Review Article

Computational Perspectives into Plasmepsins Structure—Function Relationship: Implications to Inhibitors Design

Alejandro Gil L., Pedro A. Valiente, Pedro G. Pascutti, and Tirso Pons

1 Laboratorio de Biología Computacional y Diseño de Proteínas, Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de La Habana, Cuba
2 Instituto de Biofísica Carlos Chagas Filho, Universidad Federal do Rio de Janeiro, Brazil

Correspondence should be addressed to Tirso Pons, tirsopons@gmail.com

Received 1 February 2011; Revised 1 May 2011; Accepted 3 May 2011

Academic Editor: Gerd Pluschke

Copyright © 2011 Alejandro Gil L. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.

1. Introduction

More than 40% of the world’s population lives with some risk of contracting malaria, with most recent estimates suggesting several hundred millions of clinical cases with 800,000 deaths each year [1]. In humans, the disease is the result of the infection by *Plasmodium falciparum* (Pf), *Plasmodium malariae*, or *Plasmodium vivax*. Of these species, Pf is the most lethal and it is, therefore, the main target for drug intervention. Once the microbe is transmitted to humans by mosquitoes of the anopheles genus, it causes many problems, but most commonly severe, recurring fever attacks [2]. Despite considerable efforts in this field, it has not been possible to develop an efficient vaccine to prevent malaria. The main disadvantages are (i) the increasing resistance of vectors to insecticides and (ii) the emergence of multidrug-resistant variants of Pf to existing antimalarial drugs, with the exception of the artemisins [3]. Therefore, in the last years, researchers have focused their efforts towards the discovery of more selective and potent drugs [2].

Hemoglobin (Hb)-degrading enzymes of Pf emerge as very promising chemotherapeutic targets, because Hb degradation is a unique and critical process for Pf [2]. During the intraerythrocytic stage of the parasite’s life cycle, this protozoan consumes approximately 75% of the Hb in the infected red blood cell [7, 8], which provides the main source of amino acids for the parasite growth and maturation [2]. The Hb degradation occurs within the acidic food vacuole (DV) of the parasite, and it is catalyzed by four aspartic proteases (plasmepsins) [9–11], three cysteine proteases (falcipains) [12–15], one metalloprotease (falcilicin) [16], and one dipeptidyl aminopeptidase 1 (DAPP1) [17]. Plasmepsin II (PlmII) has been the most extensively characterized of these enzymes, since several crystal structures have been determined [18–20] and potent inhibitors developed [21–24]
plasmepsin inhibitor design [27]. In Section 4, we provide a detailed description about the evolution of Plms as chemotherapeutic targets. In Section 2, we show the main findings provided by sequence and structural analysis of Plm family. In Section 3, we describe the most popular approaches used in the sequence-structure-function relationship of these proteins, a major challenge in this field. To get a better understanding, we have divided the manuscript into four sections related with key steps of the traditional scheme, followed by virtual screening or drug design processes. In Section 1, we provide a brief overview of the evolution of Plms as chemotherapeutic targets. In Section 2, we show the main findings provided by sequence and structural analysis of Plm family. In Section 3, we describe the most popular approaches used in the plasmepsin inhibitor design [27]. In Section 4, we provide a detailed description about the use of the linear interaction energy (LIE) method [30] in the refining steps of Plms inhibitor design.

2. Evolution of Plasmepsins as Chemotherapeutic Targets

The structure-based drug design of antimalarial compounds targeting plasmepsins inhibition has received much attention due to their potential biomedical use. Earlier studies indicated that Plms play essential roles in Pf life cycle, due to the effectiveness of Plms inhibitors abolishing Hb degradation, erythrocyte rupture, and parasite development. Indeed, pepstatin A, a nonspecific broad-range aspartic peptidase inhibitor, causes the death of the Plasmodium microbes when added to culture red cells infected with parasites [31, 32]. A similar behavior has been reported in animal models infected with Plasmodium parasite when E-64, a nonspecific broad-range cysteine peptidase inhibitor was administered, and both inhibitors displayed a synergistic effect when combined [33–36].

Sequencing of the Pf genome has identified 10 Plms encoding genes, numbered Plml to PlmX [26, 37]. Among these, only Plml, PlmII, HAP (histoaspartic protease, or PlmIII), and PlmIV are active in the DV [38]. Although these four enzymes are capable of cleaving native and acid-denature hemoglobin at α chain L33–F34 site [8, 9, 38–40], PlmIV and HAP appears to prefer denature globin over the native protein [38]. PlmV, PlmIX and PlmX are expressed concurrently with Plml to PlmIV but are not transported to the DV. Recently, it has been reported that PlmV licenses Pf proteins for export into the host erythrocyte, therefore, it is essential for parasite viability [41]. The remaining Plms (PlmVI, PlmVII, PlmVIII) are not expressed during the intraerythrocytic stage [38]. Plms from the other human-infecting parasites (P. vivax, P. malariae, and P. ovale) have also been identified and characterized (see [42, 43] for more detail).

Although the degree of sequence identity among the aspartic proteases of Plasmodium species is relatively high, substrate specificity and their response to inhibitors differ, indicating that variations may exist in the protein-ligand binding interactions [40, 44–46]. Among Plasmodium species, only Pf strains possess genes encoding Plml, PlmII and HAP. Furthermore, PlmIV has a higher level of sequence identity with plasmepsins from nonfalciparum species (65–76%) than their paralogues PlmI, PlmII, and HAP (63%, 62%, and 53%, resp.) [47]. In particular, PlmIV plays a crucial role, as it is the only Plm of Pf with orthologs in the other Plasmodium species that infect humans, and, therefore, opens a way to affect all the Plasmodium parasites with one inhibitor [47]. Considering PlmII as reference, PlmI shows 73% sequence identity, PlmIV 69%, and HAP 60%. These sequence identity values extend to the binding site region. In this case, PlmI shows 84% identity, PlmIV 68% identity and HAP 39% identity. HAP has the lower degree of identity despite most amino acid substitutions within the binding site are rather conservative (55% sequence similarity) [48]. The amino acid sequences of Plml, PlmII, and PlmIV display the classic catalytic motif of aspartic proteases [49] present in one copy in the N-terminal and C-terminal domains [50]. Although the motifs are recognizable in the HAP sequence, they show unusual modifications the catalytic aspartate of the N-terminal domain is substituted by histidine, and both conserved glycines are replaced with alanines [51].

Structure-based drug design of antimalarial compounds targeting plasmepsin inhibition is possible due to the availability of several three-dimensional (3D) structures of these enzymes. Nineteen crystal structures of PlmII have been deposited so far, two of which correspond to the free enzyme (PDB: 1LF4, 3F9Q), one to the proplasmepsin (PDB: 1PFZ), and the others to protein-inhibitor complexes (PDB: 2R9B, 1W6H, 1W6I, 1LF3, 1LEE, 1EX5, 1EX6, 2BJU, 1ME6, 1LF2, 1SME, 1PFZ, 1XDH, 1ME6, 2IGX, 1GY, 1M43). For PlmI, only one homology model has been described so far [18]. From P. falciparum, there are also deposited X-ray structures of PlmIV-inhibitor complex (PDB: 1LS5) and three of HAP; one structure of free HAP (PDB: 3FNT) and two complexes (PDB: 3FNT, 3FNU). In addition, structures from other species of Plasmodium have been reported: one of PlmIV from P. malariae (PDB: 2ANL) and two from P. vivax (PDB: 1Q58, 1MIQ). It should be noted that Plms form homodimers with extensive interfaces in most of the known X-ray structures; conversely, an experimental study revealed that PlmII exists mainly as a monomer in solution, and that the monomer is fully functional for catalysis [52]. Therefore, practically all the in silico studies of these enzymes use the monomer structure as target [53–58]; with the drawback, these proteins need an extensive computational work to relax the regions of the protein buried in the dimmer.

