Modules with ⊛(⊛'or ⊛'') Condition
Inaam Mohammed Ali Hadi, Ghaleb Ahmed Humod
Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Keywords. SH-submodule, SI-submodule, conditions \mathcal{ISH}_top-module, $\mathcal{2SH}_\text{top}$-module, \mathcal{SI}_top-module, ⊛, ⊛'
and ⊛'' conditions.

Abstract. In this paper we introduce and study modules with ⊛ (⊛' or ⊛'') condition. We give several properties of these types of modules and some relationships between them.

Introduction
Let M be an R-module, where R is a commutative ring with unity. Recall that a nonzero submodule N of M is called strongly hollow (briefly, SH-submodule) if whenever $L_1, L_2 \leq M$, $N \subseteq L_1 + L_2$ implies either $N \subseteq L_1$ or $N \subseteq L_2$, [1]. A submodule N of M is called strongly irreducible (SI-submodule) if whenever $L_1, L_2 \leq M$, $N \supseteq L_1 \cap L_2$ implies $N \supseteq L_1$ or $N \supseteq L_2$, [4]. The sets $\{K: K \text{ is a SH-submodule of } M\}$, $\{K: K \text{ is a proper SH-submodule of } M\}$ and $\{K: K \text{ is a nonzero proper SI-submodule of } M\}$ are denoted $\mathcal{ISH}_\text{top}(M)$, $\mathcal{2SH}_\text{top}(M)$ and $\mathcal{SI}_\text{top}(M)$ respectively,[8]. In [8] we studied and topologized these sets by setting that for any $L \leq M$

We prove that $(\mathcal{ISH}(M), \tau(M))$ is a topological space (see [8, Th.2.1.9]). Also we see that $\zeta(M)$ is not closed under finite union, however all other axioms of closed sets of a topological space are valid (see [8, Th.2.4.1]). This leaded us to call an R-module M a \mathcal{ISH}_top-module if $\zeta(M)$ is closed under finite union. Equivalently M is a \mathcal{ISH}_top-module if $(\mathcal{ISH}(M), \tau(M))$ is a topological space.

Beside these we see that $\zeta(M)$ is not closed under finite union, however all other axioms of closed sets of a topological space are valid (see [8, Th.3.2.1]). This leaded us to call an R-module M a \mathcal{SI}_top-module if $\zeta(M)$ is closed under a finite union. Equivalently M is a \mathcal{SI}_top-module if $(\mathcal{SI}(M), \tau(M))$ is a topological space.

We notice that, for any $L_1 \leq M$, $L_2 \leq M$, if $\mathcal{ISH}(L_1) = \mathcal{ISH}(L_2)$ (or $\mathcal{2SH}(L_1) = \mathcal{2SH}(L_2)$ or $\mathcal{SI}(L_1) = \mathcal{SI}(L_2)$) then it is not necessarily that $L_1 = L_2$, as the following examples show.

(1) Consider the Z-module Z, $\mathcal{ISH}(3Z) = \mathcal{ISH}(\{0\}) = \emptyset$ but $3Z \neq \{0\}$.
(2) For the Z-module Z_{12}, $\mathcal{2SH}(\langle 2 \rangle) = \emptyset = \mathcal{2SH}(\langle 2 \rangle)$ but $\langle 2 \rangle \neq \langle 2 \rangle$.
(3) For the Z-module Z_{12}, $\mathcal{SI}(\langle 6 \rangle) = \emptyset = \mathcal{SI}(\{0\})$ but $\langle 6 \rangle \neq \{0\}$.
These observations lead us to introduce the following conditions:

\[\bigcirc : \quad V(L_1) = V(L_2) \implies L_1 = L_2, \quad \text{for each } L_1, L_2 \leq M. \]
\[\bigcirc' : \quad V(L_1) = V(L_2) \implies L_1 = L_2, \quad \text{for each } L_1, L_2 \leq M. \]
\[\bigcirc'' : \quad V(L_1) = V(L_2) \implies L_1 = L_2, \quad \text{for each } L_1, L_2 \leq M. \]

This paper is devoted to study modules with \(\bigcirc \) (\(\bigcirc' \), \(\bigcirc'' \) respectively). Also we shall study the behaviour \(\text{Spec}(M) \), \(\text{Spec}(M) \) and \(\text{Spec}(M) \) respectively when \(M \) satisfies \(\bigcirc \) (\(\bigcirc' \), \(\bigcirc'' \)).

\section*{S.1 Modules with the Condition \(\bigcirc \)}

We start this by the following remarks and examples.

\textbf{Remarks and Examples 1.1:}

1. The \(\mathbb{Z} \)-module \(\mathbb{Z} \) does not satisfies \(\bigcirc \) since for each \(L, N \leq \mathbb{Z}, L \neq \mathbb{Z} \),

\[V(L) = V(N) = \emptyset \]

2. Every simple module satisfies \(\bigcirc \).

3. Let \(M, M' \) be two isomorphic \(R \)-modules. Then \(M \) satisfies \(\bigcirc \) if and only if \(M' \) satisfies \(\bigcirc \).

