those computed by sweeping the local personalized PageRank algorithm over all of the vertices as described by Leskovec et al. [24]. We also show the behavior of the whisker communities in this plot as well. The plot adopts the same style of figure. The PageRank communities are in a deep blue color, and the whisker communities are shown in a shade of green. Here, we see that the neighborhood communities show similar behavior at small size scales (less than 20 vertices), but the personalized PageRank algorithm is able to find larger communities of smaller, or similar conductance. In these four cases (which are representative of all of the remaining figures), one of the personalized PageRank communities was the Fiedler community.

Based on this observation, we wanted to understand how the best community identified by a range of algorithms compares to the neighborhood communities. This is what our third exploration does. The results are shown in Table 3. We computed a set of communities with METIS by repeatedly calling the algorithm, asking it to use more partitions each time. See our online codes for the precise details of which partitions were used.

By-and-large, the Fiedler cut, personalized PageRank, whiskers, and METIS all tend to identify similar communities as the best. There are sometimes small differences. An example of a large difference is in the Penn94 graph, where the Fiedler community is much larger than the best PageRank community and it has better conductance. In this comparison, the neighborhood communities fare poorly. When they identify a set of conductance that’s as good as the rest, then it is always a whisker as well. In the following full section, we explore using these neighborhood communities as seeds for the PageRank algorithms. This will let us take advantage of the observation that the neighborhood communities reflect the shape of the network community plot with PageRank communities.

6.1 Empirical Core Communities

In our theoretical work, we found that large k-cores should always exist in these networks. These should also look like good communities and we briefly investigate this idea in Figure 4. The standard procedure for computing k-cores is to iteratively remove in degree-sorted order using a bucket sort [6]. We additionally store the step when each vertex was removed from the graph. We sweep over all cuts induced by this ordering, and for each k-core, store the best conductance community. These are plotted in a line that runs from core 1 to the largest core in the graph. The 1 core is usually large and a bad-community. Thus, the line usually starts towards the upper-right of each network community plot. Large cores are actually rather good communities. Their conductance scores are noticeably higher than
Many of the theorems about extracting local communities from seed sets \cite{2,3} require that the seed set itself be a good community. This is precisely what our theoretical results justify for neighborhood communities. Consequently, in this section, we look at growing the neighborhood communities using the local personalized PageRank community algorithm from a set of carefully chosen seeds.

One of the key problems with using the personalized PageRank community algorithms is that finding a good set of seeds is not easy. For example, \cite{15} describes a way to do this using the most popular videos on YouTube. Such a meaningful heuristic is not always available. We begin this section by empirically showing that there is an easy-to-identify set of neighborhood communities that are local extrema in the network community plot of the neighborhood communities.

7. SEEDED COMMUNITIES

First, some quick terminology: we say a neighborhood community is a local minima, or locally minimal, if the conductance of the neighborhood of a vertex is smaller than the conductance of any of the adjacency neighborhood communities. Formally,

\[
\phi(N_v) \leq \phi(N_w)
\]

for all \(w \) adjacent to \(v \)

is true for any locally minimal communities. We find there are only a small set of locally minimal communities with more than 6 vertices. Shown in Figure 5 are the conductance and sizes of the roughly 7000 communities identified by this measure for the itdk0304 graph. Indeed, among all of the graphs with at least 85,000 vertices, this heuristic picks out about 3% of the vertices as local minima. In the worst case, it picked out 100,000 seeds for soc-LiveJournal11. Increasing the minimum size to 10 vertices reduces this down.
to 50,000 seeds. We then use these locally minimal neighborhoods as seed sets for the personalized PageRank community detection procedure. Each locally minimal neighborhood is grown by up to 50-times its volume by solving for communities using various values of \(\sigma \) up to 50. We also explore growing the \(k \)-cores by up to 5 times their volume. See Figure 6 for the locally minimal communities and the best grown community from the Les Misérables graph.

Figure 7 shows the results. In these figures, we leave the baseline neighborhood communities in for comparison. The key insight is that the dark black line closely tracks the outline of the pure-PageRank based community profile. That profile was computed by using every vertex in the graph as a seed (although, some vertices were skipped after 10 other clusters had already visited that vertex). This effect is most clearly illustrated by the email-Enron dataset. The dark black line identifies almost all of the local minima from the full PageRank sweep (there are a few it misses). A weakness of these minimal seeds for PageRank is that they may not capture the largest communities. However, the \(k \)-core grown communities do seem to capture this region of the profile (e.g. arxiv), although ca-AstroPh is an exception.

8. CONCLUDING DISCUSSIONS

We recap. Community detection is the problem of finding cohesive collections of nodes in a network. We formalize this as finding vertex sets with small conductance. Modern information networks have many distinctive properties, including a large clustering coefficient and a heavy-tailed degree distribution. We derive a set of theoretical results that show these properties imply that such networks will have vertex neighborhoods that are themselves sets of small conductance. Although our theoretical bounds are weak, they suggest the following experiment: measure the conductance of vertex neighborhoods.

Algorithms to compute all such conductance scores are easy to implement by modifying a routine for computing local clustering coefficients. We evaluate these communities on a set of real-world networks. In summary, our results support the idea that there are many neighborhood communities which are good communities in a conductance sense. They may be smaller than desired, however.

