A primate-specific short GluN2A-NMDA receptor isoform is expressed in the human brain

Hannah Warming, Chrysia-Maria Pegasiou, Aleksandra P. Pitera, Hanna Kariis, Steven D. Houghton, Ksenia Kurbatskaya, Aminul Ahmed, Paul Grundy, Girish Vajramani, Diederik Bulters, Xavier Altafaj, Katrin Deinhardt and Mariana Vargas-Caballero*

Abstract

Glutamate receptors of the N-methyl-D-aspartate (NMDA) family are coincident detectors of pre- and postsynaptic activity, allowing Ca^{2+} influx into neurons. These properties are central to neurological disease mechanisms and are proposed to be the basis of associative learning and memory. In addition to the well-characterised canonical GluN2A NMDAR isoform, large-scale open reading frames in human tissues had suggested the expression of a primate-specific short GluN2A isoform referred to as GluN2A-S. Here, we confirm the expression of both GluN2A transcripts in human and primate but not rodent brain tissue, and show that they are translated to two corresponding GluN2A proteins present in human brain. Furthermore, we demonstrate that recombinant GluN2A-S co-assembles with the obligatory NMDAR subunit GluN1 to form functional NMDA receptors. These findings suggest a more complex NMDAR repertoire in human brain than previously thought.

Keywords: NMDA receptor, Synapses, Human, Primate, Resected, Neurosurgery, PSD-95, Glutamatergic

Introduction

NMDA receptors are activated by coincident glutamate binding and intracellular depolarisation. Ca^{2+} entry via NMDARs can gate long-term biochemical and gene expression changes that alter synaptic strength, which are proposed as central to mechanisms of memory storage [17] and neurodegenerative processes [9]. Our current knowledge of NMDAR function is largely derived from the study of rodent receptors and heterologous expression of cloned rodent genes. Tetrameric NMDARs comprise two obligatory GluN1 subunits and two GluN2 or GluN3 subunits, and in the adult forebrain GluN1/GluN2A, GluN1/GluN2B diheteromers, and GluN1/GluN2A/GluN2B triheteromers are the most common [18, 19]. The subunit combination confers the distinct biophysical and pharmacological properties to the receptor channel. The developmentally and anatomically regulated gene expression of NMDAR subunits, together with diverse post-translational modification mechanisms and protein interactions, determines the assembly, trafficking, synaptic or extrasynaptic localisation and internalisation of NMDARs (Reviewed in [16]) and their correct functioning is necessary for human brain functions [5, 6, 21].

Homologous rodent and human NMDARs do share highly conserved subunit sequences and exhibit almost identical pharmacological properties [10]. However, large scale open reading frame studies performed with mRNA from a mix of human tissues [20, 28] have suggested that in addition to the conserved NMDAR canonical isoform of GluN2A in chordates, a shorter isoform is produced in humans (GluN2A-S) generated by alternative splicing of human GRIN2A (Fig. 1a). Here, we show that this alternative NMDAR isoform is expressed in the human and primate brain, and that it forms functional receptors together with the obligatory subunit GluN1 [15]. The presence of alternative NMDAR subunits not expressed in rodent model systems indicates the existence of unexplored neural mechanisms in human synapses with relevance to normal function, ageing and neurological disease.

* Correspondence: m.vargas-caballero@soton.ac.uk
1School of Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Fig. 1 (See legend on next page.)
Results and discussion

To test whether the GluN2A-S mRNA (GRIN2A) is expressed in human brain, we designed primers (Fw1/Rv1) flanking the region of exon 13 containing the 343 base pairs (bp) present only in GRIN2A (Fig. 1a). We predicted two distinct amplicons (474 bp and 131 bp) that would distinguish the GRIN2A and GRIN2A-S transcripts, respectively (Fig. 1a). Following PCR using cDNA from human brain (Table 1) as template, we observed the presence of a ~131 bp amplicon. In contrast, in mouse we observed one product of 474 bp, corresponding to the canonical isoform, using Fw1/Rv1 primers and a pair of primers modified to exactly match mouse Grin2A at the same location (mFw1/mRv1, Fig. 1b). If both short and long GRIN2A cDNAs are present in the human sample, the synthesis of shorter cDNA could overwhelm the early PCR cycles [27] and only generate the short amplicon. Using an additional GRIN2A specific reverse primer (Rv2), we confirmed the presence of canonical GRIN2A in this human cDNA sample (Fig. 1c). We observed the 131 bp band in further adult brain cDNAs tested with Fw1/Rv1 primer pair (Fig. 1d, two further samples not shown). Although its expression levels increase developmentally, GluN2A is expressed throughout the life course [2].

