An updated checklist to the biodiversity data of ladybeetles (Coleoptera: Coccinellidae) of the Azores Archipelago (Portugal)

António Onofre Soares‡, Isabel Borges‡, Hugo Renato Calado‡, Paulo A. V. Borges¶

‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Madre de Deus, sn, Ponta Delgada, Azores, Portugal
§ IUCN SSC, Ladybird Specialist Group, Ponta Delgada, Azores, Portugal
| cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitã João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Azores, Portugal
¶ IUCN SSC, Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Azores, Portugal

Corresponding author: António Onofre Soares (antonio.oc.soares@uac.pt)
Academic editor: Pedro Cardoso
Received: 01 Nov 2021 | Accepted: 22 Nov 2021 | Published: 16 Dec 2021
Citation: Soares AO, Borges I, Calado HR, Borges PAV (2021) An updated checklist to the biodiversity data of ladybeetles (Coleoptera: Coccinellidae) of the Azores Archipelago (Portugal). Biodiversity Data Journal 9: e77464. https://doi.org/10.3897/BDJ.9.e77464

Abstract

Background

A recently-published review from 2021 presents a comprehensive checklist of ladybeetles of Portugal, including the Azores and Madeira Archipelagos. Until then, the available information was very scattered and based on a single revision dating back to 1986, a few international catalogues and databases, individual records and studies on communities of agroecosystems. However, no information was available on faunal composition across the Azorean islands and their habitats, using standardised inventories. Here, we present data about the biodiversity of ladybeetles and their distribution and abundance in five Islands of the Azores (Faial, Graciosa, Pico, São Jorge and São Miguel). Surveys included herbaceous and arboreal habitats from native to anthropogenic-managed habitats: ruderal road vegetation, vegetable garden, mixed forest of endemic and non-native host plants, coastal prairies, coastal mixed vegetation, cornfields and urban areas. We aimed to
contribute to the ongoing effort to document the terrestrial biodiversity of Portugal, including the Archipelago of the Azores, within the research project AZORESBIOPORTAL–PORBIOTA (ACORES-01-0145-FEDER-000072).

New information

In this study, a total of 1,487 specimens of Coccinellidae belonging to 19 species are reported for several habitats. The listed species are from one single sub-family (Coccinellinae) and six tribes; Chilocorini (one species), Coccidulini (three species), Coccinellini (six species), Noviini (one species), Scymnini (seven species), Stethorini (one species). The number of species collected per island differed; Faial (10 species), Graciosa (four species), Pico (seven species), São Jorge (seven species) and São Miguel (12 species). For six species, new island records are given. Currently, the number of species known to occur in the Azores are 32, including two doubtful records. The majority of species are Scymnini, being *Scymnus (Scymnus) interruptus* (Goeze, 1777) and *Scymnus (Scymnus) nubilus* Mulsant, 1850, the most abundant species (relative abundance 71.1%). This database will be the baseline of a long-term monitoring project allowing assessment of the impact of ongoing global changes in the distribution and abundance of ladybeetles.

Keywords

Arthropoda, Ladybeetles, Azores, Faial, Graciosa, Pico, São Jorge, São Miguel

Introduction

Insects, like other taxonomic groups, are at high risk of extinction (Harvey et al. 2020). Insects deliver fundamental services to agricultural and forest ecosystems, including pollination, decomposition and pest control, which, in turn, translates into relevant consequences for food production and security (e.g. Ameixa et al. 2018, IPBES 2019, Cardoso et al. 2020).

The family Coccinellidae contains between 6000 and 7000 described species (Seago et al. 2011). Currently the number of Coccinellidae known for Azores is 32, including two doubtful records (Soares et al. 2021b).

