Molecular Dynamics Simulations of NMR Relaxation and Diffusion of Heptane Confined in a Polymer Matrix

Arjun Valiya Parambathu, Philip M. Singer, George J. Hirasaki, Walter G. Chapman, and Dilip Asthagiri

Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, USA

(Dated: January 22, 2020)

The mechanism behind the NMR surface relaxation and the large T_1/T_2 ratio of light hydrocarbons confined in the nano-pores of kerogen remains poorly understood, and consequently has engendered much debate. Towards bringing a molecular-scale resolution to this problem, we present molecular dynamics (MD) simulations of 1H NMR relaxation and diffusion of heptane in a polymer matrix, where the high-viscosity polymer is a model for kerogen and bitumen that provides an organic “surface” for heptane. We calculate the autocorrelation function $G(t)$ for 1H-1H dipole-dipole interactions of heptane in the polymer matrix and use this to generate the NMR frequency (f_0) dependence of T_1 and T_2 relaxation times as a function of ϕ_C. We find that increasing molecular confinement increases the correlation time of the heptane molecule, which decreases the surface relaxation times for heptane in the polymer matrix. For weak confinement ($\phi_C > 50$ vol%), we find that $T_{1s}/T_{2s} \simeq 1$. Under strong confinement ($\phi_C \lesssim 50$ vol%), we find that the ratio $T_{1s}/T_{2s} \geq 4$ increases with decreasing ϕ_C, and that the dispersion relation $T_{1s} \propto f_0$ is consistent with previously reported measurements of polymers and bitumen. Such frequency dependence in bitumen has been previously attributed to paramagnetism, but our studies suggests that 1H-1H dipole-dipole interactions enhanced by organic nano-pore confinement dominates the NMR response in saturated organic-rich shales, without the need to invoke paramagnetism.

INTRODUCTION

The traditional interpretation of 1H NMR relaxation times T_1 and T_2 (and implicitly the autocorrelation function $G(t)$ for 1H-1H dipole-dipole interactions) rely on the Bloembergen, Purcell, and Pound (BPP) [1] theory for intra-molecular relaxation by rotational diffusion, Torrey [2] and Hwang and Freed [3] for inter-molecular relaxation by translational diffusion, and, Hubbard [4] and Bloom [5] for spin-rotation relaxation. These early pioneering theories were nevertheless built on strong assumptions regarding the molecular structure and interaction, such as the assumption of rigid molecules without internal motions. In this regard, theories for the effects of internal motions on T_1 and T_2 of ellipsoidal molecules were developed by Woessner [6], and later a more general phenomenological model was developed by Lipari and Szabo [7,8].

Until recently, petro-physicists have been forced to rely on these classical theories to interpret T_1 and T_2 of complex fluids such as crude-oils and bitumen. One of the biggest conundrums has been that at high viscosity, the log-mean T_{1LM} becomes independent of viscosity over temperature (η/T), and (roughly) proportional to the NMR frequency f_0, i.e. $T_{1LM} \propto f_0$ for heavy crude-oils and bitumen [9,11]. To address this, a new phenomenological model [13,14] was developed which uses the Lipari and Szabo model, plus it takes into account the multi-component nature of complex reservoir fluids by modifying the exponent of the frequency dependence in the BPP model. This new phenomenological model successfully accounted for the viscosity and frequency dependence of T_{1LM} for heavy crude-oils, bitumen, and polymer-heptane mixes, without invoking paramagnetism.

Another conundrum has been that at high viscosity, the log-mean T_{2LM} of heavy crude-oils and bitumen has a viscosity dependence of $T_{2LM} \propto (\eta/T)^{-0.5}$ [12,14], which was also observed for pure polymers [16]. Several models have been proposed to account for this behavior [13,17], yet no consensus has yet been reached. Overall, it is clear that the viscosity and frequency dependence of T_{1LM} and T_{2LM} present significant deviations from the classical theories of NMR relaxation of bulk fluids, and that further investigations are required.

A better theoretical understanding of the observed relaxation $T_{1,2}$ in fluids can be achieved if one can split the different relaxation mechanisms such as intra-molecular, inter-molecular, and spin-rotation relaxation. One way to do this experimentally is to perform 1H or 2H NMR on partially deuterated molecules (i.e. partially replace 1H with 2H), such as in the case of glycerol [18], polymer melts [19], or methane [5]. This technique assumes that deuterating does not alter the local molecular dynamics due to changes in the rotational and vibrational modes of the molecule. In the case of methane, the symmetry of the molecule is altered by deuteration, which complicates the interpretation.

Molecular dynamics (MD) simulations have already played a helpful, guiding role in this regard. We have already shown that MD simulations of 1H-1H dipole-dipole relaxation can naturally separate intra-molecular from inter-molecular $T_{1,2}$ for liquid-state n-alkanes and water [20,22], as well as 1H spin-rotation relaxation for methane [23]. Our MD simulations have also shown the effects of internal motions and molecular geometry on $T_{1,2}$ of various hydrocarbons, as well as the differences
in $T_{1,2}$ between methyl and methylene ^1H’s across the n-alkane chain \cite{16, 22}. MD simulations have shed light on the limitations of the classical theories, and they significantly advanced our understanding of $T_{1,2}$ of bulk fluids, without any free parameters or models in the interpretation of the MD simulations.

Aside from bulk fluids, another major conundrum in petro-physics is the origin of the NMR surface relaxation T_{1S} and T_{2S} of fluids confined in organic-rich shales \cite{24–31}. For instance, Ozen and Sigal \cite{24} first reported that light hydrocarbons exhibit large ratios $T_{1S}/T_{2S} \gtrsim 4$ when confined in organic-shale, while small ratios $T_{1S}/T_{2S} \approx 2$ are found for water. While this provides a good contrast mechanism for fluid typing and saturation estimates in organic-rich shale, the mechanism behind this observation is still not well understood. In some cases, $^1\text{H}-^1\text{H}$ dipole-dipole relaxation is thought to be the dominant mechanism \cite{31, 36, 38, 42, 46, 49, 50}, while in other cases surface-paramagnetism is thought to be the dominant mechanism \cite{32, 33, 48, 56}.

In order to shed light on this subject, we present MD simulations of T_1 and T_2 of heptane in polymer-heptane mixtures, where the high-viscosity polymer is a model for kerogen and bitumen that provides an organic “surface” and organic transient “pores” for heptane. Our premise behind this analogy is that the organic matter in kerogen and bitumen is essentially made up of cross-linked polymers (plus aromatics), where cross-linking turns the liquid polymers into highly-viscous bitumen or solid kerogen when more cross-links are present. We simulate the surface-relaxivity parameters p_1 and p_2 for heptane, and the surface-relaxation ratio T_{1S}/T_{2S}, as a function of NMR frequency f_0 and heptane concentration ϕ_{CT} in the polymer-heptane mix. Our MD simulations of T_1, T_2 and diffusion are also compared to previously reported measurements of similar systems \cite{16}.

The rest of this manuscript is organized as follows: section presents the methodology for the polymer-heptane mixtures, MD simulations of diffusion and relaxation, auto-correlation and NMR relaxation, and effects of dissolved oxygen on measurements; followed by the results in section for diffusion of heptane in the mix, intra and inter-molecular relaxation, total relaxation, surface relaxation and relaxation of heptane in the polymer matrix; followed by the conclusions in section.

