Statistical evidence for high-penetrance MODY-causing genes in a large population-based cohort

Liana K. Billings1,2 | Zhuqing Shi3 | W. Kyle Resurreccion3 | Chi-Hsiung Wang3 | Jun Wei3 | Toni I. Pollin4 | Miriam S. Udler5,6 | Jianfeng Xu2,3

1Department of Medicine, NorthShore University HealthSystem, Skokie, Illinois, USA
2University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
3Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
4Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
5Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
6Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA

Correspondence
Liana K. Billings, Department of Medicine, NorthShore University HealthSystem, 9977 Woods Drive, Suite 300, Skokie, IL 60077, USA.
Email: lbillings@northshore.org

Funding information
NorthShore University HealthSystem

Abstract
Aims: Numerous genes have been proposed as causal for maturity-onset diabetes of the young (MODY). Scoring systems to annotate mutation pathogenicity have been widely used; however, statistical evidence for being a highly penetrant MODY gene has not been well-established.

Methods: Participants were from the UK Biobank with whole-exome sequencing data, including 14,622 with and 185,509 without diagnosis of diabetes. Pathogenic/likely pathogenic (P/LP) mutations in 14 reported and 3 possible MODY genes were annotated using American College of Medical Genetics criteria. Evidence for being a high-penetrant MODY gene used two statistical criteria: frequency of aggregate P/LP mutations in each gene are (1) significantly more common in participants with a diagnosis of diabetes than without using the SKAT-O \((p < .05) \) and (2) lower than the maximum credible frequency in the general population.

Results: Among the 17 genes, 6 (GCK, HNF1A, HNF4A, NEUROD1, KCNJ11 and HNF1B) met both criteria, 7 (ABCC8, KLF11, RFX6, PCBD1, WFS1, INS and PDX1) met only one criterion, and the remaining 4 (CEL, BLK, APPL1 and PAX4) failed both criteria, and were classified as 'consistent', 'inconclusive' and 'inconsistent' for being highly penetrant diabetes genes, respectively. Diabetes participants with mutations in the 'consistent' genes had clinical presentations that were most consistent with MODY. In contrast, the 'inconclusive' and 'inconsistent' genes did not differ clinically from non-carriers in diabetes-related characteristics.

Conclusions: Data from a large population-based study provided novel statistical evidence to identify 6 MODY genes as consistent with being highly penetrant. These results have potential implications for interpreting genetic testing results and clinical diagnosis of MODY.

KEYWORDS
diabetes genetics, maturity-onset diabetes of the young, MODY, pathogenic variant, variant curation
1 | INTRODUCTION

Maturity-onset diabetes of the young (MODY) is the most common type of monogenic diabetes. While MODY is classically characterized by early-onset diabetes (<25 years), insulin independence and autosomal dominant inheritance, it is a genetically and clinically heterogeneous group of diabetes resulting from mutations in genes mostly involved in pancreatic beta cell function. MODY can be difficult to diagnose clinically due to overlapping features with type 1 and type 2 diabetes. A correct clinical diagnosis of MODY requires genetic testing of MODY-causing genes. Ultimately, the genetic diagnosis can direct the therapeutic intervention for diabetes treatment.

Implicating MODY-causing genes is complicated by several other confounding factors, including poor statistical power due to limited numbers of patients and pedigrees, uncertainty in classifying mutation pathogenicity, and relevance of in vitro functional analysis. To date, 14 disease-causing genes have been reported for distinct subtypes of MODY. Recently, three additional candidate genes (WFS1, RXF6 and PCBD1) for MODY-like phenotypes were proposed. The vast majority of these genes were identified through genetic linkage analyses in a limited number of families with atypical diabetes (OMIM #606391). While statistical evidence for being high-penetrant MODY genes has been well-established for some, it is weak or inconsistent for others.

The objective of the current study is to systematically evaluate statistical evidence of proposed MODY genes for being highly penetrant. Leveraging a large population-based cohort, we applied a novel and indirect approach to assess the statistical evidence by estimating mutation carrier rates of genes in participants with or without a diagnosis of diabetes, rather than diagnosis of MODY per se. This approach overcomes the major challenge of accurately defining MODY clinically and is based on a simple and justifiable assumption that a higher proportion of people with MODY exists in participants with than without a diagnosis of diabetes. Under this assumption, aggregate pathogenic and likely pathogenic (P/LP) mutations in high-penetrant MODY-causing genes are expected to meet two statistical criteria: (1) significantly more common in participants with than without a diagnosis of diabetes and (2) rarely observed in participants from the general population.

2 | METHODS

Study participants were from the UK Biobank (UKB), a large population-based cohort with extensive genetic and phenotypic data available for approximately 500,000 individuals from across the United Kingdom aged between 40 and 69 at recruitment (accessed under Application Number: 50295). Diabetes diagnosis International Classification of Diseases-10 codes in medical records (E10 for type 1 diabetes, E11 for type 2 diabetes, E12 for other specified diabetes and E14 for unspecified diabetes) as well as self-report.

Whole-exome sequencing (WES) data were available for ~40% of the UKB participants at the time of this analysis. The 14 commonly proposed MODY genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABC28, KCNJ11 and APLI1) and three newly proposed candidate MODY genes (WFS1, RXF6 and PCBD1) were evaluated. We first annotated variants using a pipeline based on the American College of Medical Genetics (ACMG) criteria and identified 591 potential P/LP variants. These variants were further annotated manually based on the sequence variant interpretation (SVI) guidelines. The detailed criteria for each variant are listed in Table S1. A total of 102 variants were considered as P/LP.

