Assessment of the predictive role of oestrogen and progesterone receptor status in breast cancer patients treated with neoadjuvant chemotherapy: A retrospective analysis for 689 patients

CURRENT STATUS: POSTED

Ying Ye
Chongqing Medical University First Affiliated Hospital

Rui Chen
Chongqing Medical University First Affiliated Hospital

Yong Fu
Dianjiang People's Hospital

Yang Peng
Chongqing Medical University First Affiliated Hospital

Fanli Qu
Chongqing Medical University First Affiliated Hospital

Zhenrong Tang
Chongqing Medical University First Affiliated Hospital

Beige Zong
Chongqing Medical University First Affiliated Hospital

Yihua Wang
Chongqing Medical University First Affiliated Hospital

Feng Luo
Chongqing Medical University First Affiliated Hospital

S Liu
first affiliated hospital of Chongqing Medical University

liushengchun1968@163.com

Corresponding Author

ORCiD: https://orcid.org/0000-0002-6886-8602
DOI: 10.21203/rs.3.rs-16004/v1

SUBJECT AREAS
Oncology

KEYWORDS
Breast Cancer; Menstruation; Neoadjuvant Chemotherapy; Oestrogen Receptor; Progesterone Receptor.
Abstract
Background: To explore the predictive indicators in hormone receptor (HR)-positive breast cancer (BC) patients receiving neoadjuvant chemotherapy (NACT) and to evaluate the value of quantitative oestrogen receptor (ER) and progesterone receptor (PR) in predicting tumour response. Methods: Six hundred eighty-nine BC patients with HR-positive status who were treated with anthracycline, epirubicin and taxane NACT treatment were retrospectively analysed. Clinical and pathological features of the patients were used to evaluate the response to NACT. Results: Patients with larger tumour sizes (OR 1.657 CI 1.186-2.313 p=0.003), those who were in a premenopausal status (OR 1.458 CI 1.039-2.045 p=0.029) and those with higher Ki67 levels (OR 1.735 CI 1.231-2.444 p=0.002) exhibited a better therapy response. Among the patients in the postmenopausal subgroup, a lower pretreatment ER or PR expression were associated with a reduction in tumour size, and the cut-off values for ER and PR were 87.5% and 65%, respectively (p=0.006 and p=0.05). Decreased expression of ER and PR was also observed after NACT treatment (p=0.028 and p<0.001, respectively) but played only a predictive role in the Her-2-negative subgroup; the cut-off values for decreased ER and PR were 17.5% and 26.5%, respectively (p=0.044 and p<0.001). Conclusions: Semiquantified pretreatment HR expression can be used to predict the response of NACT in postmenopausal BC patients. Decreased ER and PR expression is also associated with a reduction in tumour size in Her-2-negative subtypes treated with NACT.

Introduction
Breast cancer (BC) is the leading cause of cancer-related death among women worldwide, and approximately 75% of all BCs are hormone receptor (HR) positive [1]. Neoadjuvant chemotherapy (NACT) has become a well-established approach to treat large or locally advanced BCs [2, 3, 4], which shrinks the tumour to improve the chances of surgical resection and to evaluate the tumour response to chemotherapeutic agents [5, 6, 7]. Although HR-positive BC patients are sensitive to endocrine therapy, they have an undesirable response to NACT treatment compared to the HR-negative subtypes. However, NACT is necessary for a large number of HR + BC patients. Unfortunately, studies investigating the prediction of tumour response after NACT treatment among HR-positive BC patients
are scarce [7, 8].

Oestrogen receptor (ER)/progesterone receptor (PR) status has been reported to be a predictive marker of tumour response in endocrine therapy [8], but few studies have assessed the quantitative status of ER and PR as predictive indicators in NACT. In our study, a semiquantitative method was used to evaluate the predictive effect of pretreatment ER and PR expression. In addition, the change in the semiquantitative expression of ER and PR was also evaluated as a possible predictor for NACT treatment.

Methods
Patients and treatments
A total of 689 BC patients characterized as ER and/or PR positive who had undergone NACT and surgery at the Department of Endocrine Breast Surgery in the First Affiliated Hospital of Chongqing Medical University between January 2012 and November 2017 were recruited. All patients received at least 3 cycles of treatment with the TEC regimen: cyclophosphamide (500 mg/m²), epirubicin (75 mg/m²), and docetaxel (75 mg/m²) every 21 days. Patients with bilateral breast cancer, male breast cancer, and a history of contralateral breast cancer were excluded. In our study, Herceptin was not used in patients with Her-2-positive status before the operation.

