The 14th International Conference on Future Networks and Communications (FNC)
August 19-21, 2019, Halifax, Canada

Flexibility Enhancements in Digital Manufacturing by means of Ontological Data Modeling

Richard Otrebskia,*, Dominik Pospisila, Corinna Engelhardt-Nowitzkia, Natalia Kryvinskaa, Mohamed Abuaraia

aUAS Technikum Wien – Department Industrial Engineering, Hochstaedtplatz 6, 1200 Vienna, Austria

Abstract

Cyberphysical production systems are an important part of today’s manufacturing process. The ever-growing need of highly optimized, i.e. at the same time flexible and efficient systems, requires the use of not only appropriate machines, but as well a communication framework and data model that is manufacturer independent and scalable. This paper proposes a communication-framework based on OPC UA that employs an agent-based architecture. The proposed system has been implemented and tested in the Digital Factory of the UAS Technikum Wien. It shows promising behavior within distributed manufacturing systems.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: communication modeling; data modeling; digital manufacturing; OPC UA; CPPS

1. Introduction

The development of efficient and at the same time adaptive production systems is an important concern in industrial manufacturing [13]. The intention is to operate high-performance, robust, flexible and adaptable production systems that are at the same time user-friendly, environmentally compatible and cost-effective. From a business perspective the best possible combination of low cycle times and high throughput and utilization has to be achieved. A critical success factor for an innovative manufacturing environment in this sense is the digitization and interconnectedness of systems, machines, tools, work pieces, products and product components: A flexible production requires a fast and dense information flow in order to adapt the system. The communication of these system elements – cyberphysical systems (CPS) – is based on a large number of sensors that are exchanging messages via the internet, and the subsequent use of the retrieved sensor data for process adjustments [8]. However, the interoperability of the mentioned systems and components requires standardized protocols and interfaces and has to be based on a consistent data model.

* Corresponding author. Tel.: +43 1 333 40 77-957.
E-mail address: otrebski@technikum-wien.at

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2019.08.043
This article uses the example of a ‘Digital Factory’ (DF) [3, 10] of the University of Applied Sciences Technikum Wien (UAS Technikum Wien) to illustrate how theory-driven, abstract data structuring of cyberphysical production systems (CPPS) can support industrial practice, especially process flexibility. The technical equipment is extremely heterogeneous to demonstrate typical industry 4.0 settings. For example, an assembly station consisting of traditional automation components provided by the company SMC is loaded by a Wittman portal robot and subsequently delivers finished work pieces to a mobile robot. This requires the interaction of three different robot systems and corresponding system architectures. Another use case is intelligent routing, in which either the transport robot, the product or the central factory planning software decides between the use of two alternative milling robots. Again, communication between heterogeneous systems is needed. Accordingly, the objective of the present paper is to introduce an ontology-based integrated communication system based on the open platform communications unified architecture (OPC UA) protocol. OPC UA has been chosen as it is a versatile industrial protocol with applications in different levels of the automation pyramid [7]. In addition to continuous and flexible data exchange, the system incorporates new production devices as soon as they are connected and integrates those systems into the manufacturing process. This is accomplished with an agent-based approach [9] and the facilitation of OPC UA features such as the discovery service set.

Our contribution is the combination of different existing approaches into a combined framework.

The Digital Factory corresponds to realistic company scenarios to the extent that not only seven different manufacturers, but also different robot generations are used for production. This enables a multitude of technical concepts and business models regarding production strategies and process planning implications (e.g., both, make-to-stock and make-to-order models can be represented). The technical DF environment consists of fourteen industrial robots and three autonomous mobile robots. The exemplary product to be produced is an axle bearing collar. The workflow is deliberately designed to be logistically sub-optimal in order to represent typical material flow restrictions caused by e.g., unfavorable building architectures or terrain profiles, which are the norm in companies. Each robot performs defined production tasks and can be adapted to different tasks by quickly changing tools. The autonomous transport vehicles use a variety of procedures (e.g. odometry, indoor GPS navigation) to perform their transport tasks efficiently and collision-free within the scope of the respective production strategy.

