Modular transformation and twist between trigonometric limits of $sl(n)$ elliptic R-matrix

Wen-Li Yanga,b* and Yi Zhena†

aInstitute of Modern Physics, Northwest University, Xian 710069, China
bPhysikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany

November 15, 2018

Abstract

We study the modular transformation of \mathbb{Z}_n-symmetric elliptic R-matrix and construct the twist between the trigonometric degeneracy of the elliptic R-matrix.

Mathematics Subject Classifications (1991): 17B37, 81R10, 81R50, 16W30.

1 Introduction

Universal twists connecting quantum (super) algebras to elliptic (super) algebras have been constructed in [1, 2, 3, 4, 5]. Recently, universal twists connecting double Yangian $DY(sl(2))_c$ to deformed double Yangian $DY_\xi(sl(2))_c$ (or $\tilde{A}_{\hbar,\eta}(\hat{\mathfrak{sl}}_2)$ [6, 7]), has been given in [8]. They show the quasi-Hopf structure of elliptic (super) algebras and deformed Yangian.

If $(\mathcal{A}, \Delta, \mathcal{R})$ defines a quasi-triangular Hopf (super) algebra and the universal twist $\mathcal{F} \in \mathcal{A} \otimes \mathcal{A}$ satisfies the cocycle-like relations (For the details we will refer the reader to...
\begin{align}
\Delta^F(\cdot) &= \mathcal{F}\Delta(\cdot)\mathcal{F}^{-1}, \\
\mathcal{R}^F &= F_{21}\mathcal{R}F_{12}^{-1},
\end{align}

defines a quasi-triangular quasi-Hopf (super) algebra. As for the R-matrices interpreted as evaluation representation of universal ones, it becomes

\begin{align}
\mathcal{R}^F &= F_{21}R F_{12}^{-1},
\end{align}

where the particular matrix \(F \) is the evaluation representation of \(\mathcal{F} \).

It is well-known that there exist two kind trigonometric degeneracy limits of elliptic R-matrix: scaling limit which is the R-matrix of deformed double Yangian \(DY_\xi(sl(n))_c \) \([6]\) and ordinary limit which is also related to another type deformed Yangian (e.g \(DY_\xi V^6 \)). In this letter, we will construct the twist between these two trigonometric R-matrices. In special case \(n = 2 \), our result coincides with the result of Arnaudon’s \([9]\).

2 Trigonometric limits of elliptic R-matrix

2.1 The \(sl(n) \) elliptic R-matrix

Let \(n \) be an integers and \(n \leq 2 \), \(w \in \mathcal{C} \) and \(Imw > 0 \), \(\xi \) take real value and \(\xi > 0 \), \(\tau \in \mathcal{C} \) and \(Im\tau > 0 \). Set \(V \) be a n-dimensional vector space with standard basis \(\{e_j\}_{j\in\mathbb{Z}^n} \). Introduce \(n \times n \) matrices \(h \), \(g \) and \(I_\alpha \) with \(\alpha \in \mathbb{Z}^n \otimes \mathbb{Z}^n \) by

\[
he_j = e_{j+1}, \quad ge_j = \omega^j e_j, \quad j \in \mathbb{Z}^n,
\]

\[
I_\alpha \equiv I_{\alpha_1,\alpha_2} = h^{\alpha_1}g^{\alpha_2},
\]

where \(\omega = exp\left\{ \frac{2i\pi}{n} \right\} \). Define the elliptic functions

\[
\theta \begin{bmatrix} a \\ b \end{bmatrix} (z, \tau) = \sum_{m \in \mathbb{Z}} exp\{i\pi[(m + a)^2 \tau + 2(m + a)(z + b)]\},
\]

\[
\sigma_\alpha(z, \tau) = \sigma_{(\alpha_1,\alpha_2)}(z, \tau) = \theta \begin{bmatrix} \frac{1}{2} + \frac{\alpha_1}{n} \\ \frac{1}{2} + \frac{\alpha_2}{n} \end{bmatrix} (z, \tau).
\]

