Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

Jie Zhao¹, Zhihao Dong¹, Junfeng Li¹, Lei Chen¹, Yunfeng Bai², Yushan Jia³, and Tao Shao¹,*

Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses.

Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial.

Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production.

Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.

Keywords: Rice Straw; Molasses; Lactobacillus plantarum; Silage; In vitro Fermentation

INTRODUCTION

Rice (Oryza sativa, L.) harvesting produces the largest amount of crop residues worldwide each year. Approximately 21 Mt/yr of rice straw was produced accounting for 47% of the total crop residue in China [1]. However, a high proportion of rice straw has been left unused or burnt directly, wasting resource and causing environmental pollution, indicating an urgent need for proper disposal of rice straw. Meanwhile, because of the seasonality of straw harvesting and annual supply of feedstuffs needed, long-term effective storage of harvested straw is required. Haymaking of rice straw is impractical because of its low feed value resulting from its structural characteristics and long drying process. Ensiling as a promising technology is applicable for straw conservation in a humid climate and has been used to treat straw waste and supply year-round availability of feeds.

Rice straw is difficult to ensile due to its hollow stem, low WSC and less epiphytic lactic acid bacteria (LAB) [2]. Thus, exogenous LAB and fermentable substrate are commonly applied to improve the feeding value of such low-quality roughages. Lactobacillus plantarum (L. plantarum) as the dominant type of silage additive has been commonly applied worldwide...
for decades. Adequate L. plantarum would ensure extensive fermentation and efficient utilization of substrates in ensiled materials. It was reported that the addition of L. plantarum improved the quality of sorghum straw silage [3]. Molasses is a by-product of sugar industries and rich in soluble carbohydrate contents, especially for sucrose and glucose, which provides a low-cost sugar source for LAB and compensates for the sugar deficiency of rice straw. Chen et al [4] reported that applying molasses not only stimulated lactic acid fermentation but also promoted degradation of structural carbohydrate as compared with other treatments.

Conventional forages, such as alfalfa, are commonly used as silage material and little effort has been devoted to developing the rice straw silage. Consequently, information, availability and application of these silage additives on this material are still limited. The aim of this study was to assess the effects of molasses and/or L. plantarum on fermentation quality, structural and nonstructural carbohydrate composition and in vitro digestibility of fresh rice straw silage.

MATERIALS AND METHODS

Silage additives

Lactobacillus plantarum (L, Ecosyl MTD/L, Ecosyl Products Ltd., Stokesley, North Yorkshire, UK) was inoculated and cultured in MRS broth medium according to the recommendations of the manufacturer. Molasses was a by-product of sugar industry and obtained from JiaFurui Biological Technology Co., Ltd. (Nanjing, Jiangsu, China).

The *L. plantarum* inoculant was applied at a level of 10⁶ colony forming units (cfu) per gram of fresh weight (FW), and molasses was applied at 4% FW.

Silage preparation

Fresh rice straw was collected from Nanjing Branch of Chinese National Centre for Rice Improvement in Jiangsu Academy of Agricultural Science (32.04°N, 118.88°E, 20 m asl, Jiangsu, China), leaving the stubble of 10 cm.

The straw was chopped into lengths of 2 to 3 cm with a fodder chopper followed by manual mixing and ensiling with: i) no additive (C), ii) *L. plantarum* (L), iii) molasses (M), and iv) molasses+*L. plantarum* (ML). Additives were diluted with deionised water to an equivalent of 20 mL/kg FW and spray mixed into the freshly chopped samples. Same amount of deionised water was applied to the control. Thereafter, approximately 550 g treated material was tightly packed into 1-L laboratory silos (polyethylene bottle with diameter of 9.5 cm and height of 18.7 cm, Lantian biological experimental instrument Co., Ltd, Jiangsu, China) and stored at the ambient temperature (22°C to 28°C) after being sealed with screw tops and plastic tape. Quintuplicate per treatment were opened on 6, 15, 30, and 60 days after ensiling, respectively.

