INTRODUCTION

Writing is a sophisticated skill that combines cognitive, affective, and biomechanical processes [1, 2]. Writing skill develops with age and masters during elementary and high school [2, 3, 4]. Writing is still an important part of learning and education, and writing difficulties can negatively influence development [1, 2]. Due to its complexity, writing is very sensitive to different intrinsic (e.g., fine motor control, sensory modalities, attention, or working memory) and extrinsic factors (e.g., sitting position, chair height, writing surface color, or verbal instructions) [2, 3].

Writing movements can be divided into basic portions called strokes. A single stroke is defined as the time segment between two subsequent changes in direction during writing [5]. Specific kinematic parameters of writing can be derived from strokes and these are: on surface pressure, stroke speed, stroke duration, velocity, acceleration, jerk, number of velocity/acceleration direction alteration, hand-in-air/on-surface time, horizontal/vertical/tangential velocity (acceleration/jerk) and others [6–10]. Various psychiatric and neurological disorders often have their own unique combination of kinematic parameters in particular writing task in which they deviate from healthy controls [6–11].

Certain rules are observed during writing, copying or tracing. These rules are observed as predictable movements, which form a sequence in writing simple or more complex shapes. They are called graphic rules and include starting (a preference to initiate writing by selecting a certain location point), progression (a preference to write a segment in some direction), and horizontal rule (a tendency to draw horizontal line after the vertical or oblique) [12, 13]. Using these rules, we can predetermine the sequence of writing movements. In writing task execution and potentially reveal which cognitive strategies children use in writing. By this approach, it is possible to detect children with writing difficulties [12].

Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders among children and adolescents with a worldwide prevalence ranging 5–7%, being more frequent among males [14]. Children with ADHD may have motor performance difficulties including writing
impairment [1, 15, 16, 17]. Problems with attention span, fine motor control, error processing, visual–motor integration, motor planning, and working memory can all contribute to poorer writing performance in ADHD [1, 18, 19, 20]. Subjects with ADHD write less legible, poorer scaled, with more interruptions, using higher on-surface pressure and less automated movements for age compared to TDC, while writing can be influenced with stimulant medication [1, 18].

Both kinematic analysis and graphic rules are potential ways to assess writing characteristics, but only one study so far has combined these to detect children with writing difficulties [12]. Our research was organized in order to further analyze this particular approach in developmental disorders like ADHD. The aim was to determine whether and how writing of children with ADHD differs from TDC in kinematic features and graphic rules. In addition, we tested the influence of stimulant medications and task repetition onto writing performance.

METHODS

Participants

Data for the present study was collected from a clinical and community sample. The clinical sample, constituting the experimental group, included 26 children (mean age 10.5 ± 1.5 years; 21 (80.8%) boys; 24 (92.3%) right-handed) to whom was confirmed the diagnosis of ADHD according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM–5) [21]. The experimental group was divided regarding medical treatment with psychostimulant drugs. Ten children (38.5 %) in the experimental group were taking extended-release methylphenidate (MTX) (OROS formulation; at dose 18 or 36 mg per day) and 16 subjects did not take medications. The community sample, constituting the control group, included 29 TDC (mean age 10.2 ± 0.4 years; 16 (55.2%) boys; 26 (89.7%) were right-handed). The majority of subjects preferred Serbian cursive Cyrillic script during writing. The exclusion criteria were the total IQ < 80 and the presence of any other neurological or psychiatric comorbidity.

An informed consent from parent/guardian was provided for all subjects. The study was approved by the Institutional Committee on Ethics.

