Warped Kaluza-Klein Dark Matter

Andrew R. Frey

McGill University

Warped KK Dark Matter

Dark Matter

KK DM

Decays

Discussion
Outline

1. Review of Dark Matter
2. Kaluza-Klein Dark Matter from String Theory
3. Decay Rates
4. Discussion and Future Directions
Concordance Cosmology
Agreement of many observations
- Few percent normal matter
- 5-6× as much dark matter: Invisible except gravitationally
- Mostly dark energy

We review
- Evidence
- Usual particle physics
- Decay rates
Concordance Cosmology
Agreement of many observations
- Few percent normal matter
- $5-6 \times$ as much dark matter: Invisible except gravitationally
- Mostly dark energy

We review
- Evidence
- Usual particle physics
- Decay rates

(NASA/WMAP Science Team)
Review of Dark Matter

Concordance Cosmology
Agreement of many observations
- Few percent normal matter
- 5-6× as much dark matter: Invisible except gravitationally
- Mostly dark energy

We review
- Evidence
- Usual particle physics
- Decay rates

(NASA/WMAP Science Team)
Review of Dark Matter

Evidence

Velocities

Stars in galaxies:
- Kepler: speeds should drop
- Instead increase!

Clusters of galaxies:
- Galaxy speeds
- Temperature of gas

Much more mass than what’s visible

(Sheffield Univ, PPPA group)
(Hubble, Chandra, VLA)
Velocities

Stars in galaxies:
- Kepler: speeds should drop
- Instead increase!

Clusters of galaxies:
- Galaxy speeds
- Temperature of gas

Much more mass than what’s visible

(Sheffield Univ, PPPA group) (Hubble, Chandra, VLA)
Review of Dark Matter
Evidence

Gravitational Lensing
- Background images distorted
- Map mass from lensing
- Mass not aligned with light

(Hubble, Chandra, Magellan)

(NASA, ESA, Jee & Ford)
Review of Dark Matter
Evidence

Structure Formation
- Regular matter feels pressure
- Can’t clump as soon
- Observations match prediction for dark matter of same amount

(WMAP)
What Do We Know About Dark Matter?

- Nonrelativistic since early times
- Interactions with atoms must be weak
- Stable on cosmological time scales
- Self-interactions must be weak
What Do We Know About Dark Matter?

- Nonrelativistic since early times

 Expect new particles at masses near TeV

- Interactions with atoms must be weak

- Stable on cosmological time scales

- Self-interactions must be weak
What Do We Know About Dark Matter?

- Nonrelativistic since early times
 \textit{Expect new particles at masses near TeV}
- Interactions with atoms must be weak
 \textit{Must be neutral and colorless}
- Stable on cosmological time scales
- Self-interactions must be weak
What Do We Know About Dark Matter?

- Nonrelativistic since early times
 Expect new particles at masses near TeV
- Interactions with atoms must be weak
 Must be neutral and colorless
- Stable on cosmological time scales
 New particles protected from decay by symmetries
- Self-interactions must be weak
What Do We Know About Dark Matter?

- Nonrelativistic since early times
 \textit{Expect new particles at masses near TeV}
- Interactions with atoms must be weak
 \textit{Must be neutral and colorless}
- Stable on cosmological time scales
 \textit{New particles protected from decay by symmetries}
- Self-interactions must be weak
 \textit{Expected for massive particles}
What Do We Know About Dark Matter?

- Nonrelativistic since early times
 Expect new particles at masses near TeV

- Interactions with atoms must be weak
 Must be neutral and colorless

- Stable on cosmological time scales
 New particles protected from decay by symmetries

- Self-interactions must be weak
 Expected for massive particles

May naturally occur in string theory
Review of Dark Matter
Weakly Interacting Massive Particle

Why TeV Scale Assumed?
- Thermal particle production
- Expansion cools universe
 Particles are more spread out
- Particles not energetic enough
 \[n_{DM} \propto \exp\left(-\frac{M c^2}{k T}\right) \]
- Too dilute to annihilate
 Stable so relic population
- Density \(n_{DM} \propto \frac{1}{\sigma_{ann}} \)
 Right for TeV masses
 Assume for our candidates
Review of Dark Matter
Weakly Interacting Massive Particle

Why TeV Scale Assumed?
- Thermal particle production
- Expansion cools universe
 Particles are more spread out
- Particles not energetic enough
 \[n_{DM} \propto \exp\left[-\frac{M c^2}{kT}\right] \]
- Too dilute to annihilate
 Stable so relic population
- Density \(n_{DM} \propto 1/\sigma_{ann} \)
 Right for TeV masses
 Assume for our candidates
Why TeV Scale Assumed?

