SUPPLEMENTARY INFORMATION

CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells

Lusy Handoko1,*, Han Xu1,*, Guoliang Li1,*, Chew Yee Ngan1, Elaine Chew1, Marie Schnapp1, Charlie Wah Heng Lee1, Chaopeng Ye1, Joanne Lim Hui Ping, Fabianus Mulawadi1, Eleanor Wong1,2, Jianpeng Sheng3, Yubo Zhang1, Thompson Poh1, Chee Seng Chan1, Galih Kunarso4, Atif Shahab1, Guillaume Bourque1, Valere Cacheux-Rataboul1, Wing-Kin Sung1,3, Yijun Ruan1, Chia-Lin Wei1,2,#, Yijun Ruan

Corresponding authors

Chia-Lin Wei
Tel: 1 (925) 927-2593
Email: cwei@lbl.gov

Yijun Ruan
Tel: (65) 68088073
Email: ruanyj@gis.a-star.edu.sg

* These authors contributed equally

Corresponding authors

Yijun Ruan
Tel: (65) 68088073
Email: ruanyj@gis.a-star.edu.sg

Corresponding authors

Yijun Ruan
Tel: (65) 68088073
Email: ruanyj@gis.a-star.edu.sg

Current address: Joint Genome Institute, Walnut Creek, California, U.S.A.

Keyword: insulator, enhancer, chromatin organization, epigenetic regulation, nuclear lamina
Supplementary Note

1. ChIA-PET analysis
 1.1 Determine cutoff fragment size between self ligation and inter ligation PETs
 1.2 Chimeric ChIA-PETs represent non-specific random inter-molecular ligation
 1.3 Reproducibility between biological and technical replicates of ChIA-PET libraries

Supplementary Figures

Supplementary Figure 1. CTCF ChIA-PET analysis
Supplementary Figure 2. Molecular and cytogenetic validation of CTCF directed inter- and intra-chromosomal interactions
Supplementary Figure 3. Clustering of inter-chromosomal interactions
Supplementary Figure 4. Specificity of chromatin domains defined by CTCF-mediated DNA looping
Supplementary Figure 5. Probability of loop span in each category and reduction of H3K4me1 signal intensities after CTCF knock-down
Supplementary Figure 6. Histone modification and RNAP II profiles in each chromatin domain and neighboring regions
Supplementary Figure 7. Examples of loops from category I-IV
Supplementary Figure 8. p300 association with cell specific open chromatin marks and enhancer signals
Supplementary Figure 9. DNA loop brings promoter and p300 enhancer into close proximity and affects expression of the corresponding genes
Supplementary Figure 10. Characterization of Lamin B-binding regions
Supplementary Figure 11. Model of CTCF directed chromatin domains (category I-IV), their associated gene activities and sub-nuclear chromatin localizations

Supplementary Tables

Supplementary Table 1. ChIA-PET sequencing processing and mapping summary
Supplementary Table 2. CTCF binding sites (Excel file)
Supplementary Table 3. Intra-and inter-chromosomal interactions detected by CTCF ChIA-PET (Excel file)
Supplementary Table 4. 4C, FISH and 3C validation results
Supplementary Table 5. List of 5 categories assigned to intra-chromosomal interactions (Excel File)

Supplementary Table 6. RNA Pol II, p300 and LADs sites defined by ChIP-Seq (Excel file)

Supplementary Table 7. ChIP-qPCR of CTCF, Lamin B, p300

Supplementary Table 8. RNAP II interactions defined by ChIA-PET (Excel File)

Supplementary Table 9. SALL4 interactions defined by ChIA-PET (Excel File)

Supplementary Table 10. Sequences of ChIA-PET linkers, siRNA, primers (qPCR, 3C, 4C) and list of BAC clones
Supplementary Note

1. ChIA-PET analysis

1.1. Determination of a self ligation and inter ligation cutoff.

In the ChIA-PET analysis, two types of ligation products were produced: the inter-molecular ligation events and self-ligation events. Self-ligation events mean that the two ends of the same DNA fragment are ligated together. We used the inter-molecular ligation PETs to identify interactions and self-ligation PETs to define binding sites. To determine the span cutoff between self-ligation and intra-chromosomal inter-molecular ligation PETs, we used the log-log plot analysis of the span distribution on the CTCF ChIA-PETs. A mixture model was observed with two straight distribution lines (see left); clearly representing two distinct PET populations. The size distribution of the self-ligating PETs follows a power-law distribution, which is a straight line on the left in the log-log plot. A different power-law distribution was observed for the intra-chromosomal interactions. Therefore, the span cutoff can be determined by the intersection between these two lines in the log-log plot which is between 5-10 Kb. Because the PETs around the calculated cutoff are a mixture of the self-ligation PETs and inter-ligation PETs, we used 10 Kb as cutoff size to select high confidence inter-ligating PETs.

1.2. Chimeric ChIA-PETs represent non-specific random inter-molecular ligation

The chimeric libraries generate no interaction cluster with FDR=0.05 and the interaction PETs identified shared little overlap between both biological and technical replicates. We further compared the span distributions of the intra-chromosomal PETs between chimeric and non-chimeric ChIA-PET libraries. The span of a PET is the genomic distance between the head and tail of each ChIA-PET. A log-log plot of the PET span distributions for PETs with spans from 10 Kb to 1 Mb from both chimeric and non-chimeric libraries is given below. The span
distribution from the non-chimeric library shows a good correlation ($R^2 = 0.94$) to a power-law distribution, while the span distribution from the chimeric library looks quite noisy. We also generated the span distribution with the random data by shuffling the heads and tails of the PETs. The span distribution from the random data looks like a constant. This confirms the quality of the non-chimeric ChIA-PET library and indicates that the ligation in the chimeric ChIA-PET library resulted from random chromatin ligation rather than the ligation of DNA molecules proximal to one another in the nucleus.

\[
y = 3\times10^8 x^{-1.13}, \quad R^2 = 0.973
\]

\[
y = 3920 x^{-0.37}, \quad R^2 = 0.733
\]
1.3. Reproducibility between biological and technical replicates of ChIA-PET libraries

To evaluate the complexity and dynamic status of interactions, CTCF ChIP material from mouse ES cells grown separately was used to construct biological (BR1 vs. BR2) and technical replicates (TR1 vs. TR2) (Supplementary Table 1). Plotting distribution of tags across the genome in each library against its matched replicate (see left) shows a high correlation for each replicate pair.

Among the reliable interaction clusters detected between TR1 (1,197) and TR2 (1,206), 906 (76%) clusters are shared and common. Among the reliable interaction clusters detected between BR1 (3,811) and BR2 (1,384), 533 (38%) are commonly found. Such significant degree of overlaps (empirical p-value < 1e-6) indicates that the interaction clusters defined are reliable. The larger difference between interactions detected in the biological replicates suggests that such chromatin interactions could be highly complex and dynamic among cell populations. To further determine whether the overlap between these replicates is specific and significant, we examined the level of reproducibility between the replicates of chimeric libraries. As expected, no significant interacting PET clusters were found in multiple chimeric ChIA-PET libraries even when the top 1000 interacting loci (chosen based on the FDR) were compared.

