Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene

Jun-Yang Wang1,2,6, Xiao-Yan Li1,2,6, Hui-Juan Li1,2,6, Jie-Wei Liu1, Yong-Gang Yao1–3,5, Ming Li1–3,5, Xiao Xiao1,7, and Xiong-Jian Luo*,1–4,7

1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; 3KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; 4Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; 5CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China; 6These authors contributed equally to this work; 7Xiong-Jian Luo and Xiao Xiao are co-corresponding authors who jointly directed this work.

*To whom correspondence should be addressed; Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail: luoxiongjian@mail.kiz.ac.cn

Recent large-scale integrative analyses (including Transcriptome-Wide Association Study [TWAS] and Summary-data-based Mendelian Randomization [SMR]) have identified multiple genes whose cis-regulated expression changes may confer risk of schizophrenia. Nevertheless, expression quantitative trait loci (eQTL) data and genome-wide associations used for integrative analyses were mainly from populations of European ancestry, resulting in potential missing of pivotal biological insights in other continental populations due to population heterogeneity. Here we conducted TWAS and SMR integrative analyses using blood eQTL (from 162 subjects) and GWAS data (22,778 cases and 35,362 controls) of schizophrenia in East Asian (EAS) populations. Both TWAS (P = 2.89 × 10^{-14}) and SMR (P = 6.04 × 10^{-5}) analyses showed that decreased TMEM180 mRNA expression was significantly associated with risk of schizophrenia. We further found that TMEM180 was significantly down-regulated in the peripheral blood of schizophrenia cases compared with controls (P = 8.63 × 10^{-4} in EAS sample), and its expression was also significantly lower in the brain tissues of schizophrenia cases compared with controls (P = 1.87 × 10^{-5} in European sample from PsychENCODE). Functional explorations suggested that Tmem180 knockdown affected neurodevelopment, ie, proliferation and differentiation of neural stem cells. RNA sequencing showed that pathways regulated by Tmem180 were significantly enriched in brain development and synaptic transmission. In conclusion, our study provides convergent lines of evidence for the involvement of TMEM180 in schizophrenia, and highlights the potential and importance of resource integration and sharing at this big data era in bio-medical research.

Key words: schizophrenia/TMEM180/integrative analysis gene expression/TWAS/eQTL

Introduction

Schizophrenia is a severe mental disorder imposing great economic and societal burden.1 High heritability indicates a dominant role of genetic risk factors in schizophrenia,2 and over 200 risk loci have been reported by genome-wide association studies (GWASs).3–12 Despite that GWASs have made unprecedented achievements in the past decade, deciphering the genetic underpinnings and pathophysiology of schizophrenia is still challenging owing to the genetic heterogeneity of the disease between continental populations13–15 and the unclear functionality of most GWAS loci.

Recent endeavors to overcome these challenges have achieved prominent success. For example, GWASs performed in populations of East Asian (EAS),8,9,11 Indian,16 African and Latino ancestries17 have identified novel risk loci for schizophrenia. In addition, integrative studies using European data have identified potential target genes of multiple schizophrenia risk variants.18–27 Although these studies have provided novel biological insights, almost all of these integrative analyses utilized genome-wide associations and eQTL data of populations of European ancestry, potentially
missing pivotal genetic and biological insights in other populations. To overcome the deficiency of integrative analyses in non-European populations and to illuminate the potential roles of the identified risk genes in schizophrenia, in this study, we firstly conducted large-scale integrative analyses (ie, TWAS and Summary-Data-Based Mendelian Randomization [SMR]) using reported genome-wide associations and eQTL data of population of East Asian ancestry (EAS). We then explored if risk genes identified by integrative analyses were dysregulated in schizophrenia cases compared with controls. We also investigated the role of the identified risk gene (ie, Tmem180) in neurodevelopment by using neural stem cell model. Finally, we investigated the genes and pathways potentially regulated by Tmem180 using transcriptome sequencing. Our study suggests that TMEM180 is a schizophrenia risk gene whose expression alternation may have a role in schizophrenia (through affecting neurodevelopment and schizophrenia-associated biological pathways).

Materials and Methods

Genome-Wide Associations of EAS

Genome-wide SNP associations in EAS were retrieved from a recent schizophrenia GWAS.11 Briefly, Lam et al conducted the largest schizophrenia GWAS (22,778 cases and 35,362 controls) in EAS and identified 21 genome-wide significant associations at 19 loci.11 Detailed information about the EAS GWAS can be found in the original paper.11

eQTL Data of EAS

Recent studies have revealed differences in genetic architecture of gene expression in different populations,28,29 indicating the importance of conducting integrative analyses using genetic associations and eQTL data from the same population (ie, if GWAS associations were from EAS, it is better to use eQTL data from EAS). We used eQTL data from lymphoblastoid cell lines of EAS populations (162 donors) in this study.30 Detailed information about the EAS GWAS can be found in the supplementary methods.

