ON THE FINITE DIMENSIONALITY OF A K3 SURFACE

CLAUDIO PEDRINI

Universitá di Genova, Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova (Italy), pedrini@dima.unige.it

Abstract: For a smooth projective surface \(X \) the finite dimensionality of the Chow motive \(h(X) \), as conjectured by S.I Kimura, has several geometric consequences. For a complex surface of general type with \(p_g = 0 \) it is equivalent to Bloch’s conjecture. The conjecture is still open for a K3 surface \(X \) which is not a Kummer surface. In this paper we prove some results on Kimura’s conjecture for complex K3 surfaces. If \(X \) has a large Picard number \(\rho = \rho(X) \), i.e \(\rho = 19, 20 \), then the motive of \(X \) is finite dimensional. If \(X \) has a non-symplectic group acting trivially on algebraic cycles then the motive of \(X \) is finite dimensional. If \(X \) has a symplectic involution \(i \), i.e a Nikulin involution, then the finite dimensionality of \(h(X) \) implies \(h(X) \simeq h(Y) \), where \(Y \) is a desingularization of the quotient surface \(X/ < i > \). We give several examples of K3 surfaces with a Nikulin involution such that the isomorphism \(h(X) \simeq h(Y) \) holds, so giving some evidence to Kimura’s conjecture in this case.

1. Introduction

For a smooth projective variety \(X \) over a field \(k \) we will denote by \(A^i(X) \) the Chow group of codimension \(i \) cycles with rational coefficients and by \(\mathcal{M}_{rat}(k) \) the (covariant) category of Chow motives with rational coefficients over the field \(k \), which is is a \(\mathbb{Q} \)-linear, pseudoabelian, tensor category.

An object \(M \in \mathcal{M}_{rat}(k) \) is of the form \(M = (X, p, m) \), where \(X \) is a smooth projective variety over \(k \), \(p \) a correspondence in \(X \times X \) such that \(p^2 = p \) and \(m \in \mathbb{Z} \). We will denote by \(h(X) \) the motive \((X, \Delta_X, 0) \), where \(\Delta_X \) is the diagonal in \(X \times X \). If \(X \) and \(Y \) are smooth (irreducible) projective varieties over \(k \) then

\[
\text{Hom}_{\mathcal{M}_{rat}(k)}(h(X), h(Y)) = A^{\dim X}(X \times Y)
\]

where \(A^*(X \times Y) = CH^*(X \times Y) \otimes \mathbb{Q} \).
We will consider a classical Weil cohomology theory H^* with coefficients in a field K of characteristic 0 which induces a tensor functor $H^* : \mathcal{M}_{rat} \to \text{Vect}^g_K$ such that $H^i((X, p, m)) = p^* H^{i-2m}(X, K)$ (see [KMP 1.4]). If $\text{char } k = 0$ homological equivalence does not depend on the choice of H^*. By replacing rational equivalence with homological equivalence we get the category $\mathcal{M}_{hom}(k)$ of homological motives.

For an object $M \in \mathcal{M}_{rat}(k)$, one defines the exterior power $\wedge^n M \in \mathcal{M}_{rat}(k)$ (and similarly in \mathcal{M}_{hom}) and the symmetric power $S^n M$. (see [Ki]). A motive M is finite dimensional if it can be decomposed as $M = M^+ \oplus M^-$ with M^+ evenly finite dimensional, i.e. such that $\wedge^n M = 0$ for some $n > 0$ and M^- oddly finite dimensional, i.e. such that $S^n M = 0$ for $n > 0$.

S.I. Kimura and O’Sullivan (see [Ki]) have conjectured that all the motives in $\mathcal{M}_{rat}(k)$ are finite dimensional. The conjecture is known for curves, for abelian varieties and for some surfaces: rational surfaces, Godeaux surfaces, Kummer surfaces, surfaces with $p_g = 0$ which are not of general type, surfaces isomorphic to a quotient $(C \times D)/G$, where C and D are curves and G is a finite group. It is also known for Fano 3-folds (see[G-G]). In all these known cases the motive $h(X)$ lies in the tensor subcategory of $\mathcal{M}_{rat}(k)$ generated by abelian varieties.

If $M = h(X)$ is the motive of a surface then the finite dimensionality of M is equivalent to the vanishing of $\wedge^n t^2(X)$ for some $n > 0$, where $t^2(X)$ is the transcendental part of $h(X)$. This follows from the existence of a refined Chow-Künneth decomposition for the motive $h(X)$ of a surface

$$h(X) = 1 \oplus h_1(X) \oplus h^2_{ad}(X) \oplus t^2(X) \oplus h_3(X) \oplus L^2$$

where 1 is the motive of a point and L is the Lefschetz motive. (see [KMP]). In the above decomposition all the summands, but possibly $t^2(X)$, are finite dimensional because they lie in the subcategory of $\mathcal{M}_{rat}(k)$ generated by abelian varieties. Therefore the information necessary to study the above conjecture for a surface X is concentrated in the transcendental part of the motive $t^2(X)$. More precisely, according to Murre’s Conjecture (see [Mu]), or equivalently to Bloch-Beilinson’s conjecture (see [J]) and to Kimura’s Conjecture the following results should hold for a surface X

(a) The motive $t^2(X)$ is evenly finite dimensional;

(b) $h(X)$ satisfies the Nilpotency conjecture, i.e. every homologically trivial endomorphism of $h(X)$ is nilpotent;

(c) Every homologically trivial correspondence in $CH^2(X \times X)_Q$ acts trivially on the Albanese kernel $T(X)$;
d) The endomorphism group of $t_2(X)$ (tensored with \mathbb{Q}) has finite rank (over a field of characteristic 0).

By a result of S.Kimura in [Ki], (a) implies (b).

If X is a complex surface of general type with $p_g(X) = 0$, Bloch’s conjecture asserts that $A_0(X) \simeq \mathbb{Q}$. Then

$$(a) \iff A_0(X) = \mathbb{Q} \iff t_2(X) = 0$$

(see [G-P]).

A case where all the above conjectures are still unknown is that of a complex K3 surface which is not a Kummer surface. The aim of this paper is to prove some results about the finite dimensionality of $h(X)$ in the case X is a K3 surface over \mathbb{C}.

Note that a result by Y.Andrè in [A 10.2.4.1] implies that the motive of a K3 surface is isomorphic to the motive of an abelian variety in a suitable category of motivated motives. Under the standard conjecture $B(X)$ this category coincides with \mathcal{M}_{hom} (see [A p.100]. Therefore Andrè’s result suggests that the Chow motive of every K3 surface can be expressed in terms of the motives of abelian varieties.

In §2 we consider the case of a projective surface X with an involution σ and the desingularization Y of the quotient surface $X/\langle \sigma \rangle$. Corollary 1 gives necessary and sufficient conditions on σ for the existence of an isomorphism $t_2(X) \simeq t_2(Y)$ and for $t_2(Y) = 0$. In particular this result applies to a complex surface of general type X with $p_g(X) = 0$ and an involution σ for which $t_2(Y) = 0$.

In §3 we apply the results in §2 to the case of a complex K3 surface X with an involution σ. If σ is symplectic, i.e σ is a Nikulin involution, then the finite dimensionality of $h(X)$ implies the isomorphism $h(X) \simeq h(Y)$, see Theorem 3. If the rank of the Neron- Severi group of X is 19 or 20, then $h(X)$ is finite dimensional (Theorem 2). If σ is not symplectic then $t_2(Y) = 0$, with $Y = X/\langle \sigma \rangle$, hence $t_2(X) \neq t_2(Y)$, see Remark 3. If a K3 surface X has a non-symplectic group acting trivially on algebraic cycles then the motive of X is finite dimensional (Corollary 2). Note that, in all the cases where we can show that the motive $h(X)$ of a K3 surface is finite dimensional, $h(X)$ lies in the tensor subcategory of $\mathcal{M}_{\text{rat}}(k)$ generated by abelian varieties.

