Diagnostic accuracy of dermoscopy for onychomycosis: A systematic review

Sophie Soyeon Lim¹, Laura Hui², Jungyoon Ohn¹,³,⁴, Youngjoo Cho⁵, Choon Chiat Oh² and Je-Ho Mun³,⁴,*

¹Alfred Health, Melbourne, VIC, Australia, ²Department of Dermatology, Singapore General Hospital, Singapore, Singapore, ³Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea, ⁴Institute of Human-Environment Interface Biology, Seoul National University, Seoul, South Korea, ⁵Department of Applied Statistics, Konkuk University, Seoul, South Korea

Background: Dermoscopy is a non-invasive adjuvant diagnostic tool that allows clinicians to visualize microscopic features of cutaneous disorders. Recent studies have demonstrated that dermoscopy can be used to diagnose onychomycosis. We performed this systematic review to identify the characteristic dermoscopic features of onychomycosis and understand their diagnostic utility.

Methods: We searched the Medline, Embase, Scopus, and Cochrane databases from conception until May 2021. Studies on the dermoscopic features of onychomycosis were screened. The exclusion criteria were as follows: fewer than 5 cases of onychomycosis, review articles, and studies including onychomycosis cases that were not mycologically verified. Studies on fungal melanonychia were analyzed separately. We adhered to the MOOSE guidelines. Independent data extraction was performed. Data were pooled using a random effects model to account for study heterogeneity. The primary outcome was the diagnostic accuracy of the dermoscopic features of onychomycosis. This was determined by pooling the sensitivity and specificity values of the dermoscopic features identified during the systematic review using the DeSimonean-Laerd method. Meta-DiSc version 1.4 and Review Manager 5.4.1 were used to calculate these values.

Results: We analyzed 19 articles on 1693 cases of onychomycosis and 5 articles on 148 cases of fungal melanonychia. Commonly reported dermoscopic features of onychomycosis were spikes or spiked pattern (50.1%), jagged or spiked edges or jagged edge with spikes (188, 11.1%), jagged proximal edge (175, 10.3%), subungal hyperkeratosi (131, 7.7%), ruins appearance, aspect or pattern (573, 33.8%), and longitudinal striae (929, 54.9%). Commonly reported features of fungal melanonychia included multicolor
Introduction

Dermoscopy is a non-invasive diagnostic tool that helps clinicians to visualize microscopic features of cutaneous disorders, including skin cancers, connective tissue disorders and inflammatory dermatologic conditions, that are not discernible on naked eye examination (1–3). Consequently, it optimizes diagnostic accuracy and minimizes the need for unnecessary biopsies (4).

Onychomycosis is a communicable fungal nail infection caused by dermatophytes, non-dermatophyte molds, and yeasts. It is the most common nail disorder worldwide and severe disease can cause significant nail dystrophy and pain (5). Fungal melanonychia is a rare manifestation of a fungal nail infection, which presents with brown-black pigmentation of the nail unit. Accurate diagnosis of fungal nail disorders is important as systemic treatments are required for at least 2–3 months and topical treatments for more than 12 months. Misdiagnosis should be avoided, as systemic treatments risk hepatic damage (6) and unnecessary economic burden on the healthcare system. Clinically, onychomycosis may resemble traumatic onycholysis, nail psoriasis, or trachyonychia, and differentiating fungal melanonychia from nail melanoma is crucial. Dermoscopy can help to identify onychomycosis and fungal melanonychia at the bedside. Therefore, we conducted a systematic review to identify the characteristic dermoscopic features of onychomycosis and melanonychia, as well as a meta-analysis to determine the diagnostic performance and accuracy of dermoscopy in diagnosing onychomycosis.

Methods

This study adhered to the Meta-analyses of Observational Studies in Epidemiology (MOOSE) statement, with appropriate adjustments made as per the recommendations for systematic reviews and meta-analyses of diagnostic test accuracy (7, 8). The study protocol is registered in PROSPERO (Reg. No.: CRD42021268430).

