THE BOUNDED SPHERICAL FUNCTIONS ON THE CARTAN MOTION GROUP

SIGURDUR HELGASON

Abstract. The bounded spherical functions are determined for a complex Cartan motion group.

1. Introduction

Consider a symmetric space \(X = G/K \) of noncompact type, \(G \) being a connected noncompact semisimple Lie group with finite center and \(K \) a maximal compact subgroup. Let \(g = \mathfrak{k} + \mathfrak{p} \) be the corresponding Cartan decomposition, \(\mathfrak{p} \) being the orthocomplement of \(\mathfrak{k} \) relative to the Killing form \(B(= \langle \ , \rangle) \) of \(g \). Let \(\mathfrak{a} \subset \mathfrak{p} \) be a maximal abelian subspace, \(\Sigma \) the set of root of \(g \) relative to \(\mathfrak{a} \), \(\mathfrak{a}^+ \) a fixed Weyl chamber and \(\Sigma^+ \) the set of roots \(\alpha \) positive on \(\mathfrak{a}^+ \). Let \(\rho \) denote the half sum of the \(\alpha \in \Sigma^+ \) with multiplicity. The spherical functions on \(X \) (and \(G \)) are by definition the \(K \)-invariant joint eigenfunctions of the elements in \(\mathcal{D}(X) \), the algebra of \(G \)-invariant differential operators on \(X \). By Harish-Chandra’s result \([HC58]\) the spherical functions on \(X \) are given by

\[
(1.1) \quad \phi_{\lambda}(gK) = \int_K e^{i(\lambda - \rho)(H(gK))} \, dk, \quad \phi(eK) = 1,
\]

where \(\exp H(g) \) is the \(A \) factor in the Iwasawa decomposition \(G = KAN \) (\(N \) nilpotent) and \(\lambda \) ranges over the space \(\mathfrak{a}^*_c \) of complex-valued linear functions on \(\mathfrak{a} \). Also, \(\phi_\lambda \equiv \phi_\mu \) if and only if the elements \(\lambda, \mu \in \mathfrak{a}^*_c \) are conjugate under \(W \).

Let \(L^2(G) \) denote the (commutative) Banach algebra of \(K \)-bi-invariant integrable functions on \(G \). The maximal ideal space of \(L^2(G) \) is known to consist of the kernels of the spherical transforms

\[
f \rightarrow \int_G f(g) \phi_{-\lambda}(g) \, dg
\]

2010 MCS Primary 43A85, 22E46, 43A90; Secondary 22F30.
for which $\phi_{-\lambda}$ is bounded. These bounded spherical functions were in [HJ69] found to be those ϕ_{λ} for which λ belongs to the tube $a^* + iC(\rho)$ where $C(\rho)$ is the convex hull of the points $s\rho(s \in W)$.

This result is crucial in proving that the horocycle Radon transform is injective on $L^1(X)$ ([H70], Ch. II).

2. The boundedness criterion.

In this note we deal with the analogous question for the Cartan motion group G_0. This group is defined as the semidirect product of K and p with respect to the adjoint action of K on p. The $X_0 = G_0/K$ is naturally identified with the Euclidean space p. The element $g_0 = (k,Y)$ actions on p by

$$g_0(Y') = Ad(k)Y' + Y \quad k \in K, Y, Y' \in p,$$

so the algebra $\mathfrak{D}(X_0)$ of G_0–invariant differential operators on X_0 is identified with the algebra of $Ad(K)$–invariant constant coefficient differential operators on p. The corresponding spherical functions on X_0 are given by

$$\psi_{\lambda}(Y) = \int_K e^{i\lambda(Ad(k)Y)} \, dk \quad \lambda \in a_+^*,$$

and $\psi_{\lambda} \equiv \psi_{\mu}$ if and only if λ and μ are W–conjugate. See e.g. [HS4], IV §4. Again, the maximal ideal space of $L^\natural(G_0)$ is up to W–invariance identified with the set of λ in a_+^* for which ψ_{λ} is bounded. Since ρ is related to the curvature of G/K it is natural to expect the bounded ψ_{λ} to come from replacing $C(\rho)$ by the origin, in other words ψ_{λ} is would be expected to be bounded if and only if λ is real, that is $\lambda \in a^*$.

