Relaxing The Hamilton Jacobi Bellman Equation To Construct Inner And Outer Bounds On Reachable Sets

Morgan Jones, Matthew M. Peet

Abstract—We consider the problem of overbounding and underbounding both the backward and forward reachable set for a given polynomial vector field, nonlinear in both state and input, with a given semialgebraic set of initial conditions and with inputs constrained pointwise to lie in a semialgebraic set. Specifically, we represent the forward reachable set using the “value function” which gives the optimal cost to go of an optimal control problem and if smooth satisfies the Hamilton-Jacobi-Bellman PDE. We then show that there exist polynomial upper and lower bounds to this value function and furthermore, these polynomial “sub-value” and “super-value” functions provide provable upper and lower bounds to the forward reachable set. Finally, by minimizing the distance between these “sub-value” and “super-value” functions in the L_1-norm, we are able to construct inner and outer bounds for the reachable set and show numerically on several examples that for relatively small degree, the Hausdorff distance between these bounds is negligible.

I. INTRODUCTION

The reachable set of an ODE is the set of coordinates that can be reached by the solution map, defined in Assumption II at some fixed time and starting in some set of initial conditions. The computation of reachable sets is important for certifying solution maps remain in “safe regions”; regions of the state space that are deemed to have low risks of system failure. Historic examples of solution maps transitioning outside “safe regions” include: two of the four reaction wheels on the Kepler Space telescope failing, analyzed in [1]; and the disturbing lateral vibrations of the Millennium footbridge over the River Thames in London on opening day, analyzed in [2] and [3].

In this paper we show the reachable set of an ODE, subject to pointwise bounded inputs, is the sublevel set of the “value function” (optimal cost to go function) associated with a one player optimal control problem. This result can be thought of as the analogous result to [4]; where it was shown the reachable set of an ODE, subjected to two sets of adversarially opposed input parameters, is the sublevel set of the “value function” associated with a two player optimal control problem.

It is known that if the “value function” of a one player optimal control problem is smooth then it satisfies the Hamilton Jacobi Bellman (HJB) Partial Differential Equation (PDE) [5]. In this paper we show that relaxing the HJB PDE to a dissipation inequality allows for the construction of upper and lower bounds of the “value function”; we call super-value and sub-value functions respectively. We furthermore give sufficient conditions for the existence of polynomial super-value and sub-value functions. Moreover, it is shown that the sublevel set of sub-value and super-value functions construct provable upper and under bounds of reachable sets respectively.

The HJB PDE may not always have a solution in the classical sense. A generalized solution concept, called the viscosity solution, was developed in [6]. Discretization methods, such as those in [7] [8], are typically used to approximate the viscosity solution. However, such methods cannot guarantee that the approximate viscosity solution is an upper or lower bound to the true “value function”. Alternatively, we propose a Sum-of-Squares (SOS) optimization problem that is solved by the polynomial sub-value and super-value functions with minimum L_1 distance.

Our approach to finding sub- and super-solutions to the HJB PDE is similar to [9] and [10]. In [9] SOS was used to find a sub-value function for optimal control problems with discrete-time dynamics; whereas we consider continuous-time dynamics. In [10] SOS was used to find sub-value and super-value functions for optimal control problems with quadratic costs and continuous-time dynamics governed by ODE’s affine in the input variable. Our approach allows us to construct sub-value and super-value functions for more general optimal control problems with polynomial costs and continuous time varying processes governed by ODE’s nonlinear in the input variable. Moreover, we give sufficient conditions on the existence of polynomial sub-value and super-value functions and show how these functions can be used for reachable set estimation.

We numerically demonstrate that solving our proposed SOS optimization problem can give tight approximations of reachable sets. Unlike alternative approaches to reachable set analysis, [4] [11] [12], our reachable set approximations can be proved to overbound or underbound the reachable set.

An alternative approach to reachable set approximation is found in [13] [14] [15] [16] where dissipation like inequalities are solved using SOS programming to find a function whose sublevel set contains the reachable set. It is shown in this paper such dissipation inequalities are actually relaxations of the HJB PDE and thus solved by sub-value functions. In this context, our sufficient conditions for the existence of polynomial sub-value functions for optimal control problems can be viewed as feasibility conditions for the SOS optimization problems found [13] [14] [15] [16].

The paper is organized as follows. Background material on
ODE’s is given in Section III. In Section IV, optimal control theory is presented. In Section V, we construct an optimal control problem with value function that can characterize the reachable set exactly. In Section VI, we show how relaxing the HJB PDE allows us to derive dissipation inequalities that are solved by sub-value and super-value functions. In Section VII, an SOS optimization is proposed that minimizes the L_1 norm of the distance between the sub-value and super-value function. The conclusion is given in Section VIII.

II. NOTATION

We denote a ball with radius $R > 0$ centered at the origin by $B_R = \{x \in \mathbb{R}^n : x^2 < R^2\}$. For $x \in \mathbb{R}^n$, we denote $|x|_\infty = \max_{1 \leq i \leq n}|x_i|$. For short hand, we denote the partial derivative $D^\alpha f(x) := \Pi_{\alpha \in \mathbb{N}^n} \frac{\partial^{\alpha_i}}{\partial x_{i}} f(x)$ for $\alpha \in \mathbb{N}^n$. Let $C(\Omega)$ be the Banach space of scalar continuous functions with domain $\Omega \subset \mathbb{R}^n$. For $f \in C(\Omega)$ we define the norms $||f||_{\infty, \Omega} := \sup_{x \in \Omega} |f(x)|_\infty$ and $||f||_{1, \Omega} := \int_{\Omega} |f(x)| dx$. We denote the set of differentiable functions by $C^1(\Omega) := \{f \in C(\Omega) : D^\alpha f \in C(\Omega) \forall \alpha \in \mathbb{N}^n\}$. Let $\nabla V := \Pi_{\alpha \leq i \leq n} \frac{\partial V}{\partial x_{i}}$ and $\nabla V := \Pi_{\alpha > i} \frac{\partial V}{\partial x_{i}}$. For $d \in \mathbb{N}$ and $x \in \mathbb{R}^n$ we denote $z_d(x)$ to be the vector of monomial basis in n-dimensions with maximum degree $d \in \mathbb{N}$. We denote the space of scalar valued polynomials $p : \Omega \rightarrow \mathbb{R}$ with degree at most $d \in \mathbb{N}$ by $\mathcal{P}_d[\Omega]$. We say $p \in \mathcal{P}_d[\mathbb{R}^n]$ is Sum-of-Squares (SOS) if there exists $p_1, p_2 \in \mathcal{P}_d[\mathbb{R}^n]$ such that $p(x) = \sum_{i=1}^k p_i(x)^2$. We denote \sum_{SOS} to be the set of SOS polynomials.

