ON SEMISIMPLICITY OF JANTZEN MIDDLES FOR THE PERIPLECTIC LIE SUPeralgebra

CHIH-WHI CHEN

Abstract. We prove that an integral block of the category \mathcal{O} of the periplectic Lie superalgebra contains a non-semisimple Jantzen middle if and only if it contains a simple module of atypical highest weight. As a consequence, every atypical integral block of \mathcal{O} does not admit a Kazhdan-Lusztig theory in the sense of Cline, Parshall and Scott.

MSC 2010: 17B10 17B55
Keywords: Category \mathcal{O}; Jantzen middle; Kazhdan-Lusztig theory; periplectic Lie superalgebra; twisting functor.

1. Introduction

1.1. For a finite-dimensional complex semisimple Lie algebra, it is shown by Andersen and Stroppel [AS, Section 7] that the validity of Kazhdan-Lusztig conjecture [KL] is equivalent to the semisimplicity of Jantzen middles for the regular blocks of the category \mathcal{O}. Later on, Coulembier [Co1, Theorem 6.4] developed an analogous connection for basic classical Lie superalgebras. Therefore, the problem of the semisimplicity of Jantzen middles turns out to be interesting and important.

An earlier achievement is the semisimplicity of Jantzen middles for the general linear Lie superalgebras $\mathfrak{gl}(m|n)$ established in [Co1, Theorem 6.10], which is based on the Brundan-Kazhdan-Lusztig theory formulated in [Br] and proved in [BLW, CLW]. However, it is still an open question whether the Jantzen middle is always semisimple for Lie superalgebras arising from Kac’s classification [Ka1].

Recently, the representation theory for the periplectic Lie superalgebra $\mathfrak{pe}(n)$ has been studied extensively; see, e.g., [Se1], [Ch], [B+9], [Co3], [CMS], [EAS], [IRS], [IS], [KB] and references therein. In addition, basic aspects and partial solutions to the irreducible character problem of the category \mathcal{O} were given in [CC] and [CP]. In order to have a complete picture, it is natural to ask whether there exists a Kazhdan-Lusztig pattern for $\mathfrak{pe}(n)$.

In [CPS2], Cline, Parshall and Scott introduced a formulation of abstract Kazhdan-Lusztig theory in order to provide an appropriate axiomatic framework encompassing numerous important examples in representation theory. In [CS, Corollary 3.3], it is shown that the Brundan-Kazhdan-Lusztig theory for the category \mathcal{O}^Z of $\mathfrak{gl}(m|n)$-modules of integral weights is an abstract Kazhdan-Lusztig theory. The goal of this paper is to start the investigation into the semisimplicity of Jantzen middles and connection with Kazhdan-Lusztig theory in the sense of [CPS2, Definition 3.3] for the
periplectic Lie superalgebra $\mathfrak{pe}(n)$; see Section 2.1 and Section 3.2.3 for the definitions. This type of connection is generalized to the so-called Lie superalgebras of type I in the full generality.

1.2. To explain the results of the paper in more detail, we start by explaining our precise setup. Following [Se2], we consider $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ a quasireductive Lie superalgebra (or classical in [Ma]) throughout the present paper, namely, \mathfrak{g}_0 is reductive and \mathfrak{g}_1 is semisimple over \mathfrak{g}_0 under the adjoint action. In addition, we will make three assumptions in our setup. First, we assume that \mathfrak{g} has a type-I gradation $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ which is induced by a grading operator from a Cartan subalgebra \mathfrak{h} of \mathfrak{g}_0. Next, we choose a triangular decomposition in the sense of [Ma]

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+, \tag{1.1}$$

such that the odd parts of \mathfrak{n}^\pm are $\mathfrak{g}_{\pm 1}$, respectively. We refer to these assumptions as (A1)–(A3) in the paper; see Section 2.1. Lie superalgebras \mathfrak{g} satisfying these assumptions fit into the framework of [CC] under the name Lie superalgebras of type I-0. For such Lie superalgebras, there is a number of basic properties of the twisting functors developed in [CC] Section 4.3 that are to be used in the present paper. We will mainly focus on the case of the periplectic Lie superalgebra $\mathfrak{pe}(n)$, which is really the main topic of the paper.

Let \mathcal{O} denote the BGG category associated to the triangular decomposition (1.1). Let \mathcal{O}^Z be the full subcategory of \mathcal{O} consisting of modules with integral weights. Our first main result is the following.

Theorem A. Consider \mathfrak{g} a Lie superalgebra of type I-0. If a (indecomposable) block of \mathcal{O}^Z contains a (non-zero) non-semisimple Jantzen middle then it does not admit a Kazhdan-Lusztig theory in the sense of [CPS2, Definition 3.3].

For \mathfrak{g} a (not necessarily type I) basic classical Lie superalgebra from Kac’s list [Ka1], the Theorem A has been established in the earlier work of Coulembier [Co1].

The notion of typicality of weights for $\mathfrak{pe}(n)$ has been introduced in [Se1, Section 5]; see (4.1) for its definition. A block of \mathcal{O}^Z is said to be atypical, in case it contains a simple module of atypical highest weight, and typical otherwise. The following is our second main result.

Theorem B. Consider $\mathfrak{g} = \mathfrak{pe}(n)$. Then a block of \mathcal{O}^Z contains a (non-zero) non-semisimple Jantzen middle if and only if it is atypical. As a consequence, every atypical block of \mathcal{O}^Z does not admit a Kazhdan-Lusztig theory in the sense of [CPS2, Definition 3.3].

1.3. The paper is organised as follows. In Section 2 we provide some background materials on quasireductive Lie superalgebras. We review the representation categories and introduce our assumptions in the Section 2.1. The standard matrix realization of $\mathfrak{pe}(n)$ is reviewed in Section 2.3.

In Section 3 we study the relevance between semisimplicity of Jantzen middles and abstract Kazhdan-Lusztig theory in the sense of [CPS1, Definition 3.3]. Section 3.2 is devoted to the proof of Theorem A. Then, we put these results together to obtain the proof of Theorem B in Section 4.
Acknowledgment. The author was supported by a MoST grant, and he would like to thank Shun-Jen Cheng and Kevin Coulembier for interesting discussions and helpful comments.

2. Preliminaries

Throughout the paper the symbols $\mathbb{C}, \mathbb{R}, \mathbb{Z}, \mathbb{Z}_{\geq 0}$ stand for the sets of all complex numbers, real numbers, integers and non-negative integers. We always work over the ground field \mathbb{C}. Denote the abelian group of order two by $\mathbb{Z}_2 = \{0, 1\}$. For a homogeneous element x of a vector superspace $V = V_0 \oplus V_1$, we denote its parity by $\overline{x} \in \mathbb{Z}_2$. In the paper, we let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional quasireductive Lie superalgebra, namely, \mathfrak{g}_0 is reductive and \mathfrak{g}_1 is a semisimple \mathfrak{g}_0-module under the adjoint action. We denote the universal enveloping algebra of \mathfrak{g} by $U(\mathfrak{g})$ and its center by $Z(\mathfrak{g})$.

In this section, we collect preliminaries and assumptions on quasireductive Lie superalgebras.

2.1. Assumptions and notations. Throughout the present paper, we assume that the Lie superalgebra \mathfrak{g} is of type I-0 in the sense of [CC, Section 2.3.1], which we shall explain as follows.

2.1.1. Fix a triangular decomposition of \mathfrak{g}_0:

(2.1) $\mathfrak{g}_0 = \mathfrak{n}_0^- \oplus \mathfrak{h} \oplus \mathfrak{n}_0^+.$

In the present paper, we assume that \mathfrak{g} is a quasireductive Lie superalgebra with a compatible \mathbb{Z}-grading $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ induced by a grading element $H \in \mathfrak{h}$, that is,

(A1) $\mathfrak{g}_0 = \mathfrak{g}_0$ and $\mathfrak{g}_1 = \mathfrak{g}_{-1} \oplus \mathfrak{g}_1$ with $[\mathfrak{g}_1, \mathfrak{g}_1] = [\mathfrak{g}_{-1}, \mathfrak{g}_{-1}] = 0$.

(A2) $[H, x] = kx,$ for $x \in \mathfrak{g}_k$ with $k = \pm 1$.

We refer to such a Lie superalgebra as a Lie superalgebra of type I-0. We will use notations $\mathfrak{g}_{\leq 0} := \mathfrak{g}_0 \oplus \mathfrak{g}_{-1}$ and $\mathfrak{g}_{\geq 0} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

For an element $h \in \mathfrak{h}$, we define the following subalgebras:

(2.2) $\mathfrak{l} := \bigoplus_{\text{Re}(h) = 0} \mathfrak{g}^0,$ $\mathfrak{u}^+ := \bigoplus_{\text{Re}(h) > 0} \mathfrak{g}^0,$ $\mathfrak{u}^- := \bigoplus_{\text{Re}(h) < 0} \mathfrak{g}^0$

where $\mathfrak{g}^0 := \{X \in \mathfrak{g} | [h, X] = \alpha(h)X, \text{ for all } h \in \mathfrak{h}\}$. We claim that (A1) and (A2) imply the following assertion:

(A3) There exists an element $h' \in \mathfrak{h}$ giving rise to $\mathfrak{l} = \mathfrak{h}$, $\mathfrak{u}_0^+ = \mathfrak{n}_0^+$ and $\mathfrak{u}_1^+ = \mathfrak{g}_{\pm 1}$.

