Multidrug-Resistance and Virulence-Related Properties of Diarrheagenic Escherichia Coli in Urban River: A Possible Source and Dissemination of Human Infections

Barbara Araújo Nogueira
Universidade do Estado do Rio de Janeiro https://orcid.org/0000-0002-6027-4404

Julianna Giordano Botelho Olivella
Universidade do Estado do Rio de Janeiro

Bruna Ribeiro Sued-Karam
Universidade do Estado do Rio de Janeiro

Paula Marcele Afonso Pereira Ribeiro
Universidade do Estado do Rio de Janeiro

Valmir Oliveira
Universidade do Estado do Rio de Janeiro

Claudio Rocha de Souza
Fundação Oswaldo Cruz: Fundacao Oswaldo Cruz

Sergio Eduardo Longo Fracalanzza
Universidade Federal do Rio de Janeiro

Ana Claudia de Paula Rosa Ignácio
Universidade do Estado do Rio de Janeiro

Ana Lúzia Mattos-Guaraldi (aguaraldi@gmail.com)
Universidade do Estado do Rio de Janeiro

Research Article

Keywords: Escherichia coli, aquatic environment, multi-drug resistance, diarrheagenic, intestinal epithelial cell.

DOI: https://doi.org/10.21203/rs.3.rs-700738/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The presence of multi-drug resistant (MDR) *E. coli* harboring virulence pathotypes in aquatic systems is a public health concern due to an increase number of cases of infections and outbreaks in industrialized and developing countries. The aim of the present study was to evaluate the microbiological quality of Joana river, located at Rio de Janeiro, by analyzing *E. coli* bacteria contamination and to investigate virulence properties and MDR profiles by phenotypic and genotypic methods, including bacterial interaction with Caco-2 cells. A total of 34 *E. coli* were identified by MALDI-TOF and 20 *E. coli* were characterized as MDR when submitted to antimicrobial susceptibility test. Evaluation by multiplex-PCR of MDR *E. coli* demonstrated the presence of virulence pathotypes: EHEC (*stx1, stx2, eae* genes), STEC (*stx2* gene) and EIEC/STEC (*stx2, iaL* genes). Virulence potential was demonstrated by the ability to adhere and survive within Caco-2 cells of MDR *E. coli* pathotypes (n = 4). In conclusion, this study demonstrates the presence of diarrheagenic MDR *E. coli* in river water at Rio de Janeiro. The possibility of aquatic environment dissemination of antimicrobial resistance and human contamination leading to community and nosocomial infections due to virulent MDR *E. coli* water-borne pathogens is a matter of concern.

Introduction

Urban rivers may act as reservoir of several human pathogens, including *Escherichia coli*, a commensal inhabitant of the human gastrointestinal tract, considered the main indicator of water potability (Lanna et al., 2020; Guzmán et al., 2015). Although most *E. coli* strains live harmlessly in the colon, a number of pathogenic strains can cause intestinal and extraintestinal diseases, through different virulence factors, in healthy and immunocompromised individuals (Leimbach et al., 2013).

Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality especially in Africa, Asia and Latin America due to poor living conditions, including poor environmental hygiene and sanitation. Diarrheagenic *E. coli* (DEC) are one of the most important of the various etiological agents of diarrhea, where strains have evolved to the acquisition, through horizontal gene transfer, of a particular set of characteristics that have persisted in the host. The DEC pathotypes are classified as: Enteropathogenetic *E. coli* (EPEC), Enterohaemorrhagic (Shiga toxin-producing) *E. coli* (EHEC/STEC), Enteroaggregative *E. coli* (EAEC), Enterotoxigenic *E. coli* (ETEC) and Enteroinvasive *E. coli* (EIEC - based on the presence of seven virulence genes: *eaeA, stx1, stx2, iaL, Lt, St* and *eagg* respectively. Each of these pathotypes represents a group of clones that share specific virulence factors. (Gomi et al., 2015; Gomes at al. 2016).

Several reports indicate ETEC as a major cause of diarrheal illness in poor areas of the world where they contribute to unacceptable mortality, particularly among young children (Fleckenstein; Kuhlmann, 2019); EHEC strains secret Shiga toxin (*Stx*) which can lead to hemolytic uremic syndrome; EPEC strains (EPEC) represent an important cause of infant diarrhea and mortality worldwide; EIEC strains are involved in invasive intestinal infections and dysentery; EAEC strains cause persistent diarrhea due to a heatstable enteroenterotoxigenicity (Abe et al., 2008; Serapio-Palacios, Finlay, 2020); STEC may cause outbreaks, sporadic cases of hemorrhagic colitis and are associated with hemolytic uremic syndrome and thrombotic thrombocytopenic purpura (Beutin et al., 2004). Pathogenic *E. coli* strains may colonize human tissues by attaching and/or invading host cells. Clinical manifestations induced by each of these strains are associated with watery form of diarrhea or inflammatory presentation of the disease (Kalita, Hu, Torres, 2014; Wang et al., 2017; Lanna et al., 2020).

Population heterogeneity of *E. coli* has been linked to environmental changes and genome plasticity evolution of some lineages associated with human diseases due to new combinations of virulence genes and phenotypic diversity, contributing to survival, higher virulence profiles and multi-resistance dissemination (Ashbolt, 2004; Brito et al., 2008; Hartland and Leong, 2013).

