Role of Intracellular Ca$^{2+}$-overload in Cardiac Dysfunction in Heart Disease

Mohamad Nusier1, A Tanju Ozelikay2, Anureet K Shah3, Naranjan S Dhalla4*

1Jordan University of Science and Technology, School of Medicine, Irbid, Jordan,
2Ankara University, Faculty of Pharmacy, Ankara, Turkey,
3Department of Kinesiology and Nutritional Sciences, California State University, Los Angeles, USA,
4Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre & Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada

*Corresponding author: Naranjan S. Dhalla, Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Hospital Research Centre Winnipeg, Manitoba, Canada R2H 2A6.

Received date: December 13, 2019; Accepted date: January 03, 2020; Published date: January 10, 2020
Citation: Nusier M, Ozelikay AT, Shah AK, Dhalla NS. (2020) Role of Intracellular Ca$^{2+}$-overload in Cardiac Dysfunction in Heart Disease. Clinical Cardiology and Cardiovascular Interventions, 3(2); Doi:10.31579/2641-0419/038
Copyright: © 2020 Naranjan S Dhalla, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Various heart diseases such as genetically-determined heart failure, acute myocardial infarction, ischemia-reperfusion injury and catecholamine-induced cardiomyopathies are associated with cardiac dysfunction, cellular damage, subcellular derangements and metabolic alterations. Since increase in myocardial Ca$^{2+}$ is accompanied by these abnormalities, it is generally held that intracellular Ca$^{2+}$ overload plays an important role in the pathogenesis of cardiac dysfunction as well as cellular and metabolic defects in different cardiovascular diseases. This view is supported by observations in hearts subjected to Ca$^{2+}$-paradox, where reperfusion of Ca$^{2+}$-free perfused hearts with Ca$^{2+}$-containing medium was found to produce a marked increase in myocardial Ca$^{2+}$-content, cellular damage and cardiac contracture. The intracellular Ca$^{2+}$-overload in the heart has also been shown to produce mitochondrial Ca$^{2+}$-overload, depress ATP production, release different toxic substances and induce cardiomyocyte apoptosis. By virtue of its ability to depress cardiac gene expression and increase proteolysis of sarcolemma (SL) sarcoplasmic reticulum (SR) and myofibrils (MF), the intracellular Ca$^{2+}$-overload has been reported to reduce SL, SR and MF protein content and activities. Such remodeling of subcellular organelles is associated with dramatic alterations in Ca$^{2+}$ handling by SL and SR membranes as well as interaction of Ca$^{2+}$ with MF for the impairment of cardiac function. Thus, it is evident that mitochondrial Ca$^{2+}$-overload, and subcellular remodeling for Ca$^{2+}$-handling defects are responsible for the occurrence of cardiac dysfunction, metabolic derangements and cellular damage during the development of heart disease.

Keywords: calcium overload; gene expression; sarcoplasmic reticulum; sarcolemma; myofibrils; subcellular organelles.

Short Title: Myocardial Ca$^{2+}$ and Cardiac Function

Introduction

It is now well known that cardiac contraction and relaxation processes are determined by the coordinated functions of different subcellular organelles including sarcolemma (SL), sarcoplasmic reticulum (SR), mitochondria (MT) and myofibrils (MF) [1-6]. The SL proteins such as voltage-sensitive Ca$^{2+}$-channels, store-operated Ca$^{2+}$-channels, Na$^{+}$-Ca$^{2+}$ exchanger and Na$^{+}$-K$^{+}$ ATPase as well as SR proteins including Ca$^{2+}$-release channels (ryanodine receptors) and Ca$^{2+}$-pump ATPase play an essential role in the entry and regulation of Ca$^{2+}$ in cardiomyocytes. On the other hand, MF Ca$^{2+}$-stimulated ATPase and MT oxidative phosphorylation are involved in the generation of contractile force and ATP production, respectively. It is noteworthy to point out that Ca$^{2+}$ is not only essential for determining the status of cardiac contractile function, but is also intimately involved in the maintenance of membrane permeability, cellular integrity, and cardiac gene expression [3,7-9]. Furthermore, various vasoactive hormones including catecholamines and angiotensin II have been demonstrated to exert marked effects on Ca$^{2+}$-transport activities in cardiomyocytes [4,10,11]. Thus, defects in any of the components of subcellular organelles can be seen to induce Ca$^{2+}$-handling abnormalities and contractile dysfunction of the heart [3,9].

Since the identification of Ca$^{2+}$-overload as a new principle for the pathophysiology of cardiac dysfunction [12-14], several diseases including cardiomyopathies due to high levels of circulating catecholamines [15-20], genetically-determined heart failure [21-25] as well as ischemic heart disease (acute myocardial infarction [26-30] and ischemia-reperfusion injury [31-35]) have been shown to be associated with the development of intracellular Ca$^{2+}$-overload. It is generally assumed that impaired cardiac performance and functional derangement of subcellular organelles in different diseases are the consequence of intracellular Ca$^{2+}$-overload. It should also be pointed out that there are other pathophysiologic mechanisms including oxidative stress and myocardial inflammation, which have been proposed to induce cardiac dysfunction and cellular abnormalities during the development of heart disease [36-40]. However, in this article we have attempted to highlight the evidence that intracellular Ca$^{2+}$-overload plays a critical role in the genesis of metabolic and cellular defects as well as subcellular remodeling for the development of cardiac dysfunction in the heart. Furthermore, the present review is focussed on discussion of events for the occurrence of
intracellular Ca\(^{2+}\)-overload in cardiomyocytes and its consequences for inducing myocardial abnormalities.