To see this, let $t \in \mathfrak{h}$ such that

$\mathfrak{h} = \bigoplus_{\text{Re}(t) = 0} \mathfrak{g}_0^0,$ $\mathfrak{n}_0^+ = \bigoplus_{\text{Re}(t) > 0} \mathfrak{g}_0^0,$ $\mathfrak{n}_0^- = \bigoplus_{\text{Re}(t) < 0} \mathfrak{g}_0^0,$

then there exists a positive real number ϵ such that $h' := H + \epsilon t$ gives the desired subalgebras in (2.2). Define $\mathfrak{n}^\pm := \mathfrak{u}^\pm$. We refer to the decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ satisfying (A3) as the (distinguished) triangular decomposition of \mathfrak{g}.
Also, we refer to the subalgebras $\mathfrak{b} := \mathfrak{h} + \mathfrak{n}^+$ and $\mathfrak{b}^r := \mathfrak{b}_0 + \mathfrak{g}_-1$ as standard Borel subalgebra and reverse Borel subalgebra, respectively. There subalgebras are all Borel-Penkov-Serganova subalgebras in the sense of [PS1] and [Mu2, Section 3.2]; see also [CCC] Sections 1.3, 1.4 for more details.

We will make conventional definitions as follows. An element $\alpha \in \mathfrak{h}^* \setminus \{0\}$ is called a root if $g^\alpha \neq 0$. We denote the set of roots by $\Phi \subset \mathfrak{h}^*$. Let Φ^+ be the set of roots in \mathfrak{n}^+. Let Φ^+_0 be the positive system coming from the triangular decomposition \[2.1\] of g_0. We let Π_0 be the corresponding simple system for Φ^+_0. We are mainly interested in the following Lie superalgebras:

Example. Each of the following quasireductive Lie superalgebra is of type I-0:

- Reductive Lie algebras $\mathfrak{g} = g_0$.
- The general linear Lie superalgebra $\mathfrak{gl}(m|n)$; see [CW] Section 1.1.2.
- The ortho-symplectic Lie superalgebras $\mathfrak{osp}(2|2n)$; see [CW] Section 1.1.3.
- The periplectic Lie superalgebra $\mathfrak{pe}(n)$; see Section 2.3.
- A semisimple extension $g := (\mathfrak{s} \otimes \Lambda(\xi)) \rtimes \mathfrak{d}$ of the Takiff superalgebra induced by a simple Lie algebra \mathfrak{s} studied in [CCa] Section 2.1.

2.1.2. The Weyl group W is defined as the Weyl group of g_0. We let $w_0 \in W$ denote the longest element in W. We fix a W-invariant bilinear form $\langle \cdot , \cdot \rangle$ on \mathfrak{h}^*. Let ρ denote the half-sum of all roots in Φ^+_0. Let s_α be the reflection associated with the root $\alpha \in \Phi^+_0$. The dot action of W on \mathfrak{h}^* is defined as $w \cdot \lambda = w(\lambda + \rho) - \rho$, for any $\lambda \in \mathfrak{h}^*$.

For any $\alpha \in \Pi_0$, we set $\alpha^\vee := 2\alpha/\langle \alpha, \alpha \rangle$ to be the co-root to α; see [Hu, Section 0.2]. A weight is called integral if $\langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}$, for any $\alpha \in \Phi^+_0$. We denote by $\mathcal{P} \subset \mathfrak{h}^*$ the set of integral weights. A weight λ is said to be dominant (resp. anti-dominant) if $\langle \lambda + \rho, \alpha^\vee \rangle \in \mathbb{Z}_{\leq 0}$ (resp. $\langle \lambda + \rho, \alpha^\vee \rangle \notin \mathbb{Z}_{>0}$), for any $\alpha \in \Phi^+_0$. For a given weight $\lambda \in \mathfrak{h}^*$, we let W_λ be the stabilizer subgroup of λ under the dot action of W.

2.2. BGG category \mathcal{O}.

2.2.1. The BGG category \mathcal{O} associated to the triangular decomposition \[A3\] is defined as the category of finitely-generated g-modules on which \mathfrak{h} acts semisimply and \mathfrak{b} acts locally finitely. Therefore \mathcal{O} is the category of g-modules restricted to g_0-modules by Res in the classical BGG category \mathcal{O}_0 of g_0-modules as defined in [BGG]. Also, we let \mathcal{F} and \mathcal{F} denote the category of finite dimensional g-modules and g_0-modules, respectively.

We have the exact Kac functor $K(-) : \mathcal{O}_0 \to \mathcal{O}$ defined as

$$K(N) := U(g) \otimes_{g_0 + g_1} N,$$

for any $N \in \mathcal{O}_0$ by letting g_1 acts on N trivially.

For any $M \in \mathcal{O}$, we will freely use $[M : L]$ to denote the Jordan-Hölder decomposition multiplicities of a simple module L in a composition series of M. In addition, we will use $\text{soc}(M), \text{rad}(M)$ to denote the socle and radical of M, respectively. The top M is defined as $\text{top}(M) := M/\text{rad}M$.
2.2.2. We recall that the category \(\mathcal{O} \) has a natural structure of highest weight category with respect to the triangular decomposition in \([A3]\). We define the partial order \(\leq \) on \(\mathfrak{h}^* \) as the transitive closure of the relations

\[
\lambda + \alpha \leq \lambda, \quad \text{for } \alpha \in \Phi(\mathfrak{n}^\pm),
\]

where \(\Phi(\mathfrak{n}^\pm) \) denotes the set of all roots in \(\mathfrak{n}^\pm \), respectively. For any \(\lambda \in \mathfrak{h}^* \), we define the Verma module over \(\mathfrak{g}_0 \) as follows

\[
M(\lambda) := U(\mathfrak{g}_0) \otimes_{\mathfrak{g}_0} \mathbb{C}_\lambda,
\]

by letting \(\mathfrak{n}^+ \) acts on \(\mathbb{C}_\lambda \) trivially. Also, the corresponding Verma (super)module over \(\mathfrak{g} \) is defined as

\[
\hat{M}(\lambda) := (U(\mathfrak{g}) \otimes_{\mathfrak{b}} \mathbb{C}_\lambda) \cong K(M(\lambda)).
\]

The (simple) tops of \(M(\lambda) \) and \(\hat{M}(\lambda) \) are denoted by \(L(\lambda) \) and \(\hat{L}(\lambda) \), respectively. Then \(\{L(\lambda) | \lambda \in \mathfrak{h}^* \} \) (resp. \(\{\hat{L}(\lambda) | \lambda \in \mathfrak{h}^* \} \)) forms the complete list of simple modules in \(\mathcal{O}_0 \) (resp. \(\mathcal{O} \)). For any \(\lambda \in \mathfrak{h}^* \), the Kac induced module \(K(L(\lambda)) \) is an epimorphic image of \(\hat{M}(\lambda) \). By \([CCC]\) Theorem 3.1 \((\mathcal{O}, \leq) \) is a highest weight category with standard objects \(\hat{M}(\lambda) \). Also, we denote by \(P(\lambda) \) and \(\hat{P}(\lambda) \) the projective covers of \(L(\lambda) \) and \(\hat{L}(\lambda) \) in \(\mathcal{O}_0 \) and \(\mathcal{O} \), respectively. Finally, for \(M \in \mathcal{O} \), we use \(\text{ch} M \) to denote the formal character of \(M \).

2.2.3. Define an involution \(\hat{\phi} := h^* \to \mathfrak{h}^* \) by letting \(\hat{\lambda} = -w_0 \lambda \), for \(\lambda \in \mathfrak{h}^* \). As observed in \([CCC]\) Section 1.3], there is an anti-involution \(\sigma \) on \(\mathfrak{g} \) satisfying that

\[
\sigma(\mathfrak{h}) = \mathfrak{h}, \quad \sigma(\mathfrak{n}^\pm) = \mathfrak{n}^\mp,
\]

\[
(\hat{\lambda})(h) = \lambda(\sigma(h)), \quad \text{for } h \in \mathfrak{h}.
\]

This involution \(\sigma \) leads to a natural duality functor \(D \) on the category \(\mathcal{O} \) as follows. For any \(M \in \mathcal{O} \), let \(M^\circ \) be the restricted dual space of \(M \). Then \(M^\circ \) is a \(\mathfrak{g} \)-submodule of \(\text{Hom}_\mathbb{C}(M, \mathbb{C}) \). We now give a new \(\mathfrak{g} \)-module structure of \(M^\circ \) by letting

\[
xf(v) = (-1)^{\varphi(h)} f(\sigma(x)v),
\]

for any homogeneous elements \(x \in \mathfrak{g} \), \(f \in M^\circ \) and any \(v \in M \). Then denote this resulting module by \(DM \). This gives the endofunctor \(D \) on \(\mathcal{O} \); see \([CC]\) Section 2.2.4 for more details.

By \([CCC]\) Section 3], the functor \(D \) intertwines the standard and costandard objects of \(\mathcal{O} \) with respect to the two highest weight category structures via \(\mathfrak{b} \) and \(\mathfrak{b}^* \). We briefly recall this effect below.

