Research Article

A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

Qianwang Deng, Guiliang Gong, Xuran Gong, Like Zhang, Wei Liu, and Qinghua Ren

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China

Correspondence should be addressed to Guiliang Gong; gong_guiliang@163.com

Received 11 November 2016; Accepted 20 February 2017; Published 28 March 2017

Copyright © 2017 Qianwang Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

1. Introduction

As a part of production scheduling and combinatorial optimization problems, job-shop scheduling problem (JSP) attracts more and more researchers from all walks of life (e.g., mechanical engineering, mathematics, and computer software engineering) in the recent decades [1–5].

Flexible job-shop scheduling problem (FJSP) inherits the characteristics of the JSP, in which each operation is allowed to be processed by any machine in a given set rather than one specified machine, and it has been proved that the FJSP is strong NP-hard [6]. FJSP consists of two subproblems: one is the routing subproblem that each operation is assigned to one machine of a set of machines, and the other is the scheduling subproblem that a feasible schedule is obtained by sequencing the assigned operations on all machines. Therefore the FJSP is more difficult to be solved than the classical JSP because of its need to determine the assignment of operations in related machines [7].

The FJSP is firstly addressed by Brucker and Schlie [8]. And they presented a polynomial algorithm with only two jobs and identical machines. Brandimarte [9] proposed a hybrid tabu search (TS) algorithm which was based on decomposition to solve the FJSP. Dauzère-Péres and Paulli [10] provided a TS algorithm which was based on the integrated approach and developed a new neighbourhood function [11] for the FJSP in terms of solution quality and computation time. Gao et al. [12] proposed a hybrid genetic algorithm to solve the FJSP with nonfixed availability constraints. And in order to enhance the inheritability, this genetic algorithm uses an innovative representation method and applies genetic operations to phenotype space. Saidi-Mehrabad and Fattahi [13] developed a TS algorithm that took the operation sequences and sequence-dependent setups into consideration to solve the FJSP. A genetic algorithm (GA) combined with a variable neighbourhood search (VNS) was presented by Gao et al. [14], and a GA with different strategies was proposed by Pezzella et al. [15]. Yazdani et al. [16] developed a parallel VNS...
algorithm based on the application of multiple independent searches which increased the exploration of search space. Xing et al. [17] put forth a knowledge-based ant colony optimization algorithm. Recently, a novel artificial bee colony (ABC) algorithm [18] and a discrete harmony search (DHS) algorithm [19] were brought forward to solve the FJSP.

As is shown above, the single-objective optimization of FJSP (SO-FJSP) has been extensively studied, which generally minimizes the makespan that is the time required to complete all jobs. However, many industries (e.g., aircraft, semiconductors manufacturing, and electronics) have trade-offs in their scheduling problems in which multiple objectives need to be considered to optimize the overall performance of the system. Therefore, the MO-FJSP may be closer to the realistic production environments and needs to be further studied. In recent years, the MO-FJSP has captured more and more interests of numerous domain researchers, and a great many of algorithms have been presented [20]. Compared with SO-FJSP, MO-FJSP has two problems to be dealt with: incommensurability between objectives and contradiction between objectives (i.e., optimizing a single-objective generally results in deterioration of another objective) [13].

For the MO-FJSP, Schaffer [21] provided a genetic algorithm with vector evaluated. Jurisch [22] presented a branch-and-bound algorithm and some heuristic algorithms. By combining the VNS with particle swarm optimization (PSO), Liu et al. [23] presented a hybrid metaheuristic to solve the MO-FJSP. A new genetic algorithm (GA) which hybridized with a bottleneck shifting procedure was developed by Gao et al. [24] to solve the MO-FJSP. Zhang et al. [25] embedded tabu search (TS) in PSO as a local search to deal with the MO-FJSP. Xing et al. [26] advanced an efficient search method for the MO-FJSP. González-Rodríguez et al. [27] proposed a generic multiobjective model which was based on lexicographical minimization of expected values for FJSP. By introducing several metrics of the multiobjective evaluation in the MO-FJSP literature, Rahmati et al. [28] adopted two multiobjective evolutionary algorithms for the MO-FJSP.

Recently, some studies based on the Pareto dominance relation have been used to solve the MO-FJSP and they are more desirable when compared with the prior linear weighted summation ones [29]. The nondominated sorting genetic algorithm (NSGA) [30] was one of the first methods used to solve the multiobjective problem. Kacem et al. [31] brought up a Pareto approach based on the hybridization of fuzzy logic (FL) and evolutionary algorithms to solve the MO-FJSP. Ho and Tay [32] integrated a guiding local search procedure and an elitism memory mechanism into the evolutionary algorithm to solve the MO-FJSP.

Deb et al. [33] came up with a nondominated sorting-based multiobjective evolutionary algorithm (MOEA), called nondominated sorting genetic algorithm II (NSGA-II). Wang et al. [34] proposed a multiobjective GA based on immune and entropy principle for the MO-FJSP. By employing simulated annealing (SA) algorithm as a local search process, Frutos et al. [35] introduced a memetic algorithm (MA) based on the NSGA-II. Wang et al. [36] presented an effective Pareto-based estimation of distribution algorithm (P-EDA), in which various strategies are integrated to maintain quality and diversity of solutions. Rohaninejad et al. [37] advanced an MO-FJSP problem with machines capacity constraints to minimize the makespan and overtime costs of machines. Kaplanoğlu [38] put forth an object-oriented (OO) approach combined with SA optimization algorithm to solve the MO-FJSP, in which a two-string encoding scheme was used to express this problem.

Our review of the above literatures reveals that the NSGA-II algorithm has been widely used to solve the MO-FJSP for its advantages such as high efficiency to optimize the complex problems and the ability to gain widespread Pareto-optimal solutions. And the algorithms with a two-stage optimization scheme have been also widely studied to solve the MO-FJSP for it could fully tap the optimization potentials of various metaheuristic algorithms. However, we found that the NSGA-II algorithm has the disadvantage of premature convergence to local solution and the algorithms with a two-stage optimization scheme have the disadvantages of being unable to gain stable and high quality initial population in the first stage. Hence, in this paper, we propose a bee evolutionary guiding NSGA-II (BEG-NSGA-II) with a two-stage optimization scheme to solve the MO-FJSP, which aims to fully play the respective advantages of NSGA-II algorithm and the algorithms with a two-stage optimization scheme and to overcome the disadvantages of them. In the first stage, the NSGA-II algorithm with \(T \) iteration times is first used to obtain the initial population \(N \) which consists of three parts changing with the iteration times. In order to extensively exploit the solution space, an effective local search operator is invented in this stage. In the second stage, the NSGA-II algorithm with \(GEN \) iteration times is used to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism and some useful genetic operators were employed in this stage. Four famous benchmarks that include 53 open problems of FJSP are chosen to estimate the performance of the proposed algorithm. Moreover, by comparing the results of our algorithm and some existing well-known algorithms, the virtues of our algorithm can be clearly demonstrated.

The rest of this paper is organized as follows. The definition and formalization of the MO-FJSP are given in the next section. In Section 3, NSGA-II is briefly introduced, and then the overview and implementation details of the proposed BEG-NSGA-II are presented, respectively. Afterwards, Experimental Studies and Discussions are made in Section 4. Finally, Conclusions and Future Studies are described in Section 5.

