The universal rotation curve of dwarf disk galaxies

E.V. Karukes1,2⋆ P. Salucci1,2†
1SISSA International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy
2INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

23 September 2016

ABSTRACT

We use the concept of the spiral rotation curves universality (see Persic et al. 1996) to investigate the luminous and dark matter properties of the dwarf disk galaxies in the local volume (size ∼ 11 Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities (∼ 2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower-mass version of the universal rotation curve of spiral galaxies found in Persic et al. (1996).

We mass model \( V(R/R_{opt})/V_{opt} \), the double normalized universal rotation curve of dwarf disk galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disk scale lengths. Similar to galaxies of different Hubble types and luminosities, the core radius \( r_0 \) and the central density \( \rho_0 \) of the dark matter halo of these objects are related by \( \rho_0 r_0 \sim 100 M_\odot pc^{-2} \).

The structural properties of the dark and luminous matter emerge very well correlated. In addition, to describe these relations, we need to introduce a new parameter, measuring the compactness of light distribution of a (dwarf) disk galaxy. These structural properties also indicate that there is no evidence of abrupt decline at the faint end of the baryonic to halo mass relation. Finally, we find that the distributions of the stellar disk and its dark matter halo are closely related.

Key words: galaxies: formation, galaxies: haloes, galaxies: kinematics and dynamics, dark matter, galaxies: dwarfs, galaxies: local volume

1 INTRODUCTION

It is widely believed that only 15 % of the total matter in the Universe is in form of ordinary baryonic matter. Instead the other 85 % is provided by dark matter (DM), which is detectable, up to now, only through its gravitational influence on luminous matter. The paradigm is that DM is made by massive gravitationally interacting elementary particles with extremely weak, if not null interaction via other forces (e.g., White & Negroponte 1982; Jungman et al. 1996). In this framework the well known (Λ)CDM scenario, successfully describing the large structure of the Universe, has emerged (Kolb & Turner 1990): accurate N-body simulations have found that the DM density profile of the virialized structures such as galactic halos is universal and well described by the Navarro-Frenk-White profile (hereafter NFW; Navarro et al. 1996b).

However, at the galactic scales, this scenario has significant challenges.

Firstly, the apparent mismatch between the number of the detected satellites around the Milky Way and the predictions of the corresponding simulations, known as the "missing satellite problem" (Klypin et al. 1999; Moore et al. 1999), which also occurs in the field galaxies (Zavala et al. 2009; Papastergis et al. 2011; Klypin et al. 2015). This discrepancy widens up when the masses of the detected satellites are compared to those of the predicted subhalos (i.e. "too big to fail problem") (see Boylan-Kolchin et al. 2012; Ferrero et al. 2012; Garrison-Kimmel et al. 2014; Papastergis et al. 2015).

Furthermore, there is the "core-cusp" controversy: the inner DM density profiles of galaxies generally appear to be cored, and not cuspy as predicted in the simplest (Λ)CDM scenario (e.g., Salucci 2001; de Blok & Bosma 2002; Gentile et al. 2005; Weinberg et al. 2013; Bosma 2004; Simon et al. 2005; Gentile et al. 2004, 2007; Donato et al. 2009; Oh et al. 2011, to name few).
These apparent discrepancies between the observations and the predictions of the DM-only simulations suggest to either abandon the $(\Lambda)\text{CDM}$ scenario in favour of the others (e.g., selfinteracting DM Vogelsberger et al. 2014; Elbert et al. 2015 or warm DM de Vega & Sanchez 2013; de Vega et al. 2013; Lovell et al. 2014; de Vega et al. 2014) or upgrade the role of baryonic physics in the galaxy formation process. The latter can be done including strong gas outflows, triggered by stellar and/or AGN feedback that are thought to strongly modify the original $(\Lambda)\text{CDM}$ halo profiles out to a distance as large as the size of the stellar disk (e.g., Navarro et al. 1996a; Read & Gilmore 2005; Mashchenko et al. 2006; Pontzen & Governato 2012, 2014; Di Cintio et al. 2014).

Although these issues are present in galaxies of any luminosity, however in low luminosity systems they emerge more clearly and appear much more difficult to be resolved within the $\Lambda\text{CDM}$ scenario. Galaxies with $I$-band absolute magnitude $M_I \lesssim -17$ play a pivotal role in that, observationally, these objects are dark matter dominated at all radii. Moreover in the $(\Lambda)\text{CDM}$ scenario they may be related to the building blocks of more massive galaxies. The importance of dwarf spheroidals in various DM issues is well known (see, e.g., Gilmore et al. 2007). However, down to $M_I \sim -11$ there is no shortage of rotationally supported late-type systems, although a systematic investigation is lacking. These rotationally supported systems have a rather simple kinematics suitable for investigating the properties of their dark matter content.

In normal spirals, one efficient way to represent and model their rotation curves (RCs) comes from the concept of a universal rotation curve (URC). Let us stress that the concept of universality in RCs does not mean that all of them have a unique profile, but that all the RCs of $10^9$ local spirals (within $z \approx 0.1$) can be described by a same function of radius, modulated by few free parameters. They depend on the galaxy’s global properties, namely magnitude and a characteristic radius of the luminous matter$^1$ so that:

$$V(R) = V(R, M, R_{\text{opt}}).$$

This concept, implicit in Rubin et al. (1985), pioneered by Persic & Salucci (1991), set by Persic et al. (1996) (PSS, Paper I) and extended to large galactocentric radii by Salucci et al. (2007) has provided us the mass distribution of (normal) disk galaxies in the magnitude range $-24.5 \lesssim M_I \lesssim -17^2$. This curve, therefore, encodes all the main structural properties of the dark and luminous matter of every spiral (PSS, Yegorova & Salucci 2007). In this paper, we neglect the morphology of the baryonic components as long as their stellar disk component follows a radially exponential surface density profile; the identifiers of a galaxy are $V_{\text{opt}}$, its disk length scale $R_D$ and its $K$-band magnitude $M_K$ that can be substituted by its disk mass. We refer to these systems of any morphologies and $M_K \gtrsim -18$ as dwarf disks (d$d$).

In order to compare galaxy luminosities in different bands, we write down the dd relation between the magnitudes in different bands $<B-K> \gtrsim 2.35$ (Jarrett et al. 2003) and $<B-I> \gtrsim 1.35$ (Fukugita et al. 1995).

The plan of this paper as follows: in Section 2 we describe the sample that we are going to use; in Section 3 we introduce the analysis used to build the synthetic RC; in Section 4 we do the mass modelling of the synthetic RC; in Section 5 we denormalize the results of the mass modelling in order to describe individually our sample of galaxies and then we define their scaling relations; in Section 6 we discuss our main results.

1. i.e. optical radius $R_{\text{opt}}$ defined as the radius encompassing 83\% of the total luminosity.
2. Extensions of the URC to other Hubble types are investigated in Salucci & Persic (1997); Noordermeer et al. (2007).

