NON-COMMUTATIVE CHERN CHARACTERS
OF THE C*-ALGEBRAS OF SPHERES
AND QUANTUM SPHERES

NGUYEN QUOC THO

Department of Mathematics, Vinh University, Vietnam

ABSTRACT. We propose in this paper the construction of non-commutative Chern characters of the C*-algebras of spheres and quantum spheres. The final computation gives us a clear relation with the ordinary \Z/(2)-graded Chern characters of tori or their normalizers.

INTRODUCTION.

For compact Lie groups the Chern character $ch : K^*(G) \otimes \mathbb{Q} \to H^*_{DR}(G; \mathbb{Q})$ were constructed. In [4] - [5] we computed the non-commutative Chern characters of compact Lie group C^*-algebras and of compact quantum groups, which are also homomorphisms from quantum K-groups into entire current periodic cyclic homology of group C^*-algebras (resp., of C^*-algebra quantum groups), $ch_{C^*} : K_*(C^*(G)) \to HE_*(C^*(G))$, (resp., $ch_{C^*} : K_*(C^*_\varepsilon(G)) \to HE_*(C^*_\varepsilon(G))$). We obtained also the corresponding algebraic version $ch_{alg} : K_*(C^*(G)) \to HP_*(C^*(G))$, which coincides with the Fedosov-Cuntz-Quillen formula for Chern characters [5]. When $A = C^*_\varepsilon(G)$ we first computed the K-groups of $C^*_\varepsilon(G)$ and the $HE_*(C^*_\varepsilon(G))$. Thereafter we computed the Chern charactor $ch_{C^*} : K_*(C^*_\varepsilon(G)) \to HE_*(C^*_\varepsilon(G)$ as an isomorphism modulo torsions.

Using the results from [4] - [5], in this paper we compute the non-commutative Chern characters $ch_{C^*} : K_*(A) \to HE_*(A)$, for two cases $A = C^*(S^n)$, the C^*-algebra of spheres and $A = C^*_\varepsilon(S^n)$, the C^*-algebras of quantum spheres. For compact groups $G = O(n+1)$, the Chern character $ch : K_*(S^n) \otimes \mathbb{Q} \to H^*_{DR}(S^n; \mathbb{Q})$ of the sphere $S^n = O(n+1)/O(n)$ is an isomorphism (see, [15]). In the paper, we describe two Chern character homomorphisms

$$ch_{C^*} : K_*(C^*(S^n)) \to HE_*(C^*(S^n))$$

and

$$ch_{C^*} : K_*(C^*_\varepsilon(S^n)) \to HE_*(C^*_\varepsilon(S^n)).$$
Finally, we show that there is a commutative diagram

\[
\begin{array}{ccc}
K_\ast(C^\ast(S^n)) & \xrightarrow{ch_{C^\ast}} & HE_\ast(C^\ast(S^n)) \\
\downarrow \cong & & \downarrow \cong \\
K_\ast(C(N_{T_n})) & \xrightarrow{ch_{CQ}} & HE_\ast(C(N_{T_n})) \\
\downarrow \cong & & \downarrow \cong \\
K^\ast(N_{T_n}) & \xrightarrow{ch} & H^\ast_{DR}(N_{T_n})
\end{array}
\]

(Similarly, for \(A = C^\ast_\varepsilon(S^n) \), we have an analogous commutative diagram with \(W \times S^1 \) of place of \(W \times S^n \)), from which we deduce that \(ch_{C^\ast} \) is an isomorphism modulo torsions.

We now briefly review the structure of the paper. In section 1, we compute the Chern character of the \(C^\ast \)-algebras of spheres. The computation of Chern character of \(C^\ast(S^n) \) is based in two crucial points:

i) Because the sphere \(S^n = O(n + 1)/O(n) \) is a homogeneous space and \(C^\ast \)-algebra of \(S^n \) is the transformation group \(C^\ast \)-algebra, following J. Parker [10], we have, \(C^\ast(S^n) \cong C^\ast(O(n)) \otimes K(L^2(S^n)) \).

ii) Using the stability property theorem \(K_\ast \) and \(HE_\ast \) in [5], we reduce it to the computation of \(C^\ast \)-algebras of subgroup \(O(n) \) in \(O(n+1) \) group.

In section 2, we compute the Chern character of \(C^\ast \)-algebras of quantum spheres. For quantum sphere \(S^n \), we define the compact quantum \(C^\ast \)-algebra \(C^\ast_\varepsilon(S^n) \), where \(\varepsilon \) is a positive real number. Thereafter, we prove that

\[
C^\ast_\varepsilon(S^n) \cong C(S^1) \oplus \bigoplus_{\varepsilon \neq \omega \in W} \int_{S^1} \mathcal{K}(H_{w,t})dt,
\]

where \(\mathcal{K}(H_{w,t}) \) is the elementary algebra of compact operators in a separable infinite dimensional Hilbert space \(H_{w,t} \) and \(W \) is the Weyl of a maximal torus \(T_n \) in \(SO(n) \).