2. Problem Definition

The FJSP is commonly defined as follows. There is a set of \(n \) jobs \((J_i, i \in \{1, 2, \ldots, n\}) \) and a set of \(m \) machines \((M_k, k \in \{1, 2, \ldots, m\}) \). One or more operation(s) \((O_{ij}, j \in \{1, 2, \ldots, n_j\}, n_j \) is the total number of operations for job \(J_i \) is/are allowed to be processed by one machine of \(M_{k} \), which consists of a set of machines of the \(j \)th operations for job \(J_i \). \(F_{ijk} \) denotes the processing time of the \(j \)th operation for job \(J_i \), which is processed by machine \(k \). Generally, the FJSP consists of two subproblems: the routing subproblem of assigning
Table 1: The 4 × 5 problem.

	M1	M2	M3	M4	M5	
Job 1	O₁₁	2	5	4	1	2
	O₁₂	5	4	5	7	5
	O₁₃	4	5	4	5	4
Job 2	O₂₁	2	5	4	2	8
	O₂₂	5	6	9	8	5
	O₂₃	4	5	4	5	4
Job 3	O₃₁	9	8	6	7	9
	O₃₂	6	1	2	5	4
	O₃₃	2	5	4	2	4
	O₃₄	4	5	2	1	5
Job 4	O₄₁	1	5	2	4	12
	O₄₂	5	1	2	4	2

Each operation to a machine among a set of machines available and the scheduling subproblem of sequencing the assigned operations on all machines to obtain a feasible schedule for optimizing a certain objective function [39, 40].

One classical 4 × 5 FJSP is shown in Table 1. In this paper, we aim to minimize the following three objectives:

\[\text{max} \quad f_1 = \max_{1 \leq k \leq m} (C_k) \]
\[\text{max} \quad f_2 = \max_{1 \leq k \leq m} (W_k) \]
\[\text{min} \quad f_3 = \sum_{k=1}^{m} W_k \]

Subject to:
\[C_{ij} - C_{i(j-1)} \geq P_{ijk} x_{ijk}, \quad j = 2, \ldots, n_i; \quad \forall i, j \]
\[[(C_{hg} - C_{ij} - t_{ijk}) x_{hgg} x_{ijk} \geq 0] \]
\[\lor [(C_{ij} - C_{hg} - t_{ijk}) x_{hgg} x_{ijk} \geq 0], \quad \forall (i, j), (h, g), k \]
\[\sum_{k \in M_{ij}} x_{ijk} = 1 \]
\[x_{ijk} = \begin{cases} 1, & \text{if machine } k \text{ is selected for operation } O_{ij} \\ 0, & \text{otherwise.} \end{cases} \]

Equation (1) indicates the three optimizing objectives. Inequality (2) ensures the operation precedence constraint. Inequality (3) ensures that each machine processes only one operation at each time. Equation (4) states that one machine can be selected from the set of available machines for each operation [25]. According to whether machine \(k \) is selected to process step \(O_{ij} \) or not, equation (5) is used to determine the value of \(x_{ijk} \).

3. The Proposed Algorithm

3.1. Brief Introduction of NSGA-II. The nondominated sorting genetic algorithm II (NSGA-II) is a population-based multiobjective evolutionary algorithm, which is widely used in the optimization of multiobjective problems. The core procedure of NSGA-II can be briefly formulated as follows. First, using \(P_t \) and \(U_t \) presents the current parent and
The sizes of P_t and U_t are both N. Then a new population $R_t = P_t \cup U_t$ (of size $2N$) is formed by combining P_t with U_t. Furthermore, an operator called nondominated sorting is executed, which defines R_t as different nondominated levels ($rank1$, $rank2$, etc.), to choose the best N members as the new population named P_{t+1} for the next generation. In NSGA-II, the crowding distance is computed by a special operator, and then the solutions with larger crowding distance values are selected. More details of the NSGA-II could refer to [33].

3.2. The BEG-NSGA-II

3.2.1. Framework. In this paper, a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) with a two-stage optimization scheme is proposed for the FJSP, in which a bee evolutionary guiding scheme is presented that focus on the exploitation of solution space, and some mechanisms are used to enhance the searching ability and avoid the premature convergence. Its framework is shown in Figure 1. More details of steps are described as follows.

The First Stage

Step 1. Generate N individuals as the initial population randomly, and set $t = 1$.

Step 2. Calculate the fitness value of individuals based on objective 1, objective 2, and objective 3; then select the best fitness individuals as the queen 1, queen 2, and queen 3 correspondingly; if $t > 1$, compare the fitness value of the parent queens and offspring queens, and select the best ones as the new queens correspondingly.

Step 3. Use roulette wheel method to select P individuals according to the fitness value of objective 1, objective 2, and objective 3.

Step 4. Randomly generate R individuals, and combine these individuals with the P individuals generated from Step 3, respectively.

Step 5. The new queens selected from Step 2 take crossover and mutation with other corresponding individuals generated from Step 4 to produce the offspring population 1, offspring population 2, and offspring population 3, respectively.

Step 6. Combine the three offspring populations into a combining population.

Step 7. Fast nondominated sorting and congestion computing.

Step 8. Select the top N individuals as the offspring population.

Step 9. Set $t = t + 1$; if $t > T$, continue next step; otherwise return Step 2, and the population is replaced by the selected N individuals.

The Second Stage

Step 10. Select S top individuals (from the top N individuals) as the elite individuals.

Step 11. Use a binary tournament selection method to select cross individuals from offspring population (i.e., the selected N individuals); if $D(i, j) > u$, use a precedence operation crossover; otherwise, use job-based crossover.

Step 12. If $P_m <= 0.1$ and if offspring rank = 1, then choose swapping mutation; else, choose two binding mutation or reverse mutation; else, the population does not take mutation.

Step 13. Randomly generate R' new individuals.

Step 14. Combine the three-part individuals which get from Steps 10, 12, and 13.

Step 15. Use Step 7 to deal with the combining population to generate offspring population.

Step 16. If $t > GEN$, output the result; otherwise, $t = t + 1$, and return Step 10.

The parameters used in this algorithm are defined as follows:

At the first stage,

$$\alpha = \frac{t}{T},$$

$$P = \alpha \times \frac{N}{2},$$

$$R = \frac{N (1 - \alpha)}{2}.$$ \hfill (6)

At the second stage,

$$\alpha' = \frac{t}{GEN},$$

$$R' = \frac{N (1 - \alpha')}{2},$$

$$\chi' + S + 0.5N >= N.$$ \hfill (7)

$$D(i, j) = \sum_{l=1}^{L} \left\lfloor \min \left[\max \left(0, a_g - a_p \right), 1, 0 \right] \right\rfloor,$$ \hfill (8)

$$D(i, j) <= u, \text{ Precedence operation crossover}$$

$$D(i, j) > u, \text{ Job-based crossover.}$$ \hfill (9)

In (6)–(9), where N is the number of individuals in the initial population, t is the current iteration, T is the iteration times in the first stage, and GEN is the iteration times in the second stage. Equation (9) ensures that there are enough numbers of individuals to be selected in the following offspring, and we set the value of S as $0.3 \times N$. Equation (10)
Figure 1: The framework of BEG-NSGA-II for MO-FJSP.
is a difference degree function which is used to compute the similarity between chromosome i and chromosome j (the two chromosomes that will be crossed), where L is the length of a chromosome and a_{ij} denotes the ith gene in chromosome i. In (11), u is a parameter set as 0.7. The chromosomes tend to select the multipoint preservative crossover with the decrease of u.

