Subject Section

Building Large Updatable Colored de Bruijn Graphs via Merging

Martin D. Muggli 1,∗, Bahar Alipanahi 2 and Christina Boucher 2 *

1Department of Computer Science, Colorado State University, Fort Collins, CO, 80526
2Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32607

∗To whom correspondence should be addressed.

Abstract

Motivation: There exists several massive genomic and metagenomic data collection efforts, including GenomeTrakr and MetaSub, which are routinely updated with new data. To analyze such datasets, memory-efficient methods to construct and store the colored de Bruijn graph have been developed. Yet, a problem that has not been considered is constructing the colored de Bruijn graph in a scalable manner that allows new data to be added without reconstruction. This problem is important for large public datasets as scalability is needed but also the ability to update the construction is also needed.

Results: We create a method for constructing and updating the colored de Bruijn graph on a very-large dataset through partitioning the data into smaller subsets, building the colored de Bruijn graph using a FM-index based representation, and succinctly merging these representations to build a single graph. The last step, merging succinctly, is the algorithmic challenge which we solve in this paper. We refer to the resulting method as VariMerge. We validate our approach, and show it produces a three-fold reduction in working space when constructing a colored de Bruijn graph for 8,000 strains. Lastly, we compare VariMerge to other competing methods—including Vari (Muggli et al., 2017), Rainbowfish (Almodaresi et al., 2017), Mantis (Pandey et al., 2018), Bloom Filter Trie (Holley et al., 2016), the method by Almodaresi et al. (2019) and Multi-BRWT (Karasikov et al., 2019)—and illustrate that VariMerge is the only method that is capable of building the colored de Bruijin graph for 16,000 strains in a manner that allows additional samples to be added. Competing methods either did not scale to this large of a dataset or cannot allow for additions without reconstruction.

Availability: Our software is available under GPLv3 at https://github.com/cosmo-team/cosmo/tree/VARI-merge.

Contact: Martin D. Muggli martin.muggli@colostate.edu

1 Introduction

The money and time needed to sequence a genome has decreased remarkably in the past decade. With this decrease has come an increase in the number and rate at which sequence data is collected for public sequencing projects. This led to the existence of GenomeTrakr, which is a large public effort to use genome sequencing for surveillance and detection of outbreaks of foodborne illnesses. This effort includes over 50,000 samples, spanning several species available through this initiative—a number that continues to rise as datasets are continually added (Stevens et al., 2017). Another example is illustrated by the sequencing of the human genome. The 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015) was announced in 2008 and completed in 2015, and now the 100,000 Genomes Project is well under way (Turnbull et al., 2018). Unfortunately, methods to analyze these and other large public datasets are limited due to their size.

Iqbal et al. (2012) presented one method for analysis sequence data from a large population which focuses on the construction of the colored de Bruijin graph. To define the colored de Bruijn graph, we first define the traditional de Bruijn graph and then show how it can be extended.
Formally, a de Bruijn graph constructed for a set of strings (e.g., sequence reads) has a distinct vertex v for every unique $(k - 1)$-mer (substring of length $k - 1$) present in the strings, and a directed edge (u,v) for every observed k-mer in the strings with $(k - 1)$-mer prefix u and $(k - 1)$-mer suffix v. In the colored de Bruijn graph, the edge structure is the same as the classic structure, but now to each node $(k - 1)$-mer and edge $(k$-mer) is associated a list of colors corresponding to the samples in which the node or edge label exists. More specifically, given a set of n samples, there exists a set C of n colors $c_1,c_2,...,c_n$, where c_i corresponds to sample i and all k-mers and $(k - 1)$-mers that are contained in sample i are colored with c_i. A bubble in this graph corresponds to a directed cycle, and is shown to be indicative of biological variation. Iqbal et al. (2012) show after construction of the colored de Bruijn graph, they can recover all genetic variants in the underlying population by traversing the graph, and finding paths with bubbles (“bubble finding”).

A bottleneck in applying Cortex (Iqbal et al., 2012) to large datasets lies the amount of memory and disk space required to build and store the colored de Bruijn graph. Thus, in recent years, there has been an initiative to build and/or store the colored de Bruijn graphs in a space- and time-efficient manner allowing it to be applied to larger populations. Vari (Muggli et al., 2017), Rainbowfish (Almodaresi et al., 2017), Mantis (Almodaresi et al., 2019), the method of Karasikov et al. (2019), as well as others, sought to overcome this limitation by improving the storage efficiency of the graph. Vari was one of the first methods to build the colored de Bruijn graph in a memory efficient manner. It extends the de Bruijn graph construction of Bowe et al. (2012). Rainbowfish (Almodaresi et al., 2017) was later developed. It first uses Vari to build the colored de Bruijn graph, which it compresses further by storing identical rows in the Vari color matrix as a single row. Cortex, Vari and Rainbowfish have bubble-calling methods that allow genetic variation between the datasets to be detected.

Mantis (Almodaresi et al., 2019) improve on Vari and Rainbowfish by constructing a different data structure, which is it able to construct directly without using Vari. Most recently, the method of Almodaresi et al. (2019) was presented, which is referred to as MST-based color-class representation. This method first uses Mantis to build the colored de Bruijn graph, which it then compresses further using minimum spanning trees and storing only deltas between similar vectors. Both Mantis and the method of Almodaresi et al. (2019) do not have bubble-calling procedures. We note there exists more compressed colored de Bruijn graph methods, and give a comprehensive review in the next section.

Unfortunately, there does not exist a method to build the colored de Bruijn graph in a manner that is scalable to large datasets and that allows for the addition of new data. This is important since one of the original purposes of the colored de Bruijn graph was to analyze population-level datasets — such as GenomeTrakr and 100,000 Genomes Project — which continually grow in size due to the addition of new data. Existing colored de Bruijn graph methods either cannot scale well enough to construct for large datasets, or cannot update the data structure without complete reconstruction. For example, Vari (Muggli et al., 2017), Rainbowfish (Almodaresi et al., 2017), Mantis (Almodaresi et al., 2019) and the method Karasikov et al. (2019) are efficient with respect to memory and time but cannot be updated without reconstructing the entire colored de Bruijn graph. Bloom Filter Trie (Holley et al., 2016) and the method of Karasikov et al. (2019) allow for the addition of new data but cannot scale to large datasets, as we show in this paper. Crawford et al. (2019) build a de Bruijn graph that can be updated but restrict interest to the traditional (non-colored) de Bruijn graph.

Here, we focus on scalable construction of the colored de Bruijn graph in a manner that allows new data to be added without reconstruction. One way to achieve this construction is to devise a divide-and-conquer approach which will divide the complete set of samples (e.g. sets of sequence reads) into smaller sets, construct a succinct colored de Bruijn graph for each smaller set, and merge these succinct colored de Bruijn graphs into progressively larger graphs until a single one remains. The problem of merging succinct colored de Bruijn graphs efficiently is a challenging problem but necessary to solve since it avoids memory, disk and time overhead. This divide-and-conquer approach also allows the graph to be updated. Given new sets of sequence reads, they can be used to build a compressed colored de Bruijn graph and then merged into the existing (larger) compressed colored de Bruijn graph.

