POSITIVE SCALAR CURVATURE AND STRONGLY INESSENTIAL MANIFOLDS

ALEXANDER DRANISHNIKOV

Abstract. We prove that a closed n-manifold M with positive scalar curvature and abelian fundamental group admits a finite covering M' which is strongly inessential. The latter means that a classifying map $u: M' \to K(\pi_1(M'), 1)$ can be deformed to the $(n-2)$-skeleton. This is proven for all n-manifolds with the exception of 4-manifolds with spin universal coverings.

1. Introduction

The notion of macroscopic dimension was introduced by M. Gromov [G2] to study topology of manifolds with a positive scalar curvature metric.

1.1. Definition. A metric space X has the macroscopic dimension $\dim_{mc} X \leq k$ if there is a uniformly cobounded proper map $f: X \to K$ to a k-dimensional simplicial complex. Then $\dim_{mc} X = m$ where m is minimal among k with $\dim_{mc} X \leq k$.

A map of a metric space $f: X \to Y$ is uniformly cobounded if there is a uniform upper bound on the diameter of preimages $f^{-1}(y)$, $y \in Y$.

Gromov’s Conjecture. The macroscopic dimension of the universal covering \tilde{M} of a closed positive scalar curvature n-manifold M satisfies the inequality $\dim_{mc} \tilde{M} \leq n - 2$ for the metric on \tilde{M} lifted from M.

The main examples supporting Gromov’s Conjecture are n-manifolds of the form $M = N \times S^2$. They admit metrics with PSC in view of the formula $Sc_{x_1, x_2} = S\hat{c}_{x_1} + \hat{c}_{x_2}$ for the Cartesian product ($X_1 \times \ldots \times X_n \times S^2$).
of two Riemannian manifolds \((X_1, \mathcal{G}_1)\) and \((X_2, \mathcal{G}_2)\) and the fact that while \(Sc_N\) is bounded \(Sc_{S^2}\) can be chosen to be arbitrary large. Clearly, the projection \(p : \hat{M} = \tilde{N} \times S^2 \to \tilde{N}\) is a proper uniformly cobounded map to a \((n-2)\)-dimensional manifold which can be triangulated. Hence, \(\dim_{mc} \hat{M} \leq n - 2\).

Since \(\dim_{mc} X = 0\) for every compact metric space, the Gromov Conjecture holds trivially for manifolds with finite fundamental groups. Therefore, Gromov’s conjecture is about manifolds with infinite fundamental groups. We note that even a weaker version of the Gromov Conjecture that predicts the inequality \(\dim_{mc} \hat{M} \leq n - 1\) for positive scalar curvature manifolds is out of reach, since it implies perhaps the famous Gromov-Lawson’s Conjecture: A closed aspherical manifold cannot carry a metric of positive scalar curvature. The latter is known as a twin sister of the famous Novikov Higher Signature conjecture. Both conjectures are proven only for some tame classes of groups. The Gromov Conjecture is proven in far fewer cases \([B2],[Dr1],[BD2],[DD]\).

We note that in the study of topology of positive scalar curvature manifolds it makes sense to consider three different cases: the case of spin manifolds, almost spin manifolds, and totally non-spin manifolds. The reason for that is the existence of the index theory in the first two cases. Thus, the case of totally non-spin manifolds is the most difficult. Here we adopt the names almost spin for manifolds with the spin universal covering and totally non-spin for manifolds whose universal coverings are non-spin.

Gromov defined inessential manifolds \(M\) as those for which a classifying map \(u : M \to B\Gamma\) of the universal covering \(\hat{M}\) can be deformed to the \((n-1)\)-skeleton \(B\Gamma^{(n-1)}\) where \(n = \dim M\). Clearly, for an inessential \(n\)-manifold \(M\) we have \(\dim_{mc} \hat{M} \leq n - 1\). In the case of spin manifolds Rosenberg’s vanishing index theorem \([R1]\) implies that a positive scalar curvature manifold with the fundamental group \(\Gamma\) satisfying the Analytic Novikov conjecture and the Rosenberg-Stolz condition on injectivity of the real K-theory periodization map \(\text{per} : KO_{\ast}(B\Gamma) \to KO_{\ast}(B\Gamma)\) is inessential \([BD1]\).

Having this in mind we introduce even a stronger version of Gromov’s Conjecture. For that we extend Gromov’s definition of inessentiality to the following. We call an \(n\)-manifold strongly inessential if a classifying map of its universal covering \(u : M \to B\Gamma\) can be deformed to the \((n-2)\)-skeleton. Answering Gromov’s question Bolotov constructed an example of an inessential manifold which is not strongly inessential \([B1]\).
Strong Gromov’s Conjecture. A closed positive scalar curvature manifold M admits a strongly inessential finite covering M'.

We note that, since the universal cover of M' coincides with the universal cover of M, the Strong Gromov Conjecture implies the original one.

In this paper we prove the Strong Gromov Conjecture in the case of abelian fundamental groups. We have one exception here: Our proof does not work for almost spin 4-dimensional manifolds. In this case we can show the existence of an inessential finite cover but we cannot prove its strong inessentiality. In the totally non-spin case we were dealing with an opposite problem: We have a technique [BD2],[DD] to derive the strong inessentiality from the inessentiality but proving the latter became possible only after recent work of Schoen and Yau [SY].

1.2. **Remark.** We note that for spin manifolds the Strong Gromov Conjecture in the case of abelian fundamental group follows from the main result of [BD1]. Unfortunately, Lemma 4.1 in [BD1], which is essential for the main result, has a gap in its proof and the attempt to fix it in [Dr2], Lemma 6.2 failed as well. The problem there can be reduced to the following question about stable homotopy groups:

1.3. **Question.** For which finitely presented groups Γ the natural homomorphism from the coinvariants $\xi : \pi^s_n(E\Gamma^{(n-1)}) \to \pi^s_n(B\Gamma^{(n-1)})$ is injective for all $n > 4$?

2. **Preliminaries**

We recall that for every spectrum E there is a connective cover $e \to E$, that is the spectrum e with the morphism $e \to E$ that induces isomorphisms of homotopy groups $\pi_i(e) \to \pi_i(E)$ for $i \geq 0$ and with $\pi_i(e) = 0$ for $i < 0$. By KO we denote the spectrum for real K-theory, by ko its connective cover, and by $per : ko \to KO$ the corresponding morphism of spectra. We use the standard notation π^s for the stable homotopy groups. For a spectrum E we will use the old-fashioned notation $E_*(X)$ for the E-homology of a space X.

The following proposition is taken from [BD1].

