The Influence of Hydrated Lime on IT-CY Stiffness Modulus of Foam-Based Asphalt Concrete Compacted at 95 °C

Mateusz Iwanski 1, Anna Chomicz-Kowalska 2, Krzysztof Maciejewski 2

1 Department of Building Engineering Technologies and Organization, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
2 Department of Transportation Engineering, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
matiwanski@tu.kielce.pl

Abstract. For a number of years worldwide, the road construction industry has been seeking new technologies for producing energy-saving asphalt mixtures in order to meet new environmental requirements and laws. Some of these techniques include new classes of mixtures characterized by reduced processing temperatures compared to the conventional Hot Mix Asphalt (HMA) production temperature of 165 °C and paving temperature of approximately 145 °C. These techniques include Half Warm Mix Asphalt (HWMA) mineral mixtures produced with the use of foamed bitumen as a binder at temperatures of about 100 °C and paved at 95 °C. Although generally HWMA mixes are comparable to HMA, depending on the mix, they may suffer from decreased mechanical parameters resulting in a reduced service life of the asphalt pavement. The implemented research program investigated asphalt concrete (AC 8) with foamed bitumen (HWMA) compacted at 95 °C and the control HMA sample produced and compacted at a regular temperature. A typical 50/70 road paving bitumen modified with 0.6% surface active agent SAA (fatty acid amide) was used as the foamed binder, dosed at 5.6% and 6.2% by weight to the mixture. Mineral filler replacement with hydrated lime at 15% and 30% by weight was evaluated. The content of voids in the asphalt mixture was examined. The indirect tensile stiffness modulus (IT-CY) characterizing the durability of the mixture was measured at -10 °C, 0 °C, 10 °C, 20 °C and 25 °C. The results of statistical analysis showed significant correlations between the mix production technology used and the content of foamed bitumen and hydrated lime in terms of the temperature of stiffness modulus testing. As confirmed by the stiffness modulus values, the application of hydrated lime provided the half-warm mix asphalt concrete AC8 produced with foamed bitumen with mechanical properties comparable to those of the HMA mix.

1. Introduction
Hot Mix Asphalt (HMA) is currently the most common technology employed in Poland for the production of asphalt mixtures designed for use in pavement structural layers. The technology is very energy-intensive, as it requires aggregates and bitumen to be heated to a temperature of 160 °C and higher depending on bitumen type used. A side effect of the production process is that noticeable amounts of harmful greenhouse gases are released to the atmosphere. The growth of environmental awareness, though, has facilitated technological change and the implementation of energy efficient and
eco-friendly asphalt mix technologies. For environmental reasons, interest in the use of Warm Mix Asphalt (WMA) has increased recently [1-4]. WMA mixes are produced at temperatures in the range 120 °C - 140 °C. The temperature reductions are achieved through the use of chemical additives or by lowering the viscosity of the binder with Fischer-Tropsch (FT) synthetic waxes [5, 6] or surface active agents (fatty acid amides). However, significant reductions in the mixing and paving temperatures are only possible with a technological process modification consisting of water based foaming [7, 8]. Jenkins, the forefather of this technology, and his research team [9] have developed the process of producing Half Warm Mix Asphalt (HWMA) with foamed bitumen. The use of this innovative binder allows the lowering of the mix production temperature to about 100 °C and its compaction temperature to 95 °C [10, 11]. To optimize bitumen foam parameters (ER - expansion ratio, HL - half-life time of bitumen foam decay), the bitumen is modified before foaming, by adding low-viscosity modifiers, for example, FT synthetic wax [12]. Different types of additives are capable of improving various mix properties, including the resistance to moisture damage and frost [13, 14] or the stiffness modulus [15, 16]. The stiffness modulus is one of the most important mechanical parameters of asphalt mix that determine the resistance of asphalt surface to the impact of loads from vehicles. The range of additives that are recommended for improving the modulus includes hydrated lime, used in producing HMA for some time now [17-22] and offering promising potential for successful use in HWMA mixtures.

