Generalized Ricci solitons on K-contact manifolds

Gopal Ghosh* and Uday Chand De

Abstract
The object of the present paper is to study K-contact manifold admitting generalized Ricci solitons. We prove that a K-contact manifold of dimension $(2n+1)$ satisfying the generalized Ricci soliton equation is an Einstein one. Finally, we obtain several remarks.

Keywords: K-contact manifold; Generalized Ricci soliton; Einstein manifold.

AMS Subject Classification (2020): Primary: 53C15; 53C55.

*Corresponding author

1. Introduction

Let M be a $(2n+1)$-dimensional differentiable manifold. Suppose that (ϕ, ξ, η, g) is an almost contact metric structure on M. This means that (ϕ, ξ, η, g) is a quadruple consisting of a $(1,1)$-tensor field ϕ, an associated vector field ξ, a 1-form η and a Riemannian metric g on M satisfying the following relations

$$\phi^2(X) = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{1.1}$$

where X, Y are smooth vector fields on M. In addition, we have

$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad g(X, \xi) = \eta(X), \quad g(\phi X, Y) = -g(X, \phi Y). \tag{1.2}$$

An almost contact structure is said to be a contact structure if $g(X, \phi Y) = d\eta(X, Y)$. A contact metric structure is said to be normal if the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbb{R}$ defined by

$$J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X) \frac{d}{dt})$$

is integrable where X is tangent to M, t is the coordinate of \mathbb{R} and f is a smooth function on $M^{2n+1} \times \mathbb{R}$. A normal contact metric manifold is called a Sasakian manifold. If ξ is a Killing vector field on a contact metric manifold (M, g), then the manifold is called a K-contact metric manifold or simply a K-contact manifold ([1], [15]). An almost contact manifold is Sasakian [1], if and only if

$$(\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X, \tag{1.3}$$

where ∇ is the Levi-Civita connection.

A complete regular contact metric manifold M^{2n+1} carries a K-contact structure (ϕ, ξ, η, g), defined in terms of the almost Kähler structure (J, G) of the base manifold M^{2n+1}. Here the K-contact structure (ϕ, ξ, η, g) is Sasakian if and only if the base manifold (M^{2n+1}, J, G) is Kählerian. If (M^{2n+1}, J, G) is only almost Kähler, then (ϕ, ξ, η, g) is only K-contact [1]. In a Sasakian manifold, the Ricci operator Q commutes with ϕ, that is, $Q\phi = \phi Q$. Recently in [11], it has been shown that there exist K-contact manifolds with $Q\phi = \phi Q$ which are not Sasakian. It is seen that K-contact structure is the intermediate between contact and Sasakian structure. K-contact manifolds have
been studied by several authors ([6], [7], [8], [14], [16], [18]) and many others. Given a smooth function f on M, the gradient of f is defined by

$$g(\text{grad } f, X) = Xf,$$

(1.4)

the Hessian of f is defined by

$$(\text{Hess } f)(X, Y) = g(\nabla_X \text{grad } f, Y),$$

(1.5)

for all smooth vector fields X, Y. For a smooth vector field X, we have ([12], [13])

$$X^b(Y) = g(X, Y).$$

(1.6)

The generalized Ricci soliton equation in a Riemannian manifold (M, g) is defined by [13]

$$\mathcal{L}_X g = -2c_1 X^b \odot X^b + 2c_2 S + 2\lambda g,$$

(1.7)

where $\mathcal{L}_X g$ is the Lie derivative of g along X given by

$$(\mathcal{L}_X g)(Y, Z) = g(\nabla_Y X, Z) + g(\nabla_Z X, Y),$$

(1.8)

for all smooth vector fields X, Y, Z and $c_1, c_2, \lambda \in \mathbb{R}$. For different values of c_1, c_2 and λ, equation (1.7) is a generalization of Killing equation ($c_1 = c_2 = \lambda = 0$), equation for homotheties ($c_1 = c_2 = 0$), Ricci soliton ($c_1 = 0, c_2 = -1$), Vacuum near-horizon geometry equation ($c_1 = 1, c_2 = \frac{1}{2}$) etc. For more details we refer to the reader ([3], [4], [5], [9], [13]).

