Biochemical and physiological responses of Nili-Ravi Buffalo (Bubalus bubalis) to heat stress

Umair YOUNAS1, Muhammad ABDULLAH2, Jalees Ahmed BHATTI3, Nisar AHMED2, Faisal SHAHZAD4•, Musadiq IDRIS5•, Sana TEHSEEN6•, Muhammad JUNAID7•, Saima TEHSEEN8•, Saeed AHMED9•
1Faculty of Animal Production and Technology (FAPT), Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
2Department of Livestock Management, Faculty of Animal Production and Technology (FAPT), University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
3Department of Animal Science, College of Veterinary and Animal Sciences, Jhang, Punjab, Pakistan
4Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
5School of Veterinary Science, The University of Queensland, Queensland, Australia
6Department of Botany, Government College Women University, Faisalabad, Pakistan
7Department of Dairy Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
8Department of Botany, Government College Women University, Faisalabad, Pakistan
9Department of Animal Nutrition, Faculty of Animal Production and Technology (FAPT), University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan

Received: 31.05.2020 • Accepted/Published Online: 29.09.2020 • Final Version: 18.12.2020

Abstract: The present study was designed with an objective to evaluate the impact of various strategies to alleviate heat stress on certain physiological attributes viz. respiratory rate (RT), body surface temperature (BST), pulse rate (PR), and respiratory rate (RR); biochemical attributes viz. glucose, total protein (TP), and cholesterol; and endocrinological parameters (tri-iodothyronine and tetra-iodothyronine) of the Nili-Ravi buffaloes during early summer season. Lactating Nili-Ravi buffaloes (n = 20) with close production and parity stage were divided into four treatment groups as group A (control group under roof shades only), B (experimental group under roof shades with antistress supplementation), C (experimental group under roof shades with ceiling fans), and D (experimental group under showers and ceiling fans) at the Buffalo Research Institute, Punjab, Pakistan. All the physiological study parameters, that is, RT, BST, PR, and RR, were significantly (P ≤ 0.05) higher for Group A and B as compared to Group C and D, respectively. The results revealed that all the biochemical study attributes were significantly (P ≤ 0.05) higher in Group C and D as compared to Group A and B. Regarding endocrinological parameters (T3 and T4), both these hormones were significantly (P ≤ 0.05) different between the four study groups, being higher for Group D as compared to the other groups. Nili-Ravi buffaloes showed a resistant behavior in terms of RR, PR, and serum biochemical components, which implies that the fan strategy could be an alternative to showering.

Key words: Buffalo, heat stress, rectal temperature, thyroid

1. Introduction
The geographical location of Pakistan is in the subtropics as it is situated 23.6° above the line of the equator. Therefore, summer season prevails for a longer duration with high ambient temperatures and relative humidity. Environmental temperatures may rise up to 45 °C in hot dry conditions [1]. The climatic conditions of Pakistan during March and April have been found to be hot for lactating animals and these months have been termed as spring season [2]. However, the THI level was found to be 77 and 85 with a maximum temperature (29.3 °C and 34.6 °C) and humidity (51.3% and 54.6%) March and April, respectively, in 2012 as seen in Figures 1 and 2.

Lactating dairy cows begin to suffer from mild heat stress at a THI of 72. They become moderately stressed at a THI > 80 and severely heat-stressed at a THI > 90. A significant (P < 0.001) increase in the RT and RR was found in young and adult Murrah buffaloes after an exposure of animals to 40 °C, 42 °C, and 45 °C for 4 h against thermo-neutral temperature [3]. By using various cooling methods like fans, sprinklers, and foggers, a decline can be achieved in PR, RR and RT [4,5]. Aggarwal and Singh [6] reported
changes in the circulating T₃ hormone when heat-stressed cattle are given provision of fans and cooling measures. Similarly, Aggarwal and Upadhyay [7] reported that the thyroid level was low in heat-stressed animals compared to the animals provided with various cooling measures. This study was designed to evaluate the effect of hot dry conditions in early summer on the biological performance in terms of physiochemical and endocrinological attributes (T₃ and T₄) of the Nili-Ravi buffaloes under various housing strategies.

