Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma

J. Bousquet1,2,3,4*, A. Bedbrook1, W. Czarlewski5, G. L. Onorato1, S. Arnavielhe6, D. Laune6, E. Mathieu-Dupas6, J. Fonseca7, E. Costa8, O. Lourenço9, M. Morais-Almeida10, A. Todo-Bom11, M. Illario12, E. Menditto13, G. W. Canonica14, L. Cecchi15, R. Monti16, L. Napoli17, M. T. Ventura18, G. De Feo19, W. J. Fokkens20, N. H. Chavannes21, S. Reitsma20, A. A. Cruz22, J. da Silva23, F. S. Serpa24,25, D. Larenas-Linnemann26, J. M. Fuentes Perez27, Y. R. Huerta-Villalobos27, D. Rivero-Yeverino28, E. Rodriguez-Zagari28, A. Valiulis29,30, R. Dubakiene31, R. Emuzyte32, V. Kvedariene33, I. Annesi-Maesano34, H. Blain35,36, P. Bonniaud37, I. Bosse38, Y. Dauvilliers39,40, P. Devillier41, J. F. Fontaine42, J. L. Pépin43,44, N. Pham-Thi45, F. Portejoie3, R. Picard46, N. Roche47, C. Rolland48, P. Schmidt-Grendelmeier49, P. Kuna50, B. Samolinski51, J. M. Anto52,53,54,55, V. Cardona56, J. Mullol57,58, H. Pin command, D. Ryan59, A. Sheikh60, S. Walker62, S. Williams63, S. Becker64, L. Klimek65, O. Pf aer66, K. C. Bergmann67,68, R. Mösges69,70, T. Zuberbier67,68, R. E. Roller-Wirnsberger71, P. V. Tomazic72, T. Haah et 73, J. Salimaki74, S. Toppila-Salmi75, E. Valovirta75, T. Vasankari76, B. Gemicioğlu77, A. Yorgancioglu78, N. G. Papadopoulos79,80, E. P. Prokopakis81, G. I. Tsili gianni61,82, S. Bosnic-Anticevich83, R. O’Hehir84,85, J. C. Ivanvecich86, H. Neffer87, M. E. Zernotti88, I. Kull89,90, E. Melén90,91, M. Wickman91,92, C. Bachert92, P. W. Hellings93,94, G. Brusselle95, S. Palkonen96, C. Bindslev-Jensen97, E. Eller97, S. Waserman98, L. P. Boulet99, J. Bouchard100, D. K. Chu101, H. J. Schünemann101, M. Sova102, G. De Vries103,104, M. van Eerd103,104, I. Agache105, I. J. Ansotegui106, M. Bewick107, T. Casale108, M. Dykewicz109, M. Ebisawa110, R. Murray111,112, R. Naclerio113, Y. Okamoto114, D. V. Wallace115 and The MASK study group

Abstract

Aims: Mobile Airways Sentinel NetworK (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.

Methods: MASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.

Stakeholders: Include patients, health care professionals (pharmacists and physicians), authorities, patient’s associations, private and public sectors.

Results: MASK is deployed in 23 countries and 17 languages. 26,000 users have registered.

*Correspondence: jean.bousquet@orange.fr
1 MACVIA-France, Fondation Partenariale MACVIA-LR, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Graud, 34295 Montpellier Cedex 5, France
Full list of author information is available at the end of the article

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction
In all societies, the burden and cost of allergic and chronic respiratory diseases (CRDs) is increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system for integrated care with organizational health literacy. MASK (Mobile Airways Sentinel Network) [1] is a new development of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative [2, 3]. It works closely with POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health) [4], and collaborates with professional and patient organizations in the field of allergy and airway diseases. MASK proposes real-life care pathways (ICPs) centred around the patient with rhinitis and/or asthma multimorbidity. It uses mHealth monitoring of environmental exposure and considers biodiversity. With the help of three EU projects (DigitalHealthEurope, Eurifi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

In the context of implementing communication on the digital transformation of health and care, specifically in relation to chapter 5 of the document "Digital tools for citizen empowerment and for person-centred care," DG SANTE has taken steps towards supporting the scaling-up and wider implementation of good practices in the field of digitally-enabled, integrated, person-centred care. With the help of three EU projects (DigitalHealthEurope, Eurifi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

The practice
The practice includes the care pathways defined in 2014 [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the Allergy Diary, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JA-CHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1).

The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic
diseases since rhinitis is considered as a mild disease although it impairs social life, school and work productivity considerably [20]. It is estimated that, in the EU, work loss accounts for 30–100 b€ annually. Moreover, it is essential to consider mild chronic diseases and to establish health promotion and management strategies.
early in life in order to prevent a severe outcome and to promote healthy ageing [21].

Level of care integration

MASK is used for the integration of primary and specialist care, of primary-secondary-tertiary health care, as well as of health and social care for disease management.

Deployment

Many of the GPs that are developed in one region (country) take into account health systems, availability of treatments and legal considerations which makes it difficult to scale up the practice without customization. MASK has taken the opposite direction starting with a tool immediately available in 10 languages and 14 countries and regularly scaled up. Moreover, the tool is included in a generic ICP (Fig. 2) that can be customized easily in any country globally.

Geographical scope of the practice

MASK was developed in English and is currently available in 23 countries and 17 languages (Table 2).

