REES ALGEBRAS AND p_g-IDEALS IN A TWO-DIMENSIONAL NORMAL LOCAL DOMAIN

TOMOHIRO OKUMA, KEI-ICHI WATANABE, AND KEN-ICHI YOSHIDA

(Communicated by Irena Peeva)

Abstract. The authors previously introduced the notion of p_g-ideals for two-dimensional excellent normal local domain over an algebraically closed field in terms of resolution of singularities. In this note, we give several ring-theoretic characterizations of p_g-ideals. For instance, an m-primary ideal $I \subset A$ is a p_g-ideal if and only if the Rees algebra $R(I)$ is a Cohen-Macaulay normal domain.

1. Introduction

In [9, Sect. 7], Lipman proved that for any integrally closed m-primary ideal I in a rational singularity of dimension 2, $I^2 = QI$ holds for every minimal reduction Q of I and that all powers of I are integrally closed. This implies that the Rees algebra $R(I) = \bigoplus_{n \geq 0} I^n$ is a Cohen-Macaulay normal domain. Moreover, for any two integrally closed m-primary ideals I, J in a two-dimensional rational singularity, one can choose general elements $a \in I$ and $b \in J$ so that $IJ = aJ + bI$. This fact implies that the bigraded Rees algebra $R(I, J)$ is a Cohen-Macaulay ring. An ideal theory in a two-dimensional rational singularity is established based upon these facts.

In [12], the authors introduced the notion of p_g-ideals for two-dimensional normal local domains using a resolution of singularities; see Section 2 for the definition and basic properties. Notice that the notion of p_g-ideals is a natural generalization of an integrally closed m-primary ideal in a two-dimensional rational singularity; see [12].

The main purpose of this note is to give several ring-theoretic characterizations of p_g-ideals. Namely, we prove the following theorem.

Theorem 1.1 (see Corollary 3.3 and Theorem 4.1). Let (A, m) be a two-dimensional excellent normal local domain over an algebraically closed field. Let $I \subset A$ be an m-primary ideal, and let Q be a minimal reduction of I. Then the following conditions are equivalent:

1. I is a p_g-ideal.
2. $I^2 = QI$ and $\overline{I^n} = \overline{I^n}$ for every $n \geq 1$, where \overline{J} denotes the integral closure of an ideal J.

Received by the editors October 30, 2015 and, in revised form, March 5, 2016.

2010 Mathematics Subject Classification. Primary 13B22; Secondary 13A30, 14B05.

Key words and phrases. p_g-ideal, Rees algebra, normal Hilbert coefficient, Cohen-Macaulay, rational singularity.

This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C) Grant Numbers, 25400050, 26400053, 26400064.

©2016 American Mathematical Society
(3) The Rees algebra $R(I)$ is a Cohen-Macaulay normal domain.
(4) $\overline{e}_2(I) = 0$.

Let us explain the organization of the paper. In Section 2, we recall the definition and several basic properties for p_g-ideals. For instance, $IJ = aJ + bI$ holds true for any two p_g-ideals I, J and general elements $a \in I, b \in J$. In Section 3, we give a characterization of p_g-ideals in terms of normal Hilbert polynomials. Namely, the vanishing of the second normal Hilbert coefficient of I yields that the ideal is a p_g-ideal (see Theorem [3.2]). In Section 4, we give a characterization of p_g-ideals in terms of Rees algebras. Namely, an ideal I is a p_g-ideal if and only if the Rees algebra $R(I)$ is a Cohen-Macaulay normal domain. Applying these results, one can find some examples of p_g-ideals.

2. Basic results

Throughout this paper, let (A, m) be a two-dimensional excellent normal local domain containing an algebraically closed field k and $f : X \to \text{Spec} A$ a resolution of singularities with exceptional divisor $E := f^{-1}(m)$ unless otherwise specified. Let $E = \bigcup_{i=1}^{r} E_i$ be the decomposition into irreducible components of E.

