Ofek, Danny
Reduction of structure to parabolic subgroups. (English) Zbl 07581369
Doc. Math. 27, 1421-1446 (2022)

Summary: Let G be an affine group over a field of characteristic not two. A G-torsor is called isotropic if it admits reduction of structure to a proper parabolic subgroup of G. This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does G admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple G under certain restrictions on its root system.

MSC:
11E72 Galois cohomology of linear algebraic groups
20G15 Linear algebraic groups over arbitrary fields
20G07 Structure theory for linear algebraic groups
11E39 Bilinear and Hermitian forms
16W10 Rings with involution; Lie, Jordan and other nonassociative structures

Keywords:
Galois cohomology; algebraic geometry; rings and algebras

Software:
MathOverflow

Full Text: DOI arXiv

References:
[1] G. Berhuy and Z. Reichstein. On the notion of canonical dimension for algebraic groups. Adv. Math. 198(1):128-171, 2005, DOI 10.1016/j.aim.2004.12.004, zbl 1097.11018, MR11012012 · doi:10.1016/j.aim.2004.12.004
[2] A. Blanchet. Function fields of generalized Brauer-Severi varieties. Comm. Algebra 19(1):97-118, 1991, DOI 10.1080/00927879108824131, zbl 0717.16014, MR1092553 · Zbl 0717.16014 · doi:10.1080/00927879108824131
[3] S. Blinkshtin and A. Merkurjev. Cohomological invariants of algebraic tori. Algebra Number Theory 7(7):1643-1684, 2013, DOI 10.2140/ant.2013.7.1643, zbl 1368.11034, MR3117553 · Zbl 1368.11034 · doi:10.2140/ant.2013.7.1643
[4] A. Borel. Linear Algebraic Groups, Graduate Texts in Mathematics, 126. Springer, New York, NY, 1991, zbl 0726.20030, MR1102012 · Zbl 0726.20030
[5] A. Borel and J. Tits. Groupes réductifs. Publ. Math., Inst. Hautes Étud. Sci. 27:55-151, 1965, DOI 10.1007/BF02684375, zbl 0145.17402, MR0207712 · doi:10.1007/BF02684375
[6] M. Borovoi. Splitting of a division algebra with an involution of second kind. MathOverflow, 2010, https://mathoverflow.net/questions/24599/splitting-of-a-division-algebra-with-an-involution-of-second-kind
[7] S. Cernele and Z. Reichstein. Essential dimension and error-correcting codes. Pacific J. Math. 2015(1-2):155-179, 2015, DOI 10.2140/pjm.2015.279.155, zbl 1364.20035, MR3437774, arxiv 1406.2953 · Zbl 1364.20035 · doi:10.2140/pjm.2015.279.155
[8] A. Duncan and Z. Reichstein. Versality of algebraic group actions and rational points on twisted varieties. J. Algebraic Geom. 24(3):499-530, 2015, DOI 10.1090/S1056-3911-2015-00644-0, zbl 1327.14120, MR3344763, arxiv 1109.6093 · Zbl 1327.14120 · doi:10.1090/S1056-3911-2015-00644-0
[9] S. Garibaldi, A. Merkurjev, and J. P. Serre. Cohomological Invariants in Galois Cohomology. American Mathematical Society, 2003, zbl 1159.12311, MR1999384 · Zbl 1159.12311
[10] P. Gille and T. Szamuely. Central Simple Algebras and Galois Cohomology. Cambridge University Press, Cambridge, 2006, zbl 1137.12001, MR2206528 · Zbl 1137.12001
[11] N. Jacobson. Finite-Dimensional Division Algebras over Fields. Springer, Berlin, Heidelberg, 1996, DOI 10.1007/978-3-642-02429-0, zbl 0874.16002, MR1439248 · Zbl 0874.16002 · doi:10.1007/978-3-642-02429-0
[12] N. A. Karpenko. Three theorems on common splitting fields of central simple algebras. Israel J. Math. 111:125-141, 1999, DOI 10.1007/BF02910681, zbl 0935.16007, MR1710735 · Zbl 0935.16007 · doi:10.1007/BF02910681
[13] M.-A. Knus, A. Merkurjev, M. Rost, and J. P. Tignol. The Book of Involutions, Colloquium Publications, 44. American Mathematical Society, Providence, Rhode Island, 1998, zbl 0955.16001, MR1632779 · Zbl 0955.16001

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH
[14] T. Y. Lam. Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, Rhode Island, 2004, zbl 1068.11023, MR2104929 · Zbl 1068.11023

[15] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. Index reduction formulas for twisted flag varieties, I. K-Theory 10(6):517-596, 1996, DOI 10.1007/BF00537543, zbl 0874.16012 · doi:10.1007/BF00537543

[16] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. Index reduction formulas for twisted flag varieties, II. K-Theory 14(2):101-196, 1998, DOI 10.1023/A:1007793218556, zbl 0918.16013 · doi:10.1023/A:1007793218556

[17] J. S. Milne. Algebraic Groups, Cambridge Studies in Advanced Mathematics, 170. Cambridge University Press, Cambridge, 2017, DOI 10.1017/9781316711736, zbl 1390.14004, MR3729270 · Zbl 1390.14004 · doi:10.1017/9781316711736

[18] M. Rosenlicht. Some basic theorems on algebraic groups. Amer. J. Math. 78(2):401-443,1956, DOI 10.2307/2372523, zbl 0073.37601 · Zbl 0073.37601 · doi:10.2307/2372523

[19] D. J. Saltman. Lectures on Division Algebras. CBMS Regional Conference Series in Mathematics, 94. American Mathematical Society, 1999, zbl 0934.16013, MR1692654 · Zbl 0934.16013

[20] J.-J. Sansuc. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 1981(327):12-80, 1981, DOI 10.1515/crll.1981.327.12, zbl 0468.14007 · Zbl 0468.14007 · doi:10.1515/crll.1981.327.12

[21] A. Schofield and M. van den Bergh. The index of a Brauer class on a Brauer-Severi variety. Trans. Amer. Math. Soc. 333(2):729, 1992, DOI 10.2307/2154058, zbl 0778.12004 · Zbl 0778.12004 · doi:10.2307/2154058

[22] J. P. Serre. Galois Cohomology. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg, 1997, zbl 0902.12004 · Zbl 0902.12004

[23] T. A. Springer. Linear Algebraic Groups. Progress in Mathematics, 9. Birkhäuser, Boston, MA, 1998, zbl 0927.20024, MR1642713 · Zbl 0927.20024

[24] J. Tits. Classification of algebraic semi-simple groups. In Algebraic Groups and Discontinuous Subgroups, chapter 1, 33-62. American Mathematical Society, 1966, zbl 0226.20037 · doi:10.2307/2154058

[25] J. Tits. Strongly inner anisotropic forms of simple algebraic groups. J. Algebra 131(2):648-677, 1990, DOI 10.1016/0021-8693(90)90201-X, zbl 0697.20029, MR1058572 · Zbl 0697.20029 · doi:10.1016/0021-8693(90)90201-X

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.