LETTER

New physics and signal-background interference in associated pp → HZ production

To cite this article: Christoph Englert et al 2016 EPL 114 31001

View the article online for updates and enhancements.

Related content
- The HiggsTools handbook: a beginners guide to decoding the Higgs sector
 M Boggia, J M Cruz-Martinez, H Frellesvig et al.
- Precision measurements of Higgs couplings: implications for new physics scales
 C Englert, A Freitas, M M Mühlleitner et al.
- Topical Review
 W Bernreuther

Recent citations
- Dimension-six electroweak top-loop effects in Higgs production and decay
 Eleni Vryonidou and Cen Zhang
New physics and signal-background interference in associated pp → HZ production

Christoph Englert1, Rogerio Rosenfeld2, Michael Spannowsky3 and Alberto Tonero2

1 SUPA, School of Physics and Astronomy, University of Glasgow - Glasgow G12 8QQ, UK
2 ICTP-SAIFR & IFT UNESP - Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, Brazil
3 Institute for Particle Physics Phenomenology, Department of Physics, Durham University
Durham DH1 3LE, UK

received 25 March 2016; accepted in final form 16 May 2016
published online 31 May 2016

PACS 13.85.-t – Hadron-induced high- and super-high-energy interactions (energy > 10 GeV)
PACS 12.60.-i – Models beyond the standard model

Abstract – We re-investigate electroweak signal-background interference in associated Higgs production via gluon fusion in the presence of new physics in the top Higgs sector. Considering the full final state \(pp \rightarrow b\bar{b}\ell^+\ell^- (\ell = e, \mu) \), we discuss how new physics in the top Higgs sector that enhances the \(ZZ \) component can leave footprints in the \(HZ \) limit setting. In passing we investigate the phenomenology of a class of new physics interactions that can be genuinely studied in this process.

Copyright © EPLA, 2016

Introduction. – After the Higgs discovery in 2012 and initial property measurements \([1,2]\) in the so-called \(\kappa \) framework, the phenomenology community has now moved towards understanding constraints in the dimension-six effective field theory (EFT) extension of the Standard Model (SM), which provides a theoretically clean and well-defined approach to constrain the presence of new physics interactions with minimal assumptions \([3–7]\).

The field of Standard Model EFT has seen a rapid development recently. Not only have the run-I measurements by ATLAS and CMS been interpreted in terms of the dimension-six EFT extension \([8–26]\), but the EFT framework has also been extended to next-to-leading order \([27–35]\). Measurement strategies that take into account these corrections via renormalization group improved calculations have been presented in \([36,37]\).

Due to the large number of effective operators that are relevant to Higgs physics, it becomes essential to collect information from all possible processes related to the Higgs boson, especially at the LHC run II and the future high-luminosity phase. Since a single effective operator can contribute to different processes, there are correlations among them that can be used to find bounds on the Wilson coefficients of different operators. Measurements of the associated Higgs production \([20,36,38]\), Higgs+jet production \([39–45]\), top-quark–associated and multi-Higgs \([46–50]\) production and the recently developed Higgs off-shell measurements in \(gg \rightarrow ZZ \) \([51–53]\) will be pivotal to obtain a fine-grained picture of potential compatibility of the Higgs discovery with the SM expectation. In particular, the latter production mechanism has been motivated as an excellent candidate to constrain new physics effects by exploiting large momentum transfers to break degeneracies of new physics interactions in the on-shell Higgs phenomenology \([54–57]\).

Similarly, high momentum transfers in the associated Higgs production \(pp \rightarrow HZ \) are sensitive probes of new interactions \([20,58–60]\). The reason is the existence of a destructive interference between the triangle and box contributions in the SM that can be lifted by new or anomalous couplings. Furthermore, the high momentum transfer provides another avenue to discriminate the Higgs signal from the background relying on jet substructure methods \([61–65]\).

While jet substructure analyses provide an extremely versatile and adaptable tool in new physics and Higgs searches, the mass resolution of Higgs decays \(H \rightarrow bb \) in such a search is a limiting factor. This becomes a challenge especially if cross-sections or beyond the SM-induced deviations thereof become small for large backgrounds.

