Total synthesis of tetraacylated phosphatidylinositol hexamannoside and evaluation of its immunomodulatory activity

Pratap S. Patil, Ting-Jen Rachel Cheng, Medel Manuel L. Zulueta, Shih-Ting Yang, Larry S. Lico & Shang-Cheng Hung

Tuberculosis, aggravated by drug-resistant strains and HIV co-infection of the causative agent *Mycobacterium tuberculosis*, is a global problem that affects millions of people. With essential immunoregulatory roles, phosphatidylinositol mannosides are among the cell-envelope components critical to the pathogenesis and survival of *M. tuberculosis* inside its host. Here we report the first synthesis of the highly complex tetraacylated phosphatidylinositol hexamannoside (Ac₂PIM₆), having stearic and tuberculostearic acids as lipid components. Our effort makes use of stereoelectronic and steric effects to control the regioselective and stereoselective outcomes and minimize the synthetic steps, particularly in the key desymmetrization and functionalization of *myo*-inositol. A short synthesis of tuberculostearic acid in six steps from the Roche ester is also described. Mice exposed to the synthesized Ac₂PIM₆ exhibit increased production of interleukin-4 and interferon-γ, and the corresponding adjuvant effect is shown by the induction of ovalbumin- and tetanus toxoid-specific antibodies.
Mycobacterium tuberculosis is a dreaded pathogen that causes tuberculosis, one of the leading causes of death in the world. Although the disease becomes active for only 5–10% of infected individuals, 1.5 million people died of tuberculosis in 2013 alone despite progress in the global effort for diagnosis, treatment and prevention. Moreover, it is estimated that one-third of the human population is latently infected with M. tuberculosis and is highly vulnerable if immunocompromised. The antituberculosis vaccine bacillus Calmette-Guérin, made by using an attenuated strain of M. bovis, only gives protection to children but is highly variable in adults. Co-infection with HIV using an attenuated strain of 2-naphthylmethyl; Bn, benzyl; Tol, p-tolyl.

protective barrier for various drugs. Among the vital cell-chains may be linked at the primary hydroxyl of the 2- mannosylations sites at O2 and O6 (ref. 16). Additional lipid chains may be linked at the primary hydroxyl of the 2-O-mannosyl unit and at the O3 position of myo-inositol to form triacylated PIMs (Ac1PIM3) and tetraacylated PIMs (Ac2PIMs), respectively. Higher PIMs (for example, AcnPIM1 − AcnPIMn) are formed by elongation at the mannose residue linked at O6 of myo-inositol. The number of mannose residues and the degree and type of the fatty acyl groups present in the PIM molecules determine their unique role in immunoregulation. As a result, elegant synthetic strategies have been developed for PIMs and their related compounds. Nevertheless, the synthesis of a tetracylated phosphatidylinositol hexamannoside (Ac2PIM6), the most complex among this class of compounds, is yet to be reported. Thus far, previous disclosures explored the synthesis of Ac2PIM6 (ref. 34), PIM4 (ref. 24), PIM6 (ref. 32) and Ac2PIM6 (ref. 25) to name a few.

We describe herein the first synthesis of Ac2PIM6, using stearic and tuberculostearic acids as the lipid components. The immunomodulatory activity of the synthesized Ac2PIM6 was also evaluated.

Results
Synthetic strategy. Compound 1 possesses multiple components and functionalizations. To arrive at this molecule, one rational synthetic design would be to fragment this sizeable structure into separate segments, which could later be assembled in a convergent manner. For this purpose, we conceived the pseudo-trisaccharide 2, tetramannoside donor 3 and phosphonate 4 as the primary targets (Fig. 1). The readily perceptible synthetic issues include the transformation of the ordinarily meso myo-inositol into the unsymmetrical counterpart in 2 as well as the regioselective protection to afford the mannosyl-building blocks useful enough to deliver the necessary z1 → 2 and z1 → 6 linkages and the acylation of one mannosyl unit. Accordingly, along with benzyl groups for the global protection of hydroxyls that would be free in the desired product, we selected two additional orthogonal protecting groups for the primary positions of the mannosyl residues in intermediates leading to compound 2. The tert-butylphenylsilyl (TBDDS) group should allow, on deprotection, the subsequent coupling with the tetramannoside 3, whereas the 2-naphthylmethyl (2-NAP) group protects the position that would later be acylated. Being a core constituent of inositol phosphates and other phosphatidyl lipoglycans, various methods have been published for the myo-inositol resolution and

