Acquired cilia dysfunction in chronic rhinosinusitis

David Gudis, M.D., Ke-qing Zhao, M.D., Ph.D., and Noam A. Cohen, M.D., Ph.D.

ABSTRACT

Background: Cilia are complex and powerful cellular structures of the respiratory mucosa that play a critical role in airway defense. Respiratory epithelium is lined with cilia that perform an integrated and coordinated mechanism called mucociliary clearance. Mucociliary clearance is the process by which cilia transport the mucus blanket overlying respiratory mucosa to the gastrointestinal tract for ingestion. It is the primary means by which the airway clears pathogens, allergens, debris, and toxins. The complex structure and regulatory mechanisms that dictate the form and function of normal cilia are not entirely understood, but it is clear that ciliary dysfunction results in impaired respiratory defense.

Methods: A literature review of the current knowledge of cilia dysfunction in chronic rhinosinusitis was conducted.

Results: Ciliary dysfunction may be primary, the result of genetic mutations resulting in abnormal cilia structure, or, more commonly, secondary, the result of environmental, infectious, or inflammatory stimuli that disrupt normal motility or coordination. Patients with chronic rhinosinusitis (CRS) have been found to have impaired mucociliary clearance. Many biochemical, environmental, and mechanical stimuli have been shown to influence ciliary beat frequency, and common microbial pathogens of respiratory mucosa such as Pseudomonas aeruginosa and Haemophilus influenzae have developed toxins that appear to interrupt normal mucociliary function. Furthermore, inflammatory mediators known to be present in patients with CRS appear to impair secondarily mucociliary clearance.

Conclusion: The goal of this article is to summarize the recent developments in the understanding of cilia dysfunction and mucociliary clearance in CRS.

(Clinical research funding source)

© 2012, OceanSide Publications, Inc., U.S.A.

From the 1Department of Otorhinolaryngology–Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 2Department of Otorhinolaryngology–Head and Neck Surgery, Eye and Ear, None, and Throat Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China, and 3Philadelphia Veterans Affairs Medical Center, Surgical Services, Division of Otolaryngology, Philadelphia, Pennsylvania

Presented at the North American Rhinology & Allergy Conference, February 5, 2011, Puerto Rico

The authors have no conflicts of interest to declare pertaining to this article

Address correspondence and reprint requests to Noam A. Cohen, M.D., Ph.D., Department of Otorhinolaryngology–Head and Neck Surgery, University of Pennsylvania, Ravdin Building 5th Floor, 3400 Spruce Street, Philadelphia, PA 19104

E-mail address: Noam.Cohen@uphs.upenn.edu

Copyright © 2012, OceanSide Publications, Inc., U.S.A.
of mucus. The “gel phase” is the outer viscous layer, comprised of high-molecular weight, glycosylated macromolecules, that form a network of tangled polymers ideal for trapping inhaled debris.10 The “sol phase” is the deeper periciliary layer, lower in viscosity and composed mostly of water and electrolytes. Within the sol phase are mucins that form an apical glycocalyx extending 500-1500 nm from the epithelial cell surface.11,12 The sol phase, both in composition and in size, appears to be critical for proper mucociliary transport in separating the mucus from the epithelial cell wall and membrane.13,14 If the sol phase is too short, the glycocalyx of the cell wall will interact with the gel phase and impair clearance of the mucus blanket.

Each cilium has a forward power stroke followed by a recovery stroke. During the power stroke the cilium is fully extended and the distal tip reaches the viscous outer gel phase of the mucus layer, transmitting directional force to the overlying mucus layer. During the recovery stroke, the cilium bends ~90° and sweeps back to its starting point within the thinner periciliary sol phase. This process thus creates a unidirectional transport of the outer mucus layer while simultaneously mixing vertically the entire mucus blanket, thereby increasing the efficiency of trapping inhaled debris and microbes.10 The coordination of ciliary beating is thought to be secondary either to an intracellular calcium wave via gap junctions between epithelial cells that drives microtubule interactions15 or to a hydrodynamic wave that forces a timed coordination of nearby cilia.16 Although the mechanism of coordination that results in this remarkable ciliary wave is not entirely understood, it is clear that disease states alter the normal function of cilia, thereby disrupting the critical process of mucociliary clearance.

