Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

Megumi Kanasaki, Takako Nagai, Munehiro Kitada, Daisuke Koya and Keizo Kanasaki*

Abstract
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).

Introduction
In recent decades there has been a tremendous increase in the therapeutic options available for the inhibition of the renin-angiotensin system (RAS). Historically, angiotensin-converting enzyme inhibitors (ACE-I) were the first class of RAS inhibitors identified. The first ACE-I, captopril, was discovered by a scientist at Squibb, a US pharmaceutical company, in 1975 [1]. Captopril was based on the peptide sequence of bradykinin-potentiating factor, which inhibited the conversion of angiotensin I to angiotensin II when perfused into pulmonary circulation [2].

Approximately 15 years ago, a second class of RAS inhibitors was introduced into the market, the angiotensin II receptor blockers (ARBs) [3]. Very recently, a novel class of RAS inhibitor, including aliskiren [4], which directly inhibits renin has been put into clinical use. Most of the literature support the beneficial effects of this novel class of RAS inhibitors as antihypertensive drugs [5,6]. Interestingly, the use of these drugs is not limited to antihypertensive disorders. The clinical use of RAS inhibitors has emerged as beneficial for the prevention of diabetes [7,8], fibrotic kidney disease [9], heart disease [10], aging [11] and Alzheimer’s disease [12].

There is no doubt that RAS inhibitors are beneficial drugs; however, the differences between each of these classes of inhibitors are not yet clear. After a brief introduction to the RAS, we analyze the potential differences between ACE-I and ARBs as antifibrotic drugs. Emphasis is placed on the ACE inhibitors and the antifibrotic peptide AcSDKP.

RAS
Renin, an aspartyl protease, was discovered by Robert Tigerstedt at the Karolinska Institute in 1898 [13]. The majority of renin in the body is found in the juxtaglomerular cells of the kidney. Additionally, renin has been found in many other tissues but without clear mechanistic evidence of its function in these locations [14]. Renin cleaves angiotensinogen, which results in the production of the decapeptide angiotensin I. The octapeptide angiotensin II, a potent vasoconstrictor, is formed by ACE-mediated cleavage of angiotensin I.

There are two main receptors for angiotensin II (AT1 and AT2), which are differentially expressed on the cell surface (Figure 1) [15]. Those receptors share the configuration of a seven-transmembrane receptor but exhibit only around 20% protein sequence homology [16].
These two receptors play distinct physiological roles [16]. AT1 receptors are coupled to G proteins and mediate diverse signaling pathways, such as activation of phospholipases, inhibition of adenylate cyclase, and stimulation of tyrosine phosphorylation [15]. However, the interaction of AT2 receptors and G proteins is controversial [17]. These two receptors are differentially regulated during the development [18]. When analyzed in lamb, AT2 receptors are expressed abundantly in the fetal kidney, especially in the undifferentiated mesenchyme [18]. These AT2 receptors are at decreased expression levels after birth [18]. AT1 receptors are initially expressed in the nephrogenic cortex and developing glomeruli, proximal tubule and vessels; they become more abundant through the development processes [18].

The expression of AT1 receptors is stimulated by several conditions, such as high cholesterol levels and osmolarity changes, but decreased by high concentration of angiotensin II [15]. Such angiotensin II-dependent downregulation is not found for AT2 receptors; instead, AT2 receptors are induced by tissue injury [17]. Indeed, AT2 receptors are re-expressed by renal injury and the nephron remodeling processes [17].

Vasoconstriction, profibrotic action, growth stimulation, aldosterone release and proinflammatory functions are classical angiotensin II-driven physiological functions that are mediated by AT1 receptors [19]. AT2 receptor-mediated signaling may antagonize AT1-mediated signal transductions [20-22]. However, accumulating evidence indicates that AT2 receptor-mediated signaling also mediates the detrimental action of angiotensin II, including hypertrophy [23,24], and the stimulation of proinflammatory pathway nuclear factor κB [25,26]. In this regard, blockade of the AT2 receptor by a specific inhibitor was associated with the inhibition of inflammation and renoprotection in subtotally nephrectomized rats [27].

In addition to classical members, some new bioactive molecules, such as angiotensin IV and angiotensin-(1-7), have been introduced in RAS systems.

Angiotensin II is metabolized by aminopeptidase A (APA) into angiotensin III and finally angiotensin IV (Figure 1) [28]. Angiotensin IV binds to the specific receptor AT4 (Figure 1), which is reported to be an insulin-regulated membrane aminopeptidase [29,30]. It is reported that angiotensin IV can induce plasminogen activator inhibitor (PAI)-1 expression in the proximal tubule and vascular endothelial cells [29,31]. PAI-1 activation has been associated with the reduction of extracellular matrix turnover [32]; angiotensin IV-mediated signaling may be associated with the tissue fibrosis [31]. The angiotensin IV-generating enzyme APA is induced
in conditions of renal injury and high angiotensin II levels [28]; subsequently, more angiotensin II is utilized in the production of angiotensin IV. Angiotensin IV is also associated with the release of nitric oxide and focal adhesion kinase phosphorylations [33,34]. Interestingly, the angiotensin IV/AT4 receptor signaling pathway has been shown to be involved in glucose homeostasis [35,36] and cognitive functions [37], suggesting diverse physiological roles of this pathway.

Another RAS-derived bioactive molecule is angiotensin-(1-7), which has been shown to inhibit the effects of angiotensin II (Figure 1) [38]. For example, angiotensin-(1-7) plays a role as an antihypertensive molecule through the stimulation of the release of vasodilator prostaglandins and nitric oxides [38]. In addition to such antihypertensive effects, angiotensin-(1-7) inhibits the angiotensin II-induced proliferation and growth stimulation signal in vascular smooth muscle cells [39-41]. Most likely, these effects of angiotensin-(1-7) as a negative regulator of angiotensin II are mediated, at least in part, by the downregulation of the angiotensin II receptor AT1 (Figure 1) [42]. Also, it is reported that angiotensin-(1-7) is the endogenous ligand for the MAS receptor (Figure 1) [43]. Studies utilizing MAS receptor deficient mice have indicated that the interaction between angiotensin-(1-7) and the MAS receptor plays vital roles in heart function [43], sympathetic tone regulation [44], aortic relaxation [45], and endothelial function [46].

