Paternal long-term PM$_{2.5}$ exposure causes hypertension via increased renal AT$_1$R expression and function in male offspring

Cuimei Hu1,2,*, Yu Tao1,2,*, Yi Deng3, Qi Cai4, Hongmei Ren1,2, Cheng Yu4, Shuo Zheng1,2, Jian Yang5 and Chunyu Zeng1,2,6,7

1Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China; 2Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China; 3Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China; 4Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; 5Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China; 6State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China; 7Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China

Correspondence: Jian Yang (jianyang@hospital.cqmu.edu.cn) or Chunyu Zeng (chunyuzeng01@163.com)

Maternal exposure to fine particulate matter (PM$_{2.5}$) causes hypertension in offspring. However, paternal contribution of PM$_{2.5}$ exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM$_{2.5}$ suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT$_1$R) and G-protein–coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM$_{2.5}$ exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT$_1$R were increased in offspring of PM$_{2.5}$-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT$_1$R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM$_{2.5}$–treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM$_{2.5}$-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT$_1$R and GRK4 in the kidney of their offspring. We suggest that paternal PM$_{2.5}$ exposure causes hypertension in offspring. The mechanism may be involved that paternal PM$_{2.5}$ exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT$_1$R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.

Introduction

Cardiovascular disease has become an uncontrolled global epidemic and a burgeoning cause of morbidity and mortality. Hypertension is the leading risk factor for cardiovascular disease and all-cause mortality worldwide [1]. Now, it is well accepted that hypertension, not a simple genetic disease, is a complex heterogeneous disorder caused by genetic, epigenetic, behavioral, and environmental factors and their intricate interactions [2–4].

Currently, an increasing number of studies have shown that fetal programming through different environmental exposures during a critical window in the early stages of life, including pre-conceptional,
that offspring of PM2.5-treated paternal rats were selected to receive intragastric administration with losartan (20 mg/kg/d) for 4 weeks (once a day). The diagram of the above animal experiment is shown in Flow diagram 1.

In another set of animal experiment, paternal rats were treated with both PM2.5 and an antioxidant tempol (Flow diagram 2). In brief, six-week-old paternal rats treated with PM2.5 or vehicle were randomly assigned into the following experimental groups: paternal rats were exposed with vehicle for 12 weeks and fed with normal tap water or tap water containing 1 mM/L tempol (Sigma, Poole, Dorset, U.K.) for 16 weeks; paternal rats were exposed with PM2.5 for 12 weeks and fed with normal tap water or tap water containing 1 mM/L tempol for 16 weeks. After above treatments, paternal rats were then mated with normal female SD rats, and offspring were obtained. Then, at the age of 12 weeks, the blood pressure measurement and urine/blood analysis of male offspring were performed. There are four

Methods
PM2.5 sampling
The sampling period began on March 1, 2018 and ended on June 1, 2018. The PM2.5 sample collection site was located at Daping Hospital, about 1 km from the center of Chongqing city. The closest main road is 100 meters northeast of the hospital. The monitoring location has a radius of about 200 meters and is almost completely surrounded by residential areas.

The method of PM2.5 sampling has been reported in our previous studies [14,16]. In brief, a medium volume sampler (model TH-150; Tianhong Co, Wuhan, China) with a filtering system was used to collect PM2.5 samples on the filter (diameter, 150 mm). A total of 30 filters were used to collect PM2.5 samples. The flow of the medium volume sampler is modulated to 30 m³/h. After sampling, the filter was shredded into small pieces, and then ultrasound was carried out in the double distilled water soaking the pieces for 1 h using an ultrasonic machine (KQ-250DE; Shumei, Kunshan, Jiangsu, China). The extract was frozen, freeze-dried and concentrated, and the extraction efficiency was measured by weighing. The farinose solids were stored at −80°C for the next use.

Animal treatment
Six-week-old SD rats were purchased from the Animal Centre of The Third Military Medical University, Chongqing, China. All procedures used in this study were approved by the Third Military Medical University Animal Use and Care Committee. All experiments conformed to the guidelines for the ethical use of animals. Animals were maintained and treated in the Animal Centre of Daping Hospital.

Male SD rats with body weight of 160−190 g were divided into PM2.5 treatment group and control group with 10 rats in each group. The models were established with PM2.5 suspension and PBS solution by drip irrigation, respectively. After anesthesia with isoflurane inhalation, the head and neck were backward exposed to the airway, and the tongue was fixed with rubber band. Then PM2.5 suspension (10 mg/ml) 30 μl was slowly infused into the tongue base of the rats. The control group was infused with the same amount of PBS solution as vehicle-treated. After 12 weeks (twice a week) of drip irrigation, male rats were mated with normal SD female rats at a ratio of 1:2, and two groups of offspring were obtained, respectively. To avoid the influence of estrogen on the blood pressure, we only used the male offspring in our present study. Then, at the age of 12 weeks, the male offspring of vehicle-treated paternal rats were assigned into control group (vehicle-exposed paternal offspring administrated with vehicle) and control+losartan group (vehicle-exposed paternal offspring administrated with losartan); the offspring of PM2.5-treated paternal rats were divided into PM2.5 group (PM2.5-exposed paternal offspring administrated with vehicle) and PM2.5+losartan group (PM2.5-exposed paternal offspring administrated with losartan). Treatment with losartan in offspring means that offspring of PM2.5-treated paternal rats were selected to receive intragastric administration with losartan (20 mg/kg/d) for 4 weeks (once a day). The diagram of the above animal experiment is shown in Flow diagram 1.
Flow diagram 1. The diagram of the animal experiment set 1
Control offspring: the vehicle-treated paternal offspring treated with saline; control+losartan offspring: the vehicle-treated paternal offspring treated with losartan (20 mg/kg/d, 4 weeks, once a day); PM2.5 offspring: the PM2.5-exposed paternal offspring treated with saline; PM2.5+losartan offspring: the PM2.5-exposed paternal offspring treated with losartan (20 mg/kg/d, 4 weeks, once a day).