Mechanisms for the Development of Intracellular Ca\(^{2+}\)-overload

Although high levels of circulating catecholamines are known to produce intracellular Ca\(^{2+}\)-overload, several mechanisms have been proposed to underlie this phenomenon [9,16,18,20]. These include activation of both \(\alpha\)- and \(\beta\)-adrenoceptors, stimulation of SL Ca\(^{2+}\)-channels, depression in SL Na\(^+-\)Ca\(^{2+}\)-exchanger and SL Ca\(^{2+}\)-pump ATPase as well as oxidation of catecholamines and formation of oxydriads. It is pointed out that interventions which reduce the entry of Ca\(^{2+}\) as well as prevent the oxidation of catecholamines and development of oxidative stress have been shown to attenuate the catecholamine-induced intracellular Ca\(^{2+}\)-overload [9,12,16,18]. Furthermore, the occurrence of intracellular Ca\(^{2+}\)-overload in genetically-determined cardiomyopathy has been attributed to the activation of sympathetic nervous system and increase in Ca\(^{2+}\)-influx as well as the depression of SL Na\(^+-\)K\(^+\) ATPase and increase in intracellular Na\(^+\) [9,21]. Agents such as Ca\(^{2+}\)-antagonists which prevent the entry of Ca\(^{2+}\) in the heart have been reported to exert beneficial effects in cardiomyopathic animals by reducing the development of intracellular Ca\(^{2+}\)-overload [9,22,25].

Several studies have been conducted to demonstrate mechanisms for the occurrence of intracellular Ca\(^{2+}\)-overload due to acute coronary occlusion as well as ischemia-reperfusion injury [9,27,28,30, 33-35]. It has been shown that the lack of oxygen in the ischemic myocardium results in acidification of the cytoplasm which promotes SL Na\(^+-\)H\(^+\) exchange and subsequent entry of Ca\(^{2+}\) upon stimulation of Na\(^+-\)Ca\(^{2+}\) exchange system. Lack of oxygen is also known to increase membrane permeability for Ca\(^{2+}\) due to incorporation of free fatty acids and other lipid metabolites in the SL membrane. On the other hand, ischemia-reperfusion injury has been associated with the release of norepinephrine from the adrenergic nerve endings for increasing the entry of Ca\(^{2+}\) in addition to promoting the development of oxidative stress. These changes are known to cause the occurrence of intracellular Ca\(^{2+}\)-overload as a consequence of their dramatic effects on the SL membrane [9,27,33,37,38]. Several other vasoactive interventions and proinflammatory agents have also been shown to produce Ca\(^{2+}\)-handling abnormalities in cardiomyocytes [39,40]. It may be noted that reperfusion of the Ca\(^{2+}\)-depleted heart with Ca\(^{2+}\) containing medium has been shown to exhibit Ca\(^{2+}\)-paradox and provide a direct evidence for the occurrence of intracellular Ca\(^{2+}\)-overload [9, 41-44]. A massive increase in myocardial Ca\(^{2+}\)content due to stimulation of Na\(^+-\)Ca\(^{2+}\) exchanger in this experimental model was shown to be prevented when perfusion of the heart with Ca\(^{2+}\)-free medium was carried out in the presence of low Na\(^+\) [42,43]. High concentrations of Ca\(^{2+}\)-antagonists were also found to attenuate the increase in myocardial Ca\(^{2+}\) in the Ca\(^{2+}\)-paradoxic heart by their action on the SL Na\(^+-\)Ca\(^{2+}\) exchange activity [44]. Thus, the Ca\(^{2+}\)-paradoxic heart is considered to form an excellent model for studying the effects of intracellular Ca\(^{2+}\)-overload [42,43].

Cardiac Dysfunction and Cellular Damage

Reperfusion of the Ca\(^{2+}\)-depleted hearts with Ca\(^{2+}\)-containing medium was found to result in loss of contractility, development of contracture, damage to ultrastructure and leakage of intracellular enzymes from the myocardium [41,45-48]. The paradoxical effects of Ca\(^{2+}\)-deprived hearts were reported to occur in different species [49] and were similar to those seen during the development of oxygen- paradox in normal hearts [50]. The Ca\(^{2+}\)-paradox phenomenon was shown to be associated with irreversible changes in the surface electrical activity [41] and a marked increase in the left ventricular end-diastolic pressure (LVEDP) [41,42,51-53]. The occurrence of intracellular Ca\(^{2+}\)-overload and the increase in LVEDP (Table 1) as well as the development of cardiac contracture in the Ca\(^{2+}\)-paradoxic heart were found to be dependent upon the concentration of Ca\(^{2+}\) in the reperfusion medium [42,53,54].

