Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure

Alice Checcucci, Paolo Trevisi, Diana Luise, Monica Modesto, Sonia Blasioli, Ilaria Braschi* and Paola Mattarelli

Department of Agricultural and Food Science, University of Bologna, Bologna, Italy

Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs' diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.

Keywords: veterinary antibiotics, animal manure, antibiotic resistance genes, crop soils, antimicrobial resistance

INTRODUCTION

In recent decades, the overuse and misuse of antibiotics in human and veterinary medicine has become a serious public health issue (World Health Organization, 2014; Aidara-Kane et al., 2018). The increased number of resistant pathogens and commensal bacteria has been associated with the environmental spread of antibiotics and the propagation of antimicrobial resistant genes (ARGs; Levy, 1998; Witte, 1998; He et al., 2020). Furthermore, the environmental diffusion of antibiotics may lead to the change (Han et al., 2018) and loss (Chen et al., 2019) of microbial community diversity in soil (Kemper, 2008).

Antibiotics are used worldwide in livestock production, thus increasing the risk of antimicrobial resistance (AMR) spread. When administered for prophylactic treatments, antibiotics can directly increase selective pressure, thus favoring the generation of antibiotic-resistant bacteria (ARB;
ARGs in the environment

The majority of antibiotics are naturally produced by microbes as a self-protection mechanism against other microorganisms. ARGs have been always present in the environment. ARGs encoding resistance for a large set of antibiotics have been found in 30,000-year-old Beringian permafrost and in bacteria isolated from prehistoric caves (D’Costa et al., 2011; Berglund, 2015). When present in the environment at a sub-inhibitory concentration, antibiotics frequently play a role in transcription regulation and in the exchange of signals among cells (i.e., quorum sensing mechanism and conjugation) (Reygaert, 2018).

Antibiotic resistance consists of a large variety of mechanisms, such as inactivation by specific cleaving enzymes, exclusion from cells via efflux pumps, interference with protein synthesis, limitation of drug uptake, and modification of antibiotic target.
Resistance acquired through MGEs and plasmids is responsible for the last two mechanisms in which the resistance extent depends on bacterial species and acquired ARGs (Reygaert, 2018; Kraemer et al., 2019). The antibiotic selective pressure driving the acquired resistance determines accurate ARGs’ specialization, thus making the environment a potential reservoir.

Anthropogenic activities affect antibiotic and ARGs’ spread with somewhat predictable effects (Vikesland et al., 2017). In livestock farming, the use of antibiotics varies depending on the farming type and location, having a considerable effect on ARGs’ concentration. Among the ARGs most frequently detected in livestock production, those related to sulfonamide resistance (sul) (Table 1) are particularly diffused in aquatic systems (Chen et al., 2015; Makowska et al., 2016). In surface and fresh waters, sul genes were found in IncQ plasmid group (Sköld, 2001; Berglund, 2015). Similarly, diaminopyrimidine genes (dfr), which confer resistance to antimicrobial trimethoprim, have been identified in both class 1 and class 2 integrons (Deng et al., 2015). Similarly, quinolone resistance qnr genes have been frequently associated with different plasmid groups. Both dfr and qnr genes easily disseminate in the environment, being found in surface waters (Berglund, 2015), wastewaters, and related irrigated soils (Dalkmann et al., 2012). Tetracycline resistance genes (tet) are widely diffused in different pathogenic and environmental bacteria (Roberts, 2005) and are often detected in sewage treatment plants, soil, and surface and ground water (Chee-Sanford et al., 2001; Berglund, 2015). In the same environments, erm genes, which are the most widespread macrolides resistance gene, were isolated.

Essentially, ARGs’ diffusion is associated with a stress response activated by exposure to antibiotics as well as with the mobilization of several integrative and conjugative elements. ARGs’ maintenance depends on their considerably low fitness cost. In fact, once a specific ARG has been acquired by a bacterial cell, it must evolve to produce more benefits than costs in order for multiple copies of the same gene to be kept and to maintain the expression control of genes in MGEs (Bengtsson-Palme et al., 2017). Furthermore, as already mentioned, nutrient rich environments can positively influence the ARGs’ spread and facilitate cell–cell interactions (Manaia et al., 2018) (Figure 1).

