Esophageal squamous cell carcinoma: Integrated bioinformatics analysis for differential gene expression with identification of hub genes and lncRNA

F.M. Yasir Hasib a, b

a Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
b Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Bangladesh

ARTICLE INFO

Keywords:
ESCC
Hub genes
DEGs
lncRNA

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) is a typical Gastro-Intestinal (GI) tract neoplasm. This study was conducted to know the Differential Expressed Genes (DEGs) profile of ESCC along with hub gene screening, lncRNA identification, and drug-genes interactions.

Methods: GSE161533, GSE20347, GSE45670 microarray datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) database. GEO2R was used for the DEGs identification, whereas GO (Gene Ontology) and KEGG enrichment analysis were performed in DAVID. PPI network constructed using STRING and visualized with Cytoscape app with the help of MCODE. The top ten connectivity genes were selected as hub genes—further survival analysis was performed in the Kaplan-Meier plotter. Moreover, Boxplot, pathological stage plots were constructed using GEPIA (Gene Expression Profiling Interactive Analysis). The methylation heatmap assembled in the DiseaseMeth version 2.0. lncRNA (Long non-coding RNA) was identified comparing the list of genes in HUGO, and Gene-drug interactions were accumulated from the DgiDB platform.

Results: This experiment showed 16 upregulated, and 59 downregulated DEGs shared among the three datasets. Biological process analysis showed significant terms such as extracellular matrix disassembly and collagen catabolism. The extracellular region was detected as the most crucial cellular compartment. Notably, metalloendopeptidase and serine-type endopeptidase activity showed significant molecular functions term. In contrast, transcriptional misregulation was a highly substantial KEGG pathway. Kaplan-Meier plotter showed higher expression of CXCL8, SPP1, MMP13, CXCL1, and TOP2A have a significant impact on the overall survival of the patients. Nine out of ten hub genes have significantly different expression levels than normal and cancer tissues. HYMAI was the only lncRNA commonly expressed upregulated among the three datasets. Drug-gene interaction showed multiple genes have no drug options exist till now.

1. Introduction

Cancer is the cause of a significant number of mortality worldwide. Cancer can be defined as uncontrolled cell growth, and almost every tissue can be affected by this disease [2]. Esophageal Squamous Cell Carcinoma (ESCC) is considered one of the most common gastrointestinal (GI) neoplasms worldwide [1]. In most cases of ESCC, symptoms did not show early, resulting in a higher death rate due to limited treatment regimens in the late stages [11]. Several risk factors were identified for ESCC, including alcohol consumption, tobacco products consumption, smoking, lower fiber intake, etc. Upper Body Mass Index (BMI) and micronutrient deficiency were also hazardous [4].

Due to the present day’s advancement of genomic techniques such as microarray analysis and high throughput analysis, genes associated with ESCC are now a topic of interest to discover the specific genes with their expression correlation to the tumor [14]. Differential gene expression and their related activity are the fundamental way to understand the mechanism of disease advancement. Many genes and their co-expression were regularly identified for the progression of ESCC worldwide. Some of the genes showed significant expression results in corresponding survival analyses. CDK1 and TOP2A were analyzed as the critical genes for ESCC neoplasm by Yang and his group (W. [35]. Whereas CDCA5 was considered the crucial gene for the prognosis of ESCC by another author [33]. CFLAR, LAMA5, ITGA6, ITGB4, and SDC4 genes were also validated for ESCC progression (L. [36]. Whereas, there were also few Long Non-coding RNA (IncRNA) identified, which might impact ESCC.

E-mail addresses: fmyhasib@gmail.com, fmyhasib2-c@my.cityu.edu.hk.

https://doi.org/10.1016/j.bbrep.2022.101262
Received 28 February 2022; Received in revised form 8 April 2022; Accepted 11 April 2022
2405-5808/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Fig. 1. DEGs among the three datasets (Left - Upregulated; Right - Downregulated).

Fig. 2. Gene expression values among the three datasets.
Table 1

Names of the common DEGs from the datasets.

