FAST TRACK COMMUNICATION

Enriques moonshine

Tohru Eguchi and Kazuhiro Hikami

1 Department of Physics and Research Center for Mathematical Physics, Rikkyo University, Tokyo 171-8501, Japan
2 Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

E-mail: tohru.eguchi@gmail.com and khikami@gmail.com

Received 7 May 2013, in final form 3 July 2013
Published 19 July 2013
Online at stacks.iop.org/JPhysA/46/312001

Abstract

We propose a new moonshine phenomenon associated with the elliptic genus of the Enriques surface \(Z_{K^3}^E\) with the symmetry group \(M_{12}\).

PACS numbers: 11.25.Hf, 02.40.Tt

1. Mathieu moonshine

Recently a new moonshine phenomenon associated with the elliptic genus of the \(K3\) surface has been discovered and is receiving some attention. It was first observed in [8] that when one expands the elliptic genus of \(K3\) in terms of irreducible characters of the \(N' = 4\) superconformal algebra (SCA) the expansion coefficients \(A(n)\) at lower values of \(n\) are decomposed into a sum of dimensions of irreducible representations (irreps.) of the Mathieu group \(M_{24}\). Subsequently the twisted elliptic genera of the \(K3\) surface for each conjugacy class \(g\) of \(M_{24}\) (analogues of the McKay–Thompson series of monstrous moonshine) have been constructed and used to determine systematically the decomposition of expansion coefficients up to very high values of \(n\) (\(\sim 1000\)) [1, 5, 9, 10]. Finally a mathematical proof has been given to show that expansion coefficients are in fact decomposed into a sum of dimensions of irreps. of \(M_{24}\) with positive and integral multiplicities for all values of \(n\) [11]. Thus the ‘Mathieu moonshine’ phenomenon has now been established although its physical or mathematical origin are not yet explained.

We present the character table and list of conjugacy classes of \(M_{24}\) in tables 1 and 2. We also present the data of the decomposition of expansion coefficients \(A(n)\) of the elliptic genus of \(K3\)

\[
Z_{K^3}^E(z; \tau) = 24\ch_{\frac{1}{2}, \ell=0}^{R} (z; \tau) + \sum_{n=0}^{\infty} A(n) \ch_{\frac{1}{2}, \ell=\frac{1}{2}}^{R} (z; \tau)
\]

(1.1)

into irreps. of \(M_{24}\) in table 3. Note that here \(Z_{K^3}^E\) denotes the elliptic genus of \(K3\) and \(\ch_{\frac{1}{2}, \ell}^{R}\) and \(\ch_{h=\frac{n}{2}, \ell}^{R}\) are massless (BPS) and massive (non-BPS) characters (with \(h = n + \frac{1}{4}\) and
Table 1. Character table of M_{23}. $|M_{23}| = 244823040.$