The synthesis of angiotensin-(1-7) is mediated by a unique RAS pathway involving ACE2 (Figure 1) [47,48]. ACE2 is expressed predominantly in vascular endothelial cells of the heart and kidney [47,49]. Both ACE and ACE2 metabolize angiotensin I. However, the resulting peptides are different (Figure 1). As shown above, ACE converts angiotensin I to the octapeptide angiotensin II, whereas ACE2 cleaves one amino acid from angiotensin I; subsequently, nonapeptide angiotensin 1-9 is synthesized (Figure 1) [47]. Although angiotensin 1-9 itself exhibits no known biologic activity, angiotensin 1-9 is cleaved by ACE, and bioactive angiotensin-(1-7) is synthesized (Figure 1) [50]. ACE2 can also directly cleave angiotensin II to form angiotensin-(1-7) (Figure 1); therefore, this angiotensin II degradation product exhibits properties that are opposite those of angiotensin II [48].

RAS activation and tissue fibrosis
Activation of RAS and production of angiotensin II is associated with tissue fibrosis [51,52]. Angiotensin II stimulates extracellular matrix accumulation and collagen deposition through the induction of mitogen activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) [53], p38 [54] and c-Jun N-terminal kinases (JNKs) [55], in vivo and in vitro. Additionally, angiotensin II stimulates the expression of the profibrotic cytokine transforming growth factor (TGF)β in rat cardiac fibroblasts [56] and connective tissue growth factor in rat tubular epithelial cells [57]. Some reports have also indicated that angiotensin II may directly activate Smad proteins, which are part of the intracellular TGFβ signaling pathway [58-60]. Furthermore, angiotensin II stimulates rat cardiac fibroblast proliferation [61]. In addition to the angiotensin II/AT1 receptor-mediated major profibrotic signaling pathways in RAS, the angiotensin IV/AT4 receptor pathway could contribute to tissue fibrosis via the induction of PAI-1 [31], as described above.

Therefore, appropriate inhibition of profibrotic angiotensins such as angiotensin II or angiotensin IV, production pathways, or, alternatively, activation of an antifibrotic angiotensin pathway such as ACE2 or angiotensin-(1-7) could be a potential route for antifibrotic therapy. In this regard, currently available RAS inhibitors, such as ACE-I and ARB, are somewhat reasonable as antifibrotic drugs. However, there are differences in the antifibrotic molecular mechanisms of these drugs.

ACE inhibitors
ACE inhibitors are members of the first class of RAS inhibitors. The first ACE inhibitor to be used in the clinic, captopril, showed dramatic beneficial effects in type I diabetic patients with nephropathy [62]. Following this study, several clinical trials demonstrated that ACE inhibition could significantly prevent the progression of renal disease [63-65].

The ACE-I class of drugs exhibit their antihypertensive effects by inhibiting the conversion of angiotensin II from angiotensin I. ACE-I inhibition has been shown to decrease fibrosis in experimental models of heart [66] and kidney [67-69] disease. Because angiotensin II is a profibrogenic molecule, it would be logical to conclude that the beneficial effects of ACE-I are mediated through the inhibition of angiotensin II production; however, the beneficial effects of ACE-I cannot be explained by the suppression of angiotensin II production alone because maximal doses of ACE-I may not be sufficient to inhibit all the biosynthesis of angiotensin II [16]. Indeed, systemic administration of ACE-I has little effect on the formation of angiotensin II in the kidney, even though such ACE-I can almost completely inhibit systemic angiotensin II formation from angiotensin I [70]. Therefore, it is likely that the decrease in the production of angiotensin II is not the only mechanism underlying the antifibrotic effects of ACE-I.

ACE inhibition and elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
AcSDKP is a tetrapeptide originally isolated from fetal calf bone marrow [71], and has recently emerged as an antifibrosis molecule.
Details of the endogenous synthesis of AcSDKP are not yet clear; however, available information strongly suggests that thymosin β4 (Tß4) is the most likely candidate precursor of AcSDKP [72,73] (Figure 2). Lenfan et al. showed that incubation of [3H] Tß4 with bone marrow cells or bone marrow lysate resulted in the formation of [3H]AcSDKP [72]. Furthermore, Tß4 knockdown utilizing the small interfering (si)RNA for Tß4 led to significant reduction of AcSDKP in HEK293 cells [73]. AcSDKP is the N-terminal sequence of Tß4 [74] (Figure 2). AcSDKP was believed to be synthesized by a single cleavage employing Asp-N endopeptidase [72]. However, Asp-N was only found in bacteria; therefore, Cavasin et al. tried to find another enzyme responsible for the synthesis of AcSDKP from Tß4 [74]. Subsequently, they found that prolyl oligopeptidase (POP) is responsible for the formation of AcSDKP and that POP inhibitors blocked the formation of AcSDKP from Tß4 [74] (Figure 2).

Tß4 is a ubiquitously distributed 43-amino-acid peptide (4.9 kDa), originally identified as an intracellular peptide, which can sequester G-actin and regulate its polymerization [75,76]. In addition to the role as actin polymerizations, Tß4 exhibits various biologically significant activities [75,76]. Interestingly, Bock-Marquette et al. reported that the administration of exogenous intracardiac and intraperitoneal Tß4 significantly restored cardiac functions associated with neovascularization in an experimental myocardial infarction model of mice [77] and epicardial progenitor mobilization [78], suggesting that Tß4 exhibit extracellular organ-protective roles associated with anti-fibrosis and enhanced angiogenesis.

