PRACA POGLĄDOWA
REVIEW

Transdermalna terapia magnezem – czy to ma sens?

Transdermal magnesium therapy – should it be done?

Anna Ledwoń, Karolina Lau, Jadwiga Jośko-Ochojska
Katedra i Zakład Medycyny i Epidemiologii Środowiskowej, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach

STRESZCZENIE

Magnez pełni bardzo wiele funkcji w ludzkim organizmie, jest kofaktorem enzymów, chroni przed chorobami sercowo-naczyniowymi, usprawnia pracę układu odpornościowego, jest też budulcem kości i zębów. Skutki jego niedoboru, takie jak częste skurcze mięśni, są dobrze znane. Doustna suplementacja magnezem jest szeroko rozpowszechniona w społeczeństwie. Naukowcy dogłębie przebadali tę formę suplementacji i udowodnili jej skuteczność, jednak do niesienia z ostatnich lat wskazują, że efektywniejsza wydaje się terapia transdermalna (np. oleje magnezowe – wodne roztwory chlorku magnezu). Za taką terapią przemawiają dobra wchłanianie przez skórę, dostarczanie pierwiastka bezpośrednio do komórek oraz pominięcie drogi pokarmowej w procesie absorpcji. Zarówno w piśmiennictwie naukowym, jak i na portalach medycznych pojawiają się artykuły dowodzące skuteczności stosowanej przezskórnie terapii, a część autorów decyduje się na stwierdzenie, iż jest ona skuteczniejsza niż tradycyjna terapia doustna. Praca stanowi przegląd piśmiennictwa oraz prowadzonych w ostatnich latach badań dotyczących transdermalnej terapii magnezem oraz jej skuteczności.

SŁOWA KLUCZOWE
magnez, transdermalny, suplementacja

ABSTRACT

Magnesium has many functions in the human body: it is an enzyme cofactor, protects against cardiovascular diseases, improves the functioning of the immune system, and is also a building block of teeth and bones. The effects of its deficiency, such as frequently occurring muscle spasms, are well known. Oral magnesium supplementation is common and widespread used in society. Scientists have thoroughly studied this form of supplementation and proved its efficiency. Recently, however, there have been reports that transdermal therapy seems to be more effective (ex. magnesium oils – aqueous solution of magnesium chloride). The presented arguments are good absorption through the skin, supplying the element directly to cells that need it and omitting the gastrointestinal track in the absorption process. Both in scientific literature and on medical web sites there are articles proving the effectiveness of transdermal therapy appear, the authors of some who claim that it is better than traditional oral therapy. The presented paper is a review of literature as well as recently conducted research on transdermal magnesium therapy and its effectiveness.

KEY WORDS
magnesium, transdermal, supplementation
The skin is the largest organ of the human body with an area of almost 2 m\(^2\) and making up about 10% of the body mass. The original function of the skin is to act as a barrier between the external environment and the body's interior [1]. The stratum corneum, which is the outermost, hydrophobic part of the skin, has the ability to transmit small metal ions to the underlying dermis, which is rich in blood vessels and capable of transporting the absorbed substances throughout the body. The scientific literature mainly focuses on the possibility of the penetration of metals causing toxic or irritating effects [2]. Magnesium is an essential cation and the fourth most abundant one in the human body. About 99% of this element is found in bones, muscles and other soft tissues; a very small proportion is present in blood serum.

The transdermal supply of therapeutic agents has become very popular in recent years. The use of opioid analgesic patches in the treatment of cancer patients is widespread in modern pain therapy [3]. Similarly, contraceptives have been used in Poland in the form of patches since 2004 [4]. The transdermal administration of agents has been successful because of its ease of application and its ability to be used in people with gastrointestinal disorders, who have contraindications to oral administration.

Magnesium is a macronutrient, as the requirement for this element is over 100 mg/day. Its presence in the body is essential for over 300 enzymatic reactions in the cells of our body [5]. In addition, it is necessary for the proper functioning of the neuromuscular and immune systems [6], blood pressure regulation [7,8], and is an essential building block for bones and teeth [9]. Due to such a wide application, the demand for this element in our organism is also relatively high and changes with age, as well as increases significantly in pregnant and lactating women (Table I) [10].

