COMPONENT MASSES OF THE YOUNG SPECTROSCOPIC BINARY UZ TAU E

L. Prato, M. Simon, T. Mazeh, S. Zucker, and I. S. McLean

Received 2002 August 16; accepted 2002 October 1; published 2002 October 7

ABSTRACT

We report estimates of the masses of the component stars in the pre–main-sequence spectroscopic binary UZ Tau E. These results come from the combination of our measurements of the mass ratio, $M_1/M_2 = 0.28 \pm 0.01$, obtained using high-resolution H-band spectroscopy, with the total mass of the system, $(1.31 \pm 0.08) (D/140 \text{ pc}) M_{\odot}$, derived from millimeter observations of the circumbinary disk (Simon, Dutrey, & Guilloteau). The masses of the primary and secondary are $(1.016 \pm 0.065) (D/140 \text{ pc}) M_{\odot}$ and $(0.294 \pm 0.027) (D/140 \text{ pc}) M_{\odot}$, respectively. Using the orbital parameters determined from our six epochs of observation, we find that the inclination of the binary orbit, $59.8^\circ \pm 4.4^\circ$, is consistent with that determined for the circumbinary disk from the millimeter observations, indicating that the disk and binary orbits are probably coplanar.

Subject headings: binaries: spectroscopic — stars: pre–main-sequence

1. INTRODUCTION

In this Letter, we report on the most recent progress in our efforts to convert pre–main-sequence spectroscopic binaries (SB1s) to double-lined systems (SB2s) in order to (1) provide dynamical mass data for the calibration of young star evolutionary models and (2) help determine the unbiased, low-mass PMS mass ratio distribution of SB2s (Prato et al. 2002). Dynamical mass ratios have almost exclusively been measured in visible light and show a distribution weighted strongly toward unity. Because this is probably a selection effect, given that the detection of a spectroscopic secondary is far easier for flux, and therefore mass, ratios close to unity (Mazeh et al. 2002), the underlying astrophysical distribution of the mass ratio values is unknown. In Prato et al. (2002), we applied infrared (IR) spectroscopy to the problem of identifying the secondary stars in PMS SB1s because these low-mass companions are red and thus are more readily detectable in IR light. This project is an endeavor to convert all known PMS SB1s to SB2s. Prato et al. (2002) show that this approach yields the smallest mass ratios ever derived for PMS SB systems. To date, all of the IR-converted SB2s display values of $q = M_2/M_1 \approx 0.6$ (Steffen et al. 2001; Prato et al. 2002).

We have applied this IR approach to UZ Tau E, identified as a 19.1 day period SB1 by Mathieu, Martin, & Magazzu (1996). It forms a hierarchical quadruple with UZ Tau W, itself a 0.34 binary, $\sim 4^\circ$ to the west (Simon et al. 1995). Together with GW Ori, DQ Tau (Mathieu, Adams, & Latham 1991; Mathieu et al. 1997), and V4046 Sgr (Quast et al. 2000), UZ Tau E is one of only four classical T Tauri star SBs known. Emission-line and color diagnostics indicate that the stars in UZ Tau E are accreting (Kenyon & Hartmann 1995) despite the expected formation of a gap in its circumbinary disk (Artymowicz & Lubow 1994). The presence of the circumbinary disk around the UZ Tau E SB enabled Simon, Dutrey, & Guilloteau (2000) to measure the distance-dependent total binary mass by mapping the Keplerian rotation of the 12CO gas in the disk. Thus, with the determination of the mass ratio, we are able to calculate the component stellar masses and orbital inclination. In § 2, we briefly describe our observations and data reduction. The analysis and results appear in § 3. Section 4 provides a brief discussion.

2. OBSERVATIONS AND DATA REDUCTION

H-band observations were made with the Keck II near-IR spectrometer, NIRSPEC, a cross-dispersed, cryogenic echelle spectrometer employing a 1024×1024 ALADDIN InSb array detector (McLean et al. 1998, 2000). The resolving power was $R = 24,000$ and $R = 30,000$ for the nonadaptive optics (non-AO) and AO modes, respectively. For AO mode observations, dispersion solutions were derived using arc lamp lines. Otherwise we used night-sky OH lines (Rousselot et al. 2000). Integration times for a single exposure were usually 300 s. Further details about the observations are provided in Prato et al. (2002).