The redundant functional role of the Pf DV plasmepsins in Hb digestion has been demonstrated by knock-out experiments [59–61]. This feature indicates that more
Effective drugs may be obtained by blocking more than one plasmpsin. However, recent experiments point out that plasmpsin are not essential for the parasite viability. Bonilla and colleagues demonstrated the slow growth of parasite mutants that lack all DV plasmspns in amino-acid-limited medium [62]. On the other hand, Moura and coworkers showed that a wide range of previously characterized aspartic protease inhibitors exert their antimalarial activities primarily upon one or more non-DV plasmspns and secondarily on the DV Plms [63].

3. Sequence and Structure Analyses of Plms Family

To quantify the structural variations in Plms upon ligand binding Bhargavi and coworkers, estimated the backbone global root mean square deviation (GRMSD) values between the residues of uncomplexed Plms and those bound to ligands, using crystal structures of PlmII and homology models for PlmI, PlmIV, and HAP [6]. These authors identified four loops that showed large structural deviations on ligand binding, which were denoted as L1, L2, L3, and L4, involving residues 12–14, 158–165, 231–244, and 277–283 (PlmII numbering scheme), respectively [6]. Moreover, the comparison of the recent HAP apoenzyme crystal and its pepstatin A complex with PlmII, PlmIV, human pepsin, and the complex human pepsin-pepstatin A, presented also pronounced differences in the conformation of the loops 238–245 and 276–283, corresponding to L3 and L4 regions [51]. Entropic analysis in Bhargavi’s work from wormlike chain model for loops, along with the GRMSD values, indicated that L3 loop has an inherent tendency to lose entropy on binding in order to attain stability. However, in this paper, the authors proposed, based on the crystal conformations, that the residues of these regions have negligible electrostatics and nonpolar interactions with the inhibitors therefore, they highlighted the role of these loops in determining only the openness of the binding cavity.

Recently, Luksch and colleagues classified 14 X-ray structures of PlmII complexes into three groups (Figure 1), exhibiting different ligand binding modes [64] (1) all complexes with pepstatin and pepstatin-like ligands, because as peptide mimetics, they exhibit an almost identical ligand binding mode (2) three complexes in which the binding pocket is in a partially open conformation and (3) three complexes with inhibitors featuring n-pentyl substituents, that address a new specificity pocket, the so-called “flap pocket.” The crystallographic indicated adaptivity of the protein is further confirmed by molecular dynamic (MD) simulations [4, 65–69]. Bursavich and Rich suggested that PlmII, and most likely PlmI and PlmIV, are highly flexible proteins that adopt additional conformations not yet characterized, but which could possibly be targeted by inhibitors [70]. Because only three distinct binding modes have been discovered so far, and due to the fact that the target protein has been treated as rigid in most in silico studies, the application of automated docking procedures appears rather limited.

The feasibility of finding or designing an inhibitor capable of targeting several proteins with high affinity requires that the binding sites in all members of the target family share conserved regions against which the strongest interactions
can be directed [45, 53]. Highly conserved residues within family or subfamily are strong candidates to be located in functional important sites. These residues are expected to be involved in determining the interaction specificity of subfamilies members in binding pockets and are generally referred as tree-determinant residues [71] or trace residues [72]. Ernesto Freire’s group has probed the usefulness of these concepts in the design of adaptive inhibitors [53, 54]. Adaptive inhibitors establish their strongest interactions against conserved regions of the target, and contain flexible elements and asymmetrical functional groups that allow them to accommodate to variable regions within the target family [53]. Nezami and colleagues [53] used this principle to design an inhibitor with subnanomolar affinity (0.5 nM) primary against the PlmII, and with no loss or a very small loss of affinity against PlmIV, PlmI, and HAP (Kᵢ ratios of 0.4, 7.1, and 17.7, resp.). To achieve this goal, the authors constructed a composite plasmepsin binding cavity by using the backbone of PlmII as a template and placing the side chains of the four plasmepsins at their corresponding site within the binding cavity. Some regions within the composite binding site included very conservative amino acid substitutions that altered only the shape but not the chemical polarity or charge of those regions; only a small area of the binding site contains substitutions with different polarities and none of them with opposite charge. In particular, the region corresponding to P1’ and P2, opposite the opening of the flap, showed significant variability. Another variable region found was the flap itself (residues 75–79). As expected, most of the variability was found in the HAP protease. These results concurred with a previous work published by Nezami and Freire [54], who used entropic analysis to describe the variability at each position in a multiple alignment of Plms sequences. Once conserved and variable regions within the binding site have been identified, the next step in the design of an adaptive inhibitor is the identification of a molecular scaffold that establishes strong interactions with the most conserved regions of the target site. As the amino acid substitutions were found conservative and induced only a shape distortion in the binding site, adaptation was achieved by introducing asymmetric functional groups linked to the inhibitor core by rotatable bonds. Based on this information, Nezami and colleagues designed a series of allophenylnorstatine-based compounds, whose thermodynamic properties were experimentally tested with microcalorimetric analysis. Despite these efforts, most of these compounds having a poor selectivity respect the hCatD.

In this respect, identifying the functional residues responsible for plasmepsin specificity could help the development of more potent and selective inhibitors. Recently, Valiente and colleagues [5] performed a multiple sequence alignment with 73 homologous amino acid sequences that show identity ranging from 10 to 88%, in order to define key residues for Plms activity. Based on this sequence analysis, combined with structural analysis, and MD simulations of Plms-ligand complexes, these authors predicted for the first time that residues Y17, V105, T108, L191, L242, Q275, and T298 (PlmII numbering scheme) could be important for the plasmepsins function (Figure 2). These 7 promising amino acid residues are conserved in the malarial strains but not among human aspartic proteases. Residues V105 and T108 are located in a loop of an interior pocket and only establish contacts with a specific nonpeptide achiral inhibitor, as was illustrated analyzing the PlmII-inhibitor X-ray structures. Residue L242 is located in the L3 loop, recently described as an essential region in cleaving intact hemoglobin [73]. Residue Q275 is situated in a small β-strand in close vicinity to the L4 loop. Finally, residues Y17, L191, and T298 belong to well-defined pockets lining the binding site cavity. In this work, the authors proposed
a useful strategy that combines the information derived from the sequence and structural analyses with MD simulations of protein-inhibitor complexes, which gave good results applied to the prediction of residues with functional properties.

Sequence-based methods [74] and visual inspection of active site are not sufficient for determining the selectivity of different targets. Limitations of those methods make understanding of contributions of various interactions in the binding process very difficult. The most popular method used for mapping selectivity is the molecular interaction fields (MIF) [75] implemented in the program GRID [76]. MIFs are calculated by placing chemical probes in the active sites of the protein. MIFs are produced in the form of interaction maps of the binding site, which indicate the most favorable regions for placing ligand groups with properties similar to the probes, thus generating complementary maps of the active site. Therefore, MIF is a collection of energy values calculated from the sum of the attractive and repulsive forces between a molecule (a target) and an interacting partner (the probe), positioned in a lattice of points (or nodes) surrounding the target. Nodes with negative energy values correspond to favorable interactions between the molecule and the probe. Kumar and Ghosh [77] characterized the binding site of four malarial aspartic proteases (PlmI, PlmII, PlmV, and P. vivax plasmepsin), and two human aspartic proteases (hCatD and pepsin) with the intention of identifying the regions that could be potential sites for obtaining selectivity using a MIF approach. Their data showed that specificity was founded towards the region of amino terminal of the scissile bond of peptide substrate for example, in S1′-S1, S2, S3, and S4, while selectivity occurred towards the carboxyl terminal of that scissile bond, S1′-S1, S2′, and S3′. The pocket S3 was retrieved to be both selective and specific.

