The tunable spin reorientation, temperature induced magnetization reversal, and spontaneous exchange bias effect of Sm$_{0.7}$Y$_{0.3}$Cr$_{1-x}$Ga$_x$O$_3$

Zhijie Ma,a Guanghui Liu,a Weijun Gao,a Yuzhuang Liu,b Liang Xie,c Xuemin He,a Liqing Liu,a Yongtao Lia and Hongguang Zhanga,ab

In this work, we investigated the temperature dependent magnetic properties of SmCrO$_3$ by codoping nonmagnetic ions at Sm- and Cr-sites. The spin reorientation from T_2 to T_N is tuned and the transition temperature T_{SR} is improved dramatically to near the liquid nitrogen temperature by Ga ion doping, which would be helpful to achieve its application in temperature sensitive spintronic devices and magnetic switching devices. An intrinsic temperature induced magnetization reversal effect from positive to negative under zero-field-cooling conditions is induced as well and its reversal evolution is strongly dependent upon doping. Moreover, the zero-field-cooling exchange bias effect still exists and shows a positive exchange bias field although it is suppressed with increase of doping concentration. Under the influence of doping nonmagnetic ions, lattice distortion is induced to some extent and the magnetic interactions of Cr–Cr and Sm–Cr are predominately diluted, realizing control of the above phenomena. Those phenomena are discussed and successfully explained by considering the magnetic exchange interaction competitions including the isotropic, antisymmetric (or Dzyaloshinskii–Moriya interaction), and anisotropic superexchange interactions.

Introduction

Orthochromites RCrO$_3$ (R = rare-earth) have received great attention recently due to their possessing abundant magnetic effects (such as temperature induced magnetization reversal (TIMR), magnetic exchange bias (EB) effect, and spin re-orientation (SR) phase transition), and ferroelectricity, making them a potential candidate for technological applications.$^{1-7}$ Orthochromites RCrO$_3$ have a distorted orthorhombic perovskite structure (Pbnm space group) with a canted antiferromagnetic structure below the Neel temperature (T_N) caused by Dzyaloshinskii–Moriya (DM) exchange coupling between the Cr ions. Three types of antiferromagnetic configurations generally exist in orthochromites, noted in Bertaut notations8 as $\Gamma_1(A_4, G_3, C_3, C_2^R)$, $\Gamma_2(F_3, C_2, G_2, F_8^R, C_4^R)$, and $\Gamma_4(G_5, A_9, F_2, F_8^R)$. The complex magnetic interactions of Cr–Cr, Cr–R, and R–R in RCrO$_3$, including the isotropic, symmetric, and antisymmetric anisotropic exchange interactions, result in an abundant magnetic phase diagram, such as, multiferroics4,9 multiple phase transitions,10,11 a magnetic glassy phase,12 TIMR,$^{13-15}$ conventional EB1 and zero-field-cooling EB (ZEB) effects,14,16 and the SR transition.17

One of the most interesting examples of this family is the newly emerging SmCrO$_3$ which possesses two magnetic species, Sm and Cr ions. SmCrO$_3$ is reported to be ordered in Γ_4 configuration below T_N at 191 K and exhibits a SR transition to Γ_2 configuration at 34 K.18 There is controversy about the SR transition so far. Gorodetsky et al.19 reported that below the SR transition temperature (T_{SR}) the magnetic structure of SmCrO$_3$ changes from Γ_4 to Γ_2 continuously, making a second order transition. Most of the reports suggest that the second-order transition is attributed to a continuous rotation of Cr$^{3+}$ moments.17,20 There are a few factors that give rise to the second order SR transition, for examples, the antisymmetric exchange interaction between Cr$^{3+}$ and Sm$^{3+}$, and the exchange splitting and the t–e orbital hybridization between Cr$^{3+}$ and Cr$^{5+}$ ions.17 However, Tripathi et al.14 suggested that the SR transition in SmCrO$_3$ would be a first order Morin type SR transition based on the analysis of the existence of phase coexistence and magnetic glass like freezing across T_{SR}, the reason of which is due to the discrete flipping of Cr$^{3+}$ ions from the high temperature Γ_4 to low temperature Γ_1 configuration. Very recently, Tripathi et al.21 investigated the thermal evolution of magnetic configuration in SmCrO$_3$ by neutron diffraction and magneto- metric study and confirmed that the uncompensated canted antiferromagnetic structure Γ_4 occurs below T_N, the collinear...
antiferromagnetic structure I_1 occurs below 10 K, and a non-equilibrium configuration with co-occurring I_1 and I_2 phases occurs at 10 K $\leq T \leq$ 40 K. The competition between magnetocrystalline anisotropy and free energy derived from isotropic and antisymmetric exchange interactions among different pairs of magnetic ions is observed to govern the mechanism of SR effect. Therefore, the investigation of the SR transition, especially from the view of artificial control of the exchange interactions between chromium and samarium ions, is full of interest and finding its tunable factors and achieving its control will benefit for applications in thermomagnetic power generation, ultrafast spin switching.

