Phage therapeutics: from promises to practices and perspectives

Kanika Bhargava1,2 · Gopal Nath2 · Amit Bhargava3 · G. K. Aseri1 · Neelam Jain4

Received: 5 July 2021 / Revised: 10 November 2021 / Accepted: 15 November 2021 / Published online: 25 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The rise in multi-drug resistant bacteria and the inability to develop novel antibacterial agents limits our arsenal against infectious diseases. Antibiotic resistance is a global issue requiring an immediate solution, including the development of new antibiotic molecules and other alternative modes of therapy. This article highlights the mechanism of bacteriophage treatment that makes it a real solution for multidrug-resistant infectious diseases. Several case reports identified phage therapy as a potential solution to the emerging challenge of multi-drug resistance. Bacteriophages, unlike antibiotics, have special features, such as host specificity and do not impact other commensals. A new outlook has also arisen with recent advancements in the understanding of phage immunobiology, where phages are repurposed against both bacterial and viral infections. Thus, the potential possibility of phages in COVID-19 patients with secondary bacterial infections has been briefly elucidated. However, significant obstacles that need to be addressed are to design better clinical studies that may contribute to the widespread use of bacteriophage therapy against multi-drug resistant pathogens. In conclusion, antibacterial agents can be used with bacteriophages, i.e. bacteriophage-antibiotic combination therapy, or they can be administered alone in cases when antibiotics are ineffective.

Key points
• AMR, a consequence of antibiotic generated menace globally, has led to the resurgence of phage therapy as an effective and sustainable solution without any side effects and high specificity against refractory MDR bacterial infections.
• Bacteriophages have fewer adverse reactions and can thus be used as monotherapy as well as in conjunction with antibiotics.
• In the context of the COVID-19 pandemic, phage therapy may be a viable option.

Keywords Bacteriophage therapy · Multi-drug resistance (MDR) · Phage cocktail · Extreme-drug resistance (XDR) · Combination therapy · Antimicrobial resistance (AMR)

Introduction
“The role of the infinitely small in nature is infinitely great...”. The prevailing global pandemic COVID-19 reminds us of this quote by the Father of Microbiology-Louis Pasteur. The current pandemic makes us realize and reimagine the immense power of the tiniest microorganisms. Phages are viruses that infect prokaryotic (bacteria) cells but have no effect on eukaryotic (human or animal) cells; hence, they can be employed to manage...
infections caused by bacteria (Domingo-Calap and Delgado-Martínez 2018). The administration of bacteriophages for treatment traces back almost a century, and the widespread availability of effective and safe antibacterial medications following WWII led to scepticism of bacteriophage use until the 1990s (Abedon et al. 2011).

Over the last three decades, the global spread of multi-drug resistant (MDR), pan-drug resistant (PDR), and extreme-drug resistant (XDR) bacteria, as well as the decreased availability of new effective antibacterial agents, has rekindled the scientific community’s interest in bacteriophage as an alternate antibacterial agent (Perros 2015; WHO 2018). Phage particles are natural and versatile. Furthermore, owing to their (phages) lack of affinity for eukaryotic cells, their modifications contribute to their prospective use in gene therapy and medicinal applications (Hashemi et al. 2010; Robertson et al. 2011; Yata et al. 2014; Bardy et al. 2016). According to Biset et al. (2020) and Folliero et al. (2020), the most commonly reported resistant bacteria were Escherichia coli (56.67%), Klebsiella pneumoniae (50%), Enterobacter cloacae (100%), Staphylococcus aureus (45.45%), Coagulase-negative Staphylococcus aureus (76.47%), Enterococcus spp. (97.50%), Acinetobacter baumannii (100%), and Pseudomonas aeruginosa (96.80%). If corrective measures are not implemented, MDR infection mortality may exceed 10 million by 2050 (WHO 2020).

Antibiotic resistance (AR) has been continuously increasing and has primarily been addressed from the perspective of human misuse, whereas in veterinary and agricultural context, their overuse leading to MDR has not received the requisite attention. Antimicrobial resistance (AMR) poses a significant threat to the ecosystem, which must be acknowledged and addressed when designing effective AMR plans (O’Neill 2014). The global problem of MDR bacterial infections necessitates immediate actions, and one such infection control option could be bacteriophage therapy (Chanishvili and Aminov 2019). Besides, in addition to engineered phages, bacteriophage-produced lytic enzymes also exhibit properties that can be marketed in medical and industrial sectors.

With the current advent of AMR throughout the world and the dried pipelines of pharmaceutical industries, phage therapy could be the answer. In this review, we emphasize the aspects of phage therapy that make it a promising solution to MDR infectious diseases and also delineate some of the hurdles that must be addressed in the designing and implementation of clinical research to determine the effectiveness of phage therapy in humans against MDR infections and briefly discuss the prospects of phage therapy in COVID-19 pandemic. Most of the mini-reviews that have been published before discuss how phages were discovered? Where were they practiced before? Why they were abandoned and their advantages compared to antibiotics?

To break the cycle of resistance and circumvent this silent global epidemic, the pharmacokinetics of phage therapy must be adopted which is being used in some instances that we have summarized in this manuscript based on different clinical infections. The clinical cases outlined in this manuscript focuses on major systemic diseases in which phage therapy experiments have contributed to the fight against resistant bacterial infections caused by MDR bacteria. This manuscript has not nullified antibiotics use but has stipulated an approach where bacteriophages can be used synergistically, as evident from some practical clinical case studies.

Understanding the phenomenon of AMR to antibiotics

In a natural ecosystem, antibiotics play a critical part in the regulatory processes of the microbes (Aminov 2009), where they serve as signalling molecules in small quantities (Davies et al. 2006). However, when used in an appropriate concentration, antibiotics act as bacteriolytic and bacteriostatic agents in the management of bacterial infections (Leekha et al. 2011). Antibiotics are also commonly used at sub-therapeutic concentrations in the livestock feed for metaphylaxis (Manyi-Loh et al. 2018). Antibacterial agents, which are imprudently used in the medical, aquaculture, agricultural, and other industries, are hotspots for their continual entry into the ecosystem, leading to the selection and amplification of antibiotic-resistant genes (ARG) (Yadav and Kapley 2021). ARG is incorporated into the commensal flora at this stage, and the expense of “fitness” of an organism carrying ARG is reduced (Beceiro et al. 2013). As a result, even in the absence of antibacterial agent-induced selective pressure, AR bacterium persists (Andersson and Hughes 2011; Brown and Wright 2016). The pool of amplified ARG is subsequently discharged into other compartments of the ecosystem, along with the accompanying antibacterial medications, from whence it is further distributed to even more distant ecological compartments via horizontal gene transfer (HGT) processes [Fig. 1] (Aminov 2011; Duran et al. 2016; Brown et al. 2017).

Mechanism of action of bacteriophage therapy

Bacteriophages bind to and adsorb on specific receptors on the surface of their hosts (bacteria) before introducing their genetic material to begin viral propagation; their relationship ranges from parasitic to mutualistic (Weinbauer 2004;
Sime-Ngando (2014). In lytic infection, the phage adheres to the bacterial surface [Fig. 2A], injects its chromosomes into the bacterial cell, and reproduces naturally [Fig. 2E] with the release of new virions (virulent phage) [Fig. 2F]. During the lysogenic cycle, phage genetic material integrates into bacterial chromosomes [Fig. 2B], allowing bacteria to continue reproducing normally [Fig. 2C] along with phage genetic material (prophage) resulting in the release of temperate phages. Thus, virulent phages outperform temperate phages in terms of therapeutic potential.

Antibiotics gained popularity due to their broad-spectrum activity (Fair and tor 2014), however, with the increase in the understanding of the human microbiome, this broad-spectrum killing potential is rapidly revealing itself as a significant disadvantage (Cho and Blaser 2012). Being natural bacteria predators, bacteriophages have an advantage over antibiotics as they are specific, targeting only their host bacteria, implying a gentler approach to local microflora (Divya Ganeshan and Hosseinidoust 2019). However, another factor to consider is the interaction of the polyvalent lytic phages with the commensal flora (Ly-Chatain 2014). This is especially true in the case of gut flora if the phage is administered orally. Therefore, the impact of bacteriophages on any microbiome,
particularly gut microbiota, must be regarded as an essential component that governs the microbiome and should be further researched (Sutton and Hill 2019).

