Birkhoff strata of the Grassmannian $\text{Gr}^{(2)}$: Algebraic curves

B.G.Konopelchenko 1 and G.Ortenzi 2

1 Dipartimento di Fisica, Università del Salento
and INFN, Sezione di Lecce, 73100 Lecce, Italy, konopel@le.infn.it
2 Dipartimento di Matematica Pura ed Applicazioni,
Università di Milano Bicocca, 20125 Milano, Italy, giovanni.ortenzi@unimib.it

February 4, 2011

Abstract

Algebraic varieties and curves arising in Birkhoff strata of the Sato Grassmannian $\text{Gr}^{(2)}$ are studied. It is shown that the big cell Σ_0 contains the tower of families of the normal rational curves of all odd orders. Strata Σ_{2n}, $n = 1, 2, 3, \ldots$ have hyperelliptic subsets W_{2n}, with the points containing hyperelliptic curves of genus n and their coordinate rings. Strata Σ_{2n+1}, $n = 0, 1, 2, 3, \ldots$ contain $(2m+1, 2m+3)$--plane curves for $n = 2m, 2m+1$ ($m \geq 2$) and $(3, 4)$ and $(3, 5)$ curves in Σ_3, Σ_5 respectively. Curves in the strata Σ_{2n+1} have zero genus.

1 Introduction

Grassmannian $\text{Gr}^{(2)}$ is a very important specialization of the universal Sato Grassmannian [1]. The most known its appearance is due to the connection with the theory of the KdV equation [2, 3]. The present paper is devoted to the study of the Grassmannian $\text{Gr}^{(2)}$ within the framework proposed recently in [4]. The main idea of this approach is to analyze algebro-geometric structures arising in Sato Grassmannian, in our case in the Birkhoff strata of $\text{Gr}^{(2)}$, without any a priori reference to any integrable system.

Recall that Sato Grassmannian Gr can be viewed as the set of closed vector subspaces in the infinite dimensional set of all formal Laurent series with coefficients in \mathbb{C} with certain special properties (see e.g. [2, 3]). Each subset $W \subset \text{Gr}$ contains points possessing an algebraic basis $(w_0(z), w_1(z), w_2(z), \ldots)$ where

$$w_n = \sum_{k=-\infty}^{n} a_k^2 z^k$$

of finite order n. Grassmannian Gr is a connected Banach manifold which exhibits a stratified structure [2, 3], i.e. $\text{Gr} = \bigcup_S \Sigma_S$ where the stratum Σ_S is a subset in Gr formed by elements of the form [1] such that possible values n are given by the infinite set $S = \{s_0, s_1, s_2, \ldots\}$ of integers s_n with $s_0 < s_1 < s_2 < \ldots$ and $s_n = n$ for large n. Big cell Σ_0 corresponds to $S = \{0, 1, 2, \ldots\}$. Other strata are associated with the sets S different from S_0.

$\text{Gr}^{(2)}$ is the subset of elements W of Gr obeying the condition $z^2 \cdot W \subset W$ [2, 3]. This condition imposes strong constraints on the Laurent series and on the structure of the strata. Namely, Birkhoff stratum Σ_S in $\text{Gr}^{(2)}$ corresponds to the sets S such that $S + 2 \subset S$, i.e. all possible S having the form [2, 3]

$$S_m = \{-m, -m+2, -m+4, \ldots, m, m+1, m+2, \ldots\}$$

with $m = 0, 1, 2, \ldots$. Codimension of Σ_m is $m(m+1)/2$. One has $\text{Gr}^{(2)} = \bigcup_{m \geq 0} \Sigma_m$.

In this paper, using the properties of the Birkhoff strata $\text{Gr}^{(2)}$, we show that the big cell Σ_0 contains a maximal closed subset W_0 which geometrically is a tower of infinite families of rational normal (Veronese) curves of all odd orders. It is demonstrated that the strata Σ_{2n}, $n = 1, 2, \ldots$ contain subsets W_{2n} closed with respect to pointwise multiplication if the coefficients of Laurent series w_n obey certain associativity constraints. Geometrically the subsets W_{2n} represent infinite families of coordinate rings for the hyperelliptic curves of genus n. Each point of the subset W_{2n} contains hyperelliptic curves and its
coordinate rings. Then it is shown that the strata Σ_3 and Σ_5 contain $(3,4)$ and $(3,5)$ degenerate plane
curves respectively. In the strata Σ_{2m+1}, $m \geq 2$ one has families of $(2m + 1, 2m + 3)$ plane curves of zero
genus.

In the second part of this work $[5]$ the tangent cohomology of the subsets W_n, and associated integrable
systems of hydrodynamical type will be studied.

The paper is organized as follows. The big cell is discussed in section 2. Stratum Σ_1 is considered in
section 3. Closed subsets W_2 in the stratum Σ_2 and corresponding elliptic curves are studied in section 4.
Stratum Σ_3 and associated $(3,4)$ curves are analysed in section 5. Section 6 is devoted to general strata
Σ_{2n}, $(n = 2, 3, 4, \ldots)$. Stratum Σ_5 and the generic strata Σ_{2n+1}, $(n = 3, 4, \ldots)$ are discussed in section
7.

2 Big cell

The principal stratum Σ_0 for which $S = \{0, 1, 2, \ldots\}$ (called also big cell) is a dense open set and it has
codimension zero$[2][3]$. It possesses a canonical basis (p_0, p_1, p_2, \ldots) where

$$p_i(z) = z^i + \sum_{k \geq 1} \frac{H_k^i}{z^k}, \quad i = 0, 1, 2, \ldots \quad (3)$$

with arbitrary H_k^i.

