RESEARCH ARTICLE

Caregiver-reported health-related quality of life of New Zealand children born very and extremely preterm

Gordon X. H. Liu, Jane E. Harding, for the PIANO Study Team

Liggins Institute, University of Auckland, Auckland, New Zealand

¶ Membership of the PIANO Study Team is listed in the Acknowledgments.
* j.harding@auckland.ac.nz

Abstract

Background

Children born preterm, particularly at earlier gestations, are at increased risk for mortality and morbidity, but later health-related quality of life (HRQoL) is less well described. Neurodevelopmental impairment and socio-economic status may also influence HRQoL. Our aim was to describe the HRQoL of a cohort of New Zealand children born very and extremely preterm, and how this is related to neurodevelopmental impairment, gestational age, and socio-economic deprivation.

Methods

Children born <30 weeks’ gestation or <1500 g birthweight were assessed at 7 years’ corrected age. Caregivers completed the Child Health Questionnaire Parent Form (CHQ-PF50), and the Health Utilities Index Mark 2 (HUI-2). Neurodevelopmental impairment was defined as Wechsler full scale intelligence quotient below -1 standard deviation (SD), Movement Assessment Battery for Children total score < 15 percentile, cerebral palsy, deafness, or blindness.

Results

Data were collected for 127 children, of whom 60 (47%) had neurodevelopmental impairment. Overall, HRQoL was good: mean (SD) CHQ-PF50 physical summary score = 50.8 (11.1), psychosocial summary score = 49.3 (9.1) [normative mean 50 (10)]; HUI-2 dead-healthy scale = 0.92 (0.09) [maximum 1.0]. Neurodevelopmental impairment, lower gestational age, and higher socio-economic deprivation were all associated with reduced HRQoL. However, on multivariable analysis, only intelligence quotient and motor function were associated with psychosocial HRQoL, while intelligence quotient was associated with physical HRQoL.

Conclusions

Most seven-year-old children born very and extremely preterm have good HRQoL. Further improvements will require reduced neurodevelopmental impairment.
Introduction

Health-related quality of life (HRQoL) can be defined as "health state... which reflects the physical, psychological, social, and emotional well beings" [1]. It is now regarded as an important outcome of medical practice and research as it provides a holistic understanding of participant health.

Babies born very and extremely preterm make up 15.6% of total preterm births [2]. Although survival rates have improved steadily, these babies still experience significant morbidity and mortality relative to their full-term peers.

Neurodevelopmental impairment (NDI), such as reduced intelligence and cerebral palsy, is associated with reduced HRQoL in childhood [3, 4]. Earlier gestation at birth and increased socio-economic deprivation are also associated with reduced HRQoL [5, 6]. However, NDI is also associated with earlier gestation at birth and increased socio-economic deprivation [7, 8], and socio-economic deprivation is itself a risk factor for preterm birth [9]. Thus, it remains unclear which of these factors is most important for later HRQoL.

To our knowledge, there are no reports describing HRQoL in New Zealand children born very or extremely preterm. Therefore, we aimed to describe the HRQoL of a cohort of New Zealand children born very and extremely preterm, and determine the relationships between HRQoL and NDI, gestation at birth, and socio-economic deprivation.

Materials and methods

The Protein, Insulin and Neonatal Outcomes study comprised a subgroup of children born <30 weeks’ gestation or <1500 g birthweight and admitted to the neonatal intensive care unit at National Women’s Health, Auckland from 2005–2008, who had participated in previous neonatal studies (for cohort details see [10]). Participants underwent a multidisciplinary assessment at 7 years’ corrected age, including the Wechsler Intelligence Scale for Children 4th Edition (WISC-IV) and Movement Assessment Battery for Children 2nd Edition (MABC-2). Visual acuity was assessed using a crowded logMAR chart. Cerebral palsy (CP) was diagnosed by neurological examination carried out by a pediatrician using a standard definition [11], and severity graded using the Gross Motor Function Classification Score (GMFCS) [12].

Caregivers completed the Child Health Questionnaire Parent Form 50 Questions (CHQ-PF50) and the modified Health Utilities Index Mark 2 (HUI-2) excluding the “Fertility” attribute [13–15]. Both measures of HRQoL assess physical, mental, and emotional wellbeing in children, with the CHQ-PF50 also assessing the child’s impact on family dynamics, and the HUI-2 also reporting on cognitive outcomes. All domains in the CHQ-PF50 are scored on a 0–100 scale, except for the “Change in health” domain which is scored on a 0–1 scale. To assess overall HRQoL, the CHQ-PF50 derives a physical summary score describing physical HRQoL, such as whether the child can mobilize freely or without pain, and a psychosocial summary score describing psychosocial HRQoL, such as whether the child has good self-esteem or is free from anxiety. In a normative reference population, both the physical and psychosocial summary scores have a mean of 50 and a standard deviation (SD) of 10 [13]. The HUI-2 produces a “Dead-healthy scale”, with all domains in the HUI-2 being scored from 0–1. For both questionnaires, 0 represents the worst possible health state and the upper score represents the best.

We used NZDep2013 as a measure of socio-economic deprivation, which is a 1–10 decile scale, with higher values denoting greater deprivation [16]. Ethnicity was prioritized in the following order: Māori, Pacific, Asian, European or Other [17].

Ethics approval for the Protein, Insulin and Neonatal Outcomes study was obtained from the New Zealand Health and Disability Ethics Committee (NTY/12/05/035) and the Auckland
District Health Board Research Review Committee (ADHB 5486). Informed written consent was obtained from the participant's caregiver(s) before beginning the assessment, and verbal assent was sought from the participant.

