A male newborn was delivered at 36 weeks by Cesarean section after an ultrasound examination that showed images of gastroschisis. His mother was a 17-year-old primigesta. Birth weight was of 2860 g, and Apgar scores were 9/10/10. A duodenal perforation and multiple ileal atresias were visible at the operation theater, as well as several accessory spleens. As the conglomerate of atretic segments seemed swollen and extremely difficult to individualize, the surgeon of the time decided to perform a second procedure some days later. Duodenostomy and primary abdominal closure were performed as a first operation. According to the operatory report of our former colleague, “bowel loops were easily reintegrated without much pressure into the abdomen.” The report does not offer full details about the technique for primary abdominal closure, but current inspection of the vertical skin scar suggests a direct approach of peritoneum, muscle, and skin in separate layers and probe-coated, transverse retention sutures. Parenteral nutrition was onset, and a second procedure was performed at 37 days for multiple anastomosis and resection of atretic, perforated segments. The remaining small intestine was about 70-cm long. The surgeon followed the scar line of the first operation by resecting its borders and reapproaching them in the same vertical fashion.

Attempts of oral feeding were burdened by sepsis (Staphylococcus epidermidis) and by several occlusion and diarrhea episodes. The central line had to be changed 2 times (neither of them through the femoral vessels). The last substitution was performed through left saphenous vein and, according to the surgeon’s notes, the intraoperatory C-arm radioscopy showed how the catheter followed anomalous ways around the vena cava. Ultrasound showed what seemed an infraumbilical hypoplastic inferior cava and azygos vein dilatation. Finally, the baby could be discharged on oral feeding at the age of 4 months. The patient had a new episode of bowel obstruction at the age of 8. Moreover, he had developed a notorious development of superficial infraumbilical veins. After usual management (nihil per os, nasogastric probe), a phlebographic examination showed an...
established occlusion of infrahepatic vena cava and a parallel net with several varicosities (Fig. 1).

Fortunately, he developed without any major occlusive episodes during the following years. He has worn adapted, compressive girdle and pants that he tolerates in everyday living. However, he feels both- ered and avoids bathing in public places (Fig. 2).

DISCUSSION
Thrombotic complications derived from central line insertion may occur far from the catheter tip,1 but it is difficult to figure out how such a massive thrombosis could skip cardiac, pulmonary, and systemic passage.

So, although a congenital vascular malformation or even a distant venous thrombosis could be a possible explanation, this case probably illustrates long-term outcomes of a borderline abdominal compartment syndrome. The upper limit of intra-abdominal pressure for abdominal reconstruction in gastroschisis has been suggested around 20mm Hg (27.2cm H$_2$O).2 Abdominal compartmental syndrome, a well-known complication of primary closure,3,4 may produce intestinal ischemia with perforation and hepatic or renal failure. More than 30 years ago, the fingers of surgeons on abdominal great vessels, the size of the defect, intraoperative respiratory and cardiac rates, and perfusion of lower limbs were the
only available guides. Some indirect methods for assessment have appeared in the last decades, including nasogastric probes,\(^5\) bladder catheters,\(^6\) end-tidal carbon dioxide,\(^7\) and airway pressure.\(^8\) Most anesthesiologists, who were instructed to manually ventilate during reconstruction for gastroschisis in former years, seem to prefer this last method. On the other hand, many pediatric intensive care units rely on measurement of bladder pressures for postoperative monitoring.\(^9,10\)

**CONCLUSION**

As for all accounts that involve some kind of iatrogeny, this case report should be taken as a warning and a remembrance of the times when indirect measurement of intra-abdominal pressure was not so easily available as nowadays.

Wenceslao M. Calonge, MD  
Department of Plastic Surgery  
Pediatric Hospital Coimbra  
Coimbra, Portugal  
E-mail: wcalonge@yahoo.es

**REFERENCES**

1. Askegard-Giesmann JR, Caniano DA, Kenney BD. Rare but serious complications of central line insertion. *Semin Pediatr Surg* 2009;18:75–83.
2. Olesevich M, Alexander F, Khan M, et al. Gastroschisis revisited: role of intraoperative measurement of abdominal pressure. *J Pediatr Surg* 2005;40:789–792.
3. Yaster M, Buck JR, Dudgeon DL, et al. Hemodynamic effects of primary closure of omphalocele/gastroschisis in human newborns. *Anesthesiology* 1988;69:84–88.
4. Ein SH, Superina R, Bagwell C, et al. Ischemic bowel after primary closure for gastroschisis. *J Pediatr Surg* 1988;23:728–730.
5. Wesley JR, Drongowski R, Coran AG. Intra gastric pressure measurement: a guide for reduction and closure of the silastic chimney in omphalocele and gastroschisis. *J Pediatr Surg* 1981;16:264–270.
6. Nakayama M, Horikawa D, Nagai H, et al. [Utility of intra-bladder pressure monitoring during closure of abdominal wall defects in newborn infants]. *Masui* 1992;41:1647–1650.
7. Puffinbarger NK, Taylor DV, Tuggle DW, et al. End-tidal carbon dioxide for monitoring primary closure of gastroschisis. *J Pediatr Surg* 1996;31:280–282.
8. Banieghbal B, Gouws M, Davies MR. Respiratory pressure monitoring as an indirect method of intra-abdominal pressure measurement in gastroschisis closure. *Eur J Pediatr Surg* 2006;16:79–83.
9. Michaud D, Abbas M, Gélinas C, et al. Intra-abdominal pressure monitoring for critically ill patients. *Dynamics* 2003;14:15–19.
10. Lacey SR, Carris LA, Beyer AJ III, et al. Bladder pressure monitoring significantly enhances care of infants with abdominal wall defects: a prospective clinical study. *J Pediatr Surg* 1993;28:1370–1374; discussion 1374–1375.