Genetic disorders of the surfactant system: focus on adult disease

Coline H.M. van Moorsel1,2, Joanne J. van der Vis1,3 and Jan C. Grutters1,2

Number 5 in the Series “Rare genetic interstitial lung diseases”
Edited by Bruno Crestani and Raphaël Borie

Affiliations: 1Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands. 2Division of Hearts and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands. 3Dept of Clinical Chemistry, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.

Correspondence: Coline H.M. van Moorsel, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3435CM Nieuwegein, The Netherlands. E-mail: c.van.moorsel@antoniusziekenhuis.nl.

@ERSpublications
Genes involved in monogenic surfactant-related parenchymal lung disease associate with age, ethnicity and pulmonary phenotype but not with sex. High disease penetrance and emerging genotype-phenotype correlations advocate genetic analysis in the clinic. https://bit.ly/2PrjAp6

Cite this article as: van Moorsel CHM, van der Vis JJ, Grutters JC. Genetic disorders of the surfactant system: focus on adult disease. Eur Respir Rev 2021; 30: 200085 [https://doi.org/10.1183/16000617.0085-2020].

ABSTRACT Genes involved in the production of pulmonary surfactant are crucial for the development and maintenance of healthy lungs. Germline mutations in surfactant-related genes cause a spectrum of severe monogenic pulmonary diseases in patients of all ages. The majority of affected patients present at a very young age, however, a considerable portion of patients have adult-onset disease. Mutations in surfactant-related genes are present in up to 8% of adult patients with familial interstitial lung disease (ILD) and associate with the development of pulmonary fibrosis and lung cancer.

High disease penetrance and variable expressivity underscore the potential value of genetic analysis for diagnostic purposes. However, scarce genotype-phenotype correlations and insufficient knowledge of mutation-specific pathogenic processes hamper the development of mutation-specific treatment options.

This article describes the genetic origin of surfactant-related lung disease and presents spectra for gene, age, sex and pulmonary phenotype of adult carriers of germline mutations in surfactant-related genes.

Surfactant-related genes
Mutations in surfactant-related genes have been recognised as an important cause of severe pulmonary disease. This review aims to assemble and discuss what is known on the mutated genes and the phenotype of the affected patients. As several excellent reviews for surfactant-related paediatric disease exist [1–3], we have focused on aggregating data for adult cases.

Provenance: Commissioned article, peer reviewed.
Received: 6 April 2020 | Accepted: 30 July 2020

Copyright ©ERS 2021. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
Pulmonary surfactant consists of a mixture of lipids and proteins that are essential for lowering alveolar surface tension and preventing alveolar collapse at the end of expiration. Furthermore, surfactant proteins play an important role in modulation of the immune response and of inflammatory processes [4–11].

The genes SFTPA1, SFTPA2, SFTPB, SFTPC and SFTPD encode the apolipoproteins that form approximately 8% of the surfactant fluid (consisting of surfactant proteins A (SP-A; 5.5%, comprising of SP-A1 and SP-A2), B (SP-B; 1%), C (SP-C; 1%) and D (SP-D; 0.5%)) [10]. These proteins can be divided into two groups which differ highly in biological processing and function: the hydrophilic proteins (SP-A and SP-D) and the hydrophobic proteins (SP-B and SP-C). The latter require so-called “lamellar bodies” for biosynthetic processing, transport and secretion into the alveolar lumen. A critical component of these lamellar bodies is encoded by the gene ATP binding cassette subfamily A member 3 (ABCA3) [1].

Characteristic	SFTPA1	SFTPA2	SFTPB	SFTPC	ABCA3	NNX2-1
Genomic						
Genomic location	10q22.3	10q22.3	2p11.2	8p21.3	1p13.3	14q13.3
Size kb	4.5	4.5	9.5	9.8	65	3.8
Number of exons	6 [4]	6 [4]	11 [10]	6 [5]	33 [30]	3 [3]
Exons encoding mature protein	3–6	3–6	6–7	2	4–33	1–3
Number of amino acids in mature protein [numbering]	227 [21–248]	227 [21–248]	79 [201–279]	35 [24–58]	1704 [1–1704]	401 [1–401]
Molecular weight of mature protein kDa	35	35	8	4	191	39
Disease						
Inheritance	Autosomal dominant	Autosomal dominant	Autosomal recessive	Autosomal recessive	Autosomal recessive	Autosomal recessive
Children at diagnosis	Rare (one infant)	Not reported	Neonatal RDS	Rarely ILD in childhood	Some neonatal RDS	Neonatal RDS
Adults at diagnosis	Interstitial pneumonitis/pulmonary fibrosis	Interstitial pneumonitis/pulmonary fibrosis	Not reported	Interstitial pneumonitis/pulmonary fibrosis	Rarely Interstitial pneumonitis/pulmonary fibrosis	RarelyInterstitial pneumonitis/pulmonary fibrosis
Mutation sites	CRD	CRD	Coding sequence	Mature peptide C-terminal linker	BRICOS domain	Coding sequence
Most frequent mutation						
Known as	NA	NA	121ins2 c.361del(CinsGAA) p.(Leu121Ter)	173T c.218T>C p.(Ile73Thr)	E229V c.875A>T p.[Glu292Val]	NA
Protein Transcript	NM_00542.5	rs35328240	NM_000542.5	NM_003018.3	NM_001089.3	NA
RS number						
Classification	Pathogenic	Pathogenic	Pathogenic	Pathogenic	Pathogenic	Pathogenic
Mutation frequency	>60% of mutated alleles	>25% of mutated alleles	>10% of mutated alleles	Unique haplotype associated with European descent	European descent	
Origin	Haplotype of NW European descent	Mutation hotspot	Pathogenic	Unique haplotype associated with European descent		
GnomAD allele frequency	0.0004*	0.0000	0.0000	0.0000	0.0004	

RDS: respiratory distress syndrome; ILD: interstitial lung disease; CRD: carbohydrate recognition domain; NA: not applicable; NW: North-Western. #: depending on the transcript referred to as c.397delCinsGAA and p.Pro133GlufsTer95; §: GnomAD frequency for European non-Finnish; ‡: frequency of rs779795233, the read data shows this concerns rs35328240.
Survival is rare and, although some children age, no adults with pathogenic bi-allelic
causing partial deficiency in SP-B associating with delayed onset and prolonged survival. However,
with mutations causing complete deficiency in SP-B associating with fatal neonate RDS and mutations
have been reported thus far.

Thereafter, several families with pulmonary fibrosis were discovered and not all included children [40
(DIP) at the age of 1 year and was treated with corticosteroids until the age of 15.

The first family with a pathogenic mutation in
SFTPC
were reported with early-disease onset [15, 45].

Disease due to
SFTPB
mutation typically presents in neonates as RDS with a fatal outcome within the first
months after birth. However, some patients are reported to have longer survival times and later onset of
disease. These patients carry mutations that allow partial production of functional SP-B protein [2, 34–36,
38]. Although numbers are low, it is therefore suggested that a genotype–phenotype correlation may exist,
with mutations causing complete deficiency in SP-B associating with fatal neonate RDS and mutations
cauin partial deficiency in SP-B associating with delayed onset and prolonged survival. However,
survival is rare and, although some children age, no adults with pathogenic bi-allelic
SFTPB
mutations have been reported thus far.