Category Term	P-Value	Genes
GOTERM_BP_DIRECT GO:0002617--extracellular matrix disassembly	6.35E-10	MMP12, MMP11, MMP13, LAMB3, MMP1, MMP3, SPP1, LAMC2, MMP10
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0008285--negative regulation of cell proliferation	9.90E-04	TFAP2B, CXCL8, IGFBP3, CXCL1, CDC6, PTHLH, SOX4, CDKN3, MMP10
GOTERM_BP_DIRECT GO:0001501--skeletal system development	2.16E-04	HOXA10, SHOX2, COL10A1, PTHLH, SOX4, HOXC10
GOTERM_BPDIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0008285--negative regulation of cell proliferation	9.90E-04	TFAP2B, CXCL8, IGFBP3, CXCL1, CDC6, PTHLH, SOX4, CDKN3, MMP10
GOTERM_BP_DIRECT GO:0001501--skeletal system development	2.16E-04	HOXA10, SHOX2, COL10A1, PTHLH, SOX4, HOXC10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0008285--negative regulation of cell proliferation	9.90E-04	TFAP2B, CXCL8, IGFBP3, CXCL1, CDC6, PTHLH, SOX4, CDKN3, MMP10
GOTERM_BP_DIRECT GO:0001501--skeletal system development	2.16E-04	HOXA10, SHOX2, COL10A1, PTHLH, SOX4, HOXC10

Table 2

GO and KEGG analysis for the DEGs.

Category Term	P-Value	Genes
GOTERM_BP_DIRECT GO:0002617--extracellular matrix disassembly	6.35E-10	MMP12, MMP11, MMP13, LAMB3, MMP1, MMP3, SPP1, LAMC2, MMP10
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
GOTERM_BP_DIRECT GO:0003574--collagen catabolic process	2.01E-07	MMP12, MMP11, MMP13, MMP1, MMP3, COL10A1, MMP10
GOTERM_BP_DIRECT GO:0008284--positive regulation of cell proliferation	1.48E-05	CFTR, HOXB17, RB1, MMP10, CDKN3, MMP1, APOC1, MMP12, HMG2, ISG5, ECT2, RPL39L, MMP11
pathogenesis, and the BANCR gene was identified by another author [26]. HCG22 was also detected as a lncRNA by a previous author (X. [15].

Many publicly available microarray and high throughput genomic data are available, but there is a lack of bioinformatics analysis and correlation of the disease occurrence. That analysis can quickly identify the potential genes associated with cancer or tumor. The following study used three microarray datasets to place the common differential gene expression with functional identification of Esophageal Squamous Cell Carcinoma (ESCC) hub genes.

2. Materials and Method

Data source: Three microarray datasets (GSE161533, GSE20347, and GSE45670) were collected from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). 28 normal tissue and 28 tumor tissue of esophageal squamous cell carcinoma data were from the GSE161533 dataset. Besides, the GSE20347 dataset contributed 17 samples for both the normal and tumor tissue. At the same time, the GSE45670 dataset has ten normal samples with 28 ESCC samples.

Differential gene expression: GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was used for the differential gene expression analysis (J. [16]. All the statistical values were auto-selected by the GEO. For the selection of differentially expressed, the genes should qualify the cutoff criteria of Log Fold Change (\(|\log FC|\) ≥ 1.5 and the adj. p-value ≤ 0.05. All datasets were analyzed with identical selection criteria. HemI 2.0 - Heatmap Illustrator 2.0 software (http://hemi.biocuckoo.cn:81/) was used to compare the three datasets' expression values [7].

Annotation of DEGs: DAVID platform (https://david.ncifcrf.gov/) was used to annotate the 75 common, regulated DEGs [18]. Upregulated and downregulated genes GO analysis were taken into account, with the p-value less than 0.01 considered significant. Biological process (BP), Cellular Compartment (CC), and Molecular Function (MF) were analyzed. At the same time, KEGG pathway analysis was selected with similar p-values.

Table 3
Hub genes list with corresponding connectivity.

Gene Name	Connectivity
CXCL8	16
MMP3	14
MMP1	13
SPP1	13
MMP13	12
UBE2C	11
PLA2G1	10
CXCL1	10
KIF14	10
TOP2A	10

Fig. 3A. Overall PPI network of the common upregulated and downregulated genes.
Protein-protein interaction (PPI) network of DEGs: STRING (https://string-db.org/) is the online bioinformatics tool to ascertain the hub gene and examine the interactions between the genes [37]. The interaction score and the maximum number of interactions were >0.4 and 10, respectively.

Selection of the hub genes: The highest connectivity of the correlated genes was calculated from the Cytoscape software (https://cytoscape.org/), an available bioinformatic analytical tool. MCODE app used for the selection of hub gene with following criteria- MCODE score >5, degree cut off = 2, node score cut off = 0.2, Max depth = 100, k-score = 2 [41]. The top ten connected genes were considered as hub genes for this study.

Survival analysis: Kaplan-Meier survival analysis was performed in the online analytical tool (https://kmplot.com/analysis/) [28]. Overall survival analysis was performed according to the collected gastric cancer database of the website.