The paper presents the stiffness modulus results determined in the IT-CY test for HWMA with foamed bitumen and hydrated lime in accordance with the guidelines set forth in [23, 24].

2. Tested materials and methodology

2.1. Experimental program

The tests aimed at determining the influence of hydrated lime on the durability of HWMA mixtures with foamed bitumen and that of HMA mixtures for comparative purposes. The AC 8 manufacturing technology effect was analysed based on the values of the parameters below obtained in the procedures set forth in the Technical Requirements WT-2 2014 [24], PN-EN 13108-1:2008:

- air void content \((V_m, \%) \) to PN-EN 12697-8:2005:
- IT-CY stiffness modulus \((S_m) \) at -10 °C, 0 °C, +10 °C, +20 °C and +30 °C to PN-EN 12397-26 (Appendix C).

Parameters \(V_m \) and \(S_m \) were determined by compacting the samples with a Marshall hammer using 75 blows on each side. A total of nine specimens satisfying all the assumptions in terms of physical and geometrical characteristics were used.

2.1.1. Air void content \((V_m) \). The amount of air voids is the total volume of air voids throughout a compacted paving mixture, expressed as a percent of the bulk volume of the compacted paving mixture. This parameter was determined in accordance with PN-EN 12697-8:2005 using the formula:

\[
V_m = \frac{\rho_m - \rho_b}{\rho_m} \cdot 100 \% \text{ (1)}
\]

where: \(V_m \) – the air void content in the mix specimen (% (v/v)); \(\rho_m \) – the density of the mix (kg/m³); \(\rho_b \) – the bulk density of the mix (kg/m³).

2.1.2. Stiffness modulus of foamed bitumen asphalt concrete produced in HWMA technologies. The stiffness modulus of the asphalt concrete mixtures was determined based on the test conducted on cylindrical specimens (IT-CY). The test is non-destructive and provides early information about the stiffness of the asphalt concrete mixture under dynamic loading.

The tests for the indirect tensile stiffness modulus were carried out in the Universal Testing Machine (UTM-25) under the following conditions:
- test temperature: -10 °C, 0 °C, 10 °C, 20 °C, 30 °C;
- rise time: 124 ± 4 ms;
- deformation level: 5 μm;
- number of loadings: 5;
- Poisson ratio values (depending on the test temperature): \(\nu=0.25 \) for -10 °C and 0 °C, \(\nu=0.30 \) for 10 °C and \(\nu=0.30 \) for 20 °C and 30 °C.

2.2. Materials and mix design procedure

The asphalt concrete mix in terms of grain size, type of aggregates used and the type and amount of asphalt binder was designed based on the Polish requirements for AC 8 wearing course mixes for KR1 to KR4 traffic loads [23, 24] (20-year design pavement life of \(0.03 \times 10^6 < \text{ESAL}_{100kN} \leq 7.30 \times 10^6 \) in accordance with the Polish standards [24]).

Table 1 compiles the components of the mineral and asphalt mixtures. The design grading of the AC8 mineral mixture is shown graphically in Figure 1.

Table 1. Composition of AC 8 mixture

Materials	Mineral mixture (% m/m)	Asphalt mixture (% m/m)
Filler (limestone aggregate)	7.0	6.6
Crushed fine continuously graded aggregate 0/2 mm	37.0	34.8
Coarse aggregate 2/5 mm (gabbro)	16.0	15.1
Coarse aggregate 4/8 mm (gabbro)	40.0	37.7
Paving bitumen 50/70	-	5.8
Sum	100	100

![Figure 1. Grading curve of AC 8 mineral mix with limiting points as in Polish requirements WT-2 2014 [24]](image)

To ensure a high level of mechanical characteristics, the hydrated lime was added at 15% and 30% as a replacement of the equivalent amount of limestone filler.

For laboratory testing, 5.6% and 6.2% bitumen 50/70 were incorporated in the conventional HMA mixes for the wearing course in compliance with requirements [23, 24]. For the application in HWMA, the bitumen was modified with a 0.6% surface active agent (fatty acid amide) by mass of the binder, followed by foaming in the presence of water. The properties of the modified bitumen allow
the production of a low temperature asphalt concrete and the improvement of the resistance to moisture and permanent deformation in WMA mixtures [17].

