Quantum heat transfer through an atomic wire

A. Buldum* and S. Ciraci

Department of Physics, Bilkent University, Bilkent 06533, Ankara, Turkey.

C. Y. Fong

Department of Physics, University of California, Davis, California 95616-8677, U.S.A

Abstract

We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.
I. INTRODUCTION

Many studies have demonstrated that transport properties of condensed matter with nanometer size range and low dimensionality can exhibit interesting features. For example, the electron transport through a nanoobject (i.e. a small molecule, nanowire or atomic chain) shows novel features1–8 owing to two facts: (1) The electronic states confined in directions which are perpendicular to the one for the current flow are quantized. The level spacings, $\Delta \epsilon_i = \epsilon_{i+1} - \epsilon_i$, of the quantized states of the nanoparticle are finite but strongly size and geometry dependent. (2) The mean distance, l, traveled by an electron between two terminals is smaller than the phase breaking length, L_ϕ, (i.e. $l < L_\phi$). Consequently, a stepwise behaviour in the electrical conductance is observed under ballistic transport through a point contact created by an STM tip4,10 (or through a narrow constriction between two reservoirs of two-dimensional electron gas in high mobility GaAs-GaAlAs heterostructures5,6), because the quantization and coherence of electronic states become pronounced. The ballistic electrical conductance G was found5,6 to vary with the radius of contact, r_c, (or with the width of the constriction, w) in quantized steps of approximately $2e^2/h$, when r_c or w is in the range of Fermi wave length λ_F.

In view of the interesting physics underlying the ballistic electron transport through a nanoobject between two electrodes, we conjectured9 earlier that similar effects should occur also in the heat conduction \textit{via phonons}. Similar to a constriction in electrical conduction, we expect that a nanoobject has a discrete vibrational frequency spectrum with finite spacings, $\Delta \Omega_i = \Omega_{i+1} - \Omega_i$, determined by its atomic configuration and size. Furthermore, when a nanoobject is placed between two reservoirs, collective vibrational modes (phonons) which involve the coherent vibrations of the atoms in the nanoobject and reservoirs can be developed, leading to the process of ballistic thermal conductivity. The thermal conductance, K, depends on the available number of channels and hence it is expected to increase in discrete values each time a new ballistic channel is included in the heat transfer. Each vibrational
mode contributes to the heat transfer, but its contribution is weighted by Planck’s distribution $n(\Omega, T)$. Therefore, K is determined by phonons with energies up to thermal energy ($\hbar \Omega \sim k_B T$). This may lead to smearing of the step structure of K. This feature of quantization of thermal conduction differs from that of electrical conduction, because the former complies with Bose-Einstein statistics.

Heat transfer through a nanoobject is also related to the atomic scale dry friction and lubrication. When two objects move relative to each other, they engage in contact through various atomic scale asperities or lubricant molecules. In these studies, the emphasis is placed on the energy dissipation. The mechanical energy of the relative motion is dissipated by (a) the creation of electron-hole pairs, and (b) by the creation of non-equilibrium phonon distribution at the close proximity of the asperity. In the latter case, the main issue is the thermal conductance related to the heat transfer between the vibrational modes of the asperities (or lubricant molecule) and those of the objects, that leads to the energy dissipation. In addition, the heat transfer is also an interesting issue in nanodevices. Therefore, it is important to understand the thermal conduction through a nanoobject.

The objective of this work is to investigate the effects of the quantized nature of vibrational modes of a dielectric wire on phononic heat transfer between two reservoirs. To this end, the ballistic heat transfer through a uniform dielectric wire is investigated first. We also studied the thermal conduction through a finite atomic wire. As an example, the heat transfer through a three-atom chain placed between two reservoirs with large cross section are examined by performing numerical calculations on a model system. We found that the thermal conductance of a uniform atomic wire at low temperature is independent of material and increases linearly with temperature. For finite atomic wire both longitudinal acoustic and optical modes contribute to the thermal conductance; the latter modes may lead to stepwise behavior.
II. MODEL HAMILTONIAN APPROACH

