RESEARCH ARTICLE

A COMPARISON OF DIFFERENT SOLUTION APPROACHES FOR A MATHEMATICAL MODEL OF HEMODIALYSIS.

R. Hussain1, A. Ali1, Mohammad Munir2 and Sadia Nasar1.

1. Mirpur University of Science and Technology (MUST), Mirpur-10250(AJK), Pakistan.
2. Government Postgraduate College No 1, Abbottabad, Pakistan.

Mathematical models were developed to gain a better understanding of many biological processes. The basic aim of present study was to establish a new technique in order to solve problems in the field of mathematical modeling. A mathematical model for hemodialysis with some modification was reviewed in this study. Different mathematical techniques, Laplace Transforms, Eigenvalue, and integrating factor for linear differential equations of the model were used, in all cases unique solution were obtained for dialytic interval.

Introduction:
Kidney is the major organ to clean blood by removing excess fluid, minerals and wastes. Moreover, it produces a hormone that keeps the bones strong. When the kidney fails harmful wastes build up in the body, due to which blood pressure may rise and the body may retain excess fluid which has to be removed. Hemodialysis is the most common method used to treat advanced and permanent kidney failure. In hemodialysis blood is allowed to flow through a special filter that removes wastes and extra fluids. The clean blood is then returned back to the body.

Mathematical modeling for dialysis has not long history, first bi-compartmental model of a typical profiled hemodialysis session for setting suitable sodium profiles was proposed in 2000 (Stephen et al., 2000). In the same year another model known as one- and two-compartment model for hemodialysis with aim to analyze the course of treatment and to predict the effect of dialysis procedures was also published (Ziolko et al., 2000). But the results on modeling of uric acid concentrations have not been published till 2007. Present study is based on the Mathematical model for solute kinetics in hemodialysis patients proposed by Cronin-Fine in 2007 including the modeling of uric acid concentration.

Material And Methods:
The motivation for this research was to modify the model equations presented by previous researchers in the field of mathematical modeling for hemodialysis and present different solution approaches for Mathematical model of hemodialysis.

The mathematical model for hemodialysis used in this study is a three compartment model, Organ Mass OM, Muscle Mass and Adipose Tissue Compartment MMAT, and Extracellular Compartment E (Cronin Fine et al., 2007). Block diagram of the model was presented in Fig-1.
Set of three 1st order differential equations of the model were Equations 1-3. Equation no 4 and 5 were for dialytic interval whereas equation no 6 and 7 were for inter-dialytic interval. Solution of the model was presented by three different approaches Laplace transform, Eigenvalue and integrating factor of linear differential equations.

\[
\begin{align*}
V_{OM} \frac{dc_{OM}}{dt} &= G - K_{OM} (C_{OM} - C_E) \\
V_{MMAT} \frac{dc_{MMAT}}{dt} &= K_{MMAT} (C_E - C_{MMAT}) \\
V_E \frac{dc_E}{dx} &= K_{OM} (C_{OM} - C_E) + K_{MMAT} (C_E - C_{MMAT}) - K_d C_E
\end{align*}
\]

Refining the Governing Equations:
To make the solution more manageable, Organ Mass (OM) was assumed to be at a steady-state, \(\frac{d(C_{OM})}{dt}=0\). So \(K_{OM} (C_{OM} - C_E) = G\), which was used in Equation (3), yielding equation (4) and eliminating equation (1). The resultant equations were for dialytic interval with manageable solutions (Eq. 4 and Eq.5).

\[
\begin{align*}
V_{MMAT} \frac{dc_{MMAT}}{dt} &= K_{MMAT} (C_E - C_{MMAT}) \\
V_E \frac{dc_E}{dx} &= G - K_{MMAT} (C_E - C_{MMAT}) - K_d C_E
\end{align*}
\]

The dialysis clearance term \((K_d C_E)\) in equation (5) was eliminated to modified the equations for interdialytic interval, yeilding equation (6). It was still impossible to find an explicit solution for the pair of equations (4 and 5) because these equations could be combined as one equation with two variables, which was by defininition unsolvable. Therefore an additional equation (7a) was developed, which described the solute mass-balance for the interdialytic interval. This additional Equation resulted in a pair of equations (6 and 7a) for the inter-dialytic interval with manangeable solutions as given below.

