Genome-wide gene order distances support clustering the gram-positive bacteria

Christopher H. House1*, Matteo Pellegrini2,3 and Sorel T. Fitz-Gibbon2,3

1 Penn State Astrobiology Research Center and Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
2 Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
3 Department of Molecular, Cell, and Developmental Biology, Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA

*Correspondence:
Christopher H. House, Penn State Astrobiology Research Center and Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
e-mail: chrishouse@psu.edu

Initially using 143 genomes, we developed a method for calculating the pair-wise distance between prokaryotic genomes using a Monte Carlo method to estimate the conservation of gene order. The method was based on repeatedly selecting five or six non-adjacent random orthologs from each of two genomes and determining if the chosen orthologs were in the same order. The raw distances were then corrected for gene order convergence using an adaptation of the Jukes-Cantor model, as well as using the common distance correction $D' = -\ln(1-D)$. First, we compared the distances found via the order of six orthologs to distances found based on ortholog gene content and small subunit rRNA sequences. The Jukes-Cantor gene order distances are reasonably well correlated with the divergence of rRNA ($R^2 = 0.24$), especially at rRNA Jukes-Cantor distances of less than 0.2 ($R^2 = 0.52$). Gene content is only weakly correlated with rRNA divergence ($R^2 = 0.04$) over all distances, however, it is especially strongly correlated at rRNA Jukes-Cantor distances of less than 0.1 ($R^2 = 0.67$). This initial work suggests that gene order may be useful in conjunction with other methods to help understand the relatedness of genomes.

Using the gene order distances in 143 genomes, the relations of prokaryotes were studied using neighbor joining and agreement subtrees. We then repeated our study of the relations of prokaryotes using gene order in 172 complete genomes better representing a wider-diversity of prokaryotes. Consistently, our trees show the Actinobacteria as a sister group to the bulk of the Firmicutes. In fact, the robustness of gene order support was found to be considerably greater for uniting these two phyla than for uniting any of the proteobacterial classes together. The results are supportive of the idea that Actinobacteria and Firmicutes are closely related, which in turn implies a single origin for the gram-positive cell.

Keywords: tree of life, gene order, evolutionary distance, genomics, Actinobacteria, Firmicutes, Archaea

INTRODUCTION

For the past three decades, the comparisons of ribosomal RNA (rRNA) between microorganisms have largely provided the taxonomic and phylogenetic basis for bacteriology (Woese, 1987). During the past 15 years, however, considerable effort has been placed on comparing the similarity of organisms with genome-wide methods or, at least, with methods that use more than a single gene. These methods include the estimation of genomic distances based on the content of genomes, either orthologs, homologs, folds, or protein domains (Gerstein, 1998; Fitz-Gibbon and House, 1999; Snel et al., 1999; Tekaia et al., 1999; Wolf et al., 2002; Deeds et al., 2005; Yang et al., 2005; House, 2009). Genomic distance has also been estimated using direct genome-to-genome sequence comparisons using a variety of approaches like average nucleotide identity (ANI) and the genome-to-genome-distance calculator (GGDC) that can approximate traditional DNA-DNA hybridization results (Konstantinidis and Tiedje, 2005; Goris et al., 2007; Deloger et al., 2009; Richter and Rosselló-Móra, 2009; Auch et al., 2010; Tamura et al., 2012; Meier-Kolthoff et al., 2013).

Also, ever since Nadeau and Taylor (1984) first identified that gene order information was conserved between humans and mice, there has been growing interest in using gene order to estimate the difference between genomes or to solve phylogenetic problems.