Although bacterial interaction within gastrointestinal human tract is essential to maintain members of the normal microflora, it is also considered a critical phase in all diarrheal infections caused by pathogenic *E. coli* strains (Kalita, Hu, Torres, 2014). Epithelial cell invasion is a virulence mechanism expressed by EIEC strains leading to dysentery-like illness. Invasive properties to cultured epithelial cells have been also reported for EPEC strains (Luck et al., 2005). Therefore, understanding the occurrence of pathogenic *E. coli* and their ability to adhere, invade and persist in the host cell will improve the knowledge of environmental transmission media to humans and its important role in emergence outbreaks creating potential threat and becoming a public health risk (Xiong et al., 2015). However, further studies remain necessary.
The aim of this present study was to evaluate the microbiological quality of Joana river, located at Rio de Janeiro metropolitan area, by analyzing E. coli bacteria contamination and to investigate virulence-related properties and multidrug-resistance profiles by phenotypic and genotypic methods, including host-cell interaction.

Materials And Methods

Study area and sample collection.

Water samples were collected from Joana River located in front of a University Hospital at Rio de Janeiro metropolitan area, Southeast Brazil, which receives water from different sources including residences, State University, rain and hospital sewage. Joana River has a total length of 3.412 meters, with 2.400 meter of tunnel, which is considered the largest urban drainage tunnel in Brazil. A flow limiter was built that allows a passage of up 7m³/s of water from the Joana River to the Macaranã River until it flows directly into Guanabara Bay (Figure 1).

Approximately 100 mL of water samples were collected, stored in sterilized bags and transported to laboratory for analysis. Samples were inoculated in 100mL of Brain Heart Infusion broth – BHI (2x), incubated for 24h at 37ºC, and subsequently cultivated onto MacConkey ágar (24h at 37ºC), as previously described (Nogueira et al., 2015). E. coli strains were identified using Matrix Assisted Laser Desorption Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry. This method analyzes the profiles of bacterial macromolecule that are obtained from whole bacteria. The procedure provides a unique mass spectral fingerprint of the microorganisms, biopolymer molecules normally present in the condensed phase be converted into intact, isolated ionized molecules in the gas phase. Then, ions are separated according to their molecular weight after migration in an electric field. Each molecule detected is characterized by molecular mass, the charge, the ratio mass/charge and the relative intensity of the signal (Carbonelle et al., 2011).

Antimicrobial susceptibility assays.

Antimicrobial susceptibility testing was done by the disc diffusion method (Bauer et al., 1966), and the results were interpreted according to Clinical Laboratory Standards Institute (CLSI) guidelines (CLSI, 2019). The following antimicrobial drugs were tested: cephalosporins: cephalothin, cefazolin, cefotaxine, cefuroxime, ceftriaxone, ceftazidine, cefepime; aminoglycosides: gentamicin, amikacin, kanamycin, tobramycin; ampicillin; piperacillin/taxobactam, amoxicillin/clavulanic acid, ampicillin/sublactam; fluoroquinolones: ciprofloxacin, norfloxacin; carbapenems: imipenem, ertapenem, meropenem; aztreonam; chloramphenicol; tetracycline; cotrimoxazole and colistin. Multidrug resistance was considered when strains were resistant to three or more antimicrobial agents of interest class (beta-lactams, fluoroquinolones, aminoglycoside and carbapenems) (Magiorakos et al., 2012).

Biofilm formation on hydrophobic polystyrene surface.

Biofilm assays on polystyrene surfaces were performed for all E. coli strains. The optical density (OD) of the stained attached bacteria and control wells were read at λ = 570 nm. The cut-off OD (ODc) was defined as the mean OD of the negative control (TSB only). Based on the ODs of the bacterial biofilms, all strains were classified into the following categories: non-adherent (: OD ≤ ODc), weakly adherent (+: ODc< OD ≤ 2x ODc), moderately adherent (++: 2x ODc< OD ≤ 4x ODc), or strongly adherent (+++:OD>4x ODc). Each assay was performed in triplicate and repeated three times. S. epidermidis strain ATCC 35984 was used as a positive control (Van Belkum et al., 2007).

Biofilm formation on a hydrophilic glass surface.

Microorganisms were inoculated in glass tubes (15x100 mm) containing 5 mL of TSB medium and incubated at 37ºC for 48 h. The supernatants containing non-adherent bacterial cells were discarded. Fresh sterile TSB (5 mL) was added to the test tubes and re-incubated for 48 h. This procedure was repeated twice. Glass-adherent bacteria created a confluent coat of cells on the sides of the tube. Microorganisms were classified as non-adherent (: absence of adherence), weakly adherent (+: adherent bacteria appeared as a ring at the interface between the medium and the air), moderately adherent (++: bacteria attached on the side of the
glass tubes), or strongly adherent (+++: bacteria attached on the side of the glass tubes and at the interface between the medium and the air). *S. epidermidis* strain ATCC 35984 was used as a positive control (Mattos-Guaraldi and Formiga, 1991).