\[
\begin{align*}
V_E \frac{dc_E}{dx} &= G - K_{MMAT} (C_E - C_{MMAT}) \\
G &= V_E (C_E - C_{E_0}) + V_{MMAT} (C_{MMAT} - C_{MMAT_0})
\end{align*}
\]

This equation was found to be inadequate and need modification. Equation (7a) was corrected to a new version of equation (7b) and given below:

\[
G = K_d (C_E - C_{E_0}) + K_{MMAT} (C_{MMAT} - C_{MMAT_0}).
\]

This study’s focus was to determine whether modeling could provide an explanation for the level of toxin concentration in extracellular compartment during dialysis and in between dialysis treatment. So in this section the different solution procedures for dialytic and inter-dialytic intervals were presented in detail to comprehend the mathematical model of hemodialysis which is as under:

Explicit Solution (Dialytic interval)
Consider equations (4) and (5)

\[
\begin{align*}
\frac{dC_{MMAT}}{dt} &= \frac{K_{MMAT}}{V_{MMAT}} C_E - \frac{K_{MMAT}}{V_{MMAT}} C_{MMAT} \\
\frac{dC_E}{dx} &= \frac{G}{V_E} - \frac{K_d}{V_E} C_E + \frac{K_{MMAT}}{V_E} C_{MMAT} - \frac{K_d}{V_E} C_E \\
(D + \frac{K_d + K_{MMAT}}{V_E}) C_E - \frac{K_{MMAT}}{V_E} C_{MMAT} &= \frac{G}{v_E}
\end{align*}
\]
\((D + \frac{K_{MMAT}}{V_{MMAT}}) C_{MMAT} - \frac{K_{MMAT}}{V_{MMAT}} C_E = 0 \) (9)

Multiplying (8) by \(\frac{K_{MMAT}}{V_{MMAT}}\) and (9) by \((D + \frac{K_d+K_{MMAT}}{V_E})\)

\((D + \frac{K_d+K_{MMAT}}{V_E}) (D + \frac{K_{MMAT}}{V_{MMAT}}) C_E + \frac{K_{MMAT}^2}{V_{MMAT} V_E} C_{MMAT} = \frac{G}{V_E} K_{MMAT} C_E = 0\)

By solving the above equation we got

\[D^2 + \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d \]

The characteristic equation

\[D^2 + \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d = 0\]

By using quadratic formula we got

\[D = -\frac{1}{2 V_{MMAT}} \frac{G}{V_E} K_{MMAT} e^{0 C_{MMAT}}\]

\[C_{MMAT} = r_1 e^{-\frac{1}{2 V_{MMAT}} \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d} + \frac{G}{K_d} \]

For particular solution

\[C_{MMAT_p} = \frac{1}{D^2 + \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d} \]

Characteristic equation was

\[D^2 + \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d = 0\]

\[D = -\frac{1}{2 V_{MMAT}} \frac{G}{V_E} K_{MMAT} e^{0 C_E}\]

\[C_{EP} = \frac{1}{D^2 + \left(\frac{(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT}}{V_{MMAT} V_E} \right) D + \frac{K_{MMAT}}{V_{MMAT} V_E} K_d} \]

392
The general solution was:

\[C_{EP} = \frac{V_E V_{MMAT}}{D^2 V_E V_{MMAT}} + \left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right) D + \frac{G}{K_d} V_E V_{MMAT} e^{0 c_E} \]

Thus the solutions of the systems were given by (A) and (B) for some choice of constants \(r_1, r_2, k_1, k_2 \).

After substituting (A) and (B) in (9), results obtained were

\[k_1 = \frac{r_1}{2} \cdot \frac{k_d V_{MMAT}}{V_E} + V_{MMAT} - \frac{1}{K_{MMAT}} \sqrt{ (V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} } \]

And

\[k_2 = \frac{r_2}{2} \cdot \frac{k_d V_{MMAT}}{V_E} + V_{MMAT} + \frac{1}{K_{MMAT}} \sqrt{ (V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} } \]

Putting the value of \(k_1 \) and \(k_2 \) in (B) we got final solution for dialytic interval which was exactly the same as in (Cronin Fine et al., 2007)

\[C_E = r_1 \varphi_1 e^{\omega_1 t} + r_2 \varphi_2 e^{\omega_2 t} + \frac{G}{K_d} \]