Procedure

Following the previous study of Khalid et al. [12], 2010, this study considered a similar combination of tracing and copying tasks of semicircles, shapes, and letters and a digitizing writing board. The writing task considered the following (Figure 1): (1) a tracing of four semicircles (SC) rotated in clockwise direction (CW) by 90°; (2) a triangle copying, and (3) a letter copying, namely writing the capital Serbian Cyrillic letters С (С) and Ф (Ф), and small Serbian Latin letters u (υ) and n (η) (selected to resemble previous semicircles by their shape). Tasks were repeated three times and each time with a different task order. For left-handed subjects, the test battery was adapted not to overlay their hand over the writing material (“mirror image”). In order to familiarize participants with the procedure, all subjects were first instructed to write (e.g. their name) on the writing board surface. The writing tasks were performed on a digitizing board (Intuos4 XL, sampling rate – 200 Hz, resolution – 0.25 mm) (Wacom®, Kazo, Japan) with stylus without ink trace. An A4 white paper sheet with printed tasks was placed on the writing surface under the transparent foil. A customized software platform for data acquisition was previously created using the LabVIEW® (National Instruments Co. Austin, TX, USA) software environment [22]. All subjects from the experimental group (ADHD) were tested in conditions resembling those in school, while the control group (TDC) was tested during school classes.

Data analysis

Kinematic parameters were analyzed from the data related to all writing tasks (Figure 1): the semicircle tracing (for each semicircle for three repetitions), triangle coping (for all triangle edges: a – left edge, b – base and c – right edge; in three repetitions), and letter coping (for all letters together only for the first repetition). The following kinematic parameters were analyzed (mean values and standard deviations): on surface pressure (P), velocity (V), acceleration (A), jerk (J), stroke time (ST), stroke speed (SS), number of changes in velocity (NCV) and number of changes in acceleration (NCA). For V, A and J, three vector components were analyzed: x – horizontal, y – vertical and t – tangential (Table 1). Kinematic parameters were extracted using a customized algorithm in Matlab® (Mathworks, Novi, MI, USA) [8, 9].

The difference in mean values for kinematics parameters between the experimental and control group were tested by the t-test for two independent groups (when the normality assumption is satisfied) and the Mann–Whitney
U test (when the normality assumption is not satisfied). Categorical parameters were analyzed with χ² test. The level of statistical significance was set at a two-tailed p-value of 0.05. In addition, sustainability of statistically significant difference between groups through task repetitions was particularly addressed for each kinematic parameter.

In addition, graphic rules were analyzed from the data related only to the semicircle tracing task and included the starting point and the direction of tracing for each semicircle in each of the three task repetitions. These were called “expected movements” and were predefined for each of the semicircles [12]: for the first semicircle from top to the bottom – Counter Clock Wise (CCW), for the second from left to the right – Clock Wise (CW), for the third from top to the bottom – CW, and for the fourth from left to the right – CCW (Figure 2). Expected movement usage was considered as compliance with graphic rules.

RESULTS

Kinematic features

Semicircle tracing task

Compared to TDC, children with ADHD (all subjects regardless of stimulant treatment) traced semicircles with a lower NCA and had a lower Jt (tangential jerk) in each of the three task repetitions. Children with ADHD receiving MTX (n = 10) had lower NCA, NCV and Jt in comparison to TDC, where only NCA difference sustained through all three task repetitions (Table 2, section A). Children with ADHD not receiving MTX traced with lower SS, Vt and At and higher ST in the first two repetitions compared to TDC (Jt was lower in ADHD group in all repetitions) (Table 2, section A). In addition, in ADHD group only, those taking MTX wrote with higher Vt and lower ST, NCV and NCA compared to subjects without MTX (in all repetitions except for NCV) (Table 2, section B).

The Jt had sustainable trend of augmentation through semicircles and task repetitions in both ADHD (regardless of stimulant treatment) and TDC group (Figure 3; test statistics for the Mann–Whitney U test ranged from U = 127, p < 0.001 to U = 429.5, p = 0.02). Difference in Jt value between groups was reducing with task progression (Jt value rose faster in ADHD group).

