Correlated states in β-Li$_2$IrO$_3$ driven by applied magnetic fields

Alejandro Ruiz1,2, Alex Frano1,2,3, Nicholas P. Breznay1,2, Itamar Kimchi1,4, Toni Helm1,2, Iain Oswald5, Julia Y. Chan5, R.J. Birgeneau1,2, Zahirul Islam6 & James G. Analytis1,2

Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li$_2$IrO$_3$ from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onset of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.
Materials with nearly degenerate ground states are arguably at the center of the most complex and technologically important problems in condensed matter physics. Degeneracies are the reason that strongly correlated materials have rich phase diagrams, can be the origin of topological defects, and are thought to be crucial for the realization of a fault-tolerant quantum computer. One class of such materials are known as quantum spin liquids (QSL). In theory, they are hosts for exotic states of matter, often arising from strong magnetic frustration and characterized by highly degenerate excitations. Honeycomb iridates have ignited interest in this field thanks to their theoretical connection to an exactly soluble QSL discussed by Kitaev.

The Mott–Kitaev iridates crystallize in 2D and 3D structures (the harmonic honeycomb), and all known compounds are found to magnetically order at low temperature in one of two ways: a commensurate "zig-zag" phase (found in α-Na₂IrO₃ and α-RuCl₃), and an incommensurate order (found in α, β and γ-Li₂IrO₃). This suggests that there are non-Kitaev terms in the Hamiltonian, relieving the frustration and obscuring any low-energy signature of the Kitaev physics. As a result, the response to an applied field can induce a strongly correlated state at low temperature in one of two ways: a commensurate "zig-zag" phase, which evolves with temperature like an order parameter, and an incommensurate order, which corresponds to the onset of a known incommensurate magnetic structure with order parameter \(\Psi \) and propagation vector \(\mathbf{q} = (0.574, 0, 0) \). This triangular feature is indicative of a mean-field, second order transition which is strongly suppressed by an applied magnetic field, and completely disappears above \(H^* \) (Fig. 1c). Assuming \(H^* \) defines a thermodynamic boundary, it is approximately temperature independent below 25 K.

Field-dependent resonant magnetic X-ray scattering

To better understand the thermodynamic behavior observed on β-Li₂IrO₃, we perform magnetic resonant x-ray scattering (MRXS) at the Ir L₃-edge (Methods section). This diffraction technique is sensitive to spin and orbital orders, allowing the identification of magnetic ground states in reciprocal space. In Fig. 2a, we illustrate the real space set-up and experimental constraints, while Fig. 2b shows the resulting \((h, 0, l)\) scattering plane with the accessible reciprocal lattice points at 0 and 4 T. We first study the behavior of the incommensurate state using \(\mathbf{Q} = (-0.574, 0, 16) \). At zero field, the scattering intensity resonates at the Ir L₃-edge (Fig. 2d) and evolves with temperature like an order parameter \(\Psi \) (Fig. 2e). The response to an applied field at 5 K is shown in Fig. 2c. The peak intensity is reduced with increasing field (completely vanishing at \(H^* \)), without changing its wavevector \(\mathbf{q} \) (Fig. 2c, inset). In other words, although \(\Psi \) is strongly suppressed in magnitude, its translational symmetry remains rigid.

We now turn our attention to the properties of this material beyond the phase boundary delimited by \(H^* \). Our thermodynamic data indicate a smooth evolution of the entropy-carrying degrees of freedom across \(H^* \). While no field-induced changes are observed by MRXS at high symmetry (e.g., \(h, l = 1/4, 1/3, 1/2, \) etc.) nor any other incommensurate positions, we found intensity changes at certain reciprocal lattice vectors (blue dots in Fig. 2b).

