The rainbow vertex connection number of edge corona product graphs

D A Fauziah 1,2, Dafik 1,3, I H Agustin 1,2, R Alfari 1,3

1 CGANT – University of Jember, Indonesia
2 Mathematics Depart. University of Jember, Indonesia
3 Mathematics Edu. Depart. University of Jember, Indonesia

E-mail: alvianidinda@gmail.com

Abstract. Let G_1, G_2 be a special graphs with vertices of G_1 1, 2, ..., n and edges of G_1 1, 2, ..., m. The generalized edge corona product of graphs G_1 and G_2, denoted by $G_1 \circ G_2$ is obtained by taking one copy of graph G_1 and m copy of G_2, thus for each edge $e_k = ij$ of G, joining edge between the two end-vertices i, j of e_k and each vertex of the k-copy of G_2. A rainbow vertex-coloring graph G where adjacent vertices $u-v$ and its internal vertices have distinct colors. A path is called a rainbow path if no two verticess of the path have the same color. A rainbow vertex-connection number of graph G is minimum number of colors in graph G to connected every two distinct internal vertices u and v such that a graph G naturally rainbow vertex-connected, denoted by $rvc (G)$. In this paper, we determine minimum integer for rainbow vertex coloring of edge corona product on cycle and path such as $P_n \circ P_m, P_n \circ C_m, C_n \circ P_m, and C_n \circ C_m$.

1. Introduction

The concept of rainbow connection in graphs as follows at the first time was introduced in 2008 by Chartrand et al [2]. Let $G = (V, E)$ be a non trivial and connected, the rainbow connection number of G is the minimum number of colors in a rainbow connected edge-coloring of G, denoted by $rc(G)$. The graph G is rainbow-connected if G has a rainbow $u-v$ path for every two vertices u and v of G. The graph G with size m and diameter $diam(G)$ be a connected graph, then

$$m \geq rc(G) \geq diam(G). \quad (1)$$

Krivelevich and Yuster [5] was proposes a new concept of a rainbow connection and called by rainbow vertex-connected. A rainbow vertex-coloring graph G where adjacent vertices $u-v$ and its internal vertices have distinct colors. A path is called a rainbow path if no two verticess of the path have the same color. A path is called a rainbow path if no two verticess of the path have the same color [8]. A vertex-colored graph G is rainbow connected if any two vertices are connected by a rainbow path. A rainbow vertex-connection number of graph G is minimum number of colors in graph G to connected every two distinct internal vertices u and v such that a graph G naturally rainbow vertex-connected, denoted by $rvc (G)$ [1].Several results on rainbow vertex-coloring of some families of graphs such as:
• Cycle C_n of order $n \geq 3$:

$$rvc(C_n) = \begin{cases}
0, & n = 3 \\
1, & n = 4, 5 \\
3, & n = 9 \\
\left\lceil \frac{n}{2} \right\rceil - 1, & n = 6, 7, 8, 10, 11, 12, 13 \text{ or } 15 \\
\left\lceil \frac{n}{2} \right\rceil, & n \geq 16 \text{ or } 14 [3]
\end{cases}$$

• Pencil graph P_n for $n \geq 2$, $rvc(P_n) = \left\lfloor \frac{n}{2} \right\rfloor$ if $n \leq 7$ and $rvc(P_n) = \left\lceil \frac{n}{2} \right\rceil + 1$ otherwise [9]

• Path P_n of order $n \geq 3$, $rvc(P_n) = n - 2$ [10]

Furthermore, X. Li and Y. Shi [7] studied the following theorem and gave the lower bound for $rvc(G)$.

Theorem A. Let G be a nontrivial connected graph of order n, then

$$rvc(G) \geq diam(G) - 1.$$ \hfill (2)

Hou Yaoping and Shiu Wai-Chee [4] observed edge corona product on simple graph. Let graph G_1 is a special graph with vertices $1, 2, ..., n$ and edges $e_1, e_2, ..., e_m$ and G_2 is special graphs too. The generalized edge corona product of graphs G_1 and G_2 denoted by $G_1 \circ G_2$, is obtained by taking one copy of graphs G_1 and m copy of G_2, thus for each edge $e_k = ij$ of G, joining edges between the two end-vertices i, j of e_k and each vertex of the k-copy of G_2[11].

