A Potential Autophagy-Related Competing Endogenous RNA Network and Corresponding Diagnostic Efficacy in Schizophrenia

Rongjie Li1,2†, Qiaoye Wang1,2†, Yufen Qiu3†, Youshi Meng1,2, Lei Wei1,2, Hao Wang1,2, Ruikang Mo1,2, Donghua Zou1,2* and Chunbin Liu2*

†These authors have contributed equally to this work

1Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China, 2Department of Internal Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China, 3Maternal and Child Health Hospital and Obstetrics and Gynecology Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China

Competing endogenous RNA (ceRNA) and autophagy were related to neurological diseases. But the relationship among ceRNA, autophagy and Schizophrenia (SZ) was not clear. In this study, we obtained gene expression profile of SZ patients (GSE38484, GSE54578, and GSE16930) from Gene Expression Omnibus (GEO) database. Then we screened the autophagy-related differentially expressed lncRNA, miRNA, and mRNA (DElncRNA, DEmiRNA, and DEmRNA) combined with Gene database from The National Center for Biotechnology Information (NCBI). In addition, we performed enrichment analysis. The result showed that biological processes (BPs) mainly were associated with cellular responses to oxygen concentration. The enriched pathways mainly included ErbB, AMPK, mTOR signaling pathway and cell cycle. Furthermore, we constructed autophagy-related ceRNA network based on the TargetScan database. Moreover, we explored the diagnostic efficiency of lncRNA, miRNA and mRNA in ceRNA, through gene set variation analysis (GSVA). The result showed that the diagnostic efficiency was robust, especially miRNA (AUC = 0.884). The miRNA included hsa-miR-423-5p, hsa-miR-4532, hsa-miR-593-3p, hsa-miR-618, hsa-miR-4723-3p, hsa-miR-4640-3p, hsa-miR-296-5p, and hsa-miR-3943. The result of this study may be helpful for deepening the pathophysiology of SZ. In addition, our finding may provide a guideline for the clinical diagnosis of SZ.

Keywords: schizophrenia, autophagy, ceRNA, competing endogenous RNA, lncRNA-miRNA-mRNA

INTRODUCTION

Schizophrenia is a serious genetic psychiatric disease that usually occurs in late adolescence or early adulthood, and it affected 1.13 million people worldwide in 2017 (1, 2). Lifetime prevalence of the disease is close to 1%, and only 10–15% of patients are able to engage in paid work (3). The main risk factors of the disease include disorders of the dopamine system (4); early brain trauma, especially damage to the frontal and temporal lobes (5); use of illicit drugs (6); and infections during pregnancy caused by various factors (7). The pathogenesis of schizophrenia is unclear, and most studies have shown it to involve interactions between genes and the environment (8). The disease is diagnosed based on positive symptoms, such as hallucinations, delusions, and unusual behavior;
or negative symptoms, such as blunted emotional reactions, lack of emotion and lack of language. The presence of two or more symptoms is usually indicative of the disease. First-line treatments against schizophrenia are haloperidol and chlordiazepoxide, but they often show poor efficacy and are associated with high risk of serious adverse reactions (9).

Identifying better treatments requires a deeper understanding of the biological basis of schizophrenia. Autophagy, the process of degrading intracellular components in lysosomes, plays an important role in the central nervous system by contributing to neuronal homeostasis (10). Loss of autophagy can destroy neuronal homeostasis (11), leading to

FIGURE 1 | Flowchart of the study design. lncRNA, long noncoding RNA; miRNA, microRNA; NCBI, National Center for Biotechnology Information.

FIGURE 2 | Differential expression analysis and screening of autophagy-related mRNAs. (A) Manhattan diagram showing differentially expressed (DE) IncRNAs, DEMiRNAs and DEmRNAs in schizophrenia (SZ). (B) Genes overlapping between the set of autophagy genes and the set of DEMiRNAs. (C) Heatmap showing the expression of autophagy-related DEmRNAs. Yellow means up-regulation, blue means down-regulation.
FIGURE 3 | Biological functions and KEGG pathways involving autophagy-related DEmRNAs in schizophrenia (SZ). (A) Biological processes involving autophagy-related DEmRNAs. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in autophagy-related DEmRNAs. (C) Biological processes involving autophagy-related DEmRNAs. (D) KEGG pathways involved in autophagy-related DEmRNAs. (E) Pathway enrichment analysis of 375 autophagy-related DEmRNAs using ClueGO. (F) Biological enrichment analysis of 375 autophagy-related DEmRNAs using ClueGO. Each node represents a biological process or KEGG pathway. Edges represent connections between the nodes, and the length of each edge reflects the relatedness of two processes.
abnormal neuronal activity, which in turn may contribute to various neurological disease (12). In fact, loss of autophagy in animal model can seriously damage social and cognitive functions, which may lead to mood disorders, psychotic-like symptoms and behavioral change (13, 14). Dysregulation of autophagy in neurological diseases may involve altered gene regulation. In particular, it may involve changes in how much microRNAs (miRNAs) repress the translation of target genes, perhaps as a result of changes in the levels of long non-coding RNAs (lncRNAs) (15). According to the competing endogenous RNA (ceRNA) hypothesis, lncRNAs compete with target miRNAs for binding to miRNAs, acting as miRNA “sponges” (16). In support of this hypothesis, altered lncRNA-mediated gene regulation has been implicated in schizophrenia (17), and certain miRNAs are up-regulated in schizophrenia and other neurological diseases (18).

