HOLOMORPHIC CARTAN GEOMETRY ON MANIFOLDS WITH NUMERICALLY EFFECTIVE TANGENT BUNDLE

INDRANIL BISWAS AND UGO BRUZZO

ABSTRACT. Let X be a compact connected Kähler manifold such that the holomorphic tangent bundle TX is numerically effective. A theorem of [11] says that there is a finite unramified Galois covering $M \to X$, a complex torus T, and a holomorphic surjective submersion $f : M \to T$, such that the fibers of f are Fano manifolds with numerically effective tangent bundle. A conjecture of Campana and Peternell says that the fibers of f are rational and homogeneous. Assume that X admits a holomorphic Cartan geometry. We prove that the fibers of f are rational homogeneous varieties. We also prove that the holomorphic principal G--bundle over T given by f, where G is the group of all holomorphic automorphisms of a fiber, admits a flat holomorphic connection.

1. Introduction

Let X be a compact connected Kähler manifold such that the holomorphic tangent bundle TX is numerically effective. (The notions of numerically effective vector bundle and numerically flat vector bundle over a compact Kähler manifold were introduced in [11].) From a theorem of Demailly, Peternell and Schneider we know that there is a finite unramified Galois covering

$$
\gamma : M \to X ,
$$

a complex torus T, and a holomorphic surjective submersion

$$
f : M \to T ,
$$

such that the fibers of f are Fano manifolds with numerically effective tangent bundle (see [11] p. 296, Main Theorem]). It is conjectured by Campana and Peternell that the fibers of f are rational homogeneous varieties (i.e., varieties of the form G/P, where P is a parabolic subgroup of a complex semisimple group G) [10] p. 170, [11] p. 296]. Our aim here is to verify this conjecture under the extra assumption that X admits a holomorphic Cartan geometry.

2000 Mathematics Subject Classification. 32M10, 14M17, 53C15.

Key words and phrases. Cartan geometry, numerically effectiveness, rational homogeneous space.
Let \((E'_H, \theta')\) be a holomorphic Cartan geometry on \(X\) of type \(G/H\), where \(H\) is a complex Lie subgroup of a complex Lie group \(G\). (The definition of Cartan geometry is recalled in Section 2.) Consider the pullback \(\theta\) of \(\theta'\) to the holomorphic principal \(H\)–bundle \(E_H := \gamma^*E'_H\), where \(\gamma\) is the above covering map. The pair \((E_H, \theta)\) is a holomorphic Cartan geometry on \(M\). Using \((E_H, \theta)\) we prove the following theorem (see Theorem 2.1):

Theorem 1.1. There is a semisimple linear algebraic group \(G\) over \(\mathbb{C}\), a parabolic subgroup \(P \subset G\), and a holomorphic principal \(G\)–bundle
\[
\mathcal{E}_G \longrightarrow T ,
\]
such that the fiber bundle \(\mathcal{E}_G/P \longrightarrow T\) is holomorphically isomorphic to the fiber bundle \(f : M \longrightarrow T\).

The group \(G\) in Theorem 1.1 is the group of all holomorphic automorphisms of a fiber of \(f\). Let \(\text{ad}(\mathcal{E}_G) \longrightarrow T\) be the adjoint vector bundle of the principal \(G\)–bundle \(\mathcal{E}_G\) in Theorem 1.1. Let \(K_f^{-1} \longrightarrow M\) be the relative anti–canonical line bundle for the projection \(f\).

We prove the following (see Proposition 3.3 and Proposition 3.4):

Proposition 1.2. Let \(X\) be a compact connected Kähler manifold such that \(TX\) is numerically effective, and let \((E'_H, \theta')\) be a holomorphic Cartan geometry on \(X\) of type \(G/H\). Then the following two statements hold:

1. The adjoint vector bundle \(\text{ad}(\mathcal{E}_G)\) is numerically flat.
2. The principal \(G\)–bundle \(\mathcal{E}_G\) admits a flat holomorphic connection.

2. Cartan Geometry and Numerically Effectiveness

Let \(G\) be a connected complex Lie group. Let \(H \subset G\) be a connected complex Lie subgroup. The Lie algebra of \(G\) (respectively, \(H\)) will be denoted by \(\mathfrak{g}\) (respectively, \(\mathfrak{h}\)).