We tested foetal human brain cDNA and confirmed the expression of both GRIN2A and GRIN2A-S (Fig. 1e).

Table 1 Details of resected human brain tissue samples

Case Number	Sex	Age	Reason for Surgery
004	M	52	Hippocampal sclerosis
007	F	21	DNMT
008	M	71	Glioblastoma
010	M	28	Hippocampal sclerosis
011	F	42	Glioma
014	F	32	Hippocampal sclerosis
016	F	36	Hippocampal sclerosis
017	M	62	Hippocampal sclerosis
018	M	30	Cavernous malformation
019	M	19	Arteriovenous malformation
020	F	70	Arteriovenous malformation
021	M	49	Hippocampal sclerosis
022	M	58	Subarachnoid haemorrhage
024	F	50	Cavernous malformation
026	M	27	Mesial temporal DNMT with signal changes in the hippocampus
028	F	38	Epilepsy
030	M	40	Cortical dysplasia
032	M	29	Tumour resection
037	M	52	Glioma
039	F	58	Tumour resection
041	M	41	Hippocampal sclerosis

M Male, F Female, DNMT Dysplastic neuroepithelial tumour
Thus, our data confirm the presence of both canonical GRIN2A and the novel GRIN2A-S transcripts in human brain tissue samples.

A BLAST search of the 131 bp sequence amplified by primers Fw1/Rv1 provided primate-specific predictive hits. To confirm whether GRIN2A-S transcript is present in primate brain, we tested Rhesus macaque brain cDNA with Fw1/Rv1 primers and confirmed the presence of GRIN2A-S (Fig. 1f). We sequenced the shorter PCR products for both the adult human and primate samples and confirmed the presence of the exact splice site reported in the European Nucleotide Archive (Coding: AAI17132.1; [20]) (Fig. 1a,g).

Furthermore, we aimed to evaluate whether the GRIN2A and GRIN2A-S transcripts were translated into the corresponding proteins. To this end, we hypothesised that if both transcripts are translated into proteins, two protein bands corresponding to GluN2A and
GluN2A-S in human homogenate would be immunode-
derected by a GluN2A antibody targeting an epitope con-
served between the canonical and short GluN2A isoforms (Fig. 2a,b). Importantly, Western blot analysis from human brain homogenates confirmed the presence of two immunoreactive bands with a molecular weight corresponding to the predicted GluN2A and GluN2A-S isoforms. On the contrary, a single immunoreactive band with the high molecular weight (corresponding to the canonical GluN2A) was detected in mouse brain lysates (Fig. 2b). Furthermore, using an antibody specifically detecting a carboxy terminal epitope (exclusively present in the canonical GluN2A isoform), we detected the presence of a single band, with a molecular weight corresponding to the canonical GluN2A subunit (Fig. 2a, b). To confirm the identity of the low molecular weight band, we immunoprecipitated GluN2A from human tis-
sue homogenates with an antibody against the conserved N-terminal domain and analysed the primary-specific band (Band 2, Fig. 2c) by mass spectrometry. This unbiased method allowed the identification of 14 unique peptides located within GluN2A residues 81–1022, confirming that this low molecular band contains the prox-
imal part of GluN2A, and thus discarding the potential cross-reactivity of anti-GluN2A N-terminal antibody (Fig. 2d). To assess the relative levels of GluN2A-S vs. total GluN2A, human cortical homogenates from fresh-
frozen tissue resected from individuals 27–61 years of age were analysed by Western blot and the quantifica-
tion showed that GluN2A-S immunoreactivity accounts for 34 ± 4% of canonical GluN2A protein in cortical hu-
man brain homogenate (Table 1) and this fraction re-
mains constant across age (Fig. 2ei).

Finally, to test whether GluN2A-S can be incorporated into functional NMDARs, we co-transfected HEK293 cells with plasmids expressing GluN2A-S and GluN1 subunits [15]. A slow voltage ramp delivered during local perfusion with 40 μM NMDA and 10 μM glycine elicited a typical J-
shaped curve (Fig. 2f), and subtraction of responses without agonist (leak subtraction) revealed a typical NMDA current with reversal potential near 0 mV (Fig. 2ei). This confirms that GluN2A-S subunits are able to assemble with GluN1 subunits and become inserted into the plasma membrane to form a functional NMDAR that likely plays a role in human neural function.