Accordingly to the approach proposed in $[4]$ we first look for a subset $W_0 \subset \Sigma_0$ closed with respect
to multiplication. Similar to the big cell in the general Gr one has

Lemma 2.1 Laurent series $[4]$ at fixed H_k^i obey the condition $z^2W_0 \subset W_0$ and the equations

$$p_j(z)p_k(z) = \sum_{l \geq 0} C^l_{jk}p_l(z) \quad (4)$$

if and only if

$$H_{2i}^{2n} = 0, \quad i = 1, 2, 3, \ldots, n = 0, 1, 2, \ldots, \quad (5)$$

and

$$H_{2i}^{2m+1} = H_{2k+1}^{2(m+n)+1} - \sum_{s=0}^{n-1} H_{2s+1}^{2m+1}H_{2k+1}^{2(n-s)-1} = 0, \quad (6)$$

$$H_{2i}^{2m+1} + H_{2k+1}^{2(m+n)+1} + \sum_{l=0}^{k-1} H_{2l+1}^{2m+1}H_{2(k-l)-1}^{2n+1} = 0.$$

The constants C^l_{jk} are given by

$$C_{2m,2m}^{2l} = \delta_{m+n},$$

$$C_{2m+1,2m+1}^{2l+1} = \delta_{m+n} + H^{2m+1}_{2(n-l)-1},$$

$$C_{2m+1,2m+1}^{2l} = \delta_{m+n} + H^{2m+1}_{2(m-l)+1} + H^{2m+1}_{2(n-l)+1} \quad (7)$$

and $p_{2n} = p_2^2 = z^{2n}$, $n \geq 0$.

An immediate consequence of this lemma is given by the following

Proposition 2.2 The subset $W_0 \subset \Sigma_0$ the elements of which are given by vector spaces with basis
$\langle p_i(z) \rangle_i$ and parameters H_k^i obeying the constraints $[4]$, is closed with respect to pointwise multiplication
$W_0 \cdot W_0 \subset W_0$. It is a maximal closed subset in the big cell. This subset W_0 is an infinite family of
infinite-dimensional associative commutative algebra with unity $p_0 = 1$.

2
The last statement follows from the equivalence of equations (8) to the associativity conditions
\[\sum_s C_{ij}^s C_{ks}^r - C_{ik}^s C_{js}^r = 0 \]
for the structure constants \(C_{jk}^l \).

Relations (8) written explicitly, i.e.
\[
\begin{align*}
 p_{2n}p_{2n} &= p_{2(m+n)}, \\
 p_{2n}p_{2m+1} &= p_{2(m+n)+1} + \sum_{s=0}^{n-1} H_{2s+1}^{2m+1} p_{2(n-s)-1}, \\
 p_{2n+1}p_{2m+1} &= p_{2(m+n+1)} + \sum_{s=0}^{m} H_{2s+1}^{2n+1} p_{2(m-s)} + \sum_{s=0}^{n} H_{2s+1}^{2m+1} p_{2(n-s)},
\end{align*}
\]

imply that
\[
\begin{align*}
 z^2 &= p_1^2 - 2H_{1}^1, \\
 p_3 &= p_1^3 - 3H_{1}^1 p_1, \\
 p_5 &= p_1^5 - 5H_{1}^1 p_1^3 + \frac{15}{2} H_{1}^{12} p_1, \\
 \ldots
\end{align*}
\]
or equivalently
\[
\begin{align*}
 \lambda &= p_1^2 - 2H_{1}^1, \\
 p_{2n+1} &= \alpha_n(\lambda)p_1
\end{align*}
\]
where \(\lambda = z^2 \) and \(\alpha_n(\lambda) = \prod_{s=1}^{n} \left(\lambda - \frac{H_{1}^{2(n-s)+1}}{2(n-s)^2+1} \right) \).

Similar to (9) one can treat \(\lambda, p_1, p_3, \ldots \) as the affine coordinates. So one has the following geometrical interpretation of the subset \(W_0 \).

Proposition 2.3 Big cell \(\Sigma_0 \) contains an infinite-dimensional algebraic variety \(\Gamma_0 \) with the ideal
\[
\langle \lambda - p_1^2 + 2H_{1}^1, i_1^{(2)}, i_2^{(2)}, \ldots \rangle
\]
where \(i_1^{(2)} = p_{2n+1} - \alpha(\lambda)p_1 \) and the variables \(H_{1}^j \) obey the constraints (8). This variety \(\Gamma_0 \) is an infinite tower of infinite families of rational normal (Veronese) curves of all odd orders.

Formulas (10) represent a canonical parameterization of rational normal curves (see e.g. [6]). For instance, the curves defined by the first two equations (10) is the classical twisted cubic in the three-dimensional space with the coordinates \(\lambda, p_1, p_3 \).

There is an infinite set of independent variables among all \(H_{1}^j \) constrained by conditions (9). A natural set of independent \(H_{1}^j \) is given by \(H_{1}^1, H_{1}^3, H_{1}^5, \ldots \).

It is also easy to see using (11) that the ideal \(i_0^{(2)} \) contains singular “hyperelliptic” curves of genus zero given by the equations
\[
p_{2n+1}^2 = (\lambda + 2H_{1}^1)\alpha_n(\lambda)^2.
\]

Infinite family of algebraic varieties described in Proposition 2.3 is in its turn the algebraic variety in the affine space with coordinates \(p_i, \) \((i = 1, 2, 3, \ldots) \) and \(H_{j}^k, (j, k = 1, 2, 3, \ldots) \) defined by the quadrics
\[
f_{jk} = p_jp_k - p_{j+k} - \sum_{s=0}^{k} H_{j}^s p_s - \sum_{s=0}^{j} H_{k}^s p_s = 0
\]
and equations (9).

We emphasize that an infinite tower of normal rational curves for fixed \(H_{1}^j \) is in correspondence with a point of the subset \(W_0 \).
3 Stratum Σ_1

The stratum Σ_1 is the lowest stratum different from the big cell and it corresponds to $m = 1$ and $S = \{-1, 1, 2, \ldots\}$. Due to the absence of zero order element w_0 the canonical basis is of the form

$$p_i(z) = z^i + H_0^i + \sum_{k \geq 1} H_k^i \frac{z^k}{k!}, \quad i = 1, 2, 3, \ldots . \quad (15)$$

Since $\langle p_i \rangle_{i=-1,1,2,\ldots}$ one should consider only p_j with $j = 1, 2, 3, \ldots$

