Gingipain R1 and lipopolysaccharide from *Porphyromonas gingivalis* have major effects on blood clot morphology and mechanics

J Massimo Nunes
Stellenbosch University

Tristan Fillis
Stellenbosch University

Martin J P Age
Stellenbosch University

Chantelle Venter
Stellenbosch University

Ophelie Lancry
Horiba Instruments Inc

Douglas B Kell
University of Liverpool

Ursula Windberger
Medizinische Universitat Wien

Ethesia Pretorius (✉ resia.pretorius@up.ac.za)
Stellenbosch University https://orcid.org/0000-0002-9108-2384

Original investigation

Keywords: Gingipain R1, lipopolysaccharide, Porphyromonas gingivalis, Thromboelastography, Rheometry, Confocal, Scanning electron microscopy, Raman

Posted Date: April 21st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-19959/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Frontiers in Immunology on July 24th, 2020. See the published version at https://doi.org/10.3389/fimmu.2020.01551.
Abstract

Background: Porphyromonas gingivalis and its inflammmagens is associated with a number of systemic diseases, such as cardiovascular disease and type 2 diabetes (T2DM). The proteases, gingipains have also recently been identified in brains of Alzheimer's disease patients and in blood of Parkinson's disease patients. Bacterial inflammmagens, including lipopolysaccharides (LPSs) and various proteases in circulation may drive systemic inflammation.

Methods: Here, we investigate the effects of the bacterial products LPS from Escherichia coli and Porphyromonas gingivalis, and also the P. gingivalis gingipain (recombinant P. gingivalis gingipain R1 (RgpA)), on clot architecture and clot formation in whole blood and plasma from healthy individuals, as well as in purified fibrinogen models. Structural analysis of clots was performed using confocal, scanning electron microscopy and AFM-Raman. We use thromboelastography (TEG) and rheometry to compare the static and dynamic mechanical properties of clots.

Results: We found that these inflammmagens may interact with fibrin(ogen) and this interaction causes anomalous blood clotting.

Conclusions: These techniques, in combination provide insight into the effects of these bacterial products on cardiovascular health, and particularly clot structure and mechanics.

Background

Bacterial involvement in inflammatory conditions, via the occurrence of leaky gut (gut dysbiosis) and periodontitis and/or gingivitis, are accompanied by the shedding of cell wall components such as lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs), and these molecules are known to be highly inflammmagenic [1–7]. The liberation of free iron is often an accompaniment to inflammatory conditions, and we have brought these ideas and data together as the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis of chronic inflammmatory and cardiovascular diseases [5]. Many non-communicable diseases have been associated with the presence of periodontitis, gut dysbiosis, bacterial translocation via the gut and increased levels of the bacterial inflammmagen, lipopolysaccharide (LPS), for an overview see [5].

Diseases where bacterial involvement has been implicated, include Alzheimer's disease (AD) where the development and progression has also been linked to periodontitis [8–15]; as well as in and Parkinson's disease (PD) [13, 16]. Entrance of bacteria into the body, might be via gut dysbiosis and impaired gut health is also present in both AD [17, 18] and PD [19–22]. Type diabetes (T2DM) is also associated with bacterial translocation via the gut [23–25]. LPS presence has also been noted in the central nervous system of patients with Alzheimer's disease (AD) [26–28] or in their blood [29], and blood of T2DM [30, 31], Parkinson's disease (PD) [29], sepsis [32, 33], Rheumatoid Arthritis [34] and psoriasis vulgaris [35].
Porphyromonas gingivalis is a well-known bacterium that causes periodontitis and gingivitis, and its inflammasens have been associated with the development of various inflammatory conditions [8, 36–39]. P. gingivalis and its inflammasens is associated with cardiovascular disease T2DM [40], while whilst T2DM is known to exacerbate periodontitis [41]. Except for the presence of its cell wall inflammasen LPS, P. gingivalis also produces a unique class of cysteine proteinases, termed gingipains. Live P. gingivalis, as well as its LPS are powerful peripheral and intracerebral inflammatory signaling initiators [42]. LPS from P. gingivalis they acts via the Toll-like Receptor 4 (TLR4) signaling pathway [43]. Recently, Dominy and coworkers, provided clear evidence that P. gingivalis, and more specifically, it protease, gingipains, play a fundamental role in the development of AD. They discovered gingipains in the brain lesions of AD patients [8]. Gingipains consist of Arg-gingipain (Rgp) (RgpA and RgpB), and Lys-gingipain (Kgp), that exist in both cell-associated and secreted forms which play a central role in the virulence of this organism [44]. Gingipains cleave proteins towards the C-terminal after arginine or lysine residues and are classified accordingly: gingipain R is arginine-specific and gingipain K is lysine-specific. This proteolytic activity of gingipains, play a crucial role in the physiology of the bacterium, where it is essential for obtaining nutrients via protein degradation, for adherence to host surfaces and for further colonisation [45].

By definition, inflammation is normally accompanied by the production of inflammatory cytokines, such as interleukins (ILs) IL1β, IL6 and TNF-α, some bacterial inflammasens such as LPS are well characterised, and more recently implicated in inflammatory conditions, but overall, little is known on how bacterial inflammasens act as biomarkers in the various inflammatory conditions [5, 32]. Inflammation is also an almost inevitable accompaniment of cardiovascular disease, but a much less recognized feature of inflammation is coagulopathies [46]. We recently discovered that, in part, these coagulopathies were represented by the clotting of blood into an anomalous form, and that this can be catalyzed by miniscule amounts of LPS (from E. coli) or LTA (10^{-8} mol/mol fibrinogen) [2, 47]. Gingipains are also known to exert fibrin(ogen)olytic activity [48, 49]. Proteases of P. gingivalis have various isoforms, and gingipain R have wo of specific interest, RgpA and RgpB [50]. The catalytic alpha chain is present as a monomer (RgpA) while RgpB lacks the coding region for the adhesion domain present in RgpA, and yields only monomeric forms (RgpB) [50]. When present in circulation, both RgpA and RgpB can interact and cleave plasma proteins, where RgpA and RgpB cleave the fibrinogen Aα-chain [51]. The Bβ-chain is digested more rapidly by RgpA and yields a different product from that of RgpB [51]. RgpS (another isoform of gingipains) were shown to activate both coagulation factor IX and X [52, 53]. RgpS also processes prothrombin into thrombin in a time- and dose-dependent manner [54].

Because of the findings of Dominy and co-workers [8], where they detected gingipains in AD brain lesions, and our interest on how bacterial inflammasens interact with clotting proteins, we searched for the presence of gingipains in the serum of patients with PD [55]. We detected RgpA from P. gingivalis in PD plasma using fluorescent antibodies, and found significantly increased levels of this protease compared to age-matched controls.