Whether schizophrenia involves altered interactions among lncRNAs, miRNAs, and mRNAs is unclear. Based on comparison of blood samples from schizophrenia patients and healthy controls in public datasets, the present study identified a ceRNA network that may regulate autophagy-related genes in the disease. These insights may help clarify the disease process, guide new drug development, and improve diagnosis.

MATERIALS AND METHODS

Data Collection and Processing

We downloaded the datasets from the Gene Expression Omnibus (GEO) database, each dataset had been normalized with MAS5 when the authors submitted them into the database as required (http://www.ncbi.nlm.nih.gov/geo/). The whole-blood RNA (mRNAs and lncRNAs) expression profiles of GSE38484...
based on GPL6947 platform, taken from 106 patients with schizophrenia and 96 controls (19, 20). Peripheral-blood miRNA expression profiles of GSE54578 based on GPL16016 platform included 15 patients and 15 controls were also downloaded (21). The lncRNAs and mRNAs were distinguished according to the file Homo_sapiens.GRCch38.97.chr.gtf on the Ensembl website (http://asia.ensembl.org) (22, 23). The above two datasets (GSE38484 and GSE54587) were used to construct a potential ceRNA network in schizophrenia. The dataset of GSE16930 based on GPL2879 platform, containing 18 patients and 2 controls (24), was used to validate diagnostic performance and expression of RNA in ceRNA network. If one gene corresponded to multiple probes, the average expression value the these probes was considered to be the expression of the gene. The work flow was shown in Figure 1.

Screening for Autophagy-Related Differentially Expressed RNAs in Schizophrenia

The limma package (25) was used to identify differentially expressed mRNAs, lncRNAs, and miRNAs (DEmRNA, DElncRNA, and DEMiRNA) between patients with schizophrenia and controls. The RNA that was log2[fold change (FC)] >1 and adjusted \(p < 0.05 \) was considered differentially expressed. The autophagy-related genes were obtained combined the differentially expressed RNAs (DERNAs) and the autophagy-related genes in Gene database (www.ncbi.nlm.nih.gov/gene). The autophagy-related genes were obtained using the autophagy as the search key word in the Gene database.

Functional Enrichment Analysis

Potential interactions among autophagy-related genes were identified using the STRING database (26), and protein-protein interactions (PPIs) network was visualized using Cytoscape (27). In order to further explore the biological functions of autophagy-related genes, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed using the clusterProfiler R package (28). For further exploring the differences of biological functions between SZ patients and controls, the gene set variation analysis (GSVA) was performed using GSVA package (29) in R. Gene set enrichment analysis (GSEA) was performed using GSEA2-2.2.4 (Java version) (30). The reference gene set (c5.bp.v6.2.symbols.gmt and c2.cp.kegg.v6.2.symbols.gmt) were obtained from The Molecular Signatures Database (version 6.2) (31). GO and KEGG networks were analyzed and drawn using the ClueGO plug-in (32) in Cytoscape.

Exploration of an Autophagy-Related ceRNA Network in Schizophrenia

To construct a ceRNA regulation network, interactions between DEMiRNAs and DEmiRNAs were predicted using the TargetScan database (version: release 7.2) (33). Then the DEMiRNAs in
these interaction pairs were used to identify target mRNAs, again based on the TargetScan database. Target mRNAs that we found to be differentially expressed in schizophrenia were considered candidate target mRNAs in the ceRNA network. The co-expression network comprising DElncRNAs, DEmiRNAs and DEmRNAs was visualized using Cytoscape.

Identifying Core Dysregulated DElncRNAs, DEmiRNAs, and DEmRNAs in Schizophrenia

GSVA scores were calculated using an unsupervised, non-parametric algorithm in the GSVA package (29) separately for DElncRNAs, DEmiRNAs, and DEmRNAs. Core genes are also called hub genes, genes that play a vital role in biological processes. In related pathways, the regulation of other genes is often affected by this gene. The ability of the core sets identified based on GSVA score to diagnose schizophrenia was assessed in terms of the area under the receiver operator characteristic curve (AUC) (34).

Statistical Analysis

We screened the differentially expressed genes in the two groups using unpaired \(t \)-tests provided by limma package. Unless otherwise stated, we considered \(p \)-value < 0.05 to be statistically significant.

RESULTS

DElncRNAs, DEmiRNAs, and DEmRNAs in Schizophrenia

Comparison between patients with schizophrenia and controls revealed 2,400 DElncRNAs (1,130 up-regulated, 1,270 down-regulated), 69 DEmiRNAs (19 up-regulated, 50 down-regulated), and 3,859 DEmRNAs (811 up-regulated, 2,048 down-regulated) (Figure 2A). Of the total set of DEmRNAs, 375 were related to autophagy, of which 176 were up-regulated and 199

Table 3 | The cumulative weighted context++ score for miRNA targeted DElncRNAs.

