LAMPLIGHTER GROUPS AND VON NEUMANN’S CONTINUOUS REGULAR RING

GÁBOR ELEK

(Communicated by Marius Junge)

ABSTRACT. Let Γ be a discrete group. Following Linnell and Schick one can define a continuous ring $c(\Gamma)$ associated with Γ. They proved that if the Atiyah Conjecture holds for a torsion-free group Γ, then $c(\Gamma)$ is a skew field. Also, if Γ has torsion and the Strong Atiyah Conjecture holds for Γ, then $c(\Gamma)$ is a matrix ring over a skew field. The simplest example when the Strong Atiyah Conjecture fails is the lamplighter group $\Gamma = \mathbb{Z}_2 \wr \mathbb{Z}$. It is known that $\mathbb{C}(\mathbb{Z}_2 \wr \mathbb{Z})$ does not even have a classical ring of quotients. Our main result is that if H is amenable, then $c(\mathbb{Z}_2 \wr H)$ is isomorphic to a continuous ring constructed by John von Neumann in the 1930s.

1. Introduction

Let us consider $\text{Mat}_{k \times k}(\mathbb{C})$ the algebra of k by k matrices over the complex field. This ring is a unital $*$-algebra with respect to the conjugate transposes. For each element $A \in \text{Mat}_{k \times k}(\mathbb{C})$ one can define A^* satisfying the following properties:

- $(\lambda A)^* = \overline{\lambda} A^*$,
- $(A + B)^* = A^* + B^*$,
- $(AB)^* = B^* A^*$,
- $0^* = 0, 1^* = 1$.

Also, each element has a normalized rank $\text{rk}(A) = \text{Rank}(A)/k$ with the following properties:

- $\text{rk}(0) = 0, \text{rk}(1) = 1$,
- $\text{rk}(A + B) \leq \text{rk}(A) + \text{rk}(B)$,
- $\text{rk}(AB) \leq \min\{\text{rk}(A), \text{rk}(B)\}$,
- $\text{rk}(A^*) = \text{rk}(A)$,
- if e and f are orthogonal idempotents, then $\text{rk}(e + f) = \text{rk}(e) + \text{rk}(f)$.

The ring $\text{Mat}_{k \times k}(\mathbb{C})$ has an algebraic property; namely, von Neumann called regularity: Any principal left- (or right) ideal can be generated by an idempotent. Furthermore, among these generating idempotents there is a unique projection (that is, $\text{Mat}_{k \times k}(\mathbb{C})$ is a $*$-regular ring). In a von Neumann regular ring any nonzerodivisor is necessarily invertible. One can also observe that the algebra of matrices is proper, that is, $\sum_{i=1}^{n} a_i a_i^* = 0$ implies that all the matrices a_i are zero.
One should note that if R is a $*$-regular ring with a rank function, then the rank extends to $\text{Mat}_{k \times k}(R)$ [9], where the extended rank has the same property as rk except that the rank of the identity is k.

One can immediately see that the rank function defines a metric $d(A, B) := \text{rk}(A - B)$ on any algebra with a rank, and the matrix algebra is complete with respect to this metric. These complete $*$-regular algebras are called continuous $*$-algebras (see [8] for an extensive study of continuous rings). Note that for the matrix algebras the possible values of the rank functions are $0, 1/k, 2/k, \ldots, 1$. John von Neumann observed that there are some interesting examples of infinite dimensional continuous $*$-algebras, where the rank function can take any real values in between 0 and 1. His first example was purely algebraic.

Example 1. Let us consider the following sequence of diagonal embeddings:

$$
\mathbb{C} \to \text{Mat}_{2 \times 2}(\mathbb{C}) \to \text{Mat}_{4 \times 4}(\mathbb{C}) \to \text{Mat}_{8 \times 8}(\mathbb{C}) \to \ldots
$$

One can observe that all the embeddings are preserving the rank and the $*$-operation. Hence the direct limit $\lim_{\to} \text{Mat}_{2^k \times 2^k}(\mathbb{C})$ is a $*$-regular ring with a proper rank function. The addition, multiplication, the $*$-operation and the rank function can be extended to the metric completion \mathcal{M} of the direct limit ring. The resulting algebra \mathcal{M} is a simple, proper, continuous $*$-algebra, where the rank function can take all the values on the unit interval.

Example 2. Consider a finite, tracial von Neumann algebra \mathcal{N} with trace function $\text{tr}_\mathcal{N}$. Then \mathcal{N} is a $*$-algebra equipped with a rank function. If P is a projection, then $\text{rk}_\mathcal{N}(P) = \text{tr}_\mathcal{N}(P)$. For a general element $A \in \mathcal{N}$, $\text{rk}_\mathcal{N}(A) = 1 - \lim_{t \to \infty} \int_0^1 \text{tr}_\mathcal{N}(E_\lambda) d\lambda$, where $\int_0^\infty E_\lambda d\lambda$ is the spectral decomposition of A^*A.

In general, \mathcal{N} is not regular, but it has the Ore property with respect to its zero divisors. The Ore localization of \mathcal{N} with respect to its non-zerodivisors is called the algebra of affiliated operators and denoted by $U(\mathcal{N})$. These algebras are also proper continuous $*$-algebras [1]. The rank of an element $A \in U(\mathcal{N})$ is given by the trace of the projection generating the principal ideal $U(\mathcal{N})A$. It is important to note that $U(\mathcal{N})$ is the rank completion of \mathcal{N} (Lemma 2.2, [12]).

