Chest pain with increased troponin level; not always a cardiology issue

STAMATIS S PAPADATOS¹, STAMATIS J KARAKATSANIS², GEORGE DELIGIANNIS³, ELENI GATSA⁴

¹³rd Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Sotoria General Hospital, Athens, Greece

²Hematology Unit, ³rd Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Sotoria General Hospital, Athens, Greece

³Department of Cardiology, General Hospital of Karditsa, Thessaly, Greece

⁴Hematology Unit, General Hospital of Trikala, Thessaly, Greece.

Running head: Chest pain with increased troponin level
Abstract

Thrombotic Thrombocytopenic Purpura (TTP) is a thrombotic microangiopathy syndrome resulting from decrease or absence of “a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13” (ADAMTS13). TTP has been characterized by the classical pentad of thrombocytopenia, hemolysis, fever, renal injury and neurological deficits, yet the patient may present with any atypical symptom related to microthrombi formation in the microcirculation. Here we present a rare case of a young patient with retrosternal chest pain and myocardial injury as the first manifestation of TTP.

Key words: Thrombotic Thrombocytopenic Purpura, Myocardial Injury, ADAMTS13, Microvascular Hemolysis.

INTRODUCTION

Chest pain is a common symptom accounting for about 40% of emergency hospital admissions. [1] As the management of a patient with chest pain depends on the accurate diagnosis, the main concern of the clinicians is to distinguish between the cardiac and non-cardiac chest pain. Acute coronary syndrome (ACS) is a common emergency especially in ages >40 years old and in patients with classical risk factors for coronary heart disease; rapid response is the key to treatment. Yet, all chest pain patients do not experience a classical myocardial infarction (MI).

Here we present a rare case of myocardial injury in a young male patient with neither positive family history nor any other risk factor for early-onset coronary heart disease.

CASE REPORT

A 25-year-old patient presented to the Emergency Department complaining about dizziness and retrosternal chest pain that initiated 30 minutes ago. His medical history was unremarkable. On clinical examination, blood pressure and respiratory rate were within normal range but his heart rate was 105 pulses per minute and his temperature was 37.8 °C. An electrocardiogram (ECG) was performed and showed sinus tachycardia without specific ST-T changes, (Figure 1) while the Chest X-Ray revealed no pathology. Typical routine blood tests were taken on admission. Further testing for benzodiazepines and barbiturates were negative and arterial blood gases
were within the normal range as well. Troponin test (cTnT) (Roche CARDIAC Trop T Sensitive test) was positive, >50 ng/L (tested twice) yet an urgent transthoracic echocardiogram (echo) revealed no wall hypokinesis. Within the next few minutes the patient developed a remarkable alteration in mental status, including confusion and lethargy. An emergency head computerized tomography (CT) scan was performed but no brain pathology was diagnosed. A lumbar puncture would have been the next step in the management but the blood tests results revealed remarkable thrombocytopenia (PLTs 5.000/μl). Normocytic anemia with schistocytes was additionally confirmed by a peripheral blood smear (Figure 2). Blood biochemistry tests were compatible with haemolysis (Table 1). The laboratory findings along with the clinical presentation of the patient set the diagnosis of Thrombotic Thrombocytopenic Purpura (TTP). Methylprednisolone 1mg/kg was administered and two units of fresh frozen plasma were transfused before the patient was urgently transferred to the Hematology Department of a Third Grade Hospital for therapeutic plasma exchange. There, the diagnosis of TTP with severe ADAMTS13 deficiency was confirmed by measurement of ADAMTS13 activity and the patient was discharged after two months of continuous hospitalization and multiple plasmapheresis sessions without permanent neurological deficits or renal injury.

DISCUSSION

Thrombotic microangiopathies (TMAs) are a family of pathological conditions characterized by diffuse microvascular occlusion by platelet thrombi and partial or complete obstruction of the vessel lumina, which result in thrombocytopenia, microangiopathic hemolytic anemia and ischemic end-organ damage. Endothelial injury is the key step leading to microcirculation thrombosis and this may be ignited by a variety of reasons, namely bacterial toxins, drugs, genetic or autoantibody – induced abnormal complement activation, procoagulants (eg antiphospholipid antibodies) or loss of anticoagulants (eg ADAMTS13 defects). [2] A malignancy-associated form of TMAs has also been described and is probably related to chemotherapy, antibodies and immunotoxins therapy or is a manifestation of cancer itself. [3]

The laboratory findings are similar in all TMAs. A complete blood count usually demonstrates anemia and thrombocytopenia; the serologic testing for intravascular
hemolysis demonstrates increased direct bilirubin and lactate dehydrogenase. The coagulation testing may reveal slightly elevated D-Dimer and red blood cell fragments are present in the peripheral smear. The history and the clinical presentation of the patient will give the initial direction in the diagnostic evaluation. The differential diagnosis of the syndromes is vital as it usually triggers treatment.