Pathology assessment
ER and PR expression were evaluated by the Pathology Department of Chongqing Medical University, and the results were evaluated as the percentage of breast cancer cells with ER/PR staining confirmed via immunohistochemistry (IHC). Samples were defined as ER (+) or PR (+) when at least 1% of nuclei were stained [9]. Her-2 status was considered to be positive when more than 10% of the tumour cells showed a staining intensity of 3+ via IHC or showed a >2.2-fold increase via fluorescence in situ hybridization (FISH) [10]. Regarding Ki67, a range of 500 to 1000 cells were counted to calculate the percentage of positive tumour cell nuclei, including hot spot areas, and 14% was defined as the best cut-off value [11].

Evaluation of treatment efficacy
Ultrasonography and magnetic resonance imaging (MRI) were used to evaluate the response to NACT. We compared the primary imaging materials to the latest materials before the operation to evaluate
tumour shrinkage. The Response Evaluation Criteria in Solid Tumours (RECIST) guidelines version 1.1 were used to evaluate the treatment response as follows: CR (complete remission) was considered if all the target lesions had disappeared, and the short axis of any pathological lymph nodes was less than 10 mm; PR (partial remission) was considered if the longest diameter of the tumour lesion was decreased by ≥ 30%; PD (progressive disease) was considered if the longest tumour diameter was increased by ≥ 20%; and SD (stable disease) was considered if the longest tumour diameter was decreased by less than 30% or increased by less than 20%. pCR (pathologic complete remission) was defined as no residual tumour lesion in any breast tissues or lymph nodes. Among them, patients with pCR, CR and PR were regarded as responders, while those with PD or SD were regarded as nonresponders.

Statistical methods

The differences in clinicopathological characteristics between the responders and nonresponders were calculated with the chi-squared test and multivariate logistic regression models, while the Kruskal–Wallis test was used to compare quantitative characteristics. A receiver operating characteristic (ROC) curve was used to assess the cut-off value. Differences were considered to be statistically significant at P < 0.05. SPSS version 22.0 software (SPSS Inc, Chicago, USA) was used for all statistical analyses.

Results

Baseline characteristics

The average age of the enrolled patients was 48.5 ± 8.92 years (range, 22 to 72 years), and 435 patients (63.2%) were menopausal. The tumour size was 3.94 ± 2.15 cm at diagnosis and 2.13 ± 1.55 cm after NACT. Two hundred ninety-six patients (42.9%) featured clinically positive lymph nodes. According to IHC and FISH, 669 (97.1%) and 514 (74.6%) patients were ER positive and PR positive, respectively, while 198 (29.0%) patients were Her-2-positive. In this study, 479 (69.6%) patients showed a response to NACT treatment, including 45 with pCR (6.50%), 67 with CR (9.70%) and 367 with PR (53.3%), based on the clinical pathological response. Additional details regarding the patient characteristics are shown in Table 1.
Table 1
Clinicopathological features of the study cohort (n = 689)

| Parameters | Number(|%) |
|------------|--------|
| **Age (year)** | ER Status |
| 40 94(13.8) | Positive 669(97.1) |
| ≥ 40 595(86.2) | Negative 20(2.90) |
| **Menopause** | PR Status |
| Yes 254(36.8) | Positive 534(77.5) |
| No 435(63.2) | Negative 155(22.5) |
| **Chemotherapy cycles** | Her-2 |
| 3 18(2.6) | Positive 198(29.0) |
| 4 621(90.1) | Negative 385(55.7) |
| 5-6 50(7.3) | Unknown 106(15.3) |
| **Subtypes of Cancer** | Ki67(%) |
| Ductal 673(97.7) | ≥ 14 451(65.5) |
| Lobular 10(1.40) | Subgroup |
| Others 6(0.90) | |
| **Tumor Size** | ER + PR+ 514(74.6) |
| ≤ 2 cm 58(8.40) | ER + PR- 155(22.5) |
| 2-4 cm 391(56.8) | ER-PR+ 20(2.90) |
| ≥ 4 cm 240(34.8) | Responders3 |
| **Clinical nodal status** | pCR 45(6.50) |
| Positive 296(42.9) | CR 67(9.70) |
| Negative 393(57.1) | PR 367(53.3) |
| **Histological Grade** | SD 189(27.4) |
| I 24(3.50) | PD 21(3.50) |
| II 451(65.5) | |
| III 66(9.60) | |
| **Unknown1** 148(21.4) | |

