Synergistic roles of Wnt modulators *R-spondin2* and *R-spondin3* in craniofacial morphogenesis and dental development

Nora Alhazmi1,9, Shannon H. Carroll2,3,4,9, Kenta Kawasaki2,3, Katherine C. Woronowicz5,6, Shawn A. Hallett2,4, Claudio Macias Trevino2,4, Edward B. Li2,4, Roland Baron1,4, Francesca Gori1, Pamela C. Yelick7, Matthew P. Harris5,6 & Eric C. Liao2,3,4,8*

Wnt signaling plays a critical role in craniofacial patterning, as well as tooth and bone development. *Rspo2* and *Rspo3* are key regulators of Wnt signaling. However, their coordinated function and relative requirement in craniofacial development and odontogenes is poorly understood. We showed that in zebrafish *rspo2* and *rspo3* are both expressed in osteoprogenitors in the embryonic craniofacial skeleton. This is in contrast to mouse development, where *Rspo3* is expressed in osteoprogenitors while *Rspo2* expression is not observed. In zebrafish, *rspo2* and *rspo3* are broadly expressed in the pulp, odontoblasts and epithelial crypts. However, in the developing molars of the mouse, *Rspo3* is largely expressed in the dental follicle and alveolar mesenchyme while *Rspo2* expression is restricted to the tooth germ. While *Rspo3* ablation in the mouse is embryonic lethal, zebrafish *rspo3*−/− mutants are viable with modest decrease in Meckel's cartilage rostral length. However, compound disruption of *rspo3* and *rspo2* revealed synergistic roles of these genes in cartilage morphogenesis, fin development, and pharyngeal tooth development. Adult *rspo3*−/− zebrafish mutants exhibit a dysmorphic cranial skeleton and decreased average tooth number. This study highlights the differential functions of *Rspo2* and *Rspo3* in dentocranial morphogenesis in zebrafish and in mouse.

The Wnt signaling pathway plays a major role in skeletal patterning and differentiation during embryonic development, and in maintaining postnatal bone homeostasis1–3. Impairment and potentiation of Wnt signaling affects overall bone mass and density4–6. Canonical β-catenin mediated Wnt signaling directly regulates osteoblast differentiation and activity and likely has indirect effects on osteoclasts during bone metabolism4. Moreover, a study reported the direct negative influence of canonical Wnt/β-catenin signaling on osteoclast development using in vitro cell models and in vivo mouse studies4. During embryogenesis, canonical Wnt/β-catenin signaling is highly active in the first pharyngeal arch as well as in multiple craniofacial regions in mouse, chicken and zebrafish4–6. Wnt signaling is involved in regulating skeletogenic neural crest cells, such as the subdivision of each pharyngeal arch into dorsal and ventral elements in zebrafish during craniofacial development4. In addition, Wnt signaling plays a role in mediating regional specification in the vertebrate face7. The identification of modulators of Wnt signaling during development and homeostasis of adult skeletal tissues may lead to new insights into disease etiology and identify potential targets for therapeutic mediation.

Human genome wide association studies revealed many regulators of canonical Wnt signaling that are involved in regulating bone metabolism8,9. The *R-spondin (Rspo)* family of secreted proteins includes four members (*Rspo1–4*) in the thrombospondin type 1 repeat (TSR1)-containing protein superfamily that have been shown to potentiate the canonical Wnt/β-catenin pathway10,11. RSPO proteins modulate Wnt signaling through interactions with the LGR4–6 receptors, leading to stabilization of Frizzled and LRPs at the cell membrane.
and through regulation of the ubiquitin ligases ZNFR3 and RNF43 that degrade Frizzled receptors. Rspo2 and Rspo3 also have been shown to augment Wnt/β-catenin signaling independent of LGRs by binding to heparin sulfate proteoglycans. Rspo genes are essential for normal development and have been shown to regulate skeletal patterning during development. In particular, Rspo2 has been shown to be essential for limb patterning. Additionally, several GWAS conducted in humans have associated Rspo2 and Rspo3 with bone mineral density.

Rsps were identified as a candidate gene that contributes to cleft lip/palate and dental anomalies. Rsps was also reported to have a critical role in mouse placental development. However, since mouse embryos lacking Rsps function die at E10.5 due to placenta and vascular defects, this precluded analysis of its role during later embryonic development. Conditional ablation of the Rsps in limb mesenchymal cells caused modest delay in limb growth during development. Rsps and Rsps double mutant mice however developed severe hindlimb truncations, suggesting a redundant function of these genes. The function of Rsps during craniofacial morphogenesis has yet to be defined.