Furthermore, ongoing research has begun to explore how the structure of mucus itself is also altered by disease states, most likely via disruptions in mucosal ion transport. The significance of normal ion transport for mucociliary health is shown by the pathophysiology present in cystic fibrosis (CF), wherein dysfunctional chloride transport secondary to a mutation of the gene for the protein CF transmembrane conductance regulator results in abnormal mucus and severe mucociliary dysfunction. For example, several groups have indicated that cigarette smoke condensate, in addition to decreasing CBF, also substantially decreases transepithelial transport of chloride.17,18 More recently, investigators have found that this chloride transport inhibition occurs in both the primary chloride conduit, the CF transmembrane conductance regulator, and in secondary transport mechanisms such as calcium-activated chloride channels.19,20 These findings may explain why smokers show airway histopathology similar to that of CF patients, including goblet cell hyperplasia and mucus hypersecretion, and why cigarette smokers have increased rates of chronic rhinosinusitis (CRS).21,22 Furthermore, other investigators have demonstrated that sodium absorption may be increased in sinonasal epithelial cells derived from CRS patients, which would also contribute to increased mucus viscosity.23 These ion transport mechanisms represent potential therapeutic targets, whereby investigational pharmacologic agents may be used to modify chloride transport and change the mucus structure to facilitate mucociliary clearance.24-26

DYNAMIC REGULATION

Ciliary activity accelerates in response to a variety of mechanical,27-29 chemical,30,31 hormonal,32-34 pH,35 and thermal stimuli (Table 1).36,37 Extracellular nucleotides (adenosine and uridine) are especially potent regulators of epithelial functions stimulating mucociliary clearance through mucus secretion, increasing CBF, and gating ion channels involved in the maintenance of epithelial surface liquid volume.28 These nucleotides are released by the epithelium in response to mechanical and osmotic stimuli, and they work in a paracrine fashion through both metabotropic and ionotropic receptors to potentiate mucociliary clearance by recruiting adjacent cells to increase CBF.29 Furthermore, adrenergic,34,36 cholinergic,41,42 and peptidergic stimulation have also been shown to stimulate ciliary motility. These environmental and host stimuli are transmitted via surface receptors and channels to trigger activation of second messenger cascades that regulate phosphorylation status of ciliary proteins thereby modulating the kinetics of microtubules sliding relative to each other. Recently, elegant experiments using flou-
resonance resonance energy transfer in primary ciliated cell culture showed direct evidence that activation of protein kinase A (PKA) coincides with an increase in CBF, and that the return to baseline frequency lags PKA inactivation, indicating that dephosphorylation by phosphatases is required to termine CBF stimulation.45

Small changes in both extracellular and intracellular pH can have a profound impact on CBF. An increase in intracellular pH produces an increase in CBF, whereas a decrease in pH produces a decrease in CBF.35 However, it is not known whether this effect is caused by modulation of kinase activity, even though an acidic pH has been shown to inhibit PKA function, or the direct activation of ODAs of the axoneme. Temperature has also been shown in many investigations to influence CBF, most likely through protein kinase C modulation. Lower temperature tends to slow CBF. CBF is also regulated by mechanical factors. Direct mechanical stimulation of the cilia promotes an increase in CBF, which coincides with an increase in intracellular Ca2+. It has been shown in models of mouse tracheal mucosa that shear stress applied to the apical surface of mucosa stimulates CBF through an intracellular pathway dependent on purinergic receptors activation as well as [Ca2+] and [ATP]. Thus, these experiments suggest that CBF in the trachea coincides with the respiratory cycle, whereby CBF increases with inspiration and returns to baseline during exhalation to prevent microaspirations. Interestingly, in sinonasal cultures but not tracheal cultures, the application of a sudden apical pressure stimulus, much as would be encountered during a sneeze, stimulates increase in CBF (Fig. 3).29

