Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research

Mary Beth Terry†, Karin B. Michels†, Julia Green Brody§, Celia Byrne¶, Shuan Chen¶, D. Joseph Jerry¶, Kristen M. C. Malecki¶, Mary Beth Martin¶, Rachel L. Miller¶, Susan L. Neuhausen¶, Kami Silk¶, Amy Trentham-Dietz⁎ and on behalf of Breast Cancer and the Environment Research Program (BCERP)

Abstract

Background: The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention.

Main text: Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers.

Conclusions: An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.

Keywords: Breast neoplasms, Puberty, Pregnancy, Menopause, Environment.
Background

Despite the considerable personal and societal burden from breast cancer, primary prevention efforts encounter challenges. Unlike other cancers that are linked to a predominant risk factor (e.g., smoking and lung cancer [1], human papillomavirus, and cervical cancer [2]), most established breast cancer risk factors have modest associations; moreover, many risk factors are not conducive to population-level intervention. The American Cancer Society guidelines for breast cancer prevention include limiting alcohol intake, avoiding post-menopausal hormone use, increasing physical activity, and maintaining a healthy body weight [3]. Yet even considering these factors, estimates indicate that a substantial proportion of breast cancer risk remains unexplained [4, 5].

Migrant studies, atomic bomb survivor studies, and experimental model studies reinforce the concept that exposures during certain periods in a woman’s life are important to later breast cancer risk [6–9]. These time intervals represent windows of susceptibility (WOS) and coincide with landmark events when a woman’s breast tissue changes in structure and function including the prenatal, pubertal, pregnancy, and menopausal WOS. Epidemiologic data support that both medications [10] and medical conditions [11, 12] during these WOS may affect breast cancer risk; more limited evidence addresses specific environmental chemicals and metals during these same WOS. In 2003, the National Institute for Environmental Health Sciences (NIEHS) initiated the Breast Cancer and the Environment Research Program (BCERP) with support from the National Cancer Institute (NCI) to specifically examine whether environmental exposures during the pubertal WOS affect the timing of puberty, a risk factor for breast cancer. Since 2009, BCERP expanded the WOS to include the prenatal, pregnancy, and menopausal transition WOS. In addition, studies of mammographic breast density (MBD), breast tissue measurements, and other intermediate biomarkers of the effects of environmental exposures were included. The BCERP consortium unites basic and population scientists in advancing our understanding of the role of environmental chemicals during WOS in breast cancer risk. Scientific research in BCERP also builds from community partnerships and collaborations with communication scientists within the consortium to facilitate direct translation to the public (Fig. 1).

Numerous previous studies examined environmental chemical exposure and breast cancer risk; however, most research in humans has not specifically focused on measuring environmental chemical exposures during WOS (for review, see [13, 14]). For example, of the 146 epidemiologic reports published in 2006–2016 on environmental chemicals and incident breast cancer, only 16 (11%) report on exposures measured during a specific WOS [14]. In this review, we outline the scientific evidence generated by experimental and epidemiologic scientists including (but not limited to) those in BCERP addressing the link between breast cancer risk and environmental chemicals and metals within four WOS—prenatal, puberty, pregnancy, and the menopausal transition—to inform breast cancer etiology and future interventions.

Windows of susceptibility (WOS)

Breast cancer etiology appears to be driven in part by perturbations to breast tissue as well as alterations of the
mammary gland micro-environment during critical windows. Here we briefly summarize breast tissue changes occurring during each WOS, review evidence that addresses environmental carcinogenesis during each WOS, and outline the motivation for ongoing research on the chemicals and metals targeted in BCERP.

**Prenatal WOS**

The prenatal period is a particularly vulnerable WOS because breast tissue begins to develop in the embryonic stage when epidermal cells in concert with embryonic mesenchyme become breast buds [15–18]. Faster fetal growth and greater birth weight increase breast cancer risk later in life [19–21]. Proposed mechanisms by which chemicals can alter normal mammary development trajectories [15, 18, 19, 22, 23] include changes in maternal hormone levels regulating development and sex differentiation, high levels of growth factors, potential DNA damage and mutations in germ cells, and other genetic or epigenetic processes [24].

Pregnancy and birth cohorts reveal possible associations between environmental chemicals during the prenatal period and breast cancer. The Child Health and Development Studies (CHDS) found high levels of maternal exposure to dichlorodiphenyltrichloroethane (DDT) during pregnancy increased the daughters’ later breast cancer risk to age 52 nearly fourfold compared to daughters of women with low levels of exposure (Table 1) [25]. Although production of many of the organochlorine chemicals—including dioxins, polychlorinated biphenyls (PCBs), and pesticides such as DDT—stopped in the 1970s, there is continued exposure to these complex mixtures with diverse biological activity. Animal fats and fish from contaminated waters are on-going sources of human exposure as a result of bioaccumulation [26]; PCB exposure also persists through inhalation both outdoors and of indoor air and dust from caulk, building materials, and floor finishes [27]. Organochlorines are hormonally active and may contribute to breast cancer by altering mammary gland development or hormone responsiveness early in life, or by promoting tumor growth [25]. Epidemiologic studies of DDT exposure measured outside of a WOS and breast cancer risk were less likely to report consistent findings [14, 19].

Another class of chemical exposures of concern during the prenatal WOS is polycyclic aromatic hydrocarbons (PAH). PAH are produced as a result of combustion of hydrocarbons. Some of the common sources of PAH exposure include consuming grilled meats and certain other food items [28], inhaling cigarette smoke and motor vehicle exhaust [29], and exposure to industrial processes [29–31]. PAH are widespread and enter the body largely through ingestion and inhalation of suspended particulate matter [32, 33]. The International Agency for Research on Cancer classifies PAH as probable carcinogens; the US Environmental Protection Agency lists PAH as possible carcinogens [34, 35].

Like DDT and other organochlorines, PAH are lipophilic and stored in fat tissue including breast tissue [36]. Most PAH compounds are weakly estrogenic and may induce cell proliferation via activation of the estrogen receptor (ER) [37]. Exposure to PAH was linked to mammary cancer in rodents [38]. PAH exposure has been measured directly in both blood [39] and breast tissue [40], and higher levels of PAH-DNA adducts have been found in breast cancer cases compared with women without breast cancer [41]. Similarly, breast cancer cases reported higher levels of PAH exposures than controls based on questionnaire assessments of indirect exposure [42–46]. For all these epidemiologic studies, specific WOS were not investigated. Because experimental and epidemiologic associations implicate prenatal PAH exposure in multiple adverse health effects including obesity [47–49], one focus of BCERP is the impact of PAH exposure during the prenatal WOS. BCERP research specifically addresses how exposure to PAH during the prenatal and pregnancy WOS may increase the development of mammary tumors in mice. Concurrent human studies within BCERP evaluate how prenatal PAH exposure alters breast tissue development and tissue composition in adolescent girls.