4. Popular Approaches Used in the Structure-Based Drug Design of Plms Inhibitors

The drug discovery process has changed during the last decades by the adoption of computational methods helping the design of new drug candidates more rapidly and at lower cost. In silico drug design consists of a collection of tools helping to make rational decisions at the different steps of the drug discovery process, such as the identification of a biomolecular target of therapeutic interest, the selection or the design of new leading compound, and their modification to obtain better affinities, as well as pharmacokinetic and pharmacodynamics properties. If spatial structure of target is known, the methods of structure-based drug design are applicable. Among the different tools available, a particular emphasis is placed in this review on the use of molecular docking, virtual high-throughput screening (HTS) and fragment-based drug design (FBD).

Computer methods for drug design are based on a postulate that pharmacologically active compounds act by interaction with their macromolecule targets, mainly proteins or nucleic acids. To improve the knowledge about the target-ligand interactions and to predict the native position, orientation, and conformation of a small-molecule ligand within the binding site of a targeted macromolecule, several docking algorithms have been developed. Docking algorithms are combined with approximate methods for rapid estimation of the binding affinity, named scoring functions, needed to identify the “native” binding mode. Over 30 different docking programs are available today [27]. The most popular for docking and currently used on Plms, include AutoDock [78, 79], Dock [80, 81], FlexX [82], FlexE [83], Glide [84, 85], and Gold [86, 87].

Although they exploit different strategies in the ligand placement, all of them can be categorized into four broad categories: stochastic Monte Carlo, fragment-based, evolutionary-based, and the shape complementary methods. A fragment-based incremental method is represented by FlexX and Dock. In this approach, a ligand is split into fragments, which are docked independently, and then their molecule structure is recreated typically in an incremental way. The evolutionary methods are used in Gold and AutoDock. These two programs use genetic algorithms to perform the conformational search. Force field-based methods, like Glide, implement Monte Carlo-based engine. Finally, the complementarity shape methods, like LigandFit [88], exploit grids to fit the shape of a ligand into an active site of the target combined with Monte Carlo sampling. None of those programs use a systematical search to fully explore all degrees of freedom in the ligand molecule because of the enormous computational cost of such a procedure [89]. However, in order to take into account the conformational differences during the physical binding observed in the structural studies of receptor-ligand systems, it is necessary to include the intrinsic flexibility of the whole system. Therefore, the docking process is performed usually considering only a conformational space with a reduced number of degrees of freedom. For example, it is a common practice to apply some flexibility to the protein during the docking through active site side-chain rotations and more global minimization, or to use a set of different pre-generated receptor conformations obtained experimentally or with in silico approaches. At the end, the ligands are ranked relative to each other by a scoring function, a method that can estimate free energies of binding from structural information, or by purely energetic criteria, using a force field. Based on these evaluations, the compounds with the best complementarities to structure and properties are selected.

In a recent review [90], it was evaluated the performance of seven popular docking programs (Surflex [91], LigandFit [88], Glide, Gold, FlexX, eHiTS [92], and AutoDock), which enclose all the mentioned ligand pose methods, on the extensive dataset composed of 1300 protein-ligands complexes from PDBbind 2007 database, where experimentally measured binding affinity values were also available. The results obtained clearly showed that there was not single program that consistently outperformed all others. Nevertheless, programs that use genetic algorithms seem to be the best choice for the pose prediction; yet, due to the nature of the
Drug development efforts targeting the plasmepsins have been facilitated by previous studies on other aspartic proteases, particularly renin and cathepsin, which have provided most of the inhibitors used in the crystallographic studies. There have been many works that applied to the plasmepsins case some of the above-mentioned docking software; among the most used are AutoDock [29, 93–96], Gold [55–58], and FlexX [29, 64, 67]. These programs have been employed principally to obtain complexes structures that helped to the interpretation of the experimental results; for the screening of different combinatorial libraries of ligands and to generate plasmepsin-substrate conformations used to establish the enzyme reaction mechanism [97]. Also, they allow the rationalization of the inhibitors potency in terms of structural parameters (like number of H-bonds or contact surface area). Moreover, there are some reported cases in which rigid docking failed to predict reasonable binding modes based on previously determined crystal structures [66, 68], therefore, a manually docking approach was used instead. This problem was adjudged to steric reasons if the binding pocket in the X-ray structures was partially collapsed [66], or when it was used as a homology model of starting protein structure [98]. Consequently, some researchers have used a combination of manual inhibitor adjusting and docking, or just a hand-generated structure refined with a molecular mechanics minimization [4, 53, 66, 68, 99]. For example, Beyer and colleagues [94] investigated the possible binding modes of a group of designed peptidomimetic inhibitors, using the crystallographic coordinates of the inhibitor rs370 as a reference, to manually adjust and approximate the position of their ligands, assuming that the hydrogen bond network was conserved for the backbone of the ligands. Those starting structures were subsequently refined trough a set of restricted docking calculations with AutoDock. The computational analysis employed in that work was able to tell the overall trend in apparent inhibition and to show that good experimental inhibitors interact with the plasmepsin active site through a mixture of hydrophobic and polar interactions. The manually docking was employed by other researches with good results, and of course, less consuming computing time. In general, the manual docking approach used previously consisted in superimposing the entire inhibitor backbone onto that of a similar ligand using a previously crystallized structure. The side chains of the ligands were then fitted to each corresponding subsite to minimize steric clashes.

The scoring functions typically implemented in protein-ligand docking can be divided into three major categories [27]: knowledge-based (e.g., ITScore [100], PMF [101], DrugScore [102]), empirical (e.g., FlexX, Glide, Ludi [103, 104], ChemScore [105], X-Score [106]), and force field-based scoring functions (e.g., Dock, AutoDock, Gold, SYBYL/G-Score [86]). The first two methods suffer from a limited description of the physical aspects of the binding process and from a dependence on the experimental dataset used for their parameterization. On the other hand, the force field-based methods are universal, usually it is employed in a continuum solvent model to include the desolvation-free energy contribution (e.g., LIECE [107], Dock(PB/SA) [108]), but it does not take into account entropic effects. Although they are easy to use and can screen large libraries of compounds, they have difficulties in ranking ligands with small differences in chemical structures, for example, in lead optimization. The resulting binding affinities from scoring functions are often associated with errors of the order of 2.5 kcal/mol [109]. Some scoring functions that have been applied to plasmepsins inhibitor binding affinity prediction and ranking are X-score used in the characterization of the PlmIV binding site [57], Chemscore [105, 110]—GoldScore [86] both utilized in parallel docking runs [58, 111, 112], and the score functions of FlexX. In this respect, Ermark and coworkers applied the Chemscore to complexes of PlmII and C2 symmetric peptidomimetic inhibitors [66]. They tested the accuracy of the functions against a group of allyloxy and benzoyloxy stereoisomers, using single manual-docking minimized structures and MD ensemble averages. The scoring of single minimized complexes between the enzyme and the inhibitor resulted in energies that score the allyloxy stereoisomers incorrectly, and on the contrary it performed satisfactorily on the benzoyloxy compounds. By averaging the score over 100 snapshots, the scoring function managed to rank the isomer series according to the binding affinity. The improvement of a scoring function results by taking the average over a structure ensemble, it had been shown previously [113]. Although the average results correctly rank the affinity within the isomer series of inhibitor analyzed, it largely overpredicts the affinities of a group of ligands due to the lipophilic term of the scoring function, which clearly overestimates the hydrophobic binding contribution (predicted to about −10 kcal/mol). The authors indicated that this could represent a more general problem with scoring functions that had a built-in size dependency of the hydrophobic term through surface area or similar size measures. This procedure was successfully applied also to PlmIV with a group of isosteres using X-score. The binding estimates were also very good in the relative ranking of the compounds. The absolute values for the predicted affinities, however, were shifted by an average overprediction from 2.7 to 3.0 kcal/mol depending the PlmIV structure employed. It must be appreciated the application of X-score, in that work, to the analysis of the inhibitors selectivity, measured as the differential binding free energy (ΔΔGbind) between PlmIV and PlmII. The strong selectivity of the most potent inhibitor for PlmIV was not particularly well reproduced. Ludi is another scoring function applied to PlmII and PlmIV using HIV-1 inhibitors, which gave a reasonable agreement with experimentally inhibitor potencies [112]. Nevertheless, it ranked poorly the X-ray complex of PlmIV-pepstatin A (PDB:1L5S), which was not adjudged to an optimal filling of the inhibitor sidechains on the protein subsites. One of the advantages of the application of empirical scoring functions is its simple relationship between structural parameters, like hydrogen bonds and lipophilic interaction energy, with enzyme inhibitory potency of the compounds. This issue lead to a valuable information for inhibitor design, but it must be
taken carefully, since these relations are, in the best cases, of a qualitative value.