Lemma 3.1 A set W_1 of Laurent series (15) obey the condition $z^2 \cdot W_1 \subset W_1$ and the equations

$$p_j(z)p_k(z) = \sum_{l \geq 1} C_{jk}^l p_l(z), \quad j, k = 1, 2, 3, \ldots \quad (16)$$

if and only if the parameters H_k^i satisfy the constraints

$$H_{0}^{2j+k} + H_{0}^{2j}H_{0}^{2k} = 0,$$

$$H_{0}^{2(k+j)+1} + H_{0}^{2k+1}H_{0}^{2j+1} + \sum_{l=0}^{j-1} H_{2l+1}^{2k+1}H_{0}^{2(j-l)-1} = 0,$$

$$H_{2}^{2k+1} + H_{0}^{2k}H_{2}^{2j+1} - H_{0}^{2j}H_{0}^{2k+1} - H_{0}^{2j}H_{2}^{2k+1} - H_{0}^{2k}H_{2}^{2j+1} - \sum_{s=0}^{j-1} H_{2s+1}^{2k+1}H_{2s+1}^{2(j-s)-1} = 0,$$

$$H_{0}^{2j+1} + H_{0}^{2k}H_{2}^{2j+1} + \sum_{l=0}^{k-1} H_{0}^{2j+1}H_{0}^{2s+1} + \sum_{s=0}^{j-1} H_{0}^{2s}H_{2}^{2k+1} = 0,$$

$$H_{2}^{2j+1} + H_{2}^{2k+1}H_{2}^{2j+1} + \sum_{l=0}^{j-1} H_{2l+1}^{2j+1}H_{2s+1}^{2k+1} - \sum_{s=0}^{k-1} H_{2s+1}^{2j+1}H_{2s+1}^{2(l-s)-1} - \sum_{s=0}^{j-1} H_{2s+1}^{2k+1}H_{2s+1}^{2(l-s)-1} = 0$$

and

$$C_{2j,2k}^{2l} = \delta_{j+k}^l + H_{0}^{2j}H_{0}^{2k}H_{2}^{2l}, \quad C_{2j,2k+1}^{2l+1} = \delta_{j+k}^l + H_{0}^{2j}H_{0}^{2k}H_{2}^{2l+1}, \quad C_{2j+1,2k+1}^{2l+1} = H_{0}^{2k+1}H_{0}^{2j}H_{2}^{2l}, \quad C_{2j+1,2k+1}^{2l} = \delta_{j+k+1}^l + H_{0}^{2j+1}H_{0}^{2k+1}H_{2}^{2l} + H_{2}^{2k+1}H_{2}^{2l+1} \quad (18)$$

The analysis of the constraints (17) gives

$$H_{i}^{2n} = 0, \quad n, i = 1, 2, 3, \ldots \quad (19)$$

and

$$H_{0}^{2n} = -(-H_{0}^{2})^{n}, \quad n = 1, 2, 3, \ldots \quad (20)$$

i.e.

$$p_{2n}(z) = z^{2n} - (-H_{0}^{2})^{n}, \quad n = 1, 2, 3, \ldots \quad (21)$$

For the elements p_{2n+1} one instead has

$$p_2 = p_1^2 - 2H_0^1 p_1, \quad p_3 = p_1^3 - 3H_0^1 p_1^2 - (3H_1^1 - 3H_0^1)^2 p_1, \quad \ldots . \quad (22)$$

Similar to the big cell one has a subset W_1 in Σ_1 closed with respect to multiplication which algebraically is an infinite-dimensional commutative associative algebra A_1 with the structure constants given by (18).
in the basis (17). Geometrically W_1 is an infinite tower of families of rational normal curves of all odd orders passing through the origin $p_1 = p_2 = p_3 = \cdots = 0$.

The fact that for the stratum Σ_1 one has results which are similar to those for big cell is not that surprising. Indeed, taking into account the relations (17), namely

$$2H_1^2 - H_0^2 + H_1^2 = 0, \quad H_0^n + H_0^1H_0^2 + H_0^1H_1^1 = 0$$

and the formula (21), i.e. $p_2 = z^2 + H_0^2$, one can rewrite equations (22) as

$$p_3 - H_0^3 = (p_1 - H_0^1)^3 - 3H_1^1(p_1 - H_0^1).$$

In the variables

$$\tilde{p}_1 = p_1 - H_0^1, \quad \tilde{p}_3 = p_3 - H_0^3$$

the equations (24) the first two equations (11) for the big cell. It is a direct check that in the variables

$$\tilde{p}_k = p_k - H_0^k, \quad k = 1, 2, 3, \ldots$$

all equations (22) coincide with equations (11) for the big cell.

Thus the result for the stratum Σ_1 and big cell are connected by a simple change of variables (26). Similar situation take place for other strata Σ_m with odd m.

4 Stratum Σ_2 and elliptic curves

For the stratum Σ_2 with $S = \{-2, 0, 2, 3, 4, \ldots\}$ the positive order elements of the canonical basis are given by

$$p_0 = 1 + \sum_{k \geq 1} \frac{H_0^k}{z^k},

p_j = z^j + H_1^j z + \sum_{k \geq 1} \frac{H_k^j}{z^k}, \quad k, j = 2, 3, 4, \ldots.$$ (27)

First we note that $(p_2 - z)^2 \notin \langle p_i \rangle_{i=-2,0,2,3,\ldots}$ and the analogue of the Lemmas (2.1) and (3.1) is given by

Lemma 4.1 A set W_2 of Laurent series (27) obey the equations

$$p_j(z)p_k(z) = \sum_{l=0,2,4,\ldots} C^l_{jk}p_l(z)$$

and the condition $z^2W_2 \subset W_2$ is satisfied if and only if

$$H_k^{2n} = 0, \quad k = -1, 1, 2, 3, \ldots, \quad n = 0, 1, 2, \ldots,$$

$$H_k^{2n+1} = 0, \quad n, k = 1, 2, 3, \ldots$$

and

$$H_k^{2m+1} - H_{2k+1}^{2(m+n+1)} - \sum_{s=1}^{n-2} H_{2s+1}^{2m+1}H_{2k+1}^{2(n-s)+1} = 0,$$

$$H_k^{2m+1} - H_{2k+1}^{2(n+k+1)} + \sum_{s=1}^{k} H_{2s+1}^{2m+1}H_{2(l-s)-1}^{2n+1} = 0.$$

(29) (30)

