Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Therapeutic approach to respiratory infections in lung transplantation

Carolina Clajus a,*, Francesco Blasi b, Tobias Welte a, Mark Greer a, Thomas Fuehner a, Marco Manterob b

a Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
b Department of Pathophysiology and Transplantation, University of Milan, IRCCS Fondazione Ospedale Maggiore, Policlinico Cà Granda Milano, Italy

ARTICLE INFO

Article history:
Available online 17 July 2014

Keywords:
Lung transplantation
Respiratory tract infections
Prophylaxis
Antinfective therapy

ABSTRACT

Lung transplant recipients (LTRs) are at life-long risk for infections and disseminated diseases owing to their immunocompromised state. Besides organ failure and sepsis, infection can trigger acute and chronic graft rejection which increases mortality. Medical prophylaxis and treatment are based on comprehensive diagnostic work-up including previous history of infection and airway colonisation to reduce long-term complications and mortality. Common bacterial pathogens include Pseudomonas and Staphylococcus, whilst Aspergillus and Cytomegalovirus (CMV) are respectively the commonest fungal and viral pathogens. Clinical symptoms can be various in lung transplant recipients presenting an asymptomatic to severe progress. Regular control of infection parameters, daily lung function testing and lifelong follow-up in a specialist transplant centre are mandatory for early detection of bacterial, viral and fungal infections.

After transplantation each patient receives intensive training with rules of conduct concerning preventive behaviour and to recognize early signs of post transplant complications. Early detection of infection and complications are important goals to reduce major complications after lung transplantation.

1. Introduction

Due to their chronic immunocompromised state lung transplant recipients (LTRs) are at increased lifelong risk of respiratory tract infections and other severe complications (Table 1). Immunosuppressive regimes include a combination of calcineurin inhibitor (cyclosporine or tacrolimus), an anti-proliferative agent (mycophenolate mofetil (MMF), azathioprin or sirolimus) and prednisone. Impaired mucociliary function and cough reflex, altered lymphatic drainage and donor-transmitted pathogens encourage infections besides the immunosuppressive state [1]. The clinical course of upper and lower respiratory tract infections varies in these patients. They may present with systemic symptoms such as fever, myalgia and fatigue or localized upper or lower airway symptoms with or without deteriorated lung function. Development of any such symptoms necessitates urgent evaluation at the transplant centre. Diagnostic work-up includes patient history and physical examination, laboratory results, blood gas analysis, lung function testing, chest radiography in conjunction with either sputum samples or bronchoscopy with bronchoalveolar lavage (BAL) and possibly transbronchial biopsies. In the initial period after lung transplantation (LTx), infections tend to be bacterial, followed by fungal microorganisms and viruses [2,3].

Immediate and appropriate treatment is essential in preventing complications such as sepsicaemia, acute respiratory distress syndrome (ARDS), acute graft rejection and death. Infections and acute cellular rejection (AR) can trigger chronic lung allograft dysfunction (CLAD) [4–6].

CLAD is an emerging umbrella term encompassing all different forms of chronic graft dysfunction. Traditionally CLAD has been considered as an obliterative bronchiolitis (OB) characterized by fibroproliferative processes in smaller airways along with peribronchial and perivasculat inflammation leading to an obstructive ventilatory defect [2,7,8]. In attempting to grade graft dysfunction, The International Society for Heart and Lung Transplantation
ILH) defined the term bronchiolitis obliterans syndrome (BOS) as an irreversible decline in FEV1 to less than 80% of baseline [9]. Treatment options in CLAD remain both limited and unpredictable and include immunomodulation with oral macrolides (azithromycin or clarithromycin), a leukotriene receptor antagonist and extracorporeal photopheresis [10].

Treatment of these complications affects the long-term survival of LTRs and therefore needs to be identified.

2. Bacterial infections

Impaired cough reflex, swallowing and hyperventilation after surgery may increase the risk of pneumonia. Common pathogens include *Pseudomonas aeruginosa,* *Staphylococcus aureus* as well as other gram-negative organisms with important resistance profiles [2].

