Potential Role of Brain-Derived Neurotrophic Factor in Omega–3 Fatty Acid Supplementation to Prevent Posttraumatic Distress after Accidental Injury: An Open-Label Pilot Study

Yutaka Matsuoka\(^{a,b,c}\), Daisuke Nishi\(^{a,b,c}\), Naohiro Yonemoto\(^{b,c}\), Kei Hamazaki\(^{c,d}\), Tomohito Hamazaki\(^{c,e}\) and Kenji Hashimoto\(^{c,f}\)

\(^{a}\)Department of Psychiatry, National Disaster Medical Center, \(^{b}\)National Center of Neurology and Psychiatry, and \(^{c}\)CREST, Japan Science and Technology Agency, Tokyo, \(^{d}\)Department of Public Health, Faculty of Medicine, and \(^{e}\)Department of Clinical Sciences, Institute of Natural Medicine, University of Toyama, Toyama, and \(^{f}\)Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan

It is known that severity of depression is associated with low levels of erythrocyte omega–3 polyunsaturated fatty acids (n–3 PUFA) [1] and serum brain-derived neurotrophic factor (BDNF) [2]. Dietary n–3 PUFA promote the maturation of neurons and hippocampal neurogenesis in adult rats [3] and have been found to increase the levels of BDNF in rat hippocampus [4, 5]. BDNF exerts various effects on the nervous system, including neuronal outgrowth, differentiation, synaptic connectivity as well as neuronal repair and survival during development and in adulthood [6–8]. These findings indicate that supplementation with n–3 PUFA enhances the effect of BDNF-related synaptic plasticity and neurogenesis.

Recently, Kitamura et al. [9] have shown that hippocampal neurogenesis contributes to the clearance of artificially induced fear memory in mice. It is suggested that adult neurogenesis may play a role in the periodic clearance of hippocampal memory traces in contextual fear conditioning. Therefore, we hypothesized that n–3 PUFA-induced neurogenesis occurring early in the transition period might, by increasing BDNF, facilitate the clearance of fear memory and attenuate posttraumatic distress as a consequence. The aims of the present study were to answer the following questions: whether supplementation with n–3 PUFA increases serum levels of BDNF, and whether change in serum BDNF is associated with the alleviation of posttraumatic distress at follow-up in our pilot trial [10].

From among 122 consecutive patients who were recruited from the intensive care unit of the National Disaster Medical Center within 240 h of accidental injury during a 23-week period, 27 met the inclusion criteria. Of these 27 eligible patients, 15 agreed to and provided prior written informed consent to participate in the study. The study protocol was reviewed and approved by the institutional review boards and registered at http://clinicaltrials.gov/ as NCT00671489. Of the 15 patients enrolled, 11 completed the 12-week follow-up. Three patients cancelled a visit at the last minute and I lost contact after the 4-week follow-up visit. Patients who completed the trial did not significantly differ from those who did not complete the trial in terms of sex, age, vital signs, and injury severity score [11], Glasgow Coma Scale [12] and posttraumatic distress inventory scores [13].

A total of 7 n–3 PUFA capsules (Kentech Co. Ltd., Japan) containing 1,470 mg docosahexaenoic acid (22:6 n–3) and 147 mg eicosapentaenoic acid (20:5 n–3) were administered daily for 12 weeks in an open-label fashion. Trained psychiatrists assessed posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) by structured clinical interviews [14, 15] at weeks 4 and 12. The interrater reliability for diagnosis of PTSD and MDD was reliable, with \(k\) values of 1.0 and 0.9, respectively [16]. To assess the serum BDNF levels, 7–10 ml of whole blood were obtained in ethylenediaminetetraacetic acid tubes in the emergency room (week 0), and in week 4 and week 12. Serum BDNF levels were measured using the BDNF Emax Immunoassay System Kit (Promega, Madison, Wisc., USA).

