Some properties of Graph Laplacians of cyclic groups

Dmitriy Goltsov *

Abstract

In this paper we investigate a spectra of the Laplacian matrix of cyclic groups using the properties of their characteristic polynomials. We have proved several assertions about the relationship between the spectra of different groups.

Keywords: Graph Laplacians, cyclic groups.

1 Introduction

Let us consider a graph G with the vertex set $V = \{1, \ldots, n\}$ and the edge set E.

Definition 1.1. The Laplacian matrix of the Graph G is a matrix $L(G) = (a_{i,j})_{i,j \in V}$, with

$$a_{i,j} = \begin{cases}
-1 & \text{if } ij \in E \\
 d(i) & \text{if } i = j \\
 0 & \text{otherwise}
\end{cases}$$

where $d(i) = |\{e \in E | i \in e\}|$ is the degree of the vertex i.

Definition 1.2. The Cayley Graph of a discrete group L with a system of generators S is the graph whose vertices are the elements of the group L and whose edges are determined by the following condition: if g and s belong to L then there is an edge from g to f if and only if $f = g * s$ for some $s \in S \cup S^{-1}$.

Let us consider the Cayley graph of the group Z_n. Note that the Laplacian is a nonnegative operator so all eigenvalues are greater or equal to 0. If $n = 1$, then the Laplacian of the Cayley graph of this group is $\begin{pmatrix} 0 \end{pmatrix}$. This matrix has only one eigenvalue which is zero. If $n = 2$, then the Laplacian of the Cayley graph of Z_2 is the matrix

$$\begin{pmatrix} 1 & -1 \\
 -1 & 1 \end{pmatrix}$$

* Institute of mathematics of Ukrainian Academy of Sciences. E-mail: adanos@i.ua
The eigenvalues of the Laplacian are $\lambda = 0$ and $\lambda = 2$. The Laplacian of $Z_n, n > 3$ is the next matrix:

$$
\begin{pmatrix}
2 & -1 & 0 & \ldots & 0 & -1 \\
-1 & 2 & -1 & \ldots & 0 & 0 \\
0 & -1 & 2 & \ldots & 0 & 0 \\
0 & 0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2 & -1 \\
-1 & 0 & 0 & \ldots & -1 & 2
\end{pmatrix}_n
$$

This matrix is circulant and its eigenvalues are known. In this paper we use another method instead of the well-known method of Gray (see [1]) by using spectrum to investigate the properties of the spectra and the characteristic polynomials of the Laplacians of cyclic groups. Let find the determinant of the following matrix. Set $a = 2 - \lambda$.

$$A_n := \begin{pmatrix}
a & -1 & 0 & \ldots & 0 & -1 \\
-1 & a & -1 & \ldots & 0 & 0 \\
0 & -1 & a & \ldots & 0 & 0 \\
0 & 0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a & -1 \\
-1 & 0 & 0 & \ldots & -1 & a
\end{pmatrix}_{n-1} + (-1)^n
$$

$$L_{n-1} := \begin{pmatrix}
a & -1 & 0 & \ldots & 0 & 0 \\
-1 & a & -1 & \ldots & 0 & 0 \\
0 & -1 & a & \ldots & 0 & 0 \\
0 & 0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a & -1 \\
0 & 0 & 0 & \ldots & -1 & a
\end{pmatrix}_{n-1} + \begin{pmatrix}
a & -1 & 0 & \ldots & 0 & 0 \\
-1 & a & -1 & \ldots & 0 & 0 \\
0 & -1 & a & \ldots & 0 & 0 \\
0 & 0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a & -1 \\
0 & 0 & 0 & \ldots & -1 & a
\end{pmatrix}_{n-2}$$

2
\[
A_n = aL_{n-1} - 2L_{n-2} - 2
\]
We can complete the table of coefficients of \(A_n \) from (2) and the table of coefficients of \(L_n \).

2 Main results

Lemma 2.1. \(\forall n \in N, \forall k \subseteq [1,..,n] : L_n = L_{n-k}L_k - L_{n-k-1}L_{k-1} \).

Proof. \(L_n = aL_{n-1} - L_{n-2} = a(aL_{n-2} - L_{n-3}) - L_{n-2} = (a^2 - 1)L_{n-2} - aL_{n-3} = L_2L_{n-2} - L_1L_{n-3} \).

