Persistent homotopy theory

Rick Jardine

University of Western Ontario

January 9, 2020
Basic setup I

$X \subset Z$ finite subset, Z a metric space. $D(Z) =$ poset of finite subsets of Z. $s \geq 0$.

- $P_s(X) =$ poset of subsets $\sigma \subset X$ such that $d(x, y) \leq s$ for all $x, y \in \sigma$.

$P_s(X)$ is the poset of non-degenerate simplices of the Vietoris-Rips complex $V_s(X)$. $BP_s(X)$ is barycentric subdivision of $V_s(X)$.

We have poset inclusions

$$\sigma : P_s(X) \subset P_t(X), \ s \leq t,$$

$P_0(X) = X$, and $P_t(X) = \mathcal{P}(X)$ (all subsets of X) for t suff large.

- $k \geq 0$: $P_{s,k}(X) \subset P_s(X)$ subposet of simplices σ such that each element $x \in \sigma$ has at least k neighbours y such that $d(x, y) \leq s$.

$P_{s,k}(X)$ is the poset of non-degenerate simplices of the degree Rips complex $L_{s,k}(X)$.

Rick Jardine Persistent homotopy theory
Basic setup II

The usual inclusions: $s \leq t$

\[
\begin{array}{c}
\text{Ps}(X) \xrightarrow{\sigma} \text{Pt}(X) \\
\uparrow \hspace{1cm} \uparrow \\
\text{Ps,k}(X) \xrightarrow{\sigma} \text{Pt,k}(X) \\
\uparrow \hspace{1cm} \uparrow \\
P_{s,k+1}(X) \xrightarrow{\sigma} P_{t,k+1}(X)
\end{array}
\]

Also

- $P_{s,0}(X) = P_s(X)$ for all s,
- $P_{s,k}(X) = \emptyset$ for k suff. large.

Initial impression: $BP_s(X)$ is a huge model for $V_s(X)$, because all simplices of $V_s(X)$ are vertices of $BP_s(X)$.

Rick Jardine
Persistent homotopy theory
Fundamental groupoid

\[x_0, \ldots, x_k : \text{list of elements of } X \text{ such that } d(x_i, x_j) \leq s \text{ (may have repeats)}. \]

\[[x_0, \ldots, x_k] = \{x_0\} \cup \cdots \cup \{x_k\}. \]

Graph \(Gr_s(X) \): vertices are elements of \(X \), there is an edge \(x \to y \) if \([x, y] \in P_s(X)\).

There is an edge \([x, y] : x \to y \) if and only if there is an edge \([y, x] : y \to x \). There is an edge \([x, x] : x \to x \).

\(\Gamma_s(X) \) is **category** generated by \(Gr_s(X) \), subject to relations defined by simplices \([x_0, x_1, x_2]\).

Lemma 1.

\(\Gamma_s(X) \) is a groupoid, and \(\Gamma_s(X) \simeq G(P_s(X)) \simeq \pi V_s(X) \).

\(\pi V_s(X) \) is the fundamental groupoid of \(V_s(X) \), \(G(P_s(X)) \) is the free groupoid on the poset \(P_s(X) \).
$D(Z)$ is the poset of finite subsets of Z (all data sets in Z), with Hausdorff metric d_H.

Hausdorff metric:

$r > 0$: Given $X \subset Y$ in $D(Z)$, $d_H(X, Y) < r$ if for all $y \in Y$ there is an $x \in X$ such that $d(y, x) < r$.

For arbitrary $X, Y \in D(Z)$: $d_H(X, Y) < r$ if and only if (equivalently)

1) $d_H(X, X \cup Y) < r$ and $d_H(Y, X \cup Y) < r$.