New countries

Deployment is in process in Bolivia, Colombia, Japan and Peru. The involvement of developing countries is needed to offer a practice for middle- and low-income countries that will benefit poverty areas of developed countries and that will be in line with the mission of GARD. Deployment to the US is being discussed with the National Institute for Allergy and Infectious diseases (NIH).

Transfer of innovation of allergic rhinitis and asthma multimorbidity in the elderly (MASK Reference Site Twinning, EIP on AHA)

The EIP on AHA includes 74 Reference Sites. The aim of this TWINNING is to transfer innovation from the MASK App to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly have been compared using validated mHealth tools (i.e. the Allergy Diary and CARAT [22]) in 23 Reference Sites or regions across Europe, Argentina, Australia, Brazil and Mexico [23].

Individuals/institutions reached

ARIA has been implemented in over 70 countries globally [3], and several governments use the practice. Approximately 26,000 users have registered to the MASK database. 700 patients have been enrolled in the Twinning. Due to privacy, there is no possibility of assessing users who have reported data.

Timeframe

The project was initiated in 1999 during a World Health Organization (WHO) workshop (ARIA) and undergoes continuous developments. The ARIA initiative, commenced during a WHO workshop in 1999 [2], has been further developed by the WHO Collaborating Center
for Asthma and Rhinitis (2002–2013). The initial goals (Phase 1) were (1) to propose a new AR classification, (2) to promote the concept of multimorbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and all populations. ARIA has been disseminated and implemented in over 70 countries [3, 19, 24–32]. It was developed as a guideline [19] using the GRADE approach [33–39].

MASK, the Phase 3 ARIA initiative, is focusing on (1) the implementation of multi-sectoral care pathways (2) using emerging technologies (3) with real world data (4) for individualized and predictive medicine (5) in rhinitis and asthma multimorbidity (6) by a multi-disciplinary group or by patients themselves (self-care) using the AIRWAYS ICPs algorithm (7) across the life cycle [8, 17]. It will be scaled up using the EU EIP on AHA strategy [26].

Phase 4 began in 2018. It concerns “change management” and includes the impact of air pollution in asthma and rhinitis (EIT Health 2018–2019: POLLAR, Impact of Air POLLution in Asthma and Rhinitis) [4] as well as the digital transformation of health and care (DigitalHealthEurope, Euriphi and Vigour).

Developments for 2019 include a multimorbidity App and the deployment of an app for home services. The MASK project is intended to be sustainable and a business plan has been initiated.

The medium-term future is to develop care pathways for the prevention and control of chronic diseases to sustain planetary health. A symposium during the Finnish Presidency of the EU Council is planned for October 2019.

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].

Table 2 List of countries using MASK-air

Country	Dec	Nov	Oct	Sep	Aug	Jul	Jun	May	April	March	Feb	Jan
AR	223	219	187	133	127	110	85	6				
AT	874	869	863	861	850	844	749	727	714			
AU	368	357	326	310	294	286	284	267	259			
BE	286	281	276	263	255	251	242	217	192	185	179	170
BR	2967	2915	2853	2799	2726	2682	2645	2568	2514	2449	2377	2297
CA	68	68	66	60	58	57	51	47	44	42	38	
CH	1765	1756	1751	1745	1738	1733	1729	1646	1075	947	930	910
CZ	73	71	67	66	65	63	59	51	25	18	8	5
DE	1515	1476	1447	1415	1367	1340	1296	1172	1001	943	884	849
DK	198	196	195	194	192	189	185	173	161	164	161	156
ES	1341	1313	1264	1230	1180	1151	1105	1015	940	885	834	777
FI	642	627	614	605	597	595	581	555	514	503	492	468
FR	1799	1755	1729	1697	1668	1644	1607	1476	1146	1089	1074	1049
GB	1435	1399	1363	1333	1297	1281	1239	1157	1087	1060	1029	988
GR	465	453	432	420	410	406	396	374	353	330	298	282
IT	2617	2570	2522	2490	2463	2445	2422	2404	2372	2364	2224	2114
LT	740	726	711	695	679	675	657	611	533	474	460	424
MX	1566	1537	1497	1467	1437	1407	1342	1294	1238	1186	1135	1050
NL	1755	1741	1717	1707	1683	1665	1626	1442	1335	1220	1152	1078
PL	1745	1711	1673	1654	1550	1489	1333	1273	1104	1006	987	958
PT	2704	2683	2661	2642	2615	2597	2570	2452	2346	2233	2184	2091
SE	272	265	252	249	241	232	214	199	180	174	161	153
TR	15906	15475	15067	14767	14425	14092	13851	13390	12851	12301	11728	11207
Total	25906	25475	24967	24525	23901	23581	23091	22587	22078	21528	20993	20519

AR Argentina, AT Austria, AU Australia, BE Belgium, BR Brazil, CA Canada, CH Switzerland, CZ Czech Republic, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB Great Britain, GR Greece, IT Italy, LT Lithuania, MX Mexico, NL The Netherlands, PL Poland, PT Portugal, SE Sweden, TR Turkey
• Adherence to treatment is extremely low and novel approaches to inform the efficacy of treatment have been proposed [45] leading to novel studies for a better understanding of guidelines [46, 47].

Evidence of impact
MASK has identified novel phenotypes of allergic diseases [44] that have been confirmed in classical epidemiologic studies by re-analyzing them [48–51]. One of the studies used the MASK baseline characteristics [49]. These phenotypes allowed the re-classification of allergic multimorbidity and the discovery of a new extreme phenotype of allergic diseases that need to be considered in the stratification of patients.

