Moebius functions
Irreducible Polynomials and
Dirichlet Series

Dang Vu Giang
Hanoi Institute of Mathematics
18 Hoang Quoc Viet
10307 Hanoi Vietnam
dangvugiang@yahoo.com

Classical Moebius function μ is defined on the positive integers \mathbb{Z}^+ and taking 0, ± 1 as its values. More exactly, $\mu(1) = 1$, $\mu(n) = 0$ if n is divisible by the square of a prime and finally $\mu(n) = (-1)^k$ if n is the product of k distinct primes. Clearly, for every co-prime integers m,n we have $\mu(mn) = \mu(n) \mu(m)$. We have the following beautiful inversion formulas:

Additive formula: Let $g : \mathbb{Z}^+ \to \mathbb{Z}$ be a function and $f(n) = \sum_{d|n} g(d)$. Then $g(n) = \sum_{d|n} \mu \left(\frac{n}{d} \right) f(d)$.

Multiplicative formula: Let G be a commutative group, $g : \mathbb{Z}^+ \to G$ be a function and $f(n) = \prod_{d|n} g(d)$. Then $g(n) = \prod_{d|n} f(d) \mu \left(\frac{n}{d} \right)$.

They can easily proved via the trivial identity $0 = \sum_{d|n} \mu(d)$ for every $n > 1$. The multiplicative formula has an interesting application for Gauss primitive (cyclotomic) polynomials Φ_n. By definition $\Phi_n(x) = \prod_{(k,n)=1} (x - \omega^k)$ where ω is a nth primitive root of unity. For example, $\Phi_1(x) = x-1$, $\Phi_2(x) = x+1$, $\Phi_3(x) = x^2 + x + 1$, $\Phi_4(x) = x^2 + 1$, $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$. Let $\phi(n) = \sum_{(k,n)=1} 1 = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$ be the Euler function. Then we have $n = \sum_{d|n} \phi(d)$. This implies that $x^n - 1 = \prod_{d|n} \Phi_d(x)$.

Thus, in virtue of the multiplicative formula $\Phi_n(x) = \prod_{d|n} (x^{d-1})^{\phi(n/d)}$. Therefore, Φ_n is of integer coefficients. Moreover, Φ_n is irreducible over rationals \mathbb{Q}. If otherwise, there is a monic irreducible polynomial $u \in \mathbb{Z}[x]$ such that $\Phi_n = uv$, where $v \in \mathbb{Z}[x]$. Let p be a prime not dividing n and let ω be a root of u. If ω^p is not a root of u then ω^p is a root of v. Thus, ω is root of $v\left(x^p\right)$. Consequently, $u(x) \in \mathbb{Z}[x]$ is dividing $v\left(x^p\right)$.
Reduced modulo \(p \), \(v(x^p) = v(x)^p \) in the polynomial ring \(\mathbb{F}_p[x] \). Consequently, \(u(x) \in \mathbb{F}_p[x] \) is dividing \(v(x) \in \mathbb{F}_p[x] \). Therefore, in an extension of \(\mathbb{F}_p \) the polynomial \(x^n - 1 \) has a multiplicative root. This is a contradiction, because \(p \) is not a divisor of \(n \). Thus, \(\omega^p \) is a root of \(u \). Hence, \(\omega^k \) is root of \(u \) for any integer \(k \) relatively prime to \(n \). Therefore, \(u = \Phi_n \) so \(\Phi_n \) is irreducible over rationals \(\mathbb{Q} \). This is known as minimal polynomials of any primitive \(n \)th root of 1. Now let \(I_q(n) \) be the number of monic irreducible polynomials \(f \) of degree \(n \) over the finite field \(\mathbb{F}(q) = \mathbb{F}_q \) (of \(q = p^m \) elements). For example, \(x^2 + x + 1 \) is the only irreducible polynomial of degree 2 over \(\mathbb{F}_2 \).

