Synthesis and Biological Evaluations of N-(4-Substituted Phenyl)-7-Hydroxy-4-Methyl-2-Oxoquinoline-1(2H)-Carbothioamides

Amena Ali, Abuzer Ali, Salahuddin, Mohammad Afroz Bakht, and Mohamed Jawed Ahsan

ABSTRACT
In continuance of search for new compounds we report herein the expedient and optimized synthesis of a series of N-(4-substituted phenyl)-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-carbothioamides (5a-g) in good yields. The anticancer and antioxidant activities were determined as per the standard protocol. Nearly 5 dozens of cancer cell lines derived from nine different panels are used in the study and anticancer activity was calculated as growth percents (GPs) and percent growth inhibitions (%GIs). The molecular docking simulation against one of the potential targets i.e., epidermal growth factor receptor (EGFR) was done to find the putative approach of action of the title compounds 5a-g. N-(4-Nitrophenyl)-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-carbothioamides (5b) showed the most promising anticancer activity with higher sensitivity against UO-31, HOP-92, CAKI-1, LOX IMVI and T-47D with GPs of 66.65, 72.63, 85.80, 86.11, and 86.96 respectively. The compound 5b exhibited antioxidant activity with an IC50 value of 15.21 ± 1.52 μM. The molecular docking simulation showed an efficient binding of compound 5b against the activity site of EGFR with two H-bond interactions with the residues Gln791 and Thr854, a π-π stacking and a π-cationic interaction with the residue Phe856, while a salt bridge interaction with the residue Lys745.
1. Introduction

Quinoline a bicyclic fused aromatic scaffold plays an important role in medicinal chemistry. Many quinoline derivatives are also widely used as pharmaceuticals. They are used as antimalarial,\(^1\)–\(^3\) antitubercular,\(^4\) antiviral,\(^5\) antibacterial,\(^6,7\) antihelmintic,\(^8\) local anaesthetic,\(^9\) antiasthmatic,\(^10\) cardiotonic,\(^11\) antipsychotic,\(^12\) antiglucoma,\(^13\) etc. Exatecan, topotecan, and irinotecan are some of the quinolines anticancer drugs used in clinical practice since the introduction of camptothecan.\(^14\)–\(^16\) The structure of some of the quinoline-based drugs are shown in Figure 1. The quinoline scaffold plays an important role in the development of anticancer drug and its analogues exhibited excellent results through different modes of action.\(^16\),\(^17\) The epidermal growth factor receptor (EGFR) is one among the various targets of anticancer agents.\(^18\) Intracellular signaling mediated by EGFR regulates many of the functions needed for cell growth, migration, and proliferation.\(^19\) In human cancer the EGFR is found to be over-expressed and/or mutated.\(^20\) The inhibition of EGFR could be a potential approach to treat cancer. The anti-EGFR activity quinoline congeners were well documented in the literature.\(^21\)–\(^24\)

Cancer is a dreadful disease that can affect any part of the body and 18.1 million new cases reported worldwide in 2018. Nearly 9.6 million deaths were registered in 2018, and in the next few decades the situation will become more appalling.\(^25\) We reported the cytotoxicity of quinoline analogues in our previous work,\(^26,27\) and in continuance for the search of new compounds for cancer therapeutics, we report herein the synthesis of new quinoline analogues with their biological activities as well as molecular docking simulation against EGFR.

2. Experimental

Synthesis of 7-hydroxy-4-methyl coumarin (3)

A solution of resorcinol (1) (50 mmol; 5.505 g) in ethyl acetoacetate (2) (50 mmol; 6.505 g, ~6.5 mL) was added slowly into previously cooled concentrated H\(_2\)SO\(_4\), stirred the reaction
mixture and maintained the temperature below 10 °C for half an hour.26,27 The reaction mixture was then poured onto the crushed ice, filtered, washed, dried and further re-crystallized with ethanol to obtain 7-hydroxy-4-methyl coumarin (3).

