Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors

Katherine R. Brimblecombe, Sarah Threlfell, Daniel Dautan, Polina Kosillo, Juan Mena-Segovia and Stephanie J. Cragg

Department of Physiology, Anatomy and Genetics, Sherrington Building, Oxford, UK
Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3PT, UK
MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA

DOI: 10.1523/ENEURO.0397-17.2018

Received: 18 November 2017
Revised: 8 September 2018
Accepted: 16 September 2018
Published: 12 October 2018

Author Contributions: All authors Designed Research, KB, PK and DD Performed Research, KB, JMS and SC Wrote the paper.

Funding: http://doi.org/10.13039/501100000265 Medical Research Council (MRC) MR/K013866/1
http://doi.org/10.13039/501100000304 Parkinson's UK J-1403; G-1305
Clarendon Fund

Conflict of Interest: Authors report no conflict of interest.

Funded by MRC (grant MR/K013866/1) and Parkinson's UK (J-1403; G-1305).

Correspondence should be addressed to: Professor Stephanie J Cragg, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK. E-mail: Stephanie.cragg@dpag.ox.ac.uk

Cite as: eNeuro 2018; 10.1523/ENEURO.0397-17.2018

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.
Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors

Katherine R. Brimblecombe, Sarah Threlfell, Daniel Dautan, Polina Kosillo, Juan Mena-Segovia, and Stephanie J. Cragg

Department of Physiology, Anatomy and Genetics, Sherrington Building, Oxford, UK; Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3PT, UK; MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA; Present address: Dept. of Molecular and Cell Biology, Berkeley, University of California, USA

Author Contributions: All authors Designed Research, KB, PK and DD Performed Research, KB, JMS and SC Wrote the paper.

*Correspondence should be addressed to:
Professor Stephanie J Cragg
Department of Physiology, Anatomy and Genetics
University of Oxford
OX1 3PT
UK
Stephanie.cragg@dpag.ox.ac.uk

Number of Figures: 3
Number of Tables: 0
Number of Multimedia: 0
Number of words for Abstract: 232
Number of words for Significance Statement: 96
Number of words for Introduction: 551
Number of words for Discussion: 889

Conflict of Interest: Authors report no conflict of interest.

Funding sources: Funded by MRC (grant MR/K013866/1) and Parkinson’s UK (J-1403; G-1305).
Abstract

Striatal dopamine (DA) is a major player in action selection and reinforcement. DA release is under strong local control by striatal ACh acting at axonal nicotinic ACh receptors (nAChRs) on DA axons. Striatal nAChRs have been shown to control how DA is released in response to ascending activity from DA neurons, and they also directly drive DA release following synchronized activity in a small local cholinergic network. The source of striatal ACh has been thought to arise solely from intrinsic cholinergic interneurons (ChIs), but recent findings have identified a source of cholinergic inputs to striatum from brainstem nuclei, the pedunculopontine nucleus (PPN) and laterodorsal tegmentum (LDT). Here, we used targeted optogenetic activation alongside DA detection with fast-scan cyclic voltammetry to test whether ChIs alone and/or brainstem afferents to the striatum can account for how ACh drives and modulates DA release in rat striatum. We demonstrate that targeted transient light activation of rat striatal ChIs drives striatal DA release, corroborating and extending previous observations in mouse to rat. However, the same light stimulation targeted to cholinergic brainstem afferents did not drive DA release, and nor did it modulate DA release activated subsequently by electrical stimulation, whereas targeted activation of ChIs did so. We were unable to obtain any evidence for DA modulation by PPN/LDT stimulation. By contrast, we could readily identify that striatal ChIs alone are sufficient to provide a source of ACh that powerfully regulates DA via nAChRs.

Significance statement

Striatal acetylcholine (ACh) can powerfully regulate striatal dopamine (DA). Until recently, cholinergic interneurons were thought to be the only source of striatal ACh, but brainstem cholinergic neurons have now been revealed to innervate striatum. Here, we use targeted optogenetic activation in rats to explore which input accounts for the rapid regulation of striatal DA release. We find that targeted activation of striatal cholinergic interneurons in rat striatal slices can reproduce how striatal ACh drives and modulates dopamine release in mouse, but we could not find comparable evidence for a role for brainstem cholinergic
inputs. Activation of cholinergic interneurons alone can reproduce the previously documented effects of activating all striatal ACh systems on DA release.

1. Introduction

The striatum is the primary input-receiving nucleus of the basal ganglia, and the modulation of information flow through the striatum is crucial to basal ganglia function including motor control and reward-driven behaviors. Two key striatal neuromodulators are dopamine (DA) and acetylcholine (ACh). Striatal ACh plays powerful roles not only in regulating excitability of striatal neurons, but also in directly regulating DA transmission (Cachope et al., 2012; Cragg, 2006; Rice and Cragg, 2004; Threlfell et al., 2010; Threlfell et al., 2012; Zhang and Sulzer, 2004; Zhou et al., 2001). Activation of β2-containing nAChRs on dopaminergic axons (Jones et al., 2001) promotes DA release probability, but in turn subsequently leads to short-term depression of further release, making DA release insensitive to depolarization frequency (Rice and Cragg, 2004; Wang et al., 2014; Zhang and Sulzer, 2004). It has therefore been proposed that in vivo, when striatal cholinergic interneurons (ChIs) pause their firing in response to salient and conditioned stimuli (Aosaki et al., 1994; Apicella et al., 1997), or when nicotine causes receptor desensitization, nAChRs will turn off and allow DA release to better reflect the frequency of activity in DA neurons (Cragg, 2006; Rice and Cragg, 2004). In addition, synchronized activation of a small network of striatal cholinergic inputs can directly drive DA release via activation of striatal nAChRs, bypassing activation of DA neurons in the midbrain (Cachope et al., 2012; Threlfell et al., 2012).