THE USE OF VETERINARY ANTIBIOTICS

In veterinary medicine, antimicrobials can be used as therapeutics and/or growth promoters. Antibiotic growth promoters (AGPs) are antimicrobial substances administered at a sub-therapeutic dose for a prolonged time with the main purpose being to improve the feed conversion rate, especially in young animals, raising the economical profit of farmers. Since 2006, both the European Union and Australia have forbidden the use of AGPs. Nevertheless, in most other countries the use of AGPs is still permitted (Guardabassi et al., 2009).

Among breeding farms, poultry and pig livestock have received the majority of antibiotics for therapeutic or prophylactic use (Ungemach, 2000; Kim et al., 2011), resulting in an abundance of ARGs greater than three orders of magnitude compared to other farming systems, such as fish and cattle farming. Several studies confirmed swine farms as a hot-spot for ARB and ARGs (Rosen, 1995; Cromwell, 2002; de Greeff et al., 2019; Petrin et al., 2019). Recently, the scientific community investigated prevalence, abundance, and possible mobilization of ARGs in pig farms and surrounding environments (Hölzel et al., 2010; Marti Serrano, 2014; Petrin et al., 2019; Van den Meersche et al., 2019; Wu et al., 2019).
Antibiotic family	Most used	Animal Farming	Use	Contrasted bacteria and recognized main targets	Resistance mechanism	Main ARGs
Macrolides	Tylosin	Cattle	Gastrointestinal and respiratory infections	Gram-positive bacteria.	Interference with protein synthesis (sequestration of mRNA ribosome-binding site)	erm, msr, mef genes
	Erythromycin	Pig	Main target: *Lawsonia intracellularis*	Staphylococcus aureus		
	Clarithromycin	Pig/ Poultry	Urinary tract infections	Gram-positive and Gram-negative bacteria. Main target: *Enterobacteriaceae, Pasteurellaceae*	Interference with folic acid synthesis competing for the enzyme DHPS	sll, sull genes
Sulfonamides	Sulfamethazine	Cattle/ Pig	Gastrointestinal and respiratory infections	Interference with efflux pump systems	tet genes	
		Pig	Respiratory infections			
Tetracyclines	Chlortetracycline	Cattle	Systemic and local infections	Gram-positive and Gram-negative bacteria	Interference with efflux pump systems	tet genes
		Pig	Gastrointestinal and respiratory infections			
	Oxytetracyclines	Pig				
	Doxycycline	Pig				
Quinolones	Fluoroquinolones (Enrofloxacin, Danofloxacin, Marbofloxacine)	Pig	Intestinal infections	Gram-positive and Gram-negative bacteria, including mycobacteria, and anaerobes	Mutations in the genes encoding quinolone target DNA gyrase and topoisomerase IV. Interference with efflux pump systems	qnr genes
β-lactams	Penicillins (Amoxicilline, Ampicillines) Cephalosporins, Carbapenems	Pig				
		Cattle	Respiratory diseases	Gram-positive and Gram-negative bacteria	Interference with cell wall synthesis and permeability, inactivation through β-Lactamase enzyme	bla, amp, pen genes,
		Cattle/ Poultry/ Dog/ Cat	Necrotic enteritis			
Aminoglycosides	Streptomycin, Spectinomycin, Neomycin, Aspramyycin, Gentamycin, Lincomycin	Pig	Intestinal infections	Gram-positive, and Gram-negative bacteria, if aerobic	Inhibition of protein synthesis (ribosome interference)	aac, aad, aad aph genes
Phenics	Chloramphenicol	Pig	Respiratory disease, foot rot	Broad spectrum. Main target: *Photobacterium, Salmonella, E. coli*	Enzymatic modification of antibiotic molecules	cat, pp-flo, flo genes
	Thiamphenicols (thiamphenicol, florfenicol)	Pig				
Diaminopyrimidines	Trimethoprim	Horse	Post-weaning scours	Gram-positive and many Gram-negative bacteria. Main target: *Enterobacteriaceae*	Interference with folic acid synthesis by binding the enzyme DHFR	dfr genes
		Pig			(Continued)	
Table 1 summarizes the main antibiotic families and the most used antimicrobics in livestock animals for therapeutic use. Nowadays, more than 150 antimicrobial compounds in livestock production are used. The residues inevitably end up in the environment because of manure application on agricultural lands (Baguer et al., 2000). In 2010, more than 63,000 tons of antimicrobials were consumed by livestock across the globe. The predicted growth of the world’s population allows for an estimated increase in antibiotic consumption of up to 105,000 tons by 2030 (Tasho and Cho, 2016). For this reason, specific action plans have been defined to reduce the use of antibiotics as therapeutics for livestock in several countries (i.e., the European One Health Action Plan against Antimicrobial Resistance, 2017; the National Strategy to Combat Antibiotic-Resistant Bacteria, proposed by the White House, 2014; the National Action Plan to Contain Antimicrobial Resistance issued by the Chinese National Health and Family Planning Commission, 2016–2020).

