µDose: a compact system for environmental radioactivity and dose rate measurement

Konrad Tudyka,*† Sebastian Miłosz,† Grzegorz Adamiec,† Andrzej Bluszcz,† Grzegorz Poręba,† Łukasz Paszkowski,‡ and Aleksander Kolarczyk*†

†Silesian University of Technology, Institute of Physics - Centre for Science and Education, Division of Radioisotopes, ul. S. Konarskiego 22B, 44-100 Gliwice, Poland
‡AKOTECH, ul. Cypriana Norwida 6/10, 41-700 Ruda Śląska, Poland

E-mail: konrad.tudyka@polsl.pl; aleksander.kolarczyk@udose.eu
Phone: +48 322372696

Abstract

µDose is a novel compact analytical instrument for assessing low level 238U, 235U, 232Th decay chains and 40K radioactivity. The system is equipped with a dual α/β scintillator allowing to discriminate between α and β particles. The unique build-in pulse analyzer measures the amplitude of each individual pulse, its shape and the time interval between subsequent pulses. This allows the detection of pulse pairs arising from subsequent decays of 214Bi/214Po, 220Rn/216Po, 212Bi/212Po and 219Rn/215Po. The obtained α and β counts and four separate decay pair counts are used to assess the 238U, 235U, 232Th and 40K specific radioactivities in the measured samples through the use of radioactivity standards. The µDose system may be equipped with various photomultipliers and counting containers to assess radionuclide concentrations of samples of masses ranging between 0.4 g and 4 g. As a result, the user can customize the system to their needs and maximize the instrument's performance. The system is controlled by a
dedicated software with a graphical user interface and modules for system calibration, data visualization, specific radioactivity calculations and dose rate determination using the infinite matrix assumption.

Introduction

Thick source alpha counting (TSAC) has been developed\(^1\) to provide a relatively easy and inexpensive way of assessing the low level content of alpha emitters in biological tissues. Later this technique was adapted to determining the uranium and thorium content in samples of fired ceramics for assessing the annual dose for luminescence dating.\(^2\) In TSAC, the powdered sample is placed on a plastic sheet coated with a very thin layer of the scintillator ZnS:Ag attached to its surface. Alpha particles, emitted by U and Th series members, upon reaching the screen produce scintillations with practically 100% efficiency. In order to estimate the contribution from the U and Th series, additionally the so-called slow and sometimes fast pairs are counted. Such pairs are fast successions of counts due to the short lived \(^{216}\)Po \((t_{1/2} = 0.145 \text{ s})\) in the \(^{232}\)Th series and \(^{215}\)Po \((t_{1/2} = 1.78 \text{ ms})\) in the \(^{235}\)U series. Today TSAC technique is widely used\(^3\)--\(^10\) for assessing the annual dose in trapped charge dating techniques (optically stimulated luminescence, thermoluminescence, electron spin resonance). However, there are some significant limitations in the conventional TSAC technique. For example, the activity of \(^{40}\)K which is a major dose contributor to the dose rate in environmental samples, cannot be determined using this technique and an independent determination by different means is usually performed.\(^11\)--\(^14\) Additionally, the \(^{238}\)U decay chain may cause problem due to possible disequilibrium.\(^15\)--\(^17\) Another drawback is the influence of sample's reflectance on the TSAC efficiency which can cause up to 6% error in an apparatus setting proposed in ref \(^2\).

In addition to the TSAC technique an alternative method of \(\beta\) counting was proposed.\(^18\) This is a much more rapid technique of annual dose rate determination, however it cannot assess the specific radioactivities of \(^{238}\)U, \(^{235}\)U, \(^{232}\)Th decay chains or \(^{40}\)K.\(^18\)--\(^19\)
In the current work, we describe a novel system - μDose - that opens up new possibilities and removes limitations described in the previous paragraph. This is done through the employment of a dual α/β scintillator module, a new measurement setup, a new pulse analyzer unit, and advanced data processing. The system allows detection of two additional β/α decay pairs in addition to the above mentioned α/α pairs. The first pair arises in the 232Th series from subsequent decays of 212Bi and 212Po where 212Po has a half-life of 299 ns. The second β/α pair arises in the 238U series from subsequent decays of 214Bi and 214Po where 214Po has a half-life of 164 µs. Therefore, four decay pairs can be used to assess the specific activity of thorium and uranium decay chains as well as potassium activity.