- Thermal particle production
- Expansion cools universe
 - Particles are more spread out
- Particles not energetic enough
 \[n_{DM} \propto \exp \left[-\frac{M c^2}{kT}\right] \]
- Too dilute to annihilate
 - Stable so relic population
- Density \(n_{DM} \propto 1/\sigma_{ann} \)
 - Right for TeV masses
 - Assume for our candidates
Review of Dark Matter
Weakly Interacting Massive Particle

Why TeV Scale Assumed?
- Thermal particle production
- Expansion cools universe
 Particles are more spread out
- Particles not energetic enough
 \[n_{DM} \propto \exp\left[-\frac{M c^2}{kT}\right] \]
- Too dilute to annihilate
 Stable so relic population
- Density \(n_{DM} \propto 1/\sigma_{ann} \)
 Right for TeV masses
 Assume for our candidates

(E. Kolb)
Review of Dark Matter
Weakly Interacting Massive Particle

Why TeV Scale Assumed?

- Thermal particle production
- Expansion cools universe
 - Particles are more spread out
- Particles not energetic enough
 \[n_{DM} \propto \exp\left[-\frac{M c^2}{kT}\right] \]
- Too dilute to annihilate
 - Stable so relic population
- Density \(n_{DM} \propto \frac{1}{\sigma_{ann}} \)
 - Right for TeV masses

Assume for our candidates
Review of Dark Matter
Bounds on Decay Rate

Constraining Dark Matter Lifetime

- At least age of universe
- Recent experiments find excess of high-energy e^\pm
- Perhaps decaying dark matter
- Fits lifetime $\tau \sim 10^{26}$ s
- Constraint: for TeV mass
 Lifetime no less than 10^{26} s

Advertisement

- DM annihilation?
- Other signals?
- Exciting time phenomenologically
Review of Dark Matter

Bounds on Decay Rate

Constraining Dark Matter Lifetime

- At least age of universe
- Recent experiments find excess of high-energy e^\pm
- Perhaps decaying dark matter
- Fits lifetime $\tau \sim 10^{26}$ s
- Constraint: for TeV mass

 Lifetime no less than 10^{26} s

Advertisement

- DM annihilation?
- Other signals?
- Exciting time phenomenologically
Review of Dark Matter

Bounds on Decay Rate

Constraining Dark Matter Lifetime

- At least age of universe
- Recent experiments find excess of high-energy e^\pm
- Perhaps decaying dark matter
- Fits lifetime $\tau \sim 10^{26}$ s
- Constraint: for TeV mass

 Lifetime no less than 10^{26} s

Advertisement

- DM annihilation?
- Other signals?
- Exciting time phenomenologically
Motivations

- Theory-driven modeling
 How does dark matter fit in?
- Broad landscape of string vacua
 Few constraints available
- DM is simple probe
 Survey class of compactifications
- Related to troublesome relics
 (from brane inflation)

Kaluza-Klein Dark Matter

- Review compactifications
- Warped throats
- Dark matter candidates
- Angular excitations of throats
Kaluza-Klein Dark Matter from String Theory

Motivations
- Theory-driven modeling
 How does dark matter fit in?
- Broad landscape of string vacua
 Few constraints available
- DM is simple probe
 Survey class of compactifications
- Related to troublesome relics
 (from brane inflation)

Kaluza-Klein Dark Matter
- Review compactifications
- Warped throats
- Dark matter candidates
 Angular excitations of throats
Kaluza-Klein Dark Matter from String Theory
Review of Compactifications

Well-Understood Class

- Based on Calabi-Yau space
 - Supersymmetric
 - Geometry well-studied
- Extra stringy ingredients:
 - Higher-dimensional flux
 - D3- and D7-branes
 - Orientifold planes
- External & internal warping
 \[ds^2 = e^{2A(y)} dx^\mu dx_\mu + e^{-2A(y)} d\tilde{s}^2 \]
 Warped throats near singularities
- Some quantum understanding
Well-Understood Class