| | 1A | 2A | 2B | 3A | 4A | 4B | 4C | 5A | 6A | 6B | 7A | 7B | 8A | 10A | 11A | 12A | 12B | 14A | 14B | 15A | 15B | 16B | 21A | 21B | 23A | 23B |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|-----|------|------|-----|-----|
| χ_1 | 1
| χ_2 | 21 | 7 | -1 | -1 | 1 | -1 | -1 | 2 | 2 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_3 | 45 | -3 | 5 | 0 | -3 | -3 | 1 | 0 | 0 | -1 | $\sqrt{-1}$ | -1 | 0 | 1 | 0 | 1 | -1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | -1 | -1 | -1 | -1
| χ_4 | 45 | -3 | 5 | 0 | -3 | -3 | 1 | 0 | 0 | -1 | $\sqrt{-1}$ | -1 | 0 | 1 | 0 | 1 | -1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | -1 | -1 | -1 | -1
| χ_5 | 231 | 7 | -9 | -3 | 0 | -1 | -1 | 3 | 1 | 1 | 0 | 0 | 0 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | 1 | 1
| χ_6 | 231 | 7 | -9 | -3 | 0 | -1 | -1 | 3 | 1 | 1 | 0 | 0 | 0 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | 1 | 1
| χ_7 | 252 | 24 | 12 | 9 | 0 | -4 | 4 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | -1 | -1
| χ_8 | 253 | 13 | -11 | 10 | 1 | -3 | 1 | 1 | 1 | 3 | -2 | 1 | 1 | 1 | -1 | -1 | -1 | 0 | 1 | -1 | 0 | 0 | 1 | 1 | 0 | 0
| χ_9 | 483 | 55 | 3 | 8 | 0 | 5 | 3 | 3 | -2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0
| χ_{10} | 770 | -14 | 10 | 5 | -7 | 2 | -2 | -2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{11} | 770 | -14 | 10 | 5 | -7 | 2 | -2 | -2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{12} | 990 | -10 | 0 | 5 | 6 | 2 | -2 | 0 | 0 | -1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | 0 | 0 | 1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | 1 | 1
| χ_{13} | 990 | -10 | 0 | 5 | 6 | 2 | -2 | 0 | 0 | -1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | 0 | 0 | 1 | $\sqrt{-1}$ | $\sqrt{-1}$ | 0 | 0 | $\sqrt{-1}$ | $\sqrt{-1}$ | 1 | 1
| χ_{14} | 1055 | 27 | 35 | 0 | 6 | 3 | -1 | 5 | 0 | 0 | 2 | -1 | -1 | 1 | 0 | 1 | 0 | 0 | -1 | -1 | 0 | 0 | -1 | 1 | 0
| χ_{15} | 1055 | -21 | 5 | -5 | 3 | 1 | -1 | 0 | 0 | 1 | -1 | -1 | -1 | -1 | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{16} | 1055 | -21 | 5 | -5 | 3 | 1 | -1 | 0 | 0 | 1 | -1 | -1 | -1 | -1 | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{17} | 1285 | 45 | -15 | 5 | 8 | -7 | 1 | -5 | 0 | 1 | 0 | -2 | -2 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0
| χ_{18} | 1771 | -21 | 11 | 16 | 7 | 3 | -5 | -1 | 1 | 0 | -1 | 1 | 0 | -1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0
| χ_{19} | 2024 | 8 | 24 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
| χ_{20} | 2273 | 21 | -19 | 0 | 6 | -3 | 1 | -5 | -3 | 0 | 2 | 2 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{21} | 3312 | 46 | 16 | 0 | -6 | 0 | 0 | 0 | -3 | 0 | -2 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | 1
| χ_{22} | 3320 | 64 | 0 | 10 | -8 | 0 | 0 | 0 | -2 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1
| χ_{23} | 5513 | 49 | 9 | -15 | 0 | 1 | -3 | -5 | 3 | 1 | 0 | 0 | -1 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{24} | 5544 | -58 | 24 | 0 | -8 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{25} | 5798 | -36 | -9 | 0 | -4 | 4 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| χ_{26} | 10985 | -21 | -45 | 0 | 0 | 3 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1
g	Size	Cycle shape
1A	1	1^{24}
2A	11 385	1^{28}
2B	31 878	2^{12}
3A	226 688	1^{36}
3B	485 760	3^8
4A	637 560	$2^{14}4^4$
4B	1912 680	$1^{4}2^44^4$
4C	2550 240	4^6
5A	4080 384	$1^{4}5^4$
6A	10 200 960	$1^22^33^26^2$
6B	10 200 960	6^4
7A	5829 120	1^17^3
7B	5829 120	1^17^3
8A	15 301 440	$1^22^41^48^2$
10A	12 241 152	2^210^2
11A	22 256 640	1^211^2
12A	20 401 920	$2^41^46^12^1$
12B	20 401 920	12^2
14A	17 487 360	$1^22^71^41^4$
14B	17 487 360	$1^22^71^41^4$
15A	16 321 536	$1^13^35^115^1$
15B	16 321 536	$1^13^35^115^1$
21A	11 658 240	3^121^1
21B	11 658 240	3^121^1
23A	10 644 480	1^123^1
23B	10 644 480	1^123^1

spin-ℓ) of $\mathcal{N} = 4$ SCA in the R-sector with $(-1)^F$ insertion. For later use we also record the data of expansion coefficients $A_g(n)$ of twisted elliptic genera $Z^K_3(z; \tau)$ of $K3$ for each conjugacy class $g \in M_{24}$.

\[
Z^K_3(z; \tau) = \chi_g \text{ch}_{h = 1/4, \ell = 0}(z; \tau) + \sum_{n=0}^{\infty} A_g(n) \text{ch}_{h = 1/4, \ell = n/2}(z; \tau),
\]

in table 4. Note that $A(n) \equiv A_{1A}(n)$.

