Case Report

A Rare Case of Solitary Enchondroma of Distal End of Radius Diagnosed Retrospectively

Devendrappa H.1,2 and Vivek Chandak*1

1Associate Professor in Orthopaedics at VIMS Medical college, Bellary, India
2Consultant at Adarsha Heart care and multi-speciality Hospital, Kolachalam Compound, Bellary, India

*Correspondence Info:
Dr. Vivek Chandak, MBBS
Post Graduate Trainee in Orthopaedics
Room No. 17, Block 17, Post Graduate Boys Hostel
VIMS Campus, Bellary- 583104.
E-mail: drvivekchandak@gmail.com

Abstract

Introduction: Solitary enchondroma of distal end of radius is extremely rare. Even after extensive search very little regarding it was found in the literature (even after extensive search only two case reports were found). This case being one of its kind as the diagnosis was done retrospectively as all the preoperative investigations pointed on different diagnosis so worthy of reporting.

Case Report: A 15-year-old female presented with pain in the right distal forearm for about 12 weeks with no associated constitutional symptoms. Preliminary investigations including MRI scan were suggestive of Chronic Osteomyelitis, therefore curettage was done. Histopathological examination reported came as solitary enchondroma of distal radius, which is extremely rare (<1% incidence). Patient was symptomatic free with no evidence of recurrence at the follow-up of one year.

Conclusion: The common differential diagnosis of a lytic lesion of distal radius in this age group includes Osteomyelitis, aneurysmal bone cyst, chondromyxoid fibroma, non-ossifying fibroma. Distal Radius is a very rare location for a solitary enchondroma but as our case signifies enchondroma should be kept as a differential diagnosis while evaluating lytic lesion of distal Radius.

Keywords: distal radius enchondroma, distal radius lytic lesions, solitary enchondroma

1. Introduction

A chondroma is any benign tumour composed solely of normal appearing: mature hyaline cartilage.1 The term enchondroma usually is reserved for intramedullary chondromas as opposed to eccentrically located periosteal chondromas or soft-tissue chondromas.2 Enchondromas are second most benign cartilaginous tumour, after osteochondromas.3 In contrast to chondrosarcomas, which most frequently affect the axial skeleton (the spine and pelvis), enchondromas have a distinct predilection for the appendicular skeleton and are the most common benign tumour of the hand, particularly the phalanges. The cartilaginous nodules characteristic of enchondromas may be hamartomatous proliferations rather than truly neoplastic lesions.4 Regardless of this distinction enchondromas are usually benign lesions with limited potential for malignant degeneration particularly for monostotic disease.4,5

They are most commonly located in the short tubular bones in the hands but are also found in long bones. Approximately 35% of all enchondromas arise in the hand, followed by femur, humerus, and tibia. Solitary enchondroma of radius is rare.5 Even after extensive literature search, reference for exact incidence of solitary enchondroma in radius is not found, although 1% incidence is quoted for radius and ulna.6 Radiographs usually demonstrate a small (<5 cm) cartilaginous lesion with intramedullary calcifications without cortical involvement or soft-tissue extension.6,22 Histologically, enchondromas exhibit discrete islands of hyaline cartilage surrounded by lamellated bone. Multinucleated cells are rare. An asymptomatic enchondroma usually does not require treatment beyond observation. Occasionally, symptomatic enchondromas are treated by intralesional excision. The incidence of local recurrence is extremely low.2

Enchondromas and high-grade chondrosarcomas have distinct clinicopathologic and radiologic appearances, which can be used to easily distinguish one entity from the other. Enhanced CT is able to detect low-grade chondrosarcoma adjacent to normal bone.26 Histologically, enchondromas exhibit discrete islands of hyaline cartilage surrounded by lamellated bone. Multinucleated cells are rare. An asymptomatic enchondroma usually does not require treatment beyond observation. Occasionally, symptomatic enchondromas are treated by intralesional excision. The incidence of local recurrence is extremely low.2

2. Case Report

A 15-year-old female presented with pain in the right distal forearm for about 12 weeks. Pain started after lifting weights and aggravated by physical work. Swelling of distal wrist since one month. No associated constitutional symptoms.

On Examination there was diffuse swelling of right distal radius firm to hard in consistency associated with tenderness. Thickening of distal end of radius was felt. There was no restriction of wrist movements. There were no associated neurovascular deficits.

X-ray features were suggestive of radiolucent lytic lesion in the distal radial metaphysis with thickened periosteal reactions suggestive of Subacute Osteomyelitis. (Figure 1)
X-ray features were suggestive of radiolucent lytic lesions in the distal radial metaphysis with thickened periosteal reactions suggestive of Sub-acute Osteomyelitis.

MRI features showed multiple altered signal intensity lesions in the Metadiaphysis and Epiphysis of lower 1/3 radius which were irregular and few were also seen along the endosteal margins. There was cortical irregularity with Mild bone enlargement and minimum subperiosteal edema. Impression was suggestive of Sub-acute osteomyelitis with Brodies Abscess in distal 1/3 radius. (Figure 2)
Case was provisionally diagnosed as Sub-acute osteomyelitis and curettage was done and the sample was sent for histopathological examination. Histopathological Examination section showed lobules of mature cartilage surrounded by bony trabeculae. Scattered inflammatory cells being seen in adjacent stroma. Section was negative for granulomas or malignancy. Features were in favour of Enchondroma. (Figure 3)

Histopathological Examination section showed lobules of mature cartilage surrounded by bony trabeculae. Scattered inflammatory cells being seen in adjacent stroma. Section was negative for granulomas or malignancy. Features were in favour of Enchondroma.