3.2.2. Chromosome Encoding and Decoding. In this paper, we use the encoding method proposed by Gao et al. [12]. The FJSP problem includes two subproblems: one is operation sequence part and the other is machine assignment part. Chromosome that corresponds to the solution of the FJSP also consists of two parts. The first one is the operation sequence vector and the second one is the machine assignment vector. Two different encoding methods are used to generate the two vectors.

In terms of the operation sequence vector, the operation-based representation method is used, which is composed of the jobs’ numbers. This representation uses an array of uninterrupted integers from 1 to n, where n is the total number of jobs, and each integer appears O_{ni} times, where O_{ni} is the total number of operations of job i; therefore, the length of the initial operation sequence population is equal to $\sum_{i=1}^{n} O_{ni}$. By scanning the operation sequence from left to right, the nth occurrence of a job number expresses the mth operation of this job. The operation sequence vector of every initial individual of population is generated with the randomly encoding principle. By using these representation features, any permutation of the operation sequence vector can be decoded to a feasible solution.

The machine assignment vector indicates the selected machines that are assigned to the corresponding operations for all jobs. It contains n parts, and the length of ith part is O_{ni}, hence the length of this vector also equals $\sum_{i=1}^{n} O_{ni}$. The ith part of this vector expresses the machine assignment set of ith job. Supposing a machine set $S_{Ri} = \{m_{j1i}, m_{j2i}, \ldots, m_{jbi}\}$ can be selected to process the ith operation of job i, a gene set $\{g_{i1}, g_{i2}, \ldots, g_{ini}\}$ can be decoded by the jth machine m_{jbi} from S_{Ri}. The machine assignment vector of every initial individual of population is generated by selecting the available machine randomly for each operation of every job. An example is shown in Figure 2(a), and the operation and machine sequence are shown in it as follows: $(O_{31},M_{4}), (O_{11},M_{1}), (O_{21},M_{2}), (O_{32},M_{1}), (O_{22},M_{3}), (O_{23},M_{4}), (O_{13},M_{2}), (O_{34},M_{4})$ and (O_{23},M_{3}); then we can get the value of objectives of the work by referring to Table I.

When the chromosome representation is decoded, each operation starts as soon as possible following the precedence and machine constraints [31]. A schedule generated by using this decoding method can be ensured to be active schedule [40]. The procedure of decoding is implemented as follows.

Step 1. Identify the machine of all operations based on the machine assignment vector.

Step 2. Identify the set of machines used to process every job.

Step 3. Identify the set of operations for every machine.

Step 4. Determine the allowable starting time of every operation. $AS_{ij} = C_{i(j−1)}$, where AS_{ij} denotes the allowable starting time of operation O_{ij}, and $C_{i(j−1)}$ is the completion time of operation $O_{i(j−1)}$ for the same job.

Step 5. Calculate the idle time of the machine of operation O_{ij}, and get the idle areas $[t_{start}, t_{end}]$, where t_{start} is the start time of these idle areas and t_{end} is the end time of these idle areas. Scanning these areas from left to right, if max (AS_{ij}, t_{start}) + t_{ijk} \leq t_{end}, the earliest starting time is $S_{ij} = t_{start}$; else $S_{ij} = \text{max}(AS_{ij}, C_{i(j−1)})$.

Step 6. Calculate the completion time of every operation. $C_{ij} = S_{ij} + t_{ijk}$.

Step 7. Generate the sets of starting time and completion time for every operation of every job.

By using the above procedure, a feasible schedule for the FJSP is obtained. Figure 2 shows the examples of encoding.
and decoding methods, and the processing time and machine date of jobs can be seen from Table 1. This example contains 4 jobs and 5 machines. Job 1 and job 2 both have 3 operations; job 3 and job 4 contain 4 and 2 operations, respectively. Figure 2(a) shows a chromosome which contains two parts: the operation sequence vector and the machine assignment vector. The operation sequence vector is a permutation with repetitions of job numbers. It contains three 1s, three 2s, four 3s, and two 4s, because there are four jobs: job 1 contains 3 operations, job 2 contains 3 operations, job 3 contains 4 operations, and job 4 contains 2 operations. Its length is 12. The machine assignment vector consists of 4 parts because of 4 jobs. Its length is also 12. Each part presents the machines selected for the corresponding operations of job. For example, the first part contains 3 numbers which are 4, 3, and 5. Number 4 means that machine 4 is selected for operation 1 of job 1, number 3 means machine 3 is selected for operation 2 of job 1, and number 5 means machine 5 is selected for operation 3 of job 1. A Gantt chart of a schedule based on the chromosome in Figure 2(a) is shown in Figure 2(b).

3.2.3. Crossover Operators. In this paper, the proposed algorithm contains two optimization stages. In order to expand the searching space and avoid premature of local optimal solutions, we use different crossover operators in these two stages.

At the first stage, a single-point crossover (SPX) or multipoint crossover (MPX) operator is selected randomly (50%) for the operation sequence vector, and a two-point crossover (TPX) operator is selected for the machine assignment vector.

The procedure of SPX is described as follows (P_1 and P_2 are used to denote two parents; O_1 and O_2 are used to denote two offspring).

Step 1. A random parameter k that meets the inequality $0 < k < P$ (the length of operation sequence vector) is generated to determine the position of the crossover.

Step 2. The elements from 1 to k in P_1 are duplicated to O_1 in the same positions; and the elements from 1 to k in P_2 are duplicated to O_2 in the same positions.

Step 3. Calculate the total number of each element (in this example, the total number of 1, 2, 3, and 4 is three, three, four, and two, resp.).

Step 4. The elements in P_1 are appended to the remaining empty positions in O_1 from left to right until the total number of each element in O_1 equals each one in P_1. The elements in P_2 are appended to the remaining empty positions in O_2 from left to right until the total number of each element in O_2 equals each one in P_2.

The procedure of MPX is described as follows (P_1 and P_2 are used to denote two parents; O_1 and O_2 are used to denote two offspring).

Step 1. Two random parameters k_1 and k_2 that meet the inequality $0 < k_1 < k_2 < P$ as well as $k_1 \neq k_2$ are generated to determine the positions of crossover.

Step 2. Append the elements between k_1 and k_2 in P_1 to the leftmost positions of O_1; and the elements from k_1 to k_2 in P_2 are appended to the leftmost positions of O_2.

Step 3. Calculate the total number of each element (in this example, the total number of 1, 2, 3, and 4 is three, three, four, and two, resp.).

Step 4. The elements in P_2 are appended to the remaining empty positions in O_2 from left to right until the total number of each element in O_2 equals each one in P_2. The elements in P_1 are appended to the remaining empty positions in O_2 from left to right until the total number of each element in O_2 equals each one in P_2.

The examples of SPX and MPX are, respectively, shown in Figures 3 and 4.

For the machine assignment vector, a two-point crossover (TPX) has been adopted here as the crossover operator. The procedure of it is described as follows (P_1 and P_2 are used to denote two parents; O_1 and O_2 are used to denote two offspring).

Step 1. Two random parameters k_1 and k_2 that meet the inequality $0 < k_1 < k_2 < P$ as well as $k_1 \neq k_2$ are generated to determine the positions of crossover.

