Bandwidth Maximization of Disturbance Observer Based on Experimental Frequency Response Data

Xiaoke WANG *, Wataru OHNISHI *, and Takafumi KOSEKI *

Abstract : A disturbance observer (DOB) has been widely employed in industrial field due to its simplicity and effectiveness in disturbance rejection. This paper focuses on systematic bandwidth-maximized DOB design by frequency response data-based convex optimization. The transformation process from original non-convex optimization to convex optimization has been formulated. Simulation results have verified the feasibility and generality of the proposal and shown that the designed DOB is able to achieve good disturbance rejection performance.

Key Words : disturbance observer, frequency response data, convex optimization.

1. Introduction

Unavoidable disturbances deteriorate the performance of industrial control systems. To reject the effects of disturbance, a disturbance observer (DOB) has been proposed [1] and used in various applications, such as robot manipulators [2], high-speed positioning systems [3], etc.

In ideal disturbance observer configuration as shown in Fig. 1, the difference between \(u \) and \(\hat{u}_p \) (estimation of plant \(P_r \)) input \((u_p) \) obtained by using nominal plant inversion \((P_{r}^{-1}) \) creates estimated disturbance \(\hat{d} \), which is fed back to compensate effects of real disturbance \(d \). In practical applications, a low pass filter (\(Q \) filter) is necessary to guarantee the causality of the system, and the high bandwidth of the said filter is desired to ensure satisfactory disturbance rejection performance.

Previous research on the \(Q \) filter employed a parametric model (transfer function or state space representation) as a real plant. Since unknown coefficients of the parametric model are identified from experimentally obtained input-output relationship known as frequency response data (FRD), unmodeled dynamics which limit the shaping of \(Q \) filter response are introduced due to fitting process. Moreover, the \(Q \) filter designed by the aforementioned methods cannot be regarded as optimal. To directly utilize all the information of FRD in shaping \(Q \) filter response and optimize the bandwidth of the DOB, frequency response data-based DOB design has been explored in this paper.

Previous frequency response data-based research mainly focused on designing a linearly parameterized fixed order feedback controller while optimizing specifications of the control system [12]–[15], e.g., integrator gain. Convex optimization was used to compute robust controllers for single-input-single-output systems depicted by frequency response data in [12], which was applied to specifically design a PID controller in [13],[14] and further extended to the multi-input-multi-output case in [15].

In regard to the aforementioned works, we integrated the frequency response data-based method into DOB optimization design, and the preliminary work which designed a second order \(Q \) filter was presented in [16]. In this paper, we confirm the previous findings and enhance its generality and performance.

1. A systematic method of designing the second order \(Q \) filter by FRD is derived. The \(Q \) filter parameters are properly tuned to maximize the bandwidth of the DOB and provide satisfactory disturbance attenuation performance.

2. A general derivation process from non-convex constraints to convex constraints in DOB design has been developed. An iterative convex optimization process is established to solve the problem.

3. The requirement for the nominal plant and the damping factor of the \(Q \) filter have been mitigated compared with [16]. The proposed method is versatile for both minimum phase and non-minimum phase plants. The order of the
nominal plant is arbitrary, but the relative order should be two.

The remaining part of this paper is organized as follows. Section 2 provides mathematical preliminaries of this paper. Problem formulation is developed in Section 3. Non-convex constraints will be derived in this section followed by mathematical transformation to convex constraints in Section 4. Based on the constraints obtained, simulation results are shown in Section 5. Section 6 presents discussions, and this paper ends by giving concluding remarks in Section 7.

2. Preliminaries

A convex optimization problem is one in which the objective and constraint functions are convex, which means they satisfy the inequality [17]:

\[f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y) \]

for all \(x, y \in \mathbb{R}^n \) and all \(\alpha, \beta \in \mathbb{R} \) with \(\alpha + \beta = 1, \alpha \geq 0, \beta \geq 0 \).

A linear matrix inequality (LMI) has the following form:

\[F(x) = F_0 + \sum_{i=1}^{m} x_i F_i > 0, \]

in which \(x \in \mathbb{R}^m \) is the variable and the symmetric matrices \(F_i = F_i^T \in \mathbb{R}^{n \times n}, i = 0, \ldots, m \) are given [18].

