Predictors of Health-Care Utilization among Children 6–59 Months of Age in Zambézia Province, Mozambique

Mary Bayham,1 Meridith Blevins,1,2,3 Melanie Lopez,4 Omo Olupona,5 Lazaro González-Calvo,1,2 Elisée Ndatimana,2 Ann F. Green,1,2 and Troy D. Moon,1,2,6*

1Vanderbilt Institute for Global Health, Nashville, Tennessee; 2Friends in Global Health, Maputo, Mozambique; 3Department of Biostatistics, Vanderbilt University, Nashville, Tennessee; 4World Vision United States, Federal Way, Washington; 5World Vision International, Maputo, Mozambique; 6Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee

Abstract. Globally, approximately 5.9 million children under 5 years of age died in 2015, a reduction of over 50% since 1990. Millennium Development Goal 4 established the goal of reducing child mortality by two-thirds by 2015. Multiple countries have surpassed this goal; however, regional and within-country inequities exist. We sought to study determinants of health-care utilization among children 6–59 months of age with fever, diarrhea, and respiratory symptoms in Zambézia Province, Mozambique. We conducted a population-based cross-sectional survey of female heads of household between April and May 2014. Mobile teams conducted interviews in 282 enumeration areas, with three distinct districts being oversampled for improved precision. Descriptive statistics and logistic regression using Stata 13.1 and R 3.2.2 were used to examine factors associated with health-care utilization. A total of 2,317 children were evaluated in this study. Mothers’ median age was 26 years, whereas child median age was 24 months. The proportion of children reporting fever, diarrhea, or respiratory illness in the prior 30 days was 44%, 22%, and 22%, respectively. Health-care utilization varied with 65% seeking health care for fever, compared with 57% for diarrhea and 25% for respiratory illness. In multivariable logistic regression, the characteristics most associated with health-care utilization across illnesses were delivery of last child at a facility, higher maternal education, and household ownership of a radio. The decision or ability to use health care is a multifaceted behavior swayed by societal norms, values, socioeconomics, and perceived need. Recognizing the predictors of a particular population may offer useful information to increase uptake in health-care services.

BACKGROUND

Globally, an estimated 5.9 million children under 5 years of age died in 2015, a reduction of over 50% since 1990.1,2 The Millennium Development Goals (MDGs), committed to by world leaders at the United Nations Summit in 2000, have produced the most successful health and development movement in history.3 MDG 4 established the goal of reducing child mortality rates by two-thirds between 1990 and 2015, and as of December 2015, several countries in Africa appear to have surpassed this goal. Despite these achievements, Africa still has the highest proportion of under-five mortality and accounts for almost half of all child deaths in the world.1,4 Additionally, within countries, regions have fallen short, indicating that continued effort is essential in this area.4

In 2015, Mozambique ranked 180 of 188 countries on the United Nations Development Program Human Development Index,5 having the 23rd highest national under-five mortality rate at 79 per 1,000 live births.1,6 This rate has been falling over time with a 2005 national under-five mortality estimated at 138 per 1,000 live births compared with 219 per 1,000 live births in 1997.6,7 Although Mozambique appears to have surpassed its 2015 national under-five mortality target for MDG 4, substantial regional differences persist.10 Economic activity, infrastructure, and basic services are highly concentrated around the capital Maputo, which is located in the southernmost part of the country. In 2011, Maputo Province had the lowest under-five mortality (96 per 1,000 live births) compared with Zambézia Province (142 per 1,000 live births), which is among the highest risk provinces in Mozambique for under-five mortality (Figure 1).11,12 Additionally, Zambézia Province has among the lowest access to safe drinking water and sanitation among children (26% and 73%, respectively), as well as some of the lowest performance indicators for health outcomes in Mozambique.11 As a result, Zambézia has been labeled a priority province for development efforts.13

The majority of childhood deaths in Mozambique are caused by infectious, preventable, and treatable conditions including malaria, acute respiratory infections, diarrhea, and acquired immunodeficiency syndrome.1,2,11,14 Together, these conditions account for approximately 50% of all under-five mortality in Mozambique.11 The preventable, treatable nature of the leading causes of child mortality indicates that increased utilization of health-care facilities could reduce the burden of child mortality attributed to these illnesses. Since its independence in 1975, the Government of Mozambique has attempted to increase access to health services by expanding primary care services and removing fees for children under 5 years of age.11,14 The dominant assumption in public health is that availing these services to individuals will result in increased utilization.15,16 However, uptake of health services for children under 5 years of age is more complex.

