Whitney categories and the Tangle Hypothesis

Jon Woolf, University of Liverpool
(joint with Conor Smyth)

BMC, March 2013
Small categories ‘are’ presheaves on Δ — finite ordinals and order-preserving maps — with a sheaf-like property.
Small categories ‘are’ presheaves on Δ — finite ordinals and order-preserving maps — with a sheaf-like property.

The nerve of a category

The nerve $N: \text{Cat} \to PSh(\Delta)$ is fully faithful, with essential image those simplicial sets S satisfying the Segal condition

$$S_k \xrightarrow{\sim} S_1 \times_{S_0} \cdots \times_{S_0} S_1 \quad \forall k \in \mathbb{N}.$$

(We think of $[k]$ as a concatenation of directed intervals rather than as a geometrical simplex.)
Small dagger categories ‘are’ presheaves on $\mathbf{D\Delta} —$ finite ordinals and order-preserving or reversing maps — with a sheaf-like property.
Small dagger categories ‘are’ presheaves on Δ — finite ordinals and order-preserving or reversing maps — with a sheaf-like property.

The dagger nerve of a dagger category [Joy10]

The dagger nerve $DN: DCat \to PSh(\Delta)$ is fully faithful, with essential image those dagger simplicial sets S satisfying the Segal condition

$$S_k \sim S_1 \times S_0 \cdots \times S_0 S_1 \quad \forall k \in \mathbb{N}.$$

(We think of $[k]$ as a concatenation of undirected intervals

$$\bullet \cdots \bullet$$

rather than as a sequence of arrows.)
Remark

The above realisation of $[k]$ is a typical 1d stratified space. The idea of [SW11] is to define higher categories with duals by

\[D\Delta \sim \text{category of higher dim stratified spaces} \]

Segal condition \sim sheaf-like condition for presheaves on above
Remark

The above realisation of $[k]$ is a typical 1d stratified space. The idea of [SW11] is to define higher categories with duals by

$$D\Delta \sim \text{category of higher dim stratified spaces}$$

Segal condition $\sim \text{sheaf-like condition for presheaves on above}$

Definition (Higher category with duals — preliminary version)

Presheaf on a (suitable) category of stratified spaces satisfying a (suitable) sheaf-like property.
Definition (Whitney stratified manifold)
Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{ S_i \} \) (the strata) satisfying Whitney’s condition \(B \).
Stratified spaces

Definition (Whitney stratified manifold)

Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{S_i\} \) (the strata) satisfying Whitney’s condition \(B \).

Examples

A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.
Definition (Whitney stratified manifold)

Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{S_i\} \) (the strata) satisfying Whitney’s condition \(B \).

Examples

A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.

Definition (Compact cellular stratified space)

Compact union of cellular strata in a Whitney stratified manifold.
Definition (Whitney stratified manifold)

Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{ S_i \} \) (the strata) satisfying Whitney’s condition \(B \).

Examples

A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.

Definition (Compact cellular stratified space)

Compact union of cellular strata in a Whitney stratified manifold.

Examples

Geometric simplex \(\Delta_n \subset \mathbb{R}^{n+1}, S^n, \mathbb{R}\mathbb{P}^n, \mathbb{C}\mathbb{P}^n, \) Grassmannians...
Stratified and prestratified maps

Definition (Stratified map)

Smooth $f: X \to Y$, where X, Y stratified spaces, such that

- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_S: S \to T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)

Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Example

Jon Woolf, University of Liverpool (joint with Conor Smyth)

Whitney categories and the Tangle Hypothesis
Stratified and prestratified maps

Definition (Stratified map)
Smooth $f: X \to Y$, where X, Y stratified spaces, such that
- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_S: S \to T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)
Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Whitney categories and the Tangle Hypothesis
Definition (Stratified map)

Smooth $f: X \to Y$, where X, Y stratified spaces, such that

- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_S: S \to T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)

Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Example

![Diagram](image-url)
Stratified and prestratified maps

Definition (Stratified map)
Smooth \(f: X \to Y \), where \(X \), \(Y \) stratified spaces, such that
- \(f^{-1}T \) is a union of strata for each stratum \(T \subset Y \)
- \(f|_{S}: S \to T \) is a submersion for each \(S \subset f^{-1}T \).

