A VALUATION CRITERION FOR NORMAL BASES IN ELEMENTARY ABELIAN EXTENSIONS

NIGEL P. BYOTT AND G. GRIFFITH ELDER

Abstract. Let \(p \) be a prime number and let \(K \) be a finite extension of the field \(\mathbb{Q}_p \) of \(p \)-adic numbers. Let \(N \) be a fully ramified, elementary abelian extension of \(K \). Under a mild hypothesis on the extension \(N/K \), we show that every element of \(N \) with valuation congruent mod \([N : K]\) to the largest lower ramification number of \(N/K \) generates a normal basis for \(N \) over \(K \).

1. Introduction

The Normal Basis Theorem states that in a finite Galois extension \(N/K \) there are elements \(\alpha \in N \) whose conjugates \(\{\sigma \alpha : \sigma \in \text{Gal}(N/K)\} \) provide a vector space basis for \(N \) over \(K \). If \(K \) is a finite extension of the field \(\mathbb{Q}_p \) of \(p \)-adic numbers, the valuation \(v_N(\alpha) \) of an element \(\alpha \) of \(N \) is an important property. We therefore ask whether anything can be said about the valuation of normal basis generators in this case. We will prove

Theorem 1. Let \(K \) be a finite extension of the \(p \)-adic numbers, let \(N/K \) be a fully ramified, elementary abelian \(p \)-extension, and let \(b_{\text{max}} \) denote the largest lower ramification number. If the upper ramification numbers of \(N/K \) are relatively prime to \(p \), then every element \(\alpha \in N \) with valuation \(v_N(\alpha) \equiv b_{\text{max}} \) mod \([N : K]\) generates a normal field basis. Moreover, no other equivalence class has this property: given any integer \(v \) with \(v \not\equiv b_{\text{max}} \) mod \([N : K]\), there is an element \(\rho_v \in N \) with \(v_N(\rho_v) = v \) which does not generate a normal basis.

This result arose out of work on the Galois module structure of ideals in extensions of \(p \)-adic fields. For such extensions, it has been found that the usual ramification invariants are, in general, insufficient to determine Galois module structure, and thus that there is a need for a refined ramification filtration \([\text{BE}02, \text{BE}05, \text{BE}]\). This refined filtration is defined for elementary abelian \(p \)-extensions and requires elements that generate normal field bases. Such elements are provided by Theorem 1. Recent work \([\text{EL}]\) suggests that what is known for \(p \)-adic fields should also hold in the analogous situation in characteristic \(p \), where \(K \) is a finite extension of \(\mathbb{F}_p(X) \). Here \(\mathbb{F}_p \) denotes the finite field with \(p \) elements, and \(X \) is an indeterminate. We therefore make the

Conjecture. Theorem 1 holds when \(K \) is a finite extension of \(\mathbb{F}_p(X) \) as well.

\footnotesize

Date: September 26, 2006.

1991 Mathematics Subject Classification. 11S15, 13B05.

Key words and phrases. Normal Basis Theorem; Ramification Theory.

Elder was partially supported by NSF grant DMS-0201080.
2. Preliminary Results

Let K be a finite extension of the field \mathbb{Q}_p of p-adic numbers, and let N/K be a fully ramified, elementary abelian p-extension with $G = \text{Gal}(N/K) \cong C_p^n$. Use subscripts to denote field of reference. So π_N denotes a prime element in N, v_N denotes the valuation normalized so that $v_N(\pi_N) = 1$, and e_K denotes the absolute ramification index. Let $\text{Tr}_{N/K}$ denote the trace from N down to K. For each integer $i \geq -1$, let $G_i = \{\sigma \in G : v_N(\sigma - 1)\pi_N) \geq i + 1\}$ be the ith ramification group [Ser79, IV, §1]. Then $G_{-1} = G_0 = G_1 = G$, and the integers b_i such that $G_b \supseteq G_{b+1}$ are the lower ramification break (or jump) numbers. The collection of such numbers, $b_1 < \cdots < b_m$, is the set of lower breaks. They satisfy $b_1 \equiv \cdots \equiv b_m \mod p$ [Ser79, IV, §2, Prop. 11], where if $b_m \equiv 0 \mod p$ then the extension N/K is cyclic [Ser79, IV, §2, Ex. 3]. Let $g_i = |G_i|$. Then the upper ramification break numbers $u_1 < \cdots < u_m$ are given by $u_1 = b_1 g_{b_1}/p^n = b_1$ and $u_i = (b_1 g_{b_1} + (b_2 - b_1) g_{b_2} + \cdots + (b_i - b_{i-1}) g_{b_i})/p^n$ for $i \geq 2$ [Ser79, IV, §3].

