Resistance, Pharmacology Properties and Nutritional Value of a Shrub from Arid Environments *Atriplex halimus*

Zohra Mohammedi
Department of Biology, Faculty of Sciences, University of Mascara, BP 305 Route De Mamounia, 29000 Mascara, Algeria

ABSTRACT

Several of experimental studies and molecular investigations highlight the power of herbs to evidence-based medicine. In Algeria, a number of medicinal plants have been studied for the treatment of diabetes such as *Atriplex halimus* L., xerohalophyte species, growing in arid and sub-arid areas, known for its hypoglycemic activity and widely used by the local population as remedy to treat diabetes mellitus. The objective of this review is to give value to this important traditional medicinal plant as antidiabetic, to set other biological and nutritional properties and its importance as resistant shrubs and good forage in severe environmental conditions.

Key words: Medicinal plants, bioactive compounds, diabetes, *Atriplex halimus*

INTRODUCTION

The *Atriplex* genus (Amaranthaceae; formerly Chenopodiaceae), of 100-200 species, denominated saltbush is quite variable and widely distributed (Poblete et al., 1991; Djerroudi et al., 2011). These shrubs xerohalophyte are dominant in many arid and semi-arid regions of the world, particularly in saline, arid soils (Manousaki and Kalogerakis, 2009). *Atriplex* are extremely tolerant of salt content in the ground. Their name derives from the fact that they retain salt in their leaves (Djerroudi et al., 2011). Also, *Atriplex* maintains photosynthetic activity with water potentials lower than -1.15 MPa and keeps the photosynthesis/transpiration ration adequate in a range of temperatures between -30 and 40°C (Chatterton et al., 1970).

Saltbush species (*Atriplex* spp.) are use in areas affected by soil salination (Djerroudi et al., 2011), for rehabilitation of degraded lands (Abbad et al., 2004), for animal feed (Otal et al., 2010) and for the production of green forage during the dry season and to control erosion (Le Houerou, 2000).

Atriplex halimus, native of Mediterranean (Lefevre et al., 2009) is a perennial C4 shrub, highly resistant to drought (Le Houerou, 1992, 2000) and salinity (Bajji et al., 1998).

In Algeria, a great number of plants may be shown to have therapeutic value. The ethnopharmacological information from the medicinal plants used in the treatment of diabetes mellitus were reported a diversity of species such as *Zygophyllum album* L., *Atriplex halimus*, *Nigella sativa* L., *Ziziphus lotus* (L.) Lam., *Ficus carica* L., *Aloe vera* (L.) Burm. f., *Olea europaea* L., *Anabasis articulata* (Forssk) Moq., *Punica granatum* L., *Lawsonia inermis* L., *Marrubium vulgare* L., *Mentha pulegium* L., *Salvia officinalis* L., *Artemisia herba-alba* Asso, *Ajuga iva* (L.) Schreb, etc. (Kambouche et al., 2009; Rachid et al., 2012; Boudjelal et al., 2012; Houacine et al., 2012; Benammar et al., 2014; Chikhi et al., 2014). The Algerian species *Atriplex halimus*, know under the name of Guettaf or El-Gtaf, is autochthonous, grown over a wide range of soil, from
coastal areas to mountainous areas at more than 1100 m altitude (Aouissat et al., 2011). The traditional use in phytotherapy by local populations is mainly as a means of lowering hyperglycaemia and to treat anemia.

The aims of this review are to give bioactive phytochemical compounds and to highlight this plant as a species with multiple medicinal efficacies, particularly hypoglycemic effect.

BOTANICAL CHARACTERISTICS OF *Atriplex halimus*

Atriplex halimus is an evergreen shrub growing to 3 m, forming tufts up to 1-3 m in diameter. In absence of grazing, this species can grow up to 4 m in height. It is dense with alternate, ovate or diamond-shaped leaves, to 2-5 cm long, flowers in terminal panicles and reddish seeds (Franclet and Le Houerou, 1971; Quezel and Santa, 1962; Negre, 1961).

