MODELING HIGH-VELOCITY QSO ABSORBERS WITH PHOTOIONIZED MAGNETOHYDRODYNAMIC DISK WINDS

Keigo Fukumura1,2, Demosthenes Kazanas3, Ioannis Contopoulos3, and Ehud Behar4

1 University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250, USA; Keigo.Fukumura@nasa.gov
2 Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
3 Research Center for Astronomy, Academy of Athens, Athens 11527, Greece
4 Department of Physics, Technion, Haifa 32000, Israel

Received 2010 July 28; accepted 2010 September 28; published 2010 October 20

ABSTRACT

We extend our modeling of the ionization structure of magnetohydrodynamic (MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a population of quasi-stellar objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e., smaller α_{ox} index, motivated by UV/X-ray ionized absorbers with extremely high outflow velocities in UV-luminous QSOs. We demonstrate that magnetically driven winds ionized by a spectrum with $\alpha_{\text{ox}} \simeq -2$ can produce the charge states responsible for C iv and Fe xxv/Fe xxvi absorption in wind regions with corresponding maximum velocities of $v(\text{C} iv) \lesssim 0.1c$ and $v(\text{Fe} \text{ xxv}) \lesssim 0.6c$ (where c is the speed of light) and column densities $N_H \sim 10^{23} - 10^{24}\, \text{cm}^{-2}$, in general agreement with observations. In contrast to the conventional radiation-driven wind models, high-velocity flows are always present in our MHD-driven winds but manifest in the absorption spectra only for $\alpha_{\text{ox}} \lesssim -2$, as larger α_{ox} values ionize the wind completely out to radii too large to demonstrate the presence of these high velocities. We thus predict increasing velocities of these ionized absorbers with decreasing (steeper) α_{ox}, a quantity that emerges as the defining parameter in the kinematics of the active galactic nucleus UV/X-ray absorbers.

Key words: accretion, accretion disks – galaxies: active – methods: numerical – quasars: absorption lines – X-rays: galaxies

Online-only material: color figures

1. INTRODUCTION

The launch of Chandra and XMM-Newton ushered a new era in X-ray astronomy of active galactic nucleus (AGN) outflows with the discovery of absorption lines in the spectra that enabled for the first time accurate charge state and velocity measurements. The long observations of a number of AGNs revealed transitions of charge states as diverse as Fe I through Fe XXVI. Since any atomic gas with bound electrons absorbs X-rays these ions span a range of $\sim 10^3$ in ionization parameter ξ, a fact that underscores the great utility of X-ray spectroscopy.

In a subsequent development, Holczer et al. (2007) and Behar (2009, hereafter B09) developed a statistical measure of the plethora of the transitions in the Chandra/XMM spectra, the absorption measure distribution (AMD), namely, the differential hydrogen-equivalent column N_H of specific ions per decade of ξ, i.e., $\text{AMD} \equiv dN_H/d\log\xi$. Moreover, the AMD was found to be roughly constant, i.e., N_H to be roughly independent of ξ, in the small number of Seyferts for which the data quality allowed a quantitative analysis. The functional form of the AMD is significant as it can provide the plasma density along the observer’s line of sight (LoS), which for constant AMD is $n(r) \propto r^{-1}$.

Motivated by the AMD systematics, Fukumura et al. (2010, hereafter FKCB) employed the photoionization code XSTAR (Kallman & Bautista 2001) to determine the ionization structure of the two-dimensional winds of Contopoulos & Lovelace (1994, hereafter CL94) which provide for density profiles such as $n \propto r^{-1}$. This density dependence on r yields also $\xi \propto r^{-1}$, thereby allowing for ionic species of decreasing ionization with distance, but of columns similar to those of high ionization.

Importantly, these models are scale free: with the radial coordinate r normalized to the Schwarzschild radius, r_s, and the mass flux to the Eddington rate, ξ, is independent of the black hole mass M, implying broad applicability in galactic and extragalactic settings. Assuming an ionizing spectral energy density (SED) of $F_\nu \propto \nu^{-1}$ between 1 and 1000 Ryd, these models were successful in reproducing the observed (1) slow velocities ($v \sim 100–300\, \text{km s}^{-1}$) for the low ionization transitions such as Fe XVII and fast outflows ($v \sim 1000–3000\, \text{km s}^{-1}$) for the high ionization ones such as Fe XXV, and (2) AMD almost independent of ξ for $-1 \lesssim \log\xi \lesssim 4$, in agreement with the results of B09.

