Effects of Selenium-enriched Bacillus Subtilis on Growth Inflammatory and Intestinal Microbes of Common Carp Induced by Mercury

Xinchi Shang
Jilin Agricultural University

Bo Wang
Jilin Agricultural University

Qingsong Sun
Jilin Agricultural Science and Technology College

Yue Zhang
Jilin Agricultural University

Yuting Lu
Jilin Agricultural University

Shaojun Liu
Jilin Agricultural University

yuehong li (liyhong@sina.com)
Jilin Agricultural University https://orcid.org/0000-0001-8124-5592

Research Article

Keywords: Bacillus subtilis, mercury, selenium, Inflammation, Gut microbes

Posted Date: September 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-838759/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Mercury (Hg) is a global pollutant that affects the health of humans and ecosystems. Selenium (Se) is an essential trace element for many organisms including humans. *Bacillus subtilis* is widely distributed in nature, is one of the main probiotics used in aquaculture, and has a certain adsorption effect on heavy metals. The interaction between Hg and Se was rigorously studied, especially due to the observation of the protective effect of Se on Hg toxicity. The common carp was exposed to Hg (0.03 mg/L), and 10^5 cfu/g Se-rich *B. subtilis* was added to the feed. After 30 days of feeding, samples were taken to evaluate the growth performance, serological response, inflammatory response, and intestinal microbial changes. In this study, when fish were exposed to Hg, the growth performance of the Se-rich *B. subtilis* plus 0.03 mg/L Hg fish group was lower than that of the control group and higher than 0.03 mg/L Hg; The levels of LZM and IgM decreased, but after supplementation with Se-rich *B. subtilis*, the levels of LZM and IgM increased; Hg treatment significantly up-regulated the mRNA expression of IL-1β, IL-8, TNF-α and NF-κB P65, but down-regulated the mRNA expression of IL-10, TGF-β and IκBα. However, compared with the Hg group, the Se-rich *B. subtilis* plus Hg group can significantly increase the mRNA expression levels of IL-1β, IL-8, TNF-α and NF-κB P65, but reduce the regulation of IL-10, TGF-β and IκBα expression. At the genus level, the abundance of *Aeromonas* in the intestines of common carp in the Hg treatment group increased, and Se-rich *B. subtilis* could reduce the abundance of *Aeromonas* (pathogenic bacteria). Through the analysis of the species, we found that the Hg group was mainly composed of *Aeromonas sobria* and *Aeromonas hydrophila*. However, in the Se-rich *B. subtilis* treatment group, we found that *Aeromonas sobria* was significantly less than the Hg group. Because *Aeromonas* (pathogenic bacteria) is harmful to the fish, it can induce inflammation in the fish and make the fish sick. Through microbiological analysis, it is found that Se-rich *B. subtilis* improves Hg-induced intestinal microbial changes, alleviates the abundance of *Aeromonas*, and alleviates the inflammation of the fish.

1. Introduction

Heavy metals have become serious pollutants in the aquatic environment due to their persistence to the environment and the ability to be accumulated by aquatic organisms (Veena et al. 1997). Mercury (Hg) is a global pollutant that has been associated with kidney immune and genetic damage to animals and humans, as well as microbial diversity and function (Liu et al., 2018a; Liu et al., 2018b). Exposure to Hg can cause various diseases of the organ system (Rice et al., 2014). Fish are exposed to Hg due to pollution in inland waters, which will lead to deterioration of fish health, thereby reducing fish quality and fish production (Begam and Sengupta, 2015). The pro-inflammatory transcription factor NF-kB p65 is often a central mediator of the immune and inflammatory response; Studies have found that mercury can significantly induce the up-regulation of the pro-inflammatory transcription factor NF-kB p65 (Adegoke et al., 2018; Alexandrov et al., 2018). In the immune system, pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), are functionally active regulators of the innate immune response (Khansari et al., 2017; Sareila et al., 2011).
For a long time, it has been observed that Se protects animals from the toxicity of inorganic mercury and methylmercury. Parízek and Ostádalová reported one of the earliest studies on the protective effect of Se. This experiment Se protects rats from inorganic mercury-induced kidney poisoning (Parízek and Ostádalová, 1976). Subsequent studies found that this is the absorption and interaction of mercury and Se in Pseudomonas fluorescens to achieve the detoxification of Se and mercury (Belzile et al., 2006).

Se is an essential micronutrient element that has a variety of complex effects on human health. Se is essential to human life and health, which is mainly due to its antioxidant, anti-inflammatory and antiviral properties (Wrobel et al., 2016). Lin et al reported that Se deficiency can reduce the growth performance of the kidney, spleen and skin of the young grass carp head and impair its immune function (Zheng et al., 2018). At the same time, Se supplementation can alleviate the upregulation of nuclear factor NF-KB induced by Microcystin-leucine arginine, and the upregulation of inflammatory cytokines IL-6, TNF-α, IL-1β, and TGF-β1 in cells (Adegoke et al., 2018).

