Evidence of b-jet quenching in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The CMS Collaboration

Abstract

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (p_T) range of 80–250 GeV/c, and within pseudorapidity $|\eta| < 2$. The nuclear modification factor (R_{AA}) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of p_T studied, and is centrality dependent. The R_{AA} is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet p_T range studied.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.113.132301.
By colliding heavy nuclei at the Large Hadron Collider (LHC), one expects to reach sufficiently large energy densities to form a strongly coupled quark-gluon plasma (QGP), a state which is characterized by effective deconfinement of the quarks and gluons [1–3]. Hard-scattered partons are expected to suffer energy loss as they traverse the QGP via elastic and inelastic interactions [4, 5]. This is commonly thought to be the mechanism responsible for the observed suppression of high transverse momentum (p_T) hadrons and jets, or “jet quenching”, in nuclear collisions [6–16]. Measurements of parton energy loss are expected to reveal the fundamental thermodynamic and transport properties of this phase of matter (see Refs. [17, 18] for recent reviews).

The quenching of jets in heavy-ion collisions is expected to depend upon the flavor of the fragmenting parton. Energy loss via gluon bremsstrahlung, which is thought to be the dominant mechanism for light partons, should be larger for gluon jets than quark jets, due to the larger color factor for gluon emission from the former. The mass of the leading parton may also play a role. Collisional energy loss could be an important effect for massive quarks and has been invoked to describe the nuclear modification factors for leptons from heavy-flavor decays at low p_T [19–21]. In this regime, radiative energy loss from heavy quarks may be suppressed due to coherence effects [22, 23], although the relevance of such effects in finite-size systems is a subject of debate [24]. The strongly coupled nature of the QGP may also introduce mass effects, according to a description of jet quenching based on the AdS/CFT correspondence [25, 26]. Consequently, measurements of the flavor and mass dependence of jet quenching are essential to obtain a sound theoretical description of this phenomenon.

Measurements of hadrons containing b quarks are expected to be sensitive to the details of b-quark energy loss. Recent data on single-particle production of B mesons (via non-prompt J/ψ) [27] show a smaller suppression compared to D mesons [28] and non-identified charged particles [29, 30]. Experimentally, the jet associated to a b hadron is commonly referred to a “b jet”, although the b quark is not guaranteed to be the leading parton of the jet. In relation to B mesons, b jets provide a complementary approach to study b-quark energy loss, albeit typically in a different range of p_T. Through comparisons with the existing measurements of inclusive jet production [31], b-jet measurements can be used to study the flavor dependence of jet quenching, which in turn provides insight on the dynamics of parton energy loss.

The Compact Muon Solenoid (CMS) detector has excellent capabilities to perform b-jet identification (b tagging) measurements as demonstrated in Ref. [32]. Measurements of the b-jet cross section [33] and b-jet angular correlations [34] have been performed in pp collisions at 7 TeV. This Letter presents the first measurements of b-jet production in heavy-ion collisions using a dataset corresponding to an integrated luminosity of 150 μb$^{-1}$ of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV delivered by the LHC in 2011. The comparison measurements are performed with a dataset consisting of pp data recorded in 2013 and corresponding to an integrated luminosity of 5.3 pb$^{-1}$ at $\sqrt{s} = 2.76$ TeV.

The central feature of the CMS apparatus is a superconducting solenoid providing a magnetic field of 3.8 T. Charged particle trajectories are measured with the silicon tracker, which provides an impact parameter resolution of $\sim 15 \mu$m and a p_T resolution of $\sim 1.5\%$ for 100 GeV/c particles. A PbWO$_4$ crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracking volume. The forward regions ($2.9 < |\eta| < 5.2$, where $\eta = -\ln(\tan(\theta/2))$ and θ is the polar angle measured with respect to the counterclockwise beam direction) are instrumented with iron/quartz-fiber hadron forward calorimeters (HF). Collision centrality, defined as a percentile of the total inelastic nucleus-nucleus cross section, is calculated using the sum of the HF transverse energy [35]. A set of scintillator tiles, used
for triggering and beam-halo rejection, is mounted on the inner side of the HF calorimeters. A more detailed description of the CMS detector can be found in Ref. [36].

