Actions of compact groups on coherent sheaves

Jürgen Hausen and Peter Heinzner

Let K be a compact Lie group with complexification $K^\mathbb{C}$ and X a reduced Stein space endowed with a continuous action of K by holomorphic transformations. In this set up there is a complex space $X//K$ and a surjective K-invariant holomorphic map $\pi: X \to X//K$ such that the structure sheaf of $X//K$ is the sheaf of invariants $(\pi_*\mathcal{O}_X)^K$. Furthermore, the K-action on X can be complexified in the following sense: X can be realized as an open K-stable subset of a Stein space X^c which is endowed with a holomorphic $K^\mathbb{C}$-action. Moreover, the inclusion $X \subset X^c$ is universal, i.e., every K-equivariant holomorphic map ϕ from X into a holomorphic $K^\mathbb{C}$-space Z extends uniquely and $K^\mathbb{C}$-equivariantly to a holomorphic map $\phi^c: X^c \to Z$ (see [H]).

In the present paper we extend the above results to Stein spaces X which are not necessarily reduced. More importantly, we show that every continuous coherent K-sheaf over X can be extended to a coherent $K^\mathbb{C}$-sheaf over X^c. This is also proved in the context of non-reduced spaces.

The constructions of quotients and complexifications are compatible with the reduced structures. Thus we have $\text{red}(X)//K = \text{red}(X//K)$ and $\text{red}(X)^c = \text{red}(X^c)$, where red associates to a complex space its underlying reduced space. Moreover, the results are also valid for K-spaces X with $\text{red}(X)$ admitting a semistable quotient (see Section 1). In this context we show that the sheaf $(\pi_*\mathcal{S})^K$ of invariant sections of a coherent K-sheaf \mathcal{S} over X is a coherent analytic sheaf over the quotient space $X//K$ (see Section 1). Two direct applications of our results are

a) For every closed complex K-subspace A of X the image $\pi(A)$ is a closed subspace of $X//K$ such that $A//K \cong \pi(A)$. Moreover, A extends to a closed $K^\mathbb{C}$-subspace A^c of X^c.

b) Every holomorphic K-vector bundle over X is given by the restriction of a holomorphic $K^\mathbb{C}$-vector bundle over the complexification $X^\mathbb{C}$.

The authors would like to thank the referees for their interest in the subject and for valuable suggestions.

1. Formulation of the results

In this paper a complex space X is a not necessarily reduced complex space with countable topology. By $\text{red}(X)$ we denote the underlying reduced space, i.e., set-theoretically $\text{red}(X) = X$ and $\mathcal{O}_{\text{red}(X)} = \mathcal{O}_X/\mathcal{N}_X$ on the level of sheaves. Here \mathcal{N}_X denotes the nilradical of the structure sheaf \mathcal{O}_X of X.

1 Supported by a Heisenberg Stipendium of the Deutsche Forschungsgemeinschaft
Let G be a real Lie group and assume that G acts continuously on X by holomorphic transformations. Then G acts also on the structure sheaf $\mathcal{O} := \mathcal{O}_X$ of X: A given $g \in G$ induces for every $x \in X$ an isomorphism $\mathcal{O}_x \to \mathcal{O}_{g \cdot x}$, $f \mapsto g \cdot f$, of stalks. We call X a complex G-space if for all open sets $N \subset G$ and $U_1, U_2 \subset X$ with $U_2 \subset \bigcap_{g \in N} g \cdot U_1$ the map

\begin{equation}
(1) \quad \Phi: N \times \mathcal{O}(U_1) \to \mathcal{O}(U_2), \quad (g, f) \mapsto (g \cdot f)|_{U_2}
\end{equation}

is continuous with respect to the canonical Fréchet topology on $\mathcal{O}(U_j)$, $j = 1, 2$ (see [G-R], Chapter V, §6). If G is a complex Lie group and all above maps Φ are holomorphic, then we say that X is a holomorphic G-space.