The μDose system is designed with emphasis on natural radioactivity measurement and the software is equipped with modules for dose rate measurement that is dedicated to trapped charge dating. With some modifications system may be adapted for other purposes as well.

In the following sections we provide a detailed description of the μDose system, its performance, decay chain activity measurement method and 40K assessment.

Experimental Section

System construction

μDose is a very compact system as it takes just over 20 cm × 20 cm of desk space. The entire electronics, including a stable high voltage power supply, a photomultiplier and a pulse analyzer are built into the system and no additional components except a PC (which can control several such systems) are required for system operation. In the μDose system, the sample is placed in a dedicated sample container which is placed below the photomultiplier (Figure 1). The container is equipped with a dual reusable α and β scintillator module covered by a 0.2 µm replaceable silver foil. The silver foil is easily penetrated by β and the vast majority of α particles emitted by the sample. The silver layer increases the number of photons that reach the photomultiplier (PMT) and it also removes the measurement
variability that arises from the sample’s reflectance. The sample container is gas-tight to prevent radon migration from and into it. The sample itself has a geometry of a thin disk which matches the diameter of the photocathode. Depending on the expected sample mass, the system can accommodate PMT's which have photocathode diameter from 30 up to 70 mm.

![Block diagram of the µDose system.](image)

Figure 1: Block diagram of the µDose system.

Electronics

The pulse analyzer has been described in detail before,20 therefore here only a brief description is given. The α and β particles produce scintillations in two different scintillator layers. The generated pulse shapes are different for each of the two scintillators, permitting the identification of the source particle of each pulse. This shape is preserved by the PMT and amplifier where the scintillations are transformed into electrical pulses and significantly amplified. The pulse analyzer detects the incoming voltage pulses (Figure 1) and stores them as series of ADC values that represent each pulse. These pulse data are time-stamped and stored for further processing. The acquired data are then transferred to the computer and processed by a dedicated algorithm that determines the pulse height, the pulse shape and the time when each pulse appeared. The pulse height and the pulse shape allow to
discriminate between α and β induced pulses. In addition, the algorithm is also capable of identifying pulses that do not match neither α nor β particles enabling the removal of background pulses arising from electrical noise or other interfering sources. The software also deconvolutes piled up pulses from decays that appeared within a small time interval (ca. 100 ns).

The electronics has a built-in high stability, low ripple, high voltage supply. This is controlled and monitored for system stability by the software. To protect the PMT, the high voltage is automatically switched off when the drawer with the sample container is opened.

α, β and decay pairs detection

Figure 2 shows a typical 2D pulse height vs. pulse shape histogram where the color indicates relative frequency of the recorded pulses obtained from sample 1. Typical counting windows for classifying α and β induced pulses are marked by dashed lines on the same plot.

![Figure 2: Data for a sample no. 1 measured for 44 hours. 2D pulse height vs. pulse histogram where the colour indicates relative frequency of pulses appearing.](image)

In environmental samples, the mean time interval between counts is virtually always much longer than the half-lifes of ^{216}Po ($t_{1/2} = 0.145$ s), ^{215}Po ($t_{1/2} = 1.78$ ms), ^{212}Po ($t_{1/2} = 299$ ns) and ^{214}Po ($t_{1/2} = 164$ µs). This means that after pulses arising from decays of ^{220}Rn, ^{219}Rn, ^{212}Bi and ^{214}Bi, the corresponding daughter radioisotopes will induce pulses appearing in a fast succession giving rise to the so-called decay pairs. In practice, μDose allows identification and counting of those four decay pairs, namely, α-α for $^{220}\text{Rn}/^{216}\text{Po}$ and $^{219}\text{Rn}/^{215}\text{Po}$, and
\(\beta-\alpha\) for \(^{212}\text{Bi}/^{212}\text{Po}\) and \(^{214}\text{Bi}/^{214}\text{Po}\). To detect those decay pairs the system builds a time interval distribution from the recorded time intervals between events classified as \(\beta\) pulses followed in a quick succession of an \(\alpha\) pulse (Figure 3a, b and c). This allows to reveal the exponential decay arising from \(^{212}\text{Bi}/^{212}\text{Po}\) (Figure 3a) and \(^{214}\text{Bi}/^{214}\text{Po}\) (Figure 3b) decay pairs. Similarly, time interval distribution between events classified as \(\alpha\) (Figure 3d, e and f) allow to reveal the exponential decay arising from \(^{219}\text{Rn}/^{215}\text{Po}\) (Figure 3d) and \(^{220}\text{Rn}/^{216}\text{Po}\) (Figure 3e) decay pairs. Figure 3c and f show remaining \(\beta-\alpha\) and \(\alpha-\alpha\) time intervals arising from random decays. On each inset in Figure 3 the fitted signal (sig) and background (bg) are marked. Note that background in Figure 3a, b, c, f is virtually absent.