Linnell and Schick observed [9] that if X is a subset of a proper $*$-regular algebra R, then there exists a smallest $*$-regular subalgebra containing X, the $*$-regular closure. Now let Γ be a countable group and $\mathbb{C}\Gamma$ be its complex group algebra. Then one can consider the natural embedding of the group algebra to its group von Neumann algebra $\mathbb{C}\Gamma \to \mathcal{N}\Gamma$. Let $U(\Gamma)$ denote the Ore localization of $\mathcal{N}(\Gamma)$ and the embedding $\mathbb{C}\Gamma \to U(\Gamma)$. Since $U(\Gamma)$ is a proper $*$-regular ring, one can consider the smallest $*$-algebra $\mathcal{A}(\Gamma)$ in $U(\Gamma)$ containing $\mathbb{C}(\Gamma)$. Let $c(\Gamma)$ be the completion of the algebra \mathcal{A} above. It is a continuous $*$-algebra [6]. Of course, if the rank function has only finitely many values in \mathcal{A}, then $c(\Gamma)$ equals $\mathcal{A}(\Gamma)$. Note that if $\mathbb{C}\Gamma$ is embedded into a continuous $*$-algebra T, then one can still define $c_T(\Gamma)$ as the smallest continuous ring containing $\mathbb{C}\Gamma$. In [3] we proved that if Γ is amenable, $c(\Gamma) = c_T(\Gamma)$ for any embedding $\mathbb{C}\Gamma \to T$ associated to sofic representations of Γ, hence $c(\Gamma)$ can be viewed as a canonical object. Linnell and Schick calculated the algebra $c(\Gamma)$ for several groups, where the rank function has only finitely many values on \mathcal{A}. They proved the following results:

- If Γ is torsion-free and the Atiyah Conjecture holds for Γ, then $c(\Gamma)$ is a skew-field. This is the case when Γ is amenable and $\mathbb{C}\Gamma$ is a domain. Then
c(Γ) is the Ore localization of CΓ. If Γ is the free group of k generators, then c(Γ) is the Cohen-Amitsur free skew field of k generators. The Atiyah Conjecture for a torsion-free group means that the rank of an element in Matk×k(CΓ) ⊂ Matk×k(U(N(Γ))) is an integer.
• If the orders of the finite subgroups of Γ are bounded and the Strong Atiyah Conjecture holds for Γ, then c(Γ) is a finite dimensional matrix ring over some skew-field. In this case the Strong Atiyah Conjecture means that the ranks of an element in Matk×k(CΓ) ⊂ Matk×k(U(N(Γ))) is in the abelian group \(\frac{1}{\text{lcm}(Γ)} \mathbb{Z} \), where lcm(Γ) indicates the least common multiple of the orders of the finite subgroups of Γ.

The lamplighter group Γ = \(\mathbb{Z}_2 \wr \mathbb{Z} \) has finite subgroups of arbitrarily large orders. Also, although Γ is amenable, CΓ does not satisfy the Ore condition with respect to its non-zerodivisors [8]. In other words, it has no classical ring of quotients. The goal of this paper is to calculate c(\(\mathbb{Z}_2 \wr \mathbb{Z} \)) and even c(\(\mathbb{Z}_2 \wr H \)), where H is a countably infinite amenable group.

Theorem 1. If H is a countably infinite amenable group, then c(\(\mathbb{Z}_2 \wr H \)) is the simple continuous ring \(\mathcal{M} \) of von Neumann.

2. Crossed product algebras

In this section we recall the notion of crossed product algebras and the group-measure space construction of Murray and von Neumann. Let \(\mathcal{A} \) be a unital, commutative \(*\)-algebra and \(\phi : \Gamma \to \text{Aut}(\mathcal{A}) \) be a representation of the countable group Γ by \(*\)-automorphisms. The associated crossed product algebra \(\mathcal{A} \rtimes \Gamma \) is defined the following way. The elements of \(\mathcal{A} \rtimes \Gamma \) are the finite formal sums

\[
\sum_{\gamma \in \Gamma} a_\gamma \cdot \gamma,
\]

where \(a_\gamma \in \mathcal{A} \). The multiplicative structure is given by

\[
\delta \cdot a_\gamma = \phi(\delta)(a_\gamma) \cdot \delta.
\]

The \(*\)-structure is defined by \(\gamma^* = \gamma^{-1} \) and \((\gamma \cdot a)^* = a^* \cdot \gamma^{-1} \). Note that

\[
(\delta \cdot a_\gamma)^* = (\phi(\delta) a_\gamma \cdot \delta)^* = \delta^* \cdot \phi(\delta) a_\gamma^* = \phi(\delta^{-1}) \phi(\delta) a_\gamma^* = a_\gamma^* \cdot \delta^{-1} = a_\gamma^* \cdot \delta.
\]

Now let \((X, \mu)\) be a probability measure space and \(\tau : \Gamma \curvearrowright X \) be a measure preserving action of a countable group Γ on X. Then we have a \(*\)-representation \(\hat{\tau} \) of Γ in Aut(L\(^\infty(X, \mu)\)), where L\(^\infty(X, \mu)\) is the commutative \(*\)-algebra of bounded measurable functions on X (modulo zero measure perturbations)

\[
\hat{\tau}(\gamma)(f)(x) = f(\tau(\gamma^{-1})(x)).
\]

Let \(\mathcal{H} = L^2(\Gamma, L^2(X, \mu)) \) be the Hilbert space of \(L^2(X, \mu) \)-valued functions on Γ. That is, each element of \(\mathcal{H} \) can be written in the form of

\[
\sum_{\gamma \in \Gamma} b_\gamma \cdot \gamma,
\]
where \(\sum_{\gamma \in \Gamma} \| b_\gamma \|^2 < \infty \). Then we have a representation \(L \) of \(L^\infty(X,\mu) \times \Gamma \) on \(l^2(\Gamma, L^2(X,\mu)) \) by

\[
L\left(\sum_{\gamma \in \Gamma} a_\gamma \cdot \gamma \right) = \sum_{\delta \in \Gamma} \left(\sum_{\gamma \in \Gamma} a_\gamma (\hat{\tau}(\gamma)(\beta_\delta)) \cdot \gamma \delta \right).
\]

Note that \(L\left(\sum_{\gamma \in \Gamma} a_\gamma \cdot \gamma \right) \) is always a bounded operator. A trace is given on \(L^\infty(X,\mu) \times \Gamma \) by

\[
\text{Tr}(S) = \int_X a_1(x) d\mu(x).
\]

The weak operator closure of \(L\left(L^\infty_c(X,\mu) \right) \times \Gamma \) in \(B \left(l^2(\Gamma, L^2(X,\mu)) \right) \) is the von Neumann algebra \(\mathcal{N}(\tau) \) associated to the action. Here \(L^\infty_c(X,\mu) \) denotes the subspace of functions in \(L^\infty(X,\mu) \) having only countable many values.

