The review of usability evaluation methods on telehealth or telemedicine systems

Ladan Soltanzadeh1, Amin Babazadeh Sangar2*†, Kambiz Majidzadeh2

1Ph.D. Student in Software Engineering, Department of Computer Engineering, Urmia Branch, Islamic Azad University of Urmia, Urmia, Iran
2Assistant Professor, Department of Computer Engineering, Urmia Branch, Islamic Azad University of Urmia, Urmia, Iran

ABSTRACT

Introduction: Telemedicine in the pandemic of coronavirus disease 2019 (COVID-19) has responded to societal distancing in medical treatments by protecting health workers while also managing available resources. To attain best practices in telemedicine, a platform must be functional, and both patients and clinicians must be satisfied with the technology. To ensure the benefits of telehealth systems, usability refers to how easy the user interfaces of telehealth systems are to use. In this study, the usability of telemedicine systems has been investigated.

Material and Methods: The authors of this study review the study from 2015 to 2021 using a combination of the keywords "health", "telemedicine", "telehealth", "mobile health", "usability" "Software", "System" and "Program", which led to the extraction of 119 articles in this field.

Results: Articles in the field of remote health software and evaluation of the usability of remote health applications in the form of applications based on mobile health technologies, web-based applications or a combination of both types with sample devices Primary are wearable electronics, sensors or robots.

Conclusion: In this study, most of the remote health software are mobile based and their usability has been evaluated by a questionnaire. Satisfaction is the most important usability attributes to consider when designing Health mobile apps.

INTRODUCTION

The pandemic of coronavirus disease 2019 has resulted in adjustments to the way medical treatments and a quick shift toward telemedicine and telehealth to fill in the gaps in health care. Improved access, lower expenses, and a better patient experience are all advantages of telemedicine and telehealth. Telehealth categories include emergency care, medication-assisted treatment through telemedicine, telenutrition, telenursing, telepharmacy, teledentistry, teleneuropsychology, teleaudiology, telemicrobiology, telerhabilitation, teleradiotherapy, Care, telecardiology, transmission of ECGs, telepsychiatry, teledermatology, teleradiology, telepathology, teleophthalmology, telesurgery, teleabortion and other specialist care delivery [1]. Telehealth incorporates a wide range of technology and services focused on providing patient care and improving the overall healthcare delivery system. Telemedicine refers specifically to remote clinical services [1]. The mobile health is defined by the National Institutes of Health as "the use of mobile and wireless devices (cell phones, tablets, etc.) to improve health outcomes, health care services, and health research" [2]. The mobile health is a subset of the broader "telehealth" phrase that refers to a specific technique to use mobile technology to achieve better health outcomes [2–5]. A platform must be usable and both patients and clinicians must be satisfied with the technology [6] and to ensure the benefits of telehealth systems, usability has become an ever-
present and pressing issue for the research community and software developer [2]. Every stage of application design or update process is affected by usability concept. Usability is a measure of how easy and convenient to use a product and how useful to its users [3]. Usability is a quality method of calculating how simple user interfaces are to operate and evaluate how well a certain user in a specific setting can utilize a product or design to accomplish a defined goal effectively, efficiently, and successfully [4, 5, 8, 9]. Before starting the new design or upgrade an old model with a new model it is better work on usability. The usability of the health care system is a major determinant of its successful use and implementation [10].

The International Organization for Standardization (ISO) defines Usability as "the extent to which specific users use a method, product, or service to achieve specific goals with effectiveness, efficiency, and satisfaction in a particular field of use" [11, 12]. Usability standards were developed by ISO 9241-11 [13, 14]. Nielsen's Usability studies are used to develop health care systems and their acceptance by end users with concentrates on efficiency, effectiveness, and satisfaction [14]. The Shackel model in 1991 uses effectiveness, learnability, flexibility and attitude for usability. The Preece et al model in 1994 introduced three usability factors such as throughput, learning and attitudes. Shniederman model in 1992 introduce the usability factors according to the interface design rules such as time to learn, performance speed, user mistake rate, maintenance over time, and satisfaction [15, 16]. The Constantine and Lockwood model in 1999 introduced a method for designing a user interface based on user focus on the purpose and use of patterns were introduced that cover factors of efficiency, learning, remembering, reliability in use and satisfaction [16]. The international Quality in Use Integrated Map (QUIM) model was introduced in 2006 with a combination of standard specifications ISO 9241 and ISO 9126 to introduce seven usability factors, including effectiveness, efficiency, satisfaction, safety, and accessibility.

The People at the Centre of Mobile Application Development (PACMAD) Model combines features of both the ISO and the Nielsen model and it used during the evaluation of mobile applications. There are several methods of usability evaluation that include Semi-structured interviews, Eye-tracking, Contextual interview, Cognitive walkthrough, Think-aloud, Focus group discussion, Heuristic Evaluation and expert review, Scenario, Questionnaires. There are many forms of standardized questionnaires such as mobile health APP usability questionnaire (MAUQ), System Usability Scale (SUS), Telehealth Usability Questionnaire, IBM ease of use questionnaires, Software Usability Measurement Inventory (SUMI), Technology Acceptance Model-2 (TAM-2), Health Information Technology Usability valuation Scale (Health-ITUES), NASA Task Load Index (NASA TLX), the Post-Study System Usability Questionnaire (PSSUQ), and Questionnaire For User Interaction Satisfaction (QUIS) [17, 18]. This study aims to survey usability evaluation methods on tele health or telemedicine systems that run on the Web or Android platform and determine the variety of usability attributes in them.

MATERIAL AND METHODS

In this systematic review, the most essential phrase was "usability of the telehealth or telemedicine system". The scope was limited to English literature. Six digital databases were searched to find the target articles: IEEE Xplore, the Web of Science (WoS), Science Direct, PubMed, Google Scholar, and Elsevier’s Scopus. In this study, a review was conducted to search for every article related to healthcare, apps, and usability to 2021. A mix of keywords containing "Healthcare", "Tele Health", "Tele Medicine", "mobile health " combined with the "OR" and "AND" operators followed by "Usability" and "AND "Software" and "OR" "System" and "OR" "Application" were used for search.

The initial query resulted in 350 papers. After reviewing the titles of the articles by two of the authors, 235 articles remained and after deleting the duplicate articles and reviewing the abstracts, 170 articles remained. In the final full-text review, 119 articles were included in the study of usability factors in health and health care, and to better explain the concepts and methods of papers in the final set in the study of usability factors in health and health care. The telemedicine system and how to check the usability of those system was assessed. Each article's authors, title, journal, year of publication, usability check model and abstract were entered into an excel file (Fig 1).
The review of usability evaluation methods on telehealth or telemedicine systems

Ladan Soltanzadeh et al.