In Fig. 3a, b we plot the field response of the scattering intensity at two kinds of reciprocal space points, one belonging to structurally allowed \((2m, 0, 4n + 2m)\) peaks and the other to structurally forbidden \((2m, 0, 12n \pm 2 + 6m)\) peaks, where \(n, m \) are two arbitrary integers. In the former, the response is linear with a single crystal with a magnetic field applied along the \(b \)-axis. In Fig. 1b, we observe an abrupt kink in the field-dependent magnetization at \(\mu_0 H^* = 2.8 \) T, as noted by other authors. This kink occurs at an induced magnetization of \(M' = 0.31 \mu_B \) per Ir, far away from the expected saturation moment \(\sim 1 \mu_B \) for a Jeff = 1/2 ion, and does not show any step-like features characteristic of first-order meta-magnetic transitions.

Thermodynamic properties

Single crystals of β-Li₂IrO₃ were synthesized using a vapor transport technique as described in Methods. Figure 1b, c show the thermodynamic response of a single crystal with a magnetic field applied along the \(b \)-axis. In Fig. 1b, we observe an abrupt kink in the field-dependent magnetization at \(\mu_0 H^* = 2.8 \) T, as noted by other authors. This kink occurs at an induced magnetization of \(M' = 0.31 \mu_B \) per Ir, far away from the expected saturation moment \(\sim 1 \mu_B \) for a Jeff = 1/2 ion, and does not show any step-like features characteristic of first-order meta-magnetic transitions.
negative slope, and shows a kink at H^* (Fig. 3a). In the latter case, we find that the peaks have a quadratic dependence on H, again with a kink at H^* (Fig. 3b). The appearance of structurally forbidden peaks immediately suggests that there is an additional $q = 0$ broken symmetry induced by the applied field.

The energy dependence of these peaks highlights an important contrast in behavior between structurally allowed and forbidden peaks. The former, as shown in Fig. 3c, have a dip at the Ir L3-edge due to the resonant absorption of the Ir lattice, while the field-induced change of intensity occurs only near the Ir resonance, suggesting a change in the spin population. Moreover, the structurally forbidden peaks are enhanced at the L3-edge in an applied magnetic field (Fig. 3d), suggesting that the $q = 0$ field-induced state is electronic in origin and, as we argue below, most likely magnetic.

In Fig. 3f we illustrate the temperature dependence of the intensity for the field-induced peak with H above and below H^*. The evolution of the 4 T curve is closely reminiscent of the temperature dependence of a symmetry breaking order parameter, turning on at ~ 50 K. The 2.3 T curve continuously increases up to T_1, where the incommensurate order turns on. Below T_1, the integrated intensity is reduced, indicating a competition between two coexisting, low temperature states. We assign Ψ_V as the parameter describing this field induced broken symmetry which, given that the field dependence of the intensity $I_{12n+2+6m}$ is quadratic (Fig. 3b), suggests Ψ_V is linearly proportional to the scattering form factor. The height of a magnetic Bragg peak can grow by virtue of three things: an increase in correlation length, a canting of the moment that enhances scattering cross section, or an increase in the ordered local moment. In the present case, the intensity of magnetic peaks increases dramatically with H, and the peak width remains constant (Fig. 3e). This width is a measure of correlation length and is resolution limited down to the lowest field measured (0.1 T), implying that macroscopic phase separation is highly unlikely. Moreover, a field-enhanced cross-section would imply the existence of a zero-field magnetic order. To see this, note the scattering cross section is proportional to $(\epsilon_{\text{out}} \times \epsilon_{\text{in}}) \cdot m_i$, where ϵ_{out} denotes the polarization state of the scattered (incident) beam, and m_i is a unit vector along the magnetic moment at site i. To enhance the cross section, we require a field-induced canting of ordered moments parallel to the term $(\epsilon_{\text{out}} \times \epsilon_{\text{in}})$, and this can only be achieved for one polarization state at a given incidence angle. Considering we are measuring both the $\pi - \sigma$ and $\pi - \pi$ channels, and see no intensity for all $(2m, 0, 12n \pm 2 + 6m)$ peaks at $\mu_0 H = 0$ T, we can rule out a zero-field phase with continuous canting of the moments by the field. This implies that our observations are most likely explained by an increasing moment size, with long-range quantum correlations turning on at ~ 50 K, which cannot develop a sizable ordered moment at zero field, presumably due to the system’s intrinsic magnetic frustration.

