Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer

Luisa Iommarini1, Anna Maria Porcelli1, Giuseppe Gasparre2 and Ivana Kurelac2*

1 Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Bologna, Italy; 2 Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy

Hypoxia-inducible factor 1 alpha (HIF-1α) orchestrates cellular adaptation to low oxygen and nutrient-deprived environment and drives progression to malignancy in human solid cancers. Its canonical regulation involves prolyl hydroxylases (PHDs), which in normoxia induce degradation, whereas in hypoxia allow stabilization of HIF-1α. However, in certain circumstances, HIF-1α regulation goes beyond the actual external oxygen levels and involves PHD-independent mechanisms. Here, we gather and discuss the evidence on the non-canonical HIF-1α regulation, focusing in particular on the consequences of mitochondrial respiratory complexes damage on stabilization of this pleiotropic transcription factor.

Keywords: hypoxia-inducible factor 1 alpha, cancer, mitochondria, oxidative phosphorylation, electron transport chain, prolyl hydroxylases, pseudohypoxia, pseudonormoxia

Hypoxia-inducible factor 1 (HIF-1) is the major orchestrator of cellular adaptation to low oxygen environment (1). In normoxia, prolyl hydroxylases (PHDs) hydroxylate HIF-1α on two proline residues within the oxygen-dependent degradation domain, triggering von Hippel–Lindau (pVHL)-mediated ubiquitination and proteasomal degradation (Figure 1) (2). In parallel, the Factor Inhibiting HIF (FIH), an asparaginyl hydroxylase regulated similarly to PHDs, in an oxygen-dependent manner, suppresses HIF-1 transcriptional activity in normoxia by preventing co-activator recruitment (3, 4). Conversely, hypoxia inhibits PHDs and stabilizes HIF-1α, which then translocates into the nucleus and dimerizes with constitutively expressed HIF-1β, creating active HIF-1 complex and triggering the transcription of genes promoting glycolytic metabolism, angiogenesis, and survival (Figure 1) (5). Activation of HIF-1α is physiological during embryogenesis and in wound-healing processes, whereas in cancer, HIF-1α is associated with malignancy and poor prognosis (6, 7). Abnormal stabilization of HIF-1α and upregulation of its downstream targets have been described in a broad spectrum of solid tumors as they progress to malignancy (8).

Since the discovery of HIF-1α and the ingenious oxygen-dependent PHD-mediated regulation, a great number of additional modalities of HIF-1α control has been identified, independently from external oxygen concentrations and acting at the level of its transcription, translation, oxygen-independent stabilization/degradation, translocation from cytoplasm to the nucleus, and even affecting HIF-1 transcriptional activity. Here, we review and discuss the non-canonical regulation of HIF-1α expression and stabilization in cancer cells, focusing on factors which cause pseudohypoxia (HIF-1α stabilization in normoxic conditions) or fail to stabilize HIF-1α in low oxygen atmosphere (pseudonormoxia). Particular attention is given to the discussion of data showing that oxidative phosphorylation (OXPHOS) damage may block HIF-1α stabilization, since this controversial issue has seldom been reviewed elsewhere.
OXYGEN-INDEPENDENT HIF-1α STABILIZATION BY ONCOMETABOLITE-MEDIATED REGULATION OF PHDs ACTIVITY

