Effects of rumen undegradable protein sources on nitrous oxide, methane and ammonia emission from the manure of feedlot-finished cattle

Larissa de Melo Coelho1*, Liziane de Figueiredo Brito1, Juliana Duarte Messana1, Abmael da Silva Cardoso1, Geovany Macêdo Carvalho5, Rodrigo de Nazaré Santos Torres1, Roberta Souto Carlos2, Euclides Braga Malheiros2, Mara Cristina Pessôa da Cruz2 & Telma Teresinha Berchielli1

The effects of sources of rumen undegradable protein (RUP) in diets on methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions from the manure of feedlot-finished cattle were evaluated. We hypothesized that the use of different RUP sources in diets would reduce N loss via urine and contribute to reduced N2O, CH4 and NH3 emissions to the environment. Nellore cattle received different diets (18 animals/treatment), including soybean meal (SM, RDP source), by-pass soybean meal (BSM, RUP source) and corn gluten meal (CGM, RUP source). The protein source did not affect the N and C concentration in urine, C concentration in feces, and N balance (P > 0.05). The RUP sources resulted in a higher N2O emission than the RDP source (P = 0.030), while BSM resulted in a higher N2O emission than CGM (P = 0.038) (SM = 633, BSM = 2521, and CGM = 1153 g ha−2 N–N2O); however, there were no differences in CH4 and NH3 emission (P > 0.05). In conclusion, the use of RUP in diets did not affect N excretion of beef cattle or CH4 and NH3 emission from manure, but increased N2O emission from the manure.

Finishing cattle in confinement feedlots enables the use of feed sources that are adequate for the animal’s requirements, which increases productivity and meat quality1. However, this system is responsible for a greater accumulation of manure, which contains several components such as N and organic materials2. These components may undergo transformation and serve as a source of emission of greenhouse gases (GHGs), such as nitrous oxide (N2O) and methane (CH4)3–5, as well as of ammonia (NH3)6,7. Greenhouse gas emissions contribute to global warming8, whereas NH3 volatilization harms human health9,10 and potentially increase GHG emissions as NH3 is a precursor for N2O generation10.

Nitrous oxide is emitted through the transformation of ammonium (NH4+) and nitrate (NO3−) in soil during nitrification, denitrification11, and nitrifier denitrification12 mediated by fungi, bacteria and archaea13. These processes are affected by precipitation, temperature and substrate availability14,15. The magnitude of gas emission from cattle manure depends on the form and concentration of N16. Therefore, the reduction of N loss via ruminant excreta, specifically of N in the form of urea, is relevant to mitigate N2O emission, since 70% of the N excreted by ruminants is in the form of urea, which releases NH4+ following hydrolysis17. In addition, microbial hydrolysis of urea results in NH3 emission18; thus, the reduction of N-urea from excreta might directly reduce NH3 emission19.

The amount of CH4 emitted from manure is small compared with the total amount of enteric CH4 produced by ruminants20. However, emission from manure in feedlots is relevant, because large volumes of manure can
result in higher CH₄ emission²¹. Nitrogen and C content²², moisture, and temperature²³, are the major modula-
tors of CH₄ emissions. Strategies aimed at increasing the efficiency of N use, resulting in lower N excretion, can
modify the CN ratio of manure, which is an important factor responsible for the reduction of CH₄ emission²⁴.
The high CN ratio can promote the growth of populations of methanogenic archaea that are able to meet their
protein requirements and therefore not react with the remaining carbon content of the substrate, resulting in
low production of CH₄²⁵. Thus, reducing nutrient excretion by animals may serve as a strategy to mitigate CH₄
emission from manure.

Optimizing the use of N by ruminants can reduce N loss through urine and, therefore, minimize NH₃⁷, and
N₂O emission from manure²⁶. Reducing the amount of rumen degradable protein (RDP) and increasing the
amount of ruminal undegradable protein (RUP) in diets may increase overall N efficiency and enable adequate
supply of metabolizable protein (PM) to reach the small intestine²⁷. Thus, we hypothesized that different sources
of RUP in the diets would reduce N loss via urine and contribute to decreased N₂O, CH₄, and NH₃ emissions to
the environment. By modulating the diet in order to reduce N excretion, there is a possibility of impacting the
production of enteric CH₄²⁸. However, in our study, the focus was intended to understand how the sources of RUP
may affect the emission in the excreta, consequently, the emission of enteric CH₄ was not measured. The evalu-
atlon in-situ will enable get more representative emissions from the feedlot environment. Therefore, the objective
of the present study was to evaluate the effects of sources of RUP in diets on N₂O, CH₄ and NH₃ emissions from
manure of feedlot-finished Nellore and identify key driving variables that regulate the production of these gases.

Results
Characterization of animals’ excreta and N balance. There were no differences in the C and N con-
tent or C/N of the urine and fecal samples between the RUP and RDP sources (P > 0.05) (Table 1). Inclusion
of CGM as a source of RUP in the diet increased N content (P = 0.012) but decreased the C/N in the fecal samples
compared with the inclusion of BSM as a source of RUP (P = 0.009). However, there were no differences in the
C/N of urine samples between the RUP and RDP sources (P = 0.632).

None of the three evaluated protein sources affected N consumption, fecal and urinary N excretion, total N
excretion and total N retention (P > 0.05). There were no differences in fecal and urinary N excretion, N retention
(% intake) or fecal and urinary N excretion (% excreted) among the three protein sources (P > 0.05).

Table 1. Fecal and urinary N content and C and N balance of Nellore cattle fed with sources of rumen
undegradable protein during the finishing phase in feedlots. ¹SM = manure of animals fed soybean meal as a
source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source
of rumen undegradable protein (RUP), CGM = manure of animals fed corn gluten meal as a source of RUP;²SEM = standard error of the mean. Animal considered as an experimental unit (n = 9).