This behavior differs from archetypical examples of phase transitions in magnetic field such as spin-flops or incommensurate to commensurate transitions$^{19-25}$. These are usually first-order transitions; the former is between an antiferromagnetic state and a spin-polarized state, while the latter will often cause the incommensurate order to soften, shifting toward a commensurate q as it is suppressed by the field. In the present case, far from being a phase transition between one kind of order and another26, all broken symmetry states coexist, retaining their intrinsic periodicity as a function of field. The ordered moment is
Fig. 3 Field, energy and temperature dependence of the commensurate order $q = (0, 0, 0)$. Field dependence of the scattering intensity taken at $T = 5$ K and $E = 11.215$ keV around: a) the structurally allowed $(2m, 0, 14n + 2m)$ peaks (e.g., $(0, 0, 20)$) which show a linear dependence and b) the symmetry disallowed peaks $(2m, 0, 12n \pm 2 + 6m)$ (e.g., $(0, 0, 10)$) which show a quadratic dependence to the applied field. A kink was again observed at $\mu_0 H^* = 2.8$ T. The energy dependence for the allowed peaks is shown in the inset c) with a dip at the absorption edge $E = 11.215$ keV. The main panel e) shows the difference between the intensity at $\mu_0 H = 0$, 4 T which can be attributed to a magnetic contribution. d) Energy dependence of the magnetic peak $(2m, 0, 12n \pm 2 + 6m)$ taken at $\mu_0 H = 0$, 4 T. e) $(0, 0, 10)$ and $(0, 0, 20)$ peaks widths (a lower bound on the correlation length) remain constant under the applied field, suggesting there is no macroscopic phase separation. f) Temperature dependence of the integrated intensities for the $(0, 0, 10)$ at applied fields above and below H^*. Above H^* the onset of the FIZZ state is continuous, while below H^* this onset is cut off by the incommensurate order. The Gaussian fit to the integrated RMXS intensity gives the χ^2 uncertainty shown by the error bars in e, f, g. Possible basis vectors describing the magnetic order of β-Li$_2$IrO$_3$, where F corresponds to ferromagnetic order, A to Néel order, C to strip order and G to zig-zag order somehow shared between different states, indicating their near degeneracy.

Discussion
In Fig. 3g, we show the $q = 0$ broken symmetry states that could describe Ψ_V, denoted using the conventional nomenclature. The symmetries of the state consistent with the primary features of the data above H^* are two-fold: G-type (zig-zag) broken symmetry, explaining the appearance of the $(2m, 0, 12n \pm 2 + 6m)$ peaks and, F-type order, explaining the linear dependence of the allowed structural peaks $(2m, 0, 4n + 2m)$. Importantly, these symmetries are broken by the applied magnetic field itself. First, an induced moment along the applied magnetic field on each ion would transform as an F-type object with moments along b (denoted F_b). Second, the effective local susceptibility tensor χ_{ij} is anisotropic (including orbital g_{ij}-factor as well as correlation effects, see ref. 6 for a discussion of γ-Li$_2$IrO$_3$). By symmetry, χ_{ij} can be decomposed into components parallel and perpendicular to the two honeycomb chain directions along a \pm b. This implies that the moments will in general cant along the chains, leading to G-type configuration, with moments staggered along a (denoted G_a). It can be shown (see Supplementary Note 5) that F_b and G_a not only belong to the same irreducible representation as Ψ_I (allowing Ψ_V to coexist on symmetry grounds), but are in fact energetically favored over other broken symmetry states. Our observations are completely consistent with the Landau theory of second order phase transitions - the combined effect of magnetic field and crystal symmetry is to act as a field on Ψ_V, so that the observed zig-zag pattern is linearly coupled to magnetic field (leading to an intensity I_V that is quadratic in field, as seen in Fig. 3b).