RESULTS

The telemedicine or telehealth systems in which their usability were assessed and included in this review are such as:

- Smoking cessation mobile apps
- Tele rehabilitation mobile apps
- Pain management mobile apps
- Cardiopulmonary resuscitation mobile apps
- Diabetes care mobile apps, a self-management of anxiety and depression mobile apps
- Rheumatoid arthritis mobile apps
- Oncology cancer care mobile apps
- Hypertension Management mobile apps
- Urology care mobile apps
- Pediatric otolaryngology mobile apps
- Self-care for pregnant women

The usability attributes which assessed in each of the articles are shown in Table 1.

Table 1: Usability factors

Usability Factors	References
Learnability	[15, 19-35]
Satisfaction	[19, 20, 25-27, 29-34, 36-96]
Efficiency	[19, 23, 25, 26, 28-35, 38, 40, 41, 43-45, 47, 53-56, 58, 59, 63-65, 66, 69, 74, 75, 78-80, 82, 83, 86-89, 91, 93-95, 97-102]
Effectiveness	[13, 19, 20, 22, 23, 25-29, 32-35, 38, 40-44, 47, 53-56, 59, 60, 63, 65-67, 70, 74, 75, 78-80, 81, 83, 85, 91-96, 98, 99, 102-111]
Memorability	[35]
Errors	[21-23, 25, 27, 29, 76, 77, 79-80, 98, 106, 107]
Safety	[20, 27, 56, 92, 106, 111-113]
Performance	[19, 20, 23, 25-28, 40, 45, 54, 65, 70-72, 77, 80, 82, 101, 106, 107, 112, 114, 115]
Design	[19-23, 25-35, 38, 40, 42-44, 53, 65, 69, 71, 72, 76-79, 81, 82, 84, 91, 92, 95, 97, 98, 101, 103-105, 107, 109, 110, 112, 114-117]
Navigation	[13, 19-23, 25-29, 32-35, 38, 40, 42, 43, 49, 53, 54, 66, 67, 72, 75, 79, 80, 82, 83, 88, 91, 106, 107, 109, 114, 117]
Compatibility	[19, 45, 71, 76, 106]
Visibility	[29, 45, 97, 106, 107, 114]

The usability evaluation methods which assessed in each of the articles are shown in Table 2.

DISCUSSION

This study aims to survey usability evaluation methods on tele health or telemedicine systems that run on the Web or Android platform and determine the variety of usability attributes in them. This review focused on the usability evaluation of applications or software designed for telehealth, telemedicine, and health care systems such as telecare monitoring system, mobile applications for Pain Assessment and Management, self-management of hypertension, HIV Interventions, Diabetes, Multiple Sclerosis, Cancer, cardiovascular disease, supporting health care during pregnancy, Psychological Experiences of Web-Based Psychosocial Interventions, interventions for substance use disorder [57, 99].

The results of this study show that mobile phones were the most used because mobile phones can both connect to sensors, run mobile applications, and receive and store data and information and send to the server located in the health care center for monitoring by health care providers. Mobile apps have a great potential to support patients in healthcare, and to encourage healthy behavioral changes, a set of factors that has impact on the app effectiveness is related to the quality of those features that lead to positive user experiences when using the app. there are so many health mobile apps available, but app usage by patients is low [100]. Evaluation of Mobile application usability may be influenced by patient factors such as age, sex, and psychological needs. Mobile Apps can help patients connect with health care providers by supporting email communication and sharing home-monitored data [100]. The need for mobile health approaches to address particular aging features of older adults grows as the population of older adults as a possible consumer group of mobile health grows [10].

The World Health Organization's Global Observatory for eHealth defines mobile health "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices" [118].
Table 2: Usability methods

Usability Evaluation Method	Articles
Interview	[13, 14, 16, 20, 25, 26, 36-44, 47, 49, 53, 54, 57-59, 97-99, 103-105, 114, 116]
Semi Structured Interviews	[13, 37, 39, 50, 51, 58, 62, 64, 66, 99, 114]
Qualitative Interview	[45, 55, 57, 59, 103, 105]
Post study phone interview	[28, 36]
Questionnaire	[19, 25-32, 45, 46, 48, 54-57, 60, 64-66, 69-71, 72, 78, 80-82, 85, 90-92, 101, 107, 113, 115, 117, 119, 120]
Post-Study System Usability Questionnaire (PSSUQ)	[22, 45, 76, 79, 98]
Computer Systems Usability Questionnaire (CSUQ)	[36, 61, 80, 84]
Telehealth Usability Questionnaire	[34, 94, 96, 108]
System Usability Scale (SUS)	[19, 22, 46, 48, 50, 51, 63, 64, 67, 77, 79, 85, 89, 99, 100, 106, 109, 112]
Technology Acceptance Model-2 (TAM-2)	[77]
Client Satisfaction Questionnaire-8 (CSQ-8)	[52]
User Experience Questionnaire (UEQ)	[65]
NASA Task Load Index (NASA TLX)	[84, 106]
Observations	[37, 47, 50, 51, 55, 60, 66, 68, 69, 118]
Descriptively Reported	[35, 56]
Expert Review	[46]
Think a Loud	[49, 47, 67]
Eye Tracking	[21, 67]
Motion tracking device	[21, 67, 69]

Smartphones have made it easier for healthcare practitioners and the general population to collaborate, gathers data, and makes clinical decisions [22, 88]. The need for mobile health approaches to address particular aging features of older adult's increases as the population of older adults as a potential user group grows. Usability research, however, indicate that mobile health is still not planned properly for older adults and their preferences [87, 127]. Older patients are a significant target population for Web-based health information since numerous ailments, such as cancer, diabetes, and hypertension, are diseases that affect the elderly. In elderly individuals who access Web-based health information, improvements in self-efficacy, blood pressure, hemoglobin levels, and cholesterol levels have been noted [69, 83].

To evaluate the usability of mHealth apps, the most common data collection technique utilized in the studies was questionnaire, followed by field study, interview, observation, think-aloud, and app-use generated data.

The SUS was the most common standard questionnaire used by the studies in the review. The SUS, the Usefulness, Satisfaction, and Ease of Use (USE) Questionnaire, and the Post Study System Usability Questionnaire were the most commonly used scales that studies used to create their own questionnaires.

In this review, we found that questionnaire was the most common data collection technique of the included studies; however, researchers either used standard questionnaires, such as SUS or USE, which were not specifically designed for the mental health domain, or adapted a standard questionnaire or developed a new one. Owing to the great variety of the questionnaires, there is a need to establish a common standardized usability questionnaire targeted specifically at mHealth apps.

Tele Health and Telemedicine are a timely response to the limitations that COVID-19 societal distancing imposes on traditional healthcare delivery methods and the COVID-19 pandemic is favoring digital transitions. Health-care organizations quickly
adopted digital solutions and advanced technology tools in response to the pandemic's first phase. Telehealth has emerged as a critical component of patient healthcare delivery during the COVID-19 pandemic.