It is well known that there is \(\omega \in \mathbb{F}(q) \) such that \(1, \omega, \omega^2, \ldots, \omega^{q-1} \) constitute a basis for \(\mathbb{F}(q) \) as vector space over \(\mathbb{F}_p \). Let \(\omega^m = a_1 \omega^{m-1} + \cdots + a_{m-1} \omega + a_m \) where \(a_1, \ldots, a_{m-1}, a_m \in \mathbb{F}_p \). Clearly, the polynomial \(h(x) = x^m - a_1 x^{m-1} - \cdots - a_{m-1} x - a_m \) is irreducible over \(\mathbb{F}_p \) and \(\mathbb{F}(q) \cong \mathbb{F}_p[x]/(h) \). Hence, two finite fields of the same cardinality are isomorphic. Moreover, the multiplicative group \(\mathbb{F}_q^* \) (of nonzero elements of \(\mathbb{F}_q \)) is cyclic. In fact if \(\alpha \in \mathbb{F}_q^* \) is an element of maximal order \(r \leq q-1 \) then any element \(\beta \) of \(\mathbb{F}(q)^* \) satisfying \(\beta^r = 1 \). Indeed, if \(\ell \) is the order of \(\beta \) and \(\pi \) is a prime then we can write \(r = \pi^a r_0 \) and \(\ell = \pi^b \ell_0 \) where \(r_0 \) and \(\ell_0 \) are not divisible by \(\pi \).

Clearly, \(\alpha^{\pi^a} \) has order \(r_0 \) and \(\beta^{\pi^b} \) has order \(\pi^b \). Hence, \(\alpha^{\pi^a} \beta^{\pi^b} \) has order \(\pi^a r_0 \leq r = \pi^a r_0 \). Consequently, \(b \leq a \) and every divisor of \(\ell \) is also a divisor of \(r \). Therefore, \(\ell \) itself is a divisor of \(r \). Hence, \(\beta^r = 1 \) and the polynomial \(\prod_{\alpha \in \mathbb{F}(q)^*} (x - \alpha) \) of degree \(q-1 \) is a divisor of \(x^r - 1 \). Consequently, \(\ell \geq q-1 \). But \(\ell \leq q-1 \) so we have \(\ell = q-1 \) and the multiplicative group of any finite field is cyclic. Thus, the extensions \(\mathbb{F}(q)[x]/(f) \) of \(\mathbb{F}(q) \) (\(f \) is any irreducible polynomial over \(\mathbb{F}(q) \) of degree \(n \)) are isomorphic and irreducible polynomials over \(\mathbb{F}(q) \) of degree \(n \) are completely reducible in \(\mathbb{F}(q^n) \), and they are factors of \(x^{q^n} - x \). More exactly, \(x^{q^n} - x \) is the product of all monic irreducible polynomials of degree \(d \) where \(d \) is running over divisors of \(n \).

If otherwise, there is an irreducible factor \(v \) of \(x^{q^n} - x \) with degree \(k \) which is not diving \(n \). Clearly, \(k > 1 \) and \(v \mid x^{q^n} - x \). But \(n = k\ell + r \) with \(r \in (0,k) \) so \(v \) is an irreducible factor of \(x^{q^n} - x \). Thus, any element \(\omega \) in the quotient field \(\mathbb{F}(q)[x]/(v) = \mathbb{F}(q^k) \) is satisfying \(\omega^{q^k} = \omega \) so \(q^k-1 \) is divisible by \(q^k - 1 \). This is contradiction, because \(r \in (0,k) \) and we have \(x^{q^n} - x \) is the product of all monic irreducible polynomials of degree \(d \) where \(d \) running over divisors of \(n \). Therefore,

\[q^n = \sum_{d|n} dI_q(d) \]
\[I_q(n) = \frac{1}{n} \sum_{d \mid n} \mu(n/d)q^d. \]

The famous Riemann zeta function \(\zeta \) is defined by \(\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} \) for \(\Re(z) > 1 \). We have a reciprocal formula \(\frac{1}{\zeta(z)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^z} \). On the other hand, \(\vert \zeta(z) \vert \leq \zeta(\Re(z)) = \sum_{n=1}^{\infty} \frac{1}{n^{\Re(z)}} < 1 + \int_{1}^{\Re(z)} \frac{dt}{t^{\Re(z)}} = \frac{\Re(z)}{\Re(z) - 1} \) and also \(\frac{1}{\zeta(z)} \leq \zeta(\Re(z)) \) in the virtue of the reciprocal formula. Thus, \(\frac{\Re(z) - 1}{\Re(z)} < \zeta(z) < \frac{\Re(z)}{\Re(z) - 1} \) and consequently, \(\lim_{\Re(z) \to \infty} \vert \zeta(z) \vert = 1 \) and \(\vert \zeta(z) \vert > 0 \) for \(\Re(z) > 1 \). If Riemann hypothesis is not true then for every \(k \) there exist a complex number \(z \) with \(\Re(z) > 1 \) and an integer \(N \geq k \) such that \(\sum_{n=1}^{N} \frac{1}{n^z} = 0 \). Now we wish to count the number of derangements of a finite set \(S \), that is the number of permutations of \(S \) which have no fixed points. Let \(T \) be a subset of \(S \). We define

