Ribbons of half-moons led the way. Each door had a distinct design, a window with a hint of wilderness behind it. The air was cool, carrying the scent of pine and warmth from the wood fires. As we walked past, children, dressed in their best clothes, lined the walkway. They sang songs and talked loudly, their voices competing with the rustling leaves and the occasional bird call.

A hedgehog, its fur as dark as the night, darted out from under a tree and disappeared into the underbrush. A group of deer, their coats as white as snow, grazed peacefully nearby, their heads held high. The scene was a harmonious blend of nature and humanity, each element complementing the other in a beautiful display of coexistence and respect for the environment.

As we left the park, the children continued to sing and laugh, their joy contagious. The experience was one that would stay with us for a long time, reminding us of the beauty of nature and the importance of preserving it for future generations. The trees were a whispering testament to the power of unity and the strength of a community working together to create a better world.
collected nasopharyngeal swab samples and used molecular testing to confirm SARS-CoV-2 infection in the woman’s husband and 2 daughters. Clinical signs in the other family members ranged from mild fatigue and high temperatures (37.5°C–37.8°C) in the daughters to moderate respiratory signs and persistent high temperature (37.8°C–38.6°C) in the husband. This study was approved by the Ethics Committee of the Department of Veterinary Medicine at the University of Bari (approval no. 15/2020).

On November 4, 2020, the owners collected oral and nasal swab samples from the family’s poodle according to our instructions. The pooled samples tested positive for SARS-CoV-2 by real-time reverse transcription PCR selective for the N gene (5). During the next 11 days, the owners collected nasal, oral, and rectal swab samples from the dog. Of 20 samples collected during November 6–15, a total of 4 samples (all of which were collected during November 6–9) tested positive for SARS-CoV-2 (Table). Viral shedding occurred at low titers. We did not isolate the virus. The dog did not show any clinical signs, and no other pets lived in the household.

We tested a serum sample collected by the dog’s veterinarian on November 27 with 2 commercial multispecies ELISA tests: ID Screen SARS-CoV-2 Double Antigen Multi-species ELISA (ID.vet, https://www.id-vet.com) and Eradikit COVID19-Multispecies (In3Diagnostic, http://www.in3diagnostic.com). We also conducted a plaque reduction neutralization test (PRNT) (4) and a virus neutralization test (VNT) (6). We detected antibodies with the Eradikit (23%), PRNT (1:80), and VNT (1:10). We used serologic assays to confirm the presence of antibodies against SARS-CoV-2 in an additional serum sample collected on December 12, 2020; the antibody titers were 1:80 for PRNT and 1:20 for VNT (Table).

We submitted the positive pooled oral and nasal swab samples from the dog and the oropharyngeal swab sample from the index patient, all of which were collected on November 4, for next-generation sequencing (7). Next-generation sequencing obtained total reads of 929,736 with a mean coverage of 4,300× for the index patient and 969,837 with a mean coverage of 1,800× for the dog. Complete genomes were obtained using the pipeline SARS-CoV-2 RECoVERY in the Galaxy public server ARIES (Istituto Superiore di Sanità, https://w3.iss.it/site/aries). The 2 SARS-CoV-2 genomes shared 100% nucleotide identity. The Pangolin COVID-19 Lineage Assigner (https://pangolin.cog-uk.io) and Nextclade (https://clades.nextstrain.org) assigned the sequences to the lineage B.1.177 (denoted by Nextclade as 20A.EU1) in Europe. Phylogenetic analysis confirmed the clustering of the 2 strains within the GV clade and the B.1.177 lineage already detected in Italy (Figure).

Despite the massive number of persons with SARS-CoV-2, only a few cases of active infection in pets have been reported (3). SARS-CoV-2–specific antibodies in pets have been reported on a few occasions, and higher seroprevalence rates have been found in animals from households in which family members have COVID-19 (4,6,8). The scarce reports of natural infection in dogs reflect their low susceptibility to SARS-CoV-2; for this infection, dogs are asymptomatic, produce limited titers, and have a reduced

Table. Molecular and serologic testing of dog with severe acute respiratory syndrome coronavirus 2 infection, Italy, 2020*

