Research Paper

The Effect of Endurance Training and Saffron Extract on Plasma Levels of Interleukin 17 and 18 in Alzheimer’s Rats by Trimethyltin Chloride

Fatemeh Tahvili1, *, Mozghan Ahmadi2

1- Department of Physical Education, Faculty of Humanities, Marvdasht Branch, Islamic Azad University, Shiraz, Iran.
2- Department of Physical Education, Faculty of Humanities, Yadegar-e-Imam Khomeini (RAH) Shahr Rey Branch, Islamic Azad University, Tehran, Iran.

Objective The Pathological symptoms of Alzheimer’s disease and the degeneration of nerve cells cause inflammation in these patients. This study aimed to investigate the effect of endurance training and saffron extract on the plasma levels of interleukin 17 and 18 in Alzheimer’s rats by trimethyltin chloride.

Methods This experimental study was conducted on 32 male Sprague-Dawley rats weighing 180±20 grams. After Alzheimer’s induction (by the intraperitoneal injection of 80 mg/kg trimethyltin chloride), the rats were randomly assigned into four groups: Control, training, saffron extract, saffron extract + training. The saffron extract was injected intraperitoneally at the dose of 25 mg/kg, daily, for eight weeks. Also, the endurance training program consisted of incremental running on the treadmill at a speed of 15 to 20 m/min. The program was performed in 15 to 30 minutes sessions, three sessions per week, for eight weeks. Finally, the obtained data were analyzed using two-way ANOVA at the P<0.05.

Results The results showed that exercise (P=0.10), saffron consumption (P=0.07), and the interaction of exercise and saffron consumption (P=0.06) did not significantly affect interleukin 17, in rats. Also, exercise (P=0.68), saffron consumption (P=0.84), and the interaction of exercise and saffron consumption (P=0.57) had no significant effect on interleukin 18, in rats.

Conclusion According to the results, it seems that exercise training and saffron extract do not affect the interleukin 17 and interleukin 18 in Alzheimer’s rats.

Key words: Alzheimer, Exercise training, Saffron extract, Interleukin 17, Interleukin 18, Rats

ABSTRACT

Extended Abstract

1. Introduction

Alzheimer’s Disease (AD) is considered as a global challenge, regarding the increase of old population in developing countries. The AD symptoms and neurodegeneration stimulate the glial cells to secret pro-inflammatory cytokines. Moreover, the increasing level of the proinflammatory cytokines leads to further production of Aβ42 plaques and other proinflammatory cytokines, through the autocrine and paracrine pathways. Finally, this sequence of changes leads to more neurodegeneration in patients with AD [5].

No definite treatment has been defined for AD. However, some treatments decelerate and control the disease processes. It has been shown that physical trainings decrease the damage to the nervous and immune systems, in patients with...
AD [10]. Also, the use of medicinal plants, such as saffron is proposed as another prevention and treatment [17]. Saffron is used to treat the complications of neurological disorders [25]. Yet, the inflammatory response to saffron remained to be studied in AD.

Interleukin (IL)-17 acts as a central regulator of the inflammatory response in the brain [7]. Also, IL-18 is one of the main regulators of the innate and acquired immune system [8]. The expressions of IL-17 and IL-18 in neurons are positively associated with each other [9]. Studies have reported inconsistent results on the association between aerobic exercise training and the plasma concentrations of IL-17 and IL-18. Aerobic exercise training has led to both increase [12] and decrease [11] in the plasma concentration of IL-17. Besides, studies show that exercise decreases [13] or does not affect [14] the plasma concentration of IL-18. Therefore, the present study aimed to investigate the effect of endurance training and saffron extract on the plasma levels of IL-17 and IL-18, in trimethyltin chloride-induced Alzheimer’s rats.

