Evaluation of Microorganisms of Drinking Water of Rafha City, Northern Borders, Saudi Arabia

A.A. Abdel Haleem1,2, S.K. Hemida1,3 and M.M. Abdellatif1,4

1Department of Biology, Faculty of Arts & Science, Northern Border University, Rafha, Saudi Arabia,
2Department of Biological sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
3Department of Botany, Faculty of Science, Assiut University, Egypt.
4Department of Microbiology, College of Veterinary Medicine, Nyala University, Sudan.

(Received: 10 November 2015; accepted: 11 January 2016)

The present studies included evaluation of pathogenic parasitic protozoans, bacteria, fungi and algae collected from drinking water of three sources; wells, tap and three re-purifying water-private companies; from Rafha City, Northern Borders, Saudi Arabia, to count and identify these contaminants. The results revealed three species of parasitic protozoans (Giardia lamblia, Cryptosporidium parvum and Cyclospora cayetanensis), three species of Coliform bacteria (Proteus mirabilis, Escherichia coli, Enterobacter cloacae and E. aerogenes) beside seven bacterial genera (Bacillus, Brevibacillus, Staphylococcus, Streptococcus, Aeromonas, Acinetobacter and Pseudomonas), five genera of fungi (Aspergillus, Chrysoporium, Alternaria, Acremonium and Exophiala) as well as three genera of algae in tap and the present three re-purifying water-private companies (Anabaena, Microcystis and Oscillatoria). The present results indicated that the three species of Rafha City are important contributor to transmission of contaminants to consumers. The present work recommends future field-application of selected specialized anti-parasites and anti-bacterial compounds to control, or at least reduce the present resulting contaminators to gain safe levels of drinking water, according to WHO-, or at least SASO- levels, to reduce the risk of propagation of the present microorganisms.

Key words: drinking water contaminants – protozoa – bacteria – fungi - algae.

Water is scarce and valuable resource in Saudi Arabia. Thereby, well or ground water is still and will continue to be one of the main sources of drinking water in Saudi Arabia, especially in rural and border areas.

The microbial contamination of drinking water constitutes a major issue worldwide, because it is still a major source of infection and mortality. Evaluation of the microbiological quality of drinking water aims to protect consumers from illness, that due to protozoon’s parasites, bacteria, fungi, algae and viruses. Nowadays, prevention of contaminated drinking-water-related-illness is still an important challenge [1].

Rafha-citizens basically obtained their drinking water from treated wells stored in public tanks and re-distributed through waterborne-pipes to houses. However, citizens are usually avoid using tap water as a source of drinking water, owing to their dis-satisfaction of taste, odour and colour of this water. Instead, they prefer drinking water-consumption of desalinated groundwater obtained from some desalinating-private companies others drink industrially bottled water.

The famous protozoan parasites contaminating drinking water are Giardia, Cryptosporidium, Entamoeba histolytica and Cyclospora, that cause severe gastrointestinal disorders; namely giardiasis, cryptosporidiosis, amoebiasis and cyclosporiasis respectively [1]. Indication of the presence of disease-causing bacteria in drinking water is the coliform bacteria,
that are non-pathogenic but associated with many diseases; from which *Proteus, Escherichia coli* and *Enterobacter*; indicating faecal contamination of water. *Proteus mirabilis* is associated with urinary tract infections3.

In this concept, the coliforms constitute common intestinal commensal bacteria. This group contains important pathogens, as *E. coli*, which is the most prominent and causes disease when the immune-system is suppressed4. *E. coli* considered as an indicator of fecal contamination when found in drinking water5. *Enterobacter* species act as opportunistic pathogens.

Many other bacteria are pathogenic, such as *Streptococcus* that colonizes the heart valves6, *Aeromonas* that produces cytotoxic-enterotoxin causes tissue damage7, *Acinetobacter* that causes urinary tract infections, pneumonia, endocarditis, wound infections, septicemia and meningitis8 as well as *Pseudomonas* that causes bronchopneumonia, erythema gangrenosum, renal tract catheterization, necrotising enterocolitis, hemorrhage, necrosis of the skin9.

On the other hand, some fungi are pathogenic; such as *Aspergillus* that causes chronic pulmonary aspergillosis10, *Chrysosporium* that cause hyalo-hyphomycosis11, *Alternaria* that cause respiratory infections12 and *Acremonium* that cause mycetoma, onychomycosis, and hyalohyphomycosis13.

Some algal genera are pathogenic, as; *Anabaena, Microcystis* and *Oscillatoria*. These genera secrete toxins, as *Anabaena* and *Microcystis* that secrete microcystin-LR and cylindrospermopsin, leading to liver inflammation, pneumonia, dermatitis, kidney damage and tumor growth and anatoxin-a group3-toxin from *Anabaena* and *Oscillatoria* that causes nervous disorders14.