Now by the Normal Basis Theorem, the set

$$\mathcal{NB} = \left\{ \rho \in N : \sum_{\sigma \in G} K \cdot \sigma \rho = N \right\}$$

does normal basis generators is nonempty. We desire integers $v \in \mathbb{Z}$ such that $\{\rho \in N : v_N(\rho) = v\} \subset \mathcal{NB}$. And so we are concerned by the following

Example 1. Suppose K contains a pth root of unity ζ, and let $N = K(x)$ with $x^p - \pi_K = 0$. Let σ generate $\text{Gal}(N/K)$. Observe that $(\sigma - 1)x^i = 0$ and $\text{Tr}_{N/K} x^i = 0$ for $p \nmid i$. So for each $i \in \mathbb{Z}$, we have $v_N(x^i) = i$ and $x^i \notin \mathcal{NB}$. Here N/K has one ramification break $b = pe_K/(p-1)$, which is divisible by p. [Ser79, IV, §2, Ex. 4].

Remark. Fortunately, these extensions provide the only obstacle. The restriction in Theorem 1 to elementary abelian extensions with upper ramification numbers relatively prime to p is a restriction to those extensions that do not contain a cyclic subfield such as in Example 1 [Ser79, IV, §3 Prop. 14].

To prove Theorem 1 we need two results.

Lemma 2. Let N/K be as above with $b_m \equiv 0 \mod p$, and let $t_G = \sum_{i=1}^{m} b_i \cdot |G_{b_i} \setminus G_{b_{i+1}}|$. If $\rho \in N$ with $v_N(\rho) \equiv b_m \mod p^n$, then $v_N(\text{Tr}_{N/K}\rho) = v_N(\rho) + t_G$. Conversely, given $\alpha \in K$ there is a $\rho \in N$ with $v_N(\rho) = v_N(\alpha) - t_G \equiv b_m \mod p^n$ such that $\text{Tr}_{N/K}(\rho) = \alpha$.

Proof. Use induction. Consider $n = 1$ when $\text{Gal}(N/K) = \langle \sigma \rangle$ is cyclic of degree p. There is only one break b, which satisfies $b < pe_K/(p-1)$. Let $\rho \in N$ with $v_N(\rho) \equiv b \mod p$. We have $\text{Tr}_{N/K}\rho \equiv (\sigma - 1)^{p-1}\rho \mod pp$. Since $(p-1)b < pe_K$, $v_N(\text{Tr}_{N/K}\rho) = v_N(\rho) + (p-1)b$. And given $\alpha \in K$, use [Ser79] V, §3, Lem. 4 to find $\rho \in N$ with $v_N(\rho) = v_N(\alpha) - (p-1)b$ and $\text{Tr}_{N/K}\rho = \alpha$.

Assume now that the result is true for n, and consider N/K to be a fully ramified abelian extension of degree p^{n+1}. Recall $g_i = |G_i|$. Let H be a subgroup of G of index p with $G_{b_2} \subseteq H$. Let $L = N^H$ and note that N/L satisfies our induction hypothesis. Moreover the ramification filtration of H is given by $H_i = G_i \cap H$ [Ser79, IV, §1]. So $|H_i| = g_i$ for $i > b_1$. Therefore $t_H = b_m(g_{b_m-1}) + b_{m-1}(g_{b_{m-1}-1}) + \cdots + b_1(p^n - g_2)$. Given $\rho \in N$ with $v_N(\rho) \equiv b_m \mod p^{n+1}$, by induction $v_N(\text{Tr}_{N/L}\rho) = v_N(\rho) + t_H$. By the Hasse-Arf Theorem, $p^{n+1} \mid g_b(b_i - b_{i-1})$ for $1 \leq
\[i \leq m. \text{ Thus } t_H \equiv -b_m + p^n b_1 \mod p^{n+1} \text{ and } v_L(\text{Tr}_{N/L}\rho) \equiv b_1 \mod p. \]

Using [Ser79 IV, §1, Prop. 3 Cor.], \(b_1 \) is the Hilbert break for the \(C_p \)-extension \(L/K \). Applying the case \(n = 1 \), we find \(v_L(\text{Tr}_{N/K}\rho) = v_N(\rho) + t_H + p^n(p - 1)b_1 = v_N(\rho) + t_G \). The converse statement follows similarly, using \(t_H + p^n(p - 1)b_1 = t_G \).

\[\square \]

The following generalizes a technical relationship used in the proof of Lemma 2.