The bounded criterion in [HJ69] for X relies on Harish-Chandra’s expansion for ϕ_{λ}, combined with the reduction to the boundary components of X. These are certain subsymmetric spaces of X. These tools are not available for X_0 so the “tangent space analysis” in [H80] relies on approximating ψ_{λ} by ϕ_{λ} suitably modified. Although several papers ([BC86], [R88], [SØ05]) are directed to asymptotic properties of the function ψ_{λ} the boundedness question does not seem to be addressed there. In this note we only give a partial solution through the following result.

Theorem 2.1. Assume the group G complex. The spherical function ψ_{λ} on G_0 is bounded if and only if λ is real, i.e. $\lambda \in a^*$.
For $\lambda \in \mathfrak{a}^*$ let $\lambda = \xi + i\eta$ with $\xi, \eta \in \mathfrak{a}^*$. It remains to prove that if $\lambda_0 = \xi_0 + i\eta_0$ with $\eta_0 \neq 0$ then ψ_{λ_0} is unbounded. For $\lambda \in \mathfrak{a}^*$ let $A_\lambda \in \mathfrak{a}_c$ be determined by $\langle A_\lambda, H \rangle = \lambda(H) (H \in \mathfrak{a})$. With $i\lambda_0 = i\xi_0 - \eta_0$ we may by the W-invariance of ψ_λ in λ assume that $-A_{\eta_0} \in \mathfrak{a}^+$ (the closure of \mathfrak{a}^+).

Let $U \subset W$ be the subgroup fixing λ_0 and $V \subset W$ the subgroup fixing η_0. Then $U \subset V$ and

$$\psi_{s\xi_0 + i\eta_0} = \psi_{\xi_0 + i\eta_0} \quad \text{for } s \in V.$$

In addition we assume that for the lexicographic ordering of \mathfrak{a}^* defined by the simple roots $\alpha_1, \ldots, \alpha_\ell$ we have $\xi_0 \geq s\xi_0$ for $s \in V$.

In particular,

$$\alpha(A_{\xi_0}) \geq 0 \quad \text{for } \alpha \in \Sigma^+ \text{ satisfying } \alpha(A_{\eta_0}) = 0.$$

Lemma 2.2. The subgroup U of W fixing λ_0 is generated by the reflections s_α, where α_i is a simple root vanishing at A_{λ_0}.

Proof. We first prove that some of the α_i vanishes at A_{λ_0}. The group U is generated by the s_α for which $\alpha > 0$ vanishes on λ_0 ([H78], VII, Theorem 2.15). If α is such then $\alpha(-A_{\eta_0}) = 0$ and since $\alpha = \sum n_j \alpha_j$ ($n_j \neq 0$ in \mathbb{Z}^+) and $\alpha_j(-A_{\eta_0}) \geq 0$ we see that each of these α_j vanishes on $A_{-\eta_0}$. Since $\alpha(A_{\xi_0}) = 0$ and $\alpha_j(A_{\xi_0}) \geq 0$ by (2.3) for each j we deduce $\alpha_j(A_{\xi_0}) = 0$.

