Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:

http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.inra.fr

OPEN ACCESS

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
DIVERSITY OF MITES (ACARI) IN VINEYARD AGROECOSYSTEMS (VITIS VINIFERA) IN TWO VITICULTURAL REGIONS OF RIO GRANDE DO SUL STATE, BRAZIL

Liana JOHANN1,2, Tamara Bianca HORN2, Gervásio Silva CARVALHO1 and Noeli Juarez FERLA2

(Received 02 January 2013; accepted 27 January 2014; published online 30 June 2014)

1 Programa de Pós-Graduação em Zoologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil. lianajohann@yahoo.com.br, gervasio@pucrs.br
2 Laboratório de Acarologia, Museu de Ciências Naturais, Unicentes – Centro Universitário, Lajeado, RS, Brasil. tamara.horn83@hotmail.com, njferla@unicentes.br

ABSTRACT — The aim of this work was to study mite diversity in vineyard plots planted with Cabernet Sauvignon and Pinot Noir cultivars and on associated non-cultivated plants in two viticultural regions of Rio Grande do Sul State, Brazil. Monthly assessments of leaves and buds of vines and of non-cultivated plants were undertaken between October 2006 and September 2007. Twelve thousand mites belonging to 17 families and 46 genera and representing 61 mite species were collected. The most abundant phytophagous mites were Calepitrimerus vitis, Colomerus vitis and Panonychus ulmi on grapevines. Among the predatory mites, the most abundant were Neoseiulus californicus and Agistemus floridanus. The non-cultivated plants species that showed the greatest richness of mites were Plantago tomentosa, Plantago lanceolata and Senecio sp. The most abundant phytophagous mites on non-cultivated plants were Tetranychus ludeni and Brevipalpus phoenicis in the viticultural regions of Bento Gonçalves and Candiota, respectively, and Pronematus anconai was generally the most abundant predatory mite. In the region of Bento Gonçalves, species richness and abundance in the agroecosystem were far higher than in the region of Candiota.

KEYWORDS — Grapevines; grape cultivars; non-cultivated plants; Calepitrimerus vitis; Panonychus ulmi; Neoseiulus californicus

INTRODUCTION

Grapevines (Vitis vinifera L.: Vitaceae) endure different forms of stress, with losses caused by pathogens and pests being considered even more severe, mainly when environmental conditions favor their development (Fajardo, 2003). When crops are combined with non-cultivated plants, they show a higher availability of alternative resources and microhabitats, allowing predators to reach higher levels of abundance and diversity, fostering the control of species considered pests (Root, 1973; Letourneau and Altieri, 1983).

Species belonging to the mite families Eriophyidae, Tarsonemidae, Tetranychidae and Tenuipalpidae are important crop pests (Reis and Melo, 1984; Schruft, 1985; Soria et al., 1993; Monteiro, 1994; Duso and De Lillo, 1996; Schultz, 2005; Ferreira et al., 2006; Ferla and Botton, 2008; Johann et al., 2009; Klock et al., 2011). On the other hand, species belonging to the families Phytoseiidae, Stigmaeidae

http://www1.montpellier.inra.fr/CBGP/acarologia/ 137
ISSN 0044-586-X (print). ISSN 2107-7207 (electronic)
and Iolinidae are considered the most important predators to control the latter mite pests (McMurtry et al., 1970; Moraes 1991, 2002; Duso and De Lillo, 1996; Duso et al., 2004).

Rio Grande do Sul State is a major wine-producing region in Brazil, where the vineyards are cultivated on about 50,646 hectares, with a grape production of approximately 829,589 tons per harvest (Mello, 2012). However, little is known about local mite diversity, and fundamental data for defining pest monitoring and controlling strategies are scarce. Therefore, this work focused on the study of mite diversity associated with Cabernet Sauvignon and Pinot Noir cultivars and non-cultivated plants in two viticultural regions of Rio Grande do Sul State.

MATERIALS AND METHODS

Experimental vineyards

The study was conducted in vineyards planted with Cabernet Sauvignon (CS) and with Pinot Noir (PN), both trained using the espalier system and located in the municipalities of Bento Gonçalves (BG) (29°13’S, 51°33’W) and Candiota (CA) (31°28’S, 53°40’W). In BG, the vineyard of CS cultivar had a total area of 5.14 hectares and that of PN 2.48 hectares. In CA, the plot planted with CS cultivar had a total area of 7.3 hectares and that of PN 1.78 hectares. All vineyards were five years old and were managed identically. During the surveys, the agrochemicals applied in the four plots were similar and normally used, and in each plot, no acaricide treatment was applied on the three rows where samplings took place.

Sampling

Sampling was conducted once a month from October 2006 to September 2007; 20 vinestocks were randomly sampled in each cultivar, in each municipality. A branch was chosen from each vinestock, from which three leaves were taken from the apical, medial and basal thirds, totaling 60 leaves per sampling date per vineyard. In winter, between May and September 2007, 20 branches were sampled, randomly picked from each cultivar, in each municipality, from which three buds were taken, totaling 60 buds per sampling date per vineyard.

In addition to the sampling of grapevines, the five more common non-cultivated plant species growing between the three untreated rows were sampled monthly, in CS and PN plots from BG and CA. The five more common plants varied between plots and sampling events, depending on season [Rio Grande do Sul experiences an average temperature of 25 °C in summer and 10 °C in winter (Kuinchtner and Buriol, 2001)].

Grapevine leaves and branches with buds and non-cultivated plants were separated in plastic bags, and stored in a Styrofoam box with Gelox® to be transported to the laboratory, where they were observed under a stereomicroscope. Mites were gathered manually with a fine brush, from both sides of the leaves and inside the buds. The collected mites were mounted on slides in Hoyer medium (Jeppson et al., 1975).

Identifications

The identification of specimens to the species level was done using a phase contrast light microscope and identification keys (Pritchard and Baker, 1958; Atyeo, 1960; Summers and Price, 1970; Hughes, 1976; Smiley, 1978; André, 1980; Lindquist, 1986; Smiley, 1992; Baker and Tuttle, 1994; Amrine, 1996; Halliday et al., 1998; Matioli et al., 2002; Chant and McMurtry, 2007; Krantz and Walter, 2009; Mesa et al., 2009; Ferla et al., 2011). Oribatid mites were identified to the suborder level and Bdellidae to the family level. All collected material was stored at the Reference Collection of the Natural Sciences Museum of the UNIVATES University Center (Lajeado, Rio Grande do Sul, Brazil).

