An Introduction to the q-Laguerre–Hahn Orthogonal q-Polynomials

Abdallah GHRESSI, Lotfi KHÉRIJI and Mohamed Ihsen TOUNSI

Institut Supérieur des Sciences Appliquées et de Technologies de Gabès, Rue Omar Ibn El-Khattab 6072 Gabès, Tunisia

E-mail: Abdallah.Ghrissi@fsg.rnu.tn, kheriji@yahoo.fr, MohamedIhssen.Tounsi@issatgb.rnu.tn

Received February 14, 2011, in final form September 26, 2011; Published online October 04, 2011

Abstract. Orthogonal q-polynomials associated with q-Laguerre–Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted.

Key words: orthogonal q-polynomials; q-Laguerre–Hahn form; q-difference operator; q-difference equation; q-Riccati equation

2010 Mathematics Subject Classification: 42C05; 33C45

1 Introduction and preliminary results

The concept of the usual Laguerre–Hahn polynomials were extensively studied by several authors [1, 2, 4, 6, 8, 9, 10, 15, 18]. They constitute a very remarkable family of orthogonal polynomials taking consideration of most of the monic orthogonal polynomials sequences (MOPS) found in literature. In particular, semiclassical orthogonal polynomials are Laguerre–Hahn MOPS [15, 20]. The Laguerre–Hahn set of form (linear functional) is invariant under the standard perturbations of forms [2, 9, 18, 20]. It is well known that a usual Laguerre–Hahn polynomial satisfies a fourth order differential equation with polynomials coefficients but the converse remains not proved until now [20]. Discrete Laguerre–Hahn polynomials were studied in [13]. These families are already extensions of discrete semiclassical polynomials [19]. In literature, analysis and characterization of the q-Laguerre–Hahn orthogonal q-polynomials have not been yet presented in a unified way. However, several authors have studied the fourth order q-difference equation related to some examples of q-Laguerre–Hahn orthogonal q-polynomials such as the co-recursive and the rth associated of q-classical polynomials [11, 12]. More generally, the fourth order difference equation of Laguerre–Hahn orthogonal on special non-uniform lattices polynomials was established in [4]. For other relevant works in the domain of orthogonal q-polynomials and q-difference equation theory see [3, 21] and [5].

So the aim of this contribution is to establish a basic theory of q-Laguerre–Hahn orthogonal q-polynomials. We give some characterization theorems for this case such as the structure relation and the q-Riccati equation. We extend the concept of the class of the usual Laguerre–Hahn forms to the q-Laguerre–Hahn case. Moreover, we show that some standard transformation and perturbation carried out on the q-Laguerre–Hahn forms lead to new q-Laguerre–Hahn forms; the class of the resulting forms is analyzed and some examples are treated.

⋆This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html
The product defined as before is commutative [20]. Particu-
larly, the inverse exists is defined by

\[(Tu, f) = (u, Tf), \quad u \in \mathcal{P}', \quad f \in \mathcal{P}. \]

For instance, for any form \(u \), any polynomial \(g \) and any \((a, c) \in (\mathbb{C} \setminus \{0\}) \times \mathbb{C} \), we let \(H_q u, gu, h_a u, Du, (x - c)^{-1}u \) and \(\delta_c \), be the forms defined as usually [20] and [16] for the results related to the operator \(H_q \)

\[
\begin{align*}
 &\langle H_q u, f \rangle := -\langle u, H_q f \rangle, \\
 &\langle gu, f \rangle := \langle u, g f \rangle, \\
 &\langle h_a u, f \rangle := \langle u, h_a f \rangle, \\
 &\langle Du, f \rangle := -\langle u, f' \rangle, \\
 &\langle (x - c)^{-1} u, f \rangle := \langle u, \theta c f \rangle, \\
 &\langle \delta_c, f \rangle := f(c),
\end{align*}
\]

where for all \(f \in \mathcal{P} \) and \(q \in \tilde{\mathbb{C}} := \{ z \in \mathbb{C}, \ z \neq 0, \ z^n \neq 1, \ n \geq 1 \} \) [16]

\[
(H_q f)(x) = \frac{f(qx) - f(x)}{(q - 1)x}, \quad (h_a f)(x) = f(ax), \quad (\theta c f)(x) = \frac{f(x) - f(c)}{x - c}.
\]

In particular, this yields to

\[
(H_q u)_n = -[n]_q (u)_{n-1}, \quad n \geq 0,
\]

where \((u)_{-1} = 0 \) and \([n]_q := \frac{q^n - 1}{q - 1}, \ n \geq 0 \) [15]. It is obvious that when \(q \to 1 \), we meet again the derivative \(D \).

For \(f \in \mathcal{P} \) and \(u \in \mathcal{P}' \), the product \(uf \) is the polynomial [20]

\[
(uf)(x) := \langle u, \frac{x f(x) - \zeta f(\zeta)}{x - \zeta} \rangle = \sum_{i=0}^{n} \left(\sum_{j=i}^{n} (u)_{j-i} f_j \right) x^i,
\]

where \(f(x) = \sum_{i=0}^{n} f_i x^i \). This allows us to define the Cauchy’s product of two forms:

\[
\langle uv, f \rangle := \langle u, vf \rangle, \quad f \in \mathcal{P}.
\]

The product defined as before is commutative [20]. Particularly, the inverse \(u^{-1} \) of \(u \) if there exists is defined by \(uu^{-1} = \delta_0 \).

The Stieltjes formal series of \(u \in \mathcal{P}' \) is defined by

\[
S(u)(z) := -\sum_{n \geq 0} \frac{(u)_n}{z^{n+1}}.
\]

A form \(u \) is said to be regular whenever there is a sequence of monic polynomials \(\{P_n\}_{n \geq 0} \), \(\deg P_n = n, \ n \geq 0 \) such that \(\langle u, P_n P_m \rangle = r_n \delta_{n,m} \) with \(r_n \neq 0 \) for any \(n, m \geq 0 \). In this case, \(\{P_n\}_{n \geq 0} \) is called a monic orthogonal polynomials sequence MOPS and it is characterized by the following three-term recurrence relation (Favard’s theorem)

\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0, \\
P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1} P_n(x), \quad n \geq 0,
\]

(1.1)

where \(\beta_n = \frac{(u,x^2 f_n^2)}{r_n} \in \mathbb{C}, \ \gamma_{n+1} = \frac{r_{n+1}}{r_n} \in \mathbb{C} \setminus \{0\}, \ n \geq 0. \)
The shifted MOPS \(\{ \tilde{P}_n := a^{-n}(h_a P_n) \}_{n \geq 0} \) is then orthogonal with respect to \(\tilde{u} = h_{a-1} u \) and satisfies (1.1) with [20]

\[
\tilde{\beta}_n = \frac{\beta_n}{a}, \quad \tilde{\gamma}_{n+1} = \frac{\gamma_{n+1}}{a^2}, \quad n \geq 0.
\]

Moreover, the form \(u \) is said to be normalized if \((u)_0 = 1 \). In this paper, we suppose that any form will be normalized.

The form \(u \) is said to be positive definite if and only if \(\beta_n \in \mathbb{R} \) and \(\gamma_{n+1} > 0 \) for all \(n \geq 0 \). When \(u \) is regular, \(\{ P_n \}_{n \geq 0} \) is a symmetrical MOPS if and only if \(\beta_n = 0, n \geq 0 \) or equivalently \((u)_{2n+1} = 0, n \geq 0 \).

Given a regular form \(u \) and the corresponding MOPS \(\{ P_n \}_{n \geq 0} \), we define the associated sequence of the first kind \(\{ P_n^{(1)} \}_{n \geq 0} \) by [20] equations (2.8) and (2.9)

\[
P_n^{(1)}(x) = \langle u, \frac{P_{n+1}(x) - P_{n+1}(\xi)}{x - \xi} \rangle = (u_0 P_{n+1})(x), \quad n \geq 0.
\]

The following well known results (see [16, 17, 20]) will be needed in the sequel.

Lemma 1. Let \(u \in \mathcal{P}' \). \(u \) is regular if and only if \(\Delta_n(u) \neq 0, n \geq 0 \) where

\[
\Delta_n(u) := \det \left((u)_{\mu+\nu} \right)_{\mu, \nu = 0}^{n}, \quad n \geq 0
\]

are the Hankel determinants.

Lemma 2. For \(f, g \in \mathcal{P}, u, v \in \mathcal{P}' \), \((a, b, c) \in \mathbb{C} \setminus \{ 0 \} \times \mathbb{C}^2 \), and \(n \geq 1 \), we have

\[
(x - c)((x - c)^{-1} u) = u, \quad (x - c)^{-1}((x - c)u) = u - (u)_{0}\delta_c,
\]

\[
(u_0 f)(x) = a_n x^{n-1}(u)_0 + \text{lower order terms}, \quad f(x) = \sum_{k=0}^{n} a_k x^k,
\]

\[
u_0(f g) = (u_0 f) + (f u)\theta_0 g,
\]

\[
u_0(f P_{k+1}) = f P_k^{(1)}, \quad k + 1 \geq \deg f,
\]

\[
\theta_b - \theta_c = (b - c) \theta_b \circ \theta_c, \quad \theta_b \circ \theta_c = \theta_c \circ \theta_b,
\]

\[
h_a(gu) = (h_{a-1})(h_{a}u), \quad h_a(uv) = (h_{a}u)(h_{a}v), \quad h_a(x^{-1}u) = ax^{-1}h_{a}u,
\]

\[
h_{q^{-1}} \circ H_q = H_{q^{-1}}, \quad H_q \circ h_{q^{-1}} = q^{-1}H_{q-1}, \quad \text{in } \mathcal{P},
\]

\[
h_{q^{-1}} \circ H_q = q^{-1}H_{q^{-1}}, \quad H_q \circ h_{q^{-1}} = H_{q^{-1}}, \quad \text{in } \mathcal{P}',
\]

\[
H_q(fg)(x) = \left(h_{q}f \right)((h_{q}g)(x) + g(x)(h_{q}f)(x),
\]

\[
H_q(gu) = (h_{q^{-1}}g)H_q u + q^{-1}(H_{q^{-1}}g)u,
\]

\[
H_{q^{-1}}(u_0 f)(x) = q(H_{q}u)\theta_0(h_{q^{-1}}f)(x) + (u_0 h_{q^{-1}}f)(x),
\]

\[
S(fu)(z) = f(z)S(u)(z) + (u_0 f)(z),
\]

\[
S(uv)(z) = -z S(u)(z)S(v)(z),
\]

\[
S(x^{-n}u)(z) = z^{-n}S(u)(z), \quad S(u^{-1})(z) = z^{-2}(S(u)(z))^{-1},
\]

\[
S(h_{q}u)(z) = q^{-1}(H_{q^{-1}}(S(u)))(z), \quad (h_{q^{-1}}S(u))(z) = q S(h_{q}u)(z).
\]

Definition 1. A form \(u \) is called \(q \)-Laguerre–Hahn when it is regular and satisfies the \(q \)-difference equation

\[
H_q(\Phi u) + \Psi u + B(x^{-1}u(h_{q}u)) = 0,
\]

where \(\Phi, \Psi, B \) are polynomials, with \(\Phi \) monic. The corresponding orthogonal sequence \(\{ P_n \}_{n \geq 0} \) is called \(q \)-Laguerre–Hahn MOPS.
Remark 1. When \(B = 0 \) and the form \(u \) is regular then \(u \) is \(q \)-semiclassical [17]. When \(u \) is regular and not \(q \)-semiclassical then \(u \) is called a strict \(q \)-Laguerre–Hahn form.

