The Role of CBLL1 in the Prognosis and Immune Infiltration of Pan-Cancer

Qiang Guo
Taihe hospital

Dan Li
Huanggang central hospital

Yanmei Ji
Taihe Hospital

Jialong Guo (✉ 1261465748@qq.com)
Taihe Hospital https://orcid.org/0000-0003-1638-1795

Primary research

Keywords: CBLL1, pan-carcinoma, prognosis, immunity

DOI: https://doi.org/10.21203/rs.3.rs-91598/v1

License: ☑️ ⓘ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective

This study aims to explore the role of CBLL1 in pan-carcinoma and tumor immune infiltrates.

Methods

Download mRNA expression, mutation and clinical data in UCSC database, to analyze the relationship between CBLL1 expression and clinicopathological value, and immune microenvironment in pan-cancer. CIBERSORT was used to analyze the relationship between CBLL1 expression and the infiltration of pan-carcinoma immune cells. The mRNA expression data of UCSC database were used to analyze the correlation between CBLL1 expression and pan-cancer immunomodulations, checkpoints and receptor molecules.

Results

The levels of CBLL1 mRNA expression in pan-cancer tissues were abnormal. The level of CBLL1 is related to the age, race, clinical stage and treatment effect of patients with pan-carcinoma and associated with the prognosis of patients with KIRC, LUSC, THCA, THYM, MESO, PRAD, STAD, and UVM. Univariate COX regression analysis showed that expression of CBLL1 was a risk factor for poor prognosis in patients with KICH, KIRC, LAML, THYM, KIRC, PCPG, OV, PRAD, STAD, GBM and UVM. The expression level of CBLL1 was correlated with BLCA, BRCA, COAD, LAML, LGG, LUAD, LUSC, SARC, STAD, THCA, THYM and UVM tumor mutational burden, and with ACC, BRCA, CESC, COAD, DLBC, HNSC, PRAD, READ, SARC, STAD, TGCT, THCA and UCEC microsatellite instability. The expression level of CBLL1 was correlated with cancer stromal cells and immune cells. The expression of CBLL1 is related to pan-cancer immunomodulators, checkpoints and receptor molecules.

Conclusion

CBLL1 is abnormally expressed in patients with pan-carcinoma, which is expected to be a biomarker for prognosis, mutation and immune infiltration in patients with pan-carcinoma.

Background

There will be 18.1 million new cancers and 9.6 million cancer deaths worldwide in 2018. Lung cancer is the most common malignant tumor in both male and female patients, accounting for 11.6% of the total incidence of cancer. It is also the main cause of cancer death, accounting for 18.4% of the total number of cancer deaths. The second to 10th highest new cancer incidence rates were Prostate cancer (7.1%), Colon cancer (6.1%), Nonmelanoma of skin (5.8%), Stomach cancer (5.7%), Liver cancer (4.7%), Rectum cancer (3.9%), Esophagus cancer (3.2%), Cervix uteri cancer (3.2%) and Thyroid cancer (3.1%). The 2th to 10th highest cancer mortality rates were Stomach cancer (8.2%), Liver cancer (8.2%), Breast cancer (6.6%), Colon cancer (5.8%), Esophagus cancer (5.3%), Prostate cancer (3.8%), Cervix uter cancer (3.3%), Rectum cancer (3.2%) and Leukemia (3.2%). Overall, the top 10 cancer cases account for about 65% of new cancer cases and deaths [1]. The main treatment methods of cancer patients are surgery, radiotherapy, chemotherapy, targeted therapy and so on, but cancer patients will develop drug resistance and metastasis, resulting in poor prognosis and high mortality.

