Susceptibility measurements in Pr$_x$La$_{1-x}$InAg$_2$ with Γ_3 doublet ground state

Y. Sato, Y. Nakamura, H. Morodomi, T. Hasuo, Y. Inagaki, T. Kawae
Department of Applied Quantum Physics, Kyushu University, Fukuoka 819-0385, Japan
E-mail: y.sato.483@s.kyushu-u.ac.jp

H.S. Suzuki
National Institute for Material Science, Tsukuba, 305-0047, Japan

M. Mito, T. Kitai
Faculty of Engineering, Kyushu Institute of Technology, Kita-Kyushu, 804-0015, Japan

Abstract. We have measured the susceptibility and magnetization of Pr$_x$La$_{1-x}$InAg$_2$ at Pr concentrations $x=1$ and 0.1 down to $T \sim 0.5$ K by SQUID magnetometer with a home-made 3He insert. The susceptibility above $T = 15$ K is well reproduced by the crystal-electric-field level scheme with a non-Kramers Γ_3 doublet in the ground state for each concentration, while that below $T = 15$ K shows a non-Fermi-liquid (NFL) behavior with $-\ln T$-dependence at low magnetic field. With increasing magnetic field, $-\ln T$-dependence is suppressed and $-T^{1/2}$-dependence appears at $H = 7$ T. The magnetization at $T = 0.5$ K increases with increasing magnetic fields up to $H = 7$ T, indicating that the increase of the susceptibility does not come from impurity ions. These results suggest that the quadrupolar Kondo effect is responsible for NFL behavior of the susceptibility.

1. **Introduction**

Pr-based compounds with the cubic symmetry have attracted much attention because of the discovery of their fascinating features, e.g., a coexistence of quadrupolar ordering and superconductivity [1], and a quadrupolar ordering triggered by octupole moments induced by magnetic fields [2]. A Pr$^{3+}$ ion with the 4f^2 configuration at a site of cubic symmetry can have a non-Kramers Γ_3 doublet with the quadrupolar moment in the crystalline-electric-field (CEF) ground state. Hence, it is believed that these features are related to the quadrupolar Kondo effect, which is proposed by Cox to explain anomalous heavy Fermion behavior in UBe$_{13}$ under magnetic fields [3]. According to Cox, the quadrupolar Kondo effect is expected to be realized in a U$^{4+}$ ion with the 5f^2 configuration under the cubic symmetry with the CEF ground state of a Γ_3 doublet, which is the same situation as the Pr-based compounds. In order to provide the experimental evidence of the quadrupolar Kondo effect, we have investigated the low-temperature properties of Pr$_x$La$_{1-x}$Pb$_3$ with the Γ_3 doublet in the CEF ground state with Pr concentration changing between $0 \leq x \leq 1$ [4], and showed that NFL behavior for $x \leq 0.05$ can be understood by the quadrupolar Kondo effect [5]. In the course of the study, we observed that the susceptibility increases below 5 K deviating from the CEF model with the Γ_3 doublet [6].

Published under licence by IOP Publishing Ltd
We have studied the low-temperature properties of Pr$_x$La$_{1-x}$InAg$_2$ for a wide concentration range of Pr ions. We reported that the susceptibility above $T = 15$ K is well reproduced by the CEF level scheme with a non-Kramers Γ_3 doublet in the ground state for each concentration, while that 2 K $\leq T \leq 15$ K shows NFL behavior with $-\ln T$-dependence [7]. This would be explained by the theoretical prediction based on the two-channel Kondo model given by Kusunose et al. [8]. Recently, the temperature dependence of the magnetic susceptibility is reported in other Γ_3 doublet compounds. In PrV$_2$Al$_2$, the susceptibility shows $-T^{1/2}$ dependence for 2 K $\leq T \leq 30$ K [9], which is consistent with the temperature dependence predicted from the ”3-4-7-8” model where the Γ_3 ground state and the Γ_4 first excited state of f^2, the Γ_7 state of an excited f^1 configuration and the Γ_8 quartet of conduction electrons are taken into account [10]. In PrMg$_3$, it is interesting that the susceptibility exhibits $-\ln T$-dependence for 1 K $\leq T \leq 15$ K while the temperature dependence seems to approach $-T^{1/2}$ at lower temperatures [11]. These studies indicate that the susceptibility in Pr-compounds with the Γ_3 doublet exhibit NFL behavior at low temperatures, which is likely due to the quadrupolar Kondo effect.

