Analyzing Eight Years of Transiting Exoplanet Observations Using WFC3’s Spatial Scan Monitor

K. B. Stevenson & J. Fowler
September 30, 2019

Abstract

HST/WFC3’s spatial scan monitor automatically reduces and analyzes time-series data taken in spatial scan mode with the IR grisms. Here we describe the spatial scan monitor pipeline and present results derived from eight years of transiting exoplanet data. Our goal is to monitor the quality of the data and make recommendations to users that will enhance future observations. We find that a typical observation achieves a white light curve precision that is 1.07× the photon-limit (which is slightly better than expectations) and that the pointing drift is relatively stable during times of normal telescope operations. We note that observations cannot achieve the optimal precision when the drift along the dispersion direction (X axis) exceeds 15 mas (~0.11 pixels). Based on our sample, 77.1% of observations are “successful” (< 15 mas rms drift), 12.0% are “marginal” (15 – 135 mas), and 10.8% of observations have “failed” (> 135 mas or > 1 pixel), meaning they do not achieve the necessary pointing stability to achieve the optimal spectroscopic precision. In comparing the observed versus calculated maximum pixel fluence, we find that the J band is a better predictor of fluence than the H band. Using this information, we derive an updated, empirical relation for scan rate that also accounts for the J-H color of the host star. We implement this relation and other improvements in version 1.4 of PandExo and version 0.5 of ExoCTK. Finally, we make recommendations on how to plan future observations with increased precision.
1. Introduction

Time series exoplanet observations are a common science objective for the Wide Field Camera 3 (WFC3) instrument. By making use of the spatial scan mode (McCullough & MacKenty, 2012) and either of the IR channel’s grisms, observations are able to efficiently collect spectroscopic time-series data and achieve higher precision than data previously acquired using WFC3’s stare mode (Deming et al., 2013).

The first spatial scan observations took place in 2011 and, as of mid-2019, there are over 250 executed visits. The majority of these visits are time-series observations of transiting exoplanets, thus providing a treasure trove of data to examine and from which to recommend best practices using this mode.

Below we (1) describe the data reduction software, spatial scan interface, and study population; (2) present our findings from analyzing eight years of time-series data; (3) and provide recommendations to WFC3 users for ways to increase light curve precision and data quality.

2. Software & Analysis

In this section, we provide a high-level description of the software package and spatial scan interface. We also list the relevant information on the study population.

2.1. Data Reduction Software

Based on analyses first performed by Stevenson et al. (2014), we have developed data reduction software to analyze IR grim observations using the spatial scan mode. As part of the WFC3 Quicklook project (Bourque et al., 2017), we automated this monitor to run daily, identifying and reducing new spatial scan data as they are obtained. The outputs from this tool enable us to investigate the performance of time-series observations in spatial scan mode, track data quality over time, and quantify how the quality varies with observational parameters (e.g., pointing drift, fluence, etc.). Below we provide a high-level description of the pipeline’s steps.

1. Identify and select WFC3/IR grism spatial scan data then group visits into continuous observations of planets.
2. Automatically select suitable subarray, background, and spectral extraction regions, which can vary with scan height, position, and grism.
3. Apply a basic flat field correction with no wavelength dependence.
4. Compute difference frames between pairs of non-destructive reads.
5. Perform double outlier rejection (along time axis) of sky background region, automatically selected to be above and below the scanned spectrum.

6. Subtract background region from each difference frame.

7. Apply a rough, integer-pixel pointing drift correction (if drift exceeds 1 pixel).

8. Perform a second double outlier rejection along the time axis, this time incorporating the entire subarray region.

9. Apply a fine, sub-pixel pointing drift/jitter correction.

10. Run optimal spectral extraction (Horne, 1986).

11. Shift 1D spectra (along dispersion axis) to align them in pixel space.

12. Compute band-integrated (white) flux by summing values over all non-destructive reads in a given frame.

13. Use the Divide White technique (Stevenson et al., 2014) to remove wavelength-independent systematics and compute spectroscopic light curves.

