Mass enhancement in an extended periodic Anderson model with valence fluctuations

Katsunori Kubo
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
E-mail: kubo.katsunori@jaea.go.jp

Abstract. We study the mass enhancement in an extended periodic Anderson model with the Coulomb interaction U_{cf} between conduction and f-electrons by the Gutzwiller method. In the Kondo regime, where the number of f electrons n_f per site is almost one, the mass enhancement factor becomes large as in the ordinary periodic Anderson model without U_{cf}. In the intermediate-valence regime, we find that the mass enhancement factor becomes large for a large U_{cf}. As a result, the effective mass can vary nonmonotonically as a function of n_f, which may be relevant to the experimental observations of CeCu$_2$Si$_2$ under pressure.

1. Introduction

In recent years, a possibility of valence fluctuation mediated superconductivity has been discussed [1–4]. Such valence fluctuations are inferred from the observed rapid change in the effective mass. For example, the effective mass deduced from specific heat measurement in CeCu$_2$Si$_2$ changes rapidly at around the pressure where the superconducting transition temperature becomes maximum [5]. The rapid change in the effective mass indicates a rapid change in the valence according to the following relation [6]:

$$\frac{m^*}{m} = \frac{1 - n_f/2}{1 - n_f},$$ (1)

where m is the free-electron mass, m^* is the effective mass, and n_f is the number of f electrons per site. However, this relation is derived for the periodic Anderson model, in which a sharp valence change does not occur. Thus, it is not clear whether we can apply this relation to a system with large valence fluctuations. In addition, the effective mass varies nonmonotonically in CeCu$_2$Si$_2$ under pressure [5]. In CeCu$_2$Si$_2$, recent X-ray absorption experiment shows that n_f decreases monotonically under pressure [7]. Equation (1) is a monotonic function of n_f, and the nonmonotonic variation in the effective mass of CeCu$_2$Si$_2$ cannot be explained by this relation. Thus, in this study, we extend this relation to a model in which a sharp valence change can occur.
2. Model and Method

We study an extended periodic Anderson model with the Coulomb interaction U_{cf} between conduction and f electrons. The Hamiltonian is given by

$$
H = \sum_{k\sigma} \epsilon_k c_k^\dagger c_{k\sigma} + \epsilon_f \sum_{i\sigma} n_{f_i\sigma} - V \sum_{k\sigma} (f_{k\sigma}^\dagger c_{k\sigma} + c_{k\sigma}^\dagger f_{k\sigma}) \\
+ U \sum_i n_{f_i\uparrow} n_{f_i\downarrow} + U_{cf} \sum_{i\sigma\sigma'} n_{c_i\sigma} n_{f_{i\sigma'}},
$$

(2)

where $c_{k\sigma}$ and $f_{k\sigma}$ are the annihilation operators of conduction and f electrons, respectively, with the momentum k and the spin σ. $n_{c_i\sigma}$ and $n_{f_{i\sigma}}$ are the number operators at site i with σ of the conduction and f electrons, respectively. ϵ_k is the kinetic energy of the conduction electron, ϵ_f is the energy level of the f electron, V denotes hybridization, and U is the Coulomb interaction between f electrons. In the following, we set the energy level of the conduction band as the origin of energy, i.e., $\sum_k \epsilon_k = 0$. We set $U \to \infty$, since the onsite Coulomb interaction between well-localized f electrons is large.

In this study, we employ the Gutzwiller method [9]. The Gutzwiller method has already applied to the ordinary periodic Anderson model without U_{cf} [6,10]. In this study, we extend the method developed by Fazekas and Brandow [10] to the extended periodic Anderson model. The details of the method and some results have been reported in our previous papers [11,12]; here, we report some new results.

In the Gutzwiller method, we consider the variational wave function given by

$$
|\psi\rangle = P_{ff} P_{cf} |\phi\rangle,
$$

(3)

where

$$
P_{ff} = \prod_i [1 - n_{f_i\uparrow} n_{f_i\downarrow}]
$$

(4)

excludes the double occupancy of f electrons at the same site, and

$$
P_{cf} = \prod_{i\sigma\sigma'} [1 - (1 - g)n_{c_i\sigma} n_{f_{i\sigma'}}]
$$

(5)

is introduced to deal with the onsite correlation between conduction and f electrons [13]. g is a variational parameter. The one-electron part of the wave function is given by

$$
|\phi\rangle = \prod_{k<k_F,\sigma} [c_{k\sigma}^\dagger + a(k)f_{k\sigma}^\dagger] |0\rangle,
$$

(6)

where k_F is the Fermi momentum for the free conduction band without f electrons, $|0\rangle$ denotes vacuum, and $a(k)$ is determined variationally. Here, we have assumed that the total number n of electrons per site is less than 2 and consider only the lower hybridized band.