2.1. **Proposition.** The natural transformation $\pi^s_*(pt) \to ko_*(pt)$ induces an isomorphism $\pi^s_n(K/K^{(n-2)}) \to ko_n(K/K^{(n-2)})$ for any CW complex K.

We recall that the group of oriented relative bordisms $\Omega_n(X,Y)$ of the pair (X,Y) consists of the equivalence classes of pairs (M,f) where M is an oriented n-manifold with boundary and $f : (M,\partial M) \to (X,Y)$
is a continuous map. Two pairs \((M, f)\) and \((N, g)\) are equivalent if there is a pair \((W, F)\), \(F : W \to X\) called a bordism where \(W\) is an orientable \((n+1)\)-manifold with boundary such that \(\partial W = M \cup W' \cup N\), \(W' \cap M = \partial M\), \(W' \cap N = \partial N\), \(F|_M = f\), \(F|_N = g\), and \(F(W') \subset Y\).

In the special case when \(X\) is a point, the manifold \(W\) is called a bordism between \(M\) and \(N\). The following proposition is proven in [BD2].

2.2. Proposition. For any CW complex \(K\) there is an isomorphism
\[
\Omega_n(K, K^{(n-2)}) \cong H_n(K, K^{(n-2)}).
\]

We recall the following classical result Corollary 6.10.3, [TtD]:

2.3. Theorem. Suppose that a CW-complex pair \((X, A)\) satisfies the conditions \(\pi_i(X) = 0\) for \(i < m\) and \(\pi_i(A) = 0\) for \(i < m-1\) with \(m \geq 2\). Then the quotient map \(q : (X, A) \to (X/A, *)\) induces isomorphisms \(q_* : \pi_i(X, A) \to \pi_i(X/A, *)\) for \(i \leq 2m - 1\).

3. INESSENTIAL MANIFOLDS

3.1. Definition. An \(n\)-manifold \(M\) with fundamental group \(\Gamma\) is called inessential if a classifying map \(u_M : M \to B\Gamma\) of its universal covering can be deformed into the \((n-1)\)-skeleton \(B\Gamma^{(n-1)}\).

Note that for an inessential \(n\)-manifold \(M\) we have \(\dim_{mc} \tilde{M} \leq n-1\). Indeed, a lift \(\tilde{u}_M : \tilde{M} \to ET^{(n-1)}\) of a classifying map is a uniformly cobounded proper map to an \((n-1)\)-complex.

Establishing inessentiality of positive scalar curvature manifolds is the first step in a proof of the strong Gromov conjecture. We recall that the inessentiality of a manifold can be characterized as follows [Ba] (see also [BD1], Proposition 3.2).

3.2. Theorem. Let \(M\) be a closed oriented \(n\)-manifold. Then the following are equivalent:
1. \(M\) is inessential;
2. \(\left(u_M^*([M]) = 0 \right)\) in \(H_n(B\Gamma)\) where \([M]\) is the fundamental class of \([M]\).

In [BD1] we proved the following addendum to Theorem 3.2.

3.3. Proposition ([BD1], Lemma 3.5). For an inessential manifold \(M\) with a CW complex structure a classifying map \(u : M \to B\Gamma\) can be chosen such that
\[
u(M, M^{(n-1)}) \subset (B\Gamma^{(n-1)}, B\Gamma^{(n-2)}).
\]
We recall that for a manifold to be spin is equivalent to the orientability in any of the K-theories: complex \(KU\), real \(KO\), or their connective covers \(ku\) or \(ko\) [Ru].

J. Rosenberg connected the realm of positive scalar curvature manifolds to the Novikov Higher Signature conjecture by proving the following [R1]:

3.4. **Theorem.** Suppose that the fundamental group \(\Gamma\) of a positive scalar curvature spin manifold \(M\) satisfies the Strong Novikov conjecture. Then \(u_\ast([M]_{KO}) = 0\) where \(u : M \to B\Gamma\) is a classifying map.

Below we slightly reformulate Theorem 1.3 from [SY].

3.5. **Theorem** (Schoen-Yau). Suppose that a compact oriented \(n\)-manifold has 1-dimensional integral cohomology classes \(\alpha_i, i = 1, \ldots, n-1\) with nontrivial cup product \(\alpha_1 \smile \cdots \smile \alpha_{n-1} \neq 0\). Then \(M\) cannot carry a metric of positive scalar curvature.

3.6. **Proposition.** A closed orientable \(n\)-manifold \(M\) carrying a metric of positive scalar curvature with \(\pi_1(M) = \mathbb{Z}^m\) is inessential.

Proof. Since the case \(m < n\) is trivial, we assume that \(m \geq n\). Assume the contrary, \(u_\ast([M]) \neq 0\) in \(H_\ast(T^n; \mathbb{Z})\) where \(u : M \to T^n\) is the classifying map. By Proposition 4.6 in [BD2] there is a projection onto the factor \(q : T^n \to T^n\) such that \(q_\ast u_\ast([M]) \neq 0\). Hence \(q_\ast u_\ast([M]) = \ell[T^n]\) with \(\ell \neq 0\). Let \(\beta_1, \ldots, \beta_n\) be generators of \(H^1(T^n; \mathbb{Z})\) with \(\beta_1 \smile \cdots \smile \beta_n \neq 0\). Denote by \(\alpha_i = (qu)_\ast(\beta_i)\). We show that \(\alpha_1 \smile \cdots \smile \alpha_n \neq 0\) to get a contradiction with Schoen-Yau theorem. Note that

\[
(qu)_\ast((\alpha_1 \smile \cdots \smile \alpha_n) \cap [M]) = (\beta_1 \smile \cdots \smile \beta_n) \cap q_\ast u_\ast([M]) \neq 0.
\]

Since \((qu)_\ast\) is an isomorphism of 0-dimensional homology groups, we obtain \(\alpha_1 \smile \cdots \smile \alpha_n \neq 0\). \(\square\)

3.7. **Definition.** An \(n\)-manifold \(M\) with fundamental group \(\Gamma\) is called **strongly inessential** if its classifying map \(u_M : M \to B\Gamma\) can be deformed into the \((n-2)\)-skeleton \(B\Gamma^{(n-2)}\).

4. **Spin and almost spin manifolds**

4.1. **Definition.** We call a discrete group \(G\) **\(p\)-tame** if there is a finite covering \(\beta : B' \to BG\) that induces zero homomorphism

\[
\beta^* : H^2(BG; \mathbb{Z}_p) \to H^2(B'; \mathbb{Z}_p).
\]

EXAMPLE. The group \(\mathbb{Z}^n\) is \(p\)-tame for all \(p\). Moreover, any finitely generated abelian group is \(p\)-tame.
4.2. **Proposition.** For any closed almost spin manifold M with 2-tame fundamental group there is a finite cover $p : M' \to M$ with spin M'.