Figure 1 | Our target tetraacylated phosphatidylinositol hexamannoside (Ac2PIM6) and the main blocks designed to represent each segment. 2-NAP, 2-naphthylmethyl; Bn, benzyl; Tol, p-tolyl.
Mannosyl-building blocks. Considering the stability of the thiotolyl leaving group on various functional group interconversions, we selected the thiomannoside 5 (ref. 38) as a starting point in our transformations towards several mannosyl building blocks (Fig. 2). In general, the building blocks needed for the assembly of our target structure required differentiation at either O6 or O2. With a bulky functionality such as the TBDPS group, the protection sequence aimed regioselectively at the primary O6 position seems clear-cut. Thus, the 6-O-silylation of 5 using tert-butyldiphenylchlororosilane, triethylamine and 4-(N,N-dimethylamino)pyridine gave compound 6 in excellent yield. Subsequent benzylation under Williamson condition supplied the necessary thiglycoside 7. The 6-alcohol 8, intended as the starting acceptor in generating the tetramannoside 3, was also readily acquired from 7 by acidic desilylation.

In contrast to the route above, traditional approaches concerning the effective acquisitions of the 6-O-naphthylmethylated thiomannoside 13 and the 2-benzoate 14 do not appear to be straightforward. The complexity arises from the desire to carry out the fully regioselective installations of the vital ether groups. Apparently, the regioselective one-pot protection strategy that we introduced 19,40 and further expanded to other sugars 41–44 could simplify such preparations.

Our recent work on the stereoselective dioxolane-type benzylidene formation on thiomannosides 43 should provide a convenient gateway to the 2,6-diol 11, a potential common intermediate towards compounds 13 and 14. It was envisioned that, with benzyl groups permanently protecting O3 and O4, the

![Figure 2 | Preparations of the mannosyl-building blocks](image-url)
primary 6-hydroxyl could be easily differentiated from the secondary and axial 2-hydroxyl. We were also keen to check whether stereoselective dibenzylideneation and simultaneous regioselective ring opening could be achieved in one pot.

Starting from the tetrakis-trimethylsilyl ether 9 acquired in one step from 5 (ref. 43), treatment with 2.1 equivalents of benzaldehyde along with catalytic trimethylsilyl trifluoromethanesulfonate (TMSOTf) in acetonitrile at 0°C exclusively delivered the exo-product 10 as evidenced by NMR spectroscopy and X-ray crystallography (Supplementary Fig. 1, Supplementary Data 1). This fully stereoselective transformation is beneficial because unlike the regioselectivity in the 4,6-O-benzylidene ring opening, which is determined by the choice of reducing agent45, the opening of the dioxolane-type 4,6-isomers generally open at the axial position. Delightfully, the subsequent exposure of the so-formed diol 11 to trimethylsilylation provided the intermediate that was benzylated in one pot using the typical etherification method to afford compound 13. An X-ray single crystal analysis fully supported the desired structure (Supplementary Fig. 1, Supplementary Data 2). Continuing further, addition of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to the in situ-generated 13 successfully delivered the same acceptor 8, thus providing an alternative pathway for its acquisition. Similarly, the corresponding reductive 6-O-benzylation of 12 was carried out, followed by desilylation at O2 with tetrabutyllammonium fluoride (TBAF) and basic benzoylation in the same flask. Unfortunately, the yield for compound 14 was less than satisfactory even when benzoic acid and TBAF were used together41 to perform the desilylation, probably due to the interference of TBAF to the benzoylation stage. Desilylation with BF3·Et2O apparently solved this issue and furnished 14 in an excellent 93% yield from 12.

Synthesis of the pseudotrisaccharide 2. For the desymmetrization of myo-inositol, we evaluated the coupling of the mannosyl donor 7 with the meso diol 16 (Fig. 3), which can be easily prepared in one step30 from the commercially available Kishi’s triol. The asymmetric nature of the mannosyl donor itself should provide certain preferences between the axial hydroxyls of 16 as we have demonstrated previously30 but without the TBDPS group on the sugar. Because of the wider opening available for a nucleophilic attack on the half-chair mannosyl oxocarbenion intermediate by O6 as compared with O4 (Supplementary Fig. 2), it is expected that the required 6-O-mannosylation would be more favoured. Our attempts at coupling of 7 and 16 using

