On intersection indices of subvarieties in reductive groups

Valentina Kiritchenko

I will present an explicit formula for the intersection indices of the Chern classes (defined in [10]) of an arbitrary reductive group with hypersurfaces. This formula has the following applications. First, it allows to compute explicitly the Euler characteristic of complete intersections in reductive groups. Second, for any regular compactification of a reductive group, it computes the intersection indices of the Chern classes of the compactification with hypersurfaces. The formula is similar to the Brion–Kazarnovskii formula for the intersection indices of hypersurfaces in reductive groups. The proof uses an algorithm of De Concini and Procesi for computing such intersection indices. In particular, it is shown that this algorithm produces the Brion–Kazarnovskii formula.

1 Introduction

Let G be a connected complex reductive group of dimension n, and let $\pi : G \to GL(V)$ be a faithful representation of G. A generic hyperplane section H_π corresponding to π is the preimage $\pi^{-1}(H)$ of the intersection of $\pi(G)$ with a generic affine hyperplane $H \subset \text{End}(V)$. There is a nice explicit formula for the self-intersection index of H_π in G, and more generally, for the intersection index of n generic hyperplane sections corresponding to different representations (see Theorem 1.1 below) in terms of the weight polytopes of the representations. In this paper, I give a similar formula for the intersection indices of the Chern classes of G (defined in [10]) with generic hyperplane sections (see Theorem 1.2).

The Chern classes of G can be defined as the Chern classes of the logarithmic tangent bundle over a regular compactification of G (see Section 3 for a precise definition). Denote by k the rank of G, i.e. the dimension of a maximal torus in G. Only the first $(n - k)$ Chern classes are not trivial [10]. These Chern classes are elements of the ring of conditions of G, which was introduced by C.De Concini and C.Procesi (see [7]). They can be represented by subvarieties $S_1, \ldots, S_{n-k} \subset G$, where S_i has codimension i. All enumerative problems for G, such as the computation of the intersection index $S_i H_\pi^{n-i}$, make sense in the ring of conditions.

First, I recall the usual Brion–Kazarnovskii formula for the intersection indices of hyperplane sections. Choose a maximal torus $T \subset G$, and denote by L_T its character lattice. Choose also a Weyl chamber $D \subset L_T \otimes \mathbb{R}$. Denote by R^+ the set of all positive roots of G and denote by ρ the half of the sum of all positive roots of G. The inner product (\cdot, \cdot) on $L_T \otimes \mathbb{R}$ is given by
a nondegenerate symmetric bilinear form on the Lie algebra of G that is invariant under the adjoint action of G (such a form exists since G is reductive).

Theorem 1.1. [3, 9] If H_{π} is a hyperplane section corresponding to a representation π with the weight polytope $P_{\pi} \subset L_T \otimes \mathbb{R}$, then the self-intersection index of H_{π} in the ring of conditions is equal to

$$n! \int_{P_{\pi} \cap D} \prod_{\alpha \in R^+} \frac{(x, \alpha)^2}{(\rho, \alpha)^2} dx.$$

The measure dx on $L_T \otimes \mathbb{R}$ is normalized so that the covolume of L_T is 1.

This theorem was first proved by B.Kazarnovskii [9]. Later, M.Brion proved an analogous formula for arbitrary spherical varieties using a different method [3].

The integrand in this formula has the following interpretation. The direct sum $L_T \oplus L_T$ can be identified with the Picard group of the product $G/B \times G/B$ of two flag varieties. Here B is a Borel subgroup of G. Hence, to each lattice point $(\lambda_1, \lambda_2) \in L_T \oplus L_T$ one can assign the self-intersection index of the corresponding divisor in $G/B \times G/B$. The resulting function extends to the polynomial function $(n-k)!F$ on $(L_T \oplus L_T) \otimes \mathbb{R}$, where

$$F(x, y) = \prod_{\alpha \in R^+} \frac{(x, \alpha)(y, \alpha)}{(\rho, \alpha)^2}.$$

Note that the integrand is the restriction of F onto the diagonal $\{(\lambda, \lambda) : \lambda \in L_T \otimes \mathbb{R}\}$.

This interpretation leads to another proof of the Brion–Kazarnovskii formula (different from those of Kazarnovskii and Brion). Namely, take any regular compactification X of G that lies over the compactification X_{π} corresponding to the representation π (see Subsection 2.2). Then reduce the computation of H^n_{π} to the computation of the intersection indices of divisors in the closed orbits of X (see Section 4). All closed orbits are isomorphic to the product of two flag varieties. The precise algorithm for doing this was given by De Concini and Procesi [6] in the case, where X is a wonderful compactification of a symmetric space. Then E.Bifet extended this algorithm to all regular compactifications of symmetric spaces [2]. I will show that in the case, where a symmetric space is a reductive group, this algorithm actually produces the Brion–Kazarnovskii formula if one uses the weight polytope of π to keep track of all transformations.

Moreover, the De Concini–Procesi algorithm works not only for divisors. It can also be carried over to the Chern classes of G (which are, in general, not linear combinations of complete intersections). In particular, there is the following explicit formula for the intersection indices of the Chern classes of G with hyperplane sections. Assign to each lattice point $(\lambda_1, \lambda_2) \in L_T \oplus L_T$ the intersection index of the i-th Chern class of the tangent bundle over $G/B \times G/B$ with the divisor $D(\lambda_1, \lambda_2)$ corresponding to (λ_1, λ_2), that is the number $c_i(G/B \times G/B)D^{n-k-i}(\lambda_1, \lambda_2)$. Extend this function to the polynomial function on $(L_T \oplus L_T) \otimes \mathbb{R}$. Since the Chern classes of G/B are known the resulting function can be easily computed (see Section 4). The final formula is as follows.
Let D be the differential operator (on functions on $(L_T \oplus L_T) \otimes \mathbb{R}$) given by the formula
$$D = \prod_{\alpha \in R^+} (1 + \partial_\alpha)(1 + \tilde{\partial}_\alpha),$$
where ∂_α and $\tilde{\partial}_\alpha$ are directional derivatives along the vectors $(\alpha, 0)$ and $(0, \alpha)$, respectively. Denote by $[D]_i$ the i-th degree term in D.