Besides these, linear approximation is extensively employed. The basic concept is to estimate the value of a function, \(f(x) \), near a point \(x_0 = [x_0(1), x_0(2), \ldots, x_0(n)]^T \), using the following formula:

\[f(x) \approx f(x_0) + \nabla f(x_0)(x-x_0), \]

in which \(\nabla \) denotes the vector differential operator, and

\[\nabla f(x_0) = [\partial f(x_0)/\partial x(1), \partial f(x_0)/\partial x(2), \ldots, \partial f(x_0)/\partial x(n)]. \]

Additionally, |A| denotes the magnitude of A, and \(j\omega_k \) means sequential frequency points in which \(j \) is the imaginary unit while \(\omega_k \) and \(k \) are frequency point and the index of frequency point, respectively.

3. Problem Formulation

In the disturbance observer system as shown in Fig. 2, \(P_r \) and \(P_n \) denote the real plant and the nominal plant, defined by FRD and a transfer function, respectively. Signals \(d, \bar{d}, u, \) and \(y \) are external disturbance input, estimated disturbance, control input, and output, respectively. The to-be-designed low pass filter is represented by \(Q \).

In this paper, \(Q \) is selected as follows in which \(a = [a_1, a_2]^T \) is the parameter to be decided and the relative order of \(P_n \) is 2:

\[Q = \frac{1}{a_2 s^2 + a_1 s + 1}. \]

\[L = P_n^{-1}(1-Q)^{-1} P_s(j\omega_k) = \frac{P_s(j\omega_k)P_n^{-1}}{(a_2 s^2 + a_1 s) + N} \]

\[S = \frac{1}{1+(1-Q)^{-1} P_s(j\omega_k)P_n(j\omega_k)} = \frac{D + N}{D} \]

\[\frac{y}{d} = \frac{1+(1-Q)^{-1} P_s(j\omega_k)P_n(j\omega_k)}{1+(1-Q)^{-1} P_s(j\omega_k)^2 P_n(j\omega_k)^2} = \frac{S P_s(j\omega_k)}{D}, \]

\[S = \frac{1}{1+(1-Q)^{-1} P_s(j\omega_k)P_n(j\omega_k)} = \frac{1-S}{T}, \]

in which \(N = P_s(j\omega_k)P_n^{-1}, D = a_2 s^2 + a_1 s, \) and \(L, S, \) and \(T \) denote the open loop function, sensitivity function, and complementary sensitivity function for Fig. 2, respectively.

Several constraints should be satisfied to obtain satisfactory disturbance rejection performance. First, to guarantee the stability margins (the gain margin and the phase margin), the stability circle condition (14), which is graphically shown in Fig. 3, should be met.

The mathematical representation of stability circle condition is shown as the following inequality:

\[|\sigma + L(j\omega_k)| - r_m \geq 0, \]

in which \(L \) is the open loop function while \(\sigma \) (the center point of the circle \(C_2 (-\sigma, 0) \) and \(r_m \) (the radius of the circle \(C_2 \)) can be calculated by using the following equations ([14]), where \(g_m \) is the gain margin and \(\phi_m \) represents for phase margin:

\[\sigma = \frac{g_m - 1}{2 g_m (g_m \cos \phi_m - 1)}, \]

\[r_m = \frac{(g_m - 1)^2 + 2 g_m (1 - \cos \phi_m)}{2 g_m (g_m \cos \phi_m - 1)}. \]

Second, by selecting weighting functions \(W_p \) and \(W_m \) as follows for \(S \) and \(T \), respectively, the constraints for the sensitivity function and the complementary sensitivity function are established as shown in Figs. 4 and 5. The optimization objective is \(\omega_p \), which represents the bandwidth frequency of the disturbance observer. Variable \(\omega_k \) together with \(a_1 \) and \(a_2 \) is an optimization variable. When an optimal point \(\omega_{p(opt)} \) is found, \(a = [a_1, a_2]^T \) is obtained simultaneously. These constraints are
common in conventional H_∞ theory, but obtainable Q is of high order, whereas Q has fixed form in this paper.

\[W_p = \frac{\omega_p}{s}, |W_p| \leq 1, \]
\[W_m = \frac{s + \omega}{1.25s}, |W_m| \leq 1(M_i = 1.25). \]

Third, ω_p and ω set lower and upper bounds for the Q filter bandwidth frequency, and a_1 and a_2 should all be positive to guarantee the stability of the Q filter itself. While in our previous study [16], the damping factor of the Q filter ($\frac{a_1}{2\sqrt{a_1^2}}$) was limited to [0.5, 1], we managed to remove this constraint in this paper, which adds more freedom in tuning parameters.