Because there are numerous reports that P. gingivalis and its inflammasens are important contributory agents in neuroinflammatory, as well as cardiovascular conditions, including T2DM, the question now
arose as to how gingipains and LPS from *P. gingivalis* interact with circulating plasma proteins. We therefore seek to get specific answers with regards to their effects on both morphology and mechanics of clots. Therefore, in the present study, we investigate the effects of the bacterial products LPS from *E. coli* and *P. gingivalis*, as well as the gingipain RgpA *P. gingivalis* (recombinant *P. gingivalis* Gingipain R1 (RgpA)), on clot architecture and clot formation in whole blood and plasma from healthy individuals, as well as in purified fibrinogen models. Structural analysis of clots was performed using confocal, scanning electron microscopy and AFM-Raman. We use thromboelastography (TEG) and rheometry to compare the static and dynamic mechanical properties of clots. These techniques in combination provide insight into the effects of these bacterial products on coagulation, and particularly clot structure and mechanics. We found that these inflammasens may interact with fibrinogen cause blood to clot abnormally (anomalous clotting). These results are in line with our previous findings of LPS from *E. coli*, and we further show here that LPS from *E. coli* influences the clot structure of purified fibrinogen ([2, 47]). Furthermore, understanding how bacterial inflammasens interact with plasma proteins, when in circulation, may result in a better understanding of clot and coagulation pathologies in inflammatory conditions. Ultimately, we may find solutions to treat pathological clotting, driven by bacterial inflammasens, as pathological clotting is an important co-morbidity to most inflammatory conditions.

Materials And Methods

Study design and ethical statement

The present study uses a cross-sectional study design. Ethical clearance was obtained from the Health Research Ethics Committee (HREC) of Stellenbosch University, South Africa (N19/03/043) and from the Ethics Committee of the Medical University Vienna, Austria (EK1371/2015). Written informed consent was obtained from all participants followed by whole blood sampling. Study participants received a unique number that was used to guarantee anonymity throughout this study, and researchers followed Good Clinical Practice and guidelines from the ethics committee.

Participants and blood collection

Healthy volunteers (N=39; 23 females, 16 males; median age [interquartile range]: 42 [21 – 58]) were recruited for this study. The inclusion criteria for healthy volunteers were: non-smokers, absence of infection, no use of anti-inflammatory or chronic medication, and no previous history of thrombotic disease. Blood was drawn in serum-separating, EDTA and sodium citrate tubes by a phlebotomist. After the blood was drawn, whole blood samples were allowed to rest for 30 minutes at room temperature before further processing for experimentation. Two plasma derivatives were created. Platelet poor plasma (PPP) was created by centrifuging whole blood at 3000g for 15 minutes. The plasma fraction was collected and stored at -80°C until experimentation. For rheometry analysis, platelet-depleted plasma (PDP) was created by centrifuging whole blood at 325g for 8 minutes. After removal of the surface layer,
the top two-thirds of this plasma were collected and centrifuged a second time at 2310g for 30 minutes, and the top two-thirds ultimately used for experimentation.

Purified fibrin(ogen) clot model

We used three purified fibrin(ogen) clot models: (1) fluorescent fibrinogen conjugated to Alexa Fluor™ 488 (ThermoFisher, F13191), (2) non-conjugated purified fibrinogen (Sigma, F3879) and (3) non-conjugated purified fibrinogen depleted of von Willebrand factor, plasminogen and fibronectin (CoaChrom, HFG3).

Scanning Electron Microscopy

Platelet poor plasma with LPS

A scanning electron microscope was used to view the ultrastructural changes of clots. PPP was exposed to LPS from *P. gingivalis* (n=10; 10 ng·L⁻¹; 30 min) before creating a plasma clot on a 10 mm glass cover slip with the addition of thrombin (7 U·mL⁻¹). Matching naïve clots were prepared with addition of thrombin. The samples were then washed in PBS followed by a fixation step of 4% formaldehyde and secondary fixation in 1% osmium tetroxide (OsO₄), with PBS wash steps in between. This was followed by serial dehydration in ethanol and hexamethyldisilazane (HMDS). The samples were coated with carbon and viewed with a Zeiss MERLIN FE-SEM with the InLens detector at 1kV. All SEM images (3 images per clot) were analysed using ImageJ where fibrin fibre width was assessed for each image using a grid overlay to accurately record these measurements. The central fibres in 12 squares on each image were measured.

Purified fibrinogen with LPS and RgpA

Purified fibrinogen (CoaChrom) was incubated with the following substances and prepared in technical triplicate following the above protocol, with the exception of using 0.15 U·mL⁻¹ alpha-thrombin (CoaChrom, HF2A) to create the clots. Samples were viewed as above.

- RgpA at 20 µg·L⁻¹
- LPS from *gingivalis* at 5 ng·L⁻¹, 20 ng·L⁻¹, and 20 µg·L⁻¹
- LPS from *coli* O111:B4 at 5 ng·L⁻¹, 20 ng·L⁻¹, and 20 µg·L⁻¹
- Combination of RgpA (20 µg·L⁻¹) and LPS *gingivalis* (20 µg·L⁻¹)

Confocal Microscopy on PPP with LPS
Platelet poor plasma was exposed to LPS from *P. gingivalis* (n=10; 10 ng·L\(^{-1}\); 30 min) and clotted with thrombin (7 U·mL\(^{-1}\); South African National Blood Service) on a microscope slide to create a fibrin fibre clot. Exposed clots were compared to their matched naïve samples by visualising intrinsic fluorescence on a Zeiss LSM 780 confocal microscope with a Plan-Apochromat 63x/1.4 oil DIC M27 objective using. Clot samples were excited by the 488nm laser with emission detected between 508-570nm and by the 561nm laser with emission detected between 593-700nm using. These settings were chosen after scanning the samples with the hyperspectral mode of the confocal with each laser and determining the best emission range for autofluorescent signal in these samples. The area coverage of the autofluorescent signal in the confocal images was analysed using ImageJ, with differences in the autofluorescent signal taken to reflect differences in the structure of the clot. Thresholding between 26 and 255 on the greyscale provided a consistent analysis of the images (3 images per clot). The percentage fluorescent area to total area of each image was compared between control and LPS-exposed groups.

Confocal Microscopy with Airyscan on Fluorescent Fibrinogen with LPS

Fluorescently labelled Alexa Fluor™ 488 purified fibrinogen (2 mg·mL\(^{-1}\)) was used to evaluate anomalous clotting, upon the addition of *P. gingivalis* LPS to the fibrinogen (100 ng·L\(^{-1}\); 30 min). Samples were clotted with thrombin (7 U·mL\(^{-1}\)) on a microscope slide and viewed with the Zeiss MP880 confocal microscope in Airyscan mode. Exposed clots were compared to their matched naïve samples by exciting the fibrin fibres with the 488nm laser and collecting the emission with band pass filters 420-480nm and 495-550nm.

