Efficiency of Randomly Amplified Polymorphic DNA to Sequence Characterized Amplified Region Marker Conversion and their Comparative Polymerase Chain Reaction Sensitivity in Cucumber

Thomas Horejsi,1 Jodie M. Box,2 and Jack E. Staub3
U.S. Department of Agriculture–Agricultural Research Service, Vegetable Crops Unit, Department of Horticulture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706

Additional index words: Cucumis sativus, breeding, molecular markers, RAPD, SCAR

Abstract. The conversion of randomly amplified polymorphic DNA (RAPD) markers to sequence characterized amplified region (SCAR) markers, and the effects of differing polymerase chain reaction (PCR) conditions were studied in cucumber (Cucumis sativus L.). Attempts were made to clone and sequence 75 RAPD PCR products to produce SCAR markers. PCR conditions were varied (MgCl₂ concentration, Taq polymerase source, and type of thermocycler) to assess SCAR marker performance. Conversion of RAPD to SCAR markers was not universally successful, and SCAR markers reacted differently to varying PCR conditions. Only 48 (64%) of 75 RAPD markers were successfully converted to SCAR markers and 11 (15%) of these reproduced the polymorphism observed with the original RAPD PCR product. Moreover, some SCAR primer pairs produced multiple polymorphic PCR products. The band intensity of SCAR markers was brighter (P = 0.05) than their corresponding RAPD markers with only one exception. The SCAR markers examined were less influenced (P = 0.05) by MgCl₂ concentration than their corresponding RAPD markers. However, some SCAR markers were more sensitive to reaction impurities than their RAPD counterparts and SCAR markers tended to be less readily visualized (decrease in frequency of visible PCR product) with low concentrations (1 and 2 mM) of template DNA than their corresponding RAPD markers. Neither the source of Taq nor the type of thermocycler used affected the performance of SCAR and RAPD markers. These data suggest that although SCAR markers may demonstrate enhanced performance over the RAPD markers from which they are derived, careful consideration must be given to both the costs and potential benefits of SCAR marker development in cucumber.
of PCR markers in this species. To test this recommendation a study was designed for cucumber to determine 1) the efficiency of RAPD to SCAR conversion and 2) to compare the performance of SCAR and RAPD markers under differing PCR conditions. Experiments examined the effect of template DNA type, purity, and concentration, MgCl2 concentration, Taq polymerase source, and thermocycler type. Information on the conversion efficiency and reaction performance of SCAR markers will provide a basis for determining the potential utility of this marker methodology for breeding and germplasm management in cucumber.

Materials and Methods

DNA extraction. DNA was extracted from leaf tissue using a standard CTAB phenol/chloroform procedure developed for cucumber (Sambrook et al., 1989; Serquen et al., 1997; Staub et al., 1996b). Leaf tissue samples consisted of bulks from twelve 2-week-old seedlings. The DNA was quantified using a Hoefer TKO 100 minifluorometer (Hoefer Scientific Instruments, San Francisco, Calif.) following the manufacturer’s protocol and stored at -20 °C.

RAPD markers. The standard RAPD PCR protocol employed was similar to that of Williams et al. (1990) as modified by Staub et al. (1996b). The 15 mL volume PCR contained 3.0 mM MgCl2, 0.2 mM dNTPs (0.05 mM of each: dATP, dGTP, dTTP and dCTP), 15 ng DNA, 0.3 mM primer, commercial polymerase buffer and 1 unit Taq DNA polymerase. The MgCl2, polymerase buffer, dNTPs, and Taq polymerase were purchased from Promega (Madison, Wis.). The RAPD primers were purchased from Operon Technologies (Alameda, Calif.) and the University of British Columbia, Vancouver, Canada. PCRs were performed in polyethylene tubing in a Perkin Elmer (Foster City, Calif.) GeneAmp PCR System 9600 thermocycler using the following cycling profile: 94 °C/4 min; 3 cycles of 94 °C/15 s, 35 °C/15 s, 59 s ramp to 72 °C/75 s; 40 cycles of 94 °C/15 s, 40 °C/15 s, 59 s ramp to 72 °C/ 75 s; 72 °C/7 min with subsequent cooling to 4 °C.

After completion of the PCR, 3 µL of loading dye (0.25% bromophenol blue, 0.25% xylene cyanol FF, 15% Ficol) were added to each reaction tube. The samples were loaded onto a 1.6% bromophenol blue, 0.25% xylene cyanol FF, 15% Ficol) were added to each reaction tube. The samples were loaded onto a 1.6% agarose gel containing 0.5 µg·mL -1 ethidium bromide. Electrophoresis was performed in the gels in TAE buffer [4.84% tris, 1.14% acetic acid, 0.375% EDTA] for 3 h at 100 volts using a BRL H4 apparatus (Life Technologies, Gaithersburg, Md.). The gels were immediately photographed under UV light using an Eagle Eye still video system (Stratagene, LaJolla, Calif.).

SCAR markers. From 71 polymorphic loci detected between cucumber lines G421 and H19 (Serquen et al., 1997) and four polymorphic markers linked to dm [the downy mildew resistance gene (Horejsi, 1998)], 75 RAPD markers were selected for conversion into SCAR markers.