Moreover, the complex magnetic exchange interactions of Sm–Cr or/and Cr–Cr and their competitions are mostly considered to be the origin of the TIMR and conventional EB and ZEB effects as well. There was no negative magnetization originally in SmCrO$_3$ itself and the TIMR effect can be induced by transitional metal ions doping, such as, Fe, and Mn. Nevertheless, negative magnetization in SmCrO$_3$ will be outstanding due to the intrinsic strong coupling between Sm$^{3+}$ and Cr$^{3+}$ spins sublattices, which would also be responsible for the existence of EB effect. Due to the coupling between Sm and Cr ions, a ZEB effect appears in SmCrO$_3$. And nonmagnetic rare-earth ions doping at Sm-site confirm the influence of Sm$^{3+}$ on the ZEB effect, which would be of great interest to electric field control of EB devices as it eliminates the requirement of external magnetic field to create the unidirectional anisotropy.

In this work, we investigated the temperature dependent magnetic properties of SmCrO$_3$ by codoping nonmagnetic ions (Y$^{3+}$ and Ga$^{3+}$) at Sm- and Cr-sites, respectively. The SR transition from I_2 to I_1 is tuned and the transition temperature T_{SR} is improved dramatically to the liquid nitrogen temperature by Ga ions doping. The outstanding intrinsic TIMR effect from positive to negative with temperature decreasing under zero-field-cooling (ZFC) condition are induced as well at an appropriate cooling (ZFC) condition are induced as well at an appropriate

Results and discussion

Fig. 1(a–c) shows the XRD patterns of Sm$_{0.7}Y_{0.3}Cr_{1-x}$Ga$_x$O$_3$ ($x = 0, 0.1, 0.2$ and 0.3) samples. The samples are regarded to be desired pure phase polycrystalline. Rietveld refinement results reveal that samples are the distorted orthorhombic perovskite structure with $Pbnm$ (no. 62) space group, consistent with the parent sample SmCrO$_3$. From Rietveld refinement results, we obtained data of lattice parameters a, b, c, cell volume of samples, the angle of out-of-plane Cr–O$_1$–Cr, and the bond

Experimental

Polycrystalline samples of Sm$_{0.7}Y_{0.3}Cr_{1-x}$Ga$_x$O$_3$ ($x = 0, 0.1, 0.2$, and 0.3) were prepared by conventional solid state reaction method. High purity (99.9%) oxide of samarium (Sm$_2$O$_3$), yttrium (Y$_2$O$_3$), gallium (Ga$_2$O$_3$) and chromium (Cr$_2$O$_3$) were weighed and mixed at a stoichiometric ratio. The mixtures were first calcined at 1200 $^\circ$C for 12 h with the heating rate of 2 $^\circ$C min$^{-1}$ and cooled down with the furnace. Finally, after regrinding and tableting, the resulting products were sintered at 1400 $^\circ$C for 12 h with the same heating rate. The samples were obtained after cooling with the furnace.

The X-ray diffraction (XRD) measurement was performed by Bruker D8 diffractometer with Cu Kz radiation at room temperature. The working current and voltage were 40 mA and 40 kV respectively and the diffraction angle ranges from 20–70 degree with step of 0.02 degree. And the XRD patterns were refined by Rietveld method using PC-GSAS and EXPGUI programs. Measurement of Raman spectra of all samples with a range from 100 to 600 cm$^{-1}$ were conducted by EZRaman-M Portable Raman System with 532 nm excitation wavelength He–Ne laser. The field-cooling (FC) and ZFC temperature dependent magnetization curves of Sm$_x$Y$_{1-x}$Ga$_x$Cr$_{1-x}$O$_3$ ($x = 0.1, 0.2, 0.3$) samples were measured at the temperature range of 5 K to 300 K under the magnetic field $H = 100$ Oe by a superconducting quantum interference device (MPMS-XL-7). The p-type magnetic hysteresis data (M–H loop) were recorded at constant 5 K in ZFC mode for Sm$_x$Y$_{1-x}$Ga$_x$Cr$_{1-x}$O$_3$ ($x = 0.1, 0.2, 0.3$) and at various temperatures 5, 35 and 100 K for $x = 0.1$, at 5, 45 and 100 K for $x = 0.2$, and at 5, 50 and 100 K for $x = 0.3$, respectively.

