Abstract

A subgroup H of a finite group G is wide if each prime divisor of the order of G divides the order of H. We obtain the description of finite soluble groups with no wide subgroups. We also prove that a finite soluble group with nilpotent wide subgroups has the quotient group by its hypercenter with no wide subgroups.

Keywords: finite groups, soluble groups, nilpotent groups.

MSC2010: 20D20, 20E28, 20E34.

1 Introduction

All groups in this paper are finite. All notations and terminology are standard. The reader is referred to [1, 2] if necessary.

Let G be a group. We use $\pi(G)$ to denote the set of all prime divisors of $|G|$. By $|\pi(G)|$ we denote a number of different prime divisors of $|G|$. A subgroup H of a group G is said to be wide if $\pi(H) = \pi(G)$.

Let k be a positive integer. A group G is called k-primary if $|\pi(G)| = k$. If $|\pi(G)| = 1$ or $|\pi(G)| = 2$, then G is said to be primary or biprimary, respectively. A group G is quasi-k-primary if $|\pi(G)| > k$ and $|\pi(M)| \leq k$ for every maximal subgroup M of G. Obviously, quasi-k-primary groups have no wide subgroups.

A quasi-1-primary group is also called quasiprimary, and a quasi-2-primary group is also called quasibiprimary [3]. It is clear that the order of a nilpotent quasiprimary group is equal to pq, where p and q are primes. A nonnilpotent quasiprimary group G can be represented as the semidirect product $G = [E_{p^a}]Z_q$ of a normal elementary abelian group E_{p^a}, $|E_{p^a}| = p^a$, by a cyclic group Z_q, $|Z_q| = q$, where a is the exponent of p. This follows from Schmidt theorem [4] on groups all of whose subgroups are nilpotent.
S. S. Levischenko investigated quasibiprimary groups [3]. A soluble quasibiprimary group G can be represented as the semidirect product $[P]M$ of an elementary abelian Sylow p-subgroup P and a quasiprimary subgroup M, which is a maximal subgroup of G [3, Theorem 3.1]. In an insoluble quasibiprimary group G the Frattini subgroup $\Phi(G)$ is primary [3, Theorem 2.2], the quotient group $G/\Phi(G)$ is a simple group, and all such simple groups are enumerated [3, Theorem 2.1].

It is natural to study the structure of quasi-k-primary groups for any positive integer k. Most of simple groups is quasi-k-primary. Simple groups that are not quasi-k-primary are enumerated in [5, 3.8]. It is satisfied the question of V. S. Monakhov in Kourovka notebook [6, 11.64].

We obtain the description of soluble quasi-k-primary groups and soluble groups with nilpotent wide subgroups.

2 Preliminaries

Lemma 1. A soluble quasi-k-primary group is $(k + 1)$-primary.

Proof. Let G be a soluble quasi-k-primary group and M be a maximal subgroup of G. Then $|\pi(G)| \geq k + 1$ and $|\pi(M)| \leq k$. In a soluble group maximal subgroups have prime indices. Therefore

$$|G : M| = p^\alpha, \ p \in \pi(G), \ \alpha \in \mathbb{N}.$$

Since $|G| = |M| \cdot |G : M|$, we have $|\pi(G)| \leq k + 1$, and $|\pi(G)| = k + 1$. Lemma 1 is proved.

Lemma 2. If G is a soluble quasi-k-primary group and N is its normal Hall subgroup, then G/N is a quasi-l-primary group, where $l = k - |\pi(N)|$.

Proof. By Lemma 1, G is $(k + 1)$-primary, hence

$$|\pi(G/N)| = |\pi(G)| - |\pi(N)| = k + 1 - |\pi(N)| = l + 1.$$

Let M/N be a maximal subgroup of G/N. Then M is a maximal subgroup of G. Therefore $|\pi(M)| < |\pi(G)|$. As N is a Hall subgroup of G, we obtain

$$|\pi(M/N)| = |\pi(M)| - |\pi(N)| < |\pi(G)| - |\pi(N)| = |\pi(G/N)| = l + 1.$$

Thus G/N is $(l + 1)$-primary, and any maximal subgroup of G is not more than l-primary. Consequently, G/N is quasi-l-primary. Lemma 2 is proved.

Lemma 3. ([2, IV.2.11]) If all Sylow subgroups of a group G are cyclic, then the derived subgroup G' is a cyclic Hall subgroup and the quotient group G/G' is cyclic.
3 The structure of soluble quasi-\(k \)-primary groups

Theorem 1. Let \(G \) be a soluble group. Then the following statements are equivalent.