**Pubertal window of susceptibility**

The female breast undergoes rapid changes and growth during puberty. The highest density of proliferating terminal end buds that mediate ductal elongation and establishment of the ductal tree and primitive lobular structures form during puberty [50, 51]. This time period is considered highly estrogen sensitive based on evidence in mice where pubertal growth is almost completely stunted in mice lacking ERα [52, 53]. The profound hormonal changes, including a dramatic increase in endogenous estrogen biosynthesis by stimulating hormones from the hypothalamus and pituitary gland, culminate in the onset of menarche. Endocrine-disrupting chemicals (EDC) in the environment may affect the interaction of endogenous estrogens and progesterogens with their receptors and together have carcinogenic impact. Exposure to EDC may reprogram normal stem cells which are subsequently transformed by additional estrogen exposures [54]. The number of mammary stem cells expands during this period of proliferation, and these cells distribute throughout the ductal tree [55]. Three previous BCERP puberty cohorts examined exposure to several environmental chemicals in relation to pubertal timing as endpoints and reported that higher levels of some (but not all) chemicals, including
| First author (Year) | Exposure                                                                 | Outcome                        | Population                                      | Sample size       | Risk estimate | 95% CI       | Notes                                      |
|---------------------|---------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------|---------------|--------------|---------------------------------------------|
| **Exposure during prenatal window**                                                                                                                             |
| Bonner (2005) [33]  | Regional total suspended particulates                                     | Breast cancer                  | Women 35–79, New York                           | 1166 cases and 2105 controls | OR 2.42       | 0.97–609     | > 140 vs < 84 μg/m³ TSP, postmenopausal women |
|                    |                                                                           |                                |                                               |                   | OR 1.78       | 0.62–5.10    | > 140 vs < 84 μg/m³ TSP, premenopausal women  |
| Bocskay (2005) [32] | Personal airborne PAH; PAH DNA adducts from cord blood                   | Chromosomal aberrations        | Newborns in Northern Manhattan; Bronx           | 60 (32 female, 28 male) | Data not shown | Linear regression | “No strong association”                      |
|                    |                                                                           |                                |                                                |                   | Airborne PAH  | p = 0.006    | Linear regression line slope               |
| Cohn (2015) [25]   | Maternal o,p’-DDT                                                        | Daughter breast cancer         | Mothers and adult daughters in Alameda County, CA | 118 cases and 354 controls | OR 3.7        | 1.5–90       | Fourth vs first quartile (> 0.78 vs < 0.27 ng/mL) |
| **Exposure during puberty window**                                                                                                                             |
| Tsai (2015) [82]    | Serum PFOA                                                               | log-transformed SHBG           | Taiwanese girls aged 12–17                       | 65                | 2.96 (SE 0.34) vs 3.50 (SE 0.24) | p < 0.05       | Mean PFOA levels 90th vs 50th percentile (> 980 vs < 3.63 ng/mL) |
|                    |                                                                           |                                |                                                |                   | Data not shown | p > 0.05    | FSH and testosterone                       |
| Wolff (2015) [57]   | Urinary phenols                                                          | Age at breast development      | US girls aged 6–8 followed for 7 years          | 1239 girls        | Enterolactone: HR 0.79 | 0.64–0.98 | 5th vs 1st quintiles of biomarkers          |
|                    |                                                                           |                                |                                                |                   | Benzenophenone-3: HR 0.80 | 0.65–0.98 | |
|                    |                                                                           |                                |                                                |                   | Triclosan: HR 1.17 | 0.96–1.43 | |
|                    |                                                                           |                                |                                                |                   | 2,5-dichlophenol: HR 1.37 | 1.09–1.72 | |
| Wolff (2014) [58]   | Low and high molecular weight phthalate (MWP) metabolites from urine     | Age of breast and pubic hair development | US girls aged 6–8 followed for 7 years          | 1239 girls        | Pubic hair development age: HR 0.91 | 0.64–0.99 | 5th vs 1st quintiles of high MWP metabolites. Results null for low MWP metabolites. |
|                    |                                                                           |                                |                                                |                   | Breast development age: HR 0.99 | 0.91–1.08 | |
| Wolff (2010) [59]   | Low and high molecular weight phthalate (MWP) metabolites from urine     | Stage of breast and pubic hair development | US girls aged 6–8 followed for 1 year           | 1151 girls        | Pubic hair development: PR 0.94 | 0.88–1.00 | 5th vs 1st quintiles of high MWP metabolites. Results attenuated for low MWP metabolites (p = 0.08). |
|                    |                                                                           |                                |                                                |                   | Breast development: PR 1.03 | 0.97–1.10 | |
| Windham (2015) [60] | PBDE, PCB, OCP                                                           | Tanner stage 2+ vs 1           | US girls aged 6–8 followed for 7 years          | 645 girls         | PBDE: TR 1.05 | 1.02–1.08 | 4th vs 1st quartile. Results similar for pubic hair development. |
|                    |                                                                           | (breast development)           |                                                |                   | PCB: TR 1.05    | 1.01–1.08 | |
|                    |                                                                           |                                |                                                |                   | OCP: TR 1.10     | 1.06–1.14 | |
Table 1: Epidemiologic studies investigating environmental exposures during three windows of susceptibility in relation to an intermediate marker of breast cancer risk or breast cancer (Continued)

| First author (Year) | Exposure | Outcome | Population | Sample size | Risk estimate | 95% CI | Notes |
|---------------------|----------|---------|------------|-------------|---------------|--------|-------|
| **Exposure during pregnancy** | | | | | | | |
| Cohn (2007, 2019) [67, 68] | p,p'-DDT metabolites in serum taken after giving birth (initial DDT exposure likely before age 14 years) | Breast cancer before age 50 | Women in Child Health and Development Studies cohort | 129 cases and 129 matched controls | OR 5.4 | 1.7–17.1 | Highest vs lowest tertile (> 13.90 vs < 8.09 μg/L) |
| | | Breast cancer diagnosis during ages 50–54 | | 153 cases and 432 matched controls | OR 1.88 | 1.37–2.59 | One-unit change in log2 (p,p'-DDT), approximately equal to a 2-fold increase |
| Nie (2007) [115] | Regional total suspended particulates at time of first birth | Post-menopausal breast cancer | Women 35–79 in Erie and Niagara Counties | 220 cases and 301 controls | OR 2.57 | 1.16–5.69 | Highest vs lowest quartile |
| Bonefeld-Jorgensen (2014) [83] | 16 serum PFAS during pregnancy including 10 PFCA, 5 PFSA, and PFOSA | Breast cancer | Danish National Birth Cohort | 250 cases and 233 controls | PFOSA: RR 1.04 | 0.99–1.08 | Continuous per ng/ml. All other PFAS were null. |
| Cohn (2012) [110] | Serum PCB during early postpartum | Breast cancer before age 50 | Women in Child Health and Development Studies cohort | 112 cases with matched controls | PCB 167: OR 0.24 | 0.07–0.79 | Highest vs lowest quartile (> 0.30 vs < 0.08 mmol/l) |
| | | | | | PCB 187: OR 0.35 | 0.11–1.14 | (> 0.66 vs < 0.38 mmol/l) |
| | | | | | PCB 203: OR 0.34 | 0.23–1.85 | (> 0.66 vs < 0.38 mmol/l) |
| | | | | | PCB 6.34 | 0.11–21.7 | (> 0.42 vs < 0.34 mmol/l) |

Abbreviations: AA African American, BMI body mass index, FSH follicle-stimulating hormone, HR hazard ratio, IRR incidence rate ratio, NHANES National Health and Nutrition Examination Survey, OR odds ratio, PAH polycyclic aromatic hydrocarbons, PFAS perfluoroalkylated substances, PFHxS perfluorohexanesulfonate, PFOA perfluorooctanoic acid, PFOSA perfluorooctane-sulfonamide, PR prevalence ratio, RR relative risk, SHBG sex hormone-binding globulin, TR time ratio of median ages across quantile groups.
various phenols (including bisphenol A [BPA]), parabens, phthalates, and persistent organohalogenated compounds, were associated with delayed median puberty endpoints by 5–11 months when comparing extreme categories of exposure (Table 1) [56–60].