Lemma 3. Let \(u \) be a regular form. If \(u \) is a strict \(q \)-Laguerre–Hahn form satisfying (1.17) and there exist two polynomials \(\Delta \) and \(\Omega \) such that

\[
\Delta u + \Omega(x^{-1}u(h_qu)) = 0
\]

then \(\Delta = \Omega = 0 \).

Proof. The operation \(\Delta \times (1.17) - B \times (1.18) \) gives

\[
\Omega H_q(\Phi u) + (\Omega \Psi - \Delta B) u = 0.
\]

According to (1.9) and (1.11), the above equation becomes

\[
H_q((h_q \Omega)\Phi u) + (\Omega \Psi - (H_q \Omega) \Phi - \Delta B)u = 0.
\]

Then \(\Delta = \Omega = 0 \) because the form \(u \) is regular and not \(q \)-semiclassical.

Lemma 4. Consider the sequence \(\{\hat{P}_n\}_{n \geq 0} \) obtained by shifting \(P_n \), i.e. \(\hat{P}_n(x) = a^{-n}P_n(ax) \), \(n \geq 0, a \neq 0 \). When \(u \) satisfies (1.17), then \(\hat{u} = h_{a-1}u \) fulfills the \(q \)-difference equation

\[
H_q(\hat{\Phi} \hat{u}) + \hat{\Psi} \hat{u} + \hat{B}(x^{-1}\hat{u}(h_q \hat{u})) = 0,
\]

where \(\hat{\Phi}(x) = a^{-\deg \Phi \Phi(ax), \hat{\Psi}(x) = a^{1-\deg \Phi \Psi(ax), \hat{B}(x) = a^{-\deg B B(ax).}} \)

Proof. With \(u = h_a \hat{u} \), we have \(\Psi u = \Psi(h_a \hat{u}) = h_a((h_a \Psi)\hat{u}) \) from (1.7). Further,

\[
H_q(\Phi u) = H_q(\Phi(h_a \hat{u})) = H_q(h_a((h_a \Phi)\hat{u})) = a^{-1}h_a(H_q((h_a \Phi)\hat{u}))
\]

from (1.7) and (1.9).

Moreover, by virtue of (1.7) an other time we get

\[
B(x^{-1}u(h_qu)) = B(x^{-1}(h_a \hat{u})(h_q \hat{u})) = B(x^{-1}h_a(\hat{u}h_q \hat{u})) = a^{-1}h_a((h_a B)(x^{-1}u(h_q \hat{u}))).
\]

Equation (1.17) becomes

\[
h_a(H_q(\Phi(ax) \hat{u}) + a\Psi(ax) \hat{u} + B(ax)(x^{-1}u(h_q \hat{u}))) = 0.
\]

Hence the desired result.

2 Class of a \(q \)-Laguerre–Hahn form

It is obvious that a \(q \)-Laguerre–Hahn form satisfies an infinite number of \(q \)-difference equations type (1.17). Indeed, multiplying (1.17) by a polynomial \(\chi \) and taking into account (1.7), (1.11) we obtain

\[
H_q((h_q \chi) \Phi u) + \{ \chi \Psi - \Phi(h_q \chi) \} u + (\chi B)(x^{-1}u(h_qu)) = 0.
\]

Put \(t = \deg \Phi, p = \deg \Psi, r = \deg B \) with \(d = \max(t, r) \) and \(s = \max(p - 1, d - 2) \). Thus, there exists \(u \rightarrow h(u) \subset \mathbb{N} \cup \{-1\} \) from the set of \(q \)-Laguerre–Hahn forms into the subsets of \(\mathbb{N} \cup \{-1\} \).

Definition 2. The minimum element of \(h(u) \) will be called the class of \(u \). When \(u \) is of class \(s \), the sequence \(\{P_n\}_{n \geq 0} \) orthogonal with respect to \(u \) is said to be of class \(s \).
Proposition 1. The number \(s \) is an integer positive or zero. In other words, if \(p \equiv 0 \), then \(d \geq 2 \) or if \(0 \leq d \leq 1 \), then necessarily \(p \geq 1 \).

Proof. Let us show that in case \(s = -1 \), the form \(u \) is not regular, which is a contradiction. Indeed, when \(s = -1 \), we have

\[
\Phi(x) = c_1 x + c_0, \quad \Psi(x) = a_0, \quad B(x) = b_1 x + b_0
\]

with \(c_1 = 1 \) or \(c_1 = 0 \) and \(c_0 = 1 \), and where \(a_0 \neq 0 \).

The condition \(\langle H_q(\Phi u) + \Psi u + B(x^{-1} u(h_q u)), x^n \rangle = 0, 0 \leq n \leq 4 \) gives successively

\[
a_0 + b_1 = 0,
\]

\[
(qb_1 - c_1)(u)_1 + b_0 - c_0 = 0, \tag{2.2}
\]

\[
(q^2 b_1 - (1 + q)c_1)((u)_2 - (u)_1^2) = 0, \tag{2.3}
\]

\[
(q^3 b_1 - (1 + q + q^2)c_1)(u)_3 + \{ (1 + q^2)b_0 + q(1 + q)b_1(u)_1 - (1 + q + q^2)c_0 \}(u)_2
\]

\[
+ qb_0(u)_1^2 = 0, \tag{2.4}
\]

\[
(q^4 b_1 - (1 + q)(1 + q^2)c_1)(u)_4 + \{ (1 + q^3)b_0 + q(1 + q^2)b_1(u)_1 - (1 + q)(1 + q^2)c_0 \}(u)_3
\]

\[
+ q^2 b_1(u)_2^2 + q(1 + q)b_0(u)_1(u)_2 = 0. \tag{2.5}
\]

Suppose \(q^2 b_1 - (1 + q)c_1 \neq 0 \). From (2.3)

\[
\Delta_1 = \begin{vmatrix}
1 & (u)_1 \\
(u)_1 & (u)_2
\end{vmatrix}
\]

Contradiction.

Suppose \(q^2 b_1 = (1 + q)c_1 = 0 \) implies \(b_1 = 0 = c_1 \) implies (2.2) \(b_0 = c_0 = 1 \). Thus (2.4)

\[
(u)_2 - (u)_1^2 = 0, \quad \text{hence} \quad \Delta_1 = 0. \quad \text{Contradiction.}
\]

Suppose \(q^2 b_1 = (1 + q)c_1 \neq 0 \) with \(c_1 = 1 \). From (2.2) and (2.4), (2.5), we have

\[
(u)_1 = q(c_0 - b_0),
\]

\[
(u)_3 = q(c_0 - 2b_0)(u)_2 + q^3 b_0(c_0 - b_0)^2, \tag{2.6}
\]

\[
(u)_4 = (u)_2^2 + q^2 b_0^2(u)_2 - q^4 b_0^2(c_0 - b_0)^2.
\]

On the other hand, let us consider the Hankel determinant

\[
\Delta_2 = \begin{vmatrix}
1 & (u)_1 & (u)_2 \\
(u)_1 & (u)_2 & (u)_3 \\
(u)_2 & (u)_3 & (u)_4
\end{vmatrix}
\]

With (2.0), we get \(\Delta_2 = 0 \). Contradiction.

\[\blacksquare\]

Proposition 2. Let \(u \) be a strict \(q \)-Laguerre–Hahn form satisfying

\[
H_q(\Phi_1 u) + \Psi_1 u + B_1(x^{-1} u(h_q u)) = 0, \tag{2.7}
\]

and

\[
H_q(\Phi_2 u) + \Psi_2 u + B_2(x^{-1} u(h_q u)) = 0, \tag{2.8}
\]

where \(\Phi_1, \Psi_1, B_1, \Phi_2, \Psi_2, B_2 \) are polynomials, \(\Phi_1, \Phi_2 \) monic and \(\deg \Phi_i = t_i \), \(\deg \Psi_i = p_i \), \(\deg B_i = r_i \), \(d_i = \max(t_i, r_i) \), \(s_i = \max(p_i - 1, d_i - 2) \) for \(i \in \{1, 2\} \). Let \(\Phi = \gcd(\Phi_1, \Phi_2) \). Then, there exist two polynomials \(\Psi \) and \(B \) such that

\[
H_q(\Phi u) + \Psi u + B(x^{-1} u(h_q u)) = 0, \tag{2.9}
\]
with

\[s = \max(p - 1, d - 2) = s_1 - t_1 + t = s_2 - t_2 + t, \]

(2.10)

where \(t = \deg \Phi, \ p = \deg \Psi, \ r = \deg B \) and \(d = \max(t, r) \).

