Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells

Jung-Hoon Yoon, Satya Prakash, and Louise Prakash
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA

ABSTRACT DNA lesions in the template strand block synthesis by replicative DNA polymerases (Pols). Eukaryotic cells possess a number of specialized translesion synthesis (TLS) Pols with the ability to replicate through DNA lesions. The Epstein-Barr virus (EBV), a member of the herpesvirus family, infects human B cells and is maintained there as an extrachromosomal replicon, replicating once per cycle during S phase. Except for the requirement of the virus-encoded origin-binding protein EBNA1, replication of plasmids containing the EBV origin of replication (oriP) is controlled by the same cellular processes that govern chromosomal replication. Since replication of EBV plasmid closely mimics that of human chromosomal DNA, in this study we examined the genetic control of TLS in a duplex plasmid in which bidirectional replication initiates from an EBV oriP origin and a UV-induced cis-syn TT dimer is placed on the leading- or the lagging-strand DNA template. Here we show that TLS occurs equally frequently on both the DNA strands of EBV plasmid and that the requirements of TLS Pols are the same regardless of which DNA strand carries the lesion. We discuss the implications of these observations for TLS mechanisms that operate on the two DNA strands during chromosomal replication and conclude that the same genetic mechanisms govern TLS during the replication of the leading and the lagging DNA strands in human cells.

IMPORTANCE Since replication of EBV (Epstein-Barr virus) origin-based plasmids appropriates the cellular machinery for all the steps of replication, our observations that the same genetic mechanisms govern translesion synthesis (TLS) on the two DNA strands of EBV plasmids imply that the requirements of TLS Pols are not affected by any of the differences in the replicative Pols or in other proteins that may be used for the replication of the two DNA strands in human cells. These findings also have important implications for evaluating the significance of results of TLS studies with the SV40 origin-based plasmids that we have reported previously, in which we showed that TLS occurs similarly on the two DNA strands. Since the genetic control of TLS in SV40 plasmids resembles that in EBV plasmids, we conclude that TLS studies with the SV40 plasmids are as informative of TLS mechanisms that operate during cellular replication as those with the EBV plasmids.
malian cell-free systems with circular plasmids have shown that bidirectional replication ensues from an SV40 origin sequence in the presence of T antigen (17–20), which functions both as an origin-binding protein and as a DNA helicase for the unwinding of duplex DNA (16, 21–23). In the reconstituted system, T antigen, replication protein A (RPA), DNA polymerase α, and topoisomerase I are sufficient for primer synthesis (24). The loading of proliferating cell nuclear antigen (PCNA) by clamp loader replication factor C (RFC) affects the switch from synthesis by Polα to highly processive synthesis by Polδ (25–27). Although studies with the purified proteins in reconstituted systems have been informative regarding how the initiation, elongation, and Okazaki fragment maturation processes could occur in vitro, it still remains unclear whether the replication of SV40-based plasmids in human cells primarily utilizes the cellular replication machinery or whether the use of T antigen as a DNA helicase precludes the need for many of the proteins such as the MCM2-7 DNA helicase. Also, because Polδ is sufficient for replicating both the DNA strands in the reconstituted SV40 system, whereas Polε may also be required for chromosomal replication (28, 29), the replication of SV40 plasmids may differ from chromosomal replication in significant ways.

SV40 origin-based plasmid systems have been used extensively for DNA repair studies with mammalian cell-free extracts (30–33), and more recently, in our studies for analyzing the roles of translesion synthesis (TLS) DNA polymerases in human cells, we utilized a duplex plasmid system in which bidirectional replication initiates from an SV40 origin in the presence of T antigen (34–36). From these analyses, we inferred that TLS occurs very similarly on the leading and lagging DNA strands. However, since the SV40 system utilizes Polδ for the replication of both the leading and the lagging DNA strands, whereas genetic studies in Saccharomyces cerevisiae have suggested that Polδ replicates the lagging strand and Polε replicates the leading strand (37, 38), TLS on the two DNA strands could differ during mammalian chromosomal replication, if in mammalian cells Polε also replicates the leading strand and Polδ replicates the lagging strand. It is not known whether in human cells, Polδ replicates both the DNA strands or whether Polε and Polδ replicate the leading and lagging strands, respectively, as in yeast.

Because the EBV plasmid system uses the cellular machinery for all aspects of DNA replication in human cells, whereas such information has been lacking for the in vivo replication of SV40 origin-based plasmids, we have designed a duplex plasmid system in which bidirectional replication initiates from the EBV origin and the genetic control of TLS on both the leading and lagging DNA strands can be determined separately. Here, we present our analyses of TLS opposite a site-specific UV-induced cis-syn TT dimer present on the template for synthesis of the leading or the lagging DNA strand, and show that in the EBV plasmid also, similar genetic mechanisms control TLS on the two DNA strands. We discuss the implications of these observations for TLS during chromosomal replication in human cells.