METHODOLOGY

Polymer-heptane mixtures

An illustration of the polymer-heptane mix is shown in Fig. 1 where n-heptane is used as the representative alkane, and a 16-mer oligomer of poly(isobutene) of molecular mass $M_w = 912$ g/mol is used for the polymer matrix. Poly(isobutene) is based on a Brookfield viscosity standard used in previously reported NMR measurements of polymer-heptane mixes, where the empirical relation $\eta = A M_w^n$ was reported with $\alpha \approx 2.4$ and $A \approx 1.07 \times 10^{-4}$ at ambient temperature \cite{16}. The empirical viscosity relation implies that the simulated poly(isobutene) 16-mer has a viscosity of $\eta \approx 1000$ cP at ambient. Note that M_w and η for the simulations are lower than the measured polymer where $M_w = 9436$ g/mol and $\eta \approx 333-400$ cP at ambient temperature and pressure \cite{16}.

Fig. 1(a) shows the “dissolved” regime corresponding to simulations with low heptane volume fractions $\phi_{CT} < 50$ vol%, where heptane molecules rarely contact other heptane molecules. Fig. 1(b) shows the “pore fluid” regime corresponding to simulations with high heptane volume fractions $\phi_{CT} > 50$ vol% where heptane molecules fill a more conventional pore.

Simulation details

Both n-heptane and the polymer are modeled using the CHARMM General Force Field \cite{58, 59}, which is known to accurately describe the thermophysical properties as well as the NMR relaxation and diffusion properties \cite{20} of hydrocarbons. To construct the simulation system, we first created the structure of n-heptane using Avogadro \cite{60, 61} and poly(isobutene) using the PRO-DRG server \cite{62, 63}. We then created N copies of heptane and M copies of poly(isobutene), and pack them separately at a low density (0.1 g/cm3) using PACKMOL \cite{64, 65}. The initial numbers are chosen considering ideal mixing and using the experimental density of polymer (0.89 g/cm3) \cite{16} and heptane (0.68 g/cm3) \cite{66} NIST at 298.15 K. The numbers are chosen in such a way that 100% polymer corresponds to 40 molecules. The two boxes are then combined to form the initial simulation box. We use the NAMD \cite{67, 68} code to perform the simulations. The equations of motion are integrated using the Verlet algorithm with a time step of 1 fs. To remove possible steric clashes, we minimize the system energy using 1000 steps of conjugate gradient minimization. This starting system is necessarily at a much lower pressure due to the low density. We then compress the system to atmospheric pressure using Langevin dynamics, where the temperature of 298.15 K is controlled using a Langevin thermostat and the pressure of 1 atm. is controlled using a Langevin barostat. Compressing from a low density state also ensures we have a well mixed system. This is critical because relying on diffusive motion to ensure mixing is not recommended for systems with low diffusivity, such as the polymer-alkane melt.

We find that after about 1 ns, all the systems studied here achieve a constant density and temperature. We equilibrate this system at constant temperature (NVT ensemble) for 1 ns. The temperature during this phase
FIG. 1. Illustration of a cross-section of (locally) cylindrical transient “pores” in a poly(isobutene) matrix (black) filled with \(n \)-heptane (red), where only carbon atoms are shown. (a) “Dissolved” regime corresponds to simulations with low heptane volume fractions \(\phi_{C_7} < 50 \text{ vol}\% \) where heptane molecules rarely contact other heptane molecules. (b) “Pore fluid” regime corresponds to simulations with high heptane volume fractions \(\phi_{C_7} > 50 \text{ vol}\% \) where heptane molecules fill a more conventional pore.

was controlled by reassigning velocities (obtained from a Maxwell-Boltzmann distribution) every 250 steps. The subsequent production run was carried out for 10 ns at constant NVE. Frames were archived every 100 steps for analysis. The Lennard-Jones interactions were smoothly switched to zero between from 13\(\text{Å} \) and 14 \(\text{Å} \). We use the particle mesh Ewald procedure to describe electrostatic interactions, with a grid spacing of 0.5 \(\text{Å} \).

Diffusion coefficient

The simulated diffusion coefficient is obtained using the Einstein relation

\[
D_{\text{sim}} = \frac{1}{6} \frac{\delta \langle \Delta r^2 \rangle_L}{\delta t}
\]

where \(\langle \Delta r^2 \rangle \) is the mean-square displacement of the center-of-mass of the molecule as a function of diffusion evolution time \(t \). Following Yeh and Hummer [69] (see also Ref. [20]), we correct the simulated diffusion coefficient for finite size effects using the relation

\[
D_T = D_{\text{sim}} + \frac{k_B T \xi}{6 \pi \eta L}
\]

where \(D_T \) is the diffusion coefficient, \(L \) is the simulation boxlength, \(\eta \) is the shear viscosity, \(T \) is the temperature of the system, \(k_B \) is the Boltzmann constant, and \(\xi = 2.837297 \) is the Madelung constant. The viscosity for the simulated polymer was estimated using correlations developed by Fox and Flory [70, 71] for mono-disperse poly(isobutene). The viscosity of the mixtures were obtained following correlations developed by McAllister [72]. The system-size correction term amounts to around \(\sim 7\% \) for high volume fractions of heptane, and reduces to \(\sim 2\% \) at low fractions.

Auto-correlation and NMR relaxation

The autocorrelation function \(G(t) \) for fluctuating magnetic \(^1\text{H}-^1\text{H} \) dipole-dipole interactions is central to the development of the NMR relaxation theory in liquids [1–3, 73–76]. The details of the derivation of \(G(t) \) can be found in Ref. [20] and only the essential elements are provided below. For an isotropic system, \(G(t) \) is given as:

\[
G_{R,T}(t) = \frac{3}{16} \left(\frac{\mu_0}{4\pi} \right)^2 h^2 \gamma^4 \times \frac{1}{N_{R,T}} \sum_{i \neq j}^{N_{R,T}} \left\langle \frac{3 \cos^2 \theta_{ij}(t + \tau) - 1}{r_{ij}^3(t + \tau)} \frac{3 \cos^2 \theta_{ij}(\tau) - 1}{r_{ij}^3(\tau)} \right\rangle_{\tau}
\]

where \(t \) is the lag time of the autocorrelation, \(\mu_0 \) is the vacuum permeability, \(h \) is the reduced Planck constant, \(\gamma / 2\pi = 42.58 \text{ MHz/T} \) is the nuclear gyromagnetic ratio for \(^1\text{H} \) (spin \(I = 1/2 \)), \(r_{ij} \) is the magnitude of the vector that connects the pair \((i, j)\) \(^1\text{H}-^1\text{H} \) dipoles, and \(\theta_{ij} \) is the polar angle the vector forms with the external magnetic field. The subscript \(R \) refers to autocorrelation of intra-molecular interactions from rotational diffusion, and subscript \(T \) refers to autocorrelation of inter-molecular interactions from translational diffusion. From \(G_{R,T}(t) \), one
can determine the spectral density function $J_{R,T}(\omega)$ by Fourier transform as such:

$$J_{R,T}(\omega) = 2 \int_0^\infty G_{R,T}(t) \cos(\omega t) \, dt,$$

for $G_{R,T}(t)$ in units of s$^{-2}$ [74]. The expressions (which do not assume a molecular model) for T_1 and T_2 are then given by [74] [75]:

$$\frac{1}{T_{1R,1T}} = J_{R,T}(\omega_0) + 4J_{R,T}(2\omega_0),$$

$$\frac{1}{T_{2R,2T}} = \frac{3}{2} J_{R,T}(0) + \frac{5}{2} J_{R,T}(\omega_0) + J_{R,T}(2\omega_0),$$

$$\frac{1}{T_{1,2}} = \frac{1}{T_{1R,2R}} + \frac{1}{T_{1T,2T}},$$

where $J_{R,T}(\omega_0)$ are the spectral densities at the resonance frequency $\omega_0 = 2\pi f_0$. Note that the intra-molecular and inter-molecular rates add to give the total relaxation rate (Eq. 7).