Figure 3: Data for sample no. 1 measured for 44 hours. Distributions for \(\beta-\alpha\) time intervals in ranges a) 0-3.6 \(\mu\)s, b) 3.6-2100 \(\mu\)s, c) > 2100 \(\mu\)s and \(\alpha-\alpha\) time intervals in ranges d) 0.5-21 ms, e) 21 ms - 1.7 s, c) > 1.7 s. Measured time intervals are shown by the stepped lines, the fitted signal (s) and background (b) are depicted by the filled areas. a), b), d) and e) plots reveal subsequent decays of \(^{220}\text{Rn}/^{216}\text{Po}\), \(^{219}\text{Rn}/^{215}\text{Po}\), \(^{212}\text{Bi}/^{212}\text{Po}\) and \(^{214}\text{Bi}/^{214}\text{Po}\), respectively. d) and g) show remaining, purely random \(\beta-\alpha\) and \(\alpha-\alpha\) time interval distributions. Note the differing horizontal axis scales on plots a-f.
\(^{238}\text{U}, ^{235}\text{U}, ^{232}\text{Th}\) and \(^{40}\text{K}\) activity assessment

The four decay pairs count rates can be used to directly determine the activity per unit of mass

\[
\begin{align*}
r_{\text{Bi}^{\text{212}}/\text{Po}^{\text{212}}} &= k_{\text{Bi}^{\text{212}}/\text{Po}^{\text{212}}} a_{\text{Bi}^{\text{212}}/\text{Po}^{\text{212}}}, \\
r_{\text{Bi}^{\text{214}}/\text{Po}^{\text{214}}} &= k_{\text{Bi}^{\text{214}}/\text{Po}^{\text{214}}} a_{\text{Bi}^{\text{214}}/\text{Po}^{\text{214}}}, \\
r_{\text{Rn}^{\text{220}}/\text{Po}^{\text{216}}} &= k_{\text{Rn}^{\text{220}}/\text{Po}^{\text{216}}} a_{\text{Rn}^{\text{220}}/\text{Po}^{\text{216}}}, \\
r_{\text{Rn}^{\text{219}}/\text{Po}^{\text{215}}} &= k_{\text{Rn}^{\text{219}}/\text{Po}^{\text{215}}} a_{\text{Rn}^{\text{219}}/\text{Po}^{\text{215}}},
\end{align*}
\]

(1)

Here \(r\) are the net count rates of decay pairs indicated in subscripts, \(k\) are calibration parameters for the given system and the given decay pairs indicated in subscripts, and \(a\) are specific activities of decay pairs indicated in subscripts. Equations (1) hold for samples with atomic compositions similar to that of the used calibration standards. Equations (1) remain valid regardless of the state of secular equilibrium in the measured material.

In many cases, samples are close to secular equilibrium and the user may assume the following relationships

\[
\begin{align*}
a_{\text{Th}^{\text{232}}} &= a_{\text{Bi}^{\text{212}}/\text{Po}^{\text{212}}} = a_{\text{Rn}^{\text{220}}/\text{Po}^{\text{216}}}, \\
a_{\text{U}^{\text{238}}} &= a_{\text{Bi}^{\text{214}}/\text{Po}^{\text{214}}}, \\
a_{\text{U}^{\text{235}}} &= a_{\text{Rn}^{\text{219}}/\text{Po}^{\text{215}}}, \\
r_\alpha &= k_{\alpha,\text{Th}^{\text{232}}} a_{\text{Th}^{\text{232}}} + k_{\alpha,\text{U}^{\text{238}}} a_{\text{U}^{\text{238}}} + k_{\alpha,\text{U}^{\text{235}}} a_{\text{U}^{\text{235}}}, \\
r_\beta &= k_{\beta,\text{Th}^{\text{232}}} a_{\text{Th}^{\text{232}}} + k_{\beta,\text{U}^{\text{238}}} a_{\text{U}^{\text{238}}} + k_{\beta,\text{U}^{\text{235}}} a_{\text{U}^{\text{235}}} + k_{\beta,\text{K}^{\text{40}}} a_{\text{K}^{\text{40}}}.
\end{align*}
\]