Date of sample collection	Real-time reverse transcription PCR C_T (values)	Serologic assay results					
	Oral	Nasal	Rectal	ELISA ID.vet†	ELISA In3Diagnostic‡	PRNT₈₀§	VNT¶
2020 Nov 4	35.7**	35.7**	ND	ND	ND	ND	ND
2020 Nov 6	ND	37.64	ND	ND	ND	ND	ND
2020 Nov 7	35.61	–	ND	ND	ND	ND	ND
2020 Nov 8	ND	–	40.71	ND	ND	ND	ND
2020 Nov 9	ND	–	36.04	ND	ND	ND	ND
2020 Nov 10	–	–	ND	ND	ND	ND	ND
2020 Nov 11	–	–	ND	ND	ND	ND	ND
2020 Nov 12	–	–	ND	ND	ND	ND	ND
2020 Nov 13	–	–	ND	ND	ND	ND	ND
2020 Nov 14	–	–	ND	ND	ND	ND	ND
2020 Nov 15	–	–	ND	ND	ND	ND	ND
2020 Nov 27	ND	ND	ND	–	+ (23%)††	1.80	1.10
2020 Dec 12	ND	ND	ND	–	–	1.80	2.0

*C_T, cycle threshold; ND, not done; PRNT₈₀, 80% plaque reduction neutralization test; VNT, virus neutralization test; –, negative; +, positive.
†ID Screen SARS-CoV-2 Double Antigen Multi-species ELISA (ID.vet, https://www.id-vet.com).
‡Eradikit COVID19-Multispecies (In3Diagnostic, http://www.in3diagnostic.com).
§Antibody titer expressed as the highest serum dilution with 80% reduction in plaques in inoculated VERO-E6 cells compared with the control. 1:20 was the lowest serum dilution tested.
¶Antibody titer expressed as the highest serum dilution preventing the appearance of cytopathic effect in inoculated VERO-E6 cells. 1:10 was the lowest serum dilution tested.
**Pooled oral and nasal swab specimens.
††Ratio between the optical densities of the tested serum and the positive control (cutoff value = 20%).
duration of viral shedding (9). Upon experimental infection, dogs shed SARS-CoV-2 at lower titers and for a shorter period than cats (10). Patterson et al. (4) found no actively infected dog or cat in a sampled population of 494 pets, including 67 dogs from households in which family members had COVID-19; however, SARS-CoV-2–specific antibodies were detected in a small proportion of pets (4). Delayed sampling of animals, caused by restrictions on human and animal movement during the pandemic, probably contributed to the negative results of molecular testing in that study. The infected poodle we report was monitored after the identification of the index case in the family, enabling the detection of SARS-CoV-2 RNA in swab samples collected during the observational follow-up. Because the canine virus shared 100% nucleotide identity with the virus detected in the index case, we believe human-to-dog transmission of the virus probably occurred in the household.

Acknowledgments

We are grateful to Maria Stella Lucente, Cristiana Catella, Carlo Armenise, and Arturo Gentile for their excellent technical assistance. We thank Marco Crescenzi, Manuela Marra, and Maria Carollo for the Next Generation Sequencing through Ion GeneStudio S5 System.

N.D. was supported by grants of Fondazione CARIPLO—Misura a sostegno dello sviluppo di collaborazioni per l’identificazione di terapie e sistemi di diagnostica, protezione e analisi per contrastare l’emergenza Coronavirus e altre emergenze virali del futuro, project “Genetic characterization of SARS-CoV2 and serological investigation in humans and pets to define cats and dogs role in the COVID-19 pandemic (COVIDinPET)”. A.L. was supported by the Italian Ministry of Health Ricerca Corrente 2020 “PanCO: epidemiologia e patogenesi dei coronavirus umani ed animali” and Ricerca Strategica 2020 “Suscettibilità dei mammiferi a SARS-COV-2: rischi di zoonosi inversa e possibilità in medicina traslazionale.”
About the Author
Dr. Decaro is professor in the Department of Veterinary Medicine at the University of Bari in Valenzano, Italy. His research interests include the study of viral pathogens of dogs and cats, especially coronaviruses and parvoviruses.