SASO (Saudi Arabian Standards Organization) continuously evaluates drinking water standards for bottled, tap and well-waters to define a quality of water that reinforce healthy population. These standards set limits for the permissible and maximum contaminants level of parasites and the indicator-microorganism that endanger the health of consumers15. A substantial number of these standards are originated from the accurate World Health Organization international-standards for drinking water16.

The main objective of this study is to assess the parasitological and microbiological status of drinkable water of Rafha City in Saudi Arabia.

MATERIALS AND METHODS

Water sampling

The present studies were carried out from July to October, 2014, in Rafha City, Northern Borders, Saudi Arabia. The water-samples had been collected from three major water sources; ten wells, tap and three private desalinating companies; El-Shefaa, Bardy and El-Razaz. Aliquots of 100 ml from each water-sample were collected in sterilized conical flasks, provided with silica gel to keep dryness.

Enumeration of protozoans, bacteria, fungi and algae

Protozoan parasites

All samples preserved in 4% neutralized formalin solution, left to settle [17]. Then, supernatants were collected, filtered through 20 µm net mesh. Materials that retained by filter were then fixed with Lugol’s solution. Fresh preparations of 0.9% saline smear of samples were visually examined for parasitic cysts over approximately 100 fields and then subjected to cold acid-fast. Trichrome staining technique was then applied [18].

Bacteria-count

Coliform bacteria

Coliform bacteria were determined by incubation of samples into lactose broth as presumptive test. The test tubes are placed at 35°C for 24 hours for gas production. To confirm the presence of coliform, gas produced in incubation into Brilliant Green Bile broth at 35°C for 24 hours [19]. Water quality analysis was based on the most probable number of Cells/100 ml. The test had been repeated three times.
Aerobic and other facultative anaerobic bacteria

One ml of each water sample was inoculated and spread on blood agar and nutrient agar plates. Then, plates were incubated at 37°C for 18 to 24 h for determination of bacterial cell count, as cells/100 mL, and for isolation and differentiation of various bacterial strains depending on their morphological descriptions. Different isolated bacteria were further identified by Biolog system (Biolog, Hayward, CA, USA). Experiment had been repeated three times.

Fungi

Sabouraud Dextrose Agar (SDA) was used as a culture medium to reveal the presence of fungi and chloramphenicol is used to increase selectivity against commensal microorganisms. For isolation of fungi from water-contaminated specimens, SDA-medium should be inoculated and the plates incubated at 28°C in an inverted position with increased humidity. For isolation of fungi, two sets of media should be inoculated at 28°C and a duplicate set at 35°C. All cultures should be examined 7-10 days for fungal growth, and should be held for 5 weeks before being reported as negative. The test had been repeated three times.

Algae

Aliquots of 100 ml from each water sample were allowed to settle overnight in sterilized conical flasks. Then after, solid materials from the bottom of the flasks were pipetted for examination. The experiment had been repeated thrice. Algal species had been identified using binocular microscope (Zeiss).

Statistical Methods

Analysis of Variance “ANOVA”

The mean data of analysis of variance “ANOVA” between four categories; protozoans, bacteria, fungi and algae, had been achieved to obtain significant differences, using the statistical SPSS-program.

RESULTS

Protozoan parasites

The present result showed four protozoan-species, as cysts, *Giardia lamblia* (Diplomonadida, Hexamitidae), *Cryptosporidium parvum* (Eucoccidiordia, Cryptosporidiidae), *Cyclospora cayatenensis* (Eucoccidiordia, Eimeriidae) and *Entamoeba coli* (Archamoebae). Table (1) display average counts the highest values in water of the different wells (5.8, 21, 0.7& 15.1 cells/100 ml for *G. lamblia*, *C. parvum*, *C. ayetanensis* and *E. coli* respectively) whereas *C. cayetanensis* revealed the highest value in tap water, whereas all species were completely absent in water of the three private companies. On the other hand, frequency % revealed the highest values; of *G. lamblia* and *E. coli* in all sources of water (28.57, 27.27 and 33.33% in well-, tap and companies-water respectively), highest values of *C. cayetanensis* in tap and the three companies-water (27.27 and 33.33% respectively) and the highest value of *C. cayetanensis* in well-water (28.57%) (table 2). The statistical analysis of variance “ANOVA” revealed highly significant differences in the two species *G. lamblia* and *C. parvum* (Table 7).

Bacteria

Coliform Bacteria

The present work reported four gram-negative coliform bacteria-species; facultative anaerobic *Proteus mirabilis*, *Escherichia coli*, *Enterobacter cloacae* and *E. aerogenes*. Table (1) displays mean counted numbers, as CFU/100 ml, where the highest values of *P. mirabilis*, *E. cloacae* and *E. aerogenes* had been found in well-water (1318.7, 34.2 & 92.5 respectively), beside the highest value of *E. coli* in El-Razaz Company-water (700).

