FUNDAMENTAL GROUP OF LOG TERMINAL \mathbb{T}-VARIETIES

ANTONIO LAFACE, ALVARO LIENDO, AND JOAQUÍN MORAGA

Abstract. In this article, we introduce an approach to study the fundamental group of a log terminal \mathbb{T}-variety. As applications, we prove the simply connectedness of the spectrum of the Cox ring of a complex Fano variety, we compute the fundamental group of a rational log terminal \mathbb{T}-varieties of complexity one, and we study the local fundamental group of log terminal \mathbb{T}-singularities with a good torus action and trivial GIT decomposition.

INTRODUCTION

We study the fundamental group of normal complex algebraic varieties endowed with an effective action of an algebraic torus $\mathbb{T} := (\mathbb{C}^*)^k$, these varieties are known as \mathbb{T}-varieties. The complexity of a \mathbb{T}-variety X is defined to be $	ext{dim}(X) - k$. The \mathbb{T}-varieties of complexity zero are the classic toric varieties that can be described in terms of fans of polyhedral cones (see, e.g., [8, 10, 17]). In [17], [23] and [11] there are generalizations of such description to the case of \mathbb{T}-varieties of complexity one. Finally in [1, 2] the authors introduce the language of polyhedral divisors and divisorial fans to extend the theory of toric varieties to \mathbb{T}-varieties of arbitrary complexity.

In this paper, we are interested in the fundamental group of the underlying topological space of a complex \mathbb{T}-variety. The topology of toric varieties has been well studied (see, e.g., [8, 9, 12–14]). In the toric case, the fundamental group can be computed in terms of the defining fan of the toric variety (see [8, Theorem 12.1.10]). More precisely, the fundamental group of an affine toric variety is a free finitely generated abelian group, and the fundamental group of a toric variety is a finitely generated abelian group. In particular, a complex toric variety with a fixed point for the torus action is simply connected. In higher complexity, a \mathbb{T}-variety X

2010 Mathematics Subject Classification. Primary 14M25, Secondary 14C15.

The first author was partially supported by Proyecto FONDECYT Regular N. 1150732 and Projecto Anillo ACT 1415 PIA Conicyt. The second author was partially supported by Proyecto FONDECYT Regular N. 1160864.
is determined by a divisorial fan \mathcal{S}, which is a geometric and combinatorial object which depends on certain divisors on the Chow quotient of X (see Definition 1.2) and polyhedra associated to such divisors in a fixed \mathbb{Q}-vector space. In the case that X is affine with a good T-action (see Definition 1.1) we obtain the following result which generalize the toric case:

Theorem 1. Let X be a complex affine log terminal variety with a good T-action and denote by Y a resolution of singularities of its Chow quotient. Then the pushforward $\pi_* : \pi_1(X) \to \pi_1(Y)$ is an isomorphism.

First, let us point that the group $\pi_1(Y)$ is independent of the chosen resolution of singularities (see Remark 3.1) and that the log terminal condition in Theorem 1 cannot be weakened: For instance, a cone over an elliptic curve C has a log canonical singularity at the vertex and trivial fundamental group, being contractible, but its Chow quotient is C which has non-trivial fundamental group (see Remark 3.2). As a consequence, we obtain the following (see [5] for a definition of the Cox ring):

Corollary 1. Let X be a complex Fano variety, and let \overline{X} be the underlying topological space of the spectrum of the Cox ring of X. Then \overline{X} is simply connected.

Then, we focus on the case of rational T-varieties X with a one-dimensional Chow quotient, the so called T-varieties of complexity one. In Theorem 3.4, we give an explicit description of the fundamental group in terms of the defining divisorial fan \mathcal{S} of X. For instance, we can use this description to characterize the fundamental group of an algebraic C^*-bundle over \mathbb{P}^1.

Corollary 2. Let $X \to \mathbb{P}^1$ be a C^*-bundle which is trivial outside $\{p_1, \ldots, p_r\}$. Then, we have that

$$\pi_1(X) \simeq \langle b_1, \ldots, b_r, t \mid b_1 \cdots b_r, [b_i, t], t^{e_i} b_i^{m_i} \text{ for } 1 \leq i \leq r \rangle,$$

where $\Delta_{p_i} = \{e_i/m_i\}$ is the polyhedral coefficient at p_i.

Finally, we study the local fundamental group of rational log terminal T-varieties with a good torus action. It is conjectured that the local fundamental group of a log terminal singularity is finite (see, e.g. [18]). Moreover, this conjecture is known for the algebraic fundamental group [24], and for toric singularities [8, Theorem 12.1.10]. We extend this latter result to the following context.

Theorem 2. Let X be a log terminal T-variety with a good torus action and $x \in X$ the vertex. Assume that the GIT fan of X has a unique maximal chamber and each fiber of $\pi : X \to Y$ over a codimension one point, contains a smooth point. Then, the local fundamental group at $x \in X$ is finite.

The paper is organized as follows: In Section 1, we introduce the combinatorial description of T-varieties via divisorial fans. In Section 2, we explain the general approach to compute $\pi_1(X(\mathcal{S}))$ by using the information of the divisorial fan \mathcal{S}. Section 3 is devoted to the applications: In subsection 3.1 we prove Theorem 1 and Corollary 1, in subsection 3.2 we describe the fundamental group of a rational log terminal T-variety of complexity one, and in subsection 3.3 we prove Theorem 2. Finally, in Section 4 we give explicit computations in the case of Du Val singularities.

Acknowledgements. The authors would like to thank János Kollár and Chenyang Xu for pointing out a gap in a early version. The authors would also like to thank Hendrik Süß for providing interesting examples.
1. Basic Setup

In this section, we introduce the description of T-varieties in terms of divisorial fans due to Altmann, Hausen and Süss [1, 2], see [3] for a survey on known results about the geometry of T-varieties. The point of view here is to start with a variety Y together with a combinatorial data called a divisorial fan on Y and construct a T-variety X whose normalized Chow quotient is Y. We start recalling the definition of Chow quotient:

Definition 1.1. Let X be a normal affine variety. A **good T-action** on X is an effective T-action on X such that there exists a closed point $x \in X$ which is in the closure of any T-orbit. We shall call x the **vertex point** of X.

Definition 1.2. Let X be a T-variety embedded in a projective space \mathbb{P}^N, then there exists an open set of X on which all the orbits have dimension k and degree d, the Chow quotient of X is the closure of the set of points corresponding to such orbits in $\text{Chow}^k_d(\mathbb{P}^N)$, the Chow variety parametrizing cycles of dimension k and degree d on \mathbb{P}^N. The isomorphism class of the Chow quotient is independent from the chosen embedding. The normalization of the Chow quotient of X will be called the **normalized Chow quotient**.

Now we turn to introduce the language of **polyhedral divisors** and **divisorial fans**: Given N a finitely generated free abelian group of rank k we will denote by $M := \text{Hom}(N, \mathbb{Z})$ its dual and by $N_\mathbb{Q} := N \otimes \mathbb{Z} \mathbb{Q}$ and $M_\mathbb{Q} := M \otimes \mathbb{Z} \mathbb{Q}$ the associated \mathbb{Q}-vector spaces. We will denote by $T_N := \text{Spec} \mathbb{C}[M] \simeq (\mathbb{C}^*)^k$ the torus of N. For every convex polyhedron $\Delta \subseteq N_\mathbb{Q}$ one defines its **tail cone** as

$$\sigma(\Delta) := \{ v \in N_\mathbb{Q} \mid v + \Delta \subset \Delta \}.$$

A polyhedron Δ with tail cone σ will be called a σ-**polyhedron**. The set of σ-polyhedra is denoted by $\text{Pol}(\sigma)$. Observe that $\text{Pol}(\sigma)$ endowed with the Minkowski addition rule is a semigroup.

