Sequencing and analysis of the complete mitochondrial genome of *Ochotona coreana* from China and its phylogenetic analysis

Zhang Jun-Sheng, Li Bo-Qi, Yang Qiao-Jiang, Zhang Qi, Wang Chen and Liu Zhu

College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, P.R. China

ABSTRACT

The complete mitogenome sequence of *Ochotona coreana* was determined using long PCR. The genome was 17,283 bp in length and contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, 1 origin of L strand replication, and 1 control region. The overall base composition of the heavy strand is A (31.5%), C (28.7%), T (26.2%), and G (13.6%). The base compositions present clearly the A–T skew, which is most obviously in the control region and protein-coding genes. Mitochondrial genome analyses based on MP, ML, NJ and Bayesian analyses yielded identical phylogenetic trees. This study verifies the evolutionary status of *O. coreana* in Ochotonidae at the molecular level. The mitochondrial genome would be a significant supplement for the *O. coreana* genetic background. The seven *Ochotona* species formed a monophyletic group with the high bootstrap value (100%) in all examinations.

Ochotona coreana was promoted to a species from a subspecies *O. hyperborea coreana* (Liu et al. 2017). In this paper, the complete mitochondrial genome of *O. coreana* was sequenced for the first time on ABI 3730XL using a primer walking strategy and the long and accurate PCR, with five pairs of long PCR primers and with 14 pairs of sub-PCR primers. A muscle sample was obtained from a female *O. coreana* captured from the Dahailin regions of Changbaishan Mountains in Heilongjiang Province, China (44°19′59″N, 128°12′10″E). The muscle tissue was preserved in 95% ethanol and stored at –75°C before use. The specimen and its DNA is stored in Animal and Plant Herbarium of Mudanjiang Normal University. The voucher number is CBST2019001.

The mitogenome is a circular double-stranded DNA sequence that is 17,283 bp long including 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, 1 origin of L strand replication, and 1 control region. The accurate annotated mitochondrial genome sequence was submitted to GenBank with accession number MT017929. The arrangement of the multiple genes is in line with other Lagomorpha species (Wang and Yang 2012; Yu et al. 2015; Ding, Chen, Wang, et al. 2016; Ding, Chen, Pan, et al. 2016; Giannoulis et al. 2018; He et al. 2018; Yang et al. 2019) and most mammals (Mouchaty et al. 2000; Nikaido et al. 2001; Nikaido et al. 2003; Fontanillas et al. 2005; Cabria et al. 2006; Meganathan et al. 2012; Xu et al. 2012, 2013; Kim et al. 2013, 2017; Yoon et al. 2013; Hou et al. 2016; Huang et al. 2014, 2016; Xu et al. 2016; Jin et al. 2017; Liu et al. 2016; Liu, Tian, Jin, Dong, et al. 2017; Liu, Wang, et al. 2017; Liu, Tian, Jin, et al. 2017; Liu et al. 2018; Liu, Dang, et al. 2019; Liu, Qin, et al. 2019; Gutiérrez et al. 2018; Jia et al. 2018).

The control region of *O. coreana* mitochondrial genome was located between the tRNA-Pro and tRNA-Phe genes, and contains only promoters and regulatory sequences for replication and transcription, but no structural genes. Three domains were defined in *O. coreana* mitochondrial genome control region (Zhang et al., 2009): the extended termination-associated sequence (ETAS) domain, the central conserved domain (CD) and the conserved sequence block (CSB) domain.

The total length of the protein-coding gene sequences was 11,398 bp. Most protein-coding genes initiate with ATG except for ND2, ND3, and NDS, which began with ATC or ATT. Seven protein-coding genes terminated with TAA. The incomplete stop codons (T— in COX3, ATP6, ND3 and ND4. A strong bias against A at the third codon position was observed in the protein-coding genes. The frequencies of CTA (Leu), ATT (Ile), TTA (Leu), and ATA (Met) were higher than those of other codons. The length of tRNA genes varied from 59 to 75 bp. Twenty-one of them could be folded into the typical cloverleaf secondary structure except the tRNA-Ser (AGY), whose complete dihydrouridine arm was lacking.

Most *O. coreana* mitochondrial genes were encoded on the H strand, except for the ND6 gene and eight tRNA genes, which were encoded on the L strand. Some reading frame intervals and overlaps were found. One of the most typical was between ATP8 and ATP6. The L-strand replication origin (OL) was located within the WANCY region containing five
tRNA genes (tRNATrp, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr). This region was 33 bp long and had the potential to fold into a stable stem-loop secondary structure. The total base composition of *O. coreana* mitochondrial genome was A (31.5%), C (28.7%), T (26.2%), and G (13.6%). The base compositions clearly present the A-T skew, which was most obviously in the control region and protein-coding genes.