Data analyses

The data analysis process included data concerning mites found on grapevines and on non-cultivated plants, which together represented the agroecosystem.

Several indices were calculated using the software DivEs version 2.0 (Rodrigues, 2005):

i) Shannon-Wiener index \(H' = -\sum p_i \log p_i \), where \(p_i \)
Table 1: Mite species collected on Cabernet Sauvignon (CS) and Pinot Noir (PN) grapevines (V) cultivars and on non-cultivated plants (P) in the Bento Gonçalves (BG) and Candiota (CA) municipalities, Rio Grande do Sul.

Suborder	Family	Genus/species	CS-BG	PN-BG	CS-CA	PN-CA
			CP	CP	CP	CP
			Total	Total	Total	Total
			(P/V)	(P/V)	(P/V)	(P/V)

Astigmata	Glycyphagidae	Lysidegodius destructor	-	-	-	-	
	Winterschmidtiidae	Crupinius sp.	-	P, V	1/1	Aci	-
	Acidae	Asci sp.	-	-	P	1	Aci
	Prochenchidae	-	P, V	2	Aci	P	1
	Parasitidae	Heloparasites sp.	-	2	Aci	-	-
	Phytoseidae	Anthracus sp.	-	3	Aci	-	-
		Aneurocrus gauche	P	2	Aci	P	3
		Eusirus sp.	-	P, V	5/32	Aci	-
		Eusirus inoui	P	1	Aci	P, V	3/45
		Thripidiotus orie	-	P, V	3/1	Aci	-
		Typhlodromus orie	-	V, P	3/1	Aci	-
		Neotyphlodromus (Anthococcus) orie	-	V, P	3/1	Aci	-
		Calyptraria viol	P, V	3/10	Aci	P, V	5/195
		Tetranychus viol	V, P	3/135	Con P	V	9/94
		Chloroseiulus viol	P	2	Aci	-	-
		Neotyphlodromus orie	-	-	-	-	
		Thripidiotus orie	-	V, P	3/1	Aci	-
		Neotyphlodromus (Anthococcus) orie	-	V, P	3/1	Aci	-
		Calyptraria viol	P, V	3/10	Aci	P, V	5/195
		Tetranychus viol	V, P	3/135	Con P	V	9/94
		Chloroseiulus viol	P	2	Aci	-	-
		Neotyphlodromus orie	-	-	-	-	
		Thripidiotus orie	-	V, P	3/1	Aci	-
		Neotyphlodromus (Anthococcus) orie	-	V, P	3/1	Aci	-
		Calyptraria viol	P, V	3/10	Aci	P, V	5/195
		Tetranychus viol	V, P	3/135	Con P	V	9/94
		Chloroseiulus viol	P	2	Aci	-	-
		Neotyphlodromus orie	-	-	-	-	
		Calyptraria viol	P, V	3/10	Aci	P, V	5/195
		Tetranychus viol	V, P	3/135	Con P	V	9/94
		Chloroseiulus viol	P	2	Aci	-	-
		Neotyphlodromus orie	-	-	-	-	
		Calyptraria viol	P, V	3/10	Aci	P, V	5/195
		Tetranychus viol	V, P	3/135	Con P	V	9/94
		Chloroseiulus viol	P	2	Aci	-	-
		Neotyphlodromus orie	-	-	-	-	

Species richness (P/V)	25/38	23/21

* Occurrence: P - non-cultivated associated plant; V - grapevine.

** Constancy index: Con - Constant (species present in more than 50% of the samples); Aci - Accesory (species present in 25 to 50% of the samples); Ac - Accidental (species present in less than 25% of the samples).
TABLE 2: Ecological indexes of mite communities encountered on non-cultivated plants and vine from plots planted with Cabernet Sauvignon (CS) and Pinot Noir (PN) cultivars in Bento Gonçalves and Candiota municipalities, Rio Grande do Sul, Brazil.

	Bento Gonçalves	Candiota		
	CS	PN	CS	PN
Number of species	35	34	19	19
Number of individuals	2998	6098	1175	1837
Diversity of Shannon (H')	0.6777	0.6268	0.7312	0.6496
Evenness of J-Shannon (J)	0.4389	0.4092	0.5718	0.5080

is the proportion of specimens of each species in relation to the total number of specimens found in assessments performed) expresses richness and uniformity, giving more weight to rare species (Shannon, 1948);

ii) Shannon’s J evenness \(J = H'/H_{\text{max}}' \), where \(H' \) is the Shannon-Wiener index and \(H_{\text{max}}' \) is given by the following expression: \(H_{\text{max}}' = \log s \), where \(s \) is the number of species sampled) expresses the equitability of abundances in a community and allows the assessment of species stability over time (Brower and Zar, 1984).

The constancy index was calculated according to Bodenheimer (1955). The species were classified as “constant” when they were present in more than 50% of the samples, “accessory” when they were present in 25 – 50% of the samples and “accidental” when present in less than 25% of the samples).

The general similarity between these agroecosystems according to mite families with larger number of species was analyzed by Bray-Curtis clustering analysis, using BioDiversity Professional software (McAleece et al., 1997). The same analysis was performed with mites found on grapevines and with mites found on non-cultivated plants. The Bray-Curtis clustering analysis is a multifactorial analysis technique that uses a similarity matrix to build a tree, in which each branch represents a sample. Samples that share similarities are located in branches close to each other.

RESULTS

A total of 12,108 mites were collected on vine leaves and wild plants. They belonged to 17 families, 46 genera and 61 species (Table 1). The BG areas had the highest number of species and abundance, with 35 species in CS and 34 in PN, corresponding to 2998 and 6098 mites, respectively. In CA, 19 species were observed in both plots and the number of mites collected was clearly much lower than in BG, 1175 and 1837 mites on CS and PN, respectively. Phytoseiidae was the most represented family with the highest number of species (14), followed by Stigmaeidae and Eriophyidae with eight and seven species, respectively. Six species were common to the four plots, besides Oribatida: *Calepitrimerus vitis* (Nalepa, 1905), *Orthotydeus sp.*, *Neoseiulus californicus* (McGregor, 1954), *Brevipalpus phoenicis* (Geijskes, 1939), *Pronematus anconai* Baker, 1943 and *Acronemus sp.*

Diversity indices

Despite differences in species richness between the two localities, diversity index (\(H' \)) values were low and quite similar. For a given cultivar, evenness indices (J) were lower in BG compared to CA (Table 2). In each municipality, diversity and evenness were slightly higher in the vineyards planted with CS but these values were close to those observed in the plots planted with PN (Table 2).