2) for all $x \in X$ there is a $y \in Y$ such that $d(x, y) < r$, and for all $y \in Y$ there is an $x \in X$ such that $d(y, x) < r$.
Stability

$X \subset Y$, $d_H(X, Y) < r$: Construct a function $\theta : Y \to X$ such that

$$\theta(y) = \begin{cases} y & \text{if } y \in X \\ x_y & \text{for some } x_y \in X \text{ with } d(y, x_y) < r. \end{cases}$$

If $\tau \in P_s(Y)$ then $\theta(\tau) \in P_{s+2r}(X)$. Have a diagram of poset morphisms

\[
\begin{array}{c}
P_s(X) \xrightarrow{\sigma} P_{s+2r}(X) \\
i \downarrow \theta \downarrow i \\
P_s(Y) \xrightarrow{\sigma} P_{s+2r}(Y)
\end{array}
\quad
\begin{array}{c}
y_1 \xrightarrow{s} y_2 \\
r \leftarrow \theta(y_1) \xleftarrow{s+2r} \theta(y_2)
\end{array}
\]

such that upper triangle commutes, and lower triangle commutes up to homotopy:

$$\sigma(\tau) \to \sigma(\tau) \cup i(\theta(\tau)) \leftarrow i(\theta(\tau)).$$
Stability results

Theorem 2 (Rips stability).

Suppose $X \subset Y$ in $D(Z)$ such that $d_H(X, Y) < r$. There is a homotopy commutative diagram (homotopy interleaving)

$$
P_s(X) \xrightarrow{\sigma} P_{s+2r}(X) \\
i \downarrow \quad \theta \quad \downarrow i \\
P_s(Y) \xrightarrow{\sigma} P_{s+2r}(Y)
$$

Theorem 3.

Suppose $X \subset Y$ in $D(Z)$ such that $d_H(X_{dis}^{k+1}, Y_{dis}^{k+1}) < r$. There is a homotopy commutative diagram

$$
P_{s,k}(X) \xrightarrow{\sigma} P_{s+2r,k}(X) \\
i \downarrow \quad \theta \quad \downarrow i \\
P_{s,k}(Y) \xrightarrow{\sigma} P_{s+2r,k}(Y)$$
Blumberg-Lesnick Theorem

Theorem 4.

Suppose given $X, Y \subset Z$ are data sets with $d_H(X, Y) < r$. Then there are maps $\phi : P_s(X) \to P_{s+2r}(Y)$ and $\psi : P_s(Y) \to P_{s+2r}(X)$ such that

$$\psi \cdot \phi \simeq \sigma : P_s(X) \to P_{s+4r}(X) \quad \text{and}$$

$$\phi \cdot \psi \simeq \sigma : P_s(Y) \to P_{s+4r}(Y).$$
Proof

Set

\[U = \{(x, y) \mid x \in X, y \in Y, d(x, y) < r \} \].

\(P_{s,X}(U) \subset \mathcal{P}(U) \): all subsets \(\sigma \) such that \(d(x, x') \leq s \) for all \((x, y), (x', y') \in \sigma \). Define poset \(P_{s,Y}(U) \) similarly.

1) The maps \(P_{s,X}(U) \to P_s(X) \), \(P_{s,Y}(U) \to P_s(Y) \) are weak equivalences (Quillen Theorem A).

2) There are inclusions

\[P_{s,X}(U) \subset P_{s+2r,Y}(U), \quad P_{s,Y}(U) \subset P_{s+2r,X}(U), \]

(triangle inequality) and

\[P_{s,X}(U) \subset P_{s+2r,Y}(U) \subset P_{s+4r,X}(U) \]
\[P_{s,Y}(U) \subset P_{s+2r,X}(U) \subset P_{s+4r,Y}(U) \]
Suppose that $X \subset Y$ in $D(Z)$ and we have a homotopy interleaving

\[
\begin{align*}
V_s(X) & \xrightarrow{\sigma} V_{s+r}(X) \\
i \downarrow & \quad \theta \quad \downarrow i \\
V_s(Y) & \xrightarrow{\sigma} V_{s+r}(Y)
\end{align*}
\]

(as in stability theorem), where upper triangle commutes and lower triangle commutes up to homotopy fixing $\sigma : V_s(X) \to V_{s+r}(X)$.