Variables	Treatments¹	SEM²	p value			
	SM	BSM	CGM	SEM²	RDP vs. RUP	BSM vs. CGM
Chemical composition						
Feces						
N, g kg⁻¹ DM	33.6	33.2	34.9	0.5	0.444	0.012
C, g kg⁻¹ DM	409.7	413.0	410.4	3.9	0.695	0.637
C/N	12.2	12.4	11.7	0.1	0.658	0.009
Urine						
N, g kg⁻¹ DM	5.1	6.1	5.6	0.8	0.419	0.669
C, g kg⁻¹ DM	8.2	10.8	8.8	1.5	0.382	0.186
C/N	1.5	1.8	1.4	0.1	0.632	<0.001
N balance						
N, g day⁻¹						
Intake	223.1	209.8	204.6	10.4	0.224	0.724
Fecal excretion	86.4	89.6	82.4	5.5	0.952	0.358
Urinary excretion	83.4	75.8	77.8	5.8	0.391	0.659
Total excretion	169.8	165.4	160.2	9.3	0.548	0.691
Total retention	53.3	44.3	44.4	5.4	0.194	0.995
N, % intake						
Fecal N	38.7	42.7	39.8	1.2	0.101	0.097
Urinary N	37.6	36.0	38.5	2.3	0.913	0.450
N retention	23.7	21.2	21.7	2.2	0.428	0.886
N, % excretion						
Urine	51.3	54.5	51.2	1.9	0.521	0.227
Feces	48.7	45.5	48.8	1.9	0.521	0.227

Scientific Reports | (2022) 12:9166 | https://doi.org/10.1038/s41598-022-13100-9 | natureportfolio
Gas emissions. Mean temperature during the N₂O and CH₄ emission sampling period was 20 °C; the lowest (3.3 °C) and highest (35.2 °C) temperatures were recorded close to sampling day 49 and on the last sampling day, respectively. Cumulative precipitation throughout the experimental period was 33.6 mm, occurring over 7 different days (Fig. 1).

Daily mean N₂O and CH₄ fluxes varied from −62 to 318 µg N₂O m⁻² h⁻¹ and from −125 to 321 µg CH₄ m⁻² h⁻¹, respectively, during the experimental period (Fig. 2). Highest peak of N₂O emission was observed in the 21st day, on all treatments. On the same day, an increase in CH₄ fluxes was also observed. Differences in N₂O and CH₄ fluxes among treatments occurred in some days of evaluation and were not consistent along the studied period.

Protein sources did not affect cumulative CH₄ emission from animal manure (P > 0.05) (Table 2). However, the manure of animals fed RUP sources resulted in a higher cumulative N₂O emission than that of animals fed the RDP source (P = 0.030). Emissions from manure of cattle fed CGM were almost double and emissions from manure from cattle fed BSM (P = 0.038) were quadrupled compared to SM-fed cattle.

An interaction between sampling time and protein source was observed for DM, OM, N, C and NH₄⁺ (Table 3, Fig. 3). The manure of animals fed CGM presented a lower N content and higher NH₄⁺ than that of animals fed SM on day 42 (P < 0.001), while on day 63 higher values of N and NH₄⁺ were observed for the manure of animals fed CGM in relation to BSM (P = 0.002 and P = 0.010 respectively) and SM (P = 0.004 and P < 0.001, respectively). The manure of animals fed SM showed a higher C content than that of animals fed source of RUP on day 42 (P = 0.001). The manure of animals fed SM showed a higher C/N than that of animals fed RUP (P = 0.001). Nitrate content of the analyzed samples was not detectable.

There were no correlations of manure gases (N₂O and CH₄) emissions with N, C, C/N ratio, DM, OM, and NH₄⁺ (P > 0.05) (Table 4). Nitrogen was positively correlated with C (P < 0.001) and OM (P < 0.002). Carbon was positively correlated with C/N ratio (P < 0.001). Ammonium was positively correlated with OM (P = 0.045).

A positive correlation was observed between CH₄ and C/N ratio on day 42 (P = 0.025), and between CH₄ and NH₄⁺ on day 63 (P = 0.001). On day 105, N₂O was positively correlated with DM (P = 0.018) and NH₄⁺ (P = 0.008) (Table 5).

NH₃ emission. Mean temperature during the NH₃ emission sampling period was 25 °C. The lowest (15.2 °C) and highest (37.3 °C) temperatures were recorded on the first sampling day and on day 19, respectively. Cumulative precipitation throughout the experimental period was 320.5 mm, occurring on 30 different days (Fig. 4).

Manure from all treatments showed the highest daily mean NH₃ emission on the first day of evaluation (Fig. 5). Subsequently, NH₃ emission decreased until the fourth day of evaluation under all treatments. From the 19th day, a new peak of NH₃ emission was observed under all treatments. The SM treatment presented a small increase in NH₃ emission on days 38 and 51, while the BSM and CGM treatments presented a decrease in emission. Ammonia emission under all treatments completely ceased on the 77th day. From day 13 to 25, cumulative NH₃ emission under the SM treatment was higher than that under the BSM and CGM treatments. However, after this period, no differences were observed among the treatments.

There were no significant differences in cumulative NH₃ emission from the manure during the evaluated period and manure content of DM, OM, N, and C (P > 0.05) among the three protein sources (Table 6). Likewise, there were no differences in the C/N ratio of the manure between the RDP and RUP sources (P = 0.491). However, the manure of animals fed BSM showed a higher C/N ratio than that of animals fed CGM (P < 0.001). The manure
Figure 2. N₂O and CH₄ fluxes from the manure of Nellore cattle fed with sources of rumen undegradable protein during the finishing phase in feedlots. SM = manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source of rumen undegradable protein (RUP), CGM = manure of animals fed gluten meal as a source of RUP. P-values for N₂O (treatment = 0.003; time < 0.001; treatment × time interaction < 0.001) and CH₄ (treatment = 0.165; time < 0.001; treatment × time interaction < 0.005). Chamber considered as an experimental unit (n = 9). The error bars representing standard error of the mean.
of animals fed RDP showed a higher NH₄⁺ concentration than that of animals fed RUP (P < 0.001); however, there were no differences in NH₄⁺ concentration between the manure of animals fed CGM and BSM (P = 0.670).

Discussion

Gas emissions. The use of RUP sources in the diet did not reduce N loss via urine. Meanwhile, it increased N₂O emission but did not affect CH₄ emission from manure. Therefore, our hypothesis that RUP inclusion in the diet would reduce N loss and contribute to reduced N₂O and CH₄ emissions from the manure was rejected.

The manure deposited in the soil enhances its N and C content, thereby altering the N mineralization rate and stimulating N₂O production.³⁹,⁴⁰ Meanwhile, labile C released during material decomposition regulates the seasonality of N₂O and N₂ production.³⁰ Inorganic forms of N (NH₄⁺) and N₂O are determinants of N₂O production. The manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed corn gluten meal as a source of RUP, CGM = manure of animals fed corn gluten meal as a source of RUP; ⁴²SEM = standard error of the mean. Chamber considered as an experimental unit (n = 9). The cumulative values refer to 112 days of feedlot.

Table 2. Cumulative CH₄ and N₂O emissions from the manure of Nellore cattle fed with sources of rumen undegradable protein during the finishing phase in feedlots. ¹SM = manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source of rumen undegradable protein (RUP), CGM = manure of animals fed corn gluten meal as a source of RUP; ²SEM = standard error of the mean. Chamber considered as an experimental unit (n = 9). The cumulative values refer to 112 days of feedlot.

