Radiotherapy in Combination With Cytokine Treatment

Ondrej Palata1,2, Nada Hradilova Podzimkova1,2, Eva Nedvedova1, Alexandra Umprecht1, Lenka Sadilkova1, Lenka Palova Jelinkova1,2, Radek Spisek1,2 and Irena Adkins1,2*

1 SOTIO a.s, Prague, Czechia, 2 Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia

Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-\(\alpha\), IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-\(\alpha\) used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.

Keywords: radiotherapy, cytokine, immunocytokine, immunotherapy, immunogenic cell death

INTRODUCTION

The radiation therapy or radiotherapy (RT) started to be used as a cancer treatment modality soon after the discovery of X-rays in 1895 by Wilhelm Röntgen and Marie Curie's discovery of the radioactive elements polonium and radium in 1898. More than 100 years later, RT plays an important role in the therapy of cancer patients and represents a part of the management of more than 50% of patients during the course of their disease. RT is generally used as a primary therapy of localized tumors and regional lymph nodes in a curative setting but also as a palliative treatment to alleviate symptoms or for local control of metastasis. Ionizing radiation is frequently administered in combination with other treatment modalities such as surgery, chemotherapy, hyperthermia, hormone therapy, or immunotherapy (1, 2). RT can be administered as a neoadjuvant intervention to decrease the tumor size, intra-operatively to gain access to neoplastic lesions in a particularly complicated anatomic location or as an adjuvant treatment to prevent disease relapse (3). The most common cancer indications for RT include tumors of breast, lung, cervix uteri, endometrium, stomach, prostate, leukemia, lymphomas, skin, brain, or head and neck (4).
RT utilizes ionizing radiation that delivers its energy via photons, protons, and electrons. High doses of ionizing radiation are employed to kill tumor cells or slow their growth by inducing DNA damage and block the cell division. This process may take days and weeks of treatment before DNA is damaged enough for cancer cells to die, and the cancer cells keep dying over weeks after the termination of radiation treatment. The amount of absorbed radiation in photon RT is measured as joules per kilogram, expressed in the unit gray (Gy) and applied doses vary depending on the cancer type and stage of cancer being treated. The curative use of local ionizing radiation aims at achieving the cancer cells elimination while causing the least toxicity to normal adjacent tissues. The total dose of ionizing radiation is applied in fractions which refers to the delivery of the prescribed dose during separate radiation sessions, usually once per day (5). This provides time to normal healthy cells to recover, while tumor cells are generally less efficient in repair between fractions. Similarly, fractionation can sensitize tumor cells to RT by inducing reoxygenation or shifting the tumor cells to a radiation-sensitive phase of the cell cycle. Fractionation regimens are individualized for different clinical applications. Nevertheless, the standard fractionation schedule ("normofractionation"), which is based on extensive clinical empirical evidence, involves doses of 1.8–2 Gy per day, 5 days a week. The total cumulative dose can differ based on the tumor radiosensitivity and can range from 20 to 40 Gy for lymphomas, from 45 to 60 Gy for most tumor types to control microscopic disease after surgical resection or preoperatively in a neoadjuvant approach and from 60 to 80 Gy for curative purposes in some types of solid epithelial tumors (5). Modified fractionation schedules such as hyperfractionation or hypofractionation are also used. Hyperfractionation involves increasing the number of fractions per day while the dose per fraction becomes lower. This was shown to be beneficial in fast growing tumors such as head and neck squamous cell carcinoma (HNSCC) (6). Hypofractionation means lowering the number of fractions per week while increasing the dose. Hypofractionation schedules are used in palliative treatments of i.e., bone metastasis (7). Similarly, radiation schedules applying single high radiation doses are employed in stereotactic radiosurgery (SRS) for brain metastasis (8).

RT comprises a wide range of various techniques which are used in dependence on the type of cancer, size of the tumor, anatomic location of the tumor, proximity of the tumor to normal tissue sensitive to radiation, or how radiation is applied to target. The use of RT techniques also depends on the patient’s medical history and general health. RT can be broadly divided into 2 groups in dependence on how the radioactivity is applied to target malignant lesions: external-beam radiotherapy (EBRT) and internal radiotherapy (1). EBRT is the most common RT, which is applied on malignant lesions through the intact skin. The internal radiotherapy can be further divided into brachytherapy and systemic RT. In brachytherapy, the radiation source is placed directly at the site of the tumor. Tumors can be treated with very high doses of localized radiation with low probability of damage to the surrounding healthy tissues. This might provide an advantage over EBRT in certain clinical settings. Systemic radioisotope therapy is based on the distribution of a radionuclide or on radioisotopes attached to a tumor-targeting antibody or another tumor-targeting molecule (1). RT has several side effects which are, except for fatigue, associated with the anatomical location of irradiated volumes of the RT fields (4). RT-induced side effects can be broadly divided into early toxicities, occurring during or shortly after the end of RT treatment and late toxicities. Late toxicities occur at least 6 month after the end of RT treatment and are often irreversible (4). Over the last two decades, new RT techniques in the field have been developed and made accessible to cancer patients in routine clinical practice to improve the therapeutic efficacy of RT and to lessen the RT-related toxicities. This involves the introduction of intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), stereotactic radiotherapy (SRT), or proton or carbon beam therapy (4). These techniques can greatly increase the therapeutic efficiency by localizing the radiation effect to the target volume, steeper dose gradient, and utilization of imaging methods which leads to lower toxicity to normal tissue and shorter treatment duration (4, 9).

RADIATION-INDUCED EFFECTS ON TUMORS AND IMMUNE SYSTEM

Historically, it was thought that RT exerts immunosuppressive effects. However, in the light of recent research it has been shown that the interaction with immune system is much more complex (10). Unfortunately, the immune response against tumor cells elicited by local RT alone is mostly insufficient to eliminate all tumor cells. In successful RT treatments, beside the direct effect on the irradiated cells, there has been also observed tumor regression in sites distant to the irradiated field called abscopal effect (from the Latin ab scopus—away from the target) (11). The abscopal response following radiation is rare in the clinic. Despite millions of patients treated worldwide between 1969 and 2014, the abscopal effect of RT was reported only in 46 cases (11). Recently, more frequent abscopal responses were observed in patients refractory to immunotherapy with checkpoint inhibitors (ICIs) alone, who then received RT in combination with ICIs, e.g., with ipilimumab as reported by Postow et al. (12). The abscopal effect was also observed in patients undergoing RT in combination with other immunotherapeutic approaches such as cytokine therapy, Toll-like receptor (TLR) agonists or adoptive cell transfer therapy (2, 13–15).