2. Result

In this section, we determined our result of rainbow vertex coloring of edge corona product on cycle and path as follows. For every n and m are elements of natural number with $n \geq 2$ and $m \geq 3$.

2.1. The rainbow vertex-coloring of edge corona product on $P_n \circ P_m$

We start with a rainbow vertex-connection number of edge corona product of a two path on n vertices P_n and m vertices P_m. Edge corona product between two of path graph denoted by $P_n \circ P_m$ with $n \geq 2$ and $m \geq 2$. We present the rainbow vertex-coloring of edge corona product on $P_n \circ P_m$ graph as follows.

Theorem 2.1. Let G be a edge corona product of path graph P_n and P_m, the rainbow vertex-connection number of $P_n \circ P_m$ is $rvc(P_n \circ P_m)= n - 2$.

Proof. Path graph P_n with $n \geq 2$ has a vertex set $V(P_n) = \{u_i; 1 \leq i \leq n\}$ and an edge set $E(P_n) = \{u_iu_{i+1}; 1 \leq i \leq n - 1\}$. Edge corona product between two of path graph is denoted by $P_n \circ P_m$ with $n \geq 2$ and $m \geq 2$ has a vertex set $V(P_n \circ P_m) = \{u_i; 1 \leq i \leq n\} \cup \{v^k_j; 1 \leq j \leq m; 1 \leq k \leq n - 1\}$ and an edge set $E(P_n \circ P_m) = \{u_iu_{i+1}; 1 \leq i \leq n - 1\} \cup \{v^k_jv^k_{j+1}; 1 \leq j \leq m - 1; 1 \leq k \leq n - 1\}$.

Begin with $rvc(P_n \circ P_m) = n - 2$. Since $diam(P_n \circ P_m) = n - 1$, by using Theorem A, we have $rvc(P_n \circ P_m) \geq n - 2$. Furthermore to prove that $(P_n \circ P_m) \leq n - 2$, by vertex coloring v according to the following formula as follow:

$$f(v) = \begin{cases}
1, & \text{for } v = u_i; i = 1, n \\
i - 1, & \text{for } v = u_i; 2 \leq i \leq n - 1 \\
1, & \text{for } v = v^k_j; 1 \leq j \leq m; 1 \leq k \leq n - 1
\end{cases}$$
It easily to see that the colors of vertices are $n-1$, that is, $c: V(P_n \ast P_m) \rightarrow \{1,2,3,...,n-2\}$. Then $rvc(P_n \ast P_m) \leq n-2$. So, if we combining both of them, we have the vertices minimum colors is $rvc(P_n \ast P_m) = n-2$.

The following theorem we determine the rainbow vertex connection number of edge corona of a path P_n and a cycle graph C_m. Edge corona product of path and cycle graph denoted by $P_n \ast C_m$ such that a rainbow connection-number as follows

2.2. The rainbow vertex-coloring of edge corona product on $P_n \ast C_m$

Theorem 2.2. Let G be edge corona product of path P_n and cycle C_m graph, the rainbow vertex connection number of $P_n \ast C_m$ is $rvc(P_n \ast C_m) = n-2$.

Proof. Path graph P_n with $n \geq 2$ has a vertex set $V(P_n) = \{u_i ; 1 \leq i \leq n\}$ and an edge set $E(P_n) = \{u_i u_{i+1} ; 1 \leq i \leq n-1\}$. A cycle graph C_m with $m \geq 3$ has a vertices set $V(C_m) = \{u_i ; 1 \leq i \leq m\}$ and an edges set $E(C_m) = \{u_i u_{i+1} ; 1 \leq i \leq m-1\} \cup \{u_1 u_m\}$. Then $P_n \ast C_m$ has a vertex set $V(P_n \ast C_m) = \{u_i u_{i+1} ; 1 \leq i \leq n-1\} \cup \{v^k_j ; 1 \leq j \leq m; 1 \leq k \leq n-1\}$ and an edge set $E(P_n \ast C_m) = \{u_i u_{i+1} ; 1 \leq i \leq n-1\} \cup \{v^k_j u^k_{j+1} ; 1 \leq j \leq m-1; 1 \leq k \leq n-1\} \cup \{v^k_j v^k_{j+1}\}$

