Prescribing Morse scalar curvatures: blow-up analysis

Andrea Malchiodi and Martin Mayer

To appear on International Mathematical Research Notes

Scuola Normale Superiore, Piazza dei Cavalieri 7, 50126 Pisa, ITALY
andrea.malchiodi@sns.it, martin.mayer@sns.it

February 28, 2022

Abstract

We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and the critical regime. After general considerations on Palais-Smale sequences we determine precise blow up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all dimensions. In subsequent papers we aim to establish the sharpness of this result, proving a converse existence statement, together with a one to one correspondence of blowing-up subcritical solutions and critical points at infinity. This analysis will be then applied to deduce new existence results for the geometric problem.

Key Words: Conformal geometry, sub-critical approximation, blow-up analysis.

Contents

1 Introduction 1
2 Variational setting and preliminaries 6
3 Blow-up analysis 10
4 Reduction and v-part estimates 14
5 The functional and its derivatives 18
6 Gradient bounds 23
7 Appendix 35

1 Introduction

The problem of prescribing the scalar curvature of a manifold conformally has a long history, starting from [33], see also [31], [32]. In case of the round sphere, this is known as Nirenberg’s problem.

Given a closed manifold \((M, g_0)\) of dimension \(n \geq 3\) and a conformal metric \(g = u^{\frac{4}{n-2}} g_0\) for a positive function \(u > 0\) on \(M\), the conformal change of the scalar curvature is given by

\[
R_{g_0} u^{\frac{n+2}{n-2}} = L_{g_0} u,
\]
where by definition
\[L_{g_0}u = -c_n\Delta_{g_0}u + R_{g_0}u, \quad c_n = \frac{4(n-1)}{n-2} \]
is the conformal Laplacian, while \(\Delta_{g_0} \) is the Laplace-Beltrami operator with respect to \(g_0 \). Thus, in order to prescribe a function \(K \) on \(M \) as the scalar curvature with respect to \(g \), one needs to solve
\[L_{g_0}u = Ku^{\frac{n+2}{n-2}}, \quad u > 0 \]
(1.1)
pointwise on \(M \), see [3]. The exponent on the right-hand side is critical with respect to Sobolev’s embedding, which makes the problem particularly challenging. In contrast to the Yamabe problem, which amounts to finding a constant scalar curvature metric, for \(K \) varying on \(M \) there are obstructions to the existence for (1.1). For example Kazdan and Warner proved in [33] that on the round sphere \((S^n, g_{S^n}) \) every solution \(u \) of (1.1) must satisfy
\[\int_{S^n} (\nabla K, \nabla f)_{g_{S^n}} u^{\frac{n+2}{2}} \, d\mu_{g_{S^n}} = 0 \]
for any restriction \(f \) to \(S^n \) of an affine function on \(\mathbb{R}^{n+1} \). In particular, since \(u \) is positive, a necessary condition for the existence of solutions is that the function \((\nabla K, \nabla f)_{g_{S^n}} \) changes sign.

One of the first answers to Nirenberg’s problem was given by J. Moser in [41] for two dimensions, where the counterpart of (1.1) has an exponential form. He proved that for \(K \) being an even function on \(S^2 \) a solution always exists. A related result was given by J. Escobar and R. Schoen in [23], showing existence of solutions when \(K \) is invariant under some group \(G \) acting without fixed points, under suitable flatness assumptions of order \(n - 2 \). In the same paper some results were also found for non-spherical manifolds using positivity of the mass. Other sufficient conditions for the existence in case of \(G \)-invariant functions were given by E. Hebey and M. Vaugon in [25], [26], allowing the possibility of fixed points.

Other existence results were obtained by A. Chang and P. Yang, see [18], [19], for the case \(n = 2 \) without requiring any symmetry of \(K \). One condition, for which they obtained existence, is the following. First they assumed, that \(K \) is a positive Morse function satisfying
\[\{\nabla K = 0\} \cap \{\Delta K = 0\} = \emptyset, \]
where here and in the following \(\nabla = \nabla_{g_0} \) and \(\Delta = \Delta_{g_0} \), cf. (2.5) and below. Secondly, they supposed that \(K \) possesses \(p \) local maxima and \(q \) saddle points with negative Laplacian and
\[c_q = \#\{x \in M : \nabla K(x) = 0, \, \Delta K(x) < 0 \text{ and } m(K, x) = 3 - q\} \]
they required that either \(c_0 - c_1 + c_2 \neq 1 \) or \(c_0 - c_1 > 1 \). Note that the first condition is equivalent to (1.3) and the second one for \(n = 2 \) corresponds to the condition \(p + 1 > q \) in [18].
Other results of perturbative type and relying on finite-dimensional reductions were given by A. Chang and P. Yang in [20] and by A. Ambrosetti, J. Garcia-Azorero and I. Peral in [1], see also [35]. The authors considered the case in which K is close to a constant and satisfies an analogue of (1.3), i.e.

$$\sum_{x \in \{\nabla K = 0\} \cap \{\Delta K < 0\}} (-1)^{m(x, K)} \neq (-1)^n.$$

In [28] Y.Y. Li proved existence of solutions for every dimension, if the function K near each critical point has a Morse-type structure, but with a flatness of order $\beta \in (n - 2, n)$. His proof relied on a homotopy argument: considering $K_t = tK + (1 - t)$, $t \in [0, 1]$ the author used the degree-counting formula of [20] for t small, and then a refined blow-up analysis of equation (1.1), when t tends to 1. A different degree formula under more general flatness conditions was introduced in [16]. Other results obtained by different approaches can also be found in [8], [10], [22].

A useful tool for the above results is a subcritical approximation of (1.1), namely

$$- c_n \Delta g a u + R g a u = K u^{\frac{n+2}{n-2}} - \tau, \quad 0 < \tau \ll 1. \quad (1.4)$$

The advantage of (1.4), compared to (1.1), is that the lower exponent makes the problem compact, so it is easier to construct solutions. However, the interesting point is passing to the limit of solutions for (1.4), and in general one expects some of them to diverge with zero weak limit. The approach in [12], [15], [28] was to understand in detail the behaviour of blowing-up solutions and then to use degree- or Morse-theoretical arguments to show that some solutions stay bounded.

Consider now a Morse function K on the sphere satisfying (1.2). In dimension $n = 3$ or under a flatness condition in higher dimensions, it turns out that blowing-up solutions to (1.4) develop a single bubble at critical points of K with negative Laplacian. Bubbles correspond to solutions of (1.1) on S^n with $K \equiv 1$ and were classified in [11], see also [2], [37], and after proper dilation represent the profiles of diverging solutions, cf. Section 6 for precise formulas.

The single-bubble phenomenon can be qualitatively explained exploiting the variational features of the problem, which admits the Euler-Lagrange energy $J = J_K$ given by

$$J(u) = \int_M \frac{cn | \nabla u|^2 + R g a u^2}{(\int K u^{\frac{n+2}{n-2}} d\mu_{g a})^{\frac{n-2}{n}}} d\mu_{g a},$$

see also [2.1] regarding (1.4). Denote by $\delta_{a, \lambda}$ a bubble centered at $a \in S^n$ with dilation parameter λ. Then for distinct and fixed points a_1, a_2 and λ large one has the expansions

$$\int_{S^n} K(\delta_{a_1, \lambda} + \delta_{a_2, \lambda})^{\frac{n-2}{n}} d\mu_{g a} \simeq K(a_1) + K(a_2) + \frac{c_1}{\lambda^{n-2}}, \quad \int_{S^n} K\delta_{a_1, \lambda}^{\frac{n-2}{n}} d\mu_{g a} \simeq c_2 K(a_1) - \frac{c_3}{\lambda^2} \Delta K(a_1) \quad (1.5)$$

with constants $c_i > 0$, where c_1 depends on a_1 and a_2. We refer to Section 5 for more accurate results. Terms similar to the above ones appear in the expression of J_β. By the latter formulas and for $\lambda \to \infty$ and $n = 3$ the interaction of the bubbles with K is dominated by the mutual interactions among bubbles. This causes multiple bubbles to suppress each other allowing only one blow-up point at a time, which has to be close to at critical points of K with negative Laplacian due to a Pohozaev identity.

This analysis was carried over in [29] also on S^4. In this case the above interactions are of the same order and multiple blow-ups occur. It was also shown there that multiple bubbles cannot accumulate at a single point. Using a terminology from [33], [34] such blow-ups are called isolated simple. In four dimensions a different constraint on multiple blow-up points replaces $\Delta K < 0$, depending on the least eigenvalue of a matrix constructed out of K and the location of the blow-up points, cf. (0.8) in [29]. On general four-dimensional manifolds there is an extra term due to the mass of the manifold leading to similar phenomena, but with modified formulas, see [7].

The goal of this paper is to investigate the blow-up behaviour in an opposite regime, when the dimension $n \geq 5$ and the function K is Morse. In this case the second term in (1.5) dominates the first one, so it is drastically different from situation of low-dimensions or with flat curvatures. However we can
still show that blow-ups are isolated simple, which is important in understanding the Morse-theoretical structure of the energy functional. Here is our main result.

Theorem 1. Let \((M^n, g_0)\), \(n \geq 5\) be a closed manifold of positive Yamabe invariant and \(K : M \to \mathbb{R}\) a smooth positive Morse function satisfying (1.2). Then positive sequences of solutions to (1.4) for \(\tau_m \searrow 0\) with uniformly bounded \(W^{1,2}\)-energy and zero weak limit have only isolated simple blow-ups at critical points of \(K\) with negative Laplacian.

The above theorem follows from Proposition 3.1 where a general characterization of blowing-up Palais-Smale sequences for (1.4) as \(\tau \to 0\) is given, and from Theorem 2 where a lower bound on the norm of the gradient of the Euler-Lagrange functional \(J_\tau\) for (1.4) is proved, see (2.1).

Remark 1.1. Solutions of (1.4) can be found as suitably normalized critical points of the scaling-invariant energy \(J_\tau\) in (2.1). For a sequence of critical points \((u_m)\) of \(J_{\tau_m}\), with \(\tau_m\) as in Theorem 1 there exist up to subsequences \(q \in \mathbb{N}\) and distinct points \(x_1, \ldots, x_q \in M\) with \(\nabla K(x_j) = 0\) and \(\Delta K(x_j) < 0\) such that

\[
\left\| u_m - \sum_{j=1}^{q} \alpha_{j,m} \delta_{x_j} \right\|_{W^{1,2}(M,g_0)} \to 0 \quad \text{as} \quad m \to \infty
\]

for some

\[
\alpha_{j,m} = \frac{\Theta}{K(x_j)^{1/2}} + o(1), \quad \alpha_{j,m} \to x_j \quad \text{and} \quad \lambda_{j,m} \asymp \tau_m^{-1/2},
\]

where the multiplicative constant \(\Theta\) reflects the scaling invariance of \(J_{\tau_m}\), see (2.1), and can be fixed for instance by prescribing the conformal volume, cf. Remark 6.3. In Theorem 3 we will show much more precise estimates, that will be crucial for (3.6). For example, if \(n \geq 6\), we find

\[
\lambda_{j,m} = c_1 \sqrt{\frac{\Delta K(x_j)}{K(x_j)^{1/2}}}, \quad \alpha_{j,m} = c_2 \left(\nabla^2 K(x_j)\right)^{-1/2} \frac{\nabla \Delta K(x_j)}{\lambda_{j,m}^3}, \quad \alpha_j = \Theta \cdot \sqrt{\frac{\lambda_0^3}{K(a_{j,m})}}
\]

up to errors of order \(o(\lambda_m^{-3})\), where \(c_1, c_2\) are dimensional constants and we identify by a slight abuse of notation \(a_{j,m}\) with its image in conformal normal coordinates at \(x_j\), cf. (22). Hence all the finite dimensional variables, i.e. \(\alpha_{j,m}, \alpha_{j,m}^2\) and \(\lambda_{j,m}\) determined to a precision of order \(o(\lambda_m^{-3})\).

Remark 1.2. We next compare Theorem 1 to some existing literature and add further comments.

(a) On \(S^3\) and \(S^4\) the isolated-simplesness of solutions was proved in (13), (21), (24), (26), (27) for arbitrary sequences of solutions by a refined blow-up analysis. The uniform \(W^{1,2}\)-bound is then derived a-posteriori. In dimension \(n \geq 5\) the latter bound may not hold true in general - we refer the reader to (13), (17), (18), where in some cases it is shown that blowing-up solutions for the purely critical equation (1.1) must have diverging energy and blow-ups of diverging energies and towering bubbles are also constructed, cf. also (21), (22), (24), (26). However, in the forthcoming paper (27) we will construct solutions to (1.4) via min-max or Morse theory with the purpose of finding a non-zero weak limit. These will indeed satisfy the required energy bound. This will allow us to obtain existence results under less stringent conditions compared to some others in the literature, as in (21) and (17).

(b) On manifolds not conformally equivalent to \(S^n\) a-priori estimates were proved in (30) for \(n = 3\) in both critical and subcritical cases. Our analysis carries over for \(n = 4\) as well, where the matrix in Definition 6.3 introduced in (21), (22) and also involving the mass, gives constraints on the location of multiple blow-up points. The main new aspect of our result is the isolated simple blow-up behaviour in dimension \(n \geq 5\), so we chose to state Theorem 1 in a simple form only for this case. We refer to Theorem 3 for a more precise version of the result: here we derive indeed estimates on solutions with high precision as \(\tau \to 0\), as well as estimates that are uniform in this parameter.

(c) In (30) we will show a converse statement. Given any distinct points \(p_1, \ldots, p_k\) in \(\{\nabla K = 0\} \cap \{\Delta K < 0\}\) and \(\tau_i \searrow 0\) there exist solutions \((u_i)_k\) to (1.4) blowing-up at \(p_1, \ldots, p_k\) exactly as
described above. Hence the characterization of Theorem 1 is optimal. We refer to [28], [29] for the counterparts on three- and four-spheres. Proposition A2 in [35] regards the construction of a pseudo gradient flow for problem (1.1) ruling out multibubble formation at the same point for any \(n \), although we believe the proof there is not complete. We refer to [34] for details and for the proof of a one-to-one correspondence of blowing-up sequences and critical points at infinity, cf. [4]. See also [40] for some delicate relations between \(L^2 \)- and pseudo gradient flows.

(d) We expect the same conclusion of Theorem 1 should hold true replacing the energy bound with a Morse index bound. It would also be interesting to understand the case of non-zero weak limits.

We discuss next some heuristics about the proof of Theorem 1. First we show a quantization result for Palais-Smale sequences of solutions to (1.4) as \(\tau \to 0 \). We are inspired in this step from a result by M. Struwe in [46], where the same was proved for \(\tau = 0 \); in our case we need extra work in the limiting process, due to a different dilation covariance of subcritical equations.

We then prove that we are in a perturbative regime and every solution to (1.4) for \(n \) sufficiently small can be written as a finite sum of highly peaked bubbles and an error term small in \(W^{1,2} \)-norm, which we prove to have a minor effect in the expansions. Performing a careful analysis of the interactions of the bubbles among themselves and with \(K \), it is not difficult to see that for \(n \geq 5 \) blow-ups should occur at critical points of \(K \) with negative Laplacian only, cf. also Theorem 1.1 in [13], and we are left with excluding multiple bubbles towering at the same limit point, which is the crucial result in our paper.

We give an idea of this fact in some particular cases, that is easy to describe. Let \(J_\tau \) be the Euler-Lagrange energy of (1.4), see (2.1). For a critical point \(a \) of \(K \), the following expansion holds for \(J_\tau \) on a bubble centered at \(a \)

\[
J_\tau(\delta_{a,\lambda}) \simeq \frac{1}{K^{\frac{n}{2}}(a)}(\lambda^\tau - \frac{\Delta K(a)}{K(a)}\lambda^2),
\]

(1.6)

cf. Proposition 5.1. By elementary considerations one checks that for \(\Delta K(a) < 0 \) the function in the right-hand side has a non-degenerate minimum point at \(\lambda = \lambda_\tau \simeq \tau^{-\frac{1}{2}} \), see also Proposition 2.1 in [45]. Since bubbles have an attractive interaction, cf. the first equation in (1.5), even in terms of dilations centering more bubbles at the point \(a \) would make all dilation parameters collapse at \(\lambda = \lambda_\tau \), see Figure 1.

For the same reason, still by (1.6), one would get collapse with respect to the center points of multiple bubbles distributed along the unstable directions from a critical point of \(K \), since points with larger values of \(K \) have smaller energy, due to (1.6), see Figure 2. We consider then the case of bubbles centered at two

points \(a_1, a_2 \) symmetrically located at distance \(d \) from a critical point \(\tilde{p} \) such that \(\Delta K(\tilde{p}) < 0 \), and along a stable direction of \(K \), with the same \(\lambda \)'s. Here in principle the attractive force among bubbles could compensate the repulsive interaction from the critical point \(\tilde{p} \) of \(K \), see Figure 3. For this configuration one gets an energy expansion of the form

\[
J_\tau(\delta_{a_1,\lambda} + \delta_{a_2,\lambda}) \simeq \frac{c_0}{K^{\frac{n}{2}}(a_1)}(\lambda^\tau - \frac{\Delta K(a_1)}{K(a_1)}\lambda^2) - c_1 \frac{1}{d^{n-2}} \simeq (c_2 - c_3d^2)\left(\lambda^\tau + c_4\lambda^{-2}\right) - c_1 \frac{1}{d^{n-2}}
\]

with \(c_i > 0 \). From the analysis in Proposition 3.1 it turns out that \(\lambda^\tau \simeq 1 \), so imposing criticality in both \(\lambda \) and \(d \) one finds the relations

\[
\frac{1}{\lambda^2} \simeq \frac{1}{(\lambda d)^{n-2}} \quad \text{and} \quad \frac{1}{\lambda^{n-2} d^{n-1}}.
\]

These asymptotics imply that \(\lambda^{-2} \simeq \tau + \lambda^{-\frac{2(n-3)}{n}} \), which is impossible for \(\lambda \) large. The general case is rather involved to study and will be treated by a top-down cascade of estimates in Section 6.
The plan of the paper is the following. In Section 2 we introduce the variational setting of the problem and list some preliminary results. We then study some approximate solutions of \(\mathbf{1.1} \), highly concentrated at arbitrary points of \(M \). From these one can carry out a reduction procedure of the problem, which is done later in the paper. In Section 3 we prove a general quantization result for Palais-Smale sequences of \(\mathbf{1.4} \) with uniformly bounded \(W^{1,2} \)-energy. In Section 4 we reduce the problem to a finite-dimensional one, while in Section 5 we derive some precise asymptotic expansions of the Euler-Lagrange energy. Section 6 is then devoted to proving suitable bounds on the gradient to exclude tower bubbles and prove our main result. We finally collect in the appendix the proofs of some useful technical estimates as well as a list of relevant constants appearing.

Acknowledgments. A.M. has been supported by the project Geometric Variational Problems and Finanziamento a supporto della ricerca di base from Scuola Normale Superiore and by MIUR Bando PRIN 2015 2015KB9WPT001. He is also member of GNAMPA as part of INdAM.

2 Variational setting and preliminaries

In this section we collect some background and preliminary material, concerning the variational properties of the problem and some estimates on highly-concentrated approximate solutions of bubble type.

We consider a smooth, closed Riemannian manifold \(M = (M^n, g_0) \) with volume measure \(\mu_{g_0} \) and scalar curvature \(R_{g_0} \). Letting \(A = \{ u \in W^{1,2}(M, g_0) \mid u \geq 0, u \not\equiv 0 \} \) the Yamabe invariant is defined as

\[
Y(M, g_0) = \inf_A \left\{ \int \left(c_n |\nabla u|_{g_0}^2 + R_{g_0} u^2 \right) d\mu_{g_0} \right\}, \quad c_n = \frac{n-1}{n-2}.
\]

We will assume from now on that the invariant is positive. As a consequence the conformal Laplacian

\[
L_{g_u} = -c_n \Delta_{g_u} + R_{g_u}
\]

is a positive and self-adjoint operator. Without loss of generality we assume \(R_{g_0} > 0 \) and denote by

\[
G_{g_u} : M \times M \setminus \Delta \longrightarrow \mathbb{R}_+
\]

the Green’s function of \(L_{g_u} \). Considering a conformal metric \(g = g_u = u^{\frac{4}{n-2}} g_0 \) there holds

\[
d\mu_{g_u} = u^{\frac{2n}{n-2}} d\mu_{g_0} \quad \text{and} \quad R = R_{g_u} = u^{-\frac{n+2}{n-2}} (-c_n \Delta_{g_0} u + R_{g_0} u) = u^{-\frac{n+2}{n-2}} L_{g_0} u.
\]

Note that

\[
c ||u||^2_{W^{1,2}(M, g_0)} \leq \int u L_{g_u} u d\mu_{g_0} = \int \left(c_n |\nabla u|_{g_0}^2 + R_{g_0} u^2 \right) d\mu_{g_0} \leq C ||u||^2_{W^{1,2}(M, g_0)}.
\]

In particular we may define and use \(||u||^2 = ||u||^2_{L_{g_u}} = \int u L_{g_u} u d\mu_{g_0} \) as an equivalent norm on \(W^{1,2} \). For

\[
p = \frac{n+2}{n-2} - \tau \quad \text{and} \quad 0 \leq \tau \longrightarrow 0
\]

we want to study the scaling-invariant functionals

\[
J_\tau(u) = \frac{\int_M \left(c_n |\nabla u|_{g_0}^2 + R_{g_0} u^2 \right) d\mu_{g_0}}{\left(\int K u^{p+1} d\mu_{g_0} \right)^{\frac{2}{p+1}}}, \quad u \in A.
\]

Since the conformal scalar curvature \(R = R_u \) for \(g = g_u = u^{\frac{4}{n-2}} g_0 \) satisfies

\[
r = r_u = \int R d\mu_{g_u} = \int u L_{g_u} u d\mu_{g_0},
\]
we have

\[J_\varepsilon(u) = \frac{r}{k^{p+1}_\tau} \quad \text{with} \quad k_\tau = \int K au^{p+1} d\mu_{g_0}. \quad (2.3) \]

The first- and second-order derivatives of the functional are given by

\[\partial J_\varepsilon(u)v = \frac{2}{k^{p+1}_\tau} \left[\int L g_0 u v d\mu_{g_0} - \frac{r}{k_\tau} \int K u v d\mu_{g_0} \right]; \]

\[\partial^2 J_\varepsilon(u)vw = \frac{2}{k^{p+1}_\tau} \left[\int L g_0 u v d\mu_{g_0} - p \frac{r}{k_\tau} \int K u^{p-1} v d\mu_{g_0} \right] \]

\[- \frac{4}{k^{p+1}_\tau} \left[\int L g_0 u v d\mu_{g_0} + \int L g_0 u d\mu_{g_0} \int K u^p d\mu_{g_0} \right] \]

\[+ \frac{2(p+3)r}{k^{p+1}_\tau} \int K u^p d\mu_{g_0} \int K u^p d\mu_{g_0}. \]

In particular \(J_\varepsilon \) is of class \(C^2_{loc}(A) \) and uniformly Hölder continuous on each set of the form

\[U_\varepsilon = \{ u \in A \mid \varepsilon < \|u\|, J_\varepsilon(u) \leq \varepsilon^{-1} \}. \]

Indeed \(u \in U_\varepsilon \) implies

\[\varepsilon^2 \leq r \leq \varepsilon^{-2} \quad \text{and} \quad c\varepsilon^3 \leq k^{1/p}_\tau = J_\varepsilon(u)^{-1} r_u \leq Cc^{-3}. \]

Thus uniform Hölder continuity on \(U_\varepsilon \) follows from the standard pointwise estimates

\[\begin{cases}
|a|^p - |b|^p \leq C_p |a - b|^p & \text{in case } 0 < p < 1 \\
|a|^p - |b|^p \leq C_p \max\{|a|^{p-1}, |b|^{p-1}\} |a - b| & \text{in case } p \geq 1
\end{cases} \quad (2.4) \]

We consider next some approximate solutions to (1.1), highly concentrated at arbitrary points of \(M \). As we will see, for suitable values of \(\lambda \) these are also approximate solutions of (1.4). Let us recall the construction of conformal normal coordinates from [27]. Given \(a \in M \), one chooses a special conformal metric

\[g_a = u_a^{4/p} g_0 \quad \text{with} \quad u_a = 1 + O(d_{g_0}^2(a, \cdot)), \quad (2.5) \]

whose volume element in \(g_a \)-geodesic normal coordinates coincides with the Euclidean one, see also [24]. In particular

\[(e \exp_a^{g_a})^{-1} \circ \exp_a^{g_a}(x) = x + O(|x|^3) \]

for the exponential maps centered at \(a \), which e.g. implies

\[\nabla_{g_0} K(a) = \nabla_{g_a} K(a), \quad \nabla_{g_0}^2 K(a) = \nabla_{g_a}^2 K(a), \]

and in case \(\nabla K(a) = 0 \) also

\[\nabla_{g_0}^3 K(a) = \nabla_{g_a}^3 K(a). \]

Moreover by smoothness of the exponential map \(\exp_{g_a} = \exp_{g_0}^{g_a} \) with respect to \(a \) there holds

\[\nabla_a \exp_{g_a}(x) = id + O(|x|^2) \quad (2.6) \]

in a \(g_a \)-normal chart, as seen from the corresponding geodesic equation. We then denote by \(r_a \) the geodesic distance from \(a \) with respect to the metric \(g_a \) just introduced. With this choice the expression
of the Green’s function G_{ga} with pole at $a \in M$, denoted by $G_a = G_{ga}(a, \cdot)$, for the conformal Laplacian L_{ga} simplifies considerably. From Section 6 in [27] one may expand

$$G_a = \frac{1}{4n(n-1)\omega_n} (r_a^2 - n + H_a), \quad r_a = d_{ga}(a, \cdot), \quad H_a = H_{r,a} + H_{s,a} \quad \text{for} \quad g_a = u_a^{-1} \delta_0.$$ \hspace{1cm} (2.7)

where $\omega_n = |S^{n-1}|$. Here $H_{r,a} \in C^2_{loc}$, while the singular error term satisfies

$$H_{s,a} = O \left(\begin{array}{ccc} 0 & r_a^2 \ln r_a & \quad \text{for} \ n = 3 \\ \frac{r_a}{a} & r_a & \quad \text{for} \ n = 4 \\ \ln r_a & \quad \text{for} \ n = 5 \\ \frac{r_a}{a} & \quad \text{for} \ n \geq 7 \end{array} \right).$$

Precisely the leading term in $H_{s,a}$ for $n = 6$ is $-\frac{\mathcal{W}(a)^2}{2\lambda \omega_n} \ln r$, where \mathcal{W} denotes the Weyl tensor. Let

$$\varphi_{a,\lambda} = u_a \left(\frac{\lambda}{1 + \lambda^2 \gamma_n G_a^{\frac{2}{n-\lambda}}} \right)^{\frac{n-2}{\lambda}}, \quad G_a = G_{ga}(a, \cdot), \quad \gamma_n = (4n(n-1)\omega_n)^{\frac{1}{n-\lambda}} \quad \text{for} \quad \lambda > 0. \hspace{1cm} (2.8)$$

We notice that the constant γ_n is chosen so that

$$\gamma_n G_a^{\frac{2}{n-\lambda}}(x) = d_{ga}^2(a, x) + o(d_{ga}^2(a, x)) \quad \text{as} \quad x \rightarrow a.$$

Evaluating the conformal Laplacian on such functions shows that they are approximate solutions.

Lemma 2.1. There holds $L_{ga} \varphi_{a,\lambda} = O(\varphi_{a,\lambda}^\frac{n+2}{n-\lambda})$. More precisely on a geodesic ball $B_\alpha(a)$ for $\alpha > 0$ small

$$L_{ga} \varphi_{a,\lambda} = 4n(n-1)\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} - 2n\omega_n r_a^{n-2}((n-1)H_a + r_a \partial_r H_a)\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} + \frac{\omega_n}{\lambda} \varphi_{a,\lambda} + o(r_a^{n-2}\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}}),$$

where $r_a = d_{ga}(a, \cdot)$. Since $R_{ga} = O(r_a^2)$ in conformal normal coordinates, cf. [27], we obtain

(i) $L_{ga} \varphi_{a,\lambda} = 4n(n-1)[1 - \frac{\alpha}{\lambda} r_a^{n-2}(H_a(a) + n\nabla H_a(a)r_a)]\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} + O\left(\begin{array}{cc} \lambda^{-\frac{1}{2}} \varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} & \quad \text{for} \ n = 3 \\ \frac{\lambda}{2} \varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} & \quad \text{for} \ n = 4 \\ \lambda^{-2} \varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} & \quad \text{for} \ n = 5 \end{array} \right)$;

(ii) $L_{ga} \varphi_{a,\lambda} = 4n(n-1)\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} = 4n(n-1)[1 + \frac{\omega_n}{2} W(a) \ln r] \varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} + O(\lambda^{-2} \varphi_{a,\lambda}) \quad \text{for} \ n = 6$;

(iii) $L_{ga} \varphi_{a,\lambda} = 4n(n-1)\varphi_{a,\lambda}^{\frac{n+2}{n-\lambda}} + O(\lambda^{-2} \varphi_{a,\lambda}) \quad \text{for} \ n \geq 7$.

The expansions stated above persist upon taking $\lambda \partial \lambda$ and $\sum_{\alpha} \partial \alpha$ derivatives.