In §4, using the results in [VG-S], we describe several examples of K3 surfaces, with a Nikulin involution i and Picard rank 9, such that $t_2(X) \simeq t_2(Y)$. We also show (see Theorem 7) that the same result holds if the K3 surface X has an elliptic fibration $X \to \mathbb{P}^1$ with a section. This gives some evidence to Kimura’s conjecture for a K3 surface with a symplectic involution.
We thank A. Del Padrone, V. Guletskii, B. Kahn and C. Weibel for many helpful comments on an earlier draft of this paper. We also thank the Referee for suggesting several improvements in the exposition and simplifications in the proofs.

2. Surfaces with an involution

In this section we prove some results on the transcendental part $t_2(X)$ of the motive of a surface X, with an involution σ.

We first note that, if X is a smooth projective variety over a field k, and G is a finite group acting on X, then the theory of correspondences can be extended to $Y = X/G$, if one uses rational coefficients in the Chow groups (see [Fu 16.1.13]). In particular this holds if $G = \langle \sigma \rangle$, where σ is an involution.

Let X be a smooth irreducible projective surface (over any field k) with a refined Chow-Künneth decomposition

$$\sum_{0 \leq i \leq 4} h_i(X)$$

where $h_2(X) = h_{alg}^2(X) + t_2(X)$ and $t_2(X) = (X, \pi^{tr}_2, 0)$, see [KMP 2.2]. Here

$$\pi_{alg}^2(X) = \sum_{1 \leq h \leq \rho} [D_h \times D_h]$$

where $\{D_h\}$ is an orthogonal basis of $NS(X) \otimes \mathbb{Q}$ and $\rho = \text{rank} \ NS(X)$. The map

(1) $\Psi_X : A^2(X \times X) \rightarrow \text{End}_{M_{rat}}(t_2(X))$

defined by $\Psi_X(\Gamma) = \pi_{alg}^2 \circ \Gamma \circ \pi_{alg}^2$ yields an isomorphism (see [KMP 4.3])

$$A^2(X \times X)/J(X) \simeq \text{End}_{M_{rat}}(t_2(X))$$

where $J(X)$ is the ideal of $A^2(X \times X)$ generated by the classes of correspondences which are not dominant over X by either the first or the second projection. Let $k(X)$ be the field of rational functions and let $T(X_{k(X)})$ be the Albanese kernel of $X_{k(X)}$, i.e. the kernel of the Abel-Jacobi map $A_0(X_{k(X)}) \rightarrow Alb_X(k(X) \otimes \mathbb{Q})$. Let $\tau_X : A^2(X \times X) \rightarrow T(X_{k(X)})$ be the map

$$\tau_X(Z) = (\pi^{tr}_2 \circ Z \circ \pi^{tr}_2)(\xi)$$

with ξ the generic point of X. Then τ_X induces an isomorphism (see [KMP 5.10])

$$\text{End}_{M_{rat}}(t_2(X)) \simeq \frac{T(X_{k(X)})}{H_{\leq 1} \cap T(X_{k(X)})}$$

Here $H_{\leq 1}$ is the subgroup of $A_0(X_{k(X)})$ generated by the subgroups $A_0(X_L)$, where L runs over the subfields of $k(X)$ containing k and which are of transcendence degree ≤ 1 over k. If $q(X) = 0$ then X has no odd
cohomology, $Alb_X(k) = 0$ and in the Chow-K"unneth decomposition we have $h_1(X) = h_3(X) = 0$. Therefore $A_0(X_{k(X)}) = T(X_{k(X)})$ and $T(X) = A_0(X)_0$, where $A_0(X)_0$ is the group of 0-cycles of degree 0. By [KMP 5.10] we have

$$H_{\leq 1} \cap T(X_{k(X)}) = T(X)$$

Hence, for a surface X with $q(X) = 0$, the map τ_X yields an isomorphism

$$(2) \quad \text{End}_{\text{rat}}(t_2(X)) \simeq \frac{A_0(X_{k(X)})}{A_0(X)}$$

where the class $[\xi]$ in $\frac{A_0(X_{k(X)})}{A_0(X)}$ of the generic point $[\xi]$ of X corresponds to the identity of the ring $\text{End}_{\text{rat}}(t_2(X))$

The definition of the map Ψ_X in (1) can be extended to the case of two smooth projective surfaces X and X' as in [KMP 7.4]

$$\Psi_{X,X'} : A^2(X \times X') \to \text{Hom}_{\text{rat}}(t_2(X), t_2(X'))$$

and the following functorial relation holds

$$(3) \quad \Psi_{X,X''}(\Gamma') \circ \Gamma = \Psi_{X',X''}(\Gamma') \circ \Psi_{X,X'}(\Gamma)$$

where X, X', X'' are smooth projective surfaces, $\Gamma \in A^2(X \times X')$ and $\Gamma' \in A^2(X' \times X'')$. The proof of (3) immediately follows by taking refined Chow-K"unneth decompositions of the motives $h(X), h(X'), h(X'')$ and writing the elements in $\text{Hom}_{\text{rat}}(h(X), h(X'))$, and $\text{Hom}_{\text{rat}}(h(X'), h(X''))$ as lower triangular matrices defined by these decompositions, as in [KMP p.163]. Applying Ψ corresponds to taking appropriate diagonal entries of such lower triangular matrices.

Lemma 1. Let X and Y be smooth projective surfaces and let $f : X \to Y$ be a finite morphism. Then f induces homomorphisms $\bar{f}_* : \text{End}_{\text{rat}}(t_2(X)) \to \text{End}_{\text{rat}}(t_2(Y))$ and $\bar{f}^* : \text{End}_{\text{rat}}(t_2(Y)) \to \text{End}_{\text{rat}}(t_2(X))$.\n
Proof. The maps $\Psi_X : A^2(X \times X) \to \text{End}_{\text{rat}}(t_2(X))$ and $\Psi_Y : A^2(Y \times Y) \to \text{End}_{\text{rat}}(t_2(Y))$ give rise to the following commutative diagram

$$
\begin{array}{ccc}
0 & \to & \mathcal{J}(X) & \to & A^2(X \times X) & \xrightarrow{\Psi_X} & \text{End}_{\text{rat}}(t_2(X)) & \to & 0 \\
& & \downarrow{(f \times f)_*} & & \downarrow{\bar{f}_*} & & \downarrow{\bar{f}_*} & & \\
0 & \to & \mathcal{J}(Y) & \to & A^2(Y \times Y) & \xrightarrow{\Psi_Y} & \text{End}_{\text{rat}}(t_2(Y)) & \to & 0 \\
& & \downarrow{(f \times f)^*} & & \downarrow{\bar{f}^*} & & \downarrow{\bar{f}^*} & & \\
0 & \to & \mathcal{J}(X) & \to & A^2(X \times X) & \xrightarrow{\Psi_X} & \text{End}_{\text{rat}}(t_2(X)) & \to & 0
\end{array}
$$
where the map $(f \times f)_*$ sends a correspondence $Z \in A^2(X \times X)$ to
$\Gamma_f \circ Z \circ \Gamma_f$ and the map $f \times f)^*$ sends a correspondence $Z' \in A^2(Y \times Y)$
to $\Gamma_f' \circ Z' \circ \Gamma_f$. It is easy to see that these maps send the ideal $\mathcal{J}(X)$
to $\mathcal{J}(Y)$ and $\mathcal{J}(Y)$ to $\mathcal{J}(X)$ respectively, thus yielding the diagram above.

