ON THE SELF-DUALITY OF RINGS OF INTEGERS IN TAME AND ABELIAN EXTENSIONS

CINDY (SIN YI) TSANG

Abstract. Let \(L/K \) be a tame and Galois extension of number fields with group \(G \). It is well-known that any ambiguous ideal in \(L \) is locally free over \(\mathcal{O}_K G \) (of rank one), and so it defines a class in the locally free class group of \(\mathcal{O}_K G \), where \(\mathcal{O}_K \) denotes the ring of integers of \(K \). In this paper, we shall study the relationship among the classes arising from the ring of integers \(\mathcal{O}_L \) of \(L \), the inverse different \(\mathcal{D}_{L/K}^{-1} \) of \(L/K \), and the square root of the inverse different \(A_{L/K} \) of \(L/K \) (if it exists), in the case that \(G \) is abelian. They are naturally related because \(A_{L/K}^2 = \mathcal{D}_{L/K}^{-1} = \mathcal{O}_L^* \), and \(A_{L/K} \) is special because \(A_{L/K} = A_{L/K}^* \), where \(* \) denotes dual with respect to the trace of \(L/K \).

Contents

1. Introduction .. 2
 1.1. Basic set-up and notation 3
 1.2. Statements of the main theorems 5
2. Comparison between \(R_{sd}(\mathcal{O}_K G) \) and \(A^t(\mathcal{O}_K G) \) 9
 2.1. Proof of Theorem 1.9 (b) 11
 2.2. Proof of Theorem 1.10 13
3. Comparison between \(R(\mathcal{O}_K G) \) and \(R_{sd}(\mathcal{O}_K G) \) 15
 3.1. Locally free class group 15
 3.2. McCulloh’s characterization 16
 3.3. Generalized Swan subgroups 18
 3.4. Preliminaries ... 21
 3.5. Proof of Theorem 1.12 22
 3.6. Proof of Theorem 1.13 24
4. Acknowledgments ... 25
References ... 26

Date: December 7, 2018.
Let L/K be a Galois extension of number fields with group G. There are two ambiguous ideals in L, namely ideals in L which are invariant under the action of G, whose Galois module structure has been studied extensively in the literature. The first is the ring of integers \mathcal{O}_L of L, the study of which is a classical problem; see [8]. The second is the square root $A_{L/K}$ (if it exists) of the inverse different ideal \mathfrak{D}_L^{-1} of L/K, the study of which was initiated by B. Erez in [6]. By Hilbert’s formula [20, Chapter IV, Proposition 4], this ideal $A_{L/K}$ exists when $|G|$ is odd, for example. Also, we note that $A_{L/K}$ is special because it is the unique ideal in L (if it exists) which is self-dual with respect to the trace $\text{Tr}_{L/K}$ of L/K.

It is natural to ask whether the Galois module structures of \mathcal{O}_L and $A_{L/K}$ coincide. More specifically, suppose that L/K is tame. Then, any ambiguous ideal \mathfrak{A} in L is locally free over $\mathcal{O}_K G$ of rank one by [26, Theorem 1]. Hence, it determines a class $[\mathfrak{A}]_{ZG}$ in $\text{Cl}(ZG)$ as well as a class $[\mathfrak{A}]$ in $\text{Cl}(\mathcal{O}_K G)$, where $\text{Cl}(-)$ denotes locally free class group. Provided that $A_{L/K}$ exists, we ask:

Question 1.1. Does $[O_L]_{ZG} = [A_{L/K}]_{ZG}$ hold in $\text{Cl}(ZG)$?

Question 1.2. Does $[O_L] = [A_{L/K}]$ hold in $\text{Cl}(\mathcal{O}_K G)$?

Since $A_{L/K}$ is self-dual with respect to $\text{Tr}_{L/K}$ and \mathfrak{D}_L^{-1} is the dual of \mathcal{O}_L with respect to $\text{Tr}_{L/K}$ by definition, we have that

$$[O_L]_{ZG} = [A_{L/K}]_{ZG} \text{ implies } [O_L]_{ZG} = [\mathfrak{D}_L^{-1}]_{ZG},$$

$$[O_L] = [A_{L/K}] \text{ implies } [O_L] = [\mathfrak{D}_L^{-1}].$$

In other words, for Questions 1.1 and 1.2 to admit an affirmative answer, the ideal \mathcal{O}_L is necessarily *stably self-dual* as a ZG-module and an $\mathcal{O}_K G$-module, respectively. It is then natural to also ask:

Question 1.3. Does $[O_L]_{ZG} = [\mathfrak{D}_L^{-1}]_{ZG}$ hold in $\text{Cl}(ZG)$?

Question 1.4. Does $[O_L] = [\mathfrak{D}_L^{-1}]$ hold in $\text{Cl}(\mathcal{O}_K G)$?

On the one hand, a theorem of M. J. Taylor [22] implies that Question 1.3 admits an affirmative answer; this fact was re-established by S. U. Chase [4].
Using tools from [4], L. Caputo and S. Vinatier showed in [3] that Question 1.1 also admits an affirmative answer as long as L/K is locally abelian.

On the other hand, both Questions 1.2 and 1.4 have never been considered in the literature. The main purpose of this paper is to show that for $K \neq \mathbb{Q}$, they both admit a negative answer in general; see Theorem 1.9 below.

1.1. Basic set-up and notation. Fix a number field K as well as a finite group G. Let us define

$$R(\mathcal{O}_K G) = \{[\mathcal{O}_L] : \text{tame } L/K \text{ with } \text{Gal}(L/K) \simeq G\},$$

$$R_{sd}(\mathcal{O}_K G) = \{[\mathcal{O}_L] : \text{tame } L/K \text{ with } \text{Gal}(L/K) \simeq G \text{ and } [\mathcal{O}_L] = [\mathcal{O}_{L/K}^{-1}]\},$$

where “sd” stands for “self-dual”. For G of odd order, further define

$$\mathcal{A}^t(\mathcal{O}_K G) = \{[A_{L/K}] : \text{tame } L/K \text{ with } \text{Gal}(L/K) \simeq G\}.$$

Let us remark that both classes $[\mathcal{O}_L]$ and $[A_{L/K}]$ depend upon the choice of the isomorphism $\text{Gal}(L/K) \simeq G$. For $K \neq \mathbb{Q}$, we shall prove that even the weakened versions of Questions 1.2 and 1.4 below admit a negative answer in general; see Theorem 1.9 below.

Question 1.5. Does $R_{sd}(\mathcal{O}_K G) = \mathcal{A}^t(\mathcal{O}_K G)$ hold when $|G|$ is odd?

Question 1.6. Does $R(\mathcal{O}_K G) = R_{sd}(\mathcal{O}_K G)$ hold?

In what follows, for simplicity, suppose that G is abelian. We shall implicitly suppose also that G has odd order whenever we write $\mathcal{A}^t(\mathcal{O}_K G)$. Then, the three subsets of $\text{Cl}(\mathcal{O}_K G)$ in question are related to the so-called Adams operations on $\text{Cl}(\mathcal{O}_K G)$ as follows; also see [1] and [2] for other connections between Adams operations and Galois module structures.

For each $k \in \mathbb{Z}$ coprime to $|G|$, the kth Adams operation is defined by

$$\Psi_k \in \text{Aut}(\text{Cl}(\mathcal{O}_K G)); \quad \Psi_k([X]) = [X_k],$$

where X denotes an arbitrary locally free $\mathcal{O}_K G$-module of rank one, and X_k denotes the \mathcal{O}_K-module X on which G acts via

$$s \ast x = \phi_k^{-1}(s) \cdot x \text{ for } s \in G \text{ and } x \in X,$$
where ϕ_k is the automorphism on G given by $\phi_k(s) = s^k$. For example, when $X = \mathcal{O}_L$, where L/K is a tame and Galois extension with $h : \text{Gal}(L/K) \simeq G$, then we have $X_k = \mathcal{O}_{L'}$, where $L' = L$ but with $h' : \text{Gal}(L'/K) \simeq G$ defined by $h' = \phi_k \circ h$; similarly when $X = A_{L/K}$. In the case that $k = -1$, we have

$$\Psi_{-1}([\mathcal{O}_L]) = [\text{Hom}_{\mathcal{O}_K}(\mathcal{O}_L, \mathcal{O}_K)]^{-1},$$

$$\Psi_{-1}([A_{L/K}]) = [\text{Hom}_{\mathcal{O}_K}(A_{L/K}, \mathcal{O}_K)]^{-1},$$

by [7, Appendix IX, Proposition 3]. Let \ast denote dual with respect to $\text{Tr}_{L/K}$. Since $\mathcal{D}_{L/K}^{-1} = \mathcal{O}_L^{\ast}$ and $A_{L/K} = A_{L/K}^\ast$, we then deduce that

$$\Psi_{-1}([\mathcal{O}_L]) = [\mathcal{D}_{L/K}^{-1}]^{-1} \text{ and } \Psi_{-1}([A_{L/K}]) = [A_{L/K}]^{-1},$$

where the latter equality was proven in [23, Theorem 1.2 (a)] as well. In the case that $|G|$ is odd and $k = 2$, we further have

$$[A_{L/K}] = [\mathcal{O}_L]\Psi_2([\mathcal{O}_L]),$$

which was shown in [24, Theorem 1.2.4] and is also essentially a special case of [1, Theorem 1.4].