At 12-month follow-up, patient was found to be completely symptom-free, have full ROM (range of motion). X-ray showed filling up of the excised area with bone. (Figure 4,5,6)

Figure 3: Histopathology of the excised lesion

Figure 4: Six months post-operative X-ray - includes Postero-Anterior (PA) and Lateral view of left distal forearm.

Figure 5: Clinical photograph of the patient at six months post-operative- shows good functional range of wrist movements with a healthy scar.
Figure 6: Twelve months post-operative X-ray - includes Postero-Anterior (PA) and Lateral view of left distal forearm.

Patient was found to be completely symptom-free, have full ROM (range of motion). X-ray showed filling up of the excised area with bone

3. Discussion
Approximately 35% of all enchondromas arise in the hand1, followed by femur, humerus, and tibia. Solitary enchondroma of radius is rare2. Even after extensive literature search, reference for exact incidence of solitary enchondroma in radius is not found, although 1% incidence is quoted for radius and ulna1.

We are presenting a rare case of solitary enchondroma of distal radius diagnosed retrospectively on histology. Even after extensive research very few cases of distal radius enchondroma were found and none in which diagnosis was made retrospectively.

4. Conclusion
The common differential diagnosis of a lytic lesion of distal radius in this age group includes Osteomyelitis, aneurysmal bone cyst, chondromyxoid fibroma, non-ossifying fibroma, Enchondroma. This report concludes the importance of keeping Enchondroma as a differential diagnosis when treating a case of lytic lesions even in the long bones. It also highlights the importance of biopsy as the investigation which helps in reaching the correct diagnosis whereas other investigations may be misleading in some cases. Therefore even if though rare but still enchondroma can present in unusual locations like distal radius and should be kept as one of the differential diagnosis when managing such cases.

Consent
A well informed and written consent was taken from the patient and her father for the presented case report including both for the data and the photos.

References
1. Campanacci M. Chondroma. In: Campanacci M, Bertoni F, Bacchini P editors. Bone and soft tissue tumors. New York: Springer; 1990. p 213-29.
2. Jaffe HL, Lichtenstein L. Solitary benign enchondroma of bone. Arch Surg1943; 46:480-93.
3. Lewis RJ, Ketcham AS. Mafucci’s syndrome: functional and neoplastic significance. Case report and review of the literature. J Bone Joint Surg Am. 1973; 55:1465-79.
4. Mirra JM. Intramedullary cartilage- and chondroid-producing tumors. In: Mirra JM, editor. Bone tumors: clinical, radiologic, and pathologic correlations. Philadelphia: Lea and Febiger; 1989. p 439-85.
5. Athanasian EA. Bone and Soft Tissue Tumors. In: Green DP, editor. Green's Operative Hand Surgery. 5th ed. Philadelphia: Elsevier Churchill Livingstone; 2005. p. 2228-51.
6. Parkinson RW, Paton RW, Noble J, Freemont AJ. Pathologic fracture through a solitary enchondroma of the radial diaphysis: Case report. J Trauma 1991; 31:284-6.
7. Wilner D. Benign bone tumors and tumorous conditions of bone. In: Wilner D, editor. Radiology of bone tumors and allied disorders. Philadelphia: WB Saunders; 1982. p. 387-412.
8. Unni KK. Dahlin's Bone Tumors: General Aspects and Data on 11,087 Cases. 5th ed. Philadelphia: Lippincott-Raven, 1996.
9. Geimannrdt MJ, Hermans J, Bloom JL, et al: Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. AJR Am J Roentgenol 1997; 169:1097-1104.
10. Quint U, Pingmann A: Surgical treat-ment of enchondroma in long tubular bones: Preservation of function versus extensive excision in the humerus. Arch Orthop Trauma Surg 1995; 114:352-356.
11. Schreuder HBO, Pruszczyński M, Veth RPH, Lemmens JAM: Treatment of benign and low-grade malignant intramedullary chondroid tumours with curettage and cryosurgery. Eur J Surg Oncol 1998; 24:120-126.
12. Murphy MD, Andrews CL, Flemming DJ, Temple HT, Smith WS, Smirnio-topoulos JG: From the archives of the AFIP: Primary tumors of the spine—Radiologic pathologic correlation. Radiographics 1996; 16:1131-1158.
13. Colyer RA, Sallay P, Backwalter K, Van Bastelaer F: MRI assessment of chondroid matrix tumours, in Limb Salvage: Current Trends—Proceedings of the 7th International Symposium, Singapore: International Symposium of Limb Salvage, 1993, pp 89-93.
14. Mirra JM, Gold R, Downs J, Eckardt JJ: A new histologic approach to the dif-ferentiation of enchondroma and chondrosarcoma of the bones: A clinicopathologic analysis of 51 cases. Clin Orthop 1985; 201:214-237.
15. Lindenbaum S, Alexander H. Infections simulating bone tumors: a review of subacute osteomyelitis. Clin Orthop. 1984; 184:193–203.