Transcriptome-Wide Association Study

To identify genes whose cis-regulated expression changes are associated with risk of schizophrenia, we performed a Transcriptome-Wide Association Study (TWAS) by integrating GWAS associations and eQTL data. The TWAS analysis was performed using the FUSION software31 (http://gusevlab.org/projects/fusion/). Detailed information about TWAS are provided in the supplementary methods.

SMR Analysis

We used SMR integrative analysis approach developed by Zhu et al. to identify schizophrenia risk genes through integrating eQTL data and GWAS signals.32 Details about the SMR analyses can be found in the original paper32 and are provided in the supplementary methods.

Functional Annotation of rs2902544

We explored the functionality of rs2902544 using functional annotation tools RegulomeDB33 and Alibaba234. Detailed information about functional annotation are provided in the supplementary methods.

Expression Analysis of TMEM180 in Peripheral Blood of Schizophrenia Cases and Controls (EAS Sample)

TWAS identifies disease-associated genes under the assumption that genetic variations confer risk of disease by modulating gene expression.31 To further explore if the schizophrenia risk gene TMEM180 identified by TWAS and SMR integrative analyses in EAS was dysregulated in schizophrenia cases, we examined gene expression level of TMEM180 in peripheral blood of schizophrenia cases and controls by using the expression data from the study of Sun et al.35 More detail information about schizophrenia diagnosis, blood collection, RNA extraction, quality control, and statistical analysis were provided in supplementary material and can be found in the original publication.35

Expression Analysis of TMEM180 in Brain Tissues of Schizophrenia Cases and Controls (European Sample)

We further examined TMEM180 mRNA expression level in brains of schizophrenia cases and controls. As there is no publicly available Asian brain expression data for analysis, we used European brain expression data from the PsychENCODE21 for TMEM180 expression analysis. We extracted the expression values (fragments per kilobase of transcript per million mapped reads (FPKM)) and P value of TMEM180 from PsychENCODE website. Detailed information about the study subjects are provided in supplementary material and can be found in the related publication.21

Isolation and Culture of Mouse Neural Stem Cells (mNSCs)

We isolated mNSCs according to the published protocols36,37 with some minor modifications as described in our recent study.38 In brief, brains of mouse embryos (embryonic day 13.5 (E13.5), C57BL/6) were dissected under microscope to obtain neural stem cells from the ventricular zone (VZ) and sub-ventricular zone (SVZ) tissues. Details about isolation and culturing of mNSCs are provided in supplementary material.
Knockdown Experiments

The short hairpin RNAs (shRNAs) targeting mouse Tmem180 were designed using BLOCK-iT™ RNAi Designer (https://rnaidesigner.thermofisher.com/rnaiexpress/sort.do) (supplementary table 1). Detailed procedures were provided in supplementary methods.

Proliferation Assays of mNSCs

Proliferation assays (including EdU incorporation and CCK-8) were performed as previously described and detailed procedures were provided in supplementary methods.

Differentiation of mNSCs Into Neurons and Astrocyte Cells

The mNSCs cells were seeded onto the 24-well plates at a density of 2 × 10^5 cells/well (pre-coated with laminin [SIGMA, Cat.No: L2020-1mg]) and cultured in proliferation medium. After one day, the proliferation medium was replaced with differentiation medium. Differentiation assays were performed as previously described and detailed procedures were provided in supplementary methods.

Immunofluorescence Staining

Detailed procedures about immunofluorescence staining are provided in supplementary material. The primary and secondary antibodies used in this study were provided in supplementary material.

Real-Time Quantitative PCR

RNA was extracted with TRIZol RNA Isolation Reagents (Life technologies, 15596018) according to the manufacturer’s instructions. Detailed information about procedures and analyses of qPCR are provided in the supplementary methods. Primers sequences are listed in supplementary table 1.

Transcriptome Analysis

Detailed procedures about transcriptome analysis (RNA sequencing) are provided in supplementary material.

Results

TWAS and SMR Integrative Analyses in EAS Identified TMEIM180 as a Schizophrenia Risk Gene

