Methods to collect Anopheles mosquitoes and evaluate malaria transmission: A comparative study in two villages in Senegal

Mamadou O Ndiath1*, Catherine Mazenot1, Ablaye Gaye1,2, Lassana Konate2, Charles Bouganali1, Ousmane Faye2, Cheikh Sokhna1 and Jean-Francois Trape1

Abstract

Background: Various methods have been studied as replacement of human landing catches (HLC) for mosquito sampling in entomological studies on malaria transmission. Conflicting results have been obtained in comparing relative efficiency of alternative methods, according to the area, the species present and their density. The aim of this study was to compare the number and characteristics of mosquitoes sampled in two areas of Senegal by three different methods: HLC, light traps adjacent to an occupied bed net (LT/N), pyrethrum spray catches (PSC).

Methods: Collections were performed in two villages: Dielmo (Soudan savanna) and Bandafassi (Soudan Guinean savanna), two or three nights per month for a 4-5 months period during the maximal transmission season in 2001-2002. Species were identified and Plasmodium infection determined by ELISA. The specific composition, circumsporozoite protein rate and entomological inoculation rate were calculated.

Results: The diversity of mosquito species captured was maximal with LT/N, minimal with PSC. The mean number of anopheles captures each night was significantly different according to the method used and the species. PSC displayed a significantly lower anopheles density. HLC was the most efficient sampling method when Anopheles gambiae was the main vector (in Bandafassi); LT/N when it was Anopheles funestus (in Dielmo). A significant correlation was found between HLC and LT/M but correlation parameters were different according to the species. Circumsporozoite protein rates were not significantly different between methods or species. The entomological inoculation rate varied along with vector density and thus with methods and species.

Conclusions: The choice of sampling method influenced entomological data recorded. Therefore, the sampling technique has to be chosen according to the vector studied and the aim of the study. Only HLC must be considered as the reference method, but in some conditions LT/N can be used as an alternative method.

Background

In order to measure malaria transmission, a good knowledge about its vectors is required. To achieve this goal, entomological studies with Anopheles collection are essential [1]. The choice of the method depends on the objectives of the study, the environment and the available means [2].

Human landing catch (HLC) is the most frequently used and considered as the reference method. It allows sampling mosquitoes that are aggressive against human, either endophagous or exophagous. It is the most reliable measure of human-vector contact for evaluating malaria transmission. On the other hand, it raises the ethical question of potential risk for collectors that are submitted to mosquito bite susceptible to transmit various pathogens. Results depend on collectors skills and on the attraction he/she exerts on mosquitoes. Several alternative sampling methods have been developed: use of various traps, light traps (CDC miniature light trap)
[3] with or without a person sleeping under a net, CO₂
[4] or odour-baited traps (OBET) [5], exposure free bed-
net traps (Mbita) [6] and indoor resting catches by
aspiration or spraying. Because they select only a frac-
tion of the global anopheles population, each method is
subjected to bias and shortcomings and, therefore, influ-
ences the results [7]. Specimens sampled by pyrethrum
spray catches (PSC) are mostly fed females resting
indoors in the morning. The use of traps, as the CDC
Light Trap, associated with a person sleeping under a
net (LT/N) should theoretically allows sampling the
anthrophilic and endophagous specimens that are
searched. However, the presence of light attracts other
species that are not anthropophilic. Collections with LT/
N should allow a good standardization.

Malaria epidemiologic studies are currently performed
in Dielmo and Bandafassi, two Senegalese villages. In
two of these two sites, different vector species are present [8,9].
The aim of this study was to evaluate relative efficacy of
three collection methods: Light traps associated with a
person sleeping under a net (LT/N), pyrethrum spray
catches (PSC) and Human Landing Catches (HLC).

Methods

Study area

The village of Dielmo (13°45’N, 16°25’W) is situated
280 km south-east from Dakar, near the Gambian bor-
der. Rainfalls (around 630 mm/year) occur between June
and October. A small permanent stream situated near
the village constitutes a site for Anopheles larval growth.
Malaria is holoendemic and transmission occurs all the
year round [10]. The village of Bandafassi (12°33’N, 12°
17’W) is situated 730 km south-east from Dakar. Rain-
falls (1,500 mm/year) occur between May and Novem-
ber. Malaria is hyperendemic with long seasonal
transmission [11].