Confocal Microscopy on Fluorescent Fibrinogen with LPS

Fluorescently labelled Alexa Fluor™ 488 purified fibrinogen (2 mg·mL\(^{-1}\)) was exposed to *E. coli* LPS (20 ng·L\(^{-1}\); 30 min; Sigma, L2630) or *P. gingivalis* LPS (20 ng·L\(^{-1}\); 30 min). Naïve and LPS-exposed samples were clotted with thrombin (7 U·mL\(^{-1}\)) on a microscope slide and viewed on a Zeiss LSM 780 confocal microscope with a Plan-Apochromat 63x/1.4 oil DIC M27 objective. Images were captured in lambda mode with the 488nm laser and the GaAsP detector, which measures fluorescent emission between 410 and 695 nm across 32-channels, at 8.9 nm intervals. Multidimensional images were acquired as z-stacks and processed as maximum intensity projections in the ZEN software.

Correlative Atomic Force Microscopy and Raman Microspectroscopy on Fibrinogen with LPS
AFM-Raman was used to analyse the potential fibre structure changes in purified fibrinogen (Sigma) upon exposure to LPS from *P. gingivalis* (100 ng·L⁻¹; 30 min). Purified fibrinogen was clotted on 10 mm gold-coated coverslips (HORIBA Scientific, France) with thrombin (7 U·mL⁻¹). Naïve clots were prepared with addition of thrombin. The glass coverslips were allowed to dry for about 2 minutes, before being submerged in PBS, followed by fixation in 4% formaldehyde and 1% osmium tetroxide, with PBS wash steps in between. Samples were dehydrated in increasing grades ethanol, before an ultimate HMDS drying step.

The characterisation of the samples was performed with a LabRAM Nano. This multi-analysis platform consists of a Raman microspectrometer (LabRAM HR Evolution, HORIBA) combined with an AFM (SmartSPM, HORIBA Scientific) for chemical and physical analysis of the same samples area. The system is based on a reflection configuration capable of approaching the objective lens (Mitutoyo, 100× magnification, NA=0.7, 20 mm working distance) from top illumination to the sample surface. Incident light is focused through the objective lens onto the apex of the AFM tip probe. In this study, micro-Raman images were measured with the 473 nm laser as the excitation source (3mW maximum at the sample). Initially, three different wavelengths (473 nm, 532 nm and 633 nm) were tested. It was determined that the 473 nm was the best choice, and the Raman spectrum was measured in one window. The LabRAM Nano is equipped with an Edge filter to cut the Rayleigh signal so that the Stokes signal could be measured. Raman images were collected from 10 µm² regions with 0.3 µm pixel steps. Acquisition time of each Raman spectrum is 30 seconds (one spectrum/image pixel). Correlated AFM images were obtained in AC mode using an ACCESS-NC Silicon probe (k = 25-95N/m, f = 200-400kHz, AppNano, US). The shape of the probes allows a direct visualisation of the tip apex, which permits correlation with the excitation Raman. AFM images were acquired from 20×10 µm areas (300×150pts) for the control sample and 20×20 µm areas (300×300pts) for the experimental sample.

Viscoelastic Analysis

The Thrombelastograph® (TEG®) 5000 Hemostasis Analyzer (Haemoscope Corp) was used to measure the viscoelastic properties of blood, with the measured parameters listed in Table 1. PPP samples were exposed to LPS from *P. gingivalis* (n=10; 10 ng·L⁻¹; Sigma, SMB00610) or RgpA (n=30; 500 ng·L⁻¹; Abcam, ab225548) for 30 minutes, with exposed samples compared to their matched naïve samples. Prepared PPP was placed in a TEG cup, together with 0.01 M calcium chloride (CaCl₂) to activate the coagulation process. The process was allowed to run until maximal amplitude (MA) was reached.
Table 1: TEG® parameters (modified from [56]).

Thromboplastic parameters	Description
R: Reaction time (minutes)	Time of latency from start of test to initial fibrin formation (amplitude of 2 mm); i.e. initiation time
α angle: (slope between the traces represented by R-time at 2mm and K-time at 20mm) (degrees)	The angle measures the speed at which fibrin build up and cross linking takes place, hence assesses the rate of clot formation; i.e. thrombin burst
MA: Maximal amplitude (mm)	Maximum strength/stiffness of clot. Reflects the ultimate strength of the fibrin clot; i.e. overall stability of the clot
MRTG: Maximum rate of thrombus generation (Dyn·cm⁻²·s⁻¹)	The maximum velocity of clot growth observed or maximum rate of thrombus generation using G, where G is the elastic modulus strength of the thrombus in dynes·cm⁻²
TMRTG: Time to maximum rate of thrombus generation (minutes)	The time interval observed before the maximum speed of the clot growth
TTG: Total thrombus generation (Dyn·cm⁻²)	The clot strength: the amount of total resistance (to movement of the cup and pin) generated during clot formation. This is the total area under the velocity curve during clot growth, representing the amount of clot strength generated during clot growth

Rheometry of WB and PDP with LPS and RgpA

Whole blood (WB) (n=2) and PDP (n=2) were subjected to rheometry analysis on a Physica MCR 301 rheometer (Anton Paar, Austria) equipped with a Peltier controlled stainless steel sand-blasted cone-plate system (diameter 50 mm), mounted by a tempered hood and an evaporation blocker filled with silicon oil. The Rheocompass™ software (v1.22, Anton Paar, Austria) was used for data acquisition.

Samples were prepared by exposing blood from control donors for 1 hour to either (1) LPS from *E. coli* (20 ng·L⁻¹), (2) LPS from *P. gingivalis* (20 ng·L⁻¹ or 20 µg·L⁻¹) or (3) RgpA (100 ng·L⁻¹ or 250 ng·L⁻¹). Matching control runs were diluted with the same volume of vehicle as for the exposed samples. Experiments were run in technical triplicate.

Whole blood and plasma were clotted by addition of 0.01M CaCl₂ and clots were generated in the cone-plate geometry. A constant sinusoidal strain amplitude (0.1 %, 1.5 Hz) was set to observe the process of clot formation with minimal interference. These time sweeps were conducted until a G’ plateau was reached, at which point an amplitude sweep test was started. The amplitude sweep tests were stress-controlled with a logarithmic ramp from 1 to 5000 Pa at constant frequency (1 rad s⁻¹).