Flow diagram 2. The diagram of the animal experiment set 2
Control offspring: offspring of paternal rats treated with vehicle and PBS; Control+tempol offspring: offspring of paternal rats treated with tempol (1 mM/L, 16 weeks); PM2.5 offspring: offspring of paternal rats treated with PM2.5; PM2.5+tempol offspring: offspring of paternal rats treated with both PM2.5 and tempol (1 mM/L, 16 weeks).
groups of offspring as shown accordingly: control group (offspring of vehicle-exposed- and vehicle-treated paternal rats), PM2.5 group (offspring of PM2.5-exposed- and vehicle-treated paternal rats), control+tempol group (offspring of vehicle-exposed- and tempol-treated paternal rats) and PM2.5+tempol group (offspring of PM2.5-exposed- and tempol-treated paternal rats).

After paternal or offspring rats were sacrificed under pentobarbital anesthesia (60 mg/kg), the kidneys were homogenized in ice-cold lysis buffer with proteinase inhibitor cocktail (Thermo Scientific, Waltham, MA, U.S.A.), sonicated, placed on ice for 1 h and centrifuged at 12,000 rpm for 30 min at 4°C. The upper layer of the pellet was re-suspended in the homogenization buffer, which was considered as the total protein of renal tissue. Finally, the supernatants were stored at −70°C until use for immunoblotting.

Blood pressure measurement and urine/blood analysis

To ensure the reliability of the measurements, rats were trained for one week to acclimatize them to the process of measurement. Blood pressure was measured using a computerized noninvasive tail-cuff manometry system (MODEL MK-2000; Muromachi Kikai Co. Ltd, Tokyo, Japan) in conscious rats between 2 and 5 PM every day, as reported in our previous studies [17,18].

Urine was collected in metabolic cages, and the 24 h urine volumes and sodium excretions were also measured at the indicated times. The urine sodium concentration in the urine was analyzed by a flame photometer 480 (Ciba Corning Diagnostics, Norwood, MA, U.S.A.). Serum creatinine and urea nitrogen levels were measured with commercially available kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). In addition, random blood glucose was also measured with a glucose analyzer (Roche, Indianapolis, IN, U.S.A.).

Histological analysis

Kidneys of offspring rats and lungs of paternal rats were isolated, washed several times with PBS and fixed with 4% paraformaldehyde buffer for 48 h at 4°C. Then, samples were dehydrated and embedded in paraffin, cut into 5-μm-thick sagittal sections, and mounted on glass slides. Then deparaffinizing and rehydrating using xylene and different concentrations of ethanol. At last, slides were stained with hematoxylin and eosin (H&E). Slides were observed using a microscope (ECLIPSE Ti; Nikon, Tokyo, Japan).

Biochemical markers of oxidative stress

To assess the level of systematic oxidative stress, the lipid peroxidation product malondialdehyde (MDA) in the kidney was quantified using a commercially available kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). To assess the level of antioxidants, renal samples from rats were used to measure superoxide dismutase (SOD) activity using a SOD assay kit (Dojindo Laboratories, Kumamoto, Japan) following the manufacturer’s instructions.

Immunoblotting

The protein expressions of angiotensin II type 1 receptor (AT1R), G-protein-coupled receptor kinase type 4 (GRK4), GAPDH and tubulin were determined by immunoblotting, as reported in our previous studies [14,16–18]. In brief, equal amounts of total extracted proteins (100 μg) were separated on SDS-PAGE and were transferred onto nitrocellulose membranes (Amersham Life Science, Arlington, TX). The blots were subjected to immunoblot analyses with the primary polyclonal antibodies for rabbit anti-AT1R (1:1000; Proteintech Group, Rosemont, IL, U.S.A.), anti-GRK4 (1:500; Abcam, Cambridge, U.K.), anti-GAPDH (1:1000; Beyotime, Shanghai, China) and for mouse anti-tubulin (1:1000; Beyotime, Shanghai, China) overnight at 4°C. The membranes were washed with phosphate buffered saline with Tween 20 (PBST, 0.05% Tween-20 in 10 mmol/L phosphate-buffered saline) and then incubated with infrared-labeled secondary antibodies for 1 h at room temperature. The bound complex was detected using the Odyssey Infrared Imaging System (Li-Cor Biosciences). The images were analyzed using the ImageJ Application Software (National Institutes of Health, Bethesda, MD) to obtain the integrated intensities.

Real-time (RT) quantitative PCR

Total RNA was isolated and quantified as described previously [18,19]. cDNA was synthesized from 2 μg of total RNA using cDNA synthesis kit (High Capacity RNA to cDNA Kit; Takara, Tokyo, Japan). PCRs were carried out using the Brilliant SYBR Green QPCR Master Mix kit (High Capacity RNA to cDNA Kit; Takara, Tokyo, Japan) in a total volume of 25 μL. For AT1R, the forward primer was 5’-TCCACCCAATGAAGTCTCGC-3’ and the reverse primer was 5’-ATTCTTGGTAAGGCCCCAGCC-3’. For GRK4, the forward primer was 5’-ACTTCAGCAGACTGGAAGCA-3’, and the reverse primer was 5’-GGGTGTCAGGGTGGACTCCTT-3’. For GAPDH served as a housekeeping/reference
Control PM$_{2.5}$ exposure

Figure 1. Lung histology from control- and PM$_{2.5}$-exposed SD rats

Representative light microscopy sections of lung tissues from vehicle- and PM$_{2.5}$-treated SD rats. Unabsorbed particles in the alveoli are presented in different power images. Red arrow means fine particulate matter deposition; magnification 400×.

Table 1 Basic characteristics of the control- and PM$_{2.5}$-treated SD rats before fine particulate matter exposure

Characteristics	Control	PM$_{2.5}$
Body Weight (g)	168.00 ± 1.89	166.60 ± 1.61
SBP (mm Hg)	101.20 ± 3.92	102.90 ± 4.55
24 h urine volume (ml/kg weight)	23.03 ± 1.59	21.52 ± 1.55
24 h sodium excretion (mmol/kg weight)	1.69 ± 0.12	1.64 ± 0.11

These data were collected in 6-week-old vehicle (control)- and PM$_{2.5}$-treated paternal SD rats before fine particulate matter exposure. Results are mean ± SEM, n=10.

gene for normalization, the forward primer was 5′-GCCGACAGGATACTGAGA-3′ and the reverse primer was 5′-GATGGTATTGAGAAGGGAGG-3′. The amplification profile used on the BIO-RAD CFX96 (Bio-Rad Laboratories) was 95°C for 3 min followed by 40 cycles of 95°C per 10 s and 72°C per 30 s. qRT-PCR experiments were repeated for three times.