Multiplex-polimerase chain reaction (PCR) assays

Twenty *E. coli* strains were submitted to simple boiling method for DNA extraction, suspended in water injection and maintained at -20°C (Nogueira *et al.*, 2015) in order to search for EHEC, EPEC, STEC, EIEC, EAEC and ETEC, PCR targeting *eaeA* (917 bp), *stx1* (614 bp), *stx2* (779 bp), *ial* (630 bp), *Lt* (450 bp) and *St* (160 bp) genes was employed. The amplification was performed using a reaction mixture which contained 20 μL containing 1X PCR buffer (10 mM Tris HCl, pH 8.4; 25 mM KCl), 1.5 mM MgCl₂, 200 μM dNTPs (Promega, Madison, WI, USA), 0.5 μM of each primer (Integrated DNA Technologies, Coralville, IA, USA), 1 U Taq DNA polimerase (Phoneutria, Belo Horizonte, MG, Brazil), and 2 μL of DNA. In each batch of positive reaction, controls were employed. The amplification conditions used were as follows: an initial denaturation step at 95 °C for 5 min was performed, followed by 35 cycles of 94 °C for 45 s, annealing at 55 °C for 1 min and elongation at 62 °C for 2 min. A nal elongation step was executed at 72 °C for 5 min. Amplicons were resolved by electrophoresis on SYBR Safe DNA Gel Stain (ThermoFisher Scientific, Vilnius, Lithuania). Gels were evaluated using E-gel Imager, and amplicon sizes were compared with 100 bp DNA ladder (ThermoFisher Scientific, Vilnius, Lithuania) (Chandra *et al.*, 2013).

Bacterial interaction with human colon adenocarcinoma cell line Caco-2

Human colon adenocarcinoma cells Caco-2 were used in adherence, invasion and persistence assays (Pereira *et al.*, 2008). Epithelial cells were grown in 96-well cell culture clusters to confluent monolayers (10⁷ cells per well) in Minimum Essential Medium Eagle (Sigma-Aldrich) supplemented with 10% bovine fetal serum. Mid-log-phase bacteria were cultured in Trip Soy Broth – TSB for 24h at 37ºC and reach OD 580 nm of 0.2 were then added to each well with MOI of 10 and 100 bacteria per epithelial cell to test the influence of the amount of inoculated bacteria on the number of internalized bacteria. Internalization assays was allowed to occur for 2 h and 4 h at 37°C in an atmosphere of 94% air–6% CO₂. To determine the level of bacterial adhesion, 96-well plates containing epithelial cells incubated with mid-log-phase bacteria had been prewashed three times with PBS and lysed with 100 ul PBS-triton (Sigma-Aldrich) to enumerate adherent bacteria added. All strains were shown to be susceptible to ≤ 150 mg/mL of gentamicin to the invasion experiments and were incubated for 1 h to determine the bacterial invasion. After incubation period, monolayers were washed three times with saline and lysed with 0.1% Triton X-100 to determine the viable counts of released intracellular bacteria. Invasion ability was expressed as the percentage of inoculum that survived 150 mg of gentamicin per ml treatment. Following the invasion period as described above, assay of resistance was demonstrated after 24 h. The infected cells were incubated at 37°C in 5% CO₂ using 150 mg of gentamicin per ml. The results were recorded as percentage of the original inoculum. All assays were conducted in triplicate and were repeated independently at least three times (Hirata Jr. *et al.*, 2004; Sahly *et al.*, 2000).

Results

In this study, a total of 34 *E. coli* strains were identified by MALDI-TOF mass spectrometry with ≥ 2 score. Analysis of data showed that all strains presented resistance to at least one group of antimicrobial agents tested, and expressed a resistant (R) profile. Interestingly, 20 of 34 (58.8%) *E. coli* river isolates presented resistance to three or more antimicrobial group of interest and were considered as multi-drug resistance (MDR). Multi-drug resistance of *E. coli* river isolates included resistance to 3rd and 4th cephalosporin, aminoglycosides, fluoroquinolones and carbapenems (*Table 1*).

Analysis of biofilm formation ability of resistant and MDR *E. coli* strains demonstrated that all strains were able to promoted biofilm formation on polyestirene surface in different levels. From the 20 MDR *E. coli* strains, 40% (n=8) were considered as strongly adherent on both polyestinere and glass surfaces, followed by 20% (n=7) moderated adherent, 20% (n=4) weakly adherent and 5% (n=1) non-adherent. Resistant *E. coli* also demonstrated heterogeneity among both polyestinere and glass biofilm formation: 42.8% (n=6) were able to promote biofilm formation and were considered as weakly adherent, followed by, 35.7% (n=5) as moderated adherent and 7.2% (n=1) as strongly adherent, while 14.3% (n=2) of resistant *E. coli* strains were considered as non-adherent (*Table 2*).
Further analysis of virulence pathotypes of MDR *E. coli* strains were displayed in Table 3 and Figure 1. Data showed that 20% (n=4) of MDR *E. coli* river isolates expressed virulence pathotypes: EHEC (Ec31); STEC and EIEC – hybrid (Ec21) and STEC (Ec30 and Ec10) while 80% (n=16) did not presented any virulence pathotypes analyzed. Evaluation of the presence of virulence genes demonstrated heterogeneity among the isolates. All four strains presented stx2 gene followed by stx1 (n=1), *iaL* (n=1) and *eaeA* (n=1). Multiplex-PCR for *Lt*, *St* and *aegg* genes presented negative results in all opportunities (Figure 2).

The results of the quantitative cell-associated of MDR *E. coli* river isolates (n=4) harboring virulence pathotypes were shown in Table 2. The highest level of adherence to Caco-2 cells was observed with STEC (Ec10 and Ec30) strains presenting stx2 gene: 63.1% and 45.9% respectively. EIEC/STEC (Ec21) and EHEC (Ec31) strains expressed lower ability of adherence to human epithelial cell line: 35.4% and 27.8% respectively. Viable internalized bacteria were detected at 1 h post-infection of the monolayers, regardless of the *E. coli* pathotypes but at different levels. The highest percentages of viable intracellular bacteria deduced from Caco-2 cell-associated bacteria were observed for both STEC (Ec10 and Ec30) strains: 3.5% and 0.1% respectively. EIEC/STEC (Ec21) and EHEC (Ec31) strains presented lower percentages of viable intracellular bacteria: 0.007% and 0.01% respectively. Bacterial persistence following a longer period of incubation (24h) was displayed in Table 2. All four MDR *E. coli* analyzed strains were able to survive in the presence of Caco-2 cells at different levels: EIEC/STEC (Ec21) 1.8%; EHEC (Ec31) 3.14%, STEC (Ec30) 18.3% and STEC (Ec10) 145.8%. Interestingly, the STEC (Ec10) isolate not only persisted viable but also was capable to multiply within the Caco-2 cell.