On the other hand, frequency% revealed the highest values; *P. mirabilis* in well-water (22.73%), *P. mirabilis* and *E. aerogenes* in tap water (11.11%), *P. mirabilis* in El-Shefaa company (42.86%), *E. cloacae* in Bardy company (33.33%) and *E. coli* in El-Razz Company (42.86%) (table 3).

Aerobic Bacteria

Gram negative bacteria

Beside the previous coliform bacteria; aggregated gram negative *Acinetobacter haemolyticus* and coccobacillus gram-negative *Pseudomonas aeruginosa* resulted.

The mean counts, as CFU/100 ml, displays the highest values of *A. haemolyticus* and *P. aeruginosa* in well-water (16.7 & 100000 respectively) (Table 1).

The frequency% revealed the highest values; *P. aeruginosa* in wells (11.36%) and *A. haemolyticus* in Bardy company (11.11%) (table 4).

Table (1) display average counts the highest values in water of the different wells (5.8, 21, 0.7& 15.1 cells/100 ml for *G. lamblia*, *C. parvum*, *C. ayetanensis* and *E. coli* respectively) whereas *C. cayetanensis* revealed the highest value in tap water, whereas all species were completely absent in water of the three private companies. On the other hand, frequency % revealed the highest values; of *G. lamblia* and *E. coli* in all sources of water (28.57, 27.27 and 33.33% in well-, tap and companies-water respectively), highest values of *C. cayetanensis* in tap and the three companies-water (27.27 and 33.33% respectively) and the highest value of *C. cayetanensis* in well-water (28.57%) (table 2). The statistical analysis of variance “ANOVA” revealed highly significant differences in the two species *G. lamblia* and *C. parvum* (Table 7).
Table 1. Average counted-number of protozoan parasites, bacteria, fungi and algae (mean count/100 ml) which obtained from water-resources of Rafha city, Saudi Arabia

Species	Total isolated-species	Average count / 100 ml		
		Wells	Tap water	Private companies
No.		El-Shefaa	Bardy	El-Razaz
I. Protozoan parasites:				
1	Giardia lamblia	5.8	3	1.3
2	Cryptosporidium parvum	21	17	4.3
3	Cyclospora cayetanensis	0.7	0.7	0
4	Entameba coli	15.1	7.3	6
II. Coliform bacteria-group “Facultative Anaerobes”:				
Proteus mirabilis				
1	Escherichia coli	1318.7	33.3	35
2	Enterobacter cloacae	192.5	370	33.3
3	E. aerogenes	34.2	0	0
4	III. Total bacteria:			
1	Bacillus subtilis	8.3	0	0
2	Staphylococcus hominis	92.5	0	0
3	Acinetobacter haemolyticus	0	333.3	0
4	Bacillus cereus	16.7	3.3	3.3
5	Bacillus anthracis			
6	Staphylococcus aureus	11.7	0	3.3
7	Streptococcus sanguis	0.8	33.3	0
8	Aeromonas hydrophila	166.7	333.3	0
9	Pseudomonas aeruginosa	166.7	0	33.3
10	IV. Fungi:			
1	Aspergillus fumigatus	100000	0.33333	0.33333
2	Aspergillus flavus			
3	Chrysosporium tropicum	1.3	0	0
4	Alternaria alternate	3.3	3	4
5	Acremonium sp.	1.1	0	0
6	Penicillium sp.	0.9	20.3	1.3
7	Cladosporium cladosporioides	1	1.3	0
8	Rhodotorula mucilaginosa	0	0	0
9	Exophiala jeanselmei	0.1	0	0
10	V. Algae:			
1	Diatoms	0.7	0.3	0
2	Cyclotella sp.			
3	Synedra sp.			
4	Melosira sp.	0	3	0
5	Cymbella sp.	0	5	0
6	Fragilaria sp.	0	5.3	0
7	Nitzschia sp.	0	4.3	0
8	Merismopedia tenueissima	0	6	1.3
9	Anabaena sphaerica	0	0.3	0.3
10	Microcystis aeruginosa	0	10	10.7
11	Oscillatoria limnetica	0	0.3	0
12	0	0.7	0	0
13	0	0	0.7	0.3

J PURE APPL MICROBIO, 10(1), MARCH 2016.
Table 2. Frequency% of protozoan parasites in different water sources, Rafha city, Northern Borders, Saudi Arabia

Types of water	Giardia lamblia	Cryptosporidium parvum	Cyclospora cayatenensis	Entamoeba coli
Well water	28.57	14.29	28.57	28.57
Tap water	27.27	27.27	18.18	27.27
El-Shefaa Co.	33.33	33.33	0.00	33.33
Bardy Co.	33.33	33.33	0.00	33.33
El-Razaz Co.	33.33	33.33	0.00	33.33

Table 3. Frequency% of coliform-group bacteria in different water sources, Rafha city, Northern Borders, Saudi Arabia