MANURE TREATMENTS

Besides direct collection into aerobic or anaerobic lagoons, animal manure can undergo drying and liquid-solid phase separation. Manure solid phase, as well as whole manure if shovelable, is traditionally composted to produce biofertilizer. Currently, anaerobic digestion and biological treatments of animal manure are often adopted on intensive animal farms (Van Epps and Blaney, 2016).

Composting can substantially reduce the antibiotic load, especially during the thermophilic phase (Zhang et al., 2019), but recalcitrant antibiotics accumulate in compost products and in amended soil (Bohrer et al., 2019; Zang et al., 2019). A general ARG abatement (0.7–2.0 log decrease) is obtained through thermophilic composting of swine, cattle, and poultry manure, depending on manure type and operational conditions (He et al., 2020).

Biological treatments of animal manure and wastewater, which are adopted to reduce the environmental input of nitrates, slightly decreases the levels of antibiotic residues and pathogenic bacteria (Van den Meersche et al., 2019). Antimicrobial resistant gene reduction of 0.1–3.3 log is observed in swine manure after treatment (He et al., 2020).

Anerobic digestion (AD) is adopted to stabilize manure with a final production of methane (Fubin et al., 2016, 2017). A 0.3–52 log decrease of ARGs was observed in digestate from swine wastewater (He et al., 2020). Interestingly, the higher the content of volatile solids in manure and the mixing rate, the higher the ARGs number in the digestate (Turker et al., 2018). The combined pasteurization and AD of swine manure reduced sole archaeal communities, whereas simple AD affected bacteria and archaea (Fubin et al., 2020). Manure pretreatment with bacterial strains is effective in degrading antibiotics (Liu et al., 2019) and enhancing biogas production, but the overall effect on ARB and ARGs was not addressed.

 Constructed wetlands are vegetated aquatic systems that can be adopted for the treatment of wastewater and agricultural drainage water (Lavrnic et al., 2018). Their ability to reduce

