Improved linking of motifs to their TFs using domain information

Nina Baumgarten¹,², Florian Schmidt³,⁴ and Marcel H. Schulz ¹,²,³,⁴,*

¹Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main 60590, Germany, ²German Center for Cardiovascular Regeneration, Partner Site Rhein-Main, Frankfurt am Main 60590, Germany, ³High-throughput Genomics & Systems Biology, Cluster of Excellence MMCI, Saarland University and ⁴Research Group Computational Biology, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken 66123, Germany

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on March 1, 2019; revised on November 8, 2019; editorial decision on November 11, 2019; accepted on November 16, 2019

Abstract

Motivation: A central aim of molecular biology is to identify mechanisms of transcriptional regulation. Transcription factors (TFs), which are DNA-binding proteins, are highly involved in these processes, thus a crucial information is to know where TFs interact with DNA and to be aware of the TFs’ DNA-binding motifs. For that reason, computational tools exist that link DNA-binding motifs to TFs either without sequence information or based on TF-associated sequences, e.g. identified via a chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiment. In this paper, we present MASSIF, a novel method to improve the performance of existing tools that link motifs to TFs relying on TF-associated sequences. MASSIF is based on the idea that a DNA-binding motif, which is correctly linked to a TF, should be assigned to a DNA-binding domain (DBD) similar to that of the mapped TF. Because DNA-binding motifs are in general not linked to DBDs, it is not possible to compare the DBD of a TF and the motif directly. Instead we created a DBD collection, which consist of TFs with a known DBD and an associated motif. This collection enables us to evaluate how likely it is that a linked motif and a TF of interest are associated to the same DBD. We named this similarity measure domain score, and represent it as a P-value. We developed two different ways to improve the performance of existing tools that link motifs to TFs based on TF-associated sequences: (i) using meta-analysis to combine P-values from one or several of these tools with the P-value of the domain score and (ii) filter unlikely motifs based on the domain score.

Results: We demonstrate the functionality of MASSIF on several human ChIP-seq datasets, using either motifs from the HOCOMOCO database or de novo identified ones as input motifs. In addition, we show that both variants of our method improve the performance of tools that link motifs to TFs based on TF-associated sequences significantly independent of the considered DBD type.

Availability and implementation: MASSIF is freely available online at https://github.com/SchulzLab/MASSIF.

Contact: marcel.schulz@em.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) are proteins that bind to DNA by recognizing specific DNA sequences with tertiary protein structures, so-called DNA-binding domains (DBDs) (Luscombe et al., 2000). Thereby, TFs can regulate transcription by building complexes with other proteins, e.g. RNA polymerases (Reiter et al., 2017). Recent studies suggest that TFs also directly influence chromatin state (Swinstead et al., 2016). Besides, TFs are involved in many functional processes, e.g. maintaining the cell cycle, preserving and establishing specific cell types as well as inducing cell death (Vaquerizas et al., 2009). Deregulation or mutations in TFs or mutations in TF-recognized sequences are the genetic trigger for many diseases (Deplancke et al., 2016). Further details are elaborated in Lambert et al. (2018).

To understand the function of TFs, the composition of the sequences they bind to must be known. These sequences are called TF binding sites (TFBSs). Several experimental techniques are known to determine TFBSs in vivo or in vitro (Bulyk, 2007; Furey, 2012; Tuerk and Gold, 1990). To denote the sequence preference of a TF, all TFBSs are summarized within TFBS patterns or motifs (in the following only motifs). These motifs are essential for computational inference of TFBSs and have been combined successfully with...
diverse epigenetic datasets to predict genome wide TF binding e.g. Pique-Regi et al. (2011) or Schmidt et al. (2018).