The data reduction software makes use of the IMA files rather than the FLT files, as the former yield more robust results by differencing pairs of non-destructive reads. The reduced data consist of band-integrated light curves (flux vs. time) with auxiliary information relating to telescope drift/jitter, spectroscopic light curve precision, etc. The information is stored using Python's object serialization (pickle) format.

2.2. Spatial Scan Interface

The spatial scan interface allows us to identify and select the subset of WFC3/IR grism data that use the spatial scan mode. The WFC3 Quicklook database enables us to quickly identify a subset of FITS files based on header keywords alone, rather than having to open each file to access the required information. Using a convenience package for this database, pyq1, we select the IR grism spatial scan data by using the SCAN_TYP == ‘C’ or ‘D’ header keyword from the FITS images. This query results in a complete list of every potential observation; however, some exoplanet observations are longer than a single visit, and there may be several such observations in a single program. To appropriately match only a continuous visit, we sought breaks between the starts of subsequent visits that were greater than three hours and thirty minutes (corresponding to three or more HST orbits). We compared the EXPSTART key from each file, again using pyq1, to query for and sort data.

After passing the data into the reduction pipeline (described in Section 2.1), the outputs are saved and displayed on the WFC3 Quicklook website, as part of ongoing monitoring efforts from the WFC3 team.
Table 1: Study population parameters. The data span a large range of parameters and observing modes.

Parameter	Range
Dates	2012.3 – 2019.5
J-Band Magnitudes	6.07 – 12.91
Exposure Times	5.97 – 313.12 sec
Frames per HST orbit	43 – 7
Scan Rate	2.0 – 0.015 arcsec/sec
Forward Mode	66 visits
Round Trip Mode	100 visits

2.3. Study Population

Because the code is fully automated, it has the benefit of yielding uniform results with no human interaction. However, at times it may yield unexpected results when data are acquired using non-standard observing techniques or when an unexpected event occurs during the observation. We attempt to account for the former by handling exceptions within the code, and discard the latter. For the purposes of this statistical study, we consider 166 visits. Table 1 provides information about our study population as a whole, while Table 2 at the end of this document provides more detailed information about each target.

3. Results

3.1. Observation Success Rate

Our first goal in looking at this broad collection of data is to understand the success rate of spatial scan observations as a whole. Here we define “success” as having achieved an rms drift of ≤ 15 mas along the dispersion direction (X axis). As discussed in Section 3.2, the success of an observation does not strongly depend on drift along the spatial direction (Y axis). We classify an observation as having “failed” when the rms drift in X is >135 mas (>1 pixel). We classify drifts between 15 and 135 mas, where drawing meaningful conclusions from the data is visit dependent, as “marginal” observations. We discuss these classifications and their impact on the data in later sections.

Figure 1 demonstrates that, over the lifetime of WFC3 spatial scan observations, 77.1% of visits are successful. Correspondingly, 10.8% of visits have failed. Within the subset of failed visits we look for trends such as higher scan rates, localized observation dates, and common target positions. We identify a relatively large number of failures in 2018, corresponding to a time when HST experienced increased gyro bias levels and more frequent guide star acquisition failures. Otherwise, we find no statistically significant deviations relative to the successful visits (see Figure 2). Common reasons for a failed visit are a guide star acquisition failure, observing in gyro mode [i.e., during South Atlantic Anomaly (SAA)]
Fig. 1.— Histogram of measured spectrum drift along the X axis for all spatial scan observations in our study. The right-most bin contains all observations with drift >135 mas (>1 pixel). Our analyses indicate that 77.1% of visits are successful, whereas 10.8% of visits have failed.

Fig. 2.— Observation success rate shown as functions of the observation date, position, and scan rate. There is no obvious trend outside of the increased failure rate in 2018 when HST is known to have experienced gyro issues.

crossings], and use of a single guide star. Typically, only the first reason is eligible for a repeat observation.
Fig. 3.— Measured pointing drift (in milliarcseconds) over > 7 years of spatial scan observations for successful observations (where the drift along X is < 15 mas). The pointing drift within a visit has changed very little over the years (5.0 ± 2.3, 4.0 ± 3.4 mas). The orange line and 1σ regions are computed using a rolling median over 15 neighboring visits. Observations with a higher scan rate do not exhibit a systematically larger drift.