Without a central ‘communication data model’, which on the one hand organizes the barrier-free data exchange between different production devices and on the other hand ensures that new machines can be integrated quickly and seamlessly, the adaptivity of a factory is limited to operative topics such as the above-mentioned tool change. Similarly, flexibility in the integration of new products and product mix flexibility are limited or at least cause disproportionately high integration costs.

Accordingly, this article illustrates how the contradiction between flexibility and efficiency of a production process, which can often be observed in conventional production scenarios, can be significantly mitigated by systematic ontology-based modeling, using the example of the development of a suchlike data model in the DF of the UAS Technikum Wien.

The remainder of this paper is as follows: section 2 provides introductory considerations with regard to ontological modeling in heterogeneous manufacturing settings. Next, the developed data model is introduced and explained in-depth (section 3). Subsequently, section 4 exemplarily clarifies, how the data model supports the application of technical solutions in order to improve the business logic and performance. We conclude with further considerations as to how systematic data representation, and in particular ontology-based data modeling, enable the objective of efficient and resource-conscious, and at the same time flexible production even in unstable market fields that require a high degree of adaptability (section 5).

2. Definitions and related work

Modern production systems (e.g., robots or computer numerical control (CNC) machines, here referred to as ‘agents’) must be capable to communicate with different and physically distributed systems and subsystems. Manifold contextual circumstances are to be taken into account, e.g. the geographical system position, or necessary interfaces with contract manufacturers or suppliers. This requires a holistic overall architecture of a CPS [6] and should be taken into account when designing and implementing agents. Besides, the need for redundancies and fault tolerance of the
production system needs to be incorporated [12], [14] even implemented a smart factory where the designed ontology
gets users generate a custom product and a reasoner derives the required process steps.

These agents can be either closed systems such as a CNC machine, or another (subordinated) orchestrator, that is
responsible for an entire subsystem (i.e., an agent). Since the orchestrator and the agent provide the same interface,
it is much easier to communicate the data in programming. For cross-system collaboration, an important concept is
to abstract generic ‘skills’, i.e. capabilities that a system can offer, to the manufacturing process, from the specific
technical system properties. Accordingly, [13] depict an architectural approach for an agent-based CPPS. Newly
installed technical components only have to inform the CPPS about their skills to be easily integrated into the production
process. In addition to the skill information, data on operation status (e.g., manufacturing progress, utilization, main-
tenance needs) and start/stop commands need to be exchanged. To match the skills offered by heterogeneous agents
with production requirements, [2] proposes the use of an ontology. This enables generating the production plan. In
short, all agents have to register their skills, using the so-called ‘skilltracker’. A production order is sent to the system
and is coordinated via the ‘productiontracker’. The ‘orchestrator’ communicates with both, skill and production
tracker in order to compile the scheduling of orders to agents with adequate skills and acceptable utilization status
(also with regard to maintenance tasks). The orchestrator represents an order interface that only communicates with
the skill tracker and the production tracker, not directly with the system components.

Comparable to [13], in the DF a collection of multiple agents provides different skills. Here, the orchestrator in
combination with the skill tracker corresponds to the ‘plant agent’ proposed in [13]. Similar, the production tracker
Corresponds to the coordination agent in [13]. Similar to [5], who propose a communication architecture for CPPS,
where the different applications are running on the same machine but in different containers to ensure process isolation
and data integrity on a real-time operating system, also the DF has to serve flexibility requirements close to a real-
time clock pulse. The chosen protocol, OPC UA is an industrial standard that provides a rich service set [7] and serves
as a communication middleware for multi-agent systems [4]. An aggregation server can be used for monitoring and
integrating different information models [4, 1, 11].

3. Communication- and data model

Figure 1 shows the rough communication architecture for the DF. An order is composed of a bill of material
(BOM) and a bill of processes (BOP). The BOM contains the list of necessary parts, semi-finished goods and other
components required for production. The BOP is a list of process steps to be executed to create the product.

The architectural approach is generic, insofar it allows for the application of various planning approaches: For
instance, a scheduling algorithm could be implemented at different system levels – as well centralized (e.g., controlling
the production tracker or the orchestrator) as de-centrally, (e.g., leaving the scheduling decisions to the negotiation of singular agents among each other). Thus, the generic communication path by which the orchestrator handles an incoming order is an enquiry to the skilltracker whether the necessary capabilities are available in the production system. The tracker responds with an adapted BOP in which the possible agent identifiers for each process step are enclosed. In case there is no possible agent for a process step, the order cannot be processed. Otherwise it is forwarded to the production tracker.