We adopt the notation $\text{CaDiv}(Y)_\mathbb{Q}$ for the monoid of \mathbb{Q}-Cartier \mathbb{Q}-divisors of a normal variety Y. A **polyhedral divisor** on (Y, N) is a finite formal sum of the form

$$D := \sum_{\Delta \in \text{Pol}(\sigma)} \Delta_D \otimes D \in \text{Pol}(\sigma) \otimes \mathbb{Z}_{\geq 0} \text{CaDiv}(Y)_\mathbb{Q}$$

where the sum is taken over a finite set of prime \mathbb{Q}-Cartier \mathbb{Q}-divisors, and Δ_D are convex σ-polyhedra in $N_\mathbb{Q}$. The common tail cone of the polyhedra Δ_D is called the **tail cone of D** and is denoted by $\sigma(D)$. The $\sigma(D)$-polyhedra Δ_D associated to the divisor D will be called the **polyhedral coefficient** of D. We will also consider the enlarged monoid $\text{Pol}^+(\sigma) := \text{Pol}(\sigma) \cup \{ \emptyset \}$ with addition rule $\emptyset + \Delta := \emptyset$ for every $\Delta \in \text{Pol}^+(\sigma)$. The **locus** of a polyhedral divisor D is defined as

$$\text{loc}(D) := Y - \bigcup_{\Delta_D = \emptyset} D$$

and we say that D has **complete locus** whenever $\text{loc}(D) = Y$ meaning that there is no \mathbb{Q}-divisor $D \subset Y$ with coefficient \emptyset. The **support** of D is

$$\text{supp}(D) := \text{loc}(D) \cap \bigcup_{\Delta_D \neq \emptyset} D$$

and the **trivial locus** of D is the complement of the support of D in the locus of D, and is denoted by $\text{triv}(D)$.
Let \mathcal{D} be a polyhedral divisor on (Y,N) with tail cone σ. We have a natural homomorphism of monoids

$$\mathcal{D} : \sigma^\vee \to \text{CaDiv}(Y) \quad u \mapsto \mathcal{D}(u) := \sum_{v \in \Delta_D} \min_{\langle u,v \rangle} D(v).$$

Observe that $\mathcal{D}(u) + \mathcal{D}(u') \leq \mathcal{D}(u + u')$ holds for every $u, u' \in \sigma^\vee$ and that the support of any divisor $\mathcal{D}(u)$ is contained in the support of \mathcal{D}.

Definition 1.3. A \mathbb{Q}-divisor \mathcal{D} is said to be semiample if it admits a base point free multiple and is said to be big if some multiple admits a section with affine complement. A polyhedral divisor \mathcal{D} is said to be a proper polyhedral divisor if $\mathcal{D}(u)$ is semiample for every $u \in \sigma(\mathcal{D})^\vee$ and $\mathcal{D}(u)$ is big for $u \in \text{relint}(\sigma(\mathcal{D})^\vee)$. In order to shorten notation, we will say that a proper polyhedral divisor \mathcal{D} is a pp-divisor.

We recall the relation between affine \mathbb{T}-varieties and pp-divisors. Given a pp-divisor \mathcal{D} on (Y,N) one defines the M-graded $\mathcal{O}_{\text{loc}}(\mathcal{D})$-algebra

$$\mathcal{A}(\mathcal{D}) := \bigoplus_{u \in \sigma^\vee \cap M} \mathcal{O}_{\text{loc}}(\mathcal{D}(u)).$$

The M-grading induces an effective \mathbb{T}_N action on both the relative spectrum $\tilde{X}(\mathcal{D})$ and the spectrum of global sections $X(\mathcal{D})$ of the above sheaf of algebras. The inclusion $\mathcal{O}_{\text{loc}}(\mathcal{D}) \to \mathcal{A}(\mathcal{D})$ induces a good quotient morphism $\pi : \tilde{X}(\mathcal{D}) \to \text{loc}(\mathcal{D})$.

The construction is summarized in the following diagram

$$
\begin{array}{ccc}
\tilde{X}(\mathcal{D}) & \xrightarrow{\phi} & X(\mathcal{D}) \\
\downarrow{=} & & \downarrow{\pi} \\
\text{loc}(\mathcal{D}) & &
\end{array}
$$

where the natural morphism r can be proved to be a \mathbb{T}_N-equivariant birational contraction. The main result in [1] states that every normal affine \mathbb{T}-variety arises in this way.

In what follows we will describe the gluing process of affine \mathbb{T}-varieties in terms of pp-divisors. Given two pp-divisors \mathcal{D} and \mathcal{D}' on (Y,N) we write $\mathcal{D}' \subseteq \mathcal{D}$ if $\Delta_D' \subseteq \Delta_D$ for every \mathbb{Q}-Cartier \mathbb{Q}-divisor $D \subset Y$. If $\mathcal{D}' \subset \mathcal{D}$ then we have an induced morphism $X(\mathcal{D}') \to X(\mathcal{D})$ and we say that \mathcal{D}' is a face of \mathcal{D} if the induced morphism is an embedding, and we denote this relation by $\mathcal{D}' \leq \mathcal{D}$. If \mathcal{D}' is a face of \mathcal{D} then in particular we have that $\sigma(\mathcal{D}') \leq \sigma(\mathcal{D})$. The intersection of two pp-divisors \mathcal{D} and \mathcal{D}' is defined to be the polyhedral divisor $\mathcal{D} \cap \mathcal{D}' := \sum_{D} (\Delta_D \cap \Delta_{D'}) \otimes D$.

Definition 1.4. A set S of pp-divisors is said to be a divisorial fan if it holds the following conditions:

- S is finite,
- S is closed under taking intersection,
- the intersection of any two pp-divisors of S is a face of both.

Gluing the affine \mathbb{T}-varieties $X(\mathcal{D})$ and $X(\mathcal{D}')$ along the affine subvarieties $X(\mathcal{D} \cap \mathcal{D}')$ for every \mathcal{D} and \mathcal{D}' in S, we obtain a \mathbb{T}-variety $X(S)$ (see [3, Section 4.4] for details). Analogously for the \mathbb{T}-varieties $\tilde{X}(\mathcal{D})$ with $\mathcal{D} \in S$ we obtain a \mathbb{T}-variety.
The set \(\{ \sigma(D) : D \in S \} \) is the tail fan \(\Sigma(S) \) of \(S \). Observe that the tail fan \(\Sigma(S) \) is indeed a fan. We define the locus of \(S \) to be the set \(\text{loc}(S) := \bigcup_{D \in S} \text{loc}(D) \), the support of \(S \) to be the set \(\text{supp}(S) := \bigcup_{D \in S} \text{supp}(D) \), and the trivial locus of \(S \) to be \(\text{triv}(S) := \bigcap_{D \in S} \text{triv}(D) \).

When \(S \) is the only divisorial fan on \(Y \) we may denote \(\text{triv}(S) \) by \(Y_{triv} \).

2. General approach to compute the fundamental group

In this section, we explain an approach to compute the fundamental group of a complex log terminal \(T \)-variety \(X(S) \) using its defining divisorial fan \(S \). First, we recall some definitions and results from [19].

