Synchronization, Slippage, and Unbundling of Driven Helical Flagella

Shang Yik Reigh, Roland G. Winkler*, Gerhard Gompper

Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany

Abstract

Peritrichous bacteria exploit bundles of helical flagella for propulsion and chemotaxis. Here, changes in the swimming direction (tumbling) are induced by a change of the rotational frequency of some flagella. Employing coarse-grained modeling and simulations, we investigate the dynamical properties of helical flagella bundles driven by mismatched motor torques. Over a broad range of distances between the flagella anchors and applied torque differences, we find a stable bundled state, which is important for a robust directional motion of a bacterium. With increasing torque difference, a phase lag in the flagellar rotations develops, followed by slippage and ultimately unbundling, which sensitively depends on the anchoring distance of neighboring flagella. In the slippage and drift states, the different rotation frequencies of the flagella generate a tilting torque on the bacterial body, which implies a change of the swimming direction as observed experimentally.

Introduction

Motile bacteria exploit bundles of rotating helical flagellar filaments for propulsion and chemotaxis [1–4]. Various arrangements of the flagella on the bacterial cell membrane have developed in the evolutionary process [5]. The flagella of peritrichous bacteria self-organize into bundles by (typically) counterclockwise rotation of the flagella motors leading to nearly straight swimming. To change the swimming direction, this “running” phase is interrupted by short periods of “tumbling” [6–8]. A specific flagella design [9] implies a distinct tumbling mechanism of a particular bacterium. In Escherichia coli bacteria, clockwise rotation of one or several flagella leads to a polymorphic transition, [10–14] disintegration of the bundle and bacterial tumbling [1,5,16]. In contrast, the flagella of Rhizobium meliloti or Rhizobium lupini are only capable of limited polymorphic transitions and their motors are unidirectional [9,17,18]. These bacteria modulate the rotation speed of individual motors to induce tumbling [9,17].

The bundling process of bacterial flagella has been studied experimentally [3,17,19–21], theoretically [22–24], and by computer simulations [5,8,16]. An essential aspect of bundling is synchronization of the flagella driven by motors of nonuniform strength. Synchronization of flagellar rotation is, aside from bacterial motion, of fundamental importance for a broad range of phenomena in biology [25–29], ranging from fluid transport in the respiratory system [30], to embryonic left-right asymmetry [31], and intercellular communication [32]. Thus, a theoretical understanding of flagella synchronization is of paramount importance. Synchronization in fluid systems can be achieved by hydrodynamic interactions as demonstrated by various studies [16,27,28,33–40]. In bacterial bundling, steric interactions between the various flagella may also play an important role due to the opposite rotation of the flagella bundle and the cell body [16].

Much less is known about the tumbling mechanism of bacteria in general, and for bacteria such as R. lupini or R. meliloti with unidirectional motors in particular. In Ref. [17], bundle disintegration has been observed when a flagellar filament slows down or stops. However, tumbling should also be possible without complete disintegration of the bundle, but might be more difficult to observe experimentally.

Here, we study synchronization and unbundling of driven flagella, properties which are of fundamental importance for bacterial tumbling. Of particular interest is the dephasing of flagella rotational frequencies with increasing torque difference between the various flagella. Qualitatively, our results suggest the following classification of the bundle dynamics. At small torque differences, the bundle remains stable with a phase lag between the various flagella. For very large torque differences, the bundle disintegrates and the flagella rotated asynchronously and independently; the phase differences of neighboring helices are drifting. In between, there is an intermittent regime, where phase slippage occurs, i.e., the synchronized rotational motion is interrupted by events, where the flagellum with the larger torque leaves the bundle, rotates faster, and rejoins the bundle. The interval between individual slippages decreases with increasing torque difference and ultimately drifting is obtained. We predict that this slippage or drift leads to a tumbling motion of the bacteria.