It is known that the gluon fusion-induced associated Higgs production \([66–68]\), while only contributing \(\sim 10\% \) of the inclusive \(HZ \) production cross-section \([69–81]\), becomes relevant at large momentum transfers due to the top quark threshold \([58,59]\). A similar argument applies to the non-decoupling of \(gg \rightarrow H \rightarrow ZZ \) at
high momentum transfers [51,52,82]. Therefore, the same type of physics can enhance both \(pp \rightarrow HZ \) and \(pp \rightarrow ZZ \). We are therefore tempted to ask the following question: when studying the full final state \(pp \rightarrow bb\ell^+\ell^- \) as signal for \(pp \rightarrow H(\rightarrow bb)Z(\rightarrow \ell^+\ell^-) \) (see footnote 1) for kinematics that allow the discovery of the Higgs boson in the associated production, how important is the irreducible \(pp \rightarrow Z(\rightarrow bb)Z(\rightarrow \ell^+\ell^-) \) background, keeping in mind an imperfect \(H \rightarrow bb \) resolution?

To answer this question we organise this letter as follows. First we introduce a minimal set of operators which impact the two contributions \(pp \rightarrow HZ \) and \(pp \rightarrow ZZ \) in a different way, but necessarily related through gauge invariance. We then investigate the phenomenology of high-\(p_T \) final states at the parton level. Subsequently, we show how our findings translate to the fully hadronised final state before we conclude.

New physics effects in gluon-initiated \(HZ \) production. – Gluon-initiated associated production has been shown to contribute significantly to \(pp \rightarrow HZ \) in the boosted regime at the LHC and important consequences for new physics searches can be obtained by looking at this process [58,59,79]. New physics can potentially modify the associated Higgs production both in the quark- and gluon-initiated channels. The quark-initiated channel may be altered at leading order through modified Higgs couplings [37] or at next to leading order through the influence of new particles or effective operators in loops [59,83]. Similarly, the gluon-initiated channel may receive corrections through modified Higgs and top couplings to SM states.

In principle, all dimension-six operators that are relevant for the Higgs sector should be considered since at the very least they can change the Higgs width, which affects the full partonic final state. However, several of these operators are already constrained from other observables, such as the \(Z \)-pole properties measured at LEP1. In order to keep our discussion transparent, we will focus on only two operators that are weakly constrained and are relevant for Higgs production (we adopt the parameterisation of [7,84,85]):

\[
\mathcal{O}_{Ht} = \frac{i\epsilon^{Ht}}{v^2}(J^{\mu}_R)(D^\mu \Phi),
\]

(1)

\[
\mathcal{O}_t = -\frac{\epsilon_t}{v^2}y_W\Phi^\dagger \Phi \cdot Q_L t_R + \text{h.c.}
\]

(2)

with Hermitian covariant derivative \(\Phi^\dagger D^\mu \Phi = \Phi^\dagger(D^\mu \Phi) - (D^\mu \Phi) \Phi \), and \(\Phi \) being the weak doublet that contains the physical Higgs \(\Phi \supset H \).

The operator in eq. (1) modifies the coupling of the right-handed top quark to the \(Z \) boson \(t_R t_R gZ \) by a factor

\[2 \frac{g^2}{3c_W} - 2 \frac{g^2}{3c_W} + g \frac{\tilde{c}_{Ht}}{2c_W} \]

(3)

It affects the \(Ztt \) coupling but not \(Htt \) and introduces a new \(ttHZ \) coupling. As required by gauge invariance, the derivative coupling of the top quark to the neutral Goldstone boson gets also shifted by the same quantity. Couplings to left-handed quark doublets are constrained by data on \(Z \rightarrow bb \) and will not change the qualitative outcome of our discussion\(^2\). Operators of this form but involving light fermions are constrained by precision electroweak measurements \(|c_{HW}| \lesssim 2\% \) and assuming a trivial flavor structure of the UV dynamics will directly constrain the interaction of eq. (1), which is otherwise unconstrained at the tree level by electroweak precision data and has no impact on Higgs decays (see, e.g., [7] for a comprehensive discussion). Higher-order corrections, however, re-extract a dependence, see [87]. We will ignore this potential constraint for the time being, but will come back to it later.

The operator in eq. (2) modifies the top Yukawa coupling by a factor proportional to the Wilson coefficient \(\tilde{c}_t, y_t \rightarrow y_t(1 + \tilde{c}_t) \), while leaving the top mass as in the SM with a simple redefinition of the top quark field. The non-derivative couplings of the top quark to the neutral Goldstone boson are unchanged.