The determinants of health-care utilization range from socioeconomic to system-level factors including religious and cultural beliefs, age, education, sex, household income, travel time, and others.15–19 Understanding behaviors of health-care utilization for fever, diarrhea, and respiratory illness in Mozambique are even more important because these symptoms are often considered trivial to the caretaker, or not requiring immediate attention, despite their high association with under-five morbidity and mortality. These have been studied in various locations worldwide,10,11,13,14,18,20–23 but few
As we move past the MDGs and begin preparing to meet the new Sustainable Development Goals of ending under-five mortality by 2030, a more in-depth understanding of the social, biologic, and epidemiologic factors contributing to continued under-five mortality, will be required. Although the MDGs brought incredible advances globally, there is growing recognition that inequities persist and that the existing focus on national averages may actually have exacerbated regional and within-country inequalities, particularly for child health. Addressing these inequalities with a focus that targets interventions at a more regional and local level may help us reduce the disparities in childhood mortality that remain in low- and middle-income countries today. To this end, we sought to study the determinants of health-care utilization among children 6–59 months of age with fever, diarrhea, and respiratory symptoms in Zambézia Province, so as to inform future planning, policy, and interventions in reducing under-five morbidity and mortality in Mozambique.

METHODS

We used cross-sectional data from a household survey that was conducted as part of the Ogumaniha project (meaning “united for a common purpose” in the local Echuabo language), funded under the U.S. Agency for International Development (USAID) Strengthening Communities through Integrated Programming award. Ogumaniha’s goal was to reduce poverty and improve the health of people living in Zambézia Province through cohesive community-based programming. A strong monitoring system and project evaluation based on performance indicators were agreed upon with USAID and the provincial government and were central to Ogumaniha’s design. This study is an extension of the monitoring and evaluation component of the Ogumaniha project and analyzes cross-sectional survey data collected at the project’s conclusion (April and May 2014). The survey tool, developed by an interdisciplinary team of researchers, is a 500-item questionnaire covering eight dimensions and includes many questions borrowed from previous national surveys in Mozambique such as the Demographic Health Survey and Multiple Indicator Cluster Survey. The survey was designed to gather information from the female head of household on topics such as household demographics; economic status; health knowledge, attitudes, and practices; access to health services and products; access to improved water and sanitation; nutritional intake; and others. The female head of household was selected because, in Zambézia Province, she is thought to be the person most familiar with the health and caretaking of all household members (e.g., nutrition, water and sanitation, health events, and health-care access). There was a potential for bias in the case of polygamous families because the principal or eldest wife was selected, whereas the younger wives and their children may have been even more disadvantaged. A child health and immunization module collected child-specific information on up to two children 6–59 months of age per household. Mobile survey teams conducted interviews in 262 enumeration areas (EA). EA were selected in two-stage cluster sampling using the national census results as a sampling frame; first, we stratified by urban/rural grouping, and then sampled with probability proportional to size. Three districts (Alto Molócuè, Namacurra, and Morrumbala) were oversampled to improve accuracy for the primary
RESULTS

A total of 2,317 children 6–59 months of age were measured in this study (Table 1). The provincial estimates of male and female children were 50% each. Maternal age was a median 26 years (IQR = 22–33), whereas child age was a median 24 months (IQR = 12–36). Most women (69%) were married or in a common law relationship.Province-wide, women had a median of 3 (IQR = 0–5) years of education, but overall education level was highest in Alto Molócuè at 4 years (IQR = 2–6). Eighty-three percent of female heads of household had a monthly income of less than 1,000 meticais (MZN) (1 USD = ~31 MZN in April 2014). Seventy-eight percent of all respondents resided in rural areas, with rural residence in the three oversampled districts (Alto Molócuè, Morrumbala, and Namacurra) being 88%, 96%, and 100%, respectively.

Province-wide, fever, diarrhea, or respiratory illness in the 30 days prior to survey implementation were 44%, 22%, and 22%, respectively (Table 2). Health-care utilization for these three conditions varied broadly with 65% of children being taken to a health facility for fever, compared with 57% for diarrhea and only 25% for respiratory illness.

When analyzed by our three oversampled districts, regional differences existed. The prevalence of children with fever in the prior 30 days was relatively similar across the three districts (39–48%), with similar proportions (65–67%) reporting visiting a health facility for the fever. However, the prevalence of diarrhea in the prior 30 days was highest in Alto Molócuè (31%), compared with Morrumbala (19%) and Namacurra (11%), though again similar proportions (51–56%) reported seeking care at a health facility. Finally, the prevalence of respiratory illness (cough, fast/shallow breath, or difficulty breathing) in the prior 30 days was again highest in Alto Molócuè (30%) compared with Morrumbala (24%) and Namacurra (13%). Yet in this instance, the proportion of children taken for care at a health facility varied with 40% in Alto Molócuè, 29% in Morrumbala, and only 13% in Namacurra.