Where

\[\omega_1 = -\frac{1}{2 V_E V_{MMAT}} \left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right) \]

\[\omega_2 = -\frac{1}{2 V_E V_{MMAT}} \left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right) \]

\[\varphi_1 = \frac{1}{2} \cdot \frac{k_d V_{MMAT}}{V_E} + V_{MMAT} - \frac{1}{K_{MMAT}} \sqrt{ (V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} } \]

\[\varphi_2 = \frac{1}{2} \cdot \frac{k_d V_{MMAT}}{V_E} + V_{MMAT} + \frac{1}{K_{MMAT}} \sqrt{ (V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} } \]

Equation (10) is the explicit solution for dialytic interval where \(r_1 \) and \(r_2 \) were constants of integration. Obtained solution indicates how concentration of toxins in extracellular compartment \(C_E \) varied over time. The constant of integrations were obtained by assuming \(C_E \) at \(t=0 \) was equal to \(C_{MMAT} \) due to steady state kinetics.

Explicit Solution (Inter-dialytic interval)

Eq(6) become

\[\frac{dC_E}{dx} = \frac{G}{V_E} - \frac{K_{MMAT}}{V_E} C_E + \frac{K_{MMAT}}{V_E} C_{MMAT} \]

Eq (7b) became

\[C_{MMAT} = \frac{G - K_d (C_E - C_{E0}) + K_{MMAT} C_{MMAT}}{K_{MMAT}} \]

Here integrating factor was \(e^{(K_{MMAT} + K_d) / V_E} \), then by multiplying above equation by integrating factor as follows:

\[\frac{d}{dt} \left(e^{(K_{MMAT} + K_d) / V_E} C_E \right) = e^{(K_{MMAT} + K_d) / V_E} \left(\frac{2G}{V_E} + \frac{K_d}{V_E} C_{E0} - \left(\frac{K_{MMAT} C_{MMAT}}{V_E} \right) \right) \]

393
Integrating further solution obtained were given below
\[C_E = \frac{2G + K_d C_E}{V_E} - \frac{K_{MMAT} \cdot C_{MMAT0}}{V_E} + c e^{-\left(\frac{K_{MMAT} \cdot K_d}{V_E} t\right)}. \] (13)

Equation (13) represented the explicit solution in case of the inter-dialytic interval, where c was constant. The constant was obtained by assuming \(C_E \) at \(t = 0 \) and was denoted by \(C_{E0} \).

Solution by Laplace Transform (Dialytic Interval)

Consider

\[\frac{dC_{MMAT}}{dt} = \frac{K_{MMAT}}{V_{MMAT}} C_E - \frac{K_{MMAT}}{V_{MMAT}} C_{MMAT} \]

Taking Laplace Transform on both sides of the above equation

\[sL[C_{MMAT}] - C_{MMAT}(0) = \frac{K_{MMAT}}{V_{MMAT}} sL[C_E] + \frac{K_{MMAT}}{V_{MMAT}} C_{MMAT}(0) \] (14)

\[sL[C_{MMAT}] = \frac{K_{MMAT}}{V_{MMAT}} sL[C_E] + \frac{K_{MMAT}}{V_{MMAT}} C_{MMAT}(0) + \frac{K_{MMAT}}{V_{MMAT}} \frac{G}{V_M V_E S} + \frac{K_{MMAT}}{V_{MMAT}} C_E(0) \] (15)

Multiplying (14) by \(\frac{s + \frac{K_{MMAT}}{V_{MMAT}}}{V_E} \) and (15) by \(\frac{\frac{K_{MMAT}}{V_{MMAT}} + \frac{K_d}{V_E}}{V_E} \), then adding resultant was

\[sL[C_{MMAT}](s - \omega_1)(s - \omega_2) = \left(s + \frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E} \right) C_{MMAT}(0) + \frac{K_{MMAT}}{V_{MMAT}} \frac{G}{V_M V_E S} + \frac{K_{MMAT}}{V_{MMAT}} C_E(0) \]

Where

\[\omega_1 = -\frac{1}{2 V_E V_{MMAT}} \left(\frac{V_E + V_{MMAT}}{V_E} K_{MMAT} + K_d V_{MMAT} \right) \]

\[\omega_2 = -\frac{1}{2 V_E V_{MMAT}} \left(\frac{V_E + V_{MMAT}}{V_E} K_{MMAT} + K_d V_{MMAT} \right) \]

\[L[C_{MMAT}] = \frac{K_{MMAT}}{G} \frac{1}{(s - \omega_1)(s - \omega_2)} \]