Proof. Let $G = \pi_1(M)$ and let $u_M : M \to BG$ be a classifying map. Let $p : M \to M$ be the pull-back of $\beta : B' \to BG$ with respect to u_M. Then for the Stiefel-Whitney classes we have $w_2(M') = p^*(w_2)$. It suffices to show that $w_2(M) = u_M^*(\omega)$ for some $\omega \in H^*(BG; \mathbb{Z}_2)$, then we obtain $w_2(M') = (u_M')^*\beta^*(\omega) = 0$. Since the universal cover \tilde{M} is spin, it follows that the evaluation of $w_2(M)$ on every spherical cycle is trivial. In view of the short exact sequence

$$
\pi_2(M) \to H_2(M) \to H_2(G) \to 0
$$

it follows that the homomorphism $\cap w_2(M) : H_2(M) \to \mathbb{Z}_2$ lies in the image of the homomorphism $\text{Hom}(H_2(G), \mathbb{Z}_2) \to \text{Hom}(H_2(M), \mathbb{Z}_2)$. Thus, in the diagram generated by the universal coefficient theorem exact sequences

$$
0 \to \text{Ext}(H_1(M), \mathbb{Z}_2) \xrightarrow{i} H^2(M; \mathbb{Z}_2) \xrightarrow{j} \text{Hom}(H_2(M), \mathbb{Z}_2) \to 0
$$

$$
0 \to \text{Ext}(H_1(G), \mathbb{Z}_2) \xrightarrow{i'} H^2(G, \mathbb{Z}_2) \xrightarrow{j'} \text{Hom}(H_2(G), \mathbb{Z}_2) \to 0
$$

$j(w_2(M)) = u^*(\phi)$ for some ϕ. Then the diagram chasing implies that $w_2(M) = u_M^*(\omega)$ for $\omega = i'(\alpha) + \tilde{\phi}$ where $\tilde{\phi}$ is arbitrary with $j'(\tilde{\phi}) = \phi$ and $\alpha = (u_M^*)^{-1}(\tilde{\omega})$ where $\tilde{\omega} = j^{-1}(w_2(M) - u_M^*(\tilde{\omega}))$. \qed

4.3. **Lemma.** Suppose that for a closed spin n-manifold M, $n > 4$, there is a map $u : M \to B\Gamma^{(n-1)}$ that classify its universal cover and has the properties: $u(M^{(n-1)}) \subset B\Gamma^{(n-2)}$ and $j_*u_*([M]_{\text{co}}) = 0$ where $j : B\Gamma^{(n-1)} \to B\Gamma^{(n-1)}/B\Gamma^{(n-2)}$ is the quotient map. Then M is strongly inessential.

Proof. We may assume that M has a CW complex structure with one n-dimensional cell. Let $\psi : D^n \to M$ be its characteristic map. By Proposition 3.3, we may assume that the classifying map u satisfies the condition $u(M^{(n-1)}) \subset B\Gamma^{(n-2)}$. Note that the homotopy groups of the $(n-1)$-homotopy fiber F of the inclusion $B\Gamma^{(n-2)} \to B\Gamma^{(n-1)}$ equal the relative n-homotopy groups, $\pi_{n-1}(F) = \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})$. Then the first and the only obstruction to deform u to $B\Gamma^{(n-2)}$ is defined by the cocycle $c_u : C_n(M) \to \pi_{n-1}(F)$ represented by the composition

$$
C_n(M) = \pi_n(D^n, \partial D^n) \xrightarrow{\psi_*} \pi_n(M, M^{(n-1)}) \xrightarrow{u_*} \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})
$$
with the cohomology class \(o_u = [c_u] \in H^n(M; \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})) \). By the Poincare duality with local coefficients, \(o_u \) is dual to the homology class

\[
PD(o_u) \in H_0(M; \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})) = \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})_{\Gamma}
\]

represented by \(q_*u_*\psi_*(1) \) where

\[
q_* : \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)}) \to \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})_{\Gamma}
\]

is the projection onto the group of coinvariants. Note that \(\pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)}) = \pi_n(\Gamma^{(n-1)}, \Gamma^{(n-2)}) \). Since \(n \leq 2(n-2) - 1 \), by Theorem 2.3

\[
\pi_n(\Gamma^{(n-1)}, \Gamma^{(n-2)}) = \pi_n(\Gamma^{(n-1)}/\Gamma^{(n-2)}).
\]

It is easy to see that

\[
\pi_n(\Gamma^{(n-1)}/\Gamma^{(n-2)})_{\Gamma} = \pi_n(\Gamma^{(n-1)}/\Gamma^{(n-2)}).
\]

Denote by \(\bar{u} : M/M^{(n-1)} = S^n \to B\Gamma/B\Gamma^{(n-2)} \) the induced map. The commutative diagram

\[
\begin{array}{ccc}
\pi_n(M, M^{(n-1)}) & \xrightarrow{u_*} & \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)}) \xrightarrow{q_*} \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)})_{\Gamma} \\
\pi_n(D^n/\partial D^n) & \xrightarrow{=} & \pi_n(M/M^{(n-1)}) \xrightarrow{\bar{u}_*} \pi_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)})
\end{array}
\]

implies that \(\bar{u}_*(1) = \bar{\rho}_*q_*u_*\psi_* (1) \). Thus, \(\bar{u}_*(1) = 0 \) if and only if the obstruction \(o_u \) vanishes.

We show that \(\bar{u}_*(1) = 0 \). The restriction \(n > 4 \) and Proposition 2.1 imply that \(\bar{u}_*(1) \) survives to the \(ko \)-homology group:

\[
\begin{array}{ccc}
\pi_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)}) & \xrightarrow{=} & \pi_n^k(B\Gamma^{(n-1)}/B\Gamma^{(n-2)}) \xrightarrow{=} \ko_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)}).
\end{array}
\]

Then the commutative diagram

\[
\begin{array}{ccc}
\pi_n(S^n) & \xrightarrow{=} & \ko_n(S^n) \\
\bar{\bar{u}}_* & & \bar{u}_*
\end{array}
\]

implies that \(\bar{u}_*(1) = 0 \) for \(\ko_n \) if and only if \(\bar{u}_*(1) = 0 \) for \(\pi_n \).