While X-ray absorption lines in Seyfert spectra are rather recent discoveries, UV absorption lines in Seyferts and quasi-stellar objects (QSOs) have been known (e.g., Crenshaw et al. 2003; Brandt et al. 2000). Also known since the earlier ROSAT surveys (e.g., Kopko et al. 1994; Green & Mathur 1996) is that the X-ray-to-UV flux ratio of the broad absorption line (BAL) QSOs (i.e., QSOs with blue absorption C IV and Lyα troughs of $\Delta v/c \sim 0.04–0.1$ (e.g., Hewett & Foltz 2003; Srianand & Petitjean 2000)) is smaller than that of the QSO majority, possibly due to absorption of the X-rays by the BAL plasma. Indeed, this was confirmed by the ASCA detection of high X-ray absorption column N_H $\gtrsim 5 \times 10^{23}\, \text{cm}^{-2}$ (Gallagher et al. 1999). Gallagher et al. (2006, hereafter G06) later conducted a Chandra survey combined with known UV absorption properties that supported the earlier claims. The Chandra data of BAL QSOs indicate that $\alpha_{\text{ox}}(\text{BAL}) \simeq -2.21$ (G06) is smaller than the mean QSO value $\alpha_{\text{ox}}(\text{mean}) \simeq -2.0$. This result is augmented by a

5 $\xi \equiv L/(nr^2)$, where L is an ionizing luminosity (between 1 and 1000 Ryd), n is the plasma number density, and r is distance from the ionizing source.

6 The spectral index $\alpha_{\text{ox}} \equiv 0.384 \log(f_{\text{2keV}}/f_{\text{5000}})$ measures the X-ray-to-UV relative brightness, where f_{2keV} and f_{5000} are, respectively, 2 keV and 2500 A flux densities (Tananbaum et al. 1979).
correlation between α_{ox} and the 1–5 keV X-ray photon index Γ; increased photoelectric absorption of soft X-rays (i.e., smaller α_{ox}) also yields a smaller effective Γ, as observed.

The high outflow velocities of the prominent UV resonance lines (C iv and Lyα) in BAL QSOs were traditionally ascribed to radiation-driven winds (Weymann et al. 1991), in analogy with the winds of O stars (Castor et al. 1975) and were modeled as such (e.g., Murray et al. 1995, hereafter MCGV). MCGV recognized and included heuristically the effects of wind ionization and its shielding from the QSO X-rays, a crucial process as ionization reduces severely the effectiveness of line driving. Proga et al. (2000, hereafter PSK) presented two-dimensional hydrodynamic simulations of these winds, including X-ray ionization, showing that the required shielding is provided by the section of the wind closest to the X-ray source that “failed” to launch by being too highly ionized, thereby allowing exterior segments to achieve velocities in agreement with C iv observations.

However, recent X-ray observations of BAL QSOs revealed absorption features in their spectra identified with highly ionized Fe xxv/Fe xxvi of column density $N_{H1} \sim 10^{22} - 10^{24}$ cm$^{-2}$, blueshifted to high velocities $u/c \sim 0.4 - 0.7$ (e.g. APM 08279+5255, PG 1115+080, and H 1413+117) indicating that X-ray ionization does not necessarily inhibit outflows, which can occur at velocities even higher than those seen in the UV lines (e.g., Chartas et al. 2002, 2003, 2007; Chartas et al. 2009, hereafter C09). Additional X-ray studies have revealed a number of non-BAL QSOs that also exhibit similar X-ray absorbers at high velocities $u/c \sim 0.1 - 0.5$ (e.g., Pounds et al. 2003; Reeves et al. 2003; 2009), while in APM 08279+5255 C09 have also noted a correlation between Γ and the velocity of Fe xxv.

Motivated by these observations, we examine in this Letter the conditions under which the magnetically driven winds discussed in FKCB can reproduce the observed velocities of the BAL QSO X-ray features (Fe xxv) along with those of their more common UV transitions (C iv). In Section 2, we summarize the physics of magnetohydrodynamic (MHD) accretion-disk winds and the differences of the ionization properties between Seyferts and BAL QSOs. In Section 3, we present our results and demonstrate a number of well-defined correlations among their kinematics, column, spectral index, and LoS angle and we conclude with a summary and discussion in Section 4.

