Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent Klebsiella pneumoniae, France

Racha Beyrouthy, Guillaume Dalmasso, Aurélien Birer, Frédéric Robin, Richard Bonnet

We recovered 2 carbapenem-resistant K2-ST86 hypermucoviscous *Klebsiella pneumoniae* isolates from patients in France. The isolates had genetic attributes of hypervirulent *K. pneumoniae* but differed in ability to cause mouse lethality. Convergence of hypervirulent *K. pneumoniae* toward resistance could cause a health crisis because such strains could be responsible for severe and untreatable infections.

Klebsiella pneumoniae is a threat to human health because of the emergence of hypervirulent *K. pneumoniae*, which has caused severe community-acquired infections, and classical multidrug-resistant *K. pneumoniae* involved in hospital outbreaks (1). Classical *K. pneumoniae* generally lacks the virulence genes associated with invasive diseases (1) and belongs to successful clonal groups, such as sequence type (ST) 11 and ST258 (2). Most hypervirulent *K. pneumoniae* isolates, which are mainly found in Asia (3,4), belong to the K1 and K2 capsular serotypes and are restricted to clonal complexes different from classical multidrug-resistant *K. pneumoniae* groups, such as K1-ST23, the most prevalent group (2). They rarely harbor acquired antimicrobial resistance genes but have virulence loci and a hypermucoviscous phenotype (5). We describe 2 hypermucoviscous K2-ST86 *K. pneumoniae* (positive string test) resistant to carbapenems isolated in northern and southern France.

The Study

In 2017, we recovered the Kpn154 strain from the urine of a 35-year-old man with community-acquired urinary tract infection. He had fever (39°C) before local symptoms suggesting urinary tract infection caused by bacteremic spread, which was successfully treated with intravenous ceftriaxone. A second strain, Kpn2166, was hospital-acquired and recovered from the feces of a 70-year-old man in the intensive care unit of the hospital at which the 35-year-old patient was seen. Neither patient reported travel during the past 4 years. Both strains were resistant to all penicillins and their combinations with β-lactamase inhibitors, and to carbapenems according to EUCAST (European Committee on Antimicrobial Susceptibility Testing) guidelines (https://www.eucast.org) (Table). In addition, Kpn2166 was resistant to the third-generation cephalosporins, quinolones and tigecycline.

We obtained the isolates’ whole-genome sequence by hybrid de novo assembly of short and long reads generated with technologies from Illumina (https://www.illumina.com) and Oxford Nanopore (https://nanoporetech.com; European Nucleotide Archive at EMBL-EBI under accession no. PRJEB34867). We typed the isolates as K2-ST86 from whole-genome sequencing using the Institut Pasteur multilocus sequence typing scheme (https://bigd.db.pasteur.fr) and Kleborate (6). Kpn154 harbored carbapenemase-encoding gene *bla*_{oxa-48} and Kpn2166 the extended-spectrum β-lactamase–encoding gene *bla*_{CTX-M-15} as the only acquired β-lactamase–encoding genes. CTX-M-15 associated with the truncation of the outer membrane protein OmpK36 caused by 11-bp deletion...
was probably responsible for carbapenem resistance in Kpn2166. In the absence of \(rpsJ \) variants previously associated with tigecycline resistance, Kpn2166 resistance to tigecycline and quinolones probably resulted from a frameshift mutation in \(rmpA \) (C→T at position 364) (7).

We identified IncL replicon in Kpn154 and IncN replicon in Kpn2166. The IncL replicon of Kpn154 was a canonical pOXA-48–like plasmid encoding \(bla_{OXA-48} \) (GenBank accession no. JN626286). In the Kpn2166 isolate, \(bla_{CTX-M-15} \) was encoded by a new truncated allele harboring a frameshift mutation at base 222. Each isolate harbored an IncHI1B/IncFIB replicon, designated pVIR-Kpn154 and pVIR-Kpn2166 (Table), typified by the reference hvKP virulence plasmid pLVPK (8). They shared with pLVPK 97% pairwise identity overall and all virulence genes, including the \(rmpA \) and \(rmpA2 \) genes involved in the hypermucoid phenotype (8). We typed the \(rmpA \) genes as allele 2 according to the Institut Pasteur scheme. However, Kpn2166 \(rmpA2 \) harbored in addition a frameshift mutation (coding sequence [CDS] position 196) and 2 other mutations in virulence genes encoding the sidrophores (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/26/7/19-1490-App1.pdf).