Figure 3 | Preparation of the pseudotrisaccharide 2. Reagents and conditions: (a) (1) NBS, acetone, H2O; (2) K2CO3, CCl4, CN, 15: 94% (two steps), 20: 90% (two steps); (b) silver trifluoromethanesulfonate, 1,4-dioxane, CH2Cl2, 17: 68%, 18: 20%; (c) NaOMe, MeOH, CH2Cl2, quantitative; (d) BF3·Et2O, CH2Cl2, – 60 to – 20°C, 72%; (e) (1) PTSA, MeOH, CH2Cl2, 84%; (2) tert-butyldiphenylchlorosilane, Et3N, DMAP, 82%; (f) (1) trimethylchlorosilane, Et3N, quantitative; (2) benzaldehyde (3 equivalent), Et3SiH, TMSOTf, CH2Cl2, – 40°C, then, tetrabutylammonium fluoride, 72%. NBS, N-bromosuccinimide.
N-iodosuccinimide and TMSOTf in CH₂Cl₂ and 1,4-dioxane to improve the solubility of diol 16, unfortunately, led only to donor hydrolysis and full recovery of the acceptor. We suspected that the axial hydroxyls are too unreactive for mannosyl thioglycoside to foster productive couplings. With strong activators avoided to maintain the acid-sensitive orthoformate group, focus was shifted to the imidate versions of the donor. After some optimization (see the Supplementary Table 1), silver trifluoromethanesulfonate promoted the glycosylation step at room temperature, supplying the desired pseudosaccharide 17 at 68% yield, along with its regioisomer 18 (20%). Here and in the succeeding glycosylations, we verified the α-orientations of the manniosidic bonds through the coupling constants of the anomeric carbons and protons (~170 Hz, see Supplementary Methods)⁵⁷,⁶⁸. Distinguishing the structures of 17 and 18 with confidence is not possible with NMR analysis alone. We, therefore, resorted to exchange the primary TBDPS with benzyl group (Supplementary Fig. 3) and compare agreement with the NMR spectra from previously published data⁵⁹.

For the preparation of the key intermediate 21, the pseudosaccharide 17 was subjected to Zemplén deacylation to generate the diol 19. Regioselective mannosylation at the equatorial hydroxy group should be more likely because of steric reasons. A thorough evaluation of the subsequent coupling also made us consider the application of the imidate 13 over the thioglycoside 13. Under BF₃·Et₂O promotion, compound 21 was, therefore, acquired in 72% yield with complete regioselectivity and stereoselectivity. The orthoformate group was cleaved using p-toluensulfonic acid, which also removed the TBDPS group. The tetraol 22 was obtained after re-installation of the silyl group. With 22 in hand, regioselective benzylation at O4 and O5 of the inositol unit is the next challenge. Williamson condition and acidic benzylzation using benzyl imidate are not sufficiently selective, whereas the reductive benzylzation of the trimethylsilylated substrate showed greater promise. True enough, excellent selectivity was achieved by using 3 equivalents of benzaldehyde, furnishing, after further full desilylation with TBAF, the desired compound 2 in 72% yield from 22.

It should be stated that other less successful means in acquiring the pseudotrisaccharide backbone have been studied. Our effort at condensation of the imidate donor 20 with the diol 16 led to mixtures of inseparable regioisomers and stereoisomers, a demonstration of the known potential of the bulky 6-O-TBDPS group at enhancing α-selectivity⁴⁹. A participating moiety at O2 of the mannosyl donor was ruled out to avoid complications that may be encountered in later reactions. Sequential dimannosylation of Kishi’s triol also seemed feasible under our synthetic design, with glycosylation at the more reactive O2 using donor 20 followed by asymmetric 6-O-mannosylation with donor 15. Unfortunately, poor yields for both couplings were observed. Another procedure we have tried included the 2-O-mannnosylation of 19 with a donor already carrying the fatty acyl functionality at the primary position. While the glycosylation step worked as intended, the acyl moiety was also removed along with the TBDPS group on acid treatment intended to cleave the orthoformate function.

Synthesis of tuberculostearic acid and the H-phosphonate 4.

