Expansions of the Riemann Zeta function in the critical strip

B. Candelpergher

Introduction

We introduce the functions defined for $t \in]0, +\infty[$ by

$$
\Psi_m(t) = \sqrt{2} \left(\frac{t^2 - 1}{t^2 + 1} \right)^m \frac{1}{\sqrt{1 + t^2}}
$$

where $m \geq 0$ is an integer. Their Mellin transform are

$$
\mathcal{M}(\Psi_m)(s) = \int_0^{+\infty} t^{s-1} \Psi_m(t) dt = \frac{1}{\sqrt{2\pi}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{1-s}{2}\right) Q_m(s)
$$

where Q_m are polynomials in $\mathbb{R}[X]$ with their roots on the line $Re(s) = 1/2$. We use these functions Ψ_m to get the expansion

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^2 t^2} - 1 - \frac{1}{t} = \sum_{m \geq 0} \alpha_{2m} \Psi_{2m}(t) \quad \text{for } t \in]0, +\infty[
$$

with

$$
\alpha_{2m} = \frac{2^{-4m}}{(2m)!} \left(\sum_{n \in \mathbb{Z}} H_{4m}(\sqrt{2\pi} n) e^{-\pi n^2} - 2 \frac{(4m)!}{(2m)!} \right)
$$

where H_n are the Hermite polynomials.

In the strip $0 < Re(s) < 1$ the well-known classical result

$$
\int_0^{+\infty} t^{s-1} \left(\sum_{n \in \mathbb{Z}} e^{-\pi n^2 t^2} - 1 - \frac{1}{t} \right) dt = \Gamma\left(\frac{s}{2}\right) \pi^{-s/2} \zeta(s)
$$

allows us to conjecture the following expansion of Zeta for $0 < Re(s) < 1$

$$
\zeta(s) = \frac{1}{\sqrt{2\pi}} \pi^{\frac{s}{2}} \Gamma\left(\frac{1-s}{2}\right) \sum_{m \geq 0} \alpha_{2m} Q_{2m}(s)
$$

1 Univ. de Nice, Lab. J.A.Dieudonné, email: candel@unice.fr
1 Functions related to the quantum harmonic oscillator

1.1 Hermite functions

For every integer $m \geq 0$ let us consider the Hermite function

$$\Phi_m(x) = H_m(\sqrt{2\pi}x)e^{-\pi x^2}$$

where $H_m \in \mathbb{R}[X]$ are the Hermite polynomials defined by the generating function

$$e^{-t^2+2xt} = \sum_{m \geq 0} \frac{H_m(x)}{m!} t^m$$

or directly by $H_m(x) = (-1)^m e^{x^2} \partial^m e^{-x^2}$.

The Hermite functions $\Phi_m \in L^2(\mathbb{R})$ are known to form an orthogonal system of eigenfunctions of the quantum harmonic oscillator

$$2\pi(x^2 - \frac{1}{4\pi^2} \partial^2)\Phi_m = (2m + 1)\Phi_m \quad \text{with} \quad \int_\mathbb{R} (\Phi_m(x))^2 dx = \frac{1}{\sqrt{2}} 2^m m!$$

The function Φ_m has same parity as m. We are interested with the even functions Φ_{2m}, we have (cf. [4])

$$\int_\mathbb{R} e^{-2i\pi x\xi} \Phi_{2m}(x) dx = (-1)^m \Phi_{2m}(\xi)$$

Thus for $\xi = 0$

$$\int_\mathbb{R} \Phi_{2m}(x) dx = (-1)^m \Phi_{2m}(0) = \frac{(2m)!}{m!}$$

The function Φ_{2m} is bounded (cf. [4]) by

$$B1) \quad |\Phi_{2m}(x)| \leq K 2^m \sqrt{(2m)!} \quad \text{with} \quad K = 1.086435 \quad \text{for} \quad x \in \mathbb{R}$$

The function Φ_{2m} is (cf. [5]) oscillating in the interval

$$I_m = \left[-\frac{1}{\sqrt{\pi}} \sqrt{2m+1}, \frac{1}{\sqrt{\pi}} \sqrt{2m+1}\right]$$

and exponentially decreasing when $x \notin I_m$, more precisely (cf. [4]) we have

$$B2) \quad |\Phi_{2m}(x)| \leq \frac{(2m)!}{m!} e^{2x\sqrt{2\pi m}} e^{-\pi x^2} \quad \text{for} \quad x > 0$$
In the series expansions of the following sections we use the normalized sums

\[S_{2m} = \frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} \Phi_{2m}(n) \]

Lemma 0

For \(m \to +\infty \) we have

\[\frac{2^{-2m}}{m!} \sum_{|n| \geq 2\sqrt{2m}} \Phi_{2m}(n) = O(e^{-2\pi\sqrt{2m}}) \]

and

\[\frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} \Phi_{2m}(n) = O(m^{1/4}) \]