MASK has shown real-life mHealth data for the first time in allergy treatment in 9,950 users [1, 45]. This led to next-generation care pathways for allergic diseases (meeting co-organized by POLLAR, a member of EIT Health, EIP on AHA and GARD (WHO alliance): 3-12-2018) and proposed a change management strategy [5].

MASK is involved in an EIT Health project (POLLAR) which assesses the interactions between air pollution, asthma and rhinitis [4].

With the EIP on AHA, MASK is involved in 3 EU projects on the digital transformation of health and care (DigiHealthEurope, Euriphi and Vigour).

MASK is also involved in a large project on Planetary Health in a side event which will take place during the Presidency of the EU council (Finland). This event will gather researchers, academic leaders and other experts from European institutions as well as other stakeholders and will discuss Planetary Health global challenges and their scientific solutions. Experts on human health as well as on effects of climate change, urbanization and food production will be invited to prepare a European initiative to promote effective and sustainable research on planetary health issues. The event similarly aims at raising political awareness about the need for multidisciplinary and systemic approaches to Planetary Health issues globally and in the EU. The multimorbid App developed by MASK may be used in the project.

Contextual relevance
The practice addresses a public health priority
Chronic respiratory diseases (CRDs) are major non-communicable diseases (NCDs) [18]. Rhinitis and asthma multimorbidity is common and the two diseases should be considered jointly [19]. Asthma is the most common NCD in children and rhinitis is the most common chronic disease in Europe. They often start early in life, persist across the life cycle and cause a high disease burden in all age groups [19]. By 2020, rhinitis will affect at least 20% of the old age population [52–56]. These diseases represent an enormous burden associated to medical and social costs and they impact health and social inequalities.

The practice is based on a local/regional/national strategic action plan
The Polish Presidency of the EU Council (3051st Council Conclusions) made the prevention, early diagnosis and treatment of asthma and allergic diseases a priority to reduce health inequalities [57, 58]. The 3206th Cyprus Council Conclusions [59] recommended that the diagnosis and treatment of chronic diseases should be initiated as early as possible to improve AHA. Debates at the European Parliament recommended the early diagnosis and management of CRDs in order to promote active and healthy ageing (AHA) [60–62].

Unmet needs
Several unmet needs have been identified in allergic diseases. They include (1) suboptimal rhinitis and asthma control due to medical, cultural and social barriers [65, 66], (2) better understanding of endotypes [67], phenotypes and multimorbidities, (3) assessment of allergen and pollutants as risk factors to promote sentinel networks in care pathways, (4) stratification of patients for optimized care pathways [68] and (5) promotion of multidisciplinary teams within integrated care pathways, endorsing innovation in clinical trials and encouraging patient empowerment [17, 69].

Overall goal
The general objective of AIRWAYS-ICPs [6–8] is to develop multi-sectoral ICPs for CRDs used across European countries and regions in order to (1) reduce the burden of the diseases in a patient-centred approach, (2) promote AHA, (3) create a care pathways simulator tool which can be applied across the life cycle and in older adults, (4) reduce health and social inequalities, (5) reduce gender inequalities, (6) use the lessons learned in CRDs for chronic diseases and (7) promote SDG3 (more specifically 3.4) (https://www.who.int/sdg/targets/en/). In September 2015, the UN General Assembly established the Sustainable Development Goals (SDGs), a set of global goals for fair and sustainable health at every level from planetary biosphere to
local community [70, 71], essential for sustainable development. SDG 3 prioritizes health and well-being for all ages.

The aim of AIRWAYS-ICPs is also to generalise the approach of the uniform definition of severity, control and risk of severe asthma presented to WHO [66] and allergic diseases [72] in order to develop a uniform risk stratification usable for chronic diseases in most situations.

MASK further refined AIRWAYS ICPs using mobile technology to promote the digital transformation of health and care in developed and developing countries for all age groups.

Target population
In the initial phase, the target population included all patients with allergic rhinitis and asthma multimorbidity. Rhinitis and asthma are considered as a model for all chronic diseases and the project is being extended to chronic diseases.

All patients able to use a smartphone (≥ 12 years) represent the target population. A special effort is being placed in underserved populations from developing countries as the practice is a GARD (Global Alliance against Chronic Respiratory Diseases, WHO alliance) demonstration project.

Stakeholders involved
Involvement in the design, implementation (including the creation of ownership), evaluation, continuity/sustainability
As from the very first workshop in 1999, the ARIA initiative has included all stakeholders required to develop a WHO programme on CRDs (GARD). In particular, patient's organizations were involved. All health care professionals were also involved (physicians, primary care, pharmacists, other health care professionals). Another important component of ARIA was the deployment to developing countries [73]. Moreover, policy makers were also actively involved.

ARIA has grown regularly over the past 20 years and an ARIA chapter is ongoing in over 70 countries in all continents with a very active scaling up strategy [26]. MASK has used the ARIA working group to scale up the practice.

All stakeholders were highly receptive
The ARIA and now the MASK community is very cohesive and all members are extremely reactive. They have been particularly active in deploying MASK in the 23 countries and we have received requests from many other countries in which MASK-air is not yet available.

Resistance or conflict of interest: None

Implementation methodology/strategy
We used the scaling up strategy of the European Innovation Partnership on Active and Healthy Ageing and proposed a 5-step framework for developing an individual: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualized and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing [26].

