Sea Water Intrusion in Kaligawe Semarang Based on Resistivity Data

Agus Setyawan1, Najib2, Yoga Aribowo2, Agnis Trihadini3, Dhana Hastuti4, Fitra Ramdhani4, Fajar Waskito4, Ganap Febrika4 and Galang Virgiawan5

1 Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Tembalang, Semarang, 50275, Indonesia.
2 Department of Geology, Faculty of Engineering, Diponegoro University, Tembalang, Semarang, 50275, Indonesia
3 Graduate Student Institute of Seismology and Volcanology, Faculty of Sciences, Kyushu University, 2-5643-29, Shin`yama, Shimabara, Nagasaki, 855-0843, Japan
4 Undergraduate Student in Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Tembalang, Semarang, 50275, Indonesia
5 Department of geology, Faculty of Engineering, Diponegoro University, Tembalang, Semarang, 50275, Indonesia

agus.setyawan@undip.ac.id

Abstract. Semarang is a city on the north coast of the island of Java, Indonesia and it is lowland areas have experienced sea water intrusion. One of interesting area is Kaligawe which located at Eastern part of Semarang. Kaligawe has big population and industrial and it need water consumption. Excessive extraction of groundwater will be resulting height difference surface ground water to the surface of the sea water due to sea water intrusion. Electric resistivity method was used to detect for salt water intrusion. Dipole-dipole configuration was applied with 3 lines to get current, potential difference, and apparent resistivity from the field. 2D model has presented using Res2Dinv to get the true resistivity and the depth of each layer. A calibration of the model was conducted based on geological information. Result showed the subsurface area has 4 layers: sandstone, sand, siltstone and clay. Moreover the sea water intrusion occurs in the Northwest, East and Southern part of the study area.

1. Introduction
Kaligawe, which is located in Eastern Semarang Municipal Central Java Indonesia, is a village consisted by two main areas. The two are residential area and industrial zone. The population of Kaligawe is 12.107 of people [1]. The high population and industrial activities in that zone cause a rising in ground water consumption. Some researches show fact that withdrawing ground water excessively may induce gap between the height of surface ground water and the surface of sea water then results saline substrate of sea water, such as Chloride, infiltrates into the ground water[2].

Geographically, Kaligawe lies on the North sea-coast of Java Island. Highly water usage in the coastal area leaves empty holes or pores in aquifer rocks, next it is potentially stimulate sea water intrusion[3][4]. Sea water infiltration into aquifer layer in the seaboard have been main attention since iy is generally a pollutant in freshwater [5]. Thus, understanding of sea water intrusion is urgently required for water and coastal resources management [6]. The intrusive movement of sea...
water basically is process of salt water displacing under groundwater surface by passing aquifer layer that happens in land or in near sea region [7].

Hence the upon reasons inspired us to conduct research, which objective to determine the depth of salt water intrusion in Kaligawe based on resistivity data. Dipole-dipole configuration of the resistivity method were utilized to determine resistivity of each rock layer.

2. Geology and hydrogeology information

2.1. Geological setting
Semarang is basically underlain by two different geological units: the sedimentary rocks of the volcanic Damar formation in the South mainly consisting of tuffaceous sandstone and volcanic breccia and alluvial sediments in the North, which basically consist of sand and clay [8]. Figure 1 presented the stratigraphic setting of Kaligawe is dominant of Alluvium (Qa). The Alluvium is deposit of coastal plain, river and lake. Coastal plain consists generally of clay, sand and some mixture with 50 m or mor of thickness. River and lake deposits contains pebble, cobbles, clay and silt.

Damar Formation (Qtd) consists of Tuffaceous sandstone, conglomerate, volcanic breccia. Tuffaceous sandstone has color of brownished yellow with smooth to coarsed grain, the composition is mafic, feldspar, and quartz mineral with tuffa as the base mass and intermediate porosity. Conglomerate is colored by brownished-yellow to blackish, and has component of andesite, basalt, pumice, sized 0.5 – 5 cm, middle rounded to perfect rounded, and probably fragile. Volcanic Breccia seems to be sedimented as lahar, blackish gray color and has component of andesite and basalt, sized 1-20 cm, middle pointed-rounded and looked solid.

![Figure 1](image)

Figure 1. Geology map of research area.