The first evidence of an oxygen-independent regulation of HIF-1α stability in vivo was found in tumors harboring succinate dehydrogenase (SDH) and fumarate hydratase mutations (9). Soon after, it was demonstrated that SDH inhibition stabilizes HIF-1α in normoxia due to increased concentrations of succinate, a by-product and allosteric inhibitor of the PHD reaction (10). This finding gave birth to the concept of “oncometabolites,” which initially regarded the accumulation of certain Krebs cycle intermediates, such as succinate and fumarate (11, 12), but may now be extended to any metabolite capable of triggering oncogenic or tumor suppressor signals. In the context of HIF-1α regulation, pyruvate and lactate were suggested to promote pseudohypoxia (13–15), whereas the PHD substrate alpha-ketoglutarate (αKG), as well as PHD co-factors ascorbate and Fe2+, were all shown to confer a dose-dependent HIF-1α destabilization in hypoxia (16) (Figure 2A). For example, αKG increases the PHD affinity for oxygen and thus promotes HIF-1α hydroxylolation and degradation even at low oxygen concentrations (17, 18). Accordingly, pseudonormoxia is observed in cells suffering mitochondrial nucleotide transhydrogenase deficiency or severe complex I damage, both conditions leading to NADH accumulation and consequent increase in αKG, due to the slowdown of the Krebs cycle rate (19–22). Conversely, the mitochondrial isocitrate dehydrogenase 3 alpha overexpression decreases αKG concentrations and promotes HIF-1α stability (23). Although mechanisms balancing oncometabolite concentrations represent intriguing therapeutic targets, their successful manipulation to fight cancer is still to be optimized, most likely due to the complexity of oncometabolite-mediated HIF-1α regulation. For instance, hypoxia-induced miR-210 expression was shown to contribute to the succinate accumulation by causing respiratory complex II defects (24, 25). Moreover, whereas (1)-2 hydroxyglutarate promotes HIF-1α stabilization (26), genetic lesions leading to the accumulation of the (R)-2 hydroxyglutarate enantiomer instead activate PHDs (27).

NON-CANONICAL OXYGEN-DEPENDENT REGULATION OF PHDs BY REDISTRIBUTION OF INTRACELLULAR OXYGEN FOLLOWING OXPHOS DAMAGE

As a solid cancer progresses, transformed cells usually activate HIF-1α-mediated adaptations to hypoxic stress, which include downregulation of mitochondrial respiration to decrease the cells’ requirement for oxygen (24, 28, 29). However, several xenograft studies, and a few examples from human tumors, demonstrate that severe OXPHOS damage induces a series of metabolic and molecular anti-tumorigenic events which, among other, include destabilization of HIF-1α (20, 21, 30–34). The anti-tumorigenic consequences of OXPHOS damage leading to HIF-1α destabilization come as a paradox to the known role of HIF-1 in promoting mitophagy and downregulation of OXPHOS genes (24, 28, 29) and are, therefore, discussed here in more detail. Hagen and colleagues pioneered in demonstrating that decreased oxygen consumption, due to OXPHOS inhibition in cancer cell lines, may result in redistribution of intracellular oxygen from respiratory enzymes to the PHDs, so that the latter become unable to sense external hypoxia (35, 36). As a result, HIF-1α is destabilized.
in cells with severe mitochondrial respiration damage, despite the outer hypoxic environment (Figure 2B). The association between mitochondrial respiration damage and HIF-1α inactivation despite hypoxia has also been observed in Rho zero cells and diverse cancer cell types, in which OXPHOS complexes I, III, IV, or V were pharmacologically inhibited (37–39). In accordance, by using a phosphorescent probe quenched by oxygen, a recent study showed that increasing concentrations of complex I inhibitor rotenone decrease intracellular hypoxia in a dose-dependent manner in a prostate cancer cell line (40). The conditions applied in these studies usually consisted of 3–6 h culture in the presence of 1–3% oxygen. On the other hand, studies applying 0.1–1% oxygen concentrations, reported that HIF-1α stabilizes in Rho zero cancer cells or upon rotenone treatment (41, 42), and Gong and Agani demonstrated that, in near-anoxic conditions, HIF-1α is stabilized despite OXPHOS damage (43). Therefore, OXPHOS damage does not seem to irreversibly prevent, but may rather attenuate HIF-1α stabilization, suggesting that the increased intracellular oxygen concentrations, caused by the lower oxygen consumption, may rapidly equilibrate with the extracellular...
tensions. Such equilibration probably depends on the cellular membrane permeability to molecular oxygen, which among other is influenced by cholesterol levels and, therefore, lipid metabolism, which is conditioned by the OXPHOS status (44).

