Uncertainty propagation with functionally correlated quantities

Mosè Giordano

Dipartimento di Matematica e Fisica ‘E. De Giorgi’, Università del Salento, Via per Arnesano, CP 193, I-73100 Lecce, Italy
INFN, Sezione di Lecce, Via per Arnesano, CP 193, I-73100 Lecce, Italy

1 INTRODUCTION

1.1 Measurement uncertainty

The process of measurement has as goal the determination of the value of the measurand, that is the physical quantity to be measured. The measurement of physical quantities with a continuous spectrum is always hindered by uncertainty. The JCGM’s “Guide to the expression of uncertainty in measurement” (JCGM 100:2008 2008) lists some of the possible sources of uncertainty in a measurement. These include experimenter’s bias in reading analogue instruments, finite instrument resolution, inexact values of constants or measurement standards, approximations and assumptions in the measurement procedure, etc. Thus, the outcome of any measurement must be specified giving a nominal value and a measurement uncertainty.¹

The uncertainty is the best estimate, according to the experimenter, of the distance between the experimental result of a measurement and the true value of the measurand up to a certain probability. In this sense, the uncertainty identifies the interval in which the experimenter is confident that the true value of the measurand lies.

1.2 Functional correlation between quantities

The fact that two or more quantities are correlated means that there is some sort of relationship between them. In the context of measurements and error propagation theory, the term “correlation” is very broad and can indicate different things. Among others, there may be some dependence between uncertainties of different measurements with different values, or a dependence between the values of two measurements while their uncertainties are different. Thus, it is very important to specify what kind of correlation one is talking about.

Here, by “functional correlation” we mean the functional relationship between quantities: if \(x = \bar{x} \pm \sigma_x \) is an independent measurement, a quantity \(y = f(x) = \bar{y} \pm \sigma_y \) that is function of \(x \) is not like an independent measurement, but is a quantity depending on \(x \), so we say that \(y \) is functionally correlated with \(x \).

Scientists analysing the result of experiments usually have to perform mathematical operations involving measurements, whose uncertainty must be appropriately propagated to the outcome of the operations. This is very important, considering that many quantities cannot be measured directly, but one has to measure another measurand and transform its value to the desired quantity through mathematical operations.

When functional correlation is taken care of, one should find \(x - x = 0 \pm 0, \frac{x}{x} = 1 \pm 0 \), because \(x \) is perfectly correlated with itself and there is no doubt that the difference between a measurement and itself is exactly 0. Likewise, its own ratio is exactly 1. The same applies to any other expression, like \(x^2 = xx, \tan(x) = \sin(x)/\cos(x), \cos(x) = \exp(ix) = 0 \pm 0, \ldots \). If functional correlation is not taken into account, you would find that the two sides of each equations would have different uncertainties.

In Section 2 we review one approach to deal with uncertainty propagation of operations involving functionally correlated quantities. In Section 3 we present one software that uses this strategy: the Julia package Measurements.jl.

2 UNCERTAINTY PROPAGATION AND FUNCTIONAL CORRELATION

For a function \(G(a, b, c, \ldots) \) of real arguments with uncertainties \((a = \bar{a} \pm \sigma_a, b = \bar{b} \pm \sigma_b \text{ and } c = \bar{c} \pm \sigma_c, \ldots)\) the linear error propagation theory prescribes that uncertainty is propagated as fol-
lows (Taylor 1997):

\[
\sigma_G^2 = \left(\frac{\partial G}{\partial a} \right)_{a = a_0}^2 \sigma_a^2 + \left(\frac{\partial G}{\partial b} \right)_{b = b_0}^2 \sigma_b^2 + \left(\frac{\partial G}{\partial c} \right)_{c = c_0}^2 \sigma_c^2 + \cdots + 2 \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \sigma_{ab} + 2 \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial c} \right)_{c = c_0} \sigma_{ac} + 2 \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \left(\frac{\partial G}{\partial c} \right)_{c = c_0} \sigma_{bc} + \cdots.
\]

(1)

where the \(\sigma_{ab}\) factors are the covariances defined as

\[
\sigma_{ab} = \text{E}[(a - \text{E}[a])(b - \text{E}[b])].
\]

(2)

E[a] is the expected value of a. If uncertainties of the quantities a, b, c, ..., are independent and normally distributed, the covariances are null and the above formula for uncertainty propagation simplifies to

\[
\sigma_G^2 = \left(\frac{\partial G}{\partial a} \right)_{a = a_0}^2 \sigma_a^2 + \left(\frac{\partial G}{\partial b} \right)_{b = b_0}^2 \sigma_b^2 + \left(\frac{\partial G}{\partial c} \right)_{c = c_0}^2 \sigma_c^2 + \cdots.
\]

(3)

In general, calculating covariance terms is not an easy task. One possible approach for handling functional correlation is to propagate the uncertainty always using really independent variables, so that covariances are null by definition. Thus, dealing with functional correlation boils down to finding the set of all the independent measurements on which an expression depends and calculating its partial derivatives with respect to all these quantities.