Wiek/Age	Dawka [mg/dobę]/Dosage [mg/day]
7–12 miesięcy/7–12 months	75
1–3 lat/1–3 years	80
4–8 lat/4–8 years	130
9–13 lat/9–13 years	240
14–18 lat/14–18 years	M: 420 K: 360
19–30 lat/19–30 years	M: 400 K: 310
31–50 lat/31–50 years	M: 420 K: 320
Powyżej 51 lat/Over 51 years	M: 420 K: 320
Kobiety w ciąży/Pregnant women	360–400
Kobiety w okresie laktacji/Lactating women	320–360

M – mężczyźni/men, K – kobiety/women
Wydawać by się mogło, że dostarczanie magnezu nie powinno przysparzać trudności. Występuje on powszechnie w wielu roślinach, np. pestakach dyni, kakao, migdałach czy kaszy gryczanej [11]. Magnez jest również składnikiem chlorofillu, więc znajduje się w zielonych częściach roślin [12]. Współcześnie jednak znacznie wzrosło spożycie wysoko przetworzonej żywności, która może być uboższa w cenne dla człowieka składniki pokarmowe, jak również makro- i mikroelementy [13,14]. Istotny jest fakt, że powszechnie nawnęono gleby środkami zawierającymi potas zmniejsza zawartość magnezu w spożywanych produktach, co może prowadzić do częstych niedoborów tego pierwiastka. Z danych wynika, że ¾ Amerykanów nie przyjmuje zalecanej dziennie dawki magnezu [15], jednak liczba odnotowanych przypadków hipomagnesemii w populacji osób dorosłych jest niższa, niż można by przypuszczać, a wynosi zaledwie 2% [16]. Początkowe objawy niedoboru są niespecyficzne. Mogą występować bóle i zawroty głowy, ogólne osłabienie, rozdrażnienie, a w bardziej zaawansowanym stadium dochodzi do skurczów bądź drżenia mięśni [9,17,18]. Hipomagnezemia to spadek stężenia Mg poniżej 0,61 mmol/l w surowicy krwi pobranej na czczo [17,18]. Przy braku suplementacji może prowadzić do poważnych zaburzeń, np. zwiększonego ryzyka chorób sercowo-naczyniowych, osłabienia układu odpornościowego i wzmożonej skłonności do infekcji, głównie wirusem Epsteina i Barr. Obniżony poziom magnezu może być również wymieniany jako czynnik przy złamaniach kości biodrowej oraz jako jedna z przyczyn rozwoju choroby Alzheimera [19].

Współcześnie koncerny farmaceutyczne oferują wiele możliwości uzupełniania niedoborów magnezu zarówno w formie leków, jak i suplementów diety. Bardzo ważne jest zwrócenie uwagi na związek chemiczny wykorzystywany w danym preparacie, ponieważ od jego charakteru zależy przyswajalność magnezu. Dla przykładu organiczny cytrynian magnezu będzie miał wielokrotnie lepszą przyswajalność niż powszechnie stosowany tlenek magnezu, którego przyswajalność jest znoktora [20,21]. Dodatkowo problematyczne okazuje się monitorowanie poziomu magnezu w surowicy krwi; niedobory tkankowe mogą wystąpić znacznie wcześniej niż możliwe do zbadania wahania stężeń tego pierwiastka obserwowane we krwi [22,23]. Według doniesień z ostatniej dekady problemy z przyswajalnością magnezu z przewodu pokarmowego mogą być łatwo wyeliminowane dzięki zastosowaniu suplementacji transdermальной, która w ostatnich latach znacznie zyskała na popularności. Sircus [24] jest zdaniem, że absorpcja magnezu przez skórę wynosi blisko 100%. Uważa się, że przy stosowaniu roztworów soli magnezowej bezpośrednio na skórę omiężone zostają ewentualne powikłania ze strony układu pokarmowego. Spośród najczęstszych działań niepożądanych magnezu wymienia się zaburzenia żołądkowo-jelitowe (nudności, wymioty, biegunka), które są szczególnie nasilone u osób z chorobami przewodu pokarmowego, a także zaburzenia snu, zaczęciwienie skóry, spadki ciśnienia. It would seem that supplying magnesium should not be difficult. It is commonly found in many plants such as pumpkin seeds, cocoa, almonds and buckwheat [11]. Magnesium is also a component of chlorophyll, so it is found in the green parts of plants [12]. Nowadays, however, the consumption of highly processed foods has increased significantly, which can lead to a depletion of valuable nutrients for humans, as well as macro- and micronutrients [13,14]. It is important to note that widespread soil fertilisation with potassium-containing agents reduces the magnesium content of the consumed products. This may lead to an increased prevalence of deficiencies of this element in the population. The data show that ¾ of Americans do not take the recommended daily dose of magnesium [15]; however, the number of reported cases of hypomagnesaemia in the adult population is lower than might be expected and amounts to only 2% [16]. The initial symptoms of deficiency are non-specific. There may be headaches and dizziness, general weakness, irritability, and in more advanced stages, muscle spasms or twitches [9,17]. Hypomagnesaemia is a decrease in Mg concentration below 0.61 mmol/l in fasting blood serum [17,18]. In the absence of supplementation, it can lead to serious disorders such as an increased risk of cardiovascular disease, a weakened immune system and an increased susceptibility to infections, mainly with the Epstein-Barr virus. Reduced levels of magnesium may also be cited as a factor in hip fractures and as one of the causes of the development of Alzheimer’s disease [19]. Nowadays, pharmaceutical companies offer a wide range of options for supplementing magnesium deficiencies, both in the form of medicines and a wide range of dietary supplements. It is very important to pay attention to the chemical compound used in the taken preparation as the nature of the compound determines the absorption of magnesium. For example, organic magnesium citrate will have many times better bioavailability than the commonly used magnesium oxide, whose bioavailability is negligible [20,21]. In addition, monitoring the level of magnesium in the blood serum proves problematic; tissue deficiencies may occur much earlier than the testable fluctuations in magnesium concentrations observed in blood [22,23]. According to reports from the last decade, problems with magnesium absorption via the gastrointestinal tract can be easily eliminated with transdermal supplementation, which has gained considerable popularity in recent years. Sircus [24] believes that the absorption of magnesium through the skin is close to 100%. It is believed that when magnesium salt solutions are applied directly to the skin, possible gastrointestinal complications are avoided. The most common side effects of magnesium include gastrointestinal disorders (nausea, vomiting, diarrhoea), which are particularly severe in patients with gastrointestinal diseases, as well as sleep disorders, skin flushing, drops in blood pressure, bradycardia and muscle weakness [25]. Patients with gastrointestinal disorders are a group...
krwi, bradykardię czy osłabienie mięśni [25]. Pacjenci ze schorzeniami układu pokarmowego stanowią grupę, której preparaty transdermale wydają się szczególnie dedykowane. Jest to bardzo ważne, ponieważ choroby te są szeroko rozpoznawane w populacji. Najczęściej wymieniane są choroby zapalne jelita, takie jak choroba Leśniowskiego i Crohna (Crohn’s disease – CD) oraz wrzodujące zapalenie jelita grubego (ulcerative colitis – UC). W Europie, na podstawie danych z 2015 r., jedna na 198 osób cierpi na UC oraz jedna na 310 osób choruje na CD [26]. Spośród krajów Europy najwięcej zachorowań odnotowuje się w Skandynawii oraz Wielkiej Brytanii; szacunkowo 2,5–3 milionów Europejczyków cierpi na choroby zapalne jelita [27]. W obszarze nauk medycznych wydaje się trwać sporze między zwolennikami terapii transdermale a popierającymi klasyczną dożynną suplementację. Opierając się na pisemniectwie naukowym z ostatnich lat, autorzy postawili sobie za cel ocenę faktycznego stanu rzeczy w kwestii alternatywnej formy stosowania preparatów magnezu.