Jets are reconstructed from particle candidates obtained from a particle-flow algorithm [37]. This algorithm improves the resolution of jets, while reducing the parton flavor dependence of the detector response as compared to a purely calorimetric measurement. The anti-k_T clustering algorithm [38] is used, with a distance parameter of $R = 0.3$. Details of the jet reconstruction, resolution and energy corrections may be found in Refs. [14, 16, 39]. The underlying background of bulk particle production in PbPb collisions is subtracted using the same method described in Ref. [40]. Jet p_T resolution effects are unfolded using an iterative method [41], as implemented in the RooUNFOLD package [42].

The Monte Carlo simulations are performed using PYTHIA 6.422 [43] with tune Z2 [44]. A parton flavor is assigned to reconstructed jets by matching them in $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$ to generator-level partons (ϕ is the azimuthal angle measured in radians in the plane transverse to the beams). If a bottom quark is found within $\Delta R < 0.3$ then the jet is considered to be a b jet, irrespective of any other partons in the cone. This definition includes b quarks from gluon splitting ($g \to b\bar{b}$), even if the splitting occurs late in the parton shower (i.e., at low virtuality), consistent with the theoretical treatment of heavy-flavor production in Ref. [45, 46]. We note that b jets from gluon splitting comprise about 30–35% of the total b-jet cross section according to PYTHIA simulations, although measurements of $b - \bar{b}$ angular correlations at 7 TeV indicate that contribution is somewhat larger [34]. Such jets are expected to interact differently with the QGP than those from primary b quarks [47]. To compare with PbPb data, PYTHIA events are embedded into PbPb events produced by the HYDJET generator (version 1.8) [48], which is tuned to reproduce event properties, such as charged-hadron multiplicity, p_T spectra, and elliptic flow. The rate of bottom quark production per nucleon-nucleon interaction in HYDJET was found to be consistent with theoretical calculations for pp collisions based on Ref. [46].

Identification of b jets is based on kinematic variables related to the relatively long lifetime and large mass of b hadrons. Charged tracks of $p_T > 1$ GeV/c within $R < 0.3$ from the jet axis are used to reconstruct secondary vertices (SV) from b hadrons and/or subsequent c-hadron decays from the $b \to c$ cascade, using an adaptive vertex fit [49]. The contribution of b jets is enhanced by requiring that SVs are far enough from the primary vertex, using a selection on the significance of the three-dimensional flight distance. This selection is chosen to give a misidentification rate of roughly 1% for light jets and 10% on charm-quark jets (c jets), based on simulation. The corresponding b-tagging efficiency is about 65% for pp and 45% for PbPb collisions. The compatibility of the simulation with data was verified by comparing basic distributions such as the χ^2 of the SV fit, the number of tracks per SV, and the number of SVs per jet. Figure 1 (left) shows an example comparison of the SV p_T distribution. The shape of the distribution is well described over the full p_T range.

The SV invariant mass is calculated from the constituent tracks. An example SV mass distribution, for jets with $80 < p_T < 90$ GeV/c, is shown in Fig. 1 (right). For each jet p_T bin, the b-jet purity (f_b), i.e., the ratio of the number of b jets to that of inclusive jets in the tagged sample, is extracted by means of a template fit. The shapes of the light-quark, c and b contributions are determined from simulation, while their normalizations are allowed to float. After tagging, the three contributions are of comparable magnitude, as shown in the figure, but the b-quark contribution dominates above the c-quark mass threshold near 2 GeV/c2, which allows for an accurate determination of the b-jet contribution. The quality of the SV mass fits was found to be good, with values of χ^2 per degree of freedom typically in the range of 1–2. The proportion of tagged jets for which the SV corresponds to a b hadron from a different nucleon-nucleon
interaction than the one that produced the jet was estimated from simulation to be 2% for the 20% most central PbPb collisions.