AcSDKP is a natural inhibitor of hematopoietic stem cell proliferation that prevents entry into S phase from G1 in the cell cycle [79]. Interestingly, AcSDKP is hydrolyzed in the presence of ACE (Figure 2). Therefore, plasma levels of AcSDKP are minimal in normal conditions, whereas ACE-I administration leads to a fivefold increase in its concentration [80]. AcSDKP has been shown to suppress the proliferation of human mesangial cells [81] and renal fibroblasts [82], in addition to inhibiting collagen deposition in mouse cardiac fibroblasts [83]. The administration of AcSDKP ameliorated renal fibrosis and glomerular sclerosis in hypertensive rat models and diabetic and non-diabetic kidney disease models without altering blood pressure [84,85]. These observations suggest that the renoprotective effects of ACE-I are mediated, at least in part, by the accumulation of AcSDKP (Figure 2).

Our group and others have shown that AcSDKP prevents Smad2 phosphorylation (Figure 3) and that this molecular mechanism may mediate its antifibrotic effect [86,87]. This observation identifies AcSDKP as the first circulating, endogenous inhibitor of Smad2 phosphorylation.

The Smads are transcription factors specific to the TGFβ family, and they play essential roles in signal transduction from the cell membrane [88,89]. Smads are classified into three types: (1) receptor-regulated Smads, or R-Smads (Smad2 and 3); (2) common Smad, or co-Smad (Smad4); and (3) inhibitory Smads, or I-Smads (Smad6 and 7). Upon TGFβ binding, the type II receptor interacts with the type I receptor, which induces cell proliferation that prevents entry into S phase from G1 in the cell cycle [79]. Interestingly, AcSDKP is hydrolyzed in the presence of ACE (Figure 2). Therefore, plasma levels of AcSDKP are minimal in normal conditions, whereas ACE-I administration leads to a fivefold increase in its concentration [80]. AcSDKP has been shown to suppress the proliferation of human mesangial cells [81] and renal fibroblasts [82], in addition to inhibiting collagen deposition in mouse cardiac fibroblasts [83]. The administration of AcSDKP ameliorated renal fibrosis and glomerular sclerosis in hypertensive rat models and diabetic and non-diabetic kidney disease models without altering blood pressure [84,85]. These observations suggest that the renoprotective effects of ACE-I are mediated, at least in part, by the accumulation of AcSDKP (Figure 2).

Our group and others have shown that AcSDKP prevents Smad2 phosphorylation (Figure 3) and that this molecular mechanism may mediate its antifibrotic effect [86,87]. This observation identifies AcSDKP as the first circulating, endogenous inhibitor of Smad2 phosphorylation.

The Smads are transcription factors specific to the TGFβ family, and they play essential roles in signal transduction from the cell membrane [88,89]. Smads are classified into three types: (1) receptor-regulated Smads, or R-Smads (Smad2 and 3); (2) common Smad, or co-Smad (Smad4); and (3) inhibitory Smads, or I-Smads (Smad6 and 7). Upon TGFβ binding, the type II receptor interacts with the type I receptor, which induces cell proliferation that prevents entry into S phase from G1 in the cell cycle [79]. Interestingly, AcSDKP is hydrolyzed in the presence of ACE (Figure 2). Therefore, plasma levels of AcSDKP are minimal in normal conditions, whereas ACE-I administration leads to a fivefold increase in its concentration [80]. AcSDKP has been shown to suppress the proliferation of human mesangial cells [81] and renal fibroblasts [82], in addition to inhibiting collagen deposition in mouse cardiac fibroblasts [83]. The administration of AcSDKP ameliorated renal fibrosis and glomerular sclerosis in hypertensive rat models and diabetic and non-diabetic kidney disease models without altering blood pressure [84,85]. These observations suggest that the renoprotective effects of ACE-I are mediated, at least in part, by the accumulation of AcSDKP (Figure 2).

Our group and others have shown that AcSDKP prevents Smad2 phosphorylation (Figure 3) and that this molecular mechanism may mediate its antifibrotic effect [86,87]. This observation identifies AcSDKP as the first circulating, endogenous inhibitor of Smad2 phosphorylation.

The Smads are transcription factors specific to the TGFβ family, and they play essential roles in signal transduction from the cell membrane [88,89]. Smads are classified into three types: (1) receptor-regulated Smads, or R-Smads (Smad2 and 3); (2) common Smad, or co-Smad (Smad4); and (3) inhibitory Smads, or I-Smads (Smad6 and 7). Upon TGFβ binding, the type II receptor interacts with the type I receptor, which induces
phosphorylation of serine residues in the type I receptor (Figure 3) [90]. Subsequently, the phosphorylated type I receptor recruits R-Smads to be phosphorylated, and phosphorylated R-Smads interact with co-Smad in the cytoplasm of cells (Figure 3). This R-Smad and co-Smad heterodimer is imported into the nucleus (Figure 3) with the help of importin-β [91,92]. The Smad heterodimer binds to Smad-binding elements in the promoter regions of DNA (Figure 3). Under normal conditions, I-Smad is localized to the nucleus (Figure 3) [87]. E3 ubiquitin ligase Smurfs mediate the translocation of nuclear-localized I-Smads to the cytoplasm following TGFβ stimulation. Cytoplasmic I-Smad competitively inhibits R-Smad phosphorylation by the type I receptor (Figure 3) [93]. Ubiquitination of receptors by I-Smad-associated Smurfs are also part of the negative feedback loop between TGFβ and the I-Smads [94-96].

How does AcSDKP inhibit TGFβ-induced phosphorylation of R-Smad? This effect is likely associated with the activation of I-Smads (Figure 3). Incubation of human mesangial cells in the presence of AcSDKP leads to cytoplasmic mobilization of Smad7, one of the I-Smads, in the absence of TGFβ stimulation (Figure 3) [87]. Our group and others have reported increased Smad7 levels in vivo following AcSDKP administration, supporting this Smad7-mediated anti-TGFβ effect by AcSDKP (Figure 3) [97,98]. Additional information related to the mechanism underlying the AcSDKP-mediated translocation and increase in Smad7 concentration is not clear. Interestingly, AcSDKP also inhibits cell cycle progression stimulated by serum-derived or platelet-derived growth factor-B in human mesangial cells by inhibiting the degradation of p53, p27kip1, and p21cip1 [81]. Similar to Smad7 [96], these molecules are exclusively degraded by the ubiquitin-proteasome pathway [99]; therefore, it is possible that AcSDKP may inhibit the Smad7 degradation pathway.