For any \(\mu \in \mathfrak{h}^* \), let \(\hat{M}^\circ(\mu) \) be the maximal submodule of the \(\text{Coind}_{\mathfrak{n}^-_{\mu} + \mathfrak{g}^+_{\mu}}^\circ(C_\mu) \) on which \(\mathfrak{h} \) acts semisimply and locally finitely; see \([CCC]\) Definition 3.2, Theorem 3.1]. Next, we put \(\hat{M}^\circ_{\mathfrak{b}^*}(\mu) := U(\mathfrak{g}) \otimes_{\mathfrak{b}^*} \mathbb{C}_\mu \), and define \(\hat{M}^\circ_{\mathfrak{b}}(\mu) \) as the maximal submodule of the coinduced module \(\text{Coind}_{\mathfrak{n}^-_{\mu} + \mathfrak{g}^+_{\mu}}^\circ(C_\mu) \) on which \(\mathfrak{h} \) acts semisimply and locally finitely. Then by \([CCC]\) Proposition 3.4], we have the following isomorphisms

\[
D\hat{M}(\mu) \cong \hat{M}^\circ_{\mathfrak{b}^*}(\mu), \quad D\hat{M}^\circ(\mu) \cong \hat{M}^\circ_{\mathfrak{b}^*}(\mu), \quad \text{and } D\hat{L}(\mu) \cong \hat{L}_{\mathfrak{b}^*}(\mu),
\]
where $\bar{L}_\alpha(\hat{\mu})$ denotes the simple highest weight module of highest weight $\hat{\mu}$ with respect to b'. For any $\alpha \in \Pi_0$, we consider $f_\alpha \in g_0^a$ to be a non-zero root vector of root α. A g-module M is said to be α-finite (resp. α-free) if the action of f_α on M is locally finite (resp. injective). The following useful lemma is a consequence of [CoM1, Lemma 2.1]

Lemma 1. Let $\lambda \in b^*$ and $\alpha \in \Pi_0$. Then we have

$$L(\lambda) \text{ is } \alpha \text{-finite } \iff \bar{D}L(\lambda) \text{ is } \hat{\alpha} \text{-finite } \iff \langle \lambda + \rho, \alpha^\vee \rangle \in \mathbb{Z}_{>0}.$$

2.3. **The periplectic Lie superalgebra** $\mathfrak{pe}(n)$. In this subsection, we introduce the periplectic Lie superalgebras $\mathfrak{pe}(n)$; see also [CW, Section 1.1] for more details.

2.3.1. **Matrix realization.** For any positive integer n, the standard matrix realization of the periplectic Lie superalgebra $\mathfrak{pe}(n)$ inside the general linear Lie superalgebra $\mathfrak{gl}(n|n)$ is given by

$$\mathfrak{pe}(n) := \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \mid A, B, C \in \mathbb{C}^{n \times n}, \ B \text{ symmetric and } C \text{ skew-symmetric} \right\}.$$

The type-I gradation of $\mathfrak{pe}(n)$ inherits that of $\mathfrak{gl}(n|n)$, namely,

$$\mathfrak{pe}(n)_1 := \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \mid B^t = B \right\} \quad \text{and} \quad \mathfrak{pe}(n)_{-1} := \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \mid C^t = -C \right\}.$$

The standard Cartan subalgebra $h \subset \mathfrak{pe}(n)$ consists of diagonal matrices. Let E_{ab} denote the elementary matrix in $\mathfrak{gl}(n|n)$, for $1 \leq a, b \leq 2n$. We denote by $\{\epsilon_1, \epsilon_2, \ldots, \epsilon_n\}$ the dual basis of h^* with respect to the following standard basis of h

$$\{H_i := E_{i,i} - E_{n+i,n+i} \mid 1 \leq i \leq n\} \subset \mathfrak{pe}(n).$$

In particular, we have

$$\Phi = \{\epsilon_i - \epsilon_j, \pm(\epsilon_i + \epsilon_j) \mid 1 \leq i \neq j \leq n\} \cup \{2\epsilon_i \mid 1 \leq i \leq n\},$$

$$\Phi_0^+ = \{\epsilon_i - \epsilon_j \mid 1 \leq i < j \leq n\},$$

$$\Pi_0 = \{\epsilon_i - \epsilon_{i+1} \mid 1 \leq i \leq n - 1\}.$$

The Weyl group W is isomorphic to the symmetric group on n letters. We fix a non-degenerate W-invariant bilinear form $\langle \cdot, \cdot \rangle : h^* \times h^* \to \mathbb{C}$ by letting $\langle \epsilon_i, \epsilon_j \rangle = \delta_{ij}$, for all $1 \leq i, j \leq n$. Fix the Borel subalgebra b_0 of $g_0 \cong \mathfrak{gl}(n)$ consisting of matrices in (2.10) with $B = C = 0$ and A upper triangular. Without loss of generality, we shift the Weyl vector ρ of g_0 by letting

$$\rho := (n - 1)\epsilon_1 + (n - 2)\epsilon_2 + \cdots + \epsilon_{n-1}.$$

Also, we define $\omega_n := \epsilon_1 + \epsilon_2 + \cdots + \epsilon_n$. For any $k \in \mathbb{C}$, we denote by $C_{k\omega_n}$ the one-dimension g-module of weight $k\omega_n$. Note that $C_{k\omega_n} \otimes -$ leads to an auto-equivalence of \mathcal{O}; see [CC, Section 5.10].

2.3.2. **Odd reflections.** In this subsection, we recall the notion of odd reflections for $\mathfrak{pe}(n)$ from [PS2, Lemma 1 and Section 2.2]. For a given Borel subalgebra b', we denote the set of roots of b' (i.e. non-zero weights of b') by $\Phi(b')$. Consider the following
Let \(\lambda = \sum_{i=1}^{n} \lambda_i \epsilon_i \in \mathfrak{h}^* \). Suppose that
\[
\lambda^0, \lambda^1, \lambda^2, \ldots, \lambda^k \in \mathfrak{h}^*
\]
are \(\mathfrak{b}^0, \mathfrak{b}^1, \mathfrak{b}^2, \ldots, \mathfrak{b}^k \)-highest weights of \(\bar{L}(\lambda) \). For each \(0 \leq \ell \leq k \), we set \(\lambda^\ell = \sum_{i=1}^{n} \lambda_i^\ell \epsilon_i \). Then we have the following rules:

(A) For each \(\alpha_\ell = \epsilon_p + \epsilon_q \) with \(p \neq q \), the \(\mathfrak{b}^{\ell+1} \)-highest weight of \(\bar{L}(\lambda) \) is given by
\[
(2.17) \quad \lambda^{\ell+1} = \begin{cases}
\lambda^\ell + \alpha_\ell & \text{if } \lambda^p_\ell \neq \lambda^q_\ell, \\
\lambda^\ell & \text{otherwise}.
\end{cases}
\]

(B) If \(\alpha_\ell = 2\epsilon_p \), then the \(\mathfrak{b}^{\ell+1} \)-highest weight of \(\bar{L}(\lambda) \) is given by \(\lambda^{\ell+1} = \lambda^\ell \).

For a given \(\lambda \in \mathfrak{h}^* \) and \(0 \leq \ell \leq k \), we denote by \(\bar{L}_{\mathfrak{b}^\ell}(\lambda) \) the simple module of \(\mathfrak{b}^\ell \)-highest weight \(\lambda \).

Example 3. Consider a weight \(\lambda = \sum_{i=1}^{n} \lambda_i \epsilon_i \in \bigoplus_{i=1}^{n} \mathbb{Z} \epsilon_i \) such that \(\lambda_1 = \lambda_2 \) and \(\lambda_2 < \lambda_3 < \lambda_4 < \cdots < \lambda_n \). By a direct computation, it follows that
\[
\bar{L}_{\mathfrak{b}^\ell}(\lambda) = \bar{L}(\lambda + (n-1)\omega_n - \epsilon_1 - \epsilon_2),
\]
namely, \(\lambda^{\ell+1} = \lambda^\ell + \alpha_\ell \) at each step given in Part (A) of Lemma 2 for Borel subalgebras \(\mathfrak{b}^\ell \) and \(\mathfrak{b}^{\ell+1} \) that are connected by an odd reflection \(\alpha_\ell \neq \epsilon_1 + \epsilon_2 \).

3. The Jantzen middles

We continue to assume that \(\mathfrak{g} \) is a quasireductive Lie superalgebra of type I-0 (i.e., \(\mathfrak{g} \) satisfies assumptions (A1)–(A3)). Recall that \(O^Z \) denotes the full subcategory of \(O \) consisting of modules of integral weights. Similarly, we define \(O^Z_0 \subset O^Z_0 \). We will follow [CMW, Section 6] and define the Jantzen middles as the modules of twisted simple modules. Before giving the precise definitions, we recall the twisting functors as follows.

3.1. Twisting functors. Let \(\alpha \in \Pi_0 \) and \(s := s_\alpha \), we recall the corresponding Arkhipov’s twisting functor \(T_s \) (resp. \(T^0_s \)) on \(O \) (resp. \(O_0 \)) introduced in [CMW].
Section 3.6] and [CoM1 Section 5]. This functor was originally defined by Arkhipov in [Ar] and further studied in [AS, AL, CMW, KM, MS].

