The ranks of alternating string C-groups

Mark Mixer

January 8, 2019

Abstract

In this paper, string C-groups of all ranks $3 \leq r < \frac{n}{2}$ are provided for each alternating group A_n, $n \geq 12$. As the string C-group representations of A_n have also been classified for $n \leq 11$, and it is known that larger ranks are impossible, this paper provides the exact values of n for which A_n can be represented as a string C-group of a fixed rank.

1 Introduction

In Problem 32 of [18], Hartley asks “Find regular, chiral, or other polytopes whose automorphism groups are alternating groups A_n. In particular, given a rank r, for which n does A_n occur as the automorphism group of a regular or chiral polytope of rank r?” In [3], the maximum achievable rank for each group A_n was found in the regular case. In this paper we finish the solution to Hartley’s question in the regular case, by finding string C-groups (regular polytopes) of all achievable ranks r for each n.

The paper is organized as follows. In section 2 we briefly outline any necessary definitions and background. Sections 3 contains many families of string C-groups that are needed to prove the main theorem. Sections 4 and 5 consider string C-groups of rank at least seven, for odd and even n respectively. In Section 6, we provide the string C-groups with ranks less than or equal to six for all possible n. Finally, in section 7, we summarize the main theorem.

2 Background and Basic Notions

The automorphism group of an abstract regular polytope, along with a distinguished set of generators $\{\rho_0, \ldots, \rho_{r-1}\}$, is called a rank r string C-group. In general, we say that a group Γ is a rank r string group generated by involutions (or an sgg for short) if Γ is generated by $\{\rho_0, \ldots, \rho_{r-1}\}$ which satisfy the following conditions.

$$(\rho_i \rho_j)^{p_{ij}} = \epsilon \quad (0 \leq i, j \leq r - 1),$$

(1)
where \(p_{ii} = 1 \) for all \(i \), \(2 \leq p_{ji} = p_{ij} \) if \(j = i - 1 \), and
\[
p_{ij} = 2 \quad \text{for} \quad |i - j| \geq 2. \tag{2}
\]

Moreover, if \(\Gamma \) has the following intersection property, then it is considered to be a string C-group.

\[
\langle \rho_i \mid i \in I \rangle \cap \langle \rho_i \mid i \in J \rangle = \langle \rho_i \mid i \in I \cap J \rangle \quad \text{for} \quad I, J \subseteq \{0, \ldots, r - 1\} \tag{3}
\]
The automorphism group \(\Gamma(P) \) of an abstract regular polytope \(P \) is a string C-group, and conversely, it is known (see [12, Sec. 2E]) that an abstract regular \(n \)-polytope can be constructed uniquely from any string C-group.

We will often use the fact that not all of the intersections from Equation 3 need to be verified.

Proposition 2.1. Let \(\Gamma \) be a rank \(r \) string group generated by involutions, and suppose that \(\Gamma_0 \) and \(\Gamma_{r-1} \) are both string C-groups. If \(\Gamma_0 \cap \Gamma_{r-1} = \Gamma_{0,r-1} \), then \(\Gamma \) is a string C-group. Moreover, if \(\Gamma_{0,r-1} \) is a maximal subgroup of either \(\Gamma_0 \) or \(\Gamma_{r-1} \) then this condition is satisfied.

Proof. This combines Proposition 2E16 of [12] and Lemma 2.2 of [7]. \(\square \)

Let \(\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle \) be a string group generated by involutions acting as a permutation group on a set \(\{1, \ldots, n\} \). We can construct the permutation representation graph \(X \) of \(\Gamma \) as the \(r \)-edge-labeled graph with \(n \) vertices, and with a single \(i \)-edge \(\{a, b\} \) whenever \(a \rho_i = b \) with \(a < b \). When \(\Gamma \) is a string C-group that acts faithfully on \(\{1, \ldots, n\} \), the graph \(X \) is called a CPR graph, as defined in [15].

If \(P \) and \(Q \) are string C-groups, then we say that \(P \) covers \(Q \) if there is a well-defined surjective homomorphism from \(P \) to \(Q \) that respects the canonical generators. In other words, if \(P = \langle \rho_0, \ldots, \rho_{r-1} \rangle \) and \(Q = \langle \rho'_0, \ldots, \rho'_{r-1} \rangle \), then \(P \) covers \(Q \) if there is a homomorphism that sends each \(\rho_i \) to \(\rho'_i \).

Given string C-groups \(P \) and \(Q \), the mix of \(P \) and \(Q \), denoted \(P \odot Q \), is the subgroup of the direct product \(P \times Q \) that is generated by the elements \((\rho_i, \rho'_i) \). This group is the minimal string group generated by involutions that covers both \(P \) and \(Q \) - where again, we only consider homomorphisms that respect the generators; see [13, Section 5] for more details.

It is possible to mix a rank \(r \) string C-group \(P \) with a rank \(s \) string C-group \(Q \). In particular we often mix a string C-group with the automorphism group of an edge \(e \) (which is a rank 1 regular polytope). To do so, we take \(e = \langle \rho_0, \ldots, \rho_{r-1} \rangle \) with defining relations \(\rho_0^2 = e \) and \(\rho_i = e \) for \(1 \leq i \leq r - 1 \), and then use the same definition as before. In general, to mix two string C-groups of different ranks, we add trivial generators to the group of smaller rank.

2
The comix of P and Q, denoted $P \square Q$, is the largest string group generated by involutions that is covered by both P and Q [4]. A presentation for $P \square Q$ can be obtained from that of P by adding all of the relations of Q, rewriting the relations to use the generators of P instead. The size of the comix of P and Q is the index of the mix in the full direct product. Throughout the paper we will rely on the following results about mixing of string C-groups.

Proposition 2.2. (Theorem 5.12 of [13]) Suppose P and Q are rank r string C-groups, and that P_{r-1} covers Q_{r-1} then $P \diamond Q$ is a string C-group.

Proposition 2.3. (Theorem 7A7 of [12]) If P is a rank r string C-group then $P \diamond P_{r-1}$ is a string C-group.

