SHORT COMMUNICATION

WEED DIVERSITY IN RICE CROP FIELDS OF FATEHGARH SAHIB DISTRICT, PUNJAB, INDIA

Yadvinder Singh & Rai Singh

26 March 2019 | Vol. 11 | No. 5 | Pages: 13611–13616
DOI: 10.11609/jott.4508.11.5.13611-13616
WEED DIVERSITY IN RICE CROP FIELDS OF FATEHGHARH SAHIB DISTRICT, PUNJAB, INDIA

Yadvinder Singh 1,2 & Rai Singh 2

1,2 Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140406, India.
1 yadbotany@gmail.com (corresponding author), 2 raisingh.bot@gmail.com

Abstract: A total of 31 species of weeds belonging to 11 families was collected from rice fields in Fatehgarh District of Punjab between June and November 2017. Of the 31 species, 15 were dicots and 16 were monocots. Of the 11 families, six (Portulacaceae, Lythraceae, Solanaceae, Scrophulariaceae, Polygonaceae, and Commelinaceae) were represented by only one species each. Poaceae was the largest family represented by 10 species, followed by Asteraceae and Cyperaceae with five species each. The largest genus was Cyperus with four species, followed by Euphorbia, Echinochloa, and Eragrostis with two species each. Of the 31 weed species, 29 were annual and only two, Cyperus rotundus and Parthenium hysterophorus, were perennials. More detailed survey work is required on a regular basis to identify possible problematic weeds and new or improved control measures.

Keywords: Documentation, ethnobotany, identification.

Researches indicate that more than 10% of the global agriculture production is reduced as a result of the competition of weeds with crop species mainly for space, nutrients, light, and water (Parker & Fryer 1975). Weeds tolerate adverse edaphic, climatic, and biotic factors as compared to other plants. They have characteristic modifications that help in their perpetuation, multiplication, dissemination, stabilization, and overall adaptation (Vasic et al. 2012). Many weeds bear special structural modifications to reduce water loss during drought conditions, such as thick cuticle, sunken stomata, and waxy coating (Ram & Gupta 1997). The root system of Convolvulus microphyllus is coiled to increase its surface area and length for increased absorption efficiency. Grass such as Cyanodon dactylon and sedges like Cyperus spp. are known to survive under very dry conditions. Some weeds like Parthenium hysterophorus are photo-periodically and thermo-periodically neutral. Parthenium hysterophorus contains allelochemicals that inhibit the germination of the seeds of other plants; an invasive, it grows mainly in wastelands, and is reported to infest crop fields (Kumar & Varshney 2010).

For better management of weeds, it is necessary to study their morphology, physiology, systematics, ecology, and ethnobotany. The study of weed plants also provides knowledge about their importance as some of them have a large number of ethnobotanic uses and can be used to develop new products for pharmaceutical and food industries (Kendler et al. 1992). Eclipta alba, a common weed of the Punjab plains, is widely used as a medicinal plant. Echinochloa crus-galli, Cynodon dactylon, Cyperus rotundus, Amaranthus viridis, and Poa annua are commonly used as fodder for animals. Some weed species are threatened and their purging affects the biologic diversity of the area. Biodiversity is strongly related to the survival and function of the ecosystem.
Weed diversity in rice crop fields
Singh & Singh

(Hooper et al. 2005). Integrated management method is very helpful to control weeds without loss of biodiversity.

Many reports are available on the flora of Punjab (Sharma 1990; Sidhu & Singh 1993; Kaur et al. 2017). No report, however, is available on the diversity of weeds in the rice fields of Fatehgarh Sahib District in Punjab. The main objective of this study was to gain knowledge about the availability of the total number of weeds during the rice season of the area. Identification and documentation of weed species from rice fields will be helpful to prepare effective strategies for weed management.

Materials and Methods

Study area

Collection of weed plants was done from seven rice growing regions (Sirhind, BassiPathana, MandiGobindgarh, Khamanon, Charnarthal, Amloh, and Chunnikalan) of Fatehgarh Sahib (Fig. 1) District in Punjab. The selected sites were surveyed periodically for the collection of weeds. The specimens were collected from within as well as the edges of crop fields. Local people were interviewed to obtain the common or vernacular names of weeds.