III. BACKGROUND: Differential Equations

We consider nonlinear Ordinary Differential Equations (ODE’s) of the form

$$\dot{x}(t) = f(x(t), u(t)), \quad u(t) \in Y, \quad x(0) \in X_0 \in \mathbb{R}^n,$$

where $f : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$; $u : \mathbb{R} \rightarrow \mathbb{R}^n$ is the input; and $Y \subset \mathbb{R}^n$ and $X_0 \subset \mathbb{R}^n$ are compact sets representing constraints on the inputs and initial conditions.

To define the solution map we define the set of pointwise-admissible input signals as

$$U_Y := \{u : \mathbb{R} \rightarrow \mathbb{R}^n : u(t) \in Y \text{ for all } t \in (-\infty, \infty)\}.$$

For a given set of admissible inputs, we constrain f, in the following definition, to admit a continuously-differentiable solution map.

Definition I (Constraint on Admissibility of f): For given $Y \subset \mathbb{R}^n$ we say $f \in \mathcal{F}_Y$ if

1) $f_i \in C^1(\mathbb{R}^n)$ for all $i \in \{1, \ldots, n\}$.
2) For any $T > 0$, there exists a function $h : \mathbb{R}^n \times \mathbb{R}^n \times U_Y \rightarrow \mathbb{R}^n$, where for any $u \in U_Y$ we have $h_i(\cdot, \cdot, u) \in C^1(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ for all $i \in \{1, \ldots, n\}$, and

$$\frac{\partial h_i(x, t, u)}{\partial t} = f_i(h(x, t, u), u(t)) \tag{2}$$

for all $x \in \mathbb{R}^n$, $t \in [-T, T]$ and $u \in U_Y$.
3) The function h that satisfies (2) is unique.

Since for each $f \in \mathcal{F}_Y$ the associated function that satisfies (2) is unique we will denote this function by ϕ_f throughout the paper.

Lemma 1: Let $Y \subset \mathbb{R}^n$ be a compact set, $f, -f \in \mathcal{F}_Y$ and $T \in \mathbb{R}^+$. (A) For $u \in U_Y$ define $\tilde{u}(t) = u(-t)$, then $\forall x \in \mathbb{R}^n, t \in [-T, T]$

$$\phi_{-f}(x, t, \tilde{u}) = \phi_f(x, t, u). \tag{3}$$

(B) For $s \in [-T, T]$ and $u \in U_Y$ define $\tilde{u}(t) = u(t+s)$, then $\forall x \in \mathbb{R}^n, t \in [-T-s, T-s] \cap [-T, T]$

$$\phi_f(x, t+s, u) = \phi_f(x, t, u). \tag{4}$$

Proof: Proving (3) in Statement (A): As $-f \in \mathcal{F}_Y$ we have for all $x \in \mathbb{R}^n$, $t \in [-T, T]$, and $u \in U_Y$

$$\frac{\partial \phi_{-f}(x, t, u)}{\partial t} = -f(\phi_{-f}(x, t, u), u(t)) \text{ and } \phi_{-f}(x, 0, u) = x. \tag{5}$$

Now, letting $h_1(x, t, u) = \phi_{-f}(x, -t, \tilde{u})$, for $x \in \mathbb{R}^n$, $t \in [-T, T]$, and $u \in U_Y$ the following holds

$$\frac{\partial h_1(x, t, u)}{\partial t} = \frac{\partial \phi_{-f}(x, -t, \tilde{u})}{\partial t} = -\frac{\partial \phi_{-f}(x, s, \tilde{u})}{\partial s}$$

$$= f(\phi_{-f}(x, s, \tilde{u}), \tilde{u}(s)) = f(\phi_{-f}(x, -t, \tilde{u}), u(t))$$

$$= f(h_1(x, t, u), u(t)),$$}

where to get the second equality we use $s = -t$, so $ds = -dt$; to get the third equality (5) was used; to get the fourth equality the substitution $s = -t$ was again applied, noting $\tilde{u}(t) = u(t)$. Moreover, as $h_1(x, 0, u) = \phi_{-f}(x, 0, \tilde{u}) = x$, by (5), it follows h_1 satisfies (2) and therefore, due to the uniqueness of ϕ_f, (3) must follow.