Step 2. Append the elements between k_1 and k_2 positions in P_2 to the same positions in O_1, append the elements before k_1
and after k_2 positions in P_1 to the same positions in O_1, and use the same process to generate O_2.

Based on the above procedure, we can obtain feasible offspring if the parents are feasible. An example of TPX crossover is shown in Figure 5.

At the second stage, a precedence operation crossover (POX) or job-based crossover (J BX), which is determined by equation (11), is selected for operation sequence vector and the TPX is also selected for machine assignment vector.

The main procedure of POX is described as follows (P_1 and P_2 are used to denote two parents; O_1 and O_2 are used to denote two offspring).

Step 1. The Job set is randomly divided into two subsets: Jobset1 and Jobset2.

Step 2. The element(s) which belong(s) to Jobset1 in P_1 is (are) appended to the same position(s) in O_1 and deleted in P_1; and the element(s) which belong(s) to Jobset2 in P_2 is (are) appended to the same positions in O_2 and deleted in P_2.

Step 3. Append the elements remaining in P_1 to the remaining empty positions in O_2 from left to right; and append the elements remaining in P_2 to the remaining empty positions in O_1 from left to right.

The main procedure of J BX is described as follows (P_1 and P_2 are used to denote two parents; O_1 and O_2 are used to denote two offspring).

Step 1. The Job set is randomly divided into two subsets: Jobset1 and Jobset2.

Step 2. The element(s) which belong(s) to Jobset1 in P_1 is (are) appended to the same position(s) in O_1 and deleted in P_1; and the element(s) which belong(s) to Jobset2 in P_2 is (are) appended to the same positions in O_2.

Step 3. Append the elements remaining in P_1 to the remaining empty positions in O_2 from left to right; and append the elements remaining in P_2 to the remained empty positions in O_1 from left to right.

The examples of POX and J BX are, respectively, shown in Figures 6 and 7.
The main procedure of MPM operator is described as follows (P_1 and O_1 are used to denote a parent and offspring, resp.).

Step 1. Randomly select k positions in P_1 (k equals half of the length of the machine assignment vector).

Step 2. Change the value of these selected positions according to their optional machine sets selected for process the corresponding operations.

At the second stage, if the individual is at the forefront of Pareto, it will select the swapping mutation; otherwise choose the two binding mutation (TBM) or reverse mutation for operation sequence vector. The MPM operator is also selected for the machine assignment vector.

The main procedure of TBM is described as follows (P_1 and O_1 are used to denote a parent and offspring, resp.).

Step 1. A random parameter m ($m < \text{the length of the operation sequence vector subtract } 3$) is generated in P_1.

Step 2. Exchange the elements m with $m + 3$ and $m + 1$ with $m + 2$ in P_1 to generate O_1.

The examples of swapping mutation operator, reverse mutation operator, TBM operator, and MPM operator are, respectively, shown in Figures 8, 9, 10, and 11.

4. Experimental Studies and Discussions

The proposed BEG-NSGA-II algorithm was coded in MATLAB R2014a and implemented on a computer configured with Intel Core i3 CPU with 2.67 GHz frequency and 4 GB RAM. Four famous benchmarks that include 53 open problems of FJSP are chosen to estimate the proposed algorithm, which were also used by many researchers to evaluate their approaches. In order to illustrate the performance of the proposed algorithm, we compare our algorithm with other state-of-the-art reported ones. The computational time used to solve these benchmarks is also compared to show the good efficiency of the proposed method. Because the computation time and implementing performance are not only affected by the algorithm itself but also affected by the computer hardware, implementing software, and coding skills, we also append the information of hardware and software, as well as the original computational time with the corresponding algorithms. All experimental simulations were run 20 times, respectively, for each problem of these benchmarks. The adopted parameters of the BEG-NSGA-II are listed in Table 2.

4.1. Experiment 1

The data of Experiment 1 are taken from Kacem et al. [31]. It contains 4 representative instances (problem 4×5, problem 8×8, problem 10×10, and problem 15×10). The experimental results and comparisons with other well-known algorithms are shown in Table 3 ($n \times m$ means that the problem includes n jobs and m machines; f_1, f_2, and f_3 mean the optimization objectives of makespan, MW, and TW, resp. T means the average computer-independent CPU times in minute spent on each problem of these benchmarks; the symbol “—” means the time has not been given in the paper). BEG-NSGA-II denotes the proposed algorithm. The results of AL which are taken from Kacem et al. [31], PSO + SA which are taken from Xia and Wu [41], hGA which are taken from Gao et al. [24], MOGA which are taken from Wang et al. [34], hPSO which are taken from Shao et al. [42], and OO approaches which are taken from Kaplanoglu [38] are used to make comparison with the proposed algorithm. The bolded results are thenew Pareto-optimal solutions found in our algorithms.

For the problem 4×5, the proposed BEG-NSGA-II algorithm obtains not only all best solutions in these compared algorithms, but also another new Pareto-optimal solution ($f_1 = 13, f_2 = 7$, and $f_3 = 33$). The Gantt chart of this new Pareto solution is shown in Figure 12. For the problems 8×8, 10×10, and 15×10, the proposed algorithm gets more Pareto-optimal solutions than other listed algorithms but hPSO, and
Table 3: Results on Experiment 1.

Problem	ALa	PSO + SAb	MOGAc	hPSOd	hGAe	OO approachf	BEG-NSGA-IIg									
n x m	f1	f2	f3	T f1	f2	f3	T f1	f2	f3	T f1	f2	f3	T f1	f2	f3	T
4 x 5																
	11	10	32	0.10	11	10	32	0.03	11	10	32	0.10				
	12	9	34		12	8	32		13	7	33					
8 x 8																
	16	13	75		15	12	75		15	12	75	0.01				
	16	13	73		15	12	75		15	12	75	0.04				
16	11	77		16	13	73	16	11	77	16	11	77				
10 x 10	7	5	45		8	5	42	0.24	7	5	43	0.20				
	7	6	42		7	6	42		8	5	42	7				
	8	7	41		8	7	41		7	7	43	8				
10	7	5	45		8	7	41		8	7	41					
15 x 10	23	11	91		12	10	95		12	10	93					
	12	10	95		12	10	93		14	12	91					
	11	10	98		11	10	95		11	10	95					

a The computation configuration is not listed in AL.
b The computation configuration is not listed in PSO + SA.
c The CPU time on a PC with 2 GHz CPU and 2 GB of RAM memory in C++.
d The CPU time on a personal computer with 2 GHz CPU and 2 GB of RAM memory in C++.
e The CPU time on a 3.0 GHz Pentium in Delphi.
f The CPU time on an Intel Core i5, 2.67 GHz processor with 4 GB RAM of memory in Java.
g The CPU time on an Intel Core i3, 2.67 GHz processor with 4GB RAM in MATLAB R2014a.
although it obtains the same results with hPSO, it seems to consume less computation time than the hPSO does.

