Role of Anticonvulsants in the Management of Posttraumatic Epilepsy

Batool F. Kirmani1*, Diana Mungall Robinson2, Ekokobe Fonkem3, Kevin Graf3 and Jason H. Huang4

1Epilepsy Center, Department of Neurology, Baylor Scott & White Health Neuroscience Institute, Texas A&M Health Science Center College of Medicine, Temple, TX, USA, 2Department of Psychiatry, University of Virginia Medical Center, Charlottesville, VA, USA, 3Division of Neuro-oncology, Department of Neurosurgery, Baylor Scott & White Health Neuroscience Institute, Texas A&M Health Science Center College of Medicine, Temple, TX, USA, 4Department of Neurosurgery, Baylor Scott & White Health Neuroscience Institute, Texas A&M Health Science Center College of Medicine, Temple, TX, USA

Posttraumatic seizures (PTS) have been recognized as a major complication of traumatic brain injury (TBI). The annual incidence of TBI in the United States is 1.7 million. The role of anticonvulsants in the treatment of posttraumatic epilepsy (PTE) remains uncertain. Based on current studies, however, anticonvulsants have been shown to reduce early PTS occurring within the first 7 days, but little to no benefits have been shown in late PTS occurring after 7 days. In this paper, we provide a mini review of the role of anticonvulsants and current advances in the management of PTE.

Keywords: posttraumatic seizures, traumatic brain injury, epilepsy, anticonvulsants, management

POSTTRAUMATIC EPILEPSY

Posttraumatic epilepsy (PTE) due to traumatic brain injury (TBI) has many causes, including wartime combat, vehicle accidents, work-related injuries, and sports injuries. Wartime combat injuries, especially blast injuries and penetrating head injuries (PTI), have shown to increase the risk of seizures, as that of blast models of TBI (1–4). The annual incidence of TBI is estimated to be 1.7 million in the United States, and seizures have been recognized as one of the major complications of this condition (5). The incidence of PTE was described by Annegers and colleagues who conducted a retrospective study in order to identify the characteristics of brain injuries that are associated with the development of seizures for 50 years. The results showed that the severity of the injury was correlated with the interval during which the risk of seizures was increased, even after more than 20 years post injury (6). The other study of interest was the Vietnam Head Injury Study (VHIS) that was a prospective, longitudinal follow-up of 1,221 Vietnam War Veterans who had PTI. The prevalence of PTE in this cohort was 45–53%. Patients with PTI carry a high risk of PTE even for decades; so, long-term medical follow-up is required (7). Similarly, the prospective study by Salazar and colleagues showed that seizure frequency in the first year predicted future severity of seizures. A higher seizure frequency was seen in the first year and was also associated with subjects having a longer duration of epilepsy and persistent seizures (8).

ROLE OF ANTICONVULSANTS IN THE MANAGEMENT OF POSTTRAUMATIC EPILEPSY

The seizures after head injury result in secondary brain damage, which involves increased intracranial pressure, increased metabolic brain demands post head injury, and excessive release of neurotransmitters,
which result in further complicating the existing damage. The main goal of anticonvulsants is to minimize the brain damage by preventing early seizures (9).

The other role of anticonvulsants apart from antiseizure activity is the neuroprotective effect, which has been demonstrated in animal models. Phenytoin, which is still considered as an agent of choice, has been shown to have neuroprotective properties in animal models. Vartanian and colleagues showed that phenytoin has been linked with decreased neuronal damage in neonatal rats following hypoxia (10). Another study by Tasker and colleagues showed similar results in rat hippocampal structures (11). Researchers suggested that neuroprotective effects were related to a blockage of voltage-dependent sodium channels during hypoxia, which decreased the spread of calcium-induced neurotoxicity following hypoxic brain injury (10, 11).

Posttraumatic seizures (PTS) are divided into two subgroups, early and late PTS. Early seizures occur within the first 7 days after brain injury, and late seizures occur after 7 days of injury. These definitions are important in terms of management and predicting prognosis of PTE (12).

The prospective randomized trials did not show promising results of the role anticonvulsants in the management of PTS. The randomized clinical trials are summarized in Table 1. No significant differences were seen in the treatment versus the non-treatment groups (13–20). Summary of selected non-randomized trials for posttraumatic seizure prevention was shown in Table 2, which also did not show a significant difference between groups (21–28).

Temkin and colleagues showed that phenytoin was considered effective in preventing provoked seizures and promising at preventing unprovoked seizures. Carbamazepine was considered effective in preventing provoked seizures after TBI, although its status was considered uncertain in preventing unprovoked seizures. Phenobarbital was considered promising at preventing provoked seizures and uncertain at preventing unprovoked seizures. Finally, the combination of phenytoin and phenobarbital was considered promising to prevent provoked and unprovoked seizures. It was also shown that provoked seizures showed promising results, but for unprovoked seizures, no drugs were shown to be effective. AEDs prescribed to prevent epileptogenesis should be avoided until clinical trials have found a drug for this purpose (29). Similarly, Chang and Lowenstein conducted a literature review of the evidence of AED prophylaxis in patients with severe TBI in order to guide better practice recommendations. Patients given phenytoin prophylaxis compared to controls had a significantly lower risk of early PTS in

Table 1 | Summary of selected randomized controlled trials (RCT) for posttraumatic seizure prevention.