We show in fig. 1 the relevant Feynman diagrams for \(pp \rightarrow HZ \) and \(pp \rightarrow ZZ \) ignoring the diagrams involving the unphysical Goldstone bosons. Note, in particular, the new effective vertex \(ttHZ \) introduced by the operator in eq. (1), not present in the SM, which gives rise to the Feynman diagram contribution to the gluon-initiated amplitude shown in fig. 1(a), and which may affect the cancellation between triangle and box diagrams for \(pp \rightarrow HZ \) in the SM, leading to an enhanced cross-section. This cancellation is also impacted by the change in the top Yukawa coupling introduced by the operator in eq. (2). In fact, the effect of a flipped top Yukawa coupling (i.e., with a coupling of opposite sign with respect to the SM, corresponding to \(\tilde{c}_t = -2 \)) on \(pp \rightarrow HZ \) was studied in [60].

\[^{2}\text{Interactions of this type can typically arise in composite Higgs scenarios [86], which will also leave footprints in } q\bar{q} \rightarrow HZ \text{ as a function of the fine-tuning parameter } v^2/f^2, \text{ where } f \text{ is the pion decay constant analogue.}\]
New physics and signal-background interference in associated $pp \to HZ$ production

Together these operators provide a parameterisation that allow us to “template” the $gg \to ZZ$ and $gg \to HZ$ components of the full partonic final state $pp \to b\bar{b}\ell^+\ell^-$ in a gauge-invariant fashion, and, therefore, gives us a well-defined approach to study the signal-background interference in this final state. Note that since these operators only modify the ttH and $t\bar{t}Z$ couplings, they do not affect the tree-level $q\bar{q} \to HZ$ process. Only the operator in eq. (2) changes the Higgs branching ratios (by a few percent in the relevant $BR(H \to b\bar{b})$ in the cases explored here) and it has been taken into account.

The new interactions arising from eq. (1) and eq. (2) were implemented using FeynRules [88]. We calculate the one-loop gluon-initiated $gg \to (HZ + ZZ) \to b\bar{b}\ell^+\ell^-$ production amplitudes using the FeynArts, FormCalc and LoopTools [89,90] framework which we interlace with VP\textsc{fnlo} [91] to perform the phase space integration and generate events in the Les Houches standard and keep the full quark mass dependences throughout. We pass these events to \textsc{Herwig}++ for showering and hadronization. The $q\bar{q}$-initiated process is simulated with Mad\textsc{Graph5} [93] using an identical input parameter setting and passed through \textsc{Herwig}++ to obtain the full hadronic final state. The respective samples are normalised to the NLO QCD predictions of the SM [68,69]. We use a K-factor of 1.2 and 1.8 for $q\bar{q}$ and gg-initiated processes, respectively. We focus on collisions at 13 TeV centre-of-mass energy.

Parton level analysis. Before we analyse the full hadron level, it is worthwhile to re-investigate the order of magnitude of the expected interference effects between the $gg \to HZ$ and $gg \to ZZ$ parts in the full $pp \to HZ + ZZ$ final state (see also [79] for an earlier discussion). To this end, we show in fig. 2 the parton level comparison of the invariant mass distribution between HZ and ZZ production for the gluon-initiated $b\bar{b}\ell^+\ell^-$ (in this case $\ell = \mu$) production. Note the rise of the cross-section near the $2m_t$ threshold. For these selection requirements we find a SM cross-section of 0.9 fb (including the flat K-factor). A choice of $\hat{c}_{Ht} = 1$, $\hat{c}_t = 0$ increases this cross-section by 70%. A quantitatively identical enhancement can be achieved for $\hat{c}_{Ht} = 0$, $\hat{c}_t \simeq 0.33$.

Signal-background interference between the two contributions is in general a small effect and the relative size of HZ dominates over ZZ as a consequence of the relative branching ratio suppression of $H \to b\bar{b}$ (60%) and $Z \to b\bar{b}$ (15%). This is left unchanged for changes in \hat{c}_t [79], however, there will be modifications from eq. (2).

In order to obtain a first estimate of the sensitivity to the effective operators, we consider first the process $pp \to (HZ + ZZ) \to b\bar{b}\ell^+\ell^-$ again at parton level. Based on the event simulation described above, we select events with $p_T(\ell^+\ell^-) > 150 \text{ GeV}$, $110 \text{ GeV} < m(b\bar{b}) < 140 \text{ GeV}$. (4)

As an example, we show in fig. 3 the effect of $\hat{c}_{Ht} = 1$. One can see that this operator can dramatically impact the boosted Higgs regime due to the lifting of the SM cancellations and also the derivative of the induced coupling [85].