SFTPC gene mutations

The first family with a pathogenic mutation in
SFTPC
included not only a 6-week old, full-term infant
with tachypnoea and cyanosis, but also her mother [39]. Candidate gene sequencing of
SFTPC
yielded a heterozygous mutation (c.460+1 G→A) that causes a deletion of exon 4 [39]. The mother, who died after
delivery from respiratory insufficiency, had been diagnosed with desquamative interstitial pneumonitis
(DIP) at the age of 1 year and was treated with corticosteroids until the age of 15.

Thereafter, several families with pulmonary fibrosis were discovered and not all included children [40–42].
In contrast with
SFTPB,
heterozygous
SFTPC-mediated disease is dominant and affects subjects of all ages ranging from newborns to the elderly [40, 43, 44]. As an exception, several bi-allelic mutation carriers were reported with early-disease onset [15, 45].

The pathogenic effect of an
SFTPC
mutation is primarily the result of aberrantly processed mutant protein, which has toxic consequences for the AT2 epithelial cell. These intracellular effects are associated with the position of the mutation in the gene and the type of mutation [8, 42, 46]. The most common
SFTPC
mutation in both children and adults is the so-called "I73T" linker domain mutation.
SFTPC I73T, officially named c.218T>C, alters trafficking of the pro-peptide to early endosomes [47] and causes dysregulated proteostasis in AT2 epithelial cells [48]. Furthermore, alteration of surfactant lipid composition and activation of immune cells are reported for this mutation [49]. Other mutations, situated in the C-terminal BRICHOS domain, cause an increase in endoplasmatic reticulum (ER) stress and activation of the unfolded protein response (UPR) [50–53] in AT2 epithelial cell experiments, leading to a toxic intracellular accumulation of the pro-protein and apoptosis [8, 54, 55].
Surfactant proteins A and D

Surfactants are proteins that reduce the surface tension at the alveolar interface and prevent atelectasis. They are produced by alveolar type 2 (AT2) cells, with SP-A and SP-D being the most abundant surfactant proteins. SP-A is a master surfactant that plays a role in both adaptive and innate immunity, particularly in opsonisation by binding carbohydrates at the surface of pathogens. SP-D comprises a short N-terminal involved in oligomerisation, a collagen-like domain, a coiled neck region important for oligomerisation and spacing the lectin domain and the C-terminal carbohydrate recognition domain (CRD). The CRD induces opsonisation by binding carbohydrates at the surface of pathogens.

Expression of SP-A and SP-D is not limited to the lung, and both RNA and immunohistochemical expression have been reported in the epithelia of multiple organs in congruence with a role in host defence.
In the lung, SP-A and SP-D expression appears highest in AT2 epithelial cells, but is also observed in sub-mucosal and club cells [85, 86]. In contrast with SP-B and SP-C, secretion of SP-A and SP-D in AT2 epithelial cells bypasses the lamellar bodies [87]. Within AT2 epithelial cells, SP-A localises mainly in the small vesicles and multivesicular bodies [88], whereas SP-D is highly localised in the ER, as well as being present in the Golgi complex and in multivesicular bodies [86]. Furthermore, SP-A is enriched in the outer membranes of unwinding lamellar bodies in the alveoli [88] and plays a role in tubular myelin formation. In mice lacking SP-A, tubular myelin was missing and increased susceptibility to pulmonary infections was observed [89].

Two slightly different forms of SP-A (SP-A1 and SP-A2) exist and are encoded by SFTPA1 and SFTPA2. These genes are highly similar, sharing 94% sequence homology [6], with the main difference consisting of four amino acids in the collagen-like domain [82, 90]. However, both quantitative and qualitative differences exist: SP-A2 is more efficiently translated, is more abundant and more effectively enhances bacterial phagocytosis than SP-A1 [91, 92].

To date, only mutations in SFTPA1 and SFTPA2 have been associated with monogenic lung disease. Common variants in SFTPD are associated with numerous respiratory diseases, as recently reviewed by Sorensen et al. [82], but mutations that specifically cause monogenic parenchymal lung disease are not known. The absence of SFTPD mutations suggests that either such mutations are deleterious in utero, do not cause a pulmonary phenotype, or may be resolved without pathogenic consequences. For instance, the low production of SP-D in AT2 epithelial cells may preclude the deleterious consequences of mutant alleles.

SFTPA2 gene mutations

Involvement of the surfactant bioligin genes in monogenic lung disease was discovered through genome linkage analysis in a large family with adult-onset pulmonary fibrosis. The analysis pointed towards a large region at the long arm of chromosome 10 which contained about 120 genes including SFTPA1, SFTPA2 and SFTPD [93]. Subsequent sequencing revealed a heterozygous mutation (GGG/GTG) in codon 231 of SFTPA2 (c.692G>T; p.(G231V)) which segregated with disease in the family. Additional sequencing in 58 unrelated probands with familial pulmonary fibrosis revealed a second heterozygous mutation in SFTPA2. Both mutations involve amino acid substitutions in exon 6 (which encodes the CRD) and were predicted to destabilise the protein [93]. In transfected A549 cells, ER retention of the mutant protein and ER-stress were observed; furthermore, the mutated protein was not present in the patient’s lavage fluid [94]. Later studies not only showed that harmful mutations are limited to exon 6, but also that, next to pulmonary fibrosis, lung cancer was always present in mutation carrying families [64, 95]. Six mutations are now known and inheritance of disease due to mutations in SFTPA2 is autosomal dominant. Disease has only been reported in adults [64, 93, 95], although the age range is wide. The youngest patient presented at the age of 20 years with a significantly reduced forced vital capacity (FVC) of 57% predicted and diffusing capacity of the lung for carbon monoxide (DLCO) of 49% predicted [95] (suggestive of preclinical onset of disease pathogenesis at an even younger age). It is our experience that survival is limited, mimicking the outcome in IPF and that lung transplantation is a successful therapy in adults.

SFTPA1 gene mutations

The involvement of mutations in the SFTPA2 gene in families with both pulmonary fibrosis and lung cancer, led to the compilation of a small cohort characterised by the co-existence of both diseases. Candidate sequencing of SFTPA2 in the 12 probands yielded no results; however in SFTPA1, a disease segregating heterozygous mutation (c.631T>C) causing an amino acid substitution at position p.(W211R) was detected. Similar to previous SFTPA2 findings, the mutation was located in exon 6 and inheritance was autosomal dominant [96]. Experiments with transfected HEK293T cells showed an absence of mutated protein in the cell medium. Although the study involved families with adult-onset pulmonary fibrosis, a baby of 9 months old who died from severe respiratory disease was a member of the mutation carrying family. The child’s biopsy demonstrated excessive intra-cytoplasmic SP-A staining in hyperplastic AT2 epithelial cells, highly suggestive of a deleterious effect due to mutated protein in the postnatal period [96].

Thereafter three other families were described, each with their own unique exon 6 SFTPA1 mutation [97–99], including the homozygous adult sons of consanguineous heterozygous Japanese parents [99]. The parents were asymptomatic but, upon examination, subclinical disease with a DLCO <63% predicted was detected [100].

Multisystem diseases: NKX2-1

There are several other genes directly or indirectly related to surfactant homeostasis, in which mutations may cause pulmonary fibrosis. For these genes, pulmonary disease is often only reported in paediatric
patients or in the context of a multi-system disease in children and adults [101, 102]. One of these genes is the transcription factor NKX2-1, which directly regulates expression of all the above surfactant proteins and ABCA3, as well as its own expression via a positive feedback loop [103]. Heterozygous mutations in NKX2-1 cause a spectrum of pulmonary phenotypes, presenting as RDS in neonates or ILD in older children or adults affected with pulmonary fibrosis or recurrent pulmonary infections. NKX2-1 associated disease is expressed as brain–lung–thyroid syndrome. While neurological features are most common, the respiratory problems may appear isolated in up to 25% of patients and can improve or become life threatening [104, 105].

