Oral premedication with pregabalin and clonidine for hemodynamic stability during laryngoscopy: A comparative study

Asmita Chaudhary*, Kinjal Sanghvi, Heena Parikh

INTRODUCTION

Hemodynamic pressure response to airway instrumentation is a hazardous complication of general anaesthesia. Usually, these changes are well-tolerated by healthy patients but may be fatal in cardiac patients. Many pharmacological techniques were evaluated either in premedication or during the induction to attenuate the adverse hemodynamic response to airway instrumentation, such as pre-treatment with vasodilators, adrenoreceptor blockers, calcium channel blockers, and opioids with variable results.

The present study was designed as a comparative, randomized controlled study to evaluate and compare the efficacy of pregabalin or clonidine as an oral premedication on sedation, anxiety, changes in heart rate (HR), and mean arterial blood pressure during laryngoscopy.

Pregabalin, a gabapentinoid compound, is described structurally as (s)-3 amino methyl-5-methylhexanoic acid. Pregabalin is structurally related to the inhibitory neurotransmitter gamma amino butyric acid (GABA), but is not functionally related to it. It acts by decreasing the synthesis of the neurotransmitter glutamate to act on the central nervous system, and possesses analgesic, anticonvulsant and anxiolytic activity and is effective in preventing neuropathic component of acute nociceptive pain of surgery. It is well-absorbed and tolerated after oral administration, with peak plasma concentration achieved within 1 hr. It undergoes negligible hepatic metabolism.

Clonidine activates the α2-adrenergic receptors in the brain and spinal cord to decrease sympathetic outflow, causing sedation, analgesia, hypotension, and bradycardia without significant respiratory depression. It is well-absorbed after...
oral administration with peak plasma concentration in 75-90 mins. The perioperative use decreases the intraoperative stress response by reducing nociceptive transmission and decrease norepinephrine concentration in serum, provided hemodynamic stability.1

METHODS

The study was approved by the Institutional Ethical Committee. This prospective double-blind, randomized controlled study includes 100 normotensive adult patients aged 30-70 years of both genders, scheduled for elective surgery under general anesthesia with American Society of Anesthesiology (ASA) Physical Status I and II. Patients with anticipated difficult intubation, history of cardiac, pulmonary or renal disease, obesity, allergy to any anesthetic medication and taking sedative, hypnotics or antihypertensive medications were excluded from the study.

After preanesthetic evaluation patients were randomly allocated in two groups of 50 patients, Group I received tablet pregabalin (150 mg) and Group II received tablet clonidine (100 μg), given orally with sips of water about 1 hr before induction of general anesthesia. The observer was totally blind about the groups and medication received by the patients.

On arrival in pre-operative room, monitors were attached, and baseline HR and systolic, diastolic, and mean arterial blood pressure were recorded. The pre-operative level of sedation was assessed by the Ramsay sedation scale;

Ramsay sedation scale:
1 - Anxious, agitated or restless
2 - Co-operative, oriented and tranquil
3 - Responds to command
4 - Asleep with brisk response to the stimulus
5 - Asleep with sluggish response to the stimulus
6 - Asleep with no response

A crystalloid intravenous infusion of 6-8 ml/kg was started and all patients were pre-medicated with injection ondansetron (4 mg), injection glycopyrrolate (0.2 mg), injection midazolam (1 mg) and injection butorphanol (1 mg). After pre-oxygenation for 3 mins with 100% oxygen, induction was done with injection propofol (2 mg/kg). The direct laryngoscopy and intubation was facilitated with injection succinylcholine (1.5-2 mg/kg). Anesthesia was maintained with isoflurane, nitrous oxide 50% in oxygen and intermittent muscle relaxant injection vecuronium bromide. The patients were mechanically ventilated to maintain the normocapnia (ETCO₂ between 35 and 40 mmHg). After completion of surgery, residual neuromuscular block was reversed with appropriate doses of injection neostigmine (0.05 mg/kg), and injection glycopyrrolate (0.01 mg/kg) and extubation was performed.

Intraoperatively, the HR, mean arterial blood pressure, electrocardiogram, pulse oximeter (SPO₂), and ETCO₂ were continuously monitored and recorded before and after induction, immediately after intubation and 1, 3, 5, and 10 mins, thereafter at every 15 mins interval till end of surgery. Patients were observed for complications like hypotension, bradycardia, hypertension, arrhythmias, hypoxia, bronchospasm, and treated accordingly.