Let G_s be the right adjoint to T_s. Let us recall some basic properties of T_s; see also [AS, CMW], [CoM1 Section 5] and [CC, Theorem 4.5].

1. The functor T_s is right exact.
2. The functor G_s is left exact and isomorphic to the Joseph’s version of Enright completion functor as introduced in [CC Section 4.2].
3. Let G^0_s denote the Joseph’s Enright completion functor on O_0 introduced in [Jo2 Section 2]. Then we have
 \[
 \text{Ind} \circ T^0_s = T_s \circ \text{Ind} \quad \text{and} \quad \text{Res} \circ T_s = T^0_s \circ \text{Res}.
 \]
 \[
 \text{Ind} \circ G^0_s = G_s \circ \text{Ind} \quad \text{and} \quad \text{Res} \circ G_s = G^0_s \circ \text{Res}.
 \]
4. We have $D \circ G_{s_{a_i}} \circ D \cong T_{s_{a_i}}$ on $O^\mathbb{Z}$.
5. Denote the left derived functor of T_s by LT_s. Then $L_i T_s = 0$, for $i > 1$. For any $M \in O$, the $L_1 T_s(M)$ is the maximal α-finite submodule of M. If $\tilde{L}(\lambda)$ is α-finite, then we have $T_1 \tilde{L}(\lambda) = 0$ and $L_1 T_1 \tilde{L}(\lambda) = \tilde{L}(\lambda)$.
6. Denote the right derived functor of G_s by RG_s. Then LT_s is an auto-equivalence of the bounded derived category $\mathcal{D}^b(O)$ with RG_s as its inverse.

Since twisting functors satisfy the braid relations, see, for example [KM, CoM1], it follows that for any $\lambda \in \mathcal{P}$ with a reduced expression $\lambda = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_k}$ ($\alpha_1, \ldots, \alpha_k \in \Pi_0$) the associated twisting functor $T_w := T_{s_{\alpha_1}} \circ T_{s_{\alpha_2}} \circ \cdots \circ T_{s_{\alpha_k}}$ is well-defined. We use T^w_0 to denote the corresponding twisting functor on O_0. Then we have $\text{Res} \circ T_w = T^w_0 \circ \text{Res}$. The completion functors G_w and G^0_w are defined in similar fashion.

3.2. The Jantzen middles for type-I Lie superalgebras. Let $\alpha \in \Pi_0$. Following [CoM1 Section 6], we define the Jantzen middle $U_\alpha(\lambda)$ for $\tilde{L}(\lambda)$ associated with α as the radical of $T_{s_{\alpha}} \tilde{L}(\lambda)$, for any $\lambda \in \mathfrak{h}^*$. The following realization of Jantzen middles is an analogue of [CoM1 Proposition 6.2], where the case of basic classical Lie superalgebras were considered.

Proposition 4. Consider \mathfrak{g} a quasireductive Lie superalgebra of type I-0. Suppose that $\lambda \in \mathcal{P}$ such that $\tilde{L}(\lambda)$ is α-free. Then $T_{s_{\alpha}} \tilde{L}(\lambda)$ has a simple top isomorphic $\tilde{L}(\lambda)$. Furthermore, the Jantzen middle $U_\alpha(\lambda)$ is isomorphic to the largest α-finite quotient of $\text{rad}\tilde{P}(\lambda)$.

3.2.1. Semisimplicity of Jantzen middles. For \mathfrak{g} a Lie superalgebras with the category O that admits a simple-preserving duality, the structure of $T_{s_{\alpha}} \tilde{L}(\lambda)$ has been studied in [CoM1 Theorem 5.12, Corollary 5.14]. It is shown that $\text{soc}(U_\alpha(\lambda)) \cong \text{top}(U_\alpha(\lambda))$ in the case when \mathfrak{g} is either reductive or basic classical; see [AS Theorem 6.3] and [CoM1 Corollary 5.14]. For $\mathfrak{g} = \mathfrak{pe}(2)$, we give an example below showing that the socle and radical of a Jantzen middle are not necessarily isomorphic. Instead, we have the following proposition, which is an analogue of [AS Part (3) of Thoerem 6.3] and [CoM2 Part (ii) of Theorem 5.12] for any Lie superalgebra \mathfrak{g} of type I-0. In particular, this applies to the case of $\mathfrak{pe}(n)$.
Proposition 5. Suppose that $\alpha \in \Pi_0$ and $\lambda \in \mathcal{P}$ such that $\widetilde{L}(\lambda)$ is α-free. Then we have

\begin{align}
\text{(3.1) } \text{soc}(U_\alpha(\lambda)) &\cong \bigoplus_{\widetilde{L}(\nu) \text{: } \alpha \text{-finite}} \widetilde{L}(\nu)^{\oplus \dim \text{Ext}^1_{\mathcal{O}}(\widetilde{L}(\nu), \widetilde{L}(\lambda))}, \\
\text{(3.2) } \text{top}(U_\alpha(\lambda)) &\cong \bigoplus_{\widetilde{L}(\nu) \text{: } \alpha \text{-finite}} \widetilde{L}(\nu)^{\oplus \dim \text{Ext}^1_{\mathcal{O}}(\widetilde{L}(\lambda), \widetilde{L}(\nu))}.
\end{align}

Proof. Mutatis mutandis the proof of [AS, Theorem 6.3]. \hfill \Box

Example 6. Consider $\mathfrak{g} = \mathfrak{pe}(2)$ and $\lambda = 2\epsilon_2 \in \mathfrak{h}^*$. Set $\alpha := \epsilon_1 - \epsilon_2$. We are going to show that the socle and radical of $U_\alpha(\lambda)$ are not isomorphic. Recall that $\omega_2 := \epsilon_1 + \epsilon_2$. By [CC, Lemma 5.11] it follows that $\widetilde{M}(\lambda) = K(L(\lambda)) = \widetilde{L}(\lambda)$. We provide two methods to prove the conclusion.

Method 1. We have $\text{ch} T_{s_\alpha} \widetilde{L}(\lambda) = \text{ch} \widetilde{M}(s_\alpha \cdot \lambda) = \text{ch} \widetilde{L}(\lambda) + \text{ch} \widetilde{L}(s_\alpha \cdot \lambda - \Delta)$ by [CC, Lemma 6.5]. It follows that

\begin{align}
\text{(3.3) } \text{ch} U_\alpha(\lambda) = \text{ch} \widetilde{L}(s_\alpha \cdot \lambda) + \text{ch} \widetilde{L}(s_\alpha \cdot \lambda - \omega_2) = \text{ch} \widetilde{L}(\omega_2) + \text{ch} \widetilde{L}(0).
\end{align}

We claim that the socle of $U_\alpha(\lambda)$ is $\widetilde{L}(0)$. To see this, we consider the following short exact sequence

\begin{align}
0 \to \widetilde{L}(\lambda) \to \widetilde{M}(\omega_2) \to K(L(\omega_2)) \to 0,
\end{align}

obtained by applying the Kac functor $K(-)$ to the short exact sequence $0 \to L(\lambda) \to M(\omega_2) \to L(\omega_2) \to 0$. Since the socle of $K(L(\omega_2))$ is isomorphic to $\widetilde{L}(0)$ and $\widetilde{M}(\omega_2)$ has simple socle (see, e.g., [CCM, Theorem 51]) isomorphic to $\widetilde{L}(\lambda)$, we may conclude that $\text{Ext}^1_{\mathcal{O}}(\widetilde{L}(0), \widetilde{L}(\lambda)) \neq 0$. By Proposition 5 it follows that $\widetilde{L}(0)$ is isomorphic to a submodule of $U_\alpha(\lambda)$.

Now, let

\begin{align}
0 \to \widetilde{L}(\lambda) \to E \xrightarrow{f} \widetilde{L}(\omega_2) \to 0,
\end{align}

be a short exact sequence. Since λ can not be written as a sum of ω_2 and positive roots, we may conclude that the preimage of the highest weight vector of $\widetilde{L}(\omega_2)$ under f is again a highest weight vector of E, namely, E is a quotient of $\widetilde{M}(\omega_2)$. By [CC, Lemma 6.1] and [CC, Lemma 5.11], the socle of $\widetilde{M}(\omega_2)$ is $\widetilde{L}(\lambda)$, and we have a non-split short exact sequence of the radical of $\widetilde{M}(\omega_2)$:

\begin{align}
0 \to \widetilde{L}(\lambda) \to \text{rad} \widetilde{M}(\omega_2) \to \widetilde{L}(0) \to 0,
\end{align}

which implies that (3.3) is split. Namely, we have $\text{Ext}^1_{\mathcal{O}}(\widetilde{L}(\omega_2), \widetilde{L}(\lambda)) = 0$. Consequently, the socle and top of $U_\alpha(\lambda)$ are isomorphic to $\widetilde{L}(0)$ and $\widetilde{L}(\omega_2)$, respectively.