\[f(T) = \text{the number of permutations of } S \text{ which fix all the elements of } T \text{ but fix no other element of the complement } T' \text{ of } T \text{ in } S; \]

\[g(T) = \text{the number of permutations of } S \text{ which fix all the elements of } T \text{ but perhaps some additional elements as well}. \]

Then \(g(T) = \sum_{U \supseteq T} f(U) \) where of course, \(U \) is a subset of \(S \). We have \(g(U) = \vert S \setminus U \vert \) and \(f(\emptyset) \) is the number of derangements of \(S \). Here \(\vert P \vert \) denotes the cardinality of \(P \). The object is to invert the formula \(g(T) = \sum_{U \supseteq T} f(U) \) to obtain \(f(T) \) in term of \(g(U) \). To this end we define the Moebius function on a locally finite partially ordered set and will have \(f(\emptyset) = \vert S \vert! \sum_{k=0}^{[\frac{\vert S \vert}{k}]} (-1)^k \frac{[\frac{\vert S \vert}{k}]}{k!} \) where \([x]\) denote the integer closest to \(x \). A partial order is a binary relation "\(\leq \)" over a set \(P \) which is reflexive, antisymmetric, and transitive, i.e., for all \(a, b, \) and \(c \) in \(P \), we have that

- \(a \leq a \) (reflexivity);
- if \(a \leq b \) and \(b \leq a \) then \(a = b \) (antisymmetry);
- if \(a \leq b \) and \(b \leq c \) then \(a \leq c \) (transitivity).

Examples:

- Positive integers ordered by divisibility;
- Finite subsets of some set \(E \), ordered by inclusion;
- Subsets of some finite set \(S \), ordered by exclusion: \(U \leq T \) if \(U \supseteq T \).
A set with a partial order is called a partially ordered set (also called a poset). A **locally finite poset** is one for which every closed interval \([a, b] = \{x : a \leq x \leq b\}\) within it is finite. In theoretical physics a locally finite poset is also called a causal set and has been used as a model for spacetime. **Moebius function on a locally finite poset** \(P\) is defined as follows: \(\mu(x, x) = 1\) for all \(x \in P\) and \(\mu(x, y) = -\sum_{x \leq t < y} \mu(x, t)\). The local finiteness of \(P\) assure that in the sum, there are only finite terms. It follows that \(\sum_{x \leq t < y} \mu(x, t) = 0\) for every \(x < y\). From this definition we have at once \(\mu(x, y) = 0\) if \(x \not\leq y\). For the order by **divisibility** we have \(\mu(a, b) = \mu(b/a)\) where the second \(\mu\) is the classical Moebius function. For the order by inclusion we have \(\mu(T, U) = (-1)^{|U \setminus T|}\) for every \(T \subseteq U\). For the order by exclusion we have \(\mu(U, T) = (-1)^{|U \cup T|}\) for every \(U \supseteq T\). In this book we consider complex valued functions \(\alpha(x, y)\) of two variables \(x, y \in P\) as a matrices \(P \times P\). Here \(|P|\) denotes the cardinality of \(P\). Moreover, we always assume that \(\alpha(x, y) = 0\) if \(x \not\leq y\). These matrices (functions) are upper triangular. The product \(\alpha \circ \beta\) is defined by \((\alpha \circ \beta)(x, y) = \sum_{x \leq t < y} \alpha(x, t) \beta(t, y)\). For example, the function \(\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \not= y \end{cases}\) is considered as identity matrix. A function \(\alpha\) is called the inverse of \(\beta\) if \(\alpha \circ \beta = \beta \circ \alpha = \delta\). Now define \(\xi(x, y) = \begin{cases} 1 & \text{if } x \leq y \\ 0 & \text{if } x \not\leq y \end{cases}\) then \((\mu \circ \xi)(x, y) = \sum_{x \leq t < y} \mu(x, t) \xi(t, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \not= y \end{cases}\). Hence \(\xi\) is inverse of \(\mu\). More exactly, any finite poset \(S\) can be numbered as \(x_1, x_2, \ldots, x_n\) such that if \(x_i < x_j\) then \(i < j\). Thus, if \(g(x) = \sum_{y \leq x} f(y)\) then