Wnt/β-catenin pathway also plays a critical role in tooth development and can affect craniofacial development more broadly. Tooth formation initiates from the interactions between the dental epithelial layer and the underlying mesenchyme. Mice have a single set of dentition (monophyodont) that consists of continuously erupting incisors, and three molars in single row on both sides of the upper and lower jaws that do not exhibit continuous growth or replacement. The zebrafish dentition is more numerous, unlike in the mouse, zebrafish teeth exhibit continuous replacement throughout life (polyphyodont). Despite these differences, the molecular and cellular mechanisms regulating tooth development are highly conserved between zebrafish and mammals. Therefore, studies in zebrafish can provide novel insights into the regulation of craniofacial structures that can complement the mouse.

Here, we focused on the roles of Rsps and Rsps in regulating dental and craniofacial development. We utilized RNAscope probes to gain high resolution images of Rsps and Rsps gene expression in zebrafish and mouse. We examined the genetic requirement of rsps and rsps in zebrafish development, using complementary CRISPR/Cas9-mediated targeted mutagenesis. Using these approaches, we revealed roles for rsps and rsps in tooth development and in morphogenesis of the craniofacial complex.

Results

Rsps and Rsps are expressed in the craniofacial complex and in the prechondrium and osteoprogenitor cells during zebrafish craniofacial morphogenesis. Gene expression patterns of rsps and rsps during zebrafish embryogenesis were delineated by whole-mount RNA in situ hybridization (WISH). Rsps and rsps transcripts were detected in the brain, otic vesicle, and endodermal pouches at 24 h post-fertilization (hpf) and as well as in regions consistent with the ethmoid plate and Meckel's cartilage at 48 hpf (Fig. 1A). Using RNAscope in situ hybridization, we identified diffuse rsps transcript expression throughout the mesenchyme with concentrated expression in cells that circumscribe the pre-cartilage mesenchyme (48 hpf) and the paired trabeculae, ethmoid plate, and Meckel's cartilage at 5 days post-fertilization (dpf) (Fig. 1B). We also detected rsps expression within ethmoid plate chondrocytes at 5 dpf (Fig. 1B). Rsps expression generally overlapped with rsps at both developmental timepoints.

Expression of rsps is similar in mouse and zebrafish, however rsps expression is distinct. To test the conservation of Rsps and Rsps expression between vertebrates, we analyzed expression in mouse embryos with RNAscope in situ hybridization and immunofluorescence. At E13.5 we detected Rsps expression in regions consistent with osteogenesis, including the developing mandible. We found cellular co-localization of Rsps, Col11a1 mRNA and Runx2 protein, indicating a potential role in osteogenesis (Fig. 2A). In the E15.5 mouse embryo, Rsps transcripts were detected widely throughout the mesenchyme as well as within Meckel's cartilage (Fig. 2B). Rsps expression was also detected within Runx2 positive, presumptive osteoprogenitor cells (Fig. 2B). In contrast to gene expression results in zebrafish, we did not detect Rsps expression in the mesenchyme of mouse embryos or associated with cartilage elements. Instead, within the developing mandible, Rsps2 expression was restricted to developing teeth (Fig. 2C). Unlike in zebrafish where rsps and rsps expression largely overlap, in the mouse transcripts of Rsps2 and Rsps appear to be anatomically distinct (Fig. 2).

rsps and rsps are differentially expressed within zebrafish dental structures. Given the expression of Rsps2 and Rsps in developing mouse teeth, we examined the gene expression of rsps2 and rsps within and surrounding the tooth structure in zebrafish. Rsps gene expression was detected at low levels diffusely throughout the dental pulp and the surrounding mesenchyme (Fig. 3). In contrast, high levels of rsps2 gene expression were detected in the enamel epithelium (Fig. 3). Furthermore, rsps gene expression was highest within odontoblasts of regenerating teeth (Fig. 3).

Combined disruption of rsps and rsps resulted in cartilage dysmorphogenesis. Given the specific expression of rsps in early palate and in Meckel's cartilage development, we used CRISPR/Cas9-mediated genome editing to generate rsps mutant alleles. Guide RNAs targeting the rsps gene in exon2 were used to create a mutant germline allele (Fig. S1A). A frame shift mutation was generated by introducing a codon to create a frame-shift mutation. The efficiency of this rsps2–20 bp deletion allele (hereafter called rsps2−/−) was assessed by qRT-PCR at 6 hpf, where we observed that rsps2 mRNA was significantly reduced by sixfold in the mutant compared as compared to wild-type clutch-mates (p < 0.05; Fig. S1C).