ACQUIRED CILIAR DYSFUNCTION

Although intrinsic factors such as genetic mutations encountered in primary ciliary dyskinesia can alter cilia function with devastating sequelae, extrinsic factors such as pollutants and microbes can also directly and indirectly impact normal cilia function. This phenomenon is evident in patients with CRS who experience relentless cycles of infection and inflammation, resulting in cilia loss (Fig. 4) and a hyperviscous mucus blanket generating dysfunctional mucociliary coupling. In addition to direct ciliary loss, cilia surviving the microbial and/or inflammatory insults appear to not function normally. Although the literature is conflicting regarding CBF and its changes in patients with CRS, recent work has suggested that a subset of patients with CRS have a blunted ciliary response to environmental stimuli that is reversible once the tissue is removed from the infected or inflamed sinonasal environment. This finding suggests that local exogenous factors can negatively modulate the ciliary dynamic response to stimuli.

Microbial Factors

Because normal mucociliary clearance is an extremely effective way to combat the continual influx of inspired microbial pathogens, many infectious organisms have developed mechanisms to interfere with and combat this process. Common respiratory bacterial pathogens such as Pseudomonas aeruginosa, Haemophilus influenzae, Streplococcus pneumoniae, and Staphylococcus aureus produce specific toxins to impair ciliary motion and coordination. Viruses responsible for common upper respiratory infections disrupt the microtubule function of ciliated columnar cells and change the viscosity of surrounding mucus. Impairing the local defense system facilitates the infectious pathogens’ upper airway colonization.

P. aeruginosa is a common respiratory pathogen that causes particularly severe infections in patients with a baseline mucociliary dysfunction, such as CF. Patients with CF produce abnormally viscous mucus, and as such, they are even more susceptible to the consequences of ciliary dysfunction. Pyocyanin, the pigment produced by P. aeruginosa that gives it its characteristic blue-green color, is, in fact, a potent factor that aids in the colonization and infection of respiratory epithelium. Although several pathogenic mechanisms of pyocyanin, such as free-radical generation, have been described, pyocyanin has also been shown to cause a progressive and concentration-dependent slowing of human nasal CBF in vitro. It has also been shown that pyocyanin can reduce the velocity of mucus migration on rodent tracheal mucosa, suggesting possible mechanisms for sinonasal mucociliary dysfunction in patients with chronic P. aeruginosa infections. Recently, conditioned media from P. aeruginosa has been shown in vitro not only to depress basal CBF, but also to inhibit rapidly the ability of sinonasal cilia to respond to mechanical stimulation thereby neutralizing the ability of the respiratory epithelium to accelerate mucus clearance in response to infection.

H. influenzae, another common respiratory pathogen, has been shown to produce ciliotoxic substances that facilitate the bacteria’s colonization of respiratory epithelium. H. influenzae produces lipopolysaccharide and protein D, which have been shown to cause stasis and destruction of cilia and ciliated cells, although the specific mechanisms of these toxins remains unclear. S. pneumoniae produces several toxins including the cytolytic agent pneumolysin and the radical oxidant hydrogen peroxide. These toxins have been shown, both alone and in combination, to cause a dose-dependent slowing of CBF, in addition to damage the epithelium, on human ciliated epithelium in vitro harvested from inferior nasal turbinate brushings of healthy subjects. In addition, the enterotoxin A produced by S. aureus in high concentrations may also decrease CBF of ciliated sinus epithelium by unclear mechanisms.

Inflammatory Mediators

The inflammatory responses found in CRS can be broadly divided into T-helper type 1 (Th1) and T-helper type 2 (Th2) cascades accord-
ing to the different cytokines they produce, with a predominance of Th1 mediators found in CRS without nasal polyposis and Th2 mediators found in CRS with nasal polyposis.83 Although no general consensus regarding inflammatory cytokines has been compiled, several molecules are consistently up-regulated in diseased mucosa, established by various techniques including ELISA, reverse transcrip-
tase coupled to quantitative polymerase chain reaction, immunohis-
tochemistry, and multiplex technology. The Th1 cytokines consist-
tently elevated in CRS without nasal polyposis include TNF-α, interferon γ, and IL-8,8,9,65 while IL-5, eotaxin, and RANTES represent consistently elevated Th2 cytokines in CRS with nasal polyposis.56–60 Furthermore, several of these factors are reduced after treatment with glucocorticoids,9,69 a critical component of CRS medical manage-
ment.