The results for selected characteristics of unmodified bitumen 50/70 and bitumen 50/70 modified with the 0.6% surface active agent (SAA) are summarized in Table 2.

Property	Unit	Testing method	Bitumen 50/70	Bitumen 50/70 + 0.6
Penetration at 25°C	0.1mm	PN-EN 1426	65.9	70.4
Softening point	°C	PN-EN 1427	50.4	49.8
Fraass breaking point	°C	PN-EN 12593	-15.1	-13.2
Plasticity range	°C	-	65.5	63.0
Penetration Index	-	EN 12591	-0.6	-0.4

Figure 2 illustrates the characteristics of bitumen 50/70 and bitumen 50/70 with a 0.60% surface active agent content subjected to foaming.

![Figure 2](image_url)

Figure 2. Characteristics of foamed bitumen produced with unmodified bitumen 50/70 (a) and bitumen 50/70 modified with 0.6% surface active agent (b)

The characteristics above allowed establishing the optimal foaming water content (FWC):
- For bitumen 50/70: \(FWC = 2.5\% \), \(ER = 10 \), \(HL = 10 \) s,
- For bitumen 50/70+0.6% SPC: \(FWC = 2.5\% \), \(ER = 20 \), \(HL = 20 \) s.

3. Test results and analysis

3.1. Air void content

The level of asphalt mix compaction is measured through its air void content determined in the test using 75 blows per face regardless of the mix production technology. An adequate amount of air in laboratory samples and in the produced asphalt layer is essential for providing sufficient resistance to different weather conditions and traffic loads. Low air voids in the mixtures are associated with a reduced resistance of the surface to permanent deformations, while too high of an air void content results in reduced resistance of the asphalt mixture to moisture and frost damage. In HWMA technology with foamed bitumen, the optimal compaction for preventing the asphalt layer against moisture damage is of critical importance.
Table 3 summarizes the obtained basic statistical quantities. Figure 3 compiles the average values of air void contents V_m in the asphalt concrete.

Table 3. Descriptive statistics for V_m

A (%)	Type of the AC	HL (%)	N	Mean	Std. Dev.	Coef.	Min	Max
5.6	AC-1	0	9	4.67	0.201	4.303	4.29	4.91
	AC-2	15	9	3.51	0.500	14.264	2.61	4.08
	AC-3	30	9	4.39	0.483	10.998	3.90	5.19
6.2	AC-4	0	9	2.53	0.578	22.816	2.01	3.88
	AC-5	15	9	2.09	0.275	13.154	1.50	2.44
	AC-6	30	9	2.70	0.587	21.763	1.91	3.90

Figure 3. Mean air void content V_m for AC mixtures

Analysis of the results indicates that the highest average air void content (V_m=4.67%) was recorded for the HWMA mixture with a 5.6% foamed bitumen content. Increasing the bitumen content up to 6.2% reduces the amount of air in the asphalt concrete (V_m=2.53%). The hydrated lime blended in as a 15% limestone filler replacement has a positive effect on the air void content reduction, regardless of the amount of bitumen used in the asphalt concrete AC8. The lime amount that increased to 30% causes air void content to increase within the bitumen content range under analysis. The percentage amount of air in AC2, AC4, AC5 and AC6 mixtures is from 2.0% do 4.0% as required for AC 8 mixtures designed for use in the wearing course of KR3-4 pavement ($0.50x10^6 < ESAL_{100kN} \leq 7.30x10^6$ in accordance with the Polish standards [23]).

Table 4 summarizes the results for the effect of bitumen and lime content on the amount of air voids V_m in the asphalt concrete.