In order to derive exclusion regions in the $(\hat{c}_t, \hat{c}_{Ht})$-plane we perform a log-likelihood hypothesis test based on a shape comparison of the $p_T(b\bar{b})$ distribution using the c_L method [94–96].

In fig. 4 we show the expected exclusion for a luminosity of 100 fb$^{-1}$ based on our parton level results. While the resonant and continuum ZZ contributions are largely suppressed, the gauge-invariant extension of the top loop-induced $gg \to ZZ$ diagram\footnote{One can understand the modification of the $Zt\bar{t}$ interaction as replacing $H \to (H)$.} introduces the $t\bar{t}HZ$ interaction. The result of fig. 4 indicates that the modification according to the operator in eq. (1), even for small choices in agreement with precision analyses [7], can in principle impact the limit setting procedure in the associated Higgs production through sculpting the $p_T(b\bar{b})$ distribution, especially when marginalising over eq. (2) in a global fit where degenerate operator directions will influence the expected exclusion.
One might worry about the validity of an effective field
theory in our analysis. This issue has been a subject of
recent discussion, see, e.g., [37,97]. The coefficients of
the dimension-6 operators can be related to the scale
where new physics appears by $\bar{c} \approx g^2 v^2/M^2$, where g
is a coupling constant of the heavy states with SM
particles. Further suppression factors arise in the case in which
an operator is generated at loop level. We can therefore
put an upper bound in the new mass scale from requir-
ing that the underlying theory is strongly coupled, i.e.,
$g = 4\pi$: $M < 4\pi v/\sqrt{s} \approx 3$ TeV for $c = \mathcal{O}(1)$. Since our
analysis relies on $p_T < 1$ TeV we do not violate this upper
bound.

Showering and hadronization. The results of the par-
ton analysis detailed in the previous section are known to
change substantially when we turn to the full hadron
level final state and perform a realistic reconstruction [58].
Based on the event generation strategy outlined above, we
apply typical $H\gamma$ final state selection cuts by

i) requiring exactly 2 oppositely charged same-flavor
leptons satisfying $|\eta| < 2.5$, $p_T(\ell) > 30$ GeV,

ii) requiring that these leptons are compatible with the
Z boson mass: 80 GeV $\lt m(\ell^+\ell^-) \lt 100$ GeV,

iii) and requiring boosted topologies $p_T(\ell^+\ell^-) \lt 200$ GeV.

iv) We then perform a typical BDRS analysis [61]: All
the remaining hadronic activity is clustered using
FASTJET [98] into a Cambridge-Aachen fat jet with
$R = 1.2$. The boosted Higgs candidate jet has to
satisfy $p_TJ > 200$ GeV and at least one such object
is required in $|\eta| < 2.5$. The fat jet is filtered, mass-
dropped and double b-tagged with a b-tag efficiency of
60% (2% fake rate), yielding a total efficiency of 36%.
and experimental sources and are therefore very likely to worsen, in particular in a global fit when more operators are included. In particular, the theoretical uncertainties due to missing higher orders in $gg \rightarrow HZ$ are currently large for boosted kinematics $\sim O(30\%)$ [68]. Potential improvements in particular related to experimental systematics are hard to foresee at this stage in the LHC program, but our results suggest that the boosted Higgs analysis should continue to receive attention.

Summary and conclusions. – In this letter we have re-investigated electroweak signal-background interference in the gluon-initiated associated Higgs production in the light of the expected efficiencies and selection requirements of the fully hadronized final state. While the $HZ + ZZ$ signal-background interference is suppressed, new physics effects that impact $pp \rightarrow ZZ$ can also leave footprints in the boosted analyses $pp \rightarrow HZ$ through new interactions related by gauge invariance. However, a robust limit setting in this channel will require a large luminosity. Even at these large luminosities the constraints on c_H will not be competitive with electroweak precision constraints under the assumption of a trivial flavor structure (as commonly done in Higgs fits at this stage in the LHC phenomenology program). Relaxing this assumption, the associated Higgs production via gluon fusion can act as a test of this hypothesis, especially when other measurements point towards the SM.