3. The Bernoulli algebra

Let \(H \) be a countable group. Consider the Bernoulli shift space \(B_H := \prod_{h \in H} \{0,1\} \) with the usual product measure \(\nu_H \). The probability measure preserving action \(\tau_H : H \curvearrowright (B_H, \nu_H) \) is defined by

\[
\tau_H(\delta)(x)(h) = x(\delta^{-1} h),
\]

where \(x \in B_H, \delta, h \in H \). Let \(A_H \) be the commutative \(*\)-algebra of functions that depend only on finitely many coordinates of the shift space. It is well known that the Rademacher functions \(\{ R_S \}_{S \subset H, |S| < \infty} \) form a basis in \(A_H \), where

\[
R_S(x) = \prod_{\delta \in S} \exp(i\pi x(\delta)).
\]

The Rademacher functions with respect to the pointwise multiplication form an abelian group isomorphic to \(\bigoplus_{h \in H} \mathbb{Z}_2 \) the Pontrjagin dual of the compact group \(B_H \) satisfying

- \(R_S R_{S'} = R_{S \Delta S'} \),
- \(\int_{B_H} R_S d\nu = 0 \), if \(|S| > 0 \),
- \(R_\emptyset = 1 \).

The group \(H \) acts on \(A_H \) by

\[
\hat{\tau}_H(\delta)(f)(x) = f\left(\tau_H(\delta^{-1})(x) \right).
\]

Hence,

\[
\hat{\tau}_H(\delta) R_S = R_{\delta S}.
\]
Therefore, the elements of \(A_H \rtimes H \) can be uniquely written as in the form of the finite sums

\[
\sum_\delta \sum_S c_{\delta,S}R_S \cdot \delta,
\]

where \(\delta \cdot R_S = R_{\delta S} \cdot \delta \).

Now let us turn our attention to the group algebra \(\mathbb{C}(\mathbb{Z}_2 \wr H) \). For \(\delta \in H \), let \(\delta \) be the generator in \(\sum_{h \in H} \mathbb{Z}_2 \) belonging to the \(\delta \)-component. Any element of \(\mathbb{C}(\mathbb{Z}_2 \wr H) \) can be written in a unique way as a finite sum

\[
\sum_\delta \sum_S c_{\delta,S}t_S \cdot \delta,
\]

where \(t_S = \prod_{s \in S} t_s \), \(\delta \cdot t_S = t_{\delta S} \), \(t_S t_{S'} = t_{S \Delta S'} \). Also note that

\[
\text{Tr}(\sum_\delta \sum_S c_{\delta,S}t_S \cdot \delta) = c_{1,\emptyset}.
\]

Hence we have the following proposition.

Proposition 3.1. There exists a trace preserving \(*\)-isomorphism \(\kappa : \mathbb{C}(\mathbb{Z}_2 \wr H) \to A_H \rtimes H \) such that

\[
\kappa(\sum_\delta \sum_S c_{\delta,S}t_S \cdot \delta) = \sum_\delta \sum_S c_{\delta,S}R_S \cdot \delta.
\]

Recall that if \(A \subset N \), \(B \subset N \) are weakly dense \(*\)-subalgebras in finite tracial von Neumann algebras \(N \), and \(\kappa : A \to B \) is a trace preserving \(*\)-homomorphism, then \(\kappa \) extends to a trace preserving isomorphism between the von Neumann algebras themselves (see e.g. [7, Corollary 7.1.9]). Therefore, \(\kappa : \mathbb{C}(\mathbb{Z}_2 \wr H) \to A_H \rtimes H \) extends to a trace (and hence rank) preserving isomorphism between the von Neumann algebras \(N(\mathbb{Z}_2 \wr H) \) and \(N(\tau_H) \).

Proposition 3.2. For any countable group \(H \),

\[
c(\mathbb{Z}_2 \wr H) \cong c(\tau_H).
\]

Proof. The rank preserving isomorphism \(\kappa : N(\mathbb{Z}_2 \wr H) \to N(\tau_H) \) extends to a rank preserving isomorphism between the rank completions, that is, the algebras of affiliated operators. It is enough to prove that the rank closure of \(A_H \rtimes H \) is \(L^\infty_c(B_H, \nu_H) \rtimes H \).

Lemma 3.1. Let \(f \in L^\infty_c(B_H, \nu_H) \). Then \(\text{rk}_{N(\tau_H)}(f) = \nu_H(\text{supp}(f)) \).

Proof. By definition,

\[
\text{rk}_{N(\tau_H)}(f) = 1 - \lim_{\lambda \to 0} \text{tr}_{N(\tau_H)} E_\lambda,
\]

where \(E_\lambda \) is the spectral projection of \(f^*f \) corresponding to \(\lambda \) and

\[
\text{tr}_{N(\tau_H)} E_\lambda = \nu_H(\{x \mid |f^2(x)| \leq \lambda\}).
\]

Hence,

\[
\text{rk}_{N(\tau_H)}(f) = 1 - \nu_H(\{x \mid f^2(x) = 0\}) = \nu_H(\text{supp}(f)).
\]

Lemma 3.2. \(A_H \) is dense in \(L^\infty_c(B_H, \nu_H) \) with respect to the rank metric.
Proof. By Lemma 3.1 \(L^\infty_{\text{fin}}(B_H, \nu_H)\) is dense in \(L^\infty_{\nu}(B_H, \nu_H)\), where \(L^\infty_{\text{fin}}(B_H, \nu_H)\) is the \(*\)-algebra of functions taking only finitely many values. Recall that \(V \subset B_H\) is a basic set if \(1_V \in \mathcal{A}_H\). It is well known that any measurable set in \(B_H\) can be approximated by basic sets, that is, for any \(U \subset B_H\), there exists a sequence of basic sets \(\{V_n\}_{n=1}^\infty\) such that

\[
\lim_{n \to \infty} \nu_H(V_n \triangle U) = 0.
\]

By (1) and Lemma 3.1

\[
\lim_{n \to \infty} \text{rk}_N(\tau_n)(1_{V_n} - 1_U) = 0.
\]