Now, it is known by [16] that $R(\mathcal{O}_K G)$ is a subgroup of $\text{Cl}(\mathcal{O}_K G)$. Writing the operation in $\text{Cl}(\mathcal{O}_K G)$ multiplicatively, we then have well-defined maps

$$\Xi_k : R(\mathcal{O}_K G) \rightarrow R(\mathcal{O}_K G); \quad \Xi_k([X]) = [X]\Psi_k([X]),$$

$$\Xi'_k : R(\mathcal{O}_K G) \rightarrow R(\mathcal{O}_K G); \quad \Xi'_k([X]) = [X]^{-1}\Psi_k([X]),$$

which are in fact homomorphisms because $\text{Cl}(\mathcal{O}_K G)$ is an abelian group. In addition, the above discussion implies that

(1.1) \hspace{1cm} R_{sd}(\mathcal{O}_K G) = \ker(\Xi_{-1}) \text{ and } \mathcal{A}^t(\mathcal{O}_K G) = \text{Im}(\Xi'_2),

which are hence subgroups of $R(\mathcal{O}_K G)$. In particular, we have a chain

(1.2) \hspace{1cm} R(\mathcal{O}_K G) \supset R_{sd}(\mathcal{O}_K G) \supset \mathcal{A}^t(\mathcal{O}_K G)

of subgroups in $\text{Cl}(\mathcal{O}_K G)$. From (1.1), we deduce the following criteria which distinguish classes in these three subgroups.

Proposition 1.7. Suppose that G is abelian and let $c \in R(\mathcal{O}_K G)$.

(a) Assume that $\Psi_{-1}(c) = c$. Then, we have $c \in R_{sd}(O_KG)$ if and only if $|c|$ divides two.

(b) Assume that $|G|$ is odd and that $\Psi_2(c) = c$. Then, we have $c \in A^t(O_KG)$ only if $c^{n_G(2)} = 1$, where $n_G(2)$ is the multiplicative order of 2 mod $|G|$.

Proof. Part (a) follows directly from (1.1). As for part (b), suppose that $|G|$ is odd and that $c \in A^t(O_KG)$. By (1.1), we know that $c = d^{-1}\Psi_2(d)$ for some $d \in R(O_KG)$. This implies that

$$\prod_{j=0}^{n_G(2)-1}\Psi_{2j}(c) = \prod_{j=0}^{n_G(2)-1}\Psi_{2j}(d)^{-1}\Psi_{2j+1}(d) = \Psi_0(d)^{-1}\Psi_{2n_G(2)}(d) = 1.$$

It follows that $c^{n_G(2)} = 1$ whenever $\Psi_2(c) = c$ holds. \hfill \square

For notation, let us also define

$$\Psi_Z = \{\Psi_k : k \in \mathbb{Z} \text{ coprime to } |G|\},$$

which is plainly a group isomorphic to $(\mathbb{Z}/|G|\mathbb{Z})^\times$, and

$$\text{Cl}^0(O_KG) = \ker(\text{Cl}(O_KG) \to \text{Cl}(O_K)),$$

where the map is that induced by augmentation. Our idea is to use Proposition 1.7 as well as classes in $\text{Cl}^0(O_KG)_{\Psi Z}$, namely, classes in $\text{Cl}^0(O_KG)$ which are invariant under Ψ_Z, to answer Questions 1.5 and 1.6.

Finally, for each $n \in \mathbb{N}$, let C_n denote a cyclic group of order n, and let ζ_n denote a primitive nth root of unity. Given any multiplicative group Γ, write Γ^n for the set of nth powers of elements in Γ.

1.2. Statements of the main theorems. First, consider $G = C_p$, where p is an odd prime. For $K \neq \mathbb{Q}$, in order to answer Questions 1.5 and 1.6 in the negative, by (1.2), we must exhibit non-trivial classes in $R(O_KC_p)$. This was done in [10] and a key ingredient is the inclusion

$$\text{(1.3)} \quad (\text{Cl}^0(O_KC_p)^{\Psi Z})^{(p-1)/2} \subset R(O_KC_p)^{\Psi Z}.$$

This was shown in the proof [10, Proposition 4] using the characterization of $R(O_KC_p)$ due to L. R. McCulloh in [15]. Using (1.3), we deduce that:
Proposition 1.8. Let p be an odd prime and let $c \in \text{Cl}^0(\mathcal{O}_K C_p)^{\Psi_z}$.

(a) If $|c|$ does not divide $p - 1$, then $c^{(p-1)/2} \in R(\mathcal{O}_K C_p) \setminus R_{sd}(\mathcal{O}_K C_p)$.

(b) If $|c| = 2$ and $p \equiv -1 \pmod{8}$, then $c \in R_{sd}(\mathcal{O}_K C_p) \setminus \mathcal{A}^t(\mathcal{O}_K C_p)$.

Proof. Observe that $c^{(p-1)/2} \in R(\mathcal{O}_K C_p)$ by (1.3). Part (a) is then clear from Proposition 1.7 (a). As for part (b), suppose that $|c| = 2$. If $p \equiv -1 \pmod{4}$, then $c = c^{(p-1)/2} \in R_{sd}(\mathcal{O}_K C_p)$ by Proposition 1.7 (a). If $p \equiv -1 \pmod{8}$ in addition, then $c \notin \mathcal{A}^t(\mathcal{O}_K C_p)$ by Proposition 1.7 (b), because in this case 2 is a square mod p but -1 is not, whence $n_{C_p}(2)$ is necessarily odd. □

Using Proposition 1.8 and some further ideas from (1.3), we shall prove:

Theorem 1.9. Suppose that $K \neq \mathbb{Q}$. Then we have:

(a) $R(\mathcal{O}_K C_p) \supseteq R_{sd}(\mathcal{O}_K C_p)$ for infinitely many odd primes p.

(b) $R_{sd}(\mathcal{O}_K C_p) \supseteq \mathcal{A}^t(\mathcal{O}_K C_p)$ for infinitely many odd primes p.

Proof. We shall prove part (b) in Subsection 2.1. For part (a), we may deduce it using results in [10] as follows. Let p be an odd prime. Let $T(\mathcal{O}_K C_p)$ denote the Swan subgroup of $\text{Cl}(\mathcal{O}_K C_p)$; see [25] or [5, Section 53] for the definition. Then, as shown in the proof of [10, Proposition 4], we have

$$T(\mathcal{O}_K C_p) \subset \text{Cl}^0(\mathcal{O}_K C_p)^{\Psi_z}. \quad (1.4)$$

Using Chebotarev’s density theorem, it was further shown in [10, Theorem 5 and Proposition 9] that $T(\mathcal{O}_K C_p)$ contains a class of order coprime to $p - 1$ for infinitely many p. The claim now follows from Proposition 1.8 (a). □

Since the proof of Theorem 1.9 uses Chebotarev’s density theorem, it does not give explicit primes p satisfying the conclusion. In the special case that K/\mathbb{Q} is abelian with K imaginary, by slightly modifying the proof, we shall give explicit primes p such that $R_{sd}(\mathcal{O}_K C_p) \supseteq \mathcal{A}^t(\mathcal{O}_K C_p)$. See [11] for explicit conditions on K, in which p is ramified, such that the p-rank of $T(\mathcal{O}_K C_p)$ is at least one, so $R(\mathcal{O}_K C_p) \supseteq R_{sd}(\mathcal{O}_K C_p)$ by (1.4) and Proposition 1.8 (a).

Theorem 1.10. Suppose that K/\mathbb{Q} is abelian with K imaginary, and let m be the conductor of K. Then, we have $R_{sd}(\mathcal{O}_K C_p) \supseteq \mathcal{A}^t(\mathcal{O}_K C_p)$ for all primes p satisfying $p \equiv -1 \pmod{8}$ and $p \equiv -1 \pmod{2m}$.
Example 1.11. Consider the special case when \(K = \mathbb{Q}(\sqrt{D}) \), where \(D \) is a negative square-free integer not divisible by \(p \). For simplicity, let us assume that \(D \not\in \{-1, -3\} \). Then, by [12, Lemma 3.2 and Theorem 3.4], we have

\[
T(\mathcal{O}_K C_p) \simeq \begin{cases}
C_{(p+1)/2} \text{ or } C_{p+1} & \text{if } \left(\frac{D}{p} \right) = -1, \\
C_{(p-1)/2} \text{ or } C_{p-1} & \text{if } \left(\frac{D}{p} \right) = 1,
\end{cases}
\]

where \((\cdot)\) denotes the Legendre symbol. From Proposition 1.8 and (1.4), we then deduce that

\[
\begin{cases}
R(\mathcal{O}_K C_p) \supset R_{sd}(\mathcal{O}_K C_p) & \text{if } \left(\frac{D}{p} \right) = -1 \text{ and } p \neq 3, \\
R_{sd}(\mathcal{O}_K C_p) \supset \mathcal{A}^t(\mathcal{O}_K C_p) & \text{if } \left(\frac{D}{p} \right) = -1 \text{ and } p \equiv -1 \pmod{8},
\end{cases}
\]

where the second statement may be viewed as a refinement of Theorem 1.10. To see why, note that by quadratic reciprocity, we have

\[
\left(\frac{2}{p} \right) = (-1)^{\frac{p-1}{4}}, \quad \left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}, \quad \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}},
\]

for any odd prime \(q \). Suppose that \(p \equiv -1 \pmod{8} \) and \(p \equiv -1 \pmod{2m} \), where \(m \) is the conductor of \(K \). Since \(|D|\) divides \(m \), we see that any of its prime divisor is a square mod \(p \). It follows that

\[
\left(\frac{D}{p} \right) = \left(\frac{-1}{p} \right) \left(\frac{|D|}{p} \right) = -1, \quad \text{whence } R_{sd}(\mathcal{O}_K C_p) \supset \mathcal{A}^t(\mathcal{O}_K C_p)
\]

by the above, as predicted by Theorem 1.10. Let us note that not much may be deduced from Proposition 1.8 if \(\left(\frac{D}{p} \right) = 1 \), and that the case \(D \in \{-1, -3\} \) may be dealt with analogously.