Constants C^l_{jk} are given by

$$C^l_{2n, 2m} = \delta^l_{m+n},

C^l_{2n, 2m+1} = \delta^l_{m+n} + H_{2(n-l)-1}^{2m+1},

C^l_{2n+1, 2m+1} = \delta^l_{m+n+1} + H_{2(n-l)-1}^{2n+1} + H_{2(n-l)-1}^{2m+1} + H_{2(n-l)-1}^{2m+1} + H_{2(n-l)-1}^{2m+1} \delta^l_{2},$$

$$+ (H_{2(n-l)-1}^{2n+1} + H_{2(n-l)-1}^{2m+1}) \delta^l_{0}.$$ (31)
which imply

\[p_{2n}p_{2m} = p_{2(m+n)}, \]
\[p_{2n}p_{2m+1} = p_{2(m+n)+1} + \sum_{k=-1}^{n-2} H_{2k+1}^{2m+1} p_{2(n-k)-1}, \]
\[p_{2n+1}p_{2m+1} = p_{2(m+n+1)} + \sum_{k=-1}^{m} H_{2k+1}^{2m+1} p_{2(m-k)} + \sum_{k=-1}^{n} H_{2k+1}^{2m+1} p_{2(n-k)} \]

\[+ H_{1}^{2m+1} H_{-1}^{2m+1} p_2 + (H_{-1}^{2n+1} H_{1}^{2m+1} + H_{1}^{2n+1} H_{-1}^{2m+1}) \]

and \(p_{2n} = z^{2n}, n \geq 0 \).

As a consequence, one has

Proposition 4.2 The stratum \(\Sigma_2 \) contains a maximal closed subset \(W_2 \) whose elements are vector spaces with basis \(H_i^j \) obeying the constraints \((24), (30) \) and such that \(z^2 W_2 \subset W_2 \).

The relations (28) readily imply that all \(p_i(z) \) are generated by two elements \(z^2 \) and \(p_3 \).

Using (32) one can show that the set of independent relations (28) is given by

\[p_3^2 = \lambda^3 + 2H_{-1}^2 \lambda^2 + \left(H_{1}^{2} + 2H_{-1}^{2} \right) \lambda + 2H_{-1}^{1} H_{1}^{3} + 2H_{3}^{2} \]

(33)

and

\[p_{2n+1} = \left(\lambda^{n-1} - \sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^i \right) p_3 \]

(34)

This relation is obtained using iteratively the formula

\[p_{2n+1} = \lambda p_{2n-1} + H_{-1}^{2n-1} p_3. \]

(35)

Proposition 4.3 Subset \(W_2 \) is an infinite family of infinite-dimensional commutative associative algebra with the basis \(1, p_2, p_3, p_4, \ldots \) isomorphic to \(\mathbb{C}[\lambda, p_3]/C_6 \)

where

\[C_6 = p_3^2 - \lambda^3 - 2H_{-1}^2 \lambda^2 - \left(H_{1}^{2} + 2H_{-1}^{2} \right) \lambda - (2H_{-1}^{1} H_{1}^{3} + 2H_{3}^{2}). \]

(36)

Proof Associativity follows from the fact that the conditions (29) and (30) are equivalent to the condition

\[\sum_{s=0,2,3,\ldots} C_{jk}^m C_{m}^{s} = \sum_{s=0,2,3,\ldots} C_{jk}^{s} C_{s}^{r} \quad j, k, l, r = 0, 2, 3, \ldots \]

(37)

for the constants \(C_{jk}^m \) given by (32) \(\square \)

Treating now \(\lambda, p_3, p_5 \) and \(H_i^j \) as affine coordinates one has the following geometrical interpretation of the subset \(W_2 \).

Proposition 4.4 The subset \(W_2 \) is an infinite dimensional algebraic variety \(\Gamma_2 \) in the affine space with coordinates \(p_j, (j = 2, 3, 4, \ldots), H_i^j, (j = 3, 5, 7, \ldots, k = -1, 1, 3, 5, \ldots) \) defined by the intersection of quadrics

\[f_{jk} = p_j p_k - p_{j+k} - \sum_{l=0,2,3,\ldots} C_{jk}^{l} p_l(z) = 0 \]

(38)

and quadrics (37). An ideal \(I^{(2)} \) of this variety is

\[I^{(2)} = \langle C_6, t_1^{(2)}, t_5^{(2)}, t_7^{(2)}, \ldots \rangle \]

(39)

where \(t_{2n+1}^{(2)} = p_{2n+1} - \left(\lambda^{n-1} - \sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^i \right) p_3 \).

(36)
Since $W_2 \sim \mathbb{C}[\lambda, p_3]/C_6$ one can view Γ_2 as the infinite family of coordinate rings of the elliptic curve $C_6 = 0$ parameterized by the variables H_k^i obeying the conditions (29) and (30). Analyzing these conditions one concludes that there is an infinite set of independent variables among all H_k^i, for example $H_1^3, H_2^3, H_3^3, H_5^3, \ldots$.

It is a direct check that the curve $C_6 = 0$ has genus one. So the stratum Σ_2 contains an infinite family of elliptic curves parameterized by H_1^3, H_2^3, H_3^3.

We emphasize that each of these elliptic curves belong to a point of the subset W_2. So, following [4], such points of Σ_2 will be called elliptic points and the whole subset W_2 an elliptic subset.

The ideal $I^{(2)}$ contains singular hyperelliptic curves of all orders and of genus 1 given by

$$p_{2n+1}^2 = \left(\lambda^{n-1} - \sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^i \right)^2 \left(\lambda^3 + 2H_{-1}^3 \lambda^2 + \left(H_{-1}^3 + 2H_{1}^3\right) \lambda + 2H_{-1}^3H_{1}^3 + 2H_{3}^3 \right)$$ \hspace{1cm} (40)

5 \textbf{Stratum Σ_3: $(3,4)$ curves of zero genus}

Next case corresponds to $S = \{-3, -1, 1, 3, 4, 5, \ldots\}$. Due to the absence of elements of orders zero and two positive elements of the canonical basis are given by

$$p_1 = z + H_0^3 + \sum_{k \geq 1} \frac{H_k^4}{z^k},$$

$$p_j = z^j + H_{-2}^j z^2 + H_0^4 + \sum_{k \geq 1} \frac{H_k^4}{z^k}, \quad j = 3, 4, 5, \ldots.$$ \hspace{1cm} (41)

Since p_i^2 has order two a closed subspace can be generated only by the elements p_3, p_4, p_5, \ldots.