2 THE SAMPLE

We construct our dwarf disk galaxy sample out of the LVC (Karachentsev et al. 2013) by adopting the following 4 selection criteria:

1. We include disk galaxies with the optical velocity less...
The universal rotation curve of dwarf disk galaxies

Table 1. Sample of dwarf disk galaxies. Columns: (1) galaxy name; (2) galaxy distance; (3) rotation curve source; (4) exponential scalelength of a galaxy stellar disk; (5) disk scalelength source; (6) rotation velocity at the optical radius; (7) absolute magnitude in K-band.

| Name     | D     | RCs refs | $R_D$ | $R_D$ refs | $V_{opt}$ | $M_K$ |
|----------|-------|----------|-------|------------|-----------|-------|
|          | Mpc   |          | kpc   |            | km/s      |       |
| (1)      | (2)   | (3)      | (4)   | (5)        | (6)       | (7)   |

| UGC1281  | 4.94  | 1; 2     | 0.99  | a          | 53.8      | -17.97 |
| UGC1501  | 4.97  | 1; -     | 1.32  | a          | 50.2      | -18.19 |
| UGC5427  | 7.11  | 1; -     | 0.38  | e          | 54.0      | -17.06 |
| UGC7559  | 4.88  | -2; 3    | 0.88  | b          | 37.4      | -16.91 |
| UGC8837  | 7.21  | -2       | 1.55  | b          | 47.6      | -18.25 |
| UGC7047  | 7.11  | -2       | 1.28  | b          | 37.0      | -17.41 |
| UGC5272  | 10.28 | -2       | 1.55  | b          | 47.6      | -18.25 |
| DDO52    | 10.28 | -2       | 1.55  | b          | 47.6      | -18.25 |
| DDO125   | 2.74  | 1; 2     | 0.49  | c          | 17.0      | -16.96 |
| UGC4483  | 8.71  | 1; 3     | 0.52  | d          | 27.5      | -17.71 |
| UGC7866  | 4.57  | -2       | 0.57  | b          | 35.3      | -17.71 |
| IC10     | 0.66  | -3       | 0.38  | b          | 41.0      | -17.59 |
| NGC2366  | 3.19  | -3; 4    | 1.28  | b          | 55.0      | -18.38 |
| WLM      | 0.97  | -3       | 0.55  | b          | 33.0      | -19.30 |
| UGC7663  | 8.4   | -2       | 1.11  | 2          | 60.3      | -19.07 |
| UGC7861  | 7.9   | -5       | 0.62  | i          | 61.0      | -19.74 |
| NGC1560  | 3.45  | -6       | 1.10  | 6          | 56.1      | -18.43 |
| DDO125   | 2.74  | 1; 2     | 0.49  | c          | 17.0      | -16.96 |
| UGC5423  | 8.71  | 1; 3     | 0.52  | d          | 27.5      | -17.71 |
| UGC7866  | 4.57  | -2       | 0.57  | b          | 35.3      | -17.71 |
| IC1613   | 0.73  | -3       | 0.60  | b          | 19.0      | -16.89 |
| UGC4483  | 3.21  | -4       | 0.16  | f          | 20.8      | -14.20 |
| KK246    | 7.83  | -9       | 0.58  | 9          | 34.6      | -16.17 |
| NGC6822  | 0.5   | -10      | 0.56  | b          | 35.0      | -17.50 |
| UGC7916  | 9.1   | -2       | 1.63  | h          | 37.0      | -16.22 |
| UGC5918  | 7.45  | -2       | 1.23  | 2          | 45.0      | -17.50 |
| AndIV    | 7.17  | -11      | 0.48  | 11         | 32.2      | -14.78 |
| UGC7232  | 2.82  | -2       | 0.21  | f          | 37.0      | -16.46 |
| DDO133   | 4.85  | -11      | 0.9   | g          | 42.4      | -17.31 |
| UGC8508  | 2.69  | 1; 3     | 0.28  | j          | 25.5      | -15.58 |
| UGC2455  | 7.8   | -2       | 1.06  | h          | 47.0      | -19.91 |
| NGC3741  | 3.03  | -7       | 0.18  | c          | 42.2      | -17.50 |
| UGC1583  | 5.89  | -8       | 0.17  | 8          | 52.2      | -16.55 |

Notes. RC & $R_D$ references: Moiseev (2014)-1, Swaters et al. (2009)-2, Oh et al. (2015)-3, Lelli et al. (2014)-4, Epinat et al. (2008)-5, Gentile et al. (2010)-6, Gentile et al. (2007)-7, Begum & Chengalur (2004)-8, Gentile et al. (2012)-9, Weldrake et al. (2003)-10, Karachentsev et al. (2016)-11, van Zee (2001)-a, Hunter & Elmegreen (2004)-b, Sharina et al. (2008)-c, Parodi et al. (2002)-d, Simard et al. (2011)-e, Martin (1998)-f, Hunter et al. (2011)-g, Herrmann et al. (2013)-h, Yoshino & Yamauchi (2015)-i, Hunter et al. (2012)-j.

Distance D and absolute magnitude in K-band $M_K$ are taken from Karachentsev et al. (2013).

than $\sim 61$ km/s (disk systems with larger velocity amplitude are studied in PSS);

2. The rotation curves extend to at least 3.2 disk scale lengths. However, we allowed ourselves to extrapolate modestly the RCs of UGC1501, UGC8837, UGC5272 and IC10 due to their smoothness;

3. The RCs are symmetric, smooth and with an average internal uncertainty less than 20 %;

4. The galaxy disk length scale $R_D$ and the inclination function $1/\sin i$ are known within 20 % uncertainty.

It is worth noticing that for a RC to fulfill criteria (2), (3) and (4) it is sufficient to qualify it for the coaddition procedure but not necessarily this is the case for the individual modelling.

The kinematical data used in our analysis are HI and $H_a$ rotation curves available in the literature (see Table 1), which are corrected for inclination and instrumental effects. Furthermore, circular velocities of low mass galaxies, with $V_{max} \lesssim 50$ km/s, require to be checked for the pressure support correction, this can be done using the so-called "asymmetric drift correction" (Dalcanton & Stilp 2010). Therefore, most of the RCs in our sample either have the asymmetric drift correction applied (the ones taken from Oh et al. 2011, 2015; Lelli et al. 2014; Gentile et al. 2010, 2012) or pressure support has been determined and is too small to affect the RC (the ones taking from Swaters et al. 2009; Weldrake et al. 2003; Karachentsev et al. 2016). Despite that, we leave three

$^3 R_{opt} \approx 3.2 R_D$
galaxies (UGC1501, UGC5427 and UGC7861) for which circular velocities were not corrected. In view of their $V_{\text{max}}$ are larger than 50 km/s, therefore the effect should be minor. In the innermost regions of galaxies, when available, we use also $H_\alpha$ data not corrected for the asymmetric drift since such term is negligible as it was pointed out by e.g. Swaters et al. (2009); Lelli et al. (2012).

We stress that the above selection process has left out few objects whose RCs are sometimes considered in literature, e.g. the RC of DDO 70 described by Oh et al. (2015) has failed our criteria (3) because of its abnormal shape. Our approach stands firmly that, in order to provide us with proper and correct information about a galaxy dark and luminous mass distribution, the relative kinematical and the photometric data must reach a well defined level of quality, otherwise they will be confusing rather than enlightening the issue.

Therefore, we ended with the final sample of 36 galaxies spanning the magnitude and disk radii intervals, $-19 \leq M_I \leq -13$, 0.18 kpc $\leq R_D \leq 1.63$ kpc and the optical velocities 17 km/s $\leq V_{\text{opt}} \leq 61$ km/s (see Table 1, the references for III and Ho RCs of our sample are also given in the table and the individual RCs are plotted in Fig. A of Appendix A).

The log average optical radius ($R_{\text{opt}}$) and the log average optical velocity ($V_{\text{opt}}$) are 2.5 kpc, 39.6 km/s, respectively, (these values will be specifically needed in Section 5). For a comparison, the galaxy sample of PSS spans the magnitude interval $-23.5 \leq M_I \leq -17$, the disk scale radii 2 kpc $\leq R_D \leq 30$ kpc, and the optical velocities between 70 km/s and 300 km/s. Therefore, our sample will extend the URC of PSS by more than 2 orders of magnitudes down in galaxy luminosity.

3 THE URC OF DWARF DISKS

First, we plot the RCs of galaxies in our sample expressed in physical units in log-log scales (see the left panel of Fig. 1). We realize, even at a first glance, that, contrary to the RCs of normal spirals (e.g., Yegorova & Salucci 2007, PSS), each dd galaxy has a RC with a very different profile, as it has also been noticed by Oman et al. (2015). All curves are rising with radius but at a very different place.

