Double spin azimuthal asymmetries A_{LT} and A_{LL} in semi-inclusive DIS

Aram Kotzinian

Yerevan Physics Institute, 375036 Yerevan, Armenia
Dipartimento di Fisica Generale, Università di Torino, and
INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
JINR, 141980 Dubna, Russia

Abstract. Within the LO QCD parton model of SIDIS, $\langle N! hX \rangle$, with unintegrated quark distribution and fragmentation functions, we study the transverse momentum and azimuthal dependencies of the double spin asymmetries A_{LT} and A_{LL}. For later we include $O(k^2 = Q)$ kinematic corrections, which induce an azimuthal modulation of the asymmetry, analogous to the Cahn effect in unpolarized SIDIS. We show that a study of these asymmetries allows to extract the transverse momentum dependence of the unintegrated helicity distribution function $g_{1L}(x;k^2)$ and $g_{1T}(x;k^2)$.

This report is based on research published in [1, 2], where predictions are given for ongoing COMPASS, HERMES and JLab experiments.

Keywords: SIDIS, transverse momentum, double spin azimuthal asymmetries

PACS: 13.88.+e, 13.60.-r, 13.87.Fh, 13.85.Ni

Following Ref. [3], we consider the polarized SIDIS processes at twist-two in the parton model with transverse momentum dependent distribution and fragmentation functions (TMD DFs and FFs), taking into account $O(k^2 = Q)$ kinematical correction for A_{LL} asymmetries (so called Cahn effect [4]).

The cross section for polarized SIDIS can be written as:

$$
\frac{d^5\sigma^{pol}}{dxdydzd^2P_{hT}} = \frac{2\alpha_s^2}{x y^2 s} \lambda (S_L H_{g1L} + S_T H_{g1T}) + \cdots : \quad (1)
$$

In the case of longitudinally polarized target, where longitudinal (according to the laboratory setup) refers to the initial lepton direction, one get a transverse – with respect to the γ direction – spin component:

$$
S_T = S\sin\theta_T; \sin\theta_T = \frac{4M^2 x^2}{Q^2 + 4M^2 x^2} \frac{1}{1 - y} \frac{M^2 x y^2}{Q^2}, \frac{2 M x^2}{Q} \frac{1}{Q} \quad (2)
$$

This component gives contributions of order $M=Q$.

We assumes a simple factorized and gaussian behavior of the involved TMD PDFs and FFs

$$
f_1^q(x;k^2) = f_1^q(x) \frac{1}{\pi \mu_0^2} \exp \frac{k^2}{\mu_0^2}; D_q^h(x;p^2) = D_q^h(x) \frac{1}{\pi \mu_D^2} \exp \frac{p^2}{\mu_D^2} \quad (3)
$$

$$
g_{1L}^q(x;k^2) = g_{1L}^q(x) \frac{1}{\pi \mu_1^2} \exp \frac{k^2}{\mu_1^2}; g_{1T}^q(x;k^2) = g_{1T}^q(x) \frac{1}{\pi \mu_2^2} \exp \frac{k^2}{\mu_2^2} \quad (4)
$$
Following Ref. [5] we use $\mu_0^2 = 0.25 \text{ (GeV}/c)^2$, $\mu^2_D = 0.20 \text{ (GeV}/c)^2$ while we consider μ_1^2 and μ_2^2 as free parameters.

For the longitudinally polarized target we consider the P_{hT} dependence of the double longitudinal spin asymmetry

$$A_{LL}(x,y;z;P_{hT}) = \frac{\int_{0}^{2\pi} d\phi_h [d\sigma \frac{1}{1} d\sigma \frac{1}{1}]}{\lambda S_L \int_{0}^{2\pi} d\phi_h [d\sigma \frac{1}{1} + d\sigma \frac{1}{1}]}; \quad (5)$$

and the $\cos \phi_h$ weighted asymmetry, defined as

$$A_{LL}^{\cos \phi_h}(x,y;z;P_{hT}) = \frac{2\int_{0}^{2\pi} d\phi_h [d\sigma \frac{1}{1} d\sigma \frac{1}{1}] \cos \phi_h}{\lambda S_L \int_{0}^{2\pi} d\phi_h [d\sigma \frac{1}{1} + d\sigma \frac{1}{1}]} \quad (6)$$

Similarly, we define the asymmetry for transversely polarized target

$$A_{LT}^{\cos \phi_h \phi_S}(x,y;z;P_{hT}) = \frac{\int_{0}^{2\pi} d\phi_h \phi_S [d\sigma \frac{1}{n} d\sigma \frac{1}{#}] \cos \phi_h \phi_S}{\lambda S_T \int_{0}^{2\pi} d\phi_h \phi_S [d\sigma \frac{1}{n} + d\sigma \frac{1}{#}]}; \quad (7)$$

and also asymmetry weighted with $S_T = (P_{hT} \cdot M) \cos (\phi_h \phi_S)$ [6]

$$A_{LT}^{P_{hT} \cdot M \cos \phi_h \phi_S}(x,y;z;P_{hT}) = \frac{\int_{0}^{2\pi} dP_{hT} \phi_S [d\sigma \frac{1}{n} d\sigma \frac{1}{#}] P_{hT} \cdot M \cos \phi_h \phi_S}{\lambda S_T \int_{0}^{2\pi} dP_{hT} \phi_S [d\sigma \frac{1}{n} + d\sigma \frac{1}{#}]}; \quad (8)$$