Figure 4 shows the entire implementation data model of the Digital Factory as a class diagram. Also, the information flow is mapped.

Figure 2 shows the relationship between the orchestrator and the agent. Both are derived from the same base class and provide basic functions for starting a process (execution), aborting the process, and checking whether a process step is executable. In addition, the agent has a function to update the data of the underlying hardware. Important information required by each component is the pose of the repository, the system status, the elapsed time and the time until the next service interval and the participant’s skill set. This information is visible to each participant in the network. Moreover, each participant needs to know which discovery server to log on to. Discovery servers offer the possibility to manage a list of servers. These servers report periodically to the discovery server. This means that only a single address needs to be known if one wants to communicate with the participants of the network, since all registered servers can be read out.

The pose captures a point and an orientation in three-dimensional space. In addition, a frame is specified. Through the frame it is even possible to integrate different production lines (assuming that the physical transportation issue is solvable). The derived classes need additional information. The agent needs to know the available functionality, the product information of the current product to be manufactured, and a reference to the actual hardware implementation. The product information includes the current OrderID, a universally unique identifier (UUID) type 4 for unambiguous identification of orders, the start time of a production order and the expected end. The hardware implementation is an abstract base class from which each station must be derived. The orchestrator only requires the universal resource identifier (URI) of the associated skilltracker and production tracker of the monitoring subsystem.

Figure 3 shows the most important auxiliary components. The skilltracker regularly checks whether new participants are registered on the discovery server. From these, the skillesets are periodically queried and cached. Hence, the skilltracker offers two functions: One function is checking whether a current process step can be fulfilled. The other function adds the addresses of all agents which can execute a process step to the original production plan. The production tracker triggers the production start of a product, executes a status check to determine whether a manufacturing step has been finished, or the product is faulty. Altogether, the production tracker is responsible for the coordination of the actual production and distributes the work orders to the stations that are not occupied or have a short waiting
queue. In addition to logging in which production stage the various products are, the product tracker also triggers the transport framework for transport between the stations. In the DF, the communication channels are still quite simple at this stage in order to later serve for different planning strategies at the business process level.

4. Application

Currently the Digital Factory includes 14 different stations. The produced axle bearing block consists of 4 parts. The manufacturing process consists of 7 steps and involves in total 8 manufacturing devices. With regard to flexibility, the proposed communication data model allows for flexible scheduling. For instance, one of the two available (and differently equipped) mobile robots has to pick up the pallet with the 4 parts from station 1 at production start. Intelligent path planning now takes the product to the next working step: It is transported to a milling station (a 6-axis robot together with a Pocket NC milling machine or alternatively an ABB robot). Subsequently the pallet is brought to the assembly station, equipped with a portal robot from Wittmann and several actuators and sensors from SMC as well as a PLC from Siemens to assemble the 4 individual parts. Further process steps (quality inspection, packing) are to follow. As meanwhile the mentioned data model helps to coordinate the process and to send the necessary commands for the steps, a flexible path or tool change has been enabled. Integration times for new or alternative machines could be remarkably reduced. Since this progress has only recently been implemented, analyses that quantify the time savings achieved are still pending.

5. Conclusion

With digitalization, networking is becoming increasingly important, so a higher-level data model is an advisable means to simplify, further automate and accelerate the information exchange between devices from different manufacturers. Besides, a precise and semantically rich process monitoring opens up attractive future options for use cases with regards to predictive maintenance, virtual or augmented reality and many other digital technology applications. Not only operational flexibility could be enhanced, but also the structure of the production process could achieve remarkable adaptivity enhancements: as soon as new tools and systems can be integrated seamlessly, the whole production topology could be re-organized within short notice. In the case of the DF, e.g., the milling robot could do physically different tasks, e.g., packing or loading. Similar, the robot in station 1 (currently the interface to the receiv-
With regards to predictive maintenance, virtual or augmented reality and many other digital technology applications.

5. Conclusion

With digitalization, networking is becoming increasingly important, so a higher-level data model is an advisable

Currently the Digital Factory includes 14 di

Queue. In addition to logging in which production stage the various products are, the production tracker also triggers

that quantify the time savings achieved are still pending.

