COUPLED PAINLEVÉ SYSTEMS IN DIMENSION FOUR WITH AFFINE WEYL GROUP SYMMETRY OF TYPES $A_4^{(2)}$ AND $A_1^{(1)}$

Abstract. We find a two-parameter family of coupled Painlevé systems in dimension four with affine Weyl group symmetry of type $A_4^{(2)}$. For a degenerate system of $A_4^{(2)}$ system, we also find a one-parameter family of coupled Painlevé systems in dimension four with affine Weyl group symmetry of type $A_1^{(1)}$. We show that for each system, we give its symmetry and holomorphy conditions. These symmetries, holomorphy conditions and invariant divisors are new.

1. Introduction

In [19], we find a four-parameter (resp. three-parameter) family of ordinary differential systems in dimension four with affine Weyl group symmetry of type $A_7^{(2)}$ (resp. $A_5^{(2)}$). These systems are equivalent to the polynomial Hamiltonian systems, and can be considered to be 2-coupled Painlevé systems in dimension four.

We will complete the study of the below problem in a series of papers, for which this paper is the third, resulting in a series of equations for the remaining affine root systems of type $A_{2d+2}^{(2)}$.

Problem For each affine root system $X_i^{(2)}$ with affine Weyl group $W(X_i^{(2)})$, find a system of differential equations for which $W(X_i^{(2)})$ acts as its Bäcklund transformations.

This paper is the stage in this project where we find a 2-parameter family of coupled Painlevé systems in dimension four with affine Weyl group symmetry of type $A_1^{(2)}$ given by

$$
\frac{dx}{dt} = \frac{\partial H}{\partial y}, \quad \frac{dy}{dt} = -\frac{\partial H}{\partial x}, \quad \frac{dz}{dt} = \frac{\partial H}{\partial w}, \quad \frac{dw}{dt} = -\frac{\partial H}{\partial z} \tag{1}
$$

with the polynomial Hamiltonian

$$
H = 2H_{II}(x, y, t, \alpha_1) + H_{II}^{auto}(z, w, t, \alpha_0) + xw + 2yzw \tag{2}
$$

$$
= 2xy^2 + 2x^2 + 2tx - 2\alpha_1 y + z^2 w - \frac{w^2}{2} + \alpha_0 z + xw + 2yzw.
$$

Here x, y, z and w denote unknown complex variables, and $\alpha_0, \alpha_1, \alpha_2$ are complex parameters satisfying the relation:

$$
\alpha_0 + 2\alpha_1 + 2\alpha_2 = 1. \tag{3}
$$

2000 Mathematics Subject Classification. 34M55; 34M45; 58F05; 32S65.

Key words and phrases. Affine Weyl group, Bäcklund transformation, Birational transformation, Holomorphy condition, Painlevé equations.
The symbol H_{II} denotes the second Painlevé Hamiltonian given by
\[H_{II}(x, y, t, \alpha_1) = xy^2 + x^2 + tx - \alpha_1 y, \]
and the symbol H_{II}^{auto} denotes the autonomous version of the second Painlevé system given by
\[H_{II}^{\text{auto}}(z, w, t, \alpha_0) = z^2 w - \frac{w^2}{2} + \alpha_0 z. \]
Of course, the Hamiltonian itself is the first integral.

We remark that for this system we tried to seek its first integrals of polynomial type with respect to x, y, z, w. However, we can not find. Of course, the Hamiltonian H is not its first integral.

We also remark that the system (1) can be obtained by connecting the pair of the invariant divisors $(x + y + w + t, y)$ and $(x - z, z)$ for the canonical variables (x, y, z, w) (see figure 1) in the system of type $A_{4}^{(1)}$ (see section 5 in [10]).

This is the second example which gave higher-order Painlevé equations of type $A_{4}^{(2)}$.

Problem It is still an open question whether the system (1) is equivalent to Ramani’s equation of type $A_{4}^{(2)}$.

For a degenerate system of $A_{4}^{(2)}$ system, we also find a one-parameter family of coupled Painlevé systems in dimension four with affine Weyl group symmetry of type $A_{1}^{(1)}$.

We show that for each system, we give its symmetry and holomorphy conditions. These symmetries, holomorphy conditions and invariant divisors are new.

2. **Symmetry and holomorphy conditions**

In this section, we study the symmetry and holomorphy conditions of the system (1). These properties are new.

Theorem 2.1. The system (1) admits the affine Weyl group symmetry of type $A_{2}^{(2)}$ as the group of its Bäcklund transformations, whose generators s_0, s_1, s_2 defined as follows: with the notation $(\ast) := (x, y, z, w, t; \alpha_0, \alpha_1, \alpha_2)$:

\[
 s_0 : (\ast) \rightarrow (x, y, z + \frac{\alpha_0}{w}, w, t; -\alpha_0, \alpha_1 + \alpha_0, \alpha_2),
\]
\[
 s_1 : (\ast) \rightarrow (x, y - \frac{\alpha_1}{x + z^2}, z, w - \frac{2\alpha_1 z}{x + z^2}, t; \alpha_0 + 2\alpha_1, -\alpha_1, \alpha_2 + \alpha_1),
\]
\[
 s_2 : (\ast) \rightarrow (x + \frac{2\alpha_2 y}{f_2}, y - \frac{\alpha_2}{f_2}, z + \frac{\alpha_2}{f_2}, w, t; \alpha_0, \alpha_1 + 2\alpha_2, -\alpha_2),
\]
where $f_2 := x + y^2 + w + t$.