Tuberculostearic acid was first isolated from *M. tuberculosis* in 1927 (ref. 50) and several methods for its synthesis have been reported²⁵,²⁶,²⁰,²¹–³³. Nevertheless, an updated, shorter and more effective method for accessing this important fatty acid is still desirable. We decided to acquire the chiral carbon of tuberculostearic acid from the commercially available Roche ester (23). Tosylation of 23 to afford compound 24, followed by reduction with disobutylaluminium hydride and methylene insertion by Wittig reaction furnished the olefin 25 (ref. 54; Fig. 4). The first long-chain elongation of 25 towards compound 26 was achieved by Grignard reaction under catalytic Li₂CuCl₂. Grubbs metathesis of olefin 26 with the olefinic acid 27 provided the E/Z olefin mixture, which was exposed to palladium-catalysed hydrogenation to finally secure tuberculostearic acid (28). Accomplished in just six steps, this acquisition is the shortest synthetic preparation reported, thus far, for this compound.

Elaborations of the commercially available 3-O-benzyl-sn-glycerol were performed next. Under dicyclohexylcarbodiimide and 4-(N,N-dimethylamino)pyridine, the fatty acid 28 was first condensed with the primary hydroxyl followed by stearic acid esterification at the secondary position in good yields. Cleavage of the benzyl group was achieved through hydrolysis and the generated alcohol was phosphorylated using PCl₅, imidazole and Et₃N to afford the H-phosphonate 2.

Ac₂PIM₄ assembly and final transformations. Our planned sugar assembly towards the tetramannoside 3 hinges on the chemoselective activation of a trichloroacetimidate donor in the presence of a thioglycoside acceptor⁵⁵ (Fig. 5). Accordingly,

Figure 4 | Preparation of tuberculostearic acid (28) and the H-phosphonate 4.
Reagents and conditions: (a) TsCl, Et₃N, DMAP, 94%; (b) (1) diisobutylaluminium hydride, −78 °C; (2) Ph₃P = CH₂, 72% (two steps); (c) C₆H₅MgBr, Li₂CuCl₂, −78 to 0 °C, 92%; (d) (1) Grubbs second-generation catalyst, CH₂Cl₂, reflux; (2) H₂, Pd/C, 75% (two steps); (e) (1) 3-O-benzyl-sn-glycerol, DCC, DMAP, 75%; (2) stearic acid, DCC, DMAP, 88%; (f) (1) H₂, Pd/C, 92%; (2) PCl₅, imidazole, Et₃N, −10 °C, 69%. DCC, dicyclohexylcarbodiimide; Ts, Tosyl.
the elongation unit is formed by converting compound 14 to 30 under the usual procedures. Glycosylation of the thioglycoside 8 with 30 followed by debenzoylation in the same flask supplied the disaccharide acceptor 31 in 87% yield. Two more elongation cycles easily formed the tetramannoside 32. Knowing that the benzoate group is base-sensitive, the benzoyl-to-benzyl exchange was achieved in one step by NaH and benzyl alcohol.

With all segment backbones available, we moved forward in putting all these pieces together. The glycosylation of the pseudotrisaccharide acceptor 2 by the thioglycoside 3, however, produced only a meager 10% yield for compound 34 despite our best efforts, prompting us to use the more reactive imidate counterpart 33 instead (see Supplementary Table 2). With Et₂O as solvent and TMSOTf as activator, we eventually obtained the desired 34 in 52% yield (89%, if the recovered acceptor is considered). The 2-NAP ether was then cleaved, which paved the way for the concurrent installation of two stearate esters at the mannosyl and the inositol units, leading to the alcohol 35. This reaction exhibited no regioselectivity issues, with O1 of the inositol unit spared because it experiences the highest steric hindrance among the three free hydroxyls. The attachment of the H-phosphonate 4 and the pseudohexotasccharide 35 was carried out by using pivaloyl chloride, followed by iodine-mediated *in situ* oxidation and cation exchange, delivering the derivative 36. Global hydrogenolysis of the benzyl ethers provided the Ac₂PIM₆, construct 1 in 82% yield.

Figure 5 | Synthesis of compound 1. Reagents and conditions: (a) (1) NBS, acetone, H₂O; (2) CCl₃CN, 1,8-diazabicyclo[5.4.0]undec-7-ene, 30: 96% (two steps), 33: 86% (two steps); (b) 8, TMSOTf, CH₂Cl₂, 78 °C, then, NaOMe, MeOH, 87% (one pot); (c) (1) 30, TIOH, CH₂Cl₂, 60 to −40 °C, then, NaOMe, MeOH, 70% (one pot); (2) 30, TIOH, CH₂Cl₂, 60 to −40 °C, 74%; (d) BnBr, NaH, 98%; (e) 2, TMSOTf, Et₂O, −40 °C, 52% (89% yield based on the recovered 2); (f) (1) DDQ, CH₂Cl₂, H₂O, 71%; (2) stearic acid, DCC, DMAP, 86%; (g) (1) 4, pivaloyl chloride, pyridine; (2) I₂, pyridine, H₂O; (3) DOWEX 50WX8 Na⁺ form, 77% from 35. (h) H₂, Pd/C, 88%. TIOH, trifluoromethanesulfonic acid.

