Badly approximable vectors in affine subspaces:
Jarník-type result

by Nikolay Moshchevitin

Abstract. Consider irrational affine subspace $A \subset \mathbb{R}^d$ of dimension a. We prove that the set
$$\{\xi = (\xi_1, \ldots, \xi_d) \in A : \ q^{1/a} \cdot \max_{1 \leq i \leq d} ||q\xi_i|| \to \infty, \ q \to \infty\}$$
is an α-winning set for every $\alpha \in (0, 1/2]$. This simple short communication may be considered as a supplement to our short paper [9].

1. Jarník’s result in simultaneous Diophantine approximations. All numbers in this paper are real. Notation $|| \cdot ||$ stands for the distance to the nearest integer. In 1938 V. Jarník (see [1], Satz 9 and [2], Statement E) proved the following result.

Theorem 1. (V. Jarník) Suppose that among numbers ξ_1, \ldots, ξ_d there are at least two numbers which are linearly independent over \mathbb{Z}, together with 1. Then
$$\limsup_{t \to +\infty} \left(t \cdot \min_{q \in \mathbb{Z}, 1 \leq q \leq t} \max_{1 \leq i \leq d} ||q\xi_i|| \right) = +\infty.$$Nothing more can be said in a general situation. In 1926 A. Khintchine [3] proved the following result.

Theorem 2. (A. Khintchine) Let $\psi(t)$ increases to infinity as $t \to +\infty$. Then there exist two algebraically independent real numbers ξ_1, ξ_2 such that for all t large enough one has
$$t \cdot \min_{q \in \mathbb{Z}, 1 \leq q \leq t} \max_{i=1,2} ||q\xi_i|| \leq \psi(t).$$A general form of such a result one can find in Jarník’s paper [2]. A corresponding lim sup result is due to J. Lesca [6]:

Theorem 3. (J. Lesca) Let $d \geq 2$. Let $\psi(t)$ be a positive continuous function in t such that the function $t \mapsto \psi(t)/t$ is a decreasing function. Suppose that
$$\limsup_{t \to \infty} \psi(t) = +\infty.$$Then the set of all vectors $\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d$, containing of algebraically independent elements, such that
$$t \cdot \min_{q \in \mathbb{Z}, 1 \leq q \leq t} \max_{1 \leq i \leq d} ||q\xi_i|| \leq \psi(t)$$for all t large enough, being intersected with a given open set $G \subset \mathbb{R}^d$ is of cardinality continuum.

We would like to note that Jarník’s Theorem 1 as well as some other theorems by Khintchine and V. Jarník were discussed and generalized in author’s survey [7]. In particular in [7], Section 4.1 (see also [8]) one can find an improvement of Theorem 1 in terms of the best approximation vectors.

2. Affine subspaces. Let \mathbb{R}^d be a Euclidean space with the coordinates (x_1, \ldots, x_d), let \mathbb{R}^{d+1} be a Euclidean space with the coordinates (x_0, x_1, \ldots, x_d). Consider an affine subspace $A \subset \mathbb{R}^d$. Let $a = \dim A \geq 1$. Define the affine subspace $\mathcal{A} \subset \mathbb{R}^{d+1}$ in the following way:
$$\mathcal{A} = \{x = (1, x_1, \ldots, x_d) : (x_1, \ldots, x_d) \in A\}.$$
We define linear subspace \(\mathfrak{A} = \text{span} \mathcal{A} \), as the smallest linear subspace in \(\mathbb{R}^{d+1} \) containing \(\mathcal{A} \). So \(\dim \mathfrak{A} = a + 1 \).

Consider a sublattice \(\Gamma(A) = \mathfrak{A} \cap \mathbb{Z}^{d+1} \) of the integer lattice \(\mathbb{Z}^{d+1} \). We see that
\[
0 \leq \dim \Gamma(A) \leq a + 1.
\]
Of course here for a lattice \(\Gamma \subset \mathbb{Z}^{d+1} \) by \(\dim \Gamma \) we mean the dimension of the linear subspace \(\text{span} \Gamma \).

In the case \(\dim \Gamma(A) = a + 1 = \dim \mathfrak{A} \) we define \(A \) to be a completely rational affine subspace in \(\mathbb{R}^d \).

For a completely rational affine subspace \(A \) by \(d(A) \) we denote the fundamental \((a + 1)\)-dimensional volume of the lattice \(\Gamma(A) \).

