A report of 31 unrecorded bacterial species in South Korea belonging to the class Gammaproteobacteria

Yong-Taek Jung¹, Jin-Woo Bae², Che Ok Jeon³, Kiseong Joh⁴, Chi Nam Seong⁵, Kwang Yeop Jahng⁶, Jang-Cheon Cho⁷, Chang-Jun Cha⁸, Wan-Taek Im⁹, Seung Bum Kim¹⁰ and Jung-Hoon Yoon¹,*

¹Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
²Department of Biology, Kyung Hee University, Seoul 02447, Korea
³Department of Life Science, Chung-Ang University, Seoul 06974, Korea
⁴Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Korea
⁵Department of Biology, Sunchon National University, Suncheon 57922, Korea
⁶Department of Life Sciences, Chungbuk National University, Jeonju-si 54896, Korea
⁷Department of Biological Sciences, Inha University, Incheon 22212, Korea
⁸Department of Biotechnology, Chung-Ang University, Anseong 17546, Korea
⁹Department of Biotechnology, Hankyong National University, Anseong 17579, Korea
¹⁰Department of Microbiology, Chungnam National University, Daejeon 34134, Korea

*Correspondent: jhyoon69@skku.edu

During recent screening to discover indigenous prokaryotic species in South Korea, a total of 31 bacterial strains assigned to the class Gammaproteobacteria were isolated from a variety of environmental samples including soil, tidal flat, freshwater, seawater, and plant roots. From the high 16S rRNA gene sequence similarity (> 98.7%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 31 species have been described in South Korea; therefore 5 species of 3 genera in the order Alteromonadales, 11 species of 3 genera in the order Pseudomonadales, 8 species of 6 genera in the order Enterobacteriales, 2 species of 1 genera in the order Vibrionales, 1 species of 1 genera in the order Oceanospirillales, 3 species of 3 genera in the order Xanthomonadales, and 1 species in the order Spongiibacter_o within the Gammaproteobacteria are reported for proteobacterial species found in South Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

Keywords: 16S rRNA gene, bacterial diversity, Gammaproteobacteria, prokaryote, unrecorded species

INTRODUCTION

Microorganisms, including prokaryotes, are estimated to occupy more than approximately 60% of total biomass on earth and are most important organisms to sustain ecological system on earth. They are currently being utilized as the most valuable resources in biotechnology and demands of novel and useful microorganisms are estimated to increase in the futures due to their high economic values. Nevertheless, majority of microorganisms existing in nature has been known to be uncultured in laboratory, because the current cultivation methods can cultivate only small fraction (<0.1%) of microbial cells (Delong et al., 1989; Giovannoni et al., 1990). Since the value on biodiversity is becoming important increasingly, many attempts have been made to find novel microorganisms that have not been yet discovered (Connon & Giovannoni, 2002; Cho & Giovannoni, 2004; Yoon et al., 2011). At a time of writing, approximately 12,400 prokaryotic species with validly published names have been described (Parte, 2014).

In 2013, we collected a variety of environmental samples in South Korea and isolated a number of novel bacterial species and unrecorded bacterial species from them. The identified bacterial species belonged to the
classes/phyla *Alphaproteobacteria*, *Betaproteobacteria*, *Gammaproteobacteria*, *Bacteroidetes*, *Firmicutes* and *Actinobacteria*. Of these bacterial species, the present report focuses on the descriptions of unrecorded species belonging to the *Gammaproteobacteria*. The class *Gammaproteobacteria* is the largest class in the phylum *Proteobacteria* and currently composed of 16 orders. It this study, we report 31 unrecorded bacterial species in South Korea belonging to 10 families of 7 orders in the *Gammaproteobacteria*.

MATERIALS AND METHODS

A total of 31 bacterial strains assigned to the class *Gammaproteobacteria* were isolated from diverse environmental samples including tidal flat, freshwater, seawater, plant roots, ginseng field and air bladder of fish (Table 1). Each environmental sample was processed separately, spread onto diverse culture media including R2A, Marine Agar 2216 and Tryptic Soy Agar, and incubated at 25-30°C for 2-10 days (Table 1). The designated strain IDs, sources, culture media, and incubation conditions are summarized in Table 1. All strains were purified as single colonies and stored as 10-20% glycerol suspension at -80°C as well as lyophilized ampoules.

Colony morphology of the strains was observed on agar plates with a magnifying glass after cells grew up to stationary phase. Cellular morphology and cell size were examined by either transmission electron microscopy or scanning electron microscopy. Gram staining was performed using a Gram-staining kit or the standard procedures. Biochemical characteristics were tested by using API 20NE galleries according to the manufacturer’s instructions.