The procedure for conversion of RAPD to SCAR markers was similar to that described by Paran and Michelmore (1993). RAPD reactions were performed as described above, and the amplified DNA of each target RAPD band was cut from the gel and purified using the Wizard minicolumn system (Promega). To increase the amount of isolated DNA, an additional PCR with RAPD primers was performed, and the DNA was repurified using the gel electrophoresis and minicolumn procedure stated above.

The pGem-T vector system III kit (Promega) was used to clone the RAPD product, following the manufacturer’s protocol. Colonies of white cells (as opposed to blue) indicated possible transformation. The candidate plasmid DNAs were isolated as described by Sambrook et al. (1989).

Two tests were conducted after plasmid isolation to confirm that the target RAPD fragment had been cloned. The plasmid plus insert fragment size was compared to the untransformed pGEM-T plasmid size (in both circular and linear form) using agarose gel electrophoresis (Horejsi, 1998). The lack of plasmid insertion was determined by relative migration distance of DNA.

Secondly, products from PCRs with RAPD primers and the plasmid–insert vector as template DNA were compared to RAPD PCR products using cucumber template DNA (Horejsi, 1998). To test for the presence of plasmid PCR products and contamination, two controls were compared to each candidate clone. One control had no DNA and the second used pGEM-T (without insert) as the template DNA. If the reamplified band was the same size as the RAPD band with no same-sized bands in the controls it was prepared for sequencing.

The cloned RAPD band was sequenced using the Silver Sequence System of Promega, following their protocol. Since the whole sequence was not needed, only a portion (25 to 200 bp) of each end was sequenced. The first and last 10 bases of each fragment were compared to the sequence of the original RAPD primers. If they were identical, it confirmed that a RAPD fragment had been cloned.

The SCAR primers evaluated in this study were designed for optimum PCR performance (for reviews of primer design see Sharrock, 1994; Kocher and Wilson, 1991) using the primer select option of the DNASTAR 1.17 computer program (DNASTAR, Inc., Madison, Wis.) with the following constraints: 1) a primer length of 18 to 22 bases; 2) a maximum melting temperature of 51.0 °C; 3) a minimum melting temperature of 38.1 °C; 4) a unique 3’ sequence of 7 bases; 5) a maximum dimer duplexing of 2 base pairs; 6) a maximum hairpin duplexing of 2 base pairs (ignore duplexing eight base pairs from 3’ end), and; 7) a total target primer sequence and PCR products differ by no more than 60 base pairs. The resulting SCAR primer pairs are listed in Table 1. The SCAR marker nomenclature is according to Paran and Michelmore (1993); SCAR markers have the SC prefix placed before the name of their corresponding RAPD marker with its relative bp length, (e.g., marker SCH5800 is the SCAR marker derived from RAPD H5800).

The standard SCAR PCR protocol was identical to the standard RAPD protocol presented above, except for a two modifications. Because the SCAR PCR requires primer pairs (RAPDs have a single primer), the concentration of each SCAR primer was one-half (0.17 mM) that of the RAPD PCR. Likewise, the thermocycling protocol annealing step was changed to accommodate the longer SCAR primers: 94 °C/4 min; 40 cycles of 94 °C/15 s, 50 °C/15 s, 59 s ramp to 72 °C/ 75 s; 72 °C/7 min with subsequent cooling to 4 °C.

Efficiency of RAPD to SCAR Conversion. Four replications of each SCAR primer pair and their corresponding RAPD primers were subjected to the standard PCR protocols outlined above to compare the SCAR banding polymorphisms to their corresponding RAPD polymorphisms. The template DNA was from the cucumber genotypes known to have RAPD marker polymorphisms [G421, H19 (Serquen et al., 1997), WI 1983G, and Straight 8 (Horejsi, 1998)]. Efficiency of conversion was determined by comparison of SCAR and RAPD products for polymorphism detection. If the SCAR primers did not detect polymorphisms, they were evaluated to determine if higher annealing temperatures (55, 60, or 65 °C) during PCR would allow for polymorphism detection.

SCAR and RAPD Performance under Varied PCR Conditions. To test the effects of different MgCl2 concentrations on SCAR and RAPD banding profiles, seven SCAR and RAPD primers (SCH5800/H5800, SC14/1100/I4/1100, SCL19/L19, SCH600/N600, SCW7/1150/...
Table 1. Primer sequences and optimum annealing temperature of cucumber sequence characterized amplified regions (SCAR) markers and the corresponding random amplified polymorphic DNA (RAPD) markers from which they were derived.

