The behavior of radioactive metals (Am, Eu, Sr) during the processing of radioactive graphite in salt melts

N M Barbin¹,², A M Kobelev¹, D I Terent’ev¹ and S G Alekseev³

¹ Ural State Fire Service Institute of Emercom of Russia, Ekaterinburg, Russia
² Ural State Agrarian University, Ekaterinburg, Russia
³ Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russia

E-mail: NMBarbin@mail.ru

Abstract. The behavior of Am, Eu, Sr radionuclides was investigated by thermodynamic modeling method at heating of radioactive graphite in NaCl – KCl – Na₂CO₃ – K₂CO₃ molten salt with additives of nickel oxide NiO. The integrated thermodynamic analysis was carried out by means of TERRA software in temperature range 373-3273 K to determine possible composition of condensed and gaseous phases. It was established that americium is in gaseous state in temperature range 2773-3273 K. Europium is in the forms of gaseous EuO and Eu in temperature range 2373-3273 K. Strontium is in the forms of gaseous SrCl₂, SrCl, Sr, SrO in temperature range 2373-3273 K.

1. Introduction

Graphite is widely used in designs of nuclear reactors (uranium-graphite water- and gas-cooled plants) as a moderator of neutrons and structural material of the reactor core. The operation resource of the majority of nuclear power units will be exhausted in the next 10-15 years. Decommissioning of the uranium-graphite reactors represents a complex of tasks connected with the problem of choice of optimum methods of radioactive waste (RW) processing. The treatment of irradiated reactor graphite is one of the critical tasks. Final treatment of reactor graphite (its disposal) is complicated by the existence of long-lived radionuclides in it. Such radionuclides include ¹⁴C (radioactive half-life is 5730 years) which forms 95% of graphite activity. The activity of graphite is also defined by the following radionuclides (²⁴¹Am, ⁹⁰Sr, ¹⁵⁴Eu and others) [1]. There are about 250 thousand tons of accumulated irradiated reactor graphite in the world (figure 1) [2]. The problem of the processing of irradiated graphite is especially relevant for Great Britain — 86 thousand tons, Russia — 60 thousand tons, the USA — 55 thousand tons and France — 23 thousand tons. The majority of uranium-graphite reactors must be isolated and have controlled maintenance for more than 80 years as there are no reasonable approaches to treatment of reactor graphite [2]. At the same time such options as disposal and graphite processing are considered. Investigations of the opportunities of the graphite purification from radionuclides by thermal action of various liquid and gaseous media, alkalis, acids, molten salts, vapor, helium, nitrogen, air, argon are carried out in Russia and abroad (“Carbowaste” project). According to experts, the processing of irradiated graphite will give RW ready for disposal of 1-2% from the initial graphite volume [1].

The purpose of this research work is the determination of equilibrium composition of condensed and gaseous phases in the interaction of radioactive graphite with metal oxide and molten salts in the...
wide temperature range. The task of the study is carrying out thermodynamic model operation of the considered system.

Figure 1. The total amount of accumulated reactor graphite in the world.

2. Calculation procedure
Problems of the investigation of high-temperature processes (for example combustion processes) play a special role for the solution of many technical and scientific problems. A research of these processes by carrying out natural experiments does not always allow to get exact data due to their complexity and errors of measurements. Application of a calculation experiment with use of the personal computer gains the special importance. By means of computer calculations it is possible to analyze various states of a system and to draw conclusions about behavior of the studied objects on the basis of model representations. At the same time the main assumption is that there is a local equilibrium in the system which allows to make calculations with use of a mathematical apparatus of equilibrium thermodynamics.

Thermodynamic model method is an effective and unique method at a research of various high-temperature processes of thermal decomposition, reduction, synthesis. This method was successfully used in works [3-9].

The research of behavior of radioactive metals (Am, Eu, Sr) which are contained in reactor graphite was carried out by thermodynamic model method by means of TERRA software [10,11]. The program allows to investigate the arbitrary in chemical composition systems on the basis of reference information about thermochemical and thermodynamic properties of the individual substances systematized at Institute of High Temperatures of RAS (INVATERMO database), national US Bureau of Standards, calculated in Moscow State Technical University according to molecular calorimetric and spectrochemical data [12,13].