Drug resistance is a worrisome and widespread problem worldwide, with the emergence of MDR, PDR and XDR strain containing novel ARGs and the paucity of new medicines for treating bacterial diseases (Fair and Tor 2014). Bacterial defence mechanisms evolved as a result of the fight for survival between bacteria and the phages that infect them; yet, phage countering mechanisms are little understood and unexplored (Rostøl and Marraffini 2019). Phages can evolve in tandem with their hosts, increasing their chances of infecting their host. Lysogenic phages/temperate phages insert their DNA into the bacterial genome and may act as vehicles for HGT and ARG dissemination, making them ineffective in acute infections (Principi et al. 2019; Lin et al. 2017). Hence for bacteriophage therapy, lytic phages should be employed. ARG can be carried by phages and spread to other bacterial pathogens; however, utilizing DNA sequencing methods assures that therapeutic phage is clear of any virulent genes (Taati Moghadam et al. 2020).

Bacteriophage therapy—successful case studies

Many experimental data have demonstrated the potential role of phage-antibiotic synergistic effects and efficacy of bacteriophage alone on different models for different indications. The concept of bacteriophage therapy, which was used to treat bacterial diseases at the turn of the twentieth century, has garnered attention in the current period of rising AMR (Schooley et al. 2017; Furfaro et al. 2018; Aslam et al. 2019). However, due to the unavailability of validated and adequately controlled clinical trials, phage therapy faces many challenges in its progression in the present scenario. Additional care needs to be taken in the organising and designing such trials where therapeutic variables such as the dose (Payne and Jansen 2003) and concoction of phage cocktails are required (Aslam et al. 2019). Some of those systemic studies of antimicrobial agents and chemotherapy, of diseases caused by MDR organisms, successful treatments with adjunctive bacteriophage therapy are described below (Fig. 3).
Bone and joint infections

Bone and joint infection (BJI) pose significant management challenges and cause severe morbidity [Table 1]. If ignored, BJIs induce acute sepsis with bone and joint deterioration, severe pain, sinuses, and permanent impairment, necessitating exceptional microbiological examination to allow for targeted antibiotic therapy (Colston and Atkins, 2018). A recent study suggested that local phage administration into the joints, with hardware removal, systemic antibiotics, and antibiotic spacers, successfully managed MDR P. aeruginosa infection of prosthetic joint (PJ) and osteomyelitis (Tkhiilaishvili et al. 2020). In vitro, the authors discovered phage-antibiotic synergistic effect against P. aeruginosa biofilm. Several other studies in the publication endorse the use of supplementary bacteriophage therapy in the management of resistant BJIs. Ferry et al. (2018) reported a recent case study of recurring S. aureus PJ infection treated with a phage cocktail and antibiotic combination instilled locally. Another case report documented treatment via bacteriophage and antibiotics of left tibial infection caused due to XDR A. baumannii and MDR K. pneumoniae, thereby resulting in tissue healing and limb preservation (Nir-Paz et al. 2019).

Yilmaz et al. (2013) investigated the therapeutic efficacy of MRSA (methicillin-resistant Staphylococcus aureus) and P. aeruginosa induced rat tibiae infection utilizing a phage cocktail and an antibiotic in combination and/or alone, resulting in the reduction of bacterial colony-forming units. Another animal model study for the management of S. aureus osteomyelitis was undertaken, where the potential of bacteriophage therapy alone in the treatment of chronic infections caused by MDR bacteria was demonstrated by Kishor et al. (2016). As a result, phage application in orthopaedic surgery as an adjuvant to antibiotic therapy or alone against drug-resistant bacteria holds a lot of promise. BJIs have a significant impact on healthcare resources due to growing urbanization and an ageing population, necessitating well organized, novel multidisciplinary collaboration for successful therapy.

Urinary tract infections

The prevalence of urinary tract infection (UTI) is high, resulting in significant loss of man hours, financial burden on society, and a strain on healthcare infrastructure. UTI complications frequently result in sepsis and can be fatal if caused by AMR pathogens, and various studies demonstrate the effectiveness of bacteriophages in the management of it [Table 2] (Bhargava et al. 2021). Leitner et al. (2017) reported lytic activity, as well as the resilience of phages to resistance, can be a useful option for the treatment of the world’s ever-increasing AR. To treat recurrent UTI caused by ESBL (extended spectrum beta-lactamase)-positive K. pneumoniae in a subject with an indwelling urostomy and urethral stent, Kuipers et al. (2020) employed a personalized phage-antibiotic combination. Valerio et al. (2017) investigated the efficacy of bacteriophages and antibiotics alone or in combination in managing E. coli-induced UTI and also the susceptibility of the bacteria to the screened antibacterial agents in the presence and absence of bacteriophages. The effectiveness of combination therapy is determined by the AR, the bacteria in question, and the type of antibiotic employed (bactericidal or bacteriostatic). In another case study, bacteriophage therapy against P. aeruginosa UTI in humans was documented where combination therapy of phage and antibiotic was well tolerated resulting in treatment of the patient (Khawaldeh et al. 2011). The high bacterial inactivation efficiency of phage alone or in conjunction with antibiotics, as well as their self-limitation property, lay the groundwork for future comprehensive studies into UTI and AMR management and control.

Biofilm infections

Biofilm formation by multiple microorganisms causes persistent tissue and foreign body infections which become highly resistant to the antibiotics [Table 3]. Bacteria in biofilm flourish in slime-encased aggregations that affect millions of individuals, and it is sometimes difficult to treat, resulting in a chronic infection that medical practitioners struggle to control (Harper et al. 2014). As biofilms are difficult to treat in general, a novel technique is required; currently, antibiotics and basic disinfectants have shown a limited ability to successfully remove biofilms. Fong et al. (2019) conducted an experimental investigation on an animal model in which P. aeruginosa biofilm-induced frontal sinusitis was reduced by phage cocktail and concluded that it was effective and safe. Bacteriophages reproduce within the host bacterium and synthesize enzymes that disintegrate the bacterial biofilm extracellular polymeric substance, resulting in pathogen eradication. In their research, Coulter et al. (2014) documented that a combination of bacteriophage and antibiotics resulted in the complete eradication of biofilm and the reduction of bacteria resistant to both phages and antibiotics. Similar studies conducted using antibiotics combined with phage have resulted in the eradication of Klebsiella pneumoniae and Staphylococcus aureus biofilms (Verma et al. 2010; Rahman et al. 2011). Chaudhry et al. (2017) conducted an in vitro experiment in which P.
Table 1
An overview of bacteriophage clinical studies for the treatment of bone and joint infections

Case study	Description	Administration	Result	References
Bacteriophage therapy for chronic PJI infection of the knee and chronic femoral osteomyelitis	After a gunshot injury, an 80-year-old patient with T2DM2 and CKD was diagnosed with PJI and chronic osteomyelitis due to MDR *Pseudomonas aeruginosa* infection	Phage®- Local instillation Antibiotics (colistin, meropenem and ceftazidime)—Intravenous	Bacteria eradicated successfully following combination therapy	Tkhilaishvili et al. 2020
Bacteriophage therapy for PJI during DAIR	An 80-year-old obese woman with T2DM2 and mild chronic kidney injury with a history of relapsing PJI of right hip resulted in a postoperative purulent discharge with MSSA and MDR *Pseudomonas aeruginosa*	Phage (1493 & 1815)-Direct injection into joints Antibiotics (daptomycin, clindamycin and amoxicillin)—Oral	A successful clinical outcome resulted in complete eradication of infection	Ferry et al. 2018
Synergistic effect of bacteriophages and antibiotics on patient with trauma-related left tibial infection	A 42-year-old patient with bacterial osteomyelitis infected with XDR *Acinetobacter baumannii* and MDR *Klebsiella pneumonia*	Phage (AbKT21phi3; MK278859 and KpKT21phi1; MK278861) and antibiotics (meropenem and colistin)—Intravenous	No positive culture was found after 8 months of combined therapy	Nir-Paz et al. 2019
Bacteriophage therapy for the treatment of implant-related infections (orthopaedic surgery) due antibiotic resistant bacteria	Implant related osteomyelitis was identified in a rat model due to MRSA and MDR *Pseudomonas aeruginosa*	Phage (Sb-1 and Vb_PsaP PAT14)-direct injection into the medullary canal Antibiotics (teicoplanin, imipenem, cilastatin and amikacin)-Intraperitoneal	Biofilm dissolved for both types of bacteria	Yilmaz et al. 2013
Phage therapy for chronic osteomyelitis in the experimental rabbit model	Chronic osteomyelitis was established on distal end of femur in a rabbit model due to MRSA	Phage cocktail(SA-BHU1, SA-BHU2, SA-BHU8, SA-BHU15, SA-BHU21, SA-BHU37, SA-BHU47)—Intrathecally	A successful clinical outcome resulted in wound healing and site sterilization	Kishor et al. 2016
Bacteriophage therapy for the treatment of PKI	A 79-year-old female with a resistant *Staphylococcus epidermidis* PKI was treated with phage therapy after debridement and implant retention surgery	Phage (PM448)-intraarticular instillation Antibiotic (daptomycin)-Intravenous	The patient recovered via intraarticular bacteriophage therapy with no adverse effect and evidence of clinical recurrence	Doub et al. 2021