Conclusion

This study highlights the commonly identified dermoscopic features of onychomycosis. Recognizing such characteristic dermoscopic features of onychomycosis can assist clinicians diagnose onychomycosis by the bedside.

KEYWORDS

fungal nail infection, onychomycosis, dermoscopy, fungal melanonychia, onychoscopy

Literature search

Ovid MEDLINE (including Epub Ahead of Print, In-Process, and Other Non-Indexed Citations), Embase, Scopus, and the Cochrane Central Register of Controlled Trials were searched from inception to May 2021 by three reviewers (SSL, JO, LHLY). The research question was in patients with onychomycosis (P), what are the common dermoscopic features (I) that add to clinical examination (C) in diagnosing onychomycosis (O). Therefore, search terms included “dermoscopy” or synonyms (including dermatoscopy, videodermoscopy, onychoscopy and epiluminescence microscopy) and “onychomycosis” or synonyms (including tinea unguium). Medical subject headings (MeSH) terms were also included.

Eligibility criteria

All published studies involving at least five cases of mycologically proven onychomycosis with dermoscopic findings were included. Studies reporting fewer than five cases were excluded due to risk of selection bias. Studies of fungal melanonychia were analyzed separately.

Study selection and data extraction

Three reviewers (SSL, JO, and LHLY) independently screened the titles and abstracts of all identified articles, and then screened the full text of potentially eligible articles. Non-English articles were screened by reviewing their titles and abstracts translated in English. Duplicate studies and review articles were excluded. None of the cases required a fourth author (JHM) to resolve any disagreement. The parameters extracted from each article included the first author’s surname, date of publication, journal name, number of onychomycosis or fungal melanonychia cases, number of control cases, type of control cases (e.g., healthy or psoriasis),
definition and prevalence of dermoscopic features, as well as their sensitivity and specificity if reported. Study authors were not contacted.

Risk of bias assessment

Two reviewers (SSL and JO) appraised the articles according to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS2) guidelines (9).

Statistical analysis of the primary study outcome

The primary study outcome was diagnostic accuracy of the common dermoscopic features of onychomycosis. This was measured by pooling the sensitivity and specificity values using the DerSimonian-Laird method. We used a random-effects model to account for study heterogeneity. Pooled sensitivity and specificity values and their 95% confidence intervals (CI), forest plots, and summary receiver operating characteristics (SROC) curves were generated using Meta-DiSc version 1.4 (Hospital Ramon y Cajal and Universidad Complutense de Madrid) and Review Manager 5.4.1 (Cochrane, Oxford, UK).

Results

Literature search and included studies

A total of 201 articles were identified, of which 46 were duplicates (Figure 1). Of the 155 screened articles, 24 were full-text articles discussing common dermoscopic features in five or more cases of mycologically proven fungal nail disease. The characteristics of the 24 eligible studies are summarized in Table 1. Nineteen articles were on onychomycosis and five were on fungal melanonychia. Of the 19 onychomycosis articles, 11 had a control group consisting of nail psoriasis, traumatic onycholysis, and healthy or mycologically negative nails. A meta-analysis was performed on the data with controls. However, it was not conducted for fungal melanonychia, as
only two of the five fungal melanonychia articles had a control group.

Dermoscopic features of onychomycosis

Nineteen studies reported dermoscopic features of 1,693 cases of onychomycosis. Commonly identified dermoscopic features of onychomycosis were spikes or spiked pattern (481, 28.4%) (10–18), jagged or spiked edges or jagged edge with spikes (188, 11.1%) (19–25), jagged proximal edge (175, 10.3%) (10, 12, 16, 18), subungual hyperkeratoses (131, 7.7%) (15, 19, 20, 25, 26), ruins appearance, aspect or pattern (573, 33.8%) (15, 19, 22, 24, 27, 28), and longitudinal striae (929, 54.9%) (10–18, 20–23, 27) (Table 2). Other dermoscopic findings included distal irregular termination (331, 19.6%) (10–12, 14–16, 18, 20, 22) and aurora borealis pattern (293, 17.3%) (11, 12, 15, 17, 20, 23). Frequently described color changes were homogenous leukonychia (304, 18.0%) (12, 15, 16, 20, 22, 23, 28), yellow (216, 12.8%) (13, 15, 16, 23, 26) and brown (212, 12.5%) (12, 15, 16, 22, 23, 26).

