The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: results from a pooled-analysis of the Valentino and TRIBE first-line trials

Giovanni Fucà1, Vincenzo Guarini1, Carlotta Antoniotti2,3, Federica Morano1, Roberto Moretto3, Salvatore Corallo1, Federica Marmorino2,3, Sara Lonardi4, Lorenza Rimassa5,6, Andrea Sartore-Bianchi7,8, Beatrice Borelli2,3, Marco Tampellini9, Sara Bustreo10, Matteo Claravezza11, Alessandra Boccaccino2,3, Roberto Murialdo12, Alberto Zaniboni13, Gianluca Tomasello14, Fotios Loupakis2,3, Vincenzo Adamo15,16, Giuseppe Tonini17, Enrico Cortesi18, Filippo de Braud1,8, Chiara Cremolini2,3 and Sara Lonardi4, Lorenza Rimassa5,6, Andrea Sartore-Bianchi7,8, Beatrice Borelli2,3, Marco Tampellini9, Brescia, Italy; 14Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale (ASST) Ospedale di Cremona, Cremona, Italy; and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy; 5Medical Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; 6Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; 7Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; 8Oncology and Hemato-oncology Department, University of Milan, Milan, Italy; 9Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy; 10Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, Torino, Italy; 11Medical Oncology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; 12Department of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, Genoa, Italy; 13Medical Oncology Unit, Fondazione Poliambulanza, Brescia, Italy; 14Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale (ASST) Ospedale di Cremona, Cremona, Italy; 15Medical Oncology Unit, A.O. Papardo, Messina, Italy; 16Department of Human Pathology, University of Messina, Messina, Italy; 17Oncology Department, Policlinico Campus Bio-Medico di Roma, Rome, Italy and 18Oncology Unit, Policlinico Umberto I, Rome, Italy

Correspondence: Filippo Pietrantonio (filippo.pietrantonio@istitutotumori.mi.it)

Received: 25 January 2020 Revised: 3 April 2020 Accepted: 22 April 2020
Published online: 19 May 2020

© The Author(s), under exclusive licence to Cancer Research UK 2020

BACKGROUND: Immune-inflammatory biomarkers (IIBs) showed a prognostic relevance in patients with metastatic CRC (mCRC). We aimed at evaluating the prognostic power of a new comprehensive biomarker, the Pan-Immune-Inflammation Value (PIV), in patients with mCRC receiving first-line therapy.

METHODS: In the present pooled-analysis, we included patients enrolled in the Valentino and TRIBE trials. PIV was calculated as: (neutrophil count × platelet count × monocyte count)/lymphocyte count. A cut-off was determined using the maximally selected rank statistics method. Generalised boosted regression (GBR), the Kaplan–Meier method and Cox hazards regression models were used for survival analyses.

RESULTS: A total of 438 patients were included. Overall, 208 patients (47%) had a low-baseline PIV and 230 (53%) had a high-baseline PIV. Patients with high PIV experienced a worse PFS (HR, 1.66; 95% CI, 1.36–2.03, P < 0.001) and worse OS (HR, 2.01; 95% CI, 1.57–2.57; P < 0.001) compared to patients with low PIV. PIV outperformed the other IIBs in the GBR model and in the multivariable models.

CONCLUSION: PIV is a strong predictor of survival outcomes with better performance than other well-known IIBs in patients with mCRC treated with first-line therapy. PIV should be prospectively validated to better stratify mCRC patients undergoing first-line therapy.

British Journal of Cancer (2020) 123:403–409; https://doi.org/10.1038/s41416-020-0894-7