Despite being very diverse in terms of morphology, life history traits, habitat use and food relationships (see Hodek et al. 2012 for review), they are primarily top carnivorous predators and thus useful natural enemies of herbivorous arthropods, including aphids (Aphidoidea), scale insects (Coccoidea), whiteflies (Aleyrodoidea) or mites (Acari) (Hodek et al. 2012). Until very recently, this group was thought to exhibit only sexual reproduction. However, it was found that some populations of *Nephus (Nephus) voeltzkowi* Weise, 1910, including the Azorean populations, showed parthenogenetic reproduction, which constitutes the first case of parthenogenesis in ladybeetles (Magro et al. 2019).
Over the past 30 years, rapid declines of formerly common native ladybird species - including in North America (Harmon et al. 2006), Europe (Roy et al. 2012, Honěk et al. 2016) and others (reviewed in Roy et al. 2016) - have been occurring. Most declines are associated with climate change, agricultural intensification and urbanisation and invasions of alien species (Honěk et al. 2017), especially with an increasing density, spread and dominance of the invasive Harmonia axyridis Pallas. Despite its high invasive capacity resulting in its rapid spread and fast establishment under distinct climatic conditions, H. axyridis did not establish in the Azores where it was intentionally and repeatedly released (Soares et al. 2008, Soares et al. 2018), for the same reasons as in other regions, for agricultural pest control purposes. This apparent failure is an interesting case study for invasion biology. Several hypotheses were tested to explain the inability of this species to become invasive (Soares et al. 2017, Alaniz et al. 2020). The lack of high density of their preferred aphid preys may be a key factor hampering its establishment. Indeed, the composition of Coccinellidae fauna seems to be dominated by small species [like Scymuns spp., which require low aphid density (Soares et al. 2017)]. Apparently, the climatic conditions of the Azores do not seem likely to hinder the invasion of H. axyridis, as areas with similar climates have experienced extensive invasion. Indeed, climatic models have predicted the spread of H. axyridis to regions with subtropical conditions (Poutsma et al. 2008, Bidinger et al. 2010). However, for the Azores and contrary to that prediction, the absence of suitable temperature to overwinter will force adults to become active during the winter season and females will not find enough suitable food (in quantity and quality) to reproduce and this will hinder the build-up of the first generation (Alaniz et al. 2020).

General description

Purpose: We aimed to contribute to characterise the richness and abundance of ladybeetles in several herbaceous and arboreal habitats, from native to anthropogenic-managed habitats. We also aimed to contribute to address two key shortfalls: i) the need for improving current information on the local and regional distribution of Azorean arthropods (the Wallacean shortfall); and ii) the need for collecting abundance data for future monitoring purposes (the Prestonian shortfall) (see Cardoso et al. 2011).

In addition, we provide an updated checklist of Azorean ladybeetles with their known distribution in the nine Azorean islands.

Project description

Title: AZORESBIOPORTAL–PORBIOTA: inventory of ladybeetles of the Azores (Portugal)

Personnel: António O. Soares, Isabel Borges and Hugo R. Calado collected the samples and managed the database. Paulo A.V. Borges assisted us in managing the database to GBIF.
Study area description: We focused the inventory on five islands of the Azores (Table 1), these being five of the nine islands from the Azores Archipelago. The climate in the Azores is temperate oceanic, with regular and abundant rainfall, high levels of relative humidity and persistent winds, mainly during winter and autumn seasons. The landscape of the islands is composed by a mosaic of habitats, ranging from herbaceous to arboreal habitats and from native to anthropogenic-managed habitats. The surveys were done on ruderal road vegetation, vegetable garden, mixed forest of endemic and non-native host plants, coastal prairies, coastal mixed vegetation, cornfields and urban areas.

