LETTER TO THE EDITOR

Does increasing the JAK2V617F assay sensitivity allow to identify more patients with MPN?

The detection of the JAK2V617F mutation has become an essential tool in BCR-ABL1-negative myeloproliferative neoplasms (MPNs) diagnosis, as it is present in 95% of polycythemia vera (PV) patients and 60% of essential thrombocytemia (ET) or myelofibrosis patients.1 JAK2V617F-positive MPNs are different from other hematological malignant disease in that, although the JAK2V617F mutation is considered as the causative origin of the disease, the tumor burden at the time of diagnosis as assessed by the % of JAK2V617F alleles in peripheral blood or bone marrow can vary from 100% to very low levels with no correlation to blood cell counts. It is still undefined which lowest level might be detected to allow the diagnosis of every MPN patients. Using the Mustascreen kit (Ipsogen, Marseilles, France), the detection limit of which was close to 2%, most of the patients were easily classified as positive or negative. However, some rare patients were considered as doubtful because the level of fluorescence detected from the mutant probe was between the negative control and the 2% reference positive kit control. Recently, we decided to move toward a more sensitive method, the Mutaquant kit (Ipsogen), characterized by a detection limit close to 0.1%. DNA was extracted from whole blood using the QIA-AMP DNA blood mini kit (Qiagen, Hilden, Germany). In the few months after we adopted a more sensitive method, we identified positive patients among patients previously tested negative. These results raised two questions: who are the patients with very low levels of JAK2V617F mutation and consequently what level of sensitivity a method should have in a routine diagnosis setting. All patients included have given informed consent for this study, which has been approved by the local ethics committee.

To assess the specificity of the Mutaquant method, 49 samples taken from blood donors were tested and no sample was detected as positive using a cut-off of 0.1%. Next, we diluted one 100% mutated patient DNA sample in a negative one. The 10^{-2} and 10^{-3} dilutions were measured at 1.2% and 0.1%, respectively, whereas the 10^{-4} dilution was found negative. These results confirmed the lower detection limit of this method to be 0.1% mutant allele burden.

Within 6 months after introducing Mutaquant in a routine setting, we prospectively investigated 688 patients. Overall, 497 were tested for the first time, whereas 191 had already been analyzed previously using Mustascreen method. In 98 cases, the previous sample was positive and the Mutaquant result confirmed the positivity. In 93 cases, the previous result was negative, but in 7 of them the Mutaquant method detected a low level of JAK2V617F mutant allele (Table 1). When reanalyzed using the novel method, a low level of positivity was also detected on a frozen aliquot of the previous sample for these seven patients. In three cases several DNA samples were available, which were all found positive with Mutaquant, even samples taken as far as 5 years before, with a constant level of positivity throughout time. Of these seven patients, three were suspected of having ET, one presented with an isolated elevated hematocrit and one with a myelofibrosis. Patient 6 presented with a high WBC count, normal

Table 1. Biological and clinical data of seven patients found positive, although repeatedly tested negative previously

Patient	Age (years)	Sex	Date of sampling	Mutaquant (%)	Mutascreen	Diagnosis	Cytoreductive treatment	HTC (%)	Hb (g/dl)	WBC (G/l)	PLT (G/l)	Additional mutations	
#1	49	F	2008	0.30	Neg	ET	HU	NA	NA	NA	720	MPL neg	
#2	49	M	2007	0.90	Neg	ND	ET	47.4	17.1	7.7	335	MPL neg	
#3	47	M	2006	1.00	Neg	ND	Thrombosis	None	42	12.9	5.6	600	MPL neg
#4	49	M	2010	0.10	Neg	ND	PV	None	54	18.1	7.5	189	Exon 12 neg
#5	56	F	2007	0.20	Neg	ND	ET	39.5	12.8	6.5	340	MPL neg	
#6	72	F	2010	0.60	Neg	ND	MPN	None	42.3	14.6	13.4	134	MPL neg
#7	71	F	2010	0.30	Neg	ND	Myelofibrosis	None	30.5	10.4	5.9	100	MPL neg