Bacterial DNA extraction, PCR amplification and 16S rRNA gene sequencing were performed using the standard procedures described elsewhere. The 16S rRNA gene sequences of the strains assigned to the *Gammaproteobacteria* were compared with the sequences held in GenBank by BLASTN and also analyzed using the EzTaxon-e server (Kim et al., 2012). For phylogenetic analyses, alignment of sequences was carried out with CLUSTAL W software (Thompson et al., 1994). Gaps at the 5’ and 3’ ends of the alignment were omitted from further analysis. Phylogenetic trees were inferred by using three tree-making algorithms: the neighbour-joining (Saitou & Nei, 1987), maximum-likelihood (Felsenstein, 1981) and maximum-parsimony (Kluge & Farris, 1969) methods implemented within the PHYLIP package (Felsenstein, 1993). Evolutionary distance matrices for the neighbour-joining method were calculated by using the algorithm of Jukes & Cantor (1969) with the program DNADIST. The stability of relationships was assessed by bootstrap analysis based on 1000 resamplings of the neighbour-joining dataset by using the programs SEQBOOT, DNADIST, NEIGHBOR and CONSENSE of the PHYLIP package.

RESULTS AND DISCUSSION

Strains assigned to the Gammaproteobacteria

On the basis of 16S rRNA gene sequence comparisons and phylogenetic analyses, a total of 31 strains were assigned to the class *Gammaproteobacteria*. The 31 strains were distributed in 7 orders of the *Gammaproteobacteria*: 11 strains for the *Pseudomonadales*, 8 strains for the *Enterobacteriales*, 5 strains for the order *Aleromonadales*, 3 strains for the *Xanthomonadales*, 2 strains for the *Vibrionales*, 1 strain for the *Oceanospirillales*, and 1 strain for the *Spongibacter_*. These strains were Gram-staining-negative, chemoheterotrophic, and rod-shaped bacteria except for strain WSW-MW5 showing coccoid-shaped (Fig. 1). Colony size, morphology, and physiological characteristics are also shown in the species description section.

A total of 11 strains were assigned to the order *Pseudomonadales*: 9 strains for the family *Pseudomonadaceae* and 2 strains for the *Moraxellaceae* (Fig. 2, Table 1). All strains assigned to the family *Pseudomonadaceae* belonged to the genus *Pseudomonas* and were isolated mainly from terrestrial ecosystem. Phylogenetic analyses based on 16S rRNA gene sequences showed that 9 strains are members of the following species of the genus *Pseudomonas*: *Pseudomonas alcaligenes* (Monias, 1928), *Pseudomonas borborei* (Vanparys et al., 2006), *Pseudomonas deceptionensis* (Carrión et al., 2011), *Pseudomonas ficuserectae* (Goto, 1983), *Pseudomonas frederiksi* (Andersen et al., 2000), *Pseudomonas libanensis* (Dabboussi et al., 1999), *Pseudomonas mediterranea* (Catara et al., 2002), *Pseudomonas reinkei* (Cámara et al., 2007) and *Pseudomonas rhodesiae* (Cororler et al., 1996). Two strains of the family *Moraxellaceae* belonged to *Enhydrobacter aerosaccus* (Staley et al., 1987) and *Psychrobacter pulmonis* (Vela et al., 2003).

The strains in the order *Enterobacteriales* (Fig. 3) isolated from this study were isolated mainly from terrestrial ecosystem (Table 1). Based on the phylogenetic analyses showing robust clades (Fig. 3) and comparative sequence analyses representing high 16S rRNA gene sequence similarities with the closest relatives (Table 1), it was found that the strains in the order *Enterobacteriales* belonged to 8 separate species: *Enterobacter mori* (Zhu et al., 2011), *Kosakonia cowanii* and *Kosakonia oryzae* (Brady et al., 2013), *Klebsiella michiganensis* (Saha et
Table 1. Summary of strains isolated belonging to the class *Gammaproteobacteria* and their taxonomic affiliations.