Atriplex halimus is perennial monoecious, producing unisexual staminate flowers with five tepals and unisexual pistillate flowers enclosed within two bracts (Kuhn et al., 1993). Five different floral phenotypes were observed and identified in single *Atriplex halimus* plant, which were distributed into two major architectural patterns. The first consisted of pentamerous flowers, with one whorl of yellowish tepals and lacking bracts, which were usually staminate. The second consisted of flowers substended by a pair of bracts, almost invariably limited to a single pistil (Talamali et al., 2001). This plant does not have salt glands but are characterized by the presence of several layers of balloon-like, vesiculated hairs (trichomes) on the leaf surface (Black, 1954).

BIOACTIVE COMPOUNDS

Atriplex halimus contain a wide range of bioactive metabolites. Qualitative analysis performed by Chikhi et al. (2014) in the aqueous extract demonstrated the presence of phytocomponents like tannins, flavonoids, saponins and alkaloids. These substances were potentially useful for the prevention against many human diseases and food preservation. The content of total phenolic determined in the leaves was higher than in the stems, the amount of phenolic compounds in the leaves of *Atriplex halimus*, extracted by water and methanol was 12.47 and 10.12 mg GAE/g respectively, while the amount of phenolic compounds in the stems, extracted by methanol was 3.77 mg GAE/g (Benhammou et al., 2009).

The plant contains free amino acids at different concentrations depending of ecological habitat. The percentage of proline was higher in *Atriplex halimus*. The species contain also unsaponifiable matter and two sterols (n-eicosane, n-docosane, n-tricosane, n-pentacosane, n-hexacosane, n-octacosane, squalene, n-triacontane, cholestrol and stigmasterol), unsaturated fatty acids (palitoleic, oleic, linoleic and linolenic acids) and free sugars (rhamnose, arabinose, ribose, fructose, glucose, galactose, sucrose and raffinose). Chromatographic investigation of ethyl acetate extract indicated that the plant contained vicine II and flavonol, flavones, flavanone and isoflavone glycosides (isorhamnatin-3-glucopyranoside, rutin-4',7-dimethyl ether, kaempferol-3,7-dirhamnoside-4'-methoxide, isoorientin, 4'-methoxy-7-glucoside-5-hydroxyisoflavone, naringenin-4'-orhamnopyranoside and hesperidin), phenolic acids (p-hydroxy benzoic, gallic, chlorogenic, cinnamic, p-coumaric, ferulic and salicylic acids) and alkaloids (piperine, berberine, ephedrine and palmatine) (Emam, 2011). Furthermore, the investigation on chemical bioactive compounds carried by Kabbash and Shoeib (2012) has yielded two new flavonol glycosides, designated as atriplexoside A (1) [3'-O-methylquercetin-4'-O-beta-apiofuranoside-3-O-(6''-O-alpha-rhamnopyranosyl-beta-glucopyranoside)] and atriplexoside B (2) [3'-O-methylquercetin-4'-O-(5''-O-beta-xylopyranosyl-beta-apiofuranoside)-3-O-(6''-O-alpha-rhamnopyranosyl-beta-glucopyranoside)],
isolated from aerial parts, while Clauser et al. (2013) have isolated four new glycosylated flavonoids: (1) 3',5'-dimethoxymyricetin-3-O-β-D-xylopyranosyl-7-O-fucopyranosyl-(1→3)-β-D-glucopyranoside, (2) 3'-methoxyquercetin-7-O-β-D-fucopyranosyl-(1→3)-β-d-glucopyranosyl-3-O-β-xylopyranosyl-(1→4)-β-xylopyranoside, (3) 3'-methoxyquercetin-7-O-α-L-rhamnopyranosyl-3-O-α-arabinofuranosyl-(1→6)-β-D-gluopyranoside, (4) 3',5'-dimethoxymyricetin-7-O-fucopyranosyl-(1→3)-β-D-glucopyranoside and other known phenolic compounds such as myricetin and quercetin.