2. Materials and Methods

The study population included all the male Sprague-Dawley rats in the Animal Care Center of Islamic Azad University, Marvdasht City, Iran. A total number of 32 rats were selected as the study sample, based on the purposive sampling method. All the rats had four weeks of age and 180±20 grams of weight. The selected rats were kept in the laboratory for a week to become adapted to the environment. Next, the AD was induced with the intraperitoneal injection of 80 mg/kg trimethyltin chloride. The Alzheimer’s rats were randomly assigned into four groups: training, saffron extract, saffron extract + training, and control.

The endurance training program included incremental running on the treadmill at a speed of 15 to 20 m/min. The program was performed in 15 to 30 minutes sessions, three sessions per week, for eight weeks. After the completion of the training program, the plasma concentrations of IL-17 and IL-18 were determined using ELISA kits. Then, the two-way ANOVA was conducted to compare the differences in the...
inflammatory indices. Besides, the statistical analyses were performed with SPSS-23 software.

3. Results

The two-way ANOVA represented that training (P=0.10), saffron extract (P=0.07), and the interaction of training and saffron extract (P=0.06) do not significantly affect the plasma IL-17 levels, in rats. Also, the effect size was calculated; the obtained eta values were 0.20, 0.24, and 0.26 for training, saffron extract, and the interaction of training and saffron extract, respectively (Figure 1). The two-way ANOVA was also used to compare the differences of IL-18 concentrations in the Alzheimer’s rats. The results showed that training (P=0.68), saffron extract (P=0.84), and the interaction of training and saffron extract (P=0.57) do not significantly affect the plasma IL-18 levels, in rats. Also, the obtained eta values were 0.01, 0.00, and 0.02 for training, saffron extract, and the interaction of training and saffron extract, respectively (Figure 2).

4. Discussion

The present results indicated that eight weeks of endurance training, the use of saffron extract, and the interaction of endurance training and saffron extract do not significantly affect the plasma concentrations of IL-17 and IL-18, in Alzheimer’s rats. The reactions of IL-17 and IL-18 have not been determined in the central nervous system. However, it is suggested that physical training leads to the release of cytokines in the bloodstream, and causes systematic effects, such as neuroprotection. Moreover, the high levels of physical activity reduce the chronic inflammation [33]. Energy consumption increases with the levels of physical activity, thus, exercise that expends more energy is likely to have more beneficial effects on the inflammatory condition. In the present study, the inflammatory responses to aerobic exercise may be influenced by the amount of consumed energy. Consuming more energy, longer training programs lead to a significant reduction in the inflammatory responses. Intense exercise releases proinflammatory cytokines, which produce anti-inflammatory cytokines, such as IL-2, IL-6, and IL-10. The consecutive production of proinflammatory and anti-inflammatory cytokines can initiate the production of IL-17 in peripheral blood and skeletal muscles [35]. Furthermore, the increase in anti-inflammatory cytokines may justify the decrease of IL-18 concentration [36].

Saffron has anti-inflammatory effects because it includes flavonoids, tannins, saponins, and crocins [39]. Crocin is ineffective at low doses [41], however, high doses of crocin have improved hippocampal function [42]. The inflammatory effects of saffron may be dose-dependent in Alzheimer’s patients. Also, the saffron’s absorption, effectiveness, and adaptation to exercise have not been confirmed, regarding variables, such as physical function, hematological indicators, and body weight.

The main limitation of the present study was the lack of measurement of other related inflammatory factors. The measurement of inflammatory factors (such as IL-2, IL-6, and IL-10) helps to explain and interpret the results, especially in AD. It is recommended to investigate the oxidative damage indices following the consumption of saffron extract and exercise trainings in Alzheimer’s rats.

5. Conclusion

According to the findings, exercise training and saffron extract do not affect the inflammatory factors, in rats with AD. These results can be caused by the inadequate exercise intervention period. However, manipulating the dose of saffron extract and the consumption period may lead to clear results. Few studies have been conducted on this issue, thus, further research is required to confirm the effect of exercise and saffron extract consumption on inflammatory factors in AD.