Box plot and pathological stage plot expression comparison: The GEPIA (http://gepia.cancer-pku.cn/index.html) tool was used to construct and compare the boxplots. Overall survival method was taken into consideration along with median group cutoff (50%), Hazards Ratio (HR), and 95% confidence interval [17]. |LogFC| Cutoff value was 1.5. Hub gene pathological stage plot was also constructed to compare the stages of the diseases.

Disease methylation: Normal and diseased methylation data compared in the DiseaseMeth Version 2 (http://bio-bigdata.hrbmu.edu.cn/diseasemeth/index.html) [32]. All default criteria were selected for the analysis.

lncRNA identification: Differentially expressed lncRNA identified compared to the approved lncRNA list from the HUGO database (https://www.genenames.org/) [25]. |LogFC| >0.5 and adj p-value less than 0.05 were considered as significant during the identification.

Drugs and genes interactions: The selected 75 genes were analyzed according to their interactions with the currently available and approved drugs. DGIdb (https://www.dgidb.org/) is an open, accessible public repository for the identification of drugs and genes interactions [9]. The exchanges were visualized through Cytoscape software.

3. Results

Identification of the DEGs: The number of upregulated and downregulated genes among the three datasets were shown in the Venn diagram (Fig. 1A and B). There were 506, 549, and 1768 significant DEGs for the GSE161533, GSE20347, and GSE45670 datasets with 16 upregulated and 59 downregulated genes in common. Fig. 2 depicts the comparative values of the three datasets. All the gene names are given in Table 1.

GO, and KEGG enrichment analysis: Common shared differentially expressed genes; DAVID analysis showed significant terms in Table 2.

PPI network analysis and hub gene screening: 91 nodes and 120 edges were analyzed during the investigation. Genes having more than or equal ten connectivity were considered as hub genes. The selected gene list is given in Table 3. Fig. 3A-3E showed the entire gene network and subsequent clusters.

Survival analysis of the hub genes: Kaplan-Meier survival plot analysis showed the hub genes significantly affect the Overall Survival (OS) of the patient affected with gastric cancer (https://kmplot.com/analysis/). CXCL8, SPP1, MMP13, CXCL1, TOP2A were genes that significantly impacted the survivability of the patients (Fig. 4).

Expression plots of the hub genes: Box plots showed all the genes had significant expression levels compared to the standard and cancer tissues, except UBE2C (Fig. 5).

Whereas pathological stage plot analysis of the hub genes showed different expression levels according to their stages (Fig. 6).

DNA methylation: The resulting heatmap contains methylation data of 8 transcripts from 324 samples of 450k. In the heatmap, rows represent transcripts, and columns represent samples (green color...
Fig. 4. Overall survival analysis of the hub genes.
CXCL8	MMP3	MMP1	SPP1	MMP13
ESCA	ESCA	ESCA	ESCA	ESCA
(num(T)=182; num(N)=286)				

UBE2C	PLAU	CXCL1	KIF14	TOP2A
ESCA	ESCA	ESCA	ESCA	ESCA
(num(T)=182; num(N)=286)				

Fig. 5. Boxplots of the hub genes (* mark showed significant difference).
Fig. 6. Pathological stage plots of the hub genes.
represents standard profiles, black represents disease profiles) (Fig. 7).

lncRNA identification: Three datasets shared only one lncRNA during the screening procedure. Fig. 8 illustrates the lncRNA numbers among the three studies datasets as a Venn diagram. All the names are given in Table 4.

Drug-genes interactions: Interaction showed that not every DEG has specific drugs to choose from in the current therapeutic practice. According to the findings of this study, very few genes have targeted medication (Fig. 9).

4. Discussion

GO enrichment analysis of this study found several terms associated with this neoplasm. This study detects extracellular matrix disassembly as the most significant biological process related to ESCC approved by the previously published article [24]. Collagen catabolic process, positive regulation of cell proliferation, extracellular matrix organizations were also detected as important biological process terms reported by previous authors [10,19,20,27].

The most important cellular component identified was the extracellular region aligned with the findings of the previous studies [29,31]. According to published articles, some other terms on the same functional dysregulation were proteinaceous extracellular matrix, extracellular matrix, collagen trimer, etc. that significantly impacted the ESCC oncogenesis [22,40]. Apart from the metallo endopeptidase activity, several other molecular functions, including chemokine activity, transcriptional activator activity, translation regulatory activity, were included in this study. Previous studies reported similar KEGG pathways linked to the ESCC occurrence [3,13,30].