To prioritize candidate genes whose expression alterations may confer risk of schizophrenia, several integrative analyses have been performed. However, most of the integrative analyses were conducted in populations of European ancestry. In this study, we performed integrative analyses using genome-wide associations of schizophrenia (22 778 schizophrenia cases and 35 362 controls) and eQTL data (162 individuals) from populations of EAS ancestry. We first conducted a TWAS in EAS and identified 4 transcriptome-wide significant risk genes (including TMEIM180, ACTR1A, SFXN2, and MAD1L1) for schizophrenia (corrected by Bonferroni multiple comparison testing) (table 1), and TMEIM180 showed the most significant association (TWAS P = 2.89 × 10^-14). SNP rs2902544 showed significant association with schizophrenia and TMEIM180 expression (figure 1a). Of note, functional annotation suggested that rs2902544 may be a functional variant (supplementary figure 1). We further performed another integrative analysis (ie, SMR) by using the same GWAS and eQTL data as the TWAS analysis. SMR integrative analysis identified 2 schizophrenia risk genes (SFXN2 and TMEIM180) (corrected by Bonferroni multiple comparison testing) (table 2). Nevertheless, HEIDI (heterogeneity in dependent instruments) test showed that SFXN2 could not pass heterogeneity test (P<0.05), suggesting that the association between SFXN2 and schizophrenia might due to linkage or pleiotropic effect (rather than causal effect). Thus, the only significant risk gene identified by SMR is TMEIM180 (P = 6.04 × 10^-5). Collectively, both TWAS and SMR integrative analyses supported that TMEIM180 was significantly associated with schizophrenia.

Table 1. Transcriptome-Wide Significant Schizophrenia Risk Genes Identified by TWAS in EAS

Gene	CHR	Best.GWAS.ID*	A1	A2	ORb	eQTL IDc	TWAS.Zd	TWAS.P
TMEIM180	10	rs4147157	A	G	0.89	rs2902544	-7.603	2.89E-14
ACTR1A	10	rs4147157	A	G	0.89	rs284860	-5.2973	1.18E-07
SFXN2	10	rs4147157	A	G	0.89	rs2902548	5.0379	4.71E-07
MAD1L1	7	rs10239050	A	G	1.07	rs1107592	4.647	3.37E-06

Note: *The SNP that showed the most significant association with schizophrenia in this locus.

*Odds ratio is based on A1.
*The SNP that showed the most significant association with gene expression in this locus.
*The Z statistic reflects the association strength between this gene and schizophrenia. Z<0 suggests that this gene was predicted to be down-regulated in schizophrenia cases compared with controls, and vice versa. Transcriptome-wide significant (Bonferroni corrected P<0.05) gene is shown in bold.
Identification of TMEM180 as a Schizophrenia Risk Gene

Table 1. Transcriptome-Wide Significant Schizophrenia Risk Genes Identified by TW AS in EAS

Gene	Chr	Best.GW SNP	Best.GW SNP Chr	A1	A2	ORb	eQTL IDc	TW AS.Zd	TW AS.P
TMEM180	10	rs4147157	10	A	G	0.89	rs2902544	−7.603	2.89E-14
ACTR1A	10	rs4147157	10	A	G	0.89	rs284860	−5.2973	1.18E-07
SFXN2	10	rs4147157	10	A	G	0.89	rs2902548	5.0379	4.71E-07
MAD1L1	7	rs10239050	7	A	G	1.07	rs1107592	4.647	3.37E-06

Note: aThe SNP that showed the most significant association with schizophrenia in this locus. bOdds ratio is based on A1. cThe SNP that showed the most significant association with gene expression in this locus. dThe Z statistic reflects the association strength between this gene and schizophrenia. Z < 0 suggests that this gene was predicted to be down-regulated in schizophrenia cases compared with controls, and vice versa. Transcriptome-wide significant (Bonferroni corrected P < 0.05) gene is shown in bold.

Risk Allele of rs2902544 was Associated With Lower TMEM180 Expression

Our TWAS analysis showed that rs2902544 was simultaneously associated with schizophrenia (P = 3.45 × 10⁻¹³) and TMEM180 expression (P = 2.88 × 10⁻¹⁰) in EAS (table 1), suggesting that genetic variation may confer schizophrenia risk by regulating TMEM180 mRNA expression. Further analysis showed that the risk allele (ie, C allele) of rs2902544 was associated with lower TMEM180 expression (figure 1a), implying that risk variants might contribute to schizophrenia risk through down-regulating TMEM180.

Down-Regulation of TMEM180 in Schizophrenia Cases Compared With Controls

As stated above, TWAS and eQTL analyses of rs2902544 predicted down-regulation of TMEM180 in schizophrenia cases compared with controls (table 1). We then examined TMEM180 mRNA expression changes between schizophrenia cases and controls using the expression data from Sun et al. (Chinese sample).³⁵ Consistent with the prediction of integrative analyses, we found that TMEM180 was significantly down-regulated in the blood samples of schizophrenia cases compared with controls (P = 8.63 × 10⁻⁴) (figure 1b), with an effect size (Cohen’s d) of 1.22.