Table 1. Kinematic parameter details

Parameters	Abbreviation	Details
Pressure	P	The force that a stylus tip creates over the writing surface
Velocity*	V	The rate at which a position of a stylus changes with time
Acceleration*	A	The rate at which the velocity of a stylus changes with time
Jerk*	J	The rate at which the acceleration of a stylus changes with time
Stroke duration (time)	ST	The duration of the basic unit of writing movements
Stroke speed	SS	The length of a single stroke divided by the stroke time
Number of changes in velocity	NCV	The mean number of local extremes of the velocity
Number of changes in acceleration	NCA	The mean number of local extremes of the acceleration

* – velocity, acceleration, and jerk have three vector sub-components: x – horizontal; y – vertical; t – tangential [7]

Table 2. Kinematic parameter relations between study groups in semicircle tracing task

Parameter	TDC	ADHD (all)	ADHD 1	ADHD 2	ADHD (all)	ADHD 1	ADHD 2
	Rpt. x y t	x y t	x y t	x y t	x y t	x y t	x y t
	P SS ST NCA						
	V A J						

A) ADHD (all), ADHD 1 and ADHD 2 compared to TDC; B) ADHD 1 compared to ADHD 2 during successive semicircle tracing in three task repetitions; ADHD – attention deficiency/hyperactivity disorder (all – all ADHD subjects, 1 – ADHD receiving methylphenidate treatment, 2 – ADHD without methylphenidate treatment); TDC – typically developed children; Rpt. – task repetition; shaded fields indicate statistically significant difference (p < 0.05); / - no statistically significant difference (p > 0.05); ▲▲ ▼▼ ▼▼ ▼▼ – indicates that parameter value is statistically higher (or lower) compared to A) TDC and B) ADHD 2; ▲▲ ▼▼ ▼▼ ▼▼ – indicates substantial statistical difference (p < 0.01); parameter abbreviations are defined in Table 1

Figure 2. Expected movements in semicircle tracing; starting points (dots) and tracing directions (arrowheads) are shown; CW – clockwise; CCW – counter clockwise

Figure 2. Expected movements in semicircle tracing; starting points (dots) and tracing directions (arrowheads) are shown; CW – clockwise; CCW – counter clockwise
Triangle copying task

In the first repetition, for b and c triangle edges, ADHD subjects (regardless of stimulant treatment) applied significantly larger pressure on the writing surface ($U = 511$, $p = 0.02$ and $U = 579$, $p = 0.01$ respectively) compared to TDC. This was not the case in second and the third task repetition where no statistically significant difference in pressure was documented ($p = 0.06 - 0.14$). Regarding other kinematic parameters, no significant difference was observed between study groups in neither task repetition.

Letter copying task

Only the first repetition was analyzed, and all ADHD subjects (regardless of stimulant treatment) were compared to TDC. It was found that V_t, S_s and P were significantly higher in ADHD group compared to TDC ($U = 80798$, $p = 0.004$; $U = 80680$, $p = 0.004$; and $U = 81169$, $p = 0.002$ respectively).

Graphic rules

Comparing ADHD subjects (regardless of stimulant medication treatment) to TDC, those ADHD subjects taking stimulant medication to TDC and those ADHD without medical treatment to TDC; no statistically significant differences were observed regarding usage of expected movements. The same was observed when comparing ADHD subjects with stimulant medication to ADHD subjects without stimulants. There was a certain trend observed with task repetition where an increased number of subjects used expected movements (the most evident in TDC for the first and third semicircle and in ADHD with MTX treatment in the second semicircle). The usage of expected movements was the highest for the fourth semicircle and the lowest for the third semicircle in all groups (Figure 4).

DISCUSSION

In both ADHD (regardless of medication treatment) and control group, the J_t had sustainable trend of augmentation through semicircles and task repetitions (values were significantly higher in the control group but raised faster in the ADHD group). We could assume that, based on previous research, with the lack of visual guidance (no inking trace) TDC would be more careful during writing task, making saccadic (“jerky”) movements with increased jerk value and in this manner decreasing possibility for error (missing tracing lines, under- or overwriting preset boundaries) [7, 15]. This could also result in decreased writing automation. In addition, the automation of writing movement is observed through changes in velocity and acceleration profile of writing movements (NCV and NCA values). The bigger NCV and NCA values are the lower writing automation is [7]. The opposite would be expected in ADHD group, less saccadic (“smoother”; with lower jerk) and more automated movements (with lower NCA and NCV) which could be due to disturbances in error monitoring [2, 15]. This was shown in our results for all ADHD subjects (regardless of stimulant medication treatment) and similar for ADHD taking stimulant medication. It was also observed that, with repetition, difference in jerk between study groups tends to decrease and ADHD subjects tend to trace as “jerky” as TDC. This could be in partial explained by better error processing with time and repetition. However, recent study has shown that ADHD subjects make from the beginning jerkier large-scale writing movements compared to TDC [19].