Island	Habitat	Locality	Elevation (m)	Latitude	Longitude
Faial	Citrus orchard	Castelo Branco	57	38.5231	-28.68917
	Corn field	Cedros	166	38.62475	-28.68011
	Coastal mixed vegetation	Norte Pequeno	12	38.59263	-28.82711
	Coastal prairies	Pasteleiro	67	38.53005	-28.647701
	Coastal prairies	Praia do Almoxarife	5	38.5541	-28.61053
	Coastal prairies	Varadouro	8	38.56639	-28.77042
	Mixed forest of endemic and non-native host plants	Varadouro	175	38.57394	-28.77713
	Mixed forest of endemic and non-native host plants	Norte Pequeno	128	38.59433	-28.81541
	Ruderal road vegetation	Pasteleiro	93	38.53605	-28.64981
	Ruderal road vegetation	Varadouro	198	38.57952	-28.78283
	Urban poplar grove	Angústias	39	38.52806	-28.6367
	Vegetable garden	Feteira	37	38.52494	-28.88179
Graciosa	Abandoned vineyards	Beira Mar	10	39.02123	-28.00697
	Coastal prairies	Beira Mar	7	39.021	-28.00711
	Coastal prairies	Beira Mar	21	39.02373	-28.00686
	Coastal prairies	Sta. Cruz da Graciosa	25	39.09572	-28.03441
	Coastal Prairies, dominated by Canica sp.	Carapacho	17	39.01185	-27.97651
	Pasture: Medicago sativa L.	Jorge Gomes	58	39.0607	-28.06173
Island	Habitat	Locality	Elevation (m)	Latitude	Longitude
--------------	--	----------------	---------------	-----------	-----------
	Nerium oleander L. and Hibiscus rosa-	Alto do Sul	29	39.01192	-27.97911
	sinensis L.				
	Ruderal road vegetation: herbaceous	Bom Jesus	9	39.08346	-28.05213
	vegetation				
	Ruderal road vegetation: herbaceous	Bom Jesus	13	39.08189	-28.0542
	vegetation				
	Ruderal road vegetation: herbaceous	Bom Jesus	19	39.08094	-28.05473
	vegetation				
	Ruderal road vegetation: herbaceous	Jorge Gomes	69	39.06235	-28.06227
	vegetation				
	Trees of Tamarix sp.	Bom Jesus	8	39.08376	-28.0524
	Vegetable garden	Porto da Barra	8	39.08469	-27.99925
Pico	Citrus orchard	Sete Cidades	119	38.52796	-28.50286
	Corn field	Monte	69	38.49832	-28.52976
	Corn field	São Vicente	113	38.54541	-28.36608
	Corn field	Sete Cidades	116	38.5286	-28.50279
	Coastal prairies	Madalena	3	38.52013	-28.53784
	Coastal prairies	Madalena	8	38.53957	-28.52029
	Evergreen forest	Toledos	15	38.54746	-28.50961
	Evergreen of endemic and exotic forest	Campo Raso	36	38.44743	-28.49908
	Pine trees	Sete Cidades	29	38.53353	-28.52339
	Pine trees	Sete Cidades	884	38.4976	-28.41566
	Ruderal road vegetation	Farrobo	114	38.54266	-28.42825
	Ruderal road vegetation: Arundo donax L.	Silveira	90	38.41783	-28.29147
	Ruderal road vegetation: Evergreen of	Cachorro	26	38.55574	-28.44033
	endemic and exotic Forest				
	Ruderal road vegetation: Herbaceous plants	Cachorro	26	38.55574	-28.44033
	Ruderal road vegetation: Tamarix sp.	Madalena	3	38.52013	-28.53784
	Vegetable garden: cabbage	São Mateus	48	38.43294	-28.45794
	Vegetable garden: cabbage	São Vicente	113	38.54541	-28.36608
Island	Habitat	Locality	Elevation (m)	Latitude	Longitude
-------------	--------------------------------------	---------------------	---------------	-----------	-------------
São Jorge	Citrus orchard	Fajã de S. Amaro	60	38.66226	-28.17184
	Citrus orchard	Fajã de S. Amaro	78	38.66261	-28.17155
	Coastal herbaceous plants: Erica and Myrica	Portinho da Queimada	18	38.66651	-28.18714
	Coastal prairies	Queimada	14	38.67241	-28.19456
	Coastal prairies	Velas	27	38.6889	-28.2188
	Coastal prairies: Tamarix sp.	Velas	34	38.68693	-28.21873
	Vegetable garden: cabbage, bean and cucumber	Urzelina	60	38.64404	-28.1194
	Vegetable garden: cabbage, bean and cucumber	Velas	40	38.68181	-28.20469
	Wood: Acacia trees	Urzelina	59	38.64813	-28.12971
	Wood: Pinus trees	Urzelina	58	38.64383	-28.11937
São Miguel	Ruderal road vegetation: Arundo donax L.	Arrifres	130	37.75388	-25.70472
	Ruderal road vegetation: Arundo donax L.	Calhetas	18	37.82279	-25.61368
	Ruderal road vegetation: Arundo donax L.	São Roque	13	37.75152	-25.61896
	Ruderal road vegetation: Arundo donax L.	São Roque	13	37.75205	-25.62264
	Ruderal road vegetation: Arundo donax L.	São Roque	14	37.75205	-25.62264
	Coastal prairies	Fenais da Luz	30	37.83083	-25.635
	Coastal prairies	Pópulo	30	37.75023	-25.62106
	Coastal prairies	Rabo de Peixe	18	37.81583	-25.56694
	Coastal prairies	Rabo de Peixe	35	37.81378	-25.56706
	Coastal prairies	Relva	30	37.73737	-25.69819
	Coastal prairies	Relva	30	37.74711	-25.71359
	Coastal prairies	Santa Clara	30	37.7333	-25.686
	Coastal prairies	Santa Clara	30	37.73495	-25.69359
	Coastal prairies	São Roque	13	37.75152	-25.61896
	Corn field	Fenais da Luz	18	37.82666	-25.63194
	Corn field	Ribeira Seca	18	37.81659	-25.53795
	Corn field	São Sebastião	87	37.75424	-25.67236
Funding: This study was financed by FEDER in 85% and by Azorean Public funds by 15% through the Operational Programme Azores 2020, under the following projects AZORESBIOPORTAL–PORBIOTA (ACORES-01-0145-FEDER-000072) and under the project ECO²-TUTA (ACORES-01-0145-FEDER-000081) and by the Official Forestry Services from the Regional Government of the Azores, through the research projects PICA (Utilização de agentes de controlo biológico para o combate a populações de afídeos em plantas endémicas produzidas em viveiro) and PICONIA (Controlo biológico de populações de pragas de plantas endémicas produzidas em viveiro). Isabel Borges was funded by a PhD grant from Fundação para a Ciência e a Tecnologia (FCT) (POCI 2010).