If $X = \text{grad } f$, then the generalized Ricci soliton equation is given by

$$\text{Hess } f = -c_1 df \odot df + c_2 S + \lambda g.$$

(1.9)

2. Preliminaries

In an $(2n + 1)$-dimensional K-contact manifold, the following relations hold ([1], [17])

$$\nabla_X \xi = -\phi X,

(2.1)$$

$$g(R(\xi, X)Y, \xi) = \eta(R(\xi, X)Y) = g(X, Y) - \eta(X)\eta(Y),

(2.2)$$

$$R(\xi, X)\xi = -X + \eta(X)\xi,

(2.3)$$

$$S(X, \xi) = 2n\eta(X),

(2.4)$$

$$\nabla_X \phi Y = R(\xi, X)Y,

(2.5)$$

for any vector fields $X, Y \in \chi(M)$. A K-contact manifold M of dimension ≥ 3 is said to be Einstein if its Ricci tensor S is of the form $S = ag$, where a is a constant.

In this case we have

$$S(X, Y) = ag(X, Y).$$

(2.6)

Substituting $X = Y = \xi$ in (2.6) and then using (2.4) and (1.2), we get

$$a = 2n.

(2.7)$$

Thus using (2.7) we obtain from (2.6)

$$S(X, Y) = 2ng(X, Y).$$

(2.8)

Again from (2.8) we infer that

$$QX = 2nX.$$

(2.9)
3. Generalized Ricci soliton

In this section we characterize K-contact manifolds admitting generalized Ricci soliton. First we prove the following Lemma:

Lemma 3.1. Let (M, ϕ, ξ, η, g) be a K-contact manifold. Then

$$(\mathcal{L}_\xi(\mathcal{L}_X g))(Y, \xi) = g(X, Y) + g(\nabla_\xi \nabla_\xi X, Y) + Yg(\nabla_\xi X, \xi),$$

for all smooth vector fields X, Y with Y orthogonal to ξ.

Proof. We have

$$(\mathcal{L}_\xi(\mathcal{L}_X g))(Y, \xi) = \xi((\mathcal{L}_X g)(Y, \xi)) - (\mathcal{L}_X g)(\mathcal{L}_\xi Y, \xi) - (\mathcal{L}_\xi g)(\mathcal{L}_Y X, \xi)$$

Using (1.8) in (3.2) yields

$$(\mathcal{L}_\xi(\mathcal{L}_X g))(Y, \xi) = \xi(g(\nabla_Y X, \xi) - g(\nabla_\xi \nabla_\xi X, Y) - Yg(\nabla_\xi X, \xi)).$$

Now by the definition of Riemannian curvature tensor, from (3.2) it follows that

$$(\mathcal{L}_\xi(\mathcal{L}_X g))(Y, \xi) = g(\nabla_\xi \nabla_\xi X, Y) + Yg(\nabla_\xi X, \xi).$$

Using (2.2) in (3.3) and with Y orthogonal to ξ, we infer that

$$(\mathcal{L}_\xi(\mathcal{L}_X g))(Y, \xi) = g(X, Y) + g(\nabla_\xi \nabla_\xi X, Y) + Yg(\nabla_\xi X, \xi).$$

Lemma 3.2. [12] Let (M, g) be a Riemannian manifold and let f be a smooth function. Then

$$(\mathcal{L}_\xi(df \odot df))(Y, \xi) = Y(\xi(f))\xi(f) + Yf\xi(\xi(f)),$$

for every vector field Y.