Assume \(L_n = L_kL_{n-k} - L_{k-1}L_{n-k-1} \). Then \(L_n = L_kL_{n-k} - L_{k-1}L_{n-k-1} = L_k(aL_{n-k-1} - L_{n-k-2}) = L_{k-1}L_{n-k-1} = (aL_k - L_{k-1})L_{n-k-1} - L_kL_{n-k-2} = L_{k+1}L_{n-k-1} - L_kL_{n-k-2} \).

Lemma 2.2. \(\forall n \in N : L_{n-1}^2 = L_{n-2}L_n + 1 \).

Proof. \(L_1 = a, L_2 = a^2 - 1, L_3 = a^3 - 2a, L_2^2 = L_3L_1 + 1 \). Assume \(L_{k-1}^2 = L_{k-2}L_k + 1 \). Then \(L_k^2 = L_{k-1}L_{k+1} + 1 \);

\[
L_{k-1}^2 = L_k - 2L_{k-2}L_k + 1; \quad L_{k-1}^2 = L_k - 2aL_{k-1}L_{k-2} + 1; \quad L_{k-1}^2 + L_{k-2}^2 - 1 = aL_{k-1}L_{k-2}
\]

(1)

\[
L_k^2 = L_{k-1}L_{k+1} + 1; \quad (aL_{k-1} - L_{k-2})^2 = L_{k-1}(aL_k - L_{k-1}) + 1; \quad a^2L_{k-1}^2 - 2aL_{k-1}L_{k-2} + L_{k-2}^2 = aL_kL_{k-1} - L_{k-1}^2 + 1; \quad a^2L_{k-1}^2 - 2aL_{k-1}L_{k-2} = aL_kL_{k-1} - L_{k-1}^2 - L_{k-2}^2 + 1. \]

Then by Equation (1) \(aL_{k-1}^2 - aL_{k-1}L_{k-2} - aL_kL_{k-1} = 0; \ aL_{k-1}(aL_{k-1} - L_{k-2}) - aL_kL_{k-1} = 0; \ aL_kL_{k-1} - aL_kL_{k-1} = 0. \)
Lemma 2.3. If λ is the eigenvalue of Laplacian of Z_n, then λ is the eigenvalue of the Laplacian of $Z_{2^n}, \forall k \in N$.

Proof. $A_{2n} = aL_{2n-1} - 2L_{2n-2} - 2$. Then by Lemma 2.1 we have $L_{2n-1} = L_nL_{n-1} - L_{n-1}L_n$ and $A_{2n} = aL_{n}L_{n-1} - aL_{n-1}L_n - 2L_{2n-2} - 2 = a^2L_{2n-1} - 2aL_{n-1}L_n - 2L_{2n-2} - 2$. The following are routine calculations: $L_{2n-2} = L_{2n-1} - L_{2n-2} - 2$: $A_{2n} = a^2L_{2n-1} - 2aL_{n-1}L_n - 2L_{2n-2} - 2 = A_{2n} = (a^2L_{2n-1} - 4aL_{n-1}L_n + 4L_{2n-2} - 4) - 2L_{n-1} + 2aL_{n-1}L_n + 2$. Then by Lemma 2.2 $-2L_{n-1} - 2L_{n-2} + 2aL_{n-1}L_n + 2 = 0$. So $A_{2n} = a^2L_{n-1} - 4aL_{n-1}L_n - 2L_{2n-2} - 4 = (aL_{n-1} - 2L_{n-2})^2 - 4 = (aL_{n-1} - 2L_{n-2} - 2(aL_{n-1} - 2L_{n-2} + 2) = A_n(n + 4)$.

Note that $A_2 = a^2 - 4$ is not the determinant of the Laplacian of Z_2 and $A_1 = a - 2$ is not the determinant of the Laplacian of the trivial group E. But $\lambda = 0$ is the eigenvalue of all Laplacian because each Laplacian is a singular matrix. However, by the Table 2 we see that $\lambda = 2$ is the eigenvalue of Laplacian with the multiplicity 2 of $Z_{4k}, k \in N$.

Note that $\lambda = 2$ is not the eigenvalue of the Laplacian of $Z_{4k-2}, k \in N$. It is easy to see that $A_{4k-2}(0) = -2$.