In summary, the optimization problem can be formulated into the following form:

Maximize ω_p subject to $0 < a_1, 0 < a_2$, $0 < \omega_p \leq \frac{1}{\sqrt{a_2}} \leq \omega_t$, $|U(j\omega) + \sigma| \geq r_m$, $|W_p(j\omega_p, \omega_p)|S(j\omega_p)| \leq 1$, $|W_m(j\omega_m, \omega_m)|T(j\omega_m)| \leq 1$.

4. Convex Constraints Derivation

In this section, the above-listed non-convex constraints are all transformed into linear functions or LMI form in terms of variables ω_p, ω_t, a_1, a_2. The derived constraints are a sufficient condition of original constraints, which means that if the newly-obtained constraints are satisfied, the original constraints hold undoubted.

4.1 Constraint in Eq. (12c)

The left side of Eq. (12c) ($\omega_p \leq \frac{1}{\sqrt{a_2}}$) is changed into the following form by using linear approximation of $\frac{1}{\sqrt{a_2}}$:

\[\omega_p \leq \frac{1}{\sqrt{a_2(i)}} \Leftrightarrow \omega_p \leq \frac{1}{\sqrt{a_2(i)}} = \frac{a_2(i) - a_2(i-1)}{2}/\text{newly-obtained} \]

in which i is the iteration index and $a_2(i)$ and ω_p mean the current values while $a_2(i-1)$ means the previous value in the iterative optimization process.

The Schur complement is used to deal with the right side of Eq. (12c) ($\frac{1}{\sqrt{a_2(i)} - \omega_p(i)}$):

\[\frac{1}{a_2(i)} \leq \omega_p(i) \Leftrightarrow \frac{1}{a_2(i)} - \omega_p(i) \leq 2\omega_p(i) - \omega_p(i) - \omega_p(i) \]

\[\Leftrightarrow 2\omega_p(i) - \omega_p(i) - \omega_p(i) \leq 1 \geq 0. \]

Similarly, $\omega_p(i)$ means the current value, while $\omega_p(i-1)$ means the previous value in the iterative optimization process.

4.2 Constraint in Eq. (12d)

In this subsection, Eq. (12d) is converted to convex constraint in the following way.

\[|U(j\omega_k, a_1) + \sigma| - r_m = \frac{N(j\omega_k)}{D(j\omega_k, a_1)} + \sigma - r_m \geq 0 \]

\[\Leftrightarrow \left| N(j\omega_k) + D(j\omega_k, a_1)\sigma \right| - r_m = |D(j\omega_k, a_1)|. \]

Define $F(j\omega_k, a_1) = |N(j\omega_k) + D(j\omega_k, a_1)\sigma|$. Since $F(j\omega_k, a_1)$ is a convex function of variable a_1 and the linear approximation of it would be no larger than the original value, the following equation holds:

\[F(j\omega_k, a_1) \geq r_m |D(j\omega_k, a_1)| \Leftrightarrow |\Psi - r_m |D(j\omega_k, a_1)|| \geq 0, \]

where

\[\Psi = F(j\omega_k, a_1) + \nabla F(j\omega_k, a_1)(a_1 - a_1), \]

\[\nabla F(j\omega_k, a_1) = \frac{\partial |N(j\omega_k) + D(j\omega_k, a_1)\sigma|}{\partial a_1(i)} . \]

4.3 Constraint in Eq. (12e)

For the sensitivity function constraint, by substituting (11a) and (7b) into (12e), the following inequality is obtained:

\[|W_p(j\omega_k, \omega_p) S(j\omega_k, a_1)| \leq 1 \]

\[\Leftrightarrow \left| \omega_p \right|D(j\omega_k, a_1) \leq |D(j\omega_k, a_1)|. \]