Designation	Primer sequence (and number of nucleotides)*	Optimum annealing temp (°C)	RAPD Designation	Primer sequence	
SCD1 200	TTGACGCCAACAACAAAA (17)	CCGTGAGCACTAATAT (16)	63	B12 400	CCTTGACGCCA
SCD1 350	TCATAAATACCATCCTCAA (22)	TGGGAAATGTTGAGCATTCT (22)	61	B12 400	CCTTGACGCCA
SCC1 100	TGACGCCAAGTCAACAAAG (18)	GGCGAATGAAATACACAAAG (22)	53	C1 400	TGGCCAGCAG
SCC1 100	TGGGGTGGAAGCAGATCTAT (21)	TGGTGGGACAGCAGATCTAT (21)	53	C1 400	TGGCCAGCAG
SCB1 125	CTGGCTTCACTTTCACTTACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GTGTCCTTGAACTGACAAG (18)	GGTGAGCAAGAGAGGTGAG (18)	52	C1 400	TGGCCAGCAG
SCB1 125	TCACCTGTTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG
SCB1 125	GAGGTGGTGAATTAGTCAACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GCTACCTGTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG
SCB1 125	GAGGTGGTGAATTAGTCAACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GCTACCTGTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG
SCB1 125	GAGGTGGTGAATTAGTCAACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GCTACCTGTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG
SCB1 125	GAGGTGGTGAATTAGTCAACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GCTACCTGTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG
SCB1 125	GAGGTGGTGAATTAGTCAACAT (23)	ATTTCTTCTACCATCTTTAT (23)	64	C1 400	TGGCCAGCAG
SCB1 125	GCTACCTGTAAAGATGCT (18)	GGTTATGGTAGTGAGATGCT (18)	51	C1 400	TGGCCAGCAG
SCB1 125	TCCATGGGGCTCTGTCA (17)	CTCCATGGGGCTCTGTCA (17)	62	C1 400	TGGCCAGCAG

*SCAR primer sequences, listed from 5' to 3', and number of nucleotides. The underscored sequence indicates the portion that is the same as the corresponding RAPD primer. Those SCAR primers were constructed from internal RAPD band sequences and contain no sequence in common to the RAPD primers of the corresponding RAPD marker.

Optimum annealing temperature as calculated by the DNASTAR computer program (DNASTAR, Madison, Wis.).
W71150, SCX151150/X151150, and SCY33800/Y33800) were evaluated at six MgCl\textsubscript{2} concentrations (13, 6, 3, 2, 1, and 0 mM) with four replications. These markers were chosen because the SCAR marker PCR products had the same mobility and allelic polymorphism as the original RAPD.

The effects of template DNA on the performance of each marker type were evaluated by examining 1) simulated interpopulation contamination (representing contrasting marker alleles) (0%, 1%, 2%, 3%, 5%, 10%, 90%, 95%, 97%, 98%, 99%, and 100%); 2) varying DNA concentrations (13, 6, 3, 2, 1, and 0 mM); and 3) polymorphisms among inbred lines, their progeny and diverse genetic backgrounds. Experiments that simulated contamination levels of one individual with tissue from a second individual were performed using mixtures of template DNA from the genotypes G421 (band presence) and H-19 (band absence) which possess RAPD polymorphisms (Serquen et al., 1997). Experiments studying the effect of varying DNA concentrations on PCR performance used DNA from G421 and H-19 with 10 polymorphic primers (SCB12\textsubscript{1950}, SCH5\textsubscript{800}, SCI4\textsubscript{1100}, SCL19\textsubscript{900}, SCN6\textsubscript{800}, SCW7\textsubscript{1150}, SCX15\textsubscript{1150}, SCY3\textsubscript{3800}, SCAJ18\textsubscript{1000}, and SCBC38\textsubscript{3800}). DNA from cucumber lines (SMR18, GY4a, WI 1983G, WI 2757, Zudm1, and ‘Straight 8’) and 21 F\textsubscript{2} plants (from a Zudm1 X Straight 8 mating) were used as templates to compare the performance of two SCAR and RAPD markers (SCB12\textsubscript{1950}/B12\textsubscript{2500} and SCX15\textsubscript{1150}/X15\textsubscript{1150}) from different sources (i.e., different genetic backgrounds) and in segregating progeny in two repetitions. Treatments in the interpopulation contamination, DNA concentration and polymorphism experiments were replicated two, four, and four times, respectively. All gelmspan used in these experiments was received from the USDA Agricultural Research Cucumber Project, Madison, Wis.

Two sources of Taq DNA polymerase (Promega, lot# 6559611 and Pharmacia, Piscataway, N.J., lot# 6110798011) were evaluated for uniformity in generating SCAR or RAPD markers. Taq polymerase treatments (sources) were tested with four RAPD (B12\textsubscript{2500}, H5\textsubscript{2500}, W7\textsubscript{1150}, and Y3\textsubscript{3800}) and four SCAR (SCB12\textsubscript{2500}, SCH5\textsubscript{800}, SCW7\textsubscript{1150}, and SCY3\textsubscript{3800}) markers in four replications. Three genotypes (H-19, G421, and WI 2757) were used for template DNA.

Two different thermocycling machines [the GeneAmp PCR System 9600 (Perkin Elmer) and the PTC-100-96 (MJ Research, Watertown, Mass.)] were used to compare potential differences in RAPD and SCAR tolerance. The GeneAmp PCR System 9600 used polyethylene reaction tubes. The PTC-100-96 uses trays made of polycarbonate. This plastic is known to bind proteins, including Taq polymerase (Griffin and Griffin, 1994). Therefore, a blocking protein of bovine serum albumin (Promega) was added (0.1 µg·µL-1) to each PCR (in both machines) to competitively bind to the plastic.