Knockdown of Tmem180 Affected Proliferation of Mouse Neural Stem Cells

Although the pathophysiology of schizophrenia remains largely unknown, multiple lines of evidence (including genetic and functional studies) support the neurodevelopmental hypothesis, which posits that schizophrenia is mainly attributed to abnormal brain development.⁴⁶ To mimic the effect of TMEM180 down-regulation on neurodevelopment, we used the

Fig. 1. Expression quantitative trait loci and TMEM180 expression analyses. (a) The schizophrenia risk allele of rs1902544 is associated with lower TMEM180 expression in EAS (effect size (beta) = 0.182). (b) TMEM180 expression was significantly down-regulated in schizophrenia cases compared with controls (with the effect size [Cohen’s d] of 1.22).

Table 2. Schizophrenia Risk Genes Identified by SMR Integrative Analysis in EAS

Gene	Chr	Top SNP	Top SNPChr	A1	A2	ORa	HEIDI_Pb	SMR_P
SFXN2	10	rs2902548	10	T	C	0.92	2.27E-03	2.52E-06
TMEM180	10	rs17114641	10	T	G	1.10	8.22E-02	6.04E-05

Note: aOdds ratio is based on A1. bHEIDI (heterogeneity in dependent instruments) test was used to distinguish pleiotropy from linkage. If a gene passes HEIDI test (P>0.05), suggesting that there is a single causal variant influencing both disease risk and gene expression. Thus, the expression change of this gene may have a role in disease susceptibility. Transcriptome-wide significant (Bonferroni corrected P < 0.05) gene is shown in bold.
mouse neural stem model, which was frequently used in studying the role of schizophrenia risk genes in neurodevelopment.27,43–45 We validated the identity of isolated mNSCs using well-characterized markers, including PAX6, NESTIN and SOX2 (figures 2a–e). We designed 2 shRNAs to knockdown \textit{Tmem180} expression in mNSCs and RT-qPCR showed that \textit{Tmem180} was significantly down-regulated by the shRNAs (figure 2f). Both EdU and CCK-8 assays showed that \textit{Tmem180} knockdown promoted proliferation of mNSCs significantly (figures 2g–i), indicating that \textit{Tmem180} has a role in regulating proliferation of NSCs.

Knockdown of \textit{Tmem180} Affected Differentiation of \textit{mNSCs} Into Neuronal and Astrocyte Cells

In the early stage of neurodevelopment, the NSCs first undergo serial proliferation and self-renewal in the ventricular zone (VZ) and sub-ventricular zone (SVZ) to generate numbers of NSCs and neural progenitor cells.51

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{\textit{Tmem180} knockdown promotes proliferation of mNSCs significantly. (a–e) Immunofluorescence staining showed that the isolated mNSCs express 3 well-characterized markers for NSCs, including SOX2, PAX6, and NESTIN, indicating that the cells were NSCs. (f) Expression of \textit{Tmem180} in mNSCs was significantly knocked-down by the designed shRNAs. (g) EdU incorporation assay showed that EdU* (red) cells were significantly increased in \textit{Tmem180} knocked-down cells compared with controls. DAPI* was used to stain the nucleus (blue). (h) The quantification results of the EdU incorporation assay. (i) CCK-8 assay revealed that the \textit{Tmem180} knockdown significantly promote proliferation of NSCs. Data showed at 3 time points, 24, 48 and 72 hours. Two-tailed Student’s \textit{t} test was used to compare if the difference was significant. n = 3 for f, n = 3 (EdU positive cells were counted from 6 independent immunostaining images for each sample) for g, n = 9 for i. Data are represented as mean ± SD. *\textit{P} < .05; **\textit{P} < .01; ***\textit{P} < .001.}
\end{figure}
With the progress of development, these NSCs and neural progenitors migrate outside and differentiate into different types of neural cells and astrocyte cells. To further explore the role of **TMEM180** in neurodevelopment, we next investigated the role of **TMEM180** in neural differentiation. Compared with control NSCs, we found that the proportion of GFAP positive astrocytes cells (GFAP⁺) was significantly decreased in **Tmem180** knockdown group (figures 3a and 3b). By contrast, the proportion of MAP2 positive neuronal cells (MAP2⁺) was significantly increased (figures 3c and 3d). We validated the impact of **Tmem180** knockdown on neural differentiation with RT-qPCR. Consistent with the immunostaining results, RT-qPCR showed that **Tmem180** knockdown significantly altered the expression of GFAP and MAP2, with the same effect direction as observed in immunostaining assays (figures 3f and 3g). Collectively, these results demonstrate the important role of **TMEM180** in regulating neural differentiation.

