Harmonic analysis of wrist mechanism of robot manipulator

Shaik Akbar¹, Karteek Navuri², A. Eswara Kumar³, D. Prakash¹

¹Department of Mechanical Engineering, V. R. Siddhartha Engineering College, Vijayawada, A.P, India.
²Department of Mechanical Engineering, Dhanekula Institute of Engineering & Technology, Ganguru, Vijayawada, A.P, India.
³Department of Mechanical Engineering, K L University, Vaddeswaram, Guntur, A.P, India.

E-mail: karteeknavuri@gmail.com

Abstract. Wrist mechanism is a part of robot manipulator which is used to provide the pitch and yaw motions to the end effectors for orienting the loads carried by the end effectors. The wrist mechanism is subjected to different types of vibrations because of the various working conditions. Due to these vibrations wrist mechanism experience higher deformations and stresses; this causes failure of wrist mechanism. It is important to study the dynamic behaviour of the wrist mechanism under different loads before adopting in the application. The structure of the wrist mechanism is modelled in the ANSYS Workbench software and analysed for harmonic loads. Proper boundary conditions, mesh and connections between links & pins are assigned to the wrist mechanism assembly. From the present work, peak deformations of links and pins are occurred at 569.83Hz. Further, the link are analysed with 3D composites those are carbon epoxy and E-glass epoxy. It is observed that carbon epoxy shows better stiffness than E-Glass epoxy and it has weight reduction of 13.76% compared with metals.

Keywords: Robot Manipulator, Harmonic Analysis, ANSYS Workbench, FEM, Wrist Mechanism.

Nomenclature: Link - L, Pin - P, A Peak - Peak Deformation, f- Frequency, φ - Phase Angle.

1. Introduction

Robot plays a vital role in the fields of automobile, aerospace, medical applications etc. With expanding progression in mechanical robots and substitution of the greater part of the work with robots, researchers are working towards an objective of making robots practically like people in each and every angle. Out of the considerable number of parts of the robot, the manipulator plays a main role, in which wrist is the key part to do vital operations like positioning and carrying a load. The wrist mechanism contains motors, links and pins. In the present scenario generally the robots are having bigger wrists mechanisms to give the Pitch and Yaw movements. To overcome this limitation researchers are working towards creating wrist of miniature sizes, in continuation of these endeavors towards creating small scale wrists.
Cheng-Yu Chu [1] proposed one mechanism by motivated from human muscle-tendon activation design and done the static structural and torque analyses on it. Where he studied the strength and stability of the wrist mechanism for static and torque loads. Stefan Staicu [2] built up the recursive relations for kinematics and dynamics of the 3-RRR agile wrist spherical parallel robot are set up. It is controlled by simultaneous torques created from electric motors. The force prerequisite diagrams for each of the three actuators in two computational complexities are resolved. Shaping Bai [3] considered the optimum configuration of spherical parallel manipulators (SPMs) is for an endorsed workspace. To figure out the optimal design, a numerical technique is created for a maximum dexterity. Selc-uk Erkayan [4] stated the investigation of the joint clearance consequences for a welding robot manipulator. In this study only one joint is considered as defective. By the investigation it is understood that the expanded number of joint with clearance makes the kinematic and ‘dynamic performances of the system more regrettable. Hongwei Zhang [5] developed the design, modelling and control of a conservative wrist, which can work in dynamic mode with position or torque control, or passive mode with intuitive force remuneration are talked about to create and check a tracking control algorithm of wrist in dynamic mode. Albert [6] reproduced a machine that can nearly help and cooperate with people. To give the human agreeable appearance and working of the robot with exactness the mechanism is intended to urge unpractised persons to interface with it. Chang Sup Lee [7] expressed the reasonable technique to analyse dynamic characterizes of space robots with joint clearance and upgrades are introduced with enhance the engineering applications.

2. Problem Description

2.1. Statement

To study the response of the wrist mechanism subjected to harmonic loads and to optimize the weight by using 3D composite materials with proper stiffness.

2.2. Problem Modelling

The wrist mechanism is modeled by using proper dimensions [1] in the ANSYS Workbench software.
Figure 4. Pitch Mechanism Dimensions

Figure 5. Yaw Mechanism Dimensions

The dimensions of the pitch and yaw mechanism are listed in the Table 1.