The increased expression of CBLL1 (Hakai) is related to the size of tumor in patients with NSCLC. The overexpression of CBLL1 promotes the cell cycle transition of G1-S, which leads to cell proliferation and invasion. Interfering with the expression of CBLL1 gene inhibits cell invasion by increasing the expression of adhesion proteins, and reduces the expression of MMP2 and MMP9 in cells [2,3]. Compared with healthy human colon tissue, Hakai is highly expressed in adenoma and colon adenocarcinoma, and is related to patient stage. The overexpression of Hakai can enhance cell transformation and invasion, inhibit the expression of E-cadherin and promote the expression of N-cadherin. Hakai can significantly induce tumor growth and local invasion in nude mice [4]. Overexpression of Hakai inhibits the proliferation and migration of breast cancer cells [5]. However, the role of CBLL1 in prognosis, mutation and immune infiltration in pan-cancer is still unknown. In this study, we aimed to use SMART, UCSC and CIBERSORT to explore the level of CBLL1 mRNA expression in pan-cancer, and to analyze the relationship between CBLL1 mRNA expression and clinicopathological features, prognosis, mutation, immune microenvironment, immune cell infiltration in pan-cancer patients. The mRNA expression data of UCSC database were used to analyze the correlation between CBLL1 expression level and pan-cancer immunomodulators, checkpoints and receptor molecules, as well as the possible mechanism of regulating pan-cancer progression.
Materials And Methods

Data download and visual analysis

The pan-cancer mRNA expression data, clinical data and mutation data were downloaded from UCSC database [6]. The expression data of CBLL1 mRNA in 33 kinds of cancer tissues were extracted and analyzed. The clinicopathological features of 33 cancer patients were extracted and sorted out to analyze the correlation between CBLL1 expression level and age, race, clinical stage, treatment effect and prognosis (OS, Disease-specific survival (DSS), Disease-free interval (DFI) and Progression-free interval (PFI)) of patients with pan-cancer. Univariate COX analyzed the correlation between the expression of CBLL1 and OS, DSS, DFI and PFI in patients with pan-cancer. The tumor mutational burden (TMB) in each tumor sample was calculated, and the MSI score of tumor microsatellite instability (MSI) was downloaded [7]. The correlation between CBLL1 expression level and TMB and MSI was analyzed. The contents of stromal cells and immune cells in 33 kinds of cancers were scored, and the relationship between the expression of CBLL1 mRNA and the microenvironment of pan-cancerous tumors was analyzed. The mRNA expression data of UCSC database was used to analyze the correlation between CBLL1 expression level and pan-cancer immunomodulators, checkpoints and receptor molecules.

CIBERSORT

CIBERSORT (https://cibersort.stanford.edu/) is a kind of bioinformatics algorithms which can calculate according to the gene expression profiles of immune cells. We used CIBERSORT to evaluate the relative proportion of 22 immune cell types in 33 cancers. The scores of immune cells were downloaded from The Cancer Imaging Archive (TCIA) (https://tcia.at/home) database, and the correlation between the expression level of CBLL1 and tumor immune cells was analyzed. Screening criteria: \(P < 0.05 \) [8].

Results

Abnormal CBLL1 mRNA expression in pan-cancerous tissues

In the UCSC database, we found abnormal expression of CBLL1 in a variety of tumors (Fig. 1 and S1). In detail, CBLL1 is highly expressed in Cholangio carcinoma (CHOL), Colon adenocarcinoma (COAD), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Kidney Chromophobe (KICH), Liver hepatocellular carcinoma (LIHC), Lung squamous cell carcinoma (LUSC), Head and Neck squamous cell carcinoma (HNSC), Rectum adenocarcinoma (READ) and Stomach adenocarcinoma (STAD) tissues (Fig. 1A-J), and poorly expressed in Thyroid carcinoma (THCA) and Uterine Corpus Endometrial Carcinoma (UCEC) tissues (Fig. 1K-L).

The expression of CBLL1 is related to the age, race, clinical stage and therapeutic effect of patients with pan-cancer

After collating and analyzing the clinicopathological features of 33 cancer patients, it was found that the expression level of CBLL1 was correlated with the age of Breast invasive carcinoma (BRCA), CHOL, Kidney renal papillary cell carcinoma (KIRP), LIHC and Pancreatic adenocarcinoma (PAAD) patients (Fig. S2); the expression level of CBLL1 mRNA was correlated with the race of patients with Bladder Urothelial Carcinoma (BLCA), BRCA, GBM, KIRC, LIHC and Thymoma (THYM) (Fig. S3), and the expression level of CBLL1 mRNA was correlated with the clinical stage of patients with ACC, BRCA, KIRC, LIHC, PAAD, STAD, Testicular Germ Cell Tumors (TGCT) and THCA (Fig. 2). The expression level of CBLL1 mRNA was related to the therapeutic effect of patients with BLCA, KIRC, Kidney renal clear cell carcinoma (KIRP), Brain Lower Grade Glioma (LGG), PRAD and UCEC (Fig. S4).