Notably, because of the short HIF-1α half-life (<5 min) in well oxygenated atmosphere, changes in ambient oxygen concentrations and variations of oxygen diffusion in the culture medium have a strong impact on HIF-1α stabilization when working in vitro. Therefore, precautions must be applied during cellular extraction and during cell washing, to avoid making biased conclusions regarding HIF-1α regulation. Moreover, for the time being, experimental limits prevent precise dissection of oxygen diffusion in a growing tumor. Indeed, it must be noted that, to the best of our knowledge, the formal demonstration of the mechanism linking OXPHOS deficiency and HIF-1α destabilization in vivo, where selective pressures and microenvironment are radically different from in vitro conditions, has yet to be reported. Based on our data from complex I-deficient models, we hypothesize that more than one factor is involved in HIF-1α destabilization in OXPHOS-deficient tumors, since, if compared to counterpart controls, they display not only increased intracellular oxygen concentrations (unpublished data) but also higher αKG levels (20–22) and iron accumulation (unpublished data), all factors known to promote PHD-mediated HIF-1α hydroxylation.

To add complexity, OXPHOS damage is a known source of reactive oxygen species (ROS), which were suggested to promote HIF-1α stability in hypoxia and normoxia, although their role in HIF-1α regulation is still controversial (45, 46). Brunell and colleagues suggested that oxygen sensing in OXPHOS does not depend on oxygen consumption in human fibroblasts, but rather on ROS production deriving from decreased activity of complexes III and IV (47). On the other hand, by working on cancer cells, Chua and colleagues report that HIF-1α stabilization in hypoxia is not dependent on ROS and that re-establishing oxygen consumption in complex III-repressed cells is sufficient to induce HIF-1α stabilization, most likely due to a decrease of intracellular oxygen (48). The role of ROS in oxygen sensing has extensively been reviewed elsewhere (46, 49–51), and we discuss the role of ROS in promoting HIF1A transcription in the next paragraph. Still, it is interesting to note that OXPHOS damage leading to elevated ROS was suggested to promote HIF-1α stabilization (45), whereas severe respiratory deficiency associated to a decreased consumption of NADH results in pseudonormoxia. These apparently opposite effects may be explained by the fact that particularly severe damage, at least in the context of certain complex I mutations (20, 21), could destroy ROS-generating sites of respiratory multi-enzymes, resulting in unchanged or even decreased ROS concentrations. In this context, it is not surprising that mitochondrial DNA (mtDNA) mutations, not infrequent modifiers of tumorigenesis, may have opposing consequences on cancer progression, depending on the type of damage they induce (20). For example, mtDNA mutations increasing ROS production have been suggested to promote tumorigenesis and metastases, whereas those causing severe damage, such as complex I disassembly, compromise tumor progression (20, 21).

Taken together, the effects of OXPHOS deficiency on HIF-1α will depend on the type of damage inflicted, probably through different mechanisms depending on the mitochondrial respiratory complex involved. Nevertheless, while the down-regulation of mitochondrial respiration by HIF-1 is certainly a valid mechanism for adaptation of cancer cells to low oxygen tension, the block of OXPHOS may not be severe, since this would lead to HIF-1α destabilization. The latter is supported by studies such as the recent Hamanaka’s work in epidermal keratinocytes, where the knock-out of mtDNA replication and transcription factor TFAM caused reduction of HIF-1α protein levels (52), indicating that HIF-1α destabilization in cells suffering mitochondrial respiratory damage seems to be a rather general phenomenon.

Interestingly, since severe OXPHOS damage seems to prevent cancer cells from experiencing hypoxia, they should be exempted from the need to adapt to low oxygen environment. Nevertheless, the growth of OXPHOS-deficient tumors is still challenged, as seen in complex I-deficient xenograft models (20, 21, 30, 31, 34) and in oncocytoma patients, who develop slowly proliferating masses, which rarely progress to malignancy (33). On one hand, this may be explained by the metabolic insufficiency, such as the recently described deficit in nucleotide biosynthesis, caused by aspartate shortage upon complex I inhibition (53). However, the consequences of the lack of HIF-1α in such tumors is not to be neglected, especially in the light of studies demonstrating that inhibition of HIF-1α is sufficient to block tumor growth (54, 55). In this context, it is intriguing to hypothesize that, in certain cancers, hypoxia may be advantageous, rather than a drawback for growing tumors, since the survival signals promoted by HIF-1 may actually be a requirement for malignant progression.