Epidemiologic and experimental evidence from investigators outside of BCERP suggest environmental exposures during the pubertal WOS are associated with an increase in breast cancer risk. Human studies have examined high doses of radiation from medical treatment or atomic bomb exposure [61, 62] and nutritional exposures during puberty and adolescence [63–66]. DDT exposure during infancy and puberty was associated with increased breast cancer risk [67, 68]. In experimental studies of rats, exposure to a carcinogen (dimethylbenz [a] anthracene, DMBA) resulted in the highest number of tumors when administered to rodents during “puberty” possibly through induction of proinflammatory responses [50, 51, 69–74]. Excessive signaling through the ER appears to be another primary mechanism for mammary carcinogenesis as modest overexpression of ERα in response to endogenous estrogen during puberty in transgenic mice resulted in mammary hyperplasia and tumors [75, 76].

BCERP members are studying the effect of pubertal levels of perfluorooctanoic acid (PFOA) and per- and polyfluoralkyl substances (PFAS) on breast development and breast density. PFAS are used in many commercial products because of their non-stick, stain-resistant, and waterproof characteristics. Sources of human exposure include production facilities, firefighting training, consumer products, diet, and drinking water. Dietary sources include seafood [77] and food packaging [78]. PFAS enhance the estrogenic effects of 17β-estradiol in T47D human breast cancer cells [79] and promote the proliferation, migration and invasion potential of human breast epithelial cells [80]. Animal studies provide evidence that PFOA affects the developing mammary gland [81], although limited human epidemiologic data have been less conclusive when PFOA and PFAS exposure was examined in relation to intermediate breast cancer markers (hormone levels) [82] or measured during adulthood [83]. Because environmental chemicals may influence the timing and duration of the pubertal trajectory, studies including breast tissue biomarkers that can be reliably measured to provide greater information than a single event in time, such as age at menarche, are critical to move the field forward.

**Pregnancy window of susceptibility**

Pregnancy is another period of rapid breast tissue and micro-environmental changes during which susceptibility to environmental exposures may increase the risk of breast cancer [8]. During pregnancy, breast tissue changes rapidly in size and function to prepare for lactation. Estrogen, progesterone, and prolactin are the major drivers of branching and development of the lobuloalveolar structures’ characteristic of the mature breast [84]. Pregnancy also decreases the number of mammary stem cells [85, 86]. However, the protective pathways activated during pregnancy can be eroded by prolonged exposure to exogenous 17β-estradiol which restores sensitivity to carcinogen-induced mammary tumors [87–89]. These observations may explain why pregnancy is accompanied by a short-term increase in breast cancer risk [12, 90]; “pregnancy-associated breast cancer” has poorer overall survival [91, 92]. However, in the long term after a pregnancy, breast cells are less sensitive to carcinogenesis with the lifetime risk of breast cancer reduced by up to 50% [93–96]. Thus, the mechanisms mediating the competition between tumor-promoting and tumor-suppressive effects of estrogens in the breast provide fundamental insights into mechanisms underlying risk and resistance in the presence of environmental chemicals.

In mice, there is a greater than 100-fold increase in the number of mammary epithelial cells during pregnancy demonstrating the rapid changes that occur in mammary tissue. Despite the rapid proliferation, a full-term pregnancy renders the mammary epithelium resistant to tumorigenesis subsequent to the pregnancy. This is observed in studies of exposure to carcinogens [70, 97–99] as well as inherited genetic risk alleles [100–103]. Administering exogenous estrogen, either alone or in combination with progesterone to rodents at an early age, sufficiently mimics the effect of pregnancy in reducing tumors in rodents [104–106]. Lobuloalveolar structures may be less susceptible to carcinogens [107, 108], in part, through more robust p53-dependent responses to DNA damage [109].

Epidemiologic evidence directly linking environmental exposures during pregnancy and breast cancer risk arises from the previously mentioned prospective CHDS which measured PCB and DDT soon after pregnancy and confirmed breast cancer diagnoses with medical records. Relative risk estimates for breast cancer comparing upper to lower quartiles of 16 individual PCB congener levels ranged from 0.2 to 6.3; a composite score of exposure was associated with an odds ratio of 2.8 (95% CI 1.1–7.1) (Table 1) [110]. Other epidemiologic studies suggest no association between breast cancer and organochlorine pesticide residues in blood collected near the time of diagnosis [111, 112], but these measurements may not be representative of exposure to the parent chemical during the relevant WOS [113].

The BCERP consortium is studying the effects of exposure during pregnancy on maternal breast cancer risk by examining breast tissue changes in the mothers of daughters participating in studies at the Columbia's
activity of p53 [109] and limiting the stem cell popu-763
lation during pregnancy. These pathways include the764
protective pathways associated with breast develop-765
ment of breast hormones [122, 123]. Well as to hormone mimics, by adapting to the abrupt re-766
sponsive to lower levels of estrogen and progesterone, as767
the menopausal transition. Mammary tissue may be more768
through enhanced hormone receptor sensitivity during769
of breast cancers are diagnosed after menopause, in part770
age-specific rate curve of breast cancer, the vast majority771
had to-date measured exposure during relevant WOS, used methods that reflect long-772
term exposure, or included measures of mammom-773
graphic density or other intermediate markers of breast cancer risk [138, 140, 141].

