Abstract. Background/Aim: Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptors (estrogen, progesterone and human epidermal growth factor receptor-2) and a relatively poor prognosis due to inefficacy of hormone receptor-based chemotherapies. It is imperative that we continue to explore natural products with potential to impede growth and metastasis of TNBC. In this study, we screened over 1,000 natural products for capacity to induce cell death in TNBC (MDA-MB-231) cells. Materials and Methods: Frankincense (Boswellia serrata extract (BSE)) and 3-O-Acetyl-β-boswellic acid (3-OAβBA) were relatively potent, findings that corroborate the body of existing literature. The effects of BSE and 3-OAβBA on genetic parameters in MDA-MB-231 cells were evaluated by examining whole-transcriptomic influence on mRNAs, long intergenic non-coding RNA transcripts (lincRNA) and non-coding miRNAs. Results: Bio-statistical analysis demarcates the primary effect of both BSE/3-OAβBA on the up-regulation of PERK (protein kinase RNA-like endoplasmic reticulum kinase)-endoplasmic reticulum (ER)/unfolded protein response (UPR) pathways that are closely tied to activated programmed cell death (APCD). Global profiling confirms concomitant effects of BSE/3-OAβBA on upwardly expressed ER/UPR APCD key components PERK (EIF2AK3), XBP1, C/EBP homologous protein transcription factor (CHOP), ATF3 and DDIT3,4/DNA-damage-inducible transcript 3,4 (GADD34). Further, BSE and/or 3-OAβBA significantly down-regulated oncogenes (OG) which, heretofore, lack functional pathway mapping, but are capable of driving epithelial–mesenchymal transition (EMT), cell survival, proliferation, metastasis and drug resistance. Among these are cell migration-inducing protein hyaluronan binding (CEMIP) [-7.22]; transglutaminase 2 [-4.96], SRY box 9 (SOX9) [-4.09], inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1) [-6.56]; and endothelin 1 (EDN1, [-5.06]). Likewise, in the opposite manner, BSE and/or 3-OAβBA induced the robust overexpression of tumor suppressor genes (TSGs), including: glutathione-depleting ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) [+21.67]; the mTOR inhibitors - strerin 2 (SESN2) [+16.4]; Tribbles homolog 3 (TRIB3) [+6.2], homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 (HERPUD1) [+12.01]; and cystathionine gamma-lyase (CTh) [+11.12]. Conclusion: The anti-cancer effects of the historically used frankincense sap (BSE) appear to involve major impact on the ER/UPR response, concomitant to effecting multiple targets counter to the growth, proliferation and metastasis of TNBC cancer cells. The microarray data are available at Expression Omnibus GEO Series accession number GSE102891.

Frankincense has been used as a valuable multi-purpose natural product for over 5,000 years, where its medicinal form is derived from the tree sap resin of diverse species from the genus Boswellia/family Burseraceae. Its extended historical use reflects valuable insight about its properties from our ancestors who had a greater dependency on natural medicines. In the past century, with the rapid development of synthetic medicines, botanical therapeutics are perceived as menial compared to that of current medical treatment. Yet, at the same time, scientific literature continues to report Boswellia and its active component: boswellic acid can exert
dissolved in DMSO [5-20 mg/mL], where the crude herbs including
Boswellia serrata and its constituents suppress NF-
κB, Bcl-2, Bcl-xl, Mcl-1, IAP-1, BIRC5, VEGF (2, 8, 9)
mPGES-1, MMP-2,7,9, PGE2 (5) cyclin D1, PCNA, c-Myc
(10), cyclin E, CDK 2 and 4 and retinoblastoma (Rb) (11).
Central to these effects are control over STAT3 phosphorylation of Jak 2/Src or Akt/GSK3β signaling
tantamount to triggering apoptotic pathways through caspase-
9, caspase-3, and cleaved PARP (12, 13). Other reported anti-
cancer attributes of *Boswellia* include its potential to block
the development of chemically induced cancers such as that
as azothemone (14), prevent multidrug resistance (15) and act
as a chemo-sensitizing agent (4, 16). These effects are
consistently observed both in *in vitro* and *in vivo* (10).
With regards to triple negative breast cancer (TNBC), *Boswellia serrata* extract (BSE) and 3-O-Acetyl-β-boswellic acid (3-
OAβBA) are equally effective against its growth and that of
other malignant breast tumor cell lines (8, 17, 18).

Here, we further investigate precipitating transcriptome
changes induced by *Boswellia serrata* extract and 3-OAβBA,
in order to determine the major cause of cell death in TNBC
breast cancer cells. These findings can serve as a general
directive in future studies investigating the anti-cancer
properties of frankincense.

Materials and Methods

Hanks Balanced Salt Solution, (4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid) (HEPES), absolute ethanol ≥99.8%. 96 well plates, pipette tips, Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin/streptomycin general reagents and supplies were all purchased from Sigma-Aldrich Co. (St. Louis, MO, USA) and VWR International (Radnor, PA, USA). Triple-
negative human breast tumor (MDA-MB-231) cells were obtained
from the American Type Culture Collection (Rockville, MD, USA).
Boswellia serrata was obtained from Starwest Botanicals
(Sacramento, CA, USA) and 3-O-Acetyl-β-boswellic acid was
purchased from Cayman Chemical (Ann Arbor, MI, USA). All
microarray equipment, reagents and materials were purchased from
Affymetrix/Thermo Fisher (Waltham, MA, USA).

All natural chemicals, reference drugs and (3-OAβBA) were
dissolved in DMSO [5-20 mg/mL], where the crude herbs including
Boswellia serrata were prepared in absolute ethanol [50 mg/mL]
after being diced, macerated and powdered prior to being stored
at −20°C. All dilutions were prepared in sterile HBSS + 5 mM HEPES,
adjusted to a pH of 7.4, ensuring solvent concentration of DMSO
or absolute ethanol at less than 0.5%.

Cell culture. MDA-MB-231 cells were cultured in 175 cm²
flasks containing DMEM supplemented with 10% FBS and 100 U/ml
penicillin G sodium/100 µg/ml streptomycin sulfate. Cells were
grown at 37°C in 5% CO₂ atmosphere and sub-cultured every three
to five days.