- Based on Calabi-Yau space
 - Supersymmetric
 - Geometry well-studied
- Extra stringy ingredients:
 - Higher-dimensional flux
 - D3- and D7-branes
 - Orientifold planes
- External & internal warping
 \[ds^2 = e^{2A(y)} dx^\mu dx_\mu + e^{-2A(y)} d\tilde{s}^2 \]
- Warped throats near singularities
- Some quantum understanding
Kaluza-Klein Dark Matter from String Theory
Review of Compactifications

Well-Understood Class
- Based on Calabi-Yau space
 - Supersymmetric
 - Geometry well-studied
- Extra stringy ingredients:
 - Higher-dimensional flux
 - D3- and D7-branes
 - Orientifold planes
- External & internal warping
 \[ds^2 = e^{2A(y)} dx^\mu dx_\mu + e^{-2A(y)} d\tilde{s}^2 \]
- Warped throats near singularities
- Some quantum understanding
Kaluza-Klein Dark Matter from String Theory
Review of Compactifications

Moduli Stabilization
- Free parameters in metric
- Massless scalars (moduli) in 4D
 - Kähler moduli like volume
 - Complex structure
- Phenomenologically problematic
- Need to generate masses
- Flux stabilizes complex structure
- Kähler moduli classically massless
- Stabilized quantum mechanically

Light Fields
- Graviton, possibly moduli
- SM fields (from D-branes)
Kaluza-Klein Dark Matter from String Theory
Warping and Throats

Beyond Product Spaces

\[ds^2 = e^{2A(y)} \eta_{\mu\nu} dx^\mu dx^\nu + e^{-2A(y)} \tilde{g}_{mn} dy^m dy^n \]

- Large space depends on compact
- Small warping leads to long distance
- Warp factor acts like potential
- Mass falls to low potential
 becomes lighter \(m \rightarrow e^A m \)

Randall-Sundrum Models

- 1 extra dimension: line segment
- Exponential warping \(A = -kz \)
- \(AdS_5 \) spacetime
- Hierarchy for SM
Kaluza-Klein Dark Matter from String Theory
Warping and Throats

Beyond Product Spaces

\[ds^2 = e^{2A(y)} \eta_{\mu\nu} dx^\mu dx^\nu + e^{-2A(y)} \tilde{g}_{mn} dy^m dy^n \]

- Large space depends on compact
- Small warping leads to long distance
- Warp factor acts like potential
- Mass falls to low potential
 Becomes lighter \(m \rightarrow e^A m \)

Randall-Sundrum Models

- 1 extra dimension: line segment
- Exponential warping \(A = -k z \)
 \(AdS_5 \) spacetime
- Hierarchy for SM
Kaluza-Klein Dark Matter from String Theory
Warping and Throats

Beyond Product Spaces

\[ds^2 = e^{2A(y)} \eta_{\mu\nu} dx^\mu dx^\nu + e^{-2A(y)} \tilde{g}_{mn} dy^m dy^n \]

- Large space depends on compact
- Small warping leads to long distance
- Warp factor acts like potential
- Mass falls to low potential
 Becomes lighter \(m \rightarrow e^A m \)

Randall-Sundrum Models

- 1 extra dimension: line segment
- Exponential warping \(A = -kz \)
- \(AdS_5 \) spacetime
- Hierarchy for SM
Kaluza-Klein Dark Matter from String Theory
Warping and Throats

Klebanov-Strassler: A Prototype Throat

- Locally conifold geometry
 \[d\tilde{s}^2 = e^{-2kz} \left[dz^2 + \frac{d\hat{s}^2}{k^2} \right] \]
- \(d\hat{s}^2 \) is \(T^{1,1} \sim S^3 \times S^2 \)
- \(\mathbb{R}^{3,1} \times z \) form \(AdS_5 \): \(A = -kz \)
 Same as Randall-Sundrum
- Product \(AdS_5 \times T^{1,1} \)
- Smooth tip with finite \(S^3 \) at \(z_0 \)
- Angular symmetry \(SU(2)^2/U(1) \)
 Slightly broken by compactification
Kaluza-Klein Dark Matter from String Theory
Dark Matter Candidates

