Multiple configurations of EGFR exon 20 resistance mutations after first- and third-generation EGFR TKI treatment affect treatment options in NSCLC.

Permalink
https://escholarship.org/uc/item/0071f4ts

Journal
PloS one, 13(11)

ISSN
1932-6203

Authors
Goldberg, Michael E
Montesion, Meagan
Young, Lauren
et al.

Publication Date
2018

DOI
10.1371/journal.pone.0208097

Peer reviewed
RESEARCH ARTICLE

Multiple configurations of EGFR exon 20 resistance mutations after first- and third-generation EGFR TKI treatment affect treatment options in NSCLC

Michael E. Goldberg, Meagan Montesion, Lauren Young, James Suh, Joel Greenbowe, Mark Kennedy, Giuseppe Giaccone, Wallace L. Akerley, Afshin Dowlati, Benjamin C. Creelan, James K. Hicks, Paul J. Hesketh, Karen L. Kelly, Jonathan W. Riess, Vincent A. Miller, Philip J. Stephens, Garrett M. Frampton, Siraj Ali, Jeffrey P. Gregg, Lee A. Albacker

1 Foundation Medicine Inc., Cambridge, Massachusetts, United States of America, 2 Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C., United States of America, 3 Huntsman Cancer Institute, Salt Lake City, Utah, United States of America, 4 University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America, 5 H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America, 6 Lahey Health Cancer Institute, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America, 7 University of California Davis Cancer Center, Sacramento, California, United States of America, 8 Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, California, United States of America

Current address: Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

* Current address: Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

† Current address: Fredrick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

‡ Current address: Fredrick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

§ Current address: Fredrick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

¶ Current address: Fredrick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Washington D.C., United States of America

Abstract

After sequential treatment with first- and third-generation EGFR tyrosine kinase inhibitors (TKIs), EGFR-mutant non-small cell lung cancers frequently harbor multiple resistance mutations in exon 20 of EGFR including T790M, mediating resistance to first-generation TKIs, and at codons 792, 796, or 797 mediating resistance to third-generation TKIs. However, whether these resistance mutations are in cis or trans has therapeutic implications for patients. We analyzed a cohort of 29 patients with NSCLC harboring EGFR mutations at codons 792, 796, or 797 to establish the configuration of these mutations. We performed hybrid capture-based, next-generation sequencing on formalin-fixed paraffin-embedded biopsy tissue or liquid biopsy. 27 samples had both a T790M mutation and a mutation at codons 792, 796, or 797. In all of these cases, the mutations were found in the cis configuration; the trans configuration was not observed. Two patients’ samples harbored a mutation at codon 797 but no T790M mutation. In these two cases, longitudinal analysis showed earlier biopsies harbored EGFR T790M, which was undetectable following osimertinib treatment. Treatment of one these patients with both first- and third-generation EGFR TKIs resulted in a mixed response. Here we describe multiple configurations of EGFR T790M and third-generation TKI resistance mutations at codons 792, 796, and 797. These mutations are most commonly found in cis, which confers resistance to all current EGFR TKIs. We also describe two patients that exhibited T790M loss with acquisition of a mutation at codon 797. In addition, one of these patients, with an EGFR C797S in a lung biopsy was
subsequently found to have EGFR C797N in a later biopsy of pleural fluid, highlighting the
dynamic multiclonal nature of advanced NSCLC.

Introduction

EGFR tyrosine kinase inhibitors (TKIs) have exhibited clinically significant therapeutic
responses in non-small cell lung cancer (NSCLC) patients with tumors that harbor the most
frequent EGFR driver mutations [1–3]. However, these clinical responses are often short lived,
and patients commonly relapse after acquiring an EGFR T790M mutation [4]. As a result, a
third generation of TKIs towards EGFR were developed that preferentially bind mutant EGFR
proteins in a covalent manner [5, 6]. The most frequent mutations in EGFR that cause resis-
tance to third-generation TKIs substitute the cysteine at codon 797 in exon 20, which prevents
covalent binding [7]. Additional mutations in exon 20 at codons 792 and 796 have also been
shown to confer resistance to third-generation TKIs [8]. Several mutations in other exons of
EGFR have also been recently identified to confer third generation EGFR-TKI resistance
(L718/G719) [9].