Telehealth can help with enhancing compliance and clinical efficiency, as well as reducing in-person contacts for clinical routes, which is critical during the COVID-19 epidemic [68, 82]. In the most of the reviewed articles, the factors of the ISO model, 9241-11, or Dr. Nielson's model were used to evaluate the usability of the telehealth systems. The effectiveness, efficiency, satisfaction, learnability, memorability, and errors factor were measured in the majority of the reviewed articles, but given the issue of telehealth and the fact that users vary depending on the type of disease and care or intervention required, age and physical condition must improve the usability of systems for upgrading. To make the system designed for users more usable, it is suggested that the usability of telehealth systems be evaluated using twelve factors [16]. Questionnaires are the most often used approach for evaluating health-care systems. The results showed that Satisfaction, Efficiency, Design and Effectiveness are the most important usability attributes to consider when designing Health mobile apps. The authors had previously designed a telemedicine system for heart control for diabetics [121, 122], but its usability had not been studied, so for future work, they will decide to design a telehealth system and study its usability based on the usability evaluation model with twelve factors included Learnability, Satisfaction, Efficiency, Effectiveness, Memorability, Errors, Safety, Performance, Design, Navigation, Compatibility, and Visibility [121, 122].

CONCLUSION

This study provides usability evaluations methods and usability attributes in telemedicine or telehealth systems especially mhealth apps. The mhealth apps are the most developing due for the availability of mobile devices to users, their popularity, and device affordances. the standard questionnaires are the most used for systems usability evaluation. the satisfaction, efficiency, design and effectiveness are the most important systems usability attributes.

AUTHOR’S CONTRIBUTION

All authors contributed to the literature review, design, data collection and analysis, drafting the manuscript, read and approved the final manuscript. Due to the COVID-19 pandemic, all authors worked separately at different locations.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest regarding the publication of this study.

FINANCIAL DISCLOSURE

No financial interests related to the material of this manuscript have been declared.

REFERENCES

1. Carreiro S, Newcomb M, Leach R, Ostrowski S, Boudreaux ED, Amante D. Current reporting of usability and impact of mHealth interventions for substance use disorder: A systematic review. Drug Alcohol Depend. 2020; 215: 108201. PMID: 32777691 DOI: 10.1016/j.drugalcdep.2020.108201 [PubMed]

2. Zhou L, Bao J, Parmanto B. Systematic review protocol to assess the effectiveness of usability questionnaires in mhealth app studies. JMIR Res Protoc. 2017; 6(8): e151. PMID: 28765101 DOI: 10.2196/resprot.7826 [PubMed]

3. Luna-Perejon F, Malwade S, Stylidiadis C, Civit J, Cascado-Caballero D, Konstantinidis E, et al. Evaluation of user satisfaction and usability of a mobile app for smoking cessation. Comput Methods Programs Biomed. 2019; 182: 105042. PMID: 31473444 DOI: 10.1016/j.cmpb.2019.105042 [PubMed]

4. Tubb MR, Meulen MBV, Pallerla H, Regan S, Doarn CR. Clinical evaluation of e-Quit worRx: A mobile app to enhance smoking cessation shared decision making in primary care. Mhealth. 2019; 5: 22. PMID: 31463308 DOI: 10.21037/mhealth.2019.06.03 [PubMed]

5. Gowarty MA, Longacre MR, Vilardaga R, Kung NJ, Gaughan-Maher AE, Brunette MF. Usability and acceptability of two smartphone apps for smoking cessation among young adults with serious mental illness: Mixed methods study. JMIR Ment Health. 2021; 8(7): e26073. PMID: 34255699 DOI: 10.2196/26073 [PubMed]

6. Lai B, Wilroy J, Young HJ, Howell J, Rimmer JH, Mehta T, et al A mobile app to promote adapted exercise and social networking for people with physical disabilities: Usability study. JMIR Form Res. 2019; 3(1): e11689. PMID: 30883325 DOI: 10.2196/11689 [PubMed]

7. Wilroy J, Lai B, Currie M, Young HJ, Thirumalai M, Mehta T, et al. Teleassessments for enrollment of adults with physical or mobility disability in a home-based exercise trial in response to COVID-19: Usability study. JMIR Form Res. 2021; 5(11): e29799. PMID: 34792477 DOI: 10.2196/29799 [PubMed]

8. Sun T, Dunsmuir D, Miao I, Devoy GM, West NC, Görges M, et al. In-hospital usability and feasibility evaluation of Panda, an app for the management of pain in children at home. Paediatri Anaesth. 2018; 28(10): 897-905. PMID: 30302882 DOI: 10.1111/pan.13471 [PubMed]

9. Birnie KA, Nguyen C, Amaral TD, Baker L, Campbell F, Lloyd S, et al. A parent–science partnership to improve postsurgical pain management in young...
children: Co-development and usability testing of the Achy Penguin smartphone-based app. Can J Pain. 2018; 2(1): 280-91. PMID: 35005385 DOI: 10.1080/24740527.2018.1534543 [PubMed]

10. Ehrler F, Weinhold T, Joe J, Lovis C, Blondon K. A mobile app (BEDSide mobility) to support nurses' tasks at the patient's bedside: Usability study. JMIR Mhealth Uhealth. 2018; 6(3): e57. PMID: 29563074 DOI: 10.2196/mhealth.9079 [PubMed]

11. Tonga E, Williamson E, Srikesavan C, Özen T, Sarıtaş F, Lamb SE. A hand exercise mobile app for people with rheumatoid arthritis in Turkey: Design, development and usability study. Rheumatol Int. 2021; 41(6): 1151-60. PMID: 33870452 DOI: 10.1007/s00296-021-04860-0 [PubMed]

12. Constantinescu G, Kuffel K, King B, Hodgetts W, Rieger J. Usability testing of an mHealth device for swallowing therapy in head and neck cancer survivors. Health Informatics J. 2019; 25(4): 1373-82. PMID: 29618274 DOI: 10.1177/1460458218766574 [PubMed]

13. International Organization for Standardization. Ergonomics of human-system interaction - part 11: Usability: Definitions and concepts [Internet]. 2018 [cited: 05 Apr 2019]. Available from: https://www.iso.org/standard/63500.html

14. Salari R, Kalhori SRN, Ghazisaeedi M, Jedd M, Nazari M, Fatemi F. Mobile-based and cloud-based system for self-management of people with type 2 diabetes: Development and usability evaluation. J Med Internet Res. 2021; 23(6): e18167. PMID: 34076579 DOI: 10.2196/18167 [PubMed]