![Rietveld refined XRD patterns of Sm$_{0.7}Y_{0.3}Cr_{1-x}$Ga$_x$O$_3$](image)
length of out-of-plane Cr–O1, listed in Table 1. It is noticeable that those parameters are not dramatically changed. Lattice parameters \(a\) and \(c\) both have the tendency to decrease with increasing doping concentration \(x\), while parameter \(b\) almost monotonically increases. This results from the fact that the radius of Ga\(^{3+}\) (0.620 Å) ion is a bit larger than that of Cr\(^{3+}\) (0.615 Å). With an incorporation of Ga ions, the degree of crystal structure distortion to some extent increases as well, which leads to the increment of the Cr (Ga)–O bond length and Cr (Ga)–O–Cr bond angle. To quantify the CrO6 distortion, we calculated the angles \(\theta\) and \(\phi\) of the CrO6 octahedral based on the two equations \(\theta = \cos^{-1}(a/b)\) and \(\phi = \cos^{-1}((\sqrt{2a}/c)\) respectively,\(^{27}\) listed in Table 1. Angle \(\theta\) represents the rotation of CrO6 octahedral about (001) axis and angel \(\phi\) stands for the octahedral tilting about (110) axis. The values of both \(\theta\) and \(\phi\) have an upward trend with greater doping concentration \(x\), shown in Fig. 1(e) and (f), which provides an evidence of the enhancement of lattice distortion.

Fig. 2 shows the room temperature Raman spectra of Sm0.7Y0.3Cr1–\(x\)Ga\(_x\)O3 (\(x = 0, 0.1, 0.2\) and \(0.3\)) samples. According to group theory, RCrO3 with an orthorhombic (Pbnm) setting has 24 types of Raman-active modes (7\(A_g\) + 5\(B_{1g}\) + 7\(B_{2g}\) + 5\(B_{3g}\))\(^{28}\). For SmCrO3, excluding some low-intensity modes, 11 modes (5\(A_g\) + 2\(B_{1g}\) + 2\(B_{2g}\) + 2\(B_{3g}\)) are detected, which are consistent with reported Raman spectra of SmCrO3.\(^{29-31}\) For only 30% Ga-doped SmCrO3, the shape and position of Raman spectra show inconspicuous changes compared to SmCrO3. Nonetheless, for Sm0.7Y0.3Cr0.3O3 sample, the obvious peaks shift of Raman spectra relative to the parent SmCrO3 occurs, which may be related to the prominent structural variations by Y doping, reflected and discussed in the previous work.\(^{14}\) For the Y- and Ga-codoped samples, the Raman spectra are almost the same to that of Sm0.7Y0.3Cr0.3O3 sample. This indicates that due to the size effect and the heavier atom of Y than the transition metal ions Raman modes are led to the obvious shift. Compared to the Raman modes and band position of YCrO3 and SmCrO3,\(^{29}\) we assigned the phonon modes of Sm0.7Y0.3Cr1–\(x\)Ga\(_x\)O3 samples, shown in Fig. 2. As is known that the phonon modes in RCrO3 below 200 cm\(^{-1}\) are related to lattice modes involving R atom vibrations and modes above 200 cm\(^{-1}\) consist of various modes involving vibrations of the R atom and oxygen.\(^{29-31}\) Specifically speaking: (1) \(A_g(3)\) and \(A_g(5)\) are CrO6 octahedral rotations around the crystallographic \(y\)-axis and \(x\)-axis (Pbnm setting), respectively; (2) \(B_{1g}(2), B_{2g}(2)\) and \(B_{3g}(1)\) are related to R atomic motions; (3) \(A_g(6)\) and \(B_{2g}(3)\) arise from bending of the CrO6 octahedral; (4) the \(B_{3g}(3)\) mode is related to the antisymmetric stretching vibrations of the O1 and O2 atoms.\(^{29}\) For Sm0.7Y0.3–

![Fig. 2](image-url)
doping does not affect the symmetric structure of the crystal. As doping concentration increases, $A_g(5)$, $B_{3g}(1)$ and $B_{2g}(2)$ modes have a different degree of offset, in which $A_g(5)$ shifts to lower wavenumber (red shift) while $B_{3g}(1)$ and $B_{2g}(2)$ are blue shift. Red shift of $A_g(5)$ indicates the rotation of the CrO$_6$ octahedron increases, which is consistent with the calculated φ angle from XRD. The anomalous hardening of $B_{3g}(1)$ and $B_{2g}(2)$ modes reveals the possible displacement of R ions induced by spin-phonon coupling, which may be related to the magnetic interactions between R$^{3+}$ and Cr$^{3+}$ ions.

The FC and ZFC curves of temperature dependent magnetization of Sm$_{0.7}$Y$_{0.3}$Cr$_{1-x}$Ga$_x$O$_3$ ($x = 0.1, 0.2, \text{and } 0.3$) samples are shown in Fig. 3(a–c). From these graphs, it is evident that there indeed and still is antiferromagnetic transition, the SR transition, and the TIMR effect in the ZFC case. As the temperature decreases from high temperature, the magnetization curves undergo a paramagnetic to antiferromagnetic phase transition at T_{N}. And the Neel temperature occurs below the bifurcation temperature (T_{bf}) of ZFC and FC curves, the value of which is around 194 K and is independent of doping concentration. However, the value of T_{N} has strongly dependence on the doping concentration, which was obtained from the maximum position of the first derivative of ZFC curves and listed in Table 1. It almost decreases linearly with a tolerance of 24 K with 10% doping, which results from the dilution effect of Ga ions doping on destroying the Cr–O–Cr magnetic coupling. This leads to the fact that temperature difference between T_{bf} and T_{N} becomes bigger with increase of doping concentration. The bifurcation of ZFC and FC is the characteristic of the onset of the antiferromagnetic ordering, which is attributed to the coexistence of ferromagnetic and antiferromagnetic phases caused by magnetic anisotropy.$^{32-34}$ The destruction of Cr–O–Cr by the Ga$^{3+}$ ions suppresses the formation of Cr$^{3+}$ antiferromagnetic ordering and gives rise to the existence of ferromagnetic-like clusters, which can be demonstrated from the deviation of Curie–Weiss linear behaviour in the inverse susceptibility as a function of temperature (shown in Fig. 3(d)). Thus, an unchanged T_{bf} and reduced T_{N} are observed.