In multivariable logistic regression models, the characteristics most associated with health-care utilization across all illnesses (fever, diarrhea, and respiratory illness) were delivery of last child at a health-care facility, higher maternal education, and household ownership of a radio (Table 3). Notably, if the respondent had delivered her last child at a health facility, she had a roughly 2–4 times higher odds of seeking care for her child under question (not necessarily the last child delivered) at a health facility for fever, diarrhea, or respiratory illness (diarrhea: odds ratio [OR] = 1.93; 95% confidence interval [CI] = 1.10, 3.37; P = 0.021; fever: OR = 2.69; 95% CI = 1.64, 4.40; P < 0.001; and respiratory illness: OR = 4.43; 95% CI = 2.91, 9.01; P < 0.001). Higher maternal education (5 years versus 0 years) was associated with a roughly 1.5 times higher odds of seeking care at a health facility for all three illness categories, though the observed association fell short of statistical significance for respiratory illness. Additionally, these data revealed a nonlinear association between maternal education and seeking care for fever, with the greatest increase in odds between 0 and 2 years of education, then increasing again for each year above 6 years (Figure 2). Households with a radio had a roughly 1.5 times higher odds of seeking care at a health facility for all three illness categories (fever: OR = 1.42; 95% CI = 0.98, 2.05; P = 0.060; diarrhea: OR = 1.44; 95% CI = 0.99, 2.10; P = 0.058; and respiratory illness: OR = 1.78; 95% CI = 1.17, 2.72; P = 0.007). As travel time to a health facility increased (per 1 hour), respondents had a 19% lower odds of reported health facility utilization for diarrhea (OR = 0.81; 95% CI = 0.69, 0.94; P = 0.006) compared with an 18% and 36% lower odds for fever and respiratory illness, respectively. Respondents who reported living below the poverty line (< 1,000 MZN) had a 50% lower odds of taking their child to a health facility for diarrhea (OR = 0.50; 95% CI = 0.30–0.85; P = 0.009) compared
with a 14% and 25% lower odds for fever and respiratory illness. There was little evidence of association between child age (12 versus 6 months) and a mother’s decision to seek care at a health facility for either fever or diarrhea. However, mothers had a 71% lower odds of seeking health care for older children with respiratory illness compared with younger children (OR = 0.29; 95% CI = 0.12, 0.71; \(P < 0.001 \)) (Figure 3).

DISCUSSION

Our survey was implemented (April and May 2014) at the end of rainy season (typically December to April) when one would expect a seasonal elevation in childhood illnesses such as malaria, diarrhea, and respiratory illnesses.\(^{36-38}\) Overall, province-wide self-reported prevalence of these three conditions in children 6–59 months of age, in the 30 days before being questioned, was between 20% and 40% each. Caregivers sought care at a health facility in roughly 2/3 of fever cases, 1/2 of diarrhea cases, and only 1/4 of respiratory illnesses. The decision or ability to use health services is a multifaceted behavior swayed by societal norms, values, socioeconomic factors, and perceived need.\(^{14,18,19,39-42}\) Recognizing the predictors of health-care utilization in a particular population may offer useful information to increase their uptake in services.

Table 1

Table 1	Descriptive statistics of children 6–59 months of age, 2014			
	Alto Molócuë (N = 697)	Morrumbala (N = 484)	Namacurra (N = 348)	All province (N = 2,317)
Child age (in months)	24 (12–36)	24 (12–36)	24 (12–36)	24 (12–36)
Mother’s age (years) (18% missing)	27 (22–33)	29 (23–38)	27 (21–32)	26 (22–33)
Sex of child				
Male	49%	42%	49%	50%
Female	51%	58%	51%	50%
Understands Portuguese	62%	18%	43%	47%
Years of education (continuous)	4 (2–6)	1 (0–2)	1 (0–5)	3 (0–5)
Education category (respondent)				
0–5 years	73.5%	92.7%	76.8%	78.0%
6–10 years	25.4%	7.0%	21.4%	18.2%
> 10 years	1.1%	0.3%	1.7%	3.8%
Marital status				
Divorced/separated	2%	0.4%	6%	2%
Married/common law	89%	73%	57%	69%
Single	7%	25%	33%	27%
Widowed	2%	1%	5%	2%
Household size	5 (4–6)	5 (4–6)	4 (4–5)	5 (4–6)
Time to health facility (in minutes) (26% missing)	4 (2–90)	2 (1–4)	3 (3–90)	4 (2–20)
Urban/rural				
Rural	88%	96%	100%	78%
Urban	12%	4%	0%	22%
Decisions about seeking health care for child (N = 32, 1% missing)	15%	16%	9%	13%
Men	18%	12%	26%	30%
Women	68%	72%	66%	55%
Mode of transport to health facility (3% missing)	21%	48%	10%	17%
Bicycle	5%	1%	0%	1%
Car	4%	3%	2%	2%
Motorcycle	71%	48%	88%	80%
Family income (24% missing)	63%	74%	92%	83%
< 1,000 MZN per month	37%	26%	8%	17%
1,000 + MZN per month	51%	52%	22%	35%
Household has radio (N = 18 missing)	62%	18%	42%	47%
Respondent understands Portuguese	49%	39%	48%	43%

