A new Rational Generating Function for the Frobenius Coin Problem

Deepak Ponvel Chermakani, IEEE Member

depakk@pmail.ntu.edu.sg d.chermakani@sms.ed.ac.uk deepakc@usa.com deepakc@myfastmail.com

Abstract: - An important question arising from the Frobenius Coin Problem is to decide whether or not a given monetary sum \(S \) can be obtained from \(N \) coin denominations. We develop a new Generating Function \(G(x) \), where the coefficient of \(x^i \) is equal to the number of ways in which coins from the given denominations can be arranged as a stack whose total monetary worth is \(i \). We show that the Recurrence Relation for obtaining \(G(x) \), is linear, enabling \(G(x) \) to be expressed as a rational function, that is, \(G(x) = P(x)/Q(x) \), where both \(P(x) \) and \(Q(x) \) are Polynomials whose degrees are bounded by the largest coin denomination.

1. Introduction

In the language of mathematics, the Frobenius Coin Problem is as follows: - Let \(A_1, A_2, \ldots A_N \) be fixed positive integers. Find the largest integer \(S \), such that \(S \neq A_1, A_1 + A_2, A_1 + A_2 + A_3, \ldots + A_1A_N \), for all non-negative integers \(X_1, X_2, \ldots X_N \) \[2\]. An important question arising from the Frobenius Coin Problem is therefore to decide whether or not, for some given target positive integer \(S \), there exist non-negative integers \(X_1, X_2, \ldots X_N \), such that \(S = A_1 X_1 + A_2 X_2 + \ldots + A_N X_N \) \[1\].

If we denote \(F_i \) to be an integer sequence, such that \(F_i \) is the number of ways in which \(i \) can be expressed using the given \(N \) coin denominations, then one can obtain a Generating Function given by SUMMATION (\(F_i X^i \), i being integers \(\geq 0 \)) \[3\]. The Generating Function helps predict whether or not some monetary sum \(S \) can be obtained using the given coin denominations, and is expressible as \(P(x)/Q(x) \) where both \(P(x) \) and \(Q(x) \) are Polynomials. It has been proved that if \(N \) is fixed, then the Generating Function for \(F_i \) can be expressed as a sum of short rational functions \[4\]. For \(N \geq 4 \), there is no explicit bound on the number of terms in \(P(x) \) \[3\][5], though \(Q(x) \) is bounded \[3\][5].

In this paper, we do not aim to develop a Generating Function explicitly for the Frobenius Coin Problem, i.e. for the sequence \(F_i \) mentioned in the above paragraph. Instead, we develop a Generating Function for the sequence of integers (which we shall denote as \(E_i \)) representing the number of ways that coins from the given \(N \) denominations may be arranged as a stack, one coin over the other, such that the sum of the values of all coins in this stack add up to \(i \). Clearly, the sequence \(F_i \) is different from \(E_i \), for example, given 2 coin denominations of 2 units and 5 units, then \(F_7 \) is 1, while \(E_7 \) is 2. It is also clear that \(F_i \) is 0, if and only if, \(E_i \) is 0. And we shall see that the Generating Function for \(E_i \) can be expressed as a rational function, i.e. as \(P(x)/Q(x) \), where both \(P(x) \) and \(Q(x) \) are Polynomials, and where the degrees, of both \(P(x) \) and \(Q(x) \), are equal to \(L \), the largest coin denomination.

In the next Section 2, we shall prove a Theorem on a Linear Integer Recurrence Relation, and demonstrate how it represents the sequence \(E_i \). In Section 3, we shall show the Generating Function for \(E_i \).

2. The Linear Integer Sequence \(E_i \)

Theorem-1: Let \(L \) be the largest of the given \(N \) coin denominations, and the binary vector \(\langle B_1, B_2, \ldots B_L, B_L > \) be such that \(B_j \) is 1, if \(j \) is a coin denomination, and 0 otherwise. Then the number of ways that coins from the given denominations may be arranged as a stack, such that the total monetary worth of the stack is equal to \(i \), is given by the following Linear Recurrence Relation for \(E_i \)

\[
E_0 = 1, \quad \text{and,}
E_i = B_1 E_{i-1} + B_2 E_{i-2} + \cdots + B_L E_{i-L} + B_L E_{i-L+1}
\]

when \(i \) is an integer greater than 0, and,

\[
E_i = 0 \quad \text{when} \quad \text{i is an integer lesser than 0.}
\]

Proof: Expanding the sequence \(E_i \) and expressing solely in terms of the \(B \) vector, we get the following

\[
E_1 = B_1
E_2 = B_2 + B_1^2
E_3 = B_3 + B_1B_2 + B_2^2 + B_1^3 = B_3 + 2B_1B_2 + B_1^3
E_4 = B_4 + B_1B_3 + B_2^2 + B_1^2B_2 + B_1B_2^2 + 2B_1^2B_2 + B_2^3 = B_4 + 2B_1B_3 + B_2^2 + 3B_1^2B_2 + B_1^4
E_5 = B_5 + 2B_2B_4 + 2B_1B_3 + 3B_2^2B_2 + 4B_1B_2^2 + 3B_1^2B_3 + 3B_2^3B_2 + B_1^5
\]

and so on, showing that the sum of subscripts in each of the terms generated so far, are the same as the subscript of the corresponding \(E_i \), and represent all possible stack formations. Next, let us prove by induction, that if we assume that the
expressions via the B vector for $E_{i-L}, E_{i-L+1}, \ldots E_{i-t}, E_{i-t}$ represent all possible stack formations with monetary worth equal to their corresponding subscripts, then $E_i = B_1E_{i-L} + B_2E_{i-L+1} + \ldots + B_{i-t}E_{i-t} + B_{i-t}E_{i-t}$ will represent all possible stack formations of monetary value equal to i. To show this is true, we shall verify two things.