Let \(Y\) be a connected complex manifold. The holomorphic tangent bundle of \(Y\) will be denoted by \(TY\). Let \(E_H \longrightarrow Y\) be a holomorphic principal \(H\)–bundle. For any \(g \in H\), let

\[(2.1)\]
\[
\beta_g : E_H \longrightarrow E_H
\]

be the biholomorphism defined by \(z \mapsto zg\). For any \(v \in \mathfrak{h}\), let

\[(2.2)\]
\[
\zeta_v \in H^0(E_H, TE_H)
\]
be the holomorphic vector field on E_H associated to the one–parameter family of biholomorphisms $t \mapsto \beta_{\exp(tv)}$. Let

$$\text{ad}(E_H) := E_H \times^H \mathfrak{h} \to Y$$

be the adjoint vector bundle associated E_H for the adjoint action of H on \mathfrak{h}. The adjoint vector bundle of a principal G–bundle is defined similarly.

A holomorphic Cartan geometry of type G/H on Y is a holomorphic principal H–bundle

$$p : E_H \to Y$$

(2.3)

together with a \mathfrak{g}–valued holomorphic one–form

$$\theta \in H^0(E_H, \Omega^1_{E_H} \otimes_\mathbb{C} \mathfrak{g})$$

(2.4)

satisfying the following three conditions:

1. $\beta_g^* \theta = \text{Ad}(g^{-1}) \circ \theta$ for all $g \in H$, where β_g is defined in (2.1),
2. $\theta(z)(\zeta_v(z)) = v$ for all $v \in \mathfrak{h}$ and $z \in E_H$ (see (2.2) for ζ_v), and
3. for each point $z \in E_H$, the homomorphism from the holomorphic tangent space

$$\theta(z) : T_z E_H \to \mathfrak{g}$$

(2.5)

is an isomorphism of vector spaces.

(See [14].)

A holomorphic line bundle $L \to Y$ is called numerically effective if L admits Hermitian structures such that the negative part of the curvatures are arbitrarily small [11, p. 299, Definition 1.2]. If Y is a projective manifold, then L is numerically effective if and only if the restriction of it to every complete curve has nonnegative degree. A holomorphic vector bundle $E \to Y$ is called numerically effective if the tautological line bundle $\mathcal{O}_{\mathbb{P}(E)}(1) \to \mathbb{P}(E)$ is numerically effective.

Let X be a compact connected Kähler manifold such that the holomorphic tangent bundle TX is numerically effective. Then there is a finite étale Galois covering

$$\gamma : M \to X$$

(2.6)

a complex torus T and a holomorphic surjective submersion

$$f : M \to T$$

(2.7)

such that the fibers of f are connected Fano manifolds with numerically effective tangent bundle [11, p. 296, Main Theorem].
Theorem 2.1. Let (E'_H, θ') be a holomorphic Cartan geometry on X of type G/H, where X is a compact connected Kähler manifold such that the holomorphic tangent bundle TX is numerically effective. Then there is

1. a semisimple linear algebraic group G over \mathbb{C},
2. a parabolic subgroup $P \subset G$, and
3. a holomorphic principal G–bundle $E_G \to T$,

such that the fiber bundle $E_G/P \to T$ is holomorphically isomorphic to the fiber bundle f in (2.7).

Proof. Let

\begin{equation}
(E_H, \theta)
\end{equation}

be the holomorphic Cartan geometry on M obtained by pulling back the holomorphic Cartan geometry (E'_H, θ') on X using the projection γ in (2.6).

Let

\begin{equation}
E_G := E_H \times^H G \to M
\end{equation}

be the holomorphic principal G–bundle obtained by extending the structure group of E_H using the inclusion of H in G. So E_G is a quotient of $E_H \times G$, and two points (z_1, g_1) and (z_2, g_2) of $E_H \times G$ are identified in E_G if there is an element $h \in H$ such that $z_2 = z_1 h$ and $g_2 = h^{-1} g_1$. Let

\[\theta_{MC} : TG \to G \times \mathfrak{g} \]

be the \mathfrak{g}–valued Maurer–Cartan one–form on G constructed using the left invariant vector fields. Consider the \mathfrak{g}–valued holomorphic one–form

\[\tilde{\theta} := p_1^* \theta + p_2^* \theta_{MC} \]

on $E_H \times G$, where p_1 (respectively, p_2) is the projection of $E_H \times G$ to E_H (respectively, G), and θ is the one–form in (2.8). This form $\tilde{\theta}$ descends to a \mathfrak{g}–valued holomorphic one–form on the quotient space E_G in (2.9), and the descended form defines a holomorphic connection on E_G; see [3] for holomorphic connection. Therefore, the principal G–bundle E_G in (2.9) is equipped with a holomorphic connection. This holomorphic connection on E_G will be denoted by ∇^G.