Let \(f = \sum_{m=1}^l c_m 1_{U_m}\), where \(U_m\) are disjoint measurable sets. Let

\[
\lim_{n \to \infty} \nu_H(V_n^m \triangle U_m) = 0,
\]

where \(\{V_n^m\}_{n=1}^\infty\) are basic sets. Then

\[
\lim_{n \to \infty} \text{rk}_N(\tau_n)(\sum_{m=1}^l c_m 1_{V_n^m} - f) = 0.
\]

Therefore, \(\mathcal{A}_H\) is dense in \(L^\infty_{\text{fin}}(B_H, \nu_H)\). \(\square\)

4. The odometer algebra

The odometer algebra is constructed via the odometer action using the algebraic crossed product construction. Let us consider the compact group of 2-adic integers \(\hat{\mathbb{Z}}(2)\). Recall that \(\hat{\mathbb{Z}}(2)\) is the completion of the integers with respect to the dyadic metric

\[
d_{(2)}(n,m) = 2^{-k},
\]

where \(k\) is the power of two in the prime factor decomposition of \(|m - n|\). The group \(\hat{\mathbb{Z}}(2)\) can be identified with the compact group of one way infinite sequences with respect to the binary addition.

The Haar measure \(\mu_{\text{haar}}\) on \(\hat{\mathbb{Z}}(2)\) is defined by \(\mu_{\text{haar}}(U_n^l) = 1/2^n\), where \(0 \leq l \leq 2^n - 1\) and \(U_n^l\) is the clopen subset of elements in \(\hat{\mathbb{Z}}(2)\) having residue \(l\) modulo \(2^n\). Let \(T\) be the addition map \(x \to x + 1\) in \(\hat{\mathbb{Z}}(2)\). The map \(T\) defines an action \(\rho: \mathbb{Z} \curvearrowleft (\hat{\mathbb{Z}}(2), \mu_{\text{haar}})\). The dynamical system \((T, \hat{\mathbb{Z}}(2), \mu_{\text{haar}})\) is called the odometer action.

As in Section 3, we consider the \(*\)-subalgebra of function \(\mathcal{A}_M\) in \(L^\infty(\hat{\mathbb{Z}}(2), \mu_{\text{haar}})\) that depends only on finitely many coordinates of \(\hat{\mathbb{Z}}(2)\). We consider a basis for \(\mathcal{A}_M\). For \(n \geq 0\) and \(0 \leq l \leq 2^n - 1\) let

\[
F_n^l(x) = \exp\left(\frac{2\pi i x (\text{mod} 2^n)}{2^n} l\right).
\]

Notice that \(F_{n+1}^{2l} = F_n^l\). Then the functions \(\{F_n^l\}_{n,l|(l,n)=1}\) form the Prüfer 2-group \(\mathbb{Z}_{(2)} = \mathbb{Z}_4 \subset \mathbb{Z}_8 \subset \mathbb{Z}_{16} \subset \mathbb{Z}_{32} \subset \ldots\)

with respect to the pointwise multiplication. The discrete group \(\mathbb{Z}_{(2)}\) is the Pontrjagin dual of the compact abelian group \(\hat{\mathbb{Z}}(2)\). The element \(F_n^1\) is the generator of the cyclic subgroup \(\mathbb{Z}_{2^n}\). Note that

\[
\int_{\hat{\mathbb{Z}}(2)} F_n^l d\mu_{\text{haar}} = 0
\]
except if \(l = 0, n = 0 \), when \(F^l_n = 1 \). Observe that if \(k \in \mathbb{Z} \), then
\[
\rho(k)F^l_n = F^{l+k(mod\,2^n)}_n
\]

since \(F^l_n(x-k) = F^{l+k(mod\,2^n)}_n(x) \). Hence we have the following lemma.

Lemma 4.1. The elements of \(A_M \times \mathbb{Z} \) can be uniquely written as finite sums in the form
\[
\sum_{k} \sum_{n \geq 0 \mid l(n) = 1} c_{n,i,k} F^l_n \cdot k,
\]
where \(k \cdot F^l_n = F^{l+k(mod\,2^n)}_n \) and \(F^0_0 = 1 \).

5. Periodic Operators

Definition 5.1. A function \(\mathbb{Z} \times \mathbb{Z} \to \mathbb{C} \) is a periodic operator if there exists some \(n \geq 1 \) such that
- \(A(x, y) = 0 \), if \(|x - y| > 2^n \),
- \(A(x, y) = A(x + 2^n, y + 2^n) \).

Observe that the periodic operators form a \(* \)-algebra, where
- \((A + B)(x, y) = A(x, y) + B(x, y)\),
- \(AB(x, y) = \sum_{z \in \mathbb{Z}} A(x, z)B(z, y)\),
- \(A^*(x, y) = A(y, x)\).

Proposition 5.1. The algebra of periodic operators \(\mathcal{P} \) is \(* \)-isomorphic to a dense subalgebra of \(M \).

Proof. We call \(A \in \mathcal{P} \) an element of type-\(n \) if
- \(A(x, y) = A(x + 2^n, y + 2^n) \),
- \(A(x, y) = 0 \) if \(0 \leq x \leq 2^n - 1, y > 2^n - 1 \),
- \(A(x, y) = 0 \) if \(0 \leq x \leq 2^n - 1, y < 0 \).

Clearly, the elements of type-\(n \) form an algebra \(\mathcal{P}_n \) isomorphic to \(\text{Mat}_{2^n \times 2^n}(\mathbb{C}) \) and \(\mathcal{P}_n \to \mathcal{P}_{n+1} \) is the diagonal embedding. Hence, we can identify the algebra of finite type elements \(\mathcal{P}_f = \bigcup_{n=1}^\infty \mathcal{P}_n \) with \(\lim_{n \to \infty} \text{Mat}_{2^n \times 2^n}(\mathbb{C}) \).

For \(A \in \mathcal{P} \), if \(n \geq 1 \) is large enough, let \(A_n \in \mathcal{P}_n \) be defined the following way:
- \(A_n(x, y) = A(x, y) \) if \(2^nl \leq x, y \leq 2^nl + 2^n - 1 \) for some \(l \in \mathbb{Z} \).
- Otherwise, \(A(x, y) = 0 \).

Lemma 5.1.