The transcript expression-aware annotation was examining proportion expressed across transcripts (pext) scores of exons in these genes in the pancreas (Table S1).

Evidence for high-penetrant MODY genes was indirectly assessed using two statistical criteria: aggregation of P/LP mutations in a gene is (1) significantly more common in participants with than without a diagnosis of diabetes and (2) rarely observed in participants from the UKB.

For the first criterion, a gene-based association test was performed using the SKAT-O as well as Fisher’s exact test. SKAT-O is a unified approach that optimally combines the burden test and the non-burden sequence kernel association test (SKAT). Burden test is more powerful when most mutations in a gene are causal, whereas SKAT is more powerful when a large fraction of the mutations in a gene are non-causal or the effects of causal variants are in different directions. SKAT-O association test was adjusted for age, gender and genetic background (the top 10 principal components provided by the UKB). Odds ratio (OR) and 95% confidence interval (CI) were derived from the Fisher exact test. This gene-based criterion is equivalent to the variant-based pathogenic strong (PS4) criterion for P/LP mutations.

For the second criterion, the maximum credible aggregated P/LP mutation frequency in the general population was estimated for each MODY gene using the tool (http://cardiobd.org/allelefrequencyapp/) based on the following parameters: MODY prevalence (1/1000), contribution of each gene to MODY and penetrance (50%) (Table S1). This gene-based criterion is equivalent to the variant-based BA1 criterion for benign variants.

Genes were then classified as ‘consistent’, ‘inconclusive’ or ‘inconsistent’ with being highly penetrant variants. Because MODY can present with atypical diabetes or overlapping clinical characteristics of type 1 and type 2 diabetes, we examined the prevalence of the gene variants by six different study-specific diabetes phenotypes defined as classic type 1 diabetes included participants with clinical diagnosis code (ICD-10) type 1 but not type 2 diabetes, insulin-use, no oral anti-hyperglycemic agents and onset of diabetes ≥20. Classic type 2 diabetes included participants with ICD-10 type 2 but not type 1 diabetes, non-insulin using, and onset ≥35. Non-classic type 1 or non-classic type 2 were the subjects who had either type 1 diabetes or type 2 diabetes only diagnosis, respectively, but did not fulfill the other classic criteria. Type 1 diabetes and type 2 diagnosis were subjects with both diagnoses. Other diabetes subjects were and diabetes diagnosis, but not defined as type 1 or type 2 diabetes. This
group incorporates people diagnosed with other specified diabetes (ICD-10 codes E12-E14), which could include people with MODY.

Subsequently, we examined clinical characteristics of mutation carriers with and without diabetes including demographic and clinical measurements.

3 | RESULTS

Among the 17 genes, 6 (GCK, HNF1A, HNF4A, KCNJ11, NEUROD1 and HNF1B) met both criteria. These were classified as 'consistent' (Table 1). Seven genes (ABCC8, KLF11, RFX6, PCBD1, WFS1, INS and PDX1) met only one criterion and were classified as ‘inconclusive’: the first 6 genes only met criterion 1 (p < .05, SKAT-O) while the last gene only met criterion 2. The remaining 4 genes (PAX4, CEL, BLK and APPL1) failed both criteria and were classified as ‘inconsistent’. PDX1 had no P/LP mutations identified in the UKB cohort.

The risk of diabetes versus non-diabetes among carriers of P/LP in ‘consistent’ genes was considerably higher, with OR estimates ranging from 6.36 to infinity (Table 1). In contrast, ‘inconclusive’ genes demonstrated medium risk, with OR estimates ranging from 0 to 8.48. In particular, 4 genes (INS, CEL, BLK and APPL1) had OR estimates <1, although not statistically significant (p > .05). In order to address the possibility of diabetes underdiagnosis, we found no difference in grouping of the MODY candidate genes when using HbA1c > 6.5% versus <6.5% in place of the diabetes or non-diabetes diagnosis (Table S1).

When inspecting mutation carriers among different types of diabetes phenotypes, carriers were found primarily in those with a type 2 diabetes diagnosis (classic type 2 diabetes or non-classic type 2 diabetes), followed by other diabetes, and rarely in participants with type 1 diabetes diagnosis (Table 2). The different mutation carrier rates between participants with type 2 diabetes versus other forms of diabetes, however, were not statistically significant (p > .05, data not shown). These observations were found across all three gene categories.

We also examined key diabetes-related characteristics between carriers and non-carriers of P/LP mutation in each of the 17 genes among the three categories of diabetes participants (Table 3). Compared to diabetes participants without any mutations in the 6 ‘consistent’ genes, mutation carriers had significantly lower age at diagnosis (p < .05), higher proportion of family history (p < .001), and lower BMI (p < .001), higher HDL (p < .001) and lower TG (p < .001) consistent with the key features of MODY. The participants with ‘inconclusive’ mutations did not show features consistent with MODY. There were too few participants with diabetes in ‘inconsistent’ category to adequately examine these characteristics.