Terms with similar definitions or those used interchangeably were grouped for meta-analysis upon careful examination of the authors’ definitions. When we grouped spikes or spiked pattern, jagged or spiked edges, distal streaks, jagged edge with spikes and jagged proximal edge as "spike pattern", the pooled sensitivity was 77.3% (95% CI, 73.2–81.1%) and specificity was 96.2% (95% CI, 93.1–98.2%) (Figure 2). Pooled sensitivity of subungual hyperkeratosis and ruins appearance, aspect or pattern was 67.1% (95% CI, 62.5–71.5%) and specificity was 64.7% (95% CI, 58.1–70.8%). For longitudinal striae, pooled sensitivity was 67.3% (95% CI, 61.7–72.6%) and specificity 95.6% (95% CI, 90.7–98.4%).

TABLE 1 Characteristics of the eligible studies.

First author and journal	Publication date	Study population	Number of patients	Number of controls (Y/N)*	Control characteristics
Abdallah, J Cosmet Dermatol	2020	Onychomycosis	40	N	-
Ankad, Indian Dermatol Online J	2020	Onychomycosis	20	Y, 40	Nail psoriasis (n = 35), traumatic onycholysis (n = 5)
Bhat, Dermatol Pract Concept	2018	Onychomycosis	81	N	-
Bodman, J Am Podiatr Med Assoc	2017	Onychomycosis	35	Y, 17	Mycologically negative nails
Chetana, Int J Dermatol	2018	Onychomycosis	234	N	-
De Crignis, Int J Dermatol	2014	Onychomycosis	336	N	-
El-Hosney, Eur J Dermatol	2015	Onychomycosis	40	Y, 40	Healthy nails
Elhar, J Egpyt Women Dermatol	2015	Onychomycosis	17	Y, 15	Traumatic onycholysis (n = 9), dermatophyte-negative psoriasis (n = 6)
Elmas, Postepy Dermatol Allergol	2020	Fungal melanonychia	42	N	-
Islamoglu, Erciyes Med J	2019	Onychomycosis	100	N	-
Jesus-Silva, Dermatol Pract Concept	2015	Onychomycosis	155	N	-
Jo, Br J Dermatol	2018	Onychomycosis	30	Y, 30	Trachonychia
Kayarkatte, Indian J Dermatol Venereol Leprol	2020	Onychomycosis	88	Y, 12	Mycologically negative nails
Kaynak, Arch Dermatol	2018	Onychomycosis	149	Y, 56	Mycologically negative nails
Kilinc Karaarslan, Clin Exp Dermatol	2015	Fungal melanonychia	20	N	-
Kim, Ann Dermatol	2020	Fungal melanonychia	20	14	Subungual melanoma
Maatouk, Curr Med Mycol	2019	Onychomycosis	45	N	-
Nada, Arch Dermatol	2020	Onychomycosis	80	Y, 40	Healthy nails
Nargis, Indian Dermatol Online J	2018	Onychomycosis	60	N	-
Ohn, J Am Acad Dermatol	2016	Fungal melanonychia	18	Y, 62	Nail matrix naevus (n = 27), melanoma (n = 11), melanocytic activation (n = 24)
Pitaraccini, J Eur Acad Dermatol Venereol	2013	Onychomycosis	37	Y, 13	Traumatic onycholysis
Ramos Pinheiro, J Eur Acad Dermatol	2020	Onychomycosis	110	Y, 82	Traumatic onycholysis
Starace, Mycoses	2021	Fungal melanonychia	48	N	-
Yadav, Indian J Dermatol	2016	Onychomycosis	36	Y, 10	Nail psoriasis

*Y: Yes, N: No.
TABLE 2 Dermoscopic features of onychomycosis reported in one or more articles.