(i): \(\{A_n\}_{n=1}^\infty \) is a Cauchy-sequence in \(M \).

(ii): \((A + B)_n = A_n + B_n\).

(iii): \(\text{rk}_M(A_n^* - (A^n)_n) = 0 \).

Lemma 5.1.

(iv): \(\text{rk}_M((AB)_n - (A_n B_n)) = 0 \).

(v): \(\lim_{n \to \infty} A_n = 0 \) if and only if \(A = 0 \).

Proof. First observe that for any \(Q \in \mathcal{P}_n \)
\[
\text{rk}_M(Q) \leq \frac{|\{0 \leq x \leq 2^n - 1 \mid \exists 0 \leq y \leq 2^n - 1 \text{ such that } A_n(x, y) \neq 0\}|}{2^n}.
\]

Suppose that \(A(x, y) = A(x + 2^k, y + 2^k) \) and \(k < n < m \). Then
\[
|\{0 \leq x \leq 2^n - 1 \mid A_n(x, y) \neq A_m(x, y) \text{ for some } 0 \leq y \leq 2^n - 1\}| \leq 2^k2^{m-n}.
\]

Hence by the previous observation, \(\{A_n\}_{n=1}^\infty \) is a Cauchy sequence. Note that (iii) and (iv) can be proved similarly; the proof of (ii) is straightforward. In order to
prove (v) let us suppose that $A(x, y) = 0$ whenever $|x - y| \geq 2^k$. Let $n > k$ and $0 \leq y \leq 2^k - 1$ such that $A(x, y) \neq 0$ for some $-2^k \leq x \leq 2^k - 1$. Therefore $\text{rk}_M A_n \geq \frac{2^{n-k} - 1}{2^n}$. Thus (v) follows. □

Let us define $\phi : \mathcal{P} \rightarrow \mathcal{M}$ by $\phi(A) = \lim_{n \rightarrow \infty} A_n$. By the previous lemma, ϕ is an injective $*$-homomorphism. □

Definition 5.2. A periodic operator A is diagonal if $A(x, y) = 0$, whenever $x \neq y$. The diagonal operators form the abelian $*$-algebra $\mathcal{D} \subset \mathcal{P}$.

Lemma 5.2. We have the isomorphism $\mathcal{D} \cong \mathbb{C}(\mathbb{Z}(2))$, where $\mathbb{Z}(2)$ is the Prüfer 2-group.

Proof. For $n \geq 1$ and $0 \leq l \leq 2^n - 1$ let $E_n^l \in \mathcal{D}$ be defined by

$$E_n^l(x, x) := \exp\left(\frac{2\pi i (x \mod 2^n) - 2^n l}{2^n}\right).$$

It is easy to see that $E_{n+1}^{2l} = E_n^l$ and the multiplicative group generated by E_n^1 is isomorphic to \mathbb{Z}_{2^n}. Observe that the set $\{E_n^l\}_{n, l, (l, n) = 1}$ forms a basis in the space of n-type diagonal operators. Therefore, $\mathcal{D} \cong \bigcup_{n=1}^{\infty} \mathbb{C}(\mathbb{Z}_{2^n}) = \mathbb{C}(\mathbb{Z}(2))$. □

Let $J \in \mathcal{P}$ be the following element:

- $J(x, y) = 1$, if $y = x + 1$.
- Otherwise, $J(x, y) = 0$.

Then

$$J \cdot E_n^l = E_n^{l+1 \mod 2^n}.$$ (3)

Also, any periodic operator A can be written in a unique way as a finite sum

$$\sum_{k \in \mathbb{Z}} D_k \cdot J^k,$$

where D_k is a diagonal operator in the form

$$D_k = \sum_{n=0}^{\infty} \sum_{l | (l, n) = 1} c_{l, n, k} E_n^l.$$

Thus, by (2) and (3), we have the following corollary.

Corollary 5.1. The map $\psi : \mathcal{P} \rightarrow A_M \rtimes \mathbb{Z}$ defined by

$$\psi(\sum_{k} \sum_{n \geq 0} \sum_{l | (l, n) = 1} c_{l, n, k} E_n^l \cdot k) = \sum_{k} \sum_{n \geq 0} \sum_{l | (l, n) = 1} c_{l, n, k} F_n^l \cdot k$$

is a $*$-isomorphism of algebras.

6. **Lück’s Approximation Theorem revisited**

The goal of this section is to prove the following proposition.

Proposition 6.1. We have $c(\rho) \cong \mathcal{M}$ where ρ is the odometer action.

Proof. Let us define the linear map $t : \mathcal{P} \rightarrow \mathbb{C}$ by

$$t(A) := \frac{\sum_{i=0}^{2^n-1} A(i, i)}{2^n},$$

where $A \in \mathcal{P}$ and $A(x + 2^n, y + 2^n)$ for all $x, y \in \mathbb{Z}$. □
Lemma 6.1. \(\text{Tr}_{N(\rho)}(\psi(A)) = t(A), \) where \(\psi \) is the \(*\)-isomorphism of Corollary 5.1.

Proof. Recall that \(\text{Tr}_{N(\rho)}(E_n^l) = 0 \), except, when \(l = 0, n = 0, E_n^l = 1 \). If \(n \neq 0 \) and \(l \neq 0 \), then \(t(E_n^l) \) is the sum of all \(k \)-th roots of unity for a certain \(k \), hence \(t(E_n^l) = 0 \). Also, \(t(1) = 1 \). Thus, the lemma follows. \(\square \)

It is enough to prove that

\[
(4) \quad \text{rk}_A(A) = \text{rk}_{N(\rho)}(\psi(A)).
\]