15. Bevan N. Measuring usability as quality of use. Software Quality Journal. 1995; 4(2): 115-30.

16. Tark R, Metelitsa M, Akkerman K, Sales K, Mikkel S, Haljas K. Usability, acceptability, feasibility, and effectiveness of a gamified mobile health intervention (Triumf) for pediatric patients: Qualitative study. JMIR Serious Games. 2019; 7(3): e13776. PMID: 31573904 DOI: 10.2196/13776 [PubMed]

17. van Beukering M, Velu A, van den Berg L, Kok M, Mol BW, Frings-Dresen M et al. Usability and usefulness of a mobile health app for pregnancy-related work advice: Mixed-methods approach. JMIR Mhealth Uheath. 2019; 7(5): e11442. PMID: 31094353 DOI: 10.2196/11442 [PubMed]

18. Welblie M, Wittink H, Westerman MJ, Topper I, Snoei J, Devillé W. A mobile-patient-reported outcome measure app with talking touchscreen: Usability assessment. JMIR Form Res. 2019; 3(3): e11617. PMID: 31573909 DOI: 10.2196/11617 [PubMed]

19. The Health Resources and Services Administration. Telehealth programs [Internet]. 2020 [cited: 01 Dec 2021]. Available from: https://www.hrsa.gov/rural-health/telehealth

20. Shah UM, Chiew TK. A systematic literature review of the design approach and usability evaluation of the pain management mobile applications. Symmetry. 2019; 11(3): 400.

21. Agha Z, Weir CR, Chen Y. Usability of telehealth technologies. International Journal of Telemedicine and Applications. 2013; 2013: 834514.

22. Almeida AF, Rocha NP, Silva AG. Methodological quality of manuscripts reporting on the usability of mobile applications for pain assessment and management: A systematic review. Int J Environ Res Public Health. 2020; 17(3): 785. PMID: 32012674 DOI: 10.3390/ijerph17030785 [PubMed]

23. Wildenbos GA, Peute L, Jaspers M. Aging barriers influencing mobile health usability for older adults: A literature based framework (MOLD-US). Int J Med Inform. 2018; 114: 66-75. PMID: 29673606 DOI: 10.1016/j.ijmединf.2018.03.012 [PubMed]

24. International Organization for Standardization. ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs) [Internet]. 1998 [cited [1 Dec 2021]. Available from: https://www.iso.org/standard/16083.html

25. Gowarty MA, Aschbrenner KA, Brunette MF. Acceptability and usability of mobile apps for smoking cessation among young adults with psychotic disorders and other serious mental illness. Front Psychiatry. 2021; 12:656538. PMID: 34025477 DOI: 10.3389/fpsyg.2021.656538 [PubMed]

26. Frias A, Solves-L, Navarro S, Palma C, Farriols N, Aliaga F, et al. Technology-based psychosocial interventions for people with borderline personality disorder: A scoping review of the literature. Psychopathology. 2020; 53(S-6): 254-63. PMID: 33166964 DOI: 10.1159/000511349 [PubMed]

27. Thirumalai R, Mimmer JH, Johnson G, Wilroy J, Young HJ, Mehta T, et al. TEAMs (Tele-Exercise and Multiple Sclerosis), a tailored telerehabilitation mHealth app: Participant-centered development and usability study. JMIR Mhealth Uhealth. 2018; 6(5): e10181. PMID: 29798832 DOI: 10.2196/10181 [PubMed]

28. Dunsmir D, Wu H, Sun T, West NC, Lauder GR, Gorges M, et al. A postoperative pain management mobile app (panda) for children at home after discharge: Usability and feasibility. JMR Perioper Med. 2019; 2(2): e12305. PMID: 33399328 DOI: 10.2196/12305 [PubMed]

29. Müller SD, Lauridsen KG, Palic AH, Frederiksen LN, Mathiasen M, Lafgren B. Mobile app support for cardiopulmonary resuscitation: Development and usability study. JMIR Mhealth Uhealth. 2021; 9(1): e16114. PMID: 33399539 DOI: 10.2196/16114 [PubMed]

30. McCall T, Ali MO, Yu F, Fontelo P, Khairat S. Development of a mobile app to support self-management of anxiety and depression in African American women: A usability study. JMIR Form Res. 2021; 5(8): e24393. PMID: 34133313 DOI: 10.2196/24393 [PubMed]

31. Bruggers CS, Baranowski S, Beseris M, Leonard R, Long D, Schulte E, et al. A prototype exercise-empowerment mobile video game for children with cancer, and its usability assessment: Developing digital empowerment interventions for pediatric diseases. Front Pediatr. 2018; 6: 69. PMID: 29686977 DOI: 10.3389/fped.2018.00069 [PubMed]
32. Ingadottir B, Blondal K, Thue D, Zoega S, Thylen I, Jaarsma T. Development, usability, and efficacy of a serious game to help patients learn about pain management after surgery: An evaluation study. JMIR Serious Games. 2017; 5(2): e10. PMID: 28490419 DOI: 10.2196/games.6894 [PubMed]

33. Radhakrishnan K, Toprac P, O’Hair M, Bias R, Kim MT, Bradley P, et al. Interactive digital e-Health game for heart failure self-management: A feasibility study. Games Health J. 2016; 5(6): 366-74. PMID: 27976955 DOI: 10.1089/g4h.2016.0038 [PubMed]

34. Vanosdoll M, Ng N, Ho A, Wallfording A, Xu S, Matin SB, et al. A novel mobile health tool for home-based identification of neonatal illness in Uganda: Formative usability study. JMIR Mhealth Uhealth. 2019; 7(8): e14540. PMID: 31418428 DOI: 10.2196/14540 [PubMed]

35. Stuti D, Karanam C, Gómez-Orozco C, Gómez-Marín O. Mobile phone intervention for heart failure in a minority urban county hospital population: Usability and patient perspectives. Telemed J E Health. 2017; 23(7): 544-54. PMID: 28051761 DOI: 10.1089/tmj.2016.0224 [PubMed]

36. Pimmer C, Tulenko K. The convergence of mobile and social media: Affordances and constraints of mobile networked communication for health workers in low- and middle-income countries. Mobile Media & Communication. 2016; 4(2): 252-69.

37. Nguyen M, Waller M, Pandya A, Portnoy J. A review of patient and provider satisfaction with telemedicine. Curr Allergy Asthma Rep. 2020; 20(11): 72. PMID: 32959158 DOI: 10.1007/s11882-020-00969-7 [PubMed]

38. Wang Y, Zeng L, Yao S, Zhu F, Liu C, Laura AD, et al. Recommendations of protective measures for orthopedic surgeons during COVID-19 pandemic. Knee Surg Sports Traumatol Arthrosc. 2020; 28(7): 2027-35. PMID: 32524164 DOI: 10.1007/s00167-020-06092-4 [PubMed]

39. Sangar AB, Rastari S. A model for increasing usability of mobile banking apps on smart phones. Indian Journal of Science and Technology. 2015; 8(30): 1-9.