\textbf{Lemma 5.1} A set W_3 of Laurent series $p_j(z), j = 3, 4, 5, \ldots$ obey the equations

$$p_j(z) p_k(z) = \sum_{l=3,4,5,\ldots} C_{j,k}^{l} p_l(z), \quad j, k = 3, 4, 5, \ldots$$ \hspace{1cm} (42)

and the condition $z^2 W_3 \subset W_3$ if and only if

$$p_j = z^j + H_{-2}^j z^2 + H_0^4, \quad j \geq 5,$$ \hspace{1cm} (43)

$$H_{-2}^j + H_{-2}^{j-2} H_0^4 - H_0^{j-2} = 0,$$ \hspace{1cm} (44)

and

$$H_0^4 + 2H_0^3 H_{-2}^2 - H_{-2}^2 H_0^4 - H_{-2}^4 = 0,$$

$$H_0^{4j} - H_{-2}^{2j} H_0^4 - H_{-2}^{4j} H_0^4 = 0.$$ \hspace{1cm} (45)

\textbf{Proof} Let us begin with the condition $z^{2n} W_3 \subset W_3$. One has

$$z^{2n} p_m(z) = z^{2n+m} + \cdots + H_{2n-1}^m z^2 + \cdots$$ \hspace{1cm} (46)

In W_3 there is no element which contains the term of order one. Hence, with necessity $H_{2n-1}^m = 0$ for all $n = 1, 2, 3, \ldots$ and $m = 3, 4, 5, \ldots$, i.e.

$$p_j(z) = z^j + H_{-2}^j z^2 + H_0^4 + \sum_{n \geq 1} \frac{H_k^4}{z^{2n}}, \quad j = 3, 4, 5, \ldots.$$ \hspace{1cm} (47)

Then considering the product $p_{2k+1} p_j$ one has

$$p_{2k+1}(z)p_j(z) = z^{2k+j+1} + \cdots + H_{2k}^j z^2 + \cdots.$$ \hspace{1cm} (48)
The terms of the order z^i, $i \geq 3$ can be represented as a superposition of $p_3, p_4, \ldots, p_{2k+j+1}$ giving the constants C^i_{jk} while the coefficient in front of z should vanish. Hence $H^i_{2k} = 0$ for all $k = 1, 2, 3, \ldots$. So

$$p_j = z^j + H^i_{-2}z^2 + H^i_0 \quad j \geq 3. \quad (49)$$

The coefficients H^i_{-2} and H^i_0 are not all independent. Indeed, the relations

$$z^2p_3 = p_5 + H^i_{-2}p_4,$$

$$z^2p_4 = p_6 + H^i_{-2}p_4,$$

$$z^4p_3 = pr + H^i_{-2}p_6 + H^i_0p_4,$$

$$\ldots$$

imply

$$H^5_{-2} - H^5_0 + H^3_{-2}H^4_{-2} = 0,$$

$$H^5_0 + H^3_{-2}H^4_0 = 0,$$

$$H^6_{-2} - H^4_0 + H^5_{-2} = 0,$$

$$H^6_0 + H^3_{-2}H^4_0 = 0,$$

$$H^7_{-2} + H^3_{-2}H^6_{-2} + H^3_0H^4_{-2} = 0,$$

$$H^7_0 + H^3_{-2}H^6_0 + H^3_0H^4_0 = 0,$$

$$\ldots$$

and so on. The relations (51) are the lowest members of the relations (44), Using these relations, one can express all H^i_{-2}, H^i_0 with $j = 5, 6, 7, \ldots$ in terms of H^3_{-2}, H^3_0 and H^4_{-2}, H^4_0.

Furthermore, the vanishing of the coefficients in front of z^a and z^0 in the relation

$$p_3^2 - \left(p_6 + 2H^3_{-2}p_5 + H^5_{-2}p_4 + 2H^3_0p_3 \right) = 0 \quad (52)$$

is equivalent to the conditions

$$H^6_{-2} - H^6_{-2}H^5_{-2} - H^3_{-2}H^4_{-2} = 0,$$

$$H^6_0 - H^6_0 - 2H^3_{-2}H^3_0 - H^3_{-2}H^4_0 = 0. \quad (53)$$

Finally taking into account (51), one gets the constraints (55). So there are only two independent parameters among all coefficients H^i_{-2} and H^i_0. The simplest choice is to take H^3_{-2} and H^4_{-2} as independent variables. At last, the direct calculation gives

$$C^i_{jk} = \delta^i_{j+k} + H^k_{-2}\delta^j_{j+2} + H^k_0\delta^j_{j} + H^k_{-2}\delta^j_{k+2} + H^i_0\delta^i_{k} + H^i_{-2}H^k_{-2}\delta^i_{j}. \quad (54)$$

An immediate consequence of the Lemma (51) is given by

Proposition 5.2 The stratum Σ_3 contains the subset W_3 closed with respect to pointwise multiplication $W_3 \cdot W_3 \subset W_3$. Elements of W_3 are vector spaces with basis $(p_i)_i$ of the form (43) with H^i_{-2}, H^i_0 obeying the constraints (44) and (47). The subset W_3 is an infinite family of infinite-dimensional associative and commutative algebra A_3 with the basis (43) and structure constants (54).

A geometrical interpretation of W_3 is provided by

Proposition 5.3 The subset W_3 can be viewed as the two parametric family of algebraic varieties defined by the relations

$$p_{j+k} - \sum_l C^l_{jk}p_l = p_{j+k} + H^k_{-2}p_{j+2} + H^k_0p_j + H^j_{-2}p_{k+2} + H^j_0p_k + H^j_{-2}H^k_{-2}p_4 = 0. \quad (55)$$
The ideal of this family contains the plane (3,4) curve (in the terminology of [7]) defined by the equation

\[
p_3^3 - p_3^4 + 4H^3L_{2p_3p_4} - \left(3H^3L_{2p_3} - 2H^3L_{2p_4}\right)p_3^2p_4 - \left(-4H^3L_{0} + 2H^3L_{2p_2}\right)p_3^3
\]

\[
- \left(3H^3L_{0} + 4H^3L_{2} + H^3L_{2} + H^3L_{2}H^3L_{2} - 2H^3L_{2}H^3L_{2}\right)p_3^2 - \left(4H^3L_{2p_3} + 8H^3L_{2p_4} - 2H^3L_{2p_2}\right)p_3^4
\]

\[
- 6H^3L_{2p_3} - 2H^3L_{2p_4} + H^3L_{2p_3}H^3L_{2p_4} - 2H^3L_{2p_2}H^3L_{2p_4} - 2H^3L_{2p_3}H^3L_{2p_2}
\]

\[
+ H^3L_{2p_3}H^3L_{2p_4} + H^3L_{2p_3} - 2H^3L_{2p_4}
\]

\[
p_3^2 - \left(3H^3L_{0} - 2H^3L_{2p_3} - 2H^3L_{2p_4} - 2H^3L_{2p_2}\right)p_3
\]

\[
+ 3H^3L_{2p_3} + 2H^3L_{2p_4} - 8H^3L_{2p_2} - 3H^3L_{2p_3}H^3L_{2p_4} - 2H^3L_{2p_2}H^3L_{2p_4} - 2H^3L_{2p_3}H^3L_{2p_2}
\]

\[
- 2H^3L_{2p_3}H^3L_{2p_4} - 2H^3L_{2p_3}H^3L_{2p_2}
\]

\[
= 1 + \sum_{k=1}^{\infty} \frac{H^3L_{k}}{z^k}
\]