Proof of (4) in Statement (B): For fixed $s \in [-T, T]$ let us consider the following function

$$h_2(x, t, u) := \begin{cases} \phi_f(x, t, u) \text{ for } -T \leq t \leq s \\ \phi_f(x, s, u), t-s, \tilde{u}_s \text{ for } t \in (s, T]. \end{cases} \tag{6}$$

We prove (4) by showing h_2 satisfies (2) and using the uniqueness properties of ϕ_f. Firstly it is clear $h_2(x, 0, u) = \phi_f(x, 0, u) = x$, and h_2 satisfies (2) for all $x \in \mathbb{R}^n$, $t \in [-T, s]$ and $u \in U_Y$. Now for all $x \in \mathbb{R}^n$, $t \in (s, T]$ and $u \in U_Y$

$$\frac{\partial h_2(x, t, u)}{\partial t} = \frac{\partial \phi_f(x, s, u), t-s, \tilde{u}_s}{\partial t}$$

$$= \frac{\partial \phi_f(x, s, u), k, \tilde{u}_s}{\partial k} = f(\phi_f(x, s, u), k, \tilde{u}_s)(k)$$

$$= f(h_2(x, t, u), u(t)),$$

where the second equality follows from using $k = t-s$ so $dk = dt$; the third equality follows by (2); the fourth equality follows from applying $k = t-s$ again; the fifth equality follows as $\tilde{u}_s(t-s) = u(t)$.

Thus by the uniqueness of ϕ_f it follows $\phi_f(x, t+s, u) = h_2(x, t+s, u) = \phi_f(x, t, u, \tilde{u}_s)$, therefore showing (4).

For a given $X_0 \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^n$ and $f \in \mathcal{F}_Y$, we next define the forward reachable set as follows.
Definition 2: For \(X_0 \subset \mathbb{R}^n, Y \subset \mathbb{R}^m, f \in \mathcal{F}_Y \) and \(S \subset \mathbb{R}^+ \), let
\[
FR_f(X_0, Y, S) := \{ y \in \mathbb{R}^n : \exists x \in X_0, u \in U_Y, \text{ and } t \in S \text{ such that } \phi_f(x, t, u) = y \}.
\]
In following sections, \(S \) is of the form either \(\{T\} \) or \([0, T]\).

IV. Finite Time Optimal Control Problems

An optimal control problem with finite time horizon is a tuple \((c, g, f, X_0, Y, T)\) where \(c : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \) is the running cost; \(g : \mathbb{R}^n \to \mathbb{R} \) is the terminal cost; \(f \in \mathcal{F}_Y \); \(X_0 \subset \mathbb{R}^n \) is the set of initial conditions; \(Y \subset \mathbb{R}^m \) is a compact input set; and \(T \) is the final time. For each optimal control problem we can next define the value function that intuitively describes the optimal "cost to go".

Definition 3: For given \(X_0 \subset \mathbb{R}^n, Y \subset \mathbb{R}^m, T > 0; c : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \); \(g : \mathbb{R}^n \to \mathbb{R} \); \(f \in \mathcal{F}_Y \) we say \(V^* : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \) is a value function of the tuple \((c, g, f, X_0, Y, T)\) if for \((x, t) \in \{FR_f(X_0, Y, \{t\}), t\}\), where \(t \in [0, T] \), the following holds
\[
V^*(x, t) = \inf_{u \in U_Y} \left\{ \int_0^t [c(\phi_f(x, s, t, u), s) - g(\phi_f(x, t, u)) ds + g(\phi_f(x, t, u)) - gy(t)] \right\}.
\]

A sufficient condition for \(V^* \) to be a value function for the tuple \((c, g, f, X_0, Y, T)\) is for \(V^* \) to satisfy the Hamilton Jacobi Bellman (HJB) PDE.

Proposition 1: For given \(X_0 \subset \mathbb{R}^n, Y \subset \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}, c : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f \in \mathcal{F}_Y, T > 0 \), suppose there exists a differentiable function \(V \in C^1(\mathbb{R}^n \times \mathbb{R}) \) such that the following holds for \((x, t) \in FR_f(X_0, Y, \{0, T\}), T \times [0, T] \)
\[
\nabla_x V(x, t) + \inf_{u \in Y} \left\{ c(x, u, t) + \nabla_x V(x, t)^T f(x, u) \right\} = 0
\]
\[
V(x, T) = g(x).
\]

Then \(V \) is the value function of the optimal control problem \((c, g, f, X_0, Y, T)\).

Proof: Follows by Proposition 3.2.1 from [5] where the domain of the value function is restricted to \((x, t) \in \{FR_f(X_0, Y, \{t\}), t\}\).

Definition 4: We say the function \(J : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \) is a sub-value function to the finite time horizon optimal control problem \((c, g, f, X_0, Y, T)\) if we have
\[
J(x, t) \leq V^*(x, t) \quad \forall t \in [0, T] \text{ and } x \in FR_f(X_0, Y, \{t\}),
\]
where \(V^* \) is the value function of \((c, g, f, X_0, Y, T)\). Moreover, if instead \(J \) satisfies
\[
J(x, t) \geq V^*(x, t) \quad \forall t \in [0, T] \text{ and } x \in FR_f(X_0, Y, \{t\}),
\]
we say \(J \) is a super-value function to \((c, g, f, X_0, Y, T)\).

V. How Sublevel Sets of Value Functions Can Describe Reachable Sets

In this section we construct a finite time horizon optimal control problem with associate value function whose sublevel sets can construct the reachable set of a system. We then show how the sublevel sets of the sub-value and super-value functions over- and under-bound the reachable set.
where the first equality follows as $y_0 \in X$ so holds. Therefore $x_0 \in \{ x \in X : V(x,0) \leq 1 \}$. Hence $BR_f(x_0, Y, \{T\}) \subseteq \{ x \in X : V^*(x,0) \leq 1 \}$.

Now suppose $y_0 \in \{ x \in X : V^*(x,0) \leq 1 \}$. Then if $u_0 := \arg\inf_{u \in U} g(\phi_f(y_0, t, u))$, let $x_0 := \phi_f(y_0, T, u_0)$. It follows $g(x_0) = g(\phi_f(y_0, T, u_0)) = \inf_{u \in U} g(\phi_f(y_0, T, u)) = V^*(y_0, 0) \leq 1,$

where the third equality follows because $y_0 \in X$ so holds. Hence $x_0 \notin X_0$. Therefore $y_0 \notin BR_f(x_0, Y, \{T\})$. Thus $\{ x \in X : V^*(x,0) \leq 1 \} \subseteq BR_f(x_0, Y, \{T\})$.