Next, we return to an arbitrary abelian group \(G \). Recall that the proof of Theorem 1.9 (a) uses the Swan subgroup \(T(\mathcal{O}_K G) \) of \(\text{Cl}(\mathcal{O}_K G) \). The connection between Question 1.6 and the Swan subgroup was already observed in [4] and [21]; they both used the fact that \(T(\mathbb{Z} C) = 1 \) for all finite cyclic groups \(C \) to answer Question 1.3 in the positive. We shall investigate this connection further as follows.

Observe that the first equality in (1.1) implies that

\[
R(\mathcal{O}_K G)/R_{sd}(\mathcal{O}_K G) \simeq \text{Im}(\Xi_{-1}).
\]
Thus, it suffices to understand \(\text{Im}(\Xi_{-1}) \). In Subsection 3.3, for each subgroup \(H \) of \(G \), we shall define a *generalized Swan subgroup* \(T^*_H(\mathcal{O}_K G) \) of \(\text{Cl}(\mathcal{O}_K G)^\Psi \), such that \(T^*_G(\mathcal{O}_K G) \) is the usual Swan subgroup \(T(\mathcal{O}_K G) \). We shall give lower and upper bounds for \(\text{Im}(\Xi_{-1}) \) in terms of these \(T^*_H(\mathcal{O}_K G) \).

Theorem 1.12. Suppose that \(G \) is abelian. Let \(H \) be a cyclic subgroup of \(G \) and let \(n \) denote its order.

(a) We have \(T^*_H(\mathcal{O}_K G)^{d_n(K)} \subset R(\mathcal{O}_K G)^\Psi \), where

\[
d_n(K) = \begin{cases} [K(\zeta_n) : K]/2 & \text{when } (\zeta_n \mapsto \zeta_n^{-1}) \in \text{Gal}(K(\zeta_n)/K), \\ [K(\zeta_n) : K] & \text{when } (\zeta_n \mapsto \zeta_n^{-1}) \notin \text{Gal}(K(\zeta_n)/K). \end{cases}
\]

In particular, we have \(T^*_H(\mathcal{O}_K G)^{2d_n(K)} \subset \text{Im}(\Xi_{-1}) \).

(b) We have \(T^*_H(\mathcal{O}_K G) \subset \text{Im}(\Xi_{-1}) \) if \(n \) is odd and \(\zeta_n \in K^\times \).

Theorem 1.13. Suppose that \(G \) is abelian.

(a) We have \(\text{Im}(\Xi_{-1}) \subset T^*_{cyc}(\mathcal{O}_K G) \) if \(\text{Cl}(\mathcal{O}_K) = 1 \), where

\[
T^*_{cyc}(\mathcal{O}_K G) = \prod_{\substack{H \leq G \\ H \text{ cyclic}}} T^*_H(\mathcal{O}_K G).
\]

(b) We have \(\text{Im}(\Xi_{-1}) \neq 1 \) if \(\text{Cl}(\mathcal{O}_K)^{\delta(G)} \neq 1 \) and \(\exp(G) \in K^\times \), where

\[
\delta(G) = \begin{cases} 2 & \text{when } |G| \text{ is a power of two}, \\ 1 & \text{otherwise}, \end{cases}
\]

and \(\exp(G) \) denotes the exponent of \(G \), provided that \(G \neq 1 \).

From Theorems 1.12 and 1.13, as well as (1.6), we deduce that

\[
R(\mathcal{O}_K G) = R_{sd}(\mathcal{O}_K G) \text{ if and only if } \text{Cl}(\mathcal{O}_K) = 1 \text{ and } T^*_{cyc}(\mathcal{O}_K G) = 1,
\]

under the assumption that \(G \) is an abelian group of odd order such that all \(|G| \)th roots of unity are contained in \(K \).

Example 1.14. Suppose that \(G = C_p \), where \(p \) is an odd prime. Applying Theorem 1.12 (a) to the full group \(G \), we obtain

\[
T(\mathcal{O}_K C_p)^{d_p(K)} \subset R(\mathcal{O}_K C_p)^\Psi, \text{ where } d_p(K) \text{ divides } (p - 1)/2,
\]
and so we may regard Theorem 1.12 (a) as a refinement of (1.3) and (1.4). By Theorem 1.13 (a), when \(\text{Cl}(\mathcal{O}_K) = 1 \), we then have a chain

\[
T(\mathcal{O}_K \cap_p) \subset T(\mathcal{O}_K \cap_p)^{2d_p(K)} \subset \text{Im}(\Xi_{-1}) \subset T(\mathcal{O}_K \cap_p)
\]

of inclusions. Let us consider a few special examples of \(K \) with \(\text{Cl}(\mathcal{O}_K) = 1 \).

By [12, Lemma 3.2 and Theorem 3.4], we know that

\[
T(\mathcal{O}_K \cap_p) \simeq \begin{cases}
C_{(p+1)/4} & \text{if } K = \mathbb{Q}(\sqrt{-1}) \text{ and } p \equiv 3 \pmod{8}, \\
C_{(p+1)/6} & \text{if } K = \mathbb{Q}(\sqrt{-3}) \text{ and } p \equiv 5 \pmod{12}.
\end{cases}
\]

By [18], we also know that

\[
T(\mathcal{O}_K \cap_p) \simeq C_p^{\oplus (p-3)/2} \text{ if } K = \mathbb{Q}(\zeta_p) \text{ and } p \in \{3, 5, 7, 11, 13, 17, 19\}.
\]

In all of the above cases, we deduce that \(\text{Im}(\Xi_{-1}) = T(\mathcal{O}_K \cap_p) \), and in particular, from (1.6) we see that the difference between \(R(\mathcal{O}_K \cap_p) \) and \(R_{sd}(\mathcal{O}_K \cap_p) \) becomes bigger as \(p \) increases.

2. **Comparison between \(R_{sd}(\mathcal{O}_K G) \) and \(A^l(\mathcal{O}_K G) \)**

In this section, we shall prove Theorems 1.9 (b) and 1.10, by using Proposition 1.8 (b) to exhibit the existence of a class in \(R_{sd}(\mathcal{O}_K \cap_p) \setminus A^l(\mathcal{O}_K \cap_p) \) for infinitely many odd primes \(p \).

In what follows, let \(p \) be any odd prime. Define

\[
V_p(\mathcal{O}_K) = \frac{(\mathcal{O}_K/p\mathcal{O}_K)^{\times}}{\pi_p(\mathcal{O}_K^{\times})}, \text{ where } \pi_p : \mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K
\]

is the natural quotient map. Then, we have a surjective homomorphism

\[
T(\mathcal{O}_K \cap_p) \longrightarrow V_p(\mathcal{O}_K)^{p-1}
\]

as shown in [10, Theorem 5]. This, together with (1.4), implies that:

Lemma 2.1. If \(p \equiv -1 \pmod{4} \) and \(V_p(\mathcal{O}_K) \) has an element of order four, then \(\text{Cl}^0(\mathcal{O}_K \cap_p)^{\Psi_2} \) has an element of order two.

In the case that \(K \) is not totally real, we shall prove Theorem 1.9 (b) using Lemma 2.1. In the case that \(K \) is totally real, however, our method fails in
general; see Remark 2.6. Hence, we must look for elements in \(\text{Cl}^0(\mathcal{O}_KC_p)^{\Psi_Z} \) of order two lying outside of \(T(\mathcal{O}_KC_p) \).

To that end, let \(\mathcal{M}(KC_p) \) denote the maximal order in \(KC_p \), and for convenience, assume that \(p \) is large enough so that \([K(\zeta_p) : K] = p - 1\). Then, we have a natural isomorphism

\[
\mathcal{M}(KC_p) \rightarrow \mathcal{O}_K \times \mathcal{O}_{K(\zeta_p)}; \quad \sum_{s \in C_p} \alpha_s s \mapsto \left(\sum_{s \in C_p} \alpha_s, \sum_{s \in C_p} \alpha_s \chi(s) \right)
\]

where \(\chi \) is a fixed non-trivial character on \(C_p \). This induces an isomorphism

\[
\text{Cl}(\mathcal{M}(KC_p)) \simeq \text{Cl}(\mathcal{O}_K) \times \text{Cl}(\mathcal{O}_{K(\zeta_p)}).
\]

In particular, we have a surjective homormorphism

\[
\text{Cl}^0(\mathcal{O}_KC_p) \rightarrow \text{Cl}(\mathcal{O}_{K(\zeta_p)}),
\]

such that the \(\Psi_Z \)-action on \(\text{Cl}^0(\mathcal{O}_KC_p) \) corresponds precisely to the \(\Gamma_p \)-action on \(\text{Cl}(\mathcal{O}_{K(\zeta_p)}) \), where \(\Gamma_p = \text{Gal}(K(\zeta_p)/K) \). This implies that:

Lemma 2.2. If \(\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p} \) has an element of order two, then \(\text{Cl}^0(\mathcal{O}_KC_p)^{\Psi_Z} \) also has an element of order two.

To show that \(\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p} \) contains an element of order two, we shall need the following so-called Chevalley’s ambiguous class formula.

Proposition 2.3. Let \(F/K \) be a cyclic extension. Let \(\Gamma = \text{Gal}(F/K) \) denote its Galois group and let \(N_{F/K} : F \rightarrow K \) denote its norm. Then, we have

\[
|\text{Cl}(\mathcal{O}_F)^\Gamma| = |\text{Cl}(\mathcal{O}_K)| \cdot \frac{2^r \prod_p e_p}{[\mathcal{O}_K^\times : \mathcal{O}_K^\times \cap N_{F/K}(F^\times)][F : K]},
\]

where \(r \) is the number of real places in \(K \) which complexify in \(F/K \). Here \(p \) ranges over the prime ideals in \(K \) and \(e_p \) is its ramification index in \(F/K \).

