O. G. Styrt

Orthogonality graphs of matrices over commutative rings

The paper is devoted to studying the orthogonality graph of the matrix ring over a commutative ring. It is proved that the orthogonality graph of the ring of matrices with size greater than 1 over a commutative ring with zero-divisors is connected and has diameter 3 or 4; a criterion for each value is obtained. It is also shown that each of its vertices has distance at most 2 from some scalar matrix.

Key words: associative ring with identity, commutative ring, zero-divisor, matrix ring, zero-divisor graph, orthogonality graph.

§ 1. Introduction

Researching properties of associative rings in terms of graphs of some naturally occurring algebraic binary relations takes an important place in modern mathematics. Thus, a zero-divisor graph was first defined in 1986 by Beck [1] for a commutative ring. Its vertices were all zero-divisors, and edges connected exactly all pairs of distinct elements giving zero in product. But since 1999 one uses its more convenient interpretation introduced by Anderson and Livingston in [2] via excluding the zero element of the ring from its vertex set. It is also proved in [2] that the zero-divisor graph of a commutative ring is connected and has diameter at most three; in the former treatment of the graph these statements would be trivial. A number of further papers also studies various characteristics of the zero-divisor graph: center and radius [8], concepts of planarity [4] and uniqueness of determining the ring by the graph up to an isomorphism [3, 5]. For non-commutative rings, there are several types of graphs defined by zero-divisors:
The main results for orthogonality graphs of non-commutative rings found by now concern primarily matrix rings. Thus, in the case of the basic ring being a skew field, the following properties of the orthogonality graph of the \((n \times n)\)-matrix ring are obtained: once \(n = 2\), it is disconnected and all its connected components have diameters at most 2, and, once \(n \geq 3\), it is connected and has diameter 4. These statements are proved in 2014 for a field [9] and later, in 2017 — for an arbitrary skew field [10]; they can also be easily generalized to integral domains (by reducing to the field of fractions).

In this paper, there will be the orthogonality graph of the matrix ring over a commutative ring with zero-divisors studied and the following main result proved.

Theorem 1.1. Let \(R\) be a commutative ring with zero-divisor set \(Z_R \neq \{0\}\). Then, for any \(n > 1\), the orthogonality graph of the ring of \((n \times n)\)-matrices over \(R\) is connected and has diameter 3 or 4, the value 3 being equivalent to the relation

\[
\forall a_0 \in Z_R \quad \exists a_1, a_2 \in R \setminus \{0\} \quad \forall i, j \in \{0, 1, 2\}, \ i \neq j:\ a_i a_j = 0, \quad (1.1)
\]

and each of its vertices has distance at most 2 from some scalar matrix.

Theorem 1.2. Let \(r\) be the radius of the graph under conditions of Theorem 1.1. Then

1) \(2 \leq r \leq 4\);
2) if (1.1) holds, then \(r \in \{2; 3\}\);
3) \(r = 2 \) if and only if there exists an element \(c \in R \setminus \{0\} \) such that
\[\forall a \in Z_R \quad \text{Ann}(c) \cap \text{Ann}(a) \neq 0. \tag{1.2} \]

§ 2. Auxiliary agreements

In the paper, the following notations and agreements will be used.

1) Set-theoretical:
- While listing elements of a disordered set, figured brackets are used. As for elements of an ordered tuple, they are listed in round brackets and can be repeated.
- \(D^n := D \times \ldots \times D \) is the \(n \)-ary Cartesian power of a set \(D \).

