ABSTRACT
This study was aimed to investigate the effect of combining sawdust (SD), filter cake (FC) and calcium carbonate as growth medium for the production of white oyster mushroom. Isolate F2 oyster mushroom was cultured on malt extract agar (MEA) and used in the experiment. The culture medium consisted of two treatments: first, A treatment: combined medium (A0=100% SD; A1=100% FC; A2=70% FC and 30% SD; A3=50% FC and 50% SD; A4=30% FC and 70% SD) and second, K treatment: addition of calcium carbonate (K1=2% ; K2=3% ; K3=4% ; K4=5% weight of medium). A Randomized design was used to analyze certain parameters, such as mycelial growth, presence of fruiting body, the number of fruiting bodies and the fresh weight of fruiting body at harvest. The results showed that the highest mycelial growth and fruiting body formation occurred on A0 treatment. However, a high number of fruiting bodies and a high fresh weight of fruiting body at harvest were obtained on A4 treatment. Interaction between the combined medium (A) and addition of calcium carbonate (K) showed that the highest mycelial growth occurred on A0K2 treatment 30 days after incubation. The composition of A4 treatment (30% FC and 70% SD) was found to be the optimal medium for the production of fruiting body. This finding shows that FC with additional nutrition could as a substitute of SD medium for cultivating white oyster mushroom.

Keywords: growth medium; mycelial growth; white oyster mushroom; fruiting bodies
INTRODUCTION
Mushroom is a horticultural commodity and is used as food or nutraceutical to prevent and treat human diseases. Preclinical and clinical studies have shown that direct and indirect consumption of certain mushrooms reduce the occurrence of cancer and cause weight loss (8). Indonesia is a country that has the potential to become an edible mushroom producer. As a tropical country, Indonesia has high mushroom diversity, which makes it possible to grow them in every season. Edible mushrooms with high nutritional value can be used as medicine (19). The high demand for mushroom as a food additive in the society and the increasing mushroom production indicate business opportunities in mushroom cultivation. Setyawati (23) stated that the presence of mushroom farming in some areas increases the value of the commodity. As the tenth largest producer of sugar-cane in the world, Indonesia produces a large amount of waste product in this sector. According to Kuswurj (14), the biomass of sugar-cane waste was 1.1 million ton/hectar/year. Currently, the waste is used primarily as fertilizer, alternative fuel source or abandoned, which causes pollution (9). The composition of filter cake was investigated by Senthil and Das (22), Kumar et al. (13), and Sørensen et al. (12). Boonyuen et al. (3) reported that filter cake and sugar-cane stem waste consist of high lignocellulose and can be used for fungal growth. A previous research by Suka et al. (6) stated that the addition of various amounts of filter cake to sawdust medium increases the production of Pleurotus ostreatus. They also reported impressive results with respect to mycelial growth, pinhead, fruiting body and harvest period for the medium with 60 g of filter cake. Addition of calcium carbonate (CaCO$_3$) to filter cake is required to increase pH. Mardiana et al. (15) reported a difference in mycelial growth of Pleurotus ostreatus on a medium with CaCO$_3$. Therefore, the aim of the current research is to investigate the use of the combined medium of saw dust, filter cake and CaCO$_3$ as growth medium for the production of white oyster mushroom (Pleurotus ostreatus).

MATERIALS AND METHODS
Isolate F$_2$ white oyster mushroom was cultured on malt extract agar (MEA) obtained from F$_1$ Agrotechnology laboratory, Agricultural Faculty, Medan Area University and was used in this experiment. The treatments consist of A treatment, which is a combined medium of filter cake and sawdust $(A_0=100\% \text{ SD}; A_1=100\% \text{ FC}; A_2=70\% \text{ FC} \text{ and } 30\% \text{ SD}; A_3=50\% \text{ FC} \text{ and } 50\% \text{ SD}; A_4=30 \text{ FC} \text{ and } 70\% \text{ SD})$, and K treatment: addition of calcium carbonate include $K_1=2\%$; $K_2=3\%$; $K_3=4\%$; $K_4=5\%$ weight of medium, which involves the addition of CaCO$_3$. A Randomized design was used to analyze certain parameters, such as mycelial growth, the presence of fruiting body, the number of fruiting bodies and the fresh weight of fruiting body at harvest. The experiment using randomized complete design, with three replication analysis of variance (ANOVA) and Duncan multiple range test (DMRT) was formulated as follow: $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$.