Theorem 2.1. If λ is the eigenvalue of the Laplacian of $Z_n, n \geq 3$, then λ is the eigenvalue of the Laplacian of $Z_{kn}, \forall k \in N$.

Proof. Lemma 2.3 yields that A_n is a divisor of A_{2n}. Now suppose A_n is a divisor of $A_{mn}, \forall m \leq k$.

$A_n = aL_{n-1} - 2L_{n-2} - 2 = L_n - L_{n-2} - 2; A_{(k+1)n} = A_{(k+1)n} = L_{(k+1)n} - L_{(k+1)n} - 2 = L_{kn}L_n - L_{kn-1}L_{n-1} = L_{kn}L_{n-1} + L_{kn-1}L_{n-3} - 2 = L_{kn}(L_n - L_{n-2} - 2) + 2L_{kn} - 2 + L_{kn-1}L_{n-3} - L_{kn-1}L_{n-1} = A_nL_{kn} + 2L_{kn} - 2 + L_{kn-1}L_{n-3} + L_{kn-3}L_{n-1} - (L_{kn-2}L_n - L_{kn-2}L_{n-2} - 2L_{kn-2}) - 2L_{kn-2} - 2L_{kn-2} = 0$. So $A_{(k+1)n} = A_nL_{kn} - A_nL_{kn-2} + 2L_{kn-2} + A_{kn} + B$.

$B = 2 + L_{kn-1}L_{n-3} + L_{kn-3}L_{n-1} - 2L_{kn-2}L_{n-2} = 2 + L_{kn-2}L_{n-4} + L_{(k+1)n-4} + L_{kn-4}L_{n-2} + L_{(k+1)n-4} - 2L_{kn-3}L_{n-3} = 2L_{(k+1)n-4} = \ldots = 2 + L_{(k-1)n+3}L_1 + L_{(k-1)n+3}L_3 = 2$. $L_{(k-1)n+4} = (a^2 - 1)L_{(k-1)n} - aL_{(k-1)n-1} + (a^2 - 1)L_{(k-1)n} = 2aL_{(k-1)n+4} + 2aL_{(k-1)n-1} + 2 = 2aL_{(k-1)n} + L_{(k-1)n-1} - L_{(k-1)n-2} + L_{(k-1)n-2} + 2 = -L_{(k-1)n} + L_{(k-1)n-2} + 2 = -A_{(k-1)n}$.

So $A_{(k+1)n} = A_nL_{kn} - A_nL_{kn-2} + 2A_{kn} - A_{(k-1)n} = (A_n + 2)A_{kn} + 2A_{kn} - A_{(k-1)n}$ and A_n is a divisor of $A_{(k+1)n}$.

For example we can prove that the Laplacian spectra of $Z_3 \times Z_3$ and Z_6 are different. The graph of $Z_3 \times Z_3$ is isomorphic to the complement of the graph of Z_6. It is well known that if $\lambda \neq 0$ is the eigenvalue of $L(G)$, then $n - \lambda$ is the eigenvalue of $L(G^C)$, see [2]. Since $\lambda = 4$ is the eigenvalue of Z_6 it follows that $\lambda = 2$ is the eigenvalue of $Z_2 \times Z_3$ and $\lambda = 2$ is not the eigenvalue of Z_6. Therefore, the spectra of isomorphic groups can be different. Note that $Z_3 \times Z_3 \neq Z_3$ but their graphs and Laplacian spectra coincide.

Lemma 2.4. $A_{kn+p} = (A_{p} + 2)A_{kn} + 2A_{p} - A_{kn-p}$.