Definition 2.4. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be an sggi, and let τ be an involution in a super-group of Γ such that $\tau \not\in \Gamma$ and τ commutes with all of Γ. For fixed k, we define the group $\Gamma^* = \langle \rho_i \tau^{\eta_i} \mid i \in \{0, \ldots, r-1\} \rangle$ where $\eta_i = 1$ if $i = k$ and 0 otherwise, the sesqui-extension of Γ with respect to ρ_k and τ.

A sesqui-extension of a group Γ, with respect to its first generator can be seen as a mix of Γ with the automorphism group of an edge, and thus we have the following.

Proposition 2.5. (Proposition 5.3 of [5]) If Ψ is a sesqui-extension of a string C-group Γ with respect to ρ_0, then Ψ is a string C-group.

The following lemma shows that we can often use this result in a more general setting.

Lemma 2.6. (Lemma 5.4 of [5]) If $\Gamma = \langle \rho_i \mid i = 0, \ldots, r-1 \rangle$ and $\Psi = \langle \rho_i \tau^{\eta_i} \mid i \in \{0, \ldots, r-1\} \rangle$ is a sesqui-extension of Γ with respect to ρ_k, then:

1. $\Psi \cong \Gamma$ or $\Psi \cong \Gamma \times \langle \tau \rangle \cong \Gamma \times 2$.

2. If the identity element of Γ can be written as a product of generators involving an odd number of ρ_k’s, then $\Psi \cong \Gamma \times \langle \tau \rangle$.

3. if Γ is a finite permutation group, τ and ρ_k are odd permutations, and all other ρ_i are even permutations, then $\Psi \cong \Gamma$.

4. whenever $\tau \not\in \Psi$, Γ is a string C-group if and only if Ψ is a string C-group.

Proposition 2.7. Let $\Gamma = \langle \rho_i \mid i = 0, \ldots, r-1 \rangle$ and $\Psi = \langle \rho_i \tau^{\eta_i} \mid i \in \{0, \ldots, r-1\} \rangle$ be a sesqui-extension of Γ with respect to ρ_k. If either $\Psi_0 \cong \Gamma_0$ or $\Psi_{r-1} \cong \Gamma_{r-1}$ as string C-groups, then Ψ is a string C-group.

Proof. This is a consequence of part (b) of Proposition 2E16 in [12]. Assume $\Psi_{r-1} \cong \Gamma_{r-1}$ as string C-groups. The intersection condition of part (b) holds as τ is not in any of the groups $\Psi_{r-1} \cap \langle \rho_k, \ldots, \rho_{r-1} \rangle$. □
For any permutation group Γ of degree n, we will use the notation S_n to represent the full symmetric group, A_n to represent the full alternating group, and G^+ to denote $G \cap A_n$. If $\Gamma := \langle \rho_0, \ldots, \rho_{n-1} \rangle$, then for each i we denote $\Gamma_i = \langle \rho_j \mid j \neq i \rangle$, where each Γ_i is itself a string C-group. Similarly, we will denote $\Gamma_{i,j} = \langle \rho_k \mid k \notin \{i,j\} \rangle$. The dual Γ^* of a string C-group Γ is the group generated by the same involutions, but with the indexing reversed.

Finally, we will occasionally use the following rank reduction technique of [2]. We will frequently need to apply this construction to the dual of a string C-group, and then take the dual again. When we do this, we simply call it the dual rank reduction.

Proposition 2.8. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a rank r string C-group, where $|\rho_i\rho_{i+1}| > 2$ for all $0 \leq i \leq r - 2$. If $\rho_0 \in \langle \rho_0 \rho_2, \rho_3 \rangle$, then $\Gamma \cong \langle \rho_1, \rho_0 \rho_2, \rho_3, \ldots, \rho_{r-1} \rangle$ is a string C-group of rank $r - 1$. Furthermore, if $\rho_2 \rho_3$ has odd order, then this condition is satisfied.

Proof. This combines the results of Theorem 1.1 and Corollary 1.2 of [2].

3 Building Blocks

In this section, we provide some examples of families of string C-groups which appear as subgroups of the groups in our main theorem.

Lemma 3.1. For each $r \geq 3$ the permutation group $\text{FL}(r,k)$ given by the following graph is a string C-group isomorphic to S_{r+1+k}, for all odd $k \geq 0$, and

for each $r \geq 3$ the permutation group $\text{FL}(r,k)$ given by the following graph is a string C-group isomorphic to S_{r+1+k}, for all even $k \geq 0$

We point out that there are $k + 2$ edges of labels 0 or 1 in each graph.

Proof. This combines the results of Theorem 1, Theorem 2, and Lemma 21 from [6].

Lemma 3.2. For each $r \geq 5$ the permutation group $\text{R}(r,k)$ given by the following graph is a string C-group isomorphic to S_{r+3+k}, for all odd $k \geq 0$, and

We point out that there are $k + 2$ edges of labels 0 or 1 in each graph.
for each \(r \geq 5 \) the permutation group \(R(r,k) \) given by the following graph is a string C-group isomorphic to \(S_{r+3+k} \), for all even \(k \geq 0 \).

![Graph](image)

Proof. We will prove this by induction on \(k \). To clarify the notation, we point out that there are \(k + 2 \) edges of labels 0 or 1 in each graph. When \(k = 0 \), \(R(r,k) \) is a string C-group isomorphic to \(S_{r+3} \) as it is the dual of \(FL(r,2) \) from Lemma 3.1. We will assume by induction that \(R(r+1,k-1) \) is a string C-group isomorphic to \(S_{r+1+3+k-1} \), and then applying the rank reduction from Proposition 2.8 to \(R(r+1,k-1) \) we get \(R(r,k) \), which is thus a string C-group isomorphic to \(S_{r+3+k} \).

\[\square \]

Lemma 3.3. For each \(r \geq 4 \) the permutation group \(Sh(r,k) \) given by the following graph is a string C-group isomorphic to \((S_2 \wr S_{r+\frac{k}{2}})^+ \), for all \(k \equiv 2 \pmod{4} \), with \(k \geq 0 \).