Our contributions. We present VariMerge which constructs a colored de Bruijn graph for large datasets in a manner that allows new datasets to be added efficiently. As suggested earlier, VariMerge builds through a process of partitioning the data into smaller sets, building the colored de Bruijn graph in a RAM-efficient manner for each partition, and merging colored de Bruijn graphs. Each of the colored de Bruijn graphs is stored using the FM-index in the same manner as Vari (Muggli et al., 2017). Thus, the algorithmic challenge that we tackle is merging the graphs in a manner that keeps them in their compressed format throughout the merging process — rather than decompressing, merging and compressing, which would be impractical with respect to disk and memory usage.

We verify the correctness of our approach and the accompanied bubble-calling algorithm by showing the colored de Bruijn graph built via merging is bit-for-bit identical to standard construction, and successfully identifies all bubbles in the merged graph. Next, we demonstrate that VariMerge improves construction scalability over Vari, reducing running time by a third and a reducing working space three fold by saperating the peak disk and memory required to build the colored de Bruijn graph for 8,000 Salmonella strains using Vari and VariMerge.

Lastly, we use VariMerge to build a colored de Bruijn graph for 16,000 strains of Salmonella. This construction required 254 GB of RAM, 2.34 TB of external memory, and approximately 70 hours of CPU time. To contextualize these results we compare the construction of VariMerge with those of state-of-the-art methods, including Vari (Muggli et al., 2017) / Rainbowfish (Almodaresi et al., 2017), Bloom Filter Trie (Holley et al., 2016), Mantis (Pandey et al., 2018) / the method of Almodaresi et al. (2019), and the method of Karasikov et al. (2019), on datasets consisting of 4,000, 8,000 and 16,000 strains. We demonstrate the incremental update utility of VariMerge by adding a new strain to the 16,000 set an order of magnitude faster than that its initial construction.

These results demonstrate that VariMerge is the only method that is capable of building the colored de Bruijn graph for 16,000 strains in a manner where new datasets can be added (via merging). Mantis was the only other method that was capable of building the colored de Bruijn graph for 16,000 strains. Although Mantis (Pandey et al., 2018) was able to constructed a colored graph for 16,000 strains, and the authors suggest a dynamic update strategy in future work, no implementation is available and its current implementation cannot be updated without reconstruction. All other methods were not scalable and thus, we were unable to complete construction in 72 hours and using at most 4 TB of disk space and 756 GB of memory.

2 Related Work

Efficient de Bruijn graph. Space-efficient representations of de Bruijn graphs have been heavily researched in recent years. One of the first

1 Since Rainbowfish first constructs Vari and then compresses, its peak memory and disk usage is the same.

2 Since Almodaresi et al. (2019) constructs Mantis and then compresses, its peak space and disk usage is the same.
Efficient colored de Bruijn graphs. As previously mentioned, Vari (Muggli et al., 2017) and Rainbowfish (Almodaresi et al., 2017) are both space efficient data structures for storing the colored de Bruijn graph which use the structure of the Bloom Filter Trie (Holley et al., 2012) in a metagenomics assembler called MEGAHIT (Li et al., 2015). (Chikhi et al., 2014) implemented the de Bruijn graph using an FM-index and minimizers.

Building Large Updatable Colored de Bruijn Graphs via Merging

3 Preliminaries

As previously mentioned, Vari (Muggli et al., 2017) represents the colored de Bruijn graph using BWT, and VariMerge, efficiently merges de Bruijn graphs that are represented in this manner. Here, we first define some basic notation and definitions concerning BWT, then we show how the de Bruijn graph and colored de Bruijn graph can be stored using BWT.

3.1 Basic Definitions and Terminology

Here, we begin with some basic definitions related to our representation. Throughout we consider a string $X = X[1..n] = X[1]X[2]...X[n]$ of $|X| = n$ symbols drawn from the alphabet $[0, ... , 1]$. For $i = 1, ..., n$ we write $X[i]$ to denote the suffix of X of length $n - i + 1$, that is $X[i] = X[i]X[i+1]...X[n]$. Similarly, we write $X[i...j]$ to denote the prefix of X of length i. $X[i...j]$ is the substring $X[i]X[i+1]...X[j]$ of X that starts at position i and ends at j.

Suffix arrays and suffix array intervals. The suffix array (Manber and Myers, 1993) $SA[i]$ (we drop subscripts when they are clear from the context) of a string X is an array $SA[1...n]$ which contains a permutation of the integers $[1...n]$ such that $X[SA[1]], X[SA[2]], ... , X[SA[n]]$ in X. For other words, $SA[i] = j$ if and only if $X[i] = X[j]$, the suffix of X in lexicographical order. Here, $<$ denotes lexicographical precedence.

For a string Y, the Y-interval in the suffix array $SA[i]$ is the interval $SA[i..e]$ that contains all suffixes having Y as a prefix. The Y-interval is a representation of the occurrences of Y in X. For a character c and a string Y, the computation of $c^{-}Y$-interval from Y-interval is called a left extension.

BWT. Next, for a string Y, let F be the list of Y's characters sorted lexicographically by the suffixes starting at those characters, and L be the list of Y's characters sorted lexicographically by the suffixes starting immediately after those characters. (The names F and L are standard for these lists.) If $Y[i]$ is in position p in F then $Y[i]$ is in position p in L. Moreover, if $Y[i] = Y[j]$ then $Y[i]$ and $Y[j]$ have the same relative order in both lists; otherwise, their relative order in F is the same as their lexicographical order. This means that if $Y[i]$ is in position p in L then (assuming arrays are indexed from 0) in F is in position

$$|\{ h : Y[h] \leq Y[i]) \}| + |\{ h : L[h] = Y[i], i \leq p \}| - 1.$$

Finally, notice that the last character in Y always appears first in L. It follows that we can recover Y from L, which is the famous Burrows-Wheeler Transform (BWT) (Burrows and Wheeler, 1994) of Y.

FM-index and backward reach. Ferragina and Manzini (2005) first realized BWT can be used for indexing in addition
to compression. Hence, if we know the range \(BWT(Y)[i,j]\) occupied by characters immediately preceding occurrences of a pattern \(P\) in \(Y\), then we can compute the range \(BWT(Y)[i',j']\) occupied by characters immediately preceding occurrences of \(cP\) in \(Y\), for any character \(c\), since

\[
i' = \left[\left[h : \forall k < c \right] + \left[h : \exists k \geq c \right] \right] ; \quad j' = \left[\left[h : \forall k < c \right] + \left[h : \exists k \geq c \right] \right] - 1.
\]

Notice \(j' - i' + 1\) is the number of occurrences of \(cP\) in \(Y\). The essential components of an FM-index for \(Y\) are: (1) an array storing \([h : \forall k < c]\) for each character \(c\), and (2) a rank data structure for \(BWT(Y)\) that quickly tells us how often any given character occurs up to any given position. To be able to locate the occurrences of patterns in \(Y\) (in addition to just counting them), we can use a sampled suffix array of \(Y\) and a bivector indicating the positions in \(BWT(Y)\) of the characters preceding the sampled suffixes.

Hence, we define the function \(rank(Y,c,i)\), for string \(Y\), symbol \(c\), and integer \(i\), as the number of occurrences of \(c\) in \(Y[1..i]\). Rank is used in backward search (Ferragina and Manzini, 2005) in order to compute left extension of a given string, i.e., the previous character.

