Supplementary Materials for

Commonalities and Differences among Symbiosis Islands of Three *Mesorhizobium loti* Strains

Hiroko Kasai-Maita¹,², Hideki Hirakawa¹, Yasukazu Nakamura¹,³, Takakazu Kaneko¹,⁴, Kumiko Miki⁵, Jumpei Maruya⁵,⁶,†, Shin Okazaki⁵,‡, Satoshi Tabata¹, Kazuhiko Saeki⁵, and Shusei Sato¹,²

Supplemental Experimental Procedures

<Sequencing of the symbiosis island of the NZP2037 genome>

BAC library construction. The genome DNA of NZP2037 was partially digested with *MboI* and size fractionated in the 30- to 50-kb size range by pulsed-field gel electrophoresis. The recovered DNAs were ligated with *BamHI* digested pCC1BAC (Epicentre Bio., USA). The ligated DNAs were then used for transformation of *E. coli* EPI300 (Epicentre Bio., USA) by electroporation, and transformants were selected on LB agar plates containing 25 μg/ml chloramphenicol. A total of 3740 clones with an average insert size of 33 kb were generated and arrayed in ninety-three 384 well microtiter plates. The nucleotide sequences of both ends of the BAC clones were analyzed using a Dye-terminator Cycle Sequencing Kit and the 3730XL Sequencer (Applied Biosystems, USA).

Clone selection. Six seed clones were selected based on the end sequence information judging from the similarity to the genes located in the symbiosis island of MAFF303099, i.e. *mlr6171* (*nolO*), *mlr5907* (*nifK*), *mlr6117*, *mlr5786*, *mlr6386* (*nodM*) and *mlr5867* (*nifA*). Walking clones form seed sequence were selected based on
the complete matching of the end-sequence on the seed sequence, and then confirmed by PCR using primer sets designed on the end region of the seed sequence.

DNA sequencing and data assembly. The nucleotide sequence of each BAC insert was determined according to the bridging shotgun method described previously (Sato et al. 1997). Briefly, the BAC DNAs were subjected to sonication followed by size-fractionation on agarose gel electrophoresis. Fractions of approximately 3.0 kb were cloned into pUC118. The plasmid DNA was amplified by TempliPhi (GE Healthcare, UK), and used as a template. Sequencing was performed using the cycle sequencing kits (Dye-terminator Cycle Sequencing kit of Applied Biosystems, USA) with DNA sequences type 3730 (Applied Biosystems, USA) according to the protocol recommended by the manufacturer. The both ends sequences, a total of which correspond to about 6 times equivalent of an insert, were assembled using Phred-Phrap programs (Phil Green, Univ. Washington, Seattle, USA). After extension of the termini of each contig by primer extension method followed by re-connection, the BAC inserts were assembled into a single contig with more than 95% coverage of either both strands or multiple reads on one strand. A lower threshold of acceptability for generation of consensus sequences was set at Phred score 20 for each base.

<Gene assignment, annotation and comparative analysis>

Gene assignment and annotation. Prediction of protein-coding regions was carried out by a combination of four prediction programs: Glimmer 3.02 (Arthur et al. 2007), IMC (*in silico* Molecular Cloning – In Silico Biology, Inc.), MGA (MetaGeneAnnotator) (Noguchi et al. 2008) and the EMBOSS getorf program (http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html). All of the protein-coding regions, with 120 bp or longer in length, were translated into amino acid sequences. The putative protein-encoding genes start with ATG, GTG or TTG codons.
The all predicted genes were denoted following their ordering by a serial number with the prefix ‘mln’. The putative protein-encoding genes were subjected to subsequent similarity searches against the nonredundant (nr) protein database from NCBI using the BLASTP program. Assignment of Clusters of Orthologous Groups of proteins (COGs) of predicted gene products was carried out by BLASTP analysis against the COG reference dataset (http://www.ncbi.nlm.nih.gov/COG/). A BLAST E-value of less than 10^{-4} was considered significant. After filtering, COG assignments of the putative gene products were generated according to COG identification, using the best-hit pair in the reference dataset.