We next performed saturation analysis using the reproducibility of two biological replicates (BR1 and BR2). Based on the degree of overlapping interactions among biological replicates and assuming random sampling from the total pool by each replicate, we predict that there are 9,000-10,000 potential interactions in the ES cells. Since our cluster analysis identified ~ 5,384 PET clusters, we potentially have detected ~ 50% of the total CTCF-associated
chromatin interactions present in these cells. Upon close examination, the interactions identified are mostly involved the binding sites with higher peak intensities and thus likely to result from stronger interactions. However, the true level of comprehensiveness will probably beyond the current estimation with the improvement of the robustness of the detection method and many more bona fide but weaker or transient interactions will be found. The Venn diagram above shows the overlap between two sets of interactions. We next asked how many more sequences from BR1 were needed in order to capture most of the interactions found in BR2 To answer this question, we randomly selected 10%, 20%, …, 100% of the non-redundant reads from BR1, identified interactions using the criteria (PET2+, FDR<0.05), and counted the number of overlapping interactions in BR2 with different sequencing depths from BR1. A Hill-function was fitted to the data to estimate the level of saturation. Based on the fitted Hill function, 632 interactions in BR2 can be called if we retrieve infinite sequences from BR1. With the current sequencing depth of BR1, 533 out of 632 (84%) of the interactions are called. While only 45.7% (632 out of 1384) of the interactions in BR2 can be called even if we sequence BR1 infinitely. So, these numbers suggest that we have achieved over 80% saturation of the current library sequencing but only reached 45% saturation on the identifying all the potential interactions. This result suggests that the diversity among different biological replicates is large and library complexity is limited. Therefore, to achieve higher sensitivities, more biological replicates, rather than deeper sequencing on a single library, is needed.
Supplementary Figures

Supplementary Figure 1. CTCF ChIA-PET analysis

(a) Overview of CTCF ChIA-PET analysis.

Juxtaposed chromatin complexes are cross-linked and the interactions tethered by CTCF are enriched by chromatin immunoprecipitation. The resulted ChIP complexes are split into two reactions and ligated with a special linker A or B containing a MmeI restriction enzyme.
recognition site and biotin label. Intra-molecular ligation is then carried out to join the ends of proximal chromatin fragment. Three different types of ligation products are obtained: self-ligated DNA fragments (very left and very right), intra molecular ligations from chromatin fragments containing either A-A or B-B linkers (2nd to the right and left), and inter-molecular chimeric ligations obtained from two non specifically-interacting chromatin complexes carrying A-B linker (middle). Ligation products (self-circularization of individual DNA fragment or intra-molecular ligation of multiple DNA fragments within one interacting chromatin complex) are digested with MmeI to release PETs and selected by streptavidin conjugated magnetic beads. Ultrahigh throughput sequencing analysis is then performed to reveal long range chromatin interaction loci. The DNA fragments with either A-A or B-B linkers will be used as non-chimeric PETs to determine binding sites or chromatin interaction loci. The fragments with A-B linkers (chimeric PETs) are used as an indicator to estimate the level of noise in the ChIA-PET library. From the 10.1 million uniquely mapped inter-ligating PETs, we then defined the inter-ligation PET clusters. Using occurrence frequency to distinguish real interaction signals (multiple overlapping clusters) from random noise (PET singletons); we obtained 2,275 intra- and 3,109 inter-ligation PET clusters (Supplementary Table 3a, b). We further checked for homology between anchors and found that the majority of the sequences from the paired interaction anchor regions show no homology and thus are unlikely to have resulted from mapping errors of segmental duplications and homologous sequences. Furthermore, most of these interaction loci are supported by CTCF binding. 2,115 of the 2,275 intra-chromosomal (93%) and 2,648 of the 3,109 inter-chromosomal interactions (85%) harbor CTCF binding sites on either or both anchors of the interaction loci.
(b) CTCF binding sites defined by self-ligating ChIA-PETs
An example is shown here in a 92 Kb interval around chr2:106,149,842-106,241,509 surrounding the gene 4732421G10Rik. Two strong CTCF binding sites are detected by ChIP-Seq analysis (green track). Self-ligating ChIA-PETs shown as overlapping red connecting lines are also found to be accumulated at the same locations. The intensity profile resulting from these self-ligating ChIA-PETs is highly similar to the profile generated from ChIP-Seq.

(c) ChIP-qPCR validation of CTCF binding sites detected by ChIP-Seq. 21 CTCF binding sites were chosen based on the peak intensities (decreasing from the left to the right). Negative control regions (22-41) represent regions with no CTCF binding sites. The fold of enrichment is shown in the Y-axis for the list of 1-21 sites selected (Supplementary Table 7a).

(d) Correlation of binding intensities of CTCF and their involvement in the interactions. In total, 3,306 CTCF binding sites are involved in these chromatin interactions. Compared with the binding sites that are not involved in the interactions, these 3,306 sites have higher binding intensities (p<10E-308 in KS-test). The plot shows the ratio of binding sites found to anchor chromatin interactions ranked by the binding site intensities. 20% of the top 200 CTCF binding peaks are found in the interaction anchors while only 2% of the bottom 200 binding peaks are detected in the anchors.

(e) The distributions of peak heights for binding sites involved in interactions (blue) and those not involved in interactions (red). It appears that the detected interactions are mediated through the stronger binding events.
Supplementary Figure 2. Molecular and cytogenetic validation of CTCF directed inter- and intra-chromosomal interactions.

(a) Validation of intra-chromosomal interaction by 4C assay. In the Pcdhga and b locus (chr18:37792576-37895559), ChIA-PET detected 5 interactions. Using Protocadherin γ subfamily A12 promoter (chr18: 37,890,974–37,892,946) as a 4C bait region or anchor point (green triangle, ▲), 4 different intra-chromosomal interactions were detected. Among these 4 clusters, 2 confirmed the interactions detected by ChIA-PET (dashed circles). One interaction is detected between the Pcdhga12 promoter and the Pcdhgb1 promoter (chr18:37,806,000) approximately 85 kb upstream. The other interaction (~ 71 kb) is found between the promoter of Pcdhga12 and Pcdhga4 (chr18: 37,820,000). 4C also detected 2 more intra-chromosomal interactions anchored by CTCF binding which were missed by ChIA-PET analysis. One of them occurs between the anchor site, Pcdhga12 promoter, and the promoter of Pcdhga8 which are 40 kb in apart, while the other loop with 20 kb span connects the promoter of Pcdhga12 and of Pcdhga10 (see Supplementary Table 4a for a list of sites detected by 4C).
List of inter-chromosomal interaction validated by FISH (Fluorescent In Situ Hybridization)

To validate the inter-chromosomal interactions, we performed DNA FISH cytogenetic assays on the ES cells. The table shows fourteen inter-chromosomal interactions with cluster size ≥3 selected for FISH validation. 2 of them have CTCF binding site at one interaction anchor only.

Co-localization ratio distribution (fold change between fusion of two interacting loci and fusion of the control region) among all sites validated. As a negative control region, we randomly chose a region on chr16 (chr16:52,100,818-52,400,160) which is > 1 Mb in distance from any interaction site detected by ChIA-PET. 9 of 14 inter-chromosomal interactions have p-value <0.05, co-localization ratio > 1.5 and were considered successfully validated. Interactions 1-14 indicate the interactions listed in the table (b).
(d) Example of FISH images from a validated inter-chromosomal interaction. The interaction fusion event connects *Syne1* (chr10) and *Rnps1-Abca3* gene (chr17) loci. Top panel: location of the probes for FISH. Bottom panel: co-localization of signals from two interacting chromosomes.

(e) Validation of intra-chromosomal interaction by 3C-qPCR assay.
DNA looping mediated by CTCF was detected between Acbd4 gene and Hexim1 (chr11:102918935-102975295) (top panel). Chromatin from mouse ES cells was digested with EcoRI (EcoRI digestion map is shown in the middle panel, A, 1, 2, …,6 represent the region ~100 bp from the digested sites and were used to design the primers). As expected, the interaction formed between the anchor A (green triangle, ▲) and the nearest region (A-1) which is 4 kb downstream from the anchor was found to occur at high frequency. Interaction frequency decreased with the distance to the anchor region, but increased at the region where the loop was detected (A-5, interaction frequency of 0.6) (all 3C results can be found in Supplementary Table 4c).