Theorem 1.2. If H_π is a generic hyperplane section corresponding to a representation π with the weight polytope $P_\pi \subset L_T \otimes \mathbb{R}$, then the intersection index of H^{n-i}_π with the i-th Chern class of G in the ring of conditions is equal to
$$\begin{equation}
(n - i)! \int_{P_\pi \cap D} [D]_i F(x, x) dx.
\end{equation}
$$
The measure dx on $L_T \otimes \mathbb{R}$ is normalized so that the covolume of L_T is 1.

Since in general, the Chern classes of G are not complete intersections, this extends computation of the intersection indices to a bigger part of the ring of conditions of G. Theorem 1.2 also completes some results of [10]. Namely, the Chern classes S_1, \ldots, S_{n-k} were used there as the main ingredients in an adjunction formula for the topological Euler characteristic of complete intersections of hyperplane sections in G (see Theorem 1.1 in [10]). Theorem 1.2 in the present paper allows to make this formula explicit. E.g. if a complete intersection is just one hyperplane section H_π, then
$$\chi(H_\pi) = (-1)^{n-1} \int_{P_\pi \cap D} (n! - (n - 1)! [D]_1 + (n - 2)! [D]_2 - \ldots + k! [D]_{n-k}) F(x, x) dx.$$

There is also a formula for the Chern classes $c_i(X)$ of the tangent bundle over any regular compactification X of G in terms of S_1, \ldots, S_{n-k} (see Corollary 4.4 in [10]). Theorem 1.2 allows to compute explicitly the intersection index of $c_i(X)$ with a complete intersection of complementary dimension in X.

I am grateful to M.Brion, K.Kaveh, B.Kazarnovskii and A.Khovanskii for useful discussions.

2 Preliminaries

In this section, I recall some well-known facts which are used in the proof of Theorem 1.2. In Subsection 2.2 I define the regular compactification X of G associated with a representation π and describe the orbit structure of X in terms of the weight polytope of the representation. In Subsection 2.3 I will relate the Picard group of X to the space of virtual polytopes analogous to the weight polytope of π. The notion of analogous polytopes is discussed in Subsection 2.1. Then I recall a formula for the integral of a polynomial function over a simplex (Subsection 2.4), which is used to interpret the computation of intersection indices in terms of integrals over the weight polytope.
2.1 Polytopes

Let $P \subset \mathbb{R}^k$ be a convex polytope. Define the normal fan P^* of P. This is a fan in the dual space $(\mathbb{R}^k)^*$. To each face $F^i \subset P$ of dimension i there corresponds a cone F_i^* of dimension $(n-i)$ in P^* defined as follows. The cone F_i^* consists of all linear functionals in $(\mathbb{R}^k)^*$ whose maximum value on P is attained on the interior of the face F^i. In particular, to each facet of P there corresponds a one-dimensional cone, i.e. a ray, in P^*. If the dual space $(\mathbb{R}^k)^*$ is identified with \mathbb{R}^k by means of the Euclidean inner product, the ray corresponding to a facet is spanned by a normal vector to the facet.

Two convex polytopes are called analogous if they have the same normal fan. All polytopes analogous to a given polytope P form a semigroup S_P with respect to Minkowski sum. This semigroup is also endowed with the action of the multiplicative group $\mathbb{R}^{>0}$ (polytopes can be dilated). Hence, S_P can be regarded as a cone in the vector space V_P, where V_P is the minimal group containing S_P (i.e. the Grothendieck group of S_P). The elements of V_P are called virtual polytopes analogous to P.

We now introduce special coordinates in the vector space V_P. Let $\Gamma_1, \ldots, \Gamma_l$ be the facets of P, and let $\Gamma_1^*, \ldots, \Gamma_l^*$ be the corresponding rays in P^*. Choose a non-zero functional $h_i \in \Gamma_i^*$ in each ray. Call h_i a support function corresponding to the facet Γ_i. For any polytope Q analogous to P, denote by $h_i(Q)$ the maximal value of h_i on the polytope Q. For instance, if h_i is normalized so that its value on the external unit normal to the facet Γ_i is 1, then $h_i(P)$ is up to a sign the distance from the origin to the hyperplane that contains the facet Γ_i (the sign is positive if the origin and the polytope P are to the same side of this hyperplane, and negative otherwise). The numbers $h_1(Q), \ldots, h_l(Q)$ are called the support numbers of Q. Clearly, the polytope Q is uniquely defined by its support numbers. The coordinates $h_1(Q), \ldots, h_l(Q)$ can be extended to the space V_P, providing the isomorphism between V_P and the coordinate space \mathbb{R}^l.

In what follows, we will deal with integer polytopes, i.e. polytopes whose vertices belong to a given lattice $\mathbb{Z}^k \subset \mathbb{R}^k$. For such polytopes, the natural way to normalize the support functions is to require that $h_i(P)$ be equal to the integral distance from the origin to the hyperplane that contains the facet Γ_i. Suppose that a hyperplane H not passing through the origin is spanned by lattice vectors. Then the integral distance from the origin to the hyperplane H is the index in \mathbb{Z}^k of the subgroup spanned by $H \cap \mathbb{Z}^k$. To compute the integral distance one can apply a unimodular (with respect to the lattice \mathbb{Z}^k) linear transformation of \mathbb{R}^k so that H becomes parallel to a coordinate hyperplane. Then the integral distance is the usual Euclidean distance from the origin to this coordinate hyperplane.

We will also use the notion of simple polytopes. A polytope in \mathbb{R}^k is called simple if it is generic with respect to parallel translations of its facets. Namely, exactly k facets must meet at each vertex. This implies that any other face is also the transverse intersection of those facets that contain it.
2.2 Regular compactifications of reductive groups

With any representation \(\pi : G \to GL(V) \) one can associate the following compactification of \(\pi(G) \). Take the projectivization \(\mathbb{P}(\pi(G)) \) of \(\pi(G) \) (i.e. the set of all lines in \(\text{End}(V) \) passing through a point of \(\pi(G) \) and the origin), and then take its closure in \(\mathbb{P}(\text{End}(V)) \). We obtain a projective variety \(X_\pi \subset \mathbb{P}(\text{End}(V)) \) with a natural action of \(G \times G \) coming from the left and right action of \(\pi(G) \times \pi(G) \) on \(\text{End}(V) \). E.g. when \(G = (\mathbb{C}^*)^n \) is a complex torus, all projective toric varieties can be constructed in this way.