Now let \mathcal{S} be a G-sheaf on X, i.e., G acts on \mathcal{S} such that the projection $\mathcal{S} \to X$, $s_x \mapsto x$ is G-equivariant. Reformulating (1) for a coherent sheaf \mathcal{S}, we obtain the notion of a continuous (resp. holomorphic) coherent G-sheaf on X.

A holomorphic map $\phi: X \to X'$ of two complex G-spaces X and X' is called G-equivariant, if it is G-equivariant as a map of sets and the comorphism ϕ^0 is compatible with the actions of G on the structure sheaves \mathcal{O}_X and $\mathcal{O}_{X'}$. The map ϕ is called G-invariant if it is equivariant with respect to the trivial action of G on X'.

Remark 1. If X is reduced, then it is a complex G-space. If moreover G is a complex Lie group and the action $G \times X \to X$ is holomorphic, then X is a holomorphic G-space (see [K]). A holomorphic map of reduced G-spaces is equivariant if and only if it is equivariant as a map of sets.

Now let K be a compact real Lie group and assume that X is a complex K-space. A K-invariant holomorphic map $\pi: X \to X/K$ onto a complex space X/K is said to be a semistable quotient of the K-space X, if

i) the structure sheaf $\mathcal{O}_{X/K}$ of X/K is the sheaf of invariants $(\pi_* \mathcal{O}_X)^K$, i.e., for every open set $Q \subset X/K$ we have $\mathcal{O}_{X/K}(Q) = \mathcal{O}_X(\pi^{-1}(Q))^K$ and

ii) π is a Stein map, i.e., for every Stein open set $Q \subset X/K$ the inverse image $\pi^{-1}(Q)$ is also Stein.

The above definition generalizes the notion introduced in [H-M-P] to the non-reduced case. Examples of semistable quotients occur in Geometric Invariant Theory. Our first main result is the following

Quotient Theorem. A semistable quotient $\pi: X \to X/K$ for X exists if and only if it exists for $\text{red}(X)$. If this is the case, then $\text{red}(\pi): \text{red}(X) \to \text{red}(X/K)$ is a semistable quotient for $\text{red}(X)$.

By [H], Section 6.5, every reduced Stein K-space has a semistable quotient and the associated quotient space is again Stein. This, together with the above result, implies the following

Corollary 1. If X is a Stein K-space, then the semistable quotient $\pi: X \to X/K$ exists. Moreover, X/K is a Stein space.
Since the reduction of a semistable quotient is a semistable quotient of the associated reduced K-space, [H], 2.3, yields that semistable quotients are universal with respect to K-invariant holomorphic maps. In particular, the quotient space $X//K$ is unique up to isomorphism.

If X admits a semistable quotient $\pi: X \to X//K$, then we denote for a K-sheaf S on X by $(\pi_*S)^K$ the sheaf of invariants on $X//K$, i.e., $(\pi_*S)^K(Q) := S(\pi^{-1}(Q))^K$. The following fact is a generalization of a result of Roberts (see [R]) for holomorphic K^C-sheaves.

Coherence Theorem. Assume that X has a semistable quotient $\pi: X \to X//K$ and let S be a continuous coherent K-sheaf on X. Then the sheaf $(\pi_*S)^K$ on $X//K$ is coherent.

Let K^C denote the complexification of K. A *complexification* X^c of a complex K-space X is a holomorphic K^C-space X^c which contains X as a K-stable open subset such that every K-equivariant holomorphic map ϕ from X into a holomorphic K^C-space Z extends uniquely to a K^C-equivariant holomorphic map $\phi^c: X^c \to Z$. Note that a complexification X^c is unique up to isomorphism and that $X^c = K^C \cdot X$.

Complexification Theorem. If X has a semistable quotient $\pi: X \to X//K$, then the complexification X^c exists. Moreover, the extension $\pi^c: X^c \to X//K$ is a semistable quotient for the K^C-space X^c and $\text{red}(X^c) = \text{red}(X)^c$ holds.