Although chemokines and cytokines are primarily responsible for inducing migration, differentiation, activation, and degranulation of subpopulations of leukocytes, several studies have reported that cy-
tokines are also powerful modulators of respiratory cilia function. IL-8 has been shown to inhibit iso-proterenol-stimulated CBF in bo-
vine bronchial epithelial cells,20 and, recently, TNF-α has been shown to inhibit viscosity-induced ciliary activity in primary human airway cul-
tures.71 Furthermore, IL-13 has been shown to decrease basal CBF in human respiratory epithelial cells in a dose- and time-dependent manner,72 and IL-6 has shown similar effects at high concentrations on human fallopian tube ciliary activity.73 Conversely, TNF-α and IL-1β increase basal CBF in bovine bronchial epithelial cells.32 There-
fore, modula-tion of cilia physiology by CRS-specific inflammatory cyto-
kines is a likely mechanism for decreased mucociliary clearance in the disease state.

Tobacco Smoke

The effects of tobacco smoke on the mucociliary function of epithel-
ial have been of interest for more than 40 years.74 Although studies re-
porting the effects of cigarette smoke on CBF have yielded conflicting
results,75–78 histological studies of cilia from the airways of smok-
ers consistently showed decreased cilia number.79,80 Additionally,
cigarette smoke increases mucus production by airway epithelial
cells,17,81,82 thus necessitating that the epithelium, with fewer and, most likely, dysfunctional cilia, increases the propulsive force to
maintain homeostasis. Furthermore, to compound the insult to mu-
cociliary clearance, tobacco-mediated blunting of stimulated CBF has
been shown in lower airway epithelium79 as well as in sinonasal
epithelial cultures.18 Although no clear mechanism has been estab-
lished to explain the decreased number of cilia in smokers,79 recent
reports have illustrated an inhibition of ciliogenesis by tobacco smoke
exposure.85

Clinical Ramifications

As discussed previously, inflammatory mediators as well as toxins
secreted by multiple respiratory pathogen associated with CRS dis-
rupt ciliary function. Although pharmacologic intervention directed
at restoring normal cilia function still has to be developed for com-
mercial use, sinonasal saline lavage is an effective surrogate in re-
moving the deleterious compounds in patients with hindered mucoc-
iliary clearance and thus aiding in restoring cilia function.

CONCLUSIONS

CRS, affecting >35 million Americans of all ages,84 results in high
morbidity, with patients showing worse quality-of-life scores (for
physical pain and social functioning) than those suffering from
chronic obstructive pulmonary disease, congestive heart failure, or
angina.85 Although multiple etiologies contribute to the development
of CRS, ineffective sinonasal mucociliary clearance is the common
fundamental pathophysiology. Multiple environmental and exoge-
 nous factors alter the normal physiological state, and the resultant
inflammatory cytokines secondarily exacerbate the impaired muco-
ciliary clearance.

