RDX and miRNA Expression in B6C3F1 Mice
doi:10.1289/ehp.0800276

In a recent issue of <i>EHP</i> Zhang and Pan (2009) reported on the effects of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on the differential expression of microRNAs (miRNAs) in brain and liver of B6C3F1 mice. It is always of interest when new technologies are applied to existing toxicologic problems, with a view to increasing our understanding of the effect on, or risk to, humans. However, in the abstract of their article originally published online (but deleted from the final version), Zhang and Pan (2009) concluded that “environmental toxicant exposure alters the expression of a suite of miRNAs that in turn regulates gene expression which may lead to carcinogenesis, developmental, neuronal, and reproductive toxicity”; they reached this conclusion in the absence of any observations for dose response, clinical chemistry, histopathology, or neurotoxicity. Because their results do not support these conclusions, we felt a response was warranted.

Zhang and Pan (2009) exposed B6C3F1 female mice to RDX in food. The mouse chow was sprayed with a solution of acetone-dissolved RDX and allowed to dry; this resulted in a formulation chow containing 5 mg RDX/kg of food. At this dose of RDX, we estimated that the mice received approximately 0.75–1.5 mg/kg body weight/day, based on mouse food consumption of 3–6 g/day and an average body weight of 20 g. To put this dose in perspective, the 2-year cancer study on which RDX risk assessment was based (Lish et al. 1984) used oral doses of 0, 1.5, 7.0, 35, and 175 mg RDX/kg/day in the same mouse strain, with statistically significant cancer burdens found only in the 35-mg/kg dose group. The dose used by Zhang and Pan in their 1-month study was therefore less than the lowest dose in the 2-year mouse cancer study and over 20 times lower than the only dose of RDX associated with cancer. Furthermore, given that only a fraction of the exposed animals developed cancer at the 35-mg/kg dose in the 2-year study (Lish et al. 1984), we wonder how let-7 and other miRNAs used by Zhang and Pan (2009) identify which animals could potentially get cancer at a higher dose (i.e., susceptibility), or whether all animals could develop cancer even at this low dose (i.e., overprediction).

At high oral exposures, RDX causes tonic–clonic seizure, an effect that has been well correlated with internal dose (blood RDX was not measured in Zhang and Pan’s study). The mode of action of RDX is thought to be direct because seizures can occur within minutes of dosing. Zhang and Pan (2009) reported that brain derived miRNA 206 was increased 26-fold and brain-derived neurotrophic factor (BDNF) was computationally identified as a downstream target, with the direction of change presumably inhibitory on BDNF. Current literature shows that BDNF is actually up-regulated in response to seizure-inducing agents, such as kainite (Revuelta et al. 2005) and domoic acid (Doucette et al. 2004). Whether other presumed targets of miRNA would be up-regulated is not known, making verification of miRNA targets (miRNA) critical in the validation of this kind of study.

Although miRNAs have been used extensively to examine the profiles of small RNAs in distinct phenotypes such as cancer, their significance as predictors of toxic insult or disease has not been demonstrated. The field of miRNAs is burgeoning with publications (1,738 in 2008), many of which involve the retrospective examination of diseased tissue (tumors) for changes in the expression of miRNA species. Prospective work relating chemical exposure to changes in miRNA as predictors of imminent disease has been less successful, and a study of dioxin found miRNAs refractive (Moffat et al. 2007). More important, some reviews (Kozak 2008) caution against overinterpretation of miRNA data, especially without verification of downstream targets.

It has been said that “a difference, to be a difference, should make a difference.” We found it difficult to assess the biological significance of the suite of differentially regulated miRNAs and their computational targets culled from the study of Zhang and Pan (2009); although these miRNAs could be associated with exposure to RDX, they do not seem related to disease. In our opinion, Zhang and Pan’s results fall short of their experimental hypothesis that exposure to specific environmental agents, such as RDX, would cause alteration in miRNA expression and that “the altered miRNA expression contributes to carcinogenesis.” For innovative work of this kind, a solid model of exposure–disease is always a good starting point, coupled with the classical toxicology stetsawr of dose response and positive/negative controls, and of course, verification of putative targets. Here, we feel that poor study design, absence of phenotype, and overinterpretation of data significantly weakened a potentially informative body of work.

The authors declare they have no competing financial interests.