RESISTANCE OF Atriplex halimus

Atriplex halimus L. originated from North Africa is well adapted to saline clay soils under less than 150 mm year⁻¹ of rainfall (Le Houerou, 1980). Ability of this species to tolerate salinity stress was investigated by Sadder et al. (2013). Adaptation to salt stress is complex and governed by molecular changes, expressed as physiological processes during plant development. Stressed plants showed increased expression of salt response genes (intermediate-associated protein, acetohydroxy acid reducto-isomerase, early-responsive to dehydration stress-related protein, ER-lumenal protein and membrane protein). Their expression was much higher at 150 Mm than 500 Mm stress level, indicating their specificity for low level salt stress. Photosynthetic activity was slightly decreased with both extended stress exposure and increased salt concentration, while total chlorophyll and proline increased under saline stress. The same authors demonstrated that *Atriplex halimus* plants possess in-built potential to regulate osmotic strength in their cells and hence have superior tolerant capacity under stress condition up to 600 Mm NaCl. Also, tolerance might be regulated by reducing growth, to save energy and gas exchange parameters, to improve water use efficiency, as well as increasing Na⁺ uptake and PEPC protein to efficiently re-fix CO₂ that passively leaked from the bundle sheath under stress conditions (Alla et al., 2011).

Mozafar and Goodin (1970) indicates that, in *Atriplex halimus*, the vesiculated hairs play a significant role to removing salt from the remainder of the leaf and preventing the accumulation of toxic salts in the parenchyma and vascular tissues. Tolerance of halophytes to the ionic and the osmotic components of salt stress in linked to their ability to synthesize osmoprotectants in order to maintain a favorable water potential gradient and to protect cellular structure (Sharma and Dietz, 2006). In the chenopodiaceae species, such as those belonging to the genus *Atriplex*, osmotic adjustment is thought to be mainly performed through the accumulation of the glycine betaine, which may protect membranes and other cellular structures against destabilization induced by salinity (Shen et al., 2002). Soluble sugars and proline accumulation play an important role to response to salinity and environmental constraints (Martinez et al., 2004; Morant-Maneau et al., 2004; Ottow et al., 2005). Djerroudi et al. (2011) demonstrated the protein synthesis and accumulation capacities in *Atriplex halimus*, stressed with sea water or combined salts (NaCl + CaCl₂). Accumulation of proline occurs first in the roots and moves towards the stems, and finally to leaves. In addition, abscisic acid is involved in both salt and osmotic stress resistance in *Atriplex halimus* through an improvement in stomatal regulation and hence, to an increased WUE (water-use efficiency) (Ben Hassine et al., 2009).

In general, the tolerance of plants of the genus *Atriplex* to the ionic components has been related to various mechanisms, such as the synthesis of osmoprotectants (glycebetaine) and polyamines (amino acids) and the excretion of trichome, which can accumulate high levels of ions (Na⁺, Cl⁻, Cd²⁺) (Lutts et al., 2004; Walker et al., 2008; Lefevre et al., 2009; Vromman et al., 2011).
In addition, Essafi et al. (2006) have studied the impact of water stress on morphological parameters, chemical composition and \textit{in vitro} organic matter digestibility of three Tunisian clones of \textit{Atriplex halimus} (G1, G2, and G3) and two Moroccan ecotypes of the same species (G4 and G5). The results showed that Biomass Dry Matter (BDM) production was significantly reduced in G4, G1 and G5 when water was limited in the T50 treatment. Nitrogen content was higher (8\%) in G4 and G2. The BDM reduction induced by water stress was 26\% compared to the control. Ash and crude fiber contents increased significantly on a dry matter basis under water stress (T50). Hemicellulose, a significant parameter that expresses well the genotype under water stress conditions, increased by 62\% and dry matter digestibility was reduced by water stress except for the G2 genotype. Vazirian et al. (2013) have evaluated \textit{Atriplex halimus} effects on some soil properties and carbon sequestration. Its showed that \textit{Atriplex} significantly increased the amount of soil organic carbon (0.56\%), organic matter (1.96\%) and Electrical Conductivity (EC) (7.64 dS m$^{-1}$) while it caused lower soil pH (7.85), soil bulk density (1.78 g cm$^{-3}$) and lime percentage (15.14\%) as compared to control. The amount of soil carbon sequestration in the \textit{Atriplex} area (30.11 t ha$^{-1}$) as compared to the control (4.35 t ha$^{-1}$) has a significant increasing. The authors suggest this species to be introduced as an effective species in order to the soil chemical and physical properties improvement and soil erosion reduction. Also, Henni and Mehdadi (2012) have performed a preliminary assessment of soil and floristic properties of degraded steppes of white wormwood in the region of Saïda (Western Algeria), rehabilitated by the planting of \textit{Atriplex halimus} subsp. \textit{schweinfurthii} and \textit{Atriplex canescens}. The results show the adaptation of these two species to edaphic and climatic conditions of the study area with a success rate above 80\%. Compared to the non rehabilitated perimeter (control), in the perimeters where the two species of \textit{Atriplex} were introduced, these authors have note improved recovery rate of vegetation, phytomass, thickness and humidity of soil.