REFERENCES

1. Houtmeyers E, bosellini R, Gaya-nimirez G, et al. Regulation of mucociliary clearance in health and disease. Eur Respir J 13:1177–
1188, 1999.
2. Satir P, and Sleich MA. The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52:137–155, 1990.
3. Hard R, Blaus-tein K, and Scarcello L. Reactivation of outer-arm-
depleted lung axonemes: Evidence for functional differences between
inner and outer dynein arms in situ. Cell Motil Cytoskeleton 21:199–
209, 1992.
4. Brokaw CJ, and Kamiya R. Bending patterns of Chlamydomonas fla-
gella: IV. Mutants with defects in inner and outer dynein arms indic-
ate differences in dynein arm function. Cell Motil Cytoskeleton 8:68–75, 1987.
5. Brokaw CJ. Control of flagellar bending: A new agenda based on
dynein diversity. Cell Motil Cytoskeleton 28:199–204, 1994.
6. Satir P, and Christensen ST. Overview of structure and function of
mammalian cilia. Annu Rev Physiol 69:377–400, 2007.
7. Sleich MA, Blake JR, and Liron N. The propulsion of mucus by cilia.
Am Rev Respir Dis 137:726–741, 1988.
8. Verdugo P. Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157–176, 1990.
9. Sims DE, Westfall JA, Kiernps AL, et al. Preservation of tracheal
mucus by nonaqueous fixative. Biotechn Histochem 66:173–180, 1991.
10. Knowles MR, and Boucher RC. Mucus clearance as a primary innate
defense mechanism for mammalian airways. J Clin Invest 109:571–
577, 2002.
11. Bernacki SH, Nelson AL, Abdullah L, et al. Mucin gene expression
during differentiation of human airway epithelia in vitro. Muc and
mu5b are strongly induced. Am J Respir Cell Mol Biol 20:595–604,
1999.
12. Lo-Guidice JM, Merten MD, Lamblin G, et al. Macins secreted by a
transformed cell line derived from human tracheal gland cells.
Biochem J 326:431–437, 1997.
13. Tarran R, Button B, and Boucher RC. Regulation of normal and cystic
fibrosis airway surface liquid volume by phasic shear stress. Annu
Rev Physiol 68:543–561, 2006.
14. Tarran R, Trout L, Donaldson SH, et al. Soluble mediators, not cilia,
determine airway surface liquid volume in normal and cystic fibrosis
superficial airway epithelia. J Gen Physiol 127:591–604, 2006.
15. Yeh TH, Su MC, Hsu CJ, et al. Epithelial cells of nasal mucosa express
functional gap junctions of connexin 43. Acta Otolaryngol 123:314–
320, 2003.
16. Gheber L, and Priel Z. Synchronization between beating cilia. Bio-
phys 5:183–191, 1989.
17. Kreindler JL, Jackson AD, Kemp PA, et al. Inhibition of chloride
secretion in human bronchial epithelial cells by cigarette smoke ex-
tract. Am J Physiol Lung Cell Mol Physiol 286:1994–1902, 2005.
18. Cohen NA, Zhong S, Sharp DB, et al. Cigarette smoke condensate
inhibits transepithelial chloride transport and ciliary beat frequency.
Laryngoscope 119:2269–2274, 2009.
19. Virgin FW, Azbell C, Schuster D, et al. Exposure to cigarette smoke
condensate reduces calcium activated chloride channel transport in
primary sinonasal epithelial cultures. Laryngoscope 120:1465–1469,
2010.
20. Hegab AE, Sakamoto T, Nomura A, et al. Potential role of abnormal ion
transport in the pathogenesis of chronic sinusitis. Arch Otolaryngol
Head Neck Surg 132:1352–1362, 2006.
21. Virgin F, Zhang S, Schuster D, et al. The bioflavonoid compound,
sinupret, stimulates transepithelial chloride transport in vitro and in
vivo. Laryngoscope 120:1051–1056.
22. Sethi S. Bacterial infection and the pathogenesis of COPD. Chest
117: 2865–2915, 2000.
23. Dejima K, Randell SH, Stutts MI, et al. Potential role of abnormal ion
transport in the pathogenesis of chronic sinusitis. Arch Otolaryngol
Head Neck Surg 132:1352–1362, 2006.
24. Virgin F, Zhang S, Schuster D, et al. The bioflavonoid compound,
sinupret, stimulates transepithelial chloride transport in vitro and in
vivo. Laryngoscope 120:1051–1056.