40. Frias A, Palma C, Salvador A, Aluco E, Navarro S, Farriols N, et al. B-RIGHT: Usability and satisfaction with a mobile app for self-managing emotional crises in patients with borderline personality disorder. Australas Psychiatry. 2021; 29(3): 294-8. PMID: 32438869 DOI: 10.1177/1308588520924321 [PubMed]

41. Metelmann B, Metelmann C, Schuffert L, Hahnenkamp K, Brinkrolf P. Medical correctness and user friendliness of available apps for cardiopulmonary resuscitation: Systematic search combined with guideline adherence and usability evaluation. JMIR Mhealth Uhealth. 2018; 6(11): e190. PMID: 30416733 DOI: 10.2196/mhealth.9651 [PubMed]

42. Fu HN, Adam TJ, Konstan JA, Wolfson JA, Clancy TR, Wyman JF. Influence of patient characteristics and psychological needs on diabetes mobile app usability in adults with type 1 or type 2 diabetes: Crossover randomized trial. JMIR Diabetes 2019; 4(2): e11462. PMID: 31038468 DOI: 10.2196/11462 [PubMed]

43. Harvey C, Kourek R, Béquet V, Jacob S. Usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app: Improvement of patient convenience and satisfaction. J Diabetes Sci Technol. 2016; 10(5): 1136-41. PMID: 27390222 DOI: 10.1177/1932296816658058 [PubMed]

44. Diamantidis CJ, Ginsberg JS, Yoffe M, Lucas L, Prakash D, Aggarwal S, et al. Remote usability testing and satisfaction with a mobile health medication inquiry system in CKD. Clin J Am Soc Nephrol. 2015; 10(8): 1364-70. PMID: 26220816 DOI: 10.2215/CJN.1591214 [PubMed]

45. Gladman T, Tylee G, Gallagher S, Mair J, Rennie SC, Grainger R. A tool for rating the value of health education mobile apps to enhance student learning (MARuL): Development and usability study. JMIR Mhealth Uhealth. 2020; 8(7): e18015. PMID: 32735228 DOI: 10.2196/18015 [PubMed]

46. Liu MS, Zhang J, See J, Ong YL. Usability challenges for health and wellness mobile apps: mixed-methods study among mHealth experts and consumers. JMIR Mhealth Uhealth. 2019; 7(1): e12160. PMID: 30698528 DOI: 10.2196/12160 [PubMed]

47. Nitsch M, Dimopoulos CN, Flaschberger E, Safran K, Kruger JF, Garlock L, et al. A guided online and mobile self-help program for individuals with eating disorders: An iterative engagement and usability study. J Med Internet Res. 2016; 18(1): e7. PMID: 26753539 DOI: 10.2196/jmir.4972 [PubMed]

48. Rodríguez S, Sanz AM, Llano G, Navarro A, Parra-Lara LG, Krystosik AR, et al. Acceptability and usability of a mobile application for management and surveillance of vector-borne diseases in Colombia: An implementation study. PLoS One. 2020; 15(5): e0233269. PMID: 32469984 DOI: 10.1371/journal.pone.0233269 [PubMed]

49. Teo CH, Ng CJ, Lo SK, Lim CD, White A. A mobile web app to improve health screening uptake in men (ScreenMen): Utility and usability evaluation study. JMIR Mhealth Uhealth. 2019; 7(4): e10216. PMID: 30985280 DOI: 10.2196/10216 [PubMed]

50. Thies K, Anderson D, Cramer B. Lack of adoption of a mobile app to support patient self-management of diabetes and hypertension in a federally qualified health center: Interview analysis of staff and patients in a failed randomized trial. JMIR Hum Factors. 2017; 4(4): e24. PMID: 28974481 DOI: 10.2196/humanfactors.7709 [PubMed]

51. Chantler T, Paton C, Velardo C, Triantafyllidis A, Shah SA, Stoppani E, et al. Creating connections- the development of a mobile-health monitoring system for heart failure: Qualitative findings from a usability cohort study. Digit Health. 2016; 2: 2055207616671461. PMID: 29942568 DOI: 10.1177/2055207616671461 [PubMed]

52. Ding H, Fatehi F, Russell AW, Karunanithi M, Menon A, Bird D, et al. User experience of an innovative mobile health program to assist in insulin dose adjustment: Outcomes of a proof-of-concept trial. Telemed J E
53. Tay I, Garland S, Gorenik A, Wark JD. Development and testing of a mobile phone app for self-monitoring of calcium intake in young women. JMIR Mhealth Uhealth. 2017; 5(3): e27. PMID: 28270379 DOI: 10.2196/mhealth.5717 [PubMed]

54. Chapman Smith SN, Brown PC, Waits KH, Wong JS, Bhatti MS, Togee Q, et al. Development and evaluation of a user-centered mobile telestroke platform. Telemed J E Health. 2019; 25(7): 638-48. PMID: 30207927 DOI: 10.1089/tmj.2018.0044 [PubMed]

55. Pinem AA, Yeskafauzan A, Handayani PW, Azzahro F, Hidayanto AN, Ayuningsya D. Designing a health referral mobile application for high-mobility end users in Indonesia. Heliyon. 2020; 6(1): e03174. PMID: 31938751 DOI: 10.1016/j.heliyon.2020.e03174 [PubMed]

56. Stütz T, Emsenhuber G, Huber D, Domhardt M, Tiefengrabner M, Janneke Oostingh G, et al. Mobile phone-supported physiotherapy for frozen shoulder: Feasibility assessment based on a usability study. JMIR Rehabil Assist Technol. 2017; 4(2): e6. PMID: 28729234 DOI: 10.2196/rehab.7085 [PubMed]

57. Liu YC, Chen CH, Lin YS, Chen HY, Irianti D, Jen TN, et al. Design and usability evaluation of mobile voice-added food reporting for elderly people: Randomized controlled trial. JMIR Mhealth Uhealth. 2020; 8(9): e20317. PMID: 3295999 DOI: 10.2196/20317 [PubMed]

58. Brinkel J, May J, Krumkamp R, Lamshöft M, Kreuels B, Owusu-Dabo E, et al. Mobile phone-based interactive voice response as a tool for improving access to healthcare in remote areas in Ghana: An evaluation of user experiences. Trop Med Int Health. 2017; 22(5): 622-30. PMID: 28270352 DOI: 10.1111/tmii.12864 [PubMed]

59. Moeini S, Watzlaf V, Zhou L, Abernathy RP. Development of a weighted well-being assessment mobile app for trauma affected communities: A usability study. Perspect Health Inf Manag. 2020; 18(Winter): 10. PMID: 33633525 [PubMed]