The system of interest is schematically described in the upper panel of Fig. 1. Heat flows from the left (L) to the right (R) through a nanoobject (C). Here L, R can be sections of nanoobject itself or heat reservoirs. The temperature of L and R, T_L and T_R, respectively, are kept constant, so that the steady state of the transport is considered. For this system we investigate the thermal conduction by using a model Hamiltonian approach. To find the modes which are responsible for the ballistic transport of heat, we specify first a zero order vibrational Hamiltonian which characterizes the possible modes in the three regions $(L + C + R)$,

$$H_o = \sum_{i,q} \hbar \Omega_{i\alpha L} a_{i\alpha L}^+ a_{i\alpha L} + \sum_{i,q} \hbar \Omega_{i\alpha R} a_{i\alpha R}^+ a_{i\alpha R} + \sum_{i,q} \hbar \Omega_{i\alpha C} a_{i\alpha C}^+ a_{i\alpha C}$$

(1)

Here q_X is the momentum quantum numbers for vibrational mode $\Omega_{i\alpha X}$ belonging to the branch i in one of the three regions $(X = L, R, C)$, and $a_{i\alpha X}$ ($a_{i\alpha X}^+$) is the corresponding annihilation (creation) operator. The heat transfer via phonons is realized when L, C, and R are coupled and $\Delta T = T_L - T_R > 0$. The coupling can be described by an interaction Hamiltonian,

$$H_{\text{int}} = \sum_{ij} T_{ij,q \alpha L C} (a_{i\alpha L}^+ a_{j\alpha C} + a_{j\alpha C}^+ a_{i\alpha L}) + \sum_{jl} T_{jl,q \alpha C R} (a_{j\alpha R}^+ a_{l\alpha C} + a_{l\alpha C}^+ a_{j\alpha R}) + \sum_{ijkl} U_{ijkl,q \alpha L C R} (a_{i\alpha L}^+ a_{j\alpha C}^+ a_{k\alpha R} + \cdots)$$

(2)

in terms of the harmonic (T) and anharmonic (U) coupling coefficients. This Hamiltonian has been used to predict localized and extended vibrational modes in molecular crystals. The present application is similar to the transfer Hamiltonian approach. As we emphasized earlier, we consider only the thermal conduction mediated by phonons. The electronic states, as well as the electron-phonon interactions are not included in Eq.(1) and Eq.(2).

The modes responsible for the ballistic heat transport are provided mainly by the harmonic couplings. Before discussing the effects of the harmonic coupling, we comment on
the anharmonic terms. The anharmonic couplings describe the phonon-phonon interactions which are the mechanism responsible for several dissipative processes, such as energy loss to local modes of the nanowire and thermal resistance due to umklapp process. Depending on the strength of the anharmonic coupling, the continuing energy transfer to the localized modes may result in energy discharge to the heat transporting states, or desorption or migration of an atom. The former event, i.e. the excitation of a local phonon, followed by deexcitation can occur periodically and can be manifested in the time variation of the conductance, $K(t)$. The detail of the anharmonic effects will not be discussed further in this paper. In what follows we apply the above approach to calculate the thermal conductance of a uniform dielectric wire (Sec. III) and also of a finite atomic chain (Sec. IV).

III. UNIFORM DIELECTRIC WIRE

We now consider three sections on a uniform wire. Owing to the uniformity of the sections (L, C, R), the phonon modes are the normal modes of the system, hence $q = q_L = q_C = q_R$, and also $T_{ij,qq} = T_{ii,qq}$. Furthermore, $T_{ii,qq} = \hbar \Omega_{iq}$. If the effect of mode decay is considered, the rate of the heat transfer from L to R in this 1D system is given by

$$J_Q^{LR} = \sum_i \hbar \Omega_{iq} \Gamma_{iq}^L$$

by using the decay rate expression for a given i and q,

$$\Gamma_{iq}^L = \Gamma_{iq}^C V_{qq}^{LC} V_{qq}^{CL} \left(\frac{\hbar \Omega_{iq}}{\hbar \Gamma_{iq}} \right)^2$$

with $\Gamma_{iq}^C = (2\pi/\hbar) V_{qq}^{CR} V_{qq}^{RC} D_i^R(\Omega_{iq})$. By symmetry $V_{qq}^{BA} = V_{qq}^{AB}$ and

$$V_{qq}^{LC} = \langle n_L - 1, n_C + 1, n_R | H_{int} | n_L, n_C, n_R \rangle$$

$$V_{qq}^{CR} = \langle n_L - 1, n_C, n_R + 1 | H_{int} | n_L, n_C + 1, n_R \rangle.$$