In the present study, we measure the dc magnetic susceptibility and magnetization down to $T \sim 0.5$ K by SQUID magnetometer with a home-made 3He insert in order to investigate the temperature dependence of the susceptibility in Pr$_x$La$_{1-x}$InAg$_2$ below $T = 2$ K. It is well known that PrInAg$_2$ has the Heusler structure, where a random site exchange is possible. This may affect the low-temperature susceptibility of PrInAg$_2$. Thus, we study the very dilute region of Pr with $x=0.1$, where the single ion effect is observed in the specific heat measurements, together with a pure PrInAg$_2$ [7].

2. Experimental

A polycrystal of PrInAg$_2$ and a single crystal of Pr$_{0.1}$La$_{0.9}$InAg$_2$ were prepared by the Bridgman method. In PrInAg$_2$, the stoichiometric amounts of Pr, In and Ag of the required quantities in a Ta crucible were heated in a closed quartz tube under Ar atomosphere. A single crystal of Pr$_{0.1}$La$_{0.9}$InAg$_2$ were heated in a molybdenum crucible sealed by electric beam welding in a vacuum. Both PrInAg$_2$ and LaInAg$_2$ have the same Heusler structure with the lattice parameters $a = 7.075$ Å and 7.156 Å, respectively [10], which means that Pr ions are substituted for La ions without a change of the crystal symmetry.

Magnetic susceptibility is measured down to $T = 0.5$ K by a Quantum Design SQUID magnetometer with a home-made 3He insert. The sample and 3He gas are inserted through a stainless steel pipe with the outer diameter of 6.4 mm. The liquid 3He is condensed in a copper container with the inner diameter of 6 mm and length of 150 mm, which is connected with the stainless pipe. The vacuum jacket made of a copper pipe with the outer diameter of 8.5 mm is soldered to the stainless pipe, which is also used for the heat exchange between 3He gas and 4He bath at $T \sim 1.7$ K. The temperature was measured by RuO$_2$ thermometer mounted on the 3He container.

3. Results and Discussion

We show the temperature dependence of the magnetic susceptibility and magnetization for PrInAg$_2$ in Figs. 1(a) and 1(b), respectively. The dc susceptibility is measured in three fields, $H = 0.25$ T, 3 T and 7 T. The susceptibility above 15 K is reproduced by the CEF level scheme with a Γ_3 doublet in the ground state as plotted in the inset of Fig. 1(a), where the first excited state is a Γ_4 triplet with the energy gap of 73 K. In contrast, the susceptibility represents a $-\ln T$-dependence for 2 K $\leq T \leq 15$ K. As the magnetic field is increased, the sharp increase of the susceptibility below 20 K is suppressed. At $H = 7$ T, it approaches a $-T^{1/2}$ dependence. From Fig. 1(b), it is seen that the magnetization increases gradually with increasing magnetic field up to $H = 7$ T, reflecting the non-magnetic ground state.
We have measured the susceptibility and magnetization of PrInAg₄. Conclusion
The present results indicate that the NFL behavior below 1 K at T=0.5 K and at T=1.7 K, the susceptibility at lower fields increases with decreasing the temperature from T=1.7 K to T=0.5 K as shown in Figs. 1(a) and 2(a).