Proof

We have for \(m \geq 1 \)

\[2x\sqrt{2\pi m} - \pi x^2 \leq -\pi x \text{ for } x \geq 2\sqrt{2m} \]

thus using inequality (B2) we get

\[\left| \frac{2^{-2m}}{m!} \Phi_{2m}(x) \right| \leq \frac{2^{-2m}(2m)!}{(m!)^2} e^{-\pi|x|} \text{ for } |x| \geq 2\sqrt{2m} \]

Thus by summation for \(|n| \geq 2\sqrt{2m}\) and with the Stirling formula we get

\[\frac{2^{-2m}}{m!} \sum_{|n| \geq 2\sqrt{2m}} \Phi_{2m}(n) \leq \frac{2^{-2m+1}(2m)!}{(m!)^2} \frac{e^{-\pi(2\sqrt{2m})}}{1 - e^{-\pi}} = O(e^{-2\pi\sqrt{2m}}) \]

From inequality (B1) we deduce that

\[\frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} \Phi_{2m}(n) = \sum_{|n| < 2\sqrt{2m}} \frac{2^{-2m}}{m!} \Phi_{2m}(n) + \frac{2^{-2m}}{m!} \sum_{|n| \geq 2\sqrt{2m}} \Phi_{2m}(n) \]

\[\leq K \sqrt{2m} \frac{2^{-m+1}(2m)!}{m!} + O(e^{-\pi\sqrt{2m}}) \]

thus by Stirling formula we get \(\frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} \Phi_{2m}(n) = O(m^{1/4}). \)

\(\square \)
1.2 The functions Ψ_m

The function $x \mapsto e^{-2\pi a^2 x^2}$, $\text{Re}(a^2) > -\frac{1}{2}$, expands (cf. [6] p.71-75) as the following series of Hermite polynomials, for $x \in \mathbb{R}$ we have

$$e^{-2\pi a^2 x^2} = \frac{1}{\sqrt{1 + a^2}} \sum_{m \geq 0} \frac{(-1)^m a^{2m}}{2^{2m}(1 + a^2)^m m!} H_{2m}(\sqrt{2\pi x})$$

Multiplying by $e^{-\pi x^2}$ we get, with $t^2 = 1 + 2a^2$

$$e^{-\pi x^2 t^2} = \sum_{m \geq 0} (-1)^m \frac{1}{2^{2m}} \Phi_{2m}(x) \frac{\Psi_m(t)}{m!} \enspace \text{for } \text{Re}(t^2) > 0 \quad (1)$$

where we define for $t \in S = \{ re^{i\theta} \mid r > 0, -\pi/4 < \theta < \pi/4 \}$ the function

$$\Psi_m(t) = \sqrt{2} \left(\frac{t^2 - 1}{t^2 + 1} \right)^m \frac{1}{\sqrt{1 + t^2}}$$

Lemma 1

The functions Ψ_m are related to the Hermite functions by

$$\frac{\Psi_m}{m!} = \left(\frac{2\sqrt{2}}{x} e^{-\pi/x^2} \right) \ast \frac{\Phi_{2m}}{(2m)!}$$

where \ast is the multiplicative convolution of functions defined on $]0, +\infty[$

$$(f \ast g)(t) = \int_0^{+\infty} f\left(\frac{t}{x} \right) g(x) \frac{1}{x} dx$$

Proof

With the classical relation

$$\int_{-\infty}^{+\infty} e^{-ax^2} e^{bx} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}} \enspace \text{where } a > 0, \ b \in \mathbb{C}$$

we get

$$e^{\frac{t^2}{t^2+1}} \frac{t}{\sqrt{1 + t^2}} = \int_{-\infty}^{+\infty} e^{-\pi x^2 \frac{t^2}{t^2+1}} e^{-\frac{z^2}{2} + 2\sqrt{2\pi} x z} dx$$
and using the power series expansion
\[e^{-z^2+2\sqrt{2\pi xz}} = \sum_{m \geq 0} \frac{z^m}{m!} H_m(\sqrt{2\pi x}) \]
we get by identification
\[\frac{1}{m!} \sqrt{2} \left(\frac{t^2 - 1}{t^2 + 1} \right)^m \frac{t}{\sqrt{1 + t^2}} = 2\sqrt{2} \int_0^{+\infty} e^{-\pi x^2 t^2 + 1} \frac{1}{(2m)!} H_{2m}(\sqrt{2\pi x}) \, dx \]
This gives
\[\frac{1}{m!} \Psi_m(t) = 2\sqrt{2} \int_0^{+\infty} e^{-\pi x^2/t^2} \frac{1}{t} \frac{1}{(2m)!} \Phi_{2m}(x) \, dx \]
and we see that this last integral is the multiplicative convolution
\[(f \ast g)(t) = \int_0^{+\infty} f\left(\frac{t}{x} \right) g(x) \frac{1}{x} \, dx \]
with \(f(x) = 2\sqrt{2} e^{-\pi/x^2} \frac{1}{x} \) and \(g(x) = \frac{\Phi_{2m}(x)}{(2m)!} \).
\[\square \]

