Barium Activates Rat Cerebellar Nitric Oxide Synthase

Jun Yamazaki, Tetsuro Urushidani and Taku Nagao

Department of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo 113, Japan

Received January 5, 1996 Accepted February 17, 1996

ABSTRACT—Ba2+ is known to pass through N-methyl-D-aspartate receptor channels and cause an increase in cGMP levels in rat cerebella. In the present study, we compared the activation of rat cerebellar nitric oxide synthase (NOS) by Ba2+ with that produced by Ca2+. Both cations stimulated L-citrulline formation in the presence of calmodulin in identical fractions eluted from an anion exchange column with a salt gradient. EC50 values for Ca2+ and Ba2+ were 200 nM and 50 μM, respectively. The IC50 of NG-nitro-monomethyl-L-arginine was the same (200 nM). These indicate a possible action of Ba2+ on NOS through the calmodulin-dependent pathway.

Keywords: Barium, Nitric oxide synthase, Calmodulin

Nitric oxide (NO) is thought to be a messenger molecule in cerebella, and the characteristics of cerebellar nitric oxide synthase (NOS) have been well-defined; activation of NOS is absolutely dependent on Ca2+ and calmodulin (1, 2), and this underlies the mechanism of the physiological response to N-methyl-D-aspartate (NMDA) in cerebella. Glutamate and NMDA release endothelium-derived relaxing factor (EDRF)-like messengers from cerebellar cells (3) increase cGMP levels (4–6) and enhance the conversion of L-arginine to L-citrulline (4, 6) through NMDA-receptor activation in cerebellar cells. This messenger is produced in a Ca2+-dependent manner (3, 7).

Another alkaline earth cation, Ba2+, causes a Ca2+-mimetic action in NO-generating tissue. Recently, we reported that Ba2+ as well as Ca2+ relaxes canine coronary artery and increases cGMP levels (8). Electrophysiological studies with central nervous cells have demonstrated that Ba2+ can substitute for Ca2+ and pass through NMDA-receptor channels (9). Interestingly, Carter et al. (10) have shown that the NMDA-induced increase in cGMP in the cerebellum is not blocked by Ba2+ and persists when Ba2+ is substituted for Ca2+. This raises the possibility that Ba2+ activates cerebellar NOS. To explain this phenomenon, direct evidence for Ba2+-induced activation of NOS is needed, and also, it should be determined if calmodulin is required. Therefore, the present study was undertaken to investigate whether Ba2+ can directly activate NOS in rat cerebella.

Cerebella of twelve male Wistar rats (150–200 g, Charles River Japan, Atsugi) were homogenized in 30 ml ice-cold buffer containing 50 mM Tris-HCl (pH 7.4), 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM dithiothreitol, 100 mg/l phenylmethylsulfonyl fluoride, 10 mg/l leupeptin and 10 mg/l pepstatin A (Sigma, St. Louis, MO, USA). The homogenate was centrifuged at 20,000 × g for 15 min at 4°C. The supernatant was loaded onto a 20-ml column of DEAE Sepharose Fast Flow (Pharmacia Biotech, Uppsala, Sweden). After the column had been washed with 50 ml buffer, a 100-ml linear gradient (0–300 mM NaCl) was applied at a speed of 1.5 ml/min. The eluate fraction was collected and stored at −80°C until use.

NOS activity was measured by monitoring the conversion of L-arginine to L-citrulline. Unless otherwise indicated, the assay mixture contained 50 mM Heps (pH 7.4), 1 mM dithiothreitol, 1 mM NADPH, 10 μM (6R)-5,6,7,8-tetrahydro-L-biopterin, 100 nM calmodulin (from bovine brain, Sigma) and 1 mM EDTA. Ca2+/Ba2+-EDTA buffer was prepared according to the previously described method for computing metal ion concentrations (11). One hundred microliters of the assay mixture, 25 μl 100 nM [3H]-L-arginine (NEN, Wilmington, DE, USA) and 25 μl enzyme protein were mixed and incubated for 6 min at 37°C. The enzyme reaction was terminated with a stop buffer containing 2 ml 20 mM Heps (pH 5.5) and 6 mM EDTA. The reaction mixture was applied to a 1 ml column of Dowex AG50WX-8 (Na+ form; BioRad,
Hercules, CA, USA) before \(^{3}H\)citrulline (NEN) was eluted with 4 ml water. The eluate was collected and counted by a liquid scintillation spectrometer (Beckman, Palo Alto, CA, USA) after addition of a scintillation cocktail (Aquasol-2, NEN). The protein content was measured by the Bio-Rad assay with bovine serum albumin as the standard. Results are expressed as means±S.E.M.