Proposition 1. Let X be a smooth projective surface with an involution σ, such that the quotient surface $Y = X/\langle \sigma \rangle$ is smooth. Let ξ denote the generic point of X, η the generic point of Y and let $[\xi] = \Psi_X(\Delta_X) \in \text{End}_{\mathcal{M}_{rat}}(t_2(X)), [\eta] = \Psi_Y(\Delta_Y) \in \text{End}_{\mathcal{M}_{rat}}(t_2(Y))$. Set $\alpha = \Psi_X(1 \times \sigma)\Delta_X = \Psi_X(\Gamma_\sigma) = \sigma([\xi])$. Then the map $f : X \to Y$ satisfies:

(i) $1/2(\Gamma_f \circ \Gamma_f^t) = \Delta_Y, \tilde{f}_*(\xi) = \tilde{f}_*(\xi) = 2[\eta]$ and $(\alpha)^2 = [\xi]$.
(ii) $\tilde{f}_*(\eta) = [\xi] + \alpha$ and $\tilde{f}^*(\tilde{f}_*(\xi)) = 2[\xi] + 2\alpha$.
(iii) Let $p = 1/2(\Gamma_f \circ \Gamma_f^t)$; then $p \circ p = p, \Psi_X(p) = 1/2([\xi] + \alpha)$ and
$\Psi_X(\Delta_X - p) = 1/2([\xi] - \alpha)$. Hence $[\xi] = 1/2([\xi] + \alpha) + 1/2([\xi] - \alpha)$.

Proof. Regard the diagonals Δ_X and Δ_Y as cycles in $A^2(X \times X)$ and
$A^2(Y \times Y)$. Then $\tilde{f}_*(\xi)$ is the image under Ψ_Y of $\Gamma_f \circ \Gamma_f^t = 2\Delta_Y$.
Thus $\tilde{f}_*([\xi]) = 2\Psi_Y(\Delta_Y) = 2[\eta]$ and we also have

$$p \circ p = (1/4)\Gamma_f^t \circ (2\Delta_Y) \circ \Gamma_f = 1/2(\Gamma_f^t \circ \Gamma_f) = p$$

Since α is the image of $(1 \times \sigma)\Delta_X$, and $(1 \times \sigma)\Delta_X \cdot (1 \times \sigma)\Delta_X = \Delta_X$ we have $\alpha^2 = [\xi]$. Since $\Gamma_f \cdot (1 \times \sigma)\Delta_X = \Gamma_f$, the correspondence $(1 \times \sigma)\Delta_X$ also maps to Δ_Y, so $f_*(\alpha) = 2[\eta]$. This establish (i) and (ii) follows immediately. Part (iii) follows from (ii) and $p \circ p = p$.

Let X be a smooth projective surface and let σ be an involution on X. Let k be the number of isolated fixed points of σ and let D the 1-dimensional part of the fixed-point locus. The divisor D is smooth (possibly empty). Let \tilde{X} be the blow-up of of the set of isolated fixed points . Then the involution σ lifts to an involution on \tilde{X} (which we will still denote by σ). The quotient $Y = \tilde{X}/\langle \sigma \rangle$ is a desingularization of $X/\langle \sigma \rangle$. Y has k disjoint nodal curves C_1, \cdots, C_k. The map $X \to X/\langle \sigma \rangle$ induces a commutative diagram

$$\begin{array}{ccc}
\tilde{X} & \xrightarrow{\beta} & X \\
\downarrow f & & \downarrow \\
Y & \longrightarrow & X/\langle \sigma \rangle
\end{array}$$
Since $t_2(-)$ is a birational invariant for smooth projective surfaces the maps $\beta : \tilde{X} \to X$ and $f : \tilde{X} \to Y$ induce a morphism
\[
\theta : t_2(\tilde{X}) = t_2(X) \to t_2(Y)
\]

Corollary 1. Let X, \tilde{X}, Y be as in the diagram above. Then

(i) $\theta : t_2(X) \to t_2(Y)$ is the projection onto a direct summand.

(ii) θ is an isomorphism iff $\Psi_X(\Gamma_\sigma) = \text{id}_{t_2(X)}$, i.e iff $\bar{\sigma}([\xi]) = [\xi]$ in $\text{End}_{\text{rat}}(t_2(X))$.

(iii) If $q(X) = 0$ the conditions of (ii) are equivalent to $A_0(X)_0 = A_0(X)_0$.

(iv) $t_2(Y) = 0 \iff \Psi_X(\Gamma_\sigma) = -i_0 \iff \bar{\sigma}([\xi]) = -[\xi]$ in $\text{End}_{\text{rat}}(t_2(X))$.

Proof. Since $\Psi_{\tilde{X},X}(\Gamma_\beta)$ is an isomorphism and $\theta = \Psi_{\tilde{X},Y}(\Gamma_f) \circ \Psi_{\tilde{X},X}(\Gamma_\beta)^{-1}$ it is enough, after replacing X by \tilde{X}, to prove the Corollary under the assumption $\tilde{X} = X$. Then $\theta = \Psi_{X,Y}(\Gamma_f)$. From Proposition 1 we get that Γ_f has a right inverse $1/2(\Gamma_f^\prime)$ and $2p = \Gamma_f^\prime \circ \Gamma_f = \Delta_X + (1 \times \sigma)\Delta_X = \Delta_X + \Gamma_\sigma$. It follows from the functoriality of Ψ in (3) that, if $t_2(X)^+$ and $t_2(X)^-$ are the direct summands of $t_2(X)$ on which the involution $\Psi_X(\Gamma_\sigma)$ acts respectively as $+1$ or -1, then the restriction of θ to $t_2(X)^-$ is 0 and to $t_2(X)^+$ is an isomorphism. This gives (i).

Also θ is an isomorphism iff $t_2(X)^- = 0$ which is equivalent to $\Psi_X(\Gamma_\sigma)$ being the identity in $\text{End}_{\text{rat}}(t_2(X))$. This gives (ii).

If $q(X) = 0$ then $A_0(X)_0 = T(X)$ and we have a canonical isomorphism
\[
\text{Hom}_{\text{rat}}(1, t_2(X)) \simeq A_0(X)_0
\]
which is compatible with the action of correspondences. Hence, by taking the action of $\Psi_X(\Gamma_\sigma)$ on $t_2(X)$ we get
\[
\text{Hom}_{\text{rat}}(1, t_2(X)^-) \simeq A_0(X)_0
\]
Therefore $\Psi_X(\Gamma_\sigma)$ acts as the identity on $t_2(X)$ iff $A_0(X)_0 = A_0(t_2(X)^-) = 0$. Since $A_i(t_2(X)) = 0$ for $i \neq 0$, we have $A_i(M) = 0$ for all i, where $M = t_2(X)^-$. It follows that $M = 0$ (see [C-G Lemma 1]. This proves (iii).

Clearly $t_2(Y) = 0$ is equivalent to $\bar{\sigma}([\xi]) = -[\xi] \in \text{End}_{\text{rat}}(t_2(X))$.

Since the cycle class $[\xi]$ corresponds to the identity of $\text{End}_{\text{rat}}(t_2(X))$ under the isomorphism in (2), $\Psi_X(\Gamma_\sigma)$ act as -1 on $t_2(X)$. Let $q(X) = 0$; then, by the same argument as in the proof of (iii) we get $A_0(X)_0 = 0$. This gives (iv).

F. Severi in [Sev] has introduced the notions of valence and indices of a correspondence $T \in A^n(X \times X)$, where X is a smooth projective
variety of dimension n. In the case when X is a surface, Severi related these notions to the computation of the degree of the cycle $T \cdot \Delta_X$.

Definition 1. Let X be a smooth projective variety of dimension n. A correspondence $T \in A^n(X \times X)$ has valence 0 if it belongs to the ideal of degenerate correspondences, i.e., the ideal generated by correspondences of the form $[V \times W]$, with V, W proper subvarieties of X. A correspondence Γ has valence v if $T = \Gamma + v\Delta_X$ has valence 0. If $T = T_1 + T_2$ in $A^d(X \times X)$ and T_1, T_2 have valences v_1, v_2 then T has valence $v_1 + v_2$. If the correspondences T and T' have valences v and v' then $v(T \circ T') = -v(T) \cdot v(T')$; see [Fu 16 1.5]. It follows that if p is a projector in $A^2(X \times X)$ which has a valence, then $v(p)$ is either 0 or -1.