Similar to section 1, we first compute the \(K_\ast(C^\ast_\varepsilon(S^n)) \) and \(HE_\ast(C^\ast_\varepsilon(S^n)) \), and we prove that \(ch_{C^\ast} : K_\ast(C^\ast_\varepsilon(S^n)) \rightarrow HE_\ast(C^\ast_\varepsilon(S^n)) \) is an isomorphism modulo torsions.

Notes on Notation: For any compact space \(X \), we write \(K^\ast(X) \) for the \(\mathbb{Z}/(2) \)-graded topological \(K \)-theory of \(X \). We use Swan’s theorem to identify \(K^\ast(X) \) with \(\mathbb{Z}/(2) \)-graded \(K_\ast(C(X)) \). For any involutive Banach algebra \(A \), \(K_\ast(A) \), \(HE_\ast(A) \), \(HP_\ast(A) \) are \(\mathbb{Z}/(2) \)-graded algebraic or topological \(K \)-groups of \(A \), entire cyclic homology, and periodic cyclic homology of \(A \), respectively. If \(T \) is a maximal torus of a compact group \(G \), with the corresponding Weyl group \(W \), write \(C(T) \) for the algebra of complex valued functions on \(T \). We use the standard notations from the root theory such as \(P, P^+ \) for the positive highest weights, etc... We denote by \(N_T \) the normalizer of \(T \) in \(G \), by \(N \) the set of natural numbers, \(\mathbb{R} \) the field of real numbers and \(\mathbb{C} \) the field of complex numbers, \(\ell^2_A(N) \) the standard \(\ell^2 \) space of square integrable sequences of elements from \(A \), and finally by \(C^\ast_\varepsilon(G) \) we denote the compact quantum algebras, \(C^\ast(G) \) the \(C^\ast \)-algebra of \(G \).
§1. Non-commutative Chern characters of C^*-algebras of spheres.

In this section, we compute non-commutative Chern characters of C^*-algebras of spheres. Let A be an involutive Banach algebra. We construct the non-commutative Chern characters $ch_{C^*}: K_*(A) \to HE_*(A)$, and show in [4] that for C^*-algebra $C^*(G)$ of compact Lie groups G, the Chern character ch_{C^*} is an isomorphism.

Proposition 1.1 ([5], Theorem 2.6). Let H be a separable Hilbert space and B an arbitrary Banach space. We have

1) $K_*(K(H)) \cong K_*(C)$
2) $K_*(B \otimes K(H)) \cong K_*(B)$
3) $HE_*(K(H)) \cong HE_*(C)$
4) $HE_*(B \otimes K(H)) \cong HE_*(B)$,

where $K(H)$ is the elementary algebra of compact operators in a separable infinite-dimensional Hilbert space H.

Proposition 1.2. ([5], Theorem 3.1). Let A be an involutive Banach algebra with unity. There is a Chern character homomorphism $ch_{C^*}: K_*(A) \to HE_*(A)$.

Proposition 1.3. ([5], Theorem 3.2). Let G be an compact group and T a fixed maximal torus of G with Weyl group $W := N_T/T$. Then the Chern character $ch_{C^*}: K_*(C^*(G)) \to HE_*(C^*(G))$ is an isomorphism modulo torsions, i.e.

$$ch_{C^*}: K_*(C^*(G)) \otimes C \xrightarrow{\cong} HE_*(C^*(G)),$$

which can be identified with the classical Chern character

$$ch : K_*(C(N_T)) \to HE_*(C(N_T)),$$

that is also an isomorphism modulo torsions, i.e.

$$ch : K^*(N_T) \otimes C \xrightarrow{\cong} H^*_D(N_T).$$

Now, for $S^n = O(n+1)/O(n)$, where $O(n)$, $O(n+1)$ are the orthogonal matrix groups. We denote by T_n a fixed maximal torus of $O(n)$ and N_{T_n} the normalizer of T_n in $O(n)$. Following Proposition 1.2, there a natural Chern character $ch_{C^*}: K_*(C^*(S^n)) \to HE_*(C^*(S^n))$. Now, we compute first $K_*(C^*(S^n))$ and then $HE_*(C^*(S^n))$ of C^*-algebra of the sphere S^n.

Proposition 1.4.

$$HE_*(C^*(S^n)) \cong H^W_D(T_n)$$

Proof: We have

$$HE_*(C^*(S^n)) = HE_*(C^*(O(n+1)/O(n)))$$

$$\cong HE_*(C^*(O(n)) \otimes K(L^2(O(n+1)/O(n))))$$
Moreover, by a result of Khalkhali [8] - [9], we have

$$H \cong HE_\ast(C^\ast(O(n))) \quad \text{(by Proposition 1.1)}$$

$$H \cong HE_\ast(CN_{T_n}) \quad \text{(see [5]).}$$

Thus, we have $HE_\ast(C^\ast(S^n)) \cong HE_\ast(CN_{T_n})$.