BACKGROUND

Even in the era of molecular selection,1 a non-negligible fraction of patients with metastatic colorectal cancer (mCRC) receiving first-line treatment has poor outcomes.2 Thus, the identification of new biomarkers for a better prognostic stratification and prediction of treatment outcomes is mandatory. Most of the biomarkers investigated so far are tumour-related, with less focus on host-related factors. Inflammation and immunity play a fundamental role in colorectal cancer initiation and progression,3,4 and several blood-based, easy-to-obtain, immune-inflammatory biomarkers (IIBs) have been investigated in cancer patients.5 Among others, neutrophil-to-lymphocyte ratio (NLR), platelets and monocytes showed a prognostic relevance in the advanced setting,5–8 but the clinical usefulness of such single biomarkers is limited by their low discriminative ability. Since the interplay between immunity, inflammation and cancer relies on complex networks, the use of a composite biomarker encompassing different immune-inflammatory populations and reflecting the global inflammation status could achieve a more robust prognostic power. Of note, the systemic immune-inflammation index (SII) based on lymphocyte, neutrophil and platelet counts, but not monocytes, was first developed for prognostic stratification in patients with hepatocellular carcinoma9 and demonstrated a certain relevance also in mCRC.10

1Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; 2Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; 3Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; 4Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy; 5Medical Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; 6Department of Biomedical Sciences, University of Genova, Pieve Emanuele, Italy; 7Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; 8Oncology and Hemato-oncology Department, University of Milan, Milan, Italy; 9Department of Oncology, AOU San Luigi di Orbassano, University of Torino, Orbassano, Italy; 10Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, Torino, Italy; 11Medical Oncology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; 12Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy; 13Medical Oncology Unit, Fondazione Poliambulanza, Brescia, Italy; 14Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale (ASST) Ospedale di Cremona, Cremona, Italy; 15Medical Oncology Unit, A.O. Papardo, Messina, Italy; 16Department of Human Pathology, University of Messina, Messina, Italy; 17Oncology Department, Policlinico Campus Bio-Medico di Roma, Rome, Italy and 18Oncology Unit, Policlinico Umberto I, Rome, Italy
In patients with mCRC, the use of such IIBs should be assessed in large datasets of patients enrolled in modern trials. In the present pooled-analysis of patients with mCRC receiving first-line therapy in the frame of two randomised academic trials, Valentino and TRIBE, we aimed to evaluate the prognostic power of a new biomarker, the Pan-Immune-Inflammation Value (PIV), including all the immune-inflammatory populations from peripheral blood with a proved prognostic relevance in mCRC.

METHODS

Patients population

The Valentino study (NCT02476045) was a multicentre, randomised, open-label Phase 2 trial that enrolled 229 patients and showed that, in patients with RAS wild-type mCRC, panitumumab plus FOLFOX-4 induction followed by maintenance therapy with single-agent panitumumab (arm B) achieved inferior PFS compared to the same induction regimen followed by panitumumab plus 5-FU/LV (arm A). The TRIBE study (NCT00719797) was a multicentre, randomised, open-label Phase 3 trial by Gruppo Oncologico del Nord Ovest (GONO) that enrolled 508 patients and showed that, in patients with molecularly unselected mCRC, first-line FOLFOXIRI plus bevacizumab achieved superior PFS and OS compared with FOLFIRI plus bevacizumab.

For the present study, we selected patients enrolled in the two trials with available RAS and BRAF mutational status, complete baseline blood-cell count at cycle 1, day 1 (prior to first treatment cycle administration) and clinicopathological data including but not limited to prior exposure to adjuvant chemotherapy, primary tumour resection and primary tumour sidedness.

Statistical analyses

In order to represent a weight of the interaction between inflammatory pro-tumour populations (i.e. neutrophils, platelets and monocytes) and anti-cancer immune populations (i.e. lymphocytes), PIV was calculated as: neutrophil count (10^3/mmc) × platelet count (10^3/mmc) × monocyte count (10^3/mmc)/lymphocyte count (10^3/mmc). Maximaly selected rank statistics method for PFS was used to find an optimal cut-off value to stratify patients in low PIV vs high PIV. NLR was calculated as: neutrophil count (10^3/mmc)/lymphocyte count (10^3/mmc). NLR was defined high if >3, platelet count was defined high if >310 × 10^3/mmc and monocyte count was defined high if >0.5 × 10^3/mmc based on literature data. SII was calculated as: neutrophil count (10^3/mmc) × platelet count (10^3/mmc)/lymphocyte count (10^3/mmc) and defined high if >730 based on literature data. Fisher exact test, Chi-square test, Mann–Whitney test or Kruskal–Wallis test, as appropriate, were used to analyse the association between baseline PIV and the other clinicopathological characteristics. PFS was defined as the time from randomisation to disease progression or death from any cause. OS was defined as the time from randomisation to death from any cause. Generalised boosted regression was used to screen the association of PIV and the other IIBs with PFS and OS. Further survival analyses were performed using the Kaplan–Meier method and the Cox proportional hazards regression models. All the variables showing a P below the significance threshold in the univariate models were included in a multivariable model. The variables showing a P below the significance threshold in the multivariable models were considered to be independent prognostic factors. All tests were 2-sided with a significance threshold of 0.05. Statistical analyses were performed using the R (version 3.5.0) and R Studio (version 1.1.447).