[Ca\(^{2+}\)]\(^{\text{mM}}\)	Increase in LVEDP (mmHg)	Myocardial Ca\(^{2+}\) Content (\(\mu\text{mol/g dry heart wt}\))
Control	6.8±0.41	3.7±0.39
0.03	29.3±2.0*	2.6±0.18*
0.05	32.2±1.9*	-
0.1	60.7±4.3*	6.9±0.63*
0.25	-	7.2±0.46*
0.3	85.3±6.5*	-
1.00	-	13.2±1.07*
1.25	78.5 ±5.1*	17.6±0.44*

LVEDP in hearts before initiating Ca\(^{2+}\)-free perfusion varied between 6 to 8 mmHg. Control hearts were perfused with normal medium containing 1.25 mM Ca\(^{2+}\) for 35 min without subjecting to Ca\(^{2+}\)-free medium preperfusion. Data taken from our papers: Alto LE and Dhalla NS, Am J Physiol - Heart Circ Physiol. 237:713-719, 1979; Ozcelikay TA, Chapman D, Elimban V and Dhalla NS, Curr Res Cardiol 1:13-16, 2014. *Significantly (P < 0.05) different from control.

Table 1: Effect of 30 min perfusion with medium containing different concentrations of Ca\(^{2+}\) on myocardial Ca\(^{2+}\) content and left ventricular end diastolic pressure (LVEDP) in hearts preperfused for 5 min with Ca\(^{2+}\)-free medium.

Although some investigators failed to demonstrate Ca\(^{2+}\)-paradox associated changes in isolated cardiomyocytes [55], others have shown these alterations upon successive exposure of cardiomyocytes to Ca\(^{2+}\)-free medium and Ca\(^{2+}\)-containing medium [48, 56-58]. Nonetheless, ischemic preconditioning has been observed to attenuate the Ca\(^{2+}\)-paradox associated increase in LVEDP, depression in the left ventricular developed pressure and leakage of myoglobin from the heart [59]. The presence of low Na\(^+\) during perfusion of the heart with Ca\(^{2+}\)-free medium...
was also found to prevent the development of cardiac dysfunction and the occurrence of intracellular Ca2+-overload upon reperfusion [41–43].

The ultrastructural changes in the Ca2+-deprived and reperfused hearts included swelling of mitochondria and sarcotubular system, occurrence of contractile bands, and partial separation of the intercalated disc as well as basement membrane from sarcolemma [41,43,45,60]. The alterations in ultrastructure of the myocardium were dependent upon the concentration of Ca2+ in the reperfusion medium [41,60] and were attenuated by reducing the concentration of Na+ during the Ca2+-free perfusion phase [41]. These ultrastructural changes are similar to those seen in the ischemic heart disease [27,28] and may be a consequence of increased activities of cardiac lysosomal hydrolases [61], different intracellular proteases [35] and phospholipases [62]. Although the occurrence of autophagy has been reported in ischemia-reperfused hearts and myocardial infarction [27,28], no information regarding autophagic changes in the Ca2+-paradoxic heart is available at present. It is pointed out that the activation of NFκB and increased production of TNF-α have also been reported to cause cardiac injury due to intracellular Ca2+-overload [63]. Furthermore, the occurrence of cell death (apoptosis) in the Ca2+-paradox heart has been associated with the activation of mitogen-activated protein kinases (p38 and ERK) as well as different apoptotic signal transduction pathways [64]. Thus, the development of cardiac dysfunction and cellular damage due to intracellular Ca2+-overload appears to be occurring as a consequence of complex and diverse mechanisms.

Mitochondrial Ca2+-overload and Energy Depletion

It is now well known that intracellular Ca2+-overload in the heart results in the development of mitochondrial Ca2+-overload and defects in energy production [9,47,65]. Although low concentrations of Ca2+ are required for the stimulation of mitochondrial oxidative phosphorylation, high concentrations of Ca2+ have been shown to impair the mitochondrial function for ATP production [9,53,65, 66]. Perfusion of hearts with Ca2+-free medium followed by reperfusion with Ca2+-containing medium for the induction of intracellular Ca2+-overload was found to be associated with depressed mitochondrial state 3 respiration, respiratory control index, ADP/O ratio and oxidative phosphorylation without any changes in state 4 respiration [53,67]. These alterations were prevented when the reperfusion was carried out at low concentrations (0.1-0.5 mM) of Ca2+ but were not affected by different antioxidants [55]. The impaired mitochondrial function in the Ca2+-paradoxic heart has been associated with elevated levels of citric acid cycle intermediates and is considered to be due to defects in mitochondrial membrane potentials [68,69].

A dramatic decrease in high-energy phosphate stores in the heart has been shown to occur upon the induction intracellular Ca2+-overload [67,70,71]. It may be noted that Ca2+-binding and Ca2+-uptake activities of mitochondria, isolated from the Ca2+-paradoxic hearts, were found to be increased [72]. Such a change in the mitochondrial Ca2+-transport activity was suggested to contribute towards the occurrence of mitochondrial Ca2+-overload as it was attenuated when the perfusion with Ca2+-free medium was carried out in the presence of low Na+ [72]. It is also pointed out that mitochondrial Ca2+-overload may release several cytotoxic substances, which may also serve as signals for inducing apoptosis in the Ca2+-paradoxic hearts [64]. Thus, it appears that mitochondrial Ca2+-overload may be involved in cardiac dysfunction and cellular damage in the heart by depressing the high energy phosphate stores as well as inducing apoptosis in the myocardium. A schematic representation of these events is shown in Figure 1.