Table 1

Antibiotic family	Main ARGs	Contrasted bacteria and recognized main targets	Resistance mechanism	Animal farming	Use	Most used	References
Polypeptides	Bacitracin, Colistin	Gram-positive (Bacitracin) or Gram-negative (Colistin) bacteria. Main Gram negative target: E. coli, Salmonella spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, or Acinetobacter.	LPS modification, efflux pump systems regulation	Pig	Intestinal diseases	Gram-positive (Bacitracin) or Gram-negative (Colistin) bacteria. Main Gram negative target: E. coli, Salmonella spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, or Acinetobacter.	petinaki et al., 2008; Guardabassi et al., 2009; Abbas et al., 2011; Van Hoek et al., 2011; Li et al., 2013; Shang et al., 2013; Tasho and Cho, 2016; Deng et al., 2017; Aghapour et al., 2019; https://www.msdvetmanual.com/pharmacology/antibacterial-agents)
Lincosamides	Lincomycin	Pig	Respiratory and Intestinal infections	Campylobacter	Gram positive target: Campylobacter	Alteration of the antibiotic target site	lnu, lin, erm genes
Pleuromutilins	Tiamulin	Pig	Respiratory and Intestinal infections	Pasteurellaceae, Brachyspira, Mycoplasma	Pasteurella	Alteration/protection of the antibiotic target site	vga, sal, lsa genes
Valnemulin	None	Poultry	Respiratory and Intestinal infections	Mycoplasma	Mycoplasma	Additional mechanisms may be involved in the resistance mechanism	

References: Schwarz et al., 2001; Petinaki et al., 2008; Guardabassi et al., 2009; Abbas et al., 2011; Van Hoek et al., 2011; Li et al., 2013; Shang et al., 2013; Tasho and Cho, 2016; Deng et al., 2017; Aghapour et al., 2019; https://www.msdvetmanual.com/pharmacology/antibacterial-agents.
ARGs in swine wastewater resulted in a 0.18–3 log decrease (He et al., 2020).

Oxidizing post-treatments, as ozonation or Fenton conditions, can be used on animal or treated wastewaters to degrade antibiotics and bacteria thanks to the activity of reactive oxygen species (Balcıoğlu and Ötker, 2003; Ikehata et al., 2006; Uslu and Balcıoğlu, 2009). Among advanced oxidation processes, highly costly ionizing radiations are known for their ability to destroy microbial DNA. Therefore, affordable combinations of ionizing radiation and oxidation allows for the degradation of antibiotics and ARGs in organic matrices, although with a high biological and environmental risk (Chu et al., 2019, 2020).

DIFFERENT APPROACHES TO RESISTOME PROFILING STUDY

Even though AMRs introduced in the environment with animal manure have been largely explored (Dolliver et al., 2008; Selvam et al., 2012b), contradictory information exists regarding the fate of ARGs (Selvam et al., 2012a; Wang et al., 2013; Xie et al., 2016). The growing need for the control of ARGs’ spread prompted the scientific community to set up and to validate refined molecular methods for the study of ARGs’ dissemination dynamics among environmental microbial communities.

Both 16S rRNA amplicon and untargeted sequencing can be considered exhaustive methods for the exploration of microbial community structure in manure-fertilized soil and farm waste. Several studies on resistome diffusion in wastewater treatment plants (Yadav and Kapley, 2019), sewage sludge composting units (Su et al., 2015), and urban sewage support the metagenomic approach (Hendriksen et al., 2019) in monitoring ARGs’ level during treatments and seasonal changes. A recent work (Han et al., 2018) showed that the shift in soil bacterial communities caused by manure application leads to changes in the soil bacteria resistome.

Recently, studies on the detection of genetic markers associated with AMR (transposases and class 1 integron-integrase genes) and ARGs have been markedly increasing. The quantification of ARGs in soils amended with livestock and swine manure (Brooks et al., 2014; Tao et al., 2014) was performed with high-throughput qPCR assay (Rocha et al., 2018; Blau et al., 2019). In a recent study, both intracellular and extracellular DNA containing ARGs were quantified in sludge at about 10^{10} and 10^{12} copies per gram, respectively (Dong et al., 2019). Here, the intracellular ARGs were assessed through conjugation with cell–cell contact, whereas the extracellular ARGs were assessed through natural transformation. Several works on different manure types focused on the quantification of targeted genes intI1 and intI2 for class 1 and 2 integron-integrase genes and korB gene, specific for IncP-1 plasmids, together with ARGs (Hu et al., 2016; Blau et al., 2018, 2019).