Continuous variables are reported as weighted estimates of median (interquartile range), with each observation being weighted by the inverse of the household sampling probability. Categorical variables are reported as weighted percentages, with each observation being weighted by the inverse of the household sampling probability.
Table 3	Health facility utilization among children under 5 years of age with fever, diarrhea, and respiratory illness: odds ratios from bivariate and multivariable logistic regression models							
	Unadjusted odds ratio (95% CI)	P value	Adjusted odds ratio (95% CI)	P value	Un adjusted odds ratio (95% CI)	P value	Adjusted odds ratio (95% CI)	P value
Age (12 vs. 6 months)	1.39 (0.86, 2.26)	0.44	1.02 (0.96, 1.09)	0.51	1.52 (0.85, 2.72)	0.37	1.09 (0.99, 1.21)	0.085
Male vs. female child	1.00 (0.73, 1.37)	0.99	0.96 (0.67, 1.38)	0.84	0.88 (0.60, 1.28)	0.50	0.85 (0.56, 1.29)	0.46
Respondent age (per 10 years)	0.78 (0.65, 0.95)	0.01	0.92 (0.73, 1.13)	0.45	0.77 (0.62, 0.97)	0.025	0.84 (0.63, 1.12)	0.23
Education (5 vs. 0 years)	2.08 (1.62, 2.67)	< 0.001	1.50 (0.97, 2.32)	0.006	2.14 (1.48, 3.08)	< 0.001	1.59 (1.00, 2.51)	0.048
Married/common law (ref)	0.79	1.03	0.13	0.051	1.88 (1.33, 2.66)	< 0.001	1.46 (0.86, 2.48)	0.16
Divorced or separated	1.29 (0.47, 3.52)	0.72	0.90 (0.35, 2.32)	0.83	0.88 (0.57, 1.36)	0.89 (0.54, 1.46)	0.006	
Single	0.95 (0.67, 1.34)	0.96	0.98 (0.65, 1.41)	0.45	0.89 (0.57, 1.36)	0.89 (0.54, 1.46)	0.006	
Widowed	0.71 (0.31, 1.64)	0.29	0.66 (0.27, 1.61)	0.23	0.77 (0.62, 0.97)	0.025	0.84 (0.63, 1.12)	0.23
Understands Portuguese	2.01 (1.48, 2.72)	< 0.001	1.34 (0.91, 1.98)	0.14	1.63 (1.08, 2.47)	0.02	0.88 (0.54, 1.46)	0.63
Household size (per two members)	0.82 (0.69, 0.97)	0.031	0.81 (0.67, 0.98)	0.031	0.85 (0.68, 1.07)	0.18	0.84 (0.63, 1.12)	0.24
Transport to health facility	0.44	0.50	0.12	0.29	0.91	0.69	0.82 (0.53, 1.27)	0.37
Bike/motorbike/car (ref)	1.00	1	1	1	1	1	1	1
On foot	1.44 (0.81, 1.61)	0.11	1.13 (0.79, 1.62)	0.27	1.41 (0.91, 2.19)	1.30 (0.80, 2.12)	1.02 (0.65, 1.61)	0.90 (0.53, 1.52)
Travel time to health facility (per 1 hour)	0.80 (0.64, 1.00)	0.047	0.82 (0.57, 1.17)	0.27	0.75 (0.66, 0.86)	< 0.001	0.81 (0.63, 1.04)	0.006
Rural vs. urban	0.60 (0.33, 1.11)	0.11	0.87 (0.47, 1.60)	0.65	0.66 (0.32, 1.36)	0.26	0.69 (0.30, 1.58)	0.38
District	0.87	0.57	0.49	1	1	0.49	1	1
Alto Molócué (ref)	1.00	1	1	1	1	1	1	1
Momoulba	0.99 (0.54, 1.50)	0.99	1.44 (0.80, 2.63)	0.60	0.69 (0.29, 1.24)	0.98 (0.48, 1.99)	0.51 (0.28, 0.94)	0.66 (0.32, 1.35)
Namacurra	1.14 (0.67, 1.94)	1.33	1.38 (0.76, 2.34)	0.79	0.88 (0.57, 1.37)	1.57 (0.55, 2.80)	0.66 (0.37, 1.15)	0.67 (0.32, 1.38)
Others	1.03 (0.66, 1.59)	1.34	1.32 (0.82, 2.16)	0.72	0.97 (0.55, 1.70)	1.53 (0.79, 2.93)	0.54 (0.34, 0.86)	0.52 (0.28, 0.95)
House has radio	1.60 (1.19, 2.15)	0.002	1.42 (0.98, 2.05)	0.060	1.64 (1.11, 2.41)	0.013	1.44 (0.99, 2.10)	0.058
Monthly income	0.79 (0.53, 1.19)	0.26	0.86 (0.58, 1.27)	0.45	0.45 (0.25, 0.82)	0.008	0.50 (0.30, 0.85)	0.009
< 1,000 MZN	1.17 (0.72, 1.92)	0.76	0.41 (1.43, 1.60)	0.54	0.89 (0.59, 1.37)	0.90 (0.43, 1.86)	2.96 (1.58, 5.68)	1.97 (0.89, 4.33)

