Supplemental Methods

Cell culture

The 4T1 mouse mammary tumor cell line was purchased from ATCC. Cells were cultured in high glucose DMEM supplemented 5% FBS, and antibiotics (100 units/ml penicillin and 100 μg/ml streptomycin) at 37°C in a humidified atmosphere containing 5% CO₂. Except where indicated, analyses were performed on same passage cells within 2 weeks after thawing. All cell lines used in the study were tested and shown to be free of mycoplasma and viral contamination. To further eliminate the possibility of potential contamination with other types of cells, we advantage of the 4T1 cell line resistance to 6-thioguanine. We periodically treat the 4T1 cells by culturing them in 10-cm tissue-culture dishes in RPMI 1640 medium containing 60 μM thioguanine for 7 days.

Isolation and culture of 4T1 from BALB/c mouse lung and tumor

Twenty-five days post-injection of 2x10⁵ 4T1 cells into the mammary fat pads of mice, each mouse was anesthetized with ketamine/xylazine (140/14 mg/kg). Five milliliters of cold DMEM was infused into the lungs via the right ventricle to flush out blood cells. The mice were euthanized, the lungs and tumor tissues removed, and the tissues incubated with 5 ml of collagenase A (1 mg/ml, sigma) for 30 min in a 37°C water bath. After the 30 min incubation, 25 ml of 1× PBS was added to the tube. The resulting tissue/cell suspension was filtered through a 70-μm strainer. The filter was washed with 5 ml of 1× PBS. The filtered cell suspension (~35 ml) was centrifuged for 4 min at 900 rpm. The cell pellet was washed once with complete DMEM by centrifugation, the cell pellet
resuspended in 8 ml of complete DMEM and the cell suspension dispensed into a 25 cm² tissue culture flask. The medium, containing 60 μM thioguanine, was changed every three days until colonies had formed in the medium. At this time, the numbers of colonies were counted using a microscope, and cells recovered from each culture flask were used for FACS analysis and RNA extraction.

Cell proliferation assay

4T1 cells (0.5 × 10⁶/ml) were grown in DMEM medium supplemented with L-glutamine, 10% bovine calf serum overnight before harvesting. EdU (Click-iT® EdU Alexa Fluor® 647 flow cytometry assay kit, Invitrogen), at a final concentration of 10 μM, was added to the cell cultures and the cultures incubated at 37°C for an additional 2 h. The cells were then trypsined and washed with Dubecco's phosphate buffered saline containing 1% bovine serum albumin. The cells were FACS analyzed according to the protocol provided by the manufacturer (Invitrogen).

Western blot assay

Total cell lysates were loaded in equal protein amounts (50 μg) determined by BCA (Pierce, Rockford, IL). Proteins were resolved by SDS-PAGE (Novex, Invitrogen), followed by transfer onto a nitrocellulose membrane using the iBlot Dry Blotting System (Invitrogen). A previously described method (Liu et al., 2009) was used to process the membranes for western blot analysis. Expression of proteins was determined by probing membranes with antibodies against primary antigens; β-actin antibody served as a
control (Santa cruz). Bound primary antibody was detected with Alex fluor 680 labeled second antibody (Invitrogen).

Reverse transcription-PCR

Total RNA was extracted using TRIzol Reagent (Invitrogen) following the manufacturer’s protocol. RNA (500 ng) was reverse-transcribed by random hexamers and SuperScript III reverse transcriptase (Invitrogen) in a volume of 20 μL. The reverse transcription reaction (1 μL) was used as a template in a 20 μL PCR reaction mixture using a primer set specific for the genes of interest (all primers used from RT-PCR are listed in supplemental table 2). An equivalent amount of RNA without reverse transcription served as negative control. As a positive control for amplification from the cDNA, GAPDH and β-actin were used.

