The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge *Erylus deficiens* (Astrophorida, Geodiidae)

Ana Patrícia Graça1,2, Flávia Viana1,3, Joana Bondoso1,2, Maria Inês Correia1, Luis Gomes1, Madalena Humanes3, Alberto Reis4, Joana R. Xavier5, Helena Gaspar3 and Olga M. Lage1,2*

1 Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal, 2 Centre of Marine and Environmental Research (CIIMAR), Porto, Portugal, 3 Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 4 Bioenergy Unit, National Laboratory for Energy and Geology I.P., Lisboa, Portugal, 5 Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway

Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge *Erylus deficiens*, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only *Pseudoalteromonas* being shared by two specimens. Of the 83 selected isolates, 58% belong to *Proteobacteria*, 23% to *Actinobacteria* and 19% to *Firmicutes*. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against *Candida albicans* and *Vibrio anguillarum*. *Pseudoalteromonas*, *Microbacterium*, and *Proteus* were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against *C. albicans*, *Bacillus subtilis* and *Escherichia coli*. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against *C. albicans* in both aqueous and acetone extracts as well as absence of activity against *B. subtilis* were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against *E. coli*. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that *Erylus deficiens* bacteria are potential sources of novel marine bioactive compounds.

Correspondence: Olga M. Lage, Department of Biology, Faculty of Sciences, U.P., Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal olga.lage@fc.up.pt

Keywords: sponge associated heterotrophic bacteria, *Erylus deficiens*, bioactivity screening assay, PKS-I and NRPS genes, *Candida albicans*
Introduction

Marine sponges (Phylum Porifera) are sessile filter-feeding organisms and represent a significant component of benthic communities worldwide (Sarà and Vacelet, 1973). They harbor a large community of diverse microorganisms, representing up to 50–60% of the sponge biomass (Thomas et al., 2010), which develop symbiotic relationships essential to their biology. Sponges have been the focus of many studies as they have proved to be a rich source of biologically active secondary metabolites. These compounds may serve as a defense strategy to escape from predators, thus playing a crucial role in sponge survival in the marine ecosystem (Thakur and Müller, 2004). Since the discovery of spongouridine and spongouridin in the early 50’s (Bergmann and Feeney, 1950, 1951), a great number of biologically active compounds were isolated from marine sponges and their associated microorganisms (Taylor et al., 2007; Thomas et al., 2010). About 300 novel compounds were reported in 2011 from the phylum Porifera (Blunt et al., 2013) and more sponge-derived compounds are subjected to clinical and preclinical trials than from any other marine phylum (Martins et al., 2014). The chemical diversity of sponge-derived products is remarkable and their biological activity ranges from anti-inflammatory, antitumour, immuno- or neurosuppressive, antiviral, antimalarial, antibiotic to antifouling (Imhoff et al., 2011). However, many of the bioactive compounds found in sponges are, in fact, produced by their associated microbial communities (Wang, 2006; Khan et al., 2014). This is the case, for instance, of the peptide thiocoraline, produced by a sponge-associated Micromonospora species (Romero et al., 1997) and the cytotoxic and antibacterial tetrabromodiphenyl ethers produced by a Vibrio spp. associated with the sponge Dysidea sp. (Elyakov et al., 1991). This microbial community represents a treasure trove of novel molecules for marine biotechnology. Due to the increasing resistance of bacteria against the common antibiotics there is still a pressing need to find new drugs (Bull and Stach, 2007; Kumarasamy et al., 2010). By the end of 2008, about 3000 natural products had been identified from marine microorganisms (Laatsch, 2008). The most relevant phyla of bacterial producers of new compounds are Actinobacteria (40%), Cyanobacteria (33%), Proteobacteria (12%), and Firmicutes and Bacteroidetes (5% each) (Williams, 2009). In addition to these, archaea, fungi, unicellular algae and other bacterial phyla namely Acidobacteria, Chloroflexi, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Nitrospira, Planctomycetes, Poribacteria, Spirochaetes, and Verrucomicrobia, are also present in the sponge microbial community as revealed mainly by culture-independent molecular methods (Taylor et al., 2007).

In a genomic era, it is easy to assess by molecular methods the bacterial potential for the production of bioactive molecules. These natural bioactive secondary metabolites can be the result of the activity of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) that are large multi-modal, multi-domain enzymes. The minimal set of domains that have to be present in these biosynthetic pathways are ketosynthase (KS), acyltransferase (AT) and acyl carrier proteins in PKSs (Khan et al., 2014) and adenylation (A), condensation (C) and peptidyl carrier proteins (PCPs) for peptide elongation in NRPSs (Jenke-Kodama and Dittmann, 2009). In addition to the synthesis of these defined domains, optional domains can also be produced like ketoreductase. The intra and inter variability of the enzymatic modules codified by PKS and NRPS genes results in the production of diverse bioactive compounds. Antibiotic molecules such erythromycin, tetracycline and glycopeptides of the vancomycin family were reported to have origin in PKS and NRPS productions (Fischbach and Walsh, 2006). In fact, many of the complex polyketides isolated from sponges are the most promising compounds with pharmacological application (Hochmuth and Piel, 2009). Therefore, the search for the genes responsible for the expression of these enzymes is indicative of the biotechnological potential of a specific organism.

The marine sponge genus Erylus, Gray, 1867, contains approximately 70 species and is known to inhabit the Mediterranean Sea, and the Atlantic and Pacific Oceans (Adams and Hooper, 2001). Species of this genus have been reported to possess characteristic bioactive glycosides named, according to their aglycone skeleton, erylosides or erylusamines (Kalinn et al., 2012). Some of these glycolipids have been shown to inhibit tumor cells, fungi, bacteria, viruses including the human immunodeficiency virus (HIV), neuraminidase, interleukin-6, thrombin receptor antagonist, and in vitro human platelet aggregation (Carmely et al., 1989; Fusetani et al., 1993; Gulavita et al., 1994; Sata et al., 1994; Stead et al., 2000; Kubanek and Fenical, 2001; Shin et al., 2001; Takada et al., 2002; Van Altena et al., 2003; Fouad et al., 2004; Sandler et al., 2005; Okada et al., 2006; Afiyatullov et al., 2007; Antonov et al., 2007). Furthermore, Erylus spp. are well known producers of oligoglycosides with antifeedant activity involved in chemical defenses of sponges against predatory fish (Kubanek et al., 2000; Kubanek and Fenical, 2001; Antonov et al., 2011) and with larvicidal activity (Carballeira and Negrón, 1991). Crude extracts of Erylus deficiens from the Portuguese coast were found to possess indoleamine 2,3-dioxygenase (IDO) inhibitory activity (Gaspar et al., 2012). This enzyme plays a fundamental role in the kynurenine pathway, one of the major tryptophan catabolism routes with implications in cancer and in CNS disorders like Alzheimer’s disease and cerebral malaria (Chen and Guilelmin, 2009). The bioactive potential of bacteria associated with Erylus discophorus was evidenced by Graça et al. (2013). The work showed that 31% of the isolated bacteria were able to produce antimicrobial metabolites being this the only study performed with bacteria associated with the Erylus sponges. This lack of results associated with the low yield of metabolites normally originated from marine sponges, together with the importance of obtaining new bioactive bacteria to avoid the undesired exploitation of natural sponges, lead us to assess in three specimens of E. deficiens collected in the Gorringe Bank, an isolated seamount in the Atlantic, the potential of heterotrophic cultivable bacteria as actual producers of antimicrobial compounds by screening and molecular assays. As glycolipids from these sponges are already being studied by others, NRPS and PKS appeared as good gene targets for the search of new potential bioactivities.
Materials and Methods