Figure 1: Schematic representation depicting events for the occurrence of cardiac dysfunction and cellular damage due to mitochondrial Ca2+-overload in hearts subjected to intracellular Ca2+-overload.
Subcellular Defects and Ca2+-handling Abnormalities

While the SL membrane is concerned with influx and efflux of Ca2+ for maintaining Ca2+-homeostasis in cardiomyocytes, the SR tubular system is involved in raising and lowering the concentration of Ca2+, whereas the interaction of Ca2+ with MF proteins determines the contractile status of the myocardium [3,4]. Reperfusion of Ca2+-deprived hearts with Ca2+-containing medium has been shown to exert profound effects on the activities of different subcellular organelles (Table 2) [73-75].

Parameters	Control Hearts	Ca2+-overload Hearts
SL Na+-K+ ATPase (µmol Pi/mg protein/hr)	26.4 ± 1.8	8.2 ± 0.6*
SL Na+-Ca2+ exchange (nmol Ca2+/mg protein/2sec)	6.2 ± 0.21	2.6 ± 0.34*
SL Ca2+-pump activity (nmol Ca2+/mg protein/min)	12.4 ± 0.92	5.8 ± 0.44*
SR Ca2+-uptake activity (nmol Ca2+/mg protein/5 min)	269 ± 12.0	81 ± 6.0*
SR Ca2+-stimulated ATPase (µmol Pi/mg protein/5min)	0.86 ± 0.10	0.21 ± 0.01*
MF Ca2+-stimulated ATPase (µmol Pi/mg protein/hr)	12.08 ± 0.57	8.40 ± 0.22*
MF Mg2+-stimulated ATPase (µmol Pi/mg protein/hr)	3.20 ± 0.25	7.21 ± 0.36*

Data are taken from papers: Makino N, Panagia V, Gupta MP, Dhalla NS, Circ Res 63:313-321, 1988; Alto LA, Dhalla NS, Circ Res 48:17-24, 1981; Kovacs A, Kalasz J, Pasztor ET et al. Mol Cell Biochem 430: 57-68, 2017. * _P _< 0.05 vs control.

Table 2: Effect of intracellular Ca2+-overload on sarcosommal (SL) and sarcoplasmic reticular (SR) membranes, as well as myofibrillar (MF) ATPase activities in perfused hearts.

Depressions in the SL Na+-K+ ATPase, SL Na+-Ca2+ exchanger and SL Ca2+-pump ATPase activities in the Ca2+-paradoxic heart can be seen to contribute towards the occurrence of intracellular Ca2+-overload in cardiomyocytes [73,76,77]. These SL defects were attenuated when the perfusion with Ca2+-free medium was carried out in the presence of low Na+ (35mM) or at low temperature (21°C) [42,78]. On the other hand, the density of SL Ca2+-channels was increased upon subjecting the heart to Ca2+-paradox and this change was also attenuated by carrying out the perfusion with Ca2+-free medium in the presence of low Na+ or at low temperature [79]. Furthermore, alterations in the SL membrane were also apparent because the activities of β-AR – G-protein – adenyl cyclase complex were observed to be increased [80] and the activity of SL Ca2+/Mg2+-ecto ATPase was decreased [81] in the Ca2+-paradoxic heart. Although the status of SL store-operated Ca2+-channels [6] in the Ca2+-paradoxic heart has not been determined, their participation in inducing intracellular Ca2+-overload cannot be ruled out at present.

The induction of Ca2+-paradox in the heart upon perfusion with Ca2+-free medium followed by Ca2+-containing medium was seen to be associated with marked depression in the SR Ca2+-uptake and release activities [72,74]. These changes in Ca2+-handling by SR were dependent upon the concentration of Ca2+ in the reperfusion medium and were attenuated when the perfusion with Ca2+-free medium was carried out in the presence of low Na+ or at low temperature. Although MF Ca2+-stimulated ATPase activity was not altered during the initial (5 min) reperfusion phases of Ca2+-paradox development [67], reperfusion of Ca2+-deprived hearts with Ca2+-containing medium for 10 min was found to depress the MF Ca2+-stimulated ATPase activity and increase the MF Mg2+-ATPase activity [75]. These alterations were associated with degradation of MF α-myosin heavy chain and troponin T proteins in the Ca2+-paradoxic hearts. The activation of proteases such as calpain by elevated levels of intracellular Ca2+ in cardiomyocytes is considered to be involved in alterations of the SL, SR and MF activities upon reducing their protein content [35]. These events for inducing subcellular defects due to the occurrence of intracellular Ca2+-overload in the Ca2+-paradoxic hearts are shown in Figure 2.

It should be recognized that Ca2+-handling abnormalities in SL and SR due to intracellular Ca2+-overload may also be induced by changes in the phospholipid composition of these membranes [62]. It is also noteworthy that similar Ca2+-handling defects have also been observed in heart failure and ischemic heart disease [27, 28, 82-85].

Altersations in cardiac Gene Expression

In view of the role of cardiac gene expression in maintaining the function of different subcellular organelles in the heart [27,28,85], it has been suggested that subcellular remodeling in the Ca2+-paradoxic heart may be due to changes in gene expression for different subcellular proteins [9,73,74]. Accordingly, subcellular remodeling due to intracellular Ca2+-overload may be occurring as a consequence of both the activation of calpain and the depression in mRNA levels for different cardiac genes (Figure 2).
Figure 2: Development of cardiac dysfunction due to defects in subcellular organelles as a consequence of increased proteolysis and depressed gene expression in hearts subjected to intracellular Ca\(^{2+}\)-overload.