Begin with $rvc(P_n \ast C_m) = n-2$. Since $diam(P_n \ast C_m) = n-1$, by Theorem A, we have $rvc(P_n \ast C_m) \geq n-2$. Furthermore to prove that $(P_n \ast C_m) \leq n-2$, by vertex coloring v according to the following formula as follow:

$$f(v) = \begin{cases}
1, & \text{for } v = u_i; \ i = 1, n \\
 i-1, & \text{for } v = u_i; \ 2 \leq i \leq n-1 \\
 1, & \text{for } v = v^k_j; \ 1 \leq j \leq m; \ 1 \leq k \leq n-1
\end{cases}$$

It easily to see that the color of vertices are $n-1$, that is, $c: V(P_n \ast C_m) \rightarrow \{1,2,3,...,n-2\}$. Thus $rvc(P_n \ast C_m) \leq n-2$. So, if we combining both of them, we have the vertices minimum colors is $rvc(P_n \ast P_m) = n-2$.

Now we present the rainbow vertex connection number of edge corona product of a cycle graph on n vertices C_n and a path on m vertices P_m. Edge corona product of cycle graph and path is denoted by $C_n \ast P_m$ with $n \geq 3$ and $m \geq 2$, as follows

2.3. The rainbow vertex-coloring of edge corona product on $C_n \ast P_m$

Theorem 2.3. Let G be edge corona product of cycle C_n and path P_m, the rainbow vertex connection number of $C_n \ast P_m$, is

$$rvc(C_n \ast P_m) = \begin{cases}
\left\lceil \frac{n}{2} \right\rceil, & n \leq 4 \\
\left\lfloor \frac{n}{2} \right\rfloor, & n \geq 5
\end{cases}$$

Proof. Cycle graph C_m with $m \geq 3$ has a vertex set $V(C_m) = \{x_i ; 1 \leq i \leq m\}$ and an edge set $E(C_m) = \{u_i u_{i+1} ; 1 \leq i \leq m\} \cup \{u_1 u_m\}$. A path graph P_n with $n \geq 2$ has a vertex set $V(P_n) = \{u_i ; 1 \leq i \leq n\}$ and an edge set $E(P_n) = \{u_i u_{i+1} ; 1 \leq i \leq n-1\}$. Edge corona product of cycle graph and path is denoted by $C_n \ast P_m$ with $n \geq 3$ and $m \geq 2$ has a vertices set $V(C_n \ast P_m) = \{u_i ; 1 \leq i \leq n\} \cup \{v^k_j ; 1 \leq j \leq m; 1 \leq k \leq n\}$ and an edges set $E(C_n \ast P_m) = \{u_i u_{i+1} ; 1 \leq i \leq n-1\} \cup \{u_i u_{n} \cup \{u_i v^k_j ; 1 \leq j \leq m; 1 \leq k \leq n\} \cup \{v^k_j v^k_{j+1} ; 1 \leq j \leq m-1; 1 \leq k \leq n-1\} \cup \{v^k_j v^k_{j+1}\}$
Begin with $rvc(C_n \circ P_m) = \left\lfloor \frac{n}{2} \right\rfloor$, $2 \leq n \leq 4$. Since $diam(P_n \circ C_m) = \left\lceil \frac{n}{2} \right\rceil + 1$ by Theorem A, we have $rvc(C_n \circ P_m) \geq \left\lceil \frac{n}{2} \right\rceil$. Furthermore to prove that $rvc(C_n \circ P_m) \geq \left\lfloor \frac{n}{2} \right\rfloor$, by vertex coloring v according to the following formula as follows:

$$f(v) = \begin{cases}
1, & \text{for } v = u_i; \ i = 1, n \\
1 - i, & \text{for } v = u_i; \ 2 \leq i \leq n - 1 \\
1, & \text{for } v = v_j^k; \ 1 \leq j \leq m; \ 1 \leq k \leq n - 1
\end{cases}$$

It is easy to see that the color of vertices are $n-1$, that is, $c: V(C_n \circ P_m) \rightarrow \left\{1, 2, 3, ..., \left\lfloor \frac{n}{2} \right\rfloor \right\}$. Thus

$rvc(C_n \circ P_m) \leq \left\lfloor \frac{n}{2} \right\rfloor$. So if we combining both of them, we have the vertices minimum colors is $rvc(C_n \circ P_m) = \left\lfloor \frac{n}{2} \right\rfloor$.