Where

\[r_1 = \frac{(\omega_1)^2 V_E V_{MMAT} C_{MMAT}(0) + \left(K_{MMAT} V_{MMAT} C_E(0) + C_{MMAT}(0) \right) \omega_1 + G K_{MMAT} V_{MMAT} V_E}{V_{MMAT} V_E \omega_1 (\omega_1 - \omega_2)} \]

\[r_2 = \frac{(\omega_2)^2 V_E V_{MMAT} C_{MMAT}(0) + \left(K_{MMAT} V_{MMAT} C_E(0) + C_{MMAT}(0) \right) \omega_2 + G K_{MMAT} V_{MMAT}}{V_{MMAT} V_E \omega_2 (\omega_2 - \omega_1)} \]
Using inverse Laplace Transform

\[C_E = r_1 e^{\omega_1 t} + r_2 e^{\omega_2 t} + \frac{G}{K_d} \]

Now multiplying (14) by \(\frac{K_{MMAT}}{V_E} \) and (15) by \(s + \frac{K_{MMAT}}{V_{MMAT}} \), and adding resultant was

\[\mathcal{L}[C_E] \{ (s - \omega_1)(s - \omega_2) \} = \left(\frac{K_{MMAT}}{V_E} \right) C_{MMAT}(0) + \left(s + \frac{K_{MMAT}}{V_{MMAT}} \right) \frac{G}{V_E S} \]

\[+ \left(s + \frac{K_{MMAT}}{V_{MMAT}} \right) C_E(0). \]

\[\mathcal{L}[C_E] = \left(\frac{K_{MMAT}}{V_E} \right) C_{MMAT}(0) + \frac{1}{(s - \omega_1)(s - \omega_2)} \left[(s - \omega_1) + (s - \omega_2) \right] C_E(0). \]

After simplifying the obtained results were

\[\mathcal{L}[C_E] = \frac{G}{K_d} + \frac{1}{V_{MMAT} V_E \omega_1 \omega_2 (s - \omega_1)} \left(\omega_1 \omega_2 V_E \omega_1 \omega_2 (s - \omega_1) \right) \]

\[\mathcal{L}[C_E] = k_1 \frac{1}{(s - \omega_1)} + k_2 \frac{1}{(s - \omega_2)} + \frac{G}{K_d S}. \]

Where

\[k_1 = \left(\frac{\omega_1}{V_{MMAT}} \right) C_{MMAT}(0) \]

\[k_2 = \left(\frac{\omega_2}{V_{MMAT}} \right) C_{MMAT}(0) \]

Inverse Laplace Transform yield was

\[C_E = k_1 e^{\omega_1 t} + k_2 e^{\omega_2 t} + \frac{G}{K_d} \]

(D)

Thus the solution of the system must be of the forms given by (C) and (D) for some choice of constants \(r_1, r_2, k_1, k_2 \).

The determinant of operational coefficients of the system was

\[\begin{vmatrix} D + \frac{K_d}{V_E} & -\frac{K_{MMAT}}{V_{MMAT}} \\ \frac{K_{MMAT}}{V_{MMAT}} & \left(D + \frac{K_{MMAT}}{V_{MMAT}} \right) \end{vmatrix} \]

Putting (C) and (D) in (15) after simplification obtained results were

\[k_1 = \frac{r_1}{2} \frac{K_d V_{MMAT}}{V_{MMAT}^2} + V_{MMAT} - \frac{1}{K_{MMAT}} \sqrt{\left(V_E + V_{MMAT} \right) K_{MMAT} + K_d V_{MMAT}} \]

And

\[k_2 = \frac{r_2}{2} \frac{K_d V_{MMAT}}{V_{MMAT}^2} + V_{MMAT} + \frac{1}{K_{MMAT}} \sqrt{\left(V_E + V_{MMAT} \right) K_{MMAT} + K_d V_{MMAT}} \]

Putting value of \(k_1 \) and \(k_2 \) in (D) solution obtained was

\[C_E = r_1 \varphi_1 e^{\omega_1 t} + r_2 \varphi_2 e^{\omega_2 t} + \frac{G}{K_d} \]

(16)