Sampling methods

Collections were performed three times per month from
October 2001 to January 2002 in Dielmo and twice
monthly from July to October 2002 in Bandafassi. Night
catches were performed simultaneously indoor between
7 PM and 7 AM by HLC and LT/N methods. HLC
were performed by two trained collectors (adult male
volunteers) working alternatively for one hour and rest-
ing for one hour. Village nurses provided medical super-
vision of collectors. LT/N catches were performed using
a CDC mini light trap [3] placed adjacent and above
an occupied bed net. PSCs were performed at 7 AM by
spraying Deltamethrin (Yotox®) for 30-45 seconds in
the room. After 10 minutes, dead and immobilized mos-
quitoses were collected. Two sites per villages were ran-
domly selected. In each site, three rooms were randomly
chosen within a 15-m distance. Each night, a different
sampling method was tested in each room.

Mosquito analysis

After collection, specimens were brought back to the
field laboratory and Anopheles morphologically identi-
ﬁed according to Gillies and DeMeilllon keys [12].
Females were counted and stored for further analysis.
The expression of circumsporozoite protein (CSP) was
assessed by ELISA in the laboratory in Dakar [13].

Data analyses

For each method, the number of species, human biting
rate (HBR) or Anopheles density (number of Anopheles
per person and per night) and CSP rate were calculated.
The entomological inoculation rate (EIR) was defined as
the number of Anopheles person and per night multiplied
by the CSP rate and expressed in number of infected bite
per person per night. The mean number of mosquitoes
collected per night was compared by ANOVA with fol-
lowing factors (village, method and species) after log+1
normalization (Shapiro-Wilk test) with post hoc Bonferroni
test. CSP rates were compared using Pearson or Fisher Chi².
The correlation between LT/N and HLC was studied with Spearman test.

Ethical approval

Free and informed consent was obtained from collectors
performing HLC and LT/N. Permission was sought
from inhabitants to perform collections in their rooms.
Community consent had been obtained beforehand in
both villages. This study was approved by the Ethical
National Comity of Senegal.

Results

Anopheles density and diversity

In Dielmo, LT/N was the method that allowed collecting
the highest variety and quantity of Anopheles (1,164 spe-
cimens belonging to five different species). HLC method
gave lower results with 897 specimens belonging to
two different species. Only 439 specimens belonging to
the number of mosquitoes collected per person

outcome (F = 32.95, p < 0.0001). In Dielmo, significantly

more Anopheles funestus than Anopheles gambiae were

collected (p < 0.0001, Bonferroni test). In Bandafassi, An. gambiae was the most encountered species (p < 0.0001, Bonferroni test). A significant difference was demonstrated between methods (F = 14.19, p < 0.0001) with HLC being significantly more efficient than PSC (p = 0.005, Bonferroni test). No significant difference was observed between villages (F = 0.12, p = 0.7); on the other hand, a strong interaction was identified between village and species (F = 139.72, p < 0.0001). For An. gambiae the relative efficiency of LT/N using HLC as reference was 0.6. For An. funestus it was 1.4.

CSP rates

The number of CSP positive mosquitoes and CSP rates are presented in Table 2. Infection rates were similar for all species when analysed in Dielmo (Fisher exact p = 0.5) or in Bandafassi (Fisher exact p = 0.28). No significant difference could be identified between methods in Dielmo and in Bandafassi (Pearson Chi² respectively 0.7, p = 0.7 and 0.6, p = 0.8). CSP rate, calculated with pooled data from the three methods and species, was 3.0% in Dielmo and 4.1% in Bandafassi.

Transmission

EIR calculated in the two villages according to the method used are represented on Figure 2. EIR measured with PSC was lower than those obtained with the other methods. EIR obtained with HLC was higher in Bandafassi, where transmission is mainly due to An. gambiae. In Dielmo, where transmission is mainly due to An. funestus, EIR obtained by LT/N was higher.