3.2. Effects of Pointing Drift

Figure 3 displays the measured drift along the X and Y axes for all successful visits. The data suggest that the drift may have been slightly elevated in 2018 when HST experienced issues with its gyros. Otherwise, the rolling median rms drift shows no significant or lasting pointing degradation. The median drift of the successful visits along X and Y are 5.1_{-1.5}^{+1.9} and 4.0_{-1.4}^{+3.3} mas, respectively. There is also no statistically significant difference in drift between observations that scan only in the FORWARD direction versus those that use the ROUND_TRIP mode.

Next we consider the effects of pointing drift on the quality of the data. Figure 4 shows the scatter in the normalized spectroscopic light curves as functions of the measured drifts along the X and Y axes. We note that the best precision achieved when the drift along the X axis exceeds 15 mas is 460 ppm. This can be compared to 153 ppm precision for successful observations (X drift < 15 mas). As seen in the right panel of Figure 4, this correlation does not hold for drift along the Y axis. This makes sense since HST scans in the spatial direction (Y axis) and the flux is expected to be constant along that direction.

Based on this line of evidence, we conclude that a reasonable delineator for success is an
rms drift of 15 mas along the dispersion direction. Delineating between a marginal and failed observation requires a more qualitative argument because there is no abrupt transition. The low precision light curves with large drifts are likely the result of residual, uncorrected flat field effects. Thus, when the drift is \(< 1\) pixel, this systematic can often be accounted for using relatively simple models. With larger drifts, we have been unsuccessful in our attempts to adequately correct this systematic due to its complicated nature and significant amplitude relative to the signals seen in transmission spectroscopy.

3.3. Observation Planning

Based on the successful observational data, we develop new empirical equations to predict the maximum pixel fluence, \(F\), and desired scan rate, \(S\), for the G141 grism. As seen in Figure 5, the equation previously used by PandExo (Equation 1, Batalha et al., 2017) does not adequately predict the observed fluence for many of the observations. This is because Equation 1 relies on the H-band magnitude, which is redward of G141’s measured peak flux and does not account for the stellar type (see Figure 6). Equation 2 yields a better fit by using the J-band magnitude; however, even with J-band there is still a small color dependence.
To account for the stellar type, we adopt Equation 3 as our best-fit model. The standard deviations of the residuals when applying all three equations to the measured maximum pixel fluence level are: 5149, 3310, and 2738 e^-/pix, respectively. Thus, Equation 3 reduces the scatter by a factor of 1.9 relative to Equation 1.

\[F_H = \frac{13.2}{S} 10^{-0.4(h_{mag} - 15)} e^-/pix \]

\[F_J = \frac{2365}{S} 10^{-0.4(j_{mag} - 9.75)} e^-/pix \]

\[F_{J+\text{Color}} = \frac{2491}{S} 10^{-0.4(j_{mag} - 9.75)} - \frac{161}{S} 10^{-0.4(j_{mag} - h_{mag})} e^-/pix \]

Rearranging Equation 3 to compute the scan rate as a function of the desired maximum pixel fluence (in e^-/pix) is trivial:

\[S = \frac{2491}{F} 10^{-0.4(j_{mag} - 9.75)} - \frac{161}{F} 10^{-0.4(j_{mag} - h_{mag})} \text{ arcsec/sec.} \]

Typically, $F = 30k e^-/pix$; however, as discussed in Section 3.4, there may be good reasons to choose higher fluence values for relatively bright targets. If the H-band magnitude is unknown, users can assume no color dependence and negate the second term of Equation 4. To first order, the G102 scan rate is still 80% of the G141 scan rate.

3.4. Light Curve Precision

First, we investigate how well the WFC3 G141 observations perform with respect to theoretical predictions. Figure 7 depicts the band-integrated (white) light curve precisions and compares them to the anticipated photon-limited precisions. The measured values closely follow, but are consistently above, the theoretical predictions because other noise sources are not considered. Our best-fit solution is $1.07 \times$ the photon-limited precision curve. We recommend that users use this multiplier when computing rough signal-to-noise estimates for their targets.