Cell viability assay. Alamar Blue cell viability assay was used to
determine cytotoxicity. Viable cells are capable of reducing
resazurin to resorufin (a detectable fluoroprobe). Briefly, 96-well
plates were seeded with MDA-MB-231 cells at a density of 5x10⁶
cells/ml. Cells were treated with HBSS (control) and various
concentrations of *Boswellia serrata* extract or 3-O-Acetyl-β-
boswellic acid for 24 h at 37°C, 5% CO₂ in atmosphere. Alamar
blue (0.1 mg/ml in HBSS) was added at 15% v/v to each well, and
the plates were incubated for 6-8 h. Quantitative analysis of dye
conversion was measured on a Synergy™ HTX Multi-Mode
microplate reader (BioTek, Winooski, VT, USA), 550nm /580nm
(excitation/emission). The data were expressed as a percentage of
untreated controls.

Fluorescence microscopy. Live cell imaging was conducted using
Fluorescein diacetate (FDA), which is a cell-permeable esterase
substrate. The fluorescein molecule accumulates in cells that possess
intact membranes, serving as a marker of cell viability. Briefly, FDA
was dissolved in ethanol 4.2 mg/ml and subsequently prepared at
20 μM in HBSS. After 30 min of incubation, samples were analyzed
photographically using a fluorescent /inverted microscope, CCD
camera and data acquisition by ToupTek View (ToupTek Photonics
Co, Zhejiang, P.R. China).

Microarray WT 2.1 human datasets. After treatment, cells were
washed three times in HBSS, rapidly frozen and stored at −80°C. Total
RNA was isolated/ purified using the TRIzol/chloroform method,
quality was assessed and concentration was equalized to 82 ng/μl in
nuclease free water. Whole transcriptome analysis was conducted
according to the GeneChip™ WT PLUS Reagent Manual for Whole
Transcript (WT) Expression Arrays. Briefly, RNA was synthesized to
first strand cDNA, second-strand cDNA, followed by transcription to
cRNA. cRNA was purified and assessed for yield, prior to 2nd cycle
single stranded cDNA. cDNA was then quantified for
yield and equalized to 176 ng/ml. Subsequently, cDNA was
fragmented, labeled and hybridized on to the arrays prior to being
subjected to fluids and imaging using the Gene Atlas (Affymetrix,
ThermoFisher Scientific, Waltham, MA, USA).

The array data quality control and initial processing from CEL
to CHP files were conducted using expression console, prior to data
evaluation using the Affymetrix transcriptome analysis console.
Supportive analysis was accomplished using geneontology.org (19)
and DAVID Bioinformatics Resources 6.8 National Institute of
Allergy and Infectious Diseases (NIADD), NIH (20).

Microarray miRNA 4.1 human datasets. miRNA was isolated using
the QIAzol reagent and miRNeasy Mini Kit (Qiagen, Germantown,
MD). Briefly, after RNA purification, samples were labeled with a
POLY A tail, and ligated using a flash tag ligation mix from the
FlashTag™ Biotin HSR RNA kit (Affymetrix). Subsequently, labeled
RNA was detected using streptavidin – EP and hybridized onto
a Genechip miRNA 4.1 human array, prior to fluidsics and imaging by
the Gene Atlas. The array data quality control and initial processing
from CEL to CHP files were conducted using expression console, prior
to data evaluation using the transcriptome analysis console provided
Supportive analysis was accomplished using geneontology.org (19) and DIANA miRPath tools (21, 22).

Data analysis. Statistical analysis was performed using Graph Pad Prism (version 3.0; Graph Pad Software Inc. San Diego, CA, USA) with significance of difference between the groups assessed using a one-way ANOVA, then followed by a Tukey post hoc means comparison test, or a Student’s t-test. LC50s were determined by regression analysis using Origin Software (Origin Lab, Northampton, MA, USA).
Results

A high throughput (HTP) screening module is routinely used in our facility to enable the preliminary evaluation of thousands of herbs and plant chemicals on selective targets, and in this case for relative capacity to induce cell death in MDA-MB-231 cells (Figure 1). Briefly, LC₅₀s were established, natural products were ranked for potency and lead compounds identified. Here we focus on the natural herb: *Boswellia serrata* (BSE), where we present fluorescence FDA staining showing a loss of viability over concentration (Figure 2) and corresponding cytotoxicity as determined by Alamar Blue (Figure 3). The LC₅₀s were determined (128.8 μg/ml) for BSE and its active component 3-OAβBA (46.32 μg/ml) (Figure 4).

For whole transcriptome microarray studies, the LC₅₀s of BSE and 3-OAβBA were applied to fully viable cells at Time 0 (zero minutes), and morphological changes were monitored every hour, to ensure no cell death was evident. At 6-8 h, the cells retained morphological shape, flask attachment and had no obvious signs of cell death. At this point, cells were rapidly washed in HBSS 3x, spun and frozen at –80°C. This time of acquisition was ascertained as appropriate to ensure capture of information on pivotal events elicited/precipitating cell death.

Using affymetrix human whole transcriptome arrays [GeneChip Human Gene Array 2.1], the data showed that of the 48226 transcripts tested, there were 300 differentially expressed genes (DEGs) for BSE (265 up-regulated/65 down-regulated) and for 3-OAβBA: 931 DEGs (391 up-regulated/540 down-regulated). An overview of the transcriptome data for BSE treatment are presented by a volcano plot (Figure 5) showing fold change (FC) vs. significance – then cross referenced to Table I, which presents the largest differentially expressed changes. An overview of microarray data for 3-OAβBA treatments are presented by a similar volcano plot (Figure 6) also cross referenced to Table II, showing the largest differentially expressed changes. The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE102891 located at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102891.