The \(\mathbb{Z}_n \)-symmetric R-matrix can be defined as

\begin{align}
\mathcal{S}(z, w, \tau) &= \frac{\sigma_0(w, \tau)}{\sigma_0(z + w, \tau)} \sum_\alpha W_\alpha(z, \tau)I_\alpha \otimes I_\alpha^{-1},
\end{align}

\[2\]
where

\[W_\alpha(z, \tau) = \frac{\sigma_\alpha(z + \frac{w}{n}, \tau)}{n \sigma_\alpha(\frac{w}{n}, \tau)}. \]

The elements of \(\mathbf{Z}_n \)-symmetric R-matrix can be expressed explicitly\[11\]

\[\{ \mathbf{S}(z, w, \tau) \}_{i,j}^{kl} = \frac{\sigma_0(w, \tau)}{\sigma_0(z + w, \tau)} \prod_{j=0}^{n-1} \theta \left[\frac{1}{2} + \frac{j}{n} \right] (z, n\tau) \prod_{j=1}^{n-1} \theta \left[\frac{1}{2} + \frac{j}{n} \right] (0, n\tau) \]

\[\times \frac{\theta \left[\frac{1}{2} + \frac{l-k}{n} \right] (z + w, n\tau) \theta \left[\frac{1}{2} + \frac{l-i}{n} \right] (w, n\tau)}{\theta \left[\frac{1}{2} + \frac{l-k}{n} \right] (w, n\tau) \theta \left[\frac{1}{2} + \frac{l-i}{n} \right] (z, n\tau)}. \]

(2.2)

Introduce \(sl(n) \) elliptic R-matrix

\[S(z) \equiv S(z, w, \tau) = x^{\frac{z}{w}(\frac{1}{n} - 1)} \frac{g_1(z)}{g_1(-\frac{z}{w})} \mathbf{S}(z, w, \tau), \]

(2.3)

with \(x = e^{i\pi w} \) and

\[g_1(v) = \frac{\{ x^{2v}x^2 \} \{ x^{2v}x^{2n+2\xi-2} \}}{\{ x^{2v}x^{2n} \} \{ x^{2v}x^{2\xi} \}}, \]

(2.4)

where \(\{ z \} = (z; e^{2i\pi \tau}, x^{2n}) \) and \((z; p_1, \cdots, p_m) \equiv \prod_{\{m\}}^\infty (1 - z p_1^{m_1} \cdots p_m^{m_m}). \)

The \(sl(n) \) elliptic R-matrix \(S(v) \) satisfies the following properties\[12\]

Yang – Baxter equation : \[S_{12}(v_1 - v_2)S_{13}(v_1 - v_3)S_{23}(v_2 - v_3) = S_{23}(v_2 - v_3)S_{13}(v_1 - v_3)S_{12}(v_1 - v_2), \]

Unitarity : \[S_{12}(v)S_{21}(-v) = 1, \]

Crossing – Unitarity : \[S_{12}(v)^{\ell_2}S_{21}(-v - n)^{\ell_2} = 1, \]

(2.5)

2.2 Scaling limit of the \(sl(n) \) elliptic R-matrix

The scaling limit of the R-matrix (2.3) is taken by

\[\frac{z}{\tau} = \frac{i\beta}{\hbar \xi}, \quad \frac{w}{\tau} = \frac{1}{\zeta}, \quad w \rightarrow 0^+, \quad \text{with } \beta, \xi \text{ and } \hbar \text{ fixed}. \]

(2.5)
The above limit should be understood as w go to 0 with the Imw from 0+. Noting the properties of elliptic functions under the scaling limit (2.5)

$$\begin{align*}
\theta \left[\frac{1}{2} + a \right] \left(\frac{i\beta w}{h}, n\xi w \right) & \quad w \to 0^+ \\
\theta \left[\frac{1}{2} + b \right] \left(\frac{i\beta w}{h}, n\xi w \right) & \quad w \to 0^+ \\
\theta \left[\frac{1}{2} + a \right] \left(\frac{i\beta w}{h}, \xi w \right) & \quad w \to 0^+ \\
\theta \left[\frac{1}{2} + b \right] \left(\frac{i\beta w}{h}, \xi w \right) & \quad w \to 0^+
\end{align*}
$$

