COLLAPSE OF MAGNETIZED SINGULAR ISOTHERMAL TOROIDS. II.
ROTATION AND MAGNETIC BRAKING

ANTHONY ALLEN
Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan

ZHI-YUN LI
Department of Astronomy, University of Virginia, Charlottesville, VA 22903

AND
FRANK H. SHU
National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, Taiwan 300

Received 2003 May 19; accepted 2003 August 22

ABSTRACT

We study numerically the collapse of rotating magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the precollapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center and propagates outward in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines—the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can be greatly reduced on the way, by an order of magnitude or more, even when the precollapse field strength is substantially below the critical value for dominant cloud support. The efficient magnetic braking is due to the pinched geometry of the magnetic field in the pseudodisk, which strengthens the magnetic field and lengthens the level arm for braking. Both effects enhance the magnetic transport of angular momentum from inside to outside. The excess angular momentum is carried away in a low-speed outflow that has, despite claims made by other workers, little in common with observed bipolar molecular outflows. We discuss the implications of our calculations for the formation of true disks that are supported against gravity by rotation.

Subject headings: accretion, accretion disks — ISM: clouds — MHD — stars: formation

1. INTRODUCTION

Rotation is observed ubiquitously in star-forming cores. On the scale of ~0.1 pc, the detected rotation rate is small, with a typical value corresponding to a ratio of rotational to gravitational energy of 0.02 (Goodman et al. 1993). The rotation rate is much lower than expected if the core is condensed out of a low-density background medium with angular momentum conserved. The slow core rotation is thought to be due to magnetic braking (Mestel 1985; Mouschovias & Ciolek 1999), which is particularly efficient during the long magnetically subcritical phase of cloud evolution driven by ambipolar diffusion (Basu & Mouschovias 1994). This assumes that the clouds are strongly magnetized to begin with, as envisioned in the standard picture of isolated low-mass star formation (Shu, Adams, & Lizano 1987). Once a magnetically supercritical core develops, it begins to collapse dynamically. It is often assumed that magnetic braking then becomes inefficient, with most of the angular momentum of the core material carried by the collapsing flow into the central star+disk or binary system. However, the typical value of specific angular momentum inferred for dense cores is an order of magnitude higher than the typical binary value, at least in the Taurus cloud complex (see Fig. 8 of Simon et al. 1995 and discussion in § 8.5 of Myers 1995). This suggests that a large fraction of the core angular momentum may still be removed during collapse. The problem of angular momentum redistribution in a collapsing magnetized core thus warrants a closer examination.

The efficiency of magnetic braking depends sensitively on the magnetic field geometry (Mestel 1985). The exact field geometry of a magnetized core on the verge of collapse is difficult to determine without following the cloud evolution in three dimensions. Simplified numerical calculations of cloud evolution driven by ambipolar diffusion have shown, however, that by the time a central density cusp is formed, the mass-to-flux ratio is approximately spatially constant in the supercritical core, and the (volume) density decreases with radius roughly as a power law of r^{-2} (Lizano & Shu 1989; Basu & Mouschovias 1994). This self-similar behavior motivated Li & Shu (1996) to idealize the end state of the ambipolar diffusion-driven core formation as a scale-free configuration supported in part by a large-scale magnetic field and in part by the thermal pressure gradient, with a fixed mass-to-flux ratio and an exact r^{-2} density profile. Such a configuration turns out to be a singular isothermal toroid, for which the magnetic field geometry can be computed exactly (see also Baureis, Ebert, & Schmitz 1989). The field geometry is distorted by fluid motions during the subsequent inside-out collapse.

In a companion paper (Allen, Shu, & Li 2003, hereafter Paper I), we have studied the collapse of magnetized singular isothermal toroids without rotation. The main features of the collapse solution are governed by the anisotropy in the
magnetic forces, which induces in the toroid an evacuated region near the axis, where the plasma \(\beta \) parameter (the ratio of thermal to magnetic energy density) drops below unity (see Fig. 4a of Paper I). As the core collapses from inside out, matter in the magnetically dominated region slides along the field lines toward the equatorial region, creating a dense flattened structure, a pseudodisk (Galli & Shu 1993a, 1993b). The material in the pseudodisk collapses radially toward the central point mass in a magnetically diluted free fall, dragging the footpoints of field lines along with it (see Fig. 4b of Paper I). A highly pinched field configuration (“split monopole”) is produced, with important implications for the magnetic transport of angular momentum from inside to outside. In the presence of rotation, the collapse would lead to a spin-up of the pseudodisk, which is linked magnetically to a more slowly rotating envelope of infalling and nearly static material. We will show in this paper that the twisting of magnetic field lines actually drives a slow outflow during the core collapse, which can remove much of the angular momentum remaining in the infalling pseudodisk. This removal poses a challenge, which can remove much of the angular momentum lost in the realistic situation by nonideal MHD effects.

As the first step toward the dynamical calculations, we will generalize the magnetized singular isothermal toroid solutions of Li & Shu (1996) to include rotation in § 2. These magnetized rotating toroids are then induced to collapse from inside out in § 3, and the collapse is followed numerically in a manner similar to that described in Paper I. The numerical solutions are discussed in § 4, with an emphasis on the efficiency of magnetic braking during core collapse and the implications for the difficulty of forming rotationally supported disks unless significant flux loss appears in the realistic problem at small scales, as is expected theoretically for high-density situations (e.g., Nishi, Nakano, & Umebayashi 1991; Desch & Mouschovias 2001). We end with a brief summary and conclusion in § 4.4.

2. MAGNETIZED ROTATING SINGULAR ISOTHERMAL TOROIDs

2.1. Governing Equations

We consider a rotating, scale-free (self-similar), self-gravitating cloud that is magnetized by a purely poloidal field and in mechanical force balance. The cloud is specified by the mass density \(\rho \), the magnetic flux function \(\Phi \), which determines the poloidal field through \(\mathbf{B} = \nabla \times \left[\Phi/r \sin \theta \right] \mathbf{e}_\varphi \), and the rotational speed \(u_\varphi \), in a spherical polar coordinate system \((r, \theta, \varphi) \). Under the assumption of axisymmetry, the radial and angular dependences of these cloud quantities can be separated on dimensional grounds into

\[
\rho(r, \theta) = \frac{a^2}{2\pi Gr^2} R(\theta),
\]

\[
\Phi(r, \theta) = \frac{4\pi a^2 r}{G^{1/2}} \phi(\theta),
\]

\[
u_\varphi(r, \theta) = au(\theta),
\]

where \(a \) is the isothermal sound speed, which we take to be a constant, and the functions \(R(\theta), \phi(\theta), \) and \(v(\theta) \) describe the angular distributions of the density, magnetic flux, and rotational speed, respectively.

To be in a mechanical force balance, the cloud must satisfy the momentum equation,

\[
\rho \left(\nabla \left(\frac{u^2}{2} \right) + (\nabla \times \mathbf{u}) \times \mathbf{u} \right) - \rho \nabla P - \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} = 0,
\]

where \(P = \rho a^2 \) is the thermal pressure and the velocity \(\mathbf{u} = u_\varphi \mathbf{e}_\varphi \) has only a toroidal component. The gravitational potential \(V \) is related to the density through Poisson’s equation

\[
\nabla^2 V = 4\pi G \rho.
\]

It can be decomposed into a form (Toomre 1982)

\[
V(r, \theta) = 2a^2 (1 + H_0) [\ln r + h(\theta)],
\]

where \(H_0 \) is the fractional overdensity of the (rotating) magnetized configuration over the singular isothermal sphere that was introduced by Li & Shu (1996). This overdensity arises from a combination of magnetization and rotation. The angular function \(h(\theta) \) is equivalent to the function \(P(\theta) \) of Toomre (1982; see his eq. [7]).

Substituting equations (1), (2), (3), and (6) into equations (4) and (5) and eliminating the function \(h(\theta) \) yields two coupled second-order ordinary differential equations (ODEs) for the angular distributions of density, \(R(\theta) \), and magnetic flux, \(\phi(\theta) \).

\[
d \frac{d}{d\theta} \left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{\sin \theta} \frac{d\phi}{d\theta} \right) \right] = 2(\theta - 1 - H_0) \sin \theta,
\]

\[
d \frac{d}{d\theta} \left[\frac{1}{\sin \theta} \frac{d\phi}{d\theta} \right] = R \frac{\sin \theta}{2\phi} (v^2 - 2H_0),
\]

where the angular distribution of rotational speed \(v(\theta) \) remains to be determined. In the nonrotating limit that \(v(\theta) = 0 \), these two coupled ODEs reduce to equations (12) and (13) of Li & Shu (1996).