ADHD subjects without stimulant medication treatment traced semicircles with movements that were slower and of longer duration, but less saccadic compared to TDC. When these subjects were compared to ADHD subjects with a stimulant medication, they traced with the movements of longer duration and with lower velocity, but also less automated. Stimulant medication in subjects with ADHD modified writing kinematics compared to TDC improving overall movement speed, and this was not the case in group of ADHD subjects without stimulant medication.
This could be explained with the previous data showing that stimulant treatment could alleviate fine motor control impairment seen in ADHD with possible repercussion to writing movements [18, 23]. However, there is not much data on the influence of stimulant medications on motor functioning in ADHD, and should be interpreted with caution [18, 24]. MTX does improve ADHD symptoms in overall, but motor performance problems could remain [18, 25].

In the triangle-copying task, in the first repetition, subjects with ADHD applied significantly more pressure on writing surface (P) compared to TDC (but not in later repetitions). Although larger axial pressure on the writing surface was seen in ADHD [18], our result was not consistent with task repetition. Since no sustainable difference between groups was observed regarding all triangle edges and task repetition, we can assume that kinematic profile of shape copying in ADHD is similar to TDC.

In the letter-copying task, our results showed that V, SS, and P were significantly larger in ADHD group. This is to some instance in accordance with earlier research showing faster, poorly scaled writing movements with larger pressure in ADHD [17, 18]. Earlier research of writing in children with ADHD revealed that writing difficulties associated with attention problems are the consequence of both impaired graphemic buffer and kinematic motor production, and not of linguistic nature [26]. Based on this, we could assume that subjects with ADHD tend to make faster movements with more pressure on the surface compared to TDC and not due to the possibly accompanied dyslexia or dysgraphia, or the presence of comorbid developmental coordination disorder (DCD) [26, 27].

Our findings showed that there were no differences between children with ADHD and TDC when considering the expected movement usage (starting point and the direction of tracing as the main graphic rules). The lowest percentage of fulfilling graphic rules was in the third semicircle tracing. This result could be explained with greater “degrees of freedom” in tracing this semicircle as at the same time being a part of some letters (e.g. b or p, or Cyrillic small letter f – φ or r – ρ), which offers a possibility to start tracing from either end [13]. On the other hand, the highest percentage of fulfilling graphic rules was in the tracing of the fourth semicircle. It could be explained with the fact that the fourth semicircle resembles small cursive shape for the Cyrillic letter “i” (и). This letter is written and connected to other letters in words from left to right during writing (in Serbian language writing is from left to the right). In addition, most of our subjects preferred cursive script Cyrillic.

Subjects in both ADHD and TDC groups fulfilled expectations proposed by graphic rules with an observed increment of usage of expected movement with a task repetition [12]. This increment with task repetition in both ADHD and TDC groups represent a novel result in studies dealing with writing analysis. The largest percentage of non-preferred movement (opposite to graphic rules) seen in the first attempt can also be explained with the poor visual feedback (lack of inking trace). This finding could lead us to conclusion that both ADHD and TDC subjects have similar writing movement strategy in dealing with a simple tracing task.

Our study has some limitations. The writing was done using writing stylus without ink trace. It could influence results to some extent due to poor visual feedback during writing. Correlation between attention, behavior issues, and writing performance was not analyzed. The writing accuracy and overall legibility were not analyzed in the relations to the graphic rules and kinematic parameters.

