T CELL–SPECIFIC γ GENES IN C57BL/10 MICE
Sequence and Expression of New Constant and Variable Region Genes

BY AIKICHI IWAMOTO,* FABIO RUPP,‡ PAMELA S. OHASHI,* CHRISTINA L. WALKER,* HANSPEITER PIRCHER,‡ ROLF JOHO,* HANS HENGARTNER,‡ AND TAK W. MAK*

From *The Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M4X 1K9; and the Institute für Pathologie der Universität Zurich, Zurich 8091, Switzerland

T cells recognize antigens with the use of cell surface receptors that are composed of an α and β chain heterodimer (1). The cloning of the β chain (2, 3), and subsequently the α chain (4, 5) of the T cell antigen receptors revealed that these genes are distantly related to immunoglobulin and MHC genes (6). In addition, these genes undergo somatic rearrangement during T cell maturation. The number of possible rearrangements and genes deduced from α and β chain transcripts appear to be large.

In the attempt to clone the α chain genes by construction of subtractive libraries and differential hybridization, Saito et al. (7) found and identified a third immunoglobulin-like mRNA that was capable of undergoing somatic gene rearrangements in T cells. This mRNA, designated a T cell–specific γ gene, appeared to be expressed mainly in CTL (8). Furthermore, it has been reported (8) that the repertoire for these T cell–specific γ genes is limited. The data (8) indicated that different T cell clones use identical Vγ (V10.8A), Jγ, and Cγ (JC10.5) gene segments. Analysis of the γ gene genomic organization in BALB/c mice, however, revealed the existence of three cross hybridizing constant regions, each associated with its own Jγ gene segments (9). The DNA sequences of two of these constant regions, Cγ10.5 and Cγ7.5 have been reported. The sequence of the third constant region, designated Cγ13.4 has not been reported yet. Sequences of the Jγ gene segments accompanying Cγ10.5 and Cγ13.4 have also been reported. In this study, we have analyzed cDNA sequences from cytotoxic T cell lines derived from the mouse strain C57BL/10 (B10). Our results indicate that a new set of Jγ and Cγ gene segments is used in one of the CTL clones. The genomic organization of T cell–specific γ genes in the B10 strain mice appears to be different from that reported for BALB/c mice.

Materials and Methods

cDNA Synthesis. AED (N-iodo-acetyl-N-(5-sulfonic-l-naphthyl)ethylene diamine)–specific, H-2Kb- or H-2Db-restricted cytotoxic T cell lines of B10 origin were cultured as previously described (10). Total cellular RNA was extracted using the guanidinium thiocyanate–CsCl gradient method (11). cDNA was synthesized from total RNA according

1 Abbreviation used in this paper: AED, N-iodo-acetyl-N-(5-sulfonic-l-naphthyl)ethylene diamine.
to a modified procedure of Gubler and Hoffman (12). After addition of the Eco RI linker, the cDNAs were cloned into λgt10 and screened according to the published method (13). 32P-radiolabeled 3' probe was provided by Tim Skelton and Cox Terhorst.

DNA Sequencing. Nucleotide sequences were determined by the dideoxy chain-termination method of Sanger (14) after cloning specific restriction fragments into the phage vector M13mp8 or M13mp19.

Southern Blot Analysis. High molecular weight cellular DNA was extracted, digested with Eco RI and electrophoresed through 0.8% agarose gel (15). The DNA was transferred to a nitrocellulose filter and hybridized to nick-translated probes as described (16). Filters were washed at 65°C in 1× SSC and exposed to x-ray films at -70°C in the presence of intensifying screens.