4. Let \(M_1, M_2 \) be \(R \)-modules. If \(M_1, M_2 \) satisfies \(\bigcirc \) condition, then \(M_1 \oplus M_2 \) may not be satisfy \(\bigcirc \), as an example: Let \(M_1 = \mathbb{Z}_3 \) as a \(\mathbb{Z} \)-module and \(M_2 = \mathbb{Z}_4 \) as a \(\mathbb{Z} \)-module. Each of \(M_1 \) and \(M_2 \) satisfies \(\bigcirc \). However \(\mathbb{Z}_3 \oplus \mathbb{Z}_4 \cong \mathbb{Z}_{12} \) and \(\mathbb{Z}_{12} \) does not satisfy \(\bigcirc \).

5. Let \(M \) be an \(R \)-module. Then \(M \) satisfies \(\bigcirc \) as \(R \)-module if and only if \(M \) satisfies \(\bigcirc \) as \(R/\text{ann} \) \(M \).

\textbf{Proposition 1.2.} Let \(M \) be an \(R \)-module such that every nonzero submodules is \(\text{SH} \). Then \(M \) satisfies \(\bigcirc \).

\textbf{Proof:} First note that \(V(<0>) = \emptyset \neq V(N) \) for each \(N \neq <0> \). Let \(L, N \leq M, L \neq (0), N \neq (0) \) such that \(V(L) = V(N) \). Since \(L \subseteq L \) and \(L \) is a \(\text{SH} \)-submodule by hypothesis, \(L \in V(L) = V(N) \). It follows that \(L \subseteq N \). Similarly, \(N \in V(N) = V(L) \) and hence \(N \subseteq L \). Thus \(L = N \).

Recall that an \(R \)-module \(M \) is called chained if the lattice of its submodules is linearly ordered by inclusion [10].

\textbf{Corollary 1.3.} Let \(M \) be a chained \(R \)-module. Then \(M \) satisfies \(\bigcirc \).

The following theorem gives a characterization of modules with the condition \(\bigcirc \).

\textbf{Theorem 1.4:}

Let \(M \) be an nonzero \(R \)-module. Then \(M \) satisfies \(\bigcirc \) if and only if every nonzero submodule of \(M \) can be represented as sum of \(\text{SH} \)-submodules.

\textbf{Proof:} (\(\Rightarrow \)) Let \((0) \neq K \leq M \). Then \(V(K) \neq \emptyset \), since if \(V(K) = \emptyset \), then \(V(K) = V(0) \) and hence \(K = (0) \) (by \(\bigcirc \)), which is a contradiction. Set \(N = \sum_{W \in V(K)} W \) and let \(L \in V(N) \). Then \(L \subseteq V(K) \).

But for each \(W \in V(K), W \subseteq K \), so \(N \subseteq K \). Thus \(L \subseteq K \) and hence \(L \in V(N) \). Thus \(V(N) \subseteq V(K) \).

\[\text{The Bulletin of Society for Mathematical Services and Standards Vol. 4 13} \]
Now, let $L \in V(K)$, then $L \subseteq N$ (by definition of N). Hence $L \in V(K)$ and so $V(N) \subseteq V(K)$ Thus $V(N) \subseteq V(K)$ and by \odot, $K=N$. Thus K is a sum of SH-submodules.

(\Leftarrow) Let $N \leq M$, $N \neq 0$. Then $N = \sum_{i \in \Lambda} T_i$, where T_i is an SH-submodule of M, $\forall \ i \in \Lambda$ (by hypothesis).

Since for each $i \in \Lambda$, $T_i \subseteq N$, we have $T_i \in V(N)$. Hence $\bigvee_{T_i \in V(N)} \sum_{T_i \in V(N)} T_i = N = \bigvee_{S_i \in V(N)} \sum_{S_i \in V(N)} S_i$, by the previous argument. Then $N_1 = N_2$. Thus M satisfies \odot.

Corollary 1.5. Let M be a semisimple R-module such that every simple submodule is SH. Then M satisfies \odot.

Recall that an R-module is called comultiplication if for each $N \leq M$, $N = M$ for some ideal I of R. Let $N(M) = \{m \in M \mid Im = (0)\}$.

An R-module is called distributive if for each $N, L, W \leq M$, $N \cap (L + W) = (N \cap L) + (N \cap W)$.

Lemma 1.6: [8,Cor.1.1.9], [8,Prop.1.1.11] Let M be a comultiplication (or distributive) R-module. Then every simple submodule of M is a SH-submodule.

Corollary 1.7. Let M be a semisimple comultiplication (or distributive). Then M satisfies \odot.