Assume that \(\mathbb{P}(\pi(G)) \) is isomorphic to \(G \). Consider all weights of the representation \(\pi \), i.e. all characters of the maximal torus \(T \) occurring in \(\pi \). Take their convex hull \(P_\pi \) in \(L_T \otimes \mathbb{R} \). Then it is easy to see that \(P_\pi \) is a polytope invariant under the action of the Weyl group of \(G \). It is called the \textit{weight polytope} of the representation \(\pi \). The polytope \(P_\pi \) contains information about the compactification \(X_\pi \).

Theorem 2.1. 1) ([12], Proposition 8) The subvariety \(X_\pi \) consists of a finite number of \(G \times G \)-orbits. These orbits are in one-to-one correspondence with the orbits of the Weyl group acting on the faces of the polytope \(P_\pi \). This correspondence preserves incidence relations. I.e. if \(F_1, F_2 \) are faces such that \(F_1 \subset F_2 \), then the orbit corresponding to \(F_1 \) is contained in the closure of the orbit corresponding to \(F_2 \).

2) Let \(\sigma \) be another representation of \(G \). The normalizations of subvarieties \(X_\pi \) and \(X_\sigma \) are isomorphic if and only if the normal fans corresponding to the polytopes \(X_\pi \) and \(X_\sigma \) coincide. If the first fan is a subdivision of the second, then there exists a \(G \times G \)-equivariant map from the normalization of \(X_\pi \) to \(X_\sigma \), and vice versa.

The second part of Theorem 2.1 follows from the general theory of spherical varieties (see [11], Theorem 5.1) combined with the description of compactifications \(X_\pi \) via colored fans (see [12], Sections 7, 8).

In what follows, we will only consider regular compactifications of \(G \). The simplest example of a regular compactification is the \textit{wonderful compactification} constructed by De Concini and Procesi. Suppose that the group \(G \) is of adjoint type, i.e. the center of \(G \) is trivial. Take any irreducible representation \(\pi \) with a strictly dominant highest weight. It is proved in [6] that the corresponding compactification \(X_\pi \) of the group \(G \) is always smooth and, hence, does not depend on the choice of a highest weight. Indeed, the normal fan of the weight polytope \(P_\pi \) coincides with the fan of the Weyl chambers and their faces, so the second part of Theorem 2.1 applies. This compactification is called the \textit{wonderful compactification} and is denoted by \(X_{\text{can}} \).

Other regular compactifications of \(G \) can be characterized as follows. The normalization \(X \) of \(X_\pi \) is regular if first, it is smooth, and second, there is a \((G \times G) \)-equivariant map from \(X \) to \(X_{\text{can}} \). These two conditions can be reformulated in terms of the weight polytope \(P_\pi \). Namely, the first condition implies that \(P_\pi \) is \textit{integ}rally simple (see [12] Theorem 9), i.e. it is simple and the edges meeting at each vertex form a basis of \(L_T \). The second condition implies that none of the vertices of \(P_\pi \) lies on the walls of the Weyl chambers, i.e. the normal fan of \(P_\pi \) subdivides the fan of the Weyl chambers and their faces.
A regular compactification X has the following nice properties (see [4] for details), which we will use in the sequel. The boundary divisor $X \setminus G$ is a divisor with normal crossings. The $G \times G$–orbits of codimension s correspond to the faces of P_π of codimension s and have rank $(k - s)$. Recall that each face $F \subset P_\pi$ is the transverse intersection of several facets of P_π (since P_π is simple). Then the closure of the orbit corresponding to F is the transverse intersection of the closures of the codimension one orbits that correspond to these facets. Each closed orbit of X (such orbits correspond to the vertices of P_π) is isomorphic to the product of two flag varieties $G/B \times G/B$.

2.3 Picard groups of compactifications

Let X be the normalization of the compactification X_π of G. We assume that X is regular, and hence smooth. Then the second cohomology group $H^2(X)$ is isomorphic to the Picard group of X (see [2]). Denote by $V(\pi)$ the group of all integer virtual polytopes analogous to the weight polytope P_π and invariant under the action of the Weyl group. There is a description of the Picard group of a regular complete symmetric space due to Bifet (see [2], Theorem 2.4, see also [3], Proposition 3.2). In our case, this description can be reformulated as follows (such a reformulation is well-known in the toric case, and in the reductive case it was suggested by K.Kiumars). The Picard group $\text{Pic}(X)$ of X is canonically isomorphic to the quotient group of $V(\pi)$ modulo parallel translations. In particular, if G is semisimple, then $\text{Pic}(X) = V(\pi)$ (the only parallel translation taking a W–invariant polytope to a W–invariant polytope is the trivial one). The isomorphism takes the hyperplane section corresponding to a representation σ to the weight polytope of σ and extends to the other divisors by linearity. Let us identify divisors in X with the corresponding polytopes using this isomorphism.

The variety X has l distinguished boundary divisors O_1, \ldots, O_l, which are the closures of codimension one orbits. Let us describe the corresponding virtual polytopes. Choose l facets $\Gamma_1, \ldots, \Gamma_l$ of P_π so that each orbit of the Weyl group acting on the facets of P_π contains exactly one Γ_i. E.g. take all facets that intersect the fundamental Weyl chamber. Choose the support functions h_1, \ldots, h_l corresponding to these facets so that $h_i(P_\sigma)$ is equal to the integral distance (with respect to the weight lattice L_T) from the origin to the facet Γ_i.

Lemma 2.2. The closure \overline{O}_i of codimension one orbit corresponds to the virtual polytope whose i-th support number is 1 and the other support numbers are 0.