Proof. A straightforward calculation shows that

$$\Delta_{ga} \left(\frac{\lambda}{1 + \lambda^2 \gamma_n G_a^{\frac{2}{n-\lambda}}} \right)^{\frac{n-2}{\lambda}} = \frac{n}{2 - n} \gamma_n \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n+2}{n-\lambda}} \nabla G_a \frac{\varphi_{a,\lambda}}{u_a} + \gamma_n \lambda \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n}{n-\lambda}} G_a = c_n \Delta_{ga} G_a,$$

which is due to $\nabla G_a \frac{\varphi_{a,\lambda}}{u_a} = (n-2)\nabla G_a \frac{\varphi_{a,\lambda}}{u_a}$ and $c_n \Delta_{ga} G_a = -\Delta_a + R_{ga} G_a$ with Δ_a denoting the Dirac measure at a. This is equivalent to

$$\Delta_{ga} \left(\frac{\lambda}{1 + \lambda^2 \gamma_n G_a^{\frac{2}{n-\lambda}}} \right)^{\frac{n-2}{\lambda}} = n(2-n)\gamma_n \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n+2}{n-\lambda}} \nabla G_a \frac{\varphi_{a,\lambda}}{u_a} + \frac{R_{ga} \gamma_n \lambda}{c_n} \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n}{n-\lambda}} G_a.$$
Since $L_{g_a} = -c_n \Delta_{g_a} + R_{g_a}$ with $c_n = \frac{n-1}{n-2}$, we obtain

$$L_{g_a} \frac{\varphi_{a,\lambda}}{u_a} = 4n(n-1) \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n+2}{2}} \gamma_n |\nabla G_a^{-\frac{1}{n}}|^{2}_{g_a} + \frac{R_{g_a}}{\lambda} \left(\frac{\varphi_{a,\lambda}}{u_a} \right)^{\frac{n-2}{2}}.$$

By conformal covariance we also get

$$L_{g_b} \varphi_{a,\lambda} = 4n(n-1) \varphi_{a,\lambda}^{\frac{n+2}{2}} \gamma_n |\nabla G_a^{-\frac{1}{n}}|^{2}_{g_a} + \frac{u_a}{\lambda} R_{g_a} \varphi_{a,\lambda}^{\frac{n-2}{2}},$$

in particular $L_{g_b} \varphi_{a,\lambda} = O(\varphi_{a,\lambda}^{\frac{n+2}{2}})$. Expanding G_a as $G_a = \frac{1}{4n(n-1)\gamma_n} (r_a^{2-n} + H_a)$, $r_a = d_{g_a}(a, \cdot)$ we find

$$\gamma_n |\nabla G_a^{-\frac{1}{n}}|^{2}_{g_a} = |\nabla (r_a (1 + r_a^{n-2} H_a) \frac{1}{n})|^{2}_{g_a} = 1 - \frac{2}{n-2} ((n-1)H_a + r_a \partial r_a H_a) r_a^{n-2} + o(r_a^{n-2}),$$

and conclude that

$$L_{g_b} \varphi_{a,\lambda} = 4n(n-1) \varphi_{a,\lambda}^{\frac{n+2}{2}} - 2n\gamma_n ((n-1)H_a + r_a \partial r_a H_a) r_a^{n-2} \varphi_{a,\lambda}^{\frac{n+2}{2}} + o(r_a^{n-2}) + \frac{u_a}{\lambda} R_{g_a} \varphi_{a,\lambda}^{\frac{n-2}{2}}.$$

Clearly these calculations transcend to the λ and a derivatives. Then the claim follows from the above expansion of the Green’s function. \hfill \Box

After introducing some notation we state a useful lemma, which will be proved in the first appendix.

Notation. Given an exponent $p \geq 1$ we will denote by $L^p_{g_0}$ the set of functions of class L^p with respect to the measure $d\mu_{g_0}$. Recall also that for $u \in W^{1,2}(M, g_0)$ we set $r_a = \int u L_{g_0} u d\mu_{g_0}$, while for a point $a \in M$ we denote by r_a the geodesic distance from a with respect to the metric g_a introduced above. For a set of points $\{a_i\} \subset M$ we will denote by K_i, ∇K_i and ΔK_i for instance

$$K(a_i), \nabla K(a_i) = \nabla_{g_0} K(a_i) \quad \text{and} \quad \Delta K(a_i) = \Delta_{g_0} K(a_i).$$

For $k, l = 1, 2, 3$ and $\lambda_i > 0$, $a_i \in M$, $i = 1, \ldots, q$ let

(i) $\varphi_i = \varphi_{a_i, \lambda_i}$ and $(d_{1,i}, d_{2,i}, d_{3,i}) = (1, -\lambda_i \partial_{a_i}, \frac{1}{\lambda_i} \nabla_{a_i});$

(ii) $\phi_{1,i} = \varphi_i, \phi_{2,i} = -\lambda_i \partial_{a_i} \varphi_i, \phi_{3,i} = \frac{1}{\lambda_i} \nabla_{a_i} \varphi_i$, so $\phi_{k,i} = d_{k,i} \phi_i$.

Note that with the above definitions the $\phi_{k,i}$’s are uniformly bounded in $W^{1,2}(M, g_0)$.

Lemma 2.2. Let $\theta = \frac{n-2}{2}$ and $k, l = 1, 2, 3$ and $i, j = 1, \ldots, q$. Then for

$$\varepsilon_{i,j} = \frac{\lambda_j}{\lambda_i} + \frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_n G_{g_0}^{\frac{n-2}{2}} (a_i, a_j)^{\frac{n-2}{2}}$$

there holds uniformly as $0 \leq \tau \to 0$

(i) $|\phi_{k,i}|, |\lambda_i \partial_{a_i} \phi_{k,i}|, |\frac{1}{\lambda_i} \nabla_{a_i} \phi_{k,i}| \leq C \varphi_i$;

(ii) $\lambda^0 \int \varphi_i ^{\frac{n-2}{2}} \phi_{k,i} \phi_{l,i} d\mu_{g_0} = c_k \cdot id + O(\tau + \frac{1}{\lambda_i^{(n-2)}} + \frac{1}{\lambda_j^{(n-2)}}), c_k > 0$;

(iii) for $i \neq j$ up to some error of order $O(\tau^2 + \sum_{i \neq j} (\frac{1}{\lambda_i} + \frac{1}{\lambda_j} (n-2) + \varepsilon_{i,j}^{n-2}))$

$$\lambda^0 \int \varphi_i ^{\frac{n-2}{2}} \phi_{k,j} d\mu_{g_0} = b_k d_{k,i} \varepsilon_{i,j} = \int \varphi_i ^{\frac{n-2}{2}} d\mu_{g_0};$$

9
Proposition 3.1. Let

\[\lambda_i^q \int \varphi_i^{q-\tau} \phi_{k,i} d\mu_{g_0} = O\left(\frac{1}{X_i} + \frac{1}{X_i^2}\right) \text{ for } k \neq l \text{ and for } k = 2, 3 \]

\[\lambda_i^q \int \varphi_i^{q-2} \phi_{k,i} d\mu_{g_0} = O \left(\tau + \begin{cases} \frac{1}{X_i^2} & \text{for } n \leq 5 \\ \frac{1 + \lambda_i}{\lambda_i^2} & \text{for } n = 6 \\ \frac{n}{\lambda_i^2} & \text{for } n \geq 7 \end{cases} \right); \]

\[\lambda_i^q \int \varphi_i^{q-2} \phi_{k,i} d\mu_{g_0} = O(\varepsilon_i^\beta) \text{ for } i \neq j, \alpha + \beta = \frac{2m}{n-2}, \alpha - \tau > \frac{n}{n-2} > \beta \geq 1; \]

\[\int \varphi_i^{q-2} \varphi_j^{q-2} d\mu_{g_0} = O(\varepsilon_i^\beta \varepsilon_j^\beta) \text{ for } i \neq j; \]

\[(1, \lambda_i \partial_{\lambda_i}, \frac{1}{\lambda_i} \nabla_{a_i}) \varepsilon_{i,j} = O(\varepsilon_{i,j}), \text{ } i \neq j. \]

with constants \(b_k = \int \frac{dx}{(1 + r^2)^{\frac{n+k}{2}}} \) for \(k = 1, 2, 3 \) and

\[c_1 = \int \frac{dx}{(1 + r^2)^n}, \quad c_2 = \frac{(n-2)^2}{4} \int \frac{(r^2 - 1)^2 dx}{(1 + r^2)^{n+2}}, \quad c_3 = \frac{(n-2)^2}{n} \int \frac{r^2 dx}{(1 + r^2)^{n+2}}. \]

3 Blow-up analysis

In this section we prove a result related to a well-known one in [16]. We obtain indeed similar conclusions, but allowing the exponent in the equation to vary along a sequence of approximate solutions.

Proposition 3.1. Let \((u_m)_m \subset W^{1,2}(M, g_0)\) be a sequence with \(u_m \geq 0\) and \(k_m = 1\) satisfying

\[J_{\tau_m}(u_m) = r_{\tau_m} \rightarrow r_\infty \text{ and } \partial J_{\tau_m}(u_m) \rightarrow 0 \text{ in } W^{-1,2}(M, g_0). \]

Then up to a subsequence there exist \(u_\infty : M \rightarrow [0, \infty)\) smooth, \(q \in \mathbb{N}_0\) and for \(i = 1, \ldots, q\) sequences

\[M \supset (a_i)_m \rightarrow a_i, \text{ and } \mathbb{R}_+ \supset \lambda_i, m \rightarrow \infty \text{ as } m \rightarrow \infty \]

such that \(u_m = u_\infty + \sum_{i=1}^{q} \alpha_i \varphi_{a_i, m}, \lambda_i, m + v_m\) with

\[\partial J_0(u_\infty) = 0, \quad \|v_m\| \rightarrow 0, \quad \lambda_i, m \rightarrow 1 \quad \text{and} \quad \frac{r_\infty K(u_\infty) \alpha_i}{4m(\pi - 1)} = 1 \]

and \((\varepsilon_i)_m \rightarrow 0\) as \(m \rightarrow \infty\) for each pair \(1 \leq i < j \leq q\).

Proof. Setting \(J = J_{\tau_m}\), by our assumptions we have

\[J(u_m) = \int u_m L_{g_0} u_m d\mu_{g_0} \rightarrow r_\infty \text{ and } \partial J(u_m) = L_{g_0} u_m - r_\infty K u_{m, \infty}^p = o(1) \text{ in } W^{-1,2}(M, g_0). \]

In particular \((u_m) \subset W^{1,2}(M, g_0)\) is bounded, hence \(u_m \rightharpoonup u_\infty\) weakly in \(W^{1,2}(M, g_0)\) and strongly in \(L^{q}(M, g_0), q < \frac{2m}{n-2}\). Notice that \(u_\infty \geq 0\) is a critical point of \(J_0\) and therefore it is a smooth function.

We may then write \(u_m = u_\infty + u_1, m\) with \(u_1, m \rightharpoonup 0\) weakly, and strongly in \(L^{q}(M, g_0)\). Thus

\[r_\infty \leftarrow J(u_m) = \int u_\infty L_{g_0} u_\infty d\mu_{g_0} + \int u_1, m L_{g_0} u_1, m d\mu_{g_0} + o(1), \]

whence \(\int u_1, m L_{g_0} u_1, m d\mu_{g_0} \rightarrow r_{1, \infty} \geq 0\) and secondly, due to (2.4), that

\[E(u_1, m) := L_{g_0} u_1, m - r_\infty K u_{1, m}^p = o(1) \text{ in } W^{-1,2}(M, g_0). \]

(3.1)

We may assume \(r_{1, \infty} > 0\), since otherwise we are done. We now claim the concentration behavior

\[\forall \ 0 < \varepsilon \ll 1 \exists \lambda_m \rightarrow \infty : \sup_{x \in M} \int_{B_{\varepsilon_1}(x)} |\nabla u_1, m|^2 g_0 d\mu_{g_0} \geq \varepsilon. \]

(3.2)
Indeed we have for a fixed cut-off function
\[o(1) = \langle E(u_{1,m}), u_{1,m} \eta^2 \rangle = \int \left[(\eta u_{1,m}) L_{g_0}(\eta u_{1,m}) - r_{\infty} K |\eta u_{1,m}|^2 u_{1,m}^{p_{\infty} - 1} \right] d\mu_{g_0} + o(1) \]
\[\geq \|\nabla (\eta u_{1,m})\|^2 - r_{\infty} M \min \|\eta u_{1,m}\|_{L_{g_0}}^{p_{\infty} + 1} \|u_{1,m}\|_{L_{g_0}^{p_{\infty} + 1}(\text{supp}(\eta))}^{p_{\infty} - 1} + o(1). \]

Using Hölder’s inequality and Sobolev’s embedding we obtain
\[o(1) \geq \|\nabla (\eta u_{1,m})\|^2 (1 - C \|u_{1,m}\|_{L_{g_0}^{p_{\infty} + 1}(\text{supp}(\eta))}^{p_{\infty} - 1}) + o(1). \]

Thus, if \(u_{1,m} \) does not concentrate in \(L^{p_{\infty} + 1}(M, g_0) \) similarly to (3.2), then by a covering argument
\[\int |\nabla u_{1,m}|_{g_0}^2 d\mu_{g_0} \to 0 \]
contradicting \(r_{1,\infty} > 0 \). By (3.1) concentration in \(L^{p_{\infty} + 1}(M, g_0) \) is equivalent to concentration in \(L^2 \)-norm for the gradient, which had to be shown. Fixing \(\varepsilon > 0 \) small, we measure the rate of concentration via
\[\Lambda_{1,m} = \sup \left\{ \lambda > 0 \mid \max_{x \in M} \int_{B_1(x)} |\nabla u_{1,m}|_{g_0}^2 d\mu_{g_0} = \varepsilon \right\} \to \infty, \]
and choose for any \(\lambda_{1,m} \nearrow \infty \) with \(1 \leq \lim_{m \to \infty} \lambda_{1,m} = \delta < \infty \) up to a subsequence
\[(a_{1,m}) \subset M : \int_{B_{\lambda_{1,m}^2}(a_{1,m})} |\nabla u_{1,m}|_{g_0}^2 d\mu_{g_0} = \sup_{x \in M} \int_{B_{\lambda_{1,m}^2}(x)} |\nabla u_{1,m}|_{g_0}^2 d\mu_{g_0} \geq c \]
for some positive \(c = c(\varepsilon, \delta) \) to be specified later. On a suitably small ball \(B_\rho(a_{1,m}) \) we then rescale
\[w_{1,m} = \lambda_{1,m}^{\frac{2-n}{2}} u_{1,m} \left(\exp_{g_{a_{1,m}}} \frac{\cdot}{\lambda_{1,m}} \right). \]
The function \(w_{1,m} \) is well defined on \(B_{\rho \lambda_{1,m}}(0) \) and satisfies, with \(\theta_m = \frac{n-2}{2} \tau_m \),
\[-c_n \Delta w_{1,m} = \frac{r_{\infty} K(a_{1,m})}{\lambda_{1,m}^p} w_{1,m}^{p_{\infty} - 1} = o(1) \quad \text{in } W^{-1,2}_{\text{loc}}(\mathbb{R}^n), \quad \Delta = \Delta_{\mathbb{R}^n}. \]
Since \(\int |\nabla u_{1,m}|^2 d\mu_{g_0} \) is bounded, so it is \(\int_{B_{\rho \lambda_{1,m}}(0)} |\nabla w_{1,m}|^2 dx \) for any \(\rho > 0 \). Hence
\[w_{1,m} \rightharpoonup w_{1,\infty} \text{ weakly in } W^{-1,2}_{\text{loc}}(\mathbb{R}^n) \text{ with } -\Delta w_{1,\infty} = \sigma_1 r_{\infty} K w_{1,\infty}^{\frac{n+2}{2}}, \]
where
\[\kappa_1 = \lim_{m \to \infty} K(a_{1,m}) \quad \text{and} \quad \sigma_1 = \lim_{m \to \infty} \lambda_{1,m}^{-\theta_m} \in [0, 1]. \]
Given a compactly supported cut-off \(\eta \), we calculate
\[0 \leftarrow \int_{\mathbb{R}^n} (w_{1,m} - w_{1,\infty}) \eta^2 \left(\Delta w_{1,m} + \frac{r_{\infty} K}{\lambda_{1,m}^p} w_{1,m}^{p_{\infty} - 1} \right) dx \]
\[= \int_{\mathbb{R}^n} (w_{1,m} - w_{1,\infty}) \eta^2 \left(\Delta (w_{1,m} - w_{1,\infty}) + \sigma_1 r_{\infty} K (w_{1,m}^{p_{\infty}} - w_{1,\infty}^{\frac{n+2}{2}}) \right) dx + o(1) \]
\[\leq -\int_{\mathbb{R}^n} |\nabla ((w_{1,m} - w_{1,\infty}) \eta)|^2 dx + \sigma_1 r_{\infty} \int_{\mathbb{R}^n} K \eta^2 |w_{1,m} - w_{1,\infty}|^{p_{\infty} + 1} dx + o(1) \]
\[= -\int_{\mathbb{R}^n} |\nabla ((w_{1,m} - w_{1,\infty}) \eta)|^2 dx + \sigma_1 r_{\infty} \int_{\mathbb{R}^n} K \eta^2 |w_{1,m} - w_{1,\infty}|^{p_{\infty} + 1} dx + o(1). \]

(3.3)
The main step here is the inequality in the above formula. Passing from $\frac{n+2}{n-2}$ to $p_m = \frac{n+2}{n-2} - \tau_m$ in the exponent is easy, as $w_{1,\infty}$ is fixed. Since $w_{1,m} \to w_{1,\infty}$ in $L^p(supp(\eta))$, $p < \frac{2n}{n-2}$, we have

$$\int_{\mathbb{R}^n} K\eta^2 (w_{1,m} - w_{1,\infty}) (w_{1,m}^p - w_{1,\infty}^p) dx = \int_{\mathbb{R}^n} K\eta^2 (w_{1,m}^{p+1} - w_{1,\infty}^{p+1}) dx = \int_{\mathbb{R}^n} K\eta^2 \left[- \int_0^1 \partial_{s} |w_{1,m} - sw_{1,\infty}|^{p+1} ds - w_{1,\infty}^{p+1} + |w_{1,m} - w_{1,\infty}|^{p+1} \right] dx.$$

Therefore the main inequality follows from observing that

$$\left| \int_{\mathbb{R}^n} K\eta^2 \left[- \int_0^1 \partial_{s} |w_{1,m} - sw_{1,\infty}|^{p+1} ds - w_{1,\infty}^{p+1} \right] dx \right| \leq \int_{\mathbb{R}^n} K\eta^2 [(p+1) (w_{1,m} - sw_{1,\infty}) |w_{1,m} - sw_{1,\infty}|^{p-1} w_{1,\infty} - w_{1,\infty}^p] dx \to \int_{\mathbb{R}^n} K\eta^2 [(p+1) (1 - s)^p |w_{1,\infty}^p - w_{1,\infty}^p] dx = 0.$$

Hence (3.3) is justified and we obtain as before

$$\int_{\mathbb{R}^n} |\nabla ((w_{1,m} - w_{1,\infty}) \eta)|^2 (1 - C ||w_{1,m} - w_{1,\infty}|^{p-1} supp(\eta)) dx \leq o(1).$$

Thus $w_{1,m} \to w_{1,\infty}$ locally strongly, unless $w_{1,m}$ concentrates in L^{p+1}, but by our choice of $\Lambda_{1,m}$

$$\varepsilon = \sup_{x \in M} \int_{B_{\Lambda_{1,m}}(x)} |\nabla u_{1,m}|^2 d\mu_{g_0} \geq \sup_{x \in B_{\Lambda_{1,m}}(0) \subset \mathbb{R}^n} \int_{B_{\Lambda_{1,m}}(x)} |\nabla u_{1,m}|^2 dx$$

and $1 \geq \frac{\Lambda_{1,m}}{\Lambda_{1,m}} \to 0$, so the L^2-gradient norm does not concentrate beyond ε and since

$$-c \Delta_{\mathbb{R}^n} w_{1,m} - r_{\infty} K(a_{1,m}) \frac{w_{1,m}}{\Lambda_{1,m}} = o(1) \text{ locally strongly in } W^{-1,2}(\mathbb{R}^n),$$

neither the L^{p+1}-norm does. Thus $w_{1,m} \to w_{1,\infty}$ locally strongly. In particular

$$\int_{B_{1}(0)} |\nabla w_{1,\infty}|^2 dx \to \int_{B_{\Lambda_{1,m}}(a_{1,1})} |\nabla u_{1,m}|^2 d\mu_{g_0} \geq c = c(\varepsilon, \delta).$$

But $\sigma_1 = 0$ implies $w_{1,\infty} = 0$ by harmonicity, so $\sigma_1 \in (0, 1]$, cf. (3.3), and we easily show $w_{1,\infty} > 0$ and

$$w_{1,\infty} = \alpha_1 \left(\frac{\lambda_1}{1 + \lambda_1^2 r_a^2} \right)^{\frac{n-2}{2}} \text{ with } \alpha_1 > 0, r_a = |x - a|, a \in \mathbb{R}^n \text{ and } \lambda_1 > 0.$$

Note that $-\Delta_{\mathbb{R}^n} w_{1,\infty} = \sigma_1 r_{\infty} K_1 w_{1,\infty}^{n+2}$ implies $\sigma_1 r_{\infty} K_1 \frac{\lambda_1}{1 + \lambda_1^2 r_a^2} = 4n(n-1)$. Moreover by construction

$$\int_{B_{1}(0)} |\nabla w_{1,m}|^2 dx \geq \sup_{x \in B_{\Lambda_{1,m}}(0)} \int_{B_1(x)} |\nabla w_{1,m}|^2 dx,$$

which transfers to $w_{1,\infty}$ by locally strong convergence. This implies $a = 0$ and

$$\frac{\lambda_1}{1 + \lambda_1^2} \sim \int_{B_{1}(0)} |\nabla \left(\frac{\lambda_1}{1 + \lambda_1^2 r_a^2} \right)^{\frac{n-2}{2}} dx = \varepsilon \alpha_1^{-2} = \varepsilon (\sigma_1 r_{\infty} K_1)^{\frac{n-2}{2}}.$$
By \(\lim_{m \to \infty} \lambda_{1,m}^{-\vartheta} = \sigma_1 \in (0, 1) \) and \(0 < \varepsilon \ll 1 \) we get \(\bar{\lambda}_1 \sim \lambda_{1,1,m}^{-2} \). Dilating back we may then write

\[
 u_m = w_{\infty} + \alpha_1 \varphi_{1,m} + u_{2,m}, \quad \varphi_{1,m} = \varphi_{a_1,m,\bar{\lambda}_1}, \quad \bar{\lambda}_1 = \bar{\lambda}_1 \lambda_{1,1,m}.
\]

Moreover we know that \(u_{2,m} \to 0 \) weakly in \(W^{1,2}(M, g_0) \) and

\[
 w_{2,m} = (\bar{\lambda}_1 m)^{\frac{2-n}{n}} u_{2,m} \left(\exp_{g_{a_1,m}} \frac{\cdot}{\bar{\lambda}_1} \right) \to 0 \text{ locally strongly in } W^{1,2}(\mathbb{R}^n).
\]

Since the initial sequence \((u_m) \) was non-negative, it follows that \(u_\infty \geq 0 \) and the negative part of \(u_{2,m} \) tends to zero as \(m \to \infty \) in \(W^{1,2} \)-norm. Using a dilation argument, the latter property and the above formula, it is easy to show that, if \(\alpha, \beta \geq 1 \) with \(\alpha + \beta = \frac{2n}{n-2} \), then

\[
 \int \varphi_{1,m}^\alpha |u_{2,m}|^\beta d\mu_{g_0} \to 0 \quad \text{as } m \to \infty, \quad (3.4)
\]

and that also \(\int u_{2,m} L_{g_0} \varphi_{1,m} d\mu_{g_0} = o(1) \). Hence as before for \(u_{1,m} \)

\[
 r_\infty \leftarrow J_r(u_m) = \int u_\infty L_{g_0} u_\infty d\mu_{g_0} + \alpha_1^2 \int \varphi_{1,m} L_{g_0} \varphi_{1,m} d\mu_{g_0} + \int u_{2,m} L_{g_0} u_{2,m} d\mu_{g_0}
\]

and therefore \(\int u_{2,m} L_{g_0} u_{2,m} d\mu_{g_0} \to r_\infty \geq 0 \). Likewise

\[
 E(u_{2,m}) = L_{g_0} u_{2,m} - r_\infty K u_{2,m}^p = o(1) \quad \text{in } W^{-1,2}_{loc}(\mathbb{R}^n)
\]

since by expansion of the non-linear term of \(\partial J_r(u_m) \) we find

\[
 o(1) = L_{g_0} (u_\infty + \alpha_1 \varphi_{1,m} + u_{2,m}) - r_\infty K (u_\infty + \alpha_1 \varphi_{1,m} + u_{2,m})^p
\]

\[
 = L_{g_0} u_\infty - r_\infty K u_\infty^p + \alpha_1 L_{g_0} \varphi_{1,m} - r_\infty K \varphi_{1,m}^p
\]

\[
 + L_{g_0} u_{2,m} - r_\infty K u_{2,m}^p + o(1) = L_{g_0} u_{2,m} - r_\infty K u_{2,m}^p + o(1) \quad \text{in } W^{-1,2}(M, g_0),
\]

The second equality follows from applying the latter formulas to any test function in \(W^{1,2}(M, g_0) \) and then applying Sobolev’s and Hölder’s inequalities together with \((3.4) \). We may therefore iterate the above going and find for a finite sum \(u_m = \sum_i \alpha_i \varphi_{i,m} + v_m \), with energy

\[
 r_\infty \leftarrow J(r_m(u_m)) \geq \int u_\infty L_{g_0} u_\infty d\mu_{g_0} + \sum_i \alpha_i^2 \int \varphi_{i,m} L_{g_0} \varphi_{i,m} d\mu_{g_0}.
\]

But all \(\alpha_i \) are uniformly lower bounded due to

\[
 \sigma_i r_{\infty} \kappa_i \alpha_i^{-\frac{4}{2}} = 1, \quad \sigma_i = \lim_{m \to \infty} \lambda_{i,m}^{-\vartheta} \in (0, 1] \quad \text{and} \quad \kappa_i = \lim_{m \to \infty} K(a_{i,m}),
\]

hence the iteration has to stop after finitely-many steps. In particular \(v_m \) does not concentrate locally and consequently vanishes strongly as \(m \to \infty \). Now take any fixed index \(j \) and recall that

\[
 w_{j,m} = \lambda_{j,m}^{\frac{2-n}{n}} u_{j,m} \left(\exp_{g_{a,j,m}} \frac{\cdot}{\lambda_{j,m}} \right)
\]

and that by construction \(\lambda_{j,m} \to \lambda_j \) for \(k < l \). We had seen

\[
 w_{j,m} \to w_{j,\infty} \text{ weakly and locally strongly, where} \quad -c_\gamma \Delta w_{j,\infty} - \sigma_j r_{\infty} \kappa_j w_{j,\infty}^{\frac{n+2}{2}} = 0.
\]

On the other hand

\[
 w_{j,m} = \alpha_j \left(\frac{1}{1 + r^j} \right)^{\frac{n-2}{2}} + \sum_{i > j} a_{i,j,m} \alpha_i \left(\frac{\lambda_{i,m}}{\lambda_{j,m}} \right)^{\frac{n-2}{2}} \left(1 + \lambda_{i,m} \gamma_i G_{a_{i,m}} \left(\exp_{g_{a_{j,m}} \left(\lambda_{j,m}^{-1} \right)} \right) \right)^{\frac{n-2}{2}}
\]

13
up to some error of order $o(1)$ locally in $W^{1,2}$, and the latter sum has to vanish, which is equivalent to

$$\frac{\lambda_{j,m}}{\lambda_{i,m}} \to \infty \text{ or } \frac{\lambda_{i,m}}{\lambda_{j,m}} G_{a_{i,m}}(a_{j,m}) \to \infty.$$

Recalling (2.9), this shows that $(\varepsilon_{i,j})_m \to 0$ for all $i \neq j$. We are left with proving $\lambda_{1,m}^* \to 1$. Ordering

$$\lambda_{1,m} \geq \ldots \geq \lambda_{q,m}$$

up to a subsequence, let

$$1 \leq q = \{ l = 1, \ldots, q \mid \lim_{m \to \infty} \lambda_{l,m} < \infty \}.$$

Then $\frac{\lambda_k}{\lambda_{l,m}} \to \infty$ for $k \leq q < l$ and $c \leq \lim_{m \to \infty} \frac{\lambda_k}{\lambda_{l,m}} \leq C$ for $k, l \leq q$. Select a half-ball $B^+(a_{k,m})$ with

$$1 \leq k \leq q \text{ and } 0 < \delta \ll 1 \text{ such that } B^+(a_{k,m}) \cap \{ \lambda_{l,m} \mid 1 \leq l \leq q, l \neq k \} = \emptyset$$

up to a subsequence, where for some affine function $\nu_{k,m}$ with unit gradient we have set

$$B^+(a_{k,m}) = B^+(a_{k,m}) \cap \{ \nu_{k,m} > 0 \}$$

in a local coordinate system. Then rescaling u_m on $B^+(a_{k,m}) \cap \{ \nu_{k,m} > \frac{1}{\lambda_{k,m}} \}$ we find

$$w_{k,m} = \frac{\lambda_{k,m}}{\lambda_{k,m}} u_m \left(\exp_{a_{k,m}} \frac{\alpha_i}{\lambda_{k,m}} \right) = \alpha_i \left(\frac{1}{1 + r^2} \right)^{\frac{n-2}{2}} + o(1) \text{ on } B_{c\lambda_{k,m}}(0) \cap \{ x_1 > 1 \}.$$

On the other hand side, $w_{k,m}$ solves

$$-c_n \Delta w_{k,m} - \frac{r^n K_k}{\lambda_{k,m}} w_{k,m} = o(1), \quad \kappa_k = \lim_{m \to \infty} K(a_{k,m}) \text{ on } B_{c\lambda_{k,m}}(0).$$

Recalling that $p_m = \frac{n+2}{n-2} - \tau$ and $\theta_m = \frac{n-2}{2} r_m$, this implies, that up to rotating coordinates

$$(1 + r^2)^{\theta_m} \text{ is nearly constant on } B_{c\lambda_{k,m}}(0) \cap \{ x_1 > 1 \}.$$

Thus $\lambda_{k,m}^* \to 1$. The claim follows, since $\lim_{m \to \infty} \lambda_{l,m}^* \geq c$ for all $l = 1, \ldots, q$. \hfill \Box

4 Reduction and v-part estimates

In this section we will consider a sequence u_m as in Proposition 3.1 with zero weak limit. We will recall some well-known facts about finite-dimensional reductions and derive preliminary error estimates and on suitable components of the gradient of J_r. For $\varepsilon > 0$, $q \in \mathbb{N}$, $u \in W^{1,2}(M, g_0)$ and $(\alpha', \lambda_i, a_i) \in (\mathbb{R}_+, \mathbb{R}_+, M^n)$ we define

(i) \hspace{1cm} $A_u(q, \varepsilon) = \{ (\alpha', \lambda_i, a_i) \mid \forall i \neq j \lambda_i^{-1}, \lambda_j^{-1}, \varepsilon_{i,j}, |1 - \frac{\nabla K(a_i)}{4n(n-1)K_r}|, \| u - \alpha' \varphi_{a_i, \lambda_i} \| < \varepsilon, \lambda_i^r < 1 + \varepsilon \};$

(ii) \hspace{1cm} $V(q, \varepsilon) = \{ u \in W^{1,2}(M, g_0) \mid A_u(q, \varepsilon) \neq \emptyset \},$

cf. (2.2), (2.3) and (2.8). For both conditions $\lambda_i > \varepsilon^{-1}, \lambda_i^r < 1 + \varepsilon$ to hold, we will always assume that $\tau \ll \varepsilon$ and this is consistent with the statement of Proposition 3.1. Under the above conditions on the parameters α_i, a_i and λ_i the functions $\sum_{i=1}^q \alpha_i' \varphi_{a_i, \lambda_i}$ form a smooth manifold in $W^{1,2}(M, g_0)$, which implies the following well-known result, cf. [1].
Proposition 4.1. For every $\varepsilon_0 > 0$ there exists $\varepsilon_1 > 0$ such that for $u \in V(q, \varepsilon)$ with $\varepsilon < \varepsilon_1$

$$\inf_{(\hat{a}, \hat{a}, \hat{\lambda}, \lambda) \in \mathcal{A}_u(q, 2\varepsilon_0)} \int \left(u - \hat{a}^i \varphi_{\hat{a}, \hat{\lambda}, \hat{\lambda}} \right) L_{\varrho_0}(u - \hat{a}^i \varphi_{\hat{a}, \hat{\lambda}, \hat{\lambda}}) \, d\mu_{\varrho_0}$$

admits an unique minimizer $(\alpha, a, \lambda_i) \in \mathcal{A}_u(q, \varepsilon_0)$ depending smoothly on u and we set

$$\varphi_i = \varphi_{\alpha, \lambda_i}, \quad v = u - \alpha^i \varphi_i, \quad K_i = K(a_i). \tag{4.1}$$

The term $v = u - \alpha^i \varphi_i$ is orthogonal to all $\varphi_i, -\lambda_i \partial_{\lambda_i} \varphi_i, \frac{1}{\lambda_i} \nabla_{a_i} \varphi_i$, with respect to the product

$$\langle \cdot, \cdot \rangle_{L_{\varrho_0}} = \langle (L_{\varrho_0}^*)^2 \rangle_{L^2_{\varrho_0}}.$$

For $u \in V(q, \varepsilon)$ let

$$H_u(q, \varepsilon) = \langle \varphi_i, \lambda_i \partial_{\lambda_i} \varphi_i, \frac{1}{\lambda_i} \nabla_{a_i} \varphi_i \rangle. \tag{4.2}$$

We next have an estimate on the projection of the gradient of J_τ onto H_u.