The values of statistical parameters in Table 4 indicate that the bitumen and hydrated lime have a significant effect on the amount of air in the asphalt concrete AC8. No synergy effect has been observed of the lime and bitumen content on V_m.
Table 4. Results of the analysis of variance (two-way ANOVA) for V_m

Effect	Univariate Tests of Significance for V_m (%) (MPa)	Sigma-restricted parameterization, Effective hypothesis decomposition			
	SS	D.F.	MS	F	p
Intercept	527.9391	1	527.9391	2476.405	0.000000
Bitumen content B (%)	36.7546	1	36.7546	172.405	0.000000
Hydrated lime HL content (%)	6.4623	2	3.2312	15.156	0.000011
B content (%)*HL content (%)	1.0698	2	0.5349	2.509	0.093462
Error	8.9539	42	0.2132		

3.2. Stiffness modulus of foam-based asphalt concrete

The values of the stiffness modulus descriptive for AC 8 are summarized in Table 5. Figure 4 shows the average values for the relationship between the stiffness modulus and bitumen content (5.6% and 6.2%).

Table 5. Descriptive statistics for S_m

Type of mix	A (%)	HL (%)	Valid N	Mean	Minimum	Maximum	Std. Dev.	Coef. Var.
			$S_{m(10{\degree}C)}$ (MPa)					
AC-1	0	9	2383.10	2245.19	2531.33	870.814	3.65411	
AC-2	5.6	9	26445.56	22165.50	28677.50	2045.080	7.73317	
AC-3	30	9	27409.31	24739.00	30552.00	1473.677	5.37656	
AC-4	0	9	26733.63	25667.50	28120.50	797.876	2.98454	
AC-5	6.2	9	27155.13	25356.00	29747.00	1375.513	5.06539	
AC-6	30	9	30055.13	25502.50	31887.50	2179.954	7.25319	
			$S_{m(0{\degree}C)}$ (MPa)					
AC-1	0	9	12758.80	11552.45	13749.85	748.895	5.86964	
AC-2	5.6	9	16364.00	13855.50	18081.50	1351.323	8.25790	
AC-3	30	9	17404.94	15920.50	18535.00	764.726	4.39373	
AC-4	0	9	18548.25	15908.00	23241.50	2271.289	12.24530	
AC-5	6.2	9	20658.75	17323.00	22804.00	1769.251	8.56417	
AC-6	30	9	6644.13	5668.00	7938.50	812.048	12.22205	
			$S_{m(+10{\degree}C)}$ (MPa)					
AC-1	0	9	6644.13	5668.00	7938.50	812.048	12.22205	
AC-2	5.6	9	16364.00	13855.50	18081.50	1351.323	8.25790	
AC-3	30	9	17404.94	15920.50	18535.00	764.726	4.39373	
AC-4	0	9	18548.25	15908.00	23241.50	2271.289	12.24530	
AC-5	6.2	9	20658.75	17323.00	22804.00	1769.251	8.56417	
AC-6	30	9	2345.69	2005.00	2634.50	188.529	8.03726	
			$S_{m(+20{\degree}C)}$ (MPa)					
AC-1	0	9	3482.13	2416.50	4283.50	536.396	15.40246	
AC-2	5.6	9	4697.69	3234.50	5059.50	284.319	6.05235	
AC-3	30	9	2383.10	1995.00	2531.33	1182.048	9.83877	
AC-4	0	9	2383.10	1995.00	2531.33	1182.048	9.83877	
AC-5	6.2	9	2383.10	1995.00	2531.33	1182.048	9.83877	
AC-6	30	9	2383.10	1995.00	2531.33	1182.048	9.83877	
Figure 5 illustrates the stiffness modulus as a function of AC 8 (bitumen and hydrated lime contents).

Figure 4. AC8 stiffness modulus versus bitumen content of a) 5.6% and b) 6.2%

From the data in Table 6, Figure 4 and Figure 5 it follows that the stiffness modulus increases considerably with decreasing temperature, regardless of the amount of bitumen and hydrated lime used. The modulus values are the highest at a 30% hydrated lime content with the temperature range under analysis. Compared to the control HWMA, higher stiffness modulus values within the range from -10 °C to 0 °C is undesirable as they may raise the potential for low temperature cracking. The addition of hydrated lime to the AC 8 mixture has a desirable effect on the stiffness modulus at temperatures above 0 °C regardless of the bitumen content. The hydrated lime acts as a stiffening agent at service temperatures above 0 °C, thus improving the resistance of the asphalt pavement to permanent deformations – rutting.