3.2 Storage of de Bruijn Graph using BWT

Given a de Bruijn graph \(G = (V,E)\), we refer to the label of an edge \(e \in E\) as the \(k\)-mer corresponding to it, and denote it as \(\text{label}(e)\). Further, given \(V\), we define the co-lexicographic (colex) ordering of \(V\) as the lexicographic order of their reversed labels \((k - 1\)-mers).

We let \(P\) be the edges in \(E\) in colex order by their ending nodes, where ties are broken by their starting nodes, and let \(L\) be the edges in \(E\) sorted colex by their starting nodes, with ties broken by their ending nodes. We refer to the ordering of \(L\) as \(\text{Vin-sort}ed\). If we are given two edges \(e\) and \(e'\) that have the same label then we are guaranteed that they have the same relative order in both \(F\) and \(L\), otherwise, their relative order in \(F\) is the same as their labels’ lexicographic order. This means that if \(e\) is in position \(p\) in \(L\), then it is in position

\[
\left[\left[d : \exists d \in E, \text{label}(d) < \text{label}(e) \right] + \left[h : \text{label}(L[h]) \right] \right] - 1\]

where \(\leq\) denotes lexicographic precedence. We define the edge-BWT (EBWT) of \(G\) to be the sequence of edge labels sorted according to the ordering of the edges in \(L\) so \(\text{label}(L[h]) = \text{EBWT}(G)[h]\) for all \(h\). Therefore, if we have an array \(D\) storing \([d : \exists d \in E, \text{label}(d) < c]\) for each character \(c\) and a fast rank data structure on \(\text{EBWT}(G)\), then given an edge’s position in \(\text{Vin}\), we can quickly compute its position in \(F\).

We let \(B_{PF}\) be the bit vector with a 1 marking the position in \(P\) of the last incoming edge of each node, and let \(B_{PL}\) be the bit vector with a 1 marking the position in \(L\) of the last outgoing edge of each node. Given a character \(c\) and the colex rank of a node \(v\), we can use \(B_{PF}\) to find the interval in \(L\) containing \(v\)’s outgoing edges. We can then search \(\text{EBWT}(G)\) to find the position of each outgoing edge\(^3\). Similarly, we can make similar queries about the incoming edges of a node \(v\) in an efficient manner using \(B_{PF}\).

Therefore, briefly we explained how we can construct and represent a de Bruijn graph \(G = (V,E)\) with EBWT, \(B_{PF}\), and \(B_{PL}\) in a manner that allows for efficient navigation of the graph. An example of this representation is shown in Figure I. Given this representation we can traverse the graph and recover incoming and outgoing edges. Next, we demonstrate how the labels (\(k\)-mers) can be recovered using this data structure.

Label recovery

We note that an important aspect of this succinct representation of the graph is that the \((k - 1)\)-mers (nodes) and \(k\)-mers (edges) of the de Bruijn graph \(G\) are not explicitly stored in the above representation—rather they can be computed (or recovered) from this representation. As previously mentioned, we can traverse the graph in a forward or reverse manner and recover incoming and outgoing edges of a given node \(v\). Given this efficient traversal, we can recover the label of \(v\) by traversing the graph in a backward direction starting from \(v\); given the label of \(v\) is \(\lambda\) (a \((k-1)\)-mer) we traverse backward \(k-1\) times. Therefore, we must add extra nodes and edges to the graph to ensure there is a directed path of length at least \(k - 1\) to each original node. More formally, we augment the graph so that each new node’s label is a \((k - 1)\)-mer that is prefixed by one or more copies of a special symbol \(\$\) not in the alphabet and lexicographically strictly less than all others. When new nodes are added, we are assured that the node labeled \(\lambda^k\$\) always first in colex order and has no incoming edges. Lastly, we augment the graph in a similar manner by adding an outgoing edge, labeled \(\$,\) to each node with no outgoing edge. These “dummy nodes” are shown in Figure I.

3.3 Storage of Colors

Given a multiset \(G = \{G_1, \ldots, G_t\}\) of individual de Bruijn graphs, we set \(G\) to be the union of those individual graphs and build the previously described representation for \(G\). We also build and store a two-dimensional binary array \(G\) in which \(G[i,j]\) indicates whether the \(i\)th edge in \(G\) is present in the \(j\)th individual de Bruijn graph (i.e., whether that edge has the \(j\)th color). Hence, we store a given de Bruijn graph using EBWT, the described bit vectors, and a compressed color matrix. The combination of the above storage of the graph \(G\) plus the compressed matrix is the succinct storage of the graph.

4 Method

In this section, we first describe a naive merge procedure to motivate the use of the succinct merge algorithm, and then give the succinct merge algorithm in detail. We describe how to merge two colored de Bruijn graphs in both algorithms but note that it generalizes to an arbitrary number of graphs. Hence, we assume that we have two de Bruijn graphs \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) as input, which are stored as \(\text{EBWT}(G_1)\), \(B_{L_1}\), \(B_{PF_1}\) and \(C_1\) and \(\text{EBWT}(G_2)\), \(B_{PF_2}\), \(B_{L_2}\) and \(C_2\) respectively. We will output the merged graph \(G_M = (V_M, E_M)\) stored in the same format as the input, more descriptively: a set of abbreviated edge labels \(\text{EBWT}(G_M)\), a bit vector that delimits their common origins \(B_{PF_M}\) and the color matrix \(C_M\).

4.1 A Naive Merge Algorithm

We recall from Section 3 that \(V_M\) does not store the edge labels (\(k\)-mers) of \(G\)-rather, they have to be computed from the succinct representation. We denote the edge labels for \(G_1\), \(G_2\), and \(G_M\) as \(L_1\), \(L_2\), and \(L_M\), respectively. For example, if we want to reconstruct the \(k\)-mer \(AGAGAGTTA\) contained in \(G_1\) which is stored as \(\lambda\) in \(\text{EBWT}(G_1)\), we need to backward navigate in \(G_1\) from the edge labeled \(\lambda\) through \(k - 1\) predecessor edges \((T, T, G, \ldots)\). We concatenate the abbreviated edge labels encountered during this backward navigation in reverse order to construct the label \(\text{AGAGAGTTA}\). Thus, we could naïvely merge \(G_1\) and \(G_2\) by reconstructing \(L_1\) and \(L_2\), merging them into \(L_M\), and computing the succinct representation of \(L_M\), i.e., \(\text{EBWT}(G_M)\). We note that this
Building Large Updatable Colored de Bruijn Graphs via Merging

![Diagram of a colored de Bruijn graph]

Fig. 1: Left: A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in yellow and green. All nodes to be present in both graphs are shown in lime. Center: The co-lexicographically sorted nodes, with the number of incoming edges shown on their left and the labels of the outgoing edges shown on their right. The edge labels are shown in yellow or green if the edges occur only in the respective graph, or lime if they occur in both. Right: The Vari representation of the colored de Bruijn graph: the edge-BWT is the list of edge labels. B_+ and B_- are bit vectors to track the incoming and outgoing node degree, respectively. Finally, the binary array C (shown transposed) indicates which edges are present in which individual graphs.

algorithm requires explicitly building L_1, L_2, and L_M, and thus, has a significant memory footprint.

4.2 The Succinct Merge Algorithm

We are now ready to describe the merge algorithm used as a component of VariMerge. The trick of the merge algorithm is to build the succinct data structure for G_M without constructing L_1 and L_2, which will in turn reduce memory costs enormously.