Next, we compute the predicted spectroscopic light curve precision using PandExo HST (Batalha et al., 2017). By plotting the precision (relative to the default configuration; 150 s, 30k e^-/pix, Round Trip) versus magnitude, Figure 8 demonstrates that targets brighter than $J = 8$ can typically achieve a higher precision by increasing the per-pixel fluence (compare solid lines, negative values represent a higher precision relative to the default configuration). Specifically, one must decrease the scan rate and increase the number of samples (i.e. non-destructive reads) per frame, thus resulting in an increase in the per-pixel fluence over a similar number of pixels and an overall higher precision. Fainter targets ($J > 8$) may benefit from using longer exposure times (see dotted line in Figure 8); however, care must be taken
Fig. 5.— Residual fluence levels for successful G141 observations. Using J-band magnitudes and a color correction (Equation 3) yields the best fit to the observed fluence levels.

Fig. 6.— WFC3/G141 stellar spectra at various temperatures. A star’s J-band magnitude better represents its maximum pixel fluence, which peaks near 1.3 \(\mu m \) for the range of stellar types shown here.
Comparing measured white light curve precisions to theoretical predictions. The best-fit solution is $1.07 \times$ the photon-limited precision, which is smaller than the value adopted by PandExo_HST (1.14). To achieve a uniform comparison, the values are plotted per second of exposure time.

Finally, we compute the measured spectroscopic light curve precision by use of the Divide White method (Stevenson et al., 2014), which removes wavelength-independent systematics. We do not take the additional step of removing wavelength-dependent variations in the transit/eclipse depths as these values are small compared to the point-to-point scatter. Each of the 16 spectroscopic bins is 7 pixels in width. The final spectroscopic precision is a median of the 16 values recorded from each observation.

In Figure 9, the measured spectroscopic precision is typically within 50 ppm of predictions from PandExo_HST (Batalha et al., 2017). Some programs did not adopt the most efficient observing strategy and others experienced wavelength-dependent systematics, which weren’t accounted for in our automated data reduction and analysis pipeline. Both scenarios lead to a degradation in measured precision relative to the idealized predictions from PandExo_HST. The precision per HST orbit levels off once the detector read plus reset time is significantly greater than the exposure time. This fact is important when attempting to identify the highest signal-to-noise targets. For example, observations of HD 189733 ($J = 6.1$) are likely to yield a similar precision to those of WASP-18 ($J = 8.4$), assuming the same maximum pixel fluence. For the brightest targets, there appears to be an increasing
Fig. 8. — Relative spectroscopic light curve precisions per HST orbit assuming 16, 7-pixel-wide channels. These predictions use PandExo_HST’s optimal observing strategy and consider two maximum exposure times (150 & 300 seconds), five fluence levels (20k – 60k $e^−$/pix), and two spatial scan modes (Forward and Round Trip). Predictions are relative to PandExo_HST’s default configuration (150 s, 30k $e^−$/pix, Round Trip).

Fig. 9. — Measured and predicted spectroscopic light curve precisions per HST orbit. See Figure 8’s caption for details. Regardless of magnitude, all measured values exceed 35 ppm/orbit (dashed line) at $R \sim 40$.
departure from theoretical predictions, potentially hinting at the presence of a systematic noise floor of at most 21 ppm for a resolving power of ~ 40. More work is needed to further explore and better quantify this tentative result, which is beyond the scope of this ISR.

Although Figure 8 predicts higher precisions for the ROUND_TRIP mode, we investigate whether this mode truly performs better than the FORWARD mode. Looking specifically at the successful observations of GJ 1214, we see that all nine visits in ROUND_TRIP mode achieve a higher precision per HST orbit than any of the five visits using FORWARD mode. This is because WFC3 can acquire more scans per HST orbit using ROUND_TRIP mode, which has smaller overheads compared to the FORWARD mode. The median improvement between the two modes is 6.4 ppm per spectroscopic channel, which is consistent with PandExo_HST’s prediction of 4.6 ppm. More broadly, this trend repeats across other observations; therefore, we recommend that all future time-series observations use the ROUND_TRIP mode.

