M-curves of degree 9 with three nests

Séverine Fiedler-Le Touzé

June 27, 2008

Abstract

The first part of Hilbert’s sixteenth problem deals with the classification of the isotopy types realizable by real plane algebraic curves of a given degree m. For $m = 9$ the classification of the M-curves is still wide open. Let C_9 be an M-curve of degree 9 and O be a non-empty oval of C_9. If O contains in its interior α ovals that are all empty, we say that O together with these α ovals, forms a nest. The present paper deals with the M-curves with three nests. Let $\alpha_i, i = 1, 2, 3$ be the numbers of empty ovals in each nest. We prove that at least one of the α_i is odd. This is a step towards a conjecture of A. Korchagin, claiming that at least two of the α_i should be odd.

1 Introduction

1.1 Real and complex schemes

The first part of Hilbert’s sixteenth problem deals with the classification of the isotopy types realizable by real plane algebraic curves of given degree. Let A be a real algebraic non-singular plane curve of degree m. Its complex part $C_A \subset \mathbb{C}P^2$ is a Riemannian surface of genus $g = (m - 1)(m - 2)/2$; its real part $R_A \subset \mathbb{R}P^2$ is a collection of $L \leq g + 1$ circles embedded in $\mathbb{R}P^2$. If $L = g + 1$, we say that A is an M-curve. A circle embedded in $\mathbb{R}P^2$ is called oval or pseudo-line depending on whether it realizes the class 0 or 1 of $H_1(\mathbb{R}P^2)$. If m is even, the L components of R_A are ovals; if m is odd, R_A contains exactly one pseudo-line, which will be denoted by J. An oval separates $\mathbb{R}P^2$ into a Möbius band and a disc. The latter is called the interior of the oval. An oval of R_A is empty if its interior contains no other oval. One calls exterior oval an oval that is surrounded by no other oval.

Two ovals form an injective pair if one of them lies in the interior of the other one. Let us call the isotopy type of $R_A \subset \mathbb{R}P^2$ the real scheme of A;
it will be described with the following notation due to Viro. The symbol \(\langle J \rangle \) stands for a curve consisting in one single pseudo-line; \(\langle n \rangle \) stands for a curve consisting in \(n \) empty ovals. If \(X \) is the symbol for a curve without pseudo-line, \(1\langle X \rangle \) is the curve obtained by adding a new oval, containing all of the others in its interior. Finally, a curve which is the union of 2 disjoint curves \(\langle A \rangle \) and \(\langle B \rangle \), having the property that none of the ovals of one curve is contained in an oval of the other curve, is denoted by \(\langle A\Pi B \rangle \). The classification of the real schemes which are realizable by \(M \)-curves of a given degree in \(\mathbb{R}P^2 \) is part of Hilbert’s sixteenth problem. This classification is complete up to degree 7. For \(m \geq 8 \), one restricts the study to the case of the \(M \)-curves. The classification is almost complete for \(m = 8 \), and still wide open for \(m = 9 \). A systematic study of the case \(m = 9 \) has been done, the main contribution being due to A. Korchagin. See e.g. [11], [8], [9], [10], [13] for the constructions, and [6], [7], [11], [1], [3], [4], [14], [15] for the restrictions.

Let us briefly recall some facts about complex orientations. The complex conjugation \(\text{conj} \) of \(\mathbb{C}P^2 \) acts on \(\mathbb{C}A \) with \(\mathbb{R}A \) as fixed points sets. Thus, \(\mathbb{C}A \setminus \mathbb{R}A \) is connected, or splits in 2 homeomorphic halves which are exchanged by \(\text{conj} \). In the latter case, we say that \(A \) is dividing. Let us now consider a dividing curve \(A \) of degree \(m \), and assume that \(\mathbb{C}A \) is oriented canonically. We choose a half \(\mathbb{C}A_+ \) of \(\mathbb{C}A \setminus \mathbb{R}A \). The orientation of \(\mathbb{C}A_+ \) induces an orientation on its boundary \(\mathbb{R}A \). This orientation, which is defined up to complete reversion, is called complex orientation of \(A \). One can provide all the injective pairs of \(\mathbb{R}A \) with a sign as follows: such a pair is positive if and only if the orientations of its 2 ovals induce an orientation of the annulus that they bound in \(\mathbb{R}P^2 \). Let \(\Pi_+ \) and \(\Pi_- \) be the numbers of positive and negative injective pairs of \(A \). If \(A \) has odd degree, each oval of \(\mathbb{R}A \) can be provided with a sign: given an oval \(O \) of \(\mathbb{R}A \), consider the Möbius band \(\mathcal{M} \) obtained by cutting away the interior of \(O \) from \(\mathbb{R}P^2 \). The classes \([O] \) and \([2J] \) of \(H_1(\mathcal{M}) \) either coincide or are opposite. In the first case, we say that \(O \) is negative; otherwise \(O \) is positive. Let \(\Lambda_+ \) and \(\Lambda_- \) be respectively the numbers of positive and negative ovals of \(\mathbb{R}A \). The complex scheme of \(A \) is obtained by enriching the real scheme with the complex orientation: let e.g. \(A \) have real scheme \(\langle J \Pi I_1(\alpha) \Pi \beta \rangle \). The complex scheme of \(A \) is encoded by \(\langle J \Pi I_\epsilon(\alpha_+ \Pi \alpha_-) \Pi \beta_+ \Pi \beta_- \rangle \) where \(\epsilon \in \{+,-\} \) is the sign of the non-empty oval; \(\alpha_+, \alpha_- \) are the numbers of positive and negative ovals among the \(\alpha \); \(\beta_+, \beta_- \) are the numbers of positive and negative ovals among the \(\beta \) (remember that all signs are defined with respect to the orientation of \(J \)).
Rokhlin-Mishachev formula: If $m = 2k + 1$, then
$$2(\Pi_+ - \Pi_-) + (\Lambda_+ - \Lambda_-) = L - 1 - k(k + 1)$$

Fiedler theorem: Let $L_t = \{L_t, t \in [0, 1]\}$ be a pencil of real lines based in a point P of $\mathbb{R}P^2$. Consider two lines L_{t_1} and L_{t_2} of L_t, which are tangent to $\mathbb{R}A$ at two points P_1 and P_2, such that P_1 and P_2 are related by a pair of conjugated imaginary arcs in $\mathbb{C}A \cap (\bigcup L_t)$.

Orient L_{t_1} coherently to $\mathbb{R}A$ in P_1, and transport this orientation through L_t to L_{t_2}. Then this orientation of L_{t_2} is compatible to that of $\mathbb{R}A$ in P_2.

1.2 Results

The main result of the present paper is the following

Theorem 1 Let C_9 be an M-curve of degree 9 with real scheme $\langle J \Pi 1(\alpha_1) \Pi 1(\alpha_2) \Pi 1(\alpha_3) \Pi \beta \rangle$. At least one of the $\alpha_i, i = 1, 2, 3$ is odd.

This Theorem represents a step towards a conjecture from [8].

Conjecture 1 Let C_9 be an M-curve of degree 9 with real scheme $\langle J \Pi 1(\alpha_1) \Pi 1(\alpha_2) \Pi 1(\alpha_3) \Pi \beta \rangle$. At least two of the $\alpha_i, i = 1, 2, 3$ are odd.