On second step we show that $rvc(C_n \circ P_m) = \left\lceil \frac{n}{2} \right\rceil; n \geq 5$. Since $diam(P_n \circ C_m) = \left\lceil \frac{n}{2} \right\rceil + 1$ by Theorem A, we have $rvc(C_n \circ P_m) \geq \left\lceil \frac{n}{2} \right\rceil$. Furthermore to prove that $(C_n \circ P_m) \leq \left\lfloor \frac{n}{2} \right\rfloor$, by vertex coloring v according to the following formula as follows:

$$f(v) = \begin{cases}
1, & \text{for } v = u_i; \ i = 1, n \\
1 - i, & \text{for } v = u_i; \ 2 \leq i \leq n - 1 \\
1, & \text{for } v = v_j^k; \ 1 \leq j \leq m; \ 1 \leq k \leq n - 1
\end{cases}$$

It is easy to see that the color of vertices are $n-1$, that is, $c: V(C_n \circ P_m) \rightarrow \left\{1, 2, 3, ..., \left\lceil \frac{n}{2} \right\rceil \right\}$. Thus

$rvc(C_n \circ P_m) \leq \left\lceil \frac{n}{2} \right\rceil$. So if we combining both of them, we have the vertices minimum colors is $rvc(C_n \circ P_m) = \left\lfloor \frac{n}{2} \right\rfloor$.

The following theorem determine the rainbow vertex connection number of edge corona of a denoted by $C_n \circ C_m$ as follows.

2.4. The rainbow vertex-coloring of edge corona product on $C_n \circ C_m$

Theorem 2.4. Let G be edge corona product of cycle graph where n and m are a natural number with $n \geq 3$ and $m \geq 3$, the rainbow vertex coloring number of $C_n \circ C_m$ is

$rvc(C_n \circ C_m) = \begin{cases}
\left\lfloor \frac{n}{2} \right\rfloor, & n \leq 4 \\
\left\lfloor \frac{n}{2} \right\rceil, & n \geq 5
\end{cases}$

Proof. Edge corona product between of two cycle graph and path is denoted by $C_n \circ C_m$ with $n \geq 3$ and $m \geq 3$ has a vertex set $V(C_n \circ C_m) = \{u_i; 1 \leq i \leq n\} \cup \{v_j^k; 1 \leq j \leq m; 1 \leq k \leq n\}$ and an edge set $E(C_n \circ C_m) = \{u_i u_{i+1}; 1 \leq i \leq n - 1\} \cup \{u_i v_j^k; 1 \leq i \leq n; 1 \leq j \leq m; 1 \leq k \leq n - 1\} \cup \{v_j^k v_{j+1}^k; 1 \leq j \leq m - 1; 1 \leq k \leq n - 1\}$

Begin with $rvc(C_n \circ P_m) = \left\lfloor \frac{n}{2} \right\rfloor; 2 \leq n \leq 4$. Since $diam(C_n \circ C_m) = \left\lceil \frac{n}{2} \right\rceil + 1$, by Theorem A, we have $rvc(C_n \circ C_m) \geq \left\lceil \frac{n}{2} \right\rceil$. Furthermore to prove that $(C_n \circ C_m) \leq \left\lfloor \frac{n}{2} \right\rceil$, by vertex coloring v according to the following formula as follows:

$$f(v) = \begin{cases}
1, & \text{for } v = u_i; \ i = 1, n \\
1 - i, & \text{for } v = u_i; \ 2 \leq i \leq n - 1 \\
1, & \text{for } v = v_j^k; \ 1 \leq j \leq m; \ 1 \leq k \leq n - 1
\end{cases}$$
It is easily to see that the color of vertices are \(\left\lfloor \frac{n}{2} \right\rfloor \) for \(n \leq 4 \), that is, \(c : V(C_n \circ P_m) \rightarrow \{1, 2, 3, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \} \). Thus \(rvc(C_n \circ P_m) \leq \left\lfloor \frac{n}{2} \right\rfloor \). So if we combining both of them, we have the vertices minimum colors is \(rvc(C_n \circ P_m) = \left\lfloor \frac{n}{2} \right\rfloor \).