Surprisingly, the origin of such diversity is closely linked with the very large scatter that the dd show in the relationship between the optical radius $R_{\text{opt}}$ and the luminosity $L_K$ shown in Fig. 2. In our sample the relation still holds but the scatter remarkably increased, while in normal spirals luminosities and disk sizes are very well correlated.

Thus, also in dwarf disk galaxies, by following the analogous PSS procedure, we derive a universal profile of their RCs. As an initial step of the co-addition procedure (see PSS for details) each of the 36 $V(R)$ has been normalized to its own optical radius $R_{\text{opt}}$ and to its optical velocity $V_{\text{opt}}$ obtained by RC data interpolation. We then derive the quantity $V(R/R_{\text{opt}})/V(R_{\text{opt}})$. This double normalization eliminates most of the small scale individualities of the RCs. It can be seen in the right panel of Fig. 1 that as a consequence of the double normalization, all RCs have become similar to each other, leading to a profile very similar to that coadded of the least luminous normal spirals (red joined circles of Fig. B1).

This effect is not new: in Verheijen & de Blok (1999); Salucci & Persic (1997) (see also McGaugh 2014) the variety of RCs shapes in physical units between high surface brightness galaxies and LSB objects of similar maximum velocities was eliminated by normalizing $V(R)$ on the corresponding disk scale lengths.

In investigating our sample RC profiles we will construct just one luminosity bin, because of the data limitation. At its support, let us note that the URC at low luminosities converges to a profile independently of luminosity. The double normalized velocity data are co-added as follows: we set 14 radial bins in the position $r_i$ given by the vertical dashed grey lines in Fig. 3 and reported in Table 2. Each bin is equally divided in two, we adopt that every RC can contribute to each of the 28 semi bins only with one data point. When, for a RC more data points concurring to the same semi bin, these are averaged accordingly. The last bin is set at $r_1 = 1.9$ due to the lack of outer data.

Since a galaxy cannot contribute more than twice to every bin $i$, each of them, centred at $r_i$ (see Table 2) and with boundaries shown in Fig. 3, has a number $N_i$ data (see Table 2) which runs from a maximum of 68 and a minimum that we have set to be 14. Then, from $N_i$ data in each radial bin $i$ we compute the average weighted rotation velocity, where the weights are taken from the uncertainties in the rotation velocities (given online).

In Table 2 we report the 14 $r_i$ positions, the values of the coadded double normalized curve $v = V(R/R_{\text{opt}})/V(R_{\text{opt}})$ and of their uncertainties $\delta v$, calculated as the standard deviation with respect to the mean $v$. The universality of this curve can be inferred from its very small r.m.s. values (see Fig. 3). Furthermore, we investigate the universality in deep by calculating the residuals of each individual RC with respect to the emerging coadded curve (Table 2 column 5):

$$\chi^2 = \frac{\sum_i (v_{ij} - v_i)^2}{\delta v_i^2 N} = \frac{\sum_i (v_{ij} - v_i)^2}{\delta v_i^2 N},$$

where $v_{ij}$ are the individual RC data referring to the bin $i$ of the double normalized RC of the $j$ dwarf disk (from 1 to 36), $v_i$ is the double normalized coadded i value (from 1 to 14) (see Fig. 3), $\delta v_i$ are the observational errors of the normalized circular velocities and $N$ is the total number of the data points ($N = 350$).

We consider the 14 $v_i$ as an exact numerical function which we attempt to fit with double normalized velocity data $v_{ij}$: we found that the fit is excellent, the reduced chi-square is $\sim 1.0$ and the reduced residuals $d(v_{ij} - v_i)$ are very small, see Fig. 4. In fact $\sim 72\%$ of the residuals is smaller

---

4 The double normalization refers to both quantities plotted on the X axis and Y axis of Fig. 3.

5 Calculated as a mean value in a bin.

6 Lowercase letters refer to normalized values, while capital letters to the values in physical units.

7 $i$ is the index number of a radial bin and $ij$ are the index numbers of a data $j$ in a bin $i$.
good agreement, keeping in mind that, in the present work, the luminosity bin $-19 \lesssim M_I \lesssim -13$ is as big as the whole luminosity range of PSS (right panel of Fig B.1) that, instead, was divided in 11 bins.

Thus, starting from $M_I \sim -18$ and down to the faintest systems, the mass structure of disk galaxies is just a dark halo with a density core radius as big as the stellar disk. At $M_I \gtrsim -18.5$ the stellar disk contribution disappears and, remarkably, the RC profile becomes solid body like: $V(R) \propto R$.

We now investigate quantitatively the last statement: one can notice that the coadded RC of dwarf disks is slightly shallower than that of the least luminous spirals of PSS (see left panel of Fig. B.1 and Appendix B). Therefore, we check for the presence of any trend between luminosity and shape of the corresponding RC inside our sample of 36 dwarf disks.

We divide them in 3 subsamples (12 galaxies each, ordered by their luminosity). Then, we derive the 3 corresponding stacked RCs (see Table B1). No trend between RC shape
and luminosity was found, differently from what it occurs for spirals of higher luminosity, see Appendix B and Fig B.1.

Finally, let us point out that neither the double normalization, nor the stacking of our 36 objects is the cause of the solid body profile of the RC in Fig. 3 and Table 2. The reason is that each RC of our sample, also when considered in physical units, shows, inside $2R_D$, a solid body profile.

Therefore, we conclude the existence of the coadded RC for the dd population. This is the first step to obtain that the kinematics of dd galaxies can be described by a smooth universal function, exactly as it happens in normal spirals (PSS, Salucci et al. 2007).

Table 2. Data in the radial bins. Columns: (1) bin number; (2) number of data points; (3) the central value of a bin; (4) the average coadded weighted normalized rotation velocity; (5) r.m.s. on the average coadded rotation velocity (6) denormalized on $\langle R_{opt} \rangle$ values of radii, kpc (7) denormalized on $\langle V_{opt} \rangle$ values of velocities, km/s (8) r.m.s. on the denormalized rotation velocity.

| i     | N   | $v_1$ | $v_2$ | $dV_1$ | $dV_2$ | $R_i$ | $V_i$ | $dV_i$ |
|-------|-----|-------|-------|--------|--------|-------|-------|--------|
| 1     | 31  | 0.11  | 0.21  | 0.015  | 0.27   | 8.28  | 0.59  |
| 2     | 30  | 0.22  | 0.37  | 0.021  | 0.54   | 14.57 | 0.82  |
| 3     | 21  | 0.32  | 0.49  | 0.019  | 0.81   | 19.37 | 0.74  |
| 4     | 26  | 0.41  | 0.60  | 0.019  | 1.03   | 23.68 | 0.78  |
| 5     | 25  | 0.52  | 0.68  | 0.018  | 1.30   | 27.03 | 0.72  |
| 6     | 33  | 0.63  | 0.78  | 0.014  | 1.58   | 31.04 | 0.56  |
| 7     | 34  | 0.77  | 0.86  | 0.016  | 1.94   | 34.0  | 0.63  |
| 8     | 28  | 0.91  | 0.95  | 0.009  | 2.29   | 37.42 | 0.35  |
| 9     | 25  | 1.03  | 0.99  | 0.009  | 2.60   | 39.21 | 0.37  |
| 10    | 28  | 1.18  | 1.05  | 0.010  | 2.97   | 41.43 | 0.38  |
| 11    | 18  | 1.32  | 1.07  | 0.018  | 3.31   | 42.50 | 0.71  |
| 12    | 17  | 1.45  | 1.07  | 0.020  | 3.65   | 42.22 | 0.78  |
| 13    | 20  | 1.65  | 1.12  | 0.020  | 4.13   | 44.37 | 0.80  |
| 14    | 14  | 1.88  | 1.20  | 0.030  | 4.73   | 47.53 | 1.17  |
MODELLING THE DOUBLE NORMALIZED COADDED RC OF DWARF DISK GALAXIES

As in normal spirals (see PSS) we mass model the coadded RC data that represent the whole kinematics of dds. More precisely,

1. the coadded (double normalized) RC (see Table 2), once proven to be universal, is the basic data with which we build the mass model of dwarf disk galaxies;

2. for simplicity, we rescale the 14 normalized velocities $v_{ij}$ to the log average values of the sample $\langle V_{opt} \rangle$ and $\langle R_{opt} \rangle$, 39.6 km/s and 2.1 kpc, respectively. In details, we write:

$$\langle V_i \rangle = v_i \langle V_{opt} \rangle;$$

$$\langle R_i \rangle = r_i \langle R_{opt} \rangle,$$

(2)

the 14 values of $\langle V_i \rangle$ and $\langle R_i \rangle$ are also reported in Table 2 (columns 6-7), where angle brackets indicate normalization to the log average values of optical radius and optical velocity. This RC is the fiducial curve for dwarf disk systems.