Consistency in the pace of delivery
For the past 20 years, ARIA has been a success story in over 72 countries [3, 8, 19, 24, 25, 27, 28, 30–32, 38, 46, 74–100]. A Pocket Guide has been translated into 52 languages. MASK is following ARIA with the same group and the same strategy.

Main outcomes and evaluation of the practice
The ARIA strategy was to change management in the treatment of asthma and rhinitis since nasal symptoms—often the most troublesome—were not considered in most asthmatics. Over 85% of asthma in children and adolescents is associated with rhinitis, suggesting common pathways, whereas only 20–30% of rhinitis patients have asthma, suggesting rhinitis-specific genes. There is a link between asthma severity and rhinitis multimorbidity. Asthma is more severe in patients with rhinitis [101]. The strategy at all levels of care indicates that it is essential to consider multimorbidity in the management of asthma for the benefit of the patient and the satisfaction of the treatment as shown in many surveys (Fig. 3). Some studies have found that the ARIA strategy is more effective than free treatment choice [102]. Moreover, EMA has used the ARIA recommendations for the approval of a house dust mite immunotherapy tablet including asthma and rhinitis multimorbidity [103].

The change management strategy of MASK has not yet been evaluated. However, the results of the first studies indicate that the vast majority of patients are not adherent to treatment [45] and that next-generation care pathways are needed (Figs. 4 and 5).
Next-generation care pathways were initiated in Paris, December 3, 2018, as part of POLLAR, MASK and GARD.

Additional (secondary) outcomes assessed
Work productivity and school performance are measured. When rhinitis and/or asthma are not well controlled, work productivity is impaired [1, 41, 43].

Sustainability of the practice
The MASK App, The Allergy Diary, was used to demonstrate the scientific value of the project [1]. It has been replaced by the commercial App, MASK-air, which is version 3.0 and which includes questionnaires (e.g. tobacco and allergens) and sleep (VAS and Epworth questionnaire [104]) (Fig. 6). A business plan is in place for the sustainability of the practice.
Communication about the practice and dissemination of results
A communication strategy has been set up [1] and includes a website (mask-air.com), media coverage, leaflets and newsletters, publications in scientific journals and lay press, partners’ networks and events. The MASK community includes over 300 members in all countries in which MASK is deployed.

Budget required to implement the practice
The budget required to implement the MASK strategy is around 1.5 M€. It will be provided by the private sector (1 M€) and from EU grants, in particular a Structural and Development Fund. POLLAR has an additive budget of 2 M€ to embed outdoor air pollution and aerobiology data in the ICP using artificial intelligence.

It is difficult to estimate human resources since many physicians worked in the 23 countries for the translation,
adaptation of the practice and its implementation. It can be proposed that 50–100 h have been spent working in each country.

The practice has been presented to multiple national and international meetings.

Sustainability has been carefully evaluated and a business plan is in place.

Main lessons learned

- Adherence to treatment is the major problem of allergic disease.
- Self-management strategies should be considerably expanded (behavioural).
- Change management is essential in allergic diseases.
- Education strategies should be reconsidered using a patient-centred approach.
- Lessons learned for allergic diseases can be expanded to chronic diseases.

Improvement and expansion of the practice

An expert meeting took place at the Pasteur Institute in Paris, December 3, 2018, to discuss next-generation care pathways and lessons learnt (Fig. 7, Annex 1): (1) patient participation, health literacy and self-care through technology-assisted “patient activation”, (2) implementation of care pathways by pharmacists and (3) next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) assessed by mobile technology. The meeting was organized by POLLAR and MASK in collaboration with GARD, patient’s organizations and all European scientific societies in the field.

Abbreviations

AHA: active and healthy ageing; AIRWAYS ICPs: integrated care pathways for airway diseases; AR: allergic rhinitis; ARIA: allergic rhinitis and its impact on asthma; CDSS: clinical decision support system; CRD: chronic respiratory disease; DGCONNECT: directorate general for communications networks, content and technology; DG Santé: directorate general for health and food safety; EIP on AHA: European innovation partnership on AHA; EIP: European innovation partnership; EQ-SD: euroqol; Euforea: European forum for research and education in allergy and Airways Diseases; GARD: Global Alliance against Chronic Respiratory Diseases (WHO Alliance); GINA: Global Initiative for Asthma, MACVIA: Fondation VIA-LR, SPLF: Société de Pneumologie de Langue Française, SFA: Société française d’Allergologie, WAO: World Allergy Organization

Authors’ contributions

All authors are MASK members and have contributed to the design of the project. Many authors also included users and disseminated the project in their own country. All authors read and approved the final manuscript.