2 Series expansions

Let \(z \mapsto \sqrt{z} \) the principal determination of the square root, the holomorphic function
\[u \mapsto t = \frac{\sqrt{1 + u}}{1 - u} \]
maps the open unit disk \(D(0, 1) = \{ z \in \mathbb{C} \mid |z| < 1 \} \) onto the sector
\[S = \{ re^{i\theta} \mid r > 0, -\frac{\pi}{4} < \theta < \frac{\pi}{4} \} \]
For any function \(f \) holomorphic in \(S \) let us define the function
\[Tf(u) = \frac{1}{\sqrt{1 - u}} f\left(\frac{\sqrt{1 + u}}{1 - u} \right) \]
which is holomorphic in the open disk \(D(0, 1) \).
For every integer \(m \geq 0 \) we verify immediately that we have
\[T\Psi_m(u) = u^m \]
For a function f defined on S the expansion

$$f(t) = \sum_{m \geq 0} a_m \frac{\Psi_m(t)}{m!}$$

follows the Taylor expansion of Tf

$$Tf(u) = \sum_{m \geq 0} \frac{a_m}{m!} u^m$$

Remark. Note that $\Psi_m(t) = (-1)^m \frac{1}{t} \Psi_m(\frac{1}{t})$ for all $t \in S$. For a function f on S the relation

$$f(t) = \frac{1}{t} f\left(\frac{1}{t}\right)$$

is equivalent to the parity of the function Tf

$$Tf(u) = Tf(-u)$$

in this case the expansion of f is of the form

$$f(t) = \sum_{m \geq 0} a_{2m} \frac{\Psi_{2m}(t)}{(2m)!}$$

Example

For the function $f = \frac{1}{1+t}, t \in S$, we have

$$Tf(u) = \frac{\sqrt{1+u} - \sqrt{1-u}}{2u}$$

This gives for $t \in S$

$$\frac{1}{1+t} = \frac{1}{2} \sum_{m \geq 0} \frac{(4m)!}{2^{4m}(2m+1)!} \frac{\Psi_{2m}(t)}{(2m)!}$$

(2)
2.1 Expansion of the theta function

The theta function defined for $t \in S$ by

$$G(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t^2}$$

is holomorphic in S and we have for $u \in D(0,1)$

$$TG(u) = \frac{1}{\sqrt{1-u}} \sum_{n \in \mathbb{Z}} e^{-\pi n^2 \frac{1-u}{1+u}}$$

Let

$$TG(u) = \sum_{m \geq 0} g_m \frac{1}{m!} u^m$$

be the power series expansion of the holomorphic function TG in the open disk $D(0,1)$. The Jacobi identity (cf. [3])

$$\frac{1}{t} G\left(\frac{1}{t}\right) = G(t)$$

gives the parity of TG and we get

$$TG(u) = \sum_{n \geq 0} g_{2m} \frac{1}{(2m)!} u^{2m}.$$

Thus we have for $t \in S$

$$G(t) = \sum_{m \geq 0} g_{2m} \frac{\Psi_{2m}(t)}{(2m)!}$$

Lemma 2

We have for $t \in S = \{re^{i\theta} | r > 0, -\frac{\pi}{4} < \theta < \frac{\pi}{4}\}$

$$G(t) = \sum_{m \geq 0} S_{4m} \Psi_{2m}(t) \quad \text{where} \quad S_{4m} = \frac{2^{-4m}}{(2m)!} \sum_{n \in \mathbb{Z}} \Phi_{4m}(n)$$

Proof

Take the relation (1) with $x = n \in \mathbb{Z}$, by summation we get

$$\sum_{n \in \mathbb{Z}} e^{-\pi n^2 t^2} = \sum_{n \in \mathbb{Z}} \sum_{m \geq 0} \frac{(-1)^m}{m!} 2^{-2m} \Phi_{2m}(n) \Psi_m(t)$$

$$= \sum_{m \geq 0} \frac{(-1)^m}{m!} 2^{-2m} \Psi_m(t) \sum_{n \in \mathbb{Z}} \Phi_{2m}(n)$$

7
To justify the interchange of summations \(\sum_{n \in \mathbb{Z}} \sum_{m \geq 0} = \sum_{m \geq 0} \sum_{n \in \mathbb{Z}} \) we observe that
\[
\left| \frac{t^2 - 1}{t^2 + 1} \right| < 1 \text{ for } t \in S
\]
and by Lemma 0 we have \(\frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} |\Phi_{2m}(n)| = O(m^{1/4}) \) thus for \(t \in S \)
\[
\sum_{m \geq 0} \frac{2^{-2m}}{m!} \sum_{n \in \mathbb{Z}} |\Phi_{2m}(n)||\Psi_m(t)| < +\infty
\]
This gives
\[
G(t) = \sum_{m \geq 0} (-1)^m S_{2m} \Psi_m(t)
\]
Since we have seen that the function \(TG \) is even we deduce that in this last sum, only the constants \(S_{4m} \) are non zero.
\[\square\]

Remark

We have also (cf. Appendix) for the constants \(S_{4m} \) another expression
\[
S_{4m} = \frac{(\pi/2)^{2m}}{(2m)! S_0 \sqrt{2}} \sum_{(k,l) \in \mathbb{Z}^2} (-1)^k e^{-\pi(4k^2+l^2)} (k + il)^{4m}
\]