Currently, chromatin immunoprecipitation followed by sequencing (ChIP-seq) (Furey, 2012) is a popular technique to identify TFBS, since this in vivo method provides a genome wide and tissue-specific overview of TF binding. After peak calling the resulting DNA-sequences within the peaks are usually longer than the TFBS of the considered TF, with DNA-sequence lengths depending on the TF itself, the used peak caller and the quality of the data. Since TFBS are in general between 6 bp and 21 bp long, de novo motif discovery tools are commonly used to identify motifs enriched in these sequences (reviewed in Tompa et al., 2005 or Tran and Huang, 2014). The result of a de novo motif discovery tool is a list of motifs, which were significantly enriched in the considered sequences. Not only the true motif of the TF can be detected, but also motifs of cofactors of the TF of interest, as well as repetitive sequences. Alternatively, methods like Clover (Chen et al., 2004), PASTA (Roedter et al., 2009), CentriMo (Bailey and Machanick, 2012), i-CiS-Target (Potier et al., 2015), REGGEA (Keil et al., 2018) or iRegulon (Janky et al., 2014) make use of the increasing number of already known motifs linked to TFs to detect enriched motifs in the given sequences. The known motifs are usually taken from motif databases like JASPAR (Khan et al., 2018), TRANSFAC (Matys et al., 2006) or HOCOMOCO (Kulakovskiy et al., 2018). Some of these methods can also handle de novo motifs as input; hence they are used as a follow-up analysis to eliminate repetitive motifs from the de novo motif discovery algorithm or to improve their ordering.

A closely related field of research tries to identify motifs of TFs independently of any associated DNA-sequences. One of the first studies (Tan et al., 2005) that linked TFs to their motifs only used the information of the TFs derived from their amino acid sequences and thus also included the DBDs of the TFs. The motivation of this approach is that TFs associated to the same DBD are in general more similar to each other in terms of amino acid sequence and therefore tend to bind to similar motifs. Tan et al. (2005) used a probabilistic framework that included DBD similarity of motifs and comparative information for prediction in Escherichia coli. Later, it was shown, using a support vector regression model, that for some DBDs useful features from the protein sequence can be derived to predict the binding motif of a TF (Schroeder et al., 2010). However, the recent study by Zamanihomi et al. (2017) showed that using only features derived from the DBDs yield a high number of false positives (FPs). To overcome this problem, they combined the DBD-based information with a probabilistic model of motifs using epigenetic data.

In conclusion, the information derived from DBDs was successfully used in studies that link TFs to their motifs often independently from any TF-associated sequences. On the other hand, if tools are used that search for enriched motifs in TF-associated sequences, we recognized that these make no use of the powerful DBD information. Here, we introduce a method called MASSIF—motif association with domain information—that extends existing tools that link motifs to TFs and improves their performance using DBD information, utilizing a statistic comparable to Tan et al. (2005). We demonstrate that well-known and commonly used tools show significantly improved performance on real ChIP-seq data when combined with MASSIF.

2 Materials and methods

2.1 Overview

Our approach is based on the idea that a motif linked to a TF of interest is more likely to be correct if the TF and the motif are associated to the same DBD. For TFs, the DBD is usually known, but motifs are in general not associated to DBDs. For that reason, it is not possible to compare the DBD of a TF and the linked motif directly. To enable the comparison, we constructed a DBD collection consisting of TFs with known DBDs and linked motifs. We use the DBD collection to compare the linked motif to all motifs in the collection which are associated to the DBD of the TF of interest. This results in a similarity measure, called domain score, which we represent as a P-value. We use the domain score in two different ways: (i) Using Fisher’s method as a meta-analysis (Fisher, 1934) to combine the domain score with the results of existing tools. (ii) Applying the domain score as a filter to reduce the motif set before applying an existing tool. An overview is shown in Figure 1.

2.2 Similarity measurement and clustering of position frequency matrices

During the construction of the DBD collection, we use a cluster algorithm for Position Frequency Matrices (PFMs) developed by Pape et al. (2008). Also, our domain score is based on the similarity measurement S^max defined in their work. Pape et al. developed a software package, called Mosta, which conducts motif similarity computation and motif clustering.