Definition 2.1. Consider a pp-divisor \(D \) on \((Y,N)\) with tail cone \(\sigma \), and a morphism \(\psi: Y' \to Y \), such that no irreducible component of \(\text{supp}(D) \) contains \(\psi(Y') \). The polyhedral pull back is

\[
\psi^*(D) = \sum_D \Delta_D \otimes \psi^*(D) \in \text{Pol}(\sigma) \otimes_{\mathbb{Z}_{\geq 0}} \text{CaDiv}(Y')_{\mathbb{Q}}.
\]

Observe that \(\psi^*(D) \) is a polyhedral divisor which may not be a pp-divisor, meaning that \(\psi^*(D) \) may not be a proper polyhedral divisor. Given a divisorial fan \(S = \{ D_i \mid i \in I \} \) on \((Y,N)\), its pull back is \(\psi^*(S) = \{ \psi^*(D_i) \mid i \in I \} \).

Lemma 2.2. Let \(S \) be a divisorial fan on \((Y,N)\). If \(\psi: Y' \to Y \) is a projective birational morphism, then \(\psi^*(S) \) is a divisorial fan. Moreover \(\psi \) induces a \(T_N \)-equivariant isomorphism \(X(\psi^*(S)) \cong X(S) \).

Proof. Without loss of generality we assume that all the pp-divisors of \(S \) have complete locus: in case it is not complete, replace \(Y \) by \(\text{Loc}(D) \) in the whole proof. Given a pp-divisor \(D \in S \) and an element \(u \in \sigma(D)^\vee \) we have

\[
\psi^*(D)(u) = \sum_D \min_{v \in \Delta_D} \langle u, v \rangle \psi^*(D) = \psi^* \left(\sum_D \min_{v \in \Delta_D} \langle u, v \rangle D \right) = \psi^*(D(u)).
\]

Therefore, \(\psi^*(D)(u) \) is semiample. Moreover, if \(u \in \text{relint}(\sigma(D)^\vee) \), we know that \(D(u) \) is big, and the pull-back of a big divisor with respect to a projective birational
map is again big, so we conclude that $\psi^*(D(u))$ is a big \mathbb{Q}-divisor. Thus, $\psi^*(D)$ is a pp-divisor.

Now we prove that ψ induces a \mathbb{T}-equivariant isomorphism $X(\psi^*(D)) \simeq X(D)$. First of all observe that if D is a \mathbb{Q}-Weil divisor on Y, and f is a rational function then $\text{div}(f) + D \geq 0$ if and only if $\text{div}(f) + |D| \geq 0$. Now let $u \in \sigma(D)^\vee$ and let m be the Cartier index of $D(u)$. Observe that we have

\begin{align*}
 f \in \Gamma(Y, O_Y(D(u))) & \iff f^m \in \Gamma(Y, O_Y(mD(u))) \\
 f^m \in \Gamma(Y, O_Y(m\psi^*(D(u)))) & \iff f \in \Gamma(Y', O_{Y'}(\psi^*D(u))),
\end{align*}

where the first and last equivalences are by the previous observation, while the second equivalence follows from the fact that ψ is birational with connected fibers and the projection formula. So, there is a natural isomorphism of M-graded O_Y-algebras $A(\psi^*(D)) \simeq A(D)$, concluding the claim. The isomorphism $X(\psi^*(S)) \simeq X(S)$ follows from gluing the above \mathbb{T}_N-equivariant affine isomorphisms. □

Remark 2.3. The \mathbb{T}-varieties $\bar{X}(\psi^*(S))$ and $\bar{X}(S)$ are isomorphic if and only if the projective birational map $\psi: Y' \to Y$ is the identity (see, e.g., [19, Section 2]).

Definition 2.4. A pp-divisor D on (Y, N) is simple normal crossing if Y is smooth and the support of D is a divisor with simple normal crossing support. Analogously, a divisorial fan S on (Y, N) is simple normal crossing if all its pp-divisors $D \in S$ are simple normal crossing.

Definition 2.5. An algebraic variety X is toroidal if for each point $x \in X$ there exists a formal neighborhood of x on X which is isomorphic to a formal neighborhood of a point in an affine toric variety.

The following lemma is proved in [19, Proposition 2.6].

Lemma 2.6. Let S be a divisorial fan on (Y, N). If the divisorial fan S is simple normal crossing, then the \mathbb{T}-variety $\bar{X}(S)$ is toroidal.

Definition 2.7. Given a simple normal crossing pp-divisor D on (Y, N) we can write $D = \sum_D \Delta_D \otimes D$. Given the prime divisors D_1, \ldots, D_r such that $\Delta_D \neq \sigma$, we define the strata of the prime divisors D_1, \ldots, D_r, to be the locally closed set

$$Z_{D_1,\ldots,D_r} = D_1 \cap \cdots \cap D_r - \bigcup_{\Delta_D \neq \sigma} D_1 \cap \cdots \cap D_r \cap D.$$

Observe that the trivial open set of D is the strata of the empty set of prime divisors. The stratas of D give a natural stratification of Y. We define a strata Z of the divisorial fan S to be a finite intersection of strata of the pp-divisors $D \in S$. Clearly, the divisorial fan S define a natural stratification of Y.

Remark 2.8. In this remark we will describe a formal neighborhood of the preimage on $\bar{X}(S)$ of a strata Z on Y as defined in 2.7. First, we consider the case of a single proper polyhedral divisor D on (Y, N). By virtue of Lemma 2.2, we may assume that the projective variety Y is smooth and the polyhedral divisor D is simple normal crossing, therefore the strata Z defined in 2.7 is indeed a simple normal crossing strata.
Consider Y a smooth projective variety of dimension $n - k$ and N a free finitely generated abelian group of rank k. Let D be a simple normal crossing pp-divisor on (Y, N) with $σ = σ(D)$ its tail cone. We write $D = \sum D_i \otimes D$, and denote by $Z := Z_{D_{1, \ldots, D_r}}$ the strata of the prime divisors D_1, \ldots, D_r. Then, we can describe a formal neighborhood of the fiber $π^{-1}(Z)$ as follows: Consider the finitely generated free abelian group $N' = \mathbb{Z}^r \times N$ and the cone

$$σ(\mathcal{D}, Z) := \langle (0, σ), (ε_1, Δ_{D_1}), \ldots, (ε_r, Δ_{D_r}) \rangle \subset N'_Q$$

where the $ε_i$’s give the canonical basis of \mathbb{Z}^r. Thus, the formal neighborhood of a closed point of $π^{-1}(Z)$ is isomorphic to that of a corresponding closed point of

$$X(σ(\mathcal{D}, Z)) \times Z.$$

Therefore, given a divisorial fan \mathcal{S} on (Y, N) and $Z \subseteq Y$ a strata of the divisorial fan, the formal neighborhood of a closed point of $π^{-1}(Z)$ for the good quotient $π: \tilde{X}(\mathcal{S}) \to Y$ is isomorphic to the formal neighborhood of a corresponding closed point of

$$X(Σ(\mathcal{S}, Z)) \times Z.$$

where $Σ(\mathcal{S}, Z)$ is the fan in N' given by the cones $σ(\mathcal{D}, Z)$ for all $\mathcal{D} \in \mathcal{S}$. Hence, given an analytic tubular neighbourhood W_Z of Z (in the usual sense of manifolds [7, pag. 66]) the preimage $π^{-1}(W_Z)$ admits a natural structure of topological fibration with base Z and fiber $X(Σ(\mathcal{S}, Z))$, given by the composition of the good quotient $π^{-1}(W_Z) \to W_Z$ and the retraction $W_Z \to Z$.

Remark 2.9. From the above description, we can see that the fiber over a closed point $y \in Z$ is isomorphic to the toric bouquet associated to the polyhedron

$$D_y = \sum_i Δ_{D_i} \subset N'_Q.$$

For the definition of toric bouquet, see [3, Section 2.2].