In fact, we take the coadded curve Table 2 (columns 3-5) and we apply it to a galaxy with the values of $R_{opt}$ and $V_{opt}$ equal to the average values in our sample. Since all dd RCs have the same double normalized profile, the parameters of the resulting mass model can be easily rescaled back to cope with galaxies of different $V_{opt}$ and $R_{opt}$.

The fiducial rotation curve (Table 2 columns 6-8) of dwarf disks consists of 14 velocity data points extended out to 1.9 $\langle R_{opt} \rangle$. The uncertainties on the velocities are at the level of $\sim 3\%$ (see Fig 3).

The circular velocity model $V_{tot}(R)$ consists into the sum, in quadrature, of three terms $V_D, V_{HI}, V_{DM}$ that describe the contribution from the stellar disk ,the HI disk and dark halo and that must equate to the observed circular velocity:

$$V_{tot}^2(R) = V_m(R) \equiv V_D^2(R) + V_{HI}^2(R) + V_{DM}^2(R).$$

(3)
Notice that in the RHS of eq. 3, we have neglected the stellar bulge contribution that is, in fact, absent in dds.

4.1 Stellar component

With a constant stellar mass to light ratio as function of radius (see e.g Bell & de Jong 2001) all 36 dds have the same surface density stellar profile \( \Sigma_D \) well represented by the Freeman disk (Freeman 1970):

\[
\Sigma_D(R) = \frac{M_D}{2\pi R_D^2} e^{-\frac{R}{R_D}} \quad (4)
\]

then, the contribution of the stellar disk \( V_D(R) \) is

\[
V_D^2(R) = \frac{1}{2} \frac{GM_D}{R_D} (3.2x)^2 (I_0 K_0 - I_1 K_1), \quad (5)
\]

where \( x = R/R_{opt} \) and \( I_n \) and \( K_n \) are the modified Bessel functions computed at 1.6 x.

4.2 Gas disk

For each galaxy the gaseous mass \( M_{HI} \) was taken from K13, log averaged and then multiplied by a factor 1.33 to account for the He abundance, then we obtain \( (M_{HI}) = 1.7 \times 10^8 M_\odot \). The HI surface density profile is not available for all dwarf disk galaxies of our sample, therefore we model it, by following Tonini et al. (2006), as a Freeman distribution with a scale length three times larger that of the stellar disk

\[
\Sigma_{HI}(R) = \frac{M_{HI}}{2\pi (3R_D)^2} e^{-\frac{R}{3R_D}},
\]

then, the contribution of the gaseous disk \( V_{HI}(R) \) is

\[
V_{HI}^2(R) = \frac{1}{2} \frac{GM_{HI}}{3R_D} (1.1x)^2 (I_0 K_0 - I_1 K_1), \quad (6)
\]

where \( x = R/R_{opt} \) and \( I_n \) and \( K_n \) are the modified Bessel functions computed at 0.53 x.

This scheme is fairly well supported in dds for which the HI surface density data are available (e.g., data from Oh et al. 2015; Gentile et al. 2010, 2012). In order to clarify the latter, we plot in Fig. 6, alongside the observed RC of \( \Sigma_{HI} \). We then consider eq. (11) as the fiducial DM density profile (hereinafter referred to as DC14) accounts for the effects of feedback on the DM halos due to gas outflows generated in high density starforming regions during the history

\[
\rho(r) = \frac{\rho_0}{(r/r_c)^2 + 1}, \quad (7)
\]

where \( \rho_0 \) (the central density) and \( r_c \) (the core radius) are the two free parameters and \( \rho_{B,URC} \) means that we have adopted the Burkert profile for the URC DM halo component. Hereafter, we will freely exchange the two denominations according to the issue considered.

Adopting spherical symmetry, the mass distribution of the Burkert halos is given by:

\[
M_{URC}(r) = 2\pi \rho_0 r_c^3 \left[ \ln \left( 1 + \frac{r}{r_c} \right) - \frac{r}{r_c} \right] + 0.5 \ln \left( 1 + \frac{r}{r_c} \right)^2
\]

4.3 Dark halo

Many different halo radial mass profiles have been proposed over the years. Thus, in this work we are going to test the following profiles.

4.3.1 Burkert profile

The URC of normal spirals and the kinematics of individual objects (Salucci & Burkert 2000) point to dark halos density profiles with a constant core, and, in particular, to the Burkert halo profile (Burkert 1995), for which:

\[
\rho_{B,URC}(r) = \frac{\rho_0 r_c^3}{(r + r_c)(r^2 + r_c^2)}, \quad (7)
\]

where \( \rho_0 \) (the central density) and \( r_c \) (the core radius) are the two free parameters and \( \rho_{B,URC} \) means that we have adopted the Burkert profile for the URC DM halo component. Hereafter, we will freely exchange the two denominations according to the issue considered.

Adopting spherical symmetry, the mass distribution of the Burkert halos is given by:

\[
M_{URC}(r) = 2\pi \rho_0 r_c^3 \left[ \ln \left( 1 + \frac{r}{r_c} \right) - \frac{r}{r_c} \right] + 0.5 \ln \left( 1 + \frac{r}{r_c} \right)^2
\]

4.3.2 NFW profile

We will investigate also NFW profile. Navarro et al. (1996b) found, in numerical simulations performed in the (Λ) CDM scenario of structure formation, that virialized systems follow a universal dark matter halo profile. This is written as:

\[
\rho_{NFW}(r) = \frac{\rho_0}{\left( \frac{r}{r_s} \right) \left( 1 + \frac{r}{r_s} \right)^2}, \quad (8)
\]

where \( \rho_0 \) and \( r_s \) are, respectively, the characteristic density and the scale radius of the distribution. These two parameters can be expressed in terms of the virial mass \( M_{vir} = 4\pi/3\pi 100\rho_{crit} R_{vir}^3 \) the concentration parameter \( c = \frac{R_{vir}}{r_s} \) and the critical density of the Universe \( \rho_{crit} = 0.3 \times 10^{-30} g cm^{-3} \). By using eq. (9), we can write:

\[
\rho_0 = \frac{100}{3} \left\{ \frac{c^3}{\log(1+c) - c/(1+c)} \right\} \rho_{crit} \quad g cm^{-3}; \quad (9)
\]

\[
r_s = \frac{1}{c} \left\{ \frac{3 \times M_{vir}}{4\pi 100\rho_{crit}} \right\}^{1/3} \quad kpc. \quad (10)
\]

Then, the RC curve for the NFW DM profile is

\[
V_{NFW}^2(r) = \frac{V_{vir}^2}{x^2} \left( \log(1+c) - c/(1+c) \right) \quad (11)
\]

where \( x = r/R_{vir} \) and \( V_{vir} \) represents the circular velocity at \( R_{vir} \).

Let us point out that, within the (Λ)CDM scenario, the NFW profile maybe not the present days dark halos around spirals. Baryons, during the formation of the stellar disks, may have been able to modify the original DM density distributions (see, e.g., Pontzen & Governato 2012, 2014; Di Cintio et al. 2014). We then consider eq. (11) as the fiducial profile of (Λ)CDM scenario, a working assumption useful to frame changes of the latter.