Statistical analysis

All data are expressed as means ± SEMs. Statistical significance between experimental groups was determined using the ANOVA with Tukey’s post hoc test or unpaired t test when only two groups were compared. Statistical analysis was carried out using a software program (GraphPad Prism version 7; GraphPad Software, San Diego, CA). A value of $P<0.05$ was considered statistically significant.

Results

PM$_{2.5}$ exposure increases the blood pressure and decreases sodium excretion in SD rats

Results of HE staining showed that PM$_{2.5}$ exposure model was successfully established, which demonstrated that, as compared with the control rats, there was obvious particulate matter deposition in the lung of PM$_{2.5}$-exposed SD rats (Figure 1).

No difference was found between the control and PM$_{2.5}$-treated rats, regarding to body weight, blood pressure, 24 h urine volume and sodium excretion before PM$_{2.5}$ exposure (Table 1). However, long-term (12 weeks) PM$_{2.5}$ exposure caused a remarkable elevation in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) in SD rats (Figure 2A,B), accompanied with decreased sodium excretion, determined by basal levels of 24 h urine volume and sodium excretion (Figure 2C,D). Moreover, the differences in the levels of blood pressure between the control and PM$_{2.5}$-treated rats progressively increased with time (Figure 2E). It is noticed that there was no difference in the weights of the PM$_{2.5}$-treated rats and control rats (Figure 2F).
Figure 2. Effect of PM$_{2.5}$ exposure on the regulation of blood pressure and sodium excretion in SD rats
(A and B) Systolic blood pressure (SBP) (A) and diastolic blood pressure (DBP) (B) were measured by the tail-cuff method after 12-weeks PM$_{2.5}$ exposure (A, two-tailed, unpaired t test with Welch’s correction, *P* < 0.05 vs. control, n = 10; B, two-tailed, unpaired t test, *P* < 0.05 vs. control, n = 10). (C and D) 24 h urine volume (C) and sodium excretion (D) determined in the control and PM$_{2.5}$-exposed SD rats after 12-week PM$_{2.5}$ exposure (C and D): two-tailed, unpaired t test, *P* < 0.05 vs. control, n = 10). (E) Differences of the SBP among vehicle- (control) and PM$_{2.5}$-exposed SD rats aged 6-, 9-, 12-, 15- and 18-week-old (one-way ANOVA with Tukey’s post hoc test, *P* < 0.05 vs. control, n = 10). (F) Weights of vehicle- (control) and PM$_{2.5}$-exposed SD rats (two-tailed, unpaired t test, ns. *P* > 0.05 vs. control, n = 10).

Paternal PM$_{2.5}$ exposure causes hypertension and impaired sodium excretion in male offspring rats

To show the effect of PM$_{2.5}$ exposure on the blood pressure of male offspring rats, PM$_{2.5}$ exposed-male SD rats were inbred with vehicle-treated female SD rats to get the offspring rats. Our results showed that SBP was higher in the offspring of PM$_{2.5}$-treated paternal rats than the offspring of vehicle-treated control rats, which was in age-dependent manner (Figure 3A). The elevated SBP may be, at least in part, due to the impaired natriuresis because the 12-week-old offspring rats also showed decreased sodium excretion, determined by 24 h urine volume and sodium excretion (Figure 3B,C). It is noted that the renal structure (Figure 3D) and functions, determined by plasma urea nitrogen and creatinine concentrations, were normal, and there were no differences, regarding to body weight, heart rate, random plasma glucose level and kidney/weight ratio (Table 2), between PM$_{2.5}$-offsprings and controls.

Increased AT$_1$R and GRK4 expression and function in the offspring of PM$_{2.5}$-treated paternal rats

Renal AT$_1$R, a G-protein–coupled receptor (GPCR), plays a vital role in the regulation of sodium balance and blood pressure [20]. To determine whether or not AT$_1$R is involved in the paternal PM$_{2.5}$ exposure-induced hypertension in offspring, the transcriptional and translational levels of AT$_1$R were measured. We found that both renal AT$_1$R mRNA and protein expressions were elevated in the 12-week-old male offspring of PM$_{2.5}$-exposed paternal rats compared with the offspring of vehicle-treated paternal rats (Figure 4A,B). Then, losartan, an AT$_1$R antagonist, was used to determine whether the aggravated expression of AT$_1$R was reflected in its function. Results showed that treatment with losartan markedly decreased SBP in the offspring of PM$_{2.5}$-exposed paternal rats as compared with the offspring of control rats (Figure 4C). We also found that treatment with losartan normalized the impaired 24 h urine volume and sodium excretion in the offspring of PM$_{2.5}$-treated paternal rats; however, losartan had no natriuretic and diuretic effects in the offspring of control paternal rats (Figure 4D,E).
Figure 3. Effects of paternal PM$_{2.5}$ exposure on the regulation of blood pressure and renal functions in offspring

(A) Systolic blood pressure (SBP) in the different weeks old PM$_{2.5}$ offspring (one-way ANOVA with Tukey's post hoc test, *$P < 0.05$ vs. control offspring, $n = 8$). (B and C) 24 h urine volume (B) and sodium excretion (C) in the 12-week-old PM$_{2.5}$ offspring (B and C, two-tailed, unpaired t test, *$P < 0.05$ vs. control offspring, $n = 8$). (D) Renal histopathology was examined by H&E staining in the 12-week-old PM$_{2.5}$ offspring; magnification 200\times. Control offspring: offspring of vehicle-exposed paternal SD rats; PM$_{2.5}$ offspring: offspring of PM$_{2.5}$ exposed paternal rats.

