THE ALGEBRAIC BRAUER GROUP OF A REDUCTIVE GROUP OVER
A NONARCHIMEDEAN LOCAL FIELD

DYLON CHOW

ABSTRACT. We show that for nonarchimedean local fields F, the pairing from the algebraic part of the Brauer group of a reductive group G characterizes all continuous homomorphisms from $G(F)$ into \mathbb{Q}/\mathbb{Z}. This generalizes results of Loughran and Loughran-Tanimoto-Takloo-Bighash.

INTRODUCTION

Let F be a non-Archimedean local field of characteristic 0 and X an algebraic variety defined over F. The set $X(F)$ of F-rational points on X acquires a natural analytic topology from F. Each element of the Brauer group $\text{Br}(X)$ of X defines a locally constant map from $X(F)$ into \mathbb{Q}/\mathbb{Z}.

Let X be a F-variety and let $\text{Br}X$ denote the Brauer group of X. If L is a k-algebra and $x \in X(L)$, then $x : \text{Spec } L \to X$ induces a homomorphism $\text{Br } X \to \text{Br } L$. By composition with the invariant map $\text{Br}(F) \to \mathbb{Q}/\mathbb{Z}$ of local class field theory, each element $x \in X(F)$ defines a homomorphism $\text{Br } X \to \mathbb{Q}/\mathbb{Z}$. Similarly, each element of $\text{Br}X$ defines a map $X(F) \to \mathbb{Q}/\mathbb{Z}$.

Let F be any field and let \overline{F} be a separable closure of F. Let Br_1X be the kernel of the homomorphism $\text{Br } X \to \text{Br } X_{\overline{F}}$, and let Br_0X denote the image of $\text{Br } F \to \text{Br } X$. The algebraic part of $\text{Br}(X)$ is defined to be the quotient $\text{Br}_aX = \text{Br}_1X/\text{Br}_0X$. For an algebraic group G over F, the morphism $e : \text{Spec } F \to G$ associated with the identity element $e \in G(F)$ induces a homomorphism $\text{Br } G \to \text{Br } F$. Let Br_eG be the intersection of Br_1G with the kernel of $\text{Br } G \to \text{Br } F$. The quotient homomorphism $\text{Br}_1G \to \text{Br}_aG$ restricts to an isomorphism $\text{Br}_eG \cong \text{Br}_aG$. Elements of Br_eG define continuous homomorphisms from $G(F)$ into $\text{Br}(F)$ [San81, Lemme 6.9].

We consider the algebraic part $\text{Br}_a(G)$ of the Brauer group of a connected reductive F-group G. To state our main result, let G^{sc} be the simply connected cover of the derived group G^{der} of G and let

$$\rho : G^{\text{sc}} \to G$$

be the natural morphism $G^{\text{sc}} \to G^{\text{der}} \to G$. The main purpose of this paper is to prove the following:

Theorem 0.1. Let F be a non-archimedean local field of characteristic 0. Let G be a connected reductive group defined over F and let $\rho : G^{\text{sc}} \to G$ be the natural map. The pairing

$$\text{Br}_eG \times G(F) \to \mathbb{Q}/\mathbb{Z}$$

is...
induces an isomorphism

\[\text{Br}_e G \cong \text{Hom}_{\text{cont}}(G(F)/\rho(G^{sc}(F)), \mathbb{Q}/\mathbb{Z}). \]

This generalizes a theorem of Loughran [Lou18], who proved it for tori, and Loughran, Takloo-Bighash, and Tanimoto [LTBT20], who proved it for semisimple groups. We will address the situation of a number field in future work.

1. Notation and conventions

1.1. We use \(F \) to denote a field. Let \(\overline{F} \) be an algebraic closure of \(F \) and write \(F^s \) for the separable closure of \(F \) in \(\overline{F} \). We let \(\Gamma = \Gamma_F \) denote the Galois group of \(F^s \) over \(F \); it is a profinite topological group with the Krull topology.

1.2. If \(G \) is a connected reductive group defined over a field \(F \) and \(K \) is a field extension of \(F \), we write \(G_K \) for the \(K \)-group obtained from \(G \) by extension of scalars. Let \(\mathbb{G}_m \) be the multiplicative group scheme \(GL_1 \). For an algebraic group \(G \), let \(X(G) \) denote the group of characters of \(G \), i.e. the group of algebraic group homomorphisms \(G \to \mathbb{G}_m \). We let \(X^*(G) = X(G_{F^s}) \). In other words, \(X^*(G) \) consists of the characters of \(G \) defined over \(F^s \). The group \(\Gamma \) acts continuously on \(X^*(G) \).

1.3. If \(A \) is an abelian group with the discrete topology on which a profinite group \(\Gamma \) acts as a group of automorphisms, then \(A \) is called a \(\Gamma \)-module if the action map \(\Gamma \times A \to A \), \((\sigma, a) \mapsto \sigma a \) is continuous. Equivalently, \(A \) is a \(\Gamma \)-module if for all \(a \in A \) the stabilizer \(\{\sigma \in \Gamma | \sigma a = a\} \) of \(a \) is open in \(\Gamma \).