The autocorrelation function $G_{R,T}(t)$ was constructed using fast Fourier transforms, for lag time ranging from 0 ps to 1000 ps in steps of 0.1 ps. The number of distinct pairs of hydrogens analyzed are $\approx 2 \times 10^3$ per time frame for intra-molecular relaxation, and $\approx 4 \times 10^5$ per time frame for inter-molecular relaxation.

The results of the intra-molecular $G_{R}(t)$ and inter-molecular $G_{T}(t)$ are shown in Fig. 2(a) for heptane in the polymer-heptane mix at $\phi_{CT} = 5$ vol\%, and for pure heptane (i.e. $\phi_{CT} = 100$ vol\%). In order to quantify the departure of $G_{R,T}(t)$ from single-exponential decay, we fit $G_{R,T}(t)$ to a sum of multi-exponential decays and determine the underlying probability distribution $P_{R,T}(\tau)$ in correlation times τ. More specifically, we perform an inversion of the following Laplace transform [77, 78]:

$$G_{R,T}(t) = \int_0^\infty P_{R,T}(\tau) \exp(-t/\tau) \, d\tau,$$

$$\tau_{R,T} = \frac{1}{G_{R,T}(0)} \int_0^\infty P_{R,T}(\tau) \tau \, d\tau,$$

$$\Delta \omega_{R,T}^2 = 3G_{R,T}(0),$$

$$J_{R,T}(\omega) = \int_0^\infty \frac{2\tau}{1 + (\omega \tau)^2} P_{R,T}(\tau) \, d\tau,$$

where $P_{R,T}(\tau)$ are the probability distribution functions derived from the inversion, and are plotted in Fig. 2(b). Details of the inversion procedure can be found in [24] and in the supporting information in [21]. The $P_{R,T}(\tau)$ in Fig. 2(b) indicate a set of ~ 5 polymer modes, located at similar τ values for both intra-molecular $P_R(\tau)$ and inter-molecular $P_T(\tau)$ interactions. The intra-molecular $P_R(\tau)$ has an additional mode at short $\tau \approx 10^{-2}$ ps for both the polymer and heptane, while it is absent for $P_T(\tau)$ in both cases. Similar observations at $\tau \approx 10^{-2}$ ps were reported in the supporting information in [21] for liquid-state alkanes.

The decomposition of $G_{R,T}(t)$ into a sum of exponential decays in Eq. 8 is common practice in phenomenological models of complex molecules [79, 80], where the more complex the molecular dynamics, the more exponential terms are required [6, 81]. Also defined are the correlation times $\tau_{R,T}$ (Eq. 9), and the square-root of the
Diffusion of heptane in the mix

Fig. 4 compares the simulated diffusion coefficient against NMR diffusion measurements in the polymer-heptane mixtures. We emphasize that the polymer matrix used experimentally is of considerably higher viscosity ($\eta \approx 333\,400\,\text{cP at ambient}$) than the one used in simulations ($\eta \approx 1000\,\text{cP at ambient}$). Nevertheless, both simulations and measurements show that the diffusion coefficient D_T relative to the value in the bulk D_0 ($= 3.43 \times 10^{-9}\,\text{m}^2/\text{s at ambient}$) is consistent with \cite{82}:

$$\frac{D_T}{D_0} = \frac{1}{\mathcal{T}} = \phi_{C7}^{m-1},$$

where \mathcal{T} is the tortuosity, and $\mathcal{T} = \phi_{C7}^{1-m}$ is Archie’s equation with cementation exponent m. The simulations indicate that $m \approx 3.68$, which agrees well with NMR measurements where $m \approx 3.44$. By comparison, $m = 2$ is predicted in a capillary bundle model \cite{82}. It should be noted however that in the present case the polymer is itself diffusing, and therefore the pore walls are not rigid.

We repeated our calculations for the low volume fractions ($\leq 30\%$) for reproducibility, as we expected biases from our initial configurations. For the lowest volume fractions ($\leq 10\%$), we find the values can vary by a factor of about ~ 5. This serves as a cautionary note in the challenges that remain in simulating systems with very low diffusivity. However, the overall agreement with measurements is encouraging, which gives us confidence in our molecular models and simulation forcefield.

Furthermore, Fig. 4 also shows that the results for heptane in the polymer-heptane mix are consistent with previously reported NMR measurements of water in immature kerogen isolates. This suggests that the high-viscosity polymer is a good model for translational diffusion of fluids in an immature kerogen matrix, which is reasonable given that immature kerogen has fewer cross-links than mature kerogen \cite{83}.

Intra- vs. inter relaxation of heptane

MD simulations can naturally separate intra-molecular $T_{1R,2R}$ from inter-molecular $T_{1T,2T}$ relaxation. In Fig. 5 we show the ratios of T_{1T}/T_{1R} and T_{2T}/T_{2R}, where ratios greater than one indicate that intra-molecular relaxation dominates over inter-molecular relaxation, while ratios less than one indicate the opposite. It is found that intra-molecular relaxation dominates over inter-molecular (i.e. $T_{1T,2T}/T_{1R,2R} > 1$) for $\phi_{C7} \gtrsim 70\,\text{vol\%}$.

Below $\phi_{C7} \lesssim 70\,\text{vol\%}$, inter-molecular relaxation dominates (i.e. $T_{1T,2T}/T_{1R,2R} < 1$), except at high frequencies $f_0 \gtrsim 400\,\text{MHz}$ where the reverse is found for $T_{1T}/T_{1R} > 1$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{(a) Correlation times for the rotational ($\tau_R(t)$) and translational ($\tau_T(t)$) motions as a function of heptane concentration ϕ_{C7}. (b) Square-root of second moment (i.e. strength) of intra-molecular ($\Delta \omega_R$) and inter-molecular ($\Delta \omega_T$) interactions as a function of ϕ_{C7}.}
\end{figure}
The dependence of T_{2T}/T_{2R} on ϕ_{C7} can be loosely described from the results in Fig. 3 alone. According to Eq. 6, the $1/T_{2T,2T} \propto \Delta \omega_{R,T}^2 \tau_{R,T}$, if one ignores the small amount of dispersion in $T_{2R,2T}$. At $\phi_{C7} = 100 \text{ vol}\%$, $\Delta \omega_{R,T}^2$ is a factor ~ 4 larger than $\Delta \omega_{T}^2$, while τ_{R} is a factor $\sim 1/2$ shorter than τ_{T}, which leads to $T_{2T}/T_{2R} \simeq 2$ (i.e. intramolecular relaxation dominates). With decreasing ϕ_{C7}, $\Delta \omega_{R,T}^2$ stay constant (Fig. 3(b)), however τ_{T} becomes larger than τ_{R} (Fig. 3(a)), which leads to $T_{2T}/T_{2R} < 1$ (i.e. inter-molecular relaxation dominates) below $\phi_{C7} \lesssim 70 \text{ vol}\%$. Note that inter-molecular relaxation consists of contributions from both heptane-heptane interactions and polymer-heptane interactions. However below $\phi_{C7} \lesssim 50 \text{ vol}\%$, i.e. in the dissolved region (Fig. 1(a)), heptane molecules do not contact other heptane molecules, therefore the inter-molecular relaxation is dominated by polymer-heptane interactions.