The eliminated function \(h(\theta) \) that appears in the expression for gravitational potential, equation (6), is related to other functions by

\[
h(\theta) = \frac{1}{2(1 + H_0)} \left(\frac{d}{d\theta} \left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{\sin \theta} \frac{d\phi}{d\theta} \right) \right] \right) \times \left(\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{\sin \theta} \frac{d\phi}{d\theta} \right) - \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{\sin \theta} \frac{d\phi}{d\theta} \right) \right).
\]

2.2. Nonmagnetic Limit

In the nonmagnetic limit \(\phi(\theta) \to 0 \), equation (8) demands that \(v(\theta) = (2H_0)^{1/2} \), i.e., constant rotational speed everywhere. It is easy to verify that the remaining two governing equations, (7) and (9), reduce to equations (15) and (16) of Toomre (1982; see also Hayashi, Narita, & Miyama 1982), with slightly different notations. In this purely rotating case, Toomre (1982) gave an exact solution for the angular distribution of density, which in our notation becomes

\[
R(\theta) = (1 + H_0)^2 \cosh^2 \xi \text{sech}^2 \left[(1 + H_0) \xi \right],
\]

where the new variable, \(\xi \), is related to the polar angle \(\theta \).
through \(\tanh \xi = \cos \theta \). Equation (10) describes the so-called Toomre-Hayashi toroid.

2.3. Generalized Toroid Solutions

In the general case, both the flux function \(\phi(\theta) \) and the rotation speed \(v(\theta) \) are nonzero. This creates a potential problem because fluid parcels along a given field line generally wrap up the field, introducing a toroidal component that redistributes the fluid angular momentum, unless the angular speed \(\Omega(r, \theta) \) is constant along the field line (i.e., matter and magnetic field corotate). The result follows from field freezing, i.e., the induction equation of ideal MHD, which we have yet to consider, coupled with the condition \(\mathbf{v} \cdot \mathbf{B} = 0 \). Applied to an axisymmetric configuration of poloidal field lines, the presence of axial rotation, \(u_\phi = r \Omega \sin \theta \), leads to a generation of a toroidal component at a rate

\[
\frac{\partial B_x}{\partial t} = r \sin \theta \left(B_r \frac{\partial \Omega}{\partial r} + B_\phi \frac{\partial \Omega}{\partial \theta} \right).
\]

(11)

For there to be no toroidal field generation or change, the right-hand side has to be zero, i.e., \(\mathbf{B} \cdot \mathbf{\Omega} = 0 \), which is the requirement of isorotation on field lines (Ferraro 1937). In a self-similar toroid, isorotation requires

\[
v(\theta) = \frac{C \sin \theta}{\phi(\theta)},
\]

(12)

where \(C \) is a constant.

Unfortunately, self-similar magnetic field lines providing nontrivial cloud support extend infinitely far in cylindrical radius \(r \sin \theta \). If \(\Omega \) were to remain a nonzero constant as \(r \sin \theta \to \infty \) on a field line, then the linear rotational speed \(u_\phi = r \Omega \sin \theta \) would increase without bound. The resulting divergent centrifugal force cannot be balanced by any combination of the other self-similar forces in the problem. Differential rotation along a field line is therefore unavoidable if the unbounded cloud is to start in mechanical force balance everywhere. Alternatively, we may say that if \(\Omega \) has a nonzero constant value on a field line, then the quantity \(a/\Omega \) would yield an intrinsic length scale, and we would have to give up the simplifying assumption of self-similarity. We choose to retain exact self-similarity and forego instead isorotation on field lines.

Differential rotation along a field line, \(\mathbf{B} \cdot \mathbf{\Omega} \neq 0 \) at the initial (pivotal) instant \(t = 0 \), extracts a price, and that price is an instantaneous wrapping of the magnetic field for \(t > 0 \) via equation (11). The spontaneous generation of a toroidal field is an inevitable consequence of differential rotation in the problem, so one might wonder why we do not include a systematic toroidal field at the outset in the pivotal state. We do not do so for three reasons. First, it would introduce arbitrary extra parameters into a problem that is already sufficiently complex. Second, axisymmetric models that contain toroidal fields that extend infinitely in the axial direction (e.g., Fiege & Pudritz 2000) generally have undesirable unclosed systems of currents that lead to large-scale separations of electric charge over time. Third, observations of millimeter-wave and far-infrared polarization patterns do not indicate substantive toroidal fields in the noncollapsing portions of molecular and dark clouds (see, e.g., Ward-Thompson et al. 2000 for the case of starless core L1544).

In our problem, the spatially limited generation of a finite level of \(B_z \) slowly throws the cloud out of mechanical equilibrium in the poloidal directions. We regard this feature of the solutions to be less important than the fast poloidal motions that are generated because the pivotal state is unstable to inside-out dynamical collapse. Thus, we focus our attention for \(t > 0 \) on the magnetic torques exerted on exterior material connected to field lines dragged into a rotating collapsing pseudodisk. We find the back-reaction of those torques on the infalling material to be a formidable magnetic brake working against the formation of centrifugally supported disks.

A simple way to introduce the necessary degree of differential rotation into the equilibrium toroid is to multiply the expression for \(v(\theta) \) in equation (12) by an extra factor of \(\sin \theta \), so that

\[
v(\theta) = \frac{C \sin^2 \theta}{\phi(\theta)}.
\]

(13)

We have checked by direct computation that models satisfying equation (13) have finite rotation speeds everywhere, with a moderate angular variation. The above choice is arbitrary, however, and a simpler, esthetically more appealing alternative is a constant rotational speed \(\omega \) independent of \(\theta \). This choice for the pivotal state is suggested by the prepivotal evolutionary calculations of Basu & Mouschovias (1994) including both ambipolar diffusion and rotation. This choice also has the advantage of describing the Toomre-Hayashi toroid in the nonmagnetic limit. Collapse calculations computed with pivotal states satisfying equation (13) yield results that are qualitatively similar to the cases with \(v = \text{const} \). In addition, self-gravitating isothermal configurations with flat rotation curves have a long-respected tradition in observational astronomy and theoretical astrophysics, with generalizations even possible into the relativistic regime (Cai & Shu 2002, 2003) and for nonaxisymmetric equilibria (Syer & Tremaine 1996; Galli et al. 2001).

With \(v = \text{const} = v_0 \), we can now cast the two coupled second-order ODEs (7) and (8) into a set of four first-order ODEs

\[
\frac{dS}{d\theta} = 2 \sin \theta (R - H_0 - 1),
\]

(14)

\[
\frac{dT}{d\theta} = \frac{R \sin \theta}{2 \phi} (v_0^2 - 2H_0),
\]

(15)

\[
\frac{d\phi}{d\theta} = T \sin \theta,
\]

(16)

\[
\frac{dR}{d\theta} = R \left(-\frac{S}{\sin \theta} - \frac{v_0^2 - 2H_0}{\phi} \frac{d\phi}{d\theta} + \frac{v_0^2 \cos \theta}{\sin \theta} \right),
\]

(17)

where the auxiliary functions \(S(\theta) \) and \(T(\theta) \) are defined from equations (16) and (17).

The above equations are supplemented by four boundary conditions, two each on the axis and at the equatorial plane. On the axis \(\theta = 0 \), we demand

\[
\phi \to 0 \quad \text{and} \quad S \equiv \sin \theta \left(-\frac{1}{R} \frac{dR}{d\theta} - \frac{v_0^2 - 2H_0}{\phi} \frac{d\phi}{d\theta} + \frac{v_0^2 \cos \theta}{\sin \theta} \right) \to 0.
\]

(18)
The first condition means that the magnetic flux enclosed by the polar axis vanishes, and the second that the polar axis contains no line mass (see Li & Shu 1996 for a discussion). At the equator plane $\theta = \pi/2$, we impose the conditions

$$\frac{dR}{d\theta} = 0 \quad \text{and} \quad \frac{d\phi}{d\theta} = 0$$

(19)

by symmetry. These translate to the requirements

$$S\left(\theta = \frac{\pi}{2}\right) = 0 \quad \text{and} \quad T\left(\theta = \frac{\pi}{2}\right) = 0.$$

(20)

Numerically, we integrate the set of first-order ODEs from small θ to larger values using a Runge-Kutta method. To initiate the integration, we use the following expansions at small angles that satisfy the boundary conditions near the polar axis listed in equation (18):

$$R = \theta^n (a_0 + a_2 \theta^2 + c_0 \theta^n + \cdots),$$

(21)

$$\phi = \theta^2 \left(b_0 - \frac{b_0}{12} \theta^2 + d_0 \theta^n + \cdots \right),$$

(22)

$$S = \theta^2 \left[-(1 + H_0) + \frac{2a_0}{n+2} \theta^n + \cdots \right],$$

(23)

$$T = 2b_0 + \frac{a_0 (v_0^2 - 2H_0)}{2n_0} \theta^n + \cdots,$$

(24)

where $n = 4H_0 - v_0^2$ is the exponent of the dominant term in the expansion for the density $R(\theta)$. It reduces to the familiar form $n = 4H_0$ for the nonrotating case (Li & Shu 1996).