Probiotics are living microorganisms that provide health benefits to the host when supplied in sufficient volumes (W.H. Organization, 2001). According to many recent studies, probiotics derived from the host’s intestinal tract increase the growth rate of the host by hydrolyzing the complex polysaccharides in the host’s nutrients. As a live microbial feed supplement, it is beneficial to the development of the host. Probiotics such as microbes and viral dysentery can prevent the host from suffering from various diseases (Doeschate and Coyne, 2008; Teemu et al.,2008; Zhao et al., 2012). In addition, Compared to control group the fish fed BS8 and LL8 showed higher gene expression levels of interleukin (IL-1β), interferon-γ (IFN-γ), heat shock protein 70 (HSP70) and tumor necrosis element (TNF-α) (Won et al., 2020). *B. subtilis* can upregulate vascular endothelial development element (VEGF) and hypoxia-inducible element-1α (HIF-1α) and influence the expression of mitogen-activated protein kinase (MAPK) and nuclear factor-kB (NF-kB) signaling pathways accelerate cell migration, regulate the secretion of pro-inflammatory cytokines and the phenotypic transition of macrophages (Yan et al.,2020).

2. Materials And Methods

2.1 Preparing Se-rich *B. subtilis* and Preparing diet

Commercial feed as a basic diet. Se-rich *B. subtilis* is added to the basic feed. For the detailed steps of preparing Se-enriched *B. subtilis*, please refer to Xinchi S et al(Shang et al., 2021). The mercury content in 20 ml water samples from different aquariums was collected. Table 1 displays the actual mercury concentration. The probiotics are diluted with sterile normal saline, fully homogenized and added to the basic feed according to the needs of the experiment (final dose of bacteria: 105 cfu/g feed; final concentration of Se: 0.5 ppm) (Shang et al., 2021). The same volume of sterile saline was added to the basic diet to prepare a control. Store all feed in a refrigerator at 4°C.
Table 1
Nominal and actual Hg concentration in water (mg/L).

Groups	Nominal concentration	Actual Hg concentration
control group	0	0.005 ± 0.001^a
Se-rich <i>B. subtilis</i>	0	0.003 ± 0.001^a
Se-rich <i>B. subtilis</i> plus 0.03 mg/L Hg	0.03	0.029 ± 0.002^b
0.03 mg/L Hg	0.03	0.005 ± 0.001^b

Note: The actual Hg concentration in water at 30 (n = 12) days for each group. Data are mean ± S.D. Bar with different letters are significantly (P < 0.05) on the same sampling interval.

2.2 Feed and experimental design

Common carp (6.2 ± 0.1 g) was purchased from an aquatic fry farm (Jilin Province, China) and transported to the laboratory. We randomly divided 360 fish into four groups and divided these groups evenly into 12 tanks (80 L; 3 replicates per group; 30 fish per tank). After the experimental fish were domesticated and reared for 2 weeks, the healthy common carp were randomly divided into 4 treatment groups (Se-rich <i>B. subtilis</i>, control group, Se-rich <i>B. subtilis</i> plus 0.03 mg/L Hg and 0.03 mg/L Hg). After the experiment started, they were fed twice a day at 8 o’clock and 18 o’clock, according to the fish body mass accounting for (1–2)% of the daily feeding amount. 80L aerated tap water in the water tank, the daily water exchange rate is 1/2 of the total.

2.3 Growth performance

Observe the development performance of common carp after one month of breeding. The calculation of coefficients was made below: Rate of survival (SR, %) = 100 × (ultimate quantity of fish/initial amount of fish), Weight gain proportion (WGR, %) = 100 × [(ultimate body weight − primary body weight)/primary body weight], given rate of increase (SGR, %/day) = 100 × [(ln ultimate body weight − ln primary body weight)/days].

2.4 Serum immunological test

Elisa kit (Nanjing Jiancheng Institute of Biological Engineering, Nanjing, Jiangsu) is used to determine serum immunoglobulin M (IgM) levels and lysozyme (LZM) activity.

2.5 Reverse-transcriptase real-time PCR (RT-PCR)

At the end of the exposure test, the expression levels of immune-related genes in the spleen and kidney tissues were measured. The Trizol tool (Takara, Dalian, China) was used to extract total RNA from the spleen and kidney. Use RT-PCR cDNA tool (Takara, Dalian, China) to synthesize clean RNA with OD260/OD280 absorption ratio 1.8-2.0 as a template (Wang, et al., 2021). The primers were synthesized.
by Kumei Biotechnology Co., Ltd., Jilin. RT-PCR is used to quantify the expression levels of 7 immune response-related genes (IL-8, NF-KB P65, IkBa, IL-1β, TNF-α, IL-10, and TGF-β). Using housekeeping gene β-actin as an internal control (Yin, et al., 2018). Table 3 shows the sequence of the given primers used in this study. The RT-PCR reaction takes a total volume of 20 uL, including 1 uL cDNA, 2 uL each primer, 7 uL treated DEPC water and 10 uL SYBR Premix Ex Taq Master Mix. The thermal reaction conditions are as follows: 95°C for 5 minutes, 95°C for 5 seconds, 60°C for 30 seconds, 72°C for 30 seconds, cycle 30 times. The RT-PCR reaction is repeated 3 times for each sample. Convert the data to Ct values after each reaction. The relative gene expression is determined by $2^{-\Delta\Delta CT}$.