Będąc niewielką cząsteczką jonową, magnez ma możliwość przenikania warstwy rogowej skóry, gdzie transbłonowe białka komórek skóry właściwej wspomagają wewnątrzkomórkowy transport Mg2+ do naczyń wewnętrznych. Obecne badania pokazują, że jony magnezu potrafią szybko przenikać przez skórę i osiągają istotne stężenie już w 15 minut od aplikacji [28]. Do transdermalnego stosowania przeznaczony jest wodny roztwór chlorku magnezu (MgCl2), w którym magnez występuje w postaci jonizowanej (Mg2+). Uwodniony jon magnezu nie może przenikać błon biologicznych na drodze dyfuzji ze względu na zbyt dużą promieniem atomowym [9]. Dodatkowo warstwa rogowa martwych komórek naskórka uniemożliwia funkcjonowanie układów transportowych na całej powierzchni skóry. Badania pokazały, że przeszkórnym transport magnezu odbywa się za pomocą aktywnych białek w obszarach gruczołów potowych i mieszków włosowych. Ograniczenie przenikania jonów magnezu jedynie do tych niewielkich obszarów znacząco zmniejsza ilość przyjmowanych jonów [29]. Dyskusyjne pozostaje, czy ilość magnezu wchłaniana transdermalnie jest znacząco większa niż w przypadku dożynnej suplementacji i wchłaniana przez enterocyty przewodu pokarmowego. Istnieją doniesienia, że magnez usprawnia również pracę mięśni i przyspiesza ich regenerację ze względu na zintensyfikowaną koncentrację Mg2+ w tkance mięśniowej [30]. Dla porównania, powszechnie stosowane lecznicze kąpiele w soli Epsom (MgSO4) są znacznie mniej skuteczne ze względu na to, że MgSO4 nie może być transportowane przez wszystkie dostępne dla MgCl2 transportery błonowe, jak również charakteryzuje się większą toksycznością tkankową [31,32].