25. Azbell C, Zhong S, Skinner D, et al. Hesperadin stimulates cystic
fibrosis transmembrane conductance regulator-mediated chloride se-
creation and ciliary beat frequency in sinusosal epithelium. Otolaryngol Head Neck Surg 143:997–304, 2010.
26. Alexander NS, Hatch N, Zhang S, et al. Resveratrol has salutary effects on mucociliary transport and inflammation in sinusosal epithelium. Laryngoscope 121:1313–1319, 2011.
27. Sanderson MJ, and Dirksen ER. Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: Implications for the regulation of mucociliary transport. Proc Natl Acad Sci U S A 83: 7302–7306, 1986.
28. Winters SL, Davis CW, and Boucher RC. Mechanosensitivity of mouse tracheal ciliary beat frequency: Roles for Ca2+-, purinergic signaling, tonicity, and viscosity. Am J Physiol Lung Cell Mol Physiol 292:L614–L624, 2007.
29. Zhao K-Q, Goldstein-Daruech N, Yang H, et al. Inherent differences in nasal and tracheal ciliary function in response to Pseudomonas aeruginosa challenge. Am J Rhinol Allergy 25:209–213, 2011.
30. Wong LB, Miller IF, and Yeates DB. Stimulation of tracheal ciliary beat frequency by capsaicin. J Appl Physiol 68:2574–2580, 1990.
31. Jain B, Rubinstein I, Robbins RA, et al. Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 191:83–88, 1993.
32. Jain B, Rubinstein I, Robbins RA et al. TNF-alpha and IL-1 beta upregulate nitric oxide-dependent ciliary motility in bovine airway epithelium. Am J Physiol 268:L911–7, 1995.
33. Komgreen A, Ma W, Priel Z, et al. Extracellular ATP directly gates a cation-selective channel in rabbit airway ciliated epithelial cells. J Physiol 508:703–720, 1998.
34. Sanderson MJ, and Dirksen ER. Mechanosensitivity and beta-adrenergic control of the ciliary beat frequency of mammalian respiratory tract cells in culture. Am Rev Respir Dis 139:432–440, 1989.
35. Sutto Z, Conner GE, and Salathe M. Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol 560:519–532, 2004.
36. Mwimbi XK, Muimo R, Green MW, et al. Making human nasal cilia beat in the cold: a real time assay for cell signalling. Cell Signal 15:395–402, 2003.
37. Schipor I, Palmer JN, Cohen AS, et al. Quantification of ciliary beat frequency in sinusosal epithelial cells using differential interference contrast microscopy and high-speed digital video imaging. Am J Rhinol 20:124–127, 2006.
38. Picher M, and Boucher RC. Human airway ecto-adenylate kinase. A mechanism to propagate ATP signaling on airway surfaces. J Biol Chem 278:11256–11264, 2003.
39. Wyatt TA, and Sisson JH. Chronic ethanoldownregulates PKA activation and ciliary beating in bovine bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 281:L575–L581, 2001.
40. Yang B, Schlosser RJ, and McCaffrey TV. Dual signal transduction mechanisms modulate ciliary beat frequency in upper airway epithelium. Am J Physiol 270:L745–L751, 1996.
41. Salathe M, Lipson EJ, Ivonnet PI, et al. Mucaric signaling in ciliated tracheal epithelial cells: Dual effects on Ca2+ and ciliary beating. Am J Physiol 272:L301–L310, 1997.
42. Zagoozy O, Braiman A, and Priel Z. The mechanism of ciliary stimulation by acetycholine: Roles of calcium, PKA, and PKG. J Gen Physiol 119:329–339, 2002.
43. Wong LB, Miller IF, and Yeates DB. Pathways of substance P stimulation of ciliary beating. Am J Physiol 272:L301–L310, 1997.
44. Reddy MM, Kopito RR, and Quinlan PM. Cytosolic pH regulates GCl peptide receptor through control of phosphorylation states of CFTR. Am J Physiol 273:C1040–C1047, 1998.
45. Keskes L, Giroux-Widemann V, Serres C, et al. The reactivation of demembranated human spermatozoa lacking outer dynein arms is independent of pH. Mol Reprod Dev 49:416–425, 1998.
46. Green A, Smallman LA, Logan AC, et al. The effect of temperature on nasal ciliary beat frequency. Clin Otolaryngol 20:178–180, 1995.
