The complete mitochondrial genome of Chinese minnow (*Rhynchocypris oxycephalus*) and its phylogenetic analyses

Cheng Zhang*, Shun Zhang*, Zhe Tian, Shun Cheng, Danli Wang and Shanliang Xu

School of Marine Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China

ABSTRACT

The complete mitochondrial genome can provide novel insights into understanding the mechanism underlying mitogenome evolution. In the present study, the whole mitochondrial genome of *Rhynchocypris oxycephalus* was determined to 16608 bp (GenBank accession No: MW057563), including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region. The overall base composition was 28.62% A, 27.23% T, 26.31% C and 17.84% G, with a total A + T content of 55.85%. The Maximum Likelihood tree showed that the phylogenetic relationship is closer between *R. oxycephalus* and *Phoxinus oxycephalus jouyi* than the other species. The whole mitogenome of this species will be useful for the future animal evolutionary, phylogenetic relationship, and genomic studies in the genus *Phoxinus*.

Chinese minnow (*Rhynchocypris oxycephalus*) is a small cold-water fish, which is endemic to East Asia and generally inhabits stream headwaters (Jang et al. 2002; Bogutskaya et al. 2008). The life history characteristics of *R. oxycephalus* (such as low reproductive output, short life cycle, and low growth rate) and its ecological tolerance characteristics determine that *R. oxycephalus* is extremely sensitive and vulnerable to environmental changes or human interference, and their local populations are extremely vulnerable (Yu et al. 2013; Chu et al. 2015). Therefore, it is necessary to raise concern about long-term conservation of *R. oxycephalus*. Little is however known about the conservation status of *R. oxycephalus*. The classification status of this species and the phylogenetic relationship of genus *Phoxinus* was very complicated (Ito et al. 2002; Sasaki et al. 2007). To gain a better insight into its taxonomic relationship, the specimen was collected from Yongjiang River (121.63°E, 29.90°N), Ningbo City, Zhejiang Province, China, and they were deposited in Key Laboratory of Applied Marine Biotechnology, Ningbo University (Sample code is YG-150422). The entire genomic DNA was extracted from 30 to 50 mg of muscle tissue using the standard phenol-chloroform extracting method (Sambrook and Russell 2001), and preserved at −20 °C. Based on the conserved sequences of *P. semotilus* and *P. oxycephalus jouyi* (Miya et al. 2015; Yu et al. 2017), we designed 18 pairs of primers for polymerase chain reaction amplification. The PCR fragments were assembled by BioEdit version 7.2.5 software (Hall 1999) and then calculated the nucleotide base composition by MEGA6.0 (Tamura et al. 2013). To avoid assembling error, the complete mitochondrial sequence was aligned with its closely related species by BLAST. The annotated genomic sequence has been submitted to GenBank under the accession number MW057563.

In total, the complete mtDNA of *R. oxycephalus* was 16608 bp in length, and the content was consistent with the typical fishes’ mitochondrial genomes (Perna and Kocher 1995). It contained 13 PCGs, 22 tRNA genes, two rRNA genes, and one control region. Among the 37 genes, one PCGs (ND6) and eight tRNA genes (*tRNA^Gln^*, *tRNA^Aua^*, *tRNA^Asn^*, *tRNA^Cys^*, *tRNA^Trp^*, *tRNA^Ser^*(UGC), *tRNA^Glu^*, *tRNA^Pro^*) were on the light strand, and the remaining 28 genes were on the heavy strand. In 13 protein-coding genes, apart from COI utilizing GTG, the rest of the 12 protein-coding genes start with the same initiation codon ATG. The typical termination codons (TAA or TAG) were detected in 10 PCGs (TAA for *ND1, COI, ATP6, COX III, ND4L*, and *NDS* genes, TAG for *ATP8, ND3, ND4*, and *ND6* genes), and the remaining three genes (*ND2, COII, and Cyt b*) were ended by incomplete stop codons (T-). The length of all tRNAs ranged from 68 to 76 bp. The O1 region (L-strand replication origin) was located between *tRNA^Aua^* and *tRNA^Cys^*. The 12S and 16S rRNA genes are 954 bp and 1670 bp, respectively. The control region of 935 bp was located in *tRNA^Pro^* and *tRNA^Phe^* (Table 1).

To investigate the phylogenetic relationship among the genus *Phoxinus*, the mitochondrial genome sequences of seven currently available species of *Phoxinus* were
downloaded, including *P. oxycephalus jouyi* (AP011269.1), *P. semotilus* (NC_029341.1), *P. steindachneri* (NC_015357.1), *P. keumkang* (AP011363.1), *P. tumensis* (KC992395.1), *P. phoxinus* (AB671170.1), and *P. ujmonensis* (NC_023802.1), together with *Acrocheilus alutaceus* (NC_033927.1) as outgroup species.

The phylogenetic tree was constructed using Maximum Likelihood method based on complete mtDNA. Tree topology was evaluated by 1000 bootstrap replicates, and the tree had high bootstrap supporting values. The result indicated that the phylogenetic relationship is closer between *R. oxycephalus* and *P. oxycephalus jouyi* than the other species (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Natural Science Foundation of China [31872586], the Open Project of Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, and Key Laboratory of Freshwater Aquaculture genetic and breeding of Zhejiang Province, China [ZJK201903], the Zhejiang Major Science Project [2019C02059], and by K. C. Wong Magna Fund in Ningbo University.