2) General algebraic:
- All rings considered are supposed to be associative and with identity.
- \(R \) is an arbitrary ring.
- For any subset \(D \subset R \), define \(D^* := D \setminus \{0\} \). In particular, by \(R^* \) denote the subset of all nonzero (not necessarily invertible as in standard interpretation) elements of \(R \).
- An ideal in \(R \) is proper if it does not equal \(R \).
- \(M_{m \times n}(R) \) is the \(R \)-module of \((m \times n)\)-matrices over \(R \); \(M_n(R) \) is the ring \(M_{n \times n}(R) \). If in the brackets the ring is replaced with some of its subsets \(D \), then the subset of all matrices with entries from \(D \) is meant.
- \(0_{m \times n}^n \) is the zero \((m \times n)\)-matrix; \(0^n_n := 0 \); \(E_n \) is the identity \((n \times n)\)-matrix; \(J_r \) is the Jordan cell of size \(r \) with eigenvalue 0. If the matrix sizes are clear from the context, then the indices can be omitted.
- \(E_{kl} \) is the matrix unit \((a_{ij})\), \(a_{ij} := \delta_{ki} \delta_{lj} \).
- For a square matrix \(A \) over a commutative ring: \(\tilde{A} \) is its cofactor matrix; \(\hat{A} := (\tilde{A})^T \).
- If \(A = (a_{k_1, k_2}) \in M_{n_1 \times n_2}(R) \), \(P_i \in \{1, \ldots, n_i\}^{m_i} \) \((i = 1, 2)\), then \(A^{P_2}_{P_1} \) is the matrix \((b_{l_1, l_2}) \in M_{m_1 \times m_2}(R)\), \(b_{l_1, l_2} := a_{k_1(l_1), k_2(l_2)} \), where \(k_i(l_i) \) is the \(l_i \)-th element of \(P_i \). If numbers are repeated neither in \(P_1 \), nor in \(P_2 \), then \(A^{P_2}_{P_1} \) is the submatrix of \(A \) with row and column numbers from \(P_1 \) and \(P_2 \) respectively.

3) On zero-divisor types:
- An element \(a \in R \) is called
 - a left (resp. right) zero-divisor if there exists an element \(b \in R^* \) such that \(ab = 0 \) (resp. \(ba = 0 \));
 - a zero-divisor if it is either left or right zero-divisor;
 - a two-sided zero-divisor if it is both left and right zero-divisor.

At that,
– in a commutative ring, the concepts of all zero-divisor types are equivalent;
– zero is a two-sided zero-divisor; if there are no other zero-divisors, then \(R \) is called a ring without zero-divisors.

• An integral domain is a commutative ring without zero-divisors.

4) From general graph theory:
• All graphs considered are assumed to be undirected.
• \(\Gamma = (V, E) \) is an arbitrary graph; \(V \) and \(E \) are its vertex and edge sets respectively. In doing so, one can (usually with more convenience) define \(E \) via a symmetric binary relation on \(V \).
• Two vertices are adjacent if they are connected with an edge.
• A subgraph is a graph with vertex set \(V' \subset V \) and, unless otherwise stated, with the same binary relation restricted on \(V' \).
• A path is a sequence of vertices where any two neighbor ones are adjacent.
• The length of a path is the number of its edges.
• The distance between vertices \(v \) and \(w \) (not. \(d(v, w) \)) is the minimum of lengths of paths between them; if they do not exist, then set \(d(v, w) := +\infty \); the sign is obvious in this context and therefore will be omitted. Clearly, \((d(v, w) = 0) \iff (v = w) \).
• The distance from a vertex \(v \) to a subset \(W \subset V \) (not. \(d(v, W) \)) is the number
 \[
 \min\{d(v, w): w \in W\}.
 \]
• \(d(v) := \sup\{d(v, w): w \in W\} \ (v \in V) \).
• The diameter of \(\Gamma \) is the number
 \[
 \text{diam}(\Gamma) := \sup\{d(v, w): v, w \in V\} = \max\{d(v): v \in V\}.
 \]
• The radius of \(\Gamma \) is the number
 \[
 \text{rad}(\Gamma) := \min\{d(v): v \in W\}. \quad (2.1)
 \]
 Clearly, \(\text{rad}(\Gamma) \leq \text{diam}(\Gamma) \leq 2 \cdot \text{rad}(\Gamma) \).

• A graph is connected if there exists a path between any two of its vertices.

Remark. It is easy to see that a graph with finite diameter is connected. The converse fails; an example is the set of positive integers with the neighborhood relation.

5) On special graphs in algebraic structures:
• \(O(R) \) is the orthogonality graph of the ring \(R \) (for a commutative ring it is the same as the zero-divisor graph).
• Vertices of \(O(R) \) are all nonzero two-sided zero-divisors of \(R \); the orthogonality relation \((xy = yx = 0) \) is written as \((x \perp y) \); \(O_R(x) \) is the set of all vertices orthogonal to \(x \).