The expression of CBLL1 is related to the prognosis of patients with pan-cancer

Survival analysis of clinical information of 33 kinds of cancer patients showed that the expression level of CBLL1 mRNA was correlated with OS in patients with KIRC (Fig. 3A), the expression level of CBLL1 mRNA was correlated with DSS in patients with KIRC, LIHC, THCA and THYM (Fig. 3B-E), the expression level of CBLL1 mRNA was correlated with DFI in patients with MESO, PRAD and STAD (Fig. 3F-H), and the expression level of CBLL1 mRNA was correlated with DFI in patients with ACC, BRCA, KIRC, LIHC, PAAD, STAD, Testicular Germ Cell Tumors (TGCT) and THCA (Fig. 2). The expression level of CBLL1 mRNA was related to the therapeutic effect of patients with BLCA, KIRC, Kidney renal clear cell carcinoma (KIRP), Brain Lower Grade Glioma (LGG), PRAD and UCEC (Fig. S4).

The expression level of CBLL1 is associated with TMB and MSI in patients with pan-cancer

Univariate COX regression analysis found that CBLL1 mRNA expression level was a risk factor for OS in patients with KICH, KIRC, LAML and THYM (Fig. 4A); DSS in patients with KIRC, PCPG and THYM (Fig. 4B); DFI in patients with OV, PRAD and STAD (Fig. 4C); PFI in patients with GBM, KIRC, Ovarian serous cystadenocarcinoma (OV), THYM and UVM (Fig. 4D).
The mutation load of pan-cancer tumor was calculated based on the expression data of pan-cancer mRNA in UCSC database, and the correlation between the expression level of CBLL1 mRNA and TMB of pan-cancer patients was analyzed. In other words, the expression level of CBLL1 mRNA was correlated with TMB in patients with BLCA, BRCA, COAD, LAML, LGG, LUAD, LUSC, SARC, STAD, THCA, THYM and UVM (Fig. 5A and Table 1); The expression level of CBLL1 mRNA was correlated with MSI in patients with pan-cancer. In detail, the expression level of CBLL1 mRNA was associated with ACC, BRCA, CESC, COAD, DLBC, HNSC, PRAD, READ, SARC, STAD, TGCT, THCA and MSI in patients with UCEC (Fig. 5B and Table 2).

The expression level of CBLL1 mRNA is related to the microenvironment of pan-cancer

The expression level of CBLL1 mRNA was correlated with tumor microenvironment (Fig. 6 and Table 3). Figure 6 shows the correlation between CBLL1 mRNA expression level and tumor stromal cells via P values. In detail, the expression level of CBLL1 was correlated with tumor stromal cells such as TGCT, LGG, SARC, GBM, LUSC, BLCA, BRCA, PCPG and so on (Fig. 6 and Table 3). Figure S5 shows the correlation between CBLL1 mRNA expression level and tumor immune cells via P values. In detail, the expression level of CBLL1 was correlated with tumor immune cells such as BRCA, LGG, THCA, GBM, LUSC, SARC, UCEC, PCPG, LIHC, etc (Fig. S5 and Table 3).

The expression level of CBLL1 is related to the immune cells of pan-cancerous tumors