Several gene order methods depend on the presence of orthologs adjacent to each other. Witterson et al. (1982) introduced the breakpoint distance between genomes, which is the number of orthologs found paired together in one genome but separated in the other Blanchette et al. (1999). Early on, Sankoff et al. (1992) estimated mitochondria gene rearrangements as a means to derive a phylogenetic tree for Eukaryotes. Subsequently, the presence and absence of paired genes has been used to construct trees (Wolf et al., 2001; Korbel et al., 2002) as a gene order method similar in practice to tree building by gene content. A limitation to this approach results from the fact that small groups of laterally transferred genes will be paired after their transfer. Also, a computational method for testing phylogenetic problems using gene order has been presented by Kunisawa (2001). In this method, genomes are searched for cases in which...
the arrangement of three genes most parsimoniously suggests that a single transposition has occurred. With the use of an outgroup, the method can be used to test phylogenetic hypotheses, such as the branching order within the Proteobacteria (Kunisawa, 2001) or Gram-positive bacteria (Kunisawa, 2003). The strength of this method is that it can be efficiently applied to a large dataset of genomes and that it reveals (a small number of) interesting cases of transposition. Another gene order approach often implemented is calculating the inversion distance. The inversion distance is the minimum number of inversions needed to transform one genome into the other (Moret et al., 2001). Recently, Belda et al. (2005) have studied a subset of 244 genes universal to the genomes of 30 γ-Proteobacteria using both the breakpoint distance and the inversion distance. They found the two distances highly correlated suggesting that inversion was the main method of genome rearrangement for these taxa. More recently, models for genome evolution that include rearrangements, duplications, and losses have been developed and tested (Swenson et al., 2008; Zhang et al., 2010; Hu et al., 2011; Lin and Moret, 2011; Shao et al., 2013) have each developed algorithms for using gene order for phylogenetic reconstruction. Furthermore, Lin et al. (2013) and Shifman et al. (2014) have used genome-wide gene order to produce phylogenetic trees. The later work produced a tree of 89 diverse microbial genomes using an algorithm for estimating average genome synteny (Shifman et al., 2014).

In this study, we aimed to develop a simple computational method that could estimate a genome-wide gene order distance between two genomes (even when the genomes were highly diverged). Unlike many previous efforts, our intent was to have the gene order distance not rely on genes that are likely to be in the same operon (such as gene pairs). Here, we present a novel simple Monte Carlo method for estimating distributed gene order distances between genomes. In this method, we repeatedly randomly select six non-adjacent orthologs from each of two genomes and determine if the genes are in the same order. The distances are then corrected using an adaptation of the Jukes-Cantor model to account for random gene order convergence.

MATERIALS AND METHODS

Initially, 143 prokaryotic genomes were analyzed (Table 1). This represented completed prokaryotic genomes available when the study began in January 2005. All genes from each genome were analyzed as queries using BLAST against each of the other genomes. Ortholog-pairs were identified as cases where two genes from different genomes were each other’s BLAST best hit (top hit in both directions). This list of ortholog pairs served as the basis for both calculation of distributed gene order distances and the ortholog gene content distances. As defined by Snel et al. (1999), ortholog gene content similarity (S) was calculated as the number of ortholog pairs found for two genomes divided by the size of the smaller genome. This similarity was then converted to distance as equal to –ln(S), as suggested by Korbel et al. (2002). However, using distance equal to 1-S gives similar correlation results.

Distributed gene order distances were determined using a novel Monte Carlo approach (Figure 1). To determine the gene order distance between two genomes, first, six ortholog-pairs