Luciferase reporter assay

The psiCHECK-2 vector (Promega, Madison, WI) was used to clone the 3'-UTR of mouse TCF4 or Sabt1 mRNA. The vector contains a multiple cloning region downstream of the stop codon of an SV40 promoter-driven Renilla luciferase gene. This allows expression of a Renilla transcript with the 3'-UTR sequence of interest. Renilla luciferase activity is then used to assess the effect of the 3'-UTR on transcript stability and translation efficiency. The psiCHECK-2 vector also contains a constitutively expressed firefly luciferase gene. Firefly luciferase is used to normalize transfections and eliminates the need to transfec a second vector control. TCF4 or Sabt1 mutants were made with the QuikChange® site-directed mutagenesis kit (Stratagene). Each of
the mutants was sequenced to confirm the mutated products. 293T cells were seeded in the wells of a 6-well plate 1 day pretransfection and then each well transfected with a mixture of 200 ng 3′UTR luciferase reporter vectors and 1800 ng of MDH1-PGK-GFP-BIC or miR-223 as a negative control. Twenty-four hours posttransfection, cells were lysed and luciferase activity was measured using a luminometer (Applied Biosystems) and the Dual-Luciferase Reporter Assay System (Promega). The ratio of Renilla luciferase to firefly luciferase was calculated.

Realtime quantification of microRNA by Stem-looped RT-PCR

We followed the protocol developed by Tang et al. (2006) (Tang et al.) to measure microRNA expression. Briefly, Primers and Taqman probes were designed according to the sequence published (Tang et al., 2006). Reverse primers used to synthesize the cDNA were mixed to a concentration of 200 nM for each reverse primer. One μl of this premixed reverse primer mixture was used in reverse transcription reaction (working concentration for each reverse primer was 10 nM). SuperScript III First-Strand Synthesis System (Invitrogen) was used to reverse transcribe RNA into cDNA. We followed the protocol supplied by the manufacture with the replacement of the random primer with a reverse primer mixture for microRNA. Real-time PCR was performed using a standard SsoFast™ Probes Supermix (Bio-Rad) protocol on a CFX96™ Real-Time PCR Detection System (Bio-Rad). 15 μl of PCR reaction included 1 μl RT product, 1× SsoFast Probes Supermix, 0.2 μM TaqMan® probe, 1.5 μM forward primer and 0.7 μM reverse primer. The reactions were incubated in a 96-well plate at 95°C for 3 min,
followed by 45 cycles of 95°C for 45 s and 60°C for 30 seconds and 72°C for 45 seconds. All reactions were run in triplicate.

Reference:

Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C et al (2009). COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. Am J Pathol 174: 1415-25.

Tang F, Hajkova P, Barton SC, Lao K, Surani MA MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Research 34: e9.

Tang F, Hajkova P, Barton SC, Lao K, Surani MA (2006). MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34: e9.
MDH1-PGK-GFP-BIC