Figure 7 and S6 show the correlation between the expression level of CBLL1 mRNA and the tumor immune infiltrating cells with the lowest P value. The expression level of CBLL1 is correlated with BLCA (T cells follicular helper), BRCA (Tcells CD4 memory resting), COAD (B cells memory), GBM (T cells gamma delta), HNSC (B cell snaive), KICH (T cells CD4 memory resting), KIRC (T cells regulatory),LAM (Monocytes), LIHC (T cells CD8), LUAD (T cells CD4 memory activated), LUSC (Neutrophils), OV (T cells CD8), PRAD (T cells CD4 memory resting), READ (Macrophages M1), SARC (Macrophages M2), SKCM (Tregs), THCA (B cells naïve), THCA (Dendritic cells activated), THYM (Macrophages M0), UCEC (T cells CD4 memory resting), UVM (Monocytes) and KIPR (T cells CD8) (Fig. 7 and S6 and Table S1). In addition, the expression level of CBLL1 was associated with various immune infiltrating cells in pan-cancer. For example, the expression level of CBLL1 was significantly correlated with immune cells such as BRCA B cells naïve, B cells memory, T cells CD8, T cells CD4 memory activated, Tregs; HNSC B cells naïve, B cells memory, T cells CD4 memory resting, NK cells activated; PRAD B cells naïve, B cells memory, Plasma cells, T cells CD8, T cells CD4 memory resting (P < 0.05, Additional file 1: Supplementary table S1).

The expression level of CBLL1 is related to immunomodulators, checkpoints and receptor molecules in pan-cancerous tumors

To further explore the relationship between CBLL1 mRNA expression and tumor immune markers, in order to understand the role of CBLL1 in pan-cancer immune escape. Immunomodulators include immunostimulators, immunoinhibitors and MHC molecules. We found that the expression level of CBLL1 was associated with pan-cancer immunomodulators (Fig. 8A-C). For example, the expression level of CBLL1 was correlated with BLCA immunostimulators CD160, ADORA2A, TGFBR1, IL10RB and BTLA, with BRCA immunostimulators LGALS9, IL10RB, CD160, KDR, TGFBR1, etc., and with CESC immunostimulators KDR, ADORA2A, LAG3, LGALS9 and IL10RB (P < 0.05, Fig. 8A). The expression level of CBLL1 was significantly correlated with BLCA immunoinhibitors TNFRSF4, TNFRSF14, CD276TNFRSF18, TNFSF9, TNFRSF25, BRCA immunoinhibitors TNFRSF4, TNFRSF14, ULBP1, MICB, TNFSF18, and CESC immunoinhibitors TNFSF9, TNFSF18, NT5ETNFRSF4, TNFSF13 (P < 0.05, Fig. 8B). The expression level of CBLL1 was significantly correlated with BLCA MHC molecules HLA-A, HLA-E, HLA-F, TAPBP and HLA-DPB1, BRCA MHC molecules HLA-A, HLA-F, HLA-EHLA-C, HLA-G, HLA-B, and CESC MHC molecules HLA-F, HLA-C, HLA-B, HLA-A, TAPBP (P < 0.05, Fig. 8C). In addition, the expression level of CBLL1 was associated with pancancerous immune checkpoint molecules (Fig. 8D). For example, the expression level of CBLL1 was correlated with BLCA checkpoint molecules CCL26, CCL14, CCL23, CCL21, CCL28; BRCA checkpoint molecules CCL26, CCL3, CCL17, CCL23, CX3CL1, CXCL2; CESC checkpoint molecules CXCL2, CXCL3, CCL3, CXCL16, CCL13 (P < 0.05, Fig. 8D). In addition, the expression level of CBLL1 was associated with receptor molecules (Fig. S7 and Table 4). For example, the expression level of CBLL1 is related to BLCA receptor molecules CCR9, CCR8, CCR4, CCR7 and CXCR5; BRCA receptor molecules CCR10, CCR8, CCR9, CCR4, CXCR3, etc; CESC molecules CCR8, XCR1, CCR2, CCR6, CCR4, etc (Table 4).

Discussion

A variety of molecular abnormal expressions occur during the development of cancer. For example, METTL14 is significantly up-regulated in breast cancer (BC) tissues compared with normal tissues. The overexpression of METTL14 enhanced the migration and
invasion ability of BC cells [9]. WTAP is highly expressed in (gastric carcinoma, GC) tissues of gastric cancer, and the patients with increased expression of WTAP suggest a poor prognosis, and WTAP is an independent risk factor for the prognosis of patients with GC [10]. However, there are few reports on the value of CBLL1 in cancer. In this study, we found that CBLL1 was highly expressed in CHOL, COAD, ESCA and other cancer tissues, while low expression in THCA and UCEC tissues. The expression level of CBLL1 is related to the age, race, clinical stage and therapeutic effect of patients with pan-cancer. In addition, the expression of CBLL1 was correlated with the prognosis of patients with KIRC, LUSC, THCA, THYM, MESO, PRAD, STAD and UVM. Univariate COX regression analysis found that the expression of CBLL1 mRNA was a prognostic risk factor in patients with KICH, KIRC, LAML, THYM, PCPG, OV, PRAD, STAD, GBM and UVM. This suggests that CBLL1 is related to the occurrence and progression of tumor and is expected to become a target molecule for cancer therapy.