(f) Validation of intra-chromosomal interaction by 3C-qPCR assay on CTCF knock down cells. DNA looping mediated by CTCF was detected between the promoter region of Efna2 and 3’ end of the Mim1 gene (top panel). In this 3C assay, chromatin from mouse ES cells was digested with HindIII (middle panel). In the control cells, we observe a high interaction frequency between A-5 where the loop was detected. In contrast, the interaction between A and 5 was reduced 3 fold in the CTCF knock down cell (relative interaction frequency in CTCF kd vs. control cells= 0.000073 vs. 0.00025) (Supplementary Table 4c). This result suggests that the DNA loop detected here was indeed CTCF-specific. We did however find an overall reduction of interaction frequency in the other ligated fragments A-1, A-2, A-4 and A-7. Since we used an independent locus on another chromosome for normalization (Ercc3, chr18), we could exclude the possibility that the changes resulted from technique variation between samples (digestion and ligation efficiency). Furthermore, FACS analysis on CTCF kd cells suggests that no changes in cell cycle or cell death were observed in the CTCF knock down cells, when compared to the control cells and untreated cells (data not shown). This further ruled out the possibility that the overall reduction of interaction frequency was due to cell cycle arrest or cell death.
Supplementary Figure 3. Clustering of inter-chromosomal interactions.

(a) Normalized inter-chromosomal interaction frequency matrix between different chromosome pairs. The normalized frequency is plotted as a heat map and the enriched pairs of high frequency interactions are displayed here as intense color regions. Significant enrichments are observed above background between specific chromosome pairs.

(b) Hierarchical clustering of each chromosome pair indicates the spatial relation between chromosomes. Two or more chromosomes are assumed to be spatially closer to each other if they interact more frequently. Height represents distance between chromosomes. The clustering shows that chromosomes 8, 15, 16, 18, which belong to the same subcluster, have more
interactions and are spatially closer to each other than to the other remaining chromosomes, as indicated by having the lowest distance/height.

(c) Interaction density matrix of each pair of chromosomes (as shown in a), from two biological replicates (BR1 and BR2).
Supplementary Figure 4

a CTCF loops
Loop Span
random CTCF loops RNAP II loops SALL4 loops

b
Loops < 200 kb
H3K4me1
H3K36me3

Loops > 200 kb
H3K9me3
H3K20me3

p-value
CTCF vs. simulated loops 5.18E-05
CTCF vs. SALL4 loops 5.23E-05
CTCF vs. RNAP II loops 0.02

p-value
CTCF vs. simulated loops 1.14E-06
CTCF vs. SALL4 loops 2.20E-05
CTCF vs. RNAP II loops 2.18E-05

p-value
CTCF vs. simulated loops 2.7E-05
CTCF vs. SALL4 loops 0.02
CTCF vs. RNAP II loops 0.007

p-value
CTCF vs. simulated loops 5.36E-05
CTCF vs. SALL4 loops 0.004
CTCF vs. RNAP II loops 0.001
Supplementary Figure 4. Specificity of chromatin domains defined by CTCF-mediated DNA looping.

(a) Three different sets of control loops were used to determine whether the different chromatin domains determined from the clustering analysis are specific to CTCF. Histone profiling derived from CTCF-mediated loops (left), randomly simulated loops (second from the left), SALL4 loops (second from the right) and RNAP II loop (right). 1,622 of RNAP II-associated intra-chromosomal interactions with cluster size \geq 5 (PET5+ RNAP II) (Supplementary Table 8), 1,636 SALL4-associated intra-chromosomal interaction loops (PET-4+ SALL4) (Supplementary Table 9) and simulated loops randomly paired by CTCF binding sites spanning between 10 Kb to 1 Mb were selected. Loops were sorted in ascending order of span, and we examined the histone pattern associated with different span. Each column corresponds to an aligned bin, and each row corresponds to a loop. A window containing 100 loops was moved vertically to average the signal. CTCF Loops with span < 200k are mostly active domains (indicated by H3K4me1, and to lesser degree H3K36me3 enrichments. CTCF loops with span > 200k has clearly different pattern (K9 and K20 me3). Loops > 200K are mostly repressive domains indicated by H3K9 and K20 me3 enrichment. As shown, the histone signal intensity patterns defined from CTCF interactions are unique to the CTCF and not found in RNAP II and SALL4-associated interactions. Furthermore, the loop span correlation, particularly around 200 Kb, is not observed in the RNAP II, SALL4 and simulated control interactions.

(b) Histone modification patterns within the chromatin domains are CTCF loop-specific. Top panel: in CTCF loops less than 200 Kb in size, K4me1 shows significant enrichment (left) and K36me3 shows significant depletion (right) relative to three different sets of control interactions (p-values are shown below each graph). Bottom panel: In the CTCF interactions > 200 Kb, H3K9 (left) & K20 me3 (right) are found to be significantly enriched inside of the loops compared with the signals found in other control interactions. Therefore, we conclude the histone modification patterns and chromatin domains uncovered here are unique to the CTCF-associated interactions.
Supplementary Figure 5. Reduction of H3K4m1 signal intensities within the loops after CTCF knock-down.
(a) Reduction of CTCF led to decrease in signal intensities of H3K4me1 within active domain defined by CTCF-associated DNA loop. The accumulated normalized intensity of H3K4me1 is plotted along the CTCF demarcated chromatin loops and their neighboring regions. The blue line represents the signals from the CTCF kd cells and the red line represents the signals from the control siRNA transfected cells.

b) Examples of the active domains with decreased H3K4me1 level in the CTCF kd cells. Top panel: DNA looping detected by CTCF, H3K4me1 signals represented by ChIP-seq tag count distribution are plotted in the middle (control cells) and in the bottom (CTCF kd cells) panels. The scale was normalized based on the sequencing depth.
Supplementary Figure 6. Histone modification and RNAP II profiles in each chromatin domain and neighboring regions.

Cumulative histone modification signals and RNAP II intensities within (center) and outside (to the upstream and downstream) of the CTCF demarcated loops (see model on the top) for each category. The X-axis shows the relative location of loops and the Y-axis shows the normalized cumulative intensities.
Supplementary Figure 7. Examples of loops from category I-IV.

Examples of loops found in category I-IV at genomic coordinates chr14:53,899,359-54,135,506, chr19:43,484,753-43,776,079, chr6:83,807,453-83,917,825 and chr7:99,844,767-99,896,702, respectively. The categories are labeled on the top left corner. The order of the tracks shown from the top is: genes, CTCF binding peaks, observed interactions and active histone marks (H3K4m1, m3, H3K36m3), RNAP II profiles and repressive histone marks (H3K27m3 and H3K9m3).
Supplementary Figure 8. p300 association with cell specific open chromatin marks and enhancer signals.
(a) ChIP-qPCR validation of p300 binding sites. The level of enrichment is shown. 21 p300 sites and 25 negative control regions were chosen (Supplementary Table 7b).

(b) ChIP-qPCR validation of Lamin associated domains (LADs). LADs were selected based on fold change. 16 of 17 LADs were successfully validated. Nine sites outside LAD were used as negative controls (Supplementary Table 7c).

(c) Genomic distribution of p300 binding relative to gene locations. The genome was divided into 4 distinct regions: proximal promoter (± 2.5 kb from well-annotated transcription start sites/TSS), distal promoter (a region lies between 2.5 kb – 20 kb upstream from TSS), gene body or intragenic region (2.5 kb downstream from TSS – 2.5 kb downstream from transcription stop sites) and intergenic region (>20 kb distal from TSS or transcription stop site). ~60% of the p300 sites are associated with gene regions, but largely (>80%) located distal from the proximal promoters. Only 16% of p300 binding sites occur in proximal promoter regions.

(d) FAIRE, an open chromatin indicator, signal intensities from ES cells are plotted ± 1Kb of ES specific p300 binding peaks. ES specific p300 sites were associated with cell specific FAIRE signals. p300 associated genomic regions exhibited cell specific open chromatin states as indicated by FAIRE signal.