Desmond I. Bannon
Mark Johnson
Larry Williams
Valerie Adams
U.S. Army Center for Health Promotion and Preventive Medicine
Directorate of Toxicology
Aberdeen Proving Ground, Maryland
E-mail: desmond.bannon@us.army.mil

Edward Perkins
Kurt Gust
Ping Gong
Environmental Laboratory
U.S. Army Engineer Research and Development Center
Vicksburg, Mississippi

REFERENCES

Doucette TA, Bernard PB, Hsusum H, Ferry MA, Ryan CL, Tasker RA. 2004. Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotox Res 6(7-8):555–563.
Kozak M. 2008. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 420(2):108–115.
Lish PM, Levine BS, Fureid-Machacek EM, Sagartz EM, Rac VS. 1984. Determination of the Chronic Mammalian Toxicological Effects of RDX: Twenty-Four Month Chronic Toxicity/Carcinogenicity Study of Hexahydro-1,3,5-triazine (RDX) in the B6C3F1 Hybrid Mouse. AD A180747. Chicago: U.S. Army Medical Research and Development Command.
Moffat ID, Beutros PC, Celius T, Linden J, Pohjanvirta R, Okey AB. 2007. MicroRNAs in adult rodent liver are refractory to dioxin treatment. Toxicol Sci 99(2):470–487.
Revuelta M, Castano A, Machado A, Cano J, Venero JL. 2005. Kainite-induced zinc translocation from presynaptic terminals causes neuronal and astroglial cell death and miRNA loss of BDNF receptors in the hippocampal formation and amygdala. J Neurosci Res 82(2):184–195.
Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.

RDX and miRNA Expression: Zhang and Pan Respond
doi:10.1289/ehp.0800278R

We appreciate the interests and comments from Bannon et al. regarding our recent article on RDX-induced aberrant microRNA (miRNA) expression in mice (Zhang and Pan 2009). However, we disagree with their comments based on the misunderstanding of our results and conclusions.

The objective of our study (Zhang and Pan 2009) was not to use clinical chemist and histopathological features to diagnose neoplasms and carcinogenesis, but to investigate the effect of a low-dose RDX exposure on miRNA expression in mice. Our results show that exposure to RDX at 5 mg/kg in the diet for 28 days induced aberrant expression of miRNAs in B6C3F1 mice. Our discussion of the implications of altered miRNAs in the carcinogenic risk of RDX suggested by a previous study (Lish et al. 1984) are based on the knowledge that aberrant miRNA expression
is associated with a broad range of cancers (Zhang et al. 2007). Meanwhile, we also dis-
cussed the potential anticancer effects of RDX in our article. Results in our Figure 6 indicate
that RDX exposure induced miR-206 expression, which may inhibit expression of TNKS
(tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase). The inhibition of
TNKS causes telomere shortening and apop-
tosis, which inhibits carcinogenesis, and has
thus been proposed as a potential cancer ther-
apy (Seimiya 2006). Thereby, the miR-206
overexpression induced by RDX may provide
a mechanism to prevent carcinogenesis.

Animals are more sensitive to chemical
exposure at the gene level than at the physio-
logic level, and gene expression profile is a
more powerful predictor of the outcome of
disease than standard systems based on clini-
cal and histologic criteria (van de Vijver et
al. 2002). However, aberrant gene expression
may or may not cause carcinogenesis. Cancer
pathogenesis is a complex process associated
with aberrant expression of many genes. Recen-
tly identified miRNAs play critical roles in
cancer development; overexpression or down-regu-
lation of a single miRNA could influence
cancer cell growth, invasion, and metastasis (Ma et
al. 2007; Takamizawa et al. 2004). Also, more and more evidence demonstrates that
environmental carcinogens cause aberrant expression of a suite of miRNAs. For example, Kalscheuer et al. (2008) recently demonstrated the differential expression of miRNAs in early-stage neo-
plastic transformation in the lungs of F344 rats chronically treated with the tobacco
carcinogen NNK (4-(methylamino)-1-(3-
pyridyl)-1-butanone). Thus, carcinogen-
induced aberrant expression of miRNAs may
be associated with carcinogenesis.

Brain-derived neurotrophic factor (BDNF)
is targeted by multiple miRNAs. Besides
miR-206, two experimentally vali-
dated BDNF-targeting miRNAs, miR-30a and
miR-195 (Mellios et al. 2008), were also
significantly up-regulated in mouse brain
after RDX exposure. Thus, it is reasonable
to suggest that miRNA-mediated BDNF
expression is a neurotoxic effect of low RDX
exposure, given that BDNF is an important
neurotrophin supporting neuronal survival and
differentiation, neurite outgrowth, and
synaptic plasticity.