Theorem 1 prohibits the 53 real schemes $\langle J \Pi 1(\alpha_1) \Pi 1(\alpha_2) \Pi 1(\alpha_3) \Pi \beta \rangle$ ($\alpha_1 + \alpha_2 + \alpha_3 + \beta = 25, \alpha_1 \leq \alpha_2 \leq \alpha_3$) with $\alpha_1, \alpha_2, \alpha_3$ even. Among them, the 12 ones with $\beta = 1$ had already been excluded by A. Korchagin in [11]. The proof is an improvement of the classical restriction methods. The latters combine Bezout’s theorem with auxiliary lines or conics, the Rokhlin and Rokhlin-Mishachev formulas, and Fiedler’s theorem. We use supplementarily rational cubics and quartics (single curves or pencils of such curves), and Orevkov’s complex orientation formulas for M-curves of degree $4d + 1$ with 4 nests [17]. All of the arguments, and hence the statements, are also valuable for pseudo-holomorphic curves.

We prove also a few results on complex orientations and rigid isotopy for the curves C_9 with some α_i odd.

2 First properties

2.1 Descriptive lemmas and definitions

Let C_9 be an M-curve of degree 9. Given an empty oval X of C_9, we often will have to consider one point chosen in the interior of X. For simplicity,
we shall call this point also X. In the following, it will be clear from the context whether we speak of the oval or of the point X. We denote the pencil of lines based in X by \mathcal{F}_X. Let $[XY]$, and $[XY]'$ be the two segments of line determined by X and Y, cutting \mathcal{J} respectively an even and an odd number of times. We say that $[XY]$ is the principal segment determined by X, Y. Let X, Y, Z be three ovals of C_9. Corresponding three points X, Y and Z determine 4 triangles of $\mathbb{R}P^2$. We will call principal triangle and denote by $\triangle XYZ$ the triangle whose sides are the principal segments $[XY]$, $[YZ]$ and $[ZX]$. Let C_2 be a conic passing through 5 points A, B, C, D, E, in this ordering. Then, we write $C_2 = ABCDE$. If F lies in the interior of C_2, we write $F \in C_2$.

Definition 1 An ordered group of empty ovals F_1, \ldots, F_n of C_9 is said to lie in a convex position if for each triple F_i, F_j, F_k, the principal triangle $F_iF_jF_k$ does not contain any other oval of the group and F_1, \ldots, F_n are the successive vertices of $\bigcup F_iF_jF_k$ (the convex hull of the group).

Definition 2 Let O be a non-empty oval of C_9. We will say that C_9 has a jump in O if there exist 2 empty ovals B and C inside of O, and 2 empty ovals A and D outside of O, such that: A lies inside of an oval O' different from O, and a line passing through A and D separates B and C in $\text{Int}(O)$ (Figure 1).

Let C_9 have real scheme $\langle \mathcal{J} II 1\langle \alpha_1 \rangle II 1\langle \alpha_2 \rangle II 1\langle \alpha_3 \rangle II \beta \rangle$. We shall call nest O_i each configuration $1\langle \alpha_i \rangle$ formed by O_i and its interior ovals. Let O_1, O_2, O_3 be the non-empty ovals of C_9, and $A_i, i = 1, 2, 3$ be empty ovals
of O_3. The lines A_1A_2, A_2A_3, A_3A_1 and the pseudo-line J separate $\mathbb{R}P^2$ in 4 triangles T_0, T_1, T_2, T_3 and 3 quadrangles Q_1, Q_2, Q_3. Notice that, by Bezout's theorem, J does not cut T_0 (Figure 2).

The lemmas 1, 2, 3, 5 hereafter are proven in the article [3].

Lemma 1 If C_9 has a jump, then D is exterior.

Lemma 2 Assume C_9 has a jump, say in O_3. Let A, B, C, D be ovals giving rise to the jump, with A interior to $O_i, i = 1$ or 2. Let A' be any other empty oval in $O_1 \cup O_2$. Then, A', B, C, D also give rise to a jump.

Definition 3 Let O be a non-empty oval of C_9 and S be an oval of C_9 lying inside of another non-empty oval O'. The curve C_9 has n jumps in O with repartition (l_1, \ldots, l_{2n+1}) if a pencil of lines F_S sweeping out O meets successively $2n + 1$ groups of ovals, which are situated alternatively in, out, \ldots, in $\text{Int}(O)$ and have cardinals l_1, \ldots, l_{2n+1}.

It follows from Lemma 2 that the number of jumps in O and their repartition does not depend on the choice of S. Thus Definition 3 is correct.

Lemma 3 Let C_9 have a jump in O_3. Let $B, C \in \text{Int}(O_3)$ and D exterior be such that for any $A \in \text{Int}(O_i), i = 1, 2$, the line AD separates B from C in $\text{Int}(O_3)$. Up to permutation of B, C, the ovals A_1, A_2, C, D, B lie in convex position.
When we consider a curve C_9 with a jump, we actually ignore which of the two segments $[AD]$, $[AD]'$ cuts O_3. Figure 3 shows both possibilities.

Lemma 4 Let $\{i, j, k\} = \{1, 2, 3\}$. All of the lines through 2 ovals interior to O_i cut the same segment of line $[A_jA_k]$ or $[A_jA_k]'$.

Proof Assume $i = 1$. Let A, B, C be 3 ovals in $\text{Int}(O_1)$. By Bezout’s theorem with the conic through A, B, C, A_2, A_3, the lines AB, AC, BC must all cut the same segment $[A_2A_3]$ or $[A_2A_3]'$. □

Definition 4 A non-empty oval O_i of C_9 is separating if any line (AA') joining two ovals of $\text{Int}(O_i)$ cuts the principal segment $[A_2A_3]$. Otherwise, O_i is non-separating.

Lemma 5 The curve C_9 has at most one jump.

Lemma 6 If C_9 has a jump in O_i, then O_i is non-separating.

Proof This follows immediately from Lemma 3.

Definition 5 Let C_9 have a jump in O_3, and A be any empty oval of $O_1 \cup O_2$. If O_3 cuts the principal segment $[AD]$, then O_3 is crossing, otherwise O_3 is non-crossing.

Lemma 7 Let C_9 have a jump in O_3.

1. If O_3 is crossing, there are no ovals in T_3.
2. If O_3 is non-crossing, there are no ovals in $T_0 \cup T_1 \cup T_2$.

Proof Let C_2 be the conic through A_1, A_2, B, C, E. 6
1. Let $E \in T_3$. One has a priori $C_2 = A_1EA_2CB$ or BA_1CA_2E. Applying Bezout’s theorem with C_9, one gets: $C_2 = A_1EA_2CB$, and the arc CB of C_2 lies inside of O_3. Thus, $D \notin C_2$, and $E \in A_1A_2CDB$. The conic A_1A_2CDB cuts C_9 at 20 points. Contradiction.