RESULTS

Patients characteristics according to Pan-Immune-Inflammation Value

A total of 438 patients were included in the present analysis: 207 from the Valentino study and 231 from the TRIBE study. The process of patients’ selection is illustrated in Supplementary Fig. S1. In terms of patients’ characteristics, the subsets of patients included in the present study was representative of the overall trial populations (Supplementary Table S1). Median PIV in the entire study population was 417 (IQR, 239–780). The distribution of median PIV according to patients’ and disease characteristics is shown in Supplementary Table S2.

Table 1. Pan-Immune-Inflammation Value (PIV) according to patients' and disease baseline characteristics.
Characteristics
Age (years)
Median
IQR
Gender
Female
Male
ECOG PS
0
1
Prior adjuvant treatment
No
Yes
Primary tumour resected
No
Yes
Liver-limited disease
No
Yes
Synchronous metastases
No
Yes
Number of metastatic sites
1
>1
Primary tumour sidedness
Left
Right
RAS/BRAF status
RAS/BRAF wild-type
RAS mut
BRAF mut
Study
Valentino
TRIBE
Chemotherapy backbone
Doublet
Triplet

IQR interquartile range, ECOG Eastern Cooperative Oncology Group, PS performance status, PIV Pan-Immune-Inflammation Value.

*Fisher exact test, Chi-square test, Mann–Whitney test or Kruskal–Wallis test as appropriate. P below the significance threshold are reported in bold.
The optimal cut-off value for PIV using a maximally selected rank statistics method for PFS was 390 (Supplementary Fig. S2). Overall, 208 patients (47%) had a low PIV and 230 (53%) had a high PIV. The distribution of high vs low PIV patients in the two studies was well balanced (Table 1). Compared to patients with low PIV, a higher proportion of patients with high PIV had ECOG PS1 \(P < 0.001\), no primary tumour resection \(P < 0.001\), presence of synchronous metastases \(P = 0.003\) and more than 1 site of metastases \(P = 0.032\) (Table 1). The association between PIV and the classical immune-inflammatory biomarkers is shown in Supplementary Table S3.

Characteristics	Univariate analysis HR (95% CI)	\(P\)	Multivariable model HR (95% CI)	\(P\)
Age (years)\(a\)	0.291	–		–
53 Ref				
68 0.92 (0.80–1.07)	–			–
Gender	0.865	–		–
Female Ref				
Male 0.98 (0.80–1.21)	–			–
ECOG PS	\(0.001\)	\(0.002\)		\(0.002\)
0 Ref				
1 1.53 (1.19–1.97)	1.53 (1.17–1.99)			
Prior adjuvant treatment	\(0.025\)	\(0.580\)		\(0.580\)
No Ref				
Yes 0.72 (0.54–0.96)	1.12 (0.75–1.68)			
Primary tumour resected	\(0.009\)	\(0.392\)		\(0.392\)
No Ref				
Yes 0.75 (0.60–0.93)	0.90 (0.71–1.15)			
Liver-limited disease	0.137	–		–
No Ref				
Yes 0.85 (0.68–1.05)	–			–
Synchronous metastases	\(<0.001\)	\(0.036\)		\(0.036\)
No Ref				
Yes 1.55 (1.21–1.98)	1.46 (1.03–2.09)			
Number of metastatic sites	\(<0.001\)	\(<0.001\)		\(<0.001\)
1 Ref				
\(>1\) 1.48 (1.21–1.82)	1.49 (1.19–1.85)			
Primary tumour sidedness	\(0.005\)	\(0.084\)		\(0.084\)
Left Ref				
Right 1.39 (1.11–1.74)	1.24 (0.97–1.59)			
RAS/ BRAF status	\(0.001\)	\(0.015\)		\(0.015\)
RAS/ BRAF wt Ref				
RAS mut 1.18 (0.96–1.46)	1.07 (0.85–1.34)			
BRAF mut 2.46 (1.48–4.08)	2.37 (1.40–4.03)			
Study	0.784	–		–
Valentino Ref				
TRIBE 0.97 (0.79–1.19)	–			–
Backbone	0.485	–		–
Doublet Ref				
Triplet 0.92 (0.74–1.15)	–			–
NLR	\(0.025\)	\(0.462\)		\(0.462\)
Low Ref				
High 1.26 (1.03–1.54)	0.89 (0.66–1.21)			
PLT	\(<0.001\)	0.509		
Low Ref				
High 1.44 (1.18–1.77)	1.09 (0.84–1.41)			