As already reported, plasmid-mediated ARGs’ diffusion is frequently used, especially for the role of plasmids in the rapid bacterial adaptation and fitness improvement (Smalla et al., 2000). Exogenous plasmid isolation techniques (Bale et al., 1988) clarified how plasmids diffuse in different environments. Recently, plasmids from municipal sewage sludge and recipient bacteria were analyzed for their transferability by exogenous isolation (Blau et al., 2018; Wolters et al., 2018). Referring to pig manure samples, four IncQ-like plasmids were isolated in recipient strains: Pseudomonas putida UWC1, Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and E. coli. The plasmid transferability in E. coli strains was not efficient, underlying a broad but highly specific host range (Smalla et al., 2000).

Recently, simplified mathematical models have been applied to predict and quantify ARGs’ spread in livestock animal gut microbiomes (Andersen et al., 2020) and in agricultural waste (Baker et al., 2016). In such environments, the variables involved in the ARGs’ spread are countless and depend on a wide range of intrinsic and extrinsic factors, such as genetic mechanisms of ARB replication, HGT dynamics, environmental and stressor conditions, and microbiota composition. Therefore, future research should focus on the improvement of predictive models of ARGs’ dissemination mechanism, exploitable for targeted operations in livestock waste management.

CONCLUSION

Although a decrease in the use of antibiotics in livestock production is highly recommended, antibiotics’ overuse remains an important issue to solve. The uncontrolled spread of ARB and ARGs in the environment due to soil manuring is of serious concern. Many studies highlight ARGs’ presence in microbial communities of livestock manure and manured agricultural fields, despite the improved livestock and waste management strategies to contain in-farm ARGs’ spread. In the last thirty years, knowledge on pathways of ARGs’ diffusion from animal waste to the environment was enriched by multidisciplinary research approaches.

In light of the current knowledge, the study of the dynamics of AMR and ARGs’ spread in manure and environments surrounding livestock farms should combine molecular and functional genetics strategies with prediction models of the diffusion of MGEs (integrons and plasmids) and metagenomic data.

AUTHOR CONTRIBUTIONS

AC: original draft preparation, figure and table conceptualization, review, and editing. PT, MM, and SB: review. DL: original draft preparation and table preparation. IB and PM: original draft preparation and table preparation. IB and PM: original draft preparation and table preparation. DL: original draft preparation and review. All authors contributed to critically revising the manuscript and gave final approval for publication.

FUNDING

This research was supported by Programma di Sviluppo Rurale 2014-2020 Regione Lombardia (Project REFLUA: Swine manure and environment).
REFERENCES

Abbas, R. Z., Iqbal, Z., Blake, D., Khan, M. N., and Salemi, M. K. (2011). Anticoccidial drug resistance in fowl coccidia: the state of play revisited. Worlds Poult. Sci. J. 67, 337–350. doi: 10.1017/S004393991100033X

Agbanan, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A. Z., Mahmood, S. S., Tanomand, A., et al. (2019). Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist. 12, 965. doi: 10.2147/ird.s198844

Aidara-Kane, A., Angulo, F. J., Conly, J. M., Minato, Y., Silbergeld, E. K., McEwen, S. A., et al. (2018). World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 7:7.

Andersen, V. D., Aarestrup, F. M., Munk, P., Jensen, S. M., de Kegel, L. V., Bortolaiá, V., et al. (2020). Predicting effects of changed antimicrobial usage on the abundance of antimicrobial resistance genes in finishes’ gut microbiomes. Prev. Vet. Med. 174:104853. doi: 10.1016/j.prevetmed.2019.104853

Baguer, A. J., Jensen, I., and Krogh, P. H. (2000). Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40, 751–757. doi: 10.1016/S0045-6535(99)00449-X

Baker, M., Hobman, J. L., Dodd, C. E. R., Ramsden, S. J., and Stelkel, D. J. (2016). Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiol. Ecol. 92:fiw040. doi: 10.1093/femsec/fiw040

Balcıo˘glu, I. A., and Ötker, M. (2003). Treatment of pharmaceutical wastewater factors influencing the development and spread of antibiotic resistance. Appl. Environ. Microbiol. 69, 2813–2830.