(2)

Here \(r_\alpha\) and \(r_\beta\) are the \(\alpha\) and \(\beta\) net count rates. Equations (1) and (2) enable the calculation of the decay chain specific activities in the sample. These equations allow to extract the activity of pure \(\beta\) emitters. In (2), it is assumed that \(^{40}\text{K}\) is the major contributor, which is true for most environmental samples. However, it needs to be borne in mind that in environmental samples also other pure \(\beta\) emitters can be found, e.g. natural \(^{87}\text{Rb}\) or anthropogenic \(^{137}\text{Cs}\).\(^{22-27}\) This needs to be considered individually for each sample as it may
introduce an error in the ^{40}K assessment. E.g., ref 28 assumed a contribution from ^{87}Rb at the level of 50 ppm of natural rubidium per 1% of potassium.

Eqs. (1) and (2) can be further restricted using a known $^{238}\text{U}/^{235}\text{U}$ isotopic ratio29,30

$$\frac{^{238}\text{U}}{^{235}\text{U}} = \frac{a_{^{238}\text{U}}/\lambda_{^{238}\text{U}}}{a_{^{235}\text{U}}/\lambda_{^{235}\text{U}}} = 137.88.\quad (3)$$

where λ is decay constant of radioisotope indicated in subscript. Eq. (3) removes one degree of freedom and allows obtaining more precise results. In the natural environment, the ratio $^{238}\text{U}/^{235}\text{U}$ ratio can vary by up to ca. 5‰.$^{29-33}$ This however is consistent enough to assume it as constant given the measurement accuracy and precision.

System calibration

The μDose system needs to be calibrated with reference materials of known radioactivities, as well as a background sample. In the current work we use IAEA-RGU-1, IAEA-RGTh-1, and IAEA-RGK-1 standards from the International Atomic Energy Agency.34 The IAEA-RGU-1 and IAEA-RGTh-1 are produced using uranium and thorium ores that are mixed with floated silica powder. Decay chains present in those reference materials can be considered to be in secular equilibrium with parent radioactivity. The IAEA-RGK-1 reference material is produced using high purity (99.8%) potassium sulfate. The μDose software contains a dedicated module that allows the user to easily obtain calibration parameters (k in Eqs. 1 and 2). This is done by matching calibration measurements with known radioactivities from the built-in database.
Results and Discussion

Samples and sample preparation

To test the performance of \(\mu \)Dose, activities of five samples were assessed using two additional systems, namely, an high-purity germanium (HPGe) \(\gamma \) spectrometer and a conventional TSAC system.

Sample 1 was an artificial sample composed from IAEA-RGU-1, IAEA-RGTh-1, and IAEA-RGK-1 mixed in equal weight proportions allowing the calculation of its specific activities. Samples 2, 3 and 4 are loess sediments. Sample 5 is a brick from archaeological excavations.

For \(\mu \)Dose and TSAC, the samples were powdered using an agate mill to avoid overcounting of \(\alpha \) particles which may arise from inhomogeneous distribution of radioactive elements in natural samples. After milling grain size distribution was verified using a laser diffractometer Mastersizer 3000 manufactured by Malvern Instruments Ltd. For all samples the median particle size was less than 7 \(\mu \)m. In both \(\mu \)Dose and TSAC systems, we used ground up 1 g samples and 42 mm diameter scintillators. The measurement time was the same for the \(\mu \)Dose and TSAC systems. TSAC measurements were performed using an in-house built system with pulse amplitude-time analyzer.

Measurements

The system set-up and data were evaluated according to ref [2]. \(\mu \)Dose specific uranium, thorium and potassium radioactivities were obtained using equations [1-3].