Types of water	Isolated coliform groups “negative gram”			
	Proteus mirabilis	Escherichia coli	Enterobacter cloacae	Enterobacter aerogenes
Well water	22.73	13.64	09.09	06.82
Tap water	11.11	33.33	00.00	11.11
El-Shefaa Co.	42.86	14.29	00.00	00.00
Bardy Co.	00.00	22.22	33.33	22.22
El-Razaz Co.	00.00	42.86	00.00	00.00

Table 4. Frequency% of aerobic and anaerobic bacteria in different water sources, Rafha city, Northern Borders, Saudi Arabia

Types of water	Bacillus cereus	Bacillus anthracis	Staphylococcus aureus	Streptococcus sanguis	Aeromonas hydrophila	Pseudomonas aeruginosa
Well water	13.64	2.27	00.00	00.00	6.82	11.36
Tap water	00.00	00.00	33.33	00.00	42.86	00.00
El-Shefaa Co.	00.00	00.00	00.00	00.00	00.00	00.00
Bardy Co.	11.11	00.00	00.00	00.00	00.00	00.00
El-Razaz Co.	14.29	42.86	00.00	00.00	00.00	00.00

Gram positive bacteria
Obligate aerobe *Bacillus subtilis*, rod shaped *Brevibacillus brevis* and clusters of spherical *Staphylococcus hominis* resulted.

The highest values of mean counts of *B. subtilis* and *B. brevis*, as CFU/100 ml, detected in wells (8.3&92.5 respectively) *S. hominis* in tap water (333.3) (Table 1).
Table 5. Frequency % of fungi in different water sources, Rafha city, Northern Borders, Saudi Arabia.

Types of water	Aspergillus fumigatus	Aspergillus flavus	Chrysosporium tropicum	Alternaria alternata	Acremonium	Penicillium	Cladosporium cladosporioides	Rhodotorula mucilaginosa	Phialophora
Well water	38.89	22.22	16.67	05.56	05.56	00.00	05.56	03.00	00.00
Tap water	00.00	12.50	00.00	37.50	25.00	00.00	00.00	00.00	00.00
El-Shefaa Co.	00.00	50.00	00.00	25.00	00.00	00.00	00.00	00.00	00.00
Bardy Co.	25.00	50.00	00.00	25.00	00.00	00.00	00.00	00.00	00.00
El-Razaz Co.	20.00	40.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00

Table 6. Frequency % of algae in different water sources, Rafha city, Northern Borders, Saudi Arabia.

Types of water	Merismopedia tenuissima	Anabaena sphaerica	Microcystis aeruginosa	Oscillatoria limnetica	Cyclotella	Synedra	Melosira	Cymbella	Fragilaria	Nitzschia
Well water	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0
Tap water	10.0	00.3	00.7	00.0	03.0	05.0	05.0	04.0	06.0	00.3
El-Shefaa Co.	10.7	00.0	00.0	00.0	00.0	00.0	00.0	00.0	01.3	00.3
Bardy Co.	10.7	00.0	00.0	00.0	00.0	00.0	00.0	00.0	01.3	00.3
El-Razaz Co.	00.0	00.0	00.0	00.7	00.0	00.0	00.3	00.0	00.0	00.0
The frequency % scored only *B. subtilis* and *B. brevis* in well-water (2.27 & 6.82 respectively) while *S. hominis* isolated from tap water (11.11) (Table 4).

Anaerobic bacteria

The present results revealed gram positive-facultative species included *Bacillus cereus*, *B. anthracis* and *Staphylococcus aureus* and gram negative-facultative *Aeromonas hydrophila* and gram-positive-facultative aerobic *Streptococcus sanguis*.

The highest values of mean counts, as CFU/100 ml, detected *B. cereus*, *S. sanguis* and *A. hydrophila* in wells (11.7, 166.7 & 17.5 Table 7.