The rheometry parameters discussed in this paper are given in Table 2. During the amplitude sweep tests, we continuously monitored the resulting strain (γ) of the material, which is the response of the clot to the applied sinusoidal stress (τ). The shift of the phase angle (δ) allows the calculation of the storage
modulus (G’) by multiplying the stress-strain relationship (τ/γ) with \(\cos(\delta)\). G’ serves as a measure of the reversibly stored and thus recoverable deformation energy and represents clot stiffness. As long as G’ is maintained while the shear stress increases, the clot remains in its linear viscoelastic range (in its equilibrium) and experiences only elastic deformation. The clot can return into its initial form when the sinusoidal stress input crosses the 0-point. This can be also seen in the output waveform signal, which remains sinusoidal. With the continuous increase of shear force, a deviation from the initial G’ value and a change in the output waveform signal occurs, which marks the onset of the non-linear response. From this shear stress onwards, the clot cannot return into its initial equilibrium state since the stronger deformation does not allow full recovery. The borderline between the linear and the non-linear behaviour marks the elastic limit of the clot. As stresses become higher, non-linearity increases until the clot breaks. Since G’ can be a misleading measure of the elastic modulus of plastically deforming clots, because other harmonic components may also store energy (see \([58]\), we applied the model of Ewoldt and coworkers \([59]\) integrated in the Rheocompass software to calculate clot compliance out of Bowditch-Lissajous plots using an approach that is geometrically motivated \([60]\). The minimum-strain compliance shown here \((J’_M)\) reflects the tangent modulus at zero instantaneous stress, whereas the large-strain compliance \((J’_L)\) reflects the secant modulus at maximum stress (Figure 1). At equilibrium (linear clot behaviour), both compliances merge, whereas out of equilibrium they diverge (non-linear behaviour). Certain points on the curves indicate certain processes in the network, e.g., fibre bending and stretching out network inhomogeneities at intermediate shear stresses, stretching of the clot as a whole in shear direction at higher shear stresses, and weakening or even breaking of network points prior to complete breakup at highest-most shear stresses. Figure 1 shows these suggested regions. We propose that not only an upshift or downshift of the curves – indicating higher or lower compliances – must be considered to classify clots, but also changes in the shape of the compliance curves as they indicate specific clot behaviours. For example, the stress needed to fully stretch out the clot as a whole indicates the end of microscopic processes within the fibre network. Only if all branch points and inhomogeneities are aligned to the force lines, the clot stretches as a whole, which is referred to as macroscopic shear stiffening.

Rheometry parameter	Description
G’LVE (linear viscoelastic range)	Stability of the clot at rest – this means at equilibrium conditions. Elastic behaviour (reversible deformation) of the clot
Elastic limit	Start of nonlinear deformation. The clot cannot relax into its original state beyond this critical shear stress
Breakup stress	Shear stress needed to either break the clot apart or break it from the rheometer plate to which it adheres

Table 2: Rheometry parameters.

Statistical Analysis

Statistical analyses were performed on GraphPad Prism 7.04 with values of significance stated at \(p<0.05\). All data were subjected to Shapiro-Wilks normality tests. A paired T-test was performed on parametric
data with the data expressed as mean ± standard deviation, whereas the Mann-Whitney U test was used on unpaired non-parametric data and the Wilcoxon matched-pairs signed rank test was used on non-parametric data that was paired with the data expressed as median [Q1 – Q3] (all two-tailed).

Results

Scanning Electron Microscopy of PPP Clots with LPS

The difference in PPP clot ultrastructure in naïve clots (Figure 2A–C) and in the presence of *P. gingivalis* LPS (Figure 2D–F) was evaluated. Statistical analysis of fibrin fibre thickness showed a significant (p<0.0001) increase in fibre width between naïve (0.19 µm [0.14 – 0.25]) and LPS-exposed (0.27 µm [0.2 – 0.37]) samples.

Scanning Electron Microscopy of Purified Fibrinogen Clots with LPS and RgpA

The effect of LPS from *P. gingivalis* and *E. coli* as well as RgpA on the network structure of pure fibrin fibre networks was examined by SEM (Figure 3). Addition of either LPS from *E. coli* or *P. gingivalis* resulted in greater observations of fused and thicker fibres. Fibre width was statistically greater (p<0.0001) in clots exposed to LPS from *P. gingivalis* (0.22 µm [0.17 – 0.33]) compared to naïve clots (0.18 µm [0.13 – 0.22]). Previously, we reported the same changes in fibre thickness for LPS from *E. coli* [2]. Exposure to RgpA led to various changes in the network architecture of fibrin clots. Most fibres were observed as looser networks of clumped fibres, sporadically distributed throughout the SEM preparation and with disruptions to the fibre structure. In the few areas of confluent fibres, some breaks and disruptions to the network could be noted. The combination of RgpA and LPS from *P. gingivalis* seemed to cause breaks and disruptions in the regular fibre networks.

Confocal Microscopy of PPP Clots with LPS

Figure 4 shows representative micrographs of the autofluorescence signal in control and LPS-exposed clots for the 488nm and 561nm lasers. The total autofluorescent area of the clots after LPS exposure (1.01% [0.8 – 1.4]) was significantly (p<0.001) increased compare to the control (0.16% [0.067 – 0.31]). Changes in the intrinsic optical properties of fibrinogen might reflect changes to fibrinogen) [61].

Confocal Microscopy on Fluorescent Fibrin(ogen) Clots with LPS

We also investigated protein misfolding in fluorescent fibrinogen using Airyscan technology (Zeiss MP880), after addition of LPS from *P. gingivalis*. The control fibrin(ogen) clot (Figure 5A) showed typical
netted fibrin fibres, whereas the LPS-exposed samples (Figure 5B – C) show areas of intense fluorescence and has a more densely formed fibrin network. Additionally, confocal z-stacks (Zeiss LSM 780) of fibrinogen exposed to *E. coli* and *P. gingivalis* also illustrated changes in the fibrinogen network structure. The control clots (Figure 5D) showed loose networks of fibres, whereas LPS-exposure (Figure 5E – F) show much denser fibres networks, a feature of hypercoagulation.

Correlative Atomic Force Microscopy and Raman Microspectroscopy on Fibrinogen with LPS

Correlative AFM and Raman images were obtained from naïve and LPS-exposed samples (Figure 6). The amide I intensity Raman band monitoring (Figure 6B and D) showed a higher Raman signal intensity on the fibres and perfect correlation with the AFM topography. The comparison between the average spectra from the two samples (after C-H stretching band intensity normalisation) highlights some slight differences as band broadening, band position shift and intensity ratio changes, which could indicate a possible β-sheet unfolding in the LPS-exposed samples (Figure 6E).

Thromboelastography of PPP with LPS and RgpA

Table 3 shows the TEG results for PPP exposed to LPS from *P. gingivalis*, compared to matched naïve samples. Significant changes are seen in the R-value, α angle and TMRTG values, indicating accelerated clot formation and fibre cross-linking. This suggests that LPS-exposed clots forms faster, which is a feature of hypercoagulability.

Parameter	Control	LPS	p-value
R	13.80 ± 2.73	10.04 ± 2.73	0.02 (*)
α angle	55.61 ± 5.33	60.28 ± 3.16	0.04 (*)
MA	22.75 ± 3.36	21.05 ± 4.94	0.3
MRTG	2.73 ± 0.84	3.28 ± 0.76	0.09
TMRTG	15.74 ± 3.26	10.77 ± 2.16	0.007 (**)
TTG	148.61 ± 28.36	135.22 ± 40.48	0.3

Data are represented as mean ± standard deviation. Statistical significance was established at p<0.05 (* = p<0.05; ** = p<0.01; *** = p<0.001).