2. Let $E \in T_0$, then $C_2 = A_1EA_2BC$ cuts C_9 at 20 points. Let $E \in T_1 \cup T_2$. By symmetry, we can suppose that $E \in T_1$. One has a priori $C_2 = A_1A_2ECB$ or A_1A_2BCE. By Bezout’s theorem with C_9, one must have $C_2 = A_1A_2ECB$, and the arc CB of C_2 lies inside of O_3. Thus $D \in C_2$ and $E \in A_1A_2CDB$. The conic A_1A_2CDB cuts C_9 at 20 points. Contradiction.

\[\square \]

2.2 Complex orientations

Let a_i^\pm be the numbers of positive and negative interior ovals of the nest O_i. Let A be any empty oval of $O_j \cup O_k$. Consider the pencil of lines \mathcal{F}_A, sweeping out O_i. By Fiedler’s theorem, the empty ovals met by this pencil have alternating orientations. It follows from lemmas 1, 2 and 4 that the ordering of the ovals in the chain is independent from the choice of A. There is at most one jump in O_i, thus $|a_i^+ - a_i^-| \leq 2$. The equality occurs if and only if O_i has a jump with repartition l_1, l_2, l_3, with each $l_n, n = 1, 2, 3$ odd. Let us call \textit{principal ovals} the ovals $O_1, O_2, O_3, A_1, A_2, A_3$. Let us call \textit{base ovals} the empty principal ovals A_1, A_2, A_3. Denote by $\epsilon_n, n = 1, 2, 3, 4, 5, 6$, $\epsilon_n \in \pm 1$ the respective contributions of these 6 ovals to $\Lambda_+ - \Lambda_-$. Let $\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6$ be the contributions to $\Lambda_+ - \Lambda_-$ brought respectively by the non-principal ovals of the zones $T_0, Q_1, Q_2, Q_3, T_1, T_2, T_3$.

Lemma 8 One has:

- $\lambda_0 + \lambda_1 - \lambda_4 = -\frac{1}{2}(\epsilon_3 + \epsilon_6 + \epsilon_2 + \epsilon_5)$,
- $\lambda_0 + \lambda_2 - \lambda_5 = -\frac{1}{2}(\epsilon_3 + \epsilon_6 + \epsilon_1 + \epsilon_4)$,
- $\lambda_0 + \lambda_3 - \lambda_6 = -\frac{1}{2}(\epsilon_2 + \epsilon_5 + \epsilon_1 + \epsilon_4)$,
- $3\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5 - \lambda_6 + \sum \epsilon_i = 0$,
- $2(\lambda_0 - \lambda_4 - \lambda_5 - \lambda_6) = -(\Lambda_+ - \Lambda_-)$.

Proof Apply Fiedler’s Theorem to the pencils of lines $\mathcal{F}_{A_1} : A_3 \rightarrow T_0 \cup Q_1 \cup T_1 \rightarrow A_2$, $\mathcal{F}_{A_2} : A_1 \rightarrow T_0 \cup Q_2 \cup T_2 \rightarrow A_3$ and $\mathcal{F}_{A_3} : A_2 \rightarrow T_0 \cup Q_3 \cup T_3 \rightarrow A_1$. The last identity is obtained substracting $\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6 + \sum \epsilon_i = \Lambda_+ - \Lambda_-$ from the fourth identity. \(\square \)

Lemma 9 If α_i is odd, then the oval O_i is non-separating.
Proof Let O_1 be separating. By lemma 6, O_1 has no jump. Consider
the Fiedler chain formed by the empty ovals in $Int(O_1)$. Let A_1 and A'_1 be
the 2 extreme ovals of this chain, such that $A'_1 \in T_0$ and $A_1 \in T_1$. Take as
base ovals first the triple (A_1, A_2, A_3) and then the triple (A'_1, A_2, A_3). For
either case, we write the contributions of the triangles, the quadrangles and
the base ovals to $\Lambda_+ - \Lambda_-$. One has: $\epsilon'_i = \epsilon_i$ for $i = 1, 2, 3, 5, 6$;
$\lambda'_i = \lambda_i$ for $i = 1, 2, 3, 5, 6$.

1. α_1 even, A_1 positive:
 \[\lambda'_0 = \lambda_0 + 1, \lambda'_4 = \lambda_4 + 1, \epsilon_4 = 1, \epsilon'_4 = -1\]
2. α_1 even, A_1 negative:
 \[\lambda'_0 = \lambda_0 - 1, \lambda'_4 = \lambda_4 - 1, \epsilon_4 = -1, \epsilon'_4 = 1\]
3. α_1 odd, A_1 positive:
 \[\lambda'_0 = \lambda_0 - 1, \lambda'_4 = \lambda_4 + 1, \epsilon_4 = \epsilon'_4 = 1\]
4. α_1 odd, A_1 negative:
 \[\lambda'_0 = \lambda_0 + 1, \lambda'_4 = \lambda_4 - 1, \epsilon_4 = \epsilon'_4 = -1\]

Write the fourth identity in Lemma 8 for either choice of the base ovals.
Subtracting the one identity from the other, one gets:
\[3(\lambda_0 - \lambda'_0) - (\lambda_4 - \lambda'_4) - (\epsilon_4 - \epsilon'_4) = 0.\]
The two cases where α_1 is odd yield a contradiction. \(\square\)

3 Inequalities

Let C_9 be, as in the previous section, an M-curve of degree 9 with real scheme
\[\langle J \Pi_1 \alpha_1 \Pi_1 \alpha_2 \Pi_1 \alpha_3 \Pi \beta \rangle.\]
Let us perform a Cremona transformation $cr : (x_0 : x_1 : x_2) \rightarrow (x_1 x_2 : x_0 x_2 : x_0 x_1)$ with base points A_1, A_2, A_3.
We shall denote the respective images of the lines $(A_1 A_2), (A_2 A_3), (A_3 A_1)$
by A_3, A_1, A_2. For the other points, we use the same notation as before cr. The curve C_9 is mapped onto a curve C_{18} of degree 18 with 3 singular
points. We shall call main part of C_{18} the piece formed by the images of J
and the principal ovals. See Figure 4 where $cr(A_i)$ and $cr(O_i)$ stand for the
images of the ovals A_i and O_i.

An oval A of C_{18} will be said to be interior, exterior, positive or negative
if its preimage is. Let $O = cr(J)$. One has $Int(O) = cr(T_0 \cup T_1 \cup T_2 \cup T_3)$,
$Ext(O) = cr(Q_1 \cup Q_2 \cup Q_3)$. The ovals of $Int(O)$ and their preimages will
be called O-inner ovals; the ovals of $Ext(O)$ and their preimages will be
called O-outer ovals.
Figure 4: The singular curve C_{18}

Definition 6 A base line A_iA_j and a conic C_2 are mutually maximal if C_2 cuts A_iA_j and C_2 cuts each component $cr(O_k)$ and $cr(A_k)$ at 4 points.

Lemma 10 Let $\{i, j, k\} = \{1, 2, 3\}$. If a base point A_i lies inside of a conic C_2, then the two base lines A_iA_j and A_iA_k are maximal with respect to C_2.

Proof Let $P_1, P_1' = C_2 \cap (A_2A_3)$, $P_2, P_2' = C_2 \cap (A_1A_3)$ and $P_3, P_3' = C_2 \cap (A_1A_2)$. If A_i lies inside of C_2, then C_2 meets P_k, P_j, P_k', P_j' in this ordering. Each arc joining two consecutive points cuts $cr(O_k), cr(A_k), cr(O_j)$ and $cr(A_j)$.