We next show how sub-value and super-value functions, defined in Definition 4, can define outer bound and inner bound reachable sets.

Lemma 3: Given $Y \subseteq \mathbb{R}^m$, $f \in \mathcal{F}_Y$ and $g : \mathbb{R}^n \to \mathbb{R}$, let $X_0 = \{ x \in \mathbb{R}^n : g(x) \leq 1 \}$ and $X \subseteq \mathbb{R}^n$ be such that $BR_f(x_0, Y, \{T\}) \subseteq X$. Suppose V and V are sub-value and super-value functions to the optimal control problem $\{0, g, f, X, Y, T\}$. Then

\[\{ x \in X : V_0(x,0) \leq 1 \} \subseteq BR_f(x_0, Y, \{T\}) \quad (13) \]

Proof: Since V and V are sub-value and super-value functions to the optimal control problem $\{0, g, f, X, Y, T\}$ it follows $\forall t \in [0,T]$ and $x \in FR_f(X, Y, \{t\})$

\[V(t,x) \leq V^*(x,t) \leq V(t,x), \quad (14) \]

where V^* is the value function to $\{0, g, f, X, Y, T\}$.

By (14) it follows

\[\{ x \in X : V_0(x,0) \leq 1 \} \subseteq \{ x \in X : V^*(x,0) \leq 1 \} \quad (15) \]

\[\{ x \in X : V^*(x,0) \leq 1 \} \subseteq \{ x \in X : V(t,x) \leq 1 \}. \]

Moreover by Theorem 1 we have

\[BR_f(x_0, Y, \{T\}) = \{ x \in X : V^*(x,0) \leq 1 \}. \quad (16) \]

Thus (16) together with (15) proves the set containments given in (13).

VI. DISSIPATION INEQUALITIES FOR SUPER-VALUE AND SUPER-FUNCTIONS

We now propose dissipation inequalities and show, using a novel proof, that if a differentiable function satisfies such inequalities then it must be a sub-value or super-value function associated with an optimal control problem. The dissipation inequalities are found by relaxing the HJB PDE to an inequality. A similar result is found in Theorem 3.3, from [6], for a class of PDE’s that include the HJB PDE. However in [6] a further property, the candidate sub-value function is less than or equal to the candidate super-value function on the boundary of some compact set, is required to hold before such functions can be verified as sub-value and super-value functions.

Proposition 2: For given $T > 0$, compact $Y \subseteq \mathbb{R}^m$, $g \in C^1(\mathbb{R}^m)$, $c \in C^1(\mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R})$, $f \in \mathcal{F}_Y$. Suppose $X_0 \subseteq \mathbb{R}^n$ is such that $FR_f(x_0, Y, [0,T]) \subseteq X_0$ and $J \in C^1(\mathbb{R}^n \times \mathbb{R})$ satisfies the following $\forall x \in X_0, u \in U, t \in [0,T]$

\[\nabla J(x,t) + c(x,u,t) + \nabla_x J(x,t)^T f(x,u) \geq 0 \quad (17) \]

\[J(x,T) \leq g(x). \quad (18) \]

Then J is a sub-value function to the optimal control problem $\{c, g, f, X_0, Y, T\}$.

Alternatively if J satisfies the following $\forall x \in X_c, u \in U, t \in [0,T]$

\[\nabla I(x,t) + c(x,u,t) + \nabla_x J(x,t)^T f(x,u) \leq 0 \quad (19) \]

\[J(x,T) \geq g(x). \quad (20) \]

Then J is a super-value function to $\{c, g, f, X_0, Y, T\}$.

Proof: Let us denote the left hand side of Inequality (17) by

\[L(x,u,t) = \nabla I(x,t) + c(x,u,t) + \nabla_x J(x,t)^T f(x,u). \]

As Y is compact and the functions c and f are both differentiable we may define $L(x,t) := \inf_{u \in U} L(x,t,u)$. Moreover we deduce from inequality (17) that $L(x,t) \geq 0$ for all $x \in X_c$ and $t \in [0,T]$. Now from the construction of the function L it is clear J satisfies the following equation for any $x \in X_c, u \in U, t \in [0,T]$

\[\nabla I(x,t) + \inf_{u \in U} \{ c(x,u,t) - L(x,t,u) + \nabla_x J(x,t)^T f(x,u) \} = 0. \quad (21) \]

If we consider the optimal control problem $\{c, g, f, X_0, Y, T\}$, where $\tilde{c}(x,u,t) = c(x,u,t) - L(x,t,u)$ and $\tilde{g}(x) = J(x,T)$, as (21) holds $\forall x \in FR_f(x_0, Y, [0,T]) \subseteq X_0$ and $t \in [0,T]$ it follows by Proposition 1 J is a value function for $\{c, g, f, X_0, Y, T\}$. It now follows for any $t \in [0,T]$ and $x \in FR_f(x_0, Y, \{t\})$ we have

\[J(x,t) = \inf_{u \in U} \left\{ \int_t^T c(\phi_f(x,s-t,u), u(s), s) - \tilde{g}(\phi_f(x,s-t,u), s) ds + J((\phi_f(x,T-s-t,u), T) \right\} \]

\[\leq \inf_{u \in U} \left\{ \int_t^T c(\phi_f(x,s-t,u), u(s), s) ds + g(\phi_f(x,T-t,u)) \right\} \]

\[= \nabla V^*(x,t), \quad (22) \]

where V^* is a value function of $\{c, g, f, X_0, Y, T\}$, and the inequality follows from the fact $\tilde{L}(x,t) \geq 0$ for all $x \in X_c$ and $t \in [0,T]$, thus implying $\tilde{L}(x,t) \geq 0$ for all $x \in FR_f(x_0, Y, \{t\})$ and $s \in [t,T]$; and the fact $J(x,t) \leq g(x)$ for all $x \in X_c$, thus implying $J((\phi_f(x,T-t,u), T) \leq g(\phi_f(x,T-t,u))$ for any $x \in FR_f(x_0, Y, \{t\})$. Therefore it is clear from (22) that J is a sub-value function to $\{c, g, f, X_0, Y, T\}$.