Where

\[\omega_1 = -\frac{1}{2 V_E V_{MMAT}} \left[(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right] \]

\[- \sqrt{\left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right)^2 - 4 K_d K_{MMAT} V_{MMAT} V_E} \]

\[\omega_2 = -\frac{1}{2 V_E V_{MMAT}} \left[(V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right] \]

\[+ \sqrt{\left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right)^2 - 4 K_d K_{MMAT} V_{MMAT} V_E} \]

\[\varphi_1 = \frac{1}{2} \frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} - \frac{1}{2 K_{MMAT}} \sqrt{\left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right)^2 - 4 K_d K_{MMAT} V_{MMAT} V_E} \]

\[\varphi_2 = \frac{1}{2} \frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} + \frac{1}{2 K_{MMAT}} \sqrt{\left((V_E + V_{MMAT}) K_{MMAT} + K_d V_{MMAT} \right)^2 - 4 K_d K_{MMAT} V_{MMAT} V_E} \].
Solution by Laplace Transform (inter-dialytic interval)

Consider

\[
\frac{dC_E}{dx} = \frac{G}{V_E} - \frac{K_{MMAT}}{V_E} C_E + \frac{K_{MMAT}}{V_E} C_{MMAT}
\]

(17)

\[
C_{MMAT} = \frac{dC_E}{dx} + \frac{K_{MMAT}}{V_{MMAT}} C_E \left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right) = \frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right)
\]

(18)

\[
\mathcal{L} \left[\frac{dC_E}{dx} + \frac{K_{MMAT}}{V_{MMAT}} C_E \left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right) \right] = \mathcal{L} \left[\frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right) \right] \mathcal{L}[C_E] \left(s + \frac{K_{MMAT}}{V_{MMAT}} \left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right) \right)
\]

\[
\mathcal{L} [C_E] = \left[\frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right) \right] \mathcal{L}[C_E] \left(s + \frac{K_{MMAT}}{V_{MMAT}} \left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right) \right)
\]

Simplifying the above equation, resultant obtained were as under

\[
\mathcal{L} [C_E] = \left[\frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right) \right] \left[\frac{V_E V_{MMAT}}{K_{MMAT} (V_E + V_{MMAT})} \right] \left(\frac{1}{s} - \frac{1}{s + \frac{K_{MMAT}}{V_{MMAT}} \left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right)} \right)
\]

\[
C_E = \left[\frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right) \right] \left[\frac{V_E V_{MMAT}}{K_{MMAT} (V_E + V_{MMAT})} \right] \left(\frac{V_E V_{MMAT}}{K_{MMAT} (V_E + V_{MMAT})} \right) - \left[\frac{G}{V_E} \left(1 + \frac{K_{MMAT}}{V_{MMAT}} \right) + K_{MMAT} \left(\frac{C_{E_0}}{V_{MMAT}} + \frac{C_{MMAT_0}}{V_E} \right) \right] \left[\frac{V_E V_{MMAT}}{K_{MMAT} (V_E + V_{MMAT})} \right] e^{-\left(\frac{1}{V_E} + \frac{1}{V_{MMAT}} \right) K_{MMAT} t}
\]

(19)

Solution of Equations by Eigenvalues (Dialytic interval)

Equation (4 and 5) was written as:

\[
\frac{dC_{MMAT}}{dt} = \frac{K_{MMAT}}{V_{MMAT}} C_E - \frac{K_{MMAT}}{V_{MMAT}} C_{MMAT}
\]

\[
\frac{dC_E}{dx} = \frac{G}{V_E} - \frac{K_{MMAT}}{V_E} C_E + \frac{K_{MMAT}}{V_E} C_{MMAT}
\]

For steady state

\[
\frac{dC_E}{dx} = 0 \quad \text{and} \quad \frac{dC_{MMAT}}{dx} = 0.
\]

\[
G - \frac{K_{MMAT}}{V_E} C_E + \frac{K_{MMAT}}{V_E} C_{MMAT} = 0
\]

\[
\frac{K_{MMAT}}{V_E} C_E - \frac{K_{MMAT}}{V_E} C_{MMAT} = 0
\]