Sampling methods

Study extent: Five Islands of the Azores (Portugal): São Miguel, Graciosa, Faial, Pico and São Jorge.

Sampling description: The sampling programme in Faial, Graciosa, Pico and São Jorge consisted of travelling through each Island by car, for 3 to 4 days depending on the size of the Island. For São Miguel, we also included results taken in 2012 (Borges et al. 2011) in which fieldwork included a similar sampling effort. The samplings took place in representative habitats of the vegetation cover of the Islands that are visited by ladybeetles. The methods used to collect the samples were sweeping, beating and direct observations. Sampling from the herbaceous plants and canopy up to a height of ca. 3 m was standardised by using a standard sweep net (35-cm diameter, 140-cm handle) operated by António O. Soares, Isabel Borges and Hugo R. Calado. Independently of the method, the sampling effort was standardised in terms of the number of persons per unit of time (e.g. 1 person per 2 hours, 1 person per 30’, 1 person per 15’). Fieldwork occurred between 09:00 h and 16 :00 h on sunny and calm days. Ladybeetle adults were identified immediately and were released at the site and Scymnus spp were brought back to laboratory to identification.

Geographic coverage

Description: Azores Islands (Portugal): Faial, Graciosa, Pico, São Jorge and São Miguel

Coordinates: 36.906 and 39.589 Latitude; -24.961 and -31.311 Longitude.
Taxonomic coverage

Description: The sampling programme targeted ladybeetles (Coleoptera: Coccinellidae)

Taxa included:

Rank	Scientific Name	Common Name
family	Coccinellidae	Ladybeetles/ ladybirds/ ladybird beetles/ ladybugs

Traits coverage

There are no trait data associated.

Temporal coverage

Notes: 20 April 2012 to 6 July 2020

Collection data

Collection name: Ladybeetles of the Azores

Collection identifier: ladybeetles

Specimen preservation method: Ethanol 96%

Curatorial unit: University of the Azores, Faculty of Sciences and Technology

Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title: Biodiversity data of ladybeetles (Coleoptera: Coccinellidae) of the Azores Archipelago (Portugal)

Resource link: https://www.gbif.org/dataset/2292e622-129e-4c66-9ad6-fccaa377ff58

Alternative identifiers: http://ipt.gbif.pt/ipt/resource?r=coccinellidae_azores&v=1.5

Number of data sets: 2

Data set name: Table of Sampling Events

Download URL: http://ipt.gbif.pt/ipt/resource?r=coccinellidae_azores&v=1.5
Data format: Darwin Core Archive

Data format version: version 1.5

Description: The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF (Global Biodiversity Information Facility) is structured as a sample event dataset, with two tables: in the current event table, the data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 98 records (eventID). This IPT (integrated publishing toolkit) archives the data and thus serves as the data repository. The data and resource metadata are available for download from Soares et al. (2021a).