Despite a good number of scoring functions that have been developed, none of them is perfect in terms of accuracy and general applicability. To take the advantages and balance the deficiencies of different scoring functions, the consensus scoring technique has been introduced to improve the probability of finding correct solutions by combining the scores from multiple scoring functions. The critical step in consensus scoring is the design of an appropriate combining strategy of individual scores so that the true modes/binders can be discriminated from others accordingly [109]. As alternative to the scoring function, a new combined docking workflows—AutoX—unifies the interaction models of AutoDock and FlexX rather than combining the scores afterward which allows interpretability of the results [114]. The application of this strategy to 4 plasmepsin experimental complexes achieved an improvement of the root mean square deviation (rmsd) of predicted conformations versus the corresponding native one over AutoDock and FlexX of 1.70 Å, which allows interpretability of the results [114].

A high-throughput screening is typically used at an early stage of the drug design process in order to test a large compound collection for potential activity against the chosen target [115–117]. Unfortunately, this method is time-consuming and expensive. For this reason, virtual HTS has become an important tool to precede the large in vitro screening assays [118–120]. This method aims at using computational tools to estimate a priori, from an entire database of existing (or hypothetical) compounds, those that are the most likely to have some affinity for the target. The general techniques are random screening and generation of focused libraries based on pharmacophore with subsequent screening of the resulting virtual compound. A current application of this methodology to design of new plasmspin inhibitor was reported by Kasam and coworkers, in the frame of the WISDOM (Wide In Silico Docking On Malaria) project [29] (Figure 3). They developed a computational random screening approach, based on a high-throughput molecular docking and implemented it at large scale on the EGEE grid infrastructure [28]. In the mentioned study, structures of PlmII and PlmIV were used with or without crystal water molecules, to check the influence of waters in the docking scores. As a result, for the protein structure ILEE with crystal water molecules, all ligands failed to form interactions with the key residues. A total of 1,000,000 compounds were downloaded from ZINC database and docked into plasmspins using FlexX. One crucial step of the virtual HTS is the result analysis, due to the difficulty of scoring functions, like the usually emergence of top scoring compounds with poor binding modes or which failed to form the expected interactions to key residues of the protein. After undergoing a filtering procedure to the docking solutions, 100 compounds were selected by Kasam and coworkers for reranking by molecular simulations. Most of the compounds selected were thiourea, guanidino analogues, and diphenyl urea; the last known micromolar inhibitors of plasmspin [93]. By utilizing the same procedure, docking software and chemical compounds from the ZINC database, the same researches

performed large-scale virtual screening against four different proteins implicated in malaria producing short lists of particularly promising molecules [121]. If human proteases are including the screening, this kind of computational initiative could give an important contribution to the development of potent and selective inhibitors.

Since a few years, FBD has become an attractive alternative to the experimental or virtual HTS [122]. Contrary to virtual HTS, where complete molecules are screened for activity, FBD aims at building new ligands piece by piece by connecting small and well-chosen compounds that bind into separate binding pockets, close enough to be chemically linked in their relative favorable positions [123]. Haque and colleagues [36] used a combination of FBD and synthetic combinatorial library design to find potent and low-nanomolar inhibitors of PlmII. The “anchor and grow” algorithm implemented in Dock was employed to model each scaffold and side chain from a virtual library in the PlmII active site and scores consisted of van der Waals and electrostatic terms from the AMBER force field [124]. Recently, Friedman and Caflisch used FBD procedure to search for inhibitors of PlmII [125] (Figure 3). A total of 4.6 million compounds were first clustered according to 2D structural similarity resulting in about 40,000 molecules which were then used for FBD. Docking into the PlmII active site was followed by consensus scoring using four force field-based energy functions. A total of 19 compounds were tested in an enzymatic assay, and three of them showed single-digit micromolar inhibitory activity. One of these three inhibitors was halofantrine, an antimalarial drug discovered more than 40 years ago whose mechanism of action is still unknown. To better investigate the binding mode of halofantrine, four 50 ns MD simulations with explicit solvent were performed starting from two different poses, one generated by automatic docking and the other by manual fitting with the help of a computer graphics program. The MD simulations indicated that the binding mode generated by fragment-based docking was more stable than the one obtained by manual docking, although it was not possible to definitively discard either one.

5. Calculation of Absolute Binding
Free of PlmII-Inhibitor Complexes
Using the LIE Method

One of the main challenges in computational structure-based ligand design is the estimation of absolute binding affinities for ligand-receptor complexes. Several approaches to this problem have been developed (Figure 4), ranging from empirical and “knowledge-based” scoring functions to those based on free energy calculations, such as the rigorous free energy perturbation (FEP) and thermodynamic integration (TI) methods [126, 127]. However, FEP and TI approaches are quite time consuming, and the associated sampling and convergence problems limit their use to relative binding free energy calculations between pairs of molecules having only minor structural differences [126–128]. Thus,
Figure 3: Overall scheme of in silico screening strategy applied to Pf plasmepsins. FBD represents the fragment-based docking process performed by Friedman and Caflisch [28], and HTS the high throughput screening carry out by Kasam and colleagues [29]. Details can be revised in the corresponding references.

Further development of fast and accurate methods for structure-based drug design is still needed. Åqvist and coworkers developed a semiempirical method [30] termed as the linear interaction energy (LIE) approximation, for the estimation of absolute binding free energies. This method, which is based on conformational sampling by MD or Monte Carlo (MC) simulations, is faster than FEP and TI, since it avoids sampling of any unphysical intermediate states between the initial and final configurations. However, it is considerably slower than single-conformation scoring function methods [30]. LIE has been successfully applied in several projects addressing ligand binding as well as protein-protein interactions [126, 129, 130], and has inspired other related methods [107, 131–133]. Two examples are SGB-LIE [133] and LIECE, both of which treat the solvent as a continuum, compared to LIE where water molecules are explicitly represented. The LIE method is based on the linear response (LR) assumption for electrostatic interactions with an empirical expression for nonpolar effects. In this approach, the binding free energy is estimated according to (1):
where V_{vdw} and V_{ele} denotes MD or MC averages from the nonbonded van der Waals and electrostatic interactions of the ligand (l) with its surrounding environment (s), respectively. The Δ's denote the change in average values when transferring the ligand from solution (free state) into the binding site of the solvated receptor (bound state). The coefficients α and β are scaling factors for these energy terms, while γ is a constant correction term sometimes proposed to represent entropic contributions to the free energy of binding of different types of receptor sites [134, 135]. The LR approximation theory provides a physical basis for the treatment of the electrostatic contribution to the binding free energy, which predicts a value of $\beta = 0.5$ [30, 136]. The assumption that nonpolar ligand-surrounding van der Waals energies (represented by a Lennard-Jones potential) can be used to calculate the nonpolar contribution to binding free energy is based upon the observation that the salvation-free energies of nonpolar compounds scale linearly with molecular size descriptors such as surface area [30]. However, it is not a straightforward task to predict the α or γ values from theoretical considerations, being usefully obtained as empirical parameters by fitting to experimental data on small set of receptor-ligand complexes [129, 130, 134, 135, 137, 138].