For the paramagnetic region, it was best fitted by the Curie–Weiss law, $\chi = C/(T - \Theta)$, where C is Curie constant and Θ is the Weiss temperature, as shown in Fig. 3(d). Based on the fitted Curie constant, the average effective magnetic moment was calculated by the following formula:

$$\mu_{\text{eff}} = \sqrt{\frac{3k_B C}{N}}$$

where k_B is Boltzmann constant, N_A is Avogadro constant. All the fitted and calculated values of the parameters are summarized in Table 1. Theoretically, the whole effective magnetic
moment μ_{eff}^* in paramagnetic region can be calculated using the free ionic moments of Sm$^{3+}$ and Cr$^{3+}$ as the following equation

$$
\mu_{\text{eff}}^* = \sqrt{0.7 \times \mu_{\text{Sm}}^2 + 0.3 \times \mu_{\text{Cr}}^2 + (1 - x)\mu_{\text{Cr}}^2 + x\mu_{\text{Ga}}^2}
$$

(2)

where $\mu_{\text{Sm}} = 0.84 \mu_B$, $\mu_{\text{Cr}} = 3.87 \mu_B$, $\mu_{\text{Ga}} = 0$, and $\mu_{\text{Ga}} = 0$. Note from Table 1 that the fitted effective magnetic moments (μ_{eff}) is around 1.3 times larger than the theoretical ones (μ_{eff}^*), which demonstrates that the effective magnetic moments of samples are not only from the free ionic moments of Sm$^{3+}$ and Cr$^{3+}$. This large calculated effective paramagnetic moment in SmCrO$_3$ seems to be a common thing that most of the reported effective paramagnetic moment in SmCrO$_3$ is larger than the theoretical value calculated by free magnetic ions only. However, few of them discuss its origin. One of the work done by \textit{ab initio} calculation suggested that the pressure produced by the tilting of the oxygen octahedral causes the difference between the experimental calculated effective paramagnetic moment and the theoretical one. The experimental and theoretical investigations of this issue are appealed.

As temperature continues to decrease, a canted antiferromagnetic phase with weak ferromagnetic component is formed between chromium ions, showing a dramatic increment of the macroscopic magnetic moment. In the ZFC curve, an obvious negative magnetization occurs below T_N at $x = 0$ (shown in our previous work) and $x = 0.1$. Moreover, note that when $x \geq 0.2$, the magnetization in ZFC mode is still positive when temperature is below T_N and goes across the zero-magnetization-line to a negative value at the compensation temperature (T_{comp}), showing the magnetization reversal. And this TIMR effect becomes remarkable when $x = 0.3$, showing its evolution with doping concentration. Most reported TIMR effect from positive to negative occurs in FC mode while few in ZFC mode. Here, the TIMR effect observed in ZFC mode shows dependence on doping concentration and the compensation temperature for $x = 0.2$ and 0.3 is at near 74 K and almost the same, indicating its intrinsic feature.

In order to prove the intrinsic nature of TIMR effect in ZFC by ruled out the effect of a small negative trapped field in the superconducting magnet during cooling on the negative magnetization, we measured the FC $M(T)$ curves with very small cooling fields $H_{\text{cooling}} = \pm 10$ Oe respectively and the applied field H still keeps 100 Oe. The results shown in Fig. 4 show that the TIMR effect still exists both in positive and negative cooling field. This signifies that even though there is a small trapped field when doing ZFC measurement, the negative magnetization and magnetization reversal observed in our measurement would not be affected. Moreover, the TIMR effect here is actually dependent on the applied field. The field-dependence of magnetization reversal is observed, as shown in Fig. 4(b). The ZFC and FC curves under applied small field $H = 10$ Oe were measured. It shows that magnetizations below T_N are negative in both ZFC and FC curves. And when the applied field increases up to 100 Oe the magnetization in the temperature interval $T_{\text{comp}} < T < T_N$ becomes positive. These results prove the intrinsic nature of the TIMR effect.

With temperature further cooling, magnetization drops abruptly in FC at T_{SR} for $x = 0.1$ and 0.2 while rises for $x = 0.3$, where the SR effect happens. In the meantime, there is a fluctuation of magnetization in ZFC at $x = 0.1$ and obvious drops at $x = 0.2$ and 0.3 while it never happened in SmCrO$_3$.