A. Calpain 1 mRNA

B. Calpain 2 mRNA
Figure 3: Dependence of changes in mRNA levels for calpain-1 and 2 upon Ca\(^{2+}\) concentrations in the reperfusion medium. These hearts were preperfused with Ca\(^{2+}\)-free medium for 5 min before reperfusion for 30 min. The data are taken from our paper Ozcelikay AT, Chapman D, Elimban V, Dhalla NS, Curr. Res. Cardiol.1:13-16, 2014. * P<0.05 vs control (C).

Furthermore, it was demonstrated that depressions in gene expression for SL Na\(^{+}\)-Ca\(^{2+}\) exchanger as well as different isoforms of SL Na\(^{+}\)-K\(^{+}\) ATPase protein due to Ca\(^{2+}\)-paradox were dependent upon the concentration of Ca\(^{2+}\) in the reperfusion medium (Figure 4) [54].

A. Na\(^{+}\)- Ca\(^{2+}\) Exchanger mRNA

B. Na\(^{+}\)- K\(^{+}\) ATPase α1 mRNA

C. Na\(^{+}\)- K\(^{+}\) ATPase α2 mRNA

D. Na\(^{+}\)- K\(^{+}\) ATPase β mRNA

Figure 4: Dependence of changes in mRNA levels for sarcolemmal Na\(^{+}\)-Ca\(^{2+}\) exchanger and different isoforms of Na\(^{+}\)K\(^{+}\) ATPase upon Ca\(^{2+}\) concentrations in the reperfusion medium. These hearts were perfused for 5 min with Ca\(^{2+}\)-free medium before reperfusion for 30 min. The data are taken from our paper Ozcelikay AT, Chapman D, Elimban V, Dhalla.

Likewise, alterations in mRNA levels for SR Ca\(^{2+}\)-pump protein and Ca\(^{2+}\)-release channels as well as MF α- and β- myosin proteins in the Ca\(^{2+}\)-paradoxic heart were observed to be dependent upon the concentration of Ca\(^{2+}\) in the reperfusion medium (Figure 5) [54].
Figure 5: Dependence of changes in mRNA levels for sarcoplasmic reticular SERCA2a and ryanodine receptor (Ca\(^{2+}\)-release channel) as well as α- and β-myosin heavy chain upon Ca\(^{2+}\) concentrations in the reperfusion medium. These hearts were perfused with Ca\(^{2+}\)-free medium before reperfusion for 30 min. The data are taken from our paper Ozcelikay AT, Chapman D, Elimban V, Dhalla NS, Curr. Res. Cardiol.1:13-16, 2014. *_P<0.05 vs control (C).

These observations provide evidence for a defect in the formation of subcellular proteins resulting in subcellular remodeling due to intracellular Ca\(^{2+}\)-overload. Thus, cardiac genes can be seen as excellent molecular targets for the development of novel interventions for the improved therapy of heart disease.

Conclusion

From the foregoing discussion, it is evident that two major mechanisms, namely energy depletion due to mitochondrial Ca\(^{2+}\)-overload and subcellular remodeling due to increased proteinolysis and reduced gene expression, are likely to explain the development of cellular damage, metabolic alterations and cardiac dysfunction due to intracellular Ca\(^{2+}\)-overload. It is emphasized that the occurrence of intracellular Ca\(^{2+}\)-overload in heart disease may become apparent due to increase in Ca\(^{2+}\) entry as a consequence of depolarizations in SL Na\(^{+}\)-K\(^{+}\) ATPase and Na\(^{+}\)-Ca\(^{2+}\) exchange activities as well as increase in Ca\(^{2+}\)-channel density in the SL membrane. Depressions in SL Ca\(^{2+}\)-pump ATPase as well as SR Ca\(^{2+}\)-uptake and SR Ca\(^{2+}\)-release activities in heart disease can also be seen to participate in the development of intracellular Ca\(^{2+}\)-overload. Since the observed changes in subcellular Ca\(^{2+}\)- handling due to intracellular Ca\(^{2+}\)-overload are similar to those seen in failing hearts and thus may be responsible for the development of cardiac dysfunction in different types of heart types of heart disease. It may be noted that the SL and SR defects during the development of heart disease are also induced by prolonged exposure of the heart to elevated levels of vasoactive hormones such as catecholamine’s and angiotensin II in the circulation. The accumulation of Ca\(^{2+}\) by mitochondria under conditions of intracellular Ca\(^{2+}\)-overload may be beneficial at initial stages but the resultant mitochondrial Ca\(^{2+}\)-overload can be seen to impair ATP production and promote the development of cellular damage. Thus, different interventions which can attenuate the Ca\(^{2+}\) entry into cardiomyocytes, reduce the occurrence of mitochondrial Ca\(^{2+}\)-overload, inhibit the activation of proteases and promote cardiac gene expression can be seen to exert beneficial effects in preventing the development as well as progression of heart disease.