Among participants without a diagnosis of diabetes (Table 4), mutation carriers with ‘consistent’ genes had significantly higher proportion of family history (p < .001) and higher HbA1C (p < .001) compared to participants without any mutations in the 17 genes. No significant differences were found in these variables for mutation carriers of ‘inconclusive’ and ‘inconsistent’ genes. Of note, the mean age at enrolment among diabetes and non-diabetes participants was 60 (95% CI 59.88–60.12) and 56.72 (56.68–56.76), respectively (p < 2.2e–16). Given that MODY diabetes tends to present under the age of 35, we think it is low likelihood that the patient may not have developed diabetes by the age of enrolment in the study. We examined additional clinical variables which are included in Table S1.

Finally, we found that the vast majority of annotated P/LP mutations were in transcripts highly expressed in pancreatic tissue, with pext scores >0.4 (Table S1). However, mutations in several genes were at exons with low pext scores, including a score of 0 for all mutations in BLK and PAX4 (i.e. not expressed in pancreatic tissue), scores of 0.18–0.27 for ABCB8 and a score of 0.24 for exon 1 of KLF11. If applying the transcript expression-aware annotation method, no mutations in BLK, PAX4 and ABCB8 would be classified as P/LP. Annotation of KLF11 was not affected.

4 | DISCUSSION

Leveraging the genetic data of over 200,000 participants with and without a diagnosis of diabetes in a population-based cohort, we were able to systematically evaluate statistical evidence of known or suspected MODY genes for being highly penetrant. Two statistical criteria were used to assess highly penetrant MODY-causing genes: their aggregated P/LP variants are (1) significantly more common in participants with than without a diagnosis of diabetes and (2) rarely observed in participants from the general population. Among the 17 known MODY genes, 6 met both criteria, ‘consistent’, 7 met one criterion, ‘inconclusive’, and the remaining 4 failed both criteria, ‘inconsistent’. These results provide an important piece of genetic evidence for evaluating gene-disease clinical validity by Clinical Genome Resource (ClinGen).13

Most previous studies of MODY genes rely on detailed clinical evaluation of diabetes participants and their relatives.3–5,9 A major challenge of these studies is the reliability of MODY diagnosis, which is complicated by the considerable overlap of clinical presentations between MODY, type 1 diabetes and type 2 diabetes.1 The alternative and indirect approach used in this study bypassed the need for defining MODY clinical diagnosis. The large number of study participants in the UKB, especially those without a diagnosis of diabetes, makes this approach feasible. The validity of this approach is supported by its simple and justifiable assumption as well as the successful confirmation of 6 well-established MODY genes. The statistical power of this indirect approach, however, relies on the proportion of MODY in participants with or without a diagnosis of diabetes. Considering that MODY likely accounts for a small portion of diabetes (0.4%),1 a large sample size such as the UKB is necessary to obtain the statistical power to detect the small signals from MODY-causing genes.

While both statistical criteria are important to assess the validity of high-penetrant MODY genes, a critical aspect of our study is the ability to estimate mutation carrier rates in a population-based cohort. A higher mutation carrier rate in the general population and
Group	Type of MODY	Criterion 1	Fisher's exact test	Criterion 2		
		No. (%) of participants	SKAT-O p-value^a	OR (95% CI) p-value	Aggregate allele frequency in UKB	Maximum credible population allele frequency
'Consistent' with being high penetrant for diabetes (met both statistical criteria)						
GCK	MODY 2	24 (0.164%) 8 (0.004%)	6.26E-30	38.2 (16.6–98.34) 2.94E-21	0.008% 0.040%	
HNF4A	MODY 1	4 (0.027%) 5 (0.003%)	4.09E-10	10.18 (2.02–47.28) .00264	0.002% 0.007%	
HNF1A	MODY 3	12 (0.082%) 7 (0.004%)	5.92E-07	21.82 (7.92–65.41) 6.95E-10	0.005% 0.045%	
NEUROD1	MODY 6	2 (0.014%) 0 (0%)	2.17E-05	Inf (2.39–Inf) .00531	0.0005% 0.001%	
KCNJ11	MODY 13	2 (0.014%) 1 (0.001%)	1.42E-06	25.43 (1.32–1484.18) .01517	0.001% 0.001%	
HNF1B	MODY 5	1 (0.007%) 2 (0.001%)	.04	6.36 (0.11–122.21) .20315	0.001% 0.005%	
'Inconclusive' with being high penetrant for diabetes (met one of two statistical criteria)						
ABCC8	MODY 12	2 (0.014%) 3 (0.002%)	1.64E-06	8.48 (0.71–74.02) .04581	0.012% 0.001%	
KLF11	MODY 7	1 (0.007%) 4 (0.002%)	1.30E-04	3.18 (0.06–32.12) .3151	0.0012% 0.001%	
RXF6	New	2 (0.014%) 11 (0.006%)	.01	2.31 (0.25–10.6) .24409	0.003% 0.001%	
PCBD1	New	2 (0.014%) 4 (0.002%)	.01	6.36 (0.58–44.43) .06544	0.001% 0.001%	
WFS1	New	3 (0.021%) 15 (0.008%)	.02	2.54 (0.47–8.99) .1394	0.004% 0.001%	
INS	MODY 10	0 (0%) 1 (0.001%)	.70	0 (0–492.17) 1	0.0002% 0.001%	
PDX1	MODY 4	0 (0%) 0 (0%)	\	\	\	0% 0.001%
'Inconsistent' with being high penetrant for diabetes (failed both statistical criteria)						
PAX4	MODY 9	1 (0.007%) 6 (0.003%)	.58	2.12 (0.05–17.47) .41132	0.0017% 0.001%	
CEL	MODY 8	0 (0%) 8 (0.004%)	.95	0 (0–7.45) 1	0.002% 0.001%	
BLK	MODY 11	0 (0%) 16 (0.009%)	>.99	0 (0–3.3) .62523	0.0040% 0.001%	
APPL1	MODY 14	0 (0%) 18 (0.01%)	>.99	0 (0–2.89) \	0.0045% 0.001%	

Abbreviations: Inf, infinity; OR (95% CI), odds ratio (95% confidence interval).