(e) Venn diagrams of the overlaps between p300, H3K4me1 and me2 sites in ES cells. Majority of the p300 binding sites overlap with a subset of enhancer marks H3K4me1 and me2 marks. 70% (3,526/5,033) of ESC-p300 sites overlap with only 9% and 12% of the H3K4me1 sites found in ES cells. Similarly, only 8% of the H3K4me2 sites found overlap with 62% (3,127/5,033) of the p300 sites. Therefore, it appears that the repertoire of whole genome p300 sites only represents a subset of enhancers defined by H3K4 methylations. When dissecting which state(s) of H3K4 methylation best correlate with p300 occupancy, we found that the majority of the p300 sites overlap with cell specific H3K4me1&me2 co-modified regions. Out of 5,033 p300 sites, 3,837 (76%) overlap with either me1 or me2 and 2,816 (56%) overlap with regions modified by both H3K4me1&me2.

(f) The enrichment of p300 binding sites in active and enhancer loops

The # of p300 binding sites found per Mb among different categories of CTCF tethered intrachromosomal interaction loops. The genomic length of each different category of loop is normalized.
Supplementary Figure 9. DNA loop brings promoter and p300 enhancer into close proximity and affects expression of the corresponding genes. (a) Tmem170 (chr8:114,748,089-114,793,183) and (b) Crtac1 (chr19:42,298,499-42,553,831). Top panel: the associated genes and CTCF-associated DNA loops. Middle panel: RNAP II
Handoko L*, Han X*, Li G* et. al., Chromatin interactome in ES cells

binding was detected at the promoter and the p300 site in the normal cells. Reduced CTCF levels decreased the binding intensities of RNAP II at the p300 sites and the relative gene expression (right top panel). Bottom panel: the box shows a detailed view of RNAP II binding at p300 in the normal control and CTCF kd cells.
Supplementary Figure 10. Characterization of Lamin B-binding regions.

(a) An example of LADs within Chr1:132,356,654-164,713,307. DNA loops formed by CTCF (represented by CTCF loop track) are mostly found outside or between LADs (light blue track). As a comparison, LADs detected by the Dam ID technology are shown. Histone profiles were also shown. Overall, the genomic features of LADs determined here in ES cells using sequencing exhibit good agreements with the earlier analysis in human fibroblast cells and mouse ES cells.
using DamID technology; indicating that ChIP-Seq can result in equivalent resolution and should be feasible to apply for genome wide Lamin study in other cells.

(b) CTCF signals distribution across the LAD borders. Strong enrichment of CTCF signal is found at the borders of LADs.

(c) A Circos map of inter-chromosomal interactions among subcluster of chromosomes 8-15-16 and 18. The purple lines indicate the inter-chromosomal interactions and the color intensity is proportion to the cluster size. The orange bars depict the LADs and the green peaks show the p300 binding sites.

(d) Profiles of active histone modification marks, H3K4me1, H3K4m2, and H3K36me3 across LADs and neighboring regions. LADs are depleted of active histone marks. In particular, active chromatin signals, H3K4me1&2 marks, are mildly enriched in the LAD borders and then devoid within LADs; while the active transcription H3K36me3 mark is depleted sharply in the boundaries and the depletion is further extended inside the LADs. We did not observe any significant enrichment of the heterochromatin marks such as H4K20me3 and H3K9me3.
(e) LADs are enriched with repeats. 48.5% of LADs contain repeat sequences. Among the 53 known repeat families, the L1 repeats are significantly enriched within LADs (Z-score 24, 30% of LADs). The L1 repeat family is one of the largest and most common repeats in the genome. As a comparison, the repeat distribution in overall genome is shown. Repeat sequences enriched in LADs could also be involved in regulating the dynamics of transcription factor binding or gene regulation.
Supplementary Figure 11. Model of CTCF directed chromatin domains (category I-V), their associated gene activities and sub-nuclear chromatin localizations.
Handoko L*, Han X*, Li G* et al., Chromatin interactome in ES cells

Supplementary Tables

Supplementary Table 1

Supplementary Table 1	Biological replicate 1	Biological replicate 2	Combined Mega library
	Technical replicate 1	Technical replicate 2	
	BR1/BR2	TR2	TR2
Chimeric (A-B)	14,749,779	23,203,374	19,071,841
Non-chimeric (A-A, B-B)	69,001,929	64,727,733	46,141,215
	3,715,267	10,179,880	5,828,688
	19.7%	32.50%	30.62%
# PETs			
# of unique PET			
sequences			
% chimerism			
No alignment	207,846	386,944	1,381,506
>10 mapping location	1,514,792	5,683,773	6,366,360
10 mapping location	199,120	8,634,624	5,102,014
Uniquely mapped PETs	1,434,300	6,192,480	3,560,601
rescued from multiple	168,365	881,346	455,110
mapped PETs			1,167,091
Total # PETs w/usable	1,602,745	7,073,826	4,014,711
mapping locations			8,440,438
H-T* paired	168,779	3,665,541	1,313,641
H-T* non-paired	1,495,966	3,488,285	2,728,070
Define chromatin			
interactions			
Intra-chromosomal PETs	249,123	304,655	197,355
(clusters FDR < 5%)	1,246	1,271	562
w/ binding site support	942 (70%)	961 (75%)	340 (56%)
Inter-chromosomal PETs	3,159,162	3,999,538	2,826,927
(clusters FDR < 5%)	1,137	1,307	802
w/ binding site support	255 (22%)	255 (19%)	183 (23%)

Uniquely mapped PETs: PETs that have unique mapping location when allowed either 0 mismatch or 1 mismatch
H-T*: Head and tail tag mapping locations were paired if they are within 10Kb in distance

32
Supplementary Table 4

a 4C Validation

Protocadherin gene locus

cluster ID	chrom	start	end	strand	sequence ID	length	match	mismatch
anchor site	chr16	37890074	37899240	+	GME006_bulk_454S_GS001R003224SR_GFYV3A01DE17X09	77	77	0
1	chr16	37890033	37890111	+	GME006_bulk_454S_GS001R003224SR_GFYV3A01CA1D0V	130	124	2
2	chr16	37820604	37820952	-	GME006_bulk_454S_GS001R003224SR_GFYV3A01E87L	31	30	0
2	chr16	37820712	37820736	+	GME006_bulk_454S_GS001R003224SR_GFYV3A01A87H	27	26	1
2	chr16	37820673	37820720	+	GME006_bulk_454S_GS001R003224SR_GFYV3A01E7C7E	111	111	0
2	chr16	37852500	37852574	+	GME006_bulk_454S_GS001R003224SR_GFYV3A01EQ10L	92	67	3
3	chr16	37873405	37873429	-	GME006_bulk_454S_GS001R003224SR_GFYV3A01CK18WQ	28	23	1
3	chr16	37873416	37873440	-	GME006_bulk_454S_GS001R003224SR_GFYV3A01D38TZ	33	22	0