The data were reduced using REDSPEC, software designed at UCLA for the analysis of NIRSPEC data. For the analysis described here, we used only order 49. The central wavelength of this order is $\sim 1.55 \mu m$; order 49 is almost completely free of terrestrial absorption lines. Table 1 provides a log of the observations; column (1) gives the UT date, column (2) the observing mode (i.e., non-AO or AO), and column (3) the modified Julian day of the observation.

3. ANALYSIS AND RESULTS

Figure 1 shows the spectra from the six epochs of observations. These were analyzed as described in Mazeh et al. (2002) and Prato et al. (2002) using the two-dimensional cross-correlation program TODCOR (Zucker & Mazeh 1994) and our library of stellar templates. For every epoch of observation, the secondary star spectrum was detected; velocities for the primary and secondary stars appear in columns (4) and (5) of Table 1. Uncertainties in the velocities reflect the addition in ± 1 km s$^{-1}$ uncertainty between our velocity reference frames of others (Prato et al. 2002) and Prato et al. (2002) using the two-dimensional cross-correlation program TODCOR (Zucker & Mazeh 1994) and our library of stellar templates. For every epoch of observation, the secondary star spectrum was detected; velocities for the primary and secondary stars appear in columns (4) and (5) of Table 1. Uncertainties in the velocities reflect the addition in ± 1 km s$^{-1}$ uncertainty between our velocity reference frame, as estimated from the template star radial velocities, and the velocity reference frames of others (Prato et al. 2002). The stellar templates that produced the maximum correlation in the TODCOR analysis were either GL 763 or GL 752A for the primary and either GL 213 or GL 402, rotationally broadened to $25–30$ km s$^{-1}$, for the secondary. The Centre de Don-

\[^{1}\text{Department of Physics and Astronomy, UCLA, 8371 Math Sciences, Los Angeles, CA 90095-1562; lprato@astro.ucla.edu.}\]
\[^{2}\text{Department of Physics and Astronomy, Stony Brook University at Stony Brook, Stony Brook, NY 11794-3800.}\]
\[^{3}\text{School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.}\]
\[^{4}\text{See http://www2.keck.hawaii.edu/inst/nirspec/redspec/index.html.}\]
TABLE 1

UT Date of Observation	Mode of Observations	Modified Julian Day (2,450,000+)	\(v_{\text{primary}}\) (km s\(^{-1}\))	\(v_{\text{secondary}}\) (km s\(^{-1}\))	Phase
2000 Nov 11	Non-AO	1859.6	5.8 ± 1.04	44.2 ± 1.49	0.776
2001 Jan 5	AO	1914.2	150 ± 1.12	117 ± 1.64	0.643
2001 Aug 4	Non-AO	2125.6	8.5 ± 1.04	39.8 ± 1.49	0.745
2001 Aug 31	AO	2152.6	21.8 ± 1.04	−110 ± 1.72	0.163
2001 Oct 10	Non-AO	2192.6	27.2 ± 1.08	−23.7 ± 2.33	0.264
2002 Feb 6	Non-AO	2311.2	27.4 ± 1.12	−31.5 ± 1.89	0.492

The range of values is for pc. This indicates that the ratio of the disk in 1.3 mm continuum emission is \(56° ± 2°\). This is consistent, within the uncertainties, with our derived value, \(i = 59° ± 4°\) for \(D = 140\) pc (Kenyon, Dobrzycka, & Hartmann 1994), and the component masses \(M_1 = 0.016 ± 0.065\) \(M_\odot\) and \(M_2 = 0.294 ± 0.027\) \(M_\odot\).

4. DISCUSSION

The inclination of the UZ Tau E circumbinary disk measured by its \(^{13}\)CO \(J = 2–1\) rotation is \(56° ± 2°\), for \(D = 140\) pc; the apparent projected inclination of the disk in 1.3 mm continuum emission is \(54° ± 3°\) (Simon et al. 2000). This is consistent, with the uncertainties, with our derived value, \(i = 59° ± 4°\) (\(D = 140\) pc), for the orbit of the spectroscopic binary. The range of values is \(i = 56°–65°\) for \(D = 160–120\) pc. This consistency between the orbital and circumbinary disk inclinations indicates that the stellar orbit and the disk are probably coplanar.

