Search for a Neutral Higgs Boson Decaying to a W Boson Pair in $\bar{p}p$ Collisions at $\sqrt{s} = 1.96$ TeV

A. Abulencia,23 D. Acosta,17 J. Adelman,13 T. Affolder,10 T. Akimoto,55 M.G. Albrow,16 D. Ambrose,16 S. Amerio,43 D. Amidei,54 A. Anastassov,52 K. Anikeev,16 A. Annovi,18 J. Antos,1 M. Aoki,55 G. Apollinari,16 J.-F. Arguin,33 T. Arisawa,57 A. Artikov,14 W. Ashmanskas,16 A. Attal,8 F. Azfar,42 P. Azzi-Bacchetta,43 P. Azzurri,46 N. Bacchetta,43 H. Bachacou,28 W. Badgett,16 A. Barbaro-Galtieri,28 V.E. Barnes,48 B.A. Barnett,24 S. Baroian,7 V. Bartsch,30 G. Bauer,32 F. Bedeschi,46 S. Behari,24 S. Belforte,54 G. Bellettini,46 J. Bellingr,59 A. Belloni,32 E. Ben Haim,44 D. Benjamín,15 A. Beretvas,16 J. Beringer,29 T. Berry,29 A. Bhatti,50 M. Binkley,16 D. Bisello,43 R. E. Blair,2 C. Blocker,6 B. Blumenfeld,24 A. Bocci,15 A. Bodek,49 V. Boisvert,49 G. Bolla,48 A. Bolshov,32 D. Bortoletto,48 J. Boudreau,47 A. Boveia,10 B. Braun,10 C. Bromberg,35 E. Brubaker,33 J. Budagov,14 H.S. Budd,49 S. Budi,23 K. Burkett,16 G. Busseti,43 P. Bussey,20 K. L. Byrum,2 S. Cabrera,15 M. Campanelli,19 M. Campbell,34 F. Canelli,8 A. Canepa,48 D. Carlsmith,59 R. Carosi,46 S. Carron,15 M. Casarsa,54 A. Castro,5 P. Catastini,46 D. Cauz,54 M. Cavalli-Sforza,3 A. Cerri,28 L. Cerrito,12 S.H. Chang,27 J. Chapman,34 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,46 G. Chlachidze,14 F. Chlebana,46 I. Cho,27 K. Cho,27 D. Chokheli,14 J.P. Chou,21 P.H. Chu,23 S.H. Chuang,59 K. Chung,12 W.H. Chung,59 Y.S. Chung,49 M. Ciljak,46 C.I. Ciobanu,23 M.A. Ciocci,46 A. Clark,19 D. Clark,6 M. Coca,15 G. Compostella,43 M.E. Convery,50 J. Conway,7 B. Cooper,30 K. Copic,34 M. Cordelli,18 G. Cortiana,43 F. Cresciolo,46 A. Cruz,17 C. Cuenca Almenar,7 J. Cuevas,11 R. Culbertson,16 D. Ctyr,59 S. DaRonco,43 S. D’Auria,20 M. D’Onofrio,3 D. Dagenhart,9 P. de Barbaro,49 S. De Cecco,51 A. Deisher,28 G. De Lenda,49 M. Dell’Orso,46 F. Delli Paoli,34 S. Demers,49 L. Demortier,50 J. Deng,15 M. Denino,5 D. De Pedis,51 P.F. Derwent,16 C. Dionisi,51 J.R. Dittmann,3 P. DiToro,52 C. Dörér,25 S. Donati,46 M. Doneva,19 P. Dong,8 J. Donini,43 T. Dorigo,34 S. Dube,52 K. Ebina,57 J. Eftron,39 J. Ehlers,19 R. Erbacher,7 D. Errede,23 S. Errede,23 R. Eusebi,16 H.C. Fang,28 S. Farrington,29 I. Fedorko,46 W.T. Fedorko,13 R.G. Feld,40 M. Feindt,25 J.P. Fernandez,31 R. Field,51 G. Flanagan,48 L.R. Flores-Castillo,47 A. Floland,23 S. Forrester,7 G.W. Foster,16 M. Franklin,21 J.C. Freeman,28 I. Furic,13 M. Gallinaro,50 J. Galyardt,12 J.E. Garcia,46 M. Garcia Sciveres,28 A.F. Garfinkel,48 C. Gay,60 H. Gerberich,23 D. Gerdes,34 S. Giangi,51 P. Giannetti,46 A. Gibson,28 K. Gibbons,12 C. Ginsburg,16 N. Giokaris,14 K. Giolo,48 M. Giordani,54 P. Gironimi,18 M. Giunta,46 G. Giurgiu,12 V. Glagolev,14 D. Ginzburg,16 M. Gold,37 N. Goldschmidt,34 J. Goldstein,42 G. Gomez,11 G. Gomez-Ceballos,11 M. Goucharov,50 P. González,31 I. Gorelov,37 A.T. Goshaw,15 Y. Goto,47 K. Goulilanos,50 A. Gresele,43 M. Griffiths,29 S. Grinstein,21 C. Grosso-Pilcher,13 R.C. Group,17 U. Grundler,23 J. Guimaraes da Costa,21 Z. Gunay-Unalan,35 C. Haber,18 S.R. Hahn,54 K. Hahn,54 E. Halkiadakis,52 A. Hamilton,53 B.