Table 2 Basic characteristics of the male offspring from paternal rats with different treatments

Characteristics	Control	Control+tempol	PM$_{2.5}$	PM$_{2.5}$+tempol
Body weight (g)	263 ± 1.73	267 ± 3.53	264 ± 4.98	271 ± 4.49
Kidney/weight (g/kg weight)	3.48 ± 0.07	3.57 ± 0.20	3.52 ± 0.05	3.37 ± 0.11
Heart rate (beats/min)	337 ± 4	340 ± 6	342 ± 8	343 ± 7
Plasma creatinine (mmol/l)	28.30 ± 0.87	28.47 ± 0.96	30.02 ± 1.13	28.68 ± 1.04
Plasma urea nitrogen (mmol/l)	5.86 ± 0.26	5.49 ± 0.3	5.70 ± 0.24	5.67 ± 0.22
Random plasma glucose (mmol/l)	7.14 ± 0.16	7.07 ± 0.12	6.98 ± 0.07	7.12 ± 0.15

These data were collected in 12-week-old male offspring of paternal rats with different treatments. Results are mean ± SEM, $n = 8$. Control group: offspring of vehicle-exposed- and vehicle-treated paternal rats; PM$_{2.5}$ group: offspring of PM$_{2.5}$-exposed- and vehicle-treated paternal rats; Control+tempol group: offspring of vehicle-exposed- and tempol-treated paternal rats; PM$_{2.5}$+tempol group: offspring of PM$_{2.5}$-exposed- and tempol-treated paternal rats.

Our previous studies have shown that the expression and function of AT$_1$R are mainly regulated by GRK4 [21,22]. Thus, we determined whether the increased expression and function of renal AT$_1$R were regulated by GRK4 in the offspring of PM$_{2.5}$-treated paternal rats. Results showed that compared with the offspring of vehicle-treated paternal rats, both renal GRK4 mRNA and protein expressions were elevated in the 12-weeks-old offspring of PM$_{2.5}$-exposed paternal rats (Figure 4F,G). These suggested that the GRK4/AT$_1$R pathway may be involved in the paternal PM$_{2.5}$ exposure-induced hypertension in male offspring.
Figure 4. AT1R and GRK4 expression and function in the offspring of PM2.5-exposed paternal rats

(A and B) The mRNA (A) and protein expression (B) of AT1R were determined by qPCR and immunoblotting in the 12-week-old PM2.5 offspring. AT1R mRNA level was normalized using GAPDH. The protein expression of AT1R was normalized using tubulin expression (A and B, two-tailed, unpaired t test, *P < 0.05 vs. control, n = 6).

(C) Effect of losartan (20 mg/kg/d, 4 weeks) on the systolic blood pressure (SBP) in the PM2.5 offspring (two-way ANOVA with Tukey’s post hoc test, *P < 0.05 vs. P-offspring, n = 8; #P < 0.05 vs. C-offspring, n = 8).

(D and E) Effect of losartan (20 mg/kg/d, 4 weeks) on the 24 h urine volume (D) and sodium excretion (E) in the PM2.5 offspring. (D and E, two-way ANOVA with Tukey’s post hoc test, *P < 0.05 vs. C-offspring, n = 8; #P < 0.05 vs. P-offspring, n = 8).

(F and G) The mRNA (F) and protein expression (G) of GRK4 were determined by qPCR and immunoblotting in the 12-week-old PM2.5 offspring. AT1R mRNA level was normalized using GAPDH. The protein expressions of GRK4 were normalized using tubulin expression (F and G, two-tailed, unpaired t test, *P < 0.05 vs. C-offspring, n = 6). Control offspring (C or C-offspring): offspring of vehicle-exposed paternal SD rats; PM2.5 offspring (P or P-offspring): offspring of PM2.5-exposed paternal rats.
Role of oxidative stress in the paternal PM$_{2.5}$ exposure-induced hypertension in the offspring

Our and other studies have shown that exposure to fine particulate matter causes increased systematic and local oxidative stress levels [23,24]. However, whether paternal oxidative stress is involved in the pathogenesis of their PM$_{2.5}$ exposure-induced hypertension in the offspring is still unknown. Thus, we measured oxidative stress levels in the paternal PM$_{2.5}$- and vehicle-treated rats. Results showed that levels of MDA, a lipid peroxidation product, were higher, whereas levels of SOD, an antioxidant, were lower in the kidney of PM$_{2.5}$-treated paternal rats compared the kidney of control rats (Figure 5A,B), indicating that oxidative stress was increased in PM$_{2.5}$-treated paternal rats.

To confirm the role of oxidative stress in the paternal PM$_{2.5}$ exposure-induced hypertension in the offspring, a SOD mimetic tempol, as an antioxidant, was administered in combination with fine particulate matter to paternal rats. Results showed that administration with tempol for 16 weeks in PM$_{2.5}$-treated paternal rats restored the increased SBP in their male offspring, which was accompanied with elevated 24 h urine volume and sodium excretion (Figure 5C–E). Furthermore, treatment with tempol in PM$_{2.5}$-treated paternal rats also reversed the enhanced expressions of renal AT$_1$R and GRK4 in their male offspring (Figure 5F,G).

Discussion

It is well established that the maternal nutrition and lifestyle during the periconceptional period impact offspring’s long-term health [25,26]. However, in recent years, studies have focused on exploring the influence that paternal exposures, including nutrition, lifestyle, drug and environment can have on the development of their offspring [27,28]. For example, paternal low protein diet attenuates vascular dysfunction, impairs glucose tolerance and elevates circulating TNF-α level in adult offspring [29]. Paternal healthy lifestyles such as exercise suppress the effects of paternal high-fat diet on offspring, including reversing the impairment in glucose tolerance, decreasing the percentage of fat mass, and increasing glucose uptake in skeletal muscles [30]. Streptozotocin-induced paternal hyperglycemia in SD rats exacerbates the development of obesity in offspring [31]. These suggest that paternal exposures have significant effects on offspring development and life-long health.