In order to explore the evolution of Lagomorpha species which include Ochotonidae and Leporidae, especially the evolution of genus *Ochotona* from China, here, we investigate the molecular phylogenetics of Chinese *O. coreana* using the complete mitochondrial genome sequence of 21 species. All sequences generated in this study have been deposited in the GenBank (Figure 1).

Mitochondrial genome analyses based on MP, ML, NJ, and Bayesian analyses yielded identical phylogenetic trees, indicating a close phylogenetic affinity of species. The phylogram obtained from the maximum parsimony method is shown in Figure 1. It shows that two major phyletic lineages were present in Lagomorpha: Ochotonidae and Leporidae. Ochotonidae comprised *O. coreana*, *O. dauurica*, *O. erythrotis*, *O. curzoniae*, *O. koslowi*, *O. collaris*, and *O. princeps* was supported by bootstrap values of 100%. Leporidae comprised *Lepus arcticus*, *L. hainanus*, *L. coreanus*, *L. tolai*, *L. sinensis*, *L. tibetanus*, *L. europaeus*, *L. capensis*, *L. americanus*, *L. granatensis*, *L. townsendii*, and *Oryctolagus cuniculus* was supported by bootstrap values of 100%. This study verifies the evolutionary status of *O. coreana* in Ochotonidae at the molecular level. The mitochondrial genome would be a significant supplement for the *O. coreana* genetic background. The seven *Ochotona* species formed a monophyletic group with the high bootstrap value (100%) in all examinations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the Heilongjiang Provincial Department of Education filing project [1354MSYYB005].

References

Cabria MT, Rubines J, Gómez-Moliner B, Zardoya R. 2006. On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (*Galemys pyrenaicus*). Gene. 375:1–13.

Ding L, Chen M, Pan T, Zhang B, Zhou Y, Wang H. 2016. Complete mitochondrial DNA sequence of *Lepus sinensis* (Leporidae: *Lepus*). Mitochondrial DNA Part A. 27(3):1711–1712.

Ding L, Chen C, Wang H, Zhang B. 2016. Complete mitochondrial DNA sequence of *Lepus tolai* (Leporidae: *Lepus*). Mitochondrial DNA Part A. 27(3):2085–2086.

Fontanillas P, Depraz A, Giorgi MS, Perrin N. 2005. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, *Crocidura russula*. Mol Ecol. 14(2):661–670.

Giannoulis T, Stamatis C, Tsipourlianos A, Mamuris Z. 2018. Mitogenomic analysis in European brown hare (*Lepus europaeus*) proposes genetic and functional differentiation between the distinct lineages. Mitochondrial DNA Part A. 29(3):353–360.

Gutiérrez J, Lamelas L, Aleix-Mata G, Arroyo M, Marchal JA, Palomeque T, Lorite P, Sánchez A. 2018. Complete mitochondrial genome of the Iberian Mole *Talpa occidentalis* (Talpidae, Insectivora) and comparison with *Talpa europaea*. Genetica. 146(4–5):415–423.

He YJ, Ma YG, Lin GH, Zhang TZ, Su JP. 2018. The complete mitochondrial DNA sequence of the Chinese red pika (*Ochotona erythrotis*). Mitochondrial DNA Part B. 3(2):852–853.
Hou Q, Tu F, Liu Y, Liu S. 2016. Characterization of the mitogenome of Uropsilus gracilis and species delimitation. Mitochondrial DNA Part A. 27(3):1836–1837.

Huang T, Dang X, An M, Chen L, Zhang J. 2016. The complete mitochondrial genome of the Sorex araneus. Mitochondrial DNA. 27(5):3655–3656.

Huang T, Yan CC, Tan Z, Tu FY, Yue BS, Zhang XY. 2014. Complete mitochondrial genome sequence of Nectogale elegans. Mitochondrial DNA. 25(4):253–254.

Jia X, Yang L, Shi H. 2018. The complete mitochondrial genome of Anderson’s shrew mole, Uropsilus andersoni (Talpidae.). Conservation Genet Resour. 10(3):583–585.

Jin ZM, Liu Z, Ma JZ. 2017. Sequencing and analysis of the complete mitochondrial genome of the masked shrew (Sorex caecutiens) from China. Mitochondrial DNA Part B. 2(2):486–488.

Kim TW, Kim YK, Oh DJ, Park JH, Kim D, Adhikari P, Kim G, Park SM, Lee JW, Jung YH, et al. 2017. Complete mitochondrial genome of the Ussurian white-toothed shrew Crocidura lasiura (Insectivora, Soricidae). Mitochondrial DNA Part A. 28(2):216–217.