4.2.1 Intuitive Explanation of Succinct Merging.

Before we give a detailed explanation of our algorithm we take a step back–abstract away the complexities of the succinct de Bruijn graph–and consider the simpler problem of merging two sorted lists of strings with the constraint that we can only examine a single character from each string at a time. We can solve this problem with a divide and conquer approach. First, we group all the strings in each list by their first character. This partially solves the problem, as we know all the strings in the first group from each list must occur in the output before all the strings in the second group in each list and so on. Thus, the problem is now reduced to merging the strings in the first group, followed by merging the strings in the second group and so on. Each of these merges can be addressed by again grouping the elements (i.e. subgroups of the initial groups) by examining the second character of each string. We can apply this step recursively until all characters of each string have been examined.

We draw the reader’s attention to the fact that our succinct colored de Bruijn graph representation is a space-efficient representation of the list of sorted k-mers (and $(k-1)$-mers) thus, we can apply this general algorithm but alter it in the following ways: 1) the nested grouping of the strings is rather a flat partitioning of the two lists into intervals, which is updated each time a character is processed, and 2) the actual merging is reserved for the end once all characters have been processed and their needed information accumulated into set of partitions of each list.

4.2.2 Overview of the Algorithm.

Now we return to the problem of merging succinct colored de Bruijn graphs. We refer to $E_{BWT}(G_M)$ and G_M as the primary components of the data structure and B_{PM} and B_{LM} as secondary components. We describe how to merge the primary components, and leave the details of how to merge the secondary components to the Supplement. The algorithm consists of two steps: (1) a planning step which plans the merge, and (2) a final execution step which executes the planned merge. In the planning step, we output a list of non-overlapping intervals for L_1 and one for L_2. We refer to these lists as a merge plan, which is then used to execute the merge. There are k iterations of the planning algorithm (where k corresponds to the k-mer value). At each iteration of the algorithm a single character of the edge labels (k-mers) is processed, and the merge plan is revised (see Figure 3 in Supplement). After k iterations, we execute the merge plan.

4.2.3 The Planning Step.

We denote the merge plan as $P_{1} = \{0, p_1^1, \ldots, p_1^n, |L_1| - 1\}$, where each p_1^1, \ldots, p_1^n is an index in L_1, and $P_2 = \{0, p_2^1, \ldots, p_2^n, |L_2| - 1\}$, where each p_2^1, \ldots, p_2^n is an index in L_2. We first initialize P_1 and P_2 to be single intervals covering L_1 and L_2, respectively (e.g., $P_1 = \{0, |L_1| - 1\}$ and $P_2 = \{0, |L_2| - 1\}$) (e.g. red merge plan in Figure 3). Next, we revise P_1 and P_2 in an iterative manner. In particular, we perform k consecutive revisions of P_1 and P_2, where k is the k-mer value used to construct G_M. Each revision of P_1 and P_2 is based on the next character of each edge label in L_1 and L_2 (e.g. green and blue merge plans in Figure 3). Thus, in order to fully describe the planning stage, we define (1) how the characters of the edge labels are computed and (2) how P_1 and P_2 are revised based on these characters.

Computing the next character of L_1 and L_2. We let i denote the current iteration of our revision of P_1 and P_2, where $1 \leq i \leq k$. We compute the next characters of L_1 and L_2 using two temporary character vectors Col_i^1 and Col_i^2, which are of length $|L_1|$ and $|L_2|$, respectively. Conceptually, we define these vectors as follows: $Col_i^1[j] = L_1[j][k - i]$ if $j < k$ and otherwise $Col_i^1[j] = L_1[j][k - |L_1|]$, and $Col_i^2[j] = L_2[j][k - i]$ if $j < k$ and otherwise $Col_i^2[j] = L_2[j][k - |L_2|]$. Since we do not explicitly build or store L_1 and L_2, we must compute Col_i^1 and Col_i^2 (Figure 4 shows how we calculate Col^i based on Col^{i-1} at each iteration.)

Revising P_1 and P_2. We revise P_1 and P_2 based on Col_i^1 and Col_i^2, at iteration i by considering each pair of intervals in P_1 and P_2, i.e., $P_1[n]$ and $P_2[n]$ for $n = 1, \ldots, |P_1|$, and partitioning each interval into at most five (number of alphabets) sub-intervals. We store the list of sub-intervals

\footnote{We recall that FM-index stores the last character of each edge label and we do not have access to L_1 and L_2. Therefore, we are processing the characters of L_1 and L_2 from right to left. Thus, the “next” character is the preceding character of an edge label.}
of \(P_1 \) and \(P_2 \) as \(\text{Sub}P_1 \) and \(\text{Sub}P_2 \). Intuitively, we create \(\text{Sub}P_1 \) and \(\text{Sub}P_2 \) in order to divide \(P_1[n] \) and \(P_2[n] \) based on the runs of covered characters in \(\text{Col}_1 \) and \(\text{Col}_2 \)—e.g., for each run of \(\{A, C, G, T\} \), we partition \(\text{Sub}P_1 \) by covering \(\text{Col}_1 \) that is covered by \(P_1[n] \), which we denote as \(\text{Col}_1^2(P_1[n]) \), and computing the subvector of \(\text{Col}_1 \) that is covered by \(P_2[n] \), which we denote as \(\text{Col}_2^2(P_2[n]) \). Next, given a character \(c \) in \(\{A, C, G, T\} \), we populate \(\text{Sub}P_1[c] \) and \(\text{Sub}P_2[c] \) based on \(\text{Col}_1^2(P_1[n]) \) and \(\text{Col}_2^2(P_2[n]) \) as follows: (1) we check whether \(c \) exists in either \(\text{Col}_1^2(P_1[n]) \) or \(\text{Col}_2^2(P_2[n]) \); (2) if so, we add an interval to \(\text{Sub}P_1[c] \) covering the contiguous range of \(c \) in \(\text{Col}_1^2(P_1[n]) \) (or add an empty interval if \(\text{Col}_1^2(P_1[n]) \) lacks any instances of \(c \)), and add an interval to \(\text{Sub}P_2[c] \) covering the contiguous range of \(c \) in \(\text{Col}_2^2(P_2[n]) \) (or, likewise, add an empty interval if \(\text{Col}_2^2(P_2[n]) \) lacks any instances of \(c \)). Finally, we concatenate all the lists in \(\text{Sub}P_1 \) and \(\text{Sub}P_2 \) to form the revised plan \(P'_1 \).

We are guaranteed by the definition of our data structure that any instances of \(c \) in \(\text{Col}_1^2(P_1[n]) \) will be in a contiguous range, and likewise, any instances of \(c \) in \(\text{Col}_2^2(P_2[n]) \) will also be in a contiguous range.

Fig. 2: (a) A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in red and blue. (We can consider all nodes to be present in both graphs, so they are shown in purple.) (b) A second colored de Bruijn graph, whose edges are green and yellow. (c) The merged colored de Bruijn graph \(G_{M1} \). (d) The representation of the merged colored de Bruijn graph.