Definition (Prestratified map)
Smooth \(f: X \to Y \) which becomes stratified after refining the stratification of \(X \).

Example

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Whitney categories and the Tangle Hypothesis
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

- Str_n: germs of stratified maps

Definition (Whitney n-category)

Presheaf on hPStr_n whose pullback along Str_n/uni $\rightarrow \text{hPStr}_n$ is a sheaf. In particular

$$W(X) = \lim_{i \in S(X)} W(S_i)$$

where $S(X)$ is the poset of strata of X. Let Whit_n be the full subcategory of such presheaves.
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

- Str_n: germs of stratified maps
- PStr_n: germs of prestratified maps

Definition (Whitney n-category)

Presheaf on hPStr_n whose pullback along Str_n/uni $\rightarrow \text{PStr}_n \rightarrow \text{hPStr}_n$ is a sheaf. In particular

$$W(X) = \lim_{i\in S(X)} W(S_i)$$

where $S(X)$ is the poset of strata of X. Let Whit_n be the full subcategory of such presheaves.
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

- Str_n: germs of stratified maps
- PStr_n: germs of prestratified maps
- hPStr_n: homotopy classes of germs of prestratified maps.
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim \(n \) and respective morphisms are

- \(\text{Str}_n \): germs of stratified maps
- \(\text{PStr}_n \): germs of prestratified maps
- \(\text{hPStr}_n \): homotopy classes of germs of prestratified maps.

Definition (Whitney \(n \)-category)

Presheaf on \(\text{hPStr}_n \) whose pullback along \(\text{Str}_n \mapsto \text{PStr}_n \mapsto \text{hPStr}_n \)
is a sheaf. In particular

\[
W(X) = \lim_{i \in \mathcal{S}(X)} W(S_i)
\]

where \(\mathcal{S}(X) \) is the poset of strata of \(X \). Let \(n\text{Whit} \) be the full subcategory of such presheaves.
Example (Sheaf condition \implies Segal condition)

$$W(\cdots) = W(\cdot) \times_{W(\cdot)} \cdots \times_{W(\cdot)} W(\cdot)$$
Example (Sheaf condition \Rightarrow Segal condition)

$$W(\bigcirc_\ldots\bigcirc) = W(\bigcirc) \times_{W(\bigcirc)} \ldots \times_{W(\bigcirc)} W(\bigcirc)$$

Objects / morphisms

$$X \leftrightarrow \text{template for a pasting diagram, }$$

$$W(X) \leftrightarrow \text{set of pasting diagrams, or } X\text{-morphisms.}$$
Example (Sheaf condition \Rightarrow Segal condition)

$W(\bullet \ldots \bullet) = W(\bullet) \times_{W(\bullet)} \ldots \times_{W(\bullet)} W(\bullet)$

Objects / morphisms

$X \leftrightarrow$ template for a pasting diagram,
$W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.

Structure

Boundary:
Source/Target
Example (Sheaf condition \Rightarrow Segal condition)

\[W(\ldots) = W(\bullet) \times_{W(\bullet)} \cdots \times_{W(\bullet)} W(\bullet) \]

Objects / morphisms

- $X \leftrightarrow$ template for a pasting diagram,
- $W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.

Structure

- **Boundary:**
 - Source/Target
- **Subdivision:**
 - Composition

Jon Woolf, University of Liverpool (joint with Conor Smyth)

Whitney categories and the Tangle Hypothesis
Example (Sheaf condition \Rightarrow Segal condition)

$$W(\ldots) = W(\bullet) \times \ldots \times W(\bullet) W(\bullet)$$

Objects / morphisms

X \leftrightarrow template for a pasting diagram,

$W(X)$ \leftrightarrow set of pasting diagrams, or X-morphisms.