CI = confidence interval; HCF = health-care facility.

1. There were 984 children included in the fever model. Missing data were multiply imputed for respondent age (6%), education (1%), Portuguese understanding (1%), transport (2%), travel time (38%), radio ownership (1%), monthly income (23%), delivery in health facility (30%), and decision-making (1%). Modeling without imputation would have resulted in 63% (620/984) casewise deletion.
2. There were 512 children included in the diarrhea model. Missing data were multiply imputed for respondent age (6%), Portuguese understanding (1%), transport (2%), travel time (38%), radio ownership (1%), monthly income (19%), delivery in health facility (28%), and decision-making (2%). Modeling without imputation would have resulted in 55% (283/512) casewise deletion.
3. There were 543 children included in the respiratory illness model. Missing data were multiply imputed for respondent age (6%), Portuguese understanding (1%), transport (2%), travel time (38%), radio ownership (1%), monthly income (23%), delivery in health facility (30%), and decision-making (1%). Modeling without imputation would have resulted in 58% (325/556) casewise deletion.
a. In the adjusted model, missing values of covariates were accounted for using multiple imputation.
b. Because there was evidence (P < 0.10) that the relationship with log-odds of health facility utilization for fever is nonlinear, respondent education is fit using restricted cubic splines.
c. Because there was evidence (P < 0.10) that the relationship with log-odds of health facility utilization for respiratory illness is nonlinear, child age is fit using restricted cubic splines.
In our population, the factor most associated with health facility utilization across the three illnesses was delivery of last child at a health-care facility. Household ownership of a radio was significantly associated with health-care utilization, and was trending toward significance with diarrhea ($P = 0.058$) and fever ($P = 0.06$). Maternal education was further associated with health facility utilization for fever and diarrhea, whereas child age was associated with health facility utilization for respiratory illness. Multivariable analysis revealed that respondents who reported delivering their last child in a health facility had more than twice the odds of taking their child to a health facility. This finding aligns with our expectation that mothers who deliver in this setting will be more likely to use health facilities for their children. Future interventions for preventing unnecessary childhood deaths should focus on educating pregnant women about the advantages and safety of delivering at a health facility.

This study found that household ownership of a radio was associated with increased health-care utilization across all models. This is most likely due to the fact that in Mozambique, health campaigns are often conducted through mass media, with radio communication being one of the easiest and most frequent sources of health-care information dissemination, especially in the rural areas. Wealth and asset possession are widely recognized as predictors of health-care utilization.$^{13,19,40–43}$ Our questionnaire asked the respondent to select the range of monthly household income that applies. We found that living below the poverty line ($< 1,000$ MZN, equivalent to approximately 1 USD per day in April 2014) was correlated with reduced utilization of biomedical health services for diarrhea. The absence of statistical significance across all models could be due to the fact that almost one quarter of respondents did not know their household income. Perhaps other measures of poverty, such as the multidimensional poverty index, might be more suitable.13 Ownership of electronics, such as television and radio, have been used as a proxy for wealth in other studies.$^{40,41,44–46}$

Maternal education, specifically the first 2 years of schooling, increased the likelihood by approximately 50% that a mother would seek health care for her child with fever and diarrhea at a health facility. This result is consistent with the literature in which higher maternal education was found to be a significant predictor of health-care utilization.$^{19,40,47–49}$ However, as years of education increased, the effect was less dramatic. Portuguese is the official language in Mozambique and the language most frequently used by physicians in the health-care facilities. For someone to speak Portuguese in rural Mozambique, it typically would require that they attend school for some period of time to have sufficient exposure enough to the language. As such, it can be postulated that mothers having at least 2 years of schooling could have learned enough Portuguese that they feel comfortable enough to enter into the health facility.