Thus, we partition \(P_1 \) by first computing the subvector of \(\text{Col}_1 \) that is covered by \(P_1[n] \), which we denote as \(\text{Col}_1^2(P_1[n]) \), and computing the subvector of \(\text{Col}_1 \) that is covered by \(P_2[n] \), which we denote as \(\text{Col}_2^2(P_2[n]) \). Next, given a character \(c \) in \(\{A, C, G, T\} \), we populate \(\text{Sub}P_1[c] \) and \(\text{Sub}P_2[c] \) based on \(\text{Col}_1^2(P_1[n]) \) and \(\text{Col}_2^2(P_2[n]) \) as follows: (1) we check whether \(c \) exists in either \(\text{Col}_1^2(P_1[n]) \) or \(\text{Col}_2^2(P_2[n]) \); (2) if so, we add an interval to \(\text{Sub}P_1[c] \) covering the contiguous range of \(c \) in \(\text{Col}_1^2(P_1[n]) \) (or add an empty interval if \(\text{Col}_1^2(P_1[n]) \) lacks any instances of \(c \)), and add an interval to \(\text{Sub}P_2[c] \) covering the contiguous range of \(c \) in \(\text{Col}_2^2(P_2[n]) \) (or, likewise, add an empty interval if \(\text{Col}_2^2(P_2[n]) \) lacks any instances of \(c \)). Finally, we concatenate all the lists in \(\text{Sub}P_1 \) and \(\text{Sub}P_2 \) to form the revised plan \(P'_1 \).
and P_2'. This revised plan P_1' and P_2' becomes the input P_1 and P_2 for the next refinement step. (Figure 3 shows three merged plans, including two refined ones (green and blue)). We crafted the method above to maintain the property described in the following observation.

Observation 1. Let P_1 be a (partial) merge plan, and P_1' its refinement by our merge algorithm, where $e_1, ..., e_n$ are the elements in L_1 that are covered by interval $p_i \in P_1$ and $m_1, ..., m_n$ are the elements of L_2 covered by interval $p_i \in P_2$. The following conditions hold: (1) $|P_1| = |P_2'|$ and $|P_2'| = |P_2|$ if P_2' given any pair of elements where $e_k \in p_{i_1}$, $e_l \in p_{i_2}$ and $p_{i_1} \cap p_{i_2} = \emptyset$ there exists intervals p_{i_1}' and p_{i_2}' in P_2' such that $p_{i_1}' \cap p_{i_2}' = \emptyset$ and $e_k \in p_{i_1}'$, $e_l \in p_{i_2}'$; and lastly, (3) given an interval $p_i \in P_1$ and the subsets of the alphabet used $e_1, ..., e_n$ and $e_2 \in m_1, ..., m_n$ then p_i will be partitioned into $|SubP_i| = |e_1 \cup e_2|$ subintervals in P_1'.

We defined this observation for P_1 but note that an analogous observation exists for P_2.

4.2.4 The Execution Step.

We execute the merge plan by combining the elements of $EBWT(G_{1})$ that are covered by an interval in P_1 with the elements of $EBWT(G_{2})$ that are covered by the equal position interval in P_2 into a single element in $EBWT(G_{1,2})$. We note that when all characters of each label in L_1 and L_2 are computed and accounted for, each interval in P_1 and P_2 will cover either 0 or 1 element of L_1 and L_2 and the number of intervals in P_1 (equivalently P_2') will be equal to $|EBWT(G_{1,2})|$. Thus, we consider and merge each pair of intervals of P_1 and P_2 in an iterative manner. We let $(p_{1}', p_{2}') = \epsilon$ be the i-th pair of intervals. We concatenate the next character of $EBWT(G_1)$ onto the end of $EBWT(G_{1,2})$ if $|p_{1}'| = 1$. If $|p_{1}'| > 1$ then we dismiss the next character of $EBWT(G_1)$ since it is an abbreviated form of an identical edge to that just added. Next, if $|p_{1}'| = 0$ and $|p_{2}'| = 1$, we copy the next character from $EBWT(G_2)$ onto the end of $EBWT(G_{1,2})$.

We merge the color matrices in an identical manner by copying elements of C_1 and C_2 to $C_{1,2}$. Again, we iterate through the plan by considering each pair of intervals. If $|p_{1}'| = 1$ and $|p_{2}'| = 1$ then we concatenate the corresponding rows of C_1 and C_2 to form a new row that is added to $C_{1,2}$. If only one of $|p_{1}'|$ or $|p_{2}'|$ is non-zero then the corresponding row of C_1 or C_2 is copied to $C_{1,2}$ with the other elements of the new row set to 0. Figure 3 in Supplement shows a complete illustration of VariMerge resulting colored de Bruijn graph.

The following theorem demonstrates the efficiency of our approach.

Theorem 1. Given two de Bruijn graphs $G_1 = \langle V_1, E_1 \rangle$ and $G_2 = \langle V_2, E_2 \rangle$ constructed with integral value k such that, without loss of generality, $|E_1| \geq |E_2|$, it follows that our merge algorithm constructs the merged de Bruijn graph $G_{1,2}$ in $O(m \cdot max(k,t))$-time, where t is the number of colors (columns) in $G_{1,2}$ and $m = |E_1|$.

5 Results.

In this section, we show the correctness of our method, the reduction in the resources used to build a colored de Bruijn graph by merging, and the comparison between state-of-the-art methods for building exact colored de Bruijn graphs. We ran all performance experiments on a machine with two Xeon E5-2660 v4 chips, each having 10.24 GHz cores. The system contains 7.55 GB of RAM and two ZFS RAID pools of 9 disk each for storage. We report wall clock time and maximum resident set size from Linux.

5.1 Validation on E. coli.

In order to validate the correctness of our approach, we generated two succinct colored de Bruijn graphs with two sets of three E. coli assemblies each, merged them, and verified its equivalence to a six color graph built from scratch using Vari. We obtained the six sub-strains of E. coli K-12 from NCBI. Each of the genomes contained approximately 4.6 million base pairs and had a median GC content of 49.9%. This experiment tests that the merged colored de Bruijn graph built by VariMerge is equivalent to that produced by building the graph without merging (i.e., with Vari alone).

We ran a bubble calling algorithm on both six colored graphs and found the identical set of bubbles between them. Further, we found VariMerge produced files on disk that were bit-for-bit identical to those generated by Vari, demonstrating they construct equivalent graphs and data structures.

We leave the details of this validation to the supplement (see Table 4 in the supplement).

5.2 Demonstration of Large-scale Construction and Incremental Updates.

We downloaded the sequence data from for 16,000 salmonella strains (NCBI BioProject PRJNA18384) and divided them into four sets of 4,000 strains, which we label 4A, 4B, 4C, and 4D. From these datasets we construct a colored de Bruijn graph for 8,000 strains, to demonstrate the efficiency of the merge process, and 16,000 strains, to demonstrate scalability. The exact accesses for each dataset is available in our repository.

In order to measure the effectiveness of VariMerge for the proposed divide-and-conquer method of building large graphs, we constructed the colored de Bruijn graph using Vari for a set of 4,000 salmonella assemblies (4A). This took 8 hours 46 minutes, 1 TB of external memory, and 136 GB of RAM to build the graph for 4,000 strains. We then built a graph for a second set of 4,000 assemblies (4B) using 10 hours 40 minutes, 1.5 TB of external memory, and 137 GB of RAM. We merged these two 4,000 sample graphs (i.e. 8AB) using our proposed algorithm in 2 hours 1 minutes, no external memory, and 10 GB of RAM. "0" is shown in the external memory column of Table 1 for merge since no external memory is ever used for merging. Thus the VariMerge method required a combined 137 GB of RAM, 26 hours 30 minutes of runtime to produce the graph for 8,000 strains. We denote this graph with 8,000 strains as 8AB. In contrast, running Vari on the same 8,000 strains required 37 hours 27 minutes, 4.6 TB of external memory and 271 GB of RAM. Thus VariMerge reduced runtime by 11 hours, reducing RAM requirements to 134 GB, and reducing external memory requirements by 3.1 TB.