Theorem

For \(t \in S = \{ re^{i\theta} | r > 0, -\pi/4 < \theta < \pi/4 \} \) we have
\[
G(t) - 1 - \frac{1}{t} = \sum_{m \geq 0} \alpha_{2m} \Psi_{2m}(t) \text{ with } \alpha_{2m} = S_{4m} - \frac{2^{-4m+1}(4m)!}{(2m)!(2m)!}
\]

Proof

Using Lemma 2, to get the expansion of \(G(t) - 1 - \frac{1}{t} \) in terms of \(\Psi_m(t) \) it is now sufficient to expand \(1 + \frac{1}{t} \). For \(f(t) = 1 + \frac{1}{t} \) one has
\[
Tf(u) = \frac{1}{\sqrt{1+u}} + \frac{1}{\sqrt{1-u}}
\]
and we obtain for \(t \in S \)
\[
1 + \frac{1}{t} = 2 \sum_{m \geq 0} \frac{(4m)!}{2^{4m}(2m)! (2m)!} \Psi_{2m}(t)
\]
\[\square\]
Remark
We see that
\[\alpha_{2m} = \frac{2^{-4m}}{(2m)!} \left(\sum_{n \neq 0} \Phi_{4m}(n) - [\Phi_{4m}(0) + \int_{\mathbb{R}} \Phi_{4m}(x) dx] \right) \]

This is easily explained if we look at the general Müntz formula (cf. [7]):
let \(F \) be an even continuously differentiable function such that \(F \) and \(F' \) are \(O(x^{-a}), (a > 1) \) when \(x \to \infty \), then for \(0 < \text{Re}(s) < 1 \) we have
\[2 \zeta(s) \mathcal{M}F(s) = \mathcal{M} \left(G(t) - [F(0) + \int_{\mathbb{R}} F(xt) dx] \right)(s) \]

with \(G(t) = \sum_{n \in \mathbb{Z}} F(nt) \), this is our case with \(F(x) = e^{-\pi x^2} \).
If there exist functions a sequence of functions \(\varphi_m \) and \(\psi_m \) such that we have an expansion
\[F(xt) = \sum_{m \geq 0} \varphi_m(x) \psi_m(t) \]
then, at least formally, we get
\[G(t) - [F(0) + \int_{\mathbb{R}} F(xt) dx] = \sum_{m \geq 0} \left(\sum_{n \in \mathbb{Z}} \varphi_m(n) - [\varphi_m(0) + \int_{\mathbb{R}} \varphi_m(x) dx] \right) \psi_m(t) \]
in our case \(\varphi_m = \frac{2^{-4m}}{(2m)!} \Phi_{4m} \) and \(\psi_m(t) = \Psi_{2m}(t) \).

3 Mellin transforms

3.1 The polynomials \(Q_m \)
For \(\text{Re}(s) > 0 \), the Mellin transforms of the Hermite functions \(\Phi_{2m} \) are
\[\int_{0}^{+\infty} \frac{\Phi_{2m}(x)}{(2m)!} x^{s-1} dx = \frac{1}{2} \pi^{-s/2} \Gamma(s/2) \frac{Q_m(s)}{m!} \]
where \(Q_m \) are polynomials in \(\mathbb{R}[X] \). This is simply a consequence of the relation
\[\int_{0}^{+\infty} e^{-\pi x^2} x^{s+2k-1} dx = \frac{1}{2} \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \pi^{-k} \frac{s}{2} \Gamma(\frac{s}{2} + 1) \ldots (\frac{s}{2} + k - 1) \]
We get \(Q_0(s) = 1, Q_1(s) = 2s - 1, Q_2(s) = \frac{4}{3}s^2 - \frac{4}{3}s + 1, \ldots \).

More generally we have

\[
Q_m(s) = \sum_{k=0}^{m} (-1)^{m-k} \frac{m!}{(m-k)! (2k)!} s(s+2)...(s+2(k-1))
\]

and (cf. [4]) an expression of \(Q_m \) in terms of the hypergeometric function

\[Q_m(s) = \left(-1\right)^m \, _2F_1\left(-m, s/2; 1/2; 2\right) \]

The roots of \(Q_m \) are on the line \(\text{Re}(s) = 1/2 \) (cf. [1], [2]). This can be proved (cf. [1]) by observing that the orthogonality relation of the Hermite functions \(\Phi_{2m} \) implies the orthogonality of the family of polynomials

\[t \mapsto Q_m\left(\frac{1}{2} + it\right) \]

with respect to the Borel measure \(|\Gamma(\frac{1}{4} + i\frac{t}{2})|^2 dt \) on \(\mathbb{R} \).