Supplemental Figure 1
Supplemental Figure 2
Supplemental Figure 3
Probe Set ID	Gene Symbol	mRNA Accession	miR-155 tumor	miR-155 lung	control tumor	control lung
10487588	Il1a	NM_010554	7.862276	8.74137	6.312371	5.489025
10349108	Serpinb5	NM_009257	7.071074	7.277857	4.361744	4.696363
10499412	Rab25	NM_016899	8.563591	9.371991	6.529773	7.006712
10424113	Mal2	NM_178920	7.25475	7.462892	5.873856	5.365106
10591522	Ap1m2	NM_001110300	7.805315	8.599117	6.077101	6.523494
10478633	Mmp9	NM_013599	10.07011	11.26841	8.17927	9.564008
10454172	Dsg2	NM_007883	7.1663	8.022367	5.563558	6.356278
10453939	Lama3	NM_010680	7.129729	7.895968	5.108028	6.239474
10391066	Krt17	NM_010663	7.512133	7.861708	5.196926	6.210396
10377673	Cldn7	NM_016887	9.129928	10.0064	7.069467	8.373178
10373467	Erbb3	NM_010153	6.097069	7.534184	4.944949	5.925632
10448409	Prss22	NM_133731	8.821486	10.09207	7.142976	8.552612
10498361	Gpr87	NM_032399	5.292837	5.025362	3.553519	3.58846
10483000	Itgb6	NM_001159564	7.387773	7.364568	5.033885	5.900703
10487441	Mal	NM_010762	8.223093	8.906585	6.153853	7.447147
10391052	Krt14	NM_016958	10.79769	10.40844	7.455003	9.119021
10404270	Prl3d1	NM_008864	6.421934	6.294698	5.134795	5.023311
10540472	Bhlhe40	NM_011498	8.762316	9.099463	7.564487	7.842031
10511560	Esrp1	NM_194055	9.041224	9.771947	6.486841	8.516125
10572635	Sfn	NM_018754	10.24469	10.37906	7.349183	9.163986
10420730	Fdft1	NM_010191	9.934456	10.60508	8.91749	9.401543
10412909	Fdft1	NM_010191	9.621805	10.36173	8.617724	9.163013
10380927	Grb7	NM_010346	7.614321	8.592261	6.027615	7.394017
10534395	Cldn4	NM_009903	10.8441	11.27949	8.58876	10.10292
10345203	Paox	NM_153783	8.648898	9.361251	7.510666	8.205264
10447383	Epcam	NM_008532	9.710024	10.45856	7.305713	9.319914
10404649	Dsp	NM_023842	7.74158	8.280395	5.965298	7.167344
10391036	Krt19	NM_008471	10.98239	11.24559	8.350115	10.15476
10373358	Il23a	NM_031252	7.782022	8.111176	6.331398	7.033499
10595070	Fam83b	BC120577	5.279229	5.366312	3.828864	4.293795
10352838	Lamb3	NM_008484	8.92562	9.780949	6.620803	8.71685
10563377	Sult2b1	NM_017465	7.162793	7.871302	6.134899	6.81239
Gene Symbol	Gene Name	Accession Number	Mean 1	Mean 2	Mean 3	Mean 4
-------------	-----------	-----------------	--------	--------	--------	--------
Tmem184a		NM_001161548	6.452454	7.158106	5.037726	6.10215
Gdpd5		NM_201352	8.021326	8.563687	6.938212	7.50893
Anxa8		NM_013473	8.611521	8.448297	6.170221	7.411107
Fgfbp1		NM_008009	6.556523	6.991094	4.94048	5.977429
Sh2d1b1		NM_012009	5.116316	6.465402	3.909429	5.46722
Ctsw		NM_009985	7.25806	7.063102	5.280896	6.073423
Jup		NM_010593	8.998214	9.672142	7.359496	8.694369
Gca		NM_145523	7.645609	8.027815	6.05172	7.079015
B4galnt3		NM_198884	8.841606	9.450405	6.764602	8.550231
Nuak1		NM_001004363	8.388704	8.63991	6.875921	7.736642
Serpinb2		NM_011111	6.780425	8.162056	4.29775	5.470006
Cdh1		NM_009864	10.06338	10.47592	7.62315	9.58602
Xlr		NM_011725	4.105309	4.153241	2.979558	3.26635
Idi1		NM_145360	9.99854	10.45018	8.869165	9.58857
Idi1		NM_145360	9.807611	10.19279	8.597445	9.338882
Igsf9		NM_033608	7.807374	8.151856	6.166336	7.339141
Gadd45b		NM_008655	9.712105	9.719596	7.885831	8.923723
Mga4a		NM_173870	7.480505	8.063474	6.370205	7.275754
Moxd1		NM_021509	7.841602	7.940456	5.207755	7.156369
Sfn		NM_018754	9.511454	9.550117	6.938704	8.776926
Sc4mol		NM_025436	11.72555	12.10862	10.66455	11.3365
Grhl2		NM_026496	7.854454	8.638646	6.526629	7.872598
Sorbs2		NM_172752	9.066849	8.850523	7.57393	8.10743
Adamts1		NM_009621	9.015309	8.791552	7.547661	8.050974
Atp8b1		NM_001001488	5.420444	6.32373	4.20131	5.587331
Gjb4		NM_008127	7.92245	8.215602	6.510492	7.482934
Ocln		NM_008756	7.038961	7.241713	5.229377	6.510112
Lamc2		NM_008485	10.34838	11.43348	7.674981	10.71312
LOC675736		XR_004823	5.903382	5.780241	4.787696	5.069325