Medium Preparation, Isolation and Incubation
Isolate F$_2$ oyster mushroom was obtained from F$_1$ culture collection Agrotechnology Laboratory, Agriculture Faculty, Medan Area University. The isolate was cultured on baglog with a volume of 375 cm3 containing powdered filter cake, sawdust, wheat bran, 10% CaCO$_3$ and 0.5% maize flour. Forty baglogs were made in this experiment. Each baglog was arranged and incubated (25-28°C) for 35-40 days in the dark on a rack in a mushroom house, 7 x 5 x 6 m (length, wide, height). Each treatment was made in triplicate. Inoculated eight baglogs with spawn were made for each treatment. The humidity inside the mushroom house (80-90 %) was controlled daily using a hygrometer. To control pest and diseases in each treatment, fly trap was used.

Parameter Observation
Each baglog was observed after 3 days of incubation. Certain parameters, such as mycelial growth, were observed after 5 days of incubation. The size of the fruiting body was observed after 35-40 days, while the number of fruiting bodies and the fresh weight were observed at harvest. Harvesting was conducted two times between 40 and 120 days of incubation using cutter (11). The first harvest
took place on the 50th day and the second on the 75th day. The freshly harvested mushroom was weighed using analytical balance type Gs/Vibra, Merk Shinko, Japan.

RESULTS AND DISCUSSION

The medium composition of each baglog was covered by mycelial growth after 35 days. The combined medium with CaCO$_3$ supports fungal growth. Previous results showed that sawdust and filter cake contain cellulose, which is required by white oyster mushroom for growth (2). Garg and Gupta (9) stated that agro industrial wastes and their derivatives were used as medium for cultivating oyster mushroom. The high lignocellulose produced by mushroom gives the species advantage in growth and development on such environment. In addition to light intensity, the temperature, acidity/alkalinity of the medium (6-7) and relative humidity (60-70%) in the mushroom house affect their growth. Soenanto (18) reported that oyster mushrooms require an area that is 400-800 m above sea level for optimum growth. However, some strains of the species are able to grow on lower than 400 m above sea level as long as the area has low light intensity and cool weather. Our results are in accordance with Chazali and Pratiwi (4), who stated that a temperature range of 23-28°C was optimal for mycelial growth of oyster mushroom. High light intensity inhibits growth and metabolism. Suriawiria (2) stated that fungal growth was affected by the nutrients on the medium, particularly phosphorus, potassium, nitrogen, sulphur, calcium and carbon. Previous research by Soenanto (18) and Hanifah (10) showed that the nutrient and moisture contents of the medium determine fungal growth. The result of this study was showed that the presence of nutrients on sawdust and filter cake, the moisture content of both media (60-65%) and their pH (6-7) determine the growth of oyster mushroom.

Mycelial growth covered the Substrat/baglog (cm)

The statistical analysis indicate that the combined medium (sawdust, filter cake and CaCO$_3$) had a significant effect (P< 0.05) on mycelial growth. We assumed that the starting point of mycelial formation was determined by the presence of nutrients in the medium in the baglog. Optimum mycelial growth occurred after 30 days. A_0, A_2, and A_3 had no significant effect on mycelial growth. The result indicates that filter cake can be used as a substitute medium of sawdust. The optimum growth of mycelium with respect to the medium containing CaCO$_3$ was observed on K_2; the performance of K_2 is significantly different from those of others. Interaction A_1K_2 showed optimum mycelial growth. Sawdust and filter cake contain nutrients required for optimum growth of white oyster mushroom. Similar results were also reported by Dewi (5). Agus et al. (1), Fadjari (7) and Mkhize et al. (17) reported that sawdust consists of 33-38% of cellulose, 15-25% of hemicellulose, and 18-33% of lignin. However, filter cake consist of carbon (26.51%), nitrogen (1.04%), C/N (25.62), phosphate (6.142%), potassium (0.485%), sodium (0.082%), calcium (5.785%), magnesium (0.419%), iron (0.191%) and mangan (0.115%). Nitrogen as well as carbohydrate and its derivatives are essential compounds for mycelial growth and fruiting body formation of oyster mushroom. Winarni and Rahayu (20), reported that digested carbohydrate by fungal enzymes provide nutrients in the culture medium. Mkhize et al. (17) observed that mycelial growth and short period mycelial colonization of *Pleurotus ostreatus* occurred with high concentration of maize flour and wheat bran. Due to its growth, the mycelia of oyster mushroom cover all the substrates in the baglog. The process occurred 5 to 35 days after inoculation (Table 1).
Table 1. Mycelial growth of oyster mushroom on baglog containing filter cake, sawdust and calcium carbonate after 5-35 days incubation (29°C) in a mushroom house

