Generalized semiconfined harmonic oscillator model with a position-dependent effective mass

C. Quesne
Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe B-1050, Brussels, Belgium

Received: 19 October 2021 / Accepted: 2 February 2022
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract By using a point canonical transformation starting from the constant-mass Schrödinger equation for the isotonic potential, it is shown that a semiconfined harmonic oscillator model with a position-dependent mass in the BenDaniel–Duke setting and the same spectrum as the standard harmonic oscillator can be easily constructed and extended to a semiconfined shifted harmonic oscillator, which could result from the presence of a uniform gravitational field. A further generalization is proposed by considering a m-dependent position-dependent mass for $0 < m < 2$ and deriving the associated semiconfined potential. This results in a family of position-dependent mass and potential pairs, to which the original pair belongs as it corresponds to $m = 1$. Finally, the potential that would result from a general von Roos kinetic energy operator is presented and the examples of the Zhu–Kroemer and Mustafa–Mazharimousavi settings are briefly discussed.

1 Introduction

There is much interest in the Schrödinger equation wherein the constant mass is replaced by a position-dependent mass (PDM), because the latter has many applications in problems occurring in several fields of physics [1–12]. As it has been shown [13] that the PDM Schrödinger equation is equivalent to two other unconventional Schrödinger equations, namely the Schrödinger equation resulting from the use of deformed commutation relations [14–16], as well as that in curved space [17–19], this has reinforced the interest in its study.

As a consequence, much attention has been devoted to finding exact solutions of PDM Schrödinger equations because they may provide a conceptual understanding of some physical phenomena, as well as a testing ground for some approximation schemes. The generation of PDM and potential pairs leading to such exact solutions has been achieved by various methods (see, e.g., [20] and references quoted therein). One of the most powerful techniques for such a purpose consists in applying a point canonical transformation (PCT) to an exactly solvable constant-mass Schrödinger equation [21,22]. Recently, such an approach has proved its efficiency again by providing a straightforward generalization [23] of a harmonic oscillator model, wherein both the mass and the angular frequency are dependent on the position [24].

The purpose of the present paper is to re-examine a new model of semiconfined harmonic oscillator with a mass that varies with position, which has the striking property of having the same spectrum as the standard harmonic oscillator model [25]. By using the PCT method, we plan to prove that one can find a family of PDM and semiconfined potential pairs corresponding to such a spectrum and to which the original PDM and semiconfined harmonic oscillator pair belongs.

The paper is organized as follows. In Sect. 2, the model of [25] is reviewed and shown to be derivable by applying the PCT technique to the constant-mass isotonic oscillator model [26,27]. In Sect. 3, an extension of the model is proposed by starting from a more general PDM and determining the associated semiconfined potential. Finally, Sect. 4 contains some comments.

2 Semiconfined harmonic oscillator model and its derivation by the PCT technique

Jafarov and Van der Jeugt recently determined the exact solution of a PDM semiconfined harmonic oscillator model, characterized by the Schrödinger equation [25]

\[
\left(-\frac{d}{dx} \frac{1}{M(x)} \frac{d}{dx} + V_{\text{eff}}(x)\right) \psi_n(x) = E_n \psi_n(x),
\]

(1)

\[a\text{ e-mail: Christiane.Quesne@ulb.be (corresponding author)}\]
where the kinetic energy operator has the BenDaniel–Duke form \[28\], and the potential has the harmonic oscillator form

\[
V_{\text{eff}}(x) = \frac{1}{4} M(x) \omega^2 x^2, \tag{2}
\]

except that the mass

\[
M(x) = \begin{cases}
(1 + \frac{x}{a})^{-1} & \text{if } -a < x < +\infty, \\
+\infty & \text{if } x \leq -a,
\end{cases} \tag{3}
\]

with \(a > 0\), depends on the position in such a way that \(V_{\text{eff}}(-a) = +\infty\) and \(\lim_{x \to +\infty} V_{\text{eff}}(x) = +\infty\).\(^1\)