CONCLUSION

Children with ADHD tended to make more automated writing movements with less jerk compared to TDC. It appeared that MTX treatment improved writing movement speed and automation in ADHD subjects, however these are preliminary data from a small number of subjects and should be further assessed. In more complex tasks, like triangle and letter copying, the kinematic difference was evident but not consistent. Both ADHD and TDC children were compliant with graphic rules in semicircle task. This study also showed importance of task repetition and its influence on writing. These specific kinematic traits found in children with ADHD could be used in clinical practice as an additional method in defying more subtle clinical presentations of ADHD, as well as to monitor effects of stimulant therapy. Addressing the limitations of the present study, further research is needed among children with ADHD in order to better understand specific cognitive approaches to writing and how to implement these in regular clinical practice.

ACKNOWLEDGMENTS

Special thanks for the contribution to the paper: Marina Grbić-Ivančević, Vladimir Kojić, Blažo Nikolić, Janko Samardžić and Milena Janjić.

Founding: partially supported by project #175016 of the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Conflict of interest: None declared.
REFERENCES

1. Graham S, Fishman EJ, Reid R, Hebert M. Writing Characteristics of Students with Attention Deficit Hyperactive Disorder: A Meta-Analysis. Learn Disabil Res Pract. 2016;31(2):75–89.

2. Capodieci A, Lachina S, Cornoldi C. Handwriting difficulties in children with attention deficit hyperactivity disorder (ADHD). Res Dev Disabil. 2018;74:41–9.

3. Feder KP, Majnemer A. Handwriting development, competency, and intervention. Dev Med Child Neurol. 2007;49(4):312–7.

4. Jolly C, Gentaz E. Analysis of cursive letters, syllables, and words handwriting in French second-grade child with developmental coordination disorder and comparison with typically developing children. Front Psychol. 2013;4:1022.

5. Siebner HR, Limmer C, Peinemann A, Drzezga A, Bloem BR, motor blocks in patients with Parkinson's disease during volitional hand movements [Article in Serbian language]. Srp Arh Celok Lek. 2002;130(11–12):376–81.

6. Drotar P, Mekyska J, Rektorova I, Masarova L, Smekal Z, Faunadez-Zanuy M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artrf Intell Med. 2016;7:39–46.

7. Mergrt, T. Digitized analysis of handwriting and drawing movements in healthy subjects: methods, results and perspectives. J Neurosci Methods. 1999;90(2):157–69.

8. Miller Jevkov V, Kojic V, Popovic MB. Linear Discriminant Analysis: Classification of On-Surface and In-Air Handwriting. Belgrade, Serbia: Proceedings of 23rd Telecommunications forum – TELFOR; 2015. p. 460–3.

9. Miller Jevkov V, Kojic V, Dragasevic Miskovic N, Djukic T, Kostic VS, Popovic MB. Analysis of on-surface and in-air movement in handwriting of subjects with Parkinson’s disease and atypical parkinsonism. Biomed Tech (Berl). 2002;47(11–12):376–81.

10. Ivančević N, Nović M, Miller-Jevkov V, Janković M, Sevanović D, Nikolić B, et al. Does handedness matter? Writing and tracing kinematics analysis in healthy adults. Psichologija. 2019;52(4):413–35.

11. Khalid PI, Yunus J, Adnan R, Harun M, Sudirman R, Mahmood NH. The use of graphic rules in grade one to help identify children at risk of handwriting difficulties. Res Dev Disabil. 2010;31(6):1685–93.

12. Simeček SV, Kousha M, Zarrabi H, Tavafzadeh-haghi SM, Jalali MM. The impact of methylphenidate on motor performance in children with both attention deficit hyperactivity disorder and developmental coordination disorder: a randomized double blind crossover clinical trial. Iran J of Med Sci. 2017;42(4):354–61.

13. Sinmer ML. The grammar of action and children’s printing. Dev Psychol. 1981;17(6):866–71.

14. Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry. 2015;56(3):345–65.