Definitions

NDI was defined as having any of the following: WISC-IV full-scale intelligence quotient (FSIQ) more than 1 SD below the population mean (i.e. <85); MABC-2 total score ≤15 percentile; cerebral palsy; hearing impairment requiring hearing aids; or visual acuity of 6/60 (1.0 logMAR) or worse in the better eye.

Mild NDI was defined as having WISC-IV FSIQ between 1 and 2 SD below the population mean (i.e. 70–84), or MABC-2 total score between the 5th to ≤15th percentile. Severe NDI was defined as having any of the following: WISC-IV FSIQ below -2 SD (i.e. <70); MABC-2 total score ≤5 percentile; cerebral palsy; hearing impairment requiring hearing aids; or visual acuity of 6/60 (1.0 logMAR) or worse in the better eye.

Reported HRQoL measures were compared between children with and without NDI, different gestation at birth (above or below the median of 26 completed weeks), and different socio-economic status (NZDep2013 ≤ or >5).

Statistical analysis

Data were analyzed using JMP 15.0.0 (SAS Institute Inc., Cary, NC, USA), and are presented as n (%), mean (SD), or median (interquartile range). Continuous data were assessed for normality and compared between groups using two-tailed between-subjects t-tests or one-way ANOVA if normally distributed, with Tukey's post hoc adjustment for multiple comparisons. The outcome "Parental impact–emotional" from the CHQ-PF50 was square-root transformed to a near-normal distribution. The remaining data were analyzed using the Mann-Whitney U test or Kruskal-Wallis ANOVA, with Steel-Dwass post hoc analysis.

Regression analyses were used to explore potential independent predictors of overall HRQoL. Univariable analyses were run between WISC-IV FSIQ, MABC-2 total score percentile, gestational age, and NZDep2013 against overall HRQoL (physical summary score, psychological summary score, and dead healthy scale score). Variables with p <0.15 were then included in multivariable analysis. Collinearity was defined as variance inflation factor >10 and interaction effects were not assessed.

The level of significance was defined as 0.05.

Results

Of the 221 children who were selected to be potentially eligible for participation in this follow-up study, 129 (58%) were assessed at 7-years (Fig 1). CHQ-PF50 and HUI-2 data were available for 127 participants, half of whom were boys and 72% were singletons (Table 1). Nearly half (44%) were Māori or Pacific Islander, and a further 14% were Asian. One-quarter lived in highest deprivation areas. Mean gestational age was 26.7 weeks, and 6% (7/124) had a diagnosed neurological insult during their neonatal course (either intraventricular hemorrhage grades 3 or 4, periventricular leukomalacia, or both). At 7 years, 47% were categorized as having NDI, with the majority having an FSIQ <85 (32%), an MABC-2 total score ≤15 percentile (35%), or both (21%).

Ten children were diagnosed with CP, four with a GMFCS of 1, three with a GMFCS of 2, one with a GMFCS of 5, and one without any functional impairment. Nine of these ten children had MABC-2 percentile ≤5. When children with CP were excluded, the cohort mean (SD) MABC-2 total scaled score increased slightly to 8.5 (3.1).
When participants were categorised according to NDI, gestational age, and socio-economic deprivation, there were more participants with NDI in the more deprived than the less deprived group, although the difference was not statistically significant (37/68, 54% vs 23/59, 40%, p = 0.08). There were similar numbers of participants born at earlier gestations in the more deprived and less deprived group (36/68, 53% vs 31/59, 53%, p = 0.96), and of participants with NDI in the earlier gestation and later gestation groups (30/67, 45% vs 30/60, 50%, p = 0.56).

CHQ-PF50

Overall, caregivers reported that participants had good HRQoL, with both physical and psychosocial summary scores averaging 50 (Table 2). Across individual domains, those pertaining to physical health were scored the highest: participants experienced little to no pain, could perform most physical tasks, and could freely engage in social activities. Families generally got
Table 1. Participant demographics.

Description	Value
N = 127	
Boys	67 (52.8)
Singletons	92 (72.4)
Gestational age (weeks)	26.7 (1.9)
Birth weight (g)	920 (230)
Birth weight z-score	0.04 (0.9)
Birth length (cm)	34.6 (2.9)
Birth length z-score	-0.04 (1.1)
Birth head circumference (cm)	24.6 (2.0)
Birth head circumference z-score	0.20 (1.1)
Any antenatal steroids	115 (90.6)
Preterm pre-labour rupture of membranes†	91 (71.7)
Chronic lung disease†	39 (30.7)
Necrotizing enterocolitis†	5 (3.9)
Early infection†	1 (0.8)
Late infection†	23 (18.1)
Intraventricular hemorrhage grades ¾†	7 (5.6)
Periventricular leukomalacia†	4 (3.3)
Retinopathy of prematurity grades ¾†	15 (12.4)
Neurodevelopmental impairment	60 (47.2)
Mild neurodevelopmental impairment	38 (29.9)
Severe neurodevelopmental impairment	22 (17.3)
WISC-IV full scale IQ	90.0 (16.2)
WISC-IV full scale IQ <85	41 (32.3)
WISC-IV full scale IQ <70	10 (7.8)
MABC-2 total scaled score	8.0 (3.7)
MABC-2 total score ≤15th percentile	44 (34.6)
MABC-2 total score ≤5th percentile	34 (26.8)
WISC-IV full scale IQ <85 and MABC-2 total scaled score ≤15th percentile	26 (20.5)
Cerebral palsy	10 (7.9)
Hearing impairment requiring hearing aids	2 (1.6)
Visual impairment	0 (0.0)
New Zealand Deprivation Index 2013 quintiles	
1	23 (18.1)
2	26 (20.5)
3	21 (16.5)
4	23 (18.1)
5	34 (26.8)
Ethnicity	
Māori	37 (29.4)
Pacific	18 (14.3)
Asian	18 (14.3)
European or Other	53 (42.1)

Values are n (%) or mean (SD). Birth length n = 119. Birth length z-score n = 118. Birth head circumference n = 123. Birth head circumference z-score n = 122. Intraventricular hemorrhage grades ¾ n = 124. Periventricular leukomalacia n = 120. Retinopathy of prematurity n = 121. Participant ethnicity n = 126. Visual impairment: best visual acuity <6/60. WISC-IV: Wechsler Intelligence Scale for Children 4th edition. MABC-2: Movement Assessment Battery for Children 2nd edition. IQ: Intelligence quotient.