Programmed death inhibitor-1 (PD-1) protein or its has achieved significant clinical efficacy in the treatment of a variety of tumors. TMB and MSI are used as biomarkers to evaluate the therapeutic effect of PD-1 antibody and microsatellite instability is also one of the tumor progression [11,12]. We found that the expression level of CBLL1 was correlated with TMB in patients with BLCA, BRCA, COAD, LAML, LGG, LUAD, LUSC, SARC, STAD, THCA, THYM and UVM, and with MSI in patients with ACC, BRCA, CESC, COAD, DLBC, HNSC, PRAD, READ, SARC, STAD, TGCT, THCA and UCEC, which indicates that CBLL1 may be a biomarker of treatment and prognosis in patients with pan-cancer.

Cancer is considered to be a disease of tumor microenvironment [13]. Tumor microenvironment is a complex and dynamic cell population, which is composed of tumor epithelial cells, tumor immune cells, fibroblasts, immunosuppressive cells, adipocytes, endothelial cells and so on. The interaction between tumor microenvironment and tumor cells is a key factor in immune escape, physiological tolerance and local and systemic invasiveness of malignant cells [14]. The expression level of CBLL1 was correlated with TGCT, LGG, SARC, GBM, LUSC, BLCA, BRCA, THCA, THYM and other tumor stromal cells. The expression level of CBLL1 was correlated with tumor immune cells such as BRCA, LGG, THCA, GBM, LUSC, SARC, UCEC, PCPG, LIHC, LUSC and so on. Furthermore, The expression level of CBLL1 in BLCA (T cells follicular helper cells), BRCA (T cells CD4 memory resting), COAD (B cells memory), GBM (T cells gamma delta), HNSC (B cells naive), KICH (T cells CD4 memory resting), KIRC (Tregs), LAML (Monocytes), LIHC (T cells CD8), LUAD (T cells CD4 memory activated), LUSC (Neutrophils), OV (T cells CD8), PRAD (T cells CD4 memory resting), READ (Macrophages M1), SARC (Macrophages M2), SKCM (Tregs), STAD (Tregs), TGCT (B cells naive), THCA (Dendritic cells activated), THYM (Macrophages M0), UCEC (T cells CD4 memory resting), There was a significant correlation between UVM (Monocytes) and KIPR (T cells CD8) and other immune cells. In addition, immunomodulators, checkpoints and receptors are associated with the progression and prognosis of cancer patients [15-17]. For example, cyclic actin promotes gastric cancer progression through sponge miRNA-331-3p and regulation of TGFB1 mRNA expression [15]. The expression of TNFSF9 was down-regulated in liver cancer tissues and cells. Overexpression of TNFSF9 can inhibit the proliferation, migration and invasion of Huh7 and SMMC-7721 cells in vitro, and inhibit the growth and metastasis of HCC in vivo [16]. We found that the expression level of CBLL1 was associated with pan-cancer immunomodulators, checkpoints and receptor molecules. For example, CBLL1 expression level is significantly correlated with BRCA immunomodulators (LGALS9, IL10RB, CD160, KDR, TGFB1, etc), immunoinhibitors (TNFRSF4, TNFRSF14, ULBP1, MICB, TNFSF18, etc), MHC molecules (HLA-A, HLA-F, HLA-EHLA-C, HLA-G, HLA-B, etc), checkpoint molecules (CCL26, CCL3, CCL17, CCL23, CX3CL1, CXCL2, etc) and receptor molecules (CCR10, CCR8, CCR9, CCR4, CXCR3, etc). It is suggested that CBLL1 can interact with tumor microenvironment and affect tumor immune escape, and then participate in tumor progression.