Analysis of PCR Products. To compare the amount of DNA produced and evaluate the relative ease of scoring of SCAR and RAPD markers, the DNA band intensity (fluorescence) was compared using PCR methodologies described above. The relative intensity (DNA content) of each band was estimated by visually comparing it to a standard of EcoRI plus HincII digested lambda phage DNA, which displayed bands ranging from 1 to 130 ng of DNA. Comparisons between markers were made by examination of SCAR and RAPD PCR products on the same agarose gel with each replication. The Student’s t test was used to determine the statistical significance of these comparisons.

Results and Discussion

Efficiency of RAPD to SCAR Conversion. RAPD to SCAR marker conversion appears technically straightforward (Paran and Michelmore, 1993). However, conversion of cucumber RAPD to SCAR markers was not universally successful. Although 62 (83%) of the 75 RAPDs were successfully cloned, only 48 (64%) RAPD markers were successfully converted to SCAR markers. The number of potential SCAR markers decreased at each step of the conversion process. Of the 75 RAPD bands originally extracted, 63 were successfully ligated into the pGEM-T plasmid, 62 were transformed, 54 sequencing templates were produced, and 48 were successfully sequenced. In the interest of time and resource efficiency, a maximum of five additional attempts were made to advance each RAPD fragment through each step of the conversion process. If such attempts did not advance a particular RAPD fragment to the following step of the conversion process, that RAPD was deleted from further consideration for SCAR conversion. The RAPD to SCAR conversion process is complex and requires strict control of experimental conditions. Thus, the efficiency of the conversion process might be improved by technical modification of critical steps in the conversion methodology.

Of the 48 SCAR primer pairs produced (Table 1), only 11 (15%) reproduced the polymorphism observed in the original RAPD PCR product (Table 2). This loss of polymorphism upon conversion was also observed by McDermott et al. (1994), Naqvi and Chattoo (1996), Ohmori et al. (1996), Paran and Michelmore (1993) and Witsenboer et al., (1995). No relationship was observed between PCR fragment length of a RAPD primer product and its successful conversion to a SCAR marker [i.e., both long (3500 bp) and short (100 bp) fragments were convertible].

The relative mobility (i.e., DNA fragment length) of the polymorphic DNA bands from RAPD markers was the same as their corresponding SCAR bands. The observed RAPD marker polymorphisms between G421 and H19 (Serquen et al., 1997) were also observed with 10 (23%) of the 48 SCAR primer pairs produced) SCAR markers producing a single PCR product (SCB12\textsubscript{2500}, SCH5\textsubscript{800}, SCH13\textsubscript{1100}, SCW7\textsubscript{1150}, SCY3\textsubscript{3800}, SCI4, SCI1\textsubscript{1100}, SCI1\textsubscript{950}, SCN6\textsubscript{800}, SCAJ18\textsubscript{1000}, and SCBC38\textsubscript{3800}). Similarly, of the four RAPD marker polymorphisms observed between WI 1983G and Straight 8, only SCAR SCX15\textsubscript{1150} detected a difference.

Theoretically, a SCAR primer pair should amplify the unique band cloned from the corresponding RAPD (Paran and Michelmore, 1993). Since SCAR primers are longer and thus more specific than their RAPD primer counterparts, they should yield fewer PCR products; ideally only one. However, if the SCAR primers have either duplicated sequences (i.e., segments with ubiquitous sequences) or sequences closely resembling multiple genomic regions, the PCR may yield multiple bands. A single band from a SCAR PCR with multiple bands can still give useful genetic information, similar to marker loci from a RAPD PCR. In most cases, the RAPD to SCAR conversion process resulted in fewer amplification bands in PCRs with SCAR primers compared to the RAPD primers from which they were derived (Table 2). Twenty-five SCAR primer-pairs (52%) yielded a single band, indicating the likelihood of a single PCR product (Table 2).

Amplification using 20 (42%) of the 48 SCAR primer pairs produced) SCAR primer pairs yielded multiple bands (Table 2). Apparently, these primers do not possess unique or highly specific binding sites. For instance, two PCR products were produced by SCC10\textsubscript{1000} while its corresponding RAPD produced only one. Likewise, SCAR primer-pairs SCB12\textsubscript{2500}, SCC10\textsubscript{1000}, SCH13\textsubscript{1100}, SCN6\textsubscript{800}, SCW7\textsubscript{1150}, SCY3\textsubscript{3800}, SCAJ18\textsubscript{1000} and SCBC38\textsubscript{3800} produced several bands, however, only one band reflected the same polymorphism as its corresponding RAPD (i.e., absence or presence depending on genotype). If all additional bands were ignored and the polymorphic band (with the same mobility as the RAPD) was heritable, variation
Table 2. Comparison of polymerase chain reaction (PCR) banding patterns between cucumber sequence characterized amplified regions (SCAR) and corresponding random amplified polymorphic DNA (RAPD) markers.

