Proposing a new constraint for predictions of pp, $\bar{p}p$ total cross sections and ρ ratio at LHC

Keiji Igia and Muneyuki Ishidab

aTheoretical Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
bDepartment of Physics, School of Science and Engineering, Meisei University, Hino, Tokyo 191-8506, Japan

Abstract

We propose a new constraint (1) corresponding to the FESR (with the moment $n=-1$) free from unphysical regions. Using this constraint (1) together with the constraint (2) (with the moment $n=1$), we search for the simultaneous best fit to the data points of $\sigma_{\text{tot}}^{(+)}$ and $\rho^{(+)}$ ratio up to the SPS energies to determine those values at higher energies. We then predict $\sigma_{\text{tot}}^{(+)} = 107.1 \pm 2.6$ mb, $\rho^{(+)} = 0.127 \pm 0.004$ at the LHC energy ($\sqrt{s} = 14$ TeV).

Key words: pp, $\bar{p}p$ total cross section, ρ ratio, FESR, LHC
PACS: 13.85.Lg, 14.20.Dh

Recently[1,2], we have searched for the simultaneous best fit of the average of pp, $\bar{p}p$ total cross sections ($\sigma_{\text{tot}}^{(+)}$), and the ratio of the real to imaginary part of the forward scattering amplitude ($\rho^{(+)}$) for 70 GeV < P_{lab} < P_{SPS} (up to the largest momentum of SPS corresponding to $\sqrt{s}=0.9$TeV) in terms of high-energy parameters constrained by the finite-energy sum rule (FESR)[5] with moment $n = 1$. We then predict $\sigma_{\text{tot}}^{(+)}$ and $\rho^{(+)}$ in the LHC ($\sqrt{s} = 14$ TeV) as well as high-energy cosmic-ray regions. Block and Halzen[3,4] have also reached the similar conclusions based on duality in a different approach.

Proposal of a new constraint

The purpose of this Letter is to propose the other new constraint besides the previous one in order to constrain the above parameters. Following ref.[1], we consider the crossing-even forward scattering amplitude defined by
\begin{equation}
F^{(+)}(\nu) = \frac{f^{pp}(\nu) + f^{\bar{p}p}(\nu)}{2} \quad \text{with} \quad \text{Im}F^{(+)}(\nu) = \frac{k\sigma_{\text{tot}}^{(+)}(\nu)}{4\pi}.
\end{equation}

We also assume

\begin{equation}
\text{Im}F^{(+)}(\nu) = \text{Im}R(\nu) + \text{Im}F_{P'}(\nu)
= \frac{\nu}{M^2}\left(c_0 + c_1\log\frac{\nu}{M} + c_2\log^2\frac{\nu}{M}\right) + \frac{\beta_{P'}}{M}\left(\frac{\nu}{M}\right)^{a_{P'}}
\end{equation}

at high energies for \(\nu > N \). Here, \(M \) is the proton(anti-proton) mass and \(\nu, k \) are the incident proton(anti-proton) energy, momentum in the laboratory system, respectively. (We use the same notation as Ref.[1,2] in this article.) Defining

\begin{equation}
\tilde{F}^{(+)}(\nu) = F^{(+)}(\nu) - R(\nu) - F_{P'}(\nu) - F^{(+)}(0) \sim \nu^{\alpha(0)} \quad (\alpha(0) < 0)
\end{equation}

for large value of \(\nu \), we have obtained[1] in the spirit of \(P' \) sum rule[7]

\begin{equation}
\text{Re}\tilde{F}^{(+)}(M) = \frac{2P}{\pi} \int_0^{M} \frac{\nu}{k^2} \text{Im}F^{(+)}(\nu) d\nu + \frac{1}{2\pi^2} \int_0^{N} \frac{\sigma_{\text{tot}}^{(+)}(k)}{\nu^2 - \nu_1^2} d\nu
= -\frac{2P}{\pi} \int_0^{N} \frac{\nu}{k^2} \left\{ \text{Im}R(\nu) + \frac{\beta_{P'}}{M}\left(\frac{\nu}{M}\right)^{0.5}\right\} d\nu ,
\end{equation}

where \(N = \sqrt{N^2 - M^2} \simeq N \). The equation (4) was called FESR(1).\(^2\) This FESR suffers from the unphysical regions coming from boson poles below the \(\bar{p}p \) threshold. Reliable estimates, however, are difficult. Therefore, we have not adopted the FESR(1) in the analysis[1,2].