Chemical and microbial analyses

Analysis of raw material: The fresh material was immediately sampled for the determination of crude protein (CP), crude ash, buffering capacity (BC), and the counts of epiphytic microorganisms. Total nitrogen (TN) was determined by Kjeldahl nitrogen analyser (Kjeltec 8200; FOSS, Höganas, Sweden), and the CP was calculated as TN×6.25. Ash was measured by incinerating in a muffle furnace at 550°C for 4 h. The BC was determined according to the method described by Playne and Mcdonald [5]. The plate counting method and the cfu were used for the enumeration of epiphytic microorganism populations. The samples (10 g) homogenized with 90 mL sterilized saline solution (8.50 g/L NaCl) was serially diluted from 10⁻¹ to 10⁻⁶. The LAB, aerobic bacteria, moulds and yeasts were counted on MRS agar medium, nutrient agar medium and potato dextrose agar medium at 30°C for 2 to 3 days, respectively. The ensilability of rice straw was assessed by calculating the fermentation coefficient (FC) according to formula described by Yitbarek and Tamir [6].

Analysis of liquid samples: Fresh or ensiled rice straw was divided into two subsamples. The first subsample was blended with distilled water at ratio of 1:3 and stored at 4°C macerating for 24 h to obtain cold extract. Then, the cold extract was filtered through two layers of cheesecloth and a Whatman filter paper (pore size of 11 μm, Xinhua Co., Hangzhou, China). The filtrate was stored at –20°C for subsequent determination of pH, ammonia nitrogen (NH₃-N), and organic acid concentrations. The pH was measured with a glass electrode pH meter (HANNA pH 211; Hanna Instruments Italia Srl, Villafrance Padovana, Italy). The NH₃-N was determined by the phenol-hypochlorite reaction method of Broderick and Kang [7]. The organic acids and ethanol analyses were conducted in high performance liquid chromatography system (1260 HPLC, Agilent Technologies, Inc., Waldbronn, Germany) equipped with a refractive index detector (column: Carbomix H-NP5, Sepax Technologies, Inc., Newark, DE, USA; eluent: 2.5 mM H₂SO₄, 0.5 mL/min; at temperature 55°C with 30 min run time).

The V-score method [8] was adopted to evaluate the silage quality using a 100-point scale as below: <60 (bad), 60 to 80 (moderate) and 81 to 100 (good). V-score = Yₘ+Yₐ+Y₃, where Yₘ is calculated from the NH₃-N content (% TN), Yₐ is calculated from the acetate+propionate contents (% dry matter [DM]), and Y₃ is calculated from the butyrate content (% DM).

Analysis of solid samples: The second subsample was freeze dried by a vacuum freeze dryer to determine DM content. The solid samples were ground to pass 1-mm screen with laboratory knife mills (FW100, Taisite Instrument Co., Ltd., Tianjin, China) and stored for later analysis of neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), water soluble carbohydrates (WSC) and monosaccharide compositions. Further analysis of CP and ash contents was carried...
RESULTS

Chemical and microbial composition of fresh material

The chemical and microbial composition of silage materials are shown in Table 1. The fresh rice straw had high DM, structural carbohydrate content and PC, and low CP content and BC. The initial pH value was 6.43. The epiphytic LAB on rice straw were less than 1.0×10^2 cfu/g FW. The number of aerobic bacteria were higher than that for moulds and yeasts, which were more than 1.0×10^6 cfu/g FW.

Fermentation quality of rice straw silages

Table 2 illustrates the dynamics of organic acids and ethanol contents of rice straw silage during the ensiling. Treatments, ensiling days and their interaction significantly affected these parameters (p<0.05). All additives significantly (p<0.05) increased lactic acid (LA) concentration and LA/acetate acid (AA), while decreased (p<0.05) AA, butyric acid (BA) and ethanol concentration of the silage. As compared with other treatments, *L. plantarum* addition further increased the LA concentration and LA/AA, decreased the amounts of AA and ethanol. The LA concentration in all silages soared to reach a peak at day 30 then followed by a sharp drop at end of ensiling (p<0.05). The highest LA concentration was recorded in ML silage with the value of 103.63 g/kg DM. No or negligible amounts of BA was observed in all silages, except for the control (2.51 g/kg DM).

The pH, DM, DM loss, and NH₃-N of rice straw silages are listed in Table 3. The DM and DM loss were significantly affected by additives, ensiling days and their interaction (p<0.05). All additives, especially L. treatment, significantly (p<0.05) decreased pH, DM loss, and NH₃-N contents of rice straw silages. The pH values of the additive silages rapidly decreased during the first 15 days of ensiling then tended to increase. Meanwhile,