Proof: It follows by Lemma 1.6 and Cor. 1.5.

Remarks 1.8:

1. The condition “every simple submodule is a SH-submodule” is necessary in Cor. 1.5, as for example: It is clear that the vector space \mathbb{R}^2 over \mathbb{R} is semisimple, but $N_1 = \mathbb{R}(1,0)$ is a simple submodule of \mathbb{R}^2 and it is not SH. However \mathbb{R}^2 does not satisfy \odot since $V(N_1) = V(N_2) = \phi$, where $N_2 = \mathbb{R}(0,1)$.

2. The converse of Cor. 1.5 is not true in general, for example: consider the Z-module Z_4, Z_4 satisfies \odot and every nonzero submodule of Z_4 is SH. However Z_4 is not semisimple.

Before giving the next result, we give the following lemma.

Lemma 1.9. Let M be an R-module. Then $\text{SH} \text{Spec}(M)$ is a T_1-space if and only if every SH-submodule is minimal SH in $\text{SH} \text{Spec}(M)$

Proof: (\Rightarrow) If $\text{Spec}(M)$ is T_1. Suppose $\text{Spec}(M) = \phi$. Then nothing to prove. Let $\text{Spec}(M) \neq \phi$. Since $\text{Spec}(M)$ is T_1, then for any $N \in \text{Spec}(M)$, N is closed; that is $\{N\} = V(L)$ for some $L \leq M$. If N is not minimal SH, then there exists $K \in \text{Spec}(M)$ and $K \subseteq N$. Hence $K \subseteq L$; that is $K \in V(L) = \{N\}$ and $K = N$ which is a contradiction. Therefore N is a minimal SH-submodule.

(\Leftarrow) Let $N \in \text{Spec}(M)$. Then N is SH and so $N \in V(N)$. Assume there exists $L \leq M$, $L \neq M$ such that $L \in V(N)$. It follows that L is SH and $L \subseteq N$. Hence N is not a minimal SH-submodule which contradicts the hypothesis.

Theorem 1.10. Let M be a comultiplication R-module. Then $\text{Spec}(M)$ is T_1 and M satisfies \odot if and only if M is semisimple and every SH-submodule is minimal SH.
Proof: \((\Rightarrow)\) Since \(\text{Spec}(M)\) is \(T_1\), then by lemma 1.9, every SH-submodule is minimal SH. But M satisfies \(\odot\), so by Th.1.4, every submodule is a sum of SH-submodules. On the other hand, M is comultiplication and \(\text{Spec}(M)\) is \(T_1\) imply \(S(M) = \text{Spec}(M)\) by [8, Cor.2.2.19] where \(S(M) = \) set of all simple submodules of M. Thus every submodule of M is a sum of simple submodules; that is M is semisimple.

\((\Leftarrow)\) It follows by Cor.1.7 and Lemma 1.9.

Recall that an R-module M is called multiplication if for each \(N \leq M\), there exists \(I \leq R\) such that \(N = IM\), [3].

Lemma 1.11. Let M be a faithful finitely generated multiplication over a comultiplication ring and let \((0) \neq N \leq M\). Then N is a minimal SH-submodule of M if and only if N is simple.

Proof: \((\Rightarrow)\) Since M is multiplication, \(N = IM\) for some ideal I of R. Then by [8, Prop.1.2.1] I is aSH ideal of R. We claim that I is a simple ideal of R. If I is not simple, then there exists a simple ideal J of R such that \(J \subsetneq I\) since R is comultiplication. Moreover by Lemmal 1.6, J is a SH ideal of R and so by [8, Prop.1.2.1] JM is a SH-submodule. But M is a faithful finitely generated multiplication, so by [5,Th.3.1] J \(\subsetneq IM\). Thus N is not a minimal SH-submodule of M, which is a contradiction. Thus I is a simple ideal of R and so N is a simple submodule of M.

\((\Leftarrow)\) Let N be a simple submodule of M. Since M is multiplication then \(N = IM\) for some ideal I of R. It is easy to check that I is a simple ideal of R. Then by Lemma 1.6, I is a SH ideal and so [8, Prop.1.2.1], N is a SH-submodule. Thus N is a minimal SH-submodule of M.

By using Lemma 1.11, we have the following immediate result.

Corollary 1.12. Let R be a comultiplication ring and let \(J \leq R\). Then J is a minimal SH ideal if and only if J is a simple (minimal) ideal.

Now we have the following:

Theorem 1.13. Let M be a faithful finitely generated multiplication over a comultiplication ring R. Then \(\text{Spec}(M)\) is \(T_1\) and M satisfies \(\odot\) if and only if M is semisimple and every SH-submodule of M is minimal SH.

