Based on Fuzzy Comprehensive Evaluation Method The Investment Risk Assessment of Chinese Enterprises in The Countries Along "The Belt and Road"

Yanyu Chen', Huaqi Chai1, *, Yimiao Huang2
1School of Management, Northwestern Polytechnical University, Xi’an 710072, China
2Zhejiang Traffic Technician College, Jinhua 321015, China

*Corresponding author e-mail: chaifam@nwpu.edu.cn

Abstract. "Belt and Road Forum for International Cooperation" held in Beijing in May this year. once again, "The Belt and Road" strategic initiative to the world, causing the world's enthusiastic response. The core of the "One Belt, One Road" strategy initiative is to promote infrastructure construction and interconnection, dock national policies and development strategies, deepen pragmatic cooperation, promote coordinated and coordinated development and achieve common prosperity. With the "The Belt and Road" strategy in-depth, Chinese enterprises will go abroad, in the countries along the country to invest in more and more examples, accompanied by the increasing risk. Analysis of the failure of investment cases, we can easily find that this is the majority of enterprises overseas investment in the lack of careful assessment of risk and risk of foreign investment risk management has a great relationship. In this paper, the risk factors are used to identify the risk factors table, and the fuzzy comprehensive evaluation method is used to estimate the comprehensive risk value of many uncertain factors that cannot be determined by the overseas investment. The risk assessment system is constructed to help Chinese enterprises to follow the "Investment to avoid risks, improve the success rate.

1. Introduction
"The Belt and Road" is short of "The Silk Road Economic Zone" and "21st Century Maritime Silk Road", which is put forward by the Chinese President Xi Jinping in September October 2013. As China's top national strategy, not only for China's own rapid economic development to provide opportunities, but also for the country along "The Belt and Road" to strengthen economic cooperation and common prosperity. According to the statistics of the Ministry of Commerce of the People's Republic of China, from January to October in 2016, China's direct investment in non-financial sector of 51 countries related to "one way" reached $12.07 billion, accounting for 8.3% of the total. In terms of foreign contracting projects, from January to October in 2016, China's enterprises signed 6877 new foreign-related contract projects in 61 countries related to "The Belt and Road", and the new contract amount was $84.39 billion, up 30.7% than last year; the turnover reached $52.74 billion, an increase of 5.6%. Although the "one by one" strategy for our enterprises in overseas development has brought great opportunities, and we also clearly aware of the risks and opportunities coexist. China CCPIT public data show that China has more than 20,000 enterprises in overseas investment, but "more than
90% is a loss" in 2014. In fact, there are many investment failure data is not objective disclosure. Therefore, we make investment decisions, the need to take full account of the factors, a comprehensive assessment of risk, scientific decision-making, to avoid investment failure.

2. The Importance of Risk Management of Overseas Investment in Chinese Enterprises

Foreign investment risk is due to the lack of business overseas investment environment, investment projects, effective risk assessment, resulting in a certain blindness of overseas investment, which may be risk. Foreign investment risk management is to solve this problem, through risk identification to understand the risks faced by investment projects, and the appropriate method to estimate the size of the investment project risk value, as a basis for rational use of various risk response measures, Project risk to effectively control, with a minimum cost to ensure that the overall objectives of investment projects to achieve the management.

Foreign investment is facing many risks, from the early decision-making, project construction, operation process, there are a variety of risks. Once the risk occurs, it will cause the loss of overseas investment projects, these losses are not only economic aspects, but also includes the staff of health care, corporate credit, corporate social responsibility and other non-economic aspects. If the enterprise ignores the risk factors, or cannot correctly assess the risk, so as to make scientific decisions, the risk not only affects the economic interests of enterprises so simple, and even will be crushed the entire overseas investment projects.

In 2008, China Aluminum Group and American Aluminum Group acquired a 12% stake in Rio Tinto for $14.5 billion, and afterwards, American Aluminum Group withdrew and transferred its shares to China Aluminum Group, known as "raid before dawn"; TCL acquisition of France Thomson TV business, Gree electrical investment in Brazil to set up factories, SAIC acquisition of Ssangyong Motor, also did not achieve the desired purpose, caught in an unexpected dilemma. "China Global Investment Tracking" data column has a "trouble project" column, that was later rejected by the regulatory authorities, some or all of the failure of the project, a total of 88 troublesome projects, totaling $198.1 billion in 2005-2012. At first, most of the troublesome projects involved the energy industry, and later, the troubled projects involved in the diversification of the industry. This failure of the case, nearly a decade has been too numerous to mention.

3. Identification and Evaluation of Enterprises' Overseas Investment Risks

3.1. Identification of Foreign Investment Risk of Enterprises

As Chinese enterprises face more risks than overseas investment, such as the political risk, cultural risk, safety risk, ecological environment risk and economic environment risk of the country where the enterprise is located, the Chinese enterprises should first carry out risk assessment of the projects of investment intention countries before investing abroad. The author divides the risk into three-dimension layers according to the degree of difficulty of identification, which is macro, medium and micro. Figure 1. is a pyramid-type risk identification map for Chinese companies investing abroad.
3.2. Risk Assessment of Overseas Investment Projects - Application Based on Fuzzy Comprehensive Evaluation Method

Risk assessment is the use of qualitative methods, quantitative methods or qualitative and quantitative methods to estimate the risk of the possibility of the risk factors and the feasibility of overseas investment.