Data availability statement

The data that support the findings of this study are available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MW057563.

Table 1. Mitogenome characteristic of *Rhynchocypris oxycephalus*.

Gene/element	Position	Length (bp)	Start codon	Stop codon	Anticodon	Strand
tRNA^Phe	1-69	69	GAA	H	-	H
12S rRNA	70-1023	954	-	-	-	H
tRNA^Met	1026-1097	72	TAC	H	-	L
ND1	1117-2786	1670	ATG	TAA	-	H
tRNA^Val	3844-3915	72	GAT	H	-	L
ND2	3914-3984	71	TTA	H	-	L
tRNA^Asp	3986-4054	69	CAT	H	-	L
ND3	4055-5101	1046	ATG	T	-	H
tRNA^Tyr	5100-5170	70	TCA	H	-	H
ND4	5172-5240	69	TGC	H	-	L
tRNA^Leu1	5242-5314	73	GTT	H	-	L
O2	5318-5347	30	-	-	-	-
tRNA^Gln	5348-5415	68	GCA	L	-	L
tRNA^Ala	5417-5487	71	GTA	L	-	L
COI	5489-7039	1551	GTG	TAA	-	H
tRNA^Val(UUCG)	7040-7110	71	TGA	H	-	H
tRNA^Asp	7114-7187	74	GTC	H	-	H
COII	7201-7891	691	ATG	T	-	H
tRNA^Leu(UUG)	7892-7967	76	TTT	H	-	H
ATPase8	7969-8133	165	ATG	TAG	-	H
ATPase6	8127-8810	684	ATG	TAA	-	H
COIII	8810-9594	785	ATG	TAA	-	H
tRNA^Leu2	9594-9664	71	TCC	H	-	H
ND3	9665-10015	350	ATG	TAG	-	H
tRNA^Glu	10014-10082	69	TCG	H	-	H
ND4L	10083-10379	297	ATG	TAA	-	H
ND4	10373-11751	1379	ATG	TAG	-	H
tRNA^Gl	11755-11823	69	GTG	H	-	H
tRNA^Val(UUCG)	11824-11891	68	GCT	H	-	H
tRNA^Leu(UAG)	11893-11965	73	TAG	H	-	H
ND5	11966-13801	1836	ATG	TAA	-	H
ND6	13798-14319	522	ATG	TAA	-	H
tRNA^Glu	14320-14388	69	ATG	TAG	-	L
Cyt b	14391-15531	1141	TCC	L	-	L
tRNA^Asp	15532-15603	72	TGT	H	-	H
tRNA^Glu	15603-15673	71	TGG	L	-	L
D-loop	15674-16608	935	-	-	-	-

a and *l* indicate heavy and light strands, respectively.

Figure 1. The Maximum Likelihood tree inferred from the complete mitogenomes of nine species.
References

Bogutskaya NG, Naseka AM, Shedko SV, Vasil’eva ED, Chereshnev IA. 2008. The fishes of the Amur River: updated check-list and zoogeography. Ichthyological Exploration of Freshwaters. 19: 301–366.

Chu L, Ye J, Si C, Wang WJ, Yan YZ, Chen YF. 2015. Age, growth and reproduction of the chinese minnow, Phoxinus oxycephalus in the jiulongfeng nature reserve of the huangshan mountain. Acta Hydrobiologica Sinica. 39:28–37.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41, p. 95–98.

Ito Y, Sakai H, Shedko S, Jeon SR. 2002. Genetic differentiation of the northern Far East Cyprinids, Phoxinus and Rhynchocepis. Fisher Sci. 68(sup1):75–78.

Jang MH, Kim JG, Park SB, Jeong KS, Cho GL, Joo GJ. 2002. The current status of the distribution of introduced fish in large river systems of South Korea. Internat Rev Hydrobiol. 87(2–3):319–328.

Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, et al. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci. 2(7):150088.

Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at four-fold degenerate sites of animal mitochondrial genomes. J Mol Evol. 41(3):353–358.

Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual, 3rd ed. New York: Cold Spring Harbor Laboratory press.

Sasaki T, Kartavtsev YP, Chiba SN, Uematsu T, Sviridov VV, Hanzawa N. 2007. Genetic divergence and phylogenetic independence of far eastern species in subfamily leuciscinae (Pisces: Cyprinidae) inferred from mitochondrial dna analyses. Genes Genet Syst. 82(4):329–340.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 30(12):2725–2729.

Yu D, Chen M, Zhou Z, Eric R, Tang Q, Liu H. 2013. Global climate change will severely decrease potential distribution of the East Asian cold-water fish Rhynchocepis oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia. 700(1):23–32.

Yu J-N, Kim B-J, Kim C, Yeo J-H, Kim S. 2017. The complete mitochondrial genome of the black star fat minnow (Rhynchocepis semotilus), an endemic and endangered fish of Korea. Mitochondrial DNA A DNA Mapp Seq Anal. 28(1):114–115.