We note that the Bäcklund transformations of this system satisfy
\[
 s_i(g) = g + \frac{\alpha_i}{f_i} \{f_i, g\} + \frac{1}{2!} \left(\frac{\alpha_i}{f_i} \right)^2 \{f_i, \{f_i, g\}\} + \cdots \quad (g \in \mathbb{C}(t)[x, y, z, w]),
\]
where Poisson bracket $\{,\}$ satisfies the relations:
\[\{y, x\} = \{w, z\} = 1, \quad \text{the others are 0.} \]

Since these Bäcklund transformations have Lie theoretic origin, similarity reduction of a Drinfeld-Sokolov hierarchy admits such a Bäcklund symmetry.

Proposition 2.2. This system has the following invariant divisors:

Parameter’s relation	f_i
$\alpha_0 = 0$	$f_0 := w$
$\alpha_1 = 0$	$f_1 := x + z^2$
$\alpha_2 = 0$	$f_2 := x + y^2 + w + t$

We note that when $\alpha_0 = 0$, we see that the system (1) admits a particular solution $w = 0$, and when $\alpha_2 = 0$, after we make the birational and symplectic transformations:

\[x_2 = x + y^2 + w + t, \; y_2 = y, \; z_2 = z + y, \; w_2 = w \]

we see that the system (1) admits a particular solution $x_2 = 0$.

Proposition 2.3. Let us define the following translation operators:

\[T_1 := s_1 s_2 s_1 s_0, \quad T_2 := s_1 T_1 s_1. \]

These translation operators act on parameters α_i as follows:

\[T_1(\alpha_0, \alpha_1, \alpha_2) = (\alpha_0, \alpha_1, \alpha_2) + (-2, 1, 0), \]
\[T_2(\alpha_0, \alpha_1, \alpha_2) = (\alpha_0, \alpha_1, \alpha_2) + (0, -1, 1). \]

Theorem 2.4. Let us consider a polynomial Hamiltonian system with Hamiltonian $K \in \mathbb{C}(t)[x, y, z, w]$. We assume that

(A1) $\deg(K) = 6$ with respect to x, y, z, w.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate system r_i ($i = 0, 1, 2$):

\[r_0 : x_0 = x, \; y_0 = y, \; z_0 = \frac{1}{z}, \; w_0 = -(wz + \alpha_0)z, \]
\[r_1 : x_1 = -((x + z^2)y - \alpha_1)y, \; y_1 = \frac{1}{y}, \; z_1 = z, \; w_1 = w - 2yz, \]
\[r_2 : x_2 = -((x + y^2 + w + t)y - \alpha_2)y, \; y_2 = \frac{1}{y}, \; z_2 = z + y, \; w_2 = w. \]

Then such a system coincides with the system (1) with the polynomial Hamiltonian (2).

By this theorem, we can also recover the parameter’s relation (3).

We note that the condition (A2) should be read that

\[r_j(K) \quad (j = 0, 1), \quad r_2(K + y) \]

are polynomials with respect to x_i, y_i, z_i, w_i.

In this section, we find a 1-parameter family of coupled Painlevé systems in dimension four with affine Weyl group symmetry of type $A_1^{(1)}$ given by

$$ dx/dt = \partial H/\partial y, \quad dy/dt = -\partial H/\partial x, \quad dz/dt = \partial H/\partial w, \quad dw/dt = -\partial H/\partial z $$

with the polynomial Hamiltonian

$$ H = H_{II}(x, y, t, \alpha_0) + H_3(z, w, t) + yzw $$

$$ = xy^2 + x^2 + tx - \alpha_0 y + \frac{z^2}{4} - \frac{w^2}{4} + yzw. $$

Here x, y, z and w denote unknown complex variables, and α_0, α_1 are complex parameters satisfying the relation:

$$ \alpha_0 + \alpha_1 = 1 $$

The symbol H_3 is given by

$$ H_3(z, w, t) = \frac{z^2}{4} - \frac{w^2}{4}. $$

Of course, the Hamiltonian itself is the first integral.
This is the second example which gave higher-order Painlevé equations of type $A_1^{(1)}$.

We note that in this case the invariant divisors are different from the ones of the second member $P_{II}^{(2)}$ of the second Painlevé hierarchy given in the paper [20].

$$\begin{array}{|c|c|c|}
\hline
\text{Invariant divisors} & f_0 & f_1 \\
\hline
\text{System (12)} & x + z^2 & x + y^2 + w^2 + t \\
\hline
P_{II}^{(2)} & y & y + t - 2w^2 + 4x(z + xw) \\
\hline
\end{array}$$

We remark that for this system we tried to seek its first integrals of polynomial type with respect to x, y, z, w. However, we can not find. Of course, the Hamiltonian H is not its first integral.