This result generalizes the Theorem in Section 6.6 of [H], where the existence of complexifications is proved for reduced Stein K-spaces.

Now, let S be a continuous coherent K-sheaf on X and assume that X has a semistable quotient $\pi: X \to X//K$. A holomorphic K^C-sheaf S^c on X^c with $S^c|X = S$ is called a K^C-extension of S.

Extension Theorem. Assume that X has a semistable quotient and let S be a continuous coherent K-sheaf S on X. Then, up to K^C-equivariant isomorphism, there is a unique K^C-extension of S.

For a K-stable closed subspace A of X which is defined by a K-invariant sheaf \mathcal{I} of ideals, the Coherence and Extension Theorem imply:

Corollary 2. The sheaf $(\pi_*\mathcal{I})^K$ of ideals endows $\pi(A)$ with the structure of closed subspace of $X//K$. The restriction of π to A is a semistable quotient for A. Moreover, A has a complexification A^c by a closed K^C-subspace of X^c and $\pi(A) = \pi^c(A^c)$.

If S is a locally free continuous K-sheaf over X with K^C-extension S^c, then the complement E of the set of points in X^c at which S^c is not locally free is a proper analytic K^C-stable subset of X^c. Since $X^c = K^C \cdot X$, this implies that E is empty. In other words we have the following

Corollary 3. The extension of a locally free K-sheaf over X is a locally free K^C-sheaf over X^c. In particular, every holomorphic K-vector bundle over X extends to a holomorphic K^C-vector bundle over X^c.

□
2. Equivariant Resolution

Let K be a compact real Lie group and let X be a complex K-space. In this section we assume that the associated reduced K-space $\text{red}(X)$ has a semistable quotient $\pi_r: \text{red}(X) \to \text{red}(X)//K$. Let S be a continuous coherent K-sheaf on X. Note that we have a continuous representation of K on the Fréchet space $S(X)$.

A section $s \in S(X)$ of S is said to be K-finite if the vector subspace of $S(X)$ generated by $K \cdot s$ is of finite dimension. We denote the vector subspace of K-finite elements of $S(X)$ by $S(X)_{\text{fin}}$. By a theorem of Harish-Chandra (see [HC], Lemma 5), $S(X)_{\text{fin}}$ is dense in $S(X)$.

Equivariant Resolution Lemma. Every $y \in \text{red}(X)//K$ has an open neighborhood Q such that over $U := \pi_r^{-1}(Q)$ there is an exact sequence $\mathcal{V} \to S|U \to 0$ of K-sheaves. Here \mathcal{V} is a finite dimensional representation space of K and $\mathcal{V} := \mathcal{O} \otimes V$ is endowed with the action defined by $k \cdot (f \otimes v) := k \cdot f \otimes k \cdot v$.

Proof. Since π_r is a Stein map, we may assume that X is a Stein space. By Proposition 3.2 and Corollary 2 in Section 2.3 of [H], there is a unique K-invariant analytic set A of minimal dimension contained in $\pi_r^{-1}(y)$. We fix a point $x \in A$. Then, since X is a Stein space, there are sections $s_1, \ldots, s_r \in S(X)$ which generate S_x as an \mathcal{O}_x-module.

The K-finite elements of $S(X)$ are dense. Thus we may assume that the s_i generate a finite dimensional K-submodule V of $S(X)$. Hence there is an equivariant homomorphism $\alpha: \mathcal{V} \to S$ of K-sheaves which is defined by $f \otimes s \to fs$ where s denotes the section of S defined by $s \in V \subset S(X)$.

Since α is a homomorphism of coherent K-sheaves, $B := \text{Supp}(S/\alpha(\mathcal{V}))$ is a closed K-invariant analytic subset of X. By definition, α is surjective over $X \setminus B$. Furthermore, we have $\pi_r(A) \cap \pi_r(B) = \emptyset$. Hence $Q := \text{red}(X)//K \setminus \pi_r(B)$ is open, contains y and α is surjective over $U := \pi_r^{-1}(Q)$. □

As a consequence of the Equivariant Resolution Lemma we give here a proof of the Coherence Theorem in the reduced Stein case (see also [R]). We use two well known Lemmas. The proof of the first one can be found for example in [R] or [Sch].