Acknowledgements

The infrastructure support for this project was provided the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

Conflict of Interest

The authors declare that there was no conflict of interest.
References

1. Berridge MJ, Lipp P, Bootman MD. (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1: 11-21.
2. Bers DM. (2008) Calcium cycling and signaling in cardiac myocytes. Ann Rev Physiol. 70: 23-49.
3. Dhall NS, Pierce GN, Panagia V, Singal PK, Beamish RE. (1982) Calcium movements in relation to heart function. Basic Res Cardiol. 77: 117-139.
4. Dhall NS, Ziegelhoffer A, Harrow JA. (1977) Regulatory role of membrane systems in heart function. Can Physiol Pharmacol. 55: 1211-1234.
5. Prakriya M, Lewis RS. (2001) Potentiation and inhibition of Ca²⁺ release-activated Ca²⁺ channels by 2-aminoethyldiphenylborate (2-APB) occurs independently of IP3 receptors. J Physiol. 536: 3-19.
6. Bhullar SK, Shah AK, Dhall NS. (2019) Store-operated calcium channels: Potential target for the therapy of hypertension. Rev Cardiovasc Med. 20:139-151.
7. Reuter H. (1985) Calcium movements through cardiac cell membranes. Med Res Rev. 5:427-440.
8. Carafoli E. (1987) Intracellular calcium homeostasis. Annu Rev Biochem. 56:395-433.
9. Dhall NS, Elimban V, Rupp H, Takeda N, Naganou M. (1995) Role of calcium in cardiac cell damage and dysfunction. In: Sperelakis N(ed) Physiology and Pathophysiology of the Heart. 3rd edition Kluwer Academic Publishers, Boston, p. 605-623.
10. Saini HK, Tripathi ON, Zhang S, Elimban V, Dhall NS. (2006) Involvement of Na⁺-Ca²⁺ exchanger in catecholamine-induced increase in intracellular calcium in cardiomyocytes. Am J Physiol Heart Circ Physiol. 290: H373-H380.
11. Shao Q, Saward L, Zahradka P and Dhall NS. (1998) Ca²⁺ mobilization in adult rat cardiomyocytes by angiotensin type I and 2 receptors. Biochem Pharmacol. 55:1413-1418.
12. Fleckenstein A. (1971) Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the production and prevention of myocardial lesions. In: Harris P, Opie L (eds) Calcium and the Heart. Academic Press, London New York, p. 135-188.
13. Fleckenstein A, Janke J, Doring HJ, Leder O. (1974) Myocardial fiber necrosis due to intracellular Ca overload - a new principle in cardiac pathophysiology. Recent Adv Stud Cardiact Struct Metab. 4:563-580.
14. Fleckenstein A, Janke J, Doring HJ, Pachinger O. (1973) Ca overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Recent Adv Stud Cardiact Struct Metab. 2: 455-466.
15. Rona G. (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol. 17:291-306.
16. Adameova A, Abdellatif Y, Dhall NS. (2009) Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol. 87: 493-514.
17. Dhall NS, Dent MR, Arneja AS. (2008) Pathogenesis of catecholamine-induced cardiomyopathy. In: Acosta D.Jr, (ed) Cardiovascular Toxicology, 4th edition. CRC press New York, p. 207-262.
18. Tappia PS, Hata T, Hozaima L, Sandhu MS, Panagia V, Dhall NS. (2001) Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca²⁺ transport. Arch Biochem Biophys. 387:85-92.
19. Varley KG, Dhall NS. (1973) Excitation-contraction coupling in heart. XII. Subcellular calcium transport in isoproterenol-induced myocardial necrosis. Expt Mol Pathol. 19:94-105.
20. Panagia V, Pierce GN, Dhall KS, Ganguly PK, Beamish RE, Dhall NS. (1985) Adaptive changes in subcellular calcium transport during catecholamine-induced cardiomyopathy. J Mol Cell Cardiol. 17:411-420.
21. Dhall NS, Lee SL, Shah KR, Elimban V, Suzuki S, Jasmin G. (1994) Behaviour of subcellular organelles during the development of congestive heart failure in cardiomyopathic hamsters (UM-X7.1). In: Nagano M, Takeda N, Dhall NS (eds). The Cardiomyopathic Heart. Raven Press, New York, p. 1-14.
22. Sethi R, Panagia V, Dhall KS, Beamish RE, Jasmin G, Dhall NS. (1994) Status of β-adrenergic mechanisms during the development of congestive heart failure in cardiomyopathic hamsters (UM-X7.1). In: Nagano M, Takeda N, Dhall NS (eds). The Cardiomyopathic Heart. Raven Press, New York, p. 73-86.
23. Makino N, Jasmin G, Beamish RE, Dhall NS. (1985) Sarcolemmal Na⁺-Ca²⁺ exchange during the development of genetically determined cardiomyopathy. Biochem Biophys Res Commun. 133:491-497.
24. Dhall NS, Panagia V, Makino N, Beamish RE. (1988) Sarcolemmal Na⁺-Ca²⁺ exchange and Ca²⁺-pump activities in cardiomyopathies due to intracellular Ca²⁺-overload. Mol Cell Biochem. 82:75-79.
25. Müller AL, Freed D, Hrysko LV, Dhall NS. (2012) Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol. 90:995-1004.
26. Jennings RB, Reimer KA. (1991) The cell biology of acute myocardial ischemia Annu Rev Med. 42:225-46.
27. Dhall NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. (2007) Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med. 8: 238-250.
28. Dhall NS, Rangi S, Babick AP, Zieron S, Elimban V. (2012) Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging. Heart Fail Rev. 17:671-681.
29. Shao Q, Takeda N, Temsah R, Dhall KS, Dhall NS. (1996) Prevention of hemodynamic changes due to myocardial infarction by early treatment of rats with imidapril. Cardiovasc Pathobiol. 1:180-186.
30. Sharma GP, Varley KG, Kim SW, Barwinsky J, Cohen M, Dhall NS. (1975) Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium produced by coronary occlusion. Am J Cardiol. 36:234-243.
31. Nayler WG (1981) The role of calcium in the ischemic myocardium. Am J Pathol. 102:262-270.
32. Tani M (1990) Mechanisms of Ca²⁺ overload in reperfused ischemic myocardium. Annu Rev Physiol. 52:543-559.
33. Dhall NS, Temsah RM, Netticadan T, Sandhu MS. (2001) Calcium overload in ischemia/reperfusion injury. In: Sperelakis N, Kurachi Y, Terzic A, Cohen A (eds). Heart Physiology and Pathophysiology, 4th edition. Academic Press, San Diego, p. 949-965.
34. Saini HK, Dhall NS. (2005) Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 288: H2260-H2270.
35. Muller AL, Hrysko LV, Dhalla NS. (2013) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol. 164:39-47.