Sponge Sampling and Identification
Three specimens of *E. deficiens* Topsent, 1927 (Demospongiae, Astrophyorida, Geodiidae) were collected by scuba diving at approximately 38 m depth on Gettysburg (specimens #66 and #91—lat. 36° 31′ 10″ N, long. 11° 34′ 10″ W) and Ormonde (specimen #118—lat. 36° 42′ 70″ N, 11° 09′ 70″ W) Peaks, in the course of LusoExpedição Olympus 2008 to the Gorringe Bank, a large seamount located 150 Km off the southwest coast of Portugal. The samples were placed individually in ziploc® plastic bags and then carried to the laboratory for identification and microbial isolation. Voucher samples were preserved in 90% ethanol for taxonomic identification and deposited in the Biology Department’s zoological collection of the University of the Azores (collection DBUA.Por). Specimens were identified using general external and internal morphological characters analysis, i.e., shape, type, size and arrangement of skeletal structures (spicules) following the Systema Porifera classification system (Hooper and Van Soest, 2002). This species was previously reported in this seamount and identified as *Erylus* sp. (Xavier and Van Soest, 2007) and further examination of additional samples, including specimens from Madeira Island, the type-locality of *E. deficiens*, enabled its identification to species level.

Heterotrophic Bacterial Isolation
Fragments of sponge tissues were placed under aseptic conditions in sterile Erlenmeyers containing M514 medium (Bactopeptone (Difco) 5 g/L; yeast Extract (Oxoid) 1 g/L and sea salts (Red Sea 36 g/L)). This enrichment was performed to promote faster growing and abundant heterotrophic bacteria. When noticeable bacterial growth occurred, usually after 1 week without stirring, several dilutions (10^{-1}, 10^{-6}, and 10^{-12}) were prepared and, 100 μL of each, spread in several solid marine media prepared with 0.2 μm filtered natural seawater and 1.8% agar: modified M13 (Lage and Bondoso, 2011), PYGV (0.025% peptone, 0.025% yeast extract, 0.025% glucose, 10 mL/L−1 vitamin solution n°6, 20 mL/L−1 Hutten’s basal salts (Cohen-Bazire et al., 1957), Marine Agar (MA - Difco), M17 (Difco), Glycerol Asparagine (1% glycerol, 0.1% L-asparagine, 0.1% K₂HPO₄), M4 (Zhang et al., 2006). Cultures were incubated in the dark at 26°C. Growth was monitored daily and distinct colony morphotypes were transferred to fresh medium for isolation. Pure bacterial cultures were cryopreserved in seawater supplemented with 20% glycerol at −80°C.

Molecular Identification of Isolates
Isolates were identified by 16S rRNA gene sequence analysis after amplification with the primers 27f and 1492r (Lane, 1991). The PCR was carried out as described by Bondoso et al. (2011), using, as template, material from a single colony or genomic DNA extracted with the Bacterial DNA Isolation Kit (Omega), according to the manufacturer’s instructions. PCR products were directly sequenced at Macrogen Europe (www.Macrogen.com).

The obtained 16S rRNA gene sequences were processed with the Sequencing Analysis 5.2 (Applied Biosystems) and assembled with Vector NTI Advance™ 10.3. The resulting 16S rRNA gene sequences were then blasted on SeqMatch (Ribosomal Database Project) (Cole et al., 2014) against the nucleotide database of GenBank (NCBI) and the closest neighbors were downloaded. The sequences were corrected manually using the alignment generated. Subsequently, sequences with 818 bp were used for molecular evolutionary analyses in MEGA version 5.2 (Tamura et al., 2011). A final maximum likelihood (ML) phylogenetic tree was generated applying General Time Reversible model and Gamma distributed with Invariant sites (G+I). Validation of reproducibility of the branching patterns was made by bootstrap based on 1000 resamplings. Pairwise sequence similarities based on Jukes-Cantor model were calculated in MEGA. Alignment gaps and missing data were not included in the calculations. Different phylogenotypes were considered based on a 97% 16S rRNA gene threshold (Stackebrandt and Goebel, 1994). The sequences of the isolated bacteria used in this study were deposited in GenBank with the accession numbers KP120772—KP120854.

Bioactivity of the Bacterial Isolates
To assess the antimicrobial bioactivity of the sponge-isolated bacteria, designated hereunder as test bacteria, a simple co-culture agar diffusion assay (pre-screening) was performed against a panel of target organisms. This panel was constituted by Gram negative and positive bacteria commonly used in bioactivity bioassays, a relevant environmental species and a human pathogenic yeast. Thus, the bioactivity against four bacterial strains (*Bacillus subtilis* ATCC 6633, *B. cereus* FCUP collection, *Escherichia coli* ATCC 25922 and the fish pathogen *Vibrio anguillarum* FCUP collection) and a yeast (clinical isolate of *Candida albicans*) was evaluated. The agar diffusion assay was performed in MA medium, solidified with 1.4% agar as this medium allowed the simultaneous growth of the test bacteria and the target microorganisms. The test bacteria were heavily inoculated on half a Petri dish containing MA medium and incubated vertically to favor the diffusion of the metabolites to the non-inoculated part of the medium, at 26°C for 48 h. By this time, the fast growing test bacteria attained the stationary growth phase. Subsequently, the five target microorganisms were inoculated on the other half by streaking a line perpendicularly to the test bacteria and parallel to each other. The cultures were grown at 37°C in the same position as described before. The presence of growth inhibition was observed after 24 h. Target organisms grown in MA medium were used as controls.

To confirm the positive results obtained with the preliminary assay, a liquid screening assay was performed based on Graça et al. (2013). Of the 57 bacteria that showed antimicrobial activity only 48 were assayed as nine lost viability (#91_37, #91_40, #91_43, #91_45, #118_14, #118_23, #118_27, #118_33, and #118_39). The bacteria were grown in MB for 3 and 5 days at 25°C and 200 r.p.m. At days 3 and 5, an aliquot of 2 mL of the culture was centrifuged and the supernatant was 0.22 μm filtered and stored at −20°C—aqueous extract. Another aliquot of 2 mL of culture was mixed with 1.8 mL acetonitrile +0.2 mL DMSO, incubated for 1 h after which the upper phase was collected and stored at −20°C—acetonitrile extract. In 96-well plates, duplicates of 10 μL of each extract were assayed against 90 μL of each target microorganism cultivated in LB medium (≈ 2.5 × 10^{8}CFU/mL).
The most abundant class was the Firmicutes. An initial denaturing step of 5 min at 95°C reduced by 2°C for 1 min, followed by 30 cycles of 95°C for 1 min, 40°C for 30 s and 72°C for 1 min with a final extension of 10 min at 72°C (Kim et al., 2005). The PCR was carried out in a MyCycler™ Thermo Cycler (Bio-Rad) and the amplicons were visualized in a Roti-Safe (Roth) stained 1.2% agarose gel.