We further used this facility to merge two more 4,000 color graphs (i.e. 4C + 4D) (Table 2). We denote the resulting graph as 8CD. We then merged this 8,000 sample graph with the aforementioned 8,000 graph to produce a succinct colored de Bruijn graph of 16,000 samples (i.e. 8AB + 8CD).

In order to produce the effectiveness of VariMerge for incremental additions to a graph that holds a growing population of genomes, we started with the colored de Bruijn graph of 16,000 salmonella assemblies. We then constructed a second graph for a singleton set of just one additional assembly. Next, we ran our proposed merge algorithm on these two graphs. VariMerge took 69 hours 8 minutes, 2.34 TB of external memory, and 254 GB of RAM to build the graph for 16,000 strains. To build a single colored de Bruijn graph for an additional strain, Vari took 7 seconds, 460 MB of external memory, and 1.5 GB of RAM to build the 16,000 color graph with the 1 color graph. This is an order of magnitude faster than the almost 70 hours it would take to build the same 16,001 color graph from scratch.
5.3 Comparison to Existing Methods

We compare our method to the existing space- and memory-efficient colored de Bruijn graph methods. To accomplish this, we ran Bloom Filter Trie Holley et al. (2016), Vari Muggli et al. (2019), Rainbowfish (Almodaresi et al., 2017), Mantis Pandey et al. (2018), and Multi-BRWT Karasikov et al. (2019). The peak RAM, peak disk usage, and running time required by the methods to construct a colored de Bruijn graph for 4,000, 8,000, and 16,000 strains is shown in Table 3. All methods were run with default parameters and \(k = 32 \), except from Bloom Filter Trie which can only work with \(k \) values which are multiples of 9, hence we ran it with \(k = 27 \). Also we ran Mantis on 4,000 and 8,000 strains with suggested log-slot value for large experiments which is 33, however we had to increase this value to 36 for running it on 16,000 strains due to “auto resize failed” error. All method are exact, colored de Bruijn graph construction methods.

Since Rainbowfish first runs Vari and then compresses, the peak RAM, peak disk usage, and time will be at least that of Vari for construction; this is why they are shown together in Table 3. Similarly, we report peak RAM, peak disk usage and time of Mantis together with that of the method of Almodaresi et al. (2019) because the latter method first runs Mantis and then compresses the output of Mantis. These points are also discussed in the related work. Again, because we are interested in construction (not exclusively compression) we are interested in peak RAM and external memory usage.

We report N/A in Table 3 for any method that exceeded 72 CPU hours, 4 TB of disk space, and 750 GB of memory. ‘\(\leq \)’ denotes the value for a base method that has an additional method. We anticipate add-on methods to compress better but will still consume the resources shown for their base method because they reuse the base method’s output. We measured RAM as Max Resident Set Size. Mantis authors noted their use of memory mapped I/O means this reveals opportunistic consumption and not necessarily requirement for their program.

Table 1

Input Stats	de Bruijn Graph	Color Matrix	Combined Requirements		
Program and Dataset	Colors	RAM	Time	Size	
Vari(4A)	1.6 GB	0.4 GB	0.1 GB	53 GB	137 GB
Vari(4B)	1.5 GB	0.4 GB	0.1 GB	53 GB	137 GB
Merge(4A, 4B)	2.4 GB	0.4 GB	0.1 GB	53 GB	137 GB
VariMerge	2.0 GB	0.4 GB	0.1 GB	53 GB	137 GB

Table 1: Breakdown of the memory, disk and time usage of VariMerge to build the colored de Bruijn graph for 8,000 strains. The VariMerge method consists of running Vari on subsets of the population (4A and 4B) and then merging the results with our proposed merge algorithm (denoted Merge here). We list the resources used for both individual runs of Vari, the Merge required, and the combined resources. The combined resources consists of the total time and maximum space used across all three components of VariMerge used in this dataset. No external memory is needed for merging itself so “0” is in the external memory column for Merge.

Table 2

Input Stats	de Bruijn Graph	Color Matrix	Combined Requirements		
Program and Dataset	Colors	RAM	Time	Size	
Vari(4C)	1.6 GB	0.4 GB	0.1 GB	53 GB	137 GB
Vari(4D)	2.4 GB	0.4 GB	0.1 GB	53 GB	137 GB
Merge(4C, 4D)	3.8 GB	0.4 GB	0.1 GB	53 GB	137 GB
Merge(8AB, 8CD)	5.8 GB	0.4 GB	0.1 GB	53 GB	137 GB
VariMerge	5.8 GB	0.4 GB	0.1 GB	53 GB	137 GB

Table 2: Breakdown of the peak memory, peak disk and time required by VariMerge to build the colored de Bruijn graph for 16,000 strains of Salmonella. We note VariMerge includes the resources required of the two 4,000 runs of Vari (i.e. Vari(4A) and Vari(4B)) and the merge run (i.e. Merge(4A, 4B)) from Table 1. No extra external memory is needed for merging so “0” is in the external memory column for Merge.

Table 3

Dataset	No. of k-mers	Program	Output Stats	Time	RAM
4,000	1.1 Billion	Vari / Rainbowfish	\(\leq 51 \) GB	103 GB	137 GB
		Bloom Filter Trie	\(\leq 99 \) GB	120 GB	120 GB
		Mantis / Method of Almodaresi et al	\(\leq 36 \) GB	313 GB	313 GB
		VariMerge	\(\leq 51 \) GB	103 GB	137 GB
8,000	2.4 Billion	Vari / Rainbowfish	\(\leq 114 \) GB	271 GB	271 GB
		Bloom Filter Trie	\(\leq 99 \) GB	120 GB	120 GB
		Mantis / Method of Almodaresi et al	\(\leq 38 \) GB	370 GB	370 GB
		VariMerge	\(\leq 106 \) GB	137 GB	137 GB
16,000	5.8 Billion	Vari / Rainbowfish	\(\leq 256 \) GB	516 GB	516 GB
		Bloom Filter Trie	\(\leq 99 \) GB	120 GB	120 GB
		Mantis / Method of Almodaresi et al	\(\leq 256 \) GB	516 GB	516 GB
		VariMerge	\(\leq 256 \) GB	516 GB	516 GB

Table 3: Comparison between building a space-efficient colored de Bruijn graph construction methods for 4,000, 8,000, and 16,000 Salmonella strains using VariMerge versus competing methods. We report N/A for any method that exceeded 72 CPU hours, 4 TB of disk space, and 750 GB of memory. ‘\(\leq \)’ denotes the value for a base method that has an add-on method. We anticipate add-on methods to compress better but still consume the resources shown for their base method because they reuse the base method’s output. We measured RAM as Max Resident Set Size. Mantis authors noted their use of memory mapped I/O means this reveals opportunistic consumption and not necessarily requirement for their program.
Building Large Updatable Colored de Bruijn Graphs via Merging

(see Related Work). Mantis (and its successor (Almodaresi et al., 2019)) required the largest peak memory (313 GB) but had the lowest disk usage (35 GB). While 8,000 strains all the methods were capable of running given the constraints. With 8,000 strains Vari and Rainbowfish required more than 4 TB of disk space, and both Bloom Filter Trie and Multi-BRWT required more than 72 hours. Mantis and VariMerge were the only ones capable of building the colored de Bruijn graph with 8,000 strains. Mantis was more efficient with respect to final output and VariMerge was more efficient with respect to RAM consumed. Lastly, only Mantis and VariMerge were capable of building the colored de Bruijn graph with 16,000 strains. Yet, as shown in the previous section, VariMerge allows the graph to be updated with new data via merging. Mantis (as well as Vari and Rainbowfish) cannot update the graph without re-construction.