The constants a_0 and b_0 are free parameters of the expansions. They are determined for any given pair of H_0 and v_0 by shooting the solution toward the equator $\theta = \pi/2$ and matching the equatorial boundary conditions listed in equation (20). Other coefficients that appear in the expansions are related to these two parameters through

$$a_2 = \frac{a_0}{2} \left(1 - \frac{H_0}{3} + \frac{v_0^2}{12} + \frac{n}{4} \right),$$

(25)

$$d_0 = \frac{a_0 (v_0^2 - 2H_0)}{2n_0 (n+2)},$$

(26)

$$c_0 = \frac{a_0 d_0}{b_0} (2H_0 - \frac{v_0^2}{v_0^2}).$$

(27)

Equations (15) and (16) imply that the combination $H_0 - v_0^2/2$ is a measure of the angle-averaged support provided by magnetic fields in comparison with the level provided by thermal pressure. When this combination vanishes, the magnetic field is zero, and the pivotal configuration becomes a Hayashi-Toomre toroid. When this combination is greater than zero, we may introduce a better measure of magnetization, the dimensionless mass-to-flux ratio defined in equation (37) of Li & Shu (1996):

$$\lambda \equiv \int_0^{\pi/2} \frac{R(\theta) \sin \theta}{\phi(\theta)} \ d\theta.$$

(28)

A value of $\lambda = 1$ divides supercritical clouds from subcritical ones. Since our models have no bounding surface pressures, all cases encountered in this paper are supercritical, $\lambda > 1$. For example, the choice $(H_0, v_0) = (0.25, 0.25)$ produces the angular distribution functions displayed in Figure 1. The integral of equation (28) then yields $\lambda = 4.61$, a case considered by observers to be magnetically “weak” (e.g., Crutcher 1999). However, far from satisfying the intuition that magnetic fields are therefore ignorable in the subsequent collapse, the relatively “weak” fields in the problem actually dominate many subsequent phenomena of crucial astrophysical interest, e.g., the formation of large pseudodisks, the transport of angular momentum, and the resulting size of centrifugally supported (“true”) disks.

3. Collapse of Magnetic Toroids

Numerically, we follow the inside-out collapse of the rotating toroid using Zeus2D (Stone & Norman 1992), which solves the ideal MHD equations in three dimensions with an axis of symmetry. Several modifications to the Zeus2D code were needed to follow the toroid collapse; these are discussed in Paper I for the nonrotating case. We refer the reader to that paper for details. The presence of rotation makes it necessary to consider the toroidal component of the magnetic field, which is already included in Zeus2D.

3.1. Collapse of the $H_0 = 0.25$ and $v_0 = 0.25$ Toroid

To illustrate the general features of the collapse solutions, we first consider as a standard for comparison the case with $H_0 = 0.25$ and $v_0 = 0.25$. Toroids with different combinations of H_0 and v_0 will be discussed in the next subsection.

3.1.1. Central Mass Accretion

We first examine the time evolution of the mass accretion rate into the central cell (point mass), which is displayed in Figure 2. To facilitate comparisons with observations, we
have plotted the abscissa in physical time units, adopting a fiducial value for the isothermal sound speed of $a = 0.2 \text{ km s}^{-1}$. The mass accretion rate into the central cell is plotted in units of $(1 + H_0)a^2/G$, and the asymptotic value, 0.80, is presumably the correct self-similar solution (for arbitrary values of a and physical times greater than 0) if one could rid the calculation of numerical artifacts. Among such artifacts is the possession of a strong initial peak in the accretion rate, reminiscent of the peak in the nonrotating case (Fig. 3d of Paper I) induced by an artificial point mass placed at the center to initiate the inside-out collapse. After a short period of adjustment, the central accretion rate quickly settles down to the more or less steady value of $\approx 0.80/(1 + H_0)a^2/G$. The value is only slightly reduced (by $\approx 18\%$) from that of the corresponding nonrotating case (see Paper I). Evidently accretion into the central sink cell has not been significantly impeded by rotation.

3.1.2. Rotating Pseudodisk

The most prominent feature of the nonrotating collapse solution is the formation of a dense flattened pseudodisk in the equatorial region (Paper I), which collapses radially toward the center. Inclusion of a modest amount of rotation does not significantly modify this basic density structure, as shown in Figure 3. In the figure, the initial state is plotted, along with the collapse solution at $t = 2.5 \times 10^{12}$ s after the initiation of collapse when artifacts from the starting conditions have essentially disappeared (see Fig. 2). For the convenience of observers, we have again plotted the results in physical units by using the canonical choice $a = 0.2 \text{ km s}^{-1}$ for low-mass cloud cores in Taurus. (Scalings to different values for a or to different times t occur by the rules given in eq. [3] of Paper I; these rules continue to hold even when u_{ϕ} and B_{ϕ} are nonzero.) The pseudodisk grows in the same way as it does in the nonrotating case. In fact, for the inner collapse region (say, within a reduced radius of $x = r/\alpha t < 0.5$ or a dimensional radius of $r < 2.5 \times 10^{16}$ cm at a time $t = 2.5 \times 10^{12}$ s when $a = 0.2 \text{ km s}^{-1}$), the density distributions of the rotating and nonrotating cases are practically indistinguishable from each other.

The main difference lies in the rotation of the pseudodisk, which is of course nonzero for the rotating case. In Figure 3c, we display contours of constant azimuthal speed. They show clearly that the pseudodisk, defined somewhat arbitrarily as the darkest region in the plot, has a significant rotation, with the (linear) rotational speed peaking in the middle section of the disk in a "ridge" (or a "shell" in three dimensions) that extends from the disk upward into the envelope. The rotational speed has a maximum value $\sim 50\%$ above the sound speed. It falls off to subsonic values in regions both closer to the polar axis and farther away. We note that, despite significant rotation, the motions inside the pseudodisk remain predominantly poloidal, as in the nonrotating case.

Another feature absent from the nonrotating case is the twisting of magnetic field lines. In Figure 3d, we plot contours of constant field pitch angle, defined as $\theta = \tan^{-1}\left(B_{\phi}/B_z\right)$, where B_{ϕ} and B_z are the toroidal and poloidal field strength. Clearly, (differential) rotation has distorted the initial purely poloidal field configuration, although not by much. The maximum twist again occurs in a ridge, roughly where the rotation is fastest, with a pitch angle of order 20%. In the polar region interior to the ridge, the plasma $\beta \ll 1$, and the field lines are essentially rigid against wrapping. Outside the ridge, the collapsing flow has yet to be spun up enough to wrap the field lines appreciably (even though the plasma β is greater than unity and would allow large twists).

A more graphical display of the three-dimensional magnetic field is presented in Figure 4. The view obtained at 60% inclination to the rotational and magnetic axis testifies to the relatively small amount of field wrapping that occurs in the problem because magnetic effects dominate those of rotation in the regions of interest. The pole-on view of the same magnetic field lines allows a clearer look at the top half of the twisted split-monopole configuration within the pseudodisk and permits a visualization of the magnetic torques ($\propto v\times B_{\phi} B_z$, where $v = r\sin\theta$ is the cylindrical radius) that lead to efficient angular momentum transfer and magnetic braking. The lack of significant field winding on scales of the outer pseudodisks and larger may explain why OH maser polarization studies of magnetic field directions in regions of massive star formation show surprising correlation with the large-scale magnetic field of the Milky Way Galaxy on a scale of at least 2 kpc (Reid & Silverstein 1990; Fish & Reid 2003). The implied accompanying loss of angular momentum in the gas during collapse may already have been detected in high-mass star-forming regions by Keto, Ho, & Reid (1987).

In the absence of angular momentum transport, we would have expected the formation of a rotationally supported disk with approximate size $0.25\sqrt{\alpha t}$, or $\sim 5 \times 10^{14}$ cm, at the time shown in Figure 3. No such disk has appeared in the actual calculation, perhaps because of the lack of adequate spatial resolution in the central regions but more likely because of the efficiency of the magnetic braking, as we discuss in the next subsection.

One might also question whether the assumption of field freezing is likely to hold at small scales where densities are...
high and ionization fractions become very low. We address this practical question in § 4; here we merely remark that a substantial layer of the pseudodisk is likely to remain suitably well coupled to magnetic fields almost right to the surface of the central protostar and makes equivocal any answer to the question of whether or not one can expect the formation of true Keplerian disks in the face of efficient magnetic braking.

3.1.3. Outflow, Magnetic Braking, and Angular Momentum Redistribution

A somewhat unexpected feature of the collapse of the rotating toroid is the presence of an outflow region, part of which is already apparent at upper left of Figure 3b from the velocity vectors. The highly distorted velocity contours (particularly that of $v = 1.0$) are another manifestation of its presence. In Figure 5, we show the outflow more clearly over a larger region, including all four quadrants. The outflow has a relatively low speed, comparable to the sound speed a. It is thus unrelated to the famous bipolar molecular outflows of many CO observations. The same statement applies to the low-speed outflows obtained in Tomisaka’s calculations (1998, 2002), although Tomisaka expresses contrary sentiments. Nor are the motions to be confused with the fast-moving hypersonic jet or wind that is thought to be driven from near the forming star (Königl & Pudritz 2000; Shu et al. 2000). Some shaping of such winds, if they start out in a wide-angle configuration (see Shang et al.