PJI prosthetic joint infection, *PKI* prosthetic knee infection, *T2DM2* type 2 diabetes mellitus, *CKD* chronic kidney disease, *DAIR* debridement along with antibiotics and implant retention, *MDR* multi-drug resistant, *XDR* extreme drug resistance, *MRSA* methicillin-resistant *Staphylococcus aureus*, *MSSA* methicillin-sensitive *Staphylococcus aureus*. Phage®: Collection (No identification given) received from George Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia)
Table 2 An overview of bacteriophage clinical studies for the treatment of urinary tract infections

Case study	Description	Administration	Result	References
Bacteriophage therapy for UTI: A randomised, placebo-controlled clinical trial	Patients with prostate TUR were screened for UTI with recurrent bacteriuria *(Entercococcus spp., Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus spp. and Streptococcus spp.)*	Phage cocktail (Pyo-bacteriophage)-Intravesical suprapubic	7 days of phage treatment resulted in sterile urine culture	Leitner et al. 2017
Case study of effective treatment of chronic relapsing UTI via phage therapy	A 58-year-old renal transplant patient developed a post-transplant UTI due to ESBL *Klebsiella pneumoniae* (MDR) leading to epididymitis	Phage*-Oral, Intravesical and bladder irrigation Antibiotic (meropenem)-Intravenous	Sterile urine culture obtained, following combination therapy	Kuipers et al. 2020
Bacteriophage and antibiotic efficacy in the inactivation of UTI-causing bacteria	In-vitro efficacy of combination therapy and alone was tested in the urine sample for the evaluation of *Escherichia coli* infections	Phage (ECA2) and antibiotics (ampicillin, piperacillin, kanamycin, tetracycline, chloramphenicol and ciprofloxacin)- Direct inoculation	Significant bacterium inactivation was obtained after 8 h of treatment	Valerio et al. 2017
Treatment of refractory UTI by phage therapy	Intra-abdominal resection and pelvic irradiation for adenocarcinoma followed by bilateral ureteric stent placement resulted in *Pseudomonas aeruginosa* infection in a 67-year-old woman	Phage (Pyophage #051,007)-Intravesical Antibiotic (meropenem and colistin)-Intravenous	Combined therapy resulted in sterile urine culture	Khawaldeh et al. 2011
Determination of intravesical phage therapy for the treatment of UTI	A placebo-controlled, double-blind clinical trial was conducted on men over the age of 18 who had acute UTI but no indications of systemic illness via uropathogens *(Entercococcus spp., Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus spp. and Streptococcus spp.)*	Phage (Pyophage cocktail R-022600)-intravesical instillation	Intravesical phage therapy was non-inferior to antibiotic treatment but not superior to bladder irrigation (placebo) in terms of efficacy and safety	Leitner et al. 2021

UTI urinary tract infection, *TUR* transurethral resection, *ESBL* extended-spectrum β-lactamase; Phage*- Solution (No identification given) received from Eliava Institute in Tbilisi, Georgia
Case study	Description	Administration	Result	References
Bacteriophage therapy for the treatment of paranasal biofilm using an animal model	In sheep frontal sinuses, *Pseudomonas aeruginosa* infection was simulated for the development of biofilm and the establishment of infection	Phage cocktail (CT-PA containing Pa193, Pa204, Pa222 and Pa223)-Intranasal	Statistically significant reduction in the bacterial community of biofilm was obtained	Fong et al. 2019
Effect of combination therapy on resistant bacteria forming a biofilm	Combination treatment against In-vitro biofilm cultures of *Escherichia coli* and *Pseudomonas aeruginosa*	Phage (T4-ATCC11303-B4 and PB-1-ATCC15692-B3) and antibiotic (tobramycin)—Direct inoculation	Significant biofilm reduction as 99% antibiotic-resistant cells of *Escherichia coli* and 60% antibiotic-resistant cells of *Pseudomonas aeruginosa* decreased	Coulter et al. 2014
Bacteriophages induce structural changes in biofilms that eradicate them effectively	*Klebsiella pneumoniae* biofilm was developed In-vitro in wells of microtitre plates	Phage (KPO1K2 and NDF) and antibiotic (ciprofloxacin)—Direct inoculation	The highest reduction in bacterial load observed after 6 h of combined treatment	Verma et al. 2010
An experimental study for an antibiofilm activity via antibiotic and bacteriophage	In microtiter plates, *Staphylococcus aureus* was cultured in vitro, which resulted in biofilm formation	Phage (SAP-26) and antibiotic (azithromycin, vancomycin and rifampicin)—Direct inoculation	Reduction of 65% with rifampicin, 60% with azithromycin and 40% with vancomycin when exposed to combined therapy	Rahman et al. 2011
Synergistic effect of phages and antibiotics for the destruction of biofilms	In microtiter plates, *Pseudomonas aeruginosa* biofilm has been grown in vitro to mimic the in-vivo environment	Phage (NP1 & NP3) and antibiotic (ceftazidime, ciprofloxacin, colistin, gentamycin & tobramycin)-Direct inoculation	As compared to other drugs, the synergistic effect of phages and drugs was highest with tobramycin	Chaudhry et al. 2017
Heart/pulmonary infections

The emergence of MDR bacteria has entailed the search for novel therapeutic designs or strategies [Table 4]. Heart and pulmonary infections are highly challenging as they often lead to septicemia. If left ignored, they might affect other organs as well. When pathogenic microorganisms evolve and gain resistance to potential treatments, novel therapeutic approaches would preferably target them, resulting in infection management. As an illustration of such a technique, Chan et al. (2018) isolated a lytic bacteriophage against MDR *P. aeruginosa* with multi-drug systemic porin M on its outer membrane, where phages bind. It culminated in the process of evolution in which the phage altered the bacteria’s efflux pumping mechanism, making the pathogen susceptible to several classes of antibacterial drugs. Antibiotics alone are frequently ineffective in treating these resistant infections due to AR, poor biofilm permeability, and other factors; however, phages are host specific, killing the intended bacterium, and the development of phase resistance may lead to an increase in antibiotic sensitivity (Chan et al. 2018). In a patient with *Pseudomonas aeruginosa*, Oechslin et al. (2017) demonstrated that a single dose of bacteriophage had a high synergistic activity with an antibiotic and phage-resistant bacteria had decreased infectivity. Phage therapy, when used alone or in combination with antibiotics, warrants further clinical investigation to improve the efficacy of existing methodologies or develop innovative approaches. Cao et al. (2015) found that administering phage intranasally to mice with a *Klebsiella pneumoniae* pulmonary infection reduced pathogenicity and pro-inflammatory cytokine levels. An in vivo investigation was conducted in mice in which MDR *A. baumannii* lung infection was treated with a newly isolated phage cocktail, resulting in a higher rate of survival after infection as compared to the untreated group (Cha et al. 2018). As AR among bacteria is a problematic issue that necessitates the creation of next-generation treatment approaches in which phage can thrive and soon be at the forefront of clinical care in the management of heart and pulmonary infections.