Let U' denote the subgroup U generated by those s_{α_i} with α_i vanishing at λ_0. For each $\alpha > 0$ mentioned above we shall prove $\alpha = s_{\alpha_p}$ where $s \in U'$ and α_p is simple and vanishes at A_{λ_0}. We shall prove this by induction on $\sum m_i$ if $\alpha = \sum m_i \alpha_i$ ($m_i \neq 0$ in \mathbb{Z}^+). The statement is clear if $\sum m_i = 1$ so assume $\sum m_i > 1$. Since $\langle \alpha, \alpha \rangle > 0$ we have $\langle \alpha, \alpha_k \rangle > 0$ for some k among the indices i above. Then $\alpha \neq \alpha_k$ (by $\sum m_i > 1$). Since s_{α_k} permutes the positive roots $\neq \alpha_k$ we have $s_{\alpha_k} \alpha \in \sum^+$ and $s_{\alpha_k} \alpha = \sum j m_j' \alpha_j (m_j' \in \mathbb{Z}^+)$ and by the choice of $k, \sum m_j' < \sum m_i$. Now $\alpha(A_{\lambda_0}) = 0$ and $\alpha_i(A_{-\eta_0}) \geq 0$ so for each i in the sum for α above, $\alpha_i(A_{\eta_0}) = 0$. Hence by (2.3) $\alpha_i(A_{\xi_0}) = 0$. In particular $s_{\alpha_k} \in U$. Thus the induction assumption applies to $s_{\alpha_k} \alpha$ giving a $s' \in U'$ for which $s_{\alpha_k} \alpha = s' \alpha_p$. Hence $\alpha = s_{\alpha_p}$ with $s \in U'$. But then $s_{\alpha} = ss_{\alpha_k}s^{-1}$ proving the lemma. \(\square \)

Using Harish-Chandra’s integral formula [HC57] Theorem 2 we have
\[\psi_\lambda(\exp H) = c_0 \sum_{s \in W} \epsilon(s)e^{i(sA_\lambda, H)} \langle \pi(H), \pi(A_\lambda) \rangle, \quad (H \in \mathfrak{a}), \]

where \(c_0 \) is a constant, \(\langle , \rangle \) the Killing form, \(\epsilon(s) = \det s \) and \(\pi \) the product of the positive roots. If \(\eta_0 \) is regular so \(-A_\eta_0 \in \mathfrak{a}^+\) then \(V = U = \{e\} \) and \(\pi(A_\lambda_0) \neq 0 \). Fix \(H_0 \in \mathfrak{a}^+ \) and \(\lambda = \lambda_0 \) in the sum (2.4). With \(H = tH_0(t > 0) \) the term in (2.4) with \(s = e \) will outweigh all the others as \(t \to +\infty \) so \(\psi_\lambda \) is unbounded.

We now consider the case \(\pi(A_\lambda_0) = 0 \).

Let \(\pi' \) denote the product of the positive roots \(\beta_1, \ldots, \beta_r \) vanishing at \(\lambda_0 \) and \(\pi'' \) the product of the remaining positive roots. For \(\lambda = \lambda_0 \) we want to divide the factor \(\pi'(\lambda_0) \) into the numerator of (2.4). We do this by multiplying (2.4) by \(\pi'(\lambda) \), then applying the differential operator \(\partial(\pi') \) in the variable \(\lambda \) and finally setting \(\lambda = \lambda_0 \). The theorem then follows from the following lemma.

Lemma 2.3. Let \(\eta_0 \neq 0 \). Then the function

\[\zeta_\lambda(H) = \sum_{s \in W} \epsilon(s)e^{i(sA_\lambda, H)} \pi(A_\lambda) \]

is for the case \(\lambda = \lambda_0 \) unbounded on \(\mathfrak{a}^+ \).