Notation 2.10. Let $σ$ be a rational polyhedral cone in N_Q. Denote by $N_σ$ the subgroup of N generated by $σ \cap N$ and by $N(σ)$ the lattice quotient $N/N_σ$. By [8, Theorem 12.1.10], we know that

$$π_1(X(σ)) \simeq N(σ).$$

Observe that $N(σ)$ is a free finitely generated abelian group. Given a fan $Σ$ of polyhedral cones in N_Q, we denote by $N_Σ$ the semigroup generated by $\langle N_σ \mid σ ∈ Σ \rangle$, and by $N(Σ)$ the quotient $N/N_Σ$. By [8, Theorem 12.1.10], we know that

$$π_1(X(Σ)) \simeq N(Σ).$$

Observe that $N(Σ)$ is a finitely generated abelian group, however it may be not free. Given a basis $\{t_1, \ldots, t_k\}$ of the lattice N, a presentation for the fundamental group is the following

$$π_1(X(Σ)) \simeq \langle t_1, \ldots, t_k \mid R(Σ) \rangle,$$

where $R(Σ)$ is the set of monomials $t_1^{n_1} \cdots t_k^{n_k}$ where (n_1, \ldots, n_k) runs over all the bases of the lattices $N_τ ↪ N$ for each $τ ∈ Σ$.

Using the notation of Remark 2.8, we can see that the vectors $(ε_i, 0)$ of N' can be realized as loops on Y which goes around the divisor D_i. Indeed, on a formal neighborhood of the generic point $η$ of Z, the variety Y is analytically diffeomorphic
to $\mathbb{A}^r_\mathbb{C}$. We denote by $\{0\}_r$ the origin of the affine space $\mathbb{A}^r_\mathbb{C}$, and by S^{2r-1} the sphere of elements of norm one in $\mathbb{A}^r_\mathbb{C}$.

Construction 2.11. Consider S to be a divisorial fan on (Y,N), such that the T-variety $X(S)$ has log terminal singularities. By Lemma 2.2, we can consider a resolution of singularities $\psi: Y' \to Y$, such that the pull back divisorial fan $\psi^*(S)$ is simple normal crossing. Then, by Lemma 2.6, we know that the T_N-variety $\tilde{X}(\psi^*(S))$ is toroidal. Since $\tilde{X}(\psi^*(S))$ has toroidal singularities it is log terminal (see, e.g. [8, Theorem 11.4.24]). Therefore by [22, Theorem 1.1], we know that the birational contraction $r: \tilde{X}(\psi^*(S)) \to X(S)$ induces an isomorphism of fundamental groups

$$r_*: \pi_1(\tilde{X}(\psi^*(S))) \simeq \pi_1(X(S)).$$

So we can assume, without loss of generality, that the divisorial fan of $X = X(S)$ is simple normal crossing and $\tilde{X} = X$. We now propose a procedure to describe the fundamental group of such a variety X. Let $V \subseteq Y$ be the trivial open set of the divisorial fan S, so that we have an isomorphism

$$\pi^{-1}(V) \simeq V \times X(\Sigma(S)),$$

where $X(\Sigma(S))$ is the general fiber of $\pi: X \to Y$, defined by the divisorial fan $\Sigma(S)$. By [8, Theorem 12.1.5] the inclusion $\pi^{-1}(V) \to X$ induces a surjection of fundamental groups. By [8, Theorem 12.1.10] the fundamental group of the toric variety X_0 is isomorphic to $N(\Sigma(S))$. Thus the above surjection becomes

$$\pi_1(V) \times N(\Sigma(S)) \to \pi_1(X).$$

Our task now is to describe the kernel of the above homomorphism. Given a codimension $r := \text{codim}(Z)$ strata Z of the divisorial fan S, let W_Z be a formal neighborhood of Z and let $V_Z := W_Z \cup V$. We may assume without loss of generality that if $\overline{Z} \cap \overline{Z}' = \emptyset$ then $W_Z \cap W_{Z'} = \emptyset$, and if $\overline{Z} \supset \overline{Z}'$ then $W_Z \supset W_{Z'}$.

Lemma 2.12. Let $U \subseteq Y$ be an open subset, then $\pi_*: \pi_1(\pi^{-1}(U)) \to \pi_1(U)$ is surjective.

Proof. Let $V \subseteq Y$ as usual the open subset over which $\pi: X \to Y$ is trivial. We have a commutative diagram

$$\begin{diagram}
\pi_1(\pi^{-1}(U \cap V)) & \rto & \pi_1(\pi^{-1}(U)) \\
\uto{\pi_*} & \to & \uto{\pi_*} \\
\pi_1(U \cap V) & \rto & \pi_1(U)
\end{diagram}$$

where the non-labelled arrows are induced by the inclusion, and thus are surjections by [8, Theorem 12.1.5]. By the triviality of π over V we deduce that the left hand side pushforward is surjective (projection onto the first factor), so that the second pushforward must be surjective as well. \qed

Lemma 2.13. If $N(\Sigma(S,Z))$ is trivial and $U \subseteq W_Z$ is a tubular neighborhood of the non-empty intersection $U \cap Z$, then $\pi_*: \pi_1(\pi^{-1}(U)) \to \pi_1(U)$ is an isomorphism.

Proof. Let $\rho: U \to U \cap Z$ be a retraction whose fibers are isomorphic to an open toric subvariety \mathbb{A}^r. By Remark 2.8, the composition $\pi \circ \rho: \pi^{-1}(U) \to U \cap Z$ is a fibration with fiber an open toric subvariety of $X(\Sigma(S,Z))$ containing a fixed
point. Passing to the long exact sequence of homotopy groups and recalling the isomorphism \(\pi_1(X(\Sigma(S, Z)) \simeq N(\Sigma(S, Z)) \) we get the following exact sequence

\[
\cdots \rightarrow N(\Sigma(S, Z)) \rightarrow \pi_1(\pi^{-1}(W_Z)) \overset{\pi_* \rho_*}{\rightarrow} \pi_1(Z) \rightarrow 1
\]

In particular if \(N(\Sigma(S, Z)) \) is trivial then \(\pi_* \rho_* \) is an isomorphism, so that \(\pi_*: \pi_1(\pi^{-1}(U)) \rightarrow \pi_1(U \cap Z) \) is injective. We conclude by Lemma 2.12. \(\square \)

Remark 2.14. Let \(\rho: W_Z \rightarrow Z \) be a retraction whose fibers are isomorphic to \(\mathbb{A}^r \). By Remark 2.8, the composition \(\pi \circ \rho: \pi^{-1}(W_Z) \rightarrow Z \) is a fibration with fiber \(X(\Sigma(S, Z)) \). Moreover the fibers of the restriction of \(\rho \) to \(W_Z \cap V \) are isomorphic to \(\mathbb{A}^r \setminus \{0\}_r \), so that the fibers of the restriction of \(\pi \circ \rho \) to \(\pi^{-1}(W_Z \cap V) \) are isomorphic to \((\mathbb{A}^r \setminus \{0\}_r) \times X(\Sigma(S)) \), which are homotopic to \(S^{2r-1} \times X(\Sigma(S)) \). We have a commutative diagram

\[
\begin{array}{ccc}
\mathbb{A}^r \setminus \{0\}_r & \longrightarrow & W_Z \cap V \\
\rho \downarrow & & \downarrow \pi \\
(\mathbb{A}^r \setminus \{0\}_r) \times X(\Sigma(S)) & \longrightarrow & \pi^{-1}(W_Z \cap V) \\
\pi \downarrow & & \downarrow \pi_* \rho_* \\
X(\Sigma(S, Z)) & \longrightarrow & \pi^{-1}(W_Z) \\
\end{array}
\]