Column label	Column description
id	Unique identification code for species abundance data. Equivalent here to eventID.
eventID	Identifier of the events, unique for the dataset.
samplingProtocol	The sampling protocol used to capture the species.
samplingEffort	The numeric amount of time spent in each sampling.
eventDate	Date or date range the record was collected.
year	Year of the event.
month	Month of the event.
day	Day of the event.
habitat	The habitat of the sample.
fieldNumber	An identifier given to the event in the field. Serves here as a link between field notes and the Event.
locationID	Identifier of the location.
islandGroup	Name of archipelago.
island	Name of the island.
country	Country of the sampling site.
countryCode	ISO code of the country of the sampling site.
stateProvince	Name of the region of the sampling site.
municipality	Municipality of the sampling site.
locality	Name of the locality.
verbatimLocality	The original textual description of the place.
maximumElevationInMetres	The upper limit of the range of elevation (altitude, usually above sea level), in metres.
Data set name: Table of Species Occurrence

Download URL: http://ipt.gbif.pt/ipt/resource?r=coccinellidae_azores&v=1.5

Data format: Darwin Core

Data format version: version 1.5

Description: The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF (Global Biodiversity Information Facility) is structured as a sample event dataset, with two tables: in the current occurrences table, the data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 218 records (occurrenceID). This IPT (integrated publishing toolkit) archives the data and thus serves as the data repository. The data and resource metadata are available for download from Soares et al. (2021a).

Column label	Column description
id	Unique identification code for species abundance data. Equivalent here to eventID.
type	Type of the record, as defined by the Public Core standard.
licence	Reference to the licence under which the record is published.
institutionID	The identity of the institution publishing the data.
collectionID	The identity of the collection publishing the data.
institutionCode	The code of the institution publishing the data.
collectionCode	The code of the collection where the specimens are conserved.
datasetName	Name of the dataset.
A total of 1,487 specimens of Coccinellidae belonging to 19 species were sampled (see Table 2). The listed species are from one single sub-family (Coccinellinae) and four tribes; Chilocorini (one species), Coccidulini (11 species), Coccinellini (six species) and Noviini (one species). The number of species collected from each island differed; São Miguel (12 species), Graciosa (four species), Faial (four species), Pico (seven species) and São Jorge (seven species).	
Species	Tribe
-----------------------------	------------------------
Adalia bipunctata (Linnaeus, 1758)	Coccinellini
Adalia decempunctata (Linnaeus, 1758)	Coccinellini
Chilocorus bipustulatus (Linnaeus, 1758)	Chilocorini
Clitostethus arcuatus (Rossi, 1794)	Scymnini
Coccinella undecimpunctata Linnaeus, 1758	Coccinellini
Myrrha octodecimguttata (Linnaeus, 1758)	Coccinellini
Nephus (Geminosipho) reunioni (Fürsch 1974)	Scymnini
Nephus (Nephus) voeltzkowi Weise, 1910	Scymnini
Novius cardinalis* (Mulsant, 1850)	Noviini
Oenopia doublieri (Mulsant, 1846)	Coccinellini
Propylea quatuordecimpunctata (Linnaeus, 1758)	Coccinellini
Rhyzobius chrysomeloides (Herbst, 1792)	Coccidulini
Rhyzobius litura (Fabricius, 1787)	Coccidulini
Rhyzobius lophanthae (Blaisdell, 1892)	Coccidulini
Scymnus (Pullus) subvillosus* (Goeze, 1777)	Scymnini
Scymnus (Pullus) suturalis Thunberg 1795	Scymnini
Scymnus (Scymnus) interruptus* (Goeze, 1777)	Scymnini
Scymnus (Scymnus) nubilus* Mulsant, 1850	Scymnini
Stethorus pusillus (Herbst, 1797)	Stethorini

Propylea quatuordecimpunctata (Linnaeus, 1758), despite being previously listed to the Azores, but without island details by Soares et al. (2021b), is now recorded for the first time to Faial island. Öenopia doublieri (Mulsant, 1846) was recently recorded as new for the Azores by Borges et al. (2018) (Terceira Island in Paúl da Praia da Vitória) and now is recorded to an additional island (Faial). Three additional species, Rhyzobius lophanthae (Blaisdell, 1892), Scymnus (Pullus) suturalis Thunberg 1795 and Stethorus pusillus (Herbst, 1797), are new records to Pico, S. Miguel and Graciosa Islands, respectively.