-Y. Han,94 J.Y. Han,49 R. Handler,59 F. Happpacher,18 K. Hara,55 M. Hare,56 S. Harper,42 R. Harr,58 R.M. Harris,16 K. Hatakeyama,50 J. Hauser,8 C. Hays,15 A. Heijboer,45 B. Heinemann,29 J. Heinrich,145 M. Herndon,59 D. Hidas,15 C.S. Hill,10 D. Hirschbuehl,25 A. Hocker,16 A. Holloway,21 S. Hou,1 M. Houliden,29 S.-C. Hsu,9 B.T. Huffman,42 R.E. Hughes,39 J. Huston,45 J. Incandela,10 G.Introzzi,46 M. Iori,51 Y. Ishizawa,55 A. Ivanov,7 B. Iyutin,32 E. James,16 D. Jang,52 B. Jayatilaka,34 D. Jeans,51 H. Jensen,16 E.J. Jeon,27 S. Jindariani,17 M. Jones,48 K.K. Joo,27 S.Y. Jun,12 T.R. Junk,23 T. Kamon,53 J. Kang,34 P.E. Karchin,58 Y. Kato,41 Y. Kemp,25 R. Keplhart,16 U. Kerzel,25 V. Khotilovich,53 B. Kilminster,39 D.H. Kim,27 H.S. Kim,27 J.E. Kim,27 M.J. Kim,12 S.B. Kim,27 S.H. Kim,53 Y.K. Kim,53 L. Kirsch,58 S. Klimenko,17 M. Khut,32 B. Knutsen,32 B.R. Ko,15 H. Kobayashi,55 K. Kondo,57 D.J. Kong,27 J. Konigsberg,17 A. Korytov,17 A.V. Kotwal,15 A. Kovalev,45 A. Kraan,15 A. Kraus,23 I. Kravchenko,32 M. Kreps,25 J. Kroll,45 N. Krummack,4 M. Kruse,15 V. Krutelyov,53 S.E. Kuhlmann,2 Y. Kusakabe,57 S. Kwang,13 A.T. Laasanen,48 S. Lai,33 S. Lami,46 S. Lammel,16 M. Lancaster,30 R.L. Lander,7 K. Lannon,49 A. Lath,52 G. Latino,46 I. Lazzizzera,43 T. LeCompte,2 J. Lee,149 J. Lee,27 Y.J. Lee,27 S.W. Lee,53 R. Lefèvre,3 N. Leonardi,32 S. Leone,46 S. Levy,13 J.D. Lewis,16 C. Lin,60 C.S. Lin,16 M. Lindgren,16 E. Lipeles,9 T.M. Liss,23 A. Lister,19 D.O. Litvintsev,16 T. Liu,16 N.S. Lockyer,45 A. Logino,36 M. Loretii,43 P. Love,51 R.-S. Lu,1 D. Lucchesi,43 P. Lujan,28 P. Lukens,16 G. Lungu,17 L. Lyons,42 J. Lys,28 R. Lysak,1 E. Lytk,48 P. Mack,25 D. MacQueen,33 R. Madrak,16 K. Maeshima,16 T. Maki,22 P. Maksimovic,24 S. Malde,42 G. Manca,29 F. Margaroli,3 R. Marginean,16 C. Marino,23 A. Martin,59 V. Martin,38 M. Martinez,3 T. Maruyama,55 P. Mastrandrea,51 H. Matsunaga,55 M.E. Mattson,58 R. Mazini,33 P. Mazzanti,5 K.S. McFarland,49 P. McIntyre,53 R. McNulty,29 A. Mehta,29 S. Menzenner,11 A. Menzione,46 P. Merkel,48 C. Mesropian,50 A. Messina,51 M. von der Mey,7 T. Miao,16 N. Miladinovic,6 J. Miles,43 R. Miller,35 J.S. Miller,34 C. Mills,10 M. Milnik,25 R. Miquel,48 A. Mitra,1 G. Mitselmakher,17 A. Miyamoto,26 N. Moggi,5 B. Mohr,8
We present the results of a search for standard model Higgs boson production with decay to $W W^*$, identified through the leptonic final states $e^+e^−, e^±μ^∓νν$, and $\mu^+\mu^−νν$. This search uses 360 pb^{-1} of data collected from $p \bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$ by the upgraded Collider Detector at Fermilab (CDF II). We observe no signal excess and set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson to $W W^*$ or any new scalar particle with similar decay products. These upper limits range from 5.5 to 3.2 pb for Higgs boson masses between 120 and 200 GeV/c^2.

