A SIMPLE PROOF FOR THE EXISTENCE OF ZARISKI DECOMPOSITIONS ON SURFACES

THOMAS BAUER

November 7, 2007

In his fundamental paper [5], Zariski established the following result:

Theorem. Let D be an effective \mathbb{Q}-divisor on a smooth projective surface X. Then there are uniquely determined effective (possibly zero) \mathbb{Q}-divisors P and N with

$$D = P + N$$

such that

(i) P is nef,

(ii) N is zero or has negative definite intersection matrix,

(iii) $P \cdot C = 0$ for every irreducible component C of N.

The decomposition $D = P + N$ is called the Zariski decomposition of D, the divisors P and N are respectively the positive and negative parts of D. Zariski’s result has been used to study linear series on surfaces, and in the classification of surfaces (see [1, Chapt. 14] and [4, Sect. 2.3.E], as well as the references therein). We also mention that there is an extension to pseudo-effective divisors due to Fujita (see [2] and the nice account in [1]).

Given an effective divisor D, Zariski’s original proof employs a rather sophisticated procedure to construct the negative part N out of those components C of D satisfying $D \cdot C \leq 0$. Our purpose here is to provide a quick and simple proof, based on the idea that the positive part P can be constructed as a maximal nef subdivisor of D. This maximality condition is in the surface case equivalent to the defining condition of Nakayama’s ν-decomposition of pseudo-effective \mathbb{R}-divisors (see the Remark below). It may be useful that this approach yields a practical algorithm for the computation of P.

Notation. For \mathbb{Q}-divisors P and Q we will write $P \preceq Q$, if P is a subdivisor of Q, i.e., if the difference $Q - P$ is effective or zero. Similarly, we will use the partial ordering \preceq in \mathbb{Q}^r that is defined by $(x_1, \ldots, x_r) \preceq (y_1, \ldots, y_r)$, if $x_i \leq y_i$ for all i.

Proof of existence. Write $D = \sum_{i=1}^r a_i C_i$ with distinct irreducible curves C_i and positive rational numbers a_i. Consider now all effective \mathbb{Q}-subdivisors P of D, i.e., all divisors of the form $P = \sum_{i=1}^r x_i C_i$ with rational coefficients x_i satisfying $0 \leq x_i \leq a_i$. A divisor P of this kind is nef if and only if

$$\sum_{i=1}^r x_i C_i \cdot C_j \geq 0 \quad \text{for } j = 1, \ldots, r. \quad (1)$$

This system of linear inequalities for the rational numbers x_i has a maximal solution (with respect to \preceq) in the rational cuboid

$$[0, a_1] \times \ldots \times [0, a_r] \subset \mathbb{Q}^r.$$
To see this, note first that the subset K of the cuboid that is described by {11} is a rational convex polytope defined by finitely many rational halfspaces. It is therefore the convex envelope of finitely many rational points. We are done if $(a_1, \ldots, a_r) \in K$. In the alternative case consider for rational $t < 1$ the family of hyperplanes $H_t = \{(x_1, \ldots, x_r) \in \mathbb{Q}^r \mid \sum_i x_i = t \sum_i a_i\}$. There is then a maximal t such that H_t intersects K, the point of intersection being a vertex of K.

Let now $P = \sum_{i=1}^r b_i C_i$ be a divisor that is determined by a maximal solution, and put $N = D - P$. Then both P and N are effective, and P is a maximal nef \mathbb{Q}-subdivisor of D. We will now show that (ii) and (iii) are satisfied as well.

As for (iii): Suppose $P \cdot C > 0$ for some component C of N. As $C \leq N$, we have $b_i < a_i$, so that for sufficiently small rational numbers $\varepsilon > 0$, the divisor $P + \varepsilon C$ is a subdivisor of D. For curves C' different from C we clearly have $(P + \varepsilon C) \cdot C' \geq 0$. Moreover, $(P + \varepsilon C) \cdot C = P \cdot C + \varepsilon C^2 > 0$ for small ε. So $P + \varepsilon C$ is nef, contradicting the maximality of P.

As for (ii): Supposing that the divisor N is non-zero, we need to show that its intersection matrix is negative definite. We will prove:

\[(*) \] If N is a divisor, whose intersection matrix S is not negative definite, then there is an effective non-zero nef divisor E, whose components are among those of N.

Granting (*) for a moment, let us show how to complete the proof. Assume by way of contradiction that the intersection matrix of N is not negative definite, and take E as in (*). Consider then for rational $\varepsilon > 0$ the \mathbb{Q}-divisor

\[P' =_{\text{def}} P + \varepsilon E. \]

Certainly P' is effective and nef. As all components of E are among the components of N, it is clear that P' is a subdivisor of D when ε is small enough. But this is a contradiction, because P' is strictly bigger than P.

It remains to prove (*). To this end we distinguish between two cases:

Case 1: S is not negative semi-definite. In this case there is a divisor B whose components are among those of N such that $B^2 > 0$. Then, writing $B = B' - B''$ as a difference of effective divisors having no common components, we have $0 < B^2 = (B' - B'')^2 = B'^2 - 2B'B'' + B''^2$, and hence $B'^2 > 0$ or $B''^2 > 0$. Therefore, replacing B by B' or B'' respectively, we may assume that B is effective. But then it follows from the Riemann-Roch theorem that the linear series $|\ell B|$ is large for $\ell \gg 0$. So we can write $\ell B = E_\ell + F_\ell$, where $|E_\ell|$ is the non-zero moving part of $|\ell B|$. Then $E = E_\ell$ is a nef divisor as required, so that the proof of (*) is complete in this case.

