High-energy monitoring of NGC 4593 with XMM-Newton and NuSTAR

Francesco Ursini

P.-O. Petrucci, G. Matt, S. Bianchi, M. Cappi, B. De Marco, A. De Rosa, J. Malzac, A. Marinucci, G. Ponti, A. Tortosa

AGN 12
A joint XMM+NuSTAR monitoring

Obs.	Satellites	Obs. Id.	Start time (UTC) yyyy-mm-dd	Net exp. (ks)
1	XMM–Newton	0740920201	2014-12-29	16
	NuSTAR	60001149002		22
2	XMM–Newton	0740920301	2014-12-31	17
	NuSTAR	60001149004		22
3	XMM–Newton	0740920401	2015-01-02	17
	NuSTAR	60001149006		21
4	XMM–Newton	0740920501	2015-01-04	15
	NuSTAR	60001149008		23
5	XMM–Newton	0740920601	2015-01-06	21
	NuSTAR	60001149010		21
XMM/pn and NuSTAR/FPMA+FPMB light curves and hardness ratios

Counts/s

XMM/pn 0.5–2 keV

XMM/pn 2–10 keV

XMM/pn 2–10 keV/0.5–2 keV

Counts/s

NuSTAR 3–10 keV

NuSTAR 10–50 keV

Counts/s

NuSTAR 10–50 keV/3–10 keV

Hardness ratio

Time (s)
XMM/pn and NuSTAR/FPMA data fitted with a power law

Counts s$^{-1}$ keV$^{-1}$ cm$^{-2}$

Data/model ratio

Energy (keV)

Energy (keV)
The iron line(s)

Counts/(s keV cm2)

Contributions to χ^2

pn data 3–10 keV

narrow line @ 7.056 keV

narrow line + broad line @ 6.4 keV
Narrow Fe Kα line flux and EW versus primary flux

(B) $\rho = -0.82, \ p = 0.045$

E (keV)	σ (eV)	average flux	average EW (eV)
6.4 (narrow)	0	2.42	106
6.4 (broad)	300$^{+130}_{-70}$	2.36	102
7.056	0	0.6	30
XMM/pn and NuSTAR data with best-fitting model

Variable primary cut-off power law + 2 reflection components + soft excess

cut-off PL
XILLVER (Rs~0.3-0.6)
RELXILL (Rs~0.2)
(Rin=40 Rg)
Correlation between soft excess and primary emission

Flux(3–10 keV) vs. DISKBB Flux(0.3–2 keV)

- $\rho=0.98$, $p=8 \times 10^{-4}$
- $\rho=0.95$, $p=3.3 \times 10^{-3}$
- $\rho=0.97$, $p=1.8 \times 10^{-3}$
Timing

De Marco et al., in prep.
Main results

- Remarkable variability, both in flux and spectral shape over ~days and down to ~ks

- Significant variations of Gamma (1.6-1.8) and cut-off (~100 keV up to >500 keV): temperature/optical depth variations?

- 2 reflection components, giving rise to a narrow and a broad Fe K alpha lines. One (XILLVER) is from neutral and distant matter, one (RELXILL) from an ionized disc with Rin~40 Rg

- Soft excess correlated with primary emission: warm Comptonization? Link with the UV? (in progress)

- See Ursini et al. 2016, MNRAS, 463, 382