ID	ID
ap	Aeropyrum pernix K1
at	Agrobacterium tumefaciens C58UW
atc	Agrobacterium tumefaciens C58C
aa	Aquifex aeolicus VF5
af	Archaeoglobus fulgidus DSM4304
baa	Bacillus anthracis Ames
bc	Bacillus cereus ATCC 14579
bh	Bacillus halodurans C-125
bs	Bacillus subtilis 168
bt	Bacteroides thetaiotaomicron
bl	Bifidobacterium longum NCC2705
bbr	Bordetella bronchiseptica
bpp	Bordetella parapertussis
bp	Bordetella pertussis
bb	Borrelia burgdorferi B31
bj	Bradyrhizobium japonicum USDA 110
bm	Brucella melitensis
brs	Brucella suis
ba	Buchnera aphidicola Bp
bas	Buchnera aphidicola Sg
bu	Buchnera sp. APS
cj	Campylobacter jejuni NCTC 11168
cbrf	Candidatus Blochmannia floridanus
cc	Caulobacter crescentus CB15
ct	Chlamydia trachomatis serovar D
cm	Chlamydia trachomatis MoPn/Nigg
cca	Chlamydia phila caviae GPIC
cpa	Chlamydia phila pneumoniae AR39
cpj	Chlamydia phila pneumoniae J138
cpt	Chlamydia phila pneumoniae TV183
cp	Chlamydia phila pneumoniae CWL029
cte	Chlorobium tepidum TLS
cv	Chromobacterium violaceum
ca	Clostridium acetobutylicum ATCC 824
cpe	Clostridium perfringens
ctt	Clostridium tetani
cd	Corynebacterium diphtheria
cef	Corynebacterium efficiens YS-314
cg	Corynebacterium glutamicum
cb	Cxiella burnetii
dr	Deinococcus radiodurans R1
ef	Enterococcus faecalis V583
ece	Escherichia coli O157:H7 strain EDL933
ec	Escherichia coli K-12 Strain MG1655
ecc	Escherichia coli CFT073
ech	Escherichia coli O157:H7
fn	Fusobacterium nucleatum ATCC 25586
gv	Gloeobacter violaceus
hd	Haemophilus ducreyi
hi	Haemophilus influenzae Rd KW20
hsp	Halobacterium sp. NRC-1
hh	Helicobacter hepaticus ATCC 51449

(Continued)
Table 1 | Continued

ID	Species
hp	Helicobacter pylori 26695
hpj	Helicobacter pylori J99
lp	Lactobacillus plantarum WCFS1
ll	Lactococcus lactis IL1403
li	Leptospira interrogans s.l. 56601
lin	Listeria innocua clip11262
lm	Listeria monocytogenes EGD-e
ml	Mesorhizobium loti MAFF303099
mt	Methanobacterium thermoautotroph.
mj	Methanococcus jannaschii DSM 2661
mk	Methanopyrus kandleri AV19
ma	Methanosarcina acetivorans C2A
mma	Methanosarcina mazei Goe1
mb	Mycobacterium bovis bovis
me	Mycobacterium leprae
mtb	Mycobacterium tuberculosis H37Rv
mtc	Mycobacterium tuberculosis cdc1551
mpe	Mycoplasma gallisepticum
mp	Mycoplasma genitalium G-37
mpu	Mycoplasma penetrans
mpa	Mycoplasma pneumoniae M129
mpu	Mycoplasma pulmonis UAB CTIP
mesb	Nanobacterium equitans Kin4-M
nmm	Neisseria meningitidis MC58
nnz	Neisseria meningitidis A Z2491
ne	Nitrosomonas europaea
ns	Nostoc sp. PCC7120
ne	Oceanobacillus iheyensis HTE831
pm	Pasteurella multocida Pm70
ne	Photorhabdus luminescens
pirellula	Pirellula_sp
porphyromonas	Porphyromonas gingivalis
prochlorococcus	Prochlorococcus marinus CCMP1375
prochlorococcus	Prochlorococcus marinus MED4
pseu	Prochlorococcus marinus MIT9313
pseudomonas	Pseudomonas aeruginosa PA01
pseudomonas	Pseudomonas putida KT2440
pseudomonas	Pseudomonas syringae pv. tomato
pyr	Pyrococcus abyssi
pyr	Pyrococcus furiosus DSM3638
pyr	Pyrococcus horikoshi OT3
ral	Ralstonia solanacearum
ricktssia	Ricketsia conorii Malish 7
ricktssia	Ricketsia prowazekii Madrid E
salmo	Salmonella enterica Typhi
salmo	Salmonella enterica Typhi_Ty2
salmonella	Salmonella typhimurium LT2
shewanella	Shevanella oneidensis
shigella	Shigella flexneri 2a
sinorhizobium	Sinorhizobium melloti 1021
staphyllococcus	Staphylococcus aureus N315
staphyllococcus	Staphylococcus aureus MW2
staphyllococcus	Staphylococcus aureus Mu50
staphyllococcus	Staphylococcus epidermidis 12228
streptococcus	Streptococcus agalactiae 2603
streptococcus	Streptococcus agalactiae NEM316
streptococcus	Streptococcus mutans
streptococcus	Streptococcus pneumoniae R6
streptococcus	Streptococcus pneumoniae TIGR4
streptococcus	Streptococcus pyogenes SSI-1
streptococcus	Streptococcus pyogenes MGAS2322
streptococcus	Streptococcus pyogenes MGAS315
streptococcus	Streptococcus pyogenes M1_GAS
streptococcus	Streptococcus pyogenes MA-4680
streptococcus	Streptococcus coelicolor A3(2)
sulfolobus	Sulfolobus solfataricusP2
sulfobolus	Sulfolobus tokodaii 7
synthochoccus	Synchococcus sp. WH8102
synchocystis	Synchocystis sp. PCC 6803
thermoanerobacter	Thermoanaerobacter tengcongensis
thermoplasma	Thermoplasma acidophilum
thermoplasma	Thermoplasma volcanium GSS1
thermoplasma	Thermoplasma elongatus BP-1
thermostoga	Thermostoga maritima MSB8
treponema	Treponema pallidium Nichols
tropheryma	Tropheryma whipplei Twist
tropheryma	Tropheryma whipplei TW08_27
ureaplasma	Ureaplasma urealyticum serovar 3
vibrio	Vibrio cholerae serotype O1 (N16961)
vibrio	Vibrio parahaemolyticus RIMD 2210633
vibrio	Vibrio vulnificus CMCP6
vibrio	Vibrio vulnificus YJ016
wigglersworthia	Wigglesworthia brevialpalis
wolinella	Wolinella_sucinogenes
xanthomonas	Xanthomonas axonopodis pv citri 306
xanthomonas	Xanthomonas campestris ATCC 33913
xylella fastidiosa	Xylella fastidiosa 9a5c
xylella fastidiosa	Xylella fastidiosa Temecula1
yersinia pestis	Yersinia pestis CO-92 Biovar Orientalis
yersinia pestis	Yersinia pestis KIM