Lemma 1. Let V and W be finite dimensional complex K^C-modules. Then there exist K-equivariant polynomials $p_i: W \to V$, $i = 1, \ldots, r$ which generate $(\pi_{W*}\mathcal{V})^K$ as an $\mathcal{O}_W//K^C$-module. □

Lemma 2. For every exact sequence $S_1 \to S_2 \to S_3$ of continuous coherent K-sheaves on X the induced sequence $(\pi_{r*}S_1)^K \to (\pi_{r*}S_2)^K \to (\pi_{r*}S_3)^K$ on $\text{red}(X)//K$ is also exact.

Proof. Integration over K defines a projection operator $S(X) \to S(X)^K$. Since exactness is a local property and $\pi_r: \text{red}(X) \to \text{red}(X)//K$ is a Stein map, the assertion follows. □

Proposition 1. Let X be a reduced Stein K-space and denote by $\pi: X \to X//K$ the semistable quotient. Then $(\pi_*S)^K$ is a coherent sheaf on $X//K$.

4
Proof. First consider the case \(\mathcal{S} = \mathcal{V} := \mathcal{O}_X \otimes V \) with some \(K \)-module \(V \). By [H], 6.6, we may assume that \(X \) is a holomorphic \(K^\mathbb{C} \)-space. Moreover, by [H], 5.4 and 6.2, we may assume that \(X \) is a closed \(K \)-subspace of an open Stein \(\pi_W \)-saturated \(K \)-subspace of some finite dimensional \(K \)-module \(W \). So, for the case \(\mathcal{S} = \mathcal{V} \), Lemma 1 provides \(p_1, \ldots, p_r \in \mathcal{S}(X)^K \) that generate \((\pi_\ast \mathcal{S})^K\), i.e., the associated sequence

\[
\mathcal{O}_X^r \big/ K \xrightarrow{\alpha} (\pi_\ast \mathcal{S})^K \to 0.
\]

is exact. The kernel of \(\alpha \) is \((\pi_\ast \mathcal{R})^K\), where \(\mathcal{R} \subset \mathcal{O}_X^r \) denotes the \(K \)-sheaf of relations of the generators \(p_i \). Applying Lemma 2 to an equivariant resolution of \(\mathcal{R} \) yields that also \(\text{Ker}(\alpha) \) is finitely generated. Consequently \((\pi_\ast \mathcal{S})^K\) is coherent. For general \(\mathcal{S} \), apply Lemma 2 to an equivariant resolution \(\mathcal{V}' \to \mathcal{V} \to \mathcal{S} \to 0. \)

\[\square\]

3. \(K^\mathbb{C} \)-Extensions

In this section we apply the Equivariant Resolution Lemma to investigate extensions of coherent \(K \)-sheaves. Assume that \(X \) is a complex \(K \)-space such that there is a semistable quotient \(\pi_\ast \text{red}(X) \to \text{red}(X) \big/ K \) and a complexification \(X^c \) with the following properties:

i) \(\text{red}(X^c) \) is the complexification of \(\text{red}(X) \) and \(\pi_\ast ^\mathbb{C} \text{:red}(X^c) \to \text{red}(X) \big/ K \) is a semistable quotient.

ii) For every open subspace of the form \(U := \pi_\ast ^{-1}(Q) \) with \(Q \subset \text{red}(X) \big/ K \) open, the open subspace \(U^c := K^\mathbb{C} \cdot U = (\pi_\ast ^\mathbb{C})^{-1}(Q) \) of \(X^c \) is a complexification of \(U \).

Note that, by [H], Sections 3.3 and 6.6, these assumptions are valid if \(X \) is a reduced Stein \(K \)-space.