4.2. Experiment 2. The data of Experiment 2 are taken from Dauzère-Pérès and Paulli [10]. It contains 18 problems. The experimental results and comparisons with other well-known algorithms are shown in Table 4 (\(n \times m\) means that the problem includes \(n\) jobs and \(m\) machines, \(f_1, f_2,\) and \(f_3\) mean the optimization objectives of makespan, MW, and TW, resp. \(T\) means the average computer-independent CPU times in minute spent on each problem of these benchmarks). BEG-NSGA-II denotes the proposed algorithm. The results of MOGA are adopted from Wang et al. [34]. The bolded results are the new Pareto-optimal solutions found in our algorithms. From Table 4, except the problem 01a, we can see that our algorithm can obtain some new Pareto-optimal solutions which are better for objectives \(f_2\) or \(f_3\), or both of them, but a little worse for the objective \(f_1\). For the problem 01a, our algorithm gets the same solutions as MOGA. For all problems, our algorithm consumes less computational time than MOGA. Figure 13 illustrates the Gantt chart of the problem 18a (\(f_1 = 2,634, f_2 = 2,156,\) and \(f_3 = 21,005\)).

4.3. Experiment 3. The data of Experiment 3 are taken from Brandimarte [9]. It contains 10 problems. The experimental results and comparisons with other well-known algorithms are shown in Table 5 (\(n \times m\) means that the problem includes \(n\) jobs and \(m\) machines, \(f_1, f_2,\) and \(f_3\) mean the optimization objectives of makespan, MW, and TW, resp. \(T\) means the average computer-independent CPU times in minute spent on each problem of these benchmarks). BEG-NSGA-II denotes the proposed algorithm. The results of SM and MOGA are adopted from [26, 34]. The bolded results are the new Pareto-optimal solutions found in our algorithms. From Table 5,
Table 4: Results on Experiment 2.

Problem (n x m)	MOGA*	BEG-NSGA-IIb						
f₁	f₂	f₃	T	f₁	f₂	f₃	T	
01a (10 x 5)	2,568	2,505	11,137	2.04	2,568	2,505	11,137	1.91
02a (10 x 5)	2,289	2,263	11,137	2.56	2,487	2,237	11,137	2.13
03a (10 x 5)	2,287	2,248	11,137	2.90	2,492	2,247	11,137	2.5
04a (10 x 5)	2,550	2,503	11,090	2.07	2,882	2,572	11,069	2.03
05a (10 x 5)	2,292	2,252	11,077	2.37	2,740	2,250	10,981	2.12
06a (10 x 5)	2,250	2,233	11,009	3.09	2,673	2,194	10,893	2.86
07a (15 x 8)	2,450	2,413	16,485	7.63	2,927	2,187	16,485	6.21
08a (15 x 8)	2,187	2,102	16,485	8.27	2,621	2,091	16,485	6.35

* MOGA: Multi-Objective Genetic Algorithm
b BEG-NSGA-II: Bi-Objective Genetic Algorithm
Table 4: Continued.

Problem \((n \times m)\)	MOGA*	BEG-NSGA-IIb					
\(f_1\)	\(f_2\)	\(f_3\)	\(T\)	\(f_1\)	\(f_2\)	\(f_3\)	\(T\)
\hline							
09a (15 \times 8)	2,157	2,113	16,485	10.16	2,442	2,103	16,485
	2,144	2,119	16,485		2,470	2,074	16,485
	2,158	2,102	16,485		2,455	2,081	16,485
	2,461	2,433	16,505	7.55	2,998	2,317	16,487
	2,470	2,310	16,537		3,036	2,363	16,482
	2,478	2,330	16,533		3,091	2,491	16,473
	2,482	2,360	16,499		2,984	2,319	16,486
	2,501	2,265	16,547		3,052	2,377	16,477
	2,501	2,312	16,528		3,098	2,491	16,472
	2,547	2,476	16,490		3,013	2,293	16,487
10a (15 \times 8)	3,064	2,734	16,464		3,136	2,457	16,471
					3,025	2,377	16,480
					3,041	2,351	16,481
					2,980	2,258	16,494
					3,021	2,319	16,484
11a (15 \times 8)	2,182	2,170	16,449	10.14	2,551	2,116	16,229
	2,202	2,114	16,476		2,599	2,131	16,224
	2,210	2,113	16,442		2,612	2,146	16,222
	2,337	2,185	16,377		2,573	2,058	16,231
	2,874	2,389	16,247		2,753	2,186	16,217
	2,894	2,330	16,247		2,628	2,102	16,224
	2,962	2,312	16,247		2,702	2,098	16,223
					2,658	2,089	16,224
					2,555	2,111	16,229
					2,664	2,063	16,228
12a (15 \times 8)	2,161	2,107	16,295	11.92	2,624	2,049	16,055
	2,168	2,130	16,220		2,620	2,022	16,068
	2,191	2,084	16,355		2,587	2,035	16,065
	2,210	2,103	16,331		2,614	2,057	16,051
	2,315	2,125	16,292		2,585	2,043	16,061
	2,366	2,105	16,237		2,659	2,038	16,055
	2,493	2,297	16,124		2,617	2,024	16,065
	2,631	2,309	16,112		2,575	2,057	16,057
	2,637	2,303	16,113		2,587	2,050	16,059
	2,683	2,397	16,104		2,582	2,098	16,052
					2,595	2,036	16,059
					2,566	2,044	16,061
					2,894	2,277	21,610
					2,928	2,233	21,610
					2,896	2,244	21,610
					2,877	2,282	21,610
13a (20 \times 10)	2,408	2,326	21,610	23.99	2,649	2,186	21,610
					2,649	2,186	21,610
					2,664	2,207	21,610
					2,738	2,182	21,610
14a (20 \times 10)	2,285	2,247	21,610	33.29	2,627	2,216	21,610
	2,287	2,218	21,610		2,681	2,196	21,610
					2,645	2,215	21,610
					2,652	2,201	21,610
					2,668	2,197	21,610
					2,682	2,178	21,610
Table 4: Continued.

Problem (n x m)	MOGAa	BEG-NSGA-IIb						
	f_1	f_2	f_3	f_1	f_2	f_3	T	
16a (20 x 10)	2,447	2,354	21,602	21.52	2,965	2,279	21,534	11.48
	2,450	2,380	21,590		3,158	2,303	21,504	
	2,487	2,454	21,584		3,184	2,400	21,490	
	2,492	2,417	21,576		3,039	2,279	21,523	
	2,540	2,396	21,547		3,050	2,318	21,507	
	2,550	2,492	21,545		3,071	2,286	21,513	
	2,568	2,428	21,540		3,275	2,281	21,511	
	3,013	2,588	21,478		3,105	2,352	21,496	
	3,106	2,548	21,478		3,175	2,344	21,497	
17a (20 x 10)	2,322	2,240	21,433	28.47	2,806	2,195	21,096	13.92
	2,322	2,280	21,362		2,750	2,165	21,120	
	2,323	2,238	21,454		2,791	2,141	21,114	
	2,343	2,224	21,420		2,716	2,157	21,129	
	2,480	2,285	21,344		2,849	2,148	21,107	
	2,528	2,231	21,313		2,769	2,166	21,111	
	2,789	2,448	21,198		2,856	2,183	21,098	
	2,808	2,303	21,200		2,773	2,145	21,111	
	2,816	2,370	21,197		2,856	2,142	21,105	
18a (20 x 10)	2,267	2,235	21,483	33.01	2,634	2,156	21,005	16.23
	2,269	2,206	21,408		2,642	2,126	21,006	
	2,320	2,208	21,354		2,638	2,185	20,999	
	2,437	2,221	21,311		2,638	2,148	21,002	
	2,531	2,310	21,285		2,674	2,148	21,000	
	2,545	2,305	21,282		2,644	2,145	21,002	

aThe CPU time on a PC with 2 GHz CPU and 2 GB of RAM memory in C++.

bThe CPU time on an Intel Core i3, 2.67 GHz processor with 4 GB RAM in MATLAB R2014a.

we can see that our algorithm can obtain some new Pareto-optimal solutions in problems MK01, MK04, MK05, MK08, and MK10 compared with SM and MOGA and the same solutions in MK2, MK3, MK6, MK7, and MK9 as MOGA. For all problems, our algorithm consumes less computational time than MOGA. Figure 14 illustrates the Gantt chart of the problem MK08 ($f_1 = 541, f_2 = 533, and f_3 = 2,516$).