Lemma 4.1. For $u \in V(q, \varepsilon)$ with $k_\tau = 1$, cf. (2.3), and $v \in H_u(q, \varepsilon)$ there holds

$$\partial J_\tau (\alpha^i \varphi_i) v = O \left(\left[\sum_r \frac{\tau^r}{\lambda^r} + \sum_r \frac{|\nabla K_r|}{\lambda^{r+\theta}} + \sum_r \frac{1}{\lambda^{2r+\theta}} + \sum_r \frac{1}{\lambda^{r-2r+\theta}} + \sum_{r \neq s} \frac{\varepsilon^{n+2}_{\tau,s}}{\lambda^r} \right] \|v\| \right).$$

Proof. Due to the fact that $k_\tau = 1$ and $v \in H_u(q, \varepsilon)$ we have

$$-\frac{1}{2} \partial J_\tau (\alpha^i \varphi_i) v = r_{\alpha^i \varphi_i} \int K(\alpha^i \varphi_i)^p \nu \, d\mu_{\varrho_0},$$

and therefore

$$\partial J_\tau (\alpha^i \varphi_i) v \simeq \int K(\alpha^i \varphi_i)^p \nu \, d\mu_{\varrho_0}.$$

Decomposing iteratively M as \{ $\alpha_j \varphi_j \geq \sum_{i > j} \alpha_i \varphi_i$ \} \cup \{ $\alpha_j \varphi_j \leq \sum_{i < j} \alpha_i \varphi_i$ \}, we find

$$\int K(\alpha^i \varphi_i)^p \nu \, d\mu_{\varrho_0} = \sum_i \int K(\alpha_i \varphi_i)^p \nu \, d\mu_{\varrho_0} + O(\sum_{r \neq s} \int \varphi_r \varphi_s \varphi_{\alpha_i \varphi_i} \nu \, d\mu_{\varrho_0}).$$

Using Hölder’s inequality with exponents $1 = \frac{1}{p} + \frac{1}{q} = \frac{n+2}{2n} + \frac{n-2}{2n}$ and Lemma 2.2 (v) applied to the latter error term, where the inequality $\varphi_r \lesssim \varphi_s$ can be used to apply it with $\beta \geq 1$, we get

$$\int K(\alpha^i \varphi_i)^p \nu \, d\mu_{\varrho_0} = \sum_i \int K(\alpha_i \varphi_i)^p \nu \, d\mu_{\varrho_0} + O \left(\sum_{r \neq s} \frac{\varepsilon^{n+2}_{\tau,s}}{\lambda^r} \|\nu\| \right),$$

and by a simple expansion we also obtain

$$\int K(\alpha^i \varphi_i)^p \nu \, d\mu_{\varrho_0} = \sum_i K_i \alpha_i^p \int \varphi_i^p \nu \, d\mu_{\varrho_0} + O \left(\left[\sum_r \frac{|\nabla K_r|}{\lambda^{r+\theta}} + \sum_r \frac{1}{\lambda^{2r+\theta}} + \sum_{r \neq s} \frac{\varepsilon^{n+2}_{\tau,s}}{\lambda^r} \right] \|\nu\| \right). \tag{4.3}$$

Note that

$$\|\lambda^{-\theta}_i \varphi_i - \varphi_i^p \|_{L^p_{\varrho_0}}^{\frac{2n}{n+2}} = \left\| \int \frac{2n}{n+2} \left(1 - \lambda^{-\theta}_i \varphi_i \right) \frac{2n}{n+2} \, d\mu_{\varrho_0} \right\|_{L^p_{\varrho_0}}^{\frac{2n}{n+2}}$$

$$\lesssim \int_{B_{\lambda_i}(0)} \left(\frac{1}{1 + \lambda_i^2 r^2} \right)^{n-\frac{2n+\theta}{n+2}} \left| 1 - \left(\frac{1}{1 + \lambda_i^2 O(r^2)} \right)^{\theta} \right|^{\frac{2n}{n+2}} \, dx + O \left(\frac{1}{\lambda^n_i} \right),$$

$$= \lambda_i^{-\frac{2n+\theta}{n+2}} \int_{B_{\lambda_i}(0)} \left(\frac{1}{1 + r^2} \right)^{n-\frac{2n+\theta}{n+2}} \left| 1 - \left(\frac{1}{1 + O(r^2)} \right)^{\theta} \right|^{\frac{2n}{n+2}} \, dx + O \left(\frac{1}{\lambda^n_i} \right),$$

15
whence
\[\| \lambda_i^{-\theta} \varphi_i^{n+2} \|_{L_y^{s+2}} = O \left(\frac{\theta}{\lambda_i^{n+2}} + \frac{1}{\lambda_i^{n-\frac{2}{m}}\theta} \right). \] (4.4)

Thus up to some \(O(\|v\|^{\infty} + \|v\|^{1/\alpha} + \|v\|^{\frac{\alpha}{r}} + \|v\|^{\frac{\alpha}{r'}}) \) we arrive at
\[\int K(\alpha^i \varphi_i)^p v d\mu_{\gamma_0} = \sum_i K_i \lambda_i^{-\theta} \alpha_i^{n+2} \int \varphi_i^{n+2} v d\mu_{\gamma_0}. \]

Finally from Lemma 2.1 and the fact that \(v \in H_u(q, \varepsilon) \) (hence \(\int v L_{\gamma_0} \varphi_i d\mu_{\gamma_0} = 0 \)) we obtain
\[\left| \int \varphi_i^{n+2} v d\mu_{\gamma_0} \right| \leq \|v\| \left| \frac{L_{\gamma_0} \varphi_i}{4n(n-1)} - \varphi_i^{n+2} \right|_{L_y^{s+2}} = O \left(\begin{array}{c} \lambda_i^{-1} \quad \text{for } n = 3 \\ \lambda_i^{-2} \quad \text{for } n = 4 \\ \lambda_i^{-3} \quad \text{for } n = 5 \\ \ln^{\frac{2}{3}} \lambda_i^{-\frac{4}{3}} \quad \text{for } n \geq 7 \end{array} \right) \|v\|. \] (4.5)

so the claim follows.

Lemma 4.2. For \(u \in V(q, \varepsilon) \) with \(k_\tau = 1 \) and \(v \) is as in (4.1) there holds
\[\|v\| = O \left(\sum_r \frac{\tau}{\lambda_r^p} + \sum_r \frac{|\nabla K_r|}{\lambda_r^{2+p}} + \sum_r \frac{1}{\lambda_r^{2+p}} + \sum_{r' \neq r} \frac{1}{\lambda_r^{2+p}} + \sum_{r' \neq r} \frac{\epsilon_{r,r'}}{\lambda_r^p} + |\partial J_r(u)| \right). \]

Proof. Since the Hessian of \(J_r \) is uniformly Hölder continuous on bounded sets of \(W^{1,2} \), we have
\[\partial J_r(u)v = \partial J_r(\alpha^i \varphi_i)v + \partial^2 J_r(\alpha^i \varphi_i)v^2 + o(\|v\|^2) = \partial J_r(\alpha^i \varphi_i)v + \partial^2 J_r(u)v^2 + o(\|v\|^2); \]
\[\partial^2 J_r(u)v^2 = 2 \int v L_{\gamma_0} v d\mu_{\gamma_0} - pr u K u^{p-1} v^2 d\mu_{\gamma_0} - 8 \int u L_{\gamma_0} v d\mu_{\gamma_0} \int K u^p v d\mu_{\gamma_0} \]
\[+ 2(p + 3) \int K u^p v d\mu_{\gamma_0}. \] (4.6)

Since \(v \in H_u(q, \varepsilon) \), by similar expansions we then find (also replacing \(p \) with \(n+2 \) with an error \(o(1) \))
\[\partial^2 J_r(u)v^2 = 2 \int v L_{\gamma_0} v d\mu_{\gamma_0} - pr u \int K u^{p-1} v^2 d\mu_{\gamma_0} \]
\[= 2 \int v L_{\gamma_0} v d\mu_{\gamma_0} - \frac{n+2}{n-2} \left(\int (\alpha^i \varphi_i)L_{\gamma_0}(\alpha^j \varphi_j)d\mu_{\gamma_0} \right) \int K(\alpha^i \varphi_i)^{p-1} v^2 d\mu_{\gamma_0} \]
\[= 2 \int v L_{\gamma_0} v d\mu_{\gamma_0} - \frac{n+2}{n-2} \sum_{i,j} K_i \alpha_i^{\frac{n+2}{2}} \alpha_j^{\frac{n+2}{2}} \int \varphi_i^{n+2} \int \varphi_j^{n+2} v^2 d\mu_{\gamma_0} \]
up to some \(o(\|v\|^2) \). Furthermore by definition of \(V(q, \varepsilon) \) there holds \(\lambda_i^0 = 1 + o(1) \) and
\[K_i \alpha_i^{\frac{n+2}{2}} = \frac{1}{r_i \alpha^i \varphi_i} + o(1) = \frac{1}{\sum_j \alpha_j \varphi_j L_{\gamma_0} \varphi_j d\mu_{\gamma_0}} + o(1). \]

Thus
\[\partial^2 J_r(u)v^2 = 2 \int v L_{\gamma_0} v d\mu_{\gamma_0} - \frac{n+2}{n-2} \int \varphi_i^{n+2} v^2 d\mu_{\gamma_0} + o(\|v\|^2). \]
This quadratic form is positive definite for \(\varepsilon \) sufficiently small on the subspace \(v \) belongs to, cf. [4], so
\[\|v\|^2(1 + o(1)) \leq C \partial^2 J_r(u)v^2 \leq C[\partial J_r(\alpha^i \varphi_i)v + |\partial J_r(u)|^2]. \]
Therefore the claim follows from Lemma 4.1.
We now establish cancellations testing the gradient of J_r orthogonally to $H_u(q, \varepsilon)$.

Lemma 4.3. For $u \in V(q, \varepsilon)$ with $k_r = 1$ the quantity $\partial J_r(u)\phi_{k,i}$ expands as

$$\partial J_r(\alpha^j \varphi_j)\phi_{k,i} + O\left(\sum_r \frac{r^2}{\lambda_r^{2\theta}} + \sum_r \frac{\|K_r\|^2}{\lambda_r^{2\theta}} + \sum_r \frac{1}{\lambda_r^{2\theta}} + \sum_r \frac{1}{\lambda_r^{2(n-2)+2\theta}} + \sum_{r \neq s} \frac{\varepsilon_{r,s}^{n+2}}{\lambda_r^{2\theta}} + |\partial J_r(u)|^2\right).$$

Proof. By the mean value theorem and (4.6) we have, with some $\sigma \in [0, 1]$

$$\partial J_r(u)\phi_{k,i} - \partial J_r(\alpha^j \varphi_j)\phi_{k,i} = \partial^2 J_r(\alpha^j \varphi_j + \sigma v)\phi_{k,i}v$$

$$= 2(1 + O(\|v\|)) \left[\int v L_{g_0} \phi_{k,i} d\mu_{g_0} - pr_{\alpha^j \varphi_i}(1 + O(\|v\|)) \int K(\alpha^j \varphi_j + \sigma v)^{p-1} v \phi_{k,i} d\mu_{g_0} \right]$$

$$- 4(1 + O(\|v\|)) \left[\int (\alpha^j \varphi_j + \sigma v) L_{g_0} \phi_{k,i} d\mu_{g_0} \int K(\alpha^j \varphi_j + \sigma v)^p \phi_{k,i} d\mu_{g_0} \right]$$

$$+ \int (\alpha^j \varphi_j + \sigma v) L_{g_0} \phi_{k,i} d\mu_{g_0} \int K(\alpha^j \varphi_j + \sigma v)^p \phi_{k,i} d\mu_{g_0}$$

$$+ 2(p + 3)r_{\alpha^j \varphi_i}(1 + O(\|v\|)) \int K(\alpha^j \varphi_j + \sigma v)^p v d\mu_{g_0} \int K(\alpha^j \varphi_j + \sigma v)^p \phi_{k,i} d\mu_{g_0}.$$

Therefore, since $v \in H_u(q, \varepsilon)$, up to some $O(\|v\|^2)$ we also get

$$\partial J_r(u)\phi_{k,i} - \partial J_r(\alpha^j \varphi_j)\phi_{k,i} = -2pr_{\alpha^j \varphi_i} \int K(\alpha^j \varphi_j + \sigma v)^{p-1} v \phi_{k,i} d\mu_{g_0}$$

$$- 4 \int (\alpha^j \varphi_j) L_{g_0} \phi_{k,i} d\mu_{g_0} \int K(\alpha^j \varphi_j + \sigma v)^p \phi_{k,i} d\mu_{g_0}$$

$$+ 2(p + 3)r_{\alpha^j \varphi_i} \int K(\alpha^j \varphi_j + \sigma v)^p v d\mu_{g_0} \int K(\alpha^j \varphi_j + \sigma v)^p \phi_{k,i} d\mu_{g_0}.$$

Decomposing now M as $\{\alpha^j \varphi_j \leq 2\|v\|\} \cup \{\alpha^j \varphi_j \geq 2\|v\|\}$, and using $|\phi_{k,i}| \leq C\alpha_i \varphi_i \leq C\alpha^j \varphi_j$, we find

$$\partial J_r(u)\phi_{k,i} - \partial J_r(\alpha^j \varphi_j)\phi_{k,i} = -2pr_{\alpha^j \varphi_i} \int K(\alpha^j \varphi_j)^{p-1} v \phi_{k,i} d\mu_{g_0}$$

$$- 4 \int (\alpha^j \varphi_j) L_{g_0} \phi_{k,i} d\mu_{g_0} \int K(\alpha^j \varphi_j)^p \phi_{k,i} d\mu_{g_0}$$

$$+ 2(p + 3)r_{\alpha^j \varphi_i} \int K(\alpha^j \varphi_j)^p v d\mu_{g_0} \int K(\alpha^j \varphi_j)^p \phi_{k,i} d\mu_{g_0} + O(\|v\|^2).$$

Now, arguing as for 4.3 and using Lemma 2.2 (iv), we have

$$\int K(\alpha^j \varphi_j)^p v d\mu_{g_0} = \sum j \alpha_j^p \int \varphi_j^p v d\mu_{g_0} + O\left(\left[\sum_r \frac{\|K_r\|^2}{\lambda_r^{1+\theta}} + \sum_r \frac{1}{\lambda_r^{1+\theta}} + \sum_{r \neq s} \frac{\varepsilon_{r,s}^{n+2}}{\lambda_r^{1+\theta}} \right]\|v\|^2\right);$$

$$\int K(\alpha^j \varphi_j)^{p-1} \phi_{k,i} v d\mu_{g_0} = \alpha_j^{p-1} \int \varphi_j^{p-1} \phi_{k,i} v d\mu_{g_0} + O\left(\left[\sum_r \frac{\|K_r\|^2}{\lambda_r^{1+\theta}} + \sum_r \frac{1}{\lambda_r^{1+\theta}} + \sum_{r \neq s} \frac{\varepsilon_{r,s}^{n+2}}{\lambda_r^{1+\theta}} \right]\|v\|^2\right),$$

whence

$$\partial J_r(u)\phi_{k,i} - \partial J_r(\alpha^j \varphi_j)\phi_{k,i} = -2pr_{\alpha^j \varphi_i} \int \varphi_j^{p-1} \phi_{k,i} v d\mu_{g_0}$$

$$- 4 \alpha_j \int L_{g_0} \phi_{k,i} d\mu_{g_0} \sum j \alpha_j^p \int \varphi_j^p v d\mu_{g_0}$$

$$+ 2(p + 3)r_{\alpha^j \varphi_i} \int \varphi_j^p \phi_{k,i} d\mu_{g_0} \sum j \alpha_j^p \int \varphi_j^p v d\mu_{g_0}.$$
up to some $O\left(\sum_r \frac{|\nabla K_r|^2}{\lambda_r^2} + \sum_r \frac{1}{\lambda_r^2} + \sum_r \frac{\epsilon r^2}{\lambda_r^2} + \|v\|^2 \right)$. Using (4.4) and (4.5) we arrive at

$$
\partial J_\ast(u)\phi_{k,i} - \partial J_\ast(\alpha^i \varphi_i)\phi_{k,i} = -2pra_\ast, K_i a^{p-1}_i \int \psi^{p-1}_i \phi_{k,i} v d\mu_{g_0}
+ O\left(\sum_r \frac{\epsilon^2}{\lambda_r^2} + \sum_r \frac{|\nabla K_r|^2}{\lambda_r^2} + \sum_r \frac{1}{\lambda_r^{2+2\theta}} + \sum_r \frac{1}{\lambda_r^{2(2\epsilon+2\theta)+2\theta}} + \sum_r \frac{\epsilon r^2}{\lambda_r^2} + \|v\|^2 \right).
$$

Yet also the first summand on the right hand side is of the same order as the second one, arguing as for (4.4) and (4.5). Combining this with Lemma 4.2, we obtain the conclusion.

5 The functional and its derivatives

For $u \in V(q, \varepsilon)$ and $\varepsilon > 0$ sufficiently small let

$$
\alpha^2 = \sum_i \alpha_i^2, \quad \alpha^p_{K,\tau} = \sum_i K_i \alpha_i^p, \quad \theta = \frac{n-2}{2} - \tau.
$$

(5.1)

Recalling the notation from the previous section we may expand the Euler-Lagrange energy as follows.

Proposition 5.1. For $u = \alpha^i \varphi_i + v \in V(q, \varepsilon)$ and $\varepsilon > 0$, both $J_\ast(u)$ and $J_\ast(\alpha^i \varphi_i)$ can be written as

$$
\frac{\hat{c}_0 \alpha^2}{(\alpha^p_{K,\tau})^{p+1}} \left(1 - \hat{c}_1 \tau - \hat{c}_2 \frac{\Delta K_i}{K_i \lambda^2} \right) \sum_i \alpha_i^2 - \hat{b}_1 \sum_{i \neq j} \frac{\alpha_i \alpha_j}{\alpha^2} \varepsilon_{i,j} - \hat{d}_1 \sum_i \frac{\alpha_i^2}{\alpha^2} \left(\frac{H_i}{\lambda_i^{n-1}} \right)_{\ast=3} for n = 3, \frac{H_i}{\lambda_i^{n-1}} \right)_{\ast=4} for n = 4, \frac{W_{in} \lambda_i}{\lambda_i^{n-1}} \right)_{\ast=5} for n = 5, \frac{\lambda_{i,j}}{\lambda_i^{n-1}} \right)_{\ast=6} for n = 6, \frac{\lambda_i^{n-1}}{\lambda_i^{n-1}} \right)_{\ast=7} for n \geq 7

$$

with positive constants $\hat{c}_0, \hat{c}_1, \hat{c}_2, \hat{b}_1, \hat{d}_1$ up to errors of the form

$$
O(\tau^2 + \sum_r \frac{|\nabla K_r|^2}{\lambda_r^2} + \frac{1}{\lambda_r^2} + \frac{1}{\lambda_r^{2+2\theta}} + \sum_r \frac{\epsilon r^2}{\lambda_r^2} + |\partial J_\ast(u)|^2).
$$

Proof. The above expansion for $J_\ast(\alpha^i \varphi_i)$ implies the one for $J_\ast(u)$ via Lemmata 4.1 and 4.2 expanding $J_\ast(u) = J_\ast(\alpha^i \varphi_i) + 2J_\ast(\alpha^i \varphi_i)v + O(||v||^2)$.

We next start analyzing $J_\ast(\alpha^i \varphi_i)$ from the denominator. Decomposing iteratively M as

$$
M = \{ \alpha_j \varphi_j > \sum_{i \neq j} \alpha_i \varphi_i \} + \{ \alpha_j \varphi_j \leq \sum_{i \neq j} \alpha_i \varphi_i \}
$$

we may expand

$$
\int K(\alpha^i \varphi_i)^{p+1} d\mu_{g_0} = \sum_i \alpha_i^{p+1} \int K \varphi_i^{p+1} d\mu_{g_0} + (p + 1) \sum_{i \neq j} \alpha_i \alpha_j \int K \varphi_i^p \varphi_j d\mu_{g_0}
+ O\left(\sum_{r \neq s} \int \{ \alpha_r \varphi_r \geq \alpha_s \varphi_s \} \left(\alpha_r \varphi_r \right)^p \alpha_s \varphi_s d\mu_{g_0} \right).
$$

Recalling $\lambda_i^p \sim 1$ and the boundedness of α_r by the definition of $V(q, \varepsilon)$, using Lemma 2.2 and reasoning as for the proof of Lemma 4.1, the latter term is of order $O(\sum_{r \neq s} \epsilon_{\alpha, \alpha})$, and also

$$
\int K \varphi_i^p \varphi_j d\mu_{g_0} = K_i \int \varphi_i^p \varphi_j d\mu_{g_0} + O\left(\int_{B_i(a_i)} \left|(\nabla K_i |r|_a + r^2)\varphi_i^p \varphi_j d\mu_{g_0} \right| \right) + O\left(\frac{1}{\lambda_i^{2+2\theta}} + \frac{\epsilon r^2}{\lambda_i^{2+2\theta}} \right).
$$

$$
= K_i \int \varphi_i^p \varphi_j d\mu_{g_0} + O\left(\sum_{r \neq s} \frac{|\nabla K_r|^2}{\lambda_r^2} + \frac{1}{\lambda_r^2} + \epsilon_{\alpha, \alpha} \right).
$$

18
Indeed we for example have
\[
\int_{B_n(b_i)} r_{a_i} \varphi^p_i \varphi_j d\mu_{g_0} = \int_{B_n(b_i)} r_{a_i} \varphi_i \frac{\alpha_i^{n-2} - \alpha_i^{n-2} \varphi_i}{\alpha_i^{n-1}} \varphi_j d\mu_{g_0} \leq C \varepsilon_i \left(\frac{\alpha_i \| \nabla \varphi_i \|_{L^2(g_0)}}{\lambda_i} \right) + \int_{B_n(b_i)} \left(\frac{\alpha_i^{n-2} - \alpha_i^{n-2} \varphi_i}{\alpha_i^{n-1}} \right)^2 d\mu_{g_0}
\]
with the latter norm that can be controlled by
\[
\int_{\mathbb{R}^n} \left(\frac{\alpha_i}{1 + \lambda_i^2 r^2} \right)^n dx \leq C \lambda_i^{-\frac{n}{2} \left(\frac{\alpha_i^2}{\lambda_i^2} \right)^2} \left(1 + \int_1^\infty r^{-1+n + \left(\frac{\alpha_i^2}{\lambda_i^2} \right)^2 - \frac{2n}{r}} dr \right) = O\left(\left(\frac{\alpha_i}{\lambda_i} \right)^2 \right).
\]
Thus Lemma 2.2, where b_i is defined, yields
\[
\int K \varphi^p_i \varphi_j d\mu_{g_0} = b_i K_i \epsilon_{i,j} + O\left(\tau^2 + \sum_{r \neq s} \frac{|K_{i,rs}|^2}{\lambda_r^2} + \frac{1}{\lambda_s^4} + \frac{1}{\lambda_s^{2(n-2)}} + \varepsilon_{r,s}^{n-2} \right),
\]
and we arrive at
\[
\int K(\alpha^i \varphi_i)^{p+1} d\mu_{g_0} = \sum_i \alpha_i^{p+1} \int K \varphi^{p+1}_i d\mu_{g_0} + (p+1) \sum_{i \neq j} \alpha_i^p \alpha_j b_i K_i \epsilon_{i,j}
\]
\[
= \sum_i \alpha_i^{p+1} \int K \varphi^{p+1}_i d\mu_{g_0} + b_1 \sum_i \alpha_i^{p+2} \alpha_j K_i \epsilon_{i,j}, \quad b_1 = \frac{2n}{n-2} b_i
\]
up to an error $O(\tau^2 + \sum_{r \neq s} \frac{|K_{i,rs}|^2}{\lambda_r^2} + \frac{1}{\lambda_s^4} + \frac{1}{\lambda_s^{2(n-2)}} + \varepsilon_{r,s}^{n-2})$. Finally, recalling our notation in Section 2 and denoting by x^i a generic polynomial of degree i in the x-variables, we expand
\[
\int K \varphi^{p+1}_i d\mu_{g_0} = \int_{B_n(b_i)} K \varphi^{p+1}_i d\mu_{g_0} + O\left(\frac{1}{\lambda_i^n} \right)
\]
\[
= K_i \int_{B_n(b_i)} \varphi^{p+1}_i d\mu_{g_0} + \nabla K_i \int_{B_n(b_i)} x \varphi^{p+1}_i d\mu_{g_0}
\]
\[
+ \frac{\nabla^2 K_i}{2} \int_{B_n(b_i)} x^2 \varphi^{p+1}_i d\mu_{g_0} + \frac{\nabla^3 K_i}{6} \int_{B_n(b_i)} x^3 \varphi^{p+1}_i d\mu_{g_0} + O\left(\frac{1}{\lambda_i^n} + \frac{1}{\lambda_i^{2(n-2)}} \right)
\]
with an extra error of $O\left(\frac{\ln \lambda_i}{\lambda_i^2} \right)$ if $n = 4$. For the first term on the right-hand side up to some $O\left(\tau^2 + \frac{1}{\lambda_i^2} \right)$ we may pass integrating with respect to conformal normal coordinates. Indeed
\[
\int_{B_n(b_i)} \varphi^{p+1}_i d\mu_{g_0} = \int_{B_n(b_i)} u^{\tau}_{a_i} \left(\frac{\varphi_i}{u_{a_i}} \right)^{\frac{2n}{n-\theta}} - \theta d\mu_{g_0} = \int_{B_n(b_i)} \left(\frac{\varphi_i}{u_{a_i}} \right)^{\frac{2n}{n-\theta}} - \theta d\mu_{g_0} + O\left(\tau \int_{B_n(b_i)} u^{\tau}_{a_i} \left(\frac{\varphi_i}{u_{a_i}} \right)^{\frac{2n}{n-\theta}} - \theta d\mu_{g_0} \right)
\]
and the latter term is of order $O\left(\frac{1}{\lambda_i^n} \right)$. From (2.8) we find
\[
\int \varphi^{p+1}_i d\mu_{g_0} = \int_{B_n(b_i)} \left(\frac{\lambda_i}{1 + \lambda_i^2 r^2 (1 + r^{n-2} H_{a_i}) \frac{\theta}{2 \pi} \tau n} \right)^n \left(1 + \frac{2(n-\theta)}{n-2} \right) \left(1 + \frac{2(n-\theta)}{n-2} \right) d\mu_{g_0},
\]
up to some $O\left(\tau^2 + \frac{1}{\lambda_i^2} + \frac{1}{\lambda_i} \right)$. Clearly
\[
\int_{B_n(b_i)} \left(\frac{\lambda_i}{1 + \lambda_i^2 r^2} \right)^{n-\theta} dx = \lambda_i^{-\theta} \int_{B_n(b_i)} \frac{dx}{(1 + r^2)^{n-\theta}} = \lambda_i^{-\theta} \int_{\mathbb{R}^n} \frac{dx}{(1 + r^2)^{n-\theta}} + O\left(\lambda_i^{-n} \right)
\]
\[
= \frac{1}{\lambda_i} \int_{\mathbb{R}^n} \frac{dx}{(1 + r^2)^{n-\theta}} + \frac{\theta}{\lambda_i} \int_{\mathbb{R}^n} \frac{\ln(1 + r^2)}{(1 + r^2)^{n-\theta}} + O\left(\tau^2 + \frac{1}{\lambda_i} + O\left(\frac{1}{\lambda_i^{2(n-2)}} \right) \right)
\]
\[
= \frac{c_0}{\lambda_i^2} + \frac{c_1 \tau}{\lambda_i} + O\left(\tau^2 + \frac{1}{\lambda_i} + O\left(\frac{1}{\lambda_i^{2(n-2)}} \right) \right)
\]
letting
\[c_0 = \int_{\mathbb{R}^n} \frac{dx}{(1 + r^2)^n} \quad \text{and} \quad c_1 = \frac{n - 2}{2} \int_{\mathbb{R}^n} \ln(1 + r^2) \, dx. \] (5.5)