Balcıo˘glu, I. A., and Ötker, M. (2003). Treatment of pharmaceutical wastewater factors influencing the development and spread of antibiotic resistance. Appl. Environ. Microbiol. 69, 2813–2830.

Balcıo˘glu, I. A., and Ötker, M. (2003). Treatment of pharmaceutical wastewater factors influencing the development and spread of antibiotic resistance. Appl. Environ. Microbiol. 69, 2813–2830.

Chen, Q.-L., An, X.-L., Zheng, B.-X., Gillings, M., Peñuelas, J., Cui, L., et al. (2019). Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Biol. Ecol. 1, 3–13. doi: 10.1016/j.sbioleco.2019-0011-0

Chu, L., Chen, D., Wang, J., Yang, Z., and Shen, Y. (2019). Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. Waste Manag. 96, 190–197. doi: 10.1016/j.wasman.2019.07.031

Chu, L., Chen, D., Wang, J., Yang, Z., and Shen, Y. (2020). Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. J. Hazard. Mater. 382:121058. doi: 10.1016/j.jhazmat.2019.121058

Collis, C. M., and Hall, R. M. (1995). Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob. Agents Chemother. 39, 155–162. doi: 10.1128/aac.39.1.155

Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Anim. Biotechnol. 13, 7–27. doi: 10.1081/abio-120005767

Dalkmann, P., Brosat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., et al. (2012). Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLoS One 7:e5397. doi: 10.1371/journal.pone.005397

D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., et al. (2011). Antibiotic resistance is ancient. Nature 477:457.

de Greiff, S. C., Mouton, J. W., Schoffelen, A. F., and Verduin, C. M. (2019). NetMap 2019: Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands/MARAN 2019: Monitoring of Antimicrobial Resistance and Antibiotic Use in Animals in the Netherlands in 2018. Bilthaven: National Institute for Public Health and the Environment. doi: 10.21945/BIVM-2019-0038

Deng, F., Wang, H., Liao, Y., Li, J., Feßler, A. T., Michael, G. B., et al. (2017). Detection and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance genes in staphylococci isolated from pets. Front. Microbiol. 8:234. doi: 10.3389/fmicb.2017.00234

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Mao, J., et al. (2015). Resistance integrons: class 1,2 and 3 integrons. Ann. Clin. Microbiol. Antimicrob. 14:45.

Ding, G.-C., Radl, V., Schloter-Hai, B., Jechalke, S., Heuer, H., Smalla, K., et al. (2014). Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One 9:e92958. doi: 10.1371/journal.pone.0092958

Dolliver, H., Gupta, S., and Noll, S. (2008). Antibiotic degradation during manure composting. J. Environ. Qual. 37, 1245–1253. doi: 10.2134/jeq2007.0399

Dong, P., Wang, H., Fang, T., Wang, Y., and Ye, Q. (2019). Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 125, 90–96. doi: 10.1016/j.envint.2019.01.050

Du, L., and Liu, W. (2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 32, 309–327. doi: 10.1007/s11353-011-0662-9

Finley, L. R., Collignon, P., Larsson, D. G. J., McEwen, S. A., Li, X.-Z., Gaze, W. H., et al. (2013). The scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57, 708–710. doi: 10.1093/cid/cit355

Fondi, M., and Fani, R. (2010). The horizontal flow of the plasmid resistome: a review. Front. Microbiol. 1, 3–13. doi: 10.3389/fmicb.2013.00004

Fubin, Y., Dong, H., Zhang, W., Zhu, Z., and Shang, B. (2020). Additional function of pasteurisation pretreatment in combination with anaerobic digestion on antibiotic removal. Bioresour. Technol. 297:122414. doi: 10.1016/j.biortech.2019.122414

Fubin, Y., Ji, C., Dong, H., Tao, X., and Chen, Y. (2016). Research progress on effect of antibiotic on anaerobic digestion treatment in animal manure. J. Agric. Sci. Technol. 18, 171–177.