DElncRNA	DEmiRNA	Score
PAQR3	hsa-miR-1244	0.432
ATG3	hsa-miR-1244	0.42
PTPN22	hsa-miR-1244	0.487
SMAD4	hsa-miR-296-5p	0.403
HDAC4	hsa-miR-3943	0.475
BID	hsa-miR-4532	0.437
RAB18	hsa-miR-4532	0.423
TGFBR2	hsa-miR-4640-3p	0.511
TMED10	hsa-miR-4640-3p	0.65
TGFBR2	hsa-miR-4723-3p	0.453
CDKN1B	hsa-miR-509-3p	0.484
AH1	hsa-miR-509-3p	0.401
RAB4A	hsa-miR-509-3p	0.555
ANAPC10	hsa-miR-618	0.461
CTNN	hsa-miR-182-5p	0.842
HIF1AN	hsa-miR-1827	0.797
MTA1	hsa-miR-423-5p	0.646
PML	hsa-miR-423-5p	0.755
MAP1LC3A	hsa-miR-423-5p	0.974
TRIM11	hsa-miR-423-5p	0.635
CDKN1A	hsa-miR-423-5p	0.826
CFL1	hsa-miR-4455	0.928
RAD23A	hsa-miR-92a-2-5p	1.032
IRF3	hsa-miR-92a-2-5p	0.681
BRD4	hsa-miR-92a-2-5p	0.836
CFL1	hsa-miR-92a-2-5p	0.615
PRKCSH	hsa-miR-92a-2-5p	0.7

DE, differentially expressed.

Table 4 | The cumulative weighted context++ score for miRNA targeted DEmiRNAs.

DEmiRNA	DEmRNA	Score
hsa-miR-1244	ATG3	0.42
hsa-miR-1244	PAQR3	0.432
hsa-miR-1244	PTPN22	0.487
hsa-miR-296-5p	SMAD4	0.403
hsa-miR-296-5p	ITGA3	0.458
hsa-miR-3943	HDAC4	0.475
hsa-miR-4532	RAB18	0.423
hsa-miR-4532	BID	0.437
hsa-miR-4640-3p	TGFBR2	0.511
hsa-miR-4640-3p	TMED10	0.65
hsa-miR-4640-3p	CLEC12A	0.425
hsa-miR-4640-3p	CLEC12A	0.425
hsa-miR-4640-3p	TGFBR2	0.453
hsa-miR-4640-3p	AH1	0.401
hsa-miR-4640-3p	CDKN1B	0.484
hsa-miR-4640-3p	RAB4A	0.555
hsa-miR-4640-3p	MTMR9	0.452
hsa-miR-4723-3p	ATG2A	1.259
hsa-miR-92a-2-5p	RAD23A	1.032
hsa-miR-92a-2-5p	MAP1LC3A	0.974
hsa-miR-4455	CFL1	0.928
hsa-miR-185-5p	RELA	0.846
hsa-miR-182-5p	CTNN	0.842
hsa-miR-92a-2-5p	BRD4	0.836
hsa-miR-423-5p	CDKN1A	0.826
hsa-miR-1827	KDEL1	0.806
hsa-miR-1827	HIF1AN	0.797
hsa-miR-423-5p	PML	0.775
hsa-miR-423-5p	CC2D1A	0.71
hsa-miR-92a-2-5p	PRKCSH	0.697
hsa-miR-1827	RPS19	0.695

DE, differentially expressed.
The differentially expressed IncRNA in IncRNA-miRNA-mRNA interaction.

Symbol	UP-/Down-regulated	LogFC
PAQR3	Up	0.0627663
ATG3	Up	0.07976884
PTENP2	Up	0.07460666
SMAD4	Up	0.18994502
HDAC4	Up	0.11526093
BID	Up	0.07720877
RAB18	Up	0.08738113
TGFBR2	Up	0.12797752
TME10	Up	0.14642916
CDKN1B	Up	0.18388462
AHI1	Up	0.07110937
RAB4A	Up	0.06520897
ANAPC10	Up	0.10559715
CTTN	Down	−0.0806331
HIF1AN	Down	−0.1034436
MTA1	Down	−0.1248488
PML	Down	−0.0268992
MAP1LC3A	Down	−0.0746426
TRIM11	Down	−0.0777394
CDKN1A	Down	−0.0900645
CFL1	Down	−0.1398589
RAD23A	Down	−0.2010718
IFR3	Down	−0.2632613
BRD4	Down	−0.0367264
PRKCSH	Down	−0.1312668

IncRNA, Long non-coding RNA; FC, fold change.

down-regulated (Figure 2B). The heatmap suggested that DEmRNAs could distinguish patients from controls to a certain extent (Figure 2C).

Biological Functions and Pathways Involving Autophagy-Related DEmRNAs in Schizophrenia

The autophagy-related DEmRNAs encoded a wide range of proteins, based on the STRING database. The analysis identified 161 interaction pairs and 130 nodes in the network when the score was higher than 980 (Supplementary Figure 1). Enrichment analysis showed that autophagy-related DEmRNAs supported cellular responses to oxidative stress, regulation of protein catabolism, apoptosis signaling, as well as biological processes related to cellular responses to oxygen concentration (Figure 3A). They were also closely related to ErbB signaling, AMPK signaling, mTOR signaling and the cell cycle (Figure 3B). The GSEA result showed that there were common GO function and KEGG pathways combined with Figures 3B, C. Two GO functions, “positive regulation of autophagy” and “response to oxygen levels,” were up-regulated in SZ patients compared with controls (Figure 3C). Only one KEGG pathway, “ubiquitin mediated proteolysis,” was upregulated in SZ patients compared to controls (Figure 3D). ClueGO analysis showed that autophagy-related DEmRNAs may also be related to apoptosis and to signaling mediated by mTOR, MAPK, and ErbB (Figure 3E). The results showed that autophagy-related DEmRNAs may be involved in positive regulation of catabolism, apoptosis signal, and regulation of transcription factors (Figure 3F).

