The Lemniscate of Bernoulli, Without Formulas

ARSENIY V. AKOPYAN*

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, surprising, or appealing that one has an urge to pass them on.

Contributions are most welcome.

In this article, we present purely geometrical proofs of the well-known properties of the lemniscate of Bernoulli.

What Is the Lemniscate?

A polynomial lemniscate with foci \(F_1, F_2, \ldots, F_n \) is a locus of points \(X \) such that the product of distances from \(X \) to the foci is constant (\(\prod_{i=1}^{n} |F_iX| = \text{const} \)).

The \(n \)-th root of this value is called the radius of the lemniscate. It is clear that a lemniscate is an algebraic curve of degree (at most) \(2n \). You can see a family of lemniscates with three foci in Figure 1.

A lemniscate with two foci is called a Cassini oval. It is named after the astronomer Giovanni Domenico Cassini who studied it in 1680. The best-known Cassini oval is the lemniscate of Bernoulli, which was described by Jakob Bernoulli in 1694. For each point of the curve, the product of the distances to the foci equals one quarter of the square of the distance between the foci (Fig. 2). Bernoulli considered it as a modification of an ellipse, which has a similar definition: the locus of points with the sum of distances to the foci being constant. (Bernoulli was not familiar with the work of Cassini.)

It is clear that the lemniscate of Bernoulli passes through the midpoint between the foci. This point is called the juncture or double point of the lemniscate.

The lemniscate of Bernoulli has many very interesting properties. For example, the area bounded by the lemniscate is equal to \(\frac{1}{2} |F_1F_2|^2 \). In this article we prove some other properties, mainly using purely synthetic arguments.

How Do We Construct the Lemniscate of Bernoulli?

There exists a very simple method for constructing the lemniscate of Bernoulli using the following three-bar linkage. James Watt invented this construction: Take two equal rods \(F_1A \) and \(F_2B \) each of length \(\frac{1}{2} |F_1F_2| \) and fixed at the points \(F_1 \) and \(F_2 \), respectively. Let points \(A \) and \(B \) lie on opposite sides of the line \(F_1F_2 \). The third rod connects the points \(A \) and \(B \) and its length equals \(|F_1F_2| \) (Fig. 3). Then, during the motion of the linkage the midpoint \(X \) of the rod \(AB \) traces the lemniscate of Bernoulli with foci at \(F_1 \) and \(F_2 \).

To see this note that the quadrilateral \(F_1AF_2B \) is an isosceles trapezoid (Fig. 4). Moreover, triangles \(\Delta AF_1X \) and \(\Delta ABF_1 \) are similar, because they have the common angle \(A \) and the following relation on their sides holds:

* Research supported by the Dynasty Foundation and the President of the Russian Federation grant MK-3138.2014.1.

Upload submissions at http://tmin.edmgr.com or send directly to Sergei Tabachnikov, tabachni@math.psu.edu
For the same reason, triangles $\triangle BXF_2$ and $\triangle BF_2$ are similar. They have the common angle B, and the ratios of the length of the sides with endpoints at B is $\sqrt{2}$. Therefore, $\frac{AF_1}{AB} = \frac{AF_1}{AF_2} = \frac{XF_2}{BF_2}$.

Let us remark that in the trapezoid F_1AF_2B angles $\angle A$ and $\angle F_2$ are equal. Because angles $\angle XAF_2$ and $\angle XF_2B$ are equal too, we obtain $\angle F_1AX = \angle XF_2A$. This implies that triangles $\triangle F_1AX$ and $\triangle AF_2X$ are similar. Therefore, $\frac{|F_1X|}{|AX|} = \frac{|AX|}{|XF_2|} \Rightarrow |XF_1| \cdot |XF_2| = |AX|^2 = |F_1O|^2$.

Thus, we have shown that point X lies on the lemniscate of Bernoulli.

Since the motion of the point X is continuous and X attains the farthest points of the lemniscate, the trajectory of X is the whole lemniscate of Bernoulli.

