A PrPC-caveolin-Lyn complex negatively controls neuronal GSK3β and serotonin 1B receptor

Julia Hernandez-Rapp1,2,3*, Séverine Martin-Lannereé1,2*, Théo Z. Hirsch1,2*, Elodie Pradines1,2, Aurélie Alleaume-Butaux1,2, Benoît Schneider1,2, Anne Baudry1,2, Jean-Marie Launay4,5 & Sophie Mouillet-Richard1,2

1INSERM UMR-S1124, 75006 Paris France, 2Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France, 3Université Paris Sud 11, ED419 Biosigné, 91400 Orsay, France, 4APHP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France, 5Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland.

The cellular prion protein, PrP(C), is a glycosylphosphatidylinositol-anchored protein, abundant in lipid rafts and highly expressed in the brain. While PrP(C) is much studied for its involvement under its abnormal PrP(Sc) isoform in Transmissible Spongiform Encephalopathies, its physiological role remains unclear. Here, we report that GSK3β, a multifunctional kinase whose inhibition is neuroprotective, is a downstream target of PrP(C) signalling in serotonergic neuronal cells. We show that the PrP(C)-dependent inactivation of GSK3β is relayed by a caveolin-Lyn platform located on neuronal cell bodies. Furthermore, the coupling of PrP(C) to GSK3β potentiates serotonergic signalling by altering the distribution and activity of the serotonin 1B receptor (5-HT1BR), a receptor that limits neurotransmitter release. In vivo, our data reveal an increased GSK3β kinase activity in PrP-deficient mouse brain, as well as sustained 5-HT1BR activity, whose inhibition promotes an anxiogenic behavioural response. Collectively, our data unveil a new facet of PrP(C) signalling that strengthens neurotransmission.

The cellular prion protein, PrP(C), whose conversion into its scrapie isoform PrP(Sc) causes prion diseases, is a ubiquitous, glycosylphosphatidylinositol (GPI)-anchored glycoprotein predominantly expressed in neurons1. Despite intense research, our knowledge of the biological function of PrP(C) is still far from complete. Recently, increasing attention has been paid to the involvement of PrP(C) in signal transduction, especially since PrP(C) appears to act as a receptor for the beta-amyloid peptide Aβ and to mediate Aβ neurotoxicity2,3. PrP(C) can indeed recruit signalling cascades after engagement with partners, which, beyond Aβ, include PrP(C) itself4 or the protective factor STI-15,6. Such interactions can be mimicked through antibody-mediated ligation of PrP(C)7,8. By exploiting the later strategy and the 1C11 cell line with its differentiated serotonergic (1C115-HT) or noradrenergic (1C11NE) neuronal progenies9, we previously identified neurospecific PrP(C)-dependent signalling pathways, under the control of a signalling platform where PrP(C) associates with caveolin and the Fyn kinase. While PrP(C), caveolin and Fyn are present in both cell bodies and neuronal processes, their association within a signalling complex is spatially restricted to the neurites of differentiated cells7, raising the issue of potential signal transduction cascades imparted by PrP(C) species located on the cell bodies. We further identified effectors downstream this complex, including NADPH oxidase and CREB, which support an involvement of PrP(C) in neuronal survival and plasticity8,10.

Another important gatekeeper of neuronal homeostasis is the Glycogen Synthase Kinase 3β (GSK3β) multi-functional serine/threonine kinase11. Unlike most kinases, GSK3β is active under resting conditions and is primarily regulated through inhibition. Its activity is facilitated by phosphorylation on Tyrosine 216 (Y216), which may notably occur through autophosphorylation, while phosphorylation on Serine 9 (S9) is sufficient to inhibit its kinase activity12. Inactivation of GSK3β occurs in many pathways, including Wnt, insulin and growth factors13 and is associated with diverse aspects of neuronal function, such as the onset and maintenance of neuronal polarity, survival and activity14. On the opposite, GSK3β overactivation impairs neuronal architecture, plasticity and survival12.
Here, we report that PrP^C instructs the phosphorylation of GSK3<beta> on S9 in neuronal cells and that this response occurs after both antibody-mediated ligation of PrP^C or binding to its ligand STI-1. We show that the inhibition of GSK3<beta> is imparted by full-length PrP^C species located on cell bodies, and is relayed by a Lyn kinase - phosphoinositide 3 kinase (PI3K) - Akt module, via caveolin. Our in vitro data further indicate that the mobilization of the PrP^C-GSK3<beta> cascade cancels the activity of the serotonin 1B receptor (5-HT_{1B}R), a negative regulator of neurotransmitter release. Finally, we provide evidence for increased GSK3<beta> and 5-HT_{1B}R activities in the brain of PrP-deficient mice, which correlate with neurochemical and behavioural changes.

Results

PrP^C promotes inactivation of GSK3<beta> in 1C11^{5-HT} neuronal cells. To probe the occurrence of a signalling pathway linking PrP^C to GSK3<beta>, we monitored the level of pS9-GSK3<beta> and pY216-GSK3<beta> in 1C11^{5-HT} neuronal cells exposed to PrP^C antibodies, a means to study PrP^C-dependent cell signalling events⁷. Because PrP^C is subject to proteolytic processing at position 111/112, we performed our experiments with antibodies directed against the N-terminus (SAF32), which recognize only full-length PrP^C, and antibodies against the C-terminus (SAF61), which target both full-length and truncated PrP^C species⁵. 1C11^{5-HT} cells expressed a basal level of pY216-GSK3<beta>, which was barely sensitive to either PrP^C antibodies, within a 120 min time scale (Fig. 1a,b). In contrast, we found that PrP^C ligation with SAF32 antibodies in 1C11^{5-HT} cells was barely sensitive to either PrP^C antibodies, within a 120 min time scale (Fig. 1e). On the opposite, the pS9-GSK3<beta> labeling in cells treated with SAF61 was similar to that of control 1C11^{5-HT} cells (Fig. 1e).

We further analyzed the status of p-GSK3<beta> in PrP^C-depleted 1C11^{5-HT} cells. While the level of pY216-GSK3<beta> was unaffected by siRNA-mediated knockdown of PrP^C, we monitored a drastic (84%) reduction in pS9-GSK3<beta> in PrP^C-depleted 1C11^{5-HT} cells versus control cells (Fig. 1f), indicating that PrP^C depletion exacerbates basal GSK3<beta> activity.