Genes	Sequences (5′-3′)	Accession no.	
β-actin	Forward	TGAAGATCCTGACCGAGCGT	NM_131031.1
	Reverse	GGAAGAAGAGGCAGCGGT	
IL-1β	Forward	ACCAGCTGGATTTGTCAAGAG	AB010701
	Reverse	ACATACTGAATTTGACCTTTG	
IL-8	Forward	ATGAGTCTTATAGGTCTGGGT	JN663841
	Reverse	ACAGTGAGGGCTAGGAGGG	
TNF-α	Forward	GGTGATGGGCTGCGAGGAG	AJ311800
	Reverse	TGTCATCCTTTCTGCTCTGGT	
IL-10	Forward	GGAAAGACACCTGGCTGTA	JX524550.1
	Reverse	CCACAAATGAGCAACAGTCA	
NF-kB p65	Forward	GGCAGGTGGGCGATAGGTT	AY735398.1
	Reverse	CATTCCTTCTTCCTTGCGT	
IkBa	Forward	TCTTGCCATTATTTGCACGG	KJ125069
	Reverse	TGGTACCACAGTCATCCACCA	
TGF-β1	Forward	TTGGGACTTGTGCTCTGAT	EU099588
	Reverse	AGTTCTGCTGGGATGTTT	

2.6 DNA extraction and 16S rRNA gene exploration

On the last day of mercury exposure, 3 fecal samples were randomly selected from the control group and the treatment group, immediately frozen in liquid nitrogen, and stored at -80°C. The QIAamp DNA Stool Mini Tool (Qiagen, Germany) was used to extract microbial DNA from the carp face. PCR amplification uses 16S variable region V3-V4 universal primers. Use the Quantitative Analysis of Microbial Ecology
(QIIME) tool (version 1.17) to analyze the raw readings. UPARSE is used to cluster OTU, with an analogy
cutoff rate of 97%, and UCHIME is used to identify and remove chimeric sequences. Using the RDP
classifier against the SILVA (SSU115) 16S rRNA database, with a confidence threshold of 70%, it is used
to analyze the classification of each 16S rRNA gene sequence.

2.7 Statistical exploration

SPSS 20.0 (SPSS, Chicago, IL, USA) was used for statistical analysis. Information was shown as mean ±
standard deviation (S.D.) for every group. The whole test was made for three times. One-way exploration
of variance (ANOVA) was adopted for the determination of the significance variations among the groups,
which was followed by Tukey’s various contrast experiment. The significance level was set at P < 0.05.

3 Results

3.1 Se concentration measurement on Se-rich B. subtilis,
and common carp growth performance

The plate counting approach was used to test the tolerance of B. subtilis for Se. A Se concentration of 0.5
g/L in the current test (the transformation rate of Se is 56.2%) (Shang et al., 2021) The growth
performance of common carp is shown in Table 2. The survival rate of common carp was 100%, and
there was no significant difference. With the increase of dietary Se-enriched B. subtilis levels, WGR and
SGR showed the same trend. There was no significant difference between the control group and the Se-
enriched B. subtilis group, while the 0.03 mg/L Hg group was significantly reduced compared to the
control group (P < 0.05). The growth performance of the se-rich B. subtilis plus Hg fish group of 0.03
mg/L was less than that of the control group and more than 0.03 mg/L Hg (P < 0.05).
Table 2
Growth performance of C. carpio var. specularis fed the experimental diets for a month.

Diet	control group	Se-rich B. subtilis	Se-rich B. subtilis plus 0.03 mg/L Hg	0.03 mg/L Hg
Initial BW (g)	6.25 ± 0.13	6.25 ± 0.14	6.27 ± 0.13	6.27 ± 0.14
Final BW (g)	14.17 ± 0.12^c	14.27 ± 0.34^c	13.12 ± 0.01^b	12.27 ± 0.06^a
WGR (%)	128.32 ± 1.95^c	126.32 ± 5.50^c	109.97 ± 0.24^b	96.37 ± 1.08^a
SR (%)	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00
SGR (%/day)	26.40 ± 0.40^c	26.73 ± 1.14^c	22.91 ± 0.05^b	20.08 ± 0.22^a

Data represent mean ± S.E.M of three replicates.

3.2 Serum non-specific immune responses

Hg is known to cause disturbances in the immune response. LZM and IgM levels for both treatment and control groups were determined (Fig. 1). When fish were exposed to Hg, LZM and IgM levels decreased. However, LZM and IgM levels increased after supplementation with Se-rich *B. subtilis*. The LZM and IgM extents of the Se-rich *B. subtilis* group grew greatly by comparing with the control group (P < 0.05; Fig. 1).