We now prove if the Inequalities (19) and (20) hold then J is a super-value function to $\{c, g, f, X_0, Y, T\}$. Multiplying both sides of the inequalities (19) and (20) by -1 we get

\[\forall x \in X_c, \ u \in U, t \in [0,T] \]

\[\nabla I(x,t) - c(x,u,t) + \nabla_x J(x,t)^T f(x,u) \geq 0 \quad (17) \]

\[J(x,T) \leq -g(x). \quad (18) \]

Using the previous part of the proof we deduce $-J$ is a sub solution to $\{-c, -g, f, X_0, Y, T\}$. Thus for any $t \in [0,T]$ and $x \in FR_f(x_0, Y, \{t\})$

\[-J(x,t) \leq \inf_{u \in U} \left\{ \int_t^T -c(\phi_f(x,s,u), u(s), s) ds - g(\phi_f(x,T,u)) \right\}. \]
By multiplying both sides of the above inequality by \(-1\) we deduce for any \(t \in [0,T]\) and \(x \in FR_f(X_0, Y, \{t\})\)

\[
J(x, t) \geq -\inf_{u \in U_Y} \left\{ -\int_t^T c(\phi_f(x, s, u), u(s), s)ds + g(\phi_f(x, T, u)) \right\} \\
= \sup_{u \in U_Y} \left\{ \int_0^T c(\phi_f(x, s, u), u(s), s)ds + g(\phi_f(x, T, u)) \right\} \\
\geq \inf_{u \in U_Y} \left\{ \int_0^T c(\phi_f(x, s, u), u(s), s)ds + g(\phi_f(x, T, u)) \right\} \\
= V^*(x, t),
\]

(23)

Therefore it follows by (23) that \(J\) is a super-value function for \(\{c, g, f, X_0, Y, T\}\).

Next we give sufficient conditions for the existence of polynomial functions that satisfy Inequalities (17), (18), (19) and (20). This proves the existence of polynomial sub-value and super-value functions but does not show that such functions can arbitrarily well approximate the true value function.

Lemma 4: For \(T > 0\); a compact set \(Y \subseteq \mathbb{R}^m\); a compact set \(X_0 \subseteq \mathbb{R}^n\); a polynomial function \(g : \mathbb{R}^n \to \mathbb{R}\); a function \(c \in C^1(\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R})\); and \(f \in \mathcal{F}_Y\); suppose the set \(FR_f(X_0, Y, [0,T])\) is bounded. Then there exists a polynomial sub-value function and polynomial super-value function to the optimal control problem \(\{c, g, f, X_0, Y, T\}\).

Proof: As \(FR_f(X_0, Y, [0,T])\) is bounded it follows there exists \(R > 0\) such that \(FR_f(X_0, Y, [0,T]) \subseteq BR_R\). Now consider the polynomial function

\[
J_1(x, t) = g(x) + \alpha(T-t),
\]

where \(\alpha := \inf_{x \in BR_R, u \in U_Y, t \in [0,T]} \{\nabla g(x)f(x, u) + c(x, u, t)\}\); which is well defined as the infimum of a differentiable function over a compact set is finite.

To prove the existence of a polynomial sub-value function we show \(J_1\) satisfies Inequalities (17) and (18), and thus by Proposition 2 we deduce \(J_1\) is a sub-value function for \(\{c, g, f, X_0, Y, T\}\). Trivially (18) holds. Now for \(x \in FR_f(X_0, Y, [0,T])\) and \(t \in [0,T]\)

\[
\begin{align*}
\nabla cJ_1(x, t) &+ c(x, u, t) + \nabla g(x)^T f(x, u) \\
&= -\alpha + c(x, u, t) + \nabla g(x)^T f(x, u) \\
&\geq \inf_{x \in FR_f(X_0, Y, [0,T]), t \in [0,T]} \{c(x, u, t) + \nabla g(x)^T f(x, u)\} - \alpha \\
&\geq 0.
\end{align*}
\]

Therefore we conclude \(J_1\) satisfies (17) and thus is a sub-value function to \(\{c, g, f, X_0, Y, T\}\).

The existence of a super-value function follows by a similar argument and consideration of the function

\[
J_1(x, t) = g(x) + \alpha(T-t),
\]

where \(\alpha := \sup_{x \in BR_R, u \in U_Y, t \in [0,T]} \{\nabla g(x)f(x, u) + c(x, u, t)\}\).

VII. USING SOS TO CONSTRUCT SUB-VALUE AND SUPER-VALUE FUNCTIONS

For an optimal control problem \(\{c, g, f, X_0, Y, T\}\) we would like to find the associated polynomial sub-value and super-value functions with minimum distance under some function metric; and hence are “close” to a true value function. If we choose our function metric as the \(L_1\) norm we seek to solve the optimization problem:

\[
\begin{align*}
\min_{V_u, V_i \in \mathcal{P}_u([0,T])} \left\{ \int_0^T V_u(x, t_0) - V_i(x, t_0) dt \right\} \\
\int_0^T V_u(x, t) \geq V^*(x, t) \\
V_i(x, t) \leq V^*(x, t),
\end{align*}
\]

where \(V^*\) is a value function of \(\{c, g, f, X_0, Y, T\}\). To enforce the constraints of the above optimization problem we use Proposition 2 where it was shown if \(V_i\) satisfies (18) (17) and \(V_u\) satisfies (20) (19) then \(V_i\) and \(V_u\) are sub-value and super-value functions for \(\{c, g, f, X_0, Y, T\}\) respectively. We then are able to tighten the optimization problem to an SOS optimization problem, indexed by \(S(T, c, g, f, h_X, h_Y, d, \Omega)\):