Proof. With \(\Phi = \gcd(\Phi_1, \Phi_2) \), there exist two co-prime polynomials \(\tilde{\Phi}_1, \tilde{\Phi}_2 \) such that

\[\Phi_1 = \Phi \tilde{\Phi}_1, \quad \Phi_2 = \Phi \tilde{\Phi}_2. \]

(2.11)

Taking into account equations (1.11) become for \(i \in \{1, 2\} \)

\[(h_{q^{-1}} \tilde{\Phi}_1) H_q(\Phi u) + \{\Psi_i + q^{-1} H_{q^{-1}} \tilde{\Phi}_i\} u + B_i(x^{-1} u h_q u) = 0. \]

(2.12)

The operation \((h_{q^{-1}} \tilde{\Phi}_1) \times (2.12_{-1}) - (h_{q^{-1}} \tilde{\Phi}_1) \times (2.12_{-2}) \) gives

\[\{(h_{q^{-1}} \tilde{\Phi}_1) (\Psi_1 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_1)) - (h_{q^{-1}} \tilde{\Phi}_1) (\Psi_2 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_2))\} u \]
\[+ \{(h_{q^{-1}} \tilde{\Phi}_2) B_1 - (h_{q^{-1}} \tilde{\Phi}_1) B_2\} (x^{-1} u h_q u) = 0. \]

From the fact that \(u \) is a strict \(q \)-Laguerre–Hahn form and by virtue of Lemma 3 we get

\[(h_{q^{-1}} \tilde{\Phi}_1) (\Psi_2 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_2)) = (h_{q^{-1}} \tilde{\Phi}_2) (\Psi_1 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_1)), \]
\[(h_{q^{-1}} \tilde{\Phi}_1) B_2 = (h_{q^{-1}} \tilde{\Phi}_2) B_1. \]

Thus, there exist two polynomials \(\Psi \) and \(B \) such that

\[\Psi_1 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_1) = (h_{q^{-1}} \tilde{\Phi}_1) \Psi, \quad \Psi_2 + q^{-1} \Phi (H_{q^{-1}} \tilde{\Phi}_2) = (h_{q^{-1}} \tilde{\Phi}_2) \Psi, \]
\[B_1 = (h_{q^{-1}} \tilde{\Phi}_1) B, \quad B_2 = (h_{q^{-1}} \tilde{\Phi}_2) B. \]

(2.13)

Then, formulas (2.7), (2.8) become

\[(h_{q^{-1}} \tilde{\Phi}_i) \{H_q(\Phi u) + \Psi u + B(x^{-1} u h_q u)\} = 0, \quad i \in \{1, 2\}. \]

(2.14)

But the polynomials \(h_{q^{-1}} \tilde{\Phi}_1 \) and \(h_{q^{-1}} \tilde{\Phi}_2 \) are also co-prime. Using the Bezzout identity, there exist two polynomials \(A_1 \) and \(A_2 \) such that

\[A_1(h_{q^{-1}} \tilde{\Phi}_1) + A_2(h_{q^{-1}} \tilde{\Phi}_2) = 1. \]

Consequently, the operation \(A_1 \times (2.14_{-1}) + A_2 \times (2.14_{-2}) \) leads to (2.9). With (2.11) and (2.13) it is easy to prove (2.10). \(\blacksquare \)

Proposition 3. For any \(q \)-Laguerre–Hahn form \(u \), the triplet \((\Phi, \Psi, B)\) \((\Phi \) monic\) which realizes the minimum of \(h(u) \) is unique.

Proof. If \(s_1 = s_2 \) in (2.9), (2.10) and \(s_1 = s_2 = s = \min h(u) \), then \(t_1 = t = t_2 \). Consequently, \(\Phi_1 = \Phi = \Phi_2, \ B_1 = B = B_2 \) and \(\Psi_1 = \Psi = \Psi_2 \). \(\blacksquare \)

Then, it’s necessary to give a criterion which allows us to simplify the class. For this, let us recall the following lemma:
Lemma 5. Consider u a regular form, Φ, Ψ and B three polynomials, Φ monic. For any zero \(c \) of Φ, denoting
\[
\Phi(x) = (x - c)\Phi_c(x),
\]
\[
q\Phi(x) + \Phi_c(x) = (x - cq)\Phi_{cq}(x) + r_{cq},
\]
\[
qB(x) = (x - cq)B_{cq}(x) + b_{cq}.
\]

The following statements are equivalent:
\[
H_q(\Phi u) + \Psi u + B(x^{-1}uh_q u) = 0,
\]
\[
H_q(\Phi_c u) + \Psi_{cq} u + B_{cq}(x^{-1}uh_q u) + r_{cq}(x - cq)^{-1}u + b_{cq}(x - cq)^{-1}(x^{-1}uh_q u)
\]
\[
\quad - \{ \langle u, \Psi_{cq} \rangle + \langle x^{-1}uh_q u, B_{cq} \rangle \} \delta_c = 0.
\]

Proof. The proof is obtained straightforwardly by using the relations in (1.2) and in (2.16). ■

Proposition 4. A regular form \(u \) -Laguerre–Hahn satisfying (1.17) is of class \(s \) if and only if
\[
\prod_{c \in \mathbb{Z}_q} \left\{ |q(h_q\Psi)(c) + (H_q\Phi)(c)| + |q(h_q B)(c)|
\right\}
\[
+ \left\{ \langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \phi_{\Phi}) + q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle \right\} > 0,
\]
where \(\mathbb{Z}_q \) is the set of roots of \(\Phi \).

Proof. Let \(c \) be a root of \(\Phi \): \(\Phi(x) = (x - c)\Phi_c(x) \). On account of (2.15) we have
\[
r_{cq} = q\Psi(cq) + \Phi_c(cq) = q(h_q\Psi)(c) + (H_q\Phi)(c),
\]
\[
b_{cq} = qB(cq) = q(h_q B)(c),
\]
\[
\Psi_{cq}(x) = q(\theta_{cq}\Psi)(x) + (\theta_{cq} \circ \phi_{\Phi})(x) = q(\theta_{cq}\Psi)(x) + (\theta_{cq} \circ \phi_{\Phi})(x),
\]
\[
B_{cq}(x) = q(\theta_{cq} B)(x).
\]

Therefore,
\[
\langle u, \Psi_{cq} \rangle + \langle x^{-1}uh_q u, B_{cq} \rangle = \langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \phi_{\Phi}) \rangle + \langle uh_q u, q\theta_0 \circ \theta_{cq} B \rangle
\]
\[
\quad = \langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \phi_{\Phi}) \rangle + \langle u, q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle
\]
\[
\quad = \langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \phi_{\Phi}) + q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle.
\]

The condition (2.17) is necessary. Let us suppose that \(c \) fulfils the conditions
\[
r_{cq} = 0, \quad b_{cq} = 0, \quad \langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \phi_{\Phi}) + q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle = 0.
\]

Then on account of Lemma 5 (2.16) becomes
\[
H_q(\Phi_c u) + \Psi_{cq} u + B_{cq}(x^{-1}uh_q u) = 0
\]
with \(s_c = \max(\max(\deg \Phi_c, \deg B_{cq}) - 2, \deg \Psi_c - 1) < s \), what contradicts with \(s := \min h(u) \).

The condition (2.17) is sufficient. Let us suppose \(u \) to be of class \(\tilde{s} < s \). There exist three polynomials \(\tilde{\Phi} \) (monic) \(\deg \tilde{\Phi} = \tilde{t} \), \(\tilde{\Psi} \), \(\deg \tilde{\Phi} = \tilde{p} \), \(B \), \(\deg B = \tilde{r} \) such that
\[
H_q(\tilde{\Phi} u) + \tilde{\Psi} u + \tilde{B}(x^{-1}uh_q u) = 0
\]
with \(\tilde{s} = \max(\tilde{d} - 2, \tilde{p} - 1) \) where \(\tilde{d} := \max(\tilde{t}, \tilde{r}) \). By Proposition 2 it exists a polynomial \(\chi \) such that
\[
\Phi = \chi \tilde{\Phi}, \quad \Psi = (h_q^{-1}\chi)\tilde{\Psi} - q^{-1}(H_q^{-1}\chi)\tilde{\Phi}, \quad B = (h_q^{-1}\chi)\tilde{B}.
\]
Since $\tilde{s} < s$ hence $\deg \chi \geq 1$. Let c be a zero of $\chi : \chi(x) = (x - c)\chi_c(x)$. On account of (1.10) we have
\[q\Psi(x) + \Phi_c(x) = (x - cq)\{(h_{q^{-1}}\chi_c)(x)\tilde{\Psi}(x) - q^{-1}(H_{q^{-1}}\chi_c)(x)\tilde{\Phi}(x)\}.\]
Thus $r_{cq} = 0$ and $b_{cq} = 0$. Moreover, with (1.8) we have
\[
\langle u, q(\theta_{cq}\Psi) + (\theta_{cq} \circ \theta_c\Phi) + q(h_qu(\theta_0 \circ \theta_{cq}B)) \rangle
= \langle u, (h_{q^{-1}}\chi_c)\tilde{\Psi} - q^{-1}(H_{q^{-1}}\chi_c)\tilde{\Phi} + (h_qu)\theta_0((h_{q^{-1}}\chi_c)\tilde{B}) \rangle
= \langle \tilde{\Psi}u, h_{q^{-1}}\chi_c \rangle + \langle H_q(\tilde{\Phi}u), h_{q^{-1}}\chi_c \rangle + (\tilde{B}(x^{-1}uh_qu), h_{q^{-1}}\chi_c) = 0.
\]
This is contradictory with (2.17). Consequently, $\tilde{s} = s$, $\tilde{\Phi} = \Phi$, $\tilde{\Psi} = \Psi$ and $\tilde{B} = B$.

Remark 2. When $q \rightarrow 1$ we recover again the criterion which allows us to simplify a usual Laguerre–Hahn form [6].

Remark 3. When $B = 0$ and $s = 0$, the form u is usually called q-classical [16]. When $B = 0$ and $s = 1$, the symmetrical q-semiclassical orthogonal q-polynomials of class one are exhaustively described in [14].

Proposition 5. Let u be a symmetrical q-Laguerre–Hahn form of class s satisfying (1.17). The following statements hold

(i) If s is odd, then the polynomials Φ and B are odd and Ψ is even.

(ii) If s is even, then the polynomials Φ and B are even and Ψ is odd.

