Implementation of simple additive weighting algorithm in decision support system

Volvo Sihombing, Victor Marudut Mulia Siregar, Wahyu Simon Tampubolon, Maya Jannah, Risdalina, Abdul Hakim

1Faculty of Science and Technology, Universitas Labuhanbatu, Indonesia
2Computer Engineering Department, Politeknik Bisnis Indonesia, Indonesia
3Universitas Labuhanbatu, Indonesia

*volvolumbantoruan@gmail.com

Abstract. The research focused on the problems of buying a second-hand Toyota vehicle. The ability to make fast, precise and accurate decisions will be the key to success in today's global competition. The number of factors that need to be considered when a purchaser wants to buy a second-hand car also leads the purchaser to make the wrong choice when selecting a second-hand car to buy. This problem is solved by developing a support system that helps consumers make choices about purchasing second-hand cars. This Decision Support System is generated using the Simple Additive Weighting (SAW) method. From this research it can be concluded that the SAW method is very appropriate to use as a decision support tool where three best second-hand car alternatives are obtained consisting of Toyota Fortuner with a preference value of 101, Toyota Rush car with a preference value of 90.4, and the Toyota Kijang Innova with a preference value of 88.6.

1. Introduction

Nowadays, along with the development and progress of the times and the demands for high mobility, four-wheeled vehicles have become essential community needs in everyday life. The types of four-wheeled vehicles that are in the market in Indonesia currently vary greatly from price and kind, such as the Toyota Agya, Avanza, Rush, and many more. Therefore, many people want to buy cars, both new and second-hand cars. For consumers who want to buy a car but have limited funds and don't want to be complicated with paying installments, purchasing a second-hand car can be the right choice. This has resulted in increased market interest in buying second-hand cars from time to time.

In purchasing a second-hand car, there are several things to consider. Consumers often ask others for guidance or suggestions to pick a second-hand car worth purchasing since they face a wide variety of car styles in the showroom or on the market. Consumers who have selected a vehicle often feel unhappy about buying the car because they don't want their car.

At present, the development of information technology is significant in supporting data production in different life situations. Through the use of technology, potential buyers can be helped to make decisions about the choice of second-hand cars that can be made more quickly and accurately. This is possible due to the sophistication of hardware technology followed by...
technological innovations and the ability to combine multiple decision-making techniques [14]–[17]. A second-hand Toyota car purchasing decision support system was developed to solve the problem of choosing a second-hand car, which will assist and make it easier for consumers to decide the second-hand car to be purchased according to their desires and their regular wishes. The Simple Additive Weighting (SAW) method is the method used in this study. This approach was selected because the SAW method was commonly used to promote decision-making [14], [18], [19].

2. Methodology
In Figure 1, the steps taken to complete this research can be seen. The analysis started to establish the context of the research problem and proceeded with the collection of data. The next step is to determine the appropriate weight and requirements. The data is then analyzed using the technique of Simple Additive Weighting (SAW). To perform calculations, this approach includes parameters and weights such that the best alternative can be obtained. The criteria used include production year, engine power, car color, and car price. In Table 1 and Table 2, the parameters for the purchasing of second-hand cars and the weight values for each criterion can be seen.

![Figure 1. Research Framework](image)

In this analysis, the data to be processed in selecting second-hand Toyota cars consists of alternative data with each criterion's value, as shown in Table 3.

Criteria	Value
Production Year (C1)	Very Low: 2000-2004, Low: 2005-2009, Moderate: 2010-2013, High: 2014-2015, Very High: 2016-2018
Engine Capacity (C2)	Very Low: 2000-2004, Low: 2005-2009, Moderate: 2010-2013, High: 2014-2015, Very High: 2016-2018
Car Color (C3)	Another Color, Grey, Silver, White, Black
Car Price (C4)	50 Million – 100 Million, 101 Million – 200 Million, 201 Million - 300 Million, 301 Million - 400 Million, 400 Million Above

3. Result and Discussion
The data in Table 3 will then be processed using the Simple Additive Weighting (SAW) Calculation
method. Data processed in this analysis using the SAW method was second-hand car data with the values shown in table 4.