Lemma 11 Let C_2 be a conic passing through 5 ovals $B_1, \ldots B_5$ of C_{18}. Let A_i, A_j be 2 of the base points, lying outside of C_2, such that the line A_iA_j cuts C_2. If any of the following conditions is verified, then A_iA_j is maximal with respect to C_2.

1. Each arc of $C_2 \setminus (C_2 \cap A_iA_j)$ passes through an oval B_m that is exterior to $cr(O_k)$, or cuts O.

2. $\text{Int}(C_2) \cup \text{Int}(O)$ is orientable and A_i, A_j lie on different arcs of $O \setminus (O \cap C_2)$,

9
We leave the proof to the reader.

Lemma 12 Let C_2 be a conic passing through 5 ovals B_1, \ldots, B_5 of C_{18}, and having at least 4 intersection points with \mathcal{O}. Then one of the three base lines, say A_1A_2 is non-maximal with respect to C_2, and the points A_1, A_2 lie outside of C_2.

Proof If the three base lines are maximal with respect to C_2, then C_2 cuts the images of the principal ovals at 24 points, \mathcal{O} at 4 points, and the union $\cup B_i, i = 1, \ldots, 5$ at 10 points. Contradiction. A base line, say A_1A_2 is non-maximal; Lemma 10 implies that A_1, A_2 lie outside of C_2. □

Lemma 13 Let $C_2 = B_1B_2B_3B_4B_5$ verify: $\text{Int}(\mathcal{O}) \cup \text{Int}(C_2)$ is orientable, B_1, B_5 are \mathcal{O}-outer ovals, and each arc B_iB_{i+1}, $i = 1, \ldots, 4$ of C_2 cuts \mathcal{O} an odd number of times. Then the arc B_5B_1 of C_2 does not cut \mathcal{O}. One of the base lines, say A_1, A_2 is non-maximal for C_2 and the arc s of $\mathcal{O} \setminus (\mathcal{O} \cap C_2)$ containing A_1, A_2 has endpoints on two consecutive arcs of $C_2 = B_1B_2B_3B_4B_5$.

Proof Lemma 12 implies that a base line, say A_1A_2, is non-maximal for C_2; by Lemma 11 (2), the points A_1, A_2 lie on the same arc s of $\mathcal{O} \setminus (\mathcal{O} \cap C_2)$, that is exterior to C_2. Bezout’s theorem applied to C_{18} with the lines B_lB_m implies that the endpoints of s are either on two consecutive arcs of C_2, or on the same arc of C_2. In the first case, one can assume that the consecutive arcs are B_1B_2, B_4B_3. Assume that B_5B_1 cuts \mathcal{O} and consider the conics $C_2(A_1) = A_1B_3B_4B_5B_1$ and $C_2(A_2) = A_2B_3B_4B_5B_1$. Both of them cut \mathcal{O} at 6 points (Figure 5). One of the base points A_j, $j = 2, 1$ lies in the interior of the conic $C_2(A_i), i = 1, 2$. The preimage of $C_2(A_i)$ is a rational cubic $C_3(A_i)$ passing through $A_1, A_2, A_3, B_3, B_4, B_5, B_1$, with double point at A_i (Figure 6). This cubic cuts: each of the ovals A_i, O_i at 4 points, each of the other base ovals A_k, O_k, A_j, O_j at 2 points, the set $\{B_3, B_4, B_5, B_1\}$ at 8 points, and \mathcal{J} at 5 points. Hence in total 29 intersection points with C_9. Contradiction. In the second case, one can assume that the endpoints of s are on B_1B_2, B_2B_3, or B_3B_4. With similar arguments as above, one gets again a contradiction, letting $C_2(A_i), i = 1, 2$ be respectively: $A_1B_2B_3B_4B_5$, $A_1B_4B_5B_1B_2$ and $A_1B_1B_2B_3B_4$. □

Lemma 14 The curve C_{18} cannot contain a configuration of 6 ovals $B_1, D_3, B_2, D_1, B_3, D_2$ lying in convex position, with $B_i \in \text{Int}(\mathcal{O})$, $D_i \notin \text{Int}(\mathcal{O})$
Figure 5: The arc B_1B_5 of C_2 cuts O

Figure 6:
Figure 7: Convex configuration of 6 ovals of C_{18}

Proof Let B_i, D_i verify the conditions of the Lemma (Figure 7). The 6 segments $[B_iD_j]$ bounding the convex hull of the 6 points cut each \mathcal{O} once. Consider the 3 conics $B_1D_3D_1B_2, B_3D_2D_3B_1$ and $B_2D_1D_2B_1D_3$. If C_2 is one of these 3 conics, let 2 base points lie on the same exterior arc of $\mathcal{O} \setminus (\mathcal{O} \cap C_2)$. By Lemma 13, these points lie in the interior of one of the other 2 conics (Figure 8). Contradiction. □

In the proofs of the next two propositions, we consider conics passing through some empty ovals of C_{18}. Several times, we find a conic that is maximal with respect to the 3 base lines. The maximality follows always from Lemma 11 (1): each base line separates on this conic a pair of exterior ovals. Let L, L' be 2 lines and D be a point, we denote by (L, L', \hat{D}) the sector (L, L') that does not contain D.

Proposition 1 Let the base ovals A_1, A_2, A_3 of C_9 be such that T_0 contains only exterior ovals of C_9. One has $|\lambda_0| \leq 3$. If $\lambda_0 = \pm 3$, then $\sum \epsilon_i = \mp 6$ and $\alpha_1, \alpha_2, \alpha_3$ are all even.