After treatment with available EGFR targeted therapies, a tumor could potentially harbor
three co-mutations within EGFR: a driver, T790M, and third-generation TKI resistance muta-
tion, which has therapeutic and drug development implications. Preclinical work has shown
that cells with T790M and C797S mutations on different copies of EGFR (in trans) remain sen-
sitive to first- and third-generation TKIs in combination, while cells with T790M and C797S
mutations on the same copy of EGFR (in cis) are resistant to all current EGFR TKIs [10]. Two
patients have been described with T790M and C797S mutations in trans who responded to
treatment with first- and third-generation EGFR TKIs [11, 12]. To better understand the rela-
tionship between EGFR driver, T790M, and third-generation TKI resistance mutations in
exon 20, we analyzed a cohort of 29 patients with NSCLC harboring EGFR driver and a muta-
tion at codons 792, 796, or 797.

Methods and cohort

Study consent

This study, including the consent procedure, was reviewed and approved by the Western Insti-
tutional Review Board (WIRB, Puyallup WA, clientservices@wirb.com). Written patient con-
sent was obtained at the time of testing. Patients were not consented for release of raw
sequencing data.

Sequence analysis

Clinical samples were tested at a CLIA (Clinical Laboratory Improvement Amendments)-cer-
tified, College of American Pathology-accredited, and New York State-accredited laboratory
(Foundation Medicine, Cambridge, MA) for comprehensive genomic profiling (CGP) by
next-generation sequencing [13]. Tissue samples were sequenced as previously described to a
median unique coverage >250X [13]. Liquid biopsy samples were sequenced to >5000X
unique coverage [14]. To identify the configuration of T790 and third-generation TKI resis-
tance mutations in exon 20, we analyzed sequencing reads for each sample that spanned both
loci. The number of reads that harbored mutations at one or both positions was tabulated and
used to infer cis or trans status.
Data availability

All consented data are within the paper and its Supporting Information files. WIRB has not authorized and patients were not consented for the release of raw sequencing data, which contains potentially identifiable information.

Results

Study cohort

We examined a cohort of 29 NSCLC cases with an EGFR mutation at codons 792, 796, or 797 (Table 1). The average age of the cohort was 59 and 62% (18/29) were female. Sequencing was performed on FFPE tissue in 22/29 cases and cell free DNA from liquid biopsy in 7/29 cases. We obtained the clinical history of nine patients and confirmed that all nine had received a first or second-generation EGFR TKI followed by a third-generation TKI (Fig 1A and 1B and Table 1 and S1 File). Patients responded for 6–28 months on first- or second-generation inhibitors and for 5–16 months on third-generation inhibitors (Fig 1A and 1B).

We also analyzed longitudinal samples from eight patients. In the cohort with clinical history, CGP of the original biopsy of patients 1 and 5 found the EGFR driver mutation (Table 2) but found no mutations at codons 790, 792, 796, and 797. CGP of tissue after relapse on first- and second- generation EGFR TKI was performed on patients 1, 6, and 9 and found the original EGFR driver mutation (Table 2) in addition to a T790M mutation. In the cohort without clinical history, we performed CGP on longitudinal samples from patients 18, 22, 25, and 28. In these cases, the earliest sample was unmutated at codons 792, 796, and 797.