2. Materials and methods

2.1. Animals and treatment

The research was conducted at Buffalo Research Institute (BRI), Livestock Experiment Station (LES), Pattoki, Punjab, Pakistan. The experimental station is located in the central irrigated area of Punjab (31 °N, 73 °E), Pakistan. The approval for this project was granted by the Committee on Use of Animals in Research and Experimentation of University of Veterinary and Animal Sciences. Lactating multiparous (3rd, 4th, 5th, and 6th parity) Nili-Ravi buffaloes (n = 20) were incorporated in the study. The stage of lactation and the level of milk production were kept the same for all the animals. The animals were selected from the herds maintained at BRI, LES, Pattoki, Punjab, Pakistan and were raised during March and April (early summer). The buffaloes were randomly assigned to 4 different groups (n = 5/group) according to various heat stress alleviating strategies as Group A (control group under roof shades only), Group B (experimental group under roof shades with antistress supplementation), Group C (experimental group under roof shades with ceiling fans), and Group D (experimental group under showers and ceiling fans) (Table 1). Silage was
offered ad libitum to meet the maintenance requirements at 11:00 am daily and was accessible till milking in the next morning, whereas concentrate was offered along maize silage (as such basis) as 1 kg for every 2 L of milk [8] produced (Table 2).

2.2. Meteorological data
Ambient environmental temperature (°C) and relative humidity (%) was recorded during the peak hours of the day (12:00 pm to 2:00 pm) using a hygrometer (Thermo-Hygro; TH-208 B). Wind velocity (km/h) was determined during the peaks hours of the day (12:00 pm to 2:00 pm) with the help of a digital anemometer (Intel Smart Sensor; AR-816). The THI was calculated by collecting data on air temperature and relative humidity, which was then calculated using the following formula as described in a previous study by Mader et al. [9].

\[
THI = (0.8 \times T_{\text{db}}) + [(\text{RH}/100) \times (T_{\text{db}} - 14.4)] + 46.4
\]

where THI: Temperature humidity index, RH: Relative humidity, \(T_{\text{db}}\): Dry bulb temperature.

2.3. Physiological attributes
All the buffaloes were observed for their PR in the peak hours of the day (01:00 pm to 02:00 pm). While pulse was taken from the coccygeal artery on the sides of the ventral part of the tail [10], the researcher’s hand grasped the tail from the dorsal aspect and the fingers readily perceived the pulsations. The RR was observed (01:00 pm to 02:00 pm) in terms of counting the flank movement, one inward and one outward movement taken as one breath [11]. Respiration count was taken for 1 min The RT of the Nili-Ravi buffaloes was taken (01:00 pm to 02:00 pm) by inserting a digital thermometer approximately 2–2.5 inches deep per rectum [10] and the RT value was recorded once it became stable on digital display. The BST of the buffaloes was taken (01:00 pm to 02:00 pm) by using a noncontact infrared temperature measuring instrument and pointing the laser towards the targeted skin part with approximately 6 inches. Middle neck, middle back, and rump site were selected for the determination of BST on a weekly basis for a period of 2 months.

2.4. Blood collection and biochemical and endocrinological analysis
Blood samples were taken from individual buffaloes for the assessment of thyroid functions by determining the thyroid hormones (tri-iodothyronine (T₃) and thyroxine (T₄)) as well as the serum biochemical profile including glucose (mg/dL), total proteins (g/dL), and cholesterol (mg/dL). Blood analysis was conducted in Quality Operation Laboratory (QOL), UVAS, Lahore.