Thermodynamic model operation was carried out at initial pressure of 0.1 MPa, at initial temperature 373 K and final temperature 3273 K. Temperature measurement interval was 100 K. The composition of the initial system for thermodynamic calculations was the following: gaseous phase (argon), condensed phase (metal oxide (NiO) and molten salt (NaCl – KCl – Na2CO3 – K2CO3), radioactive graphite (C – Am – Eu – Sr)). The information about initial composition of reactor graphite is taken from works [14,15]. The estimated forms of radionuclides in the studied system are given in Table 1.
Table 1. Assumed radionuclide species

Radionuclide in graphite	Species in equilibrium system
12C, 13C, 14C	C$\text{_{(cr)}}$, C$\text{_{(g)}}$, CO$\text{_{(g)}}$, CO$_2$(g), C$_2$O$\text{_{(g)}}$, Ni$_3$C$\text{_{(cr)}}$, NiCO$_3$$_3$($\text{cr}$), ClCl$\text{_{(g)}}$, ClCO$_2$($\text{g}$), Cl$_2CO_3$($\text{cr}$), SrCO$_3$($\text{cr}$), Na$_2CO_3$$_3$($\text{cr}$), K$_2CO_3$$_3$($\text{cr}$), K$_2CO_3$$_3$($\text{g}$), C$\text{_{2}}$
241Am, 242m1Am, 243Am	Am$\text{_{(g)}}$, Am$_{\text{(cr)}}$, AmO$_2$$_2$($\text{cr}$), Am$_2O_3$$_3$($\text{cr}$), AmCl$_3$$_3$($\text{cr}$), AmCl$_3$$_3$($\text{g}$)
150Eu, 121Eu, 132Eu, 153Eu, 154Eu, 159Eu	Eu(cr), Eu$_2$(cr), EuO$_2$$_2$($\text{cr}$), EuO$_2$$_2$$_2$($\text{cr}$), EuCl$_2$$_2$($\text{cr}$), EuOCl$_2$$_2$($\text{cr}$), Eu$^+$
84Sr, 86Sr, 87Sr, 88Sr, 90Sr	Sr(cr), SrO(cr), SrO$_2$$_2$($\text{cr}$), SrCl$_2$$_2$($\text{g}$), SrCl$_2$$_2$($\text{cr}$), SrCl$_2$$_2$($\text{cr}$), SrCO$_3$$_3$($\text{cr}$), Sr$^+$, SrO$^+$, SrCl$^+$

3. Results and discussion
Distribution of carbon on phases is presented in figure 2. In temperature range 373-573 K the content of condensed C decreases to ~47 mole%, the content of condensed Na$_2$CO$_3$ decreases to ~22 mole% and the content of gaseous CO$_2$ increases to ~30 mole%, the content of condensed K$_2$CO$_3$ increases to ~1 mole%. In temperature range from 573 to 1173 K the content of condensed C decreases to ~12 mole%, condensed Na$_2$CO$_3$ — to ~18 mole%, gaseous CO$_2$ — to zero and the content of gaseous CO increases to ~66 mole%, condensed K$_2$CO$_3$ — to ~4 mole%. In temperature range 1173-1273 K the content of condensed C decreases to zero, the content of condensed Na$_2$CO$_3$ and condensed K$_2$CO$_3$ decreases to ~13 mole% and ~2 mole%, respectively. The content of gaseous CO increases to ~84 mole%, the content of gaseous CO$_2$ increase to ~1 mole%. In temperature range from 1273 to 1573 K the content of CO decreases to ~69 mole%, the content of condensed Na$_2$CO$_3$ and K$_2$CO$_3$ decreases to zero, the content of gaseous CO$_2$ increases to ~31 mole%. In temperature range from 1573 to 2373 K carbon exists in the form of gaseous CO (69 mole%), CO$_2$ (31 mole%) in the system. In temperature range from 2373 to 3273 K the content of gaseous CO increases to ~92 mole% and the content of gaseous CO$_2$ decreases to ~8 mole%.

Figure 2. Phase distribution of C: 1 — C$\text{_{(cr)}}$; 2 — CO$\text{_{(g)}}$; 3 — CO$_2$$_2$($\text{g}$); 4 — Na$_2CO_3$$_3$($\text{cr}$); 5 — K$_2CO_3$$_3$($\text{cr}$).