EGFR T790M and third-generation TKI resistance mutations are in cis

We analyzed the genomic landscape of 29 patients with an EGFR driver mutation and a mutation in EGFR codon 792, 796, or 797 (Table 2). The most frequent mutation at these codons was C797S, which was found in 26/29 patients. 3 patients also exhibited multiple resistance mutations with a C797S co-occurring with L792H in two cases and a C797S and C797N observed in separate samples from the same patient (Table 2, Patient 1). Although we did not observe any samples in the present cohort harboring a mutation at codon 796, this mutation has been previously described [8]. The primary driver mutation was an EGFR exon 19 deletion in 83% (24/29) of samples while 17% (5/29) had an EGFR L858R mutation (Table 2). The T790M resistance mutation co-occurred with mutations at 792 and 797 in the same sample for

Table 1. Treatment time on EGFR TKIs.	Patient	Stage at Dx	1st/2nd gen. TKI	response length (mo.)	3rd gen. TKI	response length (mo.)
1	IV	afatinib	8	osimertinib	5	
2	IV	afatinib	23	osimertinib	8	
3	IV	erlotinib	9	osimertinib	11	
4	IV	erlotinib	6	osimertinib	5	
5	IV	erlotinib	8	osimertinib	11	
6	IV	erlotinib	19	osimertinib	9	
7	IIA	erlotinib	13	rociletinib	11	
8	NA	erlotinib	28	osimertinib	16	
9	IV	erlotinib	8	osimertinib	10	

Dx, diagnosis; gen., generation; TKI, tyrosine kinase inhibitor

https://doi.org/10.1371/journal.pone.0208097.t001
Fig 1. Treatment history and cis-trans analysis of NSCLC with co-mutations in EGFR at T790M and codon 792 or 797. Time on therapy (filled line) plus emergence of resistance mutations (arrows) is presented for tumors (A) that had T790M loss and (B) those that retained T790M. (C) An analysis of sequencing reads spanning EGFR T790 and C797. Only reads with at least one mutation of interest were counted.

https://doi.org/10.1371/journal.pone.0208097.g001
27/29 patients and 2/29 patients exhibited an initial sample with T790M and a later sample with a mutation at codon 797 but no T790M mutation (Fig 1A).

We assessed whether EGFR T790M and mutations at codons 792 or 797 were in cis or in trans by analyzing sequencing reads that spanned EGFR codons 790 to 797 and contained a mutation in codon 790, 792, or 797. In all 27 cases harboring a T790M and a mutation at codon 792 or 797, nearly all reads with a mutation at codon 792 or 797 also contained a T790M mutation (Fig 1C, 14.5–100% of sequencing reads contained both mutations). Nearly all remaining reads contained only a T790M mutation, which is consistent with the emergence of this mutation earlier in treatment. In 10 samples, we detected reads that contained only a 792 or 797 mutation, but these were at frequencies of <2%. Therefore, we concluded that T790M and codon 792 or 797 mutations for all samples were in cis.

Case studies for EGFR C797 mutation, T790M loss tumors

In two samples an EGFR C797 mutation without a T790M mutation after treatment with osimertinib was identified. Interrogation of multiple biopsies along the treatment history of these
two patients showed that these patients relapsed with \textit{EGFR} T790M alterations after afatinib treatment and then subsequently lost the \textit{EGFR} T790M mutation after treatment with osimertinib (Fig 1A).

Patient 1: A 53-year-old woman was diagnosed with stage IV lung adenocarcinoma (T3N2M1). CGP detected an \textit{EGFR} exon 19 deletion and she was started on afatinib and had a partial response. After progression at 8 months, CGP was performed on a new biopsy and showed an \textit{EGFR} exon 19 deletion and T790M mutation. She started osimertinib and had a partial response but had progression at 5 months. CGP on a new biopsy found an \textit{EGFR} exon 19 deletion and C797S mutation, but the \textit{EGFR} T790M mutation was not detected. She was started on gefitinib and osimertinib and tolerated it well. Follow up at 3 months showed a mixed response with 2 lesions progressing, 2 lesions stable and no new lesions. At 6 months, new metastases were observed. Further CGP testing on a pleural fluid sample at 6 months found the original \textit{EGFR} exon 19 deletion with no \textit{EGFR} T790M or C797S mutation, but instead a C797N mutation.