Moreover
\[
\int_{B_r(0)} \frac{\lambda_i^{n+4} + \theta \eta^{2n} H_a}{(1 + \lambda_i^{2r^2})^{n+2 - \theta}} \, dx \leq \int_{B_r(0)} \frac{\lambda_i^{n-\theta} \eta^{2(n-2)} H_a}{(1 + \lambda_i^{2r^2})^{n-\theta}} \, dx \leq C \int_{B_r(0)} \frac{\lambda_i^{n-\theta} \eta^{2(n-2)}}{(1 + \lambda_i^{2r^2})^{n-\theta}} \, dx
\]
up to some \(O\left(\frac{1}{\lambda_i^{2n-2}}\right) \) and with an extra error of order \(O\left(\frac{\ln \lambda_i}{\lambda_i^{2n-2}}\right) \) if \(n = 4 \), and

\[
\int_{B_r(0)} \left(\frac{\lambda_i}{1 + \lambda_i^{2r^2}} \right)^{n-\theta} \lambda_i^{2r^2} H_a \, dx = \int_{B_r(0)} \left(\frac{\lambda_i}{1 + \lambda_i^{2r^2}} \right)^{n-\theta} \lambda_i^{2r^2} \, dx \quad \text{for} \quad n = 4, \quad \text{and} \quad \sum_{i,j} K_i \frac{\lambda_i \lambda_j}{\lambda_i^{2r^2}} = 1 \quad \text{cf.} \quad \| \varphi_i \|_{L^2}
\]

whence up to some \(O(\tau^2 + \frac{1}{\lambda_i^{2n-2}}) \)

\[
\int_{B_r(0)} \left(\frac{\lambda_i}{1 + \lambda_i^{2r^2}} \right)^{n-\theta} \lambda_i^{2r^2} \, dx = \frac{1}{2n} \int_{\mathbb{R}^n} \frac{r^2 \, dx}{(1 + r^2)^n}.
\] (5.6)

Likewise by radial symmetry and, since we may assume \(d\mu_{g_{\alpha_i}} = 1 \), we find

1. \(\int_{B_r(a_i)} x^2 \varphi_i^{p+1} \, d\mu_{g_{\alpha_i}} = O\left(\frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^{2n-2}}\right) \)

2. \(\sum_{i,j} K_i \int_{B_r(a_i)} x^2 \varphi_i^{p+1} \, d\mu_{g_{\alpha_i}} = \frac{\Delta K_i}{2n \lambda_i^2} \int_{\mathbb{R}^n} \frac{r^2 \, dx}{(1 + r^2)^n} + O\left(\tau^2 + \frac{1}{\lambda_i^{2n-2}}\right) \)

3. \(\int_{B_r(a_i)} x^2 \varphi_i^{p+1} \, d\mu_{g_{\alpha_i}} = O\left(\frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^{2n-2}}\right) \)

with an extra error of order \(O\left(\frac{\ln \lambda_i}{\lambda_i^{2n-2}}\right) \) if \(n = 4 \). Collecting all terms we arrive at

\[
\int K \varphi_i^{p+1} \, d\mu_{g_{\alpha_i}} = \frac{\tilde{c}_0 K_i}{\lambda_i^2} + \frac{K_i \tau}{\lambda_i^2} + \frac{1}{\lambda_i} K_i \frac{\Delta K_i}{\lambda_i^{2r^2}} + \frac{1}{2} K_i \left(\frac{H_i}{\lambda_i^{2r^2}} + O\left(\frac{\ln \lambda_i}{\lambda_i^{2n-2}}\right) \right)
\]

up to an error \(O(\tau^2 + \frac{1}{\lambda_i^{2n-2}}) \), and thus obtain

\[
\int K(\alpha_i \varphi_i)^{p+1} \, d\mu_{g_{\alpha_i}} = \sum_i \left(\frac{\tilde{c}_0 K_i}{\lambda_i^2} \alpha_i^{p+1} + \frac{K_i}{\lambda_i} \alpha_i^{p+1} \right) + \frac{1}{2} K_i \left(\frac{H_i}{\lambda_i^{2r^2}} + O\left(\frac{\ln \lambda_i}{\lambda_i^{2n-2}}\right) \right)
\]

(5.8)
up to some $O(\tau^2 + \sum_{r \neq s} |\nabla K_{r,s}|^2 + \frac{1}{\lambda^2} + \frac{1}{\lambda^2 b_{r,s} \varepsilon_{r,s}^2} + \varepsilon_{r,s}^2)$. Consequently up to the same error

$$J_r(\alpha^i \varphi_i) = \alpha^i \alpha^j \int \frac{\varphi_i L_{g_0} \varphi_j d\mu_{g_0}}{(\int K(\sum_i \alpha_i \varphi_i)^{p+1})^{-2}} = \alpha^i \alpha^j \int \varphi_i L_{g_0} \varphi_j d\mu_{g_0} + \frac{2n}{\lambda^2} \left(1 - \frac{\tilde{c}_1}{\lambda^2 b_{r,s} \varepsilon_{r,s}^2} \sum_i \frac{K_i}{\lambda^2} \right)$$

$$- \tilde{c}_2 \sum_i \frac{\Delta K_i}{\lambda^2 \alpha_i} - \tilde{d}_1 \sum_i \frac{K_i}{\lambda^2} \left(\frac{H_i}{\alpha_i} \frac{H_i}{W_i \lambda_i} \frac{0}{0} \right) + \tilde{b}_1 \sum_{i \neq j} \frac{\alpha_i}{\lambda^2 \alpha_{K,r} \lambda_i}.$$

(5.9)

Next for $i \neq j$ using Lemma 2.1 we get

$$\int \frac{\varphi_i L_{g_0} \varphi_i}{4n(n-1)} d\mu_{g_0} = \int \frac{\varphi_i}{4n(n-1)} \varphi_j d\mu_{g_0} + O\left(\frac{1}{\lambda_l^4} + \frac{1}{\lambda_l^2 (n-2)} + \varepsilon_{i,j}^2\right).$$

For example to check the error term, we may estimate

$$\int_{\nabla \alpha_i} r^{-2} \frac{\varphi_i}{4n(n-1)} \varphi_j d\mu_{g_0} \leq \|r^{-2} \varphi_i \|_{L^2_{B_r(\alpha_i)}} \|r^{-2} \varphi_j \|_{L^2_{B_r(\alpha_i)}},$$

which is of order $O\left(\frac{n^2}{\lambda_i^2}\right)$ thanks to Lemma 2.2 and likewise for e.g. $n \geq 7$

$$\int \varphi_i \varphi_j d\mu_{g_0} \leq \|\varphi_i \varphi_j \|_{L^2_{g_0}} = O(\varepsilon_{i,j} \ln \frac{n^2}{\lambda_i}),$$

whence $\lambda_l^{-2} \int \varphi_i \varphi_j d\mu_{g_0} = o\left(\frac{n^2}{\lambda_i}\right)$. Thus Lemma 2.2 shows that

$$\int \varphi_i L_{g_0} \varphi_j d\mu_{g_0} = \tilde{b}_1 \varepsilon_{i,j} + O\left(\sum_{r \neq s} \frac{1}{\lambda_r^4} + \frac{1}{\lambda_r^2 (n-2)} + \varepsilon_{r,s}^2\right), \quad \tilde{b}_1 = 4n(n-1)b_1.$$

(5.10)

Finally from (2.8) and Lemma 2.1 we find

$$\int \frac{\varphi_i L_{g_0} \varphi_i}{4n(n-1)} d\mu_{g_0} = \int \frac{\varphi_i}{4n(n-1)} d\mu_{g_0} = \frac{c_0}{2} \int_{B_r(0)} \frac{\lambda_i^2 \rho_{n-2}}{(1 + \lambda_i^2 \rho^2)^n} \left(H_i + n \nabla H_i x \right) \left(H_i + n \nabla H_i x \right)$$

$$- \tilde{d}_1 \sum \frac{H_i}{\lambda_i} \left(\frac{H_i}{W_i \lambda_i} \frac{0}{0} \right),$$

(5.11)
up to some $O(\tau^2 + \frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^2\tau^2})$. As $d_1 = d_1$, cf. [5.6], we simply get

$$
\alpha_i^2 \int \varphi_i \prod_{g=0} L_{g,\varphi} d\mu_{g_0} = 4(n(n-1)\hat{c}_0 \sum_i \alpha_i^2 + \hat{b}_1 \sum_{i \neq j} \alpha_i \alpha_j \varepsilon_{i,j} \quad \text{(5.12)}
$$

up to an error of order $O\left(\tau^2 + \sum_r \frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^2\tau^2} + \sum_{r \neq s} \frac{n+2}{\tau^2} \right)$. Plugging this into [5.9], we obtain

$$
J_r(\alpha^i \varphi_i) = \frac{4n(n-1)\hat{c}_0^{\frac{n+2}{n}} \sum_i \alpha_i^2 \left(1 - \hat{c}_1 \sum_i K_i \frac{\alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} - \hat{c}_2 \sum_i \frac{\Delta K_i \alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} - \hat{d}_1 \sum_i K_i \frac{\alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} (K_i \frac{\alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} - \frac{\hat{b}_1 \alpha_i \alpha_j}{\hat{c}_0} \varepsilon_{i,j})}{(\sum_r \frac{K_i \alpha_i^{2n}}{\lambda_i^2 \alpha_K^2})^{\frac{n+2}{n}}}
$$

up to some $O(\tau^2 + \sum_r \frac{\sqrt{K_i \alpha_i^{2n}}}{\lambda_i^2} + \frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^2\tau^2} + \sum_{r \neq s} \frac{n+2}{\tau^2})$. Recalling

$$
\hat{b}_1 = \frac{2n}{n-2} b_1, \quad \hat{b}_1 = 4n(n-1)b_1, \quad \alpha^2 = \sum_i \alpha_i^2, \quad \alpha^2_K = \frac{n}{n-2} \sum_i K_i \frac{\alpha_i^{2n}}{\lambda_i^2}.
$$

and setting

$$
\hat{c}_0 = 4(n(n-1)\hat{c}_0^{\frac{n+2}{n}}), \quad \hat{c}_1 = \frac{\hat{c}_1}{\hat{c}_0}, \quad \hat{c}_2 = \frac{\hat{c}_2}{\hat{c}_0}, \quad \hat{d}_1 = \frac{\hat{d}_1}{\hat{c}_0}, \quad \hat{b}_1 = \frac{2b_1}{\hat{c}_0}
$$

we may rewrite this as

$$
J_r(u) = J_r(\alpha^i \varphi_i) = \frac{\hat{c}_0 \alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \left(1 - \hat{c}_1 \sum_i K_i \frac{\alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} - \hat{c}_2 \sum_i \frac{\Delta K_i \alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} - \hat{d}_1 \sum_i K_i \frac{\alpha_i^{2n}}{\lambda_i^2 \alpha_K^2} \right)
$$

Then the claim follows from Lemma [5.11]

We next state three lemmas with some expansions for the derivatives of the functionals with respect to the parameters involved (recall our notation from Section 2). The proofs are given in Appendix B.

Lemma 5.1. For $u \in V(g,\varepsilon)$ and $\varepsilon > 0$ sufficiently small the three quantities $\partial J_r(u) \phi_{1,j}, \partial J_r(\alpha^i \varphi_i) \phi_{1,j}, \partial \alpha_j J_r(\alpha^i \varphi_i)$ can be written as

$$
\frac{\alpha_j}{(\alpha_K^2)^{\frac{n+2}{n}}} \left(\hat{c}_0 \left(1 - \frac{\alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \frac{K_j \alpha_j^{p-1}}{\lambda_j^p} \right) - \hat{c}_2 \left(\frac{\Delta K_j \alpha_j^{p-1}}{K_j \lambda_j^p} - \sum_k \frac{\Delta K_k \alpha_k^{p-1}}{K_k \lambda_k^p} \frac{\alpha_j^2}{\alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} \left(\frac{\alpha_i \alpha_j}{\alpha^2_K} \varepsilon_{i,j} \right) - \hat{d}_1 \left(\hat{H}_j - \frac{\sum_k \frac{\alpha_k^2}{\alpha^2_K} H_k}{\lambda_k^2} \right) \right)
$$

for $n = 3$,

$$
\frac{\alpha_j}{(\alpha_K^2)^{\frac{n+2}{n}}} \left(\hat{c}_0 \left(1 - \frac{\alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \frac{K_j \alpha_j^{p-1}}{\lambda_j^p} \right) - \hat{c}_2 \left(\frac{\Delta K_j \alpha_j^{p-1}}{K_j \lambda_j^p} - \sum_k \frac{\Delta K_k \alpha_k^{p-1}}{K_k \lambda_k^p} \frac{\alpha_j^2}{\alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} \left(\frac{\alpha_i \alpha_j}{\alpha^2_K} \varepsilon_{i,j} \right) - \hat{d}_1 \left(\hat{H}_j - \frac{\sum_k \frac{\alpha_k^2}{\alpha^2_K} H_k}{\lambda_k^2} \right) \right)\quad \text{for } n = 4
$$

$$
\frac{\alpha_j}{(\alpha_K^2)^{\frac{n+2}{n}}} \left(\hat{c}_0 \left(1 - \frac{\alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \frac{K_j \alpha_j^{p-1}}{\lambda_j^p} \right) - \hat{c}_2 \left(\frac{\Delta K_j \alpha_j^{p-1}}{K_j \lambda_j^p} - \sum_k \frac{\Delta K_k \alpha_k^{p-1}}{K_k \lambda_k^p} \frac{\alpha_j^2}{\alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} \left(\frac{\alpha_i \alpha_j}{\alpha^2_K} \varepsilon_{i,j} \right) - \hat{d}_1 \left(\hat{H}_j - \frac{\sum_k \frac{\alpha_k^2}{\alpha^2_K} H_k}{\lambda_k^2} \right) \right)\quad \text{for } n = 5
$$

$$
\frac{\alpha_j}{(\alpha_K^2)^{\frac{n+2}{n}}} \left(\hat{c}_0 \left(1 - \frac{\alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \frac{K_j \alpha_j^{p-1}}{\lambda_j^p} \right) - \hat{c}_2 \left(\frac{\Delta K_j \alpha_j^{p-1}}{K_j \lambda_j^p} - \sum_k \frac{\Delta K_k \alpha_k^{p-1}}{K_k \lambda_k^p} \frac{\alpha_j^2}{\alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} \left(\frac{\alpha_i \alpha_j}{\alpha^2_K} \varepsilon_{i,j} \right) - \hat{d}_1 \left(\hat{H}_j - \frac{\sum_k \frac{\alpha_k^2}{\alpha^2_K} H_k}{\lambda_k^2} \right) \right)\quad \text{for } n = 6
$$

$$
\frac{\alpha_j}{(\alpha_K^2)^{\frac{n+2}{n}}} \left(\hat{c}_0 \left(1 - \frac{\alpha^2}{(\alpha^2_K)^{\frac{n+2}{n}}} \frac{K_j \alpha_j^{p-1}}{\lambda_j^p} \right) - \hat{c}_2 \left(\frac{\Delta K_j \alpha_j^{p-1}}{K_j \lambda_j^p} - \sum_k \frac{\Delta K_k \alpha_k^{p-1}}{K_k \lambda_k^p} \frac{\alpha_j^2}{\alpha_K^2} \right) - \hat{b}_1 \sum_{i \neq j} \left(\frac{\alpha_i \alpha_j}{\alpha^2_K} \varepsilon_{i,j} \right) - \hat{d}_1 \left(\hat{H}_j - \frac{\sum_k \frac{\alpha_k^2}{\alpha^2_K} H_k}{\lambda_k^2} \right) \right)\quad \text{for } n \geq 7
$$

22
with positive constants c_0, c_2, b_1, d_1 up to an error of order
\[O\left(\tau^2 + \sum_{r \neq s} \frac{v_t}{\lambda_r^2} + \frac{1}{\lambda_r} + \frac{1}{\lambda_r^2} + \varepsilon_{r,s} + |\partial J_\tau(u)|^2\right). \] (5.14)

In particular for all j
\[\frac{\alpha_j \cdot K_j \cdot \varepsilon_j^{-1}}{\lambda_j^{1-n}} = 1 + O\left(\tau + \sum_{r \neq s} \frac{1}{\lambda_r} + \frac{1}{\lambda_r^2} + \varepsilon_{r,s} + |\partial J_\tau(u)|\right). \]

Lemma 5.2. For $u \in V(q, \varepsilon)$ and $\varepsilon > 0$ sufficiently small the three quantities $\partial J_\tau(u)\phi_{2,j}$, $\partial J_\tau(\alpha^4 \phi_i)\phi_{2,j}$ and $\frac{\lambda_j}{\alpha_j} \partial J_\tau(\alpha^4 \phi_i)$ can be written as
\[
\frac{\alpha_j \cdot \lambda_j^{-1-n}}{(\lambda_j \cdot \varepsilon_j^{-1})} \left(\begin{array}{c}
\hat{c}_1 + \hat{c}_2 \Delta K_j^{-1} - \hat{b}_2 \sum_{j \neq i} \frac{\alpha_i}{\lambda_j} \lambda_j \hat{e}_{i,j} + \hat{d}_1
\end{array} \right),
\]
with positive constants $\hat{c}_1, \hat{c}_2, \hat{d}_1, \hat{b}_2$ up to some error of the form
\[O\left(\tau^2 + \sum_{r \neq s} \frac{v_t}{\lambda_r^2} + \frac{1}{\lambda_r} + \frac{1}{\lambda_r^2} + \varepsilon_{r,s} + |\partial J_\tau(u)|^2\right). \] (5.15)

Lemma 5.3. For $u \in V(q, \varepsilon)$ and $\varepsilon > 0$ sufficiently small the three quantities $\partial J_\tau(u)\phi_{3,j}$, $\partial J_\tau(\alpha^4 \phi_i)\phi_{3,j}$ and $\frac{\varepsilon_j}{\alpha_j \lambda_j} J_\tau(\alpha^4 \phi_i)$ can be written as
\[-\frac{\alpha_j \cdot \lambda_j^{-1-n}}{(\lambda_j \cdot \varepsilon_j^{-1})} \left(\begin{array}{c}
\hat{c}_3 \nabla K_j + \hat{c}_4 \nabla \Delta K_j + \hat{b}_3 \sum_{j \neq i} \frac{\alpha_i}{\lambda_j} \lambda_j \hat{e}_{i,j}
\end{array} \right), \]
with positive constants $\hat{c}_3, \hat{c}_4, \hat{b}_3$ up to some error of the form
\[O\left(\tau^2 + \sum_{r \neq s} \frac{v_t}{\lambda_r^2} + \frac{1}{\lambda_r} + \frac{1}{\lambda_r^2} + \varepsilon_{r,s} + |\partial J_\tau(u)|^2\right). \] (5.16)

6 Gradient bounds

Theorems12 will give suitable lower norm-bounds on the gradient of J_τ, yielding Theorem11 as a corollary. We recall that on S^3 and S^4 the result was proved in [27], [28], [29], [45] in more generality.

Definition 6.1. Let H be as in [27]. We call a positive Morse function K on M non-degenerate

(i) of degree $q \in \mathbb{N}$ in case $n = 4$, if $\{\nabla K = 0\} \cap \{\hat{c}_2 \Delta K + \hat{c}_3 H = 0\} = \emptyset$ and if for every $1 \leq k \leq q$ and every subset $\{x_1, \ldots, x_k\} \subseteq \{\nabla K = 0\} \cap \{\hat{c}_2 \Delta K + \hat{c}_3 H < 0\}$ the matrices
\[
\mathcal{M}_{x_1, \ldots, x_k} = -\left(\begin{array}{cccc}
\hat{c}_2 \frac{\Delta K(x_1)}{K(x_1)^2} + \hat{c}_3 \frac{H(x_1)}{K(x_1)} & \hat{c}_4 \frac{G_{0}(x_1, x_2)}{\gamma_n(K(x_1)K(x_2))^{\frac{1}{2}}} & \cdots & \hat{c}_4 \frac{G_{0}(x_1, x_k)}{\gamma_n(K(x_1)K(x_k))^{\frac{1}{2}}}
\end{array} \right)
\]

\[\vdots\]
\[
\hat{c}_4 \frac{G_{0}(x_2, x_1)}{\gamma_n(K(x_2)K(x_1))^{\frac{1}{2}}} & \ddots & \ddots & \hat{c}_4 \frac{G_{0}(x_2, x_k)}{\gamma_n(K(x_2)K(x_k))^{\frac{1}{2}}}
\]
\[\vdots\]
\[
\hat{c}_4 \frac{G_{0}(x_k, x_1)}{\gamma_n(K(x_k)K(x_1))^{\frac{1}{2}}} & \cdots & \ddots & \hat{c}_4 \frac{G_{0}(x_k, x_{k-1})}{\gamma_n(K(x_k)K(x_{k-1}))^{\frac{1}{2}}}
\]

...
have non-vanishing least eigenvalues, where \(\bar{c}_2 = \sqrt{3}\omega_4 \), \(\bar{c}_3 = 24\sqrt{3}\omega_4 = \bar{c}_4 \). We say that \(K \) is non-degenerate, if it is non-degenerate of all degrees.

(ii) in case \(n \geq 5 \), if \(\{ \nabla K = 0 \} \cap \{ \Delta K = 0 \} = \emptyset \), i.e. \(1.2 \) holds.

Remark 6.1. Non-degeneracy in case \(n = 4 \) implies the existence of a least eigenvalue

\[
\mathcal{M}_{x_1,...,x_k} x_{x_1,...,x_k} = \lambda_{x_1,...,x_k} x_{x_1,...,x_k} \quad \text{with} \quad \lambda_{x_1,...,x_k} \neq 0
\]

and such that \(\lambda_{x_1,...,x_k} \) is simple and has a positive eigenvector, i.e.

\[
x_{x_1,...,x_k} = (x_{x_1,...,x_k}^1,...,x_{x_1,...,x_k}^k) \quad \text{with} \quad x_{x_1,...,x_k}^l > 0 \quad \text{for all} \ 1 \leq l \leq k.
\]

Theorem 2. Let \(\mathcal{M}_{x_1,...,x_k} \) be as in Definition 6.1 and suppose that

\[
\begin{cases}
K \text{ is non-degenerate of degree } q & \text{for } n = 4, \\
K \text{ is non-degenerate} & \text{for } n \geq 5
\end{cases}
\]

Then for \(\varepsilon > 0 \) sufficiently small there exists \(c > 0 \) such that for any \(u \in V(q, \varepsilon) \) with \(k_\tau = 1 \) there holds

\[
|\partial J_e(u)| \geq c(\tau + \sum_{r \neq s} |\nabla K_r|/\lambda_r + 1/\lambda_r^2 + |1 - \alpha^2 p_{\alpha_1}/\alpha p_{\alpha}^{p-1}| + \varepsilon r_s),
\]

eq\text{cf. 5.1} \text{, unless there is a violation of at least one of the four conditions}

(i) \(\tau > 0 \);

(ii) there exists \(x_i \neq x_j \in \{ \{ \nabla K = 0 \} \cap \{ \bar{c}_2 \Delta K + \bar{c}_3 H < 0 \} \} \) and \(d(a_i, x_i) = O(1/\lambda^s) \);

(iii) \(\left\{ \begin{aligned}
\alpha_j &= \Theta \left(1 + \frac{\alpha^2}{\lambda^2} \right)^{1/2} + o(1/\lambda^s) \quad \text{for } n = 4, \\
\alpha_j &= \Theta \left(\frac{\lambda^p}{\lambda^2} \right)^{1/2} + o(1/\lambda^s) \quad \text{for } n \geq 5
\end{aligned} \right. \}
\]

(iv) \(\left\{ \begin{aligned}
\mathcal{M}_{x_1,...,x_q} > 0 \quad \text{and} \quad \lambda_j &= \frac{\sigma_j + o(1)}{\sqrt{\tau}} \quad \text{for } n = 4, \\
\tilde{c}_j &= -\bar{c}_2 \frac{\Delta K_j}{K_j} + o(1/\lambda^s) \quad \text{for } n \geq 5
\end{aligned} \right. \}
\]

for all \(j \neq i, j = 1,...,q \), where \(\sigma = (\sigma_1,...,\sigma_q) \) in case \(n = 4 \) is the unique solution of

\[
\tilde{c}_1 \begin{pmatrix}
\frac{\sigma_{1}}{K(x_1)} \\
\vdots \\
\frac{\sigma_{q}}{K(x_q)}
\end{pmatrix} = \mathcal{M}_{x_1,...,x_q} \begin{pmatrix}
\frac{1}{\lambda^s}
\vdots \\
\frac{1}{\lambda^s}
\end{pmatrix}
\]

while \(\Theta \) is given in Remark 6.3. In the latter case there holds \(\lambda_1 \approx \ldots \lambda_q \approx \lambda = 1/\sqrt{\tau} \) and setting

\[
a_j = \exp_{g_{q_j}}(\bar{a}_j)
\]

we still have up to an error \(o(1/\lambda^s) \) the lower bound

\[
|\partial J(u)| \geq \sum_{j} (|\tau + \frac{\Delta K_j(x_j)}{2K(x_j)\lambda_j^2} + 12H(x_j)/\lambda_j^2 + \sum_{j \neq s} |\nabla K_j(x_j)| G_{gs}(x_j, x_j) + |\nabla^2 K_j(x_j) - \nabla^2 K_j(x_j)||) \\
+ \sum_{j} (\bar{a}_j + \frac{1}{3}(\nabla K_j(x_j))^{-1} \sum_{j \neq s} |\nabla K_j(x_j)| G_{gs}(x_j, x_j) + \sum_{j \neq s} (|\nabla^2 K_j(x_j) - \nabla^2 K_j(x_j)||) \\
+ \sum_{j} (\alpha_j - \Theta \cdot v^{-1} \sqrt{\frac{\lambda^p}{K(a_j)}(1 + \frac{\Delta K_j(x_j)}{K(x_j)\lambda_j^2} - \frac{H(x_j)}{\lambda_j^2} - \frac{\Delta K_j(x_j) - \Delta K_j(x_j)\lambda_j^2}{\sum_{j \neq s} K_j(x_j)\lambda_j^2} + \frac{H(x_j)}{\lambda_j^2})}))
\]

24
Under non-degeneracy conditions, Theorem 2 has the following immediate implications. Functions causing stronger mutual interactions in lower dimension.

In case $n = 4$ and
\[
|\partial J(u)| \geq \sum_j |\tau + \frac{2}{9} \Delta K(x_j) + \frac{512}{9\pi} H(x_j) + \sum_{j \neq i} \sqrt{\frac{K(x_i)}{K(x_j)}} G_{\alpha \gamma}(x_i, x_j) | + \sum_{j \neq i} \left| \frac{\bar{a}_j}{\lambda_j} + \frac{\bar{c}_3}{3} (\nabla^2 K(x_j))^{-1} \nabla \Delta K(x_j) \right| |\lambda_j^3|^{2/3}
\]
\[
+ \sum_{j} |\alpha_j - \Theta \cdot \left(1 - \frac{1}{90} \frac{\Delta K(x_j)}{K(x_j) \lambda_j^2} + \frac{2816}{\pi} H(x_j) - \frac{\sum_k (\Delta K(x_k) + 2816 H(x_k))}{\sum_k K(x_k)} \right) | |\lambda_j^3|^{2/3}
\]
in case $n = 5$ and
\[
|\partial J_\tau(u)| \geq \sum_j |\tau + \frac{\bar{c}_1}{\lambda_j} \Delta K(x_j) + \frac{\bar{a}_j}{\lambda_j} + \frac{\bar{c}_3}{3} (\nabla^2 K(x_j))^{-1} \nabla \Delta K(x_j) \right| |\lambda_j^3|^{2/3}
\]
\[
+ \sum_{j} |\alpha_j - \Theta \cdot \left(1 - \frac{1}{90} \frac{\Delta K(x_j)}{K(x_j) \lambda_j^2} + \frac{2816}{\pi} H(x_j) - \frac{\sum_k (\Delta K(x_k) + 2816 H(x_k))}{\sum_k K(x_k)} \right) | |\lambda_j^3|^{2/3}
\]
in case $n \geq 6$. The constants appearing above are defined by $c_0 = \int_{\mathbb{R}^n} \frac{dx}{(1 + r^2)^{n+1}}$, $\bar{c}_1 = \frac{n(n-1)(n-2)^2}{c_0^2 \lambda_j^2} \int_{\mathbb{R}^n} 1 \cdot 1 - r^2 \ln 1 \cdot 1 + r^2 dx$, $\bar{c}_3 = -\frac{(n-1)(n-2)}{c_0^2 \lambda_j^2} \int_{\mathbb{R}^n} r^2 (1 - r^2) dx$ and $\bar{c}_3 = \int_{\mathbb{R}^n} 4(n-1)(n-2) \cdot 1 (1 + r^2)^{n+1} dx$, $\bar{c}_4 = \int_{\mathbb{R}^n} 2(n-1) r^2 \cdot 1 (1 + r^2)^{n} dx$.

The differences in the above expressions for $n = 5$ and $n \geq 6$ is caused by a different decay of bubble functions causing stronger mutual interactions in lower dimension.

Remark 6.2. Under non-degeneracy conditions, Theorem 2 has the following immediate implications.

1. In case $\tau = 0$ there are no solutions of $\partial J(u) = \partial J_\tau(u) = 0$ in $V(q, \varepsilon)$, cf. Theorem 1.4 in [14].