Skuteczność transdermalnej suplementacji magnezu

Nie ma wielu badań traktujących o transdermalnej suplementacji magnezu. Główny problem związany ze sprawdzaniem skuteczności przeszkórnej podaży magnezowoi do komożem jest istnienie alternatyw. W kwestii alternatywnej formy stosowania preparatów magnezu, może być transportowany przez wszystkie dostępne dla MgCl2 transportery błonowe jako również charakteryzuje się większą toksycznością tkankową.

The effectiveness of transdermal magnesium supplementation

There are very few studies discussing transdermal magnesium supplementation. The main problem in verifying the effectiveness of transdermal magnesium...
W celu pomiaru stężenia Mg2⁺ lepszym markerem do oceny bieżąco przyjmowanego w diecie, podczas gdy 24-godzinna zbiórka moczu jest wyciągane, istnieje niewiele prac badawczych wykorzystujących je do oceny transdermalnej suplementacji.

W 2000 r. ukazała się jedna z pierwszych prac na temat korzystnego wpływu transdermalnej suplementacji magnezem. Dr Shealy, neurochirurg, dowiódł w niej, że poprzez przeszkożną suplementację niedobory magnezu mogą zostać wyrównane już w ciągu 4–6 tygodni, podczas gdy w suplementacji doustnej trwałoby to 4–12 miesięcy [29]. Wczesne badania, jeszcze z ubiegłego wieku, na temat magnezu wykazały, że wzrost stężenia jonów Mg2⁺ przed wysiłkiem wspomaga rozszerzanie naczyń krwionośnych i skutkuje zwiększeniem przepływu krwi przez mięśnie [34]. To korzystne oddziaływanie magnezu na mięśnie zostało wykorzystane do prowadzenia dalszych badań z uwzględnieniem transdermalnej podaży Mg2⁺. W podwójnie ślepym trialze sprawdzano, czy w wyniku zastosowania MagPro™ (kremu zawierającego Mg2⁺) wzrosną rozciągłość i wytrzymałość mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągłość badano stosując MagPro™ na mięsień dwugłowy łydki, następnie wykonując zgięcie mięśni. Rozciągność między stosowanym preparatem a placebo [35]. Po dokładniejszej analizie wpływu magnezu na mięśnie uznano, że badanie rozciągłości i wytrzymałości mięśni nie miało jednoznacznych podstaw do obserwacji skuteczności działania magnezu [13]. Dlatego przygotowując kolejne doświadczenie, skupiono się na wpływie transdermalnej aplikacji chlorku magnezu na siłę mięśni oraz niwelowanie bólów po wysiłku. W badaniu kierowano się hipotezą, że transdermalnie dostarczany magnez zmniejszy zniszczenie tkanki mięśniowej oraz przyspieszy jej regenerację, najprawdopodobniej po przez zwiększony metabolizm komórkowy oraz wzrost lokalnego przepływu krwi. Dodatkowo taka suplementacja powinna skutkować wzrostem siły mięśni. AUTO-supply stems from the difficulty of monitoring changes in the concentration of this element. Serum magnesium concentrations do not correspond to tissue concentrations. Less than 1% of Mg2⁺ ions are present in the blood, while the rest are distributed throughout the body’s cells. The use of 24-hour urine collection to evaluate the concentration of magnesium was considered. It appears that urinary Mg2⁺ levels are quite volatile and there is no certainty that they can be considered a reliable result. In general, the serum provides a long-term reflection of dietary magnesium levels, whereas 24-hour urine collection is a better marker for assessing current magnesium intake [33]. The literature also mentions the possibility of using a magnesium loading test and an elemental hair analysis to measure the Mg2⁺ concentration in the body. Because such methods of determining magnesium are regarded as more complicated, there are few research papers using them to evaluate transdermal supplementation. In 2000, one of the first papers on the beneficial effects of transdermal magnesium supplementation was published. In it, neurosurgeon Dr Shealy claimed that magnesium deficiencies could, through transdermal supplementation, be corrected in as little as 4–6 weeks, whereas with oral supplementation it would take 4 to 12 months [29]. Early studies on magnesium, dating back to the last century, showed that an increase in the concentration of Mg2⁺ ions prior to exercise promotes vasodilation and results in increased muscle blood flow [34]. This beneficial effect of magnesium on muscles has been used to conduct further studies including the transdermal supply of Mg2⁺. In a double-blind study, it was tested whether the application of MagPro™ (a cream containing Mg2⁺) would result in an increase in muscle flexibility and endurance. Flexibility was investigated by applying MagPro™ to the biceps muscle of the calf and then performing dorsiflexion of the foot. Endurance, on the other hand, was tested by applying the cream to the quadriceps muscle of the thigh, followed by an endurance test on a stationary bike. The study showed no correlation between MagPro™ application and an increase in muscle flexibility or strength. No difference was observed between the used preparation and the placebo [35]. After further analysis of the effects of magnesium on muscles, it was concluded that the muscle flexibility and endurance tests had no clear basis to observe the efficacy of effect of magnesium [13]. Therefore, the preparation of the next trial focused on the effects of the transdermal application of magnesium chloride on muscle strength and post-exercise pain relief. The study was directed by the hypothesis that transdermally supplied magnesium would reduce muscle tissue damage and accelerate its regeneration, most likely based on increased cellular metabolism as well as increased local blood flow. Additionally, such supplementation should result in an increase in muscle strength. The authors of the study support their
rzeź swoją hipotezę popierając badaniami, w których stosowano suplementację doustną i osiągnięto korzystne wyniki [36,37]. W podwójnie słêpej próbie wzięło udział 4 ogólnie zdrowych mężczyzn, którzy wykonywali 6 zestawów ćwiczeń kończyn dolnych po 12 powtórzeń z użyciem dynamometru izokinetycznego. Uczestnicy mieli kilka minut na rozgrzewkę i przystępowali do serii ćwiczeń, po których ponownie sprawdzano siłę mięśni. Po 5 minutach odpoczynku aplikowano balsam bądź oliwkę magnezową na mięśnie czworogłowe ud oraz przekazywano uczestnikom zapas suplementu lub placebo wraz z instrukcją jego stosowania (3 razy dziennie). Zalecono zgłosić się na kolejne testy sprawdzające siłę oraz ból mięśni po upływie 24, 48 i 96 godzin. Po zakończeniu serii badań uczestnikom polecono zwrócić niewykorzystane preparaty w celu obliczenia przybliżonej ilości przyjętego magnezu. Następnie, po 2-tygodniowej przerwie, podczas której uczestnicy stosowali się do swoich zwyczajowych planów treningowych, całe badanie zostało powtórzono dla drugiej kończyny dolnej. Ponieważ badanie przeprowadzono metodą podwójnie słêpej próby, a analiza wciąż nie jest zakończona, nie jest możliwa pełna prezentacja wyników. Poprzednio danie zostało powtórzone dla drugiej kończyny dolnej.