![Graph](image)

Note that there are \(1 + \frac{k}{2} \) edges of label 0 in each such graph. We also note that when \(r = 3 \) this graph still provides a string C-group.

Proof. We prove that the group is a string C-group by induction on \(r \), where the proof of the base case will be nearly the same as the proof of the inductive step. Let \(\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = Sh(r,k) \). When \(r = 4 \), the group \(\Gamma_{r-1} \) is a string C-group by Theorem 4.4 of [15]. Furthermore, when \(r \) is greater than 4, we can assume that \(\Gamma_{r-1} \) is a string C-group as \(\Gamma_{r-1} = Sh(r-1,k) \).

For all \(r \geq 4 \), the group \(\Gamma_0 \) is isomorphic to the string C-group \(FL(r-1,\frac{k}{2}) \circ FL(r-1,\frac{k}{2}) \) which is isomorphic to \(S_{r+\frac{k}{2}} \). It remains to show that \(\Gamma_0 \cap \Gamma_{r-1} = \Gamma_{0,r-1} \).

The group \(\Gamma \) is an imprimitive group with a natural block structure, having \(r + \frac{k}{2} \) blocks of size two. The generator \(\rho_0 \) is the only generator acting within a block, and thus \(\Gamma_0 \) gives the action on the blocks.

Let \(\alpha \in \Gamma_0 \cap \Gamma_{r-1} \). Since \(\alpha \in \Gamma_0 \) it only acts on the blocks, and since \(\alpha \in \Gamma_{r-1} \) it fixes the “last block” (the block in the support of \(\rho_{r-1} \)). Since \(\Gamma_{0,r-1} \) gives the action on these \(r + \frac{k}{2} - 1 \) blocks, we know that \(\alpha \in \Gamma_{0,r-1} \). Thus by Proposition 2.1, \(\Gamma \) is a string...
C-group. Finally, to prove that the group is the collection of all even permutations in the wreath product, observe that the group Γ_0 gives the full symmetric group acting on the blocks, and the element $(\rho_0\rho_1)^2$ is a product of two disjoint transpositions, each swapping two elements within a block.

Lemma 3.4. For each $r \geq 6$ the permutation group $Bl(r, k)$ given by the following graph is a string C-group isomorphic to $(S_2 \wr S_{r+2+\frac{k}{2}})^+$, for all $k \equiv 2 \pmod{4}$, with $k \geq 0$.

We note that there are $1 + \frac{k}{2}$ edges of label 0 in each graph.

Proof. The group $Bl(r, k)$ is obtained by applying the dual rank reduction of Lemma 2.8 to $Sh(r + 2, k)$ and then again to the result. This shows that $Bl(r, k)$ is a string C-group, and also that $Bl(r, k)$ is isomorphic to $(S_2 \wr S_{r+2+\frac{k}{2}})^+$.

Lemma 3.5. For each $r \geq 4$ the permutation group $P(r, k)$ given by the following graph is a string C-group isomorphic to S_{r+2+k}, for all odd $k \geq 0$, and

for each $r \geq 4$ the permutation group $P(r, k)$ given by the following graph is a string C-group isomorphic to S_{r+2+k}, for all even $k \geq 0$, and

There are $k + 2$ edges of labels 0 or 1 in each graph. Also, note that when $r = 3$ this graph still provides a string C-group, see for example Theorem 4.5 of [15] when k is odd or Theorem 4.4 of [15] when k is even.

Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = P(r, k)$. The group Γ_0 is a string C-group isomorphic to $S_2 \times S_{r+1}$ as it is a sesqui-extension of string C-group $FL(r - 1, 1)$ from Lemma 3.1. The group Γ_{r-1} is a string C-group isomorphic to $S_2 \times S_{r+k}$ as it also is a sesqui-extension of string C-group $FL(r - 1, k)$. Thus Γ is isomorphic to S_{r+2+k}. Finally, the group $\Gamma_{0,r-1}$ is isomorphic to $S_2 \times S_{r-1} \times S_2$, which is maximal in Γ_0, and thus, by Proposition 2.1, Γ is also a string C-group.
Lemma 3.6. For each $r \geq 4$ the permutation group $Sp(r, k)$ given by the following graph is a string C-group isomorphic to $S_{r+2+\frac{k}{2}} \times S_{r+1+\frac{k}{2}}$ for $k \equiv 2 \pmod{4}$ with $k \geq 0$.

We note that there are $k + 4$ edges of labels 0 or 1 in each such graph.

Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = Sp(r, k)$. Then, $\Gamma = P \circ Q$, where $P = P(r, \frac{k}{2})$ from Lemma 3.5, and Q is $FL(r, \frac{k}{2})$ from Lemma 3.1. Furthermore, the facets of P cover the facets of Q; as the facets of P are isomorphic to $S_{r+\frac{k}{2}} \times S_2$ where as the facets of Q are isomorphic to $S_{r+\frac{k}{2}}$. Thus by Proposition 2.2, $\Gamma \cong P \circ Q$ is a string C-group.

To determine that Γ is the full direct product, we consider the comix of P and Q, $C = P \square Q$. We will write C as generated by ρ_i, along with all the relations from both P and Q. Thus, in C, $(\rho_{r-1}\rho_{r-2})^3 = 1$ from Q and $1 = (\rho_{r-1}\rho_{r-2})^4$ from P, and thus in C, $\rho_{r-1} = \rho_{r-2}$.

Then, it follows that in C, $(\rho_{r-2}\rho_{r-3})^3 = 1 = (\rho_{r-1}\rho_{r-3})^3 = (\rho_{r-1}\rho_{r-3})^2$, and thus $\rho_{r-1} = \rho_{r-3}$. Furthermore in C, we know that $(\rho_{r-3}\rho_{r-2}\rho_{r-1})^5 = 1$ from P, and so for instance $\rho_{r-1}^5 = \rho_{r-1}^2 = 1$, and thus $\rho_{r-1} = \rho_{r-2} = \rho_{r-3} = 1$.