Tacstd2		NM_020047	8.281408	8.499058	5.847356	7.82749
St14		NM_011176	9.310294	9.906658	7.083898	9.258477
Hs6st1		NM_015818	8.538259	8.562196	7.512955	7.917802
Cxcl16		NM_023158	8.767637	8.462107	6.521483	7.826611
Itgb4		NM_001005608	8.072096	8.969294	7.056825	8.34855
Gene ID	Gene Symbol	Accession	FPKM 1	FPKM 2	FPKM 3	FPKM 4
------------	-------------	-----------	--------	--------	--------	--------
10427052	Krt7	NM_033073	11.42699	11.78512	8.89132	11.16753
10554752	Nox4	NM_015760	7.195446	7.484468	6.10336	6.871793
10403743	Inhba	NM_008380	8.634395	8.796385	7.126388	8.185844
10441270	Ripk4	NM_023663	8.062326	8.504858	6.308914	7.894619
10415857	Fam167a	NM_177628	6.47999	7.162926	5.032036	6.558097
10389816	Tom11	NM_028011	7.129311	7.544214	6.031929	6.94079
10568668	Adam12	NM_007400	7.626019	8.137968	5.632196	7.5417
10521602	Cpeb2	NM_175937	6.937238	7.05824	5.446884	6.464688
10476321	Prnd	NM_023043	6.40936	6.460568	4.947845	5.875431
10555460	Stard10	NM_019990	9.027622	9.687662	7.428044	9.115642
10456904	Pstpip2	NM_013831	6.269825	6.581832	5.160564	6.035941
10490845	Chmp4c	NM_025519	6.540229	7.128209	5.134145	6.600513
10344952	Rdh10	NM_133832	9.805912	10.61408	8.481194	10.09159
10412517	Gm10021	ENSMUST00000090647	6.190791	6.17341	4.876325	5.601217
10433887	Pkp2	NM_026163	8.147547	8.249142	6.230099	7.734056
10399202	Macc1	ENSMUST00000048880	8.040215	8.06805	5.54322	7.558355
10488060	Jag1	NM_013822	9.661286	9.76732	8.127253	9.259786
10532085	Tgfbr3	NM_011578	5.894358	5.775792	7.076028	6.137863
10523717	Spf1	NM_009263	10.97637	10.87085	12.20369	11.24183
10398091	Tcl1b2	NM_013775	3.132004	3.506363	4.194846	3.882475
10537787	Tas2r135	NM_199159	4.683604	4.433482	5.928938	4.83283
10479950	Cugbp2	NM_001110231	8.34535	8.22327	9.359514	8.625966
10355984	Serpine2	NM_009255	7.035578	6.780555	8.995486	7.185164
10503218	Chd7	NM_001081417	5.777215	5.935832	6.866033	6.355656
10347915	Gm7609	NM_001081746	4.326447	4.081205	6.148087	4.523359
10511180	Mxra8	NM_024263	6.901103	6.044277	8.245743	6.490046
10436945	Slc5a3	NM_017391	9.177926	9.279775	10.41046	9.738855
10494271	Ctss	NM_021281	5.654664	5.77001	7.040477	6.249273
10480714	Uap1l1	NM_001033293	9.375095	9.429919	10.51222	9.9186
10476021	Sirpa	NM_007547	6.710541	6.586015	7.775871	7.076285
10351206	Selp	NM_011347	5.083226	4.843023	6.777507	5.353949
10466712	Mamdc2	NM_174857	4.097394	3.760678	5.409154	4.275913
Gene ID	Gene Symbol	Accession	Fc Value 1	Fc Value 2	Fc Value 3	Fc Value 4
---------	-------------	-----------	------------	------------	------------	------------
10489891	B4galt5	NM_019835	8.647888	8.494833	9.647607	9.013733
10377725	Dlg4	NM_007864	6.014519	4.948946	7.177009	5.469262
10545974	Antxr1	NM_054041	6.385973	6.381103	7.531167	6.923419
10431935	Amigo2	NM_178114	7.227916	6.056108	8.800455	6.601739
10435271	Heg1	NM_175256	6.659358	6.743164	8.667416	7.317053
10372648	Lyz2	NM_017372	4.954496	6.112387	7.709282	6.74379
10446763	Lbh	NM_029999	6.307825	6.342218	7.391761	7.03744
10539263	Loxl3	NM_013586	7.699565	7.243695	8.815554	7.995869
10372410	Glipr1	NM_028608	5.35116	3.950846	6.76453	4.783089
10537785	Tas2r143	NM_001001452	4.396474	3.8153	5.707376	4.699015
10362596	Fyn	NM_001122893	6.363218	5.636811	7.536211	6.54344
10456184	Apcdd1	NM_133237	7.746409	7.793735	9.172822	8.763932
10363082	Lilrb4	NM_013532	3.495683	3.83137	5.28477	4.817242
10479379	Slco4a1	NM_148933	6.060866	5.480283	7.584838	6.538604
10438708	Masp1	NM_008555	6.563186	5.842802	7.574843	7.070882
10408693	F13a1	NM_028784	6.004476	6.900375	7.186431	8.178056
10538459	Aqp1	NM_007472	6.059532	5.475707	7.304596	6.996264
10583071	Mmp3	NM_010809	9.956114	9.530248	11.28202	11.2808
Supplemental table 2 Genes related to promoting macroscopic tumor formation in the lung