Fig. 3.—(a) Initial state of the fiducial $H_0 = 0.25$ and $v_0 = 0.25$ toroid at $t = 0$; (b) collapse solution at time $t = 2.5 \times 10^{13}$ s. The contours of constant density (in units of g cm$^{-3}$) are plotted as dashed lines, with the shades highlighting the high-density regions. The magnetic field lines are plotted as solid lines, with contours of constant β (dash-dotted lines) superposed. The velocity is shown by unit vectors, with its magnitude in units of the sound speed a given by the dotted lines. (c–d) Close-up views of the inner region of (b), showing the contours of constant rotational speed and pitch angle of magnetic field, respectively, in heavy dotted lines.
might occur if, like their low-speed counterparts in Figure 5, they escape preferentially along the low-density axial direction of the ambient medium. In any case, interaction between the fast-moving jet or wind of an embedded protostar with the transonic outflow or infalling envelope appears unavoidable, but we will postpone a treatment of this interaction to a future investigation.

The slow outflow is driven by magnetic braking. As collapse proceeds, matter in the magnetically dominated polar region (where the plasma $\beta < 1$) first slides along field lines toward the equatorial plane to create the dense pseudodisk. The pseudodisk is not an equilibrium structure; its thermal and magnetic forces are too weak to balance the gravitational pull of the central object. As the material in the disk falls inward dynamically, it tends to spin up because of angular momentum conservation. However, the field lines threading the contracting pseudodisk also pass through the more slowly rotating envelope material higher up. The twisting of field lines in the pseudodisk generates a torsional Alfvén wave, which propagates away from the equatorial plane. The wave removes angular momentum from the pseudodisk and deposits it in a small fraction of the envelope material near the $\beta = 1$ line, which moves away as a low-speed wind. The outflow is concentrated in the ridge where the rotation is fastest and the field lines are most twisted (see Figs. 3c and 3d). Closer to the polar axis, the plasma $\beta \ll 1$, and the wrapping of field lines unwinds almost instantaneously; farther away, the field lines are not twisted enough to reverse the collapsing inflow. We will show below that as the field strength increases the slow outflow grows wider and faster.

The angular momentum redistribution due to magnetic braking is shown in Figure 6. In the figure, angular momentum is depleted from the depressed “valley” in the equatorial region because of collapse. In the absence of magnetic braking, all the depleted angular momentum should be deposited in the pseudodisk, where the “mountain” in the figure is. Magnetic braking lowers the height of the mountain considerably, creating a ridge that runs more or less parallel to the polar axis. From the volumes beneath the...
mountain and the ridge, we estimate that more than 90% of the angular momentum that would have accumulated in the pseudodisk is removed by magnetic braking in this particular case, although the fraction depends on the somewhat subjective choice of where the ridge ends and the mountain begins.

For ideal MHD, magnetic braking is very efficient. It removes most of the angular momentum of the infalling material before it enters the central cell. As a result, no centrifugally supported thin disk that we could resolve numerically forms throughout the run of the simulation. We believe that even with increased numerical resolution a rotationally supported disk will not form in the ideal MHD limit under the isothermal assumption. The reason is that in any ideal self-similar calculation that has been carried out correctly the origin must contain a point mass that grows linearly with time, and this mass must trap a magnetic flux with a dimensionless mass-to-flux ratio given by the original ratio \(\frac{C}{21} \). The trapped flux emanates from the center as a split monopole (Galli & Shu 1993b; Li & Shu 1996), which causes the infalling matter to become more magnetically dominant and to slowly rotate as it approaches the origin. The reason for magnetic domination is obvious. That for slow rotation is less so and can be shown mathematically as follows. Written in cylindrical coordinates, \(\varpi = r \sin(\theta, \phi, z) \), the angular momentum equation for our problem reads

\[
\frac{\partial}{\partial t}(\rho j) + \frac{1}{\varpi} \frac{\partial}{\partial \varpi}(\varpi \rho j u_\varpi) + \frac{\partial}{\partial z}(\rho j u_z) = \frac{1}{4\pi} \left[\frac{1}{\varpi} \frac{\partial}{\partial \varpi}(\varpi^2 B_\varpi B_\varphi) + \frac{\partial}{\partial z}(\varpi B_\varphi B_z) \right],
\]

where \(j = \varpi u_\varphi = \varpi^2 \Omega \) is the fluid specific angular momentum. If we integrate over a cylindrical volume of a small radius \(\varpi \) and infinite \(z \)-height and approximate the fluid distribution to be confined to an infinitesimally thin pseudodisk of surface density \(\Sigma \), with \(\rho(\varpi, z, t) = \Sigma(\varpi, t)\delta(z) \), we obtain

\[
\frac{\partial J}{\partial t} + 2\pi \varpi \Sigma j u_{\varpi=0} = 2\pi \varpi \int_{-\infty}^{+\infty} \frac{\varpi B_\varphi B_z}{4\pi} \, dz,
\]

where

\[
J(t) \equiv \int_0^\varpi \Sigma(\varpi, t) j_{\varpi=0} 2\pi \varpi \, d\varpi.
\]
Equation (30) states that the time rate of change of \(J \), the total fluid angular momentum contained within a circle of radius \(\varpi \) in the plane of the pseudodisk, plus the radial flux of fluid angular momentum across the circumference \(2\pi \varpi \) of the same circle, is equal to the torque exerted by the Maxwell stress acting across a cylindrical surface of midplane circumference \(2\pi \varpi \) and infinite height in \(z \). For \(B_z \) satisfying a split-monopole geometry, the torque on the right-hand side of equation (30) can be approximated as a negative constant times a representative mean value of \(\langle |B_z| \rangle \), on the important part of this cylindrical surface.

Equation (11) states, on the other hand, that under the assumption of strict field freezing, the azimuthal field \(B_\varphi \) is generated at the rate

\[
\frac{\partial B_\varphi}{\partial t} = \varpi \left(B_\varphi \frac{\partial \Omega}{\partial \varpi} + B_z \frac{\partial \Omega}{\partial z} \right). \tag{32}
\]

If for small \(\varpi \), \(\Omega \) were to approach anything resembling a Keplerian field of differential rotation \(\Omega \propto \varpi^{-3/2} \) in the presence of a point mass \(M = \dot{M} t \) at the origin, then \(B_z \) would be generated at a highly divergent rate \(\propto \varpi^{-5/2} \). This behavior would lead to divergent negative torques on the right-hand side of equation (30) and rob the interior of angular momentum that it does not possess. The contradiction implies that centrifugally supported disks cannot form in the presence of frozen-in magnetic fields of typical interstellar origin if they are dragged into the central regions of a pseudodisk configuration. In such circumstances, the angular velocity \(\Omega \) is more likely to reach a nearly constant value at small \(\varpi \), saturating the spin-up seen at large \(\varpi \) in the overall gravitational collapse. This combination of behaviors then explains why the linear velocity of rotation reaches a maximum value at some intermediate value of \(\varpi \).

Since exterior gas must ultimately carry away the excess angular momentum transferred to them by magnetic torques, one way out of the dilemma posed above is to suppose that the magnetic fields on the outside can enforce strict isorotation on field lines, so that \(\mathbf{B} \cdot \nabla \Omega = 0 \). In practice this enforcement is possible only in a near-vacuum environment where Alfvén waves can propagate almost at infinite speed. In other words, we can expect braking to become less efficient once the toroidal Alfvén wave breaks out of the cloud boundary, a development neither allowed by our simulation protocol nor theoretically attractive as a general solution to the surprising dilemma of too much outward angular momentum transport.

As we discuss in \S\ 4, we believe a better alternative is ambipolar diffusion and/or magnetic reconnection to decouple eventually the pseudodisk from its attached magnetic field. This decoupling would diminish the braking efficiency and perhaps lead to a growing rotationally supported disk at some point during the gravitational collapse. The attractiveness of this proposal lies in the unified possibility of resolving two problems of long standing in star formation without invoking additional physical processes: the loss of the magnetic flux associated with trapped interstellar fields and the appropriate outward transport of angular momentum in disks and pseudodisks. To wit, an unmagnetized rotating cloud will not collapse directly to a central pointlike mass, whereas an ideally magnetized nonrotating cloud can collapse to a central pointlike mass without a rotationally supported disk. With more realistic physics (see \S\ 4.1), a magnetized rotating cloud may collapse to a protostar while forming a Keplerian disk that could eventually produce a planetary system. Alternatively, if the disk or pseudodisk becomes sufficiently massive in the process, nonaxisymmetric gravitational instabilities may take over to yield binary and/or multiple-star systems (see, e.g., the speculations of Galli et al. 2001).

3.2. Effects of Rotational Speed on Collapse Solution

We now explore, for a fixed value \(H_0 = 0.25 \) for the overdensity parameter, a range of values for the dimensionless rotation rate: \(v_0 = 0, 0.125, 0.25, \) and 0.5. The corresponding dimensionless mass-to-flux ratios \(\lambda \) of the sequence are 4.51, 4.61, 4.94, and 7.15. Thus, the sequence not only represents the effects of increasing rates of rotation on the collapse but also those of a decreasing magnetic field (both as measured against the support provided by thermal pressure). The self-similar results, all obtained by running the simulations long enough to eliminate unwanted transients, are shown in Figure 7.