Among maternal environmental stimulus, air pollution has attracted more attentions on its adverse effects on the development of cardiovascular diseases such as hypertension in adult offspring [32,33]. Our and other studies have shown that in utero exposure to air pollution causes hypertension in offspring [14,15,34]. But there are few studies reporting the effect of paternal adverse environmental exposure in offspring. Chen et al. reported that paternal concentrated ambient PM$_{2.5}$ exposure resulted in significant hypophagia and weight loss in male offspring [35]. Another study showed that paternal and maternal collective exposure, not only paternal exposure, to concentrated ambient PM$_{2.5}$ caused a significant decrease in the body weight of adult male offspring [36]. In addition, paternal O$_3$ exposure has a direct effect on offspring hay fever [37]. All these studies did not observe the perinatal outcomes such as fetal biometrics, mortality or pre-term birth in the offspring. Thus, until now, whether or not paternal particulate matter exposure has any significant perinatal outcomes remains still unknown. Moreover, whether or not paternal PM$_{2.5}$ exposure leads to the increased blood pressure in offspring remains unknown. Our present study showed that compared with the offspring of vehicle-treated rats, the offspring of paternal rats with long-term PM$_{2.5}$ exposure had higher SBP, which was accompanied with the decreased 24 h urine volume and sodium excretion. These suggested that paternal long-term exposure to fine particulate matter causes hypertension in their offspring, which may be associated with the impaired renal functions.

The renin–angiotensin system (RAS) principal effector peptide Ang II, via its receptors, exerts its physiological functions [20]. The vast majority of actions of Ang II are transmitted via AT$_1$R, including elevation of sodium reabsorption and vasoconstriction [20,38,39]. In our present study, we found that compared with the offspring of vehicle-treated paternal rats, the expression and anti-natriuretic function of renal AT$_1$R were aggravated in the offspring of PM$_{2.5}$-exposed paternal rats, which was accompanied by increased expression of its upstream GRK4 [22,40]. Further study showed increased oxidative stress, one of the fundamental mechanisms responsible for the development of hypertension [41,42], in paternal rats may be involved in it because administration with an antioxidant tempol for 16 weeks in paternal PM$_{2.5}$-treated rats restored the increased SBP and impaired sodium excretion, reversed the increased renal AT$_1$R and GRK4 expression in offspring.

It is still unknown how elevated oxidative stress in paternal PM$_{2.5}$-treated rats causes increases the expressions of renal GRK4 and AT$_1$R in offspring. In fact, the mechanisms underlying the effects of paternal exposures on offspring phenotype are only beginning to be elucidated, but many factors are hypothesized to be involved. There are at least two mechanisms involved in it: genetic impacts and epigenetic changes [43,44]. Paternal genetic information provides
Figure 5. Role of oxidative stress in the paternal PM$_{2.5}$ exposure-induced hypertension in offspring

(A and B) Renal MDA (A) and SOD (B) levels were measured in vehicle (control)- and PM$_{2.5}$-treated paternal SD rats (A and B, two-tailed, unpaired t test, *$P < 0.05$ vs. control, $n = 6$). (C–E) Systolic blood pressure (SBP) (G), 24 h urine volume (D) and sodium excretion (E) were determined in the 12-week-old offspring of 12 weeks PM$_{2.5}$-exposed- and 16 weeks tempol-treated paternal rats (C–E: two-way ANOVA with Tukey’s post hoc test, *$P < 0.05$ vs. control offspring, $n = 8$; $^\# P < 0.05$ vs. PM$_{2.5}$ offspring, $n = 8$). (F and G) Protein expressions of AT$_1$R (F) and GRK4 (G) were determined by Western blot in the kidney from the 12-week-old offspring of 12 weeks PM$_{2.5}$-exposed- and 16 weeks tempol-treated paternal rats. AT$_1$R or GRK4 protein expression was normalized using GAPDH expression (F and G, two-way ANOVA with Tukey’s post hoc test, *$P < 0.05$ vs. control, $n = 6$; $^\# P < 0.05$ vs. PM$_{2.5}$, $n = 6$). Control: vehicle-exposed paternal rats; PM$_{2.5}$: PM$_{2.5}$-exposed-paternal rats; C-offspring: offspring of vehicle-exposed and vehicle-treated paternal rats; P-offspring: offspring of PM$_{2.5}$-exposed and vehicle-treated paternal rats; C+Tempol-offspring: offspring of vehicle-exposed- and tempol-treated paternal rats; P+Tempol-offspring: offspring of PM$_{2.5}$-exposed- and tempol-treated paternal rats.
roughly half of their offspring’s nuclear DNA. Thus, paternal environmental exposures directly impact offspring genotype and phenotype via inducing DNA damage and de novo genetic mutations in the male germline [45]. However, although paternal genetic changes are assumed as a mechanism for adverse effects in offspring, current reports do not often provide enough evidence for an exposure-related mutagenic effect. An increasing number of experiments have shown that paternal sperm epigenetic alterations induced by environmental exposures influence epigenetic profiles of offspring such as DNA methylation, chromatin modifications and non-coding RNAs, thereby impact their health status [43,46]. In our present study, we found increased oxidative stress level in paternal rats, which has been reported to cause epigenetic alterations [47,48]. Thus, although we cannot exclude the paternal genetic changes, we presume that oxidative stress-induced epigenetic changes may, at least in part, be involved in the increased renal GRK4 and AT1R expression and subsequently hypertension in offspring. However, it should be noted that compared with prenatal exposure, more studies have been focused on the mechanisms of maternal and placental exposures, including impaired nephrogenesis, epigenetic reprogramming, increased oxidative stress, over-activation of RAS, dysregulation of the immune system and hypothalamic–pituitary–adrenal axis [49,50].

There is a limitation in our present study. To avoid the influence of estrogen on the blood pressure [51,52], we only used male offspring. It should be noted that there may be different between male and female offspring after paternal exposures. For example, paternal high-fat diet leads to glucose intolerance due to impairment of pancreatic insulin secretion in female offspring [53] but causes a growth defect, impaired adipogenesis and decreased muscle growth in male offspring [54]. Paternal ambient PM2.5 exposure causes hypophagia and weight loss in male, but not female, offspring [35]. Paternal bisphenol A exposure causes impaired glucose tolerance in female, not male, offspring [55]. Thus, whether or not paternal long-term PM2.5 exposure causes hypertension as well as impaired renal functions in offspring with a sex-specific manner needs to be studied in the future.