Table 2 summarizes the differential diagnosis between TTP, Idiopathic Thrombotic Purpura (ITP) and other hemolytic syndromes.

TTP is characterized by the “classic pentad” fever, thrombocytopenia, microangiopathic hemolytic anemia, renal dysfunction and neurologic symptoms but this is seen only in 1/3 of the patients. [4] The symptoms are of acute or subacute onset; the neurologic abnormalities are usually prominent and may vary from comma, seizures and stroke to confusion or headache. [5] The 30–year–old patient that we confronted presented with dizziness, followed by acute neurological deterioration which rapidly (less than 3 hours) resulted in dysphasia, confusion and disorientation.

Cardiac involvement is not included in the diagnostic criteria of TTP; yet coronary heart thrombosis has been established in many autopsy studies. [6] Despite the fact that acute myocardial infarction (AMI) is reported to be the most common cardiac manifestation of TTP, [12] TTP presenting primarily with cardiac symptoms has rarely been reported. [7] It is suggested that small vessel occlusion by platelet thrombi result in hypoxia which is aggravated by the anemia – induced elevated oxygen demands of the heart. This pathophysiologic mechanism may result in myocardial ischemia or acute myocardial injury. [8] Since TTP is a disease of microvessels, it is not surprising that there are reports of TTP and acute myocardial infarction with angiographically normal coronary arteries. [9]

Apart from ischemia, the involvement of the cardiac conduction system is thought to be a cause of sudden death in patients with TTP. [10] Increased troponin I is associated with fatal outcome in acquired thrombotic thrombocytopenic purpura [11] and cardiac troponin-I level on admission is proposed to be a reliable marker of cardiac involvement in patients with acquired TTP, allowing the identification of patients with a more aggressive presentation and a higher risk for death and refractoriness.[12] The chest pain in the presented patient was the leading symptom and along with the elevated troponin levels was suggestive for cardiac involvement.
The inability to dynamically monitor Tn levels, due to the urgent relocation of the patient to a special hematology department, could not contribute to the firm diagnosis of myocardial ischemia. A Coronary Computed Tomography Angiography (CCTA) could probably improve the diagnostic accuracy if an occlusion of a larger coronary vessel is suspected; nonetheless the experience of CCTA is limited in our center. Management of such cardiac complications is a real challenge. Antiplatelet agents are contraindicated when thrombocytopenia is severe (PLTs < 50 × 10⁹/L); furthermore there are reports that Clopidogrel might be a trigger for TTP itself. [13] Finally, cardiac catheterization is discouraged due to the possible coexisting renal injury and the severe thrombocytopenia. [14] Plasma exchange is the most important acute intervention and should be immediately initiated [15] as it remains the therapy of choice and is often curative. [4] Our patient was transferred to a special hematology department in less than 3 hours from his admission. Adjuvant intravenous steroid therapy has place in TTP treatment especially in patients in whom the etiology is unclear. [4]

CONCLUSION

In conclusion, TTP is a rare and potentially fatal disorder which may be presented atypically with early cardiac involvement. It is very important to integrate the clinical and laboratory data, set the diagnosis and approach the patient in a multidisciplinary way.

Purpura trombotică trombocitopenică (TTP) este o microangiopatie datorată scăderii nivelurilor sau chiar absenței moleculei ADAMTS13 ("a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13"). TTP este caracterizată de pentada clasică reprezentată de trombocitopenie, hemoliză, febră, insuficiență renală și deficine neurologice. TUTUși pacienții pot avea prezentări atipice datorate formării cheagurilor în cadrul microcirculației. Prezentăm cazul unui pacient tânăr cu durere retrosternală și leziune miocardică ca primă formă de manifestare a TTP.

Correspondence to: Stamatis S Papadatos, M.D, 3rd Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Sotiria General Hospital, 152 Mesogeion Ave, Athens, Greece

Tel.: +306973750882

Email: stamspap@gmail.com

Conflict of Interest: None Declared.
References

1. RUIGOMEZ A, RODRIGUEZ LA, WALLANDER MA, JOHANSSON S, JONES R. Chest pain in general practice: incidence, comorbidity and mortality. Family practice 2006; 23: 167-174.

2. APPEL GB. Thrombotic microangiopathies: Similar presentations, different therapies. Cleveland Clinic journal of medicine 2017; 84: 114-130.

3. GOVIND BABU K, BHAT GR. Cancer-associated thrombotic microangiopathy. Ecancermedicalscience 2016; 10: 649. DOI: 10.3332/ecancer.2016.649.