| Table 1. Chemical and microbial compositions of silage materials |
|-----------------|----------|----------|
| **Items** | **Rice straw** | **Molasses** |
| pH | 6.43 | - |
| Dry matter (g/kg FW) | 417.96 | 617.37 |
| Crude protein (g/kg DM) | 61.24 | 29.53 |
| Water soluble carbohydrate (g/kg DM) | 63.79 | 647.29 |
| Neutral detergent fibre (g/kg DM) | 603.04 | - |
| Acid detergent fibre (g/kg DM) | 377.10 | - |
| Buffering capacity (mEq/kg DM) | 39.71 | - |
| Fermentation coefficient | 54.90 | - |
| Ash (g/kg DM) | 118.41 | - |
| Lactic acid bacteria (log_{10} cfu/g FW) | 4.54 | - |
| Aerobic bacteria (log_{10} cfu/g FW) | 6.32 | - |
| Moulds (log_{10} cfu/g FW) | 3.97 | - |
| Yeasts (log_{10} cfu/g FW) | 4.48 | - |

FW, fresh weight; DM, dry matter; mEq, milligram equivalent, cfu, colony-forming units.
Table 2. Effect of additives and ensiling days on organic acid and ethanol composition of rice straw silages

Items	Treatment	Ensiling days	Means	SEM	Significance					
		6	15	30	60	D	T	D×T		
Lactic acid (g/kg DM)	C	16.22^a	26.26^a	37.80^a	22.77^b	25.76^e	3.46	*	*	*
	L	51.86^{a,b}	64.06^{a,b}	81.12^a	59.97^b	64.24^e	4.76	*	*	*
	M	42.46^a	50.59^a	60.39^a	40.39^b	48.46^e	4.10	*	*	*
	ML	55.31^b	73.65^c	103.63^a	88.68^b	80.32^c	3.87	*	*	*
Acetic acid (g/kg DM)	C	8.07^a	13.03^a	22.38^a	27.46^a	17.73^a	0.91	*	*	*
	L	5.88^a	7.94^a	12.25^a	15.38^a	10.36^c	0.05	*	*	*
	M	7.55^a	9.94^a	14.47^a	20.52^a	13.13^c	0.05	*	*	*
	ML	5.44^b	7.52^c	12.49^a	17.34^a	10.70^c	0.05	*	*	*
Butyric acid (g/kg DM)	C	ND	0.36	1.68	2.51	1.14^c	0.11	*	*	*
	L	ND	ND	ND	ND	0.05				
	M	ND	ND	ND	ND	0.62^c	0.15	*	*	*
	ML	ND	ND	ND	ND	0.05				
Ethanol (g/kg DM)	C	12.28^a	10.76^a	21.41^a	28.60^a	18.26^a	0.87	*	*	*
	L	7.15^a	8.72^a	11.76^a	13.44^a	10.27^c	0.05	*	*	*
	M	8.32^a	10.63^a	13.77^a	16.32^a	12.26^c	0.05	*	*	*
	ML	5.49^c	6.68^c	7.45^a	8.21^a	6.96^c	0.05	*	*	*
Lactic acid/acetic acid	C	2.00^a	2.04^a	1.69^a	0.83^a	1.64^a	0.45	*	*	*
	L	8.81^a	8.35^{a,b}	6.68^b	3.90^b	6.93^a	0.05	*	*	*
	M	5.89^a	5.10^{a,b}	4.20^{a,b}	1.96^b	4.29^c	0.05	*	*	*
	ML	10.20^a	9.83^{a,b}	8.30^a	5.12^c	8.36^a	0.05	*	*	*

DM, dry matter; SEM, standard error of means; ND, no detected.

1) C, no additive control; L, Lactobacillus plantarum; M, molasses; ML, molasses+Lactobacillus plantarum.
2) D, ensiling days; T, treatments; D×T, interaction between treatments and ensiling days. * p < 0.05.
3) Values with same capital letters show significant differences among treatments in the same ensiling days (p < 0.05).
4) Values with different small letters show significant differences among ensiling days in the same treatment (p < 0.05).
5) Values with different capital letters show significant differences among treatments in the same ensiling days (p < 0.05).

L and ML silages always maintained a lower pH value below 4.15 during ensiling. The DM was significantly decreased (p < 0.05) along the ensiling process accompanied by constantly increase of DM loss. Molasses treated silages showed relative...
Structural carbohydrate compositions of rice straw silage

Structural carbohydrates compositions of rice straw silage are given in Table 4. The effects of treatments and ensiling days were significant (p<0.05) on NDF, cellulose and hemicellulose components of rice straw silages. All measured structural carbohydrate fractions, except for ADL, were reduced (p<0.05) in additive silages and showed a continuous decrease throughout the ensiling. L. plantarum and its combination with molasses further decreased the structural carbohydrate contents relative to sole addition, and minimum content of structural carbohydrate was observed in ML silage (p>0.05). After 30 days of ensiling, ML silage showed lower (p<0.05) contents of NDF and hemicellulose than other silages during ensiling. In addition, the larger decline of NDF than that of ADF occurred of NDF and hemicellulose than other silages during ensiling.