Squaring both sides of Eq. (19) and turning this inequality into matrix inequality form by using the Schur complement, we have

\[\left(\begin{array}{cc} \omega_p(i) & \omega_p \omega_p(i) \\ \omega_p(i) & \omega_p(i) \end{array} \right)^2 |D(j\omega_k, a_1)|^2 \leq |D(j\omega_k, a_1)| + |N(j\omega_k)|^2 \]

\[\Leftrightarrow \left[\begin{array}{cc} \omega_p(i) & \omega_p(i) \\ \omega_p(i) & \omega_p(i) \end{array} \right] \left(\begin{array}{cc} \omega_p(i) & \omega_p(i) \\ \omega_p(i) & \omega_p(i) \end{array} \right)^T \left(\begin{array}{cc} D(j\omega_k, a_1) \right) \leq |D(j\omega_k, a_1)| + |N(j\omega_k)|^2 \]

\[\left[S_{11} S_{12} \right] \left(\begin{array}{cc} S_{11} & S_{12} \\ S_{12} & S_{22} \end{array} \right) \geq 0. \]
To obtain a sufficient condition of original constraint, lower bounds of S_{11} and S_{22} are required. For $S_{11} = \frac{(\omega_p)^2}{\omega_p}$, a lower bound of ω_p^2 is obtained by using the following technique [19]:

$$\omega_p^2 - \omega_{p-1}^2 \geq 0$$

$$\omega_p^2 - \omega_{p-2}^2 \geq 0$$

$$\omega_p^2 - \omega_{p-3}^2 \geq \phi_1(i) > 0,$$

in which $\phi_1(i)$ is a newly-introduced variable and the constraints for it can be expressed in the following form:

$$\begin{align*}
\frac{2\omega_p^2 - \phi_1(i)\omega_{p-1}^2}{\omega_p(i)} \geq 0, \phi_1(i) > 0.
\end{align*}$$

In conclusion,

$$S_{11} = \frac{(\omega_p)^2}{\omega_p} \geq \omega_p^2 \phi_1(i) > 0.$$ \hspace{1cm} (23)

As for S_{22}, since $|D(j\omega_k, a_i) + N(j\omega_k)|^2$ is a convex function of variable a_i, the linear approximation is employed to find a lower bound of it:

$$S_{22} = \frac{|D(j\omega_k, a_i) + N(j\omega_k)|^2}{\text{original convex}} \geq (M(j\omega_k, a_i) + \nabla(M(j\omega_k, a_i)))(a_i - a_{i-1}) = \Phi,$$

newly-obtained \hspace{1cm} (24)

in which

$$\nabla(M(j\omega_k, a_i)) = \begin{bmatrix}
\frac{\partial[D(j\omega_k, a_{i-1}) + N(j\omega_k)]}{\partial a_{i-1}} \\
\frac{\partial[D(j\omega_k, a_i) + N(j\omega_k)]}{\partial a_i}
\end{bmatrix}.$$

In summary, the original nonlinear constraint Eq. (12c) is transformed into the following form by combining Eq. (20), Eq. (22), Eq. (23), and Eq. (24):

$$\begin{align*}
\frac{\omega_p^2 \phi_1(i)}{(D(j\omega_k, a_i))} \Phi & \geq 0, \phi_1(i) > 0, \hspace{1cm} (26a)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_p^2 - \phi_1(i)\omega_{p-1}^2}{\omega_p(i)} \geq 0. \hspace{1cm} (26b)
\end{align*}$$

4.4 Constraint in Eq. (12f):

Following a similar process as used in dealing with Eq. (12e), the complementary sensitivity function constraint is changed into the following form:

$$\begin{equation}
W_m(\omega_N)T(j\omega_k, a_i) \leq 1 \Rightarrow \begin{bmatrix} j\omega_k + \omega_N & 1 & N(j\omega_k) \\ 1 & 1.25\omega_N & 1.25 \\ N(j\omega_k) & 1.25 & 1.25 \\ \end{bmatrix} \leq \frac{1 + \frac{N(j\omega_k)D(j\omega_k, a_i)}{N(j\omega_k)D(j\omega_k, a_i)}}{1 + \frac{N(j\omega_k)D(j\omega_k, a_i)}{N(j\omega_k)D(j\omega_k, a_i)}} \hspace{1cm} (27)
\end{equation}$$

$$\Rightarrow \begin{align*}
\frac{j\omega_k + \omega_N}{1.25\omega_N} & \leq \frac{|D(j\omega_k, a_i) + N(j\omega_k)|^2}{N(j\omega_k)(j\omega_k + \omega_N)} \hspace{1cm} (27)
\end{align*}$$

$$\Rightarrow \begin{align*}
\frac{|D(j\omega_k, a_i) + N(j\omega_k)|^2}{N(j\omega_k)(j\omega_k + \omega_N)} & \geq 0. \hspace{1cm} (27)
\end{align*}$$

$$\begin{bmatrix} T_{11} & T_{12} \\ T_{12} & T_{22} \end{bmatrix} \geq 0.$$

As before, T_{11} and T_{22} need transformation. Since $T_{22} = S_{22}$, this part is omitted due to the repetition. For T_{11},

$$\omega_N^2 \geq 2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2 \hspace{1cm} (28)$$