Gastrointestinal infections

The causes of gastrointestinal infection (GI) are many; however, bacterial causes are often responsible for severe cases of infectious diarrhoea than other infectious aetiologies [Table 5]. The gut microbiota offers various benefits to the healthy host; yet, perturbations in it may have a negative impact on an individual’s health and impair protection against colonization (Casals-Pascual et al. 2018). Over the last decade, a variety of global resistance concerns in bacterial GIs have emerged, necessitating immediate attention and innovative therapeutic interventions. Sarker et al. (2016) from Bangladesh conducted a randomized trial in which they administered two coliphage formulations orally to children suffering from acute diarrhoea. The findings demonstrated that coliphage movement along the gut was uneventful but failed to amplify, concluding that a higher dose of phage is required. Another research study conducted by Gelman et al. (2018) employed a single dose of specific bacteriophage against Vancomycin-Resistant Enterococcus (VRE) which induced severe microbial peritonitis and reported a favourable response. They further stipulated that in the case of fulminant AR infections, antibiotics combined with phages will provide significant benefit in both the immediate and delayed outcomes, with a good survival rate. Chaturvedi and Nath (2018) reported that when *K. pneumoniae* (MDR)-specific phages were administered orally in the gut of albino mice, they eliminated MDR bacteria that had the potential to cause additional nosocomial infections upon translocation. Furthermore, Green et al. (2017) demonstrated that phages isolated from the environment could be effective in combating even the most serious of infections caused by *Escherichia coli* superbugs found in intestinal tracts of immunocompromised patients, which when translocate, pose a considerable threat. Despite the favourable findings of phage therapy, multiple studies have demonstrated that phage–host interactions are more complicated and that the majority of attention is focused on them and less on the phage–human interaction. As a result, more research is needed to make this medication broadly available for human usage.
Case study	Description	Administration	Result	References
Bacteriophage therapy for an aortic graft infection	A 76-year-old patient underwent surgery for an aortic aneurysm with Dacron graft, which resulted in MDR *Pseudomonas aeruginosa* infection	Phage (OMKO1) and antibiotics (ceftazidime)-direct injection into the site (mediastinal fistula)	Infection eradicated with no signs of recurrence in 18 months	Chan et al. 2018
Synergistic effect of bacteriophages and antibiotics for endocarditis	Experimental aortic endocarditis caused by *Pseudomonas aeruginosa* was induced in a rat model	Phage cocktail (PP1131) and antibiotic (ciprofloxacin)-intravenous	Combination therapy resulted in killing bacterial vegetation within 6 h and treating 64% of rats	Oechslin et al. 2017
Bacteriophage therapy for the treatment of pneumonia	Seven-week-old female mice were inoculated intra-nasally with MDR *Klebsiella pneumoniae*	Phage (1513)-intranasal	After therapy lung lesions improved and bacterial count decreased	Cao et al. 2015
Evaluation of therapy and efficacy of bacteriophage cocktail in an in-vivo nasal and lung infections	In the six-week-old female mice, clinical MDR *Acinetobacter baumannii* was inoculated for the establishment of infection	Phage cocktail (PBAB08, PBAB25, PBAB68, PBAB80, PBAB93)-intranasal	Decreased bacterial concentration in lung resulted in a 60% survival rate of mice	Cha et al. 2018
Phage therapy for critical Infections associated with Cardiothoracic surgery	Eight patients with immunosuppression after organ transplantation were infected via MDR *Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli*	Phage (CH1, Enf1, PA5, PA10, KPV811, KPV15, Sa30, SCH1, SCH111, ECD7, V18)-local, intraoperatively, inhalation and intranasal Antibiotics (cefepine, daptomycin, linezolid, tobramycin, ceftazidime, colistin, meropenem, co-triamoxazol, rifampicin, fluoxacillin, sulactamcin and clindamycin)—oral and intravenous	No major adverse effects, seven out of eight people got their target bacteria eradicated	Rubalskii et al. 2020

MDR: Multi-drug resistant
Table 5 Overview of bacteriophage clinical studies for the treatment of gastrointestinal infections

Case study	Description	Administration	Result	References
Clinical coliphage analysis in Bangladesh to treat acute bacterial diarrhoea	In the hospital, 6–24-month-old children with acute watery diarrhoea due to the pathogenic *Escherichia coli* underwent phage therapy for 4 days	Phage cocktail (T4 containing AB2, 4, 6, 11, 46, 50, 55; JS34, 37, 98, D1.4 and Microgen Coli Proteus)- Oral	93% of patients treated with coliphage recovered from diarrhoea within 6 days	Sarker et al. 2016
Combined bacteriophage treatment for septic peritonitis	Female mice inoculated with a lethal dose of VRE disseminated intraperitoneally to intra-and extra-peritoneal organs	Phage (EFDGI and EFLK1) and antibiotics (ampicillin)- Intraperitoneal	100% successful treatment via bacteriophage cocktail alone for critically ill mice and 60% the success rate for combination therapy	Gelman et al. 2018
Bacteriophage therapy for intestinal MDR bacteria eradication	Due to increased antimicrobial resistance in gut bacteria, the effect of single-dose of bacteriophage on MDR *Klebsiella pneumoniae* isolated from albino mouse faeces	Phage*-Oral	The colony-forming unit of *Klebsiella pneumoniae* gradually decreased as the days progressed, leading to full eradication in 6 days	Chaturvedi and Nath 2018
Bacteriophage therapy against MDR strain for the treatment of bacteremia	An immunocompromised mouse model was developed where colonised MDR *Escherichia coli* was translocated from the gastrointestinal tract to the bloodstream	Phage (HP3)- Intraperitoneal	Gastrointestinal bacteremia decreased dramatically after phage therapy relative to untreated mice	Green et al. 2017

MDR multi-drug resistant, *VRE* vancomycin-resistant *Enterococcus faecalis*; Phage*- Customized Phage cocktail (No identification given)
Table 6 Overview of bacteriophage clinical studies for the treatment of septicemia/bloodstream infections

Case study	Description	Administration	Result	References
A case report of bacteriophage therapy	A 61-year-old man with peritonitis infection and other complications developed large necrotic pressure sores by MDR *Pseudomonas aeruginosa* leading to septicemia	Phage (BFC1)-Intreavenous and Topical	Fever disappeared, CRP level dropped, and blood culture turned negative for *P. aeruginosa*	Jennes et al. 2017
for the treatment of septicaemia in a patient				
Experimental phage therapy for the treatment of liver abscesses and bacteremia	The mice intragastrical inoculation of *Klebsiella pneumoniae* led to the development of liver abscesses, necrosis of liver tissues and bacteremia	Phage (NK5)-Oral or Intraperitoneal	The bacterial count was eliminated virtually from both blood and liver tissues	Hung et al. 2011
Bacteriophage therapy for the treatment of septicaemia	One-month-old BALB/c mice were intraperitoneally inoculated to mimic in-vivo neonatal septicemia with clinical MDR *Pseudomonas aeruginosa*	Phage (CSV-31)-Intraperitoneal	100% survival rate with minimal signs of illness after 24 h of treatment	Vinodkumar et al. 2008
Treatment of bacteremia by phage therapy in an immunocompromised and stable host	A diabetic and non-diabetic six-week-old BALB/c mouse was induced with *Staphylococcus aureus* bacteremia	Phage (GRCS)-Intraperitoneal	90% survival rate for diabetic and 100% survival rate for non-diabetic after treatment	Sunagar et al. 2010
Efficacy of bacteriophage therapy for sepsis in mice model	Each mouse was inoculated orally and intraperitoneally with *Pseudomonas aeruginosa* to induce gut-derived sepsis	Phage (KPP10)-Oral, Intravenous and Intraperitoneal	92.3% of phage treated mice survived as compared to 41.7% phage untreated mice	Watanabe et al. 2007

MDR: Multidrug-resistant; CRP: C-reactive protein
Septicemia/bloodstream infections