Nonstructural carbohydrate compositions of rice straw

As shown in Figure 2, treatments, ensiling days and their interaction significantly affected the nonstructural carbohydrate contents of rice straw silage (p<0.05). The additive-treated silages preserved significantly higher (p<0.05) concentrations of nonstructural carbohydrate than the control silage. All nonstructural carbohydrates tended to decrease along the storage

Table 4. Effect of additives and ensiling days on structural carbohydrates composition of rice straw silages (g/kg DM)

	Treatment	Ensiling days	Means	SEM	Significance					
		6	15	30	60	D	T	D×T		
NDF		664.73	5.43	*	*	*				
L	620.71A	666.78A	670.32A	664.73A	5.43	*	*	*		
M	626.10B	620.73B	608.98B	608.37B	616.05B	600.44C	*	*	*	
ML	615.80A	605.83A	597.78A	582.36A	600.44C	600.44C	*	*	*	
ADF		420.54A	3.64	NS	*	*				
L	413.75A	417.37C	423.32B	427.70A	420.54A	3.64	NS	*	*	
M	388.84A	384.23B	380.54B	376.07B	382.42C	388.01B	380.09C	*	*	
ML	392.59B	390.15B	381.04B	388.24A	388.01B	380.09C	*	*	*	
ADL		66.03B	1.46	NS	*	NS				
L	63.55C	64.46C	66.90C	69.20C	66.03B	1.46	NS	*	NS	
M	60.63B	61.53B	61.69B	62.65B	61.62B	61.62B	*	*	NS	
ML	60.32C	62.24C	64.91C	67.49C	63.74C	63.74C	*	*	NS	
Cellulose		59.47C	60.50C	61.38C	59.99C	61.62C	61.62C	*	*	NS
L	350.20A	352.92A	356.42A	358.50A	354.51A	3.41	*	*	NS	
M	328.21A	322.70A	318.84A	313.42A	320.80C	320.80C	*	*	NS	
ML	332.26A	327.91B	316.13B	320.76B	324.26C	324.26C	*	*	NS	
Hemicellulose		245.27A	245.43B	243.46B	242.62B	244.19B	2.58	*	*	NS
L	231.88A	228.72A	223.64A	215.90C	225.03C	225.03C	*	*	NS	
M	233.52A	230.58A	227.94B	220.12B	228.04A	228.04A	*	*	NS	
ML	230.20A	222.74A	217.96A	210.52B	220.36C	220.36C	*	*	NS	

DM, dry matter; SEM, standard error of means; NDF, neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin.

1 C, no additive control; L, Lactobacillus plantarum; M, molasses; ML, molasses+Lactobacillus plantarum.
2 D, ensiling days; T, treatments; D×T, interaction between treatments and ensiling days. * p < 0.05; NS, not significant.
3 Values with different small letters show significant differences among ensiling days in the same treatment (p<0.05).
4 Values with different capital letters show significant differences among treatments in the same ensiling days (p<0.05).

Zhao et al (2019) Asian-Australas J Anim Sci 32:783-791
The WSC concentrations were significantly higher (p<0.05) in L and ML silage than other treatments after 6 days of ensiling (Figure 2a). Interestingly, the type of additives caused significant differences (p<0.05) in residual sugars contents. High sucrose concentration was determined in M and ML silages during the first 6 days of ensiling, and trace amounts of xylose were observed in L and ML silage after 15 days of ensiling.

Table 5. Crude protein, ash and *in vitro* degradability of rice straw silage after 60 days of ensiling

Items	Treatment	SEM	Significance			
Crude protein (g/kg DM)	C	L	M	ML	1.57	*
Ash (g/kg DM)	60.04	62.24	69.35	72.79		
In vitro dry matter degradability (%)	128.68	121.82	128.99	126.46	0.94	*
In vitro neutral detergent fibre degradability (%)	56.36	58.05	56.27	58.12	1.57	*
In vitro acid detergent fibre degradability (%)	48.21	48.89	50.63	52.33	2.77	*

DISCUSSION

Analysis of raw materials

The rice straw used in this study contained high FC (>35), low BC, relatively proper DM and WSC content, which theoretically are suitable for natural fermentation [15]. However, the epiphytic LAB on rice straw is too low (<1.0×10⁵ cfu/g FW) to dominate fermentation [16]. Furthermore, the rice straw had high contents of structural carbohydrate, with NDF and ADF accounting for approximately 71% and 41% of DM, respectively. Consequently, rice straw presents difficulties for long-term preservation through natural fermentation.