Synthesis of N-(4-substituted phenyl)-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-carbothioamides (5a-g)

An equimolar amount of 7-hydroxy-4-methyl coumarin (3) (1 mmol; 176 mg) and substituted phenyl thiourea (4a-g) (1 mmol) was fused together at 200 °C on oil bath for 1 h. The reaction mixture was then cooled and 5 mL ethanol was added followed by the addition of 5 mL water. The separated solid was collected by vacuum filtration, washed with water, dried and re-crystallizes from ethanol.

Anticancer activity

The *in vitro* anticancer activity of the compounds (5a-g) was determined on nine different panels of cancer cell lines. There were nearly 5 dozens cancer cell lines derived from nine different panels of breast, colon, CNS, leukemia lung, melanoma, ovarian, prostate and renal cancer cell lines used in the present investigation. The anticancer activity was recorded as growth percents (GPs) and percent growth inhibitions (%GIs). The anticancer activity was done as per the standard protocol followed by National Cancer Institute US.28–31

Antioxidant activity

1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals (FR) scavenging activity was undertaken to evaluate the antioxidant activity of the title compounds (5a-g) according to the reported method by Koleva et al., 2002 and IC\textsubscript{50} (50% free radical scavenging activity) was recorded in μM.32

Molecular docking studies

The molecular docking against EGFR was performed for the ligands, 5a-g. The EGFR (PDB: 3W2R) X-ray crystal structure with a resolution of 2.05 Å; R-value 0.220 (observed) was obtained.
from the protein data bank. The ligands 5a-g were saved as mol file and the docking was done as per the protocol reported by Sogabe et al.

3. Results and discussions

Chemistry

The 7-hydroxy-4-methyl coumarin (3) was synthesized from an equimolar amount of resorcinol (1) and ethyl acetoacetate (2) as per the reported method. The synthetic protocol of compound 3 is summarized in Scheme 1. The second step involves fusion of an equimolar amount of 7-hydroxy-4-methyl coumarin (3) and substituted phenyl thiourea (4a-g) at 200 °C in oil bath for 1 h to obtain N-(4-substituted phenyl)-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-carbothioamides (5a-g) and the synthetic protocol is shown in Scheme 2. The substituted phenyl thiourea (4a-g) was synthesized by the previous reported method. Infrared (IR), nuclear magnetic resonance (NMR), and mass spectral data were used to validate the structure of target compounds (5a-g).

The IR spectra of the prototype compound 5b revealed stretching vibrations of phenolic (OH), carbonyl (C=O), S=C, and NH at 3402, 3223, 1682, and 1268 cm⁻¹, respectively. The ¹H NMR of compound 5b showed three singlet peaks at 2.34, 6.10 and 6.68 ppm for the three protons of CH₃, one aromatic proton (adjacent proton of 4-methyl) and one aromatic proton of the coumarin (adjacent of phenolic function), while a doublet for two protons of coumarin was observed at 6.80 ppm. The aromatic protons of nitrophenyl aromatic ring was found to have two doublets, each with two protons, at 7.38 and 7.55 ppm, while two singlet peaks at 8.58 and 10.50 ppm were observed for the ArNH and ArOH protons respectively. The ¹³C NMR of compound, 5b showed a C=S function at δ 161.15 ppm, while the carbonyl function was observed at 160.29 ppm. The methyl function was observed at 18.06 ppm, while the rest of the aromatic carbons were observed at 156.30, 154.84, 154.46, 153.48, 126.55, 120.29, 119.54, 113.79, 112.85, 112.02, 110.25, and 102.18 ppm. The mass spectra of compound 5b revealed two peaks for the M⁺ and (M + 1)⁺, respectively, at 355.0 and 356.1.