\[
\begin{align*}
\min_{V_u, V_i \in \mathcal{P}_u([0,T])} \left\{ \int_0^T V_u(x, t_0) - V_i(x, t_0) dt \right\} \\
\int_0^T V_u(x, t) \geq V^*(x, t) \\
V_i(x, t) \leq V^*(x, t),
\end{align*}
\]

subject to:

\[
s_{i,j, i, u} \in \sum_{SOS} \text{ for } i = 0, 1, 2, 3
\]

where

\[
\begin{align*}
k_{0,i}(x) &= (g(x) - V_i(x, t)) - s_{0,i}(x)h_X(x), \\
k_{1,i}(x, u, t) &= (\nabla V_i(x, t) + c(x, u, t) + \nabla g(x)^T f(x, u) - s_{1,i}(x, u, t)h_Y(u) - s_{3,i}(x, u, t)(T-t), \\
k_{0,u}(x) &= (V_u(x, T) - g(x)) - s_{0,u}(x)h_X(x), \\
k_{1,u}(x, u, t) &= -(\nabla V_i(x, t) + c(x, u, t) + \nabla g(x)^T f(x, u) - s_{1,u}(x, u, t)h_Y(u) - s_{3,u}(x, u, t)(T-t).
\end{align*}
\]

Corollary 1: Suppose \(V_u\) and \(V_i\) solve \(S(T, c, g, f, h_X, h_Y, \Omega)\), given in (24). Then \(V_u\) and \(V_i\) are super-value and sub-value functions to the optimal control problem \(\{c, g, f, X_0, Y, T\}\) respectively; where \(Y \subseteq \mathbb{R}^m\) and \(X_0 \subseteq \mathbb{R}^n\) such that \(FR_f(X_0, Y, [0,T]) \subseteq \{x \in \mathbb{R}^n : h_X(x) \geq 0\}\) and \(Y \subseteq \{y \in \mathbb{R}^m : h_Y(y) \geq 0\}\).

Moreover if \(\Omega \subseteq X_0\) the following holds,

\[
||V^*(-, 0) - V_i(-, 0)||_1, \Omega \leq \varepsilon \text{ and } ||V^*(-, 0) - V_u(-, 0)||_1, \Omega \leq \varepsilon,
\]

(25)

where \(\varepsilon = \int_0^T V_u(x, 0) - V_i(x, 0) dx\) and \(V^*\) is the value function of the optimal control problem \(\{c, g, f, X_0, Y, T\}\).

Proof: We first prove \(V_i\) is a sub-value function by showing \(V_i\) satisfies the dissipation inequalities (17) and (18), as it follows by Proposition 2 that such a function must be a sub-value function of \(\{c, g, f, X_0, Y, T\}\).

As \(k_{0,i} \in \sum_{SOS}\) it follows \(k_{0,i}(x) \geq 0\) for all \(x \in \mathbb{R}^n\). Moreover since a positive function multiplied by a positive function is a positive function we furthermore deduce

\[
V_i(x, T) \leq g(x) \quad \forall x \in \{y \in \mathbb{R}^m : h_X(y) \geq 0\}.
\]
As \(FR_f(X_0, Y, [0, T]) \subseteq \{ x \in \mathbb{R}^n : h_x(x) \geq 0 \} \) the above inequality also holds for all \(x \in FR_f(X_0, Y, [0, T]) \). Therefore \(V_t \) satisfies Inequality (18).

As \(k, l \in \mathbb{N} \) it follows for all \(x \in \{ y \in \mathbb{R}^n : h_x(y) \geq 0 \}, u \in \{ w \in \mathbb{R}^m : h_y(w) \geq 0 \}, \) and \(t \in \{ s \in \mathbb{R} : [s][T - s] \geq 0 \} \)

\[
\nabla V_t(x, t) + c(x, u, t) + \nabla V_t(x, t)^T f(x, u) \geq 0.
\]

As \(FR_f(X_0, Y, [0, T]) \subseteq \{ x \in \mathbb{R}^n : h_x(x) \geq 0 \}, Y \subseteq \{ w \in \mathbb{R}^m : h_y(w) \geq 0 \} \) and \([0, T] = \{ s \in \mathbb{R} : [s][T - s] \geq 0 \} \) it follows \(V_t \) satisfies Inequality (17). Therefore we conclude \(V_t \) is a sub-value function as it satisfies the Inequality (17) and (18). Moreover, it follows by a similar argument to the above that \(V_u \) is a super-value function.

Finally the error bounds in (25) immediately follows using \(V_t(x, 0) \leq V^*(x, 0) \leq V_u(x, 0) \) for all \(x \in \Omega \subseteq X_0 \) and \(t \in [0, T] \).

In Lemma 3 we saw how sub-value and super-value functions over- and inner-bound reachable sets. In the next corollary we will show how solutions to the SOS Optimization Problem (24) also over and inner bound reachable sets.

Corollary 2: Suppose \(V_u \) and \(V_t \) solve \(S(T, 0, g, f, h_x, h_y, \Omega) \), given in (24). Let \(Y = \{ u \in \mathbb{R}^m : h_y(u) \geq 0 \} \) and \(X_0 = \{ x \in \mathbb{R}^n : c(x) \leq 1 \} \). Suppose for some \(X \subseteq \mathbb{R}^n \) such that \(BR_f(X_0, Y, \{ T \}) \subseteq X \) the following holds \(FR_f(X, Y, [0, T]) \subseteq \{ x \in \mathbb{R}^n : h_x(x) \geq 0 \} \). Then

\[
\{ x \in X : V_u(x, 0) \leq 1 \} \subseteq BR_f(X_0, Y, \{ T \}) \subseteq \{ x \in X : V_t(x, 0) \leq 1 \}.
\]

Proof: By Corollary 1 the functions \(V_u \) and \(V_t \) are super-value and sub-value functions to the optimal control problem \(\{ 0, g, f, X, Y, T \} \) where \(BR_f(X_0, Y, \{ T \}) \subseteq X \). Therefore by Lemma 3 the set containments (26) hold.