Proof: \((\Rightarrow)\) By Lemma 1.9, every SH-submodule of M is minimal SH and by Lemma 1.11, every minimal SH-submodule is a simple submodule. But by Th.1.4, every submodule of M is a sum of SH-submodules. Thus every submodule of M is a sum of simple submodules. Therefore M is semisimple.

\((\Leftarrow)\) Since M is semisimple, every submodule is a sum of simple submodule. But by Lemma 1.11, every simple submodule is minimal SH. Thus every submodule of M is a sum of SH-submodules and so that by Th.1.4, M satisfies \(\odot\).

On the other hand, since every SH-submodule of M is minimal SH, then by Lemma 1.9, \(\text{Spec}(M)\) is a \(T_1\)-space.

Next we have the following:

Theorem 1.14. Let M be a faithful finitely generated multiplication R-module. Then M satisfies \(\odot\) if and only if R satisfies \(\odot\).

Proof: \((\Rightarrow)\) Let I and J be ideal of R such that \(\text{V}(I) = \text{V}(J)\). We claim that \(\text{V}(IM) = \text{V}(JM)\). To see this, let \(K \in \text{V}(IM)\) Then K is a SH-submodule and \(K \subseteq IM\). But by [8,Prop.1.2.1], there exists a SH ideal T of R such that \(K = TM\). Thus \(TM \subseteq IM\) and so by [5,Th.3.1], \(T \subseteq I\). It follows that \(T \in \text{V}(IM)\) that is \(T \subseteq J\) which implies \(K=TM \subseteq JM\). Thus \(K \in \text{V}(JM)\) and hence \(\text{V}(IM) \subseteq \text{V}(JM)\).
Similarly $\mathcal{V}(IM) \subseteq \mathcal{V}(JM)$ Therefore $\mathcal{V}(IM) \subseteq \mathcal{V}(JM)$ and so $IM = JM$ and then by [5, Th.3.1], $I = J$. Thus R satisfies \ominus. (\Rightarrow) The proof is Similarly.

Remark 1.15. The condition (M is faithful) in Th.1.14 cannot be dropped, as for example. The Z-module Z_8 is finitely generated multiplication but not faithful. However Z_8 satisfies \ominus, but Z does not satisfy \ominus.

Corollary 1.16. Let M be a finitely generated R-module. Then the following statements are equivalent:

1. M satisfies \ominus as R-module.
2. M satisfies \ominus as R-\ominus-module.
3. R satisfies \ominus.

where $R = R/\text{ann } M$.

Recall that a submodule N of an R-module is called second if for each ideal I of R, either $IK = K$ or $IK = (0)$, [13].

To give our next result, first we introduce the following Lemma.

Lemma 1.17. Let M be an R-module such that every SH-submodule is second. Then $\mathcal{V}(N) = \mathcal{V}(0 : I) = \mathcal{V}(N + (0 : I)) = \mathcal{V}(N : I)$ For any $N \subseteq M$, $I \subseteq R$.

Proof: By [8, Prop.2.1.9], $\mathcal{V}(N + (0 : I)) \subseteq \mathcal{V}(N : I)$; hence $\mathcal{V}(N + (0 : I)) = \mathcal{V}(N : I)$. Now, let $K \subseteq \mathcal{V}(N)$ or $K \subseteq \mathcal{V}(0 : I)$. Then $IK \subseteq N$ and K is a SH-submodule. Hence by hypothesis K is second, so that either $IK = K$ or $IK = (0)$. It follows that either $K \subseteq N$ or $IK = (0)$.

Recall that a submodule N of an R-module M is called copure if for each $I \subseteq R$, $N + (0 : I) = (N : I)$, [12]

Theorem 1.18. Let M be an R-module with \ominus condition such that every SH-submodule is second. Then every submodule of M is copure.

Proof: Let $N \subseteq M$. By Lemma 1.17 $\mathcal{V}(N + (0 : I)) = \mathcal{V}(N : I)$ for any $I \subseteq R$. Hence by condition \ominus, $N + (0 : I) = (N : I)$ for any $I \subseteq R$; that is N is copure.

Proposition 1.19. Let M be an R-module which satisfies \ominus. Then

1. M is Noetherian (Artinian) if and only if $\text{Spec}(M)$ satisfies a.c.c (d.c.c) on closed set.
2. M is Noetherian (Artinian) if and only if $\text{Spec}(M)$ satisfies d.c.c (a.c.c) on open sets.

S.2 Modules with the Condition \ominus'

In this section, we study modules that satisfy \ominus'. Some properties of these modules are analogous to that of modules with the condition \ominus.

As we mention in the introduction, a module with condition \ominus' if it satisfies the condition \ominus', where

\ominus': if for each L, $N \subseteq M$, $\mathcal{V}(L) = \mathcal{V}(N)$ implies $L = N$
Remarks and Examples 2.1

(1) Every simple module satisfies \ominus'.

(2) If every proper nonzero submodule of M is SH, then M satisfies \ominus' for each proper nonzero submodules of M.

