The Search For A Permanent Electric Dipole Moment Using Atomic Indium

B. K. Sahoo *
*Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380009, India

R. Pandey and B. P. Das
Theoretical Astrophysics Group, Indian Institute of Astrophysics, Bangalore-560034, India
(Dated: Received date; Accepted date)

We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from the violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In in the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.

PACS numbers:

Keywords:

It is now widely recognized that atomic electric dipole moments (EDMs) arising from the violations of parity (P) and time-reversal (T) symmetries can provide important information about new physics beyond the standard model (SM) [1, 2]. T violation implies CP violation via the CPT theorem [3]. The dominant sources of the EDM of a paramagnetic atom are the EDM of an electron and the scalar-pseudoscalar (S-PS) interaction between the electron and the nucleus which violates P as well as T symmetries [4]. Atomic EDMs due to the electron EDM and the S-PS electron-nucleus interaction can shed light on CP violation in the leptonic and semi-leptonic sectors [1, 5]. The origin of both of these kinds of CP violations are not well understood.

The best limit on the EDM of a paramagnetic atom currently comes from thallium (Tl) [6–9]. A new generation of EDM experiments on the alkali atoms like rubidium [10], caesium [10–12] and francium [13] based on the techniques of laser cooling and trapping are currently underway. These experiments in principle have the advantages of both the beam and the cell experiments [14]. In particular it is possible to apply large electric fields and the coherence times are long in these experiments [14]. The projected precision of the current alkali EDM experiments are about two orders of magnitude better than that of the Tl experiment [10–12]. Indium (In), which is homologous to Tl appears to be an attractive candidate for the search of a permanent EDM for essentially two reasons: First, this atom has been laser cooled [15] and second, the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the S-PS coupling constant can be calculated more accurately than that of Tl due to its relatively smaller size. To demonstrate the second point more elaborately, we have carried out ab initio calculations for the corresponding factors due to the EDM of electron and the S-PS electron-nucleus interaction in In and discuss the role of different correlation effects in these properties here.

Following the work of Sandars [4] and its extension [14–18], the effective atomic EDM Hamiltonian due to the electron EDM can be written as

$$H_{EDM}^{EDM} = 2icd_e \sum_j \beta_j \gamma_j^5 \rho_j^2,$$

and the S-PS interaction Hamiltonian is given by

$$H_{EDM}^{S-PS} = \frac{iG_F}{\sqrt{2}} C_S \sum_j \beta_j \gamma_j^5 \rho_n(r_j),$$

where d_e is the intrinsic e-EDM, γ_j^5 is a pseudo-scalar Dirac matrix, C_S is the dimensionless S-PS constant and $\rho_n(r_j)$ is the jth electron density over the nucleus.

The above interaction Hamiltonians mix atomic states of opposite parities but with the same angular momentum. They can be treated as first order perturbations as their strengths are sufficiently weak. Therefore any atomic state with a valence electron ‘v’ can be expressed after the inclusion of these interactions as

$$|\Psi_v\rangle = |\Psi_v^{(0)}\rangle + \lambda |\Psi_v^{(1)}\rangle,$$

where $|\Psi_v\rangle$ is the modified wave function to the original wave function $|\Psi_v^{(0)}\rangle$ by the first order correction $|\Psi_v^{(1)}\rangle$. λ represents the weak coupling parameter d_e for H_{EDM}^{EDM} or C_S for H_{EDM}^{S-PS}.

The enhancement factor due to the electron EDM and the ratio of the atomic EDM to the S-PS coupling constant which is denoted by $R = \frac{d_e}{\lambda}$ here for the atomic
The electric dipole (E1) operator, as described in [8, 9, 17, 18]. These wave functions can be obtained by appending the valence electron contributions from the orbitals with higher angular momenta were very small; inclusion of these orbitals would have been computationally expensive with little or no effect explicitly from GRASP2 [19]. We have allowed excitations from all the occupied orbitals to unoccupied bound and continuum orbitals with a maximum energy of 1500 au. This space is sufficiently large for the convergence of the results of our calculations. Orbitals up to \(l = 4 \) were included in the active space after observing that the contributions from the orbitals with higher angular momenta were very small; inclusion of these orbitals would have been computationally expensive with little or no effect on the overall results.