PHD-INDEPENDENT PATHWAYS REGULATING HIF-1α STABILIZATION

While PHDs control the oxygen-dependent HIF-1α stability, many other proteins are emerging as additional mediators of HIF-1α regulation, which act in an oxygen-independent manner and, therefore, regardless of the HIF-1α hydroxylation status. For example, several factors modulate pVHL activity (Figure 2A), such as WD repeat and SOCS box-containing protein 1 (WSB1), which was found to promote HIF-1α stabilization and metastases via ubiquitination and degradation of pVHL in renal carcinoma, breast cancer, and melanoma models (56). Similarly, ubiquitin C-terminal hydrolase-L1 was described to abrogate the pVHL-mediated ubiquitination of HIF-1α in mouse models of pulmonary metastasis (57), and c-Myc has been shown to weaken HIF-1α binding to pVHL complex, eventually leading to normoxic HIF-1α stabilization in breast cancer cells (58). Besides pVHL, E3 ubiquitin–protein ligase MDM2 was also found to ubiquitinate HIF-1α, but in a hydroxylation-independent manner, promoting its destabilization despite hypoxic atmosphere (Figure 2C). MDM2-mediated oxygen-independent HIF-1α degradation seems to occur upon binding with tumor suppressor proteins, such as TAp73 (59) or p53 (60). On a similar note, it has recently been shown that
PTEN and PI3K inhibitors promote HIF-1α destabilization by preventing MDM2 phosphorylation and subsequent translocation in the nucleus, suggesting that cytoplasmic MDM2 is then able to ubiquitinate HIF-1α and promote its degradation in hypoxia (61). Therefore, in cancers carrying mutations in tumor suppressor proteins such as TP53, MDM2-mediated HIF-1α degradation would be suspended, leading to synergetic promotion of cancer progression, through blockage of the p53 pro-apoptotic stimuli and activation of the survival pathways upregulated by HIF-1α. Conversely, p53-independent binding of MDM2 to HIF-1α was associated with the increase in HIF-1α protein content (62), warning that the role of MDM2 in HIF-1α regulation might be more ambiguous than initially described. Further examples of oxygen-independent HIF-1α regulation involve factors, which may act either as promoters of HIF-1α degradation (Figure 2A), such as receptor of activated protein C kinase (RACK1), or as protectors from pVHL-mediated ubiquitination, such as heat shock protein (Hsp90) or Sentrin/SUMO-specific protease 1 (SENP1) (63–65). Inhibition of Hsp90 promotes the proteasome-mediated degradation of HIF-1α even in hypoxia or when functional pVHL is lacking (66). Moreover, it has been reported that gamma rays stimulate the mTOR-dependent synthesis of Hsp90 leading to HIF-1α stabilization and radiotherapy resistance of lung cancer cells (64). The mechanism of RACK1/Hsp90 competition in enhancing/decreasing HIF-1α-pVHL binding has already been reviewed (67), but it is interesting to note that, among other, calcium may influence RACK1 activity. For instance, calcium-activated phosphatase calcineurin prevented RACK1 dimerization and subsequent HIF-1α degradation in Hek293 and renal carcinoma RCC4 cells (68). Other studies also report a role for calcium in HIF-1α regulation (69, 70), suggesting that HIF-1α is not only an oxygen and nutrient sensor but may also promote adaptive responses to changes in cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pleiotropic function that we find such intricate and multilayered control of cellular calcium homeostasis. It is probably due to its pl...
The double-edged role of energy sensing (and phases of tumor progression, concordantly to the recently reviewed AMPK control of HIF-1α) is emerging, especially in the context of cancer, where the selective pressures to activate this promutagenic mechanism are particularly strong. Unraveling the complexity of HIF-1α regulation might lead to development of more precise anticancer treatments. In particular, considering the heterogeneous OXPHOS activity in different cancers, a better understanding of the mechanisms by which HIF-1α and mitochondrial respiratory chain complexes control oxygen sensing, may identify means for optimization of targeting HIF-1α, possibly based on the OXPHOS status of tumors. For example, therapies targeting HIF-1α could be avoided in tumors suffering OXPHOS deficiency, whereas targeting complex I could be adopted as a strategy to block HIF-1α in tumors which rely on the activity of this pleiotropic transcription factor.

AUTHOR CONTRIBUTIONS

IK designed the work. LI and IK wrote the manuscript. GG and AMP critically revised the manuscript.