Involvement of a ceRNA Network in Autophagy-Related DEmRNAs in Schizophrenia

Next, potential interactions among the above genes were explored according to the ceRNA hypothesis. Based on a minimal score of 0.4, we identified 31 autophagy-related DEmRNAs that may interact with 14 DEMiRNAs (Figure 4A, Tables 1–3). In total, there were 25 DElncRNAs, 13 DEMiRNAs and 30 autophagy-related DEmRNAs, with the threshold of score >0.4 (Figure 4B, Table 4). These results, combined with the enrichment analysis, suggest that IncRNAs may regulate the phenotype through ceRNA. We identified 15 DElncRNAs, 8 DEMiRNAs and 11 autophagy-related DEmRNAs and 10 KEGG pathways (Figure 4C, Tables 4, 5). We focused on the nine KEGG pathways previously linked to schizophrenia in the literature: Wnt signaling pathway, adherence junctions, ErbB signaling pathway, spinocerebellar ataxia, apoptosis, MAPK signaling pathway, cell cycle, endocytosis, and focal adhesion (Figure 4D).

Diagnostic Ability of Autophagy-Related Core DElncRNAs, DEMiRNAs and DEmRNAs for Schizophrenia

Most core dysregulated DElncRNAs were up-regulated in schizophrenia compared to controls (Figure 5A). However, the GSVA score based on the core DElncRNAs did not differ significantly between patients and controls (Figure 5B, Table 5). Similarly, the core DElncRNAs showed a poor ability to differentiate patients from controls in the test set (GSE38484, AUC = 0.606) and validation set (GSE16930, AUC = 0.694) (Figure 5C). Although core dysregulated DEMiRNAs did not give a significantly different GSVA score between patients and controls (Figure 5D, Table 6), the score proved to differentiate the two groups well (Figure 5E). This suggests its potential as a diagnostic biomarker. Most core dysregulated DEmRNAs were up-regulated in schizophrenia compared to controls (Figure 5F, Table 7). The GSVA score based on core dysregulated DEmRNAs were significantly higher in patients (p = 0.0087, Figure 5G), and it differentiated patients from controls with good AUCs in the test set (GSE38484, AUC = 0.659) and validation set (GSE16930, AUC = 0.778) (Figure 5H).

DISCUSSION

Schizophrenia is a persistent mental illness that disrupts normal thinking, function and mobility, and it can seriously impact patients and their families. Current anti-schizophrenia drugs can treat only the symptoms of the disease (35). To deepen the
FIGURE 5 | Performance of core dysregulated autophagy-related DElncRNAs, DEMiRNAs and DEmRNAs for diagnosing schizophrenia (SZ). (A) Gene set variation analysis (GSVA) of IncRNA expression. Blue means up-regulation; red means down-regulation. (B) GSVA score for core dysregulated DElncRNAs in the validation set (GSE16930). The horizontal axis shows sample names; the vertical axis, gene expression. Control data are shown in blue, patient data in yellow. (C) Receiver operating characteristic curves assessing how well the GSVA score for core dysregulated DElncRNAs diagnosed schizophrenia in the test set (GSE38484) and validation set (GSE16930). (D) GSVA-miRNA expression heat map. (E) ROC curve analysis for the GSVA score of core dysregulated DEMiRNAs in test set (GSE38484). (F) GSVA-mRNA expression heat map. (G) The expression of the GSVA score of core dysregulated mRNAs in validation set (GSE16930). (H) ROC analysis for the GSVA score of core dysregulated DEmRNAs in test set (GSE38484) and validation set (GSE16930).
understanding of pathology of SZ to guide the diagnosis and treatment, the present study explored a ceRNA network that may be related to the disease by altering the regulation of genes involved in autophagy.

At the core of the ceRNA network, we identified 15 lncRNAs, 8 miRNAs, 11 mRNAs, and 10 KEGG pathways. Several of these RNAs have already been associated with schizophrenia. The miRNA137, which maps to chromosome 1p21.3, appears to confer susceptibility to the disease (36), while miR-219 is significantly up-regulated in the dorsolateral pre-frontal cortex of patients (37). The lncRNA MIAT (38), also called Gomafu (39), is down-regulated in schizophrenia, and this lower expression appears to reduce the activity of neurons (40).

Among the 10 core KEGG pathways in our ceRNA network, nine have already been associated with schizophrenia: cell cycle (41), spinocerebellar ataxia (42), apoptosis (43), ErbB signaling (44), focal adhesion (45), endocytosis (46), adhesions junction (47), Wnt signaling (48), and MAPK signaling (49). Mammalian mTOR target mTORC1 (mTORC1) phosphorylates Unc51-like autophagy-activated kinase to block the initiation of autophagy. Both AMPK and oxidative stress can activate the transcription factors EB, FOXO1/3, transcription factor 4, and NF-κB to turn on expression of the autophagy-activated kinase (50).