Comparative analysis. Comparison of translated amino acid sequences of the assigned protein-encoding genes in three *M. loti* strains was performed by BLASTP program. The reciprocal BLAST best hit with the threshold of amino acid sequence identity $\geq 70\%$, the threshold of length coverage of the query sequence $\geq 80\%$, and a cut-off E-value $\leq 10^{-4}$ were considered as conserved genes.

<Interaction analysis using T4KO strain>

Deletion-insertion mutagenesis of T4SS gene cluster in *M. loti* NZP2037. An 1199-bp DNA fragment upstream from *virB1* was PCR amplified by Blend Taq DNA polymerase (Toyobo) with primers virB_KO-1, 5’-cttcaattgAAGGCATGCGATCGTGAGGTAC-3’ (underlines indicate MfeI and SphI sites), and virB_KO-2, 5’-AGCACTCGAATTCATGCTAGCTGGGAATGACATGGATGT-3’ (*EcoRI* and *NheI*). The fragment was first cloned into pCR2.1-TOPO vector in reverse orientation to the *lacZα* gene to make pKMS002. The MfeI-HindIII fragment was subcloned to *EcoRI-HindIII*-digested pK18mob suicide vector (Schäfer *et al.* 1994) to make plasmid pKMS005. Simultaneously, a 1772-bp DNA fragment downstream from *virB11* was
similarly amplified with primers virB_KO-3, 5’-
TAGCATGAATTCGAGTGCATGCTACGTCATCGTACCGTTCCGT-3’ (EcoRI), and
virB_KO-4, 5’- cttaagettCGAACGACGCTTAGACTTGT-3’ (HindIII), and was
cloned into pCR2.1-TOPO vector in reverse orientation to the lacZα gene to make
pKMS004. pKMS004 was digested by EcoRI and HindIII, then inserted into
EcoRI-HindIII-digested pKMS005 to make pKMS006. To the sole EcoRI site of
pKMS006, a spectinomycin resistance gene (aadA) derived from pKST001 (Okazaki et
al. 2010) was inserted to make T4SS knockout plasmid pKMS007. Plasmid pKSM007
was transferred into M. loti NZP207 by conjugation using E. coli S17-1. Mutants were
first selected for Spc resistance and then screened for the loss of Km resistance. Mutants
with the expected recombination for deletion of virB1-virB11 were confirmed by PCR
and Southern analysis. One of the confirmed mutants was named DT4SS.

Plant assays. Lotus plants used in this study are listed in Table 4S. Seeds were kindly
provided by the Frontier Science Research Center of the University of Miyazaki, Japan;
by the United States Department of Agriculture Agricultural Research Service; and by
Drs. J.T. Sullivan and C.W. Ronson. For nodulation tests, seeds of Lotus species were
scarified, surface-sterilized by immersion in concentrated sulfuric acid for 3 min, rinsed
10 times with sterile water, and germinated on 0.7% (w/v) agar plates at 24°C in the
dark. After 2 to 3 days, seedlings were transferred to either agar slants made with B&D
nitrogen-free medium and 0.9% agar (Broughton and Dilworth, 1971) or a plant box
(CUL-JAR300; Iwaki, Tokyo, Japan) containing sterile vermiculite watered with B&D
nitrogen-free medium. Inoculation of M. loti strains and plant cultivation were
performed as described previously (Okazaki et al. 2010).

References for Supplemental Experimental Procedures
Arthur, L.D., A.B. Kirsten, C.P. Edwin, and L.S. Steven. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679.

Broughton, W. J. and M. J. Dilworth. 1971. Control of leghemoglobin synthesis in snake beans. Biochem. J. 125:1075–1080.

Noguchi, H., T. Taniguchi, and T. Itoh. 2008. MetaGeneAnnotator: Detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 15:387-396.