60. Alanzì T, Istitenian R, Philip N. Design and usability evaluation of social mobile diabetes management system in the gulf region. JMIR Res Protoc. 2016; 5(3): e93. PMID: 27670696 DOI: 10.2196/resprot.4348 [PubMed]

61. Kristjansdottir OB, Borosund E, Westeng M, Ruland C, Stenberg U, Zang HA, et al. Mobile app to help people with chronic illness reflect on their strengths: Formative evaluation and usability testing. JMIR Form Res. 2020; 4(3): e16831. PMID: 32130126 DOI: 10.2196/16831 [PubMed]

62. Heiney SP, Donevant SB, Adams SA, Parker PD, Chen H, Levkoff S. A smartphone app for self-management of heart failure in older African Americans: Feasibility and usability study. JMIR Aging. 2020; 3(1): e17142. PMID: 32242822 DOI: 10.2196/17142 [PubMed]

63. Marques ADB, Moreira TMM, Jorge TV, Rabelo SMS, Lima deCarvalho REF, Felipe GF. Usability of a mobile application on diabetic foot self-care. Rev Bras Enferm. 2020; 73(4): e20180682. PMID: 32520095 DOI: 10.1590/0034-7167-2018-0862 [PubMed]

64. Rasche P, Mertens A, Miron-Shatz T, Berzon C, Schlöck CM, Jahn M, et al. Seamless recording of glucometer measurements among older experienced diabetic patients–A study of perception and usability. PLoS One. 2018; 13(5): e0197455. PMID: 29799861 DOI: 10.1371/journal.pone.0197455 [PubMed]

65. Castellano-Tejedor C, Moreno J, Knittle K, Nurmi J, Ginechev T, Parramón G, et al. Assessing the user experience and usability of the PRECIOUS system: a randomized controlled trial in obese patients. Inform Health Soc Care. 2020; 45(4): 410-27. PMID: 32713290 DOI: 10.1080/17538157.2020.1776292 [PubMed]

66. Marzuki MFM, Yaacob NA, Yaacob NM, Hassan MRA, Ahmad SB. Usable mobile app for community education on colorectal cancer: development process and usability study. JMIR Hum Factors. 2019; 6(2): e12103. PMID: 30990454 DOI: 10.2196/12103 [PubMed]

67. Pereira-Azevedo N, Osório L, Fraga A, Roobol MJ, Rotterdam prostate cancer risk calculator: Development and usability testing of the mobile phone app. JMIR Cancer. 2017; 3(1): e1. PMID: 28410180 DOI: 10.2196/cancer.6750 [PubMed]

68. Heynsbergh N, Heckel L, Botti M, Livingston PM. A smartphone app to support carers of people living with cancer: A feasibility and usability study. JMIR Cancer. 2019; 5(1): e11779. PMID: 30702432 DOI: 10.2196/11779 [PubMed]

69. Fu MR, Axelrod D, Guth AA, Wang Y, Scagliola J, Hiotis K, et al. Usability and feasibility of health IT interventions to enhance self-care for lymphedema symptom management in breast cancer survivors. Internet Interv. 2016; 5: 56-64. PMID: 28255542 DOI: 10.1016/j.jinterv.2016.08.001 [PubMed]

70. Hill JR, Harrington AB, Adeoye P, Campbell NL, Holden RJ. Going remote-Demonstration and evaluation of remote technology delivery and usability assessment with older adults: Survey study. JMIR Mhealth Uhealth. 2021; 9(3): e26702. PMID: 33606655 DOI: 10.2196/26702 [PubMed]

71. Bente BE, Roderick van ’t Klooster WJ, Schreijer MA, Berkemeier L, van Gend JE, Hendrik Slijkhuis PJ, et al. The Dutch COVID-19 contact tracing app (the CoronaMelder): Usability study. JMIR Form Res. 2021; 5(3): e27882. PMID: 33724198 DOI: 10.2196/27882 [PubMed]

72. English LL, Dunsmuir D, Kumbakumba E, Ansermino JM, Larson CP, Lester R, et al. The pediatric risk assessment (PARA) mobile app to reduce postdischarge child mortality: Design, usability, and feasibility for health care workers in Uganda. JMIR Mhealth Uhealth. 2016; 4(1): e16. PMID: 26879041 DOI: 10.2196/mhealth.5167 [PubMed]

73. Bolle S, Romijn G, Smets EM, Loos EF, Kunneman M, van Weert JC. Older cancer patients’ user experiences with web-based health information tools: A think-
74. Barbabella F, Poli A, Hanson E, Andréasson F, Salzmann B, Döhner H, et al. Usage and usability of a web-based program for family caregivers of older people in three European countries: A mixed-methods evaluation. Comput Inform Nurs. 2018; 36(5): 232-41. PMID: 29505433 DOI: 10.1097/CIN.0000000000000442 [PubMed]

75. Agnisarman SO, Chalil Madathil K, Smith K, Ashok A, Welsh B, McElligott JT. Lessons learned from the usability assessment of home-based telemedicine systems. Appl Ergon. 2017; 58: 424-34. PMID: 27633239 DOI: 10.1016/j.apergo.2016.08.003 [PubMed]

76. Anzinger H, Elliott SA, Hartling L. Comparative usability analysis and parental preferences of three web-based knowledge translation tools: Multimethod study. J Med Internet Res. 2020; 22(3): e14562. PMID: 32167478 DOI: 10.2196/14562 [PubMed]

77. Lauritsen L, Andersen L, Olsson E, Søndergaard SR, Nørregaard LB, Løvendahl PK, et al. Usability, acceptability, and adherence to an electronic self-monitoring system in patients with major depression discharged from inpatient wards. J Med Internet Res. 2017; 19(4): e123. PMID: 28432040 DOI: 10.2196/jmir.6673 [PubMed]

78. Kapoor A, Nambisan P. Usability and acceptance evaluation of ACESO: A web-based breast cancer survivorship tool. J Cancer Surviv. 2018; 12(3): 316-25. PMID: 29372486 DOI: 10.1007/s11764-017-0670-8 [PubMed]

79. Wang T, Dolezel D. Usability of web-based personal health records: An analysis of consumers’ perspectives. Perspect Health Inf Manag. 2016; 13(Spring): 1F. PMID: 27134611 [PubMed]

80. Takano A, Miyamoto Y, Kawakami N, Matsumoto T. Web-based cognitive behavioral relapse prevention program with tailored feedback for people with methamphetamine and other drug use problems: Development and usability study. JMIR Ment Health. 2016; 3(1): e1. PMID: 26740264 DOI: 10.2196/mental.4875 [PubMed]

81. Neville C, Da Costa D, Rochon M, Peschenk CA, Pineau CA, Bernatsky S, et al. Development of the lupus interactive navigator as an empowering web-based eHealth tool to facilitate lupus management: Users perspectives on usability and acceptability. JMIR Res Protoc. 2016; 5(2): e44. PMID: 27240666 DOI: 10.2196/resprot.4219 [PubMed]