4. Summary of Recommendations

Using WFC3’s spatial scan monitor, we have analyzed eight years of time-series data and report on the success rate of these observations. Based on these findings, we make several recommendations that will help maximize the efficiency of spatial scan, time-series observations and enhance users’ understanding of its limits.

- To minimize pointing drift, observers should always use the Fine Guidance Sensors (FGS mode) with multiple guide stars and avoid SAA crossings at the beginning of HST orbits.
- For the most precise results, time-series observations should always implement the ROUND_TRIP spatial scan mode.
- Time-series observations of brighter targets ($J < 8$) may adopt a max pixel fluence greater than 30k e^-/pix to achieve a higher precision.
- Time-series observations of fainter targets ($J > 8$) may adopt exposure times longer than 150 seconds to achieve a higher precision.
- Observers should assume a best-case precision of 35 ppm per HST orbit at $R \sim 40$ (16 channels).

Acknowledgements

We would like to thank Marc Rafelski for his thorough review of this ISR. We would also like to thank the WFC3 team for their useful insights and discussions on this program.
References

Batalha, N. E., et al. 2017, PASP, 129, 064501
Bourque, M., et al. 2017, in IAU Symposium, Vol. 325, Astroinformatics, ed. M. Brescia, S. G. Djorgovski, E. D. Feigelson, G. Longo, & S. Cavuoti, 397–400
Deming, D., et al. 2013, ApJ, 774, 95
Horne, K. 1986, Publ. Astron. Soc. Pac., 98, 609
McCullough, P., & MacKenty, J. 2012, Considerations for using Spatial Scans with WFC3, Tech. rep.
Stevenson, K. B., et al. 2014, AJ, 147, 161
Table 2: Summary of Observations.

Obs. Date	Target	Fluence \(^a\) (e\(^-\)/pix)	X rms (mas)	Y rms (mas)	Scan Type	Scan Rate (\(^\circ\)/sec)	Precision \(^b\) (ppm/orbit)
2012.33	GJ 436	36322	14.7	6.1	Forward	0.99	153
2012.36	WASP-31	34904	4.3	3.9	Forward	0.019	120
2012.51	HAT-P-1	44220	14	6.9	Forward	0.15	57
2012.73	HD 209458	49390	40.1	5.6	Forward	0.9	43
2012.74	GJ 1214	21643	4	2.6	Forward	0.12	69
2012.76	GJ 1214	21636	4.3	3.2	Forward	0.12	80
2012.78	GJ 1214	21686	2	2.8	Forward	0.12	69
2012.8	HAT-P-11	49974	60.2	54	Forward	0.37	39
2012.8	GJ 1214	21628	4.7	5.5	Forward	0.12	67
2012.82	GJ 436	36232	55.3	27.4	Forward	0.99	67
2012.9	WASP-33	69169	40.5	11.2	Forward	0.25	43
2012.91	GJ 436	36205	58.8	28.1	Forward	0.99	63
2012.94	GJ 436	35955	63.8	31	Forward	0.99	65
2012.96	HAT-P-11	50096	398	281.7	Forward	0.37	80
2013.01	GJ 436	36026	60.4	25.8	Forward	0.99	65
2013.04	WASP-33	69200	24.5	3.5	Forward	0.25	46
2013.08	GJ 1214	21685	4.5	14.8	Forward	0.12	72
2013.2	GJ 1214	21656	5	3.5	Round_Trip	0.12	61
2013.2	GJ 1214	21648	5.1	4.1	Round_Trip	0.12	62
2013.23	GJ 1214	21711	3.5	4.4	Round_Trip	0.12	61
2013.26	GJ 1214	21666	3.7	3.6	Round_Trip	0.12	67
2013.28	GJ 1214	21633	169.4	435	Round_Trip	0.12	84
2013.33	GJ 1214	21608	5.2	2.5	Round_Trip	0.12	59
2013.43	HD 189733	37170	4.4	11.8	Round_Trip	2	983
2013.48	HD 189733	37338	3.1	9.3	Round_Trip	2	209
2013.51	GJ 1214	21618	5.2	2.8	Round_Trip	0.12	63
2013.59	GJ 1214	21642	5.5	3.4	Round_Trip	0.12	64
2013.61	GJ 1214	21641	5.2	4.2	Round_Trip	0.12	60
2013.63	GJ 1214	21658	6.5	3.8	Round_Trip	0.12	65
2013.82	HD 165459	49029	123	5.7	Round_Trip	0.9	155
2013.85	WASP-43	7	nan	614.9	Round_Trip	0.08	nan
2013.86	WASP-43	31973	5.4	3.9	Round_Trip	0.05	80
2013.86	WASP-43	23733	5	4.1	Round_Trip	0.08	71
2013.87	WASP-43	32178	4.6	3.4	Round_Trip	0.05	107
2013.88	WASP-43	33580	5	3.3	Round_Trip	0.05	77
2013.9	HAT-P-17	34226	6	15.6	Forward	0.134	63
2013.9	HD 165459	48718	4	6.5	Round_Trip	0.9	77
2013.92	HD 165459	36548	2.5	3	Round_Trip	1.2	82
2013.93	WASP-43	23883	5.3	3	Round_Trip	0.08	74
2013.96	WASP-12	7	nan	nan	Forward	0.05	nan
2014	WASP-12	14261	584.7	288.9	Round_Trip	0.05	16725
2014.02	HD 165459	48789	8.8	3	Round_Trip	0.9	38