The blood samples were collected from the jugular vein in a sterile container (20 mL) without anticoagulant. The blood was initially allowed to rest for 2 h at room temperature and then centrifuged at 750 g for 15 min. The supernatant was collected and stored in a freezer at −20 °C until use for serological test [12]. Serum biochemical analyses were conducted for glucose, total protein, and cholesterol by using a serum chemistry analyzer. The concentration of T₃ and T₄ was assessed using Accubind ELISA kits (Monobind Inc.).

2.5. Statistical analysis
The statistical analysis of the recorded data was performed using a statistical software (SPSS). The impact of using various strategies to alleviate heat stress in lactating buffaloes was analyzed through the analysis of variance technique (ANOVA) under completely randomized design

Table 1. Treatments and experimental layout.

Sr. No.	Group	No. of animals	Description
1	A	5	Buffaloes under roof shades only (control)
2	B	5	Roof shades with antistress supplement
3	C	5	Roof shades with ceiling fans
4	D	5	Roof shades with showers and ceiling fans

Table 2. Ingredients and chemical composition of concentrate ration fed to lactating Nili-Ravi buffaloes.

Ingredients	Inclusion level (%)
Cotton seed cake	22
Maize	8
Wheat bran	32
Rape seed cake	3
Maize gluten	20
Molasses	14
Mineral mixture*	1
Crude Protein (CP) %	18.0
TDN	76.0
ME (Mcal/kg)	2.6

*Mineral mixture included DCP 70.81 %, NaCl 18.91 %, MgSO₄ 8.64 %, FeSO₄ 0.89 %, ZnSO₄ 0.22 %, CuSO₄ 0.03 %, KI 0.00877 %, CoCl₂ 0.0089 %, and NaSiO₃ 0.00150 %.
The RT (mean ± SE) in lactating Nili-Ravi buffaloes in the treatment groups A, B, C, and D was found as 101.12 ± 0.06°F, 100.92 ± 0.09°F, 100.37 ± 0.05°F, and 100.08 ± 0.07°F, respectively (Table 3). The RT was higher (P < 0.05) in Group A buffaloes kept under roof shades as compared to the control group. The lowest RT (P < 0.01) was noticed among the buffaloes given a treatment of showers and fans (Group D) and then fans alone (Group C; Table 3). Nonsignificant results (P > 0.05) were found between Group A and Group B.

The mean PR (pulses per minute) of animals raised under different housing strategies was observed and found to be 28.8 ± 0.66°F, 29.9 ± 0.65°F, 26.2 ± 0.59°F, and 16.8 ± 0.30°F for Group A, B, C, and D, respectively. The highest PR was higher (P < 0.05) in Group A and B with buffaloes kept under roof shade without fans and/or showers. A lower PR (P < 0.05) was noticed in Group C and D (Table 3). The findings suggested a substantial (P < 0.01) decrease in PR when animals were cooled with fans with or without showers.

The mean RR (breaths per minute) of animals raised under different housing strategies was observed and found as 44.8 ± 0.51, 45.3 ± 0.41, 51.9 ± 0.90, and 50.6 ± 0.90 in the treatment groups A, B, C, and D, respectively. The RR was higher (P < 0.05) in Group A and B with buffaloes kept under roof shade without fans and/or showers. A lower RR (P < 0.05) was noticed in Group C and D (Table 3). The findings suggested a substantial (P < 0.01) decrease in RR when animals were cooled with fans with or without showers.

The mean RR (breaths per minute) of animals raised under different housing strategies was observed and found as 44.8 ± 0.51, 45.3 ± 0.41, 51.9 ± 0.90, and 50.6 ± 0.90 in the treatment groups A, B, C, and D, respectively. The RR was higher (P < 0.05) in Group A and B with buffaloes kept under roof shade without fans and/or showers. A lower RR (P < 0.05) was noticed in Group C and D (Table 3). The findings suggested a substantial (P < 0.01) decrease in RR when animals were cooled with fans with or without showers.