SCAR primers	SCAR Bands	RAPD Bands	Bands	SCAR polymorphism detection
	(no.)	(no.)		
SCB1₂₂₀₀	1	B₁₂₂₀₀	4	No
SCB1₂₇₃₅₀₀	2	B₁₂₇₃₅₀₀	4	Yes
SCC1₀₆₀₀	1	C₁₀₆₀₀	5	No
SCC₁₀₁₀₀₀	2	C₁₀₁₀₀₀	1	No
SCF₄₂₅₅	1	F₄₂₅₅	6	No
SCG₁₄₄₀₀₀	1	G₁₄₄₀₀₀	12	No
SCH₅₄₀₀	1	H₅₄₀₀	6	Yes
SCH₁₃₁₁₀₀	3	H₁₃₁₁₀₀	7	Yes
SCI₄₄₆₀₀	1	I₄₄₆₀₀	10	Yes
SCI₂₁₃₀₀	2	I₂₁₃₀₀	8	No
SCI₁₅₀₀₀	1	J₁₅₀₀₀	5	No
SCK₇₃₃₀₀	1	K₇₃₃₀₀	7	No
SCK₁₅₇₇₀₀	1	K₁₅₇₇₀₀	6	No
SCL₁₈₆₀₀	1	L₁₈₆₀₀	13	No
SCL₁₉₉₄₀₀	1	L₁₉₉₄₀₀	7	Yes
SCN₆₇₄₀₀	2	N₆₇₄₀₀	8	Yes
SCN₈₄₀₀₀	1	N₈₄₀₀₀	7	No
SCP₁₃₁₂₀₀	1	P₁₃₁₂₀₀	4	No
SCP₁₄₁₃₀₀	3	P₁₄₁₃₀₀	5	No
SCR₁₃₅₇₀₀	2	R₁₃₅₇₀₀	12	No
SCT₂₂₀₀₀	1	T₂₂₀₀₀	6	No
SCU₁₅₁₉₀₀	2	U₁₅₁₉₀₀	9	No
SCW₁₇₁₁₀₀	3	W₁₇₁₁₀₀	7	Yes
SCX₁₅₁₁₀₀	1	X₁₅₁₁₀₀	10	Yes
SCY₃₄₀₀	5	Y₃₄₀₀	8	Yes
SCY₅₇₅₀	3	Y₅₇₅₀	7	No
SCA₉₁₁₀₀₀	7	AA₉₁₁₀₀₀	10	No
SCB₁₄₃₀₀	4	AB₁₄₃₀₀	8	No
SCAD₁₂₂₀₀	1	AD₁₂₂₀₀	9	No
SCAD₁₄₄₀₀	0	AD₁₄₄₀₀	6	No
SCAF₁₅₈₀	7	AF₁₅₈₀	10	No
SCAG₁₇₈₂₅	4	AG₁₇₈₂₅	5	No
SCAH₁₄₁₀₀₀	1	A₁₄₁₀₀₀	3	No
SCAI₁₀₁₀₀₀	1	AI₁₀₁₀₀₀	11	No
SCAJ₁₆₀₀	1	AJ₁₆₀₀	7	No
SCAJ₁₈₁₀₀₀	2	AJ₁₈₁₀₀₀	7	Yes
SCAK₅₁₂₇₅	1	AK₅₁₂₇₅	5	No
SCAM₂₁₅₀₀	3	AM₂₁₅₀₀	5	No
SCAN₅₇₀₀	1	AN₅₇₀₀	4	No
SCAO₇₁₁₀₀₀	0	AO₇₁₁₀₀₀	4	No
SCAO₁₂₁₃₀₀	1	AO₁₂₁₃₀₀	6	No
SCAR₁₃₁₂₀₀	2	AR₁₃₁₂₀₀	8	No
SCAS₅₁₂₀₀	0	AS₅₁₂₀₀	4	No
SCBC₃₈₈₀₀₀	5	BC₃₈₈₀₀₀	8	Yes
SCBC₁₄₀₀₀₀	3	BC₁₄₀₀₀₀	6	No
SCBC₄₆₉₀₀	1	BC₄₆₉₀₀	3	No
SCBC₅₁₉₁₁₀₀	1	BC₅₁₉₁₁₀₀	3	No
SCBC₅₂₆₉₀₀	1	BC₅₂₆₉₀₀	7	No

aMarker designation with band size in base pairs (subscript).
bNumber of bands produced from PCR with SCAR primer pairs, including the critical polymorphic band.
cNumber of bands produced from PCR with RAPD primer pairs, including the critical polymorphic band(s).
dSCAR polymorphism detection agreement with their corresponding RAPD polymorphism.

The SCN₆₆₆₀₀ primer pair produced two polymorphic bands (SCN₆₆₆₀₀ and SCN₆₆₆₀₀). SCN₆₆₆₀₀ was in agreement for polymorphism detection with the corresponding RAPD band (N₆₆₆₀₀). Even though the SCN₆₆₆₀₀ was polymorphic, the RAPD N₆₆₆₀₀ was monomorphic.