Ponieważ badanie przeprowadzono metodą podwójnie słêpej próby, a analiza wciąż nie jest zakończona, nie jest możliwa pełna prezentacja wyników. Początkowe dane wskazują brak statystycznie istotnego wpływu transdermalnej suplementacji na siłę mięśni oraz redukcję bólu po wysiłku, jednak zauważalna jest nieznaczna różnica między stosowanymi preparatami (z magnezem oraz placebo). Co ciekawe, suplementacja magnezem wpływa tylko na jeden z badanych czynników (albo na siłę, albo na ból po wysiłku; jak na razie nie ma możliwości sprawdzenia na który, ze względu na podwójnie słêpą próbe oraz brak kompletnej analizy). Odzialywanie na siłę mięśni było największe po upływie 96 godzin od przeprowadzenia testu. Ponieważ było to pierwsze takie badanie, konieczne jest dopracowanie metodologii, dokładniejsze określenie zalecanej dawki magnezu, jak również poszerzenie grona badanych osób w celu uzyskania bardziej mierodajnych wyników w przyszłych doświadczeniach [13].

Wyniki hamowania kanałów węglowych przez magnez pochodzący z suplementacji transdermalnej MgCl2 możliwe jest zabezpieczenie komórek przed przeładowaniem wapniem oraz ograniczenie niszczenia struktur miofibryli. Dodatkowo przeszczornia aplikacja magnezu może mieć zastosowanie w ograniczaniu uszkodzeń miofibryli przy ostrzych stanach niszczenia mięśni, ponieważ wysokie stężenie magnezu optymalizuje gospodarkę wapniową oraz dostarcza więcej tlenu do tkanki [30]. Na podstawie tych danych przeprowadzono badanie, w którym 40 pacjentom cierpiącym na fibromialgię zalecono stosowanie wodnego roztworu MgCl2: w butelce z atomizerem na kończyny dolne i górne, 4 dawki na kończynę przez 4 tygodnie. Na po-
czątku badania oraz po upływie 2 i 4 tygodni uczestnictwa poproszono o wypełnienie kwestionariusza dotyczącącego fibromialgii oraz jakości życia. Ankieta wykazała zmniejszenie przewlekłego bólu zarówno po 2, jak i po 4 tygodniach transdermalej suplementacji magnezem [38]. W badaniu nie uwzględniono jednak grupy kontrolnej przyjmującej placebo, brak również informacji na temat stężenia stosowanego preparatu czy przewidywanej ilości dostarczanego magnezu.