Probe Set ID	Gene Symbol	mRNA Accession	miR-155 lung	control lung	
1047863	Mmp9	NM_013599	11.26841	9.564008	
10453939	Lama3	NM_010680	7.895968	6.239474	
10391066	Krt17	NM_010663	7.861708	6.210396	
10377673	Cldn7	NM_016887	10.0064	8.373178	
10373467	Erbb3	NM_010153	7.534184	5.925632	
10448409	Prss22	NM_133731	10.09207	8.552612	
10483000	Itgb6	NM_001159564	7.364568	5.900703	
10487441	Mal	NM_010762	8.90658	7.447147	
10606058	Cxcr3	NM_009910	8.391405	7.040312	
10391052	Krt14	NM_016958	10.40844	9.119021	
10511560	Esrp1	NM_194055	9.771947	8.516125	
10572635	Sfn	NM_018754	10.37906	9.163986	
10380927	Grb7	NM_010346	8.592261	7.394017	
10534395	Cldn4	NM_009903	11.27949	10.10292	
10447383	Epcam	NM_008532	10.45856	9.319914	
10404649	Dsp	NM_023842	8.280395	7.167344	
10391036	Krt19	NM_008471	11.24559	10.15476	
10352838	Lamb3	NM_008484	9.780949	8.71685	
10535174	Tmem184a	NM_001161548	7.158106	6.10215	
10414065	Anxa8	NM_013473	8.448297	7.411107	
10529819	Fgfbp1	NM_008009	6.991094	5.977429	
10351477	Sh2d1b1	NM_012009	6.465402	5.46722	
10416057	Clu	NM_013492	11.20894	10.21085	
10391103	Jup	NM_010593	9.672142	8.694369	
10448312	Cldn9	NM_020293	7.472687	6.500654	
10487994	Fermt1	NM_198029	9.105843	8.151237	
10472350	Gca	NM_145523	8.027815	7.079015	
10487405	Prom2	NM_138750	7.374109	6.466483	
10547471	B4galnt3	NM_198884	9.454045	8.550231	
10371379	Nuak1	NM_001004363	8.63991	7.736642	
10349157	Serpinb2	NM_011111	8.162056	7.260894	
10575052	Cdh1	NM_009864	10.47592	9.58602	
10606948	Morc4	NM_029413	9.660115	8.838632	
10351801	Igsf9	NM_033608	8.151856	7.339141	
10350697	Nmnat2	NM_175460	7.384934	6.574141	
10364950	Gadd45b	NM_008655	9.719596	8.923723	
10354003	Mgat4a	NM_173870	8.063474	7.275754	
10362186	Moxd1	NM_021509	7.940456	7.156369	
Gene Symbol	Accession	Fold Change	Log2 Fold Change		
-------------	-----------	-------------	-----------------		
Sfn	NM_018754	9.550117	8.776926		
Grhl2	NM_026496	8.638646	7.872598		
Atp8b1	NM_001001488	6.32373	5.587331		
Gjb4	NM_008127	8.215602	7.482934		
Ocln	NM_008756	7.241713	6.510112		
Lamc2	NM_008485	11.43348	10.71312		
B3gnt3	NM_028189	8.863115	8.191089		
Tacstd2	NM_020047	8.499058	7.82749		
St14	NM_011176	9.906658	9.258477		
Cxcl16	NM_023158	8.462107	7.826611		
Itgb4	NM_001005608	8.969294	8.34855		
Krt7	NM_033073	11.78512	11.16753		
Inhba	NM_008380	8.796385	8.185844		
Ripk4	NM_023663	8.504858	7.894619		
Fam167a	NM_177628	7.162926	6.558097		
Tom11	NM_028011	7.544214	6.94079		
Adam12	NM_007400	8.137968	7.5417		
Cpeb2	NM_175937	7.05824	6.46468		
Prnd	NM_023043	6.460568	5.875431		
Mpzl2	NM_007962	9.142735	8.56112		
Gpa33	NM_021610	10.73707	10.16309		
Stard10	NM_019990	9.687662	9.115642		
Ngef	NM_0011111314	7.12886	6.573993		
Pstpip2	NM_013831	6.581832	6.035941		
Arap2	NM_178407	8.119108	7.575779		
Il18rap	NM_010553	8.351473	7.819983		
Elf3	NM_007921	6.984908	6.45523		
Chmp4c	NM_025519	7.128209	6.600513		
Rdh10	NM_133832	10.61408	10.09159		
Pkp2	NM_026163	8.249142	7.734056		
Macc1	ENSMUST00000048880	8.06805	7.558355		
Jag1	NM_013822	9.76732	9.259786		
Serpine2	NM_009255	6.780555	7.185164		
Pdgrf	NM_001146268	5.044792	5.468457		
Plekho1	NM_023320	6.407226	6.837128		
Gm7609	NM_001081746	4.081205	4.523359		
Mxra8	NM_024263	6.044277	6.490046		
Fkbp7	NM_010222	4.790682	5.256632		
Ctss	NM_021281	5.77001	6.249273		
Pla2g7	NM_013737	7.267674	7.760242		
Selp	NM_011347	4.843023	5.353949		
Gene ID	Symbol	Accession	Fold Change 1	Fold Change 2	
------------	--------	--------------	---------------	---------------	
10466712	Mamdc2	NM_174857	3.760678	4.275913	
10377725	Dlg4	NM_007864	4.948946	5.469262	
10431935	Amigo2	NM_178114	6.056108	6.601739	
