D-shaped plasmonic sensor using a molybdenum disulfide doped photonic crystal fiber

S Nivedha¹, P Ramesh Babu² and K Senthilnathan²
¹School of Electronics Engineering, VIT University, Vellore 632014, Tamil Nadu, India
²School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India

E-mail: senthee@gmail.com

Abstract. We investigate a D-shaped photonic crystal fiber sensor with Molybdenum disulfide (MoS₂) as a bio-recognition layer. The proposed sensor works based on the principle of surface plasmon resonance. Here, a thin layer of gold is deposited on the side polished flat surface of the PCF over which monolayer MoS₂ is deposited in order to enhance the sensitivity of the sensor. The proposed sensor exhibits the sensitivity of 2000 nm/RIU.

1. Introduction
Over the past years, surface plasmon resonance (SPR) technique is used for sensing purpose in chemical and biological fields [1-2]. SPR is a phenomenon that involves coherent oscillation of electrons at the metal-dielectric interface. The resonance occurs when the core guided mode couples with the plasmon mode. The first SPR biosensor was demonstrated by Liedberg et al [1]. SPR sensor based on microstructure fibers has high sensitivity and has extensive applications in food safety, medicine testing and environment monitoring [3-4].

Many researchers have investigated the photonic crystal fiber (PCF) based SPR sensors. Photonic crystal fibers with a regular hexagonal array of air holes running along the fiber length have opened a new way towards the closed-form optical fiber plasmonic sensing [5]. Many new characteristics can be obtained by filling the air holes with materials like metal, liquid crystal or semiconductor [6]. Here, D-shaped fiber is a side polished fiber wherein a section of cladding is removed to get access to evanescent field and a thin layer of MoS₂ is doped to enhance the sensitivity [7, 8].

2. Geometrical structure and modelling of the D-shaped fiber
The geometrical structure of the D-shaped fiber doped with MoS₂ is shown in Figure.1. Here the pitch, Λ, is kept at 2 μm and the diameter of the air holes in the first ring (d1) and the second ring (d2) are 1.2 μm and 1.6 μm, respectively. The Sellmeier equation is used to compute the material
dispersion of silica that forms the background material. The refractive index of analyte, n_a, is varied from 1.33 to 1.36. The refractive index of gold is calculated using Drude model [9]. The thickness of MoS$_2$ layers = $N \times 0.65$ nm, where N is the number of MoS$_2$ layers [10]. Here the thickness of MoS$_2$ is 1.3 nm and the thickness of the gold layer is fixed as 40 nm. The complex effective mode index of the fiber is solved by finite element method (FEM) using COMSOL Multiphysics software. The real part of the effective refractive index reflects the propagation constant while the imaginary part is proportional to the confinement loss.

3. Results and discussions
The mode field distribution of the D-shaped fiber is shown in Figure 2 at 750 nm wavelength. The effective refractive index of the fundamental mode and surface plasmon mode are calculated. Next we calculate the confinement loss using the following expression

$$\text{Confinement loss } L = 8.686 \times k_0 \times \text{Im}(n_{eff}),$$

where Im(n_{eff}) represents the imaginary part of fundamental mode.

Figure 3 shows the loss spectra of fundamental mode when the refractive index of analyte is varied from 1.33 to 1.36. From Figure 3, we observe that the loss peak is shifted towards longer wavelength as the refractive index of analyte is increased. Further, the peak loss increases with the refractive index of analyte.
Figure 3. Loss spectra of the fundamental mode when n_a is varied from 1.33 to 1.36

Figure 4. Loss spectra of the fundamental mode when n_a is varied from 1.35 to 1.36
Having computed the loss spectra for various values of the analytes, the next step is to investigate the sensitivity of the proposed sensor. Figure 4 shows the variation of confinement loss against wavelength to find the sensitivity. The sensitivity is calculated using the relation

\[S(\lambda) \text{ (nm/RIU)} = \frac{\Delta \lambda_{\text{peak}}}{\Delta n} \]

(2)

where \(\Delta \lambda_{\text{peak}} \) is the difference of plasmonic peak and \(\Delta n \) is the difference of refractive index of analyte. Here a sensitivity of 2000 nm/RIU is obtained for refractive index range 1.35 to 1.36.

4. Conclusion

In this paper a D-shaped side polished fiber is designed and a thin layer of MoS\(_2\) is doped. The effective mode field area of the fiber is calculated. A sensitivity of 2000 nm/RIU is obtained when the refractive index of the analyte is varied from 1.33 to 1.36.

References

[1] Liedberg B, Nylander C and Lundstrom I 1983 Surface plasmon resonance for gas detection and biosensing Sensor and Actuator 4 299-304

[2] Villuendas F and Pelayo J 1990 Optical fibre device for chemical sensing based on surface plasmon excitation Sensor and Actuat A: Phys 23 1142-1145

[3] Dhawan A, Gerhold M D and Muth J F 2008 Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications IEEE Sens. J 8 942–950

[4] Zuccon S et al 2014 Plasmonic response of different metals for specific applications Proc. SPIE p 1–6

[5] Yu X et al 2010 Selectively coated photonic crystal fiber based surface plasmon resonance sensors J. Opt. 12 015005

[6] Schmidt M et al 2008 Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires Phys. Rev. B 77 033417.

[7] Mingtian et al 2012 All solid D shaped photonic fiber sensors based on surface plasmon resonance Opt. Comm 285 1550-1554

[8] Mishra A K et al 2016 Graphene and beyond graphene MoS2: A new window and surface plasmon resonance based fiber optic sensing J.Phy.Chem 120 2893-2900

[9] Gupta B D and Sharma A K 2005 Sensitivity evaluation of a multi-layered surface plasmon resonance based fiber optic sensor: a theoretical study Sens. Actuators B-Chem 10 7 40–46

[10] Radisavljevic B et al 2011 Single-layer MoS\(_2\) transistors Nat. Nanotechnol 6 147–150