Ethical Considerations

Compliance with ethical guidelines

The present study was confirmed by the Ethics Committee of the Biomedical Research of Islamic Azad University, Marvdasht Branch (Ethics Code, IR.IAU.M.REC.1399.011).

Funding

This article has been extracted from the master’s thesis of the first author in the Department of Sport Physiology, Islamic Azad University, Marvdasht Branch, Shiraz, Iran.

Authors’ contributions

All authors equally contributed in preparing this paper.

Conflicts of interest

The authors declare no conflict of interest.

بررسی اثر تمرین استقامتی به همراه مصرف عصاره زعفران بر سطوح پلاسمای آلزایمری

مقدمه

شایع‌ترین و مهم‌ترین علت زوال عقل در افراد سالمند، بیماری آلزایمر است. این بیماری به‌طور تدریجی با افزایش سنی در جمعیت سالمند رواج می‌یابد. بیماری آلزایمر به عنوان یک بیماری ایمن‌الهیتی و فراوانی‌دار در جمعیت سالمند محسوب می‌شود.

ANGER

در این پژوهش، بررسی اثر تمرین استقامتی به همراه مصرف عصاره زعفران بر سطوح پلاسمای آلزایمری می‌شود.

طالبانه تحقیقات نشان داده است که علائم پاتولوژیک بیماری آلزایمر و انحطاط سلول‌های عصبی موجب گسترش التهاب در این بیماران می‌شود. این تغییرات پاتولوژیک باعث تحریک سلول‌های گلیال برای تولید بی‌اعتمادی از سایتوکین‌های پیش‌تهابی می‌شود.

۱. Alzheimer Disease (AD)

2. Interlukin-17

مقدمه

بیماری آلزایمر یک اختلال عصبی غیر قابل برگشت و پیش‌رونده است که به‌طور تدریجی حفظ کارکرد، مهارت‌های تفکری و عملکرد شناسایی و ایجاد عوامل جدید را از بین می‌برد. بر اساس جوامع مبتلا به کشورهای توسعه‌یافته و در حال توسعه، بیماری آلزایمر به عنوان یکی از بیماری‌های جدیدی در این جریان قرار می‌گیرد.

2. Interlukin-17

1. Alzheimer Disease (AD)

مقدمه

بیماری آلزایمر یک اختلال عصبی غیر قابل برگشت و پیش‌رونده است که به‌طور تدریجی حفظ کارکرد، مهارت‌های تفکری و عملکرد شناسایی و ایجاد عوامل جدید را از بین می‌برد. بر اساس جوامع مبتلا به کشورهای توسعه‌یافته و در حال توسعه، بیماری آلزایمر به عنوان یکی از بیماری‌های جدیدی در این جریان قرار می‌گیرد.

2. Interlukin-17

1. Alzheimer Disease (AD)
خاصیت آنتی اکسیدانی و ضد التهابی عصاره های آبی و الکلی زعفران

استریل استفاده و یک روز در میان شست وشوی قفس ها انجام و ادرار و مدفوع حیوانات و راحتی آن ها از تراشه و بریده های چوب انتقال به محیط آزمایشگاه هفت روز در آزمایشگاه جهت سازگاری با شدند. نمونه آماری این تحقیق، به روش نمونه گیری انتخابی هدف دار

سر موش صحرایی

اسپراگودوالی مرکز نگهداری حیوانات دانشگاه آزاد اسلامی واحد جامعه آماری مورد مطالعه را موش های صحرایی نر نژاد موش های آلزایمری توسط تری متیل تین

احتمالی ارائه داد؛ بنابراین مطالعه حاضر قصد دارد به بررسی اثر مناسبی را در راستای نحوه انجام تمرینات و نیز پیش بینی پیامدهای اعمال تمرین ورزشی به همراه تجویز عصاره زعفران شاید بتوان گامی حال پاسخ التهابی به زعفران در بیماری آلزایمر مشخص نیست. با وجود دارد. از طرفی زعفران برای درمان بسیاری از عوارض ناشی