For the systematic studies described below, an alternative b-tagging strategy is employed, which uses the jet probability (JP) algorithm [32]. In contrast to direct reconstruction of SVs, the JP tagger is based on an estimate of the compatibility of tracks with the primary vertex, using their three-dimensional impact parameter significance. A probability density for this compatibility is obtained directly from data using tracks with negative impact parameter, which are unlikely to come from heavy-flavor decays. The impact parameter (IP) is defined to have the same sign as the scalar product of the vector pointing from the primary vertex to the point of closest approach with the jet direction. Tracks originating from the decay of particles traveling along the jet axis will tend to have positive IP values.

Using the b-jet purity (f_b) derived from the template fit, the b-jet yield in a given p_T bin is obtained as $N_b = N f_b / \epsilon$, where N is the number of all b-tagged jets and ϵ is the b-tagging efficiency. The efficiency ϵ is determined from simulation and cross-checked using the so-called reference lifetime tagger method [32], which uses the JP tagger to determine the efficiency of the SV tagger directly from data, taking advantage of the calibration of the primary vertex compatibility used in this tagger which is obtained from data. The simulation reproduces the estimate of ϵ from data to within 5%.

The unfolded b-jet p_T spectra in PbPb collisions are shown in Fig. 2 for several centrality selections. The PbPb data are divided by T_{AA}, computed from a Glauber model (for a review, see Ref. [50]), to scale to the expectation for pp collisions in the absence of nuclear effects. The value of T_{AA} is the number of nucleon-nucleon (NN) collisions divided by the total inelastic NN cross section and may be interpreted as the NN equivalent luminosity per PbPb collision. Also shown is the measured b-jet cross section in pp collisions. The cross section is compared to PYTHIA simulations, which agree well with the data, as is the case at $\sqrt{s} = 7$ TeV for the p_T range covered by the present study [33].

The systematic uncertainties fall into two general categories: b tagging and jet reconstruction. The b-tagging uncertainty on b-jet yields varies from about 12 to 18%, depending on jet p_T and
Figure 2: The b-jet yield as a function of p_T is shown for various centrality classes of PbPb collisions as indicated in the legend. The yields are scaled by the equivalent number of minimum bias events sampled and by T_{AA}. The spectra are also scaled by powers of 10 for visibility. The b-jet cross section in pp collisions is also shown, and compared to PYTHIA. Vertical and horizontal bars represent statistical uncertainties and bin widths, respectively, while filled boxes represent systematics uncertainties.

collision system. The uncertainty is evaluated via the following systematic variations of the tagging procedure, which influence the extracted b-tagging purity and efficiency values:

- varying the SV flight distance selection such that ϵ differs by about 10%,
- using ϵ from the reference lifetime tagger method [32], rather than from simulation,
- fixing the c jet to light-quark jet normalization, rather than allowing them to float independently in the template fits,
- using a non-b-jet template produced from jets with small JP in data,
- varying the gluon-splitting contribution in the b-jet and c-jet templates by 50%.

The uncertainty on the spectra due to the jet reconstruction is 10–12% for pp and 15–17% for PbPb, and is comprised of the following sources:

- a 10% uncertainty in the jet energy resolution [51],
- a 2% uncertainty in the jet energy scale (JES) [51],
- an additional, centrality-dependent, 1–2% uncertainty in the JES in PbPb collisions due to the underlying event, evaluated from random-cone and embedding studies,
- an uncertainty in the unfolding procedure evaluated by varying the number of iterations and the presumed prior spectrum.

The pp luminosity has an uncertainty of 3.6%, while the uncertainty in T_{AA} varies from about 4% for centrality 0–10% to 15% for 50–100% [16].