On the molecular level, radiation causes DNA damage directly and indirectly by means of induced free radicals. Cyttoplasmic double-stranded DNA (dsDNA) is detected by a cytosolic dsDNA sensor cyclic GMP-AMP synthase (cGAS). cGAS is a pattern recognition receptor that triggers IFN-1 production via the downstream adaptor stimulator of interferon genes (STING) and is critical for activation of immune response to viruses (16). The RT-induced damage to the cells leads to the exposure and/or release of several damage-associated molecular pattern (DAMP) molecules such as plasma membrane-exposed calreticulin, HMGB1, and ATP during the radiation-induced immunogenic cell death (17). These molecules attract and activate dendritic
cells to phagocytose dying tumor cells, to process and present released tumor antigens to T cells (17). Particularly, BATF3-tumor-infiltrating dendritic cells are stimulated by autocrine production of interferon β (IFN-β) upon detecting cell-derived dsDNA via the cGAS-STING pathway (18). Activated BATF3-dendritic cells then migrate to tumor draining lymph nodes where they can prime CD8⁺ T cells to initiate cytotoxic T cell response. Cytotoxic CD8⁺ T cells migrate to the irradiated tumor and eliminate the residual cancer cells as well as to distant metastatic sites which can lead to a systemic tumor regression, the abscopal effect (10). Besides increasing immunogenicity of tumor cells by inducing immunogenic cell death, RT improves also the access of chemotherapeutic agents and leukocytes into the tumor sites. RT can change the immunosuppressive tumor environment by triggering expression of MHC class I, NKG2D ligands, or FAS/CD95 on tumor cells. RT can stimulate secretion of various proinflammatory cytokines or release of biologically active molecules such as reactive oxygen species and nitrogen species that can act locally to promote cell death of bystander cells (10, 19, 20). On the other hand, RT can hinder the development of anti-tumor immunity by promoting the immunosuppressive tumor microenvironment. Several mechanisms have been documented. Some cytokines, chemokines or growth factors such as tumor growth factor-β (TGF-β), the chemokine C-C motif ligand 2 (CCL2), colony-stimulating factor 1 (CSF-1), C-X-C motif chemokine ligand 12 (CXCL12), or insulin-like growth factor 1 (IRF1) are induced by RT in the tumor environment. These molecules can attract and drive differentiation of immunosuppressive populations such as M2 macrophages, myeloid-derived suppressor cells (MDSC) or directly inhibit the function of immune cells (10, 21). RT can also activate the hypoxia-inducible factor 1α (HIF-1α) which upregulates genes that control angiogenesis, metabolism and metastasis (22). Similarly, some RT regimens lead to upregulation of DNA exonuclease three-prime repair exonuclease 1 (TREX1) which cleaves RT-induced dsDNA and limits the cGAS/STING/IFN-β pathway induction (23). Interestingly, the upregulation of TREX1 was dependent on the RT regimen used. Whereas, 6 Gy and 8 Gy doses enhanced dsDNA without increasing TREX1, 20 Gy induced a prominent upregulation of TREX1 (24). This suggests that the upregulation of TREX1 is determined by the dose of a single RT fraction and not by the total dose applied. The more detailed mechanisms of RT-induced immune activation or suppression are summarized in Table 1.

| Cytokines in Cancer Immunotherapy |

Cytokines belong to a large diverse family of small glycoproteins that regulate a plethora of physiological functions in a paracrine, autocrine and endocrine manner. They play a crucial role in regulation of the innate and adaptive immunity. The development of recombinant protein technology allowed their use in modulating various pathophysiological conditions including their use in cancer treatment. Despite efforts to develop systemic anti-cancer treatment with cytokines as a standalone therapy, there are several limitations in the form of severe dose-limiting toxicities and generally low objective response rates (durable responses are approximately 10% for a systemic high dose IL-2 therapy). To circumvent this, cytokines are being investigated clinically using novel engineered cytokine mutants (superkines) or chimeric antibody-cytokine fusion proteins (immunocytokines) (50, 51).

To date only few cytokines have been licensed for clinical use in a limited number of oncologic indications. Namely, recombinant IFN-α2a, IFN-α2b, interleukin (IL)-2, granulocyte colony-stimulating factor (G-CSF), granulocyte monocyte colony-stimulating factor (GM-CSF), and tumor necrosis factor α (TNF-α) (50). IFN-α2a is approved for the treatment of hairy cell leukemia and chronic myelogenous leukemia, IFN-α2b for follicular lymphoma, multiple myeloma, AIDS-related Kaposi's sarcoma, melanoma, cervical intraepithelial neoplasms, and hairy cell leukemia, and IL-2 for the treatment of metastatic melanoma and renal cell carcinoma. G-CSF and GM-CSF are approved as immunoreconstituting agents and TNF-α as an oncotoxic factor rather than to augment the anti-tumor immune responses (50). Besides the approved cytokines, there are other cytokines such as IL-12, IL-21, IL-7, IL-15, IFN-γ, IL-8, and IL-18 tested in anti-cancer treatment in clinical trials. These cytokines were tested either as monotherapy but mostly to use their immunoadjuvant potential to boost the effectivity of other therapeutic agents (50, 51). Data on the combination of RT and...
cytokine treatment are available only for IFN-α, IL-2, IL-15, GM-CSF, TNF-α, and IL-12, out of which the potential effects of IL-15 and IL-12 with RT have not yet been explored in patients. The summary of clinical trials combining cytokine treatment with some form of RT is shown in Table 2. The simplified immune cell-enhancing mode of action of these cytokines in combination with RT treatment is depicted in Figure 1.

INTERLEUKIN 2 (IL-2)

IL-2 is a 15.5 kDa glycoprotein composed of four amphipathic α-helices. IL-2 mediates signaling via three subunits of its IL-2 receptor which include the γ chain (γc) (CD132) shared with IL-4, IL-7, IL-9, IL-15, and IL-21, the IL-2Rβ (CD122) shared with IL-15 and the IL-2Rα (CD25) chain. IL-2 signals via its high affinity receptors IL-2Rαβγ and via its intermediate affinity receptors, IL-2Rαβ. IL-2 promotes expansion of antigen-activated CD8+ T cells, acts as an important CD4+ T cell and NK cell growth factor and boosts antibody production in B cells. It activates NK cells and promotes differentiation and proliferation of memory CD8+ T cells. On the other hand, IL-2 plays a crucial role in negative regulation of T cell responses by maintaining and activating regulatory T cells and by inducing Fas-mediated activation-induced cell death (AICD) of T cells (51, 71). At low doses, IL-2 activates mainly regulatory T cells via its high affinity receptors and this might be convenient for treatment of autoimmune diseases (72). At high doses IL-2 induces cytolytic activity of T cells and NK cells involving also signaling via its intermediate affinity receptors on target cells (73). IL-2 was approved by FDA for immunotherapy of metastatic renal cell carcinoma in 1992 and metastatic melanoma in 1998 (48).