The \(\gamma \) spectrometry measurements were performed using a low background, high resolution HPGe detector with a resolution at full width at half maximum of 1.8 keV and relative efficiency of 40% at the energy of 1332 keV. The same standards were used as above. The counting times are given in Table [1]. The average \(^{238} \)U specific radioactivity was calculated from \(^{234} \)Th, \(^{234m} \)Pa, \(^{214} \)Pb, \(^{214} \)Bi and \(^{210} \)Pb lines using a weighted mean. The average \(^{232} \)Th
specific radioactivity was assessed from 228Ac, 212Pb, 212Po and 208Tl lines using a weighted mean.

The results are summarised in Table 1.

Table 1: Specific radioactivity measurements using μDose, a HPGe and a traditional TSAC system. Given uncertainties correspond to 1σ.

	Mean 238U radioactivity (Bq·kg$^{-1}$)	Mean 232Th radioactivity (Bq·kg$^{-1}$)	40K assessment (Bq·kg$^{-1}$)	Measurement time (hr)						
μDose	TSAC	HPGe	μDose	TSAC	HPGe	μDose	TSAC	HPGe	μDose & TSAC	HPGe
1*	1620 ± 40	2400 ± 150	1628 ± 32	1110 ± 60	1300 ± 150	1062 ± 37	4480 ± 160	4610 ± 110	44	6.5
2	26.3 ± 2.6	30.1 ± 4.4	26.08 ± 0.59	32 ± 4.0	31.8 ± 4.3	33.90 ± 1.10	576 ± 48	564 ± 19	74	25
3	30.9 ± 2.5	26.7 ± 4.2	26.16 ± 0.55	30.1 ± 3.3	39.3 ± 4.1	32.86 ± 1.05	588 ± 20	532 ± 18	98	27
4	38.1 ± 3.9	41.6 ± 5.2	27.71 ± 0.58	33.6 ± 4.5	41.1 ± 5.2	35.36 ± 1.13	618 ± 27	570 ± 19	66	24
5	23.5 ± 2.8	26.4 ± 2.4	17.80 ± 0.37	19.3 ± 2.8	24.0 ± 2.4	19.48 ± 0.89	308 ± 18	324 ± 11	87	29

* Sample created form mixing IAEA-RGU-1, IAEA-RGTh-1, and IAEA-RGK-1 in equal weight proportions. The activities calculated using reference values are 1673 Bq·kg$^{-1}$ of 238U, 1083 Bq·kg$^{-1}$ of 232Th and 4669 Bq·kg$^{-1}$ of 40K.

System performance

As seen in Table 1, there is a very good agreement between the values obtained using the μDose and gamma spectrometry. The thorium and potassium specific activities agree within 2 standard deviations and uranium for samples 4 and 5 within 3 standard deviations. In the investigated samples there was no indication of possible lack of secular equilibrium in the U and Th decay chains. The results obtained using TSAC are characterised by larger measurement errors for the same counting times, and as mentioned earlier information on the potassium content is unavailable.

When the activities are used to estimate the annual dose in trapped charge dating applications it has to be borne in mind that the values and errors returned by μDose are correlated. This fact is taken into account during the calculation of the annual dose and leads to lower errors than in case these values were independent. Such situation is encountered in high resolution gamma spectrometry. The calculations of annual dose will be discussed elsewhere.
Conclusion

The µDose system allows to detect α and β radiation with four different decay pairs arising in 238U decay chain (214Bi/214Po), 232Th decay chain (220Rn/216Po and 212Bi/212Po) and 238U decay chain (219Rn/215Po). If the sample is close enough to secular equilibrium, the obtained α and β counts and four separate decay pairs allow to obtain the 238U, 235U and 232Th decay chains concentration in the given sample. The 40K activity is assessed from the excess of β counts over what is expected over what is predicted from 238U, 235U and 232Th measurements.

µDose software allows for a convenient system calibration which limits routine work require from the user. The activities are calculated according to various assumptions (details are provided in the section 238U, 238U, 232-Th and 40K assessment) and measurement reports are automatically created for convenient post processing. The µDose system can be equipped various photomultipliers to assess various sample masses from 0.4–4 g. The software is build with emphasis on EPR/OS/TL dating therefore it includes various modules for dose rate calculation.