\(\text{Table 2. Cox proportional hazards regression models for PFS.}\)

Fig. 1 Kaplan–Meier curves for PFS (a) and OS (b) in the overall population according to PIV. Blue lines indicate patients with low PIV whereas yellow lines indicate patients with high PIV. Patients with high PIV had worse survival outcomes compared to patients with low PIV.
Table 2 continued

Characteristics	Univariate analysis HR (95% CI)	P	Multivariable model HR (95% CI)	P
MONO				
Low	Ref			
High	1.40 (1.14–1.71)	0.001	0.98 (0.76–1.26)	0.885
SII				
Low	Ref			
High	1.36 (1.11–1.66)	<0.001	0.97 (0.68–1.38)	0.871
PIV				
Low	Ref			
High	1.66 (1.36–2.03)	<0.001	1.53 (1.09–2.15)	0.015

*HR hazard ratio, CI confidence interval, ECOG Eastern Cooperative Oncology Group, PS performance status, Ref reference, NLR neutrophil-to-lymphocyte ratio, PLT platelet count, MONO monocyte count, SII systemic inflammation index, PIV Pan-Immune-Inflammation Value.

A total of 269 OS events were reported during the study period with a pooled median OS of 28.5 months (95% CI, 25.6–31.6). Median OS was 21.6 months (95% CI, 19.9–24.7) for patients with high PIV and 34.4 months (95% CI, 32.1–42.7) for patients with low PIV (HR high vs low, 2.01; 95% CI, 1.57–2.57; P < 0.001) (Fig. 1, panel b). Results were consistent when the two populations were analysed separately (Supplementary Fig. S4). NLR, platelet count, monocyte count and SII were also significantly associated with OS (Table 3). In the generalised boosted regression model, PIV showed the highest relative influence on OS among the immune-inflammatory biomarkers (Fig. 2, panel b). As for PFS, PIV was the only inflammation-based biomarker that showed an independent prognostic impact on OS (adjusted HR high vs low, 1.55; 95% CI, 1.02–2.37; P = 0.042) (Table 3).

Predictive analyses according to Pan-Immune-Inflammation Value

In the *Valentino* study, PIV was not significantly associated with a differential effect of the two maintenance arms in terms of PFS (interaction P = 0.449) and OS (interaction P = 0.612) (Fig. 3, panels a and b, respectively).

Similar results were observed about the predictive role of PIV in the TRIBE study for patients treated with triplet-based vs doublet-based therapy (interaction P for PFS = 0.924; interaction P for OS = 0.951) (Fig. 3, panels C and D). Supplementary Table S4 summarises the results of the predictive analyses.

DISCUSSION

In the present pooled-analysis of two first-line trials, we investigated PIV as a new inflammation-based biomarker that integrates NLR, platelet count and monocyte count. PIV demonstrated an extensive and powerful prognostic impact on both PFS and OS in patients with mCRC receiving first-line chemotherapy plus a biological agent. We observed that patients with high baseline PIV had significantly worse survival outcomes compared to patients with low baseline PIV. PIV had the highest relative influence on survival outcomes in the generalised boosted regression models including the other canonical IIBs (i.e. NLR, platelet count, monocyte count) and was the only one that retained an independent prognostic role for PFS and OS in the multivariable models.