Treatment	5	10	15	20	25	30	35
A0	3.19aA	8.56aA	13.26Aa	16.81tn	20.91aA	24.84aA	27.5Cc
A1	2.68bAB	8.03cA	11.95cCD	15.85tn	20.1bcAB	23.7cdB	27.66cC
A2	2.3bcB	8.09bcA	12.34abB	15.82tn	20.38abA	24.56bA	29.69aA
A3	1.92cC	8.42abA	12.11bcBC	15.53tn	19.68cdB	24.1bcAB	29.63abAB
A4	2.12cC	7.97cA	11.52cD	18.05tn	17.8dD	22.89dB	26.88cC
K1	2.59tn	8.28tn	12.24B4	15.8tn	19.58bA	23.95Bb	28.28tn
K2	2.52tn	8.36tn	12.46Aa	15.98tn	20.44Aa	24.8Aa	28.15tn
K3	2.29tn	8.13tn	12.13cA	15.58tn	19.32bA	23.61cC	27.98tn
K4	2.38tn	8.09tn	12.12Aa	18.28tn	19.76bA	23.7bcBC	28.68tn
A0K1	3.31aA	8.7abA	13.05abA	16.75tn	20.34cB	24.25bB	28.13tn
A0K2	2.99aA	9.59aA	14.63Aa	18.15tn	22.94Ab	27.63aA	26tn
A0K3	2.61bA	7.5cB	12.15Cd	15.53tn	18.06dBC	22.38cC	25.88tn
A0K4	3.85aA	8.46AB	13.21bB	16.8tn	22.31abA	25.13bB	30tn
A1K1	2.66bA	7.7cB	11.75Cd	15.8tn	19.13cdB	22.88dC	27.13tn
A1K2	2.84bA	8.04bB	11.88cCD	16.26tn	20.31cB	24.19bB	27.75tn
A1K3	2.33cA	7.83bcB	11.99cD	15.4tn	19.94cB	23.56cC	27.63tn
A1K4	2.9abhA	8.55bA	12.18dC	15.94tn	21.03bA	24.19bcB	28.13tn
A2K1	2.24cA	8bB	12.13cA	14.99tn	19.56bC	24.56bB	29.38tn
A2K2	3.03aA	7.94bB	12.56dC	16tn	21.13bA	24.56bB	30tn
A2K3	2.46cA	8.56bA	12.53dBC	15.98tn	20.44cA	24.63bB	29.38tn
A2K4	1.48eA	7.88bB	12.16dC	16.3tn	20.38cAB	24.5Bb	30tn
A3K1	2.16cA	8.63bA	12.76cB	16.46tn	20.75bA	25Bb	30tn
A3K2	1.29eA	8.38bB	12.25cD	15.56tn	20.5bcA	25bB	30tn
A3K3	2.08dA	8.56bA	11.99cD	15.5tn	19.2cB	23.94cBC	29.13tn
A3K4	2.15edA	8.13bB	11.54dD	14.61tn	18.25dB	22.63cC	29.38tn
A4K1	2.55bA	8.38bB	11.49eD	15tn	18.13dB	23.06dC	26.75tn
A4K2	2.48bA	7.88bB	11fD	13.94tn	17.31dcC	22.63cC	27tn
A4K3	1.96deA	8.19bB	12.06dC	15.5tn	18.94dB	23.56dC	27.88tn
A4K4	1.5eA	7.4cB	11.53eD	27.75tn	16.81cE	22.31cE	25.88tn

Numbers followed by the same letters in a column are not significantly different at 0.95 (small letters) and 0.99 (capital letters).