FUNDING

This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC) grant TOUch ME—IG 17387 to AMP and by Italian Ministry of Health grant DISCO TRIP GR-2013-02356666 to GG.

REFERENCES

1. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. *Crit Rev Biochem Mol Biol* (2014) 49:1–15. doi:10.3109/10409238.2013.838205
2. Semenza GL. Hypoxia-inducible factors in cancer and tumor angiogenesis. *Physiology (Bethesda)* (2004) 19:176–82. doi:10.1152/physiol.00001.2004
3. Mahon PC, Hirota K, Semenza GL. HIF-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1α transcriptional activity. *Genes Dev* (2001) 15:2673–86. doi:10.1101/gad.9.24.501
4. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. *Science* (2002) 299:858–61. doi:10.1126/science.1068592
5. Ruas JL, Poellinger L. Hypoxia-dependent activation of HIF into a transcriptional regulator. *Seminar Cell Dev Biol* (2005) 16:514–22. doi:10.1016/j.secmcb.2005.04.001
6. Minet E, Michel G, Remacle J, Michiels C. Role of HIF-1α as a transcription factor involved in embryonic development, cancer progression and apoptosis (review). *Int J Mol Med* (2000) 5:253–9. doi:10.3892/ijmm.5.3.253
7. Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. *Curr Top Dev Biol* (2006) 76:217–57. doi:10.1016/S0070-2153(06)70007-0
8. Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression. *Trends Cancer* (2016) 2:758–70. doi:10.1016/j.trecan.2016.10.016
9. Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H, et al. Molecular genetic analysis of FIH-1, FH, and SDHIB candidate tumour suppressor genes in renal cell carcinoma. *J Clin Pathol* (2004) 57:706–11. doi:10.1136/kjp.2003.011767
10. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. *Cancer Cell* (2005) 7:77–85. doi:10.1016/j.ccr.2004.11.022
11. Frezza C, Pollard PJ, Gittleman E. Inborn and acquired metabolic defects in cancer. *J Med Med Biol* (2011) 89:231–20. doi:10.1007/s00109-011-0728-4
12. Adam J, Yang M, Soja T, Pollard PJ, Rare insights into cancer biology. *Oncogene* (2014) 33:2547–56. doi:10.1038/onc.2013.222
13. Sonveaux P, Copetti T, De Saedeleer CJ, Vezzani F, Vezzani A, Kennedy KM, et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1α activation and tumor angiogenesis. *PloS One* (2012) 7:e33418. doi:10.1371/journal.pone.0033418
14. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. *J Biol Chem* (2002) 277:23111–5. doi:10.1074/jbc.M202487200
15. Jung SY, Song HS, Park SY, Chung SH, Kim YJ. Pyruvate promotes tumor angiogenesis through HIF-1-dependent PAl-1 expression. *Int J Oncol* (2011) 38:571–6. doi:10.3892/ijo.2010.859
16. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. *Mol Cell Biol* (2007) 27:912–25. doi:10.1128/MCB.01223-06
17. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA, et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. *Oncogene* (2009) 28:4009–21. doi:10.1038/onc.2009.250
18. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. *Mol Cell Biol* (2007) 27:3282–89. doi:10.1128/MCB.01927-06
19. Ho HY, Lin YT, Lin G, Wu PR, Cheng ML. Nicotinamide nucleotide transhydrogenase (NNT) deficiency dysregulates mitochondrial retrograde signaling and impedes proliferation. *Redox Biol* (2017) 12:916–28. doi:10.1016/j.redox.2017.04.035
20. Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, et al. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. *Hum Mol Genet* (2014) 23:1453–66. doi:10.1093/hmg/ddt33
21. Gasparre G, Kurelac I, Capristo M, Iommarini L, Ghelli A, Cecarelli C, et al. A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. *Cancer Res* (2011) 71:6220–9. doi:10.1158/0008-5472.CAN-11-1042
22. Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, Lollini PL, et al. Respiratory complex I is essential to induce a Warburg profile in mitochondrial-defective tumor cells. *Cancer Metab* (2013) 1:1. doi:10.1186/2049-3002-1-11
23. Zeng L, Morinbua A, Kobayashia M, Zhu Y, Wang X, Goto Y, et al. aberrant IDH3alpha expression promotes malignant tumor growth by inducing HIF-1α-mediated metabolic reprogramming and angiogenesis. *Oncogene* (2015) 34:4758–66. doi:10.1038/onc.2014.411
24. Puisségur MP, Mazure NM, Bertero T, Pradellici L, Grosso S, Robbe-Sermesant K, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1α activity. *Cell Death Differ* (2011) 18:465–78. doi:10.1038/cdd.2010.119
25. Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. *Cell Death Differ* (2013) 20:544. doi:10.1038/cdd.2013.71
26. Burr SP, Costa AS, Grice GL, Timms RM, Lobb JT, Freisinger P, et al. Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex as a target for cancer therapy. *Frontiers in Oncology* (2017) 7:6. doi:10.3389/fonc.2017.00006
27. Pan Y, Jiang Z, Wu J, Sun Q, Chen K, et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1α activation and tumor angiogenesis. *PloS One* (2012) 7:e33418. doi:10.1371/journal.pone.0033418
28. Iommarini et al. *Pseudohypoxia and Pseudonormoxia in Cancer* (2017) 2:758–70. doi:10.1016/j.trecan.2016.04.035
complex controls HIF1alpha stability in aerobic conditions. *Cell Metab* (2016) 24:740–52. doi:10.1016/j.cmet.2016.09.015