Patients were transferred to the post-anesthesia care unit and monitored for at least 3 hrs. Any hemodynamic abnormalities need for postoperative opioid analgesic medication, and incidence of nausea and vomiting along with the requirement for rescue antiemetic were also noted. If any side effects were noted, they were treated accordingly.

RESULTS

A total of 100 patients, 50 patients in each group were evaluated and compared. Both groups were comparable with respect to demograficre data. No significant differences were found among them with respect to age, sex, time between oral premedication to intubation, type of surgical procedure, duration of laryngoscopy, and anesthesia (Table 1).

The results obtained in the study are presented in tabulated manner and analyzed using Microsoft Excel and SPSS for Windows. Hemodynamic variables were represented by mean ± standard deviation. Statistical significance in the mean difference was done using analysis of variance, Student’s t-test and Chi-square tests as appropriate. A p<0.05 was considered statistically significant.

The level of sedation before the premedication was comparable between the groups (Table 2); however they were anxious at baseline. Sedation was significantly higher in the pregabalin Group I at the preinduction stage as compared to clonidine Group II. In Group I, onset of sedation level 2

Table 1: Demografic profile.
Demografic profile
Age (years)
Sex ratio (M/F)
ASA I: II (n)
Sedation level
Duration of laryngoscopy (s)
Type of surgery (n)
Open cholecystectomy
MRM
Pyelolithotomy
Abdominal hysterectomy
Hemithyroidectomy
GI surgery

ASA: American Society of Anesthesiology, MRM: Modified radical mastectomy, GI: Gastrointestinal
was seen after 15 mins in 3 patients (6%) while level 4 in 30 patients (60%) after 60 mins. In clonidine Group II there was no onset of sedation till 45 mins while at 60 mins only 2 patients (4%) had level 3 sedation.

Cardiovascular effects

There was no significant difference in the HR and mean arterial pressure (MAP) among groups before and after premedication. Immediately after laryngoscopy and intubation, the HR increased significantly in both the groups, but the increase was less in clonidine Group II. Maximum increase in HR from baseline was observed after 1 mins of laryngoscopy. After 5 mins of intubation, HR was 76.92±8.13 in the clonidine group while 82.76±14.80 in the pregabalin group which shows marginal difference. Throughout the surgery, there was good control on HR in both the groups (Tables 3 and 4, Figures 1 and 2).

No significant difference was observed in the MAP after premedication in groups. After intubation, MAP was well-controlled and remained stabilized during the intraoperative period in both the groups.

Student’s t-test was used to analyze the parametric data, and discrete (categorical) variables were analyzed using the χ² test, with p>0.05 which shows there are no difference in both the drugs in terms of control of HR, MAP and anxiety score. Both drugs are equally good to maintain hemodynamic stability during laryngoscopy (Tables 5 and 6).

Anesthetic and analgesic requirements during surgery

There were decreased requirement of propofol and volatile anesthetic agents intraoperatively in both the groups. Two

![Figure 1: Changes in heart rate during anesthesia.](image1)

![Figure 2: Changes in mean arterial pressure during anesthesia.](image2)

Table 2: Onset of sedation.

Time	Group I (pregabalin) (%)	Group II (clonidine) (%)
0 mins	-	Nil
15 mins	3 (6)	Nil
30 mins	8 (16)	Nil
45 mins	12 (24)	Nil
60 mins	30 (60)	2 (4)
No effect	20 (40)	48 (96)

Table 3: Changes in HR during anesthesia.

HR/min	Group I (pregabalin)	Group II (clonidine)
Baseline	85.80±8.72	83.06±9.88
After premedication	81.84±8.90	79.16±9.77
After induction	84.40±11.74	80.54±8.49
After intubation	85.84±13.59	80.26±9.22
1 mins	85.84±13.59	80.26±9.22
5 mins	82.76±14.80	76.92±8.13
10 mins	76.40±10.05	76.74±9.58
15 mins	78.64±13.86	75.58±9.59
30 mins	76.20±11.01	73.86±8.91
45 mins	76.16±14.55	74.38±10.40
60 mins	76.54±8.50	74.82±7.82
After extubation	86.98±7.80	83.06±11.08

Table 4: Changes in MAP during anesthesia.