Mycelial growth on combined medium (A) and medium with CaCO3 (K) are shows in Figures 1 and 2.

Figure 1. Mycelial growth covered baglog containing combined medium 5 – 35 days after incubation (29°C)
Figure 2. Mycelia growth covered baglog containing calcium carbonate 5 – 35 days after incubation (29°C).

The percentage of mycelial growth on baglog containing substrates and calcium carbonate as shows in Figure 3.

Figure 3. Percentage of mycelial growth on baglog containing substrates and calcium carbonate after 5 – 35 days incubation.

Formation of Fruiting Body
The formation of fruiting body at the first and second harvests on 100% sawdust (SD) medium (A₀) did not significantly different compared with the combined medium of 50% SD and 50% FC (A₃). The table shows yield increase in the first harvest significantly with A₄, 60.88 aA and second harvest significantly with A₁ and A₂. The beginning of fruiting body formation is indicated by the presence of small white buttons surrounding the mycelia. The first appearance of fruiting body during the first and second harvests is shown in Table 2. The availability of nutrients, such as C, N, P, and K, on FC + SD medium promotes the growth of mycelia to the extent of covering the
medium and enhances fruiting body formation. Maize flour and wheat bran added to the medium has no effect on fungal production.

Table 2. The production of fruiting body of oyster mushroom on sawdust, filter cake and calcium carbonate at first and second harvests

Treatment	The production of fruiting body (g)	First harvest	Second harvest
A₀	51.28 cC	58.63 bB	
A₁	57.22 bAB	62.69 aA	
A₂	55.97 bB	62.34 Aa	
A₃	55.84 bcBC	61.88 abAB	
A₄	60.88 aA	62.34 abAB	

Numbers followed by the same letters in a column have no significant difference at p<0.05 (small letters) and 0.01 (capital letters)

The first formation of fruiting body in all medium compositions occurred between 51.28-60.88 days and 58.63-62.69 days, as shows in Figure 4.

Figure 4. The first formation of fruiting body on some treatments of culture medium

Number of Fruiting Bodies

The number of fruiting bodies at the first harvest was 3.5-9.81 and that of the second harvest was 3.25-9.16 (Table 3 and Figure 5). The highest number of fruiting bodies was found on combined medium of 30% FC + 70% SD (A₄), and did not significantly different from the number of fruiting bodies on the 100% SD medium (A₀), 70% FC + 30% SD medium (A₂) and 50% FC + 50% SD medium (A₃). Regarding the production of fruiting body, filter cake was used as a substitute of sawdust. The nutrients and compounds required for growing oyster mushroom include calcium, potassium, phosphorus, nitrogen, carbon, protein and chitin. Mkhize et al. (17) used nitrogen and carbohydrate for the production of fruiting body. However, Suriawiria (2) and Hanifah (10) reported that wheat bran and filter cake enriched the medium in terms of nutrients required for the growth of oyster mushroom, and the addition of calcium carbonate controlled the pH of the medium.

Table 3. Number of Fruiting body of oyster mushroom at the first and second harvests of the combined medium of sawdust, and filter cake

Treatment	First harvest	Second harvest
A₀	9 abAB	8.63 abcABC
A₁	3.5 dc	3.25 d D
A₂	6.75 edC	6.47 abedABC
A₃	7.69 abcABC	6.97 abAB
A₄	9.81 a A	9.16 aA

Numbers followed by the same letters in a column have no significant difference at 95% (small letter) and 99% (capital letter)
Figure 5. Production of fruiting body at the first and second harvests

Fresh Harvest Weight

The fresh weight of fruiting body (g/baglog) at harvest is shown in Table 4 and Figure 6. High harvest fresh weight was observed on A4 in first and second harvest. With higher concentration of filter cake in the culture medium, the fresh weight increases. Filter cake consists of crude protein, sugar, cellulose, chlorine, phosphate and fibre (5). Silveira et al. (21) reported that the presence of cellulose, hemicellulose and lignin in culture medium promotes mycelial growth, which increases fruiting body formation.