As a child grows older, the odds of being taken to a health facility for a respiratory illness decreased dramatically. This finding was not consistent for fever and diarrhea and could represent a limitation in our questionnaire items for respiratory illness. We defined respiratory illness as the child being reported to have either of the following symptoms; “cough” and/or “difficult or shallow breathing.” As a result, nonserious causes of cough such as allergies or simple viral respiratory infections not requiring medical attention could have overestimated the prevalence of “true” respiratory illness in our population. Also, it is possible that maternal knowledge of signs and symptoms of respiratory illness which may require medical attention are not clearly understood.

Despite mothers and/or caregivers knowing their child should be taken to a health facility, the issue is often one of access. The Mozambican Ministry of Health estimates that 60% of the population lives 20 miles or farther from any health facility.14,50 The necessity to travel long distances to a health-care facility is a barrier in health-care utilization, and is associated with increased child mortality.51 Longer travel time to a health facility was associated with decreased utilization in all models, but was statistically significant only in the diarrhea model. A potential limitation of our survey
result is that the question regarding travel time to a health facility may have been misinterpreted, because the average travel time was lower than expected (median 4 minutes). The majority of Zambèzia Province is rural, and 58.2% of its population is multidimensionally poor.13 We thought it pertinent to assess differences in urban and rural residence, as determinants of health, such as education and socioeconomic status, differ between the two.7,9,10,18,24,29,42,52,53

Strengths of this study include a large two-stage cluster survey sample of provincial data as opposed to countrywide data. Evidence of nonlinearity was further explored with restricted cubic splines in models that were developed a priori. Further research is needed to reproduce our findings in more settings to determine predictors in other diseases and populations. Specifically, researching predictors of antenatal care would be prudent because of the strong association it has with child health-care utilization. Moreover, incorporating both household surveys and health facility records would strengthen future studies of utilization. Understanding this behavior would lead to more effective interventions in preventing childhood death from treatable illness and improve the health and livelihood of the population.

Received March 23, 2016. Accepted for publication September 23, 2016.

Published online November 7, 2016.

Acknowledgments: We acknowledge the following collaborators of the Ogumaniha-SCIP Zambèzia Consortium: Rodolfo Henriquez of World Vision-Mozambique, Luís Armanio of Adventist Development and Relief Agency-Mozambique, Hôpital São Carlos of International Relief and Development-Mozambique, and Ezequiel Barreto Ossemane of Friends in Global Health-Mozambique. We also thank the members of the Ogumana monitoring and evaluation team including: Reginaldo Muluco, Irannet Manteiga, Otelia Santiago, Faride Musagy, Aurélio André Andate, Luciano Bene, Samuel Badaga, Oliveira Gada, Nelson Godinho, Amete Alfredo, Mamudo Namuera, Holden Mundereia, Maximiana Paiva, RenatoLucia, Silvia Peixe, Quiteria Fernando, Fernando Cinco Reis, Berta Alice Fareto, Joaquina Vicente, Elias Impulula, Musagy Massangage, Zumira Abudu, Cremildo Mugas, Fatima Paulo, Teofilo Jaime, Tânia de Morais, Elísée Ndaitama, Jeff Weiser, and Lara Vaz.

Authors’ addresses: Mary Bayham, Vanderbilt Institute for Global Health, Nashville, TN, E-mail: mary.bayham@vanderbilt.edu. Meredith Bleivins, Vanderbilt Institute for Global Health, Nashville, TN, Friends in Global Health, Maputo, Mozambique, and Department of Biostatistics, Vanderbilt University, Nashville, TN, E-mail: meredith.bleivins@vanderbilt.edu. Melanie Lopez, World Vision United States, Federal Way, WA, E-mail: mlopez2@worldvision.org. Omo Olupona, World Vision International, Maputo, Mozambique, E-mail: oolupona@gmail.com. Lazaro González-Calvo and Ann F. Green, Vanderbilt Institute for Global Health, Nashville, TN, and Friends in Global Health, Maputo, Mozambique, E-mails: lazaro.calvo@fgh.org.mz and ann.f.green@vanderbilt.edu. Elísée Ndaitama, Friends in Global Health, Maputo, Mozambique, E-mail: elisee.ndaitama@fgh.org.mz. Troy D. Moon, Vanderbilt Institute for Global Health, Nashville, TN, Friends in Global Health, Maputo, Mozambique, E-mail: troy.moon@vanderbilt.edu.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Reprint requests: Troy D. Moon, Vanderbilt Institute for Global Health, 2525 West End Avenue, Suite 750, Nashville, TN 37203, E-mail: troy.moon@vanderbilt.edu, Phone: 1-615-343-8264, Fax: 1-615-343-7797.