Optimization of reaction

Prior to the synthesis of the target compounds, the reaction conditions were optimized in order to obtain a high yields of products in a short amount of time. A mixture of compound 3 and 4a was subjected to various reaction conditions as shown in Table 1. The yields of the reaction were found to be 68% in methanol (entry 1) and 70% in ethanal (entry 1) with a reaction time of 10 h. The yields of the product were found to less (than alcohols) in dioxane (62%; entry 3) and dimethylsulfoxide (DMSO) (67%; entry 5) with a reaction time of 12 h. The yield was found to be least in the solvent toluene (38%; entry 6) with reaction time of 8 h. The yield was further increased to 72% (entry 4) when the reaction was carried out in glacial acetic acid (GAA) for 2 h. The yield was found to be the highest (88%; entry 7) when the reaction was carried out at high temperature (200 °C) in solvent-free conditions. Finally, all the target compounds (5a-g) were synthesized by
two different methods, one by refluxing the reaction mixture in the solvent GAA and other by fusing the reaction mixture in solvent free at elevated temperature (200 °C) on oil bath. The physical constants and yields of the target compounds (5a-g) are shown in Table 2.

Anticancer activity

Polycyclic aromatic compounds were reported as biologically active compounds. The scaffold quinoline was also evaluated as anticancer agent. The anticancer activity of target compounds (5a-g) was calculated as GP and %GI at 10 μM on nearly 5 dozen cancer cell lines derived from breast, colon, CNS, leukemia lung, melanoma, ovarian, prostate and renal cancer cell lines. All the compounds showed promising results and showed maximum sensitivity against UO-31 (renal cancer) cell line with GP 66.65 to 84.53. The anticancer activity of the compounds (5a-g) against the five most sensitive cell
Table 3. The anticancer activity of oxoquinoline-1(2H)-carbothioamides (5a-g).

Compound/NSC code	Cancer cell lines assay in single dose assay 10 μM concentration	The most sensitive cell lines	GP %	GI %
5a	UO-31 (Renal Cancer)	72.15	27.85	
	NSC 805507	SK-OV-3 (Ovarian Cancer)	79.14	20.86
		NCI-H226 (Non-Small Cell Lung Cancer)	80.50	19.50
		HOP-62 (Non-Small Cell Lung Cancer)	84.07	15.93
		HOP-92 (Non-Small Cell Lung Cancer)	84.58	15.42
5b	UO-31 (Renal Cancer)	66.65	33.35	
	NSC 805504	HOP-92 (Non-Small Cell Lung Cancer)	72.63	27.37
		CAKI-1 (Renal Cancer)	85.80	14.20
		LOX IMVI (Melanoma)	86.11	13.89
		T-47D (Breast Cancer)	86.96	13.04
5c	UO-31 (Renal Cancer)	79.09	20.91	
	NSC 803506	NCI-HS22 (Non-Small Cell Lung Cancer)	86.80	13.20
		SK-OV-3 (Ovarian Cancer)	87.65	12.35
		SNB-75 (CNS Cancer)	88.69	11.31
		CAKI-1 (Renal Cancer)	88.94	11.06
5d	UO-31 (Renal Cancer)	84.53	15.47	
	NSC 805503	MALME-3M (Melanoma)	87.97	12.03
		CAKI-1 (Renal Cancer)	89.86	10.14
		SF-539 (CNS Cancer)	90.72	9.28
		SK-OV-3 (Ovarian Cancer)	90.82	9.18
5e	UO-31 (Renal Cancer)	67.38	32.62	
	NSC 805502	CAKI-1 (Renal Cancer)	86.69	13.31
		HOP-62 (Non-Small Cell Lung Cancer)	91.51	8.49
		MALME-3M (Melanoma)	91.81	8.19
		SK-OV-3 (Ovarian Cancer)	92.41	7.59
5f	UO-31 (Renal Cancer)	78.60	21.40	
	NSC 805505	SK-OV-3 (Ovarian Cancer)	85.55	14.45
		HOP-62 (Non-Small Cell Lung Cancer)	86.74	13.26
		T-47D (Breast Cancer)	87.48	12.52
		SNB-75 (CNS Cancer)	88.06	11.94
5g	UO-31 (Renal Cancer)	71.19	29.81	
	NSC 805501	HOP-92 (Non-Small Cell Lung Cancer)	84.05	15.95
		CAKI-1 (Renal Cancer)	86.38	13.62
		SK-OV-3 (Ovarian Cancer)	89.41	11.59
		HOP-62 (Non-Small Cell Lung Cancer)	91.93	8.07
Imatinib^a				
	HT29 (Colon Cancer)	52.9	47.1	
	NSC 759854	HOP-92 (Non-Small Cell Lung Cancer)	56.3	43.7
		MDA-MB-468 (Breast Cancer)	70.9	29.1
		SF-539 (CNS Cancer)	75.5	24.5
		SK-MEL-S (Melanoma)	77.7	22.3

