Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit

Massimiliano D. Rosini

ICM, Uniwersytet Warszawski

Work in collaboration with Marco Di Francesco, Università degli Studi dell’Aquila

Micro and Macro Systems in Life Sciences
Będlewo, 8-12 June 2015
Table of contents

1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
| Chapter | Section |
|---------|---------|
| 1 | The motivating problem: traffic flow |
| | - Macroscopic models |
| | - Follow the leader approximation |
| 2 | Convergence result |
| | - A preliminary lemma |
| | - Weak convergence |
| | - Uniform estimates |
| | - Time continuity |
| | - Convergence to entropy solutions |
| 3 | Remarks and future projects |
Modelling traffic flow.

Practical goals.
- Rational planning and management of vehicle fluxes.
- Reduce environmental pollution and cities congestion.

Mathematical modelling.
- **Microscopic approach.** Each car is a ‘moving particle’ satisfying an ODE.
- **Macroscopic approach.** Averaged quantities satisfying PDEs.

Advantages of the macroscopic approach.
- Very powerful description of queues tails in terms of shocks.
- Suitable with very large number of vehicles.
- Easy to validate and implement (low number of parameters).
- Suitable to *real time* prediction, estimation, optimization and control.
Modelling traffic flow.

Practical goals.
- Rational planning and management of vehicle fluxes.
- Reduce environmental pollution and cities congestion.

Mathematical modelling.
- **Microscopic approach.** Each car is a ‘moving particle’ satisfying an ODE.
- **Macroscopic approach.** Averaged quantities satisfying PDEs.

Continuum hypothesis is not satisfied!
The number of cars is far lower than that of molecules, for example, in gas dynamics (1 mole of gas contains 6×10^{23} molecules), the continuum assumption is not justified and the macroscopic formulation is not a priori justified!

Link between macroscopic and microscopic approach.
It provides a validation of the macroscopic approach and of the use of data collection from GPS devises when the number of detected ‘reference cars’ is very large.
Table of contents.

1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
The macroscopic variables.

The macroscopic variables are:

- ρ: density, \#cars per unit length of the road
- v: velocity, space covered per unit time by the cars
- f: flow, \#cars per unit time

The macroscopic variables satisfy:

- by definition: \(f = \rho v \)
- by conservation of \#cars: \(\rho_t + f_x = 0 \)

We have 3 variables and 2 equations!
Two macroscopic approaches.

- **First order** models close the system by giving an explicit expression of 1 of the 3 unknowns in terms of the remaining 2 (equation of state). Example: Lighthill-Whitham-Richards (1955, 1956).

\[\rho_t + [\rho v(\rho)]_x = 0. \]

- Equilibrium models.
- Velocity as function of the density.

- **Second order** models close the system by adding a further PDE. Example: Aw-Rascle-Zhang (1999, 2002).

\[\rho_t + (\rho v)_x = 0, \quad [v + p(\rho)]_t + v[v + p(\rho)]_x = 0. \]

- Continuum analogue of Newton’s law.
- Velocity evolves via a separate PDE.

Justification of the macroscopic models.

- **A posteriori.** Descriptive power (no physical laws).
- **A priori.** Validation via microscopic models (no continuum hypothesis).
The LWR model.

\[\rho_t + [\rho v(\rho)]_x = 0, \quad \rho(t = 0) = \bar{\rho} \]

Relevant parameters.

- Maximum density of vehicles \(\rho_{\text{max}} > 0 \). We normalize \(\rho_{\text{max}} = 1 \).
- Maximum possible speed \(v_{\text{max}} > 0 \).
- Total length of the vehicles (constant in time)
 \[L = \int_{\mathbb{R}} \rho(t, x) dx > 0. \]

Main assumptions on the velocity map \(v \).

- \(v \in C^1([0, 1]; [0, v_{\text{max}}]) \).
- \(v \) strictly decreasing on \([0, 1]\).
- \(v(0) = v_{\text{max}}, v(1) = 0 \).

Initial condition.

- \(\rho(t = 0) = \bar{\rho} \in L^\infty(\mathbb{R}), \bar{\rho} \geq 0, \bar{\rho} \) with compact support.
Examples of velocities (from empirical observations).

Greenshields 1935:

\[v(\rho) = \nu_{\text{max}}(1 - \rho) \]

\[f \]

\[1 \quad \rho \]

\[v \]

\[1 \quad \rho \]
Examples of velocities (from empirical observations).

Greenberg 1959, ‘renormalized’ version

\[v(\rho) = v_{\text{max}} \left[\log \left(\frac{1 + \alpha}{\alpha} \right) \right]^{-1} \log \left(\frac{1 + \alpha}{\rho + \alpha} \right) \]

\[\alpha > 0 \]
Examples of velocities (from empirical observations).

Pipes-Munjal 1967

\[v(\rho) = v_{\text{max}} \left(1 - \rho^\alpha \right) \quad \alpha > 0 \]

Example: \(\alpha = 0.2 \)
Examples of velocities (from empirical observations).