The SCY₆₆₀₀ primer pair produced two polymorphic bands (SCY₆₆₀₀ and SCY₆₆₀₀). Both bands were in agreement for polymorphism detection with the corresponding RAPD bands (Y₆₆₀₀ and Y₆₆₀₀).
in such SCAR markers could be utilized in genetic studies.

Two SCAR primer pairs (SCN6 800 and SCY3 800) produced additional polymorphic PCR products which were either not clearly evident or not often detected in RAPD PCRs of G421 and H-19. These additional polymorphic bands were designated as SCN6 800 and SCY3 800, respectively. The 600-bp band was observed in the RAPD banding pattern of Y3, but was often too faint to score, and therefore was not mapped by Serquen et al. (1997). Likewise, a 600-bp band was also observed in the N6 RAPD banding profile, but was not polymorphic between G421 and H-19. In these two cases, the increase in scorable polymorphic bands are examples of the potential increased effectiveness of SCAR markers over their corresponding RAPD markers.

The target polymorphism present in the RAPD was not observed in the PCR products of 37 (77%) of the 48 converted SCAR primer pairs (Table 2). While no DNA amplification (i.e., no bands detected) was observed for three SCAR primer pairs (SCAD 14 900, SCAO 7 1100, and SCAS 5 500), the polymorphism loss in the remaining SCAR primer pairs was due to the amplification of the target PCR product in all genotypes. Increasing the annealing temperature during PCR to 55, 60 or 65 °C allowed only one (SCAA 9 1300, 60 °C) of these 37 SCAR primer pair constructs to detect the target polymorphism observed in its corresponding RAPD.

RAPD polymorphisms can reflect point mutations in the primer annealing sites or in length differences between primer annealing sites due to insertion or deletion mutations (Williams et al., 1990). The loss of polymorphism during RAPD to SCAR conversions suggests that these RAPD polymorphisms were caused by site mutations at the primer binding site. The SCAR primer construct may mitigate the difference(s) in the nucleotide sequence responsible for the observed difference (mutational event), and thus may anneal to areas with common sequences to both genotypes resulting in a loss of polymorphism.

Even though the banding profiles of SCAR markers SCB12 3500, SCH5 800, SCH13 1100, SCW7 1150, SCY3 800, and SCY3 800 were in agreement with their corresponding RAPD markers when G421 and H-19 were used as template DNA, occasionally marker inconsistencies were observed with DNA templates from these and other cucumber lines tested (GY14, SMR18, WI 1983G, and WI 2757) (data not presented). For instance, amplification of G421 and WI 2757 template DNA with SCAR SCW7 1150 yielded PCR products which were absent after PCR of their RAPD counterpart. In contrast, RAPD primer H5 amplified bands in PCR when employing G421, SMR18, and WI 1983G template DNA which were not amplified using its corresponding SCAR primer pair. Likewise, the amplification of G421 template DNA using RAPD primer Y3 produced a band (Y3 800), and its corresponding SCAR did not.

SCAR and RAPD Performance Under Varied PCR Conditions. To compare marker effectiveness, relative banding intensities of the marker types were compared. Under standard PCR conditions, SCAR primers on average produced significantly brighter bands (P = 0.01) than their corresponding RAPD primers (Fig. 1). Band intensities of SCAR markers SCH5 800, SCY3 800, and SCW7 1150, were significantly brighter than that of their corresponding RAPD markers (P ≥ 0.05). However, the intensity of bands produced by the RAPD H13 1100 was significantly brighter (P = 0.01) than its corresponding SCAR, SCH13 1100. The banding intensity of SCARs SCB12 3500 and SCY3 800 was not significantly different from their corresponding RAPD markers. Greater band intensity may increase the ease and accuracy of scoring genotypes. Thus, some of the SCAR markers examined were superior to their RAPD counterparts, but others were not.

The response of SCAR and RAPD markers to various extreme PCR conditions was compared. Free Mg^{2+} is required for Taq polymerase activity and it also influences the annealing of primers to the template DNA (Kocher and Wilson, 1991). On average, the SCAR primer pairs (SCH5 800, SCI 4 1100, SCL 19 940, SCN 6 800, SCW7 1150, SCX15 1100, and SCY3 800) produced bands more dependably (significantly greater percentage, P ≤ 0.05) than their corresponding RAPD primers over the MgCl2 concentration range examined (Fig. 2A). However, at the standard PCR (Staub et al., 1996b) concentration (3 mM MgCl2), no difference in banding frequency (percentage of bands recorded) was detected between SCAR and corresponding RAPD markers. Staub et al. (1996b) reported that RAPD banding patterns in cucumber were detrimentally affected by low Mg^{2+} concentration (≤2.0 mM) in the PCR.

Our data indicate that the stable SCAR markers examined were less inhibited by low Mg^{2+} concentration than RAPD markers. This suggests that the use of SCAR markers may be more suitable for use in situations where Mg^{2+} concentration is low, such as in field conditions or in laboratory experiments where Mg^{2+} concentration is difficult to control. The use of SCAR markers may also provide a means for increasing the accuracy and ease of scoring genotypes, which is important for selecting and breeding cucumber varieties.
low and high (≥6 mm) Mg\(^{2+}\) concentrations than their RAPD marker counterparts.