PHARMACOLOGY PROPERTIES

Various species of \textit{Atriplex} have been used for their important medicinal values and several species have been evaluated for their antidiabetic effect, such as \textit{Atriplex halimus} (Rodriguez and Murray, 2010).

Antidiabetic properties: \textit{Atriplex halimus} is widely used in traditional medicine for its antidiabetic properties. Diabetes mellitus is a chronic metabolic disorder characterized by high levels of glucose in the blood, due to the impaired secretion of insulin or insulin insensitivity (American Diabetes Association, 2010). Experimental data on animal model for diabetogenesis proved that this plant is an extremely effective antidiabetic herb and shows an insulin potentiating effect. Saltbush lowered the blood glucose levels and enhanced insulin secretion (Adler et al., 1986).

Chikhi et al. (2014) revealed the beneficial effects of the aqueous leaf extract in reducing the elevated blood glucose level and hepatic levels in streptozotocin-induced diabetic rats. Aqueous extract produced significant antihyperglycemic activity at a concentration of 200 mg kg$^{-1}$ b.wt., in diabetic treated rats. Also, authors have not observed any toxic or lethality and confirm the non toxic nature of the \textit{Atriplex halimus} aqueous extract at the previous dose (200 mg kg$^{-1}$). The phytochemicals present in this aqueous extract are flavonoïds, saponins, tannins and alkaloids. Kadan et al. (2013) indicate that antidiabetic properties of this medicinal plant are mediated, at least partially, through mediating Glut4 translocation to the plasma membrane.
Antimicrobial and insecticidal properties: *Atriplex halimus* possess antimicrobial properties. Hexane and methanol extracts of fresh aerial parts of *Atriplex halimus* were screened *in vitro* for antibacterial activity against Gram positive and negative pathogenic bacteria (*Echerichia coli, Yersinia enterocolitica, Enterocolitica, Salmonella enterica, Klepsiella pneumonia, Klepsiella oxytoce, Bacillus cereus, Clostridium perfringens, Listeria innocua, Listeria monocytogenes, Listeria ivanovii, Staphylococcus aureus* and *Staphylococcus epidermis*). Methanol extracts showed strong antibacterial activity than hexane extracts and it is rich on secondary metabolic such as flavonoids, glycosides and alkaloids (Rahman *et al*., 2011). Furthermore, Abd-Ellatif *et al.* (2011) showed strong antifungal activity of methanolic extracts against some pathogenic fungi at 23 mg mL$^{-1}$ concentration. These authors revealed a percentage inhibition of 91.4% (*Fusarium solani*), 46.7% (*Bipolaris oryzae*), 38.9% (*Chetomium*), 33.4% (*Alternaria alternaria*), 28.6% (*Fusarium oxysporum*), 26.7% (*Pythium ultimum*), then the same authors revealed anticandidiasis activity against *Candida albicans*. This data provide a scientific support for the ethnomedicinal uses of *Atriplex halimus* in the treatment of fungal diseases and suggest its potential as antymycotic agent.

In addition, *Atriplex halimus* provide insecticidal properties, example against *Tribolium casteneum* and *Culex quinquefasciatus*. Different organic extracts (acetone, ethanol, petrolatum-ether, ether and chloroform) have proved a considerable toxicity to *Culex larvae* with LC$_{50}$ values of 115, 36, 54 and 48 ppm, respectively, a strong aphidical activity against *Aphis gossypii* with LC$_{30}$ values of 0.059 and 0.085% with ether and petrolatum-ether extracts respectively and also a toxicity has shown with ethanol extract against the cotton leaf-worm (El-Gougary, 1998).

Other medicinal properties: *Atriplex halimus* possessed antioxidant activity (Kadan *et al.*, 2013). The butanolic and ethyl acetate extracts from the leaves have more hydrogen donating ability to reducing iron and have higher DPPH radical scavenging capacities (Benhammou *et al.*, 2009). These antioxidants properties were also observed by Kabbash and Shoeib (2012) in n-BuOH-soluble fraction from aerial parts of *Atriplex halimus* and therefore, secondary metabolites of this plant present a good source for antioxidants that may be involved in the prevention of human cellular damage, caused by free radicals. Also, the same authors have highlighted antileishmanial and anti-multidrug resistance activity.