Results

16S rRNA Gene Analysis Identification

A total of 83 isolates were selected after enrichment procedure from the three specimens of E. deficiens. All assayed media allowed the isolation of bacterial strains although marine agar was the medium that provided the highest number of isolates and broad diversity from the three sponges. Curiously, M17 medium that is designed to grow fastidious lactic streptococci, allowed the growth of several Firmicutes and Actinobacteria. The majority of the strains obtained in this study after the enrichment belong to Proteobacteria (58%), followed by Actinobacteria (23%) and Firmicutes (19%) (Table 1; Figure 1). Within the Proteobacteria, the most abundant class was the Gammaproteobacteria with 46 isolates and the genus Pseudoalteromonas (27 isolates). Within the Actinobacteria, the genus Microbacterium was represented by 13 isolates. Of the selected strains and based on a 16S rRNA gene 97% threshold, 10 different phylotypes were from sponge #91, five phylotypes from sponge #118 and only one phylotype from sponge #66.

Bioactivity of the Bacterial Isolates

Through the co-culture diffusion pre-screening assay, 68.7% (57 bacteria) of the isolated bacteria showed antimicrobial activity against one or more of the target microorganisms tested. The highest number of positive hits were found in Gammaproteobacteria (63.2%) and Actinobacteria (21.1%) followed by Firmicutes (14.0%) and Alphaproteobacteria (1.8%). Of the thirteen genera showing antimicrobial bioactivity, Pseudoalteromonas (42.1%), Microbacterium (14.0%) and Proteus (12.3%) presented the highest positive hits. The analysis of bioactivity by test bacteria (Table 1) revealed a high number of strains with antifungal activity against C. albicans (87.7%—50 bacteria) and antibiotic against V. anguillarum (63.2%—36 bacteria) and, in lower number, against E. coli (17.5%—10 bacteria) and B. subtilis (3.5%—2 bacteria). None of the isolates produced effective bioactive compounds against the Gram positive B. cereus. Some bioactive bacteria were able to produce secondary bioactive metabolites against two or more target microorganisms. Microbacterium was the only genus able to produce bioactive compounds effective against B. subtilis (Figure 2).

In order to confirm the positive results obtained in the preliminary assay, a liquid screening assay was performed which allowed a more precise evaluation of the bioactivities. In this screening, 92% (45 bacteria) of the bacteria assayed showed bioactivity. Again, more bacteria showed bioactivity against C. albicans (80%—36 bacteria), only 4% (2 bacteria) showed activity against E. coli and 16% (7 bacteria) against both. A total of 86.6% bacteria (n = 39) showed activity in their aqueous extracts (87% against C. albicans and 13% against both C. albicans and E. coli) while only 62.2% bacteria (n = 28) showed bioactivity in acetone extracts. The levels of inhibition obtained (maximum value and median) with the aqueous extracts (3 and 5 days) were higher than the ones with acetone (Figure 3). The analysis of the bioactive extracts also showed higher levels of inhibition against C. albicans than against E. coli in which inhibition levels were very low (Figure 4). Furthermore, it was possible to verify in the assays against C. albicans that the 3 days acetone extracts were less effective than the aqueous and 5 days extracts. Although the median of 5 days aqueous extracts was not so high comparatively to the 3 days aqueous or the 5 days acetone extracts, the maximum value as well as the number of bioactive extracts were higher. No activity was obtained with 3 days aqueous extracts against E. coli.

Search for PKS-I and NRPS Genes

The β-ketosynthase domain fragment within the Type I polyketide synthase genes PKS-I was potentially amplified from 17 E. deficiens isolates (Table 1). Ten bacteria phylogenetically affiliated to Pseudoalteromonas from sponges #91 and #66, four to Microbacterium and two to Rhodococcus from sponge #91 and one to Proteus from sponge #118 amplified probable

Table 1

Isolates	Activity	Phylotype
C. albicans	87.7%	50 bacteria
E. coli	17.5%	10 bacteria
B. subtilis	3.5%	2 bacteria

Table 2

Isolates	Activity	Phylotype
Gammaproteobacteria	63.2%	36 bacteria
Actinobacteria	21.1%	57 bacteria
Firmicutes	14.0%	13 isolates
Alphaproteobacteria	1.8%	91 isolates

Figure 1

A tree of the phylogenetic relationships of the strains identified in this study is shown. The numbers on the branches indicate the degree of confidence. The bar represents 1% sequence divergence.
Isolate	Similarity	Related strain	Phylum/Class	Genera	Activities in solid assays	Activities in liquid assays	PKS-I	NRPS
#91_43	99.8	Cellulomonas sp. R-32740; AM403591	Actinobacteria	Cellulomonas	ND	ND	ND	
#91_17	98.9	Dermacoccus sp. ELtn185; AF409027	Actinobacteria	Dermacoccus	CA, VA	N	D	
#91_34	100	Microbacterium esteromonomaticum; 2122; EU714337	Actinobacteria	Microbacterium	CA	CA	ND	
#91_42	99.9	Microbacterium foliorum; 150; EU714333	Actinobacteria	Microbacterium	N	D	ND	
#91_19.1	99.8	Microbacterium foliorum; 720; EU714376	Actinobacteria	Microbacterium	N	D	ND	
#91_29	99.9	Microbacterium foliorum; Bjc15-C1; JX46206	Actinobacteria	Microbacterium	CA, BS, VA	ND	D	
#91_36.2	100	Microbacterium foliorum; Bjc15-C1; JX46206	Actinobacteria	Microbacterium	CA, ND	ND	D	
#91_40	99.4	Microbacterium foliorum; Bjc15-C1; JX46206	Actinobacteria	Microbacterium	CA	ND	ND	
#91_41	99.4	Microbacterium foliorum; S2-157; JQ660074	Actinobacteria	Microbacterium	N	D	ND	
#91_31	99.9	Microbacterium hydrocarbonoxydans; 3084; EU714352	Actinobacteria	Microbacterium	CA	CA	ND	
#91_38	99.7	Microbacterium hydrocarbonoxydans; 3517; EU714368	Actinobacteria	Microbacterium	N	D	ND	
#91_47	99.7	Microbacterium hydrocarbonoxydans; HR73; JF700446	Actinobacteria	Microbacterium	N	D	ND	
#91_35	99.8	Microbacterium phytooxysphaerae (T); DSM 13468; P 36906; AJ277840	Actinobacteria	Microbacterium	CA	BS, VA	CA	
#91_20	97.0	Rhodococcus hoagii; CUB1156; AJ272469	Actinobacteria	Rhodococcus	N	D	ND	
#91_36.1	100	Rhodococcus equi; type strain: DSM20307; X80614	Actinobacteria	Rhodococcus	EC, CA, VA	ND	D	
#91_48	99.9	Rhodococcus hoagii; type strain: DSM20307; X80614	Actinobacteria	Rhodococcus	N	D	ND	
#91_54	99.9	Rhodococcus qingshengii	Actinobacteria	Rhodococcus	CA, VA	CA	ND	
#91_51	99.9	Brevundimonas vesiculans (T); LMG 2360 (T); AJ227780	Actinobacteria	Brevundimonas	N	D	ND	
#91_16	99.0	Paracoccus spheerophylae strain 3-3; NR1174	Actinobacteria	Paracoccus	CA, EC	CA	D	
#118_42	100	Bacillus aryabhattai; D27; FJ75269	Firmicutes	Bacillus	N	D	ND	
#118_43	100	Bacillus aryabhattai; D27; FJ75269	Firmicutes	Bacillus	N	D	ND	
#118_46	100	Bacillus flexus; JF84305	Firmicutes	Bacillus	N	D	ND	
#118_47	100	Bacillus flexus; JF84305	Firmicutes	Bacillus	N	D	ND	
#118_53	99.8	Bacillus sp. OCBAU 10722; EF377333	Firmicutes	Bacillus	N	D	ND	
#118_28	99.9	Bacillus sp. OCBAU 10722; EF377333	Firmicutes	Bacillus	N	D	ND	
#118_9	99.7	Bacillus sp. OCBAU 10722; EF377333	Firmicutes	Bacillus	N	D	ND	
#118_11	100	Enterococcus sp. T004_8; JQ72780	Firmicutes	Enterococcus	N	D	ND	
#118_4	99.8	Enterococcus cloacae; AF039002	Firmicutes	Enterococcus	N	D	ND	
#118_3	99.9	Enterococcus cloacae; AF039002	Firmicutes	Enterococcus	N	D	ND	
#118_19	99.9	Enterococcus cloacae; AF039002	Firmicutes	Enterococcus	N	D	ND	
#118_7	100	Enterococcus cloacae; ZZ11; HM77621	Firmicutes	Enterococcus	N	D	ND	
#118_5	99.8	Enterococcus cloacae; ZZ11; HM77621	Firmicutes	Enterococcus	N	D	ND	
#118_7	99.8	Enterococcus cloacae; ZZ11; HM77621	Firmicutes	Enterococcus	N	D	ND	
#118_13	99.9	Enterococcus cloacae; ZZ11; HM77621	Firmicutes	Enterococcus	N	D	ND	