36. Dhalla NS, Temsah RM, Netticadan T. (2000) Role of oxidative stress in cardiovascular diseases. J Hypertension 18:655-673.

37. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia reperfusion injury. Cardiovasc Res. 47:446-456.

38. Dhalla NS, Golman L, Takeda S, Takeda N, Nagano M. (1999) Evidence for the role of oxidative stress in acute ischemic heart disease: A brief review. Can J Cardiol. 15: 587-593.

39. Golman LS, Hata T, Beamish RE, Dhalla NS. (1993) Role of endothelin in heart function in health and disease. Can J Cardiol. 9:635-653.

40. Bartekova M, Rodasinska J, Jelemensky M, Dhalla NS. (2018) Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev. 23:733-758.

41. Yates JC, Dhalla NS. (1975) Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca⁴⁺-free medium. J Mol Cell Cardiol. 7:91-103.

42. Alto LE and Dhalla NS. (1979) Myocardial cation contents during induction of the calcium paradox. Am J Physiol. 237:H713-H719.

43. Alto LE, Singal PK, Dhalla NS. (1980) Calcium paradox: dependence of reperfusion-induced changes on the extracellular calcium concentration. Adv Myocardiol. 2:177-185.

44. Dhalla NS, Singal PK, Takeo S, McNamara DB. (1984) Mechanisms of the beneficial effects of some Ca²⁺ antagonists on the Ca²⁺-paradox in myocardium. In: Sperekakis N, Caulifield J (eds) Calcium Antagonists and Heart Disease. Martinus Nijhoff, Boston, p. 219-227.

45. Zimmerman ANE, Daems W, Hulsmann WC, Snijder J, Wisse E, Durrer D. (1967) Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium containing solutions (calcium paradox). Cardiovasc Res. 1: 201-209.

46. Zimmerman AN, Hulsmann WC. (1966) Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature 211:646-647.

47. Chapman RA, Tunstall J. (1987) The calcium paradox of the heart. Prog Biophys Mol Biol. 50: 67-96.

48. Chapman RA, Suleiman MS, Rodrigo GC, Tunstall J. (1991) The calcium paradox: a role for [Na⁺], a cellular or tissue basis, a property unique to the Langendorff perfused heart? A bundle of contradictions! J Mol Cel Cardiol. 23:773-777.

49. Hearse DJ, Humphrey SM, Boink AB, Ruigrok TJ. (1978) The calcium paradox: metabolic, electrophysiological, contractile and ultrastructural characteristics in four species. Eur J Cardiol. 7: 241-256.

50. Hearse DJ, Humphrey SM, Bullock GR. (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol. 10: 641-668.

51. Ruigrok TJ, Burgersdijk FJ, Zimmerman AN. (1975) The calcium paradox: a reaffirmation. Eur J Cardiol. 3: 59-63.

52. Nayler WG, Perry SE, Elz JS, Daly MJ. (1984) Calcium, sodium, and the calcium paradox. Circ Res. 55: 227-237.

53. Makazan Z, Saini-Chohan HK, Dhalla NS. (2009) Mitochondrial oxidative phosphorylation in hearts subjected to Ca²⁺-depletion and Ca²⁺-repletion. Can J Physiol Pharmacol. 87: 789-797.

54. Ozcelikay AT, Chapman D, Elimban V, Dhalla NS. (2014) Role of intracellular Ca²⁺ overload in inducing changes in cardiac gene expression. Curr Res Cardiol. 1:13-16.

55. Piper HM, Spahr R, Hutter JF, Spiekermann PG. (1985) The calcium and the oxygen paradox: non-existent on the cellular level. Basic Res Cardiol. 80 Suppl 2: 159-163.

56. Suleiman MS, Edmond JJ, Bestrode GK. (1997) Calcium paradox in guinea-pig ventricular myocytes. Exp Physiol. 82: 657-664.

57. Goshima K, Wakabayashi S, Masuda A. (1980) Ionic mechanism of morphological changes of cultured myocardial cells on successive incubation in media without and with Ca²⁺. J Mol Cell Cardiol. 12: 1135-1157.

58. Ruano-Arroyo G, Gerstenblith G, Lakatta EG. (1984) Calcium paradox in the heart is modulated by cell sodium during the calcium-free period. J Mol Cell Cardiol. 16: 783-793.