Collection of weeds

The study was conducted during the rice growing season of 2017, i.e., between June and November, to explore the weed diversity of the selected area. The standard methods for collection of plant specimens and preservation and preparation of herbarium (Jain & Rao 1977) were followed. Small herbs were collected as a whole with roots, stems, leaves, flowers, and fruits, while larger shrubs were sampled as twigs that included stems, leaves, flowers, and fruits.

Herbarium preparation

After collection, plant specimens were dried using blotters and then pressed using a herbarium press. The blotting papers were changed at regular intervals. After proper drying and pressing, the plant specimens were mounted on sheets for preparation of herbarium specimens. Herbarium sheets were protected against damages from insect and fungal attack by poisoning them with a saturated solution of mercuric chloride in ethyl alcohol. Naphthalene balls were also placed to protect the specimens from insects.

Identification

The collected plant specimens were identified using the available literature, i.e., Bentham & Hooker (1876), Sidhu & Singh (1993), and Kaur et al. (2017), and various websites. The herbarium specimens of identified plant species were arranged on the basis of plant classification.

![Figure 1. Collection sites in Fatehgarh Sahib District, Punjab, India. (Source: www.google.com).](image-url)
of Bentham & Hooker (1876) and kept in the Herbarium, Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib.

RESULTS AND DISCUSSION

During the present study, a total of 31 weed species were collected and identified from rice crop fields of selected localities in the district of Fatehgarh Sahib (Table 1; Images 1 & 2). Collected weed species belong to 25 genera under 11 families of angiosperms (Table 2). Of the 31 species, 15 belong to dicot families (Portulacaceae, Lythraceae, Asteraceae, Solanaceae, Scrophulariaceae, Amaranthaceae, Polygonaceae, and Euphorbiaceae) and 16 belong to monocot families (Commelinaceae, Cyperaceae, and Poaceae). Only one representative species per family was found for six families, namely, Portulacaceae, Lythraceae, Solanaceae, Scrophulariaceae, Polygonaceae, and Commelinaeae. Poaceae was the largest family containing 10 species, followed by Asteraceae and Cyperaceae with five species each. The largest genera were Cyperus represented by four species, followed by Euphorbia, Echinochloa, and Eragosris with two species each. The genera such as Portulaca, Ammannia, Eclipta, Parthenium, Tridax, Vernonia, Vicoa, Physalis, Mazus, Polygonum, Amaranthus, Digera, Phyllanthus, Commelina, Fimbriyisylis, Digitaria, Paspalum, Ischaemum, Setaria, Acrachne, and Dactylctenium were represented by one species each (Table 1). Of the 31 weed species, 29 were annuals and two species, namely, Cyperus rotundus and Parthenium hysterophorus, were perennials (Table 1).

Table 1. Taxonomic position, life form, and habit of weeds identified in the study from rice crop fields in Fatehgarh Sahib District, Punjab, India.