Analysis of fermentation quality of rice straw silages

All inoculated silages were well fermented, with low pH and NH₃-N content, high LA contents as well as V-scores. This indicated that *L. plantarum* was more effective than molasses.
to improve the fermentation quality of rice straw silages. Actually, most epiphytic LABs were coci, which produce LA during the initial stages of ensiling [16]. Mcdonald et al [15] reported that about 80% were found as leuconostocs, and lactobacilli were the least common on silage materials. Wang et al [17] reported that some lactobacilli (such as Lactobacillus helveticus) cannot live well on the surface of rice straw. These findings may explain the low LA contents in M and C silage. If lactobacilli cannot dominate the fermentation, undesired microorganisms will prevail, which is consistent with the BA and high NH₃-N observed in this study at the end of ensiling.

L. plantarum can ferment a wide source of substrates and quickly produce large amounts of LA. Indeed, L. plantarum addition significantly increased LA concentrations with a concomitant decrease in pH. The sharp decline of LA after 30 days could be explained by LA being converted to AA by heterofermentative lactic bacteria at the later stage of fermentation [15]. Heterofermentative LAB strains can degrade LA into several metabolites, mainly AA [18]. Differently, the pH values of L and M silages tended to increase after 15 days of ensiling. This result is possibly due to the alkalisation effect of NH₃-N. The AA concentration showed an uptrend along the ensiling period, and LA/AA declined after 6 days of ensiling, indicating an obvious shift from homofermentation to heterofermentation at early stage of ensiling [15].

High levels of ethanol were detected in all silages and this could be explained by the high DM of rice straw and activity of yeasts. Ethanol is commonly formed in high DM silage [19]. Moreover, less ethanol in L and ML silages may be related to an inhibition of yeasts resulting from the inoculation with L. plantarum. Driehuis et al [20] also reported that the addition of inoculant significantly decreased ethanol concentration in high DM silage as compared with the control. BA was absent or detected in negligible amounts except for the control, suggesting that low pH in additive-treated silages inhibited clostridial fermentation. Clostridial fermentation signified protein degradation, dry matter loss and energy wastage. Similarly, high NH₃-N content and DM loss was also observed in C silage (p<0.05). The DM content showed a continuous downward trend, with considerable DM loss recorded in C silage followed by M silage. This could be attributed to the breakdown of nutrients caused by clostridial spoilage or heterofermentation [15].

Analysis of structural carbohydrates compositions of rice straw silages

The structural carbohydrate compositions of rice straw silage are presented in Table 4. The ensiled rice straw had higher structural carbohydrate contents than untreated rice straw (Table 1), probably due to the high DM loss, which primarily evolved from non-fibre fractions. The effects of LAB inoculants on degradation of structural carbohydrate are uncertain. Muck [21] reported that LAB cannot effectively use fibre as an energy source to produce LA. However, all additives, including L. plantarum, reduced the structural carbohydrate contents
Comparison with the control in this study. This could be explained that more soluble components retained in additive-treated silages indirectly reduced relative proportions of structural carbohydrates. In addition, the acid solubilization of hemicellulose evinced by organic acid (particularly LA) in inoculated silage is also considered. Dewar et al. [22] concluded that after ensiling of 7 to 28 days, structural carbohydrates could be degraded by acid hydrolysis at low pH. Interestingly, the ADL content exhibited an upturn over the course of ensiling, which could be explained by the high loss of DM. In fact, ensilage cannot affect the ADL content.

Analysis of nonstructural carbohydrates compositions of rice straw silages
Within the initial 6 days of ensiling, the maximum consumption of WSC (Figure 2a) was accompanied by small amounts of fermentation products (Table 2) in C silage, suggesting that the readily available substrates were mainly consumed by plant respiration and aerobic bacteria in the control.

The higher residual sugar in inoculated (L and ML) silages could be attributed to an inhibition of undesired microbial growth and acid hydrolysis of available structural carbohydrates, which were reflected in the low pH and xylose production. Hemicellulose, also known as polyose, is formed by various components including a backbone of xylans and arabinose side chains [23], which can be decomposed into xylose and arabinose. Similar to the study of Shao et al. [24], a larger reduction was observed in glucose than that of other sugars. This result indicated that glucose could be the more favourable fermentation substrate for LAB during ensiling.