15. Lipowska M. Graphomotor functions in ADHD – motor or planning deficit? A microgenetic approach. Acta Neuropsychol. 2012;10(1):69–80.

16. Rubia K. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) and Its Clinical Translation. Front Hum Neurosci. 2018;12:100.

17. Schouroun SM, Bryden PJ, Otiková Z, Musálek M, Lejcarová A. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts. Res Dev Disabil. 2013;34(11):4142–53.

18. Kaiser ML, Schoemaker MM, Albaret JM, Geuze RH. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature. Res Dev Disabil. 2015;36:338–57.

19. Laniel P, Faci N, Plamondon R, Bauchamp MH, Gauthier B. Kinematic analysis of fast pen strokes in children with ADHD. Appl Neuropsychol Child. 2019;2(2):125–40.

20. Eckrich SJ, Rapport MD, Calub CA, Friedman LM. Written expression in boys with ADHD: The mediating roles of working memory and oral expression. Child Neuropsychol. 2019;25(6):772–94.

21. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Association Publishing, 2013.

22. Elliot C, Vijayakumar V, Zink W, Hansen R. National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement. JALA: Journal of the Association for Laboratory Automation. 2007;12(1):17–24.

23. Dragasevic Miskovic N, Djukic T, Kostic VS, Popovic MB. Analysis of on-surface and in-air movement in handwriting of subjects with Parkinson’s disease and atypical parkinsonism. Biomed Tech (Berl). 2019;64(2):187–94.

24. Soleimani R, Kousha M, Zarrabi H, Tavafzadeh-haghi SM, Jalali MM. The impact of methylphenidate on motor performance in children with both attention deficit hyperactivity disorder and development coordination disorder: a randomized double blind crossover clinical trial. Iran J of Med Sci. 2017;42(4):354–61.

25. Rodrigues C, Torrance M, Betts L, Carezo R, Garcia T. Effects of ADHD on writing composition product and process in school-age students. J Atten Disord. 2017;1:1–11.

26. Rouard J-M, Marques JCB, De Oliveira JA. Attention deficit hyperactivity disorder and motor impairment: A critical review. Percept Mot Skills. 2017;124(2):425–40.
САЖЕТАК
Увод/Циљ Циљ ове студије био је да упореди кинематичке карактеристике и графичка правила приликом писања деце са хиперкинетским поремећајем са недостатком пажње (ADHD) (са терапијом стимулансима и без ње) и код типично развијене деце (TDC).

Методе Анализирано је укупно 55 испитаника (26 са ADHD, од којих је 10 добијало метилфенидат, и 29 TDC). Испитаници су радили задатак са писањем на дигитализованој графичкој табли (у три понаваљања; писањем без мастила). Задатак је укључивао подебљавање полукругова, прецртавање троугла и преписивање слова. Анализиране су кинематичке карактеристике свих покрета, као и графичка правила приликом подебљавања полукругова. Графичка правила су сагледавана кроз очекиване покрете писања (одабир почетне тачке и правац подебљавања).

Резултати Вредности параметра „трзај” биле су статистички значајно веће код TDC у поређењу са децом са ADHD и константно су расле у обе групе са израдом и понављањем задатка са полукруговима. Деца са ADHD без терапије метилфенидатом имала су спореје покрете писања у поређењу са TDC. Покрети подебљавања су били аутоматизованији (мање промене у брзини и убрзању) и са мањим трзајем код деце са ADHD на метилфенидату у поређењу са TDC. У групи деце са ADHD, она деца која су била на терапији подебљавала су брже и аутоматизованије у поређењу са децом без терапије. Већина испитаника користила је очекиване покрете за подебљавање полукругова и овај проценат је растао са понављањем задатка (није било разлике међу испитиваним групама).

Закључак Деца са ADHD као и TDC користе сличан приступ у подебљавању полукругова и придржавају се графичких правила. Третман метилфенидатом може утицати позитивно на кинематику писања код деце са ADHD. Понављање задатка такође утиче на писање.

Кључне речи: писање; ADHD; кинематички параметри; графичка правила; метилфенидат