Atriplex halimus provide inhibitory activity against acetylcholinesterase (AChE). The chloroform fraction obtained from root crude extract presents the highest inhibition (74.60%) at the dose of 125 μg mL$^{-1}$, followed by ethyl acetate fraction (65.08%). The active compounds were flavonoids and saponins (Benamar *et al.*, 2010). The development of natural ACh inhibitor drugs may be used to treat some symptoms of Alzheimer’s Disease (AD).

NUTRITIONAL VALUE OF *Atriplex halimus*

Atriplex species are acceptable to many ruminants (El-Shaer and Kandil, 1990) and very appreciated by camelids (Benchaabane, 1997). *Atriplex halimus* contain 32.10% dry matter, 74.30% organic matter, 25.70% mineral, high value in crude protein (20.40%), higher levels of ash (28.03%), less crude fiber (14.8%) and 4.1% lipids (Abu-Zanat *et al.*, 2003; Selmi *et al.*, 2013). *Atriplex halimus* can yield up to 3 t DM ha$^{-1}$ on degraded and high salt soils (Nedjimi *et al.*, 2013). The comparative study of dry matter yield and total nitrogen mater of tree species of the genus *Atriplex*, which one is a local Algerian species *Atriplex halimus* and two others introduced plants: *Atriplex canescens* and *Atriplex nummularia*, originating from Australia and America, respectively was monitored by Rahmoune *et al.* (2004). Each species is grown in a separate plot, in an experimental...
nursery, in arid steppe region, in the South-West of Algeria. Authors showed that the local species *Atriplex halimus* gave an intermediate yield in dry matter and in total nitrogen matter, unlike the other two species, but this species have stable forage production throughout the two seasons (spring, summer). Authors concluded that in the case of steppe areas, which are often exposed to periods of drought, the species *Atriplex halimus* seems to be the better adapted, as it produces as much forage with a clearly better regularity.

The effects of feeding *Atriplex halimus* silage treated with two developed enzyme cocktails to sheep on feed intake, nutrient digestibility and ruminal fermentation were studied by Alsersy et al. (2015). The *Atriplex halimus* silage was treated without or with 2 L of ZAD1® (xylanase: 2.32 U mL⁻¹, α-amylase: 61.50 U mL⁻¹, cellulase: 7.05 U mL⁻¹ and protease: 29.20 U mL⁻¹) or ZAD2® (xylanase: 6.93 U mL⁻¹, α-amylase: 69.40 U mL⁻¹, cellulase: 8.16 U mL⁻¹ and protease: 12..30 U mL⁻¹)/1000 kg with 5% molasses and ensiled for 30 days. Authors concluded that *Atriplex halimus* silage treated with ZAD1® or ZAD2® improved digestibility and rumen fermentation in sheep. Also, Stringi et al. (2009) showed that lambs grazing *Atriplex halimus* supplemented with both wheat straw and barley grains had a significantly higher live weight than those grazing *Atriplex halimus* alone. The results suggest that a diet of *Atriplex halimus*, supplemented with an energy source is necessary for lambs to gain weight.

REFERENCES
Abbad, A., A. El Hadrami, I. El Hadrami and A. Benchaabane, 2004. *Atriplex halimus* (Chenopodiaceae): A halophytic species for restoration and rehabilitation of saline degraded lands. Pak. J. Biol. Sci., 7: 1085-1093.

Abd-Ellatif, S., S.M. Abdel Rahman and S.F. Deraz, 2011. Promising antifungal effect of some folkloric medicinal plants collected from El-Hammam habitat, Egypt against dangerous pathogenic and toxigenic fungi. ARPN J. Agric. Biol. Sci., 6: 25-32.

Abu-Zanat, M.M., F.M. Al-Hassanat, M. Alawi and G.B. Ruyle, 2003. Mineral assessment in *Atriplex halimus* L. and *Atriplex nummularia* L. in the arid region of Jordan. Afr. J. Range Forage Sci., 20: 247-251.