First, we recall the definition of p_g-ideals. For the definition of the integral closure and the reduction of ideals, refer to the textbook [14]. An m-primary ideal I is said to be represented on X if the ideal sheaf $I\mathcal{O}_X$ is invertible and $I = H^0(X, I\mathcal{O}_X)$. If I is represented on X, then there exists an anti-nef cycle Z such that $I\mathcal{O}_X = \mathcal{O}_X(-Z)$; I is also said to be represented by Z and written as $I = I_Z$. Note that such an ideal I is integrally closed in A. See [9 Sect. 18]; note that an ideal I is integrally closed if and only if it is complete ([9 Sect. 5]).

We say that $\mathcal{O}_X(-Z)$ has no fixed component if

$$H^0(\mathcal{O}_X(-Z)) \neq H^0(\mathcal{O}_X(-Z - E_i))$$

for every $E_i \subset E$, i.e., the base locus of the linear system $H^0(\mathcal{O}_X(-Z))$ does not contain any component of E.

We denote by $h^1(\mathcal{O}_X(-Z))$ the length $\ell_A(H^1(\mathcal{O}_X(-Z)))$. It is known that $h^1(\mathcal{O}_X)$ is independent of the choice of the resolution of singularities. The invariant $p_g(A) := h^1(\mathcal{O}_X)$ is called the geometric genus of A.

In [12 Theorem 3.1], the authors proved $h^1(\mathcal{O}_X(-Z)) \leq p_g(A)$ if $\mathcal{O}_X(-Z)$ has no fixed component. Based upon this result, they introduced the notion of p_g-ideals. The definition of p_g-ideal is independent of the choice of the resolution of singularities ([12 Lemma 3.4]).

Definition 2.1 (p_g-ideals, p_g-cycles). A cycle $Z > 0$ is called a p_g-cycle if $\mathcal{O}_X(-Z)$ is generated and $h^1(\mathcal{O}_X(-Z)) = p_g(A)$. An m-primary ideal I is called a p_g-ideal if I is represented by a p_g-cycle on some resolution.

Assume that $p_g(A) = 0$. Such a ring A is called a rational singularity. Then every anti-nef cycle is a p_g-cycle (Lipman [9 Theorem 12.1]). See [12 Proposition 3.10] for another characterization of p_g-ideals in the case of $p_g(A) > 0$.

In what follows, let us discuss whether $Z + Z'$ is a p_g-cycle.
Proposition 2.2 (see [12, Theorem 3.5]). Let \(Z, Z' \) be anti-nef cycles on the resolution \(X \to \text{Spec} \ A \) such that \(\mathcal{O}_X(-Z) \) and \(\mathcal{O}_X(-Z') \) are generated. Take general elements \(a \in I_Z, b \in I_{Z'} \), so that the natural homomorphism \(b\mathcal{O}_X(-Z) \oplus a\mathcal{O}_X(-Z') \to \mathcal{O}_X(-Z - Z') \) is surjective, and put
\[
\varepsilon(Z, Z') := \ell_A(I_{Z+Z'}/aI_{Z'} + bI_Z)
\]
\[
= p_g(A) - h^1(\mathcal{O}_X(-Z)) - h^1(\mathcal{O}_X(-Z')) + h^1(\mathcal{O}_X(-Z - Z')).
\]
Then:

1. If \(Z \) is a \(p_g \)-cycle on \(X \), then \(\varepsilon(Z, Z') = 0 \) for any \(Z' \). In particular, if \(a \in I_Z \) and \(b \in I_{Z'} \) are general elements, then
\[
I_{Z+Z'} = aI_Z + bI_Z.
\]

2. Assume that \(Z \) is a \(p_g \)-cycle. Then \(Z' \) is a \(p_g \)-cycle if and only if so is \(Z + Z' \).

3. If \(Z + Z' \) is a \(p_g \)-cycle for some cycle \(Z' \), then so is \(Z \).

Proof. (1), (2) It follows from [12, Theorem 3.5].
(3) Let \(\alpha \in H^0(\mathcal{O}_X(-Z')) \) be a general element. Then \(\text{div}_X(\alpha) = Z' + H \), where \(H \) is the proper transform of \(\text{div}_{\text{Spec} \ A}(\alpha) \). From the exact sequence
\[
0 \to \mathcal{O}_X(-Z) \xrightarrow{\times \alpha} \mathcal{O}_X(-Z - Z') \to C \to 0
\]
we obtain \(h^1(\mathcal{O}_X(-Z)) \geq h^1(\mathcal{O}_X(-Z - Z')) = p_g(A) \). Hence \(h^1(\mathcal{O}_X(-Z)) = p_g(A) \) by [12, Theorem 3.10].