Metalloestrogens are metals that activate the ER, lead-774
to estrogen-like changes. Metalloestrogens are preva-775
lent environmental contaminants with multiple routes of human exposure. They often accumulate in tissues and organs (reviewed in [142, 143]). Most breast cancer studies have focused on cadmium which induces the proliferation of estrogen-dependent breast cancer cells [144–147], increases the transcription and expression of estrogen-regulated genes such as the PR [144, 148], activates ERα in transfection assays [144–146, 149, 150], and increases signaling through the ERK1/2 and Akt pathways [148, 151, 152]. The reported associations between metalloestrogen exposures and breast cancer risk to date have been inconsistent in part due to the variety of techni-776
ques used to assess exposure. Studies of dietary cad-777
mium measured from self-reported dietary assessments and breast cancer risk have on the most part found min-778
imal if any associations due in part to the difficulty in determining exposure [153–159]. The studies of neigh-779
borhood airborne levels did not distinguish differences between breast cancer cases and controls [160, 161]. The studies measuring individual cadmium levels from blood, urine, or toenails are not necessarily measuring the same timing of exposure. Most [153–155, 159, 162, 163], but not all [158, 164], epidemiologic studies of postmeno-780
pausal women or all ages combined show risk estimates in the 0.73 to 1.01 range (Table 2). Two studies show greater risk associated with cadmium exposure for premenopausal women than for postmenopausal women [156, 165], whereas two other studies show the reverse [157, 166], with additional studies describing generally null associa-781
ations for both groups [160, 161, 167, 168]. Stratification by estrogen receptor status does not reveal a consistent pattern. Studies of cadmium and mammographic breast density as an intermediate marker of breast cancer risk also have mixed findings possibly due to differences in assessment of cadmium or breast density in terms of methods and in timing relative to WOS [168–171]. Exposure to cadmium or other metalloestrogens during any of the WOS may impact a woman’s risk of breast cancer by activation of the hormone receptors; however, no studies
| First author (year) | Exposure | Population | Sample size | Risk estimate | 95% CI | Notes |
|---------------------|----------|------------|-------------|---------------|--------|-------|
| **Cadmium exposure stratified by menopausal status** |
| McElroy (2006) [165] | Urinary cadmium | Women aged 20–69 years | 246 cases and 254 controls | All ages OR 2.29 | 1.3–4.2 | Highest (≥ 0.58) vs lowest (< 0.26 μg/g) quartile |
| | | | | 20–56 years OR 2.34 | 1.1–5.0 |
| | | | | 57–69 years OR 1.36 | 0.5–3.4 |
| Gallagher (2010) [166] | Urinary cadmium | Long Island (LI), NY and NHANES women aged ≥ 30 years | LI 100 cases and 98 controls | All ages OR 2.81 | 1.11–7.13 | Highest (≥ 0.60) vs lowest (< 0.22 μg/g creatinine) quartile |
| | | | NHANES 99 cases and 3120 non-cases | n.s. difference by age | 0.92–5.84 |
| | | | | All ages OR 2.32 | n.s. |
| | | | | 30–54 years OR 3.05 years OR 2.5 | 1.04–50.7 |
| Itoh (2014) [157] | Dietary cadmium | Japanese women aged 20–74 years | 212 cases and 253 controls | All cases OR 1.04 | 1.00–1.08 |
| | | | | Premeno. OR 1.01 | 0.96–1.07 |
| | | | | Postmeno. OR 1.06 | 1.06–1.11 |
| | | | | Post. ER+ OR 1.08 | 1.03–1.14 |
| | | | | Post. ER- OR 0.99 | 0.92–1.06 |
| Amadou (2019) [160] | Long-term airborne exposure to cadmium | E3N French cohort aged 40–65 years | 4059 cases and 4059 controls | Overall OR 0.98 | 0.84–1.14 |
| | | | | Premeno. OR 0.72 | 0.45–1.15 |
| | | | | Postmeno. OR 1.06 | 0.89–1.27 |
| | | | | ER+ OR 1.00 | 0.82–1.22 |
| | | | | ER- OR 0.63 | 0.41–0.95 |
| Grioni (2019) [156] | Dietary cadmium | Italian cohort aged 34–70 years | 8924 total in cohort with 481 cases | Overall HR 1.54 | 1.06–2.22 |
| | | | | Premeno. HR 1.73 | 1.10–2.71 |
| | | | | Postmeno. HR 1.29 | 0.68–2.44 |
| | | | | ER+ HR 1.64 | 1.06–2.54 |
| | | | | ER- HR 1.30 | 0.60–2.83 |
| O’Brien (2019) [167] | Cadmium from toenail clippings | Sister and two-sister studies aged < 50 years | 1217 sister-pairs of cases and controls | OR 1.15 | 0.82–1.60 |
| White (2019) [161] | Residential census tract airborne exposure to cadmium at baseline | Sister study aged 35–74 years | 50,884 total in cohort with 2587 cases | Overall HR 1.1 | 0.96–1.3 |
| | | | | Premeno. 1.0 | 0.78–1.4 |
| | | | | Postmeno. 1.1 | 0.96–1.3 |
| **Postmenopausal women only** |
| Julin (2012) [158] | Dietary cadmium | Swedish postmenopausal women | 55,987 total in cohort with 2112 cases | All cases RR 1.21 | 1.07–1.36 |
| | | | | ER+ cases RR 1.19 | 1.03–1.36 |
| | | | | ER- cases RR 1.33 | 0.95–1.87 |
| Adams (2012) [153] | Dietary cadmium | Postmenopausal women in VITamines And Lifestyle cohort | 30,543 total in cohort with 899 cases | HR 1.00 | 0.72–1.41 |
| | | | | n.s. difference by ER status (p = 0.11) | |
| | | | | Highest (> 133) vs lowest (< 7.48 μg/day) quartile |
| Eriksen (2014) [155] | Dietary cadmium | Danish postmenopausal women | 23,815 total in cohort with 1390 breast cancer cases | All cases IRR 0.99 | 0.87–1.13 |
| | | | | ER+ IRR 1.00 | 0.85–1.15 |
| | | | | ER- IRR 0.88 | 0.62–1.22 |
| | | | | Per 10 μg/day increase in intake | |
| | | | | Highest (≥ 14.21) vs lowest (< 7.10 μg/day) quartile |
| Adams (2014) [154] | Dietary cadmium | Postmenopausal women aged 50–79 years | 155,069 total in cohort with 6658 cases | HR 0.90 | 0.81–1.00 |
| | | | | n.s. difference by ER status | |
| First author (year) | Exposure | Population | Sample size | Risk estimate | 95% CI | Notes |
|---------------------|----------|------------|-------------|---------------|--------|-------|
| Adams (2016) [162]  | Urinary cadmium | Postmenopausal women ages ≥ 50 years in Women’s Health Initiative | 12,701 total in cohort with 508 cases and 1050 controls | All HR 0.80 | 0.56–1.14 | Highest (> 0.748) vs lowest (< 0.325 μg/g creatinine) quartile |
|                     |          |            |             | ER+ HR 0.98 | 0.87–1.07 |       |
|                     |          |            |             | ER−/PR− HR 0.88 | 0.70–1.11 |       |
| Sawada (2012) [159] | Dietary cadmium | Japanese women aged 45–74 years | 48,351 females total in cohort with 402 breast cancer cases | HR 0.87 | 0.61–1.23 | Highest (median 32.3) vs lowest (median 19.2 μg/day) tertile |
| Nagata (2013) [164] | Urinary cadmium | Japanese women ages ≥ 25 years | 153 cases from one hospital and 431 controls invited for breast cancer screening | OR 6.05 | 2.90–12.62 | Highest (> 2.620) vs lowest (< 1.674 μg/g creatinine) tertile |
| Gaudet (2018) [163] | Blood cadmium | Cancer Prevention Study II women 47–85 years of age | 816 cases and 816 controls | All RR 1.01 | 0.76–1.34 | Continuous per μg/L |
|                     |          |            |             | ER+ RR 0.89 | 0.62–1.27 |       |
|                     |          |            |             | ER− RR 0.96 | 0.44–2.09 |       |
|                     | Italian women aged 35–70 years | | 292 cases and 294 controls | RR 0.80 | 0.61–1.03 | Continuous per μg/L |
|                     | Swedish women aged 30–61 years | | 325 cases and 325 controls | RR 0.73 | 0.54–0.97 | Continuous per μg/L |
| Combined 3 nested case-cohort studies | | | 1433 cases and 1435 controls | RR 0.84 | 0.69–1.01 | Continuous per μg/L |

Abbreviations: BCSC Breast Cancer Surveillance Consortium, CI confidence interval, EPA Environmental Protection Agency, ER estrogen receptor, HR hazard ratio, IRR incidence rate ratio, NHANES National Health and Nutrition Examination Survey, n.s. not statistically significant, OR odds ratio, RR relative risk
as of yet have carefully examined whether metalloestrogens may have the greatest impact during the menopausal transition when endogenous hormone levels are declining.