First author and publication date	Sample size	Jagged edge with spikes	Spiked pattern	Jagged proximal edge	Distal streaks	Longitudinal strie	Subungual hyperkeratosis	Rain water appearance/aspect/pattern	Black dots and globules	Distal irregular termination	Dryness & scaling of adjacent skin	Linear edge	Onycholysis	Pits	Splinter hemorrhages	White/ homogenous leukonychia	Punctate leukonychia	Black	Brown	Orange	Yellow	Chromonychia	Aurora borealis
Abdallah et al. (10)	40	24 (60%)	20	33	19	0 (0%)	19 (65%)	5 (25%)	0 (0%)	1 (5%)	36	(90%)											
Ankad et al. (19)	20	18 (90%)		2 (10%)	13	0 (0%)	13 (50%)	5 (25%)	0 (0%)	1 (5%)	63	(77.78%)											
Bhat et al. (11)	81	69 (85.19%)		63	33	(65%)	33 (40.47%)	5 (25%)	0 (0%)	1 (5%)	63	(77.78%)											
Bodman (20)	35	34		31	22	(88.6%)	27 (77.78%)	(62.9%)	(97.1%)	32 (86.4%)	28 (71.1%)	32											
Chetana et al. (12)	234	101 (43.16%)	70	115	81	8 (3.42%)	6 (2.56%)	8 (3.42%)	3 (1.29%)	98 (41.88%)	79 (33.76%)	127											
											46 (19.66%)	104											
											61 (26.07%)												
											(Continued)												
De Cignis et al. (27)	336				267	296 (88.09%)																	
El-Hoshy et al. (13)	40	33			(100%)	(82.5%)																	
Elfar et al. (21)	17	13			16	0 (0%)					2 (11.76%)												
Islamoglu et al. (22)	100	6 (6%)			66	54 (54%)					8 (8%)	28 (28%)											
Jesus-Silva et al. (14)	155	39			94	67 (43.22%)					7 (23.3%)	28 (93.3%)											
Jo et al. (26)	30	28 (93.3%)			22	20 (66.7%)					7 (23.3%)	28 (93.3%)											
First author and publication date
Sample size
Jagged edge with spikes
Spiked pattern
Jagged proximal edge
Distal streaks
Longitudinal striae
Subungual hyperkeratosis
Ruin appearance/aspect/pattern
Black dots and globules
Distal irregular termination
Dryness & scaling of adjacent skin
Linear edge
Onycholysis
Pits
Splinter hemorrhages
White/ homogenous leukonychia
Punctate leukonychia
Black
Brown
Orange
Yellow
Chromonychia
Aurora borealis
Dermoscopic features of fungal melanonychia

Five studies reported dermoscopic features of 148 cases of fungal melanonychia (Table 3) (29–31, 33). These cases demonstrated longitudinal white or yellow streaks (52.35.1%) (31–33), nail surface scales (39, 33.1%) (31–33) and subungual hyperkeratosis (41, 27.7%) (31–33) (Table 3), which are also common dermoscopic features of onychomycosis. Homogenous pigmentation (75, 50.7%) (29, 30, 33) or longitudinal pigmentation (54, 36.5%) (29, 31–33) was frequently observed, and the most common colors were multicolor (101, 68.2%) (29–33), brown (84, 56.8%) (29, 31–33) and black (46, 31.1%) (29, 31–33). The pigmentation in melanonychia arising from a fungal infection tends to appear brown due to the production of fungal melanin via the pentaketide pathway (31). This is in contrast to melanomas, where melanin is made from tyrosine, and commonly appears as darkly pigmented and black. Findings that appear specific to fungal melanonychia, such as “reverse triangle” (30, 20.3%) (30–33), due to fungal invasion from the distal nail plate and “superficial transverse striation” (41, 27.7%) (29, 30, 33), were also reported. All cases had negative findings for melanoma, such as the lack of the Hutchinson sign (0%) (30–33) and triangular sign (0%) (31, 32).