we can obtain that in the scaling limit the matrix elements of (2.3) become

$${\{ R^{DY}_{i,j} \}}_{kl} \overset{def}{=} \lim_{w \to 0^+} S^{kl}_{ij} \left(\frac{i\beta w}{h}, w, \xi w \right)$$

$$= \kappa(\beta) \left(\prod_{\alpha=1}^{n-1} \frac{\sin(\frac{i\beta}{nh} + \frac{\alpha}{n})}{\sin(\frac{\alpha}{n})} \right) \sin(\frac{1}{\xi}) \sin\pi\left(\frac{i\beta}{nh} + \frac{1}{n} + \frac{\xi}{n} \right)$$

$$\sin\pi\left(\frac{i\beta}{nh} + \frac{1}{n} + \frac{\xi}{n} \right) \sin\pi\left(\frac{i\beta}{nh} + \frac{1}{n} + \frac{\xi}{n} + \frac{\xi}{n} \right) \sin\pi\left(\frac{i\beta}{nh} + \frac{1}{n} + \frac{\xi}{n} \right)$$

$$= \exp\{-2 \int_{0}^{\infty} \frac{sh(n-1)ht \ sh(\xi-1)ht \ sh2i\beta t dt}{shh \xi t \ shnht} \},$$

and $\kappa(\beta)$ can be re-expressed in terms of double sine function\[[6]\]. In the deriving, we have used the identity

$$\prod_{j=1}^{n-1} \frac{\sin(x + j\pi/n)}{\sin(\frac{\pi}{n})} = \frac{\sin x}{n \sin x}$$
In the particular case \(n = 2 \), one recovers explicitly \([13, 14]\):

\[
R^{DY}_{\xi}(\beta, \xi; \hbar) = \kappa(\beta) \begin{pmatrix}
\frac{\cos \frac{\pi}{2} \cos \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})} & 0 & 0 & -\frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})} \\
0 & \frac{\cos \frac{\pi}{2} \sin \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} & \frac{\sin \frac{\pi}{2} \cos \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} & 0 \\
0 & \frac{\sin \frac{\pi}{2} \cos \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})} & \frac{\cos \frac{\pi}{2} \sin \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})} & 0 \\
-\frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})} & 0 & 0 & \frac{\cos \frac{\pi}{2} \cos \frac{\pi}{2n}}{\cos \pi (\frac{1}{2n} + \frac{1}{2})}
\end{pmatrix}.
\tag{2.9}
\]

2.3 The ordinary trigonometric limit of \(sl(n) \) elliptic R-matrix

The ordinary trigonometric limit of the R-matrix \([2, 3]\) is taken by: \(\tau \rightarrow +i\infty \) with \(z \) and \(w \) fixed \([11, 14]\). Noting the properties

\[
\begin{align*}
\theta \left[\frac{1}{2} + \frac{a}{n} \right] (z, \tau) \rightarrow & +i\infty \quad \{ \exp\{2i\pi(\frac{a}{n} - \frac{1}{2})(z-w)\}, \quad 0 < a < n \\
\theta \left[\frac{1}{2} + \frac{a}{n} \right] (w, \tau) \rightarrow & +i\infty \quad \{ \exp\{2i\pi(\frac{a}{n} + \frac{1}{2})(z-w)\}, \quad -n < a < 0 \}
\end{align*}
\]

we have that in ordinary trigonometric limit the matrix elements of \([2, 3]\) become \([14]\):

\[
\{R^Q\}_{ij}^{kl}(\beta, \xi; \hbar) \overset{\text{def}}{=} \kappa(\beta) \times \lim_{\tau \rightarrow +i\infty} S_{ij}^{kl}(\frac{1}{\hbar \xi}, \frac{1}{\xi} + \frac{1}{\hbar \xi}, \tau) \tag{2.10}
\]