Proof. We have

\[\pi'(\lambda)\zeta_\lambda(H) = \frac{1}{\pi''(\lambda)} \sum_{s \in W} \epsilon(s)e^{i(sA_\lambda, H)}. \]

Applying \(\partial(\pi') = \partial(\beta_1) \ldots \partial(\beta_r) \) in \(\lambda \) and putting \(\lambda = \lambda_0 \) we see that

(2.5)
\[c \zeta_{\lambda_0}(H) = \sum_{s \in W} P_s(H)e^{i(sA_{\lambda_0}, H)}. \]

Here \(c \) is a constant and \(P_s \) the polynomial

\[P_s(H) = \left[\partial(\pi')_\lambda \left(\epsilon(s)\frac{1}{\pi''(\lambda)}e^{is\lambda(H)} \right) \right]_{\lambda=\lambda_0} e^{-is\lambda_0(H)} \]

whose highest degree term is a constant times

(2.6)
\[\epsilon(s)\frac{1}{\pi''(\lambda_0)}(s\pi')(H). \]
We do not need the exact value of c but for $r = 2, 3$, respectively, it equals (with $x_{ij} = \langle \alpha_i, \alpha_j \rangle$)

\[
x_{12}^2 + x_{11}x_{22} + x_{11}x_{23}^2 + x_{22}x_{13}^2 + x_{33}x_{12}^2 + x_{11}x_{22}x_{33} + 2x_{12}x_{13}x_{23}.
\]

We break the sum (2.5) into two parts, sum over V and sum over $W \setminus V$. For the first we consider Σ_{V} as $\Sigma_{V/U} \Sigma_{U}$. Then (2.5) can be written

\[
(2.7) \quad c \zeta_\lambda_0(H) = e^{-\eta_0(H)} \left[\sum_{V/U} e^{i\xi_0(H)} \sum_{\sigma \in U} P_{\sigma}(H) \right] + \sum_{W \setminus V} P_{s}(H) e^{i\lambda_0(H)}.
\]

We put here $H' = -A_{\eta_0}$, let $H_0 \in \mathfrak{a}^+$ be arbitrary and set $H = tH_0 (t > 0)$. Then the second term in (2.7) equals

\[
(2.8) \quad \sum_{s \notin V} P_{s}(tH_0) e^{i\xi_0(tH_0)} e^{(sH', tH_0)}.
\]

By a standard property of \mathfrak{a}^+ we have

\[
\langle H_1, H_2 \rangle \geq \langle sH_1, H_2 \rangle \quad \text{if } H_1, H_2 \in \mathfrak{a}^+
\]

so taking limit,

\[
\langle sH' - H', H \rangle \leq 0, \quad H \in \mathfrak{a}^+.
\]

If $s \notin V$ then $sH' - H' \neq 0$. Thus the map $H \to \langle sH' - H', H \rangle$ is open from \mathfrak{a} to \mathbb{R} mapping \mathfrak{a}^+ into $\{ t \leq 0 \}$, not taking there the boundary value 0. Hence we get

\[
(2.9) \quad \langle H', H_0 \rangle > \langle H', sH_0 \rangle \quad \text{for } s \notin V.
\]

Equivalently, dist $(H_0, H') <$ dist (H_0, sH') for $s \notin V$.

Consider (2.7) with $H = tH_0$. Assume the expression in the bracket has absolute value with $\limsup_{t \to +\infty} \neq 0$. Considering (2.9) the first term in (2.7) would have exponential growth larger than that of each term in (2.8).

Thus $c \neq 0$ and

\[
\lim_{t \to +\infty} \zeta_\lambda_0(tH_0) = \infty
\]

implying Lemma 2.3 in this case.
We shall now exclude the possibility that the quantity in the bracket in (2.7) (with \(H = tH_0 \)) has absolute value with \(\limsup_{t \to \infty} = 0 \). For this we use the following elementary result of Harish–Chandra [HC58], Corollary of Lemma 56: Let \(a_1, \ldots, a_n \) be nonzero complex numbers and \(p_0, \ldots, p_n \) polynomials with complex coefficients.

Suppose

\[
(2.10) \quad \limsup_{t \to \infty} \left| p_0(t) + \sum_{j=1}^{n} p_j(t) e^{a_j t} \right| \leq a
\]

for some \(a \in \mathbb{R} \). Then \(p_0 \) is a constant and \(|p_0| \leq a \). This implies the following result.