where $n_X (X = L, C, R)$ is the Planck’s distribution $n_X(\Omega_{iq}, T_X) = [\exp(\hbar \Omega_{iq}/k_B T_X) - 1]^{-1}$ given in terms of the frequency of the mode and temperature of the section, T_X. Hence $V_{qq}^{LC} = T_{ii,qq} \sqrt{n_L(n_C + 1)}$ and $V_{qq}^{CR} = T_{ii,qq} \sqrt{(n_C + 1)(n_R + 1)}$ are expressed in terms of Planck’s distribution functions. The net rate of heat transfer through the chain is $J_Q = J_Q^{LR} - J_Q^{RL}$. Since n_L and $n_R \ll 1$ at low temperature, J_Q is expressed in the following form
\[J_Q \simeq \frac{\hbar}{2\pi} \sum_i \int_0^\infty [n_L - n_R] \Omega \, d\Omega \]

(5)

Here index \(i \) of the summation sign specifies the branches for \(n_L \) and \(n_R \). Note that Eq. (5) yields exactly the same expression of current one obtains from the phenomenological approach \(^{20,21}\) by assuming the transmission coefficients, \(t_i(\Omega) = 1 \). Therefore, the present approach justifies the Landauer type expression of heat current by deriving it from the model Hamiltonian specified by Eq.(1). Now, we consider first an atomic chain that has only three branches and evaluate Eq.(5) for \(\Delta T \to 0 \). We take \(T_L \) and \(T_R \) small so that the upper limit of the integral in Eq.(5) is justified. Defining \(T = (T_L - T_R)/2 \), the following expression for the ballistic thermal conductance, \(K = J_Q/\Delta T \), is obtained,

\[K = \sum_i \frac{\pi^2 k_B^2 T}{3\hbar} \]

(6)

According to this interesting result the ballistic conductance of each branch \(i \) of the uniform and harmonic atomic chain is limited by the value \(K_o = \pi^2 k_B^2 T/3\hbar \). It is independent of any material property, and is linearly dependent on \(T \). The total thermal conductance becomes \(K = N K_o \), where \(N \) is the total number of branches. For an ideal 1D atomic chain \(N = 3 \), if the transverse vibrations are allowed. The result agrees with the well-known expression derived earlier for dielectric bridges\(^{22-24}\). For a homogeneous wire that has a larger cross section, more subbands can now be present due to the transverse confinement of the vibrational motions in the direction perpendicular to the propagation. In this case, the ballistic thermal conductance of a branch with \(\Omega_{i,min} \neq 0 \) is smaller than \(K_o \) due to the finite frequency of a subband through the occupancy of Planck’s distribution. For example, with two subband frequencies, \(\Omega_{min} = 10^{10} Hz \) and \(\Omega_{min} = 10^{11} Hz \) at \(q = 0 \), the thermal conductance of each channel at \(T = 0.25 K \) is calculated from Eq.(5) to be 0.94\(K_o \) and 0.25\(K_o \), respectively. At \(T = 1 K \), these contributions increase to 0.97\(K_o \) and 0.77\(K_o \), respectively. Consequently, one expects that each subband in the wire having \(\Omega_{i,min} \neq 0 \), that formed by increasing the cross section, leads to a jump in \(K \) as in the electrical conduction. However, the amplitude of steps decreases exponentially with increasing \(\Omega_{i,min} \) at given low temperature \(T \). Furthermore, an
important difference between the electrical and thermal conductance is that all the modes of a given branch \(i \) contribute to \(K_o \), whereas the quantum ballistic electrical conduction in the 1D channels is governed by the Fermi-Dirac distribution.

Recently, Greiner et al. calculated the thermal conductance of free electrons for 1D ballistic and diffusive transport in the linear response regime by using the correlation function formalism. They derived a universal expression for the electronic thermal conductance of a degenerate electron gas, \(K_{el} \), that is the same as \(K_o \) found for the phononic thermal conductance in Eq.(6). Interestingly, electrons and phonons have the same universal value for their thermal conductance at low temperature, in spite of the different statistics they obey. We believe that this situation originates from the fact that both systems follow the same distribution, \(e^{-\epsilon/k_B T} \) for \(\epsilon/k_B T > > 1 \). Here, \(\epsilon = \hbar \Omega_i \) for phonons, and \(\epsilon = \epsilon_i - \mu \) for electrons, \(\epsilon_i \) and \(\mu \) being electron energy and chemical potential.