Next, we sought to evaluate the physiological relevance of the signalling events induced by antibody ligation by mimicking the interaction of PrP^C with its ligand STI-1⁶. To this purpose, 1C11^{5-HT} neuronal cells were exposed to a peptide corresponding to the domain of STI-1 that binds PrP^C (aa 230–245) (25 μM). Cell lysates were immunoblotted with antibodies targeting either pY216-GSK3<beta> or pS9-GSK3<beta> and total GSK3<beta> for quantification. The levels of pS9-GSK3<beta> and pY216-GSK3<beta> were however insensitive to exposure to a scramble control peptide (Fig. S1b). Of 1C11^{5-HT} cells, which correlate with neurochemical and behavioural changes.

Figure 1 | Stimulation of native PrP^C promotes GSK3<beta> phosphorylation on S9. (a–d) 1C11^{5-HT} neuronal cells were exposed to anti-PrP^C antibodies targeting a N-terminal epitope (SAF32, 10 μg/ml) (a), (c) or a C-terminal epitope (SAF61, 10 μg/ml) (b), (d). Cell lysates were immunoblotted with antibodies targeting either pY216-GSK3<beta> (a), (b) or pS9-GSK3<beta> (c), (d). Levels of pY216-GSK3<beta> (a), (b) or pS9-GSK3<beta> (c), (d) were normalized to total GSK3<beta> for quantification. (e) 1C11^{5-HT} neuronal cells were exposed to various anti-PrP^C antibodies (SAF32, SAF61, each 10 μg/ml) for 30 min were stained with anti pS9-GSK3<beta> antibodies. Unstimulated cells and cells treated with the phorbol ester PMA (5 μM, 30 min), a known inducer of phosphorylation of GSK3<beta> at S9⁵, were included as negative and positive controls, respectively. Scale bar = 25 μm. (f) The levels of pS9-GSK3<beta>, pY216-GSK3<beta> and total GSK3<beta> were assessed by immunoblotting in 1C11^{5-HT} cells transfected for 36 h with a siRNA targeted against PrP (Si-PrP) or a control scramble (Si-scr). Immunoblotting with antibodies to PrP and actin was carried out to check knockdown and as loading control, respectively. (g), (h) 1C11^{5-HT} neuronal cells were exposed to a peptide corresponding to the domain of STI-1 that binds PrP^C (aa 230–245) (25 μM). Cell lysates were immunoblotted with antibodies targeting either pY216-GSK3<beta> (g) or pS9-GSK3<beta> (h). Levels of pY216-GSK3<beta> (g) or pS9-GSK3<beta> (h) were normalized to total GSK3<beta> for quantification. Gels have been cropped for clarity and conciseness purposes; original images corresponding to (a–d) are shown in Supplemental Figure 4. All data are representative of a set of n = 4 to 6 independent experiments. Results are expressed as means ± S.E.M. *P < 0.05 vs. control, Kolmogorov-Smirnov test.
The occurrence of a PrP^C-GSK3β coupling could be extended to PC12 cells. Indeed, exposure of differentiated PC12 cells to the STI-1 peptide promoted the phosphorylation of GSK3β at S9 (150%), while not affecting phosphorylation at Y216, in accordance with the data obtained with 1C11^{4-Ht} cells (Fig. S2).

These results introduce GSK3β as a novel target of PrP^C signalling in neuronal cells. They show that the phosphorylation of GSK3β on Y216 does not depend on PrP^C. In contrast, PrP^C can induce the phosphorylation of GSK3β on S9 and thereby limit its kinase activity. This inactivation of GSK3β is observed after ligation with antibodies targeting the N-terminal - but not the C-terminal - region of PrP^C. Of note, this coupling occurs endogenously and can be mobilized by the interaction of PrP^C with its natural ligand STI-1.

PrP^C negatively controls GSK3β in vivo. We then tested the occurrence of a PrP^C-GSK3β coupling in vivo. First, we observed a reduction in the level of pS9-GSK3β (19% of control levels), but not pY216-GSK3β, in brain extracts from PrP^{ΔN} mice as compared to their wild-type (WT) counterparts (Fig. 2a), in line with our in vitro results. Furthermore, in WT mice, the stereotaxic injection of SAF32 antibodies into the raphe nuclei, a brain cluster of serotonergic neurons, promoted a potent increase in pS9-GSK3β (187%), with a kinetics that globally compared that observed in vitro (Fig. 2b). In line with our in vitro data, the level of pY216-GSK3β was insensitive to SAF32 injection in the raphe of WT mice (Fig. 2c). Of note, SAF32 antibodies failed to induce any change in the levels of pS9-GSK3β (Fig. 2d) or pY216-GSK3β (Fig. 2e) in the raphe of PrP/ΔN mice. Finally, as with 1C11^{4-Ht} cells, the injection of SAF61 antibodies into the raphe of WT mice did not impact on the level of either pS9-GSK3β (Fig. 2f) or pY216-GSK3β (Fig. 2g). Collectively, these data provide an in vivo validation of the PrP^C-coupling to GSK3β.

The PrP^C coupling to GSK3β is controlled by the Lyn kinase via caveolin-1. Next, we searched for intermediates linking PrP^C to GSK3β. Previously, we identified the src kinase Fyn as a downstream target of PrP^C signalling in 1C11^{4-Ht} neuronal cells. However, we found no significant impact of Fyn blockade on the increase in pS9-GSK3β promoted by SAF32 antibodies (Fig. 3a). A good candidate alternative to Fyn for relaying the inactivation of GSK3β is Lyn, another src kinase, which partitions with PrP^C in rafts of neuronal cells. The level of pY507-Lyn, which corresponds to inactivated Lyn²³, did not vary when 1C11^{4-Ht} neuronal cells were exposed to the C-terminal SAF61 antibody (Fig. 3b). In contrast, we observed a decrease (58%) in the level of pY507-Lyn 5 min following SAF32 antibodies addition, onwards (Fig. 3c), indicating an activation of the Lyn kinase. Of note, exposure of 1C11^{4-Ht} neuronal cells to the STI-1 peptide induced a similar (66%) decrease in pY507-Lyn, revealing Lyn activation (Fig. 3d). A comparable decrease in pY507-Lyn was observed in PC12 differentiated cells in response to the STI-1 peptide (Fig. S2).

