Negative K-groups of abelian categories

Satoshi Mochizuki

Abstract

We prove that negative K-groups of small abelian categories are trivial.

Introduction

In the celebrated paper [Sch06], Schlichting predicted that for any small abelian category \mathcal{A} and any positive integer n, the negative K-group $K_{-n}\mathcal{A}$ is trivial. He proved that it is true for $n = 1$ and any \mathcal{A} and for any n and any noetherian abelian category \mathcal{A}. The goal of this paper, we will prove this conjecture for any n and any \mathcal{A}. We use the technique established in [Moc13] and [HM13]. The main point is making use of higher derived categories $D^n\mathcal{A}$ of \mathcal{A}. (For definition, see 1.5.) In [HM13], we give an interpretation of negative K-groups as the obstruction groups of idempotent completeness of higher derived categories. (See 1.5(2).) The main theorem is the following.

Theorem 0.1. For any abelian category \mathcal{A} and for any positive integer $n \geq 2$, $D^n\mathcal{A}$ is trivial. In particular, if \mathcal{A} is essentially small, the $-m$-th K-group $K_{-m}\mathcal{A}$ of \mathcal{A} is trivial for any $m > 0$.

In section 1, we review several notions about relative exact categories established in [Moc13] and [HM13]. In section 2, we give a proof of the main theorem.

1 Relative exact categories

In this section, we recall the fundamental notions and properties for relative exact categories from [HM13] and [Moc13].

1.1 (Relative exact categories). 1) A relative exact category $\mathcal{E} = (\mathcal{E}, w)$ is a pair of an exact category \mathcal{E} with a specific zero object 0 and a class of morphisms in \mathcal{E} which is closed under finite compositions. Namely w satisfies the following two axioms.

(Identity axiom). For any object x in \mathcal{E}, the identity morphism id_x is in w.

(Composition closed axiom). For any composable morphisms $\bullet \xrightarrow{a} \bullet \xrightarrow{b} \bullet$ in \mathcal{E}, if a and b are in w, then ba is also in w.

For any relative exact category \mathcal{E}, we write \mathcal{E}_E and w_E for the underlying exact category and the class of morphisms of \mathcal{E} respectively.

2) A relative exact functor between relative exact categories $f : \mathcal{E} = (\mathcal{E}, w) \rightarrow (\mathcal{F}, v)$ is an exact functor $f : \mathcal{E} \rightarrow \mathcal{F}$ such that $f(w) \subset v$ and $f(0) = 0$. We denote the category of relative exact categories and relative exact functors by RelEx.

3) We write \mathcal{E}^w for the full subcategory of \mathcal{E} consisting of those object x such that the canonical morphism $0 \rightarrow x$ is in w. We consider the following axioms.

(Strict axiom). \mathcal{E}^w is an exact category such that the inclusion functor $\mathcal{E}^w \hookrightarrow \mathcal{E}$ is exact and reflects exactness.

(Very strict axiom). \mathcal{E} satisfies the strict axiom and the inclusion functor $\mathcal{E}^w \hookrightarrow \mathcal{E}$ induces a fully faithful functor $D^b(\mathcal{E}^w) \hookrightarrow D^b(\mathcal{E})$ on the bounded derived categories.

We denote the category of strict (resp. very strict) relative exact categories by $\text{RelEx}^\text{strict}$ (resp. RelEx^vs).
1.2 (Derived category). We define the derived categories of a strict relative exact category $E = (E, w)$ by the following formula

$$D_\#(E) := \text{Coker}(D_{\#}(E^w) \to D_{\#}(E))$$

where $\# = b, \pm$ or nothing. Namely $D_\#(E)$ is a Verdier quotient of $D_{\#}(E)$ by the thick subcategory of $D_{\#}(E)$ spanned by the complexes in $Ch_\#(E^w)$.

1.3 (Quasi-weak equivalences). Let $P_\# : Ch_{\#}(E) \to D_{\#}(E)$ be the canonical quotient functor. We denote the pull-back of the class of all isomorphisms in $D_{\#}(E)$ by $qw_{\#}$ or simply qw. We call a morphism in qw a quasi-weak equivalence. We write $Ch_{\#}(E)$ for a pair $(Ch_{\#}(E), qw)$. We can prove that $Ch_{\#}(E)$ is a complicial bWaldhausen category in the sense of [TT90, 1.2.11]. In particular, it is a relative exact category. The functor $P_\#$ induces an equivalence of triangulated categories $T(Ch_{\#}(E), qw) \simeq D_{\#}(E)$ (See [Sch11, 3.2.17]). If w is the class of all isomorphisms in E, then qw is just the class of all quasi-isomorphisms in $Ch_{\#}(E)$ and we denote it by qis.