We next investigate finding a set of locally minimal communities. These communities represent the best of the neighborhood. We find that these locally minimal communities, of which there are many fewer than vertices in the graph (usually around 3%), capture the local minimal in the network community profile plot. More importantly, they can be enlarged using a local personalized PageRank community detection procedure. Afterwards, the profile of these “grown” neighborhoods is strikingly close to the profile of the PageRank communities when seeded with all vertices individually. While we do not discuss timing due to the variability in the quality of implementations, this later procedure is much faster in our experiments.

These findings have implications for future studies in community detection. One explanation for the results with the PageRank seeds is that vertex neighborhoods form the core of any good community in the network. We highlight this as a direction for future research into neighborhood communities.

9. REFERENCES

[1] L. Akgöl, M. McGlohon, and C. Faloutsos. oddball: Spotting anomalies in weighted graphs. In M. Zaki, J. Yu, B. Ravindran, and V. Pudi, editors, Advances in Knowledge Discovery and Data Mining, volume 6119 of Lecture Notes in Computer Science, pages 410–421. Springer Berlin / Heidelberg, 2010.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using PageRank vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006.
[3] R. Andersen and K. J. Lang. Communities from seed sets. In Proceedings of the 15th international conference on the World Wide Web, pages 223–232, New York, NY, USA, 2006. ACM Press.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’06, pages 44–54, New York, NY, USA, 2006. ACM.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, October 1999.

[6] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks. arXiv, October 2003.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In Proceedings of the 20th WWW2011, pages 587–596, March 2011.

[8] P. Boldi and S. Vigna. The Webgraph Framework I: Compression techniques. In Proceedings of the 13th international conference on the World Wide Web, pages 595–602, New York, NY, USA, 2004. ACM Press.

[9] F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. S. Lakshmanan. Fast matrix computations for pair-wise and column-wise commute times and katz scores. Internet Mathematics, To appear., 2011.

[10] R. Burt. Structural Holes: The Social Structure of Competition. Harvard University Press, 1995.

[11] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1992.

[12] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science and Engineering, 11(4):29–41, 2009.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. SIGCOMM Comput. Commun. Rev., 29:251–262, August 1999.

[14] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298–305, 1973.

[15] U. Gargi, W. Lu, V. Mirrokni, and S. Yoon. Large-scale community detection on youtube for topic discovery and exploration. In Proceedings of Fifth International AAAI Conference on Weblogs and Social Media, 2011.

[16] J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger. Towards online multiresolution community detection in large-scale networks. PLoS ONE, 6(8):e23829, August 2011.

[17] R. Kannan, S. Vempala, and A. Vetta. On clustering: Good, bad and spectral. J. ACM, 51(3):497–515, May 2004.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[19] J. Kleinberg, S. Suri, E. Tardos, and T. Wexler. Strategic network formation with structural holes. In Proceedings of the 9th ACM conference on Electronic commerce, EC ’08, pages 284–293, New York, NY, USA, 2008. ACM.

[20] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, 1993.

[21] M. Kolourentzakis, G. Miller, R. Peng, and C. Tsourakakis. Efficient triangle counting in large graphs via degree-based vertex partitioning. In R. Kumar and D. Sivakumar, editors, Algorithms and Models for the Web-Graph, volume 6516 of Lecture Notes in Computer Science, pages 15–24. Springer Berlin / Heidelberg, December 2010.

[22] T. La Fond and J. Neville. Randomization tests for distinguishing social influence and homophily effects. In Proceedings of the 19th international conference on World wide web, WWW ’10, pages 601–610, New York, NY, USA, 2010. ACM.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1:1–41, March 2007.

[24] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW ’08: Proceeding of the 17th international conference on World Wide Web, pages 695–704, New York, NY, USA, 2008. ACM.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29–123, September 2009.

[26] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of algorithms for network community detection. In Proceedings of the 19th international conference on World wide web, WWW ’10, pages 631–640, New York, NY, USA, 2010. ACM.

[27] R. Matei, A. Iamnitchi, and P. Foster. Mapping the gnutella network. Internet Computing, IEEE, 6(1):50–57, January 2002.

[28] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27:415–444, 2001.

[29] A. L. T. P. J. Mucha and M. A. Porter. Social structure of facebook networks. arXiv, cs.SI:1102.2166, 2011.

[30] M. Newman. http://www-personal.umich.edu/~mejn/netdata/, 2006.

[31] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E, 64:016132, Jun 2001.

[32] B. S. Rees and K. B. Gallagher. Overlapping community detection by collective friendship group inference. In International Conference on Advances in Social Network Analysis andMining, pages 375–379, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[33] S. E. Schaeffer. Algorithms for Nonuniform Networks. PhD thesis, Helsinki University of Technology, 2006.

[34] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
[35] S. B. Seidman. Network structure and minimum degree. *Social Networks*, 5(3):269–287, 1983.

[36] J. Shi and J. Malik. Normalized cuts and image segmentation. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 22(8):888–905, August 2000.

[37] C. (The Cooperative Association for Internet Data Analysis). http://www.caida.org/tools/measurement/skitter/router_topology/. Accessed in 2005.

[38] S. Wasserman and K. Faust. *Social network analysis: methods and applications*. Cambridge University Press, 1994.

[39] D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world” networks. *Nature*, 393(6684):440–442, June 1998.

[40] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao. User interactions in social networks and their implications. In *Proceedings of the 4th ACM European conference on Computer systems, EuroSys ’09*, pages 205–218, New York, NY, USA, 2009. ACM.