Then, it will follow that all $\rho_i = 1$ in C. For example in C, $(\rho_{r-3}\rho_{r-4})^3 = 1$ and thus in $C \rho_{r-4} = 1$. This argument works for showing that in C, $1 = \rho_2 = \rho_3 = \cdots = \rho_{r-1}$.

Finally, $(\rho_0\rho_1\rho_2)^{\frac{k}{2}+4} = 1$ and $(\rho_0\rho_1)^{\frac{k}{2}+3} = 1$, and so in C, $\rho_0 = \rho_1$.

We have showed that $C = P \square Q$ has size at most two, and therefore $P \circ Q$ is the full direct product or an index two subgroup of the full direct product. There are three index two subgroups of $S_{r+2+\frac{k}{2}} \times S_{r+1+\frac{k}{2}}$; namely $A_{r+2+\frac{k}{2}} \times S_{r+1+\frac{k}{2}}$, $S_{r+2+\frac{k}{2}} \times A_{r+1+\frac{k}{2}}$, and $(S_{r+2+\frac{k}{2}} \times S_{r+1+\frac{k}{2}})^+$. As there are odd permutations in P, odd permutations in Q, and odd permutations in $P \circ Q$, we can rule out all three cases and conclude that $\Gamma \cong S_{r+2+\frac{k}{2}} \times S_{r+1+\frac{k}{2}}$.

□

Lemma 3.7. For each rank $r \geq 4$ the permutation group $Sm(r)$ given by the following graph is a string C-group isomorphic to $(S_r \times S_{r+3})^+$.

\[\begin{array}{c}
0 & 1 & 2 & r-2 & r-1 & r-3
\end{array}\]

\[\begin{array}{c}
0 & 1 & 2 & r-2 & r-3 & r-1
\end{array}\]
Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = Sm(r)$. We proceed by induction on the rank r, where the base case of $r = 4$ can be verified using Magma. The group Γ_0 is isomorphic to $Sm(r - 1)$, and by induction we may assume that Γ_0 is a string C-group isomorphic to $(S_{r-1} \times S_{r+2})^+$. Therefore, it can be seen that $\Gamma \cong (S_r \times S_{r+3})^+$, and it remains to show that Γ is a string C-group. The group Γ_{r-1} is isomorphic to the sesqui-extension of a group $Sp(r - 1, 0)$ through ρ_{r-3}. By parts (3) and (4) of Lemma 2.6, we can see that Γ_{r-1} is a string C-group. Finally, Γ is a string C-group by Lemma 2.1 as $\Gamma_{0,r-1} \cong (S_{r-2} \times S_{r+1} \times S_2)^+$ which is maximal in Γ_0.

Lemma 3.8. For each rank $r \geq 6$ the permutation group $Sy(r,k)$ given by the following graph is a string C-group isomorphic to $(S_{r+\frac{k}{2}} \times S_{r+3+\frac{k}{2}})^+$ for all $k \equiv 2 \pmod{4}$, with $k \geq 0$, and

![Graph 1](image1)

for each rank $r \geq 6$ the permutation group $Sy(r,k)$ given by the following graph is a string C-group isomorphic to $(S_{r+\frac{k}{2}} \times S_{r+3+\frac{k}{2}})^+$ for all $k \equiv 0 \pmod{4}$, with $k \geq 0$, and

![Graph 2](image2)

Proof. This can be shown by induction on k. When $k = 0$ this representation is given in Lemma 3.7. Assuming by induction that $Sy(r,k)$ is a string C-group, it follows that $Sy(r,k+2)$ is a string C-group by applying the dual rank reduction of Proposition 2.8 to $Sy(r + 1, k)$; in order to apply the dual rank reduction, we need that $r + 1 \geq 7$.

Lemma 3.9. For each rank $r \geq 6$ the permutation group $L(r,k)$ given by the following graph is a string C-group isomorphic to S_{r+3+k}, for all odd $k \geq 0$, and

![Graph 3](image3)
for each rank \(r \geq 6 \) the permutation group \(L(r,k) \) given by the following graph a string C-group isomorphic to \(S_{r+3+k} \), for all even \(k \geq 0 \).

Furthermore \(L_{r-1} \) is isomorphic to \(S_{r+2+k} \).

To clarify, we note that there are \(k + 2 \) edges of labels either 0 or 1 in each such graph.

Proof. This can be shown by induction on \(k \). When \(k = 0 \) this representation was shown to be a string C-group for all \(r \geq 6 \) in [8]. Assuming by induction that \(L(r,k) \) is a string C-group, it follows that \(L(r,k + 1) \) is a string C-group by applying the rank reduction of Proposition 2.8 to \(L(r+1,k) \). The structure of \(L_{r-1}(r,k) \) follows, again using Proposition 2.8, from its relationship to \(FL(r−1,0) \) from Lemma 3.1.

Lemma 3.10. For each rank \(r \geq 6 \) the permutation group \(M(r,k) \) given by the following graph is a string C-group, for all \(k \equiv 2 \) (mod 4), with \(k \geq 0 \), and

for each rank \(r \geq 6 \) the permutation group \(M(r,k) \) given by the following graph is a string C-group, for all \(k \equiv 0 \) (mod 4), with \(k \geq 0 \).

We note that permutation degree of \(M(r,k) \) is \(2r + 5 + k \), and there are \(k + 4 \) edges of labels either 0 or 1 in such a graph.

Proof. The group \(M(r,k) \) is the mix of \(L(r,k) \) with \(L_{r-1}(r,k) \). Thus \(M(r,k) \) is a string C-group by Proposition 2.3.

Lemma 3.11. For each rank \(r \geq 6 \) the permutation group \(Sl(r,k) \) given by the following graph is a string C-group isomorphic to \(S_{2r+1+k} \), for \(k \equiv 2 \) (mod 4) with \(k \geq 0 \).
We note that there are a total of $\frac{k}{2} + 1$ edges of label 0 in such a graph.

Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = SL(r,k)$. The group Γ_0 is a string C-group, as it is isomorphic to $Sp(r-1,\frac{k}{2})$ from Lemma 3.6, and thus Γ_0 is isomorphic to $S_{r+1+\frac{k}{2}} \times S_{r+\frac{k}{2}}$. Since Γ_0 is maximal in S_{2r+1+k}, we conclude that $\Gamma \cong S_{2r+1+k}$.

Let $Sh(r-1,k) = \langle a_0, \ldots, a_{r-2} \rangle$, from Lemma 3.3. By part (2) of Lemma 2.6, since $(a_{r-3}a_{r-2})^3 = 1$, we know that $\Gamma_{r-1} \cong Sh(r-1,k) \times S_2$, and thus Γ_{r-1} is a string C-group isomorphic to $(S_2 \wr S_{r-1+\frac{k}{2}})^+ \times S_2$. Notice that although Γ_{r-1} is not transitive, it still has an imprimitive block structure, with blocks of size two, now with one more block, and also a block of size one. It remains to show that $\Gamma_{r-1} \cap \Gamma_0 \cong \Gamma_{0,r-1}$ which we will do by analyzing the orbits of $\Gamma_{r-1} \cap \Gamma_0$.

If $\alpha \in \Gamma_{r-1} \cap \Gamma_0$ then: α preserves the two orbits of Γ_0; α preserves the three orbits of Γ_{r-1}, namely, it fixes the vertex of the graph which is incident to only an edge of label $r-1$, and it either fixes the vertex of the graph which is incident only to an edge of label $r-2$, or it it interchanges it with the other vertex on that edge of label $r-2$. Finally, α preserves the block structure of Γ_{r-1}. Thus, we can see α acting only on the blocks, since each block consists of two elements in different Γ_0 orbits. Therefore, $\Gamma_{r-1} \cap \Gamma_0 \leq (S_{r-1+\frac{k}{2}} \times S_2)$. It is easy to check that $\Gamma_{0,r-1} \equiv (S_{r-1+\frac{k}{2}} \times S_2)$, and thus Γ is a string C-group.

4 Odd degree and high rank

In this section we deal with alternating groups of odd permutation degree, represented as string C-groups of rank at least seven.

Theorem 4.1. For each $r \geq 7$ the permutation group $S(r,k)$ given by the following graph is a string C-group isomorphic to A_{2r+1+k} for all $k \equiv 2 \pmod{4}$, with $k \geq 0$.

![Graph](image)

Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = S(r,k)$. The group $\Gamma_0 \cong Sy(r-1,k)$ is a string C-group isomorphic to $(S_{r-1+\frac{k}{2}} \times S_{r+2+\frac{k}{2}})^+$ by Lemma 3.8. The group $\Gamma_{r-1} \cong P \circ Q$ where $P = SL(r-1,k)$ is a string C-group isomorphic to S_{2r-1+k}, and Q is a single involution extending ρ_{r-3}. Since Γ_{r-1} only contains even permutations, by parts (3) and (4) of Lemma 2.6, Γ_{r-1} is a string C-group isomorphic to S_{2r-1+k}. Finally, by Lemma 3.6, the
group $\Gamma_{0,r-1} \cong Sp(r-2, k)$ is isomorphic to $S_{\frac{r+k}{2}} \times S_{\frac{r-1+k}{2}}$, which is maximal in Γ_0. Thus Γ is a string C-group by Lemma 2.1.

It is clear that Γ is a subgroup of A_{2r+1+k}. The main theorem of [10] shows that $(S_{\frac{r-1+k}{2}} \times S_{\frac{r+2+k}{2}})$ is maximal in A_{2r+1+k} and thus $\Gamma \cong A_{2r+1+k}$.

Theorem 4.2. For each $r \geq 7$ the permutation group $B(r, k)$ given by the following graph is a string C-group isomorphic to A_{2r+3+k} for all $k \equiv 2 \pmod{4}$, with $k \geq 0$.

Proof. Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle = B(r, k)$.

First let us show that $\Gamma \cong A_{2r+3+k}$. This can be checked using MAGMA for $B(7, 2)$, $B(7, 6)$, $B(8, 2)$, and $B(9, 2)$ where $n = 2r + 3 + k \leq 23$. For all the other cases, $n > 24$, and we can use Corollary 1.2 of [11]. In these cases we know that, $|\Gamma| < 2^n$ or $\Gamma \cong A_n$. The group Γ_0 contains a symmetric group acting on one of its orbits, and thus $|\Gamma| > (\frac{n+1}{2})!$; however for all $n \geq 25$, $(\frac{n+1}{2})! > 2^n$, and so $\Gamma \cong A_n$.

The group Γ_0 is a string C-group $M(r-1, k)$ from Lemma 3.10. The group Γ_{r-1} is a string C-group $Bl(r-1, k)$ by Lemma 3.4. Note that although Γ_{r-1} is not transitive, it still has an imprimitive block structure, with blocks of size two, and also a block of size one.

It remains to show that $\Gamma_{r-1} \cap \Gamma_0 \cong \Gamma_{0,r-1}$ which we will do by analyzing the orbits of $\Gamma_{r-1} \cap \Gamma_0$. If $\alpha \in \Gamma_{r-1} \cap \Gamma_0$ then: α preserves the two orbits of Γ_0; α preserves the block structure of Γ_{r-1}, and α preserves the fixed point of Γ_{r-1}. Thus $\Gamma_{r-1} \cap \Gamma_0$ can be seen acting on the $r + 1 + \frac{k}{2}$ blocks of size two, and is isomorphic to a subgroup of $S_{\frac{r+1+k}{2}}$.

Finally, the group $\Gamma_{0,r-1} \cong P \circ P$ where P is a string C-group $R(r-2, \frac{k}{2})$ isomorphic to $S_{\frac{r+1+k}{2}}$, by Lemma 3.2, and thus Γ is a string C-group.

Corollary 4.3. For each $r \geq 7$, and each $n \geq 2r + 1$, there is a string C-group representation of A_n of rank r.

