Survival Status and Predictors of Mortality Among Preterm Neonates in Southwest Ethiopia: A Retrospective Cohort Study

Temesgen Mohammed Toma (tememohamme@gmail.com)
Arba Minch College of Health Sciences

Hailu Merga
Jimma University

Lamessa Dube
Jimma University

Research Article

Keywords: Survival status, Neonatal mortality, Preterm neonate, Neonatal Intensive Care Unit, Predictors, Jimma Medical Center, Southwest Ethiopia

Posted Date: November 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1034261/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Prematurity is a global public health priority linked with high neonatal morbidity and mortality. There is limited evidence regarding preterm neonatal mortality and its predictors to inform programs and policies in Ethiopia. The aim of this study was therefore to assess survival status and predictors of mortality among preterm neonates admitted to the neonatal intensive care unit of Jimma University Medical Center.

Methods: Facility-based retrospective cohort study was conducted from March 11 to April 20, 2020, among 505 randomly selected preterm neonates admitted to the Neonatal Intensive Care Unit (NICU) of Jimma University Medical Center (JUMC). Data were collected from medical records and registers using a structured data collection checklist. Data were entered into Epi-Data 3.1, exported to, and analyzed with STATA version 15. Kaplan Meir method and log-rank test were used to estimate survival time, and compare survival experience. Cox-regression analysis was fitted to identify predictors of time to death. The assumption of the proportional hazard model was checked using Schoenfeld residual test. Adjusted hazard ratio (AHR) with its 95% confidence interval (CI) and corresponding p-value <0.05 was set to declare statistical significance.

Result: In this study, 127 (25.1%) neonates died with neonatal mortality rate of 28.9 deaths per 1,000 neonate-days [95%CI: 24.33, 34.46]. About 103 (81.1%) deaths occurred during early neonatal period. Antenatal steroid use [AHR=0.55, 95%CI: 0.34, 0.90], obstetric complications [AHR=1.84, 95%CI: 1.20, 2.82], gestational age increment by week [AHR= 0.81, 95%CI: 0.75, 0.87], respiratory distress syndrome [AHR=1.52, 95%CI: 1.01, 2.29], neonatal sepsis [AHR=1.71, 95%CI: 1.18, 2.49], perinatal asphyxia [AHR=2.44, 95%CI: 1.33, 4.49], and receiving kangaroo-mother care [AHR=0.48, 95%CI: 0.30, 0.77] were predictors of preterm neonatal mortality.

Conclusion: Preterm neonatal mortality rate was high. Most neonatal deaths occurred in the early neonatal period. Predictors of preterm neonatal mortality were antenatal steroid use, obstetric complications, gestational age increment by week, respiratory distress syndrome, neonatal sepsis, perinatal asphyxia, and receiving kangaroo-mother care. Hence, early detection and management of obstetric and neonatal complications, use of antenatal steroids, kangaroo-mother care, and ensuring a continuum of care should be strengthened to increase preterm neonatal survival.

Background

Preterm birth, births earlier than 37 weeks of gestational age, is a global public health priority that is linked with high neonatal morbidity and mortality, mainly in developing countries (1-4). The preterm birth rate is increasing and great inequalities exist in a quality, access to care, and survival across countries (1). The risk of dying is highest in the first four weeks of life for all babies, but preterm babies are acutely so and they need special care just to remain alive (1, 3).
Globally, the preterm birth rate is estimated at fifteen million every year, and this number is rising (1). Prematurity is the first leading cause of neonatal mortality as well as the second leading cause of death among children below the age of five years, globally. It is also the world's most common cause of multiple threats to health in the short and long term (1, 3). Nearly eighty percent of preterm birth occurred in Asia and Sub-Saharan Africa (SSA) (5).

More than 35% of all neonatal mortality globally results from preventable and treatable preterm birth complications (3, 4, 6). Nearly one million neonates die each year from preterm birth complications (7). The survival chance of preterm neonates varies significantly based on where they were born. More than 75% of preterm babies could be saved with the feasible and cost-effective practice of quality care, and further reductions are possible with intensive neonatal care (1, 4).

The consequence of being born preterm extend beyond the neonatal period. They need proper care and treatment as they face greater risks of lifetime disability as well as a deprived quality of life (1, 7). Moreover, mothers of preterm neonates experience significant psychological distress and families also endure substantial financial hardship (8-10). Prematurity is associated with higher healthcare costs, particularly within the first year after birth, suggesting that the implementation of appropriate programs and strategies to prevent premature delivery is beneficial from a medical as well as a healthcare expenses perspective (11).

Different findings identified mainly that mother and her neonate socio-demographic factors, maternal medical-related factors, and obstetric and gynecologic related factors as the predictors of mortality among preterm neonates (12-36). Ethiopia was one of the top ten countries with a high burden of preterm births globally. In Ethiopia, more than three hundred thousand neonates were born prematurely every year, and the rate of preterm birth was 12% (5, 37). The Ethiopian government showed its effort to improve the survival of neonates, mainly preterm neonates, through the inclusion of high-impact life-saving neonatal interventions (38). Despite these efforts, prematurity is the first leading cause of neonatal mortality and the fourth leading cause of mortality among children below the age of five in Ethiopia (39, 40). Hence, prematurity should be addressed to curb neonatal death globally and attain sustainable development goals (SDGs) (5).

There is a dearth of recent evidence on survival status and predictors of preterm neonatal mortality to inform programs and policies in Ethiopia, particularly in a study area. This significantly limits understanding of the extent and depth of the problem for evidence-based intervention. It is a dual agenda to prevent preterm delivery and address the survival gap of preterm neonates which necessitates comprehensive research to end the preventable deaths of neonates and children below five years. Hence, this study aimed to assess survival status and predictors of mortality among preterm neonates admitted to neonatal intensive care unit in Jimma University Medical Center in Southwest Ethiopia. The study will help health care providers to identify main predictors of preterm neonatal mortality and intervention areas, and in the timely detection of high-risk babies to give maximum efforts for their survival.
Methods

Study design and setting

An institution-based retrospective cohort study was conducted among a cohort of preterm neonates who were admitted to the neonatal intensive care unit (NICU) at JUMC from March 11 to April 20, 2020. JUMC is found in Jimma town at 352 kilometers away from Addis Ababa, the capital city of Ethiopia, in the southwestern part of the country. JUMC is the only tertiary and comprehensive specialized teaching hospital in the southwest of Ethiopia and currently provides a range of services for approximately 15 million people. The NICU unit is one of the intensive care unit services currently in operation at the hospital which has 26 neonatal and 16 kangaroo-mother care beds. The unit also has 20 radiant warmers, four continuous positive airway pressure (CPAP), six photo-therapy machines, oxygen concentrator machines, pulse oximetry, glucometer, and neonatal resuscitation equipment. Advanced procedures such as exchange transfusions and lumbar punctures are performed at the unit. On average, nearly 1,500 neonates are admitted annually to NICU of JUMC. The functional capability of JUMC is level three NICU which is organized with personnel and equipment to provide continuous life support and inclusive care for high-risk neonates and those with complex and critical illnesses (41).

Population

The source population for this study was all preterm neonates admitted to the NICU of JUMC from January 1, 2017, to December 30, 2019. All those randomly selected preterm neonates admitted to the NICU of JUMC from January 1, 2017, to December 30, 2019, and fulfilling the eligibility criteria were the study population. All alive-born preterm neonates at admission who were registered on the neonatal registry book from January 1, 2017, to December 30, 2019, in the NICU of JUMC were included in the study. However, preterm neonates with incomplete information on medical records regarding outcome status, a time when neonates were admitted to NICU, and a time when death or censoring occurred were excluded.