Variables, g ha⁻¹	Treatments¹	Treatments¹	Treatments¹	p value	Treatments¹	Treatments¹	p value						
	SM	BSM	CGM	SEM²	RDP vs. RUP	SM	BSM	CGM	T⁴	SM	BSM	CGM	TR vs. T⁵
CH₄-C	1352	801	834	429	0.320	0.260	0.239	0.030					
N₂O-N	633	2521	1153	430	0.030	0.038							

Table 3. Chemical composition of the manure, deposited in the soil, of Nellore cattle fed with sources of rumen undegradable protein during the finishing phase in feedlot. ¹DM = dry matter (g kg⁻¹), OM = organic matter (g kg⁻¹), N = nitrogen (g kg⁻¹), C = carbon (g kg⁻¹), NH₄⁺ ammonium (mg kg⁻¹); ²SM = manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source of rumen undegradable protein (RUP), CGM = manure of animals fed corn gluten meal as a source of RUP; ³SEM = standard error of the mean; ⁴T = time; ⁵Interaction TR (treatments = SM, BSM and CGM) × T (time). Chamber considered as an experimental unit (n = 9).

Variables, g kg⁻¹	Treatments²	SEM³	p value	Treatments²	SEM³	p value		
DM	710	642	608	42	0.204	0.260	0.239	0.030
OM	629	678	677	15	0.231	0.036	0.057	0.044
N	28.4	27.5	29.2	0.4	0.039	0.167	0.050	< 0.001
C	341	324	332	6	0.913	0.077	0.201	< 0.001
C/N	12.1	11.8	11.5	0.1	0.001	0.061	0.002	0.297
NH₄⁺	304	400	532	39	0.001	0.1026	0.001	< 0.001
NO₃⁻	-	-	-	-	-	-	-	-

Elevated amounts of amino acids reaching the small intestine is another factor contributing to a greater N loss. When absorbed in excess or in imbalance relative to the animal’s requirements, these amino acids can be oxidized for energy production, leading to urea production in the liver, which is then excreted via urine. This might occur when the diet offers adequate levels of NH₃ to meet the ruminal demand.³⁴ Therefore, excess CP concentration in the diet, either as RDP or RUP, may contribute to urinary N excretion.

The greatest N₂O emission from the manure of animals fed the RUP sources (Table 3). This indicates that these diets probably had a higher urea content of the manure, since N₂O emission is particularly affected by the urinary urea content.³⁵

When higher RUP levels are used in the diet, a change in the route of urine-to-feces excretion is expected due to a higher amount of intact protein that reaches the intestine, which contributes to fecal N excretion when
However, there were no differences in fecal N excretion between the RDP and RUP treatments (Table 1), although fecal N concentration differed between the two RUP sources. This might be attributed to the distinct amino acid composition or the different chemical structures of these sources. The processes through which corn (corn gluten, a by-product of wet corn milling) and soybean (thermally treated) have been subjected can make the protein undegradable in the rumen or unavailable.

Despite different compositions of the manure among the treatments (Table 3), there were no differences in CH₄ emission (Table 2). Nitrogen and OM contents and C/N ratio of manure are important factors associated

Variables¹	CH₄-C	N	C	C/N	DM	OM	NH₄⁺
N₂O-N	0.018	−0.104	−0.103	−0.015	−0.014	−0.012	−0.035
CH₄-C	−0.016	0.092	0.210	−0.074	−0.081	−0.058	
N	0.851*	−0.137	0.207	0.329*	0.062		
C	0.401*	0.126	0.355	0.018			
C/N	−0.133	0.092	−0.070				
DM	−0.183	0.115					
OM	0.224*						

Table 4. Pearson's correlation coefficients between explanatory variables during the evaluated period. *Represents a statistical significance (P ≤ 0.05) for the coefficients of correlation. Analyses were carried out using data from all evaluated days. ¹DM = dry matter, OM = organic matter, NH₄⁺ = ammonium.
with \(\text{CH}_4 \) emission\(^{41,42} \). Nevertheless, differences in manure chemical composition among the treatments were observed in some sampling days (Fig. 3). This result can be related to variations in environmental conditions, such as temperature and precipitation, which can alter the chemical composition of manure. However, these differences among the treatments were not consistent throughout the experimental period, justifying the lack of differences in \(\text{CH}_4 \) emission.

In manure, most of the N content comes from N excreted via urine in the form of urea, which is rapidly hydrolyzed to \(\text{NH}_4^+ \), and N losses from organic forms of feces also occur\(^{41} \). Organic N can promote \(\text{CH}_4 \) emission, playing an important role in the transformation of acetate to \(\text{CH}_4 \)\(^{42} \), whereas mineral N as \(\text{NH}_4^+ \) can inhibit \(\text{CH}_4 \) production, breaking the link between acidification and methanogenesis in anaerobic processes\(^{43} \).

Nitrous oxide and \(\text{CH}_4 \) fluxes varied from \(-62 \) to \(318 \mu g \text{ N}_2\text{O} \text{ m}^{-2} \text{ h}^{-1} \) and from \(-125 \) to \(321 \mu g \text{ CH}_4 \text{ m}^{-2} \text{ h}^{-1} \), respectively, during the experimental period (Fig. 2). These fluxes showed a great variation, which can be attributed to several factors, such as the temporal variation in the chemical composition of manure due to variations in climatic conditions, as explained above (Table 3, Fig. 3). Other researchers\(^{44} \) have reported a large variation in emissions, mainly associated with irregular fecal and urine deposition on the surface, which may also have occurred in the present study.

Frequent deposition and accumulation of feces and urine in the soil did not increase \(\text{CH}_4 \) and \(\text{N}_2\text{O} \) emissions over time under all treatments. Trampling by animals may have caused aeration of the surface material and have provided unfavorable environment for the action of methanogenic bacteria and nitrifying/denitrifying microorganisms. In addition, the humidity in the feedlot did not increase over time, based on the DM content of the manure, except on rainy days (Table 3). This is probably related to the dry climate at that time of year, associated with the compacted soil of the feedlot.

Table 5. Pearson’s correlation coefficients between explanatory variables on each sampling day. *Represents a statistical significance (\(P \leq 0.05 \)) for the coefficients of correlation. \(^1\)DM = dry matter, OM = organic matter, \(\text{NH}_4^+ \) = ammonium.

