Two sides of a coin: a Zika virus mutation selected in pregnant rhesus macaques promotes fetal infection in mice but at a cost of reduced fitness in nonpregnant macaques and diminished transmissibility by vectors.

Danilo Lemos¹, Jackson B. Stuart¹, William Louie¹, Anil Singapuri¹, Ana L. Ramírez¹, Jennifer Watanabe², Jodie Usachenko², Rebekah I. Keesler², Claudia Sanchez-San Martin³, Tony Li³, Calla Martyn³, Glenn Oliveira⁴, Sharada Saraf⁴, Nathan D. Grubaugh⁴,⁵, Kristian G. Andersen⁴, James Thissen⁶, Jonathan Allen⁶, Monica Borucki⁶, Konstantin A. Tsetsarkin⁷, Alexander G. Pletnev⁷, Charles Y. Chiu³, Koen K. A. Van Rompay², Lark L. Coffey¹,⁸

¹ University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, Davis, California
² University of California, Davis, California National Primate Research Center, Davis, California
³ University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California
⁴ The Scripps Research Institute, San Diego, California
⁵ Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
⁶ Lawrence Livermore National Laboratory, Livermore, California
⁷ Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
⁸ Corresponding author

lcoffey@ucdavis.edu

ORCID numbers:

Lark L. Coffey: 0000-0002-0718-5146
27  Koen K. A. Van Rompay: 0000-0002-7375-1337
28  Rebekah I. Keesler: 0000-0002-8559-3591
29  Jackson B. Stuart: 0000-0001-9577-1737
30  Charles Y. Chiu: 0000-0003-2915-2094
ABSTRACT

Although fetal death is now understood to be a severe outcome of congenital Zika syndrome, the role of viral genetics is still unclear. We sequenced Zika virus (ZIKV) from a rhesus macaque fetus that died after inoculation and identified a single intra-host substitution, M1404I, in the ZIKV polyprotein, located in NS2B. Targeted sequencing flanking position 1404 in 9 additional macaque mothers and their fetuses identified M1404I at sub-consensus frequency in the majority (5 of 9, 56%) of animals and some of their fetuses. Despite its repeated presence in pregnant macaques, M1404I occurs rarely in humans since 2015. Since the primary ZIKV transmission cycle is human-mosquito-human, mutations in one host must be retained in the alternate host to be perpetuated. We hypothesized that ZIKV I1404 increases fitness in non-pregnant macaques and pregnant mice but is less efficiently transmitted by vectors, explaining its low frequency in humans during outbreaks. By examining competitive fitness relative to M1404, we observed that I1404 produced lower viremias in non-pregnant macaques and was a weaker competitor in tissues. In pregnant wildtype mice ZIKV I1404 increased the magnitude and rate of placental infection and conferred fetal infection, contrasting with M1404, which was not detected in fetuses. Although infection and dissemination rates were not different, Ae. aegypti transmitted ZIKV I1404 more poorly than M1404. Our data highlight the complexity of arbovirus mutation-fitness dynamics, and suggest that intrahost ZIKV mutations capable of augmenting fitness in pregnant vertebrates may not necessarily spread efficiently via mosquitoes during epidemics.

IMPORTANCE

Although Zika virus infection of pregnant women can result in congenital Zika syndrome, the factors that cause the syndrome in some but not all infected mothers are still unclear. We identified a mutation that was present in some ZIKV genomes in experimentally inoculated
pregnant rhesus macaques and their fetuses. Although we did not find an association between
the presence of the mutation and fetal death, we performed additional studies with it in non-
pregnant macaques, pregnant mice, and mosquitoes. We observed that the mutation increased
the ability of the virus to infect mouse fetuses but decreased its capacity to produce high levels
of virus in the blood of non-pregnant macaques and to be transmitted by mosquitoes. This study
shows that mutations in mosquito-borne viruses like ZIKV that increase fitness in pregnant
vertebrates may not spread in outbreaks when they compromise transmission via mosquitoes
and fitness in non-pregnant hosts.

INTRODUCTION

Congenital Zika syndrome (CZS) caused by Zika virus (ZIKV) produces a disease
spectrum that sometimes results in microcephaly or death in fetuses from mothers infected
during pregnancy. In American outbreaks since 2015, about 15% of fetuses from ZIKV infected
mothers displayed reduced growth, sensory disorders, and central nervous system
malformations (1–6), manifestations of CZS (7–9). CZS abnormalities associate with detection
of ZIKV RNA or infectious virus in amniotic fluid (AF) and fetal tissues, including brain (4–6, 10–
14). Viral and host factors that affect the severity of CZS are still not well understood, including
why some fetuses die or develop microcephaly while others do not.

Mutations in ZIKV that arise and spread in humans during outbreaks may contribute to
CZS or modify transmission by mosquitoes. A substitution in the nonstructural protein 1 (NS1)
protein increases infectivity in Aedes aegypti vectors (15). However, identifying mutations that
could influence ZIKV phenotype is complicated as consensus (average nucleotide) genomes
from febrile human cases in recent outbreaks differ by hundreds of nonsynonymous mutations
compared to ancestral genomes (16). Any of these mutations alone or in combination could
modify incidence, transmissibility, or pathogenesis. Furthermore, the consensus genomes from
1 miscarriage and 7 microcephaly cases are interleaved with febrile genomes in phylogenies
and share no common amino acid differences compared to febrile cases from patients living in the same areas suggesting that no single mutation or group of mutations associate with the most severe CZS outcomes (17). Phylogenetic inference identified prM protein (prM-S139N) coding substitution that increases neurovirulence in mice inoculated intracranially (18), although this finding was not reproducible in repeated studies (19). Another substitution identified via phylogenetic analysis, E-V473M, increased viremias in non-pregnant cynomolgus macaques and neurovirulence in 1-day old mice inoculated intracranially, but did modify ZIKV RNA levels in Ae. aegypti (20). Since prM-S139N and E-V473M are present in most genomes from American outbreaks since 2015, including in febrile women whose babies did not develop CZS, they are likely not major determinants of CZS outcome in pregnant women.

ZIKV evolution intrahost has been less studied than evolution across patients but may also affect disease outcome. Defining intrahost evolution over time necessitates repeated sampling. For pregnant women, sequencing ZIKV from even a single time is often unsuccessful, since viremia is frequently missed in the clinical setting (14, 21), and AF is rarely available given that amniocentesis can lead to iatrogenic infection (22) or ZIKV transmission to the fetus from an infected mother. Due to these limitations, the role of intrahost viral genetics in CZS remains unclear. To circumvent limited human sample availability or testing hundreds of mutations identified via phylogenetics as potential determinants of CZS, we used an experimental model to identify intrahost ZIKV mutations in infected pregnant rhesus macaques with known CZS outcomes.

Macaques have rapidly become an important model for understanding ZIKV infection and disease (23, 24, 33–35, 25–32) due to similar placentation, immunology, fetal organogenesis, and neurologic development with humans. Studies using rhesus macaques, including our own work (25, 36), have demonstrated fetal central nervous system lesions consistent with abnormal brain development observed in CZS. As in humans, not all rhesus macaque fetuses from mothers inoculated with the same ZIKV stock at similar gestational
windows develop CZS. While host determinants certainly play a role, viral mutations developed intrahost may also influence different CZS outcomes. Sub-consensus mutants in genetically heterogeneous populations of many other RNA viruses (37, 38, 47–52, 39–46) have been associated with modified transmissibility or disease outcomes. A wild type 2015 ZIKV strain from a febrile patient in Brazil showed augmented replicative success in human placental and neural cells compared to its genetically homogenous infectious clone derivative (17). This highlights that ZIKV mutants intrahost play a role in infection kinetics, even in cell monocultures. However, sub-consensus ZIKV mutations in an individual host are unrecognized without deep sequencing that characterizes the entire population of viral RNA genomes instead of solely the consensus. Intrahost ZIKV populations from 11 pregnant rhesus macaques revealed no de novo mutations in one study (52), although sequencing from maternal serum and AF was from just one time point post-inoculation.

In this study, we sequenced ZIKV intrahost in a rhesus macaque mother and her deceased fetus, and identified a single sub-consensus mutation, M1404I in the NS2B coding region. We then focused sequencing at position 1404 in 9 additional pregnant rhesus macaques and their fetuses where we found that it was present at a minority frequency in 5 additional animals but not detectable or at ~1% frequency in the inoculum. Given its rise in frequency, we hypothesized that the mutant confers increased fitness in rhesus macaques and, by extension, other vertebrates. We therefore performed parallel infections of M1404 and I1404 in non-pregnant rhesus macaques and pregnant mice as well as mixed infections of non-pregnant rhesus macaques. Since ZIKV is primarily mosquito-borne, viral genomes that evolve in vertebrates must be maintained in mosquitoes to persist in alternating vertebrate-mosquito-vertebrate cycling. To test this concept and to better understand why I1404 was detected at low frequency in humans during outbreaks despite increasing in frequency intrahost in pregnant rhesus macaques, we compared transmissibility of M1404 and I1404 by parallel infections of Aedes aegypti vectors.
RESULTS

A ZIKV mutation arises de novo or increases in frequency in experimentally inoculated pregnant rhesus macaques. Pregnant rhesus macaques were ZIKV-inoculated to study viral infection dynamics and CZS. Outcomes from those experiments are detailed in Coffey et al. and Van Rompay et al. (25, 35). The rhesus macaques in those studies were inoculated in their first or second trimesters of pregnancy intravenously (IV) and intraamniotically (IA) with 1×10^5 plaque forming units (PFU) of ZIKV WT (SPH2015, a Brazilian strain, KU321639) or subcutaneously (SC) with 1×10^3 PFU of ZIKV Puerto Rico 2015 (PRVABC59, KU501215) (Figure 2). Some fetuses died pre-term while most survived to the end of the study, which was ~10 days pre-term. To investigate intrahost dynamics we analyzed samples archived from those rhesus macaques by deep sequencing. We first sequenced the complete ZIKV genome in amniotic fluid (AF) from rhesus macaque #5388 whose fetus died 7 days post inoculation (dpi) and exhibited high ZIKV RNA levels in multiple maternal and fetal tissues [23]. We identified no consensus (found in >50% of RNA reads) mutations and only one sub-consensus (found in <50% of RNA reads) mutation, G4315A, which occurred at 18% frequency. The G4315A mutation results in a non-synonymous methionine (M) to isoleucine (I) substitution at amino acid position 1404 of the ZIKV polyprotein (with reference to WT strain SPH2015, KU321639) and is located in the non-structural protein 2B (NS2B), a co-factor for the flavivirus protease, NS3.