Correlations between the two most efficient methods

Since LT/N displayed the nearest results to HLC, the correlation between those two methods was studied (Figure 3). A

| Table 1 Number of Anopheles collected in Dielmo and in Bandafassi according to species and method used (HLC: human landing catches, PSC: pyrethrum spray catches, LT/N Light trap associated with a person sleeping under a net) |
|-----------------|--------|--------|--------|--------|--------|--------|--------|
| | HLC | PSC | LT/N | HLC | PSC | LT/N |
| An. gambiae s.l.| 219 | 164 | 169 | 1555 | 391 | 953 |
| An. funestus | 676 | 275 | 983 | 56 | 33 | 54 |
| An. nili | - | - | - | 223 | 14 | 30 |
| An. ziemanni | - | - | 7 | 1 | - | 11 |
| An. coustani | - | - | 3 | - | - | 2 |
| An. domicola | - | - | 3 | - | 3 | 3 |
| An. pharoensis | 2 | 1 | - | - | - | 2 |
| An. rufipes | - | - | 4 | - | 6 | 2 |
| An. paludis | - | - | - | - | 1 | - |
| Total | 897 | 439 | 1164 | 1841 | 444 | 1061 |

Figure 1 Mean ± s.e.m. number of Anopheles collected per man and per night according to the method (HLC: human landing catches, PSC: pyrethrum spray catches, LT/N Light trap associated with a person sleeping under a net), the village (Dielmo and Bandafassi) and the Anopheles species (An. funestus, An. gambiae and An. nili).
significant correlation was observed for all species. The highest correlation coefficient was obtained for *An. funestus* (Spearman rho² = 0.88, p < 0.0001). For *An. gambiae*, it was 0.74 (p < 0.0001) and for *Anopheles nili* 0.64 (p = 0.02). The parameters of the linear correlation wildly differed between species, confirming performance variations of each method according to the species.

Discussion

A large variety of traps have been developed for entomological studies, in order to avoid using human bait. According to the study, their relative efficiency, compared to HLC has been highly variable [14-18]. The aim of this study was to identify the best method to use for entomological studies in two Senegalese villages where malaria epidemiology is currently studied.

This work confirms that the method influences the quantity and the variety of mosquitoes collected. Among the three methods compared, all allowed to collect the principal known malaria vectors in studied areas: *An. gambiae s.l.* and *An. funestus* in Dielmo [8], those two species as well as *An. nili* in Bandafassi [9]. As previously reported [14], the variety of species collected with LT/N was higher than that obtained with HLC and PSC in the two villages. This is probably due to the multiple attraction stimuli displayed by the method (light, odour...). As a consequence, LT/N would be the method to be used in biodiversity studies where a complete panel of *Anopheles* species is requested.

Significant differences in *Anopheles* density were observed according to the method used, with HLC being more performing than PSC and better than or equal to LT/N. Results obtained were different according to the vector species. On the other hand, they were similar in the two villages.

For *An. gambiae s.l.*, HLC was the most efficient method probably because this species is highly anthropophilic and less influenced by light attraction [9]. Whereas studies performed in areas where HBR is very low (2-6 per person and per night) demonstrated no correlation between LT...
and HLC [15,16], various studies, performed in areas where Anopheles density is higher, report that LT display results that are proportional to those obtained with HLC [17-24]. This study confirmed a good correlation between the two methods for An. gambiae sampling ($r^2 = 0.74$) for an HBR (measured by HLC) ranging from 18 An. gambiae per person and per night in Dielmo to 194 in Bandafassi. In other studies, the relative efficiency of LT using HLC as a reference was highly variable among those reporting a good correlation. It was 1.7-1.9 in two of them [17,20], 1.2 in one [21] and only 0.7 in others [18,19,24]. In this work the efficiency ratio between LT/N and HLC was 0.6. In conclusion, to sample An. gambiae, although HLC is the reference method, LT/N may be an alternative, only when density is sufficient.

For An. funestus, LT/N was the most efficient method in comparison to HLC and PSC. This is probably related to the high attraction exerted by light on this species, that is less anthropophilic than An. gambiae [25]. For An. funestus, the correlation between results obtained by LT and HLC was good in some studies [18,17,22,24] but not in another one where HBR was very low (0.04 An. funestus per person and per night) [15]. This study confirms a good correlation between the two methods for An. funestus HBR ranging from 7 bites per person and per night in Bandafassi to 56 in Dielmo. The relative efficiency of LT using HLC as a reference was highly variable among studies identifying a good correlation: 0.7 [24], 1.1 [18] 1.9 [17]. In this work it was 1.4. In conclusion, to sample An. funestus, LT/N seems to be a good alternative to HLC especially when density is sufficient.