†Defined according to the Report of the Australian and New Zealand Neonatal Network 2011 [18].

https://doi.org/10.1371/journal.pone.0253026.t001
Table 2. Health-related quality of life scores for children with and without neurodevelopmental impairment, lower gestation, and greater socio-economic deprivation.

Domain	Overall cohort score	Risk factor	Subgroup Scores	p	
			Yes	No	
Child Health Questionnaire Parent Form 50 questions	100.0 (88.9, 100.0)	Neurodevelopmental impairment	100.0 (79.2, 100.0)	100.0 (94.4, 100.0)	0.007
		≤26 weeks’ gestation	100.0 (77.8, 100.0)	100.0 (94.4, 100.0)	0.035
		More deprived	100.0 (83.3, 100.0)	100.0 (94.4, 100.0)	0.040
Social limitations—emotional†	100.0 (77.8, 100.0)	Neurodevelopmental impairment	88.9 (44.4, 100.0)	100.0 (100.0, 100.0)	<0.001
		≤26 weeks’ gestation	100.0 (55.6, 100.0)	100.0 (88.9, 100.0)	0.029
		More deprived	100.0 (66.7, 100.0)	100.0 (88.9, 100.0)	0.012
Social limitations—physical†	100.0 (100.0, 100.0)	Neurodevelopmental impairment	100.0 (66.7, 100.0)	100.0 (100.0, 100.0)	0.002
		≤26 weeks’ gestation	100.0 (83.3, 100.0)	100.0 (100.0, 100.0)	0.124
		More deprived	100.0 (83.3, 100.0)	100.0 (100.0, 100.0)	0.197
Bodily pain/discomfort†	100.0 (80.0, 100.0)	Neurodevelopmental impairment	100.0 (72.5, 100.0)	100.0 (80.0, 100.0)	0.602
		≤26 weeks’ gestation	100.0 (80.0, 100.0)	100.0 (70.0, 100.0)	0.315
		More deprived	100.0 (80.0, 100.0)	100.0 (80.0, 100.0)	0.376
Behavior	70.7 (18.1)	Neurodevelopmental impairment	65.3 (19.1)	75.5 (15.7)	0.001
		≤26 weeks’ gestation	70.3 (19.2)	71.0 (17.0)	0.830
		More deprived	69.0 (19.4)	72.6 (16.4)	0.260
Mental health	77.8 (12.6)	Neurodevelopmental impairment	74.9 (12.6)	80.3 (12.2)	0.016
		≤26 weeks’ gestation	77.0 (10.6)	78.6 (14.6)	0.486
		More deprived	75.6 (14.3)	80.3 (9.8)	0.033
Self esteem	82.1 (14.0)	Neurodevelopmental impairment	80.6 (13.8)	83.3 (14.2)	0.279
		≤26 weeks’ gestation	80.5 (14.0)	83.7 (14.0)	0.199
		More deprived	82.8 (14.3)	81.2 (13.8)	0.532
Parental impact—emotional‡	70.3 (26.9)	Neurodevelopmental impairment	60.3 (29.0)	79.4 (21.3)	<0.001
		≤26 weeks’ gestation	67.2 (28.7)	73.9 (24.5)	0.111
		More deprived	69.4 (28.8)	71.5 (24.7)	0.506
Parental impact—time†	100.0 (77.8, 100.0)	Neurodevelopmental impairment	88.9 (66.7, 100.0)	100.0 (88.9, 100.0)	0.013
		≤26 weeks’ gestation	100.0 (77.8, 100.0)	94.4 (77.8, 100.0)	0.528
		More deprived	94.4 (77.8, 100.0)	100.0 (77.8, 100.0)	0.295
General health perceptions	68.2 (18.6)	Neurodevelopmental impairment	65.5 (20.6)	70.7 (16.4)	0.122
		≤26 weeks’ gestation	66.2 (18.9)	70.5 (18.3)	0.190
		More deprived	66.7 (19.5)	70.0 (17.6)	0.321
Family activities†	87.5 (66.7, 100.0)	Neurodevelopmental impairment	72.9 (54.2, 91.7)	95.8 (87.5, 100.0)	<0.001
		≤26 weeks’ gestation	87.5 (62.5, 100.0)	89.6 (70.8, 100.0)	0.602
		More deprived	87.5 (66.7, 100.0)	91.7 (70.8, 100.0)	0.137
Family cohesion	81.7 (18.6)	Neurodevelopmental impairment	79.3 (20.6)	84.0 (16.3)	0.160
		≤26 weeks’ gestation	83.7 (17.1)	79.6 (20.0)	0.218
		More deprived	79.6 (21.0)	84.2 (15.0)	0.162
Change in health	3.6 (0.9)	Neurodevelopmental impairment	3.7 (0.9)	3.6 (0.9)	0.524
		≤26 weeks’ gestation	3.6 (0.9)	3.7 (0.9)	0.405
		More deprived	3.7 (1.0)	3.6 (0.9)	0.680
Physical summary score	50.8 (11.1)	Neurodevelopmental impairment	48.0 (13.1)	53.3 (8.2)	0.009
		≤26 weeks’ gestation	49.2 (13.3)	52.6 (7.6)	0.071
		More deprived	49.5 (12.2)	52.3 (9.5)	0.151

(Continued)
along well, with participants rarely interrupting activities, restricting time for caregiver self-care, or behaving disruptively. Caregivers also reported good mental health outcomes for participants, describing them as largely unaffected by self-esteem issues or feelings of anxiety or depression.