In crude rat cerebellar supernatant, Ca\(^{2+}\) (300 nM) and Ba\(^{2+}\) (100 μM) increased \(^{3}H\)citrulline formation (Fig. 1a). The activity of Ba\(^{2+}\) was approximately 65% that of Ca\(^{2+}\). The crude cerebellum supernatant was loaded onto a DEAE-Sephalose column. When the column was washed with buffer, the effluent showed no L-citrulline forming activity during concomitant incubation with Ca\(^{2+}\) or Ba\(^{2+}\). Thus, the enzyme appeared to have adhered to the DEAE column (data not shown). However, the eluate obtained by NaCl gradient (0–300 mM) elution could catalyze Ca\(^{2+}\)- and Ba\(^{2+}\)-induced citrulline formation in the presence of calmodulin (Fig. 1b). Both Ca\(^{2+}\)- and Ba\(^{2+}\)-induced activities eluted in the same fraction, which contained approximately 120 mM NaCl. The peak activity of Ba\(^{2+}\) was approximately 65% that of Ca\(^{2+}\). When calmodulin was omitted from the assay mixture, the activity in the DEAE eluate was lost (Fig. 1b), whereas activity still remained in the crude fraction because of the presence of endogenous calmodulin (Fig. 1a).

Samples of the crude supernatant fraction and fractions from the DEAE column were denatured with sodium dodecyl sulfate, electrophoresed on a 7.5% polyacrylamide gel, transferred to a polyvinylidene difluoride membrane and immunoblotted with polyclonal (rabbit) anti-brain NOS antibody (Affinity BioReagents, Neshanoc Station, NJ, USA) and HRP-conjugated donkey anti-rabbit IgG (Amersham, Arlington Heights, IL, USA). A single band (approximately 160 kDa) was recognized in the crude fraction (S) and the peak fraction (II) of the DEAE eluate, but not in the fractions that exhibited little L-citrulline formation (Fig. 1b). These findings indicate that the Ba\(^{2+}\) and Ca\(^{2+}\) can enhance the formation of L-citrulline from l-arginine using an identical NOS.

Ca\(^{2+}\)- and Ba\(^{2+}\)-induced L-citrulline formation (NOS
activity) in the peak DEAE effluent fraction was dependent on calmodulin, and it was completely inhibited by the calmodulin inhibitor calmidazolium (100 nM, Sigma) (Fig. 2a). Ca\(^{2+}\) and Ba\(^{2+}\) increased NOS activity in a concentration-dependent manner (Fig. 2b). The EC\(_{50}\) value for Ca\(^{2+}\) was 200 nM, similar to those obtained in previous studies (1, 2). The EC\(_{50}\) for Ba\(^{2+}\) was 50 pM, which is 250 times higher than that for Ca\(^{2+}\). The maximal activity of Ba\(^{2+}\) was approximately 70% that of Ca\(^{2+}\). The NOS inhibitor NG-monomethyl-L-arginine (L-NMMA; donated by Tanabe Seiyaku, Toda) inhibited the NOS-activating effect of both cations in a concentration-dependent manner in four separate experiments. More than 3 \(\mu\)M L-NMMA completely abolished the activity of both Ca\(^{2+}\) (300 nM) and Ba\(^{2+}\) (100 \(\mu\)M). The IC\(_{50}\) (200 nM) of L-NMMA for Ba\(^{2+}\) was the same as that for Ca\(^{2+}\).

Stimulation of NMDA receptors has been shown to increase cGMP levels in the presence of Ba\(^{2+}\) as a replacement for Ca\(^{2+}\) (10). This raises the possibility that Ba\(^{2+}\) may enter into the cerebellar cells and activate NOS, leading to an increase in cGMP levels. The present study aimed to provide substantial evidence for Ba\(^{2+}\)-induced activation of NOS. To this end, we used the conversion of \(^{[3]H}\)L-arginine to \(^{[3]H}\)L-citrulline as a measure of the NOS activity in rat cerebella. The present crude and partially purified NOS preparation requires the addition of Ca\(^{2+}\) to the reaction mixture for activity. This agrees well with the results of previous studies using constitutive NOS from the cerebellum (1, 2). The requirement of Ca\(^{2+}\) for NOS activation in the crude homogenate indicates that EDTA effectively chelates endogenous Ca\(^{2+}\) so that free Ca\(^{2+}\) present cannot increase NOS activity.

Ba\(^{2+}\) also increased NOS activity in the crude preparation. However, since much higher concentrations of Ba\(^{2+}\) are needed (see below), care should be taken to avoid the possibility of contamination by free Ca\(^{2+}\) since the Ca\(^{2+}\) bound to the chelator may be displaced by Ba\(^{2+}\). In the partially purified NOS preparation, which excludes any interference by endogenous divalent cations, Ba\(^{2+}\) as well as Ca\(^{2+}\) increased L-citrulline formation in a concentration-dependent manner. The elution pattern of Ba\(^{2+}\)-induced L-citrulline formation was, however, similar to that of Ca\(^{2+}\)-induced formation. Immunoblotting analysis showed that the fraction exhibiting the highest activity with both cations included neuronal constitutive NOS, suggesting that L-citrulline formation may be due to the activation of this type of NOS. In addition, Ba\(^{2+}\)-activated NOS was blocked by a NO synthesis inhibitor, L-NMMA, at the same concentration required for inhibi-
tion of Ca\(^{2+}\)–activated NOS. These results afford evidence that Ba\(^{2+}\) activates an almost identical NOS to that which can be activated by Ca\(^{2+}\).