Characteristic	clinical response	P value	
Res1	Age(Y) 47.9 ± 8.81	50.0 ± 9.02	0.019
Non-Res2	Tumor size (cm) 4.1 ± 2.11	3.7 ± 1.93	0.003
History	Grade I 16 302 41	II 8 150 25	0.752
Menopause	Yes 162 317	No 92 118	0.012
Clinical nodal status	Positive 217 262	Negative 79 131	0.061
Molecular subtype	ER + PR+ 351 112	ER + PR- 163 43	0.408
PR status	Positive 367 112	Negative 167 43	0.427
Her2 status	Positive 261 149	Negative 124 49	0.062
Ki67 expression (%)	≥ 14 144 333	≥ 14 94 118	0.001

1: including pCR, CR and PR;
2: including PD and SD.

Abbreviations: pCR pathologic complete remission, CR complete remission, PR partial remission, SD stable disease, PD progressive disease.

1: The pathology test was given but the results were unknown.
2: IHC test was given and showed Her-2(2+), but not be verified by FISH.
3: pCR, CR and PR were regarded as responders to NACT, while SD or PD was regarded as non-responders to NACT.
based on the response to NACT

Univariate analysis and multivariate logistic regression models were used to analyse the relationship between treatment response and baseline characteristics (Tables 2 and 3). Histological grade, molecular subtype and PR status did not show a statistically significant association with the response to NACT treatment (all p > 0.05). In contrast, a larger tumour size (OR 1.657 CI 1.186–2.313 p = 0.003), postmenopausal status (OR 1.458 CI 1.039–2.045 p = 0.029) and higher Ki67 index (OR 1.735 CI 1.231–2.444 p = 0.002) predicted a better therapy response. In addition, clinical nodal status showed a marginal P value (p = 0.061) in the univariate analysis but no statistical significance in the multivariate logistic regression analysis (OR 1.212 CI 0.860–1.707 p = 0.272).

Characteristic	clinical response	P value	
	Res¹	Non-Res²	
Age (Y)	47.9±8.81	50.0±9.02	0.019
Tumor size (cm)	4.1±2.11	3.7±1.93	0.003
Histological Grade			
I	16	8	0.752
II	302	150	
III	41	25	
Menopause			
Yes	162	92	0.012
No	317	118	
Clinical nodal status			
Positive	217	79	0.061
negative	262	131	
Molecular subtype			
ER+PR+	351	163	0.408
ER+PR-	112	43	
PR status			
Positive	367	167	0.427
negative	112	43	
Her2 status			
Positive	149	49	0.062
negative	261	124	
Ki67 expression (%)			
14	144	94	0.001
≥14	333	118	
1: including pCR, CR and PR;

2: including PD and SD.

Table 2 Univariate analysis of baseline characteristics according to response to NAC
Table 3

Multivariate logistic regression models of baseline characteristics according to response to NAC

Characteristic	clinical response	95%CI	P value
Reference	0.907		
Tumor size	1.657	1.186–2.313	0.003
Menopause	1.458	1.039–2.045	0.029
Clinical nodal status	1.212	0.860–1.707	0.272
Ki67 expression	1.735	1.231–2.444	0.002

Predictive value of pretreatment and decreased ER and PR expression

The interaction between pretreatment HR expression and clinical response was further evaluated. As shown in Fig. 1, in the postmenopausal subgroup, the patients who exhibited a clinical response showed lower ER expression before NACT (n = 244, p = 0.006) (Fig. 1A and 1B), but this phenomenon was not observed in the premenopausal subgroup (n = 425, p = 0.157). Similarly, Figs. 1C and 1D show that in the postmenopausal subgroup patients had higher PR expression prior to NACT, reducing their chances of achieving a response (n = 182, p = 0.05). Moreover, ROC curve analysis was used to define the optimal cut-off value for primary HR expression in the postmenopausal subgroup (Fig. 2). The area under the curve for pretreatment ER and PR expression were 0.605 (p = 0.006) and 0.580 (p = 0.05), respectively, and the optimal cut-off values were 87.5% and 65%, respectively (Fig. 2).