Method 2. By [AS, Theorem 2.3] we have $T^0_{s_\alpha}(L(\lambda)) = M(s_\alpha \cdot \lambda)^\vee$, where $M(s_\alpha \cdot \lambda)^\vee$ denotes the dual Verma module in the sense of [HM, Section 3.3]. We claim that

\begin{align}
T_{s_\alpha} \widetilde{L}(\lambda) = T_{s_\alpha} K(L(\lambda)) \cong K(M(s_\alpha \cdot \lambda)^\vee).
\end{align}
To see this, we note that $T^0 g \cdot \mu L(\mu) = T^0 g \cdot \mu M(\mu) \cong M(\mu)$, which has a unique $g \geq 0$-module structure, and so $T^0 g M(\mu)$ contains $T_s^0 g M(\mu) \cong Ind_{g \geq 0} g T_s^0 g M(\mu)$, as desired. This implies that there is a short exact sequence

$$0 \to L(\mu) \to E \to M(\mu) \to 0$$

Consequently, $L(\mu)$ is isomorphic to $M(\mu)$. We will generalize this result and show the existence of non-semisimple Jantzen middles for arbitrary μ. The main goal of this section is to prove an analogue for Lie superalgebras in our setting, including $\mathfrak{pe}(n)$. We then use this result to complete the proof of Theorem B introduced in Section II.

The following lemma is an analogue of [Co1, Corollary 5.7] for any Lie superalgebra of type I-0.

Lemma 7. Let $\alpha \in \Pi_0$. Then for any α-free modules $M, V \in \mathcal{O}$ and $\tilde{\alpha}$-free module $N \in \mathcal{O}$, we have

$$\text{Hom}_\mathcal{O}(T_{\tilde{s}_\alpha} M, DN) \cong \text{Hom}_\mathcal{O}(T_{\tilde{s}_\alpha} N, DM).$$

$$\text{Ext}_\mathcal{O}^k(T_{\tilde{s}_\alpha} M, T_{\tilde{s}_\alpha} V) \cong \text{Ext}_\mathcal{O}^k(M, V), \text{ for any } k \geq 0.$$

Proof. We shall adapt the proof of [Co1, Corollary 5.7] to establish (3.8). We compute

$$\text{Hom}_\mathcal{O}(T_{\tilde{s}_\alpha} M, DN) \cong \text{Hom}_\mathcal{O}(\mathcal{T} T_{\tilde{s}_\alpha} M, DN)$$

$$\cong \text{Hom}_\mathcal{D}^{\mathcal{O}}(M, \mathcal{R} G_{s_a} DN) \cong \text{Hom}_\mathcal{D}^{\mathcal{O}}(M, D \mathcal{T} T_{\tilde{s}_\alpha} N)$$

$$\cong \text{Hom}_\mathcal{O}(M, DT_{\tilde{s}_\alpha} N) \cong \text{Hom}_\mathcal{O}(T_{\tilde{s}_\alpha} N, DM).$$

For any $k \in \mathbb{Z}$, let $(-)[k]$ be the corresponding shift functor on $\mathcal{D}^{\mathcal{O}}$. To obtain (3.9), we use the argument as in proof of [Co1, Corollary 5.7 (2)] and compute

$$\text{Ext}_\mathcal{O}^k(T_{\tilde{s}_\alpha} M, T_{\tilde{s}_\alpha} V) \cong \text{Hom}_\mathcal{D}^{\mathcal{O}}(\mathcal{T} T_{\tilde{s}_\alpha} M, \mathcal{T} T_{\tilde{s}_\alpha} V[k])$$

$$\cong \text{Hom}_\mathcal{D}^{\mathcal{O}}(M, V[k]) \cong \text{Ext}_\mathcal{O}^k(M, V).$$

The conclusion follows. \qed

The following non-vanishing property of Ext-group will be helpful.

Lemma 8. Suppose that $\text{Ext}_\mathcal{O}^1(M(\lambda), L(\mu)) \neq 0$, for some $\lambda, \mu \in \mathfrak{h}^*$. Then we have $\text{Ext}_\mathcal{O}^1(M(\lambda), \tilde{L}(\mu)) \neq 0$.

Proof. Let

$$0 \to L(\mu) \to E \to M(\mu) \to 0$$

be a non-split short exact sequence in \mathcal{O}_0. We note that every maximal submodule of E contains $L(\mu)$ (otherwise (3.10) is split). Since $M(\lambda)$ has a unique maximal submodule,
we may conclude E has a simple top. Applying the Kac functor $K(-)$, we obtain a short exact sequence in O

\[(3.11) \quad 0 \rightarrow K(L(\mu)) \rightarrow K(E) \rightarrow \tilde{M}(\lambda) \rightarrow 0.\]

By [CCM, Theorem 51], the module $K(E)$ has a simple top. Now, consider the short exact sequence

\[(3.12) \quad 0 \rightarrow \tilde{L}(\mu) \rightarrow K(E)/\text{rad}K(L(\mu)) \rightarrow \tilde{M}(\lambda) \rightarrow 0.\]

Since $K(E)$ has a simple top, we may conclude that (3.12) is non-split. The conclusion follows.

\[\square\]

3.2.3. Abstract Kazhdan-Lusztig theory. We recall the definition of an abstract Kazhdan-Lusztig theory formulated by Cline, Parshall and Scott in [CPS2, Definition 3.3]. Let \mathcal{C} be a highest weight category with weight poset Λ, simple objects $S(\lambda)$, induced objects $A(\lambda)$, Weyl objects $V(\lambda)$ and a length function $\ell: \Lambda \rightarrow \mathbb{Z}$ in the sense of [CPS2, Section 1] (see also [CPS3, Definition 2.1]). Then \mathcal{C} is said to have an abstract Kazhdan-Lusztig theory relative to ℓ provided that

\[(3.13) \quad \text{Ext}^1_{\mathcal{C}}(S(\lambda), A(\mu)) \neq 0 \Rightarrow \ell(\lambda) - \ell(\mu) \equiv n \pmod{2},\]

\[(3.14) \quad \text{Ext}^1_{\mathcal{C}}(V(\lambda), S(\mu)) \neq 0 \Rightarrow \ell(\lambda) - \ell(\mu) \equiv n \pmod{2},\]

for any n, $\lambda, \mu \in \Lambda$; see [CPS2, CPS3, Sc, Pa] for the background, examples and discussions.

For the category $O_\mathbb{F}$ of the general linear Lie superalgebra $\mathfrak{gl}(m|n)$, it is proved in [CS, Corollary 3.3] that the Brundan-Kazhdan-Lusztig theory formulated in [Br] and established in [CLW, BLW] is an abstract Kazhdan-Lusztig theory. For a weight $\eta \in \mathfrak{h}^*$, we denote by O_η the indecomposable block of O that contains $\tilde{L}(\eta)$. The following theorem is a restatement of Theorem A, which is an analogue of [Co1, Theorem 6.4] for Lie superalgebras of type I-0.

Theorem 9. Let η be integral. Suppose that O_η contains a non-semisimple Jantzen middle. Then O_η does not admit a Kazhdan-Lusztig theory in the sense of [CPS2, Definition 3.3].

Proof. We shall adapt the proof of [Co1, Theorem 6.4] to obtain the conclusion for Lie superalgebra \mathfrak{g} of type I-0 by establishing all essential ingredients. To see this, let $\alpha \in \Pi_0$ and $\lambda, \mu, \gamma \in \mathcal{P}$ with $\tilde{\lambda} \neq s_\alpha \cdot \tilde{\mu}$. We claim that if $\tilde{L}(\lambda)$, $\tilde{L}(\gamma)$ are α-free and $\tilde{L}(\mu)$ is α-finite then we have

\[(3.15) \quad \text{Hom}_O(U_\alpha(\lambda), \tilde{M}(\gamma)) = \text{Hom}_O(\tilde{M}(\gamma), U_\alpha(\lambda)) = 0,\]

and inclusions

\[(3.16) \quad \text{Hom}_O(U_\alpha(\lambda), \tilde{M}(\mu)) \hookrightarrow \text{Ext}^1_{O}(\tilde{L}(\lambda), \tilde{M}(\mu)),\]

\[(3.17) \quad \text{Hom}_O(\tilde{M}(\mu), U_\alpha(\lambda)) \hookrightarrow \text{Ext}^1_{O}(\tilde{M}(\mu), \tilde{L}(\lambda)).\]

The equality (3.15) is an immediate consequence of Proposition 4. Now we are going to show (3.16). To see this, we apply the functor $\text{Hom}_O(-, \tilde{M}(\mu))$ to the short exact
sequence

\[(3.18) \quad 0 \to U_\alpha(\lambda) \to T_{s_\alpha} \bar{L}(\lambda) \to \bar{L}(\lambda) \to 0,\]

and obtain a long exact sequence which contains

\[(3.19) \quad \text{Hom}_O(T_{s_\alpha} \bar{L}(\lambda), \bar{M}^\vee(\mu)) \to \text{Hom}_O(U_\alpha(\lambda), \bar{M}^\vee(\mu)) \to \text{Ext}^1_O(\bar{L}(\lambda), \bar{M}^\vee(\mu)).\]

We recall the following isomorphisms

\[\bar{M}^\vee(\mu) \cong D\bar{M}_{\bar{v}}(\bar{\mu}), \quad \bar{L}_{\bar{v}}(\bar{\lambda}) \cong D\bar{L}(\lambda)\]

from \((2.8)\). Also, we note that \(\bar{\mu}\) is \(\hat{\alpha}\)-finite and so \(T^0_{s_\alpha} M(\bar{\mu}) \cong M(s_{\hat{\alpha}} \cdot \bar{\mu})\), which implies that \(T_{s_\alpha} \bar{M}_{\bar{v}}(\bar{\mu}) \cong \bar{M}_{\bar{v}}(s_{\hat{\alpha}} \cdot \bar{\mu})\) for the same reason as that given for \((3.7)\). Therefore by Lemma \(7\) we have

\[(3.20) \quad \text{Hom}_O(T_{s_\alpha} \bar{L}(\lambda), \bar{M}^\vee(\mu)) \cong \text{Hom}_O(\bar{M}_{\bar{v}}(s_{\hat{\alpha}} \cdot \bar{\mu}), \bar{L}_{\bar{v}}(\bar{\lambda})) = 0.\]

This proves \((3.16)\).