(Continued)
Isolate	Similarity (%)	Related strain	Phylum/Class	Genera	Activities in solid assays	Activities in liquid assays	PKS-I	NRPS
#118_14	99.6	*Proteus mirabilis*; ATCC 29906T; AR008882	Gammaproteobacteria	*Proteus*	EC, CA, VA	ND	ND	–
#118_23	99.7	*Proteus mirabilis*; ATCC 29906T; AR008882	Gammaproteobacteria	*Proteus*	CA	ND	ND	ND
#118_27	100	*Proteus mirabilis*; ATCC 29906T; AR008882	Gammaproteobacteria	*Proteus*	N	ND	ND	ND
#118_30	100	*Proteus mirabilis*; ATCC 29906T; AR008882	Gammaproteobacteria	*Proteus*	N	ND	ND	ND
#118_34	100	*Proteus mirabilis*; ATCC 29906T; AR008882	Gammaproteobacteria	*Proteus*	N	ND	ND	ND
#118_40	99.9	*Proteus mirabilis*	Gammaproteobacteria	*Proteus*	CA	CA	ND	ND
#118_5	99.7	*Proteus mirabilis*	Gammaproteobacteria	*Proteus*	CA	CA	ND	ND
#118_25	99.8	*Proteus mirabilis*; LH-52; JN861767	Gammaproteobacteria	*Proteus*	N	ND	ND	ND
#118_33	99.3	*Proteus mirabilis*	Gammaproteobacteria	*Proteus*	CA	CA	ND	ND
#66_2	97.9	*Bacterium K2-82*; AY345483	Gammaproteobacteria	*Pseudoalteromonas*	CA	CA	ND	ND
#91_3	99.9	*Bacterium Antarctica-11*; EF697985	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#91_9	99.9	*Bacterium Antarctica-11*; EF697985	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#91_12	99.9	*Bacterium Antarctica-11*; EF697985	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	D	ND
#91_13	99.9	*Bacterium Antarctica-11*; EF697985	Gammaproteobacteria	*Pseudoalteromonas*	EC, CA, VA	CA	CA	ND
#91_23	99.9	*Bacterium Antarctica-11*; EF697985	Gammaproteobacteria	*Pseudoalteromonas*	CA, CA	CA	ND	ND
#66_11	99.3	*Pseudoalteromonas isacheniromi* (T); KMM 3549; F13; AF316144	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	EC, CA	D	D
#91_22	98.6	*Pseudoalteromonas* sp. 12; DQ642815	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#66_17	100	*Pseudoalteromonas* sp. 8007; AM111068	Gammaproteobacteria	*Pseudoalteromonas*	EC, CA, VA	CA	D	D
#66_6	99.8	*Pseudoalteromonas* sp.; AR0307; AB019947	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#66_7	99.8	*Pseudoalteromonas* sp.; AR0307; AB019947	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#66_16	99.9	*Pseudoalteromonas* sp.; AR0307; AB019947	Gammaproteobacteria	*Pseudoalteromonas*	N	D	D	D
#91_10	99.9	*Pseudoalteromonas* sp.; AR0307; AB019947	Gammaproteobacteria	*Pseudoalteromonas*	CA	EC, CA	ND	ND
#91_10.2	99.9	*Pseudoalteromonas* sp.; AR0307; AB019947	Gammaproteobacteria	*Pseudoalteromonas*	EC, CA, VA	CA	ND	ND
#66_10	98.6	*Pseudoalteromonas* sp. ARCTIC-P16; AV573035	Gammaproteobacteria	*Pseudoalteromonas*	VA	CA	D	D
#66_1	96.4	*Pseudoalteromonas* sp. BS20325; DQ520886	Gammaproteobacteria	*Pseudoalteromonas*	CA	N	ND	ND
#66_8	99.6	*Pseudoalteromonas* sp. BS20325; DQ520886	Gammaproteobacteria	*Pseudoalteromonas*	VA	CA	D	D
#66_18	97.8	*Pseudoalteromonas* sp. BS20325; DQ520886	Gammaproteobacteria	*Pseudoalteromonas*	N	ND	D	D
#91_26	98.0	*Pseudoalteromonas* sp. P1; EF627987	Gammaproteobacteria	*Pseudoalteromonas*	EC	CA	ND	ND
#66_20	98.9	*Pseudoalteromonas* sp. SM9913; CP001796	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	EC, CA	D	D
#66_13	100	*Pseudoalteromonas* sp. YASM-1; DQ173038	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	ND	ND
#91_21	97.0	*Pseudoalteromonas* tetradonis; Do-17; AB2573235	Gammaproteobacteria	*Pseudoalteromonas*	CA	CA	ND	ND
#66_12	98.4	*Pseudoalteromonas* tetradonis; SSA900; KC534452	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	D	D
#66_3	97.5	*Pseudoalteromonas* sp. LOB-15; DQ412067	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	CA	D	ND
#91_11	95.2	Uncultured bacterium; 1A-6; FJ998316	Gammaproteobacteria	*Pseudoalteromonas*	CA	CA	ND	ND
#91_27	96.6	Uncultured *Pseudoalteromonas* sp.; DVS5W_057; KF722314	Gammaproteobacteria	*Pseudoalteromonas*	CA	EC	ND	ND
#66_9	98.9	Uncultured *Pseudoalteromonas* sp.; C666; FJ695586	Gammaproteobacteria	*Pseudoalteromonas*	CA, VA	EC, CA	D	D
#91_50	100	*Pseudomonas oryzihabitans*	Gammaproteobacteria	*Pseudomonas*	CA, VA	EC, CA	D	D
#118_11	100	*Psychrobacter oceanis*; B_VI_3L25; JF710994	Gammaproteobacteria	*Psychrobacter*	VA	CA	ND	ND
#118_2	99.8	*Psychrobacter oceanis*; 91; JF710993	Gammaproteobacteria	*Psychrobacter*	VA	CA	ND	ND
#118_17	99.9	*Psychrobacter* sp. 2Qb8B14; JN602232	Gammaproteobacteria	*Psychrobacter*	N	D	ND	ND