47. Majima Y, Kakukura Y, Matsubara T, et al. Possible mechanisms of reduction of mucociliary clearance in chronic sinusitis. Clin Otolaryngol 11:55–60, 1986.
48. Majima Y, Sakakura Y, Matsubara T, et al. Mucociliary clearance in chronic sinusitis: Related human nasal clearance and in vitro bullfrog palate clearance. Biochemistry 20:251–262, 1983.
49. Joki S, Toskala E, Saano V, et al. Correlation between ciliary beat frequency and the structure of ciliated epithelia in pathologic human nasal mucosa. Laryngoscope 108:426–430, 1998.
50. Braverman I, Wright ED, Wang CG, et al. Human nasal ciliarybeat frequency in normal and chronic sinusitis subjects. J Otolaryngol 27:145–152, 1998.
51. Joki S, Toskala E, Saano V, et al. Ciliary beating frequency in chronic sinusitis. Arch Otolaryngol Head Neck Surg 119: 645–647, 1993.
52. Chen B, Shara J, Claire SE, et al. Altered sinusosal ciliary dynamics in chronic rhinosinusitis. Am J Rhinol 20:325–329, 2006.
53. Chen B, Antunes MB, Claire SE, et al. Reversal of chronic rhinosinusitis-associated sinusosal ciliary dysfunction. Am J Rhinol 21:346–353, 2007.
54. Ferguson JL, McCaffrey TV, Kerm EB, et al. The effects of sinus bacteria on human ciliated nasal epithelium in vitro. Otolaryngol Head Neck Surg 98:299–304, 1988.
55. Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev 51:5–19, 2001.
56. Kanthakumar K, Taylor G, Tsang KW, et al. Mechanisms of action of Pseudomonas aeruginosa pyocyanin on human ciliary beat in vitro. J Appl Physiol 61:2484–2489, 1986.
57. Munro NC, Barker A, Rutman A, et al. Effect of pyocyanin and 1-hydroxyphenazone on in vivo tracheal mucus velocity. J Appl Physiol 67:316–323, 1989.
58. St Geme JW III. The pathogenesis of nontypable Haemophilus influenzae otitis media. Vaccine 19(suppl 1):S41–S50, 2000.
59. Feldman C, Anderson R, Cockeran R, et al. The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir Med 96:580–585, 2002.
60. Min YG, Oh SJ, Won TB, et al. Effects of staphylococcal enterotoxin on ciliary activity and histology of the sinus mucosa. Acta Otolaryngol 126:941–947, 2006.
61. Hamilos DL. Chronic sinusitis. J Allergy Clin Immunol 106:213–227, 2000.
62. Lennard CM, Mann EA, Sun LL, et al. Interleukin-1 beta, interleukin-5, interleukin-6, interleukin-8, and tumor necrosis factor-alpha in chronic sinusitis: Response to systemic corticosteroids. Am J Rhinol 14:367–373, 2000.
63. Kuehnemund M, Ismail C, Brieger J, et al. Untreated chronic rhinosinusitis: A comparison of symptoms and mediator profiles. Laryngoscope 114:561–565, 2004.
64. Bacht C, Wagenmann M, Rudack C, et al. The role of cytokines in infectious sinusitis and nasal polyposis. Allergy 53:2–13, 1998.
65. Bacht C, Wagenmann M, Hauser U, et al. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 99:837–842, 1997.
66. Bacht C, and Van Cauwenberge PB. Inflammatory mechanisms in chronic sinusitis. Acta Otorhinolaryngol Belg 51:209–217, 1997.
67. Woodworth BA, Joseph K, Kaplan AP, et al. Alterations in eotaxin, monocye chemoattractant protein-4, interleukin-5, and interleukin-13 after systemic steroid treatment for nasal polyps. Otolaryngol Head Neck Surg 131:585–589, 2004.
68. Allen-Gipson DS, Romberger DJ, Forget MA, et al. IL-8 inhibits isoprotean-stimulated ciliary beat frequency in bovine bronchial epithelial cells. J Aerosol Med 17:107–115, 2004.
69. Gonzalez C, Sanchez MT, Perez-Sepulveda A, et al. Effect of TNF Alpha and Viscosity in Airway Epithelial Cells, Vol. 137. American Academy of Otolaryngology Head and Neck Surgery, Washington, D.C.: Elsevier, 200, 2007.
70. Laoukili J, Perret E, Willems T, et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest 108:1817–1824, 2001.
71. Papanathanasiou A, Djahanbakhch O, Saridogan E, et al. The effect of interleukin-6 on ciliary beat frequency in the human fallopian tube. Fertil Steril 90:391–394, 2008.