Possibly \(\infty \).
§ 3. Proofs of the results

Consider an arbitrary commutative ring R. Denote by $\text{Ann}(a)$ ($a \in R$) the ideal \(\{ x \in R : ax = 0 \} \) and by Z_R the set \(\{ a \in R : \text{Ann}(a) \neq 0 \} \) of all zero-divisors. Further, let S be the ring $M_n(R)$ ($n > 1$). Via the natural ring embedding $R \to S$, $a \to aE$, identify R with the subring $RE \subset S$ (and, thus, $O(R)$ — with a subgraph of the graph $O(S)$). For $A \in S$, set $I_A := \text{Ann}(\det A) \triangleleft R$.

The graph $O(R)$ is connected and has diameter at most 3 (see Theorem 2.3 in [2, § 2]). Besides, if R is a skew body, then

1) once $n = 2$, the graph $O(S)$ is disconnected and all its connected components have diameters ≤ 2;
2) once $n \geq 3$, the graph $O(S)$ is connected and has diameter 4.

These results are obtained in [9, § 4] for fields (Lemma 4.1 and Theorem 4.5 respectively), and in [10, § 2] are generalized to arbitrary skew-fields (Lemma 2.2 and Theorem 2.1 respectively). They are also shifted to integral domains (by reducing to the field of fractions).

Theorem 3.1. For any matrix $A \in S$ and proper ideal $I \triangleleft R$ containing $\det A$, there exists a matrix $B \in S \setminus (M_n(I))$ such that $AB, BA \in M_n(I)$.

□ For $m \in \mathbb{N}$, set $Q_m := \{1, \ldots, m\}$ and $P_m := \{1, \ldots, m\} \in \mathbb{N}^m$.

Consider all triples (k, P', P'') ($k \geq 0$, $P', P'' \in (Q_n)^k$) satisfying the relation $\det(A_{P''}^{P'}) \notin \notin I$. For each of them, numbers are repeated neither in P_1, nor in P_2, and, by condition, $k < n$. Besides, at least one of such triples exists: for $k := 0$ and empty tuples P', P'', the corresponding (0×0)-matrix has determinant $1 \notin I$. Hence, we can fix one of these triples with the largest possible k, and then $0 \leq k < n$, $m := k + 1 \in Q_n$.

Case 1. $P' = P'' = P_k$.

By construction, $\det(A_{P_k}^{P_k}) \notin I$. Further, set $C := A_{P_m}^{P_m} \in M_m(R)$,

$$B := \begin{pmatrix} \tilde{C} \\ 0_{m-m} \\ 0_{n-m} \end{pmatrix} \in S.$$

Then $b_{m,m} = \det(A_{P_k}^{P_k}) \notin I$ implying $B \notin M_n(I)$. Show that $AB, A^T B^T \in M_n(I)$, i.e. that, for any $p, q \in Q_n$, the matrix entries $(AB)_{p,q}$ and $(A^T B^T)_{p,q}$ belong to I. Assume that $p \in Q_n$ and $q \in Q_m$ (otherwise $(AB)_{p,q} = (A^T B^T)_{p,q} = 0$). Let $P \in (Q_n)^m$ be the tuple obtained form P_m by changing the q-th element with p. Due to maximality of k and the inequality $m > k$, we have $\det(A_{P_m}^{P_m}), \det(A_{P_m}^{P_m}) \in I$,

\[
(AB)_{p,q} = \sum_{i \in Q_n} (a_{p,i} b_{i,q}) = \sum_{i \in Q_m} (a_{p,i} (\tilde{C})_{i,q}) = \sum_{i \in Q_m} (a_{p,i} (\tilde{C})_{q,i}) = \det(A_{P_m}^{P_m}) \in I;
\]

\[
(A^T B^T)_{p,q} = \sum_{i \in Q_n} ((A^T)_{p,i} (B^T)_{i,q}) = \sum_{i \in Q_m} (a_{i,p} (\tilde{C})_{i,q}) = \det(A_{P_m}^{P_m}) \in I.
\]
Thereby, it is proved that $AB, (BA)^T = A^T B^T \in M_n(I)$ implying $BA \in M_n(I)$.