Agroecosystems

The most abundant phytophagous mites in all the areas studied were *Calepitrimerus vitis*, *Panonychus ulmi* (Koch, 1936), *Colomerus vitis* (Pagenstecher, 1857) and *Polyphagotarsonemus latus* (Banks, 1904), with 6138, 2339, 255 and 185 specimens, respectively (Table 1). *Calepitrimerus vitis* was found on leaves of grapevines, and only one individual was found on a bud, in PN-CA. This species...
was considered constant only in PN-CA. *Panonychus ulmi* showed higher abundance in BG, mainly in PN, where it was considered as accessory. In this area, three individuals were collected from non-cultivated plants. In CA, *P. ulmi* only occurred in PN, where it was considered as accidental. *Polyphagotarsonemus latus*, only present in BG, was collected on grapevine leaves in PN and on non-cultivated plants in CS. This species was classified as accidental in both plots. *Colomerus vitis* was observed in the two municipalities. It was more abundant in CS-BG but was considered constant only in CS-CA. Only one individual was collected on grapevine leaves, and the remaining individuals were observed on buds.

The most abundant predatory mites were *N. californicus*, *Agistemus floridanus* Gonzales 1965 and *P. anconai*, with 448, 165 and 78 individuals, respectively. Eight predatory species were observed both on vineyards and on non-cultivated plants. Among them, *N. californicus* was the most abundant predator in PN-BG and in both plots of CA, where it was considered as constant. *Agistemus floridanus* was only observed in BG and classified as accessory. In CS-BG, it was only collected on grapevines, where it was the most abundant predator; in PN-BG it was present on grapevines and non-cultivated plants, however, it was not the most abundant predator. *Pronematus anconai*, observed in the four plots, was collected on grapevines and non-cultivated plants. It had a higher abundance in PN-BG, where it was considered as constant.

Orthotydeus sp. was the most abundant generalist mite, with 960 individuals, mainly collected on buds from grapevines and non-cultivated plants. It was considered as constant in all areas.

Grapevines

In BG, the numbers of mite species and mite specimens collected on grapevines were greater than in CA. Among them, the most abundant phytophagous mites were *Cal. vitis* and *P. ulmi*, and the most abundant predatory mites were *N. californicus* and *A. floridanus* (Figure 1 A, B and Table 1). In CA, *Cal. vitis* and *Tarsenonemus* sp. were the most abundant phytophagous mites in PN and CS (Figure 1 C, D and Table 1). Only 18 *P. ulmi* were observed in PN and this species was not detected in CS. Again, *N. californicus* was the most abundant predatory mite. In both localities, a greater number of mites were found on PN in comparison with CS (Figure 1).

Non-cultivated plants

A total of 63 non-cultivated plant species were sampled from which 44 mite species were collected (Table 3). The mite species richness in the non-cultivated plants was slightly higher than that in grapevines (Table 1). In BG, mites were found on 27 out of 34 non-cultivated plant species sampled, whereas in CA, mites were found on 24 species out of 40 non-cultivated plant species. Like on grapevines, the number of mites collected on non-cultivated plants was greater in BG than in CA (Table 3). Eleven plant species were common to both municipalities: *Senecio* sp. was the only plant collected in the four plots. *Bidens pilosa* L., *Plantago tomentosa* Lam., *Richardia brasiliensis* Gomes, *Rumex sp.*, *Solanum americanum* Mill., *Sonchus oleraceus* L., *Stachys arvensis* L. and *Trifolium repens* L. were collected in three plots, and *Gnaphalium spicatum* Lam. and *Plantago lanceolata* L. in two plots (Table 3). Mite diversity in these plants found in both municipalities was greater in BG than in CA: we observed on average 4.8 and 3.4 mite species per plant species in BG and CA, respectively.

The plant species that showed the greatest richness of mites also belonged to the most common plants: *P. tomentosa*, 19 mite species; *P. lanceolata*, 13 species; and *Senecio* sp., 9 species. In BG, a higher abundance of mites was observed for *P. tomentosa* (106 mites) on CS, and for *P. lanceolata* (48 mites) on PN. In CA, *Baccharis trimera* (Less.) DC. showed higher abundance of mites on CS and PN, with 49 and 67 mites, respectively (Table 3).

The most abundant phytophagous mites were *B. phoenicis* (157 specimens in 8 host plants) and *Tetranychus ludeni* Zacher, 1913 (81 specimens in 9 host plants) in CA and BG, respectively. Among predatory mites, *P. anconai* was the most abundant (47 specimens on 10 host plants, with 25 specimens collected on *Senecio* sp.). Thirteen species of phytoseiid mites were collected on non-cultivated
FIGURE 1: Abundance of main mite species found on grapevine in Bento Gonçalves (A - Cabernet Sauvignon; B - Pinot Noir) and Candiota (C - Cabernet Sauvignon; D - Pinot Noir) municipalities, Rio Grande do Sul, Brazil.
Table 3: Mite number of each species collected on non-cultivated plants in plots planted with, Cabernet Sauvignon (CS) and Pinot Noir (PN) cultivars, in the Bento Gonçalves (BG) and Candiota (CA) municipalities, Rio Grande do Sul.