Sequencing of the inoculum by 2 different laboratories flanking the G4315A variant locus at 5,705 and 2,296-fold revealed the mutant in 0.2% or 1.3% of the ZIKV RNA reads, respectively (Supplemental Table 2), at or below the reported error rates for short-read Illumina sequencing (53). We performed additional sequencing to determine whether M1404I was also present in other maternal or fetal tissues from rhesus macaque #5338 and also in 9 additional pregnant ZIKV-inoculated rhesus macaques with different CZS outcomes using a targeted sequencing approach flanking 1404. In addition to the AF where it was first detected, ZIKV M1404I was
detected in the gestational sac, amniotic membrane, placenta, and vagina of macaque #5388. ZIKV M1404I was also detected at minority frequency in 4 additional pregnant rhesus macaques inoculated IV and IA with the WT Brazilian strain in multiple tissues including amniotic fluid, gestational sac, amniotic membrane, placenta, maternal vagina, fetal seminal vesicle, and maternal urine. M1404I was also detected in the spleen of one mother (#5731) inoculated SC with the isolate from Puerto Rico. The Puerto Rican ZIKV inoculum lacked the I1404 variant in any RNA reads sequenced at a coverage depth of 2,242-fold. The I1404 mutation was not detected in tissues from 4 additional pregnant rhesus macaques in the same studies (Supplemental Table 2). Although the mutation was detected in 2 rhesus macaques whose fetuses died, it was also found in 4 rhesus macaques whose fetuses survived to near-term, indicating it was not associated with fetal death. The de novo development of ZIKV M1404I and its increase in frequency from near-absence in the inoculum to presence within multiple tissues intrahost in six pregnant rhesus macaques inoculated by two routes with two different ZIKV strains suggested that M1404I may be a rhesus macaque adaptive substitution. To study the mutation in isolation, we generated infectious clone derived viruses that vary only at 1404 for comparative fitness experiments in cells, non-pregnant rhesus macaques, pregnant mice, and mosquitoes.

Growth kinetics of ZIKV I1404 are superior to M1404 in vertebrate cells. We tested whether expression of ZIKV I1404 in cell culture modifies ZIKV growth kinetics relative to M1404. We generated two infectious clones identical in sequence except for position 1404. To do this, we modified a ZIKV infectious clone made from a 2015 Brazilian ZIKV isolate, Paraiba_01/2015 (17), to match the amino acid sequence of the Brazilian strain SPH2015. Strain SPH2015, hereafter termed ‘WT’, was isolated from a patient and passaged in cells before use in pregnant rhesus macaque studies. The sequences of clone-derived ZIKV, termed ‘M1404’ and ‘I1404’ based on the amino acid at polyprotein position 1404 were verified by Sanger sequencing (data...
not shown) using primers flanking the ZIKV genome (Supplemental Table 1). The relative growth kinetics measured as ZIKV RNA and infectious virus levels in supernatants of inoculated cultures over time were assessed in African green monkey kidney (Vero) or Ae. albopictus larval (C6/36) cells (Figure 1). ZIKV I1404 exhibited significantly higher ZIKV RNA levels compared to M1404 from 24 to 96 hours post inoculation (hpi) in Vero cells at a MOI (PFU/cell) of 0.01 (p<0.001, repeated measures ANOVA) (Figure 1A). ZIKV RNA levels for both M1404 and I1404 were lower than for WT at all times studied, a pattern common to clone-derived ZIKV compared to WT progenitor viruses [16]. Even though the increase in ZIKV RNA kinetics was accelerated for I1404 compared to M1404, infectious ZIKV levels in Vero cells from 24-96 hpi by plaque assay were not different between ZIKV M1404, I1404, and WT (p>0.05, repeated measures ANOVA) (Figure 1B). While not different 24 hpi, the RNA:PFU ratio in Vero cells (Figure 1C) was higher for I1404 than M1404 48-96 hpi, although I1404 was not as high as WT at 96 hpi (p<0.05, repeated measures ANOVA). In C6/36 mosquito cells, ZIKV RNA levels after inoculation at a MOI of 0.5 were not different across groups at any time from 24-96 hpi (p>0.05, repeated measures ANOVA) (Figure 1D). These results indicate that in a standard vertebrate cell line, the I1404 substitution detected in pregnant rhesus macaques increases ZIKV RNA kinetics compared to the progenitor M1404, although it does not change the levels of infectious virus.

ZIKV I1404 displays reduced fitness in non-pregnant rhesus macaques inoculated with an equal mixture of M1404 and I1404. To directly compare the relative fitness of M1404 versus I1404, we performed a competition experiment wherein both viruses were inoculated together at an equal ratio into two non-pregnant rhesus macaques (Figure 3A). Equal ratios were confirmed by titrating infectivity and measuring viral RNA levels of both competitors before mixing, and then deep the mixture before inoculation into macaques. Rhesus macaques were also inoculated with ZIKV WT or ZIKV I1404 alone for comparison. ZIKV M1404 was not
included since its coding amino acid sequence is identical to WT to reduce macaque use. We defined fitness as the plasma viremia magnitude and kinetics and, for mixed infections, the relative abundance of ZIKV RNA reads encoding M1404 or I1404 in plasma and tissues. Rhesus macaques inoculated with ZIKV WT or the 1:1 mixture of M1404 and I1404 exhibited similar kinetics (p=0.474, unpaired t-test) with peak viremias at 5-7 dpi that reached 10^6-10^7 ZIKV genomes/ml plasma (Figure 3B). Although the peak viral RNA levels in animals inoculated with the mixture appeared lower than in WT-infected macaques, likely reflecting reduced fitness of clone-derived flaviviruses compared to their WT progenitors, there were no differences in the viremia area under the curve (AUC) (Figure 3C). By contrast, rhesus macaques inoculated with ZIKV I1404 developed significantly lower peak viremias, 10^2 ZIKV genomes/mL plasma, that endured for a significantly shorter period of time and showed lower AUC (p=0.03, AUC) compared to the other two groups. Despite reduced magnitude and kinetics of viremia, most tissue ZIKV levels were similar in animals infected with I1404, WT, or the 1:1 mixture (Figure 3D). The I1404 mutant did not revert to M1404 in the spleen or mesenteric lymph node of either I1404-inoculated animal at levels detectable by Sanger sequencing (data not shown). Targeted deep sequencing flanking the 1404 locus in rhesus macaques inoculated with the 1:1 mixture detected ZIKV I1404 at a significantly lower frequency than M1404 in plasma, spleen, ileum, mesenteric, and inguinal lymph nodes (p<0.001, Chi-squared tests) (Figure 3E, Supplemental Table 3). Despite the repeated detection of ZIKV I1404 in pregnant rhesus macaques, these experiments show that I1404 reduces viral fitness relative to M1404 in non-pregnant rhesus macaques. Given that pregnant rhesus macaques studies are labor intensive and costly, we therefore explored whether fitness advantages conferred by I1404 may be specific to pregnancy using pregnant mice.

ZIKV I1404 confers fetal infection in pregnant CD-1 mice. To assess whether I1404 provides a fitness benefit in pregnancy, we inoculated pregnant CD-1 mice intraperitoneally on gestation
day 6.5 (E6.5), similar to an established model (54), with ZIKV WT, M1404, I1404, or diluent, and compared ZIKV RNA levels in maternal and fetal tissues and fetal weights and resorption rates. Dams were euthanized on gestation day 13.5 (E13.5, where full term in mice is E21) in experiment 1 and on E13.5 or E19.5 in experiment 2 (Figure 4A). Back titration of residual inocula (Figure 4B) showed that mice were administered similar RNA levels of ZIKV M1404 and I1404 for both experiments. The WT inoculum (experiment 1 only) was lower. No statistically significant differences in rates of fetal resorption or fetal weight were observed in either experiment or at either gestation day (p>0.05, Fishers’ exact tests for resorption rates, p>0.05 for mean weights compared with ANOVA multiple comparisons) (Figure 5). On E13.5, mean maternal spleen ZIKV RNA levels for WT were significantly higher than for M1404-inoculated mice (p=0.02, one-way ANOVA) (Figure 4C) but no significant differences in rates of ZIKV detection or mean RNA levels in placentas were observed across the 3 ZIKV inoculated groups (p>0.05, one-way ANOVA) (Figure 4D). Despite similar ZIKV RNA levels in placentas, ZIKV RNA was only detected in fetuses in the ZIKV I1404 group (I1404: 9/43 [20%] versus M1404: 0/43 [0%], p=0.003, Fisher’s exact test) (Figure 4E). These fetuses were from 7 different mothers. Sanger sequencing from 3 ZIKV RNA positive fetuses from different mothers in the I1404-inoculated group at E13.5 showed retention of I1404 in 1 fetus and reversion to M1404 in the other 2; for one mother/fetus pair the reversion was detected only in the fetus and not in the maternal spleen or placenta (Figure 4F). At E19.5, the magnitude of mean ZIKV RNA levels in spleens and the rates and magnitude of mean ZIKV RNA levels in placentas were significantly higher in mice infected with I1404 than M1404 (levels: p<0.01 for spleen, p<0.001 for placenta, one-way ANOVA, placenta infection rates: I1404: 10/20 [50%] versus M1404: 2/20 [10%], p=0.01, Fisher’s exact test) (Figure 4G-H). Only 1 E19.5 fetus head but no fetal bodies in the I1404 group tested ZIKV RNA positive (Figure 4I-J) (rates not significantly different, Fisher’s exact test). These data show that I1404 confers a fitness advantage in pregnancy in fetuses at E13.5 by increasing the magnitude and rate of fetoplacental infection during murine gestation.
Reversion to M1404 as well as the absence of fetal infection by I1404 at E19.5 indicate that fitness advantages conferred by the mutant may be time- and tissue-specific and that the wildtype amino acid is favored in some maternal or fetal environments.