4.3.3 DC14 profile

A solution for the existence of cored profiles in (Λ)CDM scenario may have emerged by considering the recently developed DM density profile (see Di Cintio et al. 2014). This profile (hereinafter referred to as DC14) accounts for the effects of feedback on the DM halos due to gas outflows generated in high density starforming regions during the history
of the stellar disk. The resulting radial profile is far from simple, since it starts from an \((\alpha, \beta, \gamma)\) double power-law model (see Di Cintio et al. 2014)

\[
\rho_{DC14}(r) = \frac{\rho_s}{(\frac{r}{r_s})^\alpha (1 + (\frac{r}{r_s})^\beta)}
\]

(12)

where \(\rho_s\) is the scale density and \(r_s\) the scale radius. The inner and the outer regions have logarithmic slopes \(-\beta\) and \(-\beta\) respectively, and \(\alpha\) indicates the sharpness of the transition. These three parameters are fully constrained in terms of the stellar-to-halo mass ratio as shown in Di Cintio et al. (2014):

\[
\begin{align*}
\alpha &= 2.94 - \log_{10}([10^{X+2.33}]^{1.08} + [10^{X+2.33}]^{2.29}) \\
\beta &= 0.06 + \log_{10}([10^{X+2.56}]^{-0.68} + [10^{X+2.56}]) \\
\gamma &= X \log_{10}\left(\frac{M_D}{M_{halo}}\right)
\end{align*}
\]

(13)

where \(X = \log_{10}\left(\frac{M_D}{M_{halo}}\right)\).

Then, using the definition of the enclosed mass, we can write down the expression for the scale density of the DC14 profile:

\[
\rho_s = \frac{\langle M_{vir} \rangle}{4\pi} \int_0^{R_{vir}} \frac{r^2}{(\frac{r}{r_s})^\alpha [1 + (\frac{r}{r_s})^\beta]^{\frac{\beta}{1-\alpha}}} dr.
\]

(14)

Finally, by combining the above eqs. (12-14) we obtain a density profile as a function of three parameters \(r_s, M_{halo}\) and \(M_D\), which we use in order to define the RC curve for the DC14 DM profile.

Despite the complexity of the proposed scheme, it is worth to test such DM density profile based on the analysis of hydrodynamically simulated galaxies (see Di Cintio et al. 2014) drawn from the MaGICC project (Brook et al. 2012; Stinson et al. 2013).

4.4 Results

In Fig. 7 we show that the modelling of the fiducial RC by means of the dwarf disk universal rotation curve (ddURC) mass model: an exponential Freeman disk, a gaseous disk plus a Burkert halo profile. This result is very successful (see Fig. 4) with \(\chi^2_{red} < 1\). The best-fit parameters of the fiducial RC are:

\[
\begin{align*}
\log\langle \rho_0 \rangle &= 7.53 \pm 0.04 \ M_\odot \kpc^{-3}; \\
\langle r_\ast \rangle &= 2.34 \pm 0.14 \ \kpc; \\
\log\langle M_D \rangle &= 7.72 \pm 0.15 \ M_\odot.
\end{align*}
\]

(15)

The resulting virial mass is \(\langle M_{vir} \rangle = (1.38 \pm 0.05) \times 10^{10} M_\odot\). Note that quite large fitting uncertainties in the estimate of the stellar disk masses come from the fact that the stellar disks are subdominant components in these galaxies.

It is worth to recall that the coadded double normalized RC of dds (Table 2 columns 3-5) would be identically well fitted and the relative structure parameters can easily be obtained via the transformation laws in eq. (2).

NFW profile fails to reproduce the synthetic RC (see Fig. 7), the reduced chi-square is \(\approx 12\) and the best-fit parameters

\[
\begin{align*}
\log\langle \rho_0 \rangle &= 11.74 \pm 0.94 \ M_\odot; \\
\langle r_\ast \rangle &= 4.46 \pm 3.19; \\
\log\langle M_D \rangle &= 2.60_{-2.60}^{+7.74} \ M_\odot.
\end{align*}
\]

lead to totally unrealistic estimates of the stellar disk and halo masses.

The DC14 profile shows the same good quality fit (see Fig. 7) as the URC profile with \(\chi^2_{red} < 1\) and quite similar values of the structural parameters

\[
\begin{align*}
\log\langle \rho_0 \rangle &= 10.29 \pm 0.02 \ M_\odot; \\
\langle r_\ast \rangle &= 2.09 \pm 0.14; \\
\log\langle M_D \rangle &= 7.27 \pm 0.14 \ M_\odot.
\end{align*}
\]

Then, in spite of the fact that galaxies in our sample vary by \(\sim 6\) magnitudes in the I band, we obtain a universal function of the normalized galactocentric radius, similar to that set up in PSS, that is able to fit well the double normalized coadded RCs of galaxies, when extrapolated to our much lower masses.

To summarise, we have worked out the ddURC, i.e. an analytical model for the dwarf disks coadded curve, that represents the RC of DD galaxies. This function is given by eqs. (3,5,8) and by eq. (15).
5 DENORMALISATION OF THE DDURC MASS MODEL

In this section we will construct a URC for the dwarf disk galaxies in the physical units that will cope with the diversity of RCs evident in Fig. (2). In spirals (see PSS) we can easily go back from a double normalized URC \( V(R/R_{opt})/V_{opt} \) to a RC expressed in physical units \( V(R/kpc, M_1) \) km/s, where \( R_{opt}, V_{opt} \) and \( M_1 \) are altogether well correlated. This is not the case for dd's where another quantity, the compactness, enters in the above 3-quantity link.

Let us first remind that in every radial bin the residuals do not correlate with the optical velocity of the corresponding galaxy (see Section 3). This implies that the dd's structural parameters of the dark and luminous matter have a negligible direct dependence on luminosity/optical velocity different from that inherent to the two normalizations we apply to the individual RCs.

Moreover, given the very small intrinsic scatter of the fiducial double normalized coadded RC and the extremely good fit of the ddURC to it, we can write

\[
\frac{M_{DHI}}{V_{opt}^2R_{opt}} = \frac{\langle M_{DHI} \rangle}{\langle V_{opt}^2 \rangle \langle R_{opt} \rangle} \equiv \text{const.} \tag{16}
\]

Then, we derive, in all objects, a direct proportionality between the halo core radius \( r_c \) and the disk scale-length \( R_D \), which is in agreement with the extrapolation of the corresponding relationship in normal spirals of much higher mass (Salucci et al. 2007); \( \log(r_c) = 0.47 + 1.38 \log(R_D) \), see Fig. 8.

We also assume that \( \frac{V_{HI}^2(R_{opt})}{\langle V_{HI}^2 \rangle} \) is constant among galaxies and it equals to the value of the average case \( \frac{V_{HI}^2(R_{opt})}{\langle V_{HI}^2 \rangle} \approx 1.1 \).

Consequently with the above assumptions, for each galaxy of the sample, we have

\[
M_{DM}(R_{opt}) = (1 - \alpha)V_{opt}^2R_{opt}G^{-1}, \tag{17}
\]

where \( M_{DM} \) is the Burkert DM mass inside the optical radius \( R_{opt} \) and \( \alpha \) is the fraction which baryonic matter contributes to the total circular velocity:

\[
\alpha = \frac{\langle V_{HI}^2(R_{opt}) \rangle + \langle V_D^2(R_{opt}) \rangle}{\langle V_{opt}^2 \rangle \langle R_{opt} \rangle} = 0.12 \equiv \text{const.} \tag{18}
\]

Notice that in some galaxies the fractional contribution to \( V \) from the HI disk can be different from the assumed value of \( \sim 0.06 \). However, this has no effect on our investigation. In fact, at the radii where the HI disk is more relevant than the stellar disk, the contribution of the DM halo becomes overwhelming (Evoli et al. 2011).