Inheritance of disease is autosomal dominant and caused by haploinsufficiency, mostly conferred by nonsense and frame-shift mutations or by complete gene deletions [106]. Both penetrance and expressivity are extremely variable, corresponding with an overall lack of genotype–phenotype correlations [104–107]. Many patients survive into adulthood; however, diagnosis at adulthood without prior severe respiratory problems is only described in four subjects. These subjects had an age at diagnosis of between 25 and 40 years. Two subjects had pulmonary fibrosis, one had ILD and one was asymptomatic with early signs of pulmonary fibrosis [104, 105].

Among the many syndromes associated with pulmonary fibrosis and surfactant homeostasis, Hermansky–Pudlak syndrome (HPS) is worth mentioning. HPS is an autosomal recessive, multisystem disease characterised by oculocutaneous albinism. The disease is caused by dysfunctional vesicles in multiple organs, such as the skin and the eyes, as well as the blood and AT2 epithelial cells. Mutations in the HPS1, AP3B1 (HPS2) and HPS4 genes, encoding major components of lamellar bodies, are involved in the development of chronic progressive pulmonary fibrosis [108]. Onset of pulmonary fibrosis usually occurs at the age of 30–40 years and medium survival is approximately 10 years [109]. HPS has one of the best organised patient societies, facilitating not only patient empowerment but also scientific research and conductance of clinical trials (www.hpsnetwork.org).

Pathogenesis
Two different kinds of deleterious surfactant-related mutation exist. The first, loss-of-function mutation, results in an absence or a decrease in functional protein. This type of mutation is generally found in recessive disease and indeed is an important mode of action of mutations in ABCA3 and SFTPB; however, loss-of-function is also the mechanism behind the dominant NKX2-1 disease. Loss-of-function mutations cause reduced protein content resulting in dysfunctional lamellar bodies or disrupted surfactant homeostasis. The second mechanism, gain-of-function mutation, involves an increase in the amount of a protein or alters its functionality. This type is most common in dominant disease and is the main mode of action of mutations in SFTPC, SFTPA1 and SFTPA2. Several studies have shown that mutations in these genes result in increased protein misfolding, aberrant protein trafficking, intracellular retention or accumulation, increased ER stress, activation of the UPR, increased pro-apoptotic signalling and apoptosis [47, 55, 94]. The commonality involved is not the mutation specific aberrant process but the involvement of the AT2 epithelial cell, the alveolar progenitor cell that is key to alveolar maintenance and repair [110]. Several studies have provided evidence that injurious processes in AT2 epithelial cells, which may be mediated by apoptosis, are sufficient for the development of pulmonary disease [111]. However, not all studies could detect involvement of apoptosis, even when increased ER-stress could be detected [94]. Recently, a different form of regulated cell death, necroptosis (also known as programmed necrosis) has been detected in surfactant-related disease. Knock-in mice carrying the Sftpa1 c.622T>C mutation spontaneously developed pulmonary fibrosis at 20 weeks of age, with further deterioration on aging or on infection with influenza virus. Most importantly, enhanced necroptosis rather than apoptosis of AT2 epithelial cells was detected in the knock-in mice and in the affected patient biopsies [99].

Overall, it can be concluded that the pathogenesis of surfactant-related mutations is only partly overlapping, which complicates the development of targeted therapeutic interventions.

Mutation spectrum
Mutations in surfactant-related genes are an accepted cause of severe pulmonary disease, but the overall relative and gene-specific contribution to disease is not well known. Figure 1a provides the mutation spectrum in 221 adult cases (>18 years old) of probands with familial pulmonary fibrosis in the national Dutch ILD biobank at St Antonius Hospital, using whole exome sequencing (WES) and mutation detection in all genes associated with familial pulmonary fibrosis. Mutations in surfactant-related genes are present in nearly 8% of probands, whereas nearly 36% had a telomere-related gene mutation and in 56% no causal mutation was found. These data are highly congruent with the previously published mutation spectrum for French patients suspected of monogenic pulmonary fibrosis [112].
The mutation frequency varies widely in paediatric cohorts of RDS and ILD, but experts suggest that 10–20% of cases have monogenic surfactant-related disease [2, 3, 113]; however, the specific genes involved are dependent on age, ethnicity and disease phenotype.

Comparing the results of multiple studies shows that involvement of the recessive genes SFTPB and ABCA3 differs between populations [16, 35–37, 114–119]. Furthermore, next to clinical differences between the studied cohorts, the background frequency of deleterious recessive alleles also differs between populations. Haplotype and population analysis have shown that in some healthy white populations the most frequent SFTPB121ins2 and ABCA3E292V mutations have allele frequencies of 0.03–0.1% and 0.3–0.4%, respectively, but are absent or extremely rare in healthy African and Asian cohorts [16, 17, 33]. Furthermore, the origin of the parents has been shown to influence the mutation spectrum (e.g. one study has found that in patients of Middle-Eastern descent, not E292V but Y1515X is the most frequent mutation [74]). Homozygosity for deleterious alleles is frequent, however, this is not due to high background frequencies, but is instead caused by consanguinity [74, 75].

For lethal dominant gene mutations there is no population background frequency. The most frequent SFTPC mutation (I73T) is absent in all healthy cohorts but present in disease worldwide [15, 17, 40, 58, 64, 65, 120]. Haplotype analysis in three Dutch families with pulmonary fibrosis and the I73T mutation has shown that the mutations are of independent origin [40]. The SFTPC I73T mutation clearly represents a mutational hotspot, although extremely high disease penetrance and lethal expressivity prevent it from spreading in the general population.

When comparing the frequency of SFTPC I73T and ABCA3 E292V between our 120 probands with familial pulmonary fibrosis and the GnomAD database (table 1), we...
found that the three \textit{SFTPC} I73T mutations were statistically over-represented in familial pulmonary fibrosis, whereas the three \textit{ABCA3} E292V mutations in familial pulmonary fibrosis may be expected on the basis of an overall low background frequency in white subjects.

Age

The involvement of surfactant-related genes in disease is highly associated with age. Mutations in the recessive \textit{SFTPB} and \textit{ABCA3} genes predominantly involve neonates and infants, while in children with ILD mutations are most commonly present in the \textit{ABCA3} and \textit{SFTPC} genes [121]. The age spectrum of adult surfactant cases was not studied previously. As such, we compiled an age spectrum based on all reported adult cases \((n=84)\) together with unpublished cases from our own cohort \((n=7)\) [39–41, 43, 44, 56, 57, 63–66, 71, 93, 95–100]. Comparison between the age spectrum of this aggregated surfactant cohort and our Dutch pulmonary fibrosis cohort with telomere-related gene mutations shows that patients with surfactant mutations present with early-onset disease significantly more often (figure 1b). Median age in adult patients with surfactant-related mutations is 45 years versus 62 years in patients with telomere-related mutations \((p<0.0001\) by Mann–Whitney U-test). To further analyse differences between surfactant genes, we subdivided the aggregated cohort. The median age in the \textit{SFTPC} group is 37 years, which is significantly lower than the median age of 48 years in the \textit{SFTPA1}/\textit{SFTPA2} group \((p=0.0036\) by Mann–Whitney U-test). The age difference is in congruence with the rarity of \textit{SFTPA} mutations in childhood (only one documented case versus 51 adult cases) and suggests that \textit{SFTPA} may be considered as a disease for adults, while \textit{SFTPC}-related disease may present at all ages.