The difference between serum BDNF levels at weeks 0 and 12 was compared by paired \(t\) test. Scatter plots show the association between the changes in serum BDNF levels and posttraumatic distress as determined by the structured interview at weeks 4 and 12. The distress group consisted of those patients who met the criteria for MDD or PTSD during the trial. We then examined the intergroup differences in changes in serum BDNF levels from week 0 to the endpoint at week 12 using the Wilcoxon rank-sum test. All tests were two-sided, and \(p < 0.05\) was considered statistically significant.

During the first 4 weeks after accident, 1 patient met the criteria for PTSD and remained essentially the same at week 12. Another patient met the criteria for MDD at the 4-week follow-up, but symptoms had disappeared at the 12-week follow-up. Overall, serum BDNF levels were significantly elevated from week 0 to week 12 (\(n = 11\); 52.36 ng/ml (SD = 16.69) vs. 79.83 ng/ml (SD = 13.79); \(p = 0.001\)), although they were largely unchanged in the distress group (fig. 1). Changes in BDNF levels between weeks 0 and 12 were significantly greater in the nondistressed group than in the distress group (median 33.5 ng/ml, range 8.5–56.0 vs. median 5.4 ng/ml, range 4.4–6.4; \(p = 0.037\)). There was no significant association between changes in serum BDNF level and age, sex, injury severity score, vital signs or peritraumatic distress inventory score (data not shown).

We confirmed that supplementation with n–3 fatty acids increased serum BDNF levels. As shown in the figure, the changes seen in serum BDNF levels might be associated with reduced posttraumatic distress on follow-up. Although the present study
Letter to the Editor

Supplementation with n–3 PUFA increased serum BDNF levels in accident-injured patients. Solid lines (n = 2): patients who developed PTSD or MDD during the trial. Dotted lines (n = 9): patients who did not develop a psychiatric illness during the trial. Squares: patients who dropped out (n = 4). ER = Emergency room; 4W and 12W = 4- and 12-week follow-up assessments.

Fig. 1.

was not a placebo-controlled trial, the results suggest a potential role for BDNF in the prevention of posttraumatic distress by n–3 fatty acid supplementation.

As to previous research, an animal study indicated that a docosahexaenoic acid-enriched diet increased levels of pro-BDNF and mature BDNF in the hippocampus [4]. In a postmortem brain study, increased hippocampal BDNF expression was found in subjects treated with antidepressant medications compared with untreated subjects [17]. Serum BDNF levels in antidepressant-treated patients with MDD were higher than in untreated MDD patients [2]. In addition, Venna et al. [18] showed that dietary supplementation with n–3 PUFA containing 70% α-linolenic acids for more than 5 weeks exerted antidepressant-like effects, and was associated with an increase in hippocampal volume, an overexpression of synaptophysin and BDNF, and an increase in the number of newborn cells in mice. A significant correlation was found between n–3 PUFA consumption and gray matter volume in the amygdala, hippocampus and anterior cingulate cortex in healthy adults [19]. Against such a background, the preventive effect on posttraumatic distress of n–3 PUFA supplementation seen in the present study may well be due to an antidepressant effect, alongside structural and molecular changes occurring in the hippocampus. To overcome the limitations of our study such as the small sample size and the lack of a parallel control group, we have started a randomized controlled trial (NCT00671099).

Acknowledgments

We thank Prof. Kobayashi for his assistance with preparing bottled supplement. We thank Mss. Noguchi, Sakuma and Sano for their invaluable help with research coordination. We thank Mss. Akutsu and Kamoshida for data management, and Mss. Ishi-ma, Hamatani and Takebe for technical assistance with BDNF and fatty acid analysis.

