STRING FIELD THEORY AND QUANTUM GROUPS. I.
QUANTUM GROUP STRUCTURES IN GEOMETRIC
QUANTIZATION OF A SELF-INTERACTING STRING FIELD

D.V.Juriev

Research Center for Mathematical Physics and Informatics "Thalassa Aitheria",
ul.Miklukho-Maklaya 20-180, Moscow 117437 Russia
E-mail: denis@juriev.msk.ru

Abstract. The paper is devoted to a description of quantum group structures in
the geometric quantization of a self-interacting string field, which appear under a
transition from a tree-level of the theory to the account of loop effects in nonpertur-
bative quantum field theory of strings.

Theory of strings, which is the most perspective approach to the unification of
Standard Model and its supergeneralizations with quantum gravity in the unified
consistent theory of elementary particles and their interactions, exists in two forms:
as a theory of the first quantized strings (string quantum mechanics) and as a string
field theory (theory of the second quantized strings) [1,2]. One of the advantages
of the first approach besides the technical circumstances is the clarity of a geomet-
rical description of the particle interactions, whereas its essential deficiencies are,
first, a difficulty of the consistent account of the nonperturbative effects, second,
the explicit dependence of the formulation of theory on metric and topology of the
background. Both difficulties obstruct to use the theory as for the problems of
quantum gravity as for the unified quantum description of gravity and Yang-Mills
fields of Standard Model and its supergeneralizations. The second approach com-
bining string and quantum field ones is free of such disadvantages (and, moreover,
is of interest for the quantum field theory of vortices in the quantum fluids), but,
its comparative difficulty and awkwardness in the concrete computations as well
as abundance of heterogeneous and unrelated directly concepts made its applica-
tions very inconvenient. In the author’s papers [3] (see also [4]) there was given a
unified formalism for the string field theory based on the geometric quantization,
which allowed to connect other known approaches, for example, the Witten’s poly-
nomial (cubic) string field theory of 1986 [5], the Aref’eva-Volovich approach, the

1 This is an English translation of the original Russian version, which is located at the end of
the article as an appendix. In the case of any differences between English and Russian versions
caused by a translation the least has the priority as the original one.
central place in which belongs to the nonassociative string algebra [6], the non-polynomial string theories of B. Zwiebach and other authors [7]. It was found that despite of the all variability and elegance of algebraic structure of the first quantized string theory, which includes the Kac-Moody algebras, the Virasoro algebra \(\mathbb{C}_{\text{vir}} \), the Virasoro-Bott group \(\text{Vir} \), the Neretin semigroup \(\text{Ner} \), the mantle \(\text{Mantle(Vir)} \) of the Virasoro-Bott group, the conformal category \(\text{Train(Vir)} \), the train of this group, and the conformal modular functor among others (see, for example, [1-3] and references wherein), the algebraic structure of the string field theory is not less interesting and substantive, and the independence of the theory itself from metric and topology of the background makes it not only sometimes simpler than the theory of the first quantized strings (the multiloop computations or computations on the arbitrary curved background besides the narrow class of known solutions of the string Einstein equations are more than labour-consuming), but also permits to account such effects as the bifurcation of the background or backgrounds with nontrivial topological and analytical structure of the fractal type (with infinitely generated fundamental group). Thus, in the second paper from the unfinished series [3] there was explicated a quantum group structure of the self-interacting string field in general features (that hypothetically may connect the known string field approaches with the Vladimirov-Volovich adelic formalism [8]). This paper is devoted to the more detailed discussion of the connection between string field theory and the quantum group theory. The first part contains an analysis of the quantum group structures in the geometric quantization of the self-interacting string field, whereas the second part will be devoted to the quantum dynamics of the transition processes in the string field theory (the so-called “string cosmological evolution”). Generally one may said that the quantum group phenomena naturally appear under a transition from the tree level of the string field theory to the consistent nonperturbative field description of the loop effects.

1. Infinite dimensional noncommutative geometry of a self-interacting string field [3]

This paragraph contains an exposition of the main concepts of a string field theory (bosonic one for simplicity, the supercase needs in slight natural modifications) in the formalism of geometric quantization applied to a self-interacting string field (see [3] and also [4]).

The main geometric (geometrodynamic) data of string field theory (as for a free field as for a self-interacting one) are:

- The infinite dimensional linear space \(\mathcal{Q} \) (or the dual \(\mathcal{Q}^* \)) of external degrees of freedom of a string. The coordinates \(x^\mu_n \) on \(\mathcal{Q} \) are the Taylor coefficients of functions \(x^\mu(z) \) that determine the world-sheet of the string in the complexified target space.
- The flag manifold of the Virasoro-Bott group \(M(\text{Vir}) \) [9] of the internal degrees of freedom of the string, which is identified, via the Kirillov construction [10], with the class \(S \) of univalent functions \(f(z) \); the natural coordinates on \(S \) are coefficients \(c_k \) of the Taylor expansion of the univalent function \(f(z) \):
 \[
 f(z) = z + c_1 z^2 + c_2 z^3 + c_3 z^4 + \ldots + c_n z^{n+1} + \ldots
 \]
- The space \(\mathcal{C} \) of the universal deformation of the complex disk [11], with \(M(\text{Vir}) \) as the base and with fibers isomorphic to \(D_+ \); the coordinates on \(\mathcal{C} \) are \(z, c_1, c_2, c_3, \ldots, c_n, \ldots \), where \(c_k \) are the coordinates on the base and \(z \) is the coordinate on the fibers.
The space $M(\text{Vir}) \times Q^*$ of both external and internal degrees of freedom of the string, or, equivalently, the bundle over $M(\text{Vir})$ associated with $p : C \hookrightarrow M(\text{Vir})$ whose fibers are linear spaces $\text{Map}(C/M(\text{Vir}); \mathbb{C}^n)^*$ dual to the spaces of mappings of fibers of $p : C \hookrightarrow M(\text{Vir})$ into \mathbb{C}^n (here \mathbb{C}^n is a local chart on the background, see [3,4]).

The space $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})$ of semi-infinite Banks-Peskin differential forms, which are certain geometric objects on $M(\text{Vir}) \times Q^*$ of rather complicated structure [3,4] and constructed using the prequantization bundle over $M(\text{Vir})$, here h and c are the prequantization data, in particular c is the central charge (in general, it differs from the dimension of the background).

Q is the natural geometric BRST-operator on $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})$; $Q^2 = 0$ if and only if $c = 26$ (with arbitrary dimension of the background).

The space $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})^*$ of Siegel string fields with (pseudo)Hermitian metric $(\cdot|\cdot)$. Q^* is the Kato-Ogawa BRST-operator in the space of Siegel string fields conjugate to Q; it defines a new (pseudo)Hermitian metric $(\langle \cdot|Q^*\cdot\rangle)$ on $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})^*$.

$\text{FG}_{h,c}(M(\text{Vir}))$ is the Fock-plus-ghost bundle over $M(\text{Vir})$, whose sections are just the Banks-Peskin differential forms.

The Gauss-Manin string connection ∇^{GM} on $\text{FG}_{h,c}(M(\text{Vir}))$; its covariantly constant sections are the Bowick-Rajeev vacua.

$D\nabla^{\text{GM}}$ is the covariant differential with respect to the Gauss-Manin string connection. Its nilpotency on the flat background implies the equality of the central charge to the background’s dimension.

The space $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})_{\text{GI}}^*$ of gauge-invariant Siegel string fields, which is dual to the space of Bowick-Rajeev vacua; this space possess a (pseudo)Hermitian metric $(\cdot|\cdot)_0$, which is the restriction of the metric $(\cdot|\cdot)$.