Proof. Writing
\[
\Phi(x) = \Phi^e(x^2) + x\Phi^o(x^2), \quad \Psi(x) = \Psi^e(x^2) + x\Psi^o(x^2), \quad B(x) = B^e(x^2) + xB^o(x^2),
\]
then (1.17) becomes
\[
H_q(\Phi^e(x^2)u) + x\Phi^o(x^2)u + B^e(x^2)(x^{-1}uh_qu)
+ H_q(x\Phi^o(x^2)u) + \Psi^e(x^2)u + xB^o(x^2)(x^{-1}uh_qu) = 0.
\]
Denoting
\[
w^e = H_q(\Phi^e(x^2)u) + x\Psi^o(x^2)u + B^e(x^2)(x^{-1}uh_qu),
w^o = H_q(x\Phi^o(x^2)u) + \Psi^e(x^2)u + xB^o(x^2)(x^{-1}uh_qu).
\]
Then,
\[
w^o + w^e = 0. \tag{2.19}
\]
From (2.19) we get
\[\langle w^o \rangle_n = -(w^e)_n, \quad n \geq 0. \tag{2.20}\]
From definitions in (2.18) and (2.20) we can write for $n \geq 0$
\[
\langle w^e \rangle_n = \langle u, x^{2n+1}\Psi^o(x^2) - [2n]q^{2n-1}\Phi^e(x^2) \rangle + \langle uh_qu, x^{2n-1}B^e(x^2) \rangle.
\]
\[(w^o)_{2n+1} = \langle u, x^{2n+1} \Phi^o(x^2) \rangle = [2n+1]q^{2n+1}\Phi^o(x^2) + \langle uh^e_q u, x^{2n+1} B^o(x^2) \rangle. \quad (2.21)\]

Now, with the fact that \(u\) is a symmetrical form then \(uh^e_q u\) is also a symmetrical form. Indeed,

\[(uh^e_q u)_{2n+1} = \sum_{k=0}^{2n+1} (h^e_q u)_{k}(2n+1-k) = \sum_{k=0}^{2n+1} q^k(u)_{k}(2n+1-k) = 0, \quad n \geq 0.\]

Thus (2.21) gives

\[(w^o)_{2n+1} = 0 = (w^e)_{2n}, \quad n \geq 0. \quad (2.22)\]

On account of (2.19) and (2.22) we deduce \(w^o = w^e = 0\). Consequently \(u\) satisfies two \(q\)-difference equations

\[H_q(\Phi^e(x^2)u) + x^2 \Phi^o(x^2)u + B^e(x^2)(x^{-1}uh^e_q u) = 0, \quad (2.23)\]

and

\[H_q(x^2 \Phi^o(x^2)u) + \Phi^e(x^2)u + x^2 B^e(x^2)(x^{-1}uh^e_q u) = 0. \quad (2.24)\]

(i) If \(s = 2k+1, \) with \(s = \max(d-2, p-1)\) we get \(d \leq 2k+3, \) \(p \leq 2k+2\) then \(\deg(x^2 \Phi^o(x^2)) \leq 2k+1, \) \(\deg(\Phi^o(x^2)) \leq 2k+2 \) and \(\deg(B^o(x^2)) \leq 2k+2.\) So, in accordance with (2.23), we obtain the contradiction \(s = 2k+1 \leq 2.\) Necessary \(\Phi^e = B^e = \Psi^o = 0.\)

(ii) If \(s = 2k, \) with \(s = \max(d-2, p-1)\) we get \(d \leq 2k+2, \) \(p \leq 2k+1\) then \(\deg(\Psi^e(x^2)) \leq 2k, \) \(\deg(x \Phi^o(x^2)) \leq 2k+1 \) and \(\deg(x^2 B^o(x^2)) \leq 2k+1.\) So, in accordance with (2.24), we obtain the contradiction \(s = 2k \leq 2k-1.\) Necessary \(\Phi^o = B^o = \Psi^o = 0.\) Hence the desired result.

3 Different characterizations of \(q\)-Laguerre–Hahn forms

One of the most important characterizations of the \(q\)-Laguerre–Hahn forms is given in terms of a non homogeneous second order \(q\)-difference equation so called \(q\)-Riccati equation fulfilled by its formal Stieltjes series. See also [6] [8] [10] [15] for the usual case and [13] for the discrete one.

Proposition 6. Let \(u\) be a regular form. The following statement are equivalents:

(a) \(u\) belongs to the \(q\)-Laguerre–Hahn class, satisfying (1.17).

(b) The Stieltjes formal series \(S(u)\) satisfies the \(q\)-Riccati equation

\[(h_{q^{-1}}(\Phi)(z)H_{q^{-1}}(S(u))(z) = B(z)S(u)(z)(h_{q^{-1}}S(u))(z) + C(z)S(u)(z) + D(z), \quad (3.1)\]

where \(\Phi\) and \(B\) are polynomials defined in (1.17) and

\[C(z) = -(h_{q^{-1}}(\Phi)(z) - q(\Psi(z)),\]

\[D(z) = \{-h_{q^{-1}}(u \theta^2_0 \Phi)(z) + q(u \theta^2_0 \Psi)(z) + q(uh^e_q u)(\theta^2_0 B)(z)\}. \quad (3.2)\]

Proof. (a) \(\Rightarrow\) (b). Suppose that (a) is satisfied, then there exist three polynomials \(\Phi\) (monic), \(\Psi\) and \(B\) such that \(H_q(\Phi u) + \Psi u + B(x^{-1}uh^e_q u) = 0.\) From (1.11) the above \(q\)-difference equation becomes

\[(h_{q^{-1}}(\Phi)(H_q u) + \{\Psi + q^{-1}(H_{q^{-1}}(\Phi))\} u + B(x^{-1}uh^e_q u) = 0.\]
From definition of $S(u)$ and the linearity of S we obtain
\[
S((h_{q^{-1}}\Phi)(H_q u))(z) + S(\Psi u)(z) + q^{-1}S((H_{q^{-1}}\Phi)u)(z) + S(B(x^{-1}uh_q u))(z) = 0. \tag{3.3}
\]

Moreover,
\[
S(\Psi u)(z) & = \Psi(z)S(u)(z) + (u\theta_0\Psi)(z), \\
q^{-1}S((H_{q^{-1}}\Phi)u)(z) & = q^{-1}(H_{q^{-1}}\Phi)(z)S(u)(z) + q^{-1}(u\theta_0(H_{q^{-1}}\Phi))(z), \\
S((h_{q^{-1}}\Phi)(H_q u))(z) & = (h_{q^{-1}}\Phi)(z)S(H_q u)(z) + (H_q u)\theta_0(h_{q^{-1}}\Phi)(z), \\
S(B(x^{-1}uh_q u))(z) & = B(z)S(x^{-1}uh_q u)(z) + ((x^{-1}uh_q u)\theta_0 B)(z),
\]

and
\[
(u\theta_0(H_{q^{-1}}\Phi))(z) + q((H_q u)\theta_0(h_{q^{-1}}\Phi))(z) & = H_{q^{-1}}(u\theta_0\Phi)(z).
\]

(3.3) becomes
\[
(h_{q^{-1}}\Phi)(z)H_{q^{-1}}(S(u))(z) = B(z)S(u)(z)(h_{q^{-1}}S(u))(z) - (H_{q^{-1}}\Phi + q\Psi)(z)S(u)(z) - \left\{ H_{q^{-1}}(u\theta_0\Phi) + qu\theta_0\Psi + q(uh_q u)\theta_0^2 B \right\}(z).
\]

The previous relation gives \textcolor{red}{(3.1)} with \textcolor{red}{(3.2)}.

(b) \Rightarrow (a). Let $u \in P'$ regular with its formal Stieltjes series $S(u)$ satisfying \textcolor{red}{(3.1)}. Likewise as in the previous implication, formula \textcolor{red}{(3.1)} leads to
\[
S\{H_q(\Phi u) - q^{-1}(C + H_{q^{-1}}\Phi)u + B(x^{-1}uh_q u)\} = q^{-1}D - q^{-1}u\theta_0 C + ((uh_q u)\theta_0^2 B) + ((H_q u)\theta_0(h_{q^{-1}}\Phi)),
\]
which implies
\[
S\{H_q(\Phi u) - q^{-1}(C + H_{q^{-1}}\Phi)u + B(x^{-1}uh_q u)\} = 0, \\
D(z) = (u\theta_0 C)(z) - q((uh_q u)(\theta_0^2 B))(z) - q((H_q u)\theta_0(h_{q^{-1}}\Phi))(z).
\]

According to \textcolor{red}{(3.2)} and \textcolor{red}{(1.12)} we deduce that
\[
H_q(\Phi u) + \Psi u + B(x^{-1}uh_q u) = 0,
\]
with
\[
\Psi = -q^{-1}(C + H_{q^{-1}}\Phi). \tag{3.4}
\]

We are going to give the criterion which allows us to simplify the class of q-Laguerre–Hahn form in terms of the coefficients corresponding to the previous characterization.
Proposition 7. A regular form u q-Laguerre–Hahn satisfying (3.1) is of class s if and only if

$$\prod_{c \in Z_\Phi} \{ |B(cq)| + |C(cq)| + |D(cq)| \} > 0,$$

(3.5)

where Z_Φ is the set of roots of Φ with

$$s = \max (\deg B - 2, \deg C - 1, \deg D).$$

(3.6)

Proof. By comparing (2.17) and (3.5), it is enough to prove the following equalities

$$|C(cq)| = |q(h_q \Psi)(c) + (H_q \Phi)(c)|,$$

$$|D(cq)| = |\langle u, q(\theta_{cq} \Psi) + (\theta_{cq} \circ \theta_c \Phi) + q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle|.$$

Indeed, on account of (3.2), the definition of the polynomial uf, the definition of the product form uv and (1.8) we have

$$C(cq) = -(H_{q^{-1}} \Phi)(cq) - q\Psi(cq) = -(H_q \Phi)(c) - q(h_q \Psi)(c),$$

and

$$D(cq) = -\{H_{q^{-1}}(u\theta_0 \Phi)(cq) + q(u\theta_0 \Psi)(cq) + q(uh_q u)(\theta_0^{-2} B)(cq)\}$$

$$= -\{H_q(u\theta_0 \Phi)(c) + \langle u, q(\theta_{cq} \Psi) + q(h_q u(\theta_0 \circ \theta_{cq} B)) \rangle\}.$$

Moreover,

$$H_q(u\theta_0 \Phi)(c) \text{ by (1.9) } \frac{(u\theta_0 \Phi)(cq) - (u\theta_0 \Phi)(c)}{(q - 1)c} \Rightarrow \langle u, \frac{\theta_{cq} \Phi - \theta_c \Phi}{cq - c} \rangle = \langle u, \theta_{cq} \circ \theta_c \Phi \rangle. $$

Thus (2.17) is equivalent to (3.5). To prove (3.6), according to the definition of the class we may write

$$s = \max (\deg B - 2, \deg \Phi - 2, \deg \Psi - 1).$$

(3.7)

- If $\deg \Psi \neq \max (\deg B - 1, \deg \Phi - 1)$, on account of (3.2) and (3.7) we get the following implications

$$\deg B \leq \deg \Phi \Rightarrow \begin{cases}
\deg C = s + 1, \\
\deg D \leq s,
\end{cases} \Rightarrow \max (\deg B - 2, \deg C - 1, \deg D) = s,$$

$$\deg B > \deg \Phi \Rightarrow \begin{cases}
\deg C \leq s + 1, \\
\deg D = s,
\end{cases} \Rightarrow \max (\deg B - 2, \deg C - 1, \deg D) = s.$$

- If $\deg \Psi = \max (\deg B - 1, \deg \Phi - 1)$ and $\deg B > \deg \Phi$ then $s + 1 = \deg \Psi = \deg B - 1 > \deg \Phi - 1$. Consequently, $\max (\deg B - 2, \deg C - 1, \deg D) = s$.

