Forest fires detection in Indonesia using satellite Himawari-8 (case study: Sumatera and Kalimantan on August-October 2015)

Fatkhuroyan*, TrinahWati and Andersen Panjaitan
Indonesia Agency for Meteorology Climatology and Geophysics
BMKG, Kemayoran, Central Jakarta, Indonesia

E-mail: fatkhuroyan@bmkg.go.id

Abstract. Forest fires in Indonesia are serious problem affecting widely in material losses, health and environment. Himawari-8 as one of meteorological satellites with high resolution 0.5 km x 0.5 km can be used for forest fire monitoring and detection. Combination between 3, 4 and 6 channels using Sataid (Satellite Animation and Interactive Diagnosis) software will visualize forest fire in the study site. Monitoring which used Himawari-8 data on August, September and October 2015 can detect the distribution of smoke and the extents of forest fire in Sumatera and Kalimantan. The result showed the extent of forest fire can be identified for anticipation in the next step.

1. Introduction

Every year forest fire inflicts smoke problem in most of province in Sumatera and Kalimantan on August to November. The impacts are seriously on environment, health and socio-economic problems [1]. The loss of forest fire in 2015 was around 16.09 million US dollars and Kalimantan Island was the most severe area affected by forest fire and smoke haze [2]. The impact of smokes were not only happened in Indonesia region, but also in neighbouring countries such as Malaysia and Singapore and this condition affects the relations between those countries. Some studies use weather and environment satellite data for smoke monitoring with polar orbital which is good in spatial resolution and have various wavelength, yet weak in temporal resolution [3,4], while the others used geostationary orbital types such as MTSAT (Meteorological Satellite) that can produce image every hour and has 5 channels [5].

Himawari-8 is a new Japanese geostationary meteorological satellite with optical sensors significantly higher in radiometric, spectral and spatial resolution than previous geostationary orbit such as MTSAT. There are 16 observation bands with 0.5 or 1 km spatial resolution for visible and near-infrared bands and 2 km for infrared bands. The shortened revisit times around 10 minutes for full disk provide new levels of capacity for identification and tracking of rapidly changing weather phenomena and for the derivation of quantitative products [6,7]. Himawari-8 was launched from Japan’s Tanegashima Space Centre using an H-IIA rocket on 7 October 2014 and settled in geostationary orbit on 16 October. JMA (Japan Meteorological Agency) has operated Himawari-8 since 7 July 2015 [7]. Comparison the result of RGB (Red Green Blue) false colour image (1 visible channel and 2 near infra-red channels) between Himawari-8 and Terra-Aqua MODIS satellites with other supporting data (weather report and hotspot data) showed a similar pattern image between them.
which consist of channels combination of 3, 4 and 6 and also had corresponded to the report of smoke from weather station and hotspot data [8]. The aim of this paper is to investigate the smoke detection using Himawari-8 satellite with RGB false colour technical method which located in Sumatera and Kalimantan regions on August, September and October 2015.

2. Data and methods
Data that were used in this study are:

 a. Images of Satellite Himawari-8, channel 3,4 and 6 on August 25th, September 10th and October 19th 2015.
 b. Synoptic reports from meteorological stations
 c. Hotspot data in Sumatera and Kalimantan based on Terra-Aqua Modis satellite

The Sataid software was used to manage RGB image combination of Himawari-8 from channel 3, 4 and 6. Sataid is software developed by JMA as an application to display satellite imagery and conduct daily weather analysis including tropical cyclone monitoring. One of the core of Sataid system is GMSLPD with specialized functions for Dvorak analysis, display and overlay between satellite imagery and numerical model, use many functions such as vertical cross-sectional chart and time-series chart [9]. The method of Dvorak has been applied to Himawari-8 data set from the start of its operation. The Objective Dvorak Method is being updated to obtain maximal use from the data of new-generation geostationary satellites such as Himawari-8/9 and GOES-R [10]. RGB composite imagery is a technique to display a colour using the property of the three primary colours of light. In satellite imagery processing, RGB technique is used to combine some different channels to make an image which better result rather than only one channel [11]. The locations of the study are Sumatra Island and Kalimantan Island.

3. Results and Discussion

3.1 August 25th 2015
The observation of Himawari-8 imagery has revisit time every 10 minutes. However, in this paper the imagery was taken only at 0600 UTC as samples to monitor the spread of smokes from forest fire. The observation using Sataid GMSLPD as seen on Fig 1.a and Fig 1.b on August 25th 2015 0600 UTC showed smoke of forest fire area with brown colour [12][13] in Sumatera (Riau and South Sumatera provinces) and Kalimantan (Central Kalimantan Province).