Bloodstream infection (BSI) due to bacteria (bacteremia) is a severe multisystem disease that is strenuous to treat due to its high mortality rates and manifestation [Table 6]. Bacteremia can have several serious health repercussions, and the haematogenous spread of bacteria may result in diseases like endocarditis or osteomyelitis (Holland et al. 2016; Agarwal and Aggarwal 2016). Jennes et al. (2017) described the first contemporary report of bacteriophage monotherapy against MDR P. aeruginosa septicemia in a patient, which resulted in the eradication of the pathogen. Hung et al. (2011) concluded in an experimental study of phage therapy that liver abscess and bacteremia in mice due to K. pneumoniae could be a prospective mode of therapeutic intervention. In a study conducted by Vinodkumar et al. (2008), a single dosage of lytic phage administered to mice suffering from MDR Pseudomonas aeruginosa-induced septicemia resulted in its redemption. The phage strain utilized in this study displayed broad-spectrum lytic activity against other isolated MDR strains of Pseudomonas aeruginosa, implying that phage therapy might be employed as a stand-alone treatment for AR infections. In an original research work, Sunagar et al. (2010) investigated the effect of bacteriophage therapy on fatal S. aureus-induced bacteremia in non-diabetic and streptozotocin-induced-diabetic mice. They concluded that bacteriophages could also be used to prevent Staphylococcus aureus infections in immunocompromised patients. Furthermore, Watanabe et al. (2007) ascertained the effectiveness of phage in an animal model of P. aeruginosa-induced sepsis. The results of this experiment showed that newly isolated lytic phage strain administration was extremely effective against sepsis caused by P. aeruginosa. Although bacteriophage therapy is thought to have significant potential in the treatment of a variety of topical and localized infections, this interest has not extended to the treatment of BSIs, which is surprising given that phages are likely to be safe and efficient when delivered in a controlled manner.

Skin and soft tissue infections

Skin and soft tissue infections (SSTIs) are caused by microbial infiltration of the epidermis, dermis, subcutaneous tissue, superficial fascia, or muscles and can present with a wide range of symptoms, etiological agents, and severity (Ki and Rotstein 2008). The advent of AR bacteria has complicated the management of SSTIs, with MRSA, VRE, and ESBL positive isolates of Escherichia coli and Klebsiella spp. being the most common (Moet et al. 2007), necessitating a reconsideration of the use of phage for its treatment [Table 7]. Chhibber et al. (2017) investigated the efficiency of bacteriophage therapy against abcess induced in a rat model.

Table 7	Overview of bacteriophage clinical studies for the treatment of skin and soft tissue infections			
Case study	Description	Administration	Result	References
Transversal phage cocktail treatment against SSTIs in a rat model	The posterior portion of both thighs of 4-6 week old female rats was intramuscularly injected with Staphylococcus aureus	Phage (MR-5 & MR-10) Intramuscular	100% survival rate was observed for both 30 min and 12 h post-infection	Chhibber et al. 2017
Comparison of bacteriophage and antibiotics for the treatment of burn wound infection	A BALB/c mouse was infected with Klebsiella pneumoniae, which resulted in the establishment of the burn wound	Phage (Kpn5) or antibiotic (silver nitrate and gentamicin) Topical	Survival rate (63.3%) via phage was higher than other two agents (56.66% & 53.33%) and untreated phage group	Kumari et al. 2011
A clinical trial for the treatment of wounds via a bacteriophage cocktail	Patients aged between 12 to 60 years with chronic non-healing wounds caused by Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa	Phage (LS2a) Subcutaneous	Seven patient infections eradicated, while the remaining 13 wound sizes decreased significantly	Gupta et al. 2019
Bacteriophage therapy against abscess induced in a rabbit model	Staphylococcus aureus was injected into the thigh area of adult New Zealand rabbits, progressing to wound infection	Phage (LS2a) Subcutaneous	Abscess in 90% of rabbits cured completely	Wills et al. 2006

SSTIs: Skin and soft tissue infections; Phage#: Cocktail of phages (No identification given)
of a transfersomal phage cocktail in the treatment of MRSA-induced SSTIs. They concluded that using transfersome as a delivery vehicle improves the stability and persistence of the enclosed bacteriophages in vivo. Similarly, when an animal model burn wound was infected with *Klebsiella pneumoniae*, bacteriophage was applied topically, which reduced mortality and resulted in an insignificant decrease in phage titre, indicating its stability (Kumari et al. 2011). An original clinical study reported by Gupta et al. (2019) stated that topical bacteriophage application for treatment of chronic non-healing wounds is highly effective. Chronic wounds are often recalcitrant to medication due to MDR pathogens and biofilm formation; however, phage cocktail was an excellent alternative to drugs (Jault et al. 2019). Wills et al. (2005) reported a wound infection caused by *S. aureus*, where staphylococcal phage managed to prevent abscess formation when injected simultaneously with the bacterium. Phage multiplied in the tissues. Therefore, the authors concluded that phages might also be valuable prophylaxis against staphylococcal infection (Wills et al. 2005). Superficial bacterial infections impose significant emotional and economic burdens on healthcare systems worldwide and are frequently worsened by AR, for which phage therapy is a viable potential antibacterial option (Abedon et al. 2011).

Phage and antibiotic interaction

Antibiotic resistance is a cause of concern, and phage has been advocated as one feasible therapeutic alternative for therapy and antibiotic potency enhancement. Bacteriophage is presently the recommended therapeutic modality, either alone or combined with an antibacterial agent, with the latter is expected to boost efficiency (Gkartziou et al. 2021). The combination of phage with antibiotics could have a variety of outcomes, including additive, synergistic, ineffective, or antagonistic effects (Abedon 2019; Gu Liu et al. 2020). Principi et al. (2019) suggested that bacteriophages reduce the minimum inhibitory concentration of AR bacteria to the level of sensitive bacteria. Antibacterial agents are frequently chosen based on antibiotics susceptibility data and the patient’s medical condition so that when phages are coupled, a “phage adjuviation” effect can be produced (Gu Liu et al. 2020). Antibiotic concentration must also be optimized since they increase the rate of bacterial cell mutation when used at sub-lethal concentrations, rendering coupled strain-specific phage useless (Saha and Mukherjee 2019). Several phage-antibiotic combinations have been assessed in vitro. However, due to inconsistent results with the combinatorial treatment, a customized in vitro assessment approach is required for optimal therapeutic effect in vivo against distinct bacterial species (Torres-Barceló et al., 2018). Currently, phage therapy does not replace antibiotics, but with the emergence of MDR, the concurrent use of personalized phage alone or in combination with antibiotics may be the way to the future. However, because some antibiotics can interfere with phage therapy by killing their host (bacterium) and blocking their reproduction, more rigorous sophisticated preclinical clarifications are essential prior to in vivo administration (Abedon 2019). There are significant gaps in how bacteriophages, bacteria, and antibiotics interact. Antibiotics can modify phage features such as growth rate, infectivity, and burst size, and their fate is mostly unknown and unexplored (Cairns et al. 2017). Torres-Barceló et al. (2018) findings imply that the effects of antibacterial medications on bacteriophages, and the combined effects of phages and antibiotics on bacteria, can alter substantially as interactions evolve. Although multiple studies have demonstrated a synergistic link between phages and antibiotics, the focus is often on bacteria, with little knowledge about the influence on phages. Therefore, further research is required to test it in its entirety.

Engineered phages and its enzymes

In various medical and biotechnological areas, innovations in genetic engineering and molecular biology for the application of phages have been observed. One of the phage modifications, “modus operandi”, is based on the integration of bacteriophage coat protein genes with foreign molecules (Bardy et al. 2016). It results in the creation of numerous bacteriophage variants. Currently, engineered bacteriophages have generated little proof of robust efficacy (Nair and Khairnar 2019). It has contributed to inconsistent outcomes in the treatment of diseases, as it has been less explored. Contrary to antibiotics, modified phages conflicted results are due to their unknown detailed molecular composition (Pizarro-Bauerle and Ando 2020). When bacteriophages are introduced into the food chain, they progress into the environment uncontrollably. When they infect bacteria, altering those would alter associated microbiota that may or may not be governable (Nair and Khairnar 2019). Engineered bacteriophages can pose an issue in terms of public acceptance due to a lack of knowledge and understanding (Sybesma et al. 2018). They are themselves living entities that are allowed to thrive on their host, which is thriving on another living organism. Hence, phage therapy via modified phages further derails its approval as a mainstream treatment option. For its concrete establishment in the world of medicine, there is a need for thorough research with extensive clinical trials (Pizarro-Bauerle and Ando 2020; Kutter et al. 2010; Miedzybrodzki et al. 2012; Carvalho et al. 2017). Unlike antibiotics, phages have genomes and replicate while parasitising on their host; engineering them may result in further complications and would lead to the addition of
clauses of legislation regarding the ethical concerns related to genetic modifications (Abdelkader et al. 2019).