\(^a\) Fluence is measured in (e\(^-\)/pix) for photons.

\(^b\) Precision is measured in ppm/orbit.
Date	Target	Fluence*	X rms (mas)	Y rms (mas)	Scan Type	Scan Rate ("/sec)	Precision (ppm/orbit)
2014.04	WASP-12	18532	7.2	2.8	Round_Trip	0.05	144
2014.16	WASP-12	17561	6.4	4.4	Round_Trip	0.05	114
2014.17	WASP-12	17552	5.4	3.7	Round_Trip	0.05	118
2014.31	WASP-18	28581	4.3	3.6	Round_Trip	0.3	50
2014.33	HD 165459	48787	61.8	2.1	Round_Trip	0.9	126
2014.35	WASP-18	28490	110.5	463.8	Round_Trip	0.3	122
2014.44	WASP-19	30316	4.3	10.9	Forward	0.026	310
2014.44	WASP-19	28759	10.6	12.4	Forward	0.026	152
2014.45	WASP-19	29614	208.8	346.1	Forward	0.026	186
2014.49	WASP-18	28797	4.3	3	Round_Trip	0.3	49
2014.67	HD 165459	48697	55.9	6.9	Round_Trip	0.9	112
2014.97	KEPLER-138	19344	3.8	3.5	Round_Trip	0.07	78
	HD 209458	38979	0.8	1.1	Round_Trip	1.15	44
2015.08	GJ 3470	24989	4.5	2	Round_Trip	0.24	72
2015.19	GJ 3470	24998	5.4	4.6	Round_Trip	0.24	44
2015.29	KEPLER-138	19357	4.5	3.2	Round_Trip	0.07	79
2015.45	2MASS J16371	12736	4	2	Round_Trip	0.025	124
2015.46	2MASS J16371	13097	4.4	2.7	Round_Trip	0.025	135
2015.62	LHS 6343	24293	4.6	3.6	Round_Trip	0.12	71
2015.79	KEPLER-138	19082	2.5	1	Round_Trip	0.07	91
2015.81	GJ 3470	24896	5.8	4.9	Round_Trip	0.24	60
2015.83	HAT-P-18	36780	3.1	13.5	Round_Trip	0.022	123
2015.9	WASP-76	33172	161.1	170.2	Round_Trip	0.22	54
2015.93	EPIC 2019125	17578	6.2	2.4	Round_Trip	0.14	67
2015.94	HAT-P-12	30330	9.2	3.8	Forward	0.03	119
2016.05	HAT-P-32	23257	11.1	5.8	Forward	0.05	117
2016.1	WASP-121	20865	12.5	11.7	Forward	0.12	75
2016.11	HAT-P-18	28312	6.6	5.5	Forward	0.03	117
2016.15	HAT-P-3	29747	16.2	16.5	Forward	0.07	97
2016.17	HAT-P-38	27871	5.2	19.5	Forward	0.026	127
2016.19	HD 149026	40531	4.8	3.4	Round_Trip	0.7	103
2016.19	HAT-P-26	29526	3.7	2.4	Forward	0.06	92
2016.2	EPIC 2019125	17515	3	5	Round_Trip	0.14	63
2016.21	HATS-7	20957	2.5	3.8	Forward	0.02	143
2016.22	HATS-7	20942	3.3	3.7	Forward	0.02	132
2016.26	HD 149026	40582	3.1	2.5	Round_Trip	0.7	68
2016.28	HD 97658	47835	2.2	33.9	Round_Trip	1.4	132
2016.29	WASP-29	33646	2.9	2.3	Forward	0.11	69
2016.33	HAT-P-26	29626	3	2.1	Forward	0.06	97
2016.34	2MASS J23062	22034	3.6	3	Round_Trip	0.027	145
2016.38	EPIC 2019125	17614	5.1	4.5	Round_Trip	0.14	66
2016.47	WASP-80	19536	3.1	5.1	Round_Trip	0.22	53
2016.49	HAT-P-3	29628	17	17.5	Forward	0.07	92