Let O be the midpoint of the segment F_1F_2 (double point of the lemniscate). Denote by M and N the midpoints of the segments F_1A and F_1B, respectively (Fig. 5). Translate the point O by the vector $\overrightarrow{OF_1}$. Denote the new point by O'. Observe that triangles $\triangle F_1MO'$ and $\triangle NMO$ are congruent.

Moreover, the following equation holds:

$$|F_1M| = |F_1O| = \frac{1}{\sqrt{2}}|F_1O|.$$

In other words, the points M and O' lie on the circle with center at F_1 and radius $\frac{1}{\sqrt{2}}|F_1O|$.

Using this observation, we can obtain another elegant method for constructing the lemniscate of Bernoulli.

Let us construct the circle with center at one of the foci and radius $\frac{1}{\sqrt{2}}|F_1O|$. On each secant OAB (where A and B are the points of intersection of the circle and the secant) choose points X and X' such that $|AB| = |OX| = |OX'|$ (Fig. 6). The union of all points X and X' form the lemniscate of Bernoulli with foci F_1 and F_2.

Another interesting way to construct a lemniscate is with the linkages given in Figure 7. The lengths of the segments F_1A and F_1O are equal. The point A is the intersection of rods AX and AY each of length $\sqrt{2}|F_1O|$. Denote the midpoints of these rods by B and C, and join them with O by another rod of the length $\frac{|AX|}{2}$. In the
process of rotating point A around the circle, each of the points X and Y generates half of the lemniscate of Bernoulli with foci F_1 and F_2.

The Lemniscate of Bernoulli and The Equilateral Hyperbola

The hyperbola is a much better-known curve. An hyperbola with foci F_1 and F_2 is the set of all points X such that the value $|F_1X| - |F_2X|$ is constant. Points F_1 and F_2 are called the foci of the hyperbola. Among all hyperbolas, we single out equilateral hyperbolas, i.e., the set of points X such that $|F_1X| - |F_2X| = \frac{|F_1F_2|}{2}$.

The lemniscate of Bernoulli is an inversion image of an equilateral hyperbola. Before proving this claim, let us recall the definition of an inversion.

Definition Inversion with respect to the circle with center O and radius r is the transformation that maps every point X in the plane to the point X' lying on the ray OX such that $|OX'| = \frac{r^2}{|OX|}$.

Inversion has many interesting properties; see, for example [2]. Among the properties, is the following: a circle or a line will invert to either a circle or a line, depending on whether it passes through the origin. We will prove here just one simple lemma that will help us later.

Proposition Suppose A is an orthogonal projection of the point O on some line ℓ. Then the inversion image of the line ℓ with respect to a circle with center at O is the circle with diameter OA^*, where A^* is the inversion image of the point A.

Proof Let B be any point on the line ℓ, and let B^* be its image (Fig. 8). Since $|OA^*| = \frac{r^2}{|OA|}$ and $|OB^*| = \frac{r^2}{|OB|}$, we see that triangles $\triangle OAB$ and $\triangle OB^*A^*$ are similar. Therefore the angle $\angle BOB^*$ is a right angle and the point B^* lies on the circle with diameter OA^*.

Note that the center O_1 of this circle is the inversion of the point O_2, where O_1 is the point symmetric to O with respect to the line ℓ.

Now, let us prove that the lemniscate of Bernoulli with foci F_1 and F_2 is an inversion of the equilateral hyperbola with foci F_1 and F_2 with respect to the circle with center at O and radius $|OF_1|$. For this proof, we will use the results we obtained in the proof of correctness of the first method for constructing the lemniscate (Fig. 4). Let P be the point of intersection of the lines F_1A and F_2B and let Q be the point symmetric to P with respect to the line F_1F_2 (Fig. 9). Note that

$$|F_2Q| = |F_1Q| = |F_2P| = |F_1P| = |PA| = |F_1F_2| = \frac{|F_1F_2|}{\sqrt{2}}.$$

Therefore, the points P and Q lie on the equilateral hyperbola with foci F_1 and F_2. Now it remains to show that points X and Q are the images of each other under the inversion with center at O and radius $|OF_1|$. First, let us show that triangles $\triangle F_1XO$ and $\triangle PF_1O$ are similar.