CE thanks the organisers of the 2014 ICTP-SAIFR GOAL Workshop, where this work was initiated and MARCO FARINA for helpful discussions. MS is supported by the European Commission through ITN PITN-GA-2012-316704 (“HiggsTools”). AT is supported by the São Paulo Research Foundation (FAPESP) under grants 2011/11973-4 and 2013/02404-1. RR is partially supported by the FAPESP grant 2011/11973-4 and 2013/02404-1. RR is partially supported by the European Commission through ITN PITN-GA-2012-316704 (“HiggsTools”). AT is supported by the São Paulo Research Foundation (FAPESP) under grants 2011/11973-4 and 2013/02404-1. RR is partially supported by the FAPESP grant 2011/11973-4 and 2013/02404-1. RR thanks CÉDRIK DELAUNAY and HEIDI RZEHAK for early discussions on some topics of this paper.

REFERENCES

[1] Chaturichyan S. et al., Phys. Lett. B, 716 (2012) 30.
[2] Aad G. et al., Phys. Lett. B, 716 (2012) 1.
[3] Buchmuller W. and Wyler D., Nucl. Phys. B, 268 (1986) 621.
[4] Hagiwara K., Peccei R. D., Zeppenfeld D. and Hikasa K., Nucl. Phys. B, 282 (1987) 253.
[5] Guidice G. F., Grojean C., Pomarol A. and Rattazzi R., JHEP, 06 (2007) 045.
[6] Grzadkowski B., Iskrzynski M., Misiak M. and Rosiek J., JHEP, 10 (2010) 085.
[7] Contino R., Ghezzi M., Grojean C., Mühlleitner M. and Spira M., JHEP, 07 (2013) 035.
[8] Azatov A., Contino R. and Galloway J., JHEP, 04 (2012) 127; 04 (2013) 140.
[9] Corbett T., Eboli O. J. P., Gonzalez-Fraile J. and Gonzalez-Garcia M. C., Phys. Rev. D, 87 (2013) 015022.
[10] Corbett T., Eboli O. J. P., Gonzalez-Fraile J. and Gonzalez-Garcia M. C., Phys. Rev. D, 86 (2012) 075013.
[11] Espinosa J. R., Grojean C., Mühlleitner M. and Trottm M., JHEP, 12 (2012) 045.
[12] Plehn T. and Rauch M., EPL, 100 (2012) 11002.
[13] Caroli, Falowski A., Kuflik E., Volansky T. and Zupan J., JHEP, 10 (2012) 196.
[14] Peskin M. E., arXiv:1207.2516 [hep-ph] (2012).
[15] Dumont B., Fichet S. and von Gersdorff G., JHEP, 07 (2013) 065.
[16] Djouadi A. and Moreau G. Eur. Phys. J. C, 73 (2013) 2512.
[17] Lopez-Val D., Plehn T. and Rauch M., JHEP, 10 (2013) 134.
[18] Englert C., Freitas A., Mühlleitner M. M., Plehn T., Rauch M., Spira M. and Walz K., J. Phys. G, 41 (2014) 113001.
[19] Ellis J., Sanz V. and You T., JHEP, 07 (2014) 036.
[20] Ellis J., Sanz V. and You T., JHEP, 03 (2015) 157.
[21] Falowski A. and Riva F., JHEP, 02 (2015) 039.
[22] Corbett T., Eboli O. J. P., Goncalves D., Gonzalez-Fraile J., Plehn T. and Rauch M., JHEP, 08 (2015) 156.
[23] Buchalla G., Cato O., Celis A. and Krause C., arXiv:1511.00988 [hep-ph] (2015).
[24] ATLAS Collaboration (Aad G. et al.), arXiv:1508.02507 [hep-ex] (2015).
[25] Bechtler L. and Trottm M., JHEP, 02 (2016) 069.
[26] Englert C., Kogler R., Schulz H. and Spannowsky M., arXiv:1511.05170 [hep-ph] (2015).
[27] Passarino G., Nucl. Phys. B, 868 (2013) 416, arXiv:1209.5538 [hep-ph].
[28] Jenkins E. E., Manohar A. V. and Trottm M., JHEP, 10 (2013) 087.
[29] Jenkins E. E., Manohar A. V. and Trottm M., Phys. Lett. B, 726 (2013) 697.
[30] Jenkins E. E., Manohar A. V. and Trottm M., JHEP, 01 (2014) 035.