Pipes-Munjal 1967

\[v(\rho) = v_{\text{max}} \left(1 - \rho^\alpha \right) \quad \alpha > 0 \]

Example: \(\alpha = 2 \)
A quick review on the mathematical theory.

- Discontinuous solutions, weak solutions: for all $\phi \in C^1_c([0, +\infty) \times \mathbb{R})$,
 \[
 \int_{\mathbb{R}} \int_{\mathbb{R}^+} \left[\rho(t, x) \phi_t(t, x) + f(\rho(t, x)) \phi_x(t, x) \right] \, dt \, dx + \int_{\mathbb{R}} \bar{\rho}(x) \phi(0, x) \, dx = 0
 \]

- Non uniqueness of weak solutions. Uniqueness of entropy solutions (Oleinik 1963, Kružkov 1970): for all test functions $\phi \geq 0$ and for all $k \in \mathbb{R}$,
 \[
 \int_{\mathbb{R}} \int_{\mathbb{R}^+} \left[|\rho(t, x) - k| \phi_t(t, x) + \text{sgn}(\rho(t, x) - k) \left[f(\rho(t, x)) - f(k) \right] \phi_x(t, x) \right] \, dt \, dx + \int_{\mathbb{R}} \phi(0, x)|\bar{\rho}(x) - k| \, dx \geq 0 \tag{1}
 \]

- Initial trace. Uniqueness if (1) is satisfied with $\phi(t = 0) = 0$ and initial trace is reached in the weak-\ast L^∞-topology, provided f is not affine a.e. (Chen-Rascle 2000).

- Oleinik condition. Entropy solutions are characterised by
 \[f'(\rho)x \leq \frac{1}{t}, \quad \text{in } D'((0, +\infty) \times \mathbb{R}). \]
Constructing entropy solutions.

Regularization strategy.
- Vanishing viscosity, see Dafermos 2000 and the references therein.

Numerical methods.
- Finite differences. Glimm 1965.
- Wave front tracking method. Dafermos 1972.

Mesoscopic approximation.
- Kinetic approximation. Lions-Perthame-Tadmor 1994.

Microscopic probabilistic approach.
- Exclusion processes (list incomplete!). Rost 1982, Ferrari-Fouque 1987.

Microscopic deterministic approach.
- Sticky particles. Brenier-Grenier 1998.
- Lagrangian, follow-the-leader type systems.
 - Formal derivation: Whitham 1974, Colombo-Rossi 2013.
 - Rigorous derivation: Di Francesco-Rosini 2015.
Table of contents.

1 The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2 Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3 Remarks and future projects
The follow-the-leader particle approximation.

Fix the initial condition $\bar{\rho}$ and let L be its total mass.

- Fix $n \in \mathbb{N}$ and let $\ell = \ell_n = L 2^{-n}$ be the length of each platoon of cars.
- Consider $N + 1 = N_n + 1 = 2^n + 1$ (ordered) reference cars x_0, x_1, \ldots, x_N corresponding to the end points of the N platoons.

The cars x_0, \ldots, x_N evolve according to

$$
\dot{x}_N(t) = v_{\text{max}},
$$

$$
\dot{x}_i(t) = v \left(\frac{\ell}{x_{i+1}(t) - x_i(t)} \right), \quad i = N - 1, \ldots, 0.
$$

The initial conditions of the cars are taken by atomization of $\bar{\rho}$, i.e.

$$
x_0(t = 0) = \bar{x}_0 = \min(\text{spt}(\bar{\rho})),
$$

$$
x_i(t = 0) = \bar{x}_i = \sup \left\{ x \in \mathbb{R} : \int_{\bar{x}_{i-1}}^{x} \bar{\rho}(y) \, dy < \ell \right\}, \quad i = 1, \ldots, N.
$$
Atomization of the initial condition.

The initial condition $\bar{\rho}$ is split into N parts with equal integral ℓ.
Large particle limit.

Empirical measure

\[\tilde{\rho}^n(t) = \sum_{i=1}^{N} \ell_n \delta_{x_i(t)} \]

Discrete density

\[\hat{\rho}^n(t, x) = \sum_{i=1}^{N} y_i^n(t) \chi_{[x_i(t), x_{i+1}(t)]}(x), \quad y_i^n(t) = \frac{\ell_n}{x_{i+1}(t) - x_i(t)} \]

Goal:
Prove that \(\tilde{\rho}^n(t) \) and \(\hat{\rho}^n(t, \cdot) \) converge to the unique entropy solution \(\rho \) of the LWR equation with \(\bar{\rho} \) as initial condition.
Empirical measure and discrete density.

\[\tilde{\rho}(t) = \sum_{i=1}^{N} \ell \delta_{x_i(t)} \]

\[\hat{\rho}(t, x) = \sum_{i=1}^{N} y_i(t) \chi_{[x_i(t), x_{i+1}(t))}(x) \]
Heuristic derivation.