Cyp2 gene locus

cluster ID	chrom	start	end	strand	sequence ID	length	match	mismatch
anchor site	chr7	25625700	25626961	+	GME006_454S_GS001R003232SR_GFHLHLRO134HTQ	63	47	1
1	chr17	25697076	25697126	+	GME006_454S_GS001R003232SR_GFHLHLRO11G1QQC	53	47	1
1	chr17	25697145	25697184	-	GME006_454S_GS001R003232SR_GFHLHLRO12H94T4	51	48	2
1	chr17	25697102	25697160	-	GME006_454S_GS001R003232SR_GFHLHLRO12HERY2	64	56	1
1	chr17	25697108	25697151	+	GME006_454S_GS001R003232SR_GFHLHLRO11G1Q4H	48	41	1
1	chr17	25697141	25697184	-	GME006_454S_GS001R003232SR_GFHLHLRO11H9B74	43	30	0
1	chr17	25697117	25697256	-	GME006_454S_GS001R003232SR_GFHLHLRO10GF2VS	109	126	4
1	chr17	25697120	25697154	-	GME006_454S_GS001R003232SR_GFHLHLRO10F80X0	34	34	0
1	chr17	25697133	25697164	-	GME006_454S_GS001R003232SR_GFHLHLRO12HCLV	34	30	1
2	chr17	26381452	26381504	+	GME006_454S_GS001R003232SR_GFHLHLRO11G5DN2	161	143	9
2	chr17	26381461	26381620	+	GME006_454S_GS001R003232SR_GFHLHLRO12H9G99	43	35	0
2	chr17	26381509	26381601	+	GME006_454S_GS001R003232SR_GFHLHLRO12H7O5	46	46	0
2	chr17	26381562	26381567	+	GME006_454S_GS001R003232SR_GFHLHLRO12H6O50	36	33	1
2	chr17	26381582	26381587	+	GME006_454S_GS001R003232SR_GFHLHLRO12H7C5R	27	25	0
2	chr17	26381587	26381631	+	GME006_454S_GS001R003232SR_GFHLHLRO12H7I18	35	34	0
3	chr17	26447705	26447736	-	GME006_454S_GS001R003232SR_GFHLHLRO11GZN5Y	35	30	0
3	chr17	26447714	26447743	-	GME006_454S_GS001R003232SR_GFHLHLRO12H7F9F	35	35	0
4	chr17	26575805	26575900	-	GME006_454S_GS001R003232SR_GFHLHLRO12H2V94	43	35	0
4	chr17	26575876	26575905	-	GME006_454S_GS001R003232SR_GFHLHLRO11GZCO3	29	27	0
4	chr17	26575918	26575944	-	GME006_454S_GS001R003232SR_GFHLHLRO12HUXUZ	37	26	0

the red color: the sites identified by ChiA-PET
b

FISH validation on CTCF knock down ES cells

Interaction	CTCF siRNA	control siRNA	p-value	CTCF siRNA	control siRNA	p-value		
	experimental mix % colocalization	control mix % colocalization	fold change	experimental mix % colocalization	control mix % colocalization	fold change		
chr13-chr15	5.69%	4.62%	1.23	2.37E-01	7.51%	4.18%	1.87	5.15E-08
chr10-chr17	4.63%	4.46%	1.04	8.49E-01	9.01%	9.27%	1.63	1.47E-03
chr3-chr14	3.62%	3.15%	1.15	5.79E-01	5.79%	4.49%	1.81	3.05E-03
chr14-chr19	4.93%	4.99%	0.99	1.00E+00	4.77%	2.93%	1.63	3.20E-02

C

3C validation

chr11:102,806,377-103,010,000, cut by EcoRI

Interaction	relative interaction frequency	st error
A-1(chr11:102918177-102921854)	1.56	0.55
chr12(chr11:102918177-102914053)	0.62	0.09
A-3(chr11:102918177-102950583)	0.42	0.17
A-4(chr11:102918177-102971753)	0.22	0.09
A-5(chr11:102918177-102972701)	0.63	0.23
A-6(chr11:102918177-103005836)	0.19	0.04

chr10:79,564,519-79,700,518, cut by Hind III

Interaction	normal mESC	control siRNA	CTCF siRNA			
	relative interaction frequency	st error	relative interaction frequency	st error	relative interaction frequency	st error
A-1(chr10:79572904-79581195)	6.2E-04	2.0E-04	4.0E-04	2.35E-04	2.5E-04	5.4E-05
A-2(chr10:79581195-79615146)	1.4E-04	3.3E-05	1.56E-04	5.91E-05	4.67E-05	1.11E-05
A-3(chr10:79581195-79628450)	3.6E-05	8.6E-06	1.66E-05	6.46E-06	8.87E-06	2.49E-06
A-4(chr10:79581195-79630483)	1.66E-04	3.3E-05	8.22E-05	5.23E-05	3.03E-05	0.34E-06
A-5(chr10:79581195-79653030)	2.20E-04	6.0E-05	2.50E-04	1.08E-04	7.30E-05	2.64E-05
A-6(chr10:79581195-79675471)	6.35E-05	1.4E-05	1.90E-05	5.18E-06	1.03E-05	2.30E-06
A-7(chr10:79581195-79696000)	6.47E-05	1.35E-05	8.03E-05	8.14E-05	2.84E-05	1.42E-05

A is the anchor region
A-5 is the interaction region found by ChIA-PET
Handoko L*, Han X*, Li G* et. al., Chromatin interactome in ES cells

Supplementary Table 7

a

CTCF binding sites validation by ChIP-qPCR

Primer ID	peak location	peak intensity	intensity in control	local FDR	qPCR enrichment	SD
chr1:12700060-1270180	392.06	3.39	0.000042	154.35	1.51	
chr2:9810970-9816030	237.57	2.19	0.000042	123.67	3.64	
chr2:12061830-12061924	160.25	0.90	0.000042	121.14	4.75	
chr1:113001370-113061800	105.84	0.00	0.000042	153.81	0.75	
chr1:123852020-12506480	127.94	2.00	0.000042	67.90	8.30	
chr1:59024300-59024810	113.25	4.33	0.000115	121.66	8.34	
chr1:100069650-100070270	106.54	2.09	0.000046	62.68	0.31	
chr10:53476060-53477060	91.03	2.90	0.000075	50.68	4.06	
chr11:94381240-94381660	87.67	3.51	0.000266	32.85	3.22	
chr13:59702220-59720060	76.25	3.76	0.000704	24.70	0.24	
chr11:115758050-115758470	70.40	0.87	0.000044	31.28	2.30	
chr16:78174770-78175260	67.25	1.33	0.000064	46.45	3.67	
chr16:85789450-85790607	57.26	2.26	0.000321	65.79	11.34	
chr17:78149960-78150420	54.25	2.73	0.000993	21.98	2.04	
chr12:67326260-6722030	47.71	4.70	0.013118	31.24	0.62	
chr11:100073330-100073750	41.77	4.49	0.020969	37.04	4.71	
chr10:27765450-27766890	38.94	2.03	0.002294	31.25	1.99	
chr19:120784026-1207844150	38.02	1.82	0.001576	17.64	0.69	
chr11:34375170-34375620	31.13	2.84	0.014119	26.37	1.67	
chr12:421240-4212450	27.76	0.85	0.002293	9.42	0.14	
chr19:1974170-16742120	10.39	0.81	0.022148	26.84	0.42	
chr13:23690760-23691420	negative control	negative control	7.21	0.21		
chr15:87378500-87378920	negative control	negative control	4.95	0.36		
chr10:35344060-35344550	negative control	negative control	3.27	0.38		
chr16:87353560-87354050	negative control	negative control	1.19	0.28		
chr16:82591720-82592190	negative control	negative control	1.03	0.01		
chr19:49892020-49896700	negative control	negative control	1.04	0.11		
chr16:64900850-64901150	negative control	negative control	1.10	0.20		
chr11:77302970-77303450	negative control	negative control	0.97	0.12		
chr18:63680870-63681150	negative control	negative control	1.22	0.07		
chr12:93181330-93181630	negative control	negative control	1.99	0.47		
chr11:107550150-107550600	negative control	negative control	3.15	0.03		
chr11:119690100-119690580	negative control	negative control	1.23	0.11		
chr11:119870930-119871420	negative control	negative control	1.45	0.21		
chr16:71506030-71561100	negative control	negative control	1.13	0.27		
chr13:15303810-15304300	negative control	negative control	1.23	0.14		
chr16:9102790-91063260	negative control	negative control	0.89	0.19		
chr13:60081020-60081550	negative control	negative control	0.73	0.05		
chr10:89024600-89025120	negative control	negative control	1.39	0.18		
chr16:89962250-89962760	negative control	negative control	1.21	0.32		
chr11:74948370-74948860	negative control	negative control	1.45	0.16		
Handoko L*, Han X*, Li G* et al., Chromatin interactome in ES cells