Table 4. Fresh weight of fruiting body of oyster mushroom at first and second harvests regarding the medium containing sawdust, and filter cake

Treatment	First harvest	Second harvest
A0	118.39 abAB	100.95 abcABC
A1	71.72 d D	90.16 d C
A2	86.5 cdCD	96.72 bcdABC
A3	101.2 bcBC	102.83 abAB
A4	129.83 Aa	106.75 a A

Numbers followed by the same letters in the same column have significant difference at 95% (small letter) and 99% (capital letters)

Figure 6. Fresh weight of fruiting body at first and second harvests

The results showed that the combined medium of sawdust and filter cake increases the productivity and growth of white oyster mushroom. The nutrients in sawdust were complemented by the addition of filter cake to promote fungal growth (16). As a saprotroph, the nutrients required by fungi are provided by other organisms. Environmental factors such as light intensity, temperature, acidity/alkalinity of medium and humidity also affect fungal growth.

Conclusion

As waste agricultural products, filter cake and sawdust used as a combined medium is suitable for cultivating white oyster mushroom. The combination of both waste products has a beneficial effect on mycelial growth and fruiting body formation.
Acknowledgements: This manuscript was partially supported by a grant of the Ministry of Research and Technology, Directorate General Higher Education, Republic of Indonesia.

REFERENCES
1. Agus M. P., D. P. Oetami, and Pujiati, U. 2012. Pengaruh takaran bekatul dan pupuk anorganik terhadap hasil jamur tiram putih (pleurotus ostreatus). Thesis of Agriculture Faculty, Universitas Muhammadiyah Purwokerto (Muhammadiyah University of Purwokerto).
2. Suriawiria, U. 2002. Oyster mushroom cultivation. Kanisius. Yogyakarta. Available from: http://elibrary.perpusda-cilacap.com/opac/detail-opac?id=8314
3. Boonyuen N., et al. 2014. Fungal occurrence on sugarcane filter cake and bagasse isolated from sugar refineries in Thailand. Thai Journal of Agricultural Science, 47 (2): 77-86. Available from: http://www.thaiagi.org/images/stories/Journal_online/2014/2/04-format_tj-agr-0714-30-npr.pdf
4. Chazali, S. and Pratiwi, P. S. 2009. Usaha jamur tiram skala rumah tangga. Penebar Swadaya. Jakarta. Available from: https://pustakaaceh.perpusnas.go.id/detail-opac?id=38784
5. Dewi, K. I. 2009. Efektivitas pemberian blotong kering terhadap pertumbuhan jamur tiram putih (pleurotus ostreatus) pada media serbuk kayu. Thesis. Biology Education Faculty of Teacher Training and Education, Muhammadiyah University. Surakarta.
6. Suka G, Christal, and Donny. 2014. Pemberian blotong pada media serbuk gergaji untuk budidaya jamur tiram (pleurotus ostreatus). Department of Agrotechnology, Faculty of Agriculture, University of Riau. Available from: https://www.neliti.com/id/publications/201905/pemberian-blotong-pada-media-serbuk-gergaji-untuk-budidaya-jamur-tiram-pleurotus
7. Fadjari, T. 2009. Memanfaatkan blotong, limbah pabrik gula, URL: http://www.kulinet.com/baca/memanfaatkan-blotong-limbah-pabrik-gula/536
8. Feeney, M.J., J. Dwyer, C.M. Hasler-Lewis. 2014. Mushroom and health Summit Proceedings. The Journal of Nutrition May 8, 2014. DOI: 10.3945/jn.114.190728
9. Garg, V., and R. Gupta. 2009. Vermicomposting of agro-industrial processing waste. In P.S.N Nigam & A. Pandey (Eds). Biotechnology for agro-industrial residues utilization (pp. 431-456). Netherlands: Springer. http://dx.doi.org/10.1007/978-1-4020-9942-7_24
10. Hanifah, E. 2014. Pertumbuhan dan hasil jamur tiram putih (pleurotus ostreatus) pada komposisi media tanam serbuk gergaji, ampas tebu dan jantung pisang yang berbeda. Thesis. Biology Education Faculty of Teacher Training and Education, Muhammadiyah University. Surakarta. Available from: https://www.neliti.com/id/publications/175520/pertumbuhan-dan-hasil-jamur-tiram-putih-pleurotus-ostreatus-pada-komposisi-media
11. Hasibuan, S., S. Hasibuan, and E. L. Panggabean. 2019. The effectiveness of castration and seed sources on the growth and production of strawberry plants. Birex Journal, 1(1): 42-53. DOI: https://doi.org/10.33258/birex.v1i1.134
12. Sørensen, A., P.J. Teller, P. S. Lübbeck, and B. K. Ahring. 2011. Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strain. Applied Biochemistry and Biotechnology. 164: 1058-1070
13. Kumar, R., D. Verma, B.L. Singh, U. Kumar, and Shweta. 2010. Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology 101: 6707-6711
14. Kuswurj, R. 2009. Blotong dan pemanfaatannya. Available from: http://www.risvank.com/?p=307
15. Mardiana, S., P.E. Lumisar, and A.R. Kuswardani. 2016. Formulasi pH media pertumbuhan miselium jamur tiram (pleurotus ostreatus) pada berbagai limbah perkebunan dan pertanian. Prosiding: Seminar Nasional Hasil Penelitian dan PKM, Selasa, 23 Agustus 2016 Kampus C Universitas Muslim Nusantara (UMN) Al-Washliyah. Publisher: LP2M UMNAW
16. Mardiana, S., R. A. Kuswardani, and Usman. 2017. Management policy for organic
waste from plantation and plantation production factory in North Sumatra. International Journal of Management Science and Business Administration. 3(5). DOI: 10.18775/ijmsba.1849-5664-5419.2014.35.1002