To begin the discussion, we note that rotation has only a modest effect on the density distribution of the collapse solution. The pseudodisk is slightly thicker for a faster rotation, partially because the infall is retarded more by rotation and partially because of a more vigorous outflow (still very slow by bipolar outflow standards, not to mention stellar jets), which lifts some of the disk material (see Fig. 7d). The increasing strength of outflow as \(v_0 \) increases is most evident in the shape of the constant (total) velocity contour of \(v = 1 \), which gets more distorted for a larger \(v_0 \). The distortion comes mostly from the toroidal component of the velocity, which can be close to the sound speed or larger in the magnetorotationally driven outflow. An interesting feature, related to the strength of the outflow and the strength of the precollapse magnetic field, is that the magnetically dominated region enclosed by the \(\beta = 1 \) line shrinks as \(v_0 \) increases. This effect is seen most clearly in the fastest rotating, most weakly magnetized \(v_0 = 0.5 \) case, in which the enhanced density in the outflow has apparently pushed the \(\beta = 1 \) line close to the polar axis. Note also the pronounced distortions of the density contours and field lines caused by the outflow in this case.

Rotation decreases somewhat the rate of mass accretion onto the central point mass, a trend also present in the calculations of Tomisaka (2002) and Krasnopolsky & Königl (2002). In steady state after the initial transient peak, the accretion rate is reduced, respectively, by about 14%, 18%, and 33% for \(v_0 = 0.125, 0.25, \) and 0.5 in comparison with the nonrotating case \(v_0 = 0 \). The reduction may be due to a combination of slower infall and mass removal in the outflow. However, the numerical outward diffusion of magnetic field exacerbated by artificial viscosity mediating shock waves at the boundaries of the central cell could also help to lower effective mass accretion rates. In any case, for values of \(v_0 \) approaching the upper limit \((2H_0)^{1/2} \), which would make the associated magnetic field in the model go to zero, we expect the central mass accretion rate to go to zero in any axisymmetric calculation that also suppresses gravitational torques. By explicit calculation, we verified the formal vanishing of \(M \) into the central cell for nonmagnetic calculations in which \(v_0 \) had a large enough value (e.g., 0.5) to allow the numerical resolution of a centrifugally supported disk.
3.3. Effects of Magnetic Field Strength on Collapse Solution

For a nonmagnetic Toomre-Hayashi toroid, \(H_0 = \frac{c^2}{v_0^2} \). The axisymmetric collapse of such a toroid should not in principle directly produce a point mass at the center. In practice, the numerical grid is finite, and the central cell experiences some mass accretion, particularly when the rotational speed \(v_0 \) is small. Sooner or later, the numerical artifacts disappear from our simulations as the outward expansion of infall occupies more and more computational cells. The “central” accretion diminishes drastically, when most of the infall material lands on a spatially resolved rotationally supported disk of approximate size \(x_d \approx 0.25v_0^2 \). In an axisymmetric simulation, the accreted material simply accumulates in the disk because all processes of angular momentum removal or redistribution are suppressed in the absence of any magnetic and gravitational torques. Eventually the disks become sufficiently massive that they are gravitationally unstable to axisymmetric transformation into rings (Toomre’s instability [Toomre 1964]; see also Goldreich & Lynden-Bell 1965), a condition that plagues the long-time behavior of some of

Fig. 7.—Plots of self-similar density, \(4\pi G^2 \rho \), velocity field, \(u/a \), and magnetic field, \(BG^{1/2}/a \) lines for \(H_0 = 0.25 \) and \(v_0 = 0, 0.125, 0.25, \) and \(0.5 \). The isodensity contours are plotted as dashed lines, with the shades highlighting the high-density regions. The magnetic field lines are plotted as solid lines, with contours of constant \(\beta \) (dash-dotted lines) superposed. The velocity in every fifth cell is shown by unit vectors, with its magnitude given by the dotted contours. Field lines are not the same across all figures; examine the \(\beta \) contours for field strength. Note that a centrifugally supported disk of dimensionless size \(x_d \approx 0.25v_0^2 = 0.06 \) when \(v_0 = 0.5 \) in a nonmagnetic calculation has not appeared in the magnetized calculation of (d).
To begin our exploration of these effects of magnetic fields, we fix the rotational speed v_0 at the fiducial value of 0.25 and consider four different values of $H_0 = 0.03125$ ($\lambda = \infty$), 0.125 ($\lambda = 10.0$), 0.25 ($\lambda = 4.94$), and 0.5 ($\lambda = 2.77$). The $H_0 = 0.03125$ case satisfies the nonmagnetic relation $H_0 = v_0^2/2$, so the mass-to-flux ratio is infinite. This rotating toroid is initially close to being spherical, containing only $v_0^2/2 \approx 3\%$ more mass than a singular isothermal sphere. It has a ratio of rotational to gravitational energy of $(v_0/2)^2 = 1.56\%$, which is typical of molecular cloud cores (Goodman et al. 1993). Its collapse is followed with Zeus2D, with the magnetic field turned off. The results are shown in Figure 8a. The collapse solution resembles that of

Fig. 8.—Plots of self-similar density, $4\pi G \rho$, velocity field, u/a, and magnetic field, $B G^{1/2} a/t$ lines for $v_0 = 0.25$ and different values of $H_0 = 0.03125$, 0.125, 0.25, and 0.5. The isodensity contours are plotted as dashed lines, with the shades highlighting the high-density regions. The magnetic field lines are plotted as solid lines, with contours of constant β (dash-dotted lines) superposed. The velocity in every fifth cell is shown by unit vectors, with its magnitude given by the dotted contours. Field lines are not the same across all panels; the relative strength of the magnetic field is indicated by the value of the plasma β.
the singular isothermal sphere shown in Figure 6a of Paper I, except that it is very close to the origin, where flattening of the mass distribution because of rotation becomes more prominent. The expected size of the rotationally supported disk, $x_d \equiv \omega_d/\alpha t \approx 0.016$, is too small to be resolved by our grid or the scale of the figure in this particular example. However, by keeping track of the mass and angular momentum that flowed into the central cell, we verified that angular momentum conservation holds to high accuracy in our modified version of the Zeus2D code.

As H_0 increases well beyond $v_0^2/2 = 0.03125$, most of the extra mass over the singular isothermal sphere is supported by magnetic fields rather than rotation. This is the case for $H_0 = 0.125, 0.25$, and 0.5, whose collapse solutions are displayed in Figures 8b–8d. These panels are to be compared with Figures 6b–6d of Paper I, where the corresponding nonrotating collapse solutions are plotted. In all cases, the density distribution shows a prominent pseudodisk, and the velocity field contains a slow outflow component. The former is basically a magnetic structure; it increases in size and becomes more flattened as the field strength (or H_0) increases, as expected. The latter is due to a combination of magnetic fields and rotation. We find that for a given v_0, as the field strength increases, the outflow becomes faster and wider. It also starts at a greater height above the pseudodisk, most likely as a result of a faster propagation speed for the torsional Alfvén wave in the more strongly magnetized case.

In each of the three magnetized cases, the slow outflow removes the bulk of the angular momentum originally associated with the accumulated mass in the central cell. Determining the exact fraction of the angular momentum removed is somewhat uncertain. As a rough estimate, we divided the average specific angular momentum of the central-cell mass by that in the nonmagnetic case. The ratio typically turns out to be of order 10^{-3} or smaller in our best resolved examples and smaller than 0.1 in almost all cases. But in some sense the exercise is pointless, since in a perfectly resolved calculation, in which the central object becomes a point mass, its angular momentum has to go to zero. The physically meaningful number is not how much angular momentum has to be transferred for matter to reach the center, but what is the mass accretion rate achieved in accomplishing this feat, with and without magnetization in the problem. Complicating a definitive answer to the latter question is the numerical instability described already in Paper I that leads to oscillations of the magnetic field configuration as it becomes severely pinched and relaxed by numerically unpinching. Such oscillations become more severe at late times in the simulation (defined by when the innermost parts of the simulation become well resolved) and interfere thus in a fundamental way with a determination of the time-steady value of the central M.

In the interim, we can examine the effects of magnetic braking on rotation a little more directly. In Figure 9, we plot the contours of constant rotational speed for the nonmagnetic and magnetic cases. Note that the nonmagnetic cloud rotates fastest on small scales, and this rotation is braked significantly in all three magnetized cases, with the pseudodisk in the most strongly magnetized case rotating most slowly, as expected. A feature common to all magnetized cases is the strong differential rotation in and around the pseudodisk, with the rotational speed peaking in the middle sector where the outflowing ridge originates. The much smaller rotational speed in the region close to the axis (interior to the ridge) compared with that in the nonmagnetic case provides clear evidence that most of angular momentum is indeed stripped before mass enters the central cell.

4. DISCUSSION AND CONCLUSION

4.1. Magnetic Braking and Keplerian Disk Formation

Formation of centrifugally supported circumstellar disks is a central problem in star and planet formation. The initial distribution of angular momentum in the dense core, which collapses to form the star and disk, and the angular momentum redistribution during the collapse and disk accretion both affect the final outcome. We have shown that almost all the core angular momentum can be removed in a low-speed outflow driven by magnetic braking during the collapse, provided that (1) the core is significantly magnetized and (2) the ideal MHD approximation holds. We now examine these two conditions from a practical point of view.