This SR effect is assigned to the transition from spin configuration Γ_4 to Γ_2. In our previous work, Y$^{3+}$ doping at Sm-site has a tiny effect on the value of T_{SR} with 6 K lower at 30% Y$^{3+}$ doing sample than SmCrO$_3$. Interestingly, in the series of Ga-doped Sm$_{0.7}$Y$_{0.3}$CrO$_3$ samples here, the T_{SR} increases uniformly with an increment of 15 K and reaches to 73 K at $x = 0.3$, closely to the compensation temperature (75 K) and the liquid nitrogen temperature. Nonetheless, this inconsistence of T_{SR} and T_{comp} illustrates that the TIMR effect is independent of the SR effect and the TIMR occurs ahead of the SR effect with decreasing of temperature. Moreover, the magnetization of FC curve at Γ_4 decreases while the one at Γ_3 decreases correspondingly with increasing of doping concentration. As $x \geq 0.3$, the magnetization at Γ_3 overcomes the one at Γ_4. It is reasonable because that the SR transition temperature is improved to 73 K where the contribution of Sm$^{3+}$ moments is low. And the spontaneous moment parallel to a crystallographic axis (Γ_2) of SmCrO$_3$ is larger than the one parallel to c crystallographic axis (Γ_4). Moreover, the occurrence of SR transition has been attributed to the strong antisymmetric exchange interaction between Sm$^{3+}$ and Cr$^{3+}$ and the dilution effect of Ga ions doping on Cr ions moment gives rise to the improvement of the whole net magnetization value. With further doping, the competitiveness of Cr$^{3+}$ moment relative to Sm$^{3+}$ moment decreases and it will reduce and even destroy the antisymmetric Sm-Cr interactions, leading to the parallel orientation of Sm and Cr spin moments, especially for the samples with high doping concentration. An enhancement of magnetization at low temperature thus will be reasonable caused for $x = 0.3$.

Now we turn to give the interpretation of the TIMR accompanied with SR effect in ZFC curve. In these oxides magnetization reversal was explained in terms of competition between

![Image](314x568 to 542x729)

Fig. 4 (a) The field-cooling $M(T)$ curves of Sm$_{0.7}$Y$_{0.3}$Cr$_{0.7}$Ga$_{0.3}$O$_3$ sample with cooling fields $H_{\text{cooling}} = \pm 10$ Oe respectively and the applied field is 100 Oe. (b) The ZFC and FC curves of Sm$_{0.7}$Y$_{0.3}$Cr$_{0.7}$Ga$_{0.3}$O$_3$ sample with applied field 10 Oe.
single-ion magnetic anisotropy and antisymmetric DM interactions.44–48 In antiferromagnetic materials with low symmetry, the appearance of weak ferromagnetism is predominantly determined by either single-ion magnetocrystalline anisotropy or DM interactions. It has been suggested that the net moment produced by these mechanisms can be oriented in opposite direction and have different temperature dependence in some cases.47,48 The magnetic exchange interactions between magnetic ions generally include the isotropic, the antisymmetric (or DM interaction), and anisotropic symmetric super-exchange interactions. Therefore, the Hamiltonian of the SmCrO₃ system in the absence of external magnetic field can be written as follows:

\[
H = H^\text{iso} + H^\text{anti} + H^\text{sin}
\]

(3)

\[
H^\text{iso} = H^\text{iso, Cr} + H^\text{iso, Sm}
\]

(4)

\[
H^\text{anti} = H^\text{anti, Cr-Sm}
\]

(5)

where \(H_{\text{iso}}\), \(H_{\text{anti}}\) represent the isotropic, antisymmetric exchange interactions, respectively, and \(H_{\text{sin}}\) is the single-ion anisotropic term. Based on this model, we schematically plotted the spin evolution with temperature in the ZFC mode in Fig. 5 and discussed the mechanisms behind in detail in the following.