In this study, the mean anopheles density was lower with PSC for all species. This collecting technique is often used in entomological studies to catch fed indoor-resting females. It cannot be considered as a quantitative method to determine aggressive anopheles density. Indeed, it tends to miss the mosquitoes that leave the house after feeding and includes those entering the house after feeding outdoor [26]. Moreover, this technique is not standardized (different insecticide may be used, time when collection is performed differs, dispersion of specimens is possible if holes are present in the walls...). In areas where an important resistance to insecticide is detected, it is possible that a part of mosquitoes present in the room will not be collected by PSC.

In this study, no influence of the method used was detected on the infection rates measured. Contradictory results have been reported concerning this parameter. In some previous studies, CSP rates were not significantly different when estimated by HLC and LT/N [17,27]. In others it was twice higher in LT than in HLC [16,21], probably because light traps tended to attract and capture resting mosquitoes that have a higher sporozoite rate than host-seeking ones [26]. In this study, since infection
rates were similar among methods and species, EIR varia-
tions followed the anophelines density. In Dielmo, where An. funestus was the principal vector, LT/N was the method that reported the higher EIR. On the other hand, in Bandafassi where An. gambiae s.l. was the main vector, EIR calculated with HLC was higher.

Conclusions
In order to have at disposal reliable entomological data, it is important to choose carefully the method used to collect mosquitoes according to the study area and, more specifically, according to vector species responsible for transmission. No method seems as reliable as HLC for measuring malaria transmission. It is possible, but difficult, to directly extrapolate the results obtained by a method to another one since coefficients vary according to species. In the studied areas, our work clearly demonstrates a good correlation between HLC and LT/N for Anopheles densities and CSP rates. In the future, if HLC have to be stopped, for ethical reasons, the study of malaria transmission in these areas could be performed by using light traps associated with a person sleeping under a net.

Acknowledgements
The authors thank K. Bandia and R. Keita for helpful technical assistance during the study.

This study was funded by a grand of MTIMBA (Malaria Transmission Intensity and Mortality Burden Across Africa) and by IRD (Institut de Recherche pour le Développement).

Author details
1 Institut de Recherche pour le Développement, UMR 198 URMITE Campus international de Hann,IRD BP 1386 CP 18524 Dakar, Sénégal. 2 Université Cheikh Anta Diop de Dakar, Département de Biologie Animale, BP 5005 Dakar, Sénégal.

Authors’ contributions
CS and JFT equally contributed to the design and the conception of study and provided the scientific supervision. MON, AG and CB conducted field activities and molecular biology study. MON and CM analysed data and drafted the manuscript. LX and OF contributed to the analysis and interpretation of data. All authors read and approved the final manuscript.

Conflicts of interests
The authors declare that they have no competing interests.