2. THE MHD DISK-WIND MODEL

In this section, we present a brief outline of the MHD winds, originally formulated by Blandford & Payne (1982) and generalized by CL94 to include arbitrary distribution of axial current with radius. Here and in FKCB we focus on the current distribution that produces a density profile $n(r) \propto r^{-1}$, crucial for obtaining the observed AMD behavior. The same distribution leads also to a toroidal field $B_\phi \propto r^{-1}$ that has equal magnetic energy per decade of (cylindrical) radius.

Self-similarity is assumed, i.e., power-law (PL) radial dependence for all variables and solution of the remaining angular part of these equations. As discussed in FKCB, this assumption is not very restrictive and justifies a posteriori by the large number of decades of ξ in the AMD form.

The fundamental quantity of axisymmetric MHD is the magnetic stream function $\Psi(r, \theta)$, assumed to have the form $\Psi(r, \theta) \equiv (r/r_o)^{\alpha} \Phi(\theta) \Psi_o$, with Ψ_o the poloidal magnetic flux through the fiducial wind launch radius at $r = r_o$. $\Phi(\theta)$ is its angular dependence to be solved for and $q \simeq 1$ is a free parameter that determines the radial dependence of the poloidal current. The scalings of the poloidal magnetic stream function carry over to the rest of the wind properties of which we show only the magnetic field, velocity, and density (see FKCB):

$$B(r, \theta) \equiv (r/r_o)^q \tilde{B}(\theta) B_o$$

$$v(r, \theta) \equiv (r/r_o)^{-1/2} \tilde{v}(\theta)v_o$$

$$n(r, \theta) \equiv (r/r_o)^{2q-3} \tilde{n}(\theta) B_o^2 v_o^2 m_p^{-1}$$

where m_p is the proton mass. The dimensionless angular functions denoted by $\tilde{\text{function}}$ must be obtained from the conservation equations and the solution of the Grad–Shafranov equation with initial values on the disk (denoted by the subscript “o”) at $(r = r_o, \theta = 90^\circ)$. The density normalization at $(r_o, 90^\circ)$, setting $\tilde{n}(90^\circ) = 1$, is given in terms of dimensionless mass-accretion rate \dot{m} (see FKCB) by

$$n_o = \frac{\eta_W \dot{m}}{2\sigma r_s}$$

where η_W is the ratio of the mass-outflow rate in the wind to \dot{m}, assumed here to be of order unity and σ is the Thomson cross section. It is important to note that because the mass flux in these wind depend depends in general on the radius, \dot{m} always refers to the mass flux at the innermost flow radius at $r \approx r_s$ where r_s is the Schwarzschild radius. In the present treatment, we adopt the value $q = 0.93$ resulting in $n \propto r^{-1.14}$, the steepest density dependence on r implied by the AGN AMD data of B09, and in order to allow for the somewhat higher observed X-ray column than UV column.

With the dimensionless, mass-invariant wind structure (see Figure 1(a)) for given \dot{m} and θ, the only significant difference in the wind ionization properties across objects of different luminosity is the spectral distribution of ionizing radiation. While in FKCB, we used a spectrum of the form $\nu \propto \nu^{-\sigma}\nu_s$ (e.g., Sim et al. 2008, 2010), more appropriate for Seyferts, here we add a bright UV disk source. The spectrum used in the present work is shown in Figure 1(b); it comprises a multicolor disk (MCD) with an innermost temperature of 5 eV and an X-ray PL of photon index Γ normalized by α_{ox} (e.g., Everett 2005; Sim 2005). We do not include a soft X-ray excess in the SED, a feature more appropriate for narrow-line Seyfert spectra (e.g., Pounds et al. 2003; Sim 2005). The PL has a low energy cutoff at 5 eV and a high energy one at 200 keV. The total (X-ray plus UV) luminosity is $L = 3 \times 10^{45}$ erg s$^{-1}$.