In summary, this study found that CBLL1 mRNA expression were abnormally expressed in pan-cancer, which is expected to be a marker of prognosis, mutation and tumor immune infiltration in cancer patients.

Abbreviations

CBLL1, Cbl proto-oncogene like 1; MSI, microsatellite instability; TMB, Tumor mutational burden; METTL4, methyltransferase-like 14; WTAP, WT1 associated protein; PC, pancreatic cance; NPC, nasopharyngeal carcinoma; OS, Overall survival; HCC, hepatocellular carcinoma; CSC, cancer stem cell; UTR, untranslated region; NSCLC, non-small cell lung cancer; DSS, Disease-specific survival; DFI, Disease-free interval; PFI, Progression-free interval.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication

All authors agree to publish the manuscript

Availability of data and material

The datasets generated for this study are available on request to the corresponding author.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Funding

This work was supported by the scientific and technological research and development project plan of Shiyan city, Hubei Province (Number: 16Y10).

Author statement

JiaLong Guo and YanMei Ji designed the experiment and explained the data; Qiang Guo processed and analyzed the TCGA data; Qiang Guo and Dan Li wrote the manuscript; JiaLong Guo provided general guidance. The author read and approved the final manuscript.

Acknowledgements

Not applicable.

Declarations

All authors read and approved the final manuscript. The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68: 394-424.
2. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. mA regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer. 2020; 19: 53.
3. Hui L, Zhang S, Wudu M, Ren H, Xu Y, Zhang Q, Qiu X. CBLL1 is highly expressed in non-small cell lung cancer and promotes cell proliferation and invasion. Thorac Cancer. 2019; 10: 1479-1488.
4. Castosa R, Martinez-Iglesias O, Roca-Lema D, Casas-Pais A, Díaz-Díaz A, Iglesias P, Santamarina I, Graña B, Calvo L, Valladares-Ayerbes M, Concha Á, Figueroa A. Hakai overexpression effectively induces tumour progression and metastasis in vivo. Sci Rep. 2018; 8: 3466.
5. Gong EY, Park E, Lee K. Hakai acts as a coregulator of estrogen receptor alpha in breast cancer cells. Cancer Sci. 2010; 101: 2019-25.
6. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS, Gonzalez JN, Gibson D, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019; 47: D853-D858.
7. Bonneville R, Krook MA, Kauutto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L, Roychowdhury S. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017: undefined.
8. Okano M, Oshi M, Butash AL, Katsuta E, Tachibana K, Saito K, Okayama H, Peng X, Yan L, Kono K, Ohtake T, Takabe K. Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and
Angiogenesis. Int J Mol Sci. 2019; 20: undefined.

9. Yi D, Wang R, Shi X, Xu L, Yilihamu Y, Sang J. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6-methyladenosine and hsa-miR-146a-5p expression. Oncol Rep. 2020; 43: 1375-1386.

10. Li H, Su Q, Li B, Lan L, Wang C, Li W, Wang G, Chen W, He Y, Zhang H. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med. 2020; 24: 4452-4465.

11. Chae YK, Davis AA, Agte S, Pan A, Simon NI, Iams WT, Tamragouri K, Rhee K, Mohindra N, Villaflor V, Park W, Lopes G, Giles FJ. Clinical Implications of Circulating Tumor DNA Tumor Mutational Burden (ctDNA TMB) in Non-Small Cell Lung Cancer. Oncologist. 2019; 24: 820-828.

12. Chen L, Pan X, Hu XH, Zhang YH, Wang S, Huang T, Cai YD. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018; 143: 1731-1740.

13. Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, Berchem G, Janji B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells. 2019; 8: undefined.

14. Cheng HS, Lee JXT, Wahl W, Tan NS. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Mol Cancer. 2019; 18: 51.

15. Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C, Jiang J. Circular RNA CircCACTIN Promotes Gastric Cancer Progression by Sponging MiR-331-3p and Regulating TGFBR1 Expression. Int J Mol Sci. 2019; 20: undefined.

16. Shen YL, Gan Y, Gao HF, Fan YC, Wang Q, Yuan H, Song YF, Wang JD, Tu H. TNFSF9 exerts an inhibitory effect on hepatocellular carcinoma. J Dig Dis. 2017; 18: 395-403.