Figure 3 shows the centrality-integrated b-jet nuclear modification factor (R_{AA}), which is the ratio of the T_{AA}-normalized PbPb yield and the measured pp cross section in Fig. 2 as a function of p_T. The jet and b-tagging systematic uncertainties in R_{AA} are obtained by varying the pp and
PbPb data simultaneously. This results in partial cancellation, giving a systematic uncertainty of 16–21%, which is dominated by the b-tagging uncertainty. A significant suppression of the yield with respect to the pp expectation is observed in b jets, which is indicative of the parton energy loss in the hot medium. No strong trend is observed as a function of p_T, although the data hint a modest rise at higher p_T. The data are compared to pQCD-based calculations from [47]. The data are found to be consistent with a jet-medium coupling (g^{med}) in the range of 1.8–2, similar to the value found for inclusive jets.

![Figure 3](image-url)

Figure 3: The centrality integrated (0–100%) b-jet R_{AA} as a function of p_T. Vertical and horizontal bars represent statistical uncertainties and bin widths, respectively, while filled boxes represent systematics uncertainties. The normalization uncertainty from the integrated luminosity in pp collisions and from T_{AA} is represented by the green band around unity. The data are compared to pQCD-based calculations from [47].

Figure 4 shows R_{AA} as a function of the number of participating nucleons (N_{part}), which is derived from the centrality (as measured by the energy in the forward calorimeters) through a Glauber calculation. Data for $80 < p_T < 90$ GeV/c and $90 < p_T < 110$ GeV/c are shown. For both jet selections R_{AA} shows a smooth decrease with increasing centrality from about 0.70–0.75 to about 0.35–0.40.

The data presented in this study demonstrate the jet quenching phenomenon in the b-jet sector using fully reconstructed b jets for the first time in heavy-ion collisions. Integrating over all collision centralities, b jets are found to be suppressed over the 80–250 GeV/c p_T range explored in this study. For the 80–110 GeV/c p_T range, R_{AA} is found to decrease with collision centrality. At larger p_T, the trend is less evident due to the reduced statistical precision. The b-jet suppression is found to be qualitatively consistent with that of inclusive jets [31]. Although a sizeable fraction of b-tagged jets come from gluon splitting, a large mass and/or flavor dependence for parton energy loss can be excluded. For example, a model based on strong coupling (via the AdS/CFT correspondence) [26], in which mass effects could persist to large p_T would be incompatible with the current data, in contrast to a perturbative model in which mass effects are expected to be small at large p_T [47]. A milder mass dependence, but one which still persists to large p_T, as predicted for light and heavy flavor hadrons in Ref. [52], cannot be ruled out with the present uncertainties.

We congratulate our colleagues in the CERN accelerator departments for the excellent perfor-
Figure 4: The b-jet R_{AA}, as a function of N_{part} for two jet p_T selections as indicated in the legend. Statistical uncertainties are shown as error bars. The filled boxes represent the systematics uncertainties, excluding the T_{AA} uncertainties, which are depicted as open boxes. The normalization uncertainty in the integrated luminosity in pp collisions is represented by the green band around unity.

mance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croaita); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] É. V. Shuryak, “Theory of hadron plasma”, Sov. Phys. JETP 47 (1978) 212.

[2] J. C. Collins and M. J. Perry, “Superdense Matter: Neutrons Or Asymptotically Free Quarks?”, Phys. Rev. Lett. 34 (1975) 1353, doi:10.1103/PhysRevLett.34.1353

[3] E. V. Shuryak, “What RHIC experiments and theory tell us about properties of quark-gluon plasma?”, Nucl. Phys. A 750 (2005) 64,
[4] J. D. Bjorken, “Energy loss of energetic partons in QGP: possible extinction of high \(p_T \) jets in hadron-hadron collisions”, FERMILAB-PUB 82-059-THY, 1982.