Management of these infections requires comprehensive work-up, including microbiological cultures, molecular tests, detection of urinary antigens for *Legionella* and *Pneumococcus* with interim broad-spectrum empirical antibiotic prophylaxis until all results are available. Each work-up should include bronchoscopy with bronchoalveolar lavage (BAL) for microscopy, culture and polymerase chain reaction (PCR) testing and when indicated transbronchial biopsies.

Preoperative airway colonization with gram-negative organisms e.g. in Cystic Fibrosis (CF) patients increases pneumonia risk in LTRs [17]. Increasingly this refers to multi-resistant gram-negative (MRGN) organisms which present considerable challenges to treating physicians in deciding upon appropriate antibiotic regimes.

Mycobacterial infection in LTRs is rare and largely due to nontuberculous mycobacteria [3,18]. Diagnosis should be considered especially in areas with high prevalence.

Pneumocystis jiroveci pneumonia in solid organ transplantation recipients (SOTR) is extremely serious and can cause significant loss in graft function and often requires intensive care admission. Mortality remains at around 60% despite treatment with high-dose trimethoprim-sulfamethoxazole (TMP-SMX) [19]. In suspected pneumocystosis urgent work-up including BAL with PCR should be performed and treatment started immediately. Given the high risk of infection among SOTR, lifelong TMP-SMX *P. jirovecii* prophylaxis is recommended and has proven very effective [20–22] (Fig. 5).

For many years, patients with Burkholderia cepacia complex (BCC) were considered unsuitable transplant candidates due to an unacceptably high risk of lethal infection after transplant. Improved detection has identified different species with varying pathogenicity. Subsequently restrictions in transplant suitability have been reduced to include only subtypes including Burkholderia cenocepacia (genomovar III) and Burkholderia gladioli, which represent the main mortality risk after transplantation [23–25].

Nocardia spp. are gram-positive, aerobic actinobacteria causing life-threatening infections, predominantly amongst immunosuppressed patients. *Nocardia asteroides* type IV (*Nocardia cyriacigeorgica*) is the commonest pathogen leading to pulmonary or disseminated extrapulmonary nocardiosis that is often lethal. Nocardiosis may present with a variety of radiological findings (Figs. 1–3) making differentiation from other pathogens and diseases difficult. Nocardia spp. pneumonia is found in approximately 2% in LTRs and *Nocardia farcinica* is associated with poor outcome [26,27].

Tissue necrosis is occasionally associated with the granulomatous response and may imitate histoplasmosis or tuberculosis. The treatment of choice is protracted TMP-SMZ, second-line therapy is imipenem and amikacin. Treatment should be started immediately and may last for 6 months or longer in pulmonary or systemic nocardiosis to prevent relapse and failure of treatment [28].

3. Fungal infections

Aspergillus species (*Aspergillus fumigatus, Aspergillus niger,* *Aspergillus flavus* and *Aspergillus versicolor*) or *Candida* species (*Candida albicans, Candida glabrata* and *Candida krusei*) represent the predominant fungal infections. All can be identified by BAL cytological evaluation, serum antigen levels or occasionally are suspected in macroscopic endobronchial lesions observed at bronchoscopy and subsequently confirmed on microscopic assessment of mucosal biopsies.

Fungal infections in LTRs may reflect localized airway involvement, invasive forms involving lung parenchyma or disseminated disease.

![Fig. 1. Pulmonary nocardiosis in a 59 year-old-female double-lung transplant recipient two years after transplantation. Chest x-ray image shows enlarged infiltrations in the right lower lobe. BAL culture revealed *Nocardia farcinica.*](image)
Early infection of the healing bronchial anastomosis is especially common with Aspergillus. Endoscopic appearance resembles an ulcerative tracheobronchitis with necrosis and pseudomembrane formation with airway stenosis and suture line dehiscence [29,30]. This may lead to subsequent invasion of the neighbouring pulmonary artery causing severe haemoptysis and is understandably associated with high mortality [31].

Most cases of invasive aspergillosis (IA) occur within the first year after transplantation, affecting approximately 5% of LTRs involving lung parenchyma with or without extrapulmonary involvement [32]. Typical chest x-ray findings include pneumonia. Disseminated disease may present as nodular consolidation with or without cavitation but often lacks a characteristic appearance [33] (Fig. 4).

Risk factors for IA are CLAD, hypogammaglobulinemia and previous bronchial stenting [34].