Families	Non-cultivated plants	Mites	BG	CA		
			CS	PN	CS	PN
Amaranthaceae	*Amaranthus deflexus* L.	*Neoseiulus californicus*	-	-	1	
		Typhlodromus (Anthoseius) ornatus	-	-	1	
	Amaranthus hybridus L.	*Pretydeus* sp.	-	-	1	
	Amaranthus sp.	*Tarsenemus* spp.	-	-	1	
		Orthotydeus sp.				
Apiaceae	*Conium maculatum* L.	*Neoseiulus californicus*	-	-	2	62
		Tetranychus ludeni	-	-	2	
		Orthotydeus sp.	-	-	4	
Asteraceae	*Artemisia* sp.	*Acaronemus* sp.	-	-	1	
		Neoseiulus californicus	-	-	1	0
		Tarsenemus spp.	-	-	2	
		Typhlodromus aripo	-	-	1	
	Baccharis sp.	*Oribatida*	-	-	0	
		Tetranychus ludeni	-	-	0	
		Orthotydeus sp.	-	-	0	1
	Baccharis trimera (Less.) DC.	*Breipalpus phoenicus*	-	47	62	
		Neoseiulus californicus	-	-	1	0
		Tarsenemus spp.	-	-	2	
		Orthotydeus sp.	-	-	0	1
	Bidens pilosa L.	*Breipalpus phoenicus*	0	0	1	
		Oribatida	0	1	0	
		Tarsenemus spp.	0	0	3	
		Tetranychus ludeni	1	0	0	
		Orthotydeus sp.	1	0	3	
		Tetranychus (Anthoseius) ornatus	0	0	1	
	Zetzellia malvinae	*Oribatida*	0	0	1	
		Tetranychus ludeni				
	Brachiaria sp.	*Neoseiulus californicus*	-	2	-	
		Oligonychus sp. 1	-	17	-	
		Oligonychus sp. 2	-	1	-	
		Pronematus anconai	-	8	-	
	Calothecarpus biaristatus (DC.) H. Rob.	*Oribatida*	-	1	-	
		Tetranychus ludeni	-	7	-	
		Vasates sp.	-	4	-	
		Xenotarsonemus sp.	-	1	-	
	Conyza bonariensis (L.) Cronquist	*Oribatida*	-	-	0	-
		Tetranychus ludeni	-	7	-	
		Vasates sp.	-	4	-	
		Xenotarsonemus sp.	-	1	-	
	Conyza canadensis (L.) Cronquist	*Acaronemus* sp.	4	-	-	
		Oribatida	3	-	-	
		Pronematus anconai	2	-	-	
		Tarsenemus spp.	17	-	-	
		Emilia sp.	-	0	-	
		Erechites hieracifolius (L.) Raf. ex DC.	-	-	0	0
	Galinsoga parviflora Cav.	*Acaronemus* sp.	1	0	-	
		Agistemus floridanus	0	1	-	
		Euseius inouei	1	2	-	
		Neoseiulus californicus	1	0	-	
		Pronematus anconai	1	0	-	
		Tetranychus ludeni	7	11	-	
		Orthotydeus sp.	5	4	-	
Families	Non-cultivated plants	Mites	BG CS	PN	CA CS	PN
--------------------------	-----------------------	---	-------	----	-------	----
Galinsoga sp.						
Gnaphalium spicatum Lam.		Homeopronematus sp.				
		Tarsenemus spp.	0		0	2
		Xenarotonematus sp.				
Hypochaeris radicata L.		Tetranychus ludenl				
Hypochaeris sp.						
Senecio brasiliensis (Spreng.)		Brevipalpus phoenicis				
Less.		Orthotydeus sp.				
Senecio seloi (Spreng.) DC.		Arrenoseius gaucho				
Senecio sp.		Brevipalpus phoenicis				
		Larreja formosai				
		Metaseiulus mexicanus				
		Neoseiulus californicus				
		Oribatida				
		Pronematus anconai				
Syneodrella nodiflora (L.) Gaertn.		Brevipalpus phoenicis				
		Tetranuchus ludenl				
Sonchus oleraceus L.		Pagmernphoros aff. mesembriana				
		Tetranychus ludenl				
Sonchus sp.		Orthotydeus sp.				
Taraxacum officionale L.		Cunaxa sp.				
		Euseius ho				
		Oribatida				
		Tydeus sp.				
		Xenarotonematus sp.				
Borriginaceae	Echium plantagineum L.					
Brassicaceae	Raphanus raphanistrum L.					
	Raphanus sativus L.	Orthotydeus sp.				
	Raphanus sp.					
Caryophyllaceae	Paronychia chilensis DC.					
	Silene gallica L.					
	Stellaria media (L.) Cirillo					
Convolvulaceae	Ipomoea sp.	Neoseiulus californicus				
Merremia umbellate (L.) Hallier F. -						
Euphorbiaceae	Euphorbia heterophylla L.					
Fabaceae	Medicago hispida Gaertn.					
Medicago lupina L.						
Trifolium pratense L.						
Trifolium repens L.						

BG CAMites Families Non-cultivated plants
TABLE 3: Continued.

Families	Non-cultivated plants	Mites	BG	CA
			CS	PN
Trifolium sp.		Pronematus anconai	0	2
		Orthotydeus sp.	1	17
		Xenarsonemus spp.	0	1
Lamiaceae	*Stachys arvensis* L.	Brevipalpus phoenicis	0	12
		Oribatida	14	0
		Tarsonemus spp.	0	1
		Orthotydeus sp.	2	23
		Xenarsonemus spp.	2	0
Malvaceae	*Sida santaremensis* Monteiro	Mononychellus planti	-	-
	Sida sp.	Neoseiulus californicus	-	-
		Panonychellus ulmi	-	-
		Pronematus anconai	-	-
		Orthotydeus sp.	-	-
	Sida spinosa L.	-	0	0
Plantaginaceae	*Plantago lanceolata* L.	Bdellidiae sp. 1	-	0
		Brevipalpus phoenicis	-	2
		Cenzenspikia sp.	-	1
		Euseius ho	-	2
		Lorrygia formosa	-	1
		Neocunaxoides sp. 2	-	1
		Oribatida	-	3
		Proctolaelaps sp.	-	0
		Proprionseioptis cannaensis	-	0
		Proprionseioptis sp. 2	-	0
		Tarsonemus spp.	-	2
		Orthotydeus sp.	-	34
		Xenarsonemus spp.	-	2
Plantago tomentosa Lam.		Ah. Cheplustigmaeus	4	0
		Amblyseius vitis	1	0
		Brevipalpus phoenicis	0	1
		Caligonellidae	1	0
		Cupana sp.	1	0
		Euseius ho	0	1
		Euseius inouei	0	1
		Arrenoseius gaucho	2	0
		Holoparasitus sp.	2	0
		Neocunaxoides sp. 1	0	0
		Neoseiulus californicus	0	0
		Oribatida	51	3
		Ipshideoides metapodalalis	0	2
		Proctolaelaps sp.	2	0
		Proprionseioptis cannaensis	1	0
		Proprionseioptis sp. 2	2	0
		Stigmus sp.	1	0
		Orthotydeus sp.	1	0
		Xenarsonemus spp.	37	0
Polygonaceae	*Rumex* sp.	Brevipalpus phoenicis	0	0
		Oribatida	3	0
		Orthotydeus sp.	2	27
		Xenarsonemus spp.	6	0
TABLE 3: Continued.