In Table I we present the \(R \) values for both \(d_e \) and S-PS interactions at the DF, CCSD and CCSD(T) levels. There is a significant difference between the DF and CCSD(T) results highlighting the importance of strong EDM \(D_a \) of a state \(|\Psi_v^{(1)}\rangle \) is given by

\[
\mathcal{R} = \frac{\langle \Psi_v^{(0)} | D | \Psi_v^{(1)} \rangle + \langle \Psi_v^{(1)} | D | \Psi_v^{(0)} \rangle}{\langle \Psi_v^{(0)} | \Psi_v^{(0)} \rangle}, \quad (0.4)
\]

where \(D \) is the electric dipole operator, \(\langle \Psi_v^{(0)} | \Psi_v^{(0)} \rangle \) and \(\langle \Psi_v^{(1)} | \Psi_v^{(1)} \rangle \) are their first order corrections. The contributions from the orbitals with higher angular momenta were very small; inclusion of these orbitals would have been computationally expensive with little or no effect on the overall results.

\[
\mathcal{R} = \sum_{I \neq v} \left[\frac{\langle \Psi_v^{(0)} | D | \Psi_I^{(0)} \rangle \langle \Psi_I^{(0)} | H_{EDM} | \Psi_v^{(0)} \rangle}{(E_v - E_I) \langle \Psi_v^{(0)} | \Psi_v^{(0)} \rangle} \right] + \sum_{I \neq v} \left[\frac{\langle \Psi_v^{(0)} | H_{EDM} | \Psi_I^{(0)} \rangle \langle \Psi_I^{(0)} | D | \Psi_v^{(0)} \rangle}{(E_v - E_I) \langle \Psi_v^{(0)} | \Psi_v^{(0)} \rangle} \right]. \quad (0.5)
\]

where \(I \) represents the intermediate states and \(H_{EDM} \) is one of the EDM interactions given above.

The above expression depends explicitly on E1 matrix elements, excitation energies (EEs) and matrix elements of \(H_{EDM} \). However, it is possible to consider only a finite number of excited states in the evaluation of this quantity if a sum-over-states approach is used. In order to circumvent this problem, we solve the first order perturbed wave function in a similar approach of

\[
(H^{(0)} - E_v^{(0)}) |\Psi_v^{(1)}\rangle = -H_{EDM} |\Psi_v^{(0)}\rangle. \quad (0.6)
\]

In the above expression, \(H^{(0)} \) is the atomic Hamiltonian and \(E_v^{(0)} \) is the energy for the state \(|\Psi_v^{(0)}\rangle \). It is possible to estimate the accuracy of the corresponding \(R \) values by calculating the properties required to determine Eq. (0.3) for the dominant intermediate states.

We employ the coupled-cluster theory in the relativistic framework (RCC theory) to evaluate \(|\Psi_v^{(0)}\rangle \) and \(|\Psi_v^{(1)}\rangle \) as described in [8, 9, 17, 18]. These wave functions can be expressed as

\[
|\Psi_v^{(0)}\rangle = e^{T^{(0)}} \left(1 + S_v^{(0)} \right) |\Phi_v\rangle \quad (0.7)
\]

\[
|\Psi_v^{(1)}\rangle = e^{T^{(0)}} \left(1 + S_v^{(0)} \right) + S_v^{(1)} |\Phi_v\rangle \quad (0.8)
\]

where \(|\Phi_v\rangle \) is the Dirac-Fock (DF) wave function obtained by appending the valence electron \(v \) to the closed-shell \((4d^{10}) 5s^2\) in the present case reference wave function, \(T^{(0)} \) and \(S_v^{(0)} \) are the excitation operators for the core and valence electrons in the unperturbed case, where as, \(T^{(1)} \) and \(S_v^{(1)} \) are their first order corrections. The atomic wave functions are calculated using the Dirac-Coulomb (DC) Hamiltonian given by

\[
H_0 = \sum_i \{ c \alpha_i \cdot p_i + (\beta_i - 1)m_i c^2 + V_n(r_i) \} + \sum_{i<j} V_C(r_{ij}), \quad (0.9)
\]

where \(\alpha \) and \(\beta \) are Dirac matrices, \(p \) is the momentum operator, \(V_n(r) \) is the nuclear potential and \(V_C(r) \) is the Coulomb potential.