Okazaki S., S. Okabe, M. Higashi, Y. Shimoda, S. Sato, S. Tabata, M. Hashiguchi, R. Akashi, M. Göttfert, and K. Saeki K. 2010. Identification and Functional Analysis of Type III Effector Proteins in Mesorhizobium loti. Molecular Plant-Microbe Interactions. 23:223-234.

Sato, S., H. Kotani, Y. Nakamura T. Kaneko, E. Asamizu, M. Fukami, N. Miyajima and S. Tabata. 1997. Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res. 4:215-230.

Schäfer, A., A. Tauch, W. Jäger, J. Kalinowski, G. Thierbach, and A. Pühler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73.
Table S1. Summary of three *M. loti* strains and these numbers of predicted genes classified into 18 Clusters of Orthologous Groups (COGs) categories

	NZP2037	R7A	MAFF303099
host range	broad	narrow	narrow
Isolation country	New Zealand	New Zealand	Japan
symbiosis island length [kb]	533	502	611
GC content [%]	A: 59.5, B: 57.4	59.3	59.7
Number of ORFs	504	414	583*
Information storage and processing	98 (19.4)	49 (11.8)	129 (22.1)
J (Translation, ribosomal structure and biogenesis)	2 (0.4)	4 (1.0)	3 (0.5)
K (Transcription)	38 (7.5)	24 (5.8)	32 (5.5)
L (DNA replication, recombination and repair)	58 (11.5)	21 (5.1)	94 (16.1)
Cellular processes			
D (Cell division and chromosome partitioning)	0	0	0
O (Post translational modification, protein turnover, chaperones)	8 (1.6)	8 (1.9)	7 (1.2)
M (Cell envelope biogenesis, outer membrane)	9 (1.8)	11 (2.7)	10 (1.7)
N (Cell motility and secretion)	20 (4.0)	16 (3.9)	21 (3.6)
P (Inorganic ion transport and metabolism)	5 (1.0)	9 (2.2)	4 (0.7)
T (Signal transduction mechanisms)	10 (2.0)	8 (1.9)	8 (1.4)
Metabolism			
C (Energy production and conversion)	29 (5.8)	25 (6.0)	29 (5.0)
G (Carbohydrate transport and metabolism)	13 (2.6)	16 (3.9)	20 (3.4)
E (Amino acid transport and metabolism)	53 (10.5)	46 (11.1)	59 (10.1)
F (Nucleotide transport and metabolism)	2 (0.4)	2 (0.5)	5 (0.9)
H (Coenzyme metabolism)	27 (5.4)	22 (5.3)	33 (5.7)
I (Lipid metabolism)	8 (1.6)	4 (1.0)	16 (2.7)
Q (Secondary metabolites biosynthesis, transport and catabolism)	27 (5.4)	14 (3.4)	25 (4.3)
Poorly characterized			
R (General function prediction only)	29 (5.8)	25 (6.0)	24 (4.1)
S (Function unknown)	6 (1.2)	7 (1.7)	5 (0.9)
Total	338 (67.1)	255 (61.6)	390 (66.9)
No hits	166 (32.9)	159 (38.4)	193 (33.1)

*: percentage of Total hits number

*One gene was newly predicted between mlr6398 and mlr6400.
The function of this gene is predicted to be the conjugal transfer protein (TrbD).
Table S2. Conserved genes involved in *nodulation* and *nitrogen fixation* in all three *M. loti* strains shown by their locus-tags