Next, we proceed with the proof of \((3.17)\). By \([AL\) Lemma 6.2] and \([CoM1\) Lemma 5.7], we have a four term exact sequence

\[(3.21) \quad 0 \to M(s_{\alpha} \cdot \mu) \to M(\mu) \to T^0_{s_\alpha} M(s_{\alpha} \cdot \mu) \to M(s_{\alpha} \cdot \mu) \to 0.\]

Applying the Kac functor \(K(-)\), we obtain a four term exact sequence of \(\mathfrak{g}\)-modules

\[(3.22) \quad 0 \to \bar{M}(s_{\alpha} \cdot \mu) \to \bar{M}(\mu) \to K(T^0_{s_\alpha} M(s_{\alpha} \cdot \mu)) \to \bar{M}(s_{\alpha} \cdot \mu) \to 0.\]

We claim that \(K(T^0_{s_\alpha} M(s_{\alpha} \cdot \mu)) \cong T_{s_\alpha} K(M(s_{\alpha} \cdot \mu)).\) To see this, let \(M\) denote the \(\mathfrak{g}_{\geq 0}\)-module which is \(M(s_{\alpha} \cdot \mu)\) with trivial \(\mathfrak{g}_1\)-action. With slightly abusing notations, we again denote by \(T_{s_\alpha}\) the twisting functor for \(\mathfrak{g}_{\geq 0}\). Since

\[\text{Res}^\mathfrak{g}_{\geq 0} T_{s_\alpha} M \cong T^0_{s_\alpha} M(s_{\alpha} \cdot \mu)\]

is a quotient of \(P(s_{\alpha} \cdot \mu)\), it follows that \(\text{Res}^\mathfrak{g}_{\geq 0} T_{s_\alpha} M\) is indecomposable. Therefore, we have either \((T_{s_\alpha} M)_{\mathfrak{g}_0} = 0\) or \((T_{s_\alpha} M)_{\mathfrak{g}_1} = 0\), and so the \(\mathfrak{g}_1\)-action on \(T_{s_\alpha} M\) is trivial. Consequently, we have \(K(T^0_{s_\alpha} M(s_{\alpha} \cdot \mu)) \cong \text{Ind}^\mathfrak{g}_{\geq 0} T_{s_\alpha} M \cong T_{s_\alpha} K(M(s_{\alpha} \cdot \mu)).\) Using \((3.22)\), the equality \((3.17)\) follows from an argument identical to the proof of \([Co1\) Corollary 6.5 (2)].

Suppose on the contrary that \(\mathcal{O}_\eta\) admits a Kazhdan-Lusztig theory relative to a length function \(\ell\) from the set of highest weights of simple modules of \(\mathcal{O}_\eta\) to \(\mathbb{Z}\). We claim that, for given \(\bar{L}(\mu_1), \bar{L}(\mu_2), U_\alpha(\lambda) \in \mathcal{O}_\eta,\) if

\[(3.23) \quad \text{Hom}_\mathcal{O}(U_\alpha(\lambda), \bar{M}^\vee(\mu_1)) \neq 0, \quad \text{Hom}_\mathcal{O}(U_\alpha(\lambda), \bar{M}^\vee(\mu_2)) \neq 0,\]

then we have

\[(3.24) \quad \text{Ext}^1_\mathcal{O}(\bar{M}(\mu_1), \bar{L}(\mu_2)) = 0.\]

To see this, we first assume that \(\bar{\lambda} \neq s_{\hat{\alpha}} \cdot \bar{\mu}_1, s_{\hat{\alpha}} \cdot \bar{\mu}_2\). Then \(\text{Ext}^1_\mathcal{O}(\bar{L}(\lambda), \bar{M}^\vee(\mu_1)) \neq 0, \quad \text{Ext}^1_\mathcal{O}(\bar{L}(\lambda), \bar{M}^\vee(\mu_2)) \neq 0\) by \((3.16)\), which implies that \(\ell(\mu_1) \equiv \ell(\mu_2) \pmod{2}\). Hence \((3.24)\) follows.

We now show that \((3.23)\) implies \((3.24)\) in the case when \(\bar{\lambda} \in \{s_{\hat{\alpha}} \cdot \bar{\mu}_1, s_{\hat{\alpha}} \cdot \bar{\mu}_2\}\). To see this, we only need to consider the case that \(\bar{\lambda} = s_{\hat{\alpha}} \cdot \bar{\mu}_1\) and \(\bar{\lambda} \neq s_{\hat{\alpha}} \cdot \bar{\mu}_2\). By
(3.16) again, we have $\text{Ext}_1^O(\tilde{L}(\lambda), \tilde{M}'(\mu_2)) \neq 0$, and so $\ell(\lambda) \equiv \ell(\mu_2) + 1 \pmod 2$. Also, we note that $\lambda = s_{\alpha} \cdot \mu_1$ is equivalent to $\lambda = s_{\alpha} \cdot \mu_1$. It then follows from Lemma 5 and [CoM2, Proposition 6.17] that $\text{Ext}_1^O(M(\lambda), \tilde{L}(\mu_1)) > 0$, which implies that $\ell(\lambda) \equiv \ell(\mu_1) + 1 \pmod 2$. Consequently, since $\ell(\mu_1) \equiv \ell(\mu_2) \pmod 2$ we have $\text{Ext}_1^O(M(\mu_1), \tilde{L}(\mu_2)) = 0$, as desired.

Similarly, if

$$
\ell(\mu_1) \equiv \ell(\mu_2) \pmod 2 \ \text{by} \ (3.17) \ \text{for the same reason. We may conclude that}
$$

$$
\text{Ext}_1^O(L(\mu_1), \tilde{M}'(\mu_2)) = 0. \ \text{Consequently, the Jantzen middle } U_\alpha(\lambda) \ \text{is always semisimple by [CPS2, Theorem 4.1], which contradicts to our assumption. This completes the proof.} \quad \Box
$$

4. The Jantzen Middles for $\mathfrak{pe}(n)$

In this section, we consider the periplectic Lie superalgebra $\mathfrak{g} := \mathfrak{pe}(n)$. Recall that $\omega_n := \epsilon_1 + \epsilon_2 + \cdots + \epsilon_n$.

4.1. Jantzen Middles in Typical Blocks. We define the equivalence relation \sim on \mathcal{P} transitivity generated by $\lambda \sim w \cdot \lambda$ and $\lambda \sim \lambda \pm 2\epsilon_k$, for $w \in W$ and $1 \leq k \leq n$; see [CC, Section 5.2]. In particular, we have the following decomposition of O^Z into indecomposable blocks.

Lemma 10. ([CC Theorem 5.4]) For any $\lambda, \mu \in \mathcal{P}$, we have

$$
\tilde{L}(\mu) \in O_\lambda \iff \lambda \sim \mu.
$$

In particular, we have

$$
O^Z = \bigoplus_{i=0}^{n} O_{\partial^i + k\omega_n},
$$

with $\partial^i := i \epsilon_1 + (i - 1) \epsilon_2 + \cdots + \epsilon_i$.

For any $k \in \mathbb{C}$, we have an equivalence

$$
C_{k\omega_n} \otimes - : O_{\partial^i} \cong O_{\partial^i + k\omega_n},
$$

see [CC, Lemma 5.10]. Therefore, we shall focus on the blocks $O_{\rho^i}, \ldots, O_{\rho^n}$. We recall the notion of typicality of weights for $\mathfrak{pe}(n)$ from [Sel] Section 5 below. Let T, T_+, T_- be the polynomials on \mathfrak{h}^* given by

$$
T_\pm(\lambda) := \prod_{\alpha \in \Phi_0^+} (\langle \lambda + \rho, \alpha \rangle \pm 1) = \prod_{i<j} (\lambda_i - \lambda_j + j - i \pm 1), \ T(\lambda) := T_+(\lambda)T_-(\lambda).
$$

Then λ is called *typical* if $T(\lambda) \neq 0$, and *atypical* otherwise. A block O_λ is said to be *atypical* if $\tilde{L}(\mu) \in O_\lambda$, for some atypical $\mu \in \mathfrak{h}^*$, and O_λ is called *typical* otherwise. By Lemma 10 these blocks

$$
O_{\rho_i}, \ \text{for } i = 0, \ldots, n - 2
$$

are atypical. Conversely, if $\tilde{L}(\lambda)$ lies in one of

$$
O_{\rho_{n-1}}, O_{\rho_n},
$$

then λ is typical.}
then $\lambda + \rho = \sum_{i=1}^{n}(\lambda + \rho)_i \epsilon_i$ satisfying that $(\lambda + \rho)_1, (\lambda + \rho)_2, \ldots, (\lambda + \rho)_n$ are either all even or all odd. Therefore, λ is typical, and so both O_{ρ_n-1}, O_{ρ_n} are typical.