Figure 3 shows the components of UZ Tau E plotted on the H-R diagram. The M1 primary and the M4 secondary were assigned effective temperatures of 3700 ± 150 and 3300 ± 150 K, respectively, from the conversion presented in Figure 5.
The PMS evolutionary tracks of Baraffe et al. (1998) and Palla & Stahler (1999) are shown in Figure 3. Both sets of tracks, the secondary star lies within 1σ of the mass track appropriate to its derived dynamical mass; however, the primary star appears on mass tracks with a value 3–4σ smaller than its dynamically derived mass. The model-based mass ratios, \(q = 0.52 \pm 0.23 \) for the tracks of Baraffe et al. (1998) and \(q = 0.38 \pm 0.23 \) for those of Palla & Stahler (1999), are consistent with the dynamical mass ratio, \(q = 0.29 \pm 0.03 \) to within 1σ, but this is a result of the propagation of the uncertainties in the track-derived masses, which are as high as ≈50%.

It is unlikely that the source of this discrepancy lies in the simple application of the \(H \)-band flux ratio to apportion the component luminosities, even though this ratio is uncertain (§ 3), because the mass of an M1 star is relatively insensitive to luminosity on the tracks of both Baraffe et al. (1998) and Palla & Stahler (1999). We can rule out contamination by a third component in the UZ Tau E system on the basis of our cross-correlation analysis as well as millimeter-wave and near-IR imaging of the system (e.g., Dutrey et al. 1996).

Several origins for this discrepancy are possible: (1) UZ Tau E may be on the near side of the Taurus star-forming region at a distance of ≈120 pc. The total mass of the SB2 system as derived by Simon et al. (2000) is a function of distance. (2) The mass of the spectroscopic system measured by Simon et al. (2000) may be an overestimate if a dense ring of circumbinary material with a radius of a few AU is present in the disk. (3) The rotation of the circumbinary disk may be non-Keplerian. (4) The main-sequence templates may be poorly matched to the PMS objects and hence yield incorrect spectral types. (5) Given the complexities of the calculations of PMS evolution at very young ages, some uncertainties may also be expected in the theoretical tracks.

To test the plausibility of the first two possibilities listed above, we combine a 20 pc (14%) underestimate in the distance to UZ Tau E and a 5% overestimate in the total stellar mass measured at millimeter wavelengths, resulting from the presence of an undetected dense ring of material within the UZ Tau E circumbinary disk, similar to the structure in the circumbinary disk of GG Tau (Guilloteau, Dutrey, & Simon 1999). We now derive \(M_{\text{total}} = 1.07 \pm 0.07 \, M_\odot \), yielding \(M_1 = 0.83 \pm 0.05 \, M_\odot \) and \(M_2 = 0.24 \pm 0.02 \, M_\odot \). The revised dynamical value of \(M_1 \) still departs by 2–3σ from the location of the star on the H-R diagram. The difference in the dynamical and model values for \(M_1 \) is still less than 1σ.

The low surface gravity expected in a young PMS star may cause its spectrum to appear to be later than the object’s mass of Luhman (2000). Using \(H_{\text{total}} = 8.46 \) mag for the SB2, corrected for \(A_V = 1.49 \) mag (Kenyon & Hartmann 1995) and apportioned according to the flux ratio, \(H_I/H_J = 0.47 \) (§ 3), we obtained the component \(H \)-band magnitudes. Applying the appropriate bolometric correction, 2.31 mag for M1 and 2.44 mag for M4 (Hartigan, Strom, & Strom 1994; Tokunaga 2000), then enabled the calculation of the component luminosities, \(L_1 = 0.63^{+0.19}_{-0.17} \) and \(L_2 = 0.28^{+0.06}_{-0.05} \, L_\odot \). The large uncertainties in \(L_1 \) and \(L_2 \) are dominated by the ±20 pc uncertainty in the location of UZ Tau E along the line of sight to the Taurus star-forming region. The luminosity ratio, \(L_2/L_1 = 0.44 \pm 0.18 \), is approximately equal to the \(H \)-band flux ratio (Prato et al. 2002).