The source of striatal ACh has long been thought to be exclusively striatal ChIs which constitute only approximately 1-2% of all striatal neurons (Kawaguchi et al., 1995; Rymar et al., 2004). Despite being few in number, ChIs have an extensive influence throughout the striatum through their extended dendritic and axonal arbors (Descarries and Mechawar, 2000; Graveland and DiFiglia, 1985; Hoover et al., 1978; Kawaguchi, 1993). However, recent work has revealed an additional source of ACh inputs to striatum in rats that arise from the pedunculopontine nucleus (PPN) and laterodorsal tegmental nucleus (LDT) of the brainstem. These inputs project respectively to CPu and NAc (plus medial CPu), express the vesicular ACh
transporter (vAChT) and give rise to striatal synapses (Dautan et al., 2014). The identification of this brainstem input has led to the question of whether these inputs provide a source of ACh that might mediate the previously documented effects of ACh on striatal DA.

Previous studies of DA regulation using strategies that target optogenetic constructs to striatal ChIs (Cachope et al., 2012; Threlfell et al., 2012) have primarily used an AAV serotype (AAV5) which does not select for anterograde over retrograde expression, and thus intrinsic striatal ChIs as well as any ACh afferent inputs will have expressed channelrhodopsin2 (ChR2) in those studies. Therefore, we explored here the roles of cholinergic brainstem afferents versus ChIs as sources of the striatal ACh that drives and modulates striatal DA release (Cachope et al 2012; Exley et al., 2008; Exley et al., 2012; Rice and Cragg 2004; Threlfell et al 2010; Threlfell et al., 2012; Zhang et al., 2009; Zhou et al., 2001), by targeting expression of ChR2 to striatal ChIs or to cholinergic brainstem neurons. We used rats as a species of choice because brainstem cholinergic input has been best described in this species (Dautan et al., 2014) and also, to validate the role of ACh in DA regulation across rodent species.

2. Methods

2.1 Stereotaxic surgery

Adult (250-350g) male Long Evans ChAT::cre+ rats were maintained on a 12h light/dark cycle (light on at 07:00 am) and had ad libitum access to water and food. All procedures were performed in accordance with the Society of Neuroscience policy on the use of animals in neuroscience and the Animals (Scientific Procedures) Act, 1986 (UK) under the authority of a Project Licence approved by the Home Office and the local ethical review committee.

All surgical procedures were performed during deep isoflurane anesthesia (2% in O2, IsoFlo, Schering-Plough). ChAT::cre+ rats were injected in each hemisphere with adeno-associated virus (AAV) of serotype 2 for anterograde-specific expression (Dautan et al., 2016; Salegio et al., 2013), carrying the fusion genes for the enhanced yellow fluorescent protein (eYFP) and channelrhodopsin (ChR2) (AAV2-EF1a-DIO-
ChR2-eYFP, Gene Therapy Center Virus Vector Core, University of North Carolina). The viral vectors were injected in the right brainstem (3 injections of 500 nl each in the LDT: AP-8.5, ML +1.0, DV-6.0, the caudal part of the PPN: AP -7.8, ML +1.8, DV -6.8, and the rostral part of the PPN: AP -7.3, ML +1.8, DV: 7.2) and in the left striatum to target ChIs (4 injections of 500 nl each in the ventral DLS: AP +0.5, ML +3.0, DV -5.0; dorsal DLS: AP +0.5, ML +2.0, DV -4.0; ventral DMS: AP +0.5, ML +2.0, DV -5.0; dorsal DMS: AP +0.5, ML +3.0, DV -4.0). All injections were made using a 1 μl syringe (Neuros 7001, Hamilton) at a rate of 50 nl/min and left to diffuse for 5 min before retraction of the syringe. Animals were monitored during recovery. LDT/PPN injections result in ChR2-eYFP expression in 66 ± 7% of LDT/PPN cholinergic neurons, with 91.4 ± 0.5% of ChR2-eYFP neurons being immunopositive for ChAT. Light activation of these inputs can successfully drive a cholinergic output from terminals in VTA (Dautan et al., 2016).

2.2 Slice preparation

Six-to-eight weeks after AAV2 injections, rats were killed by decapitation under isoflurane induced anesthesia and brains were rapidly removed and 300 μm coronal striatal sections were taken in ice-cold buffer containing in mM: 120 NaCl, 20 NaHCO₃, 6.7 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) acid, 5 KCl, 2.3 HEPES salt, 2 CaCl₂, 1.3 MgSO₄, 1.2 KH₂PO₄, 10 glucose, saturated with 95% O₂/5% CO₂. Slices were kept at room temperature in HEPES-based buffer for at least 1 hour.