(3) The Z-module Z_4 does not satisfy \ominus' since $\frac{Z}{Z_4}$ is maximal but $\frac{Z}{Z_4} \neq \phi$.

(4) If M_1 and M_2 are R-modules such that $M_1 \cong M_2$ then M_1 satisfies \ominus' if and only if M_2 satisfies \ominus'.

(5) Let M be an R-module. Then M satisfies \ominus' as R-module if and only if M satisfies \ominus' as $R/\text{ann} M$-module.

Theorem 2.2. Let M be a nonzero R-module. Then M satisfies \ominus' if and only if every proper submodule of M is an intersection of SH-submodules.

Proof: (\Rightarrow) Let $K \leq M$. Then $\frac{V(K)}{V(N)} = \phi$, because if $\frac{V(K)}{V(N)} = \phi = \frac{V(M)}{V(K)}$, and hence by \ominus', $K = M$ which is a contradiction. Put $N = \bigcap_{W \in \frac{V(K)}{V(N)}} W$. Let $L \leq M$. Then L is SH and $L \supseteq N$.

Thus $\frac{V(N)}{V(K)} \leq \frac{V(K)}{V(N)}$. (1)

Now let $L \leq \frac{V(K)}{V(N)}$. Since $N = \bigcap_{W \in \frac{V(K)}{V(N)}} W$, then $L \supseteq N$; that is $L \leq \frac{V(K)}{V(N)}$.

Hence $\frac{V(K)}{V(N)} = \phi = \frac{V(M)}{V(K)}$ (2)

Thus by (1) and (2), $\frac{V(N)}{V(K)} \leq \frac{V(K)}{V(N)}$ and by \ominus', $K = N = \bigcap_{W \in \frac{V(K)}{V(N)}} W$, i.e. K is an intersection of SH-submodules.

(\Leftarrow) Let $N \leq M$. Then $N = \bigcap_{W \in \frac{V(K)}{V(N)}} W$, where $W \in \frac{V(K)}{V(N)}$. It follows that for each $I \in \Lambda$, $N_i \supseteq N$ and so that $N_i \leq \frac{V(N)}{V(K)}$.

Thus $\bigcap_{W \in \frac{V(K)}{V(N)}} W = \bigcap_{N_i \leq \frac{V(N)}{V(K)}} L_i$.

Assume $\frac{V(L)}{V(N)} = \frac{V(N)}{V(K)}$. It follows $N = L$.

Recall that an R-module M is called cosemisimple if every submodule of M is an intersection of maximal submodules, [2].

Proposition 2.3. Let M be a cosemisimple R-module. If $\text{Max}(M) \subseteq \frac{V(M)}{V(N)}$ then M satisfies \ominus', where $\text{Max}(M)$ is the set of all maximal submodules in M.

Proof: Let $N \leq M$. Since M is cosemisimple, then $N = \bigcap_{W \in \frac{V(K)}{V(N)}} W$, where $W \in \text{Max}(M)$. Hence by hypothesis, W is a SH-submodule, and this implies that N is an intersection of SH-submodules.

Then by Theorem 2.2, M satisfies \ominus'.

Remark 2.4. The condition “$\text{Max}(M) \subseteq \frac{V(M)}{V(N)}$” is necessary in Prop.2.3, as for example:

Z_30 as a Z-module does not satisfy \ominus' since $\frac{V(Z_30)}{V(2)} = \phi$ but $\frac{Z_30}{V(2)} \neq Z_30$. But Z_30 is cosemisimple, also $\text{Max}(Z_30) \subseteq \frac{V(M)}{V(N)}$, since $\frac{Z_30}{V(2)}$ is a maximal submodule but not SH.

It is known that every semisimple module is cosemisimple. Hence we have:

$$\frac{V(K)}{V(N)} \leq \frac{V(M)}{V(N)}$$
Corollary 2.5. Every semisimple module M with $\text{Max}(M) \subseteq \text{Spec}(M)$ satisfies \odot'. However for a ring R, we have:

Theorem 2.6. Every semisimple ring R satisfies \odot'.