To determine whether Lyn indeed relays the PrP^C-GSK3β coupling, 1C11^{4-Ht} neuronal cells were transfected with a siRNA against Lyn prior to exposure to SAF32 antibodies. The knockdown of Lyn fully reduced the basal level of pS9-GSK3β (4%) and blunted the PrP^C-dependent increase in pS9-GSK3β (Fig. 3e). In contrast, the level of pY216-GSK3β remained intact in Lyn-depleted cells (Fig. 3e). Then, we probed an involvement of the membrane protein caveolin-1 in the PrP^C-Lyn coupling, since caveolin-1 interacts with both PrP^C and Lyn²⁴. Of note, the SAF32-induced dephosphorylation of Lyn at Y507 was cancelled under immunosequestration of caveolin-1 (Fig. 3f). Finally, while Lyn did not interact with PrP^C under basal conditions, it co-immunoprecipitated with PrP^C in cells exposed to the STI-1 peptide or SAF32 antibodies (Fig. 3g). Altogether, these data support the occurrence of a PrP^C-caveolin-Lyn signalling complex in 1C11^{4-Ht} neuronal cells, which drives the PrP^C-induced inactivation of GSK3β and can be mobilized by STI-1, an endogenous ligand of PrP^C.

The PrP^C-Lyn-GSK3β cascade is mediated by prion proteins located on cell bodies of 1C11^{4-Ht} neuronal cells. All signal transduction cascades that we identified previously in 1C11^{4-Ht} cells are impared by neuritic PrP^C and rely on the PrP^C-caveolin-Fyn platform implemented on the neurites, although PrP^C, caveolin and Fyn are present both in cell bodies and neuronal processes of these serotonergic cells²⁵. Here, the GSK3β phosphorylation on S9 in response to SAF32 antibodies is independent from Lyn but depends on Lyn activation. In addition, this signal is mainly observed at the cell bodies in immunofluorescence (Fig. 1e). We thus assessed a potential spatial restriction of the PrP^C-Lyn-GSK3β cascade by separating cell bodies from neurites of 1C11^{4-Ht} neuronal cells prior to exposure to anti-PrP^C antibodies. When Lyn was detected in both fractions, we observed a SAF32-dependent decrease in pY507-Lyn in the fraction enriched in cell bodies only (Fig. 4a). As anticipated, the status of Lyn was insensitive to SAF61 antibodies, whether in the cell bodies or in the neurites (Fig. 4b). Accordingly, the SAF32-mediated phosphorylation of GSK3β at S9 was restricted to the cell bodies fraction (Fig. 4c). As with Ly, total GSK3β however distributed in both cell bodies and neurites (Fig. 4c). Thus, while PrP^C, Lyn and GSK3β are present in both cell bodies and neuronal processes, the PrP^C-Lyn-GSK3β cascade is spatially restricted to the cell bodies of 1C11^{4-Ht} neuronal cells. This observation raises the question as to the selective recruitment of Lyn or Fyn by PrP^C molecules located on the cell bodies or the neurites, respectively. Because these two src kinases are differentially palmitoylated and may partition in different membrane compartments¹⁸, we probed their association with the plasma membrane in relation with their distribution in cell bodies versus neurites. The plasma membrane fraction of Lyn was majorly found in the cell bodies (79% of total membrane-associated Lyn), while, conversely, the plasma membrane fraction of Fyn was predominantly found in the neurites (82% of total membrane-associated Fyn) (Fig. 4d). Thus, the spatial control of Lyn membrane association appears to drive the selective implementation of the PrP^C-caveolin-Lyn platform in the cell bodies of 1C11^{4-Ht} neuronal cells, and may therefore account for the restriction of the PrP^C-GSK3β cascade to the somatic compartment.

The PrP^C-GSK3β cascade in 1C11^{4-Ht} neuronal cells is controlled by PI3K and Akt downstream from Lyn and involves copper and LRP1. Next, we sought to identify potential intermediate effector(s) relaying the inactivation of GSK3β downstream from Lyn. Because Lyn can phosphorylate the p85 subunit of PI3K (Y458) in erythroid cells²⁷ and in view of the classical PI3K-Akt-GSK3β pathway²⁸, we probed an involvement of the PI3K-Akt module. As anticipated, exposure of 1C11^{4-Ht} neuronal cells to the PI3K inhibitor wortmannin or to the Akt inhibitor MK-2206 did not affect the SAF32-induced decrease in pY507-Lyn (Fig. 5a,b). In contrast, siRNA-mediated silencing of Lyn blunted the SAF32-induced phosphorylation of p85-PI3K at Y458 (Fig. 5c). Furthermore, both wortmannin and MK-2206 cancelled the increase in pS9-GSK3β in response to SAF32 antibodies (Fig. 5d,e), indicating that the PI3K-Akt module mediates the PrP^C-GSK3β coupling downstream from Lyn in 1C11^{4-Ht} neuronal cells. Interestingly, PI3K activity has been reported to be stimulated by native, but not N-terminally truncated, PrP^C¹⁹. A hallmark of the N-terminal region of PrP^C is the presence of octapeptide repeats that have the capacity to bind up to four copper ions Cu²⁺. The SAF32 epitope precisely maps in the copper-binding octapeptide region of PrP^C. In the supernatant of 1C11^{4-Ht} cells, we measured a free Cu²⁺ concentration of 0.21 μM, suggesting that the N-terminus of cell-surface PrP^C is copper-bound in these neuronal cells²⁶. We thus examined the impact of copper chelation on the PrP^C-Lyn-PI3K-GSK3β coupling. Pre-incubation with the copper chelator D-peni-
Figure 2 | PrP^C-negatively controls GSK3β in mouse brain. (a) The levels of pS9-GSK3β, pY216-GSK3β and total GSK3β were assessed by immunoblotting in brain extracts from PrP^{0/0} mice versus WT mice. Actin was used as loading control. Data are representative of n = 4 animals. (b–g) SAF32 (b–e) or SAF61 (f–g) anti-PrP^C antibodies (2 μl at 1 mg/ml) were stereotaxically injected in the raphe nuclei of WT (b), (c), (f), (g) or PrP^{0/0} mice (d), (e). Mice were sacrificed at the indicated time to collect raphe nuclei samples. The levels of pS9-GSK3β (b), (d), (f) or pY216-GSK3β (c), (e), (g) were assessed by immunoblotting of the raphe extracts and normalized to total GSK3β for quantification. Data are representative of n = 4 animals. Gels have been cropped for clarity and conciseness purposes and have been run under the same experimental conditions. Results are expressed as means ± S.E.M. *P < 0.05 vs. control, Kolmogorov-Smirnov test.
The PrP^C–GSK3β coupling affects the distribution and negatively regulates the activity of the serotonin 1B receptor in 1C11⁺-serotonergic neuronal cells. An emerging substrate of the GSK3β kinase is the serotonicergic 1B receptor (5-HT_{1B}R)²³, an autoreceptor that controls serotonergic functions and notably reduces serotonin (5-HT) release²⁴. Blockade of GSK3β activity was shown to decrease the cell surface location of 5-HT_{1B}R and thereby its functionality in HEK293 cells^{25,26}. On 1C11⁺-serotonergic cells, the 5-HT_{1B}R is present and functional (negative coupling to adenylate cyclase)²⁶. To test whether the 5-HT_{1B}R may be a target of the PrP^C–GSK3β coupling in 1C11⁺-serotonergic cells, we assessed the impact of the PrP^C–dependent regulation of GSK3β activity on the subcellular distribution and activity of the 5-HT_{1B}R. Our experiments were designed to concomitantly monitor 5-HT_{1B}R numbers and activity in relation with their subcellular (i.e. cell bodies versus neurites) location. In untreated 1C11⁺-serotonergic cells, we found that 81% of 5-HT_{1B}Rs were distributed in neurites and the remaining 19% in the cell bodies. Exposure of 1C11⁺-serotonergic neuronal cells to SAFF32 antibodies, prior to cell fractionation, did not affect the global 5-HT_{1B}R protein level but reduced the pool of neuritic 5-HT_{1B}Rs to 41% and increased the cell bodies pool to 59% (Fig. 6a). As with SAF32 antibodies, the GSK3β inhibitors LiCl or SB216763 did not alter total 5-HT_{1B}R binding (Fig. 6a). When cells were treated with these drugs, the pool of 5-HT_{1B}Rs redistributed from the neurites (52% versus 81% in untreated cells) to the cell bodies 5-HT_{1B}Rs (48% versus 19% in untreated cells). These data indicate that the PrPC-Lyn-PI3K-GSK3β cascade is copl manipulating the activity of the serotonin 1B receptor in 1C11⁺-serotonergic neuronal cells.