1) $i : \pi_0 V_*(X) \to \pi_0 V_*(Y)$ is an r-monomorphism: if $i([x]) = i([y])$ in $\pi_0 V_s(Y)$ then $\sigma[x] = \sigma[y]$ in $\pi_0 V_{s+r}(X)$

2) $i : \pi_0 V_*(X) \to \pi_0 V_*(Y)$ is an r-epimorphism: given $[y] \in \pi_0 V_s(Y)$, $\sigma[y] = i[x]$ for some $[x] \in \pi_0 V_{s+r}(X)$.

3) All $i : \pi_n(V_*(X), x) \to \pi_n(V_*(Y), i(x))$ are r-isomorphisms.
A system of spaces is a functor $X : [0, \infty) \to s\text{Set}$, aka. a diagram of simplicial sets with index category $[0, \infty)$.

A map of systems $X \to Y$ is a natural transformation of functors defined on $[0, \infty)$.

Examples

1) The functors $V_\ast(X), BP_\ast(X), s \mapsto V_s(X), BP_s(X)$ are systems of spaces, for a data set $X \subset Z$.

2) If $X \subset Y \subset Z$ are data sets, the induced maps $P_s(X) \to P_s(Y), V_s(X) \to V_s(Y)$ define maps of systems $P_\ast(X) \to P_\ast(Y)$ and $V_\ast(X) \to V_\ast(Y)$.

Rick Jardine
Persistent homotopy theory
There are many ways to discuss homotopy types of systems. The oldest is the **projective structure** (Bousfield-Kan):

A map \(f : X \to Y \) is a **weak equivalence** (resp. **fibration**) if each map \(X_s \to Y_s \) is a weak equiv. (resp. fibration) of simplicial sets.

A map \(A \to B \) is a projective cofibration if it has the left lifting property with respect all maps which are trivial fibrations.

Example: \(L_s(A) \) is the system with \(L_s(A)_t = \emptyset \) for \(t < s \) and \(L_t(A) = A \) for \(t \geq s \). If \(A \subset B \) is an inclusion of simplicial sets, then \(L_s(A) \to L_s(B) \) is a projective cofibration.

Lemma 5.

Suppose that \(X \subset Y \subset Z \) are data sets. Then \(V_(X) \to V_*(Y) \) is a projective cofibration.*
Suppose that $f : X \to Y$ is a map of systems. Say that f is an r-equivalence if

1) the map $f : \pi_0(X) \to \pi_0(Y)$ is an r-isomorphism of systems of sets
2) the maps $f : \pi_k(X_s, x) \to \pi_k(Y_s, f(x))$ are r-isomorphisms of systems of groups, for all $s \geq 0$, $x \in X_s$.

Observation: Suppose given a diagram of systems

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_1} & Y_1 \\
\sim\downarrow & & \downarrow\sim \\
X_2 & \xrightarrow{f_2} & Y_2 \\
\end{array}
\]

Then f_1 is an r-equivalence iff f_2 is an r-equivalence.

Example (stability): Suppose that $X \subset Y \subset Z$ are data sets, and that $d_H(X, Y) < r$. Then the maps $i : V_*(X) \to V_*(Y)$ and $i : \text{BP}_*(X) \to \text{BP}_*(Y)$ are $2r$-equivalences.
Lemma 6.

Suppose given a commutative triangle

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{h} & & \downarrow{g} \\
Z & & \\
\end{array}
\]

If one of the maps is an r-equivalence, a second is an s-equivalence, then the third map is a $(r + s)$-equivalence.

Proof.

Suppose X, Y, Z are systems of sets, h is an r-isomorphism and g is an s-isomorphism. Given $z \in Y_{t}$, $g(z) = h(w)$ for some $w \in X_{t+s}$. Then $g(z) = g(f(w))$ in Z_{t+s} so $z = f(w)$ in Y_{t+s+r}.

Lemma 7.