1.4. Let \(k \) be a field, \(k_s \) a separable closure of \(k \) and \(G \) an algebraic \(k \)-group. Then \(H^i(k, H) \) denotes the \(i \)-th cohomology set of the Galois group \(\text{Gal}(k_s/k) \) of \(k_s \) over \(k \), with coefficients in \(H(k_s) \) (\(i = 0, 1 \)) and, if \(G \) is commutative, the \(i \)-th cohomology group of \(\text{Gal}(k_s/k) \) in \(G(k_s) \) for all \(i \in \mathbb{N} \).

1.5. If \(F' \) is a finite field extension of \(F \) and \(G \) is an algebraic group over \(F' \), the Weil restriction of \(G \) is the algebraic group \(G_{F'/k} \) over \(k \) such that for all \(k \)-algebras \(R \), \(G_{F'/F}(R) = G(F' \otimes R) \). By an induced \(\Gamma \)-module we mean a \(\Gamma \)-module that has a finite \(\Gamma \)-stable \(\mathbb{Z} \)-basis. We say that an \(F \)-torus \(T \) is induced if \(X^*(T) \) is an induced \(\Gamma \)-module. Equivalently, an \(F \)-torus \(T \) is induced if it is a finite product of tori of the form \((\mathbb{G}_m)_{k'/F} \) with \(k' \) a finite separable extension of \(F \).

1.6. As usual, \(\mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) will denote respectively the fields of rational, real, and complex numbers; \(\mathbb{Z} \) denotes the ring of rational integers.

1.7. Sometimes our characters have values in \(\mathbb{Q}/\mathbb{Z} \), in which case we use the exponential mapping \(x \mapsto \exp(2\pi ix) \) from \(\mathbb{Q}/\mathbb{Z} \) to \(\mathbb{C}^\times \) to view them as complex-valued characters.

1.8. Let \(G_{\text{der}} \) denote the derived group of \(G \), \(G_{\text{sc}} \) the simply connected cover of \(G_{\text{der}} \), and \(G_{\text{ad}} \) the adjoint group of \(G \), i.e., \(G_{\text{ad}} = G/Z_G \) where \(Z_G \) is the center of \(G \). Let \(\rho : G^{sc} \to G \) be the natural morphism. Given a maximal \(F \)-torus \(T \) of \(G \), let \(T_{sc} = \rho^{-1}(T) \).
2. Preliminaries

2.1. Let F be a local field or a number field and let X be a F-variety. Let $\text{Br}(X)$ be the Brauer group of X. If L is a k-algebra and $x \in X(L)$, then $x : \text{Spec } L \to X$ induces a homomorphism $\text{Br}(X) \to \text{Br}(L)$. By composition with the invariant map $\text{Br}(F) \to \mathbb{Q}/\mathbb{Z}$ of local class field theory, each element $x \in X(F)$ defines a homomorphism $\text{Br}(X) \to \mathbb{Q}/\mathbb{Z}$. Similarly, each element of $\text{Br}(X)$ defines a map $X(F) \to \mathbb{Q}/\mathbb{Z}$.

2.2. Let F be any field and let \overline{F} be a separable closure of F. Let $\text{Br}^1(X)$ be the kernel of the homomorphism $\text{Br}(X) \to \text{Br}(X)(\overline{F})$, and let $\text{Br}^0(X)$ denote the image of $\text{Br}(F) \to \text{Br}(X)$. The algebraic part of $\text{Br}(X)$ is defined to be the quotient $\text{Br}^a(X) = \text{Br}^1(X)/\text{Br}^0(X)$. For an algebraic group G over F, the morphism $e : \text{Spec } F \to G$ associated with the identity element $e \in G(F)$ induces a homomorphism $\text{Br}(G) \to \text{Br}(F)$. Let $\text{Br}_e(G)$ be the intersection of $\text{Br}^1(G)$ with the kernel of $\text{Br}(G) \to \text{Br}(F)$. The quotient homomorphism $\text{Br}^1(G) \to \text{Br}^a(G)$ restricts to an isomorphism $\text{Br}_e(G) \cong \text{Br}_a(G)$. Elements of $\text{Br}_e(G)$ define continuous homomorphisms from $G(F)$ into $\text{Br}(F)$.

3. Non-archimedean local fields

We prove the theorem in two stages. In the first stage we start from the case of tori and generalize the result for only those G whose derived group is simply connected.

3.1. Tori.

Lemma 3.1. Let T be a torus over a local field F of characteristic 0. The bilinear pairing
\[\text{Br}_e(T) \times T(F) \to \text{Br}(F) \subset \mathbb{Q}/\mathbb{Z} \]
is perfect, i.e., the induced map
\[\text{Br}_e(T) \to \text{Hom}(T(F), \mathbb{Q}/\mathbb{Z}) \]
is an isomorphism of abelian groups.

Proof. See [Lou18, Theorem 4.3].