Figure 3 | PrP^C–mediated GSK3β phosphorylation on S9 is relayed by the Lyn kinase in 1C11⁺-neuronal cells. (a) 1C11⁺-neuronal cells were preincubated with the Fyn inhibitor PP2 (50 pM, 1 h) prior to exposure to SAFF32 anti-PrP^C antibodies (10 μg/ml, 30 min), targeting native PrP^C. Cell lysates were immunoblotted with antibodies targeting pS9-GSK3β and total GSK3β for normalization. (b) 1C11⁺-neuronal cells were exposed to anti-PrP^C antibodies targeting (b) a C-terminal epitope (SAF61, 10 μg/ml), (c) a N-terminal epitope (SAF32, 10 μg/ml) or (d) to a peptide corresponding to the domain of STI-1 that binds PrP^C (aa 230–245) (25 μM). Cell lysates were immunoblotted with antibodies targeting pY507-Lyn and total Lyn for normalization. (e) 1C11⁺-neuronal cells were transfected for 36 h with a siRNA targeted against Lyn (Si-Lyn) or a control scramble siRNA (Si-scr) prior to exposure to SAF32 anti-PrP^C antibodies (30 min). Cell lysates were immunoblotted with antibodies targeting pS9-GSK3β, pY216-GSK3β, total GSK3β. Lyn total was used to check knockdown and actin was used as loading control. (f) 1C11⁺-neuronal cells were submitted to caveolin-1 immunosequestration prior to exposure to SAF32 antibodies (10 μg/ml, 15 min). Cell lysates were immunoblotted with antibodies against SAF32 and antibodies targeting pS9-GSK3β, pY216-GSK3β, total GSK3β, Lyn total and total Lyn for normalization. (g) 1C11⁺-neuronal cells were exposed to the STI-1 peptide (25 μM) or SAF32 antibodies (10 μg/ml) for 30 min. Cell lysates were immunoprecipitated with SAF61 anti-PrPC antibodies and immunoblotted with antibodies against Lyn. Gels have been cropped for clarity and conciseness purposes; original images corresponding to (b–c) are shown in Supplemental Figure 5. Data are expressed as means ± S.E.M of n = 4 to 6 independent analyses. * P < 0.05 vs. control, Kolmogorov-Smirnov test.
thus indicate that the PrP^C-dependent inactivation of the GSK3β kinase affects the neurites versus cell bodies distribution of the 5-HT_{1B}R.

Next, we analyzed the functionality of the 5-HT_{1B}R in relation with its location (neurites versus cell bodies) by determining the inhibitory effect of the 5-HT_{1B}R agonist L694247 on 5-HT outflow. In control 1C11^{5-HT} serotonergic cells, both somatic and neuritic 5-HT_{1B}Rs could tone down 5-HT outflow (Fig. 6b). Somatic and neuritic 5-HT_{1B}Rs displayed similar activities towards 5-HT outflow in untreated 1C11^{5-HT} cells as inferred by the mean relative activity per binding site (Fig. 6c). Under SAF32- or drug-mediated inactivation of the GSK3β kinase, we monitored a drastic reduction in whole cell 5-HT_{1B}R activity, revealed by a decrease in the inhibitory effect on 5-HT outflow (Fig. 6b). In these conditions, both 5-HT_{1B}Rs located in cell bodies or in neurites displayed little activity (Fig. 6c), indicating that GSK3β inactivation can quench both somatic and neuritic 5-HT_{1B}Rs activities (Fig. 6c).

Altogether, these results establish an antagonist role of PrP^C from cell bodies on global 5-HT_{1B}R activity via the GSK3β kinase and provide evidence for a potentiating effect of PrP^C on serotonergic neuronal activity.