Let us now change our strategy to use FESR(1), not at \(\nu = M \) but at some intermediate energy \(\nu = \nu_1 \) as

\begin{equation}
\text{Re}\tilde{F}^{(+)}(\nu_1) = \frac{2P}{\pi} \int_0^{M} \frac{\nu}{\nu^2 - \nu_1^2} \text{Im}F^{(+)}(\nu) d\nu + \frac{P}{2\pi^2} \int_M^{N} \frac{\nu k}{\nu^2 - \nu_1^2} \sigma_{\text{tot}}^{(+)}(\nu) d\nu
= -\frac{2P}{\pi} \int_0^{N} \frac{\nu}{\nu^2 - \nu_1^2} \left\{ \text{Im}R(\nu) + \frac{\beta_{P'}}{M}\left(\frac{\nu}{M}\right)^{0.5}\right\} d\nu .
\end{equation}

\(^1\) Although \(\text{Re}F^{(+)}(\nu) \) becomes large for large values of \(\nu \), a real constant has to be introduced in principle since the dispersion relation for \(\text{Re}F^{(+)}(\nu) \) requires a single subtraction constant \(F^{(+)}(0)[6,2] \).

\(^2\) This FESR(1) corresponds to \(n = -1[5] \).
If we choose the value of \(\nu_1 \) to be sufficiently large, this constraint is not sensitive to the unphysical regions (the first term of the right-hand side of Eq. (5)) as well as ambiguities from low-energy integrals of \(pp \) and \(\bar{p}p \) scatterings.

Suppose we consider Eq. (5) with \(N = N_1 \) and \(N = N_2 \) \((N_2 > N_1) \). Taking the difference between these two relations, we obtain

\[
\frac{2P}{\pi} \int_{N_1}^{N_2} \frac{\nu}{\nu^2 - \nu_1^2} \left\{ \text{Im} R(\nu) + \frac{\beta P'}{M} \left(\frac{\nu}{M} \right)^{0.5} \right\} d\nu = \frac{P}{2\pi^2} \int_{N_1}^{N_2} \frac{\nu k}{\nu^2 - \nu_1^2} \sigma_{\text{tot}}^{(+)}(\nu) d\nu . \tag{6}
\]

Let us call this relation as the constraint(1) which we use in our analysis. This constraint gives the relation between high-energy parameters \(c_2, c_1, c_0, \beta P' \), and the cross-section integrals, and is free from the unphysical regions.

The general approach

Besides the constraint(1), we have the FESR corresponding to \(n = 1 \)[5],

\[
\int_0^M \nu \text{Im} F^{(\nu)}(\nu) d\nu + \frac{1}{4\pi} \int_0^N k^2 \sigma_{\text{tot}}^{(+)}(k) dk
= \int_0^N \nu \text{Im} R(\nu) d\nu + \int_0^N \nu \text{Im} F^{(\nu)}(\nu) d\nu . \tag{7}
\]

We call Eq. (7) as the constraint(2) which we also use in our analysis.

The \(\text{Re} F^{(\nu)}(\nu) \) is calculable from the \(\text{Im} F^{(\nu)}(\nu) \), Eq. (2) by requiring the relation \(F^{(\nu)}(-\nu) = (F^{(\nu)}(\nu))^* \) to hold[8]. Therefore, we obtain [9]

\[
\rho^{(+)}(\nu) = \frac{\text{Re} F^{(\nu)}(\nu)}{\text{Im} F^{(\nu)}(\nu)} = \frac{\frac{\pi \nu}{2M^2} \left(c_1 + 2c_2 \log \frac{\nu}{M} \right) - \frac{\beta P'}{M} \left(\frac{\nu}{M} \right)^{0.5} + F^{(+)}(0)}{\frac{k\sigma_{\text{tot}}^{(+)}(\nu)}{4\pi}} . \tag{8}
\]