- Let ρ be the entropy solution of

$$
\rho_t + [\rho v(\rho)]_x = 0. \tag{2}
$$

- Let F be the cumulative distribution of ρ:

$$
F(x, t) = \int_{-\infty}^{x} \rho(t, y) dy.
$$

- Let X be the pseudo inverse of F:

$$
X(t, z) = \inf \{ x \in \mathbb{R} : F(x) > z \}, \quad z \in [0, L].
$$

- Formally, $X(t, z)$ satisfies $F(t, X(t, z)) = z$ and

$$
\begin{cases}
F_x = \rho \\
F_t = -\rho v(\rho)
\end{cases}
\Rightarrow \begin{cases}
1 = F(t, X(t, z))_z = F_x X_z = \rho X_z \\
0 = F(t, X(t, z))_t = F_t + F_x X_t = \rho (X_t - v(\rho))
\end{cases} \Rightarrow X_t = v \left(\frac{1}{X_z} \right). \tag{3}
$$

- Forward z-finite difference of (3) with step ℓ gives

$$
X_t(t, z) = v \left(\frac{\ell}{X(t, z + \ell) - X(t, z)} \right), \quad z = 0, \ldots, (N - 1)\ell. \tag{4}
$$

The follow-the-leader system (4) is the discrete Lagrangian version of (2).
The motivating problem: traffic flow
-- Macroscopic models
-- Follow the leader approximation

Convergence result
-- A preliminary lemma
-- Weak convergence
-- Uniform estimates
-- Time continuity
-- Convergence to entropy solutions

Remarks and future projects
Convergence Theorem.

Let ρ be the unique entropy solution of

$$
\rho_t + [\rho v(\rho)]_x = 0, \quad \rho(t = 0) = \bar{\rho},
$$

where $\bar{\rho}$ is in $\mathcal{M}_L \cap L^\infty(\mathbb{R})$, v is in $C^1(\mathbb{R}_+)$, strictly decreasing with $v(0) = v_{\text{max}} > 0$.

Theorem (MDF and MDR, ARMA 2015.)

If

- $\bar{\rho} \in BV(\mathbb{R})$,

or

- $\mathbb{R}_+ \ni \rho \mapsto \rho v'(\rho) \in \mathbb{R}_+$ is non-increasing.

Then,

- the sequence $\hat{\rho}^n \to \rho$ almost everywhere and in $L^1_{\text{loc}}([0, +\infty) \times \mathbb{R})$.
- the sequence $\tilde{\rho}^n \to \rho$ in the topology $L^1_{\text{loc}}([0, +\infty); d_{L,1})$, where $d_{L,1}$ is the scaled 1-Wasserstein distance.

$$
\mathcal{M}_L = \{ \rho \text{ Radon measure on } \mathbb{R} \text{ with compact support}: \rho \geq 0, \rho(\mathbb{R}) = L \}
$$

$$
d_{L,1}(\rho_1, \rho_2) = L d_1(\rho_1/L, \rho_2/L) = \| F_{\rho_1} - F_{\rho_2} \|_{L^1(\mathbb{R})}
$$
Ingredients: cumulative distributions.

\[x \mapsto \hat{F}^n(t, x) = \int_{-\infty}^x \hat{\rho}^n(t, y) dy \text{ is PLC} \]

\[x \mapsto \tilde{F}^n(t, x) = \tilde{\rho}^n(t)((-\infty, x]) \text{ is PC} \]
Ingredients: pseudo inverses.

\(\hat{X}^n \) pseudo-inverse of \(\hat{F}^n \) is \textbf{PLC}

\(\tilde{X}^n \) pseudo-inverse of \(\tilde{F}^n \) is \textbf{PC}
Ingredients: discrete Lagrangian density.

\[\rho^n = \hat{\rho}^n \circ \hat{X}^n \text{ is PC} \]
Strategy of the proof.

(i) Prove that \((\tilde{X}^n)_n\) has a strong limit \(X\) in \(L^1_{\text{loc}}([0, +\infty[\times [0, L])\), equivalent to \((\tilde{\rho}^n)_n\) converging to a measure \(\rho\) in \(L^1_{\text{loc}}([0, +\infty[; d_{L,1})\).

Prove that \((\hat{X}^n)_n\) converges in \(L^1_{\text{loc}}([0, +\infty[\times [0, L])\) to the same limit \(X\), i.e. \((\hat{\rho}^n)_n\) converges to \(\rho\) in \(L^1_{\text{loc}}([0, +\infty[; d_{L,1})\).

(ii) Prove that \(X\) has difference quotients bounded below by 1, i.e. \(\rho\) is actually in \(L^\infty\) and is a.e. bounded by 1.

This easily implies weak-* convergence of \((\tilde{\rho}^n)_n\) to a limit \(\tilde{\rho}\) in \(L^\infty\).

It remains to prove that \(\tilde{\rho} \circ F = \rho\), and that such limit is the unique entropy solution to LWR. This requires stronger estimates on \(\hat{\rho}^n\).

(iii) Case \(\bar{\rho} \in BV\): direct uniform \(BV\) estimate of \(\hat{\rho}^n\).

Case \(\bar{\rho} \in L^\infty\) + additional assumption on \(\nu\): uniform discrete Oleinik condition for \(\tilde{\rho}^n\), which implies uniform \(BV\) estimate for \(\tilde{\rho}^n\), i.e. for \(\hat{\rho}^n\).