1.4 (Consistent axiom). Let $E = (E, w)$ be a strict relative exact category. There exists the canonical functor $i^\#: E \to Ch_{\#}(E)$ where $i^\#(x)k = x$ if $k = 0$ and 0 if $k \neq 0$. We say that w (or E) satisfies the consistent axiom if $i^\#(w) \subset qw$. We denote the full subcategory of consistent relative exact categories in RelEx by $\text{RelEx}_{\text{consist}}$.

1.5 (Higher derived categories). (cf. [HM13, 3.1, 3.2]). Let E be a very strict consistent relative exact category and we denote n-th times iteration of Ch for E by $\Sigma^n E$ and $D^n(E) := D_0(\Sigma^n E)$ the n-th higher derived category of E. Then for any positive integer n, we have

$(1) \; K_{-n}(E) \simeq K_0(D^n(E)).$

$(2) \; K_{-n}(E)$ is trivial if and only if $D^n(E)$ is idempotent complete.

$(3) \; The \; canonical \; functor \; \Sigma E \to Ch_\# \Sigma E \; induces \; an \; equivalence \; of \; triangulated \; categories \; D E \simeq D_\#(\Sigma E).$

2 Proof of the main theorem

In this section, we prove Theorem 1.1. Let A be an essentially small abelian category and n a positive integer $n \geq 2$.

2.1. We have the equalities

$$D_n A = D_\#(\Sigma^n A) \simeq D \Sigma^{n-1} A$$

$$\Sigma E \rightarrow \text{Ch}_\# \Sigma E$$

where the equalities I and II just come from definitions and [1.5] (3) respectively. For simplicity, we put $B = Ch^{n-1} A$, $F = Ch^{n-2} A$ and $v = w_{\Sigma^{n-1} A}$. Then the pair (B, v) is a complicial exact category with weak equivalences or a bicomplcial pair in the sense of [Sch11] or [Moc13]. Therefore (B, v) is very strict by [Moc13, 3.9] and hence the functor $D_\# B^o \to D_{\#} (B)$ induced from the inclusion functor $B^o \to B$ is fully faithful for $\# \in \{b, \pm, \text{nothing} \}$ by [HM13, 1.2].

By virtue of equality (1), Theorem 1.1 follows from Proposition 2.2 below.

Proposition 2.2. The functor $D_\# B^o \to D_{\#} B$ induced from the inclusion functor $B^o \to B$ is an equivalence of triangulated categories for $\# \in \{b, \pm, \text{nothing} \}$.

Proof. For $\# = +$, we use Lemma 2.3 below. We check the condition $(*)$ in [2.3] for $C = B = D = B^o$. For any complex b in $Ch F$, there is a canonical epimorphism $\text{Cone id}_b[-1] \to b$ in $Ch F$ with $\text{Cone id}_b[-1] \subset B^o$. Hence we obtain the result for $\# = +$. Since we have $D - B = (D_B)^{\text{op}}$ and $D - B^o = (D_B^{\text{op}})^{\text{op}}$, we also get the result for $\# = -$. Finally notice that DB is generated by D_B and D_B^{op}, then $DB^o \to D_B^{\text{op}}$ is essentially surjective and we complete the proof.

Lemma 2.3. (cf. [TT90, 1.9.5, 1.9.7]). Let C be an abelian category and D an idempotent complete strict exact subcategory of C. If D has enough objects to resolve" in the following sense $(*)$, then the inclusion functor $Ch_\# D \to Ch_\# C$ induces an equivalence of triangulated categories $D_\# \to D_\# C$.

$(*)$ For any integer k, any complex x in $Ch_\# C$ such that $H_i x = 0$ for $i < k$ and any epimorphism in C, $a \to H_{k+1} x$, then there exists an object d in D and a morphism $d \to a$ such that the composition is an epimorphism in C. \hfill \Box
References

[HM13] T. Hiranouchi and S. Mochizuki, Delooping of relative exact categories, available at arXiv:1304.0557 (2013).

[Moc13] S. Mochizuki, Non-connective K-theory of relative exact categories, available at arXiv:1303.4133 (2013).

[Sch06] M. Schlichting, Negative K-theory of derived categories, Math. Z. 253 (2006), p. 97-134.

[Sch11] M. Schlichting, Higher algebraic K-theory (after Quillen, Thomason and others), Topics in Algebraic and Topological K-theory, Springer Lecture Notes in Math. 2008 (2011), p. 167-242.

[TT90] R. W. Thomason and T. Trobaugh, Higher K-theory of schemes and of derived categories, In The Grothendieck Festschrift, Vol III (1990), p. 247-435.