Figure 6 shows the average values of the stiffness modulus for AC 8 being analysed. Analysis of the stiffness modulus tests for AC 8 shows an interesting trend – the grouping of all the modulus values in the range of -10 °C to 0 °C, irrespective of the bitumen and hydrated lime contents. At temperatures above 0 °C, the modulus values are grouped according to the bitumen content (5.6% and 6.2%).
The impact of the significance of the factors being investigated – bitumen and hydrated lime contents – on the stiffness modulus of AC 8 is shown in Tables 6, 7, 8, 9 and 10.

Table 6. Results of the analysis of variance (two-way ANOVA) for Sm (-10 °C)

Effect	Univariate Tests of Significance for Sm (-10 °C) (MPa)	Sigma-restricted parameterization. Effective hypothesis decomposition			
	SS	D.F.	MS	F	p
Intercept	3.483225E+10	1	3.483225E+10	14520.26	0.000000
Bitumen content B (%)	5.221599E+07	1	5.221599E+07	21.77	0.000031
Hydrated lime content HL (%)	9.567033E+07	2	4.783517E+07	19.94	0.000001
B content (%)*HL content (%)	1.149909E+07	2	5.749545E+06	2.40	0.103355
Error	1.007527E+08	42	2.398873E+06		

Table 7. Results of the analysis of variance (two-way ANOVA) for Sm (0 °C)

Effect	Univariate Tests of Significance for Sm (0 °C) [MPa]	Sigma-restricted parameterization. Effective hypothesis decomposition			
	SS	D.F.	MS	F	p
Intercept	1.369078E+10	1	1.369078E+10	6717.045	0.000000
Bitumen content B (%)	9.132463E+07	1	9.132463E+07	44.806	0.000000
Hydrated lime content HL (%)	1.962238E+08	2	9.811192E+07	48.136	0.000000
B content (%)*HL content (%)	2.352681E+06	2	1.162840E+06	0.571	0.569551
Error	8.560500E+07	42	2.038214E+06		

Table 8. Results of the analysis of variance (two-way ANOVA) for Sm (+10 °C)

Effect	Univariate Tests of Significance for Sm (+10 °C) [MPa]	Sigma-restricted parameterization. Effective hypothesis decomposition			
	SS	D.F.	MS	F	p
Intercept	2.940005E+09	1	2.941005E+09	4932.949	0.000000
Bitumen content B (%)	2.512778E+06	1	2.512778E+06	4.215	0.046339
Hydrated lime content HL (%)	1.286770E+08	2	6.438489E+07	107.915	0.000000
B content (%)*HL content (%)	5.431341E+06	2	2.715670E+06	4.555	0.016204
Error	2.504023E+07	42	5.961960E+05		
Effect	Univariate Tests of Significance for Sm (+20°C) [MPa]	Sigma-restricted parameterization. Effective hypothesis decomposition			
--------	---	---			
	SS	D.F.	MS	F	p
Intercept	506401289	1	506401289	3312.219	0.000000
Bitumen content B(%)	3255280	1	3255280	21.292	0.000037
Hydrated lime content HL(%)	38501510	2	19250755	125.913	0.000000
B content (%)*HL content (%)	869136	2	434568	2.842	0.069545
Error	6421332	42	152889		

Table 10. Results of the analysis of variance (two-way ANOVA) for Sm (+30°C)

Effect	Univariate Tests of Significance for Sm (+30°C) [MPa]	Sigma-restricted parameterization. Effective hypothesis decomposition			
	SS	D.F.	MS	F	p
Intercept	116174401	1	116174401	7894.780	0.000000
Bitumen content B(%)	17553	1	17553	1.193	0.280987
Hydrated lime content HL(%)	6831393	2	3415697	232.118	0.000000
B content (%)*HL content (%)	2911	2	1455	0.099	0.906039
Error	618044	42	14715		

Analysis of the parameters shown in Tables 6, 7, 8, 9, 10 indicates that the bitumen and hydrated lime have a significant effect on the stiffness modulus of AC8 at -10 °C to 0 °C. A noticeable lime and bitumen synergy effect on the AC8 stiffness modulus can be observed at +10 °C. Also at +30 °C the lime substantially influences the value of the modulus.