Two PFMs, X and Y are assumed to be similar if they describe a similar binding site, or to put it in another way, if they have a high number of overlapping hits in a random sequence. Therefore, Mosta’s similarity concept between two PFMs is based on an overlap probability $\gamma_{XY}(k)$ at position k of X and Y as well as on the probabilities of independent hits for X and Y at this position k, denoted by γ_X and γ_Y. The overlap probability $\gamma_{XY}(k)$ sums the probability for all possible words $x \in X$ and $y \in Y$ to overlap at a position k. In addition, γ_X is the probability that the words $x \in X$ occur in a background model, equally for Y. Applying the logarithm to the ratio of the overlap probability and the product of the probabilities of independent hits for X and Y, gives the similarity S_{XY}:

$$S_{XY} = \log \left(\frac{\gamma_{XY}(k)}{\gamma_X \gamma_Y} \right) \quad (1)$$

The ratio describes the probability to observe two hits assuming the motifs X and Y represent a similar binding site, normalized by the probability to observe hits for X and Y assuming they do not describe a similar binding site. MASSIF applies a concept, also provided by Mosta called S^max which is based on Equation (1). S^max is a maximization over all possible k’s and it also considers the reverse complement of the motifs.

Based on the definition of the similarity between two PFMs, Mosta determines clusters in a set of motifs. Each resulting cluster contains a set of motifs which is represented by a consensus motif. Initially, all considered motifs are interpreted as a separate cluster containing one motif which is also the consensus motif at the same time. Then in a greedy fashion, clusters are merged using S^max as a similarity measure. The procedure stops if the motifs in a cluster are not similar enough to the cluster consensus motif. The algorithm terminates if all pairs of consensus motifs are considered at least once or if the similarity of the remaining motif pairs is too low.

2.3 DBD collection

To build the DBD collection, we used information from the motif database JASPAR (version from 2016). JASPAR contains known motifs linked to TFs. Each TF of the database is associated to a DBD, based on the TFClass system (Wingender et al., 2013). In a first step, we separate the JASPAR TFs and hence, indirectly the motifs, according to their DBDs. The considered motifs belong to 30 different DBDs (listed in Supplementary Table S1).

Since the JASPAR database contains 315 motifs, several motifs are assigned to the same DBD. However, there is no guarantee that motifs associated to the same DBD are similar to each other. The domain score determines a similarity between a candidate motif and the motifs within a DBD, it is important to represent the diversity of motifs for a DBD as accurately as possible to avoid FPs as well as false negatives (FNs). The idea is to cluster motifs associated to the same DBD annotation into distinct groups, so that the motifs within each group are more similar to each other than to the motifs outside this group. Then we can compare the candidate motif to the different groups within a DBD to determine the domain score. Therefore, we cluster the corresponding PFMs of the motifs within a DBD using the cluster algorithm provided by Mosta. We get for each DBD a set of clusters D_i, where $i \in \{1, \ldots, 30\}$ since we observed 30 DBDs. Then D is defined as the set of all DBDs
2.4 Domain score

To calculate the domain score between a motif and a TF, we need to be aware of the DBD of the TF. In general, for most of the TFs, the DBD is known and can be looked up, for instance in UniProt (The UniProt Consortium, 2017). Otherwise, if the DNA- or protein-sequence is known, the DBD can be predicted using tools like SMART (Letunic et al., 2015) or UniPROBE (Hume et al., 2015). Knowing the DBD of a TF, we can use the DBD collection to look up the consensus motifs of the set of clusters C_i associated to this DBD. Based on that, the domain score is computed yielding for each candidate motif a score indicating how similar this candidate motif is to the most similar consensus motif of the DBD of the current TF. In more detail, we calculate the similarities S_{mot} between the PFM P of the candidate motif and all consensus motifs M_{j} of the DBD of the current TF. So, the set of similarities can be computed as following:

$$\text{sim}(P, D) = \{ S_{\text{mot}}(P, M_{\text{j}}) \mid c_t \in C_i \}.$$

(2)