Q_0^* is the Kato-Ogawa BRST-operator in the space of gauge-invariant Siegel string fields ($Q^* = D\nabla^{\text{GM}} + Q_0^*$); the (pseudo)Hermitian metric $(\langle \cdot|Q_0^*\cdot\rangle)$ is just the restriction of $(\langle \cdot|\cdot\rangle)$ to $\Omega_{\text{BP}}^{\text{SI}}(E_{h,c})_{\text{GI}}^*$. The existence and nilpotency of the Kato-Ogawa BRST-operator on the flat background implies the equality of its dimension to 26.

Equally with the constructed objects with the fixed values of h we shall consider their direct (discrete or continuous) sums over all admissible h (in particular, $\Omega_{\text{BP},c}^{\text{SI}}$ as the space of semi-infinite Banks-Peskin differential forms).

Note that the spaces of Banks-Peskin differential forms, Siegel string fields, gauge-invariant string fields, Bowick-Rajeev vacua are the superspaces and objects on them are also superobjects, but we omit the prefix “super” for simplicity. Formulas for the Virasoro algebra actions in all these spaces in the flat or curved background and for the BRST-operators are contained in [3,4]. The list of data above completely characterizes the free string field theory, the self-interaction claims to introduce additional algebraic structures. The main spaces of the theory (the spaces of the Banks-Peskin differential forms and Siegel string fields) does not depend on the background metric, which determines as geometrodynamic objects of the string field theory: (pseudo)Hermitian metrics on the mentioned spaces and BRST-operators, as the gauge characteristics – the Gauss-Manin string connection and the related covariant differential in the Fock-plus-ghost bundle. Note, however, that the metrics and BRST-operators in the spaces of Banks-Peskin differential forms and Siegel string fields, which are considered as abstract linear spaces, indistinguishable for various backgrounds (the independence of the second quantized string field theory from the background), the metric on the background is restored only under the consideration of the spaces as spaces of geometric objects on the
space of both external and internal degrees of freedom of a string. It allows to give
a traditional for the string field theory interpretation of metrics on the background
and Yang-Mills fields as “low-temperature limits” of fields of closed and open strings
(though the alternatives are possible, for example, to consider the components of
Higgs fields for the Yang-Mills fields of Standard Model in the same sector as a
gravitational one, i.e. in the closed string sector, in view of the presence of the
subsidiary nonmetric degrees of freedom of cohomology of the Virasoro algebra
with coefficients in string fields [4,3]). The flatness conditions for the Gauss-Manin
connection (or, equivalently, for the nilpotency of the covariant differential) are
just the string Einstein equations (which transform into ordinary ones in the “low-
temperature limit”). Therefore, the string Einstein equations may be also defined
as conditions of the existence and the nilpotency of the Kato-Ogawa BRST-operator
in the space of gauge-invariant Siegel string fields.

If the background does not obey the string Einstein equations then the Bowick-
Rajeev vacua do not exist, there are some ways to construct string field theory in
such situation, for example, to use the Bowick-Rajeev instantons [3]. The questions
of (in)dependence of the resulted theories from the background as on the connected
components of the space of solutions of the string Einstein equations as in whole
are discussed in the second paper from the series [3] (see also refs wherein).

To formulate the self-interacting string field theory it is convenient to use the
formalism of the local conformal field algebras, which is based on the ideas of the
noncommutative geometry and which is exposed in details in the original papers
[12] and a review [13] (see also [14]).

Let us consider as in [3] the space \(\Omega_{BP;enl} = \Omega(\tilde{\mathbb{C}}^*, \Omega_{BP;c}^{SI}) \) of enlarged Banks-
Peskin differential forms (here \(\tilde{\mathbb{C}}^* \) is the universal covering of the complex plane
punctured at zero). Let us define also the space of the enlarged Siegel string fields
\(\Omega_{sf;enl} = \Omega(\tilde{\mathbb{C}}^*, (\Omega_{BP;c}^{SI})^*) \). Formulas for the action of the Virasoro algebra in the
spaces \(\Omega_{BP;enl} \) and \(\Omega_{sf;enl} \) are contained in [3]. Let us construct also the enlarged
BRST-operators \(Q_{enl} \) and \(Q_{enl}^* \) as exterior differentials in the spaces \(\Omega_{BP;enl} \) and
\(\Omega_{sf;enl} \) from the BRST-operators \(Q \) and \(Q^* \).

Theorem 1 [3]. The space \(\Omega_{sf;enl} \) admits the structure of a BRST-invariant local
conformal field algebra that is covariant with respect to the Gauss-Manin connection
\(\nabla_{GM} \).

Thus, the space \(\Omega_{sf;enl} \) may be regarded as a noncommutative de Rham complex
(cf.[15,16]) with respect to the enlarged BRST-operators. This complex is called the
enlarged string field algebra. Relations of the enlarged string field algebra to the
Aref’eva-Volovich nonassociative string field algebra, which is realized in the space
of Siegel string fields and which is a certain reduction of the associative enlarged
string field algebra, are described in [3].

The elements of the enlarged string field algebra \(\Omega_{sf;enl} \) form a Lie algebra under
the commutator. This Lie algebra admits a central extension by the imaginary part
of the (pseudo)Hermitian metric \((\cdot|\cdot)\). Consider the connection forms on \(\tilde{\mathbb{C}}^* \) with
values in \((\Omega_{BP;c}^{SI})^* \), i.e. gauge fields on \(\tilde{\mathbb{C}}^* \) valued in Siegel string fields; elements of
\(\Omega_{sf;enl}^0 \) realize the infinitesimal gauge transformations of these fields. These gauge
transformations are closed (so we are in the situation of the Witten’s string field
theory of 1986 [5]), the corresponding Lie algebra is called the Witten string Lie
algebra and is denoted by \(\odot \) (the circled arrow \(\odot \) is the code for “string”). The
space of ∇_{GM}-covariant elements of the Lie algebra \mathfrak{wit} is denoted by \mathfrak{wit}_{GM} and is also called the Witten string Lie algebra. The Witten string Lie algebra \mathfrak{wit} is just the central extension of the commutator algebra of the zero component of the enlarged string field algebra, which is described above.

The are canonical (Lie-Berezin) Poisson brackets on the space \mathfrak{wit}^* (or \mathfrak{wit}_{GM}^*) dual to the Witten string Lie algebra \mathfrak{wit} (or \mathfrak{wit}_{GM}), which can be quantized as such.

The Lie-Berezin brackets in the coadjoint representation of the Witten string Lie algebra may be reduced to the nonpolynomial brackets in the space of all functionals on the Banks-Peskin differential forms (or Bowick-Rajeev vacua), a procedure of the Hamiltonian reduction is described in [3] and follows the general scheme of reduction of Lie-Berezin brackets (see, for example, [17]). These nonpolynomial brackets generate a Lie quasi(pseudo)algebra (quasialgebra in the terminology of [18], see also [19], and pseudoalgebra in the terminology of [17]) of infinitesimal nonpolynomial gauge transformations. The nonpolynomial transformations on the space of Bowick-Rajeev vacua were considered in [7]; they generate a Lie quasi(pseudo)algebra, which is denoted by \mathfrak{zwie}_{GM} and is called the Zwiebach string Lie quasi(pseudo)algebra; the related quasi(pseudo)algebra on the space of Banks-Peskin differential forms is denoted by \mathfrak{zwie} and has the same name. Nonpolynomial brackets are realized in functionals on the space \mathfrak{zwie}^* (or \mathfrak{zwie}_{GM}^*) dual to the Lie quasi(pseudo)algebra \mathfrak{zwie} (or \mathfrak{zwie}_{GM}). The Zwiebach string Lie quasi(pseudo)algebra may be obtained from the Aref’eva-Volovich nonassociative string field algebra as its “commutator” algebra. More precisely, the higher operations of the Sabinin-Mikheev multialgebra [20] constructed from the Zwiebach string Lie quasi(pseudo)algebra are just the higher commutators in the Aref’eva-Volovich nonassociative string field algebra.

