Is Phosphine in the Mass Spectra from Venus’ Clouds?

Rakesh Mogul; Sanjay S. Limaye; M. J. Way; Jaime A. Cordova Jr.

1Chemistry & Biochemistry Department, Cal Poly Pomona, Pomona, CA
2University of Madison, Wisconsin, Madison, WI
3NASA Goddard Institute for Space Studies, New York, NY
4Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
5Laboratory of Genetics, University of Wisconsin, Madison, Madison, WI

*Corresponding Author: Rakesh Mogul (rmogul@cpp.edu)

Considering the implications of the reported single spectral line detection of phosphine (PH$_3$) by Greaves et al.1, we were inspired to re-examine data obtained from the Pioneer-Venus Large Probe Neutral Mass Spectrometer (LNMS)$^{2-5}$ to search for evidence of phosphorus compounds. The LNMS obtained masses of neutral gases (and their fragments) at different altitudes within Venus’ clouds. Published mass spectral data2 correspond to gases at altitudes of 50-60 km, or within the lower and middle clouds of Venus – which has been identified as a potential habitable zone$^6-10$. We find that LMNS data support the presence of phosphine; although, the origins of phosphine remain unknown.

As shown in Figure 1, we focused on low-mass species in the range of 15-40 atomic mass units (amu). To estimate the resolution and resolving power of the LNMS, we first compared measured and expected11 masses for CO$_2$, SO$_2$, N$_2$, 40Ar, and 36Ar, which were identified by Hoffman et al.$^{2-4}$. In all cases, measured masses (from the spectra) and expected masses differed by <0.003 amu. As noted by Hoffman and colleagues, the “high-resolution” data allowed for sufficient separation and identification of species including 40Ar (39.965 amu; measured) and C$_3$H$_4$ (40.029 amu; measured) – due to reasonable confidence in the 3rd and 4th significant digits in the amu values. Additionally, sensitivities were stated as “1 part per million (ppm)”3, upper counting rates (or intensities) in the data2 were $\sim 1.8 \times 10^6$ (e.g., CO$_2$), and identities were assigned to mass values with counting rates as low as 9 (e.g., 37Cl)2,3. Moreover, as per our understanding, several chemical identities (“lookup nouns”) were essentially pre-determined (e.g., sulfur, oxygen, O$_2$, H$_2$S, SO$_2$, and CH$_4$) and used to permit microprocessor selection of the mass ranges analyzed during descent.4

In this light, we leveraged the high-resolution data and dynamic range to uncover the presence of phosphine. We note that phosphorous compounds were not reported in the initial analyses2, and that phosphorous has only been detected in Venus’ clouds by the VeGa lander via X-ray diffraction12. To assign chemical identities in the LNMS mass spectra, we assumed a conservative mass unit resolution of \leq0.006 amu, which was 2-fold higher than the noted accuracies. Counting rates for most species were between 10^1-10^5 amu, or within the stated
range of sensitivity. For signals with similar masses, chemical identities were only assigned when the differences between the masses (Δm) was ≥ 0.010 amu. For all comparative mass pairs, these constraints effectively corresponded to a resolving power range of ~700-2600 (resolving power = $m/\Delta m$), which is consistent with the reported value of ≥ 440 (10% valley) for the LNMS.

Under these assumptions, we obtain the following tentative conclusions (Figure 1):

- **Mass spectra show evidence for atomic phosphorous (30.973 amu), sulfur (31.972 amu), and oxygen (15.995 amu), where all measured masses differ from expected masses by ≤ 0.001 amu (P, 30.973907 amu; S, 31.972071 amu; O, 15.995000 amu). These data further confirm acquisition of high-resolution data by the LNMS.**

