Tissue specificity and the human protein interaction network

Alice Bossi\(^1\) and Ben Lehner\(^1,2,\ast\)

\(^1\) EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, UPF, Barcelona, Spain and \(^2\) ICREA, Centre for Genomic Regulation, UPF, Barcelona, Spain

* Corresponding author. EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Dr Aiguader 88, Barcelona 8003, Spain. Tel.: +34 93 316 0194; Fax: +34 93 316 0099; E-mail: ben.lehner@crg.es

Received 23.10.08; accepted 23.2.09

A protein interaction network describes a set of physical associations that can occur between proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so only a subset of interactions can occur. Integrating interaction and expression data, we analyze here this interplay between protein expression and physical interactions in humans. Proteins only expressed in restricted cell types, like recently evolved proteins, make few physical interactions. Most tissue-specific proteins do, however, bind to universally expressed proteins, and so can function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping’ proteins that are expressed in all cells also make highly tissue-specific protein interactions. These results suggest a model for the evolution of tissue-specific biology, and show that most, and possibly all, ‘housekeeping’ proteins actually have important tissue-specific molecular interactions.

Molecular Systems Biology 7 April 2009; doi:10.1038/msb.2009.17

Introduction

Nearly all processes in biology are dependent on the precise physical interactions among many individual proteins. These range from the maintenance of cellular architecture and the propagation of the genetic material, to the ability of cells to process and respond to environmental information. Defining a near-complete map of the physical interactions that can occur between human proteins—the human protein ‘interactome’—is an important ambition of current research. Similar to the sequence of the human genome, the human interactome serves as a resource for researchers and can be used to understand how proteins are organized to perform functions within a cell (Bork et al., 2004; Cusick et al., 2005).

Protein interactome mapping projects were pioneered in model organisms (Uetz et al., 2000; Walhout et al., 2000; Ito et al., 2001; Ho et al., 2002; Li et al., 2004; Gavin et al., 2006; Krogan et al., 2006), with initial efforts in humans focused on particular pathways or genomic regions (Bouwmeester et al., 2004; Lehner and Sanderson, 2004; Lehner et al., 2004; Jeronimo et al., 2007). More recently, the cloning of large sets of human open reading frames and improvements in interaction assays have allowed these efforts to be expanded by an order of magnitude to the scale of the human proteome (Rual et al., 2005; Stelzl et al., 2005; Ewing et al., 2007). These data, combined with extensive efforts to collate known interactions from the scientific literature (Bader et al., 2001; Xenarios et al., 2002; Pagel et al., 2005; Persico et al., 2005; Stark et al., 2006; Kerrien et al., 2007; Vastrik et al., 2007; Ruepp et al., 2008), mean that there is now a reasonably extensive resource of known human protein interactions (Hart et al., 2006).

A global interactome network provides an overview of all of the physical interactions that can occur between human proteins. However, very little is known about when and where each of these interactions can occur. Within any particular cell or tissue of the human body not all protein interactions can occur. Most simply, if two genes are not expressed in a cell, then an interaction between their protein products cannot occur.

In unicellular organisms, one approach that has been used to investigate the dynamics of interaction networks between cellular states has been to integrate interactome data with expression data. This approach has been used to identify co-regulated interaction modules (Ihmels et al., 2002; Komurov and White, 2007) or to investigate the relationships between interaction network topology and gene co-expression.
(Han et al., 2004). Additional studies have used gene expression (Luscombe et al., 2004; de Lichtenberg et al., 2005) or functional information (Rachlin et al., 2006) to investigate the cellular conditions (or ‘context’) under which interactions can occur, and to distinguish between condition-dependent and condition-independent interactions.