While genotype–phenotype correlations arise for the recessive \textit{SFTPB} and \textit{ABCA3} genes, with complete protein deficiency causing fatal neonatal disease and partial functionality enabling prolonged survival, no such age-associated correlations exist for the dominant genes. Evaluation of paediatric \textit{SFTPC} cases suggests that patients with mutations in the BRICHOS domain present at an earlier age than non-BRICHOS cases [61, 62]. However, there is no significant difference \((p=0.1)\) between the age of adult patients with BRICHOS mutations \((n=21;\) mean age 38 years) versus non-BRICHOS mutations \((n=17;\) mean age 45 years) in this review.

The gene-specific age spectrum, for which only data from patients diagnosed at age 18 years or older is used, is shown in figure 2a. Even so, it remains possible that the patients included have had either earlier preclinical onset of disease or an episode of clinical disease caused by the as yet unrecognised surfactant disorder during childhood. In figure 2b we present a model for the relative contribution of each gene to

![Age at disease onset spectrum for genes associated with monogenic surfactant-related parenchymal lung disease. a) Distribution of age and sex in patients with adult-onset disease, including all cases reported in the literature and from the St. Antonius cohort (columns represent age categories for subjects with an age ±2.5 years around the column label). Age is the patient’s age at disease diagnosis or the age in the original report. b) Model for monogenic surfactant-related disease, showing the relative contribution of each gene to monogenic parenchymal lung disease (the break at age 18 years represents the lack of knowledge of how paediatric data relates to adult data, while the dashed line for \textit{SFTPB} is representative for US patients of North-Western origin, the frequency being much lower in other cohorts). \textit{SFTPC}, \textit{SFTPA1} and \textit{SFTPA2} are heterozygous cases except for two brothers included in \textit{SFTPA1} (*).](https://doi.org/10.1183/16000617.0085-2020)
disease. The break at age 18 years represents the lack of knowledge on how frequencies below and above 18 years relate to each other. For SFTPC, it is not yet known whether the risk of developing disease is greater in childhood or adulthood (many studies report paediatric SFTPC cases, but reports have also been made on many families dominated by adult cases).

Sex in adult-onset disease
Differences in lung growth and production of surfactant are known to exist between males and females. Premature male infants are more susceptible to RDS and adult males are more susceptible to pulmonary fibrosis [122]. Knock-in mice with induced Sftpc I73T expression show significantly worse survival in male mice versus female mice [68]; furthermore, males predominate in telomere-related disease [123, 124]. That males (52%) and females (48%) are equally affected by surfactant mutations is shown in figure 1c. In addition, both sexes appear equally distributed across all ages (figure 2a). This suggests that in monogenic surfactant-related disease sex, as well as environmental factors related to sex, do not have a major influence on development of disease.

Radiological and histological findings
Mutations in surfactant genes cause a variety of pulmonary phenotypes that are most strongly associated with age, ranging from neonatal RDS (ABCA3, SFTPB and NKX2-1) to children with ILD (ABCA3, SFTPC and NKX2-1) and adults with ILD and development of pulmonary fibrosis or lung cancer (SFTPC, SFTP1A, SFTP2A and NKX2-1).

Adult patients with surfactant-related mutations develop pulmonary fibrosis; however, the radiological pattern is usually inconsistent with usual interstitial pneumonia (UIP) and is often described as nonclassifiable interstitial pneumonitis. Features described for patients with an SFTP mutation include bilateral reticular abnormalities, septal thickening, traction bronchiectasis or bronchiolectasis, ground-glass opacities (GGOs) and infiltrates [40, 43, 57, 63, 65, 66]. HRCT images commonly show parenchymal lucencies in the form of one or more scattered cystic lesions, most often in both lungs and varying in size between 0.5 cm and large bullae, or emphysematous changes [40, 43, 57, 63, 65, 66]. For children with SFTPC mutations, where HRCT shows GGOs, increasing signs of fibrosis and cyst formation are observed with increasing age [61]. Follow-up of such cystic changes in our adult patients shows that the clearly walled cysts are not static, but may collapse in time (figures 3a and 3b) or, conversely, develop into large bullae-like structures (figures 3c and 3d). These structural changes in adults are likely caused by mechanic forces that arise when the lungs shrink from progressive fibrosis.

In contrast with radiological findings, the histological findings in adult patients with SFTP mutations most commonly meet the criteria for a UIP classification and fibroblast foci have been detected even in mildly affected patients [40, 43]. The UIP pattern in adults is often superimposed by other inflammatory interstitial pneumonitis patterns, such as DIP or cellular nonspecific interstitial pneumonia (NSIP) [39, 40, 43, 63, 66]. Young children with SFTP mutations present with histological patterns like cellular NSIP, DIP or pulmonary alveolar proteinosis (PAP) [39, 61, 66, 125] and may only develop fibroblast foci when entering adolescence. Furthermore, the proteinaceous material may be concentrated in abundantly present foamy alveolar macrophages [120]. However, even more diverse histological findings have been observed in adults, such as lesions suggestive of chronic hypersensitivity pneumonitis (HP) with airway inflammation and granuloma (along with a UIP pattern) [63] and lesions suggestive of sarcoidosis with well-formed noncaseating granuloma (own data). Furthermore, a patient with an SFTP mutation has been found among a large cohort of adults with rheumatoid arthritis-associated ILD (RA-ILD) [56]. This is further proof of the idea that the different forms of pulmonary fibrosis may have highly overlapping disease pathogenesis, with molecular make-up not so much determining disease phenotype as determining disease outcome. For example, in telomere-related pulmonary fibrosis it has been shown that regardless of the disease phenotype the disease has a fatal outcome [126]. This may also apply to surfactant-related mutations in adults but more research is needed.

HRCT of SFTP1A and SFTP2A mutation carriers is difficult to classify, but most commonly contains septal thickening and GGOs and may be described as NSIP [95, 97, 99]. The few histological descriptions of SFTP mutation carriers most often describe a pattern of UIP, but NSIP, DIP and organising pneumonia (OP) have also been mentioned [93, 95, 97, 99].

While there may be some gene-related radiological characteristics, such as parenchymal lucencies (i.e. solitary cysts) in SFTPC mutation carriers, histological examinations have yet to reveal specific gene-related features. However, reviewing all evidence, we suggest that the development of fibroblast foci is the common denominator in biopsies of all adult progressive surfactant-related mutation carriers and determines outcome. Development of other features, such as infiltrates or granuloma may be the result of intrinsic or extrinsic factors that differ between patients.
Lung cancer
In general, patients with pulmonary fibrosis have an increased risk for development of lung cancer [127]. In families carrying an SFTPC mutation, incidental cases of lung cancer have been reported [40]; however, in families carrying either SFTPA1 or SFTPA2 mutations, the number of cases with lung cancer exceeds the number of expected cases [90, 95, 96]. Summarising data from SFTPA mutation carriers shows that 37% were diagnosed with lung cancer, of which two-thirds had a combination of both lung cancer (most
commonly adenocarcinomas) and pulmonary fibrosis (figure 4a). Importantly, while the age of SFTPA patients ranges between 19 and 71 years, lung cancer was only present in patients aged >40 years. Furthermore, even though lung cancer is an aging disease, numbers are not highest in elderly patients (figure 4b). More data is needed to see if these patterns will last and to investigate their cause.