The following corollary immediately follows from Proposition 2.2.

Corollary 2.3 ([12, Corollary 3.6]). Let \(I, J \) be \(\mathfrak{m} \)-primary integrally closed ideals.

1. Assume that \(I \) is a \(p_g \)-ideal. For general elements \(a \in I, b \in J \), we have \(\text{IJ} = aJ + bI \).

2. If \(I \) and \(J \) are \(p_g \)-ideals, then \(\text{IJ} \) is also a \(p_g \)-ideal.

3. If \(\text{IJ} \) is a \(p_g \)-ideal, then so are \(I \) and \(J \).

3. The normal Hilbert polynomials

For an \(\mathfrak{m} \)-primary ideal \(I \subset A \), there exist integers \(\tau_0(I), \tau_1(I), \tau_2(I) \) such that
\[
\ell_A(A/I^{n+1}) = \tilde{e}_0(I) \begin{pmatrix} n+2 \\ 2 \end{pmatrix} - \tilde{e}_1(I) \begin{pmatrix} n+1 \\ 1 \end{pmatrix} + \tilde{e}_2(I) \text{ for large enough } n \gg 0.
\]
Then
\[
P_I(n) = \tilde{e}_0(I) \begin{pmatrix} n+2 \\ 2 \end{pmatrix} - \tilde{e}_1(I) \begin{pmatrix} n+1 \\ 1 \end{pmatrix} + \tilde{e}_2(I)
\]
is called the normal Hilbert polynomial of \(I \). See e.g. [7].

Lemma 3.1. Let \(Z > 0 \) be a cycle such that \(\mathcal{O}_X(-Z) \) has no fixed component. Then:

1. \(h^1(\mathcal{O}_X(-nZ)) \geq h^1(\mathcal{O}_X(-(n+1)Z)) \) for \(n \geq 0 \).

2. If we put \(n_0 = \min \{ n \in \mathbb{Z}_{\geq 0} \mid h^1(\mathcal{O}_X(-nZ)) = h^1(\mathcal{O}_X(-(n+1)Z)) \} \), then \(n_0 \leq p_g(A) \) and \(h^1(\mathcal{O}_X(-nZ)) = h^1(\mathcal{O}_X(-n_0Z)) \) for all \(n \geq n_0 \).
Proof. (1) follows from the argument of Proposition 2.2.
(2) From the exact sequence
\[0 \to O_X(-nZ) \to O_X(-(n+1)Z)^{\oplus 2} \to O_X(-(n+2)Z) \to 0, \]
we obtain that \(h^1(O_X(-nZ)) \geq 2 \cdot h^1(O_X(-(n+1)Z)) - h^1(O_X(-(n+2)Z)). \) Thus if \(h^1(O_X(-nZ)) = h^1(O_X(-(n+1)Z)) \) is satisfied, then \(h^1(O_X(-(n+1)Z)) = h^1(O_X(-(n+2)Z)) \) holds true. □

The following result, the so-called Kato’s Riemann-Roch formula (3.1), plays an important role in the next theorem. For an anti-nef cycle on \(Z \) on \(X \) and \(I_Z = H^0(O_X(-Z)) \), we have
\[(3.1) \quad \ell_A(A/I_Z) + h^1(O_X(-Z)) = -\frac{Z^2 + K_XZ}{2} + p_g(A), \]
where \(K_X \) denotes the canonical divisor of \(X \).

Theorem 3.2. Assume that \(I \) is represented by a cycle \(Z > 0 \). Let \(P_I(n) \) be a normal Hilbert polynomial of \(I \). Then
(1) \(P_I(n) = \ell_A(A/I^{n+1}) \) for all \(n \geq p_g(A) - 1 \).
(2) \(\bar{e}_0(I) = e_0(I) = -Z^2 \).
(3) \(\bar{e}_1(I) = e_0(I) - \ell_A(A/I) + (p_g(A) - h^1(O_X(-Z))) = -\frac{Z^2 + ZK_X}{2} \).
(4) \(\bar{e}_2(I) = p_g(A) - h^1(O_X(-nZ)) \) for all \(n \geq p_g(A) \).