It is shown in [CP] Theorem C, Theorem 4.6] that the characters of tilting modules in \mathcal{O}_{ρ_n-1} and \mathcal{O}_{ρ_n} are completely controlled by the Kazhdan-Lusztig polynomials of type A Lie algebras. Therefore it is natural to ask whether \mathcal{O}_{ρ_n-1} and \mathcal{O}_{ρ_n} admit abstract Kazhdan-Lusztig theories. The following proposition provides another evidence by showing the semisimplicity of Jantzen middle of \mathcal{O}_{ρ_n-1} and \mathcal{O}_{ρ_n}.

Theorem 11. Suppose that $\lambda \in \mathfrak{h}^*$ is typical. Then $U_\alpha(\lambda)$ is either zero or semisimple, for any $\alpha \in \Pi_0$. In particular, all (non-zero) Jantzen middle in \mathcal{O}_{ρ_n-1} and \mathcal{O}_{ρ_n} are semisimple.

Proof. By [Sel] Lemma 3.2] (see, also [CC] Lemma 5.11], we have $\tilde{L}(\lambda) = K(L(\lambda))$. Set $s := s_\alpha$. We first claim that $T_s K(L(\lambda)) \cong K(T^0_s L(\lambda))$. To see this, consider the \mathfrak{g}_{0+}-module L_λ, which is the \mathfrak{g}_0-module $L(\lambda)$ with trivial \mathfrak{g}_1-action. With slightly abusing notations, we denote by T_s the twisting functor for \mathfrak{g}_{0+}-modules again. Note that $\text{Res}_{\mathfrak{g}_0} T_s L_\lambda \cong T^0_s L(\lambda)$ is either zero or an indecomposable \mathfrak{g}_0-module by Proposition 4. Since we have either $(T_s L_\lambda)_0 = 0$ or $(T_s L_\lambda)_1 = 0$, it follows that \mathfrak{g}_1 acts on the \mathfrak{g}_{0+}-module $T_s L_\lambda$ trivially. We compute

$$T_s K(L(\lambda)) \cong \text{Ind}_{\mathfrak{g}_{0+}}^{\mathfrak{g}_0} T_s L_\lambda \cong K(T^0_s L(\lambda)).$$

By [CCM] Theorem 51] the Kac functor $K(-)$ preserves the length of top. Consequently, we have

$$U_\alpha(\lambda) = \text{rad} T_s \tilde{L}(\lambda) \cong \text{rad} K(T^0_s L(\lambda)) \cong K(\text{rad} T^0_s L(\lambda)).$$

Since $T^0_s (-)$ is right exact and $\text{ch} T^0_s M(\lambda) = \text{ch} M(s \cdot \lambda)$, we may conclude that every composition factor of $\text{rad} T^0_s L(\lambda)$ is of the form $L(\mu)$ with $\mu \in W \cdot \lambda$. Therefore, if $m_{\lambda,\mu} := [\text{rad} T^0_s L(\lambda) : L(\mu)] > 0$, then μ is typical. This implies that $U_\alpha(\lambda) \cong \bigoplus_{\mu \in \mathfrak{h}^*} \tilde{L}(\mu)_{\mu + m_{\lambda,\mu}}$ is either zero or semisimple. The conclusion follows.

Example 12. Consider $\mathfrak{g} = \mathfrak{pe}(2)$ with the unique positive even root $\alpha := \epsilon_1 - \epsilon_2$. We have computed Jantzen middles $U_\alpha(\lambda)$ for atypical weights λ in Example 6. Now, we consider Jantzen middles $U_\alpha(\lambda)$ in the case when λ are typical. Set $T := T_{\lambda_0}$.

Suppose that $\lambda = a \epsilon_1 + b \epsilon_2 \in \mathbb{Z} \epsilon_1 \oplus \mathbb{Z} \epsilon_2$ is typical, namely, $b \neq a, a + 2$. If $b > a + 2$ then $T^0_s M(\lambda)$ is the dual Verma module over \mathfrak{g}_0 with top and radical isomorphic to $L(\lambda)$ and $L(s \cdot \lambda)$, respectively. It then follows that

$$U_\alpha(\lambda) = \text{rad} T_s L(\lambda) \cong K(\text{rad} T^0_s M(\lambda)) \cong \tilde{L}(s \cdot \lambda).$$

If $b = a + 1$ then $U_\alpha(\lambda) = 0$ by the character formulas of twisted simple modules computed in [CC] Lemma 6.7]. We now collect our results in the following complete classification of Jantzen middles of $\mathfrak{pe}(2)$ (see also [CC] Lemma 6.7]):

$$U_\alpha(\lambda) = \begin{cases} 0 & \text{if } b \leq a + 1, \\ K(L(\lambda + \epsilon_1 - \epsilon_2)) & \text{if } b = a + 2, \\ \tilde{L}(s \cdot \lambda) & \text{if } b > a + 2. \end{cases}$$

(4.4)
4.2. The absence of Kazhdan-Lusztig theory for \(\mathfrak{p}(n) \). In this section, we turn to the semisimplicity of Jantzen middles for atypical blocks of \(\mathfrak{p}(n) \).

Suppose that \(\mathcal{O}_\eta \) is an atypical block of \(\mathcal{O}^\mathbb{Z} \). Applying the equivalence \((4.2)\) if necessary, we may assume that \(\eta \in \bigoplus_{i=1}^n \mathbb{Z} \varepsilon_i \). For any weight \(\gamma \in \mathcal{P} \), we let \(\gamma_i \) be determined by \(\gamma = \sum_{i=1}^n \gamma_i \varepsilon_i \). Since \(\mathcal{O}_\eta \) is atypical, there are \(1 \leq i, j \leq n \) such that \((\eta + \rho)_i \not\equiv (\eta + \rho)_j \text{ (mod 2)}\) by \((4.1)\). In addition, there is an anti-dominant weight \(\lambda \in \mathcal{P} \) such that \(\bar{L}(\lambda) \in \mathcal{O}_\eta \) satisfying

\[
(\lambda + \rho)_1 = 0, \quad (\lambda + \rho)_2 = 1, \quad \text{and} \quad \lambda_{k+1} - \lambda_k > 1,
\]

for \(k = 2, 3, \ldots, n - 1 \). The following proposition shows that the corresponding Jantzen middle \(U_\alpha(\lambda) \) in \(\mathcal{O}_\eta \) is non-semisimple.

Proposition 13. Retain the notations above. Then \(U_\alpha(\lambda) \) is not semisimple.

Proof. Let \(\alpha := \varepsilon_1 - \varepsilon_2 \) and \(s := s_\alpha \). First, we note that the socle of \(K(L(s \cdot \lambda)) \) is \(\bar{L}_{bo}(s \cdot \lambda - (n - 1)\omega_n) \). Put \(\mu := s \cdot \lambda - \varepsilon_1 - \varepsilon_2 = \lambda - 2\varepsilon_2 \). It follows from Lemma \([2]\) (see also Example \([3]\)) that

\[
\text{soc} K(L(s \cdot \lambda)) = \bar{L}_{bo}(s \cdot \lambda - (n - 1)\omega_n) = \bar{L}(\mu).
\]

We firstly claim that \(\text{Ext}^1_{bo}(\bar{L}(\lambda), \bar{L}(\mu)) = 0 \), which will imply that \(\text{top}(U_\alpha(\lambda)) : \bar{L}(\mu) = 0 \) by Proposition \([5]\). To see this, we let

\[
0 \to \bar{L}(\mu) \to E \xrightarrow{\pi} \bar{L}(\lambda) \to 0,
\]

be a short exact sequence. Let \(v_\lambda \in E \) be the preimage of the highest weight vector of \(\bar{L}(\lambda) \) under \(\pi \). By weight consideration we have \(n^+ v_\lambda = 0 \). This means that \(E \) is an image of the Verma module \(\tilde{M}(\lambda) \). Since \(\lambda \) is anti-dominant, it follows that \(\tilde{M}(\lambda) = \bar{L}(\lambda) \) by \([CC\text{ Lemma 5.11}]\); see also \([Se1\text{ Lemma 3.2}]\). Consequently, the short exact sequence \((4.5)\) is split.

Next, we show that \(\text{Ext}^1_{bo}(\bar{L}(\mu), \bar{L}(\lambda)) \neq 0 \), which will imply that \(\text{soc} U_\alpha(\lambda) : \bar{L}(\mu) \neq 0 \) by Proposition \([5]\). We recall that every Verma module has a simple socle by \([CCM\text{ Theorem 51}]\). Applying the Kac functor \(K(-) \) to the short exact sequence \(0 \to L(\lambda) \to M(s \cdot \lambda) \to L(s \cdot \lambda) \to 0 \), we then obtain a non-split short exact sequence

\[
0 \to \bar{L}(\lambda) \to \tilde{M}(s \cdot \lambda) \to K(L(s \cdot \lambda)) \to 0,
\]

and so \(\bar{L}(\lambda) = \text{soc} \tilde{M}(s \cdot \lambda) \).