Compared to their peers without NDI, participants with NDI had poorer HRQoL, with significantly lower physical and psychosocial summary scores (Table 2). NDI was associated with a higher incidence of aggressive or immature behavior and reduced physical functioning, both of which limited social opportunities, as well as increased feelings of anxiety or depression. Family dynamics were also impacted: participants with NDI interrupted family activities and restricted time for caregiver self-care more than participants without, generating greater feelings of worry or concern in caregivers.

Participants born at earlier gestational ages or experiencing higher socio-economic deprivation were less capable of performing vigorous physical tasks than their peers and were more socially limited due to emotional or behavioral problems (Table 2). Additionally, higher

Table 2. (Continued)

Domain	Overall cohort score	Risk factor	Subgroup Scores		
		Neurodevelopmental impairment	Yes	No	p
Psychosocial summary score	49.3 (9.1)	45.9 (9.5)	52.3 (7.6)	<0.001	
		≤26 weeks' gestation	48.5 (9.1)	50.1 (9.2)	0.333
		More deprived	48.0 (10.0)	50.7 (7.9)	0.093
Health Utilities Index Mark 2					
Sensation†	1.00 (1.00, 1.00)	Neurodevelopmental impairment	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.004
		≤26 weeks' gestation	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.724
		More deprived	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.024
Mobility†	1.00 (1.00, 1.00)	Neurodevelopmental impairment	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.054
		≤26 weeks' gestation	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.040
		More deprived	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.424
Emotion†	1.00 (1.00, 1.00)	Neurodevelopmental impairment	1.00 (0.86, 1.00)	1.00 (1.00, 1.00)	0.186
		≤26 weeks' gestation	1.00 (0.86, 1.00)	1.00 (1.00, 1.00)	0.036
		More deprived	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.632
Cognition†	1.00 (0.86, 1.00)	Neurodevelopmental impairment	0.86 (0.86, 1.00)	1.00 (1.00, 1.00)	<0.001
		≤26 weeks' gestation	1.00 (0.86, 1.00)	1.00 (0.86, 1.00)	1.000
		More deprived	1.00 (0.86, 1.00)	1.00 (0.86, 1.00)	0.310
Selfcare†	1.00 (1.00, 1.00)	Neurodevelopmental impairment	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.001
		≤26 weeks' gestation	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.443
		More deprived	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.714
Pain†	1.00 (0.95, 1.00)	Neurodevelopmental impairment	1.00 (0.95, 1.00)	1.00 (1.00, 1.00)	0.214
		≤26 weeks' gestation	1.00 (0.95, 1.00)	1.00 (0.95, 1.00)	0.723
		More deprived	1.00 (1.00, 1.00)	1.00 (0.95, 1.00)	0.723
Dead healthy†	0.94 (0.88, 1.00)	Neurodevelopmental impairment	0.92 (0.83, 0.96)	1.00 (0.92, 1.00)	<0.001
		≤26 weeks' gestation	0.94 (0.84, 1.00)	0.96 (0.92, 1.00)	0.108
		More deprived	0.94 (0.85, 1.00)	0.96 (0.90, 1.00)	0.258

Unless stated otherwise, values are mean (SD) and analysis performed using two-tailed between-subjects t-tests. p-values are for comparison between subgroups with and without the risk factor. Neurodevelopmental impairment: "Yes" n = 60; "No" n = 67. ≤26 weeks’ gestation: "Yes" n = 67; "No" n = 60. More deprived: “Yes” n = 68; “No” n = 59. More deprived: New Zealand Deprivation Index 2013 >5.

†Values are median (interquartile range) and analyzed using Mann-Whitney U Test.
‡Square-root transformed.

https://doi.org/10.1371/journal.pone.0253026.t002
deprivation was associated with greater feelings of anxiety or depression in participants. However, these variables were not related to reduced family functioning.

HUI-2

Similar to the CHQ-PF50, the HUI-2 demonstrated that NDI and, to a lesser extent, earlier gestation at birth and increased socio-economic deprivation were associated with poorer HRQoL (Table 2). Participants with NDI experienced greater cognitive difficulties than those without and were less capable of performing selfcare tasks such as eating or dressing. NDI and increased deprivation were also associated with greater sensory deficits. Earlier gestation at birth was associated with decreased physical mobility and increased feelings of irritability or anger.

Subgroup analysis

When participants were stratified into NDI severity subgroups, both mild and severe NDI were significantly associated with reduced HRQoL (Table 3). Participants with mild NDI were more psychosocially limited than participants without NDI, and experienced poorer functioning in sensory and selfcare domains. Participants with severe NDI were further limited, scoring lower across a range of physical, mental, and social domains when compared to participants without NDI. Regarding family functioning, participants with either mild or severe NDI significantly disrupted family activities and generated caregiver stress relative to peers without NDI, with severe NDI having a greater effect than mild.