Continued on next page
Date	Target	X rms (mas)	Y rms (mas)	Scan Type	Scan Rate ("/sec)	Precision (ppm/orbit)	
2016.51	EPIC 2037710	502.2	160	Round_Trip	0.16	222	
2016.62	WASP-69	3.9	6.9	Round_Trip	0.63	47	
2016.65	HAT-P-38	8.2	14.8	Forward	0.026	133	
2016.66	WASP-52	2.9	2.6	Forward	0.035	159	
2016.66	WASP-39	4.9	5	Forward	0.035	108	
2016.66	HAT-P-12	5.8	8.5	Forward	0.03	121	
2016.72	WASP-63	7	8.1	Round_Trip	0.08	68	
2016.75	WASP-101	21.7	12.3	Forward	0.15	64	
2016.76	WASP-74	4.9	6.2	Forward	0.25	59	
2016.77	HAT-P-41	5.3	11.9	Forward	0.065	95	
2016.79	KELT-1	4	2.5	Round_Trip	0.097	65	
2016.79	HAT-P-41	5.2	9.3	Forward	0.065	89	
2016.81	WASP-67	5.5	7.6	Forward	0.037	113	
2016.84	WASP-76	77.5	122.6	Round_Trip	0.22	51	
2016.86	WASP-121	4.9	4.8	Forward	0.12	80	
2016.87	WASP-79	2.1	3.3	Forward	0.15	66	
2016.88	KELT-1	6.9	7.3	Round_Trip	0.097	73	
2016.89	KELT-1	6.2	5.2	Round_Trip	0.097	69	
2016.89	KELT-1	5.8	4.7	Round_Trip	0.097	70	
2016.9	K2-3	78	34.2	Round_Trip	0.18	60	
2016.92	K2-18	7.6	1.6	Round_Trip	0.14	63	
2016.96	HAT-P-32	8.3	2.8	Forward	0.05	144	
2016.98	HAT-P-7	5.9	2.4	Round_Trip	0.08	61	
2016.99	2MASS J23062	3.3	11.1	Forward	0.027	167	
2017.01	HAT-P-7	3	1.8	Round_Trip	0.08	70	
2017.01	K2-18	4.4	4	Round_Trip	0.14	65	
2017.02	K2-3	187.6	129.2	Round_Trip	0.18	76	
2017.03	2MASS J23062	652.4	379.5	Forward	0.027	384	
2017.03	HAT-P-18	8.1	6.7	Forward	0.03	120	
2017.08	HD 97658	4.7	19.7	Round_Trip	1.4	142	
2017.1	K2-18	5.9	2.3	Round_Trip	0.14	70	
2017.1	WASP-39	3.7	3.4	Forward	0.035	113	
2017.14	K2-3	4.4	6.2	Round_Trip	0.18	56	
2017.17	WASP-79	42.7	2.7	Forward	0.135	62	
2017.27	K2-3	5	3.3	Round_Trip	0.18	57	
2017.28	K2-18	4.1	3.9	Round_Trip	0.14	64	
2017.29	WASP-62	3.7	5.6	Forward	0.12	69	
2017.3	LHS 281	5.7	3	Round_Trip	0.2	93	
2017.33	WASP-74	4.9	3.7	Round_Trip	0.134	58	
2017.44	KEPLER-16	33.7	19.8	Round_Trip	0.097	61	
Obs. Date	Target	Fluence a (e'/pix)	X rms (mas)	Y rms (mas)	Scan Type	Scan Rate ("/sec)	Precision (ppm/orbit)
-----------	--------------	------------------------	-------------	-------------	-------------	-------------------	----------------------