Although the mechanistic link with lung cancer is not understood, several possibilities are worth mentioning. Firstly, recent investigations into the pathogenesis of SFTPA1 mutations have shown that necroptosis is increased but not apoptosis [99]. For necroptosis, both tumour-promoting and tumour-suppressing effects are reported [128]. In the study of a family with an SFTPA1 mutation and evidence of necrosis, one uncle with lung cancer was reported; however, his mutation status was unknown and tumourigenesis was not studied [99, 100]. Secondly, the expression of SP-A protein is not limited to AT2 epithelial cells but also occurs in club cells. A recent study in mice has shown that adenocarcinomas may originate from club cells after exposure to smoke [129]. Aberrant processes in club cells may therefore promote tumourigenesis. Thirdly, there is the role of the SP-A protein itself in preventing tumourigenesis. SP-A may suppress tumour development via recruitment and activation of natural killer cells and control of tumour-associated macrophage polarisation [130], or via epidermal growth factor receptor (EGFR) binding and down-regulation of epidermal growth factor (EGF) signalling [131]. Quantitative or qualitative changes due to SFTPA mutations may thus inhibit the protein’s tumour suppressing abilities. Further studies are needed to elucidate the direct relationship between SFTPA mutations and lung cancer.

NKX2-1 plays a double-edged role in cancer as a lineage-survival oncogene in lung adenocarcinomas and an inhibitor of invasion, metastasis and progression, thereby conferring better prognosis. Somatic NKX2-1 loss of function mutations have been identified in adenocarcinomas and cause loss of tumour suppressing abilities [132, 133]. A similar process is likely responsible for the increased risk for pulmonary carcinoma in young adults with germline NKX2-1 mutations [134].

Genetic testing

The contribution of surfactant-related genetic defects in patients suspected of monogenic disease varies between 5% and 25% [16, 35–37, 114–119, 135]. However, the contribution is low in sporadic patients with pulmonary fibrosis, especially when familial illness has been properly questioned [56, 95, 136]. In ILD guidelines, recommendations regarding genetic testing are absent even though testing is highly informative in patients with early-onset and familial disease [112, 137]. As surfactant mutation carriers are difficult to diagnose from radiological imaging alone, genetic testing could aid diagnosis while removing the need for a biopsy. A recent study in children with ILD (age >2 years) has shown that genetic tests contribute to 15% of the diagnoses, slightly better than lung biopsies which contribute to 13.5% [116]. Furthermore, genetic testing aids clinical management with regard to disease prognostication, drug choice and timing, and type of lung transplantation. In addition, the patient’s choice for genetic testing is guided by counsellors, which will aid patients in making informed decisions about family planning and other life-changing events.

Although genotype–phenotype patterns exist, clinical characteristics do not always allow for a clear distinction between surfactant-related disease and telomere-related disease. Patients eligible for genetic analysis have pulmonary fibrosis of unknown cause and 1) have a first-degree family member with pulmonary fibrosis; 2) have a first-degree family member with short-telomere syndrome; 3) have features
of short-telomere syndrome; or 4) are below 55 years of age. Together with the clinical genetics department, we built a two-step gene panel for exome sequencing analysis of eligible adult patients with pulmonary fibrosis. The first panel includes all genes published to be involved in adult pulmonary fibrosis and all genes published to be involved in short-telomere syndrome. If negative, the second exploratory panel includes all genes published as involved in paediatric ILD and all genes involved in telomere length maintenance. Results from the exploratory panel are more difficult to interpret but may direct additional clinical testing of subjects (e.g. towards telomere length measurement or a bronchoalveolar lavage (BAL) procedure).

Due to the rarity of disease and the predominance of unique family specific mutations, the clinical significance of many genetic findings remains uncertain. Many mutations are categorised as variant of uncertain significance (VUS), meaning that the significance of the mutation to the function or health of the patient is not known. Gathering genotype–phenotype information in a worldwide database is of the utmost importance in better understanding of the impact of mutations on health. The Leiden Open Variation Database (LOVD; https://lovd.nl) is a large community-owned public variant database collecting case-associated genomic variants and phenotypes [138]. LOVD covers all important aspects of a case (i.e. data on the individual, the phenotype, longitudinal clinical changes, (combinations of) identified variant (s) and their classification). We have started gathering and curating published data and call on other researchers to supplement it for surfactant-related genes (e.g. www.databases.lovd.nl/shared/individuals/SFTPA2).

Therapy
To date no proven effective drug therapies for surfactant-related genetic disease exist. Immunosuppression therapies yield variable results, have considerable side-effects in children [2, 139] and require careful consideration in adults because of the harm observed in patients with IPF [140, 141]. Since disease in adults resembles IPF, the drugs of first choice are the anti-fibrotics pirfenidone and nintedanib. However, efficacy is unknown and a small trial investigating pirfenidone in HPS was stopped due to futility. Furthermore, side-effects leading to dose reduction of anti-fibrotics and treatment discontinuation are common in IPF [142] and challenge optimal timing for start of therapy in familial patients with early disease.

We recently performed a review of drug effects in patients with a surfactant-related mutation, as well as cell or mouse models and concluded that the outcome of drug treatments was highly variable and most likely mutation specific [143]. Studies evaluating the outcome of drugs are hampered by the large number of different mutations with different pathogenic effects. Drug development in cystic fibrosis has profited tremendously from the CFTR mutation classification scheme. A first attempt to classify ABCA3 mutations has divided them into two types: Type I, which cause abnormal intracellular protein localisation, protein misfolding, ER stress and induction of apoptosis; and Type II, which associate with the catalytic domains of the transporter and result in normally localised proteins with a functional deficit in ATP hydrolysis and impaired lipid transfer [1, 144]. However, insufficient understanding of ABCA3 dysfunction and insufficient homology with cystic fibrosis transmembrane conductance regulator (CFTR) hamper development of a clinically useful scheme. Analogous to successful CFTR therapy, the potentiators ivacaftor and genistein may rescue protein functionality. Recently, these potentiators were shown to rescue the ABCA3 phospholipid transport function of three different mutations stably expressed in A549 cells [145].

Gene-based therapies, such as gene replacement or editing, hold promise for the future. Indeed, studies performed in mice and in organoid-like cell systems provide proof of principle for successful gene correction and restored functionality in SP-B deficiency [146–148].

For now, lung transplantation is the most successful option in infants (5-year survival: 55%) and in older children (5-year survival: >75%) [149], as well as in adults with end-stage disease (figures 3e and 3f). In the case of lung transplantation, it is of the utmost importance to recognise patients with SFTPA2 mutations, particularly in countries with a shortage of donor lungs where unilateral transplantation is common. The high probability of developing lung cancer in the native lung justifies bilateral transplantation in cases with SFTPA2 mutation (we have previously reported metastasised lung cancer in a patient with an SFTPA2 mutation having undergone unilateral lung transplantation [95]). The successful outcome of bilateral lung transplantation in an end-stage patient with an SFTPA2 mutation is presented in figure 3f.