Proof. It follows from the Riemann-Roch formula (3.1) that
\[\ell_A(A/I^{n+1}) = -\frac{(n+1)^2Z^2 + (n+1)ZK_X}{2} + p_g(A) - h^1(O_X(-(n+1)Z)) \]
\[= -Z^2 \left(\frac{n+2}{2} \right) - \frac{Z^2 + ZK_X}{2} \left(\frac{n+1}{1} \right) + p_g(A) - h^1(O_X(-(n+1)Z)). \]

Since \(h^1(O_X(-(nZ)) \) is stable for \(n \geq p_g(A) \) by Lemma 3.1, we obtain the required assertions. □

As a corollary, we obtain a simple characterization of \(p_g \)-ideals in terms of normal Hilbert coefficients.

Corollary 3.3. The following conditions are equivalent:
(1) \(I \) is a \(p_g \)-ideal.
(2) \(\bar{e}_1(I) = e_0(I) - \ell_A(A/I) \).
(3) \(\bar{e}_2(I) = 0 \).

Proof. (1) \(\implies \) (2) follows from Theorem 3.2.
(2) \(\implies \) (3): By assumption, \(I = I_Z \) is a \(p_g \)-ideal. Hence \(I_nZ = I^n \) is a \(p_g \)-ideal by Corollary 2.3(2), and thus \(\bar{e}_2(I) = 0 \) by Theorem 3.2.
(3) \(\implies \) (1): Theorem 3.2 yields that \(h^1(O_X(-(n+1)Z)) = p_g(A) \) for \(n \gg 0 \) and thus \(I_nZ = I^n \) is a \(p_g \)-ideal. By Corollary 2.3(3), we obtain that \(I_Z \) is also a \(p_g \)-ideal. □

For any cycle \(Z \) on \(X \), we put \(Z^\perp = \sum_{E_i=0} Z_{E_i}E_i \).
Proposition 3.4. Let $Z > 0$ be a cycle such that $\mathcal{O}_X(-Z)$ has no fixed component. If C is the cohomological cycle on Z^\perp, i.e., the smallest cycle with

$$h^1(\mathcal{O}_C) = \max_{D > 0, D \cdot e \leq Z^\perp} h^1(\mathcal{O}_D),$$

then $\mathcal{O}_C \cong \mathcal{O}_C(-n_0Z)$ and $h^1(\mathcal{O}_C) = h^1(\mathcal{O}_X(-n_0Z)) = \bar{p}_g(A) - \bar{e}_2(I_Z)$, where n_0 is an integer given by Lemma 3.1.

Proof. Let $D > 0$ satisfy that $\text{Supp}(D) = Z^\perp$ and $DE_i < 0$ for all $E_i \leq Z^\perp$. Then $H^1(\mathcal{O}_X(-nD - mZ)) = 0$ (cf. the proof of Proposition 3.10). Then $H^1(\mathcal{O}_X(-mZ)) = H^1(\mathcal{O}_{nD}(-mZ))$. Since $\mathcal{O}_{nD}(-mZ) \cong \mathcal{O}_{nD}$, $h^1(\mathcal{O}_X(-mZ)) = h^1(\mathcal{O}_C)$ for sufficiently large m. \qed

Remark 3.5. Assume that $\mathcal{O}_X(-Z)$ is generated. Let $E^{(1)}, \ldots, E^{(k)}$ be the connected components of Z^\perp and assume that each $E^{(i)}$ contracts to a normal surface singularity isomorphic to (A_i, m_i). Then we have $p_g(A) = \bar{e}_2(I_Z) + \sum_{i=1}^{k} p_g(A_i)$ (cf. [11, Corollary 4.5]).