Patient 2: A 41-year-old man was diagnosed with stage IV lung adenocarcinoma with metastases to the brain. Genomic testing revealed an \textit{EGFR} exon 19 deletion. The patient was treated with afatinib for 23 months until progression. Liquid biopsy testing found the \textit{EGFR} exon 19 deletion in addition to an \textit{EGFR} T790M mutation and \textit{EGFR} amplification. The patient was started on osimertinib and responded well, but progressed after 8 months. The patient stopped osimertinib treatment and started on a clinical trial with a cMet inhibitor. At that time, CGP found the original \textit{EGFR} exon 19 deletion, an \textit{EGFR} C797S mutation not detected in previous tests, and no evidence of the prior \textit{EGFR} T790M mutation.

Discussion

\textit{EGFR} T790M is the most common resistance mutation to first-generation \textit{EGFR} TKIs [1–3]. These patients then receive third-generation \textit{EGFR} TKIs and can relapse with a third \textit{EGFR} co-mutation at codon 792, 796, or 797 [5–8]. The configuration of \textit{EGFR} T790M and mutations at codons 792 or 797 was in \textit{cis} in 27/27 patient samples with both mutations, suggesting that the \textit{trans} configuration is rare given this treatment. These findings are consistent with data in the phase 1 AURA study where one of five patients were identified with \textit{trans} T790M, C797S [7, 15]. Two isolated case reports describe \textit{trans} T790M, C797S mutations in two patients who benefited from dual therapy with 1st and 3rd generation \textit{EGFR} TKIs [11, 12]. In addition, T790M loss has been reported in 6 of 12 patients treated with rociletinib [16]. Thress et al. also described osimertinib resistance with either T790M loss and wildtype C797, T790M/ C797S double mutant, or T790M positive and wild-type C797 [7]. Here, we report another variation on loss of T790M with the acquisition of a mutation at \textit{EGFR} C797. In our cases, presumably the T790M mutation is not completely lost but only undetectable, suggesting that treatment with first- and third-generation \textit{EGFR} TKIs may be an option for these patients. One of the two patients with T790M loss received this treatment and exhibited a mixed response initially with subsequent progression. We speculate that polyclonality of resistance mechanisms may explain the mixed response. While we have focused on mutations in \textit{EGFR}, resistance alterations in other genes, such as \textit{MET} amplification, could render a tumor non-responsive to any \textit{EGFR} targeted therapy [17]. In support of this speculation, we observed switching of resistance mutations from C797S in a lung biopsy to C797N in a pleural fluid biopsy, which highlights the dynamic clonal evolution occurring in treated tumors. Indeed, a patient with 8 different osimertinib resistance mutations was recently described [8].

Recent clinical trials have led to the approval of osimertinib in a first-line setting for \textit{EGFR} mutant NSCLC [18, 19]. Notably, 0/9 patients in the first-line osimertinib phase 1 trial
acquired EGFR T790M. Therefore, mutations at EGFR codons 792, 796, or 797 would arise first and patients may then receive first-generation EGFR TKIs with subsequent emergence of EGFR T790M, which may affect the likelihood of observing a cis or trans configuration. Given the complexities of treatment strategy and modes of resistance, interrogating the relationship between EGFR T790M and third-generation EGFR TKI resistance mutations may be necessary to guide patient therapy.

Supporting information

S1 File. Case studies for EGFR T790M, C797 mutant tumors. Text of case studies for patients 3–9. (DOCX)

Author Contributions

Conceptualization: Michael E. Goldberg, Siraj Ali, Lee A. Albacker.

Data curation: Michael E. Goldberg, James Suh, Giuseppe Giaccone, Wallace L. Akerley, Afshin Dowlati, Benjamin C. Creelan, James K. Hicks, Paul J. Hesketh, Karen L. Kelly, Jonathan W. Riess, Garrett M. Frampton, Jeffrey P. Gregg, Lee A. Albacker.

Formal analysis: Michael E. Goldberg, Lee A. Albacker.

Investigation: Michael E. Goldberg, Meagan Montesion, James Suh, Giuseppe Giaccone, Wallace L. Akerley, Afshin Dowlati, Benjamin C. Creelan, James K. Hicks, Paul J. Hesketh, Karen L. Kelly, Jonathan W. Riess, Siraj Ali, Jeffrey P. Gregg, Lee A. Albacker.