Phylum	Family	Genus	Strain ID	NIBR ID	Most closely related species	Similarity (%)	Isolation source	Medium	Incubation conditions
Chromatiaceae	Rheinheimera	HME9414	NIBRBA0000114409	Rheinheimera tilapiae	99.6	Water	R2A	30°C, 2 days	
Marinobacter_f		IMCC2016	NIBRBA0000114261	Marinobacter hydrocarbonoclasticus	99.9	Sea water	MA	30°C, 3 days	
Marinobacter_f		JW17	NIBRBA0000114374	Marinobacter pelagius	99.4	Tidal flat	MA	25°C, 2 Days	
Marinobacter_f		HME9331	NIBRBA0000114407	Marinobacter lipolyticus	99.4	Sea water	MA	30°C, 2 days	
Pseudoalteromonadaceae	Pseudoalteromonas	IMCC1859	NIBRBA0000114255	Pseudoalteromonas issachenkonii	99.5	Sea water	MA	25°C, 3 Days	
Enterobacteriaceae	Enterobacter	SJ3-2	NIBRBA0000114372	Enterobacter maritimus	99.5	Tidal flat	MA	25°C, 2 Days	
	Klebsiella	DT1-05	NIBRBA0000114176	Klebsiella michiganensis	99.7	Tall smartweed root	TSA	30°C, 2 Days	
		DR3-01	NIBRBA0000114190	Klebsiella pneumoniae subsp. rhinoscleromatis	99.5	Dandelion root	R2A	30°C, 3 Days	
	Kosakonia	DT1-04	NIBRBA0000114175	Kosakonia cowanii	99.8	Tall smartweed root	TSA	30°C, 2 Days	
		SR3-03	NIBRBA0000114196	Kosakonia oryzae	99.5	Evening primrose root	R2A	30°C, 3 Days	
	Pleiromonas	MBB2-1	NIBRBA0000114150	Pleiromonas shigelloides	99.9	Air (air bladder)	R2A	25°C, 2 Days	
	Rhizobium	MDY2F18	NIBRBA0000114149	Rhizobium aquaticus	99.7	Fresh water	R2A	25°C, 2 Days	
	Serratia	ST6-03	NIBRBA0000114184	Serratia nematophila	99.5	Canadian horseweed root	TSA	30°C, 2 Days	
Halomonadaceae	Salinicola	IMCC20105	NIBRBA0000114260	Salinicola salinaris	99.6	Seawater	MA	25°C, 5 Days	
Moraxellaceae	Enhydrosoma	WS5	NIBRBA0000114430	Enhydrosoma aerophilus	99.4	Fresh water	R2A	25°C, 3 Days	
	Psychrobacter	WW126	NIBRBA0000114443	Psychrobacter profundus	99.8	Fresh water	R2A	25°C, 3 Days	
Pseudomonadaceae	Pseudomonas	DT1-03	NIBRBA0000114174	Pseudomonas frederiksenii	99.9	Tall smartweed root	TSA	30°C, 2 Days	
		DT5-05	NIBRBA0000114178	Pseudomonas reinekei	99.7	Canadian horseweed root	TSA	30°C, 2 Days	
		SR4-03	NIBRBA0000114198	Pseudomonas mediterranea	99.2	Evening primrose root	R2A	30°C, 3 Days	
Strain ID	NIBR ID	Isolation source	Medium	Incubation conditions					
----------	---------	------------------	--------	-----------------------					
MBM1	NIBRBA0000114144	25℃, 10 Days	MA	3℃, 10 Days					
MBM1	NIBRBA0000114144	25℃, 10 Days	MA	3℃, 10 Days					
MBM1	NIBRBA0000114144	25℃, 10 Days	MA	3℃, 10 Days					
MBM1	NIBRBA0000114144	25℃, 10 Days	MA	3℃, 10 Days					

Description of Pseudomonas frederiksbergensis DT1-03

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, glistening, moist, and beige-colored after 2 days of incubation on TSA at 30℃. Positive for nitrate reduction, arginine dehydrogenase, esculin hydrolysis, gelatin hydrolysis, and negative for indole production, glucose fermentation, urease, and ß-galactosidase in API 20NE. D-glucose, L-arabinose, D-mannose, D-mannitol, L-lysine, D-glucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate are utilized. Strain DT1-03 (= NIBRBA0000114174) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.

Description of Enterobacter cowanii DT1-04

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, glistening, moist, and yellow colored after 2 days of incubation on TSA at 30℃. Positive for nitrate reduction, arginine dehydrogenase, esculin hydrolysis, gelatin hydrolysis, and negative for indole production, glucose fermentation, urease, and ß-galactosidase in API 20NE. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate are utilized. Strain DT1-03 (= NIBRBA0000114174) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.
Fig. 1. Transmission electron micrographs or scanning electron micrographs of cells of the strains isolated in this study. Strains: 1, DT1-03; 2, DT1-04; 3, DT1-05; 4, DT5-05; 5, ST6-03; 6, DR3-01; 7, SR3-03; 8, SR4-03; 9, SR6-02; 10, Gsoil 852; 11, MBM1; 12, MDY2F18; 13, MBB2-1; 14, J9010; 15, IMCC1859; 16, IMCC20105; 17, IMCC20160; 18, IMCC20164; 19, IMCC20180; 20, MWS24; 21, NMWL17; 22, SD19; 23, B-12; 24, SJ3-2; 25, JW17; 26, HME9287; 27, HME9331; 28, HME9414; 29, HME9429; 30, WS85; 31, WW126.
on TSA at 30°C. Positive for nitrate reduction, glucose fermentation, esculin hydrolysis, gelatin hydrolysis and β-galactosidase, but negative for indole production, arginine dihydrolase and urease in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize capric acid, adipic acid and phenylacetic acid. Strain DT1-04 (= NB- BRBA0000114175) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.