PACS numbers: 14.70.-e, 13.85.Qk, 13.85.Ni

The Higgs mechanism is a leading candidate for electroweak symmetry breaking and consequently for mass generation of the W and Z bosons without violation of local gauge invariance. A manifestation of this mechanism is the existence of a neutral scalar particle, the Higgs boson H, which has not been observed to date. Its mass is a free parameter in the standard model (SM), but its couplings to other particles of known mass are
fully specified at tree level. Direct searches at the CERN e⁺e⁻ collider (LEP) yielded a lower limit for the Higgs boson mass of \(m_H > 114.4 \text{ GeV}/c^2 \) at 95% confidence level (C.L.) [2]. Precision electroweak measurements indirectly predict a Higgs boson mass of \(91^{+55}_{-32} \text{ GeV}/c^2 \) [3].

At the Tevatron, the dominant production mechanism for the SM Higgs boson is gluon-gluon fusion through heavy quark loops. Branching fractions for the various decay channels of the Higgs boson depend on its mass. For masses below about 135 GeV/c² the dominant decay is \(H \to b\bar{b} \), while heavier Higgs bosons decay predominantly to \(WW^* \) [4], where \(W^* \) indicates a W boson that can be off mass-shell. For the \(b\bar{b} \) decay mode, the requirement of associated production of the Higgs with vector bosons \((pp \to WH/ZH) \) can greatly improve the signal purity [5]. For the \(WW^* \) decay mode, the leptonic decays of \(W \) bosons give a clean enough signature that the inclusive single Higgs production process gives the best search sensitivity. The next-to-leading order (NLO) production cross section times branching ratio for a SM Higgs boson, \(\sigma(pp \to H) \times BR(H \to WW^*) \), ranges from 0.036 to 0.25 pb for Higgs masses of 110-200 GeV/c².

This Letter presents the results of a direct search for a Higgs boson in the channel \(gg \to H \to WW^* \to \ell^+\ell^-\nu\bar{\nu} \) (\(\ell = e, \mu, \tau \)), identified by the “dilepton” final states \(e^+e^- \), \(e^+\mu^- \), or \(\mu^+\mu^- \). We also include the efficiency for leptonically decaying taus to \(e \) or \(\mu \). This is the first search in this channel by the CDF Collaboration. A similar search in this channel was recently performed by the DØ Collaboration [6]. The data sample used for this analysis was collected with the CDF II detector at Fermilab Tevatron between 2002 and 2004, and corresponds to an integrated luminosity of approximately 360 pb⁻¹ [7]. For this integrated luminosity, the cross section limits we are able to place on Higgs production are a factor of approximately 10-50 larger than the SM expectation, based on the NLO calculation. However, the production cross-section can be enhanced in extensions to the SM due to new particles e.g., a fourth generation fermion family [8], contributing at higher order to the gluon-gluon fusion Higgs production process.