Conclusion
Mutations in surfactant-related genes cause severe parenchymal lung disease in a significant group of patients of all ages. Genes associate primarily with age but not with sex and genetic testing may aid diagnosis and disease management. Monogenic disease provides the opportunity for detection of early disease and holds the promise of early treatment and prolonged survival. Clinical counselling, offering the option of genetic and pulmonary screening, is therefore recommended for patients and first-degree family.
members. Most importantly, there is a need for better understanding of the impact of family specific mutations on health. The rarity of the disease strongly warrants worldwide gathering of genotype and phenotype data to improve clinical management.

Support statement: This research was funded by ZonMW-TopZorg St Antonius Science Corner grant (Topzorg grant, number 842002001). Funding information for this article has been deposited with the Crossref Funder Registry.

Conflict of interest: None declared.

References

1. Beers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2017; 367: 481–493.
2. Nogee LM. Genetic causes of surfactant protein abnormalities. Curr Opin Pediatr 2019; 31: 330–339.
3. Nathan N, Borenstain K, Clement A. Genetic causes and clinical management of pediatric interstitial lung disease. Curr Opin Pulm Med 2018; 24: 253–259.
4. Mason RJ, Greene K, Voelker DR. Surfactant protein A and surfactant protein D in health and disease. Am J Physiol Cell Mol Physiol 1998; 275: L1-L13.
5. Glasser SW, Senft AP, Whitsett JA, et al. Macrophage dysfunction and susceptibility to pulmonary Pseudomonas aeruginosa infection in surfactant protein C-deficient mice. J Immunol 2008; 181: 621–628.
6. Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: the extra-pulmonary role of these C type lectins. Ann Anat 2017; 211: 184–201.
7. Kishore U, Greenough TJ, Waters P, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 2006; 43: 1293–1315.
8. Beers MF, Mulugeta S. Surfactant protein C biosynthesis and its emerging role in conformational lung disease. Annu Rev Physiol 2005; 67: 663–696.
9. Mulugeta S, Gray JM, Notarfrancesco KL, et al. Identification of LBM180, a lamellar body limiting membrane protein of alveolar type II cells, as the ABC transporter protein ABCA3. J Biol Chem 2002; 277: 22147–22155.
10. Alcorn JL. Pulmonary surfactant trafficking and homeostasis. In: Sidhaye VK, Koval, M, eds. Lung epithelial biology in the pathogenesis of pulmonary disease. London, Academic Press, 2017; pp. 59–75.
11. Whitsett JA, Wert SE, Weaver TE. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 2010; 61: 105–119.
12. Nogee LM, Garnier G, Dietz HC, et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 1994; 93: 1860–1863.
13. Hamvas A. Inherited surfactant protein-B deficiency. Adv Pediatr 1997; 44: 369–388.
14. Cole FS, Hamvas A, Rubinstein P, et al. Population-based estimates of surfactant protein B deficiency. Pediatrics 2000; 105: 538–541.
15. Cameron HS, Somaschini M, Carrera P, et al. A common mutation in the surfactant protein C gene associated with lung disease. J Pediatr 2005; 146: 370–375.
16. Garmany TH, Wambach IA, Heins HB, et al. Population and disease-based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res 2008; 63: 645–649.
17. Genome Aggregation Database (GnomAD). https://gnomad.broadinstitute.org
18. Tafel O, Latzin P, Paul K, et al. Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 2008; 8: 6.
19. Paolini A, Baldassarre A, Del Gaudio I, et al. Structural features of the ATP-binding cassette (ABC) transporter ABCA3. Int J Mol Sci 2015; 16: 19631–19644.
20. Wert SE, Whitsett JA, Nogee LM. Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol 2009; 12: 253–274.
21. Zarbock R, Woischmik M, Spar C, et al. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation. BMCMed Pulm Med 2012; 12: 15.
22. Mulugeta S, Beers MF. Surfactant protein C: its unique properties and emerging immunomodulatory role in the lung. Microbes Infect 2006; 8: 2317–2323.
23. Boschmann J, Structure and properties of surfactant protein C. Biochim Biophys Acta 1998; 1408: 161–172.
24. Vorbroker DK, Proftit SA, Nogee LM, et al. Aberrant processing of surfactant protein C in hereditary SP-B deficiency. Am J Physiol 1995; 268: L647–L656.
25. Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol 2001; 63: 555–578.
26. Weaver TE. Synthesis, processing and secretion of surfactant proteins B and C. Biochim Biophys Acta 1998; 1408: 173–179.
27. Whitsett JA, Nogee LM, Weaver TE, et al. Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol Rev 1995; 75: 749–757.
28. Hawgood S, Derrick M, Poulain F. Structure and properties of surfactant protein B. Biochim Biophys Acta 1998; 1408: 150–160.
29. Pryhuber GS. Regulation and function of pulmonary surfactant protein B. Mol Genet Metab 1998; 64: 217–228.
30. Clark H, Clark LS. The genetics of neonatal respiratory disease. Semin Fetal Neonatal Med 2005; 10: 271–282.
31. Deutsch GH, Young LR, Deterding RR, et al. Diffuse lung disease in young children: application of a novel classification scheme. Ann J Respir Crit Care Med 2007; 176: 1120–1128.
32. Kurath-Koller S, Resch B, Kraschel R, et al. Surfactant protein B deficiency caused by homozygous C248X mutation—a case report and review of the literature. AJP Rep 2015; 5: e53–e59.
33. Tredano M, Cooper DN, Stuhlmann M, et al. Origin of the prevalent SFTPβ indel g.1549C>G AAA (121ins2) mutation causing surfactant protein B (SP-B) deficiency. Am J Med Genet A 2006; 140A: 62–69.
34. Ballard PL, Nogee LM, Beers MF, et al. Partial deficiency of surfactant protein B in an infant with chronic lung disease. Pediatrics 1995; 96: 1046–1052.
35. Dunbar AE, Wert SE, Ikegami M, et al. Prolonged survival in hereditary surfactant protein B (SP-B) deficiency associated with a novel splicing mutation. Pediatr Res 2000; 48: 275–282.

https://doi.org/10.1183/16000617.0085-2020
López-Andreu IA, Hidalgo-Santos AD, Fuentes-Castelló MA, et al. Delayed presentation and prolonged survival of a child with surfactant protein B deficiency. *J Pediatr* 2017; 190: 268–270.

Walloch M, Wagenvoort C, deMello D, et al. Congenital alveolar proteinosis caused by a novel mutation of the surfactant protein B gene and misalignment of lung vessels in consanguineous kindred infants. *Eur J Pediatr* 1999; 158: 513–518.

Kurland G, Deterding RR, Hagood JS, et al. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. *Am J Respir Crit Care Med* 2013; 188: 376–394.

Nogee LM, Dunbar AE, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. *N Engl J Med* 2001; 344: 573–579.

Van Moorsel CHM, Van Oosterhout MFM, Barlo NP, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort. *Am J Respir Crit Care Med* 2010; 182: 1419–1425.

Guillot L, Epaud R, Thouvenin G, et al. New surfactant protein C gene mutations associated with diffuse lung disease. *J Med Genet* 2009; 46: 490–494.

Nogee LM. Alterations in SP-B and SP-C expression in neonatal lung disease. *Annu Rev Physiol* 2004; 66: 601–623.

Ono S, Tanaka T, Ishida M, et al. Surfactant protein C G100S mutation causes familial pulmonary fibrosis in Japanese kindred. *Eur Respir J* 2011; 38: 861–869.