Results

Sequences of γ cDNA Clones from Two Cytotoxic T Cell Lines of B10 Mice. Two functional CTL clones with well-defined MHC restriction and antigen specificities were chosen for analysis. These CTLs are specific for the hapten AED in association with either H-2Kb or H-2Db (10). Northern blot analysis indicate that these CTLs express mRNAs of ~1.5 kb in length that crosshybridize with a murine γ chain probe (data not shown). cDNA libraries of two clones, designated 8/10-2 and 5/10-13, were constructed. 8/10-2 is Kb-AED-specific and 5/10-13 is Db-AED-specific. cDNA libraries were screened with a γ chain probe, and the hybridizing cDNA clones were isolated. The nucleotide sequences of the cDNA clones with the longest inserts in each of the two libraries were determined. Fig. 1 shows the Vγ, Jγ, and partial Cγ gene region sequences of the γ gene clone from 8/10-2 (8/10-2γ1.1) compared to the published γ chain cDNA sequence (pHDS4/203) (7). The two sequences are identical except for two extra nucleotides (AT) in PHDS4/203 at the V-J junction. The resulting translational frameshift in the 8/10-1γ1.1 sequence introduces a termination codon at position 441 that is not found in the pHDS4/203. The 8/10-2γ1.1 sequence presumably arose from a nonproductive gene rearrangement involving the same Vγ10.8A and Jγ10.5 gene segments which gave rise to the potentially functional pHDS4/203 message (7, 9). The nucleotide sequence of the cDNA clone from CTL clone 5/10-13 (5/10-
13γ1.2) has an open reading frame from nucleotides 88-1,068 (Fig. 2). This may code for a functional message. Fig. 2 shows the 5/10-13γ1.2 sequence compared to the Vγ, Jγ, and Cγ gene region sequences of pHDS4/203. All of the 5/10-13γ1.2 gene regions are different from those of pHDS4/203. The Vγ gene region sequence of 5/10-13γ1.2 has more homology to Vγ10.8B (9). Only 2 nucleotides (at position 176 and 411) out of 351 are different between the Vγ of 5/10-13γ1.2 and the Vγ10.8B exons (data not shown). Since 5/10-13 originates from B10, and published Vγ10.8B germline sequences are from BALB/c, the two-nucleotide difference might be due to strain polymorphism or somatic mutation. As the third Vγ segment (Vγ5.7) seems to be deleted in B10 (discussed below), we conclude that 5/10-13γ1.2 uses Vγ10.8B. This is apparently the first message ever to use Vγ10.8B. With a deletion of 6 bp at the 3′ end of the germline Vγ10.8B, 5/10-13γ1.2 is joined to a Jγ gene segment that has not been previously described. Also, the Cγ sequence of 5/10-13γ1.2 is considerably different from that of the published Cγ10.5 (9). The Cγ region of 5/10-13γ1.2 is 69 bp longer than Cγ10.5 (shown by dots in Fig. 2). Excluding these 69 bp, the coding regions of the two constant regions are different in 117 bp out of 500 (23.4% difference). The comparison of the deduced amino acid sequences shows a difference of 57 amino acids out of 167 (34% difference). The constant region of 5/10-13γ1.2 is also considerably different (data not shown) from that of the germline Cγ7.5 gene, which is supposedly (9) nonfunctional. The Cγ region of 5/10-13γ1.2 is 54 bp longer than that predicted by the exons of the pseudo-gene Cγ7.5. Excluding these 54 bp, the coding regions of the two constant regions are different in 150 base pairs out of 518 (25% difference). The sequence of the 3′ untranslated region of the cDNA clone 5/10-13γ1.2 is completely different from those previously reported (7, 9) Cγ genes. All of these differences are too great to be explained by strain polymorphism or somatic mutations. Located at nucleotide positions 889-897 is also a potential N-glycosylation site of Asn-Ala-Thr. In addition, a Lys residue is found in the transmembrane position of the deduced protein sequence.

Rearrangement of γ Genes in Cytotoxic T Cell Lines 8/10-2 and 5/10-13. Southern blot analyses were performed to determine whether the γ chain genes used in the CTL clones 8/10-2 and 5/10-13 exhibited different rearrangements than those of previously described CTL. Southern analysis of genomic DNA from CTL 5/10-13, CTL 8/10-2, and B10 liver cells were performed using the probes illustrated in Fig. 3. Results of these experiments are summarized in Fig. 4. After digestion of B10 liver DNA with restriction enzyme Eco RI, one distinct 10.8 kb band could be detected (Fig. 4 A) with the 8/10-2γ1.1 Vγ region probe (Fig. 3a). The 5.7 kb Vγ hybridizing fragment (Vγ5.7) previously reported for BALB/c DNA (9) was missing. In the 5/10-13 cell line DNA both a rearranged band of 14 kb as well as the 10.8 kb germline band were detected. Only one rearranged band, of 14 kb, was detected in the 8/10-2 cell line DNA. When the JγCγ region of 8/10-2γ1.1 (Fig. 3b) was used as a probe, two distinct bands, of 15 and 10.5 kb, could be detected in Eco RI-digested B10 liver DNA (Fig. 4B). In the 5/10-13 DNA digested with Eco RI, four bands, of 22, 16, 14, and 10.5 kb, were detected. While in similarly digested 8/10-2 DNA, four bands, of 22, 16, 14, and 7.5 kb, were detected.
Since the \(V_\gamma \) region of 5/10-13\(\gamma \)1.2 (\(V_\gamma \),10.8B) and the \(V_\gamma \) region of 8/10-2\(\gamma \)1.1 (\(V_\gamma \),10.8A) are \(>93\% \) homologous (Fig. 2), they should crosshybridize. Therefore the expressed \(V_\gamma \) is probably contained in the 14 kb \(V_\gamma \) hybridizing fragment from both the 5/10-13 and 8/10-2 cell line DNA samples.