^aThe anticancer data of Imatinib was retrieved from National Cancer Institute database with NSC code 759854.²⁸

The order of anticancer activity followed with the substitutions on the phenyl ring as 4-NO2 > 4-Cl > 3-Cl > 2,4-(CH3)2 > 4-OC2H5 > 4-C2H5 > 2-C2H5.

Antioxidant activity

Free radicals generation by oxidative stress could be a potential threat to aggravate malignancy. Polycyclic compounds including quinoline analogues were well documented as antioxidants.^{40,46}
The phenolic (Ar-OH) groups act as antioxidants in a variety of ways because they are strong hydrogen donors. The oxoquinoline analogues reported herein contain phenolic function and can act as antioxidant. Hence the antioxidant activity was also performed and calculated as an IC$_{50}$ (in μM) for the target compounds as per the standard protocol. Ascorbic acid was taken as positive control in the study. The title compounds (5a-g) showed antioxidant activity with IC$_{50}$ values ranging between 15.21 ± 1.52 and 84.12 ± 8.29 μM. The compounds 5a, 5b and 5c showed significant antioxidant with IC$_{50}$ values of 18.71 ± 1.81, 15.21 ± 1.52, and 22.02 ± 2.21 μM, respectively. Rest of the compounds showed moderate to less antioxidant activity. The order of antioxidant activity followed with the substitutions on the phenyl ring as 4-NO$_2$ > 4-Cl > 3-Cl > 4-OC$_2$H$_5$ > 4-C$_2$H$_5$ > 2,4-(CH$_3$)$_2$ > 2-C$_2$H$_5$. The antioxidant activity of the compounds is given in Table 4.

Molecular docking studies

The molecular docking studies against EGFR was done as per the reported protocol. Various types of interactions including H-bond, $\pi-\pi$ stacking, π-cationic, salt bridge and halogen bond were observed in the molecular docking studies and the results of docking studies are summarized in Table 5. The compounds 5a, 5b, 5c and 5f showed two H-bonds and $\pi-\pi$ stacking interaction within the active site of EGFR. A H-bond between the phenolic function and the residue Gln791 and another H-bond between the amino function with the residue Thr854, while a $\pi-\pi$ stacking interaction between the substituted phenyl ring and the residue Phe856 was observed. The compounds 5d and 5g showed two H-bonds, one between the carbonyl function of oxoquinoline ring and the residue Met797 and another between the atom S (of carbothimide function) and the residue Thr854. One additional H-bond was also observed between the phenolic function and the residue Asp855 in the compound 5d. The most promising compound (5b) showed H-bond interaction of phenolic function with residue Gln791, H-bond interaction amino with the residue Thr854, $\pi-\pi$ stacking and π-cationic interaction of phenyl ring and ‘N’ atom nitro function with the residue Phe856, and a salt bridge interaction with the ‘O’ atom of nitro substituent with the residue Lys745. The molecular docking of ligands (5a-g) against the active site of EGFR is given in Table 5.

Table 4. The antioxidant activity of compounds 5a-g.

S. no.	Compound	Free radical scavenging activity IC$_{50}$ (μM)
1	5a	18.71 ± 1.81
2	5b	15.21 ± 1.52
3	5c	38.19 ± 3.81
4	5d	56.32 ± 5.61
5	5e	84.12 ± 8.29
6	5f	22.02 ± 2.21
7	5g	59.88 ± 5.98
8	Ascorbic acid	14.02 ± 1.39

Table 5. The molecular docking studies of ligands 5a-g against the active site EGFR.