By combining Eq. (24), Eq. (27) and Eq. (28), the original non-convex constraint is changed into

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{|N(j\omega_k)(j\omega_k + \omega_N)|} \geq 0. \hspace{1cm} (29)
\end{align*}$$

4.5 Problem Reformulation

After finishing all the processes mentioned above, the original problem is reformulated as follows.

Maximize

$$a_{i+1} > 0, a_{i+2} > 0, \omega_N > \omega_p > 0,$$

Subject to

$$\begin{align*}
\phi_1(i) > 0, |\gamma - r_m D(j\omega_k, a_i)| & \geq 0, \hspace{1cm} (30a)
\end{align*}$$

$$\begin{align*}
\omega_N \geq \frac{1}{2\Phi} \frac{a_{i+1}^2}{a_{i+1}^2 - a_{i+1}^2} \hspace{1cm} (30b)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{1} \geq 0. \hspace{1cm} (30c)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{1} \geq 0. \hspace{1cm} (30d)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{1} \geq 0. \hspace{1cm} (30e)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{1} \geq 0. \hspace{1cm} (30f)
\end{align*}$$

$$\begin{align*}
\frac{2\omega_{N-1}^2 \omega_N - \omega_{N-1}^2}{1} \geq 0. \hspace{1cm} (30g)
\end{align*}$$

The new optimization problem is a convex optimization problem and can be solved by commercial solvers.

5. Simulation Result

5.1 Simulation Plant and Simulation Condition

The simplified model of the simulation plant is shown in Fig. 6. The linear motor (actuator) provides actuation force (input, F) and moves the table towards a predefined position. The position of the table (output or control target x) is recorded by a table-side linear encoder. As the table-side linear encoder position (vertical direction l_{sys}) changes, the plant dynamics (from linear motor actuation force F to table’s position x) varies from minimum phase to non-minimum phase [20].

Input disturbances, e.g., the friction of the linear motor, are taken into account. The real plant and the nominal plant are represented by FRD ($P_s(j\omega)$) and the transfer function (P_s), respectively. For both minimum phase and non-minimum phase plants, a disturbance observer has been designed by utilizing our proposal.

During all the simulations, the desired gain margin and the phase margin are 6 dB and 30°. According to Eq. (9) and Eq. (10),

$$\sigma = 1.03, \ r_m = 0.525.$$ \hspace{1cm} (31)
5.2 Case 1: Stable Minimum Phase Plant

The system is minimum phase when l_{enc} is 80 mm. The corresponding nominal plant (P_n) is fourth order, and the Bode plots of P_r (FRD) and P_n are shown in Fig. 7:

\begin{align}
P_n &= \frac{59.275(s^2 + 8.402s + 6.573 \times 10^4)}{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^4)}, \\
L &= \frac{P_r(j\omega_k)P_n^{-1}}{a_2s^2 + a_1s}, \quad S = \frac{a_2s^2 + a_1s}{a_2s^2 + a_1s + P_r(j\omega_k)P_n^{-1}}, \\
T &= \frac{P_r(j\omega_k)P_n^{-1}}{a_2s^2 + a_1s + P_r(j\omega_k)P_n^{-1}}.
\end{align}

After optimization, $\omega_{p(0pt)} = 88.6$ rad/s (14.1 Hz). In the meantime, $a_1 = 0.0071$, $a_2 = 5.79 \times 10^{-5}$, and the damping factor is 0.46. The magnitude plots of optimized S, initial S and W_p (optimized) are shown in Fig. 8a.

The stability margin constraint, Eq. (12d), holds successfully, and the bandwidth of the open loop function is maximized as the optimized Nyquist plot becomes tangent to the small dotted circle (Fig. 8b) whose center is located at $(-\sigma, 0)$, i.e., $(-1.03, 0)$ and the radius is $r_v = 0.525$.