By directly solving the differential equation (1), they found that the spectrum of this semiconfined model is that of the standard harmonic oscillator,

\[
E_n = \omega \left(n + \frac{1}{2} \right), \quad n = 0, 1, 2, \ldots, \tag{4}
\]

with corresponding wavefunctions

\[
\psi_n(x) = C_n \left(1 + \frac{x}{a} \right)^{\frac{1}{4} \omega a^2} e^{-\frac{1}{4} \omega a(x + a)} L_n^{(\omega a^2)} \left(\omega a^2 \left(1 + \frac{x}{a} \right) \right), \quad -a < x < +\infty, \tag{5}
\]

expressed in terms of Laguerre polynomials \(L_n^{(\alpha)}(z)\) and vanishing at \(x = -a\) and \(x \to +\infty\), as it should be. Here, \(C_n\) is a normalization coefficient given by

\[
C_n = (\omega a^2)^{\frac{1}{4}(\omega a^2 + 1)} \frac{n!}{\sqrt{\omega (\omega a^2 + n + 1)}}. \tag{6}
\]

These results may be alternatively derived by applying a PCT to the constant-mass Schrödinger equation for the isotonic oscillator \[26,27\]

\[
\left(-\frac{d^2}{du^2} + U(u) \right) \phi_n(u) = \epsilon_n \phi_n(u), \tag{7}
\]

where

\[
U(u) = \frac{1}{4} \omega^2 u^2 + \frac{g}{u^2}, \quad g > 0, \quad 0 < u < +\infty, \tag{8}
\]

\[
\epsilon_n = \bar{\omega} (2n + \alpha + 1), \quad \alpha = \frac{1}{2} \sqrt{1 + 4g}, \tag{9}
\]

and

\[
\phi_n(u) \propto u^{\alpha + \frac{1}{2}} e^{-\frac{1}{4} \bar{\omega} u^2} L_n^{(\bar{\omega} u^2)} \left(\frac{1}{2} \bar{\omega} u^2 \right). \tag{10}
\]

A PCT transforming an equation such as (7) into a PDM equation of type (1) \[21,22\] consists in making a change of variable

\[
u(x) = \tilde{a} v(x) + \tilde{b}, \quad v(x) = \int^{x} \sqrt{M(x')} \, dx', \tag{11}
\]

and a change of function

\[
\phi_n(u(x)) = [M(x)]^{-1/4} \psi_n(x). \tag{12}
\]

The potential \(V_{\text{eff}}(x)\) and the energy eigenvalues \(E_n\) of the PDM Schrödinger equation are then given in terms of the potential and the energy eigenvalues of the constant-mass one by

\[
V_{\text{eff}}(x) = \tilde{a}^2 U(u(x)) + \frac{M''}{4 M^2} - \frac{7 M^2}{16 M^2} + \tilde{c}, \tag{13}
\]

and

\[
E_n = \tilde{a}^2 \epsilon_n + \tilde{c}, \tag{14}
\]

where a prime denotes derivation with respect to \(x\) and \(\tilde{a}, \tilde{b}, \tilde{c}\) are three real constants.

\(^1\) Note that we have adopted here units wherein \(\hbar = 2m_0 \) in the original paper.
In the present case, from (3) and (11), we directly obtain
\[v(x) = 2a \sqrt{1 + \frac{x}{a}}. \]
(15)

and
\[\frac{M''}{4M^2} - \frac{7M'^2}{16M^3} = \frac{1}{16a^2} \left(1 + \frac{x}{a} \right)^{-1} \]
(16)

for \(-a < x < +\infty\). With the choice \(\bar{a} = \sqrt{\frac{2\omega}{a^2}}, \bar{b} = 0 \), we get for the change of variable (11)
\[u(x) = a \sqrt{\frac{2\omega}{\bar{a}}} \sqrt{1 + \frac{x}{a}} \]
(17)

and the change of function (12), together with (10), leads to
\[\psi_n(x) = C_n \left(1 + \frac{x}{a} \right)^{\alpha/2} e^{-\frac{1}{2} \omega a(x+a)} L_n^{(\alpha)} \left(\omega a^2 \left(1 + \frac{x}{a} \right) \right), \]
(18)

where \(C_n \) turns out to be
\[C_n = (\omega a^2)^{1/2} \left(\frac{n!}{a \Gamma(\alpha + n + 1)} \right). \]
(19)

Furthermore, on assuming \(\bar{c} = -\frac{\alpha}{2} \omega \), the transformed potential (13) becomes
\[V_{\text{eff}}(x) = \frac{a\omega^2}{4(x+a)} \left(x + a - \frac{\alpha}{\omega a} \right)^2, \]
(20)

with corresponding eigenvalues \(E_n \) given by (4).