[5] R. Baier, D. Schiff, and B. G. Zakharov, “Energy loss in perturbative QCD”, *Ann. Rev. Nucl. Part. Sci.* 50 (2000) 37, doi:10.1146/annurev.nucl.50.1.37, arXiv:hep-ph/0002198.

[6] PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, *Nucl. Phys. A* 757 (2005) 184, doi:10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.

[7] STAR Collaboration, “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions”, *Nucl. Phys. A* 757 (2005) 102, doi:10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.

[8] PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, *Nucl. Phys. A* 757 (2005) 28, doi:10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.

[9] BRAHMS Collaboration, “Quark Gluon Plasma and Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment”, *Nucl. Phys. A* 757 (2005) 1, doi:10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.

[10] STAR Collaboration, “Evidence from \(d + Au \) measurements for final state suppression of high\(p_T \) hadrons in \(Au + Au \) collisions at RHIC”, *Phys. Rev. Lett.* 91 (2003) 072304, doi:10.1103/PhysRevLett.91.072304, arXiv:nucl-ex/0306024.

[11] STAR Collaboration, “Distributions of charged hadrons associated with high transverse momentum particles in \(pp \) and \(Au + Au \) collisions at \(\sqrt{s_{NN}} = 200\text{ GeV} \)”, *Phys. Rev. Lett.* 95 (2005) 152301, doi:10.1103/PhysRevLett.95.152301, arXiv:nucl-ex/0501016.

[12] PHENIX Collaboration, “Suppressed \(\pi^0 \) production at large transverse momentum in central \(Au + Au \) collisions at \(\sqrt{s_{NN}} = 200\text{ GeV} \)”, *Phys. Rev. Lett.* 91 (2003) 072301, doi:10.1103/PhysRevLett.91.072301, arXiv:nucl-ex/0304022.

[13] PHENIX Collaboration, “Dihadron azimuthal correlations in \(Au + Au \) collisions at \(\sqrt{s_{NN}} = 200\text{ GeV} \)”, *Phys. Rev. C* 78 (2008) 014901, doi:10.1103/PhysRevC.78.014901, arXiv:0801.4545.

[14] CMS Collaboration, “Jet momentum dependence of jet quenching in \(PbPb \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)”, *Phys. Lett. B* 712 (2012) 176, doi:10.1016/j.physletb.2012.04.058, arXiv:1202.5022.

[15] ATLAS Collaboration, “Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) with the ATLAS Detector at the LHC”, *Phys. Rev. Lett.* 105 (2010) 252303, doi:10.1103/PhysRevLett.105.252303, arXiv:1011.6182.
References

[16] CMS Collaboration, “Observation and studies of jet quenching in PbPb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \)”, Phys. Rev. C 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957

[17] J. Casalderrey-Solana and C. A. Salgado, “Introductory lectures on jet quenching in heavy ion collisions”, Acta Phys. Polon. B 38 (2007) 3731, arXiv:0712.3443

[18] D. d’Enterria, “Jet quenching”, volume 23: Relativistic Heavy Ion Physics of Springer Materials - The Landolt-Börnstein Database, ch. 6.4. Springer-Verlag, 2010.

[19] S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, “Elastic, inelastic, and path length fluctuations in jet tomography”, Nucl. Phys. A 784 (2007) 426, doi:10.1016/j.nuclphysa.2006.12.048, arXiv:nucl-th/0512076

[20] PHENIX Collaboration, “Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)”, Phys. Rev. Lett. 98 (2007) 172301, doi:10.1103/PhysRevLett.98.172301, arXiv:nucl-ex/0611018

[21] PHENIX Collaboration, “Heavy Quark Production in \(p + p \) and Energy Loss and Flow of Heavy Quarks in \(Au+Au \) Collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \)”, Phys. Rev. C 84 (2011) 044905, doi:10.1103/PhysRevC.84.044905, arXiv:1005.1627

[22] Y. L. Dokshitzer and D. E. Kharzeev, “Heavy quark colorimetry of QCD matter”, Phys. Lett. B 519 (2001) 199, doi:10.1016/S0370-2693(01)01130-3, arXiv:hep-ph/0106202