Suppose that $p : X \to Y$ is a sectionwise fibration of systems of Kan complexes and that p is an r-equivalence. Then each lifting problem

\[
\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{\alpha} & X_s \\
\downarrow & \alpha & \downarrow \\
\Delta^n & \xrightarrow{\beta} & Y_s
\end{array}
\quad
\begin{array}{ccc}
& \xrightarrow{\sigma} & X_{s+2r} \\
\theta & \downarrow & \downarrow p \\
& \xrightarrow{\sigma} & Y_{s+2r}
\end{array}
\]

can be solved up to shift $2r$.

Proof of Lemma 7

The original diagram can be replaced up to homotopy by a diagram

$$\partial \Delta^n(\alpha_0,*,\ldots,*) \to X_s \xrightarrow{\sigma} X_{s+r}$$

$$\Delta^n \xrightarrow{\beta} Y_s \xrightarrow{\sigma} Y_{s+r}$$

(1)

$p_*(\alpha_0) = 0$ in $\pi_{n-1}(Y_s,*)$, so $\sigma_*(\alpha_0) = 0$ in $\pi_{n-1}(X_{s+r},*)$.

The trivializing homotopy for $\sigma(\alpha_0)$ in X_{s+r} defines a homotopy from (1) (outer) to the diagram

$$\partial \Delta^n \xrightarrow{\omega} X_{s+r}$$

$$\Delta^n \xrightarrow{\omega} Y_{s+r}$$

(2)

$\sigma_*(\omega) \in \pi_n(Y_{s+2r},*)$ lifts to an element of $\pi_n(X_{s+2r},*)$ up to homotopy, giving the desired lifting.
Lemma 8.

Suppose that \(p : X \to Y \) is a sectionwise fibration of systems of Kan complexes, and that all lifting problems have solutions up to shift \(r \), in the sense that the dotted arrow exists making the diagram commute. Then the map \(p : X \to Y \) is an \(r \)-equivalence.

Proof.

If \(p_*([\alpha]) = 0 \) for \([\alpha] \in \pi_{n-1}(X_s,*), \) then there is a diagram on the left above. The existence of \(\theta \) gives \(\sigma_*([\alpha]) = 0 \) in \(\pi_{n-1}(X_{s+r},*) \).
Corollary 9.

Suppose given a pullback diagram

\[
\begin{array}{c}
X' \quad \rightarrow \quad X \\
p' \downarrow \quad \quad \quad \downarrow p \\
Y' \quad \rightarrow \quad Y
\end{array}
\]

where \(p \) is a sectionwise fibration and an \(r \)-equivalence.

Then the map \(p' \) is a sectionwise fibration and a \(2r \)-equivalence.

Question: Is there a dual statement? Do maps which are cofibrations and \(r \) equivalences push out to \(2r \)-equivalences?
A map $f : A \to B$ of systems of simplicial abelian groups (chain complexes) is an r-equivalence if the induced maps $H_k(A) \to H_k(B)$ are r-isomorphisms for $k \geq 0$.

Example: Suppose that $X \subset Y \subset Z$ are data sets and that $d_H(X, Y) < r$. Then $\mathbb{Z}(X) \to \mathbb{Z}(Y)$ is a $2r$-equivalence (by the interleaving), so that $H_k(X) \to H_k(Y)$ is a $2r$-isomorphism for $k \geq 0$ (all coefficients).

Lemma 10.

1) *Suppose that $f : A \to B$ is an r-equivalence with homotopy cofibre $p : B \to C$. Then the map $C \to 0$ is a $2r$-equivalence.*

2) *Suppose that $C \to 0$ is an r-equivalence. Then $f : A \to B$ is an r-equivalence.*

Warning: There is no Hurewicz theorem. We can’t say that if $X \to \ast$ is an r-equivalence then $H_\ast(X)$ is r-equivalent to $H_\ast(\ast)$.

Rick Jardine

Persistent homotopy theory
Question: What does it mean for \(X \to \ast \) to be an \(r \)-equivalence?