Among all calculated similarities, we pick the highest one, since the maximum similarity is achieved for the consensus motif that is most similar to the candidate motif. The consensus motifs of a DBD might be different to each other, thus the maximization is important. Since the similarity value also depends on the motif itself, we divide the maximal similarity by the sum of all maximal similarities over all DBDs to normalize for this effect. So, we get the following formula for the domain score I_{D}:

$$I_{D}(P, D) = \frac{\max \text{ sim}(P, D_i)}{\sum_{m=1}^{M} \max \text{ sim}(P, D_m)}.$$

(3)

The higher the similarity the more likely the candidate motif has the same DBD as the current TF. Figure 2 illustrates an example how to calculate the domain score. To enable a better interpretation of the domain scores as well as to give us the possibility to use them in a statistical test, the domain scores are represented as P-values:

$$P\text{-value} = Pr(\chi^2(DF) \geq x | H_0).$$

(4)

where x is an observed value of the domain score and the null hypothesis H_0 is defined as: 'the DBD of the current TF and the DBD associated to the motif are not the same'. Since we have no analytic description of H_0, we approximate it by using Monte Carlo sampling. By randomly sampling 100 000 PFMs (average entropy ≥ 0.6, length between 6 and 21) we obtain a set of random PFMs R. For further information about the PFM sampling, see Supplementary Section S6. We calculate for each random motif $r \in R$ the domain score x for a given DBD D_i and we estimate a P-value for this score as follows:

$$p(x, D_i) = \frac{|\{r | I_{D}(D_i, r) \geq x, r \in R \}|}{|R|}.$$

(5)

Basically, we count how often a random motif has an observed domain score for a given DBD that is higher than the score x and divide it by the total number of motifs in R.

The domain score can either be used in a meta-analysis or as a motif filter. In the following, both variants are explained in more detail.

2.4.1 Domain scores used in a meta-analysis

Tools that link motifs to TFs relying on TF-associated sequences usually return a list of motifs describing the likelihood that the motifs are over-represented in the set of input sequences. For each motif a P-value is given that is used to compare the motifs with each other. For each motif within this list, we determined the domain score I_{D} [Equation (3)] and the corresponding P-value as explained in Equation (5). A meta-analysis is performed by using Fisher’s method to combine the P-values of the used tools and the domain score:

$$X(p_1, \ldots, p_m) = -2 \cdot \sum_{i=1}^{m} \log(p_i).$$

(6)

where p_i represents the P-value of the ith method, and m is the number of methods considered. Fisher’s method follows the χ^2 distribution with $2k$ degrees of freedom (Fisher, 1934), hence we can obtain the corresponding P-value by computing $1 - F_{\chi^2}(x)$, where $F_{\chi^2}(x)$ is the cumulative distribution function of the χ^2 distribution.
To assess the performance of the tested methods, we determine for how many TFs a motif was linked correctly. As motif input set, we use (i) motifs from the HOCOMOCO database (401 motifs) or (ii) \textit{de novo} motifs using GimmeMotifs (van Heeringen and Veenstra, 2011). To account for similarity between different HOCOMOCO motifs in the evaluation, we combine similar motifs by clustering, using Mosta. Linked motifs that belong to the same cluster as the true motif are counted as correctly linked. GimmeMotifs applies a clustering step to reduce the redundancy of the identified \textit{de novo} motifs within their analysis, hence we do not cluster the motifs again for the evaluation. To determine which \textit{de novo} motif is the correct one, we calculated the similarity for each of them to the known motif of the TF of the current ChIP-seq dataset. For this, we used the similarity function \textit{ssstat} from Mosta, which determines the similarity between two PFM s. The \textit{de novo} motif that is most similar to the motif of the TF is assumed to be the correct one, after checking all motifs manually.

Further, we calculate Precision-Recall (PR) curves. \textit{Recall} is defined as the number of correctly linked motifs (TP) divided by the number of FNs plus TP e.g. recall $: = \frac{TP}{TP + FN}$. Further, \textit{precision} is specified as the number of TP divided by TP plus the FPs e.g. precision $: = \frac{TP}{TP + FP}$. Additionally, we determine for each method shown in the PR-Curves the area under the curve (AUC).