We evaluate the expectation value of energy of the variational wave function by applying Gutzwiller approximation. Then, we determine the variational parameters, g and $a(k)$, so that the energy becomes minimum. By using the optimized wave function, we can evaluate physical quantities.

3. Result

Before showing the calculated results, we discuss a state at a very large U_{cf}. For a very large U_{cf}, conduction and f electrons avoid each other. Then, at a moderate ϵ_f, each site is occupied by two conduction electrons or one f electron, that is, $n_c/2 + n_f \simeq 1$, where n_c is the number
of conduction electrons per site. The total number of electrons is \(n = n_c + n_f \) and we obtain \(n_f \approx 2 - n \). In such a state, both the conduction and \(f \) electrons tend to be localized, and we expect a large effective mass at \(n_f \approx 2 - n \).

Now, we show the calculated mass enhancement factor. In the calculation, we consider a simple density of states per spin for the conduction band [shown in Fig. 1(d)]: \(\rho(\epsilon) = 1/(2W) \) for \(-W \leq \epsilon \leq W\); otherwise \(\rho(\epsilon) = 0 \). In this study, we define the inverse of the jump \(\Delta n(k_F) \) in the momentum distribution function of electrons at the Fermi level as the mass enhancement factor. Figure 1 shows the mass enhancement factor \(1/\Delta n(k_F) \) as functions of \(n_f \) for \(n_f = 1.25, 1.50, \) and \(1.75 \). For a large \(U_{cf} \), \(n_f \) jumps by changing \(\epsilon_f \), that is, a first-order valence transition takes place. We can recognize the first-order transitions by the terminations of lines in Fig. 1. For example, \(n_f \) jumps from 0.65 to 0.96 for \(n_f = 1.50 \) and \(U_{cf}/W = 3 \). The thin lines are the renormalization factor given by Eq. (1), which is derived for the ordinary periodic Anderson model without \(U_{cf} \) with \(g = 1 \). The \(U_{cf} = 0 \) data are almost overlapping with these thin lines. However, we note that \(g \neq 1 \) even for \(U_{cf} = 0 \) in the present theory. In the Kondo regime, i.e., \(n_f \approx 1 \), the mass enhancement factor becomes large, irrespective of \(U_{cf} \), as in the ordinary periodic Anderson model. By increasing \(U_{cf} \) from zero, \(1/\Delta n(k_F) \) deviates from the relation Eq (1). In particular, \(1/\Delta n(k_F) \) is enhanced by the effect of \(U_{cf} \) in the intermediate-valence regime \(n_f \approx 2 - n \) as expected. As a result, the mass enhancement factor varies nonmonotonically as a function of \(n_f \) for a large \(U_{cf} \).
4. Summary
To summarize, we have studied the mass enhancement in the extended periodic Anderson model with the Coulomb interaction U_{cf} between conduction and f electrons. We find that the mass enhancement factor becomes large in the intermediate-valence regime by the effect of U_{cf}. This enhancement results in the nonmonotonic variation of the mass enhancement factor as a function of n_f. This nonmonotonic variation may be relevant to CeCu$_2$Si$_2$ under pressure.

Acknowledgments
This work is supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science.

References
[1] Miyake K, Narikiyo O and Onishi Y 1999 Physica B 259–261 676
[2] Onishi Y and Miyake K 2000 J. Phys. Soc. Jpn. 69 3955
[3] Watanabe S, Imada M and Miyake K 2006 J. Phys. Soc. Jpn. 75 043710
[4] Sugibayashi T, Saiga Y and Hirashima D S 2008 J. Phys. Soc. Jpn. 77 024716
[5] Holmes A T, Jaccard D and Miyake K 2004 Phys. Rev. B 69 024508
[6] Rice T M and Ueda K 1986 Phys. Rev. B 34 6420
[7] Rueff J P, Raymond S, Taguchi M, Sikora M, Itié J P, Baudelet F, Braithwaite D, Knebel G and Jaccard D 2011 Phys. Rev. Lett. 106 186405
[8] Gonçalves da Silva C E T and Falicov L M 1975 Solid State Commun. 17 1521
[9] Gutzwiller M C 1965 Phys. Rev. 137 A1726
[10] Fazekas P and Brandow B H 1987 Phys. Scr. 36 809
[11] Kubo K 2011 J. Phys. Soc. Jpn. 80 063706
[12] Kubo K 2011 Preprint arXiv:1108.3132
[13] Onishi Y and Miyake K 2000 Physica B 281–282 191