(iv) Prove that \(\rho\) is a weak solution: it follows from letting \(n \to +\infty\) in the formulation of the FTL system

\[
\tilde{X}^n_t = \nu(\tilde{\rho}^n).
\]

(v) Prove that \(\rho\) is an entropy solution: in the discrete setting, use strong \(L^1\) compactness to pass it to the limit.
1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
Discrete maximum principle.

The global existence for the FTL system is guaranteed by the following Lemma (Discrete maximum principle):

For all \(i = 0, \ldots, N - 1 \), we have \(\ell \leq x_{i+1}(t) - x_i(t) \) for all times \(t \geq 0 \).

Proof.

- Replace \(\nu \) with its extension \(V = \nu \chi_{[0,1]} \), \(V \) is still Lipschitz.
- Assume by contradiction \(x_{i+1}(t_1) - x_i(t_1) = \ell \), and \(x_{i+1}(t) - x_i(t) < \ell \) on \(t \in (t_1, t_2) \).
- Integrate FTL on \([t_1, t]\):

\[
x_i(t) = x_i(t_1) + \int_{t_1}^{t} V \left(\frac{\ell}{x_{i+1}(\tau) - x_i(\tau)} \right) d\tau = x_i(t_1).
\]

- \(\ell > x_{i+1}(t) - x_i(t) \geq x_{i+1}(t_1) - x_i(t_1) = \ell \), contradiction!
- By uniqueness, the same holds for the system with \(\nu \).
1 The motivating problem: traffic flow
 • Macroscopic models
 • Follow the leader approximation

2 Convergence result
 • A preliminary lemma
 • Weak convergence
 • Uniform estimates
 • Time continuity
 • Convergence to entropy solutions

3 Remarks and future projects
Strong compactness of \hat{X}^n and \tilde{X}^n.

1-dimensional Wasserstein distance

F_i cumulative distribution of ρ_i

X_i pseudo-inverse of F_i

$\Rightarrow d_{L,1}(\rho_1, \rho_2) = \left\| X_1 - X_2 \right\|_{L^1([0, L])}$

Proposition

There exists a unique $X \in L_\infty(\mathbb{R}_+ \times [0, L])$, monotone non-decreasing and right continuous with respect to z, such that

$(\hat{X}^n)_n$ and $(\tilde{X}^n)_n$ converge to X in $L_{loc}^1(\mathbb{R}_+ \times [0, L])$,

and for any $t, s > 0$

$$TV\left[X(t) \right] \leq |\bar{x}_N - \bar{x}_0 + v_{\text{max}} t|,$$

$$\left\| X(t) \right\|_{L_\infty([0, L]; \mathbb{R})} \leq \max \left\{ |\bar{x}_0|, |\bar{x}_N + v_{\text{max}} t| \right\},$$

$$\int_{0}^{L} |X(t, z) - X(s, z)| \, dz \leq v_{\text{max}} L |t - s|.$$ (5c)

Moreover, $(\tilde{X}^n)_n$ converges to X a.e. on $\mathbb{R}_+ \times [0, L]$.
Strong compactness of \hat{X}^n and \tilde{X}^n.

Proof.

Fix $T > t > s \geq 0$. Estimates (5a) and (5b) are immediately proven for \tilde{X}^n.

$$\int_0^L \left| \tilde{X}^n(t, z) - \tilde{X}^n(s, z) \right| \, dz = \sum_{i=0}^{N_n-1} \ell_n \left[x_i^n(t) - x_i^n(s) \right]$$

$$= \sum_{i=0}^{N_n-1} \ell_n \left[\int_s^t v (y_i^n(\tau)) \, d\tau \right] \leq \nu_{\text{max}} L (t - s).$$

By Helly's theorem, \tilde{X}^n converges strongly as in the statement up to a subsequence. As \tilde{X}^n is monotone in n, the whole sequence converges to a unique limit X.

$$\int_0^L \left| \hat{X}^n(t, z) - \tilde{X}^n(t, z) \right| \, dz = \sum_{i=0}^{N_n-1} y_i^n(t)^{-1} \int_{i \ell_n}^{(i+1) \ell_n} [z - i \ell_n] \, dz$$

$$= \frac{\ell_n}{2} \sum_{i=0}^{N_n-1} \left[x_{i+1}^n(t) - x_i^n(t) \right] = \frac{\ell_n}{2} \left[x_{N_n}^n(t) - x_0^n(t) \right] \leq \frac{\ell_n}{2} \left[\bar{x}_{\text{max}} - \bar{x}_{\text{min}} + \nu_{\text{max}} T \right],$$

Hence, \hat{X}^n and \tilde{X}^n have the same limit.
L^∞ bound for the limit measure.