In the present study, we apply a similar approach to the human protein interaction network, using global gene expression data to identify the human cells and tissues in which each interaction can or cannot occur. By performing this analysis, we are able to investigate the relationship between the tissue specificity of a protein and its number of interaction partners. Moreover, and strikingly, we find extensive communication between universally expressed proteins and those with tissue-specific expression. Even the most tissue-specific proteins normally interact directly with components of the core cellular machinery. Conversely, nearly all universally expressed ‘housekeeping’ proteins have protein interactions that can only occur in a restricted subset of cells. Our results suggest a model for the evolution of tissue-specific functions through the modification and re-use of core cellular processes, and that most ‘housekeeping’ proteins should probably be considered as important for tissue-specific processes.

Results

Construction of a global human protein interaction network

To construct a global human physical protein interaction network, we integrated data from 21 different sources to define a network of 80,922 physical interactions that can occur between 10,229 human proteins. We only included interactions supported by at least one piece of direct experimental evidence demonstrating physical association between two human proteins (see Materials and methods; Supplementary Table 1). Moreover, to account for differences in interaction assay reliability, throughout this work, we also consider a high-confidence subset of this global network that consists of interactions reported in at least two independent primary research publications. There are a total of 13,102 of these multiple publication-supported interactions that connect 4750 human proteins.

Determining the tissue specificity of human protein interactions

We then used gene expression data (Su et al., 2004) to determine the cells and tissues of the human body in which each of these interactions can occur (Figure 1A). If two genes are co-expressed in a cell, then under some condition their products can physically interact in that cell. However, if two proteins are not expressed in a tissue, then the interaction cannot occur in this tissue. The complete set of interactions, their supporting evidence, and the cells and tissues in which each interaction can occur are provided as Supplementary Table 1 as a resource for researchers interested in the biology of any particular human cell or tissue.

Tissue specific and recently evolved proteins make few protein interactions

We first examined the relationship between the tissue specificity of a protein and the number of interactions that it makes (a protein’s interaction degree). We find that more tissue-specific proteins make fewer interactions than widely expressed proteins (Figure 1B, Spearman’s $\rho=0.19$, $P<2.2e^{-16}$). This is true both for the complete and for the multiple-support interaction dataset (Supplementary Figure 1A), and when excluding all protein complexes (Supplementary Figure 1B). It has been shown earlier that tissue-specific proteins are more likely to be recent evolutionary innovations than universally expressed proteins (Lehner and Fraser, 2004b). We find that more-recently evolved proteins have fewer interactions than ancient proteins, but that the relation-

![Figure 1](image-url)
ship between tissue specificity and interaction degree is seen for both sets of proteins (Figure 1C). That is, the older a protein is, and the more tissues in which it is expressed, the more protein interactions it is likely to have.

The most tissue-specific proteins normally interact with core cellular components

We next analyzed the extent to which tissue-specific proteins interact with the most widely expressed proteins. We find that even when only considering the most tissue-restricted proteins (proteins expressed in \(\leq 10/79 \) tissues), most of them are known to interact directly with universally expressed human proteins (Figure 2A). The same result is seen when only considering high-confidence human protein interactions (Supplementary Figure 2A), and when using diverse definitions of universally expressed proteins (Figure 2A). Thus, most tissue-specific proteins can function by directly contacting components of the core cellular machinery.

Most universally expressed proteins have tissue-specific protein interactions

Constitutively expressed proteins are often considered as important for ‘housekeeping’ biological processes that are required in all cells. However, nearly all of the most widely expressed proteins have interactions with other proteins that are not themselves universally expressed (Figure 2B). That is, most universally expressed proteins have physical interactions that can only occur in a restricted subset of cells and tissues. The same result is seen when using the complete interaction dataset, when only considering high-confidence interactions described in multiple independent publications (Supplementary Figure 2B), or when using diverse definitions of universally expressed proteins (Figure 2B). Thus most, and possibly all, universally expressed proteins have tissue-specific molecular interactions.

Proteins that themselves have restricted expression patterns also have many interactions that can only occur in a subset of the tissues in which they are expressed (Figure 2C). That is, as a consequence of interactions between more and less widely expressed proteins, human protein interactions are often more tissue specific than proteins \((P < 10^{-16})\).