4.4. Experiment 4. The data of Experiment 4 are taken from Barnes and Chambers [43]. It contains 21 problems. The experimental results and comparisons with other well-known algorithms are shown in Table 6 ($n \times m$ means that the problem includes n jobs and m machines, f_1, f_2, and f_3 mean the optimization objectives of makespan, MW, and TW, resp. T means the average computer-independent CPU
Table 5: Results on Experiment 3.

Problem (n × m)	SM^a	MOGA^b	BEG-NSGA-II^b									
	f₁	f₂	f₃	T	f₁	f₂	f₃	T	f₁	f₂	f₃	T
MK01 (10 × 6)	42 42 162 4.78	42 39 158 0.49	42 39 158 0.36									
	44 40 154 44	44 40 154 44	44 40 154 44									
	43 40 155 43	43 40 155 43	43 40 155 43									
	40 36 169 40	40 36 169 40	40 36 169 40									
	47 36 167 47	47 37 165 47	47 37 164 47									
	49 37 164 50	49 38 162 50	49 38 162 50									
MK02 (10 × 6)	28 28 155 3.02	26 26 151 0.75	26 26 151 0.70									
	27 27 146 27	27 27 146 27	27 27 146 27									
	29 27 145 29	29 27 145 29	29 27 145 29									
	29 29 143 29	29 29 143 29	29 29 143 29									
	31 31 141 31	31 31 141 31	31 31 141 31									
	33 33 140 33	33 33 140 33	33 33 140 33									
MK03 (15 × 8)	204 204 852 26.14	204 199 855 4.75	204 199 855 3.66									
	204 144 871 204	204 144 871 204	204 144 871 204									
	204 135 882 204	204 135 882 204	204 135 882 204									
	204 133 884 204	204 133 884 204	204 133 884 204									
	213 199 850 213	213 199 850 213	213 199 850 213									
	214 210 849 214	214 210 849 214	214 210 849 214									
	221 199 847 221	221 199 847 221	221 199 847 221									
	222 199 848 222	222 199 848 222	222 199 848 222									
	223 188 848 223	223 188 848 223	223 188 848 223									
	230 177 848 230	230 177 848 230	230 177 848 230									
MK04 (15 × 8)	68 67 352 17.74	66 63 345 1.76	66 63 345 1.63									
	65 63 362 65	65 63 362 65	65 63 362 65									
	63 61 371 63	63 61 371 63	63 61 371 63									
	62 61 373 62	60 59 390 60	60 59 390 60									
	61 60 382 61	74 54 349 74	74 54 349 74									
	60 59 390 60	74 55 348 74	74 55 348 74									
	73 55 350 72	72 72 342 72	72 72 342 72									
	74 54 349 78	78 78 339 78	78 78 339 78									
	74 55 348 74	72 66 348 72	72 66 348 72									
	90 76 331 90	73 72 343 73	73 72 343 73									
MK05 (15 × 4)	177 177 702 8.26	173 173 683 2.34	173 173 683 1.96									
	175 175 682 175	175 175 682 175	175 175 682 175									
	183 183 677 183	183 183 677 183	183 183 677 183									
	185 185 676 185	179 179 679 179	179 179 679 179									
	179 179 679 179	199 199 674 199	199 199 674 199									
	193 193 675 193	193 193 675 193	193 193 675 193									
	183 183 677 183	183 183 677 183	183 183 677 183									
MK06 (10 × 15)	67 431 18.79 67	62 55 424 1.93	62 55 424 1.85									
	65 54 417 65	65 54 417 65	65 54 417 65									
	60 58 441 60	60 58 441 60	60 58 441 60									
	62 60 440 62	62 60 440 62	62 60 440 62									
	76 60 362 76	76 60 362 76	76 60 362 76									
	76 74 356 76	76 74 356 76	76 74 356 76									
	78 60 361 78	78 60 361 78	78 60 361 78									
	73 72 360 73	73 72 360 73	73 72 360 73									
	72 72 361 72	72 72 361 72	72 72 361 72									
	100 90 330 100	100 90 330 100	100 90 330 100									
Table 5: Continued.

Problem $(n \times m)$	SMa	MOGAb	BEG-NSGA-IIb									
	f_1	f_2	f_3	T	f_1	f_2	f_3	T	f_1	f_2	f_3	T
MK07 (20×5)	150	150	717	5.68	139	139	693	4.92	139	139	693	3.12
	140	138	686		140	138	686		144	144	673	
	151	151	667		151	151	667		157	157	662	
	162	162	659		162	162	659		166	166	657	
MK08 (20×10)	523	523	2,524	67.67	523	515	2,524	12.04	523	515	2,524	8.34
	523	497	2,534		523	497	2,534		524	524	2,519	
	578	578	2,489		578	578	2,489		587	587	2,484	
	587	587	2,484		587	587	2,484		541	533	2,516	
	542	542	2,511		542	542	2,511		560	560	2,505	
MK09 (20×10)	311	299	2,374	77.76	311	299	2,290	19.48	311	299	2,290	10.15
	310	299	3514		310	299	3514		311	301	2,287	
	314	299	2,315		314	299	2,315		315	299	2,283	
	315	299	2,265		332	302	2,265		329	301	2,266	
	328	305	2,259		328	305	2,259		325	299	2,275	
MK10 (20×15)	227	221	1,989	122.52	224	219	1,980	17.87	224	219	1,980	12.38
	225	211	1,976		225	211	1,976		233	214	1,919	
	233	214	1,919		240	215	1,905		235	218	1,897	
	235	218	1,897		246	215	1,896		235	225	1,895	
	240	215	1,905		252	224	1,884		240	216	1,888	
	242	214	1,913		266	254	1,864		246	215	1,896	
	246	215	1,896		246	215	1,896		246	224	1,884	
	256	211	1,919		246	205	1,940		256	211	1,919	
	260	244	1,869		251	202	1,948		260	244	1,869	
	266	254	1,864		253	207	1,930		268	264	1,858	
	276	256	1,857		255	202	1,943		281	268	1,854	
	217	207	2,064		250	205	1,935		214	204	2,082	
	254	203	1,942		244	207	1,935					

aThe CPU time on a Pentium IV 2.4 GHz processor with 1.0 GB of RAM memory in MATLAB.

bThe CPU time on a PC with 2 GHz CPU and 2 GB of RAM memory in C++.

cThe CPU time on an Intel Core i3, 2.67 GHz processor with 4 GB RAM in MATLAB R2014a.
Table 6: Results on Experiment 4.