Currently, the number of known species of ladybeetles in the Azores is 32 species (Soares et al. 2021b). The current list includes 30 confirmed species and two doubtful records (Table 3) and most of them considered exotic introduced species (n = 24) and only eight
species are considered native. Two of the native species are endemic from the Macaronesian Region (*Nephus flavopictus* (Wollaston, 1854) and *Pharoscymnus decemplagiatus* (Wollaston, 1857)) (see Table 3).

Scientific name	Col.	AZ	COR	FLO	FAI	PIC	GRA	SJG	TER	SMG	SMR
Adalia bipunctata (Linnaeus, 1758)	INTR				FAI						SMG
Adalia decempunctata (Linnaeus, 1758)	INTR	COR	FLO	FAI		PIC					SMG
Ceratomegilla undecimnotata (Schneider, 1792)	INTR									SMG	
Chilocorus bipustulatus (Linnaeus, 1758)	INTR						SMG				SMR
Clitostethus arculus (Rossi, 1794)	INTR	FAI	PIC	GRA	SJG						SMG
Coccinella septempunctata Linnaeus, 1758*	INTR										
Coccinella undecimpunctata Linnaeus, 1758	INTR	COR	FLO	FAI	PIC			GRA			SMG
Delphastus catalinae (Horn, 1895)	INTR								SMG		
Eriopis connexa (Germar, 1824)*	INTR									SMG	
Hippodamia variegata (Goeze, 1777)	INTR	AZ									
Myrrha octodecimguttata (Linnaeus, 1758)	INTR						SMG				SMR
Nephus (Bipunctatus) bisignatus (Boheman, 1850)	INTR								SMG		
Nephus (Geminosipho) reunioni (Fürsch, 1974)	INTR									SMG	
Nephus (Nephus) flavopictus (Wollaston, 1854)	MAC										
Nephus (Nephus) voeltzkowi Weise, 1910	INTR	COR	FLO	FAI	PIC						SMG
Novius cardinalis (Mulsant, 1850)	INTR	COR	FLO	FAI	PIC					SMG	
Oenopia doublieri (Mulsant, 1846)	INTR				FAI						TER
Pharoscymnus decemplagiatus (Wollaston, 1857)	MAC	AZ									
Propylea quatuordecimpunctata (Linnaeus, 1758)	INTR								FAI		
Rhyzobius chrysomeloides (Herbst, 1792)	NAT									SMG	
Doubtful records include *Eriopis connexa* (Germar, 1824) and *Coccinella septempunctata* Linnaeus, 1758. We never collected these species in our extensive sampling programmes. With regard to *E. connexa*, it could result from misidentification given that this Neotropical species was never recorded outside its native region. In the case of *C. septempunctata*, although its previous presence in the Azores is well documented, its extinction may have occurred after the end of the cultural cycle of cereals, these being preferential habitats of the species (Soares et al. 2018).

The three Islands with highest economic activity are the ones with more species recorded (S. Miguel -22; Terceira - 16 and Faial - 13). The exception is Santa Maria that also has many species recorded (17), that can be explained by the proximity to S. Miguel and commercial exchanges between both Islands.

Interestingly, the same Islands are also the most diverse in the native fauna: S. Miguel - 7; Terceira - 6; Faial - 5; Santa Maria - 5. Only S. Jorge Island also has similar native species richness (five species) (Table 3).

Five alien species to the Palearctic Region were introduced in this region, as biological control agents of crop pests: *Delphastus catalinae* (Horn, 1895), *Nephus (Geminosipho) reunioni* (Fürsch, 1974), *Novius cardinalis* (Mulsant, 1850), *Rhyzobius forestieri* (Mulsant, 1853) and *Rhyzobius lophanthae* (Blaisdell, 1892) (Soares et al. 2021b).

The majority of the specimens was collected on herbaceous plants, including coastal prairies and ruderal road vegetation.
Acknowledgements

This study was financed by FEDER in 85% and by Azorean Public funds by 15% through the Operational Programme Azores 2020, under the following projects AZORESBIOPORTAL–PORBIOTA (ACORES-01-0145-FEDER-000072) and under the project ECO²-TUTA (ACORES-01-0145-FEDER-000081) and by the Official Forestry Services from the Regional Government of the Azores, through the research projects PICA (Utilização de agentes de controlo biológico para o combate a populações de afídeos em plantas endémicas produzidas em viveiro) and PICONIA (Controlo biológico de populações de pragas de plantas endémicas produzidas em viveiro). Isabel Borges was funded by a PhD grant from Fundação para a Ciência e a Tecnologia (FCT) (POCI 2010).