* E-mail: r.winkler@fz-juelich.de

Citation: Reigh SY, Winkler RG, Gompper G (2013) Synchronization, Slippage, and Unbundling of Driven Helical Flagella. PLoS ONE 8(8): e70868. doi:10.1371/journal.pone.0070868
Models

A hybrid mesoscopic simulation approach is adopted, combining molecular dynamics simulations for the bacterial flagella with the multiparticle collision dynamics (MPC) approach, a mesoscale hydrodynamics simulation technique, for the fluid [41–43]. This hybrid method has been successful applied to study the dynamics of various kinds of macromolecular and cellular systems [35,40,44,45]. The bacterial flagellum is represented by a coarse-grained macromolecular system embedded in a MPC fluid with a helical sequence of N_m mass points of mass M_b [16] (cf. Fig. 1). These points interact with each other by the following bond, bending, and torsional potentials:

\[
U_{\text{bond}} = \frac{k_{\text{bond}}}{2} \sum_{i=2}^{N_m} \left(\| \mathbf{R}_i - \mathbf{R}_{i-1} \| - l_0 \right)^2,
\]

\[
U_{\text{bend}} = \frac{k_{\text{bend}}}{2} \sum_{i=3}^{N_m} \left(\cos \theta_i - \cos \theta_i \text{ref} \right)^2,
\]

\[
U_{\text{tors}} = \frac{k_{\text{tors}}}{2} \sum_{i=4}^{N_m} \left(\cos \phi_i - \cos \phi_i \text{ref} \right)^2.
\]

Here, \mathbf{R}_i denotes the position of bead i, and l_0, θ_i, and ϕ_i are the equilibrium bond length, bending angle, and torsional angle, respectively. k_{bond}, k_{bend}, and k_{tors} are the bond, bending, and torsional rigidities, respectively. The repulsive and truncated Lennard-Jones potential

\[
U_{\text{LJ}}(r) = 4 \varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - 2 \left(\frac{\sigma}{r} \right)^6 \right] \Theta(2^{1/6} \sigma - r)
\]

is applied to account for excluded-volume interactions between the mass points of the helices of distance r, with the size of a point σ, the energy ε [16,46], and Θ the Heaviside step function. In addition, one central bead and four peripheral beads are added in a plane at the base of the helix (cf. Fig. 1). These five beads are trapped in constraining harmonic potentials of the form,

\[
U_r = \frac{k_{\text{ref}}}{2} (r - r_c)^2,
\]

where r_c is either the equilibrium position of the central particle or the z-coordinate of the peripheral beads; in the latter case, the x- and y-coordinates are unconstrained. Hence, a flagellum is not allowed to perform any translational motion but rotates around a central bead driven by an external torque applied at two opposite peripheral beads as illustrated in Fig. 1. The dynamics of the mass points is described by Newton’s equations of motion, which are integrated by the velocity-Verlet algorithm [46]. Symmetrical forces are applied in counterclockwise direction when watched from the distal end, which generate a torque $M = 2 R_b F$ pointing into the positive z-direction, where R_b is the helix radius and F the applied force.

MPC is a particle-based simulation approach, where the fluid is represented by point particles, and naturally comprises thermal fluctuations. The algorithm consists of alternating streaming and collision steps. In the streaming step, the particles move ballistically; in the collision step, the particles are sorted into cubic cells of length a and their relative velocities, with respect to the center-of-mass velocities of each cell, are rotated around a randomly oriented axis by a fix angle α [16,43]. A constant temperature is maintained locally by velocity rescaling at every collision cell and every collision step [47]. The MPC parameters are chosen as: average fluid particle number per collision cell $N_c = 10$, rotation angle $\alpha = 130°$, and collision time step $h / \sqrt{ma^2 / (k_B T)} = 0.1$, where T is the temperature, k_B the Boltzmann constant, and m the mass of a fluid particle, which

Figure 1. Model of a flagella bundle. The top part shows a side view of two left-handed flagella, with average distance d, helix radius R_h, and pitch $P_1 = P$. The bottom part shows a top view with the external forces F generating a torque and the phase angles ϕ_1. doi:10.1371/journal.pone.0070868.g001