Variables \(^1\)	N	C	C/N	DM	OM	\(\text{NH}_4^+ \)
Day 42						
\(\text{N}_2\text{O-N} \)	0.047	0.022	-0.022	0.001	0.192	-0.122
\(\text{CH}_4\text{C} \)	0.051	0.297	0.430*	0.003	-0.152	0.014
Day 63						
\(\text{N}_2\text{O-N} \)	-0.197	-0.182	0.050	0.018	0.254	0.030
\(\text{CH}_4\text{C} \)	-0.037	0.081	0.252	-0.268	0.174	0.592*
Day 105						
\(\text{N}_2\text{O-N} \)	0.069	0.093	-0.004	0.440*	0.120	0.497*
\(\text{CH}_4\text{C} \)	0.155	0.202	-0.017	0.252	0.201	0.159

Figure 4. Daily rainfall and daily minimum (Tmin), daily mean (Tmean) and daily maximum (Tmax) ambient temperature throughout the \(\text{NH}_3 \) emission sampling period. Data were retrieved from the Agroclimatological Station, Department of Exact Sciences, (FCAV/UNESP), located at 1 km from the experimental area.
Precipitation and temperature changes strongly affect CH₄ emission. During the study period, CH₄ flux was related to these variables. On the 21th day, increased emission peaks were observed under all treatments, probably due to precipitation in the previous week. Considering that CH₄ emission occurs under anaerobic conditions, precipitation may have favored higher emissions due to increased moisture content of the manure. On the 49th day, reduced CH₄ emission was observed, possibly due to temperature drop on that day. Considering that CH₄ emission is a biological and anaerobic process, temperature can act as a limiting factor by reducing methanogen activity. After this period, CH₄ emission tended to stabilize, probably due to the absence of high precipitation and little variation in temperature (Fig. 1).

The mean CH₄ emission under all treatments during the finishing phase in feedlot (SM = 53 µg C–CH₄ m⁻² h⁻¹; BSM = 33 µg C–CH₄ m⁻² h⁻¹; CGM = 16 µg C–CH₄ m⁻² h⁻¹; mean of 8.8 g C–CH₄ day⁻¹ pen⁻¹) in the present

Table 6. Cumulative NH₃ emission and manure characteristics of Nellore cattle fed with sources of rumen undegradable protein during the finishing phase in feedlot. ¹NH₃ = accumulated values during 77 days of evaluation. DM = dry matter, OM = organic matter; ²SM = manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source of rumen undegradable protein (RUP), CGM = manure of animals fed corn gluten meal as a source of RUP. ³SEM = standard error of the mean. Chamber considered as an experimental unit (n = 9).
study was lower than reported values by other researchers (mean of 110 g day\(^{-1}\) pen\(^{-1}\))\(^{48}\) under similar climatic conditions and a pen density of 6 m\(^2\) per animal, however, the floor was concreted and the excreta were removed every 15 days. The low moisture of the manure was possibly responsible for low CH\(_4\) emissions, because even under favorable chemical conditions, microbial activity is limited at low moisture levels. Of note, the density in each pen was 30 m\(^2\) per animal and the evaluations were performed near the feeders, in an area of 6.5 m \(\times\) 10 m with higher excreta deposition. The density of animals is reflected in the condition of excreta deposition and accumulation on the surface, and it is a relevant factor to be considered when evaluating gas emissions in feedlots\(^{49}\). On some sampling days, CH\(_4\) uptake occurred predominantly through the consumption of atmospheric CH\(_4\), which can occur in aerobic environments\(^{39}\). The environment is a CH\(_4\) source when the balance between methanogenic production and methanotrophic consumption is positive, leading to CH\(_4\) emission. In contrast, when this balance is negative, the environment is considered a CH\(_4\) sink\(^{39}\).

Considering that the feedlot system has emerged as a management strategy to minimize the impacts of lower forage production in the dry season, majority of feedlots in Brazil are managed from April to November, when rainfall is scarce and temperature is low. The climatic conditions during this period, when associated with feedlots of low animal density, can result in low CH\(_4\) emission. In an inventory to estimate GHG emission in Brazil\(^{39}\), it is clear that we do not have enough data to estimate emissions from Brazilian feedlots. Therefore, measurements must cover different systems, with different stockings, feedings and manure management to generate concrete data that allow the comparison between mitigation strategies.

The mean N\(_2\)O fluxes (SM = 22 μg N–N\(_2\)O m\(^{-2}\) h\(^{-1}\); BSM = 59 μg N–N\(_2\)O m\(^{-2}\) h\(^{-1}\); CGM = 36 μg N–N\(_2\)O m\(^{-2}\) h\(^{-1}\)) observed in the present study were higher than to some report values reported (0.8 g N–N\(_2\)O day\(^{-1}\) pen\(^{-1}\))\(^{48}\) even considering a higher density (6 m\(^2\) animal\(^{-1}\) and removal of excreta from the area every 15 days. A higher peak of N\(_2\)O emission was observed on the 21st day under all treatments, possibly due to rainfall during the previous week. Other researches in open feedlots, demonstrate increased emissions following precipitation events, with peaks that vary 2 h to 15 days after the rain.

Post-rainfall emissions and wetting of the area might be related to a combination of mineralization, nitrification, and/or denitrification, leading to the release of N\(_2\)O absorbed in the dry soil\(^{52}\). Moisture is an important factor in N\(_2\)O production, particularly when associated with temperature and a propitious chemical composition\(^{53}\), emission of N\(_2\)O increases markedly with increasing temperature\(^{54}\). However, after reaching the peak, N\(_2\)O emissions remained stable, with small variations across evaluation days; even in the presence of additional precipitation events, low temperature (minimum of 3.3 °C near the 49st day) may have hampered the occurrence of new emission peaks.

Nitrate was not detectable in the manure during the experiment. Nitrous oxide production is assumed to occur through nitrification, via the oxidation of NH\(_4^+\) in hydroxylamine (NH\(_2\)OH), with NOH as an intermediate and N\(_2\)O as the product\(^{55}\). N\(_2\)O can also be produced through denitrification by nitrifiers, wherein NH\(_4^+\) is nitrified and oxidized to nitrite (NO\(_2^-\)), which is then reduced to nitric oxide (NO), N\(_2\)O, and molecular N (N\(_2\)). Nitrous oxide is an intermediate in the reduction of NO\(_2^-\) to N\(_2\).\(^{56}\) During denitrification, NO\(_2^-\) is used as the primary substrate\(^{57}\). Denitrification may not have occurred in the present study.

Correlation analyses showed no significant linear associations of CH\(_4\) and N\(_2\)O production with the tested variables related to the chemical composition of manure, which can be attributed to specific factors (Tables 4 and 5). The processes underlying the production of gases are complex and rely on the chemical composition of manure. In addition to the chemical composition, the emission of gases in the manure is dependent on other factors such as temperature, moisture, deposition and trampling by animals. The absence of significant correlations between gas production and manure composition may be related to the small variation in the characteristics analyzed during the sampling period, making it difficult to observe relationships among variables.

NH\(_3\) emission. The use of RUP in the diet did not reduce N loss via urine and did not influence NH\(_3\) emission from the manure. In this sense, our hypothesis that RUP inclusion in the diet would reduce N loss and contribute to decreased NH\(_3\) emission was rejected.