Proof: Let $I, J \subseteq R$ such that $V(I) = V(J)$. Since R is semisimple, I, J are direct summands of R. Hence $I = \langle e \rangle$, $J = \langle f \rangle$ for some idempotent elements $e, f \in R$. It follows that $V(\langle e \rangle) = V(R) = \emptyset$, $V(\langle f \rangle) = V(R) = \emptyset$, hence $V(\langle e \rangle) \cap V(\langle 1 - e \rangle) = \emptyset$, $V(\langle f \rangle) \cap V(\langle 1 - f \rangle) = \emptyset$. Then $V(\langle e \rangle) \cap V(\langle 1 - e \rangle) = \emptyset$, $V(\langle f \rangle) \cap V(\langle 1 - f \rangle) = \emptyset$ (since $V(\langle e \rangle) = V(\langle f \rangle)$), which imply that $V(\langle e \rangle + \langle 1 - e \rangle) = V(R)$ and $V(\langle f \rangle + \langle 1 - f \rangle) = V(R)$. But R is comultiplication, since R is semisimple. Then by [8,Prop 2.5.14] $\langle e \rangle + \langle 1 - f \rangle = R$ and $\langle f \rangle + (1 - e) = R$. Now to prove $\langle e \rangle = \langle f \rangle$. Let $x \in \langle f \rangle$, then $x = cf$ for some $c \in R$ and $x = cf = r_1 e + r_2 (1 - f)$ for some $r_1, r_2 \in R$. It follows that $c^2 = cef + r_2 (1 - f)$, hence $x = cf = cef$. Thus $x \in \langle e \rangle$, and so $\langle f \rangle \subseteq \langle e \rangle$. Similary $\langle e \rangle \subseteq \langle f \rangle$. Thus $I = \langle e \rangle = \langle f \rangle = J$ and R satisfies \odot'.

To give the next result we need the following lemmas. First compare the following Lemma with Lemma 1.9.

Lemma 2.7. Let M be an R-module. Then $\text{Spec}(M)$ is a T_1-space if and only if every proper SH-submodule is maximal SH in $\text{Spec}(M)$.

Proof: It is analogous to the proof of lemma 1.9, so is omitted.

Recall that a topological space (X, τ) is called cofinite if the only closed subsets of X are finite sets or X. Equivalently $\tau = \{U: U \subseteq X \text{ and } X - U \text{ is a finite set}\} \cup \{\emptyset\}$.

Lemma 2.8. Let M be an R-module. Then $\text{Spec}(M)$ is a cofinite topological space if and only if every proper SH-submodule is maximal SH in $\text{Spec}(M)$ and for any $N \subseteq M$, either $V(N) = \text{Spec}(M)$ or $V(N)$ is a finite set.

Proof: (\Rightarrow) Since $\text{Spec}(M)$ is a cofinite topological space, then $\text{Spec}(M)$ is a T_1-space. Hence by Lemma 2.7, every proper SH-submodule is a maximal SH-submodule. Moreover for any $N \subseteq M$ it is clear that either $V(N) = \text{Spec}(M)$ or $V(N)$ is a finite set.

(\Leftarrow) For any $N \subseteq M$, $\chi(N) = \text{Spec}(M)$ or $V(N)$ is finite.

Either finite or \emptyset. Thus $\text{Spec}(M)$ is cofinite.

Compare the following Lemma with Lemma 1.11.

Lemma 2.9. Let M be a faithful generated multiplication over a comultiplication top ring R, if $N \not\cong M$, then N is a maximal SH-submodule of M if and only if N is a maximal submodule of M.

Proof: (\Rightarrow) Let $N \not\cong M$ and N is a maximal SH-submodule. Then by [8,Prop.1.2.1] there exists a SH-ideal I of R such that $N = IM$. Suppose N is not a maximal submodule, so there exists a maximal submodule W of M such that $W \supseteq N$, since M is multiplication. Also $W = JM$ for some maximal ideal J of R, because M is multiplication. But by [8,Cor.2.5.6] J is a SH-ideal and hence by [8,Prop.1.2.1], W is a SH-submodule. But N is a maximal SH-submodule, so $N = W$; that is N is a maximal submodule.

(\Leftarrow) Let N be a maximal submodule of M. Then $N = IM$ for some maximal ideal I of R. Hence by [8, Cor.2.5.6], I is a SH-ideal of R, hence by [8,Prop.1.2.1] N is a SH-submodule. Thus N is a maximal SH-submodule of M.

Now we can give the following theorem (compare with theorem 1.13).
Theorem 2.10. Let M be a faithful finitely generated multiplication over a comultiplication ring.

Then \(\text{Spec}(M) \) is a \(T_1 \)-space and M satisfies \(\mathcal{O}' \) if and only if M is cosemisimple and every proper SH-submodule of M is a maximal SH of M.

Proof: (\(\Rightarrow \)) By lemma 2.7, every proper SH-submodule is a maximal SH-submodule and by Lemma 2.9, every maximal SH-submodule is a maximal submodule. Thus every proper SH-submodule is a maximal submodule. Moreover by Th.2.2, every proper submodule of M is an intersection of SH-submodules. Thus every proper submodule is an intersection of maximal submodules of M; that is M is cosemisimple.

(\(\Leftarrow \)) By lemma 2.7, \(\text{Spec}(M) \) is \(T_1 \). But M is cosemiple, so every submodule is an intersection of maximal submodules. Hence by Lemma 2.9, every proper submodule is an intersection of SH-submodules. Hence by Th.2.2, M satisfies \(\mathcal{O}' \).

Compare the following result with Th.1.14.