Reference	Study design	Number of patients randomized (N)	Methods	Outcome
Dikmen et al. (13)	RCT	124	Phenytoin versus placebo Patients were randomized to receive either PHT or placebo for 1 year and observed one more year without medication	No significant differences seen in neuropsychological examinations in 1 year between the 2 groups
Temkin et al. (14)	RCT	123	Phenytoin versus placebo Treatment was started within 24 h of injury for 1 year and then 2 groups were followed for 2 years	Early seizures: improvement seen in the PHT GROUP Late seizures: no difference between the 2 groups
Young et al. (15)	RCT	244	Phenytoin versus placebo Treatment was started within 24 h of injury	Early seizures: no difference between the 2 groups Late seizures: study was not designed to determine late seizure outcome
Young et al. (16)	RCT	179	Phenytoin versus placebo Treatment was started within 24 h of injury and 2 groups were followed for 18 months to determine late seizure outcome	Early seizures: study was not designed to determine early seizure outcome Late seizures: no difference between the 2 groups
McQueen et al. (17)	RCT	164	Phenytoin versus placebo Two groups were followed for 2 years Occurrence of seizures was used as outcome measure	Early seizures: study was not designed to determine early seizure outcome Late seizures: no difference between the 2 groups
Szafiarski et al. (18)	RCT	52	Phenytoin versus levetiracetam Treatment was started within 24 h of injury between the 2 groups	Early seizures: no difference between the 2 groups Late seizures: study was not designed to determine late seizure outcome
Temkin et al. (19)	RCT	379	Phenytoin for 1 week versus valproate for 1 month versus valproate for 6 months Treatment was started within 24 h of injury Follow-up of these groups continued for 2 years	Early seizures: no difference among 3 groups Early seizures: no difference among 3 groups
Manaka (20)	RCT	191	Phenytoin versus no treatment Treatment was started within 4 weeks post head injury They received full dose for 2 years and tapered off in third year Follow-up in 5 years	Early seizures: study was not designed to determine early seizure outcome Late seizures: no difference among 3 groups
The role of anticonvulsants in early PTS seems favorable as compared to late PTS. Anticonvulsants are found to be effective in patients who develop PTE.

Phenytoin remains the most commonly used anticonvulsant, but the side effects do favor the use of newer anticonvulsants, e.g., levetiracetam because of lack of drug–drug interactions and availability in parenteral form. The cognitive side effects and non-linear kinetics limit the use in certain patient populations. Carbamazepine has shown to be effective but drug–drug interactions and unavailability in parenteral form limits the use.

TABLE 2 | Summary of selected non-randomized trials for posttraumatic seizure prevention.

Reference	Study design	Number of patients randomized (N)	Methods	Outcome
Servit and Musil (21)	Non-RCT	167	Treatment group (n = 143) were administered phenytoin or phenobarbital. Control group (n = 24) where conventional treatment was used. Duration: 2 years	Early seizures: not applicable. Late seizures: 25% in the control group and 2.1% in the treatment group.
Inaba et al. (22)	Prospective controlled trial	813	Participants were administered either levetiracetam or phenytoin for 7 days	Early seizures: no difference between the 2 groups. Late seizures: not applicable.
Kruer et al. (23)	Retrospective cohort	109	Retrospective review of patients who received levetiracetam or phenytoin	Early seizures: no difference between the 2 groups. Late seizures: not applicable.
Gabriel and Rowe (24)	Cohort	19	Participants were divided based on levetiracetam and phenytoin prophylaxis. Follow-up interview conducted to assess seizure outcome	Early seizures: no difference between the 2 groups. Late seizures: no difference between the 2 groups.
Jones et al. (25)	Cohort	27	Phenytoin versus levetiracetam administered during first 24 h post severe TBI	Early seizures: no difference between the 2 groups. Late seizures: not applicable.
Bhullar et al. (26)	Case-control	93	Phenytoin versus no treatment to determine occurrence of early seizures	Early seizures: no difference between the 2 groups. Late seizures: not applicable.
Formisano et al. (27)	Retrospective and prospective	137	Anticonvulsants versus no treatment. Study 1: prospective. Study 2: retrospective	Study 1: No difference between the 2 groups. Study 2: Late seizures higher in the treated group.
Watson et al. (28)	Cohort	404	Glucocorticoids administered within 1 day versus no glucocorticoids	Early seizures: not applicable. Late seizures: no difference between the 2 groups.
of this agent. Neurocognitive side effects were also seen in other older anticonvulsants, including Phenobarbital, which may mask the mental status findings in TBI patients because of the sedating effects. Valproate can cause coagulopathy which may result in intracranial hemorrhage (30, 31).

Unfortunately, limited scientific data exist, which are specific to PTE with other anticonvulsants, and there is a need for additional controlled randomized clinical trials to explore more options.

NEW DIRECTIONS IN THE MANAGEMENT OF POSTTRAUMATIC EPILEPSY

The PTE can be differentiated from PTS that are sequelae from TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).

Postrum or any surgery on the brain (36). TBI. The term PTE signifies recurrent seizure disorder due to TBI. The PTE can be differentiated from PTS that are sequelae from intracranial hemorrhage (30, 31).
Kirmani et al.

Anticonvulsants in Posttraumatic Epilepsy

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Kirmani, Robinson, Fonkem, Graf and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.