MAP	Group I (pregabalin)	Group II (clonidine)
Baseline	98.66±8.30	99.08±7.61
After premedication	93.46±9.51	93.28±9.23
After induction	85.28±10.53	85.18±10.80
After intubation	81.82±11.82	81.82±11.31
1 mins	81.82±11.82	81.82±11.31
5 mins	83.36±12.91	82.32±10.72
10 mins	83.64±11.51	80.72±9.83
15 mins	85.46±10.65	83.04±11.01
30 mins	88.08±10.83	86.28±12.10
45 mins	86.24±10.05	85.36±11.22
60 mins	84.94±8.83	84.72±8.11
After extubation	96.10±4.89	94.98±5.11

MAP: Mean arterial pressure
Shribman et al. reported that laryngoscopy and tracheal intubation increases perioperative circulatory stability in patients undergoing laparoscopic cholecystectomy and potentiates the hemodynamic response of laryngoscopy. Pregabalin, an antiepileptic drug, is effective in controlling neuropathic pain by inhibiting membrane voltage-gated calcium channels. It does not interact with GABA receptors. However, only few data are available in the literature regarding the effect of pregabalin on the cardiovascular system. Its analgesic, anticonvulsant, and anxiolytic activities make it useful oral premedicant. It is well-absorbed after oral administration, with peak plasma concentrations occurring within 60 mins.

Clonidine is an α2 agonist produce clinical effect by binding to α2 a receptor which produces sedation, analgesia and sympatholysis manifesting as peripheral vasodilation, decrease systemic blood pressure, HR, and cardiac output. The pregabalin and clonidine possess several properties to make them valuable premedicants to attenuate the hemodynamic response of laryngoscopy. Present study evaluates the efficacy of pregabalin and clonidine as an oral premedication to attenuate hemodynamic pressure response during laryngoscopy. Pregabalin and clonidine act as a sedative, anxiolytic and mild analgesic.

The analogesic effect of gabapentin has been investigated during the past few years and because of its good analgesic and opioid sparing effect, it is used in post-operative pain management. Clonidine and pregabalin effectively blunt sympathetic response and maintain hemodynamic stability during laryngoscopy and throughout the surgery. In this study, patients were given oral premedication with pregabalin 150 mg or clonidine 100 μg and found them effective for perioperative hemodynamic stability.

Shribman et al. reported that laryngoscopy and tracheal intubation increases blood pressure, HR and catecholamine levels, whereas Hassan et al. reported high incidence of cardiac arrhythmias, myocardial ischemia, and acute left ventricular failure. Reid and Brace described the hemodynamic response to laryngoscopy and intubation, probably due to intense sympathetic discharge caused by stimulation of epipharynx and larynx.

Many pharmacological techniques were introduced and evaluated either in the premedication or during induction to attenuate the hemodynamic pressure response to airway instrumentation, but results were controversial. More attention is given to the use of selective beta-adrenergic blockers to prevent the reflex sympathoadrenal discharge-mediated tachycardia and hypertension during laryngoscopy and intubation. Hypotensive agents, including sodium nitroprusside, nitroglycerin, adrenoreceptor blockers, calcium channel blockers and opioids, have been used effectively to attenuate these hemodynamic responses.

Intrasal nitroglycerine tends to block the hypertensive response to airway instrumentation. The intravenous lidocaine (1.5 mg/kg) prevent increase in MAP with no effect on HR. Among opioids remifentanil (1 μg/kg), alfentanil (10-20 μg/kg) or fentanyl (0.5-1 μg/kg) have been used successfully to attenuate hemodynamic pressure response to laryngoscopy and tracheal intubation, but these are associated with bradycardia, hypotension, and post-operative respiratory depression. Glossopharyngeal and superior laryngeal nerve blocks along with topical analgesia may also be effective methods. Helfman et al. reported that 150 mg esmolol bolus was superior to intravenous high-dose lidocaine or low-dose fentanyl in preventing the tachycardia associated with intubation.