^aAdjusted for age at recruitment, gender and genetic background.
unaffected participants is strong evidence against being a high-penetrant gene. For example, the mutation carrier rate of WFS1 was significantly higher in cases than controls in the UKB; OR = 1.85, \(p = .02 \). However, its considerably high aggregate P/LP mutation allele frequency in the UKB (0.016%), 16-times higher than the maximum credible population allele frequency of 0.001%,\(^{9,12}\) suggests it is unlikely to be a highly penetrant gene with autosomal dominant transmission. This type of critical data, however, was difficult to obtain previously due to prohibitive sequencing costs for thousands of participants without a particular disease phenotype. While large population-based databases such as the Genome Aggregation Database (gnomAD) are available, they are not ideal for this purpose for two reasons. First, the diabetes phenotype is not available in the public database. Second and more importantly, comparison of mutation carrier rates in studies of diabetes participants with controls from public databases is confounded by several factors such as different sequencing and annotation methods.

An important caveat, however, should be noted when interpreting the results of this indirect approach. A significant difference in mutation carrier rates between cases and controls simply suggests that the mutations are associated with increased risk for diabetes, not specifically for MODY. In fact, considering that approximately 90% of diabetes participants in the general population are type 2 diabetes, the results from this indirect association test are strongly influenced by their risk for type 2 diabetes. Because of this limitation, this approach is not suitable for discovering novel genes specific for MODY. However, for the purpose of confirming known MODY genes, this indirect approach is justified because MODY is a type of diabetes.

It is notable that our findings using statistical method help underscore some of the prior evidence on the causality of MODY candidate genes and question others. Prior evidence has described variable levels of evidence for MODY susceptibility genes\(^{14-16}\) HNF1A, HNF4A, GCK, HNF1B, ABCB8, KCNJ11 and INS have been thought to be the more common well-established forms of MODY.\(^{16,17}\) Of these well-established genes, this study found convincing statistical evidence to support HNF1A, HNF4A, GCK, HNF1B and KCNJ11. We found that INS and ABCB8 were inconclusive: (1) INS fulfilled the frequency criteria, but only one P/LP variant was found in a subject without diabetes. A larger sample size may be needed to move this gene into a more definitive consistent or inconsistent category. (2) ABCB8 was more common in diabetes versus non-diabetes, but the

TABLE 2 Mutation carrier rates of MODY genes in participants with various diabetes phenotypes in the UK Biobank