Let \(k_1 \ldots k_n \in \mathbb{R} \) be different and \(p_1, \ldots, p_n \) polynomials. If

\[
(2.11) \quad \limsup_{t \to +\infty} \left| \sum_{1}^{n} e^{i k_r t} p_r(t) \right| = a < \infty
\]

then each \(p_r \) is constant. If \(a = 0 \) then each \(p_r = 0 \). This follows from (2.10) by writing the above sum as

\[
e^{i k_r t} \left(p_r(t) + \sum_{j \neq r} e^{i(k_j - k_r)t} p_j(t) \right).
\]

Note that in the sum

\[
(2.12) \quad \sum_{V/U} e^{is \xi_0 (tH_0)} \sum_{\sigma \in U} P_{s\sigma}(tH_0)
\]

all the terms \(s \xi_0 \) are different (\(s_1, s_2 \in V \) with \(s_1 \xi_0 = s_2 \xi_0 \) implies \(s_2^{-1} s_1 \in U \)). Thus we can choose \(H_0 \in a^+ \) such that all \(s \xi_0(H_0) \) are different.

We shall now show that one of the polynomial in (2.12), namely the one for \(s = e \),

\[
(2.13) \quad \sum_{\sigma \in U} P_{\sigma}(tH_0)
\]

is not identically 0. For this note that the highest degree term in \(P_{\sigma} \) is a constant (independent of \(\sigma \)) times
\[(2.14) \quad \epsilon(\sigma) \frac{1}{\pi''(\lambda_0)}(\sigma \pi'')(tH_0). \]

Now each \(\sigma \) permutes the roots vanishing at \(A\lambda_0 \). Hence \(\sigma \pi' = \epsilon'(\sigma) \pi' \) where \(\sigma \rightarrow \epsilon'(\sigma) \) is a homomorphism of \(U \) into \(\mathbb{R} \). We now use Lemma 2.2. Since each \(s_{\alpha_i} \in U \) maps \(\alpha_i \) into \(-\alpha_i \) and permutes the other positive roots vanishing at \(\lambda_0 \) we see that \(\epsilon'(s_{\alpha_i}) = -1 = \epsilon(s_{\alpha_i}) \). Thus by Lemma 2.2 \(\epsilon'(\sigma) = \epsilon(\sigma) \) for each \(\sigma \in U \). Thus (2.14) reduces to

\[\frac{1}{\pi''}(tH_0). \]

This shows that the polynomial in (2.13) is not identically 0. In view of (2.11) this shows that the lim sup discussed is \(\neq 0 \) and Lemma 2.3 established.

I thank Mogens Flensted-Jensen and Angela Pasquale for useful discussions.

REFERENCES

[BC86] D. Bartlet and J.L. Clerc, Le comportement à l’infini des fonctions de Bessel généralisées I, Adv. Math. 61 (1986), 165–183.

[HC57] Harish-Chandra, Differential operators on a semisimple Lie algebra Amer. J. Math. 79 (1957), 241–310.

[HC58] Harish-Chandra, Spherical functions on a semisimple Lie group I. Amer. J. Math 80 (1958), 241–310.

[H70] S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. Math. 5 (1970), 1–154.

[H78] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Acad. Press 1978.

[H80] S. Helgason, A duality for symmetric spaces with applications to group representations. Tangent space analysis, Advan. Math. 30 (1980), 297–323.

[H84] S. Helgason, Groups and Geometric Analysis Acad. Press, 1984.

[HJ69] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces Adv. Math. 3 (1969), 586–593.

[NPP13] E.K. Narayanan, A. Pasquale and S. Pusti, Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems and applications. arXiv: 101.3891v2, Aug. 2013.

[R88] C. Rader, Spherical functions on Cartan motion groups Trans. Amer. Math. Soc. 310 (1988), 1–45.

[SO05] S.B. Said and B. Ørsted, Analysis on flat symmetric spaces J. Math. Pure Appl. 84 (2005), 1393–1426.