Thus, the nonpolynomial string field theory [7] in the space of Banks-Peskin differential forms (or Bowick-Rajeev vacua) can be obtained from the cubic Witten-type string field theory [5] in the enlarged space by use of the Hamiltonian reduction. Moreover, the approach of the papers [7] on the nonpolynomial field theory appears to be equivalent to the approach of I.Ya.Aref’eva and I.V.Volovich [6] based on the nonassociative string field algebra.

2. Quantum group structure of a self-interacting string field

Note that there are two ways to quantize the self-interacting string field. First, one may quantize the nonpolynomial Poisson brackets themselves, for instance in the formalism of asymptotic quantization [17]. Second, quantum theory may be obtained by a quantum reduction of the quantized Lie-Berezin brackets on the space \mathfrak{wit}_{GM}; in this case the algebra of quantum observables is identified with certain quantum reduction of the universal enveloping algebra $U(\mathfrak{wit}_{GM})$ of the Witten string Lie algebra. Both variants are of a undoubtful interest from the mathematical point of view and look rather natural. However, below we shall try to unravel a very important nuance significantly changing the initial “naïve” point of view.

We stress that the objects constructed above describe a self-interacting string field theory only on the tree level, i.e. define the so-called “classical string field theory” in the terminology of [21]. To describe the string field theory completely and consistently in the nonperturbative mode it is necessary to use the following
crucial result.

Theorem 2 [3]. The Witten string Lie algebra $\mathcal{wit}_{\chi \text{GM}}$ (or \mathcal{wit}) admits the structure of a Lie bialgebra.

Proof of this theorem is based on the auxiliary statement that the enlarged string field algebra is a crossing-algebra [3].

Thus, there is explicited a quantum group structure of a self-interacting string field theory on the quasiclassical level (cf.[22,17]). So on the quantum level [23] the algebra of observables is described by the quantum universal enveloping algebra $\mathcal{U}_q(\mathcal{wit}_{\chi \text{GM}})$ (or $\mathcal{U}_q(\mathcal{wit})$), or, precisely, by some its quantum reduction, however, the explicit construction of such infinite dimensional Hopf algebra is not known. Before to pass to a description of the quantum algebra of observables for the self-interacting string field theory in the concrete cases let us examine the process of reduction on the quasiclassical level, otherwords, determine in what the Witten string Lie bialgebra is transformed under the reduction of the Lie-Berezin brackets constructed from the Witten string Lie algebra to the nonpolynomial Poisson brackets (remind, that the Witten string Lie algebra itself transforms into the Zwiebach string Lie quasi(pseudo)algebra).

Theorem 3. The Zwiebach string Lie quasi(pseudo)algebra $\mathcal{wit}_{\chi \text{GM}}$ (or \mathcal{wit}) admits the structure of the cojacobian quasibialgebra.

Cojacobian quasibialgebras [24] form a class of Lie protobi algebras dual to the jacobian quasibialgebras (Lie quasibialgebras in the terminology of V.G.Drinfeld [25]).

To prove the theorem one should apply a reduction to the double of the witten string Lie bialgebra with a translation invariant bracket.

Remind that the cojacobian quasibialgebras are the infinitesimal objects for the Poisson quasigroups [24] (whereas the jacobian quasibialgebras – for quasiPoisson Lie groups [25]). Thus, the Zwiebach string Lie quasibialgebra realizes a quasiclassical version of the nonlinear geometric algebra [26] on the infinitesimal level, whose purely quantum version is not known nowadays. A relation between the structure of cojacobian quasibialgebra and such object of the nonlinear geometric algebra as Sabinin-Mikheev multialgebra was explicated in [24]. A specific character of the infinite dimensional situation is in the fact that perhaps none global quasigroup corresponds to the mentioned infinitesimal objects.

Let us pass now from the quasiclassics to the explicit construction of the (enlarged) quantum algebra of observables $\mathcal{U}_q(\mathcal{wit}_{\chi \text{GM}})$ in the concrete cases (and without account of ghosts, i.e. in the Fock sector, for simplicity). Consider a flat compact background isomorphic to the quotient of the euclidean space by the root lattice of the semisimple Lie algebra \mathfrak{g}. In this case the enlarged string field algebra in the space of enlarged gauge-invariant Siegel string fields $\Omega^0_{\text{sf;enl}}$ (more precisely, in its Fock sector $\Omega^0_{\text{sf;enl};F}$) is a local conformal field algebra received by a renormalization of the pointwise product of operator fields $\Omega^0_{\text{sf;enl}}$ (more precisely, in its Fock sector $\Omega^0_{\text{sf;enl};F}$) is a local conformal field algebra received by a renormalization of the pointwise product of operator fields [3,13,14] (see also [27]) from the vertex operator algebra constructed by this lattice [28]. Hence, the linear space $\Omega^0_{\text{sf;enl};F}$ may be identified with the space $\mathcal{U}(\hat{\mathfrak{g}}_+))[[t]]$ of semi-infinite formal power series with coefficients in the universal enveloping algebra of the positive (nonnegative) component of the Kac-Moody algebra \mathfrak{g}_+. Note that the vertex operator algebra is generated by its currents (primary fields of spin 1), the components of which from the Kac-Moody algebra \mathfrak{g}, therefore the enlarged string
field algebra is a quotient of the universal enveloping algebra $U(\hat{g})$ of the Lie algebra \hat{g} by its ideal J. Therefore, the Witten string Lie algebra $\mathcal{C}^\mathfrak{wit}_{\nabla GM,F}$ (the symbol F means the Fock sector) is a quotient of the commutator algebra $U_{[\cdot,\cdot]}(\hat{g})$ by the ideal $J_{[\cdot,\cdot]}$. The quantum version of the Witten string Lie algebra can be obtained in the following way: consider the quantum universal enveloping algebra $U_q(\hat{g})$ supplied by the q-commutator; in view of an existence of the q-vertex construction for this algebra, the ideal J can be deformed to an ideal J_q of the algebra $U_q(\hat{g})$, which is closed under the q-commutator; the relations between the elements of $U_q(\hat{g})/J_q$ defined by q-commutator are just the defining ones in the quantum Witten string algebra $U_q(\mathcal{C}^\mathfrak{wit}_{\nabla GM,F})$.

Note that in this important for the string theory class of examples on the intermediate step of the construction of the quantum Witten string algebra realizing a quantum version of gauge symmetries of string fields an object (enlarged string field algebra), which is natural to be considered from point of view of the 2-loop formalism in theories of strings and integrable systems [29], appeared. Moreover, it will be too interesting to examine how the modular invariance of the first quantized string explicates itself in the quantum group formalism of the nonperturbative string field theory.

Thus, various quantum group structures of the string field theory as on the quasiclassical as on the quantum levels were explored in the paper. General statements were formulated, examples were examined, new aspects of the theory of quantum groups were demonstrated (i.e. relations to the nonlinear geometric algebra, namely, the quasiclassical versions of so-called “quantum quasigroups” and “quantum loops”) in the context of the second quantization of a string under a transition from the tree level to the consistent account of the loop effects in nonperturbative string field theory.