Kim HR, Park JK, Cho JY, Chul Park Y. 2013. Complete mitochondrial genome of an Asian Lesser White-toothed Shrew, Crocidura shantungensis (Soricidae). Mitochondrial DNA. 24(3):202–204.

Liu Z, Bai W, Wang AN, Tian XM, Li DW. 2018. Sequencing and analysis of the complete mitochondrial genome of the taiga shrew (Sorex isodon) from China. Mitochondrial DNA Part B. 3(1):466–468.

Liu Z, Dang YQ, Li JJ. 2019. Sequencing and analysis of the complete mitochondrial genome of the Eurasian least shrew (Sorex minutissimus) from China. Mitochondrial DNA Part B. 4(1):178–180.

Liu SY, Jin W, Liao R, Sun ZY, Zeng T, Fu JR, Liu Y, Wang X, Li PF, Tang MK, et al. 2017. Phylogetic study of Ochotona based on mitochondrial Cyt b and morphology with a description of one new subspecies and five new species. Acta Theriol Sin. 37(1):1–43.

Liu Z, Qin KS, Li JJ, Dong M. 2019. Sequencing and analysis of the complete mitochondrial genome of the Siberian large-toothed shrew (Sorex daphaenodon) from China. Mitochondrial DNA Part B. 4(1):542–544.

Liu Z, Tian XM, Jin ZM, Dong M, Zhang JS. 2017. Sequencing and analysis of the complete mitochondrial genome of the Ussuri shrew (Sorex mirabilis) from China. Mitochondrial DNA Part B. 2(2):645–647.

Liu Z, Tian XM, Jin JL, Jin ZM, Li DW, Zhang JS. 2017. Sequencing and analysis of the complete mitochondrial genome of the slender shrew (Sorex gracillimus) from China. Mitochondrial DNA Part B. 2(2):642–644.

Liu Z, Wang AN, Zhang JS, Yang X, Liu H. 2017. Sequencing and analysis of the complete mitochondrial genome of flat-skulled shrew (Sorex roboratus) from China. Mitochondrial DNA Part B. 2(1):369–371.

Liu Z, Zhao W, Liu P, Li S, Xu C. 2016. The complete mitochondrial genome of Eurasian water shrew (Neomys fodiens). Mitochondrial DNA Part A. 27(4):2381–2382.

Meganathan PR, Pagan HJT, McCulloch ES, Stevens RD, Ray DA. 2012. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera. Gene. 492(1):121–129.

Mouchaty SK, Gullberg A, Janke A, Arnason U. 2000. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol Biol Evol. 17(1):60–67.

Nikaido M, Cao Y, Harada M, Okada N, Hasegawa M. 2003. Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Mol Phylogenet Evol. 28(2):276–284.

Nikaido M, Kawai K, Cao Y, Harada M, Tomita S, Okada N, Hasegawa M. 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J Mol Evol. 53(4-5):508–506.

Wang JL, Yang G. 2012. Complete mitogenome of cape hare Lepus capensis (Lagomorpha: Leporidae) and its phylogenetic considerations. Acta Theriol Sin. 32(1):1–11.

Xu Y, Huang X, Hu Y, Tu F. 2016. Description of the mitogenome of Gansu mole (Scapanulus oweni). Mitochondrial DNA A. 27(3):2083–2084.

Xu CZ, Zhang HH, Ma JZ. 2013. The complete mitochondrial genome of sable, Martes flavigula. Mitochondrial DNA. 24(3):240–242.

Xu CZ, Zhang HH, Ma JZ, Liu ZH. 2012. The complete mitochondrial genome of sable, Martes zibellina. Mitochondrial DNA. 23(3):167–169.

Yang XF, Ao W, Xu DJ, Feng S, Sun GL, Dou HS, Sha WL, Zhang HH. 2019. The complete mitochondrial genome of Daurian pika (Ochotona daurica). Mitochondrial DNA Part B. 4(1):519–520.

Yoon KB, Kim HR, Kim JY, Jeon SH, Park YC. 2013. The complete mitochondrial genome of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae) in Korea. Mitochondrial DNA. 24(4):397–399.

Yu JN, Chung CU, Kwak M. 2015. The complete mitochondrial genome sequence of the Korean hare (Lepus coreanus). Mitochondrial DNA. 26(1):129–130.

Zhang HH, Xu CZ, Ma JZ. 2009. Structure of the mtDNA control region and phylogeny of the Mustelididae species. Acta Ecol Sin. 29:3585–3592.