To avoid a fragmented information about systemic inflammation, both nomogram systems and scores have been also developed to integrate the various components in the prognostic modelling of CRC, but there is no consensus about the best approach. Rather than analysing the individual contribution of each cellular components (i.e. lymphocytes, neutrophils, platelets and monocytes) on clinical outcomes and then building a calculator (i.e. nomogram or score) in a statistical-driven approach, we tested the prognostic relevance of a new biomarker
incorporating lymphocytes, neutrophils, platelets and monocytes in a way that allowed us to “globally quantify” the cellular compartment of systemic inflammation (i.e. biological-driven approach).

Of note, PIV also outperformed another multicomponent inflammatory index, the SII that does not include information about monocyte count.

Among circulating white blood cells, monocytes are one of the most important subpopulations with an emerging role in cancer progression\(^1\) and potential prognostic impact also in patients with mCRC.\(^7\) Indeed, circulating macrophages represent the primary source of tumour-associated macrophages (TAMs) and the peripheral monocyte count was associated with the density of TAMs in colorectal cancer.\(^18\) Peripheral monocytes are also the source of monocytic (M-) myeloid-derived suppressor cells (MDSCs) that, together with polymorphonuclear (PMN-) MDSCs, characterise a population of immune cells driving immunosuppression and progression in mCRC.\(^9,20\) Of note, PMN-MDSCs are a particular phenotype of circulating neutrophils,\(^21\) so using a biomarker like PIV including monocytes and neutrophils rather than neutrophils only might easily summarise the immunosuppressive contribution of the two components of MDSCs without the need of complex cytfluorimetric analyses.

Even if with some limitations consisting in its retrospective nature and lack of prospective validation, our study included patients enrolled in two randomised clinical trials guaranteeing a high quality of data, especially in weighting the prognostic contribution of monocyte count, a parameter usually not included in the case report forms of clinical studies,\(^22\) particularly academic ones.

In conclusion, our study identifies PIV as a new IIB strongly associated with overall prognosis of mCRC patients receiving first-line treatment and outperforms the other well-known IIBs, suggesting its possible role as a stratification factor in future first-line clinical trials. Further studies should assess the role of PIV as predictive biomarker, particularly regarding its early modifications during treatment as a potentially dynamic biomarker associated with treatment outcomes, and in different settings (for instance, patients with pre-treated mCRC or early stage) or histologies, and with specific regard to immunotherapy approaches.

Table 3. Cox proportional hazard regression models for OS.
Characteristics
Age (years)\(^a\)
53
68
Gender
Female
Male
ECOG PS
0
1
Prior adjuvant treatment
No
Yes
Primary tumour resected
No
Yes
Liver-limited disease
No
Yes
Synchronous metastases
No
Yes
Number of metastatic sites
1
\(>1\)
Primary tumour sidedness
Left
Right
RAS/BRaf status
RAS/BRaf wt
RAS mut
BRAF mut
Study
Valentino
TRIBE
Backbone
Doublet
Triplet
NLR
Low
High
PLT
Low
High

Table 3 continued
Characteristics
MONO
Low
High
SII
Low
High
PIV
Low
High

HR hazard ratio, CI confidence interval, ECOG Eastern Cooperative Oncology Group, PS performance status, Reference, NLR neutrophil-to-lymphocyte ratio, PLT platelet count, MONO monocyte count, SII systemic inflammation index, PIV Pan-Immune-Inflammation Value.

\(^a\)The two values represent the first and third quartile, respectively, of the variable distribution.
The Pan-Immune-Inflammation Value is a new prognostic biomarker in... G Fucà et al.

408

Fig. 3 Kaplan–Meier curve for PFS and OS according to PIV and treatment arm in the Valentino study (a and b, respectively) and in the TRIBE study (c and d, respectively). PIV was not significantly associated with a differential effect of the two maintenance arms in the Valentino study nor with a differential effect of triplet-based vs doublet-based therapy in the TRIBE study.