Lastly, VariMerge has several practical advantages over competing methods. It allows large values of k, i.e., $k \leq 64$, and allows for efficient queries of the form: given a color c, return all k-mers that have that color. Competing methods cannot perform such queries without the input files or cannot scale to large datasets. We discuss this more in the conclusions.

6 Conclusion

In this paper, we develop a method to build the colored de Bruijn graph by merging smaller graphs in a resource-efficient manner. This allows the colored de Bruijn graph to be constructed for large datasets, and provides an efficient means to update the colored de Bruijn graph. This latter point is particularly important as data is frequently added to public databases.

We leave optimizing partition size as an area for future work.

Lastly, we mention that due to the underlying graph data structure of VariMerge has some advantages over competing methods. First, VariMerge allows arbitrary k up to 64 while other tools are more restricted: BFT requires k to be multiples of 9 and Mantis only supports up to $k=32$.

Second, the node labels can be recovered from the index alone, allowing the following queries to be performed: given a particular color c, what k-mers have color c. These queries can be accomplished by VariMerge by scanning a particular column of the color matrix, and can be used for comparing samples, i.e., how many k-mers are shared between sample x and sample y. While the Mantis authors have suggested an approach to supporting this query, it is unimplemented and requires the input files, increasing the size of the data structure. See supplement for a full explanation.

References

Almodaresi, F., Pandey, P., and Patro, R. (2017). Rainbowfish: A succinct colored de Bruijn graph representation. In Proc. of WABI, pages 251–265.

Almodaresi, F., Pandey, P., Ferdman, M., Johnson, R., and Patro, R. (2019). An efficient, scalable and exact representation of high-dimensional color information enabled via de Bruijn graph search. Accepted to RECOMB 2019, Preliminary version posted on bioRxiv.

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). Succinct de Bruijn graphs. In Proc. of WABI, pages 225–235.

Bradley, P., Bakker, H., Rocha, E., McVean, G., and Iqbal, Z. (2017). Real-time search of all bacterial and viral genomic data. BioRxiv.

Burrows, M. and Wheeler, D. (1994). A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, California.

Chikhi, R. and Rizik, G. (2013). Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithm Mol Biol, 8(1).

Chikhi, R., Limasset, A., Jackman, S., Simpson, J. T., and Medvedev, P. (2014). On the representation of de Bruijn graphs. In Proc. of RECOMB, pages 35–55.

Conway, T. and Bromage, A. (2011). Succinct data structures for assembling large genomes. Bioinformatics, 27(4), 479–486.

Crawford, V., Kuhnle, A., Boucher, C., Chikhi, R., and Gagie, T. (2019). Practical dynamic de Bruijn graphs. Bioinformatics, page to appear.

Ferragina, P. and Manzini, G. (2005). Indexing compressed text. JACM, 52(4), 552–581.

Holley, G., Wintter, R., and Stoye, J. (2016). Bloom filter trie-a data structure for pan-genome storage. Algorithms Mol Biol, 11(3), 217–230.

Holt, J. and McMillan, L. (2014). Merging of multi-string BWTs with applications. Bioinformatics, 30(24), 3524–3531.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo assembly and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44, 226–232.

Karasikov, M., Mustafa, H., Joudaki, A., Javadzadeh-No, S., Rätsch, G., and Kahles, A. (2019). Sparse binary relation representations for genome graph annotation. Accepted to RECOMB 2019, Preliminary version posted on bioRxiv.

Li, D., Liu, C.-M., Loo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676.

Manber, U. and Myers, G. W. (1993). Suffix arrays: a new method for on-line string searches. SIAM J Sci Comput, 22(5).

Muggli, M., Bowe, A., Noyes, N., Morley, P., Belki, K., Raymond, R., Gagie, T., Puglisi, S., and Boucher, C. (2017). Succinct colored de Bruijn graphs. Bioinformatics, 33(20), 3181–3187.

Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Rätsch, G., and Kahles, A. (2018). Dynamic compression schemes for graph coloring. Bioinformatics, page bry632.

Okanohara, D. and Sadakane, K. (2007). Practical entropy-compressed rank/select dictionary. In Proc. of ALNEX, pages 60–70.

Pandey, P., Almodaresi, F., Bender, M., Ferdman, M., Johnson, R., and Patro, R. (2018). Mantis: A fast, small, and exact large-scale sequence-index search index. Cell, 7(2), 201–207.

Peng, Y. et al. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11).

Simpson, J. et al. (2009). ABySS: A parallel assembler for short read sequence data. Genome Research, 19(6), 1117–1123.

Särn, J. (2016). Burrows-Wheeler transform for tenbases. In Proc. of DCC, pages 211–220.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-read sequencing experiments. Nature Biotechnology.

Solomon, B. and Kingsford, C. (2018). Improved search of large transcripтомic sequencing databases using split sequence bloom trees. Journal of Computational Biology, 25(7).

Stevens, E., Timme, R., Brown, E., Allard, M., Strain, E., Bunning, K., and Musser, S. (2017). The public health impact of a publically available, environmental database of microbial genomes. Frontiers in Microbiology, 8, 808.

Sun, C., Harris, R., Chikhi, R., and Medvedev, P. (2017). AllSome Sequence Bloom Trees. In Proc. of RECOMB, pages 272–286.

The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 68–74.

Turnell, C. et al. (2018). The 100,000 genomes project: bringing whole genome sequencing to the nhs. British Medical Journal, 361, k1687.

Yu, Y., Liu, J., Liu, X., Zhang, Y., Magner, E., Lehner, E., Qian, C., and Liu, J. (2018). SeqOthello: querying RNA-seq experiments at scale. Genome Biology, 19, 167.
Supplement

7 Personal Communication with Authors of Mantis

On Thu, Jan 24, 2019 at 7:44 PM Rob Johnson <robj@vmware.com> wrote:

First of all, thank you for taking the time to have these discussions while under a deadline. I really appreciate it! I also appreciate the effort you put into running mantis under ulimit. It’s unfortunate that ulimit has no affect on recent linux versions.

But I have great confidence that the memory usage is not 313GB. Even though Mantis maps a lot of memory, it’s working set is much, much smaller than the total memory it maps. If there were any memory pressure on the system, the OS could reclaim that RAM and use it for something else, and Mantis would hardly be affected. We hope to get you a cgroups script that can properly limit mantis’ resident size.

As for returning all the kmers from that sample’s squeakr file. This takes O(size of output) time, i.e. constant output complexity. This will increase disk usage (since you need to keep all the squeakrs), but I believe it would be competitive, in all regards, with everything in the table you sent before.