Botanical name	Family	Local name	Life form	Habit	Image	Voucher number
Portulaca oleracea L.	Portulacaceae	Annual	Herb	1a WU-101		
Ammannia baccifera L.	Lythraceae	Annual	Herb	1b WU-102		
Eclipta alba L.	Asteraceae	Annual	Herb	1c WU-103		
Parthenium hysterophorus L.	Asteraceae	Annual	Herb	1d WU-104		
Tridax procumbens L.	Asteraceae	Annual	Herb	1e WU-105		
Vernonia cinerea (L.) Less.	Solanaceae	Annual	Herb	1f WU-106		
Vicoa indica (L.) DC.	Solanaceae	Annual	Herb	1g WU-107		
Physalis minima L.	Solanaceae	Annual	Herb	1h WU-108		
Mazus japonicus (Thunb) Kuntze	Scrophulariaceae	Annual	Herb	1i WU-109		
Polygonum plebeium R. Br.	Polygonaceae	Annual	Herb	1j WU-110		
Amaranthus vindis L.	Amaranthaceae	Annual	Herb	1k WU-111		
Digera arvensis Forsk.	Asteraceae	Annual	Herb	1l WU-112		
Euphorbia hirta L.	Euphorbiaceae	Annual	Herb	1m WU-113		
E. microphylla Lam.	Euphorbiaceae	Annual	Herb	1n WU-114		
Phyllanthus nriott L.	Euphorbiaceae	Annual	Herb	1o WU-115		
Commelina benghalensis L.	Commelinaceae	Annual	Herb	1p WU-116		
Cyperus rotundus L.	Cyperaceae	Annual	Herb	1q WU-117		
C. ino L.	Cyperaceae	Annual	Herb	1r WU-118		
C. differtis L.	Cyperaceae	Annual	Herb	1s WU-119		
C. compressus L.	Cyperaceae	Annual	Herb	1t WU-120		
Fimbriyisylis tenera Schult.	Poaceae	Annual	Herb	2a WU-121		
Digitaria sanguinalis (L) Scop.	Poaceae	Annual	Herb	2b WU-122		
Echinochloa colona (L) Link	Poaceae	Annual	Herb	2c WU-123		
E. crus-galli (L.) P. Beauv	Poaceae	Annual	Herb	2d WU-124		
Paspalum conjugatum P.J. Bergius	Poaceae	Annual	Herb	2e WU-125		
Eragosris japonica (Thunb.) Trin.	Poaceae	Annual	Herb	2f WU-126		
E. tenella (L.) P. Beauv. ex Rom. & Schult.	Poaceae	Annual	Herb	2g WU-127		
Ischaemum rugosum Salisb.	Poaceae	Annual	Herb	2h WU-128		
Setaria glauca (L) P. Beauv.	Poaceae	Annual	Herb	2i WU-129		
Acrachne sp.	Poaceae	Annual	Herb	2j WU-130		
Dactylctenium oegyptum (L) Willll.	Poaceae	Annual	Herb	2k WU-131		
Image 1. Weed plants of rice crop fields in Fatehgarh Sahib District, Punjab, India: a - Portulaca oleracea | b - Ammannia baccifera | c - Eclipta alba | d - Parthenium hysterophorus | e - Tridex procumbens | f - Vernonia cinerea | g - Vicoa indica | h - Physalis minima | i - Mazus japonicas | j - Polygonum plebeium | k - Amaranthus viridis | l - Dighera arvensis | m - Euphorbia hirta | n - E. microphylla | o - Phyllanthus niruri | p - Commelina benghalensis | q - Cyperus rotundus | r - C. iria | s - C. difformis | t - C. compressus. © Mr. Rai Singh.
Table 2. Taxonomic data of weed plants identified from rice crop fields in Fatehgarh Sahib District, Punjab, India, with their families, genera, and species.

Family	Genera	Species
Portulacaceae	01	01
Lythraceae	01	01
Asteraceae	05	05
Solanaceae	01	01
Scrophulariaceae	01	01
Amaranthaceae	02	02
Polygonaceae	01	01
Euphorbiaceae	02	03
Commelinaceae	01	01
Cyperaceae	02	05
Poaceae	08	10
Total	**25**	**31**

During the present study, *Cyperus rotundus* was reported from all the localities of rice crop fields. *Portulaca oleracea, Euphorbia microphylla*, and *Tridax procumbens* were commonly found on the bunds of the crop fields. *Cyperus iria, C. difformis, C. compressus, Ammannia baccifera*, and *Eclipta alba* were found in the crop fields. These plant species commonly occur in aquatic habitats. Rabbani & Bajwa (2001) surveyed the rice fields of five districts of Punjab, namely, Gujarnawala, Sialkot, Gujrat, Kasur, and Sheikhupura, and reported *Cynodon dactylon, Cyperus rotundus, C. difformis, Echinochloa colona, and E. glabrescens* as highly abundant and widely distributed throughout the surveyed areas. *Parthenium hysterophorus* was also found on the edges of the studied rice fields. There are reports that *Parthenium hysterophorus* has become a region of peninsular Tanjong Karang in West Malaysia.
problem in crop fields in India (Evans 1997). *Parthenium hysterophorus* was reported in rice fields from different districts of India (Oudhia 2000). *Cyperus rotundus* is a common weed species in the study area. This species attains dominance in cultivated land and poses a serious problem for rice crops. It appears immediately after rice sowing and competes heavily with the crop for nutrients and water. *Cyperus rotundus* is recognized as the world's worst weed (Holm et al. 1977). In the Indo-Gangetic plains, adoption of zero tillage has resulted in an increase in the population of globally-significant perennial weeds such as Purple Nut Sedge *Cyperus rotundus* and Bermuda Grass *Cynodon dactylon* (Malik & Kumar 2014). Some of the weeds reported from the study area also have some positive aspects. *Eclipta alba* is good for hair and is used for commercial purposes nowadays. *Cyperus rotundus*, *C. iria*, *C. difformis*, *Fimbristylis tenera*, *Digitaria sanguinalis*, *Echinochloa colona*, *E. crus-galli*, *Paspalum conjugatum*, *Eragrostis fimbriatula*, *Dactyloltenium aegyptium*, and *Acrachne spp.* are commonly used as fodder for animals. *Amaranthus viridis* is used as a vegetable commonly called 'Sagg' by local people. Some previous studies also reported medicinal, industrial, and allelopathic uses of obnoxious weeds (Chopra et al. 1956; Memon & Shahani 1986; Hassan & Marwat 2001; Ibrar et al. 2003).