REFERENCES

1. United Nations Children’s Emergency Fund (UNICEF), 2015. Committing to Child Survival: A Promise Renewed Progress Report. Available at: http://www.apromiserenewed.org/wp-content/uploads/2015/09/APR_2015_8_Sep_15.pdf. Accessed March 19, 2016.

2. United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), 2014. Levels and Trends in Child Mortality. Available at: http://www.unicef.org/media/files/Levels_and_Trends_in_Child_Mortality_2014.pdf. Accessed March 19, 2016.

3. United Nations, 2015. The Millennium Development Goals Report 2015. Available at: http://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG_2015_rev_July1.pdf. Accessed March 19, 2016.

4. United Nations Economic Commission for Africa, 2015. Assessing Progress in Africa toward the Millennium Development Goals. Available at: http://www.uneca.org/sites/default/files/PublicationFiles/mdg-2015_eng_16Sep_rev2.pdf. Accessed March 19, 2016.

5. United Nations Development Program, 2015. Human Development Report 2015. Available at: http://hdr.undp.org/sites/all/themes/hdr_theme/country-notes MOZ.pdf. Accessed March 19, 2016.

6. World Bank–Working for a World Free of Poverty, 2015. Mortality Rate, Under-5 (per 1,000). Available at: http://data.worldbank.org/indicator/SH.DYN.MORT. Accessed March 19, 2016.

7. United Nations Children’s Emergency Fund (UNICEF), 2008. Multiple Indicator Cluster Surveys (MICS)–2008, Mozambique. Available at: http://www.childinfo.org/files/MICS3_Mozambique_FinalReport.pdf. Accessed March 19, 2016.

8. Ministry of Health, Mozambique, 2009. National Child Mortality Survey–2009, Mozambique. Available at: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8D22E59A605917752DC7CF67701789?doi=10.1.1.385.9293&rep=rep1&type=pdf. Accessed March 19, 2016.

9. Macassa G, Ghilagaber G, Charsmar H, Walander A, Sundin O, Soares J, 2012. Geographic differentials in mortality of children in Mozambique: their implications for achievement of Millennium Development Goal 4. J Health Popul Nutr 30: 331.

10. Fernandes QF, Wagenaar BH, Anselmi L, Pfeiffer J, Gloyd S, Sherr K, 2014. Effects of health-system strengthening on under-5, infant, and neonatal mortality: 11-year provincial-level time-series analyses in Mozambique. Lancet Glob Health 2: e468–e477.

11. United Nations Children’s Emergency Fund (UNICEF), 2010. Child Poverty and Disparities in Mozambique. Available at: http://www.unicef.org.mz/cpd/documents/Child-Poverty-2010.pdf. Accessed March 19, 2016.

12. World Health Organization, 2013. Mozambique: Neonatal and Child Health Profile. Available at: http://www.who.int/maternal_child_adolescent/epidemiology/profiles/neonatal_child/moz. pdf. Accessed March 19, 2016.

13. Victor B, Bleivins M, Green AF, Ndaitama E, Gonzalez-Calvo L, Fischer EF, Vergara AE, Vermund SH, Olupona O, Moon TD, 2014. Multidimensional poverty in rural Mozambique: a new metric for evaluating public health interventions. PLoS One 9: e108654.

14. Nhampossa T, Mandomando I, Acacio S, Nhalungo D, Sacoor N, 2014. Utilization of public or private health care providers in cases of moderate-to-severe diarrhea among children ages 0–59 months in the District of Manhica, southern Mozambique. Am J Trop Med Hyg 89: 41.

15. Moshashela M, Schneider H, Silip SM, Cleary SM, 2012. Factors associated with patterns of plural healthcare utilization among patients taking antiretroviral therapy in rural and urban South Africa: a cross-sectional study. BMC Health Serv Res 12: 182.

16. Peterson S, Pariyo G, Rutebemberwa E, Tomson G, Kallander K, 2009. Utilization of public or private health care providers by febrile children after user fee removal in Uganda. Malar J 8: 45.

499

HEALTH-CARE UTILIZATION IN CHILDREN 6–59 MONTHS IN MOZAMBIQUE
17. Leclere FB, Jensen L, Biddlecom AE, 1994. Health care utilization, family context, and adaptation among immigrants to the United States. *J Health Soc Behav* 35: 370–384.