3. RESULTS

With the background flow ($\dot{m} = 0.5$) and the spectrum of the ionizing radiation ($\Gamma = -\alpha_{ox} = 2$) given, we follow the same procedure as in FKCB: we split the wind logarithmically into a number of radial zones; we employ XSTAR to compute the ionization and opacities/emissivity in each zone along an observer’s LoS.

In Figure 2, we show the resulting distribution of the hydrogen-equivalent column densities ΔN_H of iron and carbon for $\theta = 50^\circ$ as a function of ξ (optimized here to model the outflows in APM 08279+5255) along with the corresponding LoS velocity (dashed curve), to be read on the right vertical axis. Note the well-defined velocity gradient of the wind
transitions) yield locities in FKCB, leading to a large increase in N_{H} by the 2–10 keV X-rays. Therefore, an increase in ξ achieves (1) an increase in the plasma column, density, and luminosity and (2) a relative decrease of the ionizing hard X-ray flux (smaller α_{ox}). With these changes over FKCB, in the present treatment iron is not fully ionized even at the smallest radii ($r \approx 10_{r}^{1}$), leading to $\nu(\text{Fe xxv}) \approx 0.7c$. This partial ionization of the plasma, coupled with the increased column, reduces the ionizing flux that reaches further out into the wind, especially for high θ, leading to a bootstrap of less ionization and increasingly higher soft X-ray opacity. Then, because of the ensuing severe reduction of ionizing photons in the $E \sim 0.1–2$ keV range, the C iv ions form at smaller radii (higher velocities), so that the r^{-2} increase of the photon flux with $E \gtrsim 64$ eV (the ionization potential of C iv) offsets the photon depletion due to photoelectric absorption by the partially ionized plasma.

Recent spectroscopic studies of BAL QSOs have indicated likely correlations between the maximum outflow velocity of the UV/X-ray absorbers and the spectral indices (G06; C09). For comparison we show in Figure 3(a) the modeled outflow

Figure 1. (a) Poloidal density structure $\log(n[\text{cm}^{-3}])$ of MHD wind with $m = 0.5$: density contour curves (dotted lines with numbers) and magnetic field lines (solid curves) for $M = 10^{7} M_{\odot}$. Also shown are the positions of the C iv (square = \square) and Fe xxv (circle = \circ) which shift outward along LoS of decreasing θ (from 80° (innermost) to 30° (outermost) by a 10° increment). Note that the C iv position for $\theta = 30^\circ$ lies outside the figure range. (b) The form of the assumed input SED consisting of a thermal MCD of innermost temperature $kT_{\text{in}} = 5$ eV and a PL continuum of photon index 1' normalized by α_{ox}.

(A color version of this figure is available in the online journal.)
velocities for C IV and Fe XXV with different values of (Γ, α_{ox}) for $m = 0.5$ and $\theta = 50^\circ$. It is seen for $\alpha_{ox} = -2$ that Fe XXV velocities correlate strongly with Γ (solid curves) allowing for velocities in the range $0.3 \lesssim v(\text{Fe XXV})/c \lesssim 0.8$ consistent with the X-ray outflow velocity observations in APM 08279+5255 (C09), while the C IV velocity is virtually unaffected. This is because for the steeper X-ray spectra fewer ionizing photons are available to produce highly ionized species (e.g., Fe XXV of ionization potential ~ 9 keV) and the relevant ions are found at smaller distances (higher velocities) than in the case of harder spectra. This does not affect significantly the overall ionization of the wind leaving the C IV transition at roughly the same distance. However, a change in α_{ox} affects strongly the maximum column position of both Fe XXV and C IV, as described above. For constant $\Gamma = 2$, the velocities of both these transitions correlate strongly with α_{ox} (dashed curves), ranging between $0.1 \lesssim v(\text{Fe XXV})/c \lesssim 0.8$ and $0.01 \lesssim v(\text{C IV})/c \lesssim 0.15$ for $-2.1 \lesssim \alpha_{ox} \lesssim -1.6$ qualitatively consistent with UV data (Laor & Brandt 2002; G06; Fan et al. 2009). Radiation forces are often invoked to explain these correlations (with X-ray shielding necessary for high velocities, e.g., MCGV; PSK). In contrast to these models, high-velocity flows are always present in our model, but only the steep $\alpha_{ox} \lesssim -2$ allows the relevant ions (e.g., Fe XXV and C IV) to form in their small-r, high-v regions which are otherwise overionized (cf. FKCB). While some (narrow-line) Seyferts with $-1.6 \lesssim \alpha_{ox} \lesssim -1.1$ appear to exhibit X-ray outflows with $v/c \lesssim 0.15$ (Padina et al. 2005; Tombesi et al. 2010), these are systematically slower (and generally substantially slower (Holczer et al. 2007, 2010)) than those of the BAL QSOs with $\alpha_{ox} \lesssim -1.6$. Thus, we propose α_{ox} as the defining parameter that determines the velocities of the UV/X-ray absorption features in AGNs.