3 Results

In this study, we consider the following task: Given a TF, to which no motif is linked, and a set of sequences that are associated with the TF, e.g. identified via a ChIP-seq experiment, the aim is to identify the correct motif. To solve this, we developed a tool, called MASSIF, which improves the performance of existing tools that link motifs to TFs depending on TF-associated sequences by using the DBD of a TF to calculate a domain score. This score is based on the assumption that a motif which is correctly linked to a TF should be assigned to a similar DBD than the TF. Since we do in general not know the DBDs of the motifs, we cannot directly compare the DBDs of the linked motif and the TF of interest. We construct a DBD collection, which consists of TFs with known motifs associated to a DBD from the JASPAR database. The DBD collection allows us to determine how likely it is that a linked motif and a TF of interest are associated to the same DBD. We compute the domain score between the linked motif and the set of motifs associated with the DBD of the TF, which we looked up in the DBD collection. The domain score can either be used in a meta-analysis or as a motif filter. An overview of the domain collection and MASSIF is provided in Figure 1.

3.1 Analysis of domain score distributions

To decide if an observed domain score is significant or not, we calculate a domain score distribution for each DBD (Section 2.4). It is important to do this separately for each DBD, because the distributions of different DBDs heavily differ from each other (Fig. 3). Generally, the observed domain scores of DBDs that contain fewer motifs have a smaller mean than DBDs with a large number of motifs. An explanation for this effect is that the DBDs with a large number of motifs typically consist of more clusters than small ones. In addition, the bigger the clusters in a DBD the less specific are the consensus motifs, hence it is more likely that a randomly generated motif achieves a high similarity to the consensus motifs simply by chance.

3.2 Results on ENCODE data

MASSIF can only improve the performance of existing tools that link motifs to TFs relying on TF-associated sequences, hence we had to decide which of them we want to consider in our study. We choose CentriMo and PASTAA, because they are among the most used methods (McLeay and Bailey, 2010).

CentriMo (Bailey and Machanick, 2012) was designed for the analysis of ChIP-seq data and prioritizes motifs that are found in the middle of peak regions, by using a binomial test of motif occurrence in the center compared to border regions in the sequences.

PASTAA (Roiser et al., 2009) is a tool that uses not only the TF-associated sequences to link a motif but also biological information.
3.2.1 Results using HOCOMOCO motifs as input

We run MASSIF for all variants shown in Table 1 on four sequence datasets differing in the length (100 bp, 300 bp, 500 bp and 700 bp), and evaluate the performance with the clustering evaluation as explained previously. The results are shown in Figure 4, where (a) shows exemplary the PR-Curve for all used variants for sequence length 500 bp and (b) the PR-AUCs for all variants for the different sequence lengths. To get a first clue how well MASSIF and CentriMo perform, we run them without any modifications. We observe that the PR-AUC of PASTAA is highest ($p = 0.310$) for the shortest sequence length and drops for longer ones. On the other hand, we see the opposite effect for the PR-AUC of CentriMo. The lowest PR-AUC ($p = 0.373$) is observed for a sequence length of 100 bp, and the performance is improved for longer sequences e.g. a PR-AUC of 0.382 is achieved for a sequence length of 300 bp.

Next, we identified that the meta-analysis i.e. combining Pastaa and Centrimo within Fisher’s method, called CP, leads to an improvement in PR-AUC. The PR-AUC of this variant is similar compared to the PR-AUC of CentriMo (expect sequence length 100 bp), whereas an improvement to the PR-AUC of PASTAA is observed. In general, the performance of CP is more stable under varying sequence length compared to the results of CentriMo or PASTAA when used individually.

Domain score used as meta-analysis

To test if we can further improve the PR-AUC of CP, we add the P-values of the domain scores to the meta-analysis. We refer to this variant as MCP, which results in a clear improvement of the PR-AUC compared to CP. Especially, for the sequence length 100 bp the increase of correctly linked motifs is substantial. The average improvement of the PR-AUC of MCP over CP is around 0.142 for all sequence lengths.