This scenario explains why there is no sharp thermodynamic anomaly on cooling in the heat capacity at $H > H^*$ (Fig. 1c): the

![Figure 4](image)

Fig. 4 T–H phase diagram of β-Li$_2$IrO$_3$ with field along b-axis. a) Ψ_I and Ψ_V obey a simple sum rule which suggests that spectral weight is exchanged between these parameters as a function of field. b) Schematic representation of the moment direction in the zero field incommensurate order (lower, green arrows) and the field induced zig-zag (upper, blue arrows) order projected on the lr chains (gray) which propagate in the crystallographic a \pm b directions (see also Fig. 1a). Note the propagation vector of the incommensurate order is not along the chain, but along the a-axis. c) T–H phase diagram constructed by combining the normalized scattering intensity of a commensurate peak (gray scale contours), with the H^* and T_I extracted from magnetization and heat capacity measurements in Fig. 1 (blue diamonds), and a cusp observed in the field dependence of C_p (red dots) (determination of the error bars is described in the caption of Supplementary Fig. 3). Note the parameter Ψ_V in principle grows as the structure factor and so $\Psi_V \propto \sqrt{I_V}$.
degrees of freedom are clearly frozen out in temperature (at $H > H^*$), appearing as a cusp in the heat capacity (Fig. 1c), and as a broad peak in field (see Supplementary Note 3). Plotting the location of this peak on a phase diagram (Fig. 4c), we observe immediately that it maps directly onto a constant contour line of the $I_{2\pi n + 2\gamma}$ amplitude, the experimental measure of Ψ_V itself.

The field-induced zig-zag (FIZZ) state may help explain why the magnitude of the induced moment at H^* ~ 0.31 μ_B per Ir. If we assume that the moment associated with Ψ_V is canting entirely along the diagonal bond axes $\pm b$ (which would be equivalent to the zig-zag order seen in α-Na$_2$IrO$_3$ and α-RuCl$_3$) we find a quantitative agreement with the known ordered moment of Ψ_V. To see this, note the induced magnetic moment at H^* implies that the moment along the chains is 0.31/$\cos(0.2\pi r)$, where 0.2πr is around half the angle between the diagonal chains. This yields ~0.4 μ_B per Ir, accounting for most of the moment in Ψ_V, measured independently to be ~0.47 μ_B per Ir at zero field 52. The view that only the ordered moment in transferred between the states Ψ_V and Ψ_C is also consistent with the simple sum rule satisfied by their respective intensities as a function of field (Fig. 4a).

At a fixed field $H > H^*$, our data suggest that there is a crossover from a trivial paramagnet at high temperature to a low temperature quantum correlated state. At a fixed temperature $T < T_1$, adding a small magnetic field ($\mu_0 H \sim T_1/10k_B/\mu_0$) is sufficient to drive the magnetic state of β-Li$_2$IrO$_3$ from the zero-field incommensurate spiral order Ψ_1 into the FIZZ state Ψ_V. Since a small magnetic field drives a transition into the FIZZ spin configuration, it may be natural to interpret this correlated paramagnet as a vestige of a zero-field, zig-zag ground state that is proximate in the thermodynamic phase diagram. This would establish a familial link between the lithium based iridates and α-RuCl$_3$/Na$_2$IrO$_3$.7–9 by connecting these grounds states through a field-tuned quantum phase transition at H^*.28, 29. In this case, the system’s response at finite field should be understood much like a ferromagnet in an applied field, where the field breaks the same symmetry as the order parameter. As the system is cooled in field, the spins are strongly correlated but they collectively break no new symmetries. We should mention that there is another, yet more exotic interpretation, in which there exists a field-induced spin liquid state, similar to what has been recently suggested as the high-field state of α-RuCl$_3$30 and γ-Li$_2$IrO$_3$31 (note that in α-RuCl$_3$, $\mu_0 H \sim T_1 \times k_B/\mu_0$). In this scenario, it is only the applied field that directly breaks zig-zag symmetries, and the response of the system is then determined by the temperature/field dependence of the correlations themselves. The onset of spin-correlations will have no thermodynamic discontinuity, as observed in the heat capacity, but may evolve with increasing rigidity in a manner that mimics the appearance of an underlying order parameter, as seen in the $I_{2\pi n + 2\gamma}$ intensity. In either case, the ease with which the system can be transitioned from incommensurate to FIZZ states is a striking signature of the delicate balance of interactions in these materials. All that remains is to learn how to tune that balance to achieve a true Kitaev spin liquid.