2.3 Fast-scan cyclic voltammetry (FCV)

DA release was monitored in acute slices using FCV. Slices were superfused in a recording chamber with bicarbonate-buffered artificial cerebrospinal fluid (aCSF) containing in mM: 124.3 NaCl, 26 NaHCO₃, 3.8 KCl, 2.4 CaCl₂, 1.3 MgSO₄, 1.23 KH₂PO₄, 10 glucose, saturated with 95% O₂/5% CO₂ at 31–33 °C. Evoked extracellular DA concentration ([DA]₀) was monitored using fast-scan cyclic voltammetry (FCV) at 7-10 μm diameter carbon-fibre microelectrodes (CFM) fabricated in-house (tip length 50-100 μm) and a Millar voltammeter (Julian Millar, Barts and the London School of Medicine and Dentistry). In brief, a triangular voltage waveform (range -700 mV to +1300 mV vs. Ag/AgCl) was applied at 800 V/s at a scan frequency of 8 Hz. Electrodes were switched out of circuit between scans. Electrodes were calibrated using 1-2 μM DA in...
Calibration solutions were prepared immediately prior to calibration from a 2.5 mM stock solution in 0.1 M HClO₄ stored at 4°C. Signals were attributable to DA by the potentials for peak oxidation and reduction currents (oxidation peak: +500-600 mV, reduction peak: ~-200 mV).

2.4 Electrical stimulation

DA release was evoked by a local bipolar concentric Pt/Ir electrode (25 μm diameter; FHC Inc. ME, USA) placed approximately 100 μm from the CFM. Stimulus pulses (200 μs duration) were given at 0.6 mA (perimaximal in control conditions). Electrical stimulations were repeated at 2.5 minute intervals, which allow stable release to be sustained over several hours. Each stimulus type was repeated in triplicate in a random order. When directly comparing DA release evoked by light versus electrical stimuli, stimuli at 25 Hz were used to allow for ChR2 re-activation. When exploring changes in frequency sensitivity of DA release, electrical stimulations of single pulses (1p) and 4 pulses at 100 Hz were used because the ratio of DA released by 4p/100Hz versus 1p (4p:1p) is very sensitive to nAChR activity (Rice and Cragg 2004). When nAChRs are active, 4p:1p is ~1, indicating a large degree of short-term depression, whereas when nAChRs are blocked or desensitized, the 4p:1p can be ~4.

2.5 Optical stimulation

Light stimulation of ChR2-expressing ChIs and brainstem afferents in striatum was via a 470 nm LED (OptoLED, Cairn Research), which illuminated the full-field of view (2.2 mm diameter, 10x water-immersion objective). TTL-driven light pulses (2 ms duration, ~6.5 mW, Thor labs optical power meter) were applied singly or in trains (4-10 pulses, 10-25 Hz). In some experiments, light activation of ChIs that was subthreshold for evoking DA release was desired, for comparison with brainstem activation. This was achieved by stimulating and recording in areas of sparse ChI transfection, i.e. posterior and lateral CPu. Electrical and optical stimulations at a given site were alternated.
2.6 Drugs

Dihydro-β-erythroidine (DHβE) was purchased from Ascent scientific. All other reagents were purchased from Sigma Aldrich. Stock solutions were made to 1000x final concentrations in H2O and stored at -20 °C. Drugs were diluted to their required concentrations in aCSF immediately prior to use.

2.7 Immunocytochemistry and Site marking

Images of ChR2-eYFP expression were captured after fixation. Slices were fixed (PFA 4% formaldehyde) for at least 2 days, washed in PBS, and re-sectioned to 40 μm. Sections were mounted on gelled slides with Vectashield (Vector labs) and ChR2-eYFP fluorescence was imaged using an Olympus BX41 microscope with Q-Click cooled monochrome CCD camera (Olympus medical).

ChR2-eYFP fluorescence in Chls was readily visible in 300 μm acute living brain slices in the recording chamber under water immersion optics using (non-pulsing) activation of eYFP using OptoLED (505 nm), whereas ChR2-eYFP-expressing fibers from PPN/LDT were not. We therefore marked striatal recording sites with FluoSpheres, to determine post-hoc whether they were within an area of ChR2-expressing cholinergic brainstem innervation. Recording sites were located in central to medial striatum consistent with the organization of cholinergic inputs to striatum from PPN/LDT, and were labelled by replacing the CFM with a micropipette and injecting 0.5-1.0 μl of 1 μm-diameter red FluoSpheres (Invitrogen) after recordings. Slices were fixed (PFA 4% formaldehyde) for at least 2 days, washed in PBS, and re-sectioned to 40 μm. Sections were mounted on gelled slides with Vectashield (Vector labs) and imaged using an Olympus BX41 microscope with Q-Click cooled monochrome CCD camera (Olympus medical). Monochrome images of striatal ChR2-eYFP expression and FluoSpheres were each captured and pseudo-colored using Q-capture Pro7 and optimized using histogram equalization. Only recordings that were confirmed post-hoc to be in striatal areas within a region of ChR2-eYFP-expressing neuropil (see example in Figure 2A) were included for analysis.