The results of this study show that based on the exploration of the ceRNA network in schizophrenia, eight core disorders of DEMiRNA (hsa-miR-423-5p, hsa-miR-4532, hsa-miR-593-3p, hsa-miR-618, hsa-miR-4723-3p, hsa-miR-4640-3p, hsa-miR-296-5p, and hsa-miR-3943) may play a role in the diagnosis and treatment of schizophrenia. This article provides some basis for the study of ceRNA in schizophrenia. A previous study showed that hsa-miR-423-5p expressed in brain and were associated with amyotrophic (50). Hsa-miR-296-5p can be used as the prognostic

(Continued)
Sample	The SGVA score for IncRNA
GSM943354	0.11285974
GSM943355	0.36488225
GSM943356	0.11361519
GSM943357	0.04035765
GSM943358	0.09604639
GSM943359	−0.4523051
GSM943360	0.26266788
GSM943361	−0.2851021
GSM943362	−0.5041086
GSM943363	0.20250477
GSM943364	0.437185
GSM943365	0.29858339
GSM943366	0.35282093
GSM943367	−0.1602093
GSM943368	0.15444235
GSM943369	0.30437466
GSM943370	0.49672922
GSM943371	0.01369045
GSM943372	0.08645874
GSM943373	0.24790484
GSM943374	0.33396173
GSM943375	−0.5383407
GSM943376	−0.1192688
GSM943377	0.3574584
GSM943378	0.25941656
GSM943379	0.42973364
GSM943380	0.39773378
GSM943381	0.5239567
GSM943382	0.16793854
GSM943383	0.24790484
GSM943384	0.33396173
GSM943385	−0.5383407
GSM943386	−0.1192688
GSM943387	0.3574584
GSM943388	0.25941656
GSM943389	0.42973364
GSM943390	0.39773378
GSM943391	0.5239567
GSM943392	0.16793854
GSM943393	0.24790484
GSM943394	0.33396173
GSM943395	−0.5383407
GSM943396	−0.1192688
GSM943397	0.3574584
GSM943398	0.25941656
GSM943399	0.42973364
GSM943400	0.39773378
GSM943401	0.5239567
GSM943402	0.16793854
GSM943403	0.24790484
GSM943404	0.33396173
GSM943405	−0.5383407
GSM943406	−0.1192688
GSM943407	0.3574584
GSM943408	0.25941656
GSM943409	0.42973364
GSM943410	0.39773378
GSM943411	0.5239567
GSM943412	0.16793854
GSM943413	0.24790484
GSM943414	0.33396173
GSM943415	−0.5383407
GSM943416	−0.1192688
GSM943417	0.3574584
GSM943418	0.25941656
GSM943419	0.42973364
GSM943420	0.39773378
GSM943421	0.5239567
GSM943422	0.16793854
GSM943423	0.24790484
GSM943424	0.33396173
GSM943425	−0.5383407
GSM943426	−0.1192688
GSM943427	0.3574584
GSM943428	0.25941656
GSM943429	0.42973364
GSM943430	0.39773378
GSM943431	0.5239567
GSM943432	0.16793854
GSM943433	0.24790484
GSM943434	0.33396173
GSM943435	−0.5383407
GSM943436	−0.1192688
GSM943437	0.3574584
GSM943438	0.25941656
GSM943439	0.42973364
GSM943440	0.39773378
TABLE 7 | Continued

Table: The SGVA score for lncRNA

Sample	The SGVA score for lncRNA
GSM943336	-0.369525
GSM943337	-0.2940262
GSM943338	-0.4274155
GSM943339	-0.3371467
GSM943340	-0.6698214
GSM943341	0.24754192
GSM943342	-0.2931242
GSM943343	-0.3216991
GSM943344	-0.2958243
GSM943348	-0.0570591
GSM943349	-0.1881957
GSM943350	0.14668631
GSM943352	0.54968764
GSM943357	-0.0502532
GSM943362	0.26218968
GSM943367	0.14955676
GSM943368	-0.0134775
GSM943369	0.3173091
GSM943370	0.14585417
GSM943371	0.12580090
GSM943372	-0.1641372
GSM943373	0.08380789
GSM943374	-0.1966473
GSM943375	-0.1311396
GSM943376	-0.3472714
GSM943377	-0.4261266
GSM943378	-0.1352578
GSM943379	0.40150813
GSM943380	0.33829136
GSM943381	0.15849565
GSM943382	-0.3485866
GSM943383	0.09255036
GSM943384	-0.2833883
GSM943385	0.13860444
GSM943386	0.35069625
GSM943387	0.31839866
GSM943388	0.26587442
GSM943389	0.18053564
GSM943390	0.37962738
GSM943391	0.36431387
GSM943392	-0.2140642
GSM943393	0.0300473
GSM943394	-0.0190683
GSM943395	0.38688973
GSM943396	0.36851887
GSM943397	-0.2838209
GSM943398	-0.1250319
GSM943399	-0.3397713

GSVA, gene set variation analysis; DElncRNA, differentially expressed lncRNA; lncRNA, long non-coding RNA.

TABLE 8 | The GSVA score of autophagy-related core DEmiRNAs for schizophrenia.