In our study, 1mini after intubation HR in the pregabalin group was (85.84±13.59) while in the clonidine group was (80.26±9.22) which shows there was a marginal difference between two groups. There was good control on HR throughout surgery and after extubation in both groups. 1 min after laryngoscopy MAP was 81.82±11.82 in the pregabalin group and 81.81±11.31 in the clonidine group which shows both drugs are excellent for hemodynamic stability during laryngoscopy Both drugs having sedative and analgesic action. In post-operative ward, there were no obvious side effects like respiratory depression, hypotension or bradycardia in any group.

Clonidine is a α2 agonist that increase blood pressure, HR and catecholamine levels, whereas Hassan et al. reported high incidence of cardiac arrhythmias, myocardial ischemia, and acute left ventricular failure.

Reid and Brace described the hemodynamic response to laryngoscopy and intubation, probably due to intense sympathetic discharge caused by stimulation of epipharynx and larynx.

Many pharmacological techniques were introduced and evaluated either in the premedication or during induction to attenuate the hemodynamic pressure response to airway instrumentation, but results were controversial. More attention is given to the use of selective beta-adrenergic blockers to prevent the reflex sympathoadrenal discharge-mediated tachycardia and hypertension during laryngoscopy and intubation. Hypotensive agents, including sodium nitroprusside, nitroglycerin, adrenoreceptor blockers, calcium channel blockers and opioids, have been used effectively to attenuate these hemodynamic responses.

Intrasal nitroglycerine tends to block the hypertensive response to airway instrumentation. The intravenous lidocaine (1.5 mg/kg) prevent increase in MAP with no effect on HR. Among opioids remifentanil (1 μg/kg), alfentanil (10-20 μg/kg) or fentanyl (0.5-1 μg/kg) have been used successfully to attenuate hemodynamic pressure response to laryngoscopy and tracheal intubation, but these are associated with bradycardia, hypotension, and post-operative respiratory depression. Glossopharyngeal and superior laryngeal nerve blocks along with topical analgesia may also be effective methods. Helfman et al. reported that 150 mg esmolol bolus was superior to intravenous high-dose lidocaine or low-dose fentanyl in preventing the tachycardia associated with intubation.

In our study, 1mini after intubation HR in the pregabalin group was (85.84±13.59) while in the clonidine group was (80.26±9.22) which shows there was a marginal difference between two groups. There was good control on HR throughout surgery and after extubation in both groups. 1 min after laryngoscopy MAP was 81.82±11.82 in the pregabalin group and 81.81±11.31 in the clonidine group which shows both drugs are excellent for hemodynamic stability during laryngoscopy Both drugs having sedative and analgesic action. In post-operative ward, there were no obvious side effects like respiratory depression, hypotension or bradycardia in any group.

Clonidine is a α2 agonist that increase blood pressure, HR and catecholamine levels, whereas Hassan et al. reported high incidence of cardiac arrhythmias, myocardial ischemia, and acute left ventricular failure.

Reid and Brace described the hemodynamic response to laryngoscopy and intubation, probably due to intense sympathetic discharge caused by stimulation of epipharynx and larynx.

Many pharmacological techniques were introduced and evaluated either in the premedication or during induction to attenuate the hemodynamic pressure response to airway instrumentation, but results were controversial. More attention is given to the use of selective beta-adrenergic blockers to prevent the reflex sympathoadrenal discharge-mediated tachycardia and hypertension during laryngoscopy and intubation. Hypotensive agents, including sodium nitroprusside, nitroglycerin, adrenoreceptor blockers, calcium channel blockers and opioids, have been used effectively to attenuate these hemodynamic responses.

Intrasal nitroglycerine tends to block the hypertensive response to airway instrumentation. The intravenous lidocaine (1.5 mg/kg) prevent increase in MAP with no effect on HR. Among opioids remifentanil (1 μg/kg), alfentanil (10-20 μg/kg) or fentanyl (0.5-1 μg/kg) have been used successfully to attenuate hemodynamic pressure response to laryngoscopy and tracheal intubation, but these are associated with bradycardia, hypotension, and post-operative respiratory depression. Glossopharyngeal and superior laryngeal nerve blocks along with topical analgesia may also be effective methods. Helfman et al. reported that 150 mg esmolol bolus was superior to intravenous high-dose lidocaine or low-dose fentanyl in preventing the tachycardia associated with intubation.
parasympathetic nervous system. Laisalmi et al. concluded that premedication with clonidine blunts the stress response to surgical stimuli and reduces the requirement for narcotic and anesthetic doses.