(Continued)

were randomly chosen. In order to limit orthologs being chosen from the same operon, the orthologs were required to be at least 5 genes away from each other in either genome. It was then determined if the chosen six ortholog-pairs were in the same order around both circular genomes (irrespective of each genes orientation). For organisms with multiple chromosomes, only the largest chromosome was used in this initial effort. This procedure was repeated for 100,000 iterations to establish one replicate sampling. In the end, 100 replicate samplings were performed for all genome pairs, and these data were either combined to construct one list of distances based on 10 million iterations, or kept separate to make 100 lists of distances for use as bootstrap replicates (nexus files for PAUP are available in Supplementary Material).
Recently diverged genomes begin with close to 100% of their genes arranged in the same order, and with time, the synteny between the genomes decreases. Because there are only 60 different ways to arrange six items on a circle, there is a 1/60 probability of two genomes sharing an arrangement of six orthologs by chance. Therefore, the fraction of six ortholog picks found to be in the same order will ultimately approach 1/60 as divergence time goes to infinity. We, therefore, developed a model of gene order evolution based on the Jukes-Cantor concept that divergence is a logarithmic function with time (Jukes and Cantor, 1969).

The typical Jukes-Cantor correction (Kimura and Ohta, 1972) for nucleotide distance is:

$$D_{JC} = -(3/4) \ln (1 - (4/3)D)$$
(1)

where D = the observed fractional of nucleotides found to be different between two compared genes.

This classical nucleotide Jukes-Cantor correction (Equation 1) accounts for back substitution and is based on a model in which the outcome of any nucleotide substitution can be one of three possibilities. To adopt this logic to gene rearrangements, the Jukes-Cantor equation becomes:

$$D_{JC} = -(59/60) \ln (1 - (60/59)D)$$
(2)

where D = the fraction of iterations in which the six ortholog-pairs chosen are not in the same order.