Lemma 3.3. Let (M, ϕ, ξ, η, g) be a K-contact manifold which satisfies the generalized Ricci soliton equation. Then

$$\nabla_\xi \text{grad } f = (\lambda + 2c_2n)\xi - c_1\xi(\xi(f)) \text{grad } f.$$

Proof. Using (2.4) we have

$$\lambda \eta(Y) + c_2 S(\xi, Y) = (\lambda + 2c_2n)\eta(Y).$$

(3.4)

Making use of (1.9) and (3.4) implies

$$(\text{Hess } f)(\xi, Y) = -c_1\xi(f)g(\text{grad } f, Y) + (\lambda + 2c_2n)\eta(Y).$$

(3.5)

Hence the Lemma follows from (3.5) and the definition of the Hessian (1.9).

Theorem 3.1. Suppose that (M, ϕ, ξ, η, g) is a K-contact manifold of dimension $(2n + 1)$ which satisfies the generalized gradient Ricci soliton equation with $c_1(\lambda + 2c_2n) \neq -1$. Then f is a constant function. Furthermore, if $c_2 \neq 0$, then the manifold is an Einstein one.
Proof. Suppose that \(Y \) is orthogonal to \(\xi \). Then from Lemma 3.1 with \(X = \text{grad} \, f \), we have

\[
2(\mathcal{L}_\xi(\text{Hess} \, f))(Y, \xi) = Y(f) + g(\nabla_\xi \nabla_\xi \text{grad} \, f, Y) + Yg(\nabla_\xi \text{grad} \, f, \xi). \tag{3.6}
\]

Using Lemma 3.3 in (3.6) yields

\[
2(\mathcal{L}_\xi(\text{Hess} \, f))(Y, \xi) = Y(f) + (\lambda + 2c_2n)g(\nabla_\xi \xi, Y)
- c_1g(\nabla_\xi (\xi(f) \text{grad} \, f), Y) + (\lambda + 2c_2n)Y - c_1Y(\xi(f)^2)
= Y(f) - c_1g(\nabla_\xi (\xi(f) \text{grad} \, f), Y) + (\lambda + 2c_2n)Y - c_1Y(\xi(f)^2). \tag{3.7}
\]

Again using Lemma 3.3 with \(Y \) orthogonal to \(\xi \), from (3.7) it follows that

\[
2(\mathcal{L}_\xi(\text{Hess} \, f))(Y, \xi) = Y(f) - c_1\xi(\xi(f))Y(f) + c_1^2\xi(f)^2Y(f)
- 2c_1\xi(f)Y(\xi(f)). \tag{3.8}
\]

Since \(\xi \) is a Killing vector field, so \(\mathcal{L}_\xi g = 0 \), it implies \(\mathcal{L}_\xi S = 0 \). Using the above fact and taking the Lie derivative to the generalized Ricci soliton equation (1.9) yields

\[
2(\mathcal{L}_\xi(\text{Hess} \, f))(Y, \xi) = -2c_1(\mathcal{L}_\xi(\text{df} \otimes \text{df}))(Y, \xi). \tag{3.9}
\]

Using (3.8), (3.9) and Lemma 3.2 we infer that

\[
Y(f)[1 + c_1\xi(\xi(f)) + c_1\xi(f^2)] = 0. \tag{3.10}
\]

According to Lemma 3.3 we have

\[
c_1\xi(\xi(f)) = c_1\xi g(\xi, \text{grad} \, f)
= c_1g(\xi, \nabla_\xi \text{grad} \, f)
= c_1(\lambda + 2c_2n) - c_1^2\xi(f)^2. \tag{3.11}
\]

Making use of (3.10) and (3.11), we obtain

\[
Y(f)[1 + c_1(\lambda + 2c_2n)] = 0,
\]

which implies

\[
Yf = 0,
\]

provided \(1 + c_1(\lambda + 2c_2n) \neq 0 \). Therefore, \(\text{grad} \, f \) is parallel to \(\xi \). Hence \(\text{grad} \, f = 0 \) as \(d = \text{ker} \, \eta \) is nowhere integrable, that is, \(f \) is a constant function. Thus the manifold is an Einstein one follows from (1.9).