Description of *Klebsiella michiganensis* DT1-05

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are irregular, glistening, viscous, and beige colored after 2 days of incubation on TSA at 25°C. Positive for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatin hydrolysis and β-galactosidase in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize adipic acid. Strain DT1-05 (= NB- BRBA0000114178) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.

Description of *Pseudomonas reinekei* DT5-05

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, glistening, moist and beige colored after 2 days of incubation on TSA at 30°C. Negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase and urease in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, malic acid, trisodium citrate, and phenylacetic acid are utilized. Does not utilize adipic acid. Strain DT5-05 (= NB- BRBA0000114178) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.

Description of *Chromobacterium aquaticum* ST6-03

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, glistening, moist, and beige colored after 2 days of incubation on TSA at 30°C. Positive for nitrate reduction, glucose fermentation, esculin hydrolysis, gelatin hydrolysis and β-galactosidase, but negative for indole production, arginine dihydrolase and urease in API 20NE. D-Glucose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-malt-
ose, potassium gluconate, capric acid, malic acid, trisodium citrate, and phenylacetic acid are utilized. Does not utilize L-arabinose and adipic acid. Strain ST6-03 (=NIBRBA0000114184) has been isolated from plant roots sample, Daejeon, Korea.

Description of Klebsiella pneumoniae subsp. rhinoscleromatis DR3-01

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and short-rod-shaped. Colonies are circular, undulate, pulvinate, and white colored after 3 days on R2A at 30°C. Positive for nitrate reduction, indole production, glucose fermentation, urease, esculin hydrolysis and β-galactosidase, but negative for arginine dihydrolase and gelatin hydrolysis in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize adipic acid. Strain DR3-01 (=NIBRBA0000114190) has been isolated from plant roots sample, Daecheongho-lake, Daejeon, Korea.

Description of Enterobacter oryzae SR3-03

Cells are Gram-staining-negative, flagellated, non-pigmented, and short-rod-shaped. Colonies are circular, entire, smooth and pale yellow colored after 3 days on R2A at 30°C. Positive for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, esculin hydrolysis, gelatin hydrolysis, and β-galactosidase, but negative for urease in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize capric acid, adipic acid, and phenylacetic acid. Strain SR3-03 (=NIBRBA0000114196) has been isolated from plant roots sample, Daejeon, Korea.

Description of Pseudomonas mediterranea SR4-03

Cells are Gram-staining-positive, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, entire, smooth and dark yellow colored after 3 days on R2A at 30°C. Positive for gelatin hydrolysis, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, and β-galactosidase in API 20NE. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate are utilized. Does not utilize adipic acid. Strain DR3-01 (=NIBRBA0000114190) has been isolated from plant roots sample, Daejeon, Korea.

Description of Pseudomonas rhodesiae SR6-02

Cells are Gram-staining-negative, non-flagellated, pigmented, and rod-shaped. Colonies are circular, entire, umbonate, and ivory colored after 3 days on R2A at 30°C.
Positive for nitrate reduction, arginine dihydrolase, esculin hydrolysis and gelatin hydrolysis, but negative for indole production, glucose fermentation, urease, and β-galactosidase in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate is utilized. Does not utilize D-maltose, adipic acid, and phenylacetic acid. Strain SR6-02 (=NIBRBA0000114202) has been isolated from plant roots sample, Daejeon, Korea.

Description of Dyella japonica Gsoil 852

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised, entire, and white colored after 2 days on R2A at 25°C. Positive for nitrate reduction, arginine dihydrolase, urease, esculin hydrolysis, gelatin hydrolysis and β-galactosidase, but negative for indole production, and glucose fermentation in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate, and phenylacetic acid. Does not utilize capric acid, and adipic acid. Strain Gsoil 852 (=NIBRBA0000114223) has been isolated from soil sample, ginseng cultivating filed, Pocheon, Korea.

Description of Vibrio lentus MBM1

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, raised, entire and yellow colored after 2 days on MA at 25°C. Positive for esculin hydrolysis, gelatin hydrolysis, and β-galactosidase, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, and urease in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-Mannitol N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid. Strain MBM1 (=NIBRBA0000114144) has been isolated from a sea water sample, Busan, Korea.