CDF II is a detector with approximate azimuthal and forward-backward symmetry and it is fully described elsewhere [9]. It consists of a charged-particle tracking system in a 1.4 T magnetic field and segmented electromagnetic and hadronic calorimeters surrounded by muon detectors. The electromagnetic and hadronic sampling calorimeters surrounding the solenoid are used to measure the energy of interacting particles in the pseudorapidity range \(|\eta| < 3.6 \) [10]. The calorimeters are divided into projective geometry towers. This analysis uses both central (\(|\eta| < 1.1 \)) and end-plug detectors (\(1.2 < |\eta| < 2.0 \)) to identify electron candidates. A set of drift chambers located outside the central hadron calorimeters and another set behind a 60 cm iron shield help detect muons in the region \(|\eta| < 0.6 \). Additional drift chambers and scintillation counters detect muons in the region \(0.6 \leq |\eta| \leq 1.0 \).

Events used for this analysis are collected using the following triggers [11, 12]: an inclusive central electron (\(|\eta| < 1.1 \)) trigger requiring an electron with \(E_T > 18 \text{ GeV} \), an inclusive central muon (\(|\eta| < 1.0 \)) trigger requiring a muon with \(p_T > 18 \text{ GeV}/c \), or a trigger for events with a forward electron (\(1.2 \leq |\eta| \leq 2.0 \)) with \(E_T > 20 \text{ GeV} \) and missing transverse energy, \(E_T > 15 \text{ GeV} \).

After the event reconstruction, event selection criteria which retain high \(H \to WW^* \) signal efficiency while minimizing the effect of background contamination are applied. Some selection requirements are mass dependent, as the event kinematics and topology change as functions of \(m_H \).

The selection requires two oppositely charged lepton candidates consistent with originating from the same vertex, with \(p_T > 20 \text{ GeV}/c \) for the trigger lepton and \(p_T > 10 \text{ GeV}/c \) for the second one. The leptons are also required to be isolated in both the calorimeter and the tracking chamber [13], and the dilepton invariant mass \(m_{\ell\ell} \) is required to be greater than 16 GeV/c², in order to remove events from the \(c\bar{c}/bb \) resonances.

After removal of events identified as cosmic rays or electrons from photon conversions [11], we count the jets [15] with \(E_T > 15 \text{ GeV} \) and \(|\eta| < 2.5 \). Signal events do not typically have high-\(E_T \) jets in the final state, but can occasionally have lower-\(E_T \) jets from initial state gluon radiation. On the other hand, \(t\bar{t} \) pairs decay primarily to \(W^+W^-bb \) and thus tend to have at least two jets in the final state. This background is reduced by selecting only events satisfying one of the following criteria: no jets with \(E_T > 15 \text{ GeV} \), or only one jet with \(15 < E_T < 55 \text{ GeV} \), or 2 jets, each with \(15 < E_T < 40 \text{ GeV} \). Events with more than two jets with \(E_T > 15 \text{ GeV} \) are also rejected.

After the selection criteria described above, the dominant surviving background is Drell-Yan production of \(\ell^+\ell^- \) pairs, which is suppressed by requiring that \(E_T > m_H/4 \). The events with missing energy due to a mismeasurement of the jet energy, or \(Z \to \tau\tau \) events with missing energy arising from a leptonically tau decay, are removed by requiring the azimuthal angle between the \(E_T \) and the closest jet or lepton to be at least \(20^\circ \), if \(E_T < 50 \text{ GeV} \). To further reduce the large \(Z/\gamma^* \) background, the dilepton invariant mass is required to be \(m_{\ell\ell} < m_H/2-5 \text{ GeV}/c^2 \). Finally, the scalar sum of the \(p_T \) of the two leptons and the \(E_T \) is required to be below the Higgs mass.