Proof. Let σ be any representation of G whose weight polytope P is analogous to P_π. Then X is isomorphic to the normalization of the compactification X_σ. Thus a generic linear functional f on X_σ can also be regarded as a rational function on X. Let us find the zero and the pole divisors of f. The zero divisor is the divisor corresponding to the weight polytope of σ. The pole divisor is a linear combination of the divisors $\overline{O}_1, \ldots, \overline{O}_l$. It is not hard to show that the coefficients are the support numbers $h_1(P_\sigma), \ldots, h_l(P_\sigma)$, i.e. the integral distances from the origin to the facets of P_σ corresponding to $\Gamma_1, \ldots, \Gamma_l$. Indeed, for toric varieties, this statement is well-known (see [8], Section 3.4). In particular, this holds for the closure \overline{T} in X of the
maximal torus $T \subset G$. Hence, this also holds for X, and the divisor D of a hyperplane section corresponding to σ can be written as

$$D = h_1(P_\sigma)\overline{G}_1 + \ldots + h_l(P_\sigma)\overline{G}_l.$$

It follows that $h_i(\overline{G}_j) = 0$, unless $i = j$. \hfill \Box

Another useful collection of divisors consists of the closures in X of codimension one Bruhat cells in G. Denote these divisors by D_1, \ldots, D_k. They can also be described as hyperplane sections corresponding to the irreducible representations of G with fundamental highest weights $\omega_1, \ldots, \omega_k$, respectively. Then to each dominant weight $\lambda = m_1\omega_1 + \ldots + m_k\omega_k$ there corresponds the weight divisor $D(\lambda) = m_1D_1 + \ldots + m_kD_k$. The polytope of this divisor is the weight polytope P_λ of the irreducible representation with the highest weight λ. Note that λ is the only vertex of P_λ inside the fundamental Weyl chamber. Hence, it belongs to all facets of P_λ corresponding to $\Gamma_1, \ldots, \Gamma_l$ (e.g. some of the facets might degenerate to the vertex λ). This implies the following lemma.

Lemma 2.3. Let $D(\lambda)$ be the weight divisor corresponding to a weight $\lambda \in L_T$ and let P_λ be its polytope. Then $h_i(P_\lambda) = h_i(\lambda)$ for any $i = 1, \ldots, l$.

Combination of these two lemmas leads to the following result.

Corollary 2.4. Let D be the divisor on X corresponding to a polytope P. We assume that P is analogous to P_π and identify the respective facets. Then for any face $F \subset P$ of codimension s that intersects the fundamental Weyl chamber D and for any point $\lambda \in F \cap D$, the divisor D can be written uniquely as a linear combination of $D(\lambda)$ and of boundary divisors O_i such that the corresponding facets Γ_i do not contain F. Namely, if $F = \Gamma_{i_1} \cap \ldots \cap \Gamma_{i_s}$, then

$$D = D(\lambda) + \sum_{j \in \{1, \ldots, l\} \setminus \{i_1, \ldots, i_s\}} [h_j(P) - h_j(\lambda)]O_j.$$

2.4 Integration of polynomials

Let $f(x_1, \ldots, x_k)$ be a homogeneous polynomial function of degree d defined on a real affine space \mathbb{R}^k with coordinates (x_1, \ldots, x_k). Below I recall a useful formula expressing the integral of f over a simplex in \mathbb{R}^k in terms of the polarization of f. Recall that the polarization of f is the unique symmetric d-linear form f_{pol} on \mathbb{R}^k such that the restriction of f_{pol} to the diagonal coincides with f. One can define f_{pol} explicitly as follows:

$$f_{pol}(v_1, \ldots, v_d) = \frac{1}{d!} \partial_{v_1} \ldots \partial_{v_d} f,$$

where ∂_{v_i} is the directional derivative along the vector v_i.

Let $\Delta \subset \mathbb{R}^k$ be a k-dimensional simplex with vertices a_0, \ldots, a_k and let $dx = dx_1 \wedge dx_2 \wedge \ldots \wedge dx_k$ be the standard measure on \mathbb{R}^k.

7
Proposition 2.5. \[\text{Let } f_{\text{pol}} \text{ be the polarization of } f. \text{ It can be regarded as a linear function on the } d\text{-th symmetric power of } V. \text{ Then the average value of } f \text{ on the simplex } \Delta \text{ coincides with the average value of } f_{\text{pol}} \text{ on all symmetric products of } d \text{ vectors from the set } \{a_0, \ldots, a_k\}:\]

\[
\frac{1}{\text{Vol}(\Delta)} \int_{\Delta} f(x) dx = \frac{1}{\binom{d+k}{k}} \sum_{i_0 + \ldots + i_k = d} f_{\text{pol}}(\underbrace{a_0, \ldots, a_0}_{i_0}, \ldots, \underbrace{a_k, \ldots, a_k}_{i_k}).
\]

3 Chern classes

In this section, I recall the definition of the Chern classes of spherical homogeneous spaces (see [10] for more details). In the sequel, only Chern classes of \(G \times G\)-orbits in regular compactifications of \(G\) will be used. For these Chern classes, I prove a vanishing result for their intersection indices with certain weight divisors in regular compactifications. This result will be important in Section 4 when applying the De Concini–Procesi algorithm to the Chern classes of \(G\).

Let \(G/H\) be a spherical homogeneous space under \(G\). Denote by \(\mathfrak{g}\) and \(\mathfrak{h}\) the Lie algebras of \(G\) and \(H\), respectively, and denote by \(m\) the dimension of \(\mathfrak{h}\). Define the Demazure map \(p\) from \(G/H\) to the Grassmannian \(G(m, \mathfrak{g})\) of \(m\)-dimensional subspaces in \(\mathfrak{g}\) as follows:

\[p : G/H \to G(m, \mathfrak{g}); \quad p : gH \mapsto g\mathfrak{h}g^{-1}.
\]

Let \(C_i \subset G(m, \mathfrak{g})\) be the Schubert cycle corresponding to a generic subspace \(\Lambda_i \subset \mathfrak{g}\) of codimension \(m + i - 1\), i.e. \(C_i = \{\Lambda \in G(m, \mathfrak{g}) : \dim(\Lambda \cap \Lambda_i) \geq 1\}\). Then the \(i\)-th Chern class \(S_i(G/H)\) of \(G/H\) is the preimage of \(C_i\) under the map \(p\):

\[S_i(G/H) = p^{-1}(C_i).
\]

The class of \(S_i(G/H)\) in the ring of conditions of \(G/H\) is the same for all generic \(C_i\) [10]. It is related to the Chern classes of the tangent bundles over regular compactifications of \(G\) [5, 10]. Namely, if \(X\) is a regular compactification of \(G/H\), then the closure of \(S_i(G/H)\) in \(X\) is the \(i\)-th Chern class of the logarithmic tangent bundle over \(X\) that corresponds to the divisor \(X \setminus (G/H)\). This vector bundle is generated by all vector fields on \(X\) that are tangent to \(G\)-orbits in \(X\). In what follows, this bundle will be called the Demazure bundle of \(X\).