Several studies mainly in metastatic melanoma or renal cell carcinoma have been conducted over the last two decades combining IL-2 and various doses and techniques of RT, however, generally with a low efficacy or partial responses. The combination of rapid fractionation radiation up to 20 Gy followed within 24 h by IL-2 treatment in 28 metastatic patients showed a good tolerability. Four patients showed a significant shrinkage of the tumor at the irradiated site and 2 patients showed an abscopal effect outside the irradiation field (54). Low-dose total body irradiation exhibited a synergistic immune-mediated anti-tumor effect when used in combination with IL-2 in a murine metastatic malignant melanoma model (74–76). Based on this preclinical data a phase II clinical trial combining IL-2 with RT was conducted in metastatic melanoma (52). Forty-five patients received a maximum of 2 cycles of high dose
TABLE 2 | The summary of clinical trials combining cytokine therapy with radiotherapy.

Agent	Indication	Phase	Status/Results	Radiotherapy	References
IL-2	Metastatic melanoma	II	Completed, 2 out of 45 patients PR, 13 patients SD up to 3 months (52)	Low dose total body irradiation	ND
IL-2	Metastatic melanoma, renal cell carcinoma	I	Completed, 1 out of 12 patient CR, 7 patients PR (53)	SABR ND	
IL-2	Metastatic tumors	I	Completed, 6 out of 28 patients showed significant shrinkage of tumor (54)	Fractionated radiotherapy ND	
IL-2	Metastatic renal cell carcinoma	II	Active	SABR NCT01896271	
IL-2	Metastatic renal cell carcinoma	II	Active	SABR NCT02306954	
IL-2	Metastatic renal cell carcinoma, metastatic melanoma	II	Recruiting (55)	Booster radiotherapy NCT01884961	
IL-2	Metastatic melanoma	II	Active	SABR NCT01416831	
L19-IL2	Oligometastatic solid tumors	I	Completed, Results not published.	SABR NCT02086721	
L19-IL2	NSCLC Stage IV	II	Withdrawn (Not yet submitted, unclear timelines)	SABR NCT02735850	
NHS-IL2	Lung cancer, NSCLC	I	Completed, No objective response, 2 out of 13 patients achieved long-term survival (56)	Fractionated radiotherapy NCT00879886	
IL-2, pembrolizumab	NSCLC, metastatic melanoma, metastatic renal cell carcinoma, head and neck carcinoma	I/I	Not yet recruiting	Hypofractionated NCT03474497 radiotherapy	
IL-2, ICB	Metastatic NSCLC	I	Recruiting	Hypofractionated NCT03224871 radiotherapy	
IL-2, autologous DC vaccine	Renal cell carcinoma	II	Recruiting	Booster radiotherapy NCT03226236	
GM-CSF	Metastatic cancers	II	Completed, 11 out of 41 patients showed abscopal responses (14)	Not specified NCT02474186	
GM-CSF	Hepatocellular carcinoma	II	Recruiting	Carbon ion RT NCT02948138	
GM-CSF, temozolomide	Glioblastoma multiforme	II	Recruiting	Hypofractionated NCT02663440 IMRT	
GM-CSF, thymosine 1 alpha	Stage IV NSCLC	II	Recruiting	SABR NCT02976740	
GM-CSF, Poly I/C	Recurrent glioblastoma	I	Not yet recruiting	Not specified NCT03392545	
Oncolytic virus expressing GM-CSF, cisplatin	Squamous cell head and neck cancer	I/I	Completed, 4 out of 17 patients CR, 10 patients PR (67)	Fractionated radiotherapy ND	
GM-CSF, vaccine therapy	Liver metastases	I	Completed. No results published.	External beam radiotherapy NCT00081848	
IL-2, GM-CSF, poxviral vaccine encoding PSA	Prostate cancer	II	Completed, 13 out of 17 patients had increases in PSA-specific T cells compared to RT alone (58)	Not specified NCT00005916	
GM-CSF, IMA950 multi peptide vaccine	Glioblastoma multiforme	I	Completed, 36 out of 40 patients had tumor antigen-specific T cells (59)	Not specified NCT01222221	
GM-CSF, pembrolizumab	Follicular lymphoma	II	Recruiting	Local radiotherapy (1 × 8 Gy) SBRT NCT02677155	
GM-CSF, pembrolizumab, GVAX	Pancreatic cancer	II	Recruiting	NCT02648282	

(Continued)
subcutaneous IL-2 and low-dose total body irradiation (single radiation fraction of 0.1 Gy on days 1, 8, 22, and 30). Of note, 0.1 Gy total body irradiation is not comparable to clinical RT. The treatment was well-tolerated but the clinical efficacy was low. In this study, an increase in percentage of cells expressing IL-2Rβ (CD122), an increase in NK cells and a decrease of B cells and monocytes was observed (52). A pilot study assessing the safety and response rate combination of SBRT followed by a high-dose IL-2 regimen in patients with metastatic melanoma and renal cell carcinoma showed complete response or partial response in 8
Radiotherapy and Cytokine Treatment

FIGURE 1 | Schematic representation of immunoadjuvant effects of cytokines in combination with radiotherapy treatment of tumors. Radiotherapy was shown to stimulate anti-tumor immunity by increasing expression of MHC class I molecules, NKG2D ligands or FAS/CD95 in tumor cells. RT induces production of chemokines such as CXCL9, 10, and 16 in tumor cells which attract effector T cells to tumor site. RT induces immunogenic cell death and exposure and release of danger-associated molecular patterns (DAMPs) such as calreticulin, HMGB1, ATP, or heat-shock proteins (HSPs). Moreover, RT-generated dsDNA activates via cGAS/STING pathway the IFN-β production in tumor cells as well as in dendritic cells (DC). All of these molecules facilitate the phagocytosis of dead tumor antigens by DC. They activate immature dendritic cells (iDC) to process antigens, enhance the expression of MHC class I and II molecules and co-stimulatory molecules such as CD80, CD86, CD83 on its surface to become mature dendritic cells (mDC). In lymph nodes, mDC prime T cells to become effector cells which then exert direct cytotoxic effects on tumor cells or generate the proinflammatory milieu in tumors. TNF-α and IFN-α can directly exert apoptotic effects on tumor cells. GM-CSF mainly activates dendritic cells. IL-2, IL-2 immunocytokines (IL-2-ICKs), IFN-α, and IL-15 activate directly T cells and NK cells to become cytotoxic effector cells. Moreover, IL-15 can bind to its high affinity receptor IL-15Rα on DC and as a part of immunological synapse can enhance T cell functions.

out of 12 patients (53). Currently, there are two ongoing phase II studies to assess the treatment with SABR in combination with a high dose IL-2 regimen for patients with metastatic renal carcinoma (NCT01896271, NCT02306954), one phase II trial for patients with metastatic melanoma (NCT01416831) and one phase II study for both patients with metastatic melanoma and renal cell carcinoma (55) (NCT01884961). Several additional clinical studies examining SABR in combination with IL-2 in metastatic melanoma and renal cell carcinoma are underway (Table 2).