BCERP members are examining whether exposure to PBDEs, BPA, or selected metals during the menopausal transition is associated with breast cancer risk in humans, and evaluating potential mechanisms to explain these associations in rodent models.

**Strategies to address long latency**

The long time between exposures during the early WOS (prenatal, puberty, pregnancy) and breast cancer occurrence has multiple implications for breast cancer research. First, because many environmental exposures are stored long-term in adipose tissue, even compounds now banned, such as DDT and PBDE, may continue to be relevant for breast cancer risk. Bioaccumulation of lipophilic chemicals and their long-term storage also means studies incorporating biomarkers in breast tissue need to consider both the effects on adipose tissue as well as epithelial and stromal tissues.

Second, because it may be decades after the relevant windows of exposure before breast cancer is diagnosed, the examination and validation of intermediate biomarkers of response, apparent closer to the timing of exposure and before diagnosis, are imperative, particularly in prospective human studies. BCERP first started as a cohort study of the environmental exposures that may accelerate puberty. The main outcome of the cohort study was based on Tanner Stages [172]. As BCERP expanded to include other WOS, additional measures of breast tissue composition and breast density were added. BCERP investigators are now using a variety of intermediate markers—as both outcomes in relation to chemical exposures and as predictors of breast and mammary cancers—conducted in parallel human and rodent studies including epigenetic biomarkers, altered tumor suppression and induction, and altered estrogen signaling and biosynthesis (Fig. 1) [173].

One intermediate outcome is mammographic breast density (MBD), defined as the fraction of connective and glandular tissue to adipose tissue on a mammogram [174–181]. MBD is one of the strongest predictors of breast cancer risk with a four- to sixfold elevation in risk comparing ≥ 75% MBD to < 5% [182], but the mechanisms explaining how environmental chemicals affect the overall level and rate of change of MBD are uncertain. While MBD declines with age in many women, particularly around the time of menopause [183–185], this pattern does not occur uniformly for all women [8, 186, 187].

Little is known of the drivers of breast tissue changes across adolescence, early adulthood, and the menopausal transition and thus the contributors to breast density.

Most of what is known about normal breast tissue characteristics is from mammography data in women over 40 years of age. In women under 40 years, two alternative imaging methods have been used to assess breast composition including three studies of magnetic resonance imaging (MRI) in women aged 15–30 years [188–190] and two of dual X-ray absorptiometry (DXA) in girls aged 10–16 years [191, 192]. In addition, optical spectroscopy (OS) provides a compositional view of the breast capturing variation in the amount of water, lipid, hemoglobin, and collagen, as well as overall cellular and connective tissue density [174–176]. Collagen density may promote epithelial cell proliferation and increase tumor mobility and invasion, while hemoglobin is associated with angiogenesis [193–195]. OS has been used to measure differences in adolescent breast tissue across developmental stages as assessed by Tanner stage [196]. Thus, MRI, DXA, and OS provide novel intermediate outcomes to measure breast tissue changes across the developmental trajectory of adolescence and early adulthood and may be important tools for examining environmental effects during these life stages. Mammography techniques now include digital breast tomosynthesis measures as well as the use of ultrasound in measuring breast density without radiation exposure [181]. While density of the adult breast is highly correlated with breast cancer risk, longitudinal measures of pubertal density are currently lacking but are being collected in BCERP.

**Conclusions**

Given the changes in mammary tissue architecture and hormone signaling during the prenatal, pubertal, pregancy, and menopausal transition windows, these critical time periods may reflect windows of heightened risk. Thus, measuring the impact of environmental chemical and metal exposures during these WOS is essential to understand their roles in breast cancer risk; these issues have not been addressed by the majority of epidemiologic studies to date.

Experimental studies in cell lines and animals are providing causal mechanistic links between environmental exposures and altered mammary carcinogenesis, particularly during key WOS. Increasingly, epidemiologic studies are able to link the human exposure of chemicals and metals during relevant WOS through the use of intermediate breast outcomes including specific breast tissue characteristics and breast density in adolescence and adulthood to address the challenge of long latency time posed in cancer research.

For many of the studies described here, community engagement strengthens the research design as well as the dissemination and implementation of study findings. To address knowledge gaps and accelerate translation of environmental breast cancer research findings related to
WOS, BCERP integrates basic and population researchers with communication scientists and representatives of community-based organizations (Fig. 1). Community partnerships are vital, because both the sources and the remedies for environmental exposures are outside of clinical settings. Community input also can identify issues of concern to the community, motivate participation in studies, and translate findings to public audiences. Scientists need to disseminate research findings to the public to enable people to make informed choices in their personal lives and workplaces, and to influence health policies as voters and community leaders. For example, participation of community partners in BCERP has led to the development of strategies to provide reports of personal chemical exposures to individuals who donated biological samples, so they can learn about environmental health and make informed decisions regarding possible behavioral modification in general and with particular reference to WOS [197, 198]. Digital methods using libraries of vetted exposure and health information and decision rules, set by the study team, make personalized results practical [199]. In addition, communication scientists within BCERP are testing different messages and channels for future outreach efforts [200]. Scholarship about community-engaged research shows that this approach improves the "rigor, relevance, and reach" of research [201].

Although the median age when women are diagnosed with breast cancer is 62 years [202], primary prevention of potentially hazardous environmental exposures during earlier WOS is critical [13], particularly when considering that exposure to environmental chemicals may contribute to cancer health disparities [203–206]. Furthermore, just as family-based studies facilitated the discovery of breast cancer genes relevant to all women, studies during specific WOS will facilitate the assessment of the effects from environmental exposures that will be relevant outside of these WOS. As evidence from WOS accumulates, the paradigm for breast cancer needs to expand beyond the secondary prevention efforts of screening and mid-life risk assessment to primary prevention efforts with involvement of community partners, educators and school districts, families, and primary care providers including pediatrics for lifelong impact [207].

Acknowledgements
The authors would like to thank Natalia Arroyo, Julie McGregor, and Eileen McGuine for their assistance with this manuscript. The funders had no role in the design of the study, the writing of the manuscript, or the decision to submit the manuscript for publication.