17. Long S, Li M, Liu J, Yang Y, Li G. Identification of immunologic subtype and prognosis of GBM based on TNFSF14 and immune checkpoint gene expression profiling. Aging (Albany NY). 2020; 12: 7112-7128.

Tables

Table 1. The expression level of CCBL1 is related to TMB in patients with pan-cancer.

Cancer	cor	P	Cancer	cor	P	Cancer	cor	P
ACC	0.054142902	0.635564064	KIRC	-0.102232312	0.062798785	PRAD	-0.008189613	0.857674661
BLCA	0.148662078	0.002609396	KIRP	-0.029322985	0.626390391	READ	0.034712864	0.692734917
BRCA	-0.109007953	0.000654847	LAML	0.270586236	0.031961519	SARC	0.140875647	0.030862194
CESC	0.095841162	0.105781572	LGG	0.234959513	1.03E-07	SKCM	0.038816735	0.403661151
CHOL	0.021641127	0.900302869	LIHC	-0.008575317	0.871372482	STAD	0.218241875	2.41E-05
COAD	-0.228484562	4.36E-06	LUAD	0.231940191	1.43E-07	TGCT	-0.039723537	0.635227514
DLBC	-0.199146515	0.236406449	LUSC	0.103243922	0.022549494	THCA	-0.147243369	0.001187156
ESCA	-0.070773267	0.373833529	MESO	0.071290726	0.532403545	THYM	-0.203247682	0.027959796
GBM	0.096803132	0.241829324	OV	0.069487861	0.253401475	UCEC	0.052933772	0.225963196
HNSC	0.088138064	0.050721582	PAAD	0.064774996	0.429420079	UCS	-0.116530763	0.392392087
KICH	0.082648833	0.512771489	PCPG	0.05657479	0.454493292	UVM	-0.236577168	0.03461792

Note: cor, correlation coefficient.

Table 2. The expression level of CCBL1 is related to MSI in patients with pan-cancer.
Cancer	cor	P	Cancer	cor	P	Cancer	cor	P
ACC	0.331783493	0.002816794	KIRC	-0.071313799	0.192903946	PRAD	-0.14023156	0.001762789
BLCA	0.052697193	0.288279558	KIRP	-0.043347334	0.466054376	READ	0.196212708	0.015405561
BRCA	-0.080131522	0.010053698	LAML	0.102531803	0.405397976	SARC	0.151246453	0.01605443
CESC	0.128669674	0.025347158	LGG	-0.067684434	0.127628875	SKCM	-0.006347044	0.891076845
CHOL	0.107850708	0.529849386	LIHC	-0.00963497	0.853654122	STAD	0.115846826	0.025063683
COAD	-0.205064265	1.95E-05	LUAD	0.057166114	0.19699196	TGCT	-0.199563168	0.014350286
DLBC	-0.677595334	1.23E-07	LUSC	-0.028070043	0.534075678	THCA	-0.094575424	0.036170301
ESCA	0.024476121	0.75867615	MESO	0.210823638	0.057274624	THYM	-0.033674092	0.717349781
GBM	0.079716687	0.330561054	OV	0.099127277	0.102818564	UCEC	0.102287651	0.017632145
HNSC	-0.106990995	0.017142546	PAAD	-0.033739987	0.657573586	UCS	0.095697051	0.482933666
KICH	0.105036553	0.405009768	PCPG	0.043598971	0.563358916	UVM	0.179750916	0.110608901

Note: cor, correlation coefficient.