While the intrinsic MHD wind ionization structure is determined by α_{ox}, the observables, i.e., the velocity widths/shifts of the ions depend strongly also on the observers’ inclination angle θ. In Figure 3(b), we present the LoS velocity of the C IV and Fe XXV transitions for various θ with $\Gamma = -\alpha_{ox} = 2$. Because of the specific geometric shape of the magnetic field lines and ionization equilibria, characteristic ion velocities vary for different LoS angles (see also Figure 1(a) for their positional transitions along various LoS from $\theta = 80^\circ$ (innermost) to 30° (outermost)). In this fiducial model, we find that $v_{\text{max}}(\text{Fe XXV}) \sim 0.6c$ at $\theta \sim 50^\circ$ and $v_{\text{max}}(\text{C IV}) \sim 0.15c$ at $\theta \sim 70^\circ$. At larger angles, the velocities decrease but the integrated columns are so high that it is doubtful these features are observable. Similar diagrams can be computed for different values of the parameters (m, Γ, α_{ox}) and can be directly compared to observations to assess the fundamental assumptions of these models.

4. SUMMARY AND DISCUSSION

We have demonstrated that purely MHD disk winds with $n \propto r^{-1}$, originally proposed to account for the X-ray AMDs in Seyferts, can also encompass combined high-velocity UV/X-ray absorber properties as diverse as those of BAL QSOs, with those of APM 08279+5255 as a template. This is extremely important in view of the winds’ scale invariance, with the qualitative differences in the absorber properties between Seyferts and QSOs attributed mainly to their different m and α_{ox}. Given the well-documented correlation of AGN UV-luminosity (a proxy for \dot{m}) with α_{ox} (Laor & Brandt 2002; Steffen et al. 2006; Fan et al. 2009), this model implies AGN absorber structure that depends essentially on a single parameter α_{ox}. However, the observables, e.g., columns and velocities, depend additionally on the LoS angle θ, reproducing the QSO BALs C IV (UV) and Fe XXV (X-ray) properties only for a sufficiently large θ, as usually considered.

Our calculations show that C IV forms at $r/r_s \simeq 200$–700 with corresponding velocity $v(\text{C IV}) \lesssim 0.1c$. This value, along with the Fe XXV velocity $v(\text{Fe XXV}) \lesssim 0.6c$ at $r/r_s \simeq 5$–40, is consistent with those observed in APM 08279+5255 (C09). The shielding of the plasma from the X-rays at $r \gtrsim 100r_s$, necessary to produce the high velocity C IV absorption in radiation-driven wind models (MCGV; PSK), is in our case naturally provided by the faster components of the same wind launched from even smaller radii. Ionization equilibrium as a result of steeper α_{ox} allows the relevant charge states to form closer to the central engines where the wind is faster.

For simplicity, we have ignored here a number of physical processes, e.g., radiation pressure (see PSK) and thermal instability (Krolik et al. 1981; Holczer et al. 2007), likely to have an impact on our MHD wind properties that need to be implemented (e.g., Proga 2003). However, the broader validity of our models, gauged by the AMD dependence on ξ, will be decided by observations and quantitative analysis such as those presented in B09. It is also encouraging that the ionization properties of certain X-ray absorbers are consistent with this picture and, in
fact, magnetic driving of disk winds has been favorably argued for GRO J1655-40 (e.g., Miller et al. 2008) and NGC 4151 (e.g., Crenshaw & Kraemer 2007), for example. We anticipate the upcoming Astro-H mission to contribute significantly to this goal by providing more detail on the Fe–K component of the wind, and thus to further clarify our picture of AGN structure.