Methods

Single crystal synthesis. Single crystals of β-Li$_2$IrO$_3$ were synthesized using a vapor transport technique. Ir (99.9% purity, BASF) and Li_2CO_3 (99.999% purity, Alfa-Aesar) powders were ground and pelletized in the ratio of 1:0.55. The pellet was reacted at 1050 °C for 12 h, and then cooled down to 850 °C at 2 °C/h to yield single crystals of β-Li$_2$IrO$_3$. The single crystals are clearly faceted and around 100 \times 150 \times 300 nm3 in size. They are orthorhombic and belong to the Fdd2 space group with lattice parameters $a = 5.910(3)$ \AA, $b = 8.462(6)$ \AA and $c = 17.857(7)$ \AA. The crystal structure is shown in Supplementary Fig. 1a.

Experimental techniques. Magnetic susceptibility measurements were performed in a 7 T Cryogenic Ltd. SX700 SQUID and Quantum Design MPMS. Heat capacity measurements were conducted on a 16 T Cryogenic Ltd. CFMS micro-chip calorimeter using the a.c. method. Resonant X-ray scattering studies were performed at Beamline 6-ID-C at the Advanced Photon Source, Argonne National Lab, using a 11.215 keV x-polarized x-ray beam and a 4 T split-coil magnet (o-oriented field). Due to the size of the magnet, we were only able to rotate $\pm 3^\circ$ in the χ direction while keeping the magnetic field parallel to the b-axis. Therefore, only the $(0, 0, b)$ plane was surveyed.

Data availability. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 24 May 2017 Accepted: 9 August 2017

Published online: 16 October 2017

References

1. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. *Annu. Rev. Condens. Matter Phys.* 5, 57–82 (2014).

2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. *Proc. R. Soc. Lond. A Math. Phys. Sci.* 392, 45–57 (1984).

3. Kitaev, A. Anyons in an exactly solved model and beyond. *Ann. Phys.* 321, 2–111 (2006).

4. Balents, L. Spin liquids in frustrated magnets. *Nature* 464, 199–208 (2010).

5. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From heisenberg to a quantum compass and kitaev models. *Phys. Rev. Lett.* 102, 017205 (2009).

6. Modic, K. A. et al. Realization of a three-dimensional spinanisotropic harmonic honeycomb irrigate. *Nat. Commun.* 5, 4203 (2014).

7. Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na$_2$IrO$_3$. *Phys. Rev. B* 85, 180403 (2012).

8. Choi, S. K. et al. Spin waves and revised crystal structure of honeycomb irrigate Na$_2$IrO$_3$. *Phys. Rev. Lett.* 108, 127204 (2012).

9. Sears, J. A. et al. Magnetic order in α-RuCl$_3$: a honeycomb-lattice quantum magnet with strong spin-orbit coupling. *Phys. Rev. B* 91, 144420 (2015).

10. Takayama, T. et al. Hyperhoneycomb irrigate α-Li$_2$IrO$_3$ as a platform for Kitaev magnetism. *Phys. Rev. Lett.* 114, 077202 (2015).

11. Williams, S. C. et al. Incommensurate counterrotating magnetic order stabilized by kitaev interactions in the layered honeycomb α-Li$_2$IrO$_3$. *Phys. Rev. B* 93, 195158 (2016).

12. Kimchi, I., Coldea, R. & Vishwanath, A. Unified theory of spiral magnetism in the honeycomb-honeycomb irrigates α, β and γ-Li$_2$IrO$_3$. *Phys. Rev. B* 91, 245134 (2015).

13. Lee, E.-K. & Kim, Y. B. Theory of magnetic phase diagrams in hyperhoneycomb and honeycomb-honeycomb irrigates. *Phys. Rev. B* 91, 064407 (2015).

14. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. *Nat. Mater.* 15, 733–740 (2016).

15. Hwan Chun, S. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice irrigate Na$_2$IrO$_3$. *Nat. Phys.* 11, 462–466 (2015).