Indeed by \((4) \), \(\psi \) is a rank-preserving \(*\)-isomorphism between \(\mathcal{P} \) and \(A_M \rtimes \mathbb{Z} \). Hence the isomorphism \(\psi \) extends to a metric isomorphism

\[
\hat{\psi} : \overline{\mathcal{P}} \to \overline{A_M} \rtimes \mathbb{Z},
\]

where \(\overline{\mathcal{P}} \) is the closure of \(\mathcal{P} \) in \(\mathcal{M} \) and \(\overline{A_M} \rtimes \mathbb{Z} \) is the closure of \(A_M \rtimes \mathbb{Z} \) in \(U(N(\rho)) \). Since \(\mathcal{P} \) is dense in \(\mathcal{M} \), \(\overline{\mathcal{P}} \cong \mathcal{M} \). Also, \(\overline{A_M} \rtimes \mathbb{Z} \) is a \(*\)-subalgebra of \(U(N(\rho)) \), since the \(*\)-ring operations are continuous with respect to the rank metric. Therefore \(\overline{A_M} \rtimes \mathbb{Z} \) is a continuous algebra isomorphic to \(\mathcal{M} \). Observe that the rank closure \(\overline{A_M} \rtimes \mathbb{Z} \) is isomorphic to the rank closure of \(L_\infty(\hat{\mathbb{Z}}(2), \mu_{\text{haar}}) \rtimes \mathbb{Z} \) by the argument of Lemma 3.2. Therefore, \(c(\rho) \cong \mathcal{M} \). Thus from now on, our only goal is to prove \((4) \).

Lemma 6.2. Let \(A \in \mathcal{P} \) and \(A_n \in \text{Mat}_{2^n \times 2^n}(\mathbb{C}) \) as in Section 5. Then the matrices \(\{A_n\}_{n=1}^\infty \) have uniformly bounded norms.

Proof. Let \(M, N \) be chosen in such a way that

- \(|A_n(x, y)| \leq M \) for any \(x, y \in \mathbb{Z}, n \geq 1 \).
- \(|A_n(x, y)| = 0 \) if \(|x - y| \geq \frac{N}{2} \).

Now let \(v = (v(1), v(2), \ldots, v(2^n)) \in \mathbb{C}^{2^n}, \|v\|^2 = 1 \). Then

\[
\|A_nv\|^2 = \sum_{x=1}^{2^n} \sum_{y \mid |x-y| < N/2} |A_n(x, y)v(y)|^2 \leq M^2 \sum_{x=1}^{2^n} \sum_{y \mid |x-y| < N/2} |v(y)|^2 \leq M^2 N \sum_{x=1}^{2^n} \sum_{y \mid |x-y| < N/2} |v(y)|^2 = M^2 N^2.
\]

Therefore, for any \(n \geq 1, \|A_n\| \leq MN. \) \(\square \)

Lemma 6.3. Let \(A \in \mathcal{P} \). Then for any \(k \geq 1 \)

\[
\lim_{k \to \infty} t((A_n^*A_n)^k) = t((A^*A)^k) = \text{Tr}_{N(\rho)}(\psi(A^*A)^k).
\]

Proof. Let \(m \geq 1, l \geq 1, q \geq 1 \) be integers such that

- \(A(x, y) = A(x + 2^m, y + 2^m) \) for any \(x, y \in \mathbb{Z} \).
- \(A(x, y) = 0 \), if \(|x - y| \geq l \).
- \(|(A^*A)^k(x, x)| \leq q \) and \(|(A_n^*A_n)^k(x, x)| \leq q \) for any \(x \in \mathbb{Z} \).

By definition,

\[
t((A_n^*A_n)^k) = \frac{\sum_{x=1}^{2^n} (A_n^*A_n)^k(x, x)}{2^n}
\]

\[
t((A^*A)^k) = \frac{\sum_{x=1}^{2^n} (A_n^*A_n)^k(x, x)}{2^n}.
\]
Observe that if $2lk < x, 2^n - 2lk$, then

$$(A^*A)^k(x,x) = (A^*_nA_n)(x,x).$$

Hence,

$$|t((A^*A)^k) - t((A^*_nA_n)^k)| \leq \frac{4klq}{2^n}.$$

Thus our lemma follows.

Now, we follow the idea of Lück [10]. Let μ be the spectral measure of $\psi(A) \in N(\rho)$. That is

$$\text{Tr}_{N(\rho)} f(A^*A) = \int_{0}^{K} f(x) \, d\mu(x),$$

for all $f \in C[0, K]$, where $K > 0$ is chosen in such a way that $\text{Spec} \psi(A^*A) \subset [0, K]$ and $\|A^*_nA_n\| \leq K$ for all $n \geq 1$. Also, let μ_n be the spectral measure of $A^*_nA_n$, that is,

$$t(f(A^*_nA_n)) = \int_{0}^{K} f(x) \, d\mu_n(x),$$

or all $f \in C[0, K]$. As in [10], we can see that the measures $\{\mu_n\}_{n=1}^\infty$ converge weakly to μ. Indeed by Lemma 6.3,

$$\lim_{n \to \infty} t(P(A^*_nA_n)) = \text{Tr}_{N(\rho)} P(A^*A)$$

for any real polynomial P. Therefore,

$$\lim_{n \to \infty} t(f(A^*_nA_n)) = \text{Tr}_{N(\rho)} f(A^*A)$$

for all $f \in C[0, K]$.

Since $\text{rk}_{M}(A_n) = \text{rk}_{M}(A^*_nA_n)$ and $\text{rk}_{N(\rho)}(\psi(A)) = \text{rk}_{N(\rho)}(\psi(A^*A))$, in order to prove (4) it is enough to see that

$$\lim_{n \to \infty} \text{rk}_{M}(A^*_nA_n) = \text{rk}_{N(\rho)}(\psi(A^*A)).$$

Observe that $\text{rk}_{M}(A^*_nA_n) = 1 - \mu_n(0)$ and

$$\text{rk}_{N(\rho)}(\psi(A^*A)) = 1 - \lim_{\lambda \to 0} \text{Tr}_{N(\rho)} E_{\lambda} = \mu(0).$$

Hence, our proposition follows from the lemma below (an analogue of Lück’s Approximation Theorem).

Lemma 6.4. $\lim_{n \to \infty} \mu_n(0) = \mu(0)$.