The indices of a correspondence T are the numbers $\alpha(T) = \text{deg}(T \cdot [P \times X])$ and $\beta(T) = \text{deg}(T \cdot [X \times P])$, where P is any rational point on X; see [Fu, 16 1.4]. The indices are additive in T and $\beta(T) = \alpha(T')$.

Theorem 1. Let X be a smooth projective surface with an involution σ and let Y be the desingularization of $X/\langle \sigma \rangle$. Assume $p_\sigma(X) > 0$ and let $\Gamma_\sigma = (1 \times \sigma)\Delta_X$. If the correspondence Γ_σ has a valence, then

$$t_2(Y) = 0 \iff v(\Gamma_\sigma) = 1 \ ; \ \theta : t_2(X) \xrightarrow{\sim} t_2(Y) \iff v(\Gamma_\sigma) = -1$$

Proof. Let $[\xi] = 1/2([\xi] + \alpha) + 1/2([\xi] - \alpha)$ be the splitting in $\text{End}_{\text{rat}}(t_2(X))$ coming from Proposition 1, with $\alpha = \bar{\sigma}([\xi]) = \Psi_X(\Gamma_\sigma)$. If the correspondence Γ_σ has a valence then also the projector $p = 1/2(\Delta_X + (1 \times \sigma)\Delta_X) = 1/2(\Delta_X + \Gamma_\sigma)$ has a valence and $v(p)$ is either 0 or -1. Since $v(\Delta_X) = -1$ we have

$$v(p) = 0 \iff v(\Gamma_\sigma) = 1 \ ; \ v(p) = -1 \iff v(\Gamma_\sigma) = -1$$

Suppose $v(\Gamma) = 1$; then $v(p) = 0$ i.e., p belongs to the ideal of degenerate correspondences, which is contained in $K\text{er} \Psi_X$. From $\Psi_X(p) = 0$ we get $1/2([\xi] + \Psi_X(\Gamma_\sigma)) = 0$ hence $\Psi_X(\Gamma_\sigma) = -id_{t_2(X)}$. From Corollary (iv) we get $t_2(Y) = 0$. Conversely if $t_2(Y) = 0$, then $\Psi_X(\Gamma_\sigma) = -id_{t_2(X)}$ hence $\Psi_X(p) = 0$ and we get $v(p) = 0$.

If $\theta : t_2(X) \rightarrow t_2(Y)$ is an isomorphism then, by Corollary 1 (ii) $\Psi_X(\Gamma_\sigma) = id_{t_2(X)}$. By the same argument as before we get $v(\Gamma_\sigma) = -1$. \hfill \Box

Remark 1. The assumption $p_\sigma(X) > 0$ in Theorem 1 is necessary in order to have a uniquely defined valence for Γ_σ. If $p_\sigma(X) = 0$ and X satisfies Bloch’s conjecture then, by the results in [B-S], $v(\Delta_X) = 0$, hence the correspondence Δ_X has 2 different valences: namely 0 and -1. Note that, for a surface X, a correspondence Γ can have 2 different valences v and v' only if $p_\sigma(X) = 0$. This was first observed by Severi.
in [Sev p.761]). In fact then the multiple \((v - v')\) of the diagonal \(\Delta_X\) belongs to the ideal of degenerate correspondences and this implies that \(\Psi_X(\Delta_X) = 0\) in \(\text{End}_{M_{\text{rat}}}(t_2(X))\). Therefore the identity map is 0 in \(\text{End}_{M_{\text{rat}}}(t_2(X))\). Hence \(t_2(X) = 0\) and this may occur only if \(p_g(X) = 0\).

3. **Complex K3 surfaces**

A smooth (irreducible) projective K3 surface \(X\) over \(\mathbb{C}\) is a regular surface (i.e \(q(X) = 0\)), therefore it has a refined Chow-Künneth decomposition (see [KMP 2.2]) of the form \(h(X) = \sum_{0 \leq i \leq 4} h_i(X)\) with \(h_1(X) = h_3(X) = 0\). Moreover \(h_2(X) = h_2^{alg}(X) + t_2(X)\), where \(t_2(X) = (\pi_{2}^{tr}, 0)\) and \(h_2^{alg}(X) \cong \mathbb{L}^{\oplus \rho(X)}\). Here \(\rho(X)\) is the rank of the Néron-Severi group \(\text{NS}(X)\) so that \(1 \leq \rho \leq 20\). Moreover \(H^i(t_2(X)) = 0\) for \(i \neq 2\); \(H^2(t_2(X)) = \pi_{2}^{tr} H^2(X, \mathbb{Q}) = H_{tr}^2(X, \mathbb{Q})\),

\[A_i(t_2(X)) = \pi_{2}^{tr} A_i(X) = 0 \text{ for } i \neq 2; \quad A_0(t_2(X)) = T(X),\]

where \(T(X)\) is the Albanese Kernel. Since \(q(X) = 0\), we also have \(T(X) = A_0(X) = 0\) (0-cycles of degree 0) and

\[\dim H^2(X) = b_2(X) = 22; \quad \dim H_{tr}^2(X) = b_2(X) - \rho\]

A Nikulin involution \(i\) of a complex K3 surface \(X\) is a symplectic automorphism of order 2, i.e. such that \(i^* \omega = \omega\) for all \(\omega \in H^{2,0}(X)\). A K3 surface \(X\) with a Nikulin involution has rank \(\rho(X) \geq 9\). The Néron-Severi group \(\text{NS}(X)\) contains a primitive sublattice isomorphic to \(E_8(-2)\) where \(E_8\) is the unique even unimodular positive definite lattice of rank 8 (see [Mor p.106]). Here, if \(L\) is a lattice and \(m\) is an integer, \(L(m)\) denotes same free \(\mathbb{Z}\)-module \(L\) with a form which has been altered by multiplication by \(m\), that is \(b_{L(m)}(x, y) = m b_L(x, y)\), where \(b_L(x, y)\) is the \(\mathbb{Z}\)-valued symmetric bilinear form of \(L\).

By \(T_X\) we will denote the transcendental lattice of \(X\), i.e \(T_X = \text{NS}(X)^\perp \subset H^2(X, \mathbb{Z})\).

For any K3 surface with a Nikulin involution \(i\) there is an isomorphism

\[H^2(X, \mathbb{Z}) \cong U^3 \oplus E_8(-1) \oplus E_8(-1)\]

where \(U\) is the hyperbolic plane, such that \(i^*\) acts as follows

\[i^*(u, x, y) = (u, y, x)\]

The invariant sublattice is \(H^2(X, \mathbb{Z})^i \cong U^3 \oplus E_8(-2)\) and \((H^2(X, \mathbb{Z})^i)^\perp \cong E_8(-2)\). Since \(i^* \omega = \omega\) for all \(\omega \in H^{2,0}(X)\) we also have \((H^2(X, \mathbb{Z})^i)^\perp \subset \text{NS}(X)\) (see [VG-S 2.1]). Therefore the involution \(i\) acts as the identity on \(H_{tr}^2(X, \mathbb{Q})\).