No	Source of variation	Species	df	SS	MS	F	P-value
I-	Protzoan parasites:						
1	Between 5 sources	*Giardia lamblia*	4	35.19	17.6	0.001>P	
2	“Wells,	*Cryptosporidium parvum*	4	611.88	305.94	0.001>P	
3	Tap,	*Cyclospora cayetanensis*	4	1.62	0.81	0.01>P	
4	El-Shefaa,	*Entamoeba coli*	4	159.45	79.73	0.01>P	
	Bardy & El-Razaz						
	Private Companies						
II-	Bacteria:						
a)	Coliform bacteria:	“facultative anaerobes”:					
1		*Proteus mirabilis*	4	4773169	2386585	13.87	P
2		*Escherichia coli*	4	232239	116120	2.18	N. S
3		*Enterobacter cloacae*	4	2411.34	1205.67	48.34	P
4		*Enterobacter aerogenes*	4	18464.6	9232.32	5.62	0.05>P
b)	Aerobic bacteria:						
5		*Bacillus subtilis*	4	166.53	83.27	2.4	N. S
6		*Brevibacillus brevis*	4	20535	10267.5	2.47	N. S
7		*Staphylococcus hominis*	4	266661	133331	2.26	N. S
8		*Actinobacter haemolyticus*	4	573.63	286.81	6.26	0.05>P
c)	Other facultative anaerobic bacteria:						
1		*Bacillus cereus*	4	2026.69	1013.35	1.68	N. S
2		*Bacillus anthracis*	4	10569.4	5284.69	4.75	0.05>P
3		*Staphylococcus aureus*	4	266663	133332	2.26	N. S
4		*Streptococcus sanguis*	4	62669.3	31334.7	7.78	0.01>P
5		*Aeromonas hydrophila*	4	735	367.5	9.54	0.01>P
6		*Pseudomonas aeruginosa*	4	2.36X10^{11}	1.18 X10^{11}	1.97	N. S
III-	Fungi:						
1		*Aspergillus fumigatus*	4	3.32	1.66	4.74	0.05>P
2		*Aspergillus flavus*	4	4.46	2.23	0.18	N. S
3		*Chrysosporium tropicum*	4	2.8	1.4	2.39	N. S
4		*Alternaria alternate*	4	903.3	451.65	2.27	N. S
5		*Acremonium*	4	5.05	2.53	2.63	0.10>P
6		*Penicillium*	4	38.4	19.2	5.49	0.05>P
7		*Cladosporium cladosporioides*	4	0.26	0.13	2.35	N. S
8		Total yeasts	4	8062.66	4031.33	1.07	N. S
9		*Exophiala jeannelmi*	4	1.07	0.54	1.93	N. S
IV-	Algae:						
1		Total Diatoms	4	287.17	143.58	0.35	N. S
2		*Merismopedia tenuissima*	4	333.59	166.79	11.77	0.001>P
3		*Anabaena sphaerica*	4	0.25	0.12	2.08	N. S
4		*Microcystis aeruginosa*	4	0.94	0.47	8.48	0.01>P
5		*Oscillatoria limnetica*	4	0.95	0.48	4.29	0.05>P

Table 7. Statistical analysis of variance (ANOVA) of counts of protozoan parasites, bacteria, fungi and algae-species (CFU or cells/100 ml water), from different water sources of Rafha City, Saudi Arabia (N.S = non-significant - P>0.001 = highly significant)
respectively), *B. anthracis* in El-Razaz company-water (66.7) and *S. aureus* in tap water (333.3) (Table 1).

The detected highest values of frequency %; *B. cereus* and *B. anthracis* in El-Razaz company-water (14.29 & 42.86 respectively) whereas *S. aureus*, *S. sanguis* and *A. hydrophila* isolated from tap water (33.33), El-Shefaa company-water (42.86) and well-water (6.82) (Table 4).

Regarding bacterial counts, as cells/100 ml, the statistical analysis of variance “ANOV A” revealed highly significant differences in the coliform bacteria *Proteus mirabilis* and *Enterobacter cloacae* (Table 7).

Fungi

The present mycoflora that isolated from drinking water of the target three sources are nine genera; *Aspergillus fumigatus*, *Aspergillus flavus*, *Chrysosporium tropicum*, *Alternaria alternate*, *Acremonium* sp., *Penicillium* sp., *Cladosporium cladosporioides*, *Rhodotorula mucilaginosa* and *Exophiala jeanselmei*-yeast.

Table (1) revealed that 8, 4, 2, 3 and 3 colonies of fungal genera were isolated from the present three water-sources; wells, tap, El-Shefaa, Bardy & El-Razaz company respectively. The highest values of mean counts of fungal genera, as CFU/100 ml, were for *Aspergillus flavus* (3.3, 4 & 2.3 for wells, El-Shefaa and Bardy companies respectively), *Alternaria alternate* (20.3 for tap water) and *Penicillium* (4 for El-Razaz).

It is worthy of mentioning that the fungus *A. flavus* appeared in all five water-sources followed by *A. alternate* in four sources.

Concerning counts of the fungi, as CFU/100ml, the statistical analysis of variance “ANOVA” revealed low significant differences between the four sources; wells, tap and the three companies concerning *Aspergillus fumigatus* and *Penicillium* whereas rest of fungi show non-significant differences (Table 7).

Algae

Six algal genera had been isolated from four different water-sources except wells; *Merismopedia teniusima*, *Anabaena sphaerica*, *Microcystis aeruginosa*, *Oscillatoria limnetica* and diatoms, including; *Cyclotella* sp., *Synedra* sp., *Melosira* sp., *Fragilaria* sp., *Cymbella* sp. and *Nitzschia* sp.

The highest values of the resulted mean counts of algae, as cells/100 ml, included; *M. teniusima* from El-Shefaa and Bardy companies-water (10.7 for both), *A. sphaerica*, and two diatoms *Melosira* and *Fragilaria* from tap water (0.3, 5 & 6 respectively). The collected species from El-Razaz company-water included; *O. limnetica* (0.7), the diatoms *Cymbella* sp. and *Fragilaria* sp. from tap water (4.3 & 6 respectively). *M. aeruginosa* and the diatoms *Cyclotella* sp., *Synedra* sp., *Melosira* sp. and *Nitzschia* sp. from tap water (7, 3, 5, 5.3 & 0.3 respectively) (Table 1).