2. In case $\tau > 0$ every solution $\partial J_\tau(u) = 0$ in $V(q, \varepsilon)$ satisfies
\[
\lambda_1 \simeq \ldots \simeq \lambda_q \simeq \frac{1}{\sqrt{\tau}}
\]
and has isolated simple blow-ups occurring close to
\[
\{ \nabla K = 0 \} \cap \{ \bar{c}_2 \frac{\Delta K}{K} + \bar{c}_3 H < 0 \} \quad \text{for } n = 4
\]
\[
\{ \nabla K = 0 \} \cap \{ \Delta K < 0 \} \quad \text{for } n \geq 5.
\]

3. The α_j, λ_j and a_j’s are determined to a precision $o(\tau^{1/2}) + O(|\partial J_\tau(u)|)$. Indeed, for e.g. $n = 6$
\[
|\tau + \frac{\bar{a}_j}{\lambda_j} \Delta K(x_j) | \frac{\lambda_j}{\bar{c}_3 K(x_j) \lambda_j^2} | \lambda_j |^{2/3}
\]
determines λ_j up to the latter error from τ and x_j, whence a_j is determined as well by
\[
|\bar{a}_j | \frac{\bar{c}_3}{\lambda_j} (\nabla^2 K(x_j))^{-1} \nabla \Delta K(x_j) \right| |\lambda_j^3|^{2/3}
\]
from λ_j and x_j, and finally up to the multiplicative constant Θ also α_j is determined by
\[
|\alpha_j - \Theta \cdot \left(1 - \frac{1}{90} \frac{\Delta K(x_j)}{K(x_j) \lambda_j^2} + \frac{2816}{\pi} H(x_j) - \frac{\sum_k (\Delta K(x_k) + 2816 H(x_k))}{\sum_k K(x_k)} \right) | |\lambda_j^3|^{2/3}
\]
from λ_j, a_j and τ, recalling $\theta = \frac{n-2}{2}$ and $p = \frac{n+2}{n-2} - \tau$. As for the multiplicative constant we have

$$1 = k_\tau = \int K(\alpha^j \varphi_i + v)^{p+1} d\mu_{30} = \int K(\alpha^j \varphi_i)^{p+1} = \sum_i \frac{K(\alpha^j)}{\lambda_i^\theta} \alpha^{p+1}_i \left(\bar{c}_0 + \bar{c}_1 \tau + \bar{c}_2 \frac{\Delta K(x_i)}{K(x_i) \lambda_i^2} \right)$$

up to some $o(\tau^2)$, cf. (4.5), Lemma 4.2, Lemma 2.3 and (5.8), whence

$$1 = \Theta^{-1} \sum_i a_i^2 \left(\bar{c}_0 + \bar{c}_1 \tau + \bar{c}_2 \frac{\Delta K(x_i)}{K(x_i) \lambda_i^2} \right) = \Theta^{p+1} \sum_i \left(\frac{\lambda_i^\theta}{K(\alpha^j)} \right)^{\frac{1}{p+1}} \left(\bar{c}_0 + \bar{c}_1 \tau + \bar{c}_2 \frac{\Delta K(x_i)}{K(x_i) \lambda_i^2} \right)$$

up to the same error and so the multiplicative constant Θ is determined as well.

Proof of Theorem 2. First we note that $k_\tau = 1$ implies that all the α_i do not tend to infinity and least one of them does not approach zero. Hence by definition of $V(q, \varepsilon)$ all the α_i are uniformly bounded away from zero and infinity. Secondly, if for some index $j = 1, \ldots, q$ we have

$$|1 - \frac{a_j^2}{\alpha^{p+1}_{K, \tau}} \frac{K_j}{\lambda_j^\theta} |^{p+1} | \gg \tau + \sum_{r \neq s} |\nabla K_r| \frac{1}{\lambda_r} + 1 + \varepsilon_{r,s},$$

then the claim follows from Lemma 5.1 whence we may henceforth assume that for all $j = 1, \ldots, q$

$$\alpha^2 \frac{K_j}{\alpha^{p+1}_{K, \tau}} \lambda_j^{-\theta} = 1 + O(\tau + \sum_{r \neq s} |\nabla K_r| \frac{1}{\lambda_r} + 1 + \varepsilon_{r,s}).$$

(6.1)

Thus we have to show

$$|\partial J_\tau (u)| \leq \tau + \sum_{j=1}^q |\nabla K_j| \frac{1}{\lambda_j} + 1 + \sum_{r \neq s} \varepsilon_{r,s},$$

(6.2)

and arguing by contradiction we may assume that

$$|\partial J_\tau (u)| \geq \tau + \sum_{j=1}^q |\nabla K_j| \frac{1}{\lambda_j} + 1 + \sum_{r \neq s} \varepsilon_{r,s}.$$

Then by Lemma 5.2 and 5.3 we have

$$\partial J_\tau (u) \phi_{a,j} = \frac{-a_j}{(\alpha^{p+1}_{K, \tau})^{\frac{n+2}{2}}} \left(\bar{c}_3 \frac{\nabla K_j}{K_j \lambda_j} + b_3 \sum_{j \neq i} \frac{a_i}{\lambda_j} \frac{\nabla a_j}{\lambda_j} \varepsilon_{i,j} \right);$$

(6.3)

$$\partial J_\tau (u) \phi_{a,2,j} = \frac{a_j}{(\alpha^{p+1}_{K, \tau})^{\frac{n+2}{2}}} \left(\bar{c}_1 \tau + \bar{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2} - b_2 \sum_{j \neq i} \frac{a_j}{\lambda_j} \lambda_j \partial \lambda_j \varepsilon_{i,j} \right)$$

up to some errors of the form $O(\frac{1}{\lambda_j}) + O(\tau^2 + \sum_{r \neq s} |\nabla K_r| \frac{1}{\lambda_r} + 1 + \varepsilon_{r,s})$, where we have to add for (6.1)

$$d_{H, K} = 1 \frac{K_j}{\lambda_j^2} \Delta \lambda_j$$

in case $n = 4$. Ordering indices so that $\lambda_1 \geq \ldots \geq \lambda_q \iff \frac{1}{\lambda_1} \leq \ldots \leq \frac{1}{\lambda_q}$ and recalling (2.9), we have

$$-\lambda_j \partial \lambda_j \varepsilon_{i,j} = \frac{n-2}{2} \left(\frac{\lambda_i}{\lambda_j} - \frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \lambda_i \gamma a_i \eta \frac{2}{G_{30}} (a_i, a_j) \right)$$

and therefore

$$\lambda_j \partial \lambda_j \varepsilon_{i,j} = \frac{2 - n}{2} \varepsilon_{i,j} + O(\frac{1}{\lambda_j^3} + \varepsilon_{i,j}) \quad \text{in case } j < i \text{ or } d_{30}(a_i, a_j) \neq o(1).$$

(6.3)
From (a) and (λ) above we find uniformly bounded vector fields A_1, A_1 on $V(q, \varepsilon)$ such that

\[\partial J_r(u) A_1 \gtrsim \frac{|\nabla K_1|}{\lambda_1} + O\left(\frac{1}{\lambda_1^2} + \sum_{i \neq 1} \epsilon_{1,i} + \frac{1}{\lambda_1^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right); \]

\[\partial J_r(u) A_1 \gtrsim \tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_1}{\lambda_1^2 \lambda_1} + \tilde{c}_4 \sum_{i \neq 1} \frac{\alpha_i}{\alpha_1} \epsilon_{1,i} + O\left(\frac{1}{\lambda_1^2} + \varepsilon_{1,1} + \frac{1}{\lambda_1^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right) \]

with $\tilde{c}_4 = \frac{n-2}{\varepsilon_2}$, and combining $X_1 = A_1 + \epsilon A_1$ with some $\epsilon > 0$ small and fixed such that we keep a positive coefficient in front of $\epsilon_{1,i}$, we get

\[C_1 \quad B_1 = \partial J_r(u) X_1 \gtrsim \left(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_1}{\lambda_1^2 \lambda_1} \right) + \epsilon\left(\frac{|\nabla K_1|}{\lambda_1} + \sum_{i \neq 1} \epsilon_{1,i} \right) + O\left(\frac{1}{\lambda_1^2} + \varepsilon_{1,1} + \frac{1}{\lambda_1^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right). \]

Likewise from (a) and (λ) we find uniformly bounded vector fields A_2, A_2 defined on $V(q, \varepsilon)$ such that

\[\partial J_r(u) A_2 \gtrsim \frac{|\nabla K_2|}{\lambda_2} + O\left(\frac{1}{\lambda_2^2} + \sum_{i \neq 1} \epsilon_{1,i} + \frac{1}{\lambda_2^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right); \]

\[\partial J_r(u) A_2 \gtrsim \tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_2}{\lambda_2^2 \lambda_2} + \tilde{c}_4 \sum_{i \neq 2} \frac{\alpha_2}{\alpha_2} \epsilon_{2,i} + O\left(\frac{1}{\lambda_2^2} + \varepsilon_{2,2} + \frac{1}{\lambda_2^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right) \]

and combining them as $X_2 = A_2 + \epsilon A_2$ with $\epsilon > 0$ small we obtain

\[B_2 = \partial J_r(u) X_2 \gtrsim \left(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_2}{\lambda_2^2 \lambda_2} \right) + \frac{1}{\varepsilon} \left(\frac{|\nabla K_2|}{\lambda_2} + \sum_{i \neq 2} \epsilon_{2,i} \right) + O\left(\frac{1}{\lambda_2^2} + \varepsilon_{2,2} + \frac{1}{\lambda_2^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right). \]

Therefore combining B_1 and B_2 so that the coefficient of $\epsilon_{i,j}$ is positive

\[C_2 \quad B_1 + \varepsilon B_2 \gtrsim \sum_{j=1}^{2} \left[\epsilon^j \left(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_j}{\lambda_j^2 \lambda_j} \right) + \epsilon^{j+1} \left(\frac{|\nabla K_j|}{\lambda_j} + \sum_{i \neq j} \epsilon_{j,i} \right) \right] + O\left(\frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right). \]

Iteratively, for all $k = 1, \ldots, q$ we can find uniformly bounded vector fields A_k, A_k such that

\[A_k \quad \partial J_r(u) A_k \gtrsim \frac{|\nabla K_k|}{\lambda_k} + O\left(\frac{1}{\lambda_k^2} + \sum_{i \neq k} \epsilon_{k,i} + \frac{1}{\lambda_k^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right); \]

\[A_k \quad \partial J_r(u) A_k \gtrsim \tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_k}{\lambda_k \lambda_k} + \tilde{c}_4 \sum_{k < i} \frac{\alpha_k}{\alpha_k} \epsilon_{k,i} + O\left(\frac{1}{\lambda_k^2} + \sum_{k < i} \epsilon_{k,i} \right) + O\left(\frac{1}{\lambda_k^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right); \]

\[C_k \quad \sum_{j=1}^{k} \sum_{j=1}^{k} \left[\epsilon^j \left(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_j}{\lambda_j} \right) + \epsilon^{j+1} \left(\frac{|\nabla K_j|}{\lambda_j} + \sum_{i \neq j} \epsilon_{j,i} \right) \right] + O\left(\frac{1}{\lambda_k^2} + \frac{1}{\lambda_k^2} + \varepsilon_{r,s}^{\frac{n+2}{2}} \right), \]

where we have to add $\tilde{c}_3 \frac{H_1}{\lambda_1^2}$ to $\tilde{c}_2 \frac{\Delta K_1}{\lambda_1}$ in case $n = 4$, where

\[\tilde{c}_3 = \tilde{d}_1 \]
As the coefficient of \(\lambda \) we may simplify the above formulas to

\[\sum_{j=1}^{k} e_j B_j \gtrsim \sum_{j=1}^{k} \left[e_j (\tilde{c}_1 \sigma + \tilde{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2}) + e_j^{q+1} \left(\frac{\nabla K_j}{\lambda_j} + \sum_{j \neq i} \varepsilon_{j,i} \right) \right] + O(\tau^2 + \sum_{r \neq s} \frac{|\nabla K_r|^2}{\lambda_r^2} + \frac{1}{\lambda^2} + \varepsilon_{r,s}).\]

Then, if either

\[\frac{1}{\lambda_q^2} \ll \frac{1}{\lambda_q} \quad \text{or} \quad \frac{1}{\lambda_q^2} \gg \frac{1}{\lambda_q},\]

we obviously have (6.2) from (C\(_q\)). Thus we may assume

\[\frac{1}{\lambda_q^2} \simeq \tau + \sum_{j=1}^{q} \frac{|\nabla K_j|}{\lambda_j} + \sum_{r \neq s} \varepsilon_{r,s},\]

whence we may simplify the above formulas to

\[(A_k) \quad \partial \tau \frac{Q_k}{\lambda_k} \gtrsim \frac{|\nabla K_k|}{\lambda_k} + O(\sum_{k \neq i} \varepsilon_{k,i}) + o\left(\frac{1}{\lambda_q^2}\right);\]

\[(A_k) \quad \partial \tau \frac{Q_k}{\lambda_k} \simeq \tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_k}{K_k \lambda_k^2} + \tilde{c}_4 \sum_{k < i} c_{k,i} + O(\sum_{k > i} \varepsilon_{k,i}) + o\left(\frac{1}{\lambda_q^2}\right);\]

\[(C_k) \quad \sum_{j=1}^{k} e_j B_j \gtrsim \sum_{j=1}^{k} \left[e_j (\tilde{c}_1 \sigma + \tilde{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2}) + e_j^{q+1} \left(\frac{\nabla K_j}{\lambda_j} + \sum_{j \neq i} \varepsilon_{j,i} \right) \right] + o\left(\frac{1}{\lambda_q^2}\right),\]

adding \(\tilde{c}_3 \frac{Q_k}{\lambda_k^2} \) to \(\tilde{c}_2 \frac{\Delta K_k}{K_k \lambda_k^2} \) for \(n = 4 \). We first consider the pair \((q-1, q)\). Suppose

\[\frac{1}{\lambda_k^2} = o\left(\frac{1}{\lambda_q^2}\right).\]

To prove (6.2) we then may assume from (C\(_{q-1}\)) and (6.5) that also \(\tau + \sum_{r \neq s} \varepsilon_{r,s} = o\left(\frac{1}{\lambda_q^2}\right)\), since

\[\sum_{j=1}^{q-1} \sum_{j \neq i} \varepsilon_{i,j} = \sum_{q-1 \geq r \neq s} \varepsilon_{r,s} = \sum_{r \neq s} \varepsilon_{r,s}.\]

As the coefficient of \(\lambda_q^{-2} \) in (A\(_q\)) is non zero by non-degeneracy, (6.2) follows. So we may assume

\[\frac{1}{\lambda_{q-1}^2} \simeq \frac{1}{\lambda_q^2},\]

and therefore, still by (6.5),

\[|\nabla K_{q-1}| \lesssim \frac{1}{\lambda_{q-1}}, \quad |\nabla K_q| \lesssim \frac{1}{\lambda_q}.
\]

So, if \(a_{q-1} \) is close to \(a_q \), these points are close to the same critical point of \(K \), which, as \(K \) is Morse, implies \(d(a_{q-1}, a_q) \lesssim \frac{1}{\lambda_q} \simeq \frac{1}{\lambda_{q-1}} \). This however contradicts the fact that by Proposition 3.1

\[\varepsilon_{q-1, q} \simeq \frac{1}{(\lambda_q^{-1} \lambda_q d^2(a_{q-1}, a_q))^{\frac{q-2}{2}}} \to 0.\]
Therefore for the pair \((q - 1, q)\) we may assume

\[
|\nabla K_{q-1}|, |\nabla K_q| \lesssim \frac{1}{\lambda_{q-1}} \simeq \frac{1}{\lambda_q}, \quad \text{and} \quad d(a_{q-1}, a_q) > c.
\]

In particular in case \(n \geq 5\) we have \(\varepsilon_{q-1,q} \simeq \frac{1}{\lambda_{q}^{-2}} = o\left(\frac{1}{\lambda_q}\right)\), whereas in case \(n = 4\)

\[
\varepsilon_{q-1,q} = \frac{G_{q0}(a_{q-1}, a_q)}{\gamma_n \lambda_{q-1} \lambda_q} + O\left(\frac{1}{\lambda_q}\right).
\]

We turn to consider the triple \((q - 2, q - 1, q)\). Suppose that \(\frac{1}{\lambda_{q-2}} = o\left(\frac{1}{\lambda_{q-1}}\right)\). To get (6.2) we then may assume from \((C_{q-2})\) and (6.5) that

\[
\tau + \sum_{q-2 \geq r \neq s} \varepsilon_{r,s} = o\left(\frac{1}{\lambda_q}\right)
\]

as well. But then clearly in case \(n \geq 5\) we obtain (6.2) from \((A_{q-1})\) or \((A_q)\), since \(\varepsilon_{q-1,q} = o(\lambda_q^{-2})\) is already known. In case \(n = 4\) we have to argue more subtly. From (\(\lambda\)) we find

\[
\partial J(u)\phi_{2,q-1} = \frac{\alpha_{q-1}}{\left(\alpha_{K,\tau}\right)^{\frac{n-2}{n}}} \left(\tilde{c}_2 \Delta K_{q-1} + \tilde{c}_3 H_{q-1} + \tilde{c}_4 \frac{G_{q0}(a_{q-1}, a_q)}{\gamma_n \lambda_{q-1} \lambda_q}\right)
\]

and

\[
\partial J(u)\phi_{2,q} = \frac{\alpha_q}{\left(\alpha_{K,\tau}\right)^{\frac{n-2}{n}}} \left(\tilde{c}_2 \Delta K_q + \tilde{c}_3 H_q + \tilde{c}_4 \frac{G_{q0}(a_{q-1}, a_q)}{\gamma_n \lambda_{q-1} \lambda_q}\right)
\]

up to an error of order \(o\left(\frac{1}{\lambda_q}\right)\), cf. (6.3). Obviously (6.2) then follows if either

\[
\tilde{c}_2 \Delta K_{q-1} + \tilde{c}_3 H_{q-1} > 0 \quad \text{or} \quad \tilde{c}_2 \Delta K_q + \tilde{c}_3 H_q > 0.
\]

We may thus assume both summands to be negative. Recalling (6.1), we then obtain

\[
\partial J_{r}(u) \left(\beta_{q-1} \phi_{2,q-1} - \beta_q \phi_{2,q}\right) = \left(\begin{array}{cc}
\frac{1}{\lambda_{q-1}} & 0 \\
0 & \frac{1}{\lambda_q}
\end{array}\right) \left(\begin{array}{cc}
\tilde{c}_4 \frac{G_{0}(a_{q-1}, a_q)}{\gamma_n (K_{q-1} - K_q)^2} & \tilde{c}_4 \frac{G_{0}(a_{q-1}, a_q)}{\gamma_n (K_{q-1} - K_q)^2} \\
\frac{\Delta K_{q-1}}{K_{q-1}} & \frac{\Delta K_q}{K_q}
\end{array}\right) \left(\begin{array}{c}
\frac{1}{\lambda_{q-1}} \\
\frac{1}{\lambda_q}
\end{array}\right)
\]

up to an error \(o\left(\frac{1}{\lambda_q}\right)\) letting

\[
K_j \alpha_j \beta_j = \left(\alpha_{K,\tau}\right)^{\frac{n-2}{n}} \quad \text{for} \quad j = q - 1, q,
\]

and thus \(|\partial J_{r}(u)| \gtrsim \lambda_q^{-2}\), since otherwise \(a_{q-1}, a_q\) close to \(x_{q-1}, x_q \in \{\nabla K = 0\} \cap \{\tilde{c}_2 \frac{\Delta K}{K} + \tilde{c}_3 H = 0\}\) and

\[
M_{q-1} = \frac{\tilde{c}_4 \frac{G_{0}(a_{q-1}, a_q)}{\gamma_n (K_{q-1} - K_q)^2}}{\tilde{c}_4 \frac{G_{0}(a_{q-1}, a_q)}{\gamma_n (K_{q-1} - K_q)^2} + \frac{\Delta K_{q-1}}{K_{q-1}} + \frac{\Delta K_q}{K_q}}
\]

would have after a blow-up for \(\tau \to 0\) a vanishing eigenvalue with strictly positive eigenvector, which by Remark 6.1 is impossible. So (6.2) again follows. We may thus assume

\[
\frac{1}{\lambda_{q-2}} \simeq \frac{1}{\lambda_{q-1}} \simeq \frac{1}{\lambda_q}
\]

and therefore by (6.5)

\[
|\nabla K_{q-2}| \lesssim \frac{1}{\lambda_{q-2}}, \quad |\nabla K_{q-1}| \lesssim \frac{1}{\lambda_{q-1}}, \quad |\nabla K_q| \lesssim \frac{1}{\lambda_q}.
\]
So, if \(a_{q-2} \) is close to either \(a_{q-1} \) or \(a_q \), these points are close to the same critical point of \(K \), whence
\[
\varepsilon_{q-2,q-1} \simeq 1 \quad \text{or} \quad \varepsilon_{q-2,1} \simeq 1
\]
as before, contradicting Proposition 3.1. Thus for \((q-2, q-1, q) \) we may assume
\[
|\nabla K_{q-2}|, |\nabla K_{q-1}|, |\nabla K_q| \lesssim \frac{1}{\lambda_{q-2}} \simeq \frac{1}{\lambda_{q-1}} \simeq \frac{1}{\lambda_q}
\]
and
\[
d(a_{q-2}, a_{q-1}), d(a_{q-2}, a_q), d(a_{q-1}, a_q) > c
\]
analogously to the previous case of the pair \((q-1, 1) \). In particular in case \(n \geq 5 \)
\[
\varepsilon_{q-2,q-1}, \varepsilon_{q-2,q}, \varepsilon_{q-1,q} \simeq \frac{1}{\lambda_{q-2}^2} = o\left(\frac{1}{\lambda_q^2}\right),
\]
whereas in case \(n = 4 \) up to an error \(O\left(\frac{1}{\lambda_q^4}\right) \)
\[
\varepsilon_{q-2,q-1} = \frac{G_{a_0}(a_{q-2}, a_{q-1})}{\gamma_n \lambda_{q-2} \lambda_{q-1}}, \varepsilon_{q-2,q} = \frac{G_{a_0}(a_{q-2}, a_q)}{\gamma_n \lambda_{q-2} \lambda_q}, \varepsilon_{q-1,q} = \frac{G_{a_0}(a_{q-1}, a_q)}{\gamma_n \lambda_{q-1} \lambda_q}.
\]
Iteratively, we then may assume for all \(k \neq l = 1, \ldots, q \)
\[
|\nabla K_k| \lesssim \frac{1}{\lambda_k} \simeq \frac{1}{\lambda_l} \quad \text{and} \quad d(a_k, a_l) > c.
\]
In particular \(\varepsilon_{k,l} = o\left(\frac{1}{\lambda_q^2}\right) \) for \(n = 5 \) and \(\varepsilon_{k,l} = \frac{G_{a_0}(a_k, a_l)}{\gamma_n \lambda_k \lambda_l} \) for \(n = 4 \). But then
(A\(_k\)) \quad \partial J(\tau)A_k \simeq (\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_k}{K_k \lambda_k^2}) + o\left(\frac{1}{\lambda_q^2}\right)
\]
in case \(n \geq 5 \) and thus
\[
|\partial J(\tau)| \gtrsim \left| \tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_k}{K_k \lambda_k^2} \right|
\]
up to some \(o\left(\frac{1}{\lambda_q^2}\right) \). Therefore (6.2) holds unless \(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_k}{K_k \lambda_k^2} = o\left(\frac{1}{\lambda_q^2}\right) \), while now for \(n = 4 \)
\[
\partial J(\tau)\phi_{2,j} = \frac{\alpha_j}{\alpha_j \gamma_n \lambda_j} \left(\tilde{c}_1 \tau + \tilde{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2} + \tilde{c}_3 H_j \lambda_j + \tilde{c}_4 \sum_{j \neq l} \frac{\alpha_j}{\gamma_n \lambda_j \lambda_l} G_{a_0}(a_j, a_l) \right)
\]
up to some \(o\left(\frac{1}{\lambda_q^2}\right) \), cf. (6.3), for all \(j = 1, \ldots, q \). Obviously (6.2) then follows, if for some \(j = 1, \ldots, q \)
\[
\tilde{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2} + \tilde{c}_3 H_j \lambda_j > 0,
\]
whence we may assume all these summands to be negative, proving (ii). From (\(\lambda \)) and (6.1) we then have
\[
\partial J(\tau)(\beta_j, \phi_{2,j}) = \tilde{c}_1 \tau \gamma_n \lambda_j + \tilde{c}_2 \frac{\Delta K_j}{K_j \lambda_j^2} + \tilde{c}_3 H_j \lambda_j + \tilde{c}_4 \sum_{j \neq l} \frac{G_{a_0}(a_j, a_l)}{\gamma_n \lambda_j \lambda_l}
\]
up to some \(o\left(\frac{1}{\lambda_q^2}\right) \) letting as before \(\beta_j = \frac{\alpha_j \gamma_n}{\lambda_j} \). Therefore
\[
|\partial J(\tau)| \gtrsim \left| \begin{bmatrix} \frac{\tilde{c}_1 \tau}{\lambda_1} \\ \vdots \\ \frac{\tilde{c}_1 \tau}{\lambda_q} \end{bmatrix} - \text{diag}(1, \ldots, 1)M_{a_1, \ldots, a_q} \begin{bmatrix} \frac{1}{\lambda_1} \\ \vdots \\ \frac{1}{\lambda_q} \end{bmatrix} \right|
\]
30
up to the same error. This implies that (6.2) holds true, unless we can solve
\[
\left(\frac{\hat{c}_1 \tau \lambda_1}{K_1} \right) \cdots \left(\frac{\hat{c}_1 \tau \lambda_q}{K_q} \right) = M_{x_1, \ldots, x_q} \left(\begin{array}{c} \frac{1}{\lambda_1} \\ \vdots \\ \frac{1}{\lambda_q} \end{array} \right) + o\left(\frac{1}{\lambda_q} \right) \tag{6.6}
\]
and we may already assume, by (ii), that \(a_j \) is close to
\[
x_j \in \{ \nabla K = 0 \} \cap \{ \hat{c}_2 \frac{\Delta K}{K} + \hat{c}_3 H < 0 \}.
\]
In particular, testing the above relation with \(x = x_{x_1, \ldots, x_q} \), cf. Remark 6.1, we find \(0 \leq \hat{c}_1 \sum_j x_j \sigma_j = \lambda \sum_j x_j \frac{\sigma_j}{\sigma_j} \), where \(\lambda = \lambda_{x_1, \ldots, x_q} \) is the least eigenvalue of \(M_{x_1, \ldots, x_q} \). Thus necessarily \(M_{x_1, \ldots, x_q} > 0 \). Since
\[
F(\sigma) = M_{x_1, \ldots, x_q} \left(\begin{array}{c} \frac{1}{\sigma_1} \\ \vdots \\ \frac{1}{\sigma_q} \end{array} \right) + 2 \hat{c}_1 \sum_j \frac{\sigma_j}{K_j}
\]
is a sum of convex functions, there exists a unique critical point of \(F \) satisfying (6.7). Hence we have comparability \(\lambda_1 \simeq \ldots \simeq \lambda_1 \simeq 1/\sqrt{\tau} \simeq \lambda \) like in case \(n \geq 5 \). Thus (iv) follows upon checking constants for \(n = 4 \), i.e. \(\hat{c}_0 = \int_{\mathbb{R}^n} \left(\frac{1}{(1+r)^2} \right)^n \). And
\begin{enumerate}
\item \(\hat{c}_1 = \frac{a(n-1)(n-2)}{\lambda_0} \int_{\mathbb{R}^n} \frac{1-r^2}{(1+r)^{n+1}} \ln \frac{1}{1+r^2} dx = 2\sqrt{3\lambda_0}; \)
\item \(\hat{c}_2 = -\frac{a(n-1)(n-2)}{\lambda_0} \int_{\mathbb{R}^n} \frac{r^2(1-r^2)}{(1+r)^{n+1}} dx = \sqrt{3\lambda_0}; \)
\item \(\hat{c}_3 = \hat{d}_1 = -\frac{4n(n-1)}{\lambda_0} \int_{\mathbb{R}^n} \frac{L_n^*(n+2-nr^2)}{(1+r)^{n+1}} dx = 24\sqrt{3\lambda_0}; \)
\item \(\hat{c}_4 = a - \frac{2}{3} b_2 = \frac{2n(n-1)(n-2)}{\lambda_0} \int_{\mathbb{R}^n} \frac{1}{(1+r)^{n+1}} dx = 24\sqrt{3\lambda_0}, \)
\end{enumerate}
cef. (7.14) from the corresponding Lemma 5.2. We turn next to (iii). In case \(n \geq 5 \) we may now assume
\[
\hat{c}_1 \tau + \hat{c}_2 \frac{\Delta K}{K} \alpha \lambda_k^2 \frac{\lambda_k}{\lambda_k} = o\left(\frac{1}{\lambda^2} \right) \quad \text{and} \quad \hat{c}_k \lambda = o\left(\frac{1}{\lambda^2} \right) \quad \text{for} \quad \lambda_k \simeq \lambda \simeq \lambda,
\]
which by Lemma 5.1 implies
\[
|\partial J_\tau (u)| \geq \left| 1 - \frac{\alpha^2 K \lambda_0}{\alpha^2 K_0 \lambda_0} \right| + o\left(\frac{1}{\lambda^2} \right).
\]
Note that \(\alpha_j o^{-1} = \Theta o^j \frac{\lambda_j}{\alpha_j} \), modulo scaling the unique and non-degenerate maximum of
\[
\alpha = (\alpha_1, \ldots, \alpha_q) \rightarrow \frac{\alpha^2}{(\alpha K)^{1+1}} = \frac{\sum_i \alpha_i^2}{(\sum \frac{\alpha_i}{\lambda_i o^{1+1}})^{1+1}}.
\]
Now [6.2] follows, unless \(\alpha_j^{p-1} = \Theta^{p-1} \cdot \frac{\lambda_j^p}{K_j} + o\left(\frac{1}{\Delta^2}\right) \) and there holds

\[
|\partial J_x(u)| \gtrsim \left| \alpha_j - \Theta \cdot \frac{s^{p-1}}{\sqrt{K_j}} \right| + o\left(\frac{1}{\Delta^2}\right).
\]