S. no.	Ligand	Docking score	Types of interaction
1	5a	−9.066	H-bond (Gln791), H-bond (Thr854), $\pi-\pi$ Stacking (Phe856)
2	5b	−9.220	H-bond (Gln791), H-bond (Thr854), $\pi-\pi$ Stacking (Phe856), π-Cation (Phe856), Salt bridge (Lys745)
3	5c	−8.625	H-bond (Gln791), H-bond (Thr854), $\pi-\pi$ Stacking (Phe856)
4	5d	−7.902	H-bond (Met793), H-bond (Asp855), H-bond (Thr854)
5	5e	−6.347	No interaction
6	5f	−9.630	H-bond (Gln791), H-bond (Thr854), $\pi-\pi$ Stacking (Phe856), Halogen bond (Lys745)
7	5g	−8.899	H-bond (Met793), H-bond (Thr854)
The site of EGFR tyrosine kinase is shown in Figure 2. The images of 2D interactions of compounds 5a and 5b are shown in Figure 3, while 3D interactions are shown in Figure 4. The 2D and 3D interactions of rest of the compounds are given in the supplementary material (Figure 1S and Figure 2S).

4. Conclusion

An efficient and optimized synthesis of a series of \(N\)-(4-substituted phenyl)-7-hydroxy-4-methyl-2-oxoquinoline-1(2\(H\))-carbothioamides (5a-g) was brought about in good yields. All the
compounds were evaluated for their anticancer and antioxidant activities. Anticancer activity was tested against 5 dozens of cancer cell lines derived from nine different panels. All the compounds showed significant activity with higher selectivity against UO-31 (renal cancer cell line). Some of the title compounds (5a, 5b and 5f) also showed promising results in the antioxidant screening. The most promising compound 5b showed significant biological activities. All the compounds (except 5e) showed efficient binding within the active site of EGFR by different types of interaction including H-bonding, π-π stacking and π-cationic interactions with the various residues present in the active site. Further advancement and structural modification to increase anticancer activity are ongoing in our laboratory.

Acknowledgements

The author Dr Abuzer Ali is thankful to Taif University Researchers Supporting Project Number (TURSP-2020/124), Taif University, Taif, Saudi Arabia. The authors also acknowledge the help of National Cancer Institute USA in anticancer activity. The authors are grateful to Schrodinger for providing a trial license, and training team.
Disclosure statement

The authors declared no conflict of interest.

Funding

The author Dr Abuzer Ali is thankful to Taif University Researchers Supporting Project Number (TURSP-2020/124), Taif University, Taif, Saudi Arabia.

ORCID

Amena Ali http://orcid.org/0000-0001-8463-5182
Abuzer Ali http://orcid.org/0000-0002-4313-3896
Mohammad Afroz Bakht http://orcid.org/0000-0002-3382-0457
Mohamed Jawed Ahsan http://orcid.org/0000-0002-6919-5489