Proof. See [9, Chapter II, Remark 6.2.3].

Lemma 2.4. If \(K \neq \mathbb{Q} \) is not totally imaginary, with \([K(\zeta_p) : K] = p - 1\), and \(p \) is totally split in \(K/\mathbb{Q} \), then \(\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p} \) has an element of order two.
Proof. Assume the hypothesis. Let us write \([K : \mathbb{Q}] = r_1 + 2r_2\), where \(r_1\) and \(2r_2\), respectively, denote the number of real and complex embeddings of \(K\). Applying Proposition 2.3 to the field \(F = K(\zeta_p)\), we then obtain

\[
|\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p}| = |\text{Cl}(\mathcal{O}_K)| \cdot \frac{2^{r_1}(p - 1)^{r_1 + 2r_2 - 1}}{[\mathcal{O}_K^\times : \mathcal{O}_K^\times \cap N_{K(\zeta_p)/K}(K(\zeta_p)^\times)]}.
\]

Indeed, we have \(r = r_1\) since \(K(\zeta_p)\) is totally imaginary. Further, the prime ideals \(p\) in \(K\) which ramify in \(K(\zeta_p)/K\) are precisely those above \(p\). Since \(p\) is totally split in \(K/\mathbb{Q}\), there are \([K : \mathbb{Q}]\) such \(p\), and \(e_p = [K(\zeta_p) : K] = p - 1\).

Now, by the Dirichlet’s unit theorem, we know that

\[
\mathcal{O}_K^\times = \langle \epsilon_0 \rangle \times \langle \epsilon_1 \rangle \times \cdots \times \langle \epsilon_{r_1 + r_2 - 1} \rangle,
\]

where \(\epsilon_0\) is a root of unity and \(\epsilon_1, \ldots, \epsilon_{r_1 + r_2 - 1}\) are fundamental units. Hence, we have a natural surjective homomorphism

\[
\prod_{j=0}^{r_1 + r_2 - 1} \frac{\langle \epsilon_j \rangle}{\langle \epsilon_j^{p-1} \rangle} \twoheadrightarrow \frac{\mathcal{O}_K^\times}{\mathcal{O}_K^\times \cap N_{K(\zeta_p)/K}(K(\zeta_p)^\times)},
\]

and so the order of the quotient group on the right divides

\[
n_0 \cdot (p - 1)^{r_1 + r_2 - 1}, \quad \text{where } n_0 = [\langle \epsilon_0 \rangle : \langle \epsilon_0^{p-1} \rangle].
\]

Notice that \(n_0\) divides \(p - 1\) and that \(n_0 = 2\) when \(K\) is totally real. We then deduce that \(|\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p}|\) is divisible by

\[
\frac{2^{r_1}(p - 1)^{r_1 + 2r_2 - 1}}{n_0(p - 1)^{r_1 + r_2 - 1}} = \frac{2^{r_1}(p - 1)^{r_2}}{n_0} = 2^{r_1}(p - 1)^{r_2 - 1} \left(\frac{p - 1}{n_0}\right).
\]

By hypothesis, we have \(r_1 \geq 1\), and \(r_1 \geq 2\) when \(r_2 = 0\). Hence, the number above is always even, and so \(\text{Cl}(\mathcal{O}_{K(\zeta_p)})^{\Gamma_p}\) has an element of order two. \(\square\)

2.1. Proof of Theorem 1.9 (b). Fix an algebraic closure \(K^c\) of \(K\). Let \(\tilde{K}\) denote the Galois closure of \(K\) over \(\mathbb{Q}\) lying in \(K^c\) and let \(K_4\) denote the field obtained by adjoining to \(\tilde{K}\) all fourth roots of elements in \(\mathcal{O}_K^\times\). Notice that \(K_4/\mathbb{Q}\) is a Galois extension.

The next lemma is motivated by [10, Proposition 9] and it allows us to use Chebotarev’s density theorem to prove Theorem 1.9 (b).
Lemma 2.5. Let $\tau \in \text{Gal}(K^c/\mathbb{Q})$ and let $f \in \mathbb{N}$ denote the smallest natural number such that $\tau^f|_K = \text{Id}_K$.

(a) Suppose that

(2.1) \hspace{1em} f \text{ is even, } \tau^f|_{K_4} = \text{Id}_{K_4}, \hspace{1em} \tau|_{\mathbb{Q}(\sqrt{-1})} \neq \text{Id}_{\mathbb{Q}(\sqrt{-1})}, \hspace{1em} \tau|_{\mathbb{Q}(\sqrt{2})} = \text{Id}_{\mathbb{Q}(\sqrt{2})}.

Let \mathfrak{P} be any prime ideal in $K_4(\sqrt{2})$, unramified over \mathbb{Q}, such that

$$\text{Frob}_{K_4(\sqrt{2})/\mathbb{Q}}(\mathfrak{P}) = \tau|_{K_4(\sqrt{2})},$$

and let $p\mathbb{Z}$ be the prime lying below \mathfrak{P}. Then, we have $p \equiv -1 \pmod{8}$, and the group $V_p(\mathcal{O}_K)$ has an element of order four.

(b) Suppose that

(2.2) \hspace{1em} f = 1, \hspace{1em} \tau|_{\tilde{K}} = \text{Id}_{\tilde{K}}, \hspace{1em} \tau|_{\mathbb{Q}(\sqrt{-1})} \neq \text{Id}_{\mathbb{Q}(\sqrt{-1})}, \hspace{1em} \tau|_{\mathbb{Q}(\sqrt{2})} = \text{Id}_{\mathbb{Q}(\sqrt{2})}.

Let \mathfrak{P} be any prime ideal in $\tilde{K}(\sqrt{-1}, \sqrt{2})$, unramified over \mathbb{Q}, such that

$$\text{Frob}_{\tilde{K}(\sqrt{-1}, \sqrt{2})/\mathbb{Q}}(\mathfrak{P}) = \tau|_{\tilde{K}(\sqrt{-1}, \sqrt{2})},$$

and let $p\mathbb{Z}$ be the prime lying below \mathfrak{P}. Then, we have $p \equiv -1 \pmod{8}$, and the prime p is totally split in K/\mathbb{Q}.

Proof. In both parts (a) and (b), we clearly have $p \equiv -1 \pmod{8}$ because

$$p \equiv -1 \pmod{8} \text{ if and only if } \begin{cases} p \text{ is inert in } \mathbb{Q}(\sqrt{-1}) \\ p \text{ is split in } \mathbb{Q}(\sqrt{2}) \end{cases}$$

by (1.5). In part (b), the prime p is totally split in \tilde{K}/\mathbb{Q} and hence in K/\mathbb{Q}.

In part (a), let \mathfrak{p}_4 and \mathfrak{p} denote the prime ideals in K_4 and K, respectively, lying below \mathfrak{P}. Note that f is the inertia degree of \mathfrak{p} over \mathbb{Q}, and we have

$$\text{Frob}_{K_4/K}(\mathfrak{p}_4) = \tau^f|_{K_4} = \text{Id}_{K_4}.$$

This means that \mathfrak{p} is totally split in K_4/K, and so elements in \mathcal{O}_K^\times reduce to fourth powers in $\mathcal{O}_K/\mathfrak{p}$. Hence, we have surjective homomorphisms

$$V_p(\mathcal{O}_K) \longrightarrow (\mathcal{O}_K/\mathfrak{p})^\times / \pi_p(\mathcal{O}_K^\times) \longrightarrow (\mathcal{O}_K/\mathfrak{p})^\times / ((\mathcal{O}_K/\mathfrak{p})^\times)^4,$$

where $\pi_p : \mathcal{O}_K \longrightarrow \mathcal{O}_K/\mathfrak{p}$ is the natural quotient map. But $(\mathcal{O}_K/\mathfrak{p})^\times \simeq C_{p^f-1}$,
and 4 divides $p^f - 1$ because $f \geq 2$ is even. It follows that the last quotient group above and in particular $V_p(O_K)$ has an element of order four. □

Proof of Theorem 1.9 (b). Let $\sigma_c, \sigma_r : K^c \to \mathbb{C}$ be embeddings such that $$\sigma_c(K) \not\subset \mathbb{R} \text{ and } \sigma_r(K) \subset \mathbb{R},$$ if they exist. Further, define $$\tau_c = \sigma_c^{-1} \circ \rho \circ \sigma_c \text{ and } \tau_r = \sigma_r^{-1} \circ \rho \circ \sigma_r,$$ where $\rho : \mathbb{C} \to \mathbb{C}$ denotes complex conjugation. Observe that:

(i) If K is not totally real, then σ_c exists, and τ_c satisfies (2.1).
(ii) If K is totally real, then σ_r exists, and τ_r satisfies (2.2).

In both cases, let $p \equiv -1 \pmod{8}$ be a prime given as in Lemma 2.5. Then, we deduce from Lemmas 2.1, 2.2, and 2.4 that $\text{Cl}^0(O_KC_p)^{\Psi_z}$ has an element of order two. The claim now follows from Proposition 1.8 (b) and Chebotarev’s density theorem. □

Remark 2.6. Suppose that K is a real quadratic field such that its fundamental unit ϵ has norm -1 over \mathbb{Q}. For any odd prime p which is inert in K/\mathbb{Q}, we then have $\epsilon^{p+1} \equiv -1 \pmod{pO_K}$, as shown in [13, (1.0.1)]. Letting $n_p(\epsilon)$ denote the multiplicative order of $\epsilon \mod pO_K$, this implies that $$|V_p(O_K)| = \frac{|(O_K/pO_K)^\times|}{|\pi_p(O_K^\times)|} = \frac{p^2 - 1}{n_p(\epsilon)} = \frac{2(p + 1)}{n_p(\epsilon)} \cdot \frac{p - 1}{2}.$$ The first quotient is an odd integer by [13, Theorem 1.3], so then $V_p(O_K)$ has odd order when $p \equiv -1 \pmod{4}$. This means that we cannot use Lemma 2.5 (a) to find primes $p \equiv -1 \pmod{8}$ such that $V_p(O_K)$ has an element of order four.