b

p300 ChIP-Seq validation by ChIP-qPCR

Primer ID	peak location	peak intensity	intensity in control	local FDR	qPCR enrichment	SD
chr4:48419470-48820010	143.696322	2.32696933	0.002178	63.36237233	2.483823	
chr7:2609180-2695050	16.430279	0.98641431	0.00701645	2.680450153	2.496365	
chr7:132953210-132953750	84.486506	0.52191229	0.002178	50.92875618	2.624846	
chr8:30187670-30188820	73.262048	2.2749	0.002172	25.5690169	1.252312	
chr5:135221280-135221850	17.84606	3.183267	0.00245552	1.65963514	0.081311	
chr5:103964860-103965290	76.011952	0.696414	0.002178	33.018616	0.089093	
chrd:57784800-57785270	165.310757	2.940239	0.002178	31.906549	3.588678	
chrd:82288110-82292490	598.713147	57.410359	0.0044327	13.7369722	2.278647	
chrd:68652010-68653530	85.330677	2.876494	0.002172	11.2574286	0.00188	
chrd:30951060-30951690	54.330677	1.087649	0.002178	30.1073583	0.436911	
chrd:262743500-262743800	72.625498	2.61753	0.0022244	14.7784687	0.586935	
chrd:183026410-3026590	72.282869	1.406375	0.002178	53.9001328	4.222565	
chrd:174060540-45065880	70.76494	4.119522	0.0025288	20.8515962	7.782903	
chrd:1695875920-95876450	62.095618	5.808797	0.0044124	13.5566822	0.664156	
chrd:169695650-96956890	90.25498	1.450199	0.002178	16.22985772	0.636204	
chrd:127897030-47391280	187.25996	4.769824	0.002178	84.4809672	3.311678	
chrd:1274904660-7405270	64.298058	2.697211	0.0022208	13.9298085	0.4773913	
chrd:118469290-38498120	80.7251	1.796813	0.002178	12.8813950	1.009132	
chrd:116276330-182761800	182.406375	4	0.002178	34.5084645	5.672415	
chrd:116272300-182725880	132.557766	4.869414	0.0022168	32.5864957	5.241262	
chrd:115577600-155678400	47.796813	4.10952	0.0066122	18.4454005	4.5254959	
chrd:31974080-31974600	negative control					
chrd:1197634550-97635860	negative control					
chrd:517562430-51653020	negative control					
chrd:541893490-108938180	negative control					
chrd:541251126-125211240	negative control					
chrd:115616103-161449383	negative control					
chrd:119641345-334136436	negative control					
chrd:7947321656-72322183	negative control					
chrd:109364940-36490323	negative control					
chrd:1278460920-74660510	negative control					
chrd:2181720540-181725580	negative control					
chrd:107705365-70572795	negative control					
chrd:688521887-85822126	negative control					
chrd:92798086-92798367	negative control					
chrd:1085272870-82573203	negative control					
chrd:1632975890-32976320	negative control					
chrd:1641300264-13012724	negative control					
chrd:1053641403-46414688	negative control					
chrd:1731100130-71105570	negative control					
chrd:65573003-55374217	negative control					
chrd:47495360-474953840	negative control					
chrd:156273620-92733220	negative control					
chrd:1248152-134481526	negative control					
chrd:1813500820-350097010	negative control					
chrd:1332621080-132621540	negative control					
c

Lamin B ChIP-Seq validation by ChIP-qPCR

Primer ID	Lamin region	local FDR	qPCR enrichment	SD
ESC-LAD-Primer1	chr6:133157900-133686560	0.10101	13.11	1.03
ESC-LAD-Primer2	chrX:165031880-165334980	0	0.91	0.15
ESC-LAD-Primer3	chr14:105364250-106320960	0	10.14	0.70
ESC-LAD-Primer4	chr2:140119310-140300050	0	11.20	2.03
ESC-LAD-Primer5	chr17:93808780-93932800	0	10.77	2.15
ESC-LAD-Primer6	chr14:109788790-110546270	0	8.20	0.52
ESC-LAD-Primer7	chr16:72167190-72472270	0	12.49	4.49
ESC-LAD-Primer8	chr8:52896820-53033740	0.01005	7.91	0.85
ESC-LAD-Primer9	chr12:101749700-102015280	0.199005	11.35	0.28
ESC-LAD-Primer10	chr11:111036970-111345490	0.017699	3.55	1.47
ESC-LAD-Primer11	chr13:86146570-86383580	0	9.11	1.34
ESC-LAD-Primer12	chr2:116978130-117508070	0	17.72	1.47
ESC-LAD-Primer13	chr5:67507050-87671780	0	8.30	2.09
ESC-LAD-Primer14	chr1:124499710-124748270	0	9.62	0.33
ESC-LAD-Primer15	chr9:76357860-76654150	0.01005	8.60	0.93
ESC-LAD-Primer16	chr7:88619710-88708280	0.01005	8.67	1.53
ESC-LAD-Primer17	chr4:89295750-89596550	0.017699	7.29	2.82
Lamin-negative region1	chr19:47382500-47387500	0.780477	0.60	0.27
Lamin-negative region2	chr19:53045000-53050000	0.780477	0.57	0.03
Lamin-negative region3	chr19:61277500-61282500	0.780477	0.95	0.25
Lamin-negative region4	chr19:43780000-43785000	0.780477	0.67	0.06
Lamin-negative region5	chr19:50800000-50850000	0.780477	0.69	0.09
Lamin-negative region6	chr16:17440000-17445000	0.780477	0.72	0.17
Lamin-negative region7	chr15:76972500-76977500	0.780477	0.77	0.02
Lamin-negative region8	chr14:121390000-121395000	0.780477	1.04	0.25
Lamin-negative region9	chr10:76642500-76647500	0.780477	1.03	0.23
Supplementary Table 10

Sequences of ChIA-PET linkers, CTCF siRNA, Primers for ChIP-Seq, 4C and 3C validations, BAC clones

ChIA-PET linker and siRNA sequences

Name	Sequence	
ChIA-PET linkers		
AA Linker	GTTGGATCGGATACCGCGG CGCGATACGGGATCCAAAC	
BB Linker	GTTGGATCGGATACCGCGG CGCGATACGGGATCCAAAC	
AB Linker	GTTGGATCGGATACCGCGG CGCGATACGGGATCCAAAC	
CTCF siRNA	CUGUGUUAUAGAGACG	GUGUACAUAAAGUCGCUCA
(SMART Pool,		
Dhharmacon)	GCUAUAAACAUACUGAAGCC	CCAACAUACUGAAGACGA

BAC clones for FISH validation

Site 1	BAC	Site 2	BAC
chr1:175171487-175178287	RP23-370C6	chr9:40161665-40168708	RP23-114G13
chr10:4790220-4793536	RP24-459C3	chr10:24137721-24144513	RP24-162G18
chr13:13656736-136626929	RP24-423F5	chr15:74601084-74916772	RP24-456G86
chr14:25135306-25138072	RP24-92A2	chr19:5568002-5570147	RP23-389K5
chr16:13096489-13096078	RP23-314Q21	chr19:61316108-61321184	RP24-318N5
chr18:13096489-13096078	RP23-314Q21	chr19:106941688-106943794	RP23-109G14
chr3:122629570-122631866	RP23-1A12	chr13:100038281-100038753	RP23-467G99
chr3:153608586-153614193	RP24-186A10	chr9:198783230-198787800	RP24-233B16
chr3:58532869-58542425	RP23-413C3	chr14:44693459-44696310	RP24-289I17
chr4:133811217-133818925	RP24-132E8	chr8:81951426-81922213	RP23-134A7
chr5:147421759-147425653	RP23-129N7	chr17:25220457-25226803	RP23-42123
chr6:43734276-43736441	RP23-181A6	chr17:29526735-29526841	RP23-447G21
chr12:87868837-87883388	RP23-205D14	chr17:28985753-28988018	RP24-479I12
chrX:161037281-161038515	RP23-239H22	chr11:17430005-17450052	RP23-299L18
chr16:52100,518-52,400,16B(control)	RP24-540H15		

BAC clones for 3C validation

3C	BAC clone	Location
control BAC (Eroe3 locus)	RP23-148C24	chr18:32,375,680-32,420,011
EcoRI3C_Chr11	RP23-358E19	chr11:102,804,615-103,037,611
HindIII 3C_Chr10	RP24-488O12	chr10:79515657-79702617
Handoko L*, Han X*, Li G* et al., Chromatin interactome in ES cells

Locus	Primer (5’-3’)	Left primer (5’-3’)
Cyp2	Inverse: CCAAGCTGAAATCCAGCTCCACG	GTAATTCGACTAAAGCACTTTATGGA
	Nested: CACACTTATCTTGACCAGTCAAGA	GAAATCAGCTCTTCTTTGAGCCGAGCAGAGCAGA
Podgamma12	Inverse: CTTTCATCCGCCTAATAACA	CAATACAGAGAGAGAGCAGAGAGAGAGAGAGA
	Nested: CACACTTATCTTGACCAGTCAAGA	GAAATCAGCTCTTCTTTGAGCCGAGCAGAGA

The underlined sequences are the GSFLX 454 adapter.