First, we verify that all terms of the form $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ are represented in E_i for non-negative integers $K_1, K_2, \ldots K_t$ such that $K_1 + 2K_2 + \ldots + LK_t = i$. If, for all integers t less than i, one were to consider all possible ways of representing terms in E_i (i.e. the sum of subscripts in the product should be equal to i), then it suffices to have the element B_i appended to the terms of E_i and represent that product in E_i because every term in E_p is the subset of some term in E_p where $p < q$. For example, E_i need not be multiplied by the product $B_1 B_2 B_3$, where $t1 + t2 + t3 = i-t$, because terms generated by this product would already be coming into E_i through other routes, namely from $B_1 E_{i-L}$, from $B_2 E_{i-L+2}$, and from $B_3 E_{i-L+3}$.

Second, we verify the coefficient of the term $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in E_i, where $K_1, K_2, \ldots K_t$ are positive integers. Clearly, this term gets linearly additive contributions from the coefficient of $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in E_{i-t}, from the coefficient of $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in E_{i-L}, and so on, and finally from the coefficient of $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in E_{i-t}.

So, if $n!$ denotes the factorial of n, then the coefficient of $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in E_i is equal to the following:

\[
\frac{(K_1 + K_2 + \ldots + K_t - 1)!}{(K_1 - 1)! K_1! \cdots K_t!} + \frac{(K_1 + K_2 + \ldots + K_t - 1)!}{K_1! (K_2 - 1)! K_2! \cdots K_t!} + \ldots + \frac{(K_1 + K_2 + \ldots + K_t - 1)!}{K_1! K_2! \cdots (K_t - 1)! K_t!}
\]

For each of the above L additive components, multiply and divide the jth component by K_j, to obtain the following:

\[
\frac{(K_1 + K_2 + \ldots + K_t)!}{K_1! K_2! \cdots K_t!}
\]

which verifies to be the number of ways of arranging the term $B_1^{K_1}B_2^{K_2}B_3^{K_3} \ldots B_t^{K_t}$ in a stack.

Finally, as B_i is either 1 or 0, depending on whether or not coin denomination j is available, the value of E_i will always equal the number of ways in which a monetary stack worth i, may be obtained from the given coin denominations.

Hence Proved Theorem-1

3. The Generating Function

The corresponding Generating Function $G(x)$, for the sequence E_i mentioned in Section 2, can be shown to be given by

\[
G(x) = \frac{x^{L-1} (B_{L-1} + B_{L-2}E_1 + \ldots + B_1E_{L-2} - E_{L-1}) + x^{L-2} (B_{L-2} + B_{L-3}E_1 + \ldots + B_1E_{L-3} - E_{L-2}) + \ldots + x(B_1 - E_1) - 1}{B_{L}x^L + B_{L-1}x^{L-1} + \ldots + B_1x - 1}
\]

4. Conclusion

In this paper, we presented a Linear Recurrence Relation for the integer sequence E_i, representing the number of ways in which a stack of coins worth i, may be built from the given coin denominations. This linearity enabled its Generating Function $G(x)$ to be expressed as a rational function, i.e. as $P(x)/Q(x)$, where both $P(x)$ and $Q(x)$ are Polynomials, and where the degrees of both $P(x)$ and $Q(x)$, are bounded by the largest coin denomination. As E_i is zero, if and only if, a monetary amount of i cannot be obtained from the coin denominations, $G(x)$ will be of use to the Frobenius Coin Problem.

References
[1] Sebastian Bocker, Zsuzsanna Liptak, *The Money Changing Problem Revisited: Computing the Frobenius Number in Time O(k a i)*, Sep-2005, Computing and Combinatorics, Volume 3595/2005, Lecture Notes in Computer Science, Springer Berlin Heidelberg, ISBN 978-3-540-28061-3.
[2] Jorge L. Ramirez Alfonsin, *The Diophantine Frobenius Problem*, Oxford University Press, Oxford, 2006.
[3] Matthias Beck, *The Coin Exchange Problem of Frobenius*, San Francisco State University, http://math.sfsu.edu/beck/papers/frobeasy.slides.pdf
[4] Alexander Barvinok, Kevin Woods, *Short rational generating functions for lattice point problems*, Journal of the American Mathematical Society, Volume 16 pp 957-979, April-2003.
[5] Book Chapter, *The Coin-Exchange Problem of Frobenius*, Chapter 1, pp 3-24, Computing the Continuous Discretely, Springer Publishers New York, ISBN 978-0-387-46112-0, Nov-2007.

About the Author
I, Deepak Ponvel Chermakani, have written this paper, out of my own interest and initiative, during my spare time. I am currently a student at the University of Edinburgh UK (www.ed.ac.uk), where since Sep-2009, I have been enrolled in a fulltime one year Master Degree course in Operations Research with Computational Optimization. In Jul-2003, I completed a four year fulltime four year Bachelor Degree course in Electrical and Electronic Engineering, from Nanyang Technological University Singapore (www.ntu.edu.sg). I completed my high school from the National Public School in Bangalore in India in Jul-1999.