Quality assessment

The risk of bias in the eligible articles was evaluated according to the QUADAS2 guidelines (Table 4). Studies with "unclear" patient selection bias did not specify their method of patient selection, such as whether patients were recruited prospectively or retrospectively or whether patients were enrolled consecutively or randomly. Studies had a low risk of bias in terms of the index test (dermoscopy), reference standard (clear diagnosis of non-onychomycosis nails), flow, and timing. However, the risk of bias in the reference standard for one article was deemed high, as two cases with a positive potassium hydroxide result were not classified as onychomycosis as they primarily displayed features of other nail disorders (19). Studies had low applicability concerns with patient selection and reference standards, but two studies had high applicability concerns with the index test because they did not provide clear definitions or representative images for dermoscopic features (25, 27).

Discussion

The role of dermoscopy is well established in diagnosing cutaneous malignancies such as malignant melanoma and non-melanoma skin cancers (34, 35). Its use expands to various inflammatory and infectious disorders, including onychomycosis. By conducting a systematic review of 19 articles on 1,693 cases of onychomycosis and 5 articles on 148 cases of fungal melanonychia, we could enlarge the sample size and thus the statistical power to identify the dermoscopic features with diagnostic utility. Recognizing common dermoscopic features of onychomycosis can help clinicians to expedite accurate diagnosis and management. The most frequently reported patterns in onychomycosis...
First author and publication date	Sample size	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal
Elmas et al. (29)	42	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal
Kilinc et al. (30)	20	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal
Kim et al. (31)	20	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal
Ohn et al. (32)	18	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal
Starace et al. (33)	48	Subungual hyperkeratosis	White or yellow streaks	Nail surface scales	Reverse triangular pattern	Superficial transverse striation	Longitudinal

TABLE 3: Dermoscopic features of fungal melanonychia.

Pattern	Pigmentation	Color	Melanonychia melanoma-associated patterns			
Distal partial diffuse	Prox partial diffuse	Distal linear	Total diffuse	Hutchinson's sign	Pseudo- Hutchinson's sign	Triangular sign
TABLE 4 Quality assessment of the included studies.

First author and publication date	Risk of bias	Applicability						
Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard		
Abdallah et al. (10)	Unclear	Low	Low	Low	Low	Low	Low	
Ankad et al. (19)	Low	Low	High	Low	Low	Low	Low	
Bhat et al. (11)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Bodman (20)	Unclear	Low	Low	Low	Low	Low	Low	
Chetana et al. (12)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
De Crignis et al. (27)	Low	Low	N/A (no control group)	Low	Low	Low	High	Low
El-Hoshy et al. (13)	Unclear	Low	Low	Low	Low	Low	Low	
Elfar et al. (21)	Low							
Elmas et al. (29)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Islamoglu et al. (22)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Jesus-Silva et al. (14)	Unclear	Low	Low	Low	Low	Low	Low	
Jo et al. (26)	Low							
Kayarkatte et al. (15)	Unclear	Low	Low	Low	Low	Low	Low	
Kaynak et al. (28)	Unclear	Low	Low	Low	Low	Low	Low	
Kilinc Karaaslan et al. (30)	Unclear	Low	N/A (no control group)	Low	Low	Low	Low	
Kim et al. (31)	Unclear	Low	Low	Low	Low	Low	Low	
Maatouk et al. (16)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Nada et al. (17)	Low							
Nargis et al. (18)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Ohn et al. (32)	Unclear	Low	Low	Low	Low	Low	Low	
Piraccini et al. (23)	Low							
Ramos Pinheiro et al. (24)	Low							
Starace et al. (33)	Low	Low	N/A (no control group)	Low	Low	Low	Low	
Yadav et al. (25)	Unclear	Low	Low	Low	Low	Low	High	Low