We consider only single and double excitations in the expansion of the RCC wave functions (CCSD approximation), by defining,

\[
T = T_1 + T_2 \quad \text{and} \quad S_v = S_{1v} + S_{2v}, \quad (0.10)
\]

for both the perturbed and unperturbed operators. Further, we construct triple excitation operators for \(S_v^{(0)} \) as,

\[
S_{vab}^{ppq,(0)} = \frac{H_0 T_2^{(0)} + H_0 S_v^{(0)}}{\epsilon_v + \epsilon_a + \epsilon_b - \epsilon_p - \epsilon_q - \epsilon_r}, \quad (0.11)
\]

which are used to evaluate the CCSD amplitudes iteratively. This is referred to as CCSD(T) approximation. Here, \(\epsilon_i \) is the single particle energy of an orbital \(i \).

Hence, \(R \) in the RCC theory is given by

\[
R = \frac{\langle \Phi_v | \left[1 + S_v^{(0)} \right] \overline{D}^{(0)} \left(T^{(1)} \left(1 + S_v^{(0)} \right) + S_v^{(1)} \right) |\Phi_v\rangle}{\langle \Phi_v | e^{T^{(0)*}} e^{T^{(0)}} S_v^{(0)} e^{T^{(0)*}} e^{T^{(0)}} |\Phi_v\rangle + cc}, \quad (0.12)
\]

where the dressed operator \(\overline{D}^{(0)} = e^{T^{(0)*}} D e^{T^{(0)}} \), \(D = e r \) is the E1 operator due to the applied electric field and cc represents the complex conjugate terms. The procedure for the calculation of the above expression is discussed elsewhere [8, 9, 17, 18].

Source	DF	CCSD	CCSD(T)
d_e	-49.53	-82.35	-82.37
S-PS	-31.10	-52.59	-52.60

TABLE I: Enhancement factor due to electron EDM and the ratio of the atomic EDM to the S-PS coupling constant denoted by \(R \) to the ground state of In due to \(d_e \) (dimensionless) and S-PS (in \(\frac{C_s}{\mu A}; A \) is the atomic mass number) interactions obtained using DF and RCC methods.
TABLE II: Contributions to R (with same unit as in Table II) from different CCSD(T) terms. $D^{(0)}_{\text{b.o.}}$ represents effective one-body terms from $D^{(0)}$, terms containing bare D operator are the effective two-body terms from $D^{(0)}$. "Others" and "Norm" give contributions from other non-linear terms and normalization of the wave function, respectively.

Term	From DF	
$(DH_{\text{EDM}})^+ + cc$	-17.56	-11.03
$(DH_{\text{EDM}})^- + cc$	-31.98	-20.07

Important RCC terms

Term	
$D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)} + cc$	-39.79
$D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)} + cc$	-44.59
$D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)} + cc$	10.10

Nonlinear RCC terms

Term	
$T^{(1)}_{1(v)} D^{(0)}_{\text{b.o.}} S^{(0)}_{2(v)}$	-4.12
$S^{(1)}_{2(v)} D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)} + cc$	3.55
$S^{(1)}_{2(v)} D^{(0)}_{\text{b.o.}} S^{(1)}_{1(v)} + cc$	-2.06
$T^{(1)}_{1(v)} D^{(0)}_{\text{b.o.}} T^{(0)} + cc$	-4.74
$T^{(1)}_{2(v)} D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)} + cc$	-1.24
$T^{(1)}_{2(v)} D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)} + cc$	0.86
$S^{(1)}_{2(v)} D^{(0)}_{\text{o.b.}} T^{(1)}_{2(v)} + cc$	-0.97
Others	0.21
Norm	0.83

correlation effects for the reported R factors of this system. Small difference between the CCSD and CCSD(T) results suggests that the contributions from the triple excitations are small. We give below contributions from various CCSD(T) terms to understand the roles of different correlation effects in this property.

In Table II we present the contributions from the core and the virtual orbitals to the factors R at the DF level and individual contributions from different CCSD(T) terms. The CCSD(T) contributions in this table have been classified as important terms referring to terms whose contributions are large (Goldstone diagrams for these terms are shown in Fig. II) and nonlinear terms whose contributions are relatively small. Fig. II(a) representing $D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)}$ involves the lowest order DF contributions due to the core orbitals (Fig. II(i)) and some of the higher order core-polarization correlation diagrams (Fig. II(ii,iii) and more). By comparing the DF contributions from core orbitals and $D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)}$, it is obvious that these core-polarization correlation effects contribute significantly; larger than the DF core contribution. The largest contributions come from the $D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)}$ term and as shown in Fig. II(b)), it contains the lowest order DF contribution due to the virtual orbitals. It also includes many important core-polarization (Fig. II(v,vi)) and pair (Fig. II(vii)) correlation diagrams. However, the net correlation contribution due to this diagram is not as large as it is from the higher order diagrams in $D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)}$. The other important term that has been considered is $D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)}$ and it accounts for mainly a particular class of core polarization effects.