where the non-labelled arrows are inclusions. Passing to fundamental groups, recalling that \(S^{2r-1} \) is a strong deformation retract of \(\mathbb{A}^r \setminus \{0\}_r \), recalling the isomorphism \(\pi_1(X(\Sigma(S)) \simeq N(\Sigma(S)) \) and the isomorphism \(\pi_1(X(\Sigma(S, Z)) \simeq N(\Sigma(S, Z)) \) we obtain the following commutative diagram

\[
\begin{array}{ccc}
\pi_1(S^{2r-1}) & \longrightarrow & \pi_1(W_Z \cap V) \\
\pi_* \downarrow & & \downarrow \pi_* \\
\pi_1(S^{2r-1}) \times N(\Sigma(S)) & \longrightarrow & \pi_1(\pi^{-1}(W_Z \cap V)) \\
\alpha_Z \downarrow & & \downarrow \beta_Z \\
N(\Sigma(S, Z)) & \longrightarrow & \pi_1(\pi^{-1}(W_Z)) \\
\end{array}
\]

(2.3)

Moreover each row in the above diagram is part of the long exact sequence of homotopy groups induced by a fibration, so that the last map of each row is a surjection. If \(r > 1 \) then \(\alpha_Z \) is the surjection \(N(\Sigma(S)) \rightarrow N(\Sigma(S, Z)) \) induced by the inclusion of lattices \(N_{\Sigma(S)} \hookrightarrow N_{\Sigma(S, Z)} \). If \(r = 1 \), the generator of \(\pi_1(S^1) \simeq \mathbb{Z} \) is the loop corresponding to \((e_1, 0) \) in the notation of Remark 2.8. Observe that in both cases \(\alpha_Z \) is a homomorphism of abelian groups.

Remark 2.15. The following commutative diagram of inclusions

\[
\begin{array}{ccc}
\pi^{-1}(W_Z \cap V) & \longrightarrow & \pi^{-1}(W_Z) \\
\downarrow & & \downarrow \\
\pi^{-1}(V) & \longrightarrow & \pi^{-1}(V_Z)
\end{array}
\]
induces a commutative pushout diagram of fundamental groups by the Seifert-van Kampen theorem. Using the triviality of π over V we have a pushout diagram

$$
\pi_1(W_Z \cap V) \times N(\Sigma(S)) \xrightarrow{\beta_Z} \pi_1(\pi^{-1}(W_Z))
$$

(2.4)

$$
\pi_1(V) \times N(\Sigma(S)) \xrightarrow{\gamma_Z} \pi_1(\pi^{-1}(V_Z))
$$

where $\iota: W_Z \cap V \to V$ is the inclusion.

3. Applications

3.1. Simply connectedness of the spectrum of the Cox ring. The aim of this subsection is to use Construction 2.11 to prove Theorem 1 and Corollary 1.

Remark 3.1. Theorem 1 is independent of the choice of the resolution of singularities of the Chow quotient of X. Indeed, let Y_1 and Y_2 be two resolution of singularities of the Chow quotient of X. Then, using resolution of singularities we can find a common resolution Y' of Y_1 and Y_2, so by [22, Theorem 1.1] we deduce that $\pi_1(Y') \simeq \pi_1(Y_2)$ and $\pi_1(Y') \simeq \pi_1(Y_1)$, concluding the claim.

Remark 3.2. We point out that the log terminal condition in Theorem 1 cannot be weakened: let $H = O_{\mathbb{P}^2}(1)|_C$ be an ample divisor on a plane elliptic curve $C \subset \mathbb{P}^2$, and let

$$
X := \text{Spec} \left(\oplus_{m \in \mathbb{Z}_{\geq 0}} H^0(Y, O_Y(mH)) \right)
$$

Then X is a \mathbb{T}-variety of complexity one with an isolated log canonical singularity at the vertex, and X is contractible. Therefore, we have that $\pi_1(X)$ is trivial, while its Chow quotient C has non-trivial fundamental group.

Proof of Theorem 1. We use the notation of Construction 2.11. Since X admits a good \mathbb{T}-action, there is a \mathbb{T}-equivariant isomorphism $X(D) \simeq X$, where D is a pp-divisor on (Y, N), the variety Y is projective, and $\sigma(D) \subset N_Q$ is a full-dimensional cone (see, e.g., [19, Section 4]). Let $\psi: Y' \to Y$ be a resolution of singularities of Y and let $\psi^*(D)$ be a pull back of the pp-divisor to Y'. By Remark 3.1, it suffices to prove that the good quotient $\pi: \tilde{X}(\psi^*(D)) \to Y'$ induces an isomorphism of the fundamental groups. Also by [22, Theorem 1.1] the birational contraction $r: \tilde{X}(\psi^*(D)) \to X(D)$ induces an isomorphism of fundamental groups. Thus from now on, without loss of generality, we will assume

$$
X = \tilde{X}(\psi^*(D))
$$

and Y smooth. Observe that since $\sigma(D)$ is full-dimensional, the group $N(\sigma(D))$ is trivial. In particular, the group $N(\sigma(D, Z))$ is trivial for each strata Z of D, so that

$$
N(\Sigma(S)) = N(\Sigma(S, Z)) = 0.
$$

Thus for every strata Z of $\psi^*(D)$, the map $\pi_*: \pi_1(\pi^{-1}(W_Z)) \to \pi_1(W_Z)$ is an isomorphism by Lemma 2.12. By Remark 2.15 and the unicity of pushout, the pushforward

$$
\pi_*: \pi_1(\pi^{-1}(V_Z)) \to \pi_1(V_Z)
$$

is an isomorphism. Now, let

$$
V_{Z_1, \ldots, Z_k} := V_{Z_1} \cup \cdots \cup V_{Z_k} \quad W_{Z_1, \ldots, Z_k} := W_{Z_1} \cup \cdots \cup W_{Z_k}
$$
be the union of the open sets corresponding to \(k \) different strata. The following is a pushout diagram by the Seifert-van Kampen theorem.

\[
\begin{array}{ccc}
\pi_1(\pi^{-1}(W_Z \cap W_{Z_1,\ldots,z_k} \cap V)) & \rightarrow & \pi_1(\pi^{-1}(V)) \\
\downarrow & & \downarrow \\
\pi_1(\pi^{-1}(W_Z \cap W_{Z_1,\ldots,z_k})) & \rightarrow & \pi_1(\pi^{-1}(V_Z \cap V_{Z_1,\ldots,z_k}))
\end{array}
\]