The inclusion map $\mathfrak{h} \hookrightarrow \mathfrak{g}$ produces an inclusion

\[\text{ad}(E_H) \hookrightarrow \text{ad}(E_G) \]
of holomorphic vector bundles. Using the form \(\theta \), the quotient bundle \(\text{ad}(E_G)/\text{ad}(E_H) \) gets identified with the holomorphic tangent bundle \(TM \). Therefore, we get a short exact sequence of holomorphic vector bundles on \(M \)

\[
(2.10) \quad 0 \rightarrow \text{ad}(E_H) \rightarrow \text{ad}(E_G) \rightarrow TM \rightarrow 0.
\]

The holomorphic connection \(\nabla^G \) on \(E_G \) induces a holomorphic connection on the adjoint vector bundle \(\text{ad}(E_G) \). This induced connection on \(\text{ad}(E_G) \) will be denoted by \(\nabla^{\text{ad}} \). For any point \(x \in T \), consider the holomorphic vector bundle

\[
(2.11) \quad \text{ad}(E_G)^x := \text{ad}(E_G)|_{f^{-1}(x)} \rightarrow f^{-1}(x)
\]

(see (2.7) for \(f \)). Let \(\nabla^x \) be the holomorphic connection on \(\text{ad}(E_G)^x \) obtained by restricting the above connection \(\nabla^{\text{ad}} \).

Any complex Fano manifold is rationally connected [13, p. 766, Theorem 0.1]. In particular, \(f^{-1}(x) \) is a rationally connected smooth complex projective variety. Since \(M \) is rationally connected, the curvature of the connection \(\nabla^x \) vanishes identically (see [4] p. 160, Theorem 3.1). From the fact that \(f^{-1}(x) \) is rationally connected it also follows that \(f^{-1}(x) \) is simply connected [9, p. 545, Theorem 3.5], [12, p. 362, Proposition 2.3]. Since \(\nabla^x \) is flat, and \(f^{-1}(x) \) is simply connected, we conclude that the vector bundle \(\text{ad}(E_G)^x \) in (2.11) is holomorphically trivial.

Let

\[
(2.12) \quad 0 \rightarrow \text{ad}(E_H)|_{f^{-1}(x)} \rightarrow \text{ad}(E_G)^x \xrightarrow{\alpha} (TM)|_{f^{-1}(x)} \rightarrow 0
\]

be the restriction to \(f^{-1}(x) \subset M \) of the short exact sequence in (2.10). Let \(T_xT \) be the tangent space to \(T \) at the point \(x \). The trivial vector bundle over \(f^{-1}(x) \) with fiber \(T_xT \) will be denoted by \(f^{-1}(x) \times T_xT \). Let

\[
(df)|_{f^{-1}(x)} : (TM)|_{f^{-1}(x)} \rightarrow f^{-1}(x) \times T_xT
\]

be the differential of \(f \) restricted to \(f^{-1}(x) \). The kernel of the composition homomorphism

\[
\text{ad}(E_G)^x \xrightarrow{\alpha} (TM)|_{f^{-1}(x)} \xrightarrow{(df)|_{f^{-1}(x)}} f^{-1}(x) \times T_xT
\]

(see (2.12) for \(\alpha \)) will be denoted by \(K^x \). So, from (2.12) we get the short exact sequence of vector bundles

\[
(2.13) \quad 0 \rightarrow K^x \rightarrow \text{ad}(E_G)^x \rightarrow f^{-1}(x) \times T_xT \rightarrow 0
\]

over \(f^{-1}(x) \).
Since both $\text{ad}(E_G)^x$ and $f^{-1}(x) \times T_xT$ are holomorphically trivial, using (2.13) it can be shown that the vector bundle K^x is also holomorphically trivial. To prove that K^x is also holomorphically trivial, fix a point $z_0 \in f^{-1}(x)$, and fix a subspace