ACE has N-terminal and C-terminal catalytic domains responsible for interactions with and cleavage of target substrates (Figure 4) [100]. Evidence suggests that these two catalytic domains may be different (Figure 4). Bradykinin is hydrolyzed at approximately the same rate by both of these catalytic sites. Although angiotensin I can be cleaved by either catalytic domain, the C-terminal domain has a threefold higher affinity for angiotensin I (Figure 4) [100,101]. Interestingly, AcSDKP is hydrolyzed exclusively by the N-terminal catalytic domain (Figure 4) [102]. Importantly, each ACE-I exhibits a distinct affinity for each of the catalytic domains; for example, captopril displays a higher affinity for the N-terminal catalytic domain (Figure 4). It is likely that the hydrophobic moieties of ACE-I play an essential role in this domain selectivity [103]. It was recently reported by Li et al. that mice deficient for the N-terminal catalytic domain of ACE exhibited an antifibrotic effect due to an accumulation of AcSDKP, revealing the importance of the N-terminal domain for the antifibrotic actions of ACE-I (Figure 4) [104]. In addition to the full-length somatic form of ACE, there is a transcriptional variant with an N-terminal deletion, known as the germinal form [100]. The testes, which express germinal-type ACE, are associated with higher levels of AcSDKP relative to other tissues [105,106]. AcSDKP and its precursor peptide, Tβ4, were able to rescue fibrotic heart disease in a preclinical model [78]. These results demonstrated the importance of the antifibrotic effect of AcSDKP in the inhibition of ACE. Therefore, the N-terminal catalytic domain-specific inhibitor of ACE, RXP407 (Figure 4), has great potential as an antifibrotic therapy [107-110].

Angiotensin type I receptor blocker vs ACE inhibition

There may be potential problems with the long-term clinical use of ACE-I to inhibit the RAS. The prolonged use of ACE-I leads to the compensatory upregulation of angiotensin I [111]. Under these conditions, known as aldosterone escape, chymase may act as the converting enzyme to generate angiotensin II [111]. Therefore, a strategy that prevents angiotensin II from binding to the angiotensin type I receptor is necessary. To address this problem, ARBs, such as losartan, were developed as a novel class of RAS inhibitors [3]. Large clinical trials, such as the RENAAL study, have revealed that losartan exhibits renoprotective effects and inhibits overall mortality in type 2 diabetic nephropathy patients with overt proteinuria [112]. Other studies have also reported similar renoprotective effects associated with an increase in overall mortality. The clinical use of ARB is much easier than that of ACE-I given the side effects typically associated with the latter, such as dry cough, which leads to poor compliance in patients prescribed the drug. Because ARBs inhibit only the AT1 signaling pathway, they were thought of as an ideal strategy to treat hypertensive patients with kidney diseases.

As pharmacological function and effector target are different, ACE-I and ARB exhibit different influences in RAS-dependent and RAS-independent pathways, such as the AcSDKP accumulation by ACE-I described above.

ACE inhibition by ACE-I leads to a suppression of angiotensin II formation, resulting in less angiotensin II binding to the AT1 receptor as well as the AT2 receptor [16]. However, when an ARB is utilized, AT1 receptor signaling is inhibited; angiotensin II accumulates, and subsequently, such increased angiotensin II binds and activates AT2 receptors [22]. As shown above, stimulation of the AT2 receptor may be detrimental for organ protection (and may also antagonize the AT1 receptor-mediated profibrotic signal in some experimental conditions) [22].
Even though ACE-I may not directly suppress ACE2, ACE-I might inhibit the formation of antihypertensive/antifibrotic angiotensin-(1-7) in an indirect fashion, because conversion of angiotensin 1-9 to angiotensin-(1-7) is mediated by ACE [50]. For angiotensin-(1-7), ARB may increase its formation via accumulated angiotensin II directly cleaved by ACE2 [50].

Another difference between ACE-I and ARB is the concentration of plasma bradykinin [113]. Bradykinin breakdown is mediated by ACE; therefore, ACE-I treatment increases bradykinin concentration [113]. Using bradykinin B2 receptor knockout mice, Schanstra et al. reported that the bradykinin B2 receptor signaling pathway exhibited antifibrotic roles associated with the induction of plasminogen activators/matrix metalloproteinase-2, enzymes associated with extracellular matrix degradation in the unilateral ureteral obstruction (UUO) model of renal fibrosis [114]. Moreover, Akita diabetic mice lacking the bradykinin B2 receptor developed overt nephropathy when compared to control mice [115]. However, the role of ACE inhibition and bradykinin B2 signaling pathway activation is still controversial because it was also shown that ACE-I treatment in the UUO model using either bradykinin B2 receptor knockout mice or control mice demonstrated that ACE-I exhibited a significant reduction in renal fibrosis in all groups [116], suggesting that the presence of bradykinin B2 receptor signaling may not be necessary for the tissue protection mediated by ACE-I in this model [116]. Nevertheless, cell biology analysis in human mesangial cells revealed that bradykinin and the bradykinin B2 receptor pathway might contribute to the therapeutic effect of the ACE-I inhibitor perindoprilat during mesangial scarring [117].