Discussion

E. coli strains are highly affected by the propagation of resistance and virulence genes in urban rivers when compared to other *Enterobacteriacea* (Tortora, Funke, Case, 2008, Kittinger et al., 2016). However, there is still a poor understanding of the environmental factors that may alleviate the spread of antibiotic resistance. At present, it is not clear to what extent environmental antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) promote the acquisition and spread of antibiotic resistance among clinically relevant bacteria, or whether ARGs that are acquired by both clinically relevant bacteria and strictly environmental bacteria originate from the same reservoirs (Berendonk, et al., 2015).

In this present study, we documented the presence of resistant and MDR *E. coli* strains isolated from Joana river, located at Rio de Janeiro metropolitan area, Brazil. Heterogeneity among virulence pathotypes as well as host pathogen interaction with Caco-2 cells was verified among MDR river isolates. The presence of antimicrobial resistant *E. coli* in aquatic systems released from anthropogenic sources such as community, industries, veterinary and hospitals, is a public health concern in industrialized and developing countries due to relevance on environmental dissemination of antimicrobial resistance (Djordjevic, Stokes, Chowdhury, 2013; Berendonk, et al., 2015).

Although generally harmless, *E. coli* strains may express virulence potential properties that account for human localized and invasive infections in both communities and hospital environs (Hall-Stoodley, Costerson, Stoodley, 2004). The plasticity of the *E. coli* genome has hindered the identification of certain *E. coli* isolates as a pathotype, because some isolates combine the main virulence characteristics of different pathotypes and are thus considered potentially more virulent hybrid pathogenic strains. In this study, MDR *E. coli* river isolates presented the following distinct pathotypes: STEC, EHEC, EIEC/STEC.

MDR *E. coli* Ec31 isolated strain was classified as EHEC due to the ability to produces *stx1* and *stx2* Shiga toxin (Stx) cytotoxins associated with *eaeA* gene. MDR *E. coli* strains Ec21, Ec30 and Ec10 presented *stx2* Shiga toxin (Stx) cytotoxins. The association of Stx cytotoxins, especially *stx2*, with severe diseases has been extensively studied by using endothelial cell lines and their ability to adhere is related to EHEC/STEC pathogenesis (Rivas et al., 2016). In addition, biofilm may act as bacterial protection against adverse environmental conditions, especially in aquatic environment. A study conducted by Biscola and co-workers (2011) evaluated the capacity of biofilm formation in EHEC/STEC strains isolated from different reservoirs and demonstrated strongly ability to adhere on both glass and polystyrene surfaces. In fact, cell invasion and survival of EHEC/STEC strains in cultured human intestinal epithelial cells has been previously described (Cordeiro et al., 2013) and may be related to biofilm strongly adherence. It should be mentioned that this invasive characteristic has been identified in EHEC/STEC serotypes, responsible for human infections (Mateus-Guimarães et al., 2014; Cordeiro et al., 2013) and isolated from water representing an important vehicles of transmission (Lascowski et al., 2013).
Our studies also demonstrated the presence of MDR enteroinvasive \textit{E. coli} Ec21 strain. EIEC is a causative agent of dysentery in humans, especially in developing countries, due to their ability to invade and penetrate cells by endocytosis, as shown in table 2. Despite the similarities invasion mechanism and symptoms of the disease, the infectious dose of EIEC appears to be a milder and self-limiting form when compared to \textit{Shigella}, who leads to an exacerbation of proinflammatory response. EIEC was responsible for several outbreaks, but there are few reports on routes of transmission and distribution of this bacterium in nature, including water and cheese (Marier et al., 1973; Valentini et al., 1992) as well as the direct transmission through person-to-person contact. The isolation of EIEC in Brazil has ranged from 0.5 to 15%, depending on the population investigated (Moreno et al., 2010; Lozer et al., 2013). Toledo and Trabulsi (1990) investigated the presence of this microorganism in different areas of the city of São Paulo. This bacterium has been found related to children with diarrhea (15.9%). Studies performed outside the city of São Paulo showed a low prevalence of these bacteria, 0.5–2.5% (Oliveira et al., 1989).

Few studies have been conducted to investigate pathogenic \textit{E. coli} strains in urban rivers, although pollution of surface waters with these pathogens has been implicated in an increased number of disease outbreaks and consequent deaths (Masters et al., 2011).

In attempt to investigate virulence potential of \textit{E. coli} environmental isolates expressing MDR profiles and virulence genes, were investigated for ability of interaction with Caco-2 human intestinal epithelial cells. All MDR \textit{E. coli} strains of STEC, EHEC and EIEC/STEC pathotypes were able to adhere to epithelial cells surfaces. MDR \textit{E. coli} (Ec10 and Ec30) isolates, classified as STEC pathotypes and presenting stx2 gene, expressed the higher ability of adherence, internalization and persistence within Caco-2 epithelial cells. Previous report documented that STEC annually was responsible to 2,801,000 cases of acute illness, 3890 HUS cases, 270 permanent end-stage renal disease and 270 deaths worldwide and cases of infections have been traced to person-to-person transmission (Duffy, Burgess, Bolton, 2014; Majowicz et al., 2014).