In case \(n = 4 \) we may rewrite Lemma [5.1] up to some \(o\left(\frac{1}{\Delta^2}\right) \) with constant given below as

\[
\partial J_x(u) \phi_{1,j} = \frac{\alpha_j}{(\alpha_{K_1^2})^{n/2}} \left(c_0 (1 - \frac{\alpha^2 K_j}{\alpha_{K_1^2}} \alpha_j^{p-1}) - K_j (c_2 \frac{\Delta K_j}{K_j^{2/3}} + \dot{d}_1 H_j + b_1 \sum_{j \neq i} \frac{G_{g_0}(a_i, a_j)}{\gamma_n K_j K_i \lambda_i}) \right.
\]

\[
+ \frac{\alpha_{K_1^2}}{o(2)^2} (c_2 \sum_k \frac{\Delta K_k}{K_k^{2/3}} + \dot{d}_1 \sum_k \frac{H_k}{K_k^{2/3}} + b_1 \sum_{k \neq i} \frac{G_{g_0}(a_k, a_i)}{\gamma_n K_k K_i \lambda_i}) \right)
\]

using (6.1) and \(\lambda_j^p \approx \left(\frac{1}{\Delta^2}\right)^{n/2} = 1 + O\left(\frac{\ln \lambda}{\Delta^2}\right) \). Moreover, up to an error \(o(1) \) there holds

\[
\frac{(\alpha^2)^2}{\alpha_{K_1^2}} = \frac{\alpha^2 \sum_i \alpha_i^2}{\alpha_{K_1^2}} = \frac{\alpha^2 \sum_i \frac{\Delta K_i}{K_i^2}}{\frac{\alpha_{K_1^2}}{2}} = \sum_i \frac{1}{K_i},
\]

and due to (6.6)

\[
\dot{c}_2 \sum_k \frac{\Delta K_k}{K_k^{2/3}} + \dot{c}_3 \sum_k \frac{H_k}{K_k^{2/3}} + \dot{c}_4 \sum_{k \neq i} \frac{G_{g_0}(a_i, a_j)}{\gamma_n K_k K_i \lambda_i} = M_{a_1, \ldots, a_n} \begin{pmatrix} \frac{1}{K_1} \\ \vdots \end{pmatrix} \begin{pmatrix} \frac{1}{K_1} \\ \vdots \end{pmatrix} = \dot{c}_1 \sum_i \frac{\tau}{K_i}
\]

and

\[
\dot{c}_2 \frac{\Delta K_j}{K_j^{2/3}} + \dot{c}_3 \frac{H_j}{K_j^{2/3}} + \dot{c}_4 \sum_{j \neq i} \frac{G_{g_0}(a_i, a_j)}{\gamma_n K_j K_i \lambda_i} = M_{a_1, \ldots, a_n} \begin{pmatrix} \frac{1}{K_1} \\ \vdots \end{pmatrix} \begin{pmatrix} \frac{1}{K_1} \\ \vdots \end{pmatrix} e_j \lambda_j = \dot{c}_1 \frac{\tau}{K_j}
\]

up to some \(o\left(\frac{1}{\Delta^2}\right) \). We may therefore cancel out the interaction terms in (6.9) and obtain

\[
\partial J_x(u) \phi_{1,j} = \frac{\alpha_j}{(\alpha_{K_1^2})^{n/2}} \left(c_0 (1 - \frac{\alpha^2 K_j}{\alpha_{K_1^2}} \alpha_j^{p-1}) - K_j (c_2 \frac{\Delta K_j}{K_j^{2/3}} + \dot{d}_1 \frac{H_j}{K_j^{2/3}} + (d_1 \frac{1}{\dot{c}_4} \frac{\Delta K_j}{K_j^{2/3}} + d_1 \frac{1}{\dot{c}_4} \frac{H_j}{K_j^{2/3}}) \right)
\]

\[
+ \sum_k \frac{\Delta K_k}{K_k^{2/3}} + (d_1 \frac{1}{\dot{c}_4} \sum_k \frac{H_k}{K_k^{2/3}}).
\]

Checking constants for \(n = 4 \), i.e. with \(c_0 = \int_{\mathbb{R}^n} \frac{dx}{(1 + r)^{n+2}} = \frac{\pi^2}{\Delta^2} \)

1. \(\dot{c}_2 = 8n(n-1) \int_{\mathbb{R}^n} \frac{dx}{(1 + r)^{n+2}} = 16 \sqrt{3} \omega_4 \), \(\dot{c}_3 = \frac{8n(n+1)}{\Delta^2} \int_{\mathbb{R}^n} \frac{r^2}{(1 + r)^{n+2}} = 4 \sqrt{3} \omega_4 \);

2. \(\frac{1}{\dot{c}_4} = \frac{8n(n-1)}{\Delta^2} \int_{\mathbb{R}^n} \frac{dx}{(1 + r)^{n+2}} = 24 \sqrt{3} \omega_4 \), \(b_1 = \frac{8n(n-1)(n+2)}{\Delta^2} \int_{\mathbb{R}^n} \frac{r^2}{(1 + r)^{n+2}} = 144 \sqrt{3} \omega_4 \),

cf. (7.9) from the corresponding Lemma [5.1] we then find

\[
|\partial J_x(u)| \gtrsim \left| 1 - \frac{\alpha^2 K_j \alpha_j^{p-1}}{\alpha_{K_1^2}} \right| + \frac{1}{8} \left(\frac{\Delta K_j}{K_j^{2/3}} + 60 \frac{H_j}{K_j^{2/3}} - \frac{\sum_k (\Delta K_k)}{\sum_k K_k} \right) + o\left(\frac{1}{\Delta^2}\right).
\]
Note that setting
\[E_j = \frac{1}{8} \left(\frac{\Delta K_j}{K_j \lambda_j^2} - 60 \frac{H_j}{\lambda_j^2} - \sum_k \left(\frac{\Delta K_k}{K_k \lambda_k^2} - 60 \frac{H_k}{K_k \lambda_k^2} \right) \right), \]
there holds \(E_j = O(\frac{1}{K_j^2}) \), \(\sum_j E_j K_j = 0 \), and \(\alpha_j^{p-1} = \Theta^{p-1} \frac{\lambda_j}{K_j} (1 + E_j) \) is modulo scaling the unique and non-degenerate maximum of
\[
\alpha = (\alpha_1, \ldots, \alpha_g) \rightarrow \frac{\alpha^2}{(\alpha^p + \kappa \tau)^{\frac{p+1}{p+3}}} = \frac{\sum \alpha_i}{(\sum K_i \alpha_i (1 + E_i) \alpha_i^{p+1})^{\frac{1}{p+3}}},
\]
and satisfies
\[
\frac{\alpha_j^2}{\alpha_i^p \tau} K_j \lambda_j^{p+1} = \Theta^{p-1} \cdot \frac{\alpha^2}{\alpha_i^p \tau} (1 + E_j) = \frac{\sum \lambda_j^p (1 + E_i) \tau^p}{\sum K_i \lambda_i^p (1 + E_i) \tau^p} (1 + E_j)
\]
due to \(\lambda_j^p \tau = \frac{1}{\kappa_j} + O(\frac{1}{\lambda_j^3}) \). Thus (6.2) follows unless, up to some \(\alpha_i\),
\[
|\partial J_r(u)| \gtrsim |\alpha_j - \Theta^{p-1} \frac{\lambda_j^p}{K_j} \left(1 + \sum_k \frac{\Delta K_k}{K_k \lambda_k^2} - 60 \frac{H_k}{K_k \lambda_k^2} - \frac{\sum_k (\Delta K_k^\ast)}{\sum K_k \lambda_k^2} \right) |. \quad (6.11)
\]
We have therefore proved (i)-(iv), which will be used for showing the second statement of the proposition. In this case the error terms in Lemmata 5.1, 5.2 and 5.3 are of type \(o(\lambda^{-3}) + O(1) \). This follows immediately in case \(n \geq 5 \), while the terms \(\varepsilon_{r,x} \simeq \lambda^{-3} \) in case \(n = 4 \), for which however the underlying estimates can be improved to derive a quadratic error in \(\varepsilon_{r,x} \), cf. [38]. Let us first treat the lower bounds arising from Lemma 5.3. In case \(n \geq 5 \) we find from the latter lemma
\[
|\partial J_r(u)| \gtrsim |\alpha_j \frac{\nabla K_j}{K_j \lambda_j} + \dot{\alpha}_j \frac{\nabla \Delta K_j}{K_j \lambda_j^3} \gtrsim |\alpha_j \frac{\nabla K(a_j)}{\lambda_j} + \dot{\alpha}_j \frac{\nabla \Delta K(x_j)}{\lambda_j^3}|.
\]
up to some \(o(\lambda^{-3}) \) and therefore, writing \(a_j = \exp_{x_j,\gamma_j}(\tilde{a}_j) \), that
\[
|\partial J_r(u)| \gtrsim |\alpha_j \frac{\nabla K(a_j)}{\lambda_j} + \dot{\alpha}_j \frac{\nabla^2 K(a_j)}{\lambda_j^3} \frac{\nabla \Delta K(x_j)}{\lambda_j^3}| + O(\frac{1}{\lambda_j^3}).
\]
Similarly in case \(n = 4 \) we find up to some \(o(\lambda^{-3}) \)
\[
|\partial J_r(u)| \gtrsim |\alpha_j \frac{\nabla K_j}{K_j \lambda_j} + \dot{\alpha}_j \frac{\nabla \Delta K_j}{K_j \lambda_j^3} + b_3 \sum \frac{\alpha_i \nabla a_i G_{x_i}(a_i, x_j)}{\gamma_n \lambda_i \lambda_j^2}|.
\]
From (iii) we have \(\alpha_i = \Theta^p \frac{\lambda_i}{K_i} \tau^p + O(\frac{1}{\lambda_i}) \), which by \(\theta = \frac{\tau}{2} \) and \(\lambda_i \simeq \tau^{-\frac{1}{2}} \) due to (iv) becomes
\[
\alpha_i = \frac{\alpha_i}{\sqrt{\kappa_i}} + O(\frac{1}{\lambda_i^2}).
\]
Thus, still up to some \(o(\lambda^{-3}) \)
\[
|\partial J_r(u)| \gtrsim |\frac{\nabla K(a_j)}{\lambda_j} + \dot{\alpha}_j \frac{\nabla^2 K(a_j)}{\lambda_j^3} + b_3 \sum \frac{\nabla^3 K_j}{\lambda_j} \gamma_n \lambda_i \lambda_j^2 | + O(\frac{1}{\lambda_i^2}),
\]
33
and checking constants from Lemma \[5.3\] cf. (7.20), we have
\[
\hat{c}_3 = \int_{\mathbb{R}^n} \frac{4(n-1)(n-2)dx}{(1 + r^2)^n} = 3\omega_4, \quad \hat{c}_4 = \int_{\mathbb{R}^n} \frac{2(n-1)r^2dx}{(1 + r^2)^n} = \omega_4, \quad \hat{b}_3 = \int_{\mathbb{R}^n} \frac{8n(n-1)dx}{(1 + r^2)^{2+n}} = 24\omega_4.
\]
We conclude that, up to some \(o\left(\frac{1}{\lambda_1^2}\right)\)
\[
|\partial J_r(u)| \gtrsim \left|\frac{\partial x_j}{r} + \frac{3}{\lambda_1^2}(\nabla^2 K(x_j))^{-1} \nabla \Delta K(x_j) \right| + 8\sum_{j \neq i} \sqrt{\int_{\mathbb{R}^n} \frac{K(x_j)G_{a_0}(x_i, x_j)}{\gamma_n(\lambda_1, \lambda_j)^{3/2}} dx} \quad \text{for } n = 4
\]
\[
= \frac{9}{\lambda_1^2} \left(\nabla^2 K(x_j))^{-1} \nabla \Delta K(x_j) \right| \quad \text{for } n \geq 5
\]
(6.12)
By this, i.e. \(a_j = O\left(\frac{1}{\lambda_1^2}\right)\), and \(\alpha_i = \frac{\theta}{\sqrt{\lambda_i^2}} + O\left(\frac{\ln \lambda_i}{\lambda_i}\right)\) we then infer from Lemma \[5.2\] that up to some \(o\left(\frac{1}{\lambda_1^2}\right)\)
\[
|\partial J_r(u)| \gtrsim \left|\hat{c}_1 \tau + \hat{c}_2 \frac{\Delta K(x_j)}{K(x_j)\lambda_j^2} + \frac{n - 2}{2} \hat{b}_3 \sum_{j \neq i} \sqrt{\int_{\mathbb{R}^n} \frac{K(x_j)G_{a_0}(x_i, x_j)}{\gamma_n(\lambda_1, \lambda_j)^{3/2}} dx} + \hat{d}_4 \frac{H(x_j)}{\lambda_j^{n-4}} \right|
\]
with constants, cf. above, given for \(n = 4, 5\) respectively.
\[
1. \quad \hat{c}_1 = -\frac{f_{\lambda_n}}{n(n-2)} \int_{\mathbb{R}^n} \frac{r^2(x_1-x_2)^2}{(1 + r^2)^n} dx = \frac{1}{2}, \quad \hat{c}_2 = \frac{1}{2}
\]
\[
2. \quad \hat{c}_1 = \frac{d_1}{c_1} = \frac{4}{(n-2)^2} \frac{f_{\lambda_n}}{n(n-2)} \int_{\mathbb{R}^n} \frac{r^2(x_1-x_2)^2}{(1 + r^2)^n} dx = 12, \quad \frac{512}{9\pi^n}
\]
\[
3. \quad \frac{n^2 - 2}{2} \hat{c}_1 = \frac{\alpha_n}{c_1} = \frac{2}{n^2 - 2} \frac{f_{\lambda_n}}{n(n-2)(n-4)} \int_{\mathbb{R}^n} \frac{r^2(x_1-x_2)^2}{(1 + r^2)^n} dx = 12, \quad \frac{512}{9\pi^n}
\]
we conclude
\[
|\partial J_r(u)| \gtrsim \left|\tau + \frac{\Delta K(x_j)}{2 K(x_j) \lambda_j^2} + 12 \frac{H(x_j)}{\lambda_j^2} \sum_{j \neq i} \sqrt{\int_{\mathbb{R}^n} \frac{K(x_j)G_{a_0}(x_i, x_j)}{\gamma_n(\lambda_1, \lambda_j)^{3/2}} dx} \right| \quad \text{for } n = 4
\]
\[
= \left|\tau + \frac{\Delta K(x_j)}{K(x_j) \lambda_j^2} + \frac{512}{9\pi^n} \frac{H(x_j)}{\lambda_j^2} \sum_{j \neq i} \sqrt{\int_{\mathbb{R}^n} \frac{K(x_j)G_{a_0}(x_i, x_j)}{\gamma_n(\lambda_1, \lambda_j)^{3/2}} dx} \right| \quad \text{for } n = 5
\]
\[
= \left|\tau + \frac{\Delta K(x_j)}{K(x_j) \lambda_j^2} \right| \quad \text{for } n \geq 6
\]
(6.13)
By similar reasoning, using \(\hat{a}_j = O\left(\frac{1}{\lambda_1^2}\right)\) and \(\alpha_i = \frac{\theta}{\sqrt{\lambda_i^2}} + O\left(\frac{\ln \lambda_i}{\lambda_i}\right)\) we finally have, up to some \(o\left(\frac{1}{\lambda_1^2}\right)\)
\[
|\partial J_r(u)| \gtrsim \left|1 - \frac{\alpha K_i^{a_{i-1}}}{\alpha K_i^{a_{i-1}} \lambda_j^2} \right| + \frac{1}{8} \left(\frac{\Delta K_i}{\lambda_j^2} \right) - 6 \frac{H_i}{\lambda_j^2} - \frac{\sum_k (\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{M_i}{\lambda_j^2})}{\sum_k (\frac{\Delta K_i}{\lambda_j^2} + \frac{2816}{\pi^2} \frac{H_i}{\lambda_j^2})} \right| \quad \text{for } n = 4
\]
\[
= \left|1 - \frac{\alpha K_i^{a_{i-1}}}{\alpha K_i^{a_{i-1}} \lambda_j^2} \right| + \frac{1}{8} \left(\frac{\Delta K_i}{\lambda_j^2} \right) - 6 \frac{H_i}{\lambda_j^2} - \frac{\sum_k (\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{M_i}{\lambda_j^2})}{\sum_k (\frac{\Delta K_i}{\lambda_j^2} + \frac{2816}{\pi^2} \frac{H_i}{\lambda_j^2})} \right| \quad \text{for } n = 5
\]
\[
= \left|1 - \frac{\alpha K_i^{a_{i-1}}}{\alpha K_i^{a_{i-1}} \lambda_j^2} \right| \quad \text{for } n \geq 6
\]
This follows in case \(n \geq 6\) immediately from Lemma \[5.1\] and for \(n = 4\) by repeating the arguments leading to (6.9) and (6.10), while the case \(n = 5\) follows by arguing as in case \(n = 4\) using (6.13) to cancel out the interaction terms when passing from (6.9) to (6.10). Then arguing as for the passage from (6.10) to (6.11) we finally obtain that up to some \(o\left(\frac{1}{\lambda_1^2}\right)\)
\[
|\partial J_r(u)| \gtrsim \left|\alpha_j - \Theta^{a_{j-1}} \sqrt{\frac{\lambda_j}{\lambda_1}} \left(1 + \frac{1}{8} \left(\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{H_i}{\lambda_j^2} - \frac{\sum_k (\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{M_i}{\lambda_j^2})}{\sum_k (\frac{\Delta K_i}{\lambda_j^2} + \frac{2816}{\pi^2} \frac{H_i}{\lambda_j^2})} \right) \right) \right| \quad \text{for } n = 4
\]
\[
= \left|\alpha_j - \Theta^{a_{j-1}} \sqrt{\frac{\lambda_j}{\lambda_1}} \left(1 + \frac{1}{8} \left(\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{H_i}{\lambda_j^2} - \frac{\sum_k (\frac{\Delta K_i}{\lambda_j^2} - 60 \frac{M_i}{\lambda_j^2})}{\sum_k (\frac{\Delta K_i}{\lambda_j^2} + \frac{2816}{\pi^2} \frac{H_i}{\lambda_j^2})} \right) \right) \right| \quad \text{for } n = 5
\]
\[
= \left|\alpha_j - \Theta^{a_{j-1}} \sqrt{\frac{\lambda_j}{\lambda_1}} \right| \quad \text{for } n \geq 6
\]
(6.14)
Thus the second statement of the theorem follows from combining (6.12), (6.13) and (6.14).
In [36] the next result will be needed.

Lemma 6.1. For every $u \in V(q, \varepsilon)$ there holds

$$|\partial J_r(u)| \lesssim \tau + \sum_{r \neq s} \frac{1}{\lambda_r} |\nabla K_r| + \frac{1}{\lambda^2} + \frac{1}{\lambda^{n-2}} + |1 - \frac{\alpha^2}{\alpha_{K,r}^{p+1}} K_r \alpha^{p-1}_r| + \varepsilon_{r,s} + ||v||. $$

Proof. Recalling (4.2) we can find $|J_r| = O(1)$ and $\nu \in H_a(p, \varepsilon). ||\nu|| = 1$ such that

$$|\partial J_r(u)| \lesssim |\beta_{k,i}||\partial J_r(u)\phi_{k,i}| + |\beta||\partial J_r(u)\nu| \lesssim \sum_{k,i} |\partial J_r(u)\phi_{k,i}| + |\partial J_r(u)\nu|.$$

From Lemmata[5.1,5.2] and[5.3] we then find

$$\sum_{k,i} |\partial J_r(u)\phi_{k,i}| \lesssim \tau + \sum_{j=1}^q |\nabla K_j| - \frac{1}{\lambda_j} + \frac{1}{\lambda_{j-2}} + |1 - \frac{\alpha^2}{\alpha_{K,j}^{p+1}} K_j \alpha^{p-1}_j| + \sum_{r \neq s} \varepsilon_{r,s} + |\partial J_r(u)|^2,$$

whereas from Lemma[6.1] we have

$$\partial J_r(u)\nu = \partial J_r(a^i\varphi_i)\nu + O(||v||) = \partial J_r(u)\nu + O(\nu).$$

From this the claim follows.

\[\square \]

7 Appendix

7.1 Interactions

Proof of Lemma 2.2. (i) follows using straightforwardly the expression of $\phi_{k,i}$.

(ii) (a) Case $k = 1$. We have $\phi_{k,i} = \varphi_i$ for $k = 1$, and thus for $c > 0$ small

$$\int \varphi_{a_i} \frac{2\alpha}{r} \mu_g \leq \int_{B_{cR}(a_i)} u_{a_i} \left(\frac{\lambda_i}{1 + \lambda_i^2 \gamma_n G_{a_i}^{2/\pi}} \right)^{2n} \mu_g = O \left(\frac{1}{\lambda_i^{n-\theta}} \right).$$

On $B_{c}(a_i) \ 1 + O(|x - a_i|^2)$, and by (2.8)

$$\gamma_n G_{a_i}^{2/\pi} = r^2 + O \left(r^3 \right) \text{ for } n = 3,$$

$$r^4 \text{ for } n = 4,$$

$$r^5 \text{ for } n = 5,$$

$$r^6 \text{ for } n = 6,$$

$$r^7 \text{ for } n = 7,$$

whence passing to normal coordinates at a_i

$$\int \frac{2\alpha}{r} \mu_g = \int_{B_{c,\lambda}(0)} \frac{\lambda_i^{\theta}r \mu_g}{(1 + r^2)^{n-\theta}} + O \left(\frac{1}{\lambda_i^{n-\theta}} \right)$$

up to some error $O(\frac{2\alpha}{1 + r^2})$, whence the claim follows with $c_1 = \int \frac{dx}{2(1 + r^2)^{n/2}}$.

(\beta) Case $k = 2$. The proof works analogously to the one of case $k = 1$ above.
(γ) Case \(k = 3 \). We have \(\phi_{k,i} = 2^{-n}u_{a_i}\frac{1}{\tau^{n-2}}\gamma_{n}G_{a_i}^{\frac{2}{n}}\nabla_{a_i}\phi_{i} + \nabla_{a_i}u_{a_i}\phi_{i} \), whence
\[
\gamma_{n}(\nabla_{a_i}G_{a_i}^{\frac{2}{n}})(x) = -2x + O(r^2, r^3, r^4, r^5 \ln r, r^6) \quad \text{for} \quad n = 3, \ldots, 6 \quad \text{and} \quad n \geq 7.
\]
Moreover \(u_{a_i} = 1 + O(r^2) \), implies \(\nabla_{a_i}u_{a_i} = O(r_{a_i}) \). Thus
\[
\int \varphi_{i}^{\frac{n+2}{n-\tau}} |\phi_{k,i}|^2 d\mu_{g_{0}} = \frac{(n-2)^2}{n} \int_{\mathbb{R}^n} \frac{\lambda_i^{\theta} r^2 dx}{(1 + r^2)^{n+2-\theta}} + O\left(\frac{1}{\lambda_i^{\theta}}\right) + O \begin{cases}
\lambda_i^{-1-\theta} & \text{for } n = 3 \\
\lambda_i^{-2-\theta} & \text{for } n = 4 \\
\lambda_i^{-3-\theta} & \text{for } n = 5 \\
\lambda_i^{-4-\theta} & \text{for } n \geq 7
\end{cases}.
\]
From this the claim follows.

(iii) We just prove the case \(k = 2 \) and start showing that
\[
-\lambda_i^{\theta} \int \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_i}\varphi_{j} d\mu_{g_{0}} = -\lambda_i^{\theta} \int \varphi_{i}^{1-\tau} \partial_{\lambda_j}\varphi_{j}^{\frac{n+2}{n-\tau}} d\mu_{g_{0}} \quad (7.1)
\]
up to some \(O(\tau^2 + \sum_{i \neq j} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_j(n-\tau)} + \varepsilon_{i,j}^{n+2} \right)) \), so we may evaluate either of these integrals. Clearly
\[
-\lambda_i^{\theta} \int \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} d\mu_{g_{0}} = -\lambda_i^{\theta} \int_{B_{i}(u_i)} \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} d\mu_{g_{0}}
\]
up to an error \(O(\frac{1}{\lambda_i^{\frac{n+2}{n-\tau}}} + \frac{1}{\lambda_j^{\frac{n+2}{n-\tau}}}) \), whence using Lemma 2.1 we find
\[
-\lambda_i^{\theta} \int \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} d\mu_{g_{0}} = -\lambda_i^{\theta} \int_{B_{i}(u_i)} \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} \frac{L_{g_{0}}\varphi_{i}}{4(n-1)} d\mu_{g_{0}}
\]
up to \(O(\lambda_i^{\frac{n-2}{n-\tau}} + \lambda_j^{\frac{n-2}{n-\tau}}) \cdot \varepsilon_{i,j}^{n+2} \). Indeed we clearly have \(\lambda_i^{\frac{n+2}{n-\tau}} \lambda_j^{\frac{n-2}{n-\tau}} = O(\lambda_i^{\frac{n+2}{n-\tau}} \varepsilon_{i,j}^{n+2}) \), and the difference from \(L_{g_{0}}\varphi_{i} \) to \(4n(n-1)\varepsilon_{i,j}^{n+2} \) can be estimated by Lemma 2.1 via quantities of the type
\[
\int_{B_{i}(u_i)} \varphi_{i}^{\alpha} \varphi_{j} d\mu_{g_{0}} = \int_{B_{i}(u_i)} \varphi_{i}^{\alpha} \varphi_{j}^{\frac{n+2}{n-\tau}} \varphi_{j} d\mu_{g_{0}} = O(\varepsilon_{i,j}^{n+2} ||\varphi_{i}^{\alpha} \varphi_{j}^{\frac{n+2}{n-\tau}}||_{L_{g_{0}}^{\frac{n+2}{n-\tau}}}),
\]
thanks to case (v). Passing back to integrating on the whole manifold \(M \) we find, estimating also mixed products of gradients of \(\varphi_{i} \) and \(\varphi_{j} \),
\[
-\lambda_i^{\theta} \int \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} d\mu_{g_{0}} = -(1 + O(\tau))\lambda_i^{\theta} \lambda_j^{\theta} \int_{B_{i}(u_i)} \varphi_{i}^{1-\tau} \partial_{\lambda_j} \frac{L_{g_{0}}\varphi_{j}}{4(n-1)} d\mu_{g_{0}}
\]
\[
+ O\left(\lambda_i^{\theta} \int \varphi_{i} \Delta_{g_{0}} \varphi_{i}^{\frac{n+2}{n-\tau}} d\mu_{g_{0}} + O\left(\frac{1}{\lambda_i^{\frac{n+2}{n-\tau}}} + \frac{1}{\lambda_j^{\frac{n+2}{n-\tau}}} + \varepsilon_{i,j}^{n+2}\right)\right).
\]
By direct calculation \(\Delta_{g_{0}} \varphi_{i}^{\frac{n+2}{n-\tau}} = O(\tau \varphi_{i}^{\frac{n+2}{n-\tau}}) \), whence
\[
-\lambda_i^{\theta} \lambda_j^{\theta} \int \varphi_{i}^{\frac{n+2}{n-\tau}} \partial_{\lambda_j}\varphi_{j} d\mu_{g_{0}} = -\lambda_i^{\theta} \lambda_j^{\theta} \int \varphi_{i}^{1-\tau} \partial_{\lambda_j} \frac{L_{g_{0}}\varphi_{j}}{4(n-1)} d\mu_{g_{0}} + O((\tau + \frac{1}{\lambda_i^{\frac{n+2}{n-\tau}}} + \frac{1}{\lambda_j^{\frac{n+2}{n-\tau}}} + \varepsilon_{i,j}^{n+2})).
\]
Now applying Lemma 2.1 as before, but in differentiated form, (7.1) follows. Let
\[
R_{i,j} = O(\tau^2 + \sum_{i \neq j} \left(\frac{1}{\lambda_i^4} + \frac{1}{\lambda_j^2(n-2)} + \varepsilon_{i,j}^{n+2} \right))
\]
36
denote a quantity such order. We now assume the non-exclusive alternative
\[
\frac{\lambda_i}{\lambda_j} \sim \frac{\lambda_i \lambda_j d^2(a_i, a_j)}{\lambda_j}.
\] (7.2) For \(c > 0\) small and fixed we have by the expression in (2.8)
\[
- \lambda^\theta \lambda_j \int \frac{n}{2} \varphi_i \varphi_j \partial_j \varphi_i d\mu_{g_0}
\]
\[
= \frac{n - 2}{2} \lambda^\theta \int \left(\frac{\lambda_i}{1 + \lambda_i^2 \gamma_0 G^\frac{2}{\alpha}} \right) \varphi_i \varphi_j \partial_j \varphi_i d\mu_{g_0}
\]
whence passing to \(g_0\)-normal coordinates and recalling (2.8) we find
\[
- \lambda^\theta \lambda_j \int \varphi_i \varphi_j \partial_j \varphi_i d\mu_{g_0} = \frac{n - 2}{2} \int \left(\frac{\lambda_i}{1 + \lambda_i^2 \gamma_0 G^\frac{2}{\alpha}} \right) \varphi_i \varphi_j \partial_j \varphi_i d\mu_{g_0}
\] (7.3)
up to the error \(R_{i,j}\). Indeed for e.g. \(n \geq 7\) [2.8] tells us that on \(B_c(0)\)
\[
\frac{\lambda_i}{1 + \lambda_i^2 \gamma_0 G^\frac{2}{\alpha}} = \left(\frac{\lambda_i}{1 + \lambda_i^2 \gamma_0 G^\frac{2}{\alpha}} \right)^{\frac{n + 2}{2} - \theta} (1 - O(\frac{\lambda^2 \gamma_0^2}{1 + \lambda^2 \gamma_0^2}) = \left(\frac{\lambda_i}{1 + \lambda_i^2 \gamma_0 G^\frac{2}{\alpha}} \right)^{\frac{n + 2}{2} - \theta}(1 + \gamma_0)
\]
in conformal normal coordinates, whence by Hölder’s inequality and Lemma 2.2
\[
\int_{B_c(0)} r^2 \varphi_i \varphi_j \partial_j \varphi_i d\mu_{g_0} \leq \|r^2 \varphi_i \|_{L^2(\gamma_0 G^\frac{2}{\alpha})} \|r^2 \varphi_i \|_{L^2(\gamma_0 G^\frac{2}{\alpha})} = O(\frac{n + 2}{\lambda_i^2 \gamma_0^2}).
\]
Due to (7.2) we have that either
\[
\frac{\lambda_i}{\lambda_j} \sim \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i, a_j) \quad \text{or} \quad \frac{\lambda_i}{\lambda_j} \sim \frac{\lambda_i}{\lambda_j},
\]
and for \(c > 0\) sufficiently small may expand on
\[
\mathcal{A} = \left\{ \left| \frac{x}{\lambda_i} \right| < \epsilon \sqrt{\gamma_0 G^\frac{2}{\alpha}} (a_i) \right\} \cup \left\{ \left| \frac{x}{\lambda_j} \right| < \epsilon \right\} \subset B_c(0)
\]
the integrand in (7.3) as
\[
\frac{1}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i) \right)} \frac{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i)}{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i) + 1}
\]
\[
= \left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i) \right)^{\frac{n + 2}{2} - \theta} \frac{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i)}{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i) + 1}
\]
\[
\frac{2 - n}{2} \left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i) \right) \frac{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i)}{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i) + 1}
\]
\[
+ \frac{\gamma_0 \nabla G^\frac{2}{\alpha} (a_i)}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i) \right)} \frac{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i)}{\lambda^2 \gamma_0 G^\frac{2}{\alpha} (a_i) + 1}
\]
\[
+ \frac{O(\frac{\lambda_i}{\lambda_j} |x|^2)}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_0 G^\frac{2}{\alpha} (a_i) \right)}
\]