10482448	Zeb2	NM_015753	6.101752	6.661224	
10435271	Heg1	NM_175256	6.743164	7.317053	
10501608	Vcam1	NM_011693	6.620647	7.237806	
10379511	Ccl2	NM_011333	5.247929	5.871085	
10372648	Lyz2	NM_017372	6.112387	6.74379	
10480249	Ptpla	NM_013935	6.603763	7.242373	
10548879	Mgp	NM_008597	6.245695	6.983867	
10539263	Loxl3	NM_013586	7.243695	7.995869	
10494445	Lix1l	ENSMUST00000062058	6.981831	7.748259	
10372410	Glipr1	NM_028608	3.950846	4.783089	
10600169	Bgn	NM_007542	4.606348	5.485571	
10537785	Tas2r143	NM_001001452	3.8153	4.699015	
10362596	Fyn	NM_001122893	5.636811	6.54344	
10479379	Slco4a1	NM_148933	5.480283	6.538604	
gene symbol	Gene name	Conserved sites	Poorly conserved sites	4T1 miR-155 tumor	4T1 Control tumor
------------	--	----------------	------------------------	-------------------	-------------------
Hhip	Hedgehog-interacting protein	1	0	7.850783	9.039088
Rps6ka5	ribosomal protein S6 kinase, polypeptide 5	1	1	6.116796	7.045661
Satb1	special AT-rich sequence binding protein 1	1	0	5.097334	5.839266
Trp53inp1	transformation related protein 53 inducible nuclear protein 1	1	0	5.269367	5.955752
Nfe2l2	nuclear factor, erythroid derived 2, like 2	1	0	8.453485	9.11393
Dhx40	DEAH (Asp-Glu-Ala-His) box polypeptide 40	1	0	7.506214	8.119512
Cebpb	CCAAT/enhancer binding protein (C/EBP), beta	1	0	7.525149	8.136402
Tcf4	transcription factor 4	3	0	8.634457	9.195979
Olfml3	olfactomedin-like 3	1	0	5.45425	6.006043
Jhdm1d	jumonji C domain-containing histone demethylase 1 homolog D (S. cerevisiae)	1	2	5.213175	5.741126
Trps1	trichorhinophalangeal syndrome I (human)	2	0	9.238857	9.759003
Far1	fatty acyl CoA reductase 1	1	0	9.683145	10.20003
D5Ertd579e	DNA segment, Chr 5, ERATO Doi 579, expressed	1	0	6.802934	7.290513
Zfp518	zinc finger protein 518	1	2	4.868196	5.348782
Trim2	tripartite motif-containing 2	1	1	5.653317	6.118649
Hivep2	human immunodeficiency virus type I enhancer binding protein 2	1	1	6.613888	7.07383
Mxi1	Max interacting protein 1	1	0	7.277717	7.728243
Nfia	nuclear factor I/A	1	3	7.730001	8.169153
Tfdp2	transcription factor Dp 2	1	1	7.223826	7.643182
Arid2	AT rich interactive domain 2 (Arid-rfx like)	2	0	8.078683	8.495247
Ski	ski sarcoma viral oncogene homolog (avian)	1	0	8.118014	8.528252
Sema5a	sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A	1	1	5.069741	5.427424
Name	Sequence	Description			
------	----------	-------------			
BIC100XhoI	ctgctcgagtggttaagttgcataccc	For constructing MDH1-PGK-GFP-miR-155 vector			
BIC553EcoRI	ctggaatttcgattcttttgattctg	For constructing MDH1-PGK-GFP-miR-155 vector			
Mus TCF4 3UTR	gtctcgagAGAGGTACACCGGTTAGAAT	For constructing psicheck2 vector containing TCF4 3UTR.			
Mus TCF4 3UTR Re	gtgcgcccgcTGCTGATAGGTTAGGAAAA	For constructing psicheck2 vector containing TCF4 3UTR.			
Mus TCF4 mut1	tcatgcagcaattaaacagcttataagcct	For constructing psicheck2 vector containing TCF4 3UTR with site one mutated.			
Mus TCF4 mut1 Re	tgtaattgctgcgatgtggttggca	For constructing psicheck2 vector containing TCF4 3UTR with site one mutated.			
Mus TCF4 mut2	cctaaagcataaggctttgagg	For constructing psicheck2 vector containing TCF4 3UTR with site two mutated.			
Mus TCF4 mut2 Re	gcaacaatttgaatgtaagaaagttataagg	For constructing psicheck2 vector containing TCF4 3UTR with site two mutated.			
Mus Satb1 3UTR F	CTCGAG agccacaccacggtattcct	For constructing psicheck2 vector containing Sabt1 3UTR.			
Mus Satb1 3UTR Re	GCGGCCGC gtcgaggtacctgagaagaattta	For constructing psicheck2 vector containing Sabt1 3UTR.			
Mus satb1 mut F	ctcaataagcaATTAactttcgtttatag	For constructing psicheck2 vector			
Oligos for ShRNA