Next, we assessed the changes in ER and PR expression in BC patients during NACT treatment. Decreased ER and PR expression was observed after NACT treatment (p = 0.003 & p < 0.001, Fig. 3A). Moreover, this decreased expression could predict a higher possibility of tumour remission (p = 0.028 & p < 0.001, Fig. 3B, C). However, the ROC results indicated that decreased ER and PR expression can predict the response to NACT only in the Her-2 negative subgroup; the AUCs were 0.565 (p = 0.044, Fig. 4C) and 0.648 (p < 0.001, Fig. 4D), respectively, while the cut-off values of ER and PR reduction were 17.5% and 26.5%, respectively.

Discussion

A large number of clinical studies have shown that HR-positive BC patients have a better relative prognosis but are not as sensitive to NACT as HR-negative BC patients [12]. However, NACT is an imperative method for luminal BC patients with relatively late stages. At present, the predictive factors for the efficiency of NACT in HR-positive BC patients have not been thoroughly elucidated, and
whether the response to NACT could be predicted by semiquantified ER and PR has been a matter of debate [13].

In our study, patients with larger tumour size (≥ 4 cm) or higher percent expression of Ki67 (≥ 14%) could predict a better outcome after 4-cycle NACT treatment, which was in line with prior studies [8, 10, 11]. Unlike previous research from other institutes, the results of our multivariable logistic regression showed that postmenopausal BC patients are more likely to obtain a better clinical therapy response in NACT compared with premenopausal BCs. To the best of our knowledge, this is the first study to describe the impact of menstrual status on NACT in HR-positive BC patients.

We next assessed the interaction between quantified HR expression and clinical response. Similarly, pretreatment ER and PR expression could be used as predictors of response to NACT only for postmenopausal BC patients. This result is similar to that obtained in Raphael’s study, in which he concluded that a lower pretreatment ER expression predicted a higher clinical response rate. However, the effect of menopausal status was not discussed in his study [13]. The possible mechanism is that the oestrogen level may affect the sensitivity of tumour cells to chemotherapy [14]. Furthermore, it is well known that ER+/PR- tumours have a higher level of growth signalling than ER+/PR + tumours [15, 16]. However, in our study, there was no significant difference when analysing the response to NACT among various ER and PR status subgroups (ER+/PR + and ER+/PR- subgroups).

In the current study, the changes in ER and PR expression among non-pCR patients who received NACT were also investigated. According to our findings, decreased ER and/or PR levels were found in approximately 50% of the patients after NACT treatment. However, when considering the therapeutic response of NACT, the predictive roles of decreased ER and PR could only be observed in the Her-2 negative subgroup. This finding may be attributed to differences in tumour cell subtypes, which may activate dissimilar signalling pathways in response to chemotherapy. Another reason for this finding may be that Her-2-positive subtypes have complex growth-promoting mechanisms, which may be affected by molecularly targeted therapy drugs rather than chemotherapy [17].

Our study has the largest number of patients to date among studies exploring the relationship between semiquantitative HR and NACT treatment, but the major limitation of this study is that our
Data were obtained from only one single breast cancer centre, and the research followed a retrospective design. As is well known, low HR expression is be an adverse factor for endocrine therapy [12], and in this research, we observed a reduction in HR expression due to chemotherapy. Could decreased HR expression be beneficial to whole breast cancer treatment? How does it affect progression-free survival (PFS) or overall survival (OS) in patients? Further studies, especially long-term follow-up studies, should take these questions into consideration.

The results of this study showed that quantified HR expression can serve as a predictor of NACT treatment response in postmenopausal BC patients. Changes in HR expression can also predict the outcomes of patients in the ER+/Her-2 negative subgroup. However, in the premenopausal and ER+/Her-2-positive subgroups, these factors were not observed to have predictive functions. In clinical work, continued chemotherapy should be considered for patients with the aforementioned features.

Conclusion
Semiquantified pretreatment HR expression can predict the response of NACT in postmenopausal BC patients. Decreased ER and PR expression is also associated with a reduction in tumour size in Her-2-negative subtypes treated with NACT. The findings could help in screening effective chemotherapy regimens for these patients.