By simple manipulations of eqs. (16-18) inserting the individual values of \( R_{opt}, V_{opt}, \) we get, for each galaxy, the structural parameters of the dark and the luminous matter. In Table 3 we list them alongside with their uncertainties obtained from those of the URC mass model given in eq. (15).

5.1 HI gas mass and stellar mass

We now check the validity of the assumptions in the previous subsection. We compare our estimated values of the galaxy HI masses, eq. (16), with those given by K13 (calculated using total \( H_I \) flux, for more details see K13). We find:

\[
\log M_{H1\text{kin}} = (-0.18 \pm 1.20) + (1.01 \pm 0.16) \log M_{HI\text{K13}} \tag{19}
\]

with a r.m.s of 0.3 dex. The value of the slope and the small r.m.s., despite the presence of some outliers most probably originating from the large range in luminosities and morphologies of our sample, suggest that \( M_{H1\text{kin}} \) are good proxies of \( M_{HI\text{K13}} \). Therefore, adopting them does not influence any result of this paper.

MNRAS 000, 1–?? (…)
We also compare the kinematical derivation of the stellar disk masses for the objects in our sample with those obtained for the same objects from $K_S$ band photometry (provided by K13). Following Bell et al. (2003); McGaugh & Schombert (2015) we adopt a constant mass-to-light ratio of $M/L_K = 0.6 \times M_\odot/L_\odot$ and we report them in Table 3 as $M_D(K_S)$. We find a good correlation between the two estimates:

$$\log M_{D_{kin}} = (2.58 \pm 1.01) + (0.64 \pm 0.13) \log M_{D_{K_S}} \quad (20)$$

with a r.m.s of 0.4 dex. The two estimates are therefore mutually consistent especially by considering that the kinematical estimate has an uncertainty of 0.3 dex (see Salucci et al. 2008). Let us also notice that in dds the conversion between luminosity and stellar masses is subject to a similarly large systematical uncertainty, especially in actively star-forming galaxies like those present in our sample.

These results, therefore, support well the scheme used in this paper to deal with the luminous components of dds.

Furthermore, we compare our results with Lelli et al. (2016), where the authors analyse a sample of 176 disk galaxies and quantify for them the ratio of baryonic-to-observed velocity. We have, that this ratio, calculated at 2.2 disk scale lengths, is $\sim 0.4$. The latter is consistent with values of their RCs in order to define the galactic virial mass.

$\rho_{\text{vir}}$ is only a necessary first step to establish a URC for the present sample.

5.2 The scaling relations

Let us plot, the central surface density of the DM haloes of our sample, i.e. the product of $\rho_{\text{vir}} r_c$, as a function of B magnitude (see Fig. 9). A constancy of this product has been found over 18 blue magnitudes and in objects ranging from dwarf galaxies to giant galaxies (e.g. Kormendy & Freeman 2004; Gentile et al. 2009; Donato et al. 2009; Plana et al. 2010; Salucci et al. 2012). For the case of dds, in Fig. 9, one can see that most of the objects of our sample fall inside the extrapolation of Donato et al. (2009) relation (see the orange shadowed area of Fig. 9) with a scatter of about 0.3 dex of an uncertain origin.

We now work out the relationships among the various structural properties of the dark and luminous matter of each galaxy in our sample. These will provide us with crucial information on the relation between dark and baryonic matter as well as on the DM itself. Obviously they are necessary to establish a URC for the present sample.

We first derive the galaxy baryonic mass versus halo virial mass relation and compare it with that of normal spirals (Salucci et al. 2007), see Fig. 10. We take 0.3 dex as 1-$\sigma$ error in the baryonic mass (blue shadowed area). Fig. 10 highlights that galaxies of our sample, i.e. dwarf disk objects live in haloes with masses below $5 \times 10^{10} M_\odot$ and above $4 \times 10^9 M_\odot$. A similar result was found by Ferrero et al. (2012), who analysed a sample of dwarf disk galaxies either by using the individual mass modelling or the outermost values of their RCs in order to define the galactic virial mass. In Figure 10, we also show the comparison of our results with the relation of the abundance matching method by Papastergis et al. (2012). Remarkably, for $M_{\text{vir}} \lesssim 4 \times 10^{10} M_\odot$, it is inconsistent with the relation found by the abundance matching method (black solid line of Fig. 10) and its extrapolation (black dashed line of Fig 10). Likewise, $M_{\text{bar}} - M_{\text{vir}}$ relation found for dwarf disks is significantly shallower than that of the low-mass spirals (joined red circles of Fig. 10).
to that described in Section 5. The latter is beyond the scope of this paper and we are going to address this in a future work.

Notice, that there is some discrepancy (irrelevant to the results of this paper) in the baryonic to halo mass relation also at higher masses. The latter is most likely due to the difference of Hubble types in the samples and in the analysis used to obtain these relations.

Then we derive our galaxy baryonic mass versus halo virial mass relation by fitting it with the function of 7 free parameters advocated by Ferrero et al. (2012):

\[
M_{\text{bar}} = M_{\text{vir}} \times A \left(1 + \frac{M_{\text{vir}}}{M_{10^{13}}}\right)^{-\alpha} \left(\frac{M_{\text{vir}}}{10^{10}}\right)^{-\alpha} \left(\frac{M_{\text{vir}}}{10^{9}}\right)^{\beta}.
\]

Table 3. Sample of dd galaxies. Columns: (1) galaxy name; (2) the stellar disk mass; (3) the stellar disk mass using K-band luminosities; (4) the gas mass; (5) the gas mass listed in Karachentsev et al. (2013); (6) the core radius; (7) the central density; (8) the halo mass; (9) compactness of the stellar disk.