Recently there has been an attempt at generalizing Mathieu moonshine [2] based on suitable Jacobi forms with higher values of indices > 1 and again expanding them in terms of $\mathcal{N} = 4$ superconformal characters using the data of [4]. This ‘umbral moonshine’ sequence has smaller symmetry groups than M_{24}. Unfortunately, its Jacobi forms do not correspond to the elliptic genera of any complex manifolds and the connection to geometry is not clear in umbral moonshine. In [6] we have discussed yet another example of moonshine based on $\mathcal{N} = 2$ SCA instead of $\mathcal{N} = 4$.

2. Enriques moonshine

In this communication we want to propose a new example of the moonshine phenomenon which may be called ‘Enriques moonshine’. It is defined by the elliptic genus of the Enriques surface expanded in terms of $\mathcal{N} = 4$ characters. Its symmetry group is M_{12}. Recall that the
Table 3. Multiplicities of the decomposition of $A(\tau)$ into irreducible representations of M_{24} in Mathieu moonshine.

n	X_1	X_2	$X_3 = X_4$	$X_5 = X_6$	X_7	X_8	X_9	$X_{10} = X_{11}$	$X_{12} = X_{13}$	$X_{14} = X_{15}$	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}	X_{21}	X_{22}	X_{23}	X_{24}	X_{25}	X_{26}
0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Table 4. Expansion coefficients of $A_j(n)$ in Mathieu moonshine.

| n | 1A | 2A | 3A | 3B | 4A | 4B | 4C | 5A | 6A | 6B | 7AB | 8A | 10A | 11A | 12A | 12B | 14AB | 15AB | 21AB | 23AB |
|-----|----|----|----|----|----|----|----|----|----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 0 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |
| 1 | 90 | -6 | 10 | 0 | 6 | -6 | 2 | 2 | 0 | -2 | -1 | -2 | 0 | 2 | 0 | 2 | 1 | 0 | -1 |
| 2 | 462 | -18 | -6 | 0 | -2 | -2 | 6 | 2 | 0 | -2 | 2 | 0 | -2 | 0 | 0 | -1 | 0 | 2 |
| 3 | 1540 | -28 | 20 | 10 | -14 | 4 | -4 | -4 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -1 |
| 4 | 4554 | -42 | -38 | 0 | 12 | -6 | 2 | -6 | -6 | 0 | 4 | 4 | -2 | 2 | 0 | 0 | 0 | 0 | -2 |
| 5 | 11592 | -56 | 72 | -18 | 0 | -8 | 8 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 |
| 6 | 27830 | -86 | -90 | 20 | -16 | 6 | -2 | 6 | 0 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | 0 |
| 7 | 61868 | -138 | 118 | 0 | 30 | 6 | -10 | -2 | 6 | 0 | -2 | 2 | -2 | -2 | -2 | 0 | -2 | 2 |
| 8 | 131100 | 188 | -180 | -30 | 0 | -4 | -12 | 2 | 0 | -3 | 0 | 0 | 2 | 0 | -1 | 0 | 0 | 0 |
| 9 | 265650 | -238 | 258 | 42 | -42 | -14 | 10 | 10 | -10 | 2 | 6 | 0 | -2 | -2 | -2 | 0 | 2 |
| 10 | 521156 | 336 | -352 | 0 | 42 | 0 | -8 | 16 | 6 | 0 | 2 | -4 | -2 | 0 | 0 | -2 | 0 |
| 11 | 988770 | -478 | 450 | -60 | 0 | 18 | -14 | -6 | 0 | -4 | 6 | 2 | 0 | 2 | 0 | -2 | 0 |
| 12 | 1830248 | 616 | -600 | 62 | -70 | -8 | 8 | 16 | 8 | -2 | -6 | 0 | 0 | 2 | 2 |
| 13 | 3303630 | -786 | 830 | 0 | 84 | -18 | 22 | 6 | 0 | -4 | -6 | 2 | 0 | 0 | -2 | 0 |
| 14 | 5844762 | 1050 | -1062 | -90 | 0 | 10 | -6 | 18 | 18 | -6 | 0 | 2 | -2 | 0 | 2 | 0 | 0 |
| 15 | 10139734 | -1386 | 1334 | 118 | -110 | 22 | -26 | -10 | 4 | 6 | 2 | -4 | -2 | 4 | 0 | -2 | 2 |
| 16 | 17301060 | 1764 | -1740 | 0 | 126 | -12 | 12 | -28 | 0 | 0 | 6 | 0 | 0 | 0 | -4 | 2 |
| 17 | 29051484 | -2212 | 2268 | -156 | 0 | -36 | 28 | 12 | 14 | -4 | 0 | -4 | -2 | 0 | 0 |
| 18 | 48106430 | 2814 | -2850 | 170 | -166 | 14 | -18 | 38 | 0 | -6 | -6 | 8 | -2 | 0 | -2 | 2 |
| 19 | 7859556 | -3612 | 3540 | 0 | 210 | 36 | -36 | -20 | -24 | 0 | -6 | 0 | 0 | 2 | 0 | -2 | 0 |
| 20 | 12689417 | 4510 | -4482 | -228 | 0 | -18 | 14 | -42 | 14 | 4 | 0 | -6 | -2 | -2 | 0 | 0 | 2 |
| 21 | 20253708 | -5544 | 3640 | 270 | -282 | -40 | 48 | 16 | 0 | 6 | 6 | 4 | 4 | 0 | -2 | -2 |
| 22 | 319927608 | 6936 | -6968 | 0 | 300 | 24 | -16 | 48 | 18 | 0 | 4 | -7 | -4 | 2 | 0 | 0 |
| 23 | 500376870 | -8666 | 8550 | -360 | 0 | 54 | -58 | -18 | 0 | -8 | 0 | -2 | 0 | 4 | 0 | 0 |
| 24 | 775492564 | 10612 | -10556 | 400 | -392 | -28 | 28 | -60 | -36 | -8 | -8 | 0 | 0 | -4 | 0 |
| 25 | 1191453912 | -12936 | 13064 | 0 | 462 | -72 | 64 | 32 | 12 | 0 | -10 | -12 | -4 | 4 | 0 | 0 |
| 26 | 1815754710 | 15862 | -15930 | -510 | 0 | 22 | -34 | 78 | 0 | 10 | 0 | -6 | 0 | 2 |
| 27 | 2745870180 | -19420 | 19268 | 600 | -600 | 84 | -76 | -36 | 30 | 8 | 8 | -10 | 4 | -2 | -2 |
| 28 | 4122417420 | 23532 | -23460 | 0 | 660 | -36 | 36 | -84 | 0 | 0 | 12 | 2 | 0 | 0 | 0 |
| 29 | 6146311620 | -28348 | 25548 | -762 | 0 | -92 | 100 | 36 | -50 | -10 | 0 | -6 | 4 | -2 | -2 |
| 30 | 9104078592 | 34272 | -34352 | 828 | -840 | 48 | -40 | 96 | 22 | -12 | -8 | 0 | 4 | -2 |