The manure of animals fed SM presented higher NH\(_3\) emissions than that of animals fed CGM and BSM from the 8th to 25th day of evaluation. This may be attributed to the higher NH\(_4^+\) content of the manure of animals fed SM than that of animals fed CGM and BSM at the beginning of the sampling period (Table 6). Subsequently, the manure of animals fed CGM and BSM presented a new NH\(_3\) emission peak following the event of the highest precipitation (54.2 mm) throughout the experimental period. However, during this period, most of the NH\(_4^+\) from the SM treatment had already been used, as reflected by the weak response to precipitation under this treatment. Urea present in the urine and feces is rapidly hydrolyzed, and the formed NH\(_3^+\) is dissociated to aqueous NH\(_3\), depending on NH\(_3^+\) concentration and pH of manure and environmental conditions. When precipitation occurs, urease activity is promoted, resulting in increased NH\(_3\) emission\(^{59}\). Of note, however, manure sampling for characterization was performed before implanting the chambers in the area. Thus, the chemical composition data presented herein do not represent the possible temporal variations during the NH\(_3\) emission period (Table 3).

Higher values of NH\(_3\) emission have been reported (49.1 kg NH\(_3\) animal\(^{-1}\)) in beef cattle feedlots, which is mainly related to the fact that the majority of confinement feedlots are outdoors, given that wind speed in open environments increases emission\(^{59}\). According to others studies\(^{39}\), daily NH\(_3\) emission in feedlots rarely exceeds 2000 μg NH\(_3\), m\(^{-2}\); however, in the present study, higher values were observed. Importantly, as explained before, the evaluations were performed in an area of higher excreta deposition with the objective of comparing the treatments in homogeneous conditions of excreta distribution. Therefore, the amount of emission by area of the total feedlot may have been overestimated in this study. Conversely, we did not account for emissions when the animals were present in the feedlots. Throughout the sampling period, the animals had already been removed from the area, and there was a large amount of accumulated manure. When the wet season starts, emission may
have been favoured by increased moisture content due to the large amount of available substrate. Therefore, the urea excreted by the animals was hydrolyzed and contributed to the stock of NH_4^+, which was emitted as NH_3 when the moisture content increased as a function of precipitation.

Over time, as no new manure was deposited due to the absence of animals in the area, emission probably ceased when the substrate was consumed, which occurred around the 77th day in the present study. In experiments in which excreta from the animals is collected and then applied to the soil for evaluation in the absence of animals and new depositions, ammonia emission occurs for 3 weeks on average. Therefore, further studies are warranted to investigate NH_3 emission in open feedlots and to observe peaks occurrence in the presence of animals, maintaining the evaluations also after removing the animals, in the next rainy season.

Conclusions
The inclusion of RUP in the diet did not affect N excretion by animals. While the N_2O emission from the manure was increased, CH_4 emission and NH_3 emission remained unaffected. Additional studies are warranted to investigate the effects of using different proportions of RDP and RUP in diets on NH_3, N_2O, and CH_4 emissions from the manure of animals managed in feedlot systems under tropical conditions.

Material and methods
The experiment was approved by the Ethics, Bioethics, and Animal Welfare Committee of São Paulo State University (UNESP), Jaboticabal, under protocol numbered 16.668/16. All methods were carried out in accordance with relevant guidelines and regulations. Methods are reported in the manuscript following the recommendations in the ARRIVE guidelines.

Site description. The present study was conducted at the Campus of Jaboticabal of the São Paulo State University, São Paulo, Brazil (21°14′05″S, 48°17′09″W; altitude, 615.01 m). The region has a tropical climate, with a dry season from April to September and a wet season from October to March, during which over 80% of the annual precipitation occurs. The soil is Rhodic Ferralsol derived from basalt, with a sandy–clay–loam texture (10% silt and 61% sand) in the surface layer (0–10 cm). The soil pH in CaCl$_2$ is 5.9, bulk density is 1.8 kg dm$^{-3}$, and organic matter content is 16.6 g dm$^{-3}$ at the same depth.

Meteorological data (daily precipitation and ambient temperature) were obtained from the dataset of the Agrometeorological Station of the Department of Exact Sciences, Universidade Estadual Paulista (UNESP), Campus of Jaboticabal, located 1 km from the experimental area.

Experimental design. The experiment was conducted for 210 days from May to December 2019. The first 21 days were dedicated to animal adaptation to the diet, followed by 112 days of confinement, during which weekly sampling of N_2O and CH_4 was performed. After removing the animals from the feedlots, NH_3 was sampled for 77 days.

Fifty-four Nellore bulls with an initial body weight of approximately 360 kg were distributed in three treatments. The animals were divided into three treatments and allocated in collective pens (11 m × 50 m; one pen per treatment and 18 animals per pen). Each pen had a dirt floor with collective drinkers for every two pens. There were two covered automated feeders in each pen (INTERGADO®, Intergado Ltd., Contagem, Minas Gerais, Brazil). The feed system was equipped with an automated feeder monitor resting on load cells, allowing electronic registration of the amount of feed consumed by animal. The trough recognizes the animal from the electronic ear tag, automatically sends consumption data to a database, and stores the information.

Manure of animals fed with sources of protein (two sources of RUP and one source of RDP as a control) was collected, resulting in three treatments as follows:

1. Soybean meal (SM): source of RDP.
2. By-pass soybean meal (BSM): source of RUP.
3. Corn gluten meal (CGM): source of RUP.

The experimental diets were composed of 30% roughage and 70% concentrate, formulated to meet the average daily gain (ADG) of 1.5 kg day$^{-1}$, according to BR CORTE. The diets were offered at 08:00 am and 04:00 pm. The amounts offered were sufficient to allow a daily leftover of 5–10% of the total offered.

The ingredients of the diets were analyzed for chemical composition (Table 7). The AOAC method was used to determine dry matter (DM) (method 930.15), crude protein (CP) (method 990.03), organic matter (OM) (method 942.05), and ether extract (EE) (method 920.39) content. Neutral detergent fiber (NDF) content was determined according to the method described by using ANKOM® 2000 (Ankom Technologies, New York, USA) with thermostable α-amylase and without sodium sulfite, corrected for ashes and residual proteins. The RDP and RUP content was estimated based on the protein fraction and degradation rate of each fraction, considering a passage rate of 5% h$^{-1}$.