When \(x \leq 0.1\) and \(T < T_{\text{th}}\), the strong isotropic exchange interaction between Cr³⁺ spins leads to the antiferromagnetic ordering at \(T_N\). The net moment of Cr is oppositely aligned to the measuring field, showing the negative magnetization and increases in the absolute value with further cooling. However, for \(x \geq 0.2\), the canted antiferromagnetic moments of Cr⁺⁺⁺ spins are positive. The small canted antiferromagnetism of Cr⁺⁺⁺ spins below \(T_N\) are attributed to two mechanisms, i.e., the single-ion anisotropy of Cr⁺⁺⁺ ions and the antisymmetric Cr⁺⁺⁺–Cr⁺⁺⁺ exchange interactions, which do not need to have the same sign.48 Due to the dilution of Cr–Cr exchange interaction by Ga doping, the single ion anisotropy of Cr⁺⁺⁺ ions dominates, leading to the net moment parallel to measuring field. With further cooling, for \(x = 0.1\), the SR happens at 43 K, making the spin of Cr deflect. At this time, the DM interaction between Cr spins, which has an opposite sign with that of single-ion anisotropy of Cr⁺⁺⁺, increases and competes with the interaction of single-ion anisotropy of Cr⁺⁺⁺. When the DM interaction between Cr–Cr dominates over single-ion anisotropy of Cr⁺⁺⁺, the net moment of Cr reverses and correspondingly the Sm⁺⁺⁺ spin will also reverse due to isotropic and antisymmetric of Sm–Cr interaction. This process is accompanied by the SR effect making it happened step by step. At lower temperature, the antisymmetric Sm–Cr interaction that produces an effective field on Cr spins becomes increasingly predominant due to the increase of Sm moment. When the effective field with respect to this antisymmetric interaction is stronger than single-ion anisotropy of Cr⁺⁺⁺, the net moment of Cr will be accompanied with the reversal of Sm moment. Upon further decrease of temperature, the magnetic exchange interactions, the spin reversal of Cr will be accompanied with the reversal of Sm moment, leading to a fluctuation of the magnetization even positive one instead of a dramatic dropping. Here the drop of the magnetization means that the isotropic and antisymmetric Sm–Cr interactions are seriously reduced with Ga doping, making the magnetocrystalline anisotropy dominate. This is consistent with the reported result49 and results in the parallel arrangement of Sm⁺⁺⁺ moment with Cr⁺⁺⁺ net moment. Carefully seen from the ZFC curves that there is another transition at nearly 20 K, which is obvious at \(x = 0.1\) and displays a broad peak at \(x = 0.2\) and 0.3. This is attributed to the Sm⁺⁺⁺ magnetic ordering with the stabilized Cr⁺⁺⁺ spin of \(I_2\) configuration.

Besides the TIMR and SR effect, the ZEB effect of these samples are also experimentally observed. For Sm₀.₇Gₐ₀.₃CrO₃, it was reported to show the negative ZEB effect at low temperature and reversal to positive one at \(T_{\text{th}} < T < T_{\text{an}}\), similar to the behaviour of SmCrO₃.44 The p-type \(M-H\) curves \((0 \rightarrow +H_{\text{max}} \rightarrow -H_{\text{max}} \rightarrow 0)\) measured under ZFC mode at various temperatures are shown in Fig. 6. All the curves show hysteresis loops with certain amount of coercivity \((H_C)\) but are not saturated at high magnetic field, indicating the coexistence of weak ferromagnetism and antiferromagnetism. As is known that an EB effect is usually formed at the ferromagnetic/antiferromagnetic interface. The EB field \(H_{\text{EB}}\) was determined by \(H_{\text{EB}} = (H_{C+} + H_{C-})/2\), where \(H_{C+}\) and \(H_{C-}\) are the left and right coercive fields.
respectively. All the values of \(H_{EB} \), \(H_C \), and the remnant magnetization \(M_r \) are listed in Table 2. And the relationship of \(H_{EB} \) and \(H_C \) with doping concentration are plotted in Fig. 6(d). Note that at 5 K the ZEB effect does not only still appear but also show positive when doping Ga\(^{3+}\) ions and linearly decreases with increase of doping concentration. Then the ZEB effect disappears at temperature between \(T_N \) and \(T_{SR} \), which may be due to the stronger performance of weak ferromagnetism than antiferromagnetism. The ZEB effect was reported to be observed in the parent SmCrO\(_3\).\(^{18,20}\) The EB field at 5 K can be reached to almost 5 kOe.\(^{18}\) The origin of ZEB effect in SmCrO\(_3\) is considered to be the local interaction between the canted antiferromagnetic Cr sublattices and orientated Sm sublattices.\(^{18}\) The coupling between Sm\(^{3+}\) and Cr\(^{3+}\) via internal magnetic field \(H_I \) results in large \(H_{EB} \).\(^{20}\) The positive ZEB effect may be related to the behaviour in layered magnetic systems,\(^{28,51}\) where positive EB appears if the interactions at the interfaces are antiferromagnetic, whereas negative EB is present for ferro-magnetic interactions. As reported, by nonmagnetic rare-earth ions doping at Sm-site, such as La, the exchange bias field \(H_{EB} \) decreases monotonously with doping level increasing due to the weakness of the Sm–Cr coupling.\(^{20}\) The \(H_{EB} \) of ZEB effect in our samples show the decrement as well with increase of nonmagnetic Ga\(^{3+}\) ions doping, similar to the reported results.\(^{20}\) The nonmagnetic ions doping (Y\(^{3+}\), and Ga\(^{3+}\)), nonmatter doping at Sm- or Cr-sites, would reduce the coupling between Sm\(^{3+}\) and Cr\(^{3+}\), leading to the decrease of ZEB effect.