- If $\deg \Psi = \max (\deg B - 1, \deg \Phi - 1)$ and $\deg B = \deg \Phi$ then $\deg \Psi = \deg B - 1 = \deg \Phi - 1$ which implies $\deg B - 2 = s$, $\deg C - 1 \leq s$, $\deg D \leq s$. Therefore $\max (\deg B - 2, \deg C - 1, \deg D) = s$.

- If $\deg \Psi = \max (\deg B - 1, \deg \Phi - 1)$ and $\deg B < \deg \Phi$ then $\deg \Psi = \deg \Phi - 1$ and $s = \deg \Psi - 1$. Writing $\Phi(x) = x^{p+1} + \text{lower order terms}$, $\Psi(x) = a_p x^p + \cdots + a_0$, by virtue of (3.2) and (1.3), it is worth noting that $C(z) = -(p+1)z^{p-1} + \text{lower order terms}$ and $D(z) = -(p+1)z^{p-1} + \text{lower order terms}$ with $a_p \neq [p]^q$ assuming either $\deg C = s$ or $\deg D = s$. Thus, $\max (\deg B - 2, \deg C - 1, \deg D) = s$.

Hence the desired result (3.6).
An other important characterization of the q-Laguerre–Hahn forms is the structure relation. See also [11,15] for the usual case and [13] for the discrete one.

Proposition 8. Let u be a regular form and $\{P_n\}_{n \geq 0}$ be its MOPS. The following statements are equivalent:

(i) u is a q-Laguerre–Hahn form satisfying (1.17).

(ii) There exist an integer $s \geq 0$, two polynomials Φ (monic), B with $t = \deg \Phi \leq s + 2$, $r = \deg B \leq s + 2$ and a sequence of complex numbers $\{\lambda_{n,\nu}\}_{n,\nu \geq 0}$ such that

$$
\Phi(x)(H_qP_{n+1})(x) - h_q(BP^{(1)}_n)(x) = \sum_{\nu = n-s}^{n+d} \lambda_{n,\nu}P_\nu(x), \quad n > s, \quad \lambda_{n,n-s} \neq 0, \quad (3.8)
$$

where $d = \max(t,r)$ and $\{P_n^{(1)}\}_{n \geq 0}$ be the associated sequence of the first kind for the sequence $\{P_n\}_{n \geq 0}$.

Proof. (i) \Rightarrow (ii). Beginning with the expression $\Phi(x)(H_qP_{n+1})(x) - h_q(BP^{(1)}_n)(x)$ which is a polynomial of degree at most $n + d$. Then, there exists a sequence of complex numbers $\{\lambda_{n,\nu}\}_{n,\nu \geq 0}$ such that

$$
\Phi(x)(H_qP_{n+1})(x) - (h_qB)(x)(h_qP^{(1)}_n)(x) = \sum_{\nu = 0}^{n+d} \lambda_{n,\nu}P_\nu(x), \quad n \geq 0. \quad (3.9)
$$

Multiplying both sides of (3.9) by P_m, $0 \leq m \leq n + d$ and applying u we get

$$
\langle u, \Phi P_m(H_qP_{n+1}) \rangle - \langle h_qu, B(h_q^{-1}P_m)(u\theta_0P_{n+1}) \rangle = \lambda_{n,m}\langle u, P^2_m \rangle, \quad n \geq 0, \quad 0 \leq m \leq n + d. \quad (3.10)
$$

On the other hand, applying $H_q(\Phi u) + \Psi u + B(x^{-1}uh_qu) = 0$ to $P_{n+1}(h_q^{-1}P_m)$, on account of the definitions, (1.10) and (1.5) we obtain

$$
0 = \langle h_q(\Phi u) + \Psi u + B(x^{-1}uh_qu), P_{n+1}(h_q^{-1}P_m) \rangle
= \langle u, \Psi P_{n+1}(h_q^{-1}P_m) - \Phi H_q(P_{n+1}(h_q^{-1}P_m)) \rangle + \langle h_qu, u\theta_0(BP_{n+1}(h_q^{-1}P_m)) \rangle
= \langle u, \{ \Psi(h_q^{-1}P_m) - q^{-1}\Phi(H_q^{-1}P_m) \} P_{n+1} - \Phi P_m(H_qP_{n+1}) \rangle
+ \langle h_qu, u\theta_0(BP_{n+1}(h_q^{-1}P_m)) \rangle.
$$

Thus, for $n \geq 0$, $0 \leq m \leq n + d$

$$
\langle u, \Phi P_m(H_qP_{n+1}) \rangle = \langle u, \{ \Psi(h_q^{-1}P_m) - q^{-1}\Phi(H_q^{-1}P_m) \} P_{n+1} \rangle
+ \langle h_qu, u\theta_0(BP_{n+1}(h_q^{-1}P_m)) \rangle. \quad (3.11)
$$

Using (3.10), (3.11) to eliminate $\langle u, \Phi P_m(H_qP_{n+1}) \rangle$ we get for $n \geq 0$, $0 \leq m \leq n + d$

$$
\langle u, \{ \Psi(h_q^{-1}P_m) - q^{-1}\Phi(H_q^{-1}P_m) \} P_{n+1} \rangle
+ \langle h_qu, u\theta_0(BP_{n+1}(h_q^{-1}P_m)) \rangle
= \lambda_{n,m}\langle u, P^2_m \rangle. \quad (3.12)
$$

Moreover, by virtue of (1.5) we have $B(u\theta_0P_{n+1}) = u\theta_0(BP_{n+1})$, $n > s$. Therefore, taking into account (1.4) and definitions, (3.12) yields for $n > s$, $0 \leq m \leq n + d$

$$
\langle u, \{ \Psi(h_q^{-1}P_m) - q^{-1}\Phi(H_q^{-1}P_m) + B((h_qu)\theta_0(h_q^{-1}P_m)) \} P_{n+1} \rangle = \lambda_{n,m}\langle u, P^2_m \rangle.
$$
with
\[
\deg \left\{ \Psi(h_{q^{-1}}P_m) - q^{-1}\Phi(H_{q^{-1}}P_m) + B((h_q u)\theta_0(h_{q^{-1}}P_m)) \right\} \leq m + s + 1.
\]

Consequently, the orthogonality of \(\{P_n\}_{n \geq 0} \) with respect to \(u \) gives
\[
\lambda_{n,m} = 0, \quad 0 \leq m \leq n - s - 1, \quad n \geq s + 1, \quad \lambda_{n,n-s} \neq 0.
\]

Hence the desired result (3.8).

\((ii) \Rightarrow (i) \). Let \(v \) be the form defined by
\[
v := H_q(\Phi u) + B\left(x^{-1}u h_q u\right) + \left(\sum_{i=0}^{s+1} a_i x^i\right) u
\]
with \(a_i \in \mathbb{C}, 0 \leq i \leq s + 1 \). From definitions and the hypothesis of \((ii) \) we may write successively
\[
\langle v, P_{n+1} \rangle = \langle H_q(\Phi u) + B\left(x^{-1}u h_q u\right), P_{n+1}\rangle + \langle u, P_{n+1} \sum_{i=0}^{s+1} a_i x^i \rangle
\]
\[
= -\langle u, \Phi(H_q P_{n+1}) - (h_q u)\theta_0(BP_{n+1}) \rangle + \langle u, P_{n+1} \sum_{i=0}^{s+1} a_i x^i \rangle
\]
\[
= -\langle u, \sum_{\nu=0}^{n+d} \lambda_{n,\nu} P_{\nu} \rangle + \langle u, P_{n+1} \sum_{i=0}^{s+1} a_i x^i \rangle
\]
\[
= -\sum_{\nu=0}^{n+d} \lambda_{n,\nu} \langle u, P_{\nu} \rangle + \sum_{i=0}^{s+1} a_i \langle u, x^i P_{n+1} \rangle, \quad n > s.
\]

From assumption of orthogonality of \(\{P_n\}_{n \geq 0} \) with respect to \(u \) we get
\[
\langle v, P_n \rangle = 0, \quad n \geq s + 2.
\]

In order to get \(\langle v, P_n \rangle = 0 \), for any \(n \geq 0 \), we shall choose \(a_i \) with \(i = 0, 1, \ldots, s + 1 \), such that \(\langle v, P_i \rangle = 0 \), for \(i = 0, 1, \ldots, s + 1 \). These coefficients \(a_i \) are determined in a unique way. Thus, we have deduced the existence of polynomial \(\Psi(x) = \sum_{i=0}^{s+1} a_i x^i \) such that \(\langle v, P_n \rangle = 0 \), for any \(n \geq 0 \). This leads to \(H_q(\Phi u) + \Psi u + B\left(x^{-1}u h_q u\right) = 0 \) and the point \((i) \) is then proved.