The LIE method usually employs MD simulation averaging of the intermolecular interactions between the ligand and its surrounding environment in the two relevant states, for example, the ligand solvated in water (free state) and the solvated protein-ligand complex (bound state). MD sampling of the protein-ligand complex allows structural and energetic relaxation of the starting structures. This is a major difference compared to the use of scoring functions, where binding energy is usually determined from a single energy minimization receptor/ligand complex. Prior to all simulations, the ligand or the ligand-protein complex was solvated with explicit water molecules, and restrained spherical simulation boundaries were used in all calculations [19, 26, 55, 56].

Like other semiempirical methods, the success of LIE resides principally in the selection of the parameter values. Several parameter schemes have been developed so far [139, 140]. The empirical coefficient α was initially calibrated against the experimental binding data on a small training set of four endothiapepsin inhibitors of similar scaffold using $\beta = 0.5$ [30] giving $\alpha = 0.161$ with a version of the Gromos96 force field [141]. This original model yielded reasonable binding free energy estimates for different proteins in complexes with ligand of dissimilar scaffolds such as endothiapepsin [30] HIV-1 protease [142, 143], glucose binding protein [144], and trypsin [145]. This parameterization was subsequently refined by Åqvist and coworkers [134, 135] using results from simulations of 18 protein-ligand complexes of the same proteins as training set. These authors determined the specific β values using FEP calculations, motivated by systematic deviations from the linear response theory observed for dipolar group compounds [134, 146]. As a result, it was obtained an improved LIE model, which included β_{FEP} values ranging between 0.35 and 0.5, along with $\alpha = 0.18$ and $\gamma = 0$, that resulted in calculated binding free energies in good agreement with experimental data for several protein-ligand systems [58, 65, 66, 147, 148]. However, in other cases, a nonzero γ constant term is required to reproduce the experimental absolute binding free energies [130, 137, 138]. Some notable cases are the binding of retinooids to retinol binding protein (RBP) [130], biotin analogs to avidin [137], substrates to cytochrome P450 (P450cam) [138], and inhibitors to human thrombin [149]. For these systems, the γ values ranged from -2.9kcal/mol to -7kcal/mol [129]. Recently, Almlöf and colleagues [147] found a clear relationship between the ordering of hydrophobicity ranking of these binding sites (RBP > P450cam > thrombin > trypsin) and the value of γ. To some extent, this is similar to the idea developed by Wang and coworkers [137], who investigated variations of the nonpolar coefficient α in the absence of the constant term γ, as a way to distinguish between different types of binding sites. The main outcome is the linear correlation obtained between the weighted nonpolar desolvation ratio (WNDR) and the values of α in the LIE method. Briefly, the WNDR was defined [137] as the ratio of all nonpolar groups’ weighted desolvation solvent accessible surface area (SAS), carbon and sulfur atoms in this case, to the total weighted desolvation SAS. The WNDR parameter can be useful to predict the value of α for those systems in which very different ligands bind to the same protein, as a way to distinguish between different ligand binding modes or when these ligands bind to different sites of the same protein [137].

The standard parameterization of LIE ($\beta = \beta_{\text{FEP}}$, $\alpha = 0.181$, and $\gamma = 0$) has been applied with excellent results to predict the binding free energies of Plms in complexes with inhibitors based on the 1,2-dihydroxyethylenic scaffold [58, 65, 66, 68, 111]. Conversely, in recent LIE studies were not able to reproduce the absolute binding affinities of PlmIV in complex with inhibitors based on the α-phenylnorstatine [55, 150] and α-benzylnorstatine [55] scaffolds, and macrocyclic inhibitors (PlmII and PlmIV). In addition, Valiente and colleagues [140] reported that the standard parameterization of LIE failed to reproduce the experimental binding free energy of PlmII in complex with achiral (IH4 [151]) and hydroxyethylamine/hydroxypropylamine (EH58 [152]/rs367 [153], rs370 [153]) inhibitors. However, in this study, the absolute value of the binding free energy of PlmII in a complex with pepstatin A was in agreement with the experimental data. This fact suggests that the possible dependency of PlmII-inhibitor system on the LIE method might be circumvented by using higher values of the nonpolar scaling factor α, or alternatively, by the addition of different nonzero γ constant term for each PlmII-ligand binding mode [140]. To achieve this goal, these authors developed three different approaches of the LIE method, to predict binding free energies by combining different approaches to estimate α, β, and γ parameters. The best model combined an optimized α parameter, calculated from the second one parameterization model of WNDR versus α, while setting $\gamma = 0$, and β according to model E proposed by Almlöf and colleagues [139]. Their results agreed well with the experimental data and the chemical nature of the inhibitors assessed. In addition, Valiente and colleagues also showed that the WNDR parameter yielded better
results for proteins with high structural flexibility, when it was applied to the fitting of the α parameter rather than γ. The analysis of calculated interaction energies for these training set showed that the nonpolar contribution ($\Delta G_{\text{pp}} = \alpha(V_{\text{pp}}^{\text{obs}})$) of each PlmII-inhibitor complex was always favorable to binding. An earlier study showed that nonpolar interactions gave the largest contributions to absolute binding affinities of inhibitors based on the 1,2-dihydroxyethylene scaffold [66]. Although the van der Waals interaction energies from the complexes used by Valiente and colleagues looked quite similar, the nonpolar contribution to the binding affinities showed striking differences among pepstatin A and the other inhibitors (rs367, rs370, EH58, and IH4). Since the α scaling factor took into account the fraction of the enzyme interacting with the inhibitors, the lower percentage of enzyme nonpolar groups desolvated after pepstatin A binding determined the less favorable nonpolar contribution from this inhibitor to protein association. In contrast, the electrostatic interaction energies from these inhibitors showed that pepstatin A has only a favorable electrostatic contribution to binding.

6. Concluding Remarks

The structure-based drug design of antimalarial compounds targeting $P. falciparum$ DV plasmepsin inhibition has received much attention in the last 15 years due to their potential biomedical use. However, a recent study showed that a wide range of previously characterized aspartic protease inhibitors exert their antimalarial activities primarily on one or more non-DV plasmepsins and secondarily on the DV plasmepsins [63]. This finding indicates the relevance in the intraerythrocytic stage of the non-DV plasmepsin as PlmV [41], PlmIX, and PlmX, although these enzymes have not 3D structures solved by experimental methods yet.

Despite some limitations, the combination of docking algorithms with the LIE method constitutes a good starting point to develop new potent and selective plasmepsin inhibitors. In this respect, identifying the functional residues responsible for plasmepsin specificity could help to achieve these goals. Moreover, we consider that new aims as the identification of novel conformational states of Plms (non-DV and DV) that cannot be adopted by the human aspartic proteases need to be addressed and would be useful for inhibitors design.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgments

The authors are indebted to Dr. Aurora Pérez-Gramatges for a critical reading of the manuscript. PAV acknowledges the EMBO (Grant ASTF 394-2010) for financial support.