The activity of the serotonin 1B receptor is increased in the substantia nigra of PrP^{0/0} mice and its inhibition unleashes GABA and
Figure 5 The PrP^C-Lyn-GSK3β cascade in 1C11^{5-HT} neuronal cells is relayed by PI3K and Akt and involves copper and LRP1. (a), (b) 1C11^{5-HT} neuronal cells were pre-incubated for 1 h with the PI3K inhibitor Wortmannin (5 nM) (a) or the Akt Inhibitor MK-2206 (1 μM) (b), and then exposed to SAF32 anti-PrP^C antibodies (10 μg/ml, 15 min). Cell lysates were immunoblotted with antibodies targeting pY507-Lyn or total Lyn for normalization. (c) 1C11^{5-HT} neuronal cells were transfected for 36 h with a siRNA targeted against Lyn (Si-Lyn) or a control scramble siRNA prior to exposure to SAF32 anti-PrP^C antibodies. Cell lysates were immunoblotted with antibodies targeting pY458-p85 PI3K or total p85 PI3K. (d), (e) 1C11^{5-HT} neuronal cells were pre-incubated for 1 h with the PI3K inhibitor Wortmannin (5 nM) (d) or the Akt Inhibitor MK-2206 (1 μM) (e) prior to exposure to SAF32 anti-PrP^C antibodies (10 μg/ml, 30 min). Cell lysates were immunoblotted with antibodies targeting pY458-p85 P13K or total p85 P13K. (f), (g) 1C11^{5-HT} cells were incubated for 1 h with the copper chelator DPEN (0.1 m) or the LRP1 antagonist RAP (200 nM), prior to exposure to SAF32 antibodies. (h) Cell lysates were immunoblotted with antibodies targeting pY507-Lyn, pY458-p85 P13K, or pS9-GSK3β for normalization. (i–h) 1C11^{5-HT} cells were incubated for 1 h with DPEN (0.1 μg/ml) or the LRP1 antagonist RAP (200 nM), prior to exposure to SAF32 antibodies. Levels of phosphorylated proteins were normalized to total corresponding proteins. Gels have been cropped for clarity and conciseness purposes and have been run under the same experimental conditions. All data are representative of a set of n = 4 to 6 independent experiments. Results are expressed as means ± S.E.M. *P < 0.05 vs. control, Kolmogorov-Smirnov test.

substance P releases and promotes an anxiogenic behavioural response. We further evaluated the in vivo relevance of the findings obtained with 1C11^{5-HT} serotonergic cells by assessing the number and functionality of 5-HT_{1B}Rs in PrP^{0/0} versus WT mice. We focused on the substantia nigra, one of the brain regions where 5-HT_{1B}Rs are the most abundant²⁴. Using [125I]-GTI-binding to quantify these receptors, we measured a modest but significant (18%) increase in the number of 5-HT_{1B}Rs in PrP^{0/0} mice as compared to WT mice (213 ± 15 versus 180 ± 12 fmol/mg prot, respectively). Next, we evaluated the activity of this receptor in PrP^{0/0} versus WT mice by studying the effect of the 5-HT_{1B}R antagonist SB224289 on KCl-evoked neurotransmitter release through in vivo microdialysis in awake mice (Fig. 7a). In agreement with²⁵, 5-HT release in the substantia nigra was barely detectable in PrP^{0/0} mice (213 ± 15 versus 120 ± 2 fmol/mg prot, respectively). However, the activity of this receptor was significantly higher in PrP^{0/0} mice compared to WT mice (213 ± 15 versus 120 ± 2 fmol/mg prot, respectively). This observation can be accounted for by a 50% increase in the number of 5-HT_{1B}Rs in PrP^{0/0} mice as compared to WT mice (213 ± 15 versus 180 ± 12 fmol/mg prot, respectively). In PrP^{0/0} mice, we measured a stronger potentiating effect of SB224289 on KCl-induced substance P release, with substance P levels reaching 253% of those measured in WT mice (Fig. 7b).

We finally sought to assess the behavioural outcome of the exacerbated activity of the 5-HT_{1B}R in PrP^{0/0} mice. First, in line with the elevated locomotor activity associated with activation of 5-HT_{1B} receptors²⁶, we monitored an increase in the locomotor activity of PrP null mice vs WT controls in the open field test, (426 ± 33 versus 321 ± 27 cm per 5-min block, respectively, n = 5 animals, p < 0.05). Furthermore, because increased substance P production promotes anxiogenic-like responses²⁷, we tested PrP^{0/0} mice in the elevated plus maze, a well-established paradigm to detect the variability of anxiety-like behaviours in rodents²⁸. In basal conditions or after KCl injection alone in the substantia nigra, there was no significant difference in the behaviour of PrP^{0/0} and WT mice in our paradigm (Fig. 7c–f). WT mice injected with both KCl and the 5-HT_{1B}R antagonist SB224289
in the substantia nigra also adopted a behaviour that was similar to that of untreated or KCl-treated WT mice. In contrast, the injection of both KCl and SB224289 in PrP^{0/0} mice drastically affected their behaviour. Indeed, these mice exhibited reduced frequency (Fig. 7c) and time (Fig. 7d) spent in open arms, and the overall distance measured throughout the experiment was decreased (Fig. 7e). Further, the time spent in risk assessment was higher in KCl- and SB224289-treated PrP^{0/0} mice than in their WT counterparts (Fig. 7f). The changes monitored with these four parameters reveal an anxiety-like behaviour in PrP^{0/0} mice upon inhibition of the 5-HT_{1B}Rs.

Figure 6 | The PrP^C-GSK3β cascade affects the subcellular distribution of the serotonin 1B receptor and negatively regulates its activity. (a) 1C1^{HT} neuronal cells were exposed to SAF32 (10 μg/ml) anti-PrP^C antibodies or the GSK3β inhibitors LiCl (1 mM) or SB216763 (10 nM) for 30 min. 5-HT_{1B}Rs were quantified through [125I]-GTI binding in whole cells and the corresponding cell bodies and neuritic fractions. (b) The 5-HT_{1B}R activity was determined by measuring the inhibitory effect of the 5-HT_{1B}R agonist L694247 on K⁻-evoked [3H]-5-HT overflow in whole cells. Experiments were repeated after cell fractionation in the corresponding cell bodies and neuritic fractions. (c) The relative 5-HT_{1B}R activity was calculated by normalizing the inhibitory effect on [3H]-5-HT overflow to [125I]-GTI binding for each pool of cells, both before and after cell fractionation. A total of n = 6 independent cultures were analyzed. Results are expressed as means ± S.E.M. *P < 0.05 vs. control, Kolmogorov-Smirnov test.
As a whole, we may conclude that PrP deficiency in mice is associated with a high increase in the activity of 5-HT1B receptors in the substantia nigra, whose inhibition promotes exacerbated GABA and substance P releases together with an anxiogenic behavioural response. Thus, these results validate at an in vivo level the potentiating effect of the PrP-GSK3β coupling on neurotransmission through its inhibitory action on the 5-HT1B receptor.