Example 3.6. Let $e \geq 2$ be an integer, and let $A = k[[x, y, z]]/(x^e + y^e + z^e)$. Then the Poincaré series of $k[x, y, z]/(x^e + y^e + z^e)$ is equal to

$$\sum_{k \geq 0} \ell_A(m^k/m^{k+1})t^k = \frac{1 - t^e}{(1-t)^3} = \frac{1 + t + t^2 + \cdots + t^{e-1}}{(1-t)^2}.$$

It follows that

$$\ell_A(A/m^{n+1}) = \begin{cases} e \binom{n+2}{2} - \frac{e(e-1)}{2} \binom{n+1}{1} + \frac{e(e-1)(e-2)}{6} & (n \geq e), \\ \frac{(n+1)(n+2)(n+3)}{6} & (n \leq e-1). \end{cases}$$

Hence

$$\begin{aligned} e_0(m) &= e_0(m) = e, \\
e_1(m) &= e_1(m) = \frac{e(e-1)}{2}, \\
e_2(m) &= e_2(m) = \frac{e(e-1)(e-2)}{6} = p_g(A); \text{ see [15] (4.11)}. \end{aligned}$$

Write $m = I_Z$ for some anti-nef cycle Z on some resolution $X \to \text{Spec} A$. Then $h^1(\mathcal{O}_X(-kZ)) = 0$ for every $k \geq e$. On the other hand,

$$\frac{e(e-1)}{2} = e_1(m) = e_0(m) - \ell_A(A/m) + p_g(A) - h^1(\mathcal{O}_X(-Z))$$

yields $h^1(\mathcal{O}_X(-Z)) = \frac{(e-1)(e-2)(e-3)}{6}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Furthermore, since \(ZK = 2 \cdot \mathfrak{e}_1(m) - (-Z^2) = e(e - 2) \) and \(e_0(m^k) = k^2e \), we have

\[
h^1(\mathcal{O}_X(-kZ)) = e_0(m^k) - \ell_A(A/m^k) + p_g(A) - \frac{-(kZ^2 + (kZ)K)}{2}
\]

\[
= k^2e - \binom{k + 2}{3} + \binom{e}{3} - \frac{k^2e + ke(e - 2)}{2}
\]

\[
= \frac{(e - k)(e - k - 1)(e - k - 2)}{6} = \binom{e - k}{3}
\]

for each \(k = 1, 2, \ldots, e - 1 \). In particular, we get

\[
h^1(\mathcal{O}_X(-(e - 3)Z)) = 1 \quad \text{and} \quad h^1(\mathcal{O}_X(-(e - 2)Z)) = 0,
\]

and thus \(n_0 = e - 2 \) in Lemma 3.1.

4. The Rees Algebra

Let \((A, \mathfrak{m})\) be a Cohen-Macaulay local ring of dimension \(d \), and let \(I \) be an ideal of \(A \). Now consider three \(A \)-algebras, which are called blow-up algebras,

\[
\mathcal{R}(I) := A[It] = \bigoplus_{n \geq 0} I^n t^n \subset A[t],
\]

\[
\mathcal{R}'(I) := A[It, t^{-1}] = \bigoplus_{n \in \mathbb{Z}} I^n t^n \subset A[t, t^{-1}],
\]

\[
G(I) := \mathcal{R}(I)/I\mathcal{R}(I) \cong \mathcal{R}'(I)/t^{-1}\mathcal{R}'(I).
\]

The algebra \(\mathcal{R}(I) \) (resp. \(\mathcal{R}'(I), G(I) \)) is called the Rees algebra (resp. the extended Rees algebra, the associated graded ring) of \(I \).

The main purpose of this section is to characterize \(p_g \)-ideals in terms of blow-up algebras.

Theorem 4.1. Let \((A, \mathfrak{m})\) be a two-dimensional excellent normal local domain over an algebraically closed field, and let \(I \subset A \) be an \(\mathfrak{m} \)-primary ideal. Then the following conditions are equivalent:

1. \(I \) is a \(p_g \)-ideal in the sense of Definition 2.1.
2. \(I^2 = QI \) for some minimal reduction \(Q \) of \(I \), and \(\overline{I^n} = I^n \) holds true for every \(n \geq 1 \).
3. \(\mathcal{R}(I) \) is a Cohen-Macaulay normal domain.
4. \(\mathcal{R}'(I) \) is a Cohen-Macaulay normal domain with \(a(G(I)) < 0 \), where \(a(G(I)) \) denotes the \(a \)-invariant of the graded ring \(G(I) \); see [3, Definition 3.14].