RESULTS

Construction of heteroduplex target vectors containing an EBV origin of replication and a site-specific cis-syn TT dimer. To construct the EBV plasmid for TLS studies, the 2-kb EBV replication origin sequence was PCR amplified from pCEP4 (Invitrogen) and used to replace the SV40 origin in the SV40-based plasmids that we have used for TLS studies. As shown in Fig. 1, the final EBV vector (pBSA/pSBA) contains an EBV origin and a heteroduplex adduct site, one strand of which carries a site-specific cis-syn TT dimer and the other of which contains an AgeI+ site. Since EBV replication requires the EBNA1 protein, we expressed EBNA1 in human cells. Because the DNA lesion located on either the leading strand DNA template or the lagging strand template is in frame with the LacZ’ sequence, and the lesion containing DNA strand contains the kan+ gene, replication through the DNA lesion by TLS will produce blue colonies among Kan+ colonies, whereas white colonies among Kan+ colonies would result from template switching. That is because the other strand has the AgeI+ site opposite the TT dimer, which puts the LacZ’ gene out of frame, and since template switching utilizes sequence information from the strand with the AgeI+ site for copying past the lesion site, this lesion bypass mechanism produces white colonies.

Replication efficiency of EBV plasmid in human cells. We first carried out control experiments to verify that the replication of the EBV plasmids we constructed was strictly dependent upon the presence of the EBV origin sequence and the EBNA1 protein. For this purpose, we used SV40-transformed 293T cells, EBV-transformed 293E cells, and NER-defective xeroderma pigmentosum group A (XPA) human fibroblasts stably expressing the EBNA1 protein and examined the replication efficiency of undamaged plasmids bearing the SV40 or the EBV origin sequence relative to the replication of the pCDNA3.1 zeocin resistance (Zeoc+) plasmid, which has the SV40 origin. As shown in Table 1, in SV40-transformed 293T cells, neither of the pBSA or pSBA EBV plasmid was able to replicate, whereas the SV40 origin-bearing plasmids PBS and PSB and the pCDNA3.1 Zeo+ plasmid replicated. In contrast, in EBV-transformed 293 E cells, only the plasmids pBSA or pSBA carrying the EBV origin replicated, and in SV40-transformed XPA cells in which the EBNA1 protein is also expressed, all the plasmids replicated. As indicated from the relative numbers of ampicillin-resistant colonies, which represent the replication of EBV origin- or SV40 origin-bearing plasmid, and zeocin-resistant colonies, the EBV plasmids replicated ~80% as efficiently as the SV40 origin-based pCDNA3.1 Zeo+ plasmid. We conclude from these observations that the EBV origin-containing plasmids we have constructed replicate efficiently in human cells and that their replication requires the EBV origin and the EBNA1 protein.

Genetic control of TLS opposite a cis-syn TT dimer carried on the leading- or lagging-strand DNA template of EBV plasmid. In our previous studies with a cis-syn TT dimer carried on the leading- or the lagging-strand DNA template of SV40 plasmids, we showed that on both strands, TLS occurs almost equally frequently and the same TLS Pols contribute to lesion bypass (36). For determining the genetic control of TLS on the two DNA strands of EBV plasmids, and to be certain of the similarities or differences between the SV40 and EBV plasmids, we carried out TLS studies in which we examined TLS in both plasmid systems concurrently. As is shown in Table 2, on both the DNA strands of the SV40 plasmid carried in XPA cells, TLS occurred with a frequency of ~35% in cells treated with control (NC) small interfering RNA (siRNA), and the frequency of TLS was reduced upon the depletion of Polη, Polκ, or Polξ but not depletion of Polλ. These independent sets of data resemble closely the more extensive TLS results we published previously (36).

The data for the effects of siRNA depletions of TLS Pols on
promoting replication through a *cis-syn* TT dimer carried on the leading- or the lagging-strand DNA template of EBV plasmids are shown in Table 3. In XPA cells treated with control siRNA, TLS on both the strands occurred with a frequency of ~30%. For both the DNA strands, Pol\(^\eta\)/H9257 depletion conferred an ~50% reduction in the frequency of TLS compared to that in control cells, and depletion of either Pol\(\kappa\) or Pol\(\zeta\) resulted in an ~30% reduction in TLS frequency. In contrast, Pol\(\eta\) depletion had no effect on TLS frequency for the lesion carried on either DNA strand. In our previous study with SV40 plasmids, we showed that Pol\(\eta\)/H9257, -H9260, and -H9256 function.