Disclosure Statement

Dr. Y. Matsuoka has received research support from the Japan Science and Technology Agency, CREST, and the Japanese Ministry of Health, Labor and Welfare. Dr. D. Nishi has received research support from the Mental Health Okamoto Foundation, Toray Industries Inc., and the Foundation for Total Health Promotion. Dr. N. Yonemoto has received research support from the Japan Society for the Promotion of Science and the Japanese Ministry of Health, Labor and Welfare. Dr. K. Hamazaki has received research support from the Japan Society for the Promotion of Science and the Tamura Foundation for the Promotion of Science and Technology, and consultant fees from Polyene Project Inc. Dr. T. Hamazaki has received research support from the Open Research Center for Lipid Nutrition (Kinjo Gakuin University), Mochida Pharmaceutical Co. Ltd. and Nippon Suisan Kaisha Ltd., and consultant fees from Polyene Project Inc. Dr. K. Hashimoto has received research grants from the Japan Society for the Promotion of Science, the Japanese Ministry of Health, Labor and Welfare, and the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation of Japan.

References

1. Edwards R, Peer M, Shay J, Horrobin D: Omega–3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 1998;48:149–155.
2. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M: Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003;54:70–75.
3. Kawakita E, Hashimoto M, Shido O: Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 2006;139:991–997.
4. Wu A, Ying Z, Gomez-Pinilla F: Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 2008;155:751–759.
5. Wu A, Ying Z, Gomez-Pinilla F: Dietary omega–3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 2004;21:1457–1467.
6. Huang BJ, Reichardt LF: Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677–736.
7. Schinder AF, Poo M: The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 2000;23:639–645.
8. Hashimoto K, Shimizu E, Iyo M: Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 2004;45:104–114.
9. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K: Adult neurogenesis modulates the hippocampus–dependent period of associative fear memory. Cell 2009;139:814–827.
10. Matsuoka Y, Nishi D, Yonemoto N, Hamazaki K, Hashimoto K, Hamazaki T: Omega–3 fatty acids for secondary prevention of post-traumatic stress disorder after accidental injury: an open-label pilot study. J Clin Psychopharmacol 2010;30:217–219.
11 Baker SP, O’Neill B: The injury severity score: an update. J Trauma 1976;16:882–885.
12 Teasdale G, Jennett B: Assessment of coma and impaired consciousness: a practical scale. Lancet 1974;ii:81–84.
13 Nishi D, Matsuoka Y, Noguchi H, Sakuma K, Yonemoto N, Yanagita T, Homma M, Kanba S, Kim Y: Reliability and validity of the Japanese version of the Peritraumatic Distress Inventory. Gen Hosp Psychiatry 2009;31:75–79.
14 Asukai N, Hirohata S, Kato H, Konishi T: Psychometric properties of the Japanese-language version of the clinician-administered PTSD scale for DSM-IV (in Japanese). Jpn J Trauma Stress 2003;1:47–53.
15 Otsubo T, Tanaka K, Koda R, Shinoda J, Sano N, Tanaka S, Aoyama H, Mimura M, Kamijima K: Reliability and validity of Japanese version of the Mini-International Neuropsychiatric Interview. Psychiatry Clin Neurosci 2005;59:517–526.
16 Matsuoka Y, Nishi D, Nakajima S, Yonemoto N, Hashimoto K, Noguchi H, Homma M, Otomo Y, Kim Y: The Tachikawa cohort of motor vehicle accident study investigating psychological distress: design, methods and cohort profiles. Soc Psychiatry Psychiatr Epidemiol 2009;44:333–340.
17 Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT: Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260–265.
18 Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R: PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology 2009;34:199–211.
19 Conklin SM, Gianaros PJ, Brown SM, Yao JK, Hariri AR, Manuck SB, Muldoon MF: Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci Lett 2007;421:209–212.

Yutaka Matsuoka
Department of Adult Mental Health
National Institute of Mental Health
National Center of Neurology and Psychiatry
4-1-1 Ogawahigashi-cho, Kodaira
Tokyo 187-8553 (Japan)
Tel. +81 42 346 1975, Fax +81 42 346 1986
E-Mail yutaka@ncnp.go.jp