Let \(X \rightarrow X/ \langle i \rangle\) be the quotient map. The surface \(X/ \langle i \rangle\) has 8 ordinary double points \(Q_1, \ldots, Q_8\) corresponding to the 8 fixed
points P_1, \ldots, P_8 of the involution i on X. The minimal model Y of $X/ < i >$ is a K3 surface, hence $p_g(Y) > 0$. In the following we will always consider the standard diagram for a K3 surface with a Nikulin involution i (see [Mor sec. 3])

$$
\begin{array}{ccc}
\tilde{X} & \xrightarrow{\beta} & X \\
f & \downarrow & \downarrow \\
Y & \longrightarrow & X/ < i > \\
\end{array}
$$

$	ilde{X}$ is the blow up of X at the points P_1, \ldots, P_8 with exceptional divisors $\beta^{-1}(P_j) = E_j$. The Nikulin involution extends to an involution i on \tilde{X} and $Y = \tilde{X}/ < i >$. f is a double cover branched on the divisor $\sum_{1 \leq j \leq 8} C_j$ where $C_j = f(E_j)$ are disjoint smooth irreducible rational curves corresponding to the points Q_1, \ldots, Q_8. Therefore $1/2(\sum_j C_j) \in NS(Y)$. The map $f_* \circ \beta^*$ induces an isomorphism of rational Hodge structures

$$
T_{\tilde{X}} \otimes \mathbb{Q} \simeq T_X \otimes \mathbb{Q} \simeq T_Y \otimes \mathbb{Q}
$$

where T_X and T_Y are the transcendental lattices. In particular the vector spaces $H^2_{tr}(X, \mathbb{Q})$ and $H^2_{tr}(Y, \mathbb{Q})$ have the same dimension, so that $22 - \rho(X) = 22 - \rho(Y)$.

Suppose conversely that a K3 surface Y admits an even set of k disjoint rational curves C_1, \ldots, C_k: this means that there exists a $\delta \in \text{Pic}Y$ such that

$$
C_1 + \cdots + C_k \sim 2\delta
$$

This is equivalent to the existence of a double cover X of Y branched on $C_1 + \cdots + C_k$. Then, by [N 1], $k = 0, 8, 16$. If $k = 16$ then X is birational to an abelian surface A and Y is the Kummer surface of A. Therefore the motives $h(X)$ and $h(Y)$ are finite dimensional and $t_2(A) \simeq t_2(X) \simeq t_2(Y)$ (see [KMP 6.13]). If $k = 8$ then X is a K3 surface, Y is the desingularization of the quotient of X by a Nikulin involution i. Hence Y is a K3 surface.

Theorem 2. Let X be a smooth projective K3 surface over \mathbb{C} with $\rho(X) = 19, 20$. Then the motive $h(X) \in M_{\text{rat}}(\mathbb{C})$ is finite dimensional and lies in the subcategory of $M_{\text{rat}}(\mathbb{C})$ generated by the motives of abelian varieties.

Proof. By [Mor 6.4] X admits a Shioda-Inose structure, i.e there is a Nikulin involution i on X such that the desingularization Y of the quotient surface $X/ < i >$ is a Kummer surface, associated to an abelian surface A. Hence $h(Y)$ is finite dimensional. The rational map
$f : X \to Y$ induces a splitting $t_2(X) \simeq t_2(Y) \oplus N$. Since $t_2(Y)$ is finite dimensional we are left to show that $N = 0$. From Corollary 1 the vanishing of N is equivalent to $A_0(X)^i_0 = A_0(X)_0$. By [Mor 6.3 (iv)] the Neron-Severi group of X contains the sublattice $E_8(-1)^2$. Hence by the results in [Huy 6.3, 6.4], the symplectic automorphism i acts as the identity on $A_0(X)$. From Corollary 1 we get $t_2(X) = t_2(Y)$. By [KMP 6.13] $t_2(Y) = t_2(A)$; therefore $h(X)$ is finite dimensional and lies in the subcategory of $\mathcal{M}_{rat}(\mathbb{C})$ generated by the motives of abelian varieties. □

Remark 2. Note that by [Mo 2.10 (i), 4.4(i)] there exist K3 surfaces with $\rho(X) = 19, 20$ which are not Kummer surfaces.

Next we show that for every K3 surface with a Nikulin involution the finite dimensionality of $h(X)$ implies $h(X) \simeq h(Y)$.

Lemma 2. Let X be a K3 surface over \mathbb{C} with a Nikulin involution i and let Y be a desingularization of the quotient surface $X/\langle i \rangle$. Let $e(-)$ be the topological Euler characteristic. Then we have

$$e(X) + t + 2 + 2k = 2e(Y)$$

where t is the trace of the involution i on $H^2(X, \mathbb{C})$ and $k = 8$ is the number of the isolated fixed points of i. Therefore $\rho(X) = \rho(Y)$ and $t = 6$

Proof. : We use the same argument as in [D-ML-P 4.2]. Since i has only isolated fixed points from the topological fixed point formula we get

$$e(X) + t + 2 = 2e(Y) - 2k$$

Since X and Y are both K3 surfaces we have $e(X) = e(Y) = 24$. Therefore, we get $t = 6$. Since $\dim H^2_{tr}(X) = \dim H^2_{tr}(Y)$ and $b_2(X) = b_2(Y) = 22$, we have $\rho(X) = \rho(Y)$.

Theorem 3. Let X be a K3 surface with a Nikulin involution i. If $h(X)$ is finite dimensional then $h(X) \simeq h(Y)$.

Proof. Y is a K3 surface and we have $t_2(\tilde{X}) = t_2(X)$ because $t_2(-)$ is a birational invariant for surfaces. Also

$$H^2_{tr}(X) \simeq H^2_{tr}(\tilde{X}) \simeq H^2_{tr}(Y)$$

because the Nikulin involution acts trivially on $H^2_{tr}(X)$. Let t be the trace of the involution σ on the vector space $H^2(X, \mathbb{C})$. From Lemma 2 we get $t = 6$. The involution i acts trivially on $H^2_{tr}(X)$ and $H^2_{tr}(X)$ is a subvector space of $H^2(X, \mathbb{C})$ of dimension $22 - \rho$. Therefore the trace of the action of i on $NS(X) \otimes \mathbb{C}$ equals $\rho - 16$. Since the only eigenvalues
of an involution are $+1$ and -1 we can find an orthogonal basis for $NS(X) \otimes \mathbb{C}$ of the form $H_1, \ldots, H_r; D_1, \ldots, D_8$, with $r = \rho - 8 \geq 1$ such that $i_*(H_j) = H_j$ and $i_*(D_l) = -D_l$. Then $NS(X) \otimes \mathbb{C}$ has a basis of the form $E_1, \ldots, E_8; H_1, \ldots, H_r; D_1, \ldots, D_8$, where E_h, for $1 \leq h \leq 8$ are the exceptional divisors of the blow up $\tilde{X} \rightarrow X$. The set of $r + 8 = \rho$ divisors $f_*(E_h) = C_k$, for $1 \leq h \leq 8$ and $f_*(H_j) \simeq H_j$, for $1 \leq j \leq r$ gives an orthogonal basis for $NS(Y) \otimes \mathbb{Q}$. Since $q(X) = q(Y) = q(\tilde{X}) = 0$ we can find Chow-K"unneth decompositions for $h(X)$, $h(\tilde{X})$ and $h(\tilde{Y})$ of the form

$$h(X) = 1 \oplus h^2_{alg}(X) \oplus t_2(X) \oplus L^2 \cong 1 \oplus L^{\otimes \rho} \oplus t_2(X) \oplus L^2$$

$$h(\tilde{X}) = 1 \oplus h^2_{alg}(\tilde{X}) \oplus t_2(X) \oplus L^2 \cong h(X) \oplus L^{\otimes 8}$$

$$h(Y) = 1 \oplus h^2_{alg}(Y) \oplus t_2(Y) \oplus L^2 \cong 1 \oplus L^{\otimes \rho} \oplus t_2(Y) \oplus L^2$$

where $\rho(X) = \rho(Y) = \rho$. By Corollary 1 we have $t_2(X) \simeq t_2(Y) \oplus N$ for some $N \in \mathcal{M}_{rat}$. Since $h(X)$ is finite dimensional also N is finite dimensional. Since $H(X)$ and $H(Y)$ are isomorphic as graded vector spaces $H(N) = 0$. By [Ki 7.3] $N = 0$. Therefore $h(X) \simeq h(Y)$. \hfill \square

Theorem 4. Let X be a K3 surface with a Nikulin involution i. Then the following conditions are equivalent:

(i) the correspondence $\Gamma_i = (1 \times i)\Delta_X$ has a valence.

