Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing pandemic of coronavirus disease 2019 (COVID-19), which presented as not only respiratory symptoms, but various digestive manifestations including pancreatic injury and acute pancreatitis (AP). The underlying mechanism is still unclear. Hypertriglyceridemia has become one of the leading causes of AP in recent years and hyperlipidemia is highly reported in COVID-19 cases. The current narrative review aimed to explore the associations between AP, COVID-19 and hyperlipidemia. Substantial cases of COVID-19 patients complicated with AP were reported, while the incidence of AP in the COVID-19 population was relatively low. Hyperlipidemia was common in COVID-19 patients with a pooled incidence of 32.98%. Hyperlipidemia could be a mediating factor in the pathogenesis of AP in COVID-19 patients. Further studies are warranted to clarify the relationship among AP, lipid metabolism disorders and COVID-19.

Key Indexing Terms: COVID-19; SARS-CoV-2; Hyperlipidemia; Acute pancreatitis; Pancreatic injury. [Am J Med Sci 2022;364(3):257–263.]

INTRODUCTION

The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-induced coronavirus disease 2019 (COVID-19) has led to over 164 million infected cases and 3 million deaths worldwide by May 20, 2021. Although most of the infected adults have self-limited disease courses, about 5% of infections may progress to critical illness, featured as severe acute respiratory distress syndrome (ARDS), thrombosis complications, myocardial dysfunction, acute kidney injury, gastrointestinal symptoms, hyperlipidemia, and even multiple organ dysfunction syndrome (MODS). Amongst, the gastrointestinal symptoms mainly include anorexia, nausea, vomiting, diarrhea, and abdominal pain, which have been observed at disease onset or prior to respiratory symptoms in patients diagnosed with COVID-19.

Acute pancreatitis (AP) is the inflammatory disease of the exocrine pancreas characterized by severe abdominal pain and elevated pancreatic enzymes (amylase and lipase), the incidence of which is increasing rapidly in recent years. In published literature, numerous cases of COVID-19 complicated with AP have been reported. However, no robust causative relationship has been established between them.

Given the considerable presence of hyperlipidemia in COVID-19 cases, we postulated that hyperlipidemia might play a potential role between COVID-19 and AP. Hence, this narrative review aimed to accumulate evidence on the incidence of hyperlipidemia and AP in the COVID-19 population, and demonstrate whether hyperlipidemia acted as a mediating factor in COVID-19 patients combined with AP.

THE CORRELATION BETWEEN AP AND COVID-19

We used “COVID-19” and “acute pancreatitis” as search terms to retrieve related articles in PubMed database. The results of different studies were controversial. An epidemiological study from Spain including 63,822 COVID-19 patients showed that the incidence of AP in COVID-19 patients was 0.71% compared with 1.59% in the non-COVID-19 population (OR 0.44, 95% CI 0.33–0.60). In another study which included 74,814 COVID-19 patients, 54 patients were complicated with AP (0.72%) and the incidence rate was lower than that in the non-COVID-19 population (1.61%). In addition, another study which included 74,814 COVID-19 patients, 54 patients were complicated with AP (0.72%) and the incidence rate was lower than that in the non-COVID-19 population (1.61%). However, a case-control study that included 112 COVID-19 children and 8047 non-COVID-19 children came to the opposite conclusion, the incidences of AP in two groups were 1.8% and 0.14%, respectively. In addition, another study reported that 1.25% of 398 pediatric COVID-19 patients were complicated with AP. It seems that AP was more prevalent in pediatric COVID-19 patients than in adult patients. It was shown in one study that almost no AP occurred in COVID-19 patients with mild disease courses, while most of AP cases were present in critically ill COVID-19 patients.