CONCLUSION

The present study was a first from the region to explore and identify the weeds present in rice crop fields. This study will help the farmers and agriculturists of the study area to identify weeds and thus help in planning a suitable strategy for their control.

REFERENCES

Bentham, G. & J.D. Hooker (1882–1883). *Genera Plantarum*, 3 vols. L Reeve & Co. London.

Chopra, R.N., S.L. Nayar & I.C. Chopra (1956). *Glossary of Indian Medicinal Plants*. CSIR, New Delhi, 256pp.

Evans, H.C. (1997). *Parthenium hysterophorus*: a review of its weed status and the possibilities for biological control. *Biocontrol/News and Information* 18(3): 89–98.

Hassan, G. & K.B. Marwat (2001). Integrated weed management in agricultural crops, pp27–34. In: Proceedings of the National Workshop Technologies for Sustainable Agriculture, 24–26 September. NIAB, Faisalabad.

Holm, L.G., D.L. Plucknett, J.V. Pancho & J.P. Herberger (1977). *The World's Worst Weeds: Distribution and Biology*. University Press of Hawaii, Hawaii, 609pp.

Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A.J. Symstad, J. Vandermeer & D.A. Wardle (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monograph* 75(1): 3–35.

Ibrar, M.S., A. Hashim & K.B. Marwat (2003). Ethnobotanic study of the weeds of five crops in district Abbottabad, N-W. *Pakistan Journal of Weed Science Research* 9(3&4): 229–240.

Jain, S.K. & R.R. Rao (1977). *A Handbook of Field and Herbarium Methods*. Today and Tomorrow Printers & Publishers, New Delhi, India, 157pp.

Kaur, K., M.C. Sidhu & A.S. Ahluwalia (2017). Angiospermic diversity in Doaba region of Punjab, India. *Journal of Threatened Taxa* 9(8): 10551–10564. https://doi.org/10.11609/jott.2748.9.8.10551-10564

Kendler, B.S., H.G. Koritz & A. Gibaldi (1992). Introducing students to ethnobotany. *The American Biology Teacher* 54(1): 46–50.

Malik, R.K. & V. Kumar (2014). Zero tillage and management of herbicide resistance in wheat, pp64–70. In: Souvenir. Directorate of Weed Research, Jabalpur, India.

Manandhar, S., B.B. Sreshtha & L.D. Hari (2007). Weeds of paddy field at Kirtipur, Kathmandu, Nepal. *Science World* 5(5): 100–106.

Memon, M.I.A. & N.M. Shahani (1986). Survey and domestication of wild medicinal plants distribution in Sindh Province of Pakistan, pp191–193. *Annual Research Report*, Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam.

Ram, H.Y.M. & P. Gupta (1997). Plant life under extreme environments. *Current Science* 72(5): 306–315.

Naidu, V.S.G.R. (2012). *Hand Book on Weed Identification*. Directorate of Weed Science Research, Jabalpur, India, 354pp.

Oudhia, P. (2000). *Parthenium hysterophorus*: a new weed in upland rice fields of the Chhattisgarh plains (India). *International Rice Research Notes*, Vol.25 No.1 pp.34 ref.4.

Parker, C. & J.D. Fryer (1975). Weed control problems causing major reductions in world food supply. *FAO Plant Protection Bulletin* 23(3/4): 83–95.

Rabban, N. & R. Bajwa (2001). Weeds distribution in rice fields of 5 districts of Punjab. *Pakistan Journal of Botany, Special Issue* 33: 541–549.

Sharma, M. (1990). *Pakistan Plants—Check List*. Bishen Singh Mahendra Pal Singh Publications, Dehra Dun, India, 115pp.