Gases (N_2O, CH_4 and NH_3) were sampled using chambers (n = 9 per treatment) arranged in an area of 65 m2, near the feeders, where the manure (feces and urine) was deposited the most frequently. The chambers were placed on manure (feces and urine) that had been deposited on the feedlot surface by animals subjected to treatments. At the time of evaluation, the chambers were randomly placed in an area (6.5 m × 10 m) delimited near the feeders inside each confinement pen. Specifically, an area of higher excreta deposition was selected with the objective of treatment comparison, thus avoiding evaluation in places without homogenous excreta distribution (Fig. 6).

https://doi.org/10.1038/s41598-022-13100-9
Evaluation of N₂O and CH₄ emissions. Nitrous oxide and CH₄ emissions were determined using static closed chambers, according to the recommendations of the manual for GHG evaluation⁶⁷. Plastic chambers (0.6 m × 0.4 m × 0.24 m) coated with a thermal insulator were positioned above the manure only at the time of gas collection, allowing the animals to trample, defecate and urinate freely around in the area. Sampling was performed once a week throughout the feedlot period (112 days), totaling 16 sampling events. Sampling was carried

Diet composition, g kg⁻¹ DM	Diets¹		
	SM	BSM	CGM
Corn silage	300.2	299.7	301.5
Ground corn	134.6	134.4	134.2
Citric pulp	383.0	397.5	421.6
Soybean meal	172.7	-	-
By-pass soybean meal	-	159.0	-
Corn gluten meal	-	-	132.3
Mineral mix	9.4	9.4	10.4

Table 7. Ingredients and chemical composition of the diets. ¹SM = manure of animals fed soybean meal as a source of rumen degradable protein (RDP), BSM = manure of animals fed by-pass soybean meal as a source of rumen undegradable protein (RUP), CGM = manure of animals fed corn gluten meal as a source of RUP; ²DM = dry matter, CP = crude protein.

Figure 6. Map of the experimental area.
out between 4:00 pm and 04:00 pm. The chambers were closed for 20 min, and air samples were collected at 0, 10, and 20 min using a 50 mL polypyrrole syringe and then transferred to previously evacuated chromatography flasks (20 mL). The temperature inside and outside the chamber was measured using a digital thermometer (Inco term) to correct gas fluxes.

Air samples were analyzed using gas chromatography (Shimadzu Greenhouse Gas Analyzer GC-2014; Kyoto, Japan) under the following conditions: (1) N2O: injector gas temperature, 250 °C; column temperature, 80 °C; N2 carrier gas (30 mL min⁻¹); and electron capture detector temperature, 325 °C; and (2) CH4: H2 flame gas (30 mL min⁻¹) and flame ingestion detector temperature, 280 °C.

Nitrous oxide (µg N–N2O m⁻² h⁻¹) and CH4 (µg C–CH4 m⁻² h⁻¹) fluxes were calculated considering a linear increase in gas concentration inside the chamber during the closed period and corrected for ambient temperature, ambient pressure, and chamber dimensions, as follows:

\[
\text{Gas flow} = \frac{\text{gas} \times \text{M} \times \text{V} \times 60 \times 10^{-6}}{\text{A} \times \text{VM}_{\text{corr}} \times 10^{-9}}
\]

where \(\text{gas} \) is the increment in the gas concentration inside the chamber during the closed period (ppb min⁻¹); \(\text{M} \) is the molar mass of N–N2O (28 g mol⁻¹) or C–CH4 (12 g mol⁻¹); \(\text{V} \) is the chamber volume (m³); \(60 \) is the conversion factor from minutes to hours; \(10^{-6} \) represents the conversion factor from g to µg; \(\text{A} \) is the chamber area (m²); \(\text{VM}_{\text{corr}} \) is the molecular volume corrected by the normal conditions of temperature and pressure at the time of sampling; and \(10^{-9} \) is the conversion factor from ppb to µL m⁻³.

Fluxes were multiplied by 24 to obtain daily emissions, and the daily values were integrated through linear interpolation to obtain cumulative emissions during the evaluated period. Negative fluxes were included in the calculations to avoid biased data.

Evaluation of NH3 emission. After removing the animals from feedlots, NH3 volatilization was evaluated until the NH3 emission ceased by sampling on days 1, 2, 3, 4, 6, 8, 13, 19, 25, 31, 38, 44, 51, 59, 68 and 77 after positioning the chamber. The chambers were randomly placed above the manure (feces and urine) in the previously delimited areas. Quantification was performed according to the methodology of static chamber, using semi-open chambers made of plastic bottles containing a foam soaked in 10 mL of 1.0 mol dm⁻³ H2SO4 solution + glycerin 2% (v/v) to capture N. The amount of N–NH3 retained in the foam was determined by distillation, following the Kjeldhal method (method 973.49) and a correction factor of 1.74 was used.

Manure analysis. Manure samples composed of feces and urine deposited in the feedlot surface material, trampled by the animals, were collected on days 42, 63 and 105 after N2O and CH4 evaluations, directly above the ground surface at the places where the chambers were positioned. The samples were analyzed for DM (method 930.15), OM (method 942.05), total C, total N (dry combustion method, using Leco® CN-828, Leco Corporation, Michigan, USA), and soil inorganic N (NO3⁻ and NH4⁺) (distillation using magnesium oxide and Devarda’s alloy, method 973.49) content.

Estimation of fecal and urinary production and N balance. Fecal production was estimated using the internal marker technique based on the indigestible NDF (NDFi) marker. Fecal sampling was performed from the 60th day after the animals entered the feedlots, for three consecutive days, directly from the rectum of the animals. Sampling was performed in the morning, middle of the day, and afternoon on the first, second, and third days, respectively. A composite fecal sample, by animal (9 animals/treatment), were made with the samples from these three days. The samples were mixed, homogenized, partially dried in a forced-air ventilation oven at 55 °C for 72 h, and milled in a mill with a 2 mm sieve. Samples of the ingredients of the animals’ diets were collected, and their consumption was determined using the INTERGADO®.

Statistics. All statistical analyses were performed using SAS 9.4 (SAS Inc., Cary, NC). Response variables were analyzed in a completely randomized design using the PROC MIXED procedure. There were nine experi-
mental units per treatment. Mean values were compared using orthogonal contrasts (SM vs. RUP and BSM vs. CGM) at a 5% probability level.

Total N, total C, and C/N in feces and urine and N balance were analyzed considering a model including the treatments (SM, BSM, and CGM) as fixed effects, animals (experimental unit in the RANDOM SAS option) and residual random error (NIID) of (0, σ²) as random effects.

Cumulative N₂O, CH₄, and NH₃ emissions, and manure characteristics (DM, OM, N, C, C/N, NH₄⁺, and NO₃⁻) of manure, sampled on day 0, before the beginning of N₂O emissions measurements were analyzed considering a model including the treatments (SM, BSM, and CGM) as fixed effects, chamber (experimental unit in the RANDOM SAS option) and residual random error (NIID) of (0, σ²) as random effects.

Nitrous oxide and CH₄ daily fluxes and manure characteristics (DM, OM, N, C, C/N, NH₄⁺, and NO₃⁻, sampled on days 42, 63 and 105 of N₂O and CH₄ evaluation) were analyzed using a repeated measures mixed model over time including the treatments (SM, BSM, and CGM), collection period and interaction as fixed effects, chamber (experimental unit and RANDOM SAS option) and residual random error (NIID) of (0, σ²) as random effects. Distinct covariance matrices were evaluated and the best structure was selected according to the Akaike information criterion (AIC).