To characterize requirements for rsps during early craniofacial morphogenesis, Alcian blue cartilage staining was performed at 5 dpf. The effects of rsps disruption on larval cartilage skeleton were found to be subtle. As
rspo2 is known to also function in regulating Wnt signaling and has overlapping expression in the zebrafish, we hypothesized that rspo2 action may be compensating for rspo3 germline disruption. Therefore, to determine the combined requirement of rspo2 and rspo3, we targeted rspo2 by injection of multiple gRNA into rspo3 homozygous embryos (Fig. 4A), commonly referred to as a crispant and denoted here as rspo2Δ29. Embryos generated from rspo3+/− in-crossed zebrafish were either raised for analysis of the single mutant or were injected at the 1-cell stage with gRNAs targeting rspo2 (rspo2Δ). The resulting larvae were stained at 9 dpf with Alcian blue and Alizarin Red S. Following imaging and phenotyping, individual larvae were genotyped. We identified a subset of zebrafish with disrupted pectoral fin development where either the fin was partially formed or was absent (Fig. 4B). We found that rspo2 was required for pectoral fin development, and that haploinsufficiency of rspo3 exacerbated the loss of pectoral fin formation (Fig. 4B,C).
In addition to altered fin development, we identified a subset of zebrafish with altered craniofacial morphology affecting the lower jaw. We found that rspo2Δ, rspo3+/− and rspo3−/−; rspo2Δ larvae displayed a significantly reduced angle where the palatoquadrate meets Meckel's cartilage (Fig. 4B,D).
To evaluate craniofacial effects in greater detail and visualize individual cartilage elements, we dissected out the ethmoid plate and ventral cartilages, including the pharyngeal teeth (Fig. 4). Analyses of Alcian blue/Alizarin Red S zebrafish at 9 dpf revealed that disruption of \(\text{rspo2} \) caused a decrease in the number of pharyngeal teeth, with an average of 2 total teeth rather than the 8 teeth observed in the control (Fig. 4B). Although \(\text{rspo3}^{-/-} \) larvae did not exhibit a difference in the number of teeth at 9 dpf, haploinsufficiency of \(\text{rspo3} \) decreased tooth number in the \(\text{rspo2} \Delta \) larvae, with the \(\text{rspo3}^{-/-}; \text{rspo2} \Delta \) double mutant having no mineralized teeth at 9 dpf (Fig. 4A,B). Flat-mount imaging of Alcian blue/Alizarin Red S-stained ventral cartilage revealed a significant decrease in anterior–posterior/rostral length of Meckel’s cartilage in the \(\text{rspo3}^{-/-} \) larvae while \(\text{rspo2} \) disruption alone had no effect (Fig. 5A,C). The requirement for \(\text{rspo3} \) on Meckel’s cartilage rostral length was significantly exacerbated by \(\text{rspo2} \) disruption (Fig. 5C). The effect of \(\text{rspo3} \) on Meckel’s cartilage rostral length is specific, rather than due to a total anterior–posterior shortening, as ceratohyal length anterior–posterior length was not different in these zebrafish (Fig. 5D).

\(\text{rspo3} \) influences osteoclast activity during zebrafish development. To assess the role of \(\text{rspo3} \) on osteogenesis in developing zebrafish we performed live Alizarin Red S staining on 10 dpf \(\text{rspo3}^{-/+} \) and \(\text{rspo3}^{-/-} \) larvae. The \(\text{rspo3} \) mutant allele was also bred onto a \(\text{sox10}:\text{kaede} \) background in order to visualize cartilage elements. Confocal analyses of whole mount embryos revealed no differences in Alizarin Red S intensity (Fig. 6A). No obvious changes in cartilage morphology were observed in the \(\text{rspo3}^{-/+} \) fish. Interestingly, we did observe increased tartrate-resistant acid phosphatase (TRAP) positive area in \(\text{rspo3}^{-/-} \) mutants at 14 and 21 dpf, suggesting increased osteoclast number (Fig. 6B). Therefore, these results indicate that \(\text{rspo3} \) may regulate aspects of bone homeostasis after larval development as the animals mature during adult life.