The pathway of greatest impact for both BSE and 3-OAβBA elucidated by the Affymetrix transcriptome analysis console, sorted by greatest relevance was up-regulation of the photodynamic therapy unfolded protein response (Figure 7).
Using DAVID Functional Annotation Bioinformatics Microarray Analysis (20), we also found that the endoplasm reticulum was largely affected – up-regulated genes are shown on a KEGG overlay pathway map (Figure 8). Again, there was a very close overlay between BSE and 3-OAcβBA to elicit these ER mediated responses. In terms of dataset analysis for
functional biological relevance, we used geneontology.org enrichment analysis tool, which also confirms the findings from Affymetrix and David bio analytic tools, corroborating uniform up-regulation on the ER stress, unfolded protein responses as well as glucose depletion/starvation (Tables III and IV). Interestingly, very few changes were reported for the miRNAs, with reported pathways for hsa-miR-34b-3p (target of 14 genes) and hsa-miR-184 (target of 6 genes), as presented in Table V. These findings provide an overview of Boswellia seratta and its pharmacologically active compound, boswellic acid on the transcriptome of TNBCs.

Discussion

The data in this study suggest a primary mode of cell death by 3-OAβBA and BSE to involve ER stress leading to a UPR (unfolded protein response), this commonly associated with activated cell death. There has been a recent surge in research describing the importance of the ER/UPR in a variety of human pathologies, many of these relevant to cancer (23-25).

A literature review of the ER/UPR involvement in cancer unveils a scientific uncertainty and need for answers as to why activation of ER/UPR creates a double-edged sword. On the one hand, ER stress inducers (e.g. hypoxia, glucose, nutrient deprivation (26, 27) activate the ER/UPR which leads to tumor adaptation (a persistent elevation of pro-survival proteins, a resistance to chemotherapy, greater tumor progression, angiogenesis, invasion and thriving of dormant stem cells (28-30). Yet at the same time, activation of main pathways in the ER/UPR an also trigger programmed cell death (PCD) evidenced by many natural anti-cancer agents (31-41) alkylating/ platinum based drugs and anti-cancer steroids (42-47). Several articles have expressed the need for

Figure 5. WT changes in BSE treated cells using GeneChip™ Human Gene 2.1 ST Array. 48226 transcripts were tested, 300 differentially expressed genes (DEGs) were identified for (265 up-regulated/65 down-regulated). The data are presented by a volcano plot (fold-change by significance) for whole transcriptome changes in BSE treated MDA-MB-231 cells vs. controls, n=3. The left panel shows down-regulated genes (red)/right panel (green) shows up-regulated genes: highlighting some of the highest differential changes, also listed in Table I.
further understanding of the pro-survival/pro-death ER/UPR processes and the relevance timing on cancer initiation, progression and treatment (48). It is believed that if we can further understand control of ER stress regulators on cancer growth, we can successfully use this information to overcome acquired resistance to (49) and augment existing
Figure 6. WT changes in 3-OAβBA treated cells using GeneChip™ Human Gene 2.1 ST Array. 48226 transcripts tested: 931 DEGs were identified (391 up-regulated/540 down-regulated). The data are presented as a volcano Plot (fold change by significance) for whole transcriptome changes in 3-OAβBA treated MDA-MB-231 cells vs. controls, n=3. The left panel shows down-regulated genes (red)/right panel shows up-regulated genes (green): highlighting some of the top changes, also listed in Table II.

Table II. Largest differential shifts incurred by 3-OAβBA in MDA-MB-231 cells. The data represent signal, fold-change, p-value, gene symbol and gene description. Top mRNA Changes: Affymetrix Microarray WT Human 2.1 ST.

Transcript	3-OAβBA	Control	Fold	ANOVA	Gene	Gene Description
Cluster ID	Bi-weighted AVE Signal Log2	Bi-weighted AVE Signal Log2	Change	p-Value	Symbol	Description
17016375	7.32	2.47	28.77	0.0001	HIST1H1T	Histone cluster 1, H1t
17114701	7.12	2.54	23.91	0.0038	CDR1	Cerebellar degeneration related protein 1
17083614	7.71	3.91	13.9	0.0002	LURAPIL	Leucine rich adaptor protein 1-like
17005573	8.39	4.6	13.88	0.0002	HIST1H2BD	Histone cluster 1, H2bd
16692603	7.32	3.53	13.77	0.0001	HIST2H2BF	Histone cluster 2, H2bf
17016379	7.07	3.35	13.17	0.0005	HIST1H2BC	Histone cluster 1, H2bc