Description of Rahnella aquatilis MDY2F18

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, raised, entire, and white colored after 2 days on R2A at 25°C. Positive for glucose fermentation, esculin hydrolysis and β-galactosidase, but negative for nitrate reduction, indole production, arginine dihydrolase, urease and gelatin hydrolysis in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, and trisodium citrate. Does not utilize capric acid, adipic acid, and phenylacetic acid. Strain MDY2F18 (=NIBRBA0000114149) has been isolated from a fresh water sample, Deogyusan, Korea.

Description of Plesiomonas shigelloides MBB2-1

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, raised, entire, and white colored after 2 days on R2A at 25°C. Positive for indole production, glucose fermentation, arginine dihydrolase, and β-galactosidase, but negative for nitrate reduction, urease, esculin hydrolysis, and gelatin hydrolysis in API 20NE. D-Glucose, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, and malic acid are utilized. Does not utilize L-arabinose, D-mannose, D-mannitol, adipic acid, trisodium citrate, and phenylacetic acid. Strain MBB2-1 (=NIBRBA0000114150) has been isolated from air sample, air blader of carp.

Description of Stenotrophomonas maltophilia J9010

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex, and beige colored after 2 days on R2A at 25°C. Positive for nitrate reduction, esculin hydrolysis, gelatin hydrolysis, and β-galactosidase, but negative for indole production, glucose fermentation, arginine dihydrolase, and urease in API 20NE. D-Glucose, D-mannose, N-acetyl-glucosamine, D-maltose, malic acid, and trisodium citrate are utilized. Does not utilize L-arabinose, D-mannitol, potassium gluconate, capric acid, adipic acid, and phenylacetic acid. Strain J9010 (=NIBRBA0000114161) has been isolated from a fresh water, Juwangsan, Korea.

Description of Pseudoalteromonas issachenkonii IMCC1859

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, regular, convex, smooth, and yellowish colored after 3 days on MA at 25°C. Positive for esculin hydrolysis, gelatinase, and β-galactosidase, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, and urease in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-Mannitol N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid. Strain IMCC1859 (=NIBRBA0000114255) has been isolated from a seawater sample, Kosung, the East Sea, Korea.

Description of Salinicola salarius IMCC20105

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are convex, smooth, and cream colored after 5 days on MA at 25°C. Positive for nitrate reduction and urease, but negative for indole production, glucose fermentation, arginine dihydrolase, esculin hydrolysis, gelatinase and β-galactosidase in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, D-malt-
ose, adipic acid, and malic acid are utilized. Does not utilize N-acetyl-glucosamine, potassium gluconate, capric acid, trisodium citrate and phenylacetic acid. Strain IMCC20105 (= NIBRBA0000114260) has been isolated from a seawater sample, the East Sea, Korea.

Description of Marinobacter lipolyticus IMCC20160

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are convex, circular and cream colored after 3 days on MA at 30°C. Positive for esculin hydrolysis, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, gelatin hydrolysis, and β-galactosidase in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain IMCC20160 (= NIBRBA0000114261) has been isolated from a seawater sample, the East Sea, Korea.

Description of Vibrio shilonii IMCC20164

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, smooth, convex, and pale-yellow colored after 3 days on MA at 30°C. Positive for esculin hydrolysis, and β-galactosidase, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, and gelatin hydrolysis in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain IMCC20164 (= NIBRBA0000114262) has been isolated from a seawater sample, the East Sea, Korea.

Description of Zhongshania guokunii IMCC20180

Cells are Gram-staining-negative, non-flagellated, and rod-shaped. Colonies are circular, convex, smooth surface, and white colored after 10 days on MA at 25°C.
Negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, and gelatin hydrolysis and β-galactosidase in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid. Strain IMCC20180 (= NIBRBA0000114263) has been isolated from a seawater sample, the East Sea, Korea.

Description of Pseudomonas mendocina MWS24

Cells are Gram-staining-negative, flagellated, non-pigmented and coccolid- or rod-shaped. Colonies are circular, smooth, convex, glistening, and yellowish white colored after 2 days on R2A at 25°C. Positive for nitrate reduction, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, and gelatin hydrolysis, but negative for indole production, and β-galactosidase in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate are utilized. Does not utilize D-maltose, adic acid, and phenylacetic acid. Strain MWS24 (= NIBRBA0000114321) has been isolated from a fresh water sample, Miryang, Korea.