Adult \(\text{rspo3} \) zebrafish mutants have decreased body length and exhibit a midface deficiency. As \(\text{rspo3}^{-/-} \) mutant zebrafish larvae matured to adult fish, we observed midface hypoplasia compared to wild-type clutch-mates (Fig. 7A). Statistically significant differences in body length (measured from tip of mouth opening to the base of the tail, STL) were observed in \(\text{rspo3}^{-/-} \) mutant as compared to wild-type clutch-mates (Fig. 7B). In addition, \(\text{rspo3}^{-/-} \) mutant exhibited significantly decreased parasphenoid and anguloarticular bone volume compared to wild-type clutch-mates (Fig. 7C, D). The altered morphology of individual bony elements in \(\text{rspo3}^{-/-} \) zebrafish also resulted in altered relationships between the bony elements. Cephalometric analysis revealed significant frontal bossing in \(\text{rspo3}^{-/-} \) mutant adults, with increased parasphenoid-frontal angle (Fig. 7E). Furthermore, we observed midface hypoplasia in adult \(\text{rspo3}^{-/-} \) zebrafish as compared to wild-type,
Figure 4. Synergistic effect of rspo2 and rspo3 ablation on zebrafish limb development and craniofacial morphology. (A) Schematic illustrating experimental design. Targeted mutagenesis of rsopo3−/− in zebrafish was carried out using CRISPR/Cas9 gene editing. A ~20 bp deletion was bred to homozygosity. Intercross or rsopo3+/− were injected with 4 gRNAs against rsopo2 and the resulting larvae were genotyped and analyzed for phenotype. (B) Whole mount ventral and lateral images of Alcian blue/Alizarin red S stained 9 dpf larvae. rsopo3−/− embryos that were rsopo2 gRNA/Cas9 injected (rsopo2 Δ) larvae were similar to wild-type except that rsopo2 Δ larvae exhibited disrupted development of the pectoral fin. Impaired fin development was exacerbated with decreasing genetic dosage of rsopo3 (black arrows, dotted yellow lines delineate fins). While craniofacial development in rsopo3−/− and rsopo2 Δ larvae were largely normal, rsopo3−/−;rsopo2Δ double mutants exhibited a dysmorphic lower jaw (white arrow). Scale bar: 100 μm. (C) Quantification of pectoral fin developmental disruption. rsopo2 Δ larvae tended to have disrupted development of a single pectoral fin. This effect was significantly exacerbated with decreasing genetic dosage of rsopo3, as rsopo3−/−;rsopo2Δ double mutant larvae failed to develop pectoral fins altogether. (D) Quantification of angle measurements between Meckel’s cartilage (m) and palatoquadrate (pq). While rsopo3−/− and rsopo2Δ mutants had normal lower jaw morphology, rsopo3+/−;rsopo2Δ and rsopo3−/−;rsopo2Δ mutants displayed a significantly decreased angle at the Meckel’s/palatoquadrate joint. N = 10–16. p < 0.01. *Indicates significance relative to wild-type.
Figure 5. Synergistic effect of rspo2 and rspo3 ablation on zebrafish tooth development and Meckel's cartilage. (A) Flat-mount images of Alcian blue/Alizarin red S stained 9 dpf zebrafish ventral cartilages. Zoom of pharyngeal teeth to right. rspo3−/− larvae displayed anterior shortening of Meckel's cartilage, which was exacerbated with rspo3−/−;rspo2Δ gRNA disruption (black bars). *indicate absent teeth. Scale bar: 200 μm. (B) Alizarin red S staining of pharyngeal teeth shows that rspo3−/− are generally normal relative to wild-type while rspo2Δ larvae have a reduced number of teeth (average of 2 versus 8). Tooth number in rspo2Δ larvae decreased further with decreasing wild-type alleles of rspo3 (zero teeth detected in rspo3−/−;rspo2Δ mutant). (C) Quantification of the anterior–posterior/rostral length of Meckel's cartilage shows a primary effect in rspo3−/− larvae, which is exacerbated in rspo3−/−;rspo2Δ mutants. (D) Quantification of the anterior–posterior length of ceratohyal cartilage shows no effect in rspo3−/− larvae, suggesting a cartilage element-specific effect of rspo3 and rspo2. N = 10–16. p < 0.01. *Indicates significance relative to wild-type.
with significant increased distance between nasal bone and a line drawn between dentary and frontal bone landmarks (Fig. 7F).

rspo3 is required for normal tooth maintenance. Analysis of pharyngeal tooth morphology in adult zebrafish using micro-CT illustrated decreased tooth number in *rspo3*−/− mutant zebrafish, as compared to wild-type clutch-mates (Fig. 8A,B). On average, *rspo3*−/− adult zebrafish had two fewer teeth on both the right and left sides of the jaw (Fig. 8B). As we found no difference in the number of teeth during the larval stage in *rspo3*−/− animals (Fig. 5), we suggest that *rspo3* functions in the maintenance of teeth, rather than tooth development, either by regulating tooth integrity or regulating tooth regeneration.

Discussion

This study reports *Rspo2* and *Rspo3* gene expressions and functions in craniofacial and dental morphogenesis, using zebrafish and mouse models. *Rspo3* is diffusely expressed through the craniofacial mesenchyme whereas *Rspo2* is expressed in distinct domains. In zebrafish, there is overlap in *rspo2* and *rspo3* gene expressions, whereas in the mouse embryo the expression domains of these paralogs are distinct. We showed that *Rspo3* is expressed in perichondral cells, and Runx2 positive osteoprogenitors in embryonic palate and Meckel's cartilage in zebrafish, as well as in mouse osteoprogenitors. In zebrafish teeth, *rsopo3* is expressed in newly formed replacement teeth, where it is broadly expressed in dental pulp, odontoblasts, and crypt epithelium. Analysis of adult *rsopo3*−/− zebrafish suggest that *rsopo3* is required for adult teeth maintenance. Loss of *rsopo3* did not affect larval osteogenesis but did result in increased area of TRAP staining, midface hypoplasia, and reduced numbers of attached teeth in adult zebrafish. Importantly, *rsopo2* and *rsopo3* genetically interact, where haploinsufficiency of *rsopo3* exacerbates defects in tooth formation and pectoral fin bud extension. We show that zebrafish *rsopo2* and *rsopo3* are required for limb development, analogous to the mouse function of *Rspo2/3* that was previously reported. Together, these gene expression studies and genetic analyses are consistent with functions for *rsopo3* in progenitor cell populations contributing to the craniofacial skeleton and teeth, and in the maintenance of craniofacial bones and teeth in zebrafish (Fig. 8C).