Risk stratification of patients likely to develop invasive aspergillosis from those colonized remains difficult. Colonisation is usually transient but increases the risk of invasive disease. Both are however associated with increased mortality, while IA carries still a high mortality up to 80% [35]. Galactomannan testing might be helpful for diagnosing IA. Serum tests have a very poor sensitivity, ranged from 30 to 55.5% and specificity from 87 to 95% [36]. Detection in BAL fluid shows sensitivity of 60% and specificity of 95%–98% [37]. Routine screening for an aspergillus colonization at the time of transplantation (positive intraoperative aspergillus culture) might identify patients at higher risk for IA especially in patients with CF—which is important for the postoperative follow-up management [17,35,38].

Candida infection is reported to be 5%, during the first months after transplantation [39]. Risk factors for candida infection include an immunosuppressed state, heavy use of broad-spectrum antibiotics, frequent need for renal replacement therapy and protracted use of central intravenous catheters [40,41]. Detection should be based on culture and histology of bronchial mucosa biopsies rather than BAL findings [42]. Systemic candida infection with manifest septicaemia requires urgent treatment with fluconazole.

In general, antifungal treatment includes echinocandins (caspofungin, micafungin, anidulafungin), azoles (fluconazole, more commonly newer azoles: voriconazole, posaconazole, itraconazole) and amphotericin B. Echinocandins are effective against Candida and Aspergillus species. The nature of antifungal prophylaxis varies
greatly between transplantation centres, both in terms of treatment choice and optimal duration. Most centres rely initially on azole mono-therapy (voriconazole or posaconazole) or in combination with inhaled amphotericin B followed by maintenance itraconazole for 4–6 months after transplantation [36,43–45]. Fluconazole is not routinely used as prophylaxis due to a lack of anti-candidal activity in non-albicans species.

First-line therapy in IA is voriconazole, echinocandins and systemic amphotericin B representing second-line therapy. Itraconazole and voriconazole are inhibitors of CYP3A4 and induce a lower demand of calcineurin inhibitor dose. Drug level concentration of azoles should be checked regularly for adjust doses on serum through levels with the aim of optimizing effectiveness and limiting side effects like visual disturbance, hepatotoxicity and nephrotoxicity [46].

Fungal infections caused by Cryptococcus, Zygomycte, Histoplasmosis and Scedosporium in LTRs are rare and an individual management based on the clinical presentation and need of antifungal agent resistance profile should be considered.

4. Virus infections

Viral infections have significant impact after lung transplantation. Common pathogens in LTRs are community-acquired respiratory viruses (CARV) including: paramyxoviridae (respiratory syncytial virus A and B (RSV), parainfluenzavirus (PIV1–4) and human metapneumovirus (HMPV)), the orthomyxoviridae (influenza A and B), the picornaviridae (rhinovirus A, B, C and enterovirus), the coronaviridae (coronavirus) and the adenoviridae (adenovirus) [47,48]. A novel parvovirus is human bocavirus (hBV) but data for this virus are rare [49].

There is a seasonal variation among CARV with predominance for influenza and RSV during winter months. Asymptomatic viral carriage is rare but can sometimes be seen in picornavirus or coronavirus infection whereas influenza and paramyxoviruses are more often associated with high symptom load leading to emergency visits and hospitalisations [48]. High rhinovirus load seems to be associated with the development of clinical symptoms in LTRs [50,51]. The gold standard for early diagnosis in CARV is nucleic acid amplification testing (NAAT) by PCR in a single or multiplex format [47,52]. Testing for antibodies with immunofluorescence assay (IFA) is less sensitive [53].

Antiviral treatment options are limited [54,55]. The paramyxoviruses can be treated in selected cases with ribavirin, with existing data for oral, intravenous and nebulized forms [56,57]. Ribavirin can improve outcome but side-effects have to be considered [58]. Treatment options in influenza infection include amantadine, rimantadine and the neuraminidase inhibitors zanamivir and oseltamivir. Efficacy data for their use in LTx recipients is limited and the main management goal remains prevention. In adenovirus infection cidofovir treatment is unexperienced with a lack of data in LTRs.