Proof. Let $F_n(\lambda) = \int_{0}^{\lambda} \mu_n(t) \, dt$ and $F(\lambda) = \int_{0}^{\lambda} \mu(t) \, dt$ be the distribution functions of our spectral measures. Since $\{\mu_n\}_{n=1}^\infty$ weakly converges to the measure μ, it is enough to show that $\{F_n\}_{n=1}^\infty$ converges uniformly. Let $n \leq m$ and $D_m^n : \text{Mat}_{2^n \times 2^n}(\mathbb{C}) \to \text{Mat}_{2^m \times 2^m}(\mathbb{C})$ be the diagonal operator. Let $\varepsilon > 0$. By Lemma 5.1, if n, m are large enough,

$$\text{Rank}(D_m^n(A_n) - A_m) \leq \varepsilon 2^m.$$

Hence, by Lemma 3.5 in [2],

$$\|F_n - F_m\|_{\infty} \leq \varepsilon.$$

Therefore, $\{F_n\}_{n=1}^\infty$ converges uniformly. \qed
7. Orbit equivalence

First let us recall the notion of orbit equivalence. Let \(\tau_1 : \Gamma_1 \actson (X, \mu) \) resp. \(\tau_2 : \Gamma_2 \actson (Y, \nu) \) be essentially free probability measure preserving actions of the countably infinite groups \(\Gamma_1 \) resp. \(\Gamma_2 \). The two actions are called orbit equivalent if there exists a measure preserving bijection \(\Psi : (X, \mu) \to (Y, \nu) \) such that for almost all \(x \in X \) and \(\gamma \in \Gamma_1 \) there exists \(\gamma_x \in \Gamma_2 \) such that
\[
\tau_2(\gamma_x)(\Psi(x)) = \Psi(\tau_1(\gamma)(x)).
\]
Feldman and Moore \cite{FeldmanMoore} proved that if \(\tau_1 \) and \(\tau_2 \) are orbit equivalent, then \(\mathcal{N}(\tau_1) \cong \mathcal{N}(\tau_2) \). The goal of this section is to prove the following proposition.

Proposition 7.1. If \(\tau_1 \) and \(\tau_2 \) are orbit equivalent actions, then \(c(\tau_1) \cong c(\tau_2) \).

Our Theorem \ref{thm:main} follows from the proposition. Indeed, by Proposition \ref{prop:OrbitEquivalence} and Proposition \ref{prop:OrbitEquivalence2},
\[
\mathcal{M} \cong c(\rho) \quad \text{and} \quad c(\mathbb{Z}_2 \rtimes H) \cong c(\tau_H).
\]
By the famous theorem of Ornstein and Weiss \cite{OrnsteinWeiss}, the odometer action and the Bernoulli shift action of a countably infinite amenable group are orbit equivalent. Hence \(\mathcal{M} \cong c(\mathbb{Z}_2 \rtimes H) \).

Proof. We build the proof of our proposition on the original proof of Feldman and Moore. Let \(\gamma \in \Gamma_1, \delta \in \Gamma_2 \). Let
\[
M(\delta, \gamma) = \{ y \in Y \mid \tau_2(\delta)(y) = \Psi(\tau_1(\gamma)\Psi^{-1}(y)) \},
\]
\[
N(\gamma, \delta) = \{ x \in X \mid \tau_1(\gamma)(x) = \Psi^{-1}(\tau_2(\delta)\Psi(x)) \}.
\]
Observe that \(\Psi(N(\delta, \gamma)) = M(\gamma, \delta) \). Following Feldman and Moore (\cite{FeldmanMoore} Proposition 2.1) for any \(\gamma \in \Gamma_1, \delta \in \Gamma_2 \)
\[
\kappa(\gamma) = \sum_{h \in \Gamma_2} h \cdot 1_M(h, \gamma)
\]
and
\[
\lambda(\delta) = \sum_{g \in \Gamma_1} g \cdot 1_N(g, \delta)
\]
are well defined. That is, \(\sum_{n=1}^{k} h_n \cdot 1_M(h_n, \gamma) \) converges weakly to \(\kappa(\gamma) \in \mathcal{N}(\tau_2) \) as \(k \to \infty \) and \(\sum_{n=1}^{k} g_n \cdot 1_N(g_n, \delta) \) converges weakly to \(\lambda(\delta) \in \mathcal{N}(\tau_1) \) as \(k \to \infty \), where \(\{\gamma_n\}_{n=1}^{\infty} \) resp. \(\{\delta_n\}_{n=1}^{\infty} \) are enumerations of the elements of \(\Gamma_1 \) resp. \(\Gamma_2 \).

Furthermore, one can extend \(\kappa \) resp. \(\lambda \) to maps
\[
\kappa' : L^\infty((X, \mu) \rtimes \Gamma_1) \to \mathcal{N}(\tau_2)
\]
resp.
\[
\lambda' : L^\infty((Y, \nu) \rtimes \Gamma_2) \to \mathcal{N}(\tau_1)
\]
by
\[
\kappa'(\sum_{\gamma \in \Gamma_1} a_\gamma \cdot \gamma) = \sum_{\gamma \in \Gamma_1} (a_\gamma \circ \Psi^{-1}) \cdot \kappa(\gamma) = \sum_{\gamma \in \Gamma_1} (a_\gamma \circ \Psi^{-1}) \cdot \sum_{n=1}^{\infty} h_n \cdot 1_M(h_n, \gamma)
\]
and
\[
\lambda'(\sum_{\delta \in \Gamma_2} b_\delta \cdot \delta) = \sum_{\delta \in \Gamma_2} (b_\delta \circ \Psi) \cdot \lambda(\delta) = \sum_{\delta \in \Gamma_2} (b_\delta \circ \Psi) \cdot \sum_{n=1}^{\infty} g_n \cdot 1_N(g_n, \delta).
\]
The maps \(\kappa' \) resp. \(\lambda' \) are injective trace-preserving \(*\)-homomorphisms with weakly
dense ranges. Hence they extend to isomorphisms of von Neumann algebras

\[\hat{k} : \mathcal{N}(\tau_1) \to \mathcal{N}(\tau_2), \hat{\lambda} : \mathcal{N}(\tau_2) \to \mathcal{N}(\tau_1), \]

where \(\hat{k} \) and \(\hat{\lambda} \) are, in fact, the inverses of each other.