Authors are grateful to the anonymous referee for inspirational suggestions. K.F. and D.K. thank T. Kallman for insightful discussions and G. Chartas, S. Kraemer, F. Tombesi, and J. Turner for their constructive comments.

REFERENCES

Behar, E. 2009, ApJ, 703, 1346 (B09)
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Brandt, W. N., Laor, A., & Wills, B. J. 2000, ApJ, 528, 637
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Chartas, G., Brandt, W. N., & Gallagher, S. C. 2003, ApJ, 595, 85
Chartas, G., Brandt, W. N., Gallagher, S. C., & Garmire, G. P. 2002, ApJ, 579, 169
Chartas, G., Eracleous, M., Dai, X., Agol, E., & Gallagher, S. C. 2007, ApJ, 661, 678
Chartas, G., Saéz, C., Brandt, W. N., Giustini, M., & Garmire, G. P. 2009, ApJ, 706, 644 (C09)
Contopoulos, J., & Lovelace, R. V. E. 1994, ApJ, 429, 139 (CL94)
Crenshaw, D. M., & Kraemer, S. B. 2007, ApJ, 659, 250
Crenshaw, D. M., et al. 2003, ARA&A, 41, 117
Dadina, M., Cappi, M., Malaguti, G., Ponti, G., & de Rosa, A. 2005, A&A, 442, 461
Dai, X., Kochanek, C. S., Chartas, G., Kozłowski, S., Morgan, C. W., Garmire, G., & Agol, E. 2010, ApJ, 709, 278
Everett, J. E. 2005, ApJ, 631, 689
Fan, L. L., Wang, H. Y., Wang, T., Wang, J., Dong, X., Zhang, K., & Cheng, F. 2009, ApJ, 690, 1006
Fukumura, K., Kazanas, D., Contopoulos, I., & Behar, E. 2010, ApJ, 715, 636 (FKCB)
Gallagher, S. C., Brandt, W. N., Sambruna, R. M., Mathur, S., & Yamasaki, N. 1999, ApJ, 519, 544
Gallagher, S. C., et al. 2006, ApJ, 644, 709 (G06)
Green, P. J., & Mathur, S. 1996, ApJ, 462, 637
Hewett, P. C., & Foltz, C. B. 2003, AJ, 125, 1784
Holczer, T., Behar, E., & Arav, N. 2010, ApJ, 708, 981
Holczer, T., Behar, E., & Kaspi, S. 2007, ApJ, 663, 799
Kallman, T., & Bautista, M. 2001, ApJS, 133, 221
Krolik, J. H., McKee, C. F., & Tarter, C. B. 1981, ApJ, 249, 422
Kopko, M., Turner, J. S., & Espey, B. R. 1994, in IAU Symp. 159, Multiwavelength Continuum Emission of AGN, ed. T. Courvoisier & A. Blesch (Dordrecht: Kluwer), 450
Laor, A., & Brandt, W. N. 2002, ApJ, 569, L641
Miller, J. M., Raymond, J., Reynolds, C. S., Fabian, A. C., Kallman, T. R., & Homan, J. 2008, ApJ, 680, 1359
Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, ApJ, 451, 498 (MCGV)
Pounds, K. A., et al. 2003, MNRAS, 345, 705
Proga, D. 2003, ApJ, 585, 406
Proga, D., Stone, J. M., & Kallman, T. R. 2000, ApJ, 543, 686
Reeves, J. N., O’Brien, P. T., & Ward, M. J. 2003, ApJ, 593, L65
Reeves, J. N., et al. 2009, ApJ, 701, 493
Sim, S. A. 2005, MNRAS, 356, 531
Sim, S. A., Long, K. S., Miller, L., & Turner, T. J. 2008, MNRAS, 388, 611
Sim, S. A., Miller, L., Long, K. S., Turner, T. J., & Reeves, J. N. 2010, MNRAS, 404, 1369
Srianand, R., & Petitjean, P. 2000, A&A, 357, 414
Steffen, A. T., et al. 2006, AJ, 131, 2826
Tananbaum, H., et al. 1979, ApJ, 234, L9
Tombesi, F., et al. 2010, A&A, in press (arXiv:1006.2858)
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, ApJ, 373, 23