If we apply \(\pi_* \) we get another pushout diagram by the same theorem. Moreover \(\pi_* \) is an isomorphism on the left hand side groups by Lemma 2.13, and is an isomorphism on the top-right group by the triviality of \(N(\Sigma(S)) \) and the fact that \(\pi^{-1}(V) \simeq V \times X(\Sigma(S)) \). By the unicity of pushouts we deduce that

\[
\pi_* : \pi_1(\pi^{-1}(V_Z \cap V_{Z_1,\ldots,z_k})) \rightarrow \pi_1(V_Z \cap V_{Z_1,\ldots,z_k})
\]

is an isomorphism as well. Now, we prove by induction on \(k \) that

\[
\pi_* : \pi_1(\pi^{-1}(V_{Z_1,\ldots,z_k})) \rightarrow \pi_1(V_{Z_1,\ldots,z_k})
\]

is an isomorphism. The case \(k = 1 \) is (3.1). If \(k \geq 2 \) we have a pushout diagram

\[
\begin{array}{ccc}
\pi_1(\pi^{-1}(V_{Z_1,\ldots,z_k-1} \cap V_{Z_k})) & \rightarrow & \pi_1(\pi^{-1}(V_{Z_k})) \\
\downarrow & & \downarrow \\
\pi_1(\pi^{-1}(V_{Z_1,\ldots,z_k-1})) & \rightarrow & \pi_1(\pi^{-1}(V_{Z_1,\ldots,z_k}))
\end{array}
\]

induced by the inclusions. By (3.1), the inductive hypothesis, the isomorphism (3.2), and the uniqueness of pushouts up to isomorphism, we conclude the claim. Since \(X \) can be covered by finitely many strata, the above argument shows that \(\pi_* : \pi_1(X) \rightarrow \pi_1(Y) \) is an isomorphism, proving the statement. \(\square \)

Proof of Corollary 1. By [21, 24], and [6, Corollary 1.3.2] it is known that Fano varieties are simply connected Mori dream spaces. Moreover, the singularities of the spectrum \(\overline{X} \) of the Cox ring of a Fano variety \(X \) are log terminal [15], and \(\overline{X} \) has a good action for the Picard torus [4]. Thus, we can apply Theorem 1, to deduce that \(\pi_1(\overline{X}) \simeq \pi_1(X) \simeq \{0\} \). \(\square \)

3.2. Rational log terminal \(T \)-varieties of complexity one

The aim of this section is to give a presentation of the possible fundamental groups of rational log terminal \(T \)-varieties of complexity one.

Notation 3.3. Consider a divisorial fan \(S \) on \((Y,N)\). For each \(D \in S \) and \(p \in Y \) denote by \(Q(D,p) \) a basis of the lattice \(N_\sigma(D,p) \subseteq \mathbb{Z} \times N \) and by

\[
B(D,p) := \left\{ \left(\frac{v_2}{v_1}, \ldots, \frac{v_{k+1}}{v_1} \right) \in \mathbb{Q}^{k+1} \mid (v_1, \ldots, v_{k+1}) \in Q(D,p) \right\}.
\]

Given a point \(v \in N_{\mathbb{Q}} \), we will denote by \(\mu(v) \) the smallest positive integer such that \(\mu(v)v \in N \). Observe that \(\mu(v) \leq v_1 \) for \(v \in B(D,p) \).

Theorem 3.4. Let \(S \) be a divisorial fan on \((\mathbb{P}^1,N)\), assume that \(X(S) \) has log terminal singularities and let \(\{p_1,\ldots,p_r\} \subseteq Y \) be the complement of the trivial locus of \(S \). Then \(\pi_1(X(S)) \) admits a presentation with generators

\[
b_1, \ldots, b_r, t_1, \ldots, t_k,
\]
where k is the rank of the acting torus, and relations
\begin{align*}
b_1 \cdots b_r, \\
[t_i, t_j] &\quad \text{for any } i, j \in \{1, \ldots, k\} \\
[t_i, b_j] &\quad \text{for } i \in \{1, \ldots, k\} \text{ and } j \in \{1, \ldots, r\}, \\
\mathcal{R}(\Sigma(S)) &\quad \text{where } \Sigma(S) \text{ is the tail fan of } S, \\
t^\mu(v)p_{\mu(v)} &\quad \text{for each } j \in \{1, \ldots, r\}, v \in \mathcal{B}(D, p_j) \text{ and } D \in S.
\end{align*}

Proof. We use the notation of Construction 2.11. Let

\[G(V) := \{b_1, \ldots, b_r, t_1, \ldots, t_k\} \]

and let

\[\mathcal{R}(V) := \mathcal{R}(\Sigma(S)) \cup \{b_1 \ldots b_r\} \cup \{[t_i, t_j] \text{ for any } i, j\} \cup \{[t_i, b_j] \text{ for any } i, j\}. \]

By the triviality of π over V, the formula (2.2) and the fact that $V = \mathbb{P}^1 \setminus \{p_1, \ldots, p_r\}$, we have that

\[\pi_1(\pi^{-1}(V)) \simeq \langle G(V) \mid \mathcal{R}(V) \rangle. \]

Observe that the stratification of \mathbb{P}^1 induced by S is given by the sets V and p_1, \ldots, p_r. Moreover, for any $j \in \{1, \ldots, r\}$, by (2.3), with $r = 1$ and $Z = p_j$, there is a commutative diagram

\[
\begin{array}{ccc}
Z \times N(\Sigma(S)) & \xrightarrow{\alpha_j} & \pi_1(\pi^{-1}(W_{p_j} \cap V)) \\
\downarrow \alpha_j & & \downarrow \beta_j \\
N(\Sigma(S, p_j)) & \xrightarrow{\sim} & \pi_1(\pi^{-1}(W_{p_j}))
\end{array}
\]

whose horizontal arrows are isomorphisms and the vertical arrows are surjections. Recall that $N(\Sigma) := N/N_\Sigma$, as defined in Notation 2.10. The homomorphism α_j is induced by the toric embedding

\[\mathbb{C}^* \times X(\Sigma(S)) \to X(\Sigma(S, p_j)), \]

which is induced by the fan inclusion $0 \times \Sigma(S) \hookrightarrow \Sigma(S, p_j)$. Thus, by [8, Theorem 12.1.10], α_j is induced by the inclusion of lattices $0 \times N_{\Sigma(S)} \hookrightarrow N_{\Sigma(S, p_j)}$ so that

\[\ker(\alpha_j) = \frac{N_{\Sigma(S, p_j)}}{0 \times N_{\Sigma(S)}}. \]

The lattice N_Σ is generated by the integral points of Σ. Thus $\ker(\alpha_j)$ is generated by a basis of lattice points of $N_{\Sigma(S, p_j)}$. If we denote by b_j a generator of the \mathbb{Z} group in the domain of α_j, then the kernel of α_j is generated by the set

\[\mathcal{B}_j := \{b_j^{\mu(v)}v \mid \text{for each } v \in \mathcal{B}(D, p_j) \text{ and } D \in S\} \]

because, by Notation 3.3, the map $v \mapsto (\mu(v), \mu(\mu(v))v)$ is a bijection between $\mathcal{B}(D, p_j)$ and a basis of $N_{\Sigma(D, p_j)}$. Thus we have a presentation

\[\pi_1(\pi^{-1}(W_{p_j})) \simeq \langle b_j, t_1, \ldots, t_k \mid \mathcal{R}(\Sigma(S)), \mathcal{B}_j \rangle. \]
Observe that we have a pushout diagram

\[
\begin{array}{ccc}
Z \times N(\Sigma(S)) & \xrightarrow{\alpha_j} & N(\Sigma(S, p_j)) \\
\downarrow i \times \text{id} & & \downarrow \text{id} \\
\pi_1(V) \times N(\Sigma(S)) & \xrightarrow{\gamma_j} & \pi_1(\pi^{-1}(V_{p_j}))
\end{array}
\]

where the homomorphism \(i\) is the inclusion \(\langle b_j \rangle \hookrightarrow \langle b_1, \ldots, b_r \rangle\). Thus the kernel of \(\gamma_j\) is the smallest normal subgroup of \(\pi_1(V) \times N(\Sigma(S))\) containing \((i \times \text{id})(\ker(\alpha_j))\).