More explicitly, using the Parseval’s formula for Mellin transform

\[
\frac{1}{2\pi} \int_{-\infty}^{+\infty} (\mathcal{M}(f)\mathcal{M}(g))\left(\frac{1}{2} + it\right) dt = \int_0^{+\infty} (f\overline{g})(x) dx
\]

we get

\[
\frac{1}{4\pi \sqrt{\pi}} \int_\mathbb{R} |\Gamma(\frac{1}{4} + i\frac{t}{2})|^2 \left(\frac{Q_{m_1}}{m_1!} \frac{Q_{m_2}}{m_2!}\right)\left(\frac{1}{2} + it\right) dt = \int_\mathbb{R} \left(\frac{\Phi_{2m_1}}{(2m_1)!} \frac{\Phi_{2m_2}}{(2m_2)!}\right)(x) dx
\]

3.2 Mellin transform of \(\Psi_m \)

Lemma 3

For \(0 < \text{Re}(s) < 1 \) we have

\[
\int_0^{+\infty} t^{s-1} \Psi_m(t) dt = \frac{1}{\sqrt{2\pi}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{1-s}{2}\right) Q_m(s)
\]

Proof

By Mellin transform of the relation of Lemma 1, we get

\[
\int_0^{+\infty} t^{s-1} \frac{1}{m!} \Psi_m(t) dt = \left(\int_0^{+\infty} 2\sqrt{2} e^{-\pi/4} u^{s-1} du \right) \left(\int_0^{+\infty} \frac{1}{(2m)!} \Phi_{2m}(x)x^{s-1} dx \right)
\]
that is
\[
\int_0^{+\infty} t^{s-1} \frac{1}{m!} \Psi_m(t) dt = \sqrt{2\pi} \frac{(-1)^{s}}{2} \int_0^{+\infty} \frac{1}{(2m)!} \Phi_{2m}(x)x^{s-1} dx
\]

\[\square\]

Remark

Using
\[
\frac{1}{t} \Psi_m\left(\frac{1}{t}\right) = (-1)^m \Psi_m(t)
\]

we get with the change of variable \(t \mapsto \frac{1}{t} \)

\[
\int_0^{+\infty} t^{s-1} \frac{1}{m!} \Psi_m(t) dt = (-1)^m \int_0^{+\infty} t^{-s} \frac{1}{m!} \Psi_m(t) dt
\]

for \(0 < Re(s) < 1 \).

By the preceding lemma this gives
\[
Q_m(1-s) = (-1)^m Q_m(s)
\]

As a consequence of this relation we see that for \(s = \frac{1}{2} + it \) the polynomials \(t \mapsto Q_{2m}(\frac{1}{2} + it) \) are in \(\mathbb{R}[X] \).

3.3 Expansion of Mellin transforms in terms of the polynomials \(Q_m \)

If we have for a function \(f \) holomorphic in \(S \) an expansion

\[
f(t) = \sum_{m \geq 0} a_{2m} \frac{\Psi_{2m}(t)}{(2m)!}
\]

and if we can evaluate the Mellin transform of \(f \) for \(0 < Re(s) < 1 \) by integration of the terms of the series:

\[
\int_0^{+\infty} \left(\sum_{m \geq 0} a_{2m} \frac{\Psi_{2m}(t)}{(2m)!} \right) t^{s-1} dt = \sum_{m \geq 0} \frac{a_{2m}}{(2m)!} \int_0^{+\infty} t^{-s} \Psi_{2m}(t) dt
\]

then we get for \(0 < Re(s) < 1 \)

\[
\int_0^{+\infty} f(t)t^{s-1} dt = \frac{1}{\sqrt{2\pi}} \frac{\Gamma\left(\frac{s}{2}\right)}{2} \Gamma\left(\frac{1-s}{2}\right) \sum_{m \geq 0} \frac{a_{2m}}{(2m)!} Q_{2m}(s)
\]
A simple condition to justify this calculation is

\[\sum_{m \geq 0} \frac{|a_{2m}|}{(2m)!} < +\infty \]

Since in this case we have for \(0 < \text{Re}(s) < 1\)

\[
\int_0^{+\infty} \sum_{m \geq 0} |t^{s-1} a_{2m} \Psi_{2m}(t) \Psi_{2m}(t) (2m)!| dt \leq \sum_{m \geq 0} \frac{|a_{2m}|}{(2m)!} \int_0^{+\infty} t^{\text{Re}(s)-1} \frac{\sqrt{2}}{\sqrt{1 + t^2}} dt < +\infty
\]

Example

We have by relation (2)

\[
\frac{1}{1 + t} = \frac{1}{2} \sum_{m \geq 0} a_{2m} \Psi_{2m}(t) (2m)! \quad \text{with} \quad a_{2m} = \frac{(4m)!}{2^{4m}(2m + 1)!}
\]

By Stirling formula we have \(a_{2m} = O(m^{-\frac{3}{2}})\) thus \(\sum_{m \geq 0} \frac{|a_{2m}|}{(2m)!} < +\infty\).