Table II. Continued
Table II. Continued

Transcript ID	Bi-weighted AVE Signal Log2	Bi-weighted AVE Signal Log2	Change	p-Value	Symbol	Gene Description
16756310	8.34	4.75	12.02	0.0001	TCP1L2	t-complex 11, testis-specific-like 2
16691619	7.17	3.68	11.22	0.0006	LINC00622	Long intergenic non-protein coding RNA 622
16677278	7.12	3.78	10.17	0.0001	ATF3	Activating transcription factor 3
16756202	9.71	6.41	9.8	0.0002	EID3	EP300 interacting inhibitor of differentiation 3
16692611	6.16	2.88	9.73	0.0001	HIST2H2BF	Histone cluster 2, H2bf
17006863	11.42	8.15	12.17	0.0009	PA2G4P4	Proliferation-associated 2G4 pseudogene 4
17005862	5.04	2.17	7.28	0.0055	HIST1H3H	Histone cluster 1, H3b
16743222	9.02	6.19	12.17	0.0009	CHORDC1	Cysteine and histidine rich domain containing 1
17052425	6.04	3.23	7.04	0.0020	MGAM	Malate-glutamylase
16889797	8.71	5.9	1.57	0.0009	NABP1	Nucleic acid binding protein 1
16705961	9.29	6.49	4.94	0.0002	DDTT4	DNA damage inducible transcript 4
16768738	8.84	6.05	4.71	0.0006	NTN4	Netrin 4
16924602	7.28	4.52	6.75	0.0046	ADAMTS1	ADAM metallopeptidase / thrombospondin type 1 M1
16766578	6.17	3.47	4.31	0.0017	DDT3	DNA-damage-inducible transcript 3
16967771	5.61	2.96	6.25	0.0014	CXCL8	Chemokine (C-X-C motif) ligand 8
16992467	6.59	3.97	6.17	0.0004	CREB3	CREB3 regulatory factor
16703028	7.29	4.97	4.12	0.0003	DNAJB9	DnaJ (Hsp40) homolog, subfamily B, member 9
17661631	6.95	4.46	6.5	0.0051	DUSP16	Dual specificity phosphatase 16
16761430	7.94	5.49	2.55	<0.0001	LINC01004	Long intergenic non-protein coding RNA 1004
17028116	5.24	3.31	1.01	0.0062	MTRN2	MicroRNA 4668
16703242	6.98	4.6	5.2	0.0005	OTU1	OTU deubiquitinase 1
17000518	6.13	3.76	6.54	0.0016	HPA9	Heat shock 70kDa protein 9 (mortalin)
16903897	6.39	4.05	5.26	<0.0001	NR4A2	Nuclear receptor subfamily 4, group A, member 2
16799739	7.08	4.81	4.36	0.0019	CHAC1	ChaC glutathione-specific gamma-glutamylcysteine transferase 1
17060061	7.9	5.6	4.42	0.0005	ASNS	Asparaginase synthetase (glutaminyl-hydrolyzing)
16692632	7.89	5.6	3.42	0.0001	HIST2H2BE	Histone cluster 2, H2be
16890653	10.54	8.3	4.17	<0.0001	DNAJB1	DnaJ (Hsp40) homolog, subfamily B, member 1
16951188	5.66	3.44	6.66	0.0018	METTL6	Methyltransferase like 6
16743432	5.34	3.31	2.03	0.0018	SESP3	Sestrin 3
16859763	5.88	7.73	-6.67	0.0068	IFI30	Interferon, gamma-inducible protein 30
17075529	3.81	5.67	-3.64	0.0002	ENTPD4	Ectonucleoside triphosphate diphosphohydrolase 4
16845657	8.02	9.88	-3.64	0.0077	SLC25A39	Solute carrier family 25, member 39
17000208	3.79	5.69	-1.73	0.0064	VTRNA2-1	Vault RNA 2-1
1685310	7.86	9.79	-2.13	0.0368	TFNRF512A	Tumor necrosis factor receptor superfamily, member 12A
16925398	5.3	7.23	-3.43	0.0664	RUNXI-IT1	RUNXI intronic transcript 1
16886946	7.43	9.37	-2.54	0.0345	TIMM13	Translocase of inner mitochondrial mem 13 homolog (yeast)
16902071	4.86	6.81	-2.16	0.0039	PMEPA1	Prostate transmembrane protein, androgen induced 1
16921433	4.76	6.71	-2.03	0.0049	RG519	Regulator of G-protein signaling 19
16837418	7.05	9.07	-2.2	0.0048	SRYx9	SRY box 9
16726183	8.29	10.33	-5.14	0.0175	COX8A	Cytochrome c oxidase subunit VIII A (ubiquitous)
16816368	5.65	7.75	-2.2	0.0047	SEMA7A	Semaphorin 7A, GPI membrane anchor
16828886	4.26	6.42	-2.47	0.0160	GINS2	GINS complex subunit 2 (Pof2 homolog)
16919158	5.91	8.22	-3.77	0.0032	TGM2	Transglutaminase 2
16819233	4.56	6.92	-2.76	0.0066	MT1A	Metallothionein 1A
16803754	4.95	7.8	-3.27	0.0015	CEMIP	Cell migration inducing protein, hyaluronan binding
cancer therapies (50). The data from this study show BSE and 3-OAβBA to impact several processes within the ER/UPR.

ER/UPR. If we take a look at the normal function of the ER under non-stress conditions, its main purpose is in the post-translational modification and folding of mature proteins using chaperones and foldases, which are then trafficked to the Golgi. Anything that impairs this system elicits ER stress and a UPR. This later response (ER/UPR) serves a primary means to reduce protein load by decreasing translation, and removing mis-folded proteins. This is accomplished by increasing the folding capability of the ER, and the degradation rate of damaged proteins through binding to glucose-regulated protein 78 (Bip/GRP78) (a pivotal event) in preparation for disposal through an endoplasmic reticulum-associated degradation pathway (ERAD) by the ubiquitin/proteasome pathway or alternatively, an autophagic/lysosomal pathway (51, 52).

Briefly, the ER/UPR main branches can all initiate pro-apoptotic events. These include:

[Pathway 1] protein kinase RNA-like endoplasmic reticulum kinase (PERK),
[Pathway 2] inositol-requiring enzyme-1 (IRE1), or
[Pathway 3] activating transcription factor-6 (ATF-6) (53, 54).

The effects of 3-OAβBA and BSE on the transcriptome suggests extensive up-regulation on many of these processes.

Figure 7. Affymetrix Transcription Analysis Console/Wikipaths Correlation by Significance shows impact on Photodynamic therapy unfolded protein response by BSE and 3-3-OAβBA in MDA-MB-231 cells, with a high degree of overlap. The data represents relative fold change by intensity (green) up-regulation, (red) down-regulation with (!!!) filtered out as non-significant directional changes. Highlighted in yellow is the shift in DDIT3, with values presented.
Figure 8. DAVID Functional Annotation Bioinformatics Microarray Analysis. DAVID Bioinformatics Resources 6.8. KEGG Diagram Overlap of up-regulated transcripts in response by BSE and 3-O-Acetyl-β-boswellic acid in MDA-MB-231 cells, with a high degree of overlap. The data represents Protein Processing in the ER and up-regulated transcripts noted by an arrow.
Table III. Biological processes impacted by BSE-treated MDA-MB-231 cells. The data are derived from full dataset analysis using a relational database provided by geneontology.org. This service connects GO Enrichment Analysis to the analysis tool from the PANTHER Classification System, which is maintained up to date with GO annotations. The p-Value (Column 4) is the probability of seeing at least x number of genes (Column 2) out of the total n genes in the process annotated (Column 1) with greater fold enrichment score (Column 3) corresponding to relevant pathway significance impact.