Structure

Boundary: Source/Target

Subdivision: Composition

Map to point: Identities

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Example (Sheaf condition \Rightarrow Segal condition)

\[W(\cdots) = W(\bullet) \times_{W(\bullet)} \cdots \times_{W(\bullet)} W(\bullet) \]

Objects / morphisms

- $X \leftrightarrow$ template for a pasting diagram,
- $W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.

Structure

- Boundary
- Source/Target
- Subdivision
- Composition
- Map to point
- Identities
- Reflection
- Dual

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Example (Low-dimensional cases)

$0\text{Whit} \simeq \text{Set}$ and $D\Delta \to \text{hPStr}_1$ induces $1\text{Whit} \simeq D\text{Cat}$.
Examples of Whitney categories

Example (Low-dimensional cases)

\(0\text{Whit} \cong \text{Set} \) and \(D\Delta \to hPStr_1 \) induces \(1\text{Whit} \cong D\text{Cat} \).

Example (Representable Whitney categories)

Let \(\text{Rep}(X) = hPStr_n (-, X) \in n\text{Whit} \). By Yoneda \(\text{Rep}(X) \) is free on one \(X \)-morphism, i.e. \(n\text{Whit}(\text{Rep}(X), W) \cong W(X) \).
Examples of Whitney categories

Example (Low-dimensional cases)
$0\text{Whit} \cong \text{Set} \text{ and } D\Delta \to \text{hPStr}_1 \text{ induces } 1\text{Whit} \cong \text{DCat}.$

Example (Representable Whitney categories)
Let $\text{Rep}(X) = \text{hPStr}_n(-, X) \in n\text{Whit}.$ By Yoneda $\text{Rep}(X)$ is free on one X-morphism, i.e. $n\text{Whit}(\text{Rep}(X), W) \cong W(X).$

Example (Framed tangles)
Define $n\text{Tang}^{fr}_k \in (n + k)\text{Whit}$ by

$$n\text{Tang}^{fr}_k(X) = \{ \text{codim } k \text{ framed sbmflds } \upharpoonright \text{ to strata} \}/\text{isotopy}.$$
Examples of Whitney categories

Example (Low-dimensional cases)

$0\text{Whit} \simeq \text{Set}$ and $D\Delta \to h\text{PStr}_1$ induces $1\text{Whit} \simeq D\text{Cat}$.

Example (Representable Whitney categories)

Let $\text{Rep}(X) = h\text{PStr}_n(_, X) \in n\text{Whit}$. By Yoneda $\text{Rep}(X)$ is free on one X-morphism, i.e. $n\text{Whit}(\text{Rep}(X), W) \simeq W(X)$.

Example (Framed tangles)

Define $n\text{Tang}_k^{fr} \in (n + k)\text{Whit}$ by

$$n\text{Tang}_k^{fr}(X) = \{\text{codim } k \text{ framed sbmflds } \upharpoonright \text{ to strata}\}/\text{isotopy}.$$
Formal properties

- nWhit is complete and cocomplete.
Properties of Whitney categories

Formal properties

- \(n\text{Whit} \) is complete and cocomplete.
- The inclusion \(n\text{Whit} \to \text{PSh}(h\text{PStr}_n) \) has a left adjoint.

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Formal properties

- $nWhit$ is complete and cocomplete.
- The inclusion $nWhit \hookrightarrow PSh(hPStr_n)$ has a left adjoint.
- There is a ‘dagger nerve’ $nWhit \rightarrow PSh(D\theta_n)$ induced by $D\theta_n \rightarrow hPStr_n$ where $D\theta_1 = D\Delta$ and $D\theta_n = D\Delta \vee D\theta_{n-1}$.
Properties of Whitney categories

Formal properties

- $n\text{Whit}$ is complete and cocomplete.
- The inclusion $n\text{Whit} \rightarrow \text{PSh}(\text{hPStr}_n)$ has a left adjoint.
- There is a ‘dagger nerve’ $n\text{Whit} \rightarrow \text{PSh}(D\theta_n)$ induced by $D\theta_n \rightarrow \text{hPStr}_n$ where $D\theta_1 = D\Delta$ and $D\theta_n = D\Delta \circ D\theta_{n-1}$.