Remark 3.1. We know that [10] every Sasakian manifold is \(K \)-contact, but the converse is not true in general. However, a 3-dimensional \(K \)-contact manifold is Sasakian. Thus our main Theorem 3.1 is the generalization of Theorem 1.1 of [12].

Remark 3.2. Since a compact \(K \)-contact Einstein manifold is Sasakian [2], therefore a compact \(K \)-contact manifold admitting generalized Ricci solitons is Sasakian.

Acknowledgements

The authors are grateful to the referees for their valuable comments and suggestions.

References

[1] Blair, D.E.: Contact manifolds in Reimannian geometry. Lecture notes in Math. 509, Springer-Verlag. (1976).

[2] Boyer, C.P., Galicki, K.: Einstein manifold and contact geometry, Proc. Amer. Math. Soc. 129, 2419-2430 (2001).
[3] Chruściel, P.T., Reall, H.S., Tod, P.: On non-existence of static vacuum black holes with degenerate components of the event horizon. Classical Quantum Gravity, 23, 549-554 (2006).

[4] Deshmukh, S., Aloden, H.: A note on Ricci soliton. Balkan J. Geom. Appl. 16, 48-55 (2011).

[5] Deshmukh, S.: Jacobi-type vector fields on Ricci solitons. Bull. Mathematique de la Societe des Sciences Mathematiques de Roumanie Nouvelle Series. 103, 41-50 (2012).

[6] De, U.C., Biswas, S.: On K-contact η-Einstein manifolds. Bull. Soc. Math. 16, 23-28 (1990).

[7] De, U.C., De, A.: On some curvature properties of K-contact manifolds. Extracta Math. 27, 125-134 (2012).

[8] Guha, N., De, U.C.: On K-contact manifolds. Serdica-Bulgariae Math. Publ. 19, 267-272 (1993).

[9] Jezierski, J.: On the existance of Kundts metrics and degenerate (or extremal) Killing horizones. Classical Quantum Gravity, 26, 035011, 11pp (2009).

[10] Jun, J.B., Kim, U. K.: On 3-dimensional almost contact metric manifolds. Kyungpook Math. J. 34, 293-301 (1994).

[11] Koufogiorgos, T.: Contact metric manifolds. Ann. Global Anal. Geom. 11, 25-34 (1993).

[12] Mekki, M.E., Cherif, A.M.: Generalised Ricci solitons on Sasakian manifolds. Kyungpook Math. J. 57 677-682 (2017).

[13] Nurowski. P., Randall, M.: Generalised Ricci solitons. J. Geom. Anal. 26, 1280-1345 (2016).

[14] Prasad, R., Srivastava, V.: On ϕ-symmetric K-contact manifolds. IJRRAS. 16, 104-110 (2013).

[15] Sasaki, S.: Lecture notes on almost contact manifolds. Part I. Tôhoku Univ. (1965).

[16] Taraefdar, D., De, U.C.: On K-contact manifolds. Bull. Math. Soc. Sci. Math. Roumanie. 37, 207-215 (1993).

[17] Yano, K., Kon, M.: Structures on manifolds. World Scientific Press. Vol 40, (1989).

[18] Yildiz, A., Ata, E.: On a type of K-contact manifolds. Hacettepe J. Math. Stat. 41, 567-571 (2012).

Affiliations

Gopal Ghosh
Address: University of Calcutta, Dept. of Pure Mathematics, 700019, West Bengal-India.
E-mail: ghoshgopal.pmath@gmail.com
ORCID ID: 0000-0001-6178-6340

Uday Chand De
Address: University of Calcutta, Dept. of Pure Mathematics, 700019, West Bengal-India.
E-mail: uc_de@yahoo.com
ORCID ID: 0000-0002-8990-4609