**ZIKV I1404 mutant is more poorly transmitted than M1404 by *Aedes aegypti***. Given that arbovirus mutations that arise in one host must necessarily be maintained in the alternate host to persist via arthropod-borne cycling in nature, we next considered whether ZIKV I1404 affects transmission by the primary vector, *Ae. aegypti*. Mosquitoes were presented to viremic Ifnar-/- mice infected with ZIKV M1404 or I1404 (**Figure 6A**). The identity of the sequence at 1404 in mouse blood was verified by Sanger sequencing. Engorged mosquitoes were held for 7 days after ingesting blood from mice that had matched ZIKV RNA levels (**Figure 6B**) and then dissected and assayed to measure rates and levels of ZIKV RNA in bodies (for infection), legs and wings (disseminated infection), and saliva (a proxy for transmission). The 7-day incubation period was chosen since it represents the time at which mosquitoes exposed to different ZIKV strains beyond the one used here exhibit maximal infection rates (55). All *Ae. aegypti* that ingested viremic mouse blood became infected and mean ZIKV RNA levels between groups of mosquito bodies were not different (not significant, p>0.05, unpaired t-test) (**Figure 6C**). Although all mosquitoes also developed disseminated infections in legs and wings, the mean ZIKV RNA level was significantly higher for the I1404 cohort compared to M1404 cohort (p<0.007, unpaired t-test) (**Figure 6D**). Despite higher dissemination titers, *Ae. aegypti* transmitted ZIKV I1404 more poorly than M1404 (I1404: 3/20 [15%] versus M1404: 13/20 [65%], p=0.003, Fisher’s exact test) (**Figure 6E**). Sanger sequencing of three ZIKV saliva samples from mosquitoes in each group showed retention of the amino acid at 1404 (data not shown). This mosquito data revealed that ZIKV I1404 is less transmissible than M1404 in the primary vector at 7 days post feeding.
DISCUSSION

Understanding factors that influence disease and transmissibility can lead to approaches to control ZIKV. We identified a ZIKV mutation, M1404I, that arose de novo or increased in frequency in experimentally inoculated pregnant rhesus macaques. Repeated detection of the mutation in tissues of multiple pregnant rhesus macaques at higher frequency than in the inoculum suggests it confers a selective advantage intrahost in pregnancy. Our experiments in mice harvested at E13.5 confirm that I1404 increases ZIKV fitness in pregnancy by augmenting the magnitude and rate of placental infection and by conferring fetal infection in pregnant CD-1 mice inoculated intraperitoneally in the first trimester. By contrast, our studies in non-pregnant rhesus macaques show that I1404 is less fit than M1404, producing significantly lower viremias and decreased frequency in tissues starting from an equal ratio via mixed inoculation, and no different in its capacity to infect fetuses in mice harvested at E19.5. Although similar infectious titers and RNA levels of both competitors were inoculated into non-pregnant macaques, the RNA:PFU ratios measured from Vero cell growth curves indicate that a lower proportion of I1404 RNAs in the cell monoculture are infectious compared to M1404 RNAs. The observation of inferior fitness of I1404 compared to M1404 in non-pregnant rhesus macaques parallels its low frequency in non-pregnant humans where only 5 of 543 (<1%) of publicly available ZIKV consensus genomes as of August 2020 (https://nextstrain.org/zika?c=gt-NS2B_32) possess the I1404 allele (1 of the 5 was from a microcephalic fetus). We also observed that ZIKV I1404 is not as efficiently transmitted by Ae. aegypti 7 days after ingesting virus in its first bloodfeed, which may further explain its low frequency in recent ZIKV outbreaks where the most common transmission route was human-mosquito-human. Additional studies collecting mosquito saliva at earlier or later times could clarify whether I1404 is more transmissible than M1404 over many days.

The kinetics of and mechanisms by which I1404 increases ZIKV infection of placental (E19.5) and fetal (E13.5) tissues in murine pregnancy merit further study. Although I1404
enhanced feto-placental infection, reversion to wild type M1404 in some infected fetuses on at gestation day E13.5 suggests that M is the preferred amino acid in some tissues. An alternate possibility is that the I1404 stock may have contained M1404 at a frequency lower than the detection limit (ca. 10%) of Sanger sequencing, and that M1404 increased in frequency to become the consensus in the I1404-infected fetuses where reversion was detected. Detection of ZIKV RNA in 20% of I1404 fetuses at E13.5 but only 5% of fetal heads and no fetal bodies on E19.5 also raises new questions. The disparity in fetal infection rate between E13.5 and E19.5 is likely not related to the pregnant mice deriving from different cohorts. No intra-cohort differences in fetal infection rates were observed for the 2 replicate experiments where dams were inoculated on E13.5. Clearance or reduction in fetal infection below the limit of detection of our qRT-PCR assays between E13.5 and E19.5 is a possibility. Defining the kinetics of fetal or placental ZIKV RNA levels over time is difficult to assess experimentally since evaluating infection involves destroying the fetus or placenta; even with those limitations, sacrifice of infected mice earlier in gestation could help further examine whether the fitness advantage exerted by I1404 is accelerated infection kinetics and tropism. It is also possible that since ZIKV I1404 infects fetuses at low rates, with the variable rate from experiment 1 to 2 representing a stochastic effect. ZIKV infects many placental cell types including trophoblasts, endothelial cells, fibroblasts, and fetal macrophages (56, 57), as well as multiple additional fetal cell types (25, 57–60). ZIKV I1404 may also confer infection of certain of these cell targets or augment escape from their antiviral responses in ways that M1404 cannot. Together these studies suggest that fitness of I1404 dynamics may be time-, tissue- and host-specific, which necessitates caution when extrapolating between mice, non-human primates, and humans.

The 1404 locus is in the NS2B coding region, which encodes a 130 amino acid protein that acts as a co-factor for NS3, the protease. Relative to other flaviviral proteins, the function(s) of NS2B are poorly understood. NS2B consists of 3 transmembrane domains (TMD) (61, 62).

Substitutions in the NS2B TMD decrease yellow fever virus replication (63) and can modify virus
assembly of Japanese encephalitis virus (61). The 1404 mutant identified in this study is located within NS2B TMD pass 2. Nuclear magnetic resonance of dengue virus NS2B indicates that TMD-TMD interactions might promote membrane fluidity or facilitate interactions with other flavivirus proteins (62). Future studies could focus on sub-cellular changes in virus-virus or virus-cell interactions mediated by M1404I that might impact cell tropism, infectivity, and immune responses.

Here we employed experimental infection of non-pregnant macaques, pregnant mice, and vector mosquitoes to study fitness of a ZIKV mutation we initially identified in pregnant rhesus macaques (Figure 7). Although the mutation studied here does not occur frequently in febrile humans and has only been detected in 1 microcephaly case, these experiments allowed examination of mutation-fitness dynamics in multiple systems. The data from this study support the idea that viruses do not necessarily evolve to become more infectious or virulent, especially if those traits reduce transmissibility. Despite increasing in frequency in pregnant macaques and conferring increased placental and fetal infection in mice at selected times in gestation, our data show that the I1404 mutant identified in pregnant rhesus macaques is less transmissible by vectors, as measured by lower ZIKV RNA transmission rates in saliva capture assays, and also less capable of generating viremias in non-pregnant rhesus macaques sufficient to infect feeding vectors. Although higher levels or longer periods of viremia in pregnant macaques may result from feto-placental 'spill-back' to the mother, a pattern we anecdotally observed in viremic pregnant rhesus macaques whose fetuses died and were removed via fetectomy and then became aviremic several days later, fetal infection is generally considered a transmission ‘dead-end’ for arboviruses. As such, arboviral mutations that augment fetal infection also need to be neutral or fitness-enhancing in mosquitoes to persist in human-mosquito-human cycling. Since we observed decreased fitness manifest as reduced transmission by vectors 7 days post-feed, the M1404I substitution identified in this study is not likely to spread in human-mosquito-human transmission in ZIKV outbreaks. A detailed examination of the incubation period of I1404 in
mosquitoes in laboratory experiments as well as sequencing of ZIKV infected mosquitoes in the wild could confirm this assertion. A unique feature of this study was use of two vertebrate models of ZIKV disease as well as vector competence assays. The combined data from these three systems underscores the importance of investigating consequences of arboviral mutation in both vertebrates and invertebrates, to fully understand their roles in outbreak spread (64).

**MATERIALS AND METHODS**

**Rhesus macaques**

Details for the studies with pregnant rhesus macaques are described elsewhere (25, 35). For non-pregnant animals, healthy male or female rhesus macaques (*Macaca mulatta*) were used in this study. All rhesus macaques were born at the California National Primate Research Center (CNPRC). Animals #5123, 5779, 5606, and 5730 received an HIV envelope protein as part of another study, but were never challenged with HIV. Prior to ZIKV inoculation, animals were housed indoors in stainless steel cages, and exposed to a 12h light/dark cycle, 18-23°C, and 30-70% room humidity. Rhesus macaques were provided with water *ad libitum* and received commercial chow a high protein diet commercial chow and fresh fruit supplements. Macaques were observed at least twice daily for clinical signs of disease including inappetence, stool quality, dehydration, diarrhea, and lethargy, and were given supportive care (including nutritional supplements) as needed. Clinical signs were rare and mild.

**Mice**

Timed pregnant CD-1 mice were purchased from Charles River Laboratories (Sacramento, CA). Animals were housed in a BSL-3 facility at University of California, Davis, prior to any procedure. A maximum of 4 dams were caged together at each time, with 12 hour light/dark
cycle, 18-23°C, 30-70% room humidity, social enhancers and access to mouse chow and water ad libitum. Non-pregnant 2 month old female Ifnar1 (IFN-α/βR−/−; C57BL/6, B6.129S2-Ifnar1tm1Agt/Mmjax, The Jackson Laboratory, Sacramento, CA) were used as bloodmeal sources for vector competence studies. Mice were anesthetized prior to mosquito exposure with a mixture of ketamine (VETone Zetamine CIII, 75 mg/kg, Western Medical Supply, Arcadia, CA), xylazine (AnaSed, 10 mg/kg, Western Medical Supply, Arcadia, CA), and acepromazine (AceproJect, 1 mg/kg, Western Medical Supply, Arcadia, CA) solution administered intraperitoneally. Immediately after mosquito feeds, mice were euthanized while still under anesthesia via exsanguination using cardiac puncture followed by cervical dislocation.

Animal Use
The University of California, Davis is accredited by the Association for Assessment and Accreditation Laboratory Animal Care International (AAALAC). Animal care was performed in compliance with the 2011 Guide for the Care and Use of Laboratory Animals provided by the Institute for Laboratory Animal Research and both rhesus macaque and mouse studies were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, Davis. All mouse procedures were approved under protocol #19404. All rhesus macaque procedures were approved under protocols #19211 and 19695.

Mosquitoes
The fourth generation of Aedes aegypti originally collected in 2015 in Puerto Rico were used in this study. Mosquitoes were maintained in a colony in an insectary at the University of California, Davis. Mosquitoes were provided 10% sucrose (Thermo Fisher Scientific, Emeryville, CA) prior to presentation to mice. Twenty four hours prior to exposure to a mouse, mosquitoes were transferred into pint cartons and transported into a BSL-3 facility to acclimate in a
humidified chamber set to a 12 hour light/dark cycle, 27°C, 80% humidity. After ingestion of
blood from viremia ZIKV infected mice, mosquitoes were presented with 10% sucrose ad
libitum.