The kinematic cuts described above exploit the correlations in the \(W \) pairs produced by the decay of a Higgs boson and suppress SM WW production. These correlations are due to angular momentum conservation in the decay of a spin-zero Higgs boson. Since \(W \) bosons decay into left-handed leptons and right-handed anti-leptons, and since the \(W \) bosons in the decay \(H \to WW^* \) have op-
positive helicities, the final state lepton pairs and also the neutrino pairs tend to be azimuthally aligned in Higgs decay. This implies that the signal events tend to have smaller \(m_{\ell\ell} \) and azimuthal angle between leptons (\(\Delta \phi \)) and larger \(E_T \), as compared with production of SM \(WW \) pairs. These differences are further exploited in the final stages of the analysis, when the \(\Delta \phi \) distribution of the data is compared with the background and signal predictions.

The acceptance for identifying \(H \to WW^* \to \ell\nu\ell\nu \) events with the above selection criteria is calculated as a function of the Higgs boson mass using PYTHIA, after a GEANT-based simulation of the CDF detector response. The total acceptance is a product of the geometric and kinematic acceptance, the lepton identification efficiencies, the trigger efficiencies, and the topological cut efficiencies. It does not include the branching fraction of \(W \) leptonic decays. The total acceptance ranges from 3.0% to 6.5%, depending on the Higgs mass, and is summarized in Table I. Approximately 25% of the expected signal are \(ee \), 25% \(\mu\mu \), and 50% \(e\mu \).

\(m_H \) (GeV/c\(^2\))	120	140	160	180	200
BR(\(H \to WW^* \))%	13	48	90	94	74
Total acceptance%	3.15	4.56	6.47	6.41	5.54

The systematic uncertainty on the acceptance is 6% resulting from uncertainties in the modeling of the initial state radiation by PYTHIA (3%), and uncertainties on the gluon parton distribution functions (4%), jet energy scale (1%), track isolation (<2%), electron and muon trigger efficiencies (<1%), and electron and muon identification efficiencies (2%). In addition, a 6% uncertainty on the integrated luminosity is applied to the expected number of events for all processes.

After all selection requirements, the background events come predominantly from \(WW \) pair production (about 70% of the total for \(m_H = 160 \text{ GeV/c}^2 \)) \(, Z/\gamma^* \), \(W+\gamma \), and \(W+\gamma \). Smaller backgrounds include \(WZ \), \(ZZ \), \(Drell Yan \), \(W+jets/\gamma \), labeled as \(\text{"other"} \). The expected number of events in each \(\Delta \phi \) bin is

\[
\mu = f_{WW} \cdot n_{WW} + f_{other} \cdot n_{other} + f_{HW} \cdot (\epsilon \cdot L \cdot \sigma_H \cdot BR(H \to WW^*))
\]

where \(f_{WW} \), \(f_{other} \) and \(f_{HW} \) represent the expected fraction of the specified categories of events falling in each \(\Delta \phi \) bin, \(n_{WW} \) and \(n_{other} \) are the expected numbers of \(WW \) and non-\(WW \) background events, and \(\epsilon \), \(L \) and \(\sigma_H \) correspond to efficiency, integrated luminosity, and \(H \) production cross section. We calculate upper limits on the production cross section times branching ratio, \(\sigma_H \times BR(H \to WW^*) \), using a Bayesian procedure. We consider three components in the data: \(H \to WW^* \), SM \(WW \), and other SM processes \((WZ, ZZ, Drell Yan, W+jets/\gamma) \) labeled as \(\text{"other"} \). The expected number of events in each \(\Delta \phi \) bin is

\[
L = \frac{N_{bin}^{\mu}}{n_i!} \times G(n_{WW} \cdot \sigma_{WW}) \times G(n_{other} \cdot \sigma_{other}) \times G(\epsilon, \sigma_\epsilon) \times G(L, \sigma_L)
\]

where \(n_i \) is the number of events observed in the data, and \(G(n, \sigma) \) are Gaussian priors for parameter \(n \) with uncertainty \(\sigma \). The prior density for \(\sigma \times BR(H \to WW^*) \) is assumed uniform. The posterior density is then integrated over all parameters except for \(\sigma \times BR(H \to WW^*) \), for which a 95% confidence level upper limit is calculated from the data and called the “fake background.”