For AP patients, the coexistence of COVID-19 could lead to a worse prognosis of AP. A prospective multicenter cohort study compared the outcomes of AP patients with or without COVID-19, with the results showing that...
AP patients infected by SARS-CoV-2 were more likely to develop local complications, persistent organ failure, have prolonged hospital stay, higher 30-day mortality, and require ICU admission. A retrospective observational study included 189 AP cases, 32 of them were COVID-19 positive and these patients required more

| Author                      | Age | Gender | TG     | BMI  | Outcome |
|-----------------------------|-----|--------|--------|------|---------|
| Wiff, M. N.                 | 72  | F      | 81mg/dL| 33.14| Discharged |
| Tollard, C.                 | 32  | F      | Normal | 40.4 | Died    |
| Sandhu, H.                  | 25  | F      |        |      |         |
| Samies, N. L.              | 15  | M      |        | 34.4 | Discharged |
| Samies, N. L.              | 11  | M      | 251mg/dL| 29.5 | Discharged |
| Samies, N. L.              | 16  | F      | Normal | 18.7 | Discharged |
| Narang, K.                  | 20  | F      | Normal | 36.1 | Discharged |
| Mohammadi Arbati, M.       | 28  | M      | 122mg/dL|      | Discharged |
| Maalouf, R. G.             | 62  | M      | Normal |      | Discharged |
| Bouali, M.                 | 60  | F      |        | 24   | Died    |
| Bineshfar, N.              | 14  | M      |        |      | Discharged |
| Ali, E.                    | 53  | M      | 1.4mmol/L|     | Died    |
| AlHarmi, R. A. R.          | 52  | F      | 3.4mmol/L|    | Discharged |
| Abraham, G.                | 61  | F      |        |      | Discharged |
| Abbas, M.                  | 14  | M      | 5.5mmol/L| 21.6| Discharged |
| Zielkecli, P.              | 38  | M      |        |      | Discharged |
| Wang, K.                   | 42  | M      | 3.2mmol/L|    | Died    |
| Wang, K.                   | 35  | M      | 3.97mmol/L| | Discharged |
| Szatmary, P.               | 29  | M      | 2.7mmol/L| 32.9| Discharged |
| Szatmary, P.               | 41  | M      | 2.7mmol/L| 35.8| Discharged |
| Szatmary, P.               | 42  | M      | 2.7mmol/L| 29.7| Discharged |
| Szatmary, P.               | 47  | M      | 2.7mmol/L| 25.7| Discharged |
| Szatmary, P.               | 53  | M      | 2.7mmol/L| 30   | Discharged |
| Simou, E. M.               | 67  | M      | 2.40mmol/L| 34  | Died    |
| Shinhoara, T.              | 58  | M      | Normal |      | Discharged |
| Rabice, S. R.              | 36  | F      |        | 44   | Discharged |
| Purayil, N.                | 58  | M      |        |      | Discharged |
| Pinte, L.                  | 47  | M      |        |      | Discharged |
| Patnaik, R. N. K.          | 29  | M      | 84mg/dL |      | Discharged |
| Miyo, Y.                   | 26  | F      | Normal |      | Discharged |
| Meyers, M. H.              | 67  | M      | Normal |      | Discharged |
| Meireles, P. A.            | 36  | F      | TC:119mg/dL| | Discharged |
| Mazrouei, S. S. A.         | 24  | M      |        |      | Discharged |
| Lakshmanan, S.             | 68  | M      |        |      | Discharged |
| Kunhara, Y.                | 55  | M      | 185mg/dL| 27.5| Discharged |
| Kumaran, N. K.             | 67  | F      |        |      | Discharged |
| Kataria, S.                | 49  | F      |        |      | Discharged |
| Karimzadeh, S.             | 65  | F      | 80mg/dL |      | Discharged |
| Kandasamy, S.              | 45  | F      |        |      | Discharged |
| Hassani, A. H.             | 78  | F      |        |      | Died    |
| Hadi, A.                   | 47  | F      | Normal |      | Discharged |
| Hadi, A.                   | 68  | F      | Normal |      | Discharged |
| Gonzalo-Voltas, A.         | 76  | F      |        |      | Discharged |
| Gadiparthi, C.             | 40  | M      | 4245mg/dL| 38.8| Discharged |
| Cheung, S.                 | 38  | M      | Normal |      | Discharged |
| Brikman, S.                | 61  | M      | 3.18mmol/L| | Discharged |
| Bokhari, S.                | 32  | M      | 150mg/dL |      | Discharged |
| Anand, E. R.               | 59  | F      |        |      | Discharged |
| Alvaeli, H.                | 30  | M      | 133mg/dL| 21.4 | Discharged |
| Alves, A. M.               | 56  | F      | 209mg/dL|      | Discharged |
| Alloway, B. C.             | 7   | F      |        |      | Discharged |