Discussion

The present work introduces the GSK3β kinase as a new target of PrP-dependent cell signalling in neuronal cells. We show that native, i.e. full-length, PrP can trigger phosphorylation of the GSK3β kinase on S9 in 1C11*WT serotonergic cells, which is associated with reduced GSK3β kinase activity. This signal, which can be monitored through antibody-mediated ligation of PrP, occurs in...
response to the binding of PrPc to its ligand STI-1 in 1C11-1HT as well as in PC12 neuronal cells. Conversely, depletion of PrPc in 1C11-1HT cells correlates with decreased levels of pS9-GSK3β, highlighting an endogenous inhibitory action of PrPc on GSK3β activity. We further confirmed that the activity of GSK3β is regulated by PrPc in the brain, notably in serotonergic raphe (Fig. 2).

A current view is that PrPc-signalling is linked to the assembly of multicomponent complexes at the cell surface44. In agreement, our data demonstrate that the coupling to GSK3β is instigated by a PrPc-caveolin platform, that can be recruited after binding of PrPc to its ligand STI-1. In this complex, native PrPc is copper-bound and must associate with its transmembrane partner LRPI to activate the PI3K-Akt module downstream from Lyn (see Fig. S3). This observation suggests that the recruitment of full-length, copper-bound PrPc promotes its LRPI-dependent internalization32. Importantly, our findings substantiate a restriction of the PrPC-Lyn-GSK3 coupling to the cell bodies of 1C11-1HT neuronal cells (Fig. 4). In the past, we reported that the PrPc-caveolin-Fyn complex is selectively implemented on the neurites of fully-differentiated 1C11 neuronal cells, while all protagonists are present in both cell bodies and neurites45. Here, the spatial restriction of the PrPC-Lyn-GSK3β signal cannot be accounted for by a specific distribution of intracellular effectors either, since Lyn and GSK3β were both found in the two compartments. We could further exclude a selective involvement of the membrane protein caveolin in the PrPc coupling to Fyn on neurites since caveolin also serves as a relay in the PrPc-Lyn cascade on cell bodies. Rather, our data argue that the implementation of the PrPc-caveolin-Lyn platform on the cell bodies of 1C11-1HT neuronal cells arises from the selective association of somatic but not neuritic Lyn to the plasma membrane, to the opposite of Fyn. These data reinforce the idea that PrPc-mediated signalling cascades are subject to tight spatial control driven by subsets of lipid raft microdomains46,47.

GSK3β is an extremely pleiotropic kinase, that lies downstream of major signalling pathways including Wnt, Notch, insulin and growth factors48. GSK3β differs from most kinases in that it is active under resting conditions and is mostly regulated through inhibition49. Over a hundred substrates of GSK3β have been identified, with diverse roles in metabolism, cellular architecture, gene expression, neurodeveloment, axonal growth and polarity, neuronal/cellular survival50. Our findings that the interaction of PrPc with STI-1 can trigger the neuroprotective inhibition of GSK3β is thus in agreement with the stress-protective role of STI-150 as well as with the notion that PrPc acts as a gatekeeper against stress and confers resistance towards cellular insults37,38. Because GSK3β inhibition has been shown to play a pivotal role in synaptic plasticity and long-term potentiation (LTP)39, our work also provides a molecular basis accounting for the involvement of the PrPc-STI-1 duo in these processes40. Importantly, the interaction of STI-1 with PrPc was recently shown to hinder the binding of Aβ oligomers to PrPc and counteract their toxicity41. As suggested by the latter study, the inhibition of GSK3β downstream from STI-1-PrPc evidenced here may further contribute to prevent Aβ-mediated toxic action.

The present work further provides evidence for an involvement of the PrPc-GSK3β cascade in the control of serotonergic functions since PrPc-dependent inhibition of GSK3β affects the serotonergic 5-HT1B receptor location and activity. As auto- or hetero-receptors, serotonin 5-HT1B receptors negatively regulate the release of serotonin and that of other neurotransmitters42. In serotonergic neurons, 5-HT1BRs globally tone-down serotonergic activity through combined reduction of 5-HT synthesis and release and enhanced uptake43-45. The 5-HT1BR was recently shown to be a substrate for GSK3β-mediated phosphorylation, which enhances its activity46. The GSK3β-dependent regulation of the 5-HT1BR also occurs in vivo since the selective depletion of GSK3β in serotonergic neurons was reported to compromise 5-HT1BR-related neuronal firing, serotonin release and serotonin-regulated behaviors47. Here, we establish that the PrPc-dependent inactivation of GSK3β hinders the proper trafficking of the 5-HT1BR and blunts its ability to reduce the outflow of serotonin induced by K+-dependent depolarization in 1C11-1HT serotonergic cells (Fig. 6). By suppressing GSK3β activity and limiting 5-HT1B function, PrPc thereby potentiates 5-HT transmission. This novel aspect of PrPc signalling again fully fits in with our previous data supporting that PrPc strengthens neuronal activity and provides a new connection between PrPc and serotonergic functions45,46.

Finally, our results at a cellular scale were recapitulated in vivo since we monitored increased GSK3β activity and 5-HT1B function in the brains of PrP0/0 mice as compared to their WT counterparts. Of note, antagonizing the exacerbated 5-HT1B function in the substantia nigra of PrP0/0 mice promotes dramatic increases in GABA and substance P releases together with an anxiogenic behavioural response. These observations fit in with the well-established notion that the 5-HT1B negatively controls anxiety48. They are also reminiscent of previous reports that PrP0/0 mice exhibit reduced anxiety in various paradigms49,50. Interestingly, we previously documented that BSE-infected mice exhibited an anxiolytic-like behaviour similar to that of PrP0/0 mice51. This phenotype would be thus consistent with increased GSK3β activity, in line with very recent data48, and exacerbated 5-HT1B function. In view of the major role ascribed to GSK3β overactivation in neurodegeneration50,51, whether restoring control on GSK3β activity in prion-infected neurons may help preserve brain neurotransmission deserves further investigation.