The PMS evolutionary tracks of Baraffe et al. (1998) and Palla & Stahler (1999) are shown in Figure 3. Both sets of tracks indicate that the system is relatively young, \(\sim 1 \times 10^6 \) yr. For both sets of tracks, the secondary star lies within 1σ of the mass track appropriate to its derived dynamical mass; however, the primary star appears on mass tracks with a value 3–4σ smaller than its dynamically derived mass. The model-based mass ratios, \(q = 0.52 \pm 0.25 \) for the tracks of Baraffe et al. (1998) and \(q = 0.38 \pm 0.23 \) for those of Palla & Stahler (1999), are consistent with the dynamical mass ratio, \(q = 0.29 \pm 0.03 \) to within 1σ, but this is a result of the propagation of the uncertainties in the track-derived masses, which are as high as ≈50%.

It is unlikely that the source of this discrepancy lies in the simple application of the \(H \)-band flux ratio to apportion the component luminosities, even though this ratio is uncertain (§ 3), because the mass of an M1 star is relatively insensitive to luminosity on the tracks of both Baraffe et al. (1998) and Palla & Stahler (1999). We can rule out contamination by a third component in the UZ Tau E system on the basis of our cross-correlation analysis as well as millimeter-wave and near-IR imaging of the system (e.g., Dutrey et al. 1996).

Several origins for this discrepancy are possible: (1) UZ Tau E may be on the near side of the Taurus star-forming region at a distance of ≈120 pc. The total mass of the SB2 system as derived by Simon et al. (2000) is a function of distance. (2) The mass of the spectroscopic system measured by Simon et al. (2000) may be an overestimate if a dense ring of circumbinary material with a radius of a few AU is present in the disk. (3) The rotation of the circumbinary disk may be non-Keplerian. (4) The main-sequence templates may be poorly matched to the PMS objects and hence yield incorrect spectral types. (5) Given the complexities of the calculations of PMS evolution at very young ages, some uncertainties may also be expected in the theoretical tracks.

To test the plausibility of the first two possibilities listed above, we combine a 20 pc (14%) underestimate in the distance to UZ Tau E and a 5% overestimate in the total stellar mass measured at millimeter wavelengths, resulting from the presence of an undetected dense ring of material within the UZ Tau E circumbinary disk, similar to the structure in the circumbinary disk of GG Tau (Guilloteau, Dutrey, & Simon 1999). We now derive \(M_{\text{total}} = 1.07 \pm 0.07 \, M_\odot \), yielding \(M_1 = 0.83 \pm 0.05 \, M_\odot \) and \(M_2 = 0.24 \pm 0.02 \, M_\odot \). The revised dynamical value of \(M_1 \) still departs by 2–3σ from the location of the star on the H-R diagram. The difference in the dynamical and model values for \(M_1 \) is still less than 1σ.

The low surface gravity expected in a young PMS star may cause its spectrum to appear to be later than the object’s mass.
would indicate (White et al. 1999; Luhman 2000). However, in order to account for precisely such an effect, we have used the spectral type–to–effective temperature conversion of Luhman (2000) to place the SB2 components on the H–R diagram. In addition, agreement between the tracks and the dynamically measured secondary star mass is inconsistent with this interpretation. On the tracks of Baraffe et al. (1998), the UZ Tau E secondary appears to be slightly more massive than expected from the dynamical data. On the tracks of Palla & Stahler (1999), it is slightly less massive than expected, but for both sets of tracks, the discrepancy in the position of the secondary is less than 1 σ (Fig. 3). To investigate this phenomenon further, observations and analyses of the type we report here are required to connect stars of well-determined mass with the appropriate spectral types and effective temperatures.

DQ Tau is also a short-period (16 day) classical T Tauri SB2 (Mathieu et al. 1997). It is remarkable in that accretion onto the central stars from a circumbinary disk is regulated by the eccentric orbit of the stars. Most photometric studies of UZ Tau E have not isolated the system from UZ Tau W; it is unclear if photometric variability synchronized with the period of the SB2 is present. If the discrepancy between our dynamical mass measurement and the masses obtained from the H–R diagram is attributable to unusual accretion processes, it is difficult to understand how such processes would cause a star to appear less massive, i.e., appear to have a later spectral type, than the dynamical measurement implies.