Case 2. $P', P'' \in (Q_n)^k$ are arbitrary tuples.

In each of the tuples P' and P'' all numbers are distinct. Hence, via suitable permutations of rows and columns, one can obtain from A a matrix A_0 satisfying Case 1 with the same k. By proved above, there exists a matrix $B_0 \in S \setminus (M_n(I))$ such that $A_0 B_0, B_0 A_0 \in M_n(I)$. At that, there exist monomial (therefore, invertible) matrices $C_1, C_2 \in S$ such that $A = C_1 A_0 C_2^{-1}$. Hence, via suitable permutations of rows (resp. columns), and, consequently, $B := C_2 B_0 C_1^{-1} \in S \setminus (M_n(I)), AB = C_1 (A_0 B_0) C_2^{-1} \in M_n(I), BA = C_2 (B_0 A_0) C_1^{-1} \in M_n(I)$. \hfill ■

Corollary 3.1. If $A \in S$ and $c \in I_A^*$, then, in the subset $(cS)^* \subset S$, there exists an element orthogonal to A.

By condition, $I := \text{Ann}(c) \trianglelefteq R$ is a proper ideal containing $\det A$. According to Theorem 3.1, there exists a matrix $B \in S \setminus (M_n(I))$ such that $AB, BA \in M_n(I)$. Thus, $C := cB \neq 0$ and $c(AB) = c(BA) = 0$, i.e. $C \in (cS)^*$ and $AC = CA = 0$. \hfill ■

Lemma 3.1. For any $A \in S$, the following conditions are equivalent:

1) $\det A \in Z_R$;
2) $I_A \neq 0$;
3) in S^*, there exists an element orthogonal to A;
4) A is a two-sided zero-divisor;
5) A is a zero-divisor.

The implications 1) \iff 2) and 3) \implies 4) \implies 5) obviously follow from definitions, and the implication 2) \implies 3) from Corollary 3.1.

Prove the implication 5) \implies 1). Suppose that, without loss of generality, A is a left zero-divisor, i.e. that $AB = 0$ for some $B \in S^*$. Then $\bar{A} A = (\det A) E$ implying $(\det A) B = \bar{A} AB = 0$. It remains to use non-triviality of B. \hfill ■

Corollary 3.2. All zero-divisors in S are two-sided.

Let $Z_S \subset S$ be the subset of all elements $A \in S$ satisfying each of the equivalent conditions 1)–5) of Lemma 3.1, i.e. the set of all zero-divisors of the ring S. Then the vertex set of the graph $O(S)$ is Z_S^*.

Further, we will assume that $Z_R^* \neq \emptyset$.

Statement 3.1. If $I \trianglelefteq R$ and $I \neq 0$, then $Z_R \cap I \neq \{0\}$.

Suppose that $Z_R \cap I = \{0\}$. There exist elements $b \in I^*$ and $c \in Z_R^*$; then $bc \in Z_R \cap I = \{0\}$. So, $bc = 0 \neq c$ that implies $b \in Z_R \cap I^* = \emptyset$, a contradiction. \hfill ■

Lemma 3.2. If, for a subset $D \subset S$, the ideal $I := \bigcap_{A \in D} I_A \trianglelefteq R$ is nonzero, then there exist elements $b \in Z_R^*$ and $C_A \in S^*$, $A \in D$, such that $b E \perp C_A \perp A$ ($A \in D$).
According to Statement 3.1, the ideal \(I \) contains an element \(c \in Z_R \). Then \(bc = 0 \) where \(b \in Z_R \). Further, for any \(A \in D \), we have \(c \in I_A \) and, by Corollary 3.1, there exist an element \(C_A \in (cS)^* \) orthogonal to \(A \); at that, \(bC_A \in bcS = 0 \), \(bE \perp C_A \).

\[\square \]

Corollary 3.3.