For reachable set analysis using \(S(T, 0, g, f, h_x, h_y, d, \Omega) \), given in (24), typically we select \(h_x = R^2 - x_1^2 - x_2^2 \) for \(R > 0 \) so \(\{ x \in \mathbb{R}^2 : h_x(x) \geq 0 \} = B_{R^2} \). Then, assuming the set \(BR_f(X_0, f, T) \) is compact, we select \(R > 0 \) sufficiently large enough for there to exist a compact set \(X \subseteq \mathbb{R}^n \) such that \(BR_f(X_0, f, T) \subseteq X \) and \(FR_f(X, Y, [0, T]) \subseteq BR_f(X_0, f, T) \). Knowledge of the set \(X \subseteq \mathbb{R}^n \) is not necessary to construct an outer approximation of the backward reachable set; as by Corollary 2 we have \(BR_f(X_0, Y, \{ T \}) \subseteq \{ x \in X : V_t(x, 0) \leq 1 \} \subseteq \{ x \in \mathbb{R}^n : V_t(x, 0) \leq 1 \} \), where \((V_u, V_t) \) solve \(S(T, 0, g, f, h_x, h_y, d, \Omega) \).

A. Numerical Example: Using SOS To Numerically Approximating A Non-Differentiable Value Function

Let \(X_0 = [-8, 8] \); \(T > 0 \); \(Y = [-1, 1] \); \(c(x, t) = 0 \) for all \(x \in \mathbb{R} \) and \(t > 0 \); \(g(x) = x \); \(f(x, u) = xu \) and consider the optimal control problem \(\{ c, g, f, X_0, Y, T \} \). It was shown in [17] that the value function of \(\{ c, g, f, X_0, Y, T \} \) can be analytically found as

\[
V(x, t) = \begin{cases}
\exp(t - x) \text{ if } x > 0, \\
\exp(T - t) \text{ if } x < 0, \\
0 \text{ if } x = 0.
\end{cases}
\]

We note that \(V \) is not differentiable at \(x = 0 \) but can be shown to satisfy the associated HJB PDE away from \(x = 0 \). This problem shows how the value function can be non-smooth even for simple optimal control problems with polynomial vector field and cost. We next attempt to find a polynomial, and thus smooth, super-value and sub-value functions of this optimal control problem that is close to the non-smooth value function given in (27) under the \(L_1 \) norm.

We numerically solved the SOS optimization problem \(S(T, c, g, f, h_x, h_y, d, \Omega) \) with \(T = 1; c, g \) and \(f \) the same as the above optimal control problem; \(h_x = 8^2 - x_1^2; h_y(u) = (-1 - u)(u - 1); d = 4; \Omega = [-2, 2] \). The result is displayed in Figure 1 where the exact value function, given in (27), is plotted as the dotted line and super-value and sub-value functions are plotted as the blue and red line respectively. We see even though the exact value function is discontinuous at \(x = 0 \) the smooth polynomial sub-value is a reasonable tight approximation.
B. Numerical Examples: Using SOS To Solve The HJB PDE For Reachable Set Approximation

Example 1: Let us now consider the Van der Pol oscillator defined by the nonlinear ODE:

$$\begin{align*}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= -x_1(t) + x_2(t)(1 - x_1^2(t)),
\end{align*}$$

(28)

To find the forward reachable set for the Van der Pol oscillator we solved the optimization problem $S(T, c, g, f, h_Y, h_Y, d, \Omega)$, found in (24), with $T = 1$; $c = 0$; $g(x) = x_1^2 + x_2^2$; $f(x) = [-x_2, -x_1 + x_2(1 - x_1^2)]^T$; $h_Y(x) = 10^2 - x_1^2 - x_2^2$; $h_Y(u) = 0$; $d = 4$ and $\Omega = [-2, 2] \times [-2, 2]$. The sublevel sets $\{x \in \mathbb{R}^n : V_u(x, 0) \leq 1\}$ and $\{x \in \mathbb{R}^n : V_l(x, 0) \leq 1\}$, where (V_u, V_l) solve the above optimization problem, are then plotted in Figure 2 as the black line and green line respectively. As shown in Corollary 2 these sublevel sets are over and under set approximations of $BR_f(X_0, Y, \{T\})$, which was shown to be equal to $FR_{-f}(X_0, Y, \{T\})$ in Lemma 2 where $X_0 = \{x \in \mathbb{R}^n : g(x) \leq 1\}$. This is clearly demonstrated in Figure 2 where the red points represent initial points contained inside the set X_0 and blue points represent points the solution map can transition to at time $T = 1$ starting in X_0, where both sets of points were approximately found from forward time integrating (28).

Example 2: Let us consider the linear ODE:

$$\dot{x}(t) = u(t)Ax(t),$$

(29)

where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Since the eigenvalues of A are $\pm i$ it follows (29) produces non-stable circular trajectories for fixed input $u(t) \equiv u \in \mathbb{R}^m$.