Extensive re-use of housekeeping proteins for tissue-specific biological processes

To further illustrate how housekeeping proteins are widely re-used for tissue-specific biological processes, we considered neuronal protein complexes that function in synaptic transmission, learning, and memory. The subunits of these complexes have been identified by extensive proteomic approaches, and the importance of individual subunits for learning and memory have been validated by genetic studies in mice and by clinical studies in humans (Pocklington et al., 2006). We estimate that ~20–60% of the subunits of these neuronal-specific complexes are actually universally expressed housekeeping proteins (Figure 3A and B). Moreover, in ~30% of cases, these housekeeping subunits have genetically verified roles in learning and memory (Figure 3C). Thus, universally expressed proteins, through their tissue-specific interactions, can be re-used and essential for highly tissue-specific biological processes.

Discussion

The evolution of tissue-specific biological processes

Taken together, our findings suggest the following model for the evolution of tissue-specific functions. Many (but not all) tissue-specific proteins are recent evolutionary innovations (Lehner et al., 2004). In general, these tissue-specific proteins initially make few interactions, and these interactions are
frequently with much more widely expressed and ‘housekeeping’ components of the cell. Thus, many tissue-specific proteins probably function by directly recruiting or modifying the activities of core cellular components.

There are, however, exceptions to this trend, with some tissue-specific proteins acting as ‘local’ hubs in the interaction network of a particular tissue (our unpublished observation).

Frequent re-use of housekeeping proteins for tissue-specific biology

Universally expressed ‘housekeeping’ proteins tend to make many interactions. Many of these interactions (~50–60%, Supplementary Figure 3) are with other housekeeping proteins. However, the majority of universally expressed proteins also make interactions that can only occur in a subset of the tissues in which they are expressed. Therefore, there appears to be very frequent, and possibly universal, re-use of ‘housekeeping’ proteins to perform tissue-specific biological processes. That is, most housekeeping proteins can be considered to be important for different (or at least modified) biological processes in different tissues.

In summary, our results suggest that it might be better to consider the biology of any particular tissue in the terms of the particular interactions that can occur in that tissue, rather than simply in the terms of the unique proteins that are expressed there.

The importance of interaction network dynamics

In unicellular yeast, broadly expressed proteins can have precisely temporally regulated activities because of their interactions with proteins with restricted expression profiles (de Lichtenberg et al., 2005). We show here that a similar process may be widely used in multicellular organisms to restrict and modify the activities of a protein to a subset of the tissues in which it is expressed.

Together with earlier analyses in yeast (Han et al., 2004; Luscombe et al., 2004; de Lichtenberg et al., 2005), this work highlights the importance of considering global interaction networks as having dynamic, not static, structures, and topologies. Additional work analyzing how the networks of molecular interactions change between cell types, states, and conditions should prove a fruitful approach for understanding living systems.

Materials and methods

Protein interaction data

We compiled human protein interactions from a total of 21 different databases, as listed in Table I. We required that each interaction be supported by at least one piece of direct experimental evidence demonstrating physical association between two human proteins, and removed all interactions that did not meet these criteria. All interactions were mapped to common Ensembl gene identifiers. The complete network (‘CRG-all’), consists of 80,922 interactions between 10,229 human proteins (approximately half the human proteome) and is available as Supplementary Table S1.

Filtered interaction dataset

In total, 13,102 of the interactions in our network between 4750 proteins are supported by experimental evidence of physical binding reported in at least two different primary research publications. Given the multiple lines of evidence supporting these interactions, we use this subset of interactions (‘CRG-filtered’) as high-confidence interactions to confirm that our conclusions are not affected by interaction data quality or sampling (see Supplementary Figures).