Case 2: S is negative semi-definite. Let C_1, \ldots, C_k be the components of N. We argue by induction on k. If $k = 1$, then $N^2 = C_1^2 = 0$, so C_1 is nef and we are done taking $E = C_1$. Suppose then $k > 1$. The hypotheses on S imply that S does not have full rank. Therefore there is a non-zero divisor R, whose components are among C_1, \ldots, C_k, having the property that $R \cdot C_i = 0$ for $i = 1, \ldots, k$. If one of the divisors R or $-R$ is effective, then it is nef, and we are done, taking $E = R$ or $E = -R$ respectively. In the alternative case we write $R = R' - R''$, where R' and R'' are effective non-zero divisors without common components. We have

\[0 = R^2 = R'^2 - 2R'R'' + R''^2. \]

As by hypothesis $R'^2 \leq 0$ and $R''^2 \leq 0$, we must have $R'^2 = 0$. The divisor R' has fewer components than R, and its intersection matrix is still negative semi-definite,
but not negative definite. It now follows by induction that there is a divisor as claimed, consisting entirely of components of R'.

We now give the

\textit{Proof of uniqueness.} We claim first that in any decomposition $D = P + N$ satisfying the conditions of the theorem, the divisor P is necessarily a maximal nef \mathbb{Q}-subdivisor of D. To see this, suppose that P' is any nef divisor with $P \preceq P' \preceq D$. Then $P' = P + \sum_{i=1}^{k} q_i C_i$, where C_1, \ldots, C_k are the components of N and q_1, \ldots, q_k are rational numbers with $q_i \geq 0$. We have

$$0 \preceq P' \cdot C_j = \sum_{i=1}^{k} q_i C_i \cdot C_j \quad \text{for } j = 1, \ldots, k,$$

and hence

$$\left(\sum_{i=1}^{k} q_i C_i \right)^2 = \sum_{i=1}^{k} q_i \sum_{j=1}^{k} q_i C_i \cdot C_j \geq 0.$$

As the intersection matrix of C_1, \ldots, C_k is negative definite, we get $q_i = 0$ for all i. So $P' = P$.

To complete the proof it is now enough to show that a maximal effective nef \mathbb{Q}-subdivisor of D is in fact unique. This in turn follows from:

(**) If $P' = \sum_{i=1}^{r} x'_i C_i$ and $P'' = \sum_{i=1}^{r} x''_i C_i$ are effective nef \mathbb{Q}-subdivisors of D, then so is $P = \sum_{i=1}^{r} x_i C_i$, where $x_i = \max(x'_i, x''_i)$.

As for (**): The divisor P is of course an effective \mathbb{Q}-subdivisor of D, so it remains to show that it is nef, i.e., that the tuple (x_1, \ldots, x_r) satisfies the inequalities (1). This, finally, is a consequence of the following elementary fact: Let $H \subset \mathbb{Q}^r$ be a halfspace, given by a linear inequality $\sum_{i=1}^{r} \alpha_i x_i \geq 0$, where the coefficients α_i are rational numbers with at most one of them negative. If two points (x'_1, \ldots, x'_r) and (x''_1, \ldots, x''_r) with $x'_i \geq 0$ and $x''_i \geq 0$ lie in H, then so does (x_1, \ldots, x_r), where $x_i = \max(x'_i, x''_i)$.

\textbf{Remark.} As experts may recognize, the maximality condition that defines P is in the surface case equivalent to the defining condition of Nakayama's ν-decomposition (see [3 Sect. III.1]). As Nakayama pointed out, it is also possible to obtain a proof by using results on ν-decompositions and σ-decompositions (in particular [3 Proposition III.1.14], [3 Lemma III.3.1], [3 Lemma III.3.3], and [3 Remark III.3.12 and the subsequent Remark (1)], when combined with arguments making use of [3 Lemma 7.3] and [5 Lemma 7.4].

When viewed from the point of view of ν-decompositions, the essential content of the present note is to provide a quick, simple, and self-contained proof of the fact that in the surface case the ν-decomposition of an effective \mathbb{Q}-divisor is a rational decomposition enjoying properties (ii) and (iii), and that it is the unique decomposition with these properties.

\textbf{Acknowledgements.} The author was partially supported by DFG grant BA 1559/4-3. I am grateful to F. Catanese for helpful remarks and for pointing out a gap in the first version of this note.
References

[1] Badescu, L.: Algebraic Surfaces. Springer-Verlag, 2001.
[2] Fujita, T.: On Zariski problem. Proc. Japan Acad. 55, Ser. A, 106-110 (1979)
[3] Nakayama, N.: Zariski decomposition and abundance. Memoir, Math. Soc. Japan, 2004.
[4] Lazarsfeld, R.: Positivity in Algebraic Geometry I. Springer-Verlag, 2004.
[5] Zariski, O.: The theorem of Riemann-Roch for high multiples of an effective divisor on an
 algebraic surface. Ann. Math. 76, 560-615 (1962)

Thomas Bauer, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans-
 Meerwein-Straße, D-35032 Marburg, Germany.
 E-mail: tbauer@mathematik.uni-marburg.de