Evaluation of immunomodulatory activity. The adjuvant effects of compound 1 were examined through co-administration with ovalbumin (Fig. 6a) or tetanus toxoid (Fig. 6b) antigen in BALB/c mice. PIMs isolated from *M. tuberculosis* strain H37Rv (iPIM₁₁₂ and iPIM₆) and alum were also investigated in parallel for comparison. It was observed that compound 1 induced an approximately two to fourfold increase in the level of antigen-specific antibodies. The adjuvant activity of 1 is similar to the bacteria-derived PIMs and slightly lower than alum.

Furthermore, we evaluated the cytokine-producing activity of compound 1 as well as iPIM₁₁₂ and iPIM₆ (Fig. 6c,d). The level of interleukin-4 and interferon-γ was not detectable in mouse sera at 1 h after injection of Ac₂PIM 1 and the bacteria-derived PIMs. At 18 h after injection, the cytokine levels increased. Lipid and glycolipid molecules derived from *M. tuberculosis* are presented to T cells by CD1 antigen-presenting molecules, specifically CD1d. Compared with the well-known CD1d-targeting α-galactosylceramide, which can activate the invariant natural killer T cells and induce high levels of interleukin-4 and...
interferon-γ within 24 h (ref. 57), Ac₂PIM₆ 1 appeared to have moderate effects.

Discussion

We have successfully developed a convenient route to synthesize an Ac₂PIM₆ construct in the form of compound 1 containing tuberculostearic acid and stearic acid as the fatty acid components. This is the first time that an Ac₂PIM₆ molecule was synthesized. Further, a novel and short synthetic route towards tuberculostearic acid was developed, with only six synthetic steps from the commercially available Roche ester and four purification stages. Our synthetic approach benefited from the use of shared mannoside-building blocks, the carefully chosen orthogonal protecting groups and the features of the regioselective one-pot transformations from trimethylsilylated starting materials previously developed by us. The trichloroacetimidate donor types⁵⁸ are vital factors in achieving the successful assembly processes. Regioselectivity and stereoselectivity were achieved through the aid of steric and stereoelectronic effects. Steric effects were also exploited in the direct desymmetrization of myo-inositol by mannosyl donors and in minimizing the number of protecting groups used in the synthesis. With practical access and functional group flexibility, the key intermediates such as the pseudotrisaccharide 2 possess good potential in supplying PIMs of different mannosylation and lipidation patterns as well. Our synthesized Ac₂PIM₆ has comparable adjuvant activity with the natural PIMs against ovalbumin and tetanus toxoid antigens and induced the production of interleukin-4 and interferon-γ, thus, validating the immunological qualities of PIM molecules and its value in vaccine research.

Methods

Chemical synthesis. The complete experimental details and compound characterization data can be found in the Supplementary Methods. For the NMR spectra of the compounds in this article, see Supplementary Figs 4–120. The mass spectrum of the synthesized Ac₂PIM₆ 1 is shown in Supplementary Fig. 121.

Materials for immunological evaluation. All BALB/c mice were housed at the animal facility in the Institute of Cell Biology, Academia Sinica, Taiwan in accordance with the Institutional Animal Care Committee guidelines. Purified PIM₆ (NR-14846) and iPIM₆ (NR-14847) were obtained through BEI Resources, National Institute of Allergy and Infectious Diseases, National Institutes of Health (USA). Ovalbumin and tetanus toxoid were purchased from InvivoGen (San Diego, CA, USA) and Adimmune Inc. (Taiichung, Taiwan), respectively.