Figure 4 The biology of angiotensin-converting enzyme (ACE) in tissue fibrosis. Angiotensin-converting enzyme has two catalytic sites. Angiotensin I exhibits higher affinity for the C-terminal catalytic site of ACE. Degradation of the antifibrotic molecule N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is exclusively induced at its N-terminal catalytic site. Therefore ACE induces tissue fibrosis by both the production of angiotensin II and the decreased level of AcSDKP. The ACE inhibitor captopril displays higher affinity for the N-terminal catalytic sites of ACE when compared to C-terminal catalytic sites. RXP407, a specific inhibitor for the ACE N-terminal catalytic site, may increase concentrations of AcSDKP and exhibit an antifibrotic action.
ACE-I and ARB combination therapy likely show additive antihypertensive and organ protective effects because these two therapies exhibit diverse RAS-dependent and RAS-independent pathway activity [118-123]; however, some trials have shown that combination therapy may not be renoprotective, despite the significant reduction in proteinuria levels [124]. This discrepancy between the trials could be dependent upon the specific drug used and the design of the trials [118-124]. Mauer et al. recently reported on important differences between ACE-I and ARBs [125]. They found that ARBs enhanced progression of microalbuminuria in early type 1 diabetes patients with normotensive and normoalbuminuria. Such enhanced progression of microalbuminuria is associated with a trend of increased mesangial fractional volume in glomeruli in the kidney [125]. Furthermore, treatment with ACE-I showed no significant differences between patients in the treatment or control groups [125]. The conundrum of this study is that the onset of diabetic retinopathy was inhibited by either ARB or ACE-I treatment, suggesting that both drugs efficiently inhibited angiotensin II stimulated signaling pathway in both groups [125]. A follow-up study is clearly necessary to clarify the therapeutic approach for early diabetes patients to prevent the onset of more advanced kidney disease.

One possible explanation for these unexpected results is that the angiotensin II-mediated signaling pathway may not contribute to the onset of microalbuminuria and mesangial matrix accumulation of the kidney in early diabetic normotensive patients with normoalbuminuria. Another possibility is that the administration of ARBs results in local ACE activation [16,126]; in other words, despite blocking the angiotensin II receptor signaling pathway, activation of an angiotensin-independent, profibrotic pathway mediated by ACE may occur, such as the accelerated degradation of AcSDKP (Figure 4). ACE-I, but not ARBs, inhibited murine adriamycin nephropathy, suggesting that diverse pathways may be involved in fibrotic diseases [68].

Anti-inflammatory, antiapoptotic and proangiogenic roles of AcSDKP

Because AcSDKP was originally identified as a hematopoietic stem cell regulator [71,127,128], there have been many studies performed utilizing bone marrow cells. AcSDKP inhibits apoptosis (Figure 5) induced by cytotoxic stresses, including chemotherapy [129,130], radiation [131,132], high temperature [133-135] and photofrin II-mediated phototherapy [136]. Increased apoptosis is associated with tissue fibrosis, and its inhibition has been linked to the restoration of fibrosis in several organs [137-140].

Inflammation is also associated with tissue fibrosis [137-140]. In experimental animal models, AcSDKP inhibited inflammation in the kidney, heart and liver that was associated with the amelioration of tissue fibrosis (Figure 5) [97,98,141-145]. Although the precise molecular mechanisms explaining how AcSDKP inhibits inflammation are not yet clear, it is likely that the suppression of MCP-1 contributes to these anti-inflammatory effects [146]. Inhibition of MCP-1 is likely associated with the inhibition of MAPK activation in vivo [147]. However, the effects of AcSDKP on MAPK are cell-type dependent, as suggested by the fact that AcSDKP both inhibits and stimulates ERK phosphorylation in different cellular contexts, such as in rat cardiac fibroblasts [83,148] and human mesangial cells, respectively [81,87]. This finding suggests that AcSDKP is not simply a MAPK inhibitor.

Angiogenesis is important in protection from tissue damage and the promotion of tissue repair. Interestingly, both AcSDKP (Figure 5) [149-151] and its precursor peptide, Tβ4 [75,152-154], enhanced angiogenesis and exhibited antifibrotic effects associated with the normalization of organ function [78]. AcSDKP has been shown to improve skin flap survival and accelerate wound healing [151]. The relationship between tumor angiogenesis and Tβ4 with AcSDKP has been extensively studied by Wdzieczak-Bakala’s research group. They have proposed that high levels of Tβ4 and AcSDKP are associated with tumor progression in hematologic malignancies [73,155-157]. Angiogenesis plays a pivotal role in cancer development [158,159], and AcSDKP levels are markedly elevated in both hematologic malignancies and solid neoplasms [73,155-157]. An association between the levels of AcSDKP and tumor angiogenesis was observed in these studies; however, the pathophysiological significance of this result has not been clearly shown.
Finally, AcSDKP infusion inhibited liver injury associated with the inhibition of the TGFβ and Smad pathways in carbon tetrachloride-induced liver fibrosis models [141]. Additionally, this treatment was associated with the induction of bone-morphogenetic protein 7 (BMP-7) [141], a promising antifibrotic molecule [160,161]. The antifibrotic, antiapoptotic, anti-inflammatory and proangiogenic properties of BMP-7 have been well established [160,161]. Therefore, it is possible that AcSDKP could function, in part, through the induction of BMP-7 [141]. Furthermore, this same study demonstrated that AcSDKP induced expression of the potent anti-inflammatory transcription factor peroxisome proliferator-activated receptor (PPAR)-γ [141]. PPAR-γ is not only a potent anti-inflammatory transcription factor, but it is also a critical regulator for adipogenesis, lipogenesis and insulin sensitivity [141].