Pearson correlation analysis between gas emission (N₂O and CH₄) and chemical composition (N, C, C/N, DM, OM, and NH₄⁺) of the manure was performed separately for each sampling day (days 42, 63 and 105 of manure evaluation), and also considering all data collected on these days.

Received: 29 August 2021; Accepted: 20 May 2022
Published online: 02 June 2022

References

1. McAllister, T. A., et al. Nutrition, feeding and management of beef cattle in intensive and extensive production systems. In: Animal Agriculture. Academic Press. 75–98 (2020).
2. Griffin, T. S., He, Z. & Honeycutt, C. W. Manure composition affects net transformation of nitrogen from dairy manures. Plant Soil 273, 29–38 (2005).
3. Möller, H. B., Moset, V., Brask, M., Weisbjerg, M. R. & Lund, P. Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type. Atmos. Environ. 94, 36–43 (2014).
4. Zhu, G. et al. Characterizing CH₄ and N₂O emissions from an intensive dairy operation in summer and fall in China. Atmos. Environ. 83, 243–253 (2014).
5. Almeida, J. G. R. Carbohydrate-rich supplements can improve nitrogen use efficiency and mitigate nitrogenous gas emissions as the excreta of dairy cows grazing temperate grass. Animal 14, 1184–1195 (2020).
6. Lee, C. et al. Effects of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emissions from manure in dairy cows. J. Dairy Sci. 95, 5253–5268 (2012).
7. Groenestijn, C. M. et al. Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe. J. Clean. Prod. 211, 1162–1170 (2019).
8. Meinschansen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458, 1158–1162 (2009).
9. Squizzato, S. et al. A procedure to assess local and long-range transport contributions to PM 2.5 and secondary inorganic aerosol. J. Aerosol. Sci. 46, 64–76 (2012).
10. IPCC - Intergovernmental Panel on Climate Change. 2019 Refinement to the IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 10: Emissions from livestock and manure management, Geneva, Switzerland (2019).
11. Robertson, G. P. & Groffman, P. M. Nitrogen transformations. In: Paul EA (ed) Soils, nitrogen, and climate change. Springer: New York, NY, USA, 341–364 (2007).
12. Wagen-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A18 (2018).
13. Xu, X. et al. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biol. Biochem. 107, 168–179 (2017).
14. Van der Weerden, T. J. et al. Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agric. Ecosyst. Environ. 141, 426–436 (2011).
15. Sorbel, A. et al. Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland. Agric. Ecosyst. Environ. 190, 94–103 (2014).
16. Cardoso, A. S. et al. N₂O emissions from urine-treated tropical soil: Effects of soil moisture and compaction, urine composition, and dung addition. CATENA 157, 325–332 (2017).
17. Belbie, D. R., Buckthought, L. E. & Shepherd, M. A. The challenge of the urine patch for managing nitrogen in grazed pasture systems. Adv. Agron. 129, 229–292 (2015).
18. Koenig, K. M., McGinn, S. M. & Beauchemin, K. A. Ammonia emissions and performance of backgrounding and finishing beef feedlot cattle fed barley-based diets varying in dietary crude protein concentration and rumen degradability. J. Anim. Sci. 91, 2278–2294 (2013).
19. Hristov, A. N. et al. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 91, 1–35 (2011).
20. Benchiar, C., Hassanat, F. Methane emissions of stored manure from dairy cows fed conventional or brown midrib corn slage. J. Dairy Sci. 102, 10632–10638 (2019).
21. Jayasundara, S., Ranga Niroshan Appuhamy, J. A. D., Kebreab, E. & Wagner-Riddle, C. Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review. Can. J. Anim. Sci. 96, 306–331 (2016).
22. Choi, Y., Ryu, J. & Lee, S. R. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. and Technol. 62, 74 (2020).
23. Mazzetto, A. M. et al. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biol. Biochem. 76, 242–248 (2014).
24. Jarvis, S. C., Lovell, R. D. & Panayides, R. Patterns of methane emission from excreta of grazing animals. Soil Biol. Biochem. 27, 1581–1588 (1995).
25. Wang, X., Lu, X., Li, E. & Yang, G. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE 9, e97265 (2014).
26. Montes, R. F. et al. Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Spec. Top. J. Anim. Sci. 91, 5070–5094 (2013).
27. Calsamiglia, S., Ferret, A., Reynolds, C. K., Kristensen, N. B. & Van Vuuren, A. M. Strategies for optimizing nitrogen use by ruminants. Animal 4, 1184 (2010).
28. Dijkstra, J., Oenema, O. & Bannink, A. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. *Curr. Opin. Environ. Sustain.* 3, 414–422 (2011).

29. Chen, S. et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone. *Environ. Microbiol.* 20, 980–992 (2018).

30. Henry, S. et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: Insight into the role of root exudates. *Environ. Microbiol.* 10, 3082–3092 (2008).

31. Silva, A. L. et al. Effects of rumen-undegradable protein on intake, performance, and mammary gland development in prepubertal and pubertal dairy heifers. *J. Dairy Sci.* 101, 5991–6001 (2018).

32. Detmann, E., Valente, E. E. L., Batista, E. D. & Huhtanen, P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. *Livest. Sci.* 162, 141–153 (2014).

33. Schwab, C. G. & Broderick, G. A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. *J. Dairy Sci.* 100, 10994–10112 (2017).

34. Koenig, K. M. & Beauchemin, K. A. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. *J. Anim. Physiol. Anim. Nutr.* 103, 1675–1683 (2019).

35. Zhou, K., Bao, Y. & Zhao, G. Effects of dietary crude protein and tannic acid on nitrogen excretion, urinary nitrogenous composition and urine nitrogenous emissions in beef cattle. *J. Anim. Physiol. Anim. Nutr.* 103, 1675–1683 (2019).

36. Kebreab, E., France, J., Mills, J. A. N., Allison, R. & Dijkstra, J. A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment. *J. Anim. Sci.* 80, 248–259 (2002).

37. Guo, G. & Gao, B. Direct effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows. *J. Dairy Sci.* 92, 2822–2834 (2009).

38. Stern, M. D., Bach, A. & Calsamiglia, S. Alternative techniques for measuring nutrient digestion in ruminants. *J. Anim. Sci.* 75, 2256–2276 (1997).

39. Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. *Europ. J. Soil Biol.* 37, 25–50 (2001).

40. Cardoso, A. S. et al. A.C. Seasonal effects on ammonia, nitrous oxide, and methane emissions for beef cattle excreta and urea fertilizer applied to a tropical pasture. *Soil Tillage Res.* 194, 104341 (2019).