Kaluza-Klein Modes
- Massive from compact motion
 - Momentum quantized \(m \sim n/R \)
- Warping pulls wavefunction to tip
 - Localized in throat & approximately exponential
 - Warped KK scale: \(m \sim wk \)
 - Use TeV as example
- Labeled by angular charge
 - \((j, l, r = j_3 - l_3) \)
 - \(j_3 + l_3 \) constrained
 - Also some light modes
- Model-dependence in \(m \) from moduli stabilization

\[w \equiv e^{-kz_0} \]
Proxy Dark Matter Candidate

- Approximately conserved charge: Lightest charged state is DM candidate
- Masses depend on moduli stabilization
 Consider only KK masses as proxy
- Charged $T^{1,1}$ breathing mode
 Lowest mass for $(1, 0, 0)$ or $(0, 1, 0)$
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\gamma^* \propto w^{1+\nu_\ast} e^{(2+\nu_\ast)kz} Y_{(1,0,0)}(\theta)$$

$$\nu_\ast^2 = 4 + \frac{m_5^2}{k^2}$$
Proxy Dark Matter Candidate

- Approximately conserved charge:
 Lightest charged state is DM candidate
- Masses depend on moduli stabilization
 Consider only KK masses as proxy
- Charged $T^{1,1}$ breathing mode
 Lowest mass for $(1, 0, 0)$ or $(0, 1, 0)$
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\gamma^* \propto w^{1+\nu_*} e^{(2+\nu_*)kz} Y_{(1,0,0)}(\theta)$$

$$\nu_*^2 = 4 + \frac{m_5^2}{k^2}$$
Proxy Dark Matter Candidate

- Approximately conserved charge:
 Lightest charged state is DM candidate
- Masses depend on moduli stabilization
 Consider only KK masses as proxy
- Charged $T^{1,1}$ breathing mode
 Lowest mass for $(1, 0, 0)$ or $(0, 1, 0)$
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

\[
\gamma^* \propto w^{1+\nu_\star} e^{(2+\nu_\star)kz} Y_{(1,0,0)}(\theta)
\]

\[
\nu_\star^2 = 4 + m_5^2/k^2
\]
Proxy Dark Matter Candidate

- Approximately conserved charge: Lightest charged state is DM candidate
- Masses depend on moduli stabilization
 Consider only KK masses as proxy
- Charged $T^{1,1}$ breathing mode
 Lowest mass for $(1, 0, 0)$ or $(0, 1, 0)$
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\gamma^* \propto w^{1+\nu} e^{(2+\nu^*)kz} Y_{(1,0,0)}(\theta)$$

$$\nu^2 = 4 + m_5^2/k^2$$
Symmetry Breaking and Decays

- Simple model has exact symmetry
 - Dark matter candidates stable
- Full theory breaks symmetry
 - Dark matter can decay
- Broken by brane positions
 - Decay on brane
- Or deformations of background
 - Lose charge then decay
Symmetry Breaking and Decays

- Simple model has exact symmetry
 Dark matter candidates stable
- Full theory breaks symmetry
 Dark matter can decay
- Broken by brane positions
 Decay on brane
- Or deformations of background
 Lose charge then decay
Kaluza-Klein Dark Matter from String Theory
Dark Matter Candidates

Symmetry Breaking and Decays
- Simple model has exact symmetry
 Dark matter candidates stable
- Full theory breaks symmetry
 Dark matter can decay
- Broken by brane positions
 Decay on brane
- Or deformations of background
 Lose charge then decay
Dominant Background Deformation
Should grow at large z to overlap γ^*

- $T^{1,1}$ breathing has relevant deformations
 Charge $(1, 0, 0)$, $(0, 1, 0)$, or $(1/2, 1/2, \pm 1)$
- Not allowed in classical compactification
 Related to known quantum effects
- Leading behavior protected by symmetry
- Overall behavior: $\Delta \Gamma \approx w^4 e^{2kz}$
- Other deformations allowed
 - Classical and quantum
 - Can tabulate rules to modify decay rates
Dominant Background Deformation

Should grow at large z to overlap γ^*

- $T^{1,1}$ breathing has relevant deformations
 - Charge $(1, 0, 0)$, $(0, 1, 0)$, or $(1/2, 1/2, \pm 1)$
- Not allowed in classical compactification
- Related to known quantum effects
- Leading behavior protected by symmetry
- Overall behavior: $\Delta \Gamma \approx w^4 e^{2kz}$
- Other deformations allowed
 - Classical and quantum
 - Can tabulate rules to modify decay rates
Symmetry Breaking Mixes Charged & Uncharged

- Scan for $\gamma^* \Delta \Gamma \gamma$ terms in potential

$$U \propto \int d^6 y \sqrt{\tilde{g}} \tilde{R} - \frac{g_s}{12} \int d^6 y \sqrt{\tilde{g}} e^{4A} G_{mnp} \left(\bar{G} - i \tilde{\gamma}_6 \bar{G} \right)^{\bar{mnp}}$$