Triple combinations of IL-2 administration, RT and immune checkpoint blockade is currently designed in two clinical trials as well as IL-2 and RT combined with autologous DC vaccine (NCT03226236) (Table 2). Nivolumab and Ipilimumab with IL-2 and RT will be tested in pilot phase I trial for patients with metastatic NSCLC (NCT03224871) and pembrolizumab in phase I/II trial for patients with various metastatic tumors (NCT03474497).

In recent years, new derivatives of IL-2 such as PEGylated IL-2 (NKTR-214) or IL-2 conjugated with tumor-targeting antibodies (IL-2-based immunocytokines) have found their way to the clinical testing (77, 78). More preclinical data is needed to evaluate the potential of NKTR-214 and RT combination. Currently there are no clinical trials in progress to combine NKTR-214 with RT, but some data have been already collected for IL-2 based immunocytokines.

IL-2-BASED IMMUNOCYTOKINES

IL-2-based immunocytokines tested with RT involve L19-IL2 and NHS-IL2. Both immunocytokines showed promising results in preclinical models (79, 80). L19-IL-2 (Darleukin) is a conjugate of IL-2 and L19 an antibody fragment targeting extracellular domain B of fibronectin (ED-B). L19-IL-2 in combination with RT showed efficacy in preclinical mouse models (81–83). A long-lasting synergistic effect was observed in C51 colon tumor model with 75% of tumors cured (82). The induction of an abscopal effect was observed as well as an increase in memory CD44+CD127+ T cells. These preclinical findings set base for the initiation of phase I clinical trial in patients with metastatic solid tumors (NCT02086721), and phase II trial for stage IV NSCLC patients (NCT02735850) (Table 2).
Interleukin 15 (IL-15) is a 15 kDa cytokine structurally similar to IL-2. It belongs to the four-α-helix bundle family of cytokines. The IL-15 receptor involves the γc subunit, IL-15Rβ shared with IL-2 and IL-15 specific subunit IL-15Ra. Mainly monocytes, macrophages and dendritic cells produce IL-15. This cytokine induces proliferation of various effector cells including NK cells and CD8+ T cells via mechanism called trans-presentation (85, 86). Soluble IL-15 binds to its IL-15Rα subunit located on the surface of antigen presenting cells, mainly dendritic cells, and then it is ligated to IL-15Rβγ receptors on target cells. IL-15 also supports the IgG production from B cells and activation and maintenance of memory CD8+ T cells. Even though IL-15 displays a similar effect on immune cells as IL-2, there are major differences. Unlike IL-2, IL-15 exerts anti-apoptotic effects on cells and does not expand regulatory T cells (51). IL-15 is the only cytokine found to correlate with the progression-free survival in colorectal cancer patients and with immune cell density within tumors (87). The NCI review listed IL-15 as the most promising cytokine among 12 other immunotherapeutic agents that could potentially cure cancer (88).

Recombinant human IL-15 has been tested in clinical trials as a monotherapy (89, 90), but no patient data are available on its combination with RT. In preclinical research it has been shown that IL-15 can potentiate immune activation induced by RT (91). Poorly immunogenic TSA breast cancer tumors were treated with RT (locally in 8 Gy fractions on days 13, 14, and 15), IL-15 (2 μg/mouse daily for 10 days starting on day 12), or a combination of RT and IL-15. The highest survival was observed in the RT and IL-15 combination group (median 102 days) with 1 of 6 mice showing complete tumor rejection and a development of a long-lasting immunity. Moreover, a significant infiltration of T cells was detected (91).

Similarly to IL-2, there have been various analogs of IL-15 developed to increase the anti-tumor efficacy and lower the toxicity (49). ALT-803 is a mutated IL-15 (N72D) to enhance its biological activity bound to an IL-15RaSu/Fc fusion protein (92, 93). ALT-803 has been evaluated for safety and efficacy in a few clinical trials (94, 95) including combinatorial clinical trials with ICIs. However, the data on the combination of ALT-803 and RT are available only from one preclinical study (96). Here ALT-803 was combined with a SRS in murine glioblastoma model. However, no synergistic effect was observed. More data is necessary to evaluate the effectiveness of IL-15 or IL-15 analogs in cancer treatment in combination with RT.

GRANULOCYTE MACROPHAGE COLONY-STIMULATING FACTOR (GM-CSF)

Granulocyte macrophage colony-stimulating factor (GM-CSF) is a 23 kDa glycoprotein that binds to a heterodimeric receptor which consists of subunits belonging to the type 1 cytokine receptor family (51). GM-CSF stimulates production of monocytes, neutrophils, and eosinophils. It is produced by various types of cells including T and B lymphocytes, neutrophils, eosinophils, epithelial cells, fibroblasts, and other cells (97). GM-CSF stimulates antigen presentation to the immune system by directly acting on dendritic cells and macrophages (98). GM-CSF was also shown to stimulate the capacity of neutrophils, macrophages and monocytes to mediate antibody-dependent cytotoxicity (51). In contrast to data from preclinical mouse models, the adjuvant effects of GM-CSF in human trials were inconsistent. This may be explained by the capacity of GM-CSF on one hand to stimulate dendritic cells, and on the other hand also to induce myeloid suppressor cells (99).

However, preclinical data show that GM-CSF in combination with RT can help boost the abscopal effect (100). Similarly, the abscopal effect of GM-CSF and RT in a patient with metastatic pancreatic cancer has been documented (101). Based on the preclinical data there had been several clinical trials conducted investigating combination of RT and GM-CSF. A proof-of-principle trial showed that 11 out of 41 patients with various metastatic diseases, developed abscopal responses (14) (NCT02474186). This trial set base for an ongoing phase II trial combining carbon ion RT and GM-CSF for patients with hepatocellular carcinoma (NCT02946138). GM-CSF in combination with RT is also combined or planned to be combined with additional agents (Table 2). GM-CSF is planned to be combined with pembrolizumab and RT (1 x 8 Gy) in follicular lymphoma (NCT02677155) or with pembrolizumab, GVAX (GM-CSF gene-transduced tumor cell vaccine) and SBRT in patients with locally advanced pancreatic cancer (NCT02648282). There is a phase II study investigating combination of GM-CSF with hypofractionated IMRT and temozolomide for patients with glioblastoma multiforme (NCT02663440). Another immune enhancer, thymosine-α, is investigated with this combination of GM-CSF and SABR in phase II trial for patients with stage IV
NSCLC (NCT02976740). Similarly, in glioblastoma there is a study planning the intratumoral addition of polyI:C together with GM-CSF and RT (NCT03392545). A phase I/II study combining chemoradiotherapy with a herpes simplex type 1 oncolytic virus expressing GM-CSF in patients with HNSCC was conducted (57). The treatment was well-tolerated, 14 out of 17 patients showed response to the treatment and pathologic complete remission was confirmed in 93% of patients at neck dissection. GM-CSF treatment was also used in combination with RT and PSA tumor antigen-encoding poxviral vaccines (58) or with multipeptide vaccines (59) where an increase of antigen-specific T cells was detected in comparison to control arms.