The constraints(1),(2) and the formula of \(\sigma_{\text{tot}}^{(+)} \) (Eqs. (1) and (2)) and the \(\rho^{(+)} \) ratio (Eq. (8)) are our starting points. Among four parameters, \(c_2, c_1, c_0 \) and \(\beta P' \), the \(c_0 \) and \(\beta P' \) are represented by the other two \((c_2 \) and \(c_1) \) parameters by two constraints. Then, we search for the simultaneous best fit to \(\sigma_{\text{tot}}^{(+)} \) and
\[\rho^{(+)} \] with three parameters, \(c_2, c_1 \) and \(F^{(+)}(0) \).

Evaluation of cross-section integrals using experimental data

The integrals of \(\sigma_{\text{tot}}^{(+)} \) appearing in RHS(LHS) of Eq. (6)(Eq. (7)) are estimated by using experimental total cross sections \(\sigma_{\text{tot}}^{pp} \) and \(\sigma_{\text{tot}}^{pp} \) in Particle Data Group 2004[10]. A phenomenological formula, \(\text{Im} f^i(\nu) = \frac{k}{4\pi} \sigma_{\text{tot}}^i \), is used to fit experimental \(\sigma_{\text{tot}}^{pp} \) (\(\sigma_{\text{tot}}^{pp} \)) in the region of 2.5 GeV \(< k \leq 100 \) GeV (2.592 GeV \(< k \leq 100 \) GeV). The \(c_2 \) and \(c_1 \) are fixed with the values in our previous analysis, \((c_2, c_1) = (0.0479, -0.186)\) (“analysis 2” in ref.[2]), and the 77(103) points of data are fitted with four parameters, \(c_0, \beta', d^i, f^i \), respectively. The best-fitted values of \(\chi^2 \) \((\chi^2/(N_D-N_P))\) are 148.5/(77-4) and 71.8/(103-4), respectively for \(\bar{p}p \) and \(pp \). The large value of \(\chi^2 \) for \(\bar{p}p \) comes from the inconsistency among the data of different experiments. In order to obtain good fit to \(\bar{p}p \) data, we are forced to pick up some data points giving large \(\chi^2 \)-contributions to be removed. For this purpose we use statistical method, named Sieve algorithm [11,3]. In this method, by minimizing the Lorentzian squared, \(\Lambda_2^i = \sum_{i=1}^{N_D} \ln \{1 + \gamma \Delta \chi^2_i \} \) (not the chi squared, \(\chi^2 = \sum_{i=1}^{N_D} \Delta \chi^2_i \)) with \(\gamma = 0.179[11], \) a “robust” fit is obtained to the same data, where \(N_D \) is the number of data points and \(\Delta \chi^2_i \) means the \(\chi^2 \)-contribution of the \(i \)-th point. Points giving \(\Delta \chi^2_i > \Delta \chi_{\text{max}}^2 \) in this robust fit are regarded as outliers, and removed. We take a cut \(\Delta \chi_{\text{max}}^2 = 6 \), and seven points are removed.\(^3\) After removing these points, we obtain a shifted data set, re-fitted by minimizing the conventional \(\chi^2 \). As a result we obtain renormalized \(\chi^2 \)(including the factor \(R = 1.140[11] \)), \(\chi^2_{\bar{p}p}/(N_D-N_P)=36.6/(70 - 4) \). Finally we obtain the successful fits for both \(\sigma_{\text{tot}}^{pp} \) and \(\sigma_{\text{tot}}^{pp} \). The \((c_0, \beta', d^i, f^i) = (6.34, 11.08, 5.28, -0.15)(6.32, 4.25, -12.64, 24.4) \) are obtained for \(i = \bar{p}p(pp) \).