37
Using radial symmetry we then get, with \(\bar{b}_2 = \frac{n-2}{2} \int_{\mathbb{R}^n} \frac{dx}{(1+r^2)^\frac{2-n}{2}} = \frac{n-2}{2} b_1 \),

\[
-\lambda^2 \lambda_j \varphi_i \frac{\varphi_j}{\varphi_i} \varphi_j d\mu_{g_0} = \frac{\bar{b}_2 u_{a_j}(a_i)}{\lambda_i^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} - 1
\]

\[
(\frac{1}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)) \frac{\varphi_j}{\varphi_i} \lambda_i^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) + 1
\]

up to errors of the form \(R_{i,j} \) and \(I_{A^c} \), where

\[
I_{A^c} \lesssim \int_{A^c} (1 + r^2)^{\frac{n-2}{2}} - \theta \left(\frac{1}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) \right) \frac{\varphi_j}{\varphi_i} d\mu_{g_0}.
\]

In case \(\varepsilon_{i,j} \sim \frac{\lambda_i}{\lambda_j} \), we obviously have

\[
I_{A^c} \leq C \left(\frac{\lambda_i}{\lambda_j} \right)^{\frac{n-2}{2} - \theta} = o(\varepsilon_{i,j}^{\frac{n-2}{2}}).
\]

Otherwise we may assume \(A^c \neq \emptyset \), thus \(d(a_i, a_j) \ll 1 \), and write \(A^c \subseteq B_1 \cup B_2 \), where

\[
B_1 = \left\{ \varepsilon \sqrt{\gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} \leq \left| \frac{x}{\lambda_j} \right| \leq E \sqrt{\gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} \right\} \quad \text{and} \quad B_2 = \left\{ E \sqrt{\gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} \leq \left| \frac{x}{\lambda_j} \right| \leq c \right\}
\]

for a sufficiently large constant \(E > 0 \). We then may estimate

\[
I_{B_1} = \int_{B_1} \frac{1}{(1 + r^2)^\frac{n-2}{2} - \theta} \left(\frac{1}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) \right) \frac{\varphi_j}{\varphi_i} d\mu_{g_0}
\]

\[
\leq C \left(\frac{\lambda_i}{\lambda_j} \right)^{\frac{n-2}{2}} \int_{\left\{ |x| \leq E \sqrt{d(a_i, a_j)} \right\}} \left(\frac{1}{1 + \lambda_j^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} \right) \frac{\varphi_j}{\varphi_i} d\mu_{g_0}.
\]

Changing coordinates via \(d_{i,j} = \exp^{-1} \exp_{g_0} \), we get

\[
I_{B_1} \leq \frac{C}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) \right)^{\frac{n-2}{2} - \theta} \int_{\left\{ |x| \leq E \sqrt{d(a_i, a_j)} \right\}} \left(\frac{1}{1 + r^2} \right)^{\frac{n-2}{2}} dx,
\]

and thus \(I_{B_1} = O(\varepsilon_{i,j}^{\frac{n-2}{2}}) = o(\varepsilon_{i,j}^{\frac{n-2}{2}}) \) using \((2) \). Moreover

\[
I_{B_2} = \int_{B_2} \frac{1}{(1 + r^2)^\frac{n-2}{2} - \theta} \left(\frac{1}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) \right) \frac{\varphi_j}{\varphi_i} d\mu_{g_0}
\]

\[
\leq \frac{C}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) \right)^{\frac{n-2}{2}} \int_{\left\{ |x| \geq \sqrt{\lambda_j^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} \right\}} dx.
\]

This shows \(I_{A^c} \lesssim I_{B_1} + I_{B_2} = o(\varepsilon_{i,j}^{\frac{n-2}{2}}) \), and we arrive at

\[
-\lambda^2 \lambda_j \varphi_i \frac{\varphi_j}{\varphi_i} \varphi_j d\mu_{g_0} = \frac{\bar{b}_2 u_{a_j}(a_i)}{\lambda_i^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)} - 1
\]

\[
(\frac{1}{\lambda_j} + \lambda_i \lambda_j \gamma_n G^\frac{2-n}{n} \lambda_j (a_i)) \frac{\varphi_j}{\varphi_i} \lambda_i^2 \gamma_n G^\frac{2-n}{n} \lambda_j (a_i) + 1
\]

up to some error of the form \(R_{i,j} \). Due to conformal covariance, there holds

\[
G_{a_j}(a_i, a_i) = u_{a_j}^{-1}(a_i) u_{a_j}^{-1}(a_j) G_{g_0}(a_i, a_j)
\]
and we therefore conclude

\[-\lambda_i^{\theta} \lambda_j \int \varphi_i^{\frac{n+2}{2}} \partial_{\lambda_i} \varphi_j d\mu_{g_0} = b_2 \frac{\lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_i, a_j)}{\left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_i, a_j)\right)^{\frac{2}{n+2}}} + R_{i,j}.\]

(7.4)

We turn to the case left by (7.2), i.e.

\[\varepsilon \frac{\lambda_j}{\lambda_i} \sim \frac{\lambda_j}{\lambda_i}\]

(7.5)

and, recalling (7.1), estimate for \(c > 0\) small

\[-\lambda_i^{\theta} \lambda_j \int \varphi_i^{1-\tau} \partial_{\lambda_i} \varphi_j^{\frac{n+2}{2}} d\mu_{g_0} = \frac{n + 2}{2} \int_{B_{c}(a_j)} \frac{\lambda_i}{1 + \lambda_i^2 \gamma_n G_{g_0}^\frac{2}{n+2}} \varphi_i^{\frac{n+2}{2} - \theta} u_{a_j}^{1-\tau} \frac{\lambda_j}{1 + \lambda_j^2 \gamma_n G_{g_0}^\frac{2}{n+2}} \varphi_j^{\frac{n+2}{2} + \theta} - 1 d\mu_{g_{a_j}}\]

up to some error \(R_{i,j}\), whence up to the same error

\[-\lambda_i^{\theta} \lambda_j \int \varphi_i^{1-\tau} \partial_{\lambda_i} \varphi_j^{\frac{n+2}{2}} d\mu_{g_0} = \frac{n + 2}{2} \int_{B_{c}(a_j)(0)} \frac{\lambda_i}{1 + \lambda_i^2 \gamma_n G_{g_0}^\frac{2}{n+2}} \varphi_i^{\frac{n+2}{2} - \theta} u_{a_j}^{1-\tau} \frac{\lambda_j}{1 + \lambda_j^2 \gamma_n G_{g_0}^\frac{2}{n+2}} \varphi_j^{\frac{n+2}{2} + \theta} - 1 d\mu_{g_{a_j}}\]

(7.6)

On \(\mathcal{A} = \left\{ \frac{x}{\lambda_i} \leq \varepsilon \sqrt{\gamma_n G_{g_0}^\frac{2}{n+2}}(a_j) \right\} \cup \left\{ \frac{x}{\lambda_i} \leq \varepsilon \frac{1}{\lambda_i} \right\}\) we may expand for \(\varepsilon > 0\) sufficiently small

\[
\left(\frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(\exp_{g_{a_j}} \frac{x}{\lambda_i})\right)^{\frac{n+2}{2} + \theta} = \left(\frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_j)\right)^{\frac{n+2}{2} + \theta}
\]

\[+ \left\{ 2 - \frac{n}{2} + \theta \right\} \gamma_n \nabla G_{g_0}^\frac{2}{n+2}(a_j) \lambda_i x + O\left(\frac{\lambda_i}{\lambda_j} |x|^2\right)\]

\[
\left(\frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_j)\right)^{\frac{n+2}{2} - \theta}.
\]

With analogous estimates as in the previous case we derive

\[-\lambda_i^{\theta} \lambda_j \int \varphi_i^{\frac{n+2}{2}} \partial_{\lambda_i} \varphi_j d\mu_{g_0} = \bar{b}_2 \frac{u_{a_j}^{1-\tau}(a_j)(\frac{\lambda_j}{\lambda_i})^\theta}{\left(\frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_j)\right)^{\frac{n+2}{2} - \theta}} + R_{i,j}\]

with

\[
\bar{b}_2 = \frac{n + 2}{2} \int_{\mathbb{R}^n} \frac{1 - \frac{1}{1 + r^2}}{r^2 + 1} \varphi_i^{\frac{n+2}{2}} dx
\]

(7.6)

and indeed \(\bar{b}_2 = \bar{b}_2 = \frac{n-2}{2n} \omega_n\) whence, using conformal covariance, as before (7.5) implies

\[-\lambda_j \int \varphi_i^{\frac{n+2}{2}} \partial_{\lambda_i} \varphi_j d\mu_{g_0} = \bar{b}_2 \frac{u_{a_j}^{1-\tau}(a_j)(\frac{\lambda_j}{\lambda_i})^\theta}{\left(\frac{\lambda_j}{\lambda_i} + \lambda_i \lambda_j \gamma_n G_{g_0}^\frac{2}{n+2}(a_i, a_j)\right)^{\frac{n+2}{2} - \theta}} + R_{i,j}.\]

(7.7)

Now the claim follows comparing (7.4) under (7.2) and (7.7) under (7.5).

(iv) The first claim, i.e. that for \(k \neq l\)

\[\int \varphi_i^{1-\tau} \phi_{k,i} \varphi_l \partial_{\lambda_i} \varphi_j d\mu_{g_0} = O\left(\frac{1}{\lambda_i^{2+\theta}} + \frac{1}{\lambda_i^{2+\theta}}\right)\]

follows like in case (ii), just with vanishing leading terms. The second one is proved analogously to (ii), cf. case (a) in the proof.
(v) The case \(\tau = 0 \) is known, cf. e.g. [35], Lemma 3.4. By Lemma 2.2 we therefore have
\[
\int \varphi_i^{\alpha-\tau} \varphi_j^\beta \, d\mu_{\gamma_0} = \int (\varphi_i^{\alpha-\tau} - \frac{1}{\lambda_i^{\tau}} \varphi_j^\beta) \, d\mu_{\gamma_0} + O(\lambda_i^{-\theta} \varepsilon_{i,j}).
\]
To estimate the integral in the above right-hand side, we write
\[
\int \varphi_i^{\alpha-\tau} |1 - \frac{1}{\lambda_i^\tau} \varphi_j^\beta| \, d\mu_{\gamma_0} \leq \theta \int_{B_r(a_i)} \varphi_i^{\alpha-\tau} \| \partial_q \left(\frac{1}{1 + \lambda_i^2 r_i^2} \right)^{\sigma q} \| \varphi_j^\beta \, d\mu_{\gamma_0}
\leq \theta \| \varphi_i^{\alpha-\beta-\tau} \| \ln \frac{1}{1 + \lambda_i^2 r_i^2} \| \varphi_i^\beta \| \varphi_j^\beta \| \ln \frac{1}{1 + \lambda_i^2 r_i^2}.
\]
From the case \(\tau = 0 \) and \(\alpha + \beta = \frac{2n}{n-2} \) we then get
\[
\int \varphi_i^{\alpha-\tau} |1 - \frac{1}{\lambda_i^\tau} \varphi_j^\beta| \, d\mu_{\gamma_0} \leq C \theta_{\alpha \beta} \| (\lambda_i^2)^{(n-2)(\alpha - n - \frac{n}{2(n+1)})} \ln \frac{1}{1 + \lambda_i^2 r_i^2} \| 1 \leq \frac{n}{2}.
\]
By direct evaluation the latter norm is of order \(\lambda_i^{-\theta} \) and the claim follows.

(vi) also follows from the same above reference in [35], while (vii) is a straightforward computation.

7.2 Derivatives

In this appendix we give the remaining proofs from Section 5.

Proof of Lemma 5.1. First note that the equalities up to the error in (5.14)
\[
\partial J_r(u) \phi_{1,j} = \partial J_r(\alpha^i \varphi_i) \phi_{1,i} = \partial_{\alpha_j} J_r(\alpha^i \varphi_i)
\]
follow from Lemma 4.3 and the chain rule of differentiation. So we evaluate
\[
\partial J_r(\alpha^i \varphi_i) \varphi_j = \frac{2}{(\int K(\alpha^i \varphi_i)^{p+1} \, d\mu_{\gamma_0})^{\frac{p+1}{p+\tau}}} \left(\int \alpha^i \varphi_i L_{\gamma_0} \varphi_j \, d\mu_{\gamma_0} - \frac{\int (\alpha^i \varphi_i) L_{\gamma_0} (\alpha^k \varphi_k) \, d\mu_{\gamma_0}}{\int K(\alpha^i \varphi_i)^{p+1} \, d\mu_{\gamma_0}} K(\alpha^i \varphi_i)^p \varphi_j \, d\mu_{\gamma_0} \right)
\]
and start expanding
\[
\int K(\alpha^i \varphi_i)^p \varphi_j \, d\mu_{\gamma_0} = \int K \alpha_j^p \sum_{\alpha_i \varphi_i} + p \sum_{j \neq i} K \alpha_j^{p-1} \alpha_i \varphi_j^p \, d\mu_{\gamma_0}
+ \int \left(K \sum_{j \neq i} \alpha_i \varphi_j^p \, d\mu_{\gamma_0} + O(\sum_{r \neq a} \varphi_r^{p-1} \varphi_j^2 \, d\mu_{\gamma_0}) \right) \, d\mu_{\gamma_0}.
\]
The above error term is of order \(O(\sum_{r \neq a} \varepsilon_{r,s}^{\alpha i}) \) by Lemma 2.2, whence
\[
\int K(\alpha^i \varphi_i)^p \varphi_j \, d\mu_{\gamma_0} = \int K \alpha_j^p \sum_{\alpha_i \varphi_i} + p \sum_{j \neq i} K \alpha_j^{p-1} \alpha_i \varphi_j^p \, d\mu_{\gamma_0} + \int K \sum_{\alpha_i \varphi_i} \varphi_j^p \, d\mu_{\gamma_0},
\]
up to an error of order \(O(\sum_{r \neq a} \varepsilon_{r,s}^{\alpha i}) \). Similarly
\[
\int K \sum_{\alpha_i \varphi_i} \varphi_j^p \, d\mu_{\gamma_0} = \int K \sum_{\alpha_i \varphi_i} \varphi_j^p \, d\mu_{\gamma_0} + \int K \sum_{\alpha_i \varphi_i} \varphi_j^p \, d\mu_{\gamma_0}
\]
up to an error $O(\sum r_{ij} \varepsilon_{r_{ij}}^{n+2})$, and thus
\[\int \{ \alpha, \varphi \} \mid \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij} = \chi(1 \mid j \neq i) \int K^{i} \partial \varphi \partial \varphi_{ij} d \mu_{ij} + \chi(1 \mid j \neq i) \int K^{i} \partial \varphi \partial \varphi_{ij} d \mu_{ij} \]
Iteratively we obtain
\[\int \{ \alpha, \varphi \} \mid \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij} = \sum_{i} \alpha \int \{ \alpha, \varphi \} \mid \partial \varphi_{ij} d \mu_{ij} + p \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij} \]
up to an error of order $O(\sum r_{ij} \varepsilon_{r_{ij}}^{n+2})$. From this, we obviously have
\[\partial J_{r}(\alpha^{i} \varphi_{i}) = \frac{2}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{1/2}} \left(\int \{ \alpha, \varphi \} \mid \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij} - \frac{\int \{ \alpha, \varphi \} \mid \partial \varphi_{ij} d \mu_{ij} + p \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij}}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{2}} \right) \]
up to some $O(\sum r_{ij} \varepsilon_{r_{ij}}^{n+2})$. Then (5.8) and (5.11) applied to the second and third summands above show
\[\partial J_{r}(\alpha^{i} \varphi_{i}) = \frac{2}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{1/2}} \left(\int \{ \alpha, \varphi \} \mid \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij} - \frac{\int \{ \alpha, \varphi \} \mid \partial \varphi_{ij} d \mu_{ij} + p \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij}}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{2}} \right) \]
up to an error of order $O(\sum r_{ij} \varepsilon_{r_{ij}}^{n+2})$. Then applying (5.11) as well as (5.10) and Lemma 2.2 to the first summand above we find
\[\partial J_{r}(\alpha^{i} \varphi_{i}) = \frac{8n(n-1)\varepsilon_{r_{ij}}}{(\alpha^{i+2} \varphi_{i})^{1/2}} \left(1 - \frac{\int \{ \alpha, \varphi \} \mid \partial \varphi_{ij} d \mu_{ij} + p \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij}}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{2}} \right) \]
Using (5.8) for the first term in the right-hand side, we then get
\[\partial J_{r}(\alpha^{i} \varphi_{i}) = \frac{8n(n-1)\varepsilon_{r_{ij}}}{(\alpha^{i+2} \varphi_{i})^{1/2}} \left(1 - \frac{\int \{ \alpha, \varphi \} \mid \partial \varphi_{ij} d \mu_{ij} + p \sum_{j \neq i} \alpha \varphi \partial \varphi_{ij} d \mu_{ij}}{(\int K(\alpha^{i} \varphi_{i})^{p+1} d \mu_{ij})^{2}} \right) \]
up to an error of order
\[O(\tau^2 + \sum_{r \neq s} |1 - \frac{\alpha^2}{\lambda_{r,s}} K_r^2| \tau^2 + |\nabla K_r|^2 |1 + \frac{1}{\lambda_r^2} + \frac{1}{\lambda_r^{2(n-2)}} + \varepsilon_{r}^2) \].

Applying now (5.8) to the first coefficient above we find

\[
\partial J_r(\alpha^i \varphi_i) \varphi_j = \frac{8n(n-1)\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \left(\frac{\alpha^2}{\lambda_{i,j}} \right) \left(1 - \frac{\alpha^2}{\lambda_{i,j}} \right) K_p^{-1} \int K(\alpha^i \varphi_i)^p + \int d\mu_{gn} \right) \]

\[
- \frac{16n(n-1)}{p+1} \frac{\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \alpha_j \left(1 - \frac{\alpha^2}{\lambda_{i,j}} \right) K_p^{-1} \left(\sum_{k \neq l} \alpha_j \frac{\alpha_k \alpha_l}{\alpha^2} \varphi_{k,l} + p \sum_{j \neq i} \alpha_i \varepsilon_{i,j} \right),
\]

and obviously the second summand is of order of the previous error term. Thus

\[
\partial J_r(\alpha^i \varphi_i) \varphi_j = \frac{8n(n-1)\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \left(\frac{\alpha^2}{\lambda_{i,j}} \right) \left(1 - \frac{\alpha^2}{\lambda_{i,j}} \right) K_p^{-1} \left(H_{i,j} + O\left(\frac{\ln \lambda_j}{\lambda_{i,j}}\right) \right)
\]

\[
- \frac{8n(n-1)\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \alpha_j \left(\sum_{k \neq l} \alpha_j \frac{\alpha_k \alpha_l}{\alpha^2} \varphi_{k,l} + p \sum_{j \neq i} \alpha_i \varepsilon_{i,j} \right)
\]

up to the same error, and applying finally (5.7) and (5.8) we arrive at

\[
\partial J_r(\alpha^i \varphi_i) \varphi_j = \frac{8n(n-1)\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \left(\frac{\alpha^2}{\lambda_{i,j}} \right) \left(1 - \frac{\alpha^2}{\lambda_{i,j}} \right) K_p^{-1} \left(H_{i,j} + O\left(\frac{\ln \lambda_j}{\lambda_{i,j}}\right) \right)
\]

\[
- \frac{8n(n-1)\varepsilon_{i}^{p+1}}{(a_{K,r}^p)^{\nu+1}} \alpha_j \left(\sum_{k \neq l} \alpha_j \frac{\alpha_k \alpha_l}{\alpha^2} \varphi_{k,l} + p \sum_{j \neq i} \alpha_i \varepsilon_{i,j} \right)
\]
again up to the same error term. Recalling that $\bar{b}_1 = \frac{2n}{\alpha} b_1$, we can rewrite this as

$$\partial J_r(\alpha \psi_i) \psi_j = \frac{8n(n-1) c_0}{(\alpha K, \tau)^{-n+1}} \alpha_j \left(1 - \frac{\alpha^2 K_j \lambda_j^{p-1}}{(\alpha K, \tau)^{n-1}} \right) - \frac{8n(n-1) c_0}{(\alpha K, \tau)^{-n+1}} \frac{\alpha^{n+2} K_j}{\lambda_j^{n+1}}$$

$$+ \bar{d}_1 \left(\sum_{k \neq i} \frac{K_k \alpha_k}{\lambda_k^{n+2}} \frac{\alpha_{k,i}^{n+2}}{\alpha_k^{n+2}} \alpha_j \right)$$

up to an error of the form

$$O\left(\tau^2 + \sum_{r \neq s} \left| 1 - \frac{\alpha^2 K_r \lambda_r^{p-1}}{(\alpha K, \tau)^{n+1}} \right|^2 + \frac{\left| \nabla K_r \right|^2}{\lambda_r^4} + \sum_{r \neq s} \varepsilon_{r,s} \right).$$

Note that by (5.1) the coefficient of \bar{d}_1 in the above term vanishes. This then tells us in a first step, that

$$\forall i : 1 - \frac{\alpha^2 K_j \lambda_j^{p-1}}{(\alpha K, \tau)^{n+1}} = O \left(\tau^2 + \sum_{r \neq s} \frac{1}{\lambda_r^2} + \frac{1}{\lambda_r^{2(n+2)}} + \sum_{r \neq s} \varepsilon_{r,s} + |\partial J_r(u)| \right)$$

and therefore

$$\forall i : 1 - \frac{\alpha^2 K_j \lambda_j^{p-2}}{(\alpha K, \tau)^{n+2}} = O \left(\tau^2 + \sum_{r \neq s} \frac{1}{\lambda_r^2} + \frac{1}{\lambda_r^{2(n+2)}} + \sum_{r \neq s} \varepsilon_{r,s} + |\partial J_r(u)| \right).$$

Using this we derive up to an error of the form $O(\tau^2 + \sum_{r \neq s} \frac{\left| \nabla K_r \right|^2}{\lambda_r^4} + \sum_{r \neq s} \varepsilon_{r,s} + |\partial J_r(u)|^2)$

$$\partial J_r(\alpha^4 \psi_i) \psi_j = \frac{8n(n-1) c_0}{(\alpha K, \tau)^{-n+1}} \alpha_j \left(1 - \frac{\alpha^2 K_j \lambda_j^{p-1}}{(\alpha K, \tau)^{n+1}} \right)$$

$$= \frac{8n(n-1) c_0}{(\alpha K, \tau)^{-n+1}} \alpha_j \left(\bar{d}_1 \left(\sum_{k \neq i} \frac{K_k \alpha_k}{\lambda_k^{n+2}} \frac{\alpha_{k,i}^{n+2}}{\alpha_k^{n+2}} \alpha_j \right) + \bar{d}_1 \right)$$

$$= \frac{8n(n-1) c_0}{(\alpha K, \tau)^{-n+1}} \alpha_j \left(\sum_{k \neq i} \alpha_j \left(\frac{\alpha_k \alpha_i}{\alpha^2} - \frac{2n}{\alpha^2} \alpha_k \alpha_i \right) \varepsilon_{k,i} + n \sum_{r \neq i} \alpha_i \varepsilon_{i,i} \right).$$
Finally note that the last summand can be simplified to
\[
\frac{n + 2}{n - 2} \frac{8n(n - 1)c_0 \frac{n^2}{2} b_1}{(\alpha K)^{\frac{n^2}{2}}} \left(\sum_{k \neq 1} \alpha_k \alpha_1 \frac{n^2}{2} \varepsilon_{k,1} - \sum_{j \neq 1} \alpha_i \varepsilon_{i,j} \right).
\]
From this the lemma follows setting
\[
b_1 = \frac{8n(n - 1)(n + 2)}{c_0 \frac{n^2}{2} (n - 2)} b_1, \quad \varepsilon_2 = \frac{8n(n - 1)}{c_0 \frac{n^2}{2}} \varepsilon_2, \quad d_1 = \frac{8n(n - 1)}{c_0 \frac{n^2}{2}} d_1, \quad \varepsilon_0 = \frac{8n(n - 1)c_0^2}{c_0},
\]
(7.9)

and arguing as for (5.2) (5.10), (5.11) we see that

From Lemma 4.3 and the chain rule of differentiation we obtain
\[
\partial J_T(u) \phi_{2,j} = \partial J_T(\alpha^i \phi_i) \phi_{2,j} = \lambda_j \partial_{\lambda_j} J_T(\alpha^i \phi_i),
\]
up to the error in (5.15), and evaluate \(\partial J_T(\alpha^i \phi_i) \phi_{2,j} = \frac{2\Lambda}{(f K(\alpha^i \phi_i))^{p+1} d\mu_{g_0}}\)
with
\[
\Lambda = \int \alpha^i \phi_i L_{g_0} \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} - \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} K(\alpha^i \phi_i) \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}.
\]

Arguing as for (7.8), we find
\[
\Lambda = \sum_{j \neq 1} \alpha_i \int \phi_j L_{g_0} \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} - \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} K(\alpha^i \phi_i) \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}
\]
\[
+ \sum_{j \neq 1} \alpha_i \phi_j L_{g_0} \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} - \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} K(\alpha^i \phi_i) \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}
\]
\[
- p \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \sum_{j \neq 1} \int K(\phi_j)^{-1} \alpha_j \phi_j \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}
\]
and arguing as for (5.2) (5.10), (5.11) we see that
\[
\int K \phi_j \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} = \hat{b}_2 \lambda_j \partial_{\lambda_j} \varepsilon_{i,j} + O\left(\sum_{r \neq s} \frac{\lambda_r^2}{\lambda_s^2} + \frac{1}{\lambda_r^2} + \frac{1}{\lambda_s^2} + \varepsilon_{r,s}^2\right),
\]
and
\[
\int \phi_j L_{g_0} \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} = \hat{b}_2 \lambda_j \partial_{\lambda_j} \varepsilon_{i,j} + O\left(\sum_{r \neq s} \frac{\lambda_r^2}{\lambda_s^2} + \frac{1}{\lambda_r^2} + \frac{1}{\lambda_s^2} + \varepsilon_{r,s}^2\right),
\]
(7.10)

as well as \(\int \phi_j L_{g_0} \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0} = O\left(\tau^2 + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^2}\right)\). Using these, we arrive at
\[
\Lambda = - \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \int K \phi_j \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}
\]
\[
+ 4n(n - 1) b_2 \sum_{j \neq 1} \alpha_j \lambda_j \varepsilon_{i,j} \int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0},
\]
\[
- p \frac{\int (\alpha^i \phi_i)L_{g_0}(\alpha^k \phi_k)d\mu_{g_0}}{\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \sum_{j \neq 1} \int K \phi_j^{-1} \phi_i \lambda_j \partial_{\lambda_j} \phi_j d\mu_{g_0}
\]
\[
+ O\left(\tau^2 + \sum_{r \neq s} \frac{\lambda_r^2}{\lambda_s^2} + \frac{1}{\lambda_r^2} + \frac{1}{\lambda_s^2} + \varepsilon_{r,s}^2\right).
\]
Moreover, still arguing as for (5.10) and using Lemma 2.2, we have up to the same error as above

\[\int K \phi_j^{p-1} \varphi_i J_j \varphi_j d\mu_{g_0} = \frac{b_2}{p} \frac{K_j}{\lambda_j^p} \lambda_j \partial_{\lambda_j} \epsilon_{i,j}. \]

Combining this with (5.8), (5.10) and (5.11) we get with the same precision

\[\Lambda = -4n(n-1) \alpha^2 + \frac{\sum_{k \neq l} \alpha_k \alpha_l \epsilon_{k,l}}{K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \int K \alpha_j^p \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + 4n(n-1)b_2 \sum_{j \neq i} \alpha_j \partial_{\lambda_j} \epsilon_{i,j} \]

\[- 4n(n-1) \frac{b_2}{\alpha_{K,r}^{p+1}} K_j \frac{\lambda_j^p \alpha_j^p \lambda_j \partial_{\lambda_j} \epsilon_{i,j}}{\lambda_j^p} - \frac{4n(n-1)b_2 \alpha^2}{\alpha_{K,r}^{p+1}} \sum_{j \neq i} \frac{K_j}{\lambda_j^p} \alpha_j^p \lambda_j \partial_{\lambda_j} \epsilon_{i,j}. \]

Using Lemma 5.1 we find by cancellation

\[\Lambda = -4n(n-1) \alpha^2 + \sum_{r \neq s} \frac{\sum_{k \neq l} \alpha_k \alpha_l \epsilon_{k,l}}{K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \int K \alpha_j^p \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} - 4n(n-1)b_2 \sum_{j \neq i} \alpha_j \lambda_j \partial_{\lambda_j} \epsilon_{i,j}, \]

up to some \(O(\tau^2 + \sum_{r \neq s} \frac{\epsilon_i^2}{\lambda_j^2} + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2} + \epsilon_{r,s}^{n+2} + |\partial J_r(u)|^2) \). Moreover from Lemma 2.2 we have

\[\int K \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} = K_j \int \alpha_j^p \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + O \left(\frac{\epsilon_i^2}{\lambda_j^{n+2}} + O \left(\frac{1}{\lambda_j^{n+2}} \right) \right) \]

\[= O \left(\frac{\tau}{\lambda_j} + \frac{1}{\lambda_j^{n+2}} + \frac{\epsilon_i^2}{\lambda_j^{n+2}} + O \left(\frac{1}{\lambda_j^{n+2}} \right) \right), \]

whence recalling (5.8) we get

\[\Lambda = -4n(n-1) \alpha^2 + \sum_{r \neq s} \frac{\sum_{k \neq l} \alpha_k \alpha_l \epsilon_{k,l}}{K(\alpha^i \phi_i)^{p+1} d\mu_{g_0}} \int K \alpha_j^p \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} - 4n(n-1)b_2 \sum_{j \neq i} \alpha_j \lambda_j \partial_{\lambda_j} \epsilon_{i,j}, \]

up to some \(O(\tau^2 + \sum_{r \neq s} \frac{\epsilon_i^2}{\lambda_j^2} + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2} + \epsilon_{r,s}^{n+2} + |\partial J_r(u)|^2) \). Therefore

\[\partial J_r(\alpha^i \phi_i) \phi_{2,j} = \frac{2\Lambda}{(\int K(\alpha^i \phi_i)^{p+1} d\mu_{g_0})} \]

\[= - \frac{4n(n-1)\epsilon_0^{n+2} \alpha^2}{(\alpha_{K,g})^{n+1}} \int K \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} - \frac{4n(n-1)\epsilon_0^{n+2} b_2}{(\alpha_{K,r})^{n+1}} \sum_{j \neq i} \alpha_j \lambda_j \partial_{\lambda_j} \epsilon_{i,j} \]