Proof. When $n = 2r + 1$ this follows from Theorem 7.2 of [5]. When $n = 2r + 3 + 4j$ for some integer j, it follows from Theorem 4.1. Finally, when $n = 2r + 5 + 4j$ for some integer j, it follows from Theorem 4.2.
5 Even degree and high rank

In this section we deal with alternating groups of even permutation degree, represented as string C-groups of rank at least seven.

Theorem 5.1. For each rank \(r \geq 6 \) the permutation group \(D(r, k) \) given by the following graph is a string C-group isomorphic to \(A_{2r+2+k} \), for all \(k \equiv 2 \pmod{4} \), with \(k \geq 0 \), and for each rank \(r \geq 6 \) the permutation group \(M(r, k) \) given by the following graph is a string C-group isomorphic to \(A_{2r+2+k} \), for all \(k \equiv 0 \pmod{4} \), with \(k \geq 0 \).

To clarify this notation we both include an example \(D(7, 4) \) and remark that there are \(k + 4 \) edges with labels 0 or 1 in each such graph.

![Graph](image)

Figure 1: The group \(D(7, 4) \)

Proof. This is proved by induction on \(k \). When \(k = 0 \), \(D(r, k) \) was shown to be a string C-group isomorphic to \(A_{2r+2} \) in Theorem 7.1 of [5]. To see that \(D(r, k+2) \) is a string C-group isomorphic to \(A_{2r+2+k+2} \), we notice that you obtain \(D(r, k+2) \) from \(D(r+1, k) \) using the rank reduction of Proposition 2.8, which is assumed to be a string C-group isomorphic to \(A_{2r+2+k+2} \) by induction. We can apply the rank reduction to \(D(r+1, k) \) as long as \(r + 1 \geq 7 \). □

Corollary 5.2. For all \(r \geq 7 \), the alternating group \(A_n \) can be represented as a rank \(r \)-string if \(n \) is even and \(n \geq 2r+2 \).
The group Γ is an string group generated by involutions. Then Γ^t is a group with one more generator and larger permutation degree.

6 Low Ranks and Extension Construction

In this section we deal with alternating groups represented as rank 4, 5, or 6 string C-groups.

In [14] it was showed that A_n is generated by three involutions two of which commute if and only if $n \notin \{3, 4, 6, 7, 8\}$. Additionally, in [15], permutation representations for the string C-groups for each of these A_n were provided. Thus it is known exactly which A_n are rank 3 string C-groups.

Proposition 6.1. The alternating group A_n can be represented as a rank 3 string C-group if and only if $n = 5$ or $n \geq 9$.

In order to show which A_n can be represented as a rank r string C-group (for $r = 4, 5, 6$) we mainly rely on the following construction, which is similar to one of Pellicer [16] or of Schulte [17].

Definition 6.2. Given an sggi Γ whose permutation representation graph X has vertices $[1, \ldots, m]$ and edges labeled $[1, \ldots, r - 1]$, we define Γ^t (for each $t > 0$) as the group generated by involutions (with one more generator) whose permutation representation graph has vertices $[1, \ldots, m + t]$ and is obtained by adjoining an alternating path of length t of edges labeled 0,1 to the vertex m of X.

As a matter of notation, recall that for an sggi $G = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ and an integer k we define the groups $G_{\leq k} = \langle \rho_0, \ldots, \rho_k \rangle$.

Proposition 6.3. Let Γ be an sggi acting on the points $[1, \ldots, m]$, and for each positive integer t construct Γ^t as described above. If there is an integer $b \geq 2$ such that Γ^b is a string C-group, and for each $2 \leq k \leq r - 2$, the group $\Gamma^b_{\leq k}$ acts as a symmetric group on $\text{Orbit}(\Gamma^b_{\leq k}, m)$, then for each $t > b$, the group Γ^t is also a string C-group.
Proof. Assume that for some $b \geq 2$, $\Gamma^b = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ is a string C-group. Then, by the commuting relationship between the generators, only the elements ρ_0 and ρ_1 can have the point m in their support, and thus m is of degree 2 in the natural CPR graph of Γ^b. Let $\Gamma^t = \langle \rho_0, \ldots, \rho_{r-1} \rangle$. To show that Γ^t is a string C-group we rely on part (b) of Proposition 2E16 of [12]. There is an isomorphism ϕ that maps generators of Γ^t_0 to generators of Γ^t_0, and thus Γ^t_0 is also a string C-group. It remains to show that for each $k = 0, \ldots, r - 2$ that $\Gamma^t_0 \cap \Gamma^t_{\leq k} = \langle \rho_1, \ldots, \rho_k \rangle$.

We first deal with small values of k. If $k = 0$, it is clear by construction that $\rho_0 \not\in \Gamma^t_0$ and thus $\Gamma^t_0 \cap \langle \rho_0 \rangle = \langle 1 \rangle$. Let $k = 1$ and $\alpha \in \Gamma^t_0 \cap \langle \rho_0, \rho_1 \rangle$. We assume, without loss of generality, that α has an even number of factors of ρ_1 and thus (as it is in Γ^t_0) fixes all points greater than or equal to m. Since $\alpha \in \langle \rho_0, \rho_1 \rangle$ with an even number of factors of ρ_1 it also fixes all points less than m. Therefore α is identity and $\Gamma^t_0 \cap \langle \rho_0, \rho_1 \rangle = \langle \rho_1 \rangle$.

Now assume that $k > 2$ and let $\alpha \in \Gamma^t_0 \cap \Gamma^t_{\leq k}$ again fixing all points greater than or equal to m. Consider α as a word in Γ^t_0. Using the isomorphism ϕ, we get a word $\alpha' \in \Gamma^b_0$ by changing all the factors of ρ_j in α to ρ_j. Under the conditions of the proposition, we assume that the group $\Gamma^b_{\leq k}$ acts as a symmetric group on $\text{Orbit}(\Gamma^b_{\leq k}, m)$. Additionally, the action of α on all other orbits $\text{Orbit}(\Gamma^t_{\leq k}, p)$ is identical to the action of α' on $\text{Orbit}(\Gamma^b_{\leq k}, p)$, and thus any permutation in $\Gamma^t_{\leq k}$ that fixes the points greater than or equal to $m + b + 1$ can also be written as a word in $\Gamma^b_{\leq k}$. Thus the permutation associated with the word α' can also be written as a word in $\Gamma^b_{\leq k}$.