\[
\begin{cases}
\{R^Q\}_{ij}^{ij}(\beta, \xi; \hbar) = \kappa(\beta) \frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} \exp\{2i\pi(\frac{1}{n} - \frac{1}{2}) - \frac{1}{2} i \beta \hbar \}, & i < j \\
\{R^Q\}_{ij}^{ij}(\beta, \xi; \hbar) = \kappa(\beta) \frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} \exp\{2i\pi(\frac{1}{n} + \frac{1}{2}) - \frac{1}{2} i \beta \hbar \}, & j < i \\
\{R^Q\}_{ij}^{ij}(\beta, \xi; \hbar) = \kappa(\beta) \frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} \exp\{2i\pi(-\frac{1}{2} + \frac{1}{n}) - \frac{1}{2} i \beta \hbar \}, & i < j \\
\{R^Q\}_{ij}^{ij}(\beta, \xi; \hbar) = \kappa(\beta) \frac{\sin \frac{\pi}{2} \sin \frac{\pi}{2n}}{\sin \pi (\frac{1}{2n} + \frac{1}{2})} \exp\{2i\pi(\frac{1}{2} + \frac{1}{n}) - \frac{1}{2} i \beta \hbar \}, & j < i \\
\{R^Q\}_{ij}^{ij}(\beta, \xi; \hbar) = 0, & \text{otherwise}
\end{cases}
\]
In the particular case \(n=2 \), one recovers
\[
R^Q(\beta, \xi; \bar{h}) = \kappa(\beta) \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{\sin \frac{i\pi \beta}{2\bar{h}}} {\sin \frac{i\pi \beta}{2\bar{h}} + \frac{1}{2}\xi} & \frac{-\sin \frac{i\pi \beta}{2\bar{h}}}{\sin \frac{i\pi \beta}{2\bar{h}} + \frac{1}{2}\xi} & 0 \\
0 & \frac{\sin \frac{i\pi \beta}{2\bar{h}}}{\sin \frac{i\pi \beta}{2\bar{h}} + \frac{1}{2}\xi} & \frac{-\sin \frac{i\pi \beta}{2\bar{h}}}{\sin \frac{i\pi \beta}{2\bar{h}} + \frac{1}{2}\xi} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\] (2.11)

In the case \(\bar{h} = \pi \), the above \(R \)-matrix coincides with the \(S \)-matrix of sine-Gordon model [15].

3 Modular transformation and the twist from \(R^Q \) to \(R^{DY}_\xi \)

3.1 Modular transformation of elliptic functions

The elliptic \(\sigma_0 \)-function has the following modular transformation property [16]
\[
\theta \left[\frac{1}{2} \right] (z, \frac{1}{\tau}, -\frac{1}{\tau}) = \exp\{i\pi \frac{z^2}{\tau}\} \theta \left[\frac{1}{2} \right] (z, \tau) \times \text{const.}
\]
where the \text{const.} only depends on \(\tau \). Noting that
\[
\theta \left[\frac{1}{2} + a \right] (z, \tau) = \exp\{2i\pi [z \frac{1}{2} + b + \frac{a\tau}{2}]\} \theta \left[\frac{1}{2} \right] (z + b + a\tau, \tau),
\]
we have the following properties under modular transformation
\[
\theta \left[\frac{1}{2} + a \right] (\frac{z}{\tau}, -\frac{1}{\tau}) = \exp\{i\pi [\frac{z^2}{\tau} + a - b + 2ab]\} \theta \left[\frac{1}{2} + b \right] (z, \tau) \times \text{const.}.
\] (3.1)

From (3.1) and the definition of \(Z_n \)-symmetric \(R \)-matrix, we can derive the following relations [12]
\[
(M \otimes M)S(\frac{z}{\tau}, w, -\frac{1}{\tau})(M^{-1} \otimes M^{-1}) = x^{\frac{2sw(1-s)}{n\tau}} P S(z, w, \tau) P.
\] (3.2)

where \(P \) is the permutation operator acting on tensor space \(V \otimes V \) as: \(P(e_i \otimes e_j) = e_j \otimes e_i \), and the \(n \times n \) matrix \(M \) with the elements defined as \((M)_{jk} = \omega^{-jk} \). The matrix \(M \) enjoys in the following properties
\[
MgM^{-1} = h^{-1}, \quad MhM^{-1} = g.
\] (3.3)