From the assumption and the diagram defined by the quotient maps \(j' : M \to M/M^{(n-1)} = S^n \) and \(j : B\Gamma^{(n-1)} \to B\Gamma^{(n-1)}/B\Gamma^{(n-2)} \)

\[
\begin{array}{ccc}
k\ko_n(M) & \xrightarrow{u_*} & k\ko_n(B\Gamma^{(n-1)}) \\
j'_* & & j_*
\end{array}
\]

\[
\begin{array}{ccc}
k\ko_n(S^n) & \xrightarrow{\bar{\bar{u}}_*} & k\ko_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)})
\end{array}
\]

it follows that \(\bar{\bar{u}}_*(1) = \bar{u}^*j'_*([M]_{ko}) = j_*u_*([M]_{ko}) = 0. \) \(\square \)
5. **K-theory Injectivity Conditions**

The following is well-known (see 4C, [Ha]).

5.1. **Proposition.** Let X be an $(n - 1)$-connected $(n + 1)$-dimensional CW complex. Then X is homotopy equivalent to the wedge of spheres of dimensions n and $n + 1$ together with the Moore spaces $M(\mathbb{Z}_m, n)$.

We consider the following condition on K-theory of a group Γ which appear in our proof of the Strong Gromov Conjecture.

(*) There is a classifying CW-complex $B\Gamma$ such that the inclusion homomorphism

$$(\phi_n)_* : KO_*(B\Gamma^{(n)}) \to KO_*(B\Gamma)$$

is injective for all $n > 4$.

(I) There is a classifying CW-complex $B\Gamma$ such that the inclusion homomorphism

$$(\phi_n)_* : KO_*(B\Gamma^{(n)}) \to KO_*(B\Gamma)$$

restricted to the image of $KO_*(B\Gamma^{(n-1)})$ is injective for all $n > 4$.

(\bar{I}) There is a classifying CW-complex $B\Gamma$ such that the inclusion homomorphism

$$(\bar{\phi}_n)_* : KO_*(B\Gamma^{(n)}/B\Gamma^{(n-2)}) \to KO_*(B\Gamma/B\Gamma^{(n-2)})$$

restricted to the image of $KO_*(B\Gamma^{(n-1)})$ is injective for all $n > 4$.

(\bar{I}_2) There is a classifying CW-complex $B\Gamma$ such that the inclusion homomorphism

$$(\bar{\phi}_n)_* : KO_*(B\Gamma^{(n)}/B\Gamma^{(n-2)}) \otimes \mathbb{Z}_2 \to KO_*(B\Gamma/B\Gamma^{(n-2)}) \otimes \mathbb{Z}_2$$

restricted to the image of $KO_*(B\Gamma^{(n-1)}) \otimes \mathbb{Z}_2$ is injective for all $n > 4$.

5.2. **Proposition.** There are implications

$$(*) \Rightarrow I \Rightarrow \bar{I} \Rightarrow \bar{I}_2.$$

Proof. $(*) \Rightarrow I$. Obvious.
I \Rightarrow \tilde{I}. Consider the commutative diagram defined by exact sequence of pairs

\[
\begin{array}{cccc}
KO_*(B\Gamma^{(n-2)}) & \xrightarrow{i_\ast} & KO_*(B\Gamma^{(n)}) & \xrightarrow{j_\ast} & KO_*(B\Gamma^{(n)}/B\Gamma^{(n-2)}) \\
\downarrow & & \downarrow & & \downarrow \\
KO_*(B\Gamma^{(n-2)}) & \xrightarrow{i_\ast} & KO_*(B\Gamma) & \xrightarrow{j_\ast} & KO_*(B\Gamma/B\Gamma^{(n-2)}) \\
\end{array}
\]

\[KO_*(B\Gamma^{(n)}) \xrightarrow{i_\ast} KO_*(B\Gamma) \xrightarrow{j_\ast} KO_*(B\Gamma/B\Gamma^{(n-2)})\]

Suppose that \(a \in KO_*(B\Gamma^{(n)})\) lies in the image of \(KO_*(B\Gamma^{(n-1)})\) and \((\bar{\phi}_n)_\ast(j'_\ast(a)) = 0\). We need to show that \(j'_\ast(a) = 0\). By exactness, there is \(b'\) such that \(i_\ast(b') = (\bar{\phi}_n)_\ast(a)\). Then \(a - i'_\ast(b')\) lies in the image of \(KO_*(B\Gamma^{(n-1)})\). Since \((\bar{\phi}_n)_\ast(a - i'_\ast(b')) = 0\), by the condition \(I\), \(a = i'_\ast(b')\). By exactness, \(j'_\ast(a) = 0\).

\(\tilde{I} \Rightarrow \tilde{I}_{(2)}\). Straightforward.

5.3. Proposition. Suppose that for a group \(\Gamma\) satisfying the condition \(\tilde{I}\) a classifying map \(u : M \to B\Gamma\) of a closed spin \(n\)-manifold \(M\) takes the \(KO\) fundamental class to 0. Then \(M\) is inessential.

Proof. We may assume that \(u(M) \subset B\Gamma^{(n)}\). Then by \(\tilde{I}\), \(u_\ast([M]_{KO}) = 0\) in \(KO_n(B\Gamma^{(n)})\) and, hence, in \(KO_n(B\Gamma^{(n+1)}/B\Gamma^{(n-1)})\). Let \(u' = q \circ u\) where \(q : B\Gamma^{(n+1)} \to B\Gamma^{(n+1)}/B\Gamma^{(n-1)}\) is the quotient map. In the commutative diagram

\[
\begin{array}{ccc}
ko_n(M) & \xrightarrow{u'_\ast} & ko_n(B\Gamma^{(n+1)}/B\Gamma^{(n-1)}) \\
\downarrow & & \downarrow \cong \\
KO_n(M) & \xrightarrow{u'_\ast} & KO_n(B\Gamma^{(n+1)}/B\Gamma^{(n-1)})
\end{array}
\]

the homomorphism \(\text{per}\) is an isomorphism in view of Proposition 5.1. This implies that \(u'_\ast([M]_{ko}) = 0\) in \(KO_n(B\Gamma^{(n)}/B\Gamma^{(n-1)})\). In view of the natural transformation of homology theories \(ko_\ast \to H_\ast(\ ; \mathbb{Z})\) it follows that \(u'_\ast([M]) = 0\) in \(H_n(B\Gamma^{(n+1)}/B\Gamma^{(n-1)})\). Since the homomorphism \(q_\ast : H_n(B\Gamma^{(n+1)}) \to H_n(B\Gamma^{(n+1)}/B\Gamma^{(n-1)})\) is injective, we obtain that \(u_\ast([M]) = 0\). Theorem 5.2 completes the proof.