This study identified five pathways for ESCC pathogenesis. Transcriptional misregulation in cancer was the most significant pathway, a similar route acknowledged by previous authors [6,12,23,39].

PPI networks showed four gene clusters in this study. CXCL8 was the highest corresponding gene which might have a crucial effect on ESCC.
metastasis. Previous authors detected this gene as the primary cause for ESCC occurrence [5,42]. MMP3, MMP1, and MMP13 gene expression related to cancer occurrence is explained by previous studies [8,38]. TOP2A and UBE2C were also detected by the published articles for cancer progression [21,34].

lncRNA identified in this study was not identified by the previous studies for ESCC occurrence. However, no previous reports about the HYMAI involvements, but all the three datasets shared this lncRNA. This might have an impact on the ESCC progression in a novel way. Several lncRNA identified were shared between 2 datasets, which might have a more significant effect on ESCC.

Drug interactions indicated that all the significant genes targeted therapy were unavailable until now. There needed much more research to precisely target the genes that cause the ESCC.

Table 4

Gene Sets	Common lncRNA	Names
GSE161533	1	HYMAI
GSE20347		
GSE45670		
GSE161533	1	SNHG17
GSE20347		
GSE45670		
GSE161533	40	TMPO-AS1, PGMS-AS1, BBOX1-AS1, P6MD6-AS2, KCMN5-AS1, ZFAS1, HGC11, LINC00702, LCA1, LINC00491, NR2F2-AS1, SCR8A1-AS1, CARMI, ADAMS5-AS1, LINC01315, MR100H5G, MIAAT, PWAR6, LINC0467, PEBP1-AS1, ZNF607-AS1, POUS62-AS2, CDH5-AS1, LINC0240, FENDRR, TP73-AS1, WDR1-AS2, LINC01082, LINC00472, MGA12-AS1, ZNF790-AS1, HLA-F-AS1, ADAMS5-AS2, ATP2A1-AS1, LINC00998, LINC0140, PIZRN3-AS1, KLF3-AS1, HAGLR05, LINC00844
GSE45670	85	
Ethical approval

This study has no invasive methods involvement regarding ethical approval requirements.

Declaration of competing interest

There is no conflict of interest about the article.

Data availability

No data was used for the research described in the article.

Acknowledgment

The author would like to acknowledge Zhaojun Ding and COSTA DA SILVA Raniere for the manuscript’s critical revising and language editing.

References

[1] C.C. Abnet, M. Arnold, W.Q. Wei, Epidemiology of esophageal squamous cell carcinoma, Gastroenterology 154 (2018) 360–373, https://doi.org/10.1053/J.GASTRO.2017.08.023.

[2] Anonymous, What is cancer? - National cancer Institute [WWW document]. https://www.cancer.gov/about-cancer/understanding/what-is-cancer, 2021, 1.8.22.

[3] A.A. Bhat, S. Nisar, S. Maacha, T.C. Carneiro-Lobo, S. Akhtar, K.S. Siveen, N. A. Wani, A. Rizwan, P. Bagga, M. Singh, R. Reddy, S. Uddin, J.C. Grivel, G. Chand, M.P. Frenneaux, M.A. Siddiqui, D. Bedognetti, W. El-Rifi, M.A. Macha, M. Haris, Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy, Mol. Cancer (2021) 1–20, https://doi.org/10.1186/s12943-020-0294-3, 2020 201 20.

[4] J.D. Chetwood, P. Garg, P. Finch, M. Gordon, Systematic review: the etiology of esophageal squamous cell carcinoma in low-income settings, 13, 2018, pp. 71–88. https://doi.org/10.1080/17474124.2019.1543024.

[5] K. Cui, S. Hu, X. Mei, M. Cheng, Innate immune cells in the esophageal tumor microenvironment, Front. Immunol. 12 (2021), https://doi.org/10.3389/FIMMU.2021.654731.

[6] T. Dang, Z. Chang, J. Meng, X. Cui, P. Wang, J. Choi, TNF antagonizes CCN1 in apoptosis in esophageal adenocarcinoma, Cytokine 149 (2022) 155728, https://doi.org/10.1016/J.CYTO.2021.155728.

[7] W. Deng, Y. Wang, Z. Liu, H. Cheng, Y. Xue, HemI: a toolkit for illustrating heatmaps, PLoS One 9 (2014), e111988, https://doi.org/10.1371/JOURNAL.PONE.0111988.

[8] C. Di, A.L. Cheung, Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma, World J. Clin. Oncol. 12 (2021) 609, https://doi.org/10.5306/WJCO.V12.I8.609.