So, we obtain the following presentation

\[
\pi_1(\pi^{-1}(V_{p_j})) \simeq \langle G(V) | R(V), B_1, \ldots, B_r \rangle.
\]

By repeatedly applying the Seifert-van Kampen Theorem we conclude that the fundamental group of \(X\) is

\[
\pi_1(X) \simeq \langle G(V) | R(V), B_1, \ldots, B_r \rangle,
\]

proving the statement. \(\square\)

Proof of Corollary 2. In this case, the pp-divisor can be written as

\[
D = \sum_{i=1}^{r+1} \left\{ \frac{e_i}{m_i} \right\} \otimes p_i \in \text{Pol}(\{0\}) \otimes_{\mathbb{Z}_{\geq 0}} \text{CaDiv}(\mathbb{P}^1)_\mathbb{Q}.
\]

since the tail cone of \(D\) is \(\{0\}\) in \(N_\mathbb{Q} \simeq \mathbb{Q}\). Hence, we conclude by Theorem 3.4. Indeed, observe that in this case we have a single pp-divisor \(D\) and for every \(p_i\) we have that the lattice \(N_{\sigma(D, p_i)}\) is the lattice of \(\mathbb{Z} \times \mathbb{N}\) generated by

\[
\mathbb{Q}(D, p_i) = \left\{ (m_i, e_i) \right\},
\]

and therefore we have

\[
\mathcal{B}(D, p_i) = \left\{ \frac{e_i}{m_i} \right\}.
\]

\(\square\)

3.3. Finiteness of local fundamental group

In this subsection we study the finiteness of the local fundamental group of a log terminal \(T\)-singularity with a good torus action.

Definition 3.5. We say that the \(T\)-variety \(X\) has a trivial GIT decomposition if there exists exactly one GIT quotient of \(X\) of the expected dimension, and moreover this coincides with the Chow quotient of \(X\).

Proof of Theorem 2. The local fundamental group at the vertex is a local computation, so we may assume that the \(T\)-variety is affine. By [1, Theorem 1], we have a \(T\)-equivariantly isomorphism \(X \simeq X(D)\) for some pp-divisor \(D\) on \((Y, N)\), where \(Y\) is the Chow quotient of \(X\). Since we are assuming that the \(T\)-action on \(X(D)\) is good, we know that \(Y\) is projective and \(\sigma = \sigma(D) \subset N_\mathbb{Q}\) is a full-dimensional cone (see, e.g., [19, Section 4]). Moreover, by [19] we know that the trivial GIT decomposition implies that \(D(u)\) is an ample \(\mathbb{Q}\)-divisor for every \(u \in \text{relint}(\sigma^\vee)\). We will write

\[
D = \sum_{D \subseteq Y} \Delta_D \otimes D,
\]
where the sum runs over a finite set of \(\mathbb{Q}\)-Cartier \(\mathbb{Q}\)-divisors on \(Y\) and \(\Delta_D\) are \(\sigma\)-polyhedra. For each vertex \(v \in \Delta_D\) we recall that \(\mu(v)\) is the smallest positive integer such that \(\mu(v) v\) is a lattice point of \(N_{\mathbb{Q}}\), by
\[
\mu_D := \max\{\mu(v) | v \text{ is a vertex of } \Delta_D\},
\]
and by
\[
B := \sum_{D \subseteq Y} \frac{\mu_D - 1}{\mu_D} D,
\]
where the sum runs over the same \(\mathbb{Q}\)-Cartier \(\mathbb{Q}\)-divisors of \(D\). By [19, Theorem 4.9], we know that the pair \((Y, B)\) is a log Fano pair. We claim that \(Y\) has log terminal singularities. Indeed, the effective divisor \(B\) is \(\mathbb{Q}\)-Cartier and \(K_Y + B\) is \(\mathbb{Q}\)-Cartier, so we conclude that \(K_Y\) is \(\mathbb{Q}\)-Cartier, therefore \(Y\) is \(\mathbb{Q}\)-Gorenstein. Thus the klt property of \((Y, B)\) implies the log terminal property of \(Y\) (see, e.g., [16, Corollary 2.35]). Hence, by [22, Theorem 1.1] and [21] we conclude that \(\pi_1(Y') \simeq \pi_1(Y) \simeq \{0\}\) for every resolution of singularities \(\psi: Y' \to Y\).

Let \(\psi: Y' \to Y\) be a resolution of singularities such that \(\psi^*(D)\) is a pp-divisor with simple normal crossing support and let \(X(S) \to \tilde{X}(\psi^*(D))\) be a toroidal resolution of singularities, defined by a divisorial fan \(\mathcal{S}\) on \(Y'\). Denote by \(\phi: X(S) \to X(D)\) the projective birational morphism obtained by composition. Therefore, we have a quotient of smooth varieties \(\pi': X(S) \to Y'\). By the assumption that a fiber of \(\pi: X(D) \to Y\) over a codimension one point contains a smooth point, we can take the resolution of singularities which does not blow-up such smooth points, so the analogous assumption holds for the morphism \(\pi'\). Moreover, the general fiber of \(\pi'\) is isomorphic to \(X(\Sigma)\), where \(\Sigma\) is a simplicial refinement of \(\sigma \subset N_\mathbb{Q}\). Since \(\sigma\) is full-dimensional, then the rays of \(\Sigma\) span \(N_\mathbb{Q}\) so that, by [8, Theorem 12.1.10], the fundamental group of \(X(\Sigma)\) with the vertex removed is a finite group \(G(\Sigma)\). Hence, we can apply [20, Lemma 1.5], to conclude that we have an exact sequence
\[
G(\Sigma) \to \pi_1(\phi^{-1}(X(D) - \{x\})) \to \pi_1(Y') \to 1.
\]
Observe that by [22, Theorem 1.1] we have that \(\pi_1(Y') = \pi_1(Y) = 1\), so we conclude that \(\pi_1(\phi^{-1}(X(D) - \{x\}))\) is finite and thus \(\pi_1(X(D) - \{x\})\) is finite as well, again by [22, Theorem 1.1].

Corollary 3.6. With the same assumptions than Theorem 2. The inclusion of a general fiber of \(\pi: X \to Y\) induces a surjection of the local fundamental group at the vertex of the general fiber onto the local fundamental group at the vertex \(x \in X\).

Proof. Indeed, by the proof of the theorem we have a surjection
\[
G(\Sigma) \to \pi_1(\phi^{-1}(X(D) - \{x\}))
\]
and the latter group is isomorphic to \(\pi_1(X(D) - \{x\})\) by [22, Theorem 1.1].

4. Examples

It is know that a germ of surface Du Val singularity \(x \in X\), is a log terminal \(T\)-variety of complexity one with trivial fundamental group. Moreover, since Du Val singularities are quotients of \(\mathbb{C}^2\) by a binary polyhedral group \(G \subset SL_2(\mathbb{C})\), the fundamental group of the punctured neighborhood \(X \setminus \{x\}\) is isomorphic to \(G\). In this subsection, we recall an explicit computation of Du Val singularities as \(T\)-varieties and recover their fundamental group using Theorem 3.4.
Example 4.1. By [19, Corollary 5.6], we know that every quasi-homogeneous log-terminal surface singularity is isomorphic to the section ring of one of the following \mathbb{Q}-divisors on \mathbb{P}^1
\[
D = \left\{ \frac{e_1}{m_1} \right\} \otimes [0] + \left\{ \frac{e_2}{m_2} \right\} \otimes [1] + \left\{ \frac{e_3}{m_3} \right\} \otimes [\infty], \quad \text{and} \quad \frac{e_1}{m_1} + \frac{e_2}{m_2} + \frac{e_3}{m_3} > 0.
\]
Here, the triple (m_1, m_2, m_3) is one of the platonic triples $(1, p, q), (2, 2, r), (2, 3, 3), (2, 3, 4)$ and $(2, 3, 5)$, where $p, q \geq 1$ and $r \geq 2$. Moreover, the contraction morphism $r: \tilde{X}(D) \to X(D)$ is contracting a curve onto the vertex x of $X(D)$. Therefore, the map
\[
\pi: \tilde{X}(D) - r^{-1}(x) \to \mathbb{P}^1
\]
is a \mathbb{C}^*-bundle with at most three non-reduced fibers. Then we can apply Corollary 2 to give a presentation of the fundamental group of $\pi_1(X(D))$ in terms of generators and relations as follows
\[
\langle b_1, b_2, t \mid [b_1, t], [b_2, t], t^{e_1} b_1^{m_1}, t^{e_2} b_2^{m_2}, t^{e_3} b_3^{m_3} \rangle
\]
where $b = (b_1 b_2)^{-1}$.