5. Conclusion

With digitalization, networking is becoming increasingly important, so a higher-level data model is an advisable

Currently the Digital Factory includes 14 di

Queue. In addition to logging in which production stage the various products are, the production tracker also triggers

that quantify the time savings achieved are still pending.
ing warehouse and production start) could execute other process steps, only limited by physical restrictions such as weight and working space.

The proposed and implemented system connects different parts of already available components and combines them in a new way. The implementation of the communication framework has proven to work smoothly within the examined use case. We have shown, that the relatively simple framework is able to cope with a distributed manufacturing system. The validation and evaluation of the implemented framework can be shown by integration of new agents and manufacturing of a different product. Further steps are the implementation of smarter planning procedures, such as flexible priority rules an adaptive split between central and de-central control paradigms.

Acknowledgements

We thank our Digital Factory sponsors for their support, in particular ABB, KUKA, FANUC, SMC, FESTO, SIEMENS, WITTMANN, BECKHOFF, Pilz, Sick. The city of Vienna (MA23) deserves thanks for their kind support of the research project ENGINE (MA 23 Project 22-04).

References

[1] Banerjee, S., Großmann, D., 2017. Aggregation of information models — An OPC UA based approach to a holistic model of models, in: 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), IEEE. doi: 10.1109/iea.2017.7939225.

[2] Engel, G., Greiner, T., Seifert, S., 2018. Ontology-assisted engineering of cyber–physical production systems in the field of process technology. IEEE Transactions on Industrial Informatics 14, 2792–2802. doi: 10.1109/tii.2018.2805320.

[3] Engelhardt-Nowitzki, C., Aburaia, M., Markl, E., 2017. Smart manufacturing in the digital factory—a practical case study of an industrie 4.0 implementation, in: EUROCAST, pp. 180–181.

[4] Großmann, D., Bregulla, M., Banerjee, S., Schulz, D., Braun, R., 2014. OPC UA server aggregation – The foundation for an internet of portals, in: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), IEEE. doi: 10.1109/etfa.2014.7005354.

[5] Kaestner, F., Kuschnerus, D., Spiegel, C., Janssen, B., Huebner, M., 2018. Design of an efficient communication architecture for cyber-physical production systems, in: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), IEEE. doi: 10.1109/coase.2018.8560563.

[6] Lee, J., Bagheri, B., Kao, H.A., 2015. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters 3, 18–23. doi: 10.1016/j.mfglet.2014.12.001.

[7] Mahnke, W., Leitner, S.H., Damm, M., 2009. OPC Unified Architecture. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-68899-0.

[8] Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K., 2016. Cyber-physical systems in manufacturing. CIRP Annals 65, 621–641. doi: 10.1016/j.cirp.2016.06.005.

[9] Monostori, L., Váncza, J., Kumara, S.R.T., 2006. Agent-based systems for manufacturing. CIRP Annals 55, 697–720. doi: 10.1016/j.cirp.2006.10.004.

[10] Rauer, J.N., Wöber, W., Aburaia, M., 2019. An autonomous mobile handling robot using object recognition, in: Proceedings of the ARW & OAGM Workshop 2019, TU Graz. doi: 10.3217/978-3-85125-663-5-14.

[11] Seilonen, I., Tuovinen, T., Elovaaara, J., Tuomi, I., Oksanen, T., 2016. Aggregating OPC UA servers for monitoring manufacturing systems and mobile work machines, in: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE. doi: 10.1109/etfa.2016.7733739.

[12] Tomiyama, T., Moyen, F., 2018. Resilient architecture for cyber-physical production systems. CIRP Annals 67, 161–164. doi: 10.1016/j.cirp.2018.04.021.

[13] Vogel-Heuser, B., Diedrich, C., Pantforder, D., Gohnner, P., 2014. Coupling heterogeneous production systems by a multi-agent based cyber-physical production system, in: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), IEEE. doi: 10.1109/indin.2014.6945601.

[14] Wang, S., Wan, J., Li, D., Liu, C., 2018. Knowledge reasoning with semantic data for real-time data processing in smart factory. Sensors 18, 471. doi: 10.3390/s18020471.