We see from Dirichlet principle that for any completely rational affine subspace \(A \) of dimension \(a \) there exists a positive constant \(\gamma = \gamma(A) \) such that for any \(\xi = (\xi_1, ..., \xi_d) \in A \) the inequality
\[
\max_{1 \leq i \leq d} ||q\xi_i|| \leq \frac{\gamma}{q^{1/a}}
\]
has infinitely many solutions in positive integers \(q \).

One can easily see that for any affine subspace \(A \) of dimension \(a \) the set
\[
\Omega = \{ \xi = (\xi_1, ..., \xi_d) \in A : \inf_{q \in \mathbb{Z}_+} q^{1/a} \cdot \max_{1 \leq i \leq d} ||q\xi_i|| > 0 \}
\]
is an 1/2-winning set in \(A \). Here we do not want to discuss the definitions \((\alpha, \beta)\)-games and \((\alpha, \beta)\)-winning set or \(\alpha\)-winning set. This definitions were given in W.M. Schmidt’s paper [10]. All the definitions and basic properties of winning sets one can find in the book [11], Chapter 3. In particular, every \(\alpha\)-winning set in \(A \) has full Hausdorff dimension. A countable intersection of \(\alpha\)-winning sets inn \(A \) is also an \(\alpha\)-winning set.

In the case when \(A \) is not a completely rational subspace the result about winning property of the set \(\Omega \) admits a small improvement. This improvement is related to Jarník’s result cited behind.

Theorem 4. Let
\[
0 < \alpha < 1, \ 0 < \beta < 1, \ \gamma = 1 + \alpha\beta - 2\alpha > 0.
\]
Suppose that \(\dim \Gamma(A) < a \). Then the set
\[
\Omega^* = \{ \xi = (\xi_1, ..., \xi_d) \in A : q^{1/a} \cdot \max_{1 \leq i \leq d} ||q\xi_i|| \to \infty, \ q \to \infty \}
\]
is \((\alpha, \beta)\)-winning set in \(A \). In particular, it is an \(\alpha\)-winning set for every \(\alpha \in (0, 1/2] \).

Here we should note that certain results concerning badly approximable vectors in affine subspaces one can find in [11, 5, 9, 12].

3. **Lemmata.** Consider the set of all \((a + 1)\)-dimensional complete sublattices of the integer lattice \(\mathbb{Z}^{d+1} \). It is a countable set. One can easily see that for any positive \(H \) there exist not more than a finite number of such sublattices \(\Gamma \) with the fundamental volume \(\det \Gamma \leq H \). Hence we can order the set \(\{V_\nu\}_{\nu=1}^\infty \) of all \(a \)-dimensional affine subspaces in \(\mathbb{R}^d \) in such a way that values \(d_\nu = d(V_\nu) = \det \Gamma(V_\nu) \) form an increasing sequence:
\[
1 = d_1 \leq d_2 \leq \cdots \leq d_\nu \leq d_{\nu+1} \leq \cdots.
\]
We see that
\[
d_\nu \to \infty, \ \nu \to \infty. \quad (2)
\]
Some of consecutive values of \(d_\nu \) may be equal. We define a sequence \(d_{\nu_k} \) of all different elements from the sequence \(\{d_\nu\} \):
\[
1 = d_{\nu_1} = \cdots = d_{\nu_{\nu-1}} < d_{\nu_2} = \cdots = d_{\nu_{\nu-1}} < d_{\nu_3} = \cdots < d_{\nu_k} = d_{\nu_{k+1}} = \cdots = d_{\nu_{k-1}} < d_{\nu_k} = \cdots
\]
(of course \(\nu_1 = 1 \)). For \(V_j \) we define the affine subspace \(\mathcal{V}_j \subset \mathbb{R}^{d+1} \) as
\[
\mathcal{V}_j = \{ x = (1, x_1, \ldots, x_d) : (x_1, \ldots, x_d) \in V_j \}
\]
and consider linear subspace \(\mathfrak{W}_j = \text{span} \mathcal{V}_j \).

In the sequel for \(\xi = (x_1, \ldots, x_d) \in A \) we consider \(a \)-dimensional ball
\[
B(\xi, \rho) = \{ \xi' = (\xi'_1, \ldots, \xi'_d) \in A : \max_{1 \leq i \leq d} |\xi_i - \xi'_i| \leq \rho \}
\]
and \(d \)-dimensional ball
\[
\hat{B}(\xi, \rho) = \{ \xi' = (\xi'_1, \ldots, \xi'_d) \in \mathbb{R}^d : \max_{1 \leq i \leq d} |\xi_i - \xi'_i| \leq \rho \}.
\]
Obviously
\[
B(\xi, \rho) = \hat{B}(\xi, \rho) \cap A.
\]

Lemma 1. Suppose that \(U, V \subset \mathbb{R}^d \) are two affine subspaces. Put \(L = U \cap V \) and suppose that \(\dim U > \dim L \). Suppose that affine subspace \(L' \subset U \) has dimension \(\dim L' = \dim U - 1 \), and \(L' \cap L = \emptyset \). Define \(\hat{U} \subset U \) to be a half-subspace with the boundary \(L' \) and such that \(\hat{U} \cap L = \emptyset \). Then \(\text{dist}(\hat{U}, V) > 0 \).