Adler, J.H., G. Lazarovici, M. Marton and E. Levy, 1986. The diabetic response of weanling sand rats (*Psammomys obesus*) to diets containing different concentrations of salt bush (*Atriplex halimus*). Diabetes Res., 3: 169-171.

Alla, M.M.N., A.H.A. Khedr, M.M. Serag, A.Z. Abu-Alnaga and R.M. Nada, 2011. Physiological aspects of tolerance in *Atriplex halimus* L. to NaCl and drought. Acta Physiologiae Plantarum, 33: 547-557.

Alsersy, H., A.Z.M. Salem, B.E. Borhami, J. Olivares and H.M. Gado et al., 2015. Effect of mediterranean saltbush (*Atriplex halimus*) ensiling with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Anim. Sci. J., 86: 51-58.

American Diabetes Association, 2010. Diagnosis and classification of diabetes mellitus. Diabetes Care, 33: S62-S69.

Aouissat, M., D.J. Walker, K. Hcini, M. Belkhodja and E. Correal, 2011. Osmolyte concentrations in *Atriplex halimus* L. and *Atriplex canescens* (Pursh) Nutt. adapted to salinity and low temperature (Chenopodiaceae). Anales Biologia, 33: 117-126.

Bajji, M., J.M. Kinet and S. Lutts, 1998. Salt stress effects on roots and leaves of *Atriplex halimus* L. and their corresponding callus cultures. Plant Sci., 137: 131-142.
Ben Hassine, A., M.E. Ghanem, S. Bouzid and S. Lutts, 2009. Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species *Atriplex halimus*. Ann. Bot., 104: 925-936.

Benamar, H., W. Rached, A. Derdour and A. Marouf, 2010. Screening of Algerian medicinal plants for acetylcholinesterase inhibitory activity. J. Biol. Sci., 10: 1-9.

Benammar, C., C. Belarbi, M. Belarbi, S. Subramaniam, A. Hichami and N.A. Khan, 2014. Antidiabetic and antioxidant activities of *Zizyphus lotus* L aqueous extracts in wistar rats. J. Nutr. Food Sci., Vol. S8. 10.4172/2155-9600.S8-004

Benzaabane, A., 1997. Biotechnologie et Securite Alimentaire. Cas de l’Atriplex Halimus dans Production de Viandes de Camelins et Caprins Dans la Vallee du Draa (Maroc). In: Actualite Scientifique: Biotechnologies, Amelioration des Plantes et Securite Alimentaire, ESTEM., (Ed.), Collection Universites Francophones, Paris, pp: 169.

Benhammou, N., F.A. Bekkara and T.K. Panovska, 2009. Antioxidant activity of methanolic extracts and some bioactive compounds of *Atriplex halimus*. Comptes Rendus Chimie, 12: 1259-1266.

Black, R.F., 1954. The leaf anatomy of Australian members of the genus *Atriplex*. I. *Atriplex vesicaria* Heward and A. *nummularia* Lindl. Aust. J. Bot., 2: 269-286.

Boudjelal, A., C. Henchiri, L. Siracusa, M. Sari and G. Ruberto, 2012. Compositional analysis and *in vivo* anti-diabetic activity of wild Algerian *Marrubium vulgare* L. infusion. Fitoterapia, 83: 286-292.

Chatterton, N.J., C.M. McKell and B.R. Strain, 1970. Intraspecific differences in temperature-induced respiratory acclimation of desert saltbush. Ecology, 51: 545-547.

Chikhi, I., H. Allali, M.E.A. Dib, H. Medjdoub and B. Tabti, 2014. Antidiabetic activity of aqueous leaf extract of *Atriplex halimus* L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Dis., 4: 181-184.

Clauser, M., S. Dall’Acqua, M.C. Loi and G. Innocenti, 2013. Phytochemical investigation on *Atriplex halimus* L. from Sardinia. Nat. Prod. Res., 27: 1940-1944.

Djerroudi, O., S. Bissati and M. Belkhodja, 2011. Biochemical response of two *Atriplex* species (*Atriplex halimus* L and *Atriplex canescens* (Pursh) Nutt.) under salt stress conditions. Int. J. Plant Physiol. Biochem., 3: 163-168.