included spikes or spiked patterns, ruins appearance, aspect or pattern and longitudinal striae. After pooling the dermoscopic terminology that were closely related or used interchangeably, “spike pattern” and longitudinal striae had high specificity (96.2 and 95.6%, respectively) and moderate sensitivity (77.3 and 67.3%, respectively) for onychomycosis. Detecting these features can raise clinicians’ suspicion of onychomycosis and expedite further investigations. Ruins appearance, aspect or pattern and subungual hyperkeratosis had moderate sensitivity (71.6%) and specificity (64.7%) for onychomycosis as these features can also be observed in other nail disorders including nail psoriasis and allergic contact dermatitis. Other dermoscopic features characterizing onychomycosis were distal irregular termination, aurora borealis, homogenous leukonychia, and brown discoloration.

We also found that the most frequently described dermoscopic features of fungal melanonychia were longitudinal white or yellow streaks and nail surface scales. Unlike melanocytic melanonychia, fungal melanonychia is characterized by non-longitudinal homogenous pigmentation and reverse triangular patterns (32). Moreover, our data demonstrate that subungual hyperkeratosis frequently occurs in fungal melanonychia.

This study has some limitations. There was considerable heterogeneity in the study design and terminology definitions of the enrolled studies, which may have limited the strength of our study. We sought to clarify dermoscopic terminology by identifying commonly used terms and narrowing their definitions to accurately pool and compare the findings. Future studies with standardized terminology are necessary, ideally through an expert panel, to facilitate clear communication among clinicians.

To our knowledge, this is the first systematic review of dermoscopic features of onychomycosis. Given the limited sample sizes of existing studies on this topic, pooling their results provides us an overview of the most common features of onychomycosis and the frequency at which they present in patients. Understanding these characteristic dermoscopic features of onychomycosis can assist clinicians diagnose onychomycosis by the bedside.
Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

J-HM and CO: conceptualization, resources, and supervision. J-HM: methodology and project administration. YC, J-HM, and CO: validation. SL, JO, and LH: formal analysis. SL and LH: investigation, data curation, writing—original draft, and visualization. JO, YC, CO, and J-HM: writing—review and editing. All authors: software. All authors contributed to the article and approved the submitted version.