The degree of magnetization of dense cores of molecular clouds prior to collapse is somewhat uncertain. In the standard scenario for isolated low-mass star formation (Shu et al. 1997; Mouschovias & Ciolek 1999), the cores are envisioned to form out of a magnetically subcritical background cloud (bounded at its surface by significant thermal or ram or turbulent pressure), with the evolution driven by ambipolar diffusion. The cores remain well magnetized, even during the supercritical phase of evolution, when their dimensionless mass-to-flux ratio λ is about 2 (Basu & Mouschovias 1994; Nakamura & Li 2003). This ratio, corresponding to $H_0 - v_0^2/2 \approx 0.5$ (Li & Shu 1996; this paper), is consistent with the field strength obtained for the well-studied cores L1544 (Crutcher & Troland 2000) and B1 (Goodman et al. 1989) from Zeeman measurements, after likely geometric corrections (Crutcher et al. 1994; Shu et al. 1999; Ciolek & Basu 2000). Polarization has been detected in the dust continuum emission from a number of cores (e.g., Ward-Thompson et al. 2000; Matthews & Wilson 2002), which also points to a significant degree of magnetization. In addition, the cores are known to be elongated in general, with a typical aspect ratio of $2:1$ (Myers et al. 1991); the elongation is too large to be induced by rotation and is consistent with the presence of a dynamically important magnetic field (Li & Shu 1996). Even if the molecular clouds are magnetically supercritical to begin with and cores form in them dynamically, it would still be difficult to avoid having an $H_0 - v_0^2/2$ at least as high as 0.2–0.3, which corresponds to a weak field of $\sim 3 \mu G$ threading a slab of interstellar medium of $A_v = 1$. On the basis of these arguments, we believe that the dense cores formed in present-day star-forming clouds should trap enough magnetic flux for magnetic braking to operate efficiently during gravitational collapse, as long as the field remains well coupled to the bulk of the neutral core matter.

Good coupling between the magnetic fields and neutral matter is maintained through collisions with ions in relatively low density regions of a dark molecular cloud core where the primary source of ionization is Galactic cosmic rays. In such regions the timescale for ambipolar diffusion is
typically an order of magnitude longer than the dynamic
timescale,\(^1\) which means that there is little time for magnetic
flux to be redistributed in a dynamically collapsing flow.
Thus, ideal MHD is a reasonable first approximation in col-
lapse calculations. Nishi et al. (1991; see also Desch &
Mouschovias 2001) claim that good coupling is lost above a
volume density of order \(10^{11}\) cm\(^{-3}\). Magnetic decoupling
occurs for densities higher than this critical value, which

\(^1\) In the more turbulent, lower density envelope surrounding a dense
core, the timescale for ambipolar diffusion can be shortened considerably
through field fluctuations (Fatuzzo & Adams 2002). The faster ambipolar
diffusion may affect the angular momentum evolution during the early
phase of core formation.

Fig. 9.—Plots of self-similar density (dashed contours) and rotational speed (solid contours) for \(v_0 = 0.25\) and different values of \(H_0 = 0.03125, 0.125, 0.25,\)
and 0.5. Comparing the rotational contours shows that the pseudodisk rotates more slowly in a more strongly magnetized case.

reduces the efficiency of the magnetic braking. The decoupling density well exceeds the density in most of the pseudo-
disk, which is typically less than \(~10^7\) cm\(^{-3}\) (see the density
contours in Fig. 3 for an example), except in one or two
zones right next to the central cell. Therefore, most of the
angular momentum of the collapsing core material is
already removed by magnetic braking before the braking is
rendered ineffective by decoupling.

Let us now examine the supposition that the gas volume
density will eventually exceed the critical value for
decoupling. While true in rotationally supported protoplanet-
tary disks with physical properties similar to the so-called
"minimum solar nebula," it is not necessarily the case for
the dynamically collapsing pseudodisks, whose surface
densities are much lower and provide less shielding against cosmic-ray ionization. It is an easy matter to estimate the surface density Σ of a flattened configuration accreting axisymmetrically in quasi–steady state \dot{M} at radial speeds that approach free-fall values $(2GM/\varpi)^{1/2}$ onto a central mass M:

$$\Sigma = \frac{\dot{M}}{2\pi \varpi \sqrt{2GM/\varpi}} = 0.16 \text{ g cm}^{-2} \left(\frac{\dot{M}}{10^{-6} M_\odot \text{ yr}^{-1}}\right) \left(\frac{M \varpi}{1 M_\odot 1 \text{ AU}}\right)^{-1/2}.\tag{33}$$

Within a factor of 2 or so, the inner regions of pseudodisks obtained by numerical simulation in this paper satisfy the estimate of equation (33).

Galactic cosmic rays can keep a layer with a surface density of about 100 g cm$^{-2}$ sufficiently ionized to couple well to magnetic fields (Nishi et al. 1991). Thus, in the absence of a magnetized young stellar object (YSO) wind or jet that can sweep out cosmic rays before they penetrate pseudodisks, Galactic cosmic rays will make a pseudodisk with a surface density profile given by equation (33) sufficiently well ionized all the way to the surface of a protostar with characteristic radius $\sim 10^{-2}$ AU. Even after a YSO jet or wind turns on, if the event is accompanied by stellar magnetic activity and the emission of X-rays, the observed levels of X-rays in low-mass protostars are sufficient to keep a layer with the surface density profile of equation (33) marginally well coupled (Glassgold, Najita, & Igea 1997).

Why then should centrifugally supported disks ever arise? Because the coupling to magnetic fields in the pseudodisks, while good, is not perfect. Nonideal MHD effects of two types have been described in the literature that can substantially modify the discussions considered so far in this paper.

Li & McKee (1996) focused on slippage of magnetic flux in the radial direction caused by the effects of ambipolar diffusion. They proposed that the magnetic flux decoupled this way from the mass that enters the star can drive a hydro-magnetic shock against the collapsing inflow. Behind the shock, the accretion flow can be slowed down by a large factor and become magnetically dominated. It is conceivable that magnetic braking would still remove a large fraction of the remaining angular momentum in the slowly contracting postshock region (Krasnopolsky & Königl 2002).

Galli & Shu (1993b) focused on the vertical stratification produced by the highly pinched magnetic field in the pseudodisk as a condition whereby magnetic flux can be lost by reconnection. As we also noted in this paper and Paper I, infall in the pseudodisk tends to produce a split-monopole geometry with reversed poloidal fields across the midplane. In an ideal MHD calculation, the reversed magnetic fields across the midplane are supported by current sheets. In reality, the large electric current density near the midplane dissipates by the presence of nonzero electrical resistivity. The dissipation of these currents corresponds to annihilation of the reversed fields above and below the midplane. The higher magnetic pressures of the surrounding regions will then press toward the middle, leading to further field annihilation. Except for the continued introduction of new interstellar flux by infall into the pseudodisk, the entire magnetic flux threading the pseudodisk could eventually be lost by this reconnection process.

In a quasi-steady state, we therefore expect a “sandwich-like” structure to develop. The “bread” of the sandwich is the well-coupled magnetized regions where angular momentum can be removed at a sufficient pace to allow the matter to spiral essentially unimpeded at dynamical rates toward the central protostar. This bread is the radially inward extension of the original pseudodisk, and it may already have been detected in IRS L1489 by the observations of Boogert, Hogerheijde, & Blake (2002). The “meat” of the sandwich is the part that is sufficiently shielded by the bread against external ionizing radiation to become essentially decoupled from any magnetic fields. This decoupling causes eventual spin-up of the inwardly spiraling material, because of the lack of magnetic braking, and the eventual formation of a centrifugally supported disk. This “true” disk is bounded above and below by the dynamically infalling remnant of the pseudodisk. How massive the meat becomes relative to the bread is, at this point, entirely a matter of speculation. It could vary considerably between regions of isolated star formation, such as Taurus-Auriga, and regions of crowded star formation, such as Orion, because of the difference of ionizing radiation (particulates and photons) associated with star birth activity.

Moreover, like many examples in astrophysics, such as the Sun or other magnetically active stars, the reconnection process may occur not quiescently but explosively and intermittently, in flares. It is interesting to speculate whether such intermittent behavior has anything to do with FU Orionis outbursts. Other effects may enter to further complicate the situation. The flow could become turbulent because of Kelvin-Helmholz instabilities that arise from the velocity shear between the bread and meat parts of the sandwich or because of interchange instabilities in three dimensions that manifest themselves in the pinched magnetic configuration of the split monopole. Under laminar conditions, resistive effects become important in the same density regime in which ambipolar diffusion becomes competitive with the dynamics (Nishi et al. 1991), so a combination of the effects discussed by Galli & Shu (1993b) and Li & McKee (1996) may be operative. All these effects operating together in lightly ionized media, under turbulent conditions, may considerably increase the size scales over which nonideal effects must be considered (Zweibel & Brandenburg 1997a, 1997b).

Challenging nonideal three-dimensional simulations with adaptive mesh refinement may be needed to quantify such possibilities.