The mean RR (breaths per minute) of animals raised under different housing strategies was observed and found as 44.8 ± 0.51, 45.3 ± 0.41, 51.9 ± 0.90, and 50.6 ± 0.90 in the treatment groups A, B, C, and D, respectively. The RR was higher (P < 0.05) in Group A and B with buffaloes kept under roof shade without fans and/or showers. A lower RR (P < 0.05) was noticed in Group C and D (Table 3). The findings suggested a substantial (P < 0.01) decrease in RR when animals were cooled with fans with or without showers.
The blood chemistry of the Nili-Ravi buffaloes was examined to evaluate the effect of heat stress on the levels of glucose, total proteins, and cholesterol. The blood glucose level was examined for various treatment groups and found as 62.2 ± 0.76 mg/dL, 63.5 ± 0.52 mg/dL, 66.7 ± 0.84 mg/dL, and 70.9 ± 0.89 mg/dL for the treatment groups A, B, C and D, respectively. Nonsignificant (P > 0.05) differences were observed between Group A and B, whereas a significant variation (P > 0.05) was noticed between Group A and Group B. The mean T₄ level of buffaloes assigned to various treatment groups was 5.72 ± 0.04 µg/dL, 5.79 ± 0.06 µg/dL, 6.01 ± 0.05 µg/dL, and 6.03 ± 0.04 µg/dL for the treatment groups A, B, C, and D, respectively (Table 4). The buffaloes raised under fans with or without showers displayed higher T₄ levels (P < 0.05), whereas the buffaloes kept under shade (Group A and B) showed lower values of the T₄ level in blood. Nonsignificant variations (P > 0.05) were noticed between Group A and B, whereas Group D had the highest value (P < 0.05) followed by that in Group C for the T₄ levels.

The blood chemistry of the Nili-Ravi buffaloes was examined to evaluate the effect of heat stress on the levels of glucose, total proteins, and cholesterol. The blood glucose level was examined for various treatment groups and found as 62.2 ± 0.76 mg/dL, 63.5 ± 0.52 mg/dL, 66.7 ± 0.84 mg/dL, and 70.9 ± 0.89 mg/dL for the treatment groups A, B, C and D, respectively. Nonsignificant (P > 0.05) differences were observed between Group A and B, whereas a significant variation was observed between Group C and D. The buffaloes raised under showers showed higher blood glucose levels (P < 0.05), the buffaloes raised under fans showed moderate levels, and the buffaloes kept under shade (Group A and B) displayed lower values of glucose in blood.

The values of total protein in blood were analyzed and the values were found to be 6.59 ± 0.07 g/dL, 6.54 ± 0.07 g/dL, 6.96 ± 0.12 g/dL, and 7.36 ± 0.08 g/dL for Group A, B, C, and D, respectively. A high value of total protein (P > 0.05) was observed in Group D buffaloes given the treatment of showers with fans, while the control group A and B showed a lower value (P > 0.05). The values of cholesterol (mg/dL) in blood were analyzed and detected as 101.6 ± 1.32 mg/dL, 109.0 ± 1.26 mg/dL, 113.9 ± 1.51 mg/dL, and 116.1 ± 0.99 mg/dL for Group A, B, C, and D, respectively. A higher value of cholesterol (P > 0.05) was observed in Group D, a moderate value in Group C, and a lower value in control groups A and B (P > 0.05).

4. Discussion
The RT (mean ± SE) in lactating Nili-Ravi buffaloes in the treatment groups was noticed to be higher for Group A, followed by that in Group B, C, and D as 101.12 ± 0.06 °F, 100.92 ± 0.09 °F, 100.37 ± 0.05 °F, and 100.08 ± 0.07 °F, respectively. An earlier study by Singh et al. [14] investigated the effect of the environment on the physiology of Murrah buffaloes and it was stated that RT has a positive correlation with environmental temperature. The lowest RT was found in buffaloes kept under fans and showers. The results are similar to the earlier findings of Jadoa [15], who reported that RT increases with increasing ambient temperatures. Similar results were presented by Tao et al. [16] and Monteiro et al. [17], who stated that animals suffering from heat stress adapt themselves through various physiological mechanisms.

