Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018

CURRENT STATUS: UNDER REVISION

BMC Infectious Diseases ▪ BMC Series

Mike Mwanga
Pwani University School of Pure and Applied Sciences
✉ mikemwanga6@gmail.com Corresponding Author
ORCID: https://orcid.org/0000-0003-1481-1405

Betty Owor
Centre for Geographic Medicine Research Coast

John Ocheing
KEMRI/CDC Research and Public Health Collaboration

Mwanajuma Ngama
Centre for Geographic Medicine Research Coast

Billy Ogwel
KEMRI/CDC Research and Public Health Collaboration

Clayton Onyango
Centers for Disease Control and Prevention Global Health Kenya

Jane Juma
KEMRI/CDC Research and Public Health Collaboration

Regina Njeru
Centre for Geographic Medicine Research Coast

Elijah Gicheru
Centre for Geographic Medicine Research Coast

Grieven Otieno
Centre for Geographic Medicine Research Coast

Sammy Khagayi
KEMRI/CDC Research and Public Health Collaboration
Charles Agoti
Centre for Geographic Medicine Research Coast

Godfrey Bigogo
KEMRI/CDC Research and Public Health Collaboration

Richard Omore
KEMRI/CDC Research and Public Health Collaboration

Yaw Addo
Emory University

Seheri Mapaseka
South African Medical Research Council

Jacqueline Tate
Centers for Disease Control and Prevention

Umesh Parashar
Centers for Disease Control and Prevention

Elizabeth Hunsperger
Centers for Disease Control and Prevention Global Health Kenya

Jennifer Verani
Centers for Disease Control and Prevention

Robert Breiman
Emory University

James Nokes
Centre for Geographic Medicine Research Coast

DOI:
10.21203/rs.2.24781/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Rotavirus, genotype, pre-vaccine, post-vaccine, Kenya
Abstract

Background: Kenya introduced the monovalent G1P[8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010 - June 2014) and post- (July 2014-December 2018) RVA vaccine introduction.

Methods: Stool samples were collected from children aged <13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged <5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and G and P genes sequenced to infer genotypes.

Results: We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P[8] (45.8%), G8P[4] (15.8%), G9P[8] (13.2%), G2P[4] (7.0%) and G3P[6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P[8] (52.1%), G2P[4] (20.7%) and G3P[8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of heterotypic commonly DS-1-like G2P[4] (7.0 to 20.7%, P <.001) and G3P[8] (1.3 to 16.1%, P< .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P[4] (15.8 to 0.4%, P <.001) and G9P[8] (13.2 to 5.4%, P <.001) in the post-vaccine introduction period.

Conclusion: Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full length sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures
Temporal rotavirus genotype distribution in the three surveillance sites across Kenya; a - Kilifi County Hospital in Kilifi County, b - Tabitha Clinic in Kibera, Nairobi County, c - Siaya County (combined genotype data from Lwak Mission Hospital and Siaya Referral Hospital) and d - combination of the three Counties in Kenya between 2010 to 2018.
Comparison of prevalence of the dominant genotypes (G1P[8], G2P[4], G3P[8], G8P[4] and G9P[8]) at 95% confidence interval (CI) during the pre- (Jan 2010-Jun 2014) and post-(July 2014 – Dec 2018) vaccine introduction periods in Kenya. The predominant genotypes were selected based on their frequency as indicated in Table 3.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Supplementary_Figure_1.pdf
Supplementary_table_3.pdf
Supplementary_table_2.pdf
Supplementary_table_1.pdf