Let \(X = G/H\) and \(Y = G/P\) be two spherical homogeneous spaces under \(G\). Suppose that \(H\) is a subgroup of \(P\). Consider the \(G\)-equivariant map

\[p : X \to Y; \quad p : gH \mapsto gP.
\]

Let \(S_i(X)\) the \(i\)-th Chern class of \(X\). In general, it is not true that \(S_i(X)\) is the inverse image under the map \(p\) of a subset in \(Y\). However, the intersection of \(S_i(X)\) (when it is nonempty) with a fiber of \(p\) has dimension at least \(\text{rk}(P) - \text{rk}(H)\).

Example. In what follows, we will mostly deal with the case, where \(X\) and \(Y\) are spherical homogeneous spaces under the doubled group \(G \times G\). Namely, \(X\) is a \(G \times G\)-orbit of a regular
Lemma 3.1. For a generic $S_i(X)$, there exists an open dense subset of $S_i(X)$ such that for any element x of this subset the intersection of the fiber xP with $S_i(X)$ has dimension greater than or equal to the $\text{rk}(P) - \text{rk}(H)$. In particular, the dimension of $p(S_i(X))$ satisfies the inequality
\[
\dim p(S_i(X)) \leq \dim S_i(X) - (\text{rk}(P) - \text{rk}(H)).
\]

Proof. Choose a generic vector space $\Lambda \subset \mathfrak{g}$ of codimension $\dim H + i - 1$. Denote by \mathfrak{h} and \mathfrak{p} the Lie algebras of H and P respectively. Then by definition $S_i(X)$ consists of all cosets gH such that $g\mathfrak{h}g^{-1}$ has a nontrivial intersection with Λ, or equivalently $\mathfrak{h} \cap g^{-1}\Lambda g$ is nontrivial.

Let gH be any element of $S_i(X)$. Estimate the dimension of the intersection of $S_i(X)$ with the fiber gP of the map p. Note that for all g from a dense open subset of $S_i(X)$, the intersection $\mathfrak{h} \cap g^{-1}\Lambda g$ contains an element v that is regular in \mathfrak{h}. Denote by C the centralizer in P of $v \in \mathfrak{h} \subset \mathfrak{p}$. Then $\dim(C \cap H) = \text{rk}(H)$ while C has dimension at least $\text{rk}(P)$. Note that for any $c \in C$ the coset gcH still belongs to $S_i(X)$ since $c^{-1}g^{-1}\Lambda gc$ contains $c^{-1}vc = v$. Hence, $S_i(X) \cap gP$ contains a set gCH of dimension at least $\text{rk}(P) - \text{rk}(H)$. \hfill \Box

Lemma 3.1 is crucial for proving the following two vanishing results, which extend Proposition 9.1 from [6] and rely on the same ideas. Let X be a regular compactification of G, and let $p: X \to X_{\text{can}}$ be its equivariant projection to the wonderful compactification. Denote by c_1, \ldots, c_{n-k} the Chern classes of the Demazure vector bundle over X.

Lemma 3.2. Let \mathcal{O} be a $G \times G$–orbit in X of codimension $s < k$, and $\overline{\mathcal{O}} \subset X$ its closure. Suppose that the image $p(\mathcal{O})$ under the map $p : X \to X_{\text{can}}$ coincides with the closed orbit of X_{can}. In terms of polytopes, this means that the face corresponding to \mathcal{O} does not intersect the walls of the Weyl chambers.

Let λ be any weight of G, and $D(\lambda)$ the corresponding weight divisor. Then the homology class $c_iD^{n-i-s}(\lambda)$ vanishes on $\overline{\mathcal{O}}$, i.e. the following intersection index is zero:
\[
c_iD(\lambda)^{n-i-s} = 0.
\]

Proof. First of all, the intersection product $c_i \cdot \overline{\mathcal{O}}$ is the i-th Chern class of the Demazure bundle over $\overline{\mathcal{O}}$ (see [11], Proposition 2.4.2). Hence, it can be realized as the closure in $\overline{\mathcal{O}}$ of the i-th Chern class $S_i(\mathcal{O})$ of the spherical homogeneous space \mathcal{O}. The computation of the intersection index $c_i\overline{\mathcal{O}}D(\lambda)^{n-i-s}$ in X thus reduces to the computation of the intersection index $S_i(\mathcal{O})D(\lambda)^{n-i-s}$ in $\overline{\mathcal{O}}$. The latter is equal to the intersection index $S_i(\mathcal{O})D(\lambda)^{n-i-s}$ in the ring of conditions of \mathcal{O} since $D(\lambda)$ and $S_i(\mathcal{O})$ have proper intersections with the boundary $\overline{\mathcal{O}} \setminus \mathcal{O}$.

To compute $S_i(\mathcal{O})D(\lambda)^{n-i-s}$ we use the restriction of the map $p : X \to X_{\text{can}}$ to $\overline{\mathcal{O}}$. By the hypothesis the image $p(\overline{\mathcal{O}})$ is the closed orbit F in X_{can}, so it is isomorphic to the product $G/B \times G/B$ of two flag varieties. Then the divisor $D(\lambda)$ restricted to $\overline{\mathcal{O}}$ is the inverse image
under the map p of the divisor $D(\lambda, \lambda)$ in F. Indeed, $D(\lambda) = p^{-1}(\tilde{D}(\lambda))$, where $\tilde{D}(\lambda)$ is the weight divisor in X_{can} corresponding to λ. It is easy to check that $\tilde{D}(\lambda) \cap F = D(\lambda, \lambda)$ (see Proposition 8.1 in [3]).