Fast Track Communication
Enriques surface is closely related to K3: it is obtained by quotienting K3 by a fixed-point free involution and has an Euler number 12. Its elliptic genus is one half of that of K3

\[Z_{\text{Enriques}}(z; \tau) = \frac{1}{2} Z_{K3}(z; \tau) = 4 \left[\left(\frac{\theta_{10}(z; \tau)}{\theta_{10}(0; \tau)} \right)^2 + \left(\frac{\theta_{00}(z; \tau)}{\theta_{00}(0; \tau)} \right)^2 + \left(\frac{\theta_{01}(z; \tau)}{\theta_{01}(0; \tau)} \right)^2 \right]. \]

(2.1)

Enriques moonshine is motivated by the following simple considerations.

1. It is known that in the case of Mathieu moonshine the expansion coefficients \(A(n) \) are always even for any \(n \geq 1 \): this is because (i) when the decomposition of \(A(n) \) contains a complex representation of \(M_{24} \), it also contains its complex conjugate representation, and (ii) when \(A(n) \) contains a real representation its multiplicity is always even [11].

2. Thus in order to keep integrality of the decomposition when we divide by 2 the K3 elliptic genus we just need to find a subgroup \(G \) of \(M_{24} \) where all the complex representations of \(M_{24} \) become real representations of \(G \). It turns out that this is the case of \(M_{12} \).