Families	Non-cultivated plants	Mites	BG	CA		
			CS	PN	CS	PN
Poaceae	Bromus catharticus Vahl.	Neoseiulus fallacis	1	-	-	
		Proprioseiopsis sp. 1	1	-	-	
	Digitaria sp.	Pronematus anconai	-	-	1	
	Eleusine distachya Trin.	Neoseiulus californicus	-	-	1	
	Lolium multiflorum Lam.		0	-	-	
	Paspalum sp.	Neoseiulus californicus	1	-	-	
		Oribatida	3	-	-	
		Tarsonemus spp.	1	-	-	
	Poa annua L.		-	-	0	
Portulacaceae	Portulaca oleracea L.		-	-	0	
Oxilidaceae	Oxalis sp.		-	-	0	
Rubiaceae	Richardia brasiliensis	Aff. Cheylostigmaeus	2	0	0	-
		Asca sp.	0	0	1	-
		Arrenoseius gauchol	0	2	0	-
		Neocunaxoides sp. 1	0	1	0	-
		Oribatida	3	3	0	
		Xenotarsonemus spp.	8	0	0	
Solanaceae	Nicotiana tabacum L.	Arnironeus gauchol	-	1	-	
		Xenotarsonemus spp.	-	1	-	
	Nicotiana sp.	Neoseiulus fallacis	1	-	-	
		Oribatida	1	-	-	
		Polyphagotarsonemus latus	24	-	-	
		Tetrauchus ludeni	21	-	-	
		Orthotydeus sp.	1	-	-	
	Physalis angulata L.		-	-	0	
	Solanum americanum Mill.	Arrenoseius gauchol	3	0	0	
		Neoseiulus californicus	0	0	3	
		Tarsonemus spp.	0	2	18	
		Orthotydeus sp.	8	0	15	
		Zetzellia malvinae	0	0	1	
-	P1 *	Oribatida	4	-	-	
-	P2 *	Tarsonemus spp.	1	-	-	
		Arrenoseius gauchol	-	-	1	
		Neoseiulus californicus	-	-	1	
		Pronematus anconai	-	-	1	

Total mite number 298 293 143 187

(-) plant not sampled (absent).
(0) plant sampled devoid of mite.
(*) unknown host plant.

Plants. Among them, Arrenoseius gauchol Ferla, Silva and Moraes, 2010 and N. californicus were the most abundant (20 specimens collected on 5 host plants and 19 specimens found on 14 plant species, respectively) (Tables 1 and 3).

Similarity between agroecosystems

When considering all the mite families, Eriophyidae or Stigmaeidae found on vines and non-cultivated plants, Bray-Curtis analysis revealed that the mite
composition found on two plots in a given location was more similar than the mite composition of two plots of a given cultivar in two different locations (Figure 2: A, C, D). Although the composition of phytoseiid mite species showed a high similarity between CS-CA and PN-CA (78%), it was not the case between PN-BG and CS-BG. The mite composition found in PN-BG was closer to that observed in the plots of CA (63%) (Figure 2B).

The comparison of the mite communities found on grapevines showed that the location effect was stronger than the varietal effect (Figure 3 A). The mite communities on vines in CS-BG and PN-BG grouped together, and it was the same with CS-CA and PN-CA.

Considering the mite communities in non-cultivated plants, the two plots (PN and CS) grouped together in CA (56% similarity) but the similarity between CS-BG and PN-BG was low (Figure 3 B).

DISCUSSION

The present study showed that the diversity and abundance of the mite fauna found in vineyard plots as a whole (agroecosystem) and on grapevines were different in the two regions assessed. The number of mite species and abundance in plots located in the BG region were higher when compared to CA. Moreover, in BG, a greater mite species richness and abundance were also observed on non-cultivated plants. Despite our experimental setup did not allow us to conclude definitely on the possible effect of the environment on the mite communities in the two regions assessed, the BG region is inserted in the Atlantic Forest, which is one of the world’s 25 biodiversity hotspots with more than 8,000 endemic species recorded (Tabarelli et al., 2005), whereas the CA region is located in the plains, characterized by various plant formations, with a predominance of grasslands. One can assume that the mite diversity found in the plots would be linked (at least partially) to that of the neighboring area as previously shown by several authors (Altieri and Letourneau, 1982; Tixier et al., 1998; Tixier et al., 2000; Barbar et al., 2006; Liguori et al., 2011; Duso et al., 2012), explaining why the number of mite species was higher in plots located in BG.

The cultivar did not seem to affect the species richness of the plot as a whole. Because the number of mite species found in plots planted with CS and PN in a given municipality was similar. Moreover, in each plot, the species richness was systematically higher on non-cultivated plants than on vines. Therefore, the potential effect of cultivar on mite species richness in the agroecosystem is limited. As a consequence, the overall richness of a plot reflects more that of non-cultivated plants found in the vineyard plot.

In contrast, the abundance of mites seemed to be influenced by the cultivar. In the two regions, the PN cultivar appeared to be more favorable to the eriophyid mite *Cal. vitis* when compared to the CS cultivar. As eriophyid mites were by far the most numerous mites (about half of all the mite specimens collected), they were mainly responsible for the differences observed in mite abundance between the two cultivars. The effect of grape cultivar on the population level of *Cal. vitis* was previously shown by several studies (e.g., Kozlowski, 1993; Tomico and Comsa, 2010). Castagnoli et al. (1997) reported that densities of *Cal. vitis* were greater on cultivars with highly hairy leaves. However, according to Michl and Hoffmann (2011), PN has leaves with low density or no hair and CS has leaves with a medium density. Thus, our observations are conflicting with those reported by Castagnoli et al. (1997). Nevertheless, Siqueira et al. (2013) observed that the population level of *Cal. vitis* could differ between cultivars according to the year in plots in Rio Grande do Sul. Thus, the cultivar effect that we have noticed could be temporary. However, considering two other numerous phytophagous mites, *P. ulmi* in BG and *Tarsenemus* sp. in CA, an obvious cultivar effect was also observed, with mites being more abundant on PN.