There are many methods of risk assessment, such as Delphi method, analytic hierarchy process, regression analysis method, failure tree method, etc. These common risk assessment methods are lack of effective consideration for the uncertainty of factors, so this paper uses fuzzy comprehensive evaluation method Foreign investment is estimated by the combined risk value of many risk factors that cannot be determined.

If an overseas investment project is expected to build a period of 3 years, the investment amount of 1.2 billion yuan. The steps to evaluate the risk using the fuzzy comprehensive evaluation method are as follows:

Step 1: the company hired 10 experts with overseas investment experience of the investment project to assess the risk factors, and experts to assess the views of statistics, the statistical results shown in Table 1.

Risk factors	Risk identification (Unit: number)				
	Higher risk	high risk	General risk	Low risk	Lower risk
Political risk	3	3	3	1	0
Policy risk	3	4	2	1	0
Economic risk	1	2	4	2	1
Cultural risk	3	2	3	2	0
Ecological environment risk	3	3	3	1	0
Competitive risk	1	2	3	2	2
Technical risk	1	1	4	3	1
Infrastructure risk	3	2	3	2	0
Business risk	2	3	4	1	0
Financial risk	2	2	4	2	0
Social responsibility risk	3	3	4	0	0
HR risk	0	1	5	3	1
Step 2: Establishment of evaluation subordinate matrix
The reviews are set to five levels, namely: greater risk, great risk, general risk, low risk, and lower risk. The weight of each level is based on expert test method, which gives the number of experts for this comment is \(a_i, i = 1,2,3,4,5,6,7 \). The total number of experts is \(b, b = 20 \), Different risk factors corresponding to the rating level risk value is \(c \). The formula is as follows:

\[
c = \frac{a_i}{b}
\]

The evaluation subordinate matrix as described above is shown in Table 2.

Table 2. Experts’ evaluation subordinate matrix

Target layer	Dimension layer (\(L \))	Weights (\(W \))	Risk factor layer (\(l_i \))	Expert commentary collection					
				Segmentation weight (\(w_i \))	Higher risk	High risk	General risk	Low risk	Lower risk
				10	8	6	4	2	
overseas investment risk			Political risk (\(l_{11} \))	0.3	0.3	0.3	0.3	0.1	0
			Policy risk (\(l_{12} \))	0.2	0.3	0.4	0.2	0.1	0
			Economic risk (\(l_{13} \))	0.1	0.1	0.2	0.4	0.2	0.1
			Cultural risk (\(l_{14} \))	0.2	0.3	0.2	0.3	0.2	0
			Ecological environment risk (\(l_{15} \))	0.2	0.3	0.3	0.3	0.1	0
macro layer		0.5							
medium layer			Competitive risk (\(l_{21} \))	0.3	0.1	0.2	0.3	0.2	0.2
			Technical risk (\(l_{22} \))	0.3	0.1	0.1	0.4	0.3	0.1
			Infrastructure risk (\(l_{23} \))	0.4	0.3	0.2	0.3	0.2	0
medium layer		0.3							
micro layer			Business risk (\(l_{31} \))	0.3	0.2	0.3	0.4	0.1	0
			Financial risk (\(l_{32} \))	0.2	0.2	0.2	0.4	0.2	0
			Social responsibility risk (\(l_{33} \))	0.4	0.3	0.3	0.4	0	0
			HR risk (\(l_{34} \))	0.1	0	0.1	0.5	0.3	0.1
Step 3: Fuzzy comprehensive evaluation.

\[L_1 = \begin{bmatrix} l_{11} \\ l_{12} \\ l_{13} \\ l_{14} \\ l_{15} \end{bmatrix} = \begin{bmatrix} 0.3 & 0.3 & 0.3 & 0.1 & 0 \\ 0.3 & 0.4 & 0.2 & 0.1 & 0 \\ 0.1 & 0.2 & 0.4 & 0.2 & 0.1 \\ 0.3 & 0.2 & 0.3 & 0.2 & 0 \\ 0.3 & 0.3 & 0.3 & 0.1 & 0 \end{bmatrix} \]

\[L_2 = \begin{bmatrix} l_{21} \\ l_{22} \\ l_{23} \\ l_{24} \\ l_{25} \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.2 & 0.2 \\ 0.1 & 0.1 & 0.4 & 0.3 & 0.1 \\ 0.3 & 0.2 & 0.3 & 0.2 & 0 \end{bmatrix} \]

\[L_3 = \begin{bmatrix} l_{31} \\ l_{32} \\ l_{33} \\ l_{34} \end{bmatrix} = \begin{bmatrix} 0.2 & 0.3 & 0.4 & 0.1 & 0 \\ 0.2 & 0.2 & 0.4 & 0.2 & 0 \\ 0.3 & 0.3 & 0.4 & 0 & 0 \end{bmatrix} \]

\[W = (w_1, w_2, w_3) = (0.5, 0.3, 0.2) \]

\[w_1 = (0.3, 0.2, 0.1, 0.2, 0.2) \]

\[w_2 = (0.3, 0.3, 0.4) \]

\[w_3 = (0.3, 0.2, 0.4, 0.1) \]

\[A_1 = w_1 \cdot L_1 = (0.3, 0.2, 0.1, 0.2, 0.2) \]

\[A_2 = w_2 \cdot L_2 = (0.1, 0.1, 0.3, 0.2, 0.2) \]

\[A_3 = w_3 \cdot L_3 = (0.3, 0.2, 0.3, 0.1, 0) \]

\[A = W \cdot L = (0.5, 0.3, 0.2) \]
Step 3: Analyze the evaluation results.