The effect exerted by the RgpA protease on viscoelastic parameters of clotting is shown in Table 4. All six parameters assessed exhibited significant changes. RgpA pre-treatment shifts the coagulability to a more hypocoaguable state in terms of clotting time, which is represented by the three time-dependent parameters R-value (**), MRTG (**), and TMRTG (**), which are all increased compared to controls. The lower α-angle (**) reflects that the fibrin build-up is slower in the exposed samples, resulting in a reduction of fibrin cross-linking. In addition, the resultant clot strength and stability measured by MA (†) was increased in the RgpA group, whereas strength measured by TTG (†) was decreased.
Table 4: TEG results of naïve control and RgpA-exposed PPP.

Parameter	Control	RgpA	p-value
R	9.15 [7.8 – 11.8]	11.5 [8.13 – 13.53]	0.0011 (**)
α angle	66 [59.73 – 68.95]	59.63 ± 8.89	0.0014 (**)
MA	24.57 ± 6.21	23.45 [18.5 – 25.15]	0.021 (*)
MRTG	4.2 ± 1.72	3.07 [2.17 – 4.56]	0.0001 (***
TMRTG	10.42 [8.9 – 13.38]	13.75 [8.96 – 17.19]	0.0032 (**)
TTG	167.7 ± 56.79	149.8 ± 43.28	0.022 (*)

Data are represented as either mean ± standard deviation or median [Q1 – Q3]. Statistical significance was established at p<0.05 (* = p<0.05; ** = p<0.01; *** = p<0.001).

Rheometry of whole blood (WB) and platelet depleted plasma (PDP) with LPS and RgpA

Rheometry results for exposed samples and their matched control runs are recorded in Table 5 and Figure 7, that shows small (J'_M) and large (J'_L) strain compliance graphs of naïve vs. exposed samples, which reflect the intra-cycle behaviour of clots during amplitude sweep tests. In PDP, all the different treatments increased the median linear elastic shear modulus of the clot, and led the nonlinear response to start at similar and lower stress when compared to matched controls. However, the overlapping confidence intervals suggest a very small influence of the exposures on the G’ modulus. Only PG-exposure could increase the breakup stress.

Additional information can be gained from the compliances that are generated out of the intra-strain clot behaviour. LPS-exposure reduced both compliances (Figure 7C). They were also maintained over a larger shear stress range compared to their matched controls. Our model described in Figure 1 suggests that network alignment must be prolonged, which allows shear-stiffening to start at higher stresses. The arrows in Figure 7C show this critical shear stress. Only after a shear stress of 380 Pa the confidence intervals of the large-strain compliances (J’_L) of LPS-clots and control clots overlapped, indicating similar behaviour of fully stretched clots since then. In RgpA-exposed PDP samples the compliances varied substantially at start of the stress test (see also the high CI of the median G’_LVE value in Table 5), indicating that different network architectures have formed. During the stress tests, the compliances of the exposed and non-exposed samples merged completely (Figure 7A) indicating similar behaviour of fully stretched clots.

In WB, the moduli were much higher than in PDP, but the RBCs blunted many effects that were seen in PDP, e.g. there was almost no shear-stiffening. Rather, WB clots showed a pronounced phase of shear-softening prior to the onset of weak shear-stiffening. In other words, the compliances increased until higher shear stress before they dropped. Other microscopic and macroscopic processes will take place in a stressed clot when blood cells are present. WB clot exposure to both high and low concentrations of P.
gingivalis LPS resulted in a decrease of clot stiffness (which was more pronounced with the higher concentration), however, breakup stress was unaffected in both exposures. RgpA-exposed WB samples appeared to be stiffer when in near-equilibrium condition (see the median G'_{LVE} and also its high CI similar to PDP in Table 5) compared to their matched controls but they broke earlier while they were still in the phase of softening. It appears that RgpA exposure prevented shear-stiffening (Figure 7B).

Table 5: Rheometry data.

Sample	G'_{LVE} [Pa]	Elastic Limit [Pa]	Breakup Stress [Pa]
Whole Blood (WB)			
Control 1	174.1 [156.2 – 192.0]	4.4 [4.4 – 4.4]	442 [305 – 578]
Control 1 + RgpA (100 ng·L$^{-1}$)	201.9 [118.7 – 222.2]	4.5 [1.9 – 5.5]	341 [247 – 467]
Control 2	324.0 [291.5 – 332.1]	1.2 [1.2 – 1.2]	1377 [1372 – 1705]
Control 2 + PG LPS (20 ng·L$^{-1}$)	297.3 [261.7 – 314.1]	1.2 [1.2 – 1.5]	1380 [1376 – 1702]
Control 2 + PG LPS (20 μg·L$^{-1}$)	265.6 [211.8 – 284.6]	1.2 [1.2 – 1.9]	1376 [1374 – 1377]
Platelet Depleted Plasma (PDP)			
Control 1	40.36 [38.58 – 42.71]	2.9 [2.9 – 2.9]	1113 [1109 – 1370]
Control 1 + RgpA (250 ng·L$^{-1}$)	45.52 [37.75 – 52.75]	2.3 [2.3 – 2.9]	1110 [896 – 1112]
Control 3	47.26 [44.56 – 54.78]	2.9 [1.9 – 5.4]	1112 [584 – 1113]
Control 3 + EC LPS (20 ng·L$^{-1}$)	72.30 [61.77 – 76.84]	2.9 [2.9 – 3.6]	1113 [898 – 1116]
Control 3 + PG LPS (20 ng·L$^{-1}$)	68.05 [67.60 – 77.92]	3.6 [2.9 – 3.6]	1378 [1112 – 1379]

Data presented as median [lower and upper confidence interval] of the triplicate runs.

Discussion

Bacterial inflammmagens in circulation can influence coagulation parameters that may result in abnormal clot formation and structure. Here we present the effects of gingipain R1 and LPS from P. gingivalis and E. coli on clot morphology and mechanics of clots produced from PPP, PDP, WB, as well as purified fibrinogen models. First looking at the morphology of LPS-exposed samples, SEM analysis in all our clot models showed that LPS from both P. gingivalis and E. coli, caused the clot to become more dense and confluent in nature (Figure 2 and 3). Individual, elongated fibres are visible in the controls, but in the
exposures, where the fibres are arranged to become dense and netlike (see Figure 2). This is in line with our previous analysis where LPS from \textit{E. coli} caused fibres to become more netlike (in both PPP and fibrinogen models) \cite{2}. Our confocal and airyscan analyses on fluorescent fibrinogen (Figure 5) supports the SEM observations. We also investigated the development of anomalous protein structures in PPP using autofluorescent signal when the LPS from \textit{P. gingivalis} was added. Here, a significantly increased autofluorescent signal was assessed by the area analysis (Figure 4). These differences in fluorescent signal might reflect a structural change in the protein packaging in the presence of thrombin \cite{61}.