\[
\begin{bmatrix}
g(x_1) \\
g(x_2) \\
\vdots \\
g(x_n)
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & \cdots & 0 \\
* & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_n)
\end{bmatrix}
= (I + N)
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_n)
\end{bmatrix}
\]

where \(N\) is a nilpotent matrix and \(*\) may be 0 or 1. Clearly, \((I + N)^{-1} = I - N + N^2 - \ldots + (-1)^{n-1} N^{n-1}\) and we have
Moebius inversion theorem: If \(f \) is a function from a finite poset \(S \) into any commutative ring then \(g(x) = \sum_{y \leq x} f(y) \) implies \(f(x) = \sum_{y \leq x} g(y) \mu(y, x) \).

Now we choose \(S = \{1, 2, \ldots, n\} \) and let \(A_1, A_2, \ldots, A_n \) be finite sets. For the order by divisibility and get back classical inversion formulas. For the order by inclusion, we let

\[
\begin{aligned}
f(S) &= 0 \quad \text{and} \quad f(T) = \left| \bigcap_{i \in T} A_i \setminus \bigcup_{j \in T} A_j \right| \quad \text{for a proper subset } T \text{ of } S. \\
\sum_{U \subseteq T} f(U) &= \bigcup_{j \in T'} A_j \quad \text{and} \quad g(S) = \bigcup_{j \in S} A_j \quad \text{and we have the inclusion–exclusion principle } f(S) = \sum_{T \subseteq S} (-1)^{|T|} g(T) \text{ or more exactly,}
\end{aligned}
\]

\[
\begin{aligned}
\left| \bigcup_{i=1}^{n} A_i \right| &= \sum_{i=1}^{n} |A_i| - \sum_{i,j: 1 \leq i < j \leq n} |A_i \cap A_j| \\
&\quad + \sum_{i,j,k: 1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \cdots + (-1)^{n-1} |A_1 \cap \cdots \cap A_n|
\end{aligned}
\]

But the induction according to \(n \) is more natural proof. Let \(A \) denote the union of the sets \(A_1, \ldots, A_n \). To prove the inclusion–exclusion principle in general, we first have to verify the identity

\[
1_A = \sum_{h=1}^{n} (-1)^{h-1} \sum_{I \subseteq \{1, \ldots, n\}} \mathbf{1}_{A_I} \quad \text{(*)}
\]

for indicator functions, where

\[
A_I = \bigcap_{i \in I} A_i.
\]

There are at least two ways to do this:
First possibility: It suffices to do this for every x in the union of $A_1, ..., A_n$. Suppose x belongs to exactly m sets with $1 \leq m \leq n$, for simplicity of notation say $A_1, ..., A_m$. Then the identity at x reduces to

$$1 = \sum_{k=1}^{m} (-1)^{k-1} \sum_{I \subseteq \{1,...,m\}} \mathbb{1}_{|I|=k}.$$

The number of subsets of cardinality k of an m-element set is the combinatorical interpretation of the binomial coefficient $\binom{m}{k}$. Since $1 = \binom{m}{0}$, we have

$$\binom{m}{0} = \sum_{k=1}^{m} (-1)^{k-1} \binom{m}{k}.$$

Putting all terms to the left-hand side of the equation, we obtain the expansion for $(1 - 1)^m$ given by the binomial theorem, hence we see that (*) is true for x.