References

1. Marghoob NG, Liopyris K, James N. Dermoscopy: A Review of the Structures That Facilitate Melanoma Detection. J Am Osteopath Assoc. (2019) 119:380–90. doi: 10.7556/jaoa.2019.067
2. Pizzorni C, Giampetruzzi AR, Mondino C, Facchiano A, Abeni D, Paslino S et al. Nailfold capillaroscopic parameters and skin telangiectasia patterns in patients with systemic sclerosis. Microvasc Res. (2017) 111:20–4. doi: 10.1016/j.mvr.2016.12.003
3. Golinski J, Sar-Pomian M, Rudnicka L. Dermoscopic features of psoriasis of the skin, scalp and nails—a systematic review. J Eur Acad Dermatol Venereol. (2019) 33:648–60. doi: 10.1111/jdv.15344
4. Carli P, De Giorgi V, Crocetti E, Mannone F, Massi D, Chiariuga A et al. Improvement of malignant/benign ratio in excised melanocytic lesions in the ‘dermoscopy era’: a retrospective study 1997–2001. Br J Dermatol. (2004) 150:687–92. doi: 10.1111/j.0007-0963.2004.05860.x
5. Lipner SR, Scher RK. Onychomycosis: Clinical overview and diagnosis. J Am Acad Dermatol. (2019) 80:835–51. doi: 10.1016/j.jaad.2018.03.062
6. Fávero MILD, Bonetti AF, Domingos EL, Tonin FS, Pontarolo R. Oral antifungal therapies for toenail onychomycosis: a systematic review with network meta-analysis toenail mycosis: network meta-analysis. J Dermatol Treat. (2020) 31:121–30. doi: 10.1080/09546634.2020.1729336
7. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. (2009) 62:1006–12. doi: 10.1016/j.jclinepi.2009.06.003
8. McGrath TA, Alabouni M, Skidmore B, Koeveva DA, Bossuyt PMM, Moher D et al. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy included in systematic reviews. BMJ Med Res Methodol. (2003) 3:25. doi: 10.1186/1471-2288-3-25
9. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. (2003) 3:25. doi: 10.1186/1471-2288-3-25
10. Abdallah NA, Said M, Mahmoud MT, Omar MA. Onychomycosis: Correlation between the dermoscopic patterns and fungal culture. J Cosmet Dermatol. (2020) 19:1196–204. doi: 10.1111/jocd.13144
11. Bhat YJ, Mir MA, Keen A, Hassan I. Onychomycosis: an observational study in 257 patients from the Kashmir Valley of North India. Dermatol Pract Concept. (2018) 8:283–91. doi: 10.5826/dpc.0804a06
12. Chetana K, Menon R, David BG. Onychoscopic evaluation of onychomycosis in a tertiary care teaching hospital: a cross-sectional study from South India. Int J Dermatol. (2018) 57:837–42. doi: 10.1111/ijd.14088
13. El-Hoshy KH, Abdel Hay RM, El-Sherif RH, Salah Eldin M, Moussa MF. Nail dermatoscopy is a helpful tool in the diagnosis of onychomycosis: A case control study. Eur J Dermatol. (2015) 25:494–5. doi: 10.1684/ejd.2015.2637
14. Jesus-Silva MA, Fernandez-Martinez R, Roldan-Marin R, Arenas R. Dermoscopic patterns in patients with a clinical diagnosis of onychomycosis—results of a prospective study including data of potassium hydroxide (KOH) and culture examination. Dermatol Pract Concept. (2015) 5:39–44. doi: 10.5826/dpc.0502a05
15. Kayarkatte MN, Singal A, Pandhi D, Das S, Sharma S. Nail dermatoscopy (onychoscopy) findings in the diagnosis of primary onychomycosis: A cross-sectional study. Indian J Dermatol Venereol Leprol. (2020) 86:341–9. doi: 10.4103/jidvl.JIDVL_100_19
16. Maatouk I, Haber R, Bennamhi N. Onychoscopic evaluation of distal and lateral subungual onychomycosis: A cross-sectional study in Lebanon. Curet. (2019) 5:41–4. doi: 10.18502/cmm.5.2.1161
17. Nada EEA, El Taieb MA, El-Feky MA, Ibrahim HM, Hegazy EM, Mohamed AE et al. Diagnosis of onychomycosis clinically by nail dermatoscopy versus microbiological diagnosis. Arch Dermatol. (2020) 312:207–12. doi: 10.1007/s00403-019-02008-6
18. Nargis T, Pinto M, Shenoy MM, Hegde S. Dermoscopic Features of Distal Lateral Subungual Onychomycosis. Indian Dermatol Online J. (2018) 9:16–9. doi: 10.4103/idoj.IDOJ_475_19
19. Arkad BS, Gupta A, Alekhya R, Saiptiya M. Dermoscopy of onycholyis due to nail psooriasis, onychomycosis and trauma: a cross sectional study in skin of color. Indian Dermatol Online J. (2020) 11:777–83. doi: 10.4103/idoj.IDOJ_40_17
20. Bodman MA. Point-of-care diagnosis of onychomycosis by dermatoscopy. J Am Podiatr Med Assoc. (2017) 107:413–8. doi: 10.7547/16-183
21. Ellar NN, Abdell-Latif AM, Labeh EA. Role of onychoscopy in differentiation between distal subungal onychomycosis, psoriasis, and traumatic onycholysis. J Egypt Women Dermatol Soc. (2015) 12:145–9. doi: 10.1097/01.EWX.0000469303.65552.a1
22. Islamoglu ZGK, Demibars A, Unal M, Findik D. Nail digital dermatoscopy in onychomycosis: a correlation with clinical type, gender, and culture examination. Erciyes Med J. (2019) 41:288–94. doi: 10.14744/ed.2019.94210
23. Piraccini BM, Balestri R, Starace M, Rech G. Nail digital dermatoscopy (onychoscopy) in the diagnosis of onychomycosis. J Eur Acad Dermatol Venereol. (2013) 27:509–13. doi: 10.1111/j.1468-3083.2011.04523.x
24. Ramos Pinheiro R, Dias Domingues T, Sousa V, Galhardas C, Apostu M, Lencarste A, et al. Comparative study of onychomycosis and traumatic toenail onychodystrophy dermatoscopic patterns. J Eur Acad Dermatol Venereol. (2019) 33:786–92. doi: 10.1111/jdv.15358