Table 3. The expression level of CBLL1 mRNA is related to the immune infiltration of pan-cancerous tumors.
Cancer type	StromalScore	ImmuneScore
ACC	0.124603384	0.010137825
BLCA	3.84E-05	0.001271417
BRCA	3.89E-05	9.56E-11
CESC	0.393921421	0.002109213
CHOL	0.614788213	0.40869677
COAD	0.963871374	0.001587956
DLBC	0.234894177	0.952807531
ESCA	0.627477696	0.515859015
GBM	3.19E-08	1.60E-07
HNSC	0.749378092	0.262083978
KICH	0.248132174	0.134449688
KIRC	0.083590093	0.001019052
KIRP	0.512345762	0.002132654
LAML	0.664580379	0.027041677
LGG	2.10E-11	5.00E-09
LIHC	0.137828166	8.44E-06
LUAD	0.187731048	0.500395871
LUSC	3.08E-05	0.00021417
MESO	0.03062979	0.05479795
OV	0.024490708	0.004501272
PAAD	0.516894301	0.99423637
PCPG	0.000883697	5.41E-06
PRAD	0.62106203	0.021780091
READ	0.320999231	0.089231316
SARC	3.89E-11	6.05E-07
SKCM	0.048128866	0.001705958
STAD	0.016515899	0.074448303
TGCT	0	0.002831903
THCA	0.000341586	3.17E-08
THYM	0.000961122	0.16042945
UCEC	0.202244891	8.63E-07
UCS	0.716896263	0.208104708
UVM	0.524138205	0.511113834

Table 4. The expression level of CBLL1 is related to tumor immune receptor molecules.
Receptor	BLCA	BRCA	CESC
CCR1	0.937418488	0.298791645	0.054925253
CCR2	0.606569164	0.002536219	0.009550921
CCR3	0.12648539	0.648938001	0.123018037
CCR4	0.010496864	0.001147277	0.014677045
CCR5	0.819332104	0.243023525	0.406713675
CCR6	0.053292813	0.003573498	0.010188994
CCR7	0.033661703	0.421512886	0.894509139
CCR8	0.000136705	3.35E-07	4.25E-05
CCR9	4.94E-06	0.000473587	0.866908606
CCR10	0.102926437	2.24E-21	0.149478695
CXCR1	0.219670706	0.923072873	0.021085763
CXCR2	0.129164084	0.114858105	0.514219098
CXCR3	0.510329501	0.00186531	0.77737012
CXCR5	0.044729072	0.576671819	0.018422254
CXCR6	0.132770807	0.25368142	0.954407026
XCR1	0.677307888	0.21604114	0.001885185
CX3CR1	0.233819871	0.002982067	0.507290776

Figures
Figure 1

Abnormal expression of CBLL1 mRNA in pan-cancerous tissues. (A)CHOL; (B)COAD; (C)ESCA; (D)GBM; (E)KICH; (F)LIHC; (G)LUSC; (H)HNSC; (I)READ; (J)STAD; (K)THCA; (L)UCEC.
Figure 2

The expression of CBLL1 mRNA is related to the clinical stage of patients with pan-cancer. (A) ACC; (B) BRCA; (C) KIRC; (D) LIHC; (E) PAAD; (F) STAD; (G) TGCT; (H) THCA.
Survival analysis showed that the expression of CBLL1 mRNA was related to the prognosis of patients with pan-cancer. (A) KIRC OS; (B) KIRC DSS; (C) LUSC DSS; (D) THCA DSS; (E) THYM DSS; (F) MESO DFI; (G) PRAD DFI; (H) STAD DFI; (I) KIRC PFI; (J) PRAD PFI; (K) UVM PFI.

Figure 3
Figure 4

Univariate COX regression analysis showed that the expression of CBLL1 mRNA was related to the prognosis of pan-cancer (A) OS; (B) DSS; (C) DFI; (D) PFI.
Figure 5

The expression level of CCBL1 is related to TMB and MSI in patients with pan-cancer (A) TMB; (B) MSI.
Figure 6

The expression level of CBLL1 mRNA is related to pan-cancerous tumor stromal cells. (A) TGCT; (B) LGG; (C) SARC; (D) GBM; (E) LUSC; (F) BLCA; (G) BRCA; (H) THCA; (I) PCPG.
Figure 7

Correlation between CBLL1 mRNA expression level and pan-cancerous immune infiltrating cells. (A) BLCA; (B) BRCA; (C) COAD; (D) GBM; (E) HNSC; (F) KICH; (G) KIRC; (H) LAML; (I) LIHC; (J) LUAD; (K) LUSC; (L) OV; (M) PRAD; (N) READ; (O) SARC; (P) SKCM.
Figure 8

The expression level of CBLL1 is related to tumor immune markers. (A) immunostimulators; (B) immunoinhibitors; (C) MHC molecules; (D) checkpoints.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.docx