3.3 Immune-associated gene expression

Hg exposure greatly up-regulated the mRNA expression of IL-8, IL-1β, TNF-α and NF-kB P65 but down-regulated the mRNA expression of IL-10, TGF-β and IκBα(Fig. 2). Nevertheless, the co-treatment with Hg and Se-enriched *B. subtilis* greatly increased the mRNA expression levels of IL-8, IL-1β, NF-kB P65 and TNF-α compared with the group exposed to Hg and not supplemented with dietary supplements. Down-regulate the mRNA expression of IL-10, TGF-β and IκBα (P < 0.05). Compared with the control, IL-1β, TNF-α, IL-8 and NF-kB P65 were up-regulated by exposure to mercury, while the consumption of Se-rich *B. subtilis* alleviated IL-1β, TNF-α, IL-8 and NF-kB P65 were up-regulated, and IL-10, TGF-β and IκBα were down-regulated (P < 0.05).

3.4 DNA extraction and 16S rRNA gene exploration

3.4.1 Statistical exploration of sequencing data

The dilution curve directly shows the rationality of the amount of sequencing data and indirectly shows the abundance of species in the sample. If the curve tends to be flat, it indicates that the amount of
sequencing data is gradually reasonable. In this study, after a month of feeding trials, we found that the end of the thinning curve (Fig. 3A) was flattened. Therefore, we conclude that the amount of sequencing data is reasonable for our analysis.

For clarifying the effect of Hg in the intestinal flora of common carp, we performed PCoA analysis. The control group, the Se-rich B. subtilis group, the Se-rich B. subtilis plus Hg group, and the Hg group were combined and analyzed. The PCoA results showed that the microbial composition of the four groups of different diets was significantly different (Fig. 3B) (P < 0.05).

The chao1 index (the number of species included in the community) between the four groups found that the control group was relatively high, but the difference was not significant (Fig. 3C). The Shannon index (the diversity of gut microbes) found that there was no significant difference between different diets and groups (Fig. 3D). The results showed that the species richness and uniformity of each group of different diets did not change much.

3.4.2 Comparison at the genus levels

All sequences were identified at the genus level. We selected thirty data from the genus for analysis. The five main genera in the control group were Verrucomicrobiaceae, Cetobacterium, Pseudorhodobacter, Gemmobacter and Aeromonas. The most common genera in the Hg group include Verrucomicrobiaceae, Gemmobacter, Cetobacterium, Aeromonas and Pseudomonas. After Hg exposure, the abundance of Aeromonas and Roseomonas increased significantly (P < 0.05). At the same time, after Hg exposure, the abundance of Pseudorhodobacter and Verrucomicrobiaceae was significantly reduced (P < 0.05).

However, in the Hg treatment group, we found that the increase of Aeromonas and Roseomonas was reduced. The decrease of Pseudomonas and Verrucomicrobiaceae was suppressed (P < 0.05). In addition, we also found that Verrucomicrobiaceae in the Se-rich B. subtilis group also significantly decreased (Fig. 4A, B) (P < 0.05).

3.4.3 Comparison at the Species level

Similarly, we selected 30 data from the species for analysis. The most important species of intestinal microbes in the Hg group are Verrucomicrobiaceae_unclassifie, Aeromonas_sobria, Aeromonas_hydrophila and Aeromonas_spp. The most microbes in the control group were Cetobacterium_somerae, Gemmobacter_sp._yp3 and Pseudomonas_poae. Compared with the control group, after Hg exposure, the abundance of Cetobacterium_somerae, Pseudomonas_poae, Verrucomicrobiaceae_unclassified and Gemmobacter_sp._yp3 were significantly reduced, and Aeromonas_sobria, Aeromonas_hydrophila and Aeromonas_hydrophila were significantly increased (P < 0.05). At the same time, in the Hg treatment group, it was found that the increase of Aeromonas_sobria, Aeromonas_hydrophila and Aeromonas_spp was suppressed, while the decrease of Verrucomicrobiaceae_unclassifie was suppressed. Pseudomonas_poae and Cetobacterium_somerae increased significantly (Fig. 4C, D) (P < 0.05).

4. Discussion
Probiotics improve animal health and nutrition by improving feed value and enzymatic effects, and play a very important role in improving animal health, nutrition and activating immune response (Dawood et al., 2016). Zaineldin et al. reported that supplementation of Bacillus subtilis in the diet can significantly improve growth performance (FBW, WG and SGR) (Zaineldin et al., 2018). Hg can activate energy-consuming detoxification processes, which consumes a lot of energy in the fish, resulting in a decrease in energy, which is not conducive to the growth of the fish (Sfakianakis et al., 2015). In this study, although the Se-rich B. subtilis group did not show an increase in WGR and SGR compared to the control group, it was found to alleviate the growth performance of common carp affected by Hg.