The constraints for S and T are satisfied as $|W_pS|$ and $|W_nT|$ are always no larger than 0 dB in Fig. 8c.

5.3 Case 2: Stable Non-Minimum Phase Plant

When the vertical distance from the table side linear encoder to the actuator (l_{enc}) is 300 mm, the plant dynamics becomes non-minimum phase (unstable zeros appear). The nominal plant is shown in Eq. (33) as fourth order and contains one unstable zero. Figure 9 depicted the Bode plots of P_r (FRD) and P_n:

\begin{equation}
P_n = \frac{-206.68(s - 125.6)(s + 120)}{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^4)}.
\end{equation}

Since the inverse of the nominal plant is unstable, an approximate inverse of the nominal plant (zero magnitude error approximation [23]) is used:

\begin{equation}
\tilde{P}_n^{-1} = \frac{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^4)}{206.68(s + 125.6)(s + 120)}.
\end{equation}

The corresponding L, S, and T are obtained as

\begin{align}
L &= \frac{P_r(j\omega_k)\tilde{P}_n^{-1}}{a_2s^2 + a_1s}, \quad S = \frac{a_2s^2 + a_1s}{a_2s^2 + a_1s + P_r(j\omega_k)\tilde{P}_n^{-1}}, \\
T &= \frac{P_r(j\omega_k)\tilde{P}_n^{-1}}{a_2s^2 + a_1s + P_r(j\omega_k)\tilde{P}_n^{-1}}.
\end{align}

After optimization, $\omega_{p(0pt)} = 33.1$ rad/s (5.26 Hz) and $a_1 = 0.0239$, $a_2 = 1.98 \times 10^{-6}$. The tuned Q filter’s damping factor is 8.59. The magnitude plots of optimized S, initial S, and

5.2 Case 1: Stable Minimum Phase Plant

The system is minimum phase when l_{enc} is 80 mm. The corresponding nominal plant (P_n) is fourth order, and the Bode plots of P_r (FRD) and P_n are shown in Fig. 7:

\begin{align}
P_n &= \frac{59.275(s^2 + 8.402s + 6.573 \times 10^4)}{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^4)}, \\
L &= \frac{P_r(j\omega_k)P_n^{-1}}{a_2s^2 + a_1s}, \quad S = \frac{a_2s^2 + a_1s}{a_2s^2 + a_1s + P_r(j\omega_k)P_n^{-1}}, \\
T &= \frac{P_r(j\omega_k)P_n^{-1}}{a_2s^2 + a_1s + P_r(j\omega_k)P_n^{-1}}.
\end{align}

After optimization, $\omega_{p(0pt)} = 88.6$ rad/s (14.1 Hz). In the meantime, $a_1 = 0.0071$, $a_2 = 5.79 \times 10^{-5}$, and the damping factor is 0.46. The magnitude plots of optimized S, initial S and W_p (optimized) are shown in Fig. 8a.

The stability margin constraint, Eq. (12d), holds successfully, and the bandwidth of the open loop function is maximized as the optimized Nyquist plot becomes tangent to the small dotted circle (Fig. 8b) whose center is located at $(-\sigma, 0)$, i.e., $(-1.03, 0)$ and the radius is $r_v = 0.525$.

The constraints for S and T are satisfied as $|W_pS|$ and $|W_nT|$ are always no larger than 0 dB in Fig. 8c.
W_p (optimized) are shown in Fig. 10a. Similar to the minimum phase case, the optimized Nyquist plot in this case also becomes almost tangent to the small dotted circle as shown in Fig. 10b, which implies that the stability margin constraint Eq. (12d) is satisfied. Since $|W_pS|$ and $|W_mT|$ are always no larger than 0 dB in Fig. 10c, it is verified that the constraints Eq. (12e) and Eq. (12f) hold successfully.

5.4 Disturbance Rejection Performance

Simulations have been conducted to test the disturbance rejection performance of the above-designed Q filters by using Fig. 11, and when the non-minimum phase nominal plant is employed, P_n^{-1} in the figure is replaced by \bar{P}_n^{-1}. For both minimum and non-minimum phase plants, P_r is a well-identified 8th order transfer function (tf) (FRD can not be used in this simulation). The feedback controller C_{fb} is chosen as follows:

$$C_{fb} = \frac{1.3 + \frac{3.75}{s} + \frac{0.139}{0.0249s + 1}}{s}.$$ \hspace{1cm} (36)

By making reference input as zero and injecting unit step disturbance to the system, in both cases (minimum phase plant and non-minimum phase plant), three different output responses are obtained for comparison.