In the blots probed with the \(C_\gamma \) region of 5/10-13\(\gamma \)1.2 (Fig. 3C) the 14 kb band was detected only in 5/10-13 (Fig. 4C). In addition, this probe and the associated 3' untranslated region probe, which includes part of \(C_\gamma \) (Fig. 3d) detected a new germline band of 6.6 kb (Fig. 4C and D).

New Constant Region and \(J_\gamma \) Segment in B10 and BALB/c Mice. The nucleotide sequence and results of Southern blot analyses using B10 germline DNA suggest that a new \(C_\gamma \) region gene exists in the B10 mice. To further analyze the differences between B10 and BALB/c mice, Eco RI-digested germline DNA samples of B10 and BALB/c mice were examined by Southern blots using \(V_\gamma \) region probe a and \(C_\gamma \) region probes of b, c, and d (see Fig. 3). Two \(V_\gamma \)-
hybridizing fragments, of 10.8 kb and 5.7 kb, were found in the BALB/c DNA, while only one was detected at 10.8 kb in the B10 genome (Fig. 5A). The Cγ region probe b detects the three germline bands of 13.4, 10.5, and 7.5 kb in the BALB/c DNA, while B10 DNA contains only two Cγ b-hybridizing fragments of 15 kb and 10.5 kb. These results for BALB/c are consistent with those reported by Hayday et al. (9). The fragments Cγ7.5 and Vγ5.7 are not present in B10 mice. A 2.3 kb JγCγ-hybridizing band was detected by a longer exposure of the filter shown in Fig. 5B in the BALB/c but not in the B10 lane (data not shown). Therefore, it appears that Jγ2.3 is also missing in the genome of B10. When the Cγ region probe of 5/10-13γ1.2 (Fig. 3C) was used, fragments with sizes 10.8 and 6.6 kb in both B10 and BALB/c DNA were detected. The 6.6 kb band probably contains the 3′ untranslated region, since probe d only hybridizes to a 6.6 kb band (Fig. 5D). Thus, since both B10 and BALB/c genomic DNA show these bands, the newly identified Cγ region of 5/10-13γ1.2 must be present in both strains of mice. Restriction enzyme mapping with Eco RI and Kpn 1
indicates that this new constant region is located at the 5' end of the inverted Vγ gene segment, Vγ10.8B (9) on the same 10.8 kb Eco RI fragment (data not shown). This newly identified Cγ region is not that of Jγ13.4 reported (9) in BALB/c mice, since 5/10-13γ1.2 does not use the Jγ segment of Jγ13.4 reported (9) earlier. Furthermore, the constant region probe from 5/10-13γ1.2 does not crosshybridize to Jγ13.4 (Fig. 5C). Recently, a cDNA clone using a new Vγ gene that does not crosshybridize with the previously described Vγ genes and Jγ13.4 was found in BALB/c cytotoxic T cells (F. Rupp, unpublished data). Two additional Vγ are also known to be associated with Jγ13.4 (S. Tonegawa and D. Raulet, personal communication).

On the basis of these data, we have revised the germline genomic organization (Fig. 6) of BALB/c DNA reported previously (9). In addition, a germline genomic organization of B10 DNA is also proposed, with a new nomenclature of these Cγ and Vγ segments.

Discussion

Two cDNAs of the γ gene family have been isolated and characterized from two functional CTL clones of B10 mice. The nucleotide sequences of one of them (8/10-2γ1.1) indicates that the transcript is composed of the VγJC (Vγ10.8A, Jγ10.5) found in several CTLs (9). This cDNA, however, contains a stop codon and is therefore not functional. Southern blot analysis indicates that additional rearrangements have occurred in this CTL clone. It is not known at this time whether this rearrangement results in a functional transcript. The isolation of three nonfunctional messages from an alloreactive CTL clone (3F9) suggests that many of the γ chain gene rearrangements are nonfunctional (F. Rupp, unpublished data).