3. Geometrical considerations on the Enriques surface suggest the relevance of the symmetry group \(M_{12} \) [12].

Let us first derive the decomposition of \(M_{24} \) representations (reps.) into those of \(M_{12} \) in order to examine the reality of the representations. For this purpose we want to make a correspondence between the conjugacy classes of the two groups. In table 5 we list the conjugacy classes of \(M_{12} \) and their permutation representations. We recall that the Mathieu group \(M_{24} \) is the symmetry group of the Golay code and permutes dodecads into each other. \(M_{12} \) is the subgroup of \(M_{24} \) which fixes a dodecad [3]. The conjugacy class of 2A of \(M_{12} \), for instance, has a cycle shape 26 and it is natural that this corresponds to the conjugacy class 2B of \(M_{24} \). Thus in general a class \(g \) of \(M_{12} \) should correspond to a class \(g' \) of \(M_{24} \) whose cycle shape is the square of that of \(g \). There are exceptions to this rule when there exists a non-trivial outer automorphism between conjugacy classes of \(M_{12} \). From table 5 we note that the sizes of the conjugacy classes are equal for the pair 4A, 4B and 8A, 8B and 11A, 11B. It is known [3] that these pairs are tied by a non-trivial outer automorphism \(\sigma \). If one takes a class \(g \) of \(M_{12} \) the corresponding class of \(M_{24} \) should become \(g \cup \sigma(g) \). In the case of \(g = 4A \), \(\sigma(4A) = 4B \), for instance, the cycle shape of \(g \cup \sigma(g) \) equals \(4^22^6 \cup 4^21^4 \) and that

Table 5. Cycle shapes of conjugacy classes of \(M_{12} \).

\(g \)	Size	Cycleshape
1A	1	\(1^{12} \)
2A	396	\(2^6 \)
2B	495	\(1^{12}2^4 \)
3A	1760	\(1^{33}3 \)
3B	2640	\(3^4 \)
4A	2970	\(2^64^2 \)
4B	2970	\(1^{14}2^4 \)
5A	9504	\(1^{2}5^2 \)
6A	7920	\(6^2 \)
6B	15840	\(1^{2}2^33^26^4 \)
8A	11880	\(4^8 \)
8B	11880	\(1^{2}2^84^2 \)
10A	9504	\(2^110^4 \)
11A	8640	\(1^{1}11^1 \)
11B	8640	\(1^{1}11^1 \)
Table 6. Character table of M_{12}, $|M_{12}| = 95040$.

	1A	2A	2B	3A	3B	4A	4B	5A	6A	6B	8A	8B	10A	11A	11B
χ_1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	
χ_2	11	-1	3 2	-1	-1	3 1	-1	0	-1	1 -1	0 0	0 0	1 1	0 0	
χ_3	16	4 0	-2 1 0 0	1 0	0 0	0 0	-1	0	1 1	-1	0	0	0	0	
χ_4	6 1 6	0 2	-2 1	0 0	0 0	0 1	-1	0	0 0	0 0	0 0	0 0	0 0		
χ_5	5 1 5	0 3	-1	0	1	-1	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
χ_6	4 5	-3	0 1	1 1	0	-1	0	-1	-1	0	1 1	1 1	1 1		
χ_7	55 5	7 1	-1	-1	0 1	-1	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
χ_8	11 1	1 1	-1	-1	0	-1	0	-1	-1	0	0 0	0 0	0 0		
χ_9	3 2 3	1 3	3 1	0	-1	-1	0	0	0 0	0 0	0 0	0 0	0 0		
χ_{10}	6 6	2 3	0	-2	-2	1 0	-1	0 0	0 0	0 0	0 0	0 0			
χ_{11}	120	0 0	-8 3	0	0	0	0	0 1	0 0	0 0	0 0	0 0			
χ_{12}	144	4	4	0	0	-3	0	0	-1	1 0	0 0	0 0	0 0		
χ_{13}	176	-4	0	-4	-1	0	0	1	-1	0 0	0 0	0 0			

of g' becomes $4^42^21^4$ which is class $4B$ of M_{24}. Thus $4A, 4B$ of M_{12} should both correspond to $4B$ of M_{24}. In this way we can construct the following table of correspondences.

$$g \in M_{12} \quad 1A \quad 2A \quad 2B \quad 3A \quad 3B \quad 4A \quad 4B \quad 5A \quad 6A \quad 6B \quad 8A \quad 8B \quad 10A \quad 11A \quad 11B$$

$$g' \in M_{24} \quad 1A \quad 2A \quad 2B \quad 3A \quad 3B \quad 4A \quad 4B \quad 5A \quad 6A \quad 6B \quad 8A \quad 8B \quad 10A \quad 11A \quad 11A$$

(2.2)