1) For any \(A \in Z_S^* \), we have \(d(A, O(R)) \leq 2 \).
2) If \(A_1, A_2 \in Z_S^* \) and \(I_{A_1} \cap I_{A_2} \neq 0 \), then \(d(A_1, A_2) \leq 4 \).

\[\square \]

Lemma 3.3. If \(A_i \in Z_S^* \), \(c_i \in I_{A_i}^* \) \((i = 1, 2)\) and \(c_1 c_2 = 0 \), then \(d(A_1, A_2) \leq 3 \).

\[\square \]

By Corollary 3.1, for each \(i = 1, 2 \), there exists an element \(C_i \in (c_i S)^* \) such that \(C_i \perp A_i \). In this case, \(C_1 C_2, C_2 C_1 \in c_1 c_2 S = 0 \), \(C_1 \perp C_2 \).

\[\square \]

Definition. We will say that an ideal \(I \subset R \) does not have zero-divisors if \(I^* I^* \neq 0 \), i.e. if the ring \(I \) does not have zero-divisors.

Lemma 3.4. If \(A_1, A_2 \in Z_S^* \) and \(d(A_1, A_2) > 3 \), then \(I_{A_i} \) \((i = 1, 2)\) is the same ideal without zero-divisors.

\[\square \]

According to Lemma 3.3, \(I_{A_1}^* I_{A_2}^* \neq 0 \). It remains to prove that \(I_{A_1} = I_{A_2} \).

Suppose that \(I_{A_1} \neq I_{A_2} \). Without loss of generality, assume that there exists an element \(c \in I_{A_1} \setminus I_{A_2} \). Setting \(a := \det A_2 \), we have \(I_{A_2} = \text{Ann}(a) \), \(b := ca \in I_{A_1}^* \), and \(bA_2 = ca I_{A_2} = 0 \) implying \(bI_{A_2}^* \subset \{0\} \cap (I_{A_1}^* I_{A_2}^*) = \emptyset \), \(I_{A_2} = \emptyset \), \(I_{A_2} = 0 \), a contradiction.

Theorem 3.2. The graph \(O(S) \) is connected and has diameter at most 4.

\[\square \]

Suppose that there exist elements \(A_1, A_2 \in Z_S^* \) satisfying the inequality \(d(A_1, A_2) > 4 \). By Lemma 3.4, \(0 \neq I_{A_1} = I_{A_2} = I_{A_1} \cap I_{A_2} \) that contradicts with Corollary 3.3.

Theorem 3.3. We have \(\text{diam}(O(S)) \geq 3 \), the strict inequality being equivalent to the existence of an ideal \(\text{Ann}(a) \subset R \) \((a \in Z_R)\) without zero-divisors.

\[\square \]

Similarly with examples from [9, 10] giving lower estimates of the diameter, for an arbitrary \(a \in Z_R \), set \(I := \text{Ann}(a) \subset R \) and \(A := J_n + ae_{n1} \in S \). Note that

- \(A, A^T \in Z_S^* \), \(O_S(A) = I^* E_{1n}, O_S(A^T) = I^* E_{n1}; \)
- \(a_{12} = 1 \neq a_{21}, (AA^T)_{11} = 1 \) and \(O_S(A) \cap O_S(A^T) = \emptyset \), that implies \(d(A, A^T) \geq 3 \);
- if \(I^* I^* \neq 0 \), then \((O_S(A))_1(O_S(A^T)) = (I^* I^*)_{11} \neq 0 \) and, hence, \(d(A, A^T) \geq 4 \).

Due to mentioned above, \(\text{diam}(O(S)) \geq 3 \), the strict inequality following from the existence of an ideal \(\text{Ann}(a) \subset R \) \((a \in Z_R)\) without zero-divisors. Conversely, in the case of the strict inequality, by Lemma 3.4, for some elements \(A \in Z_S \) and \(a := \det A \in Z_R \), the ideal \(I_A = \text{Ann}(a) \subset R \) does not have zero-divisors.