Figure 2. Single flagellum rotation frequency and swimming speed. Mean values of the rotation frequencies (squares) and mean induced fluid velocities (bullets) of a single helix for various applied torques. The lines indicate the linear dependence on the torque. doi:10.1371/journal.pone.0070868.g002
yields the solvent viscosity $\eta = 8.7 \sqrt{mk_B T/\alpha^4}$ [16,48]. The parameters for a flagellum are chosen as: mass of a flagellum bead $M_b = 10 m$, helix radius $R_0 = 2 a$, number of beads for a five-turn helix $N_m = 78$, equilibrium bond length $l_0 = a = \sigma$, bending angle $\theta_0 = 20^\circ$, torsional angle $\phi_0 = 166^\circ$, and $\epsilon/k_B T = 1$. The bond stretching, bond bending, and torsional rigidities are $\kappa_{\text{bend}} l_0^2/(k_B T) = 10^5$, $\kappa_{\text{bend}} l_0^2/(k_B T) = 2 \times 10^5$, and $\kappa_{\text{tort}} / (k_B T) = 10^5$, respectively. The constraining-force constant of the motor part is $k_{\text{c1}} l_0^2/(k_B T) = 10^6$. The distribution of the bond stretching, bending, and torsional energies follows the corresponding Boltzmann distributions.

The adopted potential parameters and contour length yield a five-turn helix with the pitch angle $\psi = 55^\circ$. This closely resembles the shape of a flagellum of R. lupini in the semi-coiled state [17]. The bending rigidity of a Salmonella flagellum has been determined in Ref. [13]. A value of $3.5 \text{pN} \mu\text{m}$ for the bending rigidity was obtained by employing a model with a quadratic Kirchhoff-rod potential for bending and twist, and comparing the theoretical force-extension relation with the respective experimental data. Moreover, the twist rigidity was found to be comparable with the bending rigidity [13]. In order to link the parameters κ_{bend} and κ_{tort} in Eqs. (2) and (3) with the experimental results for the flagellum rigidities, we discretize the continuum bending and torsional energies of the helical wormlike chain model [13,49] and compare them with the potentials (2) and (3).

Using the structural parameters of R. lupini [17], we find that our κ_{bend} corresponds to an approximately five times larger bending rigidity compared to the experimental value for Salmonella. Since it has been argued that the flagellum of R. lupini is stiffer than that of Salmonella [50], our chosen value is in reasonable agreement with the biologically relevant scales. The ratio between the bending and the torsional rigidities in our model is approximately four. Hence, also the torsional rigidity is on the order of magnitude of the biological scale.

The flagella are placed in a cubic simulation box of side length $L/a = 100$ with periodic boundary conditions. When the flagella start to rotate, they set fluid in motion until a stationary (mean) fluid velocity is reached, where the flagella exert no net force on the anchoring plane along its normal. This is equivalent to a free-swimming bacteria with a non-rotating body. In our system, the fluid velocity far away from the flagella corresponds to the swimming velocity of the free swimmer, because the two systems are just related by a Galilean transformation. This point will be discussed in more detail below.

We have performed several test to validate the selected model using a single flagellum. As expected and shown in Fig. 2, we find a linear relation between the applied torque and the rotation frequency of the helix. Since the helix is fixed at the anchoring plane, the fluid acquires a constant mean velocity in the stationary state. This velocity also depends linearly on the applied torque, see Fig. 2. The reference frequency $\omega_0/\sqrt{k_B T / (ma^2)} = 0.058$ corresponds to the rotation frequency of a bundle of three helices each driven by the torque $M = 400 k_B T$ at the distance $d/R_0 = 3$. A single helical flagellum exhibits only a few percent smaller rotation frequency for the same torque.

Results and Discussion

Corresponding to the averaged number of experimentally observed flagella for R. lupini [17], we study a system of three helices with their anchoring points fixed on an equilateral triangle of side length d. Figure 1 illustrates the initial parallel alignment for two helices and the phase angles ϕ_i (in general, $i = 1, 2, 3$). The initial angles of the three helices are $\phi_1 = \phi_3 = \pi$ and $\phi_2 = 0$. To study the bundle response to differences in the applied torques M_i at the various helices, we utilize the fixed torque $M_{1,3}/k_B T = 400$ of helices 1 and 3 and vary that of helix 2 in the range $200 \leq M_2/k_B T \leq 1100$. The experimentally measured torques for flagella of E. coli bacteria are in the range from $1300 \text{pN} \mu\text{m}$ to $4600 \text{pN} \mu\text{m}$, i.e., $(300 - 1200) k_B T$ [7,51–53]. Thus, our simulated torques cover approximately the same range at room temperature.