- Let $0 \leq z_1 < z_2 \leq L$.
- For n sufficiently large, let $i \ell_n \leq z_1 < (i + 1) \ell_n$ and $\ell_n j \leq z_2 < \ell_n (j + 1)$.
- The discrete maximum principle implies
 \[
 \frac{\tilde{X}^n(t, z_2) - \tilde{X}^n(t, z_1)}{z_2 - z_1} \geq \frac{x^n_j(t) - x^n_i(t)}{(j + 1) \ell_n - i \ell_n} \geq \frac{(j - i) \ell_n}{(j + 1) \ell_n - i \ell_n} = 1 - \frac{\ell_n}{z_2 - z_1}.
 \]
- By sending $n \to +\infty$, we get
 \[
 \partial_z X(t, \cdot) \geq 1 \quad \text{in } D'.
 \]
- Let $F(t, \cdot)$ be the pseudo inverse of $X(t, \cdot)$. Then $\rho = F_x$ satisfies
 \[
 \rho(t, x) \leq 1.
 \]
- $\tilde{\rho}^n$ and $\hat{\rho}^n$ converge to ρ in $L^1_{\text{loc}}([0, +\infty); d_{L,1})$.
- $\tilde{\rho}^n = \hat{\rho}^n \circ \hat{X}^n$ converges to some limit $\tilde{\rho}$ up to a subsequence in the weak-$*$ L^∞ topology.
In the sequel, we shall make an extensive use of the discrete equations

\[
\dot{y}_i^n(t) = -\frac{y_i^n(t)^2}{\ell_n} \left[v(y_{i+1}^n(t)) - v(y_i^n(t)) \right], \quad i = 0, \ldots, N - 2,
\]

\[
\dot{y}_{N-1}^n(t) = -\frac{y_{N-1}^n(t)^2}{\ell_n} \left[v_{\text{max}} - v(y_{N-1}^n(t)) \right].
\]
1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
BV contraction for BV initial data.

Proposition (BV contractivity for BV initial data)

Assume \(\bar{\rho} \in \text{BV} \). Then for any \(n \in \mathbb{N} \)

\[
\text{TV} \left[\hat{\rho}^n(t) \right] = \text{TV} \left[\tilde{\rho}^n(t) \right] \leq \text{TV} \left[\bar{\rho} \right] \quad \text{for all } t \geq 0.
\]

Proof. (We omit the index \(n \) for simplicity)

\[
\begin{align*}
\frac{d}{dt} \text{TV} \left[\hat{\rho}(t) \right] &= \frac{d}{dt} \left[y_0 + y_{N-1} + \sum_{i=0}^{N-2} |y_i - y_{i+1}| \right] \\
&= \dot{y}_0 + \dot{y}_{N-1} + \sum_{i=0}^{N-2} \text{sgn} \left[y_i - y_{i+1} \right] \left[\dot{y}_i - \dot{y}_{i+1} \right] \\
&= \left[1 + \text{sgn} \left[y_0 - y_1 \right] \right] \dot{y}_0 + \left[1 - \text{sgn} \left[y_{N-2} - y_{N-1} \right] \right] \dot{y}_{N-1} \\
&\quad + \sum_{i=1}^{N-2} \left[\text{sgn} \left[y_i - y_{i+1} \right] - \text{sgn} \left[y_{i-1} - y_i \right] \right] \dot{y}_i.
\end{align*}
\]
BV contraction for BV initial data.

Proof (continued): We analyse all the terms above, and we get

\[
\begin{align*}
1 + \text{sgn} [y_0 - y_1] \dot{y}_0 &= - \left[1 + \text{sgn} [y_0 - y_1] \right] \frac{y_0^2}{\ell} [v(y_1) - v(y_0)] \leq 0, \\
1 - \text{sgn} [y_{N-2} - y_{N-1}] \dot{y}_{N-1} &= - \left[1 - \text{sgn} [y_{N-2} - y_{N-1}] \right] \frac{y_{N-1}^2}{\ell} [v_{\text{max}} - v(y_{N-1})] \leq 0, \\
\text{sgn} [y_i - y_{i+1}] - \text{sgn} [y_{i-1} - y_i] \dot{y}_i &= \\
= - \left[\text{sgn} [y_i - y_{i+1}] - \text{sgn} [y_{i-1} - y_i] \right] \frac{y_i^2}{\ell} [v(y_{i+1}) - v(y_i)] \leq 0.
\end{align*}
\]

Therefore, \(TV [\hat{\rho}(t)] \leq TV [\bar{\rho}] \) for all \(t \geq 0 \).
Discrete Oleinik condition.

Lemma (Discrete Oleinik-type condition)

Assume \(v \) satisfies the additional assumption \(\rho v' (\rho) \) non-increasing. Then, for any \(i = 0, \ldots, N_n - 2 \) we have

\[
 t y^n_i (t) \left[v (y^n_{i+1} (t)) - v (y^n_i (t)) \right] \leq \ell_n \quad \text{for all } t \geq 0. \tag{6}
\]

Remark

Condition (6) in terms of \(x_i (t) \)

\[
\frac{v (y^n_{i+1} (t)) - v (y^n_i (t))}{x_{i+1} (t) - x_i (t)} \leq \frac{1}{t} \quad \text{for all } t \geq 0. \tag{7}
\]

(7) is a discrete analogous of

\[
v(\rho) x \leq \frac{1}{t}.
\]

However, the sharp form of the Oleinik condition for the scalar conservation law is (cf. Hoff 1983)

\[
f' (\rho) x = (v (\rho) + \rho v' (\rho)) x \leq \frac{1}{t}.
\]
Proof of the discrete Oleinik condition.