Hence, all the intersection points in $S_i(\mathcal{O})pD(\lambda)^{n-i-s}$ are contained in the preimage of $p(S_i(\mathcal{O})).D(\lambda, \lambda)^{n-i-s}$. But the latter is empty. Indeed, since \mathcal{O} has positive rank and F has zero rank, Lemma 3.1 implies that

$$\dim p(S_i(\mathcal{O})) < \dim S_i(\mathcal{O}) = n - i - s.$$

It remains to deal with the orbits in X whose image under the map p is not the closed orbit in X_{can}. In this case, the face corresponding to such an orbit intersects the walls of the Weyl chambers, and hence, it is orthogonal to some of the fundamental weights $\omega_1, \ldots, \omega_k$. Note that the codimension one orbits $\mathcal{O}_1, \ldots, \mathcal{O}_k$ in X_{can} are in one-to-one correspondence with the fundamental weights $\omega_1, \ldots, \omega_k$. Namely, the facet corresponding to \mathcal{O}_i is orthogonal to ω_i. Let $\mathcal{O}_1, \ldots, \mathcal{O}_k$ be the closures in X_{can} of $\mathcal{O}_1, \ldots, \mathcal{O}_k$, respectively.

Lemma 3.3. Let \mathcal{O} be a $G \times G$-orbit in X of codimension $s < k$. Suppose that the image $p(\mathcal{O})$ under the map $p : X \to X_{can}$ is not closed and lies in the intersection $\mathcal{O}_{i_1} \cap \ldots \cap \mathcal{O}_{i_s}$. In terms of polytopes, this means that the face corresponding to \mathcal{O} is orthogonal to the weights $\omega_{i_1}, \ldots, \omega_{i_s}$.

Let λ be any linear combination of the weights $\omega_{i_1}, \ldots, \omega_{i_s}$. Then

$$c_i D(\lambda)^{n-i-s} = 0.$$

Proof. We use the $G \times G$-equivariant map r from $\mathcal{O}_{i_1} \cap \ldots \cap \mathcal{O}_{i_s}$ to a partial flag variety $G/P \times G/P$ constructed in [6] (see [6] Lemma 5.1 for details). Consider the compactification X_{i_1, \ldots, i_s} of G corresponding to the irreducible representation π_{i_1, \ldots, i_s} whose highest weight lies strictly inside the cone spanned by $\omega_{i_1}, \ldots, \omega_{i_s}$. This compactification has a unique closed orbit $G/P \times G/P$, where $P \subset G$ is the stabilizer of the highest weight vector in the representation π_{i_1, \ldots, i_s}. Clearly, the fan of the Weyl chambers and their faces subdivides the normal fan of the weight polytope of π_{i_1, \ldots, i_s}. Hence, by Theorem 2.1 there is an equivariant map $r : X_{can} \to X_{i_1, \ldots, i_s}$. This map takes $\mathcal{O}_{i_1} \cap \ldots \cap \mathcal{O}_{i_s}$ to the closed orbit $G/P \times G/P$.

The composition rp maps the orbit \mathcal{O} to the closed orbit $G/P \times G/P$ of X_{i_1, \ldots, i_s}. It is easy to show that the divisor $D(\lambda)$ restricted to \mathcal{O} is the preimage of the divisor $D(\lambda, \lambda) \subset G/P \times G/P$ under this map (see [6] Section 8.1). Now repeat the arguments of the proof of Lemma 3.2.

These two lemmas imply the following vanishing result.

Corollary 3.4. Let \mathcal{O} be any $G \times G$-orbit in X, and let F be the face of the polytope of X that corresponds to \mathcal{O}. The intersection index

$$c_i D(\lambda) \cdots D(\lambda_{n-i-s})\overline{\mathcal{O}}$$

10
vanishes in the cohomology ring of X in the following two cases:

1) The face F does not intersect the walls of the Weyl chambers. Then weights $\lambda_1, \ldots, \lambda_{n-i-s}$ are any weights of G.

2) The face F intersects a wall of the Weyl chambers and weights $\lambda_1, \ldots, \lambda_{n-i-s}$ are orthogonal to F (with respect to the inner product (\cdot, \cdot) on $L_T \otimes \mathbb{R}$ defined in the Introduction).

4 Proof of Theorem 1.2

We use notation of Subsections 2.2 and 2.3. Let X be any regular compactification lying over the compactification X_π. Then the closure $\overline{H_\pi}$ of H_π in X has proper intersections with all $G \times G$-orbits in X, and thus $S_i H_\pi^{n-i}$ coincides with the intersection index $\overline{S_i H_\pi^{n-i}}$ in the cohomology ring of X.

Assume that X corresponds to a representation of G with the weight polytope P_0. Let us compute $\overline{S_i D^{n-i}}$ for a divisor D under the assumption that the polytope P corresponding to D is analogous to P_0. After we establish the formula of Theorem 1.2 for such divisors, it will automatically extend to the other divisors (in particular, for H_π) since any virtual polytope analogous to P_0 is a linear combination of polytopes analogous to P_0. Since X is regular, P_0 and hence P are simple.

All computations are carried in the cohomology ring of X. First, break D^{n-i} into monomials of the form $\overline{O_{i_1}} \cdots \overline{O_{i_k}} D(\lambda_1) \cdots D(\lambda_{n-i-k})$, where i_1, \ldots, i_k are distinct integers from 1 to l and $\lambda_1, \ldots, \lambda_{n-i-k}$ are weights. Then every such monomial can be computed explicitly, since the intersection $\overline{O_{i_1}} \cap \cdots \overline{O_{i_k}}$ is either empty or isomorphic to the product of two flag varieties.

Since we are going to intersect D^{n-i} with $\overline{S_i}$ we can ignore all monomials that are annihilated by $\overline{S_i}$. Recall that $\overline{S_i}$ is the i-th Chern class of the Demazure bundle over X. In particular, Corollary 3.4 implies that $\overline{S_i}$ annihilates the ideal $I \subset H^*(X)$ generated by the monomials of the form $D(\lambda_1) \cdots D(\lambda_{n-i-s})\overline{O}$ such that either the face of P corresponding to the codimension s orbit O does not intersect the walls of the Weyl chambers or, if it does, the weights $\lambda_1, \ldots, \lambda_{n-i-s}$ are orthogonal to this face.