[31] Alonso R., Jenkins E. E., Manohar A. V. and Trottm M., JHEP, 04 (2014) 159.
[32] Hartmann C. and Trottm M., JHEP, 07 (2015) 151.
[33] Ghezzi M., Gomez-Ambrosio R., Passarino G. and Uccirati S., JHEP, 07 (2015) 175.
[34] Hartmann C. and Trottm M., Phys. Rev. Lett., 115 (2015) 191801.
[35] Gröber R., Mühlleitner M., Spira M. and Streicher J., JHEP, 09 (2015) 092.
[36] Isidori G. and Trottm M., JHEP, 02 (2014) 082.
[37] Englert C. and Spannowsky M., Phys. Lett. B, 740 (2015) 8.
[38] Biekötter A., Knoche A., Krämer M., Liu D. and Riva F., Phys. Rev. D, 91 (2015) 055029.
[39] Bauer U. and Glover E. W. N., Nucl. Phys. B, 339 (1990) 38.
[40] Harlander R. V. and Neumann T., Phys. Rev. D, 88 (2013) 074015.
[41] Banfi A., Martin A. and Sanz V., JHEP, 08 (2014) 053.
[42] Grojean C., Salvioni E., Schlaffer M. and Weiler A., *JHEP*, **05** (2014) 022.
[43] Schlaffer M., Spannowsky M., Takeuchi M., Weiler A. and Wymant C., *Eur. Phys. J. C*, **74** (2014) 1210.
[44] Buschmann C., Englert C., Goncalves D., Plehn T. and Spannowsky M., *Phys. Rev. D*, **90** (2014) 013010.
[45] Langenegger U., Spira M. and Strebel I., arXiv:1507.01373 [hep-ph] (2015).
[46] Barr A. J., Dolan M. J., Englert C. and Spannowsky M., *Phys. Lett. B*, **728** (2014) 308.
[47] Barr A. J., Dolan M. J., Englert C., Ferreira de Lima D. E. and Spannowsky M., *JHEP*, **02** (2015) 016.
[48] Papaefstathiou A. and Sakurai K., *JHEP*, **02** (2016) 006.
[49] Azatov A., Contino R., Panico G. and Son M., *Phys. Rev. D*, **92** (2015) 055001.
[50] He H.-J., Ren J. and Yao W., *Phys. Rev. D*, **93** (2016) 015003.
[51] Kauer N. and Passarino G., *JHEP*, **08** (2012) 116.
[52] Kauer N., *Mod. Phys. Lett. A*, **28** (2013) 1330015.
[53] Englert C. and Spannowsky M., *Phys. Rev. D*, **90** (2014) 053003.
[54] Azatov A., Grojean C., Paul A. and Salvioni E., Zh. Eksp. Teor. Fiz., **147** (2015) 410 (J. Exp. Theor. Phys., **120** (2015) 354).
[55] Cacciapaglia G., Deandrea A., Drieu La Rochelle G. and Flament J.-B., *Phys. Rev. Lett.*, **113** (2014) 201802.
[56] Englert C., Soreq Y. and Spannowsky M., *JHEP*, **05** (2015) 145.
[57] Buschmann M., Goncalves D., Kuttimalai S., Schonherr M., Krauss F. and Plehn T., *JHEP*, **02** (2015) 038.
[58] Englert C., McCullough M. and Spannowsky M., *Phys. Rev. D*, **89** (2014) 013013.
[59] Harlander R. V., Liebler S. and Zirke T., *JHEP*, **02** (2014) 023.
[60] Hespel B., Maltoni F. and Vryonidou E., *JHEP*, **06** (2015) 065.
[61] Butterworth J. M., Davison A. R., Rubin M. and Salam G. F., *Phys. Rev. Lett.*, **100** (2008) 242001.
[62] Soper D. E. and Spannowsky M., *Phys. Rev. D*, **84** (2011) 074002.
[63] Soper D. E. and Spannowsky M., *JHEP*, **08** (2010) 029.
[64] Allthaler A. et al., *Eur. Phys. J. C*, **74** (2014) 2792.
[65] Butterworth J. M., Ochoa I. and Scanlon T., *Eur. Phys. J. C*, **75** (2015) 366.
[66] Kneib B. A., *Phys. Rev. D*, **42** (1990) 2253.
[67] Matsura T., Hamberg R. and van Neerven W. L., *Nucl. Phys. B*, **345** (1990) 331.
[68] Altenkamp L., Dittmaier S., Harlander R. V., Rzehak H. and Zirke T. J. E., *JHEP*, **02** (2013) 078.