Correlative AFM and Raman images from controls and \textit{P. gingivalis} LPS-exposed samples (Figure 6), shows slight differences as band broadening, band position shift and intensity ratio changes. Although the differences are small, they indicate a change in the local symmetry of the fibrinogen molecule in the C-H areas, localized on the fibres in the LPS-exposed samples (Figure 6E). This supports the altered morphological appearance of the clots as seen with SEM. This is the first report that shows LPS form \textit{P. gingivalis} may chemically modify the structure of the fibrinogen clot.

When RgpA is added to our different models, clots (viewed with SEM) were not confluent, but rather appeared mostly in sporadic clumps with masses of higher density surrounded by less dense areas. The fibres that did form showed a sparse and heterogeneous structure (see Figure 3). This was also previously established with confocal microscopy, where we added RgpA to fluorescent fibrinogen; and noted a decrease in formation of fibrinogen networks \cite{55}. We propose that such heterogeneous clots will not be able to transmit hydrodynamic forces applied to them uniformly through the entire formed clot, but rather along their most elastic structures, while other parts of the clot remain mostly unstressed. This could pose excessive stress to existing structures, which could be a risk factor for clot pathologies. Our mechanical stress tests confirm this assumption (Figure 7B).

We further studied clot forming kinetics by 6 different parameters obtained from our TEG tests and the mechanical response of our various clot models, before and after addition of LPS from \textit{E. coli} and \textit{P. gingivalis} as well as RgpA, by using rheometry. See Table 1 and 2 for the various parameters of TEG and rheometry. After generating the WB and PDP clots in the cone-plate geometry of the rheometer we submitted them to increasing sinusoidal shear stresses and probed their strain responses. We also applied a model to differentiate the phase of network orientation at intermediate shear stresses from the subsequent phase of whole network stretch at higher shear forces.

RgpA-exposed clots seem to break abruptly at lower stresses in our WB model, whereas naïve clots showed a gradual yielding until the clot breaks at higher shear stresses (compare the encircled regions in Figure 7B). The same trend is seen in our PDP model, however, in this model breakup is not as abrupt as in the WB model. The heterogeneous structure seen in Figure 5 is also reflected by the high confidence interval of the linear elastic modulus and the compliances near equilibrium, however, the ability to shear-stiffen is unaffected (see Figure 7A). Our TEG results showed that RgpA causes the PPP clot to form significantly slower (indicated by the R-value), and a general alteration in clot strength (indicated by the MA and the TTG value). These results are consistent with the expectation that RgpA is a proteolytic enzyme. This is consistent with previous papers that looked at the proteolytic actions of RgpA on
fibrinogen structure [51, 62]. Our TEG results also suggest that in the presence of LPS from P. gingivalis, the clot forms faster (R and TMRTG parameters), but the clot stiffness is not affected (MA and TTG). This is consistent with our previous results using LPS from E. coli [2, 47]. These results are consistent with the finding of the rheometry by looking at the clot stiffness at its equilibrium (G'_L). When we analyse our rheometry results further, in the PDP samples where we added the two LPSs the compliances were not only lower until 380 Pa applied shear stress, but shear-stiffening started also at higher stresses. This suggests that LPS-exposed clots will need more shear stress to stretch out all inhomogeneities before they can stretch like the control sample can (see Figure 7C, the arrows indicate this drop in the compliance, showing the shear stress where shear-stiffening begins). Such inhomogeneities are seen in our SEM samples as a denser and less uniform clot structure. Shear stiffening is a common property of biological fibres [63] and is per se not affected by LPS in our models. However, it is obvious that processes that soften the clot, such as fiber bending and network alignment, compete with processes that stretch the network and therefore shift the onset of macroscopic shear-stiffening to higher stresses.

Conclusion

In this paper we bring together evidence that bacterial LPSs and proteases, can affect both clot structure and mechanics. This has significant implications for clotting and clot formation when these inflammmagens enter into circulation, via various routes. These routes may include the gut when dysbiosis is present (leaky gut), the urinary tract (during infections), as well as the mouth area, during gingivitis and periodontitis. It is well-known that these entry pathways are active in most inflammatory conditions. When in circulation, these inflammmagens interacts with soluble fibrinogen, where they bring about all the effects we have described (mechanical and structural changes). Ultimately, these interactions are associated with systemic inflammation and coagulation pathologies. The magnitude of this effect differs in plasma and purified fibrinogen and most likely exits due to the presence of inhibitory and target molecules in plasma such as albumin and other proteins. The presence of these inflammmagens in the circulation of individuals with various cardiovascular and systemic inflammation conditions, including T2DM, may have far-reaching healthy effects on blood clotting.

Abbreviations

LPS: lipopolysaccharides

LTA: lipoteichoic acids

IDDM: Dysregulation and Dormant Microbes

AD: Alzheimer’s disease

PD: Parkinson's disease

T2DM: Type 2 diabetes
P. gingivalis: Porphyromonas gingivalis

TLR4: Toll-like Receptor 4

Rgp: Arg-gingipain

Kgp: Lys-gingipain

Rgp(A) and (B): arginine gingipains and recombinant *P. gingivalis* gingipain R1 (RgpA)

ILs: Interleukins (ILs)

E. coli: Escherichia coli

PPP: Platelet poor plasma

PDP: platelet-depleted plasma

HMDS: hexamethyldisilazane

OsO$_4$: osmium tetroxide

TEG$^\text{®}$: Thrombelastograph$^\text{®}$

LVE: linear viscoelastic behaviour

J'_M: minimum-strain compliance

J'_L: large-strain compliance

Declarations

Ethics approval and consent to participate

Ethical clearance was obtained from the Health Research Ethics Committee (HREC) of Stellenbosch University, South Africa (N19/03/043) and from the Ethics Committee of the Medical University Vienna, Austria (EK1371/2015). This study, including sample collection and sample processing, was conducted according to the guidelines set by the Declaration of Helsinki.

Consent for publication

All authors approved submission of the paper.

Author contributions
JMN: TEG, Rheometry, SEM; TF: TEG, SEM; MJP: TEG, SEM confocal, data analysis; CV: technical assistance, OL: Raman; DBK: co-corresponding author; UW: rheometry and co-corresponding author; EP: co-corresponding author and study leader.

Competing interests

The authors declare that they have no competing interests

Funding

We thank the National Research Foundation (NRF) of South Africa (91548: Competitive Program) and the Medical Research Council of South Africa (MRC) (Self-Initiated Research Program: A0X331) for supporting this collaboration. Travel grant: South Africa: Austria National Research Foundation (NRF) Equipment-Related Travel and Training Grants 2018/19.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The datasets generated and/or analyzed during the current study are available: https://1drv.ms/u/s!AgoCOmY3bkKHioRESgGKZsHuntFsoA?e=BTUXvr

Acknowledgements

South African National Blood Services for the kind donation of human thrombin.

References

1. Pretorius E, Bester J, Kell DB: A Bacterial Component to Alzheimer's-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease. *Journal of Alzheimer's disease : JAD* 2016, 53(4):1237-1256.

2. Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB: Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. *Journal of the Royal Society Interface* 2016, 13(122).

3. Pretorius E, Mbotwe S, Kell DB: Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular co-morbidities. *Scientific reports* 2017, 7(1):9680.

4. Kell DB, Pretorius E: Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. *Progress in biophysics and molecular biology* 2017, 123:16-41.

5. Kell DB, Pretorius E: No effects without causes. The Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases: evidence and consequences. *Biological Reviews*
6. Potgieter M, Bester J, Kell DB, Pretorius E: The dormant blood microbiome in chronic, inflammatory diseases. *FEMS microbiology reviews* 2015, 39:567-591.

7. de Kort S, Keszthelyi D, Masclee AA: Leaky gut and diabetes mellitus: what is the link? *Obesity reviews: an official journal of the International Association for the Study of Obesity* 2011, 12(6):449-458.

8. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C *et al*.: Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. *Science advances* 2019, 5(1):eaau3333.

9. Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ: Alzheimer's disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. *Journal of Alzheimer's disease: JAD* 2008, 13(4):437-449.

10. Miklossy J: Emerging roles of pathogens in Alzheimer disease. *Expert reviews in molecular medicine* 2011, 13:e30.

11. Cestari JA, Fabri GM, Kalil J, Nitrini R, Jacob-Filho W, de Siqueira JT, Siqueira SR: Oral Infections and Cytokine Levels in Patients with Alzheimer's Disease and Mild Cognitive Impairment Compared with Controls. *Journal of Alzheimer's disease: JAD* 2016, 52(4):1479-1485.

12. Gaur S, Agnihotri R: Alzheimer's disease and chronic periodontitis: is there an association? *Geriatrics & gerontology international* 2015, 15(4):391-404.

13. Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR: Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. *Journal of oral microbiology* 2017, 9(1):1332710.

14. Shaik MM, Ahmad S, Gan SH, Abuzenadah AM, Ahmad E, Tabrez S, Ahmed F, Kamal MA: How do periodontal infections affect the onset and progression of Alzheimer's disease? *CNS & neurological disorders drug targets* 2014, 13(3):460-466.

15. Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, Dawson D, 3rd: Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease. *Alzheimer's & dementia: the journal of the Alzheimer's Association* 2012, 8(3):196-203.

16. Kaur T, Uppoor A, Naik D: Parkinson's disease and periodontitis - the missing link? A review. *Gerodontology* 2016, 33(4):434-438.

17. Köhler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt KL, Carvalho AF: The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer's Disease. *Current pharmaceutical design* 2016, 22(40):6152-6166.

18. Hu X, Wang T, Jin F: Alzheimer's disease and gut microbiota. *Science China Life sciences* 2016, 59(10):1006-1023.

19. Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, Barbaro F, Piano C, Fortuna S, Tortora A *et al*.: The role of small intestinal bacterial overgrowth in Parkinson's disease. *Movement*
20. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M et al: Gut microbiota are related to Parkinson's disease and clinical phenotype. Movement disorders : official journal of the Movement Disorder Society 2014, Epub ahead of print.

21. Mulak A, Bonaz B: Brain-gut-microbiota axis in Parkinson's disease. World journal of gastroenterology : WJG 2015, 21(37):10609-10620.

22. Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, Hirayama M: Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One 2017, 12(11):e0187307.

23. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, Lepage P, Klopp C, Mariette J, Bouchez O et al: Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011, 54(12):3055-3061.

24. Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T et al: Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes care 2014, 37(8):2343-2350.

25. Slyepchenko A, Maes M, Machado-Vieira R, Anderson G, Solmi M, Sanz Y, Berk M, Kohler CA, Carvalho AF: Intestinal Dysbiosis, Gut Hyperpermeability and Bacterial Translocation: Missing Links Between Depression, Obesity and Type 2 Diabetes. Current pharmaceutical design 2016, 22(40):6087-6106.

26. Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S: Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. Journal of Alzheimer's disease : JAD 2013, 36(4):665-677.

27. Bester J, Soma P, Kell DB, Pretorius E: Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget Gerontology 2015, 6:35284-35303.

28. Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR: Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016, 87(22):2324-2332.

29. de Waal GM, Engelbrecht L, Davis T, de Villiers WJS, Kell DB, Pretorius E: Correlative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson's Disease, Alzheimer's Disease and Type 2 Diabetes Mellitus. Scientific reports 2018, 8(1):16798.

30. Creely SJ, McTernan PG, Kusminski CM, Fisher f M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S: Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. American journal of physiology Endocrinology and metabolism 2007, 292(3):E740-747.

31. Rempel JD, Packiasamy J, Dean HJ, McGavock J, Janke A, Collister M, Wicklow B, Sellers EA: Preliminary analysis of immune activation in early onset type 2 diabetes. International journal of circumpolar health 2013, 72.
32. Kell DB, Pretorius E: To What Extent Are the Terminal Stages of Sepsis, Septic Shock, Systemic Inflammatory Response Syndrome, and Multiple Organ Dysfunction Syndrome Actually Driven by a Prion/Amyloid Form of Fibrin? *Semin Thromb Hemost* 2018, 44(3):224-238.

33. Park BS, Lee JO: Recognition of lipopolysaccharide pattern by TLR4 complexes. *Experimental & molecular medicine* 2013, 45:e66.

34. Pretorius E, Akeredolu OO, Soma P, Kell DB: Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. *Experimental biology and medicine (Maywood, NJ)* 2017, 242(4):355-373.

35. Visser MJE, Kell DB, Pretorius E: Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris. *Frontiers in cellular and infection microbiology* 2019, 9:7.

36. Shanker J, Setty P, Arvind P, Nair J, Bhasker D, Balakrishna G, Kakkar VV: Relationship between periodontal disease, Porphyromonas gingivalis, peripheral vascular resistance markers and coronary artery disease in Asian Indians. *Thrombosis research* 2013, 132(1):e8-14.

37. Amar S, Engelke M: Periodontal Innate Immune Mechanisms Relevant to Atherosclerosis. *Molecular oral microbiology* 2014.

38. Singhrao SK, Harding A, Simmons T, Robinson S, Kesavalu L, Crean S: Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer's disease. *Journal of Alzheimer's disease : JAD* 2014, 42(3):723-737.

39. Olsen I, Singhrao SK: Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer's disease? *Journal of oral microbiology* 2020, 12(1):1676486.

40. Fitzpatrick RE, Wijeyewickrema LC, Pike RN: The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. *Future Microbiol* 2009, 4(4):471-487.

41. Carter CJ, France J, Crean S, Singhrao SK: The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. *Front Aging Neurosci* 2017, 9:408.

42. Singhrao SK, Olsen I: Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer's disease. *Journal of oral microbiology* 2019, 11(1):1563405.

43. Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W: Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. *Journal of neuroinflammation* 2018, 15(1):37.