Proof. (1) \(\implies \) (2): It follows from Corollary 2.3.

(2) \(\implies \) (3): Since \(I^2 = QI \) for some minimal reduction \(Q \) of \(I \), \(\mathcal{R}(I) \) is Cohen-Macaulay by Valabrega–Valla [16] and Goto–Shimoda [1]. Moreover, since \(A \) is normal and \(\overline{I^n} = I^n \) for every \(n \geq 1 \), \(\mathcal{R}(I) \) is a normal domain.

(4) \(\iff \) (3) \(\implies \) (2) follows from Goto–Shimoda [11] and Herzog et al. [5, Proposition 2.1.2].

(2) \(\implies \) (1): Assume that \(I^n \) is integrally closed for \(n \geq 1 \) and that \(I^2 = QI \) for a minimal reduction \(Q \) of \(I \). Suppose that \(I \) is represented by a cycle \(Z \) on \(X \).
Consider the following exact sequence given by general elements of $I = I_Z$ and I_nZ (see [12, (2.3)]):

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(-Z) \oplus \mathcal{O}_X(-nZ) \to \mathcal{O}_X(-(n+1)Z) \to 0.$$

Since $QI^n = I^{n+1} = I^{n+1}$, we obtain that $\varepsilon(Z, nZ) = 0$ for $n \geq 1$. Therefore, $p_g(A) = h^1(\mathcal{O}_X(-Z))$ because $h^1(\mathcal{O}_X(-nZ))$ is stable for $n \gg 0$.

The following two examples are known.

Example 4.2 (cf. Lipman [10] Example 3). Let A be a two-dimensional rational singularity. Then any integrally closed m-primary ideal I is a p_g-ideal and $\mathcal{R}(I)$ is a Cohen-Macaulay normal domain.

Example 4.3. Let A be a complete Gorenstein local ring with $p_g(A) > 0$. If m is a p_g-ideal of A, then m is stable, that is, $m^2 = Qm$ for some minimal reduction Q of m. Since A is Gorenstein, we obtain that A is a hypersurface of degree 2. So we may assume that $A = K[[x, y, z]]/(f)$, where $f = x^2 + g(y, z)$. As A is not rational, $g(y, z) \in \langle y, z \rangle^3$. Moreover, since $R(m)$ is normal, we have $g(y, z) \notin \langle y, z \rangle^4$.

Conversely, if $A = K[[x, y, z]]/(x^2 + g(y, z))$, where $g(y, z) \in \langle y, z \rangle^3 \setminus \langle y, z \rangle^4$, then for every n, $m^n = (y, z)^n + x(y, z)^n-1$ and is integrally closed. Then, since m is stable and m^n is integrally closed for every $n \geq 1$, m is a p_g-ideal.

The next example gives a hypersurface local ring A whose maximal ideal is a p_g-ideal and $p_g(A) = p$ for a given integer $p \geq 1$.

Example 4.4. Let $p \geq 1$ be an integer, and let k be an algebraically closed field. Let $B = k[x, y, z]/(x^2 + y^3 + z^{6p+1})$. If we put $\deg x = 3(6p + 1)$, $\deg y = 2(6p + 1)$ and $\deg z = 6$, then A can be regarded as a quasi-homogeneous k-algebra with $a(A) = 6p - 5$. In particular,

$$p_g(B) = \sum_{i=0}^{6p-5} \dim_k B_i = p; \quad \text{(cf. [13][19]).}$$

Moreover, if we put $X = xt$, $Y = yt$, $Z = zt$ and $U = t^{-1}$, then the extended Rees algebra of $m = (x, y, z)$ is

$$\mathcal{R}'(m) \cong k[X, Y, Z, U]/(F),$$

where $F = X^2 + Y^3U + Z^{6p+1}U^{6p-1}$. Since the Jacobian ideal is

$$\left(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z}, \frac{\partial F}{\partial U} \right) = (X, Y^2U, Z^{6p+1}U^{6p-1}, Y^3 + (6p - 1)Z^{6p+1}U^{6p-2}),$$

one can check the (R_1)-condition of $\mathcal{R}'(m)$. Thus $\mathcal{R}'(m)$ is a normal domain because it is Cohen-Macaulay.