Gene	NZP2037	R7A	MAFF303099
Nodulation gene			
nodSACIJ-nolO	*mln393-mln394-mln395-mln396-mln397-mln398*	ML0135, ML0133-ML0132-ML0131-ML0130-ML0129	mlr6161-mlr8755-mlr6163-mlr6164-mlr6166-mlr6171
*nodB, nodD, *nolL, nodD*	*mln403, mln412, *mln414, mln416*	ML0126, ML0122, ML0120, ML0119	mlr6175, mlr6179, mln8757, mlr6182
nodM	*mln475*	ML0038	mlr6386
noeK-nocI	*mln038-mln039*	ML0396-ML0395	mlr5801-mlr5802
nodZ-noeL-nolK	*mln078-mln079-mln080*	ML0366-ML0365-ML0364	mlr5848-mlr5849-mlr8749
Nitrogen fixation genes			
$nifHDKENX$	$mln124-mln125-mln126-mln127-mln128-mln129$	ML0303-ML0302-ML0301-ML0300-ML0299-ML0298	mlr5905-mlr5906-mlr5907-mlr5908-mlr5909-mlr5911
$nifB-fdxN-nifZ-fixU$	$mln085-mln084-mln083-mln082$	ML0358-ML0359-ML0360-ML061	mls8750-mls8750-mls854-mls852
$fixABCX$	$mln090-mln089-mln088-mln087$	ML0353-ML0354-ML0355-ML0356	mls862-mls861-mls860-mls859
$nifSW$	$mln092-mln091$	ML0351-ML0352	mls865-mls864
$fdxB-nifQ$	$mln096-mln097$	ML0347-ML0346	mls869-mls871
nifA	mln086, mln072	ML0357, ML0372	mls857, mls837
$fixNOQP$	mln497-mln498-mln499-mln500	ML0017-ML0016-ML0015-ML0014	mlr6411-mlr6412-mlr6413-mlr6414
$fixGHI$	mln501-mln502-mln503-mln504	ML0013-ML0012-ML0011-ML0010	mlr6415-mlr6416-mlr6417-mlr6418

* Indicates the presence of a putative nod-box as shown in Table S3.

$ Indicates the presence of a putative NifA-binding site.
Table S3. Predicted nod boxes identified in NZP2037 symbiosis island

start	end	direction	Sequence	mismatch	Gene (position)
7651	7699	+	TATCCACCCCATGaoTGACTCAATCAATCCAAACAATCAATGATTTACGgaATCC	3	nodE (7811-9481)
30068	30115	+	CATCCATTCTCGAATGTCTTTTCTATCGAACaATGACTCCCAATCCGAgTTg	9	nodO (30175-31134)
39564	39612	+	TATCCATGCAGGATGCTATTCAATCCAAACAACCAGTTGATGgATCT	4	noeK-noeL (39902-42750)
53640	53687	+	TATCCATGCTGAGGTCAGGTCATCAGCACAAtCTTTGAGTCACCT	6	nodPEG (55287-58909)
54807	54855	+	TATCCACACGGTGTGATGCTATCTGACAAACAACatATTATACATCTCT	3	nodPEG (55287-58909)
58028	58075	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	5	between nodG and nodH
81755	81803	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	0	nodZ-noeL-noeK (82378-85660)
324216	324263	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	5	mln311; outer membrane protease (324354-325322)
342316	342366	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	2	mln326; putative outer membrane protease (342451-343416)
343919	343966	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	4	mln327; putative outer membrane protease (344057-345025)
410973	411021	+	TgcatggCCGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	7	nodS (411332-411940)
412585	412633	+	TATCCACACGGTGTGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	0	nodC12-noeO (412729-418803)
423334	423382	+	TATCCACACGGTGTGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	6	nodA (423810-424469)
431174	431222	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	2	mll (431288-433015)
497522	497570	-	TATCCATGCTGAGGTCAGGTCATCAGCACAAtCTTTGAGTCACCT	5	vrc (494170-496728)
503603	503651	+	TATCCATAGGCGGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC	3	nodM (503748-505571)

Consensus in NGR234: YATCCACACGGTGTGATGCTACATGCAATCCAAACAAGTATTTGATCAGATCC

The nod box consensus sequence in NGR234 shown in van Rhijn and Vanderleyden (1995); R for either A or G; Y replacing U, T, or C; N is for any base.
Table S4. Symbiotic capacity of virB1-virB11 deletion derivative T4KO with three Lotus species.