Distribution of americium on phases is presented in figure 3. Americium is in the form of condensed AmO$_2$ up to temperature of 1473 K. In temperature range from 1473 to 2373 K the content of condensed AmO$_2$ decreases to ~2 mole% and the content of condensed Am$_2$O$_3$ increases to ~98 mole%. In temperature range 2373-2473 K the content of condensed AmO$_2$ decreases to zero, the content of condensed Am$_2$O$_3$ decreases to ~93 mole% and the content of gaseous Am increases to ~7 mole%. In temperature range from 2473 to 2673 K the content of condensed Am$_2$O$_3$ decreases to zero.
and the content of gaseous Am increases to ~100 mole%. The composition of this phase doesn’t change up to temperature 3273 K.

![Figure 3. Phase distribution of Am: 1 — AmO\(_2\)(cr); 2 — Am\(_2\)O\(_3\)(cr); 3 — Am\(_g\).](image)

Distribution of europium on phases is presented in figure 4. In temperature range from 373 to 773 K the content of condensed EuOCl decreases to ~31 mole% and the content of condensed Eu\(_2\)O\(_3\) increases to ~69 mole%. At temperature range from 773 to 873 K the content of condensed EuOCl decreases to ~18 mole% and the content of condensed Eu\(_2\)O\(_3\) and EuO increases to ~80 mole% and ~2 mole%, respectively. In temperature range from 873 to 1173 K the content of condensed EuOCl decreases to zero, condensed Eu\(_2\)O\(_3\) to ~2 mole% and the content of condensed EuO increases to ~98 mole%. In temperature range from 1173 to 1273 K the content of condensed Eu\(_2\)O\(_3\) decreases to ~1 mole% and the content of condensed EuO increases to ~99 mole%. In temperature range from 1273 to 1573 K the content of condensed EuO increases to ~26 mole%, the content of gaseous EuO increases to ~1 mole%. In temperature range from 1573 to 1973 K the content of condensed Eu\(_2\)O\(_3\) decreases to ~64 mole% and the content of condensed EuO, gaseous EuO, gaseous Eu increases to ~29 mole%, ~6 mole%, ~1 mole%, respectively. In temperature range from 1973 to 2073 K the content of condensed Eu\(_2\)O\(_3\) decreases to ~64 mole% and the content of condensed EuO, gaseous EuO, gaseous Eu increases to ~29 mole%, ~6 mole%, ~1 mole%, respectively. In temperature range from 2073 to 2373 K the content of condensed Eu\(_2\)O\(_3\), Eu\(_2\)O decreases to zero and the content of gaseous EuO increases to ~90 mole%, the content of gaseous Eu increases to ~10 mole%. In temperature range from 2373 to 2673 K the content of gaseous Eu decreases to ~8 mole% and content of gaseous EuO increases to ~92 mole%. In temperature range 2673-3273 K the content of gaseous EuO decreases to ~80 mole% and the content of gaseous Eu increases to ~20 mole%.
Figure 4. Phase distribution of Eu: 1 — EuOCl\(_{\text{(cr)}}\); 2 — Eu\(_2\)O\(_3\)\(_{\text{(cr)}}\); 3 — EuO\(_{\text{(cr)}}\); 4 — EuO\(_{\text{(g)}}\); 5 — Eu\(_{\text{(g)}}\).