Here we describe for the first time the brain expres-
soin of an uncharacterised, primate-specific NMDAR subunit. The splice site for GluN2A-S suggests that it will contain a diverging 19 aa sequence in its extreme C-
terminal domain (Fig. 2a), in addition to lacking the dis-
tal carboxy terminal domain (183 amino acids) that con-
tains PKC/SFK phosphorylation sites, two PDZ binding motifs that allow synaptic localisation [4, 12, 14], and a dileucin clathrin adaptor motif involved in receptor internalisation [13]. Following many lines of published evidence, these differences suggest that the dynamic regu-
lation of GluN2A-S in response to stimuli could diverge from GluN2A subunit-containing NMDARs. This could impact the number of receptors present synaptically or extrasynaptically, the insertion of new receptors into the membrane, their lateral diffusion and clustering into synapses and their active removal. The potential changes in human synapses compared to mouse neurons void of GluN2A-S could result in distinct mechanisms involved in activity-dependent plasticity of synapses, which will highly depend upon its triheteromeric partners [1, 8, 19].

Together, our data suggest that GluN2A-S is a primate-
specific NMDAR subunit and a substantial component of functional NMDARs in the adult human brain. Many neuronal mechanisms discovered in mice have been successfully recapitulated in humans. However, mounting evidence suggests that there are important differences between rodent and human neurons that result in distinct signal integration properties [22, 23, 26] and proteome composition of synapses [3]. Species differences may ultim-
ately impact the way in which human neural circuits can be computationally modelled [7], and the translation of pre-clinical findings into approved therapies [24]. Further analyses of GluN2A-S spatio-temporal gene expression and synaptic/ extrasynaptic localisation will enhance our know-
ledge of their functional role and may uncover NMDAR trafficking mechanisms present only in primates and diver-
ging sequences may uncover novel therapeutic targets.

Materials and methods
Human brain tissue samples
All samples consisted of cortical tissue resected for access to deeper brain lesions such as sclerotic hippocampus in epileptic patients (the pathological tissue for these lesions was not used). Informed consent was obtained from all pa-
tients to use surgically-resected putatively non-pathological tissue not required for diagnostic purposes (see ethical ap-
proval declaration). Briefly, resected tissue was obtained from temporal cortex of patients undergoing surgery for the removal of deeper structures. Tissue was collected in ice cold artificial cerebrospinal fluid [26] then taken to the laboratory, frozen and kept at −80 °C. Transfer time was of the order of 10–15 min.

Mouse brain tissue
Mice were decapitated following isoflurane anaesthesia (see ethical approval declaration). Brains were extracted in ice-cold ACSF and sliced or snap-frozen. All brain tis-
sue samples were stored in the -80°C freezer until lysed.

RNA extraction and cDNA synthesis
Total RNA was isolated from human and mouse tissue using Trizol and then purified using the RNeasy Mini kit
following the manufacturer’s instructions. cDNA was synthesised immediately from 200 ng of total RNA per reaction using the SuperScript IV reverse transcriptase and cDNA synthesis kit (INVITROGEN) according to the manufacturer’s instructions. The cDNA obtained was stored at –80 °C. Human foetal cDNA was obtained from Takara (Normal brain tissue cDNA, pooled from 59 spontaneously aborted male/female Caucasian fetuses, ages: 20–33 weeks). Rhesus macaque cDNA was obtained from Amsbio (Normal brain tissue, Female, 4.5 years).

PCR conditions and primers

PCR was performed on 1 μg of cDNA using primers and REDTaq® Readymix™ PCR Reaction Mix (Sigma-Aldrich) for 40 cycles. DNA was denatured at 95 degree C and extended at 72 degree C for 45 s each cycle. Products were separated on a 1.5% agarose gel.

The following primers were used: Fw1: ATTCAGGC-CATTCCCCATGAG, Rv1: ATCTCCAATAACCAAGCTTGG, Rv2: CTTGCTGTCCATCCAGACCTTG mFw1: ACTCAGGCACTTACCTGAG, and mRv1: ATCTCCAATAACTAAGCTTGG.

Plasmids

pEYFP-NR1a was a gift from Stefano Vicini (Addgene plasmid # 17928; [15]). GRIN2A-S plasmid from Broad Institute, was acquired from Source Bioscience (Transcript NM_001134408.2).

Western blotting

Equal amounts of protein (28 μg) were separated in 7.5% acrylamide gels by SDS-PAGE and transferred onto nitrocellulose membranes. Membranes were blocked in 5% (w/v) non-fat milk for 1 h at room temperature and incubated overnight at 4 C in 5% (w/v) bovine serum albumin (BSA) containing 0.1% (v/v) Tween-20 and one of the following primary antibodies: anti-NMDAR2A (ab133265; 1:1000; Abcam); and GAPDH (D16H11; 1:1000; CST) actin.