The Breast Cancer and the Environment Research Program includes Mary Pat Berry, Jennifer Bird, Christopher Bradfield, Ronald Gangnon, Michael Gould, John Hampton, Sara Lindberg, Sarah Luongo, Kristen Malecki, Betsy Rolland, and James Shull (University of Wisconsin-Madison); Mia Gaudet (American Cancer Society); Mark Thomquist (Fred Hutchinson Cancer Research Center); Mark D. Appuperfee, Sandra Z. Haslam, Reyhanie Hoshyar, Anastasia Kariagina, Juliana R. Lopes, Karen J. Miller, Elena Morozova, Cathy J. Newkirk, Richard C. Schwartz, Brandon Thomas, Daniel Tzotzak, and Fang Xie (Michigan State University); Kam J. Silk (University of Delaware); Frank M. Biro (Cincinnati Children’s Hospital); Cecily S. Fassler, Courtney M. Giannini, and Susan Pinney (University of Cincinnati); Melissa A. Troester (University of North Carolina Chapel Hill); Kimberly Burke, Julie Herbstman, Rebecca Kehm, Jasmine McDo- nald, Rachel Miller, Sabine Oskar, Frederica Pereira, Debeshish Sahay, Parisa Tehranifar, Mary Beth Terry, Desiree Walker, and Nur Zeinomar (Columbia University); Milagros de Hoz and Peggy Shepard (WeACT); Julia Knight (Lunenfeld-Tanenbaum Research Institute); Lothar Lilge (University Health Network); Alexandra Binder, Karin Michels (University of California Los Angeles); Vincent Bessonneau, Julia Brody, Vanessa De La Rosa, Jennifer Ohya- yon, and Ruthann Rudel (Silent Spring Institute); Camila Corvalan, Ana Pereira, and Rosario Toro-Campos (University of Chile); Julia Pereira, Jose Russo, and Su Yannong (Fox Chase Cancer Center); John Shepherd (University of Hawaii Cancer Center); Lucile Adams-Campbell, Chiranjeev Das, Bassem Haddad, Rhonda Hamilton, Mary Beth Martin, and Brenda Richardson (Georgetown University); Celia Byrne and Hristina Denic-Roberts (Uniformed Services University of the Health Sciences); Gregory Chang, Shuang Chen, Yuan Chun Ding, Noriko Kanaya, Susan Neuhausen, Michele Rakoff, Kehel Saeki, and Maya Serrano (City of Hope); Peggy Reynolds (University of California San Francisco); Karen Dunphy, Joseph Jerry, Anna Symington, and Laura Vandenberg (University of Massachusetts Amherst); Sallie Schneider (Baystate Medical Center); Swann Arp Adams, Heather M. Brandt, Daniela Friedman, and Jamie R. Lead (University of South Carolina); Xiaomei Cai, Gary Kreps, Camella J. Rising, and Kevin B. Wright (George Mason University); Amelia Burke-Garcia (University of Chicago); Dasha Afanaseva (Westat); and Carla L. Fisher and Michaela Devyn Mullins (University of Florida).

Disclosure
Celia Byrne: the views expressed are those of the author(s) and do not necessarily reflect the official views of the Uniformed Services University of the Health Sciences or the Department of Defense.

Authors’ contributions
All authors performed parts of the literature review and wrote drafts of the manuscript. MBT, KMB, and ATD conceptualized the paper and provided overall supervision and coordination of the manuscript preparation. ATD generated the table and figures, which were revised by all authors. All authors were involved in writing the manuscript and approved the final manuscript.

Funding
This work was completed as part of the Breast Cancer and the Environment Research Program (BCERP), supported by the National Institute of Environmental Health Sciences and the National Cancer Institute at the National Institutes of Health (grant numbers U01 ES026119, U01 ES026122, U01 ES026127, U01 ES026130, U01 ES026132, U01 ES026137, U01 ES026140, R03 ES027406, R21 ES027417, and R21 ES027418).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Abbreviations

BCERP: Breast Cancer and the Environment Research Program; BPA: Bisphenol A; CHDS: Child Health and Development Study; DDT: Dichlorodiphenyltrichloroethane; DiBPA: Dimethylbenz[a]anthracene; DNA: Deoxyribonucleic acid; DXA: Dual X-ray absorptiometry; EDC: Endocrine-disrupting chemical; ER: Estrogen receptor; MBD: Mammographic breast density; MRI: Magnetic resonance imaging; NCI: National Cancer Institute; NIEHS: National Institute of Environmental Health Sciences; OR: Odds ratio; OSA: Optical spectroscopy; PAH: Polycyclic aromatic hydrocarbons; PBDE: Polybrominated diphenyl ethers; PCB: Polychlorinated biphenyl; PFAS: Per- and poly-fluoroalkyl substances; PFOSA: Perfluorooctanoic acid; RR: Relative risk; WHI: Women’s Health Initiative.
Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY 10032, USA.
2Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA 90095, USA.
3Silent Spring Institute, 320 Newton St, Newton, MA 02460, USA.
4Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4310 Jones Bridge Road A-1039F, Bethesda, MD 20814, USA.
5Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
6Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St, Amherst, MA 01003, USA.
7Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St, WARF Room 605, Madison, WI 53726, USA.
8Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC 20057, USA.
9Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PHBE-101B, 630 W. 168th St, New York, NY 10032, USA.
10Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA 91010, USA.
11Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE 19716, USA.
12Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St, WARF Room 307, Madison, WI 53726, USA.