The dependence of T_{1T}/T_{1R} on ϕ_{C7} can be understood using $P_{R,T}(\tau)$ in Fig. 2(b). According to Eq. 11 contributions from $\omega \tau \gg 1$ are negligible compared to those with $\omega \tau \ll 1$. Contributions with $\omega \tau \gg 1$ are often said to be "dispersed out" [34], meaning they do not contribute to relaxation compared to $\omega \tau \ll 1$. For $\phi_{C7} = 5 \text{ vol}\%$ at $f_0 = 400 \text{ MHz}$ this implies that contributions from $P_{R,T}(\tau)$ with $\tau \gg 400 \text{ ps}$ are negligible. In other words, for $\phi_{C7} = 5 \text{ vol}\%$ in Fig. 2(b), the peak at $\tau \simeq 10^4 \text{ ps}$ (where the inter-molecular contribution is larger than intra-molecular contribution) no longer contributes to relaxation $f_0 = 400 \text{ MHz}$, i.e. it is dispersed out. Meanwhile $P_{R}(\tau)$ and $P_{T}(\tau)$ have peaks at similar τ values for $\tau \ll 400 \text{ ps}$, however $P_{R}(\tau)$ is a factor ~ 4 larger in am-

FIG. 5. Ratios of inter-molecular ($T_{1T,2T}$) to intra-molecular ($T_{1R,2R}$) relaxation times at $f_0 = (a) 2.3 \text{ MHz}$, (b) 22 MHz, and (c) 400 MHz, as a function of heptane concentration ϕ_{C7}. Ratios greater than one (dashed lines) indicate that intra-molecular relaxation dominates over inter-molecular relaxation, while ratios less than one indicate the opposite.
The expression for the total relaxation is given in Eq. 7 and is plotted in Fig. 6 as a function of ϕ_C at $f_0 = 2.3$ MHz, 22 MHz, 400 MHz. T_2 decreases monotonically with decreasing ϕ_C, which as shown below is a result of larger surface relaxation due to increased confinement (i.e. a larger surface to pore-volume ratio), and a larger surface relaxation due to increased confinement with decreasing ϕ_C. Likewise, T_1 decreases monotonically with decreasing ϕ_C at $f_0 = 2.3$ MHz and 22 MHz. However at $f_0 = 400$ MHz, T_1 tends to level off with decreasing ϕ_C, which as shown below is due to a constant surface-relaxivity ρ_1 in the dissolved region.

Also shown in Fig. 6 are the measurements compared with simulations, which shows that the overall trends agree. A cross-plot of measurements versus simulations is also shown in Fig. 7 for better comparison. We find good agreement between the measurements and simulations except in two regions: (1) the region $\phi_C \lesssim 50$ vol\% where the measurements are overestimated compared to simulations, and (2) the region $\phi_C \lesssim 10$ vol\% where the simulations are overestimated compared to measurements.

The deviation in the region $\phi_C \lesssim 10$ vol\% is most likely due to the fact that the maximum auto-correlation time for $G_{R,T}(t)$ in Fig. 2(a) is $t_{\max} = 1000$ ps, which limits the accuracy in the inverse Laplace transforms $P_{R,T}(\tau)$ for $\phi_C \lesssim 10$ vol\%. The maximum value of τ_{\max} in $P_{R,T}(\tau)$ is chosen to be a factor ~ 10 larger than the longest acquisition time in the data [74], i.e. $\tau_{\max} = 10 t_{\max} = 10^4$ ps in the present case. This leads to inaccuracies in $P_{R,T}(\tau)$ if there are contributions with $\tau > \tau_{\max}$, which is likely to be the case for $\phi_C \lesssim 10$ vol\%. The solution is to increase t_{\max}, however this is computationally expensive.

The deviation in the region $\phi_C \approx 50$ vol\% is believed to be due to uncertainties in the oxygen concentration in the measurements. This is explored in Appendix , and the proposition only qualitatively improves the agreement with experiments.

Surface relaxation of heptane

The decrease in heptane relaxation times $T_{1,2}$ from their bulk relaxation $T_{1B,2B}$ is due to interactions of heptane with the polymer surfaces. Commonly, this property is analyzed as relaxation induced by the surface itself and termed “surface relaxation”. As indicated in Fig. 1, if we assume the polymer matrix to form “pores” for the heptane molecules, we can interpret the polymer-heptane interactions as “surface” interactions, where the polymer is the confining expensive.

The deviation in the region $\phi_C \approx 50$ vol\% is believed to be due to uncertainties in the oxygen concentration in the measurements. This is explored in Appendix , and the proposition only qualitatively improves the agreement with experiments.

Total relaxation of heptane

The decrease in heptane relaxation times $T_{1,2}$ from their bulk relaxation $T_{1B,2B}$ is due to interactions of heptane with the polymer surfaces. Commonly, this property is analyzed as relaxation induced by the surface itself and termed “surface relaxation”. As indicated in Fig. 1, if we assume the polymer matrix to form “pores” for the heptane molecules, we can interpret the polymer-heptane interactions as “surface” interactions, where the polymer is the confining expensive.

The deviation in the region $\phi_C \approx 50$ vol\% is believed to be due to uncertainties in the oxygen concentration in the measurements. This is explored in Appendix , and the proposition only qualitatively improves the agreement with experiments.
FIG. 7. Correlation cross-plot of measurements vs. simulations of T_1 and T_2 at $f_0 = 2.3$ MHz, 22 MHz, 400 MHz, for various heptane volume fractions ϕ_{C7}.

has a large amount of dispersion. More specifically, the simulations show that T_{1S} is dispersive above $f_0 \gtrsim 10$ MHz, and furthermore that T_{1S} tends towards the functional form $T_{1S} \propto f_0$ (specifically $T_{1S} \times 2.3/f_0 \approx 7$ ms) for $\phi_{C7} \lesssim 50$ vol% and high frequencies $f_0 \gtrsim 500$ MHz. This functional form for T_{1S} dispersion is consistent with the previously reported measurements of polymers and bitumen where $T_{1LM} \propto f_0$ (specifically $T_{1LM} \times 2.3/f_0 \approx 3$ ms) at high viscosities [16]. Remarkably, the universal scaling $T_{1LM} \propto f_0$ found for all bitumen and polymers in the slow-motion regime (i.e. $\omega_0 \tau_R \gg 1$) is also found for T_{1S} of heptane at low volume fractions ($\phi_{C7} \lesssim 50$ vol%) in the polymer matrix. This frequency dependence is in stark contrast to the traditional BPP model where $T_{1LM} \propto f_0^2$ is predicted at high-viscosities [1]. In the case of bitumen and polymers, a phenomenological model was proposed to account for $T_{1LM} \propto f_0$ dispersion at high viscosities [16]. The results in Fig. 8(a) indicate that the same phenomenological model may apply to T_{1S} for heptane under nano-confinement in an organic matrix.