Domain score used as filtering

Next, we test whether the domain score used as a filter leads to an improved PR-AUC. Therefore, we evaluate the results of PASTAA and CentriMo on the reduced motif set, termed M_M and M_C separately. All motifs with $p > 0.001$ are excluded. Interestingly, these variants improve many analysis. For sequence length 100 bp the PR-AUC of M_M is 0.048 lower than the PR-AUC of MCP. On average over all sequence lengths the PR-AUC for M_C is compared to CentriMo improves by around 0.204 and M_P compared to PASTAA by around 0.324. Still, both used tools show varying performance with the sequence length. For instance, the PR-AUC of M_P drops by around 0.104 if we increase the sequence length from 100 bp to 700 bp.

Finally, we combine the variants M_P and M_C within the meta-analysis, and refer to it as M_{CP}. Compared to M_C the performance is similar except, for the shortest sequence length, where we observe an increase of the PR-AUC of 0.105. For M_P the largest improvement is observed for longer sequences. Additionally, differences in the PR-AUC for varying sequence lengths are small compared to the meta-analysis or CentriMo and PASTAA. We observe the stable PR-AUC over all sequences for M_{CP}, but for longer sequences the PR-AUC of M_C is slightly higher. We conclude that adding the domain score leads to a substantial improvement for both methods with a slight improvement of the filter-based method over meta-analysis.

3.2.2 Results using de novo motifs as input

As an alternative to the HOCOMOCO motifs, we investigate how de novo motifs affect the performance of MASSIF. To determine de novo motifs on the ENCODE ChIP-seq datasets, we applied a tool named GimmeMotifs (van Heeringen and Veenstra, 2011) on sequences length 300 bp. We use this method for the following reasons: It identifies de novo motifs for ChIP-seq datasets in appropriate time and combines several de novo motif discovery tools within one method (used tools: MDmodule, MEME, Weeder, MotifSampler, trawler, Improbior, BioProspector, Posmo, ChiPmunk, AMD, Homer and XXmotif). Additionally, GimmeMotifs clusters the resulting motifs to decrease the number of redundant ones. The algorithm was able to identify de novo motifs for 46 ChIP-seq datasets. We applied MASSIF on these datasets using the identified de novo motifs as input motifs.

To evaluate how accurately the different variations perform, we followed the same strategy as before, and determined how many motifs are correctly linked to a TF. To determine which de novo motif is the correct one, we calculated the similarity for each motif to the known motif of the TF of the current ChIP-seq dataset as outlined in Section 2.6. Figure 5 shows the PR curve for the different variants. In addition to the variants used for MASSIF with HOCOMOCO motifs, the black curve represents the performance of GimmeMotifs, which sorts the de novo motifs according to their internal determined enrichment value.

We observe that in general the tendency of the results of MASSIF using de novo motifs as input is similar to the ones shown in Figure 4. The variants which use the domain score as a filter again...
In the present study, we analyzed how DBDs of TFs can be used to improve the performance of existing approaches, that link motifs to TFs relying on TF-associated sequences. Our tool MASSIF is based on the idea that a correctly linked motif and a TF of interest are associated with a similar DBD. However motifs are usually not associated with an interest are associated to the same DBD. This measure, called the HOOCOMOCO database. In particular, we want to investigate for which DBDs using the domain score is helpful. In Figure 4c, the number of motifs that are incorrectly linked to a TF per DBD is shown. The black bars represent the background, which illustrates the number of TFs of the input ChIP-seq dataset per DBD. If we compare the number of motifs that are incorrectly linked to a TF of the different variants, we notice several interesting points.

First, in all cases CP is able to be at least as good as the performances of CentriMo or PASTAA. For four DBDs ‘Basic leucine zipper factors’, ‘Basic helix-loop-helix factors’, ‘Tryptophan cluster factors’ and ‘C2H2 zinc finger factors’ the performance of CP achieves a better result than CentriMo or PASTAA alone. Interestingly, in two cases, namely ‘Other C4 zinc-type factors’ and ‘nuclear receptors with C4 zinc finger’, the performance of CP is poorer compared to the best used tool, that links motifs to TFs.