2.2. Proof of Theorem 1.10. First, we need the following group-theoretic lemmas.

Lemma 2.7. Let Γ be a finite abelian p-group, where p is a prime. Let Δ be any cyclic subgroup of Γ whose order is maximal among all cyclic subgroups of Γ. Then, there exists a subgroup Δ' of Γ such that $\Gamma = \Delta \times \Delta'$.
Proof. See the proof of [14, Chapter I, Theorem 8.2], for example. □

Lemma 2.8. Let Γ be a group isomorphic to k copies of C_n, where $k, n \in \mathbb{N}$, and let Δ be any cyclic subgroup of order n. Then, there exists a subgroup Δ' of Γ such that $\Gamma = \Delta \times \Delta'$. Moreover, for any $x \in \Gamma$, there exists a surjective homomorphism from $\Gamma/\langle x \rangle$ to $k-1$ copies of C_n.

Proof. The first claim is a direct consequence of Lemma 2.7 and plainly Δ' is necessarily isomorphic to $k-1$ copies of C_n. The second claim follows as well because any $x \in \Gamma$ is contained in some cyclic subgroup Δ of order n. □

Proof of Theorem 1.10. By Proposition 1.8 (b) and Lemma 2.1, it is enough to show that $V_p(\mathcal{O}_K)$ has an element of order four.

Set $d = [K : \mathbb{Q}]$ and note that $K \subset \mathbb{Q}(\zeta_m)$ by hypothesis. First, since K is imaginary, by the Dirichlet’s unit theorem, we know that

$$\mathcal{O}_K^\times = \langle \epsilon_0 \rangle \times \langle \epsilon_1 \rangle \times \cdots \times \langle \epsilon_{d/2-1} \rangle,$$

where ϵ_0 is a root of unity and $\epsilon_1, \ldots, \epsilon_{d/2-1}$ are fundamental units. Now, the hypothesis $p \equiv -1 \pmod{m}$ implies that p is unramified in $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ and

$$\text{Frob}_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(p) = \text{complex conjugation}.$$

Since K is imaginary, the inertia degree of p in K/\mathbb{Q} is equal to two, and so

$$(\mathcal{O}_K/p\mathcal{O}_K)^\times \simeq \prod_{p|\mathfrak{p}}(\mathcal{O}_K/p)^\times \simeq C_{p^2-1} \times \cdots \times C_{p^2-1} \quad (d/2 \text{ copies}).$$

From Lemma 2.8, we then deduce that there is a surjective homomorphism

$$\left(\frac{\mathcal{O}_K}{p\mathcal{O}_K}\right)^\times \to \pi_p(\langle \epsilon_1, \ldots, \epsilon_{d/2-1} \rangle) \to C_{p^2-1}.$$

Let $\delta = 2$ if m is odd, and $\delta = 1$ if m is even. Then, the order of $\langle \epsilon_0 \rangle$ divides δm, and we see that there are surjective homomorphisms

$$V_p(\mathcal{O}_K) \to C_{p^2-1}[\langle \epsilon_0 \rangle] \to C_{p^2-1}/\delta m.$$

The last cyclic group has order dividing four, because

$$\frac{p^2 - 1}{\delta m} = \left(\frac{p+1}{2\delta m}\right) \cdot 2(p-1), \text{ and } p \equiv -1 \pmod{2\delta m}.$$
by hypothesis. Thus, indeed $V_p(\mathcal{O}_K)$ has an element of order four. □

3. Comparison between $R(\mathcal{O}_K G)$ and $R_{sd}(\mathcal{O}_K G)$

In this section, we shall prove Theorems 1.12 and 1.13. A key ingredient is the characterization of $R(\mathcal{O}_K G)$ due to L. R. McCulloh [16], which works for all abelian groups G; see Subsection 3.2 below. We remark that the proof of (1.3) given in [10] uses his older characterization of $R(\mathcal{O}_K G)$ from [15], which works only for elementary abelian groups G.

In the subsequent subsections, except in Subsection 3.3, we shall assume that G is abelian. We shall further use the following notation.

Notation 3.1. Let M_K denote the set of finite primes in K. The symbol F shall denote either K or the completion K_v of K at some $v \in M_K$, and

$$
\mathcal{O}_F = \text{the ring of integers in } F,
$$
$$
F^c = \text{a fixed algebraic closure of } F,
$$
$$
\mathcal{O}_{F^c} = \text{the integral closure of } \mathcal{O}_F \text{ in } F^c,
$$
$$
\Omega_F = \text{the Galois group of } F^c/F.
$$

For each $v \in M_K$, we shall regard K^c as lying in K_v^c via a fixed embedding $K^c \hookrightarrow K_v^c$ extending the natural embedding $K \hookrightarrow K_v$.

3.1. Locally free class group.

The class group $\text{Cl}(\mathcal{O}_K G)$ admits an idelic description as follows; see [5, Chapter 6], for example.

Let $J(KG)$ denote the restricted direct product of $(K_v G)\times$ with respect to the subgroups $(\mathcal{O}_{K_v} G)\times$ for $v \in M_K$. We have a surjective homomorphism

$$
j : J(KG) \longrightarrow \text{Cl}(\mathcal{O}_K G); \quad j(c) = [\mathcal{O}_K G \cdot c],
$$

where we define

$$
\mathcal{O}_K G \cdot c = \bigcap_{v \in M_K} (\mathcal{O}_{K_v} G \cdot c_v \cap K G).
$$

This in turn induces an isomorphism

$$
(3.1) \quad \text{Cl}(\mathcal{O}_K G) \simeq \frac{J(KG)}{(KG)\times U(\mathcal{O}_K G)}, \quad \text{where } U(\mathcal{O}_K G) = \prod_{v \in M_K} (\mathcal{O}_{K_v} G)\times.
$$
Each component \((K_vG)\times\) as well as \((KG)\times\) also admit a Hom-description as follows. Write \(\hat{G}\) for the group of irreducible \(K^c\)-valued characters on \(G\). We then have canonical identifications

\[
(F^cG)\times = \text{Map}(\hat{G}, (F^c)^\times) = \text{Hom}(\mathbb{Z}\hat{G}, (F^c)^\times),
\]

\[
(FG)\times = \text{Map}_{\Omega_F}(\hat{G}, (F^c)^\times) = \text{Hom}_{\Omega_F}(\mathbb{Z}\hat{G}, (F^c)^\times),
\]

induced by the association \(\alpha \mapsto (\chi \mapsto \alpha(\chi))\), where we define \(\alpha(\chi) = \sum_{s \in G} \alpha_s \chi(s)\) for \(\alpha = \sum_{s \in G} \alpha_s s\).

Finally, we note that via \((3.1)\) and \((3.2)\), for each \(k \in \mathbb{Z}\) coprime to \(|G|\), the \(k\)th Adams operation \(\Psi_k\) on \(\text{Cl}(O_K G)\) is induced by \(\chi \mapsto \chi^k\) on \(\hat{G}\).

3.2. McCulloh’s characterization.

The characterization of \(R(O_K G)\) due to L. R. McCulloh \[16\] is given in terms of the so-called Stickelberger transpose. We shall recall its definition below.

Definition 3.2. Let \(G(-1)\) denote the group \(G\) on which \(\Omega_F\) acts by

\[\omega \cdot s = s^{\kappa(\omega^{-1})}\]

for \(s \in G\) and \(\omega \in \Omega_F\),

where \(\kappa(\omega^{-1}) \in \mathbb{Z}\), which is unique modulo \(\exp(G)\), is such that

\[\omega^{-1}(\zeta) = \zeta^{\kappa(\omega^{-1})}\]

for all \(\zeta \in F^c\) with \(\zeta^{\exp(G)} = 1\).

Note that if \(\zeta_n \in F\), then \(\Omega_F\) fixes all elements in \(G(-1)\) of order dividing \(n\).

Definition 3.3. Given \(\chi \in \hat{G}\) and \(s \in G\), define

\[
\langle \chi, s \rangle \in \left\{ \frac{0}{|s|}, \frac{1}{|s|}, \ldots, \frac{|s| - 1}{|s|} \right\}
\]

to be such that \(\chi(s) = (\zeta_{|s|})^{s|\langle \chi, s \rangle|}\).

Extend this to a pairing \(\langle \cdot, \cdot \rangle : \mathbb{Q}\hat{G} \times \mathbb{Q}G \rightarrow \mathbb{Q}\) via \(\mathbb{Q}\)-linearity, and define

\[
\Theta : \mathbb{Q}\hat{G} \rightarrow \mathbb{Q}G(-1); \quad \Theta(\psi) = \sum_{s \in G} \langle \psi, s \rangle s,
\]

called the *Stickelberger map*.

As shown in \[16, Proposition 4.5\], the Stickelberger map preserves the \(\Omega_F\)-action. Set \(A_{\hat{G}} = \Theta^{-1}(\mathbb{Z}G)\). Then, applying the functor \(\text{Hom}(-, (F^c)^\times)\) and
taking Ω_F-invariants yield a homomorphism

$$\Theta^t : \text{Hom}_{\Omega_F}(\mathbb{Z}G(-1), (F^c) \times) \rightarrow \text{Hom}_{\Omega_F}(A_\widehat{G}, (F^c) \times); \ g \mapsto g \circ \Theta.$$

This is the Stickelberger transpose map defined in [16].