REFERENCES

[1] Green M., Schwarz J., Witten E., Superstring theory. Cambridge Univ. Press, Cambridge, 1987.
[2] Morozov A.Yu., Perelomov A.M., Current Probl. Math., Fundam. Directions. M., VINITI, 1989;
Morozov A.Yu., Elem. Part. Atom. Nuclei 23(1) (1992) 174-238;
Morozov A.Yu., Soviet Phys. Uspekhi 35 (1992) 671-714.
[3] Juriev D., Alg. Groups Geom. 11 (1994) 145-179 [e-version: hep-th/9403068];
Juriev D., Lett. Math. Phys. 22 (1991) 1-6, 11-14;
Juriev D., Lett. Math. Phys. 19 (1990) 355-356; 19 (1990) 59-64.
[4] Witten E., Nucl. Phys. B268 (1986) 253-294.
[5] Aref’eva I.Ya., Volovich I.V., Phys. Lett. B182 (1986) 159-163, 312-316; 189 (1987) 488.
[6] Saadi M., Zwiebach B., Ann. Phys. (NY) 192 (1989) 213-227;
Kugo T., Kunimoto H., Suehiro K., Phys. Lett. B226 (1989) 48-54;
Sonoda H., Zwiebach B., Nucl. Phys. B331 (1990) 592-628;
Kugo T., Suehiro K., Nucl. Phys. B337 (1990) 434-466;
Zwiebach B., Commun. Math. Phys. 136 (1991) 83-118.
[7] Volovich I.V., Class. Quant. Grav. 1987. V. 4. P. 83;
Vladimirov V.S., Lett. Math. Phys. 1993. V. 27. P. 123.
[9] Segal G., Commun. Math. Phys. 80 (1981) 301-342;
Kirillov A.A., Lect. Notes Math. 970 (1984) 49-67;
Kirillov A.A., Juriev D.V., Funct. Anal. Appl. 20 (1986) 322-324; 21 (1987) 284-293;
Witten E., Commun. Math. Phys. 114 (1988) 1-53;
Kirillov A.A., in “Infinite-dimensional Lie algebras and quantum field theory”. World
Kirillov A.A., Juriev D.V., J.Geom.Phys. 5 (1988) 351-364;
Kirillov A.A., in “Operator algebras, unitary representations, enveloping algebras and invariant theory”. Birkhäuser, Boston, 1992, pp.73-83;
Juriev D., Adv.Soviet Math. 2 (1991) 233-247;
Kirillov A.A., Contemp.Math. 145 (1993) 33-63.
[10] Kirillov A.A., Funkt.Anal.Appl. 21(2) (1987) 122-125.
[11] Juriev D.V., St.-Petersburg Math.J. 2 (1991) 401-417; Juriev D., Russian J.Math.Phys. 2 (1994) 111-121.
[12] Juriev D., Commun.Math.Phys. 138 (1991) 569-581, 1992. V.146. P.427; J.Funct.Anal. 1991. V.101. P.1-9.
[13] Juriev D.V., Russian Math.Surveys 46(4) (1991) 135-163.
[14] Juriev D.V., Theor.Math.Phys. 101 (1994) 1387-1403.
[15] Connes A., Introduction à la géométrie non commutative. InterEditions, Paris, 1990.
[16] Manin Yu., Topics in non-commutative geometry. Princeton Univ.Press, Princeton, NJ, 1991.
[17] Karasev M.V., Maslov V.P., Nonlinear Poisson brackets. geometry and quantization. Amer.Math.Soc., Providence, RI, 1993.
[18] Batalin I., J.Math.Phys. 22 (1981) 1837-1850.
[19] Mikheev P.O., in “Some applications of differential geometry”. Moscow, 1985, pp.85-93 [VINITI: 4531-85Dep.];
Mikheev P.O., Trans.Inst.Phys. Estonian Acad.Sci. 66 (1990) 54-66.
[20] Subinin L.V., Mikheev P.O., Soviet Math. 36 (1988) 545-548.
[21] Zwiebach B., Nucl.Phys.B390 (1993) 33-152.
[22] Drinfeld V.G., DAN SSSR 268(2) (1983) 285-287;
Semenov-Tian-Shanskii M.A., Funkt.Anal.Appl. 17 (1983) 259.
[23] Drinfeld V.G., Proc.Intern.Congr.Math. (1986), Berkeley, California, vol.1, pp.789-820;
Reshetin N.Yu., Takhtadzhan L.A., Faddeev L.D., St.-Petersburg Math.J. 1 (1990) 193-225;
Isaev A.P., Elem.Part.Atom.Nuclei 26 (1995) 1204-1263;
Zhelobenko D.P., Representations of reductive Lie algebras. Moscow, Nauka, 1994.
[24] Bangoura M., C.R.Acad.Sci.Paris I 319 (1994) 975-978;
Bangoura M., Thèse l’Univ.Sci.Tech.Lille (1995) no.1387.
[25] Drinfeld V.G., St.-Petersburg Math.J. 1 (1990) 1419-1457;
Kosmann-Schwarzbach Y., C.R.Acad.Sci.Paris I 312 (1991) 391-394;
Kosmann-Schwarzbach Y., in “Mathematical aspects of field theory”. Amer.Math.Soc., Providence, RI, 1992, pp.459-489.
[26] Sabinin L.V., in “Webs and quasigroups”. Kalinin [Tverp1], 1988, pp.32-37;
Sabinin L.V., Methods of nonassociative algebra in differential geometry. Supplement to Russian transl.of Kobayashi S., Nomidzu K., Foundations of differential geometry. V.1. Moscow, Nauka, 1982;
Sabinin L.V., Trans.Inst.Math.Siberian Branch USSR Acad.Sci. 14 (1989) 208-221;
Mikheev P.O., Sabinin L.V., in “Quasigroups and loops. Theory and applications”. Berlin, Heldermann Verlag, 1990, pp.357-430.
[27] Juriev D.V., Theor.Math.Phys. 93 (1992) 1101-1105.
[28] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster. Acad. Press, New York, 1988;
Frenkel I.B., Huang Y.-Z., Lepowsky J., Memoires AMS. 1993. V.494;
Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators. Birkhäuser, 1993;
Kac V.G., Vertex operator algebras for beginners. Birkhäuser, 1996.
[29] Morozov A.Yu., Soviet Phys.Uspekhi 37(1) (1994) 1-109.
APPENDIX: THE ORIGINAL RUSSIAN VERSION OF ARTICLE

СТРУННАЯ ТЕОРИЯ ПОЛЯ И КВАНТОВЫЕ ГРУППЫ. I. КВАНТОВОГРУППОВЫЕ СТРУКТУРЫ В ГЕОМЕТРИЧЕСКОМ КВАНТОВАНИИ САМОДЕЙСТВУЮЩЕГО СТРУННОГО ПОЛЯ

Д.В. Юрьев

Центра математической физики и информатики “Таласса Этерия”,
ул. Миклухо-Маклая 20-180, Москва 117437 Россия.
E-mail: denis@juriev.msk.ru

q-alg/9708009

РЕЗЮМЕ. Данная работа посвящена описанию квантовогрупповых структур в геометрическом квантовании самодеёсвующего струнного поля, возникающих при переходе с древесного уровня теории к учету петлевых эффектов в непертурбативной квантовополевоой теории струн.