INTERFERON ALPHA (IFN-α)

Interferon alpha (IFN-α) is member of the type I interferon family and acts as immune modulator with antiviral and anti-proliferative properties (102, 103). Twenty IFNs have been identified in humans, out of which the most subtypes belong to the IFN-α group. Type I IFNs signal via a common pair of receptors, IFNAR1 and IFNAR2. IFN-α is produced mainly by plasmacytoid dendritic cells but also by most of other cell types in response to encounter with DAMPs by pattern recognition receptors (PRRs) which can be produced by virus-infected or cancer cells (104, 105). IFN-α induces MHC class I expression on tumor cells, induces apoptosis of tumor cells, mediates maturation of dendritic cells and activation of B and T cells, and displays antiangiogenic properties (51).

IFN-α has been approved by FDA for treatment of several malignancies including hairy cell leukemia, chronic myelogenous leukemia, follicular lymphomas, malignant melanoma, multiple myeloma, or renal cell carcinoma (106, 107) but displays also significant toxicity and side effects such as flu-like symptoms, anorexia, fatigue, depression. It has been shown in in vitro models that IFN-α has a synergistic cytotxic effect with chemotherapy and RT (108, 109). This synergistic effect as well as radiosensitizing effect of 5-fluorouracil was also observed in patients with small cell lung cancer and anal cancer (110, 111). A phase I/II study combining 5-fluorouracil, cisplatin, IFN-α and concurrent EBRT before resection in patients with advanced esophageal cancer resulted in 80% of the patients responding to the therapy but the authors claimed that the contribution of IFN-α to the treatment was uncertain (62). In a preliminary phase II study, patients with pancreatic cancer underwent similar adjuvant therapy of 5-fluorouracil, cisplatin, IFN-α and RT after pancreatoduodenectomy (63). The study showed better survival in the group of patients receiving IFN-α in comparison with patients with similar adjuvant therapy without IFN-α. In a similar multicenter phase II study (NCT00059826), patients with pancreatic cancer undergoing this adjuvant therapy had better overall survival results but the study had to be terminated prematurely due to the high toxicity of treatment (61). Acceptable toxicity was observed in phase II clinical trial (NCT01276730) where patients with stage III cervical cancer were treated with RT in combination with IFN-α and retinoic acid (60). Unfortunately, there was no survival advantage in comparison with the group receiving RT and cisplatin. In melanoma, there have been several trials examining treatment with IFN-α and various forms of RT with mixed outcomes involving high toxicity of the combinatorial treatment as well as generally low efficacy. These studies are summarized extensively in the review of Barker and Postow (112).

A phase II study investigating the combination of RT and IFN-α with a dendritic cell-based vaccine for patients with metastatic melanoma is currently ongoing (NCT01973322). Two other clinical studies combining chemotherapy and/or cellular therapy and IFN-α have been completed (NCT 0003195 and NCT0003263) (Table 2).

TUMOR NECROSIS FACTOR α (TNF-α)

Tumor necrosis factor alpha (TNF-α) is a strong proinflammatory cytokine with anti-tumor activity both in vitro and in vivo (113, 114). TNF-α is produced mainly by macrophages, granulocytes and epithelial cells but also by other types of cells and its anti-tumor properties are due to direct cytotoxic and antiangiogenic effects (70). Also it has been shown that TNF-α acts as a radiosensitizer and enhances cytotoxic effect of radiation (115). Despite of its anti-tumor properties, the systemic administration of TNF-α in a sufficient dose is associated with a high toxicity (116, 117). Thereby the use of TNF-α in cancer therapy is limited to isolated limb perfusion (ILP) of advanced melanoma and soft tissue sarcoma (118, 119). The only clinical testing of TNF-α and RT involves gene therapy delivering TNF-α gene to cancer cells—TNFerade™ (120, 121). TNFerade is an adenovector containing TNF-α gene with early growth response gene (Egr-1) radiation activated promoter that is injected intratumorally. In preclinical models this combination showed remarkable anti-tumor effects with minimal toxicity (122). Several trials combining TNFerade and RT or chemoradiotherapy were conducted in patients with various types of tumors including breast, lung, pancreatic, head and neck, rectal cancer, melanoma, esophageal cancer, or soft tissue sarcoma (64–67, 69, 70, 123, 124). These studies showed that the treatment is well tolerated with complete or partial tumor responses and complete tumor regressions in some patients (Table 2). Despite these favorable results a phase III clinical trial randomizing patients with locally advanced pancreatic cancer to 2:1 groups standard of care (SOC) plus TNFerade vs. SOC alone showed no survival benefit of the patients in SOC plus TNFerade group (68). This dampened the enthusiasm of using this approach and there are currently no open clinical trials (Table 2).

INTERLEUKIN 12 (IL-12)

IL-12 is a four-bundle α-helix heterodimeric cytokine encoded by two genes: IL-12A (p35 subunit) and IL-12B (p40 subunit). The active IL-12 forms a heterodimer of p35 and p40 subunits referred as p70. The receptor for IL-12 consists of IL-12Rβ1 and IL-12Rβ2. IL-12 is produced by macrophages, dendritic cells and B cells. IL-12 induces proliferation of T cells and NK cells as well as their IFN-γ production. IL-12 polarizes Th1 immune
response and displays antiangiogenic properties (51). The anti-tumor efficacy of IL-12 was shown in several animal models (125–127). IL-12 has shown promising results in preclinical studies but the clinical trials did not result in satisfactory outcome. As IL-12 displays a high systemic toxicity, the local treatment in the form of gene or viral therapy was tested in combination with RT in preclinical models (128, 129). A non-viral murine IL-2 and IL-12 gene therapy and external beam radiation (2 × 1 Gy) was tested in HNSCC in an orthotopic murine model (130). A significant increase in anti-tumor effects and T lymphocyte infiltration was detected in comparison to single therapies and the control. Furthermore, the anti-tumor and anti-metastatic activity of the oncolytic adenovirus expressing IL-12 and GM-CSF injected intratumorally in combination with RT was investigated in a murine hepatic cancer (HCA-1) model (131). This combinatorial therapy was effective in suppressing primary tumor growth and an increased immune cell infiltration was observed. The therapeutic effect of the naked IL-12 cytokine combined with fractionated RT was investigated in Lewis lung carcinoma mouse model (132). The treatment was effective against primary tumor and the number of lung metastasis decreased. A pronounced tumor growth delay was observed when GM-CSF was added together with IL-12 and fractionated RT. IL-12, similarly to IL-2, has been fused to an antibody tumor-necrosis activity targeting IgG1 (NHS76) to create a novel immunocytokine NHS-IL12 (133). NHS-IL12 immunocytokine exhibited a longer half-life and a selective tumor targeting in vivo. NHS-IL12 showed a superior anti-tumor effect when combined with RT in MC38 mouse colorectal cancer model (133). Currently there are no clinical trials combining IL-12 cytokine therapy or NHS-IL12 immunocytokine with RT.