27. Bloomen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkisson S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. *Nature* (2012) 483:484–8. doi:10.1038/nature10898

28. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. *J Biol Chem* (2008) 283:10892–903. doi:10.1074/jbc.M800102200

29. Papandreou I, Cairns RA, Fontana I, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. *Cell Metab* (2006) 3:187–97. doi:10.1016/j.cmet.2006.01.012

30. Zhou X, Chen J, Yi G, Deng M, Liu H, Liang M, et al. Metformin suppresses hypoxia-induced stabilization of HIF-1alpha through reprogramming of oxygen metabolism in hepatocellular carcinoma. *Oncotarget* (2016) 7:873–84. doi:10.18632/oncotarget.6418

31. Wheaton WW, Weinberg SE, Recek CR, Chandel NS. The mitochondrial respiratory chain is required for organismal adaptation to hypoxia. *Cell Rep* (2016) 15:451–9. doi:10.1016/j.celrep.2016.03.044

32. Birsos K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. *Cell* (2015) 162:540–51. doi:10.1016/j.cell.2015.07.016

33. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbet JM, et al. Hypoxia-inhibitory factor-1alpha is a positive factor in solid tumor growth. *Cancer Res* (2000) 60:4010–5.

34. Liao D, Corle C, Seagroves TN, Johnson SR. Hypoxia-inhibitory factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. *Cancer Res* (2007) 67:563–72. doi:10.1158/0008-5472.CAN-06-2701

35. Kim JI, Lee SB, Jang J, Yi SY, Kim SH, Han SA, et al. WB51 promotes tumor metastasis by inducing p53 degradation. *Genes Dev* (2015) 29:2244–57. doi:10.1101/gad.268128.115

36. Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, et al. UCHL1 provides diagnostic and antitumestatic strategies due to its deubiquitinating effect on HIF-1alpha. *Nat Commun* (2015) 6:1653. doi:10.1038/ncomms17153

37. Doe MR, Asciano JM, Kaur M, Cole MD. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. *Cancer Res* (2012) 72:949–57. doi:10.1158/0008-5472.CAN-11-2371

38. Amelio I, Inoue S, Markert KE, Levine AJ, Knight RA, Mak TW, et al. TAp73 opposes tumor angiogenesis by promoting hypoxia-inhibitory factor 1alpha degradation. *Proc Natl Acad Sci U S A* (2015) 112:226–31. doi:10.1073/pnas.1409099111

39. Ravi R, Mookerjee B, Bhujwala ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-mediated degradation of hypoxia-inhibitory factor 1alpha. *Genes Dev* (2000) 14:34–44.

40. Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxia-inhibitory factor-1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. *J Biol Chem* (2014) 289:22785–97. doi:10.1074/jbc.M114.587493

41. Nieminen AL, Quanungo S, Schneider EA, Jiang BH, Agani FH. Mdm2 and HIF-1alpha interaction in tumor cells during hypoxia. *J Cell Physiol* (2005) 204:364–9. doi:10.1002/jcp.20406

42. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O2(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. *Mol Cell* (2007) 25:207–17. doi:10.1016/j.molcel.2007.01.001

43. Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. *Cell* (2007) 131:584–95. doi:10.1016/j.cell.2007.08.045

44. Baek HJ, Liu YV, McDonald KR, Wesley JB, Zhang H, Semenza GL. Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inhibitory factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha. *J Biol Chem* (2007) 282:33358–66. doi:10.1074/jbc.M705627200

45. Issacs JS, Jung YI, Mimnaug EG, Martinez A, Cuttitta F, Neckers LM. HSP90 regulates a von Hippel Lindau-independent hypoxia-inhibitory factor-1

Iommarini et al.

Pseudohypoxia and Pseudonormoxia in Cancer

Frontiers in Oncology

November 2017 | Volume 7 | Article 286
Liu YV, Semenza GL. RACK1 vs. HSP90: competition for HIF-1 alpha degradative pathway. J Biol Chem (2002) 277:48403–9. doi:10.1074/jbc.M209114200

Koshikawa N, Hayashi J, Nakagawara A, Takenaga K. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylation pathway. J Biol Chem (2009) 284:33185–94. doi:10.1074/jbc.M109.054221

Gao N, Ding M, Zheng Z, Zhang Z, Leonard SS, Liu KJ, et al. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem (2002) 277:31963–71. doi:10.1074/jbc.M200802200

Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol (2008) 217:674–85. doi:10.1002/jcp.21537

Haddad JJ, Saade NE, Safieh-Garabedian B. Redox regulation of TNF-alpha biosynthesis: augmentation by irreversible inhibition of gamma-glutamyl-cysteine synthetase and the involvement of an IkappaB-alpha/NF-kappaB-independent pathway in alveolar epithelial cells. Cell Signal (2002) 14:211–8. doi:10.1016/S0898-6568(01)00233-9

Hardie DG. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem Soc Trans (2011) 39:1–13. doi:10.1042/BST0390001

Yu L, Lu M, Jia D, Ma J, Ben-Jacob E, Levine H, et al. Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. Cancer Res (2017) 77:1564–74. doi:10.1158/0008-5472.CAN-16-2074

Vordermark D, Kraft P, Katterer A, Bolling T, Willner J, Flentje M. Glucose requirement for hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Cancer Lett (2005) 230:122–33. doi:10.1016/j. canlet.2004.12.040

Osada-Oka M, Hashiba Y, Akiba S, Imaoka S, Sato T. Glucose is necessary for stabilization of hypoxia-inducible factor alpha-helix under hypoxia: contribution of the pentose phosphate pathway to this stabilization. FEBS Lett (2010) 586:3073–9. doi:10.1016/j.febslet.2010.05.046

Kurapuvongpatt S, Basso M, Seiman SE, Ma TC, Speer RE, Smirnova NA, et al. In vitro ischemia suppresses hypoxic induction of hypoxia-inducible factor-1alpha by inhibition of synthesis and not enhanced degradation. J Neurosci (2013) 91:1066–75. doi:10.1523/jneurosci.23204.2014

Shackelford DB, Vasquez DS, Corbel J, Wu S, Leblanc M, Wu CL, et al. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci U S A (2009) 106:11137–42. doi:10.1073/pnas.0900465106

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab (2013) 17:113–24. doi:10.1016/j.cmet.2012.12.001

Rabinovich RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejeewski S, et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep (2017) 21:21–9. doi:10.1016/j.celrep.2017.09.026

Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis (2008) 29:713–21. doi:10.1093/carcin/bgn032

Yan M, Gingras MC, Dunlop EA, Neou S, Dupuy F, Jalali Z, et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest (2014) 124:2640–50. doi:10.1172/JCI71749
103. Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. *Biochim Biophys Acta* (2017) 1858:582–90. doi:10.1016/j.bbabio.2017.02.006

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Iommarini, Porcelli, Gasparre and Kurelac. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.