Sample size determination and sampling procedure

The sample size was determined for survival analysis by considering preterm neonates who have jaundice at admission using STATA™ Version 15 statistical software based on the following assumptions: 5% level of significance (a) (two-sided), 80% power, adjusted hazard ratio (AHR) of 1.62 for preterm neonates who have jaundice at admission, the overall probability of preterm neonatal death (d) of 0.288 (18), and 0.5 variabilities of covariates of interest. It was assumed that no subjects were anticipated to withdraw from the follow-up, and a 10% contingency was added for incomplete records. Hence, the total sample size for this study was 516. The medical registration number (MRN) of preterm neonates over three year period from January 1, 2017, to December 30, 2019, was taken from the NICU log-book to create a sampling frame. A computer-generated simple random sampling technique was employed to select 516 participants into the study as follows: The sampling frame that was created using the MRN was entered into SPSS version 25 software. Then, a 516 sample was selected randomly.
using SPSS select case procedure. Medical records of preterm neonates attached to selected MRN were reviewed, and those records that met the eligibility criteria were included in the analysis.

Measurement

History of bad obstetric and/or gynecologic outcomes was assessed by categorizing into ‘Yes’ or ‘No’ questions. We considered ‘Yes’ if the mothers of neonate had a history of neonatal death, stillbirth, or other obstetric and/or gynecologic outcomes and ‘No’ if the mothers of neonate had no history of neonatal death, stillbirth, or other obstetric and/or gynecologic outcomes (42). Maternal antenatal steroids use was assessed by ‘Yes’ or ‘No’ question. Considered ‘Yes’ if intramuscular or intravenous steroid administered to the mother during current pregnancy at any time before delivery and ‘No’ if an intramuscular or intravenous steroid was not administered (43). Similarly, obstetric complication during the current pregnancy was assessed by ‘Yes’ or ‘No’ questions, which was considered present if the mother had obstetric complications like preeclampsia, polyhydramnios, fetal distress, premature rupture of membrane (PROM), or other complications during the current pregnancy (44). Gestational age (GA) at birth (in a week) was estimated based on the first day of a women's last menstrual period and/or ultrasound estimation. It was categorized according to the World Health Organization (WHO) as ‘extremely preterm’ if GA at birth <28 weeks, ‘very preterm’ if GA at birth 28 to <32 weeks, and ‘moderate to late preterm’ if GA at birth 32 to <37 weeks (41). Birth weight (in grams) was measured using a standard beam balance and recorded in the medical record. It was categorized according to WHO as ‘extremely low birth weight’ if <1000 grams, ‘very low birth weight’ if 1000-1499 grams, ‘low birth weight’ if 1500-2499 grams, ‘normal weight’ if 2500-3999 grams, and ‘macrosomia’ if the birth weight of neonate ≥4000 grams (41). A weight class for gestational age was classified into appropriate for gestational age (AGA) if the birth weight was between 10-90%, large for gestational age (LGA) if birth weight was >90%, and small for gestational age (SGA) if birth weight was <10% for particular gestation age (41). Survival status is an outcome of the neonate during follow-up from the medical records and considered as ‘death’ if neonate died during follow-up, as ‘lost to follow-up’ if the mother or caregiver was not available and unable to reach with their address. It was considered as ‘Withdrawal’ if the mother refused the follow-up due to inconvenience, as ‘referred’ if the neonate was referred to other institutions for better management, and ‘alive’ if the preterm neonate survival was assured at the last follow-up period (44). Censored is defined as preterm neonates who were alive at the end of follow-up, lost to follow-up, withdrawal, and referred to other health institutions without knowing the outcome status (44). Survival time is the measure of the follow-up time (in days) from the date of admission in the NICU up to date of death, censored, or the end of the study (28th day of life) (33). Time-to-death is the death of a preterm neonate on a specific day in the first 28 days of life (44).

Data collection tool and procedures

The data were collected from preterm neonatal medical records and registers by three trained bachelor's degree holder midwives and supervised by one bachelor’s degree holder senior nurse. A data collection checklist adapted from the Global Neonatal Database data collection form for Ethiopian Neonatal
Network (43) was used to collect the data. Modifications were made on the checklist based on the NICU registration format, and through reviewing relevant literature. The starting point for follow-up was the first NICU admission date and followed until the last neonatal period (28th days of life), which was the endpoint of the study.

Data quality was assured by careful designing of the data collection checklist, recruiting data collectors, and supervisor who have previous experience. The data collection checklist was pretested on 26 randomly selected records (5% of the sample size) before the commencement of the actual study and amendments were taken on the checklist based on pretest findings. Training for two days was given on principles of research ethics, data collection checklist, and procedures for data collectors and a supervisor. Data collectors were supervised closely by the supervisor on daily basis throughout the data collection period.

Data analysis

Data were cleaned, coded, and entered into Epi-Data version 3.1, and analysis was done using STATA version 15.0 after exporting the data. An exploratory analysis was carried out to check the levels of missing values, the presence of outliers, and extreme values. Descriptive statistics such as frequencies, percentages, summary measures, and rates were computed to describe categorical and continuous variables as supposed necessary. Death of neonate was an event of interest: coding was ‘0’ for censored and ‘1’ for death. The overall neonatal mortality rate (incidence density) was calculated by dividing the number of preterm neonates who died during the follow-up period by the total neonate-days at risk of observation. Kaplan-Meier (KM) method was used to estimate median survival time, and compare survival experience between categories of variables. Moreover, Log-rank (mantel-cox) test was conducted to assess a statistical significance in survival experience at p-value<0.05.

Cox proportional hazard regression analysis was used to identify predictors of time to death. A bivariable cox-regression analysis was fitted first, and variables with P-value <0.25 in this analysis entered into the multivariable cox-regression analysis. To identify independent predictors of time to death, a stepwise backward likelihood ratio method was used to fit a multivariable cox-regression analysis. A more parsimonious model was chosen by looking at the partial log-likelihood ratio (LR) test ($X^2= 88.13, p$-value <0.0001), and model with the lowest Akaike's Information Criteria score (AIC=1408.17) and Bayesian Information Criteria (BIC=1454.64) score. Adjusted hazard ratio (AHR) with its 95% confidence interval and the p-value were used to determine the strength of association. Variables with a p-value <0.05 in the final model were considered as significant predictors of the time to death of preterm neonates.

The proportional hazard assumption was checked by Schoenfeld residual test and was satisfied (Global test $X^2=5.13, P$-value=0.92), and also detailed Schoenfeld residual test met the assumption. Multicollinearity was checked by looking at the variance inflation factor (VIF) and the highest observed VIF-value was 2.06, indicating that there was no multicollinearity threat. Covariates were tested for interaction effect by adding an interaction term into the model and no interaction effect was
observed (p-value ≥0.05 for interaction term). The goodness of model fitness was evaluated by using the Cox-Snell residual test. In this study, the Nelson-Aalen cumulative hazard function follows the 45° diagonal line very closely, indicating that it almost has an exponential distribution with a hazard rate of one. Hence, for the residual test, it was possible to conclude that the final model fits the data very well.

Results

Socio-demographic characteristics

In this study, a total of 516 preterm neonate medical records were reviewed, and 505 records that met eligibility criteria were included in the analysis. Near to nine-tenth of neonates, 433 (85.7%), had less than 24 hours of age at admission and more than half, 279 (55.2%), of them were males. The median age of the mother was 27 years with an interquartile range (IQR) of 8 and most mothers of the neonates, 398 (78.8%), were in the age group of 20-34 years. Nearly two-third, 339 (67.1%), of neonates were rural residents (Table 1).

Table 1
Socio-demographic characteristics of preterm neonates and their mothers at NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505).

Variable	Category	Death N (%)	Censored N (%)	Frequency (N=505)	Percentage (%)
Neonatal age at admission	<24 hour	109 (25.2)	324 (74.8)	433	85.7
	1-6 day	17 (26.6)	47 (73.4)	64	12.7
	≥7 day	1 (12.5)	7 (87.5)	8	1.6
Sex of neonate	Male	74 (26.5)	205 (73.5)	279	55.2
	Female	53 (23.5)	173 (76.5)	226	44.8
Age of the mother (year)	<20	3 (30.0)	7 (70.0)	10	2.0
	20-34	93 (23.4)	305 (76.6)	398	78.8
	≥35	31 (32.0)	66 (68.0)	97	19.2
Residence	Rural	87 (25.7)	252 (74.3)	339	67.1
	Urban	40 (24.1)	126 (75.9)	166	32.9
Maternal medical, and obstetric and gynecologic characteristics

Near to one-fourth (13.1%) of the mothers had known or been diagnosed with a medical disease, and more than nine-tenths of the mothers, 467 (92.5%), had antenatal care visits during the current pregnancy. Regarding the type of birth, more than a quarter (28.7%) of mothers had multiple types of pregnancy. Nearly one-fourth (23.4%) of mothers had a history of bad obstetric and/or gynecologic outcomes. Almost a quarter, 124 (24.6%), of the mothers had used antenatal steroids during the current pregnancy. Nearly three-fourth, 372 (73.7%), of the mothers had spontaneous onset of labor and the majority of the delivery, 462 (91.5%), had a cephalic presentation. Two-third, 336 (66.5%), of the mothers had a spontaneous vaginal delivery and 389 (77%) of delivery occurred at the hospital. Almost half, 250 (49.5%), of the mothers had an obstetric complication during the current pregnancy (Table 2).
Table 2
Maternal medical, and obstetric and/or gynecologic characteristics of a study participant in NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505).

Variable	Category	Death N (%)	Censored N (%)	Frequency (N=505)	Percent (%)
Known or diagnosed medical diseases	Yes	20 (30.3)	46 (69.7)	66	13.1
	No	107 (24.4)	332 (75.6)	439	86.9
Febrile illness or disease	Yes	11 (33.3)	22 (66.7)	33	6.5
	No	116 (24.6)	356 (75.4)	472	93.5
Anemia	Yes	7 (33.3)	14 (66.7)	21	4.2
	No	120 (24.8)	364 (75.2)	484	95.8
Others medical diseases*	Yes	3 (15.8)	16 (84.2)	19	3.8
	No	124 (25.5)	362 (74.5)	486	96.2
Gravidity	I	38 (22.4)	132 (77.6)	170	33.7
	II-IV	64 (25.4)	188 (74.6)	252	49.9
	≥V	25 (30.1)	58 (69.9)	83	16.4
Antenatal care visit	Yes	108 (23.1)	359 (76.9)	467	92.5
	No	19 (50.0)	19 (50.0)	38	7.5
Birth type	Single	91 (25.3)	269 (74.7)	360	71.3
	Multiple	36 (24.8)	109 (75.2)	145	28.7
History of bad obstetric and/or gynecologic outcome**	Yes	38 (32.2)	80 (67.8)	118	23.4
	No	89 (23.0)	298 (77.0)	387	76.6
Variable	Category	Death N (%)	Censored N (%)	Frequency (N=505)	Percent (%)
--------------------------------	----------	-------------	----------------	-------------------	-------------
History of neonatal death	Yes	23 (33.8)	45 (66.2)	68	13.5
	No	104 (23.8)	333 (76.2)	437	86.5
History of stillbirth	Yes	9 (26.5)	25 (73.5)	34	6.7
	No	118 (25.0)	353 (75.0)	471	93.3
History of abortion	Yes	9 (28.2)	23 (71.8)	32	6.3
	No	118 (24.9)	355 (75.1)	473	93.7
Antenatal steroid use	Yes	22 (17.7)	102 (82.3)	124	24.6
	No	105 (27.6)	276 (72.4)	381	75.4
Mode of delivery	SVD	79 (23.5)	257 (76.5)	336	66.5
	Assisted	3 (14.3)	18 (85.7)	21	4.2
	C/S	45 (30.4)	103 (69.6)	148	29.3
Table 2
Maternal medical, and obstetric and/or gynecologic characteristics of a study participant in NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505) (Continued).

Variable	Category	Death N (%)	Censored N (%)	Frequency (N=505)	Percent (%)
Cause of onset of labor	Spontaneous	89 (23.9)	283 (76.1)	372	73.7
	Induced	12 (29.3)	29 (70.7)	41	8.1
	C/S	26 (28.3)	66 (71.7)	92	18.2
Presentation	Cephalic	116 (25.1)	346 (74.9)	462	91.5
	Non-cephalic	11 (25.6)	32 (74.4)	43	8.5
Place of delivery	Hospital	97 (24.9)	292 (75.1)	389	77.0
	Health center	20 (23.3)	69 (76.7)	90	17.8
	Home	9 (34.6)	17 (65.4)	26	5.2
Obstetric complications	Yes	75 (30.0)	175 (70.0)	250	49.5
	No	52 (20.4)	203 (79.6)	255	50.5
Preeclampsia	Yes	23 (28.8)	57 (71.2)	80	15.8
	No	104 (24.5)	321 (75.5)	425	84.2
Eclampsia	Yes	8 (32.0)	17 (68.0)	25	5.0
	No	119 (24.8)	361 (75.2)	480	95.0
Fetal distress	Yes	26 (32.1)	55 (67.9)	81	16.0
	No	101 (23.8)	323 (76.2)	424	84.0
PPROM	Yes	20 (32.3)	42 (67.7)	62	12.3
	No	107 (24.2)	336 (75.8)	443	87.7
Abruption placenta	Yes	6 (18.7)	26 (81.3)	32	6.3
	No	121 (25.6)	352 (74.4)	473	93.7
Variable	Category	Death N (%)	Censored N (%)	Frequency (N=505)	Percent (%)
--------------------------------	----------	-------------	----------------	-------------------	-------------
Placenta previa	Yes	8 (34.8)	15 (65.2)	23	4.6
	No	119 (24.7)	363 (75.3)	482	95.4
Chorioamnionitis	Yes	9 (32.1)	19 (67.9)	28	5.5
	No	118 (24.7)	359 (75.3)	477	94.5
Other complications***	Yes	10 (41.7)	14 (58.3)	24	4.8
	No	117 (24.3)	364 (75.7)	481	95.2

*Diabetes mellitus, HIV/AIDS, cardiac disease, renal disease, and STIs.

**Neonatal death, stillbirth, abortion, and intrauterine fetal death.

***Cord prolapse, oligohydramnios, polyhydramnios, postpartum hemorrhage, and prolonged labor.

Neonatal related characteristics

Almost four-fifth, 399 (79%), of the neonates were moderate preterm, and more than two-third, 349 (69%), of neonates had low birth weight. The majority of the neonates, 482 (95.4%), had AGA at birth. Nearly four-fifth, 399 (79%), of neonates had a fifth-minute APGAR score ≥ 7. Out of the cohort, 454 (89.9%) had not initiated breastfeeding within one hour of birth. Regarding the method of feeding, 351 (69.5%) neonates were fed through a nasogastric tube. More than three-fourth, 397 (78.6%), of neonates were diagnosed with hypothermia followed by respiratory distress syndrome (295 (58.4%)), hypoglycemia (167 (33.1%)), neonatal sepsis (151 (29.9%)), jaundice (122 (24.2%)), and perinatal asphyxia (40 (7.9%)). Almost three-fourth, 383 (75.8%), of neonates were heated with radiant warmer and 155 (30.7%) received kangaroo-mother care. More than three-fifth, 301 (59.6%), of neonates received nasal CPAP, 113 (22.4%) phototherapy, and nearly one-third, 159 (31.5%), of them were resuscitated with bag and mask (Table 3).
Table 3
Neonatal related characteristics of preterm neonate admitted to NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505).

Variable	Category	Death	Censored	Total	Percent
		N (%)	N (%)	(N)	(%)
Gestational age at birth (week)	<28	14 (70.0)	6 (30.0)	20	4.0
	28- <32	34 (39.5)	52 (60.5)	86	17.0
	32- <37	79 (19.8)	320 (80.2)	399	79.0
Birth weight (in gram)	<1000	15 (62.5)	9 (37.5)	24	4.8
	1000 - <1500	40 (36.7)	69 (63.3)	109	21.6
	1500 - <2500	69 (19.8)	280 (80.2)	349	69.0
	≥2500	3 (13.0)	20 (87.0)	23	4.6
Weight class for gestational age	AGA	122 (25.3)	360 (74.7)	482	95.4
	SGA	5 (29.4)	12 (70.6)	17	3.4
	LGA	0 (0.0)	6 (100.0)	6	1.2
Fifth minute APGAR score	<7	41 (38.7)	65 (61.3)	106	21.0
	≥7	86 (21.6)	313 (78.4)	399	79.0
Initiation of breastfeeding within one hour of birth	Yes	5 (9.8)	46 (90.2)	51	10.1
	No	122 (26.9)	332 (73.1)	454	89.9
Method of feeding	Breast sucking	26 (18.6)	114 (81.4)	140	27.7
	NGT	99 (28.2)	252 (71.8)	351	69.5
	Cup feeding	2 (14.3)	12 (85.7)	14	2.8
Neonates with hypothermia	Yes	102 (25.7)	295 (74.3)	397	78.6
	No	25 (23.1)	83 (76.9)	108	21.4
Variable	Category	Death N (%)	Censored N (%)	Total (N)	Percent (%)
---	----------	-------------	----------------	------------	-------------
Neonates who had respiratory distress syndrome	Yes	93 (31.5)	202 (68.5)	295	58.4
	No	34 (16.2)	176 (83.8)	210	41.6
Neonates who had neonatal sepsis	Yes	51 (33.8)	100 (66.2)	151	29.9
	No	76 (21.5)	278 (78.5)	354	70.1
Neonates who had perinatal asphyxia	Yes	17 (42.5)	23 (57.5)	40	7.9
	No	110 (23.7)	355 (76.3)	465	92.1
Variable	Category	Death N (%)	Censored N (%)	Total N (%)	Percent (%)
---	----------	-------------	----------------	-------------	-------------
Neonates with hypoglycemia	Yes	47 (28.1)	120 (71.9)	167	33.1
	No	80 (23.7)	258 (76.3)	338	66.9
Neonates who had anemia	Yes	10 (29.4)	24 (70.6)	34	6.7
	No	117 (24.8)	354 (75.2)	471	93.2
Neonates who had jaundice	Yes	45 (36.9)	77 (63.1)	122	24.2
	No	82 (21.4)	301 (78.6)	383	75.8
Neonates who had a congenital malformation	Yes	8 (36.4)	14 (63.6)	22	4.4
	No	119 (24.6)	364 (75.4)	483	95.6
Neonates who had apnea of prematurity	Yes	8 (50.0)	8 (50.0)	16	3.2
	No	119 (24.3)	370 (75.7)	489	96.8
Neonates diagnosed with any other problems*	Yes	3 (10.3)	26 (89.7)	29	5.7
	No	124 (26.1)	352 (73.9)	471	94.3
Neonates received kangaroo mother care	Yes	22 (14.2)	133 (85.8)	155	30.7
	No	105 (30.0)	245 (70.0)	350	69.3
Neonates received nasal CPAP	Yes	85 (28.2)	216 (71.8)	301	59.6
	No	42 (20.6)	162 (79.4)	204	40.4
Neonates resuscitated with bag and mask	Yes	43 (27.0)	116 (73.0)	159	31.5
	No	84 (24.3)	262 (75.7)	346	68.5
Variable	Category	Death N (%)	Censored N (%)	Total (N)	Percent (%)
--	----------	-------------	----------------	-----------	-------------
Neonates received phototherapy	Yes	36 (31.9)	77 (68.1)	113	22.4
	No	91 (23.2)	301 (76.8)	392	77.6
Neonates heated with radiant warmer	Yes	98 (25.6)	285 (74.4)	383	75.8
	No	29 (23.8)	93 (76.2)	122	24.2

*Meningitis, ophthalmic neonatorum, necrotizing enterocolitis, pulmonary hypertension, HIV exposed, meconium aspiration syndrome, hospital-acquired infection, and birth trauma.

Survival status of preterm neonate

During the follow-up, 127 (25.1%) (95% CI: 21.42, 29.17) preterm neonates died. Among all death, 15.7% (95% CI: 9.89, 23.27) died in the first 24 hours of life, and 81.1% (95% CI: 73.20, 87.50) of deaths occurred within 7 days of life. Out of the cohort, 352 (69.7%) improved and were discharged to home, 15 (3%) lost to follow-up, 6 (1.2%) referred to other hospitals, and the remaining 5 (1%) were withdrawal from the follow-up. Among the cohort, 378 (74.9%) (95% CI: 70.83, 78.58) neonates survived during the follow-up period.

A cohort contributed a total of 4,386 neonate days at risk of observation. The overall neonatal mortality rate (incidence density) of the cohort was 28.9 deaths per 1,000 neonate-days (95% CI: 24.33, 34.46). The neonatal mortality rate (NMR) was 67.3 deaths per 1,000 neonate-days in the first 24 hours of life (95% CI: 48.11, 94.23). Early NMR (death within seven days of life) was 40 deaths per 1,000 neonate-days (95% CI: 33.08, 48.33); however, the late NMR was 11.7 deaths per 1,000 neonate-days (95% CI: 7.55, 18.13).

Overall survival function

Preterm neonates were followed for different follow-up periods: a minimum of 1 day and a maximum of 28 days. The overall median length of follow-up was 7 (IQR=8) days. The cumulative survival probability at the end of follow-up was 54.94% (95% CI: 41.83, 66.27). The cumulative probability of survival at the end of the first, seventh, 14th, and 21st days was 93.27% (95% CI: 90.71, 95.14), 76.89% (95% CI: 72.73, 80.51), 71.8% (95% CI: 66.79, 76.19), and 66.96% (60.54, 72.58), respectively. The median survival time was undetermined since to estimate median survival time at least 50% of the neonates have to experience death during the follow-up period. But, only 25.1% of neonates had experienced death in this study. The overall mean survival time was 20.42 neonate days (95% CI: 19.27, 21.56).

The overall survival probability of preterm neonates during the follow-up period was presented by a step-down Kaplan Meier survival curve (Figure 1). The graph went down increasingly over the first seven days,
showing a lower probability of preterm neonatal survival. However, in the latter days of the follow-up, the graph continued to decrease slightly indicating that the likelihood of preterm neonatal death is declined.

Survival function and comparison of survival experience

Preterm neonates born from mothers who used antenatal steroids during current pregnancy had higher survival experience compared to their counterparts ($X^2=5.17$, P-value=0.023) (Figure 2). Likewise, preterm neonates who received kangaroo-mother care (KMC) had a higher survival experience than neonates who didn’t receive KMC ($X^2=14.18$, P-value=0.0002) (Figure 7).

However, preterm neonates born from mothers with obstetric complications during current pregnancy had lower survival experience than their counterparts ($X^2=11.71$, P-value=0.001) (Figure 3). Neonates having respiratory distress syndrome (RDS) at admission had lower survival experience than those neonates without RDS ($X^2=11.14$, P-value=0.001) (Figure 4). Preterm neonate with neonatal sepsis at admission had lower survival experience than their complements ($X^2=7.55$, P-value=0.006) (Figure 5). Neonates diagnosed with PNA at admission had lower survival experience than their counterparts ($X^2=7.51$, P-value=0.003) (Figure 6).

Predictors of preterm neonatal mortality

In bivariable cox-regression analysis; the age of the mother, ANC visit, history of bad obstetric and/or gynecologic outcome, antenatal steroid use, place of delivery, obstetric complications, gestational age at birth, birth weight, fifth minute APGAR score, initiation of breastfeeding within one hour of birth, respiratory distress syndrome, neonatal sepsis, perinatal asphyxia, jaundice, and receiving kangaroo-mother care were found significant at P-value <0.25. These variables were entered into multivariable Cox regression analysis to determine predictors for time to death.

In multivariable Cox-regression analysis; an antenatal steroid use during the current pregnancy, obstetric complication during the current pregnancy, an increment in gestational age at birth, receiving kangaroo-mother care, having respiratory distress syndrome, neonatal sepsis, and perinatal asphyxia at admission were found to be statistically significant independent predictors for time to death of preterm neonates (P-value <0.05) (Table 4).
Table 4
Bivariable and multivariable Cox-regression analysis for predictors of preterm neonatal mortality in NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505).

Predictors	Outcome status	CHR [95% CI]	P-value	AHR [95% CI]	P-value
	Death	Censored			
Age of the mother					
<20 year	3	7	1.50 [0.47, 4.73]	0.49	
20-34 year	93	305	1		0.087
≥35 year	31	66	1.43 [0.95, 2.15]	0.087	
Antenatal care visit during the current pregnancy					
Yes	108	359	1		0.001
No	19	19	2.25 [1.38, 3.67]	0.001	
History of bad obstetric and/or gynecologic outcomes					
Yes	38	80	1.33 [0.91, 1.95]	0.14	
No	89	298	1		
Antenatal steroid use during the current pregnancy					
Yes	22	102	0.59 [0.38, 0.94]	0.028	
No	105	276	1		0.018
Place of delivery					
Hospital	97	292	1		0.87
Health center	20	69	1.04 [0.65, 1.67]	0.14	
Home	9	17	1.68 [0.84, 3.33]	0.14	
Obstetric complications during the current pregnancy					
Yes	75	175	1.44 [1.01, 2.05]	0.045	
No	52	203	1		0.005
Gestational age at birth (in week)					
	0.83 [0.77, 0.89]	<0.001	0.81 [0.75, 0.87]	<0.001	
Birth weight (in gram)					
Predictors	Outcome status	CHR [95% CI]	P-value	AHR [95% CI]	P-value
------------	----------------	--------------	---------	--------------	---------
	Death	Censored			
<1000	15	9	5.02 [1.40, 17.40]	0.011	
1000-<1500	40	69	2.19 [0.68, 7.09]	0.19	
1500-<2500	69	280	1.44 [0.45, 4.57]	0.54	
≥2500	3	20	1		
Table 4
Bivariate and multivariable Cox-regression analysis for predictors of preterm neonatal mortality in NICU of JUMC, Jimma, Southwest Ethiopia, 2020 (N=505) (Continued).

Predictors	Outcome status	CHR [95% CI]	P-value	AHR [95% CI]	P-value
	Death	Censored			
Fifth minute APGAR score					
<7	41	65	1.86 [1.28, 2.70]	0.001	
≥7	86	313	1		
Breastfeeding initiated within one hour of birth					
Yes	5	46	1		0.046
No	122	332	2.50 [1.02, 6.09]		
Neonates who had respiratory distress syndrome					
Yes	93	202	1.90 [1.29, 2.82]	0.001	
No	34	176	1		0.045
Neonates who had neonatal sepsis					
Yes	51	100	1.62 [1.14, 2.31]	0.008	
No	76	278	1		0.005
Neonates who had perinatal asphyxia					
Yes	17	23	1.99 [1.19, 3.32]	0.009	
No	110	355	1		0.004
Neonates who had jaundice					
Yes	45	77	1.63 [1.13, 2.34]	0.009	
No	82	301	1		
Neonates who received kangaroo mother care					
Yes	22	133	0.43 [0.27, 0.68]	<0.001	
No	105	245	1		0.002

1: Reference group, CHR: Crude hazard ratio, AHR: Adjusted hazard ratio, and CI: Confidence interval

At any time during the follow-up period, preterm neonates born from mothers who used antenatal steroids during current pregnancy had 45% fewer hazard of death compared to neonates born from mothers who didn’t use antenatal steroids (AHR=0.55; 95% CI:0.34, 0.90). Preterm neonates born from mothers with an obstetric complication during current pregnancy had nearly two times higher hazard of death compared
to those who were born from mothers without obstetric complication throughout the study period (AHR=1.84; 95% CI: 1.20, 2.82).

As the gestational age of preterm neonates at a birth increase by one week, the hazard of death decrease by 19% at any time during the follow-up period (AHR= 0.81; 95% CI: 0.75, 0.87). Preterm neonates who had respiratory distress syndrome (RDS) had 1.52 times more hazard of death than those without RDS throughout the follow-up period (AHR=1.52; 95% CI: 1.01, 2.29). Preterm neonates who had neonatal sepsis had about 1.71 times greater hazard of death than neonates without neonatal sepsis at any time during the follow-up period (AHR=1.71; 95% CI: 1.18, 2.49).

Preterm neonates who had perinatal asphyxia had 2.44 times more hazard of death compared to those neonates without perinatal asphyxia throughout the follow-up period (AHR=2.44; 95% CI: 1.33, 4.49). Preterm neonates who received kangaroo mother care had 52% lesser hazard of death as compared to those preterm neonates who didn't receive kangaroo-mother care throughout the follow-up period (AHR=0.48; 95% CI: 0.30, 0.77).

Discussion

This study showed that 25.1% of neonates died during the follow-up with an overall neonatal mortality rate of 28.9 deaths per 1,000 neonate days. This finding is consistent with studies reported from Iran 27.4% and 28.7% (14, 34), and Nigeria 27.7% (17). Moreover, this finding is in line with studies reported from Gonder 25.2% and 32.9 deaths per 1000 neonate-days (18, 19), and Addis Ababa 25.3% and 29.7% (15, 32).

However, this finding is higher than studies reported from Australia 7.7% (45), China 8.8% and 1.9% (21, 22), and Uganda 8% (35). This discrepancy between studies might be explained by variation in a study setting as there might be a high quality of neonatal care in Australia and China. A study from Australia was conducted in a hospital with a level four NICU while this study was conducted in a hospital with a level three NICU. Preterm neonates born in developed countries like Australia and China might receive improved care during pre-pregnancy, pregnancy, antepartum, and postnatal periods. Partly, this disparity might result from a difference in sample size, study design, and those reported studies were multicenter studies.

Conversely, this study finding is lower than studies reported from India 33.5% (46), and Jimma, Ethiopia 34.9% (33). This discrepancy might result from variation in study design as a study reported from India was multicenter prospective studies conducted on a large sample size. The inconsistency with finding from Jimma might be due to variation in the timing of the study as there was some improvement in antenatal and delivery care from a skilled provider, and institutional delivery (39). Partly, this might result from the fact that NICU is organized in a good manner, and access to trained health care providers increased comparatively since special attention was given to preterm neonates by national neonatal and child survival strategy (38). This finding indicates that preterm neonates are still highly at risk of death, and ongoing commitment and interventions need to be considered by giving special emphasis on
identified predictors and continuum of care to meet the SGDs and national target of reducing neonatal mortality.

In this study, early NMR (40 per 1,000 neonate-days) was higher as compared to late NMR (11.7 per 1,000 neonate-days). This finding is consistent with studies reported from Jordan (47), and Gonder, Ethiopia (18). This might be attributed to the reason that most of the preterm neonatal mortality in the resource-limited setting is related to practice during the intrapartum and immediate postpartum period, the need for intensive medical care, and timely referral of high-risk neonates. But, this finding is lower than the study conducted in Addis Ababa (32). This inconsistency could be due to a study from Addis Ababa was a multicenter prospective study conducted on a small sample and it is a setting that receives high-risk neonates referred from different regions of the country. The finding of this study shows the need to focus preterm neonatal survival interventions more on the intrapartum as well as the immediate postpartum period, and early neonatal periods.

In the current study, preterm neonates born from mothers who used antenatal steroids had a lesser hazard of mortality than those neonates born from mothers who did not use antenatal steroids. This finding is in line with studies reported in the United States (20) and China (21, 22). This could be explained by the fact that the administration of steroids for mothers who had imminent preterm delivery enhances fetal lung maturity and decreases the risk of developing respiratory distress syndrome and intraventricular hemorrhage, and consequently might reduce the risk of neonatal death (48). In this study, preterm neonates born from mothers who had an obstetric complication during their current pregnancy had a higher hazard of neonatal death compared to their counterparts. This finding is comparable with studies reported from Bangladeshi (26), Gonder (27), and Tigray, Ethiopia (44). This might be explained by the fact that obstetric complications affect the pregnancy status and placental blood transfusion, and can result in preterm delivery with subsequent preterm-related life-threatening complications which might increase the hazard of neonatal death (49).

In this study, an increment in gestational age at birth by one week decreases the hazard of preterm neonatal deaths by 19%. This finding is in line with studies reported from the United States (12), China (21), Gonder (18), and Addis Ababa, Ethiopia (32). A possible reason for this might be as the gestational age of the neonates at birth increases, the maturity of the fetus will be enhanced, and the risk of developing life-threatening complications related to prematurity decreases and which might contribute to a reduced risk of preterm neonatal death.

In the current study, preterm neonates who had respiratory distress syndrome (RDS) had a greater hazard of neonatal mortality compared to their counterparts. This finding is consistent with studies reported from different parts of Ethiopia: Gondar (27), Debre Markos (31), Addis Ababa (15), and Jimma (33). This might be because of similarities in settings that lack postnatal surfactant administration. Partly, it could be explained by the fact that preterm neonates had immature lungs, and might consequently develop life-threatening complications like a respiratory failure. Different kinds of literature reported that respiratory distress syndrome was the primary cause of preterm neonatal death (14, 50).
In this study, preterm neonates who had neonatal sepsis had a higher hazard of neonatal mortality than preterm neonates without neonatal sepsis. This finding is in line with studies reported from Addis Ababa (15), and Jimma (33). This might result from the fact that preterm neonates were more likely to be born with or acquire an infection because they had immature immune defenses supplemented with poor calorie intake, and might increase the risk of death (51).

In the current study, preterm neonates who had perinatal asphyxia (PNA) had a greater hazard of neonatal mortality than those preterm neonates without PNA. This finding is consistent with studies reported from China (22), Gonder (18, 19, 24), Woliata Sodo (23), Addis Ababa (52), and Jimma, Ethiopia (33, 36). This consistency might be elucidated by similarity in study design, and follow-up period. This finding might be supported by the fact that PNA can lead to hypoxia with subsequent acidosis, leading to hypotension and hypoxic-ischemic encephalopathy, which further compromise oxygen delivery to the brain and might increase the risk of death.

In the present study, a preterm neonate who received kangaroo-mother care (KMC) had a 52% lesser hazard of neonatal mortality compared to preterm neonates who did not receive KMC. This finding was in line with studies reported from Uganda (35), and Gonder, Ethiopia (18). This consistency might be due to the similarity of the study setting, study design, and sample size. The finding was reaffirmed by the fact that receiving KMC protects neonates from the risk of hypothermia by decreasing body surface area to the external environment. Partly, it might also be explained by the fact that KMC promotes early initiation of breastfeeding, and may be used even when babies on formula-fed, which helps to prevent hypoglycemia. Moreover, KMC helps to reduce neonatal mortality by protecting them from sepsis (53–56).

Even though this study has many strengths, it has also some limitations. Some important predictors of preterm neonatal mortality like maternal educational status, maternal nutritional status, birth interval, birth order, duration of rupture of membrane, and first-minute APGAR score were not explored.

Conclusion

In the current study, the overall preterm neonatal mortality rate was found high. Most preterm neonatal mortality occurred in the early phase of the neonatal period, which seeks due attention to meet the national newborn and child survival and SDGs goal in Ethiopia. Obstetric complications during the current pregnancy, respiratory distress syndrome, neonatal sepsis, and perinatal asphyxia at admission were found to be independent risk factors of preterm neonatal mortality. However, antenatal steroid use during the current pregnancy, an increment in gestational age at birth, and receiving kangaroo-mother care were independent preventive predictors of preterm neonatal mortality. Hence, it is better to give special emphasis and close follow-up for preterm neonates, especially during the early neonatal period and is also better to strengthen obstetrics care to prevent or reduce obstetric complications and prematurity, use of antenatal steroids for women having an imminent preterm delivery, early diagnosis and management of obstetric as well as neonatal complications. Furthermore, encouraging and
supporting mothers or caregivers to practice kangaroo-mother care, and ensuring a continuum of care are crucial to enhance preterm neonatal survival.

Abbreviations

AHR: Adjusted Hazard Ratio; APGAR: Appearance, Pulse, Grimace, Activity, and Respiration, CHR: Crude Hazard Ratio; CPAP: Continuous Positive Airway Pressure; C/S: Caesarean section, GA: Gestational Age; HIV/AIDS: Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome; IQR: Interquartile range; JUMC: Jimma University Medical Center; NGT: Nasogastric tube, NICU: Neonatal Intensive Care Unit; PROM: Premature Rupture of Membrane; SDGs: Sustainable Development Goals; SSA: Sub-Saharan Africa.

Declarations

Ethics approval and consent to participate

Ethical approval for the study was obtained from the Institutional Review Board (IRB) of Jimma University, Institute of Health with a reference number of IRB000/01/2020 before its commencement. The aim of the study was explained and informed written consent was obtained from Jimma University Medical Center's medical director for getting the necessary information and record reviews. To ensure confidentiality, identifiers of preterm neonates and health care providers who examined the neonate were not recorded on the data collection checklist, and all checklists were handled confidentially and discarded at the end of the study safely.

Consent for publication

Not applicable

Availability of data and materials

Data will be available upon request from the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was funded by Arba Minch College of Health Sciences. The funding body had no role in the design of the study and collection, analysis, and interpretation of data, and in writing the manuscript.

Authors’ contributions
TMT: Involved in the conception, designing methods, data analysis, interpretation of the findings, write-up of the findings, and drafting of the manuscript. LD and HM: Participated in designing, data analysis, interpretation of the findings, and write-up of the findings. All authors have read and approved the manuscript.

Author Details

TMT: MPH in Epidemiology, Lecturer, Department of Public Health, Arba Minch College of Health Sciences, Arba Minch, Ethiopia.

LD: MPH in Epidemiology, Assistant professor of Epidemiology, Department of Epidemiology, Institute of Health, Jimma University, Jimma, Ethiopia.

HM: MPH in Epidemiology, Assistant professor of Epidemiology, Department of Epidemiology, Institute of Health, Jimma University, Jimma, Ethiopia.

Acknowledgment

We would like to thank Arba Minch College of Health Sciences for its financial support. Our sincere thanks also go to all Neonatal Intensive Care Unit and medical record staff members of Jimma University Medical Center for their cooperation and for providing the necessary information. We would like to extend our appreciation and thanks to all data collectors and a supervisor.

References

1. March of Dimes, PMNCH, Save the Children, WHO. Born Too Soon: The Global Action Report on Preterm Birth. Eds CP Howson, MV Kinney, JE Lawn: World Health Organization. Geneva; 2012.

2. WHO. WHO fact sheet on Preterm Birth [Internet]. Geneva: WHO; 2018 [Available from: http://www.who.int/mediacentre/factsheets/fs363/en

3. United Nations Inter-agency Group for Child Mortality Estimation (UN IGME). Levels & Trends in Child Mortality: Report 2018, Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation. New York: United Nations Children's Fund; 2018.

4. WHO and UNICEF. Every Newborn Progress Report 2015. Geneva: World Health Organization; 2015.

5. Chawanpaiboon S, Vogel JP, Moller A-B, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modeling analysis. The Lancet Global Health. 2019;7(1):e37-e46.

6. UNICEF. Every Child Alive: The urgent need to end newborn deaths. Genève, Switzerland: United Nations Children's Fund; 2018.
7. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016;388 3027–35.

8. Bener A. Psychological distress among postpartum mothers of preterm infants and associated factors: a neglected public health problem. Revista brasileira de psiquiatria. 2013;35(3):231-6.

9. Holditch-Davis D, Santos H, Levy J, White-Traut R, O'Shea TM, Geraldo V, et al. Patterns of psychological distress in mothers of preterm infants. Infant behavior & development. 2015;41:154-63.

10. Trumello C, Candelori C, Cofini M, Cimino S, Cerniglia L, Paciello M, et al. Mothers' Depression, Anxiety, and Mental Representations After Preterm Birth: A Study During the Infant's Hospitalization in a Neonatal Intensive Care Unit. Frontiers in public health. 2018;6:359.

11. Jacob J, Lehne M, Mischker A, Klinger N, Zickermann C, Walker J. Cost effects of preterm birth: a comparison of health care costs associated with early preterm, late preterm, and full-term birth in the first 3 years after birth. The European journal of health economics: HEPAC: health economics in prevention and care. 2016;18(8):1041-6.

12. Ibrahimou B, Kodali S, Salihu H. Survival of Preterm Singleton Deliveries: A Population-Based Retrospective Study. Advances in Epidemiology. 2015;2015:1-6.

13. Gargari SS, Kashanian M, Zendedel H, Nayeri F, Shariat M, Haghohahi F. Survival and Risk Factors of Extremely Preterm Babies (< 28 weeks) in the Three Iranian Hospitals. Acta Med Iran. 2018;56(3):181-8.

14. Basiri B, Ashari FE, Shokouhi M, Sabzehei MK. Neonatal Mortality and its Main Determinants in Premature Infants Hospitalized in Neonatal Intensive Care Unit in Fatemieh Hospital, Hamadan, Iran. J Compr Ped. 2015 6(3): e26965.

15. Aynalem YA. Survival status and predictor of mortality among premature neonates admitted to neonatal intensive care unit from 2013-2017 in Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. J Nurs Care. 2019;8.

16. Nair M, Choudhury MK, Choudhury SS, Kakoty SD, Sarma UC, Webster P, et al. Association between maternal anaemia and pregnancy outcomes: a cohort study in Assam, India. BMJ Global Health. 2016;1:e000026.

17. Bako B, Idrisa A, Garba MA, Pius S, Obetta HI. Determinants of neonatal survival following preterm delivery at the University of Maiduguri Teaching Hospital, Maiduguri, Nigeria. Trop J Obstet Gynaecol. 2017;34:39-44.

18. Yismaw AE, Gelagay AA, Sisay MM. Survival and predictors among preterm neonates admitted at University of Gondar comprehensive specialized hospital neonatal intensive care unit, Northwest Ethiopia. Ital J Pediatri. 2019;45(1):4.
19. Yehuala S, Ayalew S, Teka Z. Survival Analysis of Premature Infants Admitted to Neonatal Intensive Care Unit (NICU) in Northwest Ethiopia using Semi-Parametric Frailty Model. J Biomet Biostat. 2015;6:1.

20. Travers CP, Clark RH, Spitzer AR, Das A, Garite TJ, Carlo WA. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: prospective cohort study. BMJ. 2017;j1039.

21. Kong X, Xu F, Wu R, Wu H, Ju R, Zhao X, et al. Neonatal mortality and morbidity among infants between 24 to 31 complete weeks: a multicenter survey in China from 2013 to 2014. BMC Pediatrics. 2016;16:174.

22. Xu F, Kong X, Duan S, Lv H, Rong Ju, Li Z, et al. Care Practices, Morbidity and Mortality of Preterm Neonates in China, 2013–2014: a Retrospective Study. SCIENTIFIC REPORTS. 2019;9:19863.

23. Orsido TT, Asseffa NA, Berheto TM. Predictors of Neonatal mortality in Neonatal intensive care unit at referral Hospital in Southern Ethiopia: a retrospective cohort study. BMC Pregnancy and Childbirth. 2019;19(1).

24. Demisse AG, Alemu F, Gizaw MA, Tigabu Z. Patterns of admission and factors associated with neonatal mortality among neonates admitted to the neonatal intensive care unit of University of Gondar Hospital, Northwest Ethiopia. Pediatric Health, Medicine and Therapeutics. 2017;8:57-64.

25. Haghighi L, Nojomi M, Mohabbatian B, Najmi Z. Survival predictors of preterm neonates: Hospital-based study in Iran (2010-2011). Iran J Reprod Med. 2013;11(12):957-64.

26. Shah R, Mannan I, Mullany LC, Darmstadt GL, Talukder RR, Rahman SM, et al. Neonatal Mortality Risks Among Preterm Births in a Rural Bangladeshi Cohort. Paediatric and Perinatal Epidemiology. 2014;28(6):510-20.

27. Yismaw AE, Tarekegn AA. Proportion and factors of death among preterm neonates admitted in University of Gondar comprehensive specialized hospital neonatal intensive care unit, Northwest Ethiopia. BMC Res Notes. 2018;11(1):867.