Since \(\text{ch} T_s \bar{L}(\lambda) = \text{ch} \tilde{M}(s \cdot \lambda) \), it follows that \(\text{top}(U_\alpha(\lambda)) \neq U_\alpha(\lambda) \). Hence, we have already proved that \(U_\alpha(\lambda) \) is not semisimple.

We continue to show the stronger claim that \(\text{Ext}^1_{bo}(\bar{L}(\mu), \bar{L}(\lambda)) \neq 0 \). Since \(\tilde{M}(s \cdot \lambda) \) has simple socle, there is a submodule \(E \subseteq \tilde{M}(s \cdot \lambda) \) and a non-split short exact sequence

\[
0 \to \bar{L}(\lambda) \to E \to \bar{L}(\mu) \to 0.
\]

This completes the proof. \(\square\)

The conclusion of Theorem B is a direct consequence of Theorem \([9]\) Theorem \([11]\) and Proposition \([13]\).
References

[Ar] S. Arkhipov, Algebraic construction of contragradient quasi-Verma modules in positive characteristic. Representation theory of algebraic groups and quantum groups, 278, Adv. Stud. Pure Math., 40, Math. Soc. Japan, Tokyo, 2004.

[AL] H.H. Andersen, N. Lauritzen, Twisted Verma modules. Studies in memory of Issai Schur, Progr. Math., 210, Birkhäuser Boston, Boston, MA, 2003, 1–26.

[AS] H. H. Andersen and C. Stroppel, Twisting functors on \(\mathcal{O} \), Represent. Theory 7 (2003), 681–699.

[Br] J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{gl}(m|n) \), J. Amer. Math. Soc. 16 (2003), 185–231.

[B+9] M. Balagovic, Z. Daugherty, I. Entova-Aizenbud, I. Halacheva, J. Hennig, M.-S. Im, G. Letzter, E. Norton, V. Serganova, C. Stroppel, Translation functors and decomposition numbers for the periplectic Lie superalgebra \(p(n) \), Mathematical Research Letters.

[BF] A. Bell and R. Farnsteiner. On the theory of Frobenius extensions and its application to Lie superalgebras. Trans. Amer. Math. Soc. 335 (1993) 407–424.

[BK] J. Brylinski; M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., Springer-Verlag, 64 (3): 387–410.

[BS] J. Brundan, C. Stroppel. Semi-infinite highest weight categories. Preprint. https://arxiv.org/abs/1808.08022.

[BGG] I. Bernshtein, I. Gel’fand and S. Gel’fand. A certain category of \(\mathfrak{g} \)-modules. Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8.

[BLW] J. Brundan, I. Losev, B. Webster. Tensor Product Categorifications and the Super Kazhdan–Lusztig Conjecture. Internat. Math. Res. Notices. 20 (2017) 6329–6410.

[Ch] C.-W. Chen. Finite-dimensional representations of periplectic Lie superalgebras. J. Algebra 476 (2020), 1117–1144.

[Co1] K. Coulembier. The primitive spectrum of a basic classical Lie superalgebra. Comm. Math. Phys. 348 (2016), no. 2, 579–602.

[Co2] K. Coulembier. Gorenstein homological algebra for rings and Lie superalgebras. Preprint https://arxiv.org/pdf/1707.05040.pdf.

[Co3] K. Coulembier, The periplectic Brauer algebra, Proc. Lond. Math. Soc. (3) 117 (2018), no. 3, 441–482.

[CC] C.-W. Chen and K. Coulembier. The primitive spectrum and category \(\mathcal{O} \) for the periplectic Lie superalgebra. Canad. J. Math. 72 (2020), no. 3, 625–655.

[CCo] S.-J. Cheng and K. Coulembier. Representation Theory of a Semisimple Extension of the Takiff Superalgebra. Int. Math. Res. Not. (2021), to appear. https://doi.org/10.1093/imrn/rnab140.

[CP] C.-W. Chen and Y.-N. Peng. Parabolic category \(\mathcal{O}^p \) for periplectic Lie superalgebras \(\mathfrak{p}(n) \). Preprint https://arxiv.org/pdf/2002.10011.pdf.

[CM] C.-W. Chen and V. Mazorchuk. Simple supermodules over Lie superalgebras. Trans. Amer. Math. Soc. 374 (2021), 899-921.

[CoM1] K. Coulembier and V. Mazorchuk. Primitive ideals, twisting functors and star actions for classical Lie superalgebras. J. Reine Ang. Math., 718 (2016), 207–253.

[CoM2] K. Coulembier and V. Mazorchuk. Some homological properties of category \(\mathcal{O} \). IV. Forum Math. 29 (2017), no. 5, 1083–1124.

[CS] K. Coulembier and V. Serganova. Homological invariants in category \(\mathcal{O} \) for the general linear superalgebra, Trans. Amer. Math. Soc. 369 (2017), 7961–7997.

[CW] S.-J. Cheng and W. Wang. Dualities and representations of Lie superalgebras. Graduate Studies in Mathematics 144. American Mathematical Society, Providence, RI, 2012.

[CC] C.-W. Chen, S.-J. Cheng and K. Coulembier. Tilting modules for classical Lie superalgebras. J. Lond. Math. Soc. (2) 103 (2021), 870–900.

[CCM] C.-W. Chen, K. Coulembier and V. Mazorchuk. Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras. Math. Z. 297, 255–281 (2021).
S.-J. Cheng, N. Lam and W. Wang, *Brundan-Kazhdan-Lusztig conjecture for general linear Lie superalgebras*, Duke Math. J. **110** (2015), 617–695.

S.-J. Cheng, V. Mazorchuk and W. Wang, *Equivalence of blocks for the general linear Lie superalgebra*, Lett. Math. Phys. **103** (2013), 1313–1327.

C. Hoyt, M.-S. Im, S. Reif *Denominator identities for the periplectic Lie superalgebra*, J. Algebra **567** (2021), 459–474.

E. Cline, B. Parshall and L. Scott, *Finite dimensional algebras and highest weight categories*, J. Reine Angew. Math. **391** (1988), 85–99.

E. Cline, B. Parshall and L. Scott, *Abstract Kazhdan–Lusztig theories*, Tohoku Math. J. (2) **45**(4) (1993), 511–534.

E. Cline, B. Parshall and L. Scott, *Infinitesimal Kazhdan-Lusztig theories*. Contemporary Mathematics **139** (1993): 43–43.

J. Dixmier, *Enveloping algebras*. Graduate Studies in Mathematics, **11**. American Mathematical Society, Providence, RI, 1996. xx+379 pp.

M. Duflo, *Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple*. Ann. of Math. (2) **105** (1977), no. 1, 107–120.

I. Entova-Aizenbud, V. Serganova, *Deligne categories and the periplectic Lie superalgebra*. Preprint. https://arxiv.org/abs/1807.09478

M.-S. Im, S. Reif, V. Serganova, *Grothendieck rings of periplectic Lie superalgebras*, arXiv preprint arXiv:1906.01948 (2019).

M. Gorelik, *On the ghost centre of Lie superalgebra*. Ann. Inst. Fourier (Grenoble) **50** (2000), no. 6, 1745–1764.

J. Humphreys, *Representations of semisimple Lie algebras in the BGG category O*. Graduate Studies in Mathematics, vol. **94**, American Mathematical Society, Providence, RI, 2008.

I. Entova-Aizenbud, V. Serganova *Duflo-Serganova functor and superdimension formula for the periplectic Lie superalgebra*, arXiv preprint arXiv:1910.02294 (2019).

O. Khomenko; V. Mazorchuk, *On Arkhipov’s and Enright’s functors*. Math. Z. **249** (2005), no. 2, 357–386.

V. Mazorchuk, *Parabolic category O for classical Lie superalgebras*. Advances in Lie Superalgebras. Springer International Publishing, 2014, 149–166.

I. Musson, *A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra*, Adv. Math. **91** (1992): 252–268.

I. Musson, *Lie superalgebras and enveloping algebras*. Graduate Studies in Mathematics, 131. American Mathematical Society, Providence, RI, 2012.

V. Mazorchuk, C. Stroppel, On functors associated to a simple root. J. Algebra **314** (2007), no. 1, 97–128.

B. Parshall, *The Ext Algebra of a Highest Weight Category*. Finite Dimensional Algebras and Related Topics. Springer, Dordrecht (1994). 213–222.

I. Penkov and V. Serganova, *Generic irreducible representations of finite-dimensional Lie superalgebras*, Internat. J. Math. **5** (1994) 389–419.

I. Penkov and V. Serganova, *Cohomology of G/P for classical complex Lie supergroups G and characters of some atypical G-modules*. Ann. Inst. Fourier **39** (1989), 845–873.
[Sc] L. L. Scott *Quasihereditary algebras and Kazhdan-Lusztig theory*. Finite Dimensional Algebras and Related Topics. Springer, Dordrecht (1994), 293–308.

[Se1] V. Serganova. *On representations of the Lie superalgebra p(n)*. J. Algebra 258 (2) (2002), 615–630.

[Se2] V. Serganova. *Quasireductive supergroups*, New developments in Lie theory and its applications, Contemporary Mathematics 544 (eds C. Boyallian, E. Galina and L. Saal; American Mathematical Society, Providence, RI, 2011) 141–159.

Chih-Whi Chen: Department of Mathematics, National Central University, Zhongli District, Taoyuan City, Taiwan; E-mail: cwchen@math.ncu.edu.tw