Finally the µDose may also provide a new tool for measuring very low levels of 226Ra, 224Ra, 223Ra, 222Rn, 220Rn or 219Rn via decay pair counting. Those isotopes are very frequently investigated because of their importance in medicine, geology or health risk studies.\cite{39,41}

Acknowledgement

First prototype development was supported with the grant LIDER/001/404/L-4/2013 by the Polish National Centre for Research and Development (2013-2017).

The authors thanks Agnieszka Szymak for her help in the measurements.
References

(1) Turner, R.; Radley, J.; Mayneord, W. The alpha-ray activity of human tissues. British Journal of Radiology 1958, 31, 397–402.

(2) Aitken, M. Thermoluminescence Dating; Academic Press: London, 1985; p 359.

(3) Cawthra, H.; Jacobs, Z.; Compton, J.; Fisher, E.; Karkanas, P.; Marean, C. Depositional and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental shelf of South Africa. Quaternary Science Reviews 2018, 181, 156–172, DOI: 10.1016/J.QUASCIREV.2017.12.002.

(4) Chen, Y.; Li, S.-H.; Li, B.; Hao, Q.; Sun, J. Maximum age limitation in luminescence dating of Chinese loess using the multiple-aliquot MET-pIRIR signals from K-feldspar. Quaternary Geochronology 2015, 30, 207–212, DOI: 10.1016/j.quageo.2015.01.002.

(5) Duller, G. A.; Tooth, S.; Barham, L.; Tsukamoto, S. New investigations at Kalambo Falls, Zambia: Luminescence chronology, site formation, and archaeological significance. Journal of Human Evolution 2015, 85, 111–125, DOI: 10.1016/J.JHEVOL.2015.05.003.

(6) Fu, X.; Li, S.-H.; Li, B.; Fu, B. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology 2017, 278, 91–104, DOI: 10.1016/J.GEOMORPH.2016.10.034.

(7) Jankowski, N. R.; Gully, G. A.; Jacobs, Z.; Roberts, R. G.; Prideaux, G. J. A late Quaternary vertebrate deposit in Kudjal Yolgah Cave, south-western Australia: refining regional late Pleistocene extinctions. Journal of Quaternary Science 2016, 31, 538–550, DOI: 10.1002/jqs.2877.

(8) Kühn, P.; Lehndorff, E.; Fuchs, M. Lateglacial to Holocene pedogenesis and formation
of colluvial deposits in a loess landscape of Central Europe (Wetterau, Germany). *CATENA* 2017, 154, 118–135, DOI: 10.1016/J.CATENA.2017.02.015.

(9) Sabtu, S. N.; Mahat, R. H.; Amin, Y. M.; Price, D. M.; Bradley, D.; Maah, M. J. Thermoluminescence dating analysis at the site of an ancient brick structure at Pekalan Bujang, Malaysia. *Applied Radiation and Isotopes* 2015, 105, 182–187, DOI: 10.1016/j.apradiso.2015.08.024.

(10) Schmidt, C.; Schaarschmidt, M.; Kolb, T.; Büchel, G.; Richter, D.; Zöller, L. Luminescence dating of Late Pleistocene eruptions in the Eifel Volcanic Field, Germany. *Journal of Quaternary Science* 2017, 32, 628–638, DOI: 10.1002/jqs.2961.

(11) Dunseth, Z. C.; Junge, A.; Lomax, J.; Boaretto, E.; Finkelstein, I.; Fuchs, M.; Shahack-Gross, R. Dating archaeological sites in an arid environment: A multi-method case study in the Negev Highlands, Israel. *Journal of Arid Environments* 2017, 144, 156–169, DOI: 10.1016/J.JARIDENV.2017.05.006.

(12) Jacobs, Z.; Jankowski, N. R.; Dibble, H. L.; Goldberg, P.; McPherron, S. J.; Sandgathe, D.; Soressi, M. The age of three Middle Palaeolithic sites: Single-grain optically stimulated luminescence chronologies for Pech de l’Azé I, II and IV in France. *Journal of Human Evolution* 2016, 95, 80–103, DOI: 10.1016/j.jhevol.2016.03.010.