Primer for 4C validation

Interaction	Interaction site (5’-3’)	Anchor site (5’-3’)	Note
A-1	TGGTTAGGACACACACTATGG	TGCACCTGGAGACAGAACG	chr10, Hind III, control primers
A-2	GCCACAGCTAGGAGACACTGAG	TGCACCTGGAGACAGAACG	chr10, Hind III, control primers
A-3	AGATCACGTGGCTAGACACAGAC	TGCACCTGGAGACAGAACG	chr10, Hind III, control primers
A-4	CACATGCGATAGTCAGTGAAA	TGCACCTGGAGACAGAACG	chr10, Hind III, control primers
A-5	AGACGCTCTAGCAGACACTGTC	CTGAGACCTGGAGACAGAAC	chr10, Hind III, the interacting fragment*
A-6	ATCGAGCAGATTTCCTTCTTGG	TCTTGGCTTGACAGCTTGTCT	chr10, Hind III, control primers
A-7	AAGACGAAGAATCTTGGGCTTCT	CTTTGGCTCTGCTGATG	chr10, Hind III, control primers
Ercc3 control interaction1	TCTGCTCTGCTGCTTGTAGTT	MGGCCCTACTCCAGACGAGT	chr10, Hind III, Ercc3 fragments from Ercc3
Ercc3 control interaction2	AGATGACCTCTGCTGTAGT	CCAAGGTGTACTGTAAGAGAGCAGA	chr18, Hind III, Ercc3 fragments from Ercc3
Loading control	TCTGCGCTCTACCTCCTGCT	CTTTGGCTCTGCTGATG	chr18, Ercc3 gene locus, HindIII
A-1	AGACGACAGGAGAGAGACAGCTA	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, control primers
A-2	ACCAGCGTCTGCTATACCC	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, control primers
A-3	AACACATACCTGAGAAGGCTTTT	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, control primers
A-4	GTTATGCTTGTGATTAGCTGA	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, control primers
A-5	CCTGTTAGACAGCTTCTGGG	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, the interacting fragment*
A-6	TCACTTGCCTGCTCGACTCAT	CCGAGGATTAAATAGTGGAGC	chr11, Ercc3, control primers
Ercc3 control interaction1	CTCTTGCACCTGCTTGGTGGAGC	GTAGTCACTCCGTGGTGGTGGAGC	chr18, Ercc3, Ercc3 fragments from Ercc3
Ercc3 control interaction2	TCAAGGAGAGAGAGTGGATTTGA	TCTTGGCTCTGCTGATGCT	chr18, Ercc3, Ercc3 fragments from Ercc3

* the interacting fragment (A-5) is the interaction detected by ChIA-PET

Primer for gene expression analysis

Locus	Forward sequences (5’-3’)	Reverse sequences (5’-3’)
GAPDH	tggcctgctctggaggagactgac	ccttctggcctgccctgctcttg
beta-Actn	ggtgagctgcagcagctgctcggc	ccacagacagcgacagcgacaggg
Tmex170	ttgctgccctgcctctgctctg	ccttctggcctgccctgctcttg
Cntct	ctgcggctggagagctctctctct	gcacagctgcagcagctgctcttcctggta
Dks8	agcgcgctggagagctctctctct	gcacagctgcagcagctgctcttcctggta
Lsm2	tggcctgctctggaggagactgac	ccttctggcctgccctgctcttg
RAB27A	ctgcggctggagagctctctctct	gcacagctgcagcagctgctcttcctggta
Primers for CTCF binding sites validation

Primer ID	peak location	forward sequence	reverse sequence	
1	chr13:12760080-12761880	agacagaagcaacgctgtf	aggagccccctgtacccag	
2	chr12:88168970-88169390	gcggccctgagctgtgctg	ccacagtctgccccgtgctg	
3	chr12:20618030-20619240	aaccatgacccctagagcagctgtg	acctccgaggaacaccttcgctg	
4	chr11:115801370-115801800	cttacatctccacccacacc	ctacatagggcaggtgctlctt	
5	chr12:42005020-42005440	gcgcccaagactagtctctacttc	ttccttgagacagcagccag	
6	chr15:36324390-36324610	aggcaccagggaggtgcgggc	gcccttcctgtctcccttca	
7	chr15:100060850-100070270	tccacacctctctctccctca	agcttttaagccagtttgctgta	
8	chr19:53476400-53477060	gcaccagctgagccgttgcag	tgcagggacaggttctgctct	
9	chr11:94301240-94301660	ctgctccacccacagccactc	gcgtcttcacagctgcttga	
10	chr13:59202020-59202060	lgtggtcgctcctgggtctcag	cccgtaagagctgtccacctc	
11	chr11:115780500-115784720	gtgtccgctctgggtgctg	ctgccacagttgctgctgtg	
12	chr16:176174770-176175200	gtcctcagccagtctggaaggg	cccctctctaggggtgcctg	
13	chr16:85788450-85788870	gcagcttgctggagctgtcag	cagctctggtgagccgctgta	
14	chr10:78149980-78150420	ggcctcgctgctggtttgt	agtcgttcagctgcgtgcctg	
15	chr16:67202000-6720300	lgtactgtgtgccccagtgtg	ggtgcagccaggtcaggtgcag	
16	chr11:100073330-100073750	cctggtgcctctactctactac	gctagagactggaaccacctta	
17	chr10:27765450-27765890	cagcgctgtggaagactccacca	accggaagagctgaaccccgtg	
18	chr10:120790420-120794450	gttgcctggcgggtttgga	fttgccttcagctgctgta	
19	chr11:34375170-34376520	gagctgcaactggtttggt	ltcctgccctctagtgcacca	
20	chr12:4212400-4212600	ggccacactgttctgctg	gcagattctccctctcacat	
21	chr12:16741700-16742210	ctcacaggctcctctatatgt	gtcgttcagogaacctacca	
22	chr12:23690780-23691420	tccagatctccgtctctcct	gtcctccacactccacag	
23	chr15:87378500-87378960	gggcaaggggtctgaaaaa	tcccctctacagggccag	
24	chr15:35344080-35344550	cgcgtgagagaccttccttg	ggtcttggagacagacacttcctg	
25	chr11:67335360-67345050	agacagagacagactcagapaa	cagctcctccctgctcacta	
26	chr10:82591720-82592190	tagtccctgcttcctcttgt	acacagcagagactacgct	
27	chr11:49906200-49906670	agacgccctggctagccctctg	tgcgagagccagagacaggt	
28	chr12:84800050-84801390	lgtgtggctcatctctctgt	acagctgcagagacagcgct	
29	chr11:77302970-77303450	cttctgtcgacttccacttcagc	tgggtttgtgttgttctccaa	
30	chr16:63680070-63681350	gcacagctgtgagacagccatct	tatccctctaggggacctg	
31	chr12:93181330-93181630	ccagccagacagctctctct	tgtgttagctcctcagccag	
32	chr11:167550150-167550660	ggcagggactgagctcgct	tgtcgtgcctgcctgctcgft	
33	chr11:119640100-119640660	gcggggccgctgctgtgctgc	ccagccagagcctgctgtg	
34	chr11:111870630-111871420	ggtttgatttgagcagccgctg	tctgtcctttctcctctctctctc	
35	chr16:71560030-715610100	ggcagccactctcctactgcgtcatctctcagcagctgc	ctcagccagactgcagctgcagctgc	
36	chr13:15393010-15394300	caggagagagagagagctg	gggtgtgtctcctcttcactaca	
37	chr16:91027880-91028320	gcagagctggctgctgtgctgct	cagctgcagagctgtccttcctt	
38	chr16:60680120-60680150	gcggccagccctcgctgctg	ccgctgctcctccctccctct	
39	chr10:89924060-90025120	gaaacagagagagtgggaggtgta	gcagctgtctcctgcctgccctc	
40	chr16:89962250-90026760	gaaatgtgctggagccagcagc	aacatttgaacgcttcagccac	
41	chr11:74948370-74948840	gcggctcgtggtggfctagcag	gcacacagacaccctctccag	
Primers for p300 ChIP-Seq validation