Bacteriophage recombinant lytic proteins can be used as enzybiotics (Schuch et al. 2002). For gram-positive bacteria, external administration of endolysin results in cell disruption (Young 2013). Moreover, for gram-negative bacteria, lysins are unable to cross the bacterial outer cytoplasmic membrane (Fischetti 2018). Therefore, endolysin therapy is futile since it can also lead to the release of a large amount of endotoxin. Furthermore, it is a significant constituent of lipopolysaccharide, which, when released in the bloodstream of an infected host, would result in gram-negative septic shock causing hemodynamic and metabolic anomalies (Bardy et al. 2016; Prins et al. 1994). Also, when lysins are put up for therapeutic use, the production of neutralising antibodies is induced, which subsequently hinder their antibacterial activity on multiple administrations. Hence their use as an antimicrobial agent in human treatment raises concerns as they possess relatively short plasma life, immunogenicity and possible toxicity, proinflammatory response to bacterial debris and its inadequacy to lyse intracellular bacteria (Vazquez et al. 2018). Furthermore, the transfer of toxin-producing genes by genetically engineered phages puts them on the downside. However, new strategies are being implemented to safely use such phages after the risk of recombination and horizontal gene transfer among bacteriophages is thoroughly investigated. The successful launch of modified bacteriophages cannot be implemented by putting health, safety and environment at risk (Bardy et al. 2016).

Challenges and future perspectives

Currently, no framework (Verbeken et al. 2014) exists that could define phage as a medicinal product for human use. However, institutes in Georgia, Poland, provide customized phage cocktails to chronically ill patients for whom all other options of authorized treatment get exhausted (Yilmaz et al. 2013). Although in other parts of the world, bacteriophage therapy is still controversial, hence a dedicated legal framework is essential for its smooth introduction into western medicine. Regulatory cells in western countries have been debating about norms and steps to pioneer guidelines for phage therapy (Vandenheuvel et al. 2015). For safety purposes, legislation nowadays is heavily controlled for the production and administration of drugs by having strict quality control procedures. For the safety of bacteriophage therapy, a monitoring system needs to be implemented for data collection and analysis to follow the development of bacterial resistance to phages along with the installation of dedicated public structures that could pioneer more clinical trials (Sybesma et al. 2018; Kortright et al. 2019; Pirnay et al. 2018; Svircev et al. 2018).

For bacteriophage stability and effectiveness, good manufacturing practice level facilities are necessary for phage production and prospective research investigations (Brown et al. 2017; Kutter et al. 2010). This would allow for the storage of bacteriophage concoctions in retail pharmacies. Bacteriophage therapy is currently being developed in two directions. The first is the development of broad-host-range “off-the-shelf” solutions that may be utilised for infections caused by specific bacteria, and the second is a customized approach, such as the isolation and production of specific phage cocktails against a specific strain isolated from a patient. Bacteriophages isolated from the environment are the initial step toward bacteriophage therapeutics; many research investigations are currently underway to increase efficiency and optimise biofilm disruption, employing genetically altered phages (Bradley et al. 2016; Haellman and Fussenegger 2016; Wang et al. 2011) in situations when antibiotics become inadequate (Tagliaferri et al. 2019; Aslam and Schooley 2019). For further commercialization of phage and its products, there is a need for extensive research of bacteriophage metagenomics and metaproteomics.

Metagenomics is a concept that refers to the examination of genetic data from environmental samples in order to identify microbial communities (de Abreu et al. 2021). A high-throughput sequence (HTS) based functional metagenomics technique is useful for identifying and understanding resistance mechanisms detecting ARG and examining the internal dynamics (DNA or RNA level) of the cell (Churko et al. 2013; Sukhum et al. 2019). Because of the significant growth in data creation, new bioinformatics tools have been developed to deal with the massive volume of sequencing reads gathered during genome sequencing investigations (Pereira et al. 2020). There are two types of metagenomic analyses: sequence-based and functional-based (de Abreu et al. 2021). Numerous fragment sequences are generated and analysed using software, allowing for the development of structural and functional diversity in a microbiome by finding genes and metabolic pathways of bacterial genomes (Bharti and Grimm 2021). Genomic analysis also determines the relationship between the bacteriophage and its host, genomic content, and genetic linkage between the most sensitive and most resistant strains obtained to evaluate phage therapy viability by ensuring they did not encode for toxins and/or lysogenic characteristics (Haines et al. 2021). Furthermore, genetic analysis of isolates with polar opposite phage sensitivity could provide additional insight into resistance mechanisms, contributing to cocktail formulation design. Pirnay (2020) further discussed in “the future Earth 2035”, in which he shared Dr John Iverian’s experience and work on the technology Phage BEAM (Bedside Energized Anti-Microbial). First, a metagenome analysis of the entire sample was performed, and the results were stored
in the “Phage Xchange” server, where an intricate artificial intelligence-driven algorithm predicted the sequence of the phage that would most likely infect the infecting bacteria. Then the predicted phage genome data was transferred to the Phage-BEAM device, which manufactured the phage genome and, eventually, the phage itself for clients using patented technology (Pirnay 2020).

Antibiotic overuse and abuse in the medical, agriculture, and aquaculture sectors has aided the world into a silent pandemic of AMR. The most common cause of opportunistic infections worldwide is a group of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) organisms, the majority of which are MDR isolates (Mulani et al. 2019). The upsurge may be seen in the number of bacteriophage therapy publications (more than 600) covered by PubMed from 2016 to 2020, compared to around 285 articles published between 2010 and 2015 (Azam et al. 2021). It is worth noting that these data from the recent decade reflect a significant increase over those from two decades before when there were few papers published. The rise in the number of articles published in the last two decades indicates that the scientific industry’s focus is returning to phage therapy; however, physicians are wary of phages because they are a living organism that is introduced into a sick patient, and their complete mechanism of action is still underexplored.

Emerging prospect of phage therapy in COVID-19 patients

COVID-19 is one of the most prominent disaster-induced pandemics of our century (World Health Organization 2020). The prevalence, occurrence and manifestations of bacterial infections in patients already diagnosed with SARS-CoV-2 (COVID-19) are currently not well documented and pose many questions (Cox et al. 2020; Huttner et al. 2020; Langford et al. 2020). It has been reported that over 70% of patients were administered broad-spectrum fluoroquinolones and third-generation cephalosporins, despite a significant low rate of bacterial infections (Langford et al. 2020). While antibiotics are inadequate for the treatment of COVID-19, patients with suspected or confirmed secondary bacterial infections and/or co-infections are still administered antibiotics. This assumption, however, poses the question of antibiotic overuse and eventual global bacterial resistance. The increasing number and our decreasing ability to eradicate AMR bacteria not only makes us more prone to bacterial infections but also weakens us during viral pandemics (Vaillancourt and Jorth 2020). New antibiotics or alternative therapies for secondary bacterial infections are required for the recurrent waves of COVID-19 and the imminent future pandemic. Alternative therapies such as phage therapy can be explored as it shows promise. Although data for COVID-19 is still scarce, an integrative approach is proposed where bacterial infections, together with delayed production of antibiotics results in a significant contributing factor to COVID-19 mortality rate. Therefore the implementation of phage therapy might lead to microbiota homeostasis accelerated development of therapeutic antibodies via “Phage display” (Blanco-Picazo et al. 2020) and also decrease the pathogenic bacterial load in the respiratory tract of the infected persons (Wojewodzic 2020). Also, phages tend to compete with virus for cellular receptors when introduced after a primary viral infection and thus reduce the harmful activities of it (Meek and Takahashi 1968). Inflammation and cell destruction resulting from excessive reactive oxygen species (ROS) are often associated with a respiratory virus infecting the lungs (Gorski et al. 2020). Phage and phage proteins, however, inhibit the development of ROS and thus demonstrate antiviral activities by anti-oxidant therapy (Miedzybrodzki et al. 2005; Centifanto 1968). The same types and dosage of drugs are used in both techniques, the prophylactic and therapeutic: but the prophylactic use of antibiotics is not approved by most health institutions and policy makers globally due to the reported rise in AMR rates, which correlate with the overuse and misuse of antibiotics (Manohar et al. 2020; Holshue et al., 2020; Wang et al. 2020). However, that is not the case with bacteriophages as they do not affect any eukaryotic cells and therefore can be used both prophylactically and therapeutically (Adhya et al. 2014; Lin et al. 2017).