If we compare these results with those of [25], we notice that we have obtained the same energy spectrum (4), but with generalized potential and wavefunctions, since the latter depend on an extra parameter \(\alpha \) absent in [25]. By taking \(\alpha = a^2 \omega \), the original results are retrieved, but for other values of \(\alpha \), the potential (20) describes a semiconfined shifted harmonic oscillator. Note that such a potential might be interpreted as a semiconfined harmonic oscillator in a uniform gravitational field as was done for a shifted harmonic oscillator with another type of PDM [29,30].

3 Family of generalized semiconfined oscillator models

A further generalization of the model of [25] can be obtained by changing the PDM (3) into a PDM depending on some parameter \(m \) taking values in the interval \(0 < m < 2 \),
\[M(x) = \begin{cases}
(1 + \frac{x}{a})^{-m} & \text{if } -a < x < +\infty, \\
+\infty & \text{if } x \leq -a,
\end{cases} \]
(21)

and determining the associated potential \(V_{\text{eff}}(x) \) with the assumption that the starting constant-mass Schrödinger equation remains as given in (7) and (8). The results of Sect. 2 will then correspond to the \(m = 1 \) special case.

Equations (15) and (16) are now replaced by
\[v(x) = \frac{2a}{2-m} \left(1 + \frac{x}{a} \right)^{1-\frac{m}{2}} \]
(22)

and
\[\frac{M''}{4M^2} - \frac{7M'^2}{16M^3} = -\frac{1}{16a^2} \frac{m(3m - 4)}{m - 2} \left(1 + \frac{x}{a} \right)^{m-2}, \]
(23)

respectively. On keeping the same values for \(\bar{a}, \bar{b}, \) and \(\bar{c} \) as in Sect. 2, we get a new change of variable
\[u(x) = \frac{a}{2-m} \sqrt{\frac{2\omega}{\bar{a}}} \left(1 + \frac{x}{a} \right)^{1-\frac{m}{2}}, \]
(24)
Fig. 1 Plot of the semiconfined potential (25) in terms of x for $m = 1$ (black line), $m = \frac{1}{2}$ (red line), and $m = \frac{3}{2}$ (green line). The parameter values are $\omega = 1$, $a = 2$, and $\alpha = 4$.

but the resulting energy eigenvalues remain given by (4). From (13), however, the resulting potential turns out to be m-dependent and given by

$$V_{\text{eff}}(x) = \frac{a^m \omega^2}{4(2 - m)^2} (x + a)^{2-m} + \frac{[(m - 2)\alpha - (m - 1)][(m - 2)\alpha + m - 1]}{4a^m(x + a)^{2-m}} - \frac{1}{2}a^2 \omega \alpha.$$ (25)

This is also the case for the wavefunctions, which become

$$\psi_n(x) = C_n \left(1 + \frac{x}{a}\right)^{-\frac{\alpha}{2} (2 - m)} e^{-\frac{1}{2} \omega a^2 (1 + \frac{x}{a})^{2-m}} \times L_n^{(\alpha)} \left(\frac{\omega a^2}{(2 - m)^2} \left(1 + \frac{x}{a}\right)^{2-m}\right).$$ (26)

where

$$C_n = \left(\frac{\omega a^2}{(2 - m)^2}\right)^{\frac{\alpha}{2} (2 - m)} \frac{(2 - m)!}{\Gamma(\alpha + n + 1)}.$$ (27)

The new m-dependent potential (25) will be a semiconfined potential provided it goes to $+\infty$ for $x \to +\infty$ and $x \to -a$. The former condition is automatically satisfied, but the latter imposes that

$$\alpha > m - \frac{1}{2} - m,$$ (28)

which implies a restriction for m values such that $\frac{m - 1}{2-m} > \frac{1}{2}$, i.e., for those in the interval $\frac{1}{2} < m < 2$. In such a case, the wavefunctions (26) vanish for $x \to +\infty$ and $x \to -a$, as it should be. The minimum of the potential occurs for

$$x_{\min} = -a + \left\{\frac{(2 - m)^2}{a^m \omega} \sqrt{\alpha^2 - \left(\frac{m - 1}{2 - m}\right)^2}\right\}^{1/(2-m)}$$ (29)

and is given by

$$(V_{\text{eff}})_{\min} = \frac{1}{2} \omega \left\{\sqrt{\alpha^2 - \left(\frac{m - 1}{2 - m}\right)^2} - \alpha\right\}.$$ (30)

It is therefore slightly negative, except for $m = 1$ for which it vanishes.