Theorem 2.11. Let M be a finitely generated faithful multiplication \(R \)-module. Then M satisfies \(\mathcal{O}' \) if and only if \(R \) satisfies \(\mathcal{O}' \).

Proof: It is similar to the proof of Th.1.14, so is omitted.

Remark 2.12. The condition “M is faithful” is necessary in Th.2.11, as for example:

The \(Z \)-module \(Z_6 \) is a finitely generated not faithful multiplication \(Z \)-module and satisfies \(\mathcal{O}' \). But the \(Z \)-module \(Z \) does not satisfies \(\mathcal{O}' \), since \(\mathcal{V}(I) = \mathcal{V}(J) = \emptyset \) for any \(I, J \leq R \).

Corollary 2.13. Let M be a finitely generated multiplication \(R \)-module. Then the following statements are equivalent:

1. M satisfies \(\mathcal{O}' \) as \(R \)-module.
2. M satisfies \(\mathcal{O}' \) as \(R^- \)-module.
3. \(R^- \) satisfies \(\mathcal{O}' \).

where \(R^- = R/\text{ann} M \).

Recall that a proper submodule N of an \(R \)-module M is called prime if whenever \(r \in R, x \in M, rx \in N \) implies \(x \in N \) or \(r \in [N:M] \), [9].

Equivalently a proper submodule N of an \(R \)-module M is prime if for any ideal I of R and for any K \(\leq M, IK \subseteq N \) implies K \(\subseteq N \) or I \(\subseteq [N:M] \), [9].

Compare the following Lemma with Lemma 1.12.

Lemma 2.14. Let M be an \(R \)-module such that every proper SH-submodule is prime. Then for any I

\[
\mathcal{V}(N) \cup \mathcal{V}(IM) = \mathcal{V}(IM \cap N) = \mathcal{V}(IN).
\]

Proof: It is clear that \(\mathcal{V}(N) \cup \mathcal{V}(IM) \subseteq \mathcal{V}(IM \cap N) \subseteq \mathcal{V}(IN) \) . Now let \(K \in \mathcal{V}(IN) \). Then K is a SH-submodule and \(K \subseteq IN \). But by hypothesis K is prime, so either \(N \subseteq K \) or \(I \subseteq [K : M] \); that is either \(K \in \mathcal{V}(N) \) or \(K \in \mathcal{V}(IM) \). Thus \(K \in (\mathcal{V}(N) \cup \mathcal{V}(IM)) \). Hence the result is obtained.

Compare the following Theorem with Th.1.19.

Theorem 2.15. Let M be an \(R \)-module such that M satisfies \(\mathcal{O}' \) and every proper SH-submodule is prime. Then M is F-regular (i.e. every submodule of M is pure; that is \(IM \cap N = IN, \forall I \leq R \)).

Proof: It follows by Lemma 2.14 and definition of modules with the condition \(\mathcal{O}' \).

Proposition 2.16. Let M be a F-regular \(\text{top} \)-module, then every proper SH-submodule is prime.
Proof: Since M is a F-regular, then for each $N \leq M$, $IM \cap N = IN$ for each $N \leq M$. Hence $\forall (M \cap N) = \forall (N)$. But M is a top module, so

$$\forall (IM) \cup \forall (N) = \forall (IM \cap N)$$

Thus $\forall M \cap N = \forall N$ for each $N \leq M$. Hence $K \in V(IM) \cup V(N)$

Hence either $K \in V(IM)$ or $K \in V(N)$ Thus $K \subseteq IM$ or $K \subseteq N$; that is either $I \subseteq \frac{K}{M}$ or $N \subseteq K$. Therefore K is prime.

Proposition 2.17. Let M be an R-module, if M satisfies \odot'. Then

1. If $\text{Spec}(M)$ satisfies d.c.c (a.c.c) on closed sets, then M is Noetheian (Artinian).
2. If $\text{Spec}(M)$ satisfies a.c.c (d.c.c) on open sets, then M is Noetheian (Artinian).

Proof: It is easy so is omitted.

S.3 Modules with the Condition \odot''

In this section, we introduce modules that satisfy \odot'', where $\odot'' :$ for each $N, L \leq M$, $\forall (L) = \forall (N)$ implies $N = L$.

Many results about these modules are similar to that of module with \odot condition. Also we give some relations modules with \odot and modules with condition \odot''.

Remark and Examples 3.1

1. Every simple module M does not satisfy \odot'', since $\forall (M) = \forall (<0>)$ but $M \neq <0>$.
2. The \mathbb{Z}-module \mathbb{Z}_4 does not satisfy \odot'', since $\forall (<\frac{3}{2}>) = \forall (\mathbb{Z}_4) = \{<\frac{3}{2}>\}$ but $\mathbb{Z}_4 \neq <\frac{3}{2}>$.
3. The \mathbb{Z}-module \mathbb{Z}_6 satisfies \odot''.