In summary, we have demonstrated that paternal PM2.5 exposure leads to hypertension in male offspring, which is, at least in part, due to the decreased urine volume and sodium excretion. PM2.5 exposure-associated oxidative stress increases the level of renal GRK4, leading to the enhanced AT1R expression and its-mediated urinary sodium retention, and consequently causes hypertension in the offspring of PM2.5-exposed paternal rats (Figure 6).
Clinical perspectives

- Our and other studies have shown that in utero exposure to air pollution causes hypertension in offspring. However, whether or not paternal PM$_{2.5}$ exposure leads to the increased blood pressure in offspring still remains unknown.

- Long-term PM$_{2.5}$ exposure to paternal rats causes hypertension in male offspring. The mechanism may be involved that paternal PM$_{2.5}$ exposure-associated oxidative stress induces the increased renal GRK4 expression, causing the elevated AT$_1$R level and its-mediated sodium retention, consequently leads to hypertension in male offspring.

- Exploring the pathogenesis of hypertension in early life development will provide new strategies for its prevention and treatment.

Data Availability
All supporting data are included within the main article.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
These studies were supported in part by grants from the National Natural Science Foundation of China [grant numbers 31730043 and 81700375]; Postdoctoral Science Special Foundation of Chongqing; National Key R&D Program of China [grant number 2018YFC1312700]; Program of Innovative Research Team by National Natural Science Foundation [grant number 81721001].

CRediT Author Contribution
Cuimei Hu: Data curation, Investigation, Methodology and Writing—original draft. Yu Tao: Data curation, Investigation and Methodology. Yi Deng: Investigation and Methodology. Qi Cai: Investigation and Methodology. Hongmei Ren: Investigation and Methodology. Cheng Yu: Investigation and Methodology. Shuo Zheng: Investigation and Methodology. Jian Yang: Supervision, Investigation, Methodology, Writing—review & editing. Chunyu Zeng: Supervision, Investigation, Methodology, Project administration and Writing—review & editing.

Abbreviations
AT$_1$R, angiotensin II type 1 receptor; DBP, diastolic blood pressure; DOHaD, developmental origins of health and disease; GPCR, G-protein–coupled receptor; GRK4, G-protein–coupled receptor kinase type 4; H&E, hematoxylin and eosin; MDA, malondialdehyde; PM$_{2.5}$, fine particulate matter; RAS, renin–angiotensin system; SBP, systolic blood pressure; SD rat, Sprague-Dawley rat; SOD, superoxide dismutase.

References
1 Virani, S.S., Alonso, A., Aparicio, H.J., Benjamin, E.J., Bittencourt, M.S., Callaway, C.W. et al. (2021) Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143, e254–e743, https://doi.org/10.1161/CIR.0000000000000950
2 Kawarazaki, W. and Fujita, T. (2021) Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat. Rev. Nephrol. 17, 350–363, https://doi.org/10.1038/s41581-021-00399-2
3 Seidel, E. and Scholl, U.I. (2017) Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol. Genomics 49, 630–652, https://doi.org/10.1152/physiolgenomics.00032.2017
4 Fuks, K.B., Weinmayr, G., Basagaña, X., Gruzieva, O., Hampel, R., Offedal, B. et al. (2017) Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur. Heart J. 38, 983–990, https://doi.org/10.1093/eurheartj/ehw413
5 Arima, Y. and Fukuoka, H. (2020) Developmental origins of health and disease theory in cardiology. J. Cardiol. 76, 14–17, https://doi.org/10.1016/j.jcc.2020.02.003
6 Briffa, J.F., Wlodek, M.E. and Moritz, K.M. (2020) Transgenerational programming of nephron deficits and hypertension. Semin. Cell Dev. Biol. 103, 94–103, https://doi.org/10.1016/j.semcdb.2018.05.025
7 Chen, K., Sun, D., Qu, S., Chen, Y., Wang, J., Zhou, L. et al. (2019) Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin. Sci. (Lond.) 133, 1097–1113, https://doi.org/10.1042/CS20190254
8 Wang, X., Wang, J., Luo, H., Chen, C., Pei, F., Cai, Y. et al. (2015) Prenatal lipopolysaccharide exposure causes mesenteric vascular dysfunction through the nitric oxide and cyclic guanosine monophosphate pathway in offspring. Free Radic. Biol. Med. 86, 322–330, https://doi.org/10.1016/j.freeradbiomed.2015.05.040

9 Luo, H., Chen, C., Guo, L., Xu, Z., Peng, X., Wang, X. et al. (2018) Exposure to maternal diabetes mellitus causes renal dopamine D1 receptor dysfunction and hypertension in adult rat offspring. Hypertension 72, 962–970, https://doi.org/10.1161/HYPERTENSIONAHA.118.10908

10 Chersich, M.F., Pham, M.D., Areal, A., Haghighi, M.M., Manyuchi, A., Swift, C.P. et al. (2020) Climate change and heat-health study group. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis. BMJ 371, m3811, https://doi.org/10.1136/bmj.m3811

11 Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M. et al. (2021) Global PM2.5-attributable health burden from 1990 to 2017: estimates from the global burden of disease study 2017. Environ. Res. 197, 111123, https://doi.org/10.1016/j.envres.2021.111123

12 Coogan, P.F., White, L.F., Yu, J., Brook, R.D., Burnett, R.T., Marshall, J.D. et al. (2017) Long-term exposure to NO2 and Ozone and hypertension incidence in the black women's health study. Am. J. Hypertens. 30, 367–372, https://doi.org/10.1038/ajh/pw168

13 Qin, G., Xia, J., Zhang, Y., Guo, L., Chen, R. and Sang, N. (2018) Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part. Fibre Toxicol. 15, 27, https://doi.org/10.1186/s12989-018-0264-2