- Throat magnetic field about constant $G_{z\theta\phi} \sim k G_{\theta\phi\psi}$

- Finally $U \approx k^2 w^4 \gamma^*(x) \gamma(x)$ mixing
 Encodes scattering off deformation and losing charge

- Similar mixing with moduli: for volume modulus

$$U \approx (M_s^4 / k M_p) w^{5+\nu_\star} u(x) \gamma^*(x) , \nu_\star < 4$$
Decay Rates

Surveying Models
- Checking for long-lived relics
 Either dark matter or from reheating
- Decay from deformation or directly
- Compare different SM embeddings
- Uncharged KK mode decays similar
- Adapts to include tunneling
- Parameters: \(w \sim 10^{-13}, k \sim M_s \sim 10^{16} \text{ GeV} \)

Decay Channels
- Supergravity modes: Moduli and gravitons
- D3-brane SM fields
- D7-brane SM fields
Surveying Models
- Checking for long-lived relics
 Either dark matter or from reheating
- Decay from deformation or directly
- Compare different SM embeddings
- Uncharged KK mode decays similar
- Adapts to include tunneling
- Parameters: $w \sim 10^{-13}$, $k \sim M_s \sim 10^{16}$ GeV

Decay Channels
- Supergravity modes: Moduli and gravitons
- D3-brane SM fields
- D7-brane SM fields
Decay Rates
Decays to Supergravity Modes

Decays to Moduli
- Relevant for very massive relics
- Two diagrams to moduli:
 - Cubic vertex $\gamma^* u^2$ with $\Delta \Gamma$ from flux
 - Mix with u, decay by $u(\partial u)^2$ term
- Decay rate:
 $$\Gamma \approx \frac{M_s^8}{M_p^4 k^3} w^{9+2\nu^*} \approx 10^{-89-26\nu^*} s^{-1}$$
- Incredibly slow decays but sensitive to w
- Also considered decays to axion partners
- Possibly charged moduli
 Direct decays $\gamma^* \rightarrow uu^*$ considerably faster
Decay Rates

Decays to Supergravity Modes

Decays to Moduli

- Relevant for very massive relics
- Two diagrams to moduli:
 - Cubic vertex γ^*u^2 with $\Delta \Gamma$ from flux
 - Mix with u, decay by $u(\partial u)^2$ term
- Decay rate:
 $$\Gamma \approx \frac{M_s^8}{M_p^4 k^3} w^{9+2\nu_{*}} \approx 10^{-89-26\nu_{*}} s^{-1}$$
- Incredibly slow decays but sensitive to w
- Also considered decays to axion partners
- Possibly charged moduli
 - Direct decays $\gamma^* \rightarrow uu^*$ considerably faster
Decay Rates
Decays to Supergravity Modes

Decays to Gravitons

- $\gamma^* hh$ couplings disallowed in Einstein gravity
 Proportional to equation of motion for γ^*

- Higher derivatives allow couplings
 Simplest $\sim \lambda \gamma^* \partial^4 h^2$ with $\lambda \lesssim 1/m_* M_p^2$

- KK decay rate:
 $$\Gamma \lesssim \frac{w^5 k^5}{M_p^4} \approx 10^{-37} s^{-1}$$

- Bound is faster than decays to moduli

- KK gravitons prohibited from decaying to gravitons at all
Decay Rates

D3-brane Standard Model

Original Randall-Sundrum Model
- SM lives on D3-brane
- Sits at tip of throat
- Warping provides SM hierarchy
- Sits at one angle
 - Breaks some angular symmetry
- Some dark matter candidates decay directly on brane
- Other charge sector does not
Decay Rates
D3-brane Standard Model

Original Randall-Sundrum Model
- SM lives on D3-brane
- Sits at tip of throat
- Warping provides SM hierarchy
- Sits at one angle
 - Breaks some angular symmetry
- Some dark matter candidates decay directly on brane
- Other charge sector does not
Brane Breaks Symmetry

- Direct coupling to scalar kinetic term
 \[\frac{k^3}{M_s^4} w^{-1} p_1 \cdot p_2 \gamma^*(x) \phi(x)^2 \]

- Also interaction with brane fermions
 \[w \bar{\Theta} \Gamma^{mnp} \Theta \text{Re} (iG - \bar{\chi}_6 G)_{mnp} \]