Table: The SGVA score for miRNA

Sample	The SGVA score for miRNA
GSM1319273	-0.2902226
GSM1319274	-0.1687515
GSM1319275	0.36035455
GSM1319276	0.3414514
GSM1319277	0.39851853
GSM1319278	-0.3203811
GSM1319279	0.11212015
GSM1319280	0.51807188
GSM1319281	-0.1399658
GSM1319282	0.43995331
GSM1319283	0.33134043
GSM1319284	0.46642465
GSM1319285	0.57104229
GSM1319286	0.32094183
GSM1319287	0.54250142
GSM1319288	-0.0306217
GSM1319289	-0.5113071
GSM1319290	-0.1971761
GSM1319291	-0.3622741
GSM1319292	0.16720548
GSM1319293	-0.3944622
GSM1319294	-0.6112523
GSM1319295	0.12238628
GSM1319296	0.12820827
GSM1319297	-0.4186762
GSM1319298	-0.5027713
GSM1319299	-0.6330539
GSM1319300	0.16355505
GSM1319301	-0.7776802
GSM1319302	-0.6659011

GSVA, gene set variation analysis; DEmiRNA, differentially expressed miRNA; miRNA, microRNA.

In short, this study provides deeper insights into the construction of lncRNA-miRNA-mRNA network involving autophagy-related genes in SZ, and provides new targets for the diagnosis of SZ patients. However, there are some limitations at present. Firstly, due to the small sample size of the lncRNA and mRNA verification sets, and the lack of miRNA verification sets. The expression profiles of lncRNA and mRNA are obtained from the same sample, but miRNA is obtained from a separate data set. The combination of two data sets into a network may lead to selection bias due to batch effect. Secondly, the results of our study only indicate that these ceRNA network may exist in patients with SZ. However, it needs further evidence whether ceRNA exists in SZ patients, with the help of systematic biological experiment in vivo or in vitro. Relevant molecular biology experiments are required to obtain more credible results.
Sample	The SGVA score for mRNA
GSM943244	0.05578029
GSM943245	0.08487851
GSM943246	-0.0728044
GSM943247	0.4013904
GSM943248	-0.2001586
GSM943257	0.06661096
GSM943258	-0.3222998
GSM943264	-0.2131252
GSM943265	0.31110152
GSM943266	-0.142988
GSM943267	0.27328669
GSM943268	0.06219096
GSM943269	0.24486591
GSM943270	0.15258807
GSM943271	0.27207768
GSM943272	-0.1023498
GSM943273	-0.1609631
GSM943274	0.23711898
GSM943275	0.46183445
GSM943276	-0.287573
GSM943277	-0.0060988
GSM943279	0.51535806
GSM943280	0.37219598
GSM943281	0.06680157
GSM943304	0.00089912
GSM943305	-0.2960054
GSM943306	-0.2513268
GSM943307	0.10305816
GSM943308	0.25858371
GSM943309	0.20567306
GSM943310	-0.2788849
GSM943311	-0.3446586
GSM943312	0.52587649
GSM943313	0.15807803
GSM943314	0.12837864
GSM943315	0.09866567
GSM943317	-0.0838278
GSM943323	-0.3644114
GSM943324	0.40263811
GSM943325	0.02942296
GSM943326	-0.2819125
GSM943327	-0.4048892
GSM943333	-0.1865595
GSM943334	0.17542479
GSM943335	0.3231569
GSM943344	-0.2058041
GSM943345	0.60989966
GSM943348	0.11479437
GSM943351	0.06093777
GSM943353	0.18638731

(Continued)
Sample	The SGVA score for mRNA
GSM943440	−0.046987
GSM943441	0.08441187
GSM943442	0.49931603
GSM943443	0.03503982
GSM943444	0.14282981
GSM943243	−0.2870646
GSM943249	−0.4050875
GSM943250	−0.1214628
GSM943251	−0.0474812
GSM943252	−0.0286448
GSM943253	0.10298879
GSM943254	−0.0106536
GSM943255	0.5477157
GSM943256	−0.3687687
GSM943259	−0.0827993
GSM943260	0.166678
GSM943261	−0.4602952
GSM943262	0.22238901
GSM943263	−0.3615747
GSM943277	−0.3873576
GSM943282	−0.0900237
GSM943283	−0.3750237
GSM943284	−0.0877004
GSM943285	−0.1695492
GSM943286	0.08766006
GSM943287	−0.3179648
GSM943288	−0.444477
GSM943289	−0.0792808
GSM943290	−0.059938
GSM943291	−0.3215349
GSM943292	−0.4619875
GSM943293	−0.4927457
GSM943294	−0.328019
GSM943295	0.26444373
GSM943296	−0.3003772
GSM943297	−0.4231188
GSM943298	−0.1198662
GSM943299	−0.4330391
GSM943300	−0.3357985
GSM943301	−0.0537179
GSM943302	−0.3928497
GSM943303	−0.3438028
GSM943316	0.31658636
GSM943318	−0.4643914
GSM943319	−0.4886199
GSM943320	0.01997146
GSM943321	−0.35127
GSM943322	−0.05806
GSM943328	−0.2392504
GSM943329	0.08475588
GSM943330	−0.1014165

(Continued)
CONCLUSION
Our results suggest that the ceRNA network is involved in schizophrenia, which may deepen our understanding of the disease and guide the development of new treatments. The GSVA score based on the following eight core dysregulated DEMiRNAs may improve diagnosis of the disease: hsa-miR-423-5p, hsa-miR-4532, hsa-miR-593-3P, hsa-miR-618, hsa-miR-4723-3p, hsa-miR-4640-3p, hsa-miR-296-5p, and hsa-miR-3943.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS
RL, QW, YQ, DZ, and CL designed the study and contributed to drafting the manuscript. RL, QW, YQ, YM, LW, HW, RM, DZ, and CL collated data and carried out data analyses. All authors have read and approved the final submitted manuscript.