Fig. 8(b) shows that T_{2S} has much less dispersion, as expected. The increase in T_{2S} from low to high f_0 (i.e. from the fast- to slow-motion regime) is given by 10/3, independent of the details in $J_{R,T}(\omega)$. The factor 10/3 can be calculated by comparing Eq. 6 in the fast-motion regime ($\omega_0 \tau \ll 1$) to the slow-motion regime ($\omega_0 \tau \gg 1$) [15]. The resulting T_{1S}/T_{2S} ratio is shown in Fig. 8(c), where $T_{1S}/T_{2S} \simeq 20$ at $f_0 = 400$ MHz for $\phi_{C7} = 5$ vol%.

FIG. 8. Surface relaxations (a) T_{1S}, (b) T_{2S}, and (c) T_{1S}/T_{2S} ratio as a function of frequency f_0, for heptane volume fraction ϕ_{C7} of 5%, 10%, 15%, 20% to 90% in increments of 10%. Dashed blue line in (a) shows dispersion relation $T_{1S} \propto f_0$ (specifically $T_{1S} \times 2.3/f_0 = 7$ ms).
Surface relaxivity of heptane

The surface-relaxivity parameter $\rho_{1,2}$ is given by the following expression [87]:

$$\frac{1}{T_{1S,2S}} = \rho_{1,2} \frac{S}{V_p}$$ \hspace{1cm} (14)

where V_p is the pore volume, S is the surface area of the pore, and $\rho_{1,2}$ are the surface-relaxivity parameters. S and V_p incorporate the geometric factors related pore geometry, while $\rho_{1,2}$ incorporate the surface interactions between heptane and the polymer surfaces. The surface to pore-volume ratio of the polymer matrix is related to the surface to grain-volume ratio of the polymer as such:

$$\frac{S}{V_g} = \frac{1 - \phi_{C7} \phi_{C7} S}{\phi_{C7} V_g}$$ \hspace{1cm} (15)

V_g is the grain volume of the polymer, which MD simulations have previously shown is $S/V_g \approx 0.859 \text{ Å}^{-1}$ for branched alkanes [88], independent of the chain length. d is the equivalent diameter of a cylindrical pore shown in Fig. 1, where we imagine heptane to be extended in a cylindrical pore at high confinement. The diameter of the extended heptane is around $d = 4.2 \text{ Å}$, which corresponds to $\phi_{C7} = 50 \text{ vol}\%$ according to Eq. 15. It is fair to assume that below $\phi_{C7} < 50 \text{ vol}\%$, heptane molecules interact mainly with the polymer surfaces, and can be thought of as being absorbed (i.e. dissolved) in the polymer matrix. Note that Eq. 14 is valid in the small-pore regime, otherwise known as the “fast-diffusion” regime, where $\frac{\rho_{1,2} d}{D_0} \ll 1$ holds. The fast-diffusion regime holds in the present case, as it also does for nano-pore systems such as those found in shale.

Using Eq. 14 and 15 with constant S/V_g results in the following expressions:

$$\frac{1}{\rho_{1,2}} = T_{1S,2S} \frac{1 - \phi_{C7} S}{\phi_{C7} V_g},$$ \hspace{1cm} (16)

$$\frac{T_{1S}}{T_{2S}} = \frac{\rho_2}{\rho_1}.$$ \hspace{1cm} (17)

The resulting ρ_1 and ρ_2 are plotted in Figs. 9(a) and (b), respectively, while the ratio is plotted in Fig. 9(c). Also shown in Fig. 9 is the separation between dissolved and pore-fluid states at $\phi_{C7} = 50 \text{ vol}\%$. The simulations show that the surface-relaxivities ρ_1 and ρ_2 are independent of ϕ_{C7} and f_0 for $\phi_{C7} \gtrsim 50 \text{ vol}\%$, as expected in conventional pores. However below $\phi_{C7} \lesssim 50-60 \text{ vol}\%$, both ρ_1 and ρ_2 increase with decreasing ϕ_{C7}, which we interpret as the “dissolved” region where heptane is no longer in contact with other heptane molecules due to increased confinement in the polymer matrix. We also find that ρ_1 decreases with increasing f_0, i.e. is dispersive, in the dissolved region. The simulations also show that $T_{1S}/T_{2S} \simeq 1$ in the conventional pore-fluid region.
while $T_{1S}/T_{2S} \gtrsim 4$ in the dissolved region which is consistent with previously reported measurements of light hydrocarbons dissolved in kerogen and bitumen.

Fig. 9 also shows measurements of ρ_1, ρ_2, and T_{1S}/T_{2S}, where the trends are consistent with simulations. T_{1S}/T_{2S} is found to be systematically lower for simulations compared to measurements. This discrepancy is attributed to the fact that the simulated polymer in the mix has a lower molecular weight $M_w = 912$ g/mol ($\eta \simeq 1000$ cP at ambient temperatures) compared to the measured polymer in the mix $M_w = 9436$ g/mol ($\eta \simeq 333 400$ cP at ambient temperatures). Nevertheless, both simulations and measurements indicate that T_{1S}/T_{2S} increases with increasing confinement and increasing frequency, indicating that 1H-1H dipole-dipole relaxation enhanced by nano-pore confinement is the dominant surface-relaxation mechanism in saturated organic-rich shales.

CONCLUSION

We report on MD simulations of heptane confined in a polymer-heptane mix as a function of heptane volume fraction ϕ_{CT} in the mix. Our motivation for studying this system is that the high-viscosity polymer acts as a model of kerogen and bitumen, where a decrease in ϕ_{CT} results in an increase in confinement of heptane in the transient organic “nano-pores” of the polymer matrix. MD simulations of the restriction in translational diffusion coefficient D_T/D_0 of heptane in the polymer-heptane mix indicates a power-law dependence $D_T/D_0 \simeq \phi_{CT}^{m-1}$, with an Archie cementation exponent of $m \simeq 3.68$. The simulations agree well with NMR measurements ($m \simeq 3.44$) on similar systems. Furthermore, these findings are consistent with previously reported measurements of water in immature kerogen isolates, which indicate that the high-viscosity polymer is a good model for immature kerogen.

We then report on MD simulations of 1H NMR T_1 and T_2 from 1H-1H dipole-dipole interactions for heptane in a polymer-heptane mix, as a function of heptane volume fraction ϕ_{CT} and NMR frequency f_0. The simulations naturally separate the contributions from intra-molecular $T_{1R,2R}$ (from rotational diffusion) versus inter-molecular relaxation $T_{1T,2T}$ (from translational diffusion). It is found that intra-molecular relaxation dominates over inter-molecular (i.e. $T_{1T,2T}/T_{1R,2R} > 1$) above $\phi_{CT} \gtrsim 70$ vol%. Below $\phi_{CT} \lesssim 70$ vol%, inter-molecular relaxation dominates (i.e. $T_{1T,2T}/T_{1R,2R} < 1$), except at high frequencies $f_0 \gtrsim 400$ MHz where the reverse is found for T_1 relaxation (i.e. $T_{1T}/T_{1R} > 1$).