References

[1] S. H. Kappe, A. M. Vaughan, J. A. Boddey, and A. F. Cowman, “That was then but this is now: malaria research in the time of an eradication agenda,” Science, vol. 328, no. 5980, pp. 862–866, 2010.
[2] G. H. Coombs, D. E. Goldberg, M. Klemba, C. Berry, J. Kay, and J. C. Mottram, “Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets,” Trends in Parasitology, vol. 17, no. 11, pp. 532–537, 2001.
[3] K. Na-Bangchang and J. Karbwang, “Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development,” Fundamental and Clinical Pharmacology, vol. 23, no. 4, pp. 387–409, 2009.
[4] T. Luksch, A. Blum, N. Klee, W. E. Diederich, C. A. Soti-rifier, and G. Klebe, “Pyrrolidine derivatives as plasmepsin inhibitors: binding mode analysis assisted by molecular dynamics simulations of a highly flexible protein,” Chem-MedChem, vol. 5, no. 3, pp. 443–454, 2010.
[5] P. A. Valiente, P. R. Batista, A. Pupo, T. Pons, A. Valencia, and P. G. Pascucci, “Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations,” Proteins, vol. 73, no. 2, pp. 440–457, 2008.
[6] R. Bhargavi, G. M. Sastry, U. S. Murty, and G. N. Sastry, “Structural and active site analysis of plasmepsins of Plasmodium falciparum: potential anti-malarial targets,” International Journal of Biological Macromolecules, vol. 37, no. 1-2, pp. 73–84, 2005.
[7] D. E. Goldberg, A. F. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 8, pp. 2931–2935, 1990.
[8] D. E. Goldberg, A. F. Slater, R. Beavis, B. Chait, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease,” Journal of Experimental Medicine, vol. 173, no. 4, pp. 961–969, 1991.
[9] I. V. Gluzman, S. E. Francis, A. Oksman, C. E. Smith, K. L. Duffin, and D. E. Goldberg, “Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1602–1608, 1994.
[10] J. B. Dame, G. R. Reddy, C. A. Yowell, B. M. Dunn, J. Kay, and C. Berry, “Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 64, no. 2, pp. 177–190, 1994.
[11] M. J. Humphreys, R. P. Moon, A. Klinger et al., “The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum,” FEBS Letters, vol. 463, no. 1-2, pp. 43–48, 1999.
[12] F. Salas, J. Fichmann, G. K. Lee, M. D. Scott, and P. J. Rosenthal, “Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase,” Infection and Immunity, vol. 63, no. 6, pp. 2120–2125, 1995.
[13] P. S. Sijwali, K. Kato, K. B. Seydel et al., “Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8721–8726, 2004.
[14] B. R. Shenai, P. S. Sijwali, A. Singh, and P. J. Rosenthal, “Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine proteinase and essential
hemoglobinase of *Plasmodium falciparum,* Journal of Biological Chemistry, vol. 275, no. 37, pp. 29000–29010, 2000.

[15] P. S. Sijwali, B. R. Shnai, J. Gut, A. Singh, and P. J. Rosenthal, “Expression and characterization of the *Plasmodium falciparum* haemoglobinase falcipain-3,” Biochemical Journal, vol. 360, no. 2, pp. 481–489, 2001.

[16] K. K. Eggleson, K. L. Duffin, and D. E. Goldberg, “Identification and characterization of falcycin, a metalloprotease involved in hemoglobin catabolism within the malaria parasite *Plasmodium falciparum,*” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32411–32417, 1999.

[17] M. Klemba, I. Gluzman, and D. E. Goldberg, “A *Plasmodium falciparum* dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation,” Journal of The Biological Chemistry, vol. 279, no. 41, pp. 43000–43007, 2004.

[18] A. M. Silva, A. Y. Lee, S. V. Gulnik et al., “Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from *Plasmodium falciparum,*” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 19, pp. 10034–10039, 1996.

[19] O. A. Asojo, S. V. Gulnik, E. Afonina et al., “Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from *Plasmodium falciparum,*” Journal of Molecular Biology, vol. 327, no. 1, pp. 173–181, 2003.

[20] O. A. Asojo, E. Afonina, S. V. Gulnik et al., “Structures of ser205 mutant plasmepsin II from *Plasmodium falciparum* at 1.8 Å in complex with the inhibitors rs367 and rs370,” Acta Crystallographica Section D, vol. 58, no. 12, pp. 2001–2008, 2002.

[21] C. Boss, S. Richard-Bildstein, T. Wellner et al., “Inhibitors of the *Plasmodium falciparum* parasite aspartic protease plasmepsin II: as potential antimalarial agents,” Current Medicinal Chemistry, vol. 10, pp. 883–883, 2003.

[22] K. Ersmark, I. Feierberg, S. Bjelic et al., “C-symmetric inhibitors of *Plasmodium falciparum* plasmepsin II: synthesis and theoretical predictions,” Bioorganic and Medicinal Chemistry, vol. 11, no. 17, pp. 3723–3723, 2003.

[23] K. Ersmark, I. Feierberg, S. Bjelic et al., “Potent inhibitors of the *Plasmodium falciparum* enzymes plasmepsin I and II devoid of cathepsin D inhibitory activity,” Journal of Medicinal Chemistry, vol. 47, no. 1, pp. 110–122, 2004.

[24] A. Kiso, K. Hidaka, T. Kimura et al., “Search for substrate-based inhibitors fitting the S2' space of malarial aspartic protease plasmepsin II,” Journal of Peptide Science, vol. 10, no. 11, pp. 641–647, 2004.

[25] K. Ersmark, B. Samuelsson, and A. Hallberg, “Plasmepsin as potential targets for new antimalarial therapy,” Medicinal Research Reviews, vol. 26, no. 5, pp. 626–666, 2006.

[26] G. H. Coombs, D. E. Goldberg, M. Klemba, C. Berry, J. Kay, and J. C. Mottram, “Aspartic proteases of *Plasmodium falciparum* and other parasitic protozoa as drug targets,” Trends in Parasitology, vol. 17, no. 11, pp. 532–537, 2001.

[27] V. Zoete, A. Grosdidier, and O. Michielin, “Docking, virtual high throughput screening and in silico fragment-based drug design,” Journal of Cellular and Molecular Medicine, vol. 13, no. 2, pp. 238–248, 2009.

[28] F. Gagliardi, B. Jones, F. Grey, M. E. Begin, and M. Heikkuriinen, “Building an infrastructure for scientific grid computing: status and goals of the Egee project,” Philosophical Transactions of the Royal Society A, vol. 363, no. 1833, pp. 1729–1742, 2005.

[29] V. Kasam, M. Zimmermann, A. Maas et al., “Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the Egee grid,” Journal of Chemical Information and Modeling, vol. 47, no. 5, pp. 1816–1828, 2007.

[30] J. Äqvist, C. Medina, and J.-E. Samuelsson, “A new method for predicting binding affinity in computer-aided drug design,” Protein Engineering, vol. 7, no. 3, pp. 385–391, 1994.

[31] S. E. Francis, L. Y. Gluzman, A. Oksman et al., “Molecular characterization and inhibition of a *Plasmodium falciparum* aspartic hemoglobinase,” The EMBO Journal, vol. 13, no. 2, pp. 306–317, 1994.

[32] R. P. Moon, L. Tyas, U. Certa et al., “Expression and characterisation of plasmspe I from *Plasmodium falciparum,*” European Journal of Biochemistry, vol. 244, no. 2, pp. 552–560, 1997.

[33] S. Soni, S. Dhawan, K. M. Rosen, M. Chafé, A. H. Chishtii, and M. Hanspal, “Characterization of events preceding the release of malaria parasite from the host red blood cell,” Blood Cells, Molecules, and Diseases, vol. 35, no. 2, pp. 201–211, 2005.

[34] R. Banerjee and D. E. Goldberg, “The *Plasmodium* food vacuole,” in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery, P. J. Rosenthal, Ed., pp. 43–63, Humana Press, Totowa, NJ, USA, 2001.

[35] P. J. Rosenthal, “Protease inhibitors,” in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery, P. J. Rosenthal, Ed., pp. 325–345, Humana Press, Totowa, NJ, USA, 2001.

[36] T. S. Haque, A. G. Skillman, C. E. Lee et al., “Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II,” Journal of Medicinal Chemistry, vol. 42, no. 8, pp. 1428–1440, 1999.

[37] M. J. Gardner, N. Hall, E. Fung et al., “Genome sequence of the human malaria parasite *Plasmodium falciparum,*” Nature, vol. 419, no. 6906, pp. 498–511, 2002.