Now let us put $A = B_{(x, y, z)}$ and $m = (x, y, z)A$. Then we can conclude that A is a two-dimensional normal hypersurface with $p_g(A) = p$ and that m is a p_g-ideal by applying the theorem above.

Similarly, if we consider $I_k = (x, y, z^k)A$ and $Q_k = (y, z^k)$ for $k = 2, 3, \ldots, 3p$, then $I_k^2 = Q_kI_k$ and $\mathcal{R}'(I_k)$ is a normal domain. Hence I_k is a p_g-ideal.

The next example gives a hypersurface local ring A whose maximal ideal is not a p_g-ideal and $p_g(A) = p$ for a given integer $p \geq 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Example 4.5. Let \(p \geq 1 \) be an integer. Let \(A = k[x, y, z]/(x^2 + y^4 + z^{4p+1}) \). Then \(A \) is a two-dimensional normal hypersurface with \(p_g(A) = p \). Then \(\mathfrak{m} = (x, y, z) \) is not a \(p_g \)-ideal and \(I_k = (x, y, z^k) \) is a \(p_g \)-ideal for every \(k = 2, 3, \ldots, 2p \) because \(\mathcal{R}'(I_k) \) is normal but \(\mathcal{R}'(\mathfrak{m}) \) is not.

Furthermore, \(\mathfrak{m}^k \) is not a \(p_g \)-ideal for every \(k \geq 1 \) by Corollary 2.3.

It is not so difficult to extend our result to the case of bigraded Rees algebras. Let \(I, J \subset A \) be ideals. Then

\[
\mathcal{R}(I, J) := A[I_{t_1}, J_{t_2}] = \bigoplus_{n=1}^{\infty} \bigoplus_{m=1}^{\infty} I^m J^n t_1^n t_2^m \subset A[t_1, t_2]
\]

is called the multi-Rees algebra of \(I \) and \(J \).

Corollary 4.6. Let \((A, \mathfrak{m})\) be a two-dimensional excellent normal local domain over an algebraically closed field, and let \(I, J \) be \(\mathfrak{m} \)-primary ideals. Then the following conditions are equivalent:

1. \(I \) and \(J \) are \(p_g \)-ideals.
2. \(\mathcal{R}(I, J) \) is a Cohen-Macaulay normal domain.
3. \(I, J \) are integrally closed and \(\mathcal{R}(I, J) \) is a Cohen-Macaulay normal domain.

Proof. \((1) \implies (2)\): Since \(I \) and \(J \) are \(p_g \)-ideals, \(\mathcal{R}(I) \) and \(\mathcal{R}(J) \) are Cohen-Macaulay and \(IJ = aI + bJ \) for some joint reduction \((a, b)\) of \((I, J)\); see [14 Sect. 17]. Hence \(\mathcal{R}(I, J) \) is Cohen-Macaulay by [6 Corollary 3.5] (see also e.g. [17,18]). Since \(S = \mathcal{R}(I) \) is a normal domain and \(JJ^k \) is integrally closed for every \(k \geq 1 \), \(\mathcal{R}(I, J) \) is normal.

\((2) \implies (1)\): Since \(\mathcal{R}(I, J) \) is Cohen-Macaulay, \(\mathcal{R}(I) \) and \(\mathcal{R}(J) \) are Cohen-Macaulay by [6 Corollary 3.5]. Since \(\mathcal{R}(I) \) and \(\mathcal{R}(J) \) are pure subrings of \(\mathcal{R}(I, J) \), they are normal domains. Hence \(I \) and \(J \) are \(p_g \)-ideals by Theorem 4.1.

\((1) \iff (3)\): It follows from Theorem 4.1 and Corollary 2.3. \(\square \)

Remark 4.7. By a similar argument as in the proof of \((1) \implies (2)\), we can obtain that the multi-Rees algebra \(\mathcal{R}(I_1, \ldots, I_r) \) is a Cohen-Macaulay normal domain for every \(p_g \)-ideal \(I_1, \ldots, I_r \).