CA, Candida albicans; EC, Escherichia coli; VA, Vibrio anguillarum; BS, Bacillus subtilis; N, no activity; D, detected; ND, not detected.
Based on SeqMatch (Ribosomal Database Project) (Cole et al., 2014).
PKS-I sequences. The potential amplification of the motifs I and V of non-peptide synthetase adenylate-forming enzymes was observed in thirty strains (Table 1)—10 *Pseudoalteromonas* from sponge #66, four *Enterococcus* from sponge #118, three *Paenibacillus* from sponge #91, three *Psycrobacter* from sponge #118, two *Bacillus* from sponge #118, two *Rhodococcus* from sponge #91 and one *Dermacoccus*, one *Microbacterium*, one *Brevundimonas* and one *Paracoccus*, from sponge #91 and one...
FIGURE 1 | Phylogenetic 16S rRNA gene tree generated by maximum-likelihood analysis based in General Time Reversible model and Gamma distributed with Invariant sites (G+I) indicating the relationship of the heterotrophic bacteria isolated from three *E. deficiens* specimens. *Thermatoga maritima* was used as outgroup. Bar – 0.05 substitutions per 100 nucleotides. *Presence of NRPS genes; **Presence of PKS-I genes; ***Presence of both genes.
Citrobacter and Proteus from sponge #118. A relatively high number of the bioactive isolates amplified for the searched genes and some for both genes. However, other genes should be behind the detected bioactivity in non-amplifying isolates.

Discussion

Since one of the most effective methods used in the discovery of natural products is the cultivation of new microbial strains which may represent novel important chemotypes (Fenical and Jensen, 2006; Haber and Ilan, 2013), our prime goal was to obtain bacterial isolates for screening antimicrobial activities.

The isolation of bacterial strains from *E. deficiens* after an enrichment procedure allowed the selection of a high number of fast growing heterotrophic bacteria, mainly belonging to Proteobacteria. Similarly, Kamke et al. (2010) also observed that one of the most abundant taxon in both libraries of Ancorina alata and Polymastia sp. was the class Gammaproteobacteria. Proteobacteria was the most abundant phylum in the phylogenetic distribution of sponge-isolated bacteria (Webster and Taylor, 2012) namely from another *Erylus* species, *E. discophorus* (Graça et al., 2013). Furthermore, species of Firmicutes and Actinobacteria, both phyla commonly present in sponges (Webster and Taylor, 2012), were also obtained.

Almost no bacterium was common among the three specimens as evidenced by the analysis of the 16S rRNA gene sequences (Figure 1). A possible explanation for this result may be the use of sponge portions from different structural parts of the sponge body that are known to be inhabited by different microbial communities (Thiel et al., 2006). The group of *Pseudoalteromonas* was the only one shared by specimens #91 and #66 which could be explained by sponges sampling site's proximity. This genus is often isolated from marine macroorganisms like sponges (Ivanova et al., 2002; Lau et al., 2005).

Several of the bioactive genera isolated in this study have been described as possessing antimicrobial activity. *Pseudoalteromonas* is a well-known bioactive compounds producer Hentschel et al., 2001; Bowman, 2007; Thomas et al., 2008; Sivasubramanian et al., 2011; Chen et al., 2012b; Vynne et al., 2012 as well as *Bacillus* (Bernal et al., 2002; Bhatta and Kapadnis, 2010; Jamal and Mudarris, 2010; Kamat and Kerkar, 2011; Kumar et al., 2012; Graça et al., 2013). Bioactivity has also been found in *Pseudomonas* (Kumar et al., 2005; Isansetyo and Kamei, 2009; Graça et al., 2013), *Enterococcus faecalis* (Gutierrez et al., 2013), *Paenibacillus* (Chung et al., 2000; Tupinambá et al., 2008; Wen et al., 2011; Graça et al., 2013) and *Microbacterium* (Lang et al., 2004; Graça et al., 2013). Antibacterial activity produced by *Psychrobacter* has been previously found (Kanagasabhapathy et al., 2008; Kennedy et al., 2009; Rojas et al., 2009; Flemer et al., 2011) but not antifungal activity. *Rhodococcus* (Chiba et al., 1999; Riedligner et al., 2004; Lo Giudice et al., 2007; Hong et al., 2009; Abdelmohsen et al., 2010; Abdelmohsen et al., 2014) and *Paracoccus* (Lo Giudice et al., 2007; Deng et al., 2011) showed antimicrobial activity. *Dermacoccus* was shown to produce antimicrobial, antitumor and antiprotozoal activity (Pospisil et al., 1998; Goodfellow and Fiedler, 2010). No antimicrobial activity has been detected in the genera *Cellulomonas* and *Proteus*. Okada et al. (2006) verified that the marine sponge *Erylus placenta* collected off Hachijo Island exhibited a broad spectrum of activity against several strains of yeasts and a fungus. This result is in agreement with the high

FIGURE 2 | Relation between the hits of bioactive genera and the target organisms studied in the preliminary screening.
levels of bioactivity against *C. albicans* obtained in our *E. deficiens* isolates.

The two preliminary and liquid assays allowed the confirmation of a great number of positive bacterial hits against *C. albicans* (72%—36 bacteria) but dissimilar results were obtained for *E. coli* and *B. subtilis*. In fact, these assays were not always coincident in the bioactivities obtained (Table 1), which could be due to differences in the cultivation (solid vs. liquid) and the extraction methods as previously observed (Bode et al., 2002; Graça et al., 2013; Haber and Ilan, 2013). In the diffusion assay there is always a potential problem with the diffusion of the bioactive molecules as well as the establishment of a concentration gradient. However, celerity and simplicity favor the use of this qualitative method (Valgas et al., 2007). Additionally, interaction between target and test microorganisms could induce a quorum-sensing response with antimicrobial production (Haber and Ilan, 2013). The assays using liquid broths have the advantage of being quantitative, simple, rapid, reproducible, and inexpensive and can be performed in a high throughput way. Furthermore, this method facilitates the upscale of the process in the case of a positive hit (avoiding constrains caused by the use of solid media).

The aqueous extracts presented higher bioactivities than the organic ones. This may be indicative of a hydrophilic nature of the bioactive molecules which could be proteins or sugars. With the acetone extraction, proteins would be precipitated and removed from the extract that could justify the decrease in bioactivity.

The genomic screening of bioactive potential is a valuable complement to the search for new bioactive molecules. The presence of PKS-I or NRPS genes was confirmed in some positive antimicrobial bacteria but non-bioactive bacteria also possessed these genes. This may indicate their ability to produce compounds with different types of activities like against other bacteria or even anticancer (Davidson et al., 2001). The PKS genes were previously found in the genera *Pseudoalteromonas* (Kennedy et al., 2009; Zhu et al., 2009; Chau et al., 2012) and *Rhodococcus* (Ayuso-Sacido and Genilloud, 2005; Abdelmohsen et al., 2014). However, to our knowledge, the present study is the first to detect PKS genes in the genera *Proteus* and *Microbacterium*. Regarding the NRPS genes, they have been previously detected in *Pseudoalteromonas* (Zhu et al., 2009; Chen et al., 2012a), *Enterococcus* (in the database: Biocyc.org1), *Paenibacillus* (Wu et al., 2011), *Bacillus* (Luo et al., 2014), *Rhodococcus* (Bosello et al., 2013), *Dermacoccus* (Pathom-aree et al., 2006), *Microbacterium* (Wu et al., 2012), *Citrrobacter* (Siezen and Khayatt, 2008), and *Proteus* (Himpsl et al., 2010) but as far as perceived not in *Psychrobacter*, *Brevundimonas* and *Paracoccus*.