[9] S.L. Freshour, S. Kiwala, K.C. Cotto, A.C. Coffman, J.J. Song, M. Griffith, O.L. Griffith, A.H. Wagner, Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsourcing efforts, Nucleic Acids Res. 49 (2021) D1144–D1151, https://doi.org/10.1093/NAR/GKA31084.

[10] K. Goda, T. Murao, Y. Handa, R. Katsumata, S. Fukushima, R. Nakato, M. Osawa, M. Ishii, M. Fujita, O. Handa, H. Matsumoto, Y. Fujita, K. Nishio, T.M. Wallace, R. Gomez-Esquível, M. Berzosa, H.C. Wolfsen, M.B. Wallace, E. Umegaki,
H. Hirano, K. Kato, Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and immunotherapy, Jpn. J. Clin. Oncol. 49 (2019) 412-420, https://doi.org/10.1093/jjco/hyz034.

Q. Hou, Z. Jiang, Z. Li, M. Jiang, Identification and functional validation of radioresistance-related genes AHNAK2 and EVLP in esophageal squamous cell carcinoma by exome and transcriptome sequencing analyses, Oncotargets Ther. 14 (2021) 1131, https://doi.org/10.2147/OTT.S291007.

Y. Kakeji, T. Oshikiri, G. Takiguchi, S. Kanaji, T. Matsuda, T. Nakamura, S. Suzuki, Multimodality approaches to control esophageal cancer: development of chemoradiotherapy, chemotherapy, and immunotherapy, Esophagus 18 (2021) 25-32, https://doi.org/10.1007/s12529-020-00822-1/FIGURES/1.

Jieling Li, X. Wang, K. Zheng, Y. Liu, Junjun Li, Shaqiqi Wang, K. Liu, X. Song, N. Li, S. Xie, Shaohuant Wang, The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma, PeerJ (2019), e7905, https://doi.org/10.7717/PEERJ.7705; SUPP-14, 2019.

J. Li, Y. Xie, X. Wang, Z. Jiang, X. Y. O, undefined, 2020. Identification of hub genes associated with esophageal cancer progression using bioinformatics analysis, spandios-discoveries.com 20, https://doi.org/10.3892/10.2020.12077, 2020.

X. Li, X. Xiao, R. Chang, C. Zhang, Comprehensive bioinformatics analysis identifies IncRNA HCC22 as a migration inhibitor in esophageal squamous cell carcinoma, J. Cell. Biochem. 121 (2020) 468-481, https://doi.org/10.1002/JCB.29218.

L. Liu, Q. Lei, S. Zhang, L. Kong, B. Qin, Screening and identification of key biomarkers in hepatocellular carcinoma: evidence from bioinformatic analysis, Oncol. Rep. 38 (2017) 2607-2618, https://doi.org/10.3892/ORL.2017.5946.

Z. Liu, L. Zhang, X. Chen, P. Yao, T. Yan, W. Liu, J.Y., PeerJ, 2017, Identification of Hub Genes and Small-Molecule Compounds Related to Intracerebral Hemorrhage with Bioinformatics Analysis, 2019 peerj.com.

Y. Liu, J. Xue, M. Zhong, Z. Wang, J. Li, Y. Zhu, Prognostic prediction, immune microenvironment, and drug resistance value of collagen type I Alpha 1 chain: from gastrointestinal cancers to pan-cancer analysis, Front. Mol. Biosci. 8 (2021), https://doi.org/10.3389/FMOLB.2021.69210.FULL.

Y. Liu, Z. Wang, L. Zhou, Z. Ma, J. Zhang, Y. Yu, Y. Shao, Y. Yang, FAT1 and PTPN14 regulate the malignant progression and chemotherapy resistance of esophageal cancer through the hippo signaling pathway, Anal. Cell Pathol. (2021), https://doi.org/10.1186/S12967-020-02327-7.

L. Yang, X. Zhang, Y. Zhou, Y. Zhao, M. Wu, Y. Hu, M. Li, X. Wu, H. Ji, P.J. Kaboli, Zengyuan Zhou, Y. Li, H. Hao, Y. Wang, Zihao Zhou, Z. Wang, X. Chu, Screening hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics analysis, Mol. Biol. Rep. 46 (2019) 991–995, https://doi.org/10.1007/s12751-018-5846-2/FIGURES/2.

W. Song, W.J. Dai, M.H. Zhang, H. Wang, X.Z. Yang, Comprehensive analysis of the expression of TGF-β signaling regulators and prognosis in human esophageal cancer, Comput. Math. Methods Med. (2021), https://doi.org/10.1002/1812227.