1. \(G \) is a quasi-\(k \)-primary group.
2. Every normal subgroup of \(G \) is a Hall subgroup.
3. Every maximal subgroup of \(G \) is a Hall subgroup.
4. \(G = [N]M \), where \(N \) is a minimal normal and Sylow subgroup of \(G \), \(M \) is a quasi-(\(k-1 \))-primary and maximal subgroup.

Proof. Check that (1) implies (2). Let \(G \) be a soluble quasi-\(k \)-primary group and \(N \) be a normal subgroup of \(G \), \(\tau = \pi(G) \setminus \pi(N) \). Suppose that \(N \) is not a Hall subgroup of \(G \). Since \(G \) is a quasi-\(k \)-primary group and \(N \) is its proper subgroup, we have \(|\pi(N)| \leq k \) and \(\tau \neq \emptyset \).

As \(G \) is a soluble group, in \(G \) there is \(\tau \)-Hall subgroup \(M \). Now, \((|M|, |N|) = 1 \), so \(M \cap N = 1 \) and \(NM = [N]M < G \). But

\[\pi([N]M) = \pi(N) \cup \pi(M) = \pi(N) \cup \tau = \pi(G), \quad |\pi(G)| = k + 1, \]

that is, in a quasi-\(k \)-primary group \(G \) there is a proper \((k + 1)\)-primary subgroup \([N]M\), a contradiction. Thus \(N \) is a Hall subgroup of \(G \).

Now we prove that (3) follows from (2). Assume that in a soluble group \(G \) every normal subgroup is a Hall subgroup. Let \(M \) be a maximal subgroup and \(N \) a minimal normal subgroup of \(G \). Then \(N \) is a Sylow subgroup of \(G \). If \(N \) does not belong to \(M \), then \(G = NM \). And since \(N \) is abelian, \(N \cap M = 1 \) and subgroup \(M \) is a Hall subgroup. Let \(N \subseteq M \). Then \(M/N \) is a maximal subgroup of \(G/N \). It is clear that every normal subgroup of \(G/N \) is a Hall subgroup. Then by induction \(M/N \) is a Hall subgroup of \(G/N \). Therefore \(M \) is also a Hall subgroup of \(G \).

Check that (3) implies (1). Assume that every maximal subgroup of a soluble group \(G \) is a Hall subgroup. Let \(M \) be a maximal subgroup of \(G \) and \(|\pi(G)| = k + 1 \). Since \(M \) is a Hall subgroup, we have \(|\pi(M)| = |\pi(G)| - 1 = k \), and \(G \) is a quasi-\(k \)-primary group.

Thus, (1), (2) and (3) are equivalent.

Check that (1) implies (4). Let \(G \) be a soluble quasi-\(k \)-primary group and \(N \) its minimal normal subgroup. In view of (2), \(N \) is a Sylow \(p \)-subgroup of \(G \). By SchurZassenhaus theorem \([\text{III, Theorem 4.32}]\), in \(G \) there is a subgroup \(M \) such that \(G = [N]M \). Applying Lemma 1, \(G \) is \((k + 1)\)-primary. Hence \(M \) is \(k \)-primary. Suppose that in \(M \) there is a proper \(k \)-primary subgroup \(M_1 \). Then in \(G \) there is a proper \((k + 1)\)-primary subgroup \([N]M_1\), a contradiction. Consequently, \(M \) is quasi-(\(k-1 \))-primary.

Finely we prove that (1) follows from (4). Let \(G = [N]M \), where \(N \) is a minimal normal and Sylow subgroup of \(G \), \(M \) is its quasi-(\(k-1 \))-primary and maximal subgroup. Then by
Lemma 1,
\[|\pi(M)| = k, \quad |\pi(G)| = |\pi([N]M)| = |\pi(N)| + |\pi(M)| = k + 1. \]

Show that every maximal subgroup \(K \) of \(G \) is not more than \(k \)-primary. If \(NK = G \), then \(N \cap K = 1 \) and \(K \simeq M \). Since \(M \) is a quasi-\((k - 1)\)-primary soluble subgroup of \(G \), using Lemma 1, we obtain that \(M \) is \(k \)-primary. And so \(K \) is also a \(k \)-primary group. Assume that \(NK \) is a proper subgroup of \(G \). Then \(N \subseteq K \) and \(K = N(K \cap M) \) by Dedekind identity. As \(M \) is quasi-\((k - 1)\)-primary, we obtain that \(L \cap M \) is not more than \((k - 1)\)-primary. Hence \(K = [N](K \cap M) \) is not more than \(k \)-primary. Thus (4) and (1) are equivalent. Theorem 1 is proved.