Alternative	Car Model	Year	Engine Capacity	Color	Value
A1	Toyota Agya	2014	1200cc	White	98000000
A2	Toyota Avanza	2015	1200cc	White	138000000
A3	Toyota Rush	2016	1500cc	Black	190000000
A4	Toyota Kijang Innova	2018	2400cc	Silver	300000000
A5	Toyota Fortuner	2019	2400cc	Black	530000000

4. Result and Discussion
After getting the car value data, then the weight is given, based on the level of importance of each of the required criteria as follows:

Weight Vector \(W = [30, 20, 30, 20] \)

Making a decision matrix \(X \), a match table is created as follows:

\[
X = \begin{bmatrix}
4 & 1 & 4 & 1 \\
4 & 1 & 4 & 2 \\
5 & 2 & 5 & 2 \\
5 & 4 & 3 & 3 \\
5 & 4 & 5 & 5
\end{bmatrix}
\]

After the \(X \) decision matrix has been developed, \(X \) matrix normalization is performed to measure the value of each criterion on the basis of predetermined parameters, i.e.

a. A1 (Toyota Calya)
\[
\begin{align*}
R_1 &= \frac{4}{\max(4,4,5,5,5)} = \frac{4}{5} = 0.8 \\
R_2 &= \frac{1}{\max(1,1,2,4,4)} = \frac{1}{4} = 0.25 \\
R_3 &= \frac{4}{\max(4,4,5,3,5)} = \frac{4}{5} = 0.8 \\
R_4 &= \frac{1}{\max(1,2,2,3,5)} = \frac{1}{5} = 0.2
\end{align*}
\]

b. A2 (Toyota Avanza)
\[
\begin{align*}
R_{21} &= \frac{4}{\max(4,4,5,5,5)} = \frac{4}{5} = 0.8 \\
R_{22} &= \frac{1}{\max(1,1,2,4,4)} = \frac{1}{4} = 0.25 \\
R_{23} &= \frac{4}{\max(4,4,5,3,5)} = \frac{4}{5} = 0.8 \\
R_{24} &= \frac{2}{\max(1,2,2,3,5)} = \frac{2}{5} = 0.4
\end{align*}
\]

c. A3 (Toyota Rush)
\[
\begin{align*}
R_{31} &= \frac{5}{\max(4,4,5,5,5)} = \frac{5}{5} = 1 \\
R_{32} &= \frac{2}{\max(1,1,2,4,4)} = \frac{2}{4} = 0.5 \\
R_{33} &= \frac{5}{\max(4,4,5,3,5)} = \frac{5}{5} = 1 \\
R_{34} &= \frac{2}{\max(1,2,2,3,5)} = \frac{2}{5} = 0.4
\end{align*}
\]
d. **A4 (Toyota Kijang Innova)**

\[
\begin{align*}
R_{41} &= \frac{5}{\max(4,5,5,5)} = \frac{5}{5} = 1 \\
R_{42} &= \frac{4}{\max(1,1,2,4,4)} = \frac{4}{4} = 1 \\
R_{43} &= \frac{3}{\max(4,4,5,3,5)} = \frac{3}{5} = 0.6 \\
R_{44} &= \frac{3}{\max(1,2,2,3,5)} = \frac{3}{5} = 0.6
\end{align*}
\]

The matrix is normalized according to the results of the following calculations:

\[
R = \begin{bmatrix}
0.8 & 0.25 & 0.8 & 0.2 \\
0.8 & 0.25 & 0.8 & 0.4 \\
1 & 0.5 & 1 & 0.4 \\
1 & 1 & 0.6 & 0.6 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

In addition, the multiplication of the matrix \(W \times R \) and the sum of the multiplication results shall be made in order to obtain the best alternative by ranking the largest value as follows:

\[
V_i = \sum_{j=1}^{n} W_j \cdot r_{ij}
\]

\begin{align*}
V_1 &= (0.8 \times 30) + (0.25 \times 20) + (0.8 \times 30) + (0.2+20) \\
&= (24 + 5 + 24 + 20.2) \\
&= 73.2 \\
V_2 &= (0.8 \times 30) + (0.25 \times 20) + (0.8 \times 30) + (0.4+20) \\
&= (24 + 5 + 24 + 20.4) \\
&= 73.4 \\
V_3 &= (1 \times 30) + (0.5 \times 20) + (1 \times 30) + (0.4+20) \\
&= (30 + 10 + 30 + 20.4) \\
&= 90.4 \\
V_4 &= (1 \times 30) + (1 \times 20) + (0.6 \times 30) + (0.6+20) \\
&= (30 + 20 + 18 + 20.6) \\
&= 88.6 \\
V_5 &= (1 \times 30) + (1 \times 20) + (1 \times 30) + (1+20) \\
&= (30 + 20 + 30 + 21) \\
&= 101
\end{align*}

The following results are obtained from the multiplication of the matrix \(W \times R \):

\[V_1 = 73.2, V_2 = 73.4, V_3 = 90.4\]
The ranking results for the Vi preference value can be seen in the graph below.

5. Conclusion
The Decision Support System (DSS) for purchasing second-hand Toyota cars is designed to make it easier for consumers to choose and assist consumers in the purchase of second-hand Toyota cars. The decision support system (DSS) for purchasing a second-hand Toyota car can be used as an option or as a guide for selecting and deciding on the purchase of a car.