To confirm that striatal neurons transduced by AAV2 injected in rat striatum were cholinergic, striatal sections were incubated in a blocking solution consisting of 10% normal donkey serum (NDS) in PBS.
containing 1% Triton X-100 for 1 h minimum. Sections were incubated with previously validate antibodies against GFP (1:1,000, raised in rabbit, Invitrogen, A21311) and an antibody against ChAT (raised in goat; 1:500 dilution in 1% NDS, 0.03% Triton X-100 in PBS, Millipore AB144P) followed by several washes in PBS and incubation in an Alexa488-conjugated donkey anti-rabbit antibody (1:1,000 dilution, Jackson ImmunoResearch) or CY5-conjugated donkey anti-goat antibody (1:1,000, Jackson ImmunoResearch).

2.8 Statistics

Data are expressed as mean ± SEM and N=number of rats, n=number of recording sites. Data at each site was averaged from at least 3 repeat recordings for each stimulus, and where appropriate was normalized to 1p release in control conditions. Population means were compared using two-way ANOVA with repeated measures and Sidak’s multiple comparison t-test as appropriate.

Statistics Analysis Table

Analysis	Data structure	Type of test	Power
a	Normal	2-way ANOVA with Sidak posttest	Interaction: $F_{1,11} = 8.5$, $p = 0.014$; post-hoc test: 1p vs 4p DHβE, $p < 0.05$
b	Normal	2-way ANOVA	Interaction: $F_{1,6} = 17.1$, $p = 0.006$; post-hoc test: 1p vs 4p, $p < 0.05$
c	Normal	2-way ANOVA (repeated measures)	effect of light: $F_{1,4} = 0.19$, $p = 0.68$; pre-flash x pulse number interaction, $F_{1,4} = 0.02$, $p = 0.88$
d	Normal	2-way ANOVA	effect of region: $F_{1,18} = 8.7$, $p = 0.004$; post-test, with vs without pre-pulse: ChIs, $p < 0.01$
e	Normal	2-way ANOVA	effect of light: $F_{1,12} = 0.2$, $p = 0.67$

3. Results

3.1 Striatal ACh from rat cholinergic interneurons (ChIs) drives dopamine release

To obtain striatal expression of ChR2-eYFP in either ChIs, or afferents from PPN/LDT, we injected anterograde-specific AAV2-packaged constructs into either the striatum or PPN/LDT respectively, of ChAT-Cre rats. Striatal injections resulted in detectable ChR2-eYFP expression in striatum and an absence of
retrograde transduction of ChR2-eYFP expression in PPN/LDT cholinergic neurons in brainstem, whereas PPN/LDT injections resulted in ChR2-eYFP expression in PPN/LDT and in neuropil in striatum (Fig 1A), as shown previously following striatal vs PPN/LDT injections of AAV2-EF1a-DIO-YFP in ChAT-Cre rats (Dautan et al., 2014). ChR2-eYFP expression was confirmed as originating from neurons immunopositive for ChAT in striatum (Fig 1B), as has been confirmed previously for expression in PPN/LDT neurons following brainstem injections (Dautan et al., 2016).

We first sought to test whether targeted activation of striatal ChIs are able to directly drive DA release. To confirm recording site viability, we initially explored DA release in response to electrical stimuli (single pulses, 1p, or trains of 4 pulses, 4p at 25 Hz); evoked striatal DA release in rat did not vary with stimulation protocol in drug-free control conditions (Fig 1C,D), consistent with previous observations in mice and guinea-pig (Exley et al., 2012; Rice and Cragg, 2004; Zhang et al., 2009). DA release was strongly regulated by nAChRs: When nAChRs were inhibited by antagonist DHβE (1 μM), peak extracellular DA concentration ([DA]o) evoked by 1p was reduced and by 4p (25 Hz) was slightly facilitated (Fig. 1C,D) consistent with previous findings (Rice and Cragg, 2004; Zhang and Sulzer, 2004; Zhang et al., 2009). Thus, inhibition of nAChRs promoted the sensitivity of DA release to axonal activity (Fig. 1D; 2-way ANOVA drug x pulse number interaction F1,11=8.5, p=0.014 (analysis a); post-hoc test: 1p vs 4p DHβE, p<0.05). In the same recording sites, in the absence of DHβE, targeted activation of ChR2-expressing ChIs using blue light pulses (1p or 4p, 25 Hz) also evoked DA release, and was insensitive to pulse number (Fig. 1E-G), as shown previously in mice using AAV5-packaged ChR2 (Threlfell et al., 2012). Light-activated DA release was abolished in the presence of DHβE (1 μM), showing the dependence on nAChRs. Since ChIs but not brainstem neurons express ChR2 in these animals (Fig. 1A), these data show that that targeted activation of ChIs alone can reproduce in rats the previously documented effects in mice of activating all striatal ACh systems on driving DA release (Fig. 1E,F; n=4 slices from 3 rats). Evoked [DA]o ranged from 0.2-1.2 μM for single electrical pulses and from 0.13-1.7 μM for single light pulses.
3.2 Striatal ACh from brainstem afferents does not drive DA release