Table IIIa: GO biological process: Up-regulated by BSE

Biological Process	Homo sapiens - REFLIST (21002)	Genes	(fold Enrichment)	(p-Value)
PERK-mediated unfolded protein response	12	6	44.31	0.0001
Positive regulation of transcription from RNA polymerase				
II promoter in response to ER stress	12	5	36.92	0.0028
Intrinsinc apoptotic signaling pathway in response to endoplasmic reticulum stress	31	8	22.87	<0.0001
Positive regulation of transcription from RNA polymerase				
II promoter in response to stress	25	6	21.27	0.0045
IRE1-mediated unfolded protein response	58	12	18.33	<0.0001
ER-nucleus signaling pathway	36	7	17.23	0.0020
Endoplasmic reticulum unfolded protein response	115	21	16.18	<0.0001
Response to unfolded protein	160	29	16.06	<0.0001
Cellular response to unfolded protein	121	21	15.38	<0.0001
Response to topologically incorrect protein	180	30	14.77	<0.0001
Positive regulation of response to endoplasmic reticulum stress	36	6	14.77	0.0359
Serine family amino acid metabolic process	42	7	14.77	0.0056
Cellular response to glucose starvation	37	6	14.37	0.0419
Cellular response to topologically incorrect protein	139	22	14.03	<0.0001
Regulation of response to endoplasmic reticulum stress	75	11	13.0	<0.0001
Response to endoplasmic reticulum stress	244	32	11.62	<0.0001
Regulation of transcription from RNA polymerase II promoter in response to stress	115	13	10.02	<0.0001
Cell redox homeostasis	73	8	9.71	0.0198
Regulation of DNA-templated transcription in response to stress	121	13	9.52	<0.0001
Intrinsic apoptotic signaling pathway	156	12	6.82	0.0026
Protein folding	237	16	5.98	0.0002
Response to starvation	173	11	5.63	0.0487
Response to toxic substance	215	13	5.36	0.0119
Cellular response to extracellular stimulus	208	12	5.11	0.0486
Cellular response to external stimulus	281	16	5.05	0.0016
Regulation of apoptotic signaling pathway	383	20	4.63	0.0002
Cellular amino acid metabolic process	313	16	4.53	0.0065
Apoptotic signaling pathway	294	15	4.52	0.0147

Analysis Type: http://www.geneontology.org/PANTHER Overrepresentation Test (release 20170413)
Annotation Version and Release Date: GO Ontology database Released 2017-07-1
Analyzed List: Up-regulated by BSE in MDA-231 Cells
Reference List: Homo sapiens (all genes in database)

Table IIIb: GO biological process: Down-regulated by BSE

Biological Process	Homo sapiens - REFLIST (21002)	Genes	(fold Enrichment)	(p-Value)
Negative regulation of epithelial cell differentiation	39	4	44.88	0.019
Mesenchymal cell differentiation	132	6	19.89	0.005
Regulation of ossification	183	6	14.35	0.034
Mesenchyme development	194	6	13.53	0.047
Animal organ morphogenesis	880	11	5.47	0.032

Pathway I/PERK: Briefly, when proteins are misfolded in the ER, they bind to BiP/Grp78 which triggers X-box-binding protein 1 (XBP1) splicing, which then initiates PERK to phosphorylate +P (eIF2α). We found evidence of BSE not only up-regulating XBP1 +3.31, p=0.0003 (3-OAβBA), +3.04, p=0.0003 (BSE) but also PERK (EIF2AK3) +4.6 p=0.0003 (3-OAβBA) and +3.67, p<0.0003 (BSE). This active +PeIF2 α, is central to the control of downstream events which halting protein synthesis, cell cycle arrest in addition to activating ATF4, which in turn elevates ATG12, TRB3 (AKT/mTOR
Table IV: Biological processes impacted by 3-O-Acetyl-β-boswellic acid-treated MDA-MB-231 cells. The data are derived from full dataset analysis using a relational database provided by geneontology.org. This service connects GO Enrichment Analysis to the analysis tool from the PANTHER Classification System, which is maintained up to date with GO annotations. The p-Value (Column 4) is the probability of seeing at least x number of genes (Column 2) out of the total n genes in the process annotated (Column 1) with greater fold enrichment score (Column 3) corresponding to relevant pathway significance impact.

Process	Homo sapiens - GENES	(fold enrichment)	(p-Value)	
PERK-mediated unfolded protein response	12	7	46.06	<0.0001
Positive regulation of transcription from RNA polymerase	12	5	32.9	0.0049
II promoter in response to ER stress	75	10	10.67	0.0005
Regulation of response to endoplasmic reticulum stress	115	15	10.3	<0.0001
ER-nucleus signaling pathway	115	15	10.09	<0.0001
Response to unfolded protein	115	12	8.24	0.0004
Regulation of smooth muscle cell proliferation	115	12	8.24	0.0004
Regulation of transcription from RNA polymerase	115	12	8.24	0.0004
II promoter in response to stress	136	14	8.13	<0.0001
Regulation of DNA-templated transcription in response to stress	121	12	7.83	0.0006
Regulation of fat cell differentiation	113	11	7.69	0.0026
Nucleosome assembly	118	11	7.36	0.0039
Response to hydrogen peroxide	108	10	7.31	0.0139
Cellular response to nutrient levels	180	16	7.02	<0.0001
Response to starvation	173	15	6.85	0.0001
Cellular response to extracellular stimulus	208	18	6.83	<0.0001
Chromatin assembly	134	11	6.48	0.0133
Response to endoplasmic reticulum stress	244	19	6.15	<0.0001
Nucleosome organization	147	11	5.91	0.0319
Cellular response to external stimulus	281	21	5.9	<0.0001
Chromatin assembly or disassembly	154	11	5.64	0.0492
Response to reactive oxygen species	183	12	5.18	0.0437

Analysis Type: http://www.geneontology.org/PANTHER Overrepresentation Test (release 20170413)
Annotation Version and Release Date: GO Ontology database Released 2017-07-21
Analyzed List: Up-regulated by 3-OAβBA in MDA-231 Cells
Reference List: Homo sapiens (all genes in database)

Table IVb: GO biological process: Down-regulated by 3-OAβBA

Process	Homo sapiens - GENES	(fold enrichment)	(p-Value)	
Intrinsic apoptotic signaling pathway in response to DNA damage	70	11	6.85	0.008
Positive regulation of apoptotic signaling pathway	181	17	4.09	0.014
Extracellular matrix organization	308	22	3.11	0.036
Extracellular structure organization	309	22	3.1	0.038
Response to oxidative stress	366	25	2.98	0.018
Regulation of endopeptidase activity	391	26	2.9	0.018
Regulation of apoptotic signaling pathway	383	25	2.84	0.038
Regulation of peptidase activity	418	27	2.81	0.019
Negative regulation of protein metabolic process	1105	55	2.17	0.001
Negative regulation of cellular protein metabolic process	1046	51	2.12	0.004
Negative regulation of molecular function	1161	55	2.06	0.004
Regulation of cellular component organization	2331	87	1.63	0.035
inhibitor), triggering autophagy required for removal of unfolded proteins. These events are often simultaneous with the rise in C/EBP homologous protein transcription factor (CHOP)/DNA damage-inducible transcript 3, 4 or GADD153,GADD34, and ATF3 (triggering cell death) (55, 56).