We first determine the probability that a jet with a large fraction of its energy deposited in the electromagnetic calorimeter is misidentified as an electron, and the probability that a minimum ionizing track is misidentified as a muon. These probabilities are termed fake rates. The fake rate for each lepton type is calculated using an average of four inclusive jet samples (triggered with at least one jet with \(E_T > 20, 50, 70 \) or 100 GeV). We subtract the contribution from sources of real leptons (\(W \) and \(Z \) decays) and parametrize the fake rates as a function of jet transverse energy (for electrons) or jet transverse momentum (for muons). The background is determined by weighing the jets from a data sample of \((W \to \ell\nu) + \text{jets} \) events by the fake rates.

For data events passing the previously described selection criteria, we search for an excess of events with small azimuthal angle between the leptons, \(\Delta \phi \). A binned likelihood is used to compare the azimuthal angle distribution in the data with a combination of expected distributions from the SM background processes. Figure I shows the \(\Delta \phi \) distributions for SM backgrounds, for Higgs masses of 140 and 160 GeV/c\(^2\), and for the data. We observe no evidence for a signal over the SM expectations. We calculate upper limits on the production cross section times branching ratio, \(\sigma_H \times BR(H \to WW^*) \), using a Bayesian procedure. We consider three components in the data: \(H \to WW^* \), SM \(WW \), and other SM processes \((WZ, ZZ, Drell Yan, W+jets/\gamma) \) labeled as \(\text{"other"} \). The expected number of events in each \(\Delta \phi \) bin is

\[
\mu = f_{WW} \cdot n_{WW} + f_{other} \cdot n_{other} + f_{HW} \cdot (\epsilon \cdot L \cdot \sigma_H \cdot BR(H \to WW^*))
\]
TABLE II: The expected number of signal and SM background events are presented. The number of events observed in the data, with the m_H dependent selection criteria, is also shown. The errors include all systematic effects.

m_H (GeV/c^2)	120	140	160	180	200
WW	5.49 ± 0.66	7.98 ± 0.96	9.79 ± 1.18	9.89 ± 1.19	9.19 ± 1.11
Z/γ^*	1.63 ± 0.42	1.01 ± 0.26	0.76 ± 0.20	0.83 ± 0.21	0.96 ± 0.25
$W + \text{jets}/\gamma$	4.57 ± 0.90	3.49 ± 0.81	2.48 ± 0.69	1.70 ± 0.46	1.20 ± 0.37
$WZ + ZZ$	0.25 ± 0.03	0.37 ± 0.05	0.40 ± 0.05	0.49 ± 0.07	1.16 ± 0.15
$t\bar{t}$	0.12 ± 0.01	0.21 ± 0.02	0.35 ± 0.04	0.46 ± 0.05	0.58 ± 0.06
Total Background	12.06 ± 1.19	13.08 ± 1.28	13.78 ± 1.38	13.37 ± 1.30	13.09 ± 1.21
$H \rightarrow WW^*$	0.090 ± 0.008	0.32 ± 0.03	0.58 ± 0.05	0.41 ± 0.03	0.20 ± 0.02

m_H (GeV/c^2)	120	140	160	180	200
WW	7	14	16	19	17

FIG. 1: Dilepton azimuthal distributions for SM backgrounds, HWW signal and data are shown for two Higgs masses: 140 GeV/c^2 (left figure) and 160 GeV/c^2 (right figure).

obtained by calculating the 95th percentile of the resulting distribution.

The expected and observed upper limits on the cross section times branching ratio, $\sigma \times \text{BR}(H \rightarrow WW^*)$, for different Higgs masses are shown in Table III. The expected limits are calculated using 1000 simulated experiments, assuming no signal, for each Higgs mass. The median value of the limits obtained from these experiments is chosen as the a priori upper limit.