Let us now determine the branching rule of the irreps. of M_{24} into those of M_{12}. We consider the following ‘inner product’ of character tables of M_{24} and M_{12} to derive the multiplicity of a representation r of M_{12} contained in the representation R of M_{24}

$$\sum_g \chi(M_{24})_{rg} t(g) \chi(M_{12})^{-1}_{gr} = \text{multiplicity of rep. } r \text{ in rep. } R$$

(2.3)

Here $t(g) = g'$ of (2.2), and $\chi(M_{12})^{-1}$ is the inverse of the character table of M_{12} in the sense of a matrix. Using the character tables of M_{24}, M_{12} in tables 1, 6, we find the above multiplicities as given by table 7. Note that as we mentioned already, the decomposition of complex representations of M_{24} contains only real representations of M_{12} or the sum of pairs of complex conjugate representations of M_{12}.

Therefore if we substitute M_{24} reps. by their M_{12} decompositions in the Mathieu moonshine of table 3, and divide by an overall factor 2, we maintain the integrality of the multiplicities of M_{12} representations. One obtains the decomposition of the elliptic genus of the Enriques surface given in terms of M_{12} reps. See table 8.

There is in fact a more elegant way to derive the decomposition of the Enriques elliptic genus. This is to use the method of the twisted elliptic genus. We have at hand the twisted genera for all conjugacy classes in Mathieu moonshine (tabulated in [5]) and we can use these results. We introduce an ansatz that the twisted elliptic genera for Enriques moonshine are one half of those of Mathieu moonshine of the corresponding conjugacy classes

$$Z_g^{\text{Enriques}}(\tau) = \frac{1}{2} Z_{\tau(g)}^{E_8}(\tau)$$

(4.4)

Then by introducing the expansion coefficients $A_g^{\text{Enriques}}(n)$ for all classes $g \in M_{12}$

$$Z_g^{\text{Enriques}}(\tau) = \chi_g \text{ch}_{h=\frac{1}{2}, \ell=0}(\tau) + \sum_{n=0}^{\infty} A_g^{\text{Enriques}}(n) \text{ch}_{h=n+\frac{1}{2}, \ell=\frac{1}{2}}(\tau)$$

(4.5)
Table 7. Branching of M_{24} representations into those of M_{12}. Only non-zero multiplicities are written.

$M_{24} \setminus M_{12}$	χ_1	χ_2	χ_3	χ_4	χ_5	χ_6	χ_7	χ_8	χ_9	χ_{10}	χ_{11}	χ_{12}	χ_{13}	χ_{14}	χ_{15}
χ_1	1	1													
χ_2	23	1	1												
χ_3	45	1													
χ_4	45														
χ_5	231														
χ_6	231														
χ_7	252	1	1	2	1										
χ_8	253	1	1	1	1										
χ_9	483	1	1	2	2	1	1								
χ_{10}	770					2	2	1							
χ_{11}	770					2	2	1							
χ_{12}	990					1	1	1	2	1					
χ_{13}	990					1	1	1	2	1					
χ_{14}	1035	1	1	1	1	1	2	2	1						
χ_{15}	1035	1	1	1	1	2	2	1							
χ_{16}	1035	1	1	1	1	2	2	1							
χ_{17}	1265	1	1	1	2	3	1	1	1	3	1	2			
χ_{18}	1771	2	1	1	1	3	2	4	2						
χ_{19}	2024	1	1	2	2	1	1	1	2	3	2	3			
χ_{20}	2277	1	2	3	2	2	1	3	2	3	4				
χ_{21}	3312	1	1	1	4	3	1	1	3	4	2	6			
χ_{22}	3520	2	2	4	4	2	2	4	4	2	6				
χ_{23}	5313	1	1	2	2	2	4	5	2	4	6	4	8		
χ_{24}	5544	1	1	4	2	1	3	3	4	5	10	9			
χ_{25}	5796	2	2	4	4	1	3	3	4	5	8	9			
χ_{26}	10 395	1	1	1	1	4	4	6	7	7	6	11	14	15	20

where χ_{Enriques}^g is the Euler number $\chi_{\text{Enriques}}^g = Z_{\text{Enriques}}^g(\tau)$,

$g \in M_{12}$

| χ_{Enriques} | 12 | 0 | 4 | 3 | 0 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 1 |

we obtain the multiplicity for the M_{12} representation r at level n

$$\sum_{g} \frac{n_g}{|G|} \chi_{(M_{12})}^g \chi_{\text{Enriques}}^g(n) = c_r^{\text{Enriques}}(n).$$ \hspace{1cm} (2.6)

Here $|G|$ denotes the order of M_{12} (= 95 040) and n_g is the size of M_{12} conjugacy class g. (Note that the Euler numbers χ_{Enriques}^g listed above cannot be written as an integral linear combination of M_{12} characters (see table 6) unlike the case of Mathieu moonshine. This is a point worth studying if it possibly raises a question of consistency of Enriques moonshine. We are grateful for the referee for raising this point.)