Detection of autoantibodies may detect damage after metal exposure (El-Fawal et al., 1999). Studies have found that exposure to Hg changes and increases IgM levels (Osuna et al., 2014; Queiroz et al., 1994) However, in this study, we observed a decrease in IgM and LZM levels, which may be due to excessive accumulation of Hg in the blood. However, compared with the Hg group Hg plus Se-enriched B. subtilis group, the levels of IgM and LZM increased significantly. It has been shown that dietary supplementation with nano-Se significantly increased IgM levels and enhanced immune function in chickens (Cai et al., 2012; Kumar et al., 2013). In addition, it has been reported that the addition of Bacillus licheniformis to the carp diet increased LZM levels and enhanced disease resistance (Kumar et al., 2013). The secondary metabolites of probiotics may have beneficial effects on the host (Dennis-Wall et al., 2017). Secondary metabolites from probiotics are transported to host organs via blood circulation (Eloe-Fadrosh et al., 2015).

Environmental pollutants such as heavy metals can affect the body's immune system and cause a decline in immunity. Cytokines, including, TNFs, and chemokines (Hawley et al., 2009; Savan and Sakai, 2006). IL-1β, IL-8 and TNF-α are crucial pro-inflammatory cytokines that regulate the inflammatory process and are considered good markers of the inflammatory response (Chen et al., 2017). IL-1β mainly regulates the body's immunity against pathogens, and it regulates the activation of immune cells and non-immune cells in infected sites and organs; IL-8 promotes the migration of neutrophils to fight pathogens and can increase the expression of other cytokines(Tomalka and Hise, 2015; Zhang et al., 2012). TNF-α is a multifunctional inflammatory cytokine, which can induce a variety of responses, including cell proliferation and apoptosis(Annett et al., 2001). Cytokines can be regulated by nuclear factor kappa B (NF-κB) signaling. In the present study, Hg exposure upregulated IL-1β, IL-8 and TNF-α mRNA expression in the liver and spleen, consistent with results in zebrafish larvae (Zhang et al., 2016). This indicates that Hg exposure triggered an inflammatory response. The changes in the expression of these genes may be due to the accumulation of Hg in 30 days, which triggers a pro-inflammatory immune response and up-regulate IL-1β, IL-8, and TNF-α. However, treatment with Se-rich B. subtilis attenuated the up-regulation of IL-1β, IL-8, and TNF-α. Studies have shown that Se can up-regulate chicken immune cytokines (ie IL-10 gene) (Xu et al., 2015). These results may indicate that anti-inflammatory cytokines effectively suppressed the pro-inflammatory immune response, which is consistent with the up-regulation of IL-10 observed in this study. In addition, the up-regulation of IL-10 in the liver may represent an aspect of the homeostatic mechanism that controls the Hg-induced inflammatory response. Gao et al. reported that the reduction of TGF-β will aggravate the inflammatory damage of liver tissue, but the lack of Se will
inhibit the expression of TGF-β and promote the production of TNF-α, IL-1β and IL-6, which may cause carp liver tissue inflammation, but Se supplementation can prevent the decrease of TGF-β (Gao et al., 2019). The intake of Se-rich B. subtilis will not only increase the Se content in the body, but also B. subtilis will absorb Hg and alleviate the damage of the fish (Shang et al., 2021). In this study, there may be such a mechanism. Hg intake reduced the expression of TGF-β, while the Se-rich B. subtilis plus Hg group alleviated the decrease of TGF-β. The transcription factor NF-κB controls the expression of inflammatory cytokine genes (Taro and Shizuo, 2007). It controls the expression of pro-inflammatory genes and is also a key target for regulating inflammatory diseases (Xu et al., 2005; Yang et al., 2007). Study demonstrated that by catalyzing the degradation of IkBα, NF-κB can be activated by IKK (including IKKa, IKKβ and IKKy), which plays an important role in regulating human pro-inflammatory cytokines (Jobin and Sartor, 2000; Bollrath and Greten, 2009). In this study, we found that the expression of IkBα in the liver and spleen decreased, and the corresponding NF-κB p65 expression increased, and this phenomenon was alleviated in the Se-rich B. subtilis treatment group. So there may be such a mechanism, Se-rich B. subtilis may be involved in the regulation of the IkBα/NF-κB signaling pathway. When the body consumes too much Hg, it leads to insufficient Se content in the body and triggers the inflammatory response and activates the IkBα/NF-κB signaling pathway. After feeding Se-rich B. subtilis to supplement Se, Se inhibits the up-regulation of pro-inflammatory cytokines in the cells and promotes the expression of anti-inflammatory cytokines, thereby reducing the harm of Hg to the fish.