(2.14) \[V_{z_0} \subset \text{ad}(E_G)^{x}_{z_0} \]

that projects isomorphically to the fiber of $f^{-1}(x) \times T_xT$ over the point z_0. Since $\text{ad}(E_G)^x$ is holomorphically trivial, there is a unique holomorphically trivial subbundle $V \subset \text{ad}(E_G)^x$ whose fiber over z_0 coincides with the subspace V_{z_0} in (2.14). Consider the homomorphism

$V \rightarrow f^{-1}(x) \times T_xT$

obtained by restricting the projection in (2.13). Since this homomorphism is an isomorphism over z_0, and both V and $f^{-1}(x) \times T_xT$ are holomorphically trivial, we conclude that this homomorphism is an isomorphism over $f^{-1}(x)$. Therefore, V gives a holomorphic splitting of the short exact sequence in (2.13). Consequently, the vector bundle $\text{ad}(E_G)^x$ decomposes as

(2.15) \[\text{ad}(E_G)^x = K^x \oplus V. \]

Since $\text{ad}(E_G)^x$ is trivial, from a theorem of Atiyah on uniqueness of decomposition, [2, p. 315, Theorem 2], it follows that the vector bundle K^x is trivial; decompose all the three vector bundles in (2.15) as direct sums of indecomposable vector bundles, and apply Atiyah’s result. From (2.12) we get a short exact sequence of holomorphic vector bundles

(2.16) \[0 \rightarrow \text{ad}(E_H)|_{f^{-1}(x)} \rightarrow K^x \rightarrow T(f^{-1}(x)) \rightarrow 0, \]

where $T(f^{-1}(x))$ is the holomorphic tangent bundle of $f^{-1}(x)$. Since K^x is trivial, from (2.11) it follows that the tangent bundle $T(f^{-1}(x))$ is generated by its global sections. This immediately implies that $f^{-1}(x)$ is a homogeneous manifold.

Since $f^{-1}(x)$ is a Fano homogeneous manifold, we conclude that there is a semisimple linear algebraic group G' over \mathbb{C}, and a parabolic subgroup $P' \subset G'$, such that $f^{-1}(x) = G'/P'$. Since a quotient space of the type G'/P' is rigid [1, p. 131, Corollary], if follows that any two fibers of f are holomorphically isomorphic.

Let

(2.17) \[G := \text{Aut}^0(f^{-1}(x)) \]
be the group of all holomorphic automorphisms of $f^{-1}(x)$. It is known that \mathcal{G} is a connected semisimple complex linear algebraic group [II p. 131, Theorem 2]. Since $f^{-1}(x)$ is isomorphic to \mathcal{G}'/P', it follows that \mathcal{G} is a semisimple linear algebraic group over \mathbb{C} of adjoint type (this means that the center of \mathcal{G} is trivial). As before, let

$$z_0 \in f^{-1}(x)$$

be a fixed point. Let

$$\mathcal{P} \subset \mathcal{G}$$

be the subgroup that fixes the point z_0. Note that \mathcal{P} is a parabolic subgroup of \mathcal{G}, and the quotient \mathcal{G}/\mathcal{P} is identified with $f^{-1}(x)$.

Consider the trivial holomorphic fiber bundle

$$T \times f^{-1}(x) \longrightarrow T$$

with fiber $f^{-1}(x)$. Let $\mathcal{E} \longrightarrow T$ be the holomorphic fiber bundle given by the sheaf of holomorphic isomorphisms from $T \times f^{-1}(x)$ to M, where M is the fiber bundle in (2.6); recall that all the fibers of f are holomorphically isomorphic. It is straightforward to check that \mathcal{E} is a holomorphic principal \mathcal{G}–bundle, where \mathcal{G} is the group defined in (2.17). Let

$$\varphi : \mathcal{E}_\mathcal{G} := \mathcal{E} \longrightarrow T$$

be this holomorphic principal \mathcal{G}–bundle. The fiber of $\mathcal{E}_\mathcal{G}$ over any point $y \in T$ is the space of all holomorphic isomorphisms from $f^{-1}(x)$ to $f^{-1}(y)$.