The highest values of frequency % of algae-samples are; in tap and El-Shefaa and Bardy companies-water for *M. teniusima* (1.7, 10, 10.7 and 10.7) and in El-Razaz company-water for *Oscillatoria limnetica* (0.7) (Table 6).

Respecting algal counts “cells/100 ml”, the statistical analysis of variance revealed highly significant differences in the alga *M. teniusima* between the present four sources (Table 7).

DISCUSSION

The present work revealed several pathogenic microorganisms in three sources of water; 10 wells, tap and three private desalinating water-companies; including three parasitic protozoan-cysts, three genera of Coliform bacteria-group and some aerobic and anaerobic bacteria, five genera of fungi as well as three genera of algae.

In this respect, results of Al-Turki23 reinforced the present results where he revealed that microbiological water quality results showed that 20% of the samples examined are contaminated with coliform bacteria (*Escherichia coli*, and *Enterobacter aerogenes*), indicating the necessity of water-sanitation of Hael’s water prior to use.

WHO estimated that 1.8 million people die each year as a result of severe diarrhea caused by drinking contaminated water, where developing countries have the prevalence of giardiasis in patients with diarrhea is about 20%.

Concerning parasitic cysts of *Giardia lamblia*, *Cryptosporidium parvum* and *Cyclospora cayatensis*, they contaminate water-sources causing severe gastrointestinal disorders. The maximum score of the present parasitic protozoans...
is for C. parvum and minimum count for C. cayetanensis.

Giardia-cysts resist chlorine leads to giardiasis, its symptoms are flu and severe gastrointestinal disorders, detected in 81% of raw water samples and 17% of filtered water samples in the United States[25]. In this respect, WHO declared that chlorine disinfection of drinking-water has limitations against the protozoan pathogens, in particular Cryptosporidium[26]. C. parvum is protozoan parasite causes Cryptosporidiosis in humans. Oocysts of C. parvum in 87% of raw water samples and 27% of drinking water samples in 15 Canadian regions[25]. Le Chevallier et al. reinforced the present counts of C. parvum-cysts which is higher than those of G. lamblia in all water-sources[25].

Cyclospora cayetanensis is cyst-forming coccidian protozoan that causes a self-limiting diarrhea named cyclosporiasis, with symptoms range from watery, loose stool, weight loss, cramping, fatigue, vomiting, fever and nausea[23].

The maximum score of coliform bacteria are for Proteus and the minimum for Enterobacter. Proteus species causes wound infections, septicemia and pneumonia whereas E. coli produce potentially lethal toxins and causes food poisoning. Moreover, Uro-pathogenic E. coli is responsible for 90% of urinary tract infections[27]. Enterobacter causes opportunistic infections, where the urinary and respiratory tracts are the sites of infection[28].

Concerning other gram positive bacteria, Acinetobacter haemolyticus causes pneumonia, bacteremia and meningitis[29], Pseudomonas aeruginosa infects urinary tract, burns, wounds and causes blood infections[9].

Gram positive bacteria, included Bacillus subtilis and Staphylococcus hominis cause diseases in severely immune-compromised patients, Bacillus cereus causes severe nausea, vomiting, and diarrhea, Bacillus anthracis leads to anthrax disease[30]. Staphylococcus aureus causes scalded-skin syndrome[11], Streptococcus sanguis causes sub-acute bacterial endocarditis[32] and Aeromonas hydrophila produces aerolysin cytotoxic enterotoxin leads to tissue damage[9].

The studies revealed 5 pathogenic fungal species isolated. The maximum count of fungal-species are for Aspergillus flavus and minimum for Cladosporium cladosporioides.

The most common pathogenic species are Aspergillus fumigatus and A. flavus. The latter species produces aflatoxin-toxin that contaminating foods and considers carcinogen leads to allergic disease while A. fumigatus causes allergic disease leads to chronic pulmonary infections[33]. Alternaria alternate causes respiratory infections and asthma in humans with compromised immunity[34].

Hyalo-hyphomycosis that caused by Acremonium includes arthritis, osteomyelitis, peritonitis, endocarditis, pneumonia, cerebritis, and subcutaneous infection[35].

Exophiala jeansenlmi causes mycetoma, localized cutaneous infections, subcutaneous cysts, endocarditis, cerebral and disseminated infections, beside phaeohyphomycosis[36].

The highest value of the algae are for Merismopedia tenuissima and minimum for Anabaena sphaerica. Anabaena sphaerica and Microcystis aeruginosa secrete both microcystin-LR and cylindrospermopsin toxins that leading to liver inflammation, pneumonia, dermatitis, kidney damage and tumor growth. Anatoxin-a group1-toxin is also secreted by Anabaena and Oscillatoria limnetica, that causes nervous disorders[14].