41. Chadwick, D. R. et al. The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. *Sci. Total Environ.* 635, 607–617 (2018).

42. Cai, Z., Shan, Y. & Xu, H. Effects of nitrogen fertilization on CH4 emissions from rice fields. *J. Soil Sci. Plant Nutr.* 53, 353–361 (2007).

43. Zhang, M., Lin, Q., Rui, J., Li, J. & Li, X. Ammonium inhibition through the decoupling of acidification process and methanogenesis in anaerobic digester revealed by high throughput sequencing. *Biotechnol. Lett.* 39, 247–252 (2017).

44. Costa Junior, C., Li, C., Cerri, C. E. & Cerri, C. C. Measuring and modeling nitrous oxide and methane emissions from beef cattle feedlot manure management: First assessments under Brazilian condition. *J. Environ. Sci. Health* 49, 696–711 (2014).

45. Li, C. et al. Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. *Nutr. Cycling Agroecosyst.* 93, 163–200 (2012).

46. Gao, B. et al. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study. *Sci. Total Environ.* 472, 112–124 (2014).

47. Guo, G. et al. Effects of livestock manure properties and temperature on the methanogen community composition and methane production during storage. *Environ. Technol.* 41, 131–140 (2018).

48. Costa Junior, C., Cerri, C. E., Pires, A. V. & Cerri, C. C. Nit greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil. *Sci. Total Environ.* 505, 1018–1025 (2015).

49. Liu, W., Liu, C. & Gao, Z. Impacts of feedlot floor condition, deposition frequency, and inhibitors on N2O and CH4 emissions from feedlot dung and urine patches. *J. Air Waste Manag.* 68, 700–712 (2018).

50. Costa Junior, C. et al. Brazilian beef cattle feedlot manure management: a country survey. *J. Anim. Sci.* 91, 1811–1818 (2013).

51. Parker, D. B. et al. Temporal nitrous oxide emissions from beef cattle feedlot manure after a simulated rainfall event. *J. Environ. Qual.* 46, 733–740 (2017).

52. Jorgensen, R.N., Jørgensen, B.J. & Nielsen, N.E.,. Nitrous oxide emissions from urea fertilizer and effluent with and without inhibitors applied to pasture. *Agric. Ecosyst. Environ.* 295, 106896 (2020).

53. Jorgensen, R.N., Jørgensen, B.J. & Nielsen, N.E.,. Nitrous oxide, methane, and ammonia emissions from cattle excreta on Brachiaria decumbens growing in fertilizer applied to a tropical pasture. *Agric. Ecosyst. Environ.* 162, 336–345 (2014).

54. Nichols, K. L. et al. Nitrous oxide and Ammonia emissions from beef cattle excreta on shortgrass steppe. *J. Environ. Qual.* 47, 419–426 (2018).

55. Wang, Y. et al. Mitigating greenhouse gas and ammonia emissions from beef cattle feedlot production: a system meta-analysis. *Environ. Sci. Technol.* 52, 11232–11242 (2018).

56. Lessa, A. C. R. et al. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. *Agric. Ecosyst. Environ.* 190, 104–111 (2014).

57. Breta, I. L. et al. Nitrous oxide, methane, and ammonia emissions from cattle excreta on Brachiaria decumbens growing in monoculture or Eupatorium and Eucalyptus grandis. *Agric. Ecosyst. Environ.* 295, 106896 (2020).

58. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. *International soil classification system for naming soils and creating legends for soil maps*. World Soil Resources Reports No. 106. Rome: Food and Agriculture Organization (FAO) of the United Nations.

59. Valadares Filho, S.C., et al. (Eds.) Exigências Nutricionais de Zebuinos Puros e Crazados. BR-CORTE. Viçosa, p.163–220 (2016).

60. AOAC. Official methods of analysis (15th ed). *Association of Official Analytical Chemists*. Washington, D.C (1990).

61. Mertens, D. R. Gravimetric determination of amylase-treated neutral fiber in feeds with rebuffering in brakers or crucibles: collaborative study. *J. AOAC Internat.* 85, 1217–1240 (2002).

62. Licitra, G., Hernandez, T. M. & Van Soest, P. J. Standardization of procedures for nitrogen fractionation of ruminant feeds. *Anim. Feed Sci. Technol.* 57, 347–358 (1996).

63. Klein, C. & Harvey, M. Nitrous oxide chamber methodology guidelines. 146 Global Research Alliance On Agricultural Greenhouse Gases, Wellington, New Zealand (2015).

64. Van Der Weerd, T. J. et al. Nitrous oxide emissions from urea fertilizer and effluent with and without inhibitors applied to pasture. *Agric. Ecosyst. Environ.* 219, 58–70 (2016).
69. Araújo, E. S. et al. Calibração de câmara semiaberta estática para quantificação de amônia volatilizada do solo. Pesq. Agrop. Brasileira 44, 769–776 (2009).
70. Cochrane, R. C., Adams, D. C., Wallace, J. D. & Galyean, M. L. Predicting digestibility of different diets with internal markers: evaluation of four potential markers. J. Anim. Sci. 63, 1 (1986).
71. Valente, T. N. P. et al. In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Rev. Bras. Zootec. 40, 666–675 (2011).
72. Senger, C. C. et al. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol. 146, 169–174 (2008).
73. Lopes, E. C. F. Determinação do consumo de forrageiras tropicais por vacas em lactação em condição de pastejo. Cadernos Técnicos de Veterinária e Zootecnia. 52, 1–116 (2007).
74. Chizzotti, M. L. et al. Consumo, digestibilidade e excreção de ureia e derivados de purinas em novilhas de diferentes pesos. Rev. Bras. Zootec. 35, 1813–1821 (2006).
75. Costa e Silva, L.F. et al. Creatinina excreção e relação com peso de Nellore. Rev. Bras. Zootec. 41, 807–810, (2012).

Acknowledgements
This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (2016/22022-4) and scholarship for L. M. Coelho (2019/11864-2) and A. S. Cardoso (2017/11274-5). The authors also want to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for funding L. F. Brito (grant 118700/2017-0 and grant 103245/2020-0) and J. D. Messana (grant 103922/2019-9) and L. M. Coelho (grant 130981/2019-2). The authors also want to acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author contributions
L.M.C., J.D.M., A.S.C., L.F.B. and T.T.B. designed the experiment. L.M.C., G.M.C. and L.F.B. conducted the experiment and collected samples. L.M.C. and R.S.C. analysed the samples. L.M.C, L.F.B., E.B.M., R.N.S.T, performed statistical analysis. L.M.C., L.F.B., J.D.M. and A.S.C. wrote the manuscript. L.M.C., J.D.M., A.S.C., L.F.B., M.C.P.C. and T.T.B. revised and edited the manuscript. All authors approved the final manuscript as shown.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022