Oligo Type	Sequence	
mTCF4 ShRNA 1	`tcgagcccGCCATGAGGTACAGACAAAAGTTTCAAGAGACTTTGCTGTACCTCCATGGCTTTT TG` `aattcaaaaaGCCATGAGGTACAGACAAAAGTTTCAAGAGACTTTGCTGTACCTCCATGGCCggg c`	
mTCF4 ShRNA 2	`tcgagcccGGACGATGCGATTCATGTTCTTTCAAGAGAAGACATGAATCGCATCGTCCTTTT TG` `aattcaaaaaGGACGATGCGATTCATGTTCTTTCAAGAGAAGACATGAATCGCATCGTCCTCCggg c`	
mSatb1 ShRNA 1	`tcgagcccGCACACCACAGTAAGGAATGCTTCAAGAGAGCATTCTACTGTGGTGTGCTTTT TG` `aattcaaaaaGCACACCACAGTAAGGAATGCTTCAAGAGAGCATTCTACTGTGGTGTGCggg c`	
mSatb1 ShRNA 2	`tcgagcccGGAGAGCAATGCTGTGCATCATTCAAGAGATGACTCGACAGCATTGCTCTCTTTT TG` `aattcaaaaaGGAGAGCAATGCTGTGCATCATTCAAGAGATGACTCGACAGCATTGCTCTCCggg c`	
Gene name	Primers	Product length (Base pair)
----------	------------------------------	----------------------------
Cox-2	Forward: 5’-TGA GTA CCG CAA ACG CTT CT -3’ Reverse: 5’-CTC CCC AAA GAT AGC ATC TGG -3’	169
Grb7	CCACTGACTTCCGGCTTCT TGTGTTGTCTTCTCTCTCC	337
Erbb2	AGAAATCCTAGATGAAGCGTAC CCTGTGAACAAAGCGGACT	238
Erbb3	TGCCAAAGGTCCAATCTA AGTCCCTACTGTCACCGCTAT	165
BIC/mir-155	5’-cgg aga tta ctt ta TAT CCC TTA TCC TCT GCC-3’ 5’-cgg aag ctt GACTTGCTATCCCTCCAC-3’	193
Grhl2	TTTGTCACACACCCGCTTA CACTGGCAGCCCATACTT	162
GAPDH	GTTGTCTCCTGCGACTTTA GGTGTGCGGCTATCTTA	184
Satb1	AGGACCCTGTGGGAGAAC TTGGACATGGATGATGTG	138
Apcdd1	TCGCACCCTCCGGCTCTTA CGTGTGCTGCCCATAGTAAA	242
CSF3	CAGGCTCTATCGGCTATTT GGAAGCCAGAAATGGAAGG	166
Vcam1	CAGATAGACAGCCCACTA AGCCTGTAAACTGGGTAA	260
Tgfbr3	CGTGCTGGAGGTGGTGTG TGTCTGGGTGTTGATGTG	256
VEGF-A	5’-AGTCCCATGATGATCCATCGTGTCATGATCATTCA-3’ 5’-ATCCCGGATGATCTGCTGTGGAGG-3’	219
MMP-9	5’-CTCCTGATGCCACTTCTACT-3’ 5’-AACACACAGGGTTTCGGTTTC-3’	220
SOCS1	5’-CTCCGCTAATACCTGAGTTCCCT-3’ 5’-ATCTCACCCTCCACAACC-3’	172