So there is a natural projection

$$\mathcal{E}_\mathcal{G} \longrightarrow M$$

that sends any $\xi \in \varphi^{-1}(y)$ to the image of the point z_0 in (2.18) by the map

$$\xi : f^{-1}(x) \longrightarrow f^{-1}(y).$$

This projection identifies the fiber bundle

$$\mathcal{E}_\mathcal{G}/\mathcal{P} \longrightarrow T$$

with the fiber bundle $M \longrightarrow T$, where \mathcal{P} is the subgroup in (2.19). This completes the proof of the theorem. \square
3. Principal bundles over a torus

Let G_0 be a reductive linear algebraic group defined over \mathbb{C}. Fix a maximal compact subgroup $K_0 \subset G$. Let Y be a complex manifold and $E_{G_0} \longrightarrow Y$ a holomorphic principal G_0–bundle over Y. A unitary flat connection on E_{G_0} is a flat holomorphic connection ∇^0 on E_{G_0} which has the following property: there is a C^∞ reduction of structure group $E_{K_0} \subset E_{G_0}$ of E_{G_0} to the subgroup K_0 such that ∇^0 is induced by a connection on E_{K_0} (equivalently, the connection ∇^0 preserves E_{K_0}). Note that E_{G_0} admits a unitary flat connection if and only if E_{G_0} is given by a homomorphism $\pi_1(Y) \longrightarrow K_0$.

Let $P \subset G_0$ be a parabolic subgroup. Let $R_u(P) \subset P$ be the unipotent radical. The quotient group $L(P) := P/R_u(P)$, which is called the Levi quotient of P, is reductive (see [8, p. 158, §11.22]). Given a holomorphic principal P–bundle $E_P \longrightarrow Y$, let $E_{L(P)} := E_P \times^P L(P) \longrightarrow Y$ be the principal $L(P)$–bundle obtained by extending the structure group of E_P using the quotient map $P \longrightarrow L(P)$. Note that $E_{L(P)}$ is identified with the quotient $E_P/R_u(P)$. By a unitary flat connection on E_P we will mean a unitary flat connection on the principal $L(P)$–bundle $E_{L(P)}$ (recall that $L(P)$ is reductive).

A vector bundle $E \longrightarrow Y$ is called numerically flat if both E and its dual E^* are numerically effective [11, p. 311, Definition 1.17].

Proposition 3.1. Let E_{G_0} be a holomorphic principal G_0–bundle over a compact connected Kähler manifold Y. Then the following four statements are equivalent:

1. There is a parabolic proper subgroup $P \subset G_0$ and a strictly anti–dominant character χ of P such that the associated line bundle $E_{G_0}(\chi) := E_{G_0} \times^P \mathbb{C} \longrightarrow E_{G_0}/P$

is numerically effective.

2. The adjoint vector bundle $\text{ad}(E_{G_0})$ is numerically flat.

3. The principal G–bundle E_{G_0} is pseudostable, and $c_2(\text{ad}(E_{G_0})) = 0$ (see [6] p. 26, Definition 2.3 for the definition of pseudostability).

4. There is a parabolic subgroup $P_0 \subset G_0$ and a holomorphic reduction of structure group $E_{P_0} \subset E_{G_0}$ of E_{G_0} such that E_{P_0} admits a unitary flat connection.

Proof. This proposition follows from [7] p. 154, Theorem 1.1 and [3] Theorem 1.2. □
Lemma 3.2. Let T be a complex torus, and let $E_{G_0} \to T_0$ be a holomorphic principal G_0–bundle. Let $P \subset G_0$ be a parabolic subgroup. If the four equivalent statements in Proposition 3.1 hold, then the holomorphic tangent bundle of E_{G_0}/P is numerically effective.

Proof. Assume that the four equivalent statements in Proposition 3.1 hold.

Let $\delta : E_{G_0}/P \to T_0$ be the natural projection. Let $T_0 := \ker(d\delta) \subset T(E_{G_0})$ be the relative tangent bundle for the projection δ. The vector bundle $T_0 \to E_{G_0}/P$ is a quotient of the adjoint vector bundle $\text{ad}(E_{G_0})$. Since $\text{ad}(E_{G_0})$ is numerically effective (second statement in Proposition 3.1), it follows that T_0 is numerically effective [11, p. 308, Proposition 1.15(i)].

Consider the short exact sequence of vector bundles on E_{G_0}/P

\[0 \to T_\delta \to T(E_{G_0}/P) \xrightarrow{\delta^*TT_0} 0. \]

Since δ^*TT_0 and T_δ are numerically effective (TT_0 is trivial), it follows that $T(E_{G_0}/P)$ is numerically effective [11, p. 308, Proposition 1.15(ii)]. This completes the proof of the lemma. \qed

As before, X is a compact connected Kähler manifold such that TX is numerically effective, and (E'_H, θ') be a holomorphic Cartan geometry on X of type G/H. Also, γ and f are the maps constructed in (2.6) and (2.7) respectively. Let

\[K_f^{-1} \to M \]

be the relative anti–canonical line bundle for the projection f.