Abbreviations: TC, total cholesterol; TG, total glycerides
mechanical ventilation and had a longer length of hospital stay (OR=5.65, 3.22, respectively).53

THE CORRELATION BETWEEN HYPERLIPIDEMIA AND COVID-19

We used “COVID-19” and “hyperlipidemia” as search terms to retrieve related articles in PubMed database. Thirty-four papers were reviewed after screening, which reported the incidence of hyperlipidemia in COVID-19 patients (Table 2).54–88 The incidence of hyperlipidemia ranged from 0.30% to 81.82% in COVID-19 patients among different studies. Potential reasons for the variations could be: (1) Regional factors led to the difference in baseline lipids levels; (2) The definition of hyperlipidemia varied in different studies. An epidemiological study in Iran focusing on COVID-19 patients with diabetes reported that only 49 cases of hyperlipidemia presenting in 16,391 COVID-19 patients (0.30%), however, the incidences of hyperlipidemia in COVID-19 patients from other studies were all much higher than those in the normal population. The aggregated incidence was 32.98% in pooled COVID-19 patients.

Hyperlipidemia was commonly presented in critically ill COVID-19 patients and the potential causes for it could be: hemophagocytic lymphohistiocytosis, medication and acute liver injury.89 For instance, some studies suggested that ARDS patients with COVID-19 experienced a higher rate of propofol-associated hypertriglyceridemia than non-COVID-19 induced ARDS patients, even after adjusting for propofol administration doses.81 It was reported that the incidence of propofol-associated hypertriglyceridemia was 18%–45% in the non-COVID-19 population, but could be as high as 56.6% in COVID-19 patients.80 Besides, there was a case report presenting 2 cases of tocilizumab-induced hypertriglyceridemia

| Table 2. Incidence of hyperlipidemia in Covid-19 patients in different studies. |
|-------------------------------|-----------------|-----------------|---|
| Author | Specific Population | Total | Hyperlipidemia | Rate |
| Wu, B. | COVID-19 | 9822 | 6309 | 64.23% |
| Wang, D. | COVID-19 patients in Fangcang hospital | 349 | 32 | 9.17% |
| Tzur Bitan, D. | COVID-19 with schizophrenia | 25539 | 10981 | 43.00% |
| Spoulou, V. | Newborns with COVID-19 | 14 | 6 | 42.86% |
| Qureshi, A.J. | COVID-19 with stroke | 7709 | 2613 | 33.90% |
| Pérez-Garcia, C.N. | COVID-19 died in hospital | 324 | 187 | 57.72% |
| Paneek, M. | COVID-19 | 586 | 226 | 38.57% |
| Mofakhar, L. | COVID-19 with diabetes | 16391 | 49 | 0.30% |
| Karimi, F. | COVID-19 with AIDS | 252 | 49 | 19.44% |
| Mirzaei, H. | COVID-19 | 164 | 10 | 6.10% |
| Giannis, D. | COVID-19 with venous thrombosis | 146 | 21 | 14.38% |
| Cheiboun, M. | COVID-19 | 1481 | 423 | 28.96% |
| Alchaerfi, M. | COVID-19 | 530 | 204 | 38.49% |
| Xu, H. | COVID-19 with pulmonary embolism | 101 | 32 | 31.68% |
| Wong, K. | COVID-19 with pneumothorax | 75 | 24 | 32.00% |
| Wei, Z.Y. | COVID-19 with myocardial injury | 400 | 11 | 2.75% |
| Wang, B. | COVID-19 with multiple myeloma | 58 | 36 | 62.07% |
| Teo, L.Y. | COVID-19 in immigrant workers | 240 | 11 | 4.58% |
| Tan, W.Y.T. | COVID-19 | 717 | 156 | 21.76% |
| Shady, A. | COVID-19 admitted in community hospital | 371 | 102 | 27.49% |
| Rameez, F. | COVID-19 with stroke | 11 | 9 | 81.82% |
| Piazza, G. | COVID-19 | 1114 | 319 | 28.64% |
| Pataiodimos, L. | COVID-19 | 200 | 92 | 46.00% |
| Nimkar, A. | COVID-19 with AKI | 327 | 114 | 34.86% |
| Newton, S. | COVID-19 | 991 | 224 | 22.60% |
| Nakaniishi, H. | COVID-19 | 60 | 13 | 21.67% |
| Mori, S. | COVID-19 | 45 | 8 | 17.78% |
| Kene, A.C.T. | COVID-19 with propofol infusion | 27 | 9 | 33.33% |
| He, S. | COVID-19 | 420 | 45 | 10.71% |
| Gómez Antúnez, M. | COVID-19 with COPD | 10385 | 4071 | 39.20% |
| Fernandes, N.D. | COVID-19 | 37 | 15 | 40.54% |
| Ebert, T.J. | COVID-19 | 95 | 53 | 55.79% |
| Dashti, H.T. | COVID-19 | 4140 | 1530 | 36.96% |
| Best, J.H. | COVID-19 | 3471 | 566 | 16.31% |
| Miguel León Sanz | ARDS-COVID-19 receiving parental nutrition | 87 | 32 | 36.78% |