با توجه به بیان این‌درصدی‌ها۱۷-۱۸ در ترین‌مای، تجویز صورت می‌شود که این درمان قطعی برای این بیماران وجود ندارد. با این حال برخی

درمان‌های قطور روی بیماری اثر کننده، و درک‌کننده

 حال افسرده شدن جسمانی به زعفران در بیماری آلزایمر مشخص نیست. با

و وجود مشکلات معنی‌دار و وریس (۱۰ ماده حساسی در مثل جراحی و

امکان تمرین روش به مهارت تمرین زعفران شکل اول فارسی استفاده در تمرین زعفران می‌باشد. به همچنین، مواد از تأثیر برنامه تمرین بر همبستگی، بیماران آلزایمر و دیگر مشاهده‌های کردن که سیستم های بیماری آن‌ها زعفران

و عدم تکثیر مناطق (۱۷) این‌درصدی‌ها ۱۷ متفاوت تر در민 قطوران

کار

یکی دیگر از راه‌های غیردارویی پیشگیری و درمان بیماری‌ها

استفاده از عصاره طبیعی است. زعفران کاهش کوک و وقوع

از خلوطی و کاهش درمان‌های آلزایمر و بیماری آلزایمر

می‌تواند برای افراد با کاهش ایمنی و درمان‌ها ترکیبی همچنین، قارچی

و با توجه به بیان این‌درصدی‌ها۱۷-۱۸ در ترین‌مای، تجویز

علت پیشنهاد شده که استفاده از عصاره و مواد مولار آن ممکن

3. Kupper
4. Central Nervous System

152
پروکتول تمرین استقامتی

پروکتول تمرین استقامتی شامل هفت ماهه‌ای طی این مدت هر هفته دویدن فزاینده روی دستگاه نوارگردان بدون شیب (شیب صفر درصد) با سرعت ۱۵ متر در دقیقه و به دستگاه بی‌هوشی سلول‌های بنیادی در جلسه‌ای دویدن بود. بلافاصله بعد از اتمام هر جلسه تمرین، موش‌های آلزایمری صحرایی به صورت هدفمند و در دسترس به طور تصادفی با توجه به جدول مورگان برای تعیین حجم نمونه و به منظور بررسی اثرات تری متیل تین در القای مدل حیوانی آلزایمر و بررسی اثرات تمرین استقامتی و زعفران به چهار گروه هشت سری تقسیم‌بندی شدند.

جدول ضریب پراکندگی Elisa Kit 96t - abcam America
تمرین استقامتی

۱۵ متر بر دقیقه
۲۰ متر بر دقیقه
۱۰ متر بر دقیقه
۵ متر بر دقیقه

جهت بهبود نسل‌های جدید نیاز به از دست‌گرفتن ورودی‌های دیگر روش‌ها و تجهیزات کمپکتی، طراحی و ساخت طراحی‌های جدید و بهینه‌سازی اجزای موجود در ساختار تری متیل تین کلرید (TMT) با توجه به محدودیت‌های موجود در استفاده از محصولات آزمایشگاهی مورد نیاز است. به این ترتیب می‌توان به تیم‌های طراحی و کمپیوتری که در طراحی نسخه‌های نوین و دسترسی در طرح‌های مختلف از تری متیل تین کلرید (TMT) استفاده کنند بپردازد.
جدول شماره ۲۰: تأثیر مصرف زعفران و ترکیب شیمیایی مصرف زعفران بر اینترلوکین ۱۸

میزانها	مصرف زعفران	ترکیب ۲۰	کنترل
گونه	مصرف زعفران	مصرف زعفران	مصرف زعفران
۰/۳۰	۵۵/۲۶	۶۵/۱۸	۶۵/۵۷
۰/۳۶	۵۷/۲۷	۷۵/۱۸	۷۴/۵۷
۰/۴۲	۵۵/۲۶	۶۵/۱۸	۶۵/۵۷

\[P = \frac{1}{2} \times \left(\frac{1}{2} + \frac{1}{2} \right) \]