The intestine is a complex ecosystem, and the intestinal flora has an important role in this ecosystem. Intestinal flora can assist the digestion and absorption of food and promote nutrient metabolism (Sommer and Backhed, 2013). Changes in the intestinal flora can lead to disorders of the body’s normal physiological functions, leading to diseases (Nicholson et al., 2012). Through previous studies, we found that Hg significantly reduced the activity of enzymes such as CAT and GSH-PX and triggered inflammation (Shang et al., 2021). This experiment uses Illumina high-throughput sequencing technology to explain how the composition and diversity of carp intestinal microbial communities change under Hg exposure conditions, and provide a theoretical basis for fish intestinal health and normal human growth and development. In this study, the levels of Aeromonas sobria and Aeromonas hydrophila in the intestine of common carp after Hg treatment were higher than those in the control group. Many studies have shown that changes in the diversity of intestinal flora can cause diseases such as enteritis, inflammatory diseases and obesity (Chassaing and Gewirtz, 2017; Beaz-Hidalgo and Figueras, 2013). Therefore, Hg-induced changes in intestinal flora may affect the health of common carp.

In this study, our results indicate that Verrucomicrobiaceae, Cetobacterium, Pseudorhodobacter, Gemmobacter and Aeromonas are the most important bacterial groups in common carp. The main flora in the intestines after Hg exposure are Verrucomicrobiaceae, Gemmobacter, Cetobacterium, Aeromonas and Pseudomonas. Hg exposure caused changes in the intestinal flora, and it was found that the abundance of Aeromonas in the Hg treatment group was much higher than that of the control group. Aeromonas can colonize and infect the host, and can cause diseases such as sepsis and fungal infections. The extracellular products (hemolysin, lipase and protease) produced by Aeromonas can cause soft tissue, hepatobiliary system, respiratory system and arthritis disease (Elorza et al., 2020; Lian...
et al., 2020). In this study, Hg exposure increased the proportion of *Aeromonas* in the intestines of fish. However, in the Se-rich *B. subtilis* plus Hg group, we found that the abundance of *Aeromonas* was reduced, which indicates that feeding the Se-rich *B. subtilis* can change the intestinal microbes of the fish and reduce the abundance of *Aeromonas*. *Aeromonas sobria* can cause oxidation in fish bodies to change superoxide dismutase, glutathione peroxidase, and up-regulate immunoglobulins IgM and TNF-α (Harikrishnan et al., 2020). *Aeromonas hydrophila* can cause *Catla catla* immune response and increase IL-1β and TNF-α (Harikrishnan et al., 2021). In this study, it was found that *Aeromonas sobria* and *Aeromonas hydrophila* were significantly increased, which may be another cause of the disease. Hg induction will change the *Aeromonas* in the common carp intestine, and increase the *Aeromonas sobria* and *Aeromonas hydrophila* in the *Aeromonas*, which leads to an inflammatory response in the fish. Se-rich *B. subtilis* through the action of Se and the probiotic *B. subtilis*, regulates the IKBα/NF-κB signaling pathway and reduces the inflammatory response. The composition of the intestinal flora was detected by 16S rRNA gene sequencing, and this phenomenon may be that the Se-rich *B. subtilis* improved the intestinal flora and reduced the abundance of *Aeromonas*, thereby reducing the inflammatory response.

5. Conclusions

In conclusion, our results reported the effect of Se-rich *B. subtilis* on common carp exposed to mercury. This provides insightful insights for the Se-rich *B. subtilis* to reduce mercury poisoning in common carp. In this study, Se-rich *B. subtilis* alleviates mercury-induced effects on common carp growth performance and inflammation by changing the changes of intestinal microbes.

Declarations

Compliance with ethics requirements

All experimental and animal handling procedures were conducted according to the research protocols approved by the Institutional Animal Care and Use Committee, Jilin Agricultural University, Jilin Province, China.

Declaration of competing interest

All authors declare that they have no conflict of interest and agree to publish this article to Fish Physiol Biochem. All the data in the article is actually available.

Funding information

The work was supported by the National Key R&D program of China (no.2020YFD0900400); Developmental Biology of Freshwater Fish, National Key Laboratory Project (201901); Jilin Province Industrial Technology Research and Development Special Project (2019C059-5); Jilin Province Science and Technology Development Plan Project (20190201179JC); Ministry of Agriculture Special Project: "Investigation of Fishery Resources and Environment in Key Waters in Northeast China."
Authors' contributions

The specific work of each author in this study was as follows: Xinchi Shang: perception and design; surgical operation; final approval of the version to be published; Bo Wang: Participation in the whole work; drafting of the article; data analysis; Yue Zhang: Methodology, Investigation, Writing - original draft. Qingsong Sun: Methodology. Yuting Lu: Investigation. Shaojun Liu: Methodology. Yuehong Li: Investigation, Writing - original draft. Thank you and best regards.