Distribution of strontium on phases is presented in figure 5. Strontium is in the form of condensed SrCO\(_3\) up to temperature of 973 K. In temperature range from 973 to 1273 K the content of condensed SrCO\(_3\) decreases to ~2 mole% and the content of condensed SrO increases to ~98 mole%. In temperature range from 1273 to 1473 K the content of condensed SrO decreases to ~97 mole% and the content of condensed SrCO\(_3\) increases to ~3 mole%. In temperature range from 1473 to 1673 K the content of condensed SrCO\(_3\) decreases to ~1 mole% and the content of condensed SrO increases ~99 mole%. In temperature range 1673 — 1773 K the content of condensed SrCO\(_3\) decreases to zero, the content of condensed SrO decreases to ~96 mole% and the content of gaseous SrCl\(_2\) increases to ~4 mole%. In temperature range from 1773 to 1973 K the content of condensed SrO decreases ~60 mole% and the content of condensed SrCl\(_2\) decreases to ~35 mole%, gaseous SrCl — to ~3 mole%, gaseous Sr — to ~2 mole%. In temperature range from 1973 to 2273 K the content of condensed SrO decreases to ~1 mole% and the content of gaseous SrCl\(_2\) increases to ~81 mole%, gaseous SrCl — to ~11 mole%, gaseous Sr — to ~5 mole%, gaseous SrO — to ~2 mole%. In temperature range from 2273 to 2373 K the content of condensed SrO decreases to zero, the content of gaseous SrCl\(_2\) decreases to ~79 mole% and the content of gaseous SrCl increases to ~12 mole%, the content of gaseous Sr increases to ~6 mole%, the content of gaseous SrO increases to ~3 mole%. In temperature range from 2373 to 3273 K the content of gaseous SrCl\(_2\) decreases to ~45 mole% and the content of gaseous SrCl increases to ~26 mole%, gaseous Sr — to ~19 mole%, gaseous SrO — to ~10 mole%.

Figure 5. Phase distribution of Sr: 1 — SrCO\(_3\)\(_{\text{(cr)}}\); 2 — SrO\(_{\text{(cr)}}\); 3 — SrCl\(_2\)\(_{\text{(g)}}\); 4 — SrCl\(_{\text{(g)}}\); 5 — Sr\(_{\text{(g)}}\); 6 — SrO\(_{\text{(g)}}\).

Oxidation of graphite results in the formation of carbon monoxide and carbon dioxide up to temperature ~1273 K. At temperature >1273 K there is no condensed graphite in the system. The salt
oxide condensed phase enriched with radionuclides disappears at temperature ~2673 K. It is defined that americium contained in radioactive graphite in the form of impurity begins to change into a gaseous phase at temperature ~2673 K, and strontium and europium at temperature ~2373 K.

References

[1] Tsyganov A A, Khvostov V I, Komarov E A, Kotlyarevsky S G, Pavlyuk A O, Shamanin I V and Nesterov V N 2007 Izvestiya Tomskogo Politekhnicheskogo Universiteta (Bull. Tomsk Politechnic Univ.) 310 94 (In Russ)

[2] Dorofeev A N, Linge I I, Utkin S S, Pavlyuk A O6 Zaharova E V, Kotlyarevskij S G, Ivanov A Yu, Komarov E A and Volkova A G 2019 Radioaktivnye Otkhody (Radioactive Waste) (2)(7) 18 (In Russ)

[3] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2016 Izvestiya Vysshikh Uchebných Zavedeniy Khimiya i Khimicheskaya Tekhnologiya (Russian J. Chemistry and Chemical Technology) 59(9) 16 (In Russ)

[4] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2018 Melts 2 145

[5] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2017 Radiochemistry 59 507

[6] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2019 Radiochemistry 61 192

[7] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2014 Pozharovzryvobezopasnost (Fire and explosion safety) 23(10) 38 (In Russ)

[8] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2017 MATEC Web of Conf. 115 04005

[9] Barbin N M, Kobelev A M, Terentyev D I and Alekseev S G 2018 Russian Metallurgy (Metally) 2018 700

[10] Belov G V and Trusov B G 2013 Thermodynamic modeling of chemically reacting systems (Moscow: Bauman State Technical University Publ) p 37 (In Russ)

[11] Vatolin N A, Moiseev G K and Trusov B G 1994 Thermodynamic modeling in high-temperature inorganic systems (Moscow: Metallurgiya Publ) p 58 (In Russ)

[12] Alemasov V E, Dregalin A F and Tishin A P 1971 Thermodynamic and thermophysical properties of combustion products (Moscow: VINITI – All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences) (In Russ)

[13] Gurvich L V, Weitz I V and Medvedev V L 1982 Thermodynamic properties of individual substances. (Moscow: Science Publ) (In Russ)

[14] Romenkov A A, Tukhtarev M A and Karlina O K 2010 Ann. Rep. Res. Design. Inst. Power Engineering (Moscow: NIKIET Publ) pp 171-173 (In Russ)

[15] Shidlovskii V V, Romenkov A A and Khattarova E A 2010 Ann. Rep. Res. Design. Inst. Power Engineering (Moscow: NIKIET Publ) pp 178-180 (In Russ)