The buffaloes kept under roof shades showed a high PR (pulses/minute) compared to the lower PR in the group treated with fans and showers with fans. Our findings are in line with those of the the earlier study by Aggarwal and Upadhyay [7], who stated that buffaloes showed decreased PR and RR when provided with a cool environment as compared to cattle. The RR was noticed to be high for the treatment group B, but a lower RR was detected in Group D animals treated with fans and showers. The results are in accordance with those of West [18], who reported that cows that received cooling showed a sharp decline in RR, i.e. 57 vs. 95 breaths/min; which might be a result of decreased expenditure of energy for body cooling. A significant increase in RT and RR was recorded in the Egyptian buffaloes from the spring season to summer and similarly from summer to the winter season, indicating that the animals were heat-stressed [19]. Similarly, Farooq

Table 4. Biochemical constituents and thyroid hormones in Nili-Ravi buffaloes during early summer.

Groups	Serum biochemical components	Thyroid hormones			
	Glucose (mg/dL)	Total protein (TP; g/dL)	Cholesterol (mg/dL)	T₃ (ng/dL)	T₄ (µg/dL)
A (Control)	62.2±0.76a	6.59±0.07a	101.6±1.32a	182.9±0.81a	5.72±0.04b
B	63.5±0.52b	6.54±0.09b	109.0±1.26b	184.9±0.77c	5.79±0.06c
C	66.7±0.84c	6.96±0.12c	113.9±1.51d	189.2±0.79b	6.01±0.05
D	70.9±0.89c	7.36±0.08c	116.1±0.99b	197.0±0.71a	6.03±0.04a

A: roof shade; B: antistress product; C: fans; D: shower and fans; T3: tri-iodothyronine, T4: tetra-iodothyronine; Means having different superscript in column are significantly different (P < 0.05).
et al. [20] and Gaughan [21] reported high RRs in heat-stressed animals.

The highest (P < 0.05) skin temperature (°C) in the middle neck region was observed in Group B, followed by the control group, whereas the lowest middle neck temperature was noted in the animals of Group D, which were treated with fans and showers. Similarly, the middle back and rump temperatures were the highest for those buffaloes kept under shade but lower in the groups treated with fans and shower. This might be a result of a black pigment in the thickened skin of buffaloes that assists in the absorption of more heat, leading to disproportionate radioactive and convective heat loss from the extremities when exposed to solar radiation. A similar finding has been reported by Chaudhari and Singh [22], who reported high skin temperatures in the control group Murrah buffaloes as compared to the buffaloes that had provision. Due to high wind velocity for buffaloes under fans, the convection process helped to cool off buffaloes as wind helps in evaporative heat loss and is suggested as optimum for buffaloes [23]. Similarly, Gudev et al. [24] and Aggarwal and Singh [4] stated that the availability of mist and fans as measures of cooling significantly decreased the udder skin and skin temperature.

The blood glucose level (mg/dL) was examined for various treatment groups and significant differences were found among the treatment groups A, B, C, and D in the present study. The results are in line with the study by Das et al. [25], who reported a decrease in the glucose level in heat-stressed animals and attributed this decrease in blood glucose mainly to RR, which causes increased utilization of respiratory muscles [19]. A decrease in feed intake also contributes to a decrease in glucose.

The values of total protein in blood were analyzed and significant differences were found in the treatment groups A, B, C, and D. The results are in line with the findings of El-Masry and Marai [26], who reported serum total proteins as 44 g/L in summer and 51 g/L in winter. Similarly, Das et al. [25] reported a variation in total proteins levels in heat-stressed cows.