Sequence analysis of the γ gene of the other CTL clone (5/10-13γ1.2) indicates that previously unreported Jγ and Cγ gene segments are used. These new genes (Jγ10.8) do not correspond to the Jγ13.4 reported (9) in BALB/c mice for the following reasons. First, the Cγ region of Jγ10.8 does not crosshybridize with Cγ13.4 (Fig. 5C). Second, the cDNA clone 5/10-13γ1.2 uses a new Jγ segment not associated with Cγ13.4. Finally, a cDNA clone using the new Vγ gene segment not crosshybridizing with the Vγ gene previously described (9) has been isolated. This newly identified Vγ gene segment is associated with the Jγ13.4 (F. Rupp, unpublished result). Therefore, we conclude that the Jγ10.8 in B10 mice does not correspond to Cγ13.4 of BALB/c mice. Jγ10.8 rearranges with the inverted Vγ10.8B to form a potentially functional transcript. Jγ10.8 is located at the 5' end of 10.8 kb Eco RI fragment containing Vγ10.8A and the Vγ10.8B. Since the entire new JγCγ sequences of CTL clone 5/10-13γ1.2 shows considerable variation from sequences of the JγCγ sequences reported previously, the isolation of this clone must have been due to crosshybridization of the Vγ region of the probe to the Vγ region of this cDNA clone. This new Cγ gene deduced protein sequence is only 66% homologous to the Cγ10.5 reported before, and is thus potentially an isotype with a different function. One intriguing possibility is that the protein may combine with the Cγ10.5 or Cγ13.4 to produce a second heterodimer. The Lys residue in the transmembrane region is also characteristic of T cell receptor proteins. It has been suggested that this positive charge may
associate with the Asp residue in the transmembrane portion of the T3 molecules (17). Unlike the previous Cγ10.5, which contains no potential N-glycosylation site, this new Cγ has one potential N-glycosylation site.

Also of interest is the description of the differences between the γ chain genes of B10 mice and those of the BALB/c mice reported previously (9). Although we can confirm the existence of the potential pseudogenes Vγ5.7, Jγ2.3, and Cγ7.5 in BALB/c mice, they are lacking in the genome of the B10 mouse. On the basis of these data, the new germline genomic organization of BALB/c mice has been revised (Fig. 6). A germline organization of B10 DNA is also proposed (Fig. 6).

Although the pseudogenes of BALB/c mice are not present in the B10 mouse strain, all of the known potentially functional Vγ, Jγ, and Cγ genes are conserved between the two strains of mice. These data strongly argue for the importance of these genes.

While it is possible that the γ chain genes are important in the development of T cells, the role it may play is far from clear. Although it has been postulated (8, 19) that γ genes may be involved in the recognition of class I MHC gene products on the target cells, proof of such a hypothesis requires further testing, as (a) no protein coded for by γ chain messages have been identified to date, (b) γ transcripts are also found in helper and autoreactive T cell clones (18), and (c) a high frequency of nonfunctional γ chain messages are found in mature T cells (Yoshikai, Y., and T. W. Mak, unpublished data). It is possible that these genes may play a role in very early T cell ontogeny. Nonetheless, the isolation of a γ chain message using Vγ10.8B and a new Jγ10.8 in this report indicates that the repertoire of the murine γ sequences may be more diverse than postulated previously (7–9, 19). We hope that the further elucidation of their genomic structures, together with the description of new and potentially functional γ messages may help develop experiments to discover the function of these γ chain genes. Perhaps the use of gene transfer technology described recently by Ohashi et al. (20) in the reconstitution of a functional T cell antigen receptor may uncover the role of these interesting genes.

Summary

The T cell-specific γ genes in C57BL/10 (B10) mice have been analyzed. Based on the cDNA sequences of these genes from antigen-specific MHC-restricted cytotoxic T cells, we found that the repertoire of these genes is not as limited as previously postulated (8). T cells from the B10 mice express an identical copy of VγJγCγ (Vγ10.8A-JCγ10.5) transcript previously found in T cells of BALB/c mice. In addition, a potentially functional mRNA using Vγ10.8B and newly identified Jγ and Cγ gene segments were found. The new JγCγ (JCγ10.8) is located 5′ to the inverted Vγ10.8B in the germline DNA of both B10 and BALB/c mice. This new Cγ is only 77 and 66% homologous to the Cγ10.5 at the nucleotide and deduced protein sequences, respectively, thus making it a potential isotype of the Cγ genes reported previously. The Vγ5.7, Jγ2.3 gene segments and pseudogene Cγ7.5 found in the germline DNA of BALB/c mice are absent in B10 mice. The loss of this γ chain pseudogene in the B10 mouse strain, and
the retention of all potentially functional Vγ, Jγ, and Cγ genes with highly conserved coding sequences supports the importance of these genes.