Group	Type of MODY	Type 1 diabetes (T1D)	Type 2 diabetes (T2D)	Other						
	Non-classic (N = 192)	Classic (N = 5971)	Non-classic (N = 4770)	T1D and T2D diagnoses (N = 871)	Other diabetes (N = 2478)					
'Consistent' with being high penetrant for diabetes (met both statistical criteria)										
GCK	MODY 2	0 (0%)	0 (0%)	16 (0.268%)	5 (0.105%)	0 (0%)	3 (0.121%)			
HNF4A	MODY 1	0 (0%)	0 (0%)	1 (0.017%)	2 (0.042%)	1 (0.115%)	0 (0%)			
HNF1A	MODY 3	0 (0%)	1 (0.294%)	3 (0.05%)	4 (0.084%)	1 (0.115%)	3 (0.121%)			
NEUROD1	MODY 6	0 (0%)	0 (0%)	0 (0%)	1 (0.021%)	1 (0.115%)	0 (0%)			
KCNJ11	MODY 13	0 (0%)	0 (0%)	1 (0.017%)	0 (0%)	1 (0.115%)	0 (0%)			
HNF1B	MODY 5	0 (0%)	0 (0%)	0 (0%)	1 (0.021%)	0 (0%)	0 (0%)			
All 6 genes		0 (0%)	1 (0.294%)	21 (0.352%)	13 (0.273%)	4 (0.459%)	6 (0.242%)			
'Inconclusive' with being high penetrant for diabetes (met one of two statistical criteria)										
ABCC8	MODY 12	0 (0%)	0 (0%)	0 (0%)	2 (0.042%)	0 (0%)	0 (0%)			
KLF11	MODY 7	0 (0%)	0 (0%)	0 (0%)	1 (0.021%)	0 (0%)	0 (0%)			
RFX6	New	0 (0%)	0 (0%)	2 (0.033%)	0 (0%)	0 (0%)	0 (0%)			
PCD1	New	0 (0%)	0 (0%)	2 (0.033%)	0 (0%)	0 (0%)	0 (0%)			
WFS1	New	0 (0%)	0 (0%)	1 (0.017%)	0 (0%)	1 (0.115%)	1 (0.04%)			
INS	MODY 10	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
PDX1	MODY 4	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
All 7 genes		0 (0%)	0 (0%)	5 (0.084%)	3 (0.063%)	1 (0.115%)	1 (0.04%)			
'Inconsistent' with being high penetrant for diabetes (failed both statistical criteria)										
PAX4	MODY 9	0 (0%)	0 (0%)	1 (0.017%)	0 (0%)	0 (0%)	0 (0%)			
CEL	MODY 8	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
BLK	MODY 11	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
APPL1	MODY 14	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)			
All 4 genes		0 (0%)	0 (0%)	1 (0.017%)	0 (0%)	0 (0%)	0 (0%)			
Group	Type of MODY	No. of participants	Age of diagnosis Median (IQR, year)	No. of men (%)	No. of participants with positive FH (%)	BMI in kg/m² Median (IQR)	HbA1C in mmol/mol, % Median (IQR)	HDL in mmol/L Median (IQR)	TG in mmol/L Median (IQR)	
-------	--------------	---------------------	-----------------------------------	----------------	--	----------------------------	---------------------------------	---------------------------	-------------------------	
Non-carriers in any of 17 genes		14,566	54 (46.9–60)	8734 (60%)	6258 (44.5%)	30.52 (27.27–34.43)	47 (41–56)	6.4 (5.9–7.3)	1.17 (0.99–1.38)	1.88 (1.31–2.7)
'Consistent' with being high penetrant for diabetes (met both statistical criteria)										
GCK	MODY 2	24	55 (52–60)	9 (37.5%)	13 (59.1%)	25.15 (23.39–27.74)	48 (45–50)	6.5 (6.2–6.7)	1.58 (0.79–1.55)	0.99 (0.83–1.65)
HNF4A	MODY 1	4	37 (33.5–43.5)	1 (25%)	4 (100%)	26.23 (23.89–27.14)	58 (52–69)	7.5 (7.0–8.4)	1.19 (1.68 to 4.52)	2.21 (1.44–2.83)
HNF1A	MODY 3	12	27 (19.5–48.5)	4 (33.3%)	7 (58.3%)	27.52 (25.4–31.2)	53 (50–57)	7.0 (6.7–7.3)	1.46 (0.24–2.35)	1.12 (0.95–1.61)
NEUROD1	MODY 6	2	48.5 (43.75–53.25)	1 (50%)	2 (100%)	29.62 (26.21–33.03)	52 (47–57)	6.9 (6.5–7.3)	1.72 (-)	1.23 (0.99–1.48)
KCNJ11	MODY 13	2	49.5 (44.75–54.25)	0 (0%)	2 (100%)	32.57 (29.44–35.7)	48 (47–50)	6.5 (6.4–6.7)	1.48 (-)	1.45 (1.27–1.62)
HNF1B	MODY 5	1	50 (-)	0 (0%)	0 (0%)	30.99 (-)	55 (-)	7.2 (-)	1.08 (-)	1.85 (-)
All 6 genes		45	52 (40.25–58.75)	16 (35.6%)	28 (61.1%)	26.28 (23.94–30.28)	50 (46–53)	6.7 (6.4–7.1)	1.48 (0.92–1.63)	1.12 (0.89–1.8)
'Inconclusive' with being high penetrant for diabetes (met one of two statistical criteria)										
ABCC8	MODY 12	2	NA (NA-NA)	1 (50%)	1 (50%)	40.49 (37.15–43.84)	55 (53–57)	7.2 (7–7.3)	1.25 (-)	0.93 (0.93–0.93)
KLF11	MODY 7	1	NA (-)	0 (0%)	1 (100%)	32.43 (-)	38 (-)	5.6 (-)	0.96 (-)	3.11 (-)
RFX6	New	2	51.5 (50.75–52.25)	0 (0%)	1 (50%)	30.64 (28.43–32.84)	55 (48–61)	7.1 (6.6–7.7)	1.64 (-)	1.94 (1.49–2.4)
PCBD1	New	2	57 (53.5–60.5)	1 (50%)	2 (100%)	33 (29.84–36.16)	73 (64–81)	8.8 (8.0–9.6)	1.18 (-)	2.98 (2.74–3.22)
WFS1	New	3	62 (56–64)	1 (33.3%)	2 (66.7%)	33.12 (31.19–34.26)	48 (48–53)	6.6 (6.5–7.0)	1.11 (-0.46–4.01)	1.93 (1.78–2.89)
INS	MODY 10	0	\	\	\	\	\	\	\	
PDX1	MODY 4	0	\	\	\	\	\	\	\	
All 7 genes		10	53 (50–63)	6 (60%)	7 (70%)	33.46 (30.05–35.32)	54 (47–58)	7.0 (6.5–7.5)	1.2 (0.58–1.9)	2.5 (1.62–3.11)
'Inconsistent' with being high penetrant for diabetes (failed both statistical criteria)										
PAX4	MODY 9	1	56 (-)	0 (0%)	1 (100%)	20.07 (-)	52 (-)	6.9 (-)	1.54 (-)	1.54 (-)
aggregate allele frequency was higher than the maximum credible population frequency. It is possible that some of classified P/LP mutations are not highly penetrant for diabetes. Our results support recent findings that dispute the MODY causality of KLF11, PAX4 and BLK, which we classified as either inconsistent or inconclusive.