We compared the pVIR-Kpn154 and pVIR-Kpn2166 plasmids with 16 complete hypervirulent \(K. pneumoniae \) plasmid sequences (Appendix Table) from the PATRIC database (http://www.patricbrc.org). A single-nucleotide polymorphism–based phylogenetic tree showed a link between the major tree branches and the sequence types of hypervirulent \(K. pneumoniae \) owners but not with their geographic origin (Figure 1, panel A). This finding suggests emergence was more likely caused by spread over distant geographic areas than by local expansion and that limited horizontal transfers between hypervirulent \(K. pneumoniae \) isolates probably resulted from the absence of known genes involved in conjugation. Phylogenetic tree analysis also showed 5 groups based on virulence gene synteny, with the predominant group typified by pLVPK (Figure 1, panel B). Because plasmids of ST23-like hypervirulent \(K. pneumoniae \) all share a similar synteny of virulence genes, ST86 hypervirulent \(K. pneumoniae \) contains a diversity of plasmid synteny groups (Figure 1, panel A), suggesting that rearrangements of virulence genes occurred several times along plasmid evolution at rearrangement hotspots active in non-ST23 genetic background. For example, pVIR-Kpn2166 and pVIR-Kpn154 differed from reference plasmid pLVPK by the permutations in the ≈100-kb region flanked by IS5 mobile elements (Figure 1, panel C). pVIR-Kpn154 contained an additional copy of IS5, which was associated with another ≈30-kb permutation + translation event, suggesting that IS5 is a key factor in the evolution and diversity of hypervirulent \(K. pneumoniae \) plasmids.

Table. Characteristics of carbapenem and hypervirulent \(K. pneumoniae \) isolates from 2 patients, France, 2017*

Characteristic	Kpn154 strain	Kpn2166 strain
Patient age, y/sex	35/M	70/M
Sample, context	Urine, community-acquired UTI	Feces, hospital-acquired intestinal carriage
MIC, \(\mu \)g/mL		
Ertapenem	2	32
Imipenem	10	10
Meropenem	4	4
Ceftazidime	0.125	>256
Cefotaxime	0.5	>256
Ceftriaxone	0.5	>256
Ceferonem	0.25	>256
Aztreonam	0.06	>256
Teicoplanin	256	32
Tigecolin	1	4
Colistin	0.5	0.5
Genome size, sequencing depth	5,555,907 bp, 120×	5,649,836 bp, 145×
Genotype	IncL, 100,326	IncN, 61,761
Resistance replicon, bp	K2-ST86	K2-ST86
Resistance marker	blaa_{OXA-48}	blaa_{CTX-M-15}, SmST1: iroB1C1D1iutA1
Virulence replicon	iucA1B1C1D1iutA1	iucA1B1C1D1iutA1
Capsule regulator	rmpA2, rmpA2†	rmpA2, rmpA2‡
Aerobactin-ST§	AbST1: iucA1B1C1D1iutA1	AbST1: iucA1B1C1D1iutA1
Salmochelin-ST§	SmST1: iroB1C1D1N1	SmST1: iroB1C1D1N1
Yersiniabactin-ST§	ICEKp3-YbST202LV	ICEKp12like- YbST13LV

*K, capsular genotype; ST, sequence type; UTI, urinary tract infection.
†New \(rmpA2 \) allele.
‡Truncated allele harboring a frameshift mutation at base 222.
§Genotyped based on Kleborate schemes.
The chromosome of Kpn154 and Kpn2166 exhibited similar organization but differed by 128 insertion/deletion mutations and 1,928 single-nucleotide variants (Appendix Figures 2, 3). The Kpn154 chromosome-mediated *ybt* virulence locus, which encodes the yersiniabactin, was located in the integrative conjugative element ICE*Kp3* and was typed ybST202–1LV (6). In Kpn2166, *ybt* was located in an original isoform of ICE*Kp12*, presenting an ≈34-kb deletion compared to the canonical 97,771-bp ICE*Kp12*, and was typed ybST13–1LV (6).