Notation: (we omit the dependence on \(n \) and \(t \))

\[
\begin{align*}
z_i & \doteq t y_i \left[v(y_{i+1}) - v(y_i) \right], & i = 0, \ldots, N - 2, \\
z_{N-1} & \doteq t y_{N-1} \left[v_{\text{max}} - v(y_{N-1}) \right].
\end{align*}
\]

The Lemma is proven once we provide the estimate \(z_i \leq \ell \) for \(i = 1, \ldots, N - 1 \).

Step 0: \(z_{N-1} \leq \ell \).

\[
\begin{align*}
\dot{z}_{N-1} &= y_{N-1} \left[v_{\text{max}} - v(y_{N-1}) \right] + t \dot{y}_{N-1} \left[v_{\text{max}} - v(y_{N-1}) \right] - t y_{N-1} v'(y_{N-1}) \dot{y}_{N-1} \\
&= y_{N-1} \left[v_{\text{max}} - v(y_{N-1}) \right] - \frac{t y_{N-1}^2}{\ell} \left[v_{\text{max}} - v(y_{N-1}) \right]^2 \\
&\quad + \frac{t v'(y_{N-1}) y_{N-1}^3}{\ell} \left[v_{\text{max}} - v(y_{N-1}) \right] \\
&\leq y_{N-1} \left[v_{\text{max}} - v(y_{N-1}) \right] \left[1 - \frac{z_{N-1}}{\ell} \right].
\end{align*}
\]

Since \(z_{N-1}(0) = 0 \), from the above estimate we get \(z_{N-1}(t) \leq \ell \) for all \(t \geq 0 \).
Proof of the discrete Oleinik condition (continued).

Step 1: \(z_{i+1} \leq \ell \Rightarrow z_i \leq \ell \).

\[
\dot{z}_i = y_i \left[v(y_{i+1}) - v(y_i) \right] + t \dot{y}_i \left[v(y_{i+1}) - v(y_i) \right] + t y_i \left[v'(y_{i+1}) \dot{y}_{i+1} - v'(y_i) \dot{y}_i \right] \\
= y_i \left[v(y_{i+1}) - v(y_i) \right] - \frac{ty_i^2}{\ell} \left[v(y_{i+1}) - v(y_i) \right]^2 \\
+ t \frac{y_i}{\ell} \left[-\frac{v'(y_{i+1}) y_{i+1}^2}{\ell} \left[v(y_{i+2}) - v(y_{i+1}) \right] + \frac{v'(y_i) y_i^2}{\ell} \left[v(y_{i+1}) - v(y_i) \right] \right] \\
= y_i \left[v(y_{i+1}) - v(y_i) \right] - \frac{y_i}{\ell} \left[v(y_{i+1}) - v(y_i) \right] z_i - \frac{v'(y_{i+1}) y_i y_{i+1}}{\ell} z_{i+1} + \frac{v'(y_i) y_i^2}{\ell} z_i.
\]

Since \(\text{sgn}_+ [z_i] = \text{sgn}_+ [v(y_{i+1}) - v(y_i)] = \text{sgn}_+ [y_i - y_{i+1}] \) for all \(t > 0 \), from the assumption on \(z_{i+1} \) we easily obtain

\[
\frac{d}{dt} [z_i]_+ = y_i \left[v(y_{i+1}) - v(y_i) \right]_+ - \frac{y_i}{\ell} \left[v(y_{i+1}) - v(y_i) \right]_+ [z_i]_+ \\
- \frac{v'(y_{i+1}) y_i y_{i+1}}{\ell} \text{sgn}_+ [z_i] z_{i+1} + \frac{v'(y_i) y_i^2}{\ell} [z_i]_+ \\
\leq y_i \left[v(y_{i+1}) - v(y_i) \right]_+ \left[1 - \frac{[z_i]_+}{\ell} \right] - v'(y_{i+1}) y_i y_{i+1} \text{sgn}_+ [z_i] + \frac{v'(y_i) y_i^2}{\ell} [z_i]_+.
\]
Proof of the discrete Oleinik condition (continued).

The additional condition on \(v \) gives \(-v'(y_{i+1})y_{i+1} \leq -v'(y_i)y_i\) for \(y_i \geq y_{i+1} \), and then

\[
\frac{d}{dt} [z_i]_+ \leq y_i \left(v(y_{i+1}) - v(y_i) \right)_+ \left[1 - \frac{[z_i]_+}{\ell} \right] - v'(y_i)y_i^2 \operatorname{sgn}_+[z_i] + \frac{v'(y_i)y_i^2}{\ell} [z_i]_+
\]

\[
= y_i \left[[v(y_{i+1}) - v(y_i)]_+ - v'(y_i)y_i \right] \left[1 - \frac{[z_i]_+}{\ell} \right].
\]

Now, as \(v' \leq 0 \), and since \(z_i(0) = 0 \), we get that \(z_i(t)_+ \leq \ell \) for all \(t \geq 0 \).