To explore whether striatal ACh afferents from PPN/LDT can drive DA release in response to these brief stimulation, when activation of either ChIs alone (see Fig. 1) or all striatal ACh networks strongly drive DA release (Cachope et al., 2012; Threlfell et al., 2012), we injected an AAV2 containing ChR2-eYFP constructs into the right PPN/LDT of ChAT-cre rats (Fig. 2A). This protocol leads to ChR2-eYFP expression in ~70% of PPN cholinergic neurons (Dautan et al., 2016). In contrast to the high density of ChR2-eYFP-expressing striatal fibers seen after striatal injections, striatal ChR2-eYFP expression after PPN/LDT injections were not visible by fluorescence imaging during recordings in live slices. Expression of ChR2 was corroborated only after recording, following injection of red FluoSpheres to mark recording sites using published protocol (Brimblecombe and Cragg, 2015), followed by fixation, to confirm whether recordings were in an area of innervation by ChR2-expressing brainstem afferents (Fig. 2A).

In striatal sites with confirmed ChR2-eYFP-expressing brainstem fibres, brief light pulses did not evoke detectable levels of [DA]₀ even with trains of 10 pulses (10 Hz) (Fig. 2B,C). By contrast, electrical stimulation at the same recording sites reliably evoked DA release proving site viability (Fig. 2B,C).

Furthermore, light-activation of the opposite hemisphere where ChIs were transfected with ChR2-eYFP also reliably evoked DA release, even with single pulses (Fig. 2B,C). To test if activation of cholinergic brainstem afferents was driving DA release below our DA detection threshold, we applied an inhibitor of DA uptake, cocaine (5 μM), to enhance any evoked DA transients. In the presence of cocaine, [DA]₀ evoked by electrical stimuli (single pulses) were large and prolonged, but by contrast, light activation of brainstem afferents did not evoke detectable [DA]₀ (Fig. 2D). These observations suggest that activation of cholinergic brainstem afferents alone does not generate a sufficient ACh source with these protocols in slices, to explain how striatal DA release is locally driven by striatal ACh.

3.3 Brainstem ACh afferents do not modulate electrically evoked DA release

We tested the possibility that brainstem afferents might nonetheless be able to modulate presynaptic excitability of DA axons but in a manner that is below the threshold for directly driving DA release. We tested
whether we could expose a role for brainstem ACh in the modulation of DA release evoked by other stimuli.

We established a stimulus protocol in which DA release was driven by local electrical stimulation with or without a prior light pulse train in ChR2-expressing striatum. We hypothesized that if a prior light stimulation caused ACh release to reach nAChRs on DA axons, then it might modulate nAChR activity and/or promote desensitization, and consequently change the frequency sensitivity of electrically evoked DA release that is critically determined by nAChRs (Cragg, 2006). We used a light pulse train (10p/10 Hz) that commenced 0.5 s prior to electrical stimulation, to detect any effects of light stimulation alone, as well as subsequent effects on combined electrical stimulation.

We first established the effects of combined light and electrical stimulation on striatal DA when ChR2 was expressed by ChIs. We selected striatal regions where the density of ChR2-eYFP-expressing fibers from ChIs was sparse, in order to be more comparable to the innervation by brainstem afferents. In regions sparsely innervated by ChR2-expressing ChIs, electrical stimuli alone readily evoked DA release, but trains of light pulses (10p/10 Hz) did not drive [DA]o to a detectable level (see Fig. 3A). A pre-stimulation of ChIs with light pulses that commenced 0.5 s prior to an electrical stimulus did not evoke detectable [DA]o but nonetheless modified [DA]o evoked by electrical stimulation: there was a reduction in [DA]o evoked by a single electrical pulse and a tendency towards a facilitation of [DA]o evoked by a burst of electrical pulses (4p/100 Hz) (compared to electrical stimulus alone) (Fig. 3A,B; 2-way repeated measures ANOVA: light condition x pulse number interaction: F_{1,6}=17.1, p=0.006, statistical analysis b). There was a resulting increase in the ratio of [DA]o evoked electrically by 4p versus 1p (Fig. 3A,B; post-hoc test, 1p vs 4p with light: p<0.05). This modulation of evoked [DA]o is consistent with reduced activation of nAChRs (Rice and Cragg, 2004; Zhang and Sulzer, 2004) at the time of electrical stimulation, confirming that light activation of ChIs that was sub-threshold for directly driving DA release was nonetheless able to modulate nAChRs and DA release.

We then tested the effect of prior light stimulation of cholinergic brainstem afferents on subsequent electrically evoked DA release. Light activation of brainstem afferents in striatum did not drive detectable
[DA]o (as in Fig. 2) and furthermore, did not modulate [DA]o evoked by electrical stimulation given 0.5 s later (Fig. 3C,D; 2-way repeated measures ANOVA, effect of light: F1,4=0.19, p=0.68; pre-flash x pulse number interaction, F1,2=0.02, p=0.88; statistical analysis c). The ratio of [DA]o evoked electrically by 4p versus 1p was not enhanced by light pre-stimulation of brainstem afferents (Fig. 3E, 2-way ANOVA, effect of region: F1,18=8.7, p=0.004; post-test, with vs without pre-pulse: ChIs, p<0.01; statistical analysis d).

Finally, in the event that subtle effects of prior ACh action at nAChRs were masked by the stronger subsequent electrical stimuli, we tested whether we could expose an effect of a light pre-stimulation for a lower electrical stimulation current. A lower electrical current evoked [DA]o that were ~two-thirds of those previously, but nonetheless, pre-stimulation of ChR2-expressing brainstem afferents with light pulse trains did not modify [DA]o further (Fig. 3F, 2-way ANOVA: effect of light: F1,12=0.2, p=0.67; statistical analysis e).

4. Discussion

We show here, using specific targeting of ChR2 to either striatal ChIs or brainstem cholinergic neurons of PPN/LDT, that the powerful effects of striatal ACh and nAChRs on DA release reported previously ex vivo can be reproduced by targeted activation of ChIs. Striatal ChIs and nAChRs can directly drive DA release, and also modulate DA release driven by activity generated in DA neurons, shown here in rats, as reported previously in mice using non-specific ACh activation (Cachope et al., 2012; Rice and Cragg, 2004; Threlfell et al., 2012; Zhang and Sulzer, 2004). By contrast, while PPN/LDT nuclei can modulate somatodendritic DA neuron activity (Dautan et al., 2016), we could not find any evidence that similar stimulation protocols could recruit PPN/LDT afferents in striatum to regulate DA release from axons.

4.1 Two cholinergic sources for regulation of striatal DA

Acetylcholine is well known to modulate DA transmission through two major cholinergic pathways that have previously been assumed to be distinct. Firstly, roles of the cholinergic brainstem for modulating DA neuron activity and consequent DA release have previously been established. Cholinergic neurons of the brainstem make synaptic contacts with midbrain DA neurons (Beninato and Spencer, 1988; Bolam et al.,
and direct activation of midbrain ACh receptors or PPN/LDT cholinergic axons modulates the discharge properties of DA neurons and consequently, the downstream release of DA in the striatum (Blaha and Winn, 1993; Dautan et al., 2016). These studies indicate that cholinergic PPN/LDT neurons are able to modulate DA release via inputs to midbrain DA neurons. Secondly, a role for striatal acetylcholine systems, nAChRs and nicotine in modulating DA axonal release directly has become well documented, and striatal ACh has been shown to bypass midbrain DA neurons and directly drive DA release (Cachope et al., 2012; Cragg, 2006; Rice and Cragg, 2004; Threlfell et al., 2012; Zhang and Sulzer, 2004). The neurons responsible for local striatal modulation were assumed to be only the intrinsic interneurons, the ChIs. However, the identification of cholinergic afferents in striatum arising from the PPN/LDT (Dautan et al., 2014), suggested that brainstem inputs might be partly responsible for local striatal modulation of DA by contributing as an additional source of striatal ACh. However, we were unable to obtain any evidence here for either ACh release or DA modulation by presynaptic nAChRs following PPN/LDT stimulation.

4.2 Cholinergic interneurons but not brainstem afferents account for rapid regulation of striatal DA by nAChRs

Our experiments explored whether protocols that have been used previously to activate striatal ACh systems and that drive and powerfully modulate striatal DA via nAChRs, primarily involve ChIs or brainstem afferents. Our data indicate that whereas ACh from ChIs could account for previously documented effects of nAChRs on striatal DA, we could not show the same was true for brainstem afferents. Single light flashes in ChIs are sufficient to drive DA release directly, but by contrast, single flashes or even more sustained stimulation of brainstem afferents did not allow us to detect any DA. We were unable to find any further signs of modulation of nAChRs on DA axons in a protocol designed to explore whether activation of brainstem afferents is capable of modulating DA release evoked by other stimuli. As a positive control, we showed that pre-activation of sparsely labelled ChIs, that in isolation was unable to drive DA release, was nonetheless able to modulate electrically evoked DA release, and significantly increase the 4p:1p ratio. This increase in 4p:1p ratio is consistent with a decrease in activation of nAChRs on DA axons at the point of electrical stimulation. This decrease in nAChR activity could result from initial ACh release leading to a decrease in nAChR activity.
depression in ACh re-release by the subsequent electrical pulse, or to some nAChR desensitization, to which nAChRs are particularly susceptible (Quick and Lester, 2002; Rice and Cragg, 2004; Zhou et al., 2001). By contrast, pre-stimulation of brainstem afferents with light had no measurable effect on subsequent electrically-evoked [DA], or on 4p:1p ratio.

These data suggest that any ACh released by activation of brainstem afferents alone is unable to reach sufficient levels to modulate nAChRs on DA axons. The more readily detectable role for ChIs in gating striatal DA, and also for cortical or thalamic glutamate inputs to ChIs (Kosillo et al., 2016) than for brainstem inputs, is in keeping with the relative visibility of striatal YFP expression noted in 300 μm-thick slices under the recording microscope. This conclusion is also consistent with the finding that deletion of brainstem cholinergic neurons does not affect electrically evoked dopamine release in striatal slices (Patel et al., 2012).