Matrix form

\[
\begin{bmatrix}
\frac{-K_{MMAT}}{V_E} + \frac{K_d}{V_E} & \frac{K_{MMAT}}{V_E} \\
\frac{K_{MMAT}}{V_{MMAT}} & \frac{-K_{MMAT}}{V_{MMAT}}
\end{bmatrix}
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix}
= \begin{bmatrix}
\frac{G}{V_E} \\
0
\end{bmatrix}
\]

\[
det(A - \lambda I) = 0
\]
\[
\det\begin{pmatrix}
\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E} & \frac{K_{MMAT}}{V_{MMAT}} \\
\frac{K_{MMAT}}{V_{MMAT}} & -\frac{K_{MMAT}}{V_{MMAT}}
\end{pmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0
\]

Solving above equation obtained values of \(\lambda \) were

\[
\lambda_1 = -\frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT} \\
-\sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E
\]

\[
\lambda_2 = -\frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT} \\
+\sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E
\]

Eigenvectors corresponding to \(\lambda_1 \) were

\[
\begin{bmatrix}
\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E} & \frac{K_{MMAT}}{V_{MMAT}} \\
\frac{K_{MMAT}}{V_{MMAT}} & -\frac{K_{MMAT}}{V_{MMAT}}
\end{bmatrix}
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = \lambda_1 \begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix}
\]

By substituting the value for \(\lambda_1 \) in the above equation and the result obtained were \(C_{MMAT} \) in term of \(C_E \):

\[
C_{MMAT} = \left(1 - \frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \right) \left(\frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} \right) \\
-\frac{1}{K_{MMAT}} \sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E \right) C_E
\]

\[
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = \begin{bmatrix}
\varphi_1 C_E \\
\varphi_1 C_{MMAT}
\end{bmatrix} = \begin{bmatrix}
1 \\
\varphi_1
\end{bmatrix} C_E
\]

\[
\varphi_1 = \left(1 - \frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \right) \left(\frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} \right) \\
-\frac{1}{K_{MMAT}} \sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E \right) C_E
\]

Eigen vector corresponding to \(\lambda_2 \) was found as

\[
\begin{bmatrix}
\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E} & \frac{K_{MMAT}}{V_{MMAT}} \\
\frac{K_{MMAT}}{V_{MMAT}} & -\frac{K_{MMAT}}{V_{MMAT}}
\end{bmatrix}
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = \lambda_2 \begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix}
\]

Substituting the value of \(\lambda_2 \) in the above equation and after simplification obtained results for \(C_E \) in terms of \(C_{MMAT} \) were

\[
C_E = \left(1 - \frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \right) \left(\frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} \right) \\
-\frac{1}{K_{MMAT}} \sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E \right) C_{MMAT}
\]

\[
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = \begin{bmatrix}
\varphi_2 C_{MMAT} \\
\varphi_2 C_{MMAT}
\end{bmatrix} = \begin{bmatrix}
\varphi_2 \\
1
\end{bmatrix} C_{MMAT}
\]

\[
\varphi_2 = \left(1 - \frac{1}{2\frac{K_{MMAT}}{V_E} + \frac{K_d}{V_E}} \right) \left(\frac{K_d V_{MMAT}}{K_{MMAT}} + V_{MMAT} \right) \\
-\frac{1}{K_{MMAT}} \sqrt{\left(\frac{V_E + V_{MMAT}}{V_{MMAT}} \right) K_{MMAT} + K_d V_{MMAT}}^2 - 4K_d K_{MMAT} V_{MMAT} V_E \right) C_{MMAT}
\]

The general solution was

\[
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = r_1 e^{\lambda_1 \varphi_1} v_1 + r_2 e^{\lambda_2 \varphi_2} v_2.
\]

Here \(r_1, r_2 \) were constants, \(\lambda_1, \lambda_2 \) were eigenvalues and \(v_1, v_2 \) were eigenvectors, substituting the values in the above equation.

\[
\begin{bmatrix}
C_E \\
C_{MMAT}
\end{bmatrix} = r_1 e^{\lambda_1 \varphi_1} \begin{bmatrix} 1 \\ \varphi_1 \end{bmatrix} + r_2
\]

Results and Discussion:
Solutions for dialytic and inter-dialytic interval were evaluated by three different methods and final results were represented by equations 10, 16, 19 and 20 all results were exactly the same as were presented by Cronin Fine in 2007. Comparisons of different solution approaches for mathematical model of hemodialysis were presented in Table-1.