CONCLUSIONS AND FUTURE PERSPECTIVES

Cancer immunology has made a remarkable progress, which led to the development of various immunotherapies that can be combined with ionizing radiation. The combination of RT and immunotherapy represents a growing field of clinical investigation with an increasing number and various types of clinical trials (2). Despite partial therapeutic success of the combination of RT and immunotherapy including the rare abscopal effect, most patients do not respond to RT and immunotherapy, and the same goes for using cytokine adjuvant treatment and RT. For RT itself, there are important challenges to overcome and there is a need to conduct rigorous research. These include the selection of appropriate radiation dose, fractionation, appropriate technique for RT, sequencing of therapies and selection of meaningful endpoints in clinical trials (134). Radiation dose and regimen is likely to be a critical determinant in successful generation of an anti-tumor response. Radiation dose and regimen largely affect both the immunomodulatory and cytotoxic effects of RT. These might attenuate the immunosuppressive environment but might not induce the immunogenic cell death of cancer cells to elicit strong anti-tumor responses. In the same line, although the cytokine therapy as documented with IL-2 can induce significant durable responses in patients, there are strong limitations, which lie mainly in the toxicity after the systemic administration. This can be mitigated by intratumoral administration of cytokines, which on the other hand, might represent technical challenges for the clinicians, or targeted versions of cytokines (e.g., immunocytokines). Out of the clinically tested cytokines IL-2, IFN-α, GM-CSF, and TNF-α, overall only IL-2 and GM-CSF combinatorial treatment with RT showed some even clinically relevant efficacy with acceptable toxicity. Novel analogs of IL-2 engineered to mitigate the toxic effects and to reduce the induction of immunosuppressive T regulatory cells might increase the efficacy of treatment with radiation. Similarly, analogs of IL-15 showing promising results in clinical trials when combined with ICIs hold the potential to boost the immunogenic effect of RT. From this summary, it becomes clear that multiple combinations using cytokines and RT together with some other immunotherapeutic approaches might hold the promise to increase the clinical benefit of cancer patients. As we are only beginning to explore the possibilities of multiple immunotherapeutic combinations, the understanding how to best integrate the scientific rationale, mode of actions and the most effective therapeutic regimens remains of urgent need.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, et al. Trial watch: anticancer radioimmunotherapy. Oncovirology. (2013) 2:e25595. doi: 10.4161/onci.25595
2. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. (2016) 4:51. doi: 10.1186/s40425-016-0156-7
3. Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, et al. Trial watch: radioimmunotherapy for oncological indications. Oncovirology. (2014) 3:e954929. doi: 10.4161/21624011.2014.954929
4. Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ. (2012) 345:e7765. doi: 10.1136/bmj.e7765
5. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. (2012) 2:153. doi: 10.3389/fonc.2012.00153
6. Beckmann GK, Hoppe F, Pfreundner L, Flentje MP. Hyperfractionated accelerated radiotherapy in combination with weekly cisplatin for locally advanced head and neck cancer. Head Neck. (2005) 27:36–43. doi: 10.1002/hed.20111
7. Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol. (2012) 24:112–24. doi: 10.1016/j.clon.2011.11.004
8. Frazier JL, Batra S, Kapoor S, Vellimana A, Gandhi R, Carson KA, et al. Stereotactic radiosurgery in the management of brain metastases: an institutional retrospective analysis of survival. Int J Radiat Oncol Biol Phys. (2010) 76:1486–92. doi: 10.1016/j.ijrobp.2009.03.028
9. Agency IAE, Zubizarreta E. Radiotherapy in Cancer Care: Facing the Global Challenge. International Atomic Energy Agency Vienna (2017).

10. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abscessal effect. Trends Immunol. (2018) 39:644–55. doi: 10.1016/j.it.2018.06.001.

11. Aboudeh Y, Venkat P, Kim S. Systematic review of case reports on the abscessal effect. Curr Prob Cancer. (2016) 40:25–37. doi: 10.1016/j.currprobcancer.2015.10.001.

12. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. PD-1/PD-L1 antagonists: mechanism of action and clinical activity. J Clin Oncol. (2016) 34:3662–77. doi: 10.1200/JCO.2016.70.1158.

13. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton–20. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda

14. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani

15. Reynolds K, Illidge T, Siva S, Chang JY, De Ruyscher D. The abscessal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. (2015) 41:503–10. doi: 10.1016/j.ctrv.2015.03.011.

16. Cai X, Chiu VH, Chen ZJ. The eGAS+GAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. (2014) 54:289–96. doi: 10.1016/j.molcel.2014.03.040.

17. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele

18. Mothersill C, Seymour C. Radiation-induced bystander effects: past history and future directions. Radiat Res. (2001) 155:759–67. doi: 10.1667/0033-7587(2001)155<0759:RIBREE>2.0.CO;2.

19. Walle T, Martinez Monge R, Cervenka A, Ajona D, Melero I, Lecanda. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. (2018) 10:867834017742575. doi: 10.1177/1758834017742575.

20. Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, et al. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. (2017) 8:229. doi: 10.3389/fimmu.2017.00229.

21. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiaton-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. (2018) 190:5099–107. doi: 10.4049/jimmunol.1805.5099.

22. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer (2011) 71:2488–96. doi: 10.1158/0008-5472.CAN-10-2820.

23. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele

24. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. (2017) 8:15618. doi: 10.1038/ncomms15618.

25. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. (2014) 74:665–74. doi: 10.1158/0008-5472.CAN-13-0992.

26. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. (2014) 211:781–90. doi: 10.1084/jem.20131916.

27. Voron T, Marcheteau E, Fornet S, Colussi O, Tartour E, Taieb J, et al. Control of the immune response by pro-angiogenic factors. Front Oncol. (2014) 4:70. doi: 10.3389/fonc.2014.00070.