Conclusions

In conclusion, we investigated the temperature dependent magnetic properties of SmCrO\(_3\) by codoping nonmagnetic ions at Sm- and Cr-sites. It is evident that there indeed and still exists antiferromagnetic transition, the TIMR effect, and the SR effect. The spin reorientation from \(T_s \) to \(T_2 \) is tuned and the transition temperature \(T_{SR} \) is improved dramatically to the liquid nitrogen temperature by Ga ions doping, which would be helpful to achieve its application in temperature sensitive spintronic devices and magnetic switching devices. The intrinsic TIMR effect from positive to negative under ZFC condition are significantly induced as well and its reversal evolution is strongly dependent with doping. Moreover, the positive ZEB effect is formed in Ga doped Sm\(_{0.7}\)Y\(_{0.3}\)CrO\(_3\) samples at 5 K although it is suppressed with increase of doping concentration and disappears in high temperature. Under the influence of doping nonmagnetic ions, lattice distortion is induced to some extend and the magnetic interactions of Cr–Cr and Sm–Cr are predominantly diluted, leading to tune the above phenomena. Those phenomena are discussed and successfully explained by considering the magnetic exchange interactions competitions including the isotropic, antisymmetric (or DM interaction), and anisotropic superexchange interactions.

Table 2

Sample	Temperature	\(H_{EB} \) (Oe)	\(H_C \) (Oe)	\(M_r \) (emu g\(^{-1}\))
\(x = 0.1 \)	5K	412.6	8015.3	0.27455
	35K	5.3	2345.6	0.56946
	100K	2.5	7154.4	0.45936
\(x = 0.2 \)	5K	202.6	7368.1	0.31416
	45K	–2.8	2388.6	0.41866
	100K	7.5	3945.3	0.29665
\(x = 0.3 \)	5K	39.85	6796.3	0.31861
	50K	10.75	4361.3	0.35168
	100K	–2.1	1179.4	0.17103
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11605092 and 11704009) and Nanjing University of Posts and Telecommunications under research project (No. NY215091).