14 Ye, Z., Lu, X., Deng, Y., Wang, X., Zheng, S., Ren, H. et al. (2018) In utero exposure to fine particulate causes hypertension due to impaired renal dopamine D1 receptor in offspring. Cell. Physiol. Biochem. 46, 148–159, https://doi.org/10.1159/000488418

15 Ni, Y., Szpilo, A.A., Young, M.T., Loftus, C.T., Bush, N.R., LeWinn, K.Z. et al. (2021) Associations of pre- and postnatal air pollution exposures with childhood blood pressure and medication: a prospective study in the CANDEL cohort. Environ. Health Perspect. 129, 47004, https://doi.org/10.1289/EHP77486

16 Lu, X., Ye, Z., Zheng, S., Ren, H., Zeng, J., Wang, X. et al. (2018) Long-term exposure of fine particulate matter causes hypertension by impaired renal D1 receptor-mediated sodium excretion via upregulation of G-protein-coupled receptor kinase type 4 expression in Sprague-Dawley rats. J. Am. Heart Assoc. 7, e007185, https://doi.org/10.1161/JAHA.117.007185

17 Wang, J., Deng, Y., Zou, X., Luo, H., Jose, P.A., Fu, C. et al. (2019) Long-term low salt diet increases blood pressure by activation of the renin-angiotensin and sympathetic nervous systems. Clin. Exp. Hypertens. 41, 739–746, https://doi.org/10.1080/10641963.2018.1545850

18 Wang, S., Tan, X., Chen, P., Zhang, S., Ren, H., Cai, J. et al. (2019) Role of thioredoxin 1 in impaired renal sodium excretion of hD5R F173L transgenic mice. J. Am. Heart Assoc. 8, e012192, https://doi.org/10.1161/JAHA.119.012192

19 Zhang, Y., Wang, S., Huang, H., Zeng, A., Han, Y., Zeng, C. et al. (2020) GRK4-mediated adiponectin receptor-1 phosphorylative desensitization as a novel mechanism of reduced renal sodium excretion in hypertension. Clin. Sci. (Lond.) 134, 2453–2467, https://doi.org/10.1042/CS20200671

20 Paz, O.M., Riquelme, J.A., García, L., Jail, J.E., Chiong, M., Santos, R.A.S. et al. (2020) Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 17, 116–129, https://doi.org/10.1038/s41569-019-0244-8

21 Wang, Z., Zeng, C., Villar, V.A., Chen, S.Y., Konkalmatt, P., Wang, X. et al. (2016) Human GRK4-Y142V variant promotes angiotensin II type 1 receptor-mediated hypertension via renal histone deacetylase type 1 inhibition. Hypertension 67, 325–334, https://doi.org/10.1161/HYPERTENSIONAHA.115.05962

22 Chen, X., Fu, C., Chen, C., Liu, L., Ren, H., Han, Y. et al. (2014) Role of GRK4 in the regulation of arterial AT1 receptor in hypertension. Hypertension 63, 289–296, https://doi.org/10.1161/HYPERTENSIONAHA.113.01766

23 Xu, M., Ge, C., Qin, Y., Gu, T., Lou, D., Li, Q. et al. (2019) Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic. Biol. Med. 130, 542–556, https://doi.org/10.1016/j.freeradbiomed.2018.11.016

24 Haberzettl, P., Conklin, D.J., Alpamap, W.T., Bhatnagar, A. and O’Toole, T.E. (2018) Inhalation of fine particulate matter impairs endothelial progenitor cell function via pulmonary oxidative stress. Arterioscler. Thromb. Vasc. Biol. 38, 131–142, https://doi.org/10.1161/ATVBAHA.117.309971

25 Baird, J., Jacob, C., Barker, M., Fall, C.H., Hanson, M., Harvey, N.C. et al. (2017) Developmental origins of health and disease: a life-course approach to non-communicable diseases. Healthcare (Basel) 5, 14, https://doi.org/10.3390/healthcare5010014

26 Deng, Y., Song, L., Nie, X., Shou, W. and Li, X. (2019) Prenatal inflammation exposure-programmed cardiovascular diseases and potential prevention. Pharmacol. Ther. 190, 159–172, https://doi.org/10.1016/j.pharmthera.2018.05.009

27 Markve, Knudsen, G.T., Rezwan, F.I., Johannessen, A. et al. (2019) Epigenome-wide association of father's smoking with offspring DNA methylation: a hypothesis-generating study. Environ. Epigenet. 5, e0023, https://doi.org/10.1093/epi/dyz023

28 de Castro Barbosa, T., Aim, P.S., Krook, A., Barres, R. and Zierath, J.R. (2019) Paternal high-fat diet transgenerationally impacts hepatic immunometabolism. FASEB J. 33, 6269–6280, https://doi.org/10.1096/fj.201801879PR

29 Watkins, A.J. and Sinclair, K.D. (2014) Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 306, H1444–H1452, https://doi.org/10.1152/ajpheart.00991.2013

30 Stanford, K.I., Rasmussen, M., Baer, L.A., Lehnig, A.C., Rowland, L.A., White, J.D. et al. (2018) Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540, https://doi.org/10.2337/db18-0667

31 Shi, X., Li, X., Hou, Y., Cao, X., Zhang, Y., Wang, H. et al. (2017) Paternal hyperglycemia in rats exacerbates the development of obesity in offspring. J. Endocrinol. 234, 175–186, https://doi.org/10.1530/JEO-17-0082

32 Welsby, C.S., Liu, Y., Liggitt, H.D. and Chin, M.T. (2014) In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS ONE 9, e88582, https://doi.org/10.1371/journal.pone.0088582

33 Zhang, B., Liang, S., Zhao, J., Qian, Z., Bassyig, B.A., Yang, R. et al. (2016) Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J. Expo. Sci. Environ. Epidemiol. 26, 422–427, https://doi.org/10.1038/jes.2016.1