Abbreviations: AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease.
during the treatment of COVID-19, and one of them developed into AP in the later disease course.

It is unclear whether hyperlipidemia leads to deterioration of disease course and prognosis of COVID-19 patients. Previous research has showed that patients older than 50 were prone to have hyperlipidemia, which led to an increased risk of hospital admission (OR=1.8) and disease deterioration (OR=2.15). In addition, previous reviews suggested that patients with hypercholesterolemia had increased risk for COVID-19 and the related complications. However, one study compared between two cohorts, namely COVID-19 patients discharged alive and those that died, and multiple regression analysis showed that hyperlipidemia had a protective effect on reducing the likelihood of death (OR=0.75). Another study carried out cluster analysis in a large cohort of 12,066 COVID-19 patients, and the results showed that hyperlipidemia had no significant effects on COVID-19 prognosis.

THE CORRELATION BETWEEN ACUTE PANCREATITIS AND HYPERLIPIDEMIA

In the general population

It is widely acknowledged that gallstones and alcohol intake are two major causes of AP followed by hypertriglyceridemia (HTG) and others. HTG has been a major cause of AP over the last decade and accounts for about 10% of total AP worldwide. Especially in East Asia, HTG has become the second leading cause of total AP and the incidence of HTG-AP could reach up to 15–25%. HTG is one of the predominant subtypes of hyperlipidemia, and it has been reported to deteriorate disease severity, progression, and outcomes of AP. A meta-analysis of 15 studies compared 1,564 HTG-AP patients to 5,721 AP cases with other etiologies, the results showed that the occurrence of renal failure, respiratory failure, shock, and mortality was significantly higher in HTG-AP patients. A retrospective study classified AP patients into a normal triglyceride group or mild HTG (<200 mg/dL) group, a moderate HTG (200-749 mg/dL) group, and a severe HTG (>750 mg/dL) group, and demonstrated that higher serum triglyceride level was independently associated with a more severe disease course of AP.

Previous studies suggested that the potential mechanisms of the deteriorating effects of HTG on AP may lie in the accumulation of free fatty acid and thereafter, activation of inflammatory response in the pancreas. Free fatty acid has been reported to cause the increase in the levels of inflammatory mediators, such as TNF-alpha, interleukin-6, interleukin-10, which might strengthen the systemic inflammatory response and local pancreatic injury. Moreover, in vitro experiments also presented that free fatty acid had direct cytotoxic effects on acinar cells and vascular endothelial cells.