And for \(0 < \text{Re}(s) < 1\) we get

\[
\frac{\pi}{\sin(\pi s)} = \frac{1}{2\sqrt{2\pi}} \Gamma \left(\frac{s}{2} \right) \Gamma \left(\frac{1 - s}{2} \right) \sum_{m \geq 0} \frac{(4m)!}{(2m)!(2m + 1)!} 2^{-4m} Q_{2m}(s)
\]

3.4 A conjecture for an expansion of Zeta in the critical strip

For \(0 < \text{Re}(s) < 1\) it is known (cf. [3]) that the Mellin transform of the function

\[t \mapsto G(t) - 1 - \frac{1}{t} \]

is

\[
\int_0^{+\infty} t^{s-1} (G(t) - 1 - \frac{1}{t}) dt = \Gamma \left(\frac{s}{2} \right) \pi^{-s/2} \zeta(s)
\]

We have seen in 2.1 that

\[
G(t) - 1 - \frac{1}{t} = \sum_{m \geq 0} \alpha_{2m} \Psi_{2m}(t) \quad \text{with} \quad \alpha_{2m} = S_{4m} - \frac{2^{-4m+1}(4m)!}{(2m)!(2m)!}
\]

If we proceed by integration of the terms of the preceding series we get

\[
\Gamma \left(\frac{s}{2} \right) \pi^{-s/2} \zeta(s) = \frac{1}{\sqrt{2\pi}} \Gamma \left(\frac{s}{2} \right) \Gamma \left(\frac{1 - s}{2} \right) \sum_{m \geq 0} \alpha_{2m} Q_{2m}(s)
\]
Unfortunately it seems that in this case \(\sum_{m \geq 0} |\alpha_{2m}| = +\infty \) and the justification of the preceding section does not work.

Conjecture

For \(0 < Re(s) < 1 \) the evaluation of the Mellin transform of \(G(t) - 1 - \frac{1}{t} \) by integration of the terms of the preceding series is valid and we get

\[
\zeta(s) = \frac{1}{\sqrt{2\pi}} \frac{\pi^{\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)} \sum_{m \geq 0} \alpha_{2m} Q_{2m}(s)
\]

with \(\alpha_{2m} = S_{4m} - \frac{2^{-4m+1}(4m)!}{(2m)!(2m)!} \)

As we have seen the polynomials

\[Q_{2m}(s) = 2F_1(-2m, s/2; 1/2; 2) \]

are related to Mellin transforms of the Hermite functions \(\Phi_{4m} \) and they have their roots on the line \(Re(s) = 1/2 \).

Remarks

1) For the Riemann-Hardy function (cf. [3]) defined for \(t \in \mathbb{R} \) by

\[
Z(t) = \pi^{-\frac{it}{2}} \frac{\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)}{\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)} \zeta\left(\frac{1}{2} + it\right)
\]

the preceding conjecture gives

\[
Z(t) = \frac{1}{\sqrt{2\pi}} \sum_{m \geq 0} \alpha_{2m} f_{2m}(t)
\]

where the functions

\[
f_{2m}(t) = \pi^\frac{1}{4} |\Gamma\left(\frac{1}{4} + \frac{it}{2}\right)| Q_{2m}\left(\frac{1}{2} + it\right)
\]

are orthogonal in \(L^2(\mathbb{R}) \).
2) Other expressions of $\zeta(s)$ in the critical strip are obtained by the use of the Müntz formula (cf. [7]): for a continuously differentiable function F on $[0, +\infty[$ such that F and F' are $O(x^{-a})$, ($a > 1$) when $x \to \infty$, we have for $0 < \text{Re}(s) < 1$

$$\zeta(s) \mathcal{M}F(s) = \mathcal{M}\left(\sum_{n \geq 1} F(nt) - \frac{1}{t} \int_0^{+\infty} F(x)dx\right)(s)$$

We now show that, with our preceding method, we can obtain a simple expansion of Zeta in the critical strip by applying this formula to the function $F(x) = e^{-2\pi x}$.

For $0 < \text{Re}(s) < 1$ we have

$$(2\pi)^{-s}\Gamma(s)\zeta(s) = \mathcal{M}\left(\sum_{n \geq 1} e^{-2\pi n}t - \frac{1}{2\pi t}\right) = \int_0^{+\infty} f(t)t^{s-1}dt$$

where

$$f(t) = \frac{1}{e^{2\pi t} - 1} - \frac{1}{2\pi t}$$

It is possible to get an expansion of $f(t)$ using the Laguerre functions

$$\varphi_m(x) = e^{-x}L_m(2x)$$

defined by the generating function

$$\frac{1}{1-u}e^{-x\frac{1+u}{1-u}} = \sum_{m \geq 0} e^{-x}L_m(2x)u^m.$$

These functions are orthogonal in $L^2([0, +\infty[)$ and if J_0 is the Bessel function of order 0 then (cf.[6])

$$\int_0^{+\infty} J_0(2\sqrt{\xi x})\varphi_m(x)dx = (-1)^m\varphi_m(\xi)$$

For $t > 0$ we set

$$\psi_m(t) = \left(\frac{t - 1}{t + 1}\right)^m \frac{2}{1 + t}$$

Using the generating function of the φ_m we get

$$e^{-2\pi xt} = \sum_{m \geq 0} \varphi_m(2\pi x)\psi_m(t)$$ (3)
Summing (3) for \(x = n \geq 1 \) we have formally for \(\Re(t) > 0 \)

\[
\frac{1}{e^{2\pi t} - 1} = \sum_{m \geq 0} s_m \psi_m(t) \quad \text{with} \quad s_m = \sum_{n \geq 1} \varphi_m(2\pi n)
\]