Apart from that, because CN_{T_n} is the commutative C^\ast-algebra, by a result Cuntz-Quillen’s [1], we have an isomorphism

$$HP_\ast(CN_{T_n}) \cong H_{DR}^\ast(N_{T_n}).$$

Moreover, by a result of Khalkhali [8] - [9], we have

$$HP_\ast(CN_{T_n}) \cong HE_\ast(CN_{T_n}).$$

We have, hence

$$HE_\ast(C^\ast(S^n)) \cong HE_\ast(CN_{T_n}) \cong HP_\ast(CN_{T_n})$$

$$\cong H_{DR}^\ast(N_{T_n}) \cong H_{DR}^W(T_n) \quad \text{(by [15]).}$$

Remark 1. Because $H_{DR}^W(T_n)$ is the de Rham cohomology of T_n, invariant under the action of the Weyl group W, following Watanabe [15], we have a canonical isomorphism $H_{DR}^W(T_n) \cong H^\ast(SO(n)) = \Lambda_C(x_3, x_7, \ldots, x_{2i+3})$, where $x_{2i+3} = \sigma(p_i) \in H^{2n+3}(SO(n))$ and $\sigma : H^\ast(BSO(n), R) \to H^\ast(SO(n), R)$ for a commutative ring R with a unit $1 \in R$, and $p_i = \sigma_i(t_1^2, t_2^2, \ldots, t_i^2) \in H^\ast(BT_n, Z)$ the Pontryagin classes.

Thus, we have

$$HE_\ast(C^\ast(S^n)) \cong \Lambda_C(x_3, x_7, \ldots, x_{2i+3}).$$

Proposition 1.5.

$$K_\ast(C^\ast(S^n)) \cong K_\ast(N_{T_n}).$$

Proof. We have

$$K_\ast(C^\ast(S^n)) = K_\ast(C^\ast(O(n + 1)/O(n)))$$

$$\cong K_\ast(C^\ast(O(n)) \otimes K(L^2(O(n + 1)/O(n)))) \quad \text{(see [10])}$$

$$\cong K_\ast(C^\ast(O(n))) \quad \text{(by Proposition 1.1)}$$

$$\cong K_\ast(CN_{T_n})$$

$$\cong K^\ast(N_{T_n}) \quad \text{(by Lemma 3.3, from [5]).}$$

Thus,

$$K_\ast(C^\ast(S^n)) \cong K^\ast(N_{T_n}).$$

Remark 2. Following Lemma 4.2 from [5], we have

$$K^\ast(N_{T_n}) \cong K^\ast(SO(n + 1)) / \text{torsion}$$

$$= \Lambda_Z(\beta(\lambda_1), \ldots, \beta(\lambda_{n-3}), \varepsilon_{n+1}),$$
where $\beta : R(SO(n)) \to \tilde{K}^{-1}(SO(n))$ be the homomorphism of Abelian groups assigning to each representation $\rho : SO(n) \to U(n+1)$ the homotopy class $\beta(\rho) = [i_n \rho] \in [SO(n), U] = \tilde{K}^{-1}(SO(n))$, where $i_n : U(n+1) \to U$ is the canonical one, $U(n+1)$ and U be the n–th and infinite unitary groups respectively and $\varepsilon_{n+1} \in K^{-1}(SO(n+1))$. We have, finally

$$K_*(C^*(S^n)) \cong \Lambda_2(\beta(\lambda_1), ..., \beta(2n-3), \varepsilon_{n+1}).$$

Moreover, the Chern character of $SU(n+1)$ was computed in [14], for all $n \geq 1$. Let us recall the result. Define a function $\phi : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{Z},$ given by

$$\phi(n, k, q) = \sum_{i=1}^{k} (-1)^{i-1} \binom{n}{k-1} i^q - 1.$$

Theorem 1.6. Let T_n be a fixed maximal torus of $O(n)$ and T the fixed maximal torus of $SO(n)$, with Weyl groups $W : = \mathcal{N}_T / T$, the Chern character of $C^*(S^n)$

$$ch_{C^*} : K_*(C^*(S^n)) \to HE_*(C^*(S^n))$$

is an isomorphism, given by

$$ch_{C^*} (\beta(\lambda_k)) = \sum_{i=1}^{n} ((-1)^{i-1} 2/(2i - 1)!) \phi(2n + 1, k, 2i) x_{2i+3}, \ (k = 1, 2, ..., n-1)$$

$$ch_{C^*} (\varepsilon_{n+1}) = \sum_{i=1}^{n} ((-1)^{i-1} 2/(2i - 1)!) ((1/2^n) \sum_{k=1}^{n} \phi(2n + 1, k, 2i)) x_{2i+3}.$$

Proof. By Proposition 1.5, we have

$$K_*(C^*(S^n)) \cong K_*(\mathcal{C}(N_{T_n})) \cong K^*(N_{T_n})$$

and

$$HE_*(C^*(S^n)) \cong HE_*(\mathcal{C}(N_{T_n})) \cong H_{DR}^*(N_{T_n}) \quad \text{ (by Proposition 1.4)}.$$
Moreover, by the results of Watanabe [15], the Chern character \(ch : K^*(\mathcal{N}_{
abla, n}) \otimes \mathbb{C} \rightarrow H^*_DR(\mathcal{N}_{\nabla, n}) \) is an isomorphism.