Theoretically, the PCR should amplify sequences that are in low copy number (Mullis et al., 1986). Seven SCAR and RAPD markers were tested for sensitivity to different DNA concentrations (line G421 and H-19) in dilution mixtures (0 to 100%). The mixture (contamination) experiment quantified the percentage of the target site-present template from one genotype was detectable in DNA dilutions from a nonsite-present template genotype. SCAR markers SCB123500, SCL19460, and SCW71150 were more sensitive to site-present template DNA (2%, 1%, and 2%, respectively) than the corresponding RAPD markers (B123500, L19340, and W71150 at 5%, 5%, and >10%, respectively). However, the SCAR markers SCAJ18100 and SCBC388350 needed a greater percentage of band-producing DNA (>10% and >10%, respectively) than the RAPDs AJ18100 and BC388350 needed (5% and 2%, respectively). No difference was detected between the SCARs SCH5800 (1%) and SCI41100 (2%) and RAPD H5800 (1%) and I41100 (2%). Since SCB123500, SCL19460, and SCW71150 detected lower percentages of band-producing DNA than their RAPD counterparts, they may be more amenable to bulked DNA analysis. On the other hand, the avoidance of foreign DNA sources (e.g., cucurbits and other related species) becomes more important (i.e., selecting clean leaf tissue for DNA extraction) when using SCAR markers.

Sensitivity to a wide range of template DNA concentrations is not important when accurate DNA concentration of samples is not known. The DNA quantification step during extraction is time consuming. Using the fluorometer and requiring two replications for accuracy, a person can process ≈10 samples per hour (data not presented). In high-throughput genetic analysis, attempts may be made to reduce or eliminate the DNA quantification step. With such modifications, increased variability for template DNA content would be expected. Tests of primer sensitivity to different concentrations of pure template DNA in this study indicated that both marker types produced a lower frequency of bands as the amount of template DNA decreases (Fig. 2B). The SCAR markers examined produced bands less dependably (lower percentage) than their RAPD counterpart during PCRs with 1 and 2 mM template DNA. Thus, these sampled SCAR markers tended to be more influenced by low template DNA than their corresponding RAPDs.

For a marker to have utility in genetic analysis it must be reproducible and have a genetic basis. SCAR markers SCB123500 and SCX13100 detected polymorphisms between Zudm1 and Straight 8 and demonstrated complete agreement when compared to RAPD markers among 21 F2 plants (data not presented). The combined results of the sensitivity analysis conducted by this study indicate that SCAR markers in cucumber can be effective for genetic analysis if their polymorphic nature is well defined (Fig. 3).

Comparisons of SCAR marker and RAPD marker response to different sources of Taq polymerase and thermocycling machines revealed no differences (P = 0.05). Others have reported that Taq polymerase source affects RAPD banding patterns (Sobral and Honeycutt, 1993; Staub et al., 1996b; Weeden et al., 1992). Our observations are also in agreement with those of Weeden et al. (1992) who found that differing thermocycling machines did not affect RAPD banding patterns.

The hypothesis presented by Paran and Michelmore (1993) that SCAR markers may be more reliable than RAPD markers is supported to some extent by our data (Fig. 3). The SCAR markers evaluated generally produced PCR products that were brighter than their corresponding RAPD marker bands. Such band intensity differences make these SCAR markers easier to score when compared to their RAPD counterpart.

SCAR markers may have two additional advantages that were not investigated by this study. SCAR markers may be multiplexed such that primers of several SCAR markers could be combined in the same PCR. This would increase the throughput potential of SCAR markers for genetic analysis. SCAR markers in some cases can be made codominant if the SCAR PCR products are digested with a restriction enzyme before electrophoresis (Paran and Michelmore, 1993). However, these advantages would likely not be realized for all SCAR since reaction dynamics of the PCR are variable and production of codominant markers is not predictable. In addition, substantial investment to clone and sequence RAPD bands for RAPD to SCAR conversions, and marker testing is essential. Therefore, decisions regarding implementation and deployment of SCAR technology must be weighed against its development costs and the potential loss of the original RAPD polymorphism.
The intended application of markers is also a consideration when determining if SCAR construction is practical. Genetic distances (or similar measure) in germplasm diversity analysis are calculated based on marker loci differences (polymorphisms). Skroch and Nienhuis (1995) found that error rates from scoring RAPD banding patterns did not significantly affect their genetic distance analysis (sampling variance was greater than error variance). Therefore, the potential enhancement supplied by SCAR technology for diversity assessment may not be practical in a species like cucumber where polymorphism level and RAPD to SCAR conversion rate is low. Scoring errors during RAPD analysis may have a substantial impact on genetic analysis, since differences among a few marker loci can change the interpretation of magnitude of the genetic variation. For instance, genetic markers are being used for seed purity testing and protein-based markers (i.e., isozymes) are employed for plant variety protection (PVP) (Staub et al., 1996c). In seed purity analysis, even low levels of marker polymorphism (=5%) are interpreted as impurity (Weeden et al., 1992). PCR-based marker technologies have been proposed for PVP (Staub et al., 1996c). If these technologies are to be used for PVP and patent application, the examiner must be confident that the descriptors (alleles) are distinctive and reproducible (Staub et al., 1996c). Therefore, the cost of RAPD to SCAR conversion should be measured against the potential use of a SCAR marker system.