MD simulations of the total relaxation T_1 and T_2 are found to monotonically decrease with decreasing ϕ_{CT} as a result of increasing confinement of heptane in the mix. The MD simulations are found to be consistent with T_1 and T_2 measurements at $f_0 = 2.3$ MHz, 22 MHz, and 400 MHz. Good agreement is found between measurements and simulation, except in the region around $\phi_{CT} \simeq 50$ vol% where measurements overestimate T_1 and T_2 compared to simulations. We propose that the overestimate from the measurements is a result of a decrease in the concentration of dissolved oxygen at $\phi_{CT} \simeq 50$ vol%, which is qualitatively confirmed by independent MD simulations of the solubility of oxygen in the mix.

We use the MD simulation results to compute the surface-relaxation components T_{1S} and T_{2S} of heptane in the polymer “ pores”. The simulations show that T_{1S} is dispersive above $f_0 \gtrsim 10$ MHz, and furthermore that T_{1S} tends towards the functional form $T_{1S} \propto f_0$ (specifically $T_{1S} \propto 2.3/f_0 \simeq 7$ ms) for $\phi_{CT} \lesssim 50$ vol% and high frequencies $f_0 \gtrsim 500$ MHz. Remarkably, this functional form of the dispersion is consistent with the previously reported measurements of polymers and bitumen where $T_{1LM} \propto f_0$ (specifically $T_{1LM} \propto 2.3/f_0 \simeq 3$ ms) at high viscosities, which is in stark contrast to the traditional BPP model where $T_{1LM} \propto f_0^3$ is predicted at high viscosities [1]. In the case of bitumen and polymers, a phenomenological model was proposed to account for $T_{1LM} \propto f_0$ dispersion at high viscosities [10]. Our findings suggest that the same phenomenological model may apply to the surface relaxation of light hydrocarbons in an organic nano-confined matrix.

The simulations show that the surface-relaxivities ρ_1 and ρ_2 are independent of ϕ_{CT} and f_0 for $\phi_{CT} \gtrsim 50$ vol%, as expected in conventional pores. However below $\phi_{CT} \lesssim 50-60$ vol%, both ρ_1 and ρ_2 increase with decreasing ϕ_{CT}, which we interpret as the “dissolved” region where heptane is no longer in contact with other heptane molecules due to increased confinement in the polymer matrix. We also find that ρ_1 decreases with increasing f_0, i.e. it is dispersive, in the dissolved region. The simulations also show that $T_{1S}/T_{2S} \simeq 1$ in the conventional pore-fluid region, while $T_{1S}/T_{2S} \gtrsim 4$ in the dissolved region which is consistent with previously reported measurements of light hydrocarbons dissolved in kerogen and bitumen.

Measurements of ρ_1, ρ_2, and T_{1S}/T_{2S} show consistent trends with simulations as a function of ϕ_{CT} and f_0, however T_{1S}/T_{2S} is found to be systematically lower for simulations compared to measurements. This discrepancy is attributed to the fact that the simulated polymer in the mix has a lower molecular weight compared to the measured polymer in the mix. Nevertheless, both simulations and measurements indicate that T_{1S}/T_{2S} increases with increasing confinement and increasing frequency, indicating that 1H-1H dipole-dipole relaxation enhanced by nano-pore confinement is the dominant surface-relaxation mechanism in saturated organic-rich shales.
We thank Chevron, the Rice University Consortium on Processes in Porous Media, and the American Chemical Society Petroleum Research Fund (No. ACS-PRF-58859-ND6) for funding this work. We gratefully acknowledge the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy (No. DE-AC02-05CH11231), and the Texas Advanced Computing Center (TACC) at The University of Texas at Austin, for HPC time and support.

Effect of dissolved oxygen on measurements

Solubility is determined by the excess chemical potential. Here we predict the excess chemical potential of O$_2$ in the alkane/polymer mixture using

$$\beta \mu_{O_2}^{ex} = \ln x_0 - \ln p_0 - \ln(e^{-\beta \Delta U})_0$$

which is the quasichemical organization of the potential distribution theorem \[89-91\]. In the above equation, $\ln x_0$ is the work required to move the solvent out of the inner shell defined around the oxygen molecule, $-\ln p_0$ is the work required to create the empty inner shell in the solvent (in the absence of the solute), and $-\ln(e^{-\beta \Delta U})_0$ is the contribution from the interaction of the oxygen with the rest of the solvent when the inner shell is empty. Exploratory calculations show that the interaction between O$_2$ and alkane/polymer matrix is dominated by inner-shell exclusion (steric effects) and long-range van der Waals interactions. To this end, we choose an inner shell cavity that is large enough to accommodate the solute but small enough such that $\ln x_0 = 0$. We make a conservative choice of 2.9 Å for the inner shell radius. Here O$_2$ was modeled using the three site model that has both partial charge and dispersion contribution Ref.

For computing p_0, we first define a cubic grid of size $13 \times 13 \times 13$ Å3. The grid sites are separated by 3 Å. (The simulation boxes are all about 40 Å and hence the grid sits entirely within the simulation cell.) Using the grid sites as reference, we find the number of occurrences for which no carbon atom of the solvent is within 2.9 Å of the grid site. All such sites are archived for further analysis. This calculation also directly provides the probability p_0 of finding a cavity of size 2.9 Å in the hydrocarbon matrix. For the cavities archived from the study above, we compute $-\ln(e^{-\beta \Delta U})_0$ by particle insertion \[99, 102\]. For these calculations, based on the convergence of the free energy, we used only a smaller subset (up to 1000 frames) of the overall 5000 frames. Note that for each site, we also consider three random orientations of the oxygen molecule, further enhancing the statistical reliability.

We obtain the solubility of oxygen in heptane to be 676 ppm. The experiments suggest that the solubility of oxygen in n-heptane is around 132 ppm (by weight) \[93, 94\]. To obtain this value (assuming oxygen partial pressure of 0.21 atm.), we need $\beta \mu_{O_2}^{ex} \approx 5.0$. In energy units, the difference between our computed value and 5.0 is about 0.9 kcal/mol. This small difference may result from deficiencies of the force field itself. However, we suspect the relative solubility trends to be well-captured by our simulations. Since the solubility relative to the bulk is of most interest, in Fig. 10 we show the relative solubility of O$_2$ in the alkane/polymer mixture. Considering the relative solubility also serves to minimize the errors in the absolute solvation values, that are off by a factor of 5.

The relation between the measured $T_{1,2}^{meas}$ and the intrinsic $T_{1,2}$ of interest is given by the following expression \[93\]:

$$\frac{1}{T_{1,2}^{meas}} = \frac{1}{T_{1,2}} + \frac{C_{O_2}}{T_{1O_2,2O_2}}.$$ \[19\]

The measured $T_{1O_2} (= T_{2O_2})$ for pure heptane at ambient conditions are $T_{1O_2} = 2490$ ms, 2620 ms, and 5580 ms at $f_0 = 2.3$ MHz, 22 MHz, and 400 MHz, respectively \[10\]. It was previously shown that T_{1O_2} is roughly constant for solvents with the molecular weight of heptane or higher \[95\]. In other words, $T_{1O_2} (= T_{2O_2})$ in Eq. 19 is assumed to be independent of ϕ_{C7}. As shown in Fig. 7 we find good agreement between simulated $T_{1,2}$ and measured $T_{1,2}$ assuming $C_{O_2} = 1$ for all ϕ_{C7} in Eq. 19.