Cell lines
African green monkey kidney cells (Vero; ATCC CCL-81, Manassas, VA) were cultured at 37°C
in 5% CO₂ cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Thermo Fisher
Scientific, Emeryville, CA) supplemented with 2% fetal bovine serum FBS (Gibco, Thermo Fisher
Scientific, Emeryville, CA) and 1% penicillin/streptomycin (Gibco, Thermo Fisher
Scientific, Emeryville, CA). Baby hamster kidney cells (BHK21; ATCC CCL-10, Manassas, VA)
were cultured in the same conditions as Vero cells but supplemented with 10% FBS. Aedes
albopictus cells (C6/36; ATCC CRL-1660, Manassas, VA) were cultured in Schneider’s insect
medium (Caisson Labs, Smithfield, UT) supplemented with 20% FBS and 1% P/S at 28°C and
atmospheric CO₂.

Viruses
Wild type Zika virus stock
For growth curves and in vivo experiments in pregnant and non-pregnant rhesus macaque and
pregnant mice, the 2015 Brazilian ZIKV strain SPH2015 (Genbank accession number
KU321639) was used. This virus was originally isolated from a human transfusion recipient in
São Paulo, Brazil and then passaged 3 times in Vero cells. We refer to this strain as wildtype
(WT) throughout the paper. A 2015 Puerto Rico ZIKV strain PRVABC59 (Genbank accession
number KU501215.1, Vero passage 4) was also used in pregnant rhesus macaque that were
sequenced for this project. We refer to this strain as ‘ZIKV Puerto Rico 2015’ throughout the
paper.
**Generation of Infectious clone derived M1404 and I1404 Zika viruses**

To focus on the 1404 locus as a determinant of phenotype, we generated 2 infectious clones that were identical in sequence except for at 1404. To start, we modified a ZIKV infectious clone made from the sequence of a 2015 Brazilian ZIKV strain, Paraiaba_01/2015 (17) to match the amino acid sequence of WT (SPH2015), which encodes M1404. Six mutations were inserted into the Paraiaba_01/2015 clone at positions V313I, Y916H, V1143M, H1857Y, I2295M and I2445M of the ZIKV polyprotein to generate the WT amino acid sequence of strain SPH2015. We refer to this clone as ‘ZIKV M1404’. Next the M1404 clone was mutated to change the amino acid at 1404 from G>A (AUG [methionine] > AUA [isoleucine]) to generate the I1404 clone. The ZIKV I1404 clone is identical to the M1404 clone except at NS2B locus 1404. Each of the mutagenized loci were verified by Sanger sequencing. Infectious viruses were rescued from ZIKV M1404 and I1404 clones by electroporating plasmid DNA into BHK cells. 2.5μg of plasmid DNA was electroporated at 110V, 1750uF capacitance, and no resistance using an ECM 630 electro cell manipulator (BTX Harvard Apparatus, Holliston, MA) into ≈50% confluent T75 flasks of BHK21 cells. Cells were then centrifuged for 5 minutes at 1500 revolutions per minute (RPM) and resuspended in DMEM in T25 flasks for 3 days of incubation at 37°C with 5% CO₂. After 3 days, the supernatant was collected, spun at 1500 RPM for 5 minutes to remove cell debris, and stored at -80°C in 400μL aliquots. These recovered infectious clone derived viruses, termed ZIKV M1404 and ZIKV I1404 were used in growth curves, mosquito, pregnant mouse and non-pregnant rhesus macaque experiments. The genotypic integrity of both infectious clone derived viruses was verified by whole-genome Sanger sequencing from the electroporation-harvested stocks.

**Zika virus titrations using plaque assays**

Infectious ZIKV from electroporation-rescued stocks of infectious clone-derived viruses, inocula, growth curves, mosquito saliva, and RT-qPCR positive mouse fetuses were titrated using
plaque assays. Plaque assays were performed in confluent 6-well plates of Vero cells that were inoculated with 250μL of ten-fold dilutions of virus stock or sample resuspended in 2% FBS DMEM. Cells were incubated for 1 hour at 37°C and 5% CO₂ and plates were rocked every 15 minutes to prevent cell death due to desiccation. After 1 hour, 3 mL of 0.5% agarose (Thermo Fisher Scientific, Emeryville, CA) mixed with 2% FBS/DMEM was added to each well to generate a solid agar plug. The cells were then incubated for 7 days at 37°C and 5% CO₂. After 7 days, the cells were fixed with 4% formalin (Thermo Fisher Scientific, Emeryville, CA) for 30 minutes, the agar plugs were removed, and the cells were stained with 0.025% crystal violet (Thermo Fisher Scientific, Emeryville, CA) in 20% ethanol (Thermo Fisher Scientific, Emeryville, CA) in order to visualize and quantify plaques. Samples were tested in duplicate and the average titer is reported as the number of plaques visible against a white background. The limit of detection was 40 plaque-forming units (PFU).

**Zika virus RNA isolation**

ZIKV RNA was isolated using MagMax (Thermo Fisher Scientific, Emeryville, CA) or Qiazol (Qiagen, Redwood City, CA). The MagMax system was used to extract ZIKV RNA from growth curve supernatants, rhesus macaque plasma, and homogenized mosquito bodies, legs and wings, and saliva. The MagMax Viral RNA Extraction Kit was used according to manufacturer’s recommendations. For cell supernatant and mosquito homogenates, a total of 100 μL of sample was extracted and for rhesus macaque plasma the volume extracted was 300 μL. Maternal spleens, placentas and fetuses from the mouse experiments and solid tissues from rhesus macaque were extracted using Qiazol. Tissues stored in RNAlater (Sigma Aldrich, St. Louis, MO) were first removed from that solution prior to RNA extraction. Using clean forceps and scissors, tissues were removed from RNAlater, and a portion between 20-50 mg was cut and placed in a pre-weighed tube containing a 0.5 mm glass ball bearing (Thermo Fisher Scientific, Emeryville, CA). Tubes were then re-weighed and 900 μL of Qiazol solution was added before
trituration in a TissueLyzer (Retsch, Haan, Germany) machine. Tissues were homogenized for 2 m at 30 shakes/second (s). If liquefaction of tissues was incomplete, samples were homogenized for an additional 2 m at 30 shakes/s. The homogenate was centrifuged for 2 m at 14,000 g to clarify the supernatant, which was tested. Viral RNA from homogenates were extracted following the manufacturer's kit instructions. The Qiazol protocol was modified for the E19.5 fetuses since they were large. E19.5 fetus samples were homogenized in 1 mL of DMEM and 200 μL of the homogenate was added to 900 μL of lysis reagent, after which the protocol followed the manufacturer's instructions. All RNA extracts were eluted in 60μL of Qiagen elution buffer and archived at -80°C until further analysis.

**Zika virus RNA quantification by qRT-PCR**

ZIKV RNA samples were each measured in triplicate on an Applied Biosystems ViiA 7 machine using a Taqman Fast Virus 1-Step MasterMix (Thermo Fisher Scientific, Emeryville, CA) with primers ZIKV 1087 forward (CCGCTGCCCAACACAAG), ZIKV 1163c reverse (CCACTAACGTTCTTTTGAGACAT), and ZIKV 1108-FAM probe (AGCCTACCTGACAAGCAGTCAGACACTCAA) according to the protocol in Lanciotti et al. (65). The protocol was modified by increasing the initial volume of sample tested to 9.6 μL to increase sensitivity. Samples were only considered positive if all three replicates yielded at detectable cycle threshold (Ct) value of less than the cutoff of the assay, 40. For each 96-well plate where samples were tested, a standard curve was generated from serial dilutions of a synthetic DNA of known concentration corresponding to the qRT-PCR target region. The reported limit of detection (LOD) on each graph shows the mean of all samples with a detectable Ct that are included in the graph. Where means are reported for a group of measurements, samples with no detectable ZIKV RNA were included in measurements where their values were reported at the LOD.

**In vitro Zika virus growth assays**
Vero and C6/36 cells were inoculated in triplicate with ZIKV M1404, I1404 or WT at a multiplicity of infection (MOI) of 0.01 (Vero only) or 0.5 where the MOI was determined as PFU/cell. Cells in one well in tissue culture plates (Thermo Fisher Scientific, Emeryville, CA) were counted immediately prior to infection and the MOI was adjusted according to the cell count by diluting each virus stock based on its pre-determined Vero cell plaque assay titer. The cells were inoculated by overlaying 150 μL of virus for 1 hour at 37°C in 5% CO₂ for Vero and 28°C in ambient CO₂ for C6/36 with gentle rocking every 15 minutes. After 1 hour, the cells were washed three times with phosphate buffered saline (PBS, Thermo Fisher Scientific, Emeryville, CA) to remove residual unbound viruses, and 2 mL/well of DMEM was added. At time points 0, 12, 24, 48, 72, and, for Vero, 96 hpi (hours post inoculation) 160 μL/well was collected and archived at -80°C until it was tested in triplicate to determine ZIKV RNA levels by qRT-PCR.

Data shown are the percent of the mean 0 hpi residual input ZIKV RNA in genomes/ml. Each data point shows the mean measurement from 3 wells that were each measured in triplicate by qRT-PCR.

**Experimental inoculation of non-pregnant rhesus macaques with Zika virus**

Studies with pregnant rhesus macaques were described elsewhere [23,33]. Non-pregnant female and male rhesus macaques were inoculated subcutaneously or intravenously with 1 mL of ZIKV WT at 1X10⁴ PFU, a 1:1 mixture of ZIKV M1404 and I1404, where 1X10³ PFU of each virus, verified by titration prior to mixing, was in the inoculum, or 2X10³ PFU of ZIKV I1404. All inocula were back-titrated immediately after inoculation without freezing using plaque assays to verify the administered doses. All inocula were re-sequenced to verify identity at the 1404 locus. The mixed inoculum was also checked prior to inoculation by next generation sequencing flanking the 1404 locus and was verified to contain 49% M1404 and 51% I1404. Urine and blood were collected from rhesus macaques daily for 7 days and then every other day until 14 dpi. Macaques were anesthetized with ketamine hydrochloride (10 mg/kg, Western Medical...
Supply, Arcadia, CA) and samples were processed according to previously described methodologies (35). At 14 dpi, rhesus macaques were euthanized and necropsied. During necropsies, tissues were grossly evaluated in situ, and then excised using forceps and then dissected with disposable razor blades to minimize cross-contamination. Tissues were either snap frozen by immersion in liquid nitrogen or stored in RNAlater solution. RNAlater samples were held at 4°C for 24 hours then transferred to -80°C for further analysis.