Abbreviations: ET, essential thrombocytemia; Exon 12, mutation at the exon 12 of the JAK2 gene; F, female; HTC, hematocrit; HU, hydroxyurea; M, male; MPL, mutation at W515 of the MPL gene; NA, not available; ND, not done; Neg, negative; PLT, platelet; Pos, positive; PV, polycythemia vera.
RBC and platelet counts, circulating immature myeloid cells and trisomy 8 in bone marrow cells. A chronic neutrophilic leukemia, a rare entity in which JAK2V617F has been reported, is unlikely in this case because of immature circulating myeloid cells and the absence of spleenomegaly or segmented neutrophils. Patient 7 presented with unexplained repeated pulmonary embolisms without any hematological abnormality and a red cell mass in the normal range, excluding a polycythemia. The impact of the mutation in this patient is still questioning as JAK2V617F in thrombotic syndromes is frequent in splanchic vein thrombosis, but extremely rare in unprovoked thrombosis. We analyzed DNA from erythroid colonies from patient 3 and, in line with the DNA from total blood (1%), we found one JAK2V617F heterozygous colony among 48 tested, confirming the existence of a very low mutant allele burden.

An unsolved question is whether a mutant allele burden of 1% or less really reflects the tumor burden and whether the patients found with less than 1% of JAK2V617F allele burden can be classified as MPN patients, as the WHO classification do not require quantitative analysis. In ET, a restriction of the mutation to found with less than 1% of JAK2V617F allele burden can be or less really reflects the tumor burden and whether the patients with PV, whereas MPL515 mutations have been tested in patients with either ET or myelofibrosis.

Table 2. Biological and clinical data of eight patients found with detectable JAK2V617F mutations, although previously tested doubtful

Patient	Age (years)	Sex	Suspected diagnosis	% JAK2V617F	Vascular events	Treatment	HTC (%)	Hb (g/dl)	WBC (G/l)	PLT (G/l)
#10	81	F	Myelofibrosis	4.8	No	None	27.7	9.0	9.5	24
#11	84	M	PV	1.3	No	None	55	18.5	8.7	217
#14	61	M	PV	1.3	No	Phlebotomy	48	16.2	9.9	221
#16	78	F	PV	2.9	No	ASA, HU	60	18.3	12.1	490
#19	63	F	PV	2.6	No	None	50.3	17	11.3	197
#23	65	M	ET	2.8	Yes	ASA, HU	33.5	10.4	10.6	1200
#24	25	F	ET	1.1	Yes	ASA, HU	36.3	12.8	4.8	238
#25	64	M	PV	1.5	No	ASA	46.4	16.2	6.5	247

Abbreviations: ASA, aspirin; ET, essential thrombocytemia; HTC, hematocrit; HU, hydroxyurea; NA, not available; PLT, platelet; PV, polycythemia vera. Only data from patients with detectable are presented. In patients with low allele burden of JAK2V617F mutation, JAK2 exon 12 mutations have been tested in patients with PV, whereas MPL515 mutations have been tested in patients with either ET or myelofibrosis.

REFERENCES

1. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29: 761–770.
2. Mc Lornan DP, Percy MJ, Jones AV, Cross NC, Mc Sullivan MF. Chronic neutrophilic leukemia with an associated V617F JAK2 tyrosine kinase mutation. Haematologica 2005; 90: 1696–1697.
3. Kiladjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood 2008; 111: 4922–4929.
4. Ugo V, De Gal G, Lecouq L, Motterre D, Oger E. EDITION Collaborative Study Group. Prevalence of the JAK2 V617F mutation is low among unscreened patients with a first episode of unprovoked venous thromboembolism. J Thrombosis and Haemostasis 2008; 6: 203–205.
5. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neo- plasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.
6. Ugo V, Tondre S, Menot ML, Bonnin N, Le Gac C, Tonneti C et al. Interlaboratory validation and development of an MRM method applied to the detection of JAK2 exon 12 mutations in polycythemia vera patients. PLoS One 2010; 5: e8893.
7. Sidor P, El Housni H, Dessars B, Heimann P. The JAK2V617F mutation is detectable at very low level in peripheral blood of healthy donors. Leukemia 2006; 20: 1622.