Note that \(\pi \)-soluble groups with certain Hall maximal subgroups are investigated in \([7]\).

Corollary 1.1. In a soluble quasi-\(k \)-primary group the Frattini subgroup is trivial.

Proof. The Frattini subgroup of any group can never be a Hall subgroup \([1, \text{Theorem 4.33}]\). It remains only to use Statement (2) of Theorem 1.

Corollary 1.2. In a soluble quasi-\(k \)-primary group the Fitting subgroup is a Hall subgroup and every its Sylow subgroup is a minimal normal subgroup.

Proof. By Theorem 1 (2) the Fitting subgroup of a soluble quasi-\(k \)-primary group \(G \) is a Hall subgroup. And so every its Sylow subgroup \(P \) is a Sylow subgroup of \(G \). Moreover, since the Fitting subgroup is nilpotent, \(P \) is a characteristic subgroup. Consequently, \(P \) is normal in \(G \). At the same time by Theorem 1 (2), a minimal normal subgroup of a soluble quasi-\(k \)-primary group is a Sylow subgroup. Corollary 1.2 is proved.

Corollary 1.3. Let \(N \) be a normal subgroup of a group \(G \). If \(G \) is a soluble quasi-\(k \)-primary group, then the quotient group \(G/N \) is a soluble quasi-\(l \)-primary group, where \(l = k - |\pi(N)| \).

Proof. It follows from Theorem 1 (2) and Lemma 2.

If a group \(G \) has a normal series whose factors are isomorphic to Sylow subgroups, then we say \(G \) has a Sylow tower.

Corollary 1.4. A soluble quasi-\(k \)-primary group has a Sylow tower.

Proof. We use induction on \(k \). Let \(G \) be a soluble quasi-\(k \)-primary group. Then by Statement (2) and (4) of Theorem 1, \(G \) can be represented as \(G = [P_1]M_1 \), where \(P_1 \) is a minimal normal and Sylow subgroup of \(G \), \(M_1 \) is a quasi-\((k - 1)\)-primary and maximal subgroup. By the induction hypothesis, \(M_1 \) has a Sylow tower. Hence \(G \) also has a Sylow tower. Corollary 1.4 is proved.
A positive integer n is said to be squarefree if p^2 does not divide n for all primes p. A group is supersolvable if all its chief factors are of prime orders.

Corollary 1.5. The order of a group G is squarefree if and only if G is a supersolvable quasi-k-primary group, where $k = |\pi(G)| - 1$. In particular, a supersolvable quasi-k-primary group is metacyclic.

Proof. Let the order of a group G be squarefree and $k = |\pi(G)| - 1$. Then all Sylow subgroups of G are cyclic and G is supersolvable and metacyclic by Lemma 3. It is clear that $|\pi(X)| < |\pi(G)|$ for every proper subgroup X of G, that is, G is quasi-k-primary.

Converse, let G be a supersolvable quasi-k-primary group. Apply induction on k. By Theorem 1 (4), $G = [N]M$, where N is a minimal normal and Sylow subgroup of G, M is a quasi-$(k-1)$-primary and maximal subgroup. In view of [1, Theorem 4.48], a minimal normal subgroup of a supersolvable group is of prime order, hence $|N| = p, p \in \pi(G)$. A subgroup M is supersolvable and quasi-$(k-1)$-primary. By the induction hypotheses, the order of M is squarefree. Hence the order of G is also squarefree. And so G is metacyclic by Lemma 3. Corollary 1.5 is proved.

Corollary 1.6. The derived length of a soluble quasi-k-primary group G does not exceed

$$\min\{|\pi(G)|, \max\{1 + a_i \mid i = 1, 2, \ldots, t\}\},$$

where $|F(G)| = p_1^{a_1}p_2^{a_2}\ldots p_t^{a_t}$.

Proof. Let $d(G)$ and $r(G)$ be the derived length and the rank of a soluble quasi-k-primary group G, respectively. By Theorem 1 (4), all Sylow subgroups of G are elementary abelian and the length of chief series of G equals $|\pi(G)|$. Hence $d(G) \leq |\pi(G)|$. Soluble groups with abelian Sylow subgroups are considered in paragraph VI.14 [2]. Therefore all statements applying to A-groups (soluble groups with abelian Sylow subgroups) of this paragraph is correct for quasi-k-primary groups. In particular, $d(G) \leq 1 + r(G)$ by [2] VI.14.18, and $r(G) \leq u$ by [2] VI.14.31, where u is the maximal number of generating Sylow subgroups in the Fitting subgroup $F(G)$. Since Sylow subgroups of G are elementary abelian, we have $u = \max\{a_i \mid i = 1, \ldots, t\}$. It follows that

$$d(G) \leq \min\{|\pi(G)|, \max\{1 + a_i \mid i = 1, \ldots, t\}\}.$$

Corollary 1.6 is proved.