5.4. Proposition. Suppose that an inessential manifold \(M\) has the fundamental group with property \(\tilde{I}_{(2)}\). Then \(M\) is strongly inessential.

Proof. We may assume that \(M\) has a CW complex structure with one \(n\)-dimensional cell. Let \(\psi : D^n \to M\) be its characteristic map. By Proposition 5.3 we may assume that the classifying map \(u\) satisfies the
condition $u(M^{(n-1)}) \subset B\Gamma^{(n-2)}$ and $u(M) \subset B\Gamma^{(n-1)}$. We will show that the lifting problem

$$
\begin{array}{c}
M^{(n-1)} \longrightarrow B\Gamma^{(n-2)} \\
\downarrow \subset \longrightarrow \subset \\
M \longrightarrow B\Gamma^{(n)} \ni iu
\end{array}
$$

has a solution. Here $i : B\Gamma^{(n-1)} \to B\Gamma^{(n)}$. It would mean that there is a homotopy lift $\hat{u} : M \to B\Gamma^{(n-2)}$ of $i \circ u$ which agrees with u on $M^{(n-2)}$. Since $n \geq 4$, the map \hat{u} induces an isomorphism of the fundamental groups and, hence, is classifying map.

We note that a ‘simpler’ lifting problem

$$
\begin{array}{c}
M^{(n-1)} \longrightarrow B\Gamma^{(n-2)} \\
\downarrow \subset \longrightarrow \subset \\
M \longrightarrow B\Gamma^{(n-1)}
\end{array}
$$

might have no solution.

Note that the homotopy groups of the $(n - 1)$-homotopy fiber F of the inclusion $B\Gamma^{(n-2)} \to B\Gamma^{(n)}$ equal the relative n-homotopy groups, $\pi_{n-1}(F) = \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)})$. Then the first and the only obstruction to lift iu to $B\Gamma^{(n-2)}$ is defined by the cocycle $c_u : C_n(M) \to \pi_{n-1}(F)$ represented by the composition

$$
\pi_n(D^n, \partial D^n) \xrightarrow{\psi_u} \pi_n(M, M^{(n-1)}) \xrightarrow{u_*} \pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)}) \xrightarrow{i_*} \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)})
$$

with the cohomology class $o_u = [c_u] \in H^n(M; \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)}))$. By the Poincare Duality with local coefficients, the cohomology class o_u is dual to the homology class

$$
P\check{D}(o_u) \in H_0(M; \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)})) = \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)})_\Gamma
$$

represented by $q_\ast i_\ast u_\ast \check{\psi}_\ast(1)$ where

$$
q_\ast : \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)}) \to \pi_n(B\Gamma^{(n)}, B\Gamma^{(n-2)})_\Gamma
$$

is the projection onto the group of coinvariants.

Note that $\pi_n(B\Gamma^{(n-1)}, B\Gamma^{(n-2)}) = \pi_n(E\Gamma^{(n-1)}, E\Gamma^{(n-2)})$. Below we will identify these groups. Denote by

$$
\check{i} : (E\Gamma^{(n-1)}, E\Gamma^{(n-2)}) \to (E\Gamma^{(n)}, E\Gamma^{(n-2)})
$$

is the inclusion induced by i.

Since $n \leq 2(n - 2) - 1$, by Theorem 2.3,

$$
\pi_n(E\Gamma^{(n-1)}, E\Gamma^{(n-2)}) = \pi_n(E\Gamma^{(n-1)}/E\Gamma^{(n-2)}).$$
It is easy to see that
\[\pi_n(EG^{(n-1)}/EG^{(n-2)})_\Gamma = \pi_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)}). \]

Similarly,
\[\pi_n(EG^{(n)}/EG^{(n-1)})_\Gamma = \pi_n(B\Gamma^{(n)}/B\Gamma^{(n-1)}). \]

The homotopy exact sequence of the triple \((EG^{(n)}, EG^{(n-1)}, EG^{(n-2)})\) brings the following commutative diagram

\[
\begin{array}{ccc}
\pi_{n+1}(EG^{(n)}, EG^{(n-1)}) & \longrightarrow & \pi_n(EG^{(n-1)}, EG^{(n-2)}) \\
\; & \downarrow & \; \\
\pi_{n+1}(EG^{(n)}, EG^{(n-1)})_\Gamma & \longrightarrow & \pi_n(EG^{(n-1)}, EG^{(n-2)})_\Gamma \\
\; & \downarrow & \; \\
\pi_{n+1}(BG^{(n)}/BG^{(n-1)}) & \longrightarrow & \pi_n(BG^{(n-1)}/BG^{(n-2)}) \\
\end{array}
\]

where the row in the middle is exact as obtained by tensor product of
the first row with \(\mathbb{Z}\) over \(\mathbb{Z}\). By the Five Lemma the homomorphism \(\xi\) is an isomorphism.

Denote by \(\bar{u} : M/M^{(n-1)} = S^n \to BG^{(n-1)}/BG^{(n-2)}\) the induced map.

The commutative diagram

\[
\begin{array}{ccc}
\pi_n(M, M^{(n-1)}) & \xrightarrow{\bar{i}_* u_*} & \text{im}(\bar{i}_*) \\
\psi_* \uparrow & & \downarrow q_* \\
\pi_n(D^n, \partial D^n) & \xrightarrow{=} & \pi_n(M/M^{(n-1)}) \\
\end{array}
\]

implies that \(i_* \bar{u}_*(1) = \xi q_* \bar{i}_* u_* \psi_*(1)\). Thus, \(i_* \bar{u}_*(1) = 0\) if and only if
the obstruction \(o_n\) vanishes.

We show that \(i_* \bar{u}_*(1) = 0\). The restriction \(n > 4\) and Proposition 2.1 imply that \(\bar{u}_*(1)\) survives to the \(ko\)-homology group:

\[
\pi_n(BG^{(n)}/BG^{(n-2)}) \xrightarrow{\cong} \pi_n^k(BG^{(n)}/BG^{(n-2)}) \xrightarrow{\cong} ko_n(BG^{(n)}/BG^{(n-2)}).
\]