Cytomegalovirus infections affect up to one-third of LTRs in the first year. Symptoms may present with fever, pneumonia, enteritis, nephritis, retinitis, hepatitis, myelosuppression and encephalopathy [1]. CMV is a risk factor for AR, CLAD and posttransplant lymphoproliferative disorder (PTLD) [59,60].

CMV-naive recipients (R−) receiving seropositive CMV-donor (D+) organs possess a greater risk for severe infections which is associated with increased mortality [5].

The clinical course in a CMV-positive recipient pretransplant is known to be less distinctive compared with CMV-negative recipients. Detection of CMV in peripheral blood includes quantitative PCR and semiquantitative pp65 antigenemia testing. In tissue-invasive disease a biopsy may proof diagnosis by presenting typical inclusion bodies. Standard care for severe CMV infection is IV ganciclovir therapy (5 mg/kg) for 2–3 weeks, followed by PO valganciclovir for a further 2 weeks consolidation [61,62].

In persisting CMV antigenemia despite treatment, drug resistance on ganciclovir which is up to 10% should be considered. Alternative treatment with either foscarnet or cidofovir might be initiated [63,64].

Most centres propose CMV prophylaxis with valganciclovir (900 mg) for a period of 6–12 months in D+/R− LTRs and for a period of 3–6 months in D− or D−/R+ LTRs following transplantation [65–68]. In D−/R− patients no specific antiviral CMV prophylaxis is recommended. Newer agents such as maribavir, leflunomide, letemovir and artesunate have recently been proposed to be alternative agents in the treatment of CMV infections resistant to ganciclovir, cidofovir and foscarnet [69,70].

Immunosuppression, cytomegalovirus and Epstein–Barr virus (EBV) infections are associated with PTLD. Incidence is reported in LTRs between 2 and 8% [60,71,72].

PTLD manifestation is highly variable and can affect any organ leading to a nodal or extranodal involvement. Types of PTLD can be polymorphic or monomorphic and treatment option is Rituximab in CD20-expressing tumors.

5. Vaccination after lung transplantation

Vaccination is routinely performed in all patients after one year post-transplantation. Current data show that only around one third of immunosuppressed patients achieve protective antibody response to flu vaccination [73–75]. Vaccination can be injected with a single intramuscular dose of inactivated vaccine. An intradermal booster dose does not significantly improve vaccine immunogenicity in LTRs and is therefore not indicated [76]. In general, influenza vaccination in LTRs is well tolerated showing little adverse events predominantly local [77]. Until now, there is no effective vaccine for RSV. CMV vaccination is of high interest and still in development with some ongoing clinical trials [78,79].

6. Conclusions

Respiratory infections in LTRs are a challenging problem affecting both graft and patient survival. A patient-based surveillance is important to individualize medical treatment regarding prophylaxis and therapeutic regimes. Follow-up monitoring, recognition of former infections and resistance profiles, laboratory findings (e.g. drug-induced neutropenia) and acute symptoms need to be evaluated. Diagnostic work-up includes lung function testing, blood tests, chest x-ray or CT scan and surveillance bronchoscopy with BAL, biopsy, PCR and IFA. An early and accurate detection of pathogens is crucial for prompt and effective treatment to prevent LTRs from complications and to reduce mortality.

References

[1] Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med 2007;357(25):2601–14.
[2] Kodloff RM, Thabut G. Lung transplantation. Am J Respir Crit Care Med 2011;184(2):159–71.
[3] Aguilar-Guisado M, Givald A, Ussetti P, Ramos A, Morales P, Blanes M, et al. Pneumonia after lung transplantation in the RESTIRA Cohort: a multicenter prospective study. Am J Transplant 2007;7(8):1989–96.
[4] Khalilah AP, Hackem RR, Chakinala MM, Schechtman KB, Patterson GA, Schuster DP, et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004;170(2):181–7.
[5] Billings JL, Hertz MI, Savik K, Wendt CH. Respiratory viruses and chronic rejection in lung transplant recipients. J Heart Lung Transplant 2002;21(5): 559–66.
[6] Bridges ND, Spray TL, Collins MH, Bowles NE, Tobin JA. Adenovirus infection in the lung results in graft failure after lung transplantation. J Thorac Cardiovasc Surg 1999;117:17–23.