Quast et al. (2000) studied the components in another classical T Tauri SB2, V4046 Sgr, a 2.4 day period system, and found a discrepancy between the mass ratio determined dynamically, \(q = 0.94 \), and the mass ratio determined from an evolutionary model, \(q = 0.80 \). However, deriving uncertainties for their observed and theoretical mass ratios, from their Table 1 and Figure 3, respectively, we find that their numbers are consistent to within 1 σ and therefore are not discrepant. The total mass of the V4046 Sgr SB2 has not been measured dynamically, so the individual stellar masses are not known.

Quast et al. (2000) suggest that the unusual behavior in V4046 Sgr might be attributable to the distorted structure of stars in such a short-period binary. However, in UZ Tau E, with an orbital period of ~19 days, the tidal effects will be much smaller. With an orbital semimajor axis of ~33 \(R_\odot \), there is only a weak interaction between the 2 and 3 \(R_\odot \) radius components. Unfortunately, it is not possible at the present time to deconvolve the effects of metallicity, rotation, and surface gravity simultaneously for blended components of an SB2. A combination of some of the factors discussed above may ultimately be responsible for the inconsistencies discussed in this Letter. Clarification of the questions raised here may require very high spatial resolution orbital mapping with future facilities such as the Space Interferometry Mission.

Almost every single Keck observing assistant helped with some epoch of these observations; we are grateful for their expertise. We thank the staff and support scientists for their logistical and technical assistance, in particular, Barbara Schaefer, Randy Cumell, and David Le Mignant for their help with the 2001 August 31 service observations. We thank Anne Dutrey and Stephane Guilloteau for helpful discussions and an anonymous referee for comments that improved this Letter. This research was supported in part by NSF grants AST 98-19694 and AST 02-05427 (to M. S.). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Artymowicz, P., & Lubow, S. H. 1994, ApJ, 421, 651
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Dutrey, A., Guilloteau, S., Duvert, G., Prato, L., Simon, M., Schuster, K., & Menard, F. 1996, A&A, 309, 493
Guilloteau, S., Dutrey, A., & Simon, M. 1999, A&A, 348, 570
Hartigan, P., Strom, K. M., & Strom, S. E. 1994, ApJ, 427, 961
Heintz, W. D. 1978, Double Stars (Dordrecht: Reidel)
Kenyon, S. J., Dobrzycka, D., & Hartmann, L. 1994, AJ, 108, 1872
Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117
Luhman, K. L. 2000, ApJ, 544, 1044
Mathieu, R. D., Adams, F. C., & Latham, D. W. 1991, AJ, 101, 2184
Mathieu, R. D., Martin, E. L., & Magazzu, A. 1996, BAAS, 18, 60.05
Mathieu, R. D., Stassun, K., Basri, G., Jensen, E. L. N., Johns-Krull, C. M., Valenti, J. A., & Hartmann, L. W. 1997,AJ, 113, 1841
Mazeh, T., Prato, L., Simon, M., Goldberg, E., Norman, D., & Zucker, S. 2002, ApJ, 564, 1007
McLean, I. S., et al. 1998, Proc. SPIE, 3354, 566
McLean, I. S., Graham, J. R., Becklin, E. E., Figer, D. F., Larkin, J. E., Levenson, N. A., & Teplitz, H. I. 2000, Proc. SPIE, 4008, 1048
Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772
Prato, L., Simon, M., Mazeh, T., McLean, I. S., Norman, D., & Zucker, S. 2002, ApJ, 569, 863
Quast, G. R., Torres, C. A. O., de La Reza, R., da Silva, L., & Mayor, M. 2000, in IAU Symp. 200 Poster Proceedings, Birth and Evolution of Binary Stars, ed. B. Reipurth & H. Zinnecker (Potsdam: Astrophys. Inst.), 28
Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., & Monnet, G. 2000, A&A, 354, 1134
Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034
Simon, M., et al. 1995, ApJ, 443, 625
Steffen A., et al. 2001, AJ, 122, 997
Tokunaga, A. T. 2000, in Astrophysical Quantities, ed. A. N. Cox (New York: Springer), 143
White, R. J., Ghez, A. M., Reid, I. N., & Schultz, G. 1999, ApJ, 520, 811
Zucker, S., & Mazeh, T. 1994, ApJ, 420, 806