To keep track of our calculations we use a subdivision of the polytope $P \cap D$ into simplices coming from the barycentric subdivision of P described below. For each face $F \subset P$ choose a point $\lambda_F \in F$ as follows. If F does not intersect the walls of the Weyl chamber D, then λ_F is any point in the interior of the face. Otherwise, choose λ_F so that the corresponding vector is orthogonal to the face F (in particular, λ_F will belong to the intersection of the face with a wall of D.) If $F = P$ take $\lambda_F = 0$.

![Figure 1:](image-url)
An s-flag F is the collection $\{F_1 \supset \ldots \supset F_s\}$ of $s \leq k$ nested faces of P such that each of them intersects D, and F_1 has codimension i in P. Denote by $\overline{\Omega}_F$ the closure in X of the orbit corresponding to the last face F_s, and by Δ_F the s-dimensional simplex with the vertices 0, $\lambda_{F_1}, \ldots, \lambda_{F_s}$. In particular, when $s = k$, the simplex Δ_F has full dimension and the orbit $\overline{\Omega}_F$ is closed. The polytope $D \cap P$ is the union of simplices Δ_F over all possible k–flags F.

Example. Take $G = PSL_3(\mathbb{C})$, and let $X = X_{can}$ be its wonderful compactification. Let divisor D be a hyperplane section corresponding to the irreducible representation with a strictly dominant highest weight λ. In this case, P is a hexagon symmetric under the action of the Weyl group with two edges Γ_1 and Γ_2 intersecting D. Then $\lambda_i = \lambda_{\Gamma_i} \in \Gamma_i$ for $i = 1, 2$ and $\Gamma_1 \cap \Gamma_2 = \lambda$. The subdivision of $P \cap D$ into simplices consists of two triangles Δ_1 and Δ_2 with the vertices $0, \lambda_1, \lambda$ and $0, \lambda_2, \lambda$, respectively (see Figure 1).

Lemma 4.1. Denote by $f_d(x_1, \ldots, x_k)$ the sum of all monomials of degree d in k variables x_1, \ldots, x_k. The following identity holds in the cohomology ring of X modulo the ideal I:

$$D^{n-i} \equiv k! \sum_F \text{Vol}(\Delta_F) f_{n-k-i}(D, D(\lambda_{F_1}), \ldots, D(\lambda_{F_{k-1}})) \overline{\Omega}_F \pmod{I},$$

where the sum is taken over all possible k–flags $F = \{F_1 \supset \ldots \supset F_k\}$. The volume form Vol is normalized so that the covolume of L_T is equal to 1.

Proof. We will prove the following more general statement for s-flags. Denote by $f_{d,s}(x_1, \ldots, x_s)$ the sum of all monomials of degree d in s variables.

Recall that $\Gamma_1, \ldots, \Gamma_l$ denote the facets of P that intersect the Weyl chamber D. An s-flag can be alternatively described by an ordered collection of facets $\Gamma_{i_1}, \ldots, \Gamma_{i_s}$ such that their intersection $\Gamma_{i_1} \cap \ldots \cap \Gamma_{i_s}$ has codimension s. Then $F_j = \Gamma_{i_s} \cap \ldots \cap \Gamma_{i_j}$. This is a one-to-one correspondence, since the polytope P is simple. Assign to each s-flag F the following number

$$c_F = h_{i_1}(P)[h_{i_2}(P) - h_{i_2}(\lambda_{F_1})] \ldots [h_{i_s}(P) - h_{i_s}(\lambda_{F_k})].$$

In particular, when $s = k$, i.e. F is just a vertex, the number c_F coincides with the volume of Δ_F times $k!$. Indeed, by a unimodular linear transformation of $L_T \otimes \mathbb{R}$ we can map the hyperplanes containing the facets $\Gamma_{i_1}, \ldots, \Gamma_{i_s}$ to the coordinate hyperplanes. Then $[h_{i_j}(P) - h_{i_j}(\lambda_{F_{j-1}})]$ is just the Euclidean distance from the vertex $\lambda_{F_{j-1}}$ of Δ_F to the hyperplane containing Γ_{i_j}. Note that to define volumes we do not use the inner product (\cdot, \cdot) on the lattice L_T defined in the introduction. We only use the lattice itself.

Then for any integer s such that $1 \leq s \leq k$ the following is true:

$$D^{n-i} \equiv \sum_F c_F f_{n-s-i,s}(D, D(\lambda_{F_1}), \ldots, D(\lambda_{F_{s-1}})) \overline{\Omega}_F \pmod{I},$$

where the sum is taken over all s–flags.

Prove by induction on s. We use the notations of Subsection 2.3. For $s = 1$, the statement coincides with the decomposition $D = h_1(P)\overline{\Omega}_1 + \ldots + h_l(P)\overline{\Omega}_l$ from Lemma 2.2.

12
Hence, after subtraction we can rewrite the difference as
\[(D - D(\lambda_{n,s}))f_{n-s-i,s}(D, D(\lambda_{F_1}), \ldots, D(\lambda_{F_{k-1}}))\overline{\mathcal{O}}_{\mathcal{F}}.
\] Since \(\lambda_s\) lies in the intersection of \(s\) facets \(\Gamma_{i_1}, \ldots, \Gamma_{i_s}\), Corollary 2.4 implies that
\[(D - D(\lambda_{n,s}))\overline{\mathcal{O}}_{\mathcal{F}} = \sum_{j \neq i_1, \ldots, i_k} [h_j(P) - h_j(\lambda_{F_s})] \overline{\mathcal{O}}_j \overline{\mathcal{O}}_{\mathcal{F}}.
\] Note that \(\overline{\mathcal{O}}_j \overline{\mathcal{O}}_{\mathcal{F}}\) is empty if and only if the intersection of \(\Gamma_j\) with \(\Gamma_{i_1} \cap \ldots \cap \Gamma_{i_s}\) is empty. Hence,
\[(D - D(\lambda_{n,s}))\overline{\mathcal{O}}_{\mathcal{F}} = \sum_{\mathcal{F}' \supset \Gamma_{i_1} \cap \ldots \cap \Gamma_{i_s}} [h_j(P) - h_j(\lambda_{F_s})] \overline{\mathcal{O}}_{\mathcal{F}},
\] where the sum is taken over all \((s+1)\)-flags \(\mathcal{F}'\) that extend \(\mathcal{F}\), i.e. \(\mathcal{F}' = \{F_1 \supset \ldots \supset F_s \supset F_s \cap \Gamma_j\}\).