El-Gougary, O.A., 1998. Insecticidal and synergistic activity of *Atriplex halimus* L. extracts. J. Egyptian Soc. Parasitol., 28: 191-196.

El-Shaer, H.M. and H.M. Kandil, 1990. Comparative study on the nutritional value of wild and cultivated *Atriplex halimus* by sheep and goat in Sinai. Com. Sci. Dev. Res., 29: 81-90.

Emam, S.S., 2011. Bioactive constituents of *Atriplex halimus* plant. J. Nat. Prod., 4: 25-41.

Essafi, N.E., M. Mounisif, A. Abousalim, M. Bendaou, A. Rachidai and F. Gaboune, 2006. Impact of water stress on the fodder value of *Atriplex halimus* L. N. Z. J. Agric. Res., 49: 321-329.

Franclet, A. and H.N. Le Houerou, 1971. Les Atriplex en Tunisie et en Afrique du Nord. FO:SF/Tun 11, Rapp. Tech. No. 7, FAO., Rome.

Henni, M. and Z. Mehdadi, 2012. Preliminary assessment of soil and floristic characteristics of degraded steppes of white armoise rehabilitated by the planting of *Atriplex* in the region of Saida (Western Algeria). Acta Botanica Gallica: Bot. Lett., 159: 43-52.

Houacine, C.H., A.O. Elkhawad and S.M.H. Ayoub, 2012. A comparative study on the anti-diabetic activity of extracts of some Algerian and Sudanese plants. J. Diabetes Endocrinol., 3: 25-28.

Kabbash, A. and N. Shoeib, 2012. Chemical and biological investigation of some secondary metabolites in *Atriplex halimus* growing in Egypt. Nat. Prod. Commun., 7: 1465-1468.
Kadan, S., B. Saad, Y. Sasson and H. Zaid, 2013. In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 translocation. Evid.-Based Compl. Alternat. Med., Vol. 2013. 10.1155/2013/549345

Kambouche, N., B. Merah, A. Derdour, S. Bellahouel and J. Bouayed et al., 2009. Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopodiaceae), an Algerian medicinal plant. Afr. J. Biotechnol., 8: 5589-5594.

Kuhn, U., V. Bittich, R. Carolin, H. Freitag, I.C. Hedge, P. Uotila and P.G. Wilson, 1993. Chenopodiaceae. In: The Families and Genera of Vascular Plants, Flowering Plants (Dicotyledons), Kubitzki, K., J.G. Rohwer and V. Bittrich (Eds.), 2nd Edn., Springer Verlag, Berlin, pp: 253-280.

Le Houerou, H.N., 1980. Browse in Northern Africa. In: Browse in Africa, Le Houerou, H.N. (Ed.). ILCA., Addis Ababa, pp: 55-82.

Le Houerou, H.N., 1992. The role of saltbushes (Atriplex ssp.) in arid land rehabilitation in the Mediterranean Basin: A review. Agrofor. Syst., 18: 107-148.

Le Houerou, H.N., 2000. Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Res. Rehabil., 14: 101-135.

Lefevre, I., G. Marchal, P. Meerts, E. Correal and S. Lutts, 2009. Chloride salinity reduces cadmium accumulation by the mediterranean halophyte species Atriplex halimus L. Environ. Exp. Bot., 65: 142-152.

Lutts, S., I. Lefevre, C. Delpere, S. Kivits, C. Dechamps, A. Robledo and E. Correal, 2004. Heavy metal accumulation by the halophyte species Mediterranean saltbush. J. Environ. Qual., 33: 1271-1279.

Manousaki, E. and N. Kalogerakis, 2009. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environ. Sci. Pollut. Res., 16: 844-854.

Martinez, J.P., S. Lutts, A. Schanck, M. Bajji and J.M. Kinet, 2004. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? J. Plant Physiol., 161: 1041-1051.

Morant-Manceau, A., E. Pradier and G. Tremblin, 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J. Plant Physiol., 161: 25-33.

Mozafar, A. and J.R. Goodin, 1970. Vesiculated hairs: A mechanism for salt tolerance in Atriplex halimus L. Plant Physiol., 45: 62-65.

Nedjimi, B., B. Guit, M. Toumi, B. Beladel, A. Akam and Y. Daoud, 2013. Atriplex halimus subsp. schweinfurthii (Chenopodiaceae): Description and ecology, use as forage and as a therapeutic plant. Fourrages, 216: 333-338.