34 Warembourg, C., Maitre, L., Tamayo-Uria, I., Fossati, S., Roumeliotaki, T., Aasvang, G.M. et al. (2019) Early-life environmental exposures and blood pressure in children. J. Am. Coll. Cardiol. 74, 1317–1328, https://doi.org/10.1016/j.jacc.2019.06.069
35 Chen, M.J., Xu, Y.Y., Wang, W.J., Wang, X.K., Qiu, L.L., Chen, S.F. et al. (2021) Paternal exposure to PM2.5 programs offspring’s energy homeostasis. *Environ. Sci. Technol.* **55**, 6097–6106, https://doi.org/10.1021/acs.est.0c08161
36 Tanwar, V., Adelstein, J.M., Grimmer, J.A., Youtz, D.J., Katapadi, A., Sugar, B.P. et al. (2018) Preconception exposure to fine particulate matter leads to cardiac dysfunction in adult male offspring. *J. Am. Heart Assoc.* **7**, e010797, https://doi.org/10.1161/JAHA.118.010797
37 Kuiper, I.N., Markeychuk, I., Accordini, S., Bertelsen, R.J., Bråbäck, L., Christensen, J.H. et al. (2020) Associations of preconception exposure to air pollution and greenness with offspring asthma and hay fever. *Int. J. Environ. Res. Public Health* **17**, 5828, https://doi.org/10.3390/ijerph17165828
38 Wu, C.H., Mohammadmoradi, S., Chen, J.Z., Sawada, H., Daugherty, A. and Lu, H.S. (2018) Renin-angiotensin system and cardiovascular Functions. *Arterioscler. Thromb. Vasc. Biol.* **38**, e108–e116, https://doi.org/10.1161/ATVBAHA.118.311282
39 Crowley, S.D., Gurley, S.B. and Coffman, T.M. (2007) AT(1) receptors and control of blood pressure: the kidney and more. *Trends Cardiovasc. Med.* **17**, 30–34, https://doi.org/10.1016/j.tcm.2006.11.002
40 Yang, J., Villar, V.A., Jones, J.E., Jose, P.A. and Zeng, C. (2015) G protein-coupled receptor kinase 4: role in hypertension. *Hypertension* **65**, 1148–1155, https://doi.org/10.1161/HYPERTENSIONAHA.115.05189
41 Griendling, K.K., Camargo, L.L., Rios, F.J., Alves-Lopes, R., Montezano, A.C. and Touyz, R.M. (2021) Oxidative stress and hypertension. *Circ. Res.* **128**, 993–1020, https://doi.org/10.1161/CIRCRESAHA.121.318063
42 Pinheiro, L.C. and Oliveira-Paula, G.H. (2020) Sources and effects of oxidative stress in hypertension. *Curr. Hypertens. Rev.* **16**, 166–180, https://doi.org/10.2174/1573402115666190531071924
43 Li, J., Tsuprykov, O., Yang, X. and Hocher, B. (2016) Paternal programming of offspring cardiometabolic diseases in later life. *J. Hypertens.* **34**, 2111–2126, https://doi.org/10.1097/HJH.0000000000001051
44 Houfflyn, S., Matthys, C. and Soubry, A. (2017) Male obesity: epigenetic origin and effects in sperm and offspring. *Curr. Mol. Biol. Rep.* **3**, 288–296, https://doi.org/10.1007/s40610-017-0083-5
45 Beal, M.A., Yauk, C.L. and Marchetti, F. (2017) From sperm to offspring: assessing the heritable genetic consequences of paternal smoking and potential public health impacts. *Mutat. Res. Rev. Mutat. Res.* **773**, 26–50, https://doi.org/10.1016/j.mrrev.2017.04.001
46 Sharp, G.C. and Lavorl, D.A. (2019) Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. *Diabetologia* **62**, 1802–1810, https://doi.org/10.1007/s00125-019-4919-9
47 Wyck, S., Herrera, C., Requena, C.E., Bittner, L., Hajkova, P., Bollwein, H. et al. (2018) Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. *Epigenetics Chromatin* **11**, 60, https://doi.org/10.1186/s13072-018-0224-y
48 Feng, B., Ruiz, M.A. and Chakrabarti, S. (2013) Oxidative-stress-induced epigenetic changes in chronic diabetic complications. *Can. J. Physiol. Pharmacol.* **91**, 213–220, https://doi.org/10.1139/cjpp-2012-0251
49 Morton, J.S., Cooke, C.L. and Davidge, S.T. (2016) In utero origins of hypertension: mechanisms and targets for therapy. *Physiol. Rev.* **96**, 549–603, https://doi.org/10.1152/physrev.00015.2015
50 Burton, G.J., Fowden, A.L. and Thornburg, K.L. (2016) Placental origins of chronic disease. *Physiol. Rev.* **96**, 1509–1565, https://doi.org/10.1152/physrev.00029.2015
51 Côté, E., Denton, K.M. and Denton, K.M. (2018) Sex-specific differences in hypertension and associated cardiovascular disease. *Nat. Rev. Nephrol.* **14**, 185–201, https://doi.org/10.1038/nrneph.2017.189
52 O’Donnell, E., Harvey, P.J., Goodman, J.M. and De Souza, M.J. (2007) Long-term estrogen deficiency lowers regional blood flow, resting systolic blood pressure, and heart rate in exercising premenopausal women. *Am. J. Physiol. Endocrinol. Metab.* **292**, E1401–E1409, https://doi.org/10.1152/ajpendo.00547.2006
53 Ng, S.F., Lin, R.C., Laybutt, D.R., Barnes, R., Owens, J.A. and Morris, M.J. (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. *Nature* **467**, 963–966, https://doi.org/10.1038/nature09491
54 Lecomte, V., Maloney, C.A., Wang, K.W. and Morris, M.J. (2017) Effects of paternal obesity on growth and adiposity of male rat offspring. *Am. J. Physiol. Endocrinol. Metab.* **312**, E117–E125, https://doi.org/10.1152/ajpendo.00262.2016
55 Rashid, C.S., Bansal, A., Mesaros, C., Bartoliemi, M.S. and Simmons, R.A. (2020) Paternal bisphenol A exposure in mice impairs glucose tolerance in female offspring. *Food Chem. Toxicol.* **145**, 111716, https://doi.org/10.1016/j.fct.2020.111716