This system can be obtained by connecting the invariant divisors w and $x + y^2 + w^2 + t$ for the canonical variables (x, y, z, w) in the system (1).

Theorem 3.1. The system (12) admits the affine Weyl group symmetry of type $A_1^{(1)}$ as the group of its Bäcklund transformations, whose generators s_0, s_1 defined as follows:

$$s_0 : (\ast) \rightarrow \left(x, y - \frac{\alpha_0}{x + z^2}, z, w - \frac{2\alpha_0 z}{x + z^2}, t; -\alpha_0, \alpha_1 + 2\alpha_0 \right),$$

$$s_1 : (\ast) \rightarrow \left(x + \frac{2\alpha_1 y}{f_1}, y - \frac{\alpha_1}{f_1}, z + \frac{2\alpha_1 w}{f_1}, w, t; \alpha_0 + 2\alpha_1, -\alpha_1 \right),$$

where $f_1 := x + y^2 + w^2 + t$.

Proposition 3.2. This system has the following invariant divisors:

parameter’s relation	f_i
$\alpha_0 = 0$	$f_0 := x + z^2$
$\alpha_1 = 0$	$f_1 := x + y^2 + w^2 + t$

Proposition 3.3. Let us define the following translation operator:

$$T := s_1s_0.$$

This translation operator acts on parameters α_i as follows:

$$T(\alpha_0, \alpha_1) = (\alpha_0, \alpha_1) + (-2, 2).$$

Theorem 3.4. Let us consider a polynomial Hamiltonian system with Hamiltonian $K \in \mathbb{C}(t)[x, y, z, w]$. We assume that

1. $\deg(K) = 6$ with respect to x, y, z, w.
2. This system becomes again a polynomial Hamiltonian system in each coordinate system r_i ($i = 0, 1$):

$$r_0 : x_0 = -((x + z^2)y - \alpha_0)y, \quad y_0 = \frac{1}{y}, \quad z_0 = z, \quad w_0 = w - 2yz,$$

$$r_1 : x_1 = -((x + y^2 + w^2 + t)y - \alpha_1)y, \quad y_1 = \frac{1}{y}, \quad z_1 = z + 2yw, \quad w_1 = w.$$
Then such a system coincides with the system \((12)\) with the polynomial Hamiltonian \((13)\).

By this theorem, we can also recover the parameter’s relation \((14)\).

We note that the condition \((B2)\) should be read that
\[
r_0(K), \quad r_1(K + y)
\]
are polynomials with respect to \(x_i, y_i, z_i, w_i\).

References

[1] P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Société Mathématique de France. 28 (1900), 201–261.
[2] P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale est uniforme, Acta Math. 25 (1902), 1–85.
[3] B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Acta Math. 33 (1910), 1–55.
[4] C. M. Cosgrove and G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Studies in Applied Mathematics. 88 (1993), 25-87.
[5] C. M. Cosgrove, All binomial-type Painlevé equations of the second order and degree three or higher, Studies in Applied Mathematics. 90 (1993), 119-187.
[6] F. Bureau, Integration of some nonlinear systems of ordinary differential equations, Annali di Matem-atica. 94 (1972), 345–359.
[7] J. Chazy, Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles, Comptes Rendus de l’Académie des Sciences, Paris. 149 (1909), 563–565.
[8] J. Chazy, Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile, Comptes Rendus de l’Académie des Sciences, Paris. 150 (1910), 456–458.
[9] J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes, Acta Math. 34 (1911), 317–385.
[10] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of types \(B_6^{(1)}, D_6^{(1)}\) and \(D_4^{(2)}\), preprint.
[11] Y. Sasano, Four-dimensional Painlevé systems of types \(D_5^{(1)}\) and \(B_4^{(1)}\), preprint.
[12] Y. Sasano, Higher order Painlevé equations of type \(D_l^{(1)}\), RIMS Kokyuroku 1473 (2006), 143–163.
[13] Y. Sasano, Symmetries in the system of type \(D_4^{(1)}\), preprint.
[14] Y. Sasano, Coupled Painlevé III systems with affine Weyl group symmetry of types \(B_4^{(1)}, D_4^{(1)}\) and \(D_5^{(2)}\), preprint.
[15] Y. Sasano, Coupled Painlevé III systems with affine Weyl group symmetry of types \(B_6^{(1)}, D_6^{(1)}\) and \(D_5^{(2)}\), preprint.
[16] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type \(D_6^{(1)}, II\), RIMS Kokyuroku Bessatsu. 85 (2008), 137–152.
[17] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type \(E_6^{(2)}\), preprint.
[18] Y. Sasano, Symmetries in the system of type \(A_5^{(2)}\), preprint.
[19] Y. Sasano, Coupled Painlevé systems with affine Weyl group symmetry of types \(A_7^{(2)}, A_5^{(2)}\) and \(D_4^{(3)}\), preprint.
[20] Y. Sasano, Symmetry and holomorphy of the second member of the second Painlevé hierarchy, preprint.