Analysis of crude protein, ash and in vitro ruminal fermentation parameters of 60-day rice straw silages
Low CP content observed in the control could be attributed to the higher residual air in coarse and hollow stems of rice straw, which facilitated proteolytic bacteria growth during ensiling. Higher CP observed in M-treated silages than fresh material could ascribe to DM loss and part of nitrogen in molasses. On the other hand, L and ML application induced rapid acidification thereby suppressing protein degradation by undetermined microorganisms. The fluctuation of ash content could be related to DM loss since ash was expressed as a percentage of DM.

In vitro gas production is commonly used as an indicator for efficiency of rumen degradability and predicts the metabolizable energy of animal feed [11]. In this study, gas production of all silages was reduced relative to the fresh rice straw, indicating that in vitro ruminal gas production can be lowered by ensiling. Moreover, molasses addition further decreased GP\textsubscript{72} of resulting silages. This result is difficult to explain but probably due to the molasses-treated rice straw silage altered ruminal short-chain fatty acid production. Yulistiani et al. [25] reported that adding molasses increased ruminal PA proportion, and decreased acetic/PA and gas production of fermented fibrous material in vitro trial. Also, study of Xia et al. [26] followed a similar result with higher PA content and lower gas production in molasses-treated wheat silage. This is consistent with the results of this study. The rumen gas, such as hydrogen and methane, can be reduced by the shift of ruminal fermentation pattern from acetic to propionic type [27]. Thus, further study is needed to clarify and explain this phenomenon.

Digestibility has gained wide acceptance in the evaluation of feed nutritional value and intake. Cao et al. [28] reported that IVDMD was higher in inoculated silage, because LAB addition had less DM loss during silage fermentation. Similarly, L and ML silage had higher IVDMD than other treatments in this study. Previous studies [29] showed that inoculation of LAB at ensiling could improve IVNDFD of grass silage in mixtures with legume or corn silage. While a low IVNDFD was observed in L silage. This result could relate to the silage fermentation results in hydrolysis of the hemicellulose which is acid labile at strong acid condition [30], and then less NDF was available for rumen microbial degradation. The ML addition effectively improved in vitro digestibility of rice straw silage, indicated by higher DMD, NDFD, ADFD.

In conclusion, additives are necessary to avoid spoilage and enhance the fermentation stability of fresh rice straw silage. L. plantarum was more effective than molasses to improve the silage quality of rice straw. Molasses addition reduced in vitro gas production of rice straw silage. The application of both L. plantarum and molasses is recommended to enhance its fermentation quality, nutritive characteristics and in vitro digestibility. Rice straw can be well preserved by ensiling with additives, thereby providing a continuous roughage source for ruminant livestock in rice production area.

CONFLICT OF INTEREST
We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

ACKNOWLEDGMENTS
This work was supported by Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and the project of Jiangsu Independent Innovation (CX (15)1003-3).

REFERENCES
1. Wang YJ, Bi YY, Gao CY. The assessment and utilization of straw resources in China. Agric Sci China 2010;9:1807-15.
2. Cai Y. Development of lactic acid bacteria inoculant for whole
24. Shao T, Obha N, Shimojo M, Masuda Y. Dynamics of early fermentation of Italian ryegrass (Lolium multiflorum Lam.) silage. Asian-Australas J Anim Sci 2002;15:1606-10.
25. Yulistiani D, Jelan ZA, Liang JB, Yaakub H, Abdullah N. The use of in vitro gas production technique to evaluate molasses supplementation to mulberry (Morus alba) and rice straw mixed diets. Indonesian J Anim Vet Sci 2007;12:255-61.
26. Xia C, Liang Y, Bai S, et al. Effects of harvest time and added molasses on nutritional content, ensiling characteristics and in vitro degradation of whole crop wheat. Asian-Australas J Anim Sci 2018;31:354-62.
27. O'Mara F. Greenhouse gas production from dairying: reducing methane production. Adv Dairy Technol 2004;16:295-309.
28. Cao Y, Cai Y, Takahashi T, et al. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J Dairy Sci 2011;94:3902-12.
29. Aksu T, Baytok E, Bolat D. Effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Rumin Res 2004;55:249-52.
30. Weinburg ZG, Szakacs G, Hen Y. The effect of temperature and Lactobacillus amylovorus and Lact-plantarum on corn silage fermentation and nitrogen digestibility. J Appl Microbiol 1998;84:404-8.