We cannot exclude the possibility that ACh might not be released from PPN/LDT terminals in striatum in vivo slices. This caveat does not detract from the principal conclusion that striatal ChIs are entirely sufficient to account for current observations of the modulation of DA by striatal ACh. Our findings do not necessarily preclude brainstem afferents from locally regulating DA release during other conditions e.g. in vivo, when they might modulate the dynamic activity in vivo of networks of striatal neurons or interneurons (Dautan et al., 2018) which might in turn subsequently regulate DA release.

4.3 Summary and Conclusions

In summary, we show that ChIs readily drive DA release in rat, as shown previously in mouse, and that striatal modulation of DA transmission by nAChRs and nicotine can readily be reproduced by targeted activation of ChIs but not brainstem afferents. Brainstem afferents were not sufficient to drive or modulate striatal DA release under the experimental paradigms used here as previously, in which ChI function dominates.
Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A. M., Kimura, M., 1994. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14, 3969-3984.

Apicella, P., Legallet, E., Trouche, E., 1997. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp Brain Res 116, 456-466.

Beninato, M., Spencer, R. F., 1988. The cholinergic innervation of the rat substantia nigra: a light and electron microscopic immunohistochemical study. Exp Brain Res 72, 178-184.

Blaha, C. D., Winn, P., 1993. Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. J Neurosci 13, 1035-1044.

Bolam, J. P., Francis, C. M., Henderson, Z., 1991. Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41, 483-494.

Brimblecombe, K. R., Cragg, S. J., 2015. Substance P Weights Striatal Dopamine Transmission Differently within the Striosome-Matrix Axis. J Neurosci 35, 9017-9023. http://dx.doi.org/10.1523/jneurosci.0870-15.2015

Cachope, R., Mateo, Y., Mathur, B. N., Irving, J., Wang, H. L., Morales, M., Lovinger, D. M., Cheer, J. F., 2012. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2, 33-41. http://dx.doi.org/10.1016/j.celrep.2012.05.011

Cragg, S. J., 2006. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 29, 125-131. http://dx.doi.org/10.1016/j.tins.2006.01.003

Dautan, D., Huerta-Ocampo, I., Valencia, M., Kondabolu, K., Gerdjikov, T. V., Mena-Segovia, J., 2018. Cholinergic Midbrain Afferents Modulate Striatal Circuits and Shape Encoding of Action Control. bioRxiv. http://dx.doi.org/10.1101/388223

Dautan, D., Huerta-Ocampo, I., Witten, I. B., Deisseroth, K., Bolam, J. P., Gerdjikov, T., Mena-Segovia, J., 2014. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34, 4509-4518. http://dx.doi.org/10.1523/jneurosci.5071-13.2014

Dautan, D., Souza, A. S., Huerta-Ocampo, I., Valencia, M., Assous, M., Witten, I. B., Deisseroth, K., Tepper, J. M., Bolam, J. P., Gerdjikov, T. V., Mena-Segovia, J., 2016. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 19, 1025-1033. http://dx.doi.org/10.1038/nn.4335

Descarries, L., Mechawar, N., 2000. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125, 27-47.

Exley, R., McIntosh, J. M., Marks, M. J., Maskos, U., Cragg, S. J., 2012. Striatal alpha5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum. J Neurosci 32, 2352-2356. http://dx.doi.org/10.1038/sj.npp.1301617

Graveland, G. A., DiFiglia, M., 1985. The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327, 307-311.

Hoover, D. B., Muth, E. A., Jacobowitz, D. M., 1978. A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Res 153, 295-306.

Jones, I. W., Bolam, J. P., Wonnacott, S., 2001. Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J Comp Neurol 439, 235-247.

Kawaguchi, Y., 1993. Physiological, morphological, and histochemical characterization of three classes of interneurones in rat neostriatum. J Neurosci 13, 4908-4923.

Kawaguchi, Y., Wilson, C. J., Augood, S. J., Emson, P. C., 1995. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18, 527-535.
Kosillo, P., Zhang, Y. F., Threlfell, S., Cragg, S. J., 2016. Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons. Cereb Cortex 11, 4160–4169. http://dx.doi.org/10.1093/cercor/bhw252

Patel, J. C., Rossignol, E., Rice, M. E., Machold, R. P., 2012. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun 3, 1172. http://dx.doi.org/10.1038/ncomms2144

Rice, M. E., Cragg, S. J., 2004. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7, 583-584. http://dx.doi.org/10.1038/nn1244

Rymar, V. V., Sasseville, R., Luk, K. C., Sadikot, A. F., 2004. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 469, 325-339. http://dx.doi.org/10.1002/cne.11008

Salegio, E. A., Samaranch, L., Kells, A. P., Mittermeyer, G., San Sebastian, W., Zhou, S., Beyer, J., Forsayeth, J., Bankiewicz, K. S., 2013. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther 20, 348-352. http://dx.doi.org/10.1038/gt.2012.27

Threlfell, S., Clements, M. A., Khodai, T., Pienaar, I. S., Exley, R., Wess, J., Cragg, S. J., 2010. Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30, 3398-3408. http://dx.doi.org/10.1523/JNEUROSCI.5620-09.2010