IV. FINITE WIRE AND NUMERICAL MODELING

The quantum heat transfer through a uniform and harmonic atomic wire is an idealized situation. A more realistic system consists of a finite atomic wire, \(C \) coupled to reservoirs \(L \) and \(R \). Here the finite atomic wire has discrete vibrational frequency spectrum, while those of reservoirs are continuous. In the lower panel of Fig. 1 the corresponding densities of states, \(D^X(\Omega) \), are schematically described. It is also noted that cross sections change abruptly where the atomic wire is connected to the reservoirs. As a result, the transmission coefficient, \(t_j(\Omega) < 1 \) because of reflections. On the other hand, the application of the continuum theory to determine the transmission coefficients as in the case of dielectric wires having cross section (50nm x 50nm) is not justified here owing to the discrete character and small size of the finite atomic wire. Moreover, the modes of wire differ from those of the reservoirs; \(C \) itself is not uniform in the sense that the atoms near the boundary experience different force constants. We now treat such a general non-uniform dielectric wire.
In order to analyze the character of the modes of a finite wire and to present an example we carried out numerical calculations on a prototype model that consists of a chain of 3 atoms placed between two reservoirs. Each reservoir (L and R) is modeled by 7 (001) atomic planes of the fcc structure. The whole system ($L + C + R$) comprises 451 atoms. The interatomic distances between an atom in the chain and nearest slab-atoms and between its adjacent chain atoms are taken, 2.7, 2.6˚A, respectively. We assume that the electrical conduction through these atoms is zero, and hence the energy transfer through electrons is not allowed. Since we are concerned with the vibrational modes of the system, which are responsible for the energy transfer, we express the interatomic interactions by a prototype empirical, Morse-type two-body potential. Then, we set up the dynamical matrix of the system and calculate the normal modes and their frequencies $\Omega_{i\mathbf{q}}$.

Our analysis distinguished three different types of modes: i) Modes localized strongly in the chain. ii) Modes confined to the reservoir(s). iii) Current-transporting resonant modes. Note that only confined modes would appear if the coupling between the chain and the reservoirs were weak. The modes in the first two categories (i, ii) cannot be involved in the heat transfer, but they affect the thermal conduction by increasing the thermal resistance through anharmonic couplings. The transverse modes of the finite chain are well localized owing to the different coupling constants and different number of neighbors as compared to the atoms in the reservoirs. On the other hand, the longitudinal modes are coupled to those of the reservoirs and form resonant modes. Figure 2 illustrates three resonant modes of the atoms. Their relative motions are indicated by the arrows. (a) and (b) can be considered as longitudinal optical branches and (c) the acoustic branch. Therefore, the resonant modes can be also contributed by the optical branches. Figure 2 also shows that the local densities of states within the chain, $\rho_{i\mathbf{q}_C}(\Omega)$, associated with these modes, $i\mathbf{q}_C$, which are calculated from the spectrum of the dynamical matrix. We now consider the ballistic heat transfer through resonances. Starting from the rate expression given in Sec. III, the ballistic
thermal conductance for a single resonant mode i_q, is given by,

$$\kappa_{i_q} \sim k_B v_{i_q} x^2 e^x (e^x - 1)^{-2}$$ \hspace{1cm} (7)

with $x = \hbar \Omega_{i_q} / k_B T$. For large x, $\kappa_{i_q} \sim v_{i_q} k_B x^2 e^{-x}$. On the other hand $\kappa_{i_q} \sim v_{i_q} k_B$ if x is small. In view of the analysis in Ref [25], the thermal conductance of a finite atomic chain due to all resonance modes can be obtained from the sum over these modes, $i_q C$,

$$\mathcal{K} \sim \sum_{i_q C} v_{i_q C} k_B \int_0^\infty \rho_{i_q C} (\Omega) \left(\frac{\hbar \Omega}{k_B T} \right)^2 \exp \left(\frac{\hbar \Omega}{k_B T} \right) \left[\exp \left(\frac{\hbar \Omega}{k_B T} \right) - 1 \right]^{-2} d\Omega$$ \hspace{1cm} (8)