Perspective
We have summarized the potential beneficial effects of AcSDKP in fibrotic diseases. It is obvious that the antifibrotic effect of AcSDKP is associated with its anti-inflammatory, antiapoptotic and proangiogenic properties (Figure 5). Therefore, AcSDKP appears to be an attractive molecule for antifibrotic therapy. One of the problems associated with the use of this molecule as an antifibrotic therapy is its short half-life of approximately 5 min in plasma [162,163]. It would be possible to make an AcSDKP analogue with an extended half-life; however, the hematopoietic effects of AcSDKP are diminished when single amino-acid modifications are made [164]. Therefore, the best approach for converting AcSDKP into a practical antifibrotic agent would be to manufacture a small molecule that mimics AcSDKP function for oral intake. Alternatively, inactivation of the N-terminal catalytic function of ACE could be used as a therapeutic approach; however, some critical information is missing to make this approach feasible. First, the direct target of AcSDKP and its exact function are not clear, even though AcSDKP is known to induce the accumulation of Smad7 and various cell cycle modulators responsible for inhibiting the TGFβ/Smad signaling pathway and inducing the antiproliferative effects on fibroblasts and mesangial cells, respectively [81,87,97,98]. Second, it is not known whether AcSDKP acts as a ligand for its own receptor or if there are any receptors for AcSDKP [165]. Alternatively, AcSDKP may enter cells by phagocytosis and inhibit intracellular signaling pathways. Third, specific inactivation of the N-terminal catalytic domain of ACE by an inhibitor, such as RX407, can be used in the clinic to induce AcSDKP without the side effects associated with conventional ACE-I, such as dry cough [108-110]. Such information is essential if we hope to develop novel antifibrotic therapies based on enhancing the function of AcSDKP. Additionally, the significance of physiological changes in AcSDKP levels must be analyzed in human patients with fibrotic diseases.

Conclusions
Tissue fibrosis is associated with organ damage and dysfunction, which are the major causes of disability and death in these patients. Specific therapies to treat fibrosis are not yet available in the clinic. Although tissue fibrosis is detrimental to organ function, it may also be a component of homeostasis and repair pathways. Therefore, caution should be used to determine whether AcSDKP is harmful in a subset of patients. We must carefully consider the potential therapeutic utilization of AcSDKP and its role in other diseases [73,155-157]. Clearly, more research is needed into the regulation of AcSDKP levels to show its effectiveness and safety as a therapeutic agent. Nonetheless, AcSDKP remains an attractive target as a potential antifibrotic strategy.

Acknowledgements
The authors’ laboratory is supported by grants from the Japan Society for the Promotion of Science to DK and KK, the Uehara Memorial Foundation to DK and KK, individually, and the Kane Foundation for the Promotion of Medical Science to KK.

Authors’ contributions
MK contributed to writing the manuscript. TN made the figures. MK was involved in the discussion. DK made intellectual contributions. KK conceived the project, provided intellectual contributions, and contributed to the manuscript writing and editing. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 June 2011 Accepted: 30 November 2011 Published: 30 November 2011

References
1. Cushman DW, Ondetti MA: History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 1991, 17:589-592.
2. Smith CG, Vane JR: The discovery of captopril. FASEB J 2003, 17:788-789.
3. Aulakh GK, Sodhi RK, Singh M: An update on non-peptide angiotensin receptor antagonists and related RAAS modulators. Life Sci 2007, 81:651-639.
4. Wood JM, Malbaurn J, Rahuel J, Grütter MG, Cohen NC, Rasetti V, Rüger H, Gösckie R, Stutz S, Fuhrer W, Schilling W, Rogollier P, Yamaguchi Y, Cumin F, Baum HP, Schnell CR, Herold P, Mah R, Jensen C, O’Brien E, Stanton A, Bediagian MF: Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun 2003, 308:698-705.
5. Panving HH, Perisson F, Lewis JB, Lewis EJ, Hollenberg NK: Aliskiren combined with losartan in type 2 diabetes and nephropathy. New Engl J Med 2008, 358:2433-2446.
6. Solomon SD, Appelbaum E, Manning WJ, Venna A, Berglund T, Lukashevich V, Chieff Papat C, Smith RA, Dahle B: Effect of the direct Renin inhibitor aliskiren, the Angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 2009, 119:530-537.
8. Scheen AJ: Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes Metab 2004, 30:487-496.
9. Scheen AJ: Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 2004, 64:2537-2565.
10. Deelman L, Sharma K: Angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int 2005, 67:799-812.
11. Gardiner S, Busche R, Razada FM, Summer C: The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 2000, 278:E357-374.
12. Gmonot V, Bussieres L, Medjebeur AA, Gasser B, Lelongt B, Laborde K: Renin-angiotensin system inhibition prevents type 2 diabetes mellitus through inhibition of the fetal lamb. Am J Physiol 1998, 274:F1062-1069.
13. Wolf G, Gutz et al. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int 2005, 67:799-812.
14. Opie LH, Sack MH: Enhanced angiotensin II activity in heart failure: reevaluation of the counterregulatory hypothesis of receptor subtypes. Circulation Res 2001, 88:654-658.
15. Naito T, Ma LJ, Yang H, Zuo Y, Tang Y, Han JY, Kon V, Fogo AB: Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol 2010, 298:F683-691.
16. Regitz-Zagrosek V, Friedel N, Heymann A, Bauer P, Neuss M, Rolfs A, Regitz-Zagrosek V, Friedel N, Heymann A, Bauer P, Neuss M, Rolfs A, Rettig-Zagrosek V, Friedel N, Heymann A, Bauer P, Neuss M, Rolfs A.
17. Peito C, Vallejo S, Gembardt F, Azcuta V, Heringer-Walter S, Rodriguez-Manas L, Schultheiss HP, Sanchez-Ferrer CF, Walterth R, Walterth A: Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003, 100:8258-8263.
18. Walterth R, Weisel N, Kang N, Sander A, Tischpe C, Malberg H, Bader M, Voss A: Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene. Braz J Med Biol Res 2000, 33:1-9.
19. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Godbout K, Parsons T.
20. Weng YC, Sim MK, Lee KO: Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 2004, 64:2537-2565.
21. Chesi R, Pernot-Guillaume C, Joly L, Jankowski P, Benetos A, Perret-Guillaume C, Joly L, Jankowski P, Benetos A.
22. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Godbout K, Parsons T.
23. Perret-Guillaume C, Joly L, Jankowski P, Benetos A, Benefits of the RAS blockade clinical evidence before the ONTARGET study. J Hypertens Suppl 2009, 27:53-7.
24. Pereira RM, dos Santos RA, da Costa Dias FL, Teixeira MM, Simoes e Silva AC. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterol 2009, 15:2579-2586.
53. Tharaux PL, Chatziantoniou C, Fakhour F, Dusseille JC. Angiotensin II activates collagen I gene through a mechanism involving the MAP/ERK kinase pathway. Hypertension 2000, 36:130-136.