Remark 4.8. Assume that \(A \) is a rational singularity. Let \(I \) and \(J \) be \(\mathfrak{m} \)-primary integrally closed ideals of \(A \). Then \(I \) and \(J \) are \(p_g \)-ideals and thus \(\mathcal{R}(I) \), \(\mathcal{R}(J) \) and \(\mathcal{R}(I, J) \) are Cohen-Macaulay normal domains. In fact, S. Goto, N. Matsuoka, N. Taniguchi and the third author [2] prove that \(\mathcal{R}(I) \) and \(\mathcal{R}(J) \) are almost Gorenstein. Moreover, Verma [18] proved that they admit minimal multiplicities.

References

[1] Shiro Goto and Yasuhiro Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 201–231. MR655805
[2] S. Goto, N. Matsuoka, N. Taniguchi and K. Yoshida, Almost Gorenstein property for Rees algebras of \(p_g \)-ideals, in preparation.
[3] Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213, DOI 10.2969/jmsj/03020179. MR504707
[4] Manfred Herrmann, Eero Hyry, Jürgen Ribbe, and Zhongming Tang, Reduction numbers and multiplicities of multigraded structures, J. Algebra 197 (1997), no. 2, 311–341, DOI 10.1006/jabr.1997.7128. MR1483767
[5] Jürgen Herzog, Aron Simis, and Wolmer V. Vasconcelos, Arithmetic of normal Rees algebras, J. Algebra 143 (1991), no. 2, 269–294, DOI 10.1016/0021-8693(91)90265-A. MR1132572
[6] Eero Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2213–2232, DOI 10.1090/S0002-9947-99-02143-1. MR1467469

[7] Shiroh Itoh, Coefficients of normal Hilbert polynomials, J. Algebra 150 (1992), no. 1, 101–117, DOI 10.1016/0021-8693(92)90280-6. MR1174891

[8] Masahide Kato, Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension 2, Math. Ann. 222 (1976), no. 3, 243–250. MR0412468

[9] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR0276239

[10] Joseph Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett. 1 (1994), no. 2, 149–157, DOI 10.4310/MRL.1994.v1.n2.a2. MR1266753

[11] Tomohiro Okuma, The geometric genus of splice-quotient singularities, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6643–6659, DOI 10.1090/S0002-9947-08-04559-5. MR2434304

[12] T. Okuma, K.-i. Watanabe, and K. Yoshida, Good ideals and p_g-ideals in two-dimensional normal singularities, to appear in Manuscripta Math. (DOI: 10.1007/s00222-016-0821-7).

[13] H. Pinkham, Normal surface singularities with C^* action, Math. Ann. 227 (1977), no. 2, 183–193. MR0432636

[14] Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR2266432

[15] Masataka Tomari and Keiichi Watanabe, Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 681–740, DOI 10.2977/prims/1195172704. MR1031224

[16] Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR0514892

[17] J. K. Verma, Joint reductions of complete ideals, Nagoya Math. J. 118 (1990), 155–163. MR1060707

[18] J. K. Verma, Joint reductions and Rees algebras, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 2, 335–342, DOI 10.1017/S0305004100039796. MR1085400

[19] Keiichi Watanabe, Some remarks concerning Demazure’s construction of normal graded rings, Nagoya Math. J. 83 (1981), 203–211. MR632054

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, YAMAGATA, 990-8560, JAPAN

E-mail address: okuma@sci.kj.yamagata-u.ac.jp

DEPARTMENT OF MATHEMATICS, COLLEGE OF HUMANITIES AND SCIENCES, NIHON UNIVERSITY, SETAGAYA-KU, TOKYO, 156-8550, JAPAN

E-mail address: watanabe@math.chs.nihon-u.ac.jp

DEPARTMENT OF MATHEMATICS, COLLEGE OF HUMANITIES AND SCIENCES, NIHON UNIVERSITY, SETAGAYA-KU, TOKYO, 156-8550, JAPAN

E-mail address: yoshida@math.chs.nihon-u.ac.jp