Going back to the example above, if \(a, b, c, \ldots\) are correlated quantities, while \(x, y, z, \ldots\) is the set of really independent measurements, it is possible to calculate the uncertainty of \(G(a, b, c, \ldots)\) with

\[
\sigma_G^2 = \left(\frac{\partial G}{\partial x} \right)_{x = x_0}^2 \sigma_x^2 + \left(\frac{\partial G}{\partial y} \right)_{y = y_0}^2 \sigma_y^2 + \left(\frac{\partial G}{\partial z} \right)_{z = z_0}^2 \sigma_z^2 + \cdots
\]

(4)

where all covariances due to functional correlation are null. If other types of correlation (not functional) between \(x, y, z, \ldots\) are present, they should be treated by calculating the covariances as shown above.

For a function of one argument only, \(G = G(a)\), there is no problem of correlation and the uncertainty propagation formula in the linear approximation simply reads

\[
\sigma_G = \left| \frac{\partial G}{\partial a} \right|_{a = a_0} \sigma_a
\]

(5)

even if \(a\) is not an independent variable and comes from operations on really independent measurements.

As a concrete example, suppose you want to calculate the function \(G = G(a, b)\) of two arguments \(a\) and \(b\) that are functionally correlated, because they come from some mathematical operations on really independent measurements \(x, y, z\), say \(a = a(x, y), b = b(x, z)\). By using the chain rule, the uncertainty on \(G(a, b)\) is calculated as follows:

\[
\sigma_G^2 = \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \sigma_a^2 + \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \sigma_b^2 + \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \sigma_{ab} + \left(\frac{\partial G}{\partial a} \right)_{a = a_0} \left(\frac{\partial G}{\partial b} \right)_{b = b_0} \sigma_{ab}^2 + \cdots
\]

(6)

3 MEASUREMENTS.JL

I wrote and developed Measurements.jl, a package that allows users to define numbers with uncertainties, perform calculations involving them, and easily get the uncertainty of the result according to linear error propagation theory. This library is written in Julia, a modern high-level, high-performance dynamic programming language designed for technical computing (Bezanson et al. 2012). Measurements.jl is free and open source and is released under the terms of MIT “Expat” license.

The main features of the package are:

- Support for most mathematical operations available in Julia standard library, including special functions, involving real and complex numbers. All existing functions that accept AbstractFloat (and Complex{AbstractFloat}) as well) arguments and internally use already supported functions can turn perform calculations involving numbers with uncertainties without being redefined. This greatly enhances the power of the package without effort for the users.
- Functional correlation between variables is correctly handled.
- Support for arbitrary precision (also called multiple precision) numbers with uncertainties. This is useful for measurements with very low relative error.
- Define arrays of measurements and perform calculations with them. Some linear algebra functions work out-of-the-box, including solution of linear systems, matrix multiplication and dot product between vectors, calculation of inverse, determinant, and trace of a matrix, QR decomposition.
- Propagate uncertainty for any function of real arguments (including functions based on C/Fortran calls), using @uncertain macro.
- Functions to get the derivative and the gradient of an expression with respect to one or more independent measurements.
- Functions to calculate standard score and weighted mean.
- Parse strings to create measurement objects.
- Easy way to attach the uncertainty to a number using the ± sign as infix operator. This makes the code more readable and visually appealing.
- Combined with external packages allows for error propagation of measurements with their physical units.

When used in the Julia interactive session, it can serve also as an easy-to-use calculator.

Furthermore, Measurements.jl strives to be as fast as possible. To give a rough idea of its speed, according to tests performed with the BenchmarkTools.jl suite on a system equipped with an Intel(R) Core(TM) i7-4700MQ CPU, defining a number with uncertainty takes 30 ns, and summing two numbers with uncertainty requires about 400 ns.