(ii) $\theta : t_2(X) \rightarrow t_2(Y)$.

(iii) $\bar{i}([\xi]) = [\xi]$ in $End_{\mathcal{M}_{rat}}(t_2(X))$.

(iv) i acts as the identity on $A_0(X) \otimes \mathbb{Q}$

Proof. Let

$$\Delta_X = 1/2(\Delta_X + (1 \times i)\Delta_X) + 1/2(\Delta_X - (1 \times i)\Delta_X)$$

as in Proposition 1 and let $\Gamma_i = (1 \times i)\Delta_X$. If Γ_i has a valence then also the projector $q = 1/2(\Delta_X - (1 \times i)\Delta_X)$ has a valence and $v(q)$ is either 0 or -1. Suppose that $v(1/2(\Delta_X - (1 \times i)\Delta_X)) = -1$; then the correspondence $(1 \times i)\Delta_X$ has valence 1. From Theorem 1 we get $t_2(Y) = 0$ hence a contradiction because Y is a K3 surface. Therefore $v(1/2(\Delta_X - (1 \times i)\Delta_X)) = 0$, so that $v(1 \times i)\Delta_X = v(\Delta_X) = -1$. By Theorem 1 $\theta : t_2(X) \rightarrow t_2(Y)$ is an isomorphism. Therefore (i) \Rightarrow (ii).

Conversely if $\theta : t_2(X) \rightarrow t_2(Y)$ then by Corollary 1 (ii) $\Psi_X(\Delta_X - \Gamma_i) = 0$, hence $\Delta_X - \Gamma_i \in Ker \Psi_X$. Since $q(X) = 0$ Ker Ψ_X is coincides with the ideal of degenerate correspondences. This proves (i).
The equivalences $(ii) \Leftrightarrow (iii)$ and $(iii) \Leftrightarrow (iv)$ come from Corollary 1.

\[\square\]

Remark 3. Let σ is an involution on a K3 surface X which is not symplectic, i.e $\sigma^*(\omega) = -\omega$, where ω is a generator of the vector space $H^{2,0}(X)$. By [Zh 1.2] if $X^\sigma = \emptyset$ the quotient surface $Y = X/ \langle \sigma \rangle$ is an Enriques surface, while Y is a rational surface if $X^\sigma \neq \emptyset$. In any case the motive $h(Y)$ has no transcendental part. Therefore $t_2(Y) = 0$ and $t_2(X) \neq t_2(Y)$, because $t_2(X) \neq 0$ for a K3 surface. From the identity in $\text{End}_{\mathcal{M}_{\text{rat}}}(t_2(X))$

\[\bar{\sigma}([\xi]) = -[\xi] \text{ and } [\xi] \neq -[\xi] \text{ in } \text{End}_{\mathcal{M}_{\text{rat}}}(t_2(X))\]

we get

\[\bar{\sigma}([\xi]) = -[\xi] \text{ and } [\xi] \neq -[\xi] \text{ in } \text{End}_{\mathcal{M}_{\text{rat}}}(t_2(X))\]

because otherwise we would get $t_2(X) = 0$. Hence Theorem 4 does not hold true.

Following the example in Remark 3 we now consider the case of a complex K3 surface X with a non-symplectic group G acting trivially on the algebraic cycles. Any automorphism g of X preserves the 1-dimensional vector space $H^{2,0} = H^2(X, \Omega^2_X) \simeq \mathbb{C}\omega$. Hence g is non-symplectic iff there exists a complex number $\alpha(g) \neq 1$ such that $g^*(\omega) = \alpha(g)\omega$. Let $NS(X)$ and T_X be the lattices of algebraic and transcendental cycles on X. X is said to be unimodular if $\det T_X = \pm 1$. Let H_X be the finite cyclic group defined as the kernel of the map $\text{Aut}(X) \to O(\text{NS}(X))$, where $O(\text{NS}(X))$ denotes the group of isometries of $\text{NS}(X)$. Then there are only finitely many values for $m = \vert H_X \vert$.

By [LSY Th. 5] one has the following result.

Theorem 5. Let X be a complex K3 surface X with a non-symplectic group G acting trivially on the algebraic cycles. Let $m = \vert H_X \vert \neq 3$: then there exists a surjective morphism $F_n \to X$, where $F_n \subset \mathbb{P}^3$ is the Fermat surface, of degree $n \geq 4$

\[F_n : X_0^n + X_1^n + X_2^n + X_3^n = 0\]

Here $n = m$ if X is unimodular and $n = 2m$, if X is not unimodular.

Corollary 2. Let X be a complex K3 surface with a non-symplectic group G acting trivially on the algebraic cycles. Let $m = \vert H_X \vert \neq 3$. Then the motive of X is finite dimensional and lies in the subcategory of $\mathcal{M}_{\text{rat}}(\mathbb{C})$ generated by the motives of abelian varieties. K3 surfaces satisfying these conditions have $\rho(X) = 2, 4, 6, 10, 12, 16, 18, 20$.
Proof. From Theorem 5 there is surjective morphism $F_n \to X$, with F_n a Fermat surface. By [SK] the motive $h(F_n)$ is finite dimensional and lies in the subcategory of $\mathcal{M}_{rat}(C)$ generated by the motives of abelian varieties. By [Ki 6.6 and 6.8] if $f : Z \to X$ is a surjective morphism of smooth projective varieties, then $h(X)$ is a direct summand of $h(Z)$. Therefore $h(X)$ is finite dimensional and lies in the subcategory of $\mathcal{M}_{rat}(C)$ generated by the motives of abelian varieties. The computation of the rank $\rho(X)$ appears in [LSY Th. 1 and Th. 2]. □

4. Examples

In this section we describe some examples of K3 surfaces with a Nikulin involution i, such that $t_2(X) \simeq t_2(Y)$. Hence $h(X) \simeq h(Y)$. We will use the classification given by Van Geemen and Sarti in [VG-S] and by Garbagnati and Sarti in [G-S]. Their results are based on the following Theorem.

Theorem 6. ([VG-S 2.2]) Let X be K3 surface with $\rho(X) = 9$ and a Nikulin involution i. Let L be a generator of $E_8(-2) \subset NS(X)$ with $L^2 = 2d > 0$ which we may assume to be ample. Let

$$\Lambda_{2d} = ZL \oplus E_8(-2)$$

Then, if $L^2 \equiv 2 \pmod 4$, we have $\Lambda_{2d} \simeq NS(X)$. If $L^2 \equiv 0 \pmod 4$ we have either $NS(X) \simeq \Lambda_{2d}$ or $NS(X) \simeq \Lambda_{2d}$. Here Λ_{2d} is the unique even lattice containing Λ_{2d} with $\Lambda_{2d}/\Lambda_{2d} \simeq Z/2Z$ and such that $E_8(-2)$ is a primitive sublattice of Λ_{2d}. For every $\Gamma = \Lambda_{2d}$ with $d > 0$ or $\Gamma = \Lambda_{2d}$ with $d = 2m > 0$, there exists a K3 surface with a Nikulin involution i such that $NS(X) = \Gamma$ and $(H^2X, Z)i \perp \simeq E_6(-2)$.

Let’s consider the following cases described in [VG-S]:

(i) X is a double cover of P^2 branched over a sextic curve and Y a double cover of a quadric cone in P^3;

(ii) X is a double cover of a quadric in P^3 and Y is a double cover of P^2 branched over a reducible sextic;

(iii) the image of X under the map Φ_L is the intersection of 3 quadrics in P^5 and Y is a quartic surface in P^3.