Abbreviations
BC: Breast Cancer; CI: Confidence Interval; CR: Complete Remission; PR: Partial Remission; PD: Clinical Progressive Disease; SD: Clinical Stable Disease; pCR: Pathological Complete Remission; HR: Hormone Receptor; ER: Oestrogen Receptor; PR: Progesterone Receptor; Her-2: Human Epidermal Receptor2; FISH: Fluorescence In Situ Hybridization; IHC: Immunohistochemistry; NACT: Neoadjuvant Chemotherapy; OR: Odds Ratio; OS: Overall Survival; PFS: Progression-Free Survival; ROC: Receiver Operating Curve.

Declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication
Not applicable.

Availability of data and material

The datasets are not publicly available due to local regulations but are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests to report.

Funding

This study was funded by the National Natural Science Foundation of China (NSFC; no. 81272265 and 81472658).

Authors’ contributions

Sc Liu conceived and designed the overall study. Y Ye and R Chen collected the clinical medical histories of patients and analysed the data. Y Ye and Y Fu wrote the manuscript. R Chen and Y Fu revised the manuscript. Y Peng, F Luo and Fl Qu helped perform the statistical analyses. Bg Zong, Zr Tang and Yh Wang finished data filtration and helped write the manuscript.

Acknowledgements

We thank the Department of Endocrine Breast Surgery in the First Affiliated Hospital of Chongqing Medical University for providing the medical histories of the enrolled patients.

We also appreciate the pathological files provided by the Pathology Department of Chongqing Medical University.

References

1. Zhou X, Zhang J, Yun H, Shi R, Wang Y, Wang W, et al. Alterations of biomarker profiles after neoadjuvant chemotherapy in breast cancer: tumor heterogeneity should be taken into consideration. Oncotarget: 36894-902 2015;

2. Albain, K.S., Barlow W.E., Ravdin P.M., Farrar W.B., Burton G.V., Ketchel S.J., Cobau C.D., Levine E.G., Ingle J.N., Pritchard K.I., Lichter A.S., Schneider D.J., Abeloff M.D., Henderson I.C., Muss H.B., Green S.J., Lew D., Livingston R.B., Martino S., Osborne C.K. and Breast Cancer Intergroup of North A. Adjuvant chemotherapy and timing of
tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374: 2055-2063, 2009.

3. Bear, H.D., Tang G., Rastogi P., Geyer C.E., Jr., Robidoux A., Atkins J.N., Baez-Diaz L., Brufsky A.M., Mehta R.S., Fehrenbacher L., Young J.A., Senecal F.M., Gaur R., Margolese R.G., Adams P.T., Gross H.M., Costantino J.P., Swain S.M., Mamounas E.P. and Wolmark N. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. The New England journal of medicine 366: 310-320, 2012.

4. Bedard, P.L. and Cardoso F. Can some patients avoid adjuvant chemotherapy for early-stage breast cancer? Nature reviews Clinical oncology 8: 272-279, 2011.

5. Berry, D.A., Ueno N.T., Johnson M.M., Lei X., Caputo J., Rodenhuis S., Peters W.P., Leonard R.C., Barlow W.E., Tallman M.S., Bergh J., Nitz U.A., Gianni A.M., Basser R.L., Zander A.R., Coombes R.C., Roche H., Tokuda Y., de Vries E.G., Hortobagyi G.N., Crown J.P., Pedrazzoli P., Bregni M. and Demirer T. High-dose chemotherapy with autologous stem-cell support as adjuvant therapy in breast cancer: overview of 15 randomized trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29: 3214-3223, 2011.

6. Costa, S.D., Loibl S., Kaufmann M., Zahm D.M., Hilfrich J., Huober J., Eidtmann H., du Bois A., Blohmer J.U., Ataseven B., Weiss E., Tesch H., Gerber B., Baumann K.H., Thomssen C., Breitbach G.P., Ibishi S., Jackisch C., Mehta K. and von Minckwitz G. Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28: 83-91, 2010.

7. Davies, E. and Hiscox S. New therapeutic approaches in breast cancer. Maturitas 68:
8. Endo, Y., Toyama T., Takahashi S., Sugiura H., Yoshimoto N., Iwasa M., Kobayashi S., Fujii Y. and Yamashita H. High estrogen receptor expression and low Ki67 expression are associated with improved time to progression during first-line endocrine therapy with aromatase inhibitors in breast cancer. *International journal of clinical oncology* 16: 512-518, 2011.