Thus, \(ch_{C^*} : K_*(C^*(S^n)) \rightarrow HE_*(C^*(S^n)) \) is an isomorphism (by Proposition 1.4 and 1.5), given by

\[
ch_{C^*}(\lambda_k) = \sum_{i=1}^{n} ((-1)^{i-1} 2/(2i-1)! \phi(2n+1, k, 2i)) x_{2i+3}, \quad (k = 1, 2, ..., n-1),
\]

\[
ch_{C^*}(\varepsilon_{n+1}) = \sum_{i=1}^{n} ((-1)^{i-1} 2/(2i-1)! \left(1/2^n \right) \phi(2n+1, k, 2i)) x_{2i+3},
\]

where:

\[
K_*(C^*(S^n)) \cong \Lambda^\mathbb{Z}(\lambda_1, ..., \lambda_{n-3}, \varepsilon_{n+1}),
\]

\[
HE_*(C^*(S^n)) \cong \Lambda^\mathbb{C}(x_3, x_7, ..., x_{2n+3}).
\]

\[\square\]

§2. Non-Commutative Chern character of \(C^* \)-algebra of quantum spheres.

In this section, we at first recall definitions and main properties of compact quantum spheres and their representations. More precisely, for \(S^n \), we define \(C^*_\varepsilon(S^n) \), the \(C^* \)-algebras of compact quantum spheres as the \(C^* \)-completion of the *-algebra \(\mathcal{F}_\varepsilon(S^n) \) with respect to the \(C^* \)-norm, where \(\mathcal{F}_\varepsilon(S^n) \) is the quantized Hopf subalgebra of the Hopf algebra, dual to the quantized universal enveloping algebra \(U(\mathcal{G}) \), generated by matrix elements of the \(U(\mathcal{G}) \) modules of type \(1 \) (see [3]). We prove that

\[
C^*_\varepsilon(S^n) \cong C(S^1) \oplus \bigoplus_{e \neq \omega \in W} \int_{S^1} \mathcal{K}(H_{w,t}) dt,
\]

where \(\mathcal{K}(H_{w,t}) \) is the elementary algebra of compact operators in a separable infinite-dimensional Hilbert space \(H_{w,t} \) and \(W \) is the Weyl group of \(S^n \) with respect to a maximal torus \(\mathcal{T} \).

After that, we first compute the K-groups \(K_*(C^*_\varepsilon(S^n)) \) and the \(HE_*(C^*_\varepsilon(S^n)) \), respectively. Thereafter we define the Chern character of \(C^* \)-algebras quantum spheres, as a homomorphism from \(K_*(C^*_\varepsilon(S^n)) \) to \(HE_*(C^*_\varepsilon(S^n)) \), and we prove that \(ch_{C^*} : K_*(C^*_\varepsilon(S^n)) \rightarrow HE_*(C^*_\varepsilon(S^n)) \) is an isomorphism modulo torsions.

Let \(G \) be a complex algebraic group with Lie algebra \(\mathcal{G} = \text{Lie} \ G \) and \(\varepsilon \) is real number, \(\varepsilon \neq -1 \).

Definition 2.1. ([3], Definition 13.1). The quantized function algebra \(\mathcal{F}_\varepsilon(G) \) is the subalgebra of the Hopf algebra dual to \(U_\varepsilon(G) \), generated by the matrix elements of the finite-dimensional \(U_\varepsilon(G) \)-modules of type \(1 \).

For compact quantum groups the unitary representation of \(\mathcal{F}_\varepsilon(G) \) are parameterized by pairs \((w, t)\), where \(t \) is an element of a fixed maximal torus of the compact real form of \(G \) and \(w \) is an element of the Weyl group \(W \) of \(\mathcal{T} \) in \(G \).

Let \(\lambda \in P^+, V_\varepsilon(\lambda) \) be the irreducible \(U_\varepsilon(G) \)-module of type \(1 \) with the highest weight \(\lambda \). Then \(V_\varepsilon(\lambda) \) admits a positive definite hermitian form \((.,.)\), such that
Proposition 2.3. (\[3\], 13.1.9). Let $\{v_\mu^\nu\}$ be an orthogonal basis for weight space $V_\mu^\nu(\lambda)$, $\mu \in P^+$. Then $\bigcup \{v_\mu^\nu\}$ is an orthogonal basis for $V_\mu^\nu(\lambda)$. Let $C^\lambda_{\nu,s;\mu,r}(x) = (xv_\mu^\nu, v_\mu^s)$ be the associated matrix elements of $V_\mu^\nu(\lambda)$. Then the matrix elements $C^\lambda_{\mu,s;\mu,r}$ (where λ runs through P^+, while (μ,r) and (ν,s) runs independently through the index set of a basis of $V_\mu^\nu(\lambda)$) form a basis of $\mathcal{F}_\mu^\nu(G)$ (see \[3\]).