Negre, R., 1961. Petite Flore des Regions Arides du Maroc Occidental. Centre National de la Recherche Scientifique, Paris.

Otal, J., J. Orengo, A. Quiles, M.L. Hevia and F. Fuentes, 2010. Characterization of edible biomass of Atriplex halimus L. and its effect on feed and water intakes and on blood mineral profile in non-pregnant Manchega-breed sheep. Small Rumin. Res., 91: 208-214.

Ottow, E.A., M. Brinker, T. Teichmann, E. Fritz and W. Kaiser et al., 2005. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates and develops leaf succulence under salt stress. Plant Physiol., 139: 1762-1772.
Poblete, V., V. Campos, L. Gonzalez and G. Montenegro, 1991. Anatomical leaf adaptations in vascular plants of a salt marsh in the Atacama Desert (Chile). Revista Chilena Historia Natl., 64: 65-75.

Quezel, P. and S. Santa, 1962. Nouvelle Flore de l’Algerie et des Regions Desertiques Meridionales. CNRS, Paris.

Rachid, A., D. Rabah, L. Farid, S.F. Zohra, B. Houcine and B. Nacera, 2012. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J. Med. Plants Res., 6: 2041-2050.

Rahman, S.M.A., S.A. Abd-Ellatif, S.F. Deraz and A.A. Khalil, 2011. Antibacterial activity of some wild medicinal plants collected from Western Mediterranean coast, Egypt: Natural alternatives for infectious disease treatment. Afr. J. Biotechnol., 10: 10733-10743.

Rahmoune, C., S. Maalem and M. Bennaceur, 2004. Etude Compartive de Rendement en Matiere Seche et en Matiere Azotee Totale de Trois Especes de Plantes Steppiques du Genre Atriplex. In: Mediterranean Rainfed Agriculture: Strategies for Sustainability, Cantero-Martinez, C. and D. Gabina (Eds.), Options Mediterraneennes: Serie A. Seminaires Mediterraneens, No. 60, CIHEAM, Zaragoza, pp: 219-221.

Rodriguez, S.A. and A.P. Murray, 2010. Antioxidant activity and chemical composition of essential oil from Atriplex undulata. Nat. Prod. Commun., 5: 1841-1844.

Sadder, M.T., F. Anwar and A.A. Al-Doss, 2013. Gene expression and physiological analysis of Atriplex halimus (L) under salt stress. Aust. J. Crop Sci., 7: 112-118.

Selmi, H., Z. Abdelwahed, A. Rouissi, B. Jemmali, L. Tayachi, M. Amraoui and H. Rouissi, 2013. Preliminary nutritional characterization of some shrubs (Atriplex halimus, Acacia cyanophylla, Medicago arborea, opuntia ficus indica) from the North of Tunisia. Int. J. Res. Agric. Food Sci., 1: 36-39.

Sharma, S.S. and K.J. Dietz, 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57: 711-726.

Shen, Y.G., B.X. Du, W.K. Zhang, J.S. Zhang and S.Y. Chen, 2002. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theoret. Applied Genet., 105: 815-821.

Stringi, L., D. Giambalvo, G. Amato and G. Di Miceli, 2009. Productivity of an Atriplex halimus shrubbery and effects of grazing on lambs. Ital. J. Anim. Sci., 8: 549-551.

Talamali, A., P. Dutuit, A. Le Thomas and R. Gorenflot, 2001. Polygamy in Atriplex halimus L. (Chenopodiaceae). Comptes Rendus l’Academie Sciences-Series III-Sciences Vie, 324: 107-113.

Vazirian, R., H.R. Asgari, M. Ownegh, M. Akbarlo and C.B. Komaki, 2013. Effect of Atriplex halimus on carbon sequestration and some soil’s chemical and physical properties (case study: Incheborun area, Golestan province). Int. J. Agric. Crop Sci., 6: 35-40.

Vromman, D., A. Flores-Bavestrello, Z. Slejkovec, S. Lapaille and C. Teixeira-Cardoso et al., 2011. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci. Total Environ., 412-413: 286-295.

Walker, D.J., P. Romero, A. de Hoyos and E. Correal, 2008. Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environ. Exp. Bot., 64: 217-224.