28. Mengesha HG, Lerebo WT, Kidanemariam A, Gebrezgiabher G, Berhane Y. Pre-term and post-term births: predictors and implications on neonatal mortality in Northern Ethiopia. BMC nursing. 2016;15:48.

29. Debelew GT, Afework MF, Yalew AW. Determinants and causes of neonatal mortality in Jimma Zone, Southwest Ethiopia: a multilevel analysis of prospective follow-up study. PLoS One. 2014;9(9):e107184.

30. Bello M, Pius S, Ibrahim BA. Characteristics and predictors of outcome of care of preterm newborns in resource constraints setting, Maiduguri, Northeastern Nigeria. J Clin Neonatol. 2019;8(1):39-46.

31. Alebel A, Wagnew F, Petrucka P, Tesema C, Moges NA, Ketema DB, et al. Neonatal mortality in the neonatal intensive care unit of Debre Markos referral hospital, Northwest Ethiopia: a prospective cohort study. BMC Pediatr. 2020;20(1):72.
32. Dagnachew T, Yigeremu M. Survival of Preterm Neonates and its Determinants in Teaching Hospitals of Addis Ababa University. J Women's Health Care. 2019; 8(2).

33. Wesenu M, Kulkarni S, Tilahun T. Modeling Determinants of Time-To-Death in Premature Infants Admitted to Neonatal Intensive Care Unit in Jimma University Specialized Hospital. Ann Data Sci. 2017;4(3):361-81.

34. Ghorbani F, Heidarzadeh M, Dastgiri S, Ghazi M, Farshi MR. Survival of Premature and Low Birth Weight Infants: A Multicenter, Prospective, Cohort Study in Iran. Iranian Journal of Neonatology 2017;8(1).

35. Opio C, Malumba R, Kagaayi J, Ajumobi O, Kamya C, Mukose A, et al. Survival time and its predictors in preterm infants in the post-discharge neonatal period: a prospective cohort study in Busoga Region, Uganda. The Lancet Global Health. 2020;8:S6.

36. Seid SS, Ibro SA, Ahmed AA, Akuma AO, Reta EY, Haso TK, et al. Causes and factors associated with neonatal mortality in Neonatal Intensive Care Unit (NICU) of Jimma University Medical Center, Jimma, South West Ethiopia. Pediatric Health, Medicine and Therapeutics. 2019;10:39-48.

37. USAID, PCI, GAPPs, ACNM. EVERY PREEMIE SCALE: Ethiopian profile of preterm and low birth weight prevention and care. May 7, 2019.

38. FMoH. National Strategy for Newborn and Child Survival in Ethiopia, 2015/16-2019/20. Addis Ababa, Ethiopia: Maternal and Child Health Directorate, Federal Ministry of Health; 2015.

39. Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. Ethiopia Mini-Demographic and Health Survey 2019: Key Indicators Rockville, Maryland, USA: EPHI and ICF; 2019.

40. FMoH. Health and Health-Related Indicators. 2nd ed. Ethiopia: Federal Ministry of Health; 2014.

41. FMoH. Neonatal Intensive Care Unit (NICU) Training Participants’ Manual. Addis Ababa, Ethiopia: Federal Ministry of Health; 2014.

42. Kumari N, Morris N, Dutta R. Is Screening of TORCH Worthwhile in Women with Bad Obstetric History: An Observation from Eastern Nepal. J Health Popul Nutr. 2011;29(1):77-80.

43. VON. Global Neonatal Database Manual of Operations: Ethiopian Neonatal Network (ENN): Vermont Oxford Network; February 14, 2018.

44. Mengesha HG, Wuneh AD, Lerebo WT, Tekle TH. Survival of neonates and predictors of their mortality in Tigray region, Northern Ethiopia: prospective cohort study. BMC Pregnancy Childbirth. 2016;16(1):202.

45. Schindler T, Koller-Smith L, Lui K, Bajuk B, Bolisetty S. Causes of death in very preterm infants cared for in neonatal intensive care units: a population-based retrospective cohort study. BMC Pediatrics.
46. Jain K, Sankar MJ, Nangia S, Ballambattu VB, Sundaram V, Ramji S, et al. Causes of death in preterm neonates (<33 weeks) born in tertiary care hospitals in India: analysis of three large prospective multicentric cohorts. Journal of Perinatology. 2019;39:13-9.

47. Razeq NMA, Khader YS, Batieha AM. The incidence, risk factors, and mortality of preterm neonates: A prospective study from Jordan (2012-2013). Turk J Obstet Gynecol 2017;14:28-36.

48. Amiya RM, Mlunde LB, Ota E, Swa T, Oladapo OT, Mori R. Antenatal Corticosteroids for Reducing Adverse Maternal and Child Outcomes in Special Populations of Women at Risk of Imminent Preterm Birth: A Systematic Review and Meta-Analysis. PLOS ONE. 2016;11(2):e0147604.

49. Temu TB, Masenga G, Obure J, Mosha D, Mahande MJ. Maternal and obstetric risk factors associated with preterm delivery at a referral hospital in northern-eastern Tanzania. Asian Pacific Journal of Reproduction. 2016;5(5):365-70.

50. Muhe LM, McClure EM, Nigussie AK, Mekasha A, Worku B, Worku A, et al. Major causes of death in preterm infants in selected hospitals in Ethiopia (SIP): a prospective, cross-sectional, observational study. Lancet Glob Health. 2019;7:e1130-38.

51. Collins A, Weitkamp J-H, Wynn JL. Why are preterm newborns at increased risk of infection? Archives of Disease in Childhood - Fetal and Neonatal Edition. 2018;103(4): F391-F4.

52. Tekleab AM, Amaru GM, Tefera YA. Reasons for admission and neonatal outcome in the neonatal care unit of a tertiary care hospital in Addis Ababa: a prospective study. Research and Reports in Neonatology. 2016;6:17.

53. Mekonnen AG, Yehualashet SS, Bayleyegn AD. The effects of kangaroo mother care on the time to breastfeeding initiation among preterm and LBW infants: a meta-analysis of published studies. International Breastfeeding Journal. 2019;14:12.

54. Shrivastava SR, Shrivastava PS, Ramasamy J. Utility of kangaroo mother care in preterm and low birth weight infants. S Afr Fam Pract. 2013;55(4):340-4.

55. Uwaezuoke SN. Kangaroo mother care in resource-limited settings: implementation, health benefits, and cost-effectiveness. Research and Reports in Neonatology 2017;7:11-8.

56. Boundy EO, Dastjerdi R, Spiegelman D, W.Fawzi W, Missmer SA, Lieberman E, et al. Kangaroo Mother Care, and Neonatal Outcomes: A Meta-analysis. Pediatrics. 2016;137(1):e20152238.

Figures
Figure 1

Overall Kaplan–Meier estimate of survival probability since admission among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.
Figure 2

KM curve to compare survival experience across antenatal steroids use status among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.
Figure 3

KM curve to compare survival experience across obstetric complication status among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.
Figure 4

KM curve to compare survival experience across respiratory distress syndrome status among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.

Kaplan-Meier survival estimates by respiratory distress syndrome at admission

Log-rank test ($X^2=11.14$, P-value = 0.001)
Figure 5

KM curve to compare survival experience across neonatal sepsis status among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.
Figure 6

KM curve to compare survival experience across perinatal asphyxia status among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.

Log-rank test ($X^2 = 7.51$, P-value = 0.003)
Figure 7

KM curve to compare survival experience across categories of KMC among preterm neonates admitted to the NICU of JUMC, Jimma, Southwest Ethiopia, 2020.