The following membranes were washed 3 times with Tris-buffered saline (TBS) containing 0.1% (v/v) Tween-20 and one of the following primary antibodies: anti-NMDAR2A (ab133265; 1:1000; Abcam); and GAPDH (D16H11; 1:1000; CST) actin. Membranes were washed 3 times with Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBS-T) and probed with fluorophore-conjugated goat anti-mouse/-rabbit secondary antibody (1:10000; LI-COR). Proteins were visualised using the Odyssey infrared scanner (LI-COR) using Image Studio Light Software.

GluN2A pulldown

GluN2A was pulled down from 1 mg of protein homogenate (in RIPA buffer) using 2 μg of Alomone antibody AGG-002 beads. Eluate was run in SDS page and stained with Coomassie dye. The lighter band corresponding to putative GluN2A-S was cut and analysed by LC-MS/MS [11].

HEK293T cell recordings

HEK293T cells were cultured at 37 °C with 5% CO₂ in Dulbecco’s Modified Eagle Medium with glucose, L-glutamine and pyruvate, 10% FBS and 1% Pen-Strep and seeded at low density onto poly-L-lysine coated glass coverslips for electrophysiology. Adherent cells were transfected using JetPEI reagent with NR1a and GluN2A-S plasmids at a 1:1 ratio and recorded after 48 h. Borosilicate glass micropipettes were pulled to produce a resistance of 4–6 MΩ and filled with intracellular recording solution containing in mM: Gluconic acid 70, Caesium chloride 10, sodium chloride 5, BAPTA 2, potassium chloride 3, NaH₂PO₄ 1.25 and NaHCO₃ 26.4, and glycine 10 μM and pH regulated by continuous bubbling of 95% oxygen, 5% CO₂. Recordings with or without addition of NMDA 40 μM were made in whole-cell voltage clamp and Matlab software and amplified using an Axopatch 200B as previously described [28].

Acknowledgements

We thank Dr. Kate J Heesom from the Proteomics Facility, University of Bristol for advising on and performing the mass spectrometry analysis. We thank Dr. Ian Galea as chief investigator of the NOII study.

Funding

MVC was funded by the Institute for Life Sciences (IfLS) and Wessex Innovation Fund. HW was funded by an Alzheimer’s Research UK Southcoast Network Summer Studentship, HW and CMP PhD studentships were funded by the Gerald Kerkut Trust, CMP was co-funded by IfLS studentship, KK and MVC performed research; HW, CMP, AP, KK, MVC analyzed data; DB, AA, PG, GV performed neurosurgery to resect human brain tissue used in this work, MVC, KD, XA, HW designed research; HW, CMP, AP, HK, SDH, KK and MVC contributed to the writing of the manuscript.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Anonymous human brain tissue samples. All patients provided informed consent for participation. Ethical approval: REC Reference: 12/NW/0794, HTA LN: 12009 under the Southampton Biorepository Research. Study reference number: SRB002/14 or the NOII study: REC reference: 11/SC/0204 Sponsor number: RHM NEU0169.
Animal tissue. Animal care and experimental procedures were conducted in accordance with UK Home Office regulations under the Animals (Scientific Procedures) Act of 1986.

Consent for publication
Not applicable.

Competing interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author details
1School of Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK. 2Wessex Neurological Centre, University Hospital Southampton, University of Southampton, Southampton, SO16 6YD, UK. 3Neuropharmacology Unit, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.

Received: 4 June 2019 Accepted: 21 June 2019
Published online: 04 July 2019

References
1. Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ. NMDA Di-Heteromeric receptor populations and associated proteins in rat Hippocampus. J Neurosci. 2007;27:8334–43.

2. Bar-Shira O, Maor R, Chechik G. Gene expression switching of receptor subunits in human brain development. PLoS Comput Biol. 2015;11: e1004559.

3. Bayes A, Collins MO, Croning MDR, van de Lagemaat LN, Choudhary JS, Grant SG. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One. 2012;7:e46683.

4. Cousins SL, Kenny AV, Stephenson FA. Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association. Neuroscience. 2009;158:1859–90.

5. de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, Hoischen A, Scheffer H, Koolen DA, Van Ommen GJG, Gilissen C, Del Rosario M, Smeets RJMW, Maldergem L, Kutsche K. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42:1021–6.

6. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stenavica I, Milh M, Kontum F, Frisch T, Pientka F, Hellenbroich Y, Kalscheuer VM, Kolhoff J, Moog U, Rappold G, Rauch A, Ropers HH, von Spinacz S, Tönnies H, Villeuneuve N, Villard L, Zabel B, Zinner M, Laube B, Reis A, Wieczorek D, van Maldergem L, Kutsche K. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2009;42:1021–6.