Description of Pseudomonas nitroreducens NMWL17

Cells are Gram-staining-negative, non-flagellated, non-pigmented and rod-shaped. Colonies are circular, smooth, convex, glistening, and yellowish white colored after 2 days on R2A at 25°C. Positive for nitrate reduction, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis and gelatin hydrolysis, but negative for indole production, and β-galactosidase in API 20NE. D-Glucose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, adic acid, malic acid, trisodium citrate, and phenylacetic acid are utilized. Does not utilize L-arabinose, and D-maltose. Strain NMWL17 (= NIBRBA0000114322) has been isolated from a fresh water sample, Miryang, Korea.

Description of Pseudomonas borbri SD19

Cells are Gram-staining-negative, flagellated, non-pigmented and rod-shaped. Colonies are irregular, smooth, and yellow colored after 2 days on MA at 25°C. Positive for nitrate reduction, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatin hydrolysis, and β-galactosidase in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, and trisodium citrate are utilized. Does not utilize capric acid, adipic acid, and phenylacetic acid. Strain SD19 (= NIBRBA0000114360) has been isolated from a tidal flat sample, Taean, Korea.

Description of Pseudomonas alcaligenes B-12

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised, entire, and pale-yellow colored after 2 days on MA at 25°C. Positive for esculin hydrolysis and gelatin hydrolysis, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, and β-galactosidase in API 20NE. Capric acid, malic acid, and trisodium citrate is utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, adipic acid, and phenylacetic acid. Strain B-12 (= NIBRBA0000113994) has been isolated from a tidal flat sample, Taean, Korea.

Description of Enterobacter mori SJ3-2

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised, entire, and pale-yellow colored after 2 days on MA at 25°C. Positive for nitrate reduction, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, and β-galactosidase, but negative for indole production, and gelatin hydrolysis in API 20NE. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate, and phenylacetic acid is utilized. Does not utilize capric acid, and adipic acid. Strain SJ3-2 (= NIBRBA0000114372) has been isolated from a tidal flat sample, Taean, Korea.

Description of Marinobacter pelagius JW17

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised, entire, and yellow colored after 2 days on MA at 25°C. Positive for glucose fermentation, arginine dihydrolase, esculin hydrolysis, and β-galactosidase in API 20NE, but negative for nitrate reduction, indole production, urease, and gelatin hydrolysis. D-Glucose, L-arabinose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, and trisodium citrate are utilized. Does not utilize D-mannose, capric acid, adipic acid, trisodium citrate, and phenylacetic acid. Strain JW17 (= NIBRBA0000114374) has been isolated from a tidal flat sample, Taean, Korea.

Description of Lysobacter brunescens HME9287

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex, entire, and yellow colored after 3 days on R2A at 30°C. Positive for urease esculin hydrolysis and gelatin hydrolysis, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, and
β-galactosidase, in API 20NE. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid. Strain HME9287 (NIBRBA0000114397) has been isolated from a water sample, Yongin, Korea.

Description of *Marinobacter hydrocarbonoclasticus* HME9331

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex, entire, and beige colored after 2 days on MA at 30°C. Negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, gelatin hydrolysis, and β-galactosidase in API 20NE. Citrate is utilized. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid. Strain HME9331 (NIBRBA0000114407) has been isolated from a seawater sample, Sinan, Korea.

Description of *Rheinheimeira tilapia* HME9414

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are raised, round, entire, and yellow colored after 2 days on R2A at 30°C. Positive for esculin hydrolysis, gelatin hydrolysis and β-galactosidase, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, and urease in API 20NE. Malic acid is utilized. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid. Strain HME9331 (NIBRBA0000114407) has been isolated from a seawater sample, Sinan, Korea.

Description of *Enhydrobacter aerosaccus* WS85

Cells are Gram-staining-negative, non-flagellated, and coccolid to rod-shaped. Colonies are opaque, round, smooth, convex, and cream colored after 3 days on R2A at 25°C. Positive for nitrate reduction, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, and β-galactosidase in API 20NE. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, adipic acid, trisodium citrate, and phenylacetic acid. Strain WS85 (NIBRBA0000114443) has been isolated from a fresh water, Changnyeong, Korea.

Description of *Psychrobacter pulmonis* WW126

Cells are Gram-staining-negative, non-flagellated, and coccolid-shaped. Colonies are opaque, round, smooth, convex, and cream colored after 3 days on R2A at 25°C. Positive for nitrate reduction, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, and β-galactosidase in API 20NE. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, adipic acid, trisodium citrate, and phenylacetic acid. Strain WW126 (NIBRBA0000114443) has been isolated from a fresh water, Changnyeong, Korea.

Acknowledgements

This study was supported by the research grant “The Survey of Korean Indigenous Species” from the National Institute of Biological Resources (NIBR) of the Ministry of Environment in Korea.