AUTHOR CONTRIBUTIONS
G.F.: conceptualisation, data curation, formal analysis, investigation, writing of the original draft, review/editing and approval of the final manuscript. V.G.: data curation, investigation, review/editing and approval of the final manuscript. C.A.: data curation, investigation, review editing and approval of the final manuscript. F.Mo.: investigation, review/editing and approval of the final manuscript. R.Mo.: investigation, review/editing and approval of the final manuscript. S.C.: data curation, investigation, review/editing and approval of the final manuscript. F.Ma.: data curation, investigation, review/editing and approval of the final manuscript. S.L.: investigation, review/editing and approval of the final manuscript. A.S.B.: investigation, review/editing and approval of the final manuscript. M.T.: investigation, review/editing and approval of the final manuscript. S.B.: investigation, review/editing and approval of the final manuscript. M.C.: investigation, review/editing and approval of the final manuscript. A.B.: investigation, review/editing and approval of the final manuscript. R.Mu.: investigation, review/editing and approval of the final manuscript. A.Z.: investigation, review/editing and approval of the final manuscript. G.Tom.: investigation, review/editing and approval of the final manuscript. F.L.: investigation, review/editing and approval of the final manuscript. G.Ton.: investigation, review/editing and approval of the final manuscript. E.C.: investigation, review/editing and approval of the final manuscript. F.d.B.: investigation, review/editing and approval of the final manuscript. C.C.: conceptualisation, data curation, investigation, review/editing and approval of the final manuscript. F.P.: conceptualisation, data curation, formal analysis, investigation, supervision, writing of the original draft, review/editing and approval of the final manuscript.

ADDITIONAL INFORMATION
Ethics approval and consent to participate Institutional review board and ethics committee approval was obtained from all participating centres. All the patients provided written informed consent before any study-related procedures. The study was conducted in accordance with the Declaration of Helsinki.
advisory board fees from: Amgen, Arqule, Basilea, Baxter, Bayer, Celgene, Eisai, Sano Medical; lecture fees from: AbbVie, AstraZeneca, and Gilead; travel grants from: Merck

F.M. reported honoraria from: Servier; travel grants from: Amgen, Bayer, Merck-Serono; research Funding: Amgen, Merck-Serono. L.R. reported consulting/advisory board fees from: Amgen, Arqule, Arqule, Basilea, Baxter, Bayer, Celgene, Eisai, Exelixis, Hengrui, Incyte, Ipsen, Iralfarma, Eli Lilly, MSD, Roche, Sanofi, and SirTeX Medical; lecture fees from: AbbVie, AstraZeneca, and Gilead; travel grants from: Arqule and Ipsen. A.S.B. reported consulting/advisory board fees from: Amgen, Bayer, Sanofi; lecture fees from: Amgen, Bayer, Sanofi; travel grants from: Amgen, Bayer, Sanofi, M.C. reported lecture fees from: Sanofi, Aventis, Amgen; travel grants from: Roche, Genentech, Sanofi, Aventis, A.Z. reported consulting/advisory board fees from: Amgen, Servier, Bayer, Merck-Serono; lecture fees from: Servier, F.L. reported consulting/advisory board fees from: Amgen, Sanofi, Bayer; lecturer fees from: Roche, Sanofi, Bayer, Amgen; institutional research funding from: Roche, Merck-Serono, Amgen, Bayer; travel grants from: Roche, Amgen, Merck-Serono. F.D.B. reported receiving honoraria for speaker activities and participation in advisory boards from: Amgen, Inc, Roche, and Novartis International AG C.C. reported receiving honoraria for speaker activities and participation in advisory boards from: Roche, Amgen, Inc, Bayer AG, and Servier Laboratories; research grants from: Merck-Serono. F.P. reported receiving honoraria for speaker activities and participation in advisory boards from: Sanofi SA, Amgen, Inc, Bayer AG, Merck-Serono, Roche, and Servier Laboratories. All remaining authors have declared no conflicts of interest.

Funding information The present study was funded by institutional funds from the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.

Supplementary information is available for this paper at https://doi.org/10.1038/s41416-020-0894-7.