Primer ID	peak location	forward sequence (5'-3')	reverse sequence (5'-3')
1	chr8:44619470-44820010	caaagagcgctggggtgaag	ggcctatgtcctgctcaaa
2	chr7:29974180-29976050	cagggccagctgctacgttc	gcttgcagaaagtctgcaggt
3	chr7:132953210-132953750	cagctgccattcaagccaaatgg	tttgtgagagagggagataa
4	chr5:90317280-90318130	cagggagagagacaccccaaaaggggcctctgattccctcaaa	
5	chr5:135221820-135221850	caggagtcgctgtcagagag	cgggtacagagatgtgctagag
6	chr10:39694680-103965290	aagggggtgtctctgctgag	ccggaaagcagcgcacaacc
7	chr4:57784000-57785270	gctggtggctctgtcgctgtg	ggcacatagagctccaccaaa
8	chr3:9228810-9229240	ccagagggctcctagatctgcc	cagggccacacgtcttctccttc
9	chr3:6652910-66853530	cccacttcgctgtctgcgc	ggctcgatgcagaatgtcctcctc
10	chr3:30915900-30915960	tgtattggtgttgagagtaacaa	ccgttccacgagaggtgggtaa
11	chr2:162743500-162743880	gctggtggctctgtcgctgtg	ccccaagtgtcacaagggaagtg
12	chr10:30264610-30265090	gttggagagagagcgagag	aavcctctgctggtgggtgaag
13	chr17:4505410-45055880	cgccgctccctgctgcc	gttgggaattcgccagcactc
14	chr16:56875920-56876450	ttcctgctctgtcctgctgct	ggtggacagctgacgctggag
15	chr13:66995560-66995980	agctgccctccttcacac	ctttgccagcggagcttcctct
16	chr12:87390730-87391280	ctcgagccttccttccttc	gtggctgtcagacgagctggag
17	chr12:74004680-74005270	gcacagacagatatacgtccg	cagacagctctgcgtcagtccg
18	chr11:8469290-8469810	ggaacccagcctgcctcctcaaa	cctcgagatgctccaaccaaa
19	chr18:7261330-182761800	cccaggggtgttgctcccag	tcttaagctcttggtggag
20	chr18:62752300-182752880	gcacacgctccctgtaaaag	tgtggccagcgcggccaaag
21	chr15:45777900-154678420	cctgcgtctctctctctctct	gaaagcctgagatgtgctcc
22	chr5:19780300-19784600	ggaagagacccctgacccctcc	ttgagctgtgcggcggtgtg
23	chr11:50734550-50735600	cgcctgccctgctgttcatag	ggcacacacacgcccagccc
24	chr15:15163230-151635020	cgtggctgaagggggagagt	cttgcaaccaaggagcagtg
25	chr8:10893790-10893810	gcctgccgtccgtcaggtgga	aaaggggccccagctgtgtaa
26	chr7:12511126-12512140	cccggtctgtcagacgagggt	cgacctggtgtggttaaatgg
27	chr11:16491843-16491836	ccctgctgccatataccttcg	gccggagtgtctgtgcttctg
28	chr11:161345.234-84146382	agccacacagacgggcttcacaa	aggcgagagcagctgccaa
29	chr9:79731,656-97,322,185	tctccggcaggccacattcc	caaggagtgggtttggtgct
30	chr10:36,940,400-36,940,632	aagctgctgtctgctctgtt	gttggagacgcgccaggccg
31	chr12:78405020-78465510	cagctgccctgctgttcatag	ggcctagcgcagcgcaagcgc
32	chr2:18152080-181522580	atctcaagtggctgcctgga	agattcgtctgtggtacagtg
33	chr10:7,295,365-7,295,795	cccggtctgtcagagcagcag	tgtccagagagctgagccacaa
34	chr19:85,812,887-85,822,216	ccctgagctgcctgcagccattc	gttgcagcaggtgctctcctc
35	chr9:12979068-12979367	cggaggtgtctgcgctgtcctg	neccgtcgtcagatgttggc
36	chr10:852,572,876-852,573,203	cggaggtgtctgcgctgtcctg	neccgtcgtcagatgttggc
37	chr10:32975971-32976320	acgtgtggtctgcgctgtgctt	neccgtcgtcagatgttggc
38	chr16:54,143,025-130,724	caaggggtgctgcctgcagcc	cagacggagacggtgtgcctc
39	chr10:6,64,143,033-6,64,146,688	ggggggcctggtgcgtgttt	gtggccagcaggtgctgcctc
40	chr13:7110510-71105570	ggcctgagcagcagctgagcctg	cagacagagcttgtgtaag
41	chr5:53,373,035-55,374,217	gggggggtgggagagagag	cggggcaaaagtcccttccttct
42	chr4:47,495,036-47,495,840	gcagctgcctgccaaatggtc	cagccctgtggcttttaa
43	chr15:62732630-62733200	aatggagagagctggtggagcctgcgctg	cagacagagct tgtgtaag
44	chr12:48,15,124,46-48,15,64,478	gcctgagctgctgcagctgag	cggggcctggtgctgcctcct
45	chr18:35080260-35080710	gctggtggctgcctgcagctg	cggggcctggtgctgcctcct
46	chr3:132621800-132621540	cggcagctgcctgcagctgcct	cggggcctggtgctgcctcct

Handoko L*, Han X*, Li G* et. al., Chromatin interactome in ES cells
Primers for Lamin B ChIP-Seq validation

Primer ID	Lamin region	Forward sequence (5’-3’)	Reverse sequence (5’-3’)
ESC-LAD-Primer1	chr6:133157900-133885600	cacacaggccagggctgactgag	ccggctgtgaatttttgtctgctg
ESC-LAD-Primer2	chrX:165031880-165334680	ccctctctctctctccctgag	acatccagagctgctgtgctgct
ESC-LAD-Primer3	chr1:105384250-105329960	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer4	chr2:140119310-140360550	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer5	chr17:90808780-939092800	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer6	chr14:109788790-110546270	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer7	chr16:72167190-72472270	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer10	chr8:52808620-53033740	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer11	chr12:101749700-102015260	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer12	chr11:110306970-111345490	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer13	chr13:86146570-86383580	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer14	chr2:110978130-111520876	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer15	chr5:85707090-86717180	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer16	chr12:124499710-124748270	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer17	chr7:76357690-76651450	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer19	chr9:88619710-88702820	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
ESC-LAD-Primer20	chr4:89265500-89598550	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative1	chr19:47382500-47387500	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative2	chr1:53045000-53050000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative3	chr1:53045000-53050000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative4	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative5	chr1:53045000-53050000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative6	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative7	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative8	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative9	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct
Lamin-negative10	chr1:43780000-43785000	ccctctctctctctcgctgctg	acatccagagctgctgtgctgct