Since *Cal. vitis* specimens were considerably more numerous than other mite species, particularly in the BG plot planted with CS where this species was dominant, the diversity index (H’) values were low and the evenness (J) values were
FIGURE 2: Bray-Curtis clustering analysis dendrograms of mite communities observed in four plots (agroecosystems) planted with Cabernet Sauvignon (CS) or Pinot Noir (PN) in the two vine-producing regions Bento Gonçalves (BG) and Candiota (CA), Rio Grande do Sul: A – All mite families; B – Phytoseiidae; C – Stigmaeidae; D – Eriophyidae.
Figure 2 – Bray-Curtis clustering analysis dendrograms of mite communities observed in four plots planted with Cabernet Sauvignon (CS) or Pinot Noir (PN) in the two vine-producing regions Bento Gonçalves (BG) and Candiota (CA), Rio Grande do Sul: A – All mite families; B – Phytoseiidae; C – Stigmaeidae; D – Eriophyidae.

Figure 2: Continued.
Figure 3 – Bray-Curtis clustering analysis dendrograms of mite communities observed on grapevine (A) and on non-cultivated plants (B), in four plots planted with Cabernet Sauvignon (CS) or Pinot Noir (PN), in Bento Gonçalves (BG) and Candiota (CA) regions, Rio Grande do Sul.
lower in BG plots compared to that observed in CA plots. As previously shown by Johann et al. (2009) and by Klock et al. (2011), Cal. vitis and P. ulmi are economically important vineyard pests in Rio Grande do Sul State like in several parts of the world (e.g., Attiah 1967; Schruft 1985; Duso et al. 2004; Bernard et al. 2005; Ferla and Botton 2008). During the present study, both species were constant or accessory in their areas of occurrence.

In this work, the three most abundant species of predators, N. californicus, A. floridanus and P. anconai, were collected both on grapevines and non-cultivated plants. Despite N. californicus and P. anconai being encountered in low numbers on non-cultivated plants, this confirms that predators can inhabit wild plants found in agroecosystems. Moreover, in our study, the species richness of phytoseiid mites on non-cultivated plants was greater than that observed on grapevines, and some phytoseiids species were observed on both these plants and grapevines. On the other hand, with the exception of 3 specimens of P. ulmi found on non-cultivated plants while this species reached a peak on grapevines, the phytophagous mite species considered of economic importance to vineyards in Rio Grande do Sul and found on non-cultivated plants, were not observed on grapevines. Thus, non-cultivated plants present in the vineyard plots of the areas studied may serve as shelter for predators without promoting mite grapevine pests.

Among the phytoseiid mites, N. californicus was the most important predator in terms of number of specimens collected in both regions assessed (about 450 among 600 phytoseiid mite specimens). As noted by Johann and Ferla (2012), this species seems to be more linked to Cal. vitis and P. ulmi densities observed on PN cultivar in BG than to leaf morphology. This is in accordance with the second life-type of Phytoseiidae defined by McMurtry and Croft (1997), because Neoseiulus species with this lifestyle are known to feed on eriophyids in addition to controlling tetranychid mites. This is the case with N. californicus that feeds on Col. vitis (Gonzales, 1983), but Duso and de Lillo (1996) did not mention it as a predator of Cal. vitis. Our observation also confirms that made by Klock et al. (2011) who found an association between N. californicus and Cal. vitis on Chardonnay and Merlot cultivars, in Bento Gonçalves and Candiota.

Our findings appear to support the link previously shown by Johann and Ferla (2012) between A. floridanus and the phytophagous mites P. ulmi and Cal. vitis. They are also consistent with previous data on the biological features of this mite because Eriophyidae are considered the natural prey of Stigmaeidae (White, 1976). This was confirmed by the data of Ferla and Moraes (2003) who found that A. floridanus produces more eggs when fed Calacarus heveae Feres, 1992 than tetranychids. Moreover, Agistemus exsertus Gonzales, 1963 was observed controlling Cal. vitis in Egypt and, Zetzellia mali Ewing, 1917, Cal. vitis and Col. vitis in Italy (Duso et al., 2004). The life cycles of Stigmaeidae and Eriophyidae show similarities concerning spatial distribution, dispersion characteristics, reproductive biology and life history (Thistlewood et al., 1996). Thus, A. floridanus could be an important biological control agent against eriophyids in Brazilian vineyards. Pronematus anconai, present in all areas studied, might be directly and indirectly involved in the biological control of phytophagous mites. Indeed, Pronematus species have been reported as eriophyd predators (Laing and Knop, 1982; Perrin and McMurty, 1996), and some contributions have shown the importance of P. anconai as an alternative prey for phytoseiid mites (Calvert and Huffaker, 1974; Flaherty and Hoy, 1971).

Further studies with a larger number of plots of each cultivar in the two viticultural regions are required to confirm our preliminary observations and to obtain more consistent results. Additional studies could also be performed to understand the influence of cultivars on the life history of phytophagous mites, the biology of N. californicus, A. floridanus and P. anconai when fed P. ulmi and Cal. vitis, and the dynamics of predatory mites on grapevines and associated plants.

ACKNOWLEDGEMENTS

We thank Miolo Winery and UNIVATES University Center for their financial support. We are also grate-
ful to the anonymous reviewers and to the associate editor for their contribution to the improvement of the manuscript. Dr. A. Leyva (USA) helped further with English editing.

REFERENCES

Altieri M.A., Letourneau D.K. 1982 — Vegetation management and biological control in agroecosystems — Crop Prot., 1: 405-430 doi:10.1016/0261-2194(82)90023-0

Amrine J.W. 1996 — Keys to the world genera of the Eriophyoidea (Acari: Prostigmata) — Morgantown: West Virginia University. pp. 186.

André H.M. 1980 — A generic revision of the family Tydeidae (Acari:Actinedida). IV . Generic descriptions, keys, and conclusions — Bull. Ann. Soc. R. Belg. Entomol., 116: 103-208.

Attiah H. H. 1967 — Eriophyes oculovitis n. sp., a new bud mite infesting grapes in the U.A.R. — Bull. Soc. Ent. Egypte, 51(17): 17-19.

Atyeo W.T. 1960 — A revision of the mite family Bdellidae in North and Central America (Acarina, Prostigmata) — The University of Kansas Science Bulletin, 40: 345-499.

Baker E.W., Tuttle D.M. 1994 — A guide to the spider mites (Tetranychidae) of the United States — West Bloomfield: Indira Publishing House. pp. 347.

Barbar Z., Tixier M. S., Cheval B., Kreiter S. 2006 — Effects of agroforestry on phytoseiid mite communities (Acari: Phytoseiidae) in vineyards in the South of France — Exp. Appl. Acarol., 40: 345-499.

Bodenheimer F. S. 1955 — Précis d'écologie Animale — Paris: Payot. pp. 315.