- **Mass spectra show the presence of PH$_3$ when considering the following:**
 - Atomic phosphorous and sulfur are unambiguously assigned.
 - The signal at 33.992 amu represents PH$_3$ (33.997382 amu), or a composite massa containing roughly equal abundances of PH$_3$ (33.997382 amu) and H$_2$S (33.987721 amu). [Example calculation: 33.992 amu \approx 33.9925516 amu = 50%*33.99738 amu PH$_3$ + 50%*33.987721 amu H$_2$S.]
 - The signal at 32.985 amu represents PH$_2$ (32.989557 amu), or a composite massa containing roughly equal abundances of PH$_2$ (32.989557 amu) and HS (32.979896 amu), which is a fragment of H$_2$S. [Example calculation: 32.985 amu = 32.9847266 amu = 50%*32.989557 amu PH$_2$ + 50%*32.979896 amu HS.]
 - The fragment of PH (31.981732 amu) cannot be detected since it is (A) masked by O$_2$ (31.990 amu, measured; 31.990000 amu, expected) and (B) below the limit of detection, as inferred from the NIST reference spectrum for PH$_3$b, where intensities for PH are \sim15% of the parent ion.
 - When considering deuteriumc, the signal at 35.005 amu is consistent with PH$_2$D as the dominant species, and is inconsistent with the presence of a composite mass including HDS. Any composite mass would fall between the expected mass values of 35.003659

a For potential composite masses, we assume that LNMS had insufficient resolving power ($m/\Delta m > 3400$) to separate the mass pairs of PH$_2$ (32.989557 amu) and HS (32.979896 amu), and PH$_3$ (33.997382 amu) and H$_2$S (33.987721 amu).

b https://webbook.nist.gov/cgi/cbook.cgi?Name=phosphine&Units=SI

c For fragmented species, deuterium was not considered due to kinetic isotope effects, which may enrich hydrogen during the fragmentation reactions (Derrick. P.J., *Mass Spectrom. Rev.* 2 (1983)).
amu for PH$_2$D and 34.993998 amu for HDS. The signal of **35.005 amu** is outside this range, and is greater than the expected mass of PH$_2$D by ~0.001 amu. Further, the counting rate ratio of ~1.6 for PH$_3$/PH$_2$D is consistent with the equilibrium constant for conversion of PH$_2$D to PH$_3$ in liquid water (~1.6)13.

- In the spectra (**Figure 1**), no other masses could be assigned to HDS – the signal at 34.972 amu was ill-matched due to a Δm=0.022 amu, and doubly charged HDS was not present.

- The signals at **34.972** and **36.966 amu** were consistent with 35Cl (34.968853 amu) and 37Cl (36.9659026 amu), which represents a refinement from prior assignments for 35Cl (from 35 amu)3.

- When considered together, exclusion of a composite signal between PH$_2$D and HDS, and lack of detection of HDS, suggests an absence of H$_2$S, or that H$_2$S is much lower in abundance than PH$_3$. By extension, this supports assignment of **33.992** and **32.985 amu** as (predominantly) PH$_3$ and PH$_2$. Further, through re-assignment of chlorine isotopes, the signal at **35.005 amu** was available for interpretation as PH$_2$D.

- Lastly, the mass spectra show potential evidence of several other chemicals that are potentially incompatible with the oxidizing atmosphere of Venus:

 - Reported masses of **16.031**, **15.023**, and **17.026 amu** are consistent with CH$_4$ (16.031300), the CH$_3$ fragment (15.023475 amu), and CH$_3$D (17.037577 amu) or 13CH$_4$ (17.0346548 amu)2.

 - Masses of **29.997** and **15.995 amu** are consistent with NO (29.998074 amu) and atomic oxygen (15.995000 amu); though multiple sources of oxygen are apparent from the counting rates.

 - Masses of **34.005** and **17.002 amu** are consistent with H$_2$O$_2$ (34.005650 amu) and the OH fragment (17.002825 amu).