Finally, as Γ^b is a string C-group, $\alpha' \in \Gamma^b_{\leq k}$ and $\alpha' \in \Gamma^b_0$ implies that $\alpha' \in \langle \rho_1, \ldots, \rho_k \rangle$. Again using the isomorphism ϕ we get $\alpha \in \langle \rho_1, \ldots, \rho_k \rangle$ as required.

\[\square \]

If one can find appropriate groups Γ^b which fit the conditions of the proposition above, then these can be used to build new string C-groups of the same rank for groups of larger permutation degree.

In particular, for each rank $r \in \{4, 5, 6\}$, the proof that A_n can be represented as a rank r string C-group (for all large n) is done by giving examples of string C-groups Γ^2 (see Figures 4, 5, and 6) that satisfy the conditions of Proposition 6.3, and such that for some j, the group Γ^j is isomorphic to A_n. These examples then yield families of string C-groups $\Gamma^{j+4k} \cong A_{n+4k}$. Thus, for each rank, we need to find an example of $\Gamma^t \cong A_n$ for each value of $n \mod 4$.

Theorem 6.4. The alternating group A_n has a rank 4 string C-group representation if and only if $n = 9$, $n = 10$, or $n \geq 12$. The alternating group A_n has a rank 5 string C-group representation if and only if $n = 10$, or $n \geq 12$. Finally, The alternating group A_n has a rank 6 string C-group representation if and only if $n = 11$ or $n \geq 13$.

Proof. All of the string C-group representations of A_n for $n \leq 10$ were classified in [7], with $n = 11, 12, 13,$ and 14 subsequently classified in [9]. It remains to show that, for all $n \geq 15$, there are rank 4, rank 5, and rank 6 string C-group representations of A_n.

14
For each rank, by listing the generators ρ_i, we now give four examples of string C-groups Γ^2 that fit the conditions of Proposition 6.3, and show which value of t gives $\Gamma^t \cong A_n$. To clarify the notation, we include an image of the first family below.

Figure 3: Γ, Γ_2, Γ_3, and Γ_7 from Family 1 of rank 4 string C-group representations. The group Γ_3 is isomorphic to A_9, and the group Γ_7 is isomorphic to A_{13}.

Family 1: $\Gamma^{3+4k} \cong A_{9+4k}$.
\[
\begin{align*}
\rho_0 &= (6, 7). \\
\rho_1 &= (5, 6)(7, 8). \\
\rho_2 &= (2, 3)(4, 5). \\
\rho_3 &= (1, 2)(3, 4).
\end{align*}
\]

Family 2: $\Gamma^{3+4k} \cong A_{18+4k}$.
\[
\begin{align*}
\rho_0 &= (15, 16). \\
\rho_1 &= (4, 5)(6, 7)(14, 15)(16, 17). \\
\rho_2 &= (1, 2)(3, 4)(6, 8)(9, 10)(11, 12)(13, 14). \\
\rho_3 &= (2, 3)(4, 6)(5, 7)(8, 9)(10, 11)(12, 13).
\end{align*}
\]

Family 3: $\Gamma^{4+4k} \cong A_{15+4k}$.
\[
\begin{align*}
\rho_0 &= (11, 12). \\
\rho_1 &= (3, 4)(5, 7)(6, 11)(10, 9)(12, 13). \\
\rho_2 &= (2, 3)(4, 6)(5, 8)(7, 10). \\
\rho_3 &= (1, 2)(3, 5)(4, 7)(10, 9).
\end{align*}
\]

Family 4: $\Gamma^{4+4k} \cong A_{16+4k}$.
\[
\begin{align*}
\rho_0 &= (12, 13). \\
\rho_1 &= (3, 4)(5, 7)(6, 9)(10, 12)(13, 14). \\
\rho_2 &= (2, 3)(4, 6)(5, 8)(7, 10). \\
\rho_3 &= (1, 2)(3, 5)(4, 7)(8, 11).
\end{align*}
\]

Figure 4: Rank groups Γ^2 satisfying the conditions of Lemma 6.3

First let us prove that $\Gamma^t \cong A_n$ for all given families. To do this, we rely on the fact that if Γ^t is primitive subgroup of S_n and Γ^t contains a 3-cycle then $\Gamma^t \geq A_n$. All twelve given families of groups Γ^t are constructed so that for all $t \geq 2$

\[
(\rho_2\rho_1\rho_0\rho_1)^2
\]

is a 3-cycle. Thus we will only need to show why the groups are primitive. All twelve given families of groups Γ^t are also constructed so that $\langle \rho_0, \rho_1, \rho_2 \rangle$ acts as a symmetric group on the orbit of the point m. Therefore, once $k \geq 5$, in all cases Γ^t will contain a symmetric group acting on more than half its permutation degree, and thus cannot be imprimitive. The isomorphisms between Γ^t and A_n have been found in MAGMA for $k \leq 4$. Therefore,
Family 1: $\Gamma^{3+4k} \cong A_{13+4k}$.
\begin{align*}
\rho_0 &= (10, 11). \\
\rho_1 &= (9, 10)(11, 12). \\
\rho_2 &= (4, 5)(8, 9). \\
\rho_3 &= (1, 2)(3, 4)(5, 6)(7, 8). \\
\rho_4 &= (2, 3)(6, 7).
\end{align*}

Family 2: $\Gamma^{3+4k} \cong A_{14+4k}$.
\begin{align*}
\rho_0 &= (11, 12). \\
\rho_1 &= (10, 11)(12, 13). \\
\rho_2 &= (5, 6)(9, 10). \\
\rho_3 &= (2, 3)(4, 5)(6, 7)(8, 9). \\
\rho_4 &= (1, 2)(3, 4)(5, 6)(7, 8).
\end{align*}