References

Andersen, S.M., K. Johnsen, J. Sørensen, P. Nielsen and C.S. Jacobsen. 2000. Pseudomonas frederiksborgensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol. 50:1957-1964.

Brady, C., I. Cleenwerck, S. Venter, T. Coutinho and P.D. Vos. 2013. Taxonomic evaluation of the genus *Enterobacter* based on multilocus sequence analysis (MLSA): Proposal to reclassify *E. nimpressuralis* and *E. annigenus* into *Lelliottia* gen. nov. as *Lelliottia nimpressuralis* comb. nov. and *Lelliottia annigena* comb. nov., respectively. *E. gergoviae* and *E. pyrinus* into *Pluralibacter* gen. nov. as *Pluralibacter gergoviae* comb. nov. and *Pluralibacter pyrinus* comb. nov., respectively, *E. cowanii*, *E. radicincitans*, *E. oryzae* and *E. arachidis* into...
Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicicetans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 36:309-319.

Cámara, B., G. Strömpl, S. Verbarg, C. Spröer, D.H. Pieper and B.J. Tindall. 2007. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int. J. Syst. Evol. Microbiol. 57:923-931.

Carrión, O., D. Miñana-Galbis, M.J. Montes and E. Mercade. 2011. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int. J. Syst. Evol. Microbiol. 61:2401-2405.

Catara, V., L. Sutra, A. Morineau, W. Achouak, R. Christen and L. Gardan. 2002. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int. J. Syst. Evol. Microbiol. 52:1749-1758.

Chen, W.-M., S.-H. Yang, C.-C. Young and S.-Y. Sheu. 2013. Rheinheimera tilapiae sp. nov., isolated from a freshwater culture pond. Int. J. Syst. Bacteriol. 63:1457-1463.

Cho, J.C. and S.J. Giovannoni. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70:432-440.

Christensen, P. and F.D. Cook. 1978. Lysobacter, a new genus of nonfruiting, gliding bacterium with a high base ratio. Int. J. Syst. Bacteriol. 28:367-393.

Connor, S.A. and S.J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:3878-3885.

Coroler, L., M. Elomari, B. Hoste, M. Gillis, D. Izard and H. Leclerc. 1996. Pseudomonas rhodesiae sp. nov., a New Species Isolated from Natural Mineral Waters. Syst. Appl. Microbiol. 19:600-607.

Daboussi, F., M. Hamze, M. Elomari, S. Verhille, N. Baida, D. Izard and H. Leclerc. 1999. Pseudomonas libanensis sp. nov., a new specie isolated from Lebanese spring waters. Int. J. Syst. Bacteriol. 49:1091-1101.

Delong, E.F., G.S. Wickham and N.R. Pace. 1989. Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243:1360-1363.

De La Haba, R.R., C. Sánchez-Porro, M.C. Márquez and A. Ventosa. 2010. Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively. Int. J. Syst. Evol. Microbiol. 60:963-971.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368-376.

Felsenstein, J. 1993. PHYLIP (phylogeny inference package) version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.

Gauthier, M.J., B. Lafay, R. Christen, L. Fernandez, M. Acquaviva, P. Bonin and J.-C. Bertrand. 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a New, Extremely Halotolerant, Hydrocarbon-Degrading Marine Bacterium. Int. J. Syst. Bacteriol. 42:568-576.

Giovannoni, S.J., T.B. Britschgi, C.L. Moyer and K.G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60-63.

Goto, M. 1983. Pseudomonas ficuserectae sp. nov., the Causal Agent of Bacterial Leaf Spot of Ficus erecta Thunb. Int. J. Syst. Bacteriol. 33:546-550.

Habs, H. and R.H.W. Schubert. 1962. Über die biochemische Merkmale und die taxonomische Stellung von Pseudomonas shigelloides (Bader). Zentralblatt fur Bakteriologie, Parastasenkunde, Infektionskrankheiten und Hygiene. Abteilung I 186:316-327.

Ivanova, E.P., T. Sawabe, Y.V. Alexeeva, A.M. Lysenko, N.M. Gorshkova, K. Hayashi, N.V. Zukova, R. Christen and V.V. Mikhailov. 2002. Pseudoualteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga Fucus evanescens. Int. J. Syst. Evol. Microbiol. 52:229-234.

Izard, D., F. Gavini, P.A. Trinel and H. Leclerc. 1979. Ralhella aquatilis, nouveau membre de la famille des Enterobacteriaceae. Annal. Microbiol. 130A:163-177.

Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21-132. Edited by H. N. Munro. New York: Academic Press.

Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716-721.

Klug, A.G. and J.S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zoology 18:1-32.

Kushmaro, A., E. Banin, Y. Loya, E. Stachebrandt and E. Rosenberg. 2001. Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int. J. Syst. Evol. Microbiol. 51:1383-1388.