44. Nakajima Y, Ito K, Yoshimoto T: Prolyl Tripeptidylpeptidase. In: *Handbook of proteolytic enzymes*. vol. 3: Academic Press; 2013: 3371-3374.

45. Guo Y, Nguyen KA, Potempa J: Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. *Periodontol 2000* 2010, 54(1):15-44.

46. Pretorius E: Platelets as Potent Signaling Entities in Type 2 Diabetes Mellitus. *Trends in Endocrinology and Metabolism* 2019, (ePrint).
47. Pretorius E, Page MJ, Hendricks L, Nkosi NB, Benson SR, Kell DB: Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: assessment with novel Amytracker™ stains. *Royal Society Interface* 2018, 15:20170941.

48. Travis J, Pike R, Imamura T, Potempa J: Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis. *Journal of periodontal research* 1997, 32(1 Pt 2):120-125.

49. NM OB-S, Veith PD, Dashper SG, Reynolds EC: Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. *Current protein & peptide science* 2003, 4(6):409-426.

50. Curtis MA, Thickett A, Slaney JM, Rangarajan M, Aduse-Opoku J, Shepherd P, Paramonov N, Hounsell EF: Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. *Infect Immun* 1999, 67(8):3816-3823.

51. Ally N, Whisstock JC, Sieprawska-Lupa M, Potempa J, Le Bonniec BF, Travis J, Pike RN: Characterization of the specificity of arginine-specific gingipains from Porphyromonas gingivalis reveals active site differences between different forms of the enzymes. *Biochemistry* 2003, 42(40):11693-11700.

52. Imamura T, Tanase S, Hamamoto T, Potempa J, Travis J: Activation of blood coagulation factor IX by gingipains R, arginine-specific cysteine proteinases from Porphyromonas gingivalis. *Biochem J* 2001, 353(Pt 2):325-331.

53. Imamura T, Tanase S, Travis J: Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis. *J Biol Chem* 1997, 272(25):16062-16067.

54. Imamura T, Banbula A, Pereira PJ, Travis J, Potempa J: Activation of human prothrombin by arginine-specific cysteine proteinases (Gingipains R) from porphyromonas gingivalis. *J Biol Chem* 2001, 276(22):18984-18991.

55. Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E: Parkinson's Disease: A Systemic Inflammatory Disease Accompanied by Bacterial Inflammmagens. *Frontiers in aging neuroscience* 2019, 11:210.

56. Pretorius E, Swanepoel AC, DeVilliers S, Bester J: Blood clot parameters: Thromboelastography and scanning electron microscopy in research and clinical practice. *Thrombosis research* 2017, 154:59-63.

57. Kell DB, Pretorius E: Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. *Prog Biophys Mol Biol* 2016:1-26.

58. Argatov I, Iantchenko I, Kocherbitov V: How to define the storage and loss moduli for a rheologically nonlinear material? A constructive review of nonlinear rheological measures. *Continuum Mech Thermodyn* DOI 10.1007/s00161-017-0584-8 2017.

59. Ewoldt RH, Hosoi AE, McKinley GH: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. *Journal of Rheometry* 2008, 52:1427.
60. Hyun K, Wilhelm M, Klein CO, Cho SK, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH: A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). *Progress in Polymer Science* 2011, 36:1697–1753.

61. Page MJ, Thomson GJA, Nunes JM, Engelbrecht AM, Nell TA, de Villiers WJS, de Beer MC, Engelbrecht L, Kell DB, Pretorius E: Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation. *Scientific reports* 2019, 9(1):3102.

62. Pike R, McGraw W, Potempa J, Travis J: Lysine- and arginine-specific proteinases from *Porphyromonas gingivalis*. Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. *J Biol Chem* 1994, 269(1):406-411.

63. Ben Amar M: New trends in the physics and mechanics of biological systems Oxford Press; 2001.

Figures

![Figure 1](image_url)

Figure 1

Example for the suggested regions during the strain response of a naïve PDP clot. The minimum-strain compliance shown here (J’M) reflects the tangent modulus at zero instantaneous stress, whereas the large-strain compliance (J’L) reflects the secant modulus at maximum stress. During the linear
viscoelastic behaviour (LVE) the clot is in its equilibrium and the compliances merge and remain constant. With increasing stress the compliances start to diverge, which marks the elastic limit and the onset of the non-linear behaviour. Now, the network elongates depending on its individual architecture. This period is characterized by progressive alignment of singular structures in the clot to establish a new architecture in which all structures are stretched out (here the microscopical changes in the clot take place). As soon as both compliances decrease together, the phase of shear-stiffening starts. The stretched network elongates as a whole and stiffens when the loads increase. When the stress becomes too high, the clot breaks either abruptly or yields. Yielding includes breaking of branch points or singular fibres in the network.

Figure 3

Scanning electron micrographs of (A–C) representative naïve control plasma clots and (D–F) matched clots with added LPS from P. gingivalis. (Scale bar: 1μm).
Figure 5

Scanning electron micrographs of purified fibrinogen clots exposed to bacterial products at varying concentrations (white scale bars indicate identical scales).
Confocal micrographs of representative clots prepared from PPP of healthy individuals that were exposed to LPS from *P. gingivalis*. Autofluorescence signals were captured in two channels. Green fluorescence: 488nm laser with a 508-570nm detector; red fluorescence: 561nm laser with 593-700nm detector. (A–D) Representative naïve control clots. (E–H) Clots with added LPS from matched controls (Scale bar: 10µm).
Figure 9

A to C: Airyscan micrographs of fluorescent fibrinogen. (A) Naïve clot showing a normal distribution of fibrin fibres. (B – C) LPS-exposed (P. gingivalis) fluorescent fibrinogen, where plaque-type areas are present (white arrows) (Scale bar: 10µm). D to F: Confocal lambda maximal intensity projections of fluorescent fibrinogen. Each column shows four representative projections per exposure. (D) Naïve clot. (E) LPS-exposed (E. coli) clot. (F) LPS-exposed (P. gingivalis) clot.
Figure 11

AFM, Raman and AFM-Raman correlative images of the (A – C) control and (D – F) P. gingivalis LPS-exposed fibrinogen, as well as (G) the average Raman spectra of control sample (blue Raman spectrum) and LPS-exposed sample spectra (green Raman spectrum) The Raman images are the Amide I intensity maps of naïve clots vs. LPS-exposed clots. They are overlaid to the AFM images (B and D). Blue spectrum
is average spectrum of a Raman map of the naïve sample. Green spectrum is average spectrum of a Raman map of LPS-exposed sample (Scale bars: A, C, D, F: 5µm; B and E: 2 µm).

Figure 13

Small (J’M) and large (J’L) strain compliance graphs of naïve vs. exposed samples, which reflect the intra-cycle behaviour of clots during amplitude sweep tests. (A) RgpA-exposed PDP, (B) RgpA-exposed WB, (C) LPS-exposed PDP (E. coli and P. gingivalis). Graphs plot the sample runs in triplicate (PDP) and duplicate (WB).