4. GEORGE JN. How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood 2010; 116: 4060-4069

5. VESELY SK, GEORGE JN, LAMMLE B, STUDT JD, ALBERIO L, EL-HARAKE MA, et al. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood 2003; 102: 60-68.

6. GADDAM S, PABLANI L, CHAINANI V, KAVUDA RR, NAGRANI T, ABOU RJAILI G, et al. Complete recovery of ischemic cardiomyopathy from thrombotic thrombocytopenic purpura. Clinical Medicine Insights Cardiology 2011; 5: 29-33.

7. HAWKINS BM, ABU-FADEL M, VESELY SK, GEORGE JN. Clinical cardiac involvement in thrombotic thrombocytopenic purpura: a systematic review. Transfusion 2008; 48: 382-392.

8. BENHAMOU Y, BOELLE PY, BAUDIN B, EDERHY S, GRAS J, GALICIER L, et al. Cardiac troponin-I on diagnosis predicts early death and refractoriness in acquired thrombotic thrombocytopenic purpura. Experience of the French Thrombotic Microangiopathies Reference Center. Journal of thrombosis and haemostasis : JTH 2015; 13: 293-302.
9. TASAKI T, YAMADA S, NABESHIMA A, NOGUCHI H, NAWATA A, HISAOKA M, et al. An autopsy case of myocardial infarction due to idiopathic thrombotic thrombocytopenic purpura. Diagnostic pathology 2015; 10: 52.

10. VISAGIE GJ, LOUW VJ. Myocardial injury in HIV-associated thrombotic thrombocytopenic purpura (TTP). Transfusion medicine 2010; 20: 258-264.

11. PEREZ L, RAMAPPA P, GUZMAN JA. Myocardial injury in thrombotic thrombocytopenic purpura: a frequent, perplexing complication. International journal of cardiology 2008; 128: 257-260.

12. BRAZELTON J, OSTER RA, MCCLESKEY B, FULLER J, ADAMSKI J, MARQUES MB. Increased troponin I is associated with fatal outcome in acquired thrombotic thrombocytopenic purpura. Journal of clinical apheresis 2017; 32: 311-318.

13. GEORGE JN. Clinical practice. Thrombotic thrombocytopenic purpura. N Engl J Med 2006; 354: 1927-1935.

14. BLOMBERY P, SCULLY M. Management of thrombotic thrombocytopenic purpura: current perspectives. Journal of blood medicine 2014; 5: 15-23.

Received 2nd September 2018
Table 1: Hematology and biochemistry tests on admission.

Total Blood Count and Serum Parameters	Value (Range)
Hematocrit (Hct) %	20 (42-47)
Hemoglobin (Hgb) g/dL	6.6 (13.5-16.5)
Reticulocytes %	26.4 (0.5-2.5)
MCV fl	97.6 (80-98)
MCH pg	32.2 (27-33)
RDW %	27.3 (9-11)
Platelets (PLT) x10^9/μL	13 (150-450)
Urea (UR) mg/dL	35 (20-40)
Creatinine (CR) mg/dL	0.94 (0.5-1.1)
(Potassium) K mmol/L	3.7 (3.3-5.2)
(Sodium) Na mmol/L	140 (135-145)
Lactate Dehydrogenase (LDH) IU/L	1455 (55-100)
Total Bilirubin (TBIL) mg/dL	3.06 (0.2-1.2)
Indirect Bilirubin (IBIL) mg/dL	2.31
D-Dimers μg/ml	1.87 (<0.5)
Fibrinogen (FIB) mg/dL	207 (150-400)
Table 2: Differential Diagnosis between TTP and other hemolytic syndromes. (HUS: Hemolytic-uremic syndrome, DIC: Disseminated intravascular coagulation)

	TTP	HUS	DIC
Neurological Involvement	+++	+/-	+/-
Renal Involvement	+	+++	+/-
Liver Involvement	+/-	+/-	+/-
Hemolysis	+++	++	+
Schistocytes			
Thrombocytopenia	+++	++	++
Prothrombin Time (PT)	↔/↑	↑↑↑	
Partial Thromboplastin Time (PTT)	↔/↑	↑↑↑	
Fibrinogen	↔	↓	
Fibrin Degredation	↑	↑↑↑	
D-Dimers	↑	↑↑↑	
Figure 1: The patient’s ECG shows sinus tachycardia without ST abnormalities.

FIGURE 2: Peripheral blood smear of the patient. The presence of schistocytes (*arrows*) on a blood smear is the morphologic hallmark of the disease. (May-Grunwald-Giemsa x100, photo enlarged).