The effective concentration range for Ba\(^{2+}\) was 250 times higher than that for Ca\(^{2+}\). The maximal activation by Ba\(^{2+}\) was 50–70% of the maximal activation by Ca\(^{2+}\). This may be due to the different affinities of these cations for calmodulin, which is known to play a crucial role in the activation of NOS (1). Previous studies have shown that Ba\(^{2+}\), which had a lower affinity for calmodulin (12), was less effective than Ca\(^{2+}\) in eliciting phosphodiesterase activity (12) and phosphorylation of myosin light chain kinase (13). In the present study, the activation of NOS depended completely on the presence of calmodulin and was abolished by the calmodulin inhibitor calmidazolium. Therefore, the affinity of these divalent cations for calmodulin could markedly affect their NOS activation capabilities.

Our results do not directly address the issue of whether the extracellular Ba\(^{2+}\) concentration, 2.5 mM, used in the previous study (10) is sufficient to activate intracellular NOS during the stimulation of NMDA receptors. The correlation of a known extracellular concentration with the eventual intracellular one does not appear to be the same between Ca\(^{2+}\) and Ba\(^{2+}\), because they are taken up into intracellular stores or removed to the extracellular spaces in different ways. The differences in handling these cations have been discussed in previous studies concerning the calmodulin-dependent contraction of smooth muscle (13) and Ca\(^{2+}\)-ATPase in human erythrocytes (14). In these experiments Ba\(^{2+}\) was shown to accumulate readily inside cells. To determine any quantitative relationship between the required concentration of Ba\(^{2+}\) to affect NOS activity and the extracellular concentration required for the physiological response, further studies of the accumulation of Ba\(^{2+}\) inside NOS-containing cells are needed. Although the physiological significance of the Ba\(^{2+}\)-induced NOS activation is yet unknown, the present results, at least in part, explain some interesting phenomena: the Ba\(^{2+}\)-induced increase in cGMP in rat cerebellum (10) and the Ba\(^{2+}\)-induced endothelium-dependent relaxation in canine coronary arteries (8).

In conclusion, Ba\(^{2+}\) can activate cerebellar NOS in a calmodulin-dependent manner. This may lead to an increase in cGMP in the cerebellum stimulated by NMDA in the presence of Ba\(^{2+}\). The present study provides evidence of a possible action of Ba\(^{2+}\) on the calmodulin-dependent pathway.

Acknowledgment

This study was supported by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan.

REFERENCES

1. Bredt DS and Snyder SH: Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87, 682–685 (1990)
2. Schmidt HHHW, Pollock JS, Nakane M, Gorsky LD, Förstermann U and Murad F: Purification of a soluble isoform of a guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci USA 88, 365–369 (1991)
3. Garthwaite J, Charles SL and Chess-Williams R: Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988)
4. Bredt DS and Snyder SH: Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86, 9030–9033 (1989)
5. Garthwaite J, Garthwaite G, Palmer RMJ and Moncada S: NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172, 413–416 (1989)
6. Kiedrowski L, Costa E and Wroblewski JT: Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells. J Neurochem 58, 335–341 (1992)
7. Gorbunov N and Esposito E: Activation of glutamate receptors stimulates the formation of nitrite in synaptosomes from rat cerebellum. J Neurochem 62, 2205–2211 (1994)
8. Yamazaki J, Ohara P, Harada Y and Nagao T: Barium and strontium can substitute for calcium in stimulating nitric oxide production in the endothelium of canine coronary arteries. Jpn J Pharmacol 68, 25–32 (1995)
9. Mayer ML and Westbrook GL: Permeation and block of N-methyl-D-aspartate receptor channels by divalent cations in mouse cultured central neurons. J Physiol (Lond) 394, 501–527 (1987)
10. Carter CJ, Noel F and Scatton B: Ionic mechanisms implicated in the stimulation of cerebellar cyclic GMP levels by N-methyl-D-aspartate. J Neurochem 49, 195–200 (1987)
11. Schoenmakers TJM, Visser GJ, Flik G and Theuvenet APR: Chelator: An improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12, 870–879 (1992)
12. Chao S-H, Suzuki Y Zyk JR and Cheung WY: Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol 26, 75–82 (1984)
13. Satoh S, Kubota Y, Itoh T and Kuriyama H: Mechanisms of the Ba\(^{2+}\)-induced contraction in smooth muscle cells of the rabbit mesenteric artery. J Gen Physiol 89, 215–237 (1987)
14. Graf E, Verma AK, Gorski JP, Lopashuk G, Niggli V, Zurini M, Carafoli E and Penniston JT: Molecular properties of calcium-pumping ATPase from human erythrocytes. Biochemistry 21, 4511–4516 (1982)