**Experimental inoculation of pregnant mice with Zika virus**

Two ZIKV experiments were performed with pregnant mice. Numbers of mice are shown in figures. For both experiments, mice were sedated with isoflurane and inoculated intraperitoneally with 100 μL of 1x10^5 PFU of ZIKV WT, M1404, I1404, or DMEM on gestation day 6.5 (E6.5). Inocula doses were verified by qRT-PCR. All mice in experiment 1 and some in experiment two were euthanized on E13.5, where full term is 21 days. Some mice in experiment two were euthanized later, at E19.5. After inoculation, mice were monitored twice daily by visual observation. On E13.5 or E19.5, mice were sedated with isoflurane and euthanized by cervical dislocation. Uterine horns were exposed and visually observed for viable or aborted/resorbed fetuses. The maternal spleen was excised and cut in half. Half was placed in a 2 mL tube containing 1 mL of RNAlater and the other half was stored in a 2 mL tube (Thermo Fisher Scientific, Emeryville, CA) with 1 mL of DMEM. Placentas were collected in 2 mL tubes containing 1 mL of DMEM. Fetuses were weighed and their length was measured, and then they were collected in a 2 mL tube containing 1 mL of DMEM. Between each dam, forceps and scissors were immersed in 10% bleach and then 70% ethanol solution to minimize cross-contamination across animals. Samples in DMEM were immediately stored at -80°C. Samples in RNAlater were stored at 4°C for 24h and then transferred to -80°C until further analysis.

**Experimental vector competence of Zika virus in Aedes aegypti**
Ifnar1-/- C57BL/6 mice were intraperitoneally inoculated with 1x10^5 PFU of ZIKV WT, M1404 or 575 I1404 two days prior to presentation to female Ae. aegypti mosquitoes. Mice were anesthetized prior to mosquito presentation with a ketamine (75 mg/kg, Western Medical Supply, Arcadia, CA), xylazine (10 mg/kg, Western Medical Supply, Arcadia, CA) and acepromazine (1 mg/kg, Western Medical Supply, Arcadia, CA) solution administered intraperitoneally. Viremic mice were presented to sugar deprived mosquitoes for 1 hour. After 1 hour, mouse blood was collected to measure ZIKV RNA levels immediately after mosquito feeding and to verify identity of the sequence at 1404 by Sanger sequencing. Mice were then euthanized by cervical dislocation. Engorged female mosquitoes were sorted from non-fed individuals by visual examination and then held for 7 days. On day 7, mosquitoes were cold anesthetized for 3-5 minutes at -20°C and then their legs and wings were removed with forceps while immobilized on ice. Saliva was collected by inserting the proboscis into a glass capillary tube (Thermo Fisher Scientific, Emeryville, CA) containing FBS (Thermo Fisher Scientific, Emeryville, CA) for 30 minutes. Mosquito bodies, legs and wings, and saliva including the capillary were placed into 2 mL tubes containing 250 μL of DMEM and a glass bead (Thermo Fisher Scientific, Emeryville, CA). Samples were immediately archived at -80°C for further analysis. After thawing, mosquito samples were homogenized for 2 m at 30 shakes/second (s) in a TissueLyzer. The homogenate was centrifuged for 2 m at 14,000 g to clarify the supernatant, which was tested to measure viral RNA levels and, for selected samples, to identify the sequence at 1404 by Sanger sequencing.

**Zika virus sequencing and sequence analyses**

Plasmid sequences of infectious clones and identities of virus stocks as well as selected samples from mice and mosquitoes were verified by Sanger sequenced using primers flanking the entire genome or 1404 (Supplemental Table 1). Extracted RNA samples were amplified using a Qiagen (Redwood City, CA) One-Step RT-PCR kit and forward primer: AGCTGTTGGCCTGATATGCG with reverse primer: AGCTGCAAAGGGTATGGCTA.
cycling conditions were as follows: 50°C for 30 min, 95°C for 15 min, 40 cycles of 94°C for 1 min, 57°C for 1 min, 72°C for 1 min, followed by 72°C for 10 min and 4°C hold. Samples were sequenced at the University of California, Davis Sequencing core facility. Chromatograms were visualized and sequences were called using Sequencher (GeneCodes, Ann Arbor, MI). The complete ZIKV genome from the inoculum and samples from pregnant rhesus macaques whose fetus died 7 dpi was sequenced at both the University of California, San Francisco using an established protocol (66) and Lawrence Livermore National Laboratories using a different established protocol (67). All other rhesus macaques and other samples in this study were sequenced using a different next generation sequencing protocol that was previously described (68, 69) and adapted here to flank 1404. After viral RNA isolation using Qiazol and RNA quantification by qRT-PCR, at least 1000 genome copies/sample were used to generate libraries for sequencing. 5 μL of ZIKV RNA was used in a cDNA synthesis reaction with a SuperScript IV kit (Invitrogen, Thermo Fisher, Emeryville, CA) in addition to 6 μL of nuclease free water, 1 μL of 10mM dNTP mix and 1 μL of random hexamers. The mixture was heated to 70°C for 7 minutes and placed immediately on ice. A new mixture containing 4 μL of 5x SSIV (SuperScript IV) buffer with 1 μL of 100 mM DTT, 1 μL of RNAse inhibitor and 1 μL of SSIV reverse transcriptase was added and the cDNA synthesis occurred at thermocycler conditions of 23°C for 10 min, 50°C for 45 min, 55°C for 15 min, 80°C for 10 min and 4°C until further use. Position 1404 was amplified using 1 μL each of 10 μM of forward primer: CCCTAGCGAAGTACTCACAGCT, reverse primer: TACACTCCATCTGTGGTCTCCC, 2.5 μL of cDNA, 15 μL of nuclease-free water, 0.5 μL of Q5 High Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA), 1 μL of 10mM dNTPs and 5 μL of 5x Q5 reaction buffer followed by 98°C for 30 s, 95°C for 15 s, 65°C for 5 min, then repetition of steps 2 and 3 for 34 additional cycles and then a hold at 4°C until further use. PCR products were purified using Agencourt Ampure XP magnetic beads (Beckman Coulter, San Jose, CA) at a 1.8:1 ratio of beads to sample. Sequencing libraries were next generated using a Kapa Hyper prep kit (Roche, Pleasanton, employees at the University of California, Davis Sequencing core facility. Chromatograms were visualized and sequences were called using Sequencher (GeneCodes, Ann Arbor, MI). The complete ZIKV genome from the inoculum and samples from pregnant rhesus macaques whose fetus died 7 dpi was sequenced at both the University of California, San Francisco using an established protocol (66) and Lawrence Livermore National Laboratories using a different established protocol (67). All other rhesus macaques and other samples in this study were sequenced using a different next generation sequencing protocol that was previously described (68, 69) and adapted here to flank 1404. After viral RNA isolation using Qiazol and RNA quantification by qRT-PCR, at least 1000 genome copies/sample were used to generate libraries for sequencing. 5 μL of ZIKV RNA was used in a cDNA synthesis reaction with a SuperScript IV kit (Invitrogen, Thermo Fisher, Emeryville, CA) in addition to 6 μL of nuclease free water, 1 μL of 10mM dNTP mix and 1 μL of random hexamers. The mixture was heated to 70°C for 7 minutes and placed immediately on ice. A new mixture containing 4 μL of 5x SSIV (SuperScript IV) buffer with 1 μL of 100 mM DTT, 1 μL of RNAse inhibitor and 1 μL of SSIV reverse transcriptase was added and the cDNA synthesis occurred at thermocycler conditions of 23°C for 10 min, 50°C for 45 min, 55°C for 15 min, 80°C for 10 min and 4°C until further use. Position 1404 was amplified using 1 μL each of 10 μM of forward primer: CCCTAGCGAAGTACTCACAGCT, reverse primer: TACACTCCATCTGTGGTCTCCC, 2.5 μL of cDNA, 15 μL of nuclease-free water, 0.5 μL of Q5 High Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA), 1 μL of 10mM dNTPs and 5 μL of 5x Q5 reaction buffer followed by 98°C for 30 s, 95°C for 15 s, 65°C for 5 min, then repetition of steps 2 and 3 for 34 additional cycles and then a hold at 4°C until further use. PCR products were purified using Agencourt Ampure XP magnetic beads (Beckman Coulter, San Jose, CA) at a 1.8:1 ratio of beads to sample. Sequencing libraries were next generated using a Kapa Hyper prep kit (Roche, Pleasanton, employees at the University of California, Davis Sequencing core facility. Chromatograms were visualized and sequences were called using Sequencher (GeneCodes, Ann Arbor, MI). The complete ZIKV genome from the inoculum and samples from pregnant rhesus macaques whose fetus died 7 dpi was sequenced at both the University of California, San Francisco using an established protocol (66) and Lawrence Livermore National Laboratories using a different established protocol (67). All other rhesus macaques and other samples in this study were sequenced using a different next generation sequencing protocol that was previously described (68, 69) and adapted here to flank 1404. After viral RNA isolation using Qiazol and RNA quantification by qRT-PCR, at least 1000 genome copies/sample were used to generate libraries for sequencing. 5 μL of ZIKV RNA was used in a cDNA synthesis reaction with a SuperScript IV kit (Invitrogen, Thermo Fisher, Emeryville, CA) in addition to 6 μL of nuclease free water, 1 μL of 10mM dNTP mix and 1 μL of random hexamers. The mixture was heated to 70°C for 7 minutes and placed immediately on ice. A new mixture containing 4 μL of 5x SSIV (SuperScript IV) buffer with 1 μL of 100 mM DTT, 1 μL of RNAse inhibitor and 1 μL of SSIV reverse transcriptase was added and the cDNA synthesis occurred at thermocycler conditions of 23°C for 10 min, 50°C for 45 min, 55°C for 15 min, 80°C for 10 min and 4°C until further use. Position 1404 was amplified using 1 μL each of 10 μM of forward primer: CCCTAGCGAAGTACTCACAGCT, reverse primer: TACACTCCATCTGTGGTCTCCC, 2.5 μL of cDNA, 15 μL of nuclease-free water, 0.5 μL of Q5 High Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA), 1 μL of 10mM dNTPs and 5 μL of 5x Q5 reaction buffer followed by 98°C for 30 s, 95°C for 15 s, 65°C for 5 min, then repetition of steps 2 and 3 for 34 additional cycles and then a hold at 4°C until further use. PCR products were purified using Agencourt Ampure XP magnetic beads (Beckman Coulter, San Jose, CA) at a 1.8:1 ratio of beads to sample. Sequencing libraries were next generated using a Kapa Hyper prep kit (Roche, Pleasanton,
CA). Specifically, ends were repaired by mixing 1.75 μL of end-repair and A-tailing buffer, 0.75 μL of end-repair A-tailing enzyme mix, and 12.5 μL of amplified DNA followed by incubation at 20°C for 30 m, then 65°C for 30 min. For adaptor ligations, 2.5 μL of 250 nM of NEXTflex Dual-Index DNA barcodes (Bioo Scientific, Austin, TX) were used with 15 μL of end-repair reaction product, 2.5 μL of DNA ligase and 7.5 μL of ligation buffer incubated at 20°C for 15 min. This procedure was followed by a post-ligation cleanup using Agencourt Ampure XP magnetic beads at a ratio of 0.8:1 beads to sample. The sequencing library was then amplified using 17 μL of 2X KAPA HiFi HotStart ReadyMix (Roche, Pleasanton, CA), 2 μL of Illumina (Redwood City, CA) primer mix and 15 μL of adaptor-ligated library followed by 98°C for 45 s, 98°C for 15 s, 60°C for 30 s, 72°C for 30 s, and then a repetition of steps 2-4 for 8 cycles, followed by 72°C for 1 m and 4°C until further use. Amplified samples were then cleaned using Agencourt Ampure XP (Beckman Coulter, San Diego, CA) magnetic beads in a ratio of 0.8:1 beads to sample. DNA library sizes were then analyzed using a BioAnalyzer DNA 1000 kit (Agilent Santa Clara, CA) and the DNA concentration was quantified using Qubit High Sensitivity DNA kit (Thermo Fisher, Emeryville, CA). Libraries were diluted to 2 nM in 10 mM of TE and samples were sequenced with MiSeq (Illumina, Hayward, CA) using a paired-end approach. We used a previously described workflow [64] to determine M1404I allele frequencies. Briefly, sequence reads were trimmed to remove primer sequences and low quality base calls before they were aligned to the Zika Paraiba_01 reference genome using BWA-mem (70). Mutants over a 3% minor allele frequency were called using SAMtools mpileup (71) and were filtered according to frequency and strand biases. After sequencing, the ratios of G (encoding M1404) versus A (encoding I1404) were calculated and are represented as a percent of total sequencing depth at the locus.