In the COVID-19 population

When it comes to the causes of AP in the COVID-19 population, some studies suggested that SARS-CoV-2 could cause pancreatic injury and AP directly. Angiotensin-converting enzyme 2 (ACE2) is widely expressed in human vascular endothelium, respiratory endothelium, and other cell types, which is thought to be a primary mechanism of SARS-CoV-2 entry and infection. An inflamed/injured endothelium promotes neutrophilia and systemic inflammatory cascades, leading to involvement of multi-organs. A review concerning the role of endothelium in COVID-19 suggested that endothelial cells were a crucial link between SARS-CoV-2 and host immune responses and thus may serve many roles in determining the disease severity and mortality in COVID-19. Receptor proteins of SARS-CoV-2 including ACE2 were also highly expressed in the epithelial cells of gastrointestinal tract, so do the pancreatic duct epithelium, pancreatic acinar cell, and islet cell. SARS-CoV-2 could infect the gastrointestinal epithelial cells through the gastrointestinal tract and spread into the pancreas. This hypothesis was supported by a few studies, one study showed the existence of SARS-CoV-2 in gastrointestinal tract epithelium, and RNA of the virus could be detected by real-time reverse transcriptase polymerase chain reaction from feces. Furthermore, SARS-CoV-2 was also isolated from pancreatic pseudocyst tissue. However, this hypothesis was not validated by robust evidence and it is unable to explain the relatively low incidence of AP in COVID-19 patient in some large epidemiological researches.

Tang et al
still exist, hyperlipidemia could also be a mediating factor in the pathogenesis of pancreatic injury and AP. (4) Further studies are warranted to clarify the relationship between AP, hyperlipidemia, and COVID-19.

**SOURCE OF FUNDING**

This study was supported by National Science Foundation of China (No. 82070669).

**DECLARATION OF COMPETING INTEREST**

The authors declare that there is no conflict of interest regarding the research, authorship, and/or publication of this paper.

**CREDIT AUTHORSHIP CONTRIBUTION STATEMENT**

Qiuyi Tang: Conceptualization, Visualization, Data curation, Formal analysis, Writing – review & editing. Lin Gao: Conceptualization, Visualization, Writing – original draft, Writing – review & editing. Zhihui Tong: Writing – review & editing. Weiqin Li: Writing – review & editing.