Of the confirmed bacteria that showed bioactivity against *C. albicans*, strain #91_11 belonging to the class Gammaproteobacteria is probably a novel species of *Pseudoalteromonas* based on the 16S rRNA gene (96.2% to *P. tetraodonis*, Figure 1). Furthermore, and based on the same gene similarity, other isolates with non-confirmed bioactivity (#66_1, #91_27, and #118_39) are also potential new taxa of Gammaproteobacteria.

Our results show a great antifungal potential of bacteria associated with *E. deficiens*. Curiously, in a previous work with heterotrophic bacteria of another *Erylus* species, *E. discophorus* (Graça et al., 2013), no antifungal activity was obtained. The bioactivity found was essentially against *Bacillus subtilis* which was almost absent in this work. Both works evidence for the production of bioactive compounds of bacteria associated with

1Biocyc.org.http://www.biocyc.org/EFAE749506-HMP/NEW-IMAGE?object=D-Phenylalanyl-Acps.
Erylus sponges which should be further studied regarding isolation and identification of the molecules accountable for the bioactivity.

Conclusions

The isolation and phylogenetic analyses of the culturable fraction of the bacterial community isolated from E. deficiens revealed a biodiversity with putative new taxa of Gammaproteobacteria that should be further studied regarding genome analysis and taxonomic characterization.

A great number of Erylus isolates were found to produce antibacterial and high antifungal bioactivity against pathogenic and environmental strains. As far as we know, this is the first report of antimicrobial production in the genera Cellulomonas and Proteus. Furthermore, PKS and NRPS genes are potentially associated with several Erylus isolates, namely the genera Proteus, Microbacterium for PKS-I and Psycrobacter, Brevundimonas, and Paracoccus for NRPS for which these genes have not been previously described. Our results showed the biotechnological potential of bacterial diversity associated with E. deficiens, inspiring further studies for the search of new leading compounds.

Acknowledgments

This research was supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the projects PEst-C/MAR/LA0015/2013, PEst-OE/QUI/UID0612/2014 and PTDC/QUI-QUI/098053/2008. AG acknowledges an ERAMUS fellowship. JB was financed by FCT (PhD grant SFRH/BD/35933/2007). IX research was partially funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). We also thank Dr. Anabela Castro for providing some of the target organisms and Universidade Lusófona (Portugal), for the opportunity to participate in the Luso Expedição 2008.

References

Abdelmohsen, U. R., Pimentel-Elardo, S. M., Hanora, A., Radwan, M., Abou-El-Ella, S. H., Ahmed, S., et al. (2010). Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated Actinomycetes. Mar. Drugs 8, 399–412. doi: 10.3390/md8030399

Abdelmohsen, U. R., Yang, C., Horn, H., Hajjar, D., Ravasi, T., and Hentschel, U. (2014). Actinomycetes from red sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789. doi: 10.3390/md121052771

Adams, C. L., and Hooper, J. N. A. (2001). A revision of Australian Erylus (Porifera: demospongiae: Astrophorida: Geodiidae) with a tabular review of worldwide species. Invertebr. Taxon. 15, 319–340. doi: 10.1071/IT00028

Afytatullov, S. S., Kalinovsky, A. I., Antonov, A. S., Ponomarenko, L. P., Dmitrenok, P. S., Aminin, D. L., et al. (2007). Isolation and structures of erylosides from the Caribbean sponge Erylus goffrilleri. J. Nat. Prod. 70, 1871–1877. doi: 10.1021/np070319y

Antonov, A. S., Kalinovsky, A. I., Dmitrenok, P. S., Kalinvin, V. I., Stonik, V. A., Mollo, E., et al. (2011). New triterpenoid oligoglycosides from the Caribbean sponge Erylus formosus. Carbohydrate Res. 346, 2182–2192. doi: 10.1016/j.carres.2011.07.008

Antonov, A. S., Kalinovsky, A. I., Stonik, V. A., Afytatullov, S. S., Aminin, D. L., Dmitrenok, P. S., et al. (2007). Isolation and structures of erylosides from the Caribbean sponge Erylus formosus. J. Nat. Prod. 70, 169–178. doi: 10.1021/np060364q

Ayuso-Sacido, A., and Genilloud, O. (2005). New PCR primers for the screen- ing of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49, 10–24. doi: 10.1007/s00248-004-0249-6

Bergmann, W., and Feeney, R. J. (1950). The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc. 72, 2809–2810. doi: 10.1021/ja01162a543

Bergmann, W., and Feeney, R. J. (1951). Contributions to the study of marine products. XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987. doi: 10.1021/jo10146a023

Bernal, G., Illanes, A., and Ciampi, L. (2002). Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electron. J. Biotechnol. 5, 717–3458. doi: 10.2225/vol5-issue1-fulltext-4

Bhatta, D. R., and Kapadnis, B. P. (2010). Production optimization and characterization of bioactive compound against Salmonella bacillus subsitis KBB isolated from Nepal. Sci. World J. 19, 29–29. doi: 10.3126/sw.v8i18.3841

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munroa, M. H. G., and Prinsep, M. R. (2013). Marine natural products. Nat. Prod. Rep. 30, 237–253. doi: 10.1039/c2np20112g

Bode, H. B., Bethe, B., Höfs, R., and Zeeck, A. (2002). Big effects from small changes: possible ways to explore Naturés chemical diversity. ChemBioChem 3, 619–627. doi: 10.1002/1439-7633(20020703)3:7<619:AID-CBIC619>3.0.CO;2-9

Bondoso, J., Albuquerque, L., Nobre, M. F., Lobo-da-Cunha, A., da Costa, M. S., and Lage, O. M. (2011). A. aquasphaera giovannionii gen. nov., sp. nov., a planctomyccyte isolated from a freshwater aquarium. Int. J. Syst. Evol. Microbiol. 61, 2844–2850. doi: 10.1099/ijs.0.027474-0

Bowman, J. P. (2007). Bioactive compound synthetic capacity and ecological signif- icance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220–241. doi: 10.3390/md5040022

Bull, A. T., and Stach, J. E. M. (2007). Marine actinobacteria: new opportunities for natural product discovery and search. Trends. Microbiol. 15, 491–499. doi: 10.1016/j.tim.2007.10.004

Carballeira, N. M., and Negron, V. (1991). Identification and characterization of two new methylisadadienes acids from Erylus formosus. J. Nat. Prod. 54, 305–309. doi: 10.1021/np50073a041

Carmelly, S., Moll, R., Loya, Y., and Kashman, Y. (1989). The structure of eryloside, A., a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J. Nat. Prod. 52, 167–170. doi: 10.1021/np50061a022

Chau, R., Kalaitzis, J. A., and Neilan, B. A. (2012). Genome of an octopus-derived Pseudoalteromonas reveals unprecedented natural product biosynthesis gene clusters. Planta Med. 78, CL53. doi: 10.1055/s-0032-1320288

Chen, W., Zhu, P., He, S., Jin, H., and Yan, X. (2012a). Nonribosomal peptides syn- thetases gene clusters and core domain in Pseudoalteromonas sp. NJ631. Wei Sheng Wu Xue Bao 52, 1531–1539.