Statistical analyses
Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA). Tests used are indicated in results and figure legends. Statistical significance is denoted by P values of less than 0.05.

DATA AVAILABILITY
Sequencing data are available in the NCBI SRA at accession number PRJNA556052.

ACKNOWLEDGMENTS
We acknowledge Priya Shah and Paul Luciw for productive discussions. We acknowledge pathology services at the California National Primate Research Center for assisting with rhesus macaque experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

FUNDING SOURCES
This study was supported by the Office of Research Infrastructure Programs/OD (P51OD011107), start-up funds from the University of California, Davis School of Veterinary Medicine Pathology, Microbiology and Immunology Department to L.L.C., 1R21AI129479-S to K.K.A.V.R, 1R01HL105704 and 1R33AI129077 to C.Y.C., the UC Davis School of Veterinary Medicine Graduate Student Support Program Fellowship and a Science without Borders fellowship from Brazilian government to D.L., and the Division of Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health. W.L. acknowledges funding support from the Pacific Southwest Regional Center of Excellence for Vector-Borne Diseases funded by the U.S. Centers for Disease Control and Prevention (Cooperative Agreement 1U01CK000516). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
AUTHOR CONTRIBUTIONS

Conceptualization: D.L., L.L.C., K.K.A.V.R., N.G., K.A. Methodology: D.L., J.B.S., W.L. L.L.C., K.K.A.V.R., Investigation: D.L., J.B.S., W.L., A.S., J.W., J.U., R.I.K., G.O., S.S., N.G., M.B., J.A., J.T., K.A.T., A.G.P., L.L.C., K.K.A.V.R, C.Y.C. Writing-original draft: D.L., L.L.C. Writing-review and editing: L.L.C. D.L., J.B.S., K.K.A.V.R., K.A.T., R.I.K., N.D.G., M.B., C.Y.C. Visualization: D.L., L.L.C., K.K.A.V.R. Supervision and project administration: L.L.C. Funding acquisition: L.L.C., K.K.A.V.R, C.C., K.A., M.B, A.G.P, C.Y.C.
REFERENCES

1. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillamot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 2009/06/12. 360:2536–2543.

2. Hayes EB. 2009. Zika virus outside Africa. Emerg Infect Dis 15:1347–1350.

3. Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HPF, Iglezias SDA, Kanamura CT, Keating MK, Hale G, Silva-Flannery L, Muehlenbachs A, Ritter J, Gary J, Rollin D, Goldsmith CS, Reagan-Steiner S, Ermias Y, Suzuiki T, Luz KG, de Oliveira WK, Lanciotti R, Lambert A, Shieh WJ, Zaki SR. 2016. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388:898–904.

4. de Noronha L, Zanluca C, Azevedo MLV, Luz KG, dos Santos CND. 2016. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz 111:287–293.

5. Brasil P, Pereira Jr. JP, Raja Gabaglia C, Damasceno L, Wakimoto M, Ribeiro Nogueira RM, Carvalho de Sequeira P, Machado Siqueira A, Abreu de Carvalho LM, Cotrim da Cunha D, Calvet GA, Neves ES, Moreira ME, Rodrigues Baião AE, Nassar de Carvalho PR, Janzen C, Valderramos SG, Cherry JD, Bispo de Filippis AM, Nielsen-Saines K. 2016. Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report. N Engl J Med.

6. Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM. 2016. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obs Gynecol 47:6–7.

7. Costello A, Dua T, Duran P, Gulmezoglu M, Oladapo OT, Perea W, Pires J, Ramon-Pardo P, Rollins N, Saxena S. 2016. Defining the syndrome associated with congenital Zika virus infection. Bull World Heal Organ 94:406-406A.
8. Soares de Oliveira-Szejnfeld P, Levine D, Melo AS de O, Amorim MMR, Batista AGM, Chimelli L, Tanuri A, Aguiar RS, Malinger G, Ximenes R, Robertson R, Szejnfeld J, Tovar-Moll F. 2016. Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnataally. Radiology 281:203–218.

9. Chimelli L, Melo ASO, Avvad-Portari E, Wiley CA, Camacho AHS, Lopes VS, Machado HN, Andrade C V, Dock DCA, Moreira ME, Tovar-Moll F, Oliveira-Szejnfeld PS, Carvalho ACG, Ugarte ON, Batista AGM, Amorim MMR, Melo FO, Ferreira TA, Marinho JRL, Azevedo GS, Leal J, da Costa RFM, Rehen S, Arruda MB, Brindeiro RM, Delvechio R, Aguiar RS, Tanuri A. 2017. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol 133:983–999.

10. França GVA, Schuler-Faccini L, Oliveira WK, Henriques CMP, Carmo EH, Pedi VD, Nunes ML, Castro MC, Serruya S, Silveira MF, Barros FC, Victora CG. 2016. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388:891–897.

11. Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo T V., Haefliger A, Broutet NJ, Low N. 2017. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review. PLoS Med 14:1–27.

12. Sarno M, Sacramento GA, Khouri R, do Rosario MS, Costa F, Archanjo G, Santos LA, Nery Jr. N, Vasilakis N, Ko Al, de Almeida AR. 2016. Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS Negl Trop Dis 10:e0004517.

13. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V, Vizjak A, Pizem J, Petrovec M, Avsic Zupanc T. 2016. Zika Virus Associated with Microcephaly. N Engl J Med 374:951–958.

14. Driggers RWW, Ho C-YY, Korhonen EMM, Kuivanan S, Jaaskelainen AJ, Smura T, Rosenberg A, Hill DAA, DeBiasi RLL, Vezina G, Timofeev J, Rodriguez FJJ, Levanov L,
Razak J, Iyengar P, Hennenfent A, Kennedy R, Lanciotti R, du Plessis A, Vapalahti O, Jääskeläinen AJ, Smura T, Rosenberg A, Hill DAA, DeBiasi RLL, Vezina G, Timofeev J, Rodriguez FJJ, Levanov L, Razak J, Iyengar P, Hennenfent A, Kennedy R, Lanciotti R, du Plessis A, Vapalahti O. 2016. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N Engl J Med 374:2142–2151.

15. Liu Y, Liu J, Du S, Shan C, Nie K, Zhang R, Li XF, Zhang R, Wang T, Qin CF, Wang P, Shi PY, Cheng G. 2017. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545:482–486.

16. Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, West K, Qu J, Baniecki ML, Gladden-Young A, Lin AE, Tomkins-Tinch CH, Ye SH, Park DJ, Luo CY, Barnes KG, Shah RR, Chak B, Barbosa-Lima G, Delatorre E, Vieira YR, Paul LM, Tan AL, Barcellona CM, Porcelli MC, Vasquez C, Cannons AC, Cone MR, Hogan KN, Kopp EW, Anzinger JJ, Garcia KF, Parham LA, Ramirez RMG, Montoya MCM, Rojas DP, Brown CM, Hennigan S, Sabina B, Scotland S, Gangavarapu K, Grubaugh ND, Oliveira G, Robles-Sikisaka R, Rambaut A, Gehrke L, Smole S, Halloran ME, Villar L, Mattar S, Lorenzana I, Cerbino-Neto J, Valim C, Deg rave W, Bozza PT, Grinke A, Andersen KG, Isern S, Michael SF, Bozza FA, Souza TML, Bosch I, Yozwiak NL, MacInnis BL, Sabeti PC. 2017. Zika virus evolution and spread in the Americas. Nature 546:411–415.

17. Tsetsarkin KA, Kenney H, Chen R, Liu G, Manukyan H, Whitehead SS, Laassri M, Chumakov K, Pletnev AG. 2016. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio 7.

18. Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, Ji X, Xu YP, Li G, Li C, Wang HJ, Deng YQ, Wu M, Cheng ML, Ye Q, Xie DY, Li XF, Wang X, Shi W, Hu B, Shi PY, Xu Z, Qin CF. 2017. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science (80- ).
19. Jaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty V, Weiler AM, Rybarczyk S, Semler MR, Id CH, Mejia A, Simmons HA, Id MF, Osorio E, Eickhoff JC, Connor SLO, Ebel GD, Friedrich C, Id MTA. 2019. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission 1–18.

20. Shan C, Xia H, Haller SL, Azar SR, Liu Y, Liu J, Muruato AE, Chen R, Rossi SL, Wakamiya M, Vasilakis N, Pei R, Fontes-Garfias CR, Singh SK, Xie X, Weaver SC, Shi P-Y. 2020. A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proc Natl Acad Sci.

21. Meaney-Delman D, Oduyebo T, Polen KN, White JL, Bingham AM, Slavinski SA, Heberlein-Larson L, St George K, Rakeman JL, Hills S, Olson CK, Adamaski A, Culver Barlow L, Lee EH, Likos AM, Munoz JL, Petersen EE, Dufort EM, Dean AB, Cortese MM, Santiago GA, Bhatnagar J, Powers AM, Zaki S, Petersen LR, Jamieson DJ, Honein MA, Group USZPRPVW. 2016. Prolonged Detection of Zika Virus RNA in Pregnant Women. Obs Gynecol 128:724–730.