According to the quantification value of the rating level in Table 2, the closer the value of the final evaluation result is to 10, the higher the investment risk; the closer to 0, the lower the investment risk. The formula is as follows:

$$\alpha_i = \sum_{i=12..5} \lambda_i \beta_i$$

Among them, the risk value is α_i, The risk value of the expert assessment is β_i, The quantization value of the corresponding comment level is λ_i.

In this case, the comprehensive risk of foreign investment and the quantification of each risk factor are calculated as shown in Table 3.

Target layer	Dimensio \mathbf{L}	Risk factor layer (i)	risk value of the expert assessment (β)	Risk value α_i				
Overseas investment risk	Macro layer L_1	Political risk (l_{11})	Higher risk	High risk	General risk	Low risk	Lower risk	7.600
	Policy risk (l_{12})	0.3	0.3	0.3	0.1	0	7.800	
	Economic risk (l_{13})	0.1	0.2	0.4	0.2	0.1	6.000	
	Cultural risk (l_{14})	0.3	0.2	0.3	0.2	0	7.200	
	Ecological environment risk (l_{15})	0.3	0.3	0.3	0.1	0	7.600	
Medium layer L_2	Competitive risk (l_{21})	0.1	0.2	0.3	0.2	0.2	5.600	
	Technical risk (l_{22})	0.1	0.1	0.4	0.3	0.1	5.600	
	Infrastructure risk (l_{23})	0.3	0.2	0.3	0.2	0	7.200	
Micro layer L_3	Business risk (l_{31})	0.2	0.3	0.4	0.1	0	7.200	
	Financial risk (l_{32})	0.2	0.2	0.4	0.2	0	6.800	
	Social responsibility risk (l_{33})	0.3	0.3	0.4	0	0	7.800	
	HR risk (l_{34})	0	0.1	0.5	0.3	0.1	5.200	
	Comprehensive risk assessment	0.238	0.248	0.326	0.154	0.034	7.004	

According to Table 3, the investment risk is generally above the risk level because of the high risk of political risk, policy risk, cultural risk, ecological environment risk, infrastructure construction risk and social responsibility risk. Therefore, the overall risk of investment risk is in the upper level, it is recommended to invest with caution.
4. Conclusion
With the rapid development of China's economy and the implementation of the strategy of "The Belt and Road", China's overseas investment was a rapid growth trend, which objectively challenge the international tradition of the distribution of power distribution. This may lead to opposition and containment by vested interests, and may also cause panic and exclusion in other countries. Therefore, China's overseas investment enterprises face a wide range of risks. Before investing, Chinese enterprises use the fuzzy comprehensive evaluation method to successfully implement overseas investment projects, together with the rest of the world to share dividends "The Belt and Road" Initiative brought.

References
[1] Wang Chao, Jiang Ping, Wang Xiaoxing. Risk Assessment Study of the Intelligent Transportation Project Based on Fuzzy Comprehensive Evaluation Method--A Case Study of the Intelligent Transportation Project of A Company in Chaling City [J]. Journal of Hunan Institute of Engineering (Social Science Edition), 2016, 78 (5): 648-653.
[2] M Li, Y Du., et al. Risk assessment of supply chain for pharmaceutical excipients with AHP-fuzzy comprehensive evaluation [J]. Drug Development & Industrial Pharmacy, 2016, 42 (4): 676.
[3] Z Guo, G Lin., et al. Regional lightning risk assessment based on fuzzy comprehensive evaluation method[J]. International Conference on Fuzzy Systems & Knowledge Discovery, 2010 (3):1340-1343.
[4] P Gong, B Sun., et al. Fuzzy Comprehensive Evaluation in Well Control Risk Assessment Based on AHP: A Case Study [J]. Advances in Petroleum Exploration & Development, 2012, 4 (1).
[5] X Mou, Z Guo, et al. The optimization of regional lightning risk assessment based on AHP and fuzzy comprehensive evaluation [J]. Asia-pacific International Conference on Lightning, 2011:331-334.
[6] ShaFu, HangjunZhou. The information security risk assessment based on AHP and fuzzy comprehensive evaluation [J]. IEEE International Conference on Communication Software & Networks, 2011:124-128.
[7] Zou Zongxian, Wei Yang, et al. Risk assessment of concentrating solar power based on fuzzy comprehensive evaluation [J]. Systems Engineering Procedia, 2012, (4):99-106.