2.2. Hydrological setting
Water potency in Semarang municipality is supplied from rivers which stream across Semarang, such as Kali Garang, Kali Pengkol, Kreo, Banjir kanal Timur, Kali Sringin, Kali Kripik, Kali
Dungadem and the others. Kali Garang is the main river that flows crossing Mount Ungaran’s valleys, along the swiftly current of curved streamline [9]. Aquifer in coast of Semarang generally is alluvial sedimentation products and Kali Garang delta, that has variety depth from 60 meter to 90 meter, mainly in West Semarang District and more than 90 meter both in East Semarang District and North Semarang District [2].

3. Method

Resistivity method is measurement technique of geophysics that uses resistivity or electricity characteristic of rocks to observe subsurface of earth condition [10]. Measurement is conducted in the land surface by injecting electricity current (in milliAmpere) along two current electrodes (C1 and C2) then gaining potential difference (in milliVolts) from two potential electrodes (P1 and P2).

The result of that quantify procedure informs about resistivity distribution in the subsurface. Resistivity value is determined from resistivity substance of each rock. Electrical conduction of rock is defined from electrolite distribution that occupies its rock pores [10]. The inner part of subsurface structure can be obtained by gradually making the space between each electrode, current and potential, wider [11].

There are positive correlation between space electrode and deep current penetrations. The widest electrodes space could be get a deep current penetration, hence the physical characteristics of deeper rock layer can be analyzed. Subsurface resistivity is linked to some geological parameters, such as mineral content, fluid, porosity and water saturation degree of rock[12]. The field data consists of electric current value (I) and electric potential or voltage (V) and leaves apparent resistivity (ρa) which is countable by this formula (1) [12].

\[
ρ_a = k \frac{V}{I}
\]

which ρa is apparent resistivity in Ohm, k is geometric factor relied on electrodes configuration. I is the injected electrical current while V is measured potential difference. adalah beda potensial yang terukur. Apparent resistivity has been considered as resistivity of fictional homogenous medium that equivalent to the observed layered medium[12]. The configuration were applied is dipole-dipole as presented in Figure 2.

Figure 2. Dipole-dipole configuration (n =1,2,3,...) [13]
\[K_d = (n+1)(n+2)a \]
(2)

With \(K_d \) is konstanta of dipole-dipole configuration, \(a \) is the space between two same electrodes while \(na \) is the space of potential electrode and current electrode and \(n \) should be integers [13]. For getting various depth, \(n \) should be varied, the wider \(n \) the deeper depth that can be acquired. Sensitivity level of dipole-dipole configuration range is influenced by the number of \(a \) and the variety of \(n \) [14].

The geoelectric observation was done on 26 April to 09 June 2015 as three point measurement; North Western, Easten and Southern part represented of Kaligawe area as Figure 3.

![Figure 3](image)

Figure 3. The geoelectric point measurement; GL-01, Gl-02 and GL-03.

4. Result and discussion

4.1. GL-01 point measurement

GL-01 were located in the North Western of research area, shows specific resistivity range of 4 rock layers as stated in Figure 4. The first layer has resistivity 2.07 - 3.98 Ωm and at 0-35 meter of depth is considered to be sea water intrusion. We described the depth at 35-50 meter in second layer as clay stone, then in the deeper part at 50-70 meter is sandsilt while sandstone as the forth layer at 70-80 meter of depth.
4.2. GL-02 point measurement

The result of GL-02 which was located in Eastern area, has specific resistivity range and similarity with the GL-01 in the number of layers as presented in Figure 5. In the first layer, we considered a 64 - 12.6 Ωm as saline intrusion happened in sandstone at 0 - 11.6 meter below surface. Subsequently the following layers specifications including each depth are sandsilt stone at 4-21 meter, siltstone at 22-29 meter and clay at 29-40.3 meter.

4.3. GL-03 point measurement

Gl-03 was located in the southern part of research area, we can see the modeling result in Figure 5. Succeeding of four layers, the top layer has sandstone with 4.78 – 13.2 Ωm of resistivity and depth range 0 - 11.6 meter, where the intrusion zone takes place . The three next layers including their resistivity values are sandsilt with 22.2 – 37.2 Ωm, siltstone with 62.3 – 104 Ωm and clay as the last with 175 Ωm.

Figure 4. 2-D resistivity model of GL-01 which located in the North Western part of research area.

Figure 5. 2-D resistivity model of GL-02 which located in the North Western part of research area.