From these facts, we can conclude that −lnT-dependence of the susceptibility is an intrinsic feature of PrₓLa₁₋ₓInAg₂ with the Γ₃ doublet in the CEF ground state. As the magnetic field is increased, the enhancement of susceptibility is suppressed. Finally, the susceptibility shows a T¹/²-dependence as in the case of the pure system. We observed the suppression of NFL behavior below 1 K at H = 5 T in the specific heat measurements. Although the relation between the present results and the theoretical models is not obvious, it is supposed that −lnT-dependence at low fields and T¹/²-dependence at high fields in PrₓLa₁₋ₓInAg₂ are connected with the quadrupolar Kondo effect.

4. Conclusion
We have measured the susceptibility and magnetization of PrₓLa₁₋ₓInAg₂ at Pr concentrations x=1 and 0.1 down to T ~ 0.5 K by SQUID magnetometer with a home-made ³He insert.

Figure 1. (a) The temperature dependence of the magnetic susceptibility for PrInAg₂. The inset is a fitting by the CEF model with x = −0.070, W=−1.29 K. (b) The field dependence of the magnetization at T = 0.5 K and 1.7 K.
Figure 2. (a) The temperature dependence of the magnetic susceptibility for $x=0.1$. The inset is a fitting by the CEF model with $x = -0.065$, $W = -1.10 [K]$. (b) The field dependence of the magnetization for $T = 0.5 \text{K}$ and 1.7K.

susceptibility above $T = 15 \text{K}$ is well reproduced by the CEF model with a non-Kramers Γ_3 doublet in the ground state. On the other hand, the dc susceptibility measured in $H = 0.25 \text{T}$ shows NFL behavior with $-\ln T$-dependence for both concentrations below $T = 15 \text{K}$ at low field. With increasing magnetic field, $-\ln T$-dependence of the susceptibility is suppressed and $-T^{1/2}$-dependence appears. The magnetization at $T = 0.5 \text{K}$ increases with increasing magnetic fields up to $H = 7 \text{T}$, indicating that the increase of the susceptibility does not come from impurity ions. From these facts, we can conclude that NFL behavior of the susceptibility is an intrinsic feature of $\text{Pr}_x\text{La}_{1-x}\text{InAg}_2$ with the Γ_3 doublet in the CEF ground state. These results suggest that the quadrupolar Kondo effect is responsible for NFL behavior of the susceptibility.

References

[1] Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Sakakibara T, Karaki Y, Kubota M and Takabatake T, 2011 Phys. Rev. Lett., 106 17701.
[2] Sato Y, Morodomi H, Ienaga K, Inagaki Y, Kawae T, Suzuki H S and Onimaru T, 2010 J. Phys. Soc. Jpn. 79 093708.
[3] Cox D L, 1987 Phys. Rev. Lett. 59 1240.
[4] Kawae T, Shimogai M, Mito M, Takeda K, Ishii H and Kitai T, 2001 Phys. Rev. B 65 012409.
[5] Kawae T, Kinoshita K, Nakaie Y, Tateiwa N, Takeda K, Suzuki H S and Kitai T, 2006 Phys. Rev. Lett. 96 027210.
[6] Kawae T, Yamamoto T, Yurue K, Tateiwa N, Takeda K and Kitai T, 2003 J. Phys. Soc. Jpn., 72 2141.
[7] Kawae T, Li C, Yoshida Y, Takeda K, Asano T and Kitai T, 2005 J. Phys. Soc. Jpn., 74, 2332.
[8] Kusunose H, Miyake K, Shimizu Y and Sakai O, 1996 Phys. Rev. Lett. 76 271.
[9] Sakai A and Nakatsuji S, 2011 J. Phys. Soc. Jpn. 80 063701.
[10] Cox D L and Makivic M, 1994 Physica B 199-200 391.
[11] Morie T, Sakakibara T, Suzuki H S, Tanida H and Takagi S, 2009 J. Phys. Soc. Jpn., 78 033705.
[12] Galera R M, Pierre J and Siaud E, 1984 J. Less-Common Metals. 97 151.