Brower J.E., Zar J.H. 1984 — Field and laboratory methods for general ecology — Dubuque: W.M.C. Brow. pp. 226.

Calvert D.J., Huffaker C.B. 1974 — Predator (Metaseius occidentalis) — prey (Pronematus spp.) interactions under sulfur and cattail pollen applications in a noncommercial vineyard — Entomophaga, 19: 361-369.

Castagnoli M., Liguori M., Nannelli R. 1997 — Le popolazioni degli acari nei vigneti inerbiti del Chianti: confronto tra cultivar — Redia, 80: 15-31.

Chant D.A., McMurtry J.A. 2007 — Illustrated keys and diagnoses for the genera and subgenera of the Phytoseidae of the World (Acari: Mesostigmata) — Michigan: Indira Publishing House. pp. 220.

Duso C., de Lillo E. 1996 — Grape — In: Lindquist E.E., Sabelis M.W., Bruin J. (Eds). Eriophyid mites: their biology, natural enemies and control. Amsterdam: Elsevier Science Publishers B.V. p. 571-582.

Duso C., Pozzebon A., Capuzzo C., Malagnini V., Otto S., Borgo M. 2004 — Grape downy mildew spread and mite seasonal abundance in vineyards: effects on Tydeus caudatus and its predators — Biol. Control, 32: 143-154. doi:10.1016/j.biocontrol.2004.09.004

Duso C., Pozzebon A., Kreiter S., Tixier M. S., and Candolfi M. 2012. — Management of Phytophagous Mites in European Vineyards — In: Bostanian N.J., Vincent C., Isaacs R. (Eds.). Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. Netherlands: Springer. p. 191-217. doi:10.1007/978-94-007-4032-7_9

Fajardo T.V.M. 2003 — Uva para processamento - Fitossanidade — Série Frutas do Brasil.35. Brasília: Embrapa Informação Tecnológica. p. 45-62.

Ferla N.J., Botton M. 2008 — Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil — Ciência Rural, 38 (6): 1758-1761.

Ferla N.J., Johann L., Klock C.L., Majolo F., Botton M. 2011 — Phytoseiid mites (Acari: Phytoseiidae) from vineyards in Rio Grande do Sul State, Brazil — Zootaxa, 2976: 15-31.

Ferla N.J., Moraes G.J. de. 2003 — Biologia de Agistemus floridanus Gonzalez (Acari: Stigmaeidae) — Rev. Bras. Zool., 20(2): 261-264. doi:10.1590/S0101-81752003000200015

Ferreira R.C.F., Oliveira J.V. de, Haji F.N.P., Gondim Jr. M.G.C. 2006 — Biologia, exigências térmicas e tabela de vida de fertilidade do ácaro branco Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) em videira (Vitis vinifera L.) cv. Itália — Neotrop. Entomol., 35 (1): 126-132. doi:10.1590/S1519-566X2006000100017

Flaherty D.L., Hoy M.A. 1971. — Biological control of Pacific mites and Willamette mites in San Joaquin Valley vineyards: Part III. Role of tydeid mites — Res. Popul. Ecol., 13: 80-96. doi:10.1007/BF02322015

Gonzales R.H. 1983 — Erinosis — In: Manejo de plagas de la vid. Universidade de Chile, Publicaciones en Ciencias agrícolas, 13: 66-70.

Halliday R.B., Walter D.E., Lindquist E.E. 1998 — Revision of the Australian Ascidae (Acarina: Mesostigmata) — Invert. Taxon, 12:1-54. doi:10.1071/IT96029
Hughes A.M., 1976 — The mites of stored food and houses — Tech. Bull. Min. Agric. Fish. Food 9. pp. 400.

Jeppson L.R., Keifer H.H., Baker E.W. 1975 — Mites injurious to economic plants — Berkeley: University of California Press. pp. 612.

Johann L., Ferla N.J. 2012 — Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil — Int. J. Acarol., 38(5): 386-393. doi:10.1080/01647954.2012.657240

Johann L., Klock C.L., Ferla N.J., Botton M. 2009 — Acarofauna (Acari) associada à videira (Vitis vinifera L.) no Estado do Rio Grande do Sul — Biociências, 17(1): 1-19.

Klock C.L., Johann L., Botton M., Ferla N.J. 2011 — Mitefauna (Arachnida: Acari) associated to grapevine, Vitis vinifera L. (Vitaceae), in the municipalities of Bento Gonçalves and Candiota, Rio Grande do Sul, Brazil — Check List, 7: 522-536.

Kozlowski J. 1993 — Obserwacje nad występowaniem, biologia i szkodliwoscia szpecieli (Eriophyoidea) na winorosli — Prace Naukowe Instytutu Ochrony Roslin, (1/2): 56-70.

Krantz G.W., Walter D.E. 2009 — A Manual of Acarology — 3 ed. Lubbock: Texas Tech University Press. pp. 807.

Kuinchtner A., Buriol G.A. 2001 — Clima do estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite — Disciplinarum Scientia, 2: 171-182.

Laing J.E., Knop N.F. 1982 — Potential use of predaceous mites other than Phytoseiidae for biological control of orchards pests — In: Hoy M.A., Cunningham G.L., Knutson L. (Eds.) Biological control of pest by mites — Hilgardia, 40 (11): 331-390.

Liguori M., Tiexier M. S., Hernandez A. F., Douin M., Kreiter S. 2011 — Agroforestry management and phytoseid communities in vineyards in the South of France — Exp. Appl. Acarol., 55:167-181. doi:10.1007/s10493-011-9450-8

Lindquist E.E. 1986 — The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetical, and systematic revision, with a reclassification family-group taxa in the Heterostigmata — Mem. Entomol. Soc. Canada 13. pp. 517.

Matioli A.L., Ueckermann E.A., Oliveira C.A.L. 2002 — Some stigmaeaid and eupalopsellid mites from citrus orchards in Brazil (Acari: Stigmaeidae and Eupalopsellidae) — Int. J. Acarol., 28(2): 99-120. doi:10.1080/01647950208684287

McAleese N., Lambshed P.J.D., Paterson G.L.J., Gage J.G. 1997 — Biodiversity professional. Beta-Version — London: The Natural History Museum and the Scottish Association for Marine Science. Available from: http://gcmd.gsfc.nasa.gov.