(56)

where \(H^3L_{2},H^3L_{2},H^3L_{2}\) and \(H^3L_{0}\) obey the constraints [13]. The (3,4) curve \((56)\) have zero genus.

Proof By direct calculation with the use of polynomial form \((43)\) of \(p_j\).

Comparing the results of this and previous section, one observes an essential difference between the geometrical properties of the subspaces \(W_2\) and \(W_3\). This is due to the quite different form of the Laurent series belonging to \(W_l\) which is the consequence of a different situation with elements of the first order in \(z\). Namely, though in both cases \(W_l\) does not contain the element \(p_1(z)\). The absence in \(W_3\) of the terms of order \(z^j\) in \(p_j(z)\) leads to a strong constraints leading to the polinomiality of \(p_j(z)\).

We note also that due to the presence of the element \(p_0 = 1\) of zero order in \(W_0\) one has \(z^2 \in W_2\) while \(z^2 \notin W_3\). As a consequence, for instance, one can choose \(p_3\), \(p_4\) and \(z^2p_3\) as the generators of the algebra \(A_3\) instead of \(p_3\), \(p_4\) and \(p_5\).

A way to avoid the polinomiality of all \(p_j(z) \in W_0\) would be to relax the condition \(z^2W_3 \subset W_3\). Since \(z^2\) is not an element of \(W_3\) it would be natural not to require that the product of \(z^2\) and an element of \(W_3\) belongs to \(W_3\), but instead to require that \(z^2W_3 \subset W_3\). The presence of the element \(p_1(z)\) in \(\Sigma_0\), allows us to avoid immediate constraints on \(p_j(z)\) followed from the relations of the type \((46)\) and \((48)\). for instance, instead of the conditions \((50)\) one gets the following ones

\[
z^2p_3 - p_5 - H^3L_{2p_4} = H^3L_{p_1},
\]

\[
z^2p_4 - p_6 - H^3L_{2p_4} = H^3L_{p_1},
\]

and so on. In virtue of the equations of this type one obtains an infinite set of relations for \(H^3L_{k}\). Computer analysis strongly indicates that these conditions again lead to the constraint \(H^3L_{k} = 0\), \(k = 1,2,3,\ldots\), \(j = 3,4,5,\ldots\), i.e. to the polinomiality of all \(p_j(z)\).

6 Strata \(\Sigma_2n\). Hyperelliptic curves of genus \(n\)

Stratum \(\Sigma_2n\) with arbitray \(n\) is characterized by \(S = \{-2n,-2n+2,-2n+4,\ldots,0,2,4,\ldots,2n,2n+1,2n+2,\ldots\}\). So it does not contain, in particular, \(n\) elements of the order \(1,3,5,\ldots,2n-1\) and the positive order elements of the canonical basis are given by

\[
p_0 = 1 + \sum_{k=1}^{\infty} \frac{H^0L_{2k}}{z^k},
\]

\[
p_j = z^j + \sum_{k=0}^{j-1} H^3L_{2k-1}z^{2k+1} + \sum_{k=1}^{j} H^3L_{2k}, \quad j = 2,4,6,\ldots,2n-2,
\]

\[
p_j = z^j + \sum_{k=0}^{n-1} H^3L_{2k-1}z^{2k+1} + \sum_{k=1}^{\infty} H^3L_{2k}, \quad j = 2n,2n+1,2n+2,2n+3,\ldots.
\]

As in the previous cases the \(p_j\) with negative \(j\) do not should be taked into account and one has
Lemma 6.1 A set \(W_{2n} \) at fixed \(H_k \) of Laurent series obey the condition \(z^2 W_{2n} \subset W_{2n} \) and equations

\[
p_j(z) p_k(z) = \sum_l C_{j,k}^l p_l(z), \quad j, k, l = 0, 2, 4, \ldots, 2n, 2n+1, 2n+3, \ldots
\]

if and only if

\[
H_k^{2m} = 0, \quad m = 0, 1, 2, \ldots, k = -2n+2, -2n+4, \ldots, -2, 0, 2, 3, \ldots
\]

\[
H_{2k}^{2m+1} = 0, \quad m = 0, 1, 2, \ldots, k = -n, -n+1, -n+2, \ldots
\]

and

\[
H_{2(l+k)+1}^{2j+1} - H_{2(l+k)+1}^{2(j+k)+1} - \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} H_{2s+1}^{2(k+s)+1} = 0,
\]

\[
H_{2(l+j)+1}^{2j+1} + H_{2(l+j)+1}^{2k+1} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} H_{2s+1}^{2(k+s)+1} = 0.
\]

Rewriting equation (59) separately for \(p_j \) with even and odd \(j \), i.e.

\[p_{2j} p_{2k} = p_{2(j+k)},\]

\[p_{2j} p_{2k+1} = p_{2(j+k)+1} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} p_{2(k+s)+1},\]

\[p_{2j+1} p_{2k+1} = p_{2(j+k+1)} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} p_{2(j+s)+1} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2k+1} p_{2(k+s)+1} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} H_{2s+1}^{2k+1} p_{2(j+s)+1} + \sum_{s=-n}^{s=-n} H_{2s+1}^{2j+1} H_{2s+1}^{2k+1} p_{2(j+s)+1},\]

one concludes that

\[p_{2m} = (z^2)^m, \quad p_{2m+1} = \alpha(\lambda) p_{2m+1}, \quad m = n+1, n+2, \ldots, \lambda = z^2\]

for suitable \(\alpha(\lambda) \in \mathbb{C}[\lambda] \). Moreover

\[p_{2n+1}^2 = \lambda^{2n+1} + \sum_{k=0}^{2n} u_k \lambda^k\]

where the coefficients \(u_k \) can be obtained from

\[p_{2n+1}^2 = \lambda^{2n+1} + 2 \sum_{s=0}^{2n} H_{2(n-s)+1}^{2n+1} \lambda^s + \sum_{k=-n}^{k=-n} \sum_{s=0}^{n-k-1} H_{2(k+s)+1}^{2n+1} H_{2(s+k)+1}^{2n+1} \lambda^s.\]