22. Akolekar R, Beta J, Picciarelli G, Ogilvie C, Antonio FD. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis.

23. Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA, Wolfe B, Salamat MS, Teixeira LBC, Wiepz GJ, Thoong TH, Aliota MT, Weiler AM, Barry GL, Weisgrau KL, Vosler LJ, Mohns MS, Breitbach ME, Stewart LM, Rasheed MN, Newman CM, Graham ME, Wieben OE, Turski PA, Johnson KM, Post J, Hayes JM, Schultz-Darken N, Schotzko ML, Eudailey JA, Permar SR, Rakasz EG, Mohr EL, Capuano 3rd S, Tarantal AF, Osorio JE, O’Connor SL, Friedrich TC, O’Connor DH, Golos TG. 2017. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathog 13:e1006378.

24. Coffey LL, Pesavento PA, Keesler RI, Singapuri A. 2017. Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus Macaques.
25. Coffey LL, Keesler RI, Pesavento PP, Woolard K, Singapuri A, Watanabe J, Cruzen C, Christe KL, Usachenko JU, Yee J, Heng VA, Bliss-Moreau E, Reader JR, von Morgenland W, Gibbons AM, Jackson K, Ardehshir A, Heimsath H, Permar SR, Sentharamaikannan P, Presicce P, Kallapur SG, Linnen JM, Gao K, Orr R, MacGill T, McClure M, McFarland R, Morrison JM, Van Rompay KKA. 2018. Intraamniotic Zika Virus Inoculation of Pregnant Rhesus Macaques Produces Fetal Neurologic Disease. Nat Commun June 20, 2.

26. Dudley DM, van Rompay KK, Coffey LL, Ardehshir A, Keesler RI, Bliss-Moreau E, Grigsby PL, Steinbach RJ, Hirsch AJ, MacAllister RP, Pecoraro HL, Colgin LM, Hodge T, Streblow DN, Tardif S, Patterson JL, Tamhankar M, Seferovic M, Aagaard KM, Martin CSS, Chiu CY, Panganiban AT, Veazey RS, Wang X, Maness NJ, Gilbert MH, Bohm RP, Adams Waldorf KM, Gale M, Rajagopal L, Hotchkiss CE, Mohr EL, Capuano S V., Simmons HA, Mejia A, Friedrich TC, Golos TG, O’Connor DH. 2018. Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nat Med.

27. Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, Weisgrau KL, Mohns MS, Breitbach ME, Rasheed MN, Newman CM, Gellerup DD, Moncla LH, Post J, Schultz-Darken N, Schotzko ML, Hayes JM, Eudailey JA, Moody MA, Permar SR, O’Connor SL, Rakasz EG, Simmons HA, Capuano S, Golos TG, Osorio JE, Friedrich TC, O’Connor DH. 2016. A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 7:12204.

28. Mohr EL, Block LN, Newman CM, Stewart LM, Koenig M, Semler M, Breitbach ME, Teixeira LBC, Zeng X, Weiler AM, Barry GL, Thoong TH, Wiepz GJ, Dudley DM, Simmons HA, Mejia A, Morgan TK, Salamat MS, Kohn S, Antony KM, Aliota MT, Mohns MS, Hayes JM, Schultz-Darken N, Schotzko ML, Peterson E, Capuano 3rd S, Osorio JE, O’Connor SL, Friedrich TC, O’Connor DH, Golos TG. 2018. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS One
Koide F, Goebel S, Snyder B, Walters KB, Gast A, Hagelin K, Kalkeri R, Rayner J. 2016. Development of a zika virus infection model in cynomolgus macaques. Front Microbiol 7:1–8.

Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omanee R, Best K, Luo M, Hraber PT, Andersen-Elyard H, Ojeda EF, Huang S, Vanlandingham DL, Higgs S, Perelson AS, Estes JD, Safronetz D, Lewis MG, Whitney JB. 2016. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med.

Waldorf KMA, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DWWW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwed JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WMI, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M J, Rajagopal L, Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DWWW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwed JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WMI, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M, Rajagopal L. 2018. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med In press. 24:368–374.
English C, Hevner RF, Dobyns WB, Gale Jr M, Rajagopal L, Gale M, Rajagopal L. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med 22:1256–1259.

33. Aid M, Abbink P, Larocca RA, Boyd M, Nityanandam R, Nanayakkara O, Martinot AJ, Moseley ET, Blass E, Borducchi EN, Chandrashekhar A, Brinkman AL, Molloy K, Jetton D, Tartaglia LJ, Liu J, Best K, Perelson AS, De La Barrera RA, Lewis MG, Barouch DH. 2017. Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell 169:610–620.e14.

34. Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, Kreklywich C, DeFilippis VR, Denton M, Smith PP, Messer WB, Colgin LMA, Ducore RM, Grigsby PL, Hennebold JD, Swanson T, Legasse AW, Axthelm MK, MacAllister R, Wiley CA, Nelson JA, Streblow DN. 2017. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog 13:1–23.

35. Van Rompay KKA, Keesler RI, Ardeshir A, Watanabe J, Usachenko J, Singapuri A, Cruzen C, Bliss-Moreau E, Murphy AM, Yee JL, Webster H, Dennis M, Singh T, Heimsath H, Lemos D, Stuart J, Morabito KM, Foreman BM, Burgomaster KE, Noe AT, Dowd KA, Ball E, Woolard K, Presicce P, Kallapur SG, Permar SR, Foulks KE, Coffey LL, Pierson TC, Graham BS. 2019. DNA vaccination before conception protects Zika virus–exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Sci Transl Med 11:1–12.
36. Transl Med.

37. Brown RJ, Peters PJ, Caron C, Gonzalez-Perez MP, Stones L, Ankghuambom C, Pondei K, McClure CP, Alemnji G, Taylor S, Sharp PM, Clapham PR, Ball JK. 2011. Intercompartmental recombination of HIV-1 contributes to env intrahost diversity and modulates viral tropism and sensitivity to entry inhibitors. J Virol 85:6024–6037.

38. Frost SD, Wrin T, Smith DM, Kosakovsky Pond SL, Liu Y, Paxinos E, Chappey C, Galovich J, Beauchaine J, Petropoulos CJ, Little SJ, Richman DD. 2005. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A 102:18514–18519.

39. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, Tang Y, Holmes EC, Allen T, Prado JG, Altfeld M, Dixon C, Ramduth D, Jeena P, Thomas SA, St John A, Roach TA, Kupfer B, Luzzi G, Edwards A, Taylor G, Lyall H, Tudor-Williams G, Novelli V, Martinez-Picado J, Kiepiela P, Walker BD, Goulder PJ. 2004. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10:282–289.

40. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. 2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2005/12/06. 439:344–348.

41. Borucki MK, Allen JE, Chen-Harris H, Zemla A, Vanier G, Mabery S, Torres C, Hullinger P, Slezak T. 2013. The role of viral population diversity in adaptation of bovine coronavirus to new host environments. PLoS One 8:e52752.

42. Nora T, Bouchonnet F, Labrosse B, Charpentier C, Mammano F, Clavel F, Hance AJ. 2008. Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses. Retrovirology 5:23.

43. Memoli MJ, Bristol T, Proudfoot KE, Davis AS, Dunham EJ, Taubenberger JK. 2012. In vivo evaluation of pathogenicity and transmissibility of influenza A(H1N1)pdm09 hemagglutinin receptor binding domain 222 intrahost variants isolated from a single
immunocompromised patient. Virology 428:21–29.

44. Domingo E, Gomez J. 2007. Quasispecies and its impact on viral hepatitis. Virus Res 127:131–150.

45. Debbink K, Lindesmith LC, Donaldson EF, Swanstrom J, Baric RS. 2014. Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses. J Virol 88:7256–7266.

46. Norstrom MM, Buggert M, Tauriainen J, Hartogensis W, Prosperi MC, Wallet MA, Hecht FM, Salemi M, Karlsson AC. 2012. Combination of immune and viral factors distinguishes low-risk versus high-risk HIV-1 disease progression in HLA-B*5701 subjects. J Virol 86:9802–9816.

47. Caporale M, Di Gialleonorardo L, Janowicz A, Wilkie G, Shaw A, Savini G, Van Rijn PA, Mertens P, Di Ventura M, Palmarini M. 2014. Virus and host factors affecting the clinical outcome of bluetongue virus infection. J Virol 88:10399–10411.

48. Virus C, Variants F, Differential E, Mice A. 2019. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and 93:1–19.

49. Riemersma KK, Coffey LL. 2019. Chikungunya virus populations experience diversity-dependent attenuation and purifying intra-vector selection in Californian Aedes aegypti mosquitoes. PLoS Negl Trop Dis.

50. Coffey LL, Beeharry Y, Borderia A V, Blanc H, Vignuzzi M. 2011. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 2011/09/08. 108:16038–16043.

51. Rozen-Gagnon K, Stapelford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, Vignuzzi M. 2014. Alphavirus mutator variants present host-specific defects and attenuation in Mammalian and insect models. PLoS Pathog2014/01/24. 10:e1003877.

52. Magnani DM, Rogers TF, Maness NJ, Grubaugh ND, Beutler N, Bailey VK, Gonzalez-
Nieto L, Gutman MJ, Pedreño-Lopez N, Kwal JM, Ricciardi MJ, Myers TA, Julander JG,
Bohm RP, Gilbert MH, Schifo F, Aye PP, Blair R V., Martins MA, Falkenstein KP, Kaur A,
Curry CL, Kallas EG, Desrosiers RC, Goldschmidt-Clermont PJ, Whitehead SS,
Andersen KG, Bonaldo MC, Lackner AA, Panganiban AT, Burton DR, Watkins DI. 2018.
Fetal demise and failed antibody therapy during Zika virus infection of pregnant
macaques. Nat Commun 9:1–8.

Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, Mayer G. 2018.
Systematic evaluation of error rates and causes in short samples in next-generation
sequencing. Sci Rep.

Vermillion MS, Lei J, Shabi Y, Baxter VK, Crilly NP, McLane M, Griffin DE, Pekosz A,
Klein SL, Burd I. 2017. Intrauterine Zika virus infection of pregnant immunocompetent
mice models transplacental transmission and adverse perinatal outcomes. Nat Commun
8:14575.

Weger-Lucarelli J, Rückert C, Chotiwan N, Nguyen C, Garcia Luna SM, Fauver JR, Foy
BD, Perera R, Black WC, Kading RC, Ebel GD. 2016. Vector Competence of American
Mosquitoes for Three Strains of Zika Virus. PLoS Negl Trop Dis 10:1–16.

Cao B, Diamond MS, Mysorekar IU. 2017. Maternal-fetal transmission of zika virus:
Routes and signals for infection. J Interf Cytokine Res.

Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E,
Pereira L. 2016. Zika Virus Targets Different Primary Human Placental Cells, Suggesting
Two Routes for Vertical Transmission. Cell Host Microbe 20:155–166.

Miner JJ, Diamond MS. 2017. Zika Virus Pathogenesis and Tissue Tropism. Cell Host
Microbe.