References

1. J. R. Sahu, C. R. Serrao and C. N. R. Rao, Solid State Commun., 2008, 145, 52–55.
2. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, Z. Chen and S. Cao, J. Appl. Phys., 2010, 108, 013905.
3. J. S. Zhou, J. A. Alonso, V. Pomjakushin, J. B. Goodenough, Y. Ren, J. Q. Yan and J. G. Cheng, Phys. Rev. B, 2010, 81, 214115.
4. B. Rajeswaran, D. I. Khomskii, A. K. Zvezdin, C. N. R. Rao and A. Sundaresan, Phys. Rev. B, 2012, 86, 214409.
5. Y. Cao, S. Cao, W. Ren, Z. Feng, S. Yuan, B. Kang, B. Lu and J. Zhang, Appl. Phys. Lett., 2014, 104, 232405.
6. S. Huang, G. Zerihun, Z. Tian, S. Yuan, G. Gong, C. Yin and L. Wang, Ceram. Int., 2014, 40, 13937–13943.
7. A. McDanald, C. R. dela Cruz, M. S. Seehra and M. Jain, Phys. Rev. B, 2016, 93, 184430.
8. E. F. Bertaut, G. Bassi, G. Buisson, P. Burlet, J. Chappert, A. Delapalme, J. Mareschal, G. Roul, R. Aleonard, R. Pauthenet and J. P. Rebourillat, J. Appl. Phys., 1966, 37, 1038–1039.
9. A. Ghosh, K. Dey, M. Chakraborty, S. Majumdar and S. Giri, EPL, 2014, 107, 47012.
10. L. H. Yin, Y. Liu, S. G. Tan, B. C. Zhao, J. M. Dai, W. H. Song and Y. P. Sun, Mater. Res. Bull., 2013, 48, 4016–4021.
11. X. L. Qian, D. M. Deng, Y. Jin, B. Lu, S. X. Cao and J. C. Zhang, J. Appl. Phys., 2014, 115, 193902.
12. M. Tripathi, R. J. Choudhary and D. M. Phase, RSC Adv., 2016, 6, 90255–90262.
13. Y. Wu, J. Xu and Z. Xia, J. Low Temp. Phys., 2016, 183, 14–22.
14. H. Zhang, J. Wang, L. Xie, D. Fu, Y. Guo and Y. Li, J. Appl. Phys., 2017, 122, 204103.
15. D.-x. Fu, Y.-z. Liu, H.-g. Zhang, L. Xie and B. Li, J. Alloys Compd., 2018, 735, 1052–1062.
16. S. Huang, K. P. Su, H. O. Wang, L. R. Shi and D. X. Huo, Ceram. Int., 2017, 43, 12258–12262.
17. X. Qian, L. Chen, S. Cao and J. Zhang, Solid State Commun., 2014, 195, 21–25.
18. P. Gupta, R. Bhargava and P. Poddar, J. Phys. D: Appl. Phys., 2015, 48, 025004.
19. G. Gorodetsky, R. M. Hornreich, S. Shaft, B. Sharon, A. Shaulov and B. M. Wanklyn, Phys. Rev. B, 1977, 16, 515–521.
20. S. Huang, L. R. Shi, Z. M. Tian, H. G. Sun and S. L. Yuan, J. Magn. Magn. Mater., 2015, 394, 77–81.
21. M. Tripathi, R. J. Choudhary, D. M. Phase, T. Chatterji and H. E. Fischer, Phys. Rev. B, 2017, 96, 174421.
22. Y. Fang, X. Cui, J. Kang, W. Sun, P. Cheng, F. Chen and J. Zhang, Solid State Commun., 2017, 261, 37–40.
23. J. Kang, Y. Yang, X. Qian, K. Xu, X. Cui, Y. Fang, V. Chandragiri, B. Kang, B. Chen, A. Stroppa, S. Cao, J. Zhang and W. Ren, IUCrJ, 2017, 4, 598–603.
24. Y. Fang, S.-M. Yan, Y.-Y. Gong, W.-L. Zhu, Q.-Q. Cao, D.-H. Wang and Y.-W. Du, Chin. Phys. B, 2014, 23, 127502.
25. N. Panwar, J. P. Joby, S. Kumar, I. Coondoo, M. Vasundhara, N. Kumar, R. Palai, R. Singhal and R. S. Katiyar, AIP Adv., 2018, 8, 055818.
26. B. H. Toby, J. Appl. Crystallogr., 2001, 34, 210–213.
27. D. J. W. Yusheng Zhao, J. B. Parise and D. E. Cox, Phys. Earth Planet. Inter., 1993, 76, 16.
28. M. N. Iliev, M. V. Abrashev, H. G. Lee, V. N. Popov, Y. Y. Sun, C. Thomsen, R. L. Meng and C. W. Chu, Phys. Rev. B, 1998, 57, 2872–2877.
29. M. C. Weber, J. Kreisel, P. A. Thomas, M. Newton, K. Sardar and R. I. Walton, Phys. Rev. B, 2012, 85, 054303.
30. V. Srinu Bhadram, B. Rajeswaran, A. Sundaresan and C. Narayana, EPL, 2013, 101, 17008.
31. V. S. Bhadram, D. Swain, R. Dhanya, M. Polentarutti, A. Sundaresan and C. Narayana, Mater. Res. Express, 2014, 1, 026111.
32. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa and A. Planes, Phys. Rev. B, 2005, 72.
33. R. Das, A. Jaiswal, S. Adyanthaya and P. Poddar, J. Appl. Phys., 2011, 109, 064309.
34. S. Lei, L. Liu, C. Wang, C. Wang, D. Guo, S. Zeng, B. Cheng, Y. Xiao and L. Zhou, J. Mater. Chem. A, 2013, 1, 11982.
35. Z. Xiang, W. Li and Y. Cui, RSC Adv., 2018, 8, 8842–8848.
36. L. M. Daniels, M. C. Weber, M. R. Lees, M. Guennou, R. J. Kashitbin, J. Sloan, J. Kreisel and R. I. Walton, Inorg. Chem., 2013, 52, 12161–12169.
37. H. J. Zhao, W. Ren, X. M. Chen and L. Bellaiche, J. Phys.: Condens. Matter, 2013, 25, 385604.
38. T. Bora and S. Ravi, J. Magn. Magn. Mater., 2014, 358–359, 208–211.
39. P. Gupta and P. Poddar, Inorg. Chem., 2015, 54, 9509–9516.
40. L. Wang, G. H. Rao, X. Zhang, L. L. Zhang, S. W. Wang and Q. R. Yao, Ceram. Int., 2016, 42, 10171–10174.
41. L. Wang, S. W. Wang, X. Zhang, L. L. Zhang, R. Yao and G. H. Rao, J. Alloys Compd., 2016, 662, 268–271.
42. S. Kumar, I. Coondoo, M. Vasundhara, A. K. Patra, A. L. Khokin and N. Panwar, J. Appl. Phys., 2017, 121, 043907.
43. N. Kumar and A. Sundaresan, Solid State Commun., 2010, 150, 1162–1164.
44. T. Moriya, Phys. Rev., 1960, 120, 91–98.
45. I. Dzyaloshinsky, J. Phys. Chem. Solids., 1958, 4, 241–255.
46. P. Mandal, A. Sundaresan, C. N. R. Rao, A. Iyo, P. M. Shirage, Y. Tanaka, C. Simon, V. Peralcon, O. I. Lebedev, V. Caignaert and B. Raveau, Phys. Rev. B, 2010, 82, 100416.
47. Y. Ren, T. T. M. Palstra, D. I. Khomskii, E. Pellegrini, A. A. Nugroho, A. A. Menovsky and G. A. Sawatzky, Nature, 1998, 396, 441.
48 Y. Ren, T. Palstra, D. Khomskii, A. Nugroho, A. Menovsky and G. Sawatzky, Phys. Rev. B, 2000, 62, 6577–6586.
49 K. Yoshii, Appl. Phys. Lett., 2011, 99, 142501.
50 J. Nogués and I. K. Schuller, J. Magn. Magn. Mater., 1999, 192, 203–232.
51 W. Wang, F. Takano, M. Takenaka, H. Akinaga and H. Ofuchi, J. Appl. Phys., 2008, 103, 093914.