Second possibility: The following function is identically zero

$$(1_A - 1_{A_1})(1_A - 1_{A_2}) \cdots (1_A - 1_{A_n}) = 0,$$

because: if x is not in A, then all factors are $0 - 0 = 0$; and otherwise, if x does belong to some A_m, then the corresponding mth factor is $1 - 1 = 0$. By expanding the product on the right-hand side, equation (*) follows. Now let $A_1, A_2, ..., A_n$ be events in the probability space. Integrate (*) according to the probability measure we have

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i \right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{I \subseteq \{1,...,n\}} \mathbb{P}(A_I),$$

or equivalently,

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i \right) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i,j:i<j} \mathbb{P}(A_i \cap A_j)$$

$$+ \sum_{i,j,k:i<j<k} \mathbb{P}(A_i \cap A_j \cap A_k) - \cdots + (-1)^{n-1} \mathbb{P}\left(\bigcap_{i=1}^{n} A_i \right).$$

An incidence algebra is an associative algebra, defined for any locally finite poset and commutative ring with unity. The members of the incidence algebra are the functions f assigning to each nonempty interval $[a, b]$ a scalar $f(a, b)$, which is taken from the ring of scalars, a commutative ring with unity. On this underlying set one defines addition and
scalar multiplication pointwise, and "multiplication" in the incidence algebra is a **convolution** defined by

\[(f * g)(a, b) = \sum_{a \leq x \leq b} f(a, x)g(x, b).\]

An incidence algebra is finite-dimensional if and only if the underlying poset is finite. An incidence algebra is analogous to a **group algebra**; indeed, both the group algebra and the incidence algebra are special cases of a **categorical algebra**, defined analogously; **groups** and **posets** being special kinds of **categories**. The multiplicative identity element of the incidence algebra is the **delta function**, defined by

\[\delta(a, b) = \begin{cases} 1, & \text{if } a = b \\ 0, & \text{if } a < b \end{cases}\]

Aₙ, n > 4, Alternating groups

Simplicity: Solvable for \(n < 5\), otherwise simple.

Order: \(n!/2\) when \(n > 1\).

Schur multiplier: 2 for \(n = 5\) or \(n > 7\), 6 for \(n = 6\) or 7; see [Covering groups of the alternating and symmetric groups](#).

Outer automorphism group: In general 2. Exceptions: for \(n = 1, n = 2\), it is trivial, and for \(n = 6\), it has order 4 (elementary abelian).

Other names: Altn.

If \(n \geq 3\) then \(Aₙ\) is generated by the 3−cycles

\[(abc) = (bc)(ac) \quad (ab)(cd) = (acd)(acb).\]

If \(n \geq 5\) and \(K\) is a normal subgroup of \(Aₙ\) which contains a 3−cycle then \(K\) contains every 3−cycle and consequently, \(K = Aₙ\).

Now let \(\alpha \in K \setminus \{id\}\) with maximal number of fix points. Then \(\alpha\) is a 3−cycle. If otherwise, \(\alpha\) moves at least 4 numbers 1,2,3,4, say. We write \(\alpha\) as a product of disjoint cycles \(\alpha = (123\cdots)\cdots\) or \(\alpha = (12)(34)\cdots\). In the first case there is a cycle of length \(\geq 3\) and in the second case every cycle is of length 2 (disjoint transpositions). Moreover, in the first case, \(\alpha\) moves at least one other number 5, say (because \(\alpha\) is even permutation). Now we have \(\beta = (345) \in Aₙ\) and consequently, \(\alpha_1 = \beta\alpha\beta^{-1} \in K\) \((K\text{ is a normal subgroup of }Aₙ\)). Clearly, \(\alpha \neq \alpha_1\) so \(\alpha_2 = \alpha_1\alpha_1^{-1} = \beta\alpha\beta^{-1} \alpha^{-1} \neq \text{id}\). Thus, \(\alpha_2 \in K \setminus \{id\}\) and fixes 2. Moreover, if a number larger than 5 is fixed by \(\alpha\) then it is also fixed by \(\alpha_2\). Therefore, \(\alpha_2\) fixes more numbers than \(\alpha_2\) in the first case. In the second case \(\alpha_2\) fixes 1. Thus, \(\alpha_2\) fixes more numbers than \(\alpha_2\) in any case. This is a
contradiction. Therefore, α is a 3-cycle and consequently, $K = A_n$. Therefore, the symmetric group S_n is not solvable if $n \geq 5$.

Acknowledgement. Deepest appreciation is extended towards the NAFOSTED (the National Foundation for Science and Technology Development in Vietnam) for the financial support.

References

1. Jacobson Nathan, Basic Algebra. I, W. H. Freeman and Co., 1984.
2. Rota, Gian-Carlo "On the Foundations of Combinatorial Theory I: Theory of Möbius Functions", Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2: (1964), 340–368
3. Stanley, Richard P. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997.