Although Kpn154 and Kpn2166 have the same genetic background and share the same virulence score (6), they also have allelic and synteny differences in virulence genes. We therefore compared the virulence of these isolates in a sepsis model based on outbred

Figure 1. Comparison of pVIR-Kpn2166 and pVIR-Kpn154 *Klebsiella pneumoniae* isolates from 2 patients in France (bold) with 16 hypervirulent *K. pneumoniae* virulence plasmids recovered from the PATRIC database (http://www.patricbrc.org). A) Single-nucleotide polymorphism–based phylogenetic tree built by RaxML from an alignment generated by Burrows-Wheeler Aligner and filtered to remove recombination using Gubbins as previously described (9). The ST and the geographic origin of bacterial hosts are shown. Scale bar indicates mean number of nucleotide substitutions per site. B) Synteny analysis of hypervirulent *K. pneumoniae* virulence plasmids based on data from blastn (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Virulence-based synteny groups are indicated and the operons encoding the virulence factors, virulence synteny groups of plasmids and the ST and the geographic origin of bacterial hosts. Scale bar indicates kbp. C) Comparison of the details of rearrangements observed in pVIR-Kpn2166 and pVIR-Kpn154 and in pLVPK. Scale bar indicates kbp. ST, sequence type.
mice challenged intraperitoneally, as described (Figure 2) (10). Mice injected with 10^3 CFUs of Kpn154 or hypervirulent K. pneumoniae reference strain K. pneumoniae NTUH-2044 died in <72 h, in contrast to mice inoculated with Kpn2166 or American Type Culture Collection (ATCC) 13883, showing that only isolate Kpn154 is hypervirulent. Higher bacterial doses (10^6 and 10^8 CFUs) of ATCC13883 and Kpn2166 did not lead to mouse lethality, confirming that Kpn2166 is not hypervirulent in this model, despite harboring all genetic attributes of hypervirulent K. pneumoniae except a functional rmpA2 gene and allelic variants of siderophore-encoding genes.

We assessed the production of siderophores in Kpn154, Kpn2166 and the control strains as described (11). Although the siderophore production of the nonvirulent strain ATCC13883 (mean 30.2 ± SD 1.8 µg/mL) was at the previously reported rate predicting hypervirulent K. pneumoniae phenotype (≥30 µg/mL), the other strains produced significantly higher siderophore levels (107.2 ± 4.5 µg/mL to 306.7 ± 20.2 µg/mL; Bonferroni-adjusted p = 0.0035 by Mann-Whitney test), with Kpn154 producing at the lower level (Appendix Figure 4).

Conclusions
Our results show that a hypermucoviscous K2-ST86 strain can be avirulent in a sepsis mouse model and that hypervirulence cannot be clearly explained by siderophore production alone. Gene rmpA2, not required for the hypermucoviscosity phenotype as previously observed (12), might be required for hypervirulent phenotype because it is a main, but not the only, difference we observed between the ST86-K2 strains. Finally, these results highlight the importance of in vivo virulence investigation to identify hypervirulent K. pneumoniae, especially in the absence of an appropriate clinical scenario.

The threat of hypervirulent K. pneumoniae acquiring carbapenem resistance is becoming a reality in Asia, especially in China, where hypervirulence prevalence among carbapenem-resistant K. pneumoniae is 7.4%-15% (5). Most resistant isolates are non-K1/K2-ST11 and produce carbapenemase KPC-2; they result from the transfer of the pLVPK-like plasmid into ST11 classical multidrug-resistant K. pneumoniae isolates, as observed in the 2 cases reported outside China (5). Conversely, the carbapenemase-producing isolate Kpn154 results from the transformation of K2-ST86 hypervirulent K. pneumoniae by plasmid encoding carbapenemase OXA-48, the most prevalent carbapenemase in France. Similar events occurred with the KPC-2 K2-ST86 isolate recently reported in Canada (13) and a few KPC-2 and NDM K1-ST23 cases documented in China and recently in the United States and United Kingdom (5,14,15). The combination of multidrug resistance and enhanced virulence has the potential to trigger the next clinical crisis and cause severe and untreatable infections in previously healthy persons.

Acknowledgments
We thank Alexis Pontvianne and Lucie Pourpuech for their technical assistance.