The performance for MCP is in most cases at least as good as the best considered variant or improves the performance. For the DBD, ‘C2H2 zinc finger factors’, MCP links two motifs incorrectly, which are correct linked from CP. In addition, we observe that MCP leads to an improvement of seven DBDs in such a way that all linked motifs are correctly associated, whereas without using the domain score at least PASTAA or CentriMo linked one motif incorrectly. Interestingly, five out of these seven DBDs contain only up to five motifs in the DBD collection, whereas the other two contain 11 and 36 motifs (data shown in the Supplementary Section S4). These findings suggest that for DBDs, which contain less motifs, the domain score strongly influences performance, which is consistent with the observation of Figure 3. There, we notice that it is easier for DBDs, which containing less motifs, to distinguish if a motif is correctly associated to a DBD or a FP one.

We conclude that, the reduced motif set which results from the filtering is much more specific, and contains fewer FPs for a TF associated to a DBD containing less motifs compared to a TF linked to a DBD, which contains more motifs. This can lead to better results for tools, that link motifs to TFs based on TF-associated sequences.

4 Discussion

In the present study, we analyzed how DBDs of TFs can be used to improve the performance of existing approaches, that link motifs to TFs relying on TF-associated sequences.
domain score, can either be used in a meta-analysis or as a filter to reduce the set of input motifs. Using MASSIF improves the PR-AUC of the tools CentriMo and PASTAA significantly. For shorter sequences, the best results are observed for the variant where we apply PASTAA and CentriMo on the reduced motif set, and combine the results with Fisher’s method and for longer sequences M_C is the best variant.

Since we use a similarity measure based on PFMs, MASSIFs’ domain score can be applied to improve the performance of any tool that links motifs to TFs if it is based on motifs in a matrix representation. More complex representations of DNA motifs could also be included if a suitable similarity measure exists. Even if a tool does not provide a P-value as part of its analysis, our domain score can be used as a filter to improve results. The only additional information MASSIF requires in comparison to most of the tools that link motifs to TFs based on TF-associated sequences, is the DBD of the TF of interest. It is practicable to determine the DBD of a TF even if the DBD is not listed in a protein database like Uniprot by predicting it using protein domain profiles (El-Gebali et al., 2019). However, in case this is not possible or if the domain type is not included in our current DBD collection, our current method cannot be used to improve the result.

To demonstrate our approach in a realistic setting, we applied it to 102 human sequence sets resulting from ChIP-seq experiments. The TFs and the TF-associated sequences considered had diverse characteristic. As a motif input set, we used either all motifs available in the motif database HOOCOMOCO or de novo motifs for evaluation purposes. In practice, any motif set can be used, from another motif database, or experimentally derived or de novo motifs.

In our experiments, we investigated sequence sets with differing length, which illustrated that our approach produces stable results for all lengths. This is important, as peak length may vary with experiment quality and the used peak caller.

The advantage of using the domain scores in a meta-analysis is that no threshold has to be selected. However, using Fisher’s method might not be the optimal statistical test to combine the domain score with the P-values of tools that link motifs to TFs based on TF-associated sequences. The smallest possible P-value of the domain score using default parameters is 10^{-3}, since the corresponding distribution is based on 100,000 random motifs. Compared to the smallest possible P-values of CentriMo and PASTAA, this P-value is rather big. Fisher’s method is more sensitive to smaller P-values (Heard and Rubin-Delanchy, 2018). Thus, depending on the resolution, this kind of approach may favor P-values from either CentriMo or PASTAA. On the other hand, if we use the domain score as a filter and combine the results of PASTAA and CentriMo, this bias is less problematic, as the P-values of both tools are in the same range. This could possibly explain why using the domain score as a filter achieves better PR-AUC than using the domain score within Fisher’s method. However, the drawback of the filter-based approach is the need to pick a P-value threshold. We selected a value between the two extremes by picking the P-value as 0.001, which may be further improved.