Flagella bundle stability

Figure 3(a) displays the phase-angle difference $\Delta\phi_{12}$ ($\Delta\phi_{2i} = \phi_i - \phi_j$, $i \neq j = 1,2,3$) as a function of time for various torques M_2. The time scale is normalized by the reference angular velocity $\omega_0/\sqrt{k_B T / (ma^2)} = 0.058$ of a bundle of three helices, as already introduced in the previous section. For torques in the range $320 \leq M_2/k_B T \leq 520$, the helices form bundles and exhibit a phase-locked synchronized rotational dynamics with the same average angular frequency after a short time. As discussed in Ref. [16], synchronization is achieved by hydrodynamic and steric
interactions between the various helices. When the torque difference \(\Delta M = |M_2 - M_{1.3}| \) exceeds a critical value, phase slips occur. Here, flagella with the larger torque leave the bundle and perform one additional rotation and then rejoin the bundle; this corresponds to a change in phase difference by \(|\Delta \phi_{12}| = 2\pi \). With increasing \(\Delta M \), the frequency of phase slips increases and ultimately the drift state is reached, where \(|\Delta \phi_{12}| \) increases linearly in time. The appearance of slips is governed by the interplay of excluded volume interactions and elastic deformations of the flagella as well as thermal fluctuations.

In the synchronized and bundled state, the helices exhibit a phase lag \(\Delta \phi_{12} \equiv \Delta \phi_{12} \mod(\pi) \), which depends on the torque difference. The obtained phase lags exhibit considerable fluctuations around the average. The magnitude of the average \(\langle \Delta \phi_{12} \rangle \) increases with increasing torque difference. As shown in Fig. 3(b) by a quadratic fit function, \(\langle \Delta \phi_{12} \rangle \) is asymmetric with respect to \(M_2/k_BT = 400 \) with a slower variation in the region of large \(M_2 \). This “asymmetry” appears due to the increase of the bundle rotational frequency with increasing \(M_2 \). The larger frequencies imply stronger flows and therefore stronger hydrodynamic interactions and tighter bundles.

The inset of Fig. 3 displays the quantity \(N_t = (\Delta \phi_{12}(t_f) - \Delta \phi_{12}(0))/(2\pi) \) for the fixed time interval \(t_f \), which is an approximate measure of the number of occurring slips. For momenta \(M_2 \) in the vicinity of \(M_1 = M_3 \), phase slips are rare. However, we find a strong increase of slippage, when the torque difference \(|M_2 - M_{1.3}| \) exceeds a threshold.

Data for the bundling, slippage, and drifting states for different torques and helix separations can be combined in a dynamic phase diagram, as shown in Fig. 4. Interestingly, there is a broad range of distances and torques, where stable bundles are obtained with no slips over the total considered time interval \(\Gamma_{0.9} t_f = 5.8 \times 10^2 \). The bundles are evidently rather robust for \(d/R_0 \sim 4 \), and are able to sustain considerable torque differences. The asymmetry of the phase diagram with respect to the reference torque \(M_{1.3}/k_BT = 400 \) is a consequence of the stronger hydrodynamic interactions at larger torques (cf. Fig. 5(b)). The stable bundle regime is bounded by the intermittent slippage regime, where \(|\Delta \phi_{12}| = 2\pi \) for each individual slippage event. Since this part of the diagram is also broad, the model system yields stable or nearly stable bundles over a wide range of torques for all the considered distances. For even larger distances and torque differences phase-drift appears, where \(|\Delta \phi_{12}| \geq 4\pi \) before a loose bundle might be reformed. Naturally, a clear distinction between the various regimes is difficult and the change from one to the other is gradual rather than abrupt.