The cholesterol in serum was analyzed and the values were found as 101.6 ± 1.32 mg/dL, 109.0 ± 1.26 mg/dL, 113.9 ± 1.51 mg/dL, and 116.1 ± 0.99 mg/dL for Group A, B, C, and D, respectively. A high value of cholesterol (P > 0.01) was observed in Group D, while the control group A and Group B showed a lower value (P > 0.05). The results of our study are in accordance with those of Garcia et al. [27], who reported high cholesterol levels in heat-stressed cows [27]. However, the results of our study are contradictory to those of Verma et al. [28], who reported a decreased level of cholesterol in lactating Murrah buffaloes in response to heat stress.

The mean ± SE value for T₁ in the Nili-Ravi buffaloes was found as 182.9 ± 0.81 ng/dL, 184.9 ± 0.77 ng/dL, 189.2 ± 0.79 ng/dL, and 197.0 ± 0.71 ng/dL for the treatment groups A, B, C, and D, respectively. The results of our study are similar to the findings of Aggarwal [29] as they reported that an increasing environmental temperature brings out a reduction in the level of thyroid hormone as compared to thermo-neutral zone. Aggarwal and Upadhyay [7] reported that plasma hormones are suitable indicators regarding the physiological status of cows and buffaloes. A reduction in the level of thyroid hormone as well as a decreased concentration of plasma GH (growth hormone) exerts a synergistic effect to lower heat production. Similarly, Das et al. [25] reported hypofunctioning of the thyroid gland in heat-stressed animals, which leads to lower circulating levels of T₃ and T₄ in blood.

In conclusion, Nili-Ravi buffaloes showed a resistant behavior in terms of RR, PR, and serum biochemical components, which implies that fan strategy could be an alternative to showering. However, the control group did not show a promising biological response by any means; thus, strategic measures are necessary for buffaloes to cope with heat stress during early summer.

Acknowledgment

The authors gratefully acknowledge the technical support and research facilities provided by the staff of Buffalo Research Institute (BRI), Livestock Experiment Station (LES), Pattoki, Punjab, Pakistan.

References

1. Food and Agriculture Organization (FAO). A report on country pasture/forage resource profiles of Pakistan. 2016.
2. Farooq U, Ahmad N, Ahmad I, Mahmood SA, Andrab I SMH et al. Effect of seasonal variations on the haematological profile of Cholistani service bulls. Journal of Applied Animal Research 2017; 45 (1): 85-89. doi: 10.1080/09712119.2015.1125351
3. Haque N, Ludri A, Hossain SA, Ashtosh M. Alteration of metabolic profiles in young and adult Murrah buffaloes exposed to acute heat stress. International Journal of Applied Science 2011; 1 (1): 23-29. ISSN 1925-3869
4. Aggarwal A, Singh M. Changes in skin and rectal temperature in lactating buffaloes provided with showers and wallowing during hot-dry season. Tropical Animal Health Production 2008; 40: 223-228. doi: 10.1007/s11250-007-9084-3
5. Rahangdale PB, Ambulkar DR, Panchbhai GJ, Kharwadkar MD, Kumar N. Effect of wallowing and splashing on body temperature and milk yield in Murrah buffaloes during summer. In: Proceedings of International Buffalo Congress New Delhi 2010 (1–4 February); vol II, 102

6. Aggarwal A, M Singh. Changes in hormonal levels during early lactation in summer calving cows kept under mist cooling system. Indian Journal of Animal Nutrition 2009; 26: 337-340. doi: 10.1007/s11250-007-9084-3

7. Aggarwal A, Upadhyay RC. Heat Stress and Animal Productivity. India: Springer. ISBN 978-81-322-0878-5. doi: 10.1007/978-81-322-0879-2_7

8. Small and Medium Enterprise Development Authority (SMEDA). Pre-feasibility study for dairy farm. PREF-16/ October, 2008/3, pp: 18. www.smeda.org.pk.

9. Mader TL, Davis MS, Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science 2006; 84: 712-719. doi: 10.2527/2006.843712x.