McMurtry J.A., Croft B.A. 1997 — Life-styles of phytoseiid mites and their roles in biological control — Ann. Rev. Entomol., 42: 291-321. doi:10.1146/annurev.ento.42.1.291

McMurtry J.A., Hufakker C.B., Van de Vrie, M. 1970 — Ecology of tetranychid mites and their natural enemies: a review. I. Tetranychidae enemies: Their biological characters and the impact of spray practices — Hilgardia, 40 (11): 331-390.

Mello L.M.R. de. 2012 — Vitivinicultura brasileira: panorama 2011 — Comunicado Técnico 115. Embrapa Uva e Vinho. p. 4.

Mesa N.C., Ochoa R., Welbourn W.C., Evans G.A., Moraes G.J. 2009 — A catalog of the Tenuipalpidae (Acari) of the World with a key to genera — Zootaxa, 2098:1-185.

Michl G., Hoffmann C. 2011 — Performance of Tephrodonus pyri Scheuten on 75 different Grape Varieties — In: Proceedings of the IOBC/WPRS working group 'Integrated Protection and Production in Viticulture'. Lacaunae-France. Available from: (https://colloque4.inra.fr/var/iobc_wprs_bordeaux/storage/fckeditor/file/Hoffmann.pdf.)

Monteiro L.B. 1994 — Ocorrência de Polyphagotarsonemus latus (Banks) (Acari: Tarsenemidae) em videira em Bento Gonçalves, RS, Brasil.— An. Soc. Entomol., 23(2): 349-350.

Moraes G.J. 1991 — Controle biológico de ácaros fitófagos — Informe Agropecuário. Belo Horizonte, 15: 55-62.

Moraes G.J. 2002 — Controle biológico de ácaros fitófagos com ácaros predadores — In: Parra J.R., Botelho P.S.M., Corrêa-Ferreira B.S., Bento J.M.S. (Eds.). Controle biológico no Brasil: Parasitoides e predadores. Barueri: Editora Manole Ltda. p. 225-237.

Perrin T.M., McMurtry J.A. 1996 — Other predatory arthropods — In: Lindquist E.E., Sabelis M.W., Bruin J. (Eds.). Eriophyoid mites: their biology, natural enemies and control. Amsterdam: Elsevier. p. 471-479. doi:10.1016/S1572-4379(96)80029-7

Pritchard A.E., Baker E.W. 1958 — The false spider mites (Acarina: Tenuipalpidae) — Univ.California Publ.Entomol., 14(3): 175-274.

153
Reis P.R., Melo L.A.S. 1984 — Pragas da videira — Inf. Agro., 110: 68-72.

Rodrigues W.C. 2005. — DivEs – Diversidade de espécies. Versão 2.0. Software e Guia do Usuário — Available from: http://www.ebra.bio.br.

Root R.B. 1973 — Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea) — Ecol. Monogr., 43:95-124. doi:10.2307/1942161

Schruft G.A. 1985 — Grape — In: Helle W., Sabelis M.W. (Eds.). Spider mites: Their biology, natural enemies and control. Amsterdam: Elsevier. p. 359-366.

Schultz A.E.G. 2005 — Comportamento poblacional y distribución espacial de Brevipalpus chilensis Baker en vid vinífera (Vitis vinifera) y dispersión del ácaro depredador Tyliphlodromus pyri [Taller de Licenciatura] — Quillota: Pontificia Universidad Católica de Valparaíso. pp. 66.

Shannon C.E. 1948 — A mathematical theory of communication — Bell Syst. Techn. J. 27: 379-423, 623- 656.

Siqueira P.R.E., Botton M., Kohn R.G., Grützmachers A.D., Peres G.S. 2013 — Dinâmica populacional de Calepitrimerus vitis (Nalepa) (Acari: Eriophyidae) em cultivares de videira na Região da Campanha do Rio Grande do Sul — Rev. Bras. Frutic., 35 (2): 446-453. doi:10.1590/S0100-29452013000200013

Smiley R.L. 1978 — Taxonomic studies of Pygmeophorus species from the Western Hemisphere, with a key to females and an overview of the current problems for classification (Acari: Pyemotidae and Pygmephoridae) — Int. J. Acarol., 4: 125-160. doi:10.1080/01647957808684032

Smiley R.L. 1992 — The predatory mite family Cunaxidae (Acari) of the world with a new classification — Michigan: Indira Publishing House. pp. 356.

Soria S. de J., Flechtmann C.H.W., Monteiro L.B. 1993 — Ocorrência de ácaros brancos ou tropical e outros de importância agrícola de vinhedos do Rio Grande do Sul, Brasil — In:Anais do VII Congresso de Viticultura e Enologia; Bento Gonçalves e Garibaldi. p. 69-71.

Summers F.M., Price D.W. 1970 — Review of the family Cheyletidae — Univ. Calif. Pub. Entomol., 61: 1-153.

Tabarelli M., Pinto L.P., Silva J.M.C., Hirota M., Bedê L. 2005 — Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest — Conservation Biology, 19: 695-700. doi:10.1111/j.1523-1739.2005.00694.x

Thistlewood H.M.A., Clements D.R., Harmsen R. 1996 — Stigmaeidae — In: Lindquist E.E, Sabelis M.W., Bruin J. (Eds). Eriophyoid Mites - Their Biology, Natural Enemies and Control. Amsterdam: Elsevier. pp. 457. doi:10.1016/S1572-4379(96)80028-5

Tixier M.S., Kreiter S., Auger P., Sentenac G., Salva G., Weber M. 2000 — Phytoseiid mite species located in uncultivated areas surrounding vineyards in three french regions — Acarologia, 41(1): 127-140.

Tixier M.S., Kreiter S., Auger P., Weber M. 1998 — Colonization of Languedoc vineyards by phytoseiid mites (Acari:Phytoseiidae):influence of Wind and crop environment — Exp. Appl. Acarol., 22: 523-542. doi:10.1023/A:1006085723427

Tomoioga L., Comsa M. 2010 — Monitoring the Population of Eriofizi Mites, the Species Calepitrimerus vitis and Colomerus vitis, in the Vineyards Specific Conditions of Central Transylvania — Bull. UASVM (Horticulture), 67(1): 499.

White N.D.G. 1976 — Some aspects of the biology of the predaceous mite Zetzellia mali (Ewing) (Acarina: Stigmaeidae) found in southern Ontario apple orchards [M. Sc. Thesis] — Ontario: University of Guelph. pp. 89.

COPYRIGHT

Johann L. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.