Concerning standard levels of microorganisms in drinking water, EPA’s MCLG declared that detection of protozoans, especially Cryptosporidium, is difficult and not technically feasible for routine analysis of human drinking water. The recommendation considered the proper way to control pathogenic protozoans is using an effective water treatment technique, such as reverse osmosis or ozonation.

According to EPA MCL, coliform must be less than one/100 mL. In this concern, the microbiological guidelines and standards for drinking water for E. coli are zero CPU count/100 mL[37]. In this respect, average count/100 mL of all water sources of the present work revealed considerable higher levels than those of EPA MCL and an apparent risk on Rafha’s citizens-health.

The present investigation indicated that water sources of Rafha city are important contributor to transmission of contaminants to consumers.

The present work recommends a future-field-application of selected specialized anti-
parasites and anti-microbial to control the present resulting contaminators to gain considerable safe levels of drinking water.

ACKNOWLEDGMENTS

The authors would like to acknowledge the approval and the support of this research study by the Deanship of the Scientific Research, Northern Border University, Arar, KSA and thanks to Dean of Faculty of Science and Arts, Rafha. The authors want to extend our appreciation to Doaa Abd Allah and Doaa Ibrahim for review of this research.

REFERENCES

1. Craun, G.F.; Brunkard, J.M.; Yoder, J.S.; Roberts, V.A.; Carpenter, J.; Wade, T.; Calderon, R.L.; Roberts, J.M.; Beach, M.J.; Roy, S.L. Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. *Clin. Microbiol. Rev.* 2010; **23**, 507-528.

2. Sánchez-Vega, J. T., Cabrera-Fuentes, H. A., Romero-Olmedo, A. J., Ortiz-Frias, J. L., Sokolina, F. and Barreto, G. *Cyclospora cayetanensis*: this emerging protozoan pathogen in Mexico. *Am J Trop Med Hyg*; 2014; **90**(2):351-353.

3. Jann-Tay W., Pei-Chen C., Shan-Chwen C., Yih-Ru S., Hui-Ying W., Jui-Fen L., I-Wen H., Mei-Chen T. and Tsai-Ling Y. L. Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. *BMC Infect. Dis.* 2014; **14** 486. pii:1471-2334-14-486.

4. Collee, J.G., Fraser, A.G., Marmion, B.P., Simmons, A. In: *Mackie and McCartney Practical Medical Microbiology*, 1996; 14th ed. Churchill Livingstone.

5. Jeffrey L. K. Indicator Organism Assays: Chaos, Confusion and Criteria. http://www.foodsafetymagazine.com/magazine-archive/1/fEBruarymarch-2011/indicator-organism-assays-chaos-confusion-and-criteria/2011

6. Tilley, D. O., Arman, M., Smolenksi, A., Cox, D., O’Donnell, J.S., Douglas, C.W., Watson, S.P. and Kerrigan, S.W. Glycoprotein Ibα and FcαRIIa play key roles in platelet activation by the colonizing bacterium, *Streptococcus oralis*. *J Thromb Haemost*. 2013; **11**(5):941-50.

7. Miliotis, M. D. and Bier, J.W. International Handbook of Foodborne Pathogens. *CRC Press*. 2003; P. 361.

8. Mc Clatchey, K. D. Clinical Laboratory Medicine. 2002. *Lippincott Williams & Wilkins.

9. Janda, J.M. and Abbott, S.L. The genus *Aeromonas*: taxonomy, pathogenicity, and infection. *Clinical Microbiology Reviews*, 2010; **23**, 35-73.

10. Person, A. K., Chudgar, S. M., Norton, B. L., Tong, B. C. and Stout, J. E. *Aspergillus niger*: an unusual cause of invasive pulmonary aspergillosis. *J Med Microbiol.* 2010; **59** (7): 834–838.

11. Cabanes, F. J., Sutton, D. A., and Guarro, J. *Chrysosporium*-Related Fungi and Reptiles: A Fatal Attraction. *PLoS Pathog.* 2014; **10** (10).

12. Singh, A. M. and Busse, W. W. Asthma exacerbations· 2; Aetiology. *Thorax*. 2006; **61**(9): 809–816.

13. Jay, B., Varkey, M.D., John, R. and Perfect, M.D. Rare and Emerging Fungal Pulmonary Infections. *Semin Respir Crit Care Med*; 2008; **29**(2):121-131.

14. *US-EPA* Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems. 2012. P.2-3.

15. SASO. Bottled and unbottled drinking water, 1984. SSA 409/1984, 2nd ed. Available from: SASO Information Center, P.O. Box 3437, Riyadh, 11471, Saudi Arabia, pp. 1-8.

16. *WHO*. Guidelines for Drinking Water Quality. 1993. V. (1): Recommendations 2nd (ed.). Geneva.

17. Amer, A. Effect of Different Types of Pollutants on Bacteria-Zooplankton Interactions in the Nile Water. A thesis submitted of Ph.D. in science (Zoology), Girls College, Ain Shams Uni. 2007.