We showed that high resolution gene expression analysis using RNAscope on sectioned specimens provided greater resolution as compared to whole mount (ISH) approaches (compare Fig. 1A,B). Using RNAscope, we were able to identify expression patterns that were not apparent in whole mount analysis.
Figure 7. rspo3 mutants exhibited midface deficiency, frontal bossing and decreased body length. Reduced body length, midface deficiency and frontal bossing were observed in adult rspo3−/− (180 dpf). (A) Lateral image of adult zebrafish showing midface depression in rspo3−/− (solid arrow) compared to wild-type (open arrow). (B) Body length was significantly decreased in rspo3−/− mutants relative to wild-type. (C) Oblique micro-CT image of rspo3−/− and wild-type fish at 180 dpf. Individual bone elements are color coded (blue: parasphenoid, pink: maxilla, yellow: premaxilla, green: dentary and red: anguloarticular). Scale bar: 10 μm. (D) Bone volume of the skull and of specific bones in rspo3−/− and wild-type individuals demonstrates element-specific differences in volume. Parasphenoid and anguloarticular bone volume were significantly reduced in rspo3−/− compared to wild-type fish. Abbreviations: aa: anguloarticular, d: dentary, m: maxilla, p: parasphenoid, pm: premaxilla. (E) 2D cephalometric analysis obtained from micro-CT of rspo3−/− and wild-type fish. The angle formed by parasphenoid line and a line tangent to frontal bone identified frontal bossing, with increased angle in rspo3−/− compared to wild-type. Diagram of lateral view of adult zebrafish showing the angular measurement. Bar chart showing statistical differences in the angular measurement between rspo3−/− and wild-type. (F) 2D cephalometric analysis of rspo3−/− and wild-type fish. The distance between nasal bone and a line drawn between dentary and frontal bone landmarks were measured. Diagram of lateral view of adult zebrafish showing the linear measurement from nasal bone to a line tangent to the frontal bone and dentary. The linear measurement value was significantly greater in rspo3−/− mutants than in wild-type indicating the presence of midface hypoplasia. *p ≤ 0.05. Scale bar: 100 μm.
able to determine that rspo2 and rspo3 transcripts were detected in a cell layer that surrounds the chondrogenic elements in the zebrafish anterior neurocranium, trabeculae and in Meckel’s cartilage. Moreover, Rspo3 is coexpressed with Runx2 (osteoprogenitor marker) in zebrafish and mouse (Figs. 1, 2). In support of our findings, a human genetic study recently reported the involvement of RSPO3 in bone mineral density and bone fractures. In addition, human RSPO3 was identified as a candidate gene that contributes to cleft lip/palate and dental anomalies, consistent with its role in skeletal development and in human adipose-derived stem cells. Taken together, this and other studies

Figure 8. Adult rspo3 mutant zebrafish have reduced teeth number. (A) Micro-CT of 180 dpf zebrafish reveals that the adult rspo3−/− animals exhibit decreased tooth number with several sockets missing teeth that are present in the wild-type. (B) rspo3−/− have significantly fewer teeth than wild-type on both right and left sides. N = 9.7. *p < 0.05. (C) Summary diagram illustrating that rspo2 and rspo3 both regulate pharyngeal tooth development as well as have roles in morphogenesis of the craniofacial skeleton.
corroborate that Rspo3 has conserved functions in the development of craniofacial bone and tooth structures across vertebrates.

This study also identified a key requirement for rspo3 in regulating tooth development. Zebrafish teeth are continuously replaced throughout its life, where the regenerative process is analogous to human adult tooth replacement of a deciduous, baby tooth and to mouse continuously growing incisors. We described rspo3 gene expression in dental pulp, odontoblasts and crypt and dental epithelium in zebrafish and mouse, suggesting possible roles in the regulation of tooth development, odontogenesis and ameloblast differentiation. Importantly, rspo3 is highly detected in zebrafish replacement teeth as compared to mature teeth, indicating potential roles in dental progenitor cell populations as compared to more differentiated dental cell types. Moreover, adult rspo3−/− zebrafish exhibit reduced attached tooth numbers as compared to age-matched wild-type fish. The normal tooth formation in rspo3−/− mutant zebrafish at 9 dpf while having reduced tooth number at 180 dpf suggests a role for rspo3 in the maintenance of adult teeth rather than in their initial development. Differences in Rspo2/3 spatiotemporal gene expression in mouse and zebrafish may reflect differences in the regenerative odontogenic potential of zebrafish. Wnt/β-catenin signaling is important for tooth morphogenesis, and consistent with the observation that rspo3 disruption resulted in inhibited dental tissue development.