9. Hadad, S.M., Jordan L.B., Roy P.G., Purdie C.A., Iwamoto T., Pusztai L., Moulder-Thompson S.L. and Thompson A.M. A prospective comparison of ER, PR, Ki67 and gene expression in paired sequential core biopsies of primary, untreated breast cancer. *BMC cancer* 16: 745, 2016.

10. Lim, E. and Winer E.P. Adjuvant chemotherapy in luminal breast cancers. *Breast* 20 Suppl 3: S128-131, 2011.

11. Mackey, J.R., Martin M., Pienkowski T., Rolski J., Guastalla J.P., Sami A., Glaspy J., Juhos E., Wardley A., Fornander T., Hainsworth J., Coleman R., Modiano M.R., Vinholes J., Pinter T., Rodriguez-Lescure A., Colwell B., Whitlock P., Provencher L., Laing K., Walde D., Price C., Hugh J.C., Childs B.H., Bassi K., Lindsay M.A., Wilson V., Rupin M., Houe V., Vogel C. and investigators T.B. Adjuvant docetaxel, doxorubicin, and cyclophosphamide in node-positive breast cancer: 10-year follow-up of the phase 3 randomised BCIRG 001 trial. *The Lancet Oncology* 14: 72-80, 2013.

12. Hart, C.D., Migliaccio I., Malorni L., Guarducci C., Biganzoli L. and Di Leo A. Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. *Nature reviews Clinical oncology* 12: 541-552, 2015.

13. Raphael, J., Gandhi S., Li N., Lu F.I. and Trudeau M. The role of quantitative estrogen receptor status in predicting tumor response at surgery in breast cancer patients treated with neoadjuvant chemotherapy. *Breast cancer research and treatment* 164:
14. Wong, H., Lau S., Cheung P., Wong T.T., Parker A., Yau T. and Epstein R.J. Lobular breast cancers lack the inverse relationship between ER/PR status and cell growth rate characteristic of ductal cancers in two independent patient cohorts: implications for tumor biology and adjuvant therapy. *BMC cancer* 14: 826, 2014.

15. Jordan, V.C., Curpan R. and Maximov P.Y. Estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators. *Journal of the National Cancer Institute* 107: djv075, 2015.

16. Komenaka, I.K., Hsu C.H., Martinez M.E., Bouton M.E., Low B.G., Salganick J.A., Nodora J., Hibbard M.L. and Jha C. Preoperative chemotherapy for operable breast cancer is associated with better compliance with adjuvant therapy in matched stage II and IIIA patients. *The oncologist* 16: 742-751, 2011.

17. Xu, J., Ni C., Ma C., Zhang L., Jing X., Li C., Liu Y. and Qu X. Association of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio with ER and PR in breast cancer patients and their changes after neoadjuvant chemotherapy. *Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico* 19: 989-996, 2017.

18. Enomoto, Y., Morimoto T., Nishimukai A., Higuchi T., Yanai A., Miyagawa Y., Murase K., Imamura M., Takatsuka Y., Nomura T., Takeda M., Watanabe T., Hirota S. and Miyoshi Y. Impact of biomarker changes during neoadjuvant chemotherapy for clinical response in patients with residual breast cancers. *International journal of clinical oncology* 21: 254-261, 2016.

19. Manga, G.P., Shahi P.K., Urena M.M., Pereira R.Q., Plaza M.I., Peron Y.I., Val R.G., Carrion J.B., Canon E.P. and Alfonso P.G. Phase II study of neoadjuvant treatment with doxorubicin, docetaxel, and capecitabine (ATX) in locally advanced or
inflammatory breast cancer. *Breast cancer* 17: 205-211, 2010.

20. Matikas, A., Foukakis T., Michalakis I. and Georgoulias V. Implementing neoadjuvant endocrine strategies in ER-positive, HER2-negative breast cancer. *Expert review of anticancer therapy* 17: 319-326, 2017.

21. Metzger-Filho, O. and de Azambuja E. Neoadjuvant chemotherapy and targeted therapies: a promising strategy. *Journal of the National Cancer Institute Monographs* 2011: 116-119, 2011.