Pitch Mechanism Dimensions	Yaw Mechanism Dimensions
\(r_{1p} \)	20 mm
\(r_{2p} \)	20 mm
\(r_{3p} \)	65 mm
\(r_{4p} \)	\(r_{3p}+D_p \) mm
\(D_p \)	13.9 mm
\(r_{1y} \)	30 mm
\(r_{2y} \)	30 mm
\(r_{3y} \)	65 mm
\(r_{4y} \)	\(r_{3p}+D_y \) mm
	13.9 mm

2.3. Meshing

Meshing is the process of converting geometry entities to finite element entities [17]. Proper fine mesh and appropriate contact elements are assigned between different parts of assembly for mesh convergence. The meshed model of the wrist mechanism is shown in the Figure 6. Higher order 3-D 20 node element known as solid 186 and higher order tetrahedral 3-D 10 node element known as solid 187 in Ansys software are used for accurate results. The mesh statistics are shown in the Table 2.

Mesh Statistics
Nodes
Elements

Figure 6. Finite element model of wrist mechanism.

2.4. Connections

Fixed joints are assigned to the motor support, motor casing and base. Revolute joints are assigned between the links and pins. Translation joints are assigned to the actuator of the motors. The typical connections view of the wrist mechanism is shown in the Figure 7.
2.5. Loads and boundary conditions

The loads and boundary conditions are given as per the real working condition [1] and it is shown in the Figure 8. A force of magnitude 222N is applied in the frequency range of 0 to 3000 Hz.

2.6. Material properties

The Material properties are given in the Table 3.

Material Name	Density (kg/m³)	Poisson's Ratio	Young's Modulus (Pa)
Aluminum Alloy 6061-T06	2700	0.33	6.9e10
Steel Alloy SKH 09	7.85	0.30	2e5

The parts of the wrist mechanism are assigned with different types of materials as listed in Table 4.

Part Name	Material
Base, links and motor casing	Aluminum alloy 6061-T06
Pins	Steel alloy SKH 09

3. Analysis results

Harmonic analysis uses mode superposition method. For this, modal analysis is required. So the modal analysis is done.
3.1. **Modal Analysis**

In order to obtain the natural frequencies and mode shapes of the wrist mechanism, the modal analysis is done. The first 6 natural frequencies are the basic natural frequencies which have 3 linear and 3 rotational motions. So the 6 natural frequencies are shown in the Table 5.

Mode No.	Natural Frequency (Hz)
1	500.19
2	530.94
3	566.98
4	569.83
5	570.06
6	570.29

The mode shapes of the wrist mechanism are shown in the Figure 9.

![Mode Shapes](image1.png)

Figure 9. Mode Shapes

3.2. **Harmonic Analysis**

Harmonic analysis is performed on the wrist mechanism. The frequency response at L01, to the X direction load is shown in the Figure 10 & 11.
From Figure 10 and 11 the peak deformation is occurred as 0.066 mm with a phase angle of -88.85 degrees at a frequency of 569.83 Hz. In this way, the remaining frequency responses for remaining parts are calculated for X directional load and the values are listed in the Table 6.

Figure 10. Frequency Vs Amplitude on L 01

Figure 11. Frequency Vs Phase angle on L 01

Link No.	A Peak (mm)	f (Hz)	\(\phi \) (Degrees)	Pin No.	A Peak (mm)	f (Hz)	\(\phi \) (Degrees)
L 01	0.066	569.83	-88.85	P 01	0.144	569.83	-88.85
L 02	0.071	569.83	91.14	P 02	0.084	569.83	91.14
L 03	0.049	569.83	91.14	P 03	0.054	569.83	91.14
L 04	0.045	569.83	91.14	P 04	0.045	569.83	91.14
L 05	0.045	569.83	91.14	P 05	1.265	569.83	91.14
L 06	0.468	569.83	-88.85	P 06	0.044	569.83	-88.85
L 07	1.477	569.83	-88.85	P 07	6.213	569.83	-88.85
L 08	6.255	569.83	-88.85	P 08	6.356	569.83	-88.85
L 09	6.355	569.83	-88.85				
L 10	6.367	569.83	-88.85				
From the Table 6, it is observed that the peak deformation is occurred at L 10 and it is occurs at 569.83 Hz.

The frequency response of the wrist mechanism parts to Y-directional load are listed in the Table 7.

Link No.	A_{Peak} (mm)	f (Hz)	ϕ (Degrees)	Pin No.	A_{Peak} (mm)	f (Hz)	ϕ (Degrees)
L 01	0.0393	569.83	91.14	P 01	0.0595	569.83	91.14
L 02	0.0183	569.83	91.14	P 02	0.04131	569.83	91.14
L 03	0.000124	569.83	91.14	P 03	0.000285	569.83	-88.85
L 04	0.00107	569.83	91.14	P 04	0.000748	569.83	91.14
L 05	0.000187	569.83	91.14	P 05	1.1342	569.83	-88.85
L 06	0.1908	569.83	-88.85	P 06	0.56268	569.83	91.14
L 07	0.3848	569.83	91.14	P 07	2.3214	569.83	91.14
L 08	1.00806	569.83	91.14	P 08	0.013068	569.83	91.14
L 09	0.02049	569.83	91.14	P 09	0.00018	569.83	-88.85
L 10	0.00204	569.83	91.14	P 10	0.0044	569.83	-88.85

From the Table 7, it is observed that the peak deformation is occurred at P 07 and it is occurs at 569.83 Hz.