Conclusions

With the emerging AR bacterial infections, the activity of bacteriophages against resistant bacteria with no major serious side effects makes them a promising solution in recalcitrant bacterial infections since bacteriophages are specific for their host. As reflected from prior clinical case studies, instead of replacing antibiotics altogether, the combination of both, i.e. bacteriophage and antibiotic or phage alone, could result in potentially viable therapeutic options against bacterial pathogens. Enhanced bacterial clearance, more efficient adsorption into biofilms and a lower likelihood of the development of bacteriophage resistance are the potential advantages of bacteriophage therapy. Furthermore, they have pronounced prospective for treating secondary bacterial infections or co-infections during viral pandemics like the prevailing Covid-19 pandemic. We are in the midst of a significant shift in the medical industry, and we are failing to combat various diseases caused by AMR organisms. Looking at the current scenario, more research that sheds
light on the nature of host-phage interactions in the context of commensal flora is required that would aid in elucidating and accelerating the concept of bacteriophage therapy and advocating its regulatory approval in modern medicine.

Acknowledgements We gratefully acknowledge the facilities provided by Amity University Rajasthan (Jaipur) and Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, India.

Authors’ contribution NJ, GN and KB hypothesised and designed the research plan. Statistical analysis, interpretation of data and final editing of the manuscript were made by KB, NJ, GN, AB and GKA. All the authors have reviewed the manuscript.

Funding The research did not receive any specific grant from funding agencies in public, commercial or not for profit sectors.

Data Availability Not applicable.

Code availability Not applicable.

Declarations

Ethics approval This article does not contain any experiments with animals or human participants performed by any of the authors.

Consent to participate Not applicable.

Consent to publish Not applicable.

Conflict of interest The authors declare no competing interests.

References

Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y (2019) The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11(2):96. https://doi.org/10.3390/v11020096

Abedon ST (2019) Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 8(4):182. https://doi.org/10.3390/antibiotics8040182

Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage Treatment of Human Infections. Bacteriophage 1(2):66–85. https://doi.org/10.4161/bact.1.2.15845

Adhya S, Merrill CR, Biswas B (2014) Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb Perspect Med 4(1):a012518. https://doi.org/10.1011/Fcsperspect.a012518

Agarwal A, Aggarwal AN (2016) Bone and Joint Infections in Children: Acute Hematogenous Osteomyelitis. Indian J Pediatr 83:817–824. https://doi.org/10.1007/s12098-015-1806-3

Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11(12):2970–2988. https://doi.org/10.1111/j.1462-2920.2009.01972.x

Aminov RI (2011) Horizontal gene exchange in environmental microbota. Front Microbiol 2:158. https://doi.org/10.3389/fmicb.2011.00158

Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35(5):901–911. https://doi.org/10.1111/j.1574-6976.2011.00289.x

Aslam S, Courtwright AM, Koval C, Lehman SM, Morales S, Furr CL, Rosas F, Brownstein MJ, Fackler JR, Sisson BM, Biswas B, Henry M, Luu T, Bivens BN, Hamilton T, Duplessis C, Logan C, Law N, Yung G, Turowski J, Anesi J, Stratheide SA, Schooley RT (2019) Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am J Transplant 19(9):2631–2639. https://doi.org/10.1111/ajt.15503

Aslam S, Schooley RT (2019) What’s Old Is New Again: Bacteriophage Therapy in the 21st century. Antimicrob Agents Chemother 64(1):2. https://doi.org/10.1128/AAC.01987-19

Azam AH, Tan YE, Veeranarayanan S, Kiga K, Cui L (2021) Bacteriophage Technology and Modern Medicine. Antibiotics (basel) 10(8):999. https://doi.org/10.3390/antibiotics10080999

Bardy P, Pantecek R, Benesik M, Doskar J (2016) Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 121(3):618–633. https://doi.org/10.1111/jam.13207

Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230. https://doi.org/10.1128/CMR.00059-12

Bhargava K, Aseri G, Jain N (2021) Urinary tract infections and phage therapy to tackle antimicrobial resistance (AMR). Advances in Applied Microbiology for Sustainable Development, ESN publication, ISBN-978-81–950423–8–8, pp 329–344

Bharti R, Grimm DG (2021) Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform 22(1):178–193. https://doi.org/10.1093/bib/bbz155

Biset S, Moges F, Endalamaw D, Esthetie S (2020) Multi-drug-resistant and extended-spectrum β-lactamases producing bacterial uropathogens among pregnant women in Northwest Ethiopia. Ann Clin Microbiol Antimicrob 19(1):1–9. https://doi.org/10.1186/s12941-020-00365-z

Bianco-Picazo P, Fernandez-Orth D, Brown-Jaque M, Miro E, Espinal P, Rodriguez-Rubio L, Muniesa M, Navarro F (2020) Unravelling the consequences of the bacteriophages in human samples. Sci Rep 10(1):6737. https://doi.org/10.1038/s41598-020-63432-7

Bradley RW, Buck M, Wang B (2016) Tools and principles for microbial gene circuit engineering. J Mol Biol 428(5):862–888. https://doi.org/10.1016/j.jmb.2015.10.004

Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343. https://doi.org/10.1038/nature17042

Brown R, Lengeling A, Wang B (2017) Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant Biol 5(1):42–54. https://doi.org/10.1007/s40484-017-0094-5

Cairns J, Becks L, Jalasvuori M, Hiltunen T (2017) Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc B Biol Sci 372(1712):20160040. https://doi.org/10.1098/rstb.2016.0040

Cao F, Wang X, Wang L, Li Z, Che J, Wang L, Li X, Cao Z, Zhang J, Jin L, Xu Y (2015) Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multi-drug resistance Klebsiella pneumoniae in mice. Biomed Res Int 2015:752930. https://doi.org/10.1155/2015/752930

Carvalho C, Costa AR, Silva F, Oliveira A (2017) Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 43(5):583–601. https://doi.org/10.1080/1040841X.2016.1271309

Casals-Pascual C, Vergara A, Vila J (2018) Intestinal microbiota and antibiotic resistance: perspectives and solutions. Hum
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539

Nair A, Khairnar K (2019) Genetically engineered phages for therapeutics: proceed with caution. Nat Med 25(7):1028–1128. https://doi.org/10.1038/s41591-019-0506-3

Nir-Paz R, Gelman D, Khouri A, Sisson BM, Fackler J, Alkalay-Oren S, Khalifa L, Rimon A, Yerushalmi O, Bader R, Amit S, Coppen-ghalzer S, Henry M, Quinones J, Malagon F, Biswas B, Moses AE, Merril G, Schooley RT, Brownstein MJ, Weil AJ, Hazan R (2019) Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination, Clin Infect Dis 69(11):2015–2018. https://doi.org/10.1093/cid/ciz222

O’Neill J (2014) Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance. https://amr-review.org/articles/19/5/16. Accessed 28 November 2020

Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215(5):703–712. https://doi.org/10.1093/infdis/jfw632

Payne RJ, Jansen VA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42(4):315–325. https://doi.org/10.2165/00003495-200340040-00002

Pereira R, Oliveira J, Sousa M (2020) Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. J Clin Med 9(1):132. https://doi.org/10.3390/jcm9010132

Perros M (2015) A sustainable model for antibiotics. Science 347(6226):1062–1064. https://doi.org/10.1126/science.aaa3048