Fubin, Y., Zifu, L., Saino, M., and Hongmin, D. (2017). Performance of alkaline pretreatment on pathogens inactivation and sludge solubilization. Int. J. Agric. Biol. Eng. 10, 216–223.

Gillings, M. R. (2013). Evolutionary consequences of antibiotic use for the resistome, mobiline and microbial pangenome. Front. Microbiol. 4:4. doi: 10.3389/fmicb.2013.00004
Antibiotic Resistance Genes in Animal Manure

Gotz, A., and Smalla, K. (1997). Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl. Environ. Microbiol. 63, 1980–1986. doi: 10.1128/aem.63.5.1980-1986.1997

Guardabassi, L., Jensen, L. B., and Kruse, H. (2009). Guide to Antimicrobial Use in Animals. New York, NY: John Wiley & Sons.

Hall, R. M., and Collis, C. M. (1998). Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist. Updat. 1, 109–119. doi: 10.1016/s1368-7464(98)80026-5

Han, X.-M., Hu, H.-W., Chen, Q.-L., Yang, L.-Y., Li, H.-L., Zhu, Y.-G., et al. (2018). Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol. Biochem. 126, 91–102. doi: 10.1016/j.soilbio.2018.08.018

He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., et al. (2020). "Uptake mechanism of antibiotics in plants," in Antibiotics and Antimicrobial Resistant Microbes in the Environment, Ed. M. Z. Hashmi (Amsterdam: Elsevier). 183–188. doi: 10.1016/b978-0-12-818882-8.00011-5

Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E. L., Ditta, A., Nawah, J., et al. (2020). Antibiotics in poultry manure and their associated health issues: a systematic review. J. Soils Sediments 20, 486–497. doi: 10.1136/iss.2019-023670

Nardelli, M., Scalzo, P. M., Ramirez, M. S., Quiroga, M. P., Cassini, M. H., and Centrón, D. (2012). Class I integrons in environments with different degrees of urbanization. PLoS One 7:e39223. doi: 10.1371/journal.pone.0039223

Petinaki, E., Guérin-Faublée, V., Pichereau, V., Villers, C., Achar, A., Malbruny, B., et al. (2008). Lincomycin resistance gene lnu (D) in Streptococcus uberis. Antimicrob. Agents Chemother. 52, 626–630. doi: 10.1128/aac.01126-07

Pruden, A., Larsson, D. J., Amézquita, A., Collignon, P., Brandt, K. G., Graham, O., et al. (2019). Global monitoring of antimicrobial resistance based on plasmids. Microbiol. Mol. Biol. Rev. 83, 1–11. doi: 10.1093/mmbrev/mjz011

Rogaart, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4:482. doi: 10.3934/microbiol.2018.4.482

Robert, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 242, 536–545. doi: 10.1111/j.1574-6968.2005.00189.x

Rosen, G. D. (1995). "Antibacterials in poultry and pig nutrition," in Biotechnology in Animal Feeds and Animal Feeding, eds R. J. Wallace, and A. Chesson (Hoboken, NJ: Wiley), 172.

Rowe-Magnus, D. A., and Mazel, D. (2002). The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 292, 115–125. doi: 10.1016/s1438-4221(01)00197-9

Schwarz, S., Kehrenberg, C., and Walsh, T. R. (2001). Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 17, 431–437. doi: 10.1016/s0924-8579(01)00297-7

Selvam, A., Xu, D., Zhao, Z., and Wong, J. W. C. (2012a). Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioreourc. Technol. 126, 383–390. doi: 10.1016/j.biortech.2012.03.045

Selvam, A., Zhao, Z., and Wong, J. W. C. (2012b). Composting of swine manure spiked with sulfadiazine, chlorotetacycline and ciprofloxacins. Bioreourc. Technol. 126, 412–417. doi: 10.1016/j.biortech.2011.12.073