\section{Applications}

\subsection{The co-recursive of a q-Laguerre–Hahn form}

Let \(\mu \) be a complex number, \(u \) a regular form and \(\{P_n\}_{n \geq 0} \) be its corresponding MOPS satisfying (1.1). We define the co-recursive \(\{P_n^{[\mu]}\}_{n \geq 0} \) of \(\{P_n\}_{n \geq 0} \) as the family of monic polynomials satisfying the following three-term recurrence relation [20, Definition 4.2]
\[
P_0^{[\mu]}(x) = 1, \quad P_1^{[\mu]}(x) = x - \beta_0 - \mu,
\]
\[
P_n^{[\mu]}(x) = (x - \beta_{n+1})P_{n+1}^{[\mu]}(x) - \gamma_n P_n^{[\mu]}(x), \quad n \geq 0.
\]

Denoting by \(u^{[\mu]} \) its corresponding regular form. It is well known that [20, equation (4.14)]
\[
u^{[\mu]} = u(\delta - \mu x^{-1} u)^{-1}.
\]
Proposition 9. If \(u \) is a \(q \)-Laguerre–Hahn form of class \(s \), then \(u^{[\mu]} \) is a \(q \)-Laguerre–Hahn form of the same class \(s \).

Proof. The relation linking \(S(u) \) and \(S(u^{[\mu]}) \) is \([20]\) equation (4.15) \(S(u^{[\mu]}) = \frac{S(u)}{1 + \mu S(u)} \) or equivalently

\[
S(u) = \frac{S(u^{[\mu]})}{1 - \mu S(u^{[\mu]})}. \tag{4.1}
\]

From definitions and by virtue of (4.1) we have

\[
h_{q^{-1}}S(u) = \frac{h_{q^{-1}}S(u^{[\mu]})}{1 - \mu h_{q^{-1}}S(u^{[\mu]})}
\]

and

\[
(H_{q^{-1}}S(u))(z) = \frac{h_{q^{-1}}S(u^{[\mu]}))(z)}{1 - \mu h_{q^{-1}}S(u^{[\mu]}))(z)} = \frac{S(u^{[\mu]}))(z)}{(1 - \mu h_{q^{-1}}S(u^{[\mu]}))(z)}.
\]

Replacing the above results in (3.1) the \(q \)-Riccati equation becomes

\[
(h_{q^{-1}}\Phi) = \frac{H_{q^{-1}}S(u^{[\mu]})}{(1 - \mu h_{q^{-1}}S(u^{[\mu]})}(1 - \mu S(u^{[\mu]}))
\]

\[
= B \frac{S(u^{[\mu]})}{1 - \mu S(u^{[\mu]})} \frac{h_{q^{-1}}S(u^{[\mu]})}{1 - \mu h_{q^{-1}}S(u^{[\mu]})} + C \frac{S(u^{[\mu]})}{1 - \mu S(u^{[\mu]})} + D.
\]

Equivalently

\[
(h_{q^{-1}}\Phi)H_{q^{-1}}S(u^{[\mu]}) = BS(u^{[\mu]})h_{q^{-1}}S(u^{[\mu]}) + CS(u^{[\mu]})(1 - \mu h_{q^{-1}}S(u^{[\mu]}) + D(1 - \mu h_{q^{-1}}S(u^{[\mu]}) (1 - \mu S(u^{[\mu]})).
\]

Therefore the \(q \)-Riccati equation satisfied by \(S(u^{[\mu]}) \)

\[
(h_{q^{-1}}\Phi^{[\mu]})H_{q^{-1}}S(u^{[\mu]}) = B^{[\mu]}S(u^{[\mu]})h_{q^{-1}}S(u^{[\mu]}) + C^{[\mu]}S(u^{[\mu]}) + D^{[\mu]}, \tag{4.2}
\]

where

\[
K\Phi^{[\mu]}(x) = \Phi(x) + \mu(1 - q)x(h_{q}D)(x), \quad KB^{[\mu]}(x) = B(x) - \mu C(x) + \mu^{2}D(x),
\]

\[
KC^{[\mu]}(x) = C(x) - 2\mu D(x), \quad KD^{[\mu]}(x) = D(x), \tag{4.3}
\]

the non zero constant \(K \) is chosen such that the polynomial \(\Phi^{[\mu]} \) is monic. \(u^{[\mu]} \) is then a \(q \)-Laguerre–Hahn form.

On account of (3.2), (3.4) and (4.3) we get

\[
K\Psi^{[\mu]} = \Psi + \mu(q^{-1}D + h_{q}D). \tag{4.4}
\]

As a consequence, the regular form \(u^{[\mu]} \) fulfills the following \(q \)-difference equation

\[
H_{q}(\Phi^{[\mu]}u^{[\mu]}) + \Psi^{[\mu]}u^{[\mu]} + B^{[\mu]}(x^{-1}u^{[\mu]}h_{q}u^{[\mu]}) = 0. \tag{4.5}
\]

We suppose that the \(q \)-Riccati equation (3.1) of \(u \) is irreducible of class \(s \). With respect to the class, we use the result (3.5) of Proposition 7 and get for every zero \(c \) of \(\Phi^{[\mu]} \):
• If $D(cq) \neq 0$, then $D^{[\nu]}(cq) = K^{-1}D(cq) \neq 0$ and equation (4.2) is not reducible.

• We suppose that $D(cq) = 0$. From the fact that $\Phi^{[\nu]}(c) = 0$, the first relation in (4.3) leads to $\Phi(c) = 0$ and the third equality in (4.3) gives $C^{[\nu]}(cq) = K^{-1}C(cq)$.

If $C(cq) \neq 0$, then the equation (4.2) is still not reducible. If $C(cq) = 0 = D(cq)$, then $B^{[\nu]}(cq) = K^{-1}B(cq) \neq 0$ since u is of class s. We conclude that

$$|B^{[\nu]}(cq)| + |C^{[\nu]}(cq)| + |D^{[\nu]}(cq)| > 0.$$

Consequently, the class $s^{[\nu]}$ of $u^{[\nu]}$ is given by $s^{[\nu]} = \max(\deg B^{[\nu]} - 2, \deg C^{[\nu]} - 1, \deg D^{[\nu]})$. Accordingly to the last equality in (4.3) and (3.6) we get $s^{[\nu]} = \max(\deg B^{[\nu]} - 2, \deg C^{[\nu]} - 1, \deg D)$. A discussion on the degree leads to $s^{[\nu]} = s$.

Example 1. Let u be a q-classical form satisfying the q-analog of the distributional equation of Pearson type

$$H_q(\phi u) + \psi u = 0, \quad (4.6)$$

where ϕ is a monic polynomial of degree at most two and ψ a polynomial of degree one, the co-recurse $u^{[\nu]}$ of u is a q-Laguerre–Hahn form of class zero. $u^{[\nu]}$ and the Stieltjes function $S(u^{[\nu]})$ satisfy, respectively, the q-difference equation (4.5) and the q-Riccati equation (4.2) where on account of (4.3), (4.4)

$$K\Phi^{[\nu]}(x) = \frac{\phi''(0)}{2} x^2 + \left\{ \phi'(0) + \mu(q - 1) \left(\frac{\phi''(0)}{2} + q\psi'(0) \right) \right\} x + \phi(0),$$

$$K\Psi^{[\nu]}(x) = \psi'(0)x + \psi(0) - \mu(q^{-1} + 1) \left(\frac{\phi''(0)}{2} + q\psi'(0) \right),$$

$$KB^{[\nu]}(x) = \mu \left\{ \left(q^{-1} + 1 \right) \frac{\phi''(0)}{2} + q\psi'(0) \right\} x + \phi'(0) + q\psi(0) - \left(\frac{\phi''(0)}{2} + q\psi'(0) \right) \mu, \quad K\gamma_1,$$

$$KC^{[\nu]}(x) = - \left(q\psi'(0) + (q^{-1} + 1)\frac{\phi''(0)}{2} \right) x - \phi'(0) - q\psi(0) + 2\mu \left(\frac{\phi''(0)}{2} + q\psi'(0) \right),$$

$$KD^{[\nu]}(x) = - \frac{\phi''(0)}{2} - q\psi'(0).$$

4.2 The associated of a q-Laguerre–Hahn form

Let u be a regular form and $\{P_n\}_{n \geq 0}$ its corresponding MOPS satisfying (1.1). The associated sequence of the first kind $\{P_n^{(1)}\}_{n \geq 0}$ of $\{P_n\}_{n \geq 0}$ satisfies the following three-term recurrence relation [20]

$$P_0^{(1)}(x) = 1, \quad P_1^{(1)}(x) = x - \beta_1,$$

$$P_{n+2}^{(1)}(x) = (x - \beta_{n+2})P_{n+1}^{(1)}(x) - \gamma_n + 2P_n^{(1)}(x), \quad n \geq 0.$$

Denoting by $u^{(1)}$ its corresponding regular form.

Proposition 10. If u is a q-Laguerre–Hahn form of class s, then $u^{(1)}$ is a q-Laguerre–Hahn form of the same class s.