Proof. In affine subspace \(\text{aff}(U \cup V) \) of dimension \(w = \dim U + \dim V - \dim L \) there exists an affine subspace \(L'' \supset L' \) with dimension \(\dim L'' = w - 1 \) such that \(L'' \cap V = \emptyset \). So \(\text{dist}(L'', U) > 0 \). The subspace \(L'' \) divides \(\text{aff}(U \cup V) \) into two parts, and lemma follows. \(\square \)

Corollary. Consider two affine subspaces \(A, V \subset \mathbb{R}^d \). Suppose that for \(\xi \in A \) the ball \(B(\xi, \rho) \subset A \) satisfies the property
\[
\text{dist}(B(\xi, \rho), A \cap V) \geq \varepsilon > 0.
\]
Then there exists positive \(\delta = \delta(A, V, \xi, \varepsilon) \) such that for any \(\xi' \in B(\xi, \rho) \) one has
\[
\hat{B}(\xi', \delta) \cap V = \emptyset.
\]

Proof. From the conditions of our Corollary we see that \(\dim (A \cap V) < \dim A \). So we can take a subspace \(L' \) of dimension \(\dim L' = \dim A - 1 \) which separates the ball \(B(\xi, \rho) \) from the subspace \(A \cap V \) in \(A \). Now we use Lemma 1. \(\square \)

Lemma 2. Let \(\rho > 0 \) and \(\xi \in A \). Consider a ball \(\hat{B}(\xi, \rho) \subset \mathbb{R}^d \) such that
\[
\hat{B}(\xi, \rho) \cap \mathfrak{W}_j = \emptyset, \quad 1 \leq j \leq n.
\]
Define \(k = k(n) \) from the condition
\[
\nu_k \leq n < \nu_{k+1}.
\]
Put
\[
\kappa = \kappa_{d, \xi} = (2\sqrt{d})^a \times \sqrt{1 + (|\xi_1| + 1)^2 + \ldots + (|\xi_d| + 1)^2}, \quad \sigma = \sigma_{a, d, \xi} = \frac{1}{\kappa_{d, \xi}(a+1)!}
\]
and
\[
T = (\sigma d \nu_n \rho^{-a})^{\frac{1}{a+1}}.
\]
Then the set of all rational points \(\left(\frac{b_1}{q}, \ldots, \frac{b_d}{q} \right) \in \hat{B}(\xi, \rho) \) with \(q \leq T \) lie in a certain \((a-1)\)-dimensional affine subspace.
Proof. We may suppose that the set of rational points from \(\hat{B}(\xi, \rho) \) with \(q \leq T \) consists of more than \(a \) points (otherwise there is nothing to prove). We take arbitrary \(a + 1 \) points
\[
\left(\frac{b_{1,j}}{q_j}, \ldots, \frac{b_{d,j}}{q_j} \right) \in \hat{B}(\xi, \rho), \quad 1 \leq q_j \leq T, \quad \gcd(q_j, b_{1,j}, \ldots, b_{d,j}) = 1, \quad 1 \leq j \leq a + 1
\]
and prove that primitive integer vectors
\[
\mathbf{b}_j = (q_j, b_{1,j}, \ldots, b_{d,j}), \quad 1 \leq j \leq a + 1
\]
are linearly dependent. Then the lemma will be proved.

All integer vectors (6) belong to the cylinder
\[
C = C_\xi(T, \rho) = \{ x = (x_0, x_1, \ldots, x_d) \in \mathbb{R}^{d+1} : 0 \leq x_0 \leq T, \quad \max_{1 \leq j \leq d} |x_0 \xi_j - x_j| \leq \rho T. \}
\]
Suppose that they are linearly independent. Then \(\mathcal{L} = \text{span}(\mathbf{b}_1, \ldots, \mathbf{b}_{a+1}) \) is an \((a + 1)\)-dimensional completely rational linear subspace. By \(D \) we denote the fundamental \((a + 1)\)-dimensional volume of the lattice \(\mathcal{L} \cap \mathbb{Z}^{d+1} \). From (3) we see that \(\mathcal{L} \neq \mathcal{V}_j, \quad 1 \leq j \leq n. \)