In Fig. 1, we show the dependence of the semiconfined potential (25) on m. The black line corresponds to the original semiconfined harmonic oscillator (2).
4 Comments

In the present paper, we have first shown that the PCT method applied to the constant-mass Schrödinger equation for the isotonic oscillator allows us to easily retrieve the results of [25] and to extend them in order to describe a semiconfined shifted harmonic oscillator, which might be interpreted as a semiconfined harmonic oscillator in a uniform gravitational field.

In a second step, we have obtained a further generalization by considering a m-dependent PDM for $0 < m < 2$ and by deriving the corresponding semiconfined potential with the same spectrum as the standard harmonic oscillator. We have therefore constructed a family of PDM and potential pairs, to which the original pair belongs as it corresponds to $m = 1$.

In [25], the BenDaniel–Duke ordering [28] was chosen for the momentum and mass operators. One finds, however, in the literature, several other orderings, which are special cases of the von Roos general two-parameter form of the kinetic energy operator [31], for which the Schrödinger operator writes

$$\frac{-1}{2} \left[M(x)^{\xi} \frac{d}{dx} M(x)^{\eta} \frac{d}{dx} M(x)^{\zeta} + M(x)^{\xi} \frac{d}{dx} M(x)^{\eta} \frac{d}{dx} M(x)^{\zeta} \right] + V_R(x) \right] \psi_n(x) = E_n \psi_n(x),$$

(31)

where ξ, η, ζ are some real parameters restricted by the condition $\xi + \eta + \zeta = -1$. In particular, the BenDaniel–Duke ordering corresponds to $\xi = \eta = 0$, $\zeta = -1$, and the relation between the potentials in (1) and (31) is given by

$$V_{R}(x) = V_{\text{eff}}(x) - \frac{1}{2} (1 + \eta) \frac{M''}{M} + [\xi (\xi + 1) + 1] \frac{M^2}{M^2}.$$

(32)

For the mass chosen in (21), the latter becomes

$$V_{\text{R}}(x) = V_{\text{eff}}(x) + \left\{ -\frac{1}{2} (1 + \eta)m(m + 1) + [\xi (\xi + 1) + 1]m^2 \right\} \frac{(x + a)^{m-2}}{a^m}.$$

(33)

It is worth noting, in particular, the Zhu–Kroemer [32] and Mustafa–Mazharimousavi [33] orderings, which pass the de Souza Dutra and Almeida test [34] as good orderings. The former corresponds to $\xi = \xi = -\frac{1}{2}$, $\eta = 0$, and leads to replacing (33) by

$$V_{\text{ZK}}(x) = \frac{a^m \omega^2}{4(2 - m)^2 (x + a)^{2m}} + \frac{(m - 2)a - 1}{4a^m (x + a)^{2m}} - \frac{1}{2} \omega a,$$

(34)

while the latter is associated with $\xi = \xi = -\frac{1}{2}$, $\eta = -\frac{1}{2}$, and gives rise to

$$V_{\text{MM}}(x) = \frac{a^m \omega^2}{4(2 - m)^2 (x + a)^{2m}} + \frac{(m - 2)^2(a^2 - \frac{1}{4})}{4a^m (x + a)^{2m}} - \frac{1}{2} \omega a.$$

(35)

These potentials have a behavior very similar to that of $V_{\text{eff}}(x)$, since they are semiconfined for a restricted to $a > 1/(2 - m)$ or for any value of a ($> 1/2$ by definition (9)), respectively. The place of the minimum and its value are given by (29) and (30) provided $\sqrt{\alpha^2 - (m - 1)(2 - m)^2}$ is replaced by $\sqrt{\alpha^2 - 1/(2 - m)^2}$ or $\sqrt{\alpha^2 - 1/4}$.