Proof. We assume that the formal Stieltjes function $S(u)$ of u satisfies (3.1). The relationship between $S(u^{(1)})$ and $S(u)$ is [20] equation (4.7)

$$\gamma_1S(u^{(1)})(z) = -\frac{1}{S(u)(z)} - (z - \alpha_0).$$
Consequently,

\[S(u)(z) = -\frac{1}{\gamma_1 S(u(1))(z) + (z - \beta_0)}. \]

(4.7)

From definitions and by virtue of (4.7) we have

\[h_{q^{-1}}(S(u))(z) = -\frac{1}{\gamma_1 h_{q^{-1}}(S(u(1)))(z) + q^{-1}z - \beta_0} \]

and

\[H_{q^{-1}}(S(u))(z) = \frac{\gamma_1 H_{q^{-1}}(S(u(1)))(z) + 1}{(\gamma_1 h_{q^{-1}}(S(u(1)))(z) + q^{-1}z - \beta_0)(\gamma_1 S(u(1))(z) + z - \beta_0)}. \]

Substituting in (3.1) the q-Riccati equation becomes

\[(h_{q^{-1}}\Phi)(z) = \frac{\gamma_1 H_{q^{-1}}(S(u(1)))(z) + 1}{(\gamma_1 h_{q^{-1}}(S(u(1)))(z) + q^{-1}z - \beta_0)(\gamma_1 S(u(1))(z) + z - \beta_0)} B(z) \]

\[- \frac{C(z)}{(\gamma_1 S(u(1))(z) + z - \beta_0)} + D(z). \]

Equivalently

\[\gamma_1 \{(h_{q^{-1}}\Phi)(z) + (q^{-1} - 1)z(C(z) - (z - \beta_0)D(z))\} H_{q^{-1}}(S(u(1)))(z) \]

\[= \gamma_1^2 D(z)S(u(1))(z)h_{q^{-1}}(S(u(1)))(z) + \gamma_1 \{(q^{-1} + 1)z - 2\beta_0)D(z) - C(z)\} S(u(1))(z) \]

\[+ B(z) + (q^{-1}z - \beta_0)(z - \beta_0)D(z) - (q^{-1}z - \beta_0)C(z) - (h_{q^{-1}}\Phi)(z). \]

Therefore the q-Riccati equation satisfied by \(S(u(1)) \)

\[(h_{q^{-1}}\Phi(1))H_{q^{-1}}S(u(1)) = B(1)S(u(1))h_{q^{-1}}S(u(1)) + C(1)S(u(1)) + D(1), \]

(4.8)

where

\[K\Phi^{(1)}(x) = \Phi(x) + (q - 1)x((q - 1)x - \beta_0)(h_q D)(x) - (h_q C)(x), \]

\[KB^{(1)}(x) = \gamma_1 D(x), \quad KC^{(1)}(x) = \gamma_1 \{(q^{-1} + 1)x - 2\beta_0)D(x) - C(x)\}, \]

\[KD^{(1)}(x) = B(x) + (q^{-1}x - \beta_0)(x - \beta_0)D(x) - (q^{-1}x - \beta_0)C(x) - (h_{q^{-1}}\Phi)(x). \]

(4.9)

\(u^{(1)} \) is then a q-Laguerre–Hahn form.

Moreover, the regular form \(u^{(1)} \) fulfils the q-difference equation

\[H_q(\Phi^{(1)}u^{(1)}) + \Psi^{(1)}u^{(1)} + B^{(1)}(x^{-1}u^{(1)}h_q u^{(1)}) = 0, \]

(4.10)

with

\[\Psi^{(1)} = -q^{-1}(C^{(1)} + H_{q^{-1}}\Phi^{(1)}). \]

(4.11)

Likewise, it is straightforward to prove that the class of \(u^{(1)} \) is also \(s \).
Example 2. If \(u \) is a \(q \)-classical form satisfying the \(q \)-analog of the distributional equation of Pearson type \((4.6)\) then the associated \(u^{(1)} \) of \(u \) is a \(q \)-Laguerre–Hahn form of class zero. \(u^{(1)} \) and the formal Stieltjes function \(S(u^{(1)}) \) satisfy, respectively, the \(q \)-difference equation \((4.10)\) and the \(q \)-Riccati equation \((4.8)\) where on account of \((4.9)\) and \((4.11)\)

\[
K\Phi^{(1)}(x) = \frac{q\phi''(0)}{2}x^2 + \left\{ q\phi'(0) + (q-1) \left(q\psi(0) + \beta_0 \left(\frac{\phi''(0)}{2} + q\psi'(0) \right) \right) \right\} x + \phi(0),
\]

\[
K\Psi^{(1)}(x) = -q^{-1} \left\{ (q+1)\frac{\phi''(0)}{2} - \psi'(0) \right\} x + (q+1)\phi'(0)
+ q^2\psi(0) + (q^2 - q + 2) \left(\frac{\phi''(0)}{2} + q\psi'(0) \right) \beta_0,
\]

\[
KB^{(1)}(x) = -\gamma_1 \left(\frac{\phi''(0)}{2} + q\psi'(0) \right),
\]

\[
KC^{(1)}(x) = \gamma_1 \left\{ -\psi'(0)x + \beta_0(\phi''(0) + 2q\psi'(0)) + q\psi(0) + \phi'(0) \right\},
\]

\[
KD^{(1)}(x) = \psi(\beta_0)x - \phi(\beta_0) - q\beta_0\psi(\beta_0).
\]

4.3 The inverse of a \(q \)-Laguerre–Hahn form

Let \(u \) be a regular form and \(\{P_n\}_{n \geq 0} \) its corresponding MOPS satisfying \((1.1)\). Let \(\{P_n^{(1)}\}_{n \geq 0} \) be its associated sequence of the first kind fulfilling \((4.6)\) and orthogonal with respect to the regular form \(u^{(1)} \). The inverse form of \(u \) satisfies \([20, \text{equation (5.27)}]\)

\[
x^2u^{-1} = -\gamma_1 u^{(1)}. \tag{4.12}
\]

The following results can be found in \([2]\)

\[
u^{-1} = \delta - (u^{-1})_1x - \gamma_1x^{-2}u^{(1)}. \tag{4.13}
\]

In general, the form \(u^{-1} \) given by \((4.13)\) is regular if and only if \(\Delta_n \neq 0, n \geq 0 \), with

\[
\Delta_n = \langle u^{(1)}, (P_n^{(1)})^2 \rangle \left\{ \gamma_1 + \sum_{\nu=0}^{n} \frac{\langle \gamma_1 P_{\nu+1}^{(2)}(0) - (u^{-1})_1 P_{\nu+1}^{(1)}(0) \rangle^2}{\langle u^{(1)}, (P_{\nu+1}^{(1)})^2 \rangle} \right\}, \quad n \geq 0,
\]

where \(\{P_n^{(2)}\}_{n \geq 0} \) is the associated sequence of \(\{P_n^{(1)}\}_{n \geq 0} \). In this case, the orthogonal sequence \(\{P_n^{(-)}\}_{n \geq 0} \) relative to \(u^{-1} \) is given by

\[
P_0^{(-)}(x) = 1, \quad P_1^{(-)}(x) = P_1^{(1)}(x) + b_0,
\]

\[
P_n^{(-)}(x) = P_{n+2}^{(1)}(x) + b_{n+1}P_{n+1}^{(1)}(x) + a_nP_n^{(1)}(x), \quad n \geq 0,
\]

where

\[
b_0 = \beta_1 - (u^{-1})_1,
\]

\[
b_{n+1} = \beta_{n+2} - \frac{((u^{-1})_1 P_{n+1}^{(1)}(0) - \gamma_1 P_{n+1}^{(2)}(0))((u^{-1})_1 P_{n+1}^{(1)}(0) - \gamma_1 P_{n+1}^{(2)}(0))}{\Delta_n}, \quad n \geq 0,
\]

\[
a_n = \frac{\Delta_{n+1}}{\Delta_n}, \quad n \geq 0.
\]

Also, the sequence \(\{P_n^{(-)}\}_{n \geq 0} \) satisfies the three-term recurrence relation

\[
P_0^{(-)}(x) = 1, \quad P_1^{(-)}(x) = x - \beta_0^{(-)},
\]
$P_{n+2}^{(-)}(x) = (x - \beta_{n+1}^{(-)}) P_{n+1}^{(-)}(x) - \gamma_{n+1}^{(-)} P_n^{(-)}(x), \quad n \geq 0,$

with

$$\beta_0^{(-)} = (u^{-1})_1, \quad \beta_{n+1}^{(-)} = \beta_{n+2} + b_n - b_{n+1}, \quad n \geq 0,$$

$$\gamma_1^{(-)} = -\Delta_0, \quad \gamma_{2n}^{(-)} = \gamma_1 \frac{\Delta_1}{\Delta_0}, \quad \gamma_{2n+3}^{(-)} = \frac{\Delta_{n+2}\Delta_n}{\Delta_{n+1}^2} \gamma_{n+2}, \quad n \geq 0.$$

In particular, when $\gamma_1 > 0$ and $u^{(1)}$ is positive definite, then u^{-1} is regular. When $u^{(1)}$ is symmetrical, then u^{-1} is a symmetrical regular form and we have

$$a_{2n} = \frac{\gamma_1 \Lambda_n + 1}{\gamma_1 \Lambda_{n-1} + 1} \gamma_{2n+2}, \quad a_{2n+1} = \gamma_{2n+3}, \quad n \geq 0,$$

$$\gamma_1^{(-)} = -\gamma_1, \quad \gamma_{2n+2}^{(-)} = a_{2n}, \quad \gamma_{2n+3}^{(-)} = \frac{\gamma_{2n+2} \gamma_{2n+3}}{a_{2n}}, \quad n \geq 0,$$

with

$$\Lambda_{-1} = 0, \quad \Lambda_n = \sum_{\nu=0}^n \left(\prod_{k=0}^{\nu} \frac{\gamma_{2k+1}}{\gamma_{2k+2}} \right), \quad n \geq 0, \quad \gamma_0 = 1.$$

Proposition 11. If u is a q-Laguerre–Hahn form of class s, then, when u^{-1} is regular, u^{-1} is a q-Laguerre–Hahn form of class at most $s + 2$.

Proof. Let u be a q-Laguerre–Hahn form of class s satisfying (1.17). It is seen in Proposition 10 that $u^{(1)}$ is also a q-Laguerre–Hahn form of class s satisfying the q-difference equation (4.10) with polynomials $\Phi^{(1)}, \Psi^{(1)}, B^{(1)}$ respecting (4.9) and (4.11).