Presently, MDR \textit{E. coli} strain (Ec21) of EIEC pathotypes and harboring \textit{ial} gene, showed the ability of adherence, internalization and persistence within Caco-2 epithelial cells. EIEC infection occurs via fecal-oral route by the ingestion of contaminated food or water and invasion of colonic epithelium, causing abdominal cramps, bloody and mucous diarrhea. During the last decades, there are an increase number of EIEC cases in varied countries, including two large outbreaks in Europe (Thong et al., 2005; Bueris et al., 2007; Michelacci et al., 2020).

Moreover, one MDR \textit{E. coli} (Ec31) river isolate was characterized as EHEC, presenting lower levels of adherence, internalization and persistence within Caco-2 epithelial cells. Virulence potential of this pathotypes is partially demonstrated by the ability of attaching intimately and effacing microvilli of epithelial intestinal cells that can directly induce renal and endothelial lesions due to expression of \textit{eaeA}, \textit{Stx1} and \textit{Stx2} genes (Donnenberg, 1993; Maule, 2000; Gomes et al., 2016). Survival and persistence of EHEC in contact with surfaces and exposure to water environments among other conditions should be recognized as important risk factors in the spread of this pathogen, including rivers located at metropolitan areas. Data that deserves attention

In this study, one MDR \textit{E. coli} (Ec31) river isolate was characterized as EHEC, presenting lower levels of adherence, internalization and persistence within Caco-2 epithelial cells, possibly related to previously described cytotoxicity abilities - whether apoptosis and/or necrosis (Donnenberg, 1993; Maule, 2000; Gomes et al., 2016; Abul-Milh et al., 2001). Data reinforce the fact that survival and persistence of EHEC in contact with surfaces and exposure to water environments among other conditions should be recognized as important risk factors in the spread of this pathogen, including rivers located at metropolitan areas. Information that deserves attention concerning the virulence potential and risk of contamination by EHEC pathotypes is the ability of causing acute infections with only ten bacterial cells indicating a high virulence level (Maule, 2000).

Conclusion

In conclusion, this study demonstrates the presence of diarrheagenic \textit{E. coli} strains in river water source at Rio de Janeiro metropolitan area, Brazil. However, a subset of these strains demonstrated a high pathogenic potential as they exhibited a multi-drug resistant phenotype and virulence genes. The possibility of contamination leading to human infection and cause gastrointestinal disease due to MDR \textit{E. coli} presenting virulence pathotypes water-borne pathogens is a matter of concern. The presence of diarrheagenic \textit{E. coli} in river waters warrants the implementation of environmental safety strategies in order to avoid
the dissemination of clones to people leaving in the area but particularly those more vulnerable communities who utilize these waters for domestic purposes, including Rio de Janeiro.

Declarations

Conflict of interest

There are no conflicts of interest among the author.

References

1. Abe, C. M.; Salvador, F. A.; Falsetti, I. N.; Vieira, M. A.; Blanco, J.; Blanco, J. E.; et al. Uropathogenic *Escherichia coli* (UPEC) strains may carry virulence properties of diarrhoeagenic *E. coli*. FEMS Immunology Medical Microbiology, v. 52, p. 397-406, 2008.

2. Abul-Milh, M.; Wu, Y.; Lau, B.; Lingwood, C. A.; Foster, D. B. Induction of epithelial cell death including apoptosis by enteropathogenic *Escherichia coli* expressing bundle-forming pili. *Infection and Immunity*, 2001.

3. Ashbolt, N.J. Microbial contamination of drinking water and disease outcomes in developing regions. *Elsevier*. 198:3: 229-238; 2004.

4. Bauer, A. W.; Kirby, W. M.; Sherris, J. C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. *American Journal of Clinical Pathology*, v. 45, p. 493-496, 1966.

5. Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassionos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; *et al.*. Tackling antibiotic resistance: the environmental framework. *Nature Reviews Microbiology*, 2015.

6. Beutin, L.; Krause, G.; Zimmermann, S.; Kaulfuss, S.; Gleier, K. Characterization of Shiga Toxin-Producing *Escherichia coli* Strains Isolated from Human Patients in Germany over a 3-Year Period, *Journal of Clinical Microbiology*, V. 42, n. 3, p. 1099-1108, 2004.

7. Biscola F.T.; Abe C.M.; Guth B.E.C. Determination of adhesin gene sequences in, and biofilm formation by, O157 and non-O157 Shiga toxin-producing *Escherichia coli* strains isolated from different sources. *Applied Environmental Microbiology*, v. 77, n. 7, 2011

8. Bueris, V.; Sircili, M. P.; Taddei, C. R.; Santos, M. F.; Franzolin, M. R.; Martinez, M. B.; Ferrer, S. R.; Barreto, M. L.; Trabulsi, L. R. Detection of diarrheagenic Escherichia coli from children with and without diarrhea in Salvador, Bahia, Brazil. *Memórias do Instituto Oswaldo Cruz*. v. 102, n. 7, p. 839-844, 2007.

9. Brito, B.G.; Vidotto, M.C.; Berbel, M.M.; Tagliari, K.C. Virulence factors of uropathogenic *Escherichia coli*- UPEC strains for pigs. *Ciência Rural*. 34:2; 2004.

10. Carbonnelle, E.; Mesquita, C.; Bille, E.; Day, N.; Dauphin, B.; Beretti, J. L.; Ferroni, A.; Gutmann, L.; Nassif, X. Maldi-ifo mass spectrometry tools for bacterial identification in clinical microbiology laboratory. *Clinical Biochemistry*, v.44, 2011.