- Yukawa coupling
 \((k/M_s)^4 \gamma^* \bar{\Theta} \Theta \)

- Either decay rate is extremely fast:
 \[\Gamma \approx \frac{wk^9}{M_s^8} \approx 10^{27} s^{-1} \]
No Direct Coupling to Brane

- Brane doesn’t break enough symmetry
 Or centrifugal barrier blocks γ^* from tip
- Scatters off background into uncharged KK
- Decays through couplings of uncharged KK
- Scalar and fermion estimates again the same

$$\Gamma \approx \frac{w^5 k^9}{M_8^8} \approx 10^{-25} s^{-1}$$

- Just around observational limit!
 Independent constraint on RS models
Decay Rates
D3-brane Standard Model

No Direct Coupling to Brane

- Brane doesn’t break enough symmetry
- Or centrifugal barrier blocks γ^* from tip
- Scatters off background into uncharged KK
- Decays through couplings of uncharged KK
- Scalar and fermion estimates again the same

$$\Gamma \approx \frac{w^5 k^9}{M_8^8} \approx 10^{-25} s^{-1}$$

- Just around observational limit!
- Independent constraint on RS models
Intermediate Scale SM

- SM lives on D7-brane
- Controlled setting for SM
- Extends to intermediate warping
- Supersymmetry provides hierarchy
- Fills some angular directions
- Possibly symmetric or not
- Related to F-theory model building

\[w_1 = e^{-kz_1} \sim 10^{-4} \]
Brane Breaks Symmetry

- Angular integral of γ^* nonvanishing
- Coupling in brane scalar kinetic term
- Decay rate to D7 scalar:

$$\Gamma \approx w^5 k \left(\frac{M_s}{M_p} \right)^{8/3} \left(\frac{w}{w_1} \right)^{2\nu_*} \approx 10^{-33-18\nu_*} \text{s}^{-1}$$

Brane Preserves Symmetry

- Coupling via uncharged KK or modulus
- Or direct integration against $\Delta\Gamma$
- Modulus couples outside throat
- All rates considerably slower
Decay Rates
D7-brane Standard Model

Brane Breaks Symmetry
- Angular integral of γ^* nonvanishing
 Coupling in brane scalar kinetic term
- Decay rate to D7 scalar:
 \[\Gamma \approx w^5 k \left(\frac{M_s}{M_p} \right)^{8/3} \left(\frac{w}{w_1} \right)^{2\nu_*} \]
 \[\approx 10^{-33-18\nu_*} \text{s}^{-1} \]

Brane Preserves Symmetry
- Coupling via uncharged KK or modulus
 Or direct integration against $\Delta \Gamma$
- Modulus couples outside throat
- All rates considerably slower
Decay Rates
D7-brane Standard Model

 Scalars vs Fermions

- Fermions also have flux-induced Yukawa with KK mode
 But form unknown with warping
- Estimate: multiply dim 5 coupling of scalars by cutoff $w_1 k$
- Consistent with D3-brane couplings
- No flux-induced Yukawa with volume modulus
 But possibly light complex structure
- Estimated decay rate for symmetry-breaking case:
 \[
 \Gamma \approx w^5 k \left(\frac{M_s}{M_p} \right)^{8/3} \left(\frac{w}{w_1} \right)^{-2 + 2 \nu_\ast} \approx 10^{-15 - 18 \nu_\ast} s^{-1}
 \]
- Potentially in observable range
 Scalars vs Fermions

- Fermions also have flux-induced Yukawa with KK mode
 But form unknown with warping
- Estimate: multiply dim 5 coupling of scalars by cutoff $w_1 k$
- Consistent with D3-brane couplings
- No flux-induced Yukawa with volume modulus
 But possibly light complex structure
- Estimated decay rate for symmetry-breaking case:

$$\Gamma \approx w^5 k \left(\frac{M_s}{M_p} \right)^{8/3} \left(\frac{w}{w_1} \right)^{-2+2\nu_*} \approx 10^{-15-18\nu_*} s^{-1}$$

- Potentially in observable range
Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models
Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models
Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models
Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models
Discussion and Future Directions

Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models
Conclusions

- Found new dark matter candidates from top-down view
- Arise from motion in extra dimensions
- Appear for different Standard Model embeddings
- In some models, dark matter decays at observable rates
- Possibility of constraining extra dimensional models

Future Directions

- Return to D7-brane Standard Model
- Cosmic history of KK modes
- Start to constrain some stringy Standard Models

THANK YOU!