3.2. Groups with simply connected derived group. Let F be a p-adic field. Now assume that G is such that $G^{\text{der}} = G^{\text{sc}}$. Define $T = G/G^{\text{der}}$. We have an exact sequence
\[1 \to G^{\text{der}} \to G \to T \to 1. \]
We get an exact sequence
\[1 \to G^{\text{der}}(F) \to G(F) \to T(F) \to 1, \]
and thus an isomorphism
\[G(F)/j(G^{\text{der}}(F)) \cong T(F). \]
Since $\text{Pic}(G) = 0$, we have (San81 Lemme 6.9 (i)) canonical isomorphisms $H^2(F, X^*(G)) \cong \text{Br}_aG$ and $H^2(F, X^*(T)) \cong \text{Br}_aT$. The projection $G \to T$ yields a commutative diagram.
The vertical arrows are isomorphisms. The first row is part of a long exact sequence coming from the exact sequence $1 \to G^{sc} \to G \to T \to 1$: ([San81, Corollaire 6.11])

... $\to \text{Pic}(G^{sc}) \to \text{Br}_a T \to \text{Br}_a G \to \text{Br}_a G^{sc}$.

Since $\text{Pic}(G^{sc}) = 1$ and $\text{Br}_a(G^{sc}) = 1$ ([San81, Lemme 9.4 (iv)]), the horizontal arrow is an isomorphism. We get a commutative diagram

\[
\begin{array}{ccc}
\text{Br}_a T & \longrightarrow & \text{Br}_a G \\
\downarrow & & \downarrow \\
H^2(F, X^*(T)) & \longrightarrow & H^2(F, X^*(G)).
\end{array}
\]

This proves the result for groups whose derived group is simply connected.

3.3. **General reductive groups.** In the second stage we use the following result, which allows one to reduce to the case where the derived group is simply connected.

Lemma 3.2. For any connected reductive F-group G split by K, there exists an extension

\[1 \to Z \to \tilde{G} \to G \to 1\]

such that

- Z is a central torus in \tilde{G},
- Z is obtained from Weil restriction of scalars from a split K-torus, and
- \tilde{G}^{der} is simply connected.

Such an extension is called a z-extension. We proceed with the proof of the general case. A similar result appears in [LM15, Lemma A.1, Appendix]. Consider a z-extension as above. We get two more exact sequences. First, since $\text{Pic}(Z) = 0$, we get from [San81, Corollary 6.11] an exact sequence of abelian groups

\[1 \to \text{Br}_e G \to \text{Br}_e \tilde{G} \to \text{Br}_e Z.\]

Since Z is an induced torus, $H^1(F, Z) = 0$, and so we get another exact sequence

\[1 \to Z(F) \to \tilde{G}(F) \to G(F) \to 1.\]

Applying $\text{Hom}(-, \mathbb{Q}/\mathbb{Z})$ we get an exact sequence

\[1 \to \text{Hom}(G(F), \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(\tilde{G}(F), \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(Z(F), \mathbb{Q}/\mathbb{Z}) \to 1.\]

This induces an exact sequence

\[1 \to \text{Hom}(G(F)/G^{\text{der}}(F), \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(\tilde{G}(F)/\tilde{G}^{\text{der}}(F), \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(Z(F), \mathbb{Q}/\mathbb{Z}).\]

We get the following commutative diagram with exact rows:
THE ALGEBRAIC BRAUER GROUP OF A REDUCTIVE GROUP OVER A NONARCHIMEDEAN LOCAL FIELD

1 \rightarrow \operatorname{Br}_e G \rightarrow \operatorname{Br}_e G' \rightarrow \operatorname{Br}_e Z \rightarrow 1

The two vertical arrows are the isomorphisms constructed above. We define a homomorphism $\operatorname{Br}_e G \rightarrow \operatorname{Hom}(G(F)/G^\text{der}(F), \mathbb{Q}/\mathbb{Z})$ to be the unique homomorphism that makes the diagram commute – it is an isomorphism, which can be seen to be induced from the Brauer pairing. This completes the proof.

ACKNOWLEDGEMENTS

The author thanks Dan Loughran and Ramin Takloo-Bighash for helpful comments.

REFERENCES

[Bor98] Mikhail Borovoi. Abelian Galois cohomology of reductive groups, volume 626. American Mathematical Soc., 1998.

[LM15] Erez Lapid and Zhengyu Mao. A conjecture on Whittaker–Fourier coefficients of cusp forms. Journal of Number Theory, 146:448–505, 2015. Special Issue in Honor of Steve Rallis.

[Lou18] Daniel Loughran. The number of varieties in a family which contain a rational point. Journal of the European Mathematical Society, 20(10):2539–2588, July 2018.

[LTBT20] Daniel Loughran, Ramin Takloo-Bighash, and Sho Tanimoto. Zero-loci of Brauer group elements on semi-simple algebraic groups. Journal of the Institute of Mathematics of Jussieu, 19(5):1467–1507, 2020.

[San81] J.-J. Sansuc. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. Journal für die reine und angewandte Mathematik, 327:12–80, 1981.