4. Conclusions
Analysis of the test results leads to the following conclusions:
- The use of hydrated lime has a substantial effect on the air void content in HMA concrete produced with foamed bitumen and surface active agents (fatty acid amides).
- The addition of 15% hydrated lime to AC 8 containing 5.6% bitumen and the addition of 30% hydrated lime to AC 8 containing 6.2% bitumen provide the optimal amount of air in the asphalt concrete.
- Between -10 °C and +30 °C, hydrated lime increases the stiffness modulus of asphalt concrete.
- Regardless of the amount of bitumen used (5.6% and 6.2%), the addition of 30% hydrated lime to AC 8 increases the stiffness modulus considerably at temperatures from -10 °C to 0 °C compared to the control HWMA, thus being a factor in low temperature cracking of asphalt pavements. At higher temperatures, this amount of hydrated lime will increase the pavement resistance to permanent deformation.
- The addition of hydrated lime to HWMA with foamed bitumen is an efficient tool for controlling the foam properties at temperatures below and above 0 °C.

References
[1] M. Iwański. G. Mazurek. “The influence of low-viscosity modifier on viscoelastic behavior of the bitumen at high operational temperatures”. 8th International Conference Environmental Engineering. Procedia Engineering Vol. 1-3. pp. 1097-1102. Vilnius. Lithuania. 2011.
[2] J. Król. K. Kowalski. P. Radziszewski. “Rheological behavior of n-alkane modified bitumen in the aspect of Warm Mix Asphalt technology”. Construction and Building Materials. Vol. 93 (2015). pp. 703-710. DOI.org/10.1016/j.conbuildmat.2015.06.033.
[3] A. Vaitkus. D. Ėgas. A. Laurinavičius. Z. Perveneckas. “Analysis and Evaluation of
Possibilities for The Use of Warm Mix Asphalt in Lithuania”. The Baltic Journal of Road and Bridge Engineering. Vol IV. No 2 (2009). pp. 80-86. DOI: 10.3846/1822-427X.2009.4.80-86.

[4] MFC Van De Ven. K.J. Jenkins. JLM. Voskuilen R. Van Den Beemt “ Development of (half-) warm foamed bitumen mixes: State of the art”. International Journal of Pavement Engineering 8(2) (2007) 163-175. DOI: 10.1080/10298430601149635

[5] M. Iwański. G. Mazurek. “Optimization of the Synthetic Wax Content Demonstrated on Bitumen 35/50”. Vol. 56. pp. 414-423. 2012

[6] M. R. D. Hugo Silva. Joel R.M. Oliveira. J. Peralta. Salah E. Zooro. “Optimization of warm mix asphalt using different blends of binders and synthetic paraffin wax contents”. Construction and Building Materials 24 (9) (2010) 1621-1631. DOI:10.1016/j.conbuildmat.2010.02.030

[7] M. Iwański. A. Chomicz-Kowalska. “Evaluation of pavement parameters”. Bulletin of the Polish Academy of Sciences-Technical Science. Bulletin of the Polish Academy of Sciences Technical Sciences. Vol. 63. Issue. 1. pp. 97-105. 2015. DOI.:10.1515/bpasts-2015-0011

[8] A. Chomicz-Kowalska. M. M. Iwański. J. Mrugała. “Basic Performance of Fiber Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced at Low Temperatures with Foamed Bitumen”. IOP Conf. Series: Materials Science and Engineering 245 (2017). DOI:10.1088/1757-899X/245/3/032092

[9] K. J. Jenkins. “Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen”. PhD Dissertation. Department of Civil Engineering. Faculty of Engineering. University of Stellenbosch. Stellebosch. South Africa. 2000.