Evaluation of adjuvant activity. Five- to six-week-old female BALB/c mice were immunized with ovalbumin (100 μg) or tetanus toxoid (2 μg) adjuvanted with 10 μg of PIM compounds (Ac₂PIM₆ 1, iPIM₁₂ or iPIM₂) or alum in PBS for three times at 2-week intervals by intramuscular injection. Two weeks after the third immunization, the immunized mice were bled for antigen-specific antibody analysis. Ovalbumin- and tetanus toxoid-specific antibodies in heat-inactivated serum were monitored with direct enzyme-linked immunosorbent assay (ELISA). The ovalbumin- or tetanus toxoid-coated plates were incubated with mouse serum in twofold serial dilutions for 1 h. Antibody-specific IgG was determined by using horseradish peroxidase-conjugated anti-mouse antibodies (3,3′,5,5′-tetramethylbenzidine substrate (Thermo Scientific Inc). After colour development, absorbance at 450 nm was recorded by using a plate reader (SpectraMax M5, Molecular Device). The end point antibd antibody titre was defined as the highest dilution of serum to produce an absorbance 2.5 times higher than the optical absorbance produced by the pre-immune serum. The background end point antibody titre was assigned as <1:100.
Evaluation of cytokine-producing activity. Five- to six-week-old female BALB/c mice were intramuscularly injected with 10 μg of the PIM compounds (Ac2PIM1, 1, IPIM1, or IPIM6) in PBS and bled at 1 or 18 h after injection (five mice per group). The cytokines in the sera were measured with sandwich ELISA using paired anti-interleukin-4 and anti-interferon-γ monoclonal antibodies (R&D Systems).

Statistical analysis. The response of each mouse was counted as an individual data point for statistical analysis. Data obtained from animal studies were analysed by using one-way analysis of variance from Graphpad and differences were considered significant at P < 0.05.