Now very irreducible *-representation of $\mathcal{F}_\mu^\nu(SL_2(\mathbb{C}))$ is equivalent to a representation belonging to one of the following two families, each of which is parameterized by $S^1 = \{t \in \mathbb{C} | |t| = 1\}$,

i) the family of one-dimensional representation π_t

ii) the family π_t of representation in $\ell^2(\mathbb{N})$ (see \[3\])

Moreover, there exists a surjective homomorphism $\mathcal{F}_\mu^\nu(G) \rightarrow \mathcal{F}_\mu^\nu(SL_2(\mathbb{C}))$ induced by the natural inclusion $SL_2(\mathbb{C}) \hookrightarrow G$ and by composing the representation π_{-1} of $\mathcal{F}(SL_2(\mathbb{C}))$ with this homomorphism, we obtain a representation of $\mathcal{F}_\mu^\nu(G)$ in $\ell^2(\mathbb{N})$ denoted by π_{s_i}, where s_i appears in the reduced decomposition $w = s_{i_1}s_{i_2}\ldots s_{i_k}$. More precisely, $\pi_{s_i} : \mathcal{F}_\mu^\nu(G) \rightarrow \mathcal{L}(\ell^2(\mathbb{N}))$ is of class CCR (see \[11\]), i.e its image is dense in the ideal of compact operators in $\mathcal{L}(\ell^2(\mathbb{N}))$.

The representation π_t is one-dimensional and is of the form

$$
\pi_t(C^\lambda_{\nu,s;\mu,r}(x)) = \delta_{r,s}\delta_{\mu,\nu} \exp(2\pi\sqrt{-1}\mu(x)),
$$

if $t = \exp(2\pi\sqrt{-1}x) \in T$, for $x \in \text{Lie } T$, (see \[3\]).

Proposition 2.2 (\[3\], 13.1.7). Every irreducible unitary representation of $\mathcal{F}_\mu^\nu(G)$ on a separable Hilbert space is the completion of a unitarizable highest weight representation. Moreover, two such representations are equivalent if and only if they have the same highest weight. \hfill \Box

Proposition 2.3. (\[3\], 13.1.9). Let $\omega = s_{i_1}s_{i_2}\ldots s_{i_k}$ be a resuced decomposition of an element w of the Weyl group W of G. Then

i) the Hilbert space tensor product $\rho_{w,t} = \pi_{s_{i_1}} \otimes \pi_{s_{i_2}} \otimes \ldots \otimes \pi_{s_{i_k}} \otimes \pi_t$ is an irreducible *-representation of $\mathcal{F}_\mu^\nu(G)$ which is associated to the Schubert cell S_w;

ii) up to equivalence, the representation $\rho_{w,t}$ does not depend on the choice of the reduced decomposition of w;

iii) every irreducible *-representation of $\mathcal{F}_\mu^\nu(G)$ is equivalent to some $\rho_{w,t}$. \hfill \Box

The sphere S^n, can be realized as the orbit under the action of the compact group $SU(n+1)$ of the highest weight vector v_0 in its natural $(n+1)$-dimensional representation V^h of $SU(n+1)$. If $t_{rs}, 0 \leq r, s, \leq n$, are the matrix entries of V^h, the algebra of functions on the orbit is generated by the entries in the “first column” t_{s0} and their complex conjugates. In fact,

$$
\mathcal{F}(S^n) := \mathbb{C}[t_{00}, \ldots , t_{n0}, \bar{t}_{00}, \ldots , \bar{t}_{n0}] / \sim,
$$

where \sim is the following equivalence relation

$$
t_{s0}\bar{t}_{s0} \iff \sum_{s=0}^n t_{s0}\bar{t}_{s0} = 1.
$$
Proposition 2.4. ([3], 13.2.6). The *-structure on Hopf algebra $\mathcal{F}_\varepsilon(SL_{n+1}(\mathbb{C}))$, is given by
\[
t_{rs}^* = (-\varepsilon)^{r-s}q \det(\hat{T}_{rs}),
\]
where \hat{T}_{rs} is the matrix obtained by removing the r^{th} row and the s^{th} column from T.

Definition 2.5. ([3], 13.2.7). The *-subalgebra of $\mathcal{F}_\varepsilon(SL_{n+1}(\mathbb{C}))$ generated by the elements t_{s0} and t_{s0}^*, for $s = 0, \ldots, n$, is called the quantized algebra of functions on the sphere S^n, and is denoted by $\mathcal{F}_\varepsilon(S^n)$. It is a quantum $SL_{n+1}(\mathbb{C})$-space.