By using the orthogonality relation of the character table it is possible to prove that the above formula in fact reproduces the data of table 8. First we recall that the multiplicity of representation R in Mathieu moonshine is given by

$$\sum_{g} \frac{n_g}{|G|} \chi_{(M_{24})}^g R \chi_{\text{Enriques}}^g(n) = c_R^{K3}(n).$$ \hspace{1cm} (2.7)

Here g' runs over conjugacy classes of M_{24}, and $|G'|$ is the order of M_{24}. We convert M_{24} representations into M_{12} representations and divide by 2 to obtain multiplicities in Enriques moonshine.
Table 8. Multiplicities of irreducible representations of \(M_{12} \) in Enriques moonshine.

\(n \)	\(\chi_1 \)	\(\chi_2 = \chi_3 \)	\(\chi_4 = \chi_5 \)	\(\chi_6 \)	\(\chi_7 \)	\(\chi_8 = \chi_{10} \)	\(\chi_{11} \)	\(\chi_{12} \)	\(\chi_{13} \)	\(\chi_{14} \)	\(\chi_{15} \)	
0	-1	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	0	0	0	0	
2	0	0	0	0	1	0	0	0	0	0	1	
3	0	0	0	0	0	1	0	2	2	2	1	
4	0	0	2	4	4	1	3	5	8	9	11	
5	0	1	1	4	8	10	9	10	15	16	21	26
6	3	33	42	119	148	162	154	179	276	322	390	485
7	4	51	88	242	278	272	282	346	511	632	753	914
8	10	115	147	420	522	546	534	633	956	1144	1384	1699
9	19	183	286	801	938	933	951	1152	1716	2102	2506	3051
10	30	346	484	1364	1664	1721	1698	2018	3056	3666	4420	5423
11	52	576	861	2420	2874	2896	2922	3535	5263	6434	7697	9375
12	94	1017	1444	4069	4922	5058	5022	5994	9033	10886	13087	16327
13	151	1658	2468	6920	8248	8340	8388	10099	15107	18382	22027	26887
14	252	2817	4020	11330	13674	14000	13941	16689	25077	30316	36427	43785
15	412	4508	6647	18681	22316	22644	22717	27318	40913	49696	59567	72744
16	669	7385	10649	29960	36064	36844	36750	44021	66134	80010	96094	117541
17	1064	11676	17087	48040	57526	58442	58560	70371	105420	127988	153496	187481
18	1692	18579	26877	75625	90908	92775	92630	111037	166710	201830	242298	296284
19	2622	28863	42197	118616	142120	144536	144714	173798	260529	316064	379145	463254
20	4082	44995	65174	183384	220348	224690	224472	269200	403992	489368	587424	718126
21	6270	68818	100406	282327	338446	344382	344655	413792	620437	752450	902705	1103084
22	9555	105225	152718	429576	515886	525845	525510	630341	945863	1145966	1375439	1681406
23	14433	158731	231277	650388	780008	793968	794367	953589	1429925	1733926	2080389	2542299
24	21711	238790	346819	975551	1171218	1193511	1193023	1431222	2147351	2602046	3122821	3817239
25	32314	355395	517616	1455614	1746034	1777621	1778220	2134316	3200923	3880816	4656537	5690817
26	47909	527223	766024	2154660	2386488	2635260	2634546	3160915	4742013	5746832	6896777	8429971
\begin{align}
c^\text{Enriques}_r(n) &= \frac{1}{2} \sum_g \left[\sum_R \frac{n_g}{|G|} \chi(M_{24})_R^g \right] \times \left[\sum_R \chi(M_{24})^{t(g)}_R (\chi(M_{12})^{-1})_R^g \right] \\
&= \frac{1}{2} \sum_{g,g'} \delta_{g,g'} (\chi(M_{12})^{-1})_g^r A_g(n) \\
&= \sum_g \frac{n_g}{|G|} \chi(M_{12})_g^r A_g(n).
\end{align}

3. Discussion

In this communication we have taken one half of the elliptic genus of $K3$ and obtained the Enriques moonshine. Consistency of the Enriques surface as a string theory background is a delicate issue since its canonical class does not quite vanish while it carries a Ricci flat Kähler metric. We do not consider such questions in this paper and are primarily concerned with the possibility of the action of the symmetry group on the elliptic genus Z^Enriques.