We now consider some of the quantitative aspects of the correlation effects in the above electron EDM enhancement factor and the ratio of the atomic EDM to the S-PS coupling constant. These effects in In are significantly larger than those in the alkalies, but their cancellations are not as severe as in the case of TI. The correlation effects for both the above quantities are one and a half times the total DF results. The core correlation effects are very strong, because of the large overlap between the wave functions of the valence $5p_{1/2}$ and the outermost core $5s$ orbitals and the small energy difference between them. At the DF level, the contributions from the virtual orbitals are larger than those of the core orbitals. The total contributions from both $D^{(0)}_{\text{b.o.}} T^{(1)}_{1(v)}$ and $D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)}$ are comparable. The contribution from $D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)}$ is significant, but with opposite sign. These contributions are from the singly excited perturbed states; mainly from the $[4d^{10}]5s5p^2$ state. There are also some significant contributions from the higher order RCC terms; especially $T^{(1)}_{1(v)} D^{(0)}_{\text{b.o.}} S^{(1)}_{2(v)} D^{(0)}_{\text{b.o.}} S^{(0)}_{1(v)}$, $S^{(0)}_{2(v)} D^{(0)}_{\text{b.o.}} S^{(1)}_{1(v)}$ and $T^{(1)}_{1(v)} D^{(0)}_{\text{b.o.}} S^{(0)}_{1(v)}$ through some of the core-polarization and pair-correlation effects. Contributions due to the normalization of the wave function (norm) and terms containing non-linear terms in $T^{(0)}$ and $T^{(1)}$ are small.

It is possible to get a sense of the accuracies of the individual quantities that appear in Eq. (3.3) by com-
and considering the branching ratio as 2:3 of the experimental values of the lifetime of the 6s → 5p_{1/2} transition. The matrix elements of the E1 matrix elements and hyperfine structure constants of the ground and excited states in In with the available experimental results and all order SD calculations. Uncertainties from our calculations are given in the parentheses.

TABLE III: Comparison of the excitation energies (in cm⁻¹)

Transition	This Work	All order SD	Experiment
6s → 5p_{1/2}	24290(80)	23747	24372.956 [20]
7s → 5p_{1/2}	36217(90)	35808	36301.84 [20]
8s → 5p_{1/2}	40552(100)	40126	40637.0 [20]
9s → 5p_{1/2}	42640(115)	42238	42719.0 [20]

Transition	E1 matrix elements		
6s → 5p_{1/2}	1.91(1)	1.91	1.92(8) [21]
7s → 5p_{1/2}	0.56(2)	0.54	0.54
8s → 5p_{1/2}	0.31(2)	0.09	0.09
9s → 5p_{1/2}	0.19(2)		

Comparing their calculated values with their corresponding experimental results. Experimental values for the EEs are available up to very high accuracy and experimental values of the E1 matrix elements can be extracted from the lifetime measurements of the available s states. The matrix elements of H_{EDM} cannot be measured directly. However, the accuracy of this quantity can be indirectly estimated from the square root of the product of the magnetic dipole hyperfine structure constants (A_{hyp}) of the appropriate states [8, 9].

We present the results for the EEs, E1 matrix elements and the hyperfine structure constants of the ground and excited s states in Table III that contribute significantly to R. Experimental values for the EEs are available for most of the excited states, but the hyperfine structure constants are experimentally known only for the 5p_{1/2}, 6s and 7s states. We obtain the E1 matrix element of the 6s → 5p_{1/2} transition as 1.92(8) au by combining the experimental values of the lifetime of the 6s state (7.57(7)s) [21] and considering the branching ratio as 2:3 for the 6s → 5p_{1/2} and 6s → 5p_{3/2} transitions [21] (Ref. 20 can be referred for detailed discussion of these results). For EEs, the largest uncertainty comes from the Breit interaction followed by the neglected basis orbitals and triple excitations. However, most of the uncertainties to the E1 matrix elements and A_{hyp} come from the latter. All our results are in good agreement with the experimental results. Our calculated results have been compared with those obtained by the all order SD method [25], the RCC method containing only the linear terms of our CCSD approach, in the above table. Our EEs results are in better agreement with accurate experimental data than those using the all order SD method for all the excited states relevant for our present work. The corresponding DF results are given elsewhere (see Ref. 20) and it is found in [21] that the Breit interaction contributes very little to this property in this atom. Therefore, the discrepancies between the results reported in [25] and the present work could be due to the non-linear terms of the CCSD(T) method. Our A_{hyp} for the 6s state, the most important excited state in the calculations of R, is also more accurate than the all order SD result. Our results for the other quantities agree reasonably well with available experimental data. The uncertainties in various quantities are estimated by considering the differences between the results of the CCSD(T) and CCSD methods as the upper limits to the contributions due to the triple excitations, neglected relativistic effects; particularly the Breit interaction and omitted higher angular momentum symmetry orbitals in the present calculations. After considering all possible uncertainties, the enhancement factor due to the electron EDM and the ratio of the atomic EDM to the S-PS coupling constant for In are estimated to be $-82(5)$ and $-53(3)$, respectively. These results are almost five and one and a half times smaller than those in Tl [8] and Cs [18], respectively, but three times larger than those in Rb [18]. Their accuracies can be further improved by using the general RCC theory [27].