We take the values of parameters appearing in Eq. (6) as \((\bar{N}_1, \bar{N}_2, k_1) = (10, 70, 40) \) GeV, where \(\nu_1 = \sqrt{k_1^2 + M^2} \). The above phenomenological fits give the cross-section integrals \(\int_{2\pi}^{2\pi} \frac{\nu k}{\nu^2 - \nu_1^2} \sigma_{\text{tot}}^{(+)}(k)dk = 242.57 \pm 1.00 \) (219.04 \pm 0.47)GeV\(^{-1} \) with for \(i = \bar{p}p(pp) \), where the errors correspond to the one-standard deviations. By averaging these values we obtain

\[
\frac{P}{2\pi^2} \int_{\bar{N}_1}^{\bar{N}_2} \frac{\nu k}{\nu^2 - \nu_1^2} \sigma_{\text{tot}}^{(+)}(k)dk = 230.81 \pm 0.55 \text{ GeV}^{-1} .
\]

We can also evaluate the cross-section integral in Eq. (7). We devide the

\(^3\) \((k(\text{GeV}), \sigma_{\text{tot}}^{pp}(\text{mb})) = (2.5, 74.9 \pm 1.0), (3.54, 69.7 \pm 0.5), (3.6, 76.2 \pm 1.8), (4.71, 1), (4.015, 66.84 \pm 0.32), (4.3, 60.6 \pm 0.8), (9.14, 57.51 \pm 0.73) \) are removed.
region of integral into two parts, \(\frac{1}{4\pi} \int_{0}^{N} k^2 \sigma^{i}_{tot}(k) dk = \frac{1}{4\pi} \int_{N_0}^{N} k^2 \sigma^{i}_{tot}(k) dk + \frac{1}{4\pi} \int_{N_0}^{N} k^2 \sigma^{i}_{tot}(k) dk \), and the integral in higher energy-region (the second term) is evaluated by using the phenomenological fit in the same manner. The integral in lower energy region (the first term) is evaluated by using experimental data directly: Each datum is connected with the next point by a straight line in order, and the resulting polygonal line graph gives the relevant integral. (The details of this procedure are explained in our previous works\[1,2\].) By taking the \(N \) as 10 GeV and \(N_0 = 4.7 \) GeV, we obtain

\[
\frac{1}{4\pi} \int_{0}^{N} k^2 \sigma^{\bar{pp}}_{tot}(k) dk = (522.22 \pm 1.91) + (3499.44 \pm 14.22) = 4021.66 \pm 14.35 \text{GeV for } i = \bar{pp}. \]

By taking \(N_0 = 4.966 \) GeV, \(\frac{1}{4\pi} \int_{0}^{N} k^2 \sigma^{pp}_{tot}(k) dk = (357.24 \pm 0.89) + (2411.26 \pm 3.50) = 2768.50 \pm 3.61 \text{GeV for } i = pp. \) By averaging them we obtain

\[
\frac{1}{4\pi} \int_{0}^{N} k^2 \sigma^{(+)}_{tot}(k) dk = 3395.1 \pm 7.4 \text{ GeV with } N = 10 \text{ GeV}. \tag{10}
\]

This value is consistent with our previous estimate, \(3403 \pm 20 \text{ GeV}[1] \), which is evaluated by using the area of the polygonal line graphs up to \(k=\overline{N}(=10 \text{ GeV}) \). In our present estimate, both of the integrals are estimated with small errors less than 0.3%.

FESR as two constraints

By using the integrals, Eqs. (9) and (10), we obtain the constraints (1) and (2) as

\[
\begin{align*}
\text{constraint(1)} & \quad 3.316 \beta_{p'} + 31.98 c_0 + 141.1 c_1 + 610.9 c_2 = 230.81, \tag{11} \\
& \quad \text{(normalized } 0.104 \beta_{p'} + c_0 + 4.41 c_1 + 19.1 c_2 = 7.22 \text{)}, \\
\text{constraint(2)} & \quad 140.7 \beta_{p'} + 383.6 c_0 + 781.6 c_1 + 1635 c_2 = 3395.1, \tag{12} \\
& \quad \text{(normalized } 0.367 \beta_{p'} + c_0 + 2.04 c_1 + 4.26 c_2 = 8.85 \text{)},
\end{align*}
\]

where we neglect the errors of cross-section integrals, and regard Eqs. (11) and (12) as exact constraints. The equations are also rewritten in the form with the coefficient of \(c_0 \) normalized to unity in the parenthesis. Solving these two equations, we obtain the constraints for \(c_0 \) and \(\beta_{p'} \) as

\[
\begin{align*}
& c_0 = c_0(c_2, c_1) = 6.574 - 5.348 c_1 - 24.95 c_2, \\
& \beta_{p'} = \beta_{p'}(c_2, c_1) = 6.206 + 9.025 c_1 + 56.40 c_2. \tag{13}
\end{align*}
\]