54. Yaghini FA, Song CF, Lavrentiev EN, Ghaloor HU, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 2010, 55:1461-1467.

55. Xie Z, Singh M, Singh K. Angiotensin II-induced superoxide generation. Ann N Y Acad Sci 2004, 1021:53-59.

56. Yaghini FA, Song CY, Lavrentiev EN, Ghafoor HU, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II activates the MAP/ERK kinase pathway in vascular smooth muscle cells by a mechanism involving the MAP/ERK kinase pathway. Hypertension 2000, 36:130-136.

57. Yang F, Chang AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 2009, 54:877-884.

58. Zeng W, Chen W, Leng X, He JG, Ma H. Chronically angiotensin I- and II treatment improves vascular remodeling after angioplasty through the regulation of the TGF-beta1/Smad signaling pathway in rabbits. Biochem Biophys Res Commun 2009, 389:138-144.

59. Carvajal GA, Rodriguez-Vita J, Rodriguez-Diez R, Sanchez-Lopez E, Ruperez M, Carter C, Esteban V, Ortiz A, Egido J, Mezzano SA, Ruiz-Ortega M. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 2008, 74:585-595.

60. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 2005, 111:2509-2517.

61. Liu JY, Hong HL, Sung LC, Chao HH, Chen PY, Cheng TH, Chan P, Liu JC. Nicorandil Inhibits Angiotensin II-Induced Proliferation of Cultured Rat Cardiac Fibroblasts. Pharmacology 2011, 87:144-151.

62. Wilmer WA, Hebert LA, Ehde DJ, Whittier F, Cattran D, Levey AS, Anderson DR, Whelton PK, Ritz E, Kasiske BL, Rodriguez-Vita J, Rodrigues-Diez R, Sanchez-Lopez E, Ruperez M, Zeng W, Chen W, Leng X, He JG, Ma H. Nicorandil Inhibits Angiotensin II-Induced Proliferation of Cultured Rat Cardiac Fibroblasts. Pharmacology 2011, 87:144-151.

63. Xie Z, Singh M, Singh K. Angiotensin II-induced superoxide generation. Ann N Y Acad Sci 2004, 1021:53-59.

64. Yaghini FA, Song CY, Lavrentiev EN, Ghafoor HU, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II activates the MAP/ERK kinase pathway in vascular smooth muscle cells by a mechanism involving the MAP/ERK kinase pathway. Hypertension 2000, 36:130-136.

65. Xie Z, Singh M, Singh K. Angiotensin II-induced superoxide generation. Ann N Y Acad Sci 2004, 1021:53-59.

66. Yaghini FA, Song CY, Lavrentiev EN, Ghafoor HU, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II activates the MAP/ERK kinase pathway in vascular smooth muscle cells by a mechanism involving the MAP/ERK kinase pathway. Hypertension 2000, 36:130-136.
107. Fuchs S, Xiao HD, Cole JM, Adams JW, Frenzel K, Michaud A, Zhao H, Stephan J, Melaine N, Ezan E, Hakovirta H, Maddocks S, Toppari J, Garnier D, Li P, Xiao HD, Xu J, Ong FS, Kwon M, Roman J, Gal A, Bernstein KE, Fuchs S: Inhibiting tissue angiotensin-converting enzyme: a pound of flesh without the blood? J Biol Chem 2001, 276:6748-6753.

108. Vazeux G, Cotton J, Cuniasse P, Dive V: Wdzieczak-Bakala J, Jegou B: bleomycin-induced lung injury. Angiotensin-converting enzyme N-terminal inactivation alleviates progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol 2006, 17:674-685.

109. Lin CX, Rhaele NE, Yang XP, Liao TD, D’Ambrosio MA, Caretto OA: Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol 2006, 17:674-685.

110. Anthony CS, Corradi HR, Schwager SL, Redelinghuys P, Georgiadis D, Dive V: The incidence and implications of aldosterone in complex with an N domain-specific phosphinic inhibitor, RXP407. J Biol Chem 2001, 276:6748-6753.

111. Bomback AS, Klemmer PJ: The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol 2007, 3:486-492.

112. Brenner BM, Cooper AE, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Schoenfeld GM, Zhang Z, Shihab S: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New Engl J Med 2001, 345:861-869.

113. Erdos EG, Tan F, Skidgel RA: Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension 2010, 55:214-220.

114. Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez-Novoa JM, Calise D, Pecher C, Bader M, Girolami JP, Bascands JL: In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 2002, 110:371-379.

115. Kakoki M, Takahashi N, Jennette JC, Smithies O: Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci USA 2004, 101:13302-13305.

116. Schanstra JP, Duchene J, Desmond L, Neau E, Calise D, Etarque S, Girolami JP, Bascands JL: The protective effect of angiotensin converting enzyme inhibition in experimental renal fibrosis in mice is not mediated by bradykinin B2 receptor activation. Thor Thorac 2003, 89:735-740.

117. Pavluvcik IZ, Patel SR, Harris KP: The role of bradykinin in the antifibrotic actions of perindopril on human mesangial cells. Kidney Int 2004, 65:1240-1251.

118. Mogenssen CE, Nekdham S, Tikkanen I, Oren S, Viskoper R, Watts RW, Cooper ME: Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. Br Med J 2000, 321:1440-1444.

119. Russo D, Minutolo R, Pisani A, Espostio R, Signorillello G, Andreucci M, Ballella MW: Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy. Am J Kidney Dis 2001, 38:18-25.

120. Kunz R, Friedrich C, Wobbers M, Mann JF: Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 2008, 148:30-48.

121. Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Olofsson B, Ostergren J, Pfeffer MA, Swedberg K: Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 2003, 362:772-776.

122. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA: Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 2003, 362:767-771.

123. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003, 362:777-781.

124. Mann JF, Schmieder RE, Dyal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chatteriapan S, Dickstein K, Kfelt AR, Metsarinne K, Otso A, Parkhomenko A, Pegias LS, Svensen TL, Teo KK, Yusuf S: ONTARGET investigators: Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008, 372:547-553.

125. Mauer M, Zinnmann B, Gardner R, Suisa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R: Renal and retinal effects of losartan and losartan in type 1 diabetes. New Engl J Med 2009, 361:40-51.

126. Metsarinne K, Helin KH, Sajomma O, Stewart P, Srivisal MJ, Freysiqu FQ: Tissue-specific regulation of angiotensin-converting enzyme by angiotensin II and losartan in the rat. Blood Press 1998, 7:363-370.

127. Pradelles P, Frobert Y, Cremoinon C, Iovine H, Frindel E: Distribution of a negative regulator of haematopoietic stem cell proliferation (AcsDKP) and thymosin beta 4 in mouse tissues. FEBS Lett 1991, 289:171-175.

128. Pradelles P, Frobert Y, Cremoinon C, Liozon E, Masse A, Frindel E: Negative regulator of pluripotent hematopoietic stem cell proliferation (AcsDKP) and thymosin beta 4 in mouse tissues. FEBS Lett 1991, 289:171-175.

129. Grillon C, Bonnet D, Mary JY, Lenfant M, Najman A, Guigon M: The negative regulator of pluripotent hematopoietic stem cell proliferation (AcsDKP) and thymosin beta 4 in mouse tissues. FEBS Lett 1991, 289:171-175.
132. Watanabe T, Brown GS, Kelsey LS, Yan Y, Jackson JD, Ewel C, Kessinger A, Talmadge JE: In vivo protective effects of tetrapeptide AcSDKP, with or without granulocyte colony-stimulating factor, on murine progenitor cells after sublethal irradiation. Exp Hematol 1996, 24:713-721.

133. Wirerga PK, Brenner MK, Konings AW: Enhanced selectivity of hyperthermic purging of human progenitor cells using Goralatide, an inhibitor of cell cycle progression. Bone Marrow Transplant 1994, 389:189-195.

134. Wirerga PK, Setorikomo R, Veletanga E, Kampanga H: Purging of acute myeloid leukemia cells from stem cell grafts by hyperthermia: enhancement of the therapeutic index by the tetrapeptide AcSDKP and the alkyl-l-sphospholipid ET-18-OCH3. Br J Haematol 2000, 111:1145-1152.

135. Coutou C, Guigon M, Bobbot A, Ferrari K, Oberling F: Photoprotection of normal human hematopoietic progenitors by the tetrapeptide N-AcSDKP. Exp Hematol 1994, 22:1076-1080.

136. Coward WR, Saini G, Jenkins G: The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010, 4:367-388.

137. Rodriguez-Iтурbe B, Garcia Garcia G: The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin Pract 2010, 115:16-21.

138. Gieling RG, Burt AD, Mann DA: Involvement of human plasma haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline in hypertension-induced target organ damage. Physiol Rev 2009, 89:1226-1251.

139. Chen YW, Liu BW, Zhang YJ, Chen YW, Dong GF, Ding XD, Xu LM, Pat B, Fan JG, Li DG: Preservation of basal AcSDKP attenuates carbon tetrachloride-induced fibrosis in the rat liver. J Hepatol 2010, 53:528-536.

140. Liu YH, D'Ambrosio M, Liao TD, Peng H, Rahbel NE, Sharma U, Andre S, Gabus H, Carretéro OA: N-acetyl-ser-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2009, 296:H404-412.

141. Sharmo U, Rahbel NE, Pokharel S, Harding P, Rasoul S, Peng H, Carretéro OA: Novel anti-inflammatory mechanisms of N-acetyl-ser-aspartic acid-ser-aspartyl-lysyl-proline in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol 2008, 294:H1226-1322.

142. Peng H, Carretéro OA, Liao TD, Peterson EL, Rahbel NE: Role of N-acetyl-ser-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension 2007, 49:695-703.

143. Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rahbel NE, Carretéro OA: AcSDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension 2004, 43:229-236.

144. Wang M, Liu J, Xu A, Mu S, Xie R: N-acetyl-ser-aspartyl-lysyl-proline attenuates renal inflammation and tubulointerstitial fibrosis in rats. J Mol Med 2010, 26:795-801.

145. Sun Y, Yang F, Yan J, Li Q, Wei Z, Feng H, Wang R, Zhang L, Zhang X: New anti-fibrotic mechanisms of n-acetyl-ser-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sci 2010, 87:232-239.

146. Peng H, Carretéro OA, Peterson EL, Rahbel NE: AcSDKP inhibits transforming growth factor-beta-induced differentiation of human cardiac fibroblasts into myofibroblasts. Am J Physiol Heart Circ Physiol 2010, 298:H1357-1364.

147. Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J: The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood 2003, 101:3014-3020.

148. Wang D, Carretéro OA, Yang XY, Rahbel NE, Liu YH, Liao TD, Yang XP: N-acetyl-ser-aspartyl-lysyl-proline stimulates angiogenesis in vitro and in vivo. Am J Physiol Heart Circ Physiol 2004, 287:H2099-2105.

149. Fromes Y, Liu JM, Kovacevic M, Bignon J, Wdzieczak-Bakala J: The tetrapeptide acetyl-serine-aspartyl-lysine-proline improves skin flap survival and accelerates wound healing. Wound Repair Regen 2006, 14:306-312.

150. Koutraiou V, Leonidias L, Avgoustakis K, Livianou E, Czarnecki J, Ithakissios DS, Evangelatos GP: Effect of thymosin peptides on the chick choioallantoic membrane angiogenesis model. Biochim Biophys Acta 2001, 1568:60-66.