W 2017 r. przeprowadzono pilotażowe badanie oceniające stężenie magnezu w surowicy oraz 24-godzinnej zbiorce moczu po 14-dniowej transdermalej suplementacji. Do badania z zastosowaniem pojedynczej ślepnej próby zakwalifikowano 25 osób (wiek 34,3 ± 14,8 roku, wzrost 171,5 ± 11 cm, waga 75,9 ± 14 kg). Ponieważ jedna z osób nie ukończyła badania, końcowe analizy poddano 24 osoby. Uczestników losowo przydzielono do grupy stosującej krem z magnezem w dawce 56 mg/dzień (n = 14) lub placebo (n = 10). Zadanie uczestników nie było stosować dodatkowej suplementacji magnezem miesiąc przed badaniem oraz po zakończeniu suplementacji, czyli po upływie 2 tygodni. Dodatkowo monitorowano dietę uczestników 4 dni przed pobraniem próbek krwi oraz moczu do badania w celu obliczenia przybliżonej ilości magnezu dostarczanego z pożywieniem. Było to pierwsze i jak do tej pory jedynie badanie sprawdzające faktyczne przekształcone dostarczanie magnezu do ustroju oraz jego wpływ na surowicę i moczu. Grupę podzielono na „sportowców” (n = 4), wciągających sport minimum 2 godziny dziennie przez 5 dni w tygodniu, oraz „nie-sportowców” (n = 20), z trenierniem krótszym niż 2 godziny dziennie przez mniej niż 3 dni w tygodniu. Podział taki był konieczny ze względu na odmienne wykorzystanie magnezu u osób intensywnie trenujących. Uczestnikom zalecono stosowanie 2 x 5 ml kremu dziennie na okolicę klтки piersiowej, brzucha oraz kończyn dolnych. Mimo iż zmiana poziomu magnezu dziennie na okolice klatki piersiowej, brzucha(169,563),(857,579)

In 2017, a pilot study was published evaluating serum and 24 h urine magnesium concentrations after 14 days of transdermal supplementation. 25 participants (age 34.3 ± 14.8 y, height 171.5 ± 11 cm, weight 75.9 ± 14 kg) were qualified for the single-blind study. Because one of the participants did not complete the study, 24 subjects were included in the final analysis. The participants were randomly assigned to a group using 56 mg/day magnesium cream (n = 14) or a placebo (n = 10). None of the participants were allowed to take additional magnesium supplementation one month before and during the study. The serum and 24-hour urine collection were assessed at the beginning of the study and at the end of supplementation, i.e. after two weeks. In addition, the participants’ diets were monitored 4 days prior to blood and urine collection for the study in order to calculate the approximate amount of magnesium supplied from food. This was the first and to date the only study to examine the actual transdermal supply of magnesium to the body and its effect on serum and urine. The group was divided into "athletes" (n = 4), exercising a minimum of 2 h per day 5 days per week and "non-athletes" (n = 20), training less than 2 h per day for less than 3 days per week. Such a division was necessary due to the different utilisation of magnesium in people who exercise intensively. The participants were advised to apply 2 x 5 ml of the cream daily to the chest, abdomen and leg areas. The study showed that in the Mg2+ group, although the change in magnesium levels in both serum (from 0.82 to 0.89 mmol/l) and urine (from 4.07 to 4.44 mmol/24 h) was statistically insignificant (for serum p = 0.29; for urine p = 0.48), in clinical assessment such values may be important, especially in those with cardiovascular conditions. The percentage increase for serum by +8.54% and for urine by +9.1% in the magnesium group was higher compared to the placebo group (serum +2.6%, urine -32%). When the "athletes" were excluded from the analysis, the results also favoured the Mg2+ group (increase in serum by +22.7%, for placebo +4.11%; in urine by +11.7%, for placebo -32.5%). As promising trends have been shown in the above-described study, further research into transdermal magnesium therapy seems to be necessary [39]. In addition, it seems appropriate to use an aqueous solution of MgCl2, which penetrates the skin better, instead of a cream containing hydrophobic compounds limiting the penetration of Mg2+ ions.
PODSUMOWANIE

Istnieje wiele badań dowodzących skuteczności do-
ustnej suplementacji magnezem, jednak liczba do-
świadczeń dotyczących transdermalnej aplikacji jest
ograniczona. Brakuje zrandomizowanych badań, które
pokazywałyby faktyczne skutki długoterminowego
stosowania preparatów transdermalnych. Dodatkowo
żadne z przeprowadzonych doświadczeń nie wykazało
jednoznacznie skuteczności takiej terapii. Konieczne są
dalsze badania z wykorzystaniem przeszkołnej aplica-
cji magnezem w celu określenia, czy taka terapia rze-
czywiście ma sens oraz czy może być polegana przez
lekary i farmaceutów.