Analysis and result

In the actual analysis we fit the data of Re\(F^{(+)}(\nu) \) instead of \(\rho^{(+)} \). We made
Fig. 1. Predictions for $\sigma^{(+)}$ and $\rho^{(+)}$: (a) Total cross section $\sigma^{(+)}_{\text{tot}}$ versus $\log_{10}P_{\text{lab}}/\text{GeV}$, (b) gives the $\rho^{(+)}$(=$\text{Re }F^{(+)}/\text{Im }F^{(+)}$) versus E_{cm} in terms of TeV. The fit is done for the data up to the SPS energy, in the region $70(10)\text{GeV} \leq k \leq 4.3 \times 10^5 \text{GeV}$ ($11.5(4.54)\text{GeV} \leq \sqrt{s} \leq 0.9 \text{TeV}$) for $\sigma^{(+)}_{\text{tot}}(\rho^{(+)})$ which is shown by horizontal arrow in each figure. Vertical arrow represents the LHC energy $\sqrt{s}=14\text{TeV}$, corresponding to $k=1.04 \times 10^8 \text{GeV}$. The thin dot-dashed lines correspond to the one standard deviation of c^2, given with the parameters $(c_2, c_1, c_0, \beta_{P'}, F^{(+)}(0)) = (0.0464 \pm 0.0038, -0.158 \mp 0.057, 6.26 \pm 0.21, 7.40 \mp 0.30, 10.18 \mp 0.27)$.

$\sigma^{(+)}_{\text{tot}}$ and $\text{Re }F^{(+)}$ data points by averaging the original data given in ref.[10]. The detailed explanations for the treatment of data are given in ref.[1]. There are 17 data points of $\sigma^{(+)}_{\text{tot}}$ above 70 GeV and 10 data points of $\text{Re }F^{(+)}$ above 10 GeV up to SPS energy $\sqrt{s} = 0.9 \text{ TeV}$. They are fitted simultaneously with parameters c_2, c_1 for $\sigma^{(+)}_{\text{tot}}$ and $c_2, c_1, F^{(+)}(0)$ for $\text{Re }F^{(+)}$.

The results are shown in Fig. 1. The $\chi^2/d.o.f$ is $10.80/(27-3)$, which is less than unity. The respective χ^2-values devided by the number of data points for $\sigma^{(+)}_{\text{tot}}$ and $\rho^{(+)}$ are $\chi^2_{\sigma}/N_{\sigma} = 5.64/17$ and $\chi^2_{\rho}/N_{\rho} = 5.16/10$, respectively. The fit is successful.

The values of parameters are given in Table 1. The result is compared with the previous analysis (“analysis 1” in ref.[2]), where only Eq. (12) is used as a constraint. The values of c_2 have to be noted since the high-energy behaviours of $\sigma^{(+)}$ and $\rho^{(+)}$ are most sensitive to c_2. The “analysis 1” gives $c_2 = 0.0466 \pm 0.0047$. The present value of c_2 in Table 1 is consistent with the previous one, although the error does not reduce so largely.

In order to check our result, we take another value of k_1, $k_1=80\text{GeV}$ for constraint(1) with the other parameters to remain unchanged ($\langle N_1, N_2, \bar{N} \rangle = (10,
The constraint is represented by \(c_2 \) and \(c_1 \) through the constraints, and the fit is performed by using three parameters \(c_2, c_1 \) and \(F^{(+)}(0) \), of which errors are given by the \(\chi^2 \) function \(\chi^2(c_2,c_1,F^{(+)}(0)) \). Conversely by solving the constraints for \(c_2 \) and \(c_1 \), the \(\chi^2 \) function is represented by \(c_0, \beta P' \) and \(F^{(+)}(0) \). The errors of \(c_0 \) and \(\beta P' \) are, thus, obtained.