Published online: 20 August 2019

References
1. Lee PN, Forey BA, Coombs KJ. Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer. 2012;12:385.
2. Wallboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Petru J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–44.
3. Korenman SG. The endocrinology of breast cancer. Cancer. 1980;46(4 Suppl):874–879.
4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Petru J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.
5. Breast Cancer Risk and Prevention. Available at https://www.cancer.org/breast-cancer-risk-and-prevention.html. Accessed 3 July 2019.
6. Colditz GA, Boahie K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin. 2014;64(6):186–94.
7. Sprague BL, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Hampton JM, Newcomb PA. Proportion of invasive breast cancer attributable to risk factors modifiable after menopause. Ann J Epidemiol. 2008;168(4):404–11.
8. IOM (Institute of Medicine). Breast cancer and the environment: a life course approach. Washington, D.C.: National Academies Press; 2012.
9. Korenman SG. The endocrinology of breast cancer. Cancer. 1980;46(4 Suppl):874–879.
10. Pike MC, Kiall MD, Henderson BE, Casagrande JT, Hoel DG. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature. 1983;303(5920):767–70.
11. Russo J, Russo IH. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomark Prev. 1994;3(4):353–64.
12. Hilkiovi-Clarke L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res. 2014;16(2):208.
13. Necula S, Paneth N, Velle EM. Pregnancy characteristics and maternal breast cancer risk: a review of the epidemiologic literature. Cancer Causes Control. 2010;21(7):967–89.
14. Rodger KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018;160:152–82.
15. Fenton SE, Reed C, Newbold RR. Perinatal environmental exposures affect mammary development, function, and cancer risk in adulthood. Annu Rev Pharmacol Toxicol. 2012;52:455–79.
16. Russo J, Lynch H, Russo IH. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J. 2001;7(5):278–91.
17. Russo J, Russo IH. Development of the human breast. Mutat Res. 2004;549(1-2):12–5.
18. Schmidt CW. IOM issues report on breast cancer and the environment. Environ Health Perspect. 2012;120(2):a601–4.
19. Brody JG, Rudel RA, Michelis KB, Mjosign KB, Bernstein L, Atfield KB, Gray S. Environmental pollutants, diet, physical activity, body size, and breast cancer: where do we stand in research to identify opportunities for prevention? Cancer. 2007;109(12 Suppl):2627–34.
20. Michels KB, Xue F, Terry KL, Willett WC. Longitudinal study of birthweight and the incidence of breast cancer in adulthood. Carcinogenesis. 2006;27(12):2644–8.
21. Warner ET, Hu R, Collins LC, Beck AH, Eliassen AH, Michels KB, Willett WC, Tamimi RM. Height and body size in childhood, adolescence, and young adulthood and breast cancer risk according to molecular subtype in the Nurses’ Health Studies. Cancer Prev Res (Phila). 2016;9(9):732–8.
22. Michels KB, Mohllajee AP, Roset-Bahrainyar E, Beehler GP, Mjosign KB. Diet and breast cancer: a review of the prospective observational studies. Cancer. 2007;109(12 Suppl):2712–49.
23. Potischman N, Troisi R. In-utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control. 1999;10(6):561–73.
24. Xue F, Michelis KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol. 2007;8(12):1088–100.
25. Cohn BA, La Mennil M, Krigbaum NY, Yeh G, Park JS, Zimmermann L, Grillo PM. DDT exposure in utero and breast cancer. J Clin Endocrinol Metab. 2015;100(8):2865–72.
26. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74–88.
27. Rudel RA, Seryak LM, Brody JG. PCB-containing wood floor finish is a likely source of elevated PCBs in residents’ blood, household air and dust: a case study of exposure. Environ Health. 2008;7:2.
28. Phillips D. Polycyclic aromatic hydrocarbons in the diet. Mutat Res. 1999;443(1–2):139–53.
29. Miguel A, Kirchstetter T, Harley R. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology. 1998;32(4):450–5.
30. IARC. Polynuclear aromatic hydrocarbons. Part 3, Industrial exposures in aluminium production, coal gasification, coke production, and iron and steel founding. International Agency for Research on Cancer Monographs on the Carcinogenic Risk of Chemicals to Humans. Lyon; 1984.
31. Pedersen M, Wichmann J, Autrup H, Dang D, Deckier I, Hvidberg M, Bossi R, Jakobsen J, Loft S, Knudsen L. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution. Environ Res. 2009;109(8):1012–20.
32. Bocskay KA, Tang D, Ojuelu MA, Liu X, Warburton DP, Peeru FP. Chromosomal aberrations in cord blood are associated with prenatal exposure to carcinogenic polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomark Prev. 2005;14(2):506–11.
33. Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Muti P, Trevisan M, Edge SB, Freudenheim J. Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol Biomark Prev. 2005;14(15):353–60.
34. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta: U.S. Department of Health and Human Services, Public Health Service; 1995.
35. IARC. Volume 82. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: World Health Organization; 2002.
36. Obana H, Hori S, Kashimoto T, Kunita N. Polycyclic aromatic hydrocarbons in human fat and liver. Bull Environ Contam Toxicol. 1981;27(1):23–7.
37. Plisková M, Vondráček J, Vojtesek B, Kozubík A, Machala M. Deregression of cell proliferation by polycyclic aromatic hydrocarbons in...
human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxicol Sci. 2004;83(2):246–56.
38. Ambrosone C, Shields P. Molecular epidemiology of breast cancer. In: Aldaz CM, Gould M, McLachlan J, Sega T, editors. Etiology of Breast and Gynecological Cancers (Progress in Clinical and Biologic Research). New York: Wiley-Liss, Inc.; 1997. p. 93–9.
39. Gammon MD, Santella RM, Neugut AI, Eng SM, Teitelbaum SL, Paykin A, Levin B, Terry MB, Young TL, Wang LW, et al. Environmental toxins and breast cancer on Long Island. I. Polycyclic aromatic hydrocarbon DNA adducts. Cancer Epidemiol Biomark Prev. 2002;11(8):767–85.
40. Rundle A, Tang DL, Hilsboosh H, Estabrook A, Schnabel F, Cao WF, Grumet HA, Turyk M. Perfluoroalkyl substances and fish consumption. Environ Health Perspect. 2010;118(7):1039–46.
41. Wolff MS, Teitelbaum SL, Pinney SM, Windham GC, Pinney SM, Calafat AM, Kushi LH, et al. Environmental phenols and puberty development in girls. Environ Int. 2015;84:174–80.
42. Wolff MS, Teitelbaum SL, McGovern K, Windham GC, Pinney SM, Calvez M, Calafat AM, Kushi LH, et al. Environmental phenols and puberty development in girls. Environ Int. 2015;84:174–80.
43. Russo J, Wilgus G, Taylor MB, Ro, K, et al. Investigation of relationships between urinary biomarkers of phytosterogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.
44. Windham GC, Pinney SM, Voss RW, Spodin A, Biro F, Kushi LH, Erdmann C, Hiatt RA, Biro RW, et al. Investigation of relationships between urinary biomarkers of phytosterogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.
45. Russo J, Wilgus G, Taylor MB, Ro, K, et al. Investigation of relationships between urinary biomarkers of phytosterogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.
46. Wolff MS, Teitelbaum SL, Pinney SM, Windham GC, Liao L, Biro F, Kushi LH, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of U.S. girls. Environ Health Perspect. 2015;123(10):1046–52.
47. Bhata S, Robinson LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, Meadows AT. Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med. 1996;334(12):745–51.
48. Land CE. Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. JAMA. 1995;274(5):402–7.
49. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI. Growth patterns and the risk of breast cancer in women. N Engl J Med. 2004;351(16):1619–26.
50. Harris HR, Willett WC, Vaidya RL, Michels KB. An adolescent and early adulthood dietary pattern associated with inflammation and the incidence of breast cancer. Cancer Res. 2017;77(15):1179–87.
51. Harris HR, Willett WC, Vaidya RL, Michels KB. An adolescent and early adulthood dietary pattern associated with inflammation and the incidence of breast cancer. Cancer Res. 2017;77(15):1179–87.
52. Michels KB, Ekdahl A. Caloric restriction and incidence of breast cancer. JAMA. 2004;291(10):1226–30.
53. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Boesl F, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol. 2000;152(5):414–27.
54. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.
55. Cohn BA, Cirillo PM, Terry MB. DDT and breast cancer: prospective study of induction time and susceptibility windows. J Natl Cancer Inst. 2009(111):815–19.
56. Russo J, Russo IH. Involvement of adjuvant and cell kinetics in the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980;40(8 Pt 1):2677–87.
57. Russo J, Russo IH. Sensitivity of the mammary gland to carcinogenesis. II. Pregnancy interruption as a factor in tumor incidence. Am J Pathol. 2000;156(5):1427–37.
58. Russo J, Russo IH. Involvement of adjuvant and cell kinetics in the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980(40(8 Pt 1):2677–87.
59. Russo J, Russo IH. Involvement of adjuvant and cell kinetics in the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980;40(8 Pt 1):2677–87.
60. Russo J, Russo IH. Involvement of adjuvant and cell kinetics in the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980;40(8 Pt 1):2677–87.
61. Russo J, Russo IH. Involvement of adjuvant and cell kinetics in the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980;40(8 Pt 1):2677–87.
62. Wolff MS, Teitelbaum SL, Pinney SM, Windham GC, Kushi LH. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Sdhb gene. Neurogenetics. 2016;15(6):1–8.
63. Miller RL, Yan Z, Maher C, Zhang H, Gudsnuk K, McDonald J, Champagne FA. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Sdhb gene. Neurogenetics. 2016;15(6):1–8.
64. Rundle A, Hoepner L, Hassoun A, Freytag D, Rzechowksi, et al. Vehicular traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence: the Long Island Breast Cancer Study (LICBSP). Environ Health Perspect. 2016;124(1):30–1.
65. Agudo A, Peluso M, Munia A, Lujan-Barroso L, Barricarte A, Amiano P, Navarro C, Sanchez MJ, Quiros JR, Ardanaz E, et al. DNAAdducts and breast cancer risk: a case-cohort study within the EPIC-Spain. Carcinogenesis. 2017;38(7):691–8.
66. Lee KH, Shu XO, Gao YT, Ji BT, Yang G, Blair A, Rothman N, Zheng W, Chow WK, Kang D. Breast cancer and urinary biomarkers of polycyclic aromatic hydrocarbon and oxidative stress in the Shanghai Women's Health Study. Cancer Epidemiol Biomark Prev. 2010;19(3):877–83.
67. Miller RL, Yan Z, Maher C, Zhang H, Gudsnuk K, McDonald J, Champagne FA. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Sdhb gene. Neurogenetics. 2016;15(6):1–8.
68. Rundle A, Hoepner L, Hassoun A, Freytag D, Rzechowksi, et al. Vehicular traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence: the Long Island Breast Cancer Study (LICBSP). Environ Health Perspect. 2016;124(1):30–1.
69. Lee KH, Shu XO, Gao YT, Ji BT, Yang G, Blair A, Rothman N, Zheng W, Chow WK, Kang D. Breast cancer and urinary biomarkers of polycyclic aromatic hydrocarbon and oxidative stress in the Shanghai Women's Health Study. Cancer Epidemiol Biomark Prev. 2010;19(3):877–83.
70. Miller RL, Yan Z, Maher C, Zhang H, Gudsnuk K, McDonald J, Champagne FA. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Sdhb gene. Neurogenetics. 2016;15(6):1–8.
71. Russo J, Wilgus G, Taylor MB, Ro, K, et al. Investigation of relationships between urinary biomarkers of phytosterogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.
72. Wolff MS, Teitelbaum SL, Pinney SM, Windham GC, Liao L, Biro F, Kushi LH, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of U.S. girls. Environ Health Perspect. 2015;123(10):1046–52.
estrogenic effects of 17beta-estradiol in T47D human breast cancer cells. J Appl Toxicol. 2016;36(6):790–801.