Lemma 3. Let \(N/K \) be a fully ramified, noncyclic, elementary abelian extension with group \(G \cong C_p^n \). Let \(H \) be a subgroup of \(G \) of index \(p \), and let \(L = N^H \). If \(b_m \) is the largest lower break of \(N/K \), \(b \) the only break of \(N/L \), and \(\rho \) any element of \(N \) with \(v_N(\rho) \equiv b_m \mod p^n \), then \(v_L(\text{Tr}_{N/L}\rho) \equiv b \mod p \).

Proof. In the proof of Lemma 2, \(H \supseteq G_{b_2} \) so that \(G_{b_1}H/H \subseteq G_{b_1+1}H/H \) following [Ser79 IV, §1, Prop. 3, Cor.], and the break for \(G/H \) was \(b_1 \). Here we have no such luxury and we have to involve the upper numbers in our considerations, although the argument is really no different. Note that there is a \(k \) such that \(G^{u_k+1}H/H \not\subseteq G^{u_k}H/H \). Thus \(u_k \) is the upper ramification number of \(G/H \). Since there is only one break in the filtration of \(G/H \), the lower and upper numbers for \(G/H \) are the same, \(b = u_k \).

The ramification filtration for \(H \) is given by taking intersections: \(H_j = G_j \cap H \). Note that \(|G_{b_i} : G_{b_i} \cap H| = p \) for \(i \leq k \) and \(G_{b_i} \subseteq H \) for \(i > k \). Let \(h_j = |H_j| \). Then \(h_j = g_j/p \) for \(j \leq b_k \), and \(h_j = g_j \) for \(j > b_k \). Now let \(v_N(\rho) = b_m + p^n t \).

Following the proof of Lemma 2 and using the Hasse-Arf Theorem,

\[
v_N(\text{Tr}_{N/L}\rho) = b_m + p^n t + b_m(h_{b_m} - 1) + b_{m-1}(h_{b_{m-1}} - h_{b_m}) + \cdots + b_1(h_1 - h_{b_2}) = p^n t + (b_m - b_{m-1})h_{b_m} + (b_{m-1} - b_{m-2})h_{b_{m-1}} + \cdots + (b_2 - b_1)h_{b_2} + b_1h_1 \equiv (b_k - b_{k-1})h_{b_k} + \cdots + (b_2 - b_1)h_{b_2} + b_1h_1 \equiv p^n u_k/p \equiv p^{n-1} b \mod p^n
\]

Therefore \(v_L(\text{Tr}_{N/L}\rho) \equiv b \mod p \).

\[\square \]

3. Main Result

Proof of Theorem 1. There are two statements to prove. We begin with the first:

We assume the upper breaks satisfy \(p \nmid u_i \), and prove that for \(\rho \in N \)

\[v_N(\rho) \equiv b_m \mod p^n \implies \rho \in N^B. \]

The argument breaks up into two cases: the Kummer case where \(\zeta \in K \) and the non-Kummer case where \(\zeta \notin K \). Here \(\zeta \) is a nontrivial \(p \)th root of unity.

We begin with the Kummer case, and start with \(n = 1 \). Let \(\sigma \) generate the Galois group, and denote the one ramification number by \(b \). Since in this case \(b \) is also the upper number, \(p \nmid b \). Therefore \(\{v_N((\sigma - 1)^j \rho) : 0 \leq i < p \} \) is a complete set of residues modulo \(p \). And since \(N/K \) is fully ramified, \(\rho \) generates a normal basis.

Now let \(n \geq 2 \) and note that \(N = K(x_1, x_2, \ldots, x_n) \) with each \(x_i^p \in K \). It suffices to show that \(K[G] \rho \) contains each element \(y = x_1^{j_1} x_2^{j_2} \cdots x_n^{j_n} \) with \(0 \leq j_i \leq p - 1 \).

For \(y = 1 \) this is clear, since \(\text{Tr}_{N/K}(\rho) \in K \).

For any other \(y \), we can change the ramification number of \(L/K \). By Lemma 3, \(v_L(\text{Tr}_{N/L}(\rho)) \equiv b \mod p \).

Since \(b \) is an upper number of the ramification filtration of \(G, p \nmid b \).

Now apply the \(n = 1 \) argument, using \(\text{Tr}_{N/L}(\rho) \) in \(L/K \). Thus \(y \in K[G] \rho \).

We now turn to the non-Kummer case with \(\zeta \notin K \). Let \(E = K(\zeta) \), let \(E/K \) have ramification index \(e_{E/K} \), and let \(F = N(\zeta) \). Then \(F/E \) is a fully ramified Kummer extension of degree \(p^m \).