\[
\begin{array}{cccc}
c_2 & c_1 & c_0 & \beta P'
\end{array}
\]

\[
\begin{array}{cccc}
0.0464 \pm 0.0038 & -0.158 \pm 0.057 & 6.26 \pm 0.21 & 7.40 \pm 0.31 & 10.18 \pm 1.70
\end{array}
\]

70, (10)(GeV). In this case the constraint(1) becomes \(-3.628\beta P' - 27.68c_0 - 113.0c_1 - 463.3c_2 = -203.93 \pm 0.34\text{GeV}^{-1} \) \(\text{normalized:} 0.131\beta P' + c_0 + 4.08c_1 + 16.7c_2 = 7.37 \pm 0.01 \). By using this together with the constraint(2)(Eq. (12)), the analysis is done in the same way. The value of \(c_2 \) is obtained as \(c_2 = 0.0472 \pm 0.0036 \) with \(\chi^2/d.o.f = 10.84/(27 - 3) \). This \(c_2 \) is almost the same as in Table 1, and the result is considered to be almost independent of the value of \(k_1 \).

We have also checked the dependence of the errors of cross-section integrals, Eqs. (9) and (10). In the case when a larger value of the integral, 230.81+0.55 (3395.1+7.4), is used for constraint(1) (constraint(2)) with the other integral to remain the same, we obtain that the best-fit value of \(c_2 \) is 0.0485(0.0461) with \(\chi^2 = 11.37(10.88) \). The deviations of \(c_2 \) from the original value 0.0464 are 0.0021(-0.0003). They are small, compared with the statistical error 0.0038: about \((21^2 + (-3)^2)/38^2 = 30\% \). So, we can regard Eqs. (11) and (12) as exact constraints.

Special attention has to be paid when the two constraints are employed to constrain the values of \(c_0 \) and \(\beta P' \). As shown in Eqs. (11) and (12), the constraints(1) and (2) take the \(c_0 \)-normalized forms 0.104\(\beta P' + c_0 + \cdots \) and 0.367\(\beta P' + c_0 + \cdots \), respectively. They are linearly independent and we have obtained the meaningful result. If the parameters are badly taken so that two constraints are not sufficiently linearly independent, the result becomes meaningless. For example, in case of \(k_1 = 60\text{GeV} \), the constraint(1) has a normalized form 0.314\(\beta P' + c_0 + \cdots \). It is quite close to the constraint(2), and this selection of parameters are not suitable for the analysis. In the present analysis, in order to obtain sufficiently independent constraint, we have taken much larger value of \(\sqrt{s} = 70\text{GeV} \) for constraint(1) than \(\sqrt{s} = 10\text{GeV} \) for constraint(2).

It is pointed out[4] that there are strong resemblances between our approach and the one by Block and Halzen[3]. They estimated the values of experimental even-cross section \(\sigma_{even}(\nu_0) \) and of its derivative \(\frac{d\sigma_{even}}{d(\nu/M)}|_{\nu_0} \) at a certain energy \(\nu = \nu_0 = 7.59\text{GeV} \) \(\sqrt{s} = 4\text{GeV} \) by using a local fit. These two quantities are used as constraints for parameters \(c_2, c_1, c_0 \) and \(\beta P' \), and \(c_0 \) and \(\beta P' \) are
represented by c_2 and c_1, similarly to our Eq. (13). They have shown in Ref.[4] that the constraint for $\sigma_{\text{even}}(\nu_0)$, which gives $8.67 = c_0 + 2.091c_1 + 4.371c_2 + 0.3516\beta_P^r$, is very close to our FESR(2), Eq.(12). Numerical difference seems very small at a first look, but this difference is physically very important, since, in the former, the constraint is obtained at one point $\nu = \nu_0$ in asymptotic region of $\sigma_{\text{tot}}^{(+)}$, while, in the latter, all the information in low-energy resonance region is included in the integral of $\sigma_{\text{tot}}^{(+)}$ taken from $k = 0$ to 10 GeV.