[23] N. Armesto, C. A. Salgado, and U. A. Wiedemann, “Medium induced gluon radiation off massive quarks fills the dead cone”, Phys. Rev. D 69 (2004) 114003, doi:10.1103/PhysRevD.69.114003, arXiv:hep-ph/0312106

[24] P. Aurenche and B. G. Zakharov, “Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma”, JETP Lett. 90 (2009) 237, doi:10.1134/S0021364009160048, arXiv:0907.1918

[25] S. S. Gubser, “Drag force in AdS/CFT”, Phys. Rev. D 74 (2006) 126005, doi:10.1103/PhysRevD.74.126005, arXiv:hep-th/0605182

[26] W. A. Horowitz and M. Gyulassy, “Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?”, Phys. Lett. B 666 (2008) 320, doi:10.1016/j.physletb.2008.04.065, arXiv:0706.2336

[27] CMS Collaboration, “Suppression of non-prompt \(J/\psi \), prompt \(J/\psi \), and \(Y(1S) \) in PbPb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \)”, JHEP 05 (2012) 063, doi:10.1007/JHEP05(2012)063, arXiv:1201.5069

[28] ALICE Collaboration, “Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)”, JHEP 09 (2012) 112, doi:10.1007/JHEP09(2012)112, arXiv:1203.2160

[29] CMS Collaboration, “Study of high-\(p_T \) charged particle suppression in PbPb compared to pp collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)”, Eur. Phys. J. C 72 (2012) 1945, doi:10.1140/epjc/s10052-012-1945-x, arXiv:1202.2554
[30] ALICE Collaboration, “Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Lett. B 720 (2013) 52, [doi:10.1016/j.physletb.2013.01.051] arXiv:1208.2711.

[31] ATLAS Collaboration, “Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector”, Phys. Lett. B 719 (2013) 220, [doi:10.1016/j.physletb.2013.01.024] arXiv:1208.1967.

[32] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, [doi:10.1088/1748-0221/8/04/P04013] arXiv:1211.4462.

[33] CMS Collaboration, “Inclusive b-jet production in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 04 (2012) 084, [doi:10.1007/JHEP04(2012)084] arXiv:1202.4617.

[34] CMS Collaboration, “Measurement of $B\bar{B}$ Angular Correlations based on Secondary Vertex Reconstruction at $\sqrt{s} = 7$ TeV”, JHEP 03 (2011) 136, [doi:10.1007/JHEP03(2011)136] arXiv:1102.3194.

[35] CMS Collaboration, “Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV”, JHEP 08 (2011) 141, [doi:10.1007/JHEP08(2011)141] arXiv:1107.4800.

[36] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004].

[37] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_{T}^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[38] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_{t} jet clustering algorithm”, JHEP 04 (2008) 063, [doi:10.1088/1126-6708/2008/04/063] arXiv:0802.1189.

[39] CMS Collaboration, “Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Lett. B 718 (2013) 773, [doi:10.1016/j.physletb.2012.11.003] arXiv:1205.0206.

[40] O. Kodolova, I. Vardanian, A. Nikitenko, and A. Oulianov, “The performance of the jet identification and reconstruction in heavy ions collisions with CMS detector”, Eur. Phys. J. C 50 (2007) 117, [doi:10.1140/epjc/s10052-007-0223-9].

[41] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum. Meth. A 362 (1995) 487, [doi:10.1016/0168-9002(95)00274-X] arXiv:1105.1160.

[42] T. Adye, “Unfolding algorithms and tests using RooUnfold”, (2011). arXiv:1010.3558.

[43] T. Sj¨ostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, [doi:10.1088/1126-6708/2006/05/026] arXiv:hep-ph/0603175.

[44] R. Field, “Early LHC Underlying Event Data — Findings and Surprises”, (2010). arXiv:1010.3558.