Problem \((n \times m)\)	HGTS \(^a\)	HA \(^b\)	BEG-NSGA-II \(^c\)
\(mt10c1\ (10 \times 11)\)	\(927\)	\(927\)	\(1,092\)
\(mt10cc\ (10 \times 12)\)	\(908\)	\(908\)	\(1,005\)
\(mt10x\ (10 \times 11)\)	\(918\)	\(918\)	\(1,117\)
\(mt10xx\ (10 \times 12)\)	\(918\)	\(918\)	\(1,117\)
\(mt10xy\ (10 \times 12)\)	\(905\)	\(905\)	\(1,061\)
\(mt10xyz\ (10 \times 13)\)	\(847\)	\(847\)	\(925\)
\(mtb4c9\ (15 \times 11)\)	\(914\)	\(914\)	\(1,035\)
\(mtb4cc\ (15 \times 12)\)	\(907\)	\(907\)	\(1,023\)
\(setib4\ (15 \times 11)\)	\(905\)	\(905\)	\(1,020\)
\(setib4cc\ (15 \times 12)\)	\(905\)	\(905\)	\(1,011\)
\(setib4x\ (15 \times 11)\)	\(910\)	\(910\)	\(1,001\)
\(setib4xx\ (15 \times 12)\)	\(917\)	\(917\)	\(1,346\)
\(setib4xxx\ (15 \times 13)\)	\(917\)	\(917\)	\(1,346\)
\(seti5c12\ (15 \times 16)\)	\(1,170\)	\(1,170\)	\(1,319\)
\(seti5cc\ (15 \times 17)\)	\(1,136\)	\(1,136\)	\(1,301\)
\(seti5x\ (15 \times 16)\)	\(1,199\)	\(1,199\)	\(1,368\)
\(seti5xx\ (15 \times 17)\)	\(1,197\)	\(1,197\)	\(1,346\)
\(seti5xxx\ (15 \times 18)\)	\(1,136\)	\(1,136\)	\(1,301\)
\(seti5xy\ (15 \times 17)\)	\(1,125\)	\(1,125\)	\(1,270\)

\(^a\)The CPU time on a Xeon E5520 processor with 24 GB of RAM memory in C++.

\(^b\)The CPU time on an Intel 2.0 GHz Core (TM) 2 Duo processor with 8.0 GB of RAM memory in C++.

\(^c\)The CPU time on an Intel Core i3, 2.67 GHz processor with 4 GB RAM in MATLAB R2014a.
BEG-NSGA-II denotes the proposed algorithm. The results of HGTS and HA are adopted from [44, 45], and there are no other multiobjective optimization algorithms to compare for these problems in the up to date literatures. The bolded results are the new multiobjective optimization solution found in our algorithms. From Table 6, we can see that our algorithm can solve these problems with little worse objective \(f_1 \) but simultaneously get the other two objectives \(f_2 \) and \(f_3 \) with less computation time. Figure 15 illustrates the Gantt chart of the problem set i5xyz \((f_1 = 1270, f_2 = 835, \) and \(f_3 = 11,472)\).

4.5. Discussions. From the simulation results of test examples 1–3, we can see that our proposed BEG-NSGA-II could obtain the same or more different Pareto-optimal solutions for the most benchmarks of MFJSP with less computation time. That means more schemes can be chosen by the production managers when they make scheduling decisions with high efficiency. From the simulation results of test example 4, we can see that our proposed algorithm of BEG-NSGA-II works better in multiobjective optimization as well as single-objective optimization.

5. Conclusions and Future Studies

In this paper, in order to fully play the respective advantages of nondominated sorting genetic algorithm II (NSGA-II) algorithm and the algorithms with a two-stage optimization scheme and to overcome the disadvantages of them, we developed a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for solving the multi-objective flexible job-shop scheduling problem with the optimization objectives of minimizing the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. A two-stage optimization mechanism is constructed in the optimization process. In the first stage, the NSGA-II algorithm with \(T \) iteration times is first used to obtain the initial population \(N \) which consists of three parts changing with the iteration times. In this stage, an effective local search operator is invented to extensively exploit the solution space. In the second stage, the NSGA-II algorithm with \(GEN \) iteration times is used to obtain the Pareto-optimal solutions, in which an updating mechanism and some useful genetic operators were employed to enhance the searching ability and avoid the premature convergence. From the simulation results, we can get the conclusions that our proposed algorithm BEG-NSGA-II could obtain more different Pareto-optimal solutions for most benchmarks of MO-FJSP with less computation time. Hence, it could provide more schemes for the production managers to choose when they make scheduling decisions. This proposed computational intelligence method (BEG-NSGA-II) could be widely used in flexible job-shop scheduling problems, especially the multiobjective optimization problems in scheduling filed.

In the future, we will concentrate on the dynamic and real-time scheduling problems which possibly include newly inserted jobs during the production process. Meanwhile, the redistribution of job operations and machine breakdowns may also be taken into consideration.

Notations

- \(n \): Total number of jobs
- \(m \): Total number of machines
- \(n_i \): Total number of operations of job \(i \)
- \(O_{ij} \): The \(j \)th operation of job \(i \)
- \(M_{ij} \): The set of available machines for the operation \(O_{ij} \)
- \(P_{ijk} \): Processing time of \(O_{ij} \) on machine \(k \)
- \(t_{ijk} \): Starting time of operation \(O_{ij} \) on machine \(k \)
- \(C_{ijk} \): Completion time of the operation \(O_{ij} \)
- \(i, h \): Index of jobs, \(i, h = 1, 2, \ldots, n \)
- \(k \): Index of machines, \(k = 1, 2, \ldots, m \)
- \(f_j \): Index of operation sequence, \(f_j = 1, 2, \ldots, n_i \)
- \(C_k \): The completion time of \(M_k \)
- \(W_k \): The workload of \(M_k \)
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 71473077); National High Technology Research and Development Program of China (863 Program) (Grant no. 2013AA040206); National Key Technology R&D Program of China (2015BAF01B00).

References

[1] J. Blazewicz, W. Domschke, and E. Pesch, "The job shop scheduling problem: conventional and new solution techniques," European Journal of Operational Research, vol. 93, no. 1, pp. 1–33, 1996.

[2] E. Pérez, M. Posada, and F. Herrera, "Analysis of new niching genetic algorithms for finding multiple solutions in the job shop scheduling," Journal of Intelligent Manufacturing, vol. 23, no. 3, pp. 341–356, 2012.

[3] X. Qiu and H. Y. K. Lau, "An AIS-based hybrid algorithm for static job shop scheduling problem," Journal of Intelligent Manufacturing, vol. 25, no. 3, pp. 489–503, 2014.

[4] L. Asadzadeh, "A local search genetic algorithm for the job shop scheduling problem with intelligent agents," Computers and Industrial Engineering, vol. 85, article no. 4004, pp. 376–383, 2015.

[5] W.-Y. Ku and J. C. Beck, "Mixed Integer Programming models for job shop scheduling: a computational analysis," Computers and Operations Research, vol. 73, pp. 165–173, 2016.

[6] M. R. Garey, D. S. Johnson, and R. Sethi, "The complexity of flowshop and jobshop scheduling," Mathematics of Operations Research, vol. 1, no. 2, pp. 117–129, 1976.