Here $\rho_{i_q C}$ is the local density of states for the resonant modes derived from the mode $i_q C$ and $v_{i_q C}$ is average velocity associated with the same mode. This density of states modifies the ideal ballistic transmission as $t_{i_q}(\Omega)$ does to J_Q in Ref [23]. If $\rho_{i_q C}$ in Eq.(8) is replaced by $D_i^C(\Omega)$ corresponding to a branch of uniform atomic chain, the thermal conductance \mathcal{K} in Eq.(8) yields the universal value \mathcal{K}_o. By using a value of $v_{i_q C} \sim 393m/sec$ deduced from the slab calculations, we calculate $\mathcal{K}(T)$ due to resonance in Fig. 2(c) and illustrate it in inset in the same panel. For $T << 50$ K, \mathcal{K} increases with T, then \mathcal{K} saturates as $T \rightarrow 50$ K. This latter fact is the consequence of κ_{i_q} at small x discussed above.

We shall emphasize an interesting feature of \mathcal{K} that can be revealed from Eq.(8). Each atom incorporated in the finite chain between two reservoirs adds 3 (optical) modes. So as the chain becomes longer by including new atoms, the number of longitudinal optical modes which may give rise to resonant modes increases. Accordingly, each resonant mode labeled by $i_q C$ that can lead to a current transporting channel, shall give rise to a step increase in \mathcal{K} by increasing the temperature. Apparently, the step behavior can occur without having subbands in the transverse direction. This situation is relevant for the energy transport through molecules attached (i.e chemisorbed or physisorbed) to the surfaces. The thermal conductance associated with the phononic heat transfer for a molecule having discrete vibrational frequency spectrum may exhibit at least non-monotonic variation with temperature. Whether the step behavior of thermal conductance can be resolved depends on the frequency and level spacing of the resonance modes. According to a criterion put forward
by Blencowe\cite{24}, $\Omega_{i+1} > 14\Omega_i$ in order to resolve the quantum features of $K(T)$. As for the question whether K of a molecule or an atomic chain between two reservoirs increases by incorporating new atoms, the answer is not straightforward. It depends on the new modes yielding new resonance mode, and also $\rho_{iqc}(\Omega)$ and ν_{iqc} associated these modes. Nevertheless, this is an interesting issue that deserves further study. The contacts to the reservoirs by themselves can set a resistance. It should also be noted that increasing the length of the chain by including more atoms can lead to the possibility of introducing imperfections in the structure. The phonon-phonon interaction due to anharmonic coupling (that is not considered here) can also contribute to the resistance of the wire. Hence the probability of observing such coherent conductance decreases. As a result, the resistance to heat current increases.

V. CONCLUSIONS

In this work we analyzed important features of the heat conduction via phonons through a dielectric wire. In particular, we investigated the ballistic heat transfer through a uniform and harmonic wire and also through a finite atomic chain. By using a model Hamiltonian approach we showed that the conductance of a uniform atomic chain at low temperature is consistent with the well-known universal value, and varies linearly with temperature. As the cross section of the wire becomes larger to include several subbands due to the confinement of the transverse motion of ions, each subband contributes to the ballistic thermal conductance by an amount that depends on T and the threshold frequency of the subband, $\Omega_{i,min}$. The higher the frequency of the mode, the less its contribution to K. The resulting step behavior shall be observable, if they are not smeared out. We analyzed also the nature of modes for a finite atomic chain placed between two reservoirs. We found resonance modes originating from longitudinal optical modes, which can contribute to the ballistic thermal conductance. They differ from the subbands due to lateral confinement but should also exhibit stepwise behavior in K.
ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Dr. D. M. Leitner. We thank Mr Sefa Dag and A. Ozpineci for their assistance in the preparation of the manuscript. This work is supported in part by the grants NSF-INT-9872053 and TUBITAK.
REFERENCES

1 R. Landauer, IBM J. Res. Develop. 1, 223 (1957), *ibid* 32, 306 (1988); J. Phys. Condens. Matter. 1, 8099 (1989).

2 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhos, Phys. Rev. B 31, 6207 (1985).

3 Y. Imry in *Directions in Condensed Matter Physics*, eds. G. Grinstein and G. Mazenko, World Scientific, Singapore p.101 (1986).