Thus, one has

Proposition 6.2 The stratum \(\Sigma_{2n} \) for \(n = 2, 3, 4, \ldots \) contains maximal subset \(W_{2n} \) closed with respect to pointwise multiplication. Elements of \(W_{2n} \) are vector spaces with basis given by \(\langle p_i \rangle_{i=0, 2, 4, \ldots, 2n, 2n+1, 2n+3, \ldots} \) with parameters \(H_k \) obeying the constraints (60) and (61).

Proposition 6.3 The subset \(W_{2n} \) is the infinite family of infinite-dimensional commutative associative algebra \(A_{2n} \) isomorphic to \(\mathbb{C}[\lambda, p_{2n+1}]/C_{2n+1} \) where \(\lambda = z^2 \) and

\[C_{2n+1} = p_{2n+1}^2 - \lambda^{2n+1} - \sum_{k=0}^{n} u_k \lambda^k = 0\]

and \(u_k \) are given by (63).
Proposition 6.4 The subset W_{2n} in Σ_{2n} is an infinite family of infinite-dimensional algebraic variety Γ_{2n} defined by the relations $(59), (60), (61), (66)$. Its ideal is

$$I_{2n+1} = (C_{2n+1}, I_{2n+3}, I_{2n+5}, \ldots)$$

where $I_{2n+1}^{(n)} = p_{2n+1} - a_m(\lambda)p_{2n+1}, m = n + 1, n + 2, n + 3, \ldots$.

In other words the variety Γ_{2n} is the intersection of the cubic $C_{2n+1} = 0$ and infinite set of algebraic curves $I_{2n+1}^{(n)}, m = n + 1, n + 2, n + 3, \ldots$. One can easily see that the ideal I_{2n} contains higher order hyperelliptic curves but all of them have genus n.

Thus stratum Σ_{2n} is characterized by the presence of the plane hyperelliptic curves C_{2n+1} of genus n in every point of the closed subset W_{2n}. This is due to the presence of n gaps (elements $p_1(z), p_3(z), \ldots, p_{2n-1}(z)$) in the basis of W_{2n}. The fact that for hyperelliptic curves (Riemann surfaces) of genus n one has n (Weierstrass) gaps in a generic point is well known in the theory of abelian functions (see e.g. [8]). Probably not that known observation is that these gaps and consequently the properties of corresponding algebraic curves are prescribed by the structure of the Birkhoff strata Σ_{2n} in $Gr^{(2)}$. In different context an appearance of hyperelliptic curves in Birkhoff strata of $Gr^{(2)}$ has been observed in [9].

7 Strata Σ_{2n+1}

Stratum $\Sigma_{2n+1}, n = 2, 3, 4, \ldots$ is characterized by $S = \{-2n - 1, -2n + 1, \ldots, -1, 1, 3, \ldots, 2n + 1, 2n + 2, \ldots\}$. So, the positive order elements of the canonical basis in Σ_{2n+1} are of the form

$$p_j(z) = z^j + H_j^{2j} z^{2j-2} + H_{j+2} z^{2j-2} + \cdots + H_0^j + \sum_{k \geq 1} \frac{H_j^k}{z^k}, \quad j = 1, 3, \ldots, 2n - 1$$

$$p_j(z) = z^j + H_{-2n} z^{2n} + H_{-2n+1} z^{2n-1} + \cdots + H_0^j + \sum_{k \geq 1} \frac{H_j^k}{z^k}, \quad j = 2n + 1, 2n + 2, \ldots.$$
As in the previous cases the p_j with $j \leq 1$ do not should be taked into account.

Closed subsets in Σ_{2n+1} have different structure for different n. In order to see this let us begin with Σ_5. In this case the elements \textbf{[11]} of the canonical basis are

\[p_1 = z + H_1^0 + \sum_{k \geq 1} H_{2k}^1, \]
\[p_3 = z^3 + H_{-2}^3 z^2 + H_{0}^3 + \sum_{k \geq 1} H_{2k}^1, \]
\[p_j = z^j + H_{-4}^j z^4 + H_{-2}^j z^2 + H_{0}^j + \sum_{k \geq 1} H_{2k}^j, \quad j = 5, 6, 7, \ldots. \]

(72)

It is easy to see that the maximal closed subset W_5 in Σ_5 is the subset whose points are vector spaces with basis (p_3, p_5, p_6, \ldots).

\textbf{Lemma 7.1} A set W_5 at fixed H_k^i of the Laurent series p_3, p_5, p_6, \ldots obey the equations

\[p_j(z)p_k(z) = \sum_{l=3,5,6,\ldots} C_{jkl}p_l(z) \]

(73)

and the condition $z^2 W_5 \subset W_5$ if and only if $H_k^i = 0$, $j = 3, 5, 6, \ldots, k = 1, 2, 3, \ldots$, i.e. all p_j are polynomials and H_k^i, $k = -4, -2, 0$ obey the constraints

\[H_0^5 = 0, \quad H_{-2}^5 = H_0^3, \quad H_{-4}^5 = H_{-2}^3, \]
\[H_0^6 = -H_{-2}^3, \quad H_{-2}^6 = -2H_0^3 H_{-2}^3, \quad H_{-4}^6 = -H_{-2}^3, \]
\[\ldots \]

(74)

The proof of the polynomiality of $p_j(z)$ is exactly the same as for W_3 (Lemma \textbf{5.1}). The constraints \textbf{[74]} follow from equations \textbf{[73]} and the condition $z^5 W_5 \subset W_5$. For instance one has $z^2 p_3 = p_5, z^5 p_5 = p_7 + H_{-4}^5 p_6$ etc. . The constants C_{jkl}^i are given by

\[C_{jkl}^i = \delta_{j+k} \sum_{s=0}^{2} H_{-2s}^j H_{2s+k}^l + \sum_{s=0}^{2} H_{-2s}^j \delta_{2s+j}^l + \sum_{s,r=0}^{2} H_{-2s}^j H_{-2r}^k \delta_{2(s+r)}^{l}, \quad j, k \geq 3 \]

(75)

where, for sake of compactess, we use $H_{-2}^3 = 0$. As a consequence of this lemma one has

\textbf{Proposition 7.2} The stratum Σ_5 contains a maximal subset W_5 closed with respect to pointwise multiplication $W_5 \cdot W_5 \subset W_5$. Elements of W_5 are vector spaces $\langle p_i \rangle_{i=3,5,6,\ldots}$ and $H_{-4}^5, H_{-2}^5, H_0^5$ obeying the constraints \textbf{[74]}.

Algebraically W_5 is an infinite family of infinite-dimensional commutative associative algebra A_5 of polynomials with the structure constants given by \textbf{[75]}. Geometrically W_5 is the infinite algebraic variety Γ_5 defined by the equations \textbf{[73]} and \textbf{[51]}.

First equations of the set of equations \textbf{[73]} are

\[p_3^2 = p_6 + 2H_{-2}^3 p_5 + 2H_0^3 p_3, \]
\[p_3 p_5 = p_8 + 2H_{-2}^3 p_7 + H_{-2}^3 p_6 + 2H_0^3 p_5, \]

(76)

and so on. So the algebra A_5 is generated by p_3, p_5 and p_7.

It is not also difficult to show that an ideal of the variety Γ_5 contains the family of plane $(3,5)$ curve

\[p_5^3 - p_3^5 + 2H_{-2}^3 p_3 p_5 - H_{-2}^3 p_5^2 + 2H_0^3 p_3^4 - 2H_0^3 H_{-2}^3 p_3^2 - H_0^3 p_3^3 = 0 \]

(77)

parameterized by two variables H_{-2}^3 and H_0^3. Due to the polinomiality of p_3 and p_5 in z, the genus of of curve \textbf{[77]} is obviously equal to zero. The ideal of the varieties contains another rational plane curve

12
given by
\[p_6^5 - p_5^6 + 6 H_{-2}^3 p_5^4 + 14 H_{-2}^2 p_5^2 p_6 + \left(-6 H_0^3 - 16 H_{-2}^3\right) p_5^3 p_6^2 - \left(-16 H_0^3 H_{-2}^2 - 9 H_{-2}^4\right) p_5^4 p_6 \]
\[- \left(-10 H_0^3 H_{-2}^2 - 2 H_{-2}^5\right) p_5^5 + 2 H_0^2 p_5^6 + 8 H_0^3 H_{-2}^2 p_5 p_6 + 10 H_{-2}^2 H_0^2 p_5^2 p_6^2 \]
\[- \left(-14 H_0^3 - 4 H_{-2}^3 H_0^2\right) p_5^3 p_6 + 20 H_0^3 H_{-2}^3 p_5^4 + H_0^4 p_6^3 + 2 H_0^4 H_{-2}^2 p_5 p_6^2 + 8 H_0^5 p_5^3 = 0. \] (78)

The stratum \(\Sigma_5 \) exhibits the main features of higher strata \(\Sigma_{4m-1} \), \(m = 1, 2, 3, \ldots \). The maximal closed subsets \(W_{4m-1} \) have the basis \((p_{2m+1}, p_{2m+3}, \ldots, p_{4m-1}, p_{4m}, p_{4m+1}, \ldots) \) while the stratum \(\Sigma_{4m+1} \), \(m = 1, 2, 3, \ldots \) have the basis \((p_{2m+1}, p_{2m+3}, \ldots, p_{4m-1}, p_{4m+1}, p_{4m+2}, \ldots) \) with the respective \(p_j \). Then one can demonstrate an analog of the Lemma 7.1 for \(\Sigma_{4m \pm 1} \) which in particular says that all \(p_j(z) \) are polynomials in \(z \) obeying the equations
\[p_j(z) p_k(z) = \sum_l C^l_{jk} p_l(z), \quad j, k, l = 2m + 1, 2m + 3, \ldots \] (79)

together with certain constraints on \(H_j^k \).

Consequently one has closed subsets \(W_{4m \pm 1} \) in \(\Sigma_{4m \pm 1} \) which algebraically are commutative and associative algebras and geometrically they represent families of algebraic varieties \(\Gamma_{4m \pm 1} \) defined by the equation (79). Ideals of the varieties \(\Gamma_{4m \pm 1} \) contain plane \((2m + 1, 2m + 3) \) curve
\[p_{2m+1}^{2m+3} - p_{2m+3}^{2m+1} + \cdots = 0, \quad m = 1, 2, 3, \ldots \] (80)
of zero genus.

Properties of these rational curves will be discussed elsewhere.

Acknowledgements

B.K. thanks V. M. Buchstaber and B. Dubrovin for useful discussions. This work has been partially supported by PRIN grant no 28002K9KXZ and by FAR 2009 (Sistemi dinamici Integrabili e Interazioni fra campi e particelle) of the University of Milano Bicocca.

References

[1] Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science, 259–271, North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983.
[2] Segal, G., Wilson, G.: Loop groups and equations of KdV type, Inst. Hautes tudes Sci. Publ. Math. No. 61, 5–65 (1985)
[3] Pressley, A., Segal, G.: Loop Groups. Oxford University Press (1988)
[4] Konopelchenko, B. G., Ortenzi, G.: Algebraic curves in Birkhoff strata of Sato Grassmannian,. arXiv:1005.2053
[5] Konopelchenko, B. G., Ortenzi, G.: Birkhoff strata in the Grassmannian Gr(2): tangent cohomology and integrable systems (in preparation)
[6] Harris, J.: Algebraic geometry: a first course. Springer-Verlag, Berlin (1992)
[7] Buchstaber, V.M., Leikin, D.V., Enolskii, V.Z.: Rational analogues of Abelian functions. Funktsional. Anal. i Prilozhen. 33:2, 115 (1999) translated in Functional Anal. Appl. 33, 8394 (1999)
[8] Baker, H. F.: Abelian functions, Cambridge, 1987
[9] Kodama, Y., Konopelchenko, B.G.: Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves. J. Phys. A 35, no. 31, L489-L500 (2002)