Regression analyses

On univariable analyses, FSIQ and MABC-2 total score percentiles were positively related to overall HRQoL, and NZDep2013 was negatively related to overall HRQoL, but gestational age at birth was not related to HRQoL (Table 4). On multivariable analyses including FSIQ, MABC-2, and NZDep2013 in the model, FSIQ was independently predictive of physical summary score, while both FSIQ and MABC-2 total score percentiles were independently predictive of psychosocial summary score and dead-healthy scale scores. Variance inflation factors showed no evidence of collinearity between FSIQ, MABC-2, and NZDep2013 (i.e. all were < 10).

Discussion

Our research objective was to assess caregiver reported HRQoL in a cohort of New Zealand children born <30 weeks’ gestation or <1500 g birthweight, and describe the relationship with NDI, gestation at birth, and socio-economic deprivation. We found that at 7 years’ corrected age, caregivers reported good overall HRQoL for children born very and extremely preterm on both the CHQ-PF50 and HUI-2 questionnaires. However, NDI was associated with reduced HRQoL across multiple domains, significantly impacting both individual and family functioning. Lower gestation at birth and increased socio-economic deprivation were also associated with reduced individual functioning, although these effects appeared to be largely due to NDI.

Our cohort had good overall HRQoL at 7 years, consistent with a 2016 study that reported similar findings in healthy preterm Finnish children born very low birthweight [19]. However, another study from France reported that extremely preterm children have poorer overall HRQoL than full-term peers [20]. Our study also found that caring for children with NDI significantly reduced family HRQoL, most noticeably in caregiver emotional states. Others have also reported that caregivers of hospitalized extremely preterm infants experience more
negative emotions than population norms [21]. This may have long-term implications for their psychological wellbeing and contribute towards the increased emotional distress we observed.

The incidence of NDI in our cohort was higher than reported in other studies of children born very preterm [22]. This may be partly because the incidence and severity of NDI increases as gestational age decreases, and 71% of our cohort was born extremely preterm. Additionally, we used a broader definition of NDI to capture participants with both mild and severe impairment, to further explore the relationship between NDI and HRQoL. Commonly, studies on extremely preterm children focus on severe NDI, which is likely to more strongly influence a child’s future functioning and HRQoL than mild NDI; a pattern which our findings support. However, our study demonstrates that mild NDI is not only more common than severe NDI, making up 63% of our NDI subgroup, but is also an important contributor to reduced psycho-social HRQoL in later childhood.

Table 3. Health-related quality of life in children with severe, mild, and no neurodevelopmental impairment.

Assessment	Domain	Severe NDI	Mild NDI	No NDI	p	
	n = 22	n = 38	n = 67			
Child Health Questionnaire Parent Form 50 questions	Physical functioning†	94.4 (59.7, 100.0)**	100.0 (88.9, 100.0)	100.0 (94.4, 100.0)	0.007	
	Social limitations—emotional†	77.8 (33.3, 100.0)**	88.9 (52.8, 100.0)**	100.0 (100.0, 100.0)	<0.001	
	Social limitations—physical†	100.0 (33.3, 100.0)**	100.0 (83.3, 100.0)	100.0 (100.0, 100.0)	0.001	
	Bodily pain/discomfort†	100.0 (67.5, 100.0)	100.0 (80.0, 100.0)	100.0 (80.0, 100.0)	0.870	
	Behaviour	61.3 (16.6)**	67.6 (20.3)	75.5 (15.7)	0.002	
	Mental health	75.9 (9.6)	74.3 (14.2)	80.3 (12.2)	0.049	
	Self esteem	78.0 (15.1)	82.1 (13.0)	83.3 (14.2)	0.309	
	Parental impact—emotional‡	54.5 (27.7)**	63.6 (29.7)**	79.4 (21.3)	<0.001	
	Parental impact—time†	88.9 (66.7, 100.0)	88.9 (75.0, 100.0)	100.0 (88.9, 100.0)	0.046	
	General health perceptions	59.6 (22.4)	68.9 (19.0)	70.7 (16.4)	0.052	
	Family activities†	66.7 (39.6, 88.5)**	77.1 (61.5, 95.8)**	95.8 (87.5, 100.0)	<0.001	
	Family cohesion	77.7 (20.9)	80.1 (20.7)	84.0 (16.3)	0.324	
	Change in health	3.6 (1.0)	3.7 (0.8)	3.6 (0.9)	0.750	
	Physical summary score	43.9 (16.8)**	50.4 (10.0)	53.3 (8.2)	0.002	
	Psychosocial summary score	44.9 (8.0)**	46.4 (10.3)**	52.3 (7.6)	<0.001	
	Health Utilities Index Mark 2	Sensation†	1.00 (1.00, 1.00)	1.00 (0.87, 1.00)**	1.00 (1.00, 1.00)	0.006
	Mobility†	1.00 (0.92, 1.00)**	1.00 (1.00, 1.00)**	1.00 (1.00, 1.00)	<0.001	
	Emotion†	1.00 (0.97, 1.00)	1.00 (0.86, 1.00)	1.00 (1.00, 1.00)	0.338	
	Cognition†	0.86 (0.66, 1.00)**	0.86 (0.86, 1.00)**	1.00 (1.00, 1.00)	<0.001	
	Selfcare†	1.00 (0.96, 1.00)**	1.00 (1.00, 1.00)**	1.00 (1.00, 1.00)	0.004	
	Pain†	1.00 (0.95, 1.00)	1.00 (0.95, 1.00)	1.00 (1.00, 1.00)	0.429	
	Dead healthy scale†	0.90 (0.82, 1.00)**	0.94 (0.83, 0.96)**	1.00 (0.92, 1.00)	<0.001	

Unless stated otherwise, values are mean (SD), with analysis between groups performed using one-way ANOVA and post-hoc analyses with Tukey’s Honest Significant Difference test. P-values are for comparisons across all three groups (severe vs mild vs no NDI) without post-hoc adjustment. NDI: Neurodevelopmental impairment. †Values are median (interquartile range) with analysis between groups performed using Kruskal-Wallis ANOVA and post-hoc analyses with Steel-Dwass test. #Square-root transformed. Post-hoc analyses