74. Falk HL, Tremer HM, and Kotin P. Effect of cigarette smoke and its constituents on ciliated mucus-secreting epithelium. J Natl Cancer Inst 23:999–1012, 1959.
75. Hybbinette JC. A pharmacological evaluation of the short-term effect of cigarette smoke on mucociliary activity. Acta Otolaryngol 94:351–359, 1982.
76. Pettersson B, Currall M, and Enzell C. The inhibitory effect of tobacco smoke compound on ciliary activity. Eur J Respir Dis Suppl 139:89–92, 1985.
77. Wyatt TA, Gentry-Nielsen MJ, Pavlik JA, et al. Desensitization of PKA-stimulated ciliary beat frequency in an ethanol-fed rat model of cigarette smoke exposure. Alcohol Clin Exp Res 28:998–1004, 2004.
78. Elliott MK, Sisson JH, West WW, et al. Differential in vivo effects of whole cigarette smoke exposure versus cigarette smoke extract on mouse ciliated tracheal epithelium. Exp Lung Res 32:99–118, 2006.
79. Wanner A, Salathe M, and O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902, 1996.
80. Isik AC, Yardimci S, Guven C, et al. Morphologic alteration induced by short-term smoke exposure in rats. ORL J Otorhinolaryngol Relat Spec 69:13–17, 2007.
81. Gensch E, Gallup M, Sucher A, et al. Tobacco smoke control of mucin production in lung cells requires oxygen radicals AP-1 and JNK. J Biol Chem 279:3985–3993, 2004.
82. Takeyama K, Jung B, Shim JJ, et al. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol 280:L165–L172, 2001.
83. Tamashiro E, Xiong G, Anselmo-Lima WT, et al. Cigarette smoke exposure impairs respiratory epithelial ciliogenesis. Am J Rhinol Allergy 23:117–122, 2009.
84. Murphy MP, Fishman P, Short SO, et al. Health care utilization and cost among adults with chronic rhinosinusitis enrolled in a health maintenance organization. Otolaryngol Head Neck Surg 127:367–376, 2002.
85. Gliklich RE, and Metson R. The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg 113:104–109, 1995.
86. Sanderson MJ, Charles AC, and Dirksen ER. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul 1:585–596, 1990.
87. Gertsberg I, Hellman V, Fainshtein M, et al. Intracellular Ca2+ regulates the phosphorylation and the dephosphorylation of ciliary proteins via the NO pathway. J Gen Physiol 124:527–540, 2004.
88. Wong LB, Miller IF, and Yeates DB. Regulatory pathways for the stimulation of canine tracheal ciliary beat frequency by bradykinin. J Physiol 422:421–431, 1990.
89. Yang B, Schlosser RJ, and McCaffrey TV. Signal transduction pathways in modulation of ciliary beat frequency by methacholine. Ann Otol Rhinol Laryngol 106:230–236, 1997.
90. Tamaoki J, Sakai S, Chiyotani A, et al. Effects of prostacyclin and beraprost on ciliary motility of rabbit airway epithelium. Pharmacology 48:194–200, 1994.
91. Schlosser RJ, Czaja JM, Yang B, et al. Signal transduction mechanisms in substance P-mediated ciliostimulation. Otolaryngol Head Neck Surg 113:582–588, 1995.
92. Wilson R, Pitt T, Taylor G, et al. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest 79:221–229, 1987.