Received: 11 July 2011 Accepted: 19 September 2011
Published: 19 September 2011

References
1. WHO: Entomological field techniques for malaria control: Part 1. Learner’s guide. 1992.
2. Le Goff G, Carnevale P, Roberts V. Comparison of catches by landings on humans and by CDC light traps for sampling of mosquitoes and evaluation of malaria transmission in South Cameroon. Ann Soc Belg Med Trop 1993, 73:55-60.
3. Odetooyinbo JA. Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bull World Health Organ 1969, 40:547-560.
4. Anderson JR, Linhares AX. Comparison of several different trapping methods for Culicoides vanipennis (Diptera: Ceratopogonidae). J Am Mosq Control Assoc 1989, 5:325-334.
5. Costantini C, Sagnon NF, della TA, Diallo M, Brady J, Gibson G, Coluzzi M. Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg 1998, 59:56-63.
6. Mathenge EM, Killeen GF, Oulo DO, Irungu LW, Ndewa PN, Knols BGJ. Development of an exposure-free bednet trap for sampling Afrotropical malaria vectors. Med Vet Entomol 2002, 16:67-74.
7. Carnevale P, Lepont F. Epidemiologie du paludisme humain en République Populaire du Congo: Utilisation des pièges lumineux “CDC” comme moyen d’échantillonnage des populations anophelines. Cah ORSTOM Sér Ent Méd Par 1973, 10:273-283.
8. Fontenelle D, Lochouam L, Diagne N, Sokhna C, Lemasson JJ, Diatta M, Konate L, Faye F, Rogier C, Trape JF. Four years’ entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg 1997, 91:647-652.
9. Trape JF, Rogier C, Konate L, Diagne N, Bougana Y, Canque B, Légros F, Badj A, Ndiaye G, Ndiaye P, Brahimi K, Faye O, Druhlle P, Davila LP. The Dielmo project - A longitudinal-study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 1994, 51:123-137.
10. Trape JF, Pison G, Preziosi MP, Enel C, du Lou AD, Delaunay V, Samb B, Lagarde E, Molez JF, Simondon F. Impact of chloroquine resistance on malaria mortality. C R Acad Sci III 1996, 321:689-697.
11. Gilles MT, Meliôn B. The Anopheles of Africa South of the Sahara (Ethiopian zoogeographical region). 2 1968, 343.
12. Wirtz RA, Duncan JF, Njelesiak EI, Schneider I, Brown AE, Otter CN, Were JBO, Webster HK. ELISA method for detecting Plasmodium falciiparum circumsporozoite antibody. Bull World Health Organ 67:335-342.
13. Sautanandane C, Jamblulinam P, Subramanian S. Role of modified CDC miniature light-traps as an alternative method for sampling adult anophelines (Diptera: Culicidae) in the National Mosquito Surveillance Programme in India. Bull Entomol Res 2004, 94:55-63.
14. Govella NJ, Chaki PP, Mmapingle JM, Killeen GF. Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors 2011, 4:40.
15. Mbogo CNM, Bashir GE, Forster D, Kabiru EW, Githure JI, Smith TA, Were JBO, Webster HK. Anopheles gambiae and A. arabiensis in malaria transmission by anophelines and vector species composition in Bandafassi, a holoendemic area of Senegal. Bull World Health Organ 1993, 71:33-37.
16. Mathenge EM, Killeen GF, Knols BGJ. Comparative field evaluation of the Mbita trap, CDC light trap and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg 2004, 70:33-37.
17. Mathenge EM, Misiani GO, Irungu LW, Ndewa PN, Walczak E, Smith TA, Killeen GF, Knols BGJ. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya. Malar J 2005, 4:7.
18. Magbity EB, Lines JD, Marbiah MT, Peterson E. How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res 2002, 92:71-76.
19. Fonnadel CM, Norris LC, Norris DE. Centers for Disease Control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg 2010, 83:838-842.
20. Davis JR, Hall T, Chee EM, Majaja A, Minjas J, Shiff CJ. Comparison of sampling anopheles mosquitoes by light-trap and human-bait collections indoors at Bagamoyo, Tanzania. Med Vet Entomol 1995, 9:249-255.
21. Gutho AK, Service MW, Mbogo CM, Atielli FA, Juma FO. Sampling Anopheles arabiensis, A. gambiae sensu-lato and A. funestus (Diptera, Culicidae) with CDC light-traps near a rice irrigation area and a sugarcane belt in Western Kenya. Bull Entomol Res 1994, 84:319-324.
23. Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M: Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. *Bull Entomol Res* 1998, 88:503-511.

24. Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ: Monitoring human-biting mosquitoes (Diptera, Culicidae) in Tanzania with light-traps hung beside mosquito nets. *Bull Entomol Res* 1991, 81:77-84.

25. Dia I, Konate L, Samb B, Sarr JB, Diop A, Rogerie F, Faye M, Riveau G, Remoue F, Diallo M, Fontenille D: Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin. *Acta Trop* 2008, 105:145-153.

26. Mboera LE: Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. *Tanzan Health Res Bull* 2005, 7:117-124.

27. Faye O, Diallo S, Gaye O, Ndir O, Faye O: [Comparative efficacy of the use of cdc light traps and humans to sample Anopheles populations - results obtained in the Bignona zone of Senegal](in French). *Bull Soc Path Exot* 1992, 85:185-189.

doi:10.1186/1475-2875-10-270

Cite this article as: Ndiath et al.: Methods to collect *Anopheles* mosquitoes and evaluate malaria transmission: A comparative study in two villages in Senegal. *Malaria Journal* 2011 10:270.

Submit your next manuscript to *BioMed Central* and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit