About earlier history of two–photon physics

I. F. Ginzburg,
Sobolev Institute of Mathematics, Novosibirsk, Russia

To be published in Proc. Photon05, Acta Physica Polonica

Abstract

The earlier history of two–photon physics is reviewed.

The term two–photon processes is used now for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes the principal goal is to describe main features of proper two–photon process separating it from mechanism which responsible for the production of incident photons.

• An early interest in the two–photon physics has arisen after discovery of positron by Anderson (1932). There appeared a necessity to find out the process in which positrons are generated. In 1934 studying $e^+e^−$ pair production in collision of ultrarelativistic charged particles Landau and Lifshitz \[1\] have ascertained that the two photon channel of Fig. 1 is dominated here. They calculated the cross section of the process $Z_1Z_2 \rightarrow Z_1Z_2e^+e^−$ in the leading logarithmic approximation. Almost simultaneously Bethe and Heitler \[2\] considered $e^+e^−$ pair production by photon in the field of a nuclei. This process contain subprocess $\gamma\gamma \rightarrow e^+e^−$, like Fig. 1.

The leading log result of \[1\] was improved by Racah \[3\] who have calculated the corresponding cross section with a high accuracy \[
\sim (M/E)^2
\] where E and M are energy and mass of incident nuclei. The process $\gamma A \rightarrow e^+e^−A$ was included in the theory of wide atmospheric showers in cosmic rays \[4\] and in the description of the energy losses of fast muons in matter \[5\].

The two-photon hadron production was considered for the first time by Primakoff \[6\] suggested in 1951 to measure the π^0 life–time in the reaction $\gamma Z \rightarrow \pi^0Z$. The new interest to such processes appeared when the construction of $e^+e^−$ colliders become close to a reality. In 1960 Low \[7\] paid attention to the fact that the π^0 life–time can be measured also in in $e^+e^−$ collisions. Simultaneously the two–photon reaction $e^+e^− \rightarrow e^+e^-\pi^+\pi^−$ (for point–like pions) was considered \[8\]. However, the rates involved seemed unmeasurable at that time and no further work was done.
In 1969–1970 new generation of papers appeared with the goal to cover possible set of final states of e^+e^- colliders as complete as possible. Authors considered the two–photon production of π^0, η and point-like pion and kaon pairs [9]. Some of these processes and purely QED processes $e^+e^- \rightarrow e^+e^- \pi^+\pi^-$, $e^+e^- \rightarrow e^+e^- \mu^+\mu^-$ were considered in more detail by Paris [10] and Novosibirsk BINP [11] groups. These papers did not provoke high interest in particle physics community since they were in line with numerous calculations of various processes at e^+e^- colliders with small cross section (at the contemporary energies) and don’t pretend for obtaining of new information except new tests of QED.

To the end of 1969, results in the study of deep inelastic ep scattering were a hot point in particle physics. Besides, a preliminary information about experimental discovery of $e^+e^- \rightarrow e^+e^+e^-e^-$ process in Novosibirsk BINP [14] became known. Under influence of these two facts Novosibirsk IM group wrote the paper submitted to Russian Pis’ma ZhETF at May 4 and appeared there at June 5, 1970 [12], Fig.2 (it was translated soon). Here it was shown that the experiments at e^+e^- colliders open new experimental field of particle physics – the opportunity to extract from the data an information about fundamental process, $\gamma^*\gamma^* \rightarrow$ hadrons (or some other particles). The paper contains also estimate of high energy total cross section $\sigma(\gamma\gamma \rightarrow$ hadrons) $\sim \sigma^2(\gamma p)/\sigma(pp) \sim (0.3 \div 1) \mu b$, which is in accord with modern measurements, and the equations for extraction of two-photon cross sections from the data at small electron scattering angles in the form which is used for