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. National Comprehensive Cancer Network. Colon Cancer (Version 4.2019). http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (2019).
2. Morano, F., Corallo, S., Lonardi, S., Raimondi, A., Cremoni, C., Rimassa, L. et al. Negative hyperselection of patients with RAS and BRAF wild-type metastatic colorectal cancer who received panitumumab-based maintenance therapy. J. Clin. Oncol. 37, 3099–3110 (2019).
3. Terzić, J., Grivennikov, S., Karin, E. & Karin, M. Inflammation and colon cancer. Gastroenterology 138, 2101–2114.e15 (2010).
4. Markman, J. L. & Shiao, S. L. Impact of the Immune system and immunotherapy in colorectal cancer. J. Gastrointest. Oncol. 6, 208–223 (2015).
5. Dolan, R. D., McSorley, S. T., Horgan, P. G., Laird, B. & McMillan, D. C. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 116, 134–146 (2017).
6. Dell’Aquila, E., Cremlolini, C., Zeppola, T., Lonardi, S., Bergamo, F., Maxi, G. et al. Prognostic and predictive role of neutrophil/lymphocytes ratio in metastatic colorectal cancer: a retrospective analysis of the TRIBE study by GONO. Ann. Oncol. 29, 924–930 (2018).
7. Sjoquist, K. M., Renfro, L. A., Simes, R. J., Tebbutt, N. C., Clarke, S., Seymour, M. T. et al. Personalizing survival predictions in advanced colorectal cancer: the ARCAD nomogram project. J. Natl Cancer Inst. 110, 638–648 (2018).
8. Sen, S., Chen, N., Peng, J., Ling, W., Fang, Q., Yin, S. F. et al. Peripheral monocyte counts predict the clinical outcome for patients with colorectal cancer: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 31, 1313–1321 (2019).
9. Hu, B., Yang, X. R., Xu, Y., Sun, Y. F., Sun, C., Guo, W. et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 20, 6212–6222 (2014).
10. Passardi, A., Scarpi, E., Cavanna, L., Dall’Agata, M., Tassinari, D., Leo, S. et al. Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 7, 33210–33219 (2016).
11. Pietrantonio, F., Morano, F., Corallo, S., Miceli, R., Lonardi, S., Raimondi, A. et al. Maintenance therapy with panitumumab alone vs panitumumab plus fluorouracil–leucovorin in patients with RAS wild-type metastatic colorectal cancer: a phase 2 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1467 (2019).
12. Cremoni, C., Loupakis, F., Antoniotti, C., Lupi, C., Sensi, E., Lonardi, S. et al. FOLFIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 16, 1306–1315 (2015).
13. Lauseen, B. & Schumacher, M. Maximally selected rank statistics. Biometrics 48, 73–85 (1992).
14. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
15. Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).
16. Dolan, R. D., McSorley, S. T., Park, J. H., Watt, D. G., Roxburgh, C. S., Horgan, P. G. et al. The prognostic value of systemic inflammation in patients undergoing surgery for colon cancer: comparison of composite ratios and cumulative scores. Br. J. Cancer 119, 40–51 (2018).
17. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).
18. Shibutani, M., Maeda, K., Nagahara, H., Fukuoka, T., Nakao, S., Matsutani, S. et al. The peripheral monocyte count is associated with the density of tumour-associated macrophages in the tumour microenvironment of colorectal cancer: a retrospective study. BMC Cancer 17, 404 (2017).
19. Karakasheva, T. A., Dominguez, G. A., Hashimoto, A., Lin, E. W., Chiu, C., Sasser, K. et al. CD38+/M-MDSC expansion characterizes a subset of advanced colorectal cancer patients. JCI Insight 3, 97022 (2018).
20. Tada, K., Kitano, S., Shoji, H., Nishimura, T., Shimada, Y., Nagashima, K. et al. Pretreatment immune status correlates with progression-free survival in chemotherapy-treated metastatic colorectal cancer patients. Cancer Immunol. Res. 4, 592–599 (2016).
21. Shaul, M. E. & Fridelender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).
22. Dolan, R. D., Laird, B. J. A., Horgan, P. G. & McMillan, D. C. The prognostic value of the systemic inflammatory response in randomised clinical trials in cancer: a systematic review. Crit. Rev. Oncol. Hematol. 132, 130–137 (2018).