28. Barsoum IB, Hamilton TK, Li X, Cotecchini T, Miles EA, Siemens DR, et al. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. (2011) 71:7433–41. doi: 10.1158/0008-5472.CAN-11-2104.

29. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. (2018) 190:5099–107. doi: 10.4049/jimmunol.1805.5099.

30. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer (2011) 71:2488–96. doi: 10.1158/0008-5472.CAN-10-2820.

31. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele

32. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. (2017) 8:15618. doi: 10.1038/ncomms15618.

33. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. (2014) 74:665–74. doi: 10.1158/0008-5472.CAN-13-0992.

34. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. (2014) 211:781–90. doi: 10.1084/jem.20131916.

35. Voron T, Marcheteau E, Fornet S, Colussi O, Tartour E, Taieb J, et al. Control of the immune response by pro-angiogenic factors. Front Oncol. (2014) 4:70. doi: 10.3389/fonc.2014.00070.

36. Barsoum IB, Hamilton TK, Li X, Cotecchini T, Miles EA, Siemens DR, et al. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. (2011) 71:7433–41. doi: 10.1158/0008-5472.CAN-11-2104.
immunologic correlates from peripheral T cells. Clin Cancer Res. (2017) 23:1388–96. doi: 10.1158/1078-0432.CCR-16-1432
48. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. (2016) 5:e1163462. doi: 10.21414/2016.1163462
49. Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncologic therapies. Immuno Lett. (2017) 190:139–68. doi: 10.1016/j.imlet.2017.08.010
50. Vaccelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, et al. Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. (2016) 5:e1115942. doi: 10.21414/2016.1115942
51. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. (2017) 10:a028472. doi: 10.1101/cshperspect.a028472
52. Safwat A, Schmidt H, Baitholt L, Fode K, Larsen S, Aggerholm N, et al. Phase II trial of low-dose total body irradiation and subcutaneous Interleukin-2 in metastatic melanoma. Radiother Oncol. (2005) 79:134–7. doi: 10.1016/j.radonc.2005.09.008
53. Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, et al. Phase 1 study of stereotropic body radiotherapy and interleukin-2–tumor and immunological responses. Sci Transl Med. (2012) 4:137ra174. doi: 10.1126/scitranslmed.3003649
54. Lange JR, Raubitschek AA, Rockaj BA, Spencer WF, Lotze MT, Topalian SL, et al. A pilot study of the combination of interleukin-2-based immunotherapy and radiation therapy. J Immunother. (1992) 15:265–71. doi: 10.1097/00002371-199211000-00007
55. Ridolfi L, De Rosa F, Ridolfi R, Gentili G, Valmori L, Scarpi E, et al. Radiotherapy as an immunomodulatory booster in patients with metastatic melanoma or renal cell carcinoma treated with high-dose Interleukin-2: evaluation of biomarkers of immunologic and therapeutic response. J Transl Med. (2014) 12:262. doi: 10.1186/s12967-014-0262-6
56. Vaccelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Metzger J, et al. Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. (2016) 5:e304276. doi: 10.2147/oncotarget.a83859
57. Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. Phase I study of oncolytic HSVGM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. (2010) 16:4005–15. doi: 10.1158/1078-0432.CCR-10-3116
58. Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, et al. Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. (2016) 5:e1163462. doi: 10.1080/2162402X.2016.1163462
59. Pettersson M, et al. A cancer research UK first time in human phase I trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in patients with pancreatic cancer. J Transl Med. (2005) 3:161–8. doi: 10.1186/1479-5876-3-161
60. Basu P, Jensen AB, Majhi T, Choudhury P, Mandal R, Banerjee D, et al. Phase 2 randomized controlled trial of radiation therapy plus concurrent interferon-alpha and retinoic acid versus cisplatin for stage III cervical cancer. Int J Radiat Oncol Biol Phys. (2006) 64:623–8. doi: 10.1016/j.ijrobp.2005.09.040
61. Pincozzi VJ, Abrams RA, Decker PA, Traverso LW. Interferon-based adjuvant chemoradiation therapy improves survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am J Surg. (2000) 180:76–81. doi: 10.1016/S0002-9610(00)00369-X
62. Picozzi VJ, Abrams RA, Decker PA, Traverso LW. Interferon-based adjuvant chemoradiation therapy improves survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am J Surg. (2000) 180:76–81. doi: 10.1016/S0002-9610(00)00369-X
63. Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C, et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene; a phase I study in patients with solid tumors. J Clin Oncol. (2004) 22:592–601. doi: 10.1200/JCO.2004.04.227
64. Seiwert TY, Darga T, Haraf D, Blair EA, Stenson K, Cohen EE, et al. A Phase I dose escalation study of Ad GV.EGR.TNF-11D (TNFerade Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation. Ann Oncol. (2013) 24:769–76. doi: 10.1093/annonc/mds523
65. Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. (2014) 25:377–90. doi: 10.1016/j.cytogfr.2014.07.018
66. Herman JM, Wide A, Wang H, Tran PT, Chang KJ, Taylor GE, et al. Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J Clin Oncol. (2013) 31:886–94. doi: 10.1200/JCO.2012.44.7516
67. Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. (2014) 25:377–90. doi: 10.1016/j.cytogfr.2014.07.018
68. Rosenzwajg M, Lorenzon R, Cacoub P, Pham HP, Pitoiset F, El Soufi K, et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. (2011) 70:209–17. doi: 10.1136/annrheumdis-2011-241249
69. Deckert J, Pfeiffer B, Pettersson M, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, improves efficacy of immune checkpoint inhibitors in a mouse model for metastatic malignant melanoma. J Exp Ther Oncol. (2003) 3:161–8. doi: 10.4106/jteo.2003.01093.x
70. Senzer N, Aggerholm N, Roitt I, Overgaard J, Hokland M. Phase II study of TNFerade biologic in combination with concurrent chemoradiation therapy improves survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am J Surg. (2000) 180:76–81. doi: 10.1016/S0002-9610(00)00369-X
71. List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol Adv Appl. (2013) 5:29–45. doi: 10.2147/CPAA.S49231
72. Charych DH, Hoch U, Langowski JL, Lee SR, Addpeplik MM, Kirk PB, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. (2016) 22:6880–90. doi: 10.1158/1078-0432.CCR-15-1631
73. Carnemolla B, Borsi L, Balza E, Castellani P, Mezza R, Berndt A, et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood. (2002) 99:1659–65. doi: 10.1182/blood.V99.5.1659
74. Filletti V, Bacci D, Turchinovo T, Sbarbati M, List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol Adv Appl. (2013) 5:29–45. doi: 10.2147/CPAA.S49231
75. List T, Neri D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol Adv Appl. (2013) 5:29–45. doi: 10.2147/CPAA.S49231
76. Seiwert TY, Darga T, Haraf D, Blair EA, Stenson K, Cohen EE, et al. A Phase I dose escalation study of Ad GV.EGR.TNF-11D (TNFerade Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation. Ann Oncol. (2013) 24:769–76. doi: 10.1093/annonc/mds523
77. Rekers NH, Zegers CM, Gemeraad WT, Dubois L, Lambin P. Long-lasting antitumor effects provided by radiotherapy combined with...
the immunocytokine L19-IL2. Oncoimmunology. (2015) 4:e1021541. doi: 10.1080/2162402X.2015.1021541
82. Zegers CML, Rekers NH, Quaden DHE, Liewes NG, Yaromina A, Germeraad WTV, et al. Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting anti-tumor effect. Clin Cancer Res. (2015) 11:1511-60. doi: 10.1158/1078-0432.CCR-14-2676
83. Rekers NH, Olivo Pimentel V, Yaromina A, Liewes NG, Biemans R, Zegers CML, et al. The immunocytokine L19-IL2: an interplay between radiotherapy and long-lasting systemic anti-tumor immune responses. Oncoimmunology. (2018) 7:e1414119. doi: 10.1080/2162402X.2017.1414119
84. Van Den Heuvel MM, Verheij M, Boshuizen R, Belderbos J, Dinnemans M, Germeraad WTV, et al. NHS-IL2 combined with radiotherapy: preclinical rationale and phase Ib trial results in metastatic non-small cell lung cancer following first-line chemotherapy. J Transl Med. (2015) 13:92. doi: 10.1186/s12967-015-0397-0
85. Stonier SW, Schlunns K. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immuno Lett. (2010) 127:85-92. doi: 10.1016/j.iCL.2009.09.009
86. Waldmann TA. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J Invest Dermatol Symp Proc. (2013) 16:528-30. doi: 10.1038/jidspym.2013.8
87. Mlecnik B, Bindea G, Angell HK, Sasso MS, Obenauf AC, Fredriksen T, et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med. (2014) 6:228ra237. doi: 10.1126/scitranslmed.3007240
88. Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. (2012) 33:35-41. doi: 10.1016/j.tips.2011.09.004
89. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Formenti S, Demaria S. Intratumoral IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant IL-15RalphaSu-Fc. Oncoimmunology. (2015) 4:378. doi: 10.1080/2162402X.2015.1031488
90. Miller JS, Morishima C, Welles HC, Rosenberg SA, Formenti S, Demaria S. Antitumour actions of interferons: 40th anniversary of the discovery of interferons. J Natl Cancer Inst. (2010) 102:795-802. doi: 10.1093/jnci/djp533
91. Pfeffer LM, Dinarello CA, Borden EC, et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. J Natl Cancer Inst. (2010) 102:795-802. doi: 10.1093/jnci/djp533
92. Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, et al. Clinical experience with high-dose tumor necrosis factor alpha in regional therapy of advanced melanoma. Circ Shock. (1994) 43:191-7.
119. Eggermont AM, Schraffordt Hoops H, Klausner JM, Schlag PM, Kroon BB, Ben-Ari G, et al. Isolated limb perfusion with high-dose tumor necrosis factor-alpha for locally advanced extremity soft tissue sarcomas. *Cancer Treat Res.* (1997) 91:189–203. doi: 10.1007/978-1-4615-6121-7_13