(13) Junge, A.; Lomax, J.; Shahack-Gross, R.; Dunseth, Z. C.; Finkelstein, I.; Fuchs, M. OSL Age Determination of Archaeological Stone Structures Using Trapped Aeolian Sediments: A Case Study from the Negev Highlands, Israel. *Geoarchaeology* 2016, 31, 550–563, DOI: 10.1002/gea.21578.

(14) Roettig, C.-B.; Kolb, T.; Wolf, D.; Baumgart, P.; Richter, C.; Schleicher, A.; Zöller, L.; Faust, D. Complexity of Quaternary aeolian dynamics (Canary Islands). *Palaeogeography, Palaeoclimatology, Palaeoecology* 2017, 472, 146–162, DOI: 10.1016/J.PALAEO.2017.01.039.
(15) Eitrheim, E. S.; May, D.; Forbes, T. Z.; Nelson, A. W. Disequilibrium of Naturally Occurring Radioactive Materials (NORM) in Drill Cuttings from a Horizontal Drilling Operation. *Environmental Science & Technology Letters* **2016**, *3*, 425–429, DOI: 10.1021/acs.estlett.6b00439.

(16) Krbetschek, M.; Rieser, U.; Zöller, L.; Heinicke, J. Radioactive disequilibria in palaeodosimetric dating of sediments. *Radiation Measurements* **1994**, *23*, 485–489, DOI: 10.1016/1350-4487(94)90083-3.

(17) Prescott, J.; Hutton, J. Environmental dose rates and radioactive disequilibrium from some Australian luminescence dating sites. *Quaternary Science Reviews* **1995**, *14*, 439–448, DOI: 10.1016/0277-3791(95)00037-2.

(18) Sanderson, D. Thick source beta counting (TSBC): A rapid method for measuring beta dose-rates. *International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements* **1988**, *14*, 203–207, DOI: 10.1016/1359-0189(88)90065-9.

(19) Bøtter-Jensen, L.; Mejdahl, V. Assessment of beta dose-rate using a GM multicounter system. *International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements* **1988**, *14*, 187–191, DOI: 10.1016/1359-0189(88)90062-3.

(20) Miłosz, S.; Tudyka, K.; Walencik-Łata, A.; Barwinek, S.; Bluszcz, A.; Adamiec, G. Pulse Height, Pulse Shape, and Time Interval Analyzer for Delayed α/β Coincidence Counting. *IEEE Transactions on Nuclear Science* **2017**, *64*, 2536–2542, DOI: 10.1109/TNS.2017.2731852.

(21) Tudyka, K.; Miłosz, S.; Ustrzycka, A.; Barwinek, S.; Barwinek, W.; Walencik-Łata, A.; Adamiec, G.; Bluszcz, A. A low level liquid scintillation spectrometer with five counting
modules for 14C, 222Rn and delayed coincidence measurements. *Radiation Measurements* **2017**, *105*, 1–6, DOI: 10.1016/j.radmeas.2017.06.003.

(22) Ochiai, A.; Imoto, J.; Suetake, M.; Komiya, T.; Furuki, G.; Ikehara, R.; Yamasaki, S.; Law, G. T. W.; Ohnuki, T.; Grambow, B.; Ewing, R. C.; Utsunomiya, S. Uranium Dioxides and Debris Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima Daiichi Nuclear Power Plant. *Environmental Science & Technology* **2018**, *52*, 2586–2594, DOI: 10.1021/acs.est.7b06309.

(23) Buesseler, K. O.; German, C. R.; Honda, M. C.; Otosaka, S.; Black, E. E.; Kawakami, H.; Manganini, S. J.; Pike, S. M. Tracking the Fate of Particle Associated Fukushima Daiichi Cesium in the Ocean off Japan. *Environmental Science & Technology* **2015**, *49*, 9807–9816, DOI: 10.1021/acs.est.5b02635.

(24) Poręba, G. J.; Śnieszko, Z.; Moska, P. Application of OSL dating and 137Cs measurements to reconstruct the history of water erosion: A case study of a Holocene colluvium in Świerklany, south Poland. *Quaternary International* **2015**, *374*, 189–197, DOI: 10.1016/j.quaint.2015.04.004.

(25) Faure, G.; Powell, J. L. *Strontium Isotope Geology*; Springer Berlin Heidelberg: Berlin, Heidelberg, 1972; pp 1–8, DOI: 10.1007/978-3-642-65367-4.