Best, Rob

8 Proof of Theorem 1

Theorem 1. Given two de Bruijn graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ constructed with integral value k such that, without loss of generality, $|E_1| \geq |E_2|$, it follows that our merge algorithm constructs the merged de Bruijn graph G_{M} in $O(m \cdot \max(k, t))$-time, where t is the number of colors (columns) in C_{M} and $m = |E_1|$.

Proof. In our merge algorithm, we will perform k refinements of P_1 and P_2 after they are initialized. We know by definition and Observation 1 that $|P_1| \leq |k_1|$, $P_2 \leq |k_2|$, $C_0|_i \leq |L_1|$ and $C_0|_i \leq |k_2|$ at each iteration i of the algorithm. Further, it follows from Observation 1 that a constant number of operations are performed to P_1, P_2, $C_0|_i$ and $C_0|_i$. We populate C_{M} in the last step of merging the primary components of the data structure. Since the C_{M} is a bit matrix of size k by t, it follows that this step will take time $O(m \cdot \max(k, t))$-time. Hence, if $k \leq t$ the merge algorithm will take $O(mk)$-time; otherwise it will take $O(npt)$-time (since populating C_{M} will dominate in this case).

9 Details Concerning Strains of E.coli K-12

Table 4 describes the accession number, sub-strain and genome length of the E.coli genomes used for validation of our construction and bubble-calling.

Accession Number	Sub-strain	Genome Size
AP0093048	W3110	4,646,332 bp
CP0010739	ER3413	4,538,660 bp
CP0101441	ER3445	4,607,634 bp
CP0104422	ER3466	4,660,432 bp
CP0104455	ER3435	4,682,086 bp
CP000096	MG1655	4,641,632 bp

Table 4. Characteristics of the substrains of E. coli K-12 used to test the performance and accuracy of VariMerge

We validate VariMerge by generating two succinct colo

10 Merging the secondary components

Delimiting common origin with B_{M}: We prepare to produce B_{M} in the planning step by preserving a copy of the merge plan after $k-1$ refinement iterations as S_{k-1}. After $k-1$ refinement steps, our plan will demarcate a pair of edge sets where their labels have identical $k-1$ prefixes. Thus, whichever merged elements in $EBWT(G)_M$ result from those demarcated edges will also share the same $k-1$ prefix. Therefore, while executing the primary merge plan, we also consider the elements covered by S_{k-1} concurrently, advancing a pointer into $EBWT(G)_M$ or $EBWT(G)_M$ every time we

6 Authors note: The size of the input files was 158 GB, 319 GB, and 656 GB for the 4,000, 8,000, and 16,000 strains considered in this paper.
In this section we provide an example of merge plans in two conceptual edge lists. The initial merge plan in red, where all elements of each element in L_1 and L_2 are in the same equivalence class because no elements of either have been considered, e.g. $P_1 = \{[0, 15]\}$ and $P_2 = \{[0, 10]\}$. Green is the first refinement, where a single character from each element in L_1 and L_2 are considered, e.g. $P'_1 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 12], [13, 15]\}$ and $P'_2 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 12], [13, 15]\}$. Blue is the third merge plan (second refinement), e.g. $P''_1 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 12], [13, 15]\}$ and $P''_2 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 10]\}$.

Illustration of merge plans

In this section we provide an example of merge plans in two conceptual edge lists L_1 and L_2 from graphs G_1 and G_2 in Figure 3, where $k = 4$. (Note that the edge labels are not stored explicitly; instead at each iteration the next letter is computed. See Figure 4). As mentioned before the merge plan is defined as $P_1 = \{[0, p_1^1], \ldots, [p_1^i, [L_1] - 1]\}$ where each p_1^1, \ldots, p_1^i is an index in L_1, and $P_2 = \{[0, p_2^1], \ldots, [p_2^j, [L_2] - 1]\}$, where each p_2^1, \ldots, p_2^j is an index in L_2. Next, all revisions of P_1 and P_2 are computed iteratively. In the below example we start with the red merge plans P_1 and P_2 covering the whole L_1 and L_2 respectively. In the next iteration, based on the next letter (the order is right to left), we revise every interval into at most five subintervals (five being the number of alphabets: [S, K, G, T]). In this example see how P_1 and P_2 in red are revised to P''_1 and P''_2 in green each with five intervals. Similarly every interval in P''_1 and P''_2 are revised to at most five subintervals making P'''_1 and P'''_2. See the caption of Figure 3 for the intervals that each merge plan covers.

Fig. 3: Three merge plans. The initial merge plan in red, where all elements of L_1 and L_2 are in the same equivalence class because no elements of either have been considered, e.g. $P_1 = \{[0, 15]\}$ and $P_2 = \{[0, 10]\}$. Green is the first refinement, where a single character from each element in L_1 and L_2 are considered, e.g. $P'_1 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 12], [13, 15]\}$ and $P'_2 = \{[0, 0], [1, 2], [3, 5], [6, 8], [9, 12], [13, 15]\}$.

L_1	L_2
i	i
0	0
GTA	GTA
1	1
ACG	ACG
2	2
GAC	GAC
3	3
GAC	GAC
4	4
GAC	GAC
5	5
TAC	TAC
6	6
ACG	ACG
7	7
ACG	ACG
8	8
ACG	ACG
9	9
GAC	GAC
10	10
TAC	TAC
11	11
ACG	ACG
12	12
TAC	TAC
13	13
GAC	GAC
14	14
TAC	TAC
15	15

11 Illustration of merge plans

We produce flags in a similar fashion to $B_{L,M}$ but create a temporary copy of S_{k-2} in the planning stage after $k - 2$ refinement iterations instead of $k - 1$. In this case, the demarcated edges are not strictly those that share the same destination; only those edges that are demarcated and share the same symbol. Thus, in addition to keeping pointers into $\text{EBWT}(G_1)$ or $\text{EBWT}(G_2)$, we also maintain a vector of counters which contain the number of characters for each (final) symbol that have been emitted in the output. We reset all counters to 0 when a pair of delimiters in S_{k-2} is encountered. Then, when we append a symbol onto $\text{EBWT}(G_1)_{L,M}$ we consult the counters to determine if it is the first edge in the demarcated range to emit a symbol. If so, we will not output a flag for the output symbol, otherwise, we will.
Fig. 4: Method for populating Coli based on Coli−1 and graph navigation. Colored (blue, red and orange) nucleotides represent data that is in memory and valid. Grey represents data that is stored in external memory in Vari but is computed as needed and only exists ephemerally in VariMerge. Thus, only three columns are ever present in memory, which is a significant memory savings relative to the full set of edge labels. The three resident vectors are 1.) EBWT(G) (which is always present and used for navigation), 2.) Coli−1 which is already completely populated when a new column to the left, 3.) (Coli) is being generated. As one can see in the associated graph representation on right, the successor edges have almost the same label but shifted by one position. e.g. the red colored C in i−1-th iteration in position 4 is shifted to position 3 and turned into orange in i-th iteration.

12 Illustration of computing the next character of L

In this section we provide an example of how we can navigate the set of edge labels without explicitly storing them. We compute the next character at each iteration with only three columns present in memory (shown with colors blue, red and orange). See the caption of Figure 4 for more details.