Chen, Y., and Guillemin, G. J. (2009). Kynurenine pathway metabolites in humans: disease and healthy states. Int. J. Tryptophan. Res. 2, 1–19.

Chen, Y., Kuo, J., Sung, P. I., Chang, Y. C., Lu, M. C., Wong, T. Y., et al. (2012b). Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J. Microbiol. Biotechnol. 28, 3269–3279. doi: 10.1007/s11274-012-1138-7

Chiba, H., Aegamatu, K., Kaneto, R., Terasawa, T., Sakai, K., Dobashi, K., et al. (1999). Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal
activity from *Rhodococcus* sp. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. *J. Antibiot.* 52, 695–699. doi: 10.7164/antibiotics.52.695

Chung, Y. R., Kim, C. H., Hwang, I., and Chun, J. (2000). *Paenibacillus koreensis* sp. nov., a new species that produces an iturin-like antifungal compound. *Int. J. Syst. Evol. Microbiol.* 50, 1495–1500. doi: 10.1099/00207713-50-4-1495

Cohen-Bazire, G., Sistrom, W. R., and Stanier, R. Y. (1957). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. *J. Cell Physiol.* 49, 25–68. doi: 10.1002/jcp.103490104

Cole, J. R., Wang, Q., Fish, J. A., Chai, C., McGarrell, D. M., Sun, Y., et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. *Nucl. Acids Res.* 42, D633–D642. doi: 10.1093/nar/gkt1244

Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M., and Haygood, M. G. (2001). Evidence for the biosynthesis of byostatins by the bacterial symbiont *Candidatus Endobugula sertula* of the bryozoan *Bugula neritina*. *Appl. Environ. Microbiol.* 67, 4531–4537. doi: 10.1128/AEM.67.4531-4537.2001

Deng, Z. S., Zhao, L. F., Xu, L., Kong, Z. Y., Zhao, P., Qin, W., et al. (2011). *Pseudococcus sphaerophaeus* sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of *Spharophyta salzaloida*. *Int. J. Syst. Evol. Microbiol.* 61, 665–669. doi: 10.1099/ijs.0.012071-0

Elyakov, G. B., Kuznetsova, T., Mikhailov, V. V., Malshtein, I. S., Voinov, V. G., and Fedoreyev, S. A. (1991). Brominated diphenyl ethers from a marine bacterium related to the *S* *Bacillus* sp. *Arkivoc* xiii, 17–27.

Fusetani, N., Sata, N., and Matsunaga, S. (1993). Isolation and structure elucidation of eurysulamime, B, a new class of marine natural products, which blocked an IL-6 receptor, from the marine sponge *Eurlyas plendensfidi*. *ARKIVOC* ii, 17–27.

Gaspar, H., Cachatra, V., Frade, S., Monteiro, V., Neng, N., Xavier, J., et al. (2012). *Leucosolenia alberti*, a new species and *L. coronata* sp. nov., as siderophore-producing, endophytic bacterium isolated from Irish Waters.

Hipspsl, S. D., Pearson, M. M., Arewáng, C. J., Tusca, T. D., Sherman, D. H., and Moberly, H. L. T. (2010). Proteobacter and a yersiniabactin-related siderophore mediate iron acquisition in *Proteus mirabilis*. *Mol. Microbiol.* 78, 138–157. doi: 10.1111/j.1365-2958.2010.07371.x

Hochmuth, T., and Piel, J. (2009). Polyketide synthase from a marine sponge—evolution-based applications in natural products research. *Phytochemistry* 70, 1841–1849. doi: 10.1016/j.phytochem.2009.04.010

Hong, K., Gao, A.-H., Xie, Q.-Y., Gao, H., Zhuang, L., Lin, H. P., et al. (2009). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. *Mar. Drugs* 7, 24–44. doi: 10.3390/md7010024

Hooper, J. N. A., and Van Soest, R. W. (2002). “Class demospongeae sollas, 1885,” in *Systema Porifera A Guide to the Classification of Sponges*, eds J. A. Hooper, R. W. M. Van Soest, and P. Willem (New York, NY: Springer), 15–51.

Imhoff, J. F., Lames, A., and Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: new natural products. *Biotechnol. Adv.* 29, 468–482. doi: 10.1016/j.biotechadv.2011.03.001

Issaneto, A., and Kamei, Y. (2009). Bioactive substances produced by marine isolates of *Pseudomonas*. *J. Ind. Microbiol. Biotechnol.* 36, 1239–1248. doi: 10.1007/s10295-009-0611-2

Jenke-Kodama, H., and Dittmann, E. (2009). Bioinformatic perspectives on NRP/PKS megasynthetases: advances and challenges. *Nat. Prod. Rep.* 26, 874–883. doi: 10.1039/b810283j

Kalinin, V. I., Iavchichina, V. N., Krasokhin, V. B., Makarieva, T. N., and Stonik, V. A. (2012). Glycosides from marine sponges (*Porifera, Demospongiae*): structures, taxonomical distribution, biological activities and biological roles. *Mar. Drugs* 10, 1671–1710. doi: 10.3390/md10081671

Kamat, T., and Kerkar, S. (2011). Bacteria from Salt Pans: a potential resource of antibacterial resistant bacterial pathogens. *Mar. Sci.* 21, 53–64. doi: 10.4197/Mar.21-1.2

Kamke, J., Taylor, M. W., and Schmitt, S. (2010). Activity profiles for marine sponge-associated bacteria obtained by 16s rDNA vs 16s rRNA gene comparisons. *ISME* J. 4, 498–508. doi: 10.1038/ismej.2009.143

Kanagasabapathy, M., Sasaki, H., and Nagata, S. (2008). Phylogenetic identification of eubacterial bacteria possessing antimicrobial activities isolated from red algal species of Japan. *World J. Microbiol. Biotechnol.* 24, 2315–2321. doi: 10.1007/s11274-008-9746-7

Kubanek, J., Pawlik, J., Eve, T., and Fenical, W. (2000). Triterpene glycosides from the marine sponge *Erylus formosus*. *J. Org. Chem.* 65, 4067–4070. doi: 10.1021/jo0003097

Lambert, J., Masse, C., Hingrat, N., Gourand, M., Navarro, C., et al. (2008). *Proteus mirabilis* pv. mansoni. *Mol. Microbiol.* 72, 243–256. doi: 10.1111/j.1365-2958.2008.06130.x

Levy, S. B., and Mate, I. C. (2008). *Fusobacterium nucleatum* and antibiotic resistance. *Nat. Rev. Microbiol.* 6, 874–886. doi: 10.1038/nrmicro1913

Loy, C., Furet, P., Raoult, D., and Raoult, D. (2001). *Mycobacterium tuberculosis*: a perspective on the genetics of drug resistance. *Nat. Rev. Microbiol.* 1, 34–43. doi: 10.1038/35066547

MacNeil, D., Hinchliffe, B., and Yabuuchi, E. (2001). The bacterial phylogeny database. *Nucleic Acids Res.* 29, 345–349. doi: 10.1093/nar/29.1.345

Manske, R. H., and Yabuuchi, E. (2001). The bacterial phylogeny database. *Nucleic Acids Res.* 29, 345–349. doi: 10.1093/nar/29.1.345

May 2015 | Volume 6 | Article 389

Groz et al. Antimicrobial activity of Eurytis deficiens bacteria

Frontiers in Microbiology | www.frontiersin.org
Kumarasamy, K. K., Tolemen, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balarkrishnan, R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. *Lancet Infect. Dis.* 10, 597–602. doi:10.1016/S1473-3099(10)70143-2

Laatsch, H. (2008). Anti biose 2008—The Natural Compound Identifier. Weinheim: Wiley-VCH.