Then the commutative diagram

\[
\begin{array}{ccc}
\pi_n(S^n) & \xrightarrow{\cong} & ko_n(S^n) \\
\bar{u}_* \downarrow & & \downarrow u_* \\
\pi_n(BG^{(n)}/BG^{(n-2)}) & \xrightarrow{\cong} & ko_n(BG^{(n)}/BG^{(n-2)}) \\
\end{array}
\]

implies that \(i_* \bar{u}_*(1) = 0\) for \(ko_n\) if and only if \(i_* \bar{u}_*(1) = 0\) for \(\pi_n\).
Note that in the diagram

\[
k_0(M/M^{(n-1)}) \xrightarrow{\bar{u}_*} k_0(B\Gamma^{(n)}(M)/B\Gamma^{(n-2)}) \xrightarrow{i_*} k_0(B\Gamma^{(n)}(M)/B\Gamma^{(n-2)}) \\
\cong \downarrow \quad \cong \quad \cong \downarrow
\]

the right vertical arrow is an isomorphism by Proposition 5.1. Since the group \(KO_n(B\Gamma^{(n-1)}/B\Gamma^{(n-2)}) \) is 2-torsion, from the property \(I_2 \) it follows that \(i_*\bar{u}_*(1) = 0 \) for \(KO \). The above diagram implies that \(i_*\bar{u}_*(1) = 0 \) for \(k_0 \). \(\square \)

5.5. **Theorem.** Suppose that a group \(\Gamma \) has the property \(\bar{I} \) and satisfies the Strong Novikov conjecture. Then the Strong Gromov conjecture holds for spin \(n \)-manifolds, \(n > 4 \), with the fundamental group \(\Gamma \).

Proof. Let \(M \) be a positive scalar curvature spin \(n \)-manifold. By Rosenberg’s theorem (Theorem 3.4) \(u_*([M]_{KO}) = 0 \). By Proposition 5.3 \(M \) is inessential. By Proposition 5.4 \(M \) is strongly inessential. \(\square \)

6. **Totally non-spin manifolds**

Let \(\nu_M : M \to BSO \) denote a classifying map for the stable normal bundle of a manifold \(M \).

The following theorem was proven in [BD2].

6.1. **Theorem.** Let \(M \) be a totally non-spin closed orientable inessential \(n \)-manifold, \(n \geq 5 \), whose fundamental group is of the type \(FP_3 \). Then \(M \) is strongly inessential.

The proof of Theorem 6.1 uses Wall’s theorem [W] on the cell structure of cobordisms which is known only in dimension \(\geq 5 \). In this section we extend this result to \(n = 4 \) using obstruction theory.

We recall that a map \(f : X \to Y \) is called \(k \)-equivalence if induces an isomorphism \(f_* : \pi_i(X) \to \pi_i(Y) \) for \(i < k \) and an epimorphism for \(i = k \).

6.2. **Proposition.** Let \((X,Y) \) be a CW pair such that the inclusion \(Y \to X \) is \(2 \)-equivalence. Then \(H_2(X,Y;F) = 0 \) for any \(\pi \)-module \(F \) where \(\pi = \pi_1(X) = \pi_1(Y) \).

Proof. We will be using two well-known facts:

(1) A \(k \)-equivalence, \(k > 1 \), between CW complexes induces an isomorphism of homology groups in dimensions \(< k \) for any local coefficients.
(2) By attaching cells of dimension $k+1, \ldots, n$ to Y one can construct a CW complex A and n-connected map $f : A \to X$ extending the inclusion $Y \to X$ (Theorem 8.6.1 in [TITD]).

We consider such A and $f : A \to X$ for $n = 3$. Then the commutative diagram for homology with coefficients in F generated by $f : (A, Y) \to (X, Y)$,

$$
\begin{array}{cccccc}
H_2(Y) & \longrightarrow & H_2(A) & \longrightarrow & H_2(A, Y) & \longrightarrow & H_1(Y) & \longrightarrow & H_1(A) \\
\downarrow & & \cong & & f_* & & \downarrow & & \cong \\
H_2(Y) & \longrightarrow & H_2(X) & \longrightarrow & H_2(X, Y) & \longrightarrow & H_1(Y) & \longrightarrow & H_1(Y)
\end{array}
$$

and the Five Lemma imply that f_* is an isomorphism. Since the inclusion $(A^{(2)}, Y^{(2)}) \to (A, Y)$ induces an epimorphism of 2-homology with any coefficients, it follows that $H_2(X, Y; F) = H_2(A, Y; F) = H_2(A^{(2)}, Y^{(2)}; F) = H_2(Y^{(2)}, Y^{(2)}; F) = 0$. \hfill \Box

We recall that a finitely presented group Γ is of type FP_3 if and only if there is a classifying space $B\Gamma$ with finite 3-skeleton $B\Gamma^{(3)}$.

6.3. Theorem. Let M be a totally non-spin closed orientable inessential 4-manifold, whose fundamental group is of the type FP_3. Then M is strongly inessential.

Proof. The proof can be broken into four steps:

(1). Let $\Gamma = \pi_1(M)$. We may assume that M has a CW structure with one 4-dimensional cell. Since M is inessential, by Proposition 3.3 it has a classifying map $u : M \to B\pi^{(3)}$ such that $u(M \setminus D) \subset B\pi^{(2)}$, where D is a closed 4-ball D in the 4-dimensional cell of M.

(2). Note that the restriction of u to D defines a zero element in $H_4(B\Gamma, B\Gamma^{(2)})$. By Proposition 2.2 $u|_D$ defines a zero element in $\Omega_4(B\Gamma, B\Gamma^{(2)})$. Thus, there is a relative stationary on the boundary bordism W', $q : W' \to B\Gamma$, between $(D, u|_D), u|_D : (D, \partial D) \to (B\Gamma, B\Gamma^{(2)})$ and some pair $(N', q'), N' \to B\Gamma^{(2)}$. We extend W' by the stationary bordism to a bordism (W, q) between (M, u) and $(N, q|_N)$. Then $q(x, t) = u(x)$ for all $x \in M \setminus D$ and all $t \in [0, 1]$.

(3). First we note that by applying 1-surgery to $\text{int} W$ we may assume that the inclusion $M \to W$ induces an isomorphism of the fundamental groups $\pi_1(M) \to \pi_1(W)$.

The induced homomorphism

$$(\nu_W)_* : \pi_2(W) \to \pi_2(BSO) = \mathbb{Z}_2.$$

is surjective in view of the total non-spin assumption. Note that every 2-sphere S that generates an element of the kernel of $(\nu_W)_*$ has a trivial stable normal bundle. Since $\pi_1(W) \cong \pi_1(M)$ is a group of
type FP_3, $\pi_2(W)$ is a finitely generated $\pi_1(W)$-module (see [Br], VIII (4.3)). It follows from Proposition 3.2 and Proposition 3.3 that the kernel of $(\nu_W)_*$ is finitely generated. Hence we can perform 2-surgery on the 5-manifold $\text{Int}W$ to obtain a bordism \hat{W} between M and N and a map $\nu_{\hat{W}} : \hat{W} \to BSO$ which induces an isomorphism of 2-dimensional homotopy groups. Let $i : M \to \hat{W}$ denote the inclusion map. Then $(\nu_{\hat{W}})_* \circ i_* = (\nu_M)_*$. Since $(\nu_M)_*$ is surjective and $(\nu_{\hat{W}})_*$ is an isomorphism, it follows that $i_* : \pi_2(M) \to \pi_2(\hat{W})$ is surjective. Since $B\Gamma$ is aspherical, there is a map $\hat{q} : \hat{W} \to B\Gamma$ with $\hat{q} = q$ on $\partial\hat{W}$.