Applying Herbrand’s Theorem [Ser79 IV, §3, Lem. 5] to
the quotient $G = \text{Gal}(N/K)$ of $\text{Gal}(F/K)$, we find that the maximal ramification
break of F/E is $e_{E/K}b_m \not\equiv 0 \mod p$. The above discussion for the Kummer case
therefore applies to F/E. Suppose now for a contradiction that $p \in N$ with $v_N(\rho) = b_m \mod p^n$, and
that $K[G]\rho$ is a proper subspace of N. Then by extending scalars
(noticing that E and N are linearly disjoint as their degrees are coprime) we have
that $E[G]\rho$ is a proper subspace of F. Moreover $v_F(\rho) \equiv e_{E/K}b_m \mod p^n$. This
contradicts the result already shown for the Kummer extension F/K, completing
the proof of the first statement of the theorem.

Consider the second statement: Given any integer v with $v \not\equiv b_m \mod p^n$ there
is a $\rho_v \in N$ with $v_N(\rho_v) = v$ such that $\text{Tr}_{N/K}\rho_v = 0$ and thus $\rho_v \notin N\mathcal{B}$. To
prove this statement note that given $v \in \mathbb{Z}$, there is an $0 \leq a_v < p^n$ such that
$v \equiv a_v b_m \mod p^n$, since $p \nmid b_m$. If $a_v \neq 1$ we will construct an element $\rho_v \in N$ with
$v_N(\rho_v) = v$ and $\text{Tr}_{N/K}\rho_v = 0$. To begin, observe that there is a integer k such that
$0 \leq k \leq n - 1$, $a_v \equiv 1 \mod p^k$ and $a_v \not\equiv 1 \mod p^{k+1}$. Recall $g_i = |G_i|$. Since the
ramification groups are p-groups with $g_{i+1} \leq g_i$, there is a Hilbert break b_i such
that $g_{b_i+1} < p^{k+1} \leq g_{b_i}$. For $i = k, k+1$ choose H_i with $|H_i| = p^i$ and $G_{b_i+1} \subset
H_k \subset H_{k+1} \subset G_{b_i}$. Recall from Lemma 2 the expression for t_{G_i}, and note that
t_{H_k} = b_m(g_{b_m-1}+b_{m-1}(g_{b_m-1}-g_{m})+\cdots+b_s(p^k-g_{b_{s+1}})) \equiv -b_m+b_m p^k \mod p^n$. Let
$L = N^{H_k}$. Since $a_v \not\equiv 1 \mod p^{k+1}$, $a_v \equiv 1 + rp^k \mod p^{k+1}$ for some $1 \leq r \leq p - 1$.
Using the fact that $b_s \equiv b_m \mod p, a_v b_m + t_{H_k} \equiv (r+1)b_m p^k \mod p^{k+1}$. Since
$p^k | v_N(\alpha)$ for $\alpha \in L$, we can choose $\alpha \in L$ with $v_N(\alpha) = v + t_{H_k} \equiv rp^k b_s$. So
$v_L(\alpha) \equiv b_s \mod p$. Let $\sigma \in G$ so that σH_k generates H_{k+1}/H_k. Therefore
$v_N((\sigma - 1)^*\alpha) = v + t_{H_k}$. Now using Lemma 2, we choose $\rho_v \in N$ such that
$v_N(\rho_v) = v$ and $\text{Tr}_{N/L}\rho_v = (\sigma - 1)^*\alpha$. Since $(1 + \sigma + \cdots + \sigma^{p-1})\text{Tr}_{N/L}\rho_v = 0$, we have $\text{Tr}_{N/K}\rho_v = 0$.

Corollary 4. Let N/K be a fully ramified, elementary abelian extension of degree p^n with $n > 1$ and one ramification break, at b. If $\rho \in N$ with $v_N(\rho) \equiv b \mod p^n$, then $\rho \in N\mathcal{B}$.

References

[BE] N. P. Byott and G. G. Elder, *On the necessity of new ramification breaks*, In preparation.

[BE02] N. P. Byott and G. G. Elder, *Biquadratic extensions with one break*, Can. Math. Bull. 45
(2002), no. 2, 168–179.

[BE05] N. P. Byott and G. G. Elder, *New ramification breaks and additive Galois structure*, J.
Théor. Nombres Bordeaux 17 (2005), no. 1, 87–107.

[Eld] G. G. Elder, *One-dimensional elementary-abelian extensions of local fields*, arXiv.org:math/0511174 (2005-11-15).

[Ser79] J.-P. Serre, *Local fields*, Springer-Verlag, New York, 1979.

Nigel P. Byott, School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter EX4 4QE, United Kingdom
E-mail address: N.P.Byott@ex.ac.uk

G. Griffith Elder, Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243 U.S.A.
E-mail address: elder@vt.edu
Current address: Department of Mathematics, Virginia Tech, Blacksburg VA 24061-0123