Lemma 7.1.

\[
\begin{align*}
(5) \quad & \lim_{k \to \infty} \text{rk}_{\mathcal{N}(\tau_2)} \left(\sum_{\gamma \in \Gamma_1} (a_{\gamma} \circ \Psi^{-1}) \cdot \sum_{n=1}^{k} h_n \cdot 1_{M(h_n, \gamma)} - \hat{k} \left(\sum_{\gamma \in \Gamma_1} a_{\gamma} \cdot \gamma \right) \right) = 0, \\
(6) \quad & \lim_{k \to \infty} \text{rk}_{\mathcal{N}(\tau_1)} \left(\sum_{\delta \in \Gamma_2} (b_{\delta} \circ \Psi) \cdot \sum_{n=1}^{k} g_n \cdot 1_{N(g_n, \delta)} - \hat{\lambda} \left(\sum_{\delta \in \Gamma_2} b_{\delta} \cdot \delta \right) \right) = 0.
\end{align*}
\]

Proof. By definition, the disjoint union \(\bigcup_{n=1}^{\infty} M(h_n, \gamma) \) equals \(Y \) (modulo a set of
measure zero). We need to show that if \(\{ \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)} \}_{k=1}^{\infty} \) weakly converges to
an element \(S \in \mathcal{N}(\tau_2) \), then \(\{ \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)} \}_{k=1}^{\infty} \) converges to \(S \) in the rank
metric as well, where \(T_n \in L_\infty^c(Y, \nu) \times \Gamma_2 \). Let \(P_k = \sum_{n=1}^{k} 1_{M(h_n, \gamma)} \in L_2^c(\Gamma, L_2^2(Y, \nu)). \)
We denote by \(\hat{P}_k \) the element \(\sum_{n=1}^{k} 1_{M(h_n, \gamma)} \) in \(L_\infty^c(Y, \nu) \times \Gamma_2 \). By definition, if
\(L(A)(P_k) = 0 \), then \(A\hat{P}_k = 0 \). Now, by weak convergence,

\[L(S)(P_k) = \lim_{l \to \infty} \sum_{n=1}^{l} T_n \cdot 1_{M(h_n, \gamma)}(P_k). \]

That is,

\[L(S - \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)})(P_k) = 0. \]

Therefore,

\[(S - \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)}) \hat{P}_k = 0. \]

Thus,

\[(S - \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)}) = (S - \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)})(1 - \hat{P}_k). \]

By Lemma 3.1 \(\text{rk}_{\mathcal{N}(\tau_2)}(1 - \hat{P}_k) = 1 - \sum_{n=1}^{k} \nu(M(h_n, \gamma)) \), hence

\[\lim_{k \to \infty} \text{rk}_{\mathcal{N}(\tau_2)}(S - \sum_{n=1}^{k} T_n \cdot 1_{M(h_n, \gamma)}) = 0. \]

\[\square \]

Now let us turn back to the proof of our proposition. By [57], \(\hat{k} \) maps the algebra
\(L_\infty^c(X, \mu) \times \Gamma_1 \) into the rank closure of \(L_\infty^c(Y, \nu) \times \Gamma_2 \). Since \(\hat{k} \) preserves the rank,
\(\hat{k} \) maps the rank closure of \(L_\infty^c(X, \mu) \times \Gamma_1 \) into the rank closure of \(L_\infty^c(Y, \nu) \times \Gamma_2 \).
Similarly, \(\hat{\lambda} \) maps the rank closure of \(L_\infty^c(Y, \nu) \times \Gamma_2 \) into the rank closure of
\(L_\infty^c(X, \mu) \times \Gamma_1 \). That is, \(\hat{k} \) provides an isomorphism between the rank closures
of \(L_\infty^c(X, \mu) \times \Gamma_1 \) and \(L_\infty^c(Y, \nu) \times \Gamma_2 \). Therefore, the smallest continuous ring
containing \(L_\infty^c(X, \mu) \times \Gamma_1 \) in \(U(\mathcal{N}(\tau_1)) \) is mapped to the smallest continuous ring
containing \(L_\infty^c(Y, \nu) \times \Gamma_2 \) in \(U(\mathcal{N}(\tau_2)) \).

\[\square \]
LAMPLIGHTER GROUPS

REFERENCES

[1] S. K. Berberian, The maximal ring of quotients of a finite von Neumann algebra, Rocky Mountain J. Math. 12 (1982), no. 1, 149–164, DOI 10.1216/RMJ-1982-12-1-149. MR649748 (83i:16005)

[2] Gábor Elek, L^2-spectral invariants and convergent sequences of finite graphs, J. Funct. Anal. 254 (2008), no. 10, 2667–2689, DOI 10.1016/j.jfa.2008.01.010. MR2406929 (2009a:05093)

[3] Gábor Elek, Connes embeddings and von Neumann regular closures of amenable group algebras, Trans. Amer. Math. Soc. 365 (2013), no. 6, 3019–3039, DOI 10.1090/S0002-9947-2012-05687-X. MR3034457

[4] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359. MR0578730 (58 #28261b)

[5] K. R. Goodearl, von Neumann regular rings, 2nd ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. MR1150975 (93m:16006)

[6] Israel Halperin, Extension of the rank function, Studia Math. 27 (1966), 325–335. MR0202773 (34 #2633)

[7] V. F. R. Jones, von Neumann Algebras, http://math.berkeley.edu/~vfr/MATH20909/VonNeumann2009.pdf

[8] Peter A. Linnell, Wolfgang Lück, and Thomas Schick, The Ore condition, affiliated operators, and the lamplighter group, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 315–321, DOI 10.1142/9789812704443_0013. MR2048726 (2005e:16053)

[9] Peter A. Linnell and Thomas Schick, The Atiyah conjecture and Artinian rings, Pure Appl. Math. Q. 8 (2012), no. 2, 313–327, DOI 10.4310/PAMQ.2012.v8.n2.a1. MR2900171

[10] W. Lück, Approximating L^2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481, DOI 10.1007/BF01896404. MR1280122 (95g:58234)

[11] Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164, DOI 10.1090/S0273-0979-1980-14702-3. MR551753 (80j:28031)

[12] Andreas Thom, Sofic groups and Diophantine approximation, Comm. Pure Appl. Math. 61 (2008), no. 8, 1155–1171, DOI 10.1002/cpa.20217. MR2417890 (2009j:46143)

Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom, LA1 4YF

E-mail address: g.elek@lancaster.ac.uk