| Name          | \(M_D\) | \(M(D_K)\) | \(M_H\) | \(M(H_K)\) | \(r_c\) | \(\log(\rho_0)\) | \(M_H\) | \(C\) |
|---------------|--------|------------|--------|------------|--------|----------------|--------|------|
| —            | \(M_\odot\) | \(M_\odot\) | \(M_\odot\) | \(M_\odot\) | kpc | \(g/cm^3\) | \(M_\odot\) | — |
| (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| UGC1281      | 12.2   | 19.9      | 39.5   | 22.1      | 2.93  | -23.6          | 32.2   | 1.05 |
| UGC1501      | 15.1   | 23.9      | 48.8   | 38.4      | 4.32  | -23.9          | 43.8   | 0.87 |
| UGC5427      | 4.63   | 8.28      | 15.02  | 9.39      | 0.76  | -22.5          | 8.85   | 1.80 |
| UGC7559      | 5.2    | 7.21      | 16.8   | 13.9      | 2.46  | -23.8          | 11.8   | 0.81 |
| UGC8837      | 14.9   | 24.4      | 48.2   | 29.8      | 5.40  | -24.2          | 44.4   | 0.74 |
| UGC7047      | 3.28   | 11.4      | 10.6   | 15.3      | 1.34  | -23.3          | 6.50   | 1.02 |
| UGC5272      | 16.4   | 6.58      | 53.1   | 23.1      | 4.14  | -23.8          | 47.8   | 0.93 |
| DDO52        | 19.8   | 14.7      | 64.3   | 27.8      | 4.24  | -23.8          | 59.8   | 1.0  |
| DDO101       | 13.8   | 49.9      | 44.7   | 16.0      | 2.71  | -23.4          | 36.6   | 1.17 |
| DDO154       | 4.38   | 2.33      | 14.9   | 25.3      | 1.98  | -23.6          | 9.99   | 0.90 |
| DDO168       | 12.7   | 8.28      | 41.1   | 29.8      | 2.28  | -23.3          | 32.4   | 1.28 |
| Haro29       | 1.26   | 3.96      | 4.11   | 7.65      | 0.51  | -22.6          | 2.01   | 1.34 |
| Haro36       | 3.92   | 13.8      | 15.8   | 14.9      | 2.84  | -23.5          | 35.0   | 1.11 |
| IC10         | 2.31   | 17.7      | 8.80   | 13.3      | 0.78  | -22.8          | 4.91   | 1.39 |
| NGC2366      | 16.4   | 28.1      | 53.2   | 54.2      | 4.16  | -23.8          | 47.97  | 0.93 |
| WLM          | 1.79   | 2.94      | 8.23   | 9.0       | 1.29  | -23.4          | 4.84   | 0.94 |
| UGC7603      | 17.1   | 53.5      | 55.6   | 55.4      | 3.42  | -23.6          | 48.8   | 1.09 |
| UGC7861      | 9.74   | 97.3      | 31.6   | 41.1      | 1.51  | -23.0          | 22.5   | 1.53 |
| NGC1560      | 14.7   | 31.5      | 47.6   | 142.5     | 3.37  | -23.7          | 40.7   | 1.03 |
| DDO125       | 0.60   | 7.55      | 23.8   | 0.92      | 0.55  | -23.8          | 0.92   | 0.55 |
| UGC5423      | 1.66   | 15.4      | 5.39   | 9.2       | 1.19  | -23.5          | 2.97   | 0.82 |
| UGC7866      | 1.90   | 9.29      | 6.15   | 10.6      | 1.27  | -23.5          | 3.47   | 0.83 |
| DDO43        | 3.0    | 2.44      | 9.72   | 9.42      | 1.35  | -23.3          | 5.88   | 0.98 |
| IC1613       | 0.92   | 7.05      | 3.0    | 7.8       | 1.46  | -23.9          | 1.52   | 0.54 |
| UGC4483      | 0.34   | 0.6       | 1.11   | 4.4       | 0.29  | -22.6          | 4.51   | 1.12 |
| KK246        | 2.31   | 3.96      | 9.56   | 15.6      | 1.40  | -23.4          | 5.79   | 0.95 |
| NGC6822      | 2.94   | 13.1      | 9.41   | 18.8      | 1.32  | -23.3          | 5.65   | 0.98 |
| UGC7916      | 9.45   | 3.79      | 30.7   | 35.8      | 5.80  | -24.4          | 26.2   | 0.57 |
| UGC5918      | 10.4   | 12.3      | 33.9   | 23.1      | 3.88  | -23.0          | 28.2   | 0.80 |
| AndIV        | 2.08   | 0.77      | 6.76   | 27.8      | 1.06  | -23.2          | 3.79   | 0.99 |
| UGC7232      | 1.23   | 4.77      | 4.0    | 3.84      | 0.34  | -22.2          | 1.87   | 1.75 |
| DDO133       | 6.85   | 10.4      | 22.2   | 21.1      | 2.55  | -23.7          | 16.4   | 0.90 |
| UGC8508      | 0.77   | 2.13      | 2.48   | 2.65      | 0.50  | -22.8          | 1.15   | 1.08 |
| UGC2455      | 9.93   | 122.5     | 32.2   | 87.9      | 3.21  | -23.8          | 25.9   | 0.90 |
| NGC3741      | 0.36   | 1.44      | 1.16   | 10.1      | 0.27  | -22.4          | 0.47   | 1.22 |
| UGC11583     | 13.5   | 5.73      | 43.9   | 24.8      | 3.67  | -23.8          | 37.6   | 0.93 |

Therefore, we proceed and show that the universality is restored by introducing a new parameter, which we call "compactness" \(C\). We define, for galaxies in the (dd) sample, the quantity \(C\) as the ratio between the value predicted from the measured galaxy disk mass \(M_D\) according to the simple
linear regression $R_D$ vs $M_D$ of the whole sample and that of $R_D$ measured from photometry. As regard, we find:

$$\log R_D = -3.62 + 0.45 \log M_D. \quad (22)$$

Then, we obtain the following expression of $C$,

$$C = \frac{10^{(-3.62+0.45 \log M_D)}}{R_D} \quad (23)$$

that obviously describes the differences of the sizes of the stellar disks reduced at a same stellar mass. $C$ varies from -0.27 to 0.26 and its distribution in our sample is listed in Table 3.

By fitting $\log R_D$ to $\log M_{vir}$ with an additional variable $\log C$, we obtain an excellent fit shown in Fig. 12. The model function being,

$$\log R_D = -3.90 + 0.37 \log M_{vir} - 0.94 \log C. \quad (24)$$

this relation just acknowledges the existence of another player in the stellar disk mass-size interplay.

Then we fit $\log \rho_0$ to $\log M_{vir}$ and $\log C$:

$$\log \rho_0 = 12.57 - 0.48 \log M_{vir} + 3.44 \log C. \quad (25)$$

Finally, we fit $\log \rho_0 - \log r_c$ by adding $\log C$ as a free
Figure 11. Left panel: the disk scalelength versus virial mass. Right panel: the central density versus core radius. Red circles represent normal spirals, blue squares with error bars correspond to dwarf disks of this work and the green circle with error bars represents the average point.

Figure 12. The disk scalelength versus virial mass and the compactness parameter C. Red circles represent normal spirals, blue squares with error bars correspond to dwarf disks of this work and blue line is the result of the fit (for details see text).

parameter. The result of the fit is shown on Fig. 13 and the model function is,

$$\log \rho_0 = -23.19 - 0.93 \log r_c + 2.23 \log C.$$  \hspace{1cm} (26)

It is remarkable that a basic property of the stellar disks enters to set the relationship between two DM structural quantities. Therefore, the scatter, which appears in dwarf disks when we try to relate the local properties of either baryonic or DM can be eliminated by using an additional parameter $C$.

Then, analogously to the compactness of the stellar disk, we define $C_{DM}$ as the compactness of the DM halo. This quantity is the ratio, galaxy by galaxy, between the DM core radius $r_c$ (see column 6 of Table 3) and the predicted value that we obtain from the simple linear regression between $r_c$ and $M_{vir}$, which reads:

$$\log r_c = -4.98 + 0.52 \log M_{vir}.$$  \hspace{1cm} (27)

Then, we have:

$$C_{DM} = \frac{10^{-4.98+0.52 \log M_{vir}}}{r_c}. \hspace{1cm} (28)$$

We find that the compactness of the stellar disk is closely related to the compactness of the DM halo, see Fig. 14. Consequently, the DM and the stars distributions follow each other very closely. This is extremely remarkable: it may indicate a non standard nature of the dark matter or the fact that baryonic feedbacks easy the cusp core problem
in a WIMP scenario (see, e.g., Teyssier et al. 2013; El-Badry et al. 2016; Dutton et al. 2016; Di Cintio et al. 2016)

Finally, by using eqs. (5,6,8,21,23-26) we derive $V_{\text{ddURC}}(R, M_D, C)$ the universal function that describes the dwarf disk RCs in physical units. Differently, from normal Spirals it has 2 parameters, disk mass $M_D$ and concentration $C$, to account to the diversity of the mass distribution of these galaxies.

6 SUMMARY AND CONCLUSIONS

We have compiled literature data for a sample of dd galaxies in the local volume ($\lesssim 11\,\text{Mpc}$) with HI and $H_\alpha$ RCs in order to establish their URC in normalized and physical units and to investigate the related dark and luminous matter properties, not yet studied statistically in these galaxies. Our sample spans $\sim 2$ decades ($\sim 10^8 - 3 \times 10^9 L_\odot$) in luminosity, which coincides with the faint end of the luminosity function of disk galaxies. In magnitude extension is as large as the whole range of normal spirals usually investigated. The galaxies in the sample are up to $\sim 4$ magnitudes fainter than the lowest limit in the PSS sample.

We find that, the large variations of our sample in luminosity and morphologies require double normalization, after that we have that all RCs in double normalized units are alike. This implies that the structural parameters of the dark and luminous matter for the galaxies in our sample do not have any explicit dependence from luminosity except those coming from the normalizing process. Additionally, the good agreement of our coadded RC with that of the first PSS’s luminosity bin indicates that in such small galaxies the mass structure is already dominated by a dark halo with a density core as big as a stellar disk.