1. Only the feedback controller C_{fb} works in the system.
2. The selected initial disturbance observer [16] and the feedback controller C_{fb} work in the system together.
3. The optimized disturbance observer and the feedback controller C_{fb} work in the system together.

5.4.1 Case 1: stable minimum phase plant

The transfer function of P_r is chosen as follows:

$$P_r = \frac{43.834(s^2 + 8.402s + 6.573 \times 10^4)}{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^3)} \times \frac{(s^2 + 74.07s + 4.128 \times 10^5)(s^2 + 308.38s + 3.606 \times 10^9)}{(s^2 + 45.4s + 3.139 \times 10^3)(s^2 + 262.2s + 3.507 \times 10^6)}.$$ \hspace{1cm} (37)

The disturbance rejection performance is depicted in Fig. 12. It can be concluded that the maximum deviation from the reference position (0) has been decreased by 53.0% compared to the initial DOB and 94.6% compared to the feedback controller only case, which implies that designed Q filter has improved the disturbance rejection performance.

5.4.2 Case 2: stable non-minimum phase plant

For non-minimum phase plant case, P_r is defined by Eq. (38):

$$P_r = \frac{164.38(s + 1089)(s - 878)(s - 125.6)}{s(s + 2.101)(s^2 + 10.89s + 3.665 \times 10^3)} \times \frac{(s + 120)(s^2 + 185.5s + 1.447 \times 10^9)}{(s^2 + 45.4s + 3.139 \times 10^3)(s^2 + 262.2s + 3.507 \times 10^6)}.$$ \hspace{1cm} (38)

The proposed Q filter design outperforms the initial design, and the disturbance rejection performance has been improved as shown in Fig. 13. The maximum deviation from the reference position has been decreased by 67.7% compared to the
As long as the frequency response data can be obtained for a single plant, the proposed method can provide bandwidth-maximized design for each plant. The only limitation on the frequency response data is that the plant should be stable.

7. Conclusion

This paper has proposed a general design method for maximizing bandwidth of disturbance observer configuration directly based on frequency response data. Moreover, all the non-convex constraints have been transformed into convex form, which is solved by convex optimization. The numerical case studies present the feasibility and generality of the proposed method for both minimum and non-minimum phase plants.

Acknowledgments

The work presented in this paper is supported by JSPS KAKENHI Grant Number 18H05902 and the Telecommunications Advancement Foundation. The student author is grateful to China Scholarship Council (CSC) for supporting her. The authors cordially thank Professor Hiroshi Fujimoto (The University of Tokyo) for providing the frequency response data.

References

[1] K. Ohishi, K. Ohnishi, and K. Miyachi: Torque-speed regulation of DC motor based on load torque estimation method, International Power Electronics Conference, pp. 1209–1218, 1983.
[2] E. Schrijver and J. van Dijk: Disturbance observers for rigid mechanical systems: Equivalence, stability, and design, Journal of Dynamic Systems, Measurement, and Control, Vol. 124, No. 4, pp. 539–548, 2002.
[3] S. Endo, H. Kobayashi, C.J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori: Robust digital tracking controller design for high-speed positioning systems, Control Engineering Practice, Vol. 4, No. 4, pp. 527–536, 1996.
[4] X. Chen and M. Tomizuka: Optimal plant shaping for high bandwidth disturbance rejection in discrete disturbance observers, Proceedings of the American Control Conference, pp. 2641–2646, 2010.
[5] C.C. Wang and M. Tomizuka: Design of robustly stable disturbance observers based on closed loop consideration using H_∞ optimization and its applications to motion control systems, Proceedings of the American Control Conference, pp. 3764–3769, 2004.
[6] Y. Choi, K. Yang, W.K. Chung, H.R. Kim, and I.H. Suh: On the robustness and performance of disturbance observers for second-order systems, IEEE Transactions on Automatic Control, Vol. 48, No. 2, pp. 315–320, 2003.
[7] T. Umeno and Y. Hori: Robust speed control of DC servomotors using modern two degrees-of-freedom controller design, IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, pp. 363–368, 1991.
[8] G.C. Goodwin, S.F. Graebe, and M.E. Salgado: Control System Design, Prentice Hall, 2009.
[9] E. Sariyildiz and K. Ohnishi: A new solution for the robust control problem of non-minimum phase systems using disturbance observer, IEEE International Conference on Mechatronics, pp. 46–51, 2013.
[10] E. Sariyildiz and K. Ohnishi: A Guide to Design Disturbance Observer, Journal of Dynamic Systems, Measurement, and Control, Vol. 136, No. 2, 021011, 2014.
[11] X. Chen, G. Zhai, and T. Fukuda: An approximate inverse system for nonminimum-phase systems and its application to dis-
turbance observer, Systems & Control Letters, Vol. 52, pp. 193–207, 2004.