Proof Notice that the choice of A_i is unique if O_i is separating, and arbitrary if O_i is non-separating. Perform the cremona transformation cr, and denote by $B_i, i = 1, \ldots, n$ the ovals of C_{18} lying in T_0. Assume there exist B_i, B_j, B_k, B_l such that B_l lies in the triangle $B_iB_jB_k$ that does not cut the base lines. Consider the pencil of conics $\mathcal{F}_{B_iB_jB_kB_l}$, the conics of this pencil are all maximal with respect to the 3 base lines. Perform cr^{-1}, one obtains a pencil of rational quartics passing through $A_1, A_2, A_3, B_i, B_j, B_k, B_l$, the first 3 points being double points. Any quartic of the pencil meets: the
union of the principal ovals at 24 points, the set of ovals \(\{B_i, B_j, B_k, B_l\} \) at 8 points, and \(\mathcal{J} \) at 4 points. Hence in total 36 intersection points with \(C_9 \). The other empty ovals of \(C_9 \) cannot be swept out. Contradiction. Thus, the ovals of \(T_0 \) lie in convex position in this triangle. Consider the maximal pencils of lines \(\mathcal{F}_{B_i} \). Each of them gives rise to a cyclic ordering of all other ovals of \(C_{18} \). Consider two ovals \(B_i, B_j \) that are consecutive for some pencil \(\mathcal{F}_{B_k} \). Then, they are consecutive for any pencil based in another empty oval \(D \). Indeed, assume that \(B_iB_j \) are not consecutive for some pencil \(\mathcal{F}_D \). There exists a conic \(C_2 \) passing through \(B_i, B_j, B_k, D \) and a fifth oval, that is maximal with respect to the 3 base lines and cuts \(\mathcal{O} \) at 4 points, which is impossible. Thus, one may speak of a Fiedler chain of ovals in \(T_O \), without refering to a base point. Assume \(|\lambda_0| \geq 3\), so there are at least 3 distinct Fiedler chains of ovals in \(T_O \). Let \(B_1, B_2, B_3 \) be 3 extreme ovals of 3 such chains, with the same sign. Let \(\{i, j, k\} = \{1, 2, 3\} \), and denote by \([B_iB_j] \) the segment \(B_iB_j \) contained in \(T_0 \). The pencil of lines \(\mathcal{F}_{B_i} \) sweeping out \([B_jB_k]\) must meet an oval \(D_i \) outside of \(T_O \), hence comes a configuration of 6 ovals. Consider the 3 conics determined by the 3 ovals in \(T_0 \) and 2 of the other ovals. By Bezout’s theorem with \(C_{18} \), these conics are: \(B_1D_3B_2D_1B_3, B_2D_1B_3D_2B_1, B_3D_2B_1D_3B_2 \). To each conic determined by 5 given points, we associate the pentagon having these points as vertices. Choose a line at infinity \(L \) that does not cut any of the pentagons interior to the 3 conics. The points \(B_1, D_3, B_2, D_1, B_3, D_2 \) lie in convex position in the affine plane \(\mathbb{R}P^2 \setminus L \). The hexagon \(\mathcal{H} = B_1D_3B_2D_1B_3D_2 \) gives rise to a natural cyclic ordering of the 6 lines supporting its edges. Let \(Z_k, k \in \{1, \ldots, 6\} \) be the
following facts. Let
rise to a cyclic ordering of all other ovals of
in

\[B \]
\[C \]
are consecutive for some pencil
\[\mid \]
interior pentagons. The points
conics determined by the 3 ovals
\[B \]
\[\lambda \]
T
splits into 6 successive groups, that are alternatively inside and outside of
\[T_0 \]
By Fiedler’s theorem:
\[\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 - \lambda_4 - \lambda_5 - \lambda_6 = 0 \]
Combining this with the fourth identity in Lemma 8, one gets:
\[2\lambda_0 = -\sum \epsilon_i \]
Thus,
\[|\lambda_0| \leq 3 \]
and if
\[\lambda_0 = \pm 3 \]
than
\[\sum \epsilon_i = \mp 6 \]
If
\[|\lambda_0| = 3 \]
then
\[C_9 \]
sweeping out the 6 triangles, and the pencils
\[F_{D_i} \]
\[i = 1, 2, 3 \]
sweeping out the 4 triangles that do not have
\[D_i \]
as vertex. The cyclic chain of ovals splits into 6 successive groups, that are alternatively inside and outside of
\[T_0 \]
Consider 2 ovals
\[B_i, \]
that are consecutive for some pencil
\[F_{B_k} \]
Then,
\[B_iB_j \]
are consecutive for any other pencil
\[F_D \]
based in another empty oval
\[D \]
Thus, one may speak of a Fiedler chain of ovals in
\[cr(T_i) \]
without referring to a base point. Assume that
\[|\lambda_{l+3}| \geq 3 \]
so there are at least 3 distinct Fiedler chains of ovals in
\[cr(T_i) \]
Let
\[B_1, B_2, B_3 \]
be 3 extreme ovals of 3 such chains, with the same sign.
Let \[\{i, j, k\} = \{1, 2, 3\} \]
and denote by
\[[B_iB_j] \]
the segment
\[B_iB_j \]
contained by
\[c(T_i) \]
The pencil of lines
\[F_{B_i} \]
sweeping out
\[[B_jB_k] \]
meet an oval
\[D_i \notin \{B_1, \ldots, B_n\} \]
hence comes a configuration of 6 ovals. Consider the 3 conics determined by the 3 ovals
\[B_1, B_2, B_3 \]
and 2 of the other ovals. By Bezout’s theorem with
\[C_{18} \]
these conics are:
\[B_1D_3B_2D_1B_3, B_2D_1B_3D_2B_1, B_3D_2B_1D_3B_2 \]
Choose a line at infinity
\[L \]
that does not cut any of the 3 interior pentagons. The points
\[B_1, D_3, B_2, D_1, B_3, D_2 \]
lie in convex position in the affine plane
\[\mathbb{R}P^2 \setminus L \]
The hexagon
\[H = B_1D_3B_2D_1B_3D_2 \]
gives rise to a natural cyclic ordering of the 6 lines supporting its edges. Let
\[Z_k, k \in \{1, \ldots, 6\} \]
be the 6 triangles that are supported by triples of consecutive
lines, such that Z_k and \mathcal{H} intersect along an edge. All of the remaining ovals of C_{18} lie in $\cup Z_k$. There is a natural cyclic ordering of the empty ovals of C_{18} given by the pencils of lines $\mathcal{F}_{B_i}, i = 1, 2, 3$ sweeping out the 6 triangles, and the pencils $\mathcal{F}_{D_i}, i = 1, 2, 3$ sweeping out the 4 triangles that do not have D_i as vertex. By Lemma 14, one of the D_i, say D_1 lies inside of \mathcal{O}. Let $T = cr(Q_1) \cup cr(T_1)$ be the triangle $A_1A_2A_3$ containing the B_j. If a $D_i, i \in \{2, 3\}$ lies in T, then D_i lies in $cr(Q_i)$. Whatever triangle $A_1A_2A_3$ contains D_i, either line B_1D_3, B_1D_2 must cut \mathcal{O} twice in T. Thus, the ovals D_2 and D_3 lie outside of \mathcal{O}. Let Z_1, Z_2 be the triangles having D_1 as a vertex, they contain only \mathcal{O}-inner ovals. If X is an \mathcal{O}-inner oval in $Z_3 \cup Z_4 \cup Z_5 \cup Z_6$, then $X \in \{B_1, \ldots, B_n\}$. The pencil of lines \mathcal{F}_{D_3} sweeping out \mathcal{O} meets successively \mathcal{O}-inner, \mathcal{O}-outer and again \mathcal{O}-inner ovals. □

4 M-curves with three nests and a jump

4.1 Pencils of rational cubics

Let C_9 be an M-curve of degree 9 with three nests and a jump. See Figure 3 where one makes $A_3 = B$. The 21 ovals of $C_9 \setminus \{O_1, O_2, O_3, A_1, A_2, A_3, C\}$ are swept out by the pencil of conics $\mathcal{F}_{A_1A_2A_3C} : A_1A_3 \cup A_2C \to A_1A_2 \cup A_3C \to A_2A_3 \cup A_1C$ if O_3 is crossing, and by the pencil of conics $\mathcal{F}_{A_1A_2A_3C} : A_1A_3 \cup A_2C \to A_1A_2 \cup A_3C$ if O_3 is non-crossing. In both cases, the 21 ovals are distributed in two Fiedler chains. Denote by P, Q the pair of starting points of the chains, where P is a points of tangency with O_3 and Q is a point of tangency with J. Denote by P', Q' the endpoints of the chains, where P' is a points of tangency with O_3 and Q' is a point of tangency with J. The pair of Fiedler chains is then: $\langle P \to P', Q \to Q' \rangle$ or $\langle P \to Q', Q \to P' \rangle$. Perform the cremona transformation cr based in A_1, A_2, A_3. The upper and lower part of Figure 9 show either case O_3 crossing and O_3 non-crossing.