This work was supported by the Ministere de l’Education Nationale, de l’Enseignement Superieur et de la Recherche, Institut National de la Santé et de la Recherche Médicale (UMR1071), INRA (USC-2018), Santé Publique France, and the Centre Hospitalier Regional Universitaire de Clermont-Ferrand, France.

About the Author
Dr. Beyrouthy is a microbiologist in the Associated French National Reference Center for Antibiotic Resistance, Clermont-Ferrand, Clermont-Ferrand University Hospital, and a member of the Microbe, Intestine, Inflammation and Host Susceptibility (M2ISH) research group of the Institut National de la Santé et de la Recherche Médicale. Her primary research interests are antimicrobial drug resistance and Enterobacteriaceae epidemiology.

Figure 2. Kaplan–Meier survival curves of mice intraperitoneally challenged with Klebsiella pneumoniae strains Kpn154 and Kpn2166 from 2 patients in France, virulent strain NTUH-K2044, and nonvirulent ATCC 13883 strain, as previously described (10). Mice were injected with 10^3 CFUs and monitored for 96 h. p values were calculated from the Mantel-Cox log rank test for survival curve comparison. Gray shading indicates significant values. ATCC, American Type Culture Collection.
References

1. Meatherall BL, Gregson D, Ross T, Pitout JDD, Laupland KB. Incidence, risk factors, and outcomes of *Klebsiella pneumoniae* bacteremia. Am J Med. 2009;122:866–73. https://doi.org/10.1016/j.amjmed.2009.03.034

2. Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of *Klebsiella pneumoniae*. PLoS Genet. 2019;15:e1008114. https://doi.org/10.1371/journal.pgen.1008114

3. Prokesch BC, TeKippe M, Kim J, Raj P, TeKippe EME, Greenberg DE. Primary osteomyelitis caused by hypervirulent *Klebsiella pneumoniae*. Lancet Infect Dis. 2016;16:e190–5. https://doi.org/10.1016/S1473-3099(16)30021-4

4. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) *Klebsiella pneumoniae*: a new and dangerous breed. Virulence. 2013;4:107–18. https://doi.org/10.4161/viru.22718

5. Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial resistance of hypervirulent *Klebsiella pneumoniae*: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483. https://doi.org/10.3389/fcimb.2017.00483

6. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in *Klebsiella pneumoniae* populations. Microb Genom. 2018;4(9).

7. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing *Klebsiella pneumoniae* sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014;58:1707–12. https://doi.org/10.1128/AAC.01803-13

8. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of *Klebsiella pneumoniae* CG43. Gene. 2004;337:189–98. https://doi.org/10.1016/j.jgene.2004.05.008

9. Beyrouthy R, Baret M, Marion E, Dananché C, Dauwalder O, Robin F, et al. Novel enterobacter lineage as leading cause of nosocomial outbreak involving carbapenemase-producing strains. Emerg Infect Dis. 2018;24:1505–15. https://doi.org/10.3201/eid2408.180151

10. Beyrouthy R, Robin F, Cougnoux A, Dalmasso G, Darfeuille-Michaud A, Mallat H, et al. Chromosome-mediated OXA-48 carbapenemase in highly virulent *Escherichia coli*. J Antimicrob Chemother. 2013;68:1558–61. https://doi.org/10.1093/jac/dkt051

11. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent *Klebsiella pneumoniae* from classical *K. pneumoniae*. J Clin Microbiol. 2018;56:1–12. https://doi.org/10.1128/JCM.00776-18

12. Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT. The role of *Klebsiella pneumoniae* rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. 2011;157:3446–57. https://doi.org/10.1099/mic.0.050336-0

13. Mataseje LF, Boyd DA, Mulvey MR, Longtin Y. Two hypervirulent *Klebsiella pneumoniae* isolates producing a blaKPC-2 carbapenemase from a Canadian patient. Antimicrob Agents Chemother. 2019;63:1–4. https://doi.org/10.1128/AAC.00517-19

14. Karlsson M, Stanton RA, Ansari U, McAllister G, Chan MY, Sula E, et al. Identification of a carbapenemase-producing hypervirulent *Klebsiella pneumoniae* isolate in the United States. Antimicrob Agents Chemother. 2019;63:1–6. https://doi.org/10.1128/AAC.00519-19