The idea to combine two or more tools, has been applied in the context of de novo motif discovery tools or methods that link motifs to TFs based on TF-associated sequences, e.g., MotifViz (Fu et al., 2004), completeMOTIFS (Kurtippurathu et al., 2011) or MEME-ChIP (Ma et al., 2014). Nevertheless, none of these approaches combine the results of multiple tools in a statistical analysis.

Clearly, the observed results are also depending on the used tools, that link motifs to TFs based on TF-associated sequences. CentriMo, for instance uses flanking regions around the peaks to simulate a background distribution. Choosing too narrow peaks leads to worse results since the background is not represented. In contrast, PASTAA uses TRAP (Roider et al., 2007) to estimate a TF binding affinity for all sites in each sequence. The longer the sequences, the more sites are incorporated, which may lead to a less accurate affinity computation. As we observed, longer sequences decrease the number of correctly linked motifs.

It is difficult to decide whether known motifs or de novo motifs should be used as input. While using known motifs is faster and leads to a more reliable results, as the used motifs are known, the downside is that no new motifs can be identified. Hence, if the motif of the studied TF is not similar to any already known motif, this might be a problem. A solution can be to use de novo motifs as input. However, for roughly 50% of the datasets, GimmeMotifs was not able to identify significant motifs and for one-third of the remaining datasets all motifs were excluded by the filtering. In addition, the list of identified de novo motifs can include motifs of the co-factors of the TF of interest as well as motifs based on repetitive sequences. Further, depending on the quality of the dataset and the characteristics of the motif of the TF of interest, the used de novo motif discovery algorithm might not be able to find the true motif.

An opportunity to improve the performance of MASSIF could be to refine the DBD collection such that large DBD families like ‘Homo homology factors’ or ‘C2H2 zinc finger factors’ are split into multiple smaller ones. By using the domain score as a filter, we observed the tendency that for smaller DBD families a higher improvement is possible than for the larger ones (Fig. 4c). However, we decided against this additional splitting, because otherwise it could become difficult for the user to assign the TF of interest to the corresponding DBD.

In summary, we demonstrate that a commonly available and easy to access information of the TF, namely the DBD can be used as additional information to significantly improve the performance of tools that link motifs to TFs based on TF-associated sequences. MASSIF is freely available online at https://github.com/SchulzLab/MASSIF.

Funding

This work was supported by the DZHK (German Centre for Cardiovascular Research, 81Z0200101) and the DFG Clusters of Excellence on Multimodal Computing and Interaction [EXC248] and Cardio-Pulmonary Institute (CPI) [EXC 2026].

Conflict of Interest

None declared.

References

Bailey,T.L. and Machanick,P. (2012) Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res., 40, e128.

Bulyk,M.L. (2007) Protein binding microarrays for the characterization of DNA-protein interactions. Adv. Biochem. Eng. Biotechnol., 104, 65–83.

Chen,J. et al. (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res., 32, 1372–1381.

Deplancke,B. et al. (2016) The genetics of transcription factor DNA binding variation. Cell, 166, 538–544.

El-Gebali,S. et al. (2019) The Pfam protein families database in 2019. Nucleic Acids Res., 47, D427–D432.

Fisher,R.A. (1934) Statistical Methods for Research Workers, 4th edn. Oliver and Boyd, Edinburgh.

Fu,Y. et al. (2004) MotifViz: an analysis and visualization tool for motif discovery. Nucleic Acids Res., 32(Web Server), W420–W423.

Furey,T.S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet., 13, 840–852.

Heard,N.A. and Rubin-Delanchy,P. (2018) Choosing between methods of combining p-values. Biometrika, 105, 239–246.

Hume,M.A. et al. (2015) UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res., 43, D117–D122.

Janky,R. et al. (2014)iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Computational Biology,10, e1003731.

Kehl,T. et al. (2018) REGGAE: a novel approach for the identification of key transcriptional regulators. Bioinformatics, 34, 3503–3510.

Khan,A. et al. (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res., 46, D260–D266.