* p<0.05 compared to “No NDI”.
** p<0.01 compared to “No NDI.”
*** p<0.001 compared to “No NDI”.
†† p<0.01 compared to “Severe NDI”.

https://doi.org/10.1371/journal.pone.0253026.t003
Given the propensity of NDI to interfere with multiple domains of childhood functioning, the mechanism by which it influences HRQoL is complex. The third trimester of pregnancy is a critical period for brain development, and preterm birth is associated with disrupted neural connections and altered brain structure [7]. These in turn are related to specific neurological abnormalities which limit physical and psychosocial functioning and can impact HRQoL. Furthermore, these functional limitations may prevent or discourage children from engaging in certain social activities, changing their social environment which can further influence psychosocial outcomes [6].

It remains controversial whether poorer psychosocial outcomes after preterm birth can be attributed to an increased prevalence of internalizing or externalizing behaviors [23]. However, a 2014 study found that neonatal procedural pain contributed towards increased internalizing behavior at 7 years [24], which can restrict social opportunities. Children born preterm, especially those with NDI, may also be shyer due to pre-existing physical or intellectual issues, which can become more visible in the school environment [25]. These are consistent with the so-called preterm behavioral phenotype, which identifies preterm children collectively as being at greater risk for anxiety, inattentive attention-deficit/hyperactivity disorder, and autism spectrum disorder associated with neurological etiologies, although it should be noted that most children born extremely preterm have minimal behavioral difficulties [26]. Our findings are consistent with these reports. While our cohort got along well with others overall, children born at earlier gestations were more socially limited due to emotional and behavioral issues than children born later. However, it should be noted that the CHQ-PF50 focuses specifically on measuring externalizing rather than internalizing behavioral HRQoL.

Socio-economic deprivation has also been shown to influence HRQoL, with previous studies reporting an association between increased deprivation and poorer perceptions of health, emotional and behavioral issues, and NDI [5, 8, 27]. Stress associated with low socio-economic status and reduced access to social resources have been proposed as potential mediators for this relationship.
Children born very preterm are more likely than full-term peers to experience motor impairment, including both cerebral palsy and non-cerebral palsy manifestations [28, 29]. The incidence of non-cerebral palsy motor problems has been reported to be as high as 28% in school-aged children born very preterm [28, 30], and screening has been recommended at or before preschool age to identify motor difficulties so that interventions can be administered in a timely fashion [29, 31]. Our study findings support this concern: motor impairment was common in our cohort, with 44 (35%) children having MABC-2 scores ≤15th percentile and 34 (27%) having scores ≤5th percentile, although only 10 (8%) had a diagnosis of cerebral palsy.

On multivariable analysis, we found that intelligence quotient (IQ) was an independent predictor of overall physical and psychosocial HRQoL. This may be related to caregiver perceptions; if the caregiver is aware that their child has reduced IQ, they may assume that their child is unable to participate in certain physical or social activities, and so interpret that as reduced physical or psychosocial HRQoL. Furthermore, as a group, preterm children with reduced IQ are more likely to have motor impairment [32]. This was also evident in our cohort where 26 (63%) of the 41 children with reduced IQ (FSIQ <85) also had reduced motor function (MABC-2 ≤15th percentile). We also found that MABC-2 was an independent predictor of psychosocial but not physical HRQoL. While perhaps initially surprising, this finding is consistent with the social model of disability, which argues that socio-political rather than exclusively biomedical factors are a major driver of poor HRQoL in people with disabilities [33]. Indeed, it has been suggested that “some of the most restricting and debilitating features in the lives of disabled people...[are] socially and politically constructed” rather than a consequence of the disability itself [34]. In addition, children with physical disabilities may not be able to participate in some activities such as sports, which may restrict their social opportunities [35].

Our study was limited by its small sample size. Further, since the eligible cohort were specifically selected on the basis of neonatal events [10] and we have no data on the characteristics of those who were not selected, or those who were selected but were not able to be assessed, we are unable to determine the generalisability of our findings. Additionally, we measured participant HRQoL indirectly through caregivers, who have been shown to both under- and over-report HRQoL, although this effect varies between different measures and domains [36]. However, both the CHQ-PF50 and HUI-2 are widely used measures of HRQoL, and their use in pediatric outcome studies have been supported by previous research [15]. Nonetheless, future research into the HRQoL of children born preterm should utilise both caregiver-reported and self-reported measures in order to more fully understand participant wellbeing [37].

In summary, we found that caregivers report good HRQoL in a cohort of New Zealand children born <30 weeks gestation or <1500g birthweight. Although NDI, lower gestational age, and greater socio-economic deprivation are all associated with lower HRQoL, only IQ and motor function are independent predictors of overall HRQoL. Strategies to improve HRQoL in children born very preterm need to continue to focus on prevention of NDI.

Acknowledgments

We acknowledge the Protein, Insulin, and Neonatal Outcomes (PIANO) Study Team, who contributed towards data collection: Janene B Biggs, Coila Bevan, Frank H Bloomfield, Kelly Fredell, Greg D Gamble, Jane E Harding, Sabine Huth, Yannan Jiang, Christine Kevan, Jennifer A Rogers, Heather Stewart, from the Liggins Institute, University of Auckland; Anna C Tottman from the Neonatal Services and Women’s Alcohol and Drug Service, Royal Women’s Hospital; Jane M Alsweiler from the Department of Paediatrics: Child and Youth Health, University of Auckland & Newborn Services, Auckland City Hospital; Kathryn A Williamson
from the Department of Paediatrics: Child and Youth Health, University of Auckland; Joanna M Black, Myra Leung, Geriant Phillips, Tanya Poppe, from the School of Optometry and Vision Science, University of Auckland; Trecia A Wouldes, from the Department of Psychological Medicine, University of Auckland; Ben Thompson, from the School of Optometry and Vision Science, University of Auckland & School of Optometry and Vision Science, University of Waterloo, and Centre for Eye & Vision Research, Hong Kong.