Li, H.-J., X.-Y. Zhang, C.-X. Chen, Y.-J. Zhang, Z.-M. Gao, Y. Yu, X.-L. Chen, B. Chen and Y.-Z. Zhang. 2011. Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface sea-
water of the Antarctic. Int. J. Syst. Evol. Microbiol. 61:2052-2057.

Macian, M.C., W. Ludwig, R Aznar, P.A. Grimont, K.H. Schleifer, E. Garay and M.J. Pujalte. 2001. *Vibrio lentus* sp. nov., isolated from Mediterranean oysters. Int. J. Syst. Evol. Microbiol. 51:1449-1456.

Martín, S., M.C. Márquez, C. Sánchez-Porro, E. Mellado, D.R. Arahal and A. Ventosa. 2003. *Marinobacter lipolyticus* sp. nov., a novel moderate halophile with lipolytic activity. Int. J. Syst. Evol. Microbiol. 53:1383-1387.

Monias, B.L. 1928. Classification of *Bacterium Alcaligenes*, *Pyocyanum* and *Fluorescens*. J. Infec. Diseases 43:330-334.

Ørskov, I. 1984. Genus *Klebsiella*. In: N.R. Krieg and J.G. Holt (eds.), Bergey’s Manual of Systematic Bacteriology, first edition, vol. 1, The Williams & Wilkins Co, Baltimore, pp. 461-465.

Parte, A.C. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic acids research 42(Database issue):D613-616.

Palleroni, N.J. and J.F. Bradbury. 1993. *Stenotrophomonas*, a new bacterial genus for *Xanthomonas maltophilia* (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43:606-609.

Saha, R., C.E. Farrance, B. Verghese, S. Hong and R.S. Donofrio. 2013. *Klebsiella michiganensis* sp. nov., A New Bacterium Isolated from a Tooth Brush Holder. Curr. Microbiol. 66:72-78.

Saitou, N. and M. Nei 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

Staley, J.T., R.L. Irgens and D.J. Brenner. 1987. *Enhydrobacter aerosaccus* gen. nov., sp. nov., a Gas-Vacuolated, Facultatively Anaerobic, Heterotrophic Rod. Int. J. Syst. Evol. Microbiol. 37:289-291.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.

Vanparys, B., K. Heylen, L. Lebbe and P.D. Vos. 2006. *Pseudomonas peli* sp. nov. and *Pseudomonas borbori* sp. nov., isolated from a nitrifying inoculum. Int. J. Syst. Evol. Microbiol. 56:1875-1881.

Vela, A.I., M.D. Collins, M.V. Latre, A. Mateos, M.A. Moreno, R. Hutson, L. Domínguez and J.F. Fernández-Garayzábal. 2003. *Psychrobacter pulmonis* sp. nov., isolated from the lungs of lambs. Int. J. Syst. Evol. Microbiol. 53:415-419.

Xie, C.-H. and A. Yokota. 2005. *Dyella japonica* gen. nov., sp. nov., a γ-proteobacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 55:753-756.

Xu, X.-W., Y.-H. Wu, C.-S. Wang, J.-Y. Yang, A. Oren and M. Wu. 2008. *Marinobacter pelagius* sp. nov., a moderately halophilic bacterium. Int. J. Syst. Evol. Microbiol. 58:637-640.

Yoon, J.-H., S.-J. Kang, S.-Y. Lee, J.-S. Lee and S. Park. 2011. *Ohtaekwangia koreensis* gen. nov., sp. nov. and *Ohtaekwangia kribbensis* sp. nov., isolated from marine sand, deep-branching members of the phylum *Bacteroidetes*. Int. J. Syst. Evol. Microbiol. 61:1066-1072.

Zhang, C.-X., S.-Y. Yang, M.-X. Xu, J. Sun, H. Liu, J.-R. Liu, H. Liu, F. Kan, J. Sun, R. Lai and K.-Y. Zhang. 2009. *Serratia nematodiphila* sp. nov., associated symbiotically with the entomopathogenic nematode *Heterorhabditidoides chongmingensis* (Rhabditida: Rhabditidae). Int. J. Syst. Evol. Microbiol. 59:1603-1608.

Zhu, B., M.-M. Lou, G.-L. Xie, G.-F. Wang, Q. Zhou, F. Wang, Y. Fang, T. Su, B. Li and Y.-P. Duan. 2011. *Enterobacter mori* sp. nov., associated with bacterial wilt on *Morus alba* L. Int. J. Syst. Evol. Microbiol. 61:2769-2774.

Submitted: November 12, 2015
Revised: December 8, 2015
Accepted: February 16, 2016