6
3.2 Twist from R^Q to R^{DY}_ξ

In this subsection, we shall calculate the twist from R^{DY}_ξ defined in (2.8) to R^Q given in (2.10). From (2.8), we have

$$R^{DY}_\xi(\beta, \xi; \hbar) = \kappa(\beta) \lim_{w \to 0^+} S\left(\frac{i\beta w}{\hbar}, w, \xi w\right) = \kappa(\beta) (M \otimes M) P \lim_{w \to 0^+} \{S\left(\frac{i\beta}{\hbar\xi}, \frac{1}{\xi w}\right)\} P(M^{-1} \otimes M^{-1}) = (M \otimes M) P R^Q(\beta, \xi; \hbar) P(M^{-1} \otimes M^{-1}).$$

In the second line we have used (3.2). Therefore, the trigonometric degeneracy limits R-matrices R^{DY}_ξ and R^Q are related by

$$R^{DY}_\xi(\beta, \xi; \hbar) = F_{12} R^Q(\beta, \xi; \hbar) F_{12}^{-1},$$

where the twist F_{12} is

$$F_{12} = M \otimes MP_{12}.$$ (3.5)

In the following, let us consider the special case $n = 2$. In this case,

$$M = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = -\sqrt{2} V \sigma_z,$$

where

$$\sigma_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Thanks to that R^Q (2.11) satisfies the following properties

$$P R^Q(\beta, \xi; \hbar) P = R^Q(\beta, \xi; \hbar) = (\sigma_z \otimes \sigma_z) R^Q(\beta, \xi; \hbar)(\sigma_z \otimes \sigma_z),$$

our twist is equivalent to that given by Arnaudon et al \[9\].
Acknowledgments.

We would like to thank Bo-yu Hou for his encouragement. W.-L. Yang would like to thank Prof. von Gehlen and the theoretical group of the Physikalisches Institut der Universität Bonn for their kind hospitality. This work has been partly supported by the National Natural Science Foundation of China. W.-L. Yang is supported by the Alexander von Humboldt Foundation.

References

[1] O. Babelon, D. Bernard, E. Billey, Phys. Lett. B375, 89 (1996).
[2] C. Fronsdal, Lett. Math. Phys. 40, 117 (1997).
[3] M. Jimbo, H. Konno, S. Odake, J. Shiraishi, e-print q-alg/9712037.
[4] Y.-Z. Zhang, M.D. Gould, J. Math. Phys. 40, 5264 (1999).
[5] M.D. Gould, Y.-Z. Zhang, P.S. Isaac, e-print math.QA/9811062, Commun. Math. Phys. in press.
[6] D. Arnaudon, J. Avan, L. Frappat, E. Ragoucy, M.Rossi, Rev. Math. Phys. 12, 945 (2000); J.Phys. A33, 6279 (2000).
[7] M. Jimbo, H. Konno, T.Miwa, e-print hep-th/9610079.
[8] S. Khoroshkin, D. Lebedev, S. Pakuliak, Commun. Math. Phys. 190, 597 (1998).
[9] D. Arnaudon, J. Avan, L. Frappat, E. Ragoucy, M. Rossi, Lett. Math. Phys. 51, 193 (2000).
[10] V.G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. Journ. 1, 1419 (1990).
[11] P. Richey, A. Tracy, J. Stat. Phys. 42, 311 (1986).
[12] H. Fan, B.Y. Hou, K.J. Shi, W.-L. Yang, J. Math. Phys. 39, 4356 (1998).
[13] H. Konno, e-print hep-th/9701034.
[14] B.Y. Hou, K.J. Shi, Z.X. Yang, Int. J. Mod. Phys. A7 (suppl. 1A), 391 (1992).
[15] F.A. Simnov, *Form factors in completely integrable models of quantum field theory*, World Scientific, 1992.

[16] D. Mumford, *Tata Lectures on Thete I* (Birkhauser, Boston, 1983).