For brevity, define

$$(3.3)\quad \Lambda(FG) \times = \text{Map}_{\Omega_F}(G(-1), (F^c) \times) \quad (= \text{Hom}_{\Omega_F}(\mathbb{Z}G(-1), (F^c) \times)).$$

Observe that we have a diagram

$$(FG) \times \xymatrix{\rightarrow \ar[r]^{\text{rag}} & \text{Hom}_{\Omega_F}(A_\widehat{G}, (F^c) \times) \ar[u]^\Theta^t} \Lambda(FG) \times,$$

where \text{rag} is restriction to $A_\widehat{G}$ via the identification (3.2).

Now, let $J(\Lambda(KG))$ denote the restricted direct product of $\Lambda(K_vG) \times$ with respect to the subgroups $\text{Map}_{\Omega_F}(G(-1), \mathcal{O}_{F^c}^\times)$ for $v \in M_K$. We then have the following partial characterization of $R(\mathcal{O}_KG)$; see [16] for the full characterization.

Lemma 3.4. Given $c = (c_v) \in J(KG)$, if there exists $g = (g_v) \in J(\Lambda(KG))$ such that \text{rag}(c_v) = \Theta^t(g_v)$ for all $v \in M_K$, then $j(c) \in R(\mathcal{O}_KG)$.

Proof. This follows directly from [16, Theorem 6.17].

For each $v \in M_K$, fix a uniformizer π_v of K_v. We shall also need:

Lemma 3.5. Let L/K be a tame and Galois extension with $\text{Gal}(L/K) \simeq G$. Then, for each $v \in M_K$, there exists $s_v \in G$ whose order is the ramification index of L/K at v, such that $\Xi_{-1}(\mathcal{O}_L) = j(c_L)$, where $c_L = (c_{L,v}) \in J(KG)$ is defined by $c_{L,v}(\chi) = \pi_v^{(\chi, s_v) + (\chi, s_v^{-1})}$ for $\chi \in \hat{G}$ via the identification (3.2).

Proof. We have $L = KG \cdot b$ for some $b \in L$ by the Normal Basis Theorem, and since \mathcal{O}_L is locally free over \mathcal{O}_KG of rank one, for $v \in M_K$, we have

$$\mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_L = \mathcal{O}_{K_v}G \cdot a_v$$

for some $a_v \in \mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_L$.
Following the notation in [16, Section 1], put
\[r_G(b) = \sum_{s \in G} s(b)s^{-1} \] and \[r_G(a_v) = \sum_{s \in G} s(a_v)s^{-1}. \]

Then, by [16, Proposition 5.4], we may choose \(a_v \) to be such that
\[(3.4) \quad r_G(a_v)(\chi) = \pi_b^{(\chi,s_v)} \text{ for all } \chi \in \hat{G}.\]

By [16, Proposition 3.2] and the discussion following it, there exists \(c = (c_v) \in J(KG) \) such that \(r_G(a_v) = c_v \cdot r_G(b) \) and \(j(c) = [\mathcal{O}_L] \).

Write \([-1]\) for the involution on \((K^*_vG)^\times\) induced by the involution \(s \mapsto s^{-1} \) on \(G \). Since \(r_G(b)r_G(b)^{-1} \in (KG)^\times \), we then deduce that
\[\Xi_{-1}([\mathcal{O}_L]) = j((c_vc_v^{-1})) = j((r_G(a_v)r_G(a_v)^{-1})). \]

The claim now follows immediately from (3.4). \(\square \)

3.3. Generalized Swan subgroups

Let \(H \) be a subgroup of \(G \). Following the definition of the Swan subgroup \(T(O_KG) \) given in [25], we shall define a generalized Swan subset/subgroup associated to \(H \) as follows.

For each \(r \in O_K \) coprime to \(|H|\), define
\[(r, \Sigma_H) = O_KG \cdot r + O_KG \cdot \Sigma_H, \text{ where } \Sigma_H = \sum_{s \in H} s. \]

The next proposition, which generalizes [25, Proposition 2.4 (i)], shows that \((r, \Sigma_H)\) is locally free over \(O_KG \) of rank one and so it defines a class \([(r, \Sigma_H)] \) in \(\text{Cl}(O_KG) \). Define
\[T_G^*(O_KG) = \{ [(r, \Sigma_H)] : r \in O_K \text{ coprime to } |H| \} \]

to be the collection of all such classes. It follows directly from the definition that \(T_G^*(O_KG) \) is equal to \(T(O_KG) \).

Proposition 3.6. Let \(r \in O_K \) be coprime to \(|H|\). For each \(v \in M_K \), define
\[c_{H,r,v} = \begin{cases} 1 & \text{if } v \nmid r, \\ r + \frac{1-r}{|H|}\Sigma_H & \text{if } v \mid r, \end{cases} \]
and set $c_{H,r} = (c_{H,r,v})$. Then we have $\mathcal{O}_K G \cdot c_{H,r} = (r, \Sigma_H)$.

Proof. For each $v \in M_K$, we need to show that

$$\mathcal{O}_{K_v} G \cdot c_{H,r,v} = \mathcal{O}_{K_v} G \cdot r + \mathcal{O}_{K_v} G \cdot \Sigma_H.$$

For $v \nmid r$, we have $r \in \mathcal{O}_{K_v}^\times$, and this is clear. For $v \mid r$, we have $|H| \in \mathcal{O}_{K_v}^\times$ because r is coprime to $|H|$, and so

$$\mathcal{O}_{K_v} G \cdot \left(r + \frac{1-r}{|H|} \Sigma_H \right) \subset \mathcal{O}_{K_v} G \cdot r + \mathcal{O}_{K_v} G \cdot \Sigma_H.$$

The reverse inclusion also holds because

$$r = \left(1 + \frac{r-1}{|H|} \Sigma_H \right) \left(r + \frac{1-r}{|H|} \Sigma_H \right) \text{ and } \Sigma_H = \Sigma_H \left(r + \frac{1-r}{|H|} \Sigma_H \right).$$

We then see that the claim holds. \square

In what follows, for simplicity, let us assume that

(3.5) H is normal in G and the quotient G/H is abelian.

Put $Q = G/H$, and let H_1, \ldots, H_q denote all the distinct cosets of H in G. Notice that we have an augmentation homomorphism

$$\epsilon : \mathcal{O}_K G \rightarrow \mathcal{O}_K Q; \quad \epsilon \left(\sum_{s \in G} \alpha_s s \right) = \sum_{i=1}^q \left(\sum_{s \in H_i} \alpha_s \right) H_i.$$

Then, we have a fiber product diagram of rings, given by

$$\begin{array}{ccc}
\mathcal{O}_K G & \xrightarrow{\epsilon} & \mathcal{O}_K Q \\
\downarrow & & \downarrow \pi \\
\Gamma_H & \xrightarrow{\varpi} & \Lambda_{|H|} Q
\end{array}$$

where

$$\begin{cases}
\Gamma_H = \mathcal{O}_K G / (\Sigma_H), \\
\Lambda_{|H|} = \mathcal{O}_K / |H| \mathcal{O}_K.
\end{cases}$$

Here the vertical maps are the canonical quotient maps, and ϖ is the homomorphism induced by ϵ. We then have the identification

(3.7) $\mathcal{O}_K G = \{(x, y) \in \mathcal{O}_K Q \times \Gamma_H : \pi(x) = \varpi(y)\}$.

In particular, writing

(3.8) $x = \sum_{i=1}^q x_i H_i, \quad y = \tilde{y} + (\Sigma_H), \quad \epsilon(\tilde{y}) = \sum_{i=1}^q \tilde{y}_i H_i,$
the corresponding element in $\mathcal{O}_K G$ is given by
\[\tilde{y} + \left(\sum_{i=1}^{q} \left(\frac{x_i - \tilde{y}_i}{|H|} \right) s_i \right) \Sigma_H, \]
where $s_i \in H_i$ is fixed.

Since Q is abelian, from the Mayer-Vietoris sequence (see [5, Section 49B] or [19, (1.12), (4.19), (4.21)]) associated to (3.6), we obtain a homomorphism
\[\partial_H : (\Lambda_{|H|} Q)^{\times} \longrightarrow D(\mathcal{O}_K G); \quad \partial_H(\eta) = [(\mathcal{O}_K G)(\eta)], \]
where $D(\mathcal{O}_K G)$ denotes the kernel group in $\text{Cl}(\mathcal{O}_K G)$ defined as in [19], and
\[(\mathcal{O}_K G)(\eta) = \{(x, y) \in \mathcal{O}_K Q \times \Gamma_H : \pi(x) = \overline{c}(y)\eta\} \]
is equipped with the obvious $\mathcal{O}_K G$-module structure via (3.7).

The next proposition, which generalizes [25, Proposition 2.7], shows that
\[T^*_H(\mathcal{O}_K G) = \partial_H(\Lambda_{|H|}^{\times}), \]
where $\Lambda_{|H|}$ is regarded as a subring of $\Lambda_{|H|} Q$ in the obvious way (cf. the set $T_H(\mathcal{O}_K G)$ defined in [17]). This means that under the assumption (3.5), the set $T^*_H(\mathcal{O}_K G)$ is in fact a subgroup of $\text{Cl}(\mathcal{O}_K G)$.