Sidhu, M. & S.S. Bir (1993). Karyological studies on weeds on cultivable lands in Punjab, India. *Tropical Plant Science Research* 1: 1–13.

Kumar, S. & J.G. Varshney (2010). *Parthenium* infestation and its estimated cost management in India. *Indian Journal of Weed Science Research* 42(1&2): 73–77.

Vasic, V., B. Konstantinovic & S. Orlovic (2012). Weeds in forestry and possibilities of their control. In: Price, A.J. (ed.). *Weed Control*. IntechOpen. Available online at https://www.intechopen.com/books/weed-control/weeds-in-forestry-and-possibilities-of-their-control. Accesssed on 22 February 2018.
Factors affecting diversity and distribution of threatened birds in Chitwan National Park, Nepal
— Jagan Nath Adhikari, Bishnu Prasad Bhattrai & Tej Bahadur Thapa, Pp. 13511–13522

Encounter rates and group sizes of diurnal primate species of Mole National Park, Ghana
— Edward Debrah Wiafe, Pp. 13523–13530

Estimating Leopard Panthera pardus fusca (Mammalia: Carnivora: Felidae) abundance in Kuno Wildlife Sanctuary, Madhya Pradesh, India
— Devavrat Pawar, Howard P. Nelson, Divya R.L. Pawar & Sarika Khanwilkar, Pp. 13531–13544

Food composition of Indian Eagle Owl Bubo bengalensis Franklin (Aves: Strigiformes: Strigidae) from Tiruchirappalli District, Tamil Nadu, India
— TamiSelvan Siva, Periyasamy Neelanarayanan & Vaidyula Vasudeva Rao, Pp. 13545–13551

Distribution and morphometric measurements of Blanford’s Fox Vulpes cana (Mammalia: Canidae) of the Kingdom of Saudi Arabia
— Abdulhadi Aloufi & Ehab Eid, Pp. 13557–13562

Sebaceous gland adenoma in a free-ranging Baird’s Tapir Tapirus bairdii (Tapiridae: Perissodactyla)
— Randall Arguedas, Maricruz Guevara-Soto & Jorge Rojas-Jiménez, Pp. 13563–13566

Recent records of the Banded Racer Argyroglena fasciata (Shaw, 1802) (Reptilia: Squamata: Colubridae) from southern Coromandel Coast, peninsular India
— Janani Sagadevan, Sumaithangi Rajagopalan Ganesh, Nitesh Anandan & Raveen Rajasingh, Pp. 13567–13572

A new species of Simulium (Simulium) (Diptera: Simuliidae), with keys to S. striatum species-group from India
— Sankarappan Anbalagan, Suryiyandhi Vijayan, Chellapandian Balachandran & Sundaram Dinakaran, Pp. 13573–13578

New host records of polyphagous Lepidoptera on Ban Oak Quercus leucotrichophora A. Camus (Fabaceae) in the Garhwal Himalaya, India
— Arun Pratap Singh, Kalpana Bahuguna & Gaurav Chand Ramola, Pp. 13579–13591

A preliminary study of the hawkmoth diversity (Lepidoptera: Sphingidae) of Kanyakumari District, Tamil Nadu, India
— Geetha Iyer & Ian James Kitching, Pp. 13592–13604

Colamus pseudoerectus (Arecaceae), a new species from the eastern Himalaya, India
— Sujit Mondal, Shyamal K. Basu & Monoranjan Chowdhury, Pp. 13605–13610

Weed diversity in rice crop fields of Fategharh Sahib District, Punjab, India
— Yadvinder Singh & Rai Singh, Pp. 13611–13616

Observations on the female flowers and fruiting of Tape Grass Enhalus acoroides from South Andaman Islands, India
— Vardhan Patankar, Tanmoy Wagh & ZoyaTyabji, Pp. 13617–13621

Notes
First records of Agnidra vinacea (Moore, 1879) (Lepidoptera: Drepanidae: Drepaninae) from the western Himalaya, extending its known range westwards
— Pritha Dey & Sanjay Sondhi, Pp. 13622–13624

Pollinators of Sikkim Mandarin Orange Citrus reticulata (Sapindales: Rutaceae)
— Urbashi Pradhan & M. Soubadra Devy, Pp. 13625–13628

Book Review
A holistic look on birds in urban areas
— S. Suresh Ramanan & Lalit Upadhyay, Pp. 13629–13630