82. Bennion MR, Hardy GE, Moore RK, Kellett S, Millings A. Usability, acceptability, and effectiveness of web-based conversational agents to facilitate problem solving in older adults Controlled study. J Med Internet Res. 2020; 22(5): e16794. PMID: 32384055 DOI: 10.2196/16794 [PubMed]

83. Tao D, Shao F, Wang H, Yan M, Qu X. Integrating usability and social cognitive theories with the technology acceptance model to understand young users’ acceptance of a health information portal. Health Informatics J. 2020; 26(2): 1347-62. PMID: 31603378 DOI: 10.1177/1460458219879337 [PubMed]

84. García-Casal JA, Martínez-Abad F, Cid-Bartolomé T, Smith SJ, Llano-Ordóñez K, Perea-Bartolomé MV, et al. Usability study and pilot validation of a computer-based emotion recognition test for older adults with Alzheimer’s disease and amnestic mild cognitive impairment. Aging Ment Health. 2019; 23(3): 365-75. PMID: 29356568 DOI: 10.1080/13607863.2017.1423033 [PubMed]

85. Gerłowska J, Skrobas U, Grabowska-Aleksandrowicz K, Korchut A, Szklenar S, Szczęśniak-Stańczyk D, et al. Assessment of perceived attractiveness, usability, and societal impact of a multimodal robotic assistant for aging patients with memory impairments. Front Neurol. 2018; 9: 392. PMID: 29910769 DOI: 10.3389/fneur.2018.00392 [PubMed]

86. Marien S, Legrand D, Ramoyal R, Nsenga J, Ospina G, Ramon V, et al. A web application to involve patients in the medication reconciliation process: A user-centered usability and usefulness study. J Am Med Inform Assoc. 2018; 25(11): 1488-500. PMID: 30137331 DOI: 10.1093/jamia/ocy107 [PubMed]

87. Klaassen B, van Beijnum BJF, Held JP, Reenalda J, van Meulen FB, Veltink PH, et al. Usability evaluations of a wearable inertial sensing system and quality of movement metrics for stroke survivors by care professionals. Front Bioeng Biotechnol. 2017; 5: 20. PMID: 28421180 DOI: 10.3389/fbioe.2017.00020 [PubMed]

88. Jia Y, Wang W, Wen D, Liang L, Gao L, Lei J. Perceived user preferences and usability evaluation of mainstream wearable devices for health monitoring. PeerJ. 2018; 6: e5350. PMID: 30065893 DOI: 10.7717/peerj.5350 [PubMed]

89. Lee H, Kim J, Kim S, Kong HJ, Joo H, Lee D, et al. Usability evaluation of user requirement-based teleconsultation robots: A preliminary report from south Korea. MethodsInfMed. 2020; 59(2-03): 86-95. PMID: 33126278 DOI: 10.1055/s-0040-1715579 [PubMed]

90. Tonino RP, Larimer K, Eissen O, Schipperus MR. Remote patient monitoring in adults receiving transfusion or infusion for hematological disorders using the VitalPatch and acceleratelQ monitoring system: Quantitative feasibility study. J Med Internet Res. 2020; 59(2-03): 86-95. PMID: 33126278 DOI: 10.1055/s-0040-1715579 [PubMed]

91. Poncette AS, Mosch L, Spies C, Schmieding M, Schiefenhövel F, Krampe H, et al. Improvements in patient monitoring in the intensive care unit: Survey study. J Med Internet Res. 2020; 22(6): e19091. PMID: 32459655 DOI: 10.2196/19091 [PubMed]

92. Bonsignore L, Bloom N, Steinhauer K, Nichols R, Allen T, Twaddle M, et al. Evaluating the feasibility and acceptability of a telehealth program in a rural palliative care population: TapCloud for palliative care. J Pain Symptom Manage. 2018; 56(1): 7-14. PMID: 29551433 DOI: 10.1016/j.jpainsymman.2018.03.013 [PubMed]

93. Lefler LL, Rhoads SJ, Harris M, Funderburg AE, Lubin
SA, Martel ID, et al. Evaluating the use of mobile health technology in older adults with heart failure: Mixed-methods study. JMIR Aging. 2018; 1(2): e12178. PMID: 31518257 DOI: 10.2196/12178 [PubMed]

94. Ancona GD, Murero M, Feickert S, Kaplan H, Öner A, Ortak J, et al. Implementation of an innovative intracardiac microcomputer system for web-based real-time monitoring of heart failure: Usability and patients' attitudes. JMRI Cardio. 2021; 5(1): e21055. PMID: 33881400 DOI: 10.2196/21055 [PubMed]

95. Wallin E, Norlund F, Olsson EMG, Burell G, Held C, Carlsson T. Treatment activity, user satisfaction, and experienced usability of internet-based cognitive behavioral therapy for adults with depression and anxiety after a myocardial infarction: Mixed-methods study. J Med Internet Res. 2018; 20(3): e87. PMID: 29549067 DOI: 10.2196/jmir.9690 [PubMed]

96. Kim Y, Seo J, An SY, Sinn DH, Hwang JH. Efficacy and safety of an mHealth app and wearable device in physical performance for patients with hepatocellular carcinoma: Development and usability study. JMRI Mhealth Uhealth. 2020; 8(3): e14435. PMID: 32159517 DOI: 10.2196/14435 [PubMed]

97. Silveira DV, Marcolino MS, Machado EL, Ferreira CG, Moreira Allennim MB, Resende ES, et al. Development and evaluation of a mobile decision support system for hypertension management in the primary care setting in Brazil: Mixed-methods field study on usability, feasibility, and utility. JMRI Mhealth Uhealth. 2019; 7(3): e9869. PMID: 30907740 DOI: 10.2196/mhealth.9869 [PubMed]

98. Cho S, Lee JH, Kim IK, Kim MG, Sik KY, Lee E. The educational and supportive mobile application for caregivers of dementia people. Stud Health Technol Inform. 2016; 225: 1045-6. PMID: 27332475 [PubMed]

99. Moradian S, Krzyzanowska MK, Maguire R, Morita DP, Kukreti V, Avery J, et al. Usability evaluation of a mobile phone-based system for remote monitoring and management of chemotherapy-related side effects in cancer patients: Mixed-methods study. JMRI Cancer. 2018; 4(2): e10932. PMID: 30578238 DOI: 10.2196/10932 [PubMed]

100. Janatkhah R, Tabari-Khomeirani R, Asadi-Loueyeh A, Kazemnejad E. Usability of a disease management mobile application as perceived by patients with diabetes. Comput Inform Nurs. 2019; 37(8): 413-9. PMID: 31394560 DOI: 10.1097/CIN.0000000000000532 [PubMed]