Author details

1 MACVIA–France, Fondation Partenariale FMC VIA-LR, CHU Arnaud de Villemeuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France. 2 INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological...
Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal.
143Allergist, Reims, France. 144Hospital General Regional 1 “Dr Carlos Mc Gregor Sánchez Navarro” IMSS, Mexico City, Mexico. 145Regional Hospital of ISSSTE, Puebla, Mexico. 146National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia. 147Allergologo, Guadalajara, Mexico. 148Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico. 149Department of Pulmonary Diseases, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey. 150Allergy unit, UHATEM “Nipirogov”, Sofia, Bulgaria. 151Medical University, Faculty of Public Health, Sofia, Bulgaria.
152Allergy and Immunology Division, Clinic Ricardo Palma, Lima, Peru. 153Department of Internal Medicine, section of Allergology, Erasmus University, Rotterdam, The Netherlands. 154Allergy & Asthma Unit, Hospital San Bernardo Salta, Argentina. 155Allergy Clinic, Hospital Regional del ISSSTE Lic. López Mateos, Mexico City, Mexico. 156Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Alergia, Asma e Inmunologia, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey NL, Mexico. 157Center of Allergy and Immunology, Georgian Association of Allergology, and Clinical Immunology, Tbilisi, Georgia. 158Latvian Association of Allergists, Center of Tuberculosis and Lung Diseases, Riga, Latvia. 159Federal District Base Hospital Institute, Brasilia, Brazil. 160Institute of Health Policy and Management iBMG, Erasmus University, Rotterdam, The Netherlands. 161University Hospital Olomouc – National eHealth Centre, Czech Republic. 162Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile. 163Skin and Allergy Unit, Helsinki University Hospital, Tukholm, Finland, Finland. 164Centhic: centre d'expertise national des technologies de l'information et de la communication pour l'autonomie, Gérontopôle autonomie longévité des Pays de la Loire, Conseil régional des Pays de la Loire, Centre d'expertise Partenariat Européen d'Innovation pour un vieillissement actif et en bonne santé, Nantes, France. 165Autonomous University of Baja California, Ensenada, Baja California, Mexico. 166departure of Paediatrics and Child Health, University College Cork, Cork, Ireland. 167Hospital General Regional 1 “Dr. Carlos MacGregor Sánchez Navarro” IMSS, Mexico City, Mexico. 168Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre, Inserm UMR_S999, Le Kremlin Bicêtre, France. 169Dipartimento di Medicina, Chirurgia e Studio della SPAAI, Tesorera de la SLAAI, Asuncion, Paraguay. 170Allergist, Reims, France. 171Department of Pulmonary Diseases, Tishreen University School of Medicine, Latakia, Syria. 172Presidente CMMC, Milano, Italy. 173Allergy Centre, Tampere University Hospital, Tampere, Finland. 174First Department of Family Medicine, Medical University of Lodz, Poland. 175Institute of Social Medicine, Epidemiology and Public Health Economics, Chanté - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Germany. 176Department of Medicine, McMaster University, Health Sciences Centre 3V47, West, Hamilton, Ontario, Canada. 177National Research Center, Institute of Immunology, Federal Medico Biological Agency, Laboratory of Molecular immunology, Moscow, Russian Federation. 178GARD Chairman, Geneva, Switzerland. 179Allergy & Asthma Center Westend, Berlin, Germany. 180Department of Immunology and Allergy, Healthy Ageing Research Center, Medical University of Lodz, Lodz, Poland. 181Children's Hospital and University of Helsinki, Finland. 182Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm and Sachs’ Children and Young Hospital, Södersjukhuset, Stockholm, Sweden. 183Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 184Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland. 185Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico. 186Presidential Manager of COFASER, Milano, Italy. 187Department of Pedro de Elizalde Children's Hospital, Buenos Aires, Argentina. 188University of Medicine and Pharmacy, Hochiminh City, Vietnam. 189Federal University of Bahia, Brazil. 190Smfed, Milano, Italy. 191State key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. 192Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA. 193Department of Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, UK. 194Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway. 195Department of Pulmonary Medicine, CHU Sart-Tilman, and GIGA 13 research group, Liege, Belgium. 196Faculty of Health Sciences and CICs – UBI, Health Science Research, Biomedical Institute, University of Porto, Porto, Portugal. 197Department of Clinical Epidemiology and Biometry, University of Wuerzburg, Germany. 198Allergy and Asthma Medical Group and Research Institute, Steinberg, CA. 199Sifmed, Milano, Italy. 200State Key Laboratory of Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, China.
Otalaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 361Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada. 362Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany. 363Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Department of ENT diseases, Karolinska University Hospital, Stockholm, Sweden. 364Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA. 365International Primary Care Respiratory Group IPCRG, Aberdeen, Scotland. 366Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK. 367Allergologist - Medical College of Medical Physicians, American Thoracic Society, European Respiratory Society and the Health; Member of scientific committees for the American College of Chest Medicine Transfer, Prevention and Education in Respiratory and Cardiovascular not applicable. 368Allergologist ‑ Medical College of Medical Physicians, American Thoracic Society, European Respiratory Society and the Health; Member of scientific committees for the American College of Chest Medicine Transfer, Prevention and Education in Respiratory and Cardiovascular not applicable. 369Department of Allergy, Asthma, and Immunology. Dr. Waserman reports other from CSL Behring, Shire, AstraZeneca, Teva, Meda, Merck, outside the submitted work. Dr. Zubereb reports and Organizational affiliations. Committee member: WHO ‑ Initiative "Allergic Rhinitis and Its Impact on Asthma" (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI). Head: European Centre for Allergy Research Foundation (ECARF) Secretary General. Global Allergy and Asthma European Network (GA²LEN). Member. Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

Availability of data and materials Not applicable.

Consent for publication Not applicable.

Ethics approval and consent to participate Not applicable.

Funding FMV VIA LR.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 January 2019 Accepted: 4 February 2019

Published online: 11 March 2019
References

1. Bousquet J, Arnavielhe S, Bedbrook A, Bewick M, Laune D, Mathieu-Dupas E, et al. MASK 2017: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world-evidence. Clin Transl Allergy. 2018;8:45.

2. Bousquet J, Van Cauwenberge P, Khaled N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(5(Suppl)):S147–334.

3. Bousquet J, Schunemann HJ, Samolinsky B, Demoly P, Baena-Cagnani CE, Bachert C, et al. Allergic rhinitis and its impact on asthma (ARIA): achievements in 10 years and future needs. J Allergy Clin Immunol. 2012;130(5):1049–62.