Since \(\frac{1}{2\pi} = \frac{1}{2\pi} \sum_{m \geq 0} (-1)^m \psi_m(t) \) we get for \(\Re(t) > 0 \)

\[
f(t) = \sum_{m \geq 0} \left(s_m - (-1)^m \frac{1}{2\pi} \right) \psi_m(t)
\]

(4)

The functions \(\psi_m \) and \(\varphi_m \) are related by the multiplicative convolution

\[
\psi_m = 2(-1)^m (e^{-\frac{1}{x}})^* \varphi_m
\]

(5)

The Mellin transform of \(\varphi_m \) is (cf. [4]) for \(\Re(s) > 0 \)

\[
\int_0^{+\infty} \varphi_m(x) x^{s-1} dx = \Gamma(s) q_m(s)
\]

where \(q_m \) is the polynomial \(q_m(s) = 2 F_1(-m, s; 1; 2) \).

By the orthogonality relation of the \(\varphi_m \) we deduce that the polynomials \(t \mapsto q_m(\frac{1}{2} + it) \) are orthogonal with respect to the Borel measure \(\lvert \Gamma(\frac{1}{2} + it) \rvert^2 dt \)
on \([0, +\infty[. Thus \(q_m \) has his roots on the line \(\Re(s) = \frac{1}{2} \).

By (5) for \(0 < \Re(s) < 1 \) we have the Mellin transform of \(\psi_m \)

\[
\mathcal{M}(\psi_m)(s) = 2 \Gamma(s) \Gamma(1 - s)(-1)^m q_m(s)
\]

By Mellin transform of (4) we get formally

\[
\zeta(s) = 2(2\pi)^s \Gamma(1 - s) \sum_{m \geq 0} \left((-1)^m s_m - \frac{1}{2\pi} \right) q_m(s)
\]

A more simple expansion can be obtained using the Mellin transform of the function \(g(t) = \frac{1}{t} f(\frac{1}{t}) \).

Using the Poisson formula we have

\[
g(t) = \frac{1}{t} \sum_{n \geq 1} e^{-2\pi \frac{n}{t}} - \frac{1}{2\pi} = \frac{1}{\pi} \sum_{n \geq 1} \frac{1}{1 + n^2 t^2} - \frac{1}{2t}
\]
By Müntz formula we get

\[M(g)(s) = M\left(\frac{1}{\pi} \sum_{n \geq 1} \frac{1}{1 + n^2 t^2} - \frac{1}{2t}\right)(s) = \zeta(s) \frac{1}{2\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(1 - \frac{s}{2}\right) \]

We now apply our preceding method, to the function \(F(x) = \frac{1}{\pi} \frac{1}{1+x^2} \).

We verify immediately that

\[\frac{1}{\pi} \frac{1}{1 + x^2 t^2} = \frac{1}{2\pi} \sum_{m \geq 0} (-1)^m \psi_m(x^2) \psi_m(t^2) \quad (6) \]

We have for \(t > 0 \)

\[\frac{1}{\pi} \sum_{n \geq 1} \frac{1}{1 + n^2 t^2} = \frac{1}{2\pi} \sum_{m \geq 0} (-1)^m \sigma_m \psi_m(t^2) \text{ where } \sigma_m = \sum_{n \geq 1} \psi_m(n^2) \]

With \(u = \frac{t^2 - 1}{t^2 + 1} \) we have \(\frac{1}{t} = \frac{2}{1+t^2} (1 - u^2)^{-1/2} \), thus we get

\[\frac{1}{t} = \sum_{m \geq 0} c_m \psi_m(t) \text{ with } c_{2n} = \frac{(2n)!}{2^{2n} (n!)^2} \text{ and } c_{2n+1} = 0 \]

Finally we have the expansion

\[g(t) = \frac{1}{2\pi} \sum_{m \geq 0} (-1)^m (\sigma_m - \pi c_m) \psi_m(t^2) \quad (7) \]

By Mellin transform of (7) we get formally

\[\zeta(s) = \sum_{m \geq 0} \left(\sigma_m - \pi c_m \right) q_m\left(\frac{s}{2}\right) \]

Note that, unlike the preceding expansions related to Hermite and Laguerre functions, in this expansion the sequence

\[m \mapsto \sigma_m - \pi c_m = \sum_{n \geq 1} \left(\frac{n^2 - 1}{n^2 + 1} \right)^m \frac{2}{1 + n^2} - \pi c_m \]

has a very regular oscillation with amplitude near \(\sqrt{\pi} \frac{1}{\sqrt{2} \sqrt{m}} \), but the polynomials \(s \mapsto q_m\left(\frac{s}{2}\right) \) have their roots on the line \(\Re(s) = 1 \).