References
1. Lorusso A, Calistrì P, Petrini A, Savini G, Decaro N. Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective. Vet Ital. 2020;56:5–10. https://doi.org/10.12834/VetIt.2173.11599.1
2. Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): a lesson from animal coronaviruses. Vet Microbiol. 2020;244:108693. https://doi.org/10.1016/j.vetmic.2020.108693
3. Bosco-Lauth AM, Hartwig AE, Porter SM, Gordy PW, Nehring M, Byas AD, et al. Experimental infection of domestic dogs and cats with SARS-CoV-2: pathogenesis, transmission, and responses to reexposure in cats. Proc Natl Acad Sci U S A. 2020;117:26382–8. https://doi.org/10.1073/pnas.2013102117
4. Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun. 2020;11:6231. https://doi.org/10.1038/s41467-020-20979-0
5. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR [Erratum in: Euro Surveill. 2020;25:2500049] [Erratum in: Euro Surveill. 2020;25:2007303]. Euro Surveill. 2020;25:2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
6. Zhang Q, Zhang H, Gao J, Huang K, Yang Y, Hui X, et al. Genomic epidemiology of the first wave of SARS-CoV-2 in Italy. Viruses. 2020;12:1438. https://doi.org/10.3390/v12121438
7. Di Giallonardo F, Duchene S, Puglia I, Curini V, Profeta F, Cammà C, et al. Genomic epidemiology of the first wave of SARS-CoV-2 in Italy. Viruses. 2020;12:1438. https://doi.org/10.3390/v12121438
8. Fritz M, Rosolen B, Krafft E, Becquart P, Elguero E, Vratiská O, et al. Prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health. 2020;11:100192. https://doi.org/10.1016/j.oneh.2020.100192
9. Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al. Infection of dogs with SARS-CoV-2. Emerg Microbes Infect. 2020;9:2013–9. https://doi.org/10.1080/22221751.2020.1817796
10. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368:1016–20. https://doi.org/10.1126/science.abb7015

Address for correspondence: Nicola Decaro, Department of Veterinary Medicine, University of Bari, Strada provinciale per Casamassima Km 3, 70010 Valenzano (Bari), Italy; email: nicola.decaro@uniba.it.

Postoperative Paenibacillus thiaminolyticus Wound Infection, Switzerland
Riccardo Di Micco, Matthias Schneider, Reto Nüesch
Author affiliations: Spital Schwyz, Schwyz, Switzerland (R. Di Micco, M. Schneider, R. Nüesch); University of Basel, Basel, Switzerland (R. Nüesch)
DOI: https://doi.org/10.3201/eid2707.203348

Paenibacillus thiaminolyticus is a nonvirulent organism found in human and ruminant microbiota. However, P. thiaminolyticus can act as an opportunistic pathogen in humans. We describe a case of abdominal wall hematoma secondarily infected by P. thiaminolyticus. Our findings emphasize the risk for unusual Paenibacillus infections in otherwise healthy persons.

The genus Paenibacillus comprises a growing number of species of rod-shaped, motile bacteria with peritrichous flagella (1). Paenibacillus species share 89.6% similarity of 16S rDNA gene sequences and grow as nonpigmented colonies on tryptic soy agar (1). Best known as a nearly ubiquitous environmental bacteria, many Paenibacillus species are potential opportunistic pathogens in humans (2). We report a case of isolated surgical site infection caused by P. thiaminolyticus in an otherwise healthy patient.

A 33-year-old woman came to the emergency department with a fever and reported having a painful and fluctuating abdominal wall mass for 3 days. She had undergone lipoabdominoplasty in a different hospital 7 days earlier. Laboratory tests showed anemia (hemoglobin 88 g/L, hematocrit 0.24 L/L) and isolated C-reactive protein elevation (117 mg/L). Computed tomography of the abdomen demonstrated a fluid collection in the abdominal wall measuring 22 × 9.5 × 5 cm. The patient was admitted for observation. Blood cultures performed at 38.5°C showed no bacterial growth.

Empirical intravenous antimicrobial drug therapy for suspected infected hematoma was initiated with amoxicillin/clavulanate (2.2 g 3×/d), according to local hospital guidelines. Under antimicrobial drug treatment, the patient’s fever resolved, but her abdominal pain persisted.

On day 3, we aspirated a sample of the fluid collection in the abdominal wall for microbiological examination. The aspirate was cultured on blood agar incubated at 35°C with 5% CO₂ for 48 h; on MacConkey