Seizures have been induced by RDX
at high acute doses but not at low doses
(Burdette et al. 1988; Schneider et al. 1978).
Our result is similar to that in previous
reports, and we observed no seizures in our
study using low doses. Both proepileptogenic
and antiepileptogenic effects of BDNF have
been reported (Binder et al. 2001); therefore,
we did not discuss the potential inhibition of
BDNF in the context of RDX-induced seizure
in our article. However, the up-regulation of
BDNF reported in most chemical-induced
seizures have been measured at postseizure
and postseizion periods instead of preseizure
periods (Binder et al. 2001; Nawa et al. 1995).
Indeed, BDNF is naturally down-expressed in
chronic epileptic stages (Shetty et al. 2003),
and the reduced level of BDNF may play
important roles in the proexcitotoxic effect of
chronic stress (Matsson 2007). Neurotoxins
such as alcohol (Fattori et al. 2008) and poly-
brominated diphenyl ethers (Viberg et al.
2008) also inhibit BDNF expression. Alcohol
has also been found to increase miR-335
expression at low doses but suppress miR-
335 at high doses, suggesting some miRNAs
respond to neurotoxins in a dose-specific
manner (Sathyan et al. 2007).

Our study (Zhang and Pan 2009) pro-
vides substantial information on miRNA
expression as a phenotype in response to
RDX exposure in mice. We reported many
important novel findings that enlighten future
research. For example, miR-206—belonging
to the same family as miR-1, which regulates
signal transduction at neuromuscular junc-
tions (Simon et al. 2008)—was significantly
up-expressed in our study. Therefore, eluci-
dating the role of miR-206 in RDX-related
eurotoxicity is an enormous project.

The authors declare they have no compet-
ing financial interests.

Baohong Zhang
Department of Biology
East Carolina University
Greenville, North Carolina
E-mail: zhangb@ecu.edu

Xiaoping Pan
Department of Chemistry
Western Illinois University
Macomb, Illinois

REFERENCES

Binder DK, Croll SD, Gall DM, Scharffman HE. 2001. BDNF and
epilepsy: too much of a good thing? Trends Neurosci
24:47–53.

Burdette LJ, Cook LL, Dyer RS. 1988. Convulsant properties of
cyclotrimethylenetetranitramine (RDX): spontaneous audio-
genic, and amygdaloid kindled seizure activity. Toxi-
coI Apot Pharmacol 52:426–444.

Fattori V, Abe SI, Kobayashi K, Costa LG, Tsuji R. 2008.
Expression of the let-7 microRNAs in human lung cancers in associa-
tion with shortened postoperative survival. Cancer Res
64:3753–3760.

van de Vijver MJ, He YD, van ‘t Veer LJ, Dai H, Hart AAM,
Voskuil DW, et al. 2002. A gene-expression signature as
a predictor of survival in breast cancer. N Engl J Med
347:1999–2009.

Viberg H, Mundy W, Eriksson P. 2008. Neonatal exposure to
decabromated diphenyl ether (PBDE209) results in
changes in BDNF, CaMKII and GAP-43, biochemical sub-
strates of neuronal survival, growth, and synaptogenesis.
Neurotoxicology 29:152–159.

Zhang B, Pan X. 2009. RDX induces aberrant expression of
microRNAs in mouse brain and liver. Environ Health Perspect
117:231–240.

Zhang BH, Pan XP, Cobb GP, Anderson TA. 2007. microRNAs
as oncogenes and tumor suppressors. Dev Biol 301:1–2.

Don’t Flush the Yuck Factor
doi:10.1289/ehp.0800542

I enjoyed Charles Schmidt’s original and infor-
mative article on the “Yuck Factor” (Schmidt
2008). This phenomenon has come into play
in my attempts to decide on whether to pur-
chase a low-flow toilet for my home. My city is
currently offering rebates on low-flow toi-
lets, but only on the least consumptive models
(1.6 gallons per flush). I have read on web sites
and heard from friends that these models do
not quite do the job. The details are important
to me. If it is a question of not flushing gobs of
toilet paper down, I can deal with that. But if
these toilets leave stains on (or product in) the
bowl, my family will not be happy. My discus-
sions with city officials and friends who have
heard from friends that these models do
not quite do the job. The details are important
to me. If it is a question of not flushing gobs of

John Manuel
Freelance Writer
Durham, North Carolina
E-mail: john.manuel@gte.net

REFERENCE

Schmidt CW. 2008. The yuck factor: when disgust meets
discovery. Environ Health Perspect 116:A524–A527.