References

1. J. Achan, A. O. Talisuna, A. Erhart, A. Yeka, J. K. Tibenderana, F. N. Baliraine, P. J. Rosenthal, and U. D’Alessandro, “Quinine, an Old anti-Malarial Drug in a Modern World: Role in the Treatment of Malaria,” Malaria Journal 10, no. 144 (2011): 144.
2. S. Eric, “Chloroquine,” xPharm: The Comprehensive Pharmacology Reference (2007) : 1–7. https://doi.org/10.1016/B978-008055232-3.61444-8
3. P. Schlagenhauf, M. Adamcova, L. Regep, M. T. Schaerer, and H.-G. Rhein, “The Position of Mefloquine as a 21st Century Malaria chemoprophylaxis,” Malaria Journal 9, no. 9 (2010): 357.
4. A. Matteelli, A. C. Carvalho, K. E. Dooley, and A. Kritski, “TMC207: The First Compound of a New Class of Potent anti-tuberculosis drugs,” Future Microbiology 5, no. 6 (2010): 849–58.
5. S. Vella, and M. Floridia, “Saquinavir Clinical Pharmacology and Efficacy,” Clinical Pharmacokinetics 34, no. 3 (1998): 189–201.
6. M. LeBel, “Ciprofloxacin: chemistry, Mechanism of Action, Resistance, Antimicrobial Spectrum, Pharmacokinetics, Clinical Trials, and Adverse Reactions,” Pharmacotherapy 8, no. 1 (1988): 3–33.
7. L. D. Saravolatz, and J. Leggett, “Gatifloxacin, Gemifloxacin, and Moxifloxacin: The Role of 3 Newer Fluoroquinolones,” Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America 37, no. 9 (2003): 1210–15. [14557966]
8. R. Foster, “A Review of Clinical Experience with Oxmimnique,” Transactions of the Royal Society of Tropical Medicine and Hygiene 81, no. 1 (1987): 55–9.
9. Y. Kuroda, M. Ogawa, H. Nasu, M. Terashima, M. Kasahara, Y. Kiyama, M. Wakita, Y. Fujiwara, N. Fujii, and T. Nakagawa, “Locations of Local Anesthetic Dibucaine in Model Membranes and the Interaction between Dibucaine and a Na＋ Channel Inactivation Gate Peptide as Studied by 2H- and 1H-NMR Spectroscopies,” Biophysical Journal 71, no. 3 (1996): 1191–207.
10. M. S. Benninger, and H. Waters, “Montelukast: Pharmacology, Safety, Tolerability and Efficacy,” Clinical Medicine Insights: Therapeutics 1, (2009): CMT.S1147–61. https://doi.org/10.4137%2FCMT.S1147
11. E. Cavusoglu, W. H. Frishman, and M. Klapholz, “Vesnarinone: A New Inotropic Agent for Treating Congestive Heart Failure,” Journal of Cardiac Failure 1, no. 3 (1995): 249–57.
12. C. E. Canal, and A. B. Casey, “Classics in Chemical Neuroscience: Aripuraprazole,” ACS Chemical Neuroscience 8, no. 6 (2017): 1135–46.
13. P. Demaillie, C. Allaire, and C. Trinquand, Once-daily Carteolol Study Group. “Ocular Hypotensive Efficacy and Safety of Once Daily Carteolol Alginate,” The British Journal of Ophthalmology 85, no. 8 (2001): 921–4. http://dx.doi.org/10.1136/bjo.85.8.921
14. M. E. Wall, and M. C. Wani, “Camptothecin and Taxol: From Discovery to Clinic,” Journal of Ethnopharmacology 51, no. 1–3 (1996): 239–54.
15. H. Chhatriwala, N. Jafri, and R. Salgia, “A Review of Topoisomerase Inhibition in Lung Cancer,” Cancer Biology & Therapy 5, no. 12 (2006): 1600–7.
16. O. Alizal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, and S. Bawa, “A Review on Anticancer Potential of Bioactive Heterocycle Quinoline,” European Journal of Medicinal Chemistry 97, no. 5 (2015): 871–910.
17. S. Jain, V. Chandra, P. Kumar Jain, K. Pathak, D. Pathak, and A. Vaidya, “Comprehensive Review on Current Developments of Quinoline-Based Anticancer Agents,” Arabian Journal of Chemistry, 12, no. 8 (2019): 4920–46.