The data in this study show mediated effects for TRB3 [+6.3 fold, \(p<0.0001 \) BSE/+3.68, \(p<0.0001 \) 3-OAβ[BA] ATF3 [+12.61 fold, \(p<0.0001 \) BSE/+2.9, \(p<0.0001 \) 3-OAβ[BA], DDT3 [+17.09 fold, \(p<0.0001 \) BSE/+8.03, \(p<0.0001 \) 3-OAβ[BA] and DDT4 [+8.41 fold, \(p<0.0001 \) BSE/+11.77, \(p<0.0001 \) 3-OAβ[BA]. If CHOP driven ER stress mediated apoptosis prevails, this would drive up-regulation of death molecules (BIM, BAX, PUMA), death receptors (Tnfrsf10b/Dr5) juxtaposed to a reduction of BLC2 (anti-apoptotic molecules) (55, 57), activation of JNK and apoptotic molecules) (55, 57), activation of JNK and death receptors (Tnfrsf10b/Dr5). In response to unfolded proteins, IRE1α; ERN1. The data in this study again, show consistent trends in downstream events including elevated levels of EGR-1, \([+15.18 \text{ fold}, p<0.0001 \) BSE/+2.48, \(p<0.0001 \) 3-OAβ[BA], TRB3 [+6.3 fold, \(p<0.0001 \) BSE/+3.68, \(p<0.0001 \) 3-OAβ[BA] and ATF3 [+12.61 fold, \(p<0.0001 \) BSE/+2.9, \(p<0.0001 \) 3-OAβ[BA].

Pathway 2/ IRE1α; ERN1. In response to unfolded proteins, IRE1α; ERN1 is cleaved by endoribonuclease activity at the 26bp intron of XBP1 (involved with pathway 1 above), which facilitates the formation of transcription factor XBP1 mRNA, where IRE1-XBP1 can trigger recruitment of TRAF2 to the ER membrane (+ASK1 recruitment). TRAF2 is an activator of apoptosis signal-regulating kinase 1 (ASK1), which can lead to JNK mediated apoptosis. Also, this pathway can trigger ERO1α to activate the ER calcium channel Drosophila inositol-1,4,5-trisphosphate receptor 1 (IP3R1) enabling activate cAMP response elements (CREs).

Pathway 3/ATF6: Upon ER stress, ATF6 dissociates from GRP78/BiP – leaving it free to translocate to the Golgi, where it is cleaved by S1P and S2P, and its fragment released to the cytosol. ATF6 fragments can include the active 50kDa transcription factor (ATF6 p50) which translocate to the nucleus. There, ATF6 p50 and XBP1 bind ERSE promoters and up-regulate chaperones that are involved with unfolded protein response including GRP78.

ER/UPR stress mediated apoptosis and cancer drugs. Many natural products are being reported to impact the aforementioned, including a spiked rise in Grp78, CHOP with activated ER/UPR – PCD occurring through PERK, IRE1alpha and ATF6 pathways as in the case of cryptotanshinone (32) 2-(3,4-dihydroxyphenyl)ethanol (olive oil) (58) selenium (59) methylseleninic acid, sodium selenite (33) xanthohumol (hops), docosahexaenoic acid (34, 35) isohuachiolactone (Nan-Chai-Hu) (36) Shikonin (Lithospermum erythrorhizon) (37) chrysin (31) curcumin (40) silibinin (41) or whole herbs such as the Chinese herbal medicine *Tu Bei Mu* (39). A number of drugs also mediate similar effects, such as steroids, platins, taxol, alkylating agents, or cancer chemicals which on the one hand block the growth of diverse cancers, and on the other hand elevated ER/UPR – PCD, associated with up-regulation of GRP78, CHOP and three UPR-associated pathways, PERK, IRE1alpha, and ATF6 (42-44, 46,

Table V. Transcriptome miRNA changes in BSE treated MDA-MB-231 cells. The data represents cluster, signal, fold change, p-value, gene symbol, and gene targets.

Transcript	BSE	Control	Fold	ANOVA	Gene
Cluster ID	Bi-weighted AVE Signal Log2	Bi-weighted AVE Signal Log3	Change	p-Value	Symbol
20519591	2.11	1.09	2.03	0.00398	hsa-miR-4740-3p
20518919	5.7	6.92	-2.34	0.004005	hsa-miR-4521
20500722	3.85	5.3	-2.72	0.009182	hsa-miR-27b-5p
20501169	0.7	2.2	-2.82	0.020278	hsa-miR-34b-3p
20500786	0.96	2.28	-2.49	0.032848	hsa-miR-184
20538228	4.1	2.95	2.22	0.039779	U70D

Gene targets

[miR-34b-3p]	[miR-184]
MET	INPPL1
CREB	NEAT1
CDK4	AK T2
c-MYC	NEATC2
BCL2	
CDK6	
MYC	
VEGFA	
It is also believed that hydrogen peroxide tumor mediated cell death also corresponds to up-regulation of the PERK branch evident by +P eIF2α and the mRNA levels of activating transcription factor 4 (ATF4), C/EBP homologous (CHOP) and tribbles homolog 3 (TRB3)(61). The findings in this work, place 3-OA βBA and BSE in this category of anti-cancer agents.

While discussing all the changes in the transcriptome initiated by 3-OA βBA and BSE are beyond the scope of this paper, noteworthy is the rise in CHAC1, which is involved in the degradation of glutathione (62, 63) reported to occur in parallel to rise of ATF4-ATF3-CHOP PERK and the phosphorylation of EIF2α, where its rise creates vulnerability of cancer cells to the losses of glutathione associated with radiation and oxidative insult (64, 65) also rendering losses on glutathione detoxification systems (66).