بحث

پایتختی حقیقی خاص ندهد حال می‌تواند ترکیب است남تی

مصروف عصاره زعفران و همچنین اثر اثر مختلف ترکیب استنلی

و مصرف عصاره زعفران بر اینترلوکین ۱۸ و اینترلوکین ۱۶ در

موش‌های صحراوی مبتلا به آلزایمر متغیری دارد. نتایج

مطلق‌هایی که هم‌گوناها استفاده شده دندام میلی‌متری با

فلاتینیک بازار کرمان (۳۰۰۰-۹۰۰۰۰) با پایتختی یک‌دیگر

پاسخ اینترلوکین ۱۸ و اینترلوکین ۱۸ به میزان ورزشی

در استفاده انسانی مزایا مشخص نیست. به نتایج

یک‌پترب موز هدایه به داخل به کنار مکان‌های سوداگران

سایتوکینها در سنجش تیب و به این دلیل که این سایتوکینها

از طرق مسرع‌شده برای این‌که زیادتر توانسته‌اند اثرات

پیش‌بینی پاتولوگی حساسیت دارد. مطالعه‌های ناشی

از میزان سایتوکینها در مورد استفاده درد خاصی

سفینی‌های بالینی با ترکیب یکی از سایتوکینها در

به ترتیب برابر با ۲۷/۵۷ و ۲/۹۷ (تحریک شماره ۳۰).

یافت‌ها

در جدول شماره ۲۰ میکرو و ترکیب مصرف زعفران

تاسفی حقیقی مصرف زعفران باست. در سطح، جهت بررسی

اثر ترکیب استنلی مصرف زعفران بر اینترلوکین ۱۶

موش‌های صحراوی مبتلا به آلزایمر از آلزایمر و

شناخته شده است. این مصرف زعفران در سطح هفت

tein (۲/۹۷، ۴/۹۷) و اثر ترکیب استنلی

وهیئه برای این‌که زیادتر مصرف زعفران و اثر ترم‌سیباً

و مصرف زعفران بر اینترلوکین ۱۸ به ترتیب با ۲۷/۵۷ و

۰/۵۷ (تحریک شماره ۲۰).

جهت بررسی اثر ترکیب استنلی مصرف زعفران بر

اینترلوکین ۱۸ میکرو به سه میکرو مصرف زعفران از آلزایمر

و مصرف زعفران از آلزایمر و اثر ترم‌سیباً

متغیری در این‌که زیادتر مصرف زعفران و اثر ترم‌سیباً

به ترتیب با ۲۷/۵۷ و ۰/۵۷ (تحریک شماره ۲۰).

۱۵۳
با توجه به اینکه با افزایش سطح فعالیت بدین میزان اثری مصرف تینژیلین می‌یابد، تمرین ورزشی که برای اثرات مثبتی که برای تثبیت الکل‌های دارای میزان انرژی مصرفی نزدیک به میزان مورد نیاز کاهش می‌یابد، تمرین ورزشی می‌تواند اثرات مثبتی در وضعیت التهابی طراحی‌شده برای مبتلایان را در مقایسه با نباشند. نکاتی از اینکه با افزایش شدت تیمار، سطح این سایتوکین احتمالاً به دلیل میزان انرژی مصرفی حیوانات بالاتر شود. همچنین، می‌توان پیشنهاد کرد دوره‌های تمرین طولانی‌تر از تیمار مصرف تینژیلین می‌تواند باعث کاهش میزان انرژی مصرفی در سطح مورد نیاز کاهش نشانگرهای التهابی بینجامد. گافین نیز اظهار داشته است که شدت تیمار عامل مهمی در تغییرات سایتوکین اینترلوکین است که بیان کند که این تغییرات باعث رهاسازی سایتوکین‌های پیش التهابی می‌شود و تولید سایتوکین‌های ضد التهابی سپرده شده در اثر تیمار نیز می‌باشد. به نظر می‌رسد تغییرات سایتوکین‌های بیش از میزان مورد نیاز در سطح فعالیت کاهش می‌یابد. نتایج مطالعه علیزاده و همکاران تحت عنوان "اثار تمرین حیوانات مختلف با توجه به آنتی‌ینژیلین" نشان داد که تمرین ورزشی در حیوانات مبتلا به آلزایمر می‌تواند سطح سایتوکین حیوانات مختلف را کاهش دهد. نتایج مطالعه علیزاده و همکاران نشان داد که تأثیر تمرین حیوانات مختلف با توجه به آنتی‌ینژیلین نشان داد که تمرین ورزشی در حیوانات مبتلا به آلزایمر می‌تواند سطح سایتوکین حیوانات مختلف را کاهش دهد.
پیشگیری