The decision support system using the Simple Additive Weighting Approach is the best method to use when choosing several attributes, and the results of the study are excellent and logical. The DSS calculation results using the SAW method in this analysis were obtained from the three best second-hand car alternatives, namely Toyota Fortuner with a preference value of 101, Toyota Rush with a preference value of 90.4, and Toyota Kijang Innova with a preference value of 88.6.

References
[1] W. Rahman, P. T. Nguyen, M. Rusliyadi, E. Laxmi Lydia, and K. Shankar, “Network monitoring tools and techniques uses in the network traffic management system,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 11, pp. 4182–4188, Sep. 2019.
[2] M. Kadam, “Factors Affecting Willingness of Indian Consumers to buy Pre-Owned Cars,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 2246–2254, 2020.
[3] O. Celik and U. O. Osmanoglu, “İkinci El Araba Fiyatlarının Tahmini,” Eur. J. Sci. Technol., no. 16, pp. 77–83, 2019.
[4] C. Chen, L. Hao, and C. Xu, “Comparative analysis of used car price evaluation models,” in AIP Conference Proceedings, 2017, vol. 1839, no. May, p. 020165.
[5] S. P. Tamba, M. D. Batubara, W. Purba, M. Sihombing, V. M. Mulia Siregar, and J. Banjarnahor, “Book data grouping in libraries using the k-means clustering method,” J. Phys. Conf. Ser., vol. 1230, no. 1, p. 012074, Jul. 2019.
[6] V. M. Mulia Siregar and H. Sugara, “Implementation of artificial neural network to assessement
the lecturer’s performance,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 420, no. 1, p. 012112, Oct. 2018.

[7] W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model dropout potential,” *J. Phys. Conf. Ser.*, vol. 1007, no. 1, p. 12049, 2018.

[8] P. D. P. Adi and A. Kitagawa, “Performance evaluation of E32 long range radio frequency 915 MHz based on internet of things and micro sensors data,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 10, no. 11, pp. 38–49, 2019.

[9] P. D. P. Adi and A. Kitagawa, “ZigBee Radio Frequency (RF) performance on Raspberry Pi 3 for Internet of Things (IoT) based blood pressure sensors monitoring,” *Int. J. Adv. Comput. Sci. Appl.*, 2019.

[10] P. Adi, D. Prasetya, A. Setiawan, N. Nachrowie, and R. Arifuddin, “Design Of Tsunami Detector Based Sort Message Service Using Arduino and SIM900A to GSM/GPRS Module,” *Proc. Proc. 2nd Int. Conf. Adv. Sci. Innov. ICASI 2019, 18 July, Banda Aceh, Indonesia.*, 2019.

[11] P. D. P. Adi and A. Kitagawa, “A Study of LoRa Performance in Monitoring of Patient’s SPO2 and Heart Rate based IoT,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 2, 2020.

[12] E. Susanto, Y. Novitasari, W. Rahman, and A. P. O. Amane, “Designing Software to Introduce the Musical Instruments,” in *Journal of Physics: Conference Series*, 2019, vol. 1364, no. 1.

[13] D. Sitanggang et al., “Diagnosing chicken diseases using fuzzy Tsukamoto web-based expert system,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 505, no. 1, p. 012086, Jul. 2019.

[14] Angelina et al., “Application Selection Lending Houses Subsidized by the Method of AHP and SAW,” *J. Phys. Conf. Ser.*, vol. 1230, p. 012082, Jul. 2019.

[15] M. Mesran, G. Ginting, S. Suginam, and R. Rahim, “Implementation of Elimination and Choice Expressing Reality (ELECTRE) Method in Selecting the Best Lecturer (Case Study STMIK BUDI DARMA),” *Int. J. Eng. Res. Technol.*, vol. 6, no. 02, February-2017, pp. 141–144, 2017.

[16] D. Bambang, T. Wijaya, T. Wahyono, and A. N. S. Hapsari, “TOPSIS Method Implementation for Employee Performance Information System,” *Int. J. Inf. Technol. Bus.*, vol. 2, no. 1, pp. 21–26, 2019.

[17] M. Sevkli, “An application of the fuzzy ELECTRE method for supplier selection,” *Int. J. Prod. Res.*, vol. 48, no. 12, pp. 3393–3405, Jun. 2010.

[18] A. Fitrul Hadi, R. Permana, and H. Syafwan, “Decision Support System in Determining Structural Position Mutations Using Simple Additive Weighting (SAW) Method,” *J. Phys. Conf. Ser.*, vol. 1339, no. 1, 2019.

[19] T. Sagirani, M. G. Virawan, and V. Nurcahyawati, “Simple additive weighting method in the triage decision support system,” *Int. J. Sci. Technol. Res.*, vol. 8, no. 12, pp. 3008–3012, 2019.