The quadrilateral F_1XOB is a trapezoid. Therefore $\angle OF_1X + \angle OF_1B = 180^\circ$. Also, we have $\angle AF_1O + \angle OF_1P = 180^\circ$. Since angle $\angle XF_1B$ is equal to angle $\angle AF_1O$, we obtain that $\angle OF_1X$ and $\angle OF_1P$ are equal to each other.

Because angles $\angle XF_2B$ and $\angle XF_1A$ are equal, we have that $\angle XF_1P + \angle PF_2X = 180^\circ$. In other words, the quadrilateral PF_1XF_2 is inscribed. Therefore, we have

$$\angle F_2F_1X = \angle F_2PX = \angle F_1PO.$$

The last equation proves that points O and X are symmetric to each other with respect to the perpendicular bisector of the segment F_1B.

Thus, triangles $\triangle F_1XO$ and $\triangle PF_1O$ are similar because they have two corresponding pairs of equal angles. It follows that $\angle F_1AX$ and $\angle OF_1P$ are equal, and we have that the point Q lies on the ray OX. In addition, from similarity of triangles $\triangle F_1XO$ and $\triangle QF_1O$ (it is congruent to the
triangle ΔPF_1O, we obtain

$$\frac{|OX|}{|OF_1|} = \frac{|OF_1|}{|OQ|} \Rightarrow |OX| \cdot |OQ| = |OF_1|^2.$$

This means that points Q and X are images of each other under the inversion with center at O and radius $|OF_1|$ (Fig. 10).

If we look at Figure 9, we can make another observation: the points X and O lie on the circle centered at P.

It is interesting that this circle touches the lemniscate of Bernoulli. For suppose ℓ is the tangent to the hyperbola at the point Q. From Lemma 1, it follows that the image of the line ℓ under the inversion with center at O and radius $|F_1O|$ is a circle ω_t passing through the point Q. Since X is the inverse image of the point Q, we see that the circle ω_t touches the lemniscate at the point X. From the same Lemma we conclude that the center of this circle lies on the normal line from the point O to the line ℓ.

Let us show that lines OP and OQ are symmetric to each other with respect to the line F_1F_2. It will follow that the point P is the center of the circle ω_t. Without loss of generality, we can assume that the equation of the hyperbola is $y = \frac{1}{x}$. Suppose line ℓ intersects the abscissa and the ordinate in the points R and S, respectively (Fig. 11). It is well known that the derivative of the function $\frac{1}{x}$ at the point x_0 is equal to $-\frac{1}{x_0^2}$. It follows that the point Q is the midpoint of the segment RS, and OQ is the median of the right triangle ΔROS. Therefore, the angles $\angle QOR$ and $\angle QRO$ are equal. Since angles $\angle POS$ and $\angle QOR$ are also equal, we obtain that the lines OP and RS are perpendicular, as was to be proved.

Let us note the following: Since the circle ω_t touches the lemniscate at the point X, the radius PX of this circle is a normal (perpendicular to the tangent line) to the lemniscate at X (Fig. 12). Note that the triangle ΔXPO is isosceles, and the lines XO and PO are symmetric with respect to the line F_1O. Therefore, we can write these equations:

$$\angle PXO = \angle XOP = 2\angle POF_1.$$

The following very simple method for constructing the normal to the lemniscate of Bernoulli emerges: For any point X on the lemniscate, take the line forming with the line intersecting OX at X at the angle $2\angle XOF$. This line will be a normal to the lemniscate.

REFERENCES

[1] http://xahlee.info/SpecialPlaneCurves_dir/LemniscateOfBernoulli_dir/lemniscateOfBernoulli.html.

[2] R. A. Johnson. Advanced Euclidean Geometry. Dover Publications, New York, N.Y., 2007.

[3] J. D. Lawrence. A catalog of special plane curves. Dover Publications, New York, N.Y., 1972.

Institute for Information Transmission Problems RAS
Bolshoy Karetny per. 19
Moscow, Russia 127994
and
Dept. of Mathematics
Moscow Institute of Physics & Technology
Institutskiy per. 9
Dolgoprudny, Russia 141700
e-mail: akopjan@gmail.com