Теория (супер)стрин, представляющая собою наиболее современный и перспективный подход к объединению Стандартной Модели или ее суперобщённой с квантовой гравитацией в единую последовательную теорию элементарных частиц и их взаимодействий, существует в двух видах: как теория первичников квантованных струн (струнная квантовая механика) и как струнная теория поля (теория вторичников квантованных струн) [1,2]. К числу достоинств первого подхода наряду с техническими обстоятельствами относится прозрачность геометрического описания процессов взаимодействия частиц, в то время как ее существенными недостатками являются, во-первых, трудность последовательного учета непертурбативных эффектов, во-вторых, явная зависимость формулировки теории от метрики и топологии бэкграунда. Обе трудности препятствуют использованию этой теории как для задачи квантовой гравитации, так и для единого квантового описания гравитации и поле́в Янга–Миллса Стандартной Модели и ее суперобщенности. Второё подход в теории струн, струнная теория поля, комбинирующая струнную и квантовополевую подходы, свободен от указанных недостатков (и, кроме того, представляет интерес для квантовополевоой теории вихрёв в квантовых жидкостях), однако, его сравнительная сложность и громоздкость при конечных вычислениях, а также обилие разнородных и внешне не связанных между собою концепций делали его применение до недавнего времени затруднительным. В работах автора [3] (см. также [4]) был дан единый формализм струнной теории поля, основывающийся на геометрическом квантовании и позволивший связать между собою другие известные подходы, например, базирующуюся на некоммутативной геометрии полиномиальную (кубичную) струнную теорию поля Виттена 1986 года [5], подход Арефьев — Воловича, центральное место в котором занимает неассоциативная струнная алгебра [6], неполиномиальные струнные теории Цвиваха и других авторов [7]. При этом оказалось,
что при всём многогранности и изяществе алгебраической структуры теории первичноквантованных струн, включающей в себя алгебры Каца–Муди, алгебру Вирасоро C_{vir}, группу Вирасоро–Ботта Vir, полугруппу Неретина Ner, мантию Mantle(Vir) группы Вирасоро–Ботта, конформную категорию Train(Vir), шлеёф этой группы, и конформный модулярный функционар среди прочих (см.например, [1-3] и ссылки в них), алгебраическая структура струнной теории поля не менее интересна и содержательна, а независимость самой теории от метрики и топологии бэкграунда делает ее не только иногда более просто, чем теория первичноквантованных струн (многопятлевое вычисления или вычисления на общем искривленном бэкграунде вне сравнительно узкого класса известных решений струнных уравнений Эйнштейна в котором более чем трудоемки), но и позволяющего учитывать эффекты типа перестроеек бэкграунда или бэкграунды с ненеобходимой топологической и аналитической структурой рактального типа (бесконечнорождённой фундаментальной группы). Так во второй работе из неооконченного цикла [3] была выявлена в общих чертах квантовогрупповая структура самодействующего струнного поля (что, предположительно, может связывать имеющиеся струннополовые подходы с адекватным формализмом Владимира–Воловича [8] и с идеями квантования пространства-времени в целом, см.например, [9:§§33,34]). Более детальному обсуждению связи струнной теории поля с теорией квантовых групп и посвящена данная работа. В первое части обсуждаются квантовогрупповые структуры в геометрическом квантовании самодействующего струнного поля, в то время как вторая часть будет посвящена квантовой динамике переходных процессов в струнной теории поля (т.н. “струнное космологическое эволюции”). В целом, можно сказать, что квантовогрупповые явления возникают естественным образом при переходе с древесного уровня в струнной теории поля к последовательному непертурбативному полевому описанию петлевых эффектов.

1. Бесконечномерная некоммутативная геометрия самодействующего струнного поля [3]

В данном параграфе кратко излагаются основные понятия струнной теории поля (для простоты бозонного, суперслучая требует незначительных естественных модификаций) в формализме геометрического квантования применительно к самодействующему струнному полю (см.[3], а также [4]).

Основными геометрически (геометродинамическими) данными струнной теории поля (как для свободного поля, так и для самодействующего) являются:

– Бесконечномерное линейное пространство Q (или ему двоенное Q^*) внешних степеней свободы струны. Координаты x^μ на Q суть теориоровские коэффициенты функции $x^\mu(z)$, определяющих мировою лист струны в комплексифицированном пространстве.
– Многообразие флагов группы Вирасоро-Ботта $M(\text{Vir})$ внутренних степеней свободы струны, отождествляемое посредством конструкции Кирпилова [11] с классом S однолистных функций $f(z)$; естественные координаты на S – коэффициенты c_k теориоровского разложения однолистно
функции $f(z): f(z) = z + c_1z^2 + c_2z^3 + c_3z^4 + \ldots + c_nz^{n+1} + \ldots$.

- Пространство \mathcal{C} универсальной деформации комплексного диска [12] с $M(Vir)$ в качестве базы и слоем, изоморфными единичному комплексному диску D_+, координаты на \mathcal{C} суть $z, c_1, c_2, c_3, \ldots, c_n, \ldots$, где c_k – координаты на базе и z – координата в слоях (пространство универсальной деформации как расслоение допускает естественную тривиализацию).

- Пространство $M(Vir)\times Q^*$ как внешних, так и внутренних степеней свободы струны, или, что эквивалентно, расслоение над $M(Vir)$, ассоциированное с $p : \mathcal{C} \mapsto M(Vir)$, чьи слои – линейные пространства $\text{Map}(\mathcal{C}/M(Vir); \mathbb{C}^n)^*$, двоевенные к пространствам отображений слоев расслоения $p : \mathcal{C} \mapsto M(Vir)$ в \mathbb{C}^n (здесь \mathbb{C}^n – локальная карта на бёклраунде, см. [3,4]).

- Пространство $\Omega^{\text{SI}}_{BP}(E_{h,c})$ полубесконечных дифференциальных форм Бэйнка–Пескина, эти формы суть некоторые дифференциальные объекты на $M(Vir)\times Q^*$ довольно сложно структуры [3,4], священные с расслоением предквантования на $M(Vir)$, где h и c – данные предквантования, в частности c – центральный заряд (вообще говоря, отличный от размерности бёклрауна).

- Q – естественный геометрический БРСТ-оператор на $\Omega^{\text{SI}}_{BP}(E_{h,c}); Q^2 = 0$, если и только если $c = 26$ (при этом размерность бёклрауна произвольна).

- Пространство $\Omega^{\text{SI}}_{BP}(E_{h,c})^*$ струйных полей Зигеля с (псевдо)эйрмитовыми метриками $\langle \cdot | \cdot \rangle$.

- Q^* – БРСТ-оператор Като–Огавы в пространстве струйных полей Зигеля, определяющий Q; он определяет новую (псевдо)эйрмитовую метрику $\langle \langle \cdot | \cdot \rangle \rangle = \langle \langle | Q^* | \rangle \rangle$ на $\Omega^{\text{SI}}_{BP}(E_{h,c})^*$.

- $\text{FG}_{h,c}(M(Vir))$ – фоковско-гостовое расслоение над $M(Vir)$, чьи сечения – полубесконечные дифференциальные формы Бэйнка–Пескина.

- Структура связности Гаусса–Манина ∇^{GM}_G в расслоении $\text{FG}_{h,c}(M(Vir))$, ковариантно постоянные сечения фоковско-гостового расслоения суть вакуумы Бовика–Раджива.

- Квариантный дифференциал D^{FGM}_G – ковариантный дифференциал по отношению к связности Гаусса–Манина. На плоском бёклраунде его нильпотентность влечет равенство размерности бёклрауна и центрального заряда.

- Пространство $\Omega^{\text{SI}}_{BP}(E_{h,c})_{\text{G1}}^*$ калибровочно-инвариантных струйных полей Зигеля, двоевенной к пространству вакуумов Бовика–Раджива: это пространство наделяется (псевдо)эйрмитовой метрики $\langle \langle | \cdot \rangle \rangle_0$, редукция метрики $\langle | \cdot \rangle$.

- Q^0_G – БРСТ-оператор Като–Огавы в пространстве калибровочно-инвариантных струйных полей Зигеля ($Q^* = D^{\text{FGM}}_G + Q^0_\text{G}$); (псевдо)эйрмитовая метрика $\langle \langle | \cdot \rangle \rangle$ – редукция $\langle | \cdot \rangle$ на $\Omega^{\text{SI}}_{BP}(E_{h,c})_{\text{G1}}^*$. Существование и нильпотентность БРСТ-оператора Като–Огавы на плоском бёклраунде влечет равенство его размерности числу 26.

Наряду с построенными объектами при фиксированных значениях h будем рассматривать их прямые (дискретные или непрерывные) суммы по всем допустимым h (в частности, $\Omega^{\text{SI}}_{BP,c}$ – пространство полубесконечных форм Бэйнка–Пескина).