Lemma 15 Let C_9 be an M-curve of degree 9 with three nests and a jump. All of the ovals in $T_0 \cup T_1 \cup T_2 \cup T_3$ are consecutive for the maximal portion of $\mathcal{F}_{A_1A_2A_3C}$ formed by conics intersecting J. If O_3 is crossing, they form a Fiedler chain: \mathcal{O}-inner ovals $\to P'$. Thus, $\lambda_0 - \lambda_1 = \lambda_5 = 0$ or $-\epsilon_3$. If O_3 is non-crossing, they form a Fiedler chain: $P \to \mathcal{O}$-inner ovals. Thus, $\lambda_6 = 0$ or $-\epsilon_3$.

Proof Let O_3 be crossing, let $E \in T_0 \cup T_1 \cup T_2$ and H be an oval met after E by the pencil of conics $\mathcal{F}_{A_1A_2A_3C} : A_1A_3 \cup A_2C \to A_1A_2 \cup A_3C \to A_1C \cup A_2A_3$ We shall prove that H must be also in $T_0 \cup T_1 \cup T_2$. Assume
Figure 9:
first that $E \in T_0 \cup T_1$. Perform the cremona transformation $cr(A_1, A_2, A_3)$, and consider the pencil of conics \mathcal{F}_{A_1ECD}. The possible positions for the double lines of this pencil are shown in Figure 10. The preimage of \mathcal{F}_{A_1ECD} is the pencil of rational cubics $\mathcal{F}_{A_1A_2A_3ECD}$. This pencil has five singular cubics, whose images in \mathcal{F}_{A_1ECD} are the three double lines and the two conics through A_2 respectively A_3. If $E \in T_0$, there is only one possible sequence of singular cubics for $\mathcal{F}_{A_1A_2A_3ECD}$ (Figure 11). If $E \in T_1$, there are four possible sequences of singular cubics for $\mathcal{F}_{A_1A_2A_3ECD}$ (see Figures 12, 13, 14, 15). Let H be one of the remaining ovals of C_{18}. Let $E \in T_0$, H is swept out in the portion $\mathcal{F}_{A_1ECD} : A_2A_1DCE \to A_1E \cup CD \to A_1EA_3DC \to A_1C \cup ED$. Moreover, if H is met after E by the pencil of lines $\mathcal{F}_C : A_2 \to A_3 \to A_1$, then H lies inside of $\mathcal{O} = cr(\mathcal{J})$. Let $E \in T_1$, H is swept out by \mathcal{F}_{A_1ECD} in the portion:

- $A_2A_1ECD \to A_1E \cup CD \to A_1C \cup ED$ (case 1)
- $A_1DCEA_3 \to A_1E \cup CD \to A_1C \cup ED$ (case 2)
- $A_2A_1ECD \to A_1E \cup CD \to A_1C \cup ED$ (case 3)
- $A_2A_1ECD \to A_1E \cup CD \to A_1EA_3DC \to A_1C \cup ED$ (case 4)

In all cases, if H is met after E by the pencil of lines $\mathcal{F}_C : A_2 \to A_3 \to A_1$, then H lies inside of $\mathcal{O} = cr(\mathcal{J})$. Let $E \in T_2$. Notice that there are four possibilities for the pencil of rational cubics $\mathcal{F}_{A_2A_2A_1CDA_3}$, which are deduced from the pencils $\mathcal{F}_{A_1A_1A_2A_3ECD}, E \in T_1$ by an axial symmetry switching (A_1, A_3) with (A_2, C). The result follows immediately. □
Figure 11: $E \in T_0$
Figure 12: $E \in T_1$ case 1
Figure 13: \(E \in T_1 \), case 2
Figure 14: $E \in T_1$, case 3
Figure 15: $E \in T_1$, case 4
Figure 16: $F \in T_3$
Let O_3 be non-crossing and $F \in T_3$. Let H be an oval met before F by the pencil of conics $F_{A_1A_2A_3C} : A_1A_3 \cup A_2C \to A_1A_2 \cup A_3C$. We shall prove that H must also be in T_3. Perform the cremona transformation cr, and consider the pencil of conics F_{A_3FCD}. The double lines of this pencil are shown in Figure 10. The preimage of F_{A_3FCD} is the pencil of rational cubics $F_{A_1A_2A_3A_3FCD}$. This pencil has five singular cubics, whose images in F_{A_3FCD} are the three double lines and the two conics through A_1 respectively A_2. There is only one possible sequence of singular cubics for $F_{A_1A_1A_2A_3A_3ECD}$ (Figure 16). Let H be one of the remaining ovals of C_{18}, H is swept out by F_{A_3FCD} in the portion $A_3A_1FDC \to A_3F \cup CD \to A_3A_2FCD$. Moreover, if H is met before F by the pencil of lines $F_{C} : A_2 \to A_3$, then H lies inside of O. □

Lemma 16 Let C_9 be an M-curve of degree 9 with a jump. One of the three possibilities hereafter arises:

1. $\lambda_0 - \lambda_4 - \lambda_5 - \lambda_6 = 0$ and $\Pi_+ - \Pi_- = 4$
2. O_3 is crossing, $\lambda_0 - \lambda_4 - \lambda_5 = -1$, $\epsilon_3 = 1$, $\Pi_+ - \Pi_- = 3$
3. O_3 is non-crossing, $\lambda_6 = 1$, $\epsilon_3 = -1$, $\Pi_+ - \Pi_- = 3$

Proof It follows immediately from Lemma 15 and the fact that $\Pi_+ - \Pi_- \leq 4$.

5 Complex orientations again

5.1 Orevkov’s complex orientation formulas

Let C_m be an M-curve of degree $m = 4d + 1$, $d \geq 2$. In this subsection, we shall call nest N of depth n a configuration of ovals (o_1, \ldots, o_n) such that o_i lies in the interior of o_j for all pairs i, j with $j > i$. A nest is maximal if it is not a subset of a bigger nest of C_m. We assume that there exist 4 maximal nests $N_i, i \in \{1, 2, 3, 4\}$ of C_m verifying: if F is a pencil of conics based in the 4 innermost ovals of the nests, any conic of F intersects the union of the 4 nests and J at least $2m - 2$ points. Let V_i be the outermost oval of the nest N_i. We shall call big ovals the ovals that belong to the union of the nests N_i, and small ovals the other ovals. For $S, s \in \{+, -\}$, let $\pi^S_s(N_i)$ be the numbers of pairs of ovals (O, o) with signs (S, s) such that O is an oval of N_i and o is an empty oval contained in $Int(O)$. Let $\pi_i = (\pi^+_i - \pi^-_i)(N_i)$, $\pi'_i = (\pi^+_i - \pi^-_i)(N_i)$ Let $\Pi^S_s(N_i)$ be the number of pairs (O, o) with signs
the two extreme interior ovals, such that

\[O \]

is negative, we say that

\[S \]

simpler one, writing:

\[\mu \]

encoded as follows: 1 of the 3 nests

\[O \]