[7] S. Wang, L. Wang, Y. Xu, and M. Liu, "An effective estimation of distribution algorithm for the flexible job-shop scheduling problem with fuzzy processing time," International Journal of Production Research, vol. 51, no. 12, pp. 3778–3793, 2013.

[8] P. Brucker and R. Schlie, "Job-shop scheduling with multi-purpose machines," Computing, vol. 45, no. 4, pp. 369–375, 1990.

[9] P. Brandimarte, "Routing and scheduling in a flexible job shop by tabu search," Annals of Operations Research, vol. 41, no. 3, pp. 157–183, 1993.

[10] S. Dauzère-Pérès and J. Paulli, "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, vol. 70, no. 1, pp. 281–306, 1997.

[11] M. Mastrolilli and L. M. Gambardella, "Effective neighbourhood functions for the flexible job shop problem," Journal of Scheduling, vol. 3, no. 1, pp. 3–20, 2000.

[12] J. Gao, M. Gen, and L. Sun, "Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm," Journal of Intelligent Manufacturing, vol. 17, no. 4, pp. 493–507, 2006.

[13] M. Saidi-Mehrabad and F. Fattahi, "Flexible job shop scheduling with tabu search algorithms," The International Journal of Advanced Manufacturing Technology, vol. 32, no. 5–6, pp. 563–570, 2007.

[14] L. Gao, C. Y. Peng, C. Zhou, and P. G. Li, "Solving flexible job shop scheduling problem using general particle swarm optimization," in Proceedings of the 36th CIE Conference on Computers & Industrial Engineering, pp. 3018–3027, Taipei, Taiwan, 2006.

[15] F. Pezzella, G. Morganti, and G. Ciaschetti, "A genetic algorithm for the flexible job-shop scheduling problem," Computers & Operations Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[16] M. Yazdani, M. Amiri, and M. Zandieh, "Flexible job-shop scheduling with parallel variable neighborhood search algorithm," Expert Systems with Applications, vol. 37, no. 1, pp. 678–687, 2010.

[17] L.-N. Xing, Y.-W. Chen, P. Wang, Q.-S. Zhao, and J. Xiong, "An knowledge-based ant colony optimization for flexible job shop scheduling problems," Applied Soft Computing, vol. 10, no. 3, pp. 888–896, 2010.

[18] L. Wang, G. Zhou, Y. Xu, S. Wang, and M. Liu, "An effective artificial bee colony algorithm for the flexible job-shop scheduling problem," The International Journal of Advanced Manufacturing Technology, vol. 56, no. 1, pp. 1–8, 2012.

[19] K. Z. Gao, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren, "An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time," International Journal of Production Research, vol. 53, no. 19, pp. 5896–5911, 2015.

[20] M. Rabiee, M. Zandieh, and P. Ramezani, "Bi-objective partial flexible job shop scheduling problem: NSGA-II, NPGA, MOGA and PAES approaches," International Journal of Production Research, vol. 50, no. 24, pp. 7327–7342, 2012.

[21] J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications, pp. 93–100, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1985.

[22] B. Jurisch, "Scheduling jobs in shops with multi-purpose machines," in Software Technologies for Embedded and Ubiquitous Systems, pp. 114–125, Springer, Berlin, Germany, 1992.

[23] H. Liu, A. Abraham, O. Choi, and S. H. Moon, "Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems," in SEAL 2006, vol. 4247 of Lecture Notes in Computer Science, pp. 197–204, Springer, Berlin, Germany, 2006.

[24] J. Gao, M. Gen, L. Sun, and X. Zhao, "A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems," Computers & Industrial Engineering, vol. 53, no. 1, pp. 149–162, 2007.

[25] G. Zhang, X. Shao, P. Li, and L. Gao, "An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem," Computers & Industrial Engineering, vol. 56, no. 4, pp. 1309–1318, 2009.

[26] L.-N. Xing, Y.-W. Chen, and K.-W. Yang, "An efficient search method for multi-objective flexible job shop scheduling problems," Journal of Intelligent Manufacturing, vol. 20, no. 3, pp. 283–293, 2009.

[27] I. González-Rodríguez, C. R. Vela, and J. Puente, "A genetic solution based on lexicographical goal programming for a multiobjective job shop with uncertainty," Journal of Intelligent Manufacturing, vol. 21, no. 1, pp. 65–73, 2010.

[28] S. H. A. Rahmati, M. Zandieh, and M. Yazdani, "Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem," The International Journal of Advanced Manufacturing Technology, vol. 64, no. 5–8, pp. 915–932, 2013.
[29] Y. Yuan and H. Xu, "Multiobjective flexible job shop scheduling using memetic algorithms," *IEEE Transactions on Automation Science and Engineering*, vol. 12, no. 1, pp. 336–353, 2015.

[30] N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms," *Evolutionary Computation*, vol. 2, no. 3, pp. 221–248, 1994.

[31] I. Kacem, S. Hammadi, and P. Borne, "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," *Mathematics and Computers in Simulation*, vol. 60, no. 3–5, pp. 245–276, 2002.

[32] N. B. Ho and J. C. Tay, "Solving multiple-objective flexible job shop problems by evolution and local search," *IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews*, vol. 38, no. 5, pp. 674–685, 2008.

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," *IEEE Transactions on Evolutionary Computation*, vol. 6, no. 2, pp. 182–197, 2002.

[34] X. Wang, L. Gao, C. Zhang, and X. Shao, "A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem," *International Journal of Advanced Manufacturing Technology*, vol. 51, no. 5–8, pp. 757–767, 2010.

[35] M. Frutos, A. C. Olivera, and F. Tohmé, "A memetic algorithm based on a NSGAII scheme for the flexible job-shop scheduling problem," *Annals of Operations Research*, vol. 181, pp. 745–765, 2010.

[36] L. Wang, S. Wang, and M. Liu, "A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem," *International Journal of Production Research*, vol. 51, no. 12, pp. 3574–3592, 2013.

[37] M. Rohaninejad, A. Kheirkhah, P. Fattahi, and B. Vahedi-Nouri, "A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem," *The International Journal of Advanced Manufacturing Technology*, vol. 77, no. 1–4, pp. 51–66, 2015.

[38] V. Kaplanoğlu, "An object-oriented approach for multi-objective flexible job-shop scheduling problem," *Expert Systems with Applications*, vol. 45, pp. 71–84, 2016.

[39] I. Kacem, S. Hammadi, and P. Borne, "Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems," *IEEE Transactions on Systems, Man & Cybernetics Part C: Applications & Reviews*, vol. 32, no. 1, pp. 1–13, 2002.

[40] R. Cheng, M. Gen, and Y. Tsujimura, "A tutorial survey of job-shop scheduling problems using genetic algorithms—I. Representation," *Computers & Industrial Engineering*, vol. 30, no. 4, pp. 983–997, 1996.

[41] W. Xia and Z. Wu, "An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems," *Computers & Industrial Engineering*, vol. 48, no. 2, pp. 409–425, 2005.

[42] X. Shao, W. Liu, Q. Liu, and C. Zhang, "Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem," *International Journal of Advanced Manufacturing Technology*, vol. 67, no. 9–12, pp. 2885–2901, 2013.

[43] J. W. Barnes and J. B. Chambers, "Flexible job shop scheduling by tabu search, Graduate program in operations research and industrial engineering," Tech. Rep., University of Texas, Austin, Tex, USA, 1996.