Then by applying to the double normalized rotation curve the standard $\chi^2$ mass modelling of RCs, we tested three DM density profiles. The NFW profile fails to reproduce the coadded curve, while the Burkert and DC14 profiles

---

**Figure 13.** The central density versus core radius and the compactness parameter C. The lines and symbols are as in Fig. 12.

**Figure 14.** The compactness of the stellar disk versus the compactness of the dark matter halo.
show excellent quality fits with $\chi^2_{\text{red}} < 1$. This result points towards the cored DM distribution in dwarf disk galaxies. The same conclusion was drawn in the papers on Things and Little Things dwarfs galaxies (see, e.g., Oh et al. 2011, 2015), where the authors found for their dwarfs much shallower inner logarithmic DM density slopes than those predicted by DM-only ($\Lambda$CDM) simulations. The present analysis has the advantages of bigger statistics, but above all, is immune from systematics that can affect the mass modelling of individual galaxies.

We also found, galaxy by galaxy, the values of the dark and luminous matter structural parameters. Surprisingly, a new actor enters the scene of the distribution of matter in galaxies, the compactness of the stellar component, which allows us to establish the ddURC.

As a consequence of the derived mass distributions, there is no evidence for the sharp decline in the baryonic to halo mass relation. Similar result, for dwarf galaxies in the field, was found by Ferrero et al. (2012). However, in DC14 case the estimated baryonic mass is slightly lower than that of the URC mass model, which brings it closer to the abundance matching relation inferred from e.g. Papastergis et al. (2012). The Di Cintio et al. (2014) model has been already tested against observations in works by Katz et al. (2016) and Pace (2016). Although both groups use similar methods, the drawn conclusions are different (see also Read et al. 2016). Therefore, the consistency level between observations and the ($\Lambda$)CDM model of galaxy formation, specifically the abundance matching technique deserves further investigation.

Furthermore, the S-shape of $M_{\text{vir}} - M_{\text{bar}}$ relation may be interpreted as different physical mechanism occurring along the mass sequence of disk galaxies. Theoretically, it has been shown that the energetics of star formation differs among different galaxies with a characteristic dependence on the halo-to-stellar mass ratio (Di Cintio et al. 2014; Chan et al. 2015) and possibly also on star formation history (Oñorbe et al. 2015). Remarkably we also find that the distribution of the stellar component and its DM halo are related.

Finally we recall that the study of the ddURC has lead to the main properties of dark matter in dwarf disks and it will be integrated by future analyses of suitable individual RCs, once they will be available in a sufficient number.

ACKNOWLEDGEMENTS

We would like to acknowledge Luigi Danese and Andrea Lapi for valuable discussions. The authors grateful to the anonymous referees for useful comments and suggestions. We thank Brigitte Greinöcker for language corrections.
APPENDIX A: SAMPLE OF ROTATION CURVES

In Fig A we show the rotation curves of all observed galaxies used in our analyses, i.e. the same galaxies as appear in Table 1. We note that rotation curves of UGC1501, UGC5427, UGC8837, UGC5272, IC10, KK149 and UGC3476a are not extended to 3.2 \( R_D \) (the vertical dashed grey line of Fig. A indicates the position of 3.2 \( R_D \) for each galaxy), therefore, in order to know the value of the circular velocity at these radii we made extrapolations.

APPENDIX B: COMPARISON OF THE DDURC AND THE URC OF PSS

In the left panel of Fig. B.1, as already discussed in Section 3, we plot our coadded double normalized RC (black stars) alongside with that of the PSS’s four luminosity bins. In this figure the joined red dots correspond to the 1st luminosity bin, the joined green squares correspond to the 6th luminosity bin, the joined orange diamonds to the 9th luminosity bin and the joined pink triangles correspond to the 11th luminosity bin with inside 40, 70, 40 and 16 normal spirals, respectively (see Fig. A1 of PSS). We realise that the coadded RC of the 1st PSS bin and synthetic dd RC have very similar profiles. However, the ddURC appears to be slightly less concentrated than that of the 1st luminosity bin of PSS. Therefore, in order to check whether we have this trend inside our sample we divided it on 3 subsamples in the following way: the most luminous, least luminous, and the middle half. Then we binned radially each subsample in the same way as described in Section 3. The data in the radial bins of each subsample are presented in Table B1. Furthermore, in the right panel of Fig. B.1 we compare the synthetic RC of the whole dd sample with 3 synthetic RCs of the above defined subsamples. All 4 RCs agree within their uncertainties and we do not find any trend of the shape of the RCs with luminosity. However, a weak trend is impossible to reveal. In fact the small number of galaxies in each bin induce some shot noise. Therefore, in order to further investigate this we need twice as many objects.
Figure A.2. Individual RCs. Here the $R_{opt}$ are indicated by dashed vertical lines.
Figure A.2 – continued
Figure A.2 – continued
Figure A.2 – continued
Table B1. Data in the radial bins of 3 subsamples, ordered from least to most luminous. Columns: (1) bin number; (2) number of data points; (3) the central value of a bin; (4) the average coadded weighted normalized rotation velocity; (5) r.m.s. on the average coadded rotation velocity.

|   | N  | r_i | v_i | dv_i | N  | r_i | v_i | dv_i | N  | r_i | v_i | dv_i |
|---|----|-----|-----|------|----|-----|-----|------|----|-----|-----|------|
| 1 |  9 | 0.10| 0.23| 0.030|11  | 0.11| 0.20| 0.025|11  | 0.10| 0.20| 0.025|
| 2 | 11 | 0.25| 0.41| 0.040|10  | 0.22| 0.35| 0.040|12  | 0.21| 0.38| 0.024|
| 3 | 11 | 0.41| 0.59| 0.020|12  | 0.35| 0.48| 0.033|12  | 0.33| 0.56| 0.031|
| 4 |  8 | 0.55| 0.73| 0.011|10  | 0.48| 0.60| 0.037|10  | 0.45| 0.65| 0.027|
| 5 | 16 | 0.70| 0.81| 0.019|11  | 0.58| 0.70| 0.023|15  | 0.60| 0.80| 0.018|
| 6 | 11 | 0.90| 0.95| 0.014|11  | 0.72| 0.80| 0.028|13  | 0.77| 0.89| 0.025|
| 7 | 13 | 1.10| 1.01| 0.013| 9  | 0.83| 0.86| 0.028|13  | 0.94| 0.96| 0.014|
| 8 |  8 | 1.27| 1.09| 0.017|11  | 0.98| 0.97| 0.013| 8  | 1.10| 1.02| 0.016|
| 9 | 12 | 1.49| 1.11| 0.025| 8  | 1.11| 1.01| 0.013| 9  | 1.28| 1.06| 0.032|
|10 |  7 | 1.73| 1.15| 0.052| 8  | 1.23| 1.07| 0.013| 7  | 1.49| 1.04| 0.016|
|11 |  6 | 1.92| 1.25| 0.054| 7  | 1.37| 1.07| 0.025| 7  | 1.80| 1.09| 0.025|
|12 | —  | —   | —   | —    |  3 | 1.45| 1.11| 0.088| —  | —   | —   | —    |
|13 | —  | —   | —   | —    |  5 | 1.62| 1.15| 0.023| —  | —   | —   | —    |
|14 | —  | —   | —   | —    |  2 | 1.91| 1.11| 0.040| —  | —   | —   | —    |
Figure B.1. Left panel: joined curves indicate the URC in normalized units of 4 luminosity bins of PSS. Right panel: the URC in normalized units of 3 subsamples of dwarf disk galaxies (SBIN-smallest bin; MBIN-mean bin; LBIN-largest bin). Black stars indicate the synthetic RC of the whole sample of dwarfs disk galaxies.