Evaluating diabetes-related characteristics between carriers and non-carriers of P/LP mutation provides additional evidence for differentiating the 17 genes. In diabetes participants, typical MODY features (early age of diagnosis, stronger family history and low BMI) were found only in mutation carriers of the ‘consistent’ genes, but not for the other genes. In participants without diabetes diagnosis, significantly higher proportion of family history and higher HbA1C were also found only in mutation carriers of the ‘consistent’ genes, but not for the other genes. The findings of the ‘consistent’ genes in non-diabetes participants suggest incomplete penetrance of these genes. It also highlights the complexity of MODY and emphasizes that it is not a classic Mendelian dominant disease.

The finding that 10 of the 17 known MODY genes are either inconclusive or inconsistent for being high penetrant for diabetes is surprising and differs from many previous reports. Our results, however, were similar to the population-based study reported by Flannick and colleagues. By studying pathogenic nonsynonymous mutations of 7 MODY genes in two large population-based cohorts, they also found that the mutation carriers did not have elevated risk for diabetes.

Based on a combination of examining data from this current study and reviewing prior evidence, several postulations can be developed to explain the lack of statistical evidence for the 10 inconclusive or inconsistent genes in this study. The first postulation is lack of statistical power in our study to implicate genes with extremely low mutation rates. An example of these genes is INS where only one P/LP mutation carrier was found among 200,574 participants in the cohort.

The second postulation is lack of strong prior evidence for some genes. Examples include BLK, PAX4 and APPL1. These genes were proposed primarily based on observations of several coding mutations in probands and co-segregation in limited numbers of small pedigrees. Because of limited evidence, these genes have been recently proposed for removal from candidate MODY genes. Furthermore, non-expression of BLK and PAX4 in pancreatic tissues suggests they are unlikely MODY-causal genes.

The third postulation is that several genes are involved in other types of diabetes but do not necessarily cause MODY via haploinsufficiency. Examples for these genes include WFS1. Mutations in WFS1 are responsible for Wolfram syndrome, a recessive inherited disease. Common sequence variants in the WFS1 region were implicated in type 2 diabetes risk from genome-wide association studies. In addition, several rare sequence variants in WFS1 were also associated with type 2 diabetes risk in large exome sequencing studies. Their risk for type 2 diabetes is modest, with OR at ~1.1 for both common and rare variants. However, evidence for WFS1’s role in MODY remains limited. One study reported associations of heterozygous WFS1 mutations with mild form of Wolfram syndrome
Group	Type of MODY	No. of participants	Age at recruitment (Median [IQR, year])	No. of men (%)	No. of participants with positive FH (%)	BMI in kg/m² (Median [IQR])	HbA1C in mmol/mol, % (Median [IQR])	HDL in mmol/L (Median [IQR])	TG in mmol/L (Median [IQR])
Non-carriers in any of 17 genes		185,843	57.5 (50.5–63.5)	81,301 (43.7%)	38,795 (21.3%)	26.47 (23.97–29.45)	35 (33–37) 5.34 (5.1–5.6)	1.43 (1.2–1.7) 1.45 (1.03–2.09)	
'Consistent' with being high penetrant for diabetes (met both statistical criteria)	GCK	MODY 2	8	58.5 (49.5–60.5)	2 (25%)	5 (62.5%)	25.28 (22.28–28.09)	48.15 (45–50) 6.55 (6.3–6.7)	1.56 (1.34–1.74) 1.42 (0.56–1.68)
	HNF4A	MODY 1	5	56.5 (55.5–66.5)	2 (40%)	2 (40%)	26.19 (24.35–27.29)	39 (37–40) 5.73 (5.5–5.8)	1.54 (1.49–1.74) 1.57 (1.15–1.86)
	HNF1A	MODY 3	7	62.5 (58–63)	3 (42.9%)	3 (42.9%)	28.4 (25.46–30.02)	35.4 (33–43) 5.38 (5.2–6.1)	
	NEUROD1	MODY 6	0	\	\	\	\	\	\
	KCNJ11	MODY 13	1	62.5 (-)	0 (0%)	1 (100%)	29.31 (-)	41.4 (-) 5.93 (-)	1.16 (-) 1.93 (-)
	HNF1B	MODY 5	2	53.5 (50.5–56.5)	1 (50%)	2 (100%)	24.29 (21.36–27.21)	36.75 (35.62–37.88) 5.5 (5.4–5.61)	1.99 (1.99–1.99) 2.5 (1.74–3.25)
	All 6 genes		23	59.5 (54.5–62.5)	9 (39.1%)	13 (65%)	27.11 (23.26–29.06)	41.05 (36.1–45.8) 5.9 (5.44–6.33)	1.55 (1.42–1.74) 1.18 (0.92–1.77)
'Inconclusive' with being high penetrant for diabetes (met one of two statistical criteria)	ABCC8	MODY 12	3	46.5 (46.5–47.5)	0 (0%)	0 (0%)	27.21 (27.17–27.87)	36.4 (31.95–38) 5.47 (5.06–5.62)	1.43 (1.14–1.69) 1.49 (1.13–1.82)
	KLF11	MODY 7	4	47.5 (42.25–53.75)	0 (0%)	0 (0%)	28.56 (25.11–32.07)	35.5 (34.62–35.8) 5.39 (5.31–5.42)	1.49 (1.32–1.74) 1.49 (1.34–1.7)
	RFX6	New	11	61.5 (57–66)	4 (36.4%)	5 (45.5%)	27.14 (25.07–29.98)	37.6 (34.2–39.5) 5.6 (5.27–5.7)	1.44 (1.26–1.55) 1.47 (0.94–2.71)
	PCBD1	New	4	53.5 (52.5–56.5)	1 (25%)	2 (50%)	26.11 (24.41–27.65)	37.05 (36.52–39) 5.53 (5.48–5.71)	1.22 (1.11–1.61) 0.92 (0.86–0.98)
	WFS1	New	15	56.5 (48–60.5)	6 (40%)	2 (13.3%)	28.37 (24.99–29.44)	34.1 (32.25–35.5) 5.26 (5.09–5.39)	1.17 (1.09–1.35) 2.27 (1.45–2.59)
	INS	MODY 10	1	65.5 (-)	0 (0%)	0 (0%)	24.79 (-)	39 (-) 5.71 (-)	1.86 (-) 0.68 (-)
	PDX1	MODY 4	0	\	\	\	\	\	\
	All 7 genes		38	56.5 (49–61.5)	12 (31.6%)	9 (23.7%)	27.17 (24.96–29.95)	35 (33–38) 5.4 (5.2–5.6)	1.38 (1.17–1.62) 1.47 (0.93–2.3)
'Inconsistent' with being high penetrant for diabetes (failed both statistical criteria)	PAX4	MODY 9	6	57.5 (46.5–64.75)	2 (33.3%)	2 (33.3%)	27.43 (22.98–28.54)	34.1 (32.3–36.12) 5.26 (5.1–5.45)	1.35 (1.21–1.55) 2.87 (1.88–3.58)
Type of MODY	No. of MODY participants	Age at recruitment Median (IQR, year)	No. of participants with positive FH (%)	BMI in kg/m²	HbA1C in mmol/mol, % Median (IQR)	HDL in mmol/L	TG in mmol/L		
-------------	--------------------------	--------------------------------------	--	--------------	----------------------------------	---------------	-------------		
Group									
CEL	8	61.5 (46.75–64.2)	0 (0%)		1.6 (1.27–2.4)	5.6 (5.15–5.9)			
MODY 11	16	56.5 (51.5–61.75)	(37.9%)	3 (18.8%)	2.37 (1.8–3.01)	5.6 (5.2–5.6)			
BLK MODY 14	18	58.5 (53–62.25)	(38.9%)	7 (42%)	2.37 (1.8–3.01)	5.37 (5.16–5.57)			
APPL1 MODY 1	18	58.5 (53–62.25)	(38.9%)	7 (42%)	2.37 (1.8–3.01)	5.37 (5.16–5.57)			