Let G be the group in (2.17), and let $E_G \to T$ be the principal G–bundle constructed in (2.20). Let $\text{ad}(E_G) \to T$ be the adjoint vector bundle.

Proposition 3.3. Let X is a compact connected Kähler manifold such that TX is numerically effective, and let (E'_H, θ') be a holomorphic Cartan geometry on X of type G/H. Then the relative anti–canonical line bundle K_f^{-1} in (3.1) is numerically effective. Also, the following three statements hold:

1. The adjoint vector bundle $\text{ad}(E_G)$ is numerically flat.
2. The principal G–bundle E_G is pseudostable, and $c_2(\text{ad}(E_G)) = 0$.
3. There is a parabolic subgroup $\mathcal{P} \subset G$ and a holomorphic reduction of structure group $\mathcal{E}_\mathcal{P} \subset E_G$ of E_G such that $\mathcal{E}_\mathcal{P}$ admits a unitary flat connection.
Proof. Let $\gamma : M \to X$ be the covering in (2.6), and let $f : M \to T$ be the projection in (2.7). There is a semisimple complex linear algebraic group G, a parabolic subgroup $P \subset G$, and a holomorphic principal G–bundle $E_G \to T$ such that the fiber bundle $E_G/P \to T$ is holomorphically isomorphic to the one given by f (see Theorem 2.1).

Since the canonical line bundle $K_T \to T$ is trivial, the line bundle $K_f ^{-1}$ is isomorphic to $K_M ^{-1}$. The anti–canonical line bundle $K_M ^{-1}$ is numerically effective because TM is numerically effective. Hence $K_f ^{-1}$ is numerically effective. Recall that $E_G/P = M$ using the projection in (2.21). The line bundle $K_f ^{-1}$ corresponds to a strictly anti–dominant character of P because $K_f ^{-1}$ is relatively ample. Hence the first of the four statements in Proposition 3.1 holds. Now Proposition 3.1 completes the proof of the proposition. □

Proposition 3.4. Let X and (E'_H, θ') be as in Lemma 3.3. The principal G–bundle E_G constructed in Theorem 2.1 admits a flat holomorphic connection.

Proof. We know that principal G–bundle E_G is pseudostable, and $c_2(\text{ad}(E_G)) = 0$ (see the second statement in Proposition 3.3). Hence the proposition follows from [6, p. 20, Theorem 1.1]. □

References

[1] D. N. Akhiezer, *Lie Groups Actions in Complex Analysis*, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, Braunschweig, 1995.

[2] M. F. Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. Fr. 84 (1956), 307–317.

[3] ———, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181–207.

[4] I. Biswas, Principal bundle, parabolic bundle, and holomorphic connection, in: *A tribute to C. S. Seshadri (Chennai, 2002)*, 154–179, Trends Math., Birkhäuser, Basel, 2003.

[5] I. Biswas and U. Bruzzo, On semistable principal bundles over a complex projective manifold, II, Geom. Dedicata 146 (2010), 27–41.

[6] I. Biswas and T. L. Gómez, Connections and Higgs fields on a principal bundle, Ann. Glob. Anal. Geom. 33 (2008), 19–46.

[7] I. Biswas and G. Schumacher, Numerically effectiveness and principal bundles on Kähler manifolds, Ann. Glob. Anal. Geom. 34 (2008), 153–165.

[8] A. Borel, *Linear Algebraic Groups*, Graduate Texts in Mathematics, No. 126, Springer–Verlag, New–York, 1991.

[9] F. Campana, On twistor spaces of the class C, Jour. Diff. Geom. 33 (1991) 541–549.
[10] F. Campana and T. Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), 169–187.

[11] J.-P. Demailly, T. Peternell and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, Jour. Alg. Geom. 3 (1994), 295–345.

[12] J. Kollár, Fundamental groups of rationally connected varieties, Michigan Math. Jour. 48 (2000) 359–368.

[13] J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness for Fano manifolds, Jour. Diff. Geom. 36 (1992), 765–779.

[14] R. W. Sharpe, Differential Geometry, Springer-Verlag, Heidelberg, 1997.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
E-mail address: indranil@math.tifr.res.in

Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2–4, 34013, Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
E-mail address: bruzzo@sissa.it