Host plant	strain inoculated	Total nodules	Plant fresh weight (mg)	n
		average SD	average SD	
1 L. arenarius	wild-type	1.8 2.4 nd nd	4	
	PI631780 T4KO	0.3 0.5 nd nd	4	
2 L. collinus	wild-type	2.7 2.3 nd nd	6	
	PI464658 T4KO	2.5 2.6 nd nd	6	
3 L. conimbricensis	wild-type	19.8 4.7 168 50	9	
	PI283616 T4KO	a4.6 4.9 190 62	9	
4 L. edulis	wild-type	3.8 4.8 nd nd	4	
	PI244281 T4KO	2.0 3.1 nd nd	4	
5 L. flicaulis	wild-type	2.8 1.9 nd nd	8	
	B-37 T4KO	2.6 1.9 nd nd	8	
6 L. glinoides	wild-type	4.1 2.2 nd nd	8	
	PI246736 T4KO	4.1 2.2 nd nd	8	
7 L. hybrid	wild-type	1.7 1.0 nd nd	6	
	PI340798 T4KO	1.5 1.2 nd nd	6	
8 L. japonicus	wild-type	8.3 4.1 438 198	8	
	B-129 T4KO	7.3 3.8 352 172	8	
9 L. japonicus	wild-type	9.5 6.2 522 274	12	
	MG-20 T4KO	8.2 4.0 362 153	12	
10 L. mearnsii	wild-type	1.7 0.8 nd nd	6	
	PI226275 T4KO	2.7 1.8 nd nd	6	
11 L. palustris	wild-type	18.8 6.1 673 216	12	
	PI284674 T4KO	b26.1 9.3 b871 348	12	
12 L. parviflorus	wild-type	2.6 2.1 nd nd	8	
	PI283615 T4KO	2.9 2.1 nd nd	8	
13 L. pedunculatus	wild-type	6.8 3.5 489 183	10	
	cultivar MAKU	T4KO	5.9 3.7 563 292 10	
14 L. pedunculatus	wild-type	3.4 2.9 nd nd	7	
	PI631960 T4KO	2.0 2.9 nd nd	7	
15 L. subflorus	wild-type	4.4 2.4 nd nd	8	
	PI109314 T4KO	2.6 0.7 nd nd	8	
16 L. uliginosus	wild-type	3.3 2.9 nd nd	8	
	PI237188 T4KO	2.9 2.7 nd nd	8	

Nodule numbers and fresh weights were determined 6 to 7 weeks after inoculation of the bacterial strains.

* wild-type > T4KO (P<0.05); * wild-type < T4KO (P<0.05)

nd, not determined; fresh weight was determined only for model host species or hosts with nodulation phenotype significantly dependent on T4SS.
(a): The main portion of symbiosis island.

Symbiosis island A (6,091 to 534,300 bp).

Fig. S1. (a)
Fig. S1. (a) continued
(b): The fragment of symbiosis island.

Information storage and processing
- **J** (Translation, ribosomal structure and biogenesis)
- **K** (Transcription)
- **L** (DNA replication, recombination and repair)

Cellular processes
- **D** (Cell division and chromosome partitioning): Not detected
- **O** (Posttranslational modification, protein turnover, chaperones)
- **M** (Cell envelope biogenesis, outer membrane)
- **N** (Cell motility and secretion)
- **P** (Inorganic ion transport and metabolism)
- **T** (Signal transduction mechanisms)

Metabolism
- **C** (Energy production and conversion)
- **G** (Carbohydrate transport and metabolism)
- **E** (Amino acid transport and metabolism)
- **F** (Nucleotide transport and metabolism)
- **H** (Coenzyme metabolism)
- **I** (Lipid metabolism)
- **Q** (Secondary metabolites biosynthesis, transport and catabolism)

Poorly characterized
- **R** (General function prediction only)
- **S** (Function unknown)
- **No hits**