4 J. K. Gimzewski and R. Möller, Phys. Rev. B. 36, 1284 (1987).

5 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williams, L. P. Kouwenhowen, D. van der Marel and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

6 D. A. Wharam, T. J. Thorton, R. Newbury, M. Pepper, H. Ritchie and G. A. C. Jones, J. Phys. C 21, L209 (1988).

7 G. Kirczenow, Solid State Commun. 68, 715 (1988).

8 E. Tekman and S. Ciraci, Phys. Rev. B 39 8772 (1989); Phys. Rev. B 43, 7145 (1991)
 (This paper includes several references relevant to the subject).

9 H. Mehrez and S. Ciraci, Phys. Rev. B 56, 12632 (1997).

10 N. Agraït, J. G. Rodrigo and S. Vieira, Phys. Rev. B 47, 12345 (1993); J. Pascual et. al. Science 267, 1793 (1995); J. M. Krans et. al. Phys. Rev. B 48, 14721 (1994).

11 For references see *Physics of Sliding Friction*, Vol. 311 of Nato Advanced Study Institute, Series E, Applied Science Eds. B. N. J. Persson and E. Tossatti, Kluwer, Dordrecht (1996); C. Daly and J. Krim, Phys. Rev. Lett. 76, 803 (1996).

12 A. Buldum and S. Ciraci, Phys. Rev. B 55, 2606 (1997); A. Buldum and S. Ciraci, Phys. Rev. B 57, 2468 (1998).

13 J. B. Sokoloff, Phys. Rev. Lett. 71, 3450 (1993).
D. E. Logan and P. G. Wolynes, J. Chem. Phys. 93, 4994 (1990); D. M. Leitner and P. G. Wolynes, *ibid* 105, 11226 (1996); D. M. Leitner and P. G. Wolynes J. Phys. Chem. 101, 541 (1997).

M. L. Roukes M. R. Freeman, R. S. Germain and R. C. Richardson, Phys. Rev. Lett. 55, 422 (1985); T. S. Tighe, J. M. Worlock and M. L. Roukes, Appl. Phys. Lett. 70, 2687 (1997).

A. Buldum, Ph.D. Thesis, Bilkent University, 1998 (unpublished).

J. C. Kimball, C. Y. Fong and Y. R. Shen, Phys. Rev. B 23, 4946 (1981).

J. Bardeen, Phys. Rev. Lett. 6, 57 (1961); C. B. Duke, Tunneling in Solid State Physics, *Solid State Physics, Supplement 10*, eds. Turnbull and Seitz, Academic Press, (1969).

G. A. Voth, J. Chem. Phys. 88, 5547 (1988); G. A. Voth, *ibid* 87, 5272 (1987); G. A. Voth and R. A. Marcus, *ibid* 84, 2254 (1986).

The Physics of Phonons, G. P. Srivastava, Adam Hilger, Bristol, (1990).

D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981).

D. E. Angelescu, M. C. Cross and M. L. Roukes, Superlattice Microstruct. 23, 673 (1998).

L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).

M. P. Blencowe, Phys. Rev. B 59, 4992 (1998).

H. Mehrez, S. Ciraci, A. Buldum and I. P. Batra, Phys. Rev. B 55, R1981 (1997).

A. Greiner, L. Reggiani, T. Kuhn and L. Varani, Phys. Rev. Lett. 78, 1114 (1997).

* Present Address: Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
FIGURES

FIG. 1. A schematic description of the quantum heat transfer investigated in the text. A nanoobject coupled to two reservoirs and corresponding density of frequencies. Resonance states are described by dotted lines.

FIG. 2. The local density states corresponding to resonance modes derived from the three longitudinal modes iq_C’s of a chain of three atoms between two slabs representing the reservoirs are illustrated in panels (a)-(c). The corresponding modes are schematically described at right. In (c) the variation of \mathcal{K} in units of $10^{-21} Jm/K\text{sec}$ calculated from the acoustic resonance modes is illustrated in the same panel.
$\Delta T = T_L - T_R$

Diagram:
- Left Reservoir (L) with temperature T_L
- Right Reservoir (R) with temperature T_R
- Nano object (C)
- Current J_Q
- Transition $D_i^L(\Omega)$ to $D_i^R(\Omega)$ for $j=1,2$
\[\rho_{iqlc} \text{ (arbitrary units)} \]

\[\Omega \text{ (K)} \]

\[T \text{ (K)} \]