Wang, L., Shang, S., Kang, S., Teng, S., Zhu, F., Liu, B., Wu, Q., Li, M., Liu, W., Xu, H., Zhou, L., Jiao, R., Dou, H., Zuo, P., Zhang, X., Zheng, L., Wang, S., Wang, C., Zhou, Z., 2014. Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 5, 3925. http://dx.doi.org/10.1038/ncomms4925

Zhang, H., Sulzer, D., 2004. Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7, 581-582. http://dx.doi.org/10.1038/nn1243

Zhang, L., Doyon, W. M., Clark, J. J., Phillips, P. E., Dani, J. A., 2009. Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76, 396-404. http://dx.doi.org/10.1124/mol.109.056317

Zhou, F. M., Liang, Y., Dani, J. A., 2001. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat.Neurosci. 4, 1224-1229.
Figure. 1: Light activation of rat striatal cholinergic interneurons evokes striatal dopamine release.

(A) ChR2-eYFP detected in striatum (left) and PPN/LDT (right) after AAV2 injection to PPN/LDT (lower), and detected in striatum only after injection to striatum (upper), fixed tissue. (B) GFP-immunopositive soma after striatal injection were co-immunopositive for ChAT. (C,E) Mean profiles of [DA], ± SEM vs time evoked by 1 or 4 pulses (25 Hz) of electrical (C) or light (E) stimulation, in control drug-free conditions or in the presence of DHβE (1 μM). Data are normalised to 1p peak [DA], in control conditions. Control conditions (black lines), DHβE (red lines). (D,F) Mean peak [DA], normalised to control 1p for electrical (D) and light-evoked DA release (F) in control (black) and in the presence of DHβE (red). N=3 rats, n=4 sites. Two-way ANOVA with Sidak posttest comparisons of control vs DHβE: *p<0.05, ***p<0.001.

Figure. 2: Light activation of striatal cholinergic brainstem afferents with brief stimuli does not reveal dopamine release. (A) Left, Cartoon indicating PPN/LDT injections sites and right, recording site labelled with red FluoSpheres in an area of cholinergic brainstem innervation indicated by ChR2-eYFP fluorescence. (B) Example profiles of [DA], (μM) vs time evoked by either light activation of ChIls (Chi ChR2, blue dashed, 1p), electrical stimulation of striatum (black solid line, 1p) or light activation of brainstem cholinergic afferents (brainstem ChR2, blue solid line, 10p 10Hz). Inset, Corresponding voltammograms for DA following each activation type for site indicated in panel A, at time pointed indicated on profiles by gray circles. (C) Peak evoked [DA], (μM) for each recording site and stimulation methods, with mean ± SEM indicated. Arrows indicate data points and sites shown in panel B. (D) Mean profiles of current detected at DA oxidation potential (± SEM) vs time evoked by striatal electrical stimulation (1p) (black) or light stimulation of ChR2-expressing cholinergic brainstem afferents (10p 10Hz) (blue) in the presence of cocaine (5 μM), (n=10 observations from 3 sites).
Figure 3: Light activation of striatal cholinergic interneurons but not brainstem afferents readily modulates dopamine release. (A,C) Mean profiles of [DA]o ± SEM vs time evoked by 1 or 4 pulses (100 Hz) of electrical (E) stimulation alone (left), or with stimulation with light (10p/10 Hz beginning 0.5 s prior to electrical) (right) to stimulate ChR2 expressed in either ChIs (A) or brainstem afferents (C). Data are normalised to 1p control (without light). (B,D) Summary data showing mean peak [DA]o ± SEM evoked by the electrical stimulation normalised to control 1p, for ChR2-expressing ChIs (B) or brainstem afferents (D) with and without light activation (blue vs black). Two-way ANOVA with repeated measures with Sidak post-test comparisons of 1p vs 4p: **p<0.01, N.S. p>0.05. (E) Ratio of [DA]o evoked by 4 vs 1 electrical pulses (100 Hz) with and without light stimulation (blue versus black) of either ChIs or striatal brainstem afferents. Light pre-stimulation of ChIs but not brainstem afferents significantly potentiated 4p:1p ratio of electrically evoked DA release (2-way ANOVA; Sidak post-test for with vs without light: ChI: t_{18}=4.1, **p<0.01; brainstem: t_{18}=0.58, p>0.05). (F) Mean peak 1p [DA]o ± SEM, evoked by 0.7 mA and 0.3 mA electrical stimuli, with and without light pre-stimulation of brainstem afferents. Two-way ANOVA; Sidak post-test with vs without light: 0.7 mA: t_{12}=0.29, p>0.05; 0.3 mA: t_{12}=1.2, p>0.05. Data are in μM, n=4 rats, n=6 sites.
Figure 1
Figure 2

B

0.5 V
4 nA
Striatum electrical
ChI ChR2
Brainstem ChR2
Striatum electrical (+ cocaine)
Brainstem ChR2 (μM)

C

100 μm
PPN LDT
CPu
NAc
AAV-ChR2
1 s
200 nM

D

CFM
c recording
site
CPu
0.4 s
50 nM

200 nM

Striatum electrical (+ cocaine)
Brainstem ChR2 (+ cocaine)