[7] Boheler A, Estrade M. Post-transplant bronchiolitis obliterans. Eur Respir J 2003;22(2):1007–18.

[8] Hachem RR, Trulock EP. Bronchiolitis obliterans syndrome: pathogenesis and management. Semin Respir Crit Care Med 2004;25(4):350–5.

[9] Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dobbels F, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-Eighth Adult Lung and Heart-Lung Transplant Report—2011. J Heart Lung Transplant 2011;30(10):1104–22.

[10] Verleden GM, Verleden SE, Vos R, De Vleeschauwer SI, Dupont LJ, Van Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2010;29(4):424–31.

[11] Gottlieb J, Szangoles J, Koehnen T, Colopin H, Simon A, Welte T. Long-term azathioprine for bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2008;85(1):36–41.

[12] Sato M, Waddell TK, Wagnert U, Roberts HC, Hwang DM, Haroon A, et al. Restrictive allograft bronchiolitis (RAD): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant 2011;30(7):735–42.

[13] Mattner F, Fischer S, Weissbrodt H, Chaberny IF, Sohr D, Gottlieb J, et al. Post-operative nosocomial infections after lung and heart transplantation. J Heart Lung Transplant 2007;26(2):241–9.

[14] Morales P, Briones A, Torres JJ, Sole A, Perez D, Pastor A, et al. Pulmonary tuberculosis in lung and heart-lung transplantation: fifteen years of experience in a single center in Spain. Transplant Proc 2005;37(9):4050–5.

[15] Martín SI, Fishman JA, A.S.T.L.I.C.O. Practice. Pneumocystis pneumonia in solid organ transplant recipients. Am J Transplant 2009;9(Suppl. 4):S227–33.

[16] Sepkowitz KA, Brown AE, Armstrong D. Pneumocystis carinii pneumonia without acquired immunodeficiency syndrome. More patients, same risk. J Heart Lung Transplant 2005;24(11):1125–33.

[17] Green H, Paul M, Vidal L, Lebovici L. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev 2007;3:CD005590.

[18] Wang EH, Partovi N, Levy RD, Shapiro RJ, Yoshida EM, Greanya ED, et al. Pneumocystis pneumonia in solid organ transplant recipients: not yet an infection of the past. Transplant Infect Dis 2012;14(5):519–25.

[19] Alexander BD, Petzold EW, Reller LB, Palmer SM, Davis RD, Woods CW, et al. Incidence and outcomes of respiratory viral infections in lung transplant recipients: a single season cohort study. Transplantation 2009;87(10):1530–7.

[20] Bridevoix PA, Aubert JD, Soccac PM, Mazza-Stalder J, Berutto C, Rochat T, et al. Incidence and outcomes of respiratory viral infections in lung transplant recipients: a prospective study. Thorax 2014;69(1):32–8.

[21] Garbino J, Soccac PM, Aubert JD, Rochat T, Meylan P, Thomas Y, et al. Respiratory viruses in bronchoalveolar lavage: a hospital-based cohort study in adults. Thorax 2009;64(5):399–404.

[22] Gerna G, Piralla A, Rovida F, Rognoni V, Marchi A, Locatelli F, et al. Correlation between respiratory virus load in the lower respiratory tract and clinical symptoms in hospitalized immunocompetent and immunocompromised patients. J Med Virol 2009;81(8):1498–507.

[23] Costa C, Bergallo M, Asteggiano S, Siddhi F, Ferulli ME, Gambarrino S, et al. Detection of human rhinoviruses in the lower respiratory tract of lung transplant recipients. Arch Virol 2011;156(8):1439–43.

[24] Mahony J, Chong S, Merante F, Yaghoubian S, Sinha T, Lisle C, et al. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a microbead-based assay. J Clin Microbiol 2007;45(9):2965–70.

[25] Schnell D, Legoff J, Mariotte E, Seguin A, Canet E, Lemiale V, et al. Molecular detection of respiratory viruses in bronchoalveolar lavage: a hospital-based study in 200 adults. Thorax 2009;64(5):399–404.

[26] Schnell D, Legoff J, Mariotte E, Seguin A, Canet E, Lemiale V, et al. Molecular detection of respiratory viruses in immunocompromised ICU patients: incidence and meaning. J Clin Virol 2012;56(4):365–70.