As examples of our results we present here some plots from [1,2]. According to the range covered by the setups of the experiments we use the following cuts which are aimed to enhance asymmetries:

- COMPASS: positive (h^+), all (h) and negative (h^-) hadron production, $Q^2 > 1 \text{ (GeV}/c)^2$, $W^2 > 25 \text{ GeV}^2$, $0.1 < x < 0.6$, $0.5 < y < 0.9$ and $0.4 < z < 0.9$
- HERMES: π^+, π^0 and π production, $Q^2 > 1 \text{ (GeV}/c)^2$, $W^2 > 10 \text{ GeV}^2$, $0.1 < x < 0.6$, $0.45 < y < 0.85$ and $0.4 < z < 0.7$
- JLab at 6 GeV: π^+, π^0 and π production, $Q^2 > 1 \text{ (GeV}/c)^2$, $W^2 > 4 \text{ GeV}^2$, $0.2 < x < 0.6$, $0.4 < y < 0.85$ and $0.4 < z < 0.7$.

Concerning the usual integrated distribution and fragmentation functions we use the LO GRV98 [7] unpolarized and the corresponding GRSV2000 [8] polarized (standard scenario) DFs, and Kretzer [9] FFs.

In the left panel of Fig. 1 the P_{hT}-dependence of A_{LL} asymmetries are presented. Notice that they are leading-twist quantities, not suppressed by any inverse power of Q. Although our numerical estimates are based on the gaussian factorization ansatz, Eqs.
The right panel of Fig. 1 we present the
3, 4, we expect them to have a more general interpretation and information content. In
uous and deuteron – dashed line targets, for COMPASS.

dashed line targets, for COMPASS.

dashed lines. Right panel: predicted dependence of A_{LL} on h_T, for COMPASS.

Using the Lorentz invariance relations [10] and Wandzura-Wilczek approximation [11]
the following relation [6] has been derived

$$ \frac{1}{2M^2} g_{1T}^{q}(x; k_T^2) = \frac{\mu_1^2}{2M^2} \frac{1}{2} \int \frac{d^2 k_T}{(2\pi)^2} \sqrt{2} \frac{k_T^2}{M^2} g_{1T}^{q}(x; k_T^2) $$

Using the Lorentz invariance relations [10] and Wandzura-Wilczek approximation [11]
the following relation [6] has been derived

$$ g_{1T}^{q}(x; k_T^2) = \frac{1}{2M^2} \int \frac{d^2 k_T}{(2\pi)^2} \sqrt{2} \frac{k_T^2}{M^2} g_{1T}^{q}(x; k_T^2) $$

which allows to express $g_{1T}^{q}(x; k_T^2)$ through the well known integrated helicity distributions.

In the left panel of Fig. 2 the predictions for $A_{LT}^{(P_{LT}; M)} \cos(\phi_h \cdot \phi_z)$ asymmetry dependence on x, y and z are shown for production of positive (h^+), all charged (h) and negative (h^-) hadrons at COMPASS. In the right panel of Fig. 2 we present the predicted dependence of $A_{LT}^{\cos(\phi_h \cdot \phi_z)}$ on x, y and z with $P_{LT, min} = 0.5$ GeV/c for proton – continuous and neutron – dashed line targets, for COMPASS.

The measurement of discussed asymmetries will allow

- to extract the k_T-dependence of TMD DFs,
• to verify the self-consistency of the leading order QCD picture of polarized SIDIS,
• to check the validity of Lorentz invariance relations,
• perform ‘global’ phenomenological analysis by simultaneous extraction of TMD DF’s parameters from experimental data taking into account the general positivity constraints [15] for TMD DFs.

REFERENCES

1. A. Kotzinian, B. Parsamyan and A. Prokudin, Phys. Rev. D 73, 114017 (2006).
2. M. Anselmino, A. Efremov, A. Kotzinian and B. Parsamyan, Phys. Rev. D 74, 074015 (2006).
3. A. Kotzinian, Nucl. Phys. B441, 234 (1995).
4. R. N. Cahn, Phys. Lett. B 78, 269 (1978); Phys. Rev. D 40, 3107 (1989).
5. M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D 71, 074006 (2005); Phys. Rev. D 72, 094007 (2005) [Erratum-ibid. D 72, 099903 (2005)].
6. A. Kotzinian and P.J. Mulders, Phys. Rev. D 54, 1229 (1996).
7. M. Gluck, E. Reya and A. Vogt, Eur. Phys. J. C 5, 461 (1998).
8. M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D 63, 094005 (2001).
9. S. Kretzer, Phys. Rev. D 62, 054001 (2000).
10. P.J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197 (1996), Nucl. Phys. B484, 538 (1997), Erratum.
11. S. Wandzura and F. Wilczek, Phys. Lett. B72, 195 (1977).
12. R. Kundu and A. Metz, Phys. Rev. D 65 (2002) 014009.
13. M. Schlegel and A. Metz, e-Print Archive: hep-ph/0406289.
14. K. Goeke, A. Metz, P. V. Pobylitsa and M. V. Polyakov, Phys. Lett. B 567 (2003) 27.
15. A. Bacchetta, M. Boglione, A. Henneman and P. J. Mulders, Phys. Rev. Lett. 85, 712 (2000).