Methods

Reagents. All tissue culture reagents were from Invitrogen (Carlsbad, CA, USA). Monoclonal PrP-targeted antibodies (SAF32 and SAF61, all IgG) with distinct binding epitopes52 were obtained from SIB-BIO (Montigny-le-Bretonneux, France). Polyclonal rabbit antibodies against pS9-GSK3, pY98-p89/395/199-p53 PI3K, p85 PI3K, p507-Lyn, Lyn-Lyn and nNakATPase and monoclonal mouse antibody against lamin A/C were from Cell Signaling Technology (Danvers, MA, USA). Polyclonal rabbit antibodies against total-GSK3β were from Merck Millipore (Billerica, MA, USA). Polyclonal rabbit antibody against caveolin-1 and monoclonal mouse antibody against pY226-53Kβ were from BD Biosciences (Franklin Lakes, NJ, USA). Monoclonal mouse antibody against actin was from Novus Biologicals (Littleton, CO, USA). Dibutyryl cyclic AMP (dbcAMP), cyclohexane carboxylic acid (CCA), D-penicillamine, SB216763, SB24249, lithium chloride and L694247 were purchased from Sigma (St-Louis, MO, USA). Phorbol 12-myristate 13-acetate (PMA), P22 and Wortmannin were purchased from Calbiochem (San Diego, CA, USA). The Akt inhibitor MK-2206 was from Selleck Chemicals (Houston, TX, USA). STI-1 peptide and scramble control peptide were purchased from the Polypeptide Group (Strasbourg, France). [3H]-Y236-STI-1 peptide (specific activity 81.4 TBq/mmol) was synthesized by Dr H. Harder (Isotope Synthesis Department, Hoffmann-La Roche, Basel). [125I]-Y236-STI-1 peptide and scramble control peptide were purchased from the PolyPeptide Group (Strasbourg, France). [3H]-serotonin (100 Ci/ mmol) and [3H]-serotonin-5-O-carboxymethyl-glycol-iodo-tyrosine ([3H]-GTI, 81.4 Tbq/mmol) were from NEN Perkin Elmer (Waltham, MA, USA).

Animals. Animal experiments were carried out in strict accordance with the recommendations in the guidelines of the Code for Methods and Welfare Considerations in Behavioral Research with Animals (Directive 86/609/EC) and all efforts were made to minimize suffering. Experiments were approved by the Committee on the Ethics of Animal Experiments of Basel University. PrP knockout mice have been described previously53. Mice used for the experiments were 3 month-old male. C57BL/6J 3 month-old male WT mice were used as controls. Food and water were available ad libitum.

Cell Culture. siRNA transfection and caveolin-1 immunoneuquestration. 1C11 cells were grown and induced to differentiate along the serotonergic pathway in the presence of 1 mM dbcAMP and 0.05% CCA as in54. STI-1-PrPc binding was mimicked by exposing cells to the domain of STI-1 that binds PrPc (aa 230-245) at 25 µM as in. Enzyme inhibition

Antibody-mediated PrPc ligation, STI-1 peptide exposure and enzyme inhibition. Ligation of PrPc at the surface of 1C11 cells was carried out using SAF32 or SAF61 antibodies at 10 µg/ml as in. STI-1-PrPc binding was mimicked by exposing cells to the domain of STI-1 that binds PrPc (aa 230-245) at 25 µM as in. Enzyme inhibition
was performed by pretreating cells at 37°C for 1 h in their culture medium with the appropriate inhibitor prior to exposure to PrP antibody.

Preparation of cell extracts, co-immunoprecipitation, cell fractionation, immunofluorescence experiments. Cells grown on labek chambers (Nunc, Rochester, NY, USA) were washed in PBS with 1 mM Ca2+ and Mg2+ (buffer A) and fixed with 4% formaldehyde in buffer A. Cells were then permeabilized with blocking buffer (buffer A with 20 mM Glycine, 1% goat serum and 0.1% Triton X-100) for 1 h at room temperature. Alexa Fluor 488 immunogolubins (4 μg/ml) (Molecular Probes, Eugene, OR, USA) were used as secondary antibodies and 4', 6-diamidino-2-phenyldindole (Sigma-Aldrich, St. Louis, MO, USA) as nuclear marker.

Immunolabelling was observed with a Nikon Eclipse TE2000-E inverted microscope (Nikon Instruments Inc., Melville, NY, USA) equipped with a black and white CCD CoolSnap HQ2 camera (Photometrics, Tucson, AZ, USA), controlled by NIS-element software (Nikon Instruments Inc.).

Measurement of copper. Copper was measured by Zeeman electrothermal atomic adsorption spectrometry (ETAAS) on a SIMAA 6100 spectrometer (Perkin-Elmer, Courtabouf, France) using a 1:8 dilution of culture medium, as in9.

5-HT1B receptor radioligand binding experiments. 5-HT1B receptors were detected using [3H]-5-HT (110 pmol in 1μl) or in brain slices were performed at room temperature, under shaking. Assays were initiated by the addition of 100 μl of fetal calf serum (FCS)-free DMEM containing 25 nM [125I]-GTI. The specific binding was defined as the binding that was inhibited by 1 μM of homologous unlabeled ligand. A 30 min incubation period was followed by the addition of ice-cold Tris pH 7.4. Samples were filtered on polyethyleneimine-treated filters and radioactivity was counted in a γ-scintillation counter (Packard, France). Experiments were performed both before and after cell fractionation of the same pool of cells to quantify 5HT1B receptors on the neurites and cell bodies fractions.