18. Bakir, B., Tanyuksel, M., Saylam, F., Tanriverdi, S., Araz, R. E., Hacim, A. K. and Hasde, M. Investigation of Waterborne Parasites in Drinking Water Sources of Ankara, Turkey. *The Journal of Microbiology*, 2003; p.148-151.

19. Al-Sabahi, E., Abdul Rahim, S., Wan-Zuhairi W.Y., Alshaebi, F. and Al Nozaily, F. Assessment of Groundwater and Surface Water Pollution at Mitm Area, Ibb City, Yemen. Mitm Area, Ibb City, Yemen. *Saudi Journal of Biological Sciences*; 2007; p.672.

20. Kawther, F. A. Antimicrobial Activity of Essential Oils of Some Medicinal Plants from Arab Saudi. *Saudi Journal of Biological Sciences*, 2007; **14** (1): 53-60.

21. Domsch, K. H., Gams, W and Anderson, T. Compendium of soil fungi. 2nd Edition, *IHW Verlag Eching, Germany*, 2007; p. 672.

22. Prescott, G. W. How to know the freshwater algae. *Brown Co. Dubuque, Iowa*: 1954; p.272.
23. Al-Turki, A. I. Evaluation of well water quality in Hael region of central of Saudi Arabia. Thirteenth International Water Technology Conference, IWTC, Harghada, Egypt 2009.

24. WHO Diarrhoeal disease. 2009. Geneva.

25. Le Chevallier, M. W., W. D. Norton, and R. G. Lee. *Giardia* and *Cryptosporidium* spp. in filtered drinking water supplies. *Appl. Environ. Microbiol.* 1991; 57: 2617–2621.

26. WHO Guidelines for Drinking-water Quality. 4th Edition. *WHO Library Cataloguing-in-Publication Data* 2011.

27. Todar, K. Pathogenic *E. coli*. Online Textbook of Bacteriology. *University of Wisconsin–Madison Department of Bacteriology*, 2007.

28. Jesumirhewe, C., Umebuani, D. A. and Ogunlowo, P. O. Multidrug resistance of *Enterobacter aerogenes* isolated from bovine animals in okada, edo state, nigeria. *Nova Journal of Medical and Biological Sciences*, 2014; 2(2), 1-6.

29. Debarry, J., Hanuszkiewicz, A., Stein, K., Holst, O. and Heine, H. The allergy-protective properties of *Acinetobacter lwofii* F78 are imparted by its lipopolysaccharide. *Allergy* 2009; 65 (6): 690–697.

30. Schneider, K. R., Parish, M. E., Goodrich, R. M. and Cookingham, T. Preventing foodborne illness: *Bacillus cereus* and *Bacillus anthracis*. FSHN04-05 (Food science and human nutrition) University of Florida 2004.

31. Fridkin, S. K., Hageman, J. C., Morrison, M., Sanza, L. T., Como-Sabetti, K., Jernigan, J. A., Harriman, K., Harrison, L. H., Lynfield, R., and Farley, M. M. Methicillin-resistant *Staphylococcus aureus* disease in three communities. The New England Journal of Medicine, 2005; 352(14), 1436.

32. Alves, J.M., Kitten, T., Brown, A., Chen, Z., Ozaki, L.S., Manque, P., Ge, X., Serrano, M.G., Puiu, D., Hendricks, S., Wang, Y., Chaplin, M.D., Akan, D., Paik, S., Peterson, D.L., Macrina, F.L. and Buck, G.A. Genome of the opportunistic pathogen *Streptococcus sanguinis*. *J Bacterial*, 2007; 189(8): 3166–3175.

33. Warris, A., Klaassen, C.H.W., Meis, J.F.G.M., de Ruiter, M.T., de Valk, H.A., Abrahamsen, T.G., Gaustad, P. and Verweij, P.E. Molecular epidemiology of *Aspergillus fumigatus* isolates recovered from water, air, and patients shows two clusters of genetically distinct strains. *Journal of Clinical Microbiology*, 2003; 41(9): 4101-6.

34. Lederman, M. M. *Alternaria* Infection in a Patient with Acquired Immunodeficiency Syndrome: Case Report and Review of Invasive *Alternaria* Infections. *Reviews of Infectious Diseases* (University of Chicago) 1987; 9(4):799–803.

35. Fincher, R.M., Fisher, J.F., Lovell, R.D., Newman, C.L., Espinel, A. and Shadowy, H.J. Infection due to the fungus *Acremonium*. *Medicine* 1991; 70(6): 398–409.

36. Vitale, R.G. and De Hoog, G.S. Molecular diversity, new species and antifungal susceptibilities in the *Exophiala spinifera* clade. *Med Mycol* 2002; 40: 545–556.

37. Natural Mineral Water, Spring Water and Bottled Drinking Water (Wales) (Amendment) Regulations. 2011. (W.S.I. No. 400 (W.57).