Identity Principle. Let \(\mathcal{T} \) be a holomorphic coherent \(K^\mathbb{C} \)-sheaf over \(X^c \). Then the restriction map \(R : \mathcal{T}(X^c)^\text{fin} \to \mathcal{T}(X)^\text{fin} \) is bijective.

Proof. First we show that \(R \) is injective. So, let \(s \in \mathcal{T}(X^c) \) be \(K \)-finite such that \(s\vert X = 0. \) Since \(u\vert X = 0 \) for all \(u \in V := \text{Lin}_C(K \cdot s) = \text{Lin}_C(K^\mathbb{C} \cdot s) \), we have \((g \cdot s)\vert X = 0 \) for all \(g \in K^\mathbb{C} \). Hence \(s\vert g^{-1} \cdot X = 0 \) for every \(g \in K^\mathbb{C} \). Since \(X^c = K^\mathbb{C} \cdot X \), it follows that \(s = 0 \).

In order to show that \(R \) is surjective, we first assume that \(X \) is Stein and that there is an equivariant resolution \(\mathcal{V} \xrightarrow{\alpha} \mathcal{T} \to 0 \) with \(V \) a finite-dimensional \(K \)-module and \(V := \mathcal{O}_{X^c} \otimes V \). Every \(K \)-finite \(F \in \mathcal{V}(X) \) defines a finite-dimensional \(K \)-module \(W := \text{Lin}_C(K \cdot f) \).

Evaluating the elements of \(W \) determines a \(K \)-equivariant holomorphic map \(\Phi : X \to \text{Hom}(W, V) \). Since \(\Phi \) extends to a \(K^\mathbb{C} \)-equivariant holomorphic map \(\Phi^\mathbb{C} : X^c \to V \), it follows that \(F \) extends to \(X^c \) as a holomorphic map. This yields surjectivity of the restriction \(\mathcal{V}(X^c)^\text{fin} \to \mathcal{V}(X)^\text{fin} \).

Surjectivity of \(R \) is obtained as follows. Let \(s \in \mathcal{T}(X)^\text{fin} \). Since \(X \) was assumed to be Stein, we find an \(s_1 \in \mathcal{V}(X) \) with \(\alpha(s_1) = s \). Note that \(\alpha \) maps \(\text{Lin}_C(K \cdot s_1) \) onto the finite-dimensional vector space \(\text{Lin}_C(K \cdot s) \). Hence we may assume that \(s_1 \) is \(K \)-finite. As seen above, \(s \) has an extension \(s_1^f \in \mathcal{V}(X^c)^\text{fin} \). Then \(\alpha(s_1^f) \in \mathcal{T}(X^c)^\text{fin} \) is an extension of \(s \).
Now, in the general case, let $s \in T(X)_{\text{fin}}$. The Equivariant Resolution Lemma and the above consideration yield a cover of $\text{red}(X//K)$ by open sets Q_i such that we can extend s over each $U_i = \pi_r^{-1}(Q_i)$ to $s_i^c \in T(U_i^c)_{\text{fin}}$. By injectivity of R, we obtain that any two such extensions s_i^c and s_j^c coincide over $U_i^c \cap U_j^c$. Thus the s_i^c patch together to an extension $s^c \in T(X^c)$ of s. As before we can achieve that s^c is K-finite. \hfill \Box

Let S^1 and S^2 be holomorphic coherent K^C-sheaves on X^c. Then $\mathfrak{H}om(S^1, S^2)$ is a holomorphic K^C-sheaf. The action of $g \in K^C$ on $F \in \mathfrak{H}om(S^1, S^2)_x$ is given by $$(g \cdot F)(s) := g \cdot (F(g^{-1} \cdot s)).$$
where $s \in S^1_{g \cdot x}$. The K^C-invariant global sections of $\mathfrak{H}om(S^1, S^2)$ are precisely the K^C-equivariant homomorphisms from S^1 to S^2. So the Identity Principle yields:

Homomorphism Lemma. Every homomorphism $\alpha : S^1|X \to S^2|X$ of K-sheaves extends uniquely to a homomorphism $\alpha^c : S^1 \to S^2$ of K^C-sheaves. \hfill \Box

Local Extension Lemma. Let S be a continuous coherent K-sheaf on X. Then every $y \in \text{red}(X)//K$ has an open neighborhood Q such that the restriction $S|_U$ of S to $U := \pi_r^{-1}(Q)$ has a K^C-extension $S^c|_U$.