FIG 1 Assay for determining the genetic control of TLS on the leading and lagging strands of an EBV origin-based plasmid. (A) The target 16-mer sequence containing a *cis-syn* TT dimer (T^T) is shown at the top. The sequence of the N-terminal part of the lacZ gene in the pBSA vector (leading strand), including the TT dimer, is shown. (B) Strategy for TLS. In the duplex plasmid, the DNA strand containing the TT dimer carries the wild-type kanamycin resistance gene (*kan\(^+\)) so that TLS opposite the UV lesion will result in a blue colony on LB/Kan plates containing IPTG and X-Gal. (C) Assay for TLS and for determining replication efficiency of damage-containing plasmids in siRNA-treated human cells. The purified DNA lesion-containing plasmid, undamaged pCDNA3.1-Zeocin plasmid, and siRNA are cotransfected into human cells that have been pretreated with siRNA for 48 h. After 30 h incubation, the rescued plasmid DNA is treated with DpnI to remove any unreplicated plasmid, and then transformed into XL-1 Blue *E. coli* cells. TLS frequency is determined from the frequency of blue colonies among kan\(^+\) colonies. The replication efficiency of undamaged EBV plasmid relative to that of the zeocin resistance plasmid was determined by the number of colonies that grew on LB/Amp plates, indicative of the EBV plasmid, and the number of colonies that grew on LB/Zeo plates, indicative of the zeocin plasmid.

TABLE 1 Replication efficiency of undamaged (ND) duplex plasmids in which bidirectional replication initiates from an SV40 or EBV origin in SV40- or EBV-transformed human cell lines

Cell type	Plasmid (origin)	Ampicillin	Zeocin
293T (SV40 transformed)	pBSA-ND (EBV)	None	508
	pSSA-ND (EBV)	None	489
	pBS-ND (SV40)	583	524
	pSB-ND (SV40)	536	528
293E (EBV transformed)	pBSA-ND (EBV)	486	None
	pSSA-ND (EBV)	502	None
	pBS-ND (SV40)	None	None
	pSB-ND (SV40)	None	None
XPA (SV40 transformed and expressing EBNA1 protein)	pBSA-ND (EBV)	418	489
	pSSA-ND (EBV)	397	524
	pBS-ND (SV40)	496	428
	pSB-ND (SV40)	463	508
TABLE 2 Effects of siRNA knockdowns of Pols on TLS opposite a cis-syn TT dimer located on the leading- or lagging-strand DNA template of SV40 plasmid carried in XPA human fibroblasts

siRNA	Leading strand	Lagging strand				
	No. of kan⁺ colonies	No. of blue colonies among kan⁺ colonies	TLS (%)	No. of kan⁺ colonies	No. of blue colonies among kan⁺ colonies	TLS (%)
NC	421	150	35.6	326	105	32.2
Polη	340	57	16.8	368	52	14.1
Polε	486	169	34.8	456	136	29.8
Rev3	429	102	23.8	322	69	21.4
Rev7	360	77	21.4	416	86	20.7

TABLE 3 Effects of siRNA knockdowns of Pols on TLS opposite a cis-syn TT dimer located on the leading- or lagging-strand DNA template of EBV plasmid carried in XPA human fibroblasts

siRNA	Leading strand	Lagging strand				
	No. of kan⁺ colonies	No. of blue colonies among kan⁺ colonies	TLS (%)	No. of kan⁺ colonies	No. of blue colonies among kan⁺ colonies	TLS (%)
NC	678	194	28.6	621	175	28.2
Polη	484	69	14.3	523	69	13.2
Polε	580	175	30.2	589	174	29.5
Rev3	525	102	19.4	535	104	19.4
Rev7	496	98	19.8	498	96	19.3
Polη + Polε	620	90	14.5	426	60	14.1
Polη + Polε	423	39	9.2	465	38	8.2
Polη + Rev3	396	35	8.8	536	46	8.6
Polη + Rev7	367	34	9.3	478	40	8.4
Polε + Rev3	469	76	16.2	356	60	16.9
Polε + Rev7	566	89	15.7	412	63	15.3
TABLE 4 Effects of TLS Pols on mutation frequencies and nucleotides inserted opposite a cis-syn TT dimer carried on the leading-strand template of EBV plasmid in XPA human fibroblasts