Adult rspo3−/− zebrafish exhibited midface hypoplasia, frontal bossing and reduced tooth number as compared to aged-matched wild-type clutch-mates. Our data showed co-expression of rspo3 and colla1a1 during embryogenesis, suggesting that these two genes could be functionally associated. Consistent with this result, previous studies reported that patients with osteogenesis imperfecta have mutations in COL1A1 which is characterized by frontal bossing, midface hypoplasia and dentinogenesis imperfecta. Future studies are recommended to investigate the molecular mechanisms regulated by rspo3, including its interactions with Wnt signaling pathway genes in regulating dental and bone development.

Methods

Experimental animals. All animal experiments were approved by the Massachusetts General Hospital (MGH) Institutional Animal Care and Use Committee (IACUC) and in compliance with ARRIVE guidelines. Zebrafish embryos and adults were cared for and maintained in this study as previously described. Wild-type mice were ordered obtained from Jackson Laboratory (C57BL/6), Bar Harbor, ME, USA) and Rspo3 mutant mice were kindly provided to Dr. Baron by Dr. Christof Nierhs (German Cancer Research Center, Heidelberg, Germany). All methods were carried out in accordance with relevant guidelines and regulations.

Zebrafish CRISPR mutant line, F0 CRISPR disruption and reporter lines. We used targeted genome editing via CRISPR-cas9 mutagenesis in zebrafish to perform functional analysis of rspo3. A rspo3 mutant zebrafish line was created using the cas9 RNA CCTGGCAGCCTGGAGCTC, which resulted in a 20 bp deletion (Supplemental Fig. S1). Genotyping primers for the rspo3 mutant line are 5′-AAGCGAGAAAA TAAGTTTCCCA-3′ and 5′-CCACTCCCATTGCTTTTATAC-3′ with FAM modification on the reverse primer for microsatellite analysis. The mutant peak was observed at 337 bp and wild-type peak observed at 357 bp.

CRISPR gRNA were designed using CRISPOR (http://crispor.tefor.net/) to target rspo2 translational start sites as previously described. Due to the presence of two rspo2 transcript variants with unique translational start sites (TSS), specific pairs of gRNAs (4 total) were designed to flank each TSS. Guides ordered from Synthego were as follows: AGCTCATATACGGACCTTAAGG, AGACGACGACTCCACCGCTGATGTCTTGTTACACAGTTTG, TCTTCTCCTCCTCAGGAACAGACG.

All four gRNAs were co-injected into rspo3−/− in-crossed single cell zebrafish embryos. Each guide was prepared at a final concentration of 1.25 μM and 2 nl were injected into each embryo. Injected embryos were raised to 9 days post fertilization, where they were subsequently fixed and stained for detailed phenotypic analysis. Stained fish were imaged using a Nikon Eclipse 80i compound microscope with a Nikon DS Ri1 camera. Measurements were taken in ImageJ. Transgenic line Tg(sox10:kaede) was also used in this study.

Whole mount in situ hybridization analyses. The primers used to generate the rspo3 RNA probe were the forward primer 5′-AACCTGTGGGCTCAAATGGG-3′ and reverse primer 5′-TTTGGTCGCTCATCCAGTA-3′.

The T7 promoter (gaattatagctattag) was added to all reverse primers. The RNA probes were confirmed by gel-electrophoresis. WISH in zebrafish was performed as previously described.

Skeletal staining. Double Alcian blue/Alizarin red S staining on fixed zebrafish was performed as previously described. The sample size (n) is 5 embryos per each group. The zebrafish palate and lower jaw were dissected and mounted in 4% methyl cellulose prior to imaging. Tartrate-resistant acid phosphatase (TRAP) staining for osteoclast activity was performed (n = 5 wild-type and 5 rspo3−/−) as adapted from previous study. Imaging was performed using Nikon Eclipse 80i microscope (Melville, NY, USA) and NIS-Elements Br imaging software version 4.40 (2015). Measurements were taken in ImageJ. In vivo Alizarin red S staining of 9 dpf zebrafish was performed as previously described. Alizarin red S and sox10:kaede fluorescence was imaged using a Leica SP8 inverted confocal laser scanning microscope. Maximum intensity projections of z-stacks were generated using ImageJ version 2.0.