11. Chandra, M.; Cheng, P.; Rondeau, G.; Porwollik, S.; McClelland, M. A single step multiplex PCR for identification of six diarrheagenic *E. coli* pathotypes and *Salmonella*. *International Journal of Medical Microbiology*, v. 303, p. 210-216, 2013.

12. Cordeiro F., Silva R.I.K., Vargas-Stampe T.L.Z., Cerqueira A.M.F., Andrade J.R.C. Cell invasion and survival of Shiga toxin-producing *Escherichia coli* within cultured human intestinal epithelial cells. *Microbiology*, V. 159, p. 1683-1694, 2013

13. CLSI- Clinical Laboratories Standards Institute. Performance Standards for antimicrobial disk susceptibility tests. Approved Standard CLSI Document M2, 2019. *Clinical Laboratories Standards Institute*, Waine. PA EUA.

14. Djordjevic SP, Stokes HW, Chowdhury PR. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. *Frontiers in Microbiology*. 2013;4(86):1–12.

15. Donnenberg, M. S.; Tzipori, S.; McKee, M. L.; O’Brien, A. D.; Alroy, J.; Kaper, J. B. The role of the *eae* gene of enterohemorrhagic *Escherichia coli* in intimate attachment in vitro and in a porcine model. *The Journal of Clinical Investigation*, v. 9, n. 3, p. 1418-1424, 1993.

16. Duffy, G., Burgess, C. M., Bolton, D. J. A review of factors that affect transmission and survival of verocytotoxigenic Escherichia coli in the European farm to fork beef chain. *Meat Science*, v. 97, p. 375–383, 2014.
17. Fleckenstein, J. M.; Kuhlmann, F. M. Enterotoxigenic Escherichia coli Infections. *Current Infectious Disease Reports*, n. 9, 2019.

18. Gomes, T. A. T.; Elias, W. P.; Scaletsy, I. C. A.; Guth, B. E. C.; Rodrigues, J. F.; Piazza, R. M. F.; Ferreira, L. C. S.; Martinez, M. B. Diarrheagenic *Escherichia coli*. *Brazilian Journal of Microbiology*, v. 47, n. 1, p. 3–30, 2016.

19. Gomi, R., Matsuda, T., Fujimori, Y., Harada, H., Matsui, Y. and Yonedo, M. Characterization of pathogenic *Escherichia coli* in river water by simultaneous detection and sequencing of 14 virulence genes. *Environmental Science Technologies*, v. 49, p. 6800–6807, 2015.

20. Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilm: from the natural environment to infectious disease. *Nature Reviews Microbiology*, 2:2, 65-108; 2004.

21. Hirata Jr, R.; Souza, S. M. S.; Rocha-de-Souza, C. M; Andrade, A. F. B.; Monteiro-Leal L. H.; Formiga, L. C. D.; Mattos-Guaraldi, A. L. Patterns of adherence to HEp-2 cells and actin polymerization by toxigenic *Corynebacterium diphtheriae* strains. *Microbial Pathogenesis*, v. 36, p. 125-130, 2004.

22. Kalita, A.; Hu, J.; Torres, A. G. Recent advances in adherence and invasion of pathogenic *Escherichia coli*. *Current Opinion in Infectious Diseases*, v. 27, n. 5, p. 459-464, 2014.

23. Kittinger, C.; Lipp, M.; Folli, B.; Kirschner, A.; Baumert, R.; Galler, H.; Grisold, A. J.; Luxner, J.; Weissenbacher, M.; Famleitner, A. H.; Zarfel, G. *Enterobacteriaceae* Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases. *PLoSOne*, v. 11, n. 11, 2016.

24. Lascowski K. M. S.; Guth B. E. C.; Martins F. H.; Rocha S. P. D.; Irino K.; Pelayo J. S. Shiga toxin-producing *Escherichia coli* in drinking water supplies of North Paraná State, Brazil. *Journal of Applied Microbiology*, v. 114, p. 1230-1239, 2013.

25. Leimbach, A.; Hacker, J.; Dobrin, E. *E. coli* as a jack-of-all-trades: the thin line between commensalism and pathogenicity. *Current Topics in Microbiology and Immunology*, v. 358, p. 3-32, 2013.

26. Lozer, D. M.; Souza, T. B.; Monfardini, M. V. Genotypic and phenotypic analysis of diarrheagenic *Escherichia coli* strains isolated from Brazilian children living in low socioeconomic level communities. *BMC Infectious Diseases*, v. 13, 2013.

27. Luck, S. N.; Bennett-Wood, V.; Poon, R.; Robins-Browne, R. M.; Hartland, E. L. Invasion of epithelial cells by Locus of Enterocyte Effacement-Negative Enterohemorrhagic *Escherichia coli*. *Infection and Immunity*, p. 3063-3071, 2015.

28. Majowicz, S. E., Scallan, E., Jones-Bitton, A., Sargeant, J. M., Stapleton, J., Angulo, F. J., et al. Global incidence of human Shiga toxin–producing *Escherichia coli* infections and deaths: A systematic review and knowledge synthesis. *Foodborne Pathogens and Disease*, v. 11, p. 447–455, 2014.
36. Moreno, A. C.; Fernandes-Filho, A.; Gomes, T. A. T. Etiology of childhood diarrhea in the northeast of Brazil: significant emergent diarrheal pathogens. *Diagnostic of Microbiological Infectious Diseases*, v. 66, p. 50-57, 2010.