References

[1] D.Bump, K.K.Choi, P.Kurlberg, J.Vaaler. A local Riemann hypothesis. Math. Zeitschrift 233. (2000).
[2] D.Bump, E.K.-S.Ng. On the Riemann Zeta Function. Math. Zeitschrift 192. (1986).
[3] H.M.Edwards. Riemann Zeta function. Dover. (1974).
[4] I.S.Gradshteyn, I.M.Ryzhik. Tables of Integrals, Series and Products. Academic Press, Inc. (1994).
[5] E.Hille. A Class of Reciprocal Functions. Annals of Maths. Second Series. Vol. 27 N4 (1926)
[6] N.N.Lebedev. Revised and translated by R.A.Silverman. Special functions and their applications. Dover (1972).
[7] E.C. Titchmarsh. D.R. Heat-Brown. The theory of the Riemann Zeta function. Clarendon 1986.

Acknowledgments.
My warmest thanks go to F. Rouvière, M. Miniconi and J.F. Burnol for their interest and helpful comments.

4 Appendix. Another expression for the constants S_{4m}

Using Poisson summation formula we deduce that for $\varphi \in \mathcal{S}(\mathbb{R})$

$$
\sum_{(k,l) \in \mathbb{Z}^2} \int_{\mathbb{R}} e^{-2i\pi xk} e^{-\pi(x-l)^2} \varphi(x) dx = \sum_{l \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} e^{-\pi l^2} \varphi(k) = S_0 \sum_{k \in \mathbb{Z}} \varphi(k)
$$

Taking $u \in \mathbb{C}$ and $\varphi(x) = e^{-2\pi xu} e^{-\pi x^2}$, we have

$$
\int_{\mathbb{R}} e^{-2i\pi xk} e^{-\pi(x-l)^2} \varphi(x) dx = \frac{1}{\sqrt{2}} (-1)^{kl} e^{-\frac{\pi}{2} l^2} e^{i\pi u(k+il)} e^{\pi u^2 / 2}
$$

This gives for $u \in \mathbb{C}$ the relation

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^2 + 2\pi nu - \pi u^2 / 2} = \frac{1}{S_0 \sqrt{2}} \sum_{(k,l) \in \mathbb{Z}^2} (-1)^{kl} e^{-\frac{\pi}{2} l^2} e^{i\pi u(k+il)}
$$ (8)
Let us now define for every integer $m \geq 0$
\[
T_m = \sum_{(k,l) \in \mathbb{Z}^2} (-1)^{kl} e^{-\frac{\pi}{2}((k^2+l^2)(k+il)^m}
\]

We have clearly $T_{2m+1} = 0$ since
\[
(-1)^{l} e^{-\frac{\pi}{2}((-l)^2)} (-k-il)^{2m+1} = -[(-1)^{kl} e^{-\frac{\pi}{2}(k^2+l^2)} (k+il)^{2m+1}]
\]
thus $T_{4m+1} = T_{4m+3} = 0$ and also $T_{4m+2} = 0$ because
\[
(-1)^{l} e^{-\frac{\pi}{2}(l^2)} (-k+il)^{4m+2} = -[(-1)^{kl} e^{-\frac{\pi}{2}(k^2+l^2)} (l+ik)^{4m+2}]
\]

Thus only the constants T_{4m} are non zero, and by derivation with respect to u of the holomorphic function defined by the right side of (6) we have
\[
\sum_{n \in \mathbb{Z}} e^{-\pi n^2 + 2\pi nu - \pi u^2/2} = \frac{1}{S_0 \sqrt{2}} \sum_{m \geq 0} \pi^{4m} T_{4m} u^{4m} \frac{u^m}{m!}
\]

Now using the generating function of Hermite polynomials we have
\[
e^{-\pi n^2 + 2\pi nu - \pi u^2/2} = \sum_{m \geq 0} \left(\frac{\pi}{2}\right)^m \Phi_m(n) \frac{u^m}{m!}
\]

By summation with $n \in \mathbb{Z}$ of this relation we deduce that for $|u| < 1$
\[
\sum_{n \in \mathbb{Z}} e^{-\pi n^2 + 2\pi nu - \pi u^2/2} = \sum_{m \geq 0} \left(\frac{\pi}{2}\right)^m \left(\sum_{n \in \mathbb{Z}} \Phi_m(n)\right) \frac{u^m}{m!}
\]
(the interchange of $\sum_{n \in \mathbb{Z}}$ and $\sum_{m \geq 0}$ is easily justified using Lemma 0).

Thus we have for $|u| < 1$
\[
\sum_{m \geq 0} \left(\frac{\pi}{2}\right)^m \left(\sum_{n \in \mathbb{Z}} \Phi_m(n)\right) \frac{u^m}{m!} = \frac{1}{S_0 \sqrt{2}} \sum_{m \geq 0} \pi^{4m} T_{4m} \frac{u^{4m}}{(4m)!}
\]

and by identification we get
\[
\sum_{n \in \mathbb{Z}} \Phi_{4m+2}(n) = 0 \quad \text{and} \quad \sum_{n \in \mathbb{Z}} \Phi_{4m}(n) = \frac{(2\pi)^{2m}}{S_0 \sqrt{2}} T_{4m}
\]