REFERENCES

1. Benson H.A.E. Skin Structure, Function, and Permeation. In: Benson
H.A.E.,Watkinson A.C., [ed.]. Topical and Transdermal Drug Delivery:
Principles and Practice. John Wiley & Sons. Hoboken 2011, p. 3–22.
2. Hostynnek J.J. Factors determining percutaneous metal absorption. Food
Chem Toxicol. 2003; 41(3): 327–345, doi: 10.1016/s0278-6915(02)0257-0.
3. Analgetyki (leki przeciwśródowe). W: Mutchler E., Greissinger G., Krozmer
H.K., Menzel S., Ruth P. Mutchler farmakologia i toksykologia: podręcznik.
Wyd. IV. MedPharm Polska, Wroclaw 2016, s. 190–233.
4. Stanowisko Zespołu Ekspertów Polskiego Towarzystwa Ginekologicznego
na temat przezskórnej antykoncepcji hormonalnej. Ginekol. Pol. 2010; 81(1):
69–73.
5. Newhouse I.J., Finstad E.W. The effects of magnesium supplementation
on exercise performance. Clin. J. Sport Med. 2000; 10(5): 195–200, doi:
10.1097/00042752-200007000-00008.
6. Laires M.J., Monteiro C. Exercise, magnesium and immune function.
Magnes Res. 2008; 21(2): 92–96.
7. Laurent P., Tousy R.M. Physiological and pathophysiological role of
magnesium in the cardiovascular system: implications in hypertension. J.
Hypertens. 2000; 18(9): 1177–1191, doi: 10.1097/00004872-200018090-
00003.
8. Kass L., Weikes J., Carpenter L. Effect of magnesium supplementation on
blood pressure: a meta-analysis. Eur. J. Clin. Nutr. 2012; 66(4): 411–418, doi:
10.1038/ejn.2012.4.
9. Jahnen-Dechent W., Ketteler M. Magnesium basics. Clin. Kidney J. 2012;
5(Suppl 1): i3–i14, doi: 10.1093/ndtplus/sir163.
10. Magnesium. In: Dietary Reference Intakes for Calcium, Phosphorus,
Magnesium, Vitamin D, and Fluoride. National Academies Press (US).
Washington (DC) 1997, [online] https://www.ncbi.nlm.nih.gov/books/
NBK109816 [Available: 18.02.2021].
11. Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. Tabele składu i war-
ocieći odżywczej żywności. Wydawnictwo Lekarskie PZWL. Warszawa 2005,
s. 73–75.
12. Siener R., Jahnen A., Hesse A. Bioavailability of magnesium from different
pharmaceutical formulations. Urol. Res. 2011; 39(2): 123–127, doi:
10.1007/s00240-010-0309-y.
13. Moore M. Effects of transdermal magnesium chloride on muscle damage
and force production after eccentric exercise. Honors Thesis. University of
North Carolina, Department of Exercise and Sport Science. Chapel Hill 2017,
doi: 10.17615/mpdj-yk05.
14. Elin R.J. Identifying magnesium deficiency: A diagnostic dilemma. In:
Cotruvo J., Bartram J. [ed.]. Calcium and Magnesium in Drinking-water: Public
health significance. World Health Organization. Geneva 2009, p. 59–61.
15. Atkinson S.A., Costello R., Donohue J.M. Overview of global dietary
calcium and magnesium intakes and allowances. In: Cotruvo J., Bartram J.
[ed.]. Calcium and Magnesium in Drinking-water: Public health significance.
World Health Organization. Geneva 2009, p. 17–36.
16. Ahmed F., Mohammed A. Magnesium: The Forgotten Electrolyte —
A Review on Hypomagnesemia. Med. Sci. 2019; 7(4): 56, doi: 10.3390/
medsc7040056.
17. Hashizume N., Mori M. An analysis of hypermagnesemia and
hypomagnesemia. Jpn. J. Med. 1990; 29(4): 368–372, doi: 10.2169/
internalmedicine1692.32.368.
18. Wong E.T., Rude R.K., Singer F.R. Shaw S.T. Jr. A high prevalence of
hypermagnesemia and hypomagnesemia in hospitalized patients. Am. J. Clin.
Pathol. 1983; 79(3): 348–352, doi: 10.1093/ajcp/79.3.348.
19. Van Laecke S. Hypomagnesemia and hypermagnesemia. Acta Clin. Bel.
2019; 79(4): 41–47, doi: 10.1874/actaclinbel.20151673.
20. Karmatokia A., Staczyk A., Karwowski B. Magnez aktualny stan wiedzy.
Biom. Chem. Toksykol. 2015; 4: 677–689.
21. Iskra M., Kraśnińska B., Tykarski A. Magnez — rola fizjologiczna, znaczenie
kliniczne niedoboru w nadciśnieniu tętniczym i jego powikłaniach oraz
możliwości uzupełniania w organizmie człowieka. Nadciśn. Tętn. 2013;
17(6): 447–459.
22. Elin R.J. Assessment of magnesium status for diagnosis and therapy.
Magnes Res. 2013; 26(4): S194–198, doi: 10.1684/mrh.2010.0213.
23. Fawcett W.J., Haxby E.J., Male D.A. Magnesium: physiology and
pharmacology. Br. J. Anaesth. 1999; 83(2): 302–320, doi: 10.1093/bja/83.2.302.
24. Magnesium Medicine Basics. In: Sircus M. Transdermal Magnesium
Therapy: A New Modality for the Maintenance of Health. 2nd ed. iUniverse.
Bloomington 2011, p. 20–24.
25. Magnes (cytrynian magnezu) (opis profesjonalny). Medycyna Praktyczna
(mp.pl) [online] https://www.mp.pl/pacjent/leki/subst.html?id=1747 [Dostęp:
18.02.2021].
26. Wehkamp J., Götz M., Herrlinger K., Steurer W., Stange E.F. Chronisch
trächtliche Darmerkrankungen: Morbus Crohn und Colitis ulcerosa. Dtsch
Arztebl. Int. 2016; 113(5): 72–82, doi: 10.3238/arztebl.2016.0072.
27. Burisch J., Jess T., Marinozo M., Lakatos P.L. The burden of inflammatory
bowel disease in Europe. J. Crohns Colitis 2013; 7(4): 322–337, doi: 10.1016/j.
crohns.2013.01.010.
CONCLUSIONS