Let us suppose u^{-1} is regular that is to say $\Delta_n \neq 0, n \geq 0$. Multiplying (4.10) by $(-\gamma_1)$ and on account of (4.12) and (1.17), the q-difference equation (4.10) becomes

$$H_q(x^2\Phi^{(1)}(x)u^{-1}) + x^2\Psi^{(1)}(x)u^{-1} - q^{-2}\gamma_1^{-1}B^{(1)}(x^{-1}(x^2u^{-1})(x^2h_qu^{-1})) = 0.$$

Consequently, the form u^{-1} satisfies the following q-difference equation

$$H_q(\Phi^{(-)}u^{-1}) + \Psi^{(-)}u^{-1} + B^{(-)}(x^{-1}u^{-1}h_qu^{-1}) = 0,$$

with

$$K\Phi^{(-)}(x) = x^2\{\Phi^{(1)}(x) + (1 - q)\gamma_1^{-1}x(qx - \beta_0)(h_qB^{(1)}(x))\},$$

$$K\Psi^{(-)}(x) = x\left\{(q^{-1} + 1)((h_q^{-1}\Phi^{(1)})(x) - q^{-1}\Phi^{(1)}(x)) - q^{-3}x(H_q^{-1}\Phi^{(1)}(x)) + \gamma_1^{-1}x((2q^{-1} + q^{-2} - q^{-3})x - (1 + 2q^{-2} - q^{-3})\beta_0)B^{(1)}(x) - (q^{-2} - 1)\gamma_1^{-1}x(qx - \beta_0)(h_qB^{(1)}(x)) - q^{-4}x^2(1 - q)\gamma_1^{-1}(hx - \beta_0)(h_qB^{(1)})(x) - xc^{(1)}(x)\right\},$$

$$KB^{(-)}(x) = -\gamma_1^{-1}q^{-2}x^4B^{(1)}(x).$$

Example 3. Let $\mathcal{Y}(b,q^2)$ be the form of Brenke type which is symmetrical q-semiclassical of class one such that [14] equation (3.22), $q \leftarrow q^2$

$$H_q(x\mathcal{Y}(b,q^2)) - (b(q-1))^{-1}(q^{-2}x^2 + b - 1)\mathcal{Y}(b,q^2) = 0$$

for $q \in \overline{\mathbb{C}}, b \neq 0, b \neq q, b \neq q^{-2n}, n \geq 0$ and its MOPS $\{P_n\}_{n \geq 0}$ satisfying (1.1) with [7]

$$\beta_n = 0,$$
\(\gamma_{2n+1} = q^{2n+2}(1 - bq^{2n}), \quad \gamma_{2n+2} = bq^{2n+2}(1 - q^{2n+2}), \quad n \geq 0. \) (4.20)

Denoting \(\mathcal{Y}^{(1)}(b, q^2) \) its associated form and \(\mathcal{Y}^{(-1)}(b, q^2) \) its inverse one. Taking into account \((4.19) \) we have

\[
\Phi(x) = x, \quad \Psi(x) = -(b(q - 1))^{-1}(q^{-2}x^2 + b - 1), \quad B(x) = 0. \quad (4.21)
\]

Also, by virtue of \((3.2) \) and \((4.21) \) we get

\[
C(x) = (b(q - 1))^{-1}q^{-1}x^2 + q(q - 1)^{-1}(1 - b^{-1}) - 1, \quad D(x) = (bq(q - 1))^{-1}x. \quad (4.22)
\]

According to Proposition \(10 \) the form \(\mathcal{Y}^{(1)}(b, q^2) \) is q-Laguerre–Hahn of class one satisfying the q-difference equation \((4.10) \) and its formal Stieltjes function satisfies the q-Riccati equation \((4.8) \) where on account of \((4.20) \), \((4.22) \) we obtain for \((4.9), (4.11) \)

\[
K\Phi^{(1)}(x) = b^{-1}x, \\
K\Psi^{(1)}(x) = -q^{-2}(b(q - 1))^{-1}x^2 + q(q - 1)^{-1}(1 - b^{-1}) - (qb)^{-1} - 1, \\
KB^{(1)}(x) = (b^{-1} - 1)q(q - 1)^{-1}x, \\
KC^{(1)}(x) = q^{-2}(b(q - 1))^{-1}x^2 + 1 - q(q - 1)^{-1}(1 - b^{-1}), \\
KD^{(1)}(x) = q^{-2}(b(q - 1))^{-1}x. \quad (4.23)
\]

On the one hand, \(\mathcal{Y}^{(1)}(b, q^2) \) is a symmetrical regular form, then \(\mathcal{Y}^{(-1)}(b, q^2) \) is also a symmetrical regular form and we have for \((4.14) - (4.16) \) according to \((4.20) \)

\[
\Lambda_{-1} = 0, \quad \Lambda_0 = \frac{b^{-1} - 1}{1 - q^2}, \quad \Lambda_n = \sum_{\nu=1}^{n+1} b^{-\nu} \frac{(b; q^2)_{\nu}}{(q^2; q^2)_{\nu}}, \quad n \geq 1, \\
\gamma^{(-)}_1 = q^2(b - 1), \quad \gamma^{(-)}_{2n+2} = bq^{2n+2}(1 - q^{2n+2}) \frac{1 + q^2(1 - b)\Lambda_n}{1 + q^2(1 - b)\Lambda_{n-1}}, \quad n \geq 0, \\
\gamma^{(-)}_{2n+3} = q^{2n+4}(1 - bq^{2n+2}) \frac{1 + q^2(1 - b)\Lambda_{n-1}}{1 + q^2(1 - b)\Lambda_n}, \quad n \geq 0,
\]

with \(7 \)

\[
(a; q)_0 = 1, \quad (a; q)_n = \prod_{k=1}^{n} (1 - aq^{k-1}), \quad n \geq 1.
\]

On the other hand, according to Proposition \(11 \), \((4.18) \) and \((4.23) \), the inverse form \(\mathcal{Y}^{(-1)}(b, q^2) \) is symmetrical q-Laguerre–Hahn satisfying the q-difference equation \((4.17) \) where

\[
K\Phi^{(-)}(x) = b^{-1}x^3(1 - qx^2), \\
K\Psi^{(-)}(x) = b^{-1}(q - 1)^{-1}x^2(b - q - q^{-3}(q - 1) + (-2q^{-4} + 2q^{-3} + q^{-2} - q^{-1} + q)x^2), \\
KB^{(-)}(x) = -b^{-1}q^{-3}(q - 1)^{-1}x^5.
\]

Thus, according to \((2.17) \) it is possible to simplify by \(x \) one time uniquely. Consequently, by virtue of \((2.16) \) the inverse form \(\mathcal{Y}^{(-1)}(b, q^2) \) is q-Laguerre–Hahn of class two fulfilling the q-difference equation

\[
H_q(x^2(x^2 - q^{-1}))\mathcal{Y}^{(-1)}(b, q^2) - q^{-1}x\{1 + q(q - 1)^{-1}(b - q - q^{-3}(q - 1)) \\
+ (q(q - 1)^{-1}(-2q^{-4} + 2q^{-3} + q^{-2} - q^{-1} + q) - q)x^2\}\mathcal{Y}^{(-1)}(b, q^2) \\
+ q^{-3}(q - 1)^{-1}x^4(x^{-1}\mathcal{Y}^{(-1)}(b, q^2)h_q\mathcal{Y}^{(-1)}(b, q^2)) = 0.
\]
Acknowledgments

The authors are very grateful to the referees for the constructive and valuable comments and recommendations and for making us pay attention to a certain references.

References

[1] Alaya J., Maroni P., Symmetric Laguerre–Hahn forms of class $s = 1$, *Integral Transform. Spec. Funct.* 2 (1996), 301–320.
[2] Alaya J., Maroni P., Some semi-classical and Laguerre–Hahn forms defined by pseudo-functions, *Methods Appl. Anal.* 3 (1996), 12–30.
[3] Álvarez-Nodarse R., Medem J.C., q-classical polynomials and the q-Askey and Nikiforov–Uvarov tableaux, *J. Comput. Appl. Math.* 135 (2001), 197–223.
[4] Bangerezako G., The fourth order difference equation for the Laguerre–Hahn polynomials orthogonal on special non-uniform lattices, *Ramanujan J.* 5 (2001), 167–181.
[5] Bangerezako G., An introduction to q-difference equations, Bujumbura, 2008.
[6] Bouakaz H., Maroni P., Description des polynômes de Laguerre–Hahn de classe zéro, in Orthogonal Polynomials and Their Applications (Erice, 1990), *IMACS Ann. Comput. Appl. Math.* , Vol. 9, Baltzer, Basel, 1991, 189–194.
[7] Chihara T.S., An introduction to orthogonal polynomials, *Mathematics and its Applications*, Vol. 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978.
[8] Dini J., Sur les formes linéaires et polynômes orthogonaux de Laguerre–Hahn, Thèse de Doctorat, Université Pierre et Marie Curie, Paris VI, 1988.
[9] Dini J., Maroni P., Ronveaux A., Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux, *Portugal. Math.* 46 (1989), 269–282.
[10] Dzoumba J., Sur les polynômes de Laguerre–Hahn, Thèse de 3 ème cycle, Université Pierre et Marie Curie, Paris VI, 1985.
[11] Foupouagnigni M., Ronveaux A., Koepf W., Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials, *J. Comput. Appl. Math.* 101 (1999), 231–236.
[12] Foupouagnigni M., Ronveaux A., Difference equation for the co-recursive rth associated orthogonal polynomials of the D_q-Laguerre–Hahn class, *J. Comput. Appl. Math.* 153 (2003), 213–223.
[13] Foupouagnigni M., Marcellán F., Characterization of the D_ω-Laguerre–Hahn functionals, *J. Difference Equ. Appl.* 8 (2002), 689–717.
[14] Ghressi A., Khérij L., The symmetrical H_q-semiclassical orthogonal polynomials of class one, *SIGMA* 5 (2009), 076, 22 pages, arXiv:0907.3851.
[15] Guerfi M., Les polynômes de Laguerre–Hahn affines discrets, Thèse de troisième cycle, Univ. P. et M. Curie, Paris, 1988.
[16] Khérij L., Maroni P., The H_q-classical orthogonal polynomials, *Acta. Appl. Math.* 71 (2002), 49–115.
[17] Khérij L., An introduction to the H_q-semiclassical orthogonal polynomials, *Methods Appl. Anal.* 10 (2003), 387–411.
[18] Magnus A., Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials, in Padé Approximation and its Applications (Bad Honnef, 1983), *Lecture Notes in Math.*, Vol. 1071, Springer, Berlin, 1984, 213–230.
[19] Marcellán F., Salto M., Discrete semiclassical orthogonal polynomials, *J. Difference. Equ. Appl.* 4 (1998), 463–496.
[20] Maroni P., Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique, in Orthogonal Polynomials and their Applications (Erice, 1990), *IMACS Ann. Comput. Appl. Math.* , Vol. 9, Baltzer, Basel, 1991, 95–130.
[21] Medem J.C., Álvarez-Nodarse R., Marcellán F., On the q-polynomials: a distributional study, *J. Comput. Appl. Math.* 135 (2001), 157–196.