[69] Hamberg R., van Neerven W. L. and Matsura T., *Nucl. Phys. B*, **359** (1991) 343; **644** (2002) 403.
[70] Han T. and Willenbrock S., *Phys. Lett. B*, **273** (1991) 167.
[71] Ciccolini M. L., Dittmaier S. and Kramer M., *Phys. Rev. D*, **68** (2003) 073003.
[72] Brein O., Djourou A. and Harlander R., *Phys. Lett. B*, **579** (2004) 149.
[73] Ferrera G., Grazzini M. and Tramontano F., *Phys. Rev. Lett.*, **107** (2011) 152003.
[74] Brein O., Harlander R., Wiesemann M. and Zirke T., *Eur. Phys. J. C*, **72** (2012) 1686.
[75] Denner A., Dittmaier S., Kalilwet S. and Muck A., *JHEP*, **03** (2012) 075.
[76] Banfi A. and Cancino J., *Phys. Lett. B*, **718** (2012) 499.
[77] Dawson S., Han T., Lai W. K., Leibovich A. K. and Lewis I., *Phys. Rev. D*, **86** (2012) 074007.
[78] Brein O., Harlander R. V. and Zirke T. J. E., *Comput. Phys. Commun.*, **184** (2013) 998.
[79] Goncalves D., Krauss F., Kuttimalai S. and Maierrohfer P., *Phys. Rev. D*, **92** (2015) 073006.
[80] Ferrera G., Grazzini M. and Tramontano F., *Phys. Lett. B*, **740** (2015) 51.
[81] Campbell J. M., Ellis R. K. and Williams C., arXiv:1601.00658 [hep-ph] (2016).
[82] Glover E. W. N. and van der Bij J. J., *Phys. Lett. B*, **219** (1989) 488.
[83] Englert C. and McCullough M., *JHEP*, **07** (2013) 168.
[84] Aloulou A., Fuku B. and Sanz V., *JHEP*, **04** (2014) 110.
[85] Bylund O. B., Maltoni F., Tsintikos L., Vryonidou E. and Zhang C., arXiv:1601.08193 [hep-ph] (2016).
[86] Ferretti G., *JHEP*, **06** (2014) 142.
[87] Dror J. A., Farina M., Salvioni E. and Serra J., *JHEP*, **01** (2016) 071.
[88] Aloulou A., Christensen N. D., Degrande C., Duhr C. and Fuku B., *Comput. Phys. Commun.*, **185** (2014) 2250.
[89] Hahn T. and Perez-Victoria M., *Comput. Phys. Commun.*, **118** (1999) 153.
[90] Hahn T., *Comput. Phys. Commun.*, **140** (2001) 418.
[91] Arnold K. et al., *Comput. Phys. Commun.*, **180** (2009) 1661.
[92] Bahr M. et al., *Eur. Phys. J. C*, **58** (2008) 639.
[93] Alwall J., Frederix R., Frixione S., Hirschi V., Maltoni F., Mattelaer O., Shao H. S., Stelzer T., Torrielli P. and Zaro M., *JHEP*, **07** (2014) 079.
[94] Junk T., *Nucl. Instrum. Methods A*, **434** (1999) 435.
[95] James F., Perrin Y. and Lyons L. (Editors), *Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17–18 January 2000: Proceedings*, 2000, http://weblib.cern.ch/abstract?CERN-2000-005.
[96] Read A. L., *J. Phys. G*, **25** (2002) 2693.
[97] Contino R., Falkowski A., Goertz F., Grojean C. and Riva F., arXiv:1604.06444 [hep-ph] (2016).
[98] Cacciari M., Salam G. P. and Soyez G., *Eur. Phys. J. C*, **72** (2012) 1896.
[99] Röntsch R. and Schulze M., *JHEP*, **07** (2014) 091; **09** (2015) 132.
[100] Khachatryan V. et al., *Eur. Phys. J. C*, **74** (2014) 3060.
[101] Aad G. et al., *JHEP*, **11** (2015) 172.
[102] Buckley A., Englert C., Ferrando J., Miller D. J., Moore L., Russell M. and White C. D., *JHEP*, **04** (2016) 015, arXiv:1512.0390 [hep-ph].
[103] Tonero A. and Rosenfeld R., *Phys. Rev. D*, **90** (2014) 017701.

Christoph Englert et al.