On second step we show that \(rvc(C_n \circ P_m) = \left\lceil \frac{n}{2} \right\rceil; \ n \geq 5 \). Since \(diam(P_n \circ C_m) = \left\lfloor \frac{n}{2} \right\rfloor + 1 \) by Theorem A, we have \(rvc(C_n \circ P_m) \geq \left\lfloor \frac{n}{2} \right\rfloor \). Furthermore to prove that \((C_n \circ P_m) \leq \left\lceil \frac{n}{2} \right\rceil \), by vertex coloring \(v \) according to the following formula as follows:

\[
f(v) = \begin{cases}
1, & \text{for } v = u_i; \ i = 1, n \\
1, & \text{for } v = v_i; \ 2 \leq i \leq n - 1 \\
i - 1, & \text{for } v = u_i; \ 2 \leq i \leq n - 1 \\
1, & \text{for } v = v_j; \ 1 \leq j \leq m; \ 1 \leq k \leq n - 1
\end{cases}
\]

It is easily to see that the color of vertices are \(\left\lceil \frac{n}{2} \right\rceil \) for \(n \geq 5 \), that is, \(c : V(C_n \circ P_m) \rightarrow \{1, 2, 3, \ldots, \left\lceil \frac{n}{2} \right\rceil \} \). Thus \(rvc(C_n \circ P_m) \leq \left\lceil \frac{n}{2} \right\rceil \). So if we combining both of them, we have the vertices minimum colors is \(rvc(C_n \circ P_m) = \left\lceil \frac{n}{2} \right\rceil \).

3. Conclusion
In this paper, we have determined the exact values of total rainbow connection number of edge corona product of cycle and path on such as \(P_n \circ P_m, P_n \circ C_m, C_n \circ P_m, \) dan \(C_n \circ C_m \) depend on \(rvc(G_1) \) as follows \(rvc(P_n \circ P_m) \) and \(rvc(P_n \circ C_m) \) is \(n - 2 \), \(C_n \circ P_m \) dan \(C_n \circ C_m \) is \(\left\lceil \frac{n}{2} \right\rceil \), \(n \geq 5 \). As we did this proof, it was difficult to get a minimum rainbow vertex connection number. Thus, it still gives the following open problem.

Open Problem 1. Let \(G \) be edge corona product of cycle and any graph, determine sharper lower bound of \(rvc \ (G) \)

Acknowledgement
We are gratefully acknowledge support from CGANT-University of Jember in 2018.

References
[1] Agustin, I. H., Dafik, A.W Gembong, Alfarisi. R 2017 On Rainbow k-Connection Number of Special Graphs and It’s Sharp Lower Bound Journal of Physics: Conference Series 885 1-9
[2] Chartrand G, Johns G L, McKeon K A and Zhang P 2008 Rainbow Connection in Graphs Mathematica Bohemica 133 1 85-98
[3] Dafik et al. 2018 On the Strong Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product Conference Series 1008 1-6
[4] Hou Yaoping and Shiu Wai-Chee 2010 The Spectrum of The Edge Corona of Two Graphs 20 2 2-3
[5] Krivelevich M and Yuster R 2009 The Rainbow Connection of a Graph is (at most) Reciprocal to Its Minimum Degree Three J Graph Theory 63 3 185-91
[6] Li X and Liu S 2011 Rainbow Vertex-Connection Number of 2-Connected Graphs arxiv:1110.5770v1[math.CO]
[7] Li X and Shi Y 2013 On the Rainbow Vertex-Connection Discussiones Mathematicae Graph Theory 33 307-13
[8] M. S Hasan, et al., 2018 On the Total Rainbow Connection of The Wheel Related Graphs.
[9] Simamora D N S and Salman A N M 2015 The Rainbow (vertex) Connection Number of Pencil Graphs Procedia Computer Science 74 138-42
[10] Susanti B H, Salman. A N M, Simanjuntak R 2015 Upper Bounds for Rainbow 2-Connectivity of the Cartesian Product of a Path and a Cycle Procedia Computer Science 74 151 – 154
[11] S. Barik, S. Pati, and B. K. Sarma 2007 The Spectrum of the Corona of Two Graphs SIAM. J. Discrete Math 24 47–56