18. J. Wykosky, T. Fenton, F. Furnari, and W. K. Cavenee, “Therapeutic Targeting of Epidermal Growth Factor Receptor in Human Cancer: successes and Limitations,” Chinese Journal of Cancer, 30, no. 1 (2011): 5–12.
19. D. S. Krause, and R. A. Van Etten, “Tyrosine Kinases as Targets for Cancer Therapy,” New England Journal of Medicine, 355, no. 2 (2007): 172–87.
20. D. S. Salomon, R. Brandt, F. Ciardiello, and N. Normanno, “Epidermal Growth Factor-Related Peptides and Their Receptors in Human Malignancies,” Critical Reviews in Oncology/Hematology, 19, no. 3 (1995): 183–232.
21. L. Carlino, M. S. Christodouloulou, V. Restelli, F. Caporuscio, F. Foschi, M. S. Semrau, E. Costanzi, A. Tinivella, L. Pinzi, L. Lo Presti, et al. “Structure-Activity Relationships of Hexahydropyridocena[c]quinoline Derivatives as Allosteric Inhibitors of CDK2 and EGFR,” Chemmedchem, 13, no. 24 (2018): 2627–34.
22. R. F. George, E. M. Samir, M. N. Abdelhamed, H. A. Abdel-Aziz, and S. E.-S. Abbas, “Synthesis and anti-Proliferative Activity of Some New Quinoline Based 4,5-Dihydropyrazoles and Their Thiadiazole Hybrids as EGFR Inhibitors,” Bioorganic Chemistry, 83, (2019): 186–97.
23. D. A. Ibrahim, D. A. Abou El Ella, A. M. El-Motwallly, and R. M. Aly, “Molecular Design and Synthesis of Certain New Quinoline Derivatives Having Potential Anticancer Activity,” European Journal of Medicinal Chemistry, 102, no. 18 (2015): 115–31.
24. D. I. A. Othman, K. B. Selim, M. A.-A. El-Sayed, A. S. Tantawy, Y. Amen, K. Shimizu, T. Okauchi, and M. Kitamura, “Design, Synthesis and Anticancer Evaluation of New Substituted Thiophene-Quinoline Derivatives, Bioorganic & Medicinal Chemistry, 27, no. 19 (2011): 115026.
25. WHO cancer reports. 2020; ISBN 978-92-4-000129-9
26. M. J. Ahsan, S. Shastri, R. Yadav, M. Z. Hassan, M. A. Bakht, S. S. Jada, and S. Yasmin, “Synthesis and Antiproliferative Activity of Some Quinoline and Oxadiazole Derivatives,” Organic Chemistry International, 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9589517
27. M. J. Ahsan, R. K. Kumawat, S. S. Jada, M. H. Geesi, M. A. Bakht, M. Z. Hassan, A. B. S. Al-Tamimi, Y. R. Salahuddin, A. Hussain, N. M. Ganta, et al. “Synthesis, Cytotoxic Evaluation, and Molecular Docking Studies of N-(7-Hydroxy-4-Methyl-2-Oxoquinolin-1(2H)-yl)Acetamide/Benzamide Analogues,” Letters in Drug Design & Discovery, 16, no. 2 (2019): 182–93.
28. DTP Developmental therapeutic Programs. http://dtp.nci.nih.gov
29. A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, et al. “Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines,” Journal of the National Cancer Institute, 83, no. 11 (1991): 757–66. no.
30. M. R. Boyd, and K. D. Paull, “Some Practical Considerations and Applications of the National Cancer Institute in Vitro Anticancer Drug Discovery Screen,” Drug Development Research, 34, no. 2 (1995): 91–109.
31. R. H. Shoemaker, “The NCI60 Human Tumour Cell Line Anticancer Drug Screen,” Nature Reviews Cancer, 6, no. 10 (2006): 813–23.
32. I. I. Koleva, T. A. Van-Beek, J. P. H. Linsen, A. de-Groot, and L. N. Evstatieva, “Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods,” Phytochemical Analysis : PCA, 13, no. 1 (2002): 8–17.