Pre-operative anxiety and post-operative pain remain problems for many outdoor patients during the perioperative period. Although benzodiazepines are effective in reducing pre-operative anxiety in the ambulatory setting, it may be accompanied by undesirable sedation. Prevention and treatment of postoperative pain with opioid analgesics contributes to postoperative nausea and vomiting and can delay recovery of bowel function, as well as adversely affect many other organ systems in the body.22 Opioid – related side effects contribute to delay recovery and discharge after ambulatory surgery.23

Recently, none-opioid analgesic drugs are emphasized routinely as a part of multimodal regimen for preventing pain in the perioperative period. Novel compounds, e.g., α -2 agonists, ketamine, esmolol, and capsaicin are being examined as an adjuvant for minimizing pain after surgery.25-30

Oral gabapentin administered for premedication has been found to improve the quality of recovery in the early post-operative period comparable to a cyclooxygenase-2 inhibitor.31-33 Pregabalin is an analog of gabapentin, which has been alleged possess anxiolytic, analgesic, and antiepileptic activity.

Gupta et al. concluded that oral premedication with pregabalin 150 mg or clonidine 200 μg causes sedation and anxiolysis with hemodynamic stability during laryngoscopy and laparoscopic cholecystectomy, without prolongation of recovery time and side effects which is similar to our study.

CONCLUSION

The pregabalin and clonidine effectively blunt hemodynamic pressure response to laryngoscopy without prolongation of recovery time and side effects.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Prys-Roberts C, Greene LT, Meloche R, Foëx P. Studies of anaesthesia in relation to hypertension. II. Haemodynamic consequences of induction and endotracheal intubation. Br J Anaesth. 1971;43(6):531-47.
2. Stoelting RK. Circulatory changes during direct laryngoscopy and tracheal intubation: influence of duration of laryngoscopy with or without prior lidocaine. Anesthesiology. 1977;47(4):381-4.
3. Shribman AJ, Smith G, Achola KJ. Cardiovascular and catecholamine responses to laryngoscopy with and without tracheal intubation. Br J Anaesth. 1987;59(3):295-9.
4. Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45 Suppl 6:13-8.
5. Joris JL, Chiche JD, Lamy M. Clonidine reduced hemodynamic changes induced by pneumoperitoneum during laparoscopic cholecystectomy. Br J Anaesth. 1995;74:A124.
6. Seib RK, Paul JE. Preoperative gabapentin for postoperative analgesia: a meta-analysis. Can J Anaesth. 2006;53(5):461-9.
7. Pandey CK, Priye S, Singh S, Singh U, Singh RB, Singh PK. Preemptive use of gabapentin significantly decreases postoperative pain and rescue analgesic requirements in laparoscopic cholecystectomy. Can J Anaesth. 2004;51(4):358-63.
8. Kastogi B, Gupta K, Gupta PK, Agarwal S, Jain M, Chauhan H. Oral pregabalin premedication for attenuation of haemodynamic pressor response of airway instrumentation during general anaesthesia: a dose response study. Indian J Anaesth. 2012;56(1):49-54.
9. Singh S, Arora K. Effect of oral clonidine premedication on perioperative haemodynamic response and postoperative analgesic requirement for patients undergoing laparoscopic cholecystectomy. Indian J Anaesthesiol. 2011;55(1):26-30.
10. Hassan HG, el-Sharkawy TY, Renck H, Mansour G, Fouda A. Hemodynamic and catecholamine responses to laryngoscopy with vs. without endotracheal intubation. Acta Anaesthesiol Scand. 1991;35(5):442-7.
11. Reid LC, Brace DE. Irritation of the respiratory tract and its reflex effect upon heart. Surg Gynecol Obstet. 1940;70:157-62.
12. Fassoulaki A, Kaniaris P. Intranasal administration of nitroglycerine attenuates the pressor response to laryngoscopy and intubation of the trachea. Br J Anaesth. 1983;55(1):49-52.
13. Korpinen R, Saarnivaara L, Siren K, Sarna S. Modification of the haemodynamic responses to induction of anaesthesia and tracheal intubation with alfentanil, esmolol and their combination. Can J Anaesth. 1995;42(4):298-304.
14. Habib AS, Parker JL, Maguire AM, Rowbotham DJ, Thomson JP. Effects of remifentanil and alfentanil on the cardiovascular responses to induction of anaesthesia and tracheal intubation in the elderly. Br J Anaesth. 1998;80:467-9.
15. Martin DE, Rosenberg H, Aukburg SJ, Bartkowsi RR, Edwards MW Jr, Greenhow DE, et al. Low-dose fentanyl blunts circulatory responses to tracheal intubation. Anesth Analg. 1982;61(8):680-4.
16. Helfman SM, Gold MI, DeLisser EA, Herrington CA. Which drug prevents tachycardia and hypertension associated with tracheal intubation: lidocaine, fentanyl, or esmolol. Anesth Analg. 1991;72:482-6.
Lindgren L. Clonidine provides opioid-sparing effect, stable hemodynamics, and renal integrity during laparoscopic cholecystectomy. Surg Endosc. 2001;15(11):1331-5.