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
25. Yadav TA, Khopkar US. White streaks: dermoscopic sign of distal lateral subungual onychomycosis. *Indian J Dermatol.* (2016) 61:174151. doi: 10.4103/0019-5154.174151

26. Jo G, Park JS Yu DA, Ohn J, Shu SL, Mun JH. Onychoscopy of trachyonychia: an analysis of 30 patients and comparison with onychomycosis. *Br J Dermatol.* (2018) 179:491-3. doi: 10.1111/bjd.16431

27. De Crignis G, Valgas N, Renzef P, Leverone A, Nakamura R. Dermatoscopy of onychomycosis. *Int J Dermatol.* (2014) 53:e80–e157. doi: 10.1111/ijd.12104

28. Kaynak E, Goktay F, Gunes P, Sayman E, Turan D, Baygul A et al. The role of dermatoscopy in the diagnosis of distal lateral subungual onychomycosis. *Arch Dermatol.* (2018) 310:57–69. doi: 10.1001/s00403-017-1796-2

29. Elmas OF, Metin MS. Dermoscopic findings of fungal melanonychia. *Postepy Dermatol.* (2020) 37:180–3. doi: 10.5114/ida.2020.94836

30. Kilinc Karaarslan I, Ayd T, Ayrilmus D, Akalin T, Ordemir F. Dermoscopic features in fungal melanonychia. *Clin Exp Dermatol.* (2015) 40:271-8. doi: 10.1111/ced.12552

31. Kim H-j, Kim T-W, Park S-M, Lee H-J, Kim G-W, Kim H-S et al. Clinical and Dermoscopic Features of Fungal Melanonychia: Differentiating from Subungual Melanoma. *Ann Dermatol.* (2020) 32:460-5. doi: 10.5021/ad.2020.32.6.460

32. Ohn J, Chee YS, Park J, Mun JH. Dermoscopic patterns of fungal melanonychia: A comparative study with other causes of melanonychia. *J Am Acad Dermatol.* (2017) 76:488–93.e2. doi: 10.1016/j.jaad.2016.08.013

33. Starace M, Ambrogio F, Bruni F, Piraccini BM, Alessandini A. Dermatophytic melanonychia: A Case Series of an increasing disease. *Mycoses.* (2021) 64:511–9. doi: 10.1111/myc.13237

34. Lan J, Wen J, Cao S, Yin T, Jiang B, Lou Y et al. The diagnostic accuracy of dermoscopy and reflectance confocal microscopy for amelanotic/hypomelanotic melanoma: a systematic review and meta-analysis. *Br J Dermatol.* (2020) 183:210–9. doi: 10.1111/bjd.18722

35. Reiter O, Mimouni I, Gdalevich M, Marghoob AA, Levi A, Hodak E et al. The diagnostic accuracy of dermoscopy for basal cell carcinoma: A systematic review and meta-analysis. *J Am Acad Dermatol.* (2019) 80:1380–8. doi: 10.1016/j.jaad.2018.12.026