It remains to compute the term
\[\overline{S}_i \cdot f_{n-k-i}(D, D(\lambda_{F_1}), \ldots, D(\lambda_{F_{k-1}}))\overline{\mathcal{O}}_{\mathcal{F}} \tag{2}\]
for each \(k\)-flag \(\mathcal{F}\). Suppose that the closed orbit \(\overline{\mathcal{O}}_{\mathcal{F}}\) is the intersection of \(k\) hypersurfaces \(\overline{\mathcal{O}}_{i_1}, \ldots, \overline{\mathcal{O}}_{i_k}\). Then for any other codimension 1 orbit \(\mathcal{O}_j\) (such that \(j \neq i_1, \ldots, i_k\)), the intersection \(\overline{\mathcal{O}}_{\mathcal{F}} \cap \overline{\mathcal{O}}_j\) is empty. Hence, \(D\) in (2) can be replaced by \(D(\lambda_{F_s})\) since
\[D = D(\lambda_{F_s}) + \sum_{j \neq i_1, \ldots, i_k} (h_j(P) - h_j(\lambda_{F_s})) \overline{\mathcal{O}}_j.
\] Note also that the evaluation of (2) reduces to the computation of intersection indices in \(\overline{\mathcal{O}}_{\mathcal{F}}\), which is the product of two flag varieties. We have that \(\overline{S}_i \cdot \overline{\mathcal{O}}_{\mathcal{F}} = c_i(\overline{\mathcal{O}}_{\mathcal{F}})\) and \(D(\lambda) \cdot \overline{\mathcal{O}}_{\mathcal{F}} = D(\lambda, \lambda)\). Here \(c_i(\overline{\mathcal{O}}_{\mathcal{F}})\) is the \(i\)-th Chern class of the tangent bundle over \(\overline{\mathcal{O}}_{\mathcal{F}}\). Hence,
\[\overline{S}_i f_{n-k-i}(D(\lambda_{F_s}), D(\lambda_{F_1}), \ldots, D(\lambda_{F_{k-1}}))\overline{\mathcal{O}}_{\mathcal{F}} = c_i(G/B \times G/B)f_{n-k-i}(D(\lambda_{F_s}, \lambda_{F_1}), \ldots, D(\lambda_{F_s}, \lambda_{F_{k-1}})). \tag{3}\]
The intersection product in the right hand side of this formula is taken in \(G/B \times G/B\).
The function $F_i(\lambda) = c_i(G/B \times G/B)D(\lambda, \lambda)^{n-k-i}$ can be expressed explicitly in terms of the function F defined in the Introduction, since the i-th Chern class of $G/B \times G/B$ is the term of degree i in the intersection product

$$\prod_{\alpha \in R^+} (1 + D(\alpha, 0))(1 + D(0, \alpha)).$$

One way to compute F_i is as follows. Let \mathbb{D} and $[\mathbb{D}]_i$ be the differential operators defined in the Introduction. Then

$$F_i(x) = (n - k - i)![\mathbb{D}]_i F(x, x).$$

This easily follows from the formula for the polarization mentioned in Subsection 2.4 and the fact that $D^{n-k}(\lambda, \lambda) = (n - k)!F(\lambda, \lambda)$.

We can now apply Proposition 2.5 to convert the sum (3) into the integral over the simplex Δ_F. Indeed, by definition of the function f_{n-k-i} we have that (3) can be rewritten as

$$\sum_{i_1 + \ldots + i_k = n-k-i} F_{i_{pol}}(\lambda_{F_1}, \ldots, \lambda_{F_i}, \ldots, \lambda_{F_k}).$$

This is equal to the integral

$$\binom{n-i}{k} \int_{\Delta_F} F_i(x)dx/\text{Vol}(\Delta_F)$$

by Proposition 2.5 applied to the simplex Δ_F (with the vertices 0, $\lambda_{F_1}, \ldots, \lambda_{F_k}$) and to the function $F_i(x)$. Combining this with Lemma 4.1 we get

$$\sum D^{n-i} = \frac{(n-i)!}{(n-k-i)!} \sum_{P \in \mathcal{D}} \int_{\Delta_F} F_i(x)dx = (n-i)! \int_{P \in \mathcal{D}} [\mathbb{D}]_i F(x, x)dx.$$

Note that when $i = 0$, we get the Brion–Kazarnovskii formula.

References

[1] Frédéric Bien and Michel Brion, Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), no. 1, 1–26

[2] Emili Bifet, On complete symmetric varieties, Adv. Math. 80 (1990), no. 2, 225–249

[3] Michel Brion, Groupe de Picard et nombres caracteristiques des varietes spheriques, Duke Math J. 58, No.2 (1989), 397-424

[4] Michel Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998), no. 1, 137–174

[5] Michel Brion, Vers une generalisation des espaces symetriques, J. Algebra 134 (1990), no. 1, 115–143
[6] C. De Concini and C. Procesi, *Complete symmetric varieties I*, Lect. Notes in Math. 996, Springer, 1983, 1–43

[7] C. De Concini and C. Procesi, *Complete symmetric varieties II* Intersection theory, Advanced Studies in Pure Mathematics 6 (1985), Algebraic groups and related topics, 481–513

[8] W. Fulton, *Introduction to toric varieties* Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993

[9] B.Ya. Kazarnovskii, *Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations*, 21, no. 4 (1987), 319–321

[10] Valentina Kiritchenko, *Chern classes of reductive groups and an adjunction formula*, http://arxiv.org/abs/math.AG/0411331

[11] Friedrich Knop, *The Luna-Vust theory of spherical embeddings*, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991

[12] D. Timashev, *Equivariant compactifications of reductive groups*, Sb. Math. 194 (2003), no. 3-4, 589–616