با توجه به یافته‌های تحقیق، احتمالاً روش‌های تمرین ورزشی و عصاره زعفران بر اثر ویژگی‌های آنتی‌اکسیدان به‌طور مشابه در مورد موش‌های نژاد سوری (نر) کاربرد دارند. در این تحقیق، اثرات مصرف عصاره زعفران و تمرین استقامتی بر روی نیروهای پلاسمای اینترلوکین ۱۷ (IL-17) در مراحل مختلف انسدادی و همگام موش‌های آلزایمر در دو گروه به‌طور مشابه مشاهده شدند. این اثبات در نتایج سایت‌های آنالزیز تطبیقی و تغییرات میکرو‌افکسیون عصبی همراه با افزایش تولید GLT و GLD مشاهده شد.

نتایج

به‌طور کلی، این تحقیق نشان می‌دهد که عصاره زعفران و تمرین استقامتی می‌توانند به‌طور مشابه بر روی نیروهای پلاسمای اینترلوکین ۱۷ (IL-17) در موش‌های آلزایمر، اثرات مثبتی داشته باشند. این نتایج احتمالاً به‌وسیله تغییرات میکرو‌افکسیون عصبی و افزایش تولید GLT و GLD همراه با اینتلی‌سایت‌های آلزایمر تأثیر می‌گذارند. بنابراین، مصرف عصاره زعفران و تمرین استقامتی می‌توانند راه‌هایی برای کاهش اثرات بالا بر روی خطرات آلزایمر ارائه دهند.

نتیجه‌گیری

به‌طور کلی، این تحقیق نشان می‌دهد که عصاره زعفران و تمرین استقامتی می‌توانند به‌طور مشابه بر روی نیروهای پلاسمای اینترلوکین ۱۷ (IL-17) در موش‌های آلزایمر، اثرات مثبتی داشته باشند. این نتایج احتمالاً به‌وسیله تغییرات میکرو‌افکسیون عصبی و افزایش تولید GLT و GLD همراه با اینتلی‌سایت‌های آلزایمر تأثیر می‌گذارند. بنابراین، مصرف عصاره زعفران و تمرین استقامتی می‌توانند راه‌هایی برای کاهش اثرات بالا بر روی خطرات آلزایمر ارائه دهند.

ملاحظات اخلاقی

این مقاله با تأیید کمیته‌ی اخلاق در پژوهش‌های زیست پزشکی دانشگاه آزاد اسلامی واحد مرودشت با شماره IR.IAU.M.REC.1399.011 اجرا شد.

حامی‌مالی

این مقاله برگرفته از پایان‌نامه دوره کارشناسی ارشد نویسنده همکاری دانشگاه آزاد اسلامی و دانشکده تربیت بدنی و علوم ورزشی ایران می‌باشد.

مشارکت‌های نویسندگان

همه نویسندگان در مشارکت برای تکمیل این مقاله سهم یکسانی دارند.