Family 3: $\Gamma^{3+4k} \cong A_{15+4k}$.
\begin{align*}
\rho_0 &= (12, 13). \\
\rho_1 &= (9, 12)(13, 14). \\
\rho_2 &= (3, 4)(5, 7)(6, 9)(10, 11). \\
\rho_3 &= (2, 3)(4, 6)(5, 8)(7, 10). \\
\rho_4 &= (1, 2)(3, 5)(4, 7)(10, 11).
\end{align*}

Family 4: $\Gamma^{3+4k} \cong A_{12+4k}$.
\begin{align*}
\rho_0 &= (9, 10). \\
\rho_1 &= (8, 9)(10, 11). \\
\rho_2 &= (1, 2)(3, 4)(5, 6)(7, 8). \\
\rho_3 &= (2, 3)(6, 7). \\
\rho_4 &= (3, 5)(4, 6).
\end{align*}

Figure 5: Rank 5 groups Γ^2 satisfying the conditions of Lemma 6.3

all the given families of groups yield alternating groups, and using Proposition 6.3, they have been shown to be string C-groups, with the base case of Γ^2 checked in Magma.

We note that for the remaining values of t each of these groups yields a string C-group representation of a symmetric group, as either ρ_0 or ρ_1 will be odd, and Γ will still contain an alternating group.

7 Main Theorem

In this section, we put together all of our results to summarize the relationship between alternating groups and string C-groups.

Theorem 7.1. For all ranks $r \geq 3$, and all $n \geq 2r + 1$, if $n \geq 12$, the alternating group A_n has a representation as a rank r string C-group.

Proof. The small values of $n = 12$, $n = 13$, and $n = 14$ follow from [9]. Ranks 3, 4, 5, and 6, were considered in Proposition 6.1 and Theorem 6.4. For $r \geq 6$, when n is even this follows from Corollary 5.2, and for $r \geq 7$ when n is odd it follows from Corollary 4.3.

Corollary 7.2. For each rank r it is known exactly which alternating groups can be represented as a string C-group of that rank. Similarly, for each alternating group A_n, the exact set of ranks of string C-groups for which it can be represented is known.

16
Figure 6: Rank 6 groups Γ^2 satisfying the conditions of Lemma 6.3

Proof. This follows from the previous theorem in addition to Theorem 1.1 of [3], which states that the highest rank of a string C-group representation of A_n is 3 if $n = 5$, 4 if $n = 9$, 5 if $n = 10$, 6 if $n = 11$, and $(n-1)/2$ if $n \geq 12$. Moreover, if $n = 3, 4, 6, 7, or 8$, the group A_n is not a string C-group.

Corollary 7.3. The group A_{11} is the only alternating group that has string C-group representations of two ranks r_1 and r_2, but not all ranks r_i in between r_1 and r_2.

8 Acknowledgements

The computations in this paper were completed using Magma [1]. I would like to thank Egon Schulte, Barry Monson, Daniel Pelicer, and Gabe Cunningham for insightful conversations that led to various improvements in this paper. I would like to thank Dimitri Leemans and Maria Elisa Fernandes for their support throughout this project. Also I would like to thank Dimitri for first suggesting this problem in 2012; this would not have been possible without them.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[2] Peter A. Brooksbank and Dimitri Leemans. Rank reduction of string C-group representations. arXiv e-prints, page arXiv:1812.01055, December 2018.

[3] Peter J. Cameron, Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. Highest rank of a polytope for an. Proceedings of the London Mathematical Society, 115(1):135–176, 2018.

[4] Gabe Cunningham. Variance groups and the structure of mixed polytopes. In Rigidity and Symmetry, volume 70 of Fields Institute Communications, pages 97–116. Springer New York, 2014.

[5] M. Fernandes, D. Leemans, and M. Mixer. All alternating groups A_n with $n \geq 12$ have polytopes of rank $\lfloor \frac{n-1}{2} \rfloor$. SIAM Journal on Discrete Mathematics, 26(2):482–498, 2012.

[6] Maria Elisa Fernandes and Dimitri Leemans. Polytopes of high rank for the symmetric groups. Adv. Math., 228(6):3207–3222, 2011.

[7] Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. Polytopes of high rank for the alternating groups. J. Combin. Theory Ser. A, 119(1):42–56, 2012.

[8] Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. An extension of the classification of high rank regular polytopes. Transactions of the American Mathematical Society, 370(12):8833–8857, 2018.

[9] Dimitri Leemans and Mark Mixer. Algorithms for classifying regular polytopes with a fixed automorphism group. Contributions to Discrete Mathematics, 7(2), 2012.

[10] Martin W Liebeck, Cheryl E Praeger, and Jan Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. Journal of Algebra, 111(2):365 – 383, 1987.

[11] Attila Maróti. On the orders of primitive groups. Journal of Algebra, 258(2):631 – 640, 2002.

[12] Peter McMullen and Egon Schulte. Abstract regular polytopes, volume 92 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2002.

[13] Barry Monson, Daniel Pellicer, and Gordon Williams. Mixing and monodromy of abstract polytopes. Transactions of the American Mathematical Society, 366(5):2651–2681, 2014.
[14] Ya. N. Nuzhin. Generating triples of involutions of alternating groups. *Mathematical Notes*, 51(4):389–392, Apr 1992.

[15] Daniel Pellicer. CPR graphs and regular polytopes. *European Journal of Combinatorics*, 29(1):59–71, 2008.

[16] Daniel Pellicer. Extensions of dually bipartite regular polytopes. *Discrete Mathematics*, 310(12):1702–1707, 2010. Algebraic and Topological Graph Theory.

[17] Egon Schulte. On arranging regular incidence-complexes as faces of higher-dimensional ones. *Eur. J. of Comb.*, 4:375–384, 1983.

[18] Egon Schulte and Asia Ivić Weiss. Problems on polytopes, their groups, and realizations. *Periodica Mathematica Hungarica*, 53(1-2):231–255, 2006.