There are many studies on the efficacy of oral
magnesium supplementation; however, the number of
studies conducted with transdermal application is
limited. There are no randomised trials that would show
the actual effects of the long-term use of transdermal
preparations. In addition, none of the performed trials
unequivocally demonstrated the effectiveness of such
therapy. Further research using transdermal magnesium
application is needed to determine whether such therapy
actually makes sense and can be recommended for use
by doctors and pharmacists.
28. Chandrasekaran N.C., Weir C., Alfraji S., Grice J., Roberts M.S., Barnard R.T. Effects of magnesium deficiency – more than skin deep. Exp. Biol. Med. 2014; 239(10): 1280–1291, doi: 10.1177/1535370214537745.
29. Gröber U., Werner T., Vormann J., Kisters K. Myth or reality – transdermal magnesium? Nutrients 2017; 9(8): 813, doi: 10.3390/nu9080813.
30. Magnesium Deficiency & Sudden Death by Cardiac Arrest. In: Sircus M. Transdermal Magnesium Therapy: A New Modality for the Maintenance of Health. 2nd ed. iUniverse. Bloomington 2011, p. 29–33.
31. Bara M., Guiet-Bara A., Durlach J. Comparative effects of MgCl₂ and MgSO₄ on the ionic transfer components through the isolated human amniotic membrane. Magnes. Res. 1994; 7(1): 11–16.
32. Durlach J., Guiet-Bara A., Pagès N., Bae P., Bara M. Magnesium chloride or magnesium sulfate: a genuine question. Magnes. Res. 2005; 18(3): 187–192.
33. Djurhuus M.S., Gram J., Petersen P.H., Klitgaard N.A., Bollerslev J., Beck-Nielsen H. Biological variation of serum and urinary magnesium in apparently healthy males. Scand. J. Clin. Lab. Invest. 1995; 55(6): 549–558, doi: 10.1080/003655195090753394.
34. Haddy F.J., Scott J.B. Metabolic factors in peripheral circulatory regulation. Fed. Proc. 1975; 34(11): 2006–2011.
35. Gulick D.T., Agarwal M., Josephs J., Reinmiller A., Zimmerman B. Effects of MagPro™ on muscle performance. J. Strength Cond. Res. 2012; 26(9): 2478–2483, doi: 10.1519/JSC.0b013e318232f863.
36. Brilla L.R., Haley T.F. Effect of magnesium supplementation on strength training in humans. J. Am. Coll. Nutr. 1992; 11(3): 326–329, doi: 10.1080/07315724.1992.10718233.
37. Santos D.A., Matias C.N., Monteiro C.P., Silva A.M., Rocha P.M., Minderico C.S. et al. Magnesium intake is associated with strength performance in elite basketball, handball and volleyball players. Magnes. Res. 2011; 24(4): 215–219, doi: 10.1684/mrh.2011.0290.
38. Engen D.J., McAllister S.J., Whipple M.O., Cha S.S., Dion L.J., Vincent A. et al. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study. J. Integr. Med. 2015; 13(5): 306–313, doi: 10.1016/S2215-4966(15)60195-9.
39. Kass L., Rosanoff A., Tanner A., Sullivan K., McAuley W., Plesset M. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study. PLoS One 2017; 12(4): e0174817, doi: 10.1371/journal. pone.0174817.