Shang, R., Wang, J., Guo, W., and Liang, J. (2013). Efficient antibiotic agents: a review of the synthesis, biological evaluation and mechanism of pleuromutilin derivatives. Curr. Top. Med. Chem. 13, 3013–3025. doi: 10.2174/156802661366602017
Skold, O. (2001). Resistance to trimethoprim and sulfonamides. *Vet. Res.* 32, 261–273. doi: 10.1051/vetres:2001123

Smalla, K., Heuer, H., Götz, A., Niemeyer, D., Krögerrecklenfort, E., and Tietze, E. (2000). Exogenous isolation of antibiotic resistance plasmids from piggy barn manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. *Appl. Environ. Microbiol.* 66, 4854–4862. doi: 10.1128/aem.66.11.4854-4862.2000

Song, J., Rensing, C., Holm, P. E., Virta, M., and Brandt, K. K. (2017). Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. *Environ. Sci. Technol.* 51, 3040–3047. doi: 10.1021/acs.est.6b05342

Su, J.-Q., Wei, B., Ou-Yang, W.-Y., Huang, F.-Y., Zhao, Y., Xu, H.-J., et al. (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. *Environ. Sci. Technol.* 49, 7356–7363. doi: 10.1021/acs.est.5b01012

Suzuki, H., Yano, H., Brown, C. J., and Top, E. M. (2010). Predicting plasmid promiscuity based on genomic signature. *J. Bacteriol.* 192, 6045–6055. doi: 10.1128/jb.00277-10

Tao, C.-W., Hsu, B.-M., Ji, W.-T., Hsu, T.-K., Kao, P.-M., Hsu, C.-P., et al. (2014). Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. *Sci. Total Environ.* 496, 116–121. doi: 10.1016/j.scitotenv.2014.07.024

Tasho, R. P., and Cho, J. Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. *Sci. Total Environ.* 563, 366–376. doi: 10.1016/j.scitotenv.2016.04.140

Teuber, M. (2001). Veterinary use and antibiotic resistance. *Curr. Opin. Microbiol.* 4, 493–499. doi: 10.1016/s1369-5274(00)00241-1

Thomas, C. M., and Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nat. Rev. Microbiol.* 3:711. doi: 10.1038/nrmicro1234

Troviano, E., Beneduce, L., Gross, A., and Ronen, Z. (2018). Antibiotic-resistant bacteria in greywater and greywater-irrigated soils. *Front. Microbiol.* 9:2666. doi: 10.3389/fmicb.2018.02666

Turker, G., Akyol, Ç, Ince, O., Aydin, S., and Ince, B. (2018). Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline. *Ecotoxicol. Environ. Saf.* 147, 349–356. doi: 10.1016/j.ecoenv.2017.08.044

Ungemach, F. R. (2000). Figures on quantities of antibacterials used for different purposes in the EU countries and interpretation. *Acta Vet. Scand.* 93, 89–97.

Uslu, M. O., and Balcoğlu, I. A. (2009). Comparison of the ozonation and Fenton process performances for the treatment of antibiotic containing manure. *Sci. Total Environ.* 407, 3450–3458. doi: 10.1016/j.scitotenv.2009.01.045

Van den Meersche, T., Rasschaert, G., Haesebrouck, F., Van Coillie, E., Herman, L., Van Weyenberg, S., et al. (2019). Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. *Ecotoxicol. Environ. Saf.* 175, 29–38. doi: 10.1016/j.ecoenv.2019.01.127

Van Epps, A., and Blaney, L. (2016). Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. *Curr. Pollut. Rep.* 2, 135–155. doi: 10.1007/s40726-016-0037-1

Van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., and Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: an overview. *Front. Microbiol.* 2:203. doi: 10.3389/fmicb.2011.00203

Verras, C., Van Boxstael, S., Van Meerwenne, E., Van Coillie, E., Butaye, P., Catry, B., et al. (2013). Antimicrobial resistance in the food chain: a review. *Int. J. Environ. Res. Public Health* 10, 2643–2669.