TMEM180 Regulated Schizophrenia-Associated Pathways

To further investigate the biological and signaling pathways regulated by **TMEM180**, we performed transcriptome analysis. We conducted RNA-Seq to examine the impact of **Tmem180** knockdown on global gene expression profiling in mNSCs. We identified 654 genes (supplementary table 2) that were differentially expressed (fold change > 1.5 and adjusted P < .05) in **Tmem180** knockdown mNSCs (compared with controls) (figure 4a). We selected 5 genes (including **Nptx1**, **Ywhah**, **Gabra2**, **Col26a1**, and **Slc6a9**) (figure 4b) to validate the results of RNA-seq using RT-qPCR (figures 4c-g), and the selection criteria of these 5 genes were as follows: First, these 5 genes were from the top 30 differentially expressed genes (based on RNA-seq). Second, these genes are abundantly expressed (https://www.proteinatlas.org/)52 (supplementary figure 2) and have pivotal roles in the human brain.52-65 Detailed information about the roles of these genes in the central nervous system was provided in the supplementary methods. Taken together, these lines of evidence indicated the important role of the potential target genes of **TMEM180** in brain development and psychiatric disorders, suggesting that **TMEM180** may confer risk of schizophrenia through regulating these genes.

We next performed GO analysis to explore if the 654 differentially expressed genes were enriched in specific biological categories or signaling pathways. Our GO analysis showed that the differentially expressed genes were mainly enriched in biological processes associated with schizophrenia, including action potential,66 learning or memory,67,68 cognition,69-71 synaptic transmission, etc (figure 4h). In addition, KEGG pathway analysis showed that the dysregulated genes were significantly enriched in schizophrenia-associated signaling pathways, including ECM-receptor interaction,72 cAMP signaling pathway,73 glutamatergic synapse, synaptic vesicle cycle,74-77 GABAergic synapse,78,79 etc (figure 4i). Collectively, our transcriptome analysis showed that **TMEM180** may contribute to schizophrenia by regulating these biological processes and signaling pathways.

Discussion

In this study, we identified **TMEM180** as a schizophrenia risk gene through integrating genome-wide associations and eQTL data from EAS. We provided convergent lines of evidence that support dysregulation of **TMEM180** might have a role in schizophrenia. First, our TWAS and SMR integrative analyses suggested that **TMEM180** is schizophrenia risk gene whose down-regulation may have a role in schizophrenia. Of note, previous TWAS studies21,60 using GWAS associations and brain eQTL data of Europeans did not identify **TMEM180** as a schizophrenia risk gene (supplementary table 3), indicating the necessity and importance of performing integrative analysis using GWAS and eQTL data from non-European populations. Second, consistent with the prediction of integrative analyses, mRNA expression analysis showed that **TMEM180** was significantly down-regulated in peripheral blood of schizophrenia cases compared with controls in EAS sample. Third, **TMEM180** also showed a significant down-regulation in brains of schizophrenia cases compared with controls in European sample from the PsychENCODE.22 further supporting the potential involvement of **TMEM180** in schizophrenia. Fourth, we found that **Tmem180** knockdown affected proliferation and differentiation of NSCs, indicating that **Tmem180** is required for normal proliferation and differentiation of NSCs. These results also suggested that **TMEM180** may contribute to susceptibility of schizophrenia by affecting neurodevelopment. Finally, transcriptome analysis demonstrated that **Tmem180** regulates schizophrenia-associated pathways, including pathways related to synaptic transmission, memory and cognition.

TMEM180 is also known as **MFSD13A** (Major Facilitator Superfamily Domain Containing13A) and it encodes a transmembrane protein which contains 12 transmembrane domains.80 Previous studies have showed that **TMEM180** knockdown (with siRNAs) promotes proliferation of the human pancreatic cancer cells.81 In addition, **TMEM180** is highly expressed in colorectal cancer cells82 and it may be a new marker for colorectal cancer.82,83 To date, the exact function of **TMEM180** is still unclear and we know little about the role of **TMEM180** in brain and schizophrenia pathogenesis. Our transcriptome sequencing showed that synaptic transmission and neuronal related pathways were significantly affected by **Tmem180** knockdown, suggesting that **TMEM180** may have a pivotal role in the brain. The potential roles of **TMEM180** in the brain are discussed in the supplementary discussion and related data are provided in supplementary figures 3-5.
Recent integrative analyses have linked schizophrenia risk variants to genes,18,21,23,25,27,32,60 thus providing a starting point for further functional characterization and mechanism dissection. These integrative analyses not only translated the genetic associations into risk genes,24 but also provided potential insights into schizophrenia.