We have shown that M_{12} in fact acts on Z^Enriques. We should note, however, that a symmetry group still larger than M_{12} may possibly act on the elliptic genus. We have evidence that a maximal subgroup $M_{12}:2$ of M_{24} (binary extension of M_{12}) acts on Z^Enriques.

It was crucial for the existence of Enriques moonshine that all the multiplicities of real representations of M_{24} are even integers in Mathieu moonshine. We have recently noticed that similar phenomena take place in umbral moonshine and thus it is quite likely that we can take one half of the Jacobi forms of umbral moonshine and construct a new moonshine series with reduced symmetry groups. This issue will be discussed in a forthcoming publication [7].

Acknowledgments

TE would like to thank Y Tachikawa for discussions on the relation between M_{24} and M_{12}. He also thanks S Mukai for discussions on Enriques surface. The research of TE is supported in part by JSPS KAKENHI grant nos 22224001, 23340115. The research of KH is supported in part by JSPS KAKENHI grant nos 23340115, 24654041.

Note added. After the original version of this paper was submitted to arXiv we came across the paper [13] by S Govindarajan where the group M_{12} is used as the symmetry group of Mathieu moonshine. In this paper, the relation (2.2) between the conjugacy classes of M_{24} and M_{12} has been obtained. Also the multiplicities of irreps. of M_{12} in the decomposition of the expansion coefficients $A(n)$ at smaller values of n have been obtained in agreement with our results of Enriques moonshine up to an overall factor 2. We thank S Govindarajan for informing us of this paper.

References

[1] Cheng M C N 2010 $K3$ surfaces, $\mathcal{N}=4$ dyons, and the Mathieu group M_{24} Commun. Number Theory Phys. 4 623–57 (arXiv:1005.5415 [hep-th])
[2] Cheng M C N, Duncan J F R and Harvey J A 2012 Umbral moonshine arXiv:1204.2779 [math.RT]
[3] Conway J H 1998 Three lectures on exceptional groups Sphere Packings, Lattices and Groups (Grand. Math. Wiss. vol 290) ed J H Conway and N J A Sloane (Berlin: Springer) chapter 10, pp 267–98
[4] Eguchi T and Hikami K 2010 $\mathcal{N}=4$ superconformal algebra and the entropy of hyperKähler manifolds J. High Energy Phys. JHEP02(2010)019 (arXiv:0909.0410 [hep-th])
[5] Eguchi T and Hikami K 2011 Note on twisted elliptic genus of $K3$ surface Phys. Lett. B 694 446–55 (arXiv:1008.4924 [hep-th])
[6] Eguchi T and Hikami K 2012 $\mathcal{N} = 2$ moonshine Phys. Lett. B 717 266–73 (arXiv:1209.0610 [hep-th])
[7] Eguchi T and Hikami K 2013 in preparation
[8] Eguchi T, Ooguri H and Tachikawa Y 2011 Notes on the K3 surface and the Mathieu group M_{24} Exp. Math. 20 91–96 (arXiv:1004.0956 [hep-th])
[9] Gaberdiel M R, Hohenegger S and Volpato R 2010 Mathieu twining characters for K3 J. High Energy Phys. JHEP09(2010)058 (arXiv:1006.0221 [hep-th])
[10] Gaberdiel M R, Hohenegger S and Volpato R 2010 Mathieu moonshine in the elliptic genus of K3 J. High Energy Phys. JHEP10(2010)062 (arXiv:1008.3778 [math.AG])
[11] Gannon T 2012 Much ado about Mathieu arXiv:1211.5531 [math.RT]
[12] Mukai S 2012 Lecture notes on K3 and Enriques surfaces Contributions to Algebraic Geometry: Impanga Lecture Notes (EMS Series of Congress Reports) ed P Pragacz (Zürich: European Mathematical Society) pp 389–405
[13] Govindarajan S 2010 Brewing moonshine for Mathieu arXiv:1012.5732 [hep-th]