We set $z_s = t_{s0}$ from now on. Using Proposition 2.4, it is easy to see that the following relations hold in $\mathcal{F}_\varepsilon(S^n)$:
\[
\begin{cases}
z_r z_s = \varepsilon^{-1} z_s z_r & \text{if } r < s \\
z_r z_s^* = -\varepsilon^{-1} z_s^* z_r & \text{if } r \neq s \\
z_r z_s^* - z_r^* z_r + (\varepsilon^{-2} + 1) \sum_{s > r} z_s z_s^* = 0, & (*) \\
\sum_{s=0}^{n} z_s z_s^* = 0.
\end{cases}
\]

Hence, $\mathcal{F}_\varepsilon(S^n)$ has (*) as its defining relations. The construction of irreducible *-representations of $\mathcal{F}_\varepsilon(S^n)$, is given by

Theorem 2.6. ([3], 13.2.9). Every irreducible *-representation of $\mathcal{F}_\varepsilon(S^n)$ is equivalent exactly to one of the following:

i) the one-dimensional representation $\rho_{0,t}$, $t \in S^1$, given by $\rho_{0,t}(z_0^*) = t^{-1}, \rho_{0,t}(z_r^*) = 0$ if $r > 0$.

ii) the representation $\rho_{r,t}$, $1 \leq r \leq n$, $t \in S^1$, on the Hilbert space tensor product $\ell^2(\mathbb{N})^\otimes r$, given by
\[
\rho_{r,t}(z_s^*)(e_{k_1} \otimes \cdots \otimes e_{k_r}) =
\begin{cases}
\varepsilon^{-(k_1 + \cdots + k_s + s)(1 - \varepsilon^{-2(k_s+1)+1})/2} e_{k_1} \otimes \cdots \otimes e_{k_s} \otimes e_{k_{s+1}} + 1 \otimes e_{k_{s+2}} & \text{if } s < r \\
0 & \text{if } s > r \\
t^{-1} \varepsilon^{-(k_1 + \cdots + k_r + r)} e_{k_1} \otimes \cdots \otimes e_{k_r} & \text{if } r = s
\end{cases}
\]

The representation $\rho_{0,t}$ is equivalent to the restriction of the representation \mathcal{T}_t of $\mathcal{F}_\varepsilon(SL_{n+1}(\mathbb{C}))$ (cf. 2.3); and for $r > 0, \rho_{r,t}$ is equivalent to the restriction of $\pi_{s_1} \otimes \cdots \otimes \pi_{s_r} \otimes \mathcal{T}_t$. \square

From Theorem 2.6, we have
\[
\bigcap_{(w,t) \in W \times T} \ker \rho_{w,t} = \{e\},
\]
i.e. the representation $\bigoplus_{w \in W} \int_T \rho_{w,t} dt$ is faithful and
\[
\dim \rho_{w,t} =
\begin{cases}
1 & \text{if } w = e \\
0 & \text{if } w \neq e.
\end{cases}
\]
We recall now the definition of compact quantum of spheres C^*-algebra.

Definition 2.7. The C^*-algebraic compact quantum sphere $C^*_\varepsilon(S^n)$ is the C^*

completion of the *-algebra $\mathcal{F}_\varepsilon(S^n)$ with respect to the C^*-norm

$$
\|f\| = \sup_\rho \|\rho(f)\| \quad (f \in \mathcal{F}_\varepsilon(S^n)),
$$

where ρ runs through the *-representations of $\mathcal{F}_\varepsilon(S^n)$ (cf., Theorem 2.6) and the norm on the right-hand side is the operator norm.

It suffices to show that $\|f\|$ is finite for all $f \in \mathcal{F}_\varepsilon(S^n)$, for it is clear that $\|\cdot\|$ is a C^*-norm, i.e. $\|f^*f\| = \|f\|^2$. We now prove the following result about the structure of compact quantum C^*-algebra of sphere S^n.

Theorem 2.8. With notation as above, we have

$$
C^*_\varepsilon \cong \mathcal{C}(S^1) \oplus \bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) dt,
$$

where $\mathcal{C}(S^1)$ is the algebra of complex valued continuous functions on S^1 and $\mathcal{K}(H)$ the ideal of compact operators in a separable Hilbert space H.