In conclusion, we provide whole transcriptome data analysis of RNA from TNBC cells treated with 3-OA βBA and BSE. The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE102891 located at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102891.The findings reflect a high probability of ER/UPR involvement through PERK phosphorylation of eIF2α, leading to up-regulation of ATF3, 4, TRB3, DNA damage-inducible transcript 3, 4 (CHOP) and rise in immediate early response genes. Future research will be required to determine the unique controlling factors in common between natural products and the ER/ UPR programmed death events in tumor cells.

Conflicts of Interest

The Authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgements

This project was supported by the National Institutes of Health, National Institute on Minority Health and Health Disparities, RCMI grant (8G12MD007582-28.) and COE grant (P20 MD006738).

References

1. Estrada AC, Syrovets T, Pitterle K, Lunov O, Buchele B, Schimana-Pfeifer J, Schmidt T, Morad SA and Simmet T: Tirucallate acids are novel pleckstrin homology domain-dependent AKT inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol 77: 378-387, 2010.

2. Yadav VR, Prasad S, Sung B, Gelovani JG, Guha S, Krishnan S and Aggarwal BB: Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by down-regulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int J Cancer 130: 2176-2184, 2012.

3. Frank MB, Yang Q, Osban J, Azzarello JT, Saban MR, Saban R, Ashley RA, Welter JC, Fung KM and Lin HK: Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Altern Med 9: 6, 2009.

4. Park B, Prasad S, Yadav V, Sung B and Aggarwal BB: Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One 6: e26943, 2011.

5. Ranjarnejad T, Saidijam M, Moradkhani S and Najafi R: Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat 131: 1-8, 2017.

6. Dozmorov MG, Yang Q, Wu W, Wren J, Suhail MM, Woolley CL, Young DG, Fung KM and Lin HK: Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study. Chin Med 9: 18, 2014.

7. Lee DH, Kim SS, Seong S, Woo CR and Han JB: A case of metastatic bladder cancer in both lungs treated with Korean medicine therapy alone. Case Rep Oncol 7: 534-540, 2014.

8. Thummar D, Jeengar MK, Shrivastava S, Areti A, Yerra VG, Yamjala S, Komirishetty P, Naidu VG, Kumar A and Sistla R: Boswellia ovalifoliolata abrogates ROS mediated NF-kappaB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells. Environ Toxicol Pharmacol 38: 58-70, 2014.

9. Takada Y, Ichikawa H, Badmaev V and Aggarwal BB: Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol 176: 3127-3140, 2006.

10. Zhang YS, Xie JZ, Zhong JI, Li YY, Wang RQ, Qin YZ, Lou HX, Gao ZH and Qu XJ: Acetyl-11-keto-beta-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/beta-catenin signaling pathway. Biochim Biophys Acta 1830: 3604-3615, 2013.

11. Liu JJ, Huang B and Hooi SC: Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol 148: 1099-1107, 2006.

12. Kurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, Zargar MA, Andotra SS, Shah BA, Taneya SC and Saxena AK: NF-kappaB down-regulation and PARP cleavage by novel 3-alpha-butyryloxy-beta-boswellic acid results in cancer cell specific apoptosis and in vivo tumor regression. Anticancer Agents Med Chem 13: 777-790, 2013.

13. Kunnumakkara AB, Nair AS, Sung B, Pandey MK and Aggarwal BB: Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 7: 118-128, 2009.

14. Chou YC, Suh JH, Wang Y, Pahwa M, Badmaev V, Ho CT and Pan MH: Boswellia serrata resin extract alleviates azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis. Mol Nutr Food Res, 2017. doi: 10.1002/mnfr.201600984. [Epub ahead of print]

15. Xue X, Chen F, Liu A, Sun D, Wu J, Kong F, Luan Y, Qu X and Wang R: Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto-beta-boswellic acid via down-regulation of P-glycoprotein signals. Biosci Trends 10: 392-399, 2016.
CANCER GENOMICS & PROTEOMICS 14: 409-425 (2017)

16 Buchele B, Zuguier W, Estrada A, Genze F, Syrovets T, Paetz C, Schneider B and Simmet T: Characterization of zalpha-αcetyl-11-keto-alpha-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Med 72: 1285-1289, 2006.

17 Mazzio EA and Soliman KF: In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res 23: 385-398, 2009.

18 Yazdanpanah M, Behbahani M and Yektaeian A: Effect of boswellia thurifera gum methanol extract on cytotoxicity and p53 gene expression in human breast cancer cell line. Iran J Pharm Res 13: 719-724, 2014.

19 Bonacchi M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM and Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-29, 2000.

20 Huang da W, Herman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 45-59, 2009.

21 Vlachos IS, Zaggas K, Paraskevopoulos MD, Georgakilas G, Karagkouni D, Vergouli T, Dalamagas T and Hatziigeorgiou AG: DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43: W460-466, 2015.

22 Papaioannou A and Chevet E: Driving cancer tumorigenesis and chemotherapy resistance to cell death elicited by endoplasmic reticulum stress. Front Oncol 7: 215-226, 2017.

23 Zhao Q, Yu X, Liu M, Li Q, Liu S, Wang X, Han H and Chen H: Soyoastatin K inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochem Pharmacol 104: 8-18, 2016.

24 Xu Y, Chiu JF, He QY and Chen F: Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. J Proteome Res 8: 1585-1593, 2009.

25 Rivera M, Ramos Y, Rodriguez-Valentin M, Lopez-Acevedo S, Cubano LA, Zou J, Zhang Q, Wang G and Boukli NM: Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One 12: e0179587, 2017. [Epub ahead of print]

26 Ham J, Lim W, Bazer FW and Song G: Silibinin stimulates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J Cell Physiol, 2017. doi: 10.1002/jcp.26069. [Epub ahead of print]

27 Zhuang B, Han H, Fu S, Yang P, Gu Z, Zhou Q and Cao Z: Dehydrofusufol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochim Pharmacol 104: 8-18, 2016.

28 Salasolongo I, Panada E, Moiso E, Buondonno J, Provero P, Rubinstein M, Kopecka J and Righetti C: PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer 16: 91, 2017.