Consent to participate

The author of the article is approved by everyone

Consent for publication

All authors agree to publish this article to Fish Physiol Biochem

Availability of data and material (Not applicable)

Code availability (Not applicable)

References

1. Adegoke EO, Machebe Xue, Wang, NS, Adeniran SO, Hao W, Chen, Wang (2018) Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. Ecotoxicol Environ Saf 166:165–175
2. Alexandrov PeterN, Pogue AileenI, Lukiw WalterJ (2018) Synergism in aluminum and mercury neurotoxicity. Integr Food Nutr Metab 5:1–10
3. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNFa promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122
4. Beaz-Hidalgo R, Figueras MJ (2013) Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis 36:371–388
5. Begam M, Sengupta, Mahuya (2015) Immunomodulation of intestinal macrophages by mercury involves oxidative damage and rise of pro-inflammatory cytokine release in the fresh water fish Channa punctatus Bloch. Fish Shellfish Immunol 45:378–385
6. Belzile N, Wu GJ, Chen YW, Appanna VD (2006) Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluo-rescens. Sci Total Environ 367:704–714
7. Bolhrath J, Greten FR (2009) IKK/NF-kB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. Embo Rep 10(12):1314–1319
8. Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91:2532–2539

9. Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42:49–53

10. Chen QL, Sun YL, Liu ZH, Li YW (2017) Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere 188:1–9

11. Dawood MA, Koshio S, Ishikawa M, El-Sabagh M, Esteban MA, Zaineldin AI (2016) Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol 57:170–178

12. Dennis-Wall JC, Culpepper T, Jr CN, Rowe CC, Burns AM, Rusch CT (2017) Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 105:758–767

13. Doeschate KIT, Coyne VE (2008) Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture 284:0–179

14. El-Fawal HA, Waterman SJ, Feo AD, Shamy MY (1999) Neuroimmunotoxicology: humoral assessment of neurotoxicity and autoimmune mechanisms. Environ Health Perspect 107:767–775

15. Eloë-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A (2015) Functional Dynamics of the Gut Microbiome in Elderly People during Probiotic Consumption. Mbio 6:e00231–e00215

16. Elorza A, Rodríguez-Lago L, Martínez P, Hidalgo A, Aguirre U, Cabriada JL (2020) Gastrointestinal infection with Aeromonas: incidence and relationship to inflammatory bowel disease. Gastroenterol Hepatol 43:614–619

17. Gao XJ, Tang B, Liang HH, Yi L, Wei ZG (2019) Selenium deficiency induced an inflammatory response by the HSP60-TLR2-MAPKs signalling pathway in the liver of carp. Fish Shellfish Immunology 87:688–694

18. Harikrishnan R, Devi G, Balasundaram C, Doan HV, Jaturasitha S, Ringø E (2021) Effect of chrysophanic acid on immune response and immune genes transcriptomic profile in Catla catla against Aeromonas hydrophila. Sci Rep. 11, 612 – 62

19. Harikrishnan R, Thamizharasan S, Devi G, Doan HV, Kumar T, Hoseinifar SH (2020) Dried lemon peel enriched diet improves antioxidant activity, immune response and modulates immuno-antioxidant genes in Labeo rohita against Aeromonas sorbia. Fish Shellfish Immunology 106:675–684

20. Hawley DM, Hallinger KK, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503

21. Jobin C, Sartor RB (2000) NF-kB signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm Bowel Dis 6:206–213
22. Khansari AliReza, Parra D, Reyes-López FelipeE, Tort L (2017) Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture. Gen Comp Endocrinol 250:122–135

23. Kumar NR, Raman RP, Jadhao SB, Brahmacari RK, Kumar K, Dash G (2012) Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii(de Man, 1879). Aquacult Int 21:387–403

24. Lian ZG, Bai J, Hu XC, Lü A, Sun JF, Guo YJ (2020) Detection and characterization of Aeromonas salmonicida subsp. salmonicida infection in crucian carp Carassius auratus. Vet Res Commun 44:61–72

25. Liu YR, Delgado-Baquerizo M, Bi L, Zhu J, He JZ (2018a) Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome 6:183. https://doi.org/10.1186/s40168-018-0572-7

26. Liu YR, Johns A, Lu BL, Hu X, Sun HW, D., (2018b) Unraveling microbial communities associated with methylmer-cury production in paddy soils. Environ Sci Technol 52, 13110–13118. https://doi.org/10.1021/acs.est.8b03052

27. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

28. Osuna CE, Grandjean P, Weihe P, El-Fawal HAN (2014) Autoantibodies Associated with Prenatal and Childhood Exposure to Environmental Chemicals in Faroese Children. Toxicol Sci 142:158–166

29. Parízek J, Ostádalová I (1976) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23:142–143

30. Queiroz ML, Perlingeiro RC, Dantas DC, Bizzacchi JM, Capitani EMD (1994) Immunoglobulin Levels in Workers Exposed to Inorganic Mercury. Pharmacol Toxicol 74:72–75

31. Rice KM, Walker EM, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

32. Sareila,Outi., Kelkka T, Pizzolla A, Hultqvist M, Rikard H., (2011) NOX2 Complex–Derived ROS as Immune Regulators. Antioxid Redox Signal 15, 2197–2208

33. Savan R, Sakai M (2006) Genomics of fish cytokines. Comparative Biochemistry & Physiology Part D Genomics & Proteomics. 1, 0–101

34. Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255

35. Shang XC, Yu P, Yin YW, Zhang Y, Lu YT, Mao QH (2021) Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp. Comp Biochem Physiol C Toxicol Pharmacol 239:108851

36. Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238
37. Taro K, Shizuo A (2007) Signaling to NF-κB by toll-like receptors. Trends Mol Med 13:460–469
38. Teemu H, Seppo S, Jussi M, Raija T, Kalle L (2008) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol 125:170–175
39. Tomalka J, Hise AG (2015) Inflammasomes in Aspergillosis: it takes two to tango. Cell Host Microbe 17:290–292
40. Veena KB, Radhakrishnan CK, Chacko J (1997) Heavy metal induced biochemical effects in an estuarine teleost. Indian J Mar Sci 26:74–78
41. Wang N, Gao C, Zhang P, Guan L, Wang Y, Qin Y (2019) Effect of Bacillus cereus against cadmium induced hematological disturbances and immunosuppression in Carassius auratus gibelio. Fish Shellfish Immunol 89:141–148
42. Organization WH (2001) Health and Nutritional Properties of Probiotics in Food Including Powdered Milk With Live Lactic Acid Bacteria: A Joint FAO/WHO Expert Consultation. WHO, Geneva
43. Won S, Hamidoghli A, Choi W, Park Y, Jang W, Kong I (2020) Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile tilapia, Oreochromis niloticus. Microorganisms. 8, 0–10
44. Wrobel, Jagoda K, Power R, Toborek M (2016) Biological Activity of Selenium: Revisited. IUBMB Life 68:97–105
45. Xu CJ, Shen GX, Chen C, Gélinas C, Kong AT (2005) Suppression of NF-kB and NF-kb regulated gene expression by sulforaphane and PEITC through IKBa, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495
46. Xu F, Liu S, Li S (2015) Effects of Selenium and Cadmium on Changes in the Gene Expression of Immune Cytokines in Chicken Splenic Lymphocytes. Biol Trace Elem Res 165:214–221
47. Yang YX, Zhou HD, Yang YB, Li WS, Zhou M, Zeng ZY (2007) Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5–8F via NF-KB and MAPKs signaling pathways. Mol Immunol 44:984–992
48. Yan L, Liu G, Zhao B, Pang B, Wu W, Ai C (2020) Novel Biomedical Functions of Surfactin A from Bacillus subtilis in Wound Healing Promotion and Scar Inhibition. J Agric Food Chem 68:6987–6997
49. Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y, Yi C, Li Y (2018) Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: Bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf 161:755–762
50. Zaineldin AI, Hegazi S, Koshio S, Ishikawa M, Bakr A, El-Keredy AMS et al (2018) Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish Shellfish Immunol 79:303–312
51. Zhang QF, Li YW, Liu ZH, Chen QL (2016) Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae. Aquat Toxicol 181:76–85
52. Zhang ZH, Wu HZ, Xiao JF, Wang QY, Liu Q, Zhang YX (2012) Immune responses of zebrafish (Danio rerio) induced by bath-vaccination with a live attenuated Vibrio anguillarum vaccine candidate. Fish
Zhao J, Shi B, Jiang QR, Ke CH (2012) Changes in gut-associated flora and bacterial digestive enzymes during the development stages of abalone (Haliotis diversicolor). 338–341, 0–153

Zheng L, Feng L, Jiang WD, Wu P, Tang L, Kuang SY (2018) Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 77:53–70

Figures

![Graph A](image1.png)

A

Effects of selenium-rich Bacillus subtilis and/or Hg on LZM and IgM activity levels in the blood. Values are presented as means ± S.D. indicates significant differences (P<0.05) between treated groups and the control group.

![Graph B](image2.png)

B

Figure 1

Effects of selenium-rich Bacillus subtilis and/or Hg on LZM and IgM activity levels in the blood. Values are presented as means ± S.D. indicates significant differences (P<0.05) between treated groups and the control group.
Figure 2

Effects of selenium-rich B. subtilis and/or hg on the mRNA level of IL-1β, IL-8, TNF-α, IL-10 and TGF-β in the spleen (A) and kidney (B); Effects of selenium-rich B. subtilis and/or hg on the mRNA level of NF-kB P65 and IκBα in the spleen (C) and kidney (D). Each value is presented as the mean ± S.D. indicates significant differences between the treated groups and the control group (P<0.05).
Figure 3

(A) Rarefaction curves and estimators of the different samples; (B) Constrained PCoA plot of Bray-Curtis distances between samples by different dietary lipid (P<0.05); Alpha diversity of CK to FXYb, CK to FXYb+Hg and CK to Hg (C and D).
Figure 4

(A) Relative abundance of the top 30 Genus in the fecal microbiota between healthy and Hg-treated fish.
(B) t-Test analysis of different Genus in fecal microbiota at the Genus level;
(C) Relative abundance of the top 30 species in the fecal microbiota between healthy and Hg-treated fish.
(D) t-Test analysis of different species in fecal microbiota at the species level P < 0.05 indicates a significant difference between the four groups.