TABLE III: The expected and observed 95% C.L. limits on $\sigma(p\bar{p} \rightarrow H) \times \text{BR}(H \rightarrow WW^*)$.

m_H (GeV/c^2)	120	140	160	180	200
Expected Limits (pb)	7.1	4.8	3.5	3.4	4.0
Observed Limits (pb)	4.5	4.6	3.2	4.3	5.2

In conclusion, observing no signal in the direct search for $H \rightarrow WW^*$, with the subsequent decay of the W bosons to leptons, we have set mass dependent limits at 95% C.L. on $\sigma(p\bar{p} \rightarrow H) \times \text{BR}(H \rightarrow WW^*)$. This search is potentially sensitive to other new physics models such as the example in Figure 2.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy
of Finland.

[1] P. W. Higgs, Phys. Lett. 12, 132 (1964).
[2] R. Barate et al. (ALEPH Collaboration), Phys. Lett. B 565, 61 (2003).
[3] J. Alcaraz et al., hep-ex/0511027 (2005).
[4] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998); S. Catani, D. de Florian, M. Grazzini, P. Nason, hep-ph/0306211.
[5] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95, 051801 (2005); A. Abulencia et al., Phys. Rev. Lett. 96, 081803 (2006).
[6] V. M. Abrazov et al. (DØ Collaboration), Phys. Rev. Lett. 96, 011801 (2006).
[7] The integrated luminosities for ee, eµ and µµ are 363±22, 356±21, and 364±22 pb⁻¹, respectively. The differences for the various channels are due to different detector quality requirements.
[8] E. Arik et al., Phys. Rev. D66, 033003 (2002); E. Arik et al., hep-ph/0502050.
[9] D. Acosta et al. (CDF Collaboration), Phys. Rev. D71, 032001 (2005).
[10] In the CDF coordinate system, θ and φ are the polar and azimuthal angles, respectively, with respect to the proton beam direction (z axis). The pseudorapidity η is defined as − ln tan(θ/2). The transverse momentum of a particle is p_T = p sin θ. The analogous quantity using calorimeter energies, defined as E_T = E sin θ, is called transverse energy.
[11] D. Acosta et al. (CDF Collaboration), hep-ex/0508029 submitted to Phys. Rev. D.
[12] D. Acosta et al. (CDF Collaboration), PRD-RC 71, 051104 (2005).
[13] The missing transverse energy, E_T, is defined as | − ∑ E_T · n_i|, where n_i is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter cell i.
[14] The calorimeter isolation I_cal is defined as the extra energy deposited in the calorimeter cone of radius ∆R = √(Δφ^2 + Δη^2) = 0.4 around the lepton cluster. The I_cal is required to be less than 10 % of the lepton E_T. The track isolation I_trk is defined as the sum p_T of all the tracks in a cone of radius ∆R = 0.4 around the lepton candidate track, but excluding it. The I_trk is required to be less than 10 % of the lepton track p_T.
[15] A jet is defined as a cluster of calorimeter towers above an energy threshold of 3 GeV, within fixed radius ∆R = 0.4. The jet E_T is corrected for the calorimeter response and multiple interactions. See: G. C. Blazier and B. L. Flaugher, Ann. Rev. of Nucl. and Part. Sci. Vol 49 (1999).
[16] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001). We use PYTHIA V6.2.
[17] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[18] We compared the acceptances obtained using MRST 72 and 75 PDF sets, corresponding to α_s = 0.1175 and 0.1125. Also we include the effect of the eigenvector variations around the fit minima, using CTEQ6M PDF sets.
[19] S. Klimenko, J. Konigsberg, and T. Liss, FERMILAB-FN-0741 (2003); D. Acosta et al., Nucl.Instrum. Methods A 494, 57 (2002).
[20] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 211801 (2005).
[21] J. M. Campbell, R. K. Ellis, Phys. Rev. D 60, 113006 (1999).
[22] M. Cacciari et al., hep-ph/0303085; N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003).
[23] U. Baur and E. L. Berger, Phys. Rev. D47, 4889 (1993).