Proof. $A_{kn+p} = L_{kn+p} - L_{kn+p-2} - 2 = L_{kn}L_p - L_{kn-1}L_{p-1} - L_{kn-1}L_{p-2} + L_{kn-1}L_{p-3} - 2 = L_{kn}(L_p - L_{p-2} - 2) + 2L_{kn} - 2 + L_{kn-1}L_{n-3} - L_{kn-1}L_{n-2} = A_{p}L_{kn} + 2L_{kn} + 2L_{kn} - 2 + L_{kn-1}L_{p-3} - aL_{kn-1}L_{p-1} + L_{kn-3}L_{p-1} + \ldots$
\[L_{kn-2}L_{p-2} - L_{kn-2}L_{p-2} = A_pL_{kn} + 2L_{kn} - 2 + L_{kn-1}L_{p-3} + L_{kn-3}L_{p-1} - (L_{kn-2}L_p - L_{kn-2}L_{p-2} - 2L_{kn-2}) - 2L_{kn-2} - 2L_{kn-2}L_{p-2} = A_pL_{kn} - A_pL_{kn-2} + 2(L_{kn} - L_{kn-2} - 2) + 2 + L_{kn-1}L_{p-3} + L_{kn-3}L_{p-1} - 2L_{kn-2}L_{p-2} = A_pL_{kn} - A_pL_{kn-2} + 2A_p + B. \]

\[B = 2 + L_{kn-1}L_{p-3} + L_{kn-3}L_{p-1} - 2L_{kn-2}L_{p-2} = 2 + L_{kn-2}L_{p-4} + L_{(k+1)n-4} + L_{kn-4}L_{p-2} + L_{(k+1)n-4} - 2L_{kn-3}L_{p-3} - 2L_{(k+1)n-4} = \ldots = 2 + L_{(k-1)n+3+(n-p)L} + L_{(k-1)n+1+(n-p)L} - 2L_{(k-1)n+2+(n-p)L} = \ldots = -A_{(k-1)n+(n-p)}. \]

So \(A_{kn+p} = A_pL_{kn} - A_pL_{kn-2} + 2A_{kn} = A_{(k-1)n+(n-p)} = (A_n + 2)A_{kn} + 2A_p = -A_{kn-p}. \)

By Theorem 2.1 we get

\[A_{n+p} = A_n(A_p + 2) + 2A_p - A_{n-p}, \quad p < n \]

\[\square \]

Theorem 2.2. If \(\lambda \neq 2 \) is the eigenvalue of Laplacian of \(Z_n \) and \(Z_m \), then \(\lambda \) is the eigenvalue of the Laplacian of \(Z_k \), where \(d \) is the greatest common divisor of \(m \) and \(n \). Moreover, if \(\lambda = 4 \) is the eigenvalue of the Laplacian of \(Z_n \), then \(\exists k \in N : n = 4k \) or \(n = 2. \)

Proof. Note that if \(\lambda = 4 \), then \(A_2(2 - \lambda) = 0 \). Assume that \(\lambda \neq 2 \) is the eigenvalue of the Laplacian of \(Z_n \) and \(Z_m \) when \(m > n, m = n + k \), and that the greatest common divisor of \(m \) and \(n \) is 1. Set \(a = 2 - \lambda \). Then \(A_{n+k}(a) = A_n(a) = 0 \). By the (4) we have: \(A_{2n+k}(a) = A_{n+k}(a)(A_n(a) + 2) + 2A_n(a) - A_k(a) = -A_k(a) \)

\[A_{2n+2k}(a) = A_{n+k}(a)(A_n(a) + 2) + 2A_n(a) - A_k(a) = -A_k(a). \]

But \(A_{2n+2k}(a) = A_{2(n+k)}(a) = 0 \) by the (4).1. So \(A_k(a) = 0 \). If \(k \) and \(n \) have the common divisor \(1 \) then \(m \) and \(n \) have the common divisor \(1 \) too. So the greatest common divisor of \(k \) and \(\min(n, n+k) \) is 1. Continuing this procedure for the \(k \) and \(\min(n, n+k) \) we obtain the following:

\[A_{\min(k, \min(n, n+k))}(a) = A_{[k-\min(n, n+k)]}(a) = 0 \]

In addition, the greatest common divisor of \(\min(k, \min(n, n+k)) \) and \([k-\min(n, n+k)] \) is 1. Continuing this procedure further we prove for some \(p \) that \(A_p(a) = A_1(a) = 0 \). So if the greatest common divisor of \(m \) and \(n \) is 1, then \(A_{n+k}(a) = A_n(a) = A_1(a) = 0 \Rightarrow a = 2 \) and \(\lambda = 0 \).

Note then the multiplicity of the first eigenvalue \(\lambda = 0 \) is equal to the number of components of graph (see [3][2]). So for all cyclic groups the multiplicity of \(\lambda = 0 \) is 1.