Fig. 3. \textit{Tmem180} knockdown affects differentiation of mNSCs. (a) Representative immunofluorescence staining images for GFAP+ astrocyte cells (green) and DAPI+ (blue). (b) Quantification for the ratio of GFAP positive astrocyte cells in \textit{Tmem180} knockdown and controls mNSCs. The ratio of GFAP positive astrocyte cells was significantly decreased in \textit{Tmem180} knockdown group compared to control group, indicating that the differentiation of mNSCs into astrocyte cells were impaired. (c) Representative immunofluorescence staining images for MAP2+ neurons (green) and DAPI+ (blue). (d) Quantification for the ratio of MAP2 positive neurons in \textit{Tmem180} knockdown and controls NSCs. The ratio of MAP2 positive astrocyte cells was significantly increased in \textit{Tmem180} knockdown group compared to control group, indicating that the differentiation of NSCs into neurons were enhanced. (f,g) RT-qPCR results showed that \textit{Tmem180} knockdown significantly affected the relative expression level of \textit{GFAP} and \textit{MAP2}. pLKO.1-EGFP was used as controls (ie, these cells were transfected with random shRNAs and EGFP). Two-tailed Student’s \textit{t} test was used to compare if the difference was significant. \(n = 3\) (GFAP positive cells were counted from 8 independent immunostaining images for each sample) for \(a\), \(n = 3\) (MAP2 positive cells were counted from 6 independent immunostaining images for each sample) for \(c\). *\(P < .05\); **\(P < .01\).
Identification of TMEM180 as a Schizophrenia Risk Gene

As the genome-wide associations and eQTL data used for integrative analyses were primarily from populations of Europeans, there is a necessity to look at the other continental populations in consideration of the population genetic heterogeneity. Fortunately, recent studies have begun to dissect the genetic architecture of schizophrenia in other populations, including populations of EAS, African and Latino ancestries. These studies provided important biological insights into the genetic etiology of schizophrenia and are well complementary to the GWASs conducted in European populations. In this study, we reported the first integrative analysis on schizophrenia using genome-wide associations and eQTL data of EAS. Our study identifies TMEM180 as a novel risk gene for schizophrenia and provides a complementary scheme to the integrative studies performed in European populations. Of note, the original study by Lam et al. suggested that ACTR1A might be the responsible gene at this locus as ACTR1A is the gene nearest the top association (the lead or index) variant at this locus. Our study highlights that the gene nearest the top association cannot be simply presumed to harbor the causal variations. The risk or causal variants may confer schizophrenia risk through regulating expression of distal genes (rather than the nearest gene). Interestingly, we noticed that TMEM180 did not show significant association with schizophrenia in previous GWAS10 (supplementary figure 6a) and integrative studies of schizophrenia (supplementary tables 3 and 4) (using European), suggesting the potential

Fig. 4. Tmem180 regulates schizophrenia-associated biological processes and pathways. (a) Expression heatmap of all differentially expressed genes (n = 654) identified in Tmem180 knockdown NSCs compared with controls. (b) Heatmap plot of the top 30 differentially expressed genes. (c–g) qPCR validation of RNA-Seq results. Five genes (marked by red color in b) were selected for qPCR verification. All of the 5 genes that showed differential expression by RNA-Seq were validated by RT-qPCR, indicating the reliability of RNA-Seq. (h,i) GO and KEGG analyses of the differentially expressed genes. Pathways marked with red color were previously reported to be associated with schizophrenia. P values were calculated by Two-tailed Student’s t test was used for statistical test.
population specificity of this risk gene. Finally, the frequency of the risk allele (C) of rs2902544 also showed differences in Europeans and East Asians (supplementary figure 7), implying differential power to detect this association across ancestries, and either random drift or possibly positive selection favoring the minor allele in out-of-Africa populations.

Our study also suggests ancestry-specific findings diverge and converge across modalities in schizophrenia. Detailed discussions on this are provided in the supplementary discussion.

There are several limitations of this study. First, the sample size of schizophrenia GWAS included in this study was still relatively small compared to integrative studies performed in European,22,25 which may limit the identification of more promising candidate risk genes for schizophrenia. Second, as no brain eQTL data was available for EAS, we used eQTL data from the lymphoblastoid cell lines (as a surrogate) for integrative analysis. Considering that schizophrenia is a mental disorder that is mainly originated from abnormal brain development and function, it is ideal to use eQTL data from brain tissues to conduct integrative analysis. Using eQTL data from non-brain tissues for integrative analyses may miss important information. In fact, only a significant gene (ie, TMEM180) was identified in our study. The relatively small sample size included in EAS GWAS and the use of non-brain eQTL data may be the major reasons for the identification of only one significant gene in our study. Further investigations with larger sample size and use of brain eQTL data (of EAS) will help to validate this result and to identify more risk genes. Third, though our integrative analyses suggested that genetic variants may confer schizophrenia risk by regulating TMEM180 expression, the functional risk variants (or causal variants) and how these functional variants regulate TMEM180 expression remain unknown. Finally, despite our study revealed that TMEM180 may have a role in neurodevelopment, currently we still do not know the exact role of TMEM180 in brain development and schizophrenia. Further in vivo functional studies are needed to demonstrate how TMEM180 confer risk of schizophrenia.