37. Nogueira, B. A.; Olivella, J. G. B.; Gil, A. C.; Meirelles-Pereira, F.; Gonçalves, V. D.; Andrade, A. F. B.; Bello, A. R.; Pereira, J. A. A. Detection of bacterial samples on the aquatic ecosystems adjacent to Saquarema Lagoon – Rio de Janeiro. *Revista de Ciências Médicas e Biológicas*. 14:2: 147-152; 2015

38. Oliveira, M. G.; Pessoa, G. V. A.; Nakahara, L. K. Enteropathogenic bacteria occurrence in diarrheic children living in Juiz de Fora municipality Minas Gerais Brazil. *Revista do Instituto Adolfo Lutz*, v. 49, p. 161-168, 1989.

39. Pereira, A. C. M.; Britto-Filho, J. D.; Carvalho, J. J.; Luna, M. G.; Rosa, A. C. P. Enteroaggregative *Escherichia coli* (EAEC) strains enter and survive within cultured intestinal epithelial cells. *Microbial Pathogenesis*, v. 45, p. 310-314, 2008.

40. Rivas M.; Chinen I.; Guth B. E. C. Enterohemorrhagic (Shiga toxin-producing) *Escherichia coli*. In: Torres A.G., editor. *Escherichia coli in the Americas*. Springer International Publishing; p. 97–123, 2016.

41. Sahly, H.; Podschun, R.; Oelschlaeger, T. A.; et al. Capsule impedes adhesion to and invasion of epithelial cells by *Klebsiella pneumoniae*. *Infection and Immunity*, v. 68, n. 9, 2000.

42. Serapio-Palacios, A.; Finlay, B. B. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. *Current Opinion in Microbiology*, v. 54, 2020.

43. Toledo, M. R. F.; Trabulsi, L. R. Frequency of enteroinvasive *Escherichia coli* in children with diarrhea and healthy controls in São Paulo, SP Brazil. *Revista de Microbiologia*, v. 21, 1990.

44. Tortora, G. J.; Funke, B. R.; Case, C. L. *Microbiologia*. 8 ed. Porto Alegre: Artmed, 2008.

45. Thong, K. L.; Hoe, S. L. L.; Puthucheary, S. D.; Yasin, R. M. D. Detection of virulence genes in Malaysian *Shigella* species by multiplex PCR assay. *BMC Infectious Diseases*, v. 5, n. 8, 2005.

46. Valentini S.R., Gomes T.A.T., Falcão D.P. Lack of virulence factors in *Escherichia coli* strains of enteropathogenic serogroups isolated from water. *Applied Environmental Microbiology*, v. 58, p. 412-414, 1992.

47. Van Belkum, A.; Tassios, P. T.; Dijkshoorn, L.; Haeggman, S.; Cookson, B.; Fry, N. K.; Fussing, V.; Green, J.; Feil, E.; Gerner-Smidt, P.; Brisse, S.; Struelens, M. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. *Clinical Microbiology and Infectious Diseases*, v. 13, suppl. 3, p. 1-46, 2007

48. Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, antibiotic resistance genes and bacterial community composition in fresh water aquaculture environment in China. *Environmental Microbiology*. 2015.

Tables

Table 1: Resistance profile of *E. coli* strains isolated at Joana river, located at Rio de Janeiro metropolitan area, Brazil
E. coli strains	Antimicrobial resistance profiles	
Ec10	MDR CFZ/CFO/CRX/CTX/CRO/CAZ/CPM/GEN/AMI/KAN/TOB/PPT/AMC/ASB/CIP/NOR/IMI/ETP/ATM/SUT	
Ec31	MDR CFL/CTX/ CRO/CAZ/CPM GEN/KAN/TOB/AMP/AMC/ASB/NOR/SUT/TET	
Ec21	MDR CFL/CFZ/CRX/CTX/CRO/GEN/AMI/AMP/AMC/CIP/NOR/SUT/TET	
Ec30	MDR CFL/CFZ/CFO/CRX/CTX/CRO/CAZ/KAN/TOB/ETP/ATM/TET	
Ec27	MDR CFL/CFZ/CFO/CRX/CTX/CRO/CAZ/CPM/GEN/AMI/KAN/TOB/NOR/ETP/ATM/SUT	
Ec04	MDR CFL/CFZ/CRX/CTX/CRO/CPM/AMI/KAN/AMP/AMC/ASB/CIP/NOR/IMI/ETP/TET	
Ec06	MDR CFL/CFZ/CFO/CRX/CTX/CRO/CAZ/CPM/AMI/KAN/TOB/AMP/IMI/ETP/ATM/SUT	
Ec03	MDR CFL/CFZ/CRX/CTX/CRO/CAZ/CPM/AMI/KAN/AMP/NOR/IMI/ETP/ATM/CLO	
Ec23	MDR CFL/CFZ/CRX/CTX/CRO/GEN/AMP/PPT/AMC/ASB/CIP/NOR/SUT/TET	
Ec32	MDR CFL/CFZ/CFO/CRX/CTX/CRO/CAZ/CPM/GEN/KAN/TOB/ETP/ATM	
Ec33	MDR CFL/CFZ/CTX/GEN/AMI/TOB/AMP/AMC/ASB/CIP/NOR/TET	
Ec34	MDR CFL/CFZ/CTX/GEN/AMI/TOB/AMP/AMC/ASB/CIP/NOR/TET	
Ec01	MDR CFL/CFZ/CRX/CTX/AMI/ CIP/NOR/IMI/ETP AMP/ATM/TET	
Ec22	MDR CFZ/CRX/CTX/GEN/KAN/TOB/AMP/CIP/NOR/SUT/TET	
Ec16	MDR CFL/CRX/CTX/GEN/AMI/TOB/AMP/AMC/SUT/TET	
Ec15	MDR CFL/CFZ/CRX/CRO/CPM/CIP/NOR/IMI/TET	
Ec24	MDR CRX/CTX/GEN/AMI/AMP/NOR/SUT/TET	
Ec29	MDR GEN/TOB//ETP/AMP/ASB/NOR/SUT/TET	
Ec08	MDR CFL/CFZ/CRX/CTX/GEN/AMP/NOR/TET	
Ec18	MDR CFL/CFZ/CFO/CRX/CAZ/KAN/TOB/ETP	
Ec13	R CFL/CFZ/CFO/CTX/CRO/CAZ/AMP/PPT/AMC/CIP/TET	
Ec05	R CFL/CFZ/CRX/CTX/CRP/AMP/IMI/ATM/SUT	
Ec20	R CFL/CFZ/CFO/CTX/GEN/AMI/TOB/AMP/SUT/TET	
Ec19	R CFZ/CTX/GEN/AMI/AMP/ASB/SUT/TET	
Ec02	R CFL/CFZ/CRX/CTX/CRO/AMP/IMI/SUT	
Ec17	R CFL/CFZ/CTX/GEN/AMP/SUT/TET	
Ec07	R CFL/CFZ/CRX/CTX/GEN/AMP	
Ec26	R GEN/AMP/AMC/SUT/TET	
Ec11	R CFL/CFZ/CRX/AMP/SUT	
Ec12	R CFL/CFZ/CRX/CRO/AMP	
Ec25	R CTX/GEN/AMP/SUT/TET	
Ec28	R CTX/GEN/AMP/SUT/TET	
Ec09	R	CFL/CFZ/AMP/AMC
-------	-------	---------------
Ec14	R	CFL/CFZ/CRX/AMP