10. Wankar AK, Singh G, Yadav B. Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis) during hyperthermia: Physiological, behavioral, and metabolic approach. Veterinary World 2014; 7: 825-830. doi: 10.14202/vetworld.2014.825-830

11. Das SK, Upadhyay RC, Madan ML. Heat stress in Murrah buffalo calves. Livestock Production Science 1999; 61: 71-78. doi: 10.1016/S0301-6226(99)00040-8

12. Nazifi S, Oryan A, Namazi F. Hematological and serum biochemical analyses in experimental caprine besnoitiosis. Korean Journal of Parasitology 2011; 49 (2): 133-138. doi: 10.3347/kjp.2011.49.2.133

13. Steel RGD, Torrie JH, Dicky DA. Principles and Procedures of Statistics - A Biometrical Approach. 3rd ed. New York, USA: McGraw Hill Book Co. Inc.; 1997.

14. Singh VP, Singh W, Singh NP. Comparative physiological responses and heat tolerance of lactating Murrah buffaloes under different seasons. Cheiron 2003; 32: 129-131.

15. Jadoa Al-Kanaan AJ. Heat stress response for physiological traits in dairy and dual-purpose cattle populations on phenotypic and genetic scales. PhD, The University of Kassel, Germany, 2016.

16. Tao S, Monteiro APA, Thompson IM, Hayen MJ, Dahl GE. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science 2012; 95: 7128-7136. doi: 10.3168/jds.2012-5697

17. Monteiro APA, Tao S, Thompson IM, Dahl GE. Effect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors. Journal of Dairy Science 2014; 97: 6426-6439. doi: 10.3168/jds.2013-7891.

18. West JW. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 2003; 86: 2131-2144. doi: 10.3168/jds.S0022-0302(03)73803-X

19. Marai IFM, Haeb AM. Buffalo's biological functions as affected by heat stress-A review. Livestock Science 2010; 127: 89-109. doi: 10.1016/j.livsci.2009.08.001

20. Farooq U, Samad HA, Shehzad F, Qayyum A. Physiological responses of cattle to heat stress. World Applied Science Journal 2010; 8: 38-43. Corpus id: 46583866

21. Gaughan JB. Respiration rate and rectal temperature responses of feedlot cattle in dynamic, thermally challenging environments, PhD, The University of Queensland, Australia, 2002.

22. Chaudhari BK, Singh M. Relationship between udder, skin and milk temperature in lactating Murrah buffaloes during the hot-humid season. Buffalo Bulletin 2015; 34 (2): 181-188.

23. Payne WJA. Cattle and Buffalo Meat Production in the Tropic. Intermediate Tropical Agriculture Series. Longman Sci. and Tech. 1990.

24. Gudev D, Popova-Ralcheva S, Moneva P, Aleksiev Y, Peeva T et al. Physiological indices in buffaloes exposed to sun. Archiva Zootechnica 2007; 10: 1-7.

25. Das R, Sailo L, Verma N, Bharti P, Saikia J et al. Impact of heat stress on health and performance of dairy animals: A review. Veterinary World. 2016; 9 (3): 260-268. doi: 10.14202/vetworld.2016.260-268

26. El-Masry KA, Marai IFM. Comparison between Friesians and water buffaloes in growth rate, milk production and some blood constituents, during winter and summer conditions. Egyptian Journal of Animal Production 1991; 53: 39-43. doi: 10.1017/S000335610000595X

27. Garcia AB, Angeli N, Machado L, Cardoso FC, Gonzalez F. Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil. Tropical Animal Health Production 2015; 47 (5): 889-884. doi: 10.1007/s11250-015-0804-9

28. Verma DN, Lal SN, Singh SP, Parkash OM, Parkash O. Effect of season on biological responses and productivity of buffalo. International Journal of Animal Science 2000; 15 (2): 237-244. ISSN: 0970-2857

29. Aggarwal A. Effect of environment on hormones, blood metabolites, milk production and composition under two sets of management in cows and buffaloes. PhD, National Dairy Research Institute, Karnal (Haryana), India, 2004.