Let

\[p_1, \ldots, p_4 \]

be 4 points distributed in the innermost ovals of the 4 nests. If \(N_i, N_j, N_k \) have all depth \(d \), call principal triangle \(p_ip_jp_k \) the triangle \(p_ip_jp_k \) that does not intersect \(J \). The formulas hereafter are proven in [17] (with slightly different notations):

First complex orientation formula (Orevkov) Let \(C_m \) be such that the nests \(N_i, i \in \{1, 2, 3, 4\} \) have respective depths \(d, d, d - 1 \), and \(p_1, l \in \{1, 2, 3, 4\} \) lies in the principal triangle determined by the other three points \(p_i, p_j, p_k \), then:

\[\pi_i + \pi_j + \pi_k + \pi'_l = N_i^2 + N_j^2 + N_k^2 + M_l^2 \]

Second complex orientation formula (Orevkov) Let \(C_m \) be such that: the nests \(N_l, l \in \{1, 2, 3, 4\} \) have all depth \(d \), some \(V_i, i \in \{1, 2, 3\} \) coincides with \(V_4 \), but the nests \(N_1', N_2', N_3', N_4' \) are pairwise disjoint, with \(N_i' = N_i \setminus V_i \). Let us denote by \(V \) the oval \(V_i = V_4 \), and by \(T \) be the principal triangle \(p_1p_2p_3 \). Let

\[\Pi_l = \Pi^+(N_l') - \Pi^-(N_l'), \Pi'_l = \Pi^+(N_l) - \Pi^-(N_l). \]

Let \(\text{Int}^+(V) = \text{Int}(V) \setminus T, \text{Int}^-(V) = \text{Int}(V) \cap T. \) For any big oval \(O \neq V \subset N_l, \) let \(\text{Int}^\pm(O) = \text{Int}(O) \). For \(l \in \{i, 4\} \), denote by \(\tilde{\Pi}_l(N_l') \) the numbers of pairs \((O, o) \) with signs \((S, s) \) where \(O \subset N_l \) is big and \(o \subset \text{Int}^S(O) \) is small. Let

\[\tilde{\Pi}_l = \tilde{\Pi}_l^+(N_l') - \tilde{\Pi}_l^+(N_l), \]

\[\tilde{\Pi}'_l = \tilde{\Pi}_l^-(N_l') - \tilde{\Pi}_l^-(N_l). \]

If \(p_i, i \in \{1, 2, 3\} \) lies in the principal triangle \(p_ipkp_4 \), then:

\[\tilde{\Pi}'_i + \Pi_j + \Pi_k + \tilde{\Pi}_4 = Q_i^2 - 2Q_i + P_j^2 - P_j + P_k^2 - P_k + P_4^2 - P_4 + \nu(V), \]

where \(\nu(V) = 0 \) if \(V \) is positive, and 1 if \(V \) is negative.

5.2 Proof of the conjecture for the case \(\alpha_1, \alpha_2, \alpha_3 \) even

Let \(C_9 \) be an \(M \)-curve of degree 9 with real scheme \(\langle J \ 1 \ 1 \alpha_1 \ 1 \alpha_2 \ 1 \alpha_3 \ 1 \beta \ \rangle \). The complex scheme of \(C_9 \) is determined by the complex schemes of the 3 nests \(\mathcal{O}_i = 1(\alpha_i), i \in \{1, 2, 3\} \). The complex scheme \(\mathcal{S}_i \) of a nest \(\mathcal{O}_i \) is encoded as follows: 1,\(\langle a_i^+ \Pi a_i^- \rangle \), where \(a_i^+ - a_i^- = \alpha_i, a_i^+ - a_i^- \in \{0, \pm 1, \pm 2\}. \) Let \(\mu_i \in \pm \) be the sign of \(a_i^+ - a_i^- \). We replace the standard encoding by a simpler one, writing: \(\mathcal{S}_i = \nu_i \) if \(a_i^+ - a_i^- = 0, \mathcal{S}_i = (\nu_i, \mu_i, \mu_i) \) if \(a_i^+ - a_i^- = \pm 2 \)

\[\mathcal{S}_i = (\nu_i, \mu_i) \] if \(a_i^+ - a_i^- = \pm 1. \) Assume \(\mathcal{O}_i \) is separating. Let \(A_i, A'_i \) be the two extreme interior ovals, such that \(A_i \in T_i' \) and \(A'_i \in T_0. \) If \(A'_i \) is negative, we say that \(\mathcal{O}_i \) is \((\nu_i, u) \), otherwise \(\mathcal{O}_i \) is \((\nu_i, d) \), where the letters
Lemma 17 Let C_9 have some exterior oval $B \in T_i$, $i \in \{0, 1, 2, 3\}$. Then $E_i = 0$, where

\[
\begin{align*}
E_0 &= \pi_1 + \pi_2 + \pi_3 - (N_1 + N_2 + N_3), \\
E_1 &= \pi'_1 + \pi_2 + \pi_3 - (M_1 + N_2 + N_3), \\
E_2 &= \pi_1 + \pi'_2 + \pi_3 - (N_1 + M_2 + N_3), \\
E_3 &= \pi_1 + \pi_2 + \pi'_3 - (N_1 + N_2 + M_3).
\end{align*}
\]

Proof The first formula applies making N_i, $i = 1, 2, 3$ and $N_4 = B$. □

Let O_i be separating. Remember that by Lemma 9, α_i must be even. Again, choose base ovals A_1, A_2, A_3, and let A_4 be a fourth oval, interior to O_i, lying in T_i. Let $N_i = (A_i, O_i)$, $l = 1, 2, 3$ and $N_4 = (A_4, O_i)$. Let:

\[
F_i = \Pi'_{l} + \Pi_4 - (Q^2_l - 2Q_l + P^2_4 - P_4 + \nu(O_i)), \quad \text{and} \quad G_i = P^2_l - P_1 - \Pi_i.
\]

It is easily seen that G_i depends only on S_i, and F_i depends only on S_i.

Lemma 18 Let C_9 have three nests and separating O_i. Then, $F_i = G_j + G_k$.

Proof The second formula applies with the nests $N_i, l = 1, 2, 3, 4$. □

In Figure 17, 18 we computed the terms appearing in Lemmas 17, 18.

Lemma 19 Let C_9 be an M-curve of degree 9 with three nests. If the union $T_0 \cup T_1 \cup T_2 \cup T_3$ is empty, then C_9 verifies: $S_1, S_2 \in \{(+,-), (-,+)\}$, $S_3 \in \{(+,-,-), (-,+,+)\}$.

Proof One has $\lambda_0 - \lambda_4 - \lambda_5 - \lambda_6 = 0$, $\Lambda_+ - \Lambda_- = 0$, $\Pi_+ - \Pi_- = 4$. □

Theorem 1 Let C_9 be an M-curves of degree 9 with real scheme $\langle J \Pi 1(\alpha_1) \Pi 1(\alpha_2) \Pi 1(\alpha_3) \Pi \beta \rangle$. At least one of the α_i, $i = 1, 2, 3$ is odd.