**REFERENCES**

1. Gupta A, Madhavan MV, Sehgal K, et al. Extrapolary manifestation of COVID-19. Nat Med. 2020;26(7):1017–1032. https://doi.org/10.1038/s41591-020-0996-3.
2. Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med. 2020;383(22):2341–2363. https://doi.org/10.1056/NEJMmp2009875.
3. van Dijk SM, Hallensleben NDL, van Sanvoort HC, et al. Acute pancreatitis: recent advances through randomised trials. Gut. 2017;66(11):2024–2032. https://doi.org/10.1136/gutjnl-2016-313595.
4. Wit MN, Nabil A, Awad A, Eltatawy R. An inaugural diabetic ketoacidosis with acute pancreatitis during COVID-19. J Investig Med High Impact Case Rep. 2021;9(3):1601–1206. https://doi.org/10.1016/j.jmir.2020.10.010.
5. Abraham G, Rohit A, Mathew M, Palthasarathy R. Successful automated peritoneal dialysis (APD) in a COVID-19 patient with acalculous pancreatitis with no detectable virus in the dialysate effluent. Indian J Med Microbiol. 2021;39(1):128–129. https://doi.org/10.1007/jjmmb.2020.10.010.
6. Abbas M, Tornhage CJ. Family transmission of COVID-19 including a child with MIS-C and acute pancreatitis. Int Med Case Rep J. 2021;14:55–65. https://doi.org/10.2147/imcrj.2021.084840.
7. Zielecki P, Kaniewska M, Furmanek M, Bulski T, Rydzewska G. Effective treatment of severe acute pancreatitis and COVID-19 pneumonia with tocilizumab. Prz Gastroenterol. 2020;15(3):267–272. https://doi.org/10.15114/pg.2020.99042.
8. Wang K, Luo J, Tan F, et al. Acute pancreatitis as the initial manifestation in 2 Cases of COVID-19 in Wuhan, China. Open Forum Infect Dis. 2020;7(9):ofa324. https://doi.org/10.1093/ofid/ofa324.
9. Szmatary P, Arora A, Thomas Ratary MG, Joseph Dunne DF, Baron RD, Halloran CM. Emerging phenotype of severe acute respiratory syndrome-coronavirus-2-associated pancreatitis. Gastroenterology. 2020;159(4):1551–1564. https://doi.org/10.1053/j.gastro.2020.05.069.
10. Simou EM, Louardi M, Khaoury I, et al. Coronavirus disease-19 (COVID-19) associated with acute pancreatitis: case report. Pan Afr Med J. 2020;37:150. https://doi.org/10.11604/pamj.2020.37.150.25873.
11. Shinohara T, Otani A, Yamashita M, et al. Acute pancreatitis during COVID-19 pneumonia. Pancreas. 2020;49(10):e106–e110. https://doi.org/10.1097/MPA.0000000000001695.
12. Rabrice SR, Althuhler PC, Bovet C, Sullivan C, Gagnon AJ. COVID-19 infection presenting as pancreatitis in a pregnant woman: a case report. Case Rep Women Health. 2020;7:e000229. https://doi.org/10.1016/j.crwh.2020.e00229.
13. Purayil N, Sirajudeen J, Va N, Mathew J. COVID-19 presenting as acute abdominal pain: a case report. Curesus. 2020;12(8):e9659. https://doi.org/10.7759/curesus.9659.
14. Pinte L, Baicus G. Pancreatic involvement in SARS-CoV-2: case report and living review. J Gastrointestin Liver Dis. 2020;29(2):275–276. https://doi.org/10.15403/jgld.2020.0216.
15. Patnaik RNN, Gogia A, Kakar A. Acute pancreatic injury induced by COVID-19. JCases. 2020;22:e00959. https://doi.org/10.1016/j.jicter.2020.e00959.
16. Miao Y, Lidove O, Mauhin V. First case of acute pancreatitis related to SARS-CoV-2 infection. Br J Surg. 2020;107(8):e670. https://doi.org/10.1002/bjs.11741.
17. Meyers MH, Main MJ, Orr JK, Obstein KL. A case of COVID-19-induced acute pancreatitis. Pancreas. 2020;49(10):e106–e109. https://doi.org/10.1097/MPA.0000000000001696.
18. Meireles PA, Bessa F, Gaspar P, et al. Acalculous acute pancreatitis in a COVID-19 patient. Eur J Case Rep Intern Med. 2020;7:(6) 001710. https://doi.org/10.12890/2020_001710.
19. Mazrouei SSA, Saeed GA, Al Helali AA. COVID-19-associated acute pancreatitis: a rare case of acute abdomen. Radiol Case Rep. 2020;15(9):1601–1603. https://doi.org/10.11604/radcr.2020.06.019.
20. Lakshmanan S, Malik A. Acute pancreatitis in mild COVID-19 infection. Curesus. 2020;12(8):e9886. https://doi.org/10.7759/curesus.9886.
21. Kurihara Y, Maruhashi T, Wada T, et al. Pancreatitis in a patient with severe coronavirus disease pneumonia treated with veno-venous extra-corporeal membrane oxygenation. Intern Med. 2020;59(22):2900–2906. https://doi.org/10.2169/internalmedicine.5912-20.
22. Kumaran NK, Karmakar BK, Taylor OM. Coronavirus disease-19 (COVID-19) associated with acute necrotising pancreatitis (ANP). BMJ Case Rep. 2020;10(3):https://doi.org/10.1136/bcr-2020-237903.
23. Kataria S, Sharif A, Ur Rehman A, Ahmed Z, Hanan A. COVID-19 induced acute pancreatitis: a case report and literature review. Curesus. 2020;12(7):e9169. https://doi.org/10.7759/curesus.9169.
24. Karimzadeh S, Manzuri A, Ebrahim M, Huy NT. COVID-19 presenting as acute pancreatitis: lessons from a patient in Iran. Pancreatology. 2020;20(5):1024–1025. https://doi.org/10.1016/j.pan.2020.06.003.
85. Piazza G, Campia U, Hurwitz S, et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J Am Coll Cardiol. 2020;76(18):2060–2072. https://doi.org/10.1016/j.jacc.2020.02.070.

86. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108: 154262. https://doi.org/10.1016/j.metabol.2020.154262.

87. Nimkar A, Naaraayan A, Hasan A, et al. Incidence and risk factors for acute kidney injury and its effect on mortality in patients hospitalized from COVID-19. Mayo Clin Proc Innov Qual Outcomes. 2020;4(8):887–895. https://doi.org/10.1016/j.mayocpq.2020.07.003.