[38] R. Banerjee, J. Liu, W. Beatty, L. Polosof, M. Klemba, and D. E. Goldberg, “Four plasmepsines are active in the *Plasmodium falciparum* food vacuole, including a protease with an active-site histidine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 990–995, 2002.

[39] K. E. Luker, S. E. Francis, I. Y. Gluzman, and D. E. Goldberg, “Kinetic analysis of plasmepsins I and II, aspartic proteases of the *Plasmodium falciparum* digestive vacuole,” Molecular and Biochemical Parasitology, vol. 79, no. 1, pp. 71–78, 1996.

[40] D. M. Wyatt and C. Berry, “Activity and inhibition of plasmepsin IV, a new aspartic protease from the malaria parasite, *Plasmodium falciparum,*” FEBS Letters, vol. 513, no. 2-3, pp. 159–162, 2002.

[41] I. Russo, S. Babbitt, V. Muralidharan, T. Butler, A. Oksman, and D. E. Goldberg, “Plasmepsin V licenses *Plasmodium falciparum* for export into the host erythrocyte,” Nature, vol. 463, no. 7281, pp. 632–636, 2010.

[42] J. Westling, C. A. Yowell, P. Majer, J. W. Erickson, J. B. Dame, and B. M. Dunn, “*Plasmodium falciparum,* *P. vivax,* and *P. malariae: a comparison of the active site properties of plasmepsins cloned and expressed from three different species of the malaria parasite,” Experimental Parasitology, vol. 87, no. 3, pp. 183–193, 1997.

[43] J. B. Dame, C. A. Yowell, J. M. R. Carlton et al., “Comparative studies of five plasmepsins derived from the human malaria parasites *P. falciparum,* *P. vivax,* *P. malariae* and *P. yoelii* in *Molecular and Biochemical Parasitology Meeting VIII Abstrac* , Woods Hole, Mass, USA, 1997.

[44] T. Li, C. A. Yowell, B. B. Beyer et al., “Recombinant expression and enzymatic subsite characterization of plasmepsin 4 from the four *Plasmodium* species infecting man,” Molecular and Biochemical Parasitology, vol. 135, no. 1, pp. 101–109, 2004.
[45] A. Nezami, T. Kimura, K. Hidaka et al., "High-affinity inhibition of a family of *Plasmodium falciparum* proteases by a designed adaptive inhibitor," *Biochemistry*, vol. 42, no. 28, pp. 8459–8464, 2003.

[46] B. B. Beyer, J. V. Johnson, A. Y. Chung et al., "Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries," *Biochemistry*, vol. 44, no. 6, pp. 1768–1779, 2005.

[47] J. B. Dame, C. A. Yowell, L. Omara-Opyene, J. M. Carlton, R. A. Cooper, and T. Li, "Plasmepsin 4, the food vacuole aspartic protease found in all Plasmodium spp. infecting man," *Molecular and Biochemical Parasitology*, vol. 130, no. 1, pp. 1–12, 2003.

[48] A. Nezami and E. Freire, "The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors," *International Journal for Parasitology*, vol. 32, no. 13, pp. 1669–1676, 2002.

[49] S. E. Francis, L. Y. Gluzman, A. Oksman et al., "Molecular characterization and inhibition of a *Plasmodium falciparum* aspartic hemoglobinase," *The EMBO Journal*, vol. 13, no. 2, pp. 306–317, 1994.

[50] B. M. Dunn, "Structure and mechanism of the pepsin-like family of aspartic peptidases," *Chemical Reviews*, vol. 102, no. 12, pp. 4431–4458, 2002.

[51] P. Bhaumik, H. Xiao, C. L. Parr et al., "Crystal structures of the histo-aspartic protease (HAP) from *Plasmodium falciparum*," *Journal of Molecular Biology*, vol. 388, no. 3, pp. 520–540, 2009.

[52] J. Liu, E. S. Istvan, and D. E. Goldberg, "Hemoglobin-degrading plasmepsin II is active as a monomer," *Journal of Biological Chemistry*, vol. 281, no. 50, pp. 38682–38688, 2006.

[53] A. Nezami, T. Kimura, K. Hidaka et al., "High-affinity inhibition of a family of *Plasmodium falciparum* proteases by a designed adaptive inhibitor," *Biochemistry*, vol. 42, no. 28, pp. 8459–8464, 2003.

[54] A. Nezami and E. Freire, "The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors," *International Journal for Parasitology*, vol. 32, no. 13, pp. 1669–1676, 2002.

[55] K. M. Orrlig, M. R. Marzahn, H. Gutiérrez-de-Terán, J. Áqvist, B. M. Dunn, and M. Larhed, "α-substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases," *Bioorganic and Medicinal Chemistry*, vol. 17, no. 16, pp. 5933–5949, 2009.

[56] H. Gutiérrez-de-Terán, M. Nervall, B. M. Dunn, J. C. Clemente, and J. Áqvist, "Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor," *FEBS Letters*, vol. 580, no. 25, pp. 5910–5916, 2006.

[57] H. Gutiérrez-de-Terán, M. Nervall, K. Ersmark et al., "Inhibitor binding to the plasmepsin IV aspartic protease from *Plasmodium falciparum*," *Biochemistry*, vol. 45, no. 35, pp. 10529–10541, 2006.

[58] K. Ersmark, M. Nervall, H. Gutiérrez-de-Terán et al., "Macrocyclic inhibitors of the malarial aspartic proteases plasmepsin I, II, and IV," *Bioorganic and Medicinal Chemistry*, vol. 14, no. 7, pp. 2197–2208, 2006.

[59] A. L. Omara-Opyene, P. A. Moura, C. R. Sulsona et al., "Genetic disruption of the *Plasmodium falciparum* digestive vacuole plasmepsins demonstrates their functional redundancy," *Journal of Biological Chemistry*, vol. 279, no. 52, pp. 54088–54096, 2004.
[75] P. Braiuca, G. Cruciani, C. Ebert, L. Gardossi, and P. Linda, “An innovative application of the "flexible" GRID/PCA computational method: study of differences in selectivity between PGAs from escherichia coli and a providentia rettgeri mutant,” Biotechnology Progress, vol. 20, no. 4, pp. 1025–1031, 2004.

[76] P. J. Goodford, “A computational procedure for determining energetically favorably binding sites on biologically important macromolecules,” Journal of Medicinal Chemistry, vol. 28, no. 7, pp. 849–857, 1985.

[77] A. Kumar and I. Ghosh, “Mapping selectivity and specificity of active site of plasmpems from Plasmodium falciparum using molecular interaction field approach,” Protein and Peptide Letters, vol. 14, no. 6, pp. 569–574, 2007.

[78] G. M. Morris, D. S. Goodsell, R. S. Halliday et al., “Automated docking using a lazarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, no. 14, pp. 1639–1662, 1998.

[79] G. M. Morris, H. Ruth, W. Lindstrom et al., “Software news and updates autodock4 and autodocktools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009.

[80] I. D. Kuntz, J. M. Blaney, S. J. Otley, R. Langridge, and T. E. Ferrin, “A geometric approach to macromolecule-ligand interactions,” Journal of Molecular Biology, vol. 161, no. 2, pp. 269–288, 1982.

[81] T. I. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, “DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases,” Journal of Computer-Aided Molecular Design, vol. 15, no. 5, pp. 411–428, 2001.

[82] M. Rarey, B. Kramer, T. Lengauer, and G. Krebe, “A fast flexible docking method using an incremental construction algorithm,” Journal of Molecular Biology, vol. 261, no. 3, pp. 470–489, 1996.

[83] H. Claussen, C. Buning, M. Rarey, and T. Lengauer, “FLEXE: efficient molecular docking considering protein structure variations,” Journal of Molecular Biology, vol. 308, no. 2, pp. 377–395, 2001.

[84] R. A. Friesner, J. L. Banks, R. B. Murphy et al., “Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1739–1749, 2004.