![FIG. 10. MD simulations of concentration C_{O_2} of dissolved oxygen in the polymer-heptane mix, as a function of heptane volume fraction ϕ_{C7}. C_{O_2} is defined relative to pure heptane ($\phi_{C7} = 100$ vol%), under ambient conditions.](image)

However, as shown in Fig. 10, C_{O_2} decreases at around $\phi_{C7} \approx 50$ vol%, and therefore the assumption

\[\text{ACKNOWLEDGMENTS}\]
FIG. 11. Correlation cross-plot of measurements vs. simulations of T_1 and T_2 at $f_0 = 2.3$ MHz, 22 MHz, 400 MHz, for various heptane volume fractions ϕ_{C7}. Symbols use $C_{O2} = 1$ in Eq. 19 to determine $T_{1,2}$ from measured $T_{1,2}^{\text{meas}}$, while leftmost point of the individual vertical lines uses C_{O2} values from Fig. 10.

that $C_{O2} = 1$ for all ϕ_{C7} may not be accurate. In order to quantify this effect, Fig. 11 shows the measured $T_{1,2}$ using the simulated C_{O2} values as a function of ϕ_{C7} from Fig. 10, the results of which are shown as the leftmost point of the vertical lines in Fig. 11. Using the C_{O2} values from Fig. 10 improves the comparison between measurements and simulations in the region $\phi_{C7} \simeq 50$ vol%, however a discrepancy is then found in the region $\phi_{C7} > 70$ vol%. We note however that the simulated C_{O2} in Fig. 10 are qualitative and designed to capture the overall trends in C_{O2}, namely that C_{O2} decreases around $\phi_{C7} \simeq 50$ vol%, which coincides with the discrepancy between measurements and simulations of $T_{1,2}$ in that region. This gives credibility, though not certainty, to the proposition that variations in C_{O2} with ϕ_{C7} are the cause of the discrepancy between measurements and simulations at $\phi_{C7} \simeq 50$ vol%.
Diffusivity of Water in Kerogen

FIG. 12. Diffusion-T_2 ($D-T_2$) measurement at ambient of water-saturated isolated kerogen pellets from a Kimmeridge outcrop (same kerogen as used in [38, 44]). Right panel shows D projection (red). Upper panel shows the T_2 projection from $D-T_2$ (red), along with full T_2 distribution (blue). The projection from $D-T_2$ (9.5 pu) shows less signal intensity than the full T_2 (35.8 pu) due to limitations in the $D-T_2$ measurement. The diffusion coefficient (taken at the peak of the D distribution) of the inter-granular water is detectable, while the diffusion coefficient for dissolved water is not detectable. Dashed horizontal line is the bulk D_0 for water, while the dashed diagonal line is the bulk alkane line [85].
pore-scale imaging techniques Soc. Petrol. Eng. Well Log Analysts 2015 SPWLA-2015-UUU

[35] Birdwell, J. E.; Washburn, K. E. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry Energy Fuels 2015 29, 2234–2243

[36] Fleury, M.; Romero-Sarmiento, M. Characterization of shales using T1-T2 maps J. Petrol. Sci. Eng. 2016 137, 55–62

[37] Kausik, R.; Fellah, K.; Rylander, E.; Singer, P. M.; Lewis, R. E.; Sinclair, S. M. NMR relaxometry in shale and implications on logging Petrophysics 2016 57 (4), 339–350

[38] Singer, P. M.; Chen, Z.; Hirasaki, G. J. Fluid typing and pore size in organic shale using 2D NMR in saturated kerogen isolates Petrophysics 2016 57 (6), 604–619

[39] Sun, B.; Yang, E.; Wang, H.; Seltzer, S. J.; Montoya, V.; Crowe, J.; Malizia, T. Using NMR to characterize fluids in tight rock unconventional and shale formations Soc. Petrol. Eng. Well Log Analysts 2016 SPWLA-2016-PP

[40] Sondergeld, C.; Tinni, A.; Rai, C.; Besov, A. NMR considerations in shale evaluation Soc. Petrol. Eng. Well Log Analysts 2016 SPWLA-2016-RRR

[41] Yang, D.; Kausik, R. 23Na and 1H NMR relaxometry of shale at high magnetic field Energy Fuels 2016 30 (6), 4509–4519

[42] Zhang, B.; Daigle, H. Nuclear magnetic resonance surface relaxation mechanisms of kerogen Geophysics 2017 82(6), 15–22

[43] Romero-Sarmiento, M.-F.; Ramiro-Ramirez, S.; Berthe, G.; Fleury, M.; Littke, R. Geochemical and petrophysical source rock characterization of the Vaca Muerta formation, Argentina: Implications for unconventional petroleum resource estimations Int. J. Coal Geol. 2017 184, 27–41

[44] Chen, Z.; Singer, P. M.; Kuang, J.; Vargas, M.; Hirasaki, G. J. Effects of bitumen extraction on the 2D NMR response of saturated kerogen isolates Petrophysics 2017 58 (5), 470–484

[45] Valori, A.; den Berg, S. V.; Ali, F.; Abdallah, W. Permeability estimation from NMR time dependent methane saturation monitoring in shales Energy Fuels 2017 31, 5913–5925

[46] Washburn, K. E.; Cheng, Y. Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange J. Magn. Reson. 2017 278, 18–24

[47] Thorn, H.; Horch, C.; Stallmach, F.; Li, B.; Mezzatesta, A.; Zhang, H.; Arro, R. Low-field NMR laboratory measurements of hydrocarbons confined in organic nanoporous media at various pressures Microporous Mesoporous Mater. 2018 269, 21–25

[48] Nicot, J.-P. K. B.; Jolivet, I. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1-T2 and fast field cycling NMR relaxation Microporous Mesoporous Mater. 2018 269, 7–11

[49] Tandon, S.; Heidari, Z. Improved analysis of NMR measurement in organic-rich mudrocks through quantifying hydrogen-kerogen interfacial relaxation mechanisms Soc. Petrolphys. Well Log Analysts 2019 SPWLA-2019-MMM

[50] Xie, H.; Gan, Z. Investigation of physical properties of hydrocarbons in unconventional mudstones using two-dimensional NMR relaxometry Soc. Petrolphys. Well Log Analysts 2019 SPWLA-2019-ZZZ

[51] Song, Y.-Q.; Kausik, R. NMR application in unconventional shale reservoirs - new porous media research frontier Prog. Nucl. Magn. Reson. Spect. 2019 112-113, 17–33

[52] Faux, D.; Kogon, R.; Bortolotti, V.; McDonald, P. Advances in the interpretation of frequency-dependent nuclear magnetic resonance measurements from porous material Molecules 2019 24, 3688

[53] Ye, S.-J.; Scribner, A.; McLendon, D.; Ijasan, O.; Chen, S.; Shao, W.; Balliet, R. Method of determining unconventional reservoir saturation with NMR logging Soc. Petrol. Eng. 2019 SPE-196069-MS

[54] Dang, S. T.; Sondergeld, C. H.; Rai, C. S. Interpretation of nuclear-magnetic resonance response to hydrocarbons: Application to miscible enhanced-oil-recovery experiments in shales Soc. Petrol. Eng. J. 2019 SPE-191144-PA, 302–309