Example 4.2. By [19, Theorem 5.7], we know that every quasi-homogeneous canonical surface singularity is isomorphic to the section ring of one of the following \mathbb{Q}-divisors on \mathbb{P}^1
\[
A_i: \left\{ \frac{i + 1}{i} \right\} \otimes [\infty] \quad i \geq 1.
\]
\[
D_i: \left\{ \frac{1}{2} \right\} \otimes [0] + \left\{ \frac{1}{i - 2} \right\} \otimes [1] + \left\{ \frac{-1}{2} \right\} \otimes [\infty] \quad i \geq 4.
\]
\[
E_i: \left\{ \frac{1}{3} \right\} \otimes [0] + \left\{ \frac{1}{i - 3} \right\} \otimes [1] + \left\{ \frac{-1}{2} \right\} \otimes [\infty] \quad i \in \{6, 7, 8\}.
\]
Remark that we correct some sign typos in the statement of [19, Theorem 5.7]. The proof therein remains valid without corrections. Proceeding as in Example 4.2, we can recover the local fundamental groups of DuVal singularities
\[
A_i: \langle b \mid b_i^{i+1} \rangle \quad i \geq 1.
\]
\[
D_i: \langle b_1, b_2 \mid b_2^{2} = b_1^{2-2} = (b_1 b_2)^2 \rangle \quad i \geq 4.
\]
\[
E_i: \langle b_1, b_2 \mid b_3^{i} = b_1^{2} = b_2^{2} \rangle \quad i \in \{6, 7, 8\}.
\]
More precisely, for the E_8 singularity we obtain the following presentation
\[
\langle b_1, b_2, t \mid [b_1, t], [b_2, t], t b_1^{3}, t b_2^{3}, t (b_1 b_2)^2 \rangle \simeq \langle b_1, b_2 \mid b_1^{3} = b_2^{3} = (b_1 b_2)^2 \rangle.
\]
The other computations are analogous.

Example 4.3. We give an example of a rational affine \mathbb{T}-variety of complexity one $X(D)$ with a good torus action and vertex $x \in X(D)$, such that the fundamental groups $\pi_1(X(D))$ and $\pi_1(X(D) - \{x\})$ are both trivial. Consider the cone
\[
\sigma = \langle (-1, 1), (1, 8) \rangle \subset N_\mathbb{Q} \simeq \mathbb{Q}^2
\]
and the proper polyhedral divisor given by
\[
D = \Delta_0 \otimes [0] + \Delta_1 \otimes [1] + \Delta_\infty \otimes [\infty],
\]
where

\[\Delta_0 = \sigma + \left(\frac{2}{5}, \frac{1}{5} \right), \]
\[\Delta_1 = \sigma + \left(\frac{1}{3}, \frac{1}{3} \right), \]
\[\Delta_\infty = \sigma + \text{conv}((0,0), (1,0)), \]

where conv denotes the convex hull. By Theorem 1, we conclude that \(\pi_1(X(D)) \) is trivial. Moreover, we can apply Theorem 3.4 to see that \(\pi_1(X(D) - \{x\}) \) is isomorphic to

\[\langle t_1, t_2, b_1, b_2 \mid [t_1, b_1], \ldots, [t_2, b_2], t_1^{-1}t_2, t_1t_2t_3b_1^5t_1t_2b_2^3, (b_1b_2)^{-1}t_1(b_1b_2)^{-1} \rangle. \]

Indeed, we have that

\[\mathcal{Q}(D, \{0\}) = \{(0,-1,1), (0,11,8), (5,2,1)\}, \]
\[\mathcal{Q}(D, \{1\}) = \{(0,-1,1), (0,11,8), (3,1,1)\}, \] and
\[\mathcal{Q}(D, \{\infty\}) = \{(0,-1,1), (0,11,8), (1,0,0), (1,1,0)\}. \]

From the first and last two relations we obtain \(t_1 = t_2 = e, b_1^5 = b_2^3 = b_1b_2 = e \), so that \(b_1 = b_2 = e \).

References

[1] Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607.
[2] Klaus Altmann, Jürgen Hausen, and Hendrik Süß, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), no. 2, 215–242.
[3] Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The geometry of \(T \)-varieties, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 17–69.
[4] Klaus Altmann and Jarosław A. Wiśniewski, Polyhedral divisors of Cox rings, Michigan Math. J. 60 (2011), no. 2, 463–480.
[5] Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015.
[6] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
[7] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982.
[8] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
[9] Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417–451, DOI 10.1215/S0012-7094-91-06217-4.
[10] Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588 (French).
[11] Hubert Flenner and Mikhail Zaidenberg, Normal affine surfaces with \(\mathbb{C}^* \)-actions, Osaka J. Math. 40 (2003), no. 4, 981–1009.
[12] M. Franz, The integral cohomology of toric manifolds, Tr. Mat. Inst. Steklova 252 (2006), no. Geom. Topol., Diskret. Geom. i Teor. Mnozh., 61–70; English transl., Proc. Steklov Inst. Math. 1 (252) (2006), 53–62.
[13] William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353.
[14] William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.

[15] Yoshinori Gongyo, Shinnosuke Okawa, Akiyoshi Sannai, and Shunsuke Takagi, *Characterization of varieties of Fano type via singularities of Cox rings*, J. Algebraic Geom. 24 (2015), no. 1, 159–182.

[16] János Kollár and Shigefumi Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR1658899

[17] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, *Toroidal embeddings. I*, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973.

[18] János Kollár, *New examples of terminal and log canonical singularities*, 2011. https://arxiv.org/abs/1107.2864.

[19] Alvaro Liendo and Hendrik Süss, *Normal singularities with torus actions*, Tohoku Math. J. (2) 65 (2013), no. 1, 105–130.

[20] Madhav V. Nori, *Zariski’s conjecture and related problems*, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305–344.

[21] Shigeharu Takayama, *Simple connectedness of weak Fano varieties*, J. Algebraic Geom. 9 (2000), no. 2, 403–407.

[22] Shigeharu Takayama, *Local simple connectedness of resolutions of log-terminal singularities*, Internat. J. Math. 14 (2003), no. 8, 825–836.

[23] Dmitri A. Timashev, *Torus actions of complexity one*, Toric topology, 2008, pp. 349–364.

[24] Chenyang Xu, *Finiteness of algebraic fundamental groups*, Compos. Math. 150 (2014), no. 3, 409–414.

Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
E-mail address: alaface@udec.cl

Instituto de Matemática y Física, Universidad de Talca, Casilla 721, Talca, Chile
E-mail address: aliendo@inst-mat.utalca.cl

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112
E-mail address: moraga@math.utah.edu