Acknowledgements This work was supported by the Fonds de la Recherche Scientifique-FNRS under Grant No. 4.45.10.08.

References

1. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Les Ulis, 1988)
2. C. Weisbuch, B. Vinter, Quantum Semiconductor Heterostructures (Academic, New York, 1997)
3. L. Serra, E. Lipparini, Spin response of unpolarized quantum dots, Europhys. Lett. 40, 667 (1997)
4. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, 2016)
5. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernández, J. Navarro, Structure and energetics of mixed $^4\text{He} - ^3\text{He}$ drops. Phys. Rev. B 56, 8997 (1997)
6. M.R. Geller, W. Kohn, Quantum mechanics of electrons in crystals with graded composition. Phys. Rev. Lett. 70, 3103 (1993)
7. F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Effective mass of one ^4He atom in liquid ^3He. Phys. Rev. B 50, 4248(R) (1994)
8. A. Puente, L. Serra, M. Casas, Dipole excitation of Na clusters with a non-local energy density functional. Z. Phys. D 31, 283 (1994)
9. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980)
10. D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quenes, Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential. Phys. Rev. C 83, 044321 (2011)
11. W. Willatzen, B. Lassen, The BenDaniel-Duke model in general nanowire structures. J. Phys. Condens. Matter 19, 136217 (2007)
12. N. Chamel, Effective mass of free neutrons in neutron star crust. Nucl. Phys. A 773, 263 (2006)
13. C. Quenes, Y.M. Tkachuk, Deformed algebras, position-dependent effective mass and curved spaces: An exactly solvable Coulomb problem. J. Phys. A: Math. Gen. 37, 4267 (2004)
14. A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994)
15. H. Hinrichsen, A. Kempf, Maximal localization in the presence of minimal uncertainties in positions and in momenta. J. Math. Phys. 37, 2121 (1996)
16. E. Witten, Reflections on the fate of spacetime. Phys. Today 49, 24 (1996)
17. E. Schrödinger, A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proc. R. Ir. Acad. A 46, 9 (1940)
18. E.G. Kalnins, W. Miller Jr., G.S. Pogosyan, Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions. J. Math. Phys. 37, 6439 (1996)
19. E.G. Kalnins, W. Miller Jr., G.S. Pogosyan, Superintegrability on the two-dimensional hyperboloid. J. Math. Phys. 38, 5416 (1997)
20. C. Quesne, First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. NY 321, 1221 (2006)
21. B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, A general scheme for the effective-mass Schrödinger equation and the generation of the associated potentials. Mod. Phys. Lett. A 19, 2765 (2004)
22. C. Quesne, Point canonical transformation versus deformed shape invariance for position-dependent mass Schrödinger equations. SIGMA 5, 046 (2009)
23. C. Quesne, Comment on “Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter.” J. Phys. A: Math. Theor. 54, 368001 (2021)
24. E.I. Jafarov, S.M. Nagiyev, R. Oste, J. Van der Jeugt, Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter. J. Phys. A: Math. Theor. 53, 485301 (2020)
25. E.I. Jafarov, J. Van der Jeugt, Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 136, 758 (2021)
26. Y. Weissman, J. Jortner, The isotonic oscillator. Phys. Lett. A 70, 177 (1979)
27. D. Zhu, A new potential with the spectrum of an isotonic oscillator. J. Phys. A: Math. Gen. 20, 4331 (1987)
28. D.J. BenDaniel, C.B. Duke, Space-charge effects on electron tunneling. Phys. Rev. 152, 683 (1966)
29. E.I. Jafarov, S.M. Nagiyev, A.M. Jafarova, Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator. Rep. Math. Phys. 86, 25 (2020)
30. E.I. Jafarov, S.M. Nagiyev, Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. Theor. Math. Phys. 207, 447 (2021)
31. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)
32. Q.-G. Zhu, H. Kroemer, Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 27, 3519 (1983)
33. O. Mustafa, S.H. Mazharimousavi, Ordering ambiguity revisited via position dependent mass pseudo-momentum operators. Int. J. Theor. Phys. 46, 1786 (2007)
34. A. de Souza Dutra, C.A.S. Almeida, Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275, 25 (2000)