59. Kawabata K, Osada M, Netticadan T, Dhalla NS. (1998) Beneficial effect of ischemic preconditioning on Ca²⁺ paradox in the rat heart. Life Sci. 63:685-692.

60. Muir AR. (1968) A calcium-induced contracture of cardiac muscle cells, J Anat 102: 148-149.

61. Kutryk MJB, Dhalla NS. (1987) Alterations in cardiac lysosomal hydrolases following induction of the calcium paradox. Can J Physiol Pharmacol. 65:2175-2181.

62. Persad S, Vrananova A, Meij JTA, Panagia V, Dhalla NS. (1993) Possible role of phospholipase C in the induction of Ca²⁺-paradox in rat heart. Mol Cell Biochem. 121:181-190.

63. Zhang M, Xu Y-J, Saini HK, Turan B, Liu PP, Dhalla NS. (2005) TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca²⁺-overload. Biochem Biophys Res Commun. 327:57-63.

64. Xu Y-J, Saini HK, Zhang M, Elimban V, Dhalla NS. (2006) MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine. Cardiovasc Res. 72: 163-174.

65. Gunter TE, Yule DJ, Gunter KK, Eliseev RA, Salter JD. (2004) Calcium and mitochondria. FEBS Lett. 567: 96-102.

66. Wrognemann K, Jacobson BE, Blanchard MC. (1973) On the mechanism of a calcium-associated defect of oxidative phosphorylation in progressive muscular dystrophy. Arch Biochem Biophys. 159:267-278.

67. Dhalla NS, Singh JN, McNamara DB, Bernatsky A, Singh A, Harrow JAC. (1983) Energy production and utilization in contractile failure due to intracellular calcium overload. Adv Exp Med Biol. 161:305-316.

68. Schaffer SW, Tan BH. (1985) Effect of calcium depletion and calcium paradox on myocardial energy metabolism. Can J Physiol Pharmacol. 63: 1384-1391.

69. Minezaki KK, Suleiman MS, Chapman RA. (1994) Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload. J Physiol. 476: 459-471.

70. Ban K, Handa S, Chapman RA. (1999) On the mechanism of the failure of mitochondrial function in isolated guinea-pig myocytes subjected to a Ca²⁺ overload. Cardiovasc Res. 44: 556-567.

71. Bienk AB, Ruigrok TJ, Maas AH, Zimmerman AN. (1976) Changes in high-energy phosphate compounds of isolated rat hearts during Ca²⁺-free perfusion and reperfusion with Ca²⁺. J Mol Cell Cardiol. 8: 973-979.

72. Lee SL, Dhalla NS. (1976) Subcellular calcium transport in failing hearts due to calcium deficiency and overload. Am J Physiol. 231:1159-1165.

73. Makino N, Panagia V, Gupta MP, Dhalla NS. (1988) Defects in sarcolemmal Ca²⁺ transport in hearts due to induction of calcium paradox. Circ Res. 63:313-321.
74. Alto LE, Dhallan NS. (1981) Role of changes in microsomal calcium uptake in the effects of reperfusion of Ca²⁺-deprived rat hearts. Circ Res. 48:17-24.
75. Kovacs A, Kalasz J, Pasztor ET, Toth A, Papp Z, Dhallan NS, Barta J. (2017) Myosin heavy chain and cardiac troponin T damage is associated with impaired myofibrillar ATPase activity contributing to sarcomeric dysfunction in Ca²⁺-paradox rat heart. Mol Cell Biochem. 430:57-68.
76. Alto LE, Elimban V, Lukas A, Dhallan NS. (2000) Modification of heart sarcolemmal Na⁺-K⁺ ATPase activity during development of the calcium paradox. Mol Cell Biochem. 207:87-94.
77. Dhallan NS, Alto LE, Singal PK. (1983) Role of Na⁺-Ca²⁺ exchange in the development of cardiac abnormalities due to calcium paradox. Europ Heart J. 4 (Suppl):51-56.
78. Holland CE Jr, Olson RE. (1975) Prevention by hypothermia of paradoxical calcium necrosis in cardiac muscle. J Mol Cell Cardiol. 7:917-928.
79. Persad S, Gupta KK, Dhallan NS. (1995) Status of Ca²⁺ channels in hearts perfused with Ca²⁺-free medium as well as upon reperfusion (Ca²⁺-paradox). J Mol Cell Cardiol. 27:513-522.
80. Wang X, Wang J, Takeda S, Elimban V, Dhallan NS. (2002) Alterations of cardiac β-adrenoceptor mechanisms due to calcium depletion and repletion. Mol Cell Biochem. 232:63-73.
81. Alto LE, Elimban V, Dhallan NS. (1999) Alterations in sarcolemmal Ca²⁺/Mg²⁺ ecto-ATPase activity in hearts subjected to calcium paradox. Exp Clin Cardiol. 4:29-34.
82. Yano M, Ikeda Y, Matsuzaki M (2005) Altered intracellular Ca²⁺ handling in heart failure. J Clin Invest. 115: 556–564.
83. Lou Q, Janardhan A, Efimov IR. (2012) Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 740: 1145–1174.
84. Luo M, Anderson ME. (2013) Mechanisms of altered Ca²⁺ handling in heart failure. Circ Res. 113:690-708.
85. Dhallan NS, Saini HK, Rodriguez D, Elimban V, Dent MR, Tappia PS. (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res. 81: 429-438.