RNAseq in situ hybridization, immunofluorescence and confocal imaging. For sample preparation, 48 hpf and 5 dpf zebrafish embryos were fixed using 4% formaldehyde overnight (ON) at 4 °C. Adult zebrafish (6 months old) were fixed using 4% formaldehyde ON at 4 °C and then decalcified ON using 0.35 M
EDTA as previously published. The E13.5 and E15.5 mouse embryos were fixed with 4% formaldehyde ON. n = 3 zebralish embryos and n = 3 mouse embryos were analyzed.

Subsequently, all samples were placed in 15% sucrose in PBS until the tissue sank, and then placed in 30% sucrose in PBS ON. Samples were then embedded in OCT (Tissue-Tek) and serially sectioned (10 μm) in coronal orientation using a Leica CM1850 cryostat.

RNAseq probes included: Dr-rspo3-C2 (catalog number: 555121-C2), Dr-runx2a-C1 (catalog number: 409521), Dr-rspo2-C3 (catalog number: 899271-C3) Mm-Rspo3-C3 (catalog number: 402011-C3), Mm-rspo2-C2 (catalog number: 402008-C2). All probes were manufactured by Advanced Cell Diagnostics in Newark, NJ, USA. Sample pre-treatment and RNAseq were performed according to the manufacturer’s instructions (Advanced Cell Diagnostics, Newark, NJ, USA). Stained slides were imaged using a Leica SP8 inverted confocal laser scanning microscope and image processing was performed using ImageJ version 2.0 (2018). Immuno-fluorescence detection of mouse Runx2 (Abcam primary antibody, catalog number: ab192256; Invitrogen Alexa Fluor 488 goat anti rabbit secondary antibody) was performed following RNAseq in situ hybridization as described by Advanced Cell Diagnostics.

Micro-computed tomography. Wild-type and rspos mutant adult zebrafish were sacrificed at 6 months of age, n = 9 wild-type and 7 mutant zebralish. All zebralish were scanned as previously described. The voxel size of Micro-CT analysis is 10.5 μm. The examiner (K.W.) was blinded to the genotype of the zebrafish. Images were reconstructed, analyzed and viewed using Amira software version 6.

Measurement of bone volume. The reconstructed bitmap image (BMP) files were converted to NIfTI format for simplification, using Amira software. The threshold tool values were consistent between the samples (32–72 threshold logic unit). Each zebralish skull was segmented into bone elements (dentary, anguloarticular, premaxilla, maxilla and parasphenoid) using Amira manufacture’s instruction. n = 9 wild type and 7 mutant zebralish were analyzed at 6 months of age.

Quantitative RT-PCR. Three independent samples of wild-type and rspos CRISPR/Cas9 (− 20 base pairs micro-deletion mutants) at 6 hpf were collected and measured in triplicate in order to characterize the rspos mutant. We decided to collect embryos at 6 hpf, because it has been reported that rspos mRNA is highly expressed in zebrafish embryos at this time point. In addition, three independent 1-cell stage and 24 hpf wild type embryo samples were collected and measured to define the expression of rspos mRNAs. RNA extractions were performed using RNeasy Mini Kit (Qiagen). SuperScript First-Strand Synthesis System IV (Thermo Fisher Scientific) was used to synthesize first-strand cDNA. Quantitative reverse-transcription PCR (qRT-PCR) was performed using rspos Taqman assay (Dr03109282_m1) Taqman Fast Advanced master mix (Thermo Fisher Scientific) and normalized to 18S rRNA expression (Hs03003631_g1). qPCR was performed on a StepOnePlus Real-Time PCR system (Applied Biosystems).

Statistical analysis. IBM SPSS statistics version 26 was used for all Student’s t-test statistical analyses. Student’s t-test was used to compare between the two groups. Prism 9 software was used to perform Kruskal–Wallis statistical test with multiple comparisons when more than two groups were compared. Statistical significance was set at p-value ≤ 0.05. Asterisks in the figures indicate p-value ≤ 0.05. Data presented as means ± SEM.
The authors declare no competing interests.

F32DE029362. M.P.H. was supported in part by NSF/BSF binational Award 201720. support from the Laurie and Mason Tenaglia MGH Research Scholar Award. K.C.W. was supported by NIH

We are grateful for funding support from Shriners Hospital for Children, and the National Institutes of Health

WT skulls. S.A.H. used CRISPR/Cas9-mediated genome editing to generate

rspo3

14. Hao, H. X.

16. Knight, M. N. & Hankenson, K. D. R-spondins: Novel matricellular regulators of the skeleton.

19. Vieira, A. R., McHenry, T. G., Daack-Hirsch, S., Murray, J. C. & Marazita, M. L. Candidate gene/loci studies in cleft lip/palate and
dental anomalies finds novel susceptibility genes for clefts. Genet. Med. 10(9), 668–674 (2008).