FUNDING
This study was supported by the Guangxi Natural Science Foundation (2016GXNSFCA380012), the Project of Qingxiu District of Nanning Scientific Research and Technology Development Plan (2020058), the Scientific Research Project of Guangxi Zhuang Autonomous Region Health Commission (Z20180081 and Z20200201), the High-Level Medical Expert Training Program of Guangxi 139 Plan Funding (G201903049), and the Nanning Excellent Young Scientist Program and the Guangxi Beibu Gulf Economic Zone Major Talent Program (RC20190103).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyt.2021.628361/full#supplementary-material

REFERENCES
1. Vita A, Barlati S, De Peri L, Deste G, Sacchetti E. Schizophrenia. Lancet. (2016) 388:1280. doi: 10.1016/S0140-6736(16)31674-9
2. Hemager N, Plessen KJ, Thorup A, Christiani C, Ellersgaard D, Spang KS, et al. Assessment of neurocognitive functions in 7-year-old children at familial high risk for schizophrenia or bipolar disorder: the danish high risk and resilience study VIA 7. JAMA Psychiatry. (2018) 75:844–52. doi: 10.1001/jamapsychiatry.2018.1415
3. Dixon L. what it will take to make coordinated specialty care available to anyone experiencing early schizophrenia: getting over the hump. JAMA Psychiatry. (2017) 74:7–8. doi: 10.1001/jamapsychiatry.2016.2665
4. Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry. (2017) 81:31–42. doi: 10.1016/j.biopsych.2016.03.2104
5. Nicholl J, LaFrance WC Jr. Neuropsychiatric sequelae of traumatic brain injury. Semin Neurol. (2009) 29:247–55. doi: 10.1055/s-0029-1223878
6. van Os J, Bak M, Hanssen M, Bijl RV, de Graaf R, Verdoux H. Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol. (2002) 156:319–27. doi: 10.1093/aje/kw404
7. Srvakic DM, Zorunski CF, Srvakic NM, Zvir I, Cloninger CR. Risk architecture of schizophrenia: the role of epigenetics. Curr Opin Psychiatry. (2013) 26:188–95. doi: 10.1097/YCO.0b013e32835d8329
8. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Risk factors for schizophrenia associated loci both affected with schizophrenia. Hereditas. (2018) 155:9. doi: 10.1186/s41096-018-0044-2
9. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. (2015) 23:1106–10. doi: 10.1038/ejhg.2014.245
10. de Jong S, Boks MP, Fuller TE, Strengman E, Janson E, de Kovel CG, et al. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS ONE. (2012) 7:e39498. doi: 10.1371/journal.pone.0039498
11. Zhang F, Xu Y, Shugart YY, Yue W, Qi G, Yuan G, et al. Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr Bull. (2015) 41:728–35. doi: 10.1093/schbul/bsu148
12. Qin G, Hu B, Li X, Li R, Meng Y, Wang Y, et al. Identification of key differentially expressed transcription factors in glioblastoma. J Oncol. (2020) 2020:9235101. doi: 10.1155/2020/9235101
13. Liu Z, Mi M, Li X, Zheng X, Wu G, Zhang L. IncRNA OSTM-AS1 may represent a novel immune-related prognostic marker for triple-negative breast cancer based on integrated analysis of a ceRNA network. Front Genet. (2019) 10:850. doi: 10.3389/fgene.2019.00850
14. Hsin KY, Matsuoka Y, Asai Y, Kamiyoshi K, Watanabe T, Kawaoka Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res. (2016) 44:F507–13. doi: 10.1093/nar/gkw335
15. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. (2016) 17:47–62. doi: 10.1038/nrg.2015.10
16. Salmena L, Poliseno L, Tay Y, Kats L, Pandolﬁ PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. (2011) 146:353–8. doi: 10.1016/j.cell.2011.07.014
17. Tian T, Wei Z, Chang X, Liu Y, Gue RE, Sleiman PMA, et al. The LONG Noncoding RNA landscape in amygdala tissues from schizophrenia patients. EBioMedicine. (2018) 34:171–81. doi: 10.1016/j.ebiom.2018.07.022
18. He K, Guo C, He L, Shi Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas. (2018) 155:9. doi: 10.1186/s41096-017-0044-2
19. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. (2015) 23:1106–10. doi: 10.1038/ejhg.2014.245
20. de Jong S, Boks MP, Fuller TE, Strengman E, Janson E, de Kovel CG, et al. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS ONE. (2012) 7:e39498. doi: 10.1371/journal.pone.0039498
21. Zhang F, Xu Y, Shugart YY, Yue W, Qi G, Yuan G, et al. Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr Bull. (2015) 41:728–35. doi: 10.1093/schbul/bsu148
22. Qin G, Hu B, Li X, Li R, Meng Y, Wang Y, et al. Identification of key differentially expressed transcription factors in glioblastoma. J Oncol. (2020) 2020:9235101. doi: 10.1155/2020/9235101
23. Liu Z, Mi M, Li X, Zheng X, Wu G, Zhang L. IncRNA OSTM-AS1 may represent a novel immune-related prognostic marker for triple-negative breast cancer based on integrated analysis of a ceRNA network. Front Genet. (2019) 10:850. doi: 10.3389/fgene.2019.00850
24. Lee CH, Liu CM, Wen CC, Chang SM, Hwu HG. Genetic copy number variants in sib pairs both affected with schizophrenia. J Biomed Sci. (2010) 17:2. doi: 10.1186/1423-0127-17-2
25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007
26. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. (2015) 43:D447–52. doi: 10.1093/nar/gku1003