Proof. By the Equivariant Resolution Lemma we find an open Stein neighborhood $Q \subset \text{red}(X)//K$ of y such that over U there exists an equivariant resolution $\mathcal{V}_1 \xrightarrow{\alpha} \mathcal{V}_2 \to S|_U \to 0$, where the \mathcal{V}_i are finite-dimensional representation spaces of K and \mathcal{V}_i are the associated K-sheaves on X.

Set $\mathcal{V}_i^c := \mathcal{O}_{X^c} \otimes \mathcal{V}_i$ and endow each \mathcal{V}_i^c with the diagonal K^C-action. By the Homomorphism Lemma, there is a unique K^C-equivariant extension $\alpha^c : \mathcal{V}_1^c \to \mathcal{V}_2^c$ of α. Identify $S|_U$ with $\mathcal{V}_2/\text{Im}(\alpha)$ and set $S^c := \mathcal{V}_2^c/\text{Im}(\alpha^c)$. \hfill \Box

4. Invariant subspaces of reduced spaces

Let K be a compact real Lie group and X a complex K-space. Assume that the associated reduced K-space $\text{red}(X)$ has a semistable quotient $\pi_r : \text{red}(X) \to (\text{red}(X)//K)$. A technical ingredient for the proofs of our results is the following

Local Embedding Lemma. Every point $y \in (\text{red}(X)//K$ has an open Stein neighborhood $Q \subset (\text{red}(X)//K$ such that the open subspace $U := \pi_r^{-1}(Q)$ of X can be realized as a closed K-subspace of a reduced Stein K-space.

Proof. We may assume that X is a Stein space. As in the reduced case (see [H], 6.2), we can find a K-equivariant holomorphic map ϕ from X into a complex finite dimensional K-module V such that ϕ is an immersion along the fiber $\pi_r^{-1}(y)$ and $\text{red}(\phi)$ embeds some π_r-saturated open neighborhood $\text{red}(U)$ of x properly into an open K-stable subset Z' of V.

By Siu’s Theorem (see [S]), Z' contains a Stein open neighborhood Z'' of $\phi(U)$. Set $Z := \bigcap_{k \in K} k \cdot Z''$. Then Z is an open K-stable Stein neighborhood of $\phi(U)$. Now, the set $A \subset U$ consisting of all points $a \in U$ for which ϕ is not an immersion is a K-stable analytic subset of $\text{red}(U)$ which does not intersect $\pi^{-1}(y)$. Hence we may shrink U and Z such that they are still Stein and $\phi|U:U \to Z$ is a closed embedding. \hfill \Box

In the sequel, let Z be a reduced Stein K-space and assume that X is a K-subspace of Z. Then X is defined by a continuous coherent K-sheaf I of ideals in \mathcal{O}_Z. Let $\kappa: Z \to Z//K$ denote the semistable quotient.

Proposition 2. The ideal $(\kappa_* I)^K$ defines a closed subspace $X//K$ of $Z//K$ and the restriction $\pi := \kappa|X: X \to X//K$ is a semistable quotient for X. Moreover, $\text{red}(\pi): \text{red}(X) \to \text{red}(X//K)$ is a semistable quotient for $\text{red}(X)$.