Proof: Let $w = s_{i_1}s_{i_2}\ldots s_{i_k}$ be a reduced decomposition of the element $w \in W$ into a product of reflections. Then by Proposition 2.6, for $r > 0$, the representation $\rho_{w,t}$ is equivalent to the restriction of $\pi_{s_{i_1}} \otimes \pi_{s_{i_2}} \otimes \ldots \otimes \pi_{s_{i_k}} \otimes T_t$, where π_{s_i} is the composition of the homomorphism of $\mathcal{F}_\varepsilon(G)$ onto $\mathcal{F}_\varepsilon(SL_2(\mathbb{C}))$ and the representation π_{-1} of $\mathcal{F}_\varepsilon(SL_2(\mathbb{C}))$ in the Hilbert space $\ell^2(\mathbb{N})^\otimes r$; and the family of one-dimensional representations T_t, given by

$$
T_t(a) = t, \quad T_t(b) = T_t(c) = 0, \quad T_t(d) = t^{-1},
$$

where $t \in S^1$ and a, b, c, d are given by: Algebra $\mathcal{F}_\varepsilon(SL_2(\mathbb{C}))$ is generated by the matrix elements of type $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Hence, by construction, the representation $\rho_{w,t} = \pi_{s_{i_1}} \otimes \pi_{s_{i_2}} \otimes \ldots \otimes \pi_{s_{i_k}} \otimes T_t$. Thus, we have

$$
\pi_{s_i} : C^*_\varepsilon(S^n) \longrightarrow C^*_\varepsilon(SL_2(\mathbb{C})) \xrightarrow{\pi_{-1}} \mathcal{L}(\ell^2(\mathbb{N})^\otimes r).
$$

Now, π_{s_i} is CCR (see, [11]) and so, we have $\pi_{s_i}(C^*_\varepsilon(S^n)) \cong \mathcal{K}(H_{w,t})$. Moreover $T_t(C^*_\varepsilon(S^n)) \cong \mathbb{C}$.

Hence,

$$
\rho_{w,t}(C^*_\varepsilon(S^n)) = \left(\pi_{s_{i_1}} \otimes \ldots \otimes \pi_{s_{i_k}} \otimes T_t\right)(C^*_\varepsilon(S^n))
$$

$$
= \pi_{s_{i_1}}(C^*_\varepsilon(S^n)) \otimes \ldots \otimes \pi_{s_{i_k}}(C^*_\varepsilon(S^n)) \otimes T_t(C^*_\varepsilon(S^n))
$$

$$
\cong \mathcal{K}(H_{s_{i_1}}) \otimes \ldots \otimes \mathcal{K}(H_{s_{i_k}}) \otimes \mathbb{C}
$$

$$
\cong \mathcal{K}(H_{w,t}),
$$

where $H_{w,t} = H_{s_{i_1}} \otimes \ldots \otimes H_{s_{i_k}} \otimes \mathbb{C}$.

Thus, \(\rho_{w,t}(C_{\mathbb{C}}^*(S^n)) \cong \mathcal{K}(H_{w,t}) \).

Hence, \(\bigoplus_{w \in W} \int_{S^1} \rho_{w,t}(C_{\mathbb{C}}^*(S^n)) \cong \bigoplus_{w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt \).

Now, recall a result of S. Sakai’s from [11]: Let \(A \) be a commutative \(C^* \)-algebra and \(B \) be a \(C^* \)-algebra. Then, \(C_0(\Omega, B) \cong A \otimes B \), where \(\Omega \) is the spectrum space of \(A \).

Applying this result, for \(B = \mathcal{K}(H_{w,t}) \) and \(A = \mathbb{C}(W \times S^1) \) be a commutative \(C^* \)-algebra. Thus, we have

\[
C_{\mathbb{C}}^*(S^n) \cong \mathbb{C}(S^1) \bigoplus \bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt.
\]

Now, we first compute the \(K^*_*(C_{\mathbb{C}}^*(S^n)) \) and the \(HE^*_*(C_{\mathbb{C}}^*(S^n)) \) of \(C^* \)-algebra of quantum sphere \(S^n \).

Proposition 2.9.

\[
HE^*_*(C_{\mathbb{C}}^*(S^n)) \cong H^*_{DR}(W \times S^1).
\]

Proof. We have

\[
HE^*_*(C_{\mathbb{C}}^*(S^n)) = HE^*_*(\mathbb{C}(S^1) \bigoplus \bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt)
\]

\[
\cong HE^*_*(\mathbb{C}(S^1)) \bigoplus HE^*_*(\bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt)
\]

\[
\cong HE^*_*(\mathbb{C}(W \times S^1) \otimes \mathcal{K}) \quad \text{(by Proposition 1.1 §1)}
\]

\[
\cong HE^*_*(\mathbb{C}(W \times S^1)).
\]

Since \(\mathbb{C}(W \times S^1) \) is a commutative \(C^* \)-algebra, by Proposition 1.5, §1, we have

\[
HE^*_*(C_{\mathbb{C}}^*(S^n)) \cong HE^*_*(\mathbb{C}(W \times S^1)) \cong H^*_{DR}(W \times S^1)
\]

Proposition 2.10.

\[
K^*_*(C_{\mathbb{C}}^*(S^n)) \cong K^*(W \times S^1).
\]