88. Newton S, Zollinger B, Freeman J, et al. Factors associated with clinical severity in emergency department patients presenting with symptomatic SARS-CoV-2 infection. medRxiv. 2020. https://doi.org/10.1101/2020.12.08.20246177.

89. Tulli H, Suzuki M, Maeda H, et al. Differential diagnosis of COVID-19: importance of measuring blood lymphocytes, serum electrolytes, and olfactory and taste functions. Tohoku J Exp Med. 2020;252(2):109–119. https://doi.org/10.1620/tjem.252.109.

90. Mori S, Ai T, Otomo Y. Characteristics, laboratories, and prognosis of severe COVID-19 in the Tokyo metropolitan area: a retrospective case series. PLoS One. 2020;15(8):e0239464. https://doi.org/10.1371/journal.pone.0239464.

91. Kennes MT, McSparron JJ, Marshall VD, Renius K, Hzyz RG. Propofol-associated hyperglycemia in coronavirus disease 2019 versus noncoronavirus disease 2019 acute respiratory distress syndrome. Crit Care Explor. 2020;2(12):e00303. https://doi.org/10.1097/CCX.0000000000000003.

92. He S, Tian J, Li X, et al. Positive RT-PCR test results in 420 patients recovered from COVID-19 in Wuhan: an observational study. Front Pharmacol. 2020;11:549117. https://doi.org/10.3389/fphar.2020.549117.

93. Gomez Antúnez M, Muño Míguez A, Bendala Estrada AD, et al. Clinical characteristics and prognosis of COPD patients hospitalized with SARS-CoV-2. Int J Chron Obstruct Pulmon Dis. 2020;15:3433–3445. https://doi.org/10.2147/icop.s276692.

94. Fernandes ND, Cummings BM, Naber CE, et al. Adult COVID-19 patients cared for in a pediatric ICU embedded in a regional biobank center: disease severity and outcomes. Health Secur. 2020. https://doi.org/10.1016/j.hs.2020.08.025.

95. Ebert TJ, Dugan S, Barta L, Gordon B, Nguyen-Ho C, Pagel PS. Clinical features of COVID-19 infection in patients treated at a large veterans affairs medical center. WJIM. 2020;11(4):248–252.

96. Dashti HT, Bates D, Fiskio JM, Roche EC, Mora S, Demler O. Clinical characteristics and severity of COVID-19 disease in patients from Boston area hospitals. medRxiv. 2020. https://doi.org/10.1101/2020.07.27.20163071.

97. Best JH, Mohan SV, Kong AM, et al. Baseline demographics and clinical characteristics among 3471 US patients hospitalized with COVID-19 and pulmonary involvement: a retrospective study. Adr Thet. 2020;37(12):4961–4966. https://doi.org/10.1002/adth.20200151044.

98. Villa Lopez G, Valero Zanuy MA, Gonzalez Barrios I, Maiz Jimenez M, Gomis Munoz P, Leon Sanz M. Acute hyperglycemia in patients with COVID-19 receiving parenteral nutrition. Nutrients. 2021;13(7). https://doi.org/10.3390/nu13072287.

99. Thomas CM, Vicent M, Moore S, Ali F, Wooten L, Louzon PR. Treatment of severe hyperglycemia with insulin infusions in severe COVID-19: a case series. J Pharm Pract. 2021 8971900212110473. https://doi.org/10.1177/089719002110473.

100. Kovacevic MP, Dube KM, Lupi KE, Szumita PM, DeGrado JR. Evaluation of hyperglycemia in critically ill patients with coronavirus disease 2019 receiving propofol. Crit Care Explor. 2021;3(1):e00330. https://doi.org/10.1097/CCX.0000000000000330.

101. Ma Y, Zhu DS, Chen RB, et al. Association of overlapped and un-overlapped comorbidities with COVID-19 severity and treatment outcomes: a retrospective cohort study from nine provinces in China. Biomed Environ Sci. 2020;33(12):893–905. https://doi.org/10.3907/bes2020.123.