![Figure 1. Himawari-8 Imagery at August 25th 0600 UTC for forest fire area in (a) Sumatra (b) Kalimantan](image-url)
In order to endorse the result from RGB false colour analysis, supporting data from hotspot data of Sumatera and Kalimantan on August 25th also provided at Fig 2, the figure showed that most of area which the same area as brown colour in Fig 1.a and Fig 1.b have many hotspots as the signals of forest fire.

The hotspot data showed that the burning area are not exactly the same with the brown colour on the imagery, wind direction played a role in the spread of smoke (Table 1). Wind direction from weather stations in Pekanbaru, Rengat and Palembang for Sumatera were dominated from south and southeast, so that the spread of smoke tend toward northwest of Sumatera. While wind direction in Kalimantan was dominated from southeast and east (Palangkaraya, Pangkalan Bun and Sampit), so the smokes spread toward central and west of Kalimantan. Smoke visibility also was reported from weather stations in Sumatera and Kalimantan as seen on Table 1.

Table 1. Weather Condition on August 25th 2015

Station Name	Weather Condition	Wind Direction
PekanBaru	Smoke	South
Rengat	Smoke	Southeast
Palembang	Smoke	Southeast
Palangkaraya	Smoke	East
Pangkalan Bun	Smoke	Southeast
MuaraTeweh	Smoke	Calm
Sampit	Smoke	Southeast
3.2 September 10th 2015

The smoke on September 10th as seen at Fig 3.a and Fig 3.b showed that at 0600 UTC, the locations of hotspot in Sumatera were the same as the smoke and wind direction dominated calm (Table 2), while in Kalimantan the hotspots mostly located in all region (West, Central and South of Kalimantan Provinces) but the brown colour intensively located in central Kalimantan. Wind direction in Kalimantan was dominated from east. Weather stations reported the smoke visibility as seen on Table 2.

![Himawari-8 Imagery at September 10th 06 00 UTC for forest fire area in (a) Sumatra (b) Kalimantan](image)

Figure 3. Himawari-8 Imagery at September 10th 06 00 UTC for forest fire area in (a) Sumatra (b) Kalimantan

![Hotspot area, September 10th](image)

Figure 4: Hotspot area, September 10th

source: BMKG

In order to endorse the result from RGB false colour analysis, supporting data from hotspot data of Sumatera and Kalimantan on September 10th also provided at Fig 2, the figure showed that most of area which the same area as brown colour in Fig 3.a and Fig 3.b have many hotspots as the signals of forest fire.

The hotspot data showed that the burning area are not exactly the same with the brown colour on the imagery, wind direction played a role in the spread of smoke (Table 2). Wind direction from weather stations in Pekanbaru, Rengat and Palembang for Sumatera were dominated by calm, so that the spread of smoke tend to stay calm. While wind direction in Kalimantan was dominated from east (Palangkaraya, Pangkalan Bun and Sampit), so that the spread of smoke was toward west of Kalimantan. Smoke visibility also was reported from weather stations in Sumatera and Kalimantan as seen on Table 2.
Table 2. Weather Condition on September 10th 2015

Station Name	Weather Condition	Wind Direction
Pekanbaru	Smoke	Calm
Rengat	Smoke	Calm
Palembang	Smoke	East
Palangkaraya	Smoke	East
Pangkalan Bun	Smoke	East
Muara Teweh	Smoke	Calm
Sampit	Smoke	East

3.3 October 19th 2015

The spread of smoke on October 19th 0530 UTC as seen on Fig 5.a and Fig 5.b showed that the location of smoke in Sumatera were the same as the hotspots because wind direction mostly calm (Pekanbaru and Rengat on Table 3). The spread of smoke in Kalimantan mostly in central and eastern part of Kalimantan, while hotspots were located in Central, South and East Kalimantan, mostly wind direction were calm.

![Figure 5. Himawari-8 Imagery at October 19th 0530 UTC for forest fire area in (a) Sumatra (b) Kalimantan](image)

Figure 5. Himawari-8 Imagery at October 19th 0530 UTC for forest fire area in (a) Sumatra (b) Kalimantan

Figure 6: Hotspot area, Oct 19th

source: BMKG
In order to endorse the result from RGB false colour analysis, supporting data from hotspot data of Sumatera and Kalimantan on October 19th also provided at Fig 6, the figure showed that most of area which the same area as brown colour in Fig 5.a and Fig 5.b have many hotspots as the signals of forest fire.

The hotspot data showed that the burning area are not exactly the same with the brown colour on the imagery, wind direction played a role in the spread of smoke (Table 3). Wind direction from weather stations in Jambi and Palembang for Sumatera were dominated from southeast, so that the spread of smoke tend toward northwest of Sumatera. While wind direction in Kalimantan dominated from east (Palangkaraya and Sampit), so that the spread of smoke toward central and west of Kalimantan. Smoke visibility also were reported from weather stations in Sumatera and Kalimantan as seen on Table 3.