Expression data

To identify which protein interactions can occur in a particular cell or tissue type, we used global gene expression data. Although interactions can be regulated by localization, phosphorylation, etc, we aim to distinguish the proteins that can interact under some condition in a tissue from those that cannot, and mRNA expression is a reasonable indicator of this potential. We used expression data from the GNFAtlas project that measured expression across 79 different human cell or
Table 1 Human protein interaction datasets used to construct or support the integrated human interaction network

Dataset	Description	Reference
BIND	Literature curation	Bader et al (2001)
BIOGRID	Literature curation	Stark et al (2006)
Bioverse	Data integration	McDermott et al (2005)
CCBS-Hi1	Yeast two-hybrid	Rual et al (2005)
Co-citation	Text-mining	Ramani et al (2005)
Co-expression	Conservation	Ramani et al (2008)
conservation	co-expression relationships	Ruepp et al (2008)
CORUM	Literature curation	Ruepp et al (2008)
DIP	Literature curation	Peri et al (2003)
HPRD	Literature curation	Kerrien et al (2007)
IntAct	Literature curation	Xia et al (2006)
IntNetDB	Data integration	Stelzl et al (2005)
MDC	Yeast two-hybrid	Persico et al (2005)
MINT	Literature curation, orthology	Pagel et al (2005)
MIPS	Literature curation	Brown and Jurisica (2005)
OPHID	Orthology	Ewing et al (2007)
Ottowa	Affinity purification-mass spectrometry	Lim et al (2006)
PC/Ataxia	Yeast two-hybrid	Vastrik et al (2007)
Reactome	Literature curation	Lehner and Fraser (2004a)
Sanger	Orthology	Jeronimo et al (2007)
Transcription complexes	Affinity purification-mass spectrometry	http://www.cytoscape.org/cgi-bin/moin.cgi/Data_Sets
Universe	Data integration	

*Conserved co-expression, co-citation, or evolutionary conservation data are only used in the final network as additional supporting evidence. All interactions must have at least one piece of experimental binding evidence to be included in the final dataset, or physical binding evidence from at least two publications to be included in the multiple-support network.

Protein evolution

Proteins were classified as metazoan specific or pre-metazoan using the analysis of Freilich et al (2005).

Supplementary information

Supplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).

Acknowledgements

This work was funded by a European Research Council (ERC) Starting Researcher Grant, the Ministry of Science and Innovation (MICINN-Plan Nacional), the CRG-EMBL Systems Biology Program, ICREA and a Leonardo da Vinci fellowship to AB. We thank three anonymous referees for helpful suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW (2001) BIND—The Biomolecular Interaction Network Database. Nucleic Acids Res 29: 242–245

Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14: 292–299

Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Crompton K, Cruciat C, Eberhard D, Ganev J, Giudicielli J, Hopf C, Huß B, Mangan R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G et al (2004) A physical and functional map of the human TNF-α/alpha+NF-kappa B signal transduction pathway. Nat Cell Biol 6: 97–105

Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21: 2076–2082

Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Intactome: gateway into systems biology. Hum Mol Genet 14 (Spec No. 2): R171–R181

de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307: 724–727

Ewing RM, Chu P, Elisma F, Li H, Taylor P, Clime S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dhasee M, Ho Y, Heibut A, Moore L, Zhang S, Ornatzky O, Bukhman TV, Ethier M, Sheng Ye et al (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3: 89

Freeman TC, Goldovsky L, Brosch M, van Dongen S, Maziere P, Grocock RJ, Freilich S, Thornton JM, Enright AJ (2007) Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 3: 2032–2042

Freilich S, Massingham T, Bhattacharyya S, Pooning H, Lyons PA, Freeman TC, Thornton JM (2005) Relationship between the tissue-specificity of mouse gene expression and the evolutionary origin and function of the proteins. Genome Biol 6: R56

Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpfeild B, Edelmann A, Heurait MA, Hofmann V, Hoefert C, Kleink K, Hudak M, Michon AM, Schelder M, Schire M, Remor M et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631–636
Tissue specificity and the human protein interaction network

A Bessi and B Lehner

Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430: 88–93

Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7: 120

Ho Y, Gruler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutillier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183

Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31: 370–378

Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A genomic-scale map of the interactome network of the metazoan C. elegans. Science 292: 1762–274

Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Fridell RA, Goble C, Harvey S, Hausner L, Hermitte C, Huntley R, Jensen LJ, Jermakion C, Letunic I, Leipe DD, Lu C, Mering C, Mor C, Nekrutenko A, Nègre F, Nünlist M, Orchard S, Robbe K, Roechert B, Roemer D, Simon C, Stenger B, Stroedicke D, Taylor P, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Kliktog N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437: 1173–1176

Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Salazar LA,-Yung I, Xia Y, Kristiansen TZ, Ng R, Saunders TA, Fung E, Cheung M, Yu P, Mochalin LV, et al (2006) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 34: D561–D565

Lim J, Hao T, Tardivo L, Nissley P, Srinivasan M, Croft D, Park K, Schubert A, O’Maille S, Roper RJ, Wang Z, Sbalzarini I, Obradovic A, Novák B, Janin J, Yue P, Wucherpfennig K, Nussinov R, maneuver in preparation for large-scale mapping of the human protein–protein interaction network. Nature 437: 1173–1176

Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stranks S, Waegle B, Schmidt T, Douidin OE, Stumpflen V, Mewes HW (2006) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 34: D535–D539

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Strodiekic D, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goede D, Toksoz E, Droege A, Kröbisch S, Korn B et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122: 957–968

Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Boutilier K, Yang L, Wolting C, Donaldson I, Muskat B, Alfarano C, Hoffmann R, Florio A, Cesareni G (2005) HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6(Suppl 4): S21

Pocklington AJ, Cusimkey M, Armstrong JD, Grant SG (2006) The proteomes of neurotransmitter receptor complexes forms modular networks with distributed functionality underlying plasticity and behavior. Mol Syst Biol 2: 2006.0023

Rachlin J, Cohen DD, Cantor C, Kasif S (2006) Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2: 66

Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM (2005) Consolidating the set of known human protein–protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6: R40

Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Kliktog N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437: 1173–1176

Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stranks S, Waegle B, Schmidt T, Douidin OE, Stumpfelen V, Mewes HW (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36: D646–D650

Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34: D535–D539

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goeehler H, Strodieicic D, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goede D, Toksoz E, Droege A, Kröbisch S, Korn B et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122: 957–968

Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Boutilier K, Yang L, Wolting C, Donaldson I, Muskat B, Alfarano C, Hoffmann R, Florio A, Cesareni G (2005) HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6(Suppl 4): S21

Pocklington AJ, Cusimkey M, Armstrong JD, Grant SG (2006) The proteomes of neurotransmitter receptor complexes forms modular networks with distributed functionality underlying plasticity and behavior. Mol Syst Biol 2: 2006.0023

Rachlin J, Cohen DD, Cantor C, Kasif S (2006) Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2: 66

Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM (2005) Consolidating the set of known human protein–protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6: R40

Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Kliktog N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437: 1173–1176

Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stranks S, Waegle B, Schmidt T, Douidin OE, Stumpfelen V, Mewes HW (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36: D646–D650

Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34: D535–D539

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goeehler H, Strodieicic D, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goede D, Toksoz E, Droege A, Kröbisch S, Korn B et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122: 957–968

Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Morriech A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99: 4465–4470

Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101: 6062–6067

Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kabibeicis T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627

Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal S, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8: R53

Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brash MA, Thierry-Mieg N, Vidal M (2005) Protein interaction mapping in
C. elegans using proteins involved in vulval development. Science 287: 116–122

Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30: 303–305

Xia K, Dong D, Han JD (2006) IntNetDB v1.0: an integrated protein–protein interaction network database generated by a probabilistic model. BMC Bioinformatics 7: 508

Zhu J, He F, Song S, Wang J, Yu J (2008) How many human genes can be defined as housekeeping with current expression data? BMC Genomics 9: 172

Molecular Systems Biology is an open-access journal published by European Molecular Biology Organization and Nature Publishing Group. This article is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Licence.