2017.56	WASP-17	33190	5.4	15.2	Forward	0.033	113
2017.63	KELT-7	17197	5.5	2.5	Round_Trip	0.9	68
2017.73	LHS 281	21470	5.7	5.4	Round_Trip	0.2	57
2017.8	KELT-7	17080	7.4	4.6	Round_Trip	0.9	73
2017.87	K2-3	20019	7.1	3.3	Round_Trip	0.18	69
2017.88	LHS 281	21480	6.4	3.4	Round_Trip	0.2	62
2017.89	LHS 281	21442	6.6	4.6	Round_Trip	0.2	56
2017.9	BD-02 5958	38142	5.4	3	Round_Trip	0.365	64
2017.9	LHS 281	21438	6.6	4.2	Round_Trip	0.2	78
2017.91	K2-18	17519	6.6	2.7	Round_Trip	0.14	82
2017.94	2MASS J23062	28005	5.5	2.2	Forward	0.02	151
2017.95	GJ 3053	21073	7	3.2	Round_Trip	0.14	61
2017.96	BD-02 5958	38522	4.4	1.8	Round_Trip	0.365	61
2018	K2-3	20085	17.9	3.4	Round_Trip	0.18	63
2018.04	HIP 41378	49661	4.8	4.6	Round_Trip	0.25	47
2018.12	K2-3	19937	nan	943.5	Round_Trip	0.18	3847
2018.2	WASP-121	32429	7.3	3.5	Forward	0.073	70
2018.27	WASP-127	26542	7.8	9.6	Forward	0.17	71
2018.28	KEPLER-79	6732	5.6	16.6	Forward	0.015	282
2018.34	HIP 41378	49718	7.9	6.6	Round_Trip	0.25	40
2018.36	K2-18	17544	nan	nan	Round_Trip	0.14	nan
2018.38	HD 3167	46232	7.1	6.8	Round_Trip	0.429	47
2018.45	HD 106315	51569	nan	nan	Round_Trip	0.213	nan
2018.47	HD 3167	18	nan	nan	Round_Trip	0.429	nan
2018.55	2MASS J23062	27416	7.3	8.3	Forward	0.02	162
2018.55	HD 3167	46606	7	8	Round_Trip	0.429	53
2018.61	GJ 1214	21621	8.2	7.3	Round_Trip	0.12	63
2018.72	GJ 9827	38835	nan	nan	Round_Trip	0.365	nan
2018.75	BD-02 5958	38131	533.5	476.7	Round_Trip	0.365	822
2018.85	KEPLER-79	6678	5.6	11.3	Forward	0.015	283
2018.9	BD-02 5958	38276	3.9	3	Round_Trip	0.365	59
2018.91	HD 106315	52060	5.9	4.6	Round_Trip	0.213	44
2018.97	HD 106315	52148	5.1	4	Forward	0.213	36
2018.99	2MASS J00041	23680	6.3	7.4	Forward	0.022	134
2019.09	HD 106315	52320	3.7	3.6	Round_Trip	0.213	44
2019.09	WASP-121	32395	5.8	4.1	Forward	0.073	67
2019.45	HD 3167	46254	6.5	4.3	Round_Trip	0.429	55
2019.46	TYC 5165-481	19739	4.9	7.4	Round_Trip	0.22	57

a Measured maximum pixel fluence.

b Median spectroscopic light curve precision over 16 channels.