The frequency response of the wrist mechanism parts to Z-directional load are listed in the Table 8.

Link No.	A_{Peak} (mm)	f (Hz)	ϕ (Degrees)	Pin No.	A_{Peak} (mm)	f (Hz)	ϕ (Degrees)
L 01	0.0044	569.83	-88.85	P 01	0.044	569.83	-88.85
L 02	0.0881	569.83	-88.85	P 02	0.0422	569.83	-88.85
L 03	0.0323	569.83	-88.85	P 03	0.0930	569.83	-88.85
L 04	0.00015	569.83	-88.85	P 04	0.00018	569.83	-88.85
L 05	2.77E-05	569.83	91.14	P 05	2.618	569.83	91.14
L 06	0.524	569.83	-88.85	P 06	0.286	569.83	91.14
L 07	1.546	569.83	-88.85	P 07	0.365	569.83	91.14
L 08	0.173	569.83	91.14	P 08	0.0052	569.83	-88.85
L 09	0.0026	569.83	-88.85	P 09	0.0008	569.83	-88.85

From the Table 8, it is observed that the peak deformation is occurred at P 06 and it is occurs at 569.83 Hz.
4. Composite Wrist Mechanism

To study the effect of composite materials, Links of the robot manipulator are replaced by 3D composites those are carbon epoxy and E-glass epoxy. The properties of the 3D composite materials [16] are listed in the Table 9.

Material Name	Carbon Epoxy	E-Glass Epoxy
Property*	3D Woven fabric	
Volume Fraction	0.484	0.4
Density	1.6	1.98
Longitudinal Modulus, E1 (GPa)	36.6	19.98
Transverse In Plane Modulus, E2 (GPa)	46.8	19.64
Transverse Out Of Plane Modulus, E3 (GPa)	30.3	14.21
Major In Plane Poisson’s Ratio, P12	0.04	0.204
Out Of Plane Poisson’s Ratio, P23	0.289	0.312
Out Of Plane Poisson’s Ratio, P31	0.21	0.288
In Plane Shear Modulus, G12 (GPa)	4.9	5.8
Out Plane Shear Modulus, G23 (GPa)	4.5	5.6
Out Plane Shear Modulus, G31 (GPa)	4.9	5.8

4.1. Modal Analysis

The natural frequencies of wrist mechanism using composite materials are shown in the Figure 12.

![Figure 12. Natural frequencies of composite wrist mechanism](image)

From Figure 12, carbon epoxy having higher natural frequencies than the E-Glass Epoxy. Composite materials are having higher natural frequencies than the preliminary materials.
4.2. Harmonic Analysis

The composite wrist mechanism is analysed under Harmonic load in X, Y & Z directions. The peak deformations of wrist mechanism parts are shown in the Figure-13, 14 & 15.

Figure 13. Peak deformations of composite wrist mechanism to X directional load

Figure 14. Peak deformations of composite wrist mechanism to Y directional load

Figure 15. Peak deformations of composite wrist mechanism to Z directional load

From the above figures, it is noticed that, the peak deformations of the wrist mechanism are higher with E-Glass Epoxy than the Carbon epoxy in all directions.
The weight of the wrist mechanism of the robot manipulator using preliminary and composite materials is listed in the Table 10.

Model	Weight (Kg)	% Reduction of weight
Al Alloy 6061-T6	7.898	--
Carbon Epoxy	6.811	13.76%
E-Glass Epoxy	7.354	6.88%

From Table 10, wrist mechanism using carbon epoxy has lowest weight compared to remaining materials.

5. Conclusions

From this present work peak deformation of the links and pins of the wrist mechanism are calculated. And it is noticed that all the peak deformations which are occurred at 4th natural frequency of the wrist mechanism i.e., 569.83 Hz. Further 3D composites are assigned for the links of the wrist mechanism. The natural frequencies of the wrist mechanism using composite material are higher than the preliminary materials especially Carbon epoxy composite material. The peak deformations of the wrist mechanism using Carbon epoxy are smaller than the E-Glass epoxy. Then Carbon epoxy is recommenced to use that gives a weight reduction of 13.76% compared to metals.