The lead author for the PIANO Study Team is Jane Harding; contact email address: j.harding@auckland.ac.nz.

We thank the participants and families in the PIANO study.

Author Contributions

Conceptualization: Gordon X. H. Liu, Jane E. Harding.

Data curation: Gordon X. H. Liu.

Formal analysis: Gordon X. H. Liu, Jane E. Harding.

Funding acquisition: Jane E. Harding.

Supervision: Jane E. Harding.

Writing – original draft: Gordon X. H. Liu.

Writing – review & editing: Gordon X. H. Liu, Jane E. Harding.

References

1. Zhang Y, Zhou Z, Gao J, Wang D, Zhang Q, Zhou Z, et al. Health-related quality of life and its influencing factors for patients with hypertension: evidence from the urban and rural areas of Shaanxi Province, China. BMC Health Serv Res. 2016; 16(1):277–86. https://doi.org/10.1186/s12913-016-1536-x PMID: 27430314

2. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012; 379(9832):2162–72. https://doi.org/10.1016/S0140-6736(12)60820-4 PMID: 22682464

3. Vargus-Adams J. Health-related quality of life in childhood cerebral palsy. Arch Phys Med Rehabil. 2005; 86(5):940–5. https://doi.org/10.1016/j.apmr.2004.10.036 PMID: 15895340

4. Stahlmann N, Rapp M, Herting E, Thyen U. Outcome of extremely premature infants at early school age: health-related quality of life and neurosensory, cognitive, and behavioral outcomes in a population-based sample in northern Germany. Neuropediatrics. 2009; 40(3):112–9. https://doi.org/10.1055/s-0029-1243166 PMID: 20020395

5. Drukker M, Kaplan C, Feron F, van Os J. Children’s health-related quality of life, neighbourhood socioeconomic deprivation and social capital. A contextual analysis. Soc Sci Med. 2003; 57(5):825–41. https://doi.org/10.1016/s0277-9536(02)00453-7 PMID: 12850109

6. Vederhus BJ, Markested T, Eide GE, Graue M, Halvorsen T. Health related quality of life after extremely preterm birth: a matched controlled cohort study. Health Qual Life Outcomes. 2010; 8(1):53. https://doi.org/10.1186/1477-7525-8-53 PMID: 20492724

7. Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord. 2018; 10(1):38. https://doi.org/10.1186/s11689-018-9253-x PMID: 30541449

8. Chin-Lun Hung G, Hahn J, Alamini B, Buka SL, Goldstein JM, Laird N, et al. Socioeconomic disadvantage and neural development from infancy through early childhood. Int J Epidemiol. 2015; 44(6):1889–99. https://doi.org/10.1093/ije/dyv033 PMID: 26676792

9. Taylor-Robinson D, Agarwal U, Diggie PJ, Platt MJ, Yoxall B, Alferevic Z. Quantifying the impact of deprivation on preterm births: a retrospective cohort study. PLOS One. 2011; 6(8):e23163. https://doi.org/10.1371/journal.pone.0023163 PMID: 21826237

10. Tottman AC, Alsweiler JM, Bloomfield FH, Gamble GD, Jiang Y, Leung M, et al. Relationships between early neonatal nutrition and neurodevelopment at school age in children born very preterm. J Pediatr
Gastroenterol Nutr. 2020; 70(1):72–8. https://doi.org/10.1097/MPG.0000000000002471 PMID: 31449172

11. The definition and classification of cerebral palsy. Dev Med Child Neurol. 2007; 49(s109):1–44. https://doi.org/10.1111/j.1469-8749.2007.00001.x PMID: 17371509

12. Palisano RJ, Hanna SE, Rosenbaum PL, Russell DJ, Walter SD, Wood EP, et al. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther. 2000; 80(10):974–85. https://doi.org/10.1093/ptj/80.10.974 PMID: 11002433

13. HealthActCHQ. The CHQ scoring and interpretation manual. Boston, MA, USA: HealthActCHQ; 2013.

14. Horsman J, Furlong W, Feeny D, Torrance G. The Health Utilities Index (HUI): concepts, measurement properties and applications. Health Qual Life Outcomes. 2003; 1(1):54. https://doi.org/10.1186/1477-7525-1-54 PMID: 14613568

15. Raat H, Bonsel GJ, Essink-Bot ML, Landgraf JM, Gire C, Ressegui N, Brevaux-Malaty V, Marret S, Cambonie G, Soukissi-Medioni I, et al. Reliability and validity of comprehensive health status measures in children: The Child Health Questionnaire in relation to the Health Utilities Index. J Clin Epidemiol. 2002; 55(1):67–76. https://doi.org/10.1016/s0895-4356(01)00411-5 PMID: 11781124

16. Atkinson J, Salmond C, Crampton P. NZDep2013 Index of Deprivation. Dunedin, New Zealand; 2014.

17. Ministry of Health. HISO 10001:2017 ethnicity data protocols. Wellington, New Zealand; 2017.

18. Chow SS. Report of the Australian and New Zealand Neonatal Network 2011. Sydney, Australia; 2013.

19. Huhtala M, Korja R, Rautava L, Lehtonen L, Haataja L, Lapinleimu H, et al. Health-related quality of life in very low birth weight children at nearly eight years of age. Acta Paediatr. 2016; 105(1):53–9. https://doi.org/10.1111/apa.13241 PMID: 26416194