In summary, we performed a schizophrenia integrative analysis using genetic associations and eQTL data from EAS. Our study identified TMEM180 as a novel schizophrenia risk gene whose expression alternation may have a role in schizophrenia. Further functional study will elucidate the role and mechanisms of TMEM180 in schizophrenia.

Supplementary Material

Supplementary material is available at Schizophrenia Bulletin online.

Funding

This study was equally supported by the National Nature Science Foundation of China (31722029 and 31970561 to X.J.L.) and the Innovative Research Team of Science and Technology Department of Yunnan Province (2019HC004). Also was supported by the Distinguished Young Scientists grant of the Yunnan Province (202001AV070006) to X-J.L. We are grateful for Miss. Qian Li for her technical assistance.

Acknowledgment

The authors have declared that there are no conflicts of interest in relation to the subject of this study.

References

1. Cloutier M, Aigbogun MS, Guerin A, et al. The economic burden of schizophrenia in the United States in 2013. J Clin Psychiatry. 2016;77(6):764–771.
2. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait - Evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–1192.
3. O'Donovan MC, Craddock N, Norton N, et al.; Molecular Genetics of Schizophrenia Collaboration. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40(9):1053–1055.
4. Yue WH, Wang HF, Sun LD, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet. 2011;43(12):1228–1231.
5. Shi Y, Li Z, Xu Q, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet. 2011;43(12):1224–1227.
6. Stone JL, O'Donovan MC, Gurling H, et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–241.
7. Ripke S, Sanders AR, Kendler KS, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43(10):969–976.
8. Yu H, Yan H, Li J, et al.; Chinese Schizophrenia Collaboration Group. Common variants on 2p16.1, 6p22.1 and 1q24.32 are associated with schizophrenia in Han Chinese population. Mol Psychiatry. 2017;22(7):954–960.
9. Li Z, Chen J, Yu H, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet. 2017;49(11):1576–1583.
10. Pardiñas AF, Holmans P, Pocklington AJ, et al.; GERAD1 Consortium; CRESTAR Consortium. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381–389.
11. Lam M, Chen CY, Li Z, et al.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Indonesia Schizophrenia Consortium; Genetic REsearch on schizophrenia in East Asian and European populations. Nat Genet. 2019;51(12):1670–1678.
12. Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427.
13. Pulver AE, Mulle J, Nestadt G, et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. *Mol Psychiatry.* 2000;5(6):650–653.

14. Maher BS, Reimers MA, Riley BP, Kendler KS. Allelic heterogeneity in genetic association meta-analysis: an application to DTNBPI and schizophrenia. *Hum Hered.* 2010;69(2):71–79.

15. Tsuang MT, Faraone SV. Genetic heterogeneity of schizophrenia. *Seishin Shinkeigaku Zasshi.* 1995;97(7):485–501.

16. Bigdeli TB, Genovese G, Georgakopoulos P, et al.; Consortium on the Genetics of Schizophrenia (COGS) Investigators; Genomic Psychiatry Cohort (GPC) Consortium. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. *Mol Psychiatry.* 2020;25(10):2455–2467.

17. Luo XJ, Mattheisen M, Li M, et al.; iPSYCH-GEMS SCZ working group; MooDS SCZ Consortium. Systematic integration of brain eQTL and GWAS identifies ZNF323 as a novel schizophrenia risk gene and suggests recent positive selection based on compensatory advantage on pulmonary function. *Schizophr Bull.* 2015;41(6):1294–1308.

18. Fromer M, Roussos P, Sieberts SK, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. *Nat Neurosci.* 2016;19(11):1442–1453.

19. Jaffe AE, Straub RE, Shin JH, et al.; BrainSeq Consortium. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. *Nat Neurosci.* 2018;21(8):1117–1125.

20. Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. *Science.* 2018;362(6420):eaat8127.

21. Wu Y, Bi R, Zeng C, et al. Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. *EBioMedicine.* 2019;44:530–541.

22. Wu Y, Li X, Liu J, Luo XJ, Yao YG. SZDB2.0: an updated comprehensive resource for schizophrenia research. *Hum Genet.* 2020;139(10):1285–1297.

23. Sekar A, Bialas AR, de Rivera H, et al.; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Schizophrenia risk from complex variation of complement component 4. *Nature.* 2016;530(7589):177–183.

24. Yang CP, Li X, Wu Y, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. *Nat Commun.* 2018;9(1):838.

25. Mogil LS, Andaleon A, Badalamenti A, et al. Genetic architecture of gene expression traits across diverse populations. *PLoS Genet.* 2018;14(8):e1007586.

26. Stranger BE, Montgomery SB, Dimas AS, et al. Patterns of cis regulatory variation in diverse human populations. *PLoS Genet.* 2012;8(4):e1002639.