Facts: 1) If \(X \to \ast \) is an \(r \)-equivalence, then all Postnikov sections \(P_nX \) and \(n \)-connected covers \(X(n) \) are \(r \)-equivalent to a point.

2) If \(X \to \ast \) is an \(r \)-equivalence, then

\[
\sigma_* = 0 : \pi_k(X_s, \ast) \to \pi_k(X_{s+r}, \ast)
\]

for \(k \geq 1 \). All \([x] \in \pi_0X_s\) map to the same element of \(\pi_0X_{s+r} \).

Example: \(P_1X = B\pi(X) \), so fundamental groupoid \(\pi(X) \) is \(r \)-equivalent to a point. We can discuss systems of groupoids \(G \) such that \(G \to \ast \) are \(r \)-equivalences.

\(P_0G \) has same objects as \(G \), and exactly one morphism \(x \to y \) if \(\text{hom}_G(x, y) \neq \emptyset \). There is a natural functor \(\pi : G \to P_0G \).
Lemma 11.

Suppose that $G \to \ast$ is an r-equivalence. Then there is an interleaving

$$
\begin{array}{ccc}
G_s & \xrightarrow{\sigma} & G_{s+r} \\
\downarrow{\pi} & & \downarrow{\pi} \\
P_0G_s & \xrightarrow{\sigma} & P_0G_{s+r}
\end{array}
$$

and all elements of π_0G_s map to the same element of π_0G_{s+r}.

Proof.

Any two morphisms $\alpha, \beta : x \to y$ of G_s map to the same morphism of G_{s+r}, so θ exists.

In effect, $\beta^{-1} \cdot \alpha \in G_s(x, x) = \pi_1(BG_s, x)$.

A 2-groupoid H is a groupoid enriched in simplicial sets, such that each simplicial set $H(x, y)$ is the nerve of a groupoid.

Each H has a bisimplicial nerve BH which defines a homotopy type.

Every 2-groupoid H has an associated groupoid P_1H with a functorial map $\pi : H \to P_1H$, such that $P_1H(x, y) = P_0(H(x, y))$.

Fact: Every space X has a fundamental 2-groupoid π_2X such that $B\pi_2(X) \simeq P_2(X)$.

Lemma 12 (slightly conjectural).

Suppose that H is a system of 2-groupoids such that $BH \to *$ is an r-equivalence. Then $P_1H \to *$ is an r-equivalence, and there is an interleaving

$$
\begin{array}{c}
H_s \xrightarrow{\sigma} H_{s+r} \\
\pi \downarrow \quad \theta \quad \downarrow \pi \\
P_1H_s \xrightarrow{\sigma} P_1H_{s+r}
\end{array}
$$
H a system of 2-groupoids s.t. $BH \to *$ is an r-equivalence.

0) $P_0H \to *$ is an r-isomorphism. P_0H is a system of disjoint unions of trivial groupoids (contractible spaces). $H_0(BP_0H) \to \mathbb{Z}$ is an r-isomorphism, and there are no non-trivial higher homology groups.

$H_0(BH) \cong H_0(BP_0H) \to \mathbb{Z}$ is an r-isomorphism.

1) $P_1H \to *$ is an r-equivalence. The interleaving

\[
P_1H_s \xrightarrow{\sigma} P_1H_{s+r} \\
\pi \downarrow \quad \theta \quad \downarrow \pi \\
P_0H_s \xrightarrow{\sigma} P_0H_{s+r}
\]

forces $H_k(BP_1H_s) \to 0$ to be an r-isomorphism for $k \geq 1$, because all higher homology groups of BP_0H_s are trivial.