Measurement of serotonin overflow in 1C11-PrP neuronal cells. Cells were labeled with [3H]-serotonin (1.3 μCi/ml) in Krebs buffer for 30 min at 37°C as in11. Cells were transferred into perfusion chambers and superfused at a flow rate of 0.5 ml/min. The superfusion fluid was collected beginning at 45 min of perfusion. Cells were stimulated with potassium chloride (KCl, 50 mM) at 50 min and then at 70 min in the presence of the 5-HT1B agonist L694247 (30 μM), added at 65 min. Collection of superfusion fluid was maintained until 90 min. Superfusion fluid from each fraction was mixed with scintillation liquid to count radioactivity in a β scintillation counter (Packard, France). The locomotor activity was tested in a plexiglas open field (Med Associates, St Albans, VT, USA) and activity was monitored using the monitoring software (Med Associates, St Albans, VT, USA). Mice were allowed to habituate in the open field for 15 min, followed by the additional 30-min testing. Travel distances during each 5 min block were recorded. The elevated plus-maze (EPM) test was used because of its documented ability to readily detect the variability of anxiety-like behaviours in rodents10. The apparatus was composed of a central part (5 × 5 cm), two opposing open arms (27 × 5 cm) and two opposing enclosed arms (27 × 5 × 15 cm). The maze was made of black plexiglas, elevated at a height of 40 cm and the open arms were illuminated by two white bulbs providing a 30-lux illumination on their extremities. The test lasted 5 min and began with the placement of mice in the centre of the maze. The locomotor activity was recorded to use a video camera mounted above the maze was used to record each trial and to allow a later analysis. The mice’s reluctance to venture into the enclosed arms was taken as a measure of anxiety. This was measured by the frequency of arm entries and time spent on the open arms: these measures were expressed as percentage scores over the total number of all (open and enclosed) arm entries, and total time spent in all arms, respectively. In addition, the total distance traversed in the entire maze surface was taken as a measure of general motor activity. We also assessed the pharmacological measures of risk assessment (time spent in stretched-attend postures + time spent in flat-back approach) also reported to be relevant as an index of anxiety11.

Statistics. The results are reported as the means ± standard errors of the means (S.E.M.). The non parametric Kolmogorov-Smirnov test was used for comparisons. A P-value < 0.05 was considered significant.
28. Fink, K. B. & Gothert, M. 5-HT receptor regulation of neurotransmitter release. J Neurochem 95, 771–783 (2005).
27. Threlfell, S., Greenfield, S. A. & Cragg, S. J. 5-HT(1B) receptor regulation of serotonin 1B receptor by glycogen and its role in cell survival. Biochem Biophys Res Comm 332, 75–82 (2005).
26. Kellermann, O., Loric, S., Maroteaux, L. & Launay, J. M. Sequential onset of three neurokinin-3 receptors in primate substantia nigra. J Neurochem 112, 151–168 (2010).
25. Chen, L., Salinas, G. D. & Li, X. Regulation of serotonin 1B receptor by glycogen synthase kinase-3. Mol Pharmacol 76, 1150–1161 (2009).
24. Sari, Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28, 365–382 (2004).
23. Chen, L. et al. Glycogen synthase kinase-3beta is a functional modulator of serotonin-1B receptors. Mol Pharmacol 79, 974–986 (2011).
22. Taylor, D. R. & Hooper, N. M. The low-density lipoprotein receptor-related protein and its role in cell survival. Front Biosci 15, 1086–1104 (2010).
21. Singh, I. et al. Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A 109, 10408–10413 (2012).
20. Haigh, C. L., Marom, S. Y. & Collins, S. J. Copper, constitutive endoproteolytic activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem Biophys Res Comm 352, 112–113 (2007).
19. Vassallo, N. et al. Activation of phosphatidylinositol 3-kinase by cellular prion protein in primary rat cerebellar neurons. J Neurochem 95, 771–783 (2005).
18. Sato, I. et al. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 122, 965–979 (2009).
17. Ingley, E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 10, 21 (2012).
16. Loberto, N. et al. The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95, 771–783 (2005).
15. Feraudet, C. et al. Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280, 11247–11258 (2005).
14. Salcedo-Tello, P., Ortiz-Matamoros, A. & Arias, C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. Int J Alzheimers Dis 2011, 189728 (2011).
13. Kaidanovich-Beilin, O. & Woodgett, J. R. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 4, 40 (2011).
12. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116, 1175–1186 (2003).
11. Kellermann, O., Loric, S., Maroteaux, L. & Launay, J. M. Sequential onset of three neurokinin-3 receptors in primate substantia nigra. J Neurochem 112, 151–168 (2010).
10. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116, 1175–1186 (2003).
9. Vassallo, N. et al. Activation of phosphatidylinositol 3-kinase by cellular prion protein in primary rat cerebellar neurons. J Neurochem 95, 771–783 (2005).
8. Pellow, S., Chopin, P., File, S. E. & Briley, M. Validation of open:closed arm entries as a measure of anxiety in the elevated plus maze test. J Neurosci Methods 138, 297–303 (2005).
7. Plummer, J. et al. GSK-3 regulates the interaction of Caspr2 with Par-3 to control dendrite spine formation. J Neurosci 33, 577–582 (2013).
6. Bueler, H. et al. The role of GSK3 in Alzheimer disease. Brain Res Bull 88, 248–250 (2009).
5. Vidal, C. et al. Early dysfunction of central 5-HT system in a murine model of bovine spongiform encephalopathy. Neuroscience. 160, 731–743 (2009).
4. Simon, D. et al. Dysfunction of the PI3K-Akt-GSK-3 pathway is a common feature in cell culture and in vivo models of prion disease. Neuropathol Appl Neurobiol (2013).
3. Bhatt, R. et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A 97, 11074–11079 (2000).
2. Hernandez, F. et al. The role of GSK3 in Alzheimer disease. Brain Res Bull 88, 248–250 (2009).
1. Buehler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

Acknowledgments
We thank M. Buehler, H. Haide, N. Pierron and F. d’Agostini for technical assistance. We gratefully acknowledge B. Kettler, R. Hochköppler and J. L. Moreau for skillful methodological assistance. This work was supported by funds from the Agence Nationale de la Recherche (ANR-06-BLAN-0288 and ANR-10-BLAN-131201) and INSERM. S.M.-L., E.P. and A.A.-B. were supported by fellowships from DIM StemPole (Region Ile de France), the Fondation de la Recherche Medicale and DIM Mal. Inf. (Region Ile de France), respectively.

Author contributions
J.-M.L. and S.M.-R. designed the project. J.H.-R., S.M.-L., T.Z.H., E.P. and A.A.-B. performed experiments. J.H.-R., S.M.-L., T.Z.H., E.P., B.S., A.B., J.-M.L. and S.M.-R. analysed the data. J.-M.L. and S.M.-R. supervised the project and wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientific_reports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hernandez-Rapp, J. et al. A PrP–caveolin-Lyn complex negatively controls neuronal GSK3β and serotonin 1B receptor. Sci. Rep. 4, 4881; DOI:10.1038/srep04881 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/