Thomas AQ, Lane T, Phillips J, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. *Am J Respir Crit Care Med* 2002; 165: 1322–1328.

Willander H, Askarieh G, Landreh M, et al. High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. *Proc Natl Acad Sci USA* 2012; 109: 2523–2529.

Kropski JA, Lawson WE, Young LR, et al. Genetic studies provide clues to the pathogenesis of idiopathic pulmonary fibrosis. *Dis Model Mech* 2013; 6: 9–17.

Beers MF, Hawkins A, Maguire JA, et al. A nonaggregating surfactant protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling. *Traffic* 2012; 11: 1196–1210.

Hawkins A, Guttenplan SH, Deterding R, et al. A non-BRICHOS SFTPC mutant (SP-C^{237T}) linked to interstitial lung disease promotes a late block in macropathy disrupting cellular proteostasis and mitophagy. *Am J Physiol Cell Mol Physiol* 2015; 308: L33–L47.

Wöschnerik M, Spar C, Kero S, et al. A non-BRICHOS surfactant protein C mutation disrupts epithelial cell function and intercellular signaling. *BMC Cell Biol* 2010; 11: 88.

Lawson WE, Cossman P, Polosukhin V V, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpes virus infection. *Am J Physiol Lung Cell Mol Physiol* 2008; 294: L1119–L1126.

Tanjore H, Cheng DS, Degryse AL, et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. *J Biol Chem* 2011; 286: 30972–30980.

Mulañeta S, Maguire JA, Newitt JL, et al. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4 and cytochrome C-related mechanisms. *Am J Physiol Lung Cell Mol Physiol* 2007; 293: L720–L729.

Uhal BD, Nguyen H. The Wtischi hypothesis revisited after 35 years: genetic proof from SP-C BRICHOS domain mutations. *Am J Physiol Lung Cell Mol Physiol* 2013; 305: L906–L911.

Bridges JP, Wert SE, Nogee LM, et al. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. *J Biol Chem* 2003; 278: 52739–52746.

Mulañeta S, Nguyen V, Russo SL, et al. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. *Am J Respir Cell Mol Biol* 2005; 32: 521–530.

Juge P-A, Borie R, Kannengiesser C, et al. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. *Eur Respir J* 2017; 49: 1602314.

Kazzi B, Lederer D, Arteaga-Solis E, et al. Recurrent diffuse lung disease due to surfactant protein C deficiency. *Respir Med Case Rep* 2018; 25: 91–95.

Brash FE, Griese M, Tredano M, et al. Interstitial lung disease in a baby with a de novo mutation in the SFTPC gene. *Am J Respir Crit Care Med* 2004; 169: 30–39.

Stevens PA, Pettenazzo A, Brausch F, et al. Nonspecific interstitial pneumonia, alveolar proteinosis, and abnormal proprotein trafficking resulting from a spontaneous mutation in the surfactant protein C gene. *Pediatr Res* 2005; 57: 89–98.

Avital A, Hevroni A, Godfrey S, et al. Natural history of five children with surfactant protein C mutations and interstitial lung disease. *Pediatr Pulmonol* 2014; 49: 1097–1105.

Kröner C, Reu S, Teusch V, et al. Genotype alone does not predict the clinical course of SFTPC deficiency in paediatric patients. *Eur Respir J* 2015; 46: 197–206.

Thouvenin G, Taam RA, Flamein F, et al. Characteristics of disorders associated with genetic mutations of surfactant protein C. *Arch Dis Child* 2010; 95: 449–454.

Fattori A, Ohana M, Hirschi S, et al. A nonsmoker man in his 40s with a diagnosis of genetic-related idiopathic pulmonary fibrosis (surfactant-protein C gene mutation). *Chest* 2019; 155: e91–e96.

Coughlan MA, Shifren A, Huang HJ, et al. Sequencing of idiopathic pulmonary fibrosis-related genes reveals independent single gene associations. *BMJ Open Respir Res* 2014; 1: e000057.

Cottin V, Reix P, Khouatra C, et al. Combined pulmonary fibrosis and emphysema syndrome associated with familial SFTPC mutation. *Thorax* 2011; 66: 918–919.

Chibbar R, Shih F, Baga M, et al. Nonspecific interstitial pneumonia and usual interstitial pneumonia with mutation in surfactant protein C in familial pulmonary fibrosis. *Mod Pathol* 2004; 17: 973–980.

Taam RA, Jaubert F, Emont S, et al. Familial interstitial disease with 173T mutation: a mid- and long-term study. *Pediatr Pulmonol* 2009; 44: 167–175.

Nureki S-I, Tomer Y, Venosa A, et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. *J Clin Invest* 2018; 128: 4008–4024.
Korfhagen TR, LeVine AM, Whitsett JA. Surfactant protein A (SP-A) gene targeted mice.

Tagaram HRS, Wang G, Umstead TM, Nattes E, Lejeune S, Carsin A, Floros J, Wang G, Mikerov AN. Genetic complexity of the human innate host defense molecules, surfactant gene-specific antibody; SP-A1 content variation among individuals of varying age and pulmonary health.

Hamvas A, Deterding RR, Wert SE, Naderi HM, Murray JC, Dagle JM. Single mutations in ABCA3 increase the risk for neonatal respiratory distress syndrome. Pediatrics 2012; 130: e1575.

Naderi HM, Murray JC, Dagle JM. Single mutations in ABCA3 increase the risk for neonatal respiratory distress syndrome in late preterm infants (gestational age 34–36 weeks). Am J Med Genet A 2014; 164: 2676–2678.

Bullard JE, Nogee LM. Heterozygosity for ABCA3 mutations modifies the severity of lung disease associated with a surfactant protein C gene (SFTPC) mutation. Pediatr Res 2007; 62: 176–179.

Sorensen GL. Surfactant protein D in respiratory and non-respiratory diseases. Front Med (Lausanne) 2018; 5: 18.

Jakes A, Qaseem AS, Kishore U, et al. Ligands and receptors of lung surfactant proteins SP-A and SP-D. Front Biosci 2013; 18: 1129–1140.

Nayak A, Dodagatta-Marri E, Tsolek AG, et al. An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol 2012; 3: 131.

Horowitz S, Watkins RH, Auten RL, et al. Differential accumulation of surfactant protein A, B, and C mRNAs in two epithelial cell types of hyperoxic lung. Am J Respir Cell Mol Biol 1991; 5: 511–515.

Voorhout WF, Veenaadad T, Kuroki Y, et al. Immunocytochemical localization of surfactant protein D (SP-D) in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 1992; 40: 1589–1597.

Rooney SA. Regulation of surfactant secretion. Comp Biochem Physiol A Mol Integr Physiol 2001; 129: 233–243.

Ochs M, Johnen G, Muehler KM, et al. Intracellular and intralveolar localization of surfactant protein A (SP-A) in the parenchymal region of the human lung. Am Respir Cell Mol Biol 2002; 26: 91–98.

Korhagen TR, LeVine AM, Whitsett JA. Surfactant protein A (SP-A) gene targeted mice. Biochim Biophys Acta 1998; 1408: 296–302.

Flores J, Wang G, Miller MN. Genetic complexity of the human innate host defense molecules, surfactant protein A1 (SP-A1) and SP-A2–impact on function. Crit Rev Eukaryot Gene Expr 2009; 19: 125–137.