[55] Kanwar, J. S. S.; Tutuncu, A. N.; Yang, Y. A high frequency NMR investigation of Eagle Ford shale cores Unconv. Resources Tech. Conf. 2019 URTeC-203-MS, 1–14

[56] Zhu, F.; Hu, W.; Cao, J.; Ferrante, G.; Pasin, M.; Zhou, B.; Korb, J.-P. Probing dynamics and wettability of water and oil in conventional and unconventional sandstone rock cores by field-cycling NMR relaxometry Energy Fuels 2019 doi.org/10.1021/acs.energyfuels.9b02199

[57] Wang, H.; Sun, B.; Yang, Z.; Seltzer, S. J.; Wigand, M. O. Accurate rock mineral characterization with nuclear magnetic resonance Unconv. Resources Tech. Conf. 2019 URTeC-19-MS, 1–15

[58] Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Gavench, O.; Lopes, P.; Vorobyov, I.; Mackerell Jr., A. D. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields J. Comput. Chem. 2009 30(10), 1545–1614

[59] ParamChem CGenFF 3.0.1 https://cgenff.paramchem.org 2020

[60] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform J. Cheminformatics 2012 4(8), 1–17

[61] Avogadro: an open-source molecular builder and visualization tool, Version 1.2.0 2020 http://avogadro.cc/

[62] SchuÊttelkopf, A. W.; Aalten, D. M. F. V. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes Acta Crystallogr. D 2004 60(8), 1355–1363

[63] GlycoBioChem PRODRG Server http://davapcl.bioch.dundee.ac.uk/cgi-bin/prodrg 2018

[64] Martinez, L.; Andrade, R.; Birgin, E. G.; Martinez, J. M. Packmol: An advanced semantic chemical editor, visualization, and analysis platform J. Comput. Chem. 2009 30, 2157–2164

[65] Institute of Chemistry and Institute of Mathematics, University of Campinas and Institute of Mathematics and Statistics, University of São Paulo PACKMOL http://m3g.iqum.unicamp.br/packmol/home.shtml 2020

[66] Theoretical and Computational Biophysics group, NIH Center for Macromolecular Modeling and Bioinformat
ics, at the Beckman Institute, University of Illinois at Urbana-Champaign NAMD http://www.ks.uiuc.edu/~Research/namd/ 2020

[68] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD J. Comput. Chem. 2005 26(16), 1781–1802

[69] Yeh, I. C.; Hummer, G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions J. Phys. Chem. B 2004 108(40), 15873–15879

[70] Fox, T. G.; Flory, P. J. Viscosity–molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene J. Amer. Chem. Soc. 1948 70(7), 2384–2395

[71] Fox, T. G.; Flory, P. J. Further studies on the melt viscosity of polyisobutylene J. Phys. Chem. 1951 55(2), 221–234

[72] McAllister, R. A. The viscosity of liquid mixtures AIChE J. 1960 6(3), 427–431

[73] Abragam, A. Principles of Nuclear Magnetism Oxford University Press, International Series of Monographs on Physics 1961

[74] McConnell, J. The Theory of Nuclear Magnetic Relaxation in Liquids Cambridge University Press 1987

[75] Cowan, B. Nuclear Magnetic Resonance and Relaxation Cambridge University Press 1997

[76] Kimmich, R. NMR Tomography, Diffusometry and Relaxometry Springer-Verlag 1997

[77] Venkataramanan, L.; Song, Y.-Q.; Hürlimann, M. D. Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions IEEE Trans. Sig. Process. 2002 50 (5), 1017–1026

[78] Song, Y.-Q.; Venkataramanan, L.; Hürlimann, M. D.; Flaum, M.; Frulla, P.; Straley, C. T₁-T₂ correlation spectra obtained using fast two-dimensional laplace inversion J. Magn. Reson. 2002 154, 261–268

[79] Beckmann, P. A. Spectral densities and nuclear spin relaxation in solids Phys. Rep. 1988 171 (3), 85–128

[80] Bakhmutov, V. I. NMR Spectroscopy in Liquids and Solids CRC Press, Taylor & Francis Group 2015

[81] Woessner, D. E. Spin relaxation processes in a two-proton system undergoing anisotropic reorientation J. Chem. Phys. 1962 36 (1), 1–4

[82] Dunn, K.-J.; Bergman, D. J.; LaTorraca, G. Handbook of Geophysical Exploration, Seismic Exploration volume 32 chapter Nuclear Magnetic Resonance Petrophysical and Logging Applications, 1–293 Pergamon, Elsevier Science 2002

[83] Liu, J.; Chapman, W. G. Thermodynamic model of the equilibrium partitioning of hydrocarbons in nanoporous kerogen particles Energy Fuels 2019 33 (2), 891–904

[84] Caravan, P.; Elliston, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications Chem. Rev. 1999 99, 2293–2352

[85] Lo, S.-W.; Hirasaki, G. J.; House, W. V.; Kobayashi, R. Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures Soc. Petrol. Eng. J. 2002 7 (1), 24–34

[86] Shikhov, I.; Ars, Temperature-dependent oxygen effect on NMR D-T₂ relaxation-diffusion correlation of n-alkanes Appl. Magn. Reson. 2016 47 (12), 1391–1408

[87] Brownstein, K. R.; Tarr, C. E. Importance of classical diffusion in NMR studies of water in biological cells Phys. Rev. A 1979 19 (6), 2446–2453

[88] Lekomtsev, A. S.; Chernyshev, I. V. Volume and surface area of alkane molecules and their solvation enthalpies Russ. J. Gen. Chem. 2002 72 (5), 696–700

[89] Paulaitis, M. E.; Pratt, L. Hydration theory for molecular biophysics Adv. Protein Chem. 2002 62, 283–310

[90] Beck, T. L.; Paulaitis, M. E.; Pratt, L. R. The potential distribution theorem and models of molecular solutions Cambridge University Press 2006

[91] Pratt, L. R.; Asthagiri, D. Potential distribution methods and free energy models of molecular solutions in C. Chipot; A. Pohorille, editors, Free Energy Calculations: Theory and Applications in Chemistry and Biology chapter 9, 323–351 Springer series in Chemical Physics, Springer: Berlin, DE 2007

[92] Widom, B. Potential-distribution theory and the statistical mechanics of fluids J. Phys. Chem. 1982 86(6), 869–872

[93] Miyamoto, H.; Yampolski, Y.; Young, C. L. Iupac-nist solubility data series. 103. oxygen and ozone in water, aqueous solutions, and organic liquids (supplement to solubility data series volume 7) J. Phys. Chem. Ref. Data 2014 43(3), 033102

[94] Hesse, P. J.; Battino, R.; Scharlin, P.; Wilhelm, E. Solubility of gases in liquids. 20. solubility of He, Ne, Ar, Kr, N₂, O₂, CH₄, CF₄, and SF₆ in n-alkanes n-CₙH₂n+2 (6 ≤ l ≤ 16) at 298.15 K J. Chem. Eng. Data. 1996 41(2), 195–201

[95] Teng, C.-L.; Hong, H.; Kühne, S.; Bryant, R. G. Molecular oxygen spinlattice relaxation in solutions measured by proton magnetic relaxation dispersion J. Magn. Reson. 2001 148, 31–34