Frontiers in Psychiatry | www.frontiersin.org 14 February 2021 | Volume 12 | Article 628361
27. Feng H, Gu ZY, Li Q, Liu QH, Yang XY, Zhang JF. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J Ovarian Res. (2019) 12:35. doi: 10.1186/s13048-019-0508-2

28. Li MM, Liu XY, Zhao YC, Ma XY, Zhou YC, Zhao YX, et al. Long noncoding RNA KCNQ1OT1 promotes apoptosis in neuroblastoma cells by regulating miR-296-5p/Bax axis. FEBS J. (2020) 287:561–77. doi: 10.1111/febs.15047

29. Hanzelmann S, Castelo R, Guinney J. GSEA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. (2013) 14:7. doi: 10.1186/1471-2105-14-7

30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. (2005) 102:15545–50. doi: 10.1073/pnas.0506580102

31. Liberezon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. (2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004

32. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. (2009) 25:1091–3. doi: 10.1093/bioinformatics/btp101

33. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. (2015) 4:e05005. doi: 10.7554/eLife.05005

34. Guo Q, Guan GF, Cheng W, Zou CY, Zhu C, Cheng P, et al. Integrated profiling identifies caveolea-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci Ther. (2019) 25:343–54. doi: 10.1111/cns.13072

35. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med. (2018) 26:127–36.

36. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. (2009) 460:748–52. doi: 10.1038/nature08185

37. Darççq E, Warnault V, Phamhuong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry. (2015) 20:1219–31. doi: 10.1038/mp.2014.120

38. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, et al. Genomic analysis of mouse retinal development. PLoS Biol. (2004) 2:E247. doi: 10.1371/journal.pbi.0020247

39. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. (2007) 120(Pt 15):2498–506. doi: 10.1242/jcs.009357

40. Chung DW, Volk DW, Arion D, Zhang Y, Sampson AR, Lewis DA. Dysregulated ErbB4 splicing in schizophrenia: selective effects on parvalbumin expression. Am J Psychiatry. (2016) 173:60–8. doi: 10.1176/appi.ajp.2015.15020150

41. Okazaki S, Boku S, Otsuka I, Mouri K, Aoyama S, Shioiwa K, et al. The cell cycle-related genes as biomarkers for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. (2016) 70:85–91. doi: 10.1016/j.pnpbp.2016.05.005

42. Trikamji B, Singh P, Mishra S. Spinocerebellar ataxia-10 with paranoid schizophrenia. Ann Indian Acad Neurol. (2015) 18:93–5. doi: 10.4103/0972-2327.144285

43. Beyazuz M, Kufeciler T, Bulut L, Unsal C, Albayrak Y, Akyol ES, et al. Increased serum levels of apoptosis in deficit syndrome schizophrenia patients: a preliminary study. Neuropsychiatr Dis Treat. (2016) 12:1261–8. doi: 10.2147/NDT.S106993

44. Mostaid MS, Lee TT, Chana G, Sundram S, Shannon Weickert C, Pantelis C, et al. Peripheral transcription of NRG-ErbB pathway genes are upregulated in treatment-resistant schizophrenia. Front Psychiatry. (2017) 8:225. doi: 10.3389/fpsyt.2017.00225

45. Fan Y, Abrahamsen G, Mills R, Calderon CC, Tee JY, Leyton L, et al. Focal adhesion dynamics are altered in schizophrenia. Biol Psychiatry. (2013) 74:418–26. doi: 10.1016/j.biopsych.2013.01.020

46. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. (2016) 17:47–63. doi: 10.15252/embr.201540689

47. Luciano M, Hansell NK, Lahti J, Davies G, Medland SE, Raikkonen K, et al. Whole genome association scan for genetic polymorphisms influencing information processing speed. BiolPsychol. (2011) 86:193–202. doi: 10.1016/j.biopsycho.2010.11.008

48. Hoseth EZ, Krull F, Diezel I, Morch RH, Hope S, Gardsjord ES, et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. (2018) 8:1055. doi: 10.1038/s41398-018-0102-1

49. Zou D, Qiu Y, Li R, Meng Y, Wu Y, Huang R, et al. A novel schizophrenia diagnostic model based on statistically significant changes in gene methylation in specific brain regions. Biomed Res Int. (2020) 2020:8047146. doi: 10.1155/2020/8047146

50. Feng Y, Yao Z, Klonisky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. (2015) 25:354–63. doi: 10.1016/j.tcb.2015.02.002

51. Shindo S, Arora N, Bhadra U. A complex network of microRNAs expressed in a subset of neurons. FEBS J. (2015) 231:60–8. doi: 10.1111/1742-4658.12887

52. Zhang Y, Sampson AR, Lewis DW. Molecular signatures database (MSigDB) hallmark gene set collection. Trends Cell Biol. (2016) 26:343–56. doi: 10.1016/j.tcb.2016.02.004

53. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. (2016) 17:47–63. doi: 10.15252/embr.201540689

54. Li et al. Potential ceRNA Network in Schizophrenia

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Wang, Qiu, Meng, Wei, Wang, Mo, Zou and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.