101. Fucal E, Costanzo F, Bonutto D, Moretti A, Fini A, Ferraiuolo A, et al. Mobile-health technologies for a child neuropsychiatry service: Development and usability of the aurisma digital platform. Int J Environ Res Public Health. 2021; 18(5): 2758. PMID: 33803179 DOI: 10.3390/ijerph18052758 [PubMed]

102. Sahu D, Rathod V, Phadnis A, Bansal SS. Telehealth for consultation andsholder rehabilitation: A preliminary study on the perspectives of 30 patients during the COVID-19 lockdown. Clin Shoulder Elb. 2021; 24(3): 156-65. PMID: 34468296 DOI: 10.5397/cise2021.00248 [PubMed]

103. Alessa T, Abdi T, Hawley MS, de Witte L. Mobile apps to support the self-management of hypertension: Systematic review of effectiveness, usability, and user satisfaction. JMRI Mhealth Uhealth. 2018; 6(7): e10723. PMID: 30037787 DOI: 10.2196/10723 [PubMed]

104. Young HJ, Mehta T, Lai B. TEAMS (Tele-Exercise and Multiple Sclerosis), a tailored telerehabilitation mHealth app: Participant-centered development and usability study. JMRI Mhealth Uhealth. 2018; 6(5): e10181. PMID: 29798832 DOI: 10.2196/10181 [PubMed]

105. Seo NJ, Arun Kumar J, Hur P, Crocher V, Motawar B, Lakshminarayanan K. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. J Rehabil Res Dev. 2016; 53(3): 321-34. PMID: 27271199 DOI: 10.1682/JRRD.2015.03.0045 [PubMed]

106. Himes KP, Donovan H, Wang S, Weaver C, Grove JR, Facco FL. Healthy beyond pregnancy, a web-based intervention to improve adherence to postpartum care: Randomized controlled feasibility trial. JMRI Hum Factors. 2017; 4(4): e26. PMID: 29017990 DOI: 10.2196/humanfactors.7964 [PubMed]

107. Martinez W, Threatt AL, Rosenbloom ST, Wallston KL, Hickson GB, Elasy TA. A patient-facing diabetes dashboard embedded in a patient web portal: Design sprint and usability testing. JMIR Hum Factors. 2018; 5(3): e26. PMID: 30249579 DOI: 10.2196/humanfactors.9569 [PubMed]

108. Layfield E, Triantafillou V, Prasad A, Deng J, Shanti RM, Newman JG, et al Telemedicine for head and neck ambulatory visits during COVID-19: Evaluating usability and patient satisfaction. Head Neck. 2020; 42(7): 1681-9. PMID: 32476228 DOI: 10.1002/hed.26285 [PubMed]

109. Dubin JM, Wyant WA, Balaji NC, Ong WL, Kettache RH, Halfa M, et al. Telemedicine usage among urologists during the COVID-19 pandemic: Cross-sectional study. J Med Internet Res. 2020; 22(11): e21875. PMID: 33031047 DOI: 10.2196/21875 [PubMed]

110. Waqar-Cowles LN, Chuo J, Weiss PF, Gmuca S, LaNoe M, Burnham JM. Evaluation of pediatric rheumatology telehealth satisfaction during the COVID-19 pandemic. Pediatr Rheumatol Online J. 2021; 19(1): 170. PMID: 34886683 DOI: 10.1186/s12969-021-00649-4 [PubMed]

111. Moulaei K, Sheikhtaheri A, Ghafaripour Z, Bahadainbeigy K. The development and usability assessment of an mHealth application to encourage self-care in pregnant women against COVID-19. J Healthc Eng. 2021; 2021: 9968451. PMID: 34336175 DOI: 10.1155/2021/9968451 [PubMed]

112. Khodambashi S, Gilstad H, Nytro O. Usability evaluation of clinical guidelines on the web using eye-tracker. Stud Health Tecnol Inform. 2016; 228: 95-9. PMID: 27577349 [PubMed]

113. Sengupta A, Beckie T, Dutta K, Dey A, Chellapan S. A mobile health intervention system for women with coronary heart disease: Usability study. JMRI Form Res. 2020; 4(6): e16420. PMID: 32348270 DOI:
10.2196/16420 [PubMed]

114. Kessel KA, Me Vogel M, Kessel C, Bier H, Biedermann T, Friess H, et al. Mobile health in oncology: A patient survey about app-assisted cancer care. JMIR Mhealth Uhealth. 2017; 5(6): e81. PMID: 28615159 DOI: 10.2196/mhealth.7689 [PubMed]

115. McClellan MA, Karumur RP, Vogel RI, Petzel SV, Cragg J, Chan D, et al. Designing an educational website to improve quality of supportive oncology care for women with ovarian cancer: An expert usability review and analysis. Int J Hum Comput Interact. 2016; 32(4): 297-307. PMID: 27110082 DOI: 10.1080/10447318.2016.1140528 [PubMed]

116. Tu MH, Chang P, Lee YL. Avoiding obsolescence in mobile health: Experiences in designing a mobile support system for complicated documentation at long-term care facilities. Comput Inform Nurs. 2018; 36(10): 501-6. PMID: 30045129 DOI: 10.1097/CIN.0000000000000460 [PubMed]

117. Talboom-Kamp E, Tossaint-Schoenmakers R, Goedhart A, Versluis A, Kasteleyn M. Patients' attitudes toward an online patient portal for communicating laboratory test results: Real-world study using the eHealth impact questionnaire. JMIR Form Res. 2020; 4(3): e17060. PMID: 32024632 DOI: 10.2196/17060 [PubMed]

118. World Health Organization. mHealth: New horizons for health through mobile technologies [Internet]. 2019 [cited: 1 Dec 2021]. Available from: http://www.who.int/goe/publications/goe_mhealth_web.pdf

119. Schnall R, Cho H, Liu J. Health information technology usability evaluation scale (Health-ITUES) for usability assessment of mobile health technology: Validation study. JMIR Mhealth Uhealth. 2018; 6(1): e4. PMID: 29305343 DOI: 10.2196/mhealth.8851 [PubMed]

120. Jeffrey B, Bagala M, Creighton A, Leavey T, Nicholls S, Wood C, et al. Mobile phone applications and their use in the self-management of type 2 diabetes mellitus: A qualitative study among app users and non-app users. Diabetol Metab Syndr. 2019; 11: 84. PMID: 31636719 DOI: 10.1186/s13098-019-0480-4 [PubMed]

121. Soltanzadeh L, Taheri A, Rabiee M. Implementing a prototype diabetic telemedicine system. International Journal of Computer Science Issues. 2014; 11(4): 86-91.

122. Soltanzadeh L, Taheri A, Rabiee M. A portable ECG device for diabetic patient's telemedicine. Frontiers in Health Informatics. 2014; 3(1): 9-11.