Proof By Lemma 16, C_9 has no jump, so it can realize 4 complex schemes. The last column Z of Figure 19 contains the indices of the triangles $T_i, i \in$
\[
\begin{array}{cccccc}
S_l & \pi_l & \pi'_l & N_l & M_l & G_l \\
- & 0 & 0 & 0 & 1 & 0 \\
+ & 0 & 0 & 1 & 0 & 1 \\
(-,+)^{+} & 0 & 1 & 0 & 1 & 0 \\
(+,-) & 1 & 0 & 1 & 0 & 0 \\
(-,-) & 0 & -1 & 0 & 1 & 0 \\
(+,+) & -1 & 0 & 1 & 0 & 2 \\
(,+,-) & 0 & 2 & 0 & 1 & 0 \\
(+,-,-) & 2 & 0 & 1 & 0 & -1 \\
(-,-,-) & 0 & -2 & 0 & 1 & 0 \\
(+,+,-) & -2 & 0 & 1 & 0 & 3 \\
\end{array}
\]

Figure 17:

\[
\begin{array}{cc}
S_i & F_i \\
(-,d) & 0 \\
(-,u) & -1 \\
(+,d) & 0 \\
(+,u) & -1 \\
\end{array}
\]

Figure 18:

\{0, 1, 2, 3\} that may contain exterior ovals. In Figure 20, we assume that \(O_i\) is separating and compute the term \(F_i - G_j - G_k\). In Figure 21, we list the a priori possible complex types for \(C_9\) together with the data \(Z\). The first two types contradict to Lemma 19. For the other types, choose each \(A_i, i \in \{1, 2, 3\}\) in such a way that \((A_i, O_i)\) is a positive pair, compute the values of the \(\lambda_l, l \in \{0, \ldots, 6\}\) combining the identities: \(\lambda_0 - \lambda_4 - \lambda_5 - \lambda_6 = -4, \lambda_0 + \lambda_1 - \lambda_4 = 0, \lambda_0 + \lambda_2 - \lambda_5 = 0, \lambda_0 + \lambda_3 - \lambda_6 = 0\). For the last 3 cases, one gets \(\lambda_0 \leq -4\), which contradicts to Proposition 1. For the remaining 2 cases, one has \(\lambda_6 = 4\) or 5, which contradicts to Proposition 2. □

\[
\begin{array}{cccccccc}
S_1 & S_2 & S_3 & E_0 & E_1 & E_2 & E_3 & Z \\
- & - & - & 0 & -1 & -1 & -1 & (0) \\
- & - & + & -1 & -2 & -2 & 0 & (3) \\
- & + & + & -2 & -3 & -1 & -1 & \emptyset \\
+ & + & + & -3 & -2 & -2 & -2 & \emptyset \\
\end{array}
\]

Figure 19:
\[
\begin{array}{cccc}
\bar{S}_1 & S_j & S_k & F_i - G_j - G_k \\
(-, d) & - & - & 0 \\
(-, d) & - & + & -1 \\
(-, d) & + & + & -2 \\
(-, u) & - & - & -1 \\
(-, u) & - & + & -2 \\
(-, u) & + & + & -3 \\
(+, d) & - & - & 0 \\
(+, d) & - & + & -1 \\
(+, d) & + & + & -2 \\
(+, u) & - & - & -1 \\
(+, u) & - & + & -2 \\
(+, u) & + & + & -3
\end{array}
\]

Figure 20:

\[
\begin{array}{cccc}
\bar{S}_1 & \bar{S}_2 & \bar{S}_3 & Z \\
(+, n) & (+, n) & (+, n) & 0 \\
(-, n) & (+, n) & (+, n) & 0 \\
(-, n) & (-, n) & (+, n) & (3) \\
(-, n) & (-, n) & (+, d) & (3) \\
(-, n) & (-, n) & (-, n) & (0) \\
(-, d) & (-, n) & (-, n) & (0) \\
(-, d) & (-, d) & (-, n) & (0) \\
(-, d) & (-, d) & (-, d) & (0)
\end{array}
\]

Figure 21:
References

[1] T. Fiedler: *Pencils of lines and the topology of real algebraic curves.* Math. USSR Izvestia Vol.2 (1983) No 1.

[2] S. Fiedler-Le Touzé: *Orientations complexes des courbes algébriques réelles.* Thèse doctorale (January 2000).

[3] S. Fiedler-Le Touzé: *Cubics as tools to study the topology of M-curves of degree 9 in ${\mathbb R}{\mathbb P}^2$,* J. London Math. Soc.(2) 66 (2002) 86-100.

[4] S. Fiedler-Le Touzé: *Pencils of cubics as tools to solve an interpolation problem* Algebra and Application for Engineering, Communication and Computing, Special issue on Algebraic Curves, Vol. 18 Number 1-2, 53-70. February 2007

[5] S. Fiedler-Le Touzé: *M-curves of degree 9 with deep nests.* arXiv:math.AG/0610792v3

[6] A. Korchagin: *The M-curves of degree 9: nonrealizability of 12 types.* Methods of Qualitative Theory of Diff. Equ., Lobachevsky Univ., 1985, 72-76 (Russian)

[7] A. Korchagin: *M-curves of degree 9: new restrictions.* Math. Notes, 39 (1986).

[8] A. Korchagin: *Construction of new M-curves of 9th degree.* Lect. Notes. Math., 1524 (1992), 296-307.

[9] A. Korchagin: *The new M-curves of degrees 8 and 9.* Soviet. Math. Dokl., 39:3 (1989), 569-572.

[10] A. Korchagin: *Smoothing of 6-fold singular points and constructions of 9th degree M-curves.* Amer. Math. Soc. Transl. (1996) 173 (2), 141-155.

[11] A. Korchagin: *Hilbert’s 16th problem: history and main results.* Visiting Schol. Lect. Math. Series, 19 (1997), Texas Tech. Univ., 85-140.

[12] S. Orevkov: *Link theory and oval arrangements of real algebraic curves.* Topology Vol.38 No 4. (1999) 779-810.

[13] S. Orevkov: *Link theory and new restrictions for M-curves of degree 9* Funct. Analysis and Appl. 34 (2000), 229-231.
[14] S. Orevkov: *Riemann existence theorem and construction of real algebraic curves*. Annales de la Faculté des Sciences de Toulouse, Mathématiques (6) 12 (2003) no 4, 517-531.

[15] S. Orevkov: *Plane algebraic curves of odd degree with a deep nest* Journal of Knot Theory and Its Ramifications, Vol 14, No. 4 (2005), 497-522

[16] S. Orevkov, O Viro: *Congruence modulo 8 for real algebraic curves of degree 9*. Russian Math: Surveys 56 (2001), 770-771.

[17] S. Orevkov: *Complex orientation formulas for M-curves of degree 4d+1 with 4 nests*. http://picard.ups-tlse.fr~orevkov

[18] V. Rokhlin: *Complex topological characteristics of real algebraic curves*. Russian Math. Surveys, 33:5 (1978) 85-98.

[19] O. Viro: *Progress in the topology of real algebraic varieties over the last six years*. Russian Math. Surveys, 41:3 (1986) 55-82.

[20] O. Viro: *Real algebraic plane curves: constructions with controlled topology*. Leningrad Math. J. Vol.1 (1990) No 5.

[21] G. Wilson: *Hilbert’s sixteenth problem*. Topology Vol.17 (1978) 53-73.