First we I show that in the cases (i),(ii) and (iii) the map $f : X \to Y$ induces an isomorphism

$$t_2(X) \simeq t_2(Y)$$

Then, in Theorem 7 we prove that the same result holds if $g : X \to P^1$ is a general elliptic fibration with a section and also Y is an elliptic fibration.
In the case (i) $NS(X) \simeq \mathbb{Z}L \oplus E_8(-2)$, with $L^2 = 2$ and $i^* L \simeq L$ (see [VG-S 3.2]). The map $\Phi_L : X \to \mathbb{P}^2$ is a double cover branched over a sextic curve C and $X/ < i >$ is a double cover of a quadric cone in \mathbb{P}^3. Let σ denote the covering involution on X. Then $\sigma \neq i$. The quotient surface $Y = X/ < \sigma >$ is isomorphic to \mathbb{P}^2. Let $j = \sigma \circ i = i \circ \sigma$ and let $G = \langle 1, \sigma, i, j \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The quotient surfaces $\mathbb{P}^2 = X/ < \sigma >$ and $S = X/ < j >$ are both rational, because S is a Del Pezzo surface of degree 1 (see [VG-S 3.2]). The motives $h(\mathbb{P}^2)$ and $h(S)$ have no transcendental part. Therefore $t_2(X) \neq t_2(Y)$ and $t_2(X) \neq t_2(S)$, because $t_2(X) \neq 0$ for a K3 surface. From the identities in $End_{M_{rat}}(t_2(X))$

$$[\xi] = 1/2([\xi] + \sigma([\xi]) + 1/2([\xi] - \sigma([\xi])$$

$$[\xi] = 1/2([\xi] + \bar{j}([\xi]) + 1/2([\xi] - \bar{j}([\xi])$$

we get, by Corollary 1 (iv), $[\xi] + \sigma([\xi]) = [\xi] + \bar{j}([\xi]) = 0$ in $End_{M_{rat}}(t_2(X))$.

We have

$$\Psi(\Gamma_i) = \Psi_X((1 \times i)\Delta_X) = \Psi_X((1 \times \sigma \circ j)\Delta_X) = \Psi(\Gamma_{\sigma \circ j})$$

Therefore the class of $\bar{i}([\xi])$ in $End_{M_{rat}}(t_2(X))$ equals $\bar{\sigma}([\xi]) \circ \bar{j}([\xi]) = (-[\xi]) \circ (-[\xi]) = ([\xi])^2 = [\xi]$ because $[\xi]$ is the identity of $End_{M_{rat}}(t_2(X))$. Hence

$$\bar{i}([\xi]) - [\xi] = 0 \text{ in } End_{M_{rat}}(t_2(X))$$

From Corollary 1 (ii) we get $\theta : t_2(X) \xrightarrow{\sim} t_2(Y)$.

The proof for (ii) is similar to the previous one. In this case the lattice $\mathbb{Z}L \oplus E_8(-2)$ has index 2 in $NS(X)$ and we may assume that $NS(X)$ is generated by L, $E_8(-2)$ and $E_1 = (L + v)/2$, with $v \in E_8(-2)$, such that $v^2 = -4$. Then E_1 and E_2, where $E_2 = (L - v)/2$, are the classes of 2 elliptic fibrations. The map

$$\Phi_L : X \to \mathbb{P}^3$$

is a 2:1 map to a quadric Q in \mathbb{P}^3 and it is ramified on a curve C of bidegree $(4, 4)$ ([VG-S 3.5]). The quadric Q is smooth, hence it is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. The covering involution $\sigma : X \to X$ of $X \to Q$ and the Nikulin involution i commute, the elliptic pencils E_1 and E_2 are permuted by i because $i^* L = L$ and $i^* v = -v$. i induces an involution i_Q on $Q \simeq \mathbb{P}^1 \times \mathbb{P}^1$ which acts sending a point $\{(s, t), (u, v)\}$ to $\{(u, v), (s, t)\}$. The quotient $Q/ < i_Q >$ is isomorphic to \mathbb{P}^2. Let $j = i \circ \sigma = \sigma \circ i$ in $Aut(X)$ and let $G = \{1, \sigma, i, j\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. $S = X/ < j >$ is a Del Pezzo surface of degree 2, by [VG-S 3.5]. The
motives $h(Q)$ and $h(S)$ have no transcendental part, hence from the same argument as in (i), we get an isomorphism $t_2(X) \simeq t_2(Y)$.

We now consider the description given in [VG-S 3.7] of (iii). Let Y be the desingularization of the quotient surface $X/ < i >$. In this case there is a line bundle $M \in \text{NS}(Y)$ such that $\beta^*L \simeq f^*M$ and

$$H^0(X,L) \simeq f^*(H^0(Y,M)) \oplus f^*(H^0(Y,M-C))$$

where $\beta : \tilde{X} \to X$ is the blow-up at the 8 fixed points P_1, P_2, \ldots, P_8 of i, $f : \tilde{X} \to Y$ and $C = (\sum_{1 \leq i \leq 8} C_i)/2 \in \text{NS}(Y)$, with C_i the rational curves on Y corresponding to the 8 singular points Q_1, \ldots, Q_8 of $X/ < i >$. The above decomposition is the decomposition of $H^0(X,L)$ into the i^* eigenspaces. We have $L^2 = 8, M^2 = 4, h^0(M) = 4, h^0(M-C) = 2$ so that

$$\Phi_L : X \to \mathbb{P}^5 ; \Phi_M : Y \to \mathbb{P}^3 ; \Phi_{M-C} : Y \to \mathbb{P}^1$$

The image of X under Φ_L is the intersection of 3 quadrics in \mathbb{P}^5 and the involution i is induced by the involution

$$C^6 : (x_0, x_1, x_2, x_3, y_0, y_1) \to (x_0, x_1, x_2, x_3, -y_0, -y_1)$$

The fixed points (P_1, P_2, \ldots, P_8) lie in $X \cap \{y_0 = y_1 = 0\}$. The quadrics in the ideal of X are of the form

$$y_0^2 = Q_1(x), y_0y_1 = Q_2(x), y_1^2 = Q_3(x)$$

where $x = (x_0, x_1, x_2, x_3)$. The line

$$l : x_0 = x_1 = x_2 = x_3 = 0$$

in \mathbb{P}^5 is fixed under i and $l \cap X = \emptyset$. The image of Y by Φ_M is the projection of X from the invariant line to the invariant \mathbb{P}^3 which is defined by $y_0 = y_1 = 0$. The image is the quartic surface in \mathbb{P}^3 defined by

$$Q_1(x)Q_3(x) - Q_2^2(x) = 0$$

which can be identified with Y.

We now use a result in [Vois 1.18] : if X is the K3 surface obtained as the intersection of 3 quadrics in \mathbb{P}^5 which are invariant under the involution

$$i : (x_0, x_1, x_2, x_3, y_0, y_1) \to (x_0, x_1, x_2, x_3, -y_0, -y_1)$$

then $i^*(\omega) = \omega$ for $\omega \in H^{2,0}(X)$ and i acts trivially on $A_0(X)$. Therefore, by Corollary 1 (iii) we get an isomorphism $\theta : t_2(X) \simrightarrow t_2(Y)$.

Next we consider the case of a K3 surface X which has an elliptic fibration $g : X \to \mathbb{P}^1$ with a global section $\sigma : \mathbb{P}^1 \to X$. The set of sections of g is the Mordell-Weil group MW_g with identity element σ.
MW_0 is the subgroup of Aut X consisting of all automorphisms acting on a general fiber as translations and these translations preserve the holomorphic two form on X. Therefore, if there is an element \(\tau \) of order 2 in MW_0 then the translation by \(\tau \) defines a Nikulin involution \(i \) on X.