Figure 2: V.E. Balakin, V.M. Budnev, I.F. Ginzburg, ”The possibility of experiment with production of hadrons by two photons from threshold to the extremely high energies”, published June 5, 1970, submitted May 4, 1970, Russian Pis’ma ZhETF
this aim up to now,

\[
\frac{d\sigma}{dE_1dE_2d\Omega_1d\Omega_2} = \left(\frac{\alpha}{2\pi^2}\right)^2 \frac{1}{q_1^2q_2^2} \frac{E^2}{(E-E_1)(E-E_2)} \sigma_\text{exp}^{\gamma\gamma},
\]

\[
\sigma_\text{exp}^{\gamma\gamma} = \sigma_T^{TT} + \varepsilon_1\sigma_T^{SS} + \varepsilon_2\sigma_T^{ST} + \varepsilon_1\varepsilon_2(\sigma_S^{SS} + \tau_T^{ST}\cos2\phi/2) + \varepsilon_3\tau_T^{ST},
\]

(1)

\[
\varepsilon_1 = \frac{2EE_1}{E^2+E_1^2}, \quad \varepsilon_2 = \frac{2EE_2}{E^2+E_2^2}, \quad \varepsilon_3 = \frac{\varepsilon_1\varepsilon_2}{32E\sqrt{E_1E_2}}\cos\phi.
\]

\(E\) and \(E_i\) are the energies of initial and scattered electrons, \(\phi\) is the angle between their scattering planes, other notations was not practically changed during 34 years.) The numerical estimates of anticipated cross sections were done and it was found that the cross section grows fast with beam energy. Besides, the sketch of experimental program was formulated. In July this paper was reported at Kiev Rochester conference (preliminary version of paper [13] was also reported there) – see abstracts of Kiev–Rochester, 1970.

Three month later after [12], S. Brodsky, T. Kinoshita, S. Terazawa have submitted in Physical Review Letters their paper [13] (Fig.3). They consider two-photon production of \(\pi^0\), \(\eta\), point-like \(\pi^+\pi^-\) in \(e^+e^-\) and \(e^-e^-\) colliding beams. They found that these cross sections grow fast with beam energy and
described some features of the angular distributions of produced pions (in pointlike QED approximation). Analogously to [12], these results had shown that two-photon physics provides a large field for theoretical studies and experimentation. They obtain results with the aid of Weizsacker–Williams method with incorrect spectra of equivalent photons (about twice larger than correct for each). Many authors of subsequent papers reproduced this inaccuracy.

In 1971 VEPP-2 (BINP, Novosibirsk [13]), and in 1972 ADONE (Frascati, Italy) [15] reported about the observation of \(e^+e^- \rightarrow e^+e^-e^+e^- \) process.

- The papers [12]–[14] open window for stream of publications devoted two-photon physics. The theoretical publications considered different problems related to details of data extraction, backgrounds, QED processes and problems of hadron physics in \(\gamma\gamma \) collisions. The first stage of these studies was summarized in review [16] containing all necessary equations for data preparation and set of equations useful for different estimates. This review contains also detail description of equivalent photon (Weizsacker–Williams) method, including estimate of its accuracy in different situations. In 1974 authors of [21] cannot imagine opportunity of longitudinal electron polarization at \(e^+e^- \) storage rings and don’t describe this case in basic equations. This lacuna in [16] was closed in [17].

Most of (theoretical) papers of 70-th devoted to hadron physics in \(\gamma\gamma \) collisions were reproductions of results and ideas considered earlier for other hadronic systems. However it was found by Witten that the structure function of photon is unique quantity in particle physics which can be found from QCD at large enough \(Q^2 \) and \(s \) completely without phenomenological parameters [18]. The verification of this result in future experiments is necessary to verify that the QCD is indeed a theory of strong interactions.

The real experimental activity in this field started, in fact, in 1979 by SLAC experiment in which it was demonstrated that two–photon processes can be successfully studied at the modern detectors without recording of the scattered electron and positrons – via the separation of events with the small total transverse momentum of produced system [19]. Beginning from this work, the investigation of two–photon processes become essential component of physical studies at each \(e^+e^- \) collider. A number of results obtained are summarized for example in Particle Data Review [20].