References

[1] Cheng-Yu Chu, Jia-You Xu and Chao-Chieh Lan. Design and experiment of a compact wrist mechanism with high torque density. Mechanism and Machine Theory 78 (2014) 65–80. Elsevier.
[2] S. Staicu. Recursive modeling in dynamics of agile wrist spherical parallel robot. Robot. Computer Integrated Manufacturing 25 (2) (2009) 409–416. Elsevier.
[3] Shaping. Bai. Optimum design of spherical parallel manipulators for a prescribed workspace. Mech. Mach. Theory 45 (2) (2010) 200–211. Elsevier.
[4] Sele-uk Erkaya n. Investigation of joint clearance effects on welding robot manipulators. Robotics and Computer-Integrated Manufacturing 28 (2012) 449–457. Elsevier.
[5] H. Zhang, Y. Liu and G. Liu. Development of a compact wrist with multiple working modes. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2011. pp. 954–959.
[6] Albert, C. Sander and A. Simsek. Development of the actuation of a new wrist for the next generation of the humanoid robot ARMAR. Proceedings of the IEEE/RAS International Conference on Humanoid Robots. 2010. pp. 677–682.
[7] Chang Sup Lee and Dai Gil Lee. Manufacturing of composite sandwich robot structures using the co-cure bonding method. Composite Structures 65 (2004) 307–318. Elsevier.
[8] Khalid Al-Widyan, Xiao Qing Ma and Jorge Angeles. The robust design of parallel spherical robots. Mech. Mach. Theory 46 (3) (2011) 335–343. Elsevier.
[9] G. Alici, B. Shirinzadeh. Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. Mech. Mach. Theory 39 (2) (2004) 215–235.
[10] J.M. Hervé. Uncoupled actuation of pan–tilt wrists. IEEE Trans. Robot. 22 (1) (2006) 56–64.
[11] C. Doukas, J. Pandremenosa, P. Stavropoulou, P. Foteinopoulou and G. Chryssolourisa. On an Empirical Investigation of the Structural Behavior of Robots. 45th CIRP Conference on Manufacturing Systems 2012. Elsevier.
[12] Oscar Altuzarra, Jokin Aginaga, Alfonso Hernández and Isidro Zabalza. Workspace analysis of
positioning discontinuities due to clearances in parallel manipulators. *Mechanism and Machine Theory* 46 (2011) 577–592. Elsevier.

[13] Anatol Pashkevich, Damien Chablat and Philippe Wenger. Stiffness analysis of over constrained parallel manipulators. *Mechanism and Machine Theory* 44 (2009) 966–982. Elsevier.

[14] Zheng Feng Bai and Yang Zhaob. Dynamics modeling and quantitative analysis of multibody systems including revolute clearance joint. *Precision Engineering* 36 (2012) 554–567. Elsevier.

[15] V. Srinivasan and Micheal Balraj. Design And Analysis of An Articulated Robot Arm. *National Conference On Emerging Trends In Mechanical Engineering* 2013.

[16] Santosh B. Thermo Structural Analysis of 3D composites. A PHD thesis submitted to department of ship technology. *cochin university of science and technology*, Dec-2010.

[17] Eswara Kumar A, Naga Raju M, Karteek N and Prakash D. Static and Dynamic Analysis of Motor Cycle Wheel Designs. *Applied Mechanics and Materials Vols. 813-814* (2015) pp 915-920.

[18] Abdelkader Nour, Mohamed Tahar Gherbi and Yon Chevalier. Modes shape and harmonic analysis of different structures for helicopter blade. 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission University of Granada, 12-15 September 2012.

[19] Martin Česnik and Janko Slavic. Vibrational Fatigue and Structural Dynamics for Harmonic and Random Loads. *Strojniški vestnik - Journal of Mechanical Engineering* 60(2014)5, 339-348

[20] Eswara Kumar A, Balakrishna Murthy V, Chandra Mohan R and Prakash D. Study of Non-Linear Static Behavior of Flex Seal of Rocket Nozzle by Varying Number of Shims. *Materials Today: Proceedings* 2 (2015) 1613–1621.

[21] S. Pachaiyappan, M. Micheal Balraj and T. Sridhar. Design and Analysis of An Articulated Robot Arm for Various Industrial Applications. *IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)* e-ISSN: 2278-1684, p-ISSN : 2320–334X.

[22] Zhou J, Yang Z and Chen S. Analysis of the Harvesting Robot Arm Modal Based on CAE. *J. Chem. Pharm. Res.* 6(11) (2014).