120. Kircheis R, Wagner E. Technology evaluation: TNFerade, GenVec. *Curr Opin Mol Ther.* (2003) 5:437–47.

121. Kali A. TNFerade, an innovative cancer immunotherapeutic. *Indian J Pharmacol.* (2015) 47:479–83. doi: 10.4103/0253-7613.165190

122. Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR, et al. TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. *Cancer Gene Ther.* (2002) 9:951–7. doi: 10.1038/sj.cgt.7700518

123. Sharma A, Mani S, Hanna N, Guha C, Vikram B, Weichselbaum RR, et al. Clinical protocol. An open-label, phase I, dose-escalation study of tumor necrosis factor-alpha (TNFerade Biologic) gene transfer with radiation therapy for locally advanced, recurrent, or metastatic solid tumors. *Hum Gene Ther.* (2001) 12:1109–31. doi: 10.1089/104303401750214320

124. Citrin D, Camphausen K, Wood BJ, Quezado M, Denobile J, Pingpank JF, et al. A pilot feasibility study of TNFerade biologic with capecitabine and radiation therapy followed by surgical resection for the treatment of rectal cancer. *Oncology.* (2010) 79:382–8. doi: 10.1159/000323488

125. Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. *Blood.* (2000) 105:2665–70. doi: 10.1182/blood.V105.8.2665

126. Smyth MJ, Taniguchi M, Street SE. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. *J Immunol.* (2000) 165:2665–70. doi: 10.4049/jimmunol.165.5.2665

127. Lu X. Impact of IL-12 in Cancer. *Curr Cancer Drug Targets.* (2017) 17:682–97. doi: 10.2174/156800961766670427102729

128. Lasek W, Zagozdzon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? *Cancer Immunol Immunother.* (2014) 63:419–35. doi: 10.1007/s00262-014-1523-1

129. Berraondo P, Etxeberria I, Ponz-Sarvise M, Melero I. Revisiting interleukin-12 as a cancer immunotherapy agent. *Clin Cancer Res.* (2018) 24:2716–8. doi: 10.1158/1078-0432.CCR-18-0381

130. Xian J, Yang H, Lin Y, Liu S. Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. *Arch Otolaryngol Head Neck Surg.* (2005) 131:1079–85. doi: 10.1001/archotol.131.12.1079

131. Kim W, Seong J, Oh HJ, Koom WS, Choi K-J, Yun C-O. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. *J Radiat Res.* (2011) 52:646–54. doi: 10.1269/jrr.10185

132. Teicher BA, Ara G, Buxton D, Leonard J, Schaub RG. Optimal scheduling of interleukin-12 and fractionated radiation therapy in the murine Lewis lung carcinoma. *Radiat Oncol Investig.* (1998) 6:71–80. doi: 10.1002/(SICI)1520-6823(1998)6:2<71::AID-ROI2>3.0.CO;2-E

133. Fallon J, Tighe R, Kradjian G, Guzman W, Bernhardt A, Neuteboom B, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. *Oncotarget.* (2014) 5:1869–84. doi: 10.18632/oncotarget.1853

134. Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. *Trends Cancer.* (2016) 2:286–94. doi: 10.1016/j.trecan.2016.05.002

Conflict of Interest Statement: The authors are employees of Sotio a.s. None of the authors has any potential financial conflict of interest related to this manuscript.

Copyright © 2019 Palata, Hradilova Podzimkova, Nedvedova, Umprecht, Sadilkova, Palova Jelinova, Spisek and Adkins. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.