[45] S. Frixione and M. L. Mangano, “Heavy quark jets in hadronic collisions”, Nucl. Phys. B 483 (1997) 321, [doi:10.1016/S0550-3213(96)00577-9] arXiv:hep-ph/9605270.
[46] M. Cacciari et al., “Theoretical predictions for charm and bottom production at the LHC”, *JHEP* 10 (2012) 137, [doi:10.1007/JHEP10(2012)137](https://doi.org/10.1007/JHEP10(2012)137), [arXiv:1205.6344](https://arxiv.org/abs/1205.6344).

[47] J. Huang, Z.-B. Kang, and I. Vitev, “Inclusive b-jet production in heavy ion collisions at the LHC”, *Phys. Lett. B* 726 (2013) 251, [doi:10.1016/j.physletb.2013.08.009](https://doi.org/10.1016/j.physletb.2013.08.009), [arXiv:1306.0909](https://arxiv.org/abs/1306.0909).

[48] I. P. Lokhtin and A. M. Snigirev, “A model of jet quenching in ultrarelativistic heavy ion collisions and high-p_T hadron spectra at RHIC”, *Eur. Phys. J. C* 45 (2006) 211, [doi:10.1140/epjc/s2005-02426-3](https://doi.org/10.1140/epjc/s2005-02426-3), [arXiv:hep-ph/0506189](https://arxiv.org/abs/hep-ph/0506189).

[49] R. Fruhwirth, W. Waltenberger, and P. Vanlaer, “Adaptive vertex fitting”, *J. Phys. G* 34 (2007) N343, [doi:10.1088/0954-3899/34/12/N01](https://doi.org/10.1088/0954-3899/34/12/N01).

[50] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high energy nuclear collisions”, *Ann. Rev. Nucl. Part. Sci.* 57 (2007) 205, [doi:10.1146/annurev.nucl.57.090506.123020](https://doi.org/10.1146/annurev.nucl.57.090506.123020), [arXiv:nucl-ex/0701025](https://arxiv.org/abs/nucl-ex/0701025).

[51] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, *JINST* 6 (2011) P11002, [doi:10.1088/1748-0221/6/11/P11002](https://doi.org/10.1088/1748-0221/6/11/P11002), [arXiv:1107.4277](https://arxiv.org/abs/1107.4277).

[52] A. Buzzatti and M. Gyulassy, “Jet Flavor Tomography of Quark Gluon Plasmas at RHIC and LHC”, *Phys. Rev. Lett.* 108 (2012) 022301, [doi:10.1103/PhysRevLett.108.022301](https://doi.org/10.1103/PhysRevLett.108.022301), [arXiv:1106.3061](https://arxiv.org/abs/1106.3061).
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Micibello, S. Ochesanu, B. Roland, R. Rougny, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Cear, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, P. Jez, M. Komm, V. Lemaître, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Bely, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, C. Lagana, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, X. Meng, R. Plestina8, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, S. Elgammat10, T. Elkefrawy11, A. Ellithi Kamel12, M.A. Mahmoud13, A. Radi10,11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, J.-C. Fontaine, D. Gele, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaufere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuiller, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingenbiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, A. Geiser, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, M. Krämer, D. Krücker, W. Lange, J. Leonard, K. Lipka, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnic, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt, T. Schoerner-Sadenius, M. Schröder, M. Stein, A.D.R. Vargas Trevino, R. Walsh, C. Wissinger
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, H. Enderle, J. Erfle, E. Garutti, K. Goebel, M. Görner, M. Gosselink, J. Haller, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, F. Hartmann, T. Hauth, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, A. Kornmayer, E. Kuznetsova, P. Lobelle Pardo, D. Martschei, M.U. Mozer, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf, M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari, A. Psallidas, I. Topsis-giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu, G. Kole,
S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, B. Marangelli, S. My, N. Pacifico, A. Pompili, G. Pugliese, R. Radogna, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, P. Verwilligen, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarra, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paolelli, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbricatore, R. Ferretti, F. Ferro, M. Lo Vetere, R. Musenich, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzoni, A. Martelli, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Romina), Napoli, Italy
S. Buontempo, N. Cavallo, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, M. Galanti, F. Gasparini, P. Giubilato, A. Gozzelino, K. Kanishchev
S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, F. Montecassianoa, M. Passaseoa, J. Pazzinia,b, M. Pogarova, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Universit\`a di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b