In conclusion, we propose In as a suitable candidate for the search of a permanent EDM. Our theoretical studies show that accurate calculations of the electron EDM enhancement factor and the ratio of the atomic EDM to the S-PS coupling constant of this atom are possible. The limits for the electron EDM and the S-PS coupling constants that can be extracted by combining these factors with the measured value of the EDM of this atom when it is available, could provide important information about the validity of the SM of particle physics.

We thank H. S. Nataraj for useful discussions. These calculations were carried out using the HPC 3TFLOP cluster at PRL and the CDAC ParamPadma TeraFlop supercomputer, Bangalore.

1. S. M. Barr, Int. J. Mod. Phys A 8, 209 (1993).
2. J. S. M. Ginges and V. V. Flambaum, Phys. Rep. 637, 63 (2004).
3. G. Luders, Ann. Phys. 2, 1 (1957).
[4] P. G. H. Sandars, Phys. lett. 14, 194 (1965); Phys. lett. 22, 290 (1966).
[5] A. Pilaftsis, Nucl. Phys. B 649, 263 (2002).
[6] B. C. Regan et al., Phys. Rev. Lett. 88, 071805 (2002).
[7] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 80, 062509 (2009).
[8] B. K. Sahoo et al., Phys. Rev. A 78, 010501(R) (2008); Phys. Rev. A 78, 039901 (2008).
[9] H. S. Nataraj, et al., Phys. Rev. Lett. 106, 200403 (2011).
[10] D. S. Weiss et al., Bull. Am. Phys. Soc. APR03, R4285 (1994).
[11] M. Bijlsma et al., Phys. Rev. A 49, R4285 (1994).
[12] J. A. Amini et al., Phys. Rev. A 75, 063416 (2007).
[13] Y. Sakemi, Cyclotron Radioisotope Center, Tohoku University, Japan; http://www.phys.tohoku.ac.jp/eng/eld/enpp/05.html.
[14] M. Romalis and E. N. Fortson, Phys. Rev. A 59, 4547 (1999).
[15] B. Klöter, C. Weber, D. Haubrich, D. Meschede and H. Metcalf, Phys. Rev. A 77, 033402 (2008).
[16] B. P. Das, Pramana 41, 413 (1993).
[17] D. Mukherjee et al., J. Phys. Chem. A 113, 12549 (2009).
[18] H. S. Nataraj et al., Phys. Rev. Lett. 101, 033002 (2008).
[19] F. A. Parpia et al., Comp. Phys. Comm. 94, 249 (1996).
[20] C. E. Moore, Atomic Energy Levels. III, NSRDS-NBS 35 (U. S. Government Printing Office, Washington DC, 1971).
[21] T. Andesen and G. Sorensen, Phys. Rev. A 5, 2447 (1972).
[22] T. G. Eck et al., Phys. Rev. 106, 954 (1957).
[23] S. George et al., J. Opt. Soc. Am. B 7, 249 (1990).
[24] Jae-Ihn Kim, Ph.D. thesis (submitted to Rheinischen Friedrich-Wilhelms-Universität Bonn), Bonn (2009).
[25] U. I. Safronova et al., Phys. Rev. A 76, 022501 (2007).
[26] B. K. Sahoo and B. P. Das, Phys. Rev. A 84, 012501 (2011).
[27] M. Kallay et al., Phys. Rev. A 83, 030503(R) (2011).