The phase diagram of Fig. 4 highlights a strong phase-locking for bundles of flexible helical flagella. Even for distances as large as \(d/R_0 = 4 \), phase locking occurs for torque differences as large as \(\Delta M/M_1 \approx 1/3 \). This can be compared with the synchronization of rigid, three-arm colloidal micro-rotators discussed in Ref. [38], which can tolerate only torque differences of the order of \(\Delta M/M_1 \approx 10^{-4} \) at much smaller distances of \(d/R_0 = 2.0 \) to 2.5. This largely enhanced stability is due to the flexibility of the bacterial flagella, which allows them to wrap around each other. A high stability of the bundled state is very important for the directional motion of a bacterium because of the substantial noise inherent in biological systems, either originating from internal sources like variations in motor activities, or from external sources such as other swimming bacteria.

Intra-bundle distances

Slippage or drift of individual helices leads to partial or full flagella unbundling, which is reflected in the distribution \(P_t \) of distances between the equivalent beads of the various helices. Figure 5(a) provides an example for the distributions at \(z = P_2 = 4 P \), where \(P \) is the pitch, and \(d/R_0 = 4 \). For equal torques, we obtain a tight bundle with a narrow distribution and a maximum at the single monomer diameter. As the torque difference increases, the peak maximum shifts to larger distances and the width broadens. The inset of Fig. 5 shows distance distributions for \(M_2/k_BT < 400 \). Here, the maximum of \(P_t \) also moves to larger distances with increasing torque difference, but saturation seems to be reached already at rather small \(\Delta M \), much smaller than for \(M_2/k_BT > 400 \). The mean values of the distances between helical beads are shown in Fig. 5(b) as a function of torque \(M_2 \) at the points \(P_1, P_3, P_3 \) along the bundle. Evidently, the helices form a tight bundle for equal torques \((M_2/k_BT = 400) \). As the torque difference \(\Delta M \) increases, the bundle disintegrates and the helices move apart. The snapshots of Fig. 6 illustrate the bundle geometry for various \(M_2 \) (see also videos S1 and S2). Interestingly, the bundle does not completely disintegrate. The hydrodynamic interactions continuously force the helices back into a bundle. Nevertheless, generation of a large torque difference is an effective strategy to impose helix unbundling.

Forces on the bacterial body by flagella rotation

In the stationary state, the flagella exert no net force on the anchoring plane parallel to its normal for equal torques. Fluid is pumped by the flagella until an stationary fluid velocity is reached and the system is force free. For equal torques this applies also to the individual flagella. However, the situation is changed for nonzero torque differences, where the various helices exert different forces on the anchoring plane. Figure 7 shows average forces for various torque difference. For torques \(M_2/k_BT < 400 \), helix 2 experiences a positive force \(\langle F_z \rangle \), i.e., pointing along the positive z-direction, and the other two experience a negative force, i.e., pointing in negative z-direction. The force orientation is reverse for \(M_2/k_BT > 400 \). However, the sum of the corresponding forces in the z-direction still vanishes, as expected, i.e., the total system is force free.

![Figure 4. Phase diagram of bundle integrity. Phase diagram indicating stable bundles (shaded), intermittent slippage (squares), and drift states (bullets) for various flagella distances and torques on helix 2. The torques on helices 1 and 3 are \(M_1 = M_3 = 400k_BT \). doi:10.1371/journal.pone.0070868.g004](image-url)
These forces are of various origin, depending on the bundling state. When the helices are bundled and show a phase lag, particularly for $M_2 > M_1$, they mainly appear due to excluded-volume interactions between the beads. The calculation of the total Lennard-Jones force between the various helices approximately agrees with the total force $S F_z T$ & $S FLJ T$. In contrast, for unbundled helices, i.e., large torque differences, hydrodynamic interactions yield a significant contribution to the forces. In case of the slower rotating helix, the fast rotating helices create a fluid flow which drags the other helix along, since the mean fluid velocity originating from their rotation is faster than the fluid velocity due to the rotation of the slow helix. The situation is reverted for a fast rotating helix. Here, the correspondingly fast moving fluid is slowed down by the other helices, which adds an additional drag to the fast moving helix.