21. Shafer A, White PF, Urquhart ML, Doze VA. Outpatient premedication: use of midazolam and opioid analgesics. Anesthesiology. 1989;71(4):495-501.

22. White PF, Kehlet H. Improving pain management: are we jumping from the frying pan into the fire? Anesth Analg. 2007;105(1):10-2.

23. Pavlin DJ, Chen C, Penalozza NL, Buckley FP. Pain as a factor complicating recovery and discharge after ambulatory surgery. Anesth Analg. 2002;95(3):627-34.

24. White PF. The changing role of non-opioid analgesic techniques in the management of postoperative pain. Anesth Analg. 2005;101 5 Suppl:S5-22.

25. White PF. Multimodal analgesia: its role in preventing postoperative pain. Curr Opin Investig Drugs. 2008;9:76-82.

26. Arain SR, Ruehlow RM, Ulrich TD, Ebert TJ. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg. 2004;98(1):153-8.

27. Adam F, Chauvin M, Du Manoir B, Langlois M, Sessler DI, Fletcher D. Small-dose ketamine infusion improves postoperative analgesia and rehabilitation after total knee arthroplasty. Anesth Analg. 2005;100(2):475-80.

28. Collard V, Mistaletti G, Taqi A, Asenjo JF, Feldman LS, Fried GM, et al. Intraoperative esmolol infusion in the absence of opioids spares postoperative fentanyl in patients undergoing ambulatory laparoscopic cholecystectomy. Anesth Analg. 2007;105(5):1255-62.

29. Aasvang EK, Hansen JB, Malmstrom J, Asmussen T, Gennevois D, Struys MM, et al. The effect of wound instillation of a novel purified capsaicin formulation on postherniotomy pain: a double-blind, randomized, placebo-controlled study. Anesth Analg. 2008;107(1):282-91.

30. Gilron I, Orr E, Tu D, O’Neill JP, Zamora JE, Bell AC. A placebo-controlled randomized clinical trial of perioperative administration of gabapentin, rofecoxib and their combination for spontaneous and movement-evoked pain after abdominal hysterectomy. Pain. 2005;113(1-2):191-200.

31. Turan A, White PF, Karamanlioglu B, Memis D, Tasdogan M, Pamukçu Z, et al. Gabapentin: an alternative to the cyclooxygenase-2 inhibitors for perioperative pain management. Anesth Analg. 2006;102(1):175-81.

32. Turan A, White PF, Karamanlioglu B, Pamukçu Z. Premedication with gabapentin: the effect on tourniquet pain and quality of intravenous regional anesthesia. Anesth Analg. 2007;104(1):97-101.

33. Kavoussi R. Pregabalin: from molecule to medicine. Eur Neuropsychopharmacol 2006;16 Suppl 2:S128-33.

34. Gupta K, Sharma D, Gupta PK. Oral premedication with pregabalin or clonidine for hemodynamic stability during laryngoscopy and laparoscopic cholecystectomy: a comparative evaluation. Saudi J Anaesth. 2011;5(2):179-84.

doi: 10.5455/2319-2003.ijbcp20150423
Cite this article as: Chaudhary A, Sanghvi K, Parikh H. Oral premedication with pregabalin and clonidine for hemodynamic stability during laryngoscopy: A comparative study. Int J Basic Clin Pharmacol 2015;4:294-9.