20. Gire C, Resseguier N, Brévault-Malaty V, Marret S, Cambonie G, Soukiss-Medioni I, et al. Quality of life of extremely preterm school-age children without major handicap: a cross-sectional observational study. Arch Dis Child. 2019; 104(4):333–9. https://doi.org/10.1136/archdischild-2018-315048 PMID: 29960997

21. Medina IMF, Granero-Molina J, Fernández-Sola C, Hernández-Padilla JM, Ávila MC, Rodríguez MDML. Bonding in neonatal intensive care units: Experiences of extremely preterm infants’ mothers. Women Birth. 2018, 31(4):325–30. https://doi.org/10.1016/j.wombi.2017.11.008 PMID: 29191725

22. Torchin H, Morgan AS, Ancel PY. International comparisons of neurodevelopmental outcomes in infants born very preterm. Semin Fetal Neonatal Med. 2020; 25(3):101109. https://doi.org/10.1016/j.siny.2020.101109 PMID: 32354556

23. Montagna A, Nosarti C. Socio-emotional development following very preterm birth: pathways to psychopathology. Front Psychol. 2016; 7(80. https://doi.org/10.3389/fpsyg.2016.0080 PMID: 26903895

24. Ranger M, Synnes AR, Vinall J, Grunau RE. Internalizing behaviours in school-age children born very preterm are predicted by neonatal pain and morphine exposure. Eur J Pain. 2014; 18(6):844–52. https://doi.org/10.1002/j.1532-2149.2013.00431.x PMID: 24318537

25. Reijneveld SA, de Kleine MJ, van Baar AL, Kolleé LA, Verhaak CM, Verhulst FC, et al. Behavioural and emotional problems in very preterm and very low birthweight infants at age 5 years. Arch Dis Child Fetal Neonatal Ed. 2006; 91(6):F423–8. https://doi.org/10.1136/adc.2006.093674 PMID: 16877474

26. Burnett AC, Youssif G, Anderson PJ, Duff J, Doyle LW, Cheong JLY. Exploring the “preterm behavioral phenotype” in children born extremely preterm. J Dev Behav Pediatr. 2019; 40(3):200–7. https://doi.org/10.1097/DBP.0000000000000646 PMID: 30801416

27. Potijk MR, de Winter AF, Bos AF, Kerstjens JM, Reijneveld SA. Behavioural and emotional problems in moderately preterm children with low socioeconomic status: a population-based study. Eur Child Adolesc Psychiatry. 2015; 24(7):78–95. https://doi.org/10.1007/s00787-014-0623-y PMID: 25293643

28. Spittle AJ, Cameron K, Doyle LW, Cheong JL. Motor impairment trends in extremely preterm children: 1991–2005. Pediatrics. 2018; 141(4):e20173410. https://doi.org/10.1542/peds.2017-3410 PMID: 29567814

29. Broström L, Vollmer B, Bolk J, Ecköl E, Ådén U. Minor neurological dysfunction and associations with motor function, general cognitive abilities, and behaviour in children born extremely preterm. Dev Med Child Neurol. 2018; 60(8):826–32. https://doi.org/10.1111/dmcn.13738 PMID: 29573402

30. Schmidt B, Roberts RS, Anderson PJ, Asztalos EV, Costantini L, Davis PG, et al. Academic performance, motor function, and behavior 11 years after neonatal caffeine citrate therapy for apnea of prematurity: An 11-year follow-up of the CAP randomized clinical trial. JAMA Pediatr. 2017 Jun; 171(6):564–72. https://doi.org/10.1001/jamapediatrics.2017.0238 PMID: 28437520

31. Dathe A-K, Jaekel J, Franzel J, Hoehn T, Felderhoff-Mueser U, Huening BM. Visual perception, fine motor, and visual-motor skills in very preterm and term-born children before school entryobservational cohort study. Children (Basel). 2020; 7(12):276. https://doi.org/10.3390/children7120276 PMID: 33291484
32. Van Hus JW, Pothenst ES, Jeukens-Visser M, Kok JH, Van Wassenaer-Leemhuis AG. Motor impairment in very preterm-born children: links with other developmental deficits at 5 years of age. Dev Med Child Neurol. 2014; 56(6):587–94. https://doi.org/10.1111/dmcn.12295 PMID: 24926490

33. Goering S. Rethinking disability: the social model of disability and chronic disease. Curr Rev Musculoskelet Med. 2015; 8(2):134–8. https://doi.org/10.1007/s12178-015-9273-z PMID: 25862485

34. Clements L, Read J. Disabled people and the right to life: the protection and violation of disabled people’s most basic human rights. Oxfordshire (UK): Routledge; 2008.

35. Vella SA, Cliff DP, Magee CA, Okely AD. Sports participation and parent-reported health-related quality of life in children: Longitudinal associations. J Pediatr. 2014; 164(6):1469–74. https://doi.org/10.1016/j.jpeds.2014.01.071 PMID: 24657117

36. Germain N, Abaléa S, Toumi M. Measuring the health-related quality of life in young children: how far have we come? J Mark Access Health Policy. 2019; 7(1):1618661. https://doi.org/10.1080/20016689.2019.1618661 PMID: 31156762

37. Haverman L, Limperg PF, Young NL, Grootenhuis MA, Klaassen RJ. Paediatric health-related quality of life: what is it and why should we measure it? Arch Dis Child. 2017; 102(5):393–400. https://doi.org/10.1136/archdischild-2015-310068 PMID: 27831905