Substituting $k = 2$ in Theorem 1, we obtain the result of S.S. Levischenko.

Corollary 1.7. ([3, Theorem 3.1]) A soluble group G is quasibiprimary if and only if G is equal to the semidirect product $[P]M$ of its elementary abelian Sylow p-subgroup P and quasiprimary subgroup M, which is also a maximal subgroup of G.

5
4 Soluble groups with nilpotent wide subgroups

Let G be a nontrivial group, $Z_0(G) = 1$, $Z_1(G) = Z(G)$, $Z_2(G)/Z_1(G) = Z(G/Z_1(G))$, ..., $Z_i(G)/Z_{i-1}(G) = Z(G/Z_{i-1}(G))$, Then the subgroup $Z_\infty(G) = \bigcup_{i=0}^{\infty} Z_i(G)$ is called the hypercenter of G.

Obviously, $Z(G/Z_\infty(G)) = 1$.

Theorem 2. If in a soluble group G every maximal subgroup M such that $\pi(M) = \pi(G)$ is nilpotent, then the quotient group $G/Z_\infty(G)$ is quasi-k-primary, where $k = |\pi(G/Z_\infty(G))| - 1$.

Proof. Suppose that the quotient group $\overline{G} = G/Z_\infty(G)$ is not quasi-k-primary, where $k = |\pi(G/Z_\infty(G))| - 1$. Then in \overline{G} there is a maximal subgroup $\overline{M} = M/Z_\infty(G)$ such that $\pi(\overline{M}) = \pi(G)$. By the hypotheses, M is nilpotent. Therefore \overline{M} is also nilpotent. Since \overline{M} is a maximal subgroup of a soluble group \overline{G}, we obtain that $|\overline{G} : \overline{M}| = p^\alpha$ for some $p \in \pi(G)$ and positive integer α. Let \overline{M}_p be a Sylow p-subgroup of \overline{M}, G_p be a Sylow p-subgroup of G containing \overline{M}_p. Then \overline{M}_p is a proper subgroup of \overline{G}_p. Therefore \overline{M}_p is normal in \overline{G}. Now there is a nontrivial element x of $\overline{M}_p \cap Z(\overline{G}_p)$ such that it belongs to the center of \overline{G}. This contradicts the fact that $Z(\overline{G}/Z_\infty(G)) = 1$. Theorem 2 is proved.

Corollary 2.1. If all wide subgroups of a group G are nilpotent, then $G/Z_\infty(G)$ is quasi-k-primary, where $k = |\pi(G/Z_\infty(G))| - 1$.

The converse of Theorem 2 is not true. For example, let $G = S_3 \times Z_6$. Here S_3 is the symmetric group of order 3, Z_6 is the cyclic group of order 6. Then $Z_\infty(G) = Z_6$, and so $G/Z_\infty(G) \simeq S_3$ is quasiprimary, but the wide maximal subgroup $M = S_3 \times Z_2$ is nonnilpotent.

The following question becomes natural.

What is the structure of a finite soluble group all of whose wide subgroups are supersoluble?

References

[1] V.S. Monakhov, *Introduction to the Theory of Finite groups and their Classes*, Vyshejshaya shkola, Minsk, 2006 (In Russia).

[2] B. Huppert, *Endliche Gruppen I*, Berlin-Heidelberg-New York, 1967.

[3] S.S. Lewischenko, Finite quasibiprimary groups, *Groups defined by properties of group systems*: collection of scientific papers, Inst. matem. AN USSR, Kiev (1979), 83–97 (In Russia).
[4] O. Yu. Schmidt, *Groups all of whose subgroups are special*, Mat. Sb. **31** (1924), 366–372.

[5] Q. Zhang, L. Wang, Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup, *Algebra Colloquium*, **12** (2005), 301–307.

[6] *The Kourovka Notebook: Unsolved Problems in Group Theory*, Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, 2014.

[7] V. S. Monakhov, Finite π-solvable groups whose maximal subgroups have the Hall property, *Math. Notes*, **84** (2008), P. 363–366.