3.1 Handling functional correlation

The package defines a new data type, Measurement, which holds the nominal value of the measurement and its uncertainty, assumed to be a standard deviation. In order to deal with functional correlation between measurements when performing mathematical operations with arity larger than one, a Measurement object keeps inside

\[1\] It is developed at https://github.com/giordano/Measurements.jl where it is also possible to report issues and suggest improvements.

\[2\] https://github.com/JuliaCI/BenchmarkTools.jl
the list of its derivatives with respect to the independent variables from which the quantity comes in the form of a dictionary.

When the type constructor is used to create a Measurement object, a new independent measurement is defined. Instead, the outcome of any mathematical operation involving Measurement objects is a quantity that depends on all the quantities it comes from. From a technical standpoint, it is a Measurement object, not tagged as independent, which holds the list of derivatives with the respect to the really independent quantities. In this way, the strategy presented in Section 2 can be readily applied.

3.2 Why a new uncertainty propagation package?

Among the packages listed in the Wikipedia article “List of uncertainty propagation software” (Wikipedia 2016), to date Measurements.jl is one of the most advanced and feature-rich. It is one of the very few programs supporting complex measurements and capable of performing linear algebra operations with matrices and arrays of numbers with uncertainties. In addition, it is the only program that can work with arbitrary precision arithmetic. All operations are always carried out taking care of functional correlation between quantities.

Measurements.jl is not the first uncertainty propagation software implementing the method reviewed in Section 2. Actually, it borrowed the idea of keeping the list of derivatives from the Python package uncertainties, but the rest of the implementation of Measurements.jl is completely independent from that of uncertainties. However, writing an uncertainty propagation software in Julia language has some advantages.

The language itself is specifically designed for scientific computing with particular attention to performance, approaching that of statically-compiled languages like C and Fortran, and it has been being adopted by more and more researchers across the world, so it was natural to make available to experimental scientists such a tool purely implemented in Julia.

In addition, Julia language has a smart type system that greatly improves productivity and lets users focus on the real problem at hand. Measurement type is defined as a subtype of AbstractFloat type and inherits all features of the parent type, thus support for complex measurements, arbitrary precision calculations, array operations and linear algebra in Measurements.jl came for free during the development of the package, there is not a single line in the whole code of the program to reach these features. Also the possibility of combining Measurements.jl with third-party packages to define numbers with uncertainty and physical units is a feature that came without specific effort from the authors of the different packages, thanks to the powerful Julia type system. This is an important factor in terms of maintainability of the code and productivity.

3.3 Examples

Here is a showcase of some examples of use of the Measurements.jl package.

The code below shows how to define numbers with uncertainties and perform operations with them.

using Measurements # Load the package

1 = 0.936 ± 1e-3; T = 1.942 ± 4e-3

This second example show that the functional correlation between quantities is correctly handled, within numerical accuracy.

x = 8.4 ± 0.7 # An independent measurement
u = 2x # This is functionally correlated with x
(x + x) - u
=> 0.0 ± 0.0
u/2x
=> 1.0 ± 0.0
u^3 - (2x^3 + 6x*x^2)
=> 0.0 ± 0.0

Other comprehensive examples presenting all the features of the package can be found in the up-to-date documentation at http://measurementsjl.readthedocs.io.

4 CONCLUSIONS

In Section 2 we reviewed a method to handle uncertainty propagation in operations involving functionally correlated quantities. The expedient proposed entails tracking the true independent measurements from which an expression comes and computing its partial derivatives with respect to those measurements. In this way the covariance terms are null by definition and the simple equation (4) can be used to propagate the uncertainty.

This method has been implemented in the Julia package Measurements.jl presented in Section 3. This software enables scientists to perform fast operations on measured quantities while correctly propagating their uncertainty to the result, according to linear error propagation theory. Measurements.jl features support for real and complex numbers with uncertainty, multiple precision arithmetic, mathematical and linear algebra operations with matrices and arrays of numbers with uncertainty.

ACKNOWLEDGEMENTS

I would like to thank Steven G. Johnson, for his valuable suggestions about the design of Measurements.jl, and Marta Dell’Atti, for her useful comments about this preprint.

REFERENCES

Bezanson J., Karpinski S., Shah V. B., Edelman A., 2012, preprint, (arXiv:1209.5145)

JCGM 100:2008 2008, Guide, Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, http://www.bipm.org/en/publications/guides/gum.html

Taylor J., 1997, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. A series of books in physics, University Science Books

Wikipedia 2016, List of uncertainty propagation software — Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=list_of_uncertainty_propagation_software