Tagaram HRS, Wang G, Umstead TM, et al. Characterization of a human surfactant protein A1 (SP-A1) gene-specific antibody; SP-A1 content variation among individuals of varying age and pulmonary health. Am J Physiol Cell Mol Physiol 2007; 292: L1052–L1063.

Thorennoor N, Zhang X, Umstead TM, et al. Differential effects of innate immune variants of surfactant protein-A1 (SFTPA1) and SP-A2 (SFTPA2) in airway function after Klebsiella pneumoniae infection and sex differences. Respir Res 2018; 19: 23.

Wang Y, Kuan PJ, Xing C, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 2009; 84: 52–59.

Maitra M, Wang Y, Gerard RD, et al. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J Biol Chem 2010; 285: 22103–22113.

Van Moorsel CHM, Ten Klooster L, Van Oosterhout MFM, et al. SFTPA2 mutations in familial and sporadic idiopathic interstitial pneumonia. Am J Respir Crit Care Med 2015; 192; 1249–1252.

Nathan N, Giraud V, Picard C, et al. Germline SFTPA1 mutation in familial idiopathic interstitial pneumonia and lung cancer. Hum Mol Genet 2016; 25: 1457–1467.

Doubkova M, Stasio Kozubik K, Radova L, et al. A novel germline mutation of the SFTPA1 gene in familial interstitial pneumonia. Hum Genome Var 2019; 6: 12.

Pradipkumar D, Gautham A, Gupta R, et al. Familial interstitial pulmonary fibrosis in two different families in India: a case series. Lung India 2017; 34: 475–479.

Takezaki A, Tsukumo S-I, Setoguchi Y, et al. A homozygous SFTPA1 mutation drives necroptosis of type II alveolar epithelial cells in patients with idiopathic pulmonary fibrosis. J Exp Med 2019; 216: 2724–2735.

Yoshioda Y, Sakai S, Tsutsui-Ishii Y, et al. Adult-onset familial pulmonary fibrosis in Japanese brothers. Pathol Int 2004; 54: 41–46.

Whitsett JA, Wert SE, Weaver TE. Diseases of surfactant protein homeostasis. Annu Rev Pathol Mech Dis 2015; 10: 371–393.

Borie R, Le Gruen P, Ghnem M, et al. The genetics of interstitial lung diseases. Eur Respir Rev 2019; 28: 190053.

Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci 2009; 116: 27–35.

Nattes E, Lejeune S, Carsin A, et al. Heterogeneity of lung disease associated with NK2 homeobox 1 mutations. Respir Med 2017; 129: 16–23.

Hamvas A, Detersing RR, Wert SE, et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKK2-1. Chest 2013; 144: 794–804.

Thorwarth A, Sarah SH, Schrumpf P, et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKK2-1 mutations and expand the phenotypic spectrum. J Med Genet 2014; 51: 375–387.
Somaschini M, Presi S, Ferrari M, Subbiah V, Bupathi M, Kato S, Griese M, Lorenz E, Hengst M, Tang X, Li H, Liu H, Hasegawa Y, Takahashi M, Ariki S, Nevel RJ, Garnett ET, Worrell JA, Hwang DH, Sholl LM, Rojas-Rudilla V, Vicary GW, Vergne Y, Santiago-Cornier A, O Borie R, Kannengiesser C, de Fontbrune FS, Hayasaka I, Cho K, Akimoto T, Borie R, Kannengiesser C, Gouya L, Liu Z-G, Jiao D. Necroptosis, tumor necrosis and tumorigenesis. Rev 2016; 8: e45571.

Borie R, Tabèze L, Thabut G, et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir Rev 2016; 48: 1721–1731.

Chen J, Nong G, Liu X, et al. Genetic basis of surfactant dysfunction in Chinese children: a retrospective study. Pediatr Pulmonol 2019; 54: 1173–1181.

Tredano M, Griese M, Brasch F, et al. Mutation of SFTPC in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease. Am J Med Genet 2004; 126A: 18–26.

Gower WA, Nogee LM. Surfactant dysfunction. Paediatr Respir Rev 2011; 12: 223–229.

Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 2012; 33: 1–47.

Borie R, Thabut L, Thabut G, et al. Genes and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir J 2016; 178: 129–137.

Genes and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir Rev 2016; 48: 1721–1731.

Chronic X, Yin M, Wang Y, et al. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han population. Int J Clin Exp Pathol 2013; 6: 267–272.

Tang X, Li H, Liu H, et al. Etiologic spectrum of interstitial lung diseases in Chinese children older than 2 years of age. Orphanet J Rare Dis 2020; 15: 25.

Griese M, Lorenz E, Hengst M, et al. Surfactant proteins in pediatric interstitial lung disease. Pediatr Res 2016; 79: 34–41.

Somachini M, Presi S, Ferrari M, et al. Surfactant proteins gene variants in premature newborn infants with severe respiratory distress syndrome. J Perinatol 2018; 38: 337–344.

Chen J, Nong G, Liu X, et al. Genetic basis of surfactant dysfunction in Chinese children: a retrospective study. Pediatr Pulmonol 2019; 54: 1173–1181.

Tredano M, Griese M, Brasch F, et al. Mutation of SFTPC in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease. Am J Med Genet 2004; 126A: 18–26.

Gower WA, Nogee LM. Surfactant dysfunction. Paediatr Respir Rev 2011; 12: 223–229.

Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 2012; 33: 1–47.

Borie R, Tabèze L, Thabut G, et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir Rev 2016; 48: 1721–1731.

Chronic X, Xing C, Behr J, et al. Clinical next-generation sequencing reveals aggressive cancer biology in adolescent and young adult patients. Oncosciences 2015; 2: 646–652.

Raghu G, Amatto VC, Behr J, et al. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J 2015; 46: 1113–1130.

Liu Z-G, Jiang D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 2019; 4: 1–8.

Spella M, Lillis I, Pepe MA, et al. Club cells form lung adenocarcinomas and maintain the alveoli of adult mice. Elife 2019; 8: e45571.

Matsushita H, Tanaka S, Saiki Y, et al. Lung cancer associated with usual interstitial pneumonia. Pathol Int 1995; 45: 925–932.

Hasegawa Y, Takahashi M, Ariki S, et al. Surfactant protein A down-regulates epidermal growth factor receptor by mechanisms different from those of surfactant protein D. J Biol Chem 2017; 292: 18565–18576.

Hwang DH, Sholl LM, Rojas-Rudilla V, et al. KRAS and NXX2-1 mutations in invasive mucinous adenocarcinoma of the lung. J Thorac Oncol 2016; 11: 496–503.

Subbath V, Bupathi M, Kato S, et al. Clinical next-generation sequencing reveals aggressive cancer biology in adolescent and young adult patients. Oncosciences 2015; 2: 646–652.

Patel NJ, Jankovic J, NIKX2-1-related disorders. Seattle, Genewreviews, 1993. www.ncbi.nlm.nih.gov/books/NBK185066/
146 Mahiny AJ, Dewerth A, Mays LE, et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. *Nat Biotechnol* 2015; 33: 584–586.

147 Jacob A, Morley M, Hawkins F, et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. *Cell Stem Cell* 2017; 21: 472–488.

148 Leibel SL, Winquist A, Tseu I, et al. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. *Sci Rep* 2019; 9: 13450.

149 Eldridge WB, Zhang Q, Faro A, et al. Outcomes of lung transplantation for infants and children with genetic disorders of surfactant metabolism. *J Pediatr* 2017; 184: 157–164.