SOCS3	5’-TTCACGGCAGTTCCCAACCATC-3’ 5’-GCTCCAGTGAATCCGCTCT-3’	345
Tgfbr2	TTTCCGAAGAATACACCC GGACACGGGTACGAGGAA	129
ST14	CTCAGAGCCAAAGCGTGAATG GCGAGGCTTGGTGGAA	227
Skil	GAGCAGGCCAACGGAAC	197
Gene	Sequence	Length
-----------	---	--------
Satb1	AGGACCCCTGTGGGAGAACTTGGAACTGGATGGTG	138
Jag1	CAGGTCTTACCACCGAACAAGACCGCTCTGAACCTCTG	268
Inhba	CTAACGAAACCAGGACCAATCTCCTTCGAGATGAATGAG	157
Epcam	GATTCCTGTCTTGCATTTTCTCTCCTGCTTTATCTCAGGCTCTC	250
Bhlhe40	ATGAACCCAGACAAGATACCTGAGCTCTGGAATGATGGAG	171
HMGA2	TCCCGTCTCCCGGGAAAGGTAGGGCTCATGAGTTGGATC	232
ANGPTL4	AAGGATGCTGTCCGAGATTATGAGCTGAATGAGGAATG	144
Itga2	AGCCCGTGATCTTTCTCTACACCCGGCATTCATTG	185
Zeb1	CCATACGAATGCGCGCAACTACCAAGGGCAACCCGCAAT	386
Fibronectin1	GCGGAAATGTGATGAGAAAGGGGAATGACCTCCTG	415
Cadherin1	GTCTCCTCTTGGGCTTCTACTAGGGAGGAGTGCAGTGCCTG	228
Vimentin1	CGGCTGCCACTTCCGTCCGCAACCACTGCTGAAATGAGGCGA	343
Twist1	AGCGGTGTACCAACGAAGTCGACGTGAAAGTACG	162
Snai2	TCCCATTAGTGACGAAGAAGCCAGGCTACATCCGATTCAT	204
Snai1	GTCGGCTCTTCTCAGGCCATGGTATCTTCTGTACTG	391
TCF4	CACAACGAGCGATGGGTAGGGGTAGGGGTCGCGCTG	195
pri-miR-141	GTCCAGTTCTCAGCGGATGTCGCTGTTGCTTAAATGAG	185
pri-miR-200a	CCGAAGAAGGCTGAGTTTACTTCTGCAGTGTACGAT	201
pri-miR-429	ACTGCACTGTGAGATGATGATGACTGAGGATG	170
AK014686	AGCAGGTTGGCTTTCAAGGACGAAGGCTCAGGGTTCAGGCAG	241
Gene	Sequence	Length
--------------	---------------------------	--------
pri-miR-200c	TGATCTTGAAGGTGGACTGG	284
	CACTGGATTGGAGGAGGG	
Zeb2	GAGCTTGACCACCGACTC	223
	TTGCAGGACTGCCTTGAT	
pri-miR-200b	tgcagggcttctgtgtgtc	201
	cacccatatgccaaggactaact	
IL-1α	TCTGCCATTGACCATCTC	184
	GAATCTTCCCGTTGCTTG	
beta-actin	CTGTCCCTGTATGCCTCTG	218
	ATGTCACGCAACGATTTC	