21. Jin, Y. R. & Yoon, J. K. The R-spondin family of proteins: Emerging regulators of WNT signaling. Int. J. Biochem. Cell. Biol. 44(12),
2278–2287 (2012).

22. Liu, F. & Millar, S. E. Wnt/beta-catenin signaling in oral tissue development and disease. J. Dent. Res. 89(4), 318–330 (2010).

23. Huyseinne, A., Soenens, M. & Elderweideit, F. Wnt signaling during tooth replacement in zebrasihf (Dannio rerio): Pitfalls and
perspectives. Front. Physiol. 5, 386 (2014).

25. Liu, F.

26. Kuang-Hsien, Hu. J., Mushegyan, V. & Klein, O. D. On the cutting edge of organ renewal: Identification, regulation, and evolution of
incisor stem cells. Genesis 52(2), 79–92 (2014).

27. Tucker, A. & Sharpe, P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet. 5(7), 499–508
(2004).

28. Yelick, P. C. & Schilling, T. F. Molecular dissection of craniofacial development using zebrafish. Crit. Rev. Oral. Biol. Med. 13(4),
308–322 (2002).

29. Hoshijima, K. et al. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack
gene function in zebrasihf. Dev. Cell. 51(5), 645–657 (2019).

30. Baniwal, S. K. et al. Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor
cells. Osteoporos Int. 23(4), 1399–1413 (2012).

31. Zhang, M. et al. Rspo3-LGR4 regulates osteogenic differentiation of human adipose-derived stem cells via ERK/FGF signalling.
Sci. Rep. 7, 42841 (2017).

32. Cobourne, M. T. & Sharpe, P. T. Making up the numbers: The molecular control of mammalian dental formula. Semin. Cell. Dev. Biol. 21(3), 314–324 (2010).

33. Tummers, M. & Thesleff, I. Root or crown: A developmental choice orchestrated by the differential regulation of the epithelial
cell niche in the tooth of two rodent species. Development 130(6), 1049–1057 (2003).

34. Verstraeten, B., van Hengel, J. & Huyseinne, A. Beta-catenin and plakoglobin expression during zebrafish tooth development and
replacement. PLoS ONE 11(3), e0148114 (2016).

35. da Fontoura, C. S. et al. Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc. Natl. Acad. Sci.
USA 115(34), E8037–E8046 (2018).

36. Gistelinck, C. et al. Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc. Natl. Acad. Sci.
USA 115(34), E8037–E8046 (2018).

37. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish.
Proc. Natl. Acad. Sci. USA 115(34), E8037–E8046 (2018).

38. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev.
Dyn. 203(3), 253–310 (1995).

39. Dougherty, M. et al. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrasihf palate
morphogenesis. Development 140(1), 76–81 (2013).

40. Rong, X. et al. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/beta-catenin signalling in
zebrasihf embryos. PLoS ONE 9(6), e99514 (2014).

41. Ling, I. T., Rochard, L. & Liao, E. C. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and
timing of endochondral ossification. Dev. Biol. 421(2), 219–232 (2017).

42. Walker, M. B. & Kimmel, C. B. A two-color acid-free cartilage and bone stain for zebrasihf larvae. Biotech. Histochem. 82(1), 23–28
(2007).

43. Hammond, C. L. & Schulte-Miker, S. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signallng.
Development 136(23), 3991–4000 (2009).

44. Bensimon-Brito, A. et al. Revisiting in vivo staining with alizarin red S: a valuable approach to analyse zebrafish skeletal mineral-
dization during development and regeneration. BMC Dev. Biol. 16, 2 (2016).

45. Copper, I. E. et al. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrasihf.
Comp. Biochem. Physiol. C. 208, 38–46 (2018).

46. Charles, J. F. et al. Utility of quantitative micro-computed tomographic analysis in zebrasihf to define gene function during skel-
etogenesis. Bone 101, 162–171 (2017).

Acknowledgements

We are grateful for funding support from Shriners Hospital for Children, and the National Institutes of Health

R01DE027983. We thank Ms. Jessica Bethoney for excellent management of our aquatic facility. E.C.L. received support from the Laurie and Mason Tenaglia MGH Research Scholar Award. K.C.W. was supported by NIH F32DE029362. M.P.H. was supported in part by NSF/BSF binational Award 201720.

Author contributions

N.A. performed the experiments, wrote the main manuscript and prepared the figures. S.H.C. performed the experiments, wrote the revised manuscript and prepared the figures. K.K. performed the experiments and prepared figures. K.C.W. microCT scanned, reconstructed, and assessed phenotype of a blinded set of mutant and WT skulls. S.A.H. used CRISPR/Cas9-mediated genome editing to generate rspo3 mutant alleles. E.C.L. supervised the work. All the authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.