4. Bousquet J, Anto JM, Annesi-Maesano I, Dieude T, Dupas E, Pepin JL, et al. POLLAR: impact of air pollution on asthma and rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project. Clin Transl Allergy. 2018;8:36.

5. Bousquet J, Hellings PW, Agache I, Bedbrook A, Bachert C, Bergmann KC, et al. ARIA 2016: care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle. Clin Transl Allergy. 2016;6:47.

6. Courbisi AL, Murray RB, Arnavielhe S, Caimmi D, Bedbrook A, Van Eerd M, et al. Electronic clinical decision support system for allergic rhinitis management: MASK e-CDSS. Clin Exp Allergy. 2018;48(12):1640–53.

7. Caimmi D, Baiz N, Tanno LK, Demoly P, Arnavielhe S, Murray R, et al. Validation of the MASK-rhinitis visual analogue scale on smartphone screens to assess allergic rhinitis control. Clin Exp Allergy. 2017;47(12):1526–33.

8. Bousquet J, Bewick M, Arnavielhe S, Mathieu-Dupas E, Murray R, Bedbrook A, et al. Work productivity in rhinitis using cell phones: The MASK pilot study. Allergy. 2017;72(10):1475–84.

9. Bousquet J, Caimmi DP, Bedbrook A, Bewick M, Hellings PW, Devillier P, et al. Pilot study of mobile phone technology in allergic rhinitis in European countries: the MASK-rhinitis study. Allergy. 2017;72(6):S75–67.

10. Bousquet J, Arnavielhe S, Bedbrook A, Fonseca J, Morais Almeida M, Todo Bom A, et al. The ARIA score of allergic rhinitis using mobile technology correlates with quality-of-life: The MASK study. Allergy. 2017;73(3):505–10.

11. Bousquet J, Onorato GL, Bachert C, Barbolini M, Bedbrook A, Bjerner L, et al. CHRODIS criteria applied to the MASK (MACVIA-ARIA Sentinel Network): Good Practice in allergic rhinitis: a SUNFRAIL report. Clin Transl Allergy. 2017;7:73.

12. Hellings PW, Borrelli D, Pietikainen S, Agache I, Akdis C, Bachert C, et al. European summit on the prevention and self-management of chronic respiratory diseases: report of the European Union Parliament Summit (29 March 2017). Clin Transl Allergy. 2017;7:49.

13. Cingi C, Gevaert P, Mosges R, Rondon C, Hov R, Rudenko M, et al. Multi-morbidities of allergic rhinitis in adults: European Academy of Allergy and Clinical Immunology Task Force Report. Clin Transl Allergy. 2017;7:17.

14. Bousquet J, Schunemann HJ, Fonseca J, Samolinsky B, Bachert C, Canonica GW, et al. MACVIA-ARIA Sentinel Network for allergic rhinitis (MASK-rhinitis): the new generation guideline implementation. Allergy. 2015;70(11):1372–92.

15. Bousquet J, Khaled N. Global surveillance, prevention and control of chronic respiratory diseases, a comprehensive approach. Global Alliance against Chronic Respiratory Diseases. World Health Organization. ISBN 978 92 4 156346 8. 2007:148 p.

16. Bousquet J, Arnavielhe S, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and allergen). Allergy. 2008;63(Suppl 86):8–160.

17. Vandenplas O, Vinnikov D, Blanc PD, Agache I, Bachert C, Bewick M, et al. Impact of rhinitis on work productivity: a systematic review. J Allergy Clin Immunol Pract. 2018;6(4):1274–86.

18. Bousquet J, Anto JM, Berkouk K, Geigen P, Antunes JP, Auge P, et al. Developmental determinants in non-communicable chronic diseases and ageing. Thorax. 2015;70(6):595–7.

19. Fonseca JA, Nogueira-Silva L, Morais-Almeida M, Azevedo L, Sa-Sousa A, Branco-Ferreira M, et al. Validation of a questionnaire (CARAT10) to assess rhinitis and asthma in patients with asthma. Allergy. 2010;65(8):1042–8.

20. Bousquet J, Agache I, Alberti MR, Angles R, Annesi-Maesano I, Anto JM, et al. Transfer of innovation on allergic rhinitis and asthma multimorbidity in the elderly (MACVIA-ARIA) - Reference Site Twinning (EIP on AHA). Allergy. 2017;73(1):77–92.

21. Agache I, Deleanu D, Khaled N, Bousquet J. Allergic rhinitis and its impact upon asthma–update (ARIA 2008). Romanian perspective. Pneumologia. 2009;58(4):255–8.

22. Bachert C, Jorisjen M, Bertrand B, Khaled N, Bousquet J. Allergic Rhinitis and its impact on asthma update (ARIA 2008). The Belgian perspective. B‑ENT. 2008;4(4):253–7.

23. Bousquet J, Farrell J, Crooks G, Hellings P, Bel EH, Bewick M, et al. Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area S). Clin Transl Allergy. 2016;6:20.

24. Pagans A, Kehar R, Aleem S, Mejza F, Bousquet J, Schunemann HJ, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy. 2009;64(5):669–77.

25. Brozek JL, Akl EA, Coello P, Lang D, Jaeschke R, Williams JW, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy. 2009;64(8):1109–16.

26. Brozek JL, Canonica GW, Aki EA, Compatini E, Kreis J, Terracciano L, Fiocchi A, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations. Allergy. 2011;66(5):588–95.