To find the forward reachable set for this linear ODE (29) for fixed input $u(t) \equiv 1$ we solved the optimization problem $S(T, c, g, f, h_Y, h_Y, d, \Omega)$, found in (24), for both $d = 4$ and $d = 4$ with $T = 5$; $c = 0$; $g(x) = (x_1 - 1.5)^2 + x_2^2$; $f(x) = -Ax$; $h_Y(x) = 10^2 - x_1^2 - x_2^2$; $h_Y(u) = 0$; and $\Omega = [-3, 3] \times [-3, 3]$. We plotted the 1-sublevel sets at time 0 of the solutions to these optimization problem, V_u and V_l, in Figure 3 as the black line and green line respectively; where the dotted lines are for $d = 3$ and filled lines for $d = 4$. Here the red points represent initial points contained inside the set $X_0 = \{x \in \mathbb{R}^n : g(x) \leq 1\}$ and blue points represent points the solution map can transition to at time $T = 5$ starting in X_0; where both sets of points were approximately found from forward time integrating (29). As expected, by Corollary 2 we see these sublevel sets under and over approximate the reachable set respectively. We also see increasing the degree makes our approximations tighter.

We have furthermore approximated the forward reachable set of the linear ODE (29) when the input is allowed to vary but constrained inside the set $Y = [-2, 2]$. To do this we solved the optimization problem $S(T, c, g, f, h_X, h_Y, d, \Omega)$, found in (24), with $T = 0.5$; $c = 0$; $g(x) = (x_1 - 1.5)^2 + x_2^2$; $f(x) = -Ax$; $h_X(x) = 4^2 - x_1^2 - x_2^2$; $h_Y(u) = (u + 2)(2 - u)$; $d = 2$ and $\Omega = [-3, 3] \times [-3, 3]$. In Figure 4 we then plotted $\{x \in \mathbb{R}^2 : V_l(x, 0) \leq 1\}$ as the green line, where (V_u, V_l) solves the above optimization problem. By Corollary 2 the set $\{x \in \mathbb{R}^2 : V_l(x, 0) \leq 1\}$ over approximates the set $BR_f(X_0, Y, \{T\})$, shown in Lemma 2 to be equal to $FR_{-f}(X_0, Y, \{T\})$, where $X_0 = \{x \in \mathbb{R}^n : g(x) \leq 1\}$. This is demonstrated in Figure 4 as the terminal points of the solution map at time $T = 0.5$, represented by the blue points, are all contained inside the green line.

VIII. CONCLUSION

In this paper we have shown if a function satisfies dissipation inequalities then it is a sub-value or super-value function to optimal control problems. Further to this we have given sufficient conditions for the existence of polynomial sub-value and super-value functions to optimal control problems. An SOS optimization problem was proposed that is solved by sub-value and super-value functions of an optimal control problem that have minimum L_1 norm. It was shown how
this SOS optimization problem is able to construct outer and inner set approximations of reachable sets.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under grants No. 1538374 and 1739990.

REFERENCES

[1] Jennifer Kampmeier, Reidar Larsen, Lucas F Migliorini, and Kipp A Larson. Reaction wheel performance characterization using the kepler spacecraft as a case study. In 2018 SpaceOps Conference, page 2563, 2018.

[2] Zhou Chen, De-Yuan Deng, Quan-Sheng Yan, Jin-Zhong Lu, and Jian-Xin Lu. Study on nonlinear lateral parameter bifurcation characteristic of soft footbridge. In IOP Conference Series: Materials Science and Engineering, volume 322, page 042036. IOP Publishing, 2018.

[3] Bruno Eckhardt, Edward Ott, Steven H Strogatz, Daniel M Abrams, and Allan McRobie. Modeling walker synchronization on the millennium bridge. Physical Review E, 75(2):021110, 2007.

[4] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on automatic control, 50(7):947–957, 2005.

[5] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA, 2005.

[6] Michael G Crandall, Hitoshi Ishii, and Pierre-Louis Lions. Users guide to viscosity solutions of second order partial differential equations. Bulletin of the American mathematical society, 27(1):1–67, 1992.

[7] Zhong Wang and Yan Li. An adaptive cross approximation method for the hamilton-jacobi-bellman equation. IFAC-PapersOnLine, 50(1):6289–6294, 2017.

[8] Changhuang Wan, Ran Dai, and Ping Lu. Alternating minimization algorithm for polynomial optimal control problems. Journal of Guidance, Control, and Dynamics, pages 1–14, 2019.

[9] Tyler H Summers, Konstantin Kunz, Nikolaos Kariotoglou, Maryam Kamgarpour, Sean Summers, and John Lygeros. Approximate dynamic programming via sum of squares programming. In 2013 European Control Conference (ECC), pages 191–197. IEEE, 2013.

[10] Yoke Peng Leong, Matanya B Horowitz, and Joel W Burdick. Linearly solvable stochastic control lyapunov functions. SIAM Journal on Control and Optimization, 54(6):3106–3125, 2016.

[11] Mark R Greenstreet and Ian Mitchell. Reachability analysis using polygonal projections. In International Workshop on Hybrid Systems: Computation and Control, pages 103–116. Springer, 1999.

[12] John Maidens and Murat Arcak. Reachability analysis of nonlinear systems using matrix measures. IEEE Transactions on Automatic Control, 60(1):265–270, 2015.

[13] Erin Summers, Abhijit Chakraborty, Weehong Tan, Ufuk Topcu, Pete Seiler, Gary Balas, and Andrew Packard. Quantitative local l2-gain and reachability analysis for nonlinear systems. International Journal of Robust and Nonlinear Control, 23(10):1115–1135, 2013.

[14] He Yin, Andrew Packard, Murat Arcak, and Peter Seiler. Reachability analysis using dissipation inequalities for nonlinear dynamical systems. arXiv preprint arXiv:1808.02585, 2018.

[15] He Yin, Andrew Packard, Murat Arcak, and Pete Seiler. Finite horizon backward reachability analysis and control synthesis for uncertain nonlinear systems. arXiv preprint arXiv:1810.00313, 2018.

[16] Morgan Jones and Matthew M Peet. Using sos and sublevel set volume minimization for estimation of forward reachable sets. arXiv preprint arXiv:1901.11174, 2019.

[17] Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, 2011.