16. Knolle, J., Chern, G.-W., Kovrizhin, D., Moessner, R. & Perkins, N. Raman scattering signatures of Kitaev spin liquids in A$_2$IrO$_3$: experiments and theory. *NPJ Quantum Mater. Interfaces* 1, 5 (2016).

17. Gupta, S. N. et al. Raman signatures of strong kitaev exchange correlations in (Na$_x$Li$_{1-x}$)IrO$_3$ experiments and theory. *EPL* 114, 47004 (2016).

18. Biffin, A. et al. Noncoplanar and counterrotating incommensurate magnetic order stabilized by kitaev interactions in γ-Li$_2$IrO$_3$. *Phys. Rev. Lett.* 113, 197201 (2014).

19. Chattopadhyay, T., Brown, P. J., Thalmeier, P. & Schnering, H. G. v. Incommensurate magnetic phase in Eu$_2$Ir$_2$O$_7$ with zone-boundary lock-in. *Phys. Rev. Lett.* 57, 372–375 (1986).

20. Kojima, K., Kajiwara, T., Koike, H., Hill, J. P. & Vigilante, A. Soliton lattice in pure and diluted CuGeO$_3$. *Phys. Rev. Lett.* 76, 4608–4611 (1996).

21. Vaknin, D., Zaretsky, J. L., Rivera, J.-P. & Schmid, H. Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO$_4$. *Phys. Rev. Lett.* 92, 207201 (2004).

22. Katsumata, K. Synchrotron x-ray diffraction studies of magnetic materials under extreme conditions. *Phys. Script.* 71, C77–C13 (2005).

23. Feng, Y. et al. Evolution of incommensurate spin order with magnetic field and temperature in the itinerant antiferromagnet GdSi. *Phys. Rev. B* 88, 134404 (2013).
24. Nagao, M. et al. Experimental observation of multiple-\(q\) states for the magnetic skyrmion lattice and skyrmion excitations under a zero magnetic field. Phys. Rev. B 92, 140415 (2015).

25. Krimmel, A. et al. Incommensurate structure of the spin-peierls compound TiOCl in zero and finite magnetic fields. Phys. Rev. B 73, 172413 (2006).

26. Breznay, N. P. et al. Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate \(\gamma\)-Li$_2$IrO$_3$. Phys. Rev. B 96, 020402 (2017).

27. Biffin, A. et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in \(\beta\)-Li$_2$IrO$_3$: full solution via magnetic resonant x-ray diffraction. Phys. Rev. B 90, 205116 (2014).

28. Janssen, L., Andrade, E. C. & Vojta, M. Honeycomb-lattice heisenberg-kitaev model in a magnetic field: Spin canting, metamagnetism, and vortex crystals. Phys. Rev. Lett. 117, 277202 (2016).

29. Chern, G.-W., Sizyuk, Y., Price, C. & Perkins, N. B. Kitaev-Heisenberg model in a magnetic field: order-by-disorder and commensurate-incommensurate transitions. Phys. Rev. B 95, 144427 (2017).

30. Baek, S.-H. et al. Observation of a field-induced quantum spin liquid in \(\alpha\)-RuCl$_3$. Phys. Rev. Lett. 119, 037201 (2017).

31. Modic, K. A. et al. Robust spin correlations at high magnetic fields in the honeycomb iridates. Nat. Commun. 8, 108 (2017).

Acknowledgements
This work was supported the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under the Early Career program, Contract No. DE-SC0014039. A.R. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1106400. I.A. and J.Y.C. acknowledge the support of NSF DMR-1360863. Use of the APS was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. N.P.B. and T.H. were supported by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4374.

Author contributions
J.G.A., A.R. conceived of the experiment. A.R. and N.P.B. synthesized the materials. Z.I., A.R., A.F., T.H., and N.P.B. performed the experiments. J.G.A., A.R., A.F., I.K., and N.P.B. analyzed the data. I.O. and J.Y.C. performed crystallographic characterization. All authors contributed to the writing of this paper.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01071-9.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017