27. Brozek JL, Schunemann HJ, Zuberbier T, Bachert C, Baena-Cagnani CE, Bousquet PJ, et al. Development and implementation of guidelines in allergic rhinitis - an ARIA-GAZLEN paper. Allergy. 2010;65(10):1212–21.

28. Brozek JL, Aki EA, Coello P, Lang D, Jaeschke R, Williams JW, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy. 2009;64(8):1109–16.
phone screens to assess allergic rhinitis control. Clin Exp Allergy. 2017;47(12):1526–33.

41. Bousquet J, Bewick M, Arnavielhe S, Mathieu-Dupas E, Murray R, Bedbrook A, et al. Work productivity in rhinitis using cell phones: the MASK pilot study. Allergy. 2017;72(10):1475–84.

42. Bousquet J, VanderPiau O, Bewick M, Arnavielhe S, Bedbrook A, Murray R, et al. The Work Productivity and Activity Impairment Specific (WPAI-AS) Questionnaire Using Mobile Technology: the MASK Study. J Investig Allergol Clin Immunol. 2018;28(1):42–4.

43. Bousquet J, Arnavielhe S, Bedbrook A, Fonseca J, Morais-Almeida M, Todo BOM A, et al. The Allergic Rhinitis and its impact on Asthma (ARIA) score of allergic rhinitis using mobile technology correlates with quality of life: the MASK study. Allergy. 2018;73(2):505–10.

44. Bousquet J, Devillier P, Anto JM, Bewick M, Haatelta T, Arnavielhe S, et al. Daily allergic multimorbidity in rhinitis using mobile technology: a novel concept of the MASK study. Allergy. 2018;73(8):1622–31.

45. Bousquet J, Devillier P, Arnavielhe S, Bedbrook A, Alexis-Alexandre G, van Eerd M, et al. Treatment of allergic rhinitis using mobile technology with real-world data: the MASK observational pilot study. Allergy. 2018;73(9):1763–74.

46. Brozek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic Rhinitis and its impact on Asthma (ARIA) guideline—2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8.

47. Bousquet J, Melzner EQ, Couroux P, Kolton A, Kopietz F, Munzel U, et al. Onset of action of the fixed combination intranasal azelastine-fluticasone propionate in an allergen exposure chamber. J Allergy Clin Immunol Pract. 2018;6(5):1726–32.

48. Garcia-Aymerich J, Benet M, Saeys Y, Pinart M, Basagana X, Smith M, et al. Onset of action of the fixed combination intranasal azelastine-fluticasone propionate in an allergen exposure chamber. J Allergy Clin Immunol Pract. 2018;6(5):1726–32.

49. Amaral R, Bousquet J, Pereira AM, Araujo LM, Sa-Sousa A, Jacinto T, et al. Disentangling the heterogeneity of allergic respiratory diseases: report of the European Union parliament symposium. Allergy. 2015;70(8):973–84.

50. Amaral R, Bousquet J, Pereira AM, Araujo LM, Sa-Sousa A, Jacinto T, et al. Disentangling the heterogeneity of allergic respiratory diseases by latent class analysis reveals novel phenotypes. Allergy. 2018. https://doi.org/10.1111/all.13670.

51. Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J. Association between asthma, rhinitis and conjunctivitis multimorbidities with molecular IgE sensitization in adults. Allergy. 2018. https://doi.org/10.1111/all.13676.

52. Bousquet J, Samolinski B. Allergy and active and healthy ageing. In: Morais-Almeida M, Pite H, Pereira AM, Todo-Bom A, Nunes C, Bousquet J, editors. Global Alliance Against Chronic Respiratory Diseases (AARC)–what does it mean for the future of SIT? Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankfurt A M. 2003.04.229–35.

53. Bousquet J, Anton JM, Demoly P, Schumennan HJ, Togias A, Akdis M, et al. Severe chronic allergic (and related) diseases: a uniform approach—a MEDELL–GALEN–ARIA position paper. Int Arch Allergy Immunol. 2012;158(3):216–31.

54. Bousquet J, VanCauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma (ARIA)—executive summary. Allergy. 2002;57(9):841–55.

55. Bousquet J. Allergic rhinitis and its impact on asthma (ARIA)—what does it mean for the future of SIT? Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankfurt A M. 2003;108(3):141–4.

56. Bousquet J, VanCauwenberge P. The WHO ARIA (allergic rhinitis and its impact on asthma) initiative. Chem Immunol Allergy. 2003;82:119–26.

57. Bousquet J, Van Cauwenberge P, Bachert C, Canonica GW, Demoly P, Durham SR, et al. Requirements for medications commonly used in the treatment of allergic rhinitis. European Academy of Allergy and Clinical Immunology (EAACI), Allergic Rhinitis and its Impact on Asthma (ARIA). Allergy. 2003;58(3):192–7.

58. Bousquet J, Alain FA, Lescalier M, Bousquet J. Validation of the classification of ARIA (allergic rhinitis and its impact on asthma). Allergy. 2003;58(7):672–5.

59. Bousquet J, VanCauwenberge P. The WHO ARIA (allergic rhinitis and its impact on asthma) initiative. Chem Immunol Allergy. 2003;82:119–26.

60. Bousquet J, Van Cauwenberge P, Bachert C, Canonica GW, Demoly P, Durham SR, et al. Requirements for medications commonly used in the treatment of allergic rhinitis. European Academy of Allergy and Clinical Immunology (EAACI), Allergic Rhinitis and its Impact on Asthma (ARIA). Allergy. 2003;58(3):192–7.