(4) We want to extend the map $\hat{q}|_N : N \to B\Gamma^{(2)}$ to \hat{W}.

By the exact sequence of the pairs (\hat{W}, M), we get

$$\pi_1(\hat{W}, M) = \pi_2(\hat{W}, M) = 0.$$

Thus, the inclusion $M \to \hat{W}$ is a 2-equivalence. We fix a CW complex structure on \hat{W}. By the cellular approximation theorem we may assume that $\hat{q}(\hat{W}) \subset B\Gamma^{(2)}$.

The first obstruction for this extension lives in $H^3(\hat{W}, N; \pi_2(B\Gamma^{(2)}))$. By the Poincare-Lefschetz Duality with twisted coefficients,

$$H^3(\hat{W}, N; F) = H_2(\hat{W}, M; F) = 0$$

in view of Proposition 6.2. Similarly, the second obstruction is trivial, since $H^4(\hat{W}, N; F) = H_1(\hat{W}, M; F) = 0$ for any coefficient system. And the third obstruction lives in

$$H^5(\hat{W}, N; \pi_4(B\Gamma^{(2)})) = H_0(\hat{W}, M; \pi_4(B\Gamma^{(2)})) = 0.$$

Thus, there is an extension of $\hat{q}|_N$ to a map $g : \hat{W} \to B\Gamma^{(2)}$. The commutative diagram

$$\begin{array}{ccc}
\pi_1(\hat{W}) & \cong & \pi_1(M) \\
g_* \downarrow & & \downarrow \cong \\
\pi_1(B\Gamma^{(2)}) & \cong & \pi_1(B\Gamma)
\end{array}$$

implies that the restriction $g|_M : M \to B\Gamma^{(2)}$ is a classifying map. □

7. ABELIAN FUNDAMENTAL GROUP

For a CW complex X we denote by $\text{cell}_k(X)$ the set of k-dimensional cells. Let $\text{cell}(X) = \bigsqcup_{k \geq 0} \text{cell}_k(X)$. We call a cellular map $f : X \to Y$ between CW-complexes \textit{bijective cellular} if there is a preserving dimension bijection $\beta : \text{cell}(X) \to \text{cell}(Y)$ such that for each cell $e \in \text{cell}(X)$
there is a closed ball \(B \subset e \) such that the restriction \(f|_{\text{Int}(B)} : \text{Int}B \to \beta(e) \) is a homeomorphism.

7.1. Proposition. A bijective cellular map \(f : X \to Y \) is a homotopy equivalence with a bijective cellular homotopy inverse \(g : Y \to B \). If \(\beta \) is the cell bijection for \(f \), then \(\beta^{-1} \) is the cell bijection for \(g \).

Proof. Induction on dimension of \(X \).

Moreover, the following holds true:

7.2. Corollary. A bijective cellular map \(f : X \to Y \) between \(n \)-dimensional CW complexes is a stratified homotopy equivalence

\[
f : (X, X^{(n-1)}, \ldots, X^{(1)}, X^{(0)}) \to (Y, Y^{(n-1)}, \ldots, Y^{(1)}, Y^{(0)}).
\]

7.3. Proposition. A bijective cellular map \(f_0 : X^k \to Y^k \) between \(k \)-dimensional complexes extends to a bijective cellular map \(f : X \cup_{\phi} D^{k+1} \to Y \cup_{\phi} D^{k+1} \) provided \(f_0 \circ \phi \) is homotopic to \(\phi' \).

Proof. We define the map \(f \) on \(D^{k+1} \) to be a homeomorphism of interior of a ball \(D^{k+1} \subset D^{k+1} \) to \(\text{int} D^{k+1} \) extended to \(D^{k+1} \) by the homotopy between \(f_0 \circ \phi \) and \(\phi' \).

We consider the minimal CW complex structure on spheres \(S^k \).

7.4. Proposition. Suppose that the attaching maps for all cells in a connected CW-complex \(X \) are null-homotopic. Then \(X \) there is a bijective cellular map \(f : X \to \bigvee_{k=1}^{\dim X} \bigvee E_k S^k \).

Proof. We apply Proposition 7.3 and induction on \(\dim X \).

Let \(T^m \) denote the \(n \)-dimensional torus with the CW-complex structure induced from the CW-complex structure on \(S^1 = e^0 \cup e^1 \). By \(\Sigma^r \) we denote the \(r \)-times iterated reduces suspension. Note that

\[
\Sigma^r X = e^0 \cup \bigcup_{\alpha} e^{r+1}_{e\alpha} \cup \bigcup_{\beta} e^{r+2}_{e\beta} \cup \ldots
\]

for the cellular decomposition of \(X \),

\[
X = e^0 \cup \bigcup_{\alpha} e^1_{e\alpha} \cup \bigcup_{\beta} e^2_{e\beta} \ldots
\]

7.5. Proposition. The complex \(\Sigma^{r-1}T^r \) admits a strict homotopy equivalence

\[
f : \Sigma^{r-1}T^r \to \bigvee_{k=1}^{\binom{m}{k}} S^{k+r-1}.
\]
Proof. By induction on r we show that all the attaching maps in $\Sigma^{\ell} T^r$ for $\ell \geq r - 1$ are null-homotopic. In view of the fact that $\Sigma(X \times Y)$ is homotopy equivalent to $\Sigma X \vee \Sigma Y \vee \Sigma (X \wedge Y)$ [11a], we obtain that $\Sigma^{\ell} (T^{r-1} \times S^1)$ is homotopy equivalent to $\Sigma^{\ell} T^{r-1} \vee S^{\ell+1} \vee \Sigma^{\ell+1} T^{r-1}$.

Then the induction assumption completes the proof.

Let T^m_n denote the n-dimensional skeleton of T^m with respect to the standard CW-complex structure.

7.6. Corollary. The pair (T^m_n, T^m_ℓ), $n \geq \ell$, is stably homotopy equivalent to the pair

$$\left(\bigvee_{k=1}^n S^k, \bigvee_{k=1}^\ell S^k\right).$$

Proof. Follows from Proposition 7.5 and Corollary 7.2.