Отметим, что пространства дифференциальных форм Бэйнка–Пескина, струйных полей Зигеля, калибровочно-инвариантных струйных полей, ва-
куумов Бовика–Раджива являются суперпространствами, и объекты на них также являются суперобъектами, но мы для краткости опускаем приставку “супер”. Формулы для дейстиви алгебры Вирасоро во всех ука
занных пространствах как в плоском, так и в искривленном бэкгрunde, а также для БРСТ-операторов содержатся в [3,4]. Приведённый список данных полностью характеризует свободную струнную теорию поля, само
действие требует введения дополнительных алгебраических структур. Основные пространства теории (пространства дифференциальных форм Бёнкса–Пескина и струнных полеё Зигеля) не зависят от метрики бэкгра
унда, которая определяет как геометродинамические объекты струнной теории поля: (псевдо)эриитовы метрики на указанных пространствах и БРСТ-операторы, так и калибровочные характеристики – струнную связ
ность Гаусса–Манина и соответствующей ковариантной дифференциала в фоковском-постоянном расслоении. Отметим, однако, что метрики и БРСТ-операторы в пространствах дифференциальных форм Бёнкса–Пескина и струнных полеё Зигеля, рассматриваемых как абстрактные линейные про
странства, неразличимы для различных бэкграундов (независимость тео
рии вторичноквантованных свободных струн от бэкграунда), метрика на бэкграунде восстанавливается при рассмотрении указанных пространств как пространств геометрических объектов на пространстве внешних и внут
ренних степенё свободы струны. Это позволяет дать традиционную для струнной теории поля интерпретацию метрик на бэкграунде и полеё Янга–Миллса как “низкотемпературных пределов” полеё замкнутых и от
крытых струн (хотя возможны альтернативы, например, рассматривать компоненты игсоевских полеё для полеё Янга–Миллса Стандартно/Мо
упа в том же секторе, что и гравитационное, т.е. в секторе замкну
тых струн, в силу существования дополнительных неметрических степенё свободы когомологиё алгебры Вирасоро с коэффициентами в струнных полях [4,3]). Условия плоскости связности Гаусса–Манина (или, что то же самое, нильпотентности ковариантного дифференциала) суть струнные уравнения Эёнштейна (переходящие в обычные в “низкотемпературном пределе”). Как следствие, струнные уравнения Эёнштейна можно опре
делить и как условия существования и нильпотентности БРСТ-опера
to Kato–Огавы в пространстве калибровочно-инвариантных струнных полеё Зигеля.

Если бэкграунд не удовлетворяет струнным уравнениям Эёнштейна, то вакуумы Бовика–Раджива не существуют, в этой ситуации есть ряд рецеп
тов построения струнной теории поля, например, использование инстанто
нов Бовика–Раджива [3]. Вопросы зависимости (независимости) получа
ющихихся теоре от бэкграунда как на связных компонента пространства решениё струнных уравнений Эёнштёена, так и в целом, обсуждаются во второё из работ [3] (и ссылки в неё).

Для формулировки теории самодействующего струнного поля удобно использовать опирающёйся на идеи некоммутативной геометрии формализм локальных конформных полевых алгебр, подробно изложенный в ори
гинальных работах [13] и обзоре [14] (см. также [15]).

Рассмотрим, следуя [3], пространство $\Omega_{BP; enl} = \Omega^*(\tilde{C}^*, \Omega^S_{BP; c})$ расширенных дифференциальных форм Бёнкса–Пескина (здесь \tilde{C}^* – универсаль

ное накрытие проколото в нулев комплексной плоскости). Определим также пространство расширенных струнных полей Зигеля $\Omega_{\text{sf, enl}} = \Omega(\tilde{C}^*, (\Omega_{\text{BP, c}}^\text{SI})^*)$. Формулы для действия алgebры Вирасоро в пространствах $\Omega_{\text{BP, enl}}$ и $\Omega_{\text{sf, enl}}$ содержатся в [3]. Построим также расширенные БРСТ-операторы Q_{enl} и Q^*_{enl} как внешние дифференциалы в пространствах $\Omega_{\text{BP, enl}}$ и $\Omega_{\text{sf, enl}}$ исходя из БРСТ-операторов Q и Q^*.

Теорема 1 [3]. Пространство $\Omega_{\text{sf, enl}}$ допускает структуру БРСТ-инвариантной локальной конформной полево-алгебры, ковариантной по отношению к струнной связности Гаусса–Манина ∇_{GM}.

Таким образом, пространство $\Omega_{\text{sf, enl}}$ может рассматриваться как некоммутативный комплекс де Рама (ср., [16,17]) по отношению к расширенным БРСТ-операторам. Этот комплекс называется расширенной струнной полевой алгеброй. Связь расширенной струнной полевой алгебры с неассоциативной струнной полевой алгеброй Арефьеева–Воловича, реализующейся в пространстве струнных полей Зигеля и представляющей собой некоторую снимающую расширение редукцию ассоциативной расширенной струнной полевой алгебры, описана в [3].

Элементы расширенной струнной полевой алгебры $\Omega_{\text{sf, enl}}$ образуют алгебру Ли относительно коммутатора. Эта алгебра Ли допускает центральное расширение при помощи мимо части (псевдо)эриптовой метрики $(\langle \cdot, \cdot \rangle)$. Рассмотрим форму связности на \tilde{C}^* со значениями в $(\Omega_{\text{BP, c}}^\text{SI})^*$, т.е. калибровочные поля на \tilde{C}^* со значениями в струнных полях Зигеля; элементы $\Omega^0_{\text{sf, enl}}$ реализуют инфинитезимальные калибровочные преобразования этих полей. Эти калибровочные преобразования замкнуты (и тем самым мы оказываемся в ситуации струнной теории поля Виттена 1986 года [5]), соответствующая алгебра Ли называется виттеновской струнной алгеброй Ли и обозначается \mathcal{C}_{wit} (круговая стрелка \mathcal{C} является символом струны). Пространство ∇_{GM}-ковариантных элементов алгебры Ли \mathcal{C}_{wit} обозначается $\mathcal{C}_{\text{wit}}^\nabla_{\text{GM}}$ и также называется виттеновской струнной алгеброй Ли. Виттеновская струнная алгебра Ли \mathcal{C}_{wit} есть в точности центральное расширение коммутаторной алгебры нулевого компонента расширенной струнной полевой алгебры, описанное выше.

На пространстве $\mathcal{C}_{\text{wit}}^*$ (или $\mathcal{C}_{\text{wit}}^*_{\text{GM}}$), двойственным к виттеновской струнной алгебре Ли \mathcal{C}_{wit} (или $\mathcal{C}_{\text{wit}}^*_{\text{GM}}$) заданы канонические скобки Пуассона – скобки Ли–Березина, которые квантуются как таковые. Скобки Ли–Березина в коприсоединении представлении виттеновской струнной алгебры Ли могут быть редуцированы до неполиномиальных скобок в пространстве функционалов на дифференциальных формах Бэнкса–Пескина (или вакуумах Бовика–Раджива), процедура гамильтоновской редукции описана в [3] и следует общему схеме редукции скобок Ли–Березина (см. например, [18]). Эти неполиномиальные скобки порождают квази(псевдо)алгебру Ли (квазиалгебру в терминологии [19], см. также [20], и псевдоалгебру в терминологии [18]) инфинитезимальных неполиномиальных калибровочных преобразований. Эти неполиномиальные преобразования на пространстве вакуумов Бовика–Раджива были рассмотрены в [7]; они образуют квази(псевдо)алгебру Ли, обозначаемую $\mathcal{C}_{\text{wit}}^\nabla_{\text{GM}}$ и называемую цилиндровой струнной квази(псевдо)алгеброй Ли; соответственно...
ствующая квази(псевдо)алгебра Ли на пространстве дифференциальных форм Бёнка–Пескина обозначается O_{Zwie} и имеет то же название. Не-полиномиальные скобки Пуассона реализуются в функционалах на пространстве $O_{\text{Zwie}}^* (или O_{\text{Zwie}}_{\text{GM}}^*)$, двоёственным к квази(псевдо)алгебре Ли O_{Zwie} (или $O_{\text{Zwie}}_{\text{GM}}$). Цвибаховская струнная квази(псевдо)алгебра Ли может быть получена из неассоциативной струнной полево́й алгебры Арефьево́–Воловича как “коммутаторная” алгебра. Более точно, высшие операции в мультиалгебре Сабинина–Михеева [21], построенного по цвибаховской струнной квази(псевдо)алгебре Ли, суть в точности высшие коммутаторы в неассоциативной струнной полево́й алгебре Арефьево́–Воловича.