From (4) we see that
\[
D \geq d_{\nu_n}. \quad (7)
\]
Now we consider the section \(\mathcal{L} \cap C \) which is an \((a + 1)\)-dimensional convex polytope. As it is inside \(C \), its \((a + 1)\)-dimensional measure is less than
\[
(2\sqrt{d\rho T})^a \times T \sqrt{1 + (|\xi_1| + 1)^2 + \ldots + (|\xi_d| + 1)^2} = \kappa \rho^a T^{a+1} = \kappa \sigma d_{\nu_n}.
\]
But the section \(\mathcal{L} \cap C \) consist of \(a + 1 \) independent points from the lattice \(\mathcal{L} \cap \mathbb{Z}^{d+1} \). For the fundamental volume of this lattice we have lower bound (7). That is why
\[
\frac{d_{\nu_n}}{(a + 1)!} \leq \frac{D}{(a + 1)!} < \kappa \sigma d_{\nu_n} = \frac{d_{\nu_n}}{(a + 1)!}.
\]
This is a contradiction. Lemma is proved. \(\square \)

Lemma 3. (W.M. Schmidt’s escaping lemma, Lemma 1B, [11], Chapter 3) Let \(t \) be such that
\[
(\alpha \beta)^t < \frac{\gamma}{2}.
\]
Suppose a ball \(B_j \subset A \) with the radius \(\rho_j \) occurs in the game (as a Black ball). Suppose \(V \) is an \((d - 1)\)-dimensional affine subspace passing through the center of the ball \(B_j \). Then White can play in such a way that the ball \(B_{j+t} \) is contained in the halfspace \(\Pi \) such that the boundary of \(\Pi \) is parallel to the subspace \(V \) and the distance between \(\Pi \) and \(V \) is equal to \(\frac{\rho_j \gamma}{2} \).

Corollary. Suppose a ball \(B_j \subset A \) with the radius \(\rho_j \) occurs in the game (as a Black ball). Suppose that \(V, V' \subset A \) are two proper affine subspaces of \(A \). Then White can play in such a way that the distance from the ball \(B_{j+2t} \) to each of subspaces \(V, V' \) is greater than \(\frac{\rho_{j+t} \gamma}{2} \) (here \(\rho_{j+t} \) is the radius of the ball \(B_{j+t} \)).

4. Proof of Theorem 4. Suppose that \(t = t(\alpha, \beta) \) satisfies the condition of Lemma 3. Put \(j_k = 2tk \) and \(R_0 = 1 \). Suppose that the first Black ball \(B_0 \subset A \) with the radius \(\rho_0 \) lies inside the
Hence we apply Lemma 2 to see that all rational points \(\xi \in B_{j_r} \) one has

\[
\max_{1 \leq i \leq d} \|q \xi_i\| \geq \frac{(\alpha \beta)^t \gamma \rho_0}{2} R^{-(a+1)t} \cdot q, \quad \forall q < R_r
\]

with a certain \(R_r \) which we define later in the inductive step.

We shall prove it by induction in \(r \).

The base of induction is obvious.

Suppose that the ball \(B_{j_{r-1}} = B(\xi_{j_{r-1}}, \rho_{j_{r-1}}) \in A, \xi_{j_{r-1}} = (\xi_{j_{r-1},1}, \ldots, \xi_{j_{r-1},d}) \) which occurs as a Black ball satisfies the condition specified. Note that \(\rho_{j_{r-1}} = \rho_0 (\alpha \beta)^{j_{r-1}}. \) Consider the ball \(\hat{B}_{j_{r-1}} = \hat{B}(\xi_{j_{r-1}}, 2\rho_{j_{r-1}}) \in \mathbb{R}^d. \) Define \(k_r \) as the maximal \(k \) such that \(\hat{B}_{j_{r-1}} \cap \mathcal{M}_j = \emptyset, 1 \leq j \leq \nu_k. \)

Then we apply Lemma 2 to see that all rational points \(\left(\frac{b_1}{q}, \ldots, \frac{b_d}{q} \right) \in \hat{B}_{j_{r-1}} \) with

\[
q \leq \left(\sigma_{a,d, \xi_{j_{r-1}}}(2\rho_0)^{-a} \right)^{\frac{1}{a+1}} \left(\frac{1}{\alpha \beta} \right)^{\frac{2at(r-1)}{a+1}} d_{\nu_k r_{j_{r-1}}}
\]

lie in a certain \((a-1)\)-dimensional affine subspace. We denote this subspace by \(V'_r. \) As \(\max_{1 \leq i \leq d} |\xi_{j_{r-1},i}| \leq W \) we see that

\[
\sigma_{a,d, \xi_{j_{r-1}}} \geq \Sigma_{a,d,W} = \frac{1}{(2\sqrt{d})^a \sqrt{1 + (W + 1)^2 d (a + 1)!}}
\]