Lage, O. M., and Bondoso, J. (2011). Planctomycetes diversity associated with macroalgae. *FEMS Microbiol. Ecol.* 78, 366–375. doi:10.1111/j.1574-6941.2011.01168.x

Lane, D. J. (1991). “16S/23SrRNA sequencing,” in *Frontiers in Microbiology*. www.frontiersin.org 13

Graça et al. Antimicrobial activity of *Erylus deficiens* bacteria. *J. Nat. Prod.* 64, 767–771. doi:10.1021/np010047d

Siezen, R. J., and Khayatt, B. I. (2008). Natural products genomics. *Microb. Biotechnol.* 1, 275–282. doi:10.1111/j.1574-795X.2008.00044.x

Sivasubramanian, K., Ravichandran, S., and Vijayapriya, M. (2011). Antagonistic activity of marine bacteria *Pseudoalteromonas tunicata* against microbial pathogens. *Afr. J. Microbiol. Res.* 5, 562–567.

Stackebrandt, E., and Goebel, B. M. (1994). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. *Int. J. Syst. Evol. Microbiol.* 44, 846–849. doi:10.1099/00207713-44-4-846

Stead, P., Hiscox, S., Robinson, P. S., Pike, N. B., Sidebottom, J. P., Roberts, A. D., et al. (2000). Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. *Bioorg. Med. Chem. Lett.* 10, 661–664. doi:10.1016/S0960-894X(00)00639-9

Takada, K., Nakao, Y., Matsunaga, S., van Soest, R. W. M., and Fusetani, N. (2002). Nobisoides, a new neumaminidase inhibitory triterpenoid saponin from the marine sponge *Erylus nobilis*. *J. Nat. Prod.* 65, 411–413. doi:10.1021/np010804n

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetic Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739. doi:10.1093/molbev/msr127

Taylor, M. W., Radax, R., Steger, D., and Wagner, M. (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. *Microb. Mol. Biol. Rev.* 71, 295–347. doi:10.1128/MMBR.00040-06

Thakur, N. L., and Müller, W. E. G. (2004). Biotechnological potential of marine sponges. *Curr. Sci.* 86, 1506–1512.

Thiel, V., Neulinger, S. C., Staufenberger, T., Schmaljohann, R., and Imhoff, J. F. (2006). Spatial distribution of sponge-associated bacteria in the Mediterranean sponge *Tethya aurantium*. *FEMS Microbiol. Ecol.* 59, 47–63. doi:10.1111/j.1574-6941.2006.00217.x

Thomas, T., Evans, F. F., and Schleheck, D. (2008). Analysis of the *Pseudoalteromonas tunicata* genome reveals properties of a surface-associated life style in the marine environment. *PLoS ONE* 3:e3252. doi:10.1371/journal.pone.0003252

Thomas, T. R. A., Kavlekar, D. P., and Lokabharathi, P. A. (2010). Marine drugs from sponge-microbe association-a review. *Mar. Drugs* 8, 1417–1468. doi:10.3390/md8041417

Tupinambí, G., Da Silva, A. J. R., Souto-Padron, T., Seldin, L., and Aliviano, D. S. (2008). Antimicrobial activity of *Erylus placenta* metabolites. *Can. J. Microbiol.* 40, 47–63. doi:10.1139/w98-081

Riedligner, J., Reicke, A., Zänker, H., Krismier, B., Bull, A. T., Maldonado, I. A., et al. (2004). Abyssonicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine *Verrucosporis* strain AB-18-032. *J. Antibiot.* 57, 271–279. doi:10.1099/0021-8382-57.2.271

Rojas, J. L., Martin, J., Tormo, J. R., Vicente, F., Brunati, M., Ciciliato, T., et al. (2008). Antimicrobial activity of *Erylus deficiens* bacteria against some mycotoxin-producing fungi. *J. Appl. Microbiol.* 105, 1044–1053. doi:10.1111/j.1365-2672.2008.03844.x

Valgas, C., Machado de Souza, S., Smania, E. F. A., and Smanis, A. J. (2007). Screening methods to determine antibacterial activity of natural products. *Bras. J. Microbiol.* 38, 369–380. doi:10.1590/S1517-83822007000200034

Van Altena, I., van Soest, R. W. M., Roberge, M., and Andersen, R. J. (2003). Trisphaeroides A, a novel polyketide from the Dominican sponge *Erylus trispilatus*. *J. Nat. Prod.* 66, 561–563. doi:10.1021/np0205147

Vyne, N. G., Mansson, M., and Gram, L. (2012). Gene sequence based clustering assists in dereplication of *Pseudoalteromonas luteoviolacea* strains with identical inhibitory activity and antibiotic production. *Mar. Drugs* 10, 1729–1740. doi:10.3390/md10081729

Wang, G. (2006). Diversity and biotechnological potential of the sponge-associated microbial consortia. *J. Ind. Microbiol. Biotechnol.* 33, 545–551. doi:10.1007/s10529-006-0123-2

Webster, N. S., and Taylor, M. W. (2012). Marine sponges and their microbial symbionts: love and other relationships. *Environ. Microbiol.* 14, 335–346. doi:10.1111/j.1462-2920.2011.02460.x

Webster, N. S., and Taylor, M. W. (2012). Marine sponges and their microbial symbionts: love and other relationships. *Environ. Microbiol.* 14, 335–346. doi:10.1111/j.1462-2920.2011.02460.x

Williams, P. G. (2009). Nanning for chemical gold: marine bacteria as a source of new therapeutics. *Trends Biotechnol.* 27, 45–52. doi:10.1016/j.tibtech.2008.10.005
Graça et al. Antimicrobial activity of Erylus deficiens bacteria

Wu, H., Chen, W., Wang, G., Dai, S., Zhou, D., Zhao, H., et al. (2012). Culture-dependent diversity of Actinobacteria associated with seagrass (Thalassia hemprichii). Afr. J. Microbiol. Res. 6, 87–94.

Wu, X. C., Qian, C. D., Fang, H. H., Wen, Y. P., Zhou, J. Y., Zhan, Z. J., et al. (2011). Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb. Biotechnol. 4, 491–502 doi: 10.1111/j.1751-7915.2010.00201.x

Xavier, J. R., and Van Soest, R. W. M. (2007). Demosponge fauna of Ormonde and Gettysburg Seamounts (Gorringe Bank, Northeast Atlantic): diversity and zoogeographical affinities. J. Mar. Biol. Assoc. 87, 1643–1653. doi: 10.1017/S0025315407058584

Zhang, H., Lee, Y. K., Zhang, W., and Lee, H. K. (2006). Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 90, 159–169. doi: 10.1007/s10482-006-9070-1

Zhu, P., Zheng, Y., You, Y., Yan, X., and Shao, J. (2009). Molecular phylogeny and modular structure of hybrid NRPS/PKS gene fragment of Pseudoalteromonas sp. NJ6-3-2 isolated from marine sponge Hymeniacidon perleve. J. Microbiol. Biotechnol. 19, 229–237.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Graça, Viana, Bondoso, Correia, Gomes, Humanes, Reis, Xavier, Gaspar and Lage. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.