The application of SCAR markers may extend to genetic studies such as map construction where SCAR loci are equally spaced throughout the genome. RAPD markers converted to sequence tagged sites (STS) (Olson et al., 1989) or SCAR markers (Paran and Michelmore, 1993) could be used as genomic landmarks and provide for common reference points for interlaboratory research. Such landmark loci may be more beneficial for crop species evaluated by many research laboratories and seed companies, such as maize (Zea mays L.) and tomato (Lycopersicon esculentum L.), than for minor crops, such as oat (Avena sativa L.) and cucumber where few laboratories evaluate markers and funding is limited. Conditions that would foster their utilization are needed to support SCAR development. It is clear, however, that where a tight linkage exists between a marker and a gene controlling an economically important trait, SCAR construction may be worthwhile for marker-assisted selection even in a minor crop (McDermott et al., 1994; Naqvi and Chattoo, 1996; Ohmori et al., 1996; Paran and Michelmore, 1993; Witsenboer et al., 1995).

Literature Cited

Boleda, M.D., P. Briones, J. Farres, L. Tyfield, and R. Pi. 1996. Experimental design: A useful tool for PCR optimization. BioTechniques 21:134–140.

Griffin, H.G. and A.M. Griffin. 1994. PCR technology: Current innovations. CRC Press, Ann Arbor, Mich.

Hedrick, P. 1992. Shooting the RAPDs. Nature 355:679–680.

Horejsi, T. 1998. Random amplified polymorphic DNA and sequence characterized amplified regions for studies of genetic diversity and downy mildew resistance in cucumber. PhD diss. Univ. Wis.—Madison.

Kocher, T.D. and A.C. Wilson. 1991. DNA amplification by the polymerase chain reaction, p. 185–207. In: T.A. Brown (ed.). Essential molecular biology: A practical approach. vol. 3. Oxford Univ. Press, Oxford, U.K.

Lopez-Buesa, O. 1994. Randomly amplified polymorphic DNA markers as tags for the major virus resistance genes in cucumber. MS thesis. Univ. Wis.—Madison.

McDermott, J.M., U. Brandle, F. Dutly, U.A. Haemmerli, S. Keller, K.E. Muller, and M.S. Wolfe. 1994. Genetic variation in powdery mildew of barley: Development of RAPD, SCAR, and VNTR markers. Phytopathology 84:1316–1321.

Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp. Quantitative Biol. 51:263–273.

Naqvi, N.I. and B.B. Chattoo. 1996. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome 39:26–30.

Ohmori, T., M. Murata, and F. Motoyoshi. 1996. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus of tomato. Theor. Appl. Genet. 92:151–156.

Olson, M., L. Hood, C. Cantor, and D. Botstein. 1989. A common language for physical mapping of the human genome. Science 245:1434–1435.

Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985–993.

Rafalski, J.A. and S.V. Tingey. 1993. Genetic diagnosis in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9:275–280.

Sambrook, J., E.F. Fritsch, T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Lab. Press. Cold Spring Harbor, N.Y.

Serquen, F.C., J. Bacher, and J.E. Staub. 1997. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol. Breeding 3:257–268.

Sharrocks, A.D. 1994. The design of primers for PCR, p. 5–11. In: H.G. Griffin and A.M. Griffin (eds.). PCR technology: Current innovations. CRC Press, Ann Arbor, Mich.

Skroch, P. and J. Nienhuis. 1995. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91:1086–1091.

Sobral, B.W. and R.J. Honeycutt. 1993. High output genetic mapping of polyploids using PCR-generated markers. Theor. Appl. Genet. 86:105–112.

Staub, J.E., F. Serquen, and M. Gupta. 1996a. Genetic markers, map construction, and their application in plant breeding. HortScience 31:729–741.

Staub, J.E., J. Bacher, and K. Poetter. 1996b. Sources of potential errors in the application of random amplified polymorphic DNAs in cucumber. HortScience 31:262–266.

Staub, J.E., A. Gabert, and T.C. Wehner. 1996c. Plant variety protection: a consideration of genetic relationships. HortScience 31:1086–1091.

Weeden, N.F., M. Timmerman, M. Hermmat, B.E. Kene, and M.A. Lodhi. 1992. Inheritance and reliability of SCAR markers, p. 12–17. In: Proc. Symp. Applications of RAPD technology to plant breeding. 1 Nov., Minneapolis, Minn.

Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18:213–218.

Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531–6535.

Witsenboer, H., R.V. Kesseli, M.G. Fortin, M. Stanghellini, and R.W. Michelmore. 1995. Sources and genetic structure of a cluster of genes for resistance to three pathogens in lettuce. Theor. Appl. Genet. 91:178–188.

Wolff, K., E. Schoen, and J. Peters-Van Rijn. 1993. Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum. Theor. Appl. Genet. 86:1033–1037.