29 Corazzari M, Gagliardi M, Fimia GM and Piacentini M: Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front Oncol 7: 78, 2017.

30 Ryu S, Lim W, Bazer FW and Song G: Chrysins induces death of prostate cancer cells by inducing ROS and ER stress. J Cell Physiol 232: 3786-3797, 2017.

31 Wu CF, Seo EJ, Klauck SM and Efferth T: Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells. Phytomedicine 23: 174-180, 2016.

32 Shimge M, Manabe K, Hara N, Baba Y, Hosokawa K, Kagawa H, Watanabe T and Fujimuro M: Methyselenic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem Biol Interact 266: 28-37, 2017.

33 Jakobsen CH, Storvold GL, Bremseth H, Follestad T, Sand K, Mack M, Olsen KS, Lundemo AG, Iversen JG, Krokan HE and Schonberg SA: DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J Lipid Res 49: 2089-2100, 2008.

34 Slagsvold JE, Pettersen CH, Follestad T, Krokan HE and Schonberg SA: The antiproliferative effect of EPA in HL60 cells is mediated by alterations in calcium homeostasis. Lipids 44: 103-113, 2009.

35 Tsai SF, Tao M, Ho LI, Chiu TW, Lin SZ, Su HL and Harn HJ: Isochoafulactone-induced DDIT3 causes ER stress-PERK independent apoptosis in glioblastoma multiforme cells. Oncotarget 8: 4051-4061, 2017.

36 Piao JL, Cui ZG, Furusawa Y, Ahmed K, Rehman MU, Tabuchi Y, Kadovaci M and Kondo T: The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necrotic cell death in U937 cells. Chem Biol Interact 205: 119-127, 2013.

37 Zhang B, Han H, Fu S, Yang P, Gu Z, Zhou Q and Cao Z: Dehydrofusufol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochem Pharmacol 104: 8-18, 2016.

38 Xue Y, Chiu JF, He QY and Chen F: Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. J Proteome Res 8: 1505-1509, 2009.

39 Boelens J, Lust S, Offner F, Bracke ME and Vanhoecke BW: Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21: 215-226, 2007.

40 Zuatto-Filho A, Dashnamoorthy R, Loranc E, de Souza LH, Cubano LA, Zou J, Zhang Q, Wang G and Boukli NM: Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One 12: e0179587, 2017. [Epub ahead of print]

41 Ham J, Lim W, Bazer FW and Song G: Silibinin stimulates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J Cell Physiol, 2017. doi: 10.1002/jcp.26069. [Epub ahead of print]

42 Zhang B, Han H, Fu S, Yang P, Gu Z, Zhou Q and Cao Z: Dehydrofusufol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochem Pharmacol 104: 8-18, 2016.

43 Gifford J and Hill R: GRP78 influences chemoresistance and prognosis in cancer. Curr Drug Targets, 2017. doi: 10.2174/1389450118666170615100918. [Epub ahead of print]
46 Holtrup F, Bauer A, Fellenberg K, Hilger RA, Wink M and Hoheisel JD: Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br J Pharmacol 162: 1045-1059, 2011.

47 Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr., Huang P, Abbruzzese JL and McConkey DJ: Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65: 11658-11666, 2005.

48 Vanacker H, Vetters J, Moudombi L, Caux C, Janssens S and Michallet MC: Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance. Trends Cancer 3: 491-505, 2017.

49 Ojha R and Amaravadi RK: Targeting the unfolded protein response in cancer. Pharmacol Res 120: 258-266, 2017.

50 Cubillos-Ruiz JR, Bettigole SE and Glimcher LH: Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell 168: 692-706, 2017.

51 Cerezo M and Rocchi S: New anti-cancer molecules targeting HSPAS/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis. Autophagy 13: 216-217, 2017.

52 Wang J, Lee J, Liem D and Ping P: HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 618: 14-23, 2017.

53 So AY, de la Fuente E, Walter P, Shuman M and Bernales S: The unfolded protein response during prostate cancer development. Cancer Metastasis Rev 28: 219-223, 2009.

54 Mohamed E, Cao Y and Rodriguez PC: Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy. Cancer Immunol Immunother 66: 1069-1078, 2017.

55 Rozpedek W, Pytel D, Mucha B, Leszcynska H, Diehl JA and Majsterek I: The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med 16: 533-544, 2016.

56 Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH, Jeong SW, Kim IK, Kim JJ, Kim KS and Kwon OJ: Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 41: 440-452, 2009.

57 Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SS, Tang JY and Chang HW: Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 36: 5743-5752, 2015.

58 Guichard C, Pedrazzi E, Fay M, Marie JC, Braut-Boucher F, Daniel F, Grodet A, Gougerot-Pocidalo MA, Chastre E, Kotelevets L, Lizard G, Vandewalle A, Driss F and Ogier-Denis E: Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis 27: 1812-1827, 2006.

59 Zu K, Bihani T, Lin A, Park YM, Mori K and Ip C: Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25: 546-554, 2006.

60 Notte A, Rebbu M, Fransolet M, Roegiers E, Genin M, Tellier C, Watillon K, Fattacioli A, Arnould T and Michiels C: Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. Int J Biochem Cell Biol 62: 1-14, 2015.

61 Pierre N, Barbe C, Gilson H, Delducile L, Raymackers JM and Fransaen M: Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 450: 459-463, 2014.

62 Bachhawat AK and Kaur A: Glutathione Degradation. Antioxid Redox Signal, 2017. doi: 10.1089/ars.2017.7136. [Epub ahead of print]

63 Kaur A, Gautam R, Srivastava R, Chandel A, Kumar A, Karihikeyan S and Bachhawat AK: ChaC2, an enzyme for slow turnover of cytosolic glutathione. J Biol Chem 292: 638-651, 2017.

64 Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS and Mungrue IN: Human CHAC1 Protein degrades glutathione, and mRNA induction is regulated by the transcription factors ATF4 and ATF3 and a bipartite ATF/CRE regulatory element. J Biol Chem 290: 15878-15891, 2015.

65 Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS and Lusis AJ: CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J Immunol 182: 466-476, 2009.

66 Liu Y, Hyde AS, Simpson MA and Barycki JJ: Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res 122: 69-101, 2014.