Pirny JP (2020) Phage Therapy in the Year 2035. Front Microbiol 11:1171. https://doi.org/10.3389/fmicb.2020.01171

Pirny JP, Verbeken G, Ceyssens PJ, Huys I, De Vos D, Ameloot C, Fauconnier A (2018) The Magistical Phage. Viruses 10(2):64. https://doi.org/10.3390/v10020064

Pizarro-Bauerle J, Ando H (2020) Engineered Bacteriophages for Practical Applications. Biol Pharm Bull 43(2):240–249. https://doi.org/10.1248/bpb.b19-00914

Principi N, Silvestri E, Esposito S (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513. https://doi.org/10.3389/fphar.2019.00513

Prins JM, Van Deventer SJ, Kuipers EJ, Speelman P (1994) Clinical relevance of antibiotic-induced endothelin release. Antimicrob Agents Chemother 38(6):1211–8. https://doi.org/10.1128/Aac.38.6.1211

Rahman M, Kim S, Kim SM, Seol SY, Kim JI (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27(2):1087–1093. https://doi.org/10.1080/08927014.2011.631169

Robertson KL, Soto CM, Archer MJ, Odoemene O, Liu JL (2011) Engineered T4 viral nanoparticles for cellular imaging and flow cytometry. Bioconjug Chem 22(4):595–604. https://doi.org/10.1021/bc100365j

Rostul JT, Marraffini L (2019) (Ph)ighting Phages: How Bacteria Resist Their Parasites. Cell Host Microbe 25(2):184–194. https://doi.org/10.1016/j.chom.2019.01.009

Rubalskii E, Ruemke S, Salmoukas C, Boyle EC, Warnecke G, Tudorache I, Shrestha M, Schmitto JD, Martens A, Rojas SV, Ziesing S, Bohckareva S, Kuehn C, Haverich A (2020) Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics 9(5):232. https://doi.org/10.3390/2Antibiotics9050232

Saha D, Mukherjee R (2019) Ameliorating the antimicrobial resistance crisis: phage therapy. IUBMB Life 71(7):781–790. https://doi.org/10.1002/iub.2010

Sarker SA, Sultana S, Reuteler G, Moine D, Descombos P, Charto F, Bourdin G, McCallin S, Ngom-Bru C, Neville T, Akter M, Huq S, Qadi F, Talukdar K, Kassam M, Delley M, Loiseau C, Deng Y, El Aidy S, Berger B, Brussow H (2016) Oral phage therapy of acute bacterial diarrhea with two coliphe preparations: a randomised trial in children from Bangladesh. EBioMedicine 4:124–137. https://doi.org/10.1016/j.ebiom.2015.12.023

Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Citwa KE, Regeimbil JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalised bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954-e01017. https://doi.org/10.1128/AAC.00954-17

Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900):884–889. https://doi.org/10.1038/nature01026

Sime-Ngando T (2014) Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol 5:355. https://doi.org/10.3389/fmicb.2014.00355

Sukhum KV, Diorio-Toth L, Dantas G (2019) Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance. Clin Pharmacol Ther 106(3):512–524. https://doi.org/10.1002/cpt.1535

Sunagar R, Patil SA, Chandrakanth RK (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol 161(10):854–860. https://doi.org/10.1016/j.resmic.2010.09.011

Sutton TD, Hill C (2019) Gut bacteriophage: current understanding and challenges. Front Endocrinol 10:784. https://doi.org/10.3389/2Fendo.2019.00784

Svirecv A, Roach D, Castle A (2018) Framing the future with bacteriophages in agriculture. Viruses 10(5):218. https://doi.org/10.3390/v10050218

Syhesma W, Rohde C, Bardy P, Pirny JP, Cooper I, Caplin J, Channishivili N, Coffey A, De Vos D, Scholz AH, McCallin S, Puschnar HM, Pantucek R, Aminov R, Doskar J, Kurtoike Di (2018) Silk route to the acceptance and re-implementation of bacteriophagy therapy—part II. Antibiotics (Basel) 7(2):35. https://doi.org/10.3390/2FAntibiotics7020035

Taati Moghadam M, Amirmozaafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khashbayan A, Zaji FM (2020) How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist 13:45–61. https://doi.org/10.2147,idr.s234353

Tagliaferri TL, Jansen M, Horz HP (2019) Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:22. https://doi.org/10.3389/fcimb.2019.00513

Tkhilaiashvili T, Winkler T, Muller M, Perka C, Trampuz A (2020) Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 64(1):e00924-e01019. https://doi.org/10.1128/AAC.00924-19

Torres-Barceló C, Gurney J, Goutag-Barberá C, Vasse M, Hochberg ME (2018) Transient negative effects of antibiotics on phages do not jeopardise the advantages of combination therapies. FEMS Microbiol Ecol 94(8):fiy107. https://doi.org/10.1093/femssec/fiy107
Vaillancourt M, Jorth P (2020) The Unrecognized Threat of Secondary Bacterial Infections with COVID-19. mBio 11(4):e01806-20. https://doi.org/10.1128/mBio.01806-20

Valerio N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, Almeida A (2017) Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res 240:8–17. https://doi.org/10.1016/j.virusres.2017.07.015

Vandenhende V, Davigne R, Brußows H (2015) Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annu Rev Virol 2(1):599–618. https://doi.org/10.1146/annurev-virology-100114-054915

Vazquez R, Garcia E, Garcia P (2018) Phage lyssins for fighting bacterial respiratory infections: a new generation of antimicrobials. Front Immunol 9:2252. https://doi.org/10.3389/fimmu.2018.02252

Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I (2014) Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp (warsz) 62(2):117–129. https://doi.org/10.1007/s00005-014-0269-y

Verma V, Harjai K, Chhibber S (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling 26(6):729–737. https://doi.org/10.1080/08927014.2010.511196

Vinodkumar CS, Kalusurmath S, Neelagund YF (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51(3):360. https://doi.org/10.4103/0377-4929.42511

Wang B, Kitney RJ, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2(1):1–9. https://doi.org/10.1038/ncomms1516

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China JAMA 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585

Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, Uchiyama J, Sakurai S, Matsuzaki S, Imai S, Yamaguchi K (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51(2):446–52. https://doi.org/10.1128/AAC.00635-06

Weinhauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181. https://doi.org/10.1016/j.femsre.2003.08.001

Wills QF, Kerrigan C, Soothill JS (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49(3):1220–1221. https://doi.org/10.1128/aac.49.3.1220-1221.2005

Wojewodzic MW (2020) Bacteriophages could be a potential game changer in the trajectory of coronavirus disease (COVID-19). PHAGE 1(2):60–65. https://doi.org/10.1089/phage.2020.0014

World Health Organization (2018) Antimicrobial resistance and primary health care. World Health Organization. https://apps.who.int/iris/handle/10665/326454, License: CC BY-NC-SA 3.0 IGO Accessed on 2 December 2020

World Health Organization (2020) Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. World Health Organization. https://apps.who.int/iris/handle/10665/332081. License: CC BY-NC-SA 3.0 IGO Accessed on 8 December 2020

World Health Organization. (2020). Coronavirus disease 2019 (COVID-19): situation report, 73. World Health Organization. https://apps.who.int/iris/handle/10665/331686 Accessed on 15 December 2020

Yadav S, Kapley A (2021) Antibiotic resistance: Global health crisis and metagenomics. Biotechnol Rep 29:e00604. https://doi.org/10.1016/j.btre.2021.e00604

Yata T, Lee KY, Darakul T, Songsivilai S, Bismarck A, Mintz PJ, Hajitou A (2014) Hybrid nanomaterial complexes for advanced phage-guided gene delivery. Mol Ther Nucleic Acids 3(8):e185. https://doi.org/10.1038/mtna.2014.37

Yilmaz C, Colak M, Yilmaz BC, Erosoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant related infections: an experimental study. J Bone Joint Surg Am 95:117–125. https://doi.org/10.2106/JBJS.K.01135

Young R (2013) Phage lysis: do we have the whole story yet? Curr Opin Microbiol 16(6):790–797. https://doi.org/10.1016/j.mib.2013.08.008

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.