Legend: R- resistant, MDR-multi-drug resistant; CFL-cephalothin, CFZ-cefazolin, CFO-cefoxitin, CRX-cefuroxime, CTX-cefotaxime, CRO-ceftriaxone, CAZ-ceftazidime, CPM-cefepime, GEN-gentamicin, AMI-amikacin, KAN-kanamycin, TOB-tobramycin, AMP-ampicillin, PPT-piperacillin/taxobactam, AMC-amoxicillin/clavulanic acid, ASB-ampicillin/sulbactam, CIP-ciprofloxacín, NOR-norfloxacin, IMI-imipenem, ETP-ertapenem, MER-meropenem, ATM-aztreonam, CLO-chloramphenicol, TET-tetracycline, SUT-cotrimoxazole, COL-colistin

Table 2: Biofilm formation ability of *E. coli* strains isolated at Joana river, located at Rio de Janeiro metropolitan area, Brazil
E. coli strain	Biofilm formation	
	Polystyrene Surface	Glass surface
Ec10	SA	+++
Ec31	SA	+++
Ec21	SA	+++
Ec30	SA	+++
Ec27	MA	++
Ec04	WA	+
Ec06	MA	++
Ec03	WA	+
Ec23	MA	++
Ec32	MA	++
Ec33	MA	++
Ec34	MA	++
Ec01	MA	++
Ec22	SA	+++
Ec16	WA	+
Ec15	SA	+++
Ec24	NA	-
Ec29	SA	+++
Ec08	SA	+++
Ec18	WA	+
Ec13	MA	++
Ec05	WA	+
Ec20	MA	++
Ec19	SA	+++
Ec02	MA	++
Ec17	WA	+
Ec07	WA	+
Ec26	MA	++
Ec11	WA	+
Ec12	WA	+
Ec25	WA	+
Ec28	NA	-
Ec09	MA	++
Ec14	NA	-
Table 3: Virulence genes, pathotypes and cell interaction results of MDR Escherichia coli isolated from river environment located at Rio de Janeiro metropolitan area, Brazil.

Strains	Virulence genes	Pathotypes	Caco-2 epithelial cells			
			Control	Adherence	Internalized bacteria (1h)	Persistence (24h)
EC31	Stx1, stx2, eaeA	EHEC	6.1x10^8	1.7x10^8 (27.8%)	2.1x10^4 (0.01%)	6.6x10^2 (3.14%)
EC21	Stx2, iaL	EIEC; STEC	4.8x10^8	1.7x10^8 (35.4%)	1.2x10^4 (0.007%)	2.2x10^2 (1.8%)
EC30	Stx2	STEC	3.7x10^8	1.7x10^8 (45.9%)	6x10^4 (3.5%)	1.1x10^3 (18.3%)
EC10	Stx2	STEC	3.8x10^8	2.4x10^8 (63.1%)	2.4x10^5 (0.1%)	3.5x10^5 (145.8%)

Legend: SA/ +++: strongly adherent, MA/++: moderated adherent; +: adherent bacteria appeared as a ring at the interface between the medium and the air.

Figure 1

Collection site of water samples from Joana River located in front of a University Hospital at Rio de Janeiro metropolitan area, Southeast Brazil.
Figure 2

Amplification profile scheme generated by mPCR for multidrug-resistant Escherichia coli and determination of virulence genes: eaeA (917 bp), stx1 (614 bp), stx2 (779 bp), iaL (630 bp), Lt (450 bp) and St (160 bp) corresponding to A- STEC and EIEC (Ec21); B- EHEC (Ec31) and C and D-STEC (Ec30 and Ec10) strains.