Proposition 3.7. Let $r \in \mathcal{O}_K$ be coprime to $|H|$. Then we have
\[\partial_H((r + |H|\mathcal{O}_K)H) = [(r, \Sigma_H)]. \]

Proof. For brevity, put $\eta = (r + |H|\mathcal{O}_K)H$. Note that by definition, we have

\[\eta = \pi(rH) = \overline{c}(r + (\Sigma_H)). \]

Via the identification (3.7), we may define an $\mathcal{O}_K G$-homomorphism
\[\varphi : (\mathcal{O}_K G)(\eta) \longrightarrow \mathcal{O}_K G; \quad \varphi(x, y) = (x, y(r + (\Sigma_H))). \]

Below, we shall show that $\text{Im}(\varphi) = (r, \Sigma_H)$ and $\text{ker}(\varphi) = 0$. This would imply that $(\mathcal{O}_K G)(\eta)$ and (r, Σ_H) are isomorphic as $\mathcal{O}_K G$-modules, from which the claim follows. Given $(x, y) \in (\mathcal{O}_K G)(\eta)$, in the notation of (3.8), we have

\[(x, y(r + (\Sigma_H))) = \tilde{y}r + \left(\sum_{i=1}^{q} \left(\frac{x_i - \tilde{y}_i r}{|H|} \right) s_i \right) \Sigma_H. \]
First, from (3.9), we immediately see that \(\text{Im}(\varphi) \subset (r, \Sigma_H) \), as well as

\[\varphi((rH, 1 + (\Sigma_H)) = r \text{ and } \varphi(|H|H, (\Sigma_H)) = \Sigma_H, \]

whence \(\text{Im}(\varphi) \supset (r, \Sigma_H) \) holds also. Next, suppose that \((x, y) \in \ker(\varphi)\). It is clear from the definition of \(\varphi\) that \(x = 0\). Then, we deduce from (3.9) that

\[\tilde{y}r - \left(\sum_{i=1}^{q} \frac{\tilde{y}_i r}{|H|s_i} \right) \Sigma_H = 0 \text{ and hence } \tilde{y} \in (\Sigma_H). \]

This shows that \(y = 0\), and so \(\ker(\varphi) = 0\), as desired. \(\square\)

3.4. Preliminaries. Let \(H\) be a subgroup of \(G\) and let \(r \in \mathcal{O}_K\) be coprime to \(|H|\). Then, via the isomorphism (3.1), we have

\[j(c_{H,r}) = [(r, \Sigma_H)], \text{ where } (c_{H,r}) = (c_{H,r,v}) \in J(KG) \]

is defined as in Proposition 3.6. Also, note that for \(v \mid r\), we have

\[c_{H,r,v}(\chi) = \begin{cases} 1 & \text{if } \chi(H) = 1 \\ r & \text{if } \chi(H) \neq 1 \end{cases} \]

for \(\chi \in \widehat{G}\) via the identification (3.2). This immediately implies that:

Proposition 3.8. We have \(T^*_H(\mathcal{O}_K G) \subset \text{Cl}(\mathcal{O}_K G)^{\Psi_2}\).

Proof. This follows from (3.11) and the fact that

\[\chi^k(H) = 1 \text{ if and only if } \chi(H) = 1 \]

for any \(k \in \mathbb{Z}\) coprime to \(|H|\). \(\square\)

To make connections between \(T^*_H(\mathcal{O}_K G)\) and \(R(\mathcal{O}_K G)\), we shall use Lemmas 3.4 and 3.5. We shall also need the following definitions.

Fix a prime \(v \in M_K\). Recall from (3.2) and (3.3) that

\[(K_v G)^\times = \text{Map}_{\Omega_{K_v}}(\widehat{G}, (K_v^c)^\times) \text{ and } \Lambda(K_v G)^\times = \text{Map}_{\Omega_{K_v}}(G(-1), (K_v^c)^\times). \]

Given \(t \in G\) with \(t \neq 1\) and \(x \in K_v^\times\), define

\[c_{t, v, x, 1}(\chi) = x^{(\chi, t) + (\chi, t^{-1})} \text{ and } c_{t, v, x, 2}(\chi) = x^{2(\chi, t) - (\chi, t^2)}. \]
for $\chi \in \hat{G}$, where both exponents are integers by Definition 3.3. In the case that $|t| = 2$ and $|t| > 2$, respectively, define

$$g_{t,v,x,1}(s) = \begin{cases} x^2 & \text{if } s = t \\ 1 & \text{otherwise} \end{cases}$$

and

$$g_{t,v,x,1}(s) = \begin{cases} x & \text{for } s \in \{t, t^{-1}\} \\ 1 & \text{otherwise} \end{cases}$$

for $s \in G(-1)$. In the case that $|t|$ is odd, further define

$$g_{t,v,x,2}(s) = \begin{cases} x^2 & \text{if } s = t \\ x^{-1} & \text{for } s = t^2 \\ 1 & \text{otherwise} \end{cases}$$

for $s \in G(-1)$. We have the following lemmas.

Lemma 3.9. We have $c_{t,v,x,1} \in (K_vG)^\times$.

Proof. The map $c_{t,v,x,1}$ preserves the Ω_{K_v}-action because

$$\langle \chi, s \rangle + \langle \chi, s^{-1} \rangle = \begin{cases} 0 & \text{if } \chi(s) = 1 \\ 1 & \text{if } \chi(s) \neq 1 \end{cases}$$

for all $\chi \in \hat{G}$ and $s \in G$ by Definition 3.3. □

Lemma 3.10. Suppose that $\zeta_{|t|} \in K_v^\times$. Then we have

$$c_{t,v,x,2} \in (K_vG)^\times \text{ and } g_{t,v,x,1}, g_{t,v,x,2} \in \Lambda(K_vG)^\times.$$

Moreover, for both $i = 1, 2$, we have

$$r\text{ag}(c_{t,v,x,i}) = \Theta^t(g_{t,v,x,i}).$$

Proof. Since $\zeta_{|t|} \in K_v^\times$, we easily see that $c_{t,v,x,2}$, $g_{t,v,x,1}$, and $g_{t,v,x,2}$ indeed all preserve the Ω_{K_v}-action. Since

$$\Theta^t(g)(\psi) = \prod_{s \in G} g(s)^{\langle \psi, s \rangle} \text{ for } g \in \Lambda(K_vG)^\times \text{ and } \psi \in A\hat{G}$$

by definition, the second also holds by a simple verification. □

3.5. **Proof of Theorem 1.12.** Let H be a cyclic subgroup of G of order n and let $r \in \mathcal{O}_K$ be coprime to n. Recall (3.10) and that $j(c_{H,r}) \in \text{Cl}(\mathcal{O}_K G)^{\Psi_2}$
by Proposition 3.8. We need to show that \(j(c_{H,r})^{d_n(K)} \in R(\mathcal{O}_K G) \) in part (a), and that \(j(c_{H,r}) \in \text{Im}(\Xi_{-1}) \) in part (b). We shall do so using Lemma 3.4.

In what follows, let \(t \) be a fixed generator of \(H \).

Proof of Theorem 1.12 (a). Let \(D \) be the subgroup of \((\mathbb{Z}/n\mathbb{Z})^\times \) such that
\[
D \simeq \text{Gal}(K(\zeta_n)/K) \text{ via } i \mapsto (\zeta_n \mapsto \zeta_n^i).
\]
Define \(g = (g_v) \in J(\Lambda(KG)) \) by setting \(g_v = 1 \) for \(v \nmid r \), and
\[
g_v(s) = \begin{cases} r & \text{if } s \in \{t^i, t^{-i}\} \text{ for some } i \in D \\ 1 & \text{otherwise} \end{cases}
\]
for \(v \mid r \). It is easy to see that \(g_v \) preserves the \(\Omega_{K_v} \)-action.

Observe that for all \(v \in M_K \), we have
\[
(3.14) \quad r a g((c_{H,r,v})^{d_n(K)}) = \Theta^t(g_v).
\]
Indeed, for \(v \nmid r \), this is clear. As for \(v \mid r \), we have from (3.13) that
\[
\Theta^t(g_v)(\chi) = \begin{cases} (r) \frac{1}{2} \sum_{i \in D} (\langle \chi, t^t \rangle + \langle \chi, t^{-t} \rangle) & \text{if } -1 \in D \\ (r) \sum_{i \in D} (\langle \chi, t^t \rangle + \langle \chi, t^{-t} \rangle) & \text{if } -1 \not\in D \end{cases}
\]
and from (3.12) that
\[
\sum_{i \in D} \left(\langle \chi, t^t \rangle + \langle \chi, t^{-t} \rangle \right) = \begin{cases} 0 & \text{if } \chi(t) = 1 \\ |D| & \text{if } \chi(t) \neq 1 \end{cases}
\]
for any \(\chi \in \hat{G} \). The equality (3.14) then follows from (3.11). Hence, we have \(j(c_{H,r})^{d_n(K)} \in R(\mathcal{O}_K G) \) by Lemma 3.4, as desired. \(\square \)

Proof of Theorem 1.12 (b). Suppose that \(n \) is odd and that \(\zeta_n \in K^\times \). Then, by Lemma 3.10, we may define \(c = (c_v) \in J(KG) \) by setting \(c_v = 1 \) for \(v \nmid r \), and \(c_v = c_{t,v,r,2} \) for \(v \mid r \). Also, we have \(j(c) \in R(\mathcal{O}_K G) \) by Lemma 3.4.