22. Miller, W.R. and Larionov A. Changes in expression of oestrogen regulated and proliferation genes with neoadjuvant treatment highlight heterogeneity of clinical resistance to the aromatase inhibitor, letrozole. *Breast cancer research : BCR* 12: R52, 2010.

23. Paluch-Shimon, S., Ben-Baruch N., Wolf I., Zach L., Kopolovic J., Kruglikova A., Modiano T., Yosepovich A., Catane R. and Kaufman B. Hormone receptor expression is associated with a unique pattern of metastatic spread and increased survival among HER2-overexpressing breast cancer patients. *American journal of clinical oncology* 32: 504-508, 2009.

24. Pestalozzi, B.C., Tausch C., Dedes K.J., Rochlitz C., Zimmermann S., von Moos R., Winterhalder R., Ruhstaller T., Mueller A., Buser K., Borner M., Novak U., Nussbaum C.U., Seifert B., Bigler M., Bize V., Vilei S.B., Rageth C., Aebi S. and Swiss Group for Clinical Cancer R. Adjuvant treatment recommendations for patients with ER-positive/HER2-negative early breast cancer by Swiss tumor boards using the 21-gene recurrence score (SAKK 26/10). *BMC cancer* 17: 265, 2017.

25. Hieken, T.J., Murphy B.L., Bogheuy J.C., Degnim A.C., Glazebrook K.N. and Hoskin T.L. Influence of Biologic Subtype of Inflammatory Breast Cancer on Response to Neoadjuvant Therapy and Cancer Outcomes. *Clinical breast cancer* 2017.
26. Straver, M.E., Rutgers E.J., Rodenhuis S., Linn S.C., Loo C.E., Wesseling J., Russell N.S., Oldenburg H.S., Antonini N. and Vrancken Peeters M.T. The relevance of breast cancer subtypes in the outcome of neoadjuvant chemotherapy. *Annals of surgical oncology* 17: 2411-2418, 2010.

27. von Minckwitz, G., Eidtmann H., Rezai M., Fasching P.A., Tesch H., Eggemann H., Schrader I., Kittel K., Hanusch C., Kreienberg R., Solbach C., Gerber B., Jackisch C., Kunz G., Blohmer J.U., Huober J., Hauschild M., Fehm T., Muller B.M., Denkert C., Loibl S., Nekljudova V., Untch M., German Breast G. and Arbeitsgemeinschaft Gynakologische Onkologie-Breast Study G. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. *The New England journal of medicine* 366: 299-309, 2012.

28. Wiebe, J.P., Zhang G., Welch I. and Cadieux-Pitre H.A. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors. *Breast cancer research : BCR* 15: R38, 2013.

29. Yamamoto-Ibusuki, M., Arnedos M. and Andre F. Targeted therapies for ER+/HER2-metastatic breast cancer. *BMC medicine* 13: 137, 2015.

30. Guerrero-Zotano, A.L. and Arteaga C.L. Neoadjuvant Trials in ER+ Breast Cancer: A Tool for Acceleration of Drug Development and Discovery. *Cancer discovery* 7: 561-574, 2017.

Figures
Expression of HR between cRes and cNon-Res is affected by menstrual status. To show the interaction between HR expression and clinical response affected by menstrual status. Figure 1A and 1B indicated that clinically responsive patients had a lower expression of ER only in the postmenopausal subgroup. Figure 1C and 1D showed that only in the postmenopausal subgroup, the higher expression of PR before NAC treatment had a lower response possibility.
Figure 2

ROC curve for pretreatment ER and PR expression in the postmenopausal subgroup. Showed that the best cut-off value of primary ER and PR expression was 87.5% and 65%, respectively. The area under the curve for pretreatment ER and PR was 0.605 (P=0.006, 95% CI 0.530-0.679) and 0.580 (P=0.05, 95% CI 0.493-0.668), respectively.
Change of HR expression between biopsy and surgical specimens. Decreased expression of ER and PR between biopsy and surgery specimens was observed, and the P values were 0.028 and less than 0.000, respectively.
Figure 4

ROC curve for the change of ER and PR expression after NAC. Decreased ER and PR can predict the response to NAC treatment in the Her-2 negative subgroup, but the predictive role was lost in Her-2 positive subgroup. The ROC curve showed that decreased ER and PR can predict the response to NAC treatment in the Her-2 negative subgroup, and the cut-off values of ER and PR reduction were 17.5% and 26.5%, respectively.