[85] T. A. Halgren, R. B. Murphy, R. A. Friesner et al., “Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1750–1759, 2004.

[86] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, no. 3, pp. 727–748, 1997.

[87] M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, and R. D. Taylor, “Improved protein-ligand docking using GOLD,” Proteins, vol. 52, no. 4, pp. 609–623, 2003.

[88] C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, “LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites,” Journal of Molecular Graphics and Modelling, vol. 21, no. 4, pp. 289–307, 2003.

[89] N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, and C. R. Corbell, “Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go,” British Journal of Pharmacology, vol. 153, supplement 1, pp. S7–S26, 2008.

[90] D. Plewczynski, M. Lazniewski, R. Augustyniak et al., “Can we trust docking results? evaluation of seven commonly used programs on PDBbind database,” Journal of Computational Chemistry, vol. 32, pp. 742–755, 2011.

[91] A. N. Jain, “Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine,” Journal of Medicinal Chemistry, vol. 46, no. 4, pp. 499–511, 2003.

[92] Z. Zsoldos, D. Reid, A. Simon, S. B. Sadjad, and A. P. Johnson, “eHiTS: a new fast, exhaustive flexible ligand docking system,” Journal of Molecular Graphics and Modelling, vol. 26, no. 1, pp. 198–212, 2007.

[93] S. Jiang, S. T. Prigge, L. Wei et al., “New class of small non-peptidyl compounds blocks Plasmodium falciparum development in vitro by inhibiting plasmpems,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 9, pp. 2577–2584, 2001.

[94] B. B. Beyer, J. V. Johnson, A. Y. Chung et al., “Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chroomogenic combinatorial peptide libraries,” Biochemistry, vol. 44, no. 6, pp. 1768–1779, 2005.

[95] S. Bjelic and J. Åqvist, “Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site,” Biochemistry, vol. 43, no. 46, pp. 14521–14528, 2004.

[96] M. M. Kesavulu, A. S. Prakash-Gowda, T. N. C. Ramya, N. Surolia, and K. Suguna, “Plasmspin inhibitors: design, synthesis, inhibitory studies and crystal structure analysis,” Journal of Peptide Research, vol. 66, no. 4, pp. 211–219, 2005.

[97] S. Bjelic and J. Åqvist, “Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site,” Biochemistry, vol. 43, no. 46, pp. 14521–14528, 2004.

[98] P. Liu, M. R. Marzahn, A. H. Robbins et al., “Recombinant plasmspin 1 from the human malaria parasite Plasmodium falciparum: enzymatic characterization, active site inhibitor design, and structural analysis,” Biochemistry, vol. 48, no. 19, pp. 4086–4099, 2009.

[99] K. Hidaka, T. Kimura, Y. Tsuchiya et al., “Additional interaction of allopheynilorstatine-containing tripeptidimetics with malarial aspartic protease plasmspin II,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 11, pp. 3048–3052, 2007.

[100] S. Y. Huang and X. Zou, “An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function,” Journal of Computational Chemistry, vol. 27, no. 15, pp. 1876–1882, 2006.

[101] I. Muegge and Y. C. Martin, “A general and fast scoring function for protein-ligand interactions: a simplified potential approach,” Journal of Medicinal Chemistry, vol. 42, no. 5, pp. 791–804, 1999.

[102] H. Gohlike, M. Hendlich, and G. Krebe, “Knowledge-based scoring function to predict protein-ligand interactions,” Journal of Molecular Biology, vol. 295, no. 2, pp. 337–356, 2000.

[103] H. J. Böhm, “LUDI: rule-based automatic design of new substrituents for enzyme inhibitor leads,” Journal of Computer-Aided Molecular Design, vol. 6, no. 6, pp. 593–606, 1992.

[104] H.-J. Böhm, “The computer program LUDI: a new method for the de novo design of enzyme inhibitors,” Journal of Computer-Aided Molecular Design, vol. 6, no. 1, pp. 61–78, 1992.

[105] M. D. Eldridge, C. W. Murray, T. R. Auton, G. V. Paolini, and R. P. Mee, “Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes,” Journal of
[139] M. Almlöf, J. Carlsson, and J. Åqvist, “Improving the accuracy of the linear interaction energy method for solvation free energies,” *Journal of Chemical Theory and Computation*, vol. 3, no. 6, pp. 2162–2175, 2007.

[140] P. A. Valiente, A. Gil, P. R. Batista, E. R. Caffarena, T. Pons, and P. G. Pascutti, “New parameterization approaches of the LIE method to improve free energy calculations of plmll-inhibitors complexes,” *Journal of Computational Chemistry*, vol. 31, no. 15, pp. 2723–2734, 2010.

[141] W. F. van Gunsteren and H. J. C. Berendsen, *Groningen Molecular Simulation (GROMOS) Library Manual*, Biomos, Nijenborgh 4, University of Groningen, Groningen, The Netherlands, 1987.

[142] T. Hansson and J. Åqvist, “Estimation of binding free energies for HIV protease inhibitors by molecular dynamics simulations,” *Protein Engineering*, vol. 8, no. 11, pp. 1137–1144, 1995.

[143] J. Hultén, N. M. Bonham, U. Nilroth et al., “Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities,” *Journal of Medicinal Chemistry*, vol. 40, no. 6, pp. 885–897, 1997.

[144] J. Åqvist and S. L. Mowbray, “Sugar recognition by a glucose/galactose receptor. Evaluation of binding energetics from molecular dynamics simulations,” *Journal of Biological Chemistry*, vol. 270, no. 17, pp. 9978–9981, 1995.

[145] J. Åqvist, “Calculation of absolute binding free energies for charged ligands and effects of long-range electrostatic interactions,” *Journal of Computational Chemistry*, vol. 17, no. 14, pp. 1587–1597, 1996.

[146] J. Åqvist and T. Hansson, “On the validity of electrostatic linear response in polar solvents,” *Journal of Physical Chemistry*, vol. 100, no. 22, pp. 9512–9521, 1996.

[147] M. Almlöf, B. O. Branddal, and J. Åqvist, “Binding affinity prediction with different force fields: examination of the linear interaction energy method,” *Journal of Computational Chemistry*, vol. 25, no. 10, pp. 1242–1254, 2004.

[148] J. Marelius, M. Graffner-Nordberg, T. Hansson et al., “Computation of affinity and selectivity: binding of 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors to dihydrofolate reductases,” *Journal of Computer-Aided Molecular Design*, vol. 12, no. 2, pp. 119–131, 1998.

[149] K. B. Ljungberg, J. Marelius, D. Musil, P. Svensson, B. Norden, and J. Åqvist, “Computational modelling of inhibitor binding to human thrombin,” *European Journal of Pharmaceutical Sciences*, vol. 12, no. 4, pp. 441–446, 2001.

[150] H. Gutiérrez-de-Terán, M. Nervall, B. M. Dunn, J. C. Clemente, and J. Åqvist, “Computational analysis of plasmspin IV bound to an allophenylorstatine inhibitor,” *FEBS Letters*, vol. 580, no. 25, pp. 5910–5916, 2006.

[151] L. Prade, A. F. Jones, C. Boss et al., “X-ray structure of plasmspin II complexed with a potent achiral inhibitor,” *Journal of Biological Chemistry*, vol. 280, no. 25, pp. 23837–23843, 2005.

[152] O. A. Asojo, S. V. Gulnik, E. Afonina et al., “Novel uncomplexed and complexed structures of plasmspin II, an aspartic protease from *Plasmodium falciparum*,” *Journal of Molecular Biology*, vol. 327, no. 1, pp. 173–181, 2003.

[153] O. A. Asojo, E. Afonina, S. V. Gulnik et al., “Structures of ser205 mutant plasmspin II from *Plasmodium falciparum* at 1.8 Å in complex with the inhibitors rs367 and rs370,” *Acta Crystallographica Section D*, vol. 58, no. 12, pp. 2001–2008, 2002.