[10] A. Chomicz-Kowalska. W. Gardziejczyk. M. M. Iwański. “Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete compacted at 95°C”. 12th International Scientific Conference of Modern Building Materials. Structures and Techniques (MBMST). Vol. 172. pp. 550-559. Vilnius. Lithuania. 2017. DOI: 10.1016/j.proeng.2017.02.065

[11] K. J. Jenkins. J.L.A. de Groot. M.F.C Van de Ven. A.A.A. Molenaar. “Half-warm Foamed Bitumen Treatment. A New Process”. Conference on Asphalt pavements for Southern Africa. Victoria Falls. Zimbabwe. 1999

[12] M. Iwański. A. Chomicz-Kowalska. K. Maciejewski. “Application of synthetic wax for improvement of foamed bitumen parameters”. Construction and Building Materials. Vol. 83. pp. 62-69. May 15. 2015. DOI.10.1016/j.conbuildmat.2015.02.060

[13] X. Yu. Y. Wang. T. Luo. “Impacts of water content on rheological properties and performance-related behaviours of foamed war-mix asphalt”. Construction and Building Materials 48 (2013) pp. 203-209. DOI:10.1016/j.conbuildmat.2013.06.018

[14] A Chomicz-Kowalska. W. Gardziejczyk. M. M. Iwański. „Właściwości betonu asfaltowego AC 8 wytwarzanego w obniżonej temperaturze w technologii asfaltu spienionego. w świetle wymagań WT-2 2010 i WT-2 2014” [Properties of an AC 8 asphalt concrete mix produced in lowered temperature with foamed bitumen in scope of the requirements of WT-2 2010 and WT-2 2014]. Drogownictwo Nr 6. 2017. s. 183-193

[15] J. Mrugała. M. M. Iwański. “Resistance to permanent deformation of asphalt concrete with F-T wax modified foamed bitumen”. 7th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD2015). Vol. 108. pp. 459-466. Krakow. Poland. 2015. DOI: 10.1016/j.proeng.2015.2015.06.171

[16] P. Buczyński. M. Iwański. “Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers”. IOP Conf. Series: Materials Science and Engineering. Vol. 245.(2017). DOI:10.1088/1757-899X/245/3/032042

[17] A. K. Das. S. D. Singh. “Investigation of rutting. fracture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers”. Construction and Building Materials. Vol.:141. pp.: 442-452. DOI: 10.1016/j.conbuildmat.2017.03.032

[18] D. Lesuer. J. Petit. H-J. Ritter. “The mechanism of hydrated lime modification of asphalt mixtures: a state-of-the-art review”. Road Materials and Pavement Design.2012. Vol. 14.
[19] P. Jaskuła. “The effectiveness of hydrated lime as asphalt concrete additive”. Foundations of Civil and Environmental Engineering. 2007. vol. 10. pp. 99-109

[20] C. Gorkem. B. Sengoz. “Predicting stroping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime”. Construction and Building Materials. Vol. 23. pp. 2227-2236. 2009. DOI:10.1016/j.conbuildmat.2008.12.001

[21] M. Iwański. G. Mazurek. “Hydrated lime as the anti-aging bitumen agent”. 11th International Scientific Conference of Modern Building Materials. Structures and Techniques (MBMST). Vol. 53. pp. 424-432. Vilnius. Lithuania. 2013. DOI:10.1016/j.proeng.2013.04.055

[22] A. K. Das. D. Singh. “Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic”. Journal of Materials in Civil Engineering. Vol.: 30 Issue: 3. DOI: 10.1061/(ASCE)MT.1943-5533.0002196

[23] J. Judycki. P. Jaskała. M. Pszczola. J. Alenowicz. B. Dołżycki. M. Jaczewski. D. Ryś. M. Stieniss. „Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych” [Catalogue of typical flexible and semi-rigid pavement constructions]. GDDKiA. 2014.

[24] WT-2. Technical Guidelines 2: Asphalt pavements for national roads. Part I: Asphalt mixes. General Directorate for National Roads and Motorways. Poland. Warsaw. 2014.