Definition (Category of morphisms)

For objects $w_0, w_1 \in W(pt)$ there is a Whitney $(n-1)$-category

$$W(w_0, w_1)(X) = \{\omega \in W(X \times [0,1]) : \omega|_{X \times i} = p^* w_i, i = 0, 1\}$$

of morphisms between w_0 and w_1, where $p: X \rightarrow pt$.
Tangles and prestratified maps to S^k

The Pontrjagin–Thom construction

Choosing a generic framed point $p \in S^k$ yields a correspondence

- isotopy classes of framed tangles in X ↔ homotopy classes of prestratified maps $X \to S^k$
The Pontrjagin–Thom construction

Choosing a generic framed point \(p \in S^k \) yields a correspondence

\[
\text{isotopy classes of} \leftrightarrow \text{homotopy classes of} \\
\text{framed tangles in } X \leftrightarrow \text{prestratified maps } X \to S^k
\]

Consider \([p] \in n\text{Tang}^\text{fr}_k(S^k)\). Since Rep\((S^k)\) free we obtain

\[
 PT: \text{Rep}(S^k) \to n\text{Tang}^\text{fr}_k: \left[X \xrightarrow{f} S^k \right] \mapsto [f^{-1}(p) \subset X]
\]

in \((n + k)\text{Whit.} \) Pontrjagin–Thom \(\Rightarrow \) \(PT \) is an isomorphism.
Definition (k-tuply monoidal Whitney n-category)

A Whitney \((n + k)\)-category \(W\) with \(W(X) = 1\) for \(\text{dim } X < k\).
Definition (\(k\)-tuply monoidal Whitney \(n\)-category)

A Whitney \((n + k)\)-category \(W\) with \(W(X) = 1\) for \(\dim X < k\).

Definition (\(k\)-tuply monoidal functor)

A morphism in \((n + k)\)Whit between \(k\)-tuply monoidal Whitney \(n\)-categories.
Definition (k-tuply monoidal Whitney n-category)
A Whitney \((n + k)\)-category \(W\) with \(W(X) = 1\) for \(\dim X < k\).

Definition (k-tuply monoidal functor)
A morphism in \((n + k)\)Whit between \(k\)-tuply monoidal Whitney \(n\)-categories.

Example
\(PT: \text{Rep}(S^k) \to n\text{Tang}^\text{fr}_k\) is a \(k\)-tuply monoidal functor.
The Whitney Tangle Hypothesis

Definition (k-tuply monoidal Whitney n-category)
A Whitney \((n + k)\)-category \(W\) with \(W(X) = 1\) for \(\dim X < k\).

Definition (k-tuply monoidal functor)
A morphism in \((n + k)\)Whit between \(k\)-tuply monoidal Whitney \(n\)-categories.

Example
\[PT: \text{Rep}(\mathbb{S}^k) \to n\text{Tang}^fr_k\] is a \(k\)-tuply monoidal functor.

Theorem (Whitney Tangle Hypothesis, c.f. [BD95])
\(n\text{Tang}^fr_k\) is the free \(k\)-tuply monoidal Whitney \(n\)-category on one \(\mathbb{S}^k\)-morphism.
John. Baez and James. Dolan.
Higher-dimensional algebra and topological quantum field theory.
J. Math. Phys., 36(11):6073–6105, 1995.

André Joyal.
Dagger not evil.
Posted on Category Theory mailing list, January 2010.

Scott Morrison and Kevin Walker.
Blob homology.
Geom. Topol., 16(3):1481–1607, 2012.

Charles Rezk.
A Cartesian presentation of weak n-categories.
Geom. Topol., 14(1):521–571, 2010.
Conor Smyth and Jon Woolf. Whitney categories and the Tangle Hypothesis. arXiv:1108.3724 (major revision in progress), 2011.