The following theorem is similar to Th.1.4

Theorem 3.2. Let M be an nonzero R-module. Then M satisfies \odot'' if and only if every proper nonzero proper submodule can be represented as sum of SI-submodules

Compare the following Lemma with Lemma 1.9.

Lemma 3.3. Let M be an R-module. Then $\mathfrak{sl}(\text{Spec}(M))$ is T_1-space if and only if every SI-submodule is a minimal SI-submodule in $\text{Spec}(M)$

Proof: It is similar the proof of Lemma 1.9.

The following theorem is similar to Th.1.10.

Theorem 3.4 Let M be an R-module. Then $\mathfrak{sl}(\text{Spec}(M))$ is T_1 and M satisfies \odot'' if and only if M is semisimple and every SI-submodule is minimal SI-submodule of M.

The following Lemma is similar to Lemma 1.11.

Lemma 3.5. Let M be a faithful finitely generated multiplication over comultiplication ring R, let $N \leq M$. If N is a minimal SI-submodule, then N is simple.

Note 3.6. The converse of Lemma 3.5 is true if R is top ring.

Compare the following theorem with Th.1.13.

Theorem 3.7. Let M be a finitely generated faithful multiplication over comultiplication ring R. Then M semisimple and every SI-submodule is a minimal SI-submodule if and only if $\mathfrak{sl}(\text{Spec}(M))$ is a T_1-space and M satisfies \odot''.
Proof: It follows by Th.3.4, Lemma 3.5 and note 3.6. The following result is similar to Th.1.14

Theorem 3.8. Let M be a finitely generated faithful multiplication R-module. Then M satisfies \odot^\prime if and only if R satisfies $\odot^\prime\prime$.

Next we give some relationships modules the condition \odot, and modules with condition $\odot^\prime\prime$.

Proposition 3.9. If M is a $25\text{SH}\text{top}$-module and M satisfies \odot then M satisfies $\odot^\prime\prime$.

Proof: Since M satisfies \odot, then by Th.1.4 every nonzero submodule of M is a sum of SH-submodule. But M is a $25\text{SH}\text{top}$-module, so by [8,Prop.2.4.4] every SH-submodule is a SI-submodule. Thus every nonzero submodule is a sum of SI-submodule. Thus by Th.3.2, M satisfies $\odot^\prime\prime$.

Proposition 3.10. Let M be a $25\text{SH}\text{top}$-module and M satisfies $\odot^\prime\prime$ then M satisfies \odot.

Proof: Since M satisfies $\odot^\prime\prime$, every nonzero submodule of M is a sum of SI-submodule (by Th.3.2). But M is a $25\text{SH}\text{top}$, so by [8,Prop.3.2.3], every SI-submodule is a SH-submodule. Thus every submodule of M is a sum of SH-submodule. Thus M satisfies \odot by Th.1.4.

References

[1] J.Y., Abuhlail, “Zariski Topologies for Coprime and Second Submodules”, Seminar at King Fahad Univ.of Petroleum and Minerals, February 4, 2011.

[2] F.W.Anderson and K.R.Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.

[3] A.Barnard, “Multiplication Modules”, J.Algebra, Vol.71, 174-178, (1981).

[4] N. Bourbaki, “Commutative Algebra”, Springer-Verlag, 1988.

[5] Z.A.El-Bast and P.F.Smith, “Multiplication Modules”, Comm. Algebra, Vol.16 (4), 775-779, (1988).

[6] C.Faith, “Algebra: Rings, Modules and Categories” I, Springer-Verlage, Berline, Heidelberg, New York, 1973.

[7] D.J.Fieldhouse, “Regular Modules over Semilocal Rings”, College Math. Soc. Janos Bolyoli, 193-196, (1971).

[8] G.A.Humod, “Strongly Hollow Submodules and its Spectrum”, M.Sc. Thesis, University of Baghdad, Iraq, 2012.

[9] J.Dauns, “Prime Modules and One-Sided Ideals in Ring Theory and Algebra III”, Proceeding of 3rd Oklahoma Conference, B.R.McDonald (editor), (Dekker, New York), 301-344, (1980).

[10] B.L. Osofsky, “A Contraction of Non Standard Uniserial Modules Over Valuation Domains”, Bulletin Amer. Math.Soc., Vol.25, 89-97, (1991).

[11] H.Ansari Toroghy, and F.Farshadifar, “The Dual Notion of Multiplication Modules”, Taiwanese J.Math., Vol.11(4), 1189-1201, (2007).

[12] H.Ansari Toroghy, and F.Farshadifar, “Strongly Comultiplication Modules”, CMU J.Nat.Sci., Vol.8(1), 105-113, (2009).

[13] S.Yassemi, “The Dual Notion of Prime Submodules”, Arch.Math. Brno, Vol.37, 273-278, (2001).