Station Name	Weather Condition	Wind Direction
PekanBaru	Smoke	Calm
Rengat	Smoke	Calm
Palembang	Smoke	Southeast
Jambi	Smoke	Southeast
Palangkaraya	Smoke	East
pangkalan Bun	Smoke	Calm
MuaraTeweh	Smoke	Calm
Sampit	Smoke	East
pontianak	Smoke	Calm

The smokes from forest fire on August, September and October 2015 using RGB technical method could be displayed properly with Himawari-8 especially for areas that were not covered with cloud. The brown colour pattern on RGB false colour imagery of Himawari-8 indicated the smoke from forest fire and land [12][13]. The analysis also supported by the smoke visibility reported from weather stations around the location and hotspots location map resulted from MODIS satellites. However, the location of smoke did not always the same as hotspots because the influence of wind direction. The brown colour as indicator of smoke is the combination of three channels namely channel 3 with the wavelength of 0.64\(\mu m\) (interval between 0.2 – 0.55 \(\mu m\)) as red component, channel 4 with the wavelength of 0.86 \(\mu m\) (interval between 0.3 – 0.55 \(\mu m\)) as green component and channel 6 with the wavelength of 2.3 \(\mu m\) (interval between 0.04 – 0.21 \(\mu m\)) as blue component.

4. Conclusions
It can be concluded that Himawari-8 has advantages in temporal resolution which can revisit every 10 minutes, spatial resolution until 0.5 km and spectral resolution with 16 channels. This indicates that RGB technical method can be applied for forest fire smoke detection. Then the spread of forest fire smoke can be monitoring for anticipation purposes. The limitations of Himawari-8 satellite in smoke detection according to this study that it has passive sensor that very dependent on the reflection of solar radiance. So, it can only monitor the forest fire during day-time. The more brown colour detected the thicker of the smoke, and vice versa. Therefore, supporting instrumentation observation such as LIDAR (Light Detection and Ranging) observation can be obtained in order to complete the smoke condition monitoring.
Acknowledgements
The authors are grateful to BMKG as Indonesia agency for Meteorology Climatology and Geophysic (satellite images data management sub division) for Himawari-8 satellite images, weather report and hotspot data referred to in this study.

References
[1] Tacconi L 2003 Fires in Indonesia: causes, costs and policy implications CIFOR Occasional paper no. 38 (Bogor:CIFOR)
[2] World bank 2016 The Cost of fire. An economic analysis of Indonesia’s 2015 Fire crisis Indonesia sustainable landscapes knowledge note: 1 (Jakarta :TheWorld bank)
[3] Tjahjaningsih A, Sambodo A K and Prasasti I 2005 Sensivity analysis of Modis channels for hotspots and fire smoke detection (in Indonesian) Pertemuan Ilmiah Tahunan MAPIN XIV Pemanfaatan efektif penginderaan jauh untuk peningkatan kesejahteraan bangsa September 14 – 15, 2005 Surabaya
[4] Xie Y 2009 Detection of smoke and dust aerosols using multi-sensor satellite remote sensing measurements Dissertation George Mason University
[5] Stewart N R 2015 Exploration of the MTSAT2 satellite capabilities for real time detection and characterization of volcanic emissions Master’s Thesis Michigan Technological University
[6] Kushardono D 2012 Study of new generation remote sensing weather satellite himawari 8 and 9 (In Indonesian) Jurnal Inderaja 03 December 2012
[7] Bessho K et al. 2016 An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites Japan J. Meteor Soc 94 151
[8] Panjaitan B S and Panjaitan A L 2015 Data utilization of new generation of weather satellite himawari-8 for forest and land fire smoke detection in Indonesia (Case study: forest and land fire in Sumatera and Kalimantan Island on September 2015) (In Indonesian) Seminar Nasional Penginderaan Jauh 2015
[9] Tanaka Y 2009 SATAID-Powerful tool for satellite analysis RSMC Tokyo-typhoon center Japan Meteorology Agency (JMA)
[10] Goodman S J et al 2012 The GOES-R proving ground: accelerating user readiness for the next-generation geostationary environmental satellite system Bull. Amer Meteor Soc 93 1029–1040
[11] Shimizu A 2015 Outline of RGB Composite Imagery. Meteorological Satellite Center, Japan Meteorology Agency (JMA)
[12] Melbourne Vlab CoE 2016 [cited 2016 6 June]; Available from: www.virtuallab.bom.gov.au/training/hw-8-training/introduction-resources-and-case-studies/
[13] Kerkmann J 2012 Effective training and use of RGB satellite products for forecasters. Eumetsat RGB Satellite Products Workshop 2012