siRNA(s)	No. of kan⁺ blue colonies sequenced^a	No. with nucleotide inserted^b	A	G	C	T	Mutation frequency (%)
NC	288 (4)	284	1 (5′ T)	0	1 (5′ T)	1.4	
Polη	190 (5)	185	1 (5′ T)	0	1 (3′ T)	2.6	
Polκ	240 (1)	239	1 (3′ T)	0	0	0.4	
Rev3	196 (0)	196	0	0	0	0	
Rev7	278 (1)	277	1 (3′ T)	0	0	0.4	
Polη + Polκ	178 (1)	177	0	0	1 (3′ T)	0.6	
Polκ + Rev3	232 (2)	230	1 (3′ T)	0	1 (3′ T)	0.9	
Polκ + Rev3	288 (0)	288	0	0	0	0	

^a Numbers of mutant colonies are in parentheses.

^b The site where mutation occurred (the 3′ T or the 5′ T of the TT dimer) is shown in parentheses.

TABLE 5 Effects of TLS Pols on mutation frequencies and nucleotides inserted opposite a cis-syn TT dimer carried on the lagging-strand template of EBV plasmid in XPA human fibroblasts

siRNA(s)	No. of kan⁺ blue colonies sequenced^a	No. with nucleotide inserted^b	A	G	C	T	Mutation frequency (%)
NC	190 (2)	188	1 (5′ T)	0	1 (3′ T)	1.1	
Polη	142 (4)	138	1 (5′ T)	0	1 (3′ T)	2.8	
Polκ	192 (1)	191	1 (3′ T)	0	0	0.5	
Rev3	186 (0)	186	0	0	0	0	
Rev7	190 (1)	189	0	0	1 (3′ T)	0.5	
Polη + Polκ	178 (1)	177	1 (3′ T)	0	0	0.6	
Polη + Rev3	196 (2)	194	1 (3′ T)	0	1 (3′ T)	1.0	
Polκ + Rev3	194 (0)	194	0	0	0	0	

^a Numbers of mutant colonies are in parentheses.

^b The site where mutation occurred (the 3′ T or the 5′ T of the TT dimer) is shown in parentheses.
whereas in the other strand, the AgeI site puts the lesion-containing strand in frame with the lacZ sequence at the AflIII and SapI sites in pBS/pSB TLS vectors (Fig. 1C). The heteroduplex target sequence containing a cis-syn TT dimer in one strand and an Agel site opposite the TT dimer on the other strand is shown in Fig. 1A. The heteroduplex target sequence is placed into the lacZ sequence such that the lesion-containing strand is in frame with the lacZ sequence, whereas in the other strand, the Agel site puts the lacZ’ sequence out of frame (Fig. 1A). The wild-type kanamycin resistance gene (kan*) was placed on the same strand with the UV lesion, which is in frame with lacZ’ and MfeI site (Fig. 1B). The rest of the procedure for the construction of the final lesion-containing EBV vector (Fig. 1C) is identical to that described previously (36).

In vivo translesion synthesis assays in human cells. Since EBV replication requires Epstein-Barr nuclear antigen 1 (EBNA1), the host cell has to be EBV transformed or expressed the EBNA1 protein in trans. To test replication efficiency, we used HEK293T cells (American Type Culture Collection [ATCC]), EBV-transformed HEK 293 cells (ATCC), and XPA-deficient human fibroblasts (XP1D12E) stably expressing EBNA1. The siRNA knockdown efficiencies of TLS Pols have been shown previously (35, 36). For in vivo TLS assays, XPA cells were plated in six-well plates at 70% confluence (approximately 3 × 105 cells per well) and transfected with 100 pmol siRNAs. For the simultaneous siRNA knockdown of two TLS Pols, the siRNA knockdown of TLS Pol was followed by the siRNA knockdown of another TLS Pol. The clonogenicity assay was performed by the cloning efficiency assay (11).

REFERENCES

1. Lindner SE, Sugden B. 2007. The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 58:1–12.

2. Yates J, Warren N, Reisman D, Sugden B. 1984. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombiant plasmids in latently infected cells. Proc. Natl. Acad. Sci. U. S. A. 81:3806–3810.

3. Yates J, Warren N, Sugden B. 1985. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812–815.

4. Gahn TA, Schildkraut CL. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. J. Virol. 63:527–535.

5. Harrison S, Fisene K, Hearing J. 1994. Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. J. Virol. 68: 1913–1925.

6. Shirakata M, Hirai K. 1998. Identification of minimal oriP of Epstein-Barr virus required for DNA replication. J. Biochem. 123:175–181.