4.2. Comparison with Previous Work

Magnetic braking in star formation has been studied by many authors in connection with the long-standing “angular momentum problem.” Most of the early studies were concerned with the relatively low density initial stage of star formation by using semianalytic treatments (e.g., Mestel & Paris 1984; Nakano 1989; see Mouschovias 1990 for a review). Recent numerical calculations have extended the treatment to higher densities associated with the runaway core contraction either prior to star formation (Basu & Mouschovias 1994) or slightly beyond the formation of a central object (Tomisaka 2002). These calculations showed that during the short runaway phase when the central density increases by several orders of magnitude, the angular momentum is nearly conserved because the density increase involves little positional change of fluid elements in both
radial and azimuthal directions (and thus little pinching and twisting of field lines). Our work deals exclusively with magnetic braking in the infall or accretion phase, after the formation of a compact central object. One may naively think that once a molecular cloud core starts to collapse dynamically there should be little time for magnetic braking to operate. Yet we find that the bulk of the angular momentum, if not the total, can be removed during the dynamical collapse, even with a magnetic field of relatively moderate strength. Why is there this difference between previous expectations and current calculations?

There are two key ingredients behind the efficient braking during the accretion phase: (1) the domination of magnetic energy over the rotational energy and (2) the distinct geometry of the magnetic field. The footpoints of the magnetic field lines associated with the matter already landed on the central object are pinned near the origin by accretion, creating a split monopole for the magnetic geometry (see Fig. 3). The split-monopole field lines push on the field lines outside (see also Li & Shu 1997), bending them into an hour glass shape that is conducive to efficient magnetic braking. The enhancement comes from both the greater field strengths due to pinching and the radial fan-out (as opposed to vertical collimation), which lengthens the level arm for magnetic braking. These two effects are not taken into account in previous simple estimates. They are analogous to magnetocentrifugally driven winds (Königl & Pudritz 2000; Shu et al. 2000). Indeed, the slowly moving outflow we find in the collapse solution is fundamentally similar to these winds, except for scale and for the ultimate origin of the field (interstellar, disk dynamo, or stellar dynamo).

Magnetorotationally driven outflows were also found in the collapse calculations of Tomisaka (1998, 2002). These calculations start from infinitely long cylinders with magnetic field lines parallel to the axis. The magnetized cylinder is induced to break up into dense cores by a sinusoidal density perturbation along its length. The subsequent core evolution prior to the formation of a central object is more dynamic than that driven by ambipolar diffusion. It produces a pivotal state at time \(t = 0 \) (when a hydrostatic core starts to form in the calculation) that differs substantially from the singular toroids that we adopted on the basis of ambipolar diffusion calculations. Nevertheless, soon after the appearance of the hydrostatic core, an outflow develops, which Tomisaka attributed to core formation. A more precise cause for the outflow, we believe, is the trapping of a finite amount of magnetic flux (rather than mass) in a small (core) region, which gives rise to the central magnetic monopole responsible for the pinched magnetic geometry that is conducive to outflow driving. For numerical reasons, Tomisaka’s calculations were stopped a short time into the accretion phase, typically \(4 \times 10^{-3} \) times the free-fall time at the center of the initial cylinder beyond the moment of hydrostatic core formation (\(t = 0 \)). During this brief period of time, the outflow appears to have removed most of the angular momentum of the material close to the origin (Tomisaka 2000). In particular, no rotationally supported disk is able to form, consistent with our findings, which, because of their self-similar nature, apply to all times \(t > 0 \).

Formation of rotationally supported disks during the collapse of dense cores formed in strongly magnetized molecular clouds was recently examined by Krasnopolsky & Königl (2002) under the thin-disk approximation. The material in the disk is connected through field lines to an external medium, which brakes the disk rotation with a parameterized efficiency. They find that, in the ideal MHD limit, a rotationally supported disk can form, provided that the braking efficiency is low enough (see their Fig. 3). If the braking is more efficient, the disk angular momentum can be radiated away completely, as shown in their Figure 6. Our calculations and those of Tomisaka (1998, 2002), which treat the dynamics of the material above and below the disk self-consistently, suggest that the braking efficiency is high enough to prevent the rotationally supported disk from forming in a strongly magnetized core, as long as ideal MHD holds. In the presence of ambipolar diffusion, Krasnopolsky & Königl (2002) find that the bulk neutral material can retain a small rotation even in the strong braking case because the neutral component must rotate relative to the charged component to feel the magnetic braking torque (see their Fig. 10). Whether the residual angular momentum is large enough in realistic situations to form a rotationally supported disk well outside the forming star remains to be seen.

To conclude this subsection, we note an interesting feature regarding numerical errors, which are always present, of course, in any simulation. Simulations of self-similar configurations such as ours confer the advantage that although one does not know (in analytically intractable situations) what the exact details of the solution should be, one does know from dimensional considerations how each quantity should scale. This knowledge provides a powerful check on the present simulations, and therefore we have a good handle on the numerical reliability of the results quoted in this paper.

4.3. Observational Implications: The Case of IRAM 04191

Rotation introduces a new feature into our collapse solution, the slow outflow (see also Tomisaka 1998, 2002). Despite its crucial role in angular momentum redistribution, this outflow is unlikely to be observed soon: it is too easily masked by the faster moving bipolar molecular outflows driven by a jet or wind from near the central object. Another prominent feature of the collapse solution, the flattened, high-density pseudodisk in the equatorial region, should be less affected by the bipolar outflow. Indeed, there are many examples of dense structures surrounding deeply embedded YSOs that are elongated perpendicular to the outflows. They can be plausibly interpreted as the pseudodisks formed during the collapse of magnetized toroids or, on a larger scale, the more static toroids themselves, although detailed kinematic studies and direct measurements of the strength and morphology of magnetic fields are needed to strengthen the case. The best-studied circumstellar structure of this type is perhaps the one around the source IRAM 04191 (Belloche et al. 2002), which we discuss in some depth below.

IRAM 04191 is a low-luminosity \((L_{\text{bol}} \sim 0.15 L_{\odot}) \) protostar in the nearby Taurus molecular cloud, surrounded by a massive envelope \((M_{\text{env}} \sim 1.5 M_{\odot}) \) (André, Motte, & Bacmann 1999). This Class 0 source drives a well-developed molecular outflow, as all Class 0 sources do. Perpendicular to the outflow lies a flattened structure that is mapped in both dust continuum and several molecular lines (Belloche et al. 2002). The line study revealed that the flattened structure is infalling at a velocity between \(\frac{1}{2} \) and 1 times the isothermal sound speed, with a substantial amount of rotation.
The (linear) rotational speed increases from \(\sim 0.2a\) at a radius of \(\sim 11,000\) AU to \(\sim a\) at \(\sim 3500\) AU, where \(a \approx 0.2\) km s\(^{-1}\) is the isothermal sound speed at 10 K (see Fig. 12c of Belloche et al. 2002). We identify the increase in rotational speed with the spin-up in the outer part of the pseudodisk as a result of radial contraction under the approximate conservation of specific angular momentum, before significant magnetic braking sets in. In our model, the rotational speed peaks at some radius and then decreases inward in a region of strongly pinched magnetic field that efficiently removes the angular momentum of the accreting flow, as shown in Figure 3c. If the flattened structure of IRAM 04191 is indeed a pseudodisk, then its rotational speed should decrease inward inside \(\sim 3500\) AU according to our model. This is consistent with but not required by the available spectral data, particularly the S-shaped position-velocity diagrams of several molecular species. Higher resolution observations are needed to test the model. The test may be hampered by the freeze-out of molecules onto dust grains in the high-density region near the protostar, as evidenced by the “hole” in the \(\text{NH}_3\) distribution around this source (Wootten et al. 2003).

Interpreting the flattened structure of IRAM 04191 strictly in terms of the models of this paper is not without difficulties. In the fiducial case in which \(v_\theta = 0.25\) (comparable to the 0.2\(a\) seen at 11,000 AU in IRAM 04191), the rotational speed achieves a peak near the observed value \(\sim a\) at a reduced radius \(\sim 0.25\). If this corresponds to the radius of 3500 AU for IRAM 04191, then the collapse would have been initiated \(\sim 3.3 \times 10^7\) yr ago, and the central star would have a mass of \(\sim 0.8\) \(M_\odot\). But the dynamical time for the molecular outflow of IRAM 04191 is only \(\sim 8 \times 10^7\) yr, much shorter than the above estimate. The low luminosity, 0.15 \(L_\odot\), of the central source also suggests a fairly small mass for the central star, accreting gas at not much higher than the standard rates for Taurus (see, e.g., Adams, Lada, & Shu 1987).

A flawed way to reconcile theory and observation, within the context of quasi-steady flow, is to postulate a significant temporal offset between the pivotal instant \(t = 0\) and the appearance of a powerful outflow in the system. Such an offset requires, for example, some way to store infalling material (from a pseudodisk) in a rotationally supported disk without producing either much accretion luminosity or an outflow for a duration approaching \(10^7\) yr. This task is not easy to do without inducing fierce nonaxisymmetric gravitational instabilities that would undermine the assumption of little mass accretion into the central regions. Moreover, the observational limit claimed for the mass or size of any disk in IRAM 04191 is less than \(\sim 10^{-3}\) \(M_\odot\) or 10 AU. Efficient magnetic braking has evidently prevented a more massive or larger disk from forming close to the star, and such braking works against the idea of appreciable mass storage in a disk.