Fig. S1. The gene map of the symbiosis island of NZP2037 and marginal regions. (a): Main portion of the symbiosis island (Symbiosis island A; 6,091 to 534,300 bp, indicated by the pink bar). (b): Fragment of the symbiosis island (Symbiosis island B; 22,217 to 26,810 bp, indicated by the pink bar). Green bars show the scale in 4 kb with numerals in kb. The predicted genes are indicated by boxes with arrowheads indicating the reading direction. The potential genes whose functions could be evaluated by similarity searches were classified into COG categories and are represented by the different color codes shown at the bottom of the figure. Names of the genes conserved in the symbiosis islands of three *M. loti* strains are indicated in red. Asterisk represents a putative truncated gene. Black bars represent putative insertion sequences (IS) or insertion sequence fragments (ISfr). Red arrows indicate positions of putative nod boxes (detailed information on nod boxes is shown in supplementary Table S3). Violet and green arrows indicate the positions of putative vir boxes and NifA-binding sites, respectively.

Fig. S1. (a) & (b)
Fig. S2. The distribution of GC contents in the sequenced NZP2037 genome regions. GC contents were calculated by using a sliding window size of 5 kb with a step size of 100 bp. The GC contents of the windows are shown in magenta ($\geq 60\%$ GC) and green (<60% GC) bars. Predicted genes are indicated by boxes with arrowheads indicating the reading direction. Green boxes represent conserved genes in symbiosis islands of R7A and MAFF303099. (a) 3' terminal region of symbiosis island A; the estimated border of symbiosis island A is indicated by the vertical hashed line. (b) Symbiosis island B on NZB01N19; the position of the Phe-tRNA gene is indicated by red box, and the estimated borders of symbiosis island B are indicated by the vertical hashed lines.
Fig. S3. Comparative orthologous gene analysis among three *M. loti* strains. The numbers of genes assigned in the symbiosis island are 504, 414, and 583 for NZP2037, R7A, and MAFF303099, respectively. The total nonredundant set of genes is 1078. The number of genes is given inside the circles representing the *M. loti* strains. The overlapping sections indicate shared numbers of genes. The proportion of the entire protein number is shown in parentheses.
Fig. S4. Linear pairwise comparison of regions corresponding to T4SS-related genes in the islands of R7A and NZP2037. Colors indicate the percent nucleotide identity in the alignment output by BLASTN, according to the vertical scale on the right. Arrows indicate the positions of the vir box or nod box sequences in each genome.
Fig. S5. Alignment of the C-terminal 50 amino acid sequences of three NZP2037 proteins in the T4SS region: mln450, mln452, and mln454. Arginine (R) residues in the amino acid sequences are indicated in red. Underlines indicate the consensus motif of the T4SS effector protein; in “R-X(7)-R-X-R-X-R-X-X(n)”, R is R-Arginine, X is another amino acid, and the number in parentheses is the number of repetitions (30).
Fig. S6. Linear pairwise comparison of the genome regions surrounding the genes encoding conserved effector proteins, mln454, mlr6316, and msi059. Colors indicate the percent nucleotide identity in the alignment output by BLASTN, according to the vertical scale on the right. The black and dashed squares indicate the coding region of the secretion system and the conserved gene cluster including cytochrome P450-related genes, respectively.
Fig. S7. Phylogenetic analysis of genes specifically detected in the NZP2037 symbiosis island and expected to contribute to the breadth of the host range. (a) *nodU* and *nolO*, (b) *nodO* (and rhizobial genes for Ca\(^{2+}\)-binding proteins), (c) *nodFE*, and (d) *nodA*. Phylogenetic trees were constructed with MEGA ver. 5.0 by the neighbor-joining method using orthologous gene sequences of other rhizobial members (*M. loti* R7A, *M. loti* MAFF303099, *Rhizobium leguminosarum* bv. *viciae* 3841, *Sinorhizobium meliloti* 1021, *Rhizobium* sp. NGR234, *Bradyrhizobium japonicum* USDA110, and *Azorhizobium caulinodans* ORS571) obtained from Rhizobase (URL=http://genome.kazusa.or.jp/rhizobase/).