References

• Alaniz A, Soares AO, Vergara P, Azevedo EB, Grez A (2020) The failed invasion of *Harmonia axyridis* in the Azores, Portugal: Climatic restriction or wrong population origin? Insect Science 28 (1): 238-250. https://doi.org/10.1111/1744-7917.12756

• Ameixa OMCC, Soares AO, Soares AV, Lillevæ A (2018) Ecosystem services provided by the little things that run the world. Selected Studies in Biodiversity https://doi.org/10.5772/intechopen.74847

• Bidinger K, Lötters S, Rödder D, Veith M (2010) Species distribution models for the alien invasive Asian Harlequin ladybird (*Harmonia axyridis*). Journal of Applied Entomology 136: 109-123. https://doi.org/10.1111/j.1439-0418.2010.01598.x

• Borges I, Soares AO, Magro A, Heremptinne J (2011) Prey availability in time and space is a driving force in life history evolution of predatory insects. Evolutionary Ecology 25 (6): 1307-1319. https://doi.org/10.1007/s10682-011-9481-y

• Borges PAV, Gabriel R, Pimentel C, Brito M, Serrano ARM, Crespo LC, Assing V, Stüben P, Fattorini S, Soares AO, Mendonça E, Nogueira E (2018) Biota from the coastal wetlands of Praia da Vitória (Terceira, Azores, Portugal): Part 1 - Arthropods. Biodiversity Data Journal 6 https://doi.org/10.3897/bdj.6.e27194

• Cardoso P, Erwin T, Borges PV, New T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144 (11): 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024

• Cardoso P, Barton P, Birkhofer K, Chichorro F, Deacon C, Hartmann T, Fukushima C, Gaigher R, Habel J, Hallmann C, Hill M, Hochkirch A, Kwak M, Mammola S, Ari Noriega J, Orfinger A, Pedraza F, Pryke J, Roque F, Settele J, Simaika J, Stork N, Suhling F, Verster C, Samways M (2020) Scientists' warning to humanity on insect extinctions. Biological Conservation 242 (2020) 1084262. https://doi.org/10.1016/j.biocon.2020.108426

• Harmion J, Stephens E, Losey J (2006) The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. Journal of Insect Conservation 11 (1): 85-94. https://doi.org/10.1007/s10841-006-9021-1

• Harvey J, Heinen R, Armbracht I, Bassett Y, Baxter-Gilbert J, Bezemer TM, Böh M, Bommarco R, Borges PV, Cardoso P, Clausnitzer V, Cornelisse T, Crone E, Dicke M, Dijkstra K, Dyer L, Ellers J, Hartmann T, Forister M, Furlong M, Garcia-Aguayo A,
Gerlach J, Gols R, Goulson D, Habel J, Haddad N, Hallmann C, Henriques S, Herberstein M, Hochkirch A, Hughes A, Jepsen S, Jones TH, Kaydan B, Kleijn D, Klein A, Latty T, Leather S, Lewis S, Lister B, Losey J, Lowe E, Macadam C, Montoya-Lerma J, Nagano C, Ogan S, Orr M, Painting C, Pham T, Potts S, Rauf A, Roslin T, Samways M, Sanchez-Bayo F, Sar S, Schultz C, Soares A, Thacharoen A, Tscharnkte T, Tylianakis J, Umbers KL, Vet LM, Visser M, Vujic A, Wagner D, WallisDeVries M, Westphal C, White T, Wilkins V, Williams P, Wyckhuys KG, Zhu Z, de Kroon H (2020) International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology & Evolution 4 (2): 174-176. https://doi.org/10.1038/s41559-019-1079-8

Hodek I, Honěk A, van Emden HF (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, 600 pp. [ISBN 978-1-405-18422-9] https://doi.org/10.1002/9781118223208

Honěk A, Martínkova Z, Dixon AG, Roy H, Pekár S (2016) Long-term changes in communities of native coccinellids: population fluctuations and the effect of competition from an invasive non-native species. Insect Conservation and Diversity 9 (3): 202-209. https://doi.org/10.1111/icad.12158