Russo FB, Jungmann P, Beltrão-Braga PCB. 2017. Zika infection and the development of
neurological defects. Cell Microbiol.

CDC. 2016. Vital Signs: Preparing for Local Mosquito-Borne Transmission of Zika Virus -
United States, 2016. MMWR Morb Mortal Wkly Rep 65:352.

61. Li X-D, Deng C-L, Ye H-Q, Zhang H-L, Zhang Q-Y, Chen D-D, Zhang P-T, Shi P-Y, Yuan Z-M, Zhang B. 2016. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus. J Virol.

62. Li Y, Li Q, Wong YL, Liew LSY, Kang C. 2015. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim Biophys Acta - Biomembr.

63. Chambers TJ, Nestorowicz A, Amberg SM, Rice CM. 1993. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol.

64. Grubaugh ND, Petrone ME, Holmes EC. 2020. We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol.

65. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 2008/08/06. 14:1232–1239.

66. Deng X, Achari A, Federman S, Yu G, Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J, Ahuka-Mundeke S, Muyembe-Tamfum JJ, Ahmed AA, Ganesh V, Tamhankar M, Patterson JL, Ndemb N, Mbanya D, Kaptue L, McArthur C, Muñoz-Medina JE, Gonzalez-Bonilla CR, López S, Arias CF, Arevalo S, Miller S, Stone M, Busch M, Hsieh K, Messenger S, Wadford DA, Rodgers M, Cloherty G, Faria NR, Thézé J, Pybus OG, Neto Z, Morais J, Taveira N, R. Hackett J, Chiu CY. 2020. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol.

67. Borucki MK, Collette NM, Coffey LL, Van Rompay KKA, Hwang MH, Thissen JB, Allen JE, Zemla AT. 2019. Multiscale analysis for patterns of Zika virus genotype emergence, spread, and consequence. PLoS One.

68. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, Jesus JG De, Main BJ, Tan AL,
Paul LM, Brackney DE, Grewal S, Gurfield N, Rompay KKA Van, Isern S, Michael SF, Coffey LL, Loman NJ, Andersen KG. 2019. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar 1–19.

Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, De Jesus JG, Giovannetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. 2017. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.

Bioinformatics 27:2987–2993.
Figure 1. Growth kinetics of ZIKV M1404, I1404, and WT in African green monkey kidney (Vero) and Aedes albopictus (C6/36) cells. (A) ZIKV I1404 exhibits superior ZIKV RNA growth kinetics compared to M1404 from 24 to 96 hpi in Vero cells at a MOI of 0.01. Asterisks denote p<0.001 across all groups. (B) Infectious ZIKV levels in Vero cells from 24-96 hpi are not different between ZIKV M1404, I1404, and WT (p>0.05). (C) Genome:PFU ratios for WT ZIKV are higher than M1404 from 24-96 hpi and at 24 and 96 hpi compared to I1404, a WT differs from both M1404 and I1404, b WT differs from M1404 only (p<0.05). (D) ZIKV RNA levels in
C6/36 cells at a MOI of 0.5 are not different across groups (p>0.05). Each dot represents the mean of 3 replicate supernatant samples, where each supernatant was measured in 3 qRT-PCR replicates. RNA and PFU measurements for A and B were from the same supernatants. Statistical tests used were repeated measures one-way ANOVA. Error bars show standard deviations for A, B and D, and dots show geometric mean and geometric standard deviation for C. MOI is multiplicity of infection.
Figure 2. A ZIKV mutant arose or increased in frequency in six pregnant rhesus macaques inoculated with two different ZIKV strains via two routes. Experimental design for inoculation of pregnant rhesus macaques with 1x10^5 ZIKV WT (KU321639.1, a 2015 Brazilian strain) both intravenously (IV) and intraamniotically (IA), blue circle, or 1x10^3 of ZIKV Puerto Rico 2015 (KU501215.1) delivered subcutaneously (SC), blue circle with thick pink border, on days indicated by syringes. For more details on study design, see Coffey et al. [23] and Van Rompay et al. [33]. Both inocula contained mostly M1404 where I1404 was absent or present at the limit of detection, ~1%. The green line shows the duration of each rhesus macaque pregnancy divided into 3 ~55 day trimesters where full-term is 165 days. The orange
dotted lines represent 165 days of gestation and the black solid lines show the period of infection and experiment end for each dam and their fetus. Fetal death is shown as a red X. Fetuses that survived to the study endpoint, gestation day 155, are indicated with green squares. The golden star represents the first detection of I1404; full genome sequencing of this specimen showed no other genome-wide mutations. The pie charts represent the relative abundance of the amino acid at position 1404. The I1404 mutation was not detected in 4 additional pregnant macaques in the same study (not shown here but included in Supplemental Table 2). Supplemental Table 2 shows the depth of sequencing coverage for the data represented in pie charts. Tissues listed are maternal unless otherwise indicated.
Figure 3. A ZIKV mutant, I1404, generates lower viremias and is less abundant than M1404 in tissues of non-pregnant rhesus macaques after mixed inoculation. (A) Experimental design for subcutaneous (SC) ZIKV inoculation of male and non-pregnant female rhesus macaques with ZIKV WT (left), a 1:1 mixture of infectious clone derived ZIKV I1404 and M1404 (middle) or infectious clone derived ZIKV I1404 (right) at indicated doses. The 1:1 mixture was verified by sequencing the inoculum prior to administration to macaques. Blood was collected daily from 1 to 8, 10 and 12, and at either 14 or 15 dpi, at which point animals were euthanized for tissue collection. (B) Plasma viremia kinetics for individual rhesus macaques inoculated with ZIKV WT (grey), the 1:1 mixture (blue) or ZIKV I1404 (red). The dotted line shows the limit of detection, 1.4x10^3 genome copies/mL plasma. Error bars show standard deviations for triplicate measurements. (C) The area under the curve (AUC) for rhesus
macaques infected with I1404 compared to WT or the 1:1 mix. AUC statistics were performed on log-transformed viremia measurements (one-way ANOVA). (D) ZIKV RNA levels in tissues of rhesus macaques. LN is lymph node. The dotted line represents the mean limit of detection, 1.9x10^1 ZIKV genome copies/gram tissue or mL. (E) Targeted quantitative sequencing flanking ZIKV 1404 showing the relative abundance of M1404 (blue) or I1404 (red) in indicated tissues from male rhesus macaques inoculated with the 1:1 mixture (** p<0.01, ns is not significantly different at p=0.05, chi-squared tests). **Supplemental Table 3** shows the depth of sequencing coverage for the data represented here. Each dot in panels B,C and D shows the mean of triplicate qRT-PCR ZIKV RNA measurements.
Figure 4. ZIKV I1404 produces higher spleen and placental ZIKV RNA titers and confers fetal infection in infected pregnant mice. (A) Experimental design showing intraperitoneal inoculation of pregnant CD-1 mice with ZIKV M1404 (blue), I1404 (red), WT (grey), or mock (DMEM, black) on embryonic day 6 (E6.5) of pregnancy, where full term in mice is E21. Two experiments were performed. In experiment 1 (triangles), dams were euthanized on E13.5. In experiment 2 (squares), dams were euthanized on E13.5 or E19.5. (B) Back titration of residual inocula. ZIKV RNA levels in maternal spleens (C), placenta (D), and entire fetuses (E) at E13.5. Different patterns of shading for triangles and squares in E show different dams (N=7) from which infected fetuses were detected. (F) Sanger sequencing of maternal tissues or fetuses shows I1404 reverts to M1404 in some animals. An ‘X’ indicates no fetuses had detectable ZIKV RNA so could not be sequenced. An empty field indicates sequencing was not attempted from
that sample. ZIKV RNA levels in (G) maternal spleens (H) placentas, (I) fetus heads, and (J) fetus bodies at E19.5. Each dot represents one tissue sample and is reported as the mean of 3 ZIKV RNA qRT-PCR replicates. Group means are shown as black lines, and include samples with no detectable ZIKV RNA, which were reported at the limit of detection (LOD). Only samples with 3/3 qRT-PCR replicates with detectable ZIKV RNA are reported above the LOD. The dotted line denotes the LOD, which was a mean of $1.8 \times 10^1$ ZIKV RNA copies/gram tissue for all panels except G, where the LOD was $3.3 \times 10^3$ ZIKV RNA copies/gram tissue. Statistical analyses comparing means used ANOVA multiple comparisons. Rates of ZIKV RNA positive samples in each group were compared with Fisher’s exact statistics.
Figure 5. Relative to M1404 or WT, the ZIKV mutant I1404 does not augment fetal death or decrease fetal weight in ZIKV infected pregnant CD-1 mice. Mice were inoculated as shown in Figure 3A. No significant differences in rates of fetal resorption (A,C) or weight (B,D) on gestation day of harvest, E13.5 or E19.5, were detected across groups of pregnant mice infected with ZIKV M1404, I1404, WT, or that were mock-inoculated. The lines in the middle of each box for panels B and D show the mean and error bars show standard deviations. Resorption rates were compared with chi-squared statistics. Mean weights were compared with ANOVA multiple comparisons statistics. n.d. indicates not done. The number of dams in each group is shown in green.
Figure 6. Aedes aegypti transmit ZIKV I1404 less efficiently than M1404. (A) Experimental design showing intraperitoneal inoculation of $1 \times 10^5$ PFU per Ifnar1-/- mouse with ZIKV M1404 (blue) or I1404 (red), two days prior to mosquito feeding, followed by presentation of viremic mice to mosquitoes, a seven day incubation period and harvesting of mosquito bodies, legs and wings, and saliva to assess infection, dissemination, and transmission rates and magnitudes of ZIKV RNA, which were quantified by qRT-PCR. (B) Mouse blood immediately post-feed shows that mosquitoes in both groups were exposed to similar quantities of viral RNA. (C) ZIKV I1404 infects Ae. aegypti bodies and (D) disseminates into legs and wings at similar rates and significantly higher mean ZIKV RNA levels than M1404 but (E) is significantly less transmissible in saliva although transmitted doses are not different. Each dot represents mean ZIKV genomes measured in mouse blood or individual Ae. aegypti tissue or saliva sample 7 days post feed. Only samples with 3/3 replicates with a detectable qRT-PCR value are reported above the limit.
of detection. The dotted line represents the limit of detection, $2 \times 10^2$ ZIKV genome copies/mosquito sample or blood. P values comparing mean genome levels are from unpaired $t$-tests. Rates were compared with Fisher's exact statistics.
Figure 7: Fitness dynamics for mutant ZIKV. Visual representation of ZIKV M1404 (blue) and I1404 (red) fitness dynamics in the experimental systems used in this study. The bottom panel shows a model for possible transmission dynamics of the mutant in human-mosquito-human cycling, where human infection dynamics are predicted from observations in rhesus macaques.