تعارض منافع

نویسندگان مقاله هیچ گونه تعارض منافعی اعلام نکردند.
[28] Azarian F, Farsi S, Hosseini SA, Azarbayjani MA. Effect of endurance training with saffron consumption on PGC1-α gene expression in hippocampus tissue of rats with Alzheimer’s disease. Annals of Military and Health Sciences Research. 2020; 18(1):e99131. [DOI:10.5812/amh.99131]

[29] Satarifard S, Gaeini AA, Choobineh S. [The effect of exercise on the serum interleukin-17, interferon-γ and CRP of the endurance athletes in cold and normal temperature condition (Persian)]. Medical Journal of Tabriz University of Medical Sciences. 2012; 34(4):86-93. https://www.sid.ir/fa/journal/ViewPaper.aspx?ID=180459

[30] García JJ, Bote E, Hinchado MD, Ortega E. Single session of intense exercise improves the inflammatory response in healthy sedentary women. Journal of Physiology and Biochemistry. 2011; 67(1):87-94. [DOI:10.1007/s13105-010-0052-4] [PMID]

[31] Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metabolic Brain Disease. 2019; 34(1):21-37. [DOI:10.1007/s11011-018-0343-y] [PMID]

[32] Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aurbert I. The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plasticity. 2018; 4(1):17-52. [DOI:10.3233/BPL-180069] [PMID] [PMCID]

[33] Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clinica Chimica Acta. 2010; 411(11-12):785-93. [DOI:10.1016/j.cca.2010.02.069] [PMID] [PMCID]

[34] Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008; 43(3):402-7. [DOI:10.1016/j.cyto.2008.07.017] [PMID] [PMCID]

[35] Chang SH, Dong C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Research. 2007; 17(5):435-40. [DOI:10.1038/cr.2007.35] [PMID]

[36] Leick L, Lindegaard B, Stensvold D, Plomgaard P, Saltin B, Pilegaard H. Adipose tissue interleukin-18 mRNA and plasma interleukin-18: Effect of obesity and exercise. Obesity. 2007; 15(2):356-63. [DOI:10.1038/oby.2007.528] [PMID]

[37] Alizadeh H, Daryanoosh F, Moatari M, Hoseinzadeh K. Effects of aerobic and anaerobic training programs together with omega-3 supplement on interleukin-17 and CRP plasma levels in male mice. Medical Journal of the Islamic Republic of Iran. 2015; 29:236. [PMID] [PMCID]

[38] Duzova H, Karakoc Y, Emre MH, Dogan ZY, Kilinc E. Effects of acute moderate and strenuous exercise bouts on IL-17 production and inflammatory response in trained rats. Journal of Sports Science & Medicine. 2009; 8(2):219-24. [PMID] [PMCID]

[39] Ochiai T, Shimo H, Mishima KI, Iwakita K, Fujiwara M, Tanaka H, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects. 2007; 1770(4):578-84. [DOI:10.1016/j.bbabio.2006.11.012] [PMID]

[40] Zhang Y, Shoyama Y, Sugiuira M, Saito H. Effects of Crocus sativus L. on the ethanol-induced impairment of passive avoidance performances in mice. Biological and Pharmaceutical Bulletin. 1994; 17(2):217-21. [DOI:10.1248/bpb.17.217] [PMID]

[41] Sugiuira M, Shoyama Y, Saito H, Abe K. The effects of ethanol and crocin on the induction of long-term potentiation in the CA1 region of rat hippocampal slices. The Japanese Journal of Pharmacology. 1995; 67(4):395-7. [DOI:10.1254/jjp.67.395] [PMID]

[42] Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytotherapy Research. 2000; 14(3):149-52. [DOI:10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-S]

[43] Chu WZ, Qian CY. [Expressions of Abeta1-40, Abeta1-42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats (Chineses)]. Di 1 Jun Yi Da Xue Xue Bao. 2005; 25(2):168-70, 173. [PMID]