Lemma 2.5. \(A_n(a) = aA_{n-1}(a) - A_{n-2}(a) + 2A_1(a), n \geq 3 \)

Proof. \(A_n = aL_{n-1} - 2L_{n-2} - 2 = a(aL_{n-2} - L_{n-3}) - 2L_{n-2} - 2 = a^2L_{n-2} - L_{n-3} - 2L_{n-2} = 2aL_{n-3} - 2a + aL_{n-3} + 2a - 2L_{n-2} = a(aL_{n-2} - 2L_{n-3} - 2) + aL_{n-3} + 2a - 2L_{n-2} = aA_{n-1} + aL_{n-3} + 2a - 2L_{n-3} - L_{n-4} = aA_{n-1} - aL_{n-3} + 2L_{n-4} + 2 + 2a - 4 = aA_{n-1} - A_{n-2} + 2A_1. \)

\[\square \]

Lemma 2.6. \(A_{kn} = A_k \circ (A_n + 2) \)

Proof. \(A_{2n} = A_n(A_n + 4) = (A_n + 2 - 2)(A_n + 4) = (A_n + 2)^2 - 4 = A_2 \circ (A_n + 2). \) Now assume \(\forall m \leq k : A_{mn} = A_n \circ (A_n + 2). \)

\[A_{(k+1)n}(a) = A_{kn}(a)(A_n(a) + 2) + 2A_n(a) - A_{(k-1)n}(a) = (A_n(a) + 2)A_k \circ (A_n(a) + 2) - A_{(k-1)n} \circ (A_n(a) + 2) = A_{(k+1)n}(a) \circ (A_n(a) + 2). \]

\[\square \]
Proof. Assume that

$$Z$$

By Lemma 2.6 we get

$$\exists \text{ Laplacian of } Z$$

A

Laplacian of

Z

of

$$[3]$$ D. Cvetkovic, M. Doob, I. Gutman, and A. Torgasev. Recent results in the theory of graph spectra, Ann.

Discret. Math. 36, North Holland, 1988.

Proof. By Lemma 2.6 we see that

$$\exists$$

Laplacian of

Z

A

Laplacian of

Z

$$[2]$$ Turker Biyikoglu, Josef Leydold, Peter F. Stadler. Laplacian Eigenvectors of Graphs: Frobenius and Faber-Krahn Type Theorems. Springer, 2007.

Corollary 2.1. If $$\lambda$$ is the eigenvalue of the Laplacian of $$Z_n$$, then $$\forall m \in N : P_m(\lambda_0) = -A_m(2 - \lambda_0) = \lambda_1$$, where $$\lambda_1$$ is the eigenvalue of the Laplacian of $$Z_n$$.

Proof. By Lemma 2.6 we get

$$A_{mn}(2 - \lambda_0) = \prod_{j=1}^{m} (A_m(2 - \lambda_0) + 2j) = \prod_{j=1}^{m} (A_m(2 - \lambda_0) + j) = 0.$$

Thus, $$\exists \lambda_1 : P_m(\lambda_0) = -A_m(2 - \lambda_0) = \lambda_1$$, where $$\lambda_1$$ is the eigenvalue of the Laplacian of $$Z_n$$.

Corollary 2.2. $$P_k(\lambda) = \lambda_i$$, where $$\lambda_i$$ is the eigenvalue of the Laplacian of $$Z_n$$, $$\iff$$ $$\lambda$$ is the eigenvalue of the Laplacian of $$Z_n$$.

Proof. By Lemma 2.6 we see that

$$P_k = (-1)^{n-1}(P_k - \lambda_j),$$

where $$\lambda_j$$ are the eigenvalues of the Laplacian of $$Z_n$$.

References

[1] Gray R.M. Toeplitz and Circulant Matrices: A review. Now Publishers Inc, 2006.

[2] Turker Biyikoglu, Josef Leydold, Peter F. Stadler. Laplacian Eigenvectors of Graphs: Frobenius and Faber-Krahn Type Theorems. Springer, 2007.

[3] D. Cvetkovic, M. Doob, I. Gutman, and A. Torgasev. Recent results in the theory of graph spectra, Ann. Discret. Math. 36, North Holland, 1988.