By using the values of parameters in Table 1, we can predict the $\sigma_{\text{tot}}^{(+)}$ and $\rho^{(+)}$ at Tevatron-collider energy($\sqrt{s}=1.8$TeV) and LHC energy($\sqrt{s}=14$TeV).

$$\sigma_{\text{tot}}^{(+)} = 75.82 \pm 1.02 \text{mb} \ (\sqrt{s} = 1.8\text{TeV}), \ 107.1 \pm 2.6 \text{mb} \ (\sqrt{s} = 14\text{TeV})$$

$$\rho^{(+)} = 0.136 \pm 0.004 \ (\sqrt{s} = 1.8\text{TeV}), \ 0.127 \pm 0.004 \ (\sqrt{s} = 14\text{TeV})$$

where the relevant energies are very high, and the $\sigma_{\text{tot}}^{(+)}$ and $\rho^{(+)}$ can be regarded to be equal to the σ_{tot}^{pp} and ρ^{pp}.

Our predicted values are almost the same as the previous ones[2]. They are consistent with the recent prediction by Block and Halzen[3] $\sigma_{\text{tot}}^{pp} = 75.19\pm0.55$ mb, $\rho^{pp} = 0.139 \pm 0.001$ at Tevatron energy $\sqrt{s} = 1.8$TeV, and $\sigma_{\text{tot}}^{pp} = 107.3 \pm 1.2$ mb, $\rho^{pp} = 0.132 \pm 0.001$ at LHC energy $\sqrt{s} = 14$TeV. They also analyzed the crossing-odd amplitude and obtained smaller errors compared with ours. Our prediction has also to be compared with Cudell et al.[12] $\sigma_{\text{tot}}^{pp} = 111.5 \pm 1.2_{\text{syst}} \pm 0.0058_{\text{stat}}$ mb, $\rho^{pp} = 0.1361 \pm 0.0015_{\text{syst}} \pm 0.0025_{\text{stat}}$, whose fitting techniques favour the CDF point at $\sqrt{s} = 1.8$TeV.

Finally we emphasize that our present analysis with two constraints is independent of the previous one[1,2] with one constraint. Although the high-energy parameters are strongly constrained by two FESR, Eqs. (11) and (12), in the present analysis, the result is almost the same with the previous one[2].

It is worthwhile to point out the followings:

1. Both of the parameters c_0, β_P^r are constrained as $c_0 = c_0(c_2, c_1)$ and $\beta_P^r = \beta_P^r(c_2, c_1)$ through FESR (namely duality).

2. And, then the high-energy behaviours of $\sigma_{\text{tot}}^{(+)}$ have been χ^2 fitted in terms of the parameters c_2, c_1 since $\sigma_{\text{tot}}^{(+)}$ is most sensitive to c_2.

Acknowledgements The authors express their gratitudes to professor M. M. Block for carefully reading this paper and giving valuable comments to complete this work.

4 In ref.[4], the constraint is given in unit of mb and the LHS is given as 48.58 mb, which is replaced by 8.67 here in our notation where c_i’s are dimensionless.
References

[1] K. Igi and M. Ishida, Phys. Lett. B 622 (2005), 286.
[2] K. Igi and M. Ishida, Prog. Theor. Phys. 115 (2006), 601.
[3] M. M. Block and F. Halzen, Phys. Rev. D 72 (2005), 036006: Erratum 039902.
[4] M. M. Block and F. Halzen, Phys. Rev. D 73 (2006), 054022.
[5] R. Dolen, D. Horn and C. Schmidt, Phys. Rev. 166 (1968), 1768.
[6] M. M. Block and R. N. Cahn, Rev. Mod. Phys. 57 (1985), 563.
[7] K. Igi, Phys. Rev. Lett. 9 (1962), 76.
[8] M. L. Goldberger, H. Miyazawa and R. Oehme, Phys. Rev. 99 (1955), 986.
[9] Eq. (2.9) of Ref.[2].
[10] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592 (2004) 313.
[11] M. M. Block, Nucl. Instrum. Meth. A 556 (2006) 308.
[12] J. R. Cudell et al., Phys. Rev. Lett. 89 (2002) 201801.