61. Bousquet J, Alain FA, Lescalier M, Bousquet J. Validation of the classification of ARIA (allergic rhinitis and its impact on asthma). Allergy. 2003;58(7):672–5.

62. Bousquet J, Bindlev-Jensen C, Canonica GW, Fokkens W, Kim H, Kowalski M, et al. The ARIA/EAACI criteria for antihistamines: an assessment of the efficacy, safety and pharmacology of desloratadine. Allergy. 2004;59(Suppl 77):4–16.
81. Plavec D. ARIA—one airway, one disease: what links our research to the concept? Arch Hig Rada Toksikol. 2004;55(2–3):135–40.
82. Up-to-date Mexican consensus in Allergic Rhinitis and its Impact on Asthma. 2005. ARIA. Rev Alerg Mex. 2005;52(1):51–64.
83. Bonini S, Bonini M, Bousquet J, Brusasco V, Canonica GW, Carlsten KH, et al. Rhinitis and asthma in athletes: an ARIA document in collaboration with GA2LEN. Allergy. 2006;61(6):681–92.
84. Bousquet J, van Cauwenberge P, Ait-Khaled N, Bachert C, Baena-Cagnani CE, Bouchard J, et al. Pharmacologic and anti-IgE treatment of allergic rhinitis: ARIA update (in collaboration with GA2LEN). Allergy. 2006;61(9):1086–96.
85. Pasalacqua G, Bousquet PJ, Carlsten KH, Kemp J, Lackey RF, Niggemann B, et al. ARIA update: I-Systematic review of complementary and alternative medicine for rhinitis and asthma. J Clin Allergy Immunol. 2006;117(5):1054–62.
86. Antonicelli L, Micucci C, Voltolini S, Senna GE, Di Blasi P, Visona G, et al. Relationship between ARIA-classification and drug treatment in allergic rhinitis and asthma. Allergy. 2007;62(9):1064–70.
87. Bousquet PJ, Bousquet-Rouanet L, Co Minh HB, Urbinelli R, Allaert FA, Bousquet JP, et al. ARIA 2006 alternative medicine throughout the life cycle in Argentina. Rev Alerg Mex. 2007;62(9):1064–70.
88. Bousquet PJ, Bousquet-Rouanet L, Co Minh HB, Urbinelli R, Allaert FA, Demoly P. ARIA (Allergic Rhinitis and Its Impact on Asthma) Classification of Allergic Rhinitis Severity in Clinical Practice in France. Int Arch Allergy Immunol. 2007;143(3):163–9.
89. Bousquet PJ, Combes C, Neukirch F, Klossek JM, Mechin H, Daures JP, et al. Visual analog scales can assess the severity of rhinitis graded according to ARIA guidelines. Allergy. 2007;62(4):367–72.
90. Bairdini I, Braido F, Tarantini F, Porcu A, Bonini S, Bousquet PJ, et al. ARIA-suggested drugs for allergic rhinitis: what impact on quality of life? A GA2LEN review. Allergy. 2008;63(5):660–9.
91. Singh AB, Shahi S. Aeroallergens in clinical practice of allergy in India—ARIA Asia Pacific Workshop report. Asian Pac J Allergy Immunol. 2008;26(4):245–56.
92. Zhang L, Han DM. An introduction of allergic rhinitis and its impact on asthma (ARIA) 2008 update: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;43(7):552–7.
93. Shah A, Shahi S. Aeroallergens in clinical practice of allergy in India—ARIA Asia Pacific Workshop report. Asian Pac J Allergy Immunol. 2008;26(4):245–56.
94. Zhang L, Han DM. An introduction of allergic rhinitis and its impact on asthma (ARIA) 2008 update: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;43(7):552–7.
95. Singh AB, Shahi S. Aeroallergens in clinical practice of allergy in India—ARIA Asia Pacific Workshop report. Asian Pac J Allergy Immunol. 2008;26(4):245–56.
96. Zhang L, Han DM. An introduction of allergic rhinitis and its impact on asthma (ARIA) 2008 update: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;43(7):552–7.
97. Shah A, Shahi S. Aeroallergens in clinical practice of allergy in India—ARIA Asia Pacific Workshop report. Asian Pac J Allergy Immunol. 2008;26(4):245–56.
98. Hellings PW, Fokkens WJ, Bachert C, Akdis CA, Bieber T, Agache I, et al. Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis: a EUPORA-ARIA-EPOS-AIRWAYS ICP statement. Allergy. 2017;72(9):1297–305.
99. Ivanecvic JC, Neffen H, Zennotti ME, Asayag E, Blua A, Ciceran A, et al. ARIA 2016 executive summary: integrated care pathways for predictive medicine throughout the life cycle in Argentina. Rev Alerg Mex. 2017;64(3):298–308.
100. Yorgancioglu AA, Kalyocay O, Cingi C, Gemicioglu B, Kalyocucu AF, Agache I, et al. ARIA 2016 executive summary: integrated care pathways for predictive medicine across the life cycle. Tuberk Toraks. 2017;65(1):32–40.
101. Amaala R, Fonseca JA, Jacinto T, Pereira AM, Malinovschi A, Janson C, et al. Having concomitant asthma phenotypes is common and independently relates to poor lung function in NHANES 2007-2012. Clin Transl Allergy. 2018;8:13.