References

1. WHO. Tuberculosis factsheet N°104 http://www.who.int/mediacentre/ factsheets/fs104/en/ (2014).
2. Orme, I. M. The search for new vaccines against tuberculosis. Nature 447, 77–84 (2007).
3. Ainge, G. D. et al. Phosphatidylinositol mannosides: synthesis and adjuvant properties of phosphatidylinositol di- and tetramannosides. Bioorg. Med. Chem. 14, 7515–7524 (2006).
4. Liu, X., Stocker, B. L. & Seeberger, P. H. Total synthesis of phosphatidylinositol mannosides of Mycobacterium tuberculosis. J. Am. Chem. Soc. 128, 3638–3648 (2006).
5. Dyer, B. S. et al. Synthesis and structure of phosphatidylinositol dimannoside. J. Org. Chem. 72, 3282–3288 (2007).
6. Ainge, G. D. et al. Phosphatidylinositol mannoside ether analogues: synthesis and interleukin-12 inducing properties. J. Org. Chem. 72, 5291–5296 (2007).
7. Boonyaratankul, S., Liu, X., Micheletti, M., Lepenies, B. & Seeberger, P. H. Chemical synthesis of all phosphatidylinositol mannosides (PIM) glycans from Mycobacterium tuberculosis. J. Am. Chem. Soc. 130, 16791–16799 (2008).
8. Ali, A., Wenk, M. R. & Lear, M. J. Total synthesis of a fully lipiformed form of phosphatidylinositol monomannoside (PIM-2) of Mycobacterium tuberculosis. Tetrahedron Lett. 50, 5664–5666 (2009).
9. Patil, P. S. & Hung, S.-C. Total synthesis of phosphatidylinositol dimannoside: a cell-envelope component of Mycobacterium tuberculosis. Chem. Eur. J. 15, 1091–1094 (2009).
10. Patil, P. S. & Hung, S.-C. Synthesis of mycobacterial triacylated phosphatidylinositol dimannoside containing an acyl lipid chain at 3-O of inositol. Org. Lett. 12, 2618–2621 (2010).
11. Ainge, G. D. et al. Chemical synthesis and immunosuppressive activity of dipalmitoyl phosphatidylinositol hexamannoside. J. Org. Chem. 76, 4941–4951 (2011).
12. Huang, T.-Y., Zulueta, M. M. L. & Hung, S.-C. Phosphatidylinositol mannosides as toll-like receptor 4 (TLR4) activity of phosphatidylinositol dimannoside analogues. J. Med. Chem. 54, 7288–7289 (2011).
13. Rankin, G. M. et al. Synthesis and mass spectral characterization of mycobacterial phosphatidylinositol and its dimannosides. J. Org. Chem. 77, 6743–6759 (2012).
14. Sureshan, K. M., Shashidhar, M. S., Praveen, T. & Das, T. Regioselective protection and deprotection of inositol hydroxy groups. Chem. Rev. 103, 4477–4504 (2003).
15. Patil, P. S., Zulueta, M. M. L. & Hung, S.-C. Synthesis of phosphatidylinositol mannosides. J. Chin. Chem. Soc. 61, 151–162 (2014).
16. Takahashi, H., Kittaka, H. & Ikegami, S. Novel synthesis of enantiomerically pure natural inositols and their diastereoisomers. J. Org. Chem. 66, 2705–2716 (2001).
17. Watt, J. A. & Williams, S. J. Rapid, iterative assembly of octyl α,β-oligomannosides and their 6-deoxy equivalents. Org. Biomol. Chem. 3, 1892–1992 (2005).
18. Wang, C.-C. et al. Regioselective one-pot protection of carbohydrates. Nature 458, 896–899 (2009).
19. Wang, C.-C., Kulkarni, S. S., Lee, J.-C., Luo, S.-Y. & Hung, S.-C. Regioselective one-pot protection of glucose. Nat. Protoc. 3, 97–113 (2008).
20. Chang, K.-L., Zulueta, M. M. L., Lu, X.-A., Zhong, Y.-Q. & Hung, S.-C. Regioselective one-pot protection of D-glucosamine. J. Org. Chem. 75, 7424–7427 (2010).
21. Huang, T.-Y., Zulueta, M. M. L. & Hung, S.-C. One-pot strategies for the synthesis of the tetrasaccharide linkage region of proteoglycans. Org. Lett. 13, 1506–1509 (2011).
22. Patil, P. S., Lee, C.-C., Huang, Y.-W., Liu, X.-A., Zulueta, M. M. L. & Hung, S.-C. Regioselective and stereoselective benzylidene installation and one-pot protection of D-mannose. Org. Biomol. Chem. 11, 2605–2612 (2013).
23. Huang, T.-Y., Zulueta, M. M. L. & Hung, S.-C. Selective one-pot protection, protection-glycosylation and protection-glycosylation glycosylation of carbohydrates: a case study with D-glucose. Org. Biomol. Chem. 12, 376–382 (2014).
24. Shie, C.-R. et al. Cat(OTI), an efficient and dual-purpose catalyst in the regioselective reductive ring opening of benzylidine acetalts. Angew. Chem. Int. Ed. 44, 1665–1668 (2005).
25. Wang, C.-C. et al. Synthesis of biologically potent ω1-2-linked disaccharide derivatives via regioselective one-pot protection-glycosylation. Angew. Chem. Int. Ed. 41, 2360–2362 (2002).
26. Bock, K. & Pedersen, C. A study of 13CH coupling constants in heparinoyxans. J. Chem. Soc. Perkin Trans. 2, 293–297 (1974).
27. Fuus, J. O., Gotfredsen, C. H. & Bock, K. Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev. 100, 4589–4614 (2000).
28. Zulueta, M. M. L. et al. α-Glycosylation by D-glucosamine-derived donors: synthesis of heparan and heparin analogues that interact with mycobacterial heparin-binding magglutinin. J. Am. Chem. Soc. 134, 8988–8995 (2012).
29. Gahler, G. L. et al. Diagnosis of tuberculosis meningitis by detection of tuberculosic acid in cerebrospinal fluid. Lancet 330, 117–119 (1987).
30. Prout, F. S., Cason, J. & Ingersoll, A. W. The synthesis of tuberculosic acid. J. Am. Chem. Soc. 69, 1233–1233 (1947).
Acknowledgements
This work was supported by the Ministry of Science and Technology (MOST 100-2113-M-001-019-MY3 and MOST 102-2628-M-001-001), National Health Research Institute (NHRI-EX103-10146NI) and Academia Sinica.

Author contributions
S.-C.H. designed the study, supervised students and staffs, and finalized the manuscript preparation. P.S.P. performed the synthesis of Ac2PIM6. T.-J.R.C. and S.-T.Y. carried out the evaluation of immunological activity. M.M.L.Z. prepared the figures and wrote the manuscript. L.S.L. is involved in the early stages of manuscript preparation and assisted in compiling the Supplementary Information. All authors discussed the results and commented on the manuscript.

Additional information
Accession codes: The X-ray crystallographic coordinates for compounds 10 and 13 in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1040371 and CGDC 1040372, respectively. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Patil, P. S. et al. Total synthesis of tetraacylated phosphatidylinositol hexamannoside and evaluation of its immunomodulatory activity. Nat. Commun. 6:7239 doi: 10.1038/ncomms8239 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/