- Very new opportunities for two-photon physics were found in 1981. It was shown that the creation of very high energy linear \(e^\pm e^- \) colliders will allow to transform them into the \(\gamma\gamma \) and \(\gamma e \) colliders with luminosity and energy close to those for the basic \(e^\pm e^- \) colliders (the Photon Collider), with relatively small additional equipment [21].

In contrast with the photon collisions at \(e^+e^- \) colliders, having relatively small effective \(\gamma\gamma \) luminosity, Photon Colliders will be competitive with other machines in the discovery of New Physics effects. But that is quite another history.

Acknowledgments. This research has been supported by Russian grants RFBR 05-02-16211, NSh-2339.2003.2.
References

[1] L.D. Landau, E.M. Lifshitz, *Sow. Phys.* 6 (1934) 244
[2] H.A. Bethe, W. Heitler, *Proc. Roy. Soc.* A 146 (1934) 85
[3] G. Racah, *Nuovo Cim.* 14 (1937) 93.
[4] H. Baba, W.A. Heitler, *Proc. Roy. Soc.* A 159 (1937) 432; Carlson, Oppenheimer, *Phys. Rev.* 51 (1937) 220; L.D. Landau, G.B. Rumer, *Nature* 140 (1937) 682; *Proc. Roy. Soc.* A 196 (1938) 213.
[5] S.R. Kelner, *Sow. Yad. Fiz.* 5 (1967) 1092; S.R. Kelner, Yu.D. Kotov, *Sow. Yad. Fiz.* 7 (1968) 360; G. Khristsiansen et al., *Sow. Yad. Fiz.* 15 (1972) 966.
[6] H. Primakoff, *Phys. Rev.* 81 (1951) 889; A. Halperin et al. *Phys. Rev.* 152 (1966) 1295.
[7] F.E. Low, *Phys. Rev.* 120 (1960) 582.
[8] F. Calogero, C. Zemach, *Phys. Rev.* 120 (1960) 1860.
[9] P.c. De Celles, J.F. Goehl, *Phys. Rev.* 184 (1969) 1617.
[10] N. Arteaga-Romero, A. Jaccarini, P. Kessler, *Compt. Rend.* 269B (1969) 153, 1129; A. Jaccarini et al., *Lett, Nuovo Cim.* 4 (1971) 933; N. Arteaga-Romero et al. *Phys. Rev.* D3 (1971) 1569, 1927.
[11] V.N. Baier, V.S. Fadin, *Lett, Nuovo Cim.* 1 (1971) 481
[12] V.E. Balakin, V.M. Budnev, I.F. Ginzburg, *Pisma ZhETF* 11 (1970) 559 (*JETP Letters* 11 (1970) 388).
[13] S. Brodsky, T. Kinoshita, H. Terazawa, *Phys. Rev. Lett.*, 25 (1970) 972.
[14] V.E. Balakin et al. *Phys. Lett.* 34 B (1971) 320; *Yad. Fiz.* 16 (1972) 729.
[15] C. Bacci et al. *lett. Nuovo Cim.*, 3 (1972) 709; G. Barbellini et al., *Phys. Rev. Lett.*, 32 (1974) 385.
[16] V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, *Phys. Rep.* 15C (1975) 181.
[17] I.F. Ginzburg, V.G. Serbo. *Phys. Lett.* B 96 (1980) 68.
[18] E. Witten, *Nucl. Phys.* B120 (1977) 189.
[19] G. Abrams et al., *Phys. Rev. Lett.* 43 (1979) 477.
[20] Particle Data Group. *Phys. Lett.* B 592 (2004) 1-1109
[21] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo and V. I. Telnov, *Pis'ma ZhETF* **34** (1981) 514; *Nucl. Instrum. Meth.* **205** (1983) 47; I. F. Ginzburg, G. L. Kotkin, S. L. Panfil, V. G. Serbo and V. I. Telnov, *Nucl. Instrum. Meth.* **A219** (1984) 5