15. Roulston KJ, Bharucha T, Turton JF, Hopkins KL, Mack DJF. A case of NDM-carbapenemase-producing hypervirulent *Klebsiella pneumoniae* sequence type 23 from the UK. JMM Case Rep. 2018;5:e005130. https://doi.org/10.1099/jmmcr.0.005130

Address for correspondence: Racha Beyrouthy, Centre Hospitalier Universitaire, Centre de Biologie, Service de Bactériologie, 58 rue Montalembert, 63000 Clermont-Ferrand, France; email: rbeyrouthy@chu-clermontferrand.fr
Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent *Klebsiella pneumoniae*, France

Appendix

Appendix Table. Features of hypervirulent *Klebsiella pneumoniae* virulence plasmids and hosts

Plasmid name	Size, bp	Host name	Sequence type	Country	GenBank accession no.
pVIR-Kpn2166	222,667	Kpn2166	86	France	This study
pVIR-Kpn154	215,306	Kpn154	86	France	This study
pLVPK	219,385	CG43	86	Taiwan	AY378100
p1-CP026587	215,697	NUHL30457	86	China	CP026587
pK2044	224,152	NTUH-K2044	23	China	AP006726
pRJA166b	228,613	RJA166	23	China	CP019049
pSGH10	231,583	SGH10	23	Singapore	CP025081
P_LR134257	224,165	NCTC9644	23	United Kingdom	LR134257
pJHTS007	230,906	JHTS007	23	United States	QPAG01000004
Unnamed	239,822	1088	23	Hong Kong	NJPF01000001
pVir_095132	208,166	WCHKP13F2	36	China	CP028390
pPUTH1	237,216	cr-hvkp3	65	China	CP024708
pL22-1	212,635	L22	66	China	CP031258
pKC-Pi-HB1	196,000	KC-Pi-HB1	375	Korea	CP030924
pF81_2	211,437	F81	3685	China	CP026166
Unnamed	231,869	NCTC9494	3816	United Kingdom	UGM001000001
phvKP060	218,147	18CP0060	86	Canada	CP034776
pCR-HvKP5-VIR	177,694	CR-HvKP5	11	China	CP040546
Appendix Figure 1. Comparison of genetic modifications identified in virulence plasmid of *Klebsiella pneumoniae* strain Kpn2166 with those of virulence plasmid of hypervirulent strain Kpn154. The zones encoding the virulence factors are indicated as horizontal bars (*rpmA* and *rpmA* in blue and the siderophore-encoding zones in grey). The *rpmA2* pseudogene in strain Kpn2166 harbors a T duplication at coding sequence (CDS) position 196 leading to frameshift Tyr66fs and a GGG conservative inframe duplication at CDS position 277. The gene encoding sigma-70 family RNA polymerase sigma factor FecI harbors the missense single-nucleotide variant A→T at CDS position 62 leading to substitution His21Leu, and the enterobactin-encoding operon, an intergenic single-nucleotide variant. The zone accumulating missense and synonymous variants around position 198 kb encodes a hypothetical protein devoid of conserved domain. INDEL, insertion–deletion mutation.
Appendix Figure 2. Dot plot comparison of Kpn154 and Kpn2166 chromosomes showing a conserved organization. The red lines indicate highly similar sequences (>95% identity) on the same strands.

Appendix Figure 3. Comparison of genetic modifications identified in chromosome of strain Kpn2166 with those of chromosome of hypervirulent strain Kpn154. The 2 zones accumulating genetic modifications and rearrangements (positions 1,814,000–1,834,000 and 2,814,000–2,844,000) encode type IV secretion system proteins and hypothetical proteins, respectively. INDEL, insertion–deletion mutation.
Appendix Figure 4. Estimation of siderophore production from the bacterial strains incubated overnight at 37°C in iron-chelated M9 minimal medium containing casamino acids. The siderophore concentrations were reported in µg/mL for 1×10^9 bacterial CFUs. The overall comparison performed by Kruskal-Wallis rank test showed significant differences ($p = 0.00001$). The p values for the pairwise differences reported in the figure were calculated from Mann-Whitney tests and were adjusted for multiple comparisons using Bonferroni correction. *$p<0.01$.