80. Pierozan P, Jemesen F, Karlsson O. Perfluorocanonic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol. 2018;92(5):1729–39.

81. Rudel RA, Fenton SE, Ackerman JM, Epling SY, Makris SL. Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ Health Perspect. 2011;119(8):1033–61.

82. Tsai MS, Lin CY, Lin CC, Chen MH, Hsu SH, Chien KL, Sung FC, Chen PC, Su TC. Association between perfluoralkyl substances and reproductive hormones in adolescents and young adults. Int J Hyg Environ Health. 2015;218(5):437–43.

83. Bonefeld-Jorgensen EC, Long M, Fredslund SD, Bossi R, Olsen J. Breast cancer risk after exposure to perfluorinated compounds in Danish women: a case-control study nested in the Danish National Birth Cohort. Cancer Causes Control. 2014;25(11):1439–48.

84. David B, Fenton S. Chapter 61 - Mammary gland. In: Haschek WM, Rousseaux CG, Wallig MA, Bolon B, Ochoa R, Mahler BW, editors. Haschek and Rousseaux’s handbook of toxicologic pathology, volume III. 3rd ed. New York: Academic Press; 2013.

85. Meier-Abt F, Bentsies-AJ M. How pregnancy at early age protects against breast cancer. Trends Mol Med. 2014;20(3):143–53.

86. Meier-Abt F, Brinkhaus H, Bentsies-AJ M. Early but not late pregnancy induces lifelong reductions in the proportion of mammary progenitor cells and epithelial Wnt signaling. Breast Cancer Res. 2014;16(2):402.

87. Rajkumar L, Arumugan A, Elsayed A, Schecter S, Kottkowski J, Castillo R, de la Torre A, Hernandez C. Long-term hormonal promotion overrides genetic resistance to mammary cancer. Steroids. 2011;76(1–2):231–7.

88. Swanson SM, Guzman RC, Collins G, Tafaya P, Thordardson G, Talamanes F, Nandi S. Refractoriness to mammary carcinogenesis in the parous mouse is reversible by hormonal stimulation induced by pituitary isografts. Cancer Lett. 1995;100(1):171–81.

89. Thordardson G, Van Horn K, Guzman RC, Sandler T, Talamanes F. Parous rats regain high susceptibility to chemically induced mammary cancer after treatment with various mammmotropics hormone. Carcinogenesis. 2001;22(7):1027–33.

90. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6(6):281–91.

91. Azim HA Jr, Santoro L, Russell-Edu W, Pentheroudakis G, Pavlidis N, Peccatori FA. Prognosis of pregnancy-associated breast cancer: a meta-analysis of 30 studies. Cancer Treat Rev. 2012;38(7):834–42.

92. Cali Khan BB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, Urquhart A, Callihan EB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, Urquhart A, Russo IH, Russo J. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1978;61(6):1439–49.

93. Sinha DK, Paizki JE, Diao TL. Prevention of mammary carcinogenesis in rats by pregnancy: effect of full-term and interrupted pregnancy. Br J Cancer. 1988;57(4):390–4.

94. Munford RE. Changes in the mammary glands of rats and mice during pregnancy, lactation and involution. 2. Levels of deoxyribonucleic acid, and alkaline and acid phosphatases. J Endocrinol. 1963;28:17–34.

95. Antonio AC, Shenton A, Maher ER, Watson E, Woodward E, Lalloo F, Easton DF, Evans DG. Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2006;8(6):R72.

96. Jerry DJ, Kittrell FS, Kupenwasser C, Lauricella R, Dickinson ES, Bonilla PJ, Butel JS, Medina D. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000;19(8):1052–8.

97. Milne RL, Osorio A, Ramon y Cajal T, Baiget M, Lasa A, Diaz-Rubio E, de la Hoya M, Calsdes T, Teule A, Lazarro C et al. Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 2010, 119(1):221–232.

98. Medina D, Kittrell FS. p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res. 2003;63(19):4140–3.

99. Rajkumar L, Guzman RC, Yang J, Thordardson G, Talamanes F, Nandi S. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98(20):11755–9.

100. Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse. Breast Cancer Res. 2007;9(1):R12.