Now the main Theorem 1.1 follows from Theorems 3.2 and 3.3, and Corollary 3.3. It implies (see (2.1)) the statements 1) and 2) of Theorem 1.2. Let us prove 3).

\[\square \]

In general, without identity.
Suppose that $\text{rad}(O(S)) = 2$. There exist elements $C \in Z_S^*$, $c \in R^*$ and $k, l \in Q_n$ such that $d(C, A) \leq 2$ ($A \in Z_S^*$) and $c_{kl} = c$. Further, there exists a permutation $\sigma \in S_n$ such that $m := \sigma(k) \neq l$.

Let $a \in Z_R$ be an arbitrary element.

Set $I := \text{Ann}(a) < R$ and $A := \left(\sum_{i \neq k} E_{i, \sigma(i)} \right) + aE_{km} \in S$. Note that

- $A \in Z_S^*$, $O_S(A) = I^*E_{mk}$;
- $A \neq C$ (otherwise $a_{kl} = c \neq 0$, $m = l$);
- $(m, k) \neq (k, l)$ (otherwise $m = k = l$), that implies $C \notin O_S(A)$.

Thus, $d(C, A) = 2$, so, there exists an element $B \in Z_S^*$ orthogonal to C and A. We have $B = bE_{mk}$ where $b \in I^*$. Meanwhile, $BC = 0$, $0 = (BC)_{ml} = bc$, $b \in \text{Ann}(c) \cap I^*$.

Due to arbitrariness of $a \in Z_R$, the element $c \in R^*$ satisfies (1.2).

Conversely, assume that (1.2) holds for some $c \in R^*$. Show that the element $C := cE \in I^*S$ satisfies, for each $A \in Z_S^*$, the inequality $d(C, A) \leq 2$.

Let $A \in Z_S^*$ be an arbitrary element. Then $\det A \in Z_R$, and, by (1.2), there exists an element $b \in I_A$ such that $cb = 0$. Further, according to Corollary 3.1, there exists an element $B \in (bS)^*$ orthogonal to A; in this case, $cB \in cbS = 0$, $C \in Z_S^*$, $C \perp B \perp A$, $d(C, A) \leq 2$.

So, Theorem 1.2 is completely proved.

Acknowledgements

The author is grateful to Prof. E.B. Vinberg for exciting interest to algebra.

The author dedicates the article to E.N. Troshina.

References

[1] Beck I. Coloring of commutative rings // J. Algebra. 1988. Vol. 116. Pp. 208–226.

[2] Anderson D. F., Livingston P. S. The zero-divisor graph of a commutative ring // J. Algebra. 1999. Vol. 217. Pp. 434–447.

[3] Anderson D. F., Frazier A., Lauve A., Livingston P. S. The zero-divisor graph of a commutative ring, II // Lect. Notes Pure Appl. Math. 2001. Vol. 220, Marcel Dekker, New York. Pp. 61–72.

[4] Akbari S., Maimani H. R., Yassemi S. When zero-divisor graph is planar or a complete r-partite graph // J. Algebra. 2003. Vol. 270. Pp. 169–180.
[5] Akbari S., Mohammadian A. On the zero-divisor graph of a commutative ring // J. Algebra. 2004. Vol. 274. Pp. 847–855.

[6] Akbari S., Mohammadian A. Zero-divisor graphs of non-commutative rings // J. Algebra. 2006. Vol. 296. Pp. 462–479.

[7] Akbari S., Mohammadian A. On zero-divisor graphs of finite rings // J. Algebra. 2007. Vol. 314. Pp. 168–184.

[8] Redmond S. P. Central sets and radii of the zero-divisor graphs of commutative rings // Comm. in Algebra. 2006. Vol. 34 (is. 7). Pp. 2389–2401.

[9] Bakhadly B. R., Guterman A. E., Markova O. V. Graphs defined by orthogonality // Computational methods and algorithms. Part XXVII, Zap. Nauchn. Sem. POMI, St. Petersburg. 2014. Vol. 428. Pp. 49–80; J. Math. Sci. 2015. Vol. 207 (is. 5). Pp. 698–717.

[10] Guterman A. E., Markova O. V. Orthogonality graphs of matrices over skew fields // Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, St. Petersburg. 2017. Vol. 463. Pp. 81–93; J. Math. Sci. 2018. Vol. 232 (is. 6). Pp. 797–804.