To conclude, this re-evaluation of Venus’ mass spectra shows the detection of atomic phosphorous as a fragmentation product from a neutral gas. Moreover, the spectra show a tantalizing possibility for the presence of PH$_3$, along with its associated fragments, and singly deuterated parent ion. While intensities of the peaks are low, they are perhaps consistent with the ~20 ppb abundances1 reported by Greaves et al. Together, the tentative assignments suggest that the reported abundances of H$_2$S (from mass spectra) across Venus’ atmosphere may actually be PH$_3$; and that atomic sulfur is derived from SO$_2$. These total interpretations also lend support to the presence of chemicals potentially out of equilibrium in Venus’ clouds (e.g., PH$_3$, O$_2$, CH$_4$, C$_3$H$_4$, NO, H$_2$, and H$_2$O$_2$). We believe this to be an indication of chemistries
not yet discovered, and/or chemistries potentially favorable for life. Looking ahead, and to better understand the potential for disequilibria in the clouds, we require a sustained approach for the exploration of Venus.

Statement of Competing Interests
The authors declare no competing interests.

Statement of Author Contributions
All authors (RM, SSL, MJW, & JAC) contributed to analytical discussions, assisted in preparation of the letter, approved of the submission, and agreed to be accountable for the respective contributions. RM is the corresponding author.

References
1. Greaves, J. S. *et al.* Phosphine gas in the cloud decks of Venus. *Nat. Astron.*, 1-10 (2020).
2. Hoffman, J., Hodges, R., Donahue, T. & McElroy, M. Composition of the Venus lower atmosphere from the Pioneer Venus mass spectrometer. *J. Geophys. Res. Space Phys.*, 85, 7882-7890 (1980).
3. Hoffman, J., Hodges, R., McElroy, M., Donahue, T. & Kolpin, M. Composition and structure of the Venus atmosphere: Results from Pioneer Venus. *Science* 205, 49-52 (1979).
4. Hoffman, J. *et al.* Pioneer Venus sounder probe neutral gas mass spectrometer. *IEEE Trans. Geosci. Remote Sens.*, 80-84 (1980).
5. Hoffman, J., Oyama, V. & Von Zahn, U. Measurements of the Venus lower atmosphere composition: A comparison of results. *J. Geophys. Res. Space Phys.* 85, 7871-7881 (1980).
6. Cockell, C. S. Life on Venus. *Planetary and Space Science* 47, 1487-1501 (1999).
7. Grinspoon, D. & Bullock, M. in *Exploring Venus as a Terrestrial Planet, Astrobiology and Venus Exploration*, (eds L. W. Esposito, E. R. Stofan, & T.E. Cravens), 191-206 (American Geophysical Union, 2007).
8. Limaye, S. S. *et al.* Venus’ Spectral Signatures and the Potential for Life in the Clouds. *Astrobiology* 18, 1181-1198, doi:10.1089/ast.2017.1783 (2018).
9. Schulze-Makuch, D. & Irwin, L. N. Reassessing the Possibility of Life on Venus: Proposal for an Astrobiology Mission. *Astrobiology* 2, 197-202 (2002).
10. Seager, S. *et al.* The Venustian lower atmosphere haze as a depot for desiccated microbial life: A proposed life cycle for persistence of the Venustian aerial biosphere. *Astrobiology* Online Ahead of Print: August 13, 2020, doi:10.1089/ast.2020.2244 (2020).
11. Haynes, W. M. *CRC Handbook of Chemistry and Physics*. 97th Edition edn, (CRC Press, Boca Raton, Florida, 2016).
12. Andreichikov, B., Akhmetshin, I., Korchuganov, B., Mukhin, L. & Ogorodnikov, B. VEGA 1 and 2 X-ray radiometer analysis of the Venus cloud aerosol. *Kosmicheskie Issledovaniia* (1987).
13. Weston Jr., R. E. & Bigeleisen, J. Equilibrium in the Exchange of Hydrogen between Phosphine and Water. *J. Chem. Phys.* 20, 1400-1402, doi:10.1063/1.1700770 (1952).
Figure 1. Tentative assignments in the LNMS mass spectra.

![Mass Spectra Diagram]

Color Scheme:
- blue = PH and fragments
- yellow = H₂S and fragments
- red = H₂ and fragments
- gray = NO and fragments
- purple = CH₄ and fragments
- orange = O₂
- clear = Cl isotopes
- green = potential mixture (PH₃ & H₂S)
- dark gray = potential mixture O₂ and PH₃