Abbreviations: FH, family history; IQR, interquartile range; TG, triglycerides.

1Adjusted (1) for age and genetic background for no. of men, and (2) for age, gender and genetic background for the remaining variables.

Sample sizes were relatively small in both studies. In our study, two pieces of results for WFS1 in diabetes participants (mutation carrier rate was primarily found in type 2 diabetes participants and carriers had lower proportion of family history and higher BMI compared to non-carriers) suggest it is more likely associated with risk for type 2 diabetes than MODY. Association of several MODY genes with type 2 diabetes risk was also found in several large cohorts.

Leveraging statistical evidence to identify genes with high penetrance for MODY has clinical implications. Most commonly, clinicians attempt to utilize different criteria (‘atypical diabetes’, normal BMI and early-onset type 2 diabetes, the MODY probability calculator) to identify people who may have a high probability of MODY. The clear limitation is that genetic testing is only done in people with these particular features (testing bias) and is not done on a large scale. Large phenotype-genetic data sets allow clinicians to examine a mutation on a population level without the need to have it associated with a certain MODY phenotype prior to genetic testing. Ultimately, as whole-exome sequencing is translated into usual clinical practice, this statistical approach will be crucial in validating whether genes are causal to a disease. This study at least reveals the complexity and suggests caution should be exercised when interpreting germline testing results.

Our study has several limitations. First, despite the large sample size in our study, the statistical power remains limited for genes with extremely rare P/LP mutation carrier rates such as INS. Therefore, caution should be taken when interpreting negative results. Second, no MODY diagnosis is available in our study. Furthermore, only limited diabetes-related phenotypes are available in participants with and without diabetes. This limitation decreases our ability to perform in-depth phenotype analyses. Third, although we followed the general ACMG and SVI guidelines of these genes, we acknowledged the possibility of misclassification (both under- and over-calling of P/LP mutations) or differences from prior publications. The reasons for this include (1) the guidelines for classifications are currently under review (Pollin TP, Monogenic Diabetes Expert Panel Variant Curation), (2) the current sequence analysis was based on PLINK data from UKB versus VCF data, and (3) we examined variants within the target region of exome +2 base pairs of the flanking region. For example, one pathogenic PDX1 mutation was found by Udler et al., but this was not in our target region. Furthermore, we were unable to evaluate large-sized germline deletions and gains in this study. Both under- and over-calling mutations may weaken the statistical evidence. Finally, because approximately 95% of study participants in our study are Caucasians, mutations that are unique in minority populations may be overlooked. Similar studies in minority populations are needed.
CONCLUSIONS

Data from this large population-based study provide novel statistical evidence for the 17 candidate MODY genes. While 6 were found to be consistent with being highly penetrant for diabetes, the remaining 11 were either inconclusive or inconsistent. These results have potential implications for interpreting genetic testing results and clinical diagnosis of MODY.

AUTHOR CONTRIBUTIONS

Liana K. Billings: Conceptualization (equal); data curation (equal); project administration (equal); writing – original draft (supporting); writing – review and editing (supporting).