Since it is difficult to estimate the contribution of hydrodynamics on the total force quantitatively in the time-dependent slippage state, we confine the individual beads of the three helices in harmonic potentials, such that the helices remain parallel aligned along the z-axis. Explicitly, the potentials are

$$U_{ax} = \frac{K o}{2} \sum_{i=1}^{Ny} (\| \mathbf{R}_i - \mathbf{R}_{i,0} \| - R_h)^2,$$

where $\mathbf{R}_{i,0}$ has the same x- and y-component as the central bead \mathbf{r}_c and the same z-component as \mathbf{R}_i initially [16]. Thus, in this special

Figure 5. Bead distance distributions and mean distances. (a) Normalized bead-distance distribution functions P_i between helices at $P_h = 4P$, P is the helical pitch (cf. Fig. 1), for the torque $M_2/k_BT = 400$ (black), 500 (red), 600 (green), 700 (blue), and 800 (magenta) with $M_1 = M_3 = 400k_BT$. The distance between anchored helix ends is fixed at $d / R_h = 4$. The inset shows the distribution functions for $M_2/k_BT = 400$ (black), 300 (red), and 200 (blue). (b) Average bead distances between the helices at P_h (black), P_0 (red), and P_5 (blue) ($P_i = iP$) as a function of the torque M_2/k_BT. doi:10.1371/journal.pone.0070868.g005

Figure 6. Snapshots of helices for various torque differences. Snapshots of side (top) and top (bottom) views for the torque $M_2/k_BT = 200$, 400, 600, and 800 (from left to right) at $d / R_h = 4$. See also videos S1 8 and S2 8 for $M_2/k_BT = 200$ and 800, respectively. doi:10.1371/journal.pone.0070868.g006

Figure 7. Average forces on bacteria body. Average forces per monomer on the anchoring plane of three helices as a function of the torque M_2 for $M_1 = M_3 = 400k_BT$ at $d / R_h = 3$. The bullets indicated the forces by helix two and the solid squares those by helix one and three. The circles and open squares are the contributions by the corresponding hydrodynamics forces for unbundled helices. doi:10.1371/journal.pone.0070868.g007
Synchronization, Slippage, Unbundling of Flagella

For values obtained from the simulations, \(\alpha \sqrt{ma^2/(k_BT)} \approx 0.05 \), \(\langle F_z \rangle R_b / M_1 = 2 \), and the estimated parameters of the bacterial geometry of \(R. \) lupini [17] of \(d / R_b \approx 3 \), \(D / d = 2 \), and \(L / d = 6 \), we find \(\Delta \varphi \approx 3 \) for a single flagellar rotation. This adds up to approximately 15° after about five rotations, a value in reasonable agreement with the rotation angle for \(R. \) lupini extractable from the images in Fig. 3 of Ref. [17].

Summary

We have been investigating the properties of rotating bacteria flagella, where individual flagella are driven by motor torques of different strengths. In particular, we have focused on the stability of the flagella bundle, an aspect which is important for both, the swimming of an bacterium and its tumbling by partial degradation of the bundle. Our coarse-grained mesoscale simulations demonstrate that hydrodynamic interactions between flagella, short-range volume exclusion which prevents the intersection of flagella on contact, and the flagellar flexibility which allows for partial wrapping of flagella around each other, are all essential ingredients in the bacterial tumbling process. The interplay of these physical mechanisms not only cause synchronization and bundling of rotating flagella, but also guarantee the robustness of bundle formation in the presence of small differences in motor torques, which is essential for directed bacterial locomotion. For larger torque differences, the competition of hydrodynamic interactions with volume exclusion and elastic deformation of the flagellum leads to slippage and drift, which implies a reorientation of the swimming direction. It would be interesting to search for flagellar slippage in motile bacteria experimentally.

Supporting Information

Video S1 Flagella bundle of three helices with the motor torques \(M_1 = M_3 = 400 k_BT \) (green, blue) and \(M_2 = 200 k_BT \) (red).

Video S2 Flagella bundle of three helices with the motor torques \(M_1 = M_3 = 400 k_BT \) (green, blue) and \(M_2 = 800 k_BT \) (red).

Author Contributions

Conceived and designed the experiments: SYR RGW GG. Performed the experiments: SYR. Analyzed the data: SYR RGW GG. Contributed reagents/materials/analysis tools: SYR. Wrote the paper: SYR RGW GG.