Proof. We have

\[
K^*_*(C_{\mathbb{C}}^*(S^n)) = K^*_*(\mathbb{C}(S^1) \bigoplus \bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt)
\]

\[
\cong K^*_*(\mathbb{C}(S^1)) \bigoplus K^*_*(\bigoplus_{e \neq w \in W} \int_{S^1} \mathcal{K}(H_{w,t}) \, dt)
\]

\[
\cong K^*_*(\mathbb{C}(W \times S^1) \otimes \mathcal{K})
\]

\[
\cong K^*_*(\mathbb{C}(W \times S^1)) \quad \text{(by proposition 1.1 §1)}.
\]
In virtue of Proposition 1.5, §1, we have
\[K_\ast(C(W \times S^1)) \cong K^\ast(W \times S^1) \]

Theorem 2.11. With notation above, the Chern character of \(C^\ast \)-algebra of quantum sphere \(C^\ast_\varepsilon(S^n) \)
\[ch_{C^\ast} : K_\ast(C^\ast_\varepsilon(S^n)) \longrightarrow HE_\ast(C^\ast_\varepsilon(S^n)) \]
is an isomorphism.

Proof. By Proposition 2.9 and 2.10, we have:
\[HE_\ast(C^\ast_\varepsilon(S^n)) \cong HE_\ast(C(W \times S^1)) \cong H_{DR}^\ast(W \times S^1), \]
\[K_\ast(C^\ast_\varepsilon(S^n)) \cong K_\ast(C(W \times S^1)) \cong K^\ast(W \times S^1). \]

Now, consider the commutative diagram
\[
\begin{array}{ccc}
K_\ast(C^\ast_\varepsilon(S^n)) & \xrightarrow{ch_{C^\ast}} & HE_\ast(C^\ast_\varepsilon(S^n)) \\
\| & & \| \\
K_\ast(C(W \times S^1)) & \xrightarrow{ch_{CQ}} & HE_\ast(C(W \times S^1)) \\
\| & & \| \\
K^\ast(W \times S^1) & \xrightarrow{ch} & H_{DR}^\ast(W \times S^1)
\end{array}
\]

Moreover, following Watanabe [15], the \(ch : K^\ast(W \times S^1) \otimes \mathbb{C} \longrightarrow H_{DR}^\ast(W \times S^1) \)
is an isomorphism.

Thus, \(ch_{C^\ast} : K^\ast(C^\ast_\varepsilon(S^n)) \longrightarrow HE_\ast(C^\ast_\varepsilon(S^n)) \) in an isomorphism.

Acknowledgment. The author would like to thank Professor Do Ngoc Diep for his guidance and encouragement during this work.

REFERENCES

[1]. J. Cuntz, *Entice cyclic cohomology of Banach algebra and character of \(\theta \)-summable Fredhom modules*, \(K \)-Theory, **1** (1998), 519-548.
[2]. J. Cuntz and D. Quillen, *The \(X \) complex of the universal extensions*, Preprint Math. Inst. Uni. Heidelberg, 1993.
[3]. V. Chari and A. Pressley, *A guide to Quantum groups*, Cambridge Uni. Press, 1995.
[4]. D.N. Diep, A.O. Kuku and N.Q. Tho, *Non-commutative Chern character of compact Lie group \(C^\ast \)-algebras*, \(K \)-Theory, **17(2)**, (July 1999), 195-208.
[5]. D. N. Diep, A. O. Kuku and N. Q. Tho, *Non-commutative Chern character of compact quantum groups*, ICTP (Preprint), IC/98/91, 1998, 16pp.

[6]. D. N. Diep and N. V. Thu, *Homotopy invariance of entire current cyclic homology*, Vietnam J. of Math., 25(3) (1997), 211-228.

[7]. D. N. Diep and N. V. Thu, *Entire homology of non-commutative de.Rham currents*, ICTP, IC/96/214, 1996, 23pp; to appear in Publication of CFCA, Hanoi-City University of Science, Vietnam National University, 1997.

[8]. M. Khalkhali, *On the intive cyclic cohomology of Banach algebras: I. Morita invariance*, Mathematisches Inst. Uni. Heidelberg, 54 (1992), pp24.

[9]. M. Khalkhali, *On the entite cyclic cohomology of Banach algebras: II. Homotopy invariance*, Mathematisches Inst. Uni. Heidelberg, 55 (1992), pp18.

[10]. J. Packer, *Transformation group C*-algebra: A selective survey*, Contemporary Mathematics, Volume 167, 1994.

[11]. S. Sakai, *C*-algebras and W*-algebras, Springer-Verlag Berlin. Heidelberg New York, 1971.

[12]. N. V. Thu, *Morita invariance of entire current cyclic homology*, Vietnam J. Math. 26: 2(1998), 177-179.

[13]. N. N. Thu, *Exactness of entire current cyclic homology*, Acta Math, Vietnamica (to appear).

[14]. T. Watanabe, *Chern character on compact Lie groups of low rank*, Osaka J. Math. 2 (1985), 463-488.

[15]. T. Watanabe, *On the Chern character of symmetric space related to $SU(n)$*, J. Math. Kyoto Uni. 34 (1994), 149-169.

Department of Mathematics, Vinh University, Vinh City, Vietnam