27. Sun L, Cheng Z, Zhang F, Xu Y. Gene expression profiling in peripheral blood mononuclear cells of early-onset schizophrenia. *Genom Data.* 2015;5:169–170.

28. Saier MHM, Sarvepalli D, Bregere C, et al. An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery. *Jove-J Vis Exp.* 2016(114):54018.

29. Azari H, Sharififar S, Rahman M, Ansari S, Reynolds BA. Establishing embryonic mouse neural stem cell culture using the neurosphere assay. *Jove-J Vis Exp.* 2011(47):e2457.

30. Li K, Li Y, Wang J, et al. A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. *J Genet Genomics.* 2020;47(5):233–248.

31. Pavlides JM, Zhu Z, Gratten J, McRae AF, Wray NR, Yang J. Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits. *Genome Med.* 2016;8(1):84.

32. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating gene expression withsummary association statistics to identify genes associated with 30 complex traits. *Am J Hum Genet.* 2017;100(3):473–487.

33. Gandal M, Pinto D, Iakoucheva L, et al. Transcriptome-wide isoform-level dysregulation in schizophrenia, autism, and bipolar disorder. *Biol Psychiat.* 2019;85(10):S98–S99.

34. Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. *Science.* 2008;320(5875):539–543.

35. Mao Y, Ge X, Frank CL, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. *Cell.* 2009;136(6):1017–1031.

36. Pasaniuc B. Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. *Am J Hum Genet.* 2017;100(3):473–487.

37. Kim JY, Liu CY, Zhang F, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. *Cell.* 2012;148(5):1051–1064.

38. Ishizuka K, Kamiya A, Oh EC, et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. *Nature.* 2011;473(7345):92–96.

39. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. *Nat Rev Neurosci.* 2017;18(12):727–740.

40. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. *Schizophr Bull.* 2009;35(3):528–548.

41. Owen MJ, O’Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. *Br J Psychiatry.* 2011;198(3):173–175.
67. Saykin AJ, Gur RC, Gur RE, et al. Neuropsychological function in schizophrenia - selective impairment in memory and learning. Arch Gen Psychiatry. 1991;48(7):618–624.

68. Paulsen JS, Heaton RK, Sadek JR, et al. Learning and memory in schizophrenia. Schizophr Res. 1995;15(1–2):109–109.

69. Fett AK, Viechtbauer W, Dominguez MD, Penn DL, van Os J, Krabbe C. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev. 2011;35(3):573–588.

70. Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res. 2004;72(1):41–51.

71. Richards AL, Paradies AF, Frizzi A, et al.; GROUP Investigators; EUGENI WP2 Group; Schizophrenia Working Group of the Psychiatric Genomics Consortium. The relationship between polygenic risk scores and cognition in schizophrenia. Schizophr Bull. 2020;46(2):336–344.

72. McCarthy NS, Melton PE, Ward SV, et al. Exome array analysis suggests an increased variant burden in families with schizophrenia. Schizophr Res. 2017;185:9–16.

73. Pawelczyk T, Granocz-Grabka M, Trafalska E, Szemraj J, Zurner N, Pawelczyk A. An increase in plasma brain derived neurotrophic factor levels is associated with bipolar disorder. Bipolar Disord. 2013;15(2):205–211.

74. Schlingken AK, Helms JA, Vogel H, Perin MS. Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron. 1995;14(3):519–526.

75. Rajkumar AP, Christensen JH, Mattheisen M, et al. Analysis of exon splicing and genome wide polymorphism related to schizophrenia in a European sample. Hum Mol Genet. 2009;18(18):3590–3601.

76. Cottrell JR, Levenson JM, Kim SH, et al. Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex. J Neurosci. 2013;33(27):9038–9049.

77. Barksdale KA, Lahti AC, Roberts RC. Synaptic proteins in the postmortem anterior cingulate cortex in schizophrenia: relationship to treatment and treatment response. Neuropsychopharmacology. 2014;39(9):2095–2103.

78. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry. 2003;8(6):592–610.

79. Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull. 2008;34(5):944–961.

80. Anzai T, Matsumura Y. Topological analysis of TMEM180, a newly identified membrane protein that is highly expressed in colorectal cancer cells. Biochem Biophys Res Commun. 2019;520(3):566–572.

81. Mei S, Ke J, Tian J, et al. A functional variant in the boundary TMEM180 region is associated with colorectal cancer risk. Mol Carcinog. 2019;58(10):1855–1862.

82. Yasunaga M, Saijou S, Hanaoka S, Anzai T, Tsumura R, Matsumura Y. Significant antitumor effect of an antibody against TMEM180, a new colorectal cancer-specific molecule. Cancer Sci. 2019;110(2):761–770.

83. Matsumura Y. A new colorectal cancer marker, TMEM180 and its preclinical antibody development. Ann Oncol. 2018;29:vii9.