A better solution might be to suppose that, in addition to an offset between the pivotal instant and the onset of a wind, accretion onto the central source is time variable, with FU Orionis outbursts punctuating quiescent periods of relative calm (Hartmann, Kenyon, & Hartigan 1993). In such a picture, IRAM 04191 has just recently experienced such an outburst (accounting for the associated powerful molecular outflow) and has now faded considerably in its accretion luminosity (accounting for the low luminosity currently). Oscillatory inflow into the central regions in the presence of steady infall from the pseudodisk is a common bane of our simulations (see the discussion in Paper I). It remains to be seen whether the numerical artifact of field pinching and unpinching observed in the simulations might not have their physical analogs in more realistic calculations performed with nonideal MHD.

Another plausible option invokes a preexisting contracting and rotating toroid to explain the observations of the regions at a few thousand AU and beyond. Subsonic cloud contraction prior to the formation of a formal density singularity for \(r < 0\) is consistent with the observed motions in both IRAM 04191 and the well-studied starless core L1544 (Tafalla et al. 1998). As discussed already in Paper I, subsonic contraction of the requisite magnitude might be initiated by the dissipation of turbulent support in dense molecular cloud cores (Myers 1999) or result from ambipolar diffusion (e.g., Ciolek & Basu 2000). We have performed simulations of the fiducial (rotating and magnetized) case with an initial uniform radial inflow \(u_r\) equal to half the sound speed \(a\). As we found in Paper I for the example without rotation, the results look like the configuration started without initial radial motion, except that the density profiles next to the axis are partially filled in by the additional inflow and the central accretion rate is increased by about a factor of 2.

4.4. Conclusion

To summarize, we have studied numerically the inside-out collapse of rotating magnetized singular isothermal toroids. We find that a pseudodisk forms, just as in the nonrotating case, through which most of the core material is accreted. The pinched magnetic field in the pseudodisk removes most of the angular momentum of the accreted matter and deposits it in a low-speed wind. The efficient magnetic braking during the protostellar accretion phase has important implications for the formation of rotationally supported disks that need to be pursued with nonideal MHD calculations.

The complementary side to this phenomenon is the discovery of an extremely simple and efficient mechanism of angular momentum transport that allows direct accretion of extended rotating material onto relatively compact objects without the necessary concomitant formation of a standard viscous accretion disk. Whether this mechanism has anything to do, for example, with the minispiral that seems to be feeding ionized gas, with low radiative efficiency, into the massive black hole at the center of our own Galaxy (Lo & Claussen 1983) remains to be seen. We have speculated in this paper that the process, with the inclusion of nonideal MHD effects, opens new vistas by which the two classical conundrums of star formation discussed long ago by Mestel and Spitzer, the angular momentum problem and the magnetic flux problem, might be resolved, perhaps simultaneously, in the disks and pseudodisks surrounding newly formed stars.

We thank A. Königl and R. Krasnopolsky for useful correspondence. Support for this work was provided in Taiwan in part by grants from Academia Sinica and the National Science Council, and in the United States by grants from the National Science Foundation and NASA. The authors would like to thank NSC grant NSC91-2112-M-007-029 for support in the publication of this work.
REFERENCES

Adams, F. C., Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788
Allen, T., Shu, F. H., & Li, Z.-Y. 2003, ApJ, 599, 351 (Paper I)
André, P., Motte, F., & Bacmann, A. 1999, ApJ, 513, L57
Basu, S., & Mouschovias. T. 1994, ApJ, 432, 720
Baureis, P., Ebert, R., & Schmitz, F. 1989, A&A, 225, 405
Belloche, André, P., Despois, D., & Blinder, S. 2002, A&A, 393, 927
Boogert, A. C. A., Hogerheijde, M. R., & Blake, G. A. 2002, ApJ, 568, 761
Cai, M. J., & Shu, F. H. 2002, ApJ, 567, 477
———. 2003, ApJ, 583, 391
Ciolek, G. E., & Basu, S. 2000, ApJ, 529, 925
Crutcher, R. M. 1999, ApJ, 520, 206
Crutcher, R. M., Mouschovias, T. Ch., Troland, T. H., & Ciolek, G. E. 1994, ApJ, 427, 839
Crutcher, R. M., & Troland, T. H. 2000, ApJ, 537, L139
Desch, S. J., & Mouschovias, T. 2001, ApJ, 550, 314
Fatuzzo, M., & Adams, F. 2002, ApJ, 570, 210
Ferraro, V. C. A. 1937, MNRAS, 97, 458
Fiege, J. D., & Pudritz, R. E. 2000, ApJ, 534, 291
Fish, V. L., & Reid, M. J. 2003, ApJ, submitted
Galli, D., & Shu, F. H. 1993a, ApJ, 417, 220
———. 1993b, ApJ, 417, 243
Galli, D., Shu, F. H., Laughlin, G., & Lizano, S. 2001, ApJ, 551, 367
Glassgold, A. E., Najita, J., & Igea, J. 1997, ApJ, 480, 344
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 97
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528
Goodman, A. A., Crutcher, R. M., Heiles, C., Myers, P. C., & Troland, T. H. 1989, ApJ, 338, L61
Hartmann, L., Kenyon, S. J., & Hartigan, P. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson: Univ. Arizona Press), 497
Hayashi, C., Narita, S., & Miyama, S. M. 1982, Prog. Theor. Phys., 68, 1949
Keto, E. R., Ho, P. T. P., & Reid, M. J. 1987, ApJ, 323, L117
Königl, A., & Pudritz, R. E. 2000, in Protostars and Planets IV, ed. V. Mannings, A. Boss, & S. Russell (Tucson: Univ. Arizona Press), 759
Krasnopolsky, R., & Königl, A. 2002, ApJ, 580, 987
Li, Z.-Y., & McKee, C. F. 1996, ApJ, 464, 373
Li, Z.-Y., & Shu, F. H. 1996, ApJ, 472, 211
———. H. 1997, ApJ, 475, 237
Lizano, S., & Shu, F. H. 1989, ApJ, 342, 834
Lo, K. Y., & Claussen M. J. 1983, Nature, 306, 647

Matthews, B. C., & Wilson, C. D. 2002, ApJ, 574, 822
Mestel, L. 1985, in Protostars and Planets II, ed. D. C. Black & M. S. Matthews (Tucson: Univ. Arizona Press), 320
Mestel, L., & Paris, R. B. 1984, A&A, 136, 98
Mouschovias, T. Ch. 1990, in The Physics of Star Formation and Early Stellar Evolution, ed. C. J. Lada & N. D. Kylafis (Dordrecht: Kluwer), 449
Mouschovias, T. Ch. & Ciolek, G. 1999, in The Origins of Stars and Planetary Systems, ed. C. Lada & N. Kylafis (NATO ASI Ser. C, 540; Dordrecht: Kluwer), 305
Myers, P. 1995, in Molecular Clouds and Star Formation, ed. C. Yuan & J. You (Singapore: World Scientific), 47
Myers, P. C. 1999, in The Origins of Stars and Planetary Systems, ed. C. Lada & N. Kylafis (NATO ASI Ser. C, 540; Dordrecht: Kluwer), 67
Myers, P. C., Fuller, G. A., Goodman, A. A., & Benson, P. J. 1991, ApJ, 376, 561
Nakamura, F., & Li, Z.-Y. 2003, ApJ, 594, 363
Nakano, T. 1989, MNRAS, 241, 495
Nishi, R., Nakano, T., & Umebayashi, T. 1991, ApJ, 368, 181
Reid, M. J., & Silverstein, E. M. 1990, ApJ, 361, 483
Shang, H., Glassgold, A. E., Shu, F. H., & Lizano, S. 2002, ApJ, 564, 853
Shu, F. H., Adams, F. C., & Lizano, S. 1987, A&A, 25, 23
Shu, F. H., Allen, A., Shang, H., Ostriker, E. C., & Li, Z. Y. 1999, in The Origin of Stars and Planetary Systems, ed. C. Lada & N. Kylafis (NATO ASI Ser. C, 540; Dordrecht: Kluwer), 193
Shu, F. H., Najita, J., Shang, H., & Li, Z.-Y. 2000, in Planets and Protostars IV, ed. V. Mannings, A. Boss, & S. Russell (Tucson: Univ. of Arizona Press), 789
Simon, M., et al. 1995, ApJ, 443, 625
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 753
Syer, D., & Tremaine, S. 1996, MNRAS, 281, 925
Tafalla, M., Mardones, D., Myers, P. C., Caselli, P., Bachiller, R, & Benson, P. J. 1998, ApJ, 504, 900
Tomisaka, K. 1998, ApJ, 502, L163
———. 2000, ApJ, 528, L41
———. 2002, ApJ, 575, 306
Toomre, A. 1964, ApJ, 139, 1217
———. 1982, ApJ, 259, 535
Ward-Thompson, D., et al. 2000, ApJ, 537, L135
Zweibel, E. G., & Brandenburg, A. 1997a, ApJ, 478, 563
———. 1997b, ApJ, 485, 920