Proof. By Proposition 1, $(\kappa_* I)^K$ is coherent and hence $X//K$ is a complex subspace of $Z//K$. The fact that π and $\text{red}(\pi)$ are semistable quotients now follows from applying Lemma 2 to the following two exact sequences of K-sheaves:

$$0 \to I \to \mathcal{O}_Z \to \mathcal{O}_X \to 0, \quad 0 \to \sqrt{I} \to \mathcal{O}_Z \to \mathcal{O}_{\text{red} X} \to 0.$$ \hfill \Box

Now assume that the ideal I has an extension to Z^c by a holomorphic K^C-ideal I^c of \mathcal{O}_{Z^c}. Note that for the K^C-subspace X^c of Z defined by I^c we have $X^c = K^C \cdot X$. In particular, [H], Section 3.3, implies that $\text{red}(X^c)$ is the complexification of $\text{red}(X)$. This statement holds also for the corresponding non-reduced spaces:

Proposition 3. Let $Q \subset X//K$ be open and $U := \pi^{-1}(Q)$. Then the open subspace $U^c := K^C \cdot U$ of X^c is the complexification of U.

Proof. We have to show that U^c is universal with respect to K-equivariant holomorphic maps $\phi: U \to Y$ into holomorphic K^C-spaces Y.

As a set U is of the form $U = U^c \cap X$. In particular, U is orbit-convex (see [H], 3.2) and hence $\text{red}(U^c)$ is the complexification of $\text{red}(U)$. So the map ϕ extends to a K^C-equivariant continuous map $\phi^c: U^c \to Y$.

Let $\phi^0: \mathcal{O}_Y \to \phi_* \mathcal{O}_U$ denote the comorphism of ϕ. Then we define the comorphism $(\phi^c)^0: \mathcal{O}_Y \to \phi^c_* \mathcal{O}_{U^c}$ as follows: For $y \in Y$ and $x \in U$ with $\phi^c(x) = y$ choose a $g_0 \in K^C$ with $g_0 \cdot x \in U$ and set

$$(\phi^c)^0(f) := g_0^{-1} \cdot \phi^0(g_0 \cdot f)$$

for every germ $f \in \mathcal{O}_Y$ at y. We have to show that this definition does not depend on the choice of g_0. Set

$$N(x) := \{g \in K^C; g \cdot x \in U\}.$$
Recall that U is an orbit convex subset of U^c and therefore $N(x)$ is connected mod K (see [H], 1.5, 3.2 and 6.6). Now, let $h := g_0 \cdot f$ and consider the set

$$M := \{ g \in N(x); (gg_0^{-1})^{-1} \cdot \phi^0(gg_0^{-1} \cdot h) = \phi^0(h) \}.$$

Then $Kg_0 \subset M$ holds. Moreover, M is closed in $N(x)$ because the K^C-sheaves \mathcal{O}_{X^c} and \mathcal{O}_Y are continuous. We claim that M is also open in $N(x)$. Using the holomorphy of the K^C-sheaves \mathcal{O}_{X^c} and \mathcal{O}_Y this is seen as follows: If $g_1 \in M$ and $g_2 := g_1g_0^{-1}$, then

$$(2) \quad \phi^0(h) = (gg_2)^{-1} \cdot \phi^0(gg_2 \cdot h)$$

holds for all $g \in K$. After representing h by some section h defined in a neighborhood of $\phi(g_0 \cdot x)$ and restricting (2) to a sufficiently small neighborhood of $g_0 \cdot x$, the right hand side of (2) depends holomorphically on g.

Now the Identity Theorem yields that (2) is satisfied for g in some neighborhood of $e \in K^C$. This implies that M is open in $N(x)$. Consequently $M = N(x)$ holds, i.e., $(\phi^c)^0$ is well defined.

5. Proof of the Theorems

Proof of the Quotient Theorem. Assume first that a semistable quotient $\pi: X \to X//K$ exists. Consider the exact sequence $0 \to N_X \to \mathcal{O}_X \to \mathcal{O}_X/N_X \to 0$ of K-sheaves. By Lemma 2, the associated sequence of sheaves of invariants on $X//K$ is also exact. This implies that red(π): red(X) \to red($X//K$) is a semistable quotient for red(X).