Таким образом, неполиномиальная струнная теория поля [7] в пространстве дифференциальных форм Бёнка–Пескина (или вакуума Бовика–Раджива) может быть получена из кубической струнной теории виттеновского типа [5] в расширенном пространстве при помощи гамильтоновой редукции. При этом подход работ [7] по неполиномиальной теории поля оказывается эквивалентным подходу И.Я.Арефьево́ и И.В.Воловича [6], основывающемуся на неассоциативной струнной полево́й алгебре.

2. Квантовогрупповая структура самодеёствующего струнного поля

Заметим, что квантование самодеёствующего струнного поля может осуществляться двояким образом. Во-первых, можно квантовать сами неполиномиальные скобки Пуассона, например, в формализме асимптотического квантования [18]. Во-вторых, квантовая теория может быть получена при помощи квантовой редукции квантованных скобок Ли–Березина на пространстве $O_{\text{wit}}_{\text{GM}}$; при этом алгебра квантовых наблюдаемых отождествляется с некоторо́й квантово́й редукцио́й универсальной обертываю́ще́й алгебры $U(C_{\text{wit}}_{\text{GM}})$ виттеновской струнной алгебры Ли. Оба варианта представляют несомненный интерес с математической точки зрения и выглядят достаточно естественными. Однако, ниже мы постараемся выявить один немаловажный нюанс, значительно изменяющий первоначально́й “наивный” взгляд на предмет.

Отметим, что объекты, построенные выше, описывают самодеёствую́щую струнную теорию поля только на древесном уровне, т.е. задают т.н. “классическую струнную теорию поля” в терминологии [22]. Для того чтобы описать струнную теорию поля полностью и последовательно непертурбативно, необходимо использовать следующий ключево́й результат.

Теорема 2 [3]. **Виттеновская струнная алгебра Ли $O_{\text{wit}}_{\text{GM}}$ (или O_{wit}) допускает структуру биалгебры Ли.**

Доказательство эта теоремы опирается на промежуточное утверждение о том, что расширенная струнная полевая алгебра является кроссинг-алгебро́ [3].

Итак, на квазиклассическом уровне (ср.[23,18]) выявлена квантовогрупповая структура самодеёствующей струнной теории поля. Таким образом, на квантовом уровне [24] алгебра наблюдаемых описывается квантово́й универсально́й обертываю́ще́й алгебро́й $U_q(C_{\text{wit}}_{\text{GM}})$ (или $U_q(O_{\text{wit}})$), или, точнее, ее некоторо́й квантово́й редукцио́й, однако, явная конструкция
этоё бесконечномерной алгебры Хопфа неизвестна. Прежде, чем перейти к описанию квантовой алгебры наблюдаемых самодействующей струнної теории поля в конкретных случаях, разберем процесс редукции на кванzikлассическом уровне, иными словами, выясним, во что преобразуется виттеновская структурная бинальгебра Ли при редукции скобок Ли–Березина, отвечающих виттеновскому струнному алгебре Ли, до неполиномиальных скобок Пуассона (напомним, что сама виттеновская структурная алгебра Ли переходит в цвияховскую структурную квази(псевдо)алгебру Ли).

Теорема 3. Цвияховская структурная квази(псевдо)алгебра Ли $\mathcal{O}_3\text{wit}_{\text{CGM}}$ (или $\mathcal{O}_3\text{wit}$) обладает структуро-коякобиево-квазиалгебрами.

Коякобиевы квазиалгебры [25] являются классом протобиалгебр Ли, двоёственным якобиевым квазиалгебрами (квазиалгебрами Ли в терминологии В.Г. Дринфельда [26]).

Для доказательства теоремы достаточно применить редукцию к двум виттеновской структурной бинальгебры Ли с трансляционно-инвариантно-скалярной.

Напомним, что коякобиевы квазиалгебры являются инфинитезимальным объектом для пуссоновских квазигрупп [25] (в то время как якобиевы квазиалгебры – для квазикусиновских групп Ли [26]). Таким образом, цвияховская структурная квазиалгебра Ли реализует на инфинитезимальном уровне квантическую версию нелинейной геометрической алгебры [27], часто квантовая версия которой до сих пор не известна. Связь между структуро-коякобиево-квазиалгебры и таким объектом нелинейной геометрической алгебры как мультиалгебра Сабинина–Михеева выведена в [25]. Специфика бесконечномерной ситуации проявляется в том, что, по-видимому, указанным инфинитезимальным объектам не соответствует никакая глобальная квазигруппа.

Перейдем теперь от квантической к явному построению (расширенной) квантовой алгебры наблюдаемых $U_q(\mathcal{O}_q\text{wit}_{\text{CGM}})$ в частных случаях (и для простоты без учета гостей, т.е. в фоковском секторе). Рассмотрим плоский компактный бэкграунд, изоморфный фактору евклидова пространства по решетке корне-полупростой алгебры Ли g. В этом случае расширенная структурная полевая алгебра в пространстве расширенных калибровочно-инвариантных структурных поле́й Зигеля $\Omega^0_{sf;enl}$ (точнее, в ее фоковском секторе $\Omega^0_{sf;enl;F}$) является локально-конформной полевой алгеброй, полученной перенормированной поточечного произведения операторных поле́й [3,14,15] (см.также [28]) из алгебры вершинных операторов, построенного по этому решетке [29]. Следовательно, линейное пространство $\Omega^0_{sf;enl;F}$ может быть отождествлено с пространством $U(g_+)[t]\omega$ полубесконечных формальных степенных рядов с коэффициентами в универсальной обертывающей алгебре положительной компоненты алгебры Када–Муди \hat{g}_+. Отметим, что алгебра вершинных операторов порождается своими токами (первичными полями спина 1), компоненты которых образуют алгебру Када–Муди \hat{g}, поэтому расширенная структурная полевая алгебра является факторалгеброй универсальной обертывающей алгебры $U(\hat{g})$ алгебры Ли \hat{g} по некоторому идеалу \bar{J}. Как следствие, виттеновская структурная алгебра Ли $\mathcal{O}_3\text{wit}_{\text{CGM}}$ (символ F означает фоковский сектор) является факторалгеброй коммутаторной алгебры $U_{[\cdot,\cdot]}(\hat{g})$ по идеалу $\bar{J}_{[\cdot,\cdot]}$. Квантово-
вава версия виттеновской струнной алгебры Ли получается следующим образом: рассмотрим квантовую универсальную обертывающую $U_q(\hat{g})$, снабженную q–коммутатором; в силу существования q–вертексно́й конст-рукции для этой алгебры, идеал J может быть деформирован до идеала J_q алгебры $U_q(\hat{g})$, замкнутого относительно q–коммутатора; соотноше-ния между элементами $U_q(\hat{g})/J_q$, задаваемые q–коммутатором, и являются определяющими в квантовой виттеновской струнной алгебре $U_q((\hat{g})_{\text{wit}}_{\text{GM}})$.