We put

\[
R_r = \left(\Sigma_{a,d,W}(2\rho_0)^{-a} \right)^{\frac{1}{a+1}} \left(\frac{1}{\alpha \beta} \right)^{\frac{2at(r-1)}{a+1}} d_{\nu_k r_{j_{r-1}}}. \tag{9}
\]

By Corollary to Lemma 3 White can play in such a way that

\[
\text{dist}(B_{j_r}, V_r) \geq \frac{\gamma \rho_{j_{r-1}+t}}{2} \tag{10}
\]

and

\[
\text{dist}(B_{j_r}, V'_r) \geq \frac{\gamma \rho_{j_{r-1}+t}}{2} \tag{11}
\]

So the inductive step is described and we must show that (9) is valid. But it is clear from (11) that for any \(\xi \in B_{j_r} \) one has

\[
\max_{1 \leq i \leq d} \|q \xi_i\| \geq \frac{1}{2} \gamma \rho_{j_{r-1}+t} q = \frac{\gamma \rho_0}{2} (\alpha \beta)^{(2t-1)r} q, \quad \forall q < R_r. \tag{12}
\]

Moreover by Corollary to Lemma 1 from (10) we see that

\[
k_r \to +\infty, \quad r \to +\infty.
\]

Hence

\[
d_{\nu_k r} \to +\infty, \quad r \to +\infty. \tag{13}
\]

Consider a point \(\xi \in \bigcap_j B_j. \) For positive integer \(q \) define \(r \) from the condition

\[
R_{r-1} \leq q < R_r.
\]

Then we make use of \(\xi \in B_{j_r}. \) From the inequality \(q \geq R_{r-1} \) and (9) we see that

\[
\alpha \beta \geq \omega_1 q^{-\frac{a+1}{2at} d_{\nu_k r_{j_{r-1}}}^{-1}}.
\]
where $\omega_1 = \omega_1(a, d, W, \alpha, \beta, t) > 0$. We substitute this estimate into (12) to see that

$$\max_{1 \leq i \leq d} ||q\xi_i|| \geq \omega_2 q^{-1/a} d_{\nu_{k-2}}^{1/a}, \quad R_{r-1} \leq q < R_r,$$

with positive $\omega_2 = \omega_2(a, d, W, \alpha, \beta, t)$. From (13) for $\xi \in \bigcap_j B_j$ we deduce that

$$q^{1/a} \cdot \max_{1 \leq i \leq d} ||q\xi_i|| \to +\infty, \quad q \to \infty.$$

So White can enforce Black to reach a point ξ with the desired properties. Theorem 4 is proved. □

References

[1] V. Jarník, Zum Khintchineschen “Übertragungssatz”, Travaux de L’Institut Mathematique de Tbilissi, T 3 (1938), 193 - 212.

[2] V. Jarník, Eine Bemerkung über diophantische approximationen, Math. Zeitschr. 72, 187 - 191 (1959).

[3] A.Y. Khinchine, Über eine klasse linear Diophantine Approximationen, Rendiconti Circ. Math. Palermo, 1926, 50, p.170 - 195.

[4] D. Kleinbock, Extremal supspaces and their submanifolds, GAFA 13:2 (2003), 437 - 466.

[5] D. Kleinbock, An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc. 360 (2008), 6497-6523.

[6] J. Lesca, Sur un résultat de Jarník, Acta Arith. 11 (1966), 359–364.

[7] N.G. Moshchevitin, Khintchine’s singular Diophantine systems and their applications, Russian Mathematical Surveys. 65:3 43 - 126 (2010).

[8] N.G. Moshchevitin, Best simultaneous approximations: Norms, signatures, and asymptotic directions, Math. Notes 67:5 (2000), 618–624.

[9] N. Moshchevitin, On Kleinbock’s Diophantine result, submitted to Proc. Math. Debrecen, preprint available at arXiv:0906.1541 (2009, 2011).

[10] W.M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 623 (1966), p. 178 – 199.

[11] W.M. Schmidt, Diophantine Approximations, Lect. Not. Math., 785 (1980).

[12] Y. Zhang, Diophantine exponents of affine subspaces: The simultaneous approximation case, J. Number Theory, 129:8 (2009), 1976-1989.