Crystal structures

Ram Seshadri (seshadri@mrl.ucsb.edu)

The simplest crystal structures, including of most elements, can be considered as formed from the close packings of spheres. Studying the close-packing of spheres throws light on the kind of criteria that are important for stabilizing some structures over others.

- Close packing of spheres — ccp and hcp
- The sizes of tetrahedral and octahedral voids and the notion of radius ratio (see handout)
- The structures of the elements:
 - α-Po at 283 K:
 SG = \(Pm\bar{3}m \) (No. 221) \(a = 3.295 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{Po} & 0 \ 0 \ 0 \\
 \end{array}
 \]
 - α-Fe (bcc-Fe):
 SG = \(Im\bar{3}m \) (No. 229) \(a = 2.86 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{Fe} & 0 \ 0 \ 0 \\
 \end{array}
 \]
 - Cu:
 SG = \(Fm\bar{3}m \) (No. 225) \(a = 3.60 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{Cu} & 0 \ 0 \ 0 \\
 \end{array}
 \]
 - Mg:
 SG = \(P6_3/mmc \) (No. 194) \(a = 3.20 \ \text{Å} \ c = 5.20 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{Mg} & 1/3 \ 2/3 \ 3/4 \\
 \end{array}
 \]
 - Si:
 SG = \(Fd\bar{5}m \) (No. 227) \(a = 5.43042 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{Si} & 0 \ 0 \ 0 \\
 \end{array}
 \]
 - C (graphite):
 SG = \(P6_3/mmc \) (No. 194) \(a = 2.4612 \ \text{Å} \ c = 6.7090 \ \text{Å} \)

 \[
 \begin{array}{cc}
 \text{Atom} & x \ y \ z \\
 \hline
 \text{C} & 0 \ 0 \ 1/4 \\
 \text{C} & 2/3 \ 1/3 \ 1/4 \\
 \end{array}
 \]
- AB crystal structures (NaCl, CsCl, ZnS (wurtzite), ZnS (zinc blende) NiAs)

NaCl: SG = $Fm\bar{3}m$ (No. 225) $a = 5.63 \text{ Å}$

Atom	x	y	z
Na	0	0	0
Cl	1/2	1/2	1/2

CsCl: SG = $Pm\bar{3}m$ (No. 229) $a = 4.11 \text{ Å}$

Atom	x	y	z
Cs	1/2	1/2	1/2
Cl	0	0	0

ZnS (wurtzite): SG = $P6_3mc$ (No. 186) $a = 3.83 \text{ Å} = 6.23 \text{ Å}$

Atom	x	y	z
Zn	2/3	1/3	0
S	2/3	1/3	$\sim 3/8$
ZnS (zinc blende): SG = $F\overline{4}3m$ (No. 216) $a = 5.41 \, \text{Å}$

Atom	x	y	z
Zn	0	0	0
S	1/4	1/4	1/4

NiAs: SG = $P6_3/mmc$ (No. 194) $a = 3.60 \, \text{Å} \ c = 5.01$

Atom	x	y	z
Ni	0	0	0
As	2/3	1/3	1/4

Diagrams

ZnS

- Zn at $z=0$
- S at $z=1/4$, $z=1/2$, $z=3/4$

NiAs

- Ni at $z=0$
- As at $z=1/4$, $z=1/2$, $z=3/4$