[27] Larcher C, Geltner C, Fischer H, Nachbaur D, Müller LC, Huemer HP. Human metapneumovirus infection in lung transplant recipients: clinical presentation and epidemiology. J Heart Lung Transplant 2005;24(1):1891–901.

[28] Hennes MC, Sharma A, Leboyer C, Amsellem P, Guerin C. Outcome of influenza infection managed with oseltamivir in lung transplant recipients. J Heart Lung Transplant 2008;27(3):282–8.

[29] Li L, Avery R, Budev M, Mossad S, Danziger-Iloviz K. Oral versus inhaled ribavirin therapy for respiratory syncytial virus infection after lung transplantation. J Heart Lung Transplant 2007;26(9):917–22.

[30] Furlan C, Spagnolo P, Kotsimbos TC, Williams TP, Kotsimbos T, et al. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2003;22(3):354–9.

[31] Gallant JE, Koh AH. Cutaneous pulmonary lesions in patients infected with human immunodeficiency virus. Clin Infect Dis 1999;29(2):452–62.

[32] Bertocchi M, Thevenet F, Bastien O, Rabodoninina M, Gamondes JP, Paulus S, et al. Fungal infections in lung transplant recipients. Transplant Proc 1995;27(2):1695.

[33] Klaper MR, Denning DW, Marshall SE, Ross DJ, Berry G, Lewiston NJ, et al. Ulcerative tracheobronchitis after lung transplantation. A new form of invasive aspergillosis. Am Rev Respir Dis 1991;144(3 Pt 1):552–6.

[34] Nunez DR, Gal AA, Vega JD, Perlino C, Smith P, Lawrence EC, et al. Saprophytic fungal infections and complications involving the bronchial anastomosis following human lung transplantation. Chest 2002;122(4):1185–91.

[35] Mehrad B, Paciocco G, Martinez FJ, Ojo TC, Iannettoni MD, Lynch 3rd JP, et al. Invasive aspergillosis in transplant recipients. Medicine (Baltimore) 1999;78(2):123–38.

[36] Goldfarb NS, Avery RK, Goormastic M, Mehta AC, Schilz R, Smedira N, et al. Hypogammaglobulinaemia in lung transplant recipients. Transplantation 2001;71(2):242–6.

[37] Iversen M, Burton CM, Vand S, Skovfoged L, Carlens J, Milman N, et al. Aspergillus infection in lung transplant patients: incidence and prognosis. Eur J Clin Microbiol Infect Dis 2007;26(12):979–86.
Eid AJ, Arthurs SK, Deziel PJ, Wilhelm MP, Razonable RR. Emergence of drug-resistant cytomegalovirus in the era of valganciclovir prophylaxis: therapeutic implications and outcomes. Clin Transplant 2008;22(2):162–70.

Limaye AP, Raghu G, Koelle DM, Ferrenberg J, Huang ML, Boeckh M. High incidence of ganciclovir-resistant cytomegalovirus infection among lung transplant recipients receiving preemptive therapy. J Infect Dis 2002;185(1):20–7.

Humar A, Snyder D. Cytomegalovirus in solid organ transplant recipients. Am J Transplant 2009;9(Suppl. 4):S78–86.

Palmer SM, Limaye AP, Banks M, Gallup D, Chapman J, Lawrence EC, et al. Extended valganciclovir prophylaxis to prevent cytomegalovirus after lung transplantation: a randomized, controlled trial. Ann Intern Med 2010;152(12):761–9.

Kotton CN, Kumar D, Caliendo AM, Asberg A, Chou S, Snyderman DR, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation 2010;89(7):779–95.

Kotton CN, Kumar D, Caliendo AM, Asberg A, Chou S, Snyderman DR, et al. International survey guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation 2010;89(7):779–95.

Verkaik NJ, Hoek RA, van Bergeijk H, van Hal PT, Schipper ME, Pas SD, et al. Leflunomide as part of the treatment for multidrug-resistant cytomegalovirus disease after lung transplantation: case report and review of the literature. Transpl Infect Dis 2013;15(6):E243–9.

Osman M, Harber M, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 2011;377(9773):1256–63.