18. Marmot M, 2005. Social determinants of health inequalities. *Lancet* 365: 1099–1104.

19. Osaki K, Kosen S, Indriasih E, Pritasari K, Hattori T, 2015. Factors affecting the utilisation of maternal, newborn, and child health services in Indonesia: the role of the Maternal and Child Health Handbook. *Public Health* 129: 582–586.

20. World Health Organization, 2004. *Family and Community Practices That Promote Child Survival, Growth and Development: A Review of the Evidence*. Available at: http://apps.who.int/iris/bitstream/10665/42024/1/WHO2004.15_en.pdf. Accessed March 19, 2016.

21. United Nations, 2012. United Nations System Task Team on the Post-2015 UN Development Agenda. *Addressing Inequalities: The Heart of the Post-2015 Agenda and the Future We Want for All*. Available at: http://www.un.org/millenniumgoals/pdf/ThinkPieces_10_inequalities.pdf. Accessed March 19, 2016.

22. Berkley S, Chan M, Dybul M, Hansen K, Lake A, Osotimehin B, Marmot M, 2005. Social determinants of health inequalities. *Bull World Health Organ* 83: 797–804.

23. Leclere FB, Jensen L, Biddlecom AE, 1994. Health care utilization, family context, and adaptation among immigrants to the United States. *J Health Soc Behav* 35: 370–384.

24. Gwatkin DR, 2005. How much would poor people gain from faster progress towards the Millennium Development Goals for health? *Lancet* 365: 813–817.

25. Agadjanian V, Hayford SR, Luz L, Yao J, 2015. Bridging user and provider perspectives: family planning access and utilization in rural Mozambique. *Int J Gynaecol Obstet* 138: E47–E51.

26. Presern C, 2013. Placing populations for health? *Bull World Health Organ* 91: 467–472.

27. Presern C, 2013. Inequalities by parental socio-economic position. *Soc Sci Med* 107: 34–42.

28. Reidpath DD, Morel CM, Mecaskey JW, Allotey P, 2009. The Millennium Development Goals for equity-adjusted measures. *J Paediatr Child Health* 46: 76–86.

29. Filmer D, Pritchett LH, 2001. Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. *Demography* 38: 115–132.

30. Arregui C, Green A, Olupona O, 2011. Determinants of child morbidity and factors governing utilization of child health care: evidence from rural India. *Appl Econ* 44: 27.

31. Caldwell JC, 1994. Health and the post-2015 development agenda. *Lancet* 380: 682–686.

32. Vosti S, 1995. Choosing between public and private health-care: a case study of malaria treatment in Brazil. *J Health Econ* 14: 191.

33. Shiffman M, 2008. Epidemiology and etiology of childhood pneumonia. *J Health Soc Behav* 39: 58–74.

34. Brewster DR, Greenwood BM, 1993. Seasonal variation of paediatric diseases in The Gambia, west Africa. *Ann Trop Paediatr* 13: 133–146.

35. Macassa G, Ghilagaber G, Bernhardt E, Diderichsen F, Burström B, 2003. Patterns of malaria morbidity and mortality in children in northern Ghana. *Trans R Soc Trop Med Hyg* 58: 381–385.

36. Arregui C, Green A, Olupona O, 2011. Determinants of child survival, health, and nutrition: a modelling approach. *J Paediatr Child Health* 46: 238–242.

37. Lindegren L, 2005. The utilisation of curative healthcare in Mozambique: does income matter? *J Afr Econ* 14: 435–482.

38. Filmer D, Pritchett LH, 2001. Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. *Demography* 38: 115–132.

39. Boschi-Pinto C, Bliuc D, Iragorri N, Todd J, Lawn J, 2005. Child mortality—Phase I and II: Zambezia-wide. Available at: http://globalhealth.vanderbilt.edu/manage/wp-content/uploads/phase1and2_report.pdf. Accessed March 19, 2016.

40. Harrell F, 2015. *Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis*. New York: Springer.

41. R Core Team, 2014. *The R Project for Statistical Computing*. Available at: http://www.R-project.org/. Accessed October 19, 2016.

42. StataCorp, 2013. *Stata Statistical Software: Release 13*. College Station, TX: StataCorp LP.

43. Brewster DR, Greenwood BM, 1993. Seasonal variation of paediatric diseases in The Gambia, west Africa. *Ann Trop Paediatr* 13: 133–146.

44. Presern C, 2013. Placing populations for health? *Bull World Health Organ* 91: 467–472.

45. Filmer D, Pritchett LH, 2001. Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. *Demography* 38: 115–132.