[12] A. Karimi and G. Galdos: Fixed-order H_∞ controller design for nonparametric models by convex optimization, Automatica, Vol. 46, No. 8, pp. 1388–1394, 2010.

[13] M. Hast, K.J. Åström, B. Bernhardsson, and S. Boyd: PID design by convex-concave optimization, Proceedings of the European Control Conference, pp. 4460–4465, 2013.

[14] K. Nakamura, K. Yubai, D. Yashiro, and S. Komada: Controller design method achieving maximization of control bandwidth by using Nyquist diagram, Proceedings of the International Automatic Control Conference, pp. 35–40, 2016.

[15] G. Galdos, A. Karimi, and R. Longchamp: H_∞ controller design for spectral MIMO models by convex optimization, Journal of Process Control, Vol. 20, No. 10, pp. 1175–1182, 2010.

[16] X. Wang, W. Ohnishi, and T. Koseki: Frequency response data based disturbance observer design applicable to non-minimum phase systems, Proceedings of the Annual Conference of the Society of Instrument and Control Engineers of Japan, pp. 358–363, 2019.

[17] S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004.

[18] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, 1994.

[19] S. Boyd, M. Hast, and K.J. Åström: MIMO PID tuning via iterated LMI restriction, International Journal of Robust and Nonlinear Control, Vol. 26, No. 8, pp. 1718–1731, 2016.

[20] A. Hara, K. Saiki, K. Sakata, and H. Fujimoto: Basic examination on simultaneous optimization of mechanism and control for high precision single axis stage and experimental verification, Proceedings of the Conference of IEEE Industrial Electronics, pp. 2509–2514, 2008.

[21] J. Löfberg: YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Conference on Robotics and Automation, pp. 284–289, 2004

[22] MOSEK ApS: MOSEK optimization toolbox for MATLAB manual, 2019.

[23] J.T. Wen and B. Potsaid: An experimental study of a high performance motion control system, Proceedings of the American Control Conference, pp. 5158–5163, 2004.

[24] M. Tomizuka: Zero phase error tracking algorithm for digital control, Journal of Dynamic Systems, Measurement, and Control, Vol. 109, No. 1, pp. 65–68, 1987.

[25] E. Gross and M. Tomizuka: Experimental beam tip tracking control with a truncated series approximation to uncancelable inverse dynamics, IEEE Transactions on Control Systems Technology, Vol. 2, No. 4, pp. 382–391, 1994.

Xiaoke Wang

She received her B.S. and M.S. degrees from Beihang University, China, in 2014 and 2017, respectively. She is currently a Ph.D. student at the University of Tokyo. Her research interests include disturbance rejection in high-precision motion control.

Wataru Ohnishi (Member)

He received the B.E., M.S., and Ph.D. degrees from the University of Tokyo, Japan in 2013, 2015, and 2018, respectively. Presently, he is an assistant professor with the Department of Electrical Engineering and Information Systems, Graduate School of Engineering, the University of Tokyo. His research interests include high-precision motion control and optimization. He is a member of IEEE and IEEJ.

Takafumi Koseki

He received the Ph.D. degree in electrical engineering from the University of Tokyo, Tokyo, Japan, in 1992. He is currently a Professor in the Department of Electrical Engineering and Information Systems, the University of Tokyo. His current research interests include applications of electrical engineering to public transport systems, especially to linear drives, and analysis and control of traction systems. He is a member of the Institute of Electrical Engineers of Japan, the Japan Society of Mechanical Engineering, the Japan Society of Applied Electromagnetics, and Mechanic.