33. https://www.rcsb.org/structure/3W2R
34. S. Sogabe, Y. Kawakita, S. Igaki, H. Iwata, H. Miki, D. R. Cary, T. Takagi, S. Takagi, Y. Ohta, and T. Ishikawa, “Structure-Based Approach for the Discovery of Pyrrrolo[3,2-d]pyrimidine-Based EGFR T790M/ L858R Mutant Inhibitors,” ACS Medicinal Chemistry Letters, 4, no. 2 (2013): 201–5.
35. S. Edrah, “Synthesis, Characterization and Biological Activities of Uracils and Thiouracils Derivatives,” Journal of Applied Sciences Research, 10 (2010): 1014–18.
36. S. K. Ramadan, K. N. M. Halim, S. A. Rizk, and M. A. El-Hashash, “Cytotoxic Activity and Density Functional Theory Studies of Some 1,3-Diphenylpyrazolyl Tetrahydropyrimidine Derivatives,” Journal of the Iranian Chemical Society, 17, no. 7 (2020): 1575–89.
37. K. N. M. Halim, S. A. Rizk, M. A. El-Hashash, and S. K. Ramadan, “Straightforward Synthesis, Antiproliferative Screening and Density Functional Theory Study of Some Pyrazolylpyrimidine Derivatives,” Journal of Heterocyclic Chemistry, 58, no. 2 (2021): 636–45.
38. H. A. Sallam, A. S. Elgubbi, and E. A. E. El-Helw, “Synthesis and Antioxidant Screening of New 2-Cyano-3-(1,3-Diphenyl-1H-Pyrazol-4-yl)Acryloyl Amide Derivatives and Some Pyrazole-Based Heterocycles,” Synthetic Communications, 50, no. 13 (2020): 2066–77.
39. S. K. Ramadan, A. K. El-Ziaty, and R. S. Ali, “Synthesis, Antiproliferative Activity, and Molecular Docking of Some N-Heterocycles Bearing a Pyrazole Scaffold against Liver and Breast Tumors,” Journal of Heterocyclic Chemistry, 58, no. 1 (2021): 290–304.
40. S. K. Ramadan, A. K. El-Ziaty and E. A.E. El-Helw, “Synthesis and antioxidant evaluation of some heterocyclic candidates from 3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)propenonitrile,” Synthetic Communication 51, no. 8 (2021): 1272–83. https://doi.org/10.1080/00397911.2021.1879152
41. S. K. Ramadan, E. Z. Elrazaz, K. A. M. Abouzid, and A. M. El-Naggar, “Design, Synthesis and in Silico Studies of New Quinazolinone Derivatives as Antitumor PARP-1 Inhibitors,” RSC Advances 10, no. 49 (2020): 29475–92.
42. E. A. E. El-Helw, H. A. Sallam, and A. S. Elgubbi, “Antioxidant Activity of Some N-Heterocycles Derived from 2-(1-(2-Oxo-2H-Chromen-3-yl)Ethylidene)Hydrazinecarbothioamide,” Synthetic Communications 49, no. 20 (2019): 2651–61.
43. M. S. Salem, E. A. E. El-Helw, and H. A. Derhala, "Development of Chromone-Pyrazole-Based Anticancer Agents," Russian Journal of Bioorganic Chemistry 46, no. 1 (2020): 77–84.
44. E. A. E. El-Helw, and A. A. El-Badawy, “Synthesis of Chromenone, Pyrimidinone, Thiazoline, and Quinolone Derivatives as Prospective Antitumor Agents,” Journal of Heterocyclic Chemistry 57, no. 6 (2020): 2354–64.
45. E. A. E. El-Helw, and A. I. Hashem, “Synthesis and Antitumor Activity Evaluation of Some Pyrrole and Pyridazinone Heterocycles Derived from 3-((2-Oxo-5-(p-Tolyl)Furan-3(2H)-Ylidene)Methyl)Quinolin-2(1H)-One,” Synthetic Communications 50, no. 7 (2020): 1046–55. 10.1080/00397911.2020.1731549
46. M. O. Puskullu, B. Tekiner, and S. Suzen, “Recent Studies of Antioxidant Quinoline Derivatives,” Mini Reviews in Medicinal Chemistry 13, no. 3 (2013): 365–72.
47. D. M. Pereira, P. Valentão, J. A. Pereira, and P. B. Andrade, “Phenolics: From Chemistry to Biology,” Molecules 14, no. 6 (2009) : 2202–11.