Отметим, что в данном классе примеров, важном с точки зрения струнно́й теории, реализующей квантовую версию калибровочных симметрий струнных полей, возникает новый объект (расширенная струнная полевая алгебра), который (как и его квантование) естественно было бы рассматривать в рамках 2-петлевого формализма в теории струн и интегрируемых систем [30]. Кроме того, было бы интересно выявить, каким образом проявляет-ся модульная инвариантность первичноказанованной струны в квантово-груповом формализме непертurbативно́й струнно́й теории поля.

Итак, в данной работе исследованы различные квантовогрупповые струк-туры струнной теории поля как на квазикалассическом, так и на квантовом уровне. Сформулированы общие утверждения, разобраны примеры, продемонстрированы новые аспекты теории квантовых групп (например, свя-зи с нелинейно́й геометрической алгеброй – квазикалассические версии т.н. “квантовых квазигрупп” и “квантовых луп”) в контексте вторичного кван-тования струн при переходе с древесного уровня к последовательному учету петлевых эффектов в рамках непертurbативно́й струнно́й теории поля.

Список литературы

[1] Грин М., Шварц Дж., Виттен Э., Теория суперструн. М., Мир, 1990.
[2] Морозов А.Ю., Переголов А.М. / Соврем.пробл.матем. Фундам.направления. М., ВНИТИ, 1989; Морозов А.Ю. // ЭЧЯЯ. 1992. Т.23(1). С.174-238; УФН. 1992. Т.162.
[3] Juriev D. // Alg.Groups Geom. 1994. V.11. P.145-179 [e-version: hep-th/9403068]; Russian J.Math.Phys. 1996. V.4. P. 287-314; J.Geom.Phys. 1995. V.16. P.275-300.
[4] Juriev D. // Lett.Math.Phys. 1991. V.22. P.1-6, 11-14; 1990. V.19. P.355-356; 1990. V.19. P.59-64.
[5] Witten E. // Nucl.Phys.B. 1986. V.268. P.253-294.
[6] Aref’eva I.Ya., Volovich I.V. // Phys.Lett.B. 1986. V.182. P.159-163, 312-316, 1987. V.189. P.488.
[7] Saadi M., Zwiebach B. // Ann.Phys.(NY) 1989. V.192. P.213-227; Kugo T., Kunimoto H., Suehiro K. // Phys.Lett.B. 1989. V.226. P.48-54; Sonoda H., Zwiebach B. // Nucl.Phys.B. 1990. V.331. P.592-628; Kugo T., Suehiro K. // Nucl.Phys.B. 1990. V.337. P.434-466; Zwiebach B. // Commun.Math.Phys. 1991. V.136. P.83-118.
[8] Volovich I.V. // Class.Quant.Grav. 1987. V.4. P.83; Vladimirov V.S. // Lett.Math.Phys. 1993. V.27. P.123.
[9] Марков М.А., Гипероны и К-мезоны. М., 1958.
[10] Segal G. // Commun.Math.Phys. 1981. V.80. P.301-342; Kirillov A.A. // Lect.Notes Math. 1984. V.970. P.49-67; Kirillov A.A., Юрьев Д.В. // Функц.анал.и его при-лож. 1986. Т.20(4). С.79-80; 1987. Т.21(4). С.35-46; Witten E. // Commun.Math. Phys. 1988. V.114. P.1-53; Kirillov A.A. / Infinite-dimensional Lie algebras and quantum field theory. World Scientific, Teaneck, NJ, 1988, P.73-77; Kirillov A.A., Juriev D.V. // J.Geom.Phys. 1988. V.5. P.351-364; Kirillov A.A. / Operator algebras, unitary representations, enveloping algebras and invariant theory. Birkhauser, Boston, 1992, P.73-83; Juriev D. // Adv.Soviet Math. 1991. V.2. P.233-247; Kirillov A.A. // Contemp.Math. 1993. V.145. P.33-63.
[11] Кириллов А.А. // Функц.анал. и его прилож. 1987. Т.21(2). С.42-45.
[12] Юрьев Д.В. // Алгебра и анал. 1990. Т.2(2). С.209-226; Juriev D. // Russian J.Math.Phys. 1994. V.2(1). P.111-121.
[13] Juriev D. // Commun.Math.Phys. 1991. V.138. P.569-581, 1992. V.146. P.427; J.Funct. Anal. 1991. V.101. P.1-9.
[14] Юрьев Д.В. // УМН. 1991. Т.46(4). С.115-138.
[15] Юрьев Д.В. // ТМФ. 1994. Т.101(3). С.331-348.
[16] Connes A., Introduction à la géométrie non commutative. InterEditions, Paris, 1990.
[17] Manin Yu.I., Topics in non-commutative geometry. Princeton Univ.Press, Princeton, NJ, 1991.
[18] Карасев М.В., Маслов В.П., Нелинейные скобки Пуассона. Геометрия и квантование. М., Наука, 1991.
[19] Batalin I. // J.Math.Phys. 1981. V.22. P.1837-1850.
[20] Михеев П.О. // Некоторые приложения дифференциальной геометрии. М., 1985, С.85-93 [ВИНИТИ: 4531-85Ден.]; Mikheev P.O. // Trans.Inst.Phys. Estonian Acad. Sci. 1990. V.66. P.54-66.
[21] Сабинин Л.В., Михеев П.О. // ДАН СССР. 1988. Т.297. С.801-805.
[22] Zwiebach B. // Nucl.Phys.B. 1993. V.390. P.33-152.
[23] Drinfeld V.G. // ДАН СССР. 1983. Т.268(2). С.285-287; Семенов-Тян-Шанский М.А. // Функц.анал. и его прилож. 1983. Т.17(4). С.17-33.
[24] Drinfeld V.G. // Зап. науч. сем. ЛОМИ. 1986. Т.155. С.19-49; Решетихин Н.Ю., Тахтаджян Л.А., Фаддеев Л.Д. // Алгебра и анал. 1989. Т.1(2). С.178-206; Исачев А.П. // ЭЧЯЯ. 1995. Т.26(5). С.1204-1263; Желобенко Д.П., Представления редуктивных алгебр Ли. М., Наука, 1994.
[25] Bangoura M. // C.R.Acad.Sci.Paris I. 1994. V.319. P.975-978; Bangoura M.: Thèse l'Univ.Sci.Tech.Lille, no.1387, 1995.
[26] Drinfeld V.G. // Алгебра и анал. 1989. Т.1(6). С.114-148; Kosmann-Schwarzbach Y. // C.R.Acad.Sci.Paris I. 1991. V.312. P.391-394; Kosmann-Schwarzbach Y. // Mathem. Aspects of field theory. Amer.Math.Soc., Providence, RI, 1992, pp.459-489.
[27] Сабинин Л.В. // Ткани и квазигруппы. Калиния [Тверь], 1988, С.32-37; Методы неассоциативных алгебра в дифференциальной геометрии. Добавление к русск. переводу. Кобяси С., Номидзу К., Основы дифференциальной геометрии. М., Наука, 1982; Сабинин Л.В. // Труды Ин-та Матем. СО АН СССР. 1989. Т.14. С.208-221; Михеев П.О., Сабинин Л.В. // Пробл. геометрии. Т.20. М., ВИНИТИ, 1988, С.75-100; Mikheev P.O., Sabinin L.V. // Quasigroups and loops. Theory and applications. Berlin, Heldermann Verlag, 1990, P.357-430; Sabinin L.V. // Trans.Inst. Phys. Estonian Acad.Sci. 1990. В.66. P.24-53.
[28] Юрьев Д.В. // ТМФ. 1992. Т.93(1). С.32-38.
[29] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster. Acad. Press, New York, 1988; Frenkel I.B., Huang Y.-Z., Lepowsky J. // Memoires AMS. 1993. V.494; Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators. Birkhäuser, 1993; Kac V.G., Vertex operator algebras for beginners. Birkhäuser, 1996.
[30] Морозов А.Ю. // УФН. 1994. Т.164(1). С.1.