Honěk A, Dixon AF, Soares AO, Skuhrovec J, Martínkova Z (2017) Spatial and temporal changes in the abundance and composition of ladybird (Coleoptera: Coccinellidae) communities. Current Opinion in Insect Science 20: 61-67. https://doi.org/10.1016/j.cois.2017.04.001

IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzacaue, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (Eds). IPBES Secretariat, Bonn, Germany. https://doi.org/10.5281/zenodo.3553579

Magro A, Lecompte E, Hemptinne J, Soares A, Dutrillaux A, Murienne J, Fürsch H, Dutrillaux B (2019) First case of parthenogenesis in ladybirds (Coleoptera: Coccinellidae) suggests new mechanisms for the evolution of asexual reproduction. Journal of Zoological Systematics and Evolutionary Research 58 (1): 194-208. https://doi.org/10.1111/jzs.12339

Poutsma J, Loomans AJM, Aukema B, Heijerman T (2008) Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species 53: 103-125. https://doi.org/10.1007/978-1-4020-6939-0_8

Roy H, Adriaens T, Isaac NB, Kenis M, Onkelinx T, Martin GS, Brown PJ, Hautier L, Poland R, Roy D, Comont R, Eschen R, Frost R, Zindel R, Van Vlaenderen J, Nedvěd O, Ravn HP, Grégoire J, de Biseau J, Maes D (2012) Invasive alien predator causes rapid declines of native European ladybirds. Diversity and Distributions 18 (7): 717-725. https://doi.org/10.1111/j.1472-4642.2012.00883.x

Roy H, Brown PJ, Adriaens T, Berkvens N, Borges I, Clusella-Trullas S, Comont R, De Clercq P, Eschen R, Estoup A, Evans E, Facon B, Gardiner M, Gil A, Grez A, Guillemaud T, Haelewaters D, Herz A, Honěk A, Howe A, Hui C, Hutchison W, Kenis M, Koch R, Kulfan J, Lawson Handley L, Lombaert E, Loomans A, Losey J, Lukashuk A, Maes D, Magro A, Murray K, Martin GS, Martínkova Z, Minnaar I, Nedvěd O, Ortlova-
Bienkowska M, Osawa N, Rabitsch W, Ravn HP, Rondoni G, Rorke S, Ryndevich S, Saethre M, Slogget J, Soares AO, Stals R, Tinsley M, Vandereycken A, van Wielink P, Viglášová S, Zach P, Zakharov I, Zaviezo T, Zhao Z (2016) The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biological Invasions 18 (4): 997-1044. https://doi.org/10.1007/s10530-016-1077-6

Seago A, Giorgi JA, Li J, Ślipiński A (2011) Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data. Molecular Phylogenetics and Evolution 60 (1): 137-151. https://doi.org/10.1016/j.ympev.2011.03.015

Soares A, Honěk A, Martinkova Z, Brown PJ, Borges I (2018) Can native geographical range, dispersal ability and development rates predict the successful establishment of alien ladybird (Coleoptera: Coccinellidae) species in Europe? Frontiers in Ecology and Evolution 6 https://doi.org/10.3389/fevo.2018.00057

Soares AO, Borges I, Borges PV, Labrie G, Lucas E (2008) Harmonia axyridis: What will stop the invader? BioControl 53 (1): 127-145. https://doi.org/10.1007/s10526-007-9141-x

Soares AO, Honěk A, Martinkova Z, Skuhrovec J, Cardoso P, Borges I (2017) Harmonia axyridis failed to establish in the Azores: the role of species richness, intraguild interactions and resource availability. BioControl 62 (3): 423-434. https://doi.org/10.1007/s10526-017-9794-z

Soares AO, Borges I, Calado H, Borges PAV (2021a) Biodiversity data of ladybeetles (Coleoptera: Coccinellidae) of the Azores Archipelago (Portugal). v.1.5. Universidade dos Açore via GBIF. Sampling event dataset. URL: http://ipt.gbif.pt/ipt/resource?r=coccinellidae_azores&v=1.5

Soares AO, Calado HR, Franco JC, Aguiar AF, Andrade M, Zina V, Ameixa OCC, Borges I, Magro A (2021b) An annotated checklist of ladybeetle species (Coleoptera, Coccinellidae) of Portugal, including the Azores and Madeira Archipelagos. ZooKeys 1053: 107-144. https://doi.org/10.3897/zookeys.1053.64268