Theorem 7. Let \(X \) a general elliptic fibration \(g : X \to \mathbb{P}^1 \) with sections \(\sigma, \tau \) as above. Let \(i \) be the corresponding Nikulin involution on \(X \) and let \(Y \) be the desingularization of \(X/ < i > \). Then the map \(f : X \to X/ < i > \) induces an isomorphism

\[
\theta : t_2(X) \cong t_2(Y)
\]

Proof. In [VG-S 4.2] it is shown that for a general elliptic fibration \(g : X \to \mathbb{P}^1 \) there is an isomorphism \(MW_g = \{ \sigma, \tau \} \cong \mathbb{Z}/2\mathbb{Z} \) where \(\sigma : \mathbb{P}^1 \to X \). Hence the translation by \(\tau \) defines a Nikulin involution \(i \) on \(X \). The Weierstrass equation of \(X \) can be put in the form

\[
X : y^2 = x(x^2 + a(t)x + b(t))
\]

where the degree of \(a(t) \) and \(b(t) \) are 4 and 8 respectively. There are 8 singular fibers of type \(I_1 \), which are rational curves with a node, corresponding to the zeroes \(\{a_1, \ldots, a_8\} \) of \(a^2(t) - 4b(t) \) and 8 singular fibers of type \(I_2 \), which are union of two \(\mathbb{P}^1 \) meeting in 2 points, corresponding to the zeroes \(\{b_1, \ldots, b_8\} \) of \(b(t) \). The fixed points of the translation by \(\tau \) are the 8 nodes in the \(I_1 \)-fibers. \(\tau \) acts on the generic fiber \(E_t \) as the translation by a point of order 2, i.e. \(2\tau(x) = 2x \). The desingularization \(Y \) of the quotient surface \(X/ < \tau > \) is an elliptic fibration with Weierstrass equation

\[
Y : y^2 = x(x^2 - 2a(t)x + 9a(t)^2 - 4b(t)).
\]

The generic fiber \(F_t \) of \(Y \) is the elliptic curve \(E_t/ < P > \), where \(E_t \) is the generic fiber on \(X \). Let

\[
V = \bigcup_{t \in A} g^{-1}(t) = \bigcup E_t
\]

where \(A = \mathbb{P}^1 - \{a_1, \ldots, a_8, b_1, \ldots, b_8\} \). Then \(V \) is open in \(X \) and, for every point \(x \in V \), the involution \(\tau \) acts as translation by a point of order 2 on \(E_t \), so that \(2\tau(x) = 2x \). Therefore \(2(1 \times \tau)(x, x) = (2x, 2x) \), for all \(x \in V \) i.e. \((1 \times \tau)\Delta_V = \Delta_V \) with \(\Delta_V = \Delta_X \cap (V \times X) \). We get \((1 \times \tau)\Delta_X = \Delta_X \) on \(V \times V \), hence \((1 \times \tau)\Delta_X - \Delta_X \in \mathcal{J}(X) \), with \(\mathcal{J}(X) = Ker \Psi_X \) and \(\Psi_X : A^2(X \times X) \to End_{\mathcal{M}_{rat}}(t_2(X)) \). Therefore \(\Psi_X(1 \times \tau)\Delta_X = \Psi_X(\Delta_X) \) and

\[
\bar{\tau}([\xi]) = [\xi]
\]
in $\text{End}_{\mathcal{M}_{\text{rat}}}(t_2(X))$, where ξ is the generic point of X. From Corollary 1 (ii) we get
\[
\theta : t_2(X) \sim t_2(Y)
\]

Remark 4. By [VG-S 4.1], if X is as in theorem 7, then the Neron-Severi group $NS(X)$ has rank $\rho(X) = 10$, and $\text{dim } T_{X,\mathbb{Q}} = 12$ is even. In this case the isomorphism of Hodge structures $\phi_i : T_{X,\mathbb{Q}} \simeq T_{Y,\mathbb{Q}}$, induced by the involution i, is an isometry. On the contrary, in the cases described in (i),(ii), (iii), where $\rho(X) = 9$, ϕ_i is not an isometry. This follows from [VG-S 2.5] because $\text{dim } T_{X,\mathbb{Q}}$ is odd.

References

[A] Y. André, *Pour une théorie inconditionelle des motifs*, Publ. Math. IHÉS (1996), 1-48.

[B-S] S.Bloch and V.Srinivas *Remarks on correspondences and algebraic cycles*, American J. of Math. **105** (1983), 1235-1253.

[D-ML-P] I.Dolgachev,M.Mendes Lopez and R.Pardini *Rational surfaces with many nodes*, Compositio Math. **132** (2002) 349-363.

[Fu] W.Fulton *Intersection Theory*, Springer-Verlag, Heidelberg-New-York.

[G-S] A.Garbagnati and A.Sarti *Projective models of K3 surfaces with an even set* Adv. in Geometry **8** (2008) 413-440.

[G-G] S.Gorchinskiy and V.Guletskii *Motives and representability of algebraic cycles on threefolds over a field*, preprint (2008).

[G-P] V. Guletskii and C. Pedrini *Finite-dimensional Motives and the Conjectures of Beilinson and Murre*, K-Theory **30** (2003), 243-263.

[Huy] D.Huybrechts *Chow groups and derived categories of surfaces*, Preprint arXiv:0912.3299v1 [math.AG] Dec 2009, to appear Proc. Classical Algebraic Geometry today. MSRI

[J] U. Jannsen *Motivic Sheaves and Filtrations on Chow groups*, Proceedings of Symposia in Pure Mathematics **55** (1) (1994), 245–302.

[Ki] S.I. Kimura *Chow groups can be finite-dimensional, in some sense*, Math. Ann. **331** (2005), 173–201.

[KMP] B.Kahn,J.Murre and C.Pedrini *On the transcendental part of the motive of a surface*, Algebraic cycles and Motives Vol II, London Math.Soc.LNS **344** (2008)Cambridge University Press, 1-58.

[LSY] R. Livné,M.Schütt and N. Yui *The modularity of K3 surfaces with non-symplectic group actions*, Math Ann. **348** (2010) 333-355.

[Mor] D.R.Morrison *On K3 surfaces with large Picard number*, Inv.Math **75** (1984) 105-121.

[Mu] J. Murre *On a conjectural filtration on the Chow groups of an algebraic variety*, Part I and II, Indagationes Math. n.s. **4**(2) (1993), 177–201.

[Muk] S.Mukai *On the moduli space of bundles on a K3 surface I in Vector bundles over algebraic varieties* Tata Inst of Fundamental Research, Oxford University Press (1987).

[N1] V.V.Nikulin *Kummer surfaces* Izv .Akad.Nauk.SSSR Ser. Mat **39** (1975) 278-293.
V.V. Nikulin, "On correspondences between surfaces of K3 type," Math USSR-Izv 30 (1988) 375-383.

C. Pedrini, "On the motive of a K3 surface," in "The Geometry of algebraic cycles," Clay Mathematics Proceedings, Volume 9 (2010), 53-74.

F. Severi, "La teoria delle corrispondenze a valenza sopra una superficie algebrica: le corrispondenze a valenza in senso proiettivo Nota II," Rend. Reale Acc. Naz Lincei, Classe di Scienze, Vol. XVII (1933) 759-764.

T. Shioda and T. Katsura, "On Fermat varieties," Tohoku Math. J. 31 (1979), 97-115.

B. Van Geemen and A. Sarti, "Nikulin Involutions on K3 Surfaces," Math. Z. (2007), 731-753.

C. Voisin, "Sur le zero-cycles de certain hypersurfaces munies d’un automorphisme," Ann. Sc. Norm. Sup. Pisa 19 (1992), 473-492.

D. Q. Zhang, "Quotients of K3 surfaces modulo involutions," Japan J. of Math 24 n. 2 (1998), 335-366.