We thank Barry Toyonaga for critical comments on the manuscript, Tim Skelton and Cox Terhorst for providing the murine γ chain probes, and Susumu Tonegawa and D. Raulet for communication of unpublished data.

Received for publication 13 December 1985 and in revised form 6 February 1986.

References
1. McIntyre, B. W., and J. P. Allison. 1983. The mouse T cell receptor: structural heterogeneity of molecules of normal T cells defined by xenoantiserum. Cell. 34:739.
2. Yanagi, Y., Y. Yoshikai, K. Leggett, S. P. Clark, I. Aleksander, and T. W. Mak. 1984. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature (Lond.). 308:145.
3. Hedrick, S. M., D. I. Cohen, E. A. Nielsen, and M. M. Davis. 1984. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature (Lond.). 308:149.
4. Chien, Y., D. M. Becker, T. Lindsten, M. Okamura, D. I. Cohen, and M. M. Davis. 1984. A third type of murine T-cell receptor gene. Nature (Lond.). 312:31.
5. Saito, H., D. M. Kranz, Y. Takagaki, A. C. Hayday, H. N. Eisen, and S. Tonegawa. 1984. A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature (Lond.). 312:36.
6. Hood, L., M. Kronenberg, and T. Hunkapiller. 1985. T cell antigen receptors and the immunoglobulin supergene family. Cell. 40:225.
7. Saito, H., D. M. Kranz, Y. Takagaki, A. C. Hayday, H. N. Eisen, and S. Tonegawa. 1984. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature (Lond.). 309:757.
8. Kranz, D. M., H. Saito, M. Heller, Y. Takagaki, W. Haas, H. N. Eisen, and S. Tonegawa. 1985. Limited diversity of the rearranged T-cell γ gene. Nature (Lond.). 313:752.
9. Hayday, A. C., H. Saito, S. D. Gillies, D. M. Kranz, G. Tanigawa, H. N. Eisen, and S. Tonegawa. 1985. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell. 40:259.
10. Pircher, H., G. Hammerling, and H. Hengartner. 1984. Restriction fine specificity of long-term, hapten-specific cytotoxic T cell clones: analysis with H-2Kb-mutant mice and H-2Kb-specific monoclonal antibodies. Eur. J. Immunol. 14:144.
11. Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonuclease acid from sources enriched in ribonuclease. Biochemistry. 18:5294.
12. Gubler, V., and B. J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene (Amst.). 25:263.
13. Huynh, T. V., R. A. Young, and R. W. Davis. 1984. Constructing and screening cDNA libraries in λgt10 and λgt11. In DNA Cloning Techniques: A Practical Approach. D. M. Glover, editor, IRL Press, Oxford, United Kingdom. pp. 51–78.
14. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463.
15. Yamamoto, Y., C. L. Gamble, S. P. Clark, A. Joyner, T. Shibuya, M. E. MacDonald, D. Mager, A. Bernstein, and T. W. Mak. 1981. Clonal analysis of early and late stages of erythroleukemia induced by molecular clones of integrated spleen focus-forming virus. Proc. Natl. Acad. Sci. USA. 78:6893.
16. Southern, E. M. 1975. Detection of specific sequences among DNA fragment separated by gel electrophoresis. J. Mol. Biol. 98:503.
17. Van den Elsen, P., B. Shepley, J. Borst, J. Coligan, A. F. Markham, S. Orkin, and C. Terhorst. 1984. Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T cell receptor complex. Nature (Lond.). 312:415.
18. Zauderer, M., A. Iwamoto, and T. W. Mak. 1986. γ Gene rearrangement and expression in autoreactive helper T cells. J. Exp. Med. 163:1314–1318.
19. Heilig, J. S., L. H. Glimcher, D. M. Kranz, L. K. Clayton, J. L. Greenstein, H. Saito, A. M. Maxam, S. J. Burakoff, H. N. Eisen, and S. Tonegawa. 1985. Expression of the T-cell specific γ gene is unnecessary in T cells recognizing class II MHC determinants. Nature (Lond.). 317:68.
20. Ohashi, P. S., T. W. Mak, P. Van den Elsen, Y. Yanagi, Y. Yoshikai, A. F. Calman, C. Terhorst, J. D. Stobo, and A. Weiss. 1985. Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer. Nature (Lond.). 316:606.