The reason why we deduced the first layer as the place of sea water intrusion is caused by the existence of electrolyte solution comes from sea water. This condition leads to fine conductivity, thence it can transfer electricity finely. Low value in resistivity supports above statement because the contrary correlation between resistivity and conductivity. If the resistivity value of rock is lower then its conductivity will be higher resulting the ease in passing electricity. Moreover, reverse situation will be happened when the resistivity is low so the conductivity will be high.

Figure 5. 2-D resistivity model of GL-02 which located in the North Western part of research area.
The other side we conducted the chloride contents in several well as presented in Table 1. Several point has a big chloride content such as S-1, S-3 and S-7 which value of 819 -1799 mg/l. Based on the Ministry of Health regulation No. 492 Year 2010 the water can be drunk if chloride contents less than 250 mg/l. Moreover according to adhoc committee of salt water intrusion Jakarta, 1986 the water contain 500 – 2000 mg/l chloride has contaminated.

Table 1. A table of chloride contents in research area.

Code	Longitude	Latitude	Chloride (mg/l)
S-1	439611	9230051	819.65
S-2	438899	9230209	92.15
S-3	437236	9231090	1799.35
S-4	439334	9230988	47.046
S-5	438628	9230379	153.26
S-6	439080	9228990	1697.5
S-7	439390	9229599	89.24

5. Conclusion
Based on the result analyses to investigate sea water intrusion, we conclude that the areas, where have been damaged by this, are in the North Western part, Eastern part, and Southern part of Kaligawe. This conclusion is supported by the existence of low resistivity range in the subsurface between 2.07-13.2 Ωm at 0-35 meter at deepness. Moreover in several area the water can not to drink caused the high chloride contained.

Acknowledgement
We thankfully appreciate for any supports from Department of Physics Diponegoro University’s members, helped us in data measurement, processing until result discussion. Research has supported by PNBP DIPA Diponegoro University No: SP DIPA-042.01.2.400898/2026, 7 Desember 2015, Fiscal year 2016.

References
[1] Badan Pusat Statistik 2014 Profil Kependudukan Kota Semarang 2014, Report of Statistics Indonesia, Semarang
[2] Suhartono E, Purwanto and Suripin 2013 Kondisi Intrusi Air Laut Terhadap Air Tanah Pada Akuifer di Kota Semarang, Proceeding of National Seminar Pengelolaan Sumber Daya Alam dan Lingkungan Semarang
[3] Pacheco 2006 Delimitation Of Ground Failure Zones Due To Land Subsidence Using Gravity Data And Finite Element Modelling In The Queretaro Valley Mexico Engineering Geology Vol. 84 143-160
[4] Qahman K A and Zhou Y 2001 Monitoring of Sea water Intrusion in The Gaza Strip, Palestine, Proceeding of First International Conference on Saltwater Intrusion and Coastal Aquifer Monitoring, Modeling and Management Essaouira
[5] Batayneh A T 2006 Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: a case study of the eastern Dead Sea coastal aquifers Jordan Hydrogeology Journal Vol 14, 1277-1283
[6] Ginzburg A dan Levanon A 1976 Determination of a saltwater interface by electric resistivity depth soundings Hydrogeological Sciences Vol. 21 pp 561-568
[7] Nisa K, Tony Y and Sugeng W 2012 Aplikasi Metode Geolistrik Tahanan Jenis untuk Menentukan Zona Intrusi Air Laut di Kecamatan Genuk Semarang Journal Berkala Fisika, Vol. 15 No.1 pp 7-14
[8] Thanden 1996 Geological Map Of The Magelang And Semarang Sheets Java, Second Edition (Bandung: Geological Research and Development Centre)
[9] Marsudi 2001 Prediksi Laju Amblesan Tanah Di Dataran Alluvial Semarang Provinsi Jawa Tengah, ITB, Bandung
[10] Telford W M Geldart L P and Sherif R E 1990 Applied Geophysics Second Edition Cambridge University Press Cambridge
[11] Broto S and Afifah R S 2008 Data Processing of geoelectric Schlumberger configuration, *Journal Teknik* Vol 29 No 2

[12] Loke M H 2000 *Electrical Imaging Surveys For Environmental And Engineering, Studies A Practical Guide To 2-D and 3-D Surveys*, Stanford University Press

[13] Reynolds J M 1997 *An Introduction to Applied and Environmental Geophysics* (England: John Wiley & Sons Ltd. England)

[14] Waluyo and Hartantyo E 2000 *Theori and Application of resistivity* Laboratorium of Geophysics, Gadjah Mada University Yogyakarta