7.7. Corollary. A finitely generated free abelian group \mathbb{Z}^m satisfies the K-theory condition (\ast).

7.8. Theorem. The Strong Gromov’s Conjecture holds true for closed n-manifolds M with abelian $\pi_1(M)$ for all $n \neq 4$. For $n = 4$ it holds when M is totally no-nspin.

Proof. Let M be an almost spin manifold with positive scalar curvature with abelian $\pi_1(M)$. Taking a finite cover of M we may assume that $\pi_1(M)$ is free abelian. In view of Proposition 4.2, by taking a finite cover, we may assume that M is spin. By Corollary 7.7 and Theorem ?? M is strongly inessential.

Let M is totally non-spin. By Proposition 3.6 M is inessential. By Theorem 6.3 and Theorem 6.1 M is strongly inessential.

7.9. Question. Does the Strong Gromov Conjecture hold for spin 4-manifolds with abelian fundamental group ?

We recall that Bolotov’s example M_b of inessential 4-manifold which is not strongly inessential is spin and has the fundamental group $\mathbb{Z} \ast Z^3$ [B1]. In view of Question 7.9 it is natural to ask if there is such example with the free abelian fundamental group. If the answer is no, then the restriction $n \neq 4$ in Theorem 7.8 can be dropped. We note [B1] that Bolotov’s manifold M_b preserves its property after crossing with a circle S^1, i.e., the product $M_b \times S^1$ is inessential but not strongly inessential. In view of the following Proposition and Theorem ??, it cannot carry a metric of positive scalar curvature.
7.10. **Proposition.** (a) Let groups Γ_1 and Γ_2 satisfy the property (*), then the free product $\Gamma_1 \ast \Gamma_2$ satisfies (*).

(b) Let Γ satisfy (*), then $\Gamma \ast \mathbb{Z}$ satisfies (*).

Proof. (a) Since $B\Gamma = B\Gamma_1 \vee B\Gamma_2$ for $\Gamma = \Gamma_1 \ast \Gamma_2$, the fact is obvious.

(b) We consider the product CW structure on $B\Gamma \times S^1 = B(\Gamma \times \mathbb{Z})$ with the CW complex structure on $B\Gamma$ satisfying (*) and the standard CW complex structure on S^1. In view of the suspension isomorphism, it suffices to check the condition (*) for the reduced suspension $\Sigma(B\Gamma \times S^1)$. Note that there are homotopy equivalences

$$\Sigma(B\Gamma \times S^1) = \Sigma^2 B\Gamma \vee \Sigma B\Gamma \vee \Sigma S^1 \quad \text{and} \quad \Sigma((B\Gamma \times S^1)^{(k)}) = \Sigma(B\Gamma^{(k-1)} \times S^1) \vee \Sigma B\Gamma^{(k)} = \Sigma^2 B\Gamma^{(k-1)} \vee \Sigma B\Gamma^{(k)} \vee \Sigma S^1.$$

Moreover, the inclusion $\Sigma((B\Gamma \times S^1)^{(k)}) \to \Sigma(B\Gamma \times S^1)$ is the wedge of the inclusions $\Sigma^2(B\Gamma^{(k-1)}) \to \Sigma^2(B\Gamma)$ and $\Sigma(B\Gamma^{(k)}) \to \Sigma(\Gamma B)$ plus the identity map on ΣS^1 where each of the inclusions is injective in the KO-homology. \square

We note that the proof in [Dr1] of the original Gromov’s conjecture for manifolds with the duality fundamental group implicitly assumes that $n > 4$. So the Question 7.9 is open for the original Gromov’s conjecture as well. The latter can be derived from a positive answer to the following

7.11. **Question.** Does the formula

$$\dim_{mc}(X \times \mathbb{R}) = \dim_{mc} X + 1$$

hold for metric spaces X?

In view of a counter-example for the asymptotic dimension [Dr3], this formula may not hold for general metric spaces. The spaces of interest here are the universal covers of closed manifolds.

References

[Ba] I. Babenko, *Asymptotic invariants of smooth manifolds*. Russian Acad. Sci. Izv. Math. 41 (1993), 1-38.

[B1] D. Bolotov, *Gromov’s macroscopic dimension conjecture*, Algebraic & Geometric Topology, 6 (2006), 1669-1676.

[B2] D. Bolotov, *Macroscopic dimension of 3-manifolds*, Mathematical Physics, Analysis and Geometry, vol 6, issue 3 (2003), 291-299.

[BD1] D. Bolotov, A. Dranishnikov *On Gromov’s scalar curvature conjecture*, Proc. AMS 138 (2010), N 3,4, P. 1517 - 1524.

[BD2] D. Bolotov, A. Dranishnikov *On Gromov’s conjecture for totally non-spin manifolds*, Journal of Topology and Analysis Vol.8, No.4 (2016) 571-587.

[Br] K. Brown, Cohomology of groups, Springer 1982.
[DD] M. Daher, A. Dranishnikov, On Macroscopic dimension of non-spin 4-manifolds, Journal of Topology and Analysis, https://doi.org/10.1142/S1793525321500084.

[Dr1] A. Dranishnikov, On Gromov’s positive scalar curvature conjecture for virtual duality groups, Journal of Topology and Analysis, Vol. 6, No. 3 (2014) 397-419.

[Dr2] A. Dranishnikov, The LS category of the product of lens spaces, Algebr. Geom. Topol. 15 (2015) no 5, 2985-3010.

[Dr3] A. Dranishnikov, Cohomological approach to asymptotic dimension,

[G1] M. Gromov Filling Riemannian manifolds. J. Differential Geom. 18 (1983), no. 1, 1-147.

[G2] M. Gromov Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century. Vol. II, Birkhauser, Boston, MA, (1996).

[G3] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhauser, Boston (1999).

[GL] M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S. 58 (1983), 295-408.

[Ha] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge 2002.

[R1] J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov conjecture. Publications Mathématiques de l’IHÉS, 58 (1983), p. 197-212.

[Ru] Yu. Rudyak, On Thom spectra, orientability and cobordism. Springer, 1998.

[SY] R. Schoen and S. T. Yau, Positive Scalar Curvature and Minimal Hypersurface Singularities Preprint (2017) [arXiv:1704.05490]

[TtD] Tammo tom Dieck, Algebraic Topology, EMS 2008.

[W] C.T.C. Wall, Geometrical connectivity I, J. London Math. Soc. (1971) s2-3 (4): 597-604.

ALEXANDER N. DRANISHNIKOV, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, 358 LITTLE HALL, GAINESVILLE, FL 32611-8105, USA
Email address: dranish@math.ufl.edu