Below, we shall show that \(j(c_{H,r}) = \Xi_{-1}(j(c)) \), whence \(j(c_{H,r}) \in \text{Im}(\Xi_{-1}) \). To that end, let \(v \in M_K \) and \(\chi \in \hat{G} \). It suffices to show that
\[
(3.15) \quad c_{H,r,v}(\chi) = c_v(\chi)c_v(\chi^{-1}).
\]
For \(v \nmid r \), this is clear. For \(v \mid r \), observe that
\[
\chi(t) = 1 \text{ if and only if } \chi(t^2) = 1
\]
because \(|t| \) is odd. It then follows from (3.12) that
\[
c_v(\chi)c_v(\chi^{-1}) = r^2(\langle \chi, t \rangle + \langle \chi^{-1}, t \rangle - \langle \chi, t^2 \rangle + \langle \chi^{-1}, t^2 \rangle) = \begin{cases} 1 & \text{for } \chi(t) = 1, \\ r & \text{for } \chi(t) \neq 1. \end{cases}
\]

From (3.11), we then see that (3.15) indeed holds. \(\Box \)

3.6. Proof of Theorem 1.13. In what follows, for each \(v \in M_K \), let \(\pi_v \) be a fixed uniformizer of \(K_v \).

Proof of Theorem 1.13 (a). Suppose that \(\text{Cl}(\mathcal{O}_K) = 1 \). For each \(v_0 \in M_K \), we may then choose \(\pi_{v_0} \) to be an element of \(\mathcal{O}_K \). Then, for any cyclic subgroup \(H \) of \(G \) of order coprime to \(v_0 \), it makes sense to write
\[
[(\pi_{v_0}, \Sigma_H)] = j(c_{H,\pi_{v_0}}), \text{ where } c_{H,\pi_{v_0}} = (c_{H,\pi_{v_0},v}) \in J(KG)
\]
is as in Proposition 3.6. Plainly \(c_{H,\pi_{v_0},v} = 1 \) for all \(v \neq v_0 \).

Now, let \(L/K \) be any tame and Galois extension with \(\text{Gal}(L/K) \cong G \), and we shall use the notation as in Lemma 3.5. Let \(V \) denote the subset of \(M_K \) consisting of the primes which ramify in \(L/K \). Then, we have
\[
s_v = 1 \text{ for } v \notin V, \text{ and so } \Xi_{-1}([\mathcal{O}_L]) = j(c_L) = \prod_{v_0 \in V} j(c_{L,v_0}),
\]
where we regard \(c_{L,v_0} \) as an element of \(J(KG) \) whose components outside of \(v_0 \) are all 1. For each \(v_0 \in V \), take \(H_{v_0} = \langle s_{v_0} \rangle \), whose order is coprime to \(v_0 \) because \(L/K \) is tame. By (3.11) and (3.12), we have
\[
c_{L,v_0}(\chi) = \pi_{v_0}^{\langle \chi, s_{v_0} \rangle + \langle \chi^{-1}, s_{v_0}^{-1} \rangle} = c_{H_{v_0},\pi_{v_0},v_0}(\chi) \text{ for all } \chi \in \hat{G}.
\]
By definition, we also have \(c_{L,v_0,v} = c_{H_{v_0},\pi_{v_0},v} = 1 \) for \(v \neq v_0 \). It follows that \(j(c_{L,v_0}) = j(c_{H_{v_0},\pi_{v_0}}) \), which is an element of \(T_{H_{v_0}}^*(\mathcal{O}_KG) \). This implies that
\[
\Xi_{-1}([\mathcal{O}_L]) \in \prod_{v_0 \in V} T_{H_{v_0}}^*(\mathcal{O}_KG) \subset T_{\text{cyc}}^*(\mathcal{O}_KG),
\]
as claimed. \(\Box \)
Proof of Theorem 1.13 (b). Suppose that \(G \neq 1 \). Then, fix an element \(t \in G \) with \(t \neq 1 \), whose order shall be assumed to be odd when \(\delta(G) = 1 \), and fix a character \(\chi \in \hat{G} \) such that \(\chi(t) \neq 1 \). Now, suppose that \(\zeta_{\exp(G)} \in K^\times \). Then, via (3.1) and (3.2), evaluation at \(\chi \) induces a surjective homomorphism

\[
\xi_\chi : \text{Cl}(\mathcal{O}_K G) \longrightarrow \text{Cl}(\mathcal{O}_K).
\]

Below, we shall show that

\[
(3.16) \quad \xi_\chi(\text{Im}(\Xi_{-1})) \supset \text{Cl}(\mathcal{O}_K)^{\delta(G)},
\]

from which the claim would follow.

Now, every class in \(\text{Cl}(\mathcal{O}_K) \) may be represented by a prime ideal \(p_0 \) in \(\mathcal{O}_K \), corresponding to \(v_0 \in M_K \), say. Since \(\zeta_{\exp(G)} \in K^\times \), by Lemmas 3.9 and 3.10, we may define \(c = (c_v) \in J(KG) \) by setting

\[
c_{v_0} = \begin{cases}
 c_{t,v,\pi,v_0,1} & \text{if } \delta(G) = 2 \\
 c_{t,v,\pi,v_0,2} & \text{if } \delta(G) = 1
\end{cases}
\]

and \(c_v = 1 \) for \(v \neq v_0 \). Note that \(j(c) \in R(\mathcal{O}_K G) \) by Lemmas 3.4 and 3.10, whence \(\Xi_{-1}(j(c)) \in \text{Im}(\Xi_{-1}) \). Also, we have

\[
c_{v_0}(\chi)c_{v_0}(\chi^{-1}) = \begin{cases}
 \pi_{v_0}^{2(\langle \chi, t \rangle + \langle \chi^{-1}, t \rangle)} & \text{if } \delta(G) = 2 \\
 \pi_{v_0}^{2(\langle \chi, t \rangle + \langle \chi^{-1}, t \rangle) - (\langle \chi, t^2 \rangle + \langle \chi^{-1}, t^2 \rangle)} & \text{if } \delta(G) = 1
\end{cases}
\]

by (3.12). We then deduce that

\[
\xi_\chi(\Xi_{-1}(j(c))) = [p_0]^{\delta(G)} \text{ in } \text{Cl}(\mathcal{O}_K).
\]

This proves the desired inclusion \((3.16)\). \(\square \)

4. Acknowledgments

The research was supported by the China Postdoctoral Science Foundation Special Financial Grant (grant no.: 2017T100060). The author would like to thank the anonymous referee for pointing out some unclear arguments in the original manuscript and for suggesting the reference [14] cited in Lemma 2.7.
REFERENCES

[1] D. Burns, *Adams operations and wild Galois structure invariants*, Proc. London Math. Soc. (3) 71 (1995), 241–262.

[2] D. Burns and T. Chinburg, *Adams operations and integral Hermitian-Galois representations*, Amer. J. Math. 118 (1996), no. 5, 925–962.

[3] L. Caputo and S. Vinatier, *Galois module structure of the square root of the inverse different in even degree tame extensions of number fields*, J. Algebra 468 (2016), 103–154.

[4] S. U. Chase, *Ramification invariants and torsion Galois module structure in number fields*, J. Algebra 91 (1984), 207–257.

[5] C. W. Curtis and I. Reiner, *Methods of representation theory with applications to finite groups and orders Vol. II.*, John Wiley & Sons Inc., New York, 1987.

[6] B. Erez, *The Galois structure of the square root of the inverse different*, Math. Z. 208 (1991), 239–255.

[7] A. Fröhlich, *Arithmetic and Galois module structure for tame extensions*, J. Reine Angew. Math. 286/287 (1976), 380–440.

[8] A. Fröhlich, *Galois module structure of algebraic integers*, Ergeb. Math. Grenzgeb. (3) 1. Springer-Verlag, Berlin, 1983.

[9] G. Gras, *Class field theory. From theory to practice*, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.

[10] C. Greither, D. R. Replogle, K. Rubin, and A. Srivastav, *Swan modules and Hilbert-Speiser number fields*, J. Number Theory 79 (1999), 164–173.

[11] T. Herreng, *Sur les corps de Hilbert-Speiser*, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 767–778.

[12] Y. Hironaka-Kobayashi, *Class groups of group rings whose coefficients are algebraic integers*, Tsukuba J. Math. 6 (1982), no. 2, 157–175.

[13] M. Ishikawa and Y. Kitaoka, *On the distribution of units modulo prime ideals in real quadratic fields*, J. Reine Angew. Math. 494 (1998), 65–72.

[14] S. Lang, *Algebra*, Revised third edition, Graduate Texts in Mathematics 211. Springer-Verlag, New York, 2002.

[15] L. R. McCulloh, *Galois module structure of elementary abelian extensions*, J. Algebra 82 (1983), no. 1, 102–134.

[16] L. R. McCulloh, *Galois module structure of abelian extensions*, J. Reine Angew. Math. 375/376 (1987), 259–306.

[17] R. Oliver, *Subgroups generating D(ZG)*, J. Algebra 55 (1978), 43–57.

[18] D. R. Replogle, *Cycloptic Swan subgroups and irregular indices*, Rocky Mountain J. Math. 31 (2001), no. 2, 611–618.

[19] I. Reiner and S. Ullom, *A Mayer-Vietoris sequence for class groups*, J. Algebra 31 (1974), 305–342.

[20] J. P. Serre, *Local fields*, Graduate Texts in Mathematics 67. Springer-Verlag, New York-Berlin, 1979.

[21] M. J. Taylor, *On the self-duality of a ring of integers as a Galois module*, Invent. Math. 46 (1978), 173–177.

[22] M. J. Taylor, *On Fröhlich’s conjecture for rings of integers of tame extensions*, Invent. Math. 63 (1981), 41–79.

[23] C. Tsang, *On the Galois module structure of the square root of the inverse different in abelian extensions*, J. Number Theory 160 (2016), 759–804.

[24] C. Tsang, *On the Galois module structure of the square root of the inverse different in abelian extensions*, PhD thesis, University of California, Santa Barbara 2016.
[25] S. V. Ullom, *Nontrivial lower bounds for class groups of integral group rings*, Illinois J. Math. 20 (1976), 361–371.

[26] S. V. Ullom, *Integral normal bases in Galois extensions of local fields*, Nagoya Math. J. 39 (1970), 141–148.

School of Mathematics, Sun Yat-Sen University, Zhuhai

E-mail address: zengshy26@mail.sysu.edu.cn

URL: http://sites.google.com/site/cindysinyitsang/