Methodology: Michael E. Goldberg, Lauren Young, Joel Greenbowe, Mark Kennedy, Garrett M. Frampton, Jeffrey P. Gregg, Lee A. Albacker.

Project administration: Lee A. Albacker.

Supervision: Vincent A. Miller, Philip J. Stephens, Garrett M. Frampton, Siraj Ali, Jeffrey P. Gregg, Lee A. Albacker.

Writing – original draft: Michael E. Goldberg, Jeffrey P. Gregg, Lee A. Albacker.

Writing – review & editing: Michael E. Goldberg, Meagan Montesion, Vincent A. Miller, Philip J. Stephens, Garrett M. Frampton, Siraj Ali, Jeffrey P. Gregg, Lee A. Albacker.

References

1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350(21):2129–39. https://doi.org/10.1056/NEJMoa040938 PMID: 15118073

2. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304(5676):1497–500. https://doi.org/10.1126/science.1099314 PMID: 15118125

3. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004; 101(36):13306–11. https://doi.org/10.1073/pnas.0405220101 PMID: 15329413

4. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005; 2(3):e73. https://doi.org/10.1371/journal.pmed.0020073 PMID: 15737014
5. Cross DA, Ashton SE, Ghiorgiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014; 4(9):1046–61. https://doi.org/10.1158/2159-8290.CD-14-0337 PMID: 24893891

6. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. 2017; 376(7):629–40. https://doi.org/10.1056/NEJMoa1612674 PMID: 27959700

7. Thress KS, Paveletz CP, Felip E, Cho BC, Stetson D, Dougherty B, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015; 21(6):560–2. https://doi.org/10.1038/nm.3854 PMID: 25939061

8. Ou SI, Cui J, Schrock AB, Goldberg ME, Zhu VW, Albacker L, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer. 2017; 108:228–31. https://doi.org/10.1016/j.lungcan.2017.04.003 PMID: 28625641

9. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin Cancer Res. 2018; 24(13):3097–107. https://doi.org/10.1158/1078-0432.CCR-17-2310 PMID: 29506987

10. Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin Cancer Res. 2015; 21(17):3924–33. https://doi.org/10.1158/1078-0432.CCR-15-0560 PMID: 25964297

11. Wang Z, Yang JJ, Huang J, Ye JY, Zhang XC, Tu HY, et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017; 12(11):1723–7. https://doi.org/10.1016/j.jtho.2017.06.017 PMID: 28662863

12. Arulananda S, Do H, Musafer A, Mitchell P, Dobrovic A, John T. Combination Osimertinib and Gefitinib in C797S and T790M EGFR-Mutated Non-Small Cell Lung Cancer. J Thorac Oncol. 2017; 12(11):1728–32. https://doi.org/10.1016/j.jtho.2017.08.006 PMID: 28843359

13. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013; 31(11):1023–31. https://doi.org/10.1038/nbt.2696 PMID: 24142049

14. Clark TA, Chung JH, Kennedy M, Hughes JD, Chennagiri N, Lieber DS, et al. Analytical Validation of a Hybrid Capture-Based Next-Generation Sequencing Clinical Assay for Genomic Profiling of Cell-Free Circulating Tumor DNA. J Mol Diagn. 2018; 20(5):686–702. https://doi.org/10.1016/j.jmoldx.2018.05.004 PMID: 29936259

15. Janne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015; 372(18):1689–99. https://doi.org/10.1056/NEJMoa1411817 PMID: 25923549

16. Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, et al. Heterogeneity Underlies the Emergence of EGFR T790M Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor. Cancer Discov. 2015; 5(7):713–22. https://doi.org/10.1158/2159-8290.CD-15-0399 PMID: 25930477

17. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007; 316(5827):1039–43. https://doi.org/10.1126/science.1141478 PMID: 17463250

18. Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, et al. Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2017; JCO2017747576.

19. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2017.