Methods	Dialytic	Inter-dialytic
Laplace Transforms	\[C_E = \frac{r_1 \varphi_1 e^{\alpha_1 t} + r_2 \varphi_2 e^{\alpha_2 t}}{G} + \frac{K_d}{K_d} \]	\[C_E = \frac{2G + K_d C_{E0} - K_{MMAT} C_{MMAT_0}}{V_E} + c e^{-\left(\frac{K_{MMAT} K_d}{V_E V_E} \right)t} \]
Eigen Value	\[C_E = \frac{r_1 \varphi_1 e^{\alpha_1 t} + r_2 \varphi_2 e^{\alpha_2 t}}{G} + \frac{K_d}{K_d} \]	\[C_E = \frac{2G + K_d C_{E0} - K_{MMAT} C_{MMAT_0}}{V_E} + c e^{-\left(\frac{K_{MMAT} K_d}{V_E V_E} \right)t} \]
Integrating Factor	\[C_E = \frac{r_1 \varphi_1 e^{\alpha_1 t} + r_2 \varphi_2 e^{\alpha_2 t}}{G} + \frac{K_d}{K_d} \]	\[C_E = \frac{2G + K_d C_{E0} - K_{MMAT} C_{MMAT_0}}{V_E} + c e^{-\left(\frac{K_{MMAT} K_d}{V_E V_E} \right)t} \]

Table 1: Comparison of different Solutions Approaches

Conclusion:-
The comparative study of three different solution approaches for modified model of hemodialysis were presented with an aim that in all three cases unique solutions were obtained and were exactly the same results as were published in previous study, that the extracellular solute (toxin concentration) increases more rapidly in case of inter-dialytic interval. This study can be extended further for stability analysis of the model.

References:-
1. Agar, JW., K. Mahadevan, R. Knight, ML. Antonis, and CA. Somerville. (2005). Flexible or Lifestyle Dialysis: Is this the Way Forward. Nephrology. 10(5): 525-529. doi:10.1111/j.1440-1797.2005.00473.x
2. Beddhu, S., LM.Pappas, N. Ramkumar, and M. Samore (2003).Effects of Body Size and Body Composition on Survival in Hemodialysis Patients. J. Am. Soc. Nephrol. 14: 2366-2372.
doi:10.1097/01.ASN.0000083905.72794.E6
4. Boer, P (1984). Estimated Lean Body Mass as an Index for Normalization of Body Fluid Volumes in Humans. Am. J. Physiol. Cell Physiol. 247(4): 632-636.
5. Conway, B., and A. Rene (2004). Obesity as a Disease: No Lightweight Matter. Obesity Reviews .5(3): 145-151.
6. Cronin Fine, D., F. Gotch, N. Levin, P. Kotanko, and M. Lysaght (2007).A Mathematical Model Comparing Solute Kinetics in Low- and High-BMI Hemodialysis Patients. Int. J. Art. Org. 30(11): 1000-1007.
7. Port, FK., VB. Ashby, RK. Dhingra, EC. Roys, and RA. Wolfe (2002). Dialysis Dose and Body Mass Index are Strongly Associated with Survival in Hemodialysis Patients.J. Am. Soc. Nephrol .13(4): 1061-1066.
8. Sarkar, SR., MK. Kuhlmann, P. Kotanko , F. Zhu , SB. Heymsfield. J. Wang, IS., Meisels, FA. Gotch, GA. Kaysen, and MW. Levin (2006).Metabolic Consequences of Body Composition in Hemodialysis Patients. Kidney Int. 70(10): 1832-1839.
9. Schneditz, D., and J. T. Daughradis (2001). Compartment Effect in hemodialysis.Semin Dial.14 (4): 271-277.
10. Stephen, B., R. Unwin, and C. C. Yengc (2000). Mathematical Modelling of Profiled Haemodialysis: A Simplified Approach. J. Theor. Med. 3: 143-160.
11. Wolfe, RA., Vb. Ashby, JT. Daugradas, LY. Agodoa, CA. Jones, and FK.Port (2000).Body Sizes, Dose of Hemodialysis, and Mortality. J. Kidn. Dis.35(1): 80-88
12. Ziolko, M., J. A. Pietrzyk, and J. Grabaska, Chrzastowska (2000). Accuracy of Hemodialysis Modeling. Kidney Int. 57(3): 1152-1163.