INFN Sezione di Perugia a, Universit\`a di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fana,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b, V. Candelisea, A. Staianoa, G.M. Bileia,b,c, T. Lomtadzea,b, A. Santocchiaa,b, M. Tosia,b,c, P. Zottoa,b,c, D. Montaninoa,b,c

INFN Sezione di Pisa a, Universit\`a di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,d,27, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Ciocchia,27, R. Dell’Orsoa, F. Fioria,c, L. Foa,c, A. Giassia, M.T. Grippoa,27, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,28, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,29, A.T. Serbana, P. Spagnoloa,b, P. Squillaciotia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c

INFN Sezione di Roma a, Universit\`a di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jorda, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Sofia,b, P. Traczyka,b

INFN Sezione di Torino a, Universit\`a di Torino b, Universit\`a del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeoa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

INFN Sezione di Trieste a, Universit\`a di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schiizzia,b, T. Umea,b, A. Zanettia

Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis
University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia
J.R. Komaragiri

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, J. Martinez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, V. Korotkikh, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uznian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Foup, P. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabril, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodrigo-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, P. Musella, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrelli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, A. Racz, W. Reece, G. Rolandi, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, S. Sekmen, A. Sharma, P. Siegrist, P. Silva,
M. Simon, P. Sphicas, J. Steggemann, B. Stieger, M. Stoye, A. Tsiou, G.I. Veres, J.R. Vlimant, H.K. Wohri, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. Koening, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bani, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donega, M. Dunser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez del Arbol, D. Meister, N. Mohr, C. Nageli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, M. Quittnat, F.J. Ronga, M. Rossini, A. Starodumov, M. Takahashi, L. Tauscher, K. Theofilatos, D. Treille, R. Wally, H.A. Weber

Universitat Zurich, Zurich, Switzerland
C. Amsler, V. Chiochia, A. De Cosa, C. Favaro, A. Hinzmann, T. Hreus, M. Ivova Rikova, B. Kilmister, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petarakou, X. Shi, J.G. Shiu, Y.M. Tseng, M. Wang, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerici, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoo, K. Sogut, D. Sunar Cerici, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalcin, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gulmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Gunes, F.I. Varadarli, M. Yuce

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Ilic,
E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasi, H. Liu, T. Scarboroough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazard, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, S. Shalhout, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Kovalskyi, M. Lebourgeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, M. Pieri, M. Sanii, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, C. Campagnari, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela,
C. Justus, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovannoni, D. Dobur, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypros, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, E. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkwort, P. Turner, N. Varelas
The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephens, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chashe, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard,
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovsky, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, A. Sakharov, T. Sarangi, A. Savin, W.H. Smith

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Suez Canal University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Ain Shams University, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Also at Fayoum University, El-Fayoum, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at The University of Kansas, Lawrence, USA
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at University of Ruhuna, Matara, Sri Lanka
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Sharif University of Technology, Tehran, Iran
26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
31: Also at National Centre for Nuclear Research, Swierk, Poland
32: Also at Institute for Nuclear Research, Moscow, Russia
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
48: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
49: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
53: Also at Utah Valley University, Orem, USA
54: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
55: Also at Argonne National Laboratory, Argonne, USA
56: Also at Erzincan University, Erzincan, Turkey
57: Also at Yildiz Technical University, Istanbul, Turkey
58: Also at Texas A&M University at Qatar, Doha, Qatar
59: Also at Kyungpook National University, Daegu, Korea