ACKNOWLEDGEMENTS

This study was partially supported by grants from The Auxiliary of NorthShore University HealthSystem in support of Dr. Billings. We are grateful to the Ellrodt-Schweighauser family for establishing endowed chair at NorthShore University HealthSystem in support of Dr. Xu.

CONFLICT OF INTEREST

Dr. Billings reported receiving advisory/consulting fees from Lilly, Novo Nordisk, Bayer and Sanofi-Aventis, which are unrelated to this current study. There are no conflicts to report for all other authors.

DATA AVAILABILITY STATEMENT

Datasets relevant to this study are in publicly available repositories (UK Biobank, https://www.ukbiobank.ac.uk/) or included as supplementary material in this manuscript. For questions regarding data availability, please contact the corresponding author, Liana Billings, lbillings@northshore.org.

ETHICS STATEMENT

The UK Biobank was approved by North West—Haydock Research Ethics Committee (REC reference: 16/NW/0274; IRAS project ID: 200778). Data from the UK Biobank were accessed through a Material Transfer Agreement under Application Reference Number: 50295. This study was performed in accordance with the Declaration of Helsinki.

ORCID

Liana K. Billings https://orcid.org/0000-0001-7991-3010

REFERENCES

1. Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011;34(8):1878-1884.
2. Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 2020;6(1):20.
3. Bansal V, Boehm BO, Darvasi A. Identification of a missense variant in the WFS1 gene that causes a mild form of Wolfram syndrome and is associated with risk for type 2 diabetes in Ashkenazi Jewish individuals. Diabetologia. 2018;61(10):2180-2188.
4. Patel KA, Kettunen J, Laakso M, et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun. 2017;8(1):888.
5. Simaitė D, Kofent J, Gong M, et al. Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes. 2014;63(10):3557-3564.
6. Flannick J, Beer NL, Bick AG, et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet. 2013;45(11):1380-1385.
7. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-209.
8. Rivera-Munoz EA, Milko LV, Harrison SM, et al. ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene-level specification of the ACMG/AMP guidelines for sequence variant interpretation. Hum Mutat. 2018;39(11):1614-1622.
9. Elbard S, Colclough K, Patel KA, Hattersley AT. Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes. J Clin Invest. 2020;130(1):14-16.
10. Cummings BB, Karczewski KJ, Kosnicki JA, et al. Transcript expression-aware annotation improves rare variant interpretation. Nature. 2020;581(7809):452-458.
11. Lee S, Emond MJ, Bamshad MJ, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224-237.
12. Whiffin N, Minikel E, Walsh R, et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med. 2017;19(10):1151-1158.
13. Rehm HL, Berg JS, Brooks LD, et al. ClinGen—the clinical genome resource. N Engl J Med. 2015;372(23):2235-2242.
14. Demirci DK, Darendeliler F, Poyrazoglu S, et al. Monogenic childhood diabetes: dissecting clinical heterogeneity by next-generation sequencing in maturity-onset diabetes of the young. OMICS. 2021;25(7):431-449.
15. Aydogan HY, Gul N, Demirci DK, et al. Precision diagnosis of maturity-onset diabetes of the young with next-generation sequencing: findings from the MODY-IST study in adult patients. OMICS. 2022;26(4):218-235.
16. Owen KR. Monogenic diabetes in adults: what are the new developments? Curr Opin Genet Dev. 2018;50:103-110.
17. Zhang H, Colclough K, Gloyon AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest. 2021;131(3):e142244.
18. Laver TW, Wakeling MN, Knox O, et al. Evaluation of evidence for pathogenicity demonstrates that BLK, KLF11, and PAX4 should not be included in diagnostic testing for MODY. Diabetes. 2022;71(5):1128-1136.
19. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138-139.
20. Molven A, Ringdal M, Nordbo AM, et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008;57(4):1131-1135.
21. Stoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040-15044.
22. Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323-328.
23. Raeder H, Johansson S, Holm PI, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2006;38(1):54-62.
24. Gloyon AL, Siddiqui J, Elbard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2006;27(3):220-231.
25. Fernandez-Zapico ME, van Velkinburgh JC, Gutierrez-Aguilar R, et al. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem. 2009;284(52):36482-36490.

26. Borowiec M, Liew CW, Thompson R, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A. 2009;106(34):14460-14465.

27. Plengvidhya N, Kooptiwut S, Songtawee N, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92(7):2821-2826.

28. Prudente S, Jungrakoon P, Marucci A, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet. 2015;97(1):177-185.

29. Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995;346(8988):1458-1463.

30. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505-1513.

31. Flannick J, Mercader JM, Fuchsberger C, et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. 2019;570(7759):71-76.

32. Bonnycastle LL, Chines PS, Hara T, et al. Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes. 2013;62(11):3943-3950.

33. Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. 2012;55(5):1265-1272.

34. Goodrich JK, Singer-Berk M, Son R, et al. Determinants of penetrance and variable expressivity in monogenic diabetic conditions across 77,184 exomes. Nat Commun. 2021;12(1):3505.

35. Monogenic Diabetes Variant Curation Expert Panel; 2021. Accessed July 16, 2021. https://clinicalgenome.org/affiliation/50016/.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Billings LK, Shi Z, Resurreccion WK, et al. Statistical evidence for high-penetrance MODY-causing genes in a large population-based cohort. Endocrinol Diab Metab. 2022;5:e372. doi: 10.1002/edm2.372