17. Mkhize, S.S., J. Cloete, A.K. Basson, and G.E. Zharare. 2016. Performance of pleurotusostreatus mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran. Food Sci. technol, Campinas, 36(4): 598-605. Available from: https://doi.org/10.1590/1678-457x.08516

18. Soenanto. 2000. Jamur tiram, budidaya dan peluang usaha. Aneka Ilmu. Semarang. Available from: http://opac.balikpapan.go.id:8123/inlisilite3/opac/detail-opac?id=10636

19. Pramudya, N. F., and Cahyadinata, I. 2012. Analisis usaha budidaya jamur tiram putih (pleurotus ostreatus) di Kecamatan Curup Tengah Kabupaten Rejang Lebong. Jurnal Argrisep (Argrisep Journal). 11: 237-250. Available from: https://ejournal.unib.ac.id/index.php/agrisep/article/view/511

20. Winarni, I., and U. Rahayu. 2002. Pengaruh formulasi media tanam dengan bahan dasar serbuk gergaji terhadap produksi jamur tiram putih (pleurotus ostreatus). Jurnal Matematika, Sains danTeknologi 3(2): 20-27

21. Silveira, M.L.L., S.A. Furlan, and J.L. Ninow. 2008. Development of an alternative technology for the oyster mushroom production using liquid inoculum. Cienc. Tecnol. Aliment, Campinas, 28(4): 858-862. Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612008000400014

22. Senthil, C. and K. C. Das. 2004. Converting sugar industry waste into ecofriendly bioproduct. Biocycle 45: 58-62

23. Setyawati, T. 2011. Analisis biaya dan pendapatan industri benih (baglog) jamur tiramputih (Pleurotus astreatus strain florida) di kecamatan Karangploso, kabupaten Malang. Balai Pengkajian Teknologi Pertanian (BPTP). Jawa Timur. Available from: https://docplayer.info/48692324-Tutik-setyawati-balai-pengkajian-teknologi-pertanian-bptp-jawa-timur-abstrak.html