Now assume that there is a semistable quotient π_r : red(X) \to red($X//K$) on the level of topological spaces set $X//K :=$ red(X)//K and endow $X//K$ with the structure sheaf $\mathcal{O}_{X//K} := \pi_* (\mathcal{O}_X)^K$. Then it follows from Proposition 2 and the Local Embedding Lemma that $X//K$ is a complex space. Moreover, by construction, $\pi := \pi_r$, interpreted as a morphism of the ringed spaces X and $X//K$, is the quotient map.

Proof of the Coherence Theorem. By the Local Embedding Lemma and Proposition 2, we may assume that X is a K-stable closed subspace of a reduced Stein K-space Z. Noting that the trivial extension of \mathcal{S} to Z is a continuous coherent K-sheaf, we obtain the assertion from Proposition 1.

Proof of the Complexification Theorem. Let $\pi : X \to X//K$ be the semistable quotient for X. Choose a cover of $X//K$ by Stein open sets Q_i as in the Local Embedding Lemma. According to the Local Extension Lemma we may assume that every $U_i := \pi^{-1}(Q_i)$ satisfies the assumptions of Proposition 3.

Let U^c_i be the complexification of $U_i := \pi^{-1}(Q_i)$. Note that every complexification $(U_i \cap U_j)^c$ of $U_i \cap U_j$ is contained as an open subspace in both, U^c_i and U^c_j. Consequently the U^c_i can be glued together over $X//K$ to a complexification X^c of X.

8
By construction, \(\text{red}(X^c) \) is the complexification of \(\text{red}(X) \). So we obtain \(\text{red}(\pi^c) = (\text{red} \pi)^c \) for the \(K \)-invariant holomorphic \(\pi^c: X^c \to X//K \) extension of \(\pi \). In particular, \(\pi^c \) is a Stein map and hence a semistable quotient. □

Note that, by construction, the complexification \(X^c \) satisfies the technical assumptions i) and ii), made in Section 3.

Proof of the Extension Theorem. By the Homomorphism Lemma, we only have to prove the existence of a \(K^C \)-extension. According to the Local Extension Lemma we can cover \(X//K \) by open sets \(Q_i \) such that on each \(U_i := \pi^{-1}(Q_i) \) the restriction \(S_i := S|U_i \) has an \(K^C \)-extension \(S^c_i \) to \(U^c_i = (\pi^c)^{-1}(Q_i) \).

The Homomorphism Lemma yields glueing homomorphisms \(S^c_i|U^c_i \cap U^c_j \to S^c_j|U^c_i \cap U^c_j \) that extend the identity map \(S_i|U_i \cap U_j \to S_j|U_i \cap U_j \). Hence the \(S^c_i \) can be glued together to a \(K^C \)-sheaf \(S^c \) on \(X^c \). It is straightforward to check that \(S^c \) is a \(K^C \)-extension of \(S \). □

References

[G-R] Grauert, H.; Remmert, R.: Theorie der Steinschen Räume. Heidelberg: Springer 1977

[HC] Harish-Chandra: *Discrete Series for semisimple Lie groups II*. Acta. Math. 116, 1-111 (1966)

[H] Heinzner, P.: *Geometric Invariant Theory on Stein Spaces*. Math. Ann. 289, 631-662 (1991)

[H-M-P] Heinzner, P.; Migliorini, L.; Polito, M.: *Semistable Quotients*. To appear, Annali della Scuola Normale Superiore di Pisa (1997)

[K] Kaup, W.: *Infinitesimal Transformationsgruppen auf komplexen Räumen*. Math. Ann. 160, 72-92 (1965)

[R] Roberts, M.: *A Note on Coherent G-Sheaves*. Math. Ann. 275, 573-582 (1986)

[Sch] Schwarz, G.: *Lifting smooth homotopies of orbit spaces*. Publ. Math. IHES 51, 37-135 (1980)

[S] Siu, Y.-T.: *Every Stein subvariety admits a Stein neighborhood*. Inv. Math. 38, 89-100 (1976)