Step 2: \(z_{N-2} \leq \ell \). From analogous computations as in previous step, by using the monotonicity of \(y \mapsto y v'(y) \) and Step 0, we get

\[
\frac{d}{dt} [z_{N-2}]_+ \leq y_{N-2} \left[[v(y_{N-1}) - v(y_{N-2})]_+ - v'(y_{N-2})y_{N-2} \right] \left[1 - \frac{[z_{N-2}]_+}{\ell} \right].
\]

Again, \(v' \leq 0 \) and \(z_{N-2}(0) = 0 \) imply that \(z_{N-2}(t)_+ \leq \ell \) for all \(t \geq 0 \).

Conclusion. The estimate (6) is proven recursively: Step 2 provides the first step with \(i = N-2 \), whereas Step 1 proves that the estimate holds for all \(i \in \{0, \ldots, N-3\} \).

Remark: The discrete Oleinik condition provides a uniform \(BV \) estimate away from \(t = 0 \). Here we use that solutions have compact support.
Table of contents

1 The motivating problem: traffic flow
- Macroscopic models
- Follow the leader approximation

2 Convergence result
- A preliminary lemma
- Weak convergence
- Uniform estimates
- **Time continuity**
- Convergence to entropy solutions

3 Remarks and future projects
A technical problem.

Typically (e.g. the wave-front-tracking algorithm for conservation laws) L^1-continuity of the approximating sequence gives the desired compactness via Helly’s Theorem. Here we are able to prove such an estimate for $\bar{\rho}^n$, but not for $\hat{\rho}^n$.

Proposition (Uniform L^1-continuity in time of $\bar{\rho}^n$)

For any $\delta > 0$ we have

$$\int_0^L |\bar{\rho}^n(t, z) - \bar{\rho}^n(s, z)| \; dz \leq C|t - s|$$

for all $t, s \geq \delta$,

with some C depending on δ.

Proof.

(Sketched) A direct computation of the l.h.s. and the discrete maximum principle give

$$\int_0^L |\bar{\rho}^n(t, z) - \bar{\rho}^n(s, z)| \; dz = \sum_{i=0}^{N_n-1} \ell_n |y_i^n(t) - y_i^n(s)| \leq \int_s^t \left[TV \left(v \left(\bar{\rho}^n(\tau) \right) \right) + v_{\max} \right] \; d\tau.$$
Proposition (Uniform Wasserstein time continuity of $\hat{\rho}^n$)

For any $n \in \mathbb{N}$ we have

$$d_{L,1} \left(\hat{\rho}^n(t), \hat{\rho}^n(s) \right) \leq 2 L \, v_{\max} \, |t - s| \quad \text{for all } s, t \geq 0.$$

Proof.

$$d_{L,1} \left(\hat{\rho}^n(t), \hat{\rho}^n(s) \right) = \left\| \hat{X}^n(t) - \hat{X}^n(s) \right\|_{L^1([0,L];\mathbb{R})} = \sum_{i=0}^{N_n-1} \int_{i \ell_n}^{(i+1) \ell_n} \left[\hat{X}^n(t, z) - \hat{X}^n(s, z) \right] \, dz$$

$$= \sum_{i=0}^{N_n-1} \ell_n \left[x^n_i(t) - x^n_i(s) \right] + \sum_{i=0}^{N_n-1} \left[y^n_i(t)^{-1} - y^n_i(s)^{-1} \right] \int_{i \ell_n}^{(i+1) \ell_n} (z - i \ell_n) \, dz$$

$$= \sum_{i=0}^{N_n-1} \ell_n \int_s^t v \left(y^n_i(\tau) \right) \, d\tau + \sum_{i=0}^{N_n-1} \frac{\ell_n^2}{2} \int_s^t \frac{d}{d\tau} \left[y^n_i(\tau)^{-1} \right] \, d\tau$$

$$\leq L \, v_{\max} \, (t - s) + \frac{\ell_n}{2} \int_s^t \left[v_{\max} - v \left(y^n_0(\tau) \right) \right] \, d\tau \leq 2 L \, v_{\max} \, (t - s).$$
A generalisation of Aubin-Lions Lemma.

The desired compactness then follows from the following

Theorem (Generalized Aubin-Lions lemma, Rossi-Savaré 2003)

Let $T, L > 0$ and $I \subset \mathbb{R}$ be a bounded open convex interval. Assume $w : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous and strictly monotone function. Let $(\rho^n)_{n \in \mathbb{N}}$ be a nonnegative sequence in $L^\infty((0, T) \times \mathbb{R}; \mathbb{R})$, with compact support and fixed mass $L > 0$, such that:

- $\rho^n : (0, T) \to L^1(\mathbb{R}; \mathbb{R})$ is measurable for all $n \in \mathbb{N}$;
- $\text{spt}(\rho^n(t)) \subseteq I$ for all $t \in]0, T[$ and $n \in \mathbb{N}$;
- $\sup_{n \in \mathbb{N}} \int_0^T \left[\| w(\rho^n(t)) \|_{L^1(I; \mathbb{R})} + \text{TV}[w(\rho^n(t))] \right] dt < +\infty$;
- There exists a constant C depending only on T such that $d_{L,1}(\rho^n(s), \rho^n(t)) \leq C |t - s|$ for all $s, t \in]0, T[$ and $n \in \mathbb{N}$.