(7.11)

up to the same error. Thus we are left with analysing

\[\int K \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} = \int_{B_c(a_j)} K \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + O \left(\frac{1}{\lambda_j^{n+2}} \right) \]

\[= K_j \int_{B_c(a_j)} \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + \nabla K_j \int_{B_c(a_j)} x \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} \]

\[+ \frac{\nabla^2}{2} K_j \int_{B_c(a_j)} x^2 \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + \frac{\nabla^3}{6} K_j \int_{B_c(a_j)} x^3 \phi_j^p \lambda_j \partial_{\lambda_j} \varphi_j d\mu_{g_0} + O \left(\frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^{2(n+2)}} \right). \]
Expanding the bubble \(\varphi_j \) and its derivative \(\lambda_j \partial_{\lambda_j} \varphi_j \) in conformal normal coordinates, i.e.

\[
(p + 1) \varphi_j^p \partial_{\varphi_j} = \lambda_j \partial_{\lambda_j} \varphi_j^p = \frac{\partial^{2n}}{\partial \varphi_j^p} \lambda_j \partial_{\lambda_j} \left(\frac{\lambda_j}{1 + \lambda_j^2 r_{a_j}^2 (1 + r_{a_j}^{-2} H_{a_j})} \right)^{-\theta}
\]

\[
= (n - \theta) \left(\frac{\lambda_j}{1 + \lambda_j^2 r_{a_j}^2 (1 + r_{a_j}^{-2} H_{a_j})} \right)^{n-\theta} - \lambda_j^2 r_{a_j}^2 (1 + r_{a_j}^{-2} H_{a_j}) \theta^2
\]

\[
= (n - \theta) \left(\frac{\lambda_j}{1 + \lambda_j^2 r_{a_j}^2 (1 + r_{a_j}^{-2} H_{a_j})} \right)^{n-\theta} \lambda_j^2 r_{a_j}^2 H_{a_j}^{n+2 - \theta} \lambda_j^2 r_{a_j}^2 \frac{n - 2}{n - \theta} - 1
\]

\[
+ O \left(\frac{\lambda_j^4 r_{a_j}^2 H_{a_j}^2}{(1 + \lambda_j^2 r_{a_j}^2)^2} \right)
\]

and arguing as for (5.4) we find using radial symmetry

\[\int_{B_{(a)}} x^p \varphi_j^p \partial_{\lambda_j} \varphi_j \, d\mu_{\gamma_0}, \quad \int_{B_{(a)}} x^p \varphi_j^p \partial_{\lambda_j} \varphi_j \, d\mu_{\gamma_0} = O(r^2 + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2(1 - \theta)})\]

\[\int_{B_{(a)}} x^p \varphi_j^p \partial_{\lambda_j} \varphi_j \, d\mu_{\gamma_0} = O(r^2 + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2(1 - \theta)})\]

Finally we have

\[
\int_{B_{(a)}} \varphi_j^p \lambda_j \partial_{\lambda_j} \varphi_j \, d\mu_{\gamma_0} = \frac{n - 2}{2} \int_{B_{(0)}} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right)^{n-\theta} \lambda_j^2 r^2 \, dx
\]

\[
+ \int_{B_{(0)}} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right)^{n-\theta} \lambda_j^2 r^2 \, dx
\]

up to some \(O(r^2 + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^2(1 - \theta)}) \), and see that for the first summand above there holds

\[
\frac{n - 2}{2} \int_{B_{(0)}} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right)^{n-\theta} \lambda_j^2 r^2 \, dx = - \frac{n - 2 - \theta}{2} \int_{\mathbb{R}^n} \left(\frac{1}{1 + r^2} \right)^{n-1} \frac{1}{1 + r^2} \ln \frac{1}{1 + r^2} \, dx,
\]

up to the same error. Defining

\[
\tilde{c}_1 = \frac{(n - 2)^2}{4} \int_{\mathbb{R}^n} \frac{1}{(1 + r^2)^{n+1}} \ln \frac{1}{1 + r^2} \, dx, \quad \tilde{c}_2 = - \frac{n - 2 - \theta}{4n} \int_{\mathbb{R}^n} \frac{r^2 (1 - r^2)}{(1 + r^2)^{n+1}} \, dx,
\]

it can be shown, that

\[
\tilde{c}_1 = \frac{(n - 2)^2}{48n} \omega_n \Gamma(n/2)^2 > 0 \quad \text{and} \quad \tilde{c}_2 = \frac{n - 2}{4n} \omega_n \Gamma(\frac{n}{2} + 1) \Gamma(\frac{n}{2}) + \Gamma(\frac{n}{2} - 1) \Gamma(\frac{n}{2} + 2) > 0
\]

so we arrive at

\[
\int K \varphi_j^p \lambda_j \partial_{\lambda_j} \varphi_j \, d\mu_{\gamma_0} = - \tilde{c}_1 \frac{K_j}{\lambda_j^2} - \tilde{c}_2 \frac{\Delta K_j}{\lambda_j^2} + K_j \int_{B_{(0)}} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right)^{n-\theta} \lambda_j^2 r^2 H_{a_j} n + 2 - n \lambda_j^2 r^2 \lambda_j^2 r^2 \, dx
\]
up to some $O(\tau^2 + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^{2(n-2)}})$ and arguing as for (5.6) we find

$$
\int_{B_{\varepsilon_0}(0)} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right)^{n-1} \left(\frac{2 - n \lambda_j^2 r^2}{1 + \lambda_j^2 r^2} \right) H_{\alpha_0} dx
$$

$$
= \frac{1}{\lambda_j^{n-2+\sigma}} \int_{B_{\varepsilon_0}(0)} \left(\frac{n + 2 - n \lambda_j^2 r^2}{1 + \varepsilon_0^2 n + 2 - n \lambda_j^2 r^2} \right) \begin{pmatrix}
H_j + \nabla H_j \cdot \frac{\tau}{\lambda_j} + O\left(\frac{\tau^2}{\lambda_j} \right) \\
H_j + \nabla H_j \cdot \frac{\tau}{\lambda_j} + O\left(\frac{\tau^2 \ln \frac{\tau}{\lambda_j}}{\lambda_j^3} \right) \\
- W_j \ln \frac{\tau}{\lambda_j} + O\left(\frac{\tau^2 \ln \frac{\tau}{\lambda_j}}{\lambda_j^3} \right) \\
O\left(\frac{\tau^2}{\lambda_j^3} \right)
\end{pmatrix}
$$

(7.13)

$$
= - \tilde{d}_1 \frac{\partial_j}{\lambda_j^3} + O(\tau^2 + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^{2(n-2)}}), \quad \tilde{d}_j = \begin{pmatrix}
H_j + O\left(\frac{\lambda_j^2}{\lambda_j^3} \right) \\
H_j + O\left(\frac{\lambda_j^2}{\lambda_j^3} \right) \\
\lambda_j \frac{\partial_j}{\lambda_j^3} \\
0
\end{pmatrix},
\tilde{d}_1 = - \int \frac{\tau^n (n + 2 - n \tau^2)}{(1 + \varepsilon_0^2 n)^{2(n-2)}} dx.
$$

We conclude that

$$
\int K \varphi_j^p \lambda_j \partial_j \varphi_j d\mu_{g_0} = - \tilde{c}_1 \frac{K_j}{\lambda_j^3} \tau - \tilde{c}_2 \frac{\Delta K_j}{\lambda_j^2 + \tau} - \tilde{d}_1 \frac{K_j}{\lambda_j^3} \partial_j + O(\tau^2 + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^{2(n-2)}}).
$$

Plugging this into (7.11), we then have

$$
\partial J_r(u) \varphi_{2,j} = \frac{4n(n-1)\tilde{c}_1}{(\alpha_{K,\tau})^{\frac{n-2}{2}}} \frac{n-2}{2} \sum_{j \neq i} \lambda_j \partial_{\lambda_j} \varepsilon_{i,j} + O(\tau^2 + \sum_{r \neq s} |\nabla K_r|^2 \lambda_r^{-2} + \frac{1}{\lambda_r} + \frac{1}{\lambda_r^{2(n-2)}} + \varepsilon_{r,s} + |\partial J_r(u)|^2).
$$

Now the claim follows from Lemma 5.1 by replacing the constants as follows

$$(\tilde{c}_1, \tilde{c}_2, \tilde{d}_1, b_2) \rightarrow \frac{4n(n-1)}{\tilde{c}_0} (\tilde{c}_1, \tilde{c}_2, \tilde{d}_1, b_2),$$

(7.14)

cf. (7.10), (7.12) and (7.13) as well as Lemma 2.2.

Proof of Lemma 5.3 From Lemma 4.3 and the chain rule we obtain up to the error in (5.16)

$$
\partial J_r(u) \varphi_{3,j} = \partial J_r(\alpha^i \varphi_i) \varphi_{3,j} = \frac{\nabla a_i}{\lambda_j} J_r(\alpha^i \varphi_i)
$$

and write

$$
\partial J_r(\alpha^i \varphi_i) \varphi_{2,j} = \frac{2A}{(\int K(\alpha^i \varphi_i)^{p+1} d\mu_{g_0})^{\frac{p+1}{p}}}
$$

(15.7)

with

$$
A = \int \alpha^i L_{g_0} \varphi_i \nabla a_j \varphi_j - \frac{L_{g_0}(\alpha^i \varphi_i)(\alpha^k \varphi_k)}{\int K(\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} K(\alpha^i \varphi_i) \nabla a_j \varphi_j d\mu_{g_0}.
$$
Arguing as for (7.8), we find

\[A = \alpha_j \int \varphi_j L_{g_0} \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} - \frac{\int (\alpha^i \varphi_i) L_{g_0} (\alpha^k \varphi_k) d\mu_{g_0}}{\int K (\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} K \alpha_j^p \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} \]

\[+ \sum_{j \neq i} \alpha_i \int \varphi_i L_{g_0} \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} - \frac{\int (\alpha^i \varphi_i) L_{g_0} (\alpha^k \varphi_k) d\mu_{g_0}}{\int K (\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} K \alpha_i^p \frac{\nabla a_i}{\lambda_i} \varphi_i d\mu_{g_0} \]

\[- p \frac{\int (\alpha^i \varphi_i) L_{g_0} (\alpha^k \varphi_k) d\mu_{g_0}}{\int K (\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} \sum_{j \neq i} K \alpha_j^{-1} \alpha_i \varphi_j \varphi_i \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} \]

and arguing as for (5.2) and (5.10), in particular using Lemma 2.2, we obtain

\[A = \alpha_j \int \varphi_j L_{g_0} \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} - \frac{\int (\alpha^i \varphi_i) L_{g_0} (\alpha^k \varphi_k) d\mu_{g_0}}{\int K (\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} K \alpha_j^p \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} \]

\[- 4n(n-1) \beta_3 \sum_{j \neq i} \left(\alpha_i - \frac{\alpha_j^p}{\tau^{p+1} \lambda_j^p} \right) \frac{\nabla a_j}{\lambda_j} \varphi_j \varphi_i \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} \]

\[= \alpha_j \int \varphi_j L_{g_0} \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} - \frac{\int (\alpha^i \varphi_i) L_{g_0} (\alpha^k \varphi_k) d\mu_{g_0}}{\int K (\alpha^i \varphi_i)^{p+1} d\mu_{g_0}} K \alpha_j^p \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} - 4n(n-1) \beta_3 \sum_{j \neq i} \alpha_i \frac{\nabla a_j}{\lambda_j} \varphi_j \varphi_i \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} \]

up to some

\[O(\tau^2 + \sum_{r \neq s} |\nabla K_{rs}|^2 \frac{1}{\lambda_r^2} + \frac{1}{\lambda_r^2(n-2)} + \frac{1}{\tau^2} + \tau^2 \frac{1}{\lambda_r^2} + \frac{1}{\tau^2} \frac{1}{\lambda_r^2}) \]

using Lemma 5.1 for the last step. Consider a cut-off function \(\eta \) such that

\[\eta \in C^\infty(M, [0,1]), \eta = 1 \text{ on } B_c(a) \text{ and } \eta = 0 \text{ on } B_{2c}(a), \]

with \(c > 0 \) sufficiently small and some \(a \in M \) sufficiently close to \(a_j \). Then

\[\int K \varphi_j^p \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} = \int K \eta \varphi_j^p \frac{\nabla a_j}{\lambda_j} \varphi_j d\mu_{g_0} + O(\frac{1}{\lambda_j^{n-\theta}}) = \frac{1}{p+1} \int K \eta \varphi_j^p d\mu_{g_0} + O(\frac{1}{\lambda_j^{n-\theta}}) \]

and passing to conformal normal coordinates around \(a_j \) we have

\[\frac{\nabla a_j}{\lambda_j} \int K \eta \varphi_j^p d\mu_{g_0} = \frac{\nabla a_j}{\lambda_j} \int (K \eta) \circ \exp_{g_0} \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2 (1 + r^n - 2 H_{a_j})} \right) \frac{1}{\lambda_j} \int K \eta \varphi_j^{p+1} d\mu_{g_0} + O(\frac{1}{\lambda_j^{n-\theta}}) \]

\[\frac{\nabla a_j}{\lambda_j} \int K \eta \varphi_j^{p+1} d\mu_{g_0} = \frac{\nabla a_j}{\lambda_j} \int K \eta \varphi_j^{p+1} d\mu_{g_0} + O(\frac{1}{\lambda_j^{n-\theta}}) \]

\[= \frac{\lambda_j}{1 + \lambda_j^2 r^2 (1 + r^n - 2 H_{a_j})} \frac{\nabla a_j}{\lambda_j} \int K \eta \varphi_j^{p+1} d\mu_{g_0} + O(\frac{1}{\lambda_j^{n-\theta}}) \]

\[= \Gamma - (n-\theta) \mathfrak{M} = O(\frac{1}{\lambda_j^{n-\theta}}), \]

where

\[\mathfrak{M} = \frac{2}{2 - n} \int_{B_c(a_j)} K(\exp_{g_0}) \left(\frac{\lambda_j}{1 + \lambda_j^2 r^2} \right) \frac{\nabla a_j}{\lambda_j} H_{a_j} (1 + O(r^n - 2 H_{a_j})) \frac{1}{1 + \lambda_j^2 r^2} d\mu_{g_0} \]

up to some \(O(\frac{1}{\lambda_j^{n-\theta}}) \). From (2.4) and (2.8) and using radial symmetry we obtain

\[\Gamma = \tilde{c}_3 \frac{\nabla K_j}{\lambda_j^{n+\theta}} + \tilde{c}_4 \frac{\nabla \Delta K_j}{\lambda_j^{n+\theta}} \]

with \(\tilde{c}_3 = \int \frac{dx}{(1 + r^2)^n} \) and \(\tilde{c}_4 = \frac{1}{2n} \int \frac{r^2 dx}{(1 + r^2)^n} \). (7.16)
up to some \(O(r^2 + \frac{|∇K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^{n-2}})}\). By (2.8) we have \(∇H_{aj}H_{aj} = O(1)\) for \(n = 3, 4, 5\) and

\[
∇H_{aj}H_{aj} = O\left(\frac{\ln r}{r^{12-2n}} \text{ for } n = 6\right),
\]

whence up to some \(O\left(\frac{1}{\lambda_j} + \frac{1}{\lambda_j^{n-2}}\right)\)

\[
\begin{align*}
\mathfrak{R} &= \frac{2}{2-n} \int_{B_r(a)} K(\exp g_{a_j})(\frac{\lambda_j}{1 + \lambda_j^2 r^2})^{n-\theta} \frac{\lambda_j^2 r^n ∇^2 H_{aj}}{1 + \lambda_j^2 r^2} \, dμ_{g_0} \\
&= \frac{2}{2-n} \int_{B_r(a)} (K_j + ∇K_j x + O(r^2)) (\frac{\lambda_j}{1 + \lambda_j^2 r^2})^{n-\theta} \frac{\lambda_j^2 r^n}{1 + \lambda_j^2 r^2} \left(\begin{array}{c} \frac{∇_{a_j} H_j}{\lambda_j} + O(\frac{r^2}{\lambda_j}) \\ \frac{∇_{a_j} H_j}{\lambda_j} + O(\frac{r^2 \ln r}{\lambda_j}) \\ -\frac{∇_{a_j} H_j}{\lambda_j} + O(\frac{r^2}{\lambda_j}) \\ O(\frac{r^2}{\lambda_j}) \end{array} \right) \, dx,
\end{align*}
\]

and we obtain

\[
\mathfrak{R} = 2K_j \frac{d_j}{\lambda_j} + O(r^2 + \frac{1}{\lambda_j}), \quad d_j = \frac{2}{2-n} \int_{\mathbb{R}^n} (1 + r^2)^{n-1} \, dx, \quad \vartheta_j = \left(\begin{array}{c} 0 \\ \frac{∇_{a_j} H_j}{\lambda_j} \\ 0 \\ 0 \end{array} \right)
\]

up to some \(O\left(\frac{1}{\lambda_j} + \frac{1}{\lambda_j^{n-2}}\right)\). Collecting terms we arrive at

\[
\int K ϕ^p_j ∇_{a_j}ϕ_j \, dμ_{g_0} = \frac{Γ - (n - \theta)\mathfrak{R}}{p + 1} = \frac{n - 2}{2n} \left(c_3 \frac{∇K_j}{\lambda_j^{1+n}} + c_4 \frac{∇ΔK_j}{\lambda_j^{1+2n}} + nd_1 \frac{∂j}{\lambda_j} \right)
\]

(7.17)

up to some \(O(r^2 + \frac{|∇K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j} + \frac{1}{\lambda_j^{n-2}})}\) and conclude

\[
A = α_j \int ϕ_j L_{g_0} ∇_{a_j}ϕ_j \, dμ_{g_0} \quad - \frac{4n(n-1)(n+2)b_3}{n-2} \frac{1}{a_{K_j}} \sum_{j \neq i} α_i ∇_{a_j} ϵ_{i,j} \quad - \frac{2(n-1)(n-2)α^2}{a_{K_j}} K_j α^p_j (\frac{∇K_j}{K_j^{1+n}} + \frac{∇ΔK_j}{K_j^{1+2n}} + nd_1 \frac{∂j}{\lambda_j})
\]

up to some \(O(r^2 + \sum_{j \neq s} |∇_sK_j|^2 + \frac{1}{\lambda_j^2} + \frac{1}{\lambda_j^{n-2}} + ϵ_{r,s} + |∂J_r(u)|^2)}\). Applying Lemma 5.1 we find

\[
A = α_j \int ϕ_j L_{g_0} ∇_{a_j}ϕ_j \, dμ_{g_0} \quad - \frac{4n(n-1)(n+2)b_3}{n-2} \frac{1}{a_{K_j}} \sum_{j \neq i} α_i ∇_{a_j} ϵ_{i,j} \quad - 2(n-1)(n-2)α_j (\frac{∇K_j}{K_jλ_j} + \frac{∇ΔK_j}{K_jλ_j} + nd_1 \vartheta_j)
\]

(7.18)

49
up to the same error. We are left with estimating
\[\int \varphi_j L_{g_0} \frac{\Delta \varphi_j}{\lambda_j} \varphi_j d\mu_{g_0} = \int \varphi_j L_{g_0} \frac{\Delta \varphi_j}{\lambda_j} \varphi_j d\mu_{g_0} + O\left(\frac{1}{\lambda_j^{n-q}} \right). \]

Then from Lemma 2.1 we see that in case \(n = 4, 5 \)
\[\int 4n(n-1) L_{g_0} \frac{\Delta \varphi_j}{\lambda_j} \varphi_j d\mu_{g_0} = \int \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} - c_n \int \frac{n-1}{2} (H_j + n \nabla H_j x) \varphi_j \frac{n-2}{\lambda_j} \varphi_j d\mu_{g_0} \]
up to some \(O(1) \). Thus we observe that (7.17)
\[\int 4n(n-1) L_{g_0} \frac{\Delta \varphi_j}{\lambda_j} \varphi_j d\mu_{g_0} = \int \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} - c_n \int \frac{n-1}{2} (H_j + n \nabla H_j x) \varphi_j \frac{n-2}{\lambda_j} \varphi_j d\mu_{g_0} \]
up to some \(O(\tau^2 + \frac{|\nabla K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j^{(n-2)}}) \).

Finally we observe that
\[\varphi_j = \frac{2n - 2}{2} \epsilon_j \frac{\lambda_j}{1 + \lambda_j \rho_j^2 (1 + r_{a_j}^{-2} H_j)} \]
and using the smoothness of conformal normal coordinates with respect to \(a_j \) we find
\[\int \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} = \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} - c_n \int \frac{n-1}{2} (H_j + n \nabla H_j x) \varphi_j \frac{n-2}{\lambda_j} \varphi_j d\mu_{g_0} \]
up to some \(O(\tau^2 + \frac{|\nabla K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j^{(n-2)}}) \). Passing to conformal normal coordinates around \(a_j \), we find
\[\int \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} = \frac{n-2}{2} d\lambda_j \varphi_j d\mu_{g_0} - c_n \int \frac{n-1}{2} (H_j + n \nabla H_j x) \varphi_j \frac{n-2}{\lambda_j} \varphi_j d\mu_{g_0} \]
up to some \(O(\tau^2 + \frac{|\nabla K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j^{(n-2)}}) \). Therefore conclude
\[\int \varphi_j L_{g_0} \frac{\Delta \varphi_j}{\lambda_j} \varphi_j d\mu_{g_0} = 2n(n-1)(n-2) \int d\lambda_j \varphi_j d\mu_{g_0} \]
up to some \(O(\tau^2 + \frac{|\nabla K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j^{(n-2)}}) \). Plugging into (7.18) we arrive at
\[A = -2(n-1)(n-2) \sum_{j \neq a} \left(\tilde{c}_3 \frac{\nabla K_j}{K_j \lambda_j} + \tilde{c}_4 \frac{\nabla \Delta K_j}{K_j \lambda_j^2} \right) - 4(n-1) b_3 \sum_{j \neq a} \frac{\epsilon_j \varphi_j}{\lambda_j} \varphi_j, \]
(7.19)
up to some
\[O(\tau^2 + \sum_{j \neq a} \frac{|\nabla K_j|^2}{\lambda_j^2} + \frac{1}{\lambda_j^{2(n-2)}} + \epsilon_j \varphi_j + |\partial J_r(u)|^2). \]
Recalling (7.15) the claim follows by setting or replacing
\[\left(\tilde{c}_3, \tilde{c}_4, b_3 \right) \sim 4(n-1)(n-2) \left(\tilde{c}_3, \tilde{c}_4, \frac{2n}{n-2} b_3 \right), \]
(7.20)

[cf. 7.16 and Lemma 2.2]
7.3 List of constants

We give here a list of constants, referring to where they can be found.

\(c_0\)	5.5	5.13	7.9	-	-
\(c_1\)	Lemma 2.2	(5.5)	(5.13)	(7.9)	(7.14)
\(c_2\)	Lemma 2.2	(5.7)	(5.13)	(7.9)	(7.14)
\(c_3\)	Lemma 2.2	-	-	6.4	(7.20)
\(c_4\)	-	-	-	6.8	(7.20)
\(d_1\)	5.6	5.13	7.9	(7.14)	-
\(b_1\)	Lemma 2.2	(5.3)	(5.13)	(7.9)	(5.10)
\(b_2\)	Lemma 2.2	(7.6)	-	(7.14)	-
\(b_3\)	Lemma 2.2	-	-	-	(7.20)

For instance, \(c_2\) is found in Lemma 2.2, \(\hat{c}_2\) in equation (5.7) and \(\hat{d}_1\) in equation (5.13). For the empty fields the corresponding combination of accent and symbol is non-existent. As a caveat please note that we have within some proofs redefined constants for the sake for normalization, hence we point to the final definition, from which upwards mentioned constants can be easily recovered. Finally we recall that \(c_n\) is the normalizing constants in the definition of the conformal laplacian

\[
L_g = -c_n \Delta_g + R_g, \quad c_n = \frac{4(n-1)}{n-2}.
\]

References

[1] Ambrosetti A., Garcia Azorero J., Peral A., Perturbation of \(\Delta u + u^{(N+2)/(N-2)} = 0\), the Scalar Curvature Problem in \(\mathbb{R}^N\) and related topics, J. Funct. Anal. 165 (1999), 117-149.

[2] Aubin T., Equations différentielles non linéaires et Problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296.

[3] Aubin T., Some Nonlinear Problems in Differential Geometry, Springer-Verlag, 1998.

[4] Bahri A., Critical points at infinity in some variational problems, Research Notes in Mathematics, 182, Longman-Addison-Wesley, London, 1989.

[5] Bahri A., An invariant for Yamabe type flows with applications to scalar curvature problems in higher dimensions, Duke Math. J. 81 (1996), 323-466.

[6] Bahri A., Coron J.M., The Scalar-Curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), 106-172.

[7] Ben Ayed M., Chen Y., Chioti H., Hammami M., On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633-677.

[8] Ben Ayed M., Chioti H., Hammami M., The scalar-curvature problem on higher-dimensional spheres. Duke Math. J. 93 (1998), no. 2, 379-424.

[9] Bianchi G., The scalar curvature equation on \(\mathbb{R}^n\) and on \(S^n\), Adv. Differential Equations 1 (1996), 857-880.

[10] Bianchi G., Egnell H., A variational approach to the equation \(\Delta u + K u^{n+2\over n-2} = 0\) in \(\mathbb{R}^n\), Arch. Rat. Mech. Anal. 122 (1993), 159-182.

[11] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297.
[12] Chang S. A., Gursky M. J., Yang P., The scalar curvature equation on 2- and 3- spheres, Calc. Var. Partial Differential Equations 1 (1993), 205-229.
[13] Chen C.C., Lin C.S., Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. 50 (1997), no. 10, 971-1017.
[14] Chen C.C., Lin C.S., Estimate of the conformal scalar curvature equation via the method of moving planes. II. J. Differential Geom. 49 (1998), no. 1, 115-178.
[15] Chen C.C., Lin C.S., Blowing up with infinite energy of conformal metrics on Sn. Comm. Partial Differential Equations 24 (1999), no. 5-6, 785-799.
[16] Chen C.C., Lin C.S., Prescribing scalar curvature on S^n. I. A priori estimates. J. Differential Geom. 57 (2001), no. 1, 67-171.
[17] Chen Z., Xu X., The scalar curvature flow on S^n-perturbation theorem revisited. Invent. Math. 187 (2012), no. 2, 395-506.
[18] Chang S. A., Yang P., Prescribing Gaussian curvature on S^2, Acta Math. 159 (1987), 215-259.
[19] Chang S. A., Yang P., Conformal deformation of metrics on S^2, J. Differential Geom. 27 (1988), 256-296.
[20] Chang S. A., Yang P., A perturbation result in prescribing scalar curvature on S^n, Duke Math. J. 64 (1991), 27-69.
[21] Chen W. X., Ding W., Scalar curvature on S^2, Trans. Amer. Math. Soc. 303 (1987), 365-382.
[22] Ding W. Y., Ni, W. M., On the elliptic equation $-\Delta u + ku^{\frac{(n+2)}{n-2}}$ and related topics, Duke Math. J. 52-2 (1985), 485-506.
[23] Escobar J., Schoen R., Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), 243-254.
[24] Günther M., Conformal normal coordinates. Ann. Global Anal. Geom. 11 (1993), no. 2, 173-184.
[25] Hebey E., Changements de métriques conformes sur la sphère - Le problème de Nirenberg, Bull. Sci. Math. 114 (1990), 215-242.
[26] Hebey E., Vaugon M., Le probleme de Yamabe equivariant. [The equivariant Yamabe problem] Bull. Sci. Math. 117 (1993), no. 2, 241-286.
[27] Lee J., Parker T., The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91.
[28] Li Y.Y., Prescribing scalar curvature on S^n and related topics, Part I, J. Differential Equations 120 (1995), 319-410.
[29] Li Y.Y., Prescribing scalar curvature on S^n and related topics, Part II, Existence and compactness, Comm. Pure Appl. Math. 49 (1996), 437-477.
[30] Li Y.Y., Zhu M., Yamabe type equations on three-dimensional Riemannian manifolds. Commun. Contemp. Math. 1 (1999), no. 1, 1-50.
[31] Kazdan J.L., Warner F., Kazdan, Jerry L.; Warner, F. W. Curvature functions for compact 2-manifolds. Ann. of Math. (2) 99 (1974), 14-47.
[32] Kazdan J.L., Warner F., Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math.(2) 101 (1975), 317-331.
[33] Kazdan J.L., Warner F., Kazdan, Jerry L.; Warner, F. W. Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geom. 10 (1975), 113-134.
[34] Leung M.C., Construction of blow-up sequences for the prescribed scalar curvature equation on S^n. I. Uniform cancellation. Commun. Contemp. Math. 14 (2012), no. 2, 1250008, 31 pp.

[35] Malchiodi A., The Scalar Curvature problem on S^n: an approach via Morse theory, Calc. Var. Partial Differential Equations 14 (2002), no. 4, 429-445.

[36] Malchiodi A., Mayer M., Prescribing Morse scalar curvatures: subcritical blowing-up solutions, J. Differential Equations 268 (2020), no. 5, 2089-2124.

[37] Malchiodi A., Mayer M., Prescribing Morse scalar curvatures: pinching and Morse Theory, arxiv.org/1909.03190

[38] Mayer M., A scalar curvature flow in low dimensions. Calc. Var. Partial Differential Equations 56 (2017), no. 2, Art. 24, 41 pp.

[39] Mayer M., Prescribing Morse scalar curvatures: critical points at infinity, arxiv.org/1901.06409

[40] Mayer M., Prescribing scalar curvatures: non compactness versus critical points at infinity, Geometric Flows, 2019, 4, 51-82.

[41] Moser J., On a nonlinear problem in differential geometry, Dynamical Systems (M. Peixoto ed.), Academic Press, New York, 1973, 273-280.

[42] Robert F., Vetois J., Examples of non-isolated blow-up for perturbations of the scalar curvature equation on non-locally conformally flat manifolds. J. Differential Geom. 98 (2014), no. 2, 349-356.

[43] Schoen R., Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, pp. 120-154 in: Topics in Calculus of Variations, M. Giaquinta, ed., Lecture Notes in Mathematics No. 1365, Berlin-New York, Springer-Verlag, 1989.

[44] Schoen R., On the number of constant scalar curvature metrics in a conformal class, in "Differential Geometry: A Symposium in Honor of Manfredo Do Carmo", (H.B.Lawson and K.Tenenblat Editors), (1991), 331-320, Wiley, New York.

[45] Schoen R., Zhang D., Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations 4 (1996), 1-25.

[46] Struwe M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187 (1984), no. 4, 511-517.

[47] Talenti G., Best constant in Sobolev Inequality, Ann. Mat. Pura Appl.(4) 110 (1976) 353-372.

[48] Wei J., Yan S., Infinitely many solutions for the prescribed scalar curvature problem on S^N. J. Funct. Anal. 258 (2010), no. 9, 3048-3081.