7. Yates J, Camiolo SM, Bashaw JM. 2000. The minimal replicator of Epstein-Barr virus oriP, J. Virol. 74:4512–4522.

8. Frappier L, O’Donnell M. 1991. Overproduction, purification, and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. J. Biol. Chem. 266:7819–7826.

9. Middleton T, Sugden B. 1992. EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J. Virol. 66:489–495.

10. Blow JJ, Laskey RA. 1988. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548.

11. Yates JL, Guan N. 1991. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J. Virol. 65:483–488.

12. Dhar SK, et al. 2001. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106:287–296.

13. Ritzl M, et al. 2003. Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. J. Cell Sci. 116:3971–3984.

14. Schepers A, et al. 2001. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J. 20:4588–4602.

15. Wang J, Lindner SE, Leight ER, Sugden B. 2006. Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol. Cell. Biol. 26:1124–1134.

16. Fanning E, Zhao K. 2009. SV40 DNA replication: from the A gene to a nanomachine. Virology 384:352–359.

17. Bullock PA, Seo YS, Hurwitz J. 1990. Binding and elongation reactions in the simian virus 40 DNA replication system. Proc. Natl. Acad. Sci. U. S. A. 87:5912–5916.

18. Tsurimoto T, Stillman B. 2003. Complex protein-DNA dynamics at the latent origin of DNA replication. Cell 112:2350–2361.

19. Danna KJ, Nathans D. 1972. Bidirectional replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. U. S. A. 69:3097–3100.

20. Fareed GC, Garon GF, Salzman NP. 1972. Origin and direction of simian virus 40 deoxyribonucleic acid replication. J. Virol. 10:484–491.

21. Li JJ, Kelly TJ. 1985. Simian virus 40 DNA replication in vitro: specificity of initiation and evidence for bidirectional replication. Mol. Cell. Biol. 5:1238–1246.

22. Borowiec JA, Dean FB, Bullock PA, Hurwitz J. 1990. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60:181–184.

23. D dodson M, Dean FB, Bullock P, Echols H, Hurwitz J. 1987. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science 230:964–967.

24. Mastrandelo IA, et al. 1989. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 338: 658–662.

25. Matsumoto T, Eki T, Hurwitz J. 1990. Studies on the initiation and elongation reactions in the simian virus 40 DNA replication system. Proc. Natl. Acad. Sci. U. S. A. 87:9712–9716.

26. Tsurimoto T, Melendy T, Stillman B. 1990. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346:534–539.

27. Tsurimoto T, Stillman B. 1990. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 87:1023–1027.

ACKNOWLEDGMENT

This work was supported by the National Institute of Environmental Health Sciences grant ES012411.
27. Weinberg DH, et al. 1990. Reconstitution of simian virus 40 DNA replication with purified proteins. Proc. Natl. Acad. Sci. U. S. A. 87:8692–8696.
28. Waga S, Stillman B. 1998. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67:721–751.
29. Zlotkin T, et al. 1996. DNA polymerase epsilon may be dispensable for SV40 but not cellular DNA replication. EMBO J. 15:2298–2305.
30. Cordeiro-Stone M, Makhov AM, Zaritskaya LS, Griffith JD. 1999. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289:1207–1218.
31. Cordeiro-Stone M, Zaritskaya LS, Price IK, Kaufmann WK. 1997. Replication fork bypass of a pyrimidine dimer blocking leading strand DNA synthesis. J. Biol. Chem. 272:13945–13954.
32. Nikolaishvili-Feinberg N, Cordeiro-Stone M. 2001. Bypass replication in vitro of UV-induced photoproducts blocking leading or lagging strand synthesis. Biochemistry 40:15215–15223.
33. Svoboda DL, Vos J-M. 1995. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation. Proc. Natl. Acad. Sci. U. S. A. 92:11975–11979.
34. Yoon J-H, Bhatia G, Prakash S, Prakash L. 2010. Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases κ and ζ in human cells. Proc. Natl. Acad. Sci. U. S. A. 107:14116–14122.
35. Yoon JH, Prakash L, Prakash S. 2010. Error-free replicative bypass of (6–4) photoproducts by DNA polymerase ζ in mouse and human cells. Genes Dev. 24:123–128.
36. Yoon JH, Prakash L, Prakash S. 2009. Highly error-free role of DNA polymerase η in the replicative bypass of UV induced pyrimidine dimers in mouse and human cells. Proc. Natl. Acad. Sci. U. S. A. 106:18219–18224.
37. McElhinny SA, et al. 2008. Division of labor at the eukaryotic replication fork. Mol. Cell 30:137–144.
38. Pursell ZF, Isoz I, Lundström EB, Johansson E, Kunkel TA. 2007. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–130.