Then, $(\rho^n)_{n \in \mathbb{N}}$ is strongly relatively compact in $L^1((0, T) \times \mathbb{R}; \mathbb{R})$.
Table of contents.

1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
Another important property that we need to check is

$$\bar{\rho}(t, F(t, x)) = \rho(t, x), \quad \text{on spt}(\rho),$$

where

- $\bar{\rho}$ is the strong limit of $\bar{\rho}^n$,
- ρ is the strong limit of $\hat{\rho}^n$,
- F is the cumulative distribution of ρ.

This is ensured by the strong compactness of both $\bar{\rho}^n$ and $\hat{\rho}^n$.
Weak solutions in the limit.

Proposition

The limit function \(\rho \) of \(\hat{\rho}^n \) is a weak solution of the LWR equation with i.c. \(\bar{\rho} \).

Proof.

Let \(\phi \in C_c^\infty ([0, +\infty[\times \mathbb{R}; \mathbb{R}) \). We have

\[
\int_{\mathbb{R}^+} \int_0^L \left[v(\hat{\rho}^n(t, z)) \phi_x(t, \tilde{X}^n(t, z)) \right] dz dt = \sum_{i=0}^{N_n-1} \int_{\mathbb{R}^+} \int_i^{(i+1)\ell_n} \left[v(y^n_i(t)) \phi_x(t, x^n_i(t)) \right] dz dt
\]

\[
= \sum_{i=0}^{N_n-1} \int_{\mathbb{R}^+} \int_i^{(i+1)\ell_n} \left[\frac{d}{dt} \phi(t, x^n_i(t)) - \phi_t(t, x^n_i(t)) \right] dz dt
\]

\[
= - \int_0^L \phi(0, \tilde{X}^n(0, z)) \, dz - \int_{\mathbb{R}^+} \int_0^L \phi_t(t, \tilde{X}^n(t, z)) \, dz dt.
\]

By the strong convergence of \(\tilde{X}^n \) and \(\hat{\rho}^n \), by chancing variable \(x = X(t, z) \), and by using \(\hat{\rho}(t, \hat{F}(t, x)) = \rho(t, x) \) a.e. on \(\text{sp}(\rho) \), we get the definition of weak solution for LWR.
Entropy solutions in the limit.

Conclusion of the proof.

- We need to prove that the limit ρ is an entropy solution in the Kružkov sense.
- This is trivial in the uniformly concave case $f'' \leq -\epsilon < 0$, as in that case $f'(\rho) \approx v(\rho)$, and one can obtain the sharp Oleinik condition $f'(\rho)_x \leq 1/t$ in the limit.
- In the general case, we need to use the definition of entropy solution by Kružkov. This follows from the inequality

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}} \left[\left| \hat{\rho}^n(t, x) - k \right| \phi_t(t, x) + \text{sgn}(\hat{\rho}^n(t, x) - k) \left[f(\hat{\rho}^n(t, x)) - f(k) \right] \phi_x(t, x) \right] dx \, dt \geq o(1),$$

as $n \to +\infty$, which is very technical and is omitted here.
Table of contents.

1. The motivating problem: traffic flow
 - Macroscopic models
 - Follow the leader approximation

2. Convergence result
 - A preliminary lemma
 - Weak convergence
 - Uniform estimates
 - Time continuity
 - Convergence to entropy solutions

3. Remarks and future projects
Concluding remarks.

- We remark that our set of assumptions on \(v \) allows for degenerate concave fluxes at zero.

- In the case of linear velocity \(v \), e.g. \(v(\rho) = v_{\text{max}}(1 - \rho) \), the convergence to a weak solution can be obtained without the need of the BV estimates, as the velocity term in the pseudo-inverse PDE is linear. This is somehow intrinsic in using a Lagrangian description.

- In order to get continuity in time for the sequence \(\hat{\rho}^n \), the most natural try would be getting \(L^1 \)-continuity. Encouraged by the \(L^1 \) time equi-continuity of \(\hat{\rho}^n \), we have attempted at proving such a property in many ways without success. This is the reason why use the generalized Aubin-Lions lemma, which allows to take advantage of the Wasserstein equi-continuity of \(\hat{\rho}^n \), and still get the same \(L^1 \)-compactness in the end. The only drawback of this strategy is that we can’t get any \(L^1 \) time continuity for the limit.

- Our approach has the advantage of providing a piecewise constant approximation with a non increasing number of jumps. The price to pay for such a simplification is that we lose the classical shock structure at a microscopic level. Indeed, the explicit solution to the FTL system even for simple Riemann-type initial conditions is not immediate.
Future projects.

- Extending the results to Dirichlet boundary condition (phantom moving particles at the boundary).

- Use this strategy to attack the existence theory of similar models, e.g. with discontinuous flux.
Numerical simulation.
THANK YOU FOR YOUR ATTENTION