(26) Evangeliou, N.; Florou, H.; Kritidis, P. A Survey of 137Cs in Sediments of the Eastern Mediterranean Marine Environment from the Pre-Chernobyl Age to the Present. *Environmental Science & Technology Letters* **2014**, *1*, 102–107, DOI: 10.1021/ez400078t.

(27) Sanderson, D.; Cresswell, A.; Tamura, K.; Iwasaka, T.; Matsuzaki, K. Evaluating remediation of radionuclide contaminated forest near Iwaki, Japan, using radiometric methods. *Journal of Environmental Radioactivity* **2016**, *162-163*, 118–128, DOI: 10.1016/J.JENVRAD.2016.05.019.
(28) Adamiec, G.; Aitken, M. Dose-rate conversion factors: update. *Ancient TL* **1998**, *16*, 37–50.

(29) Uvarova, Y. A.; Kyser, T. K.; Geagea, M. L.; Chipley, D. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. *Geochimica et Cosmochimica Acta* **2014**, *146*, 1–17, DOI: 10.1016/j.gca.2014.09.034.

(30) Brennecka, G. A.; Borg, L. E.; Hutcheon, I. D.; Sharp, M. A.; Anbar, A. D. Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the $^{238}\text{U}/^{235}\text{U}$ fractionation mechanism. *Earth and Planetary Science Letters* **2010**, *291*, 228–233, DOI: 10.1016/j.epsl.2010.01.023.

(31) Placzek, C. J.; Heikoop, J. M.; House, B.; Linhoff, B. S.; Pelizza, M. Uranium isotope composition of waters from South Texas uranium ore deposits. *Chemical Geology* **2016**, *437*, 44–55, DOI: 10.1016/J.CHEMGEO.2016.05.008.

(32) Phan, T. T.; Gardiner, J. B.; Capo, R. C.; Stewart, B. W. Geochemical and multi-isotopic ($^{87}\text{Sr}/^{86}\text{Sr}$, $^{143}\text{Nd}/^{144}\text{Nd}$, $^{238}\text{U}/^{235}\text{U}$) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA. *Geochimica et Cosmochimica Acta* **2018**, *222*, 187–211, DOI: 10.1016/J.GCA.2017.10.021.

(33) Brennecka, G. A.; Amelin, Y.; Kleine, T. Uranium isotope ratios of Muonionalusta troilite and complications for the absolute age of the IVA iron meteorite core. *Earth and Planetary Science Letters* **2018**, *490*, 1–10, DOI: 10.1016/J.EPSL.2018.03.010.

(34) *IAEA/RL/148*; 1987; p 52.

(35) Zöller, L.; Pernicka, E. A note on overcounting in alpha-counters and its elimination. *Ancient TL* **1989**, 11–14.
(36) Murray, A. S. Studies of the stability of radioisotope concentrations and their dependence on grain size. *PACT* 1982, 6, 216–223.

(37) Poręba, G. J.; Murray, A. Sediment tracing using environmental radionuclides; the distribution and behaviour of 137Cs and natural radioisotopes in a small loess agricultural watershed. *Ecohydrology & Hydrobiology* 2006, 6, 153–161, DOI: 10.1016/S1642-3593(06)70137-9.

(38) Tudyka, K.; Bluszcz, A. Very low cost multichannel analyzer with some additional features. *Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 2011, 659, 419–421, DOI: 10.1016/j.nima.2011.09.015.

(39) Einarsson, P.; Theodórsson, P.; Hjartardóttir, Á. R.; Guðjónsson, G. I. Radon Changes Associated with the Earthquake Sequence in June 2000 in the South Iceland Seismic Zone. *Pure and Applied Geophysics* 2008, 165, 63–74, DOI: 10.1007/s00024-007-0292-6.

(40) Lauer, N. E.; Warner, N. R.; Vengosh, A. Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater. *Environmental Science & Technology* 2018, 52, 955–962, DOI: 10.1021/acs.est.7b04952.

(41) Lauer, N.; Vengosh, A. Age Dating Oil and Gas Wastewater Spills Using Radium Isotopes and Their Decay Products in Impacted Soil and Sediment. *Environmental Science & Technology Letters* 2016, 3, 205–209, DOI: 10.1021/acs.estlett.6b00118.