7. Eyal G, Verhoog MB, Testa-Silva G, DeFelipe J, Mansvelder HD. Human synapses show a wide temporal window for spike-timing-dependent plasticity. Front Synaptic Neurosci. 2010;2:12.

8. Hansen KB, Ogden KK, Yuan H, Traynelis SF. Distinct functional and pharmacological properties of Triheteromeric GluN1/2A/2B NMDA receptors. Neuron. 2014;81:1084–96.

9. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.

10. Hedegaard MK, Hansena KB, Andersena KT, Bräuner-Osborne H, Traynelis SF. Molecular pharmacology of human NMDA receptors. Neurochemistry International. 2012;61:601–9.

11. Jiménez-Castellanos J-C, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneider T, Hesom RJ, Avison MB. Envelope proteome changes driven by Rama overproduction in Klebsiella pneumoniae that enhance acquired β-lactam resistance. J Antimicrob Chemother. 2018;73:884–9.

12. Kög J, Jensen V, Koester HJ, Al a M, Utvik JK, Kvello A, Ottersen OP, Seeburg PH, Sprenger R, Hvalby Ø. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci. 2003;23:10791–9.

13. Lavezzari G. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci. 2004;24:6838–91.

14. Lim IA, Merrill MA, Chen Y, Hell JW. Disruption of the NMDA receptor–PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect. Neuropharmacology. 2003;45:738–54.

15. Luo JH, Fu Z-Y, Losi G, Kim BG, Prysowlowski K, Vissel B, Vicini C. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture. Neuropharmacology. 2002;42:306–18.

16. Lussier MP, Sanz-Clemente A, Roche KW. Dynamic regulation of NMDA and AMPA receptors by posttranslational modifications. J Biol Chem. 2015;290. jbc.R115.652750.

17. Martin SJ, Grimwood PD, Morris RGM. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649.

18. Paolotti P, Bellone C, Zhou Q. NMDA receptor subunit diversity on receptor properties, synaptic plasticity and disease impact. Nat Rev Neurosci. 2013;14:383–400.

19. Rauner C, Köhr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem. 2011;286(9):7558–66.

20. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shennem GD, Altschul SF, Lander ES, Aerts JM, Golub TR, Gordon DB, Maag BA, van der Steeck M, Ydstie TD, interviewing different sets of amino acids. J Biol Chem. 2012;287:7950–6.

21. Strehlow V, Heyne HO, Vlaskamp DRMN, Vanark FKM, Rudolf G, de Geus AC, Grimwood J, Schmutz J, Altschul SF, Zeeberg B, Buetow KH, Wysokinski WE, Leventhal IM, O’Donnell AL, Gruenewald P, Van De Loo F, Vanden Berghe W, Yntema HG, Kroes T, de Vries P, Gilissen C, Del Rosario M, Smeets RJMW, Maldergem L, Kutsche K. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42:1021–6.

22. Testa-Silva G, Verhoog MB, Goiounova NA, Loebel A, Hjorth J, Baeyen JC, de Kock CPJ, Mansvelder HD. Human synapses show a wide temporal window for spike-timing-dependent plasticity. Front Synaptic Neurosci. 2010;2:12.

23. Testa-Silva G, Verhoog MB, Linao D, de Kock CPJ, Baeyen JC, Meredith RM, De Zeeuw CI, Giugliano M, Mansvelder HD. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol. 2014;12:e1002007.

24. Vargas-Caballero M, Willame-Morawek S, Gomez-Nicola D, Perry VH, Ruhrs D, Mudder A. The use of human neurons for novel drug discovery in dementia research. Expert Opin Drug Discov. 2016;11(4). https://doi.org/10.1517/17464941.2016.1154528.

25. Vargas-Caballero M, Robinson HPC. 2003. A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spine generation in cortical pyramidal neurons. J Neurophysiol 89:2778–2783.

26. Verhoog MB, Goiounova NA, Obermayr J, Stroeder J, Hjorth J, Testa-Silva G, Baeyen JC, de Kock CPJ, Meredith RM, Mansvelder HD. Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses. J Neurosci. 2013a;33:17197–208.

27. Walsh PS, Erlich HA, Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1992;1:241–50.
28. Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T, Shen Y, Lubonja R, Thomas SR, Alkan O, Bhimdi T, Green TM, Johannessen CM, Silver SJ, Nguyen C, Murray RR, Hieronymus H, Balcha D, Fan C, Lin C, Ghamsari L, Vidal M, Hahn WC, Hill DE, Root DE. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8:659–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.