$H_1(BH) \cong H_1(BP_1H) \to 0$ is an r-isomorphism.
2) $P_2H \rightarrow *$ is an r-equivalence. The interleaving

$$
\begin{array}{ccc}
P_2H_s & \xrightarrow{\sigma} & P_2H_{s+r} \\
\pi \downarrow & & \downarrow \pi \\
P_1H_s & \xrightarrow{\sigma} & P_1H_{s+r}
\end{array}
$$

forces $H_k(BP_2H) \rightarrow 0$ to be a 2r-isomorphism for $k \geq 1$:

$\pi \cdot \sigma(\alpha) = \sigma \cdot \pi(\alpha) = 0$ for $\alpha \in H_k(BP_2H_s)$ since $H_k(BP_1H_s) \rightarrow 0$ is an r-isomorphism.

Then $\sigma \cdot \sigma(\alpha) = \theta \cdot \pi \cdot \sigma(\alpha) = 0$ in $H_k(BP_2H_{s+2r})$.

$H_2(BH) \cong H_2(BP_2H) \rightarrow 0$ is a 2r-isomorphism.
Spaces of data sets

We construct spaces from the poset of data sets $D(Z)$. There are two choices:

1) $D_s(Z) \subset BD(Z)$ consists of strings of simplices

$$\sigma : \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_n$$

such that $d_H(\sigma_0, \sigma_n) \leq s$.

2) $P_s(Z) \subset \mathcal{P}(D(Z))$ is poset consisting of finite subsets σ such that $d_H(X, Y) \leq s$ for all $X, Y \in \sigma$.

Theorem 13.

There are weak equivalences

$$D_s(Z) \overset{\gamma}{\cong} BND_s(Z) \overset{\phi}{\to} BP_s(Z),$$

where $\phi(\sigma) = \{\sigma_0, \ldots, \sigma_n\}$.
Proof I

• There is a functor \(f : P_s(Z) \to D(Z) \) with
 \[\sigma = \{X_0, \ldots, X_k\} \mapsto X_0 \cup \cdots \cup X_k. \]

\(f : BP_s(Z) \to BD(Z) \) takes simplices of \(BP_s(Z) \) to simplices of \(D_s(Z) \) and induces \(f : BP_s(Z) \to D_s(Z) \).

The following diagram commutes:

\[
\begin{array}{ccc}
BND_s(Z) & \xrightarrow{\phi} & BP_s(Z) \\
\downarrow{\simeq} & & \downarrow{\simeq} \\
D_s(Z) & \xleftarrow{f} &
\end{array}
\]

• Show that \(f \) is a weak equivalence. Suppose that
 \(\tau : Y_0 \subset \cdots \subset Y_k \) is a non-degenerate simplex of \(BD_s(Z) \). Show
 that \(f : f^{-1}(\tau) \to \Delta^k \) is a weak equivalence.
• \(f^{-1}(\tau) \) is the nerve of a poset, with objects \(\{Z_0, \ldots, Z_m\} \) such that \(\cup_i Z_i \) is some \(Y_j \), with morphisms covering inclusions \(Y_j \subset Y_k \).

• Given \(\tau = \{Z_0, \ldots, Z_m\} \) with \(\cup_i Z_i = Y_j \), there are poset morphisms

\[
\{Z_0, \ldots, Z_m\} \to \{Z_0, \ldots, Z_m\} \cup \{Y_0, \ldots, Y_j\} \leftarrow \{Y_0, \ldots, Y_j\}.
\]

• There is a simplicial set map \(\sigma : \Delta^k \to f^{-1}(\tau) \) defined by the string of inclusions

\[
\{Y_0\} \subset \{Y_0, Y_1\} \subset \cdots \subset \{Y_0, \ldots, Y_k\}
\]

The map \(f : f^{-1}(\tau) \to \Delta^k \) is a homotopy equivalence. \(\square \)
Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. *CoRR*, abs/1705.01690, 2017.

P. G. Goerss and J. F. Jardine. *Simplicial Homotopy Theory*, volume 174 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.

J.F. Jardine. Data and homotopy types. Preprint, arXiv: 1908.06323 [math.AT], 2019.

F. Memoli. A Distance Between Filtered Spaces Via Tripods. Preprint, arXiv: 1704.03965v2 [math.AT], 2017.