The classical Jukes-Cantor nucleotide correction (Equation 1) can only be used for raw D up to 0.75. With raw nucleotide distances greater than 0.75, the argument of the logarithm will be zero. To use data in which D is larger than 0.75, Tajima (1993) presented a method using a Taylor series expansion to avoid the logarithm. In our case, Equation (2) fails whenever the raw D is greater than 59/60 (or 0.983). To allow corrections for all of our genome pair distances, we have adopted the method of Tajima (1993) as follows:

$$D_{JC} = \frac{k}{n} \ln (1 - (59/60)n^{-1}D)$$
(3)

where $k^{(i)} = k!/(k-i)!$, $n^{(i)} = n!/(n-i)!$, $k = $ the number of times the six orthologs are not in the same order, and $n =$ the number of iterations used.

Partial reanalysis of the work reported here demonstrated the results are similar when applying $D' = -\ln(1-D)$ as the distance correction rather than the Tajima correction (data not shown), and further future work evaluating this measure of gene order distance is warranted as it is computationally much less intense.

For comparison, Jukes-Cantor corrected rRNA distances were downloaded spring 2006 from the ribosomal database (Cole et al., 2007). The correlations between distributed gene order, gene content, and rRNA distances were performed with SPSS 13 (SPSS, Inc. Chicago, IL) for Mac OS X. Taxonomic assignments for taxa were from the NCBI taxonomic server (Bischoff et al., 2007).

Our follow-up analysis used 172 complete genomes with the aim of being a representative sample of prokaryotes. For this follow-on analysis initiated early in 2014, we used ortholog predictions from the OMA website (Dessimoz et al., 2005). This OMA database is continually updated and includes all chromosomes for each microorganism. The updated analysis here of 172 taxa was done with orthologs downloaded in early 2014. In this case, we also tried searching for five orthologs in the same order rather than six using the same equations, which naturally produces slightly shorter distances overall. In fact, the five gene distances used this last analysis are functionally the same as using the easier to calculate $D' = -\ln(1-D)$. Based on the promising results here, we recommend this simpler distance calculation for future work.

Neighbor Joining (NJ) trees (Saitou and Nei, 1987) were created from data matrices using PAUP 4.0b (Mac and Unix versions; Sinauer Associates, Sunderland, MA). Later, agreement subtrees, which identifies the largest possible pruned tree that is consistent within a set of trees, was used to limit the taxa list in order to minimize possible adverse effects of including genome pairs with very little or no gene order conservation. The agreement subtrees were identified using PAUP 4.0b (Mac) based on a comparison of all of our NJ trees produced from the 100 replicate distances.

We also tried using a hierarchical and iterative approach to produce a series of trees (Table 2). This novel method was based on the fact that shorter distances are known with higher confidence than greater distances. The goal of this method of tree building is to provide a systematic and objective way to build a tree that includes as many of the pair wise gene order distances as possible without letting very distant (random) pairs adversely influence the observed phylogenetic positions of the more closely related taxa. We started with a list of genome pairs ranked from shortest to largest gene order distance (available in Supplemental Data). Starting at the top of the list, we moved down the list adding each pair to our working group until enough pair wise distances were included to allow for one or more NJ trees to be built.
Table 2 | Steps used in hierarchical tree building.

1. Construct a ranked list of gene order distances starting with the shortest distances.
2. Move down ranked list, forming NJ trees of increasing taxa number estimating reaching a NJ tree of all taxa.
3. In turn, evaluate each tree formed starting with the smallest and moving to the largest.
4. Keep trees consistent with all previously retained trees, while rejecting any new tree that is incongruent with a previously retained tree.
5. Starting with those represented by the smallest gene order pairs, single taxa were added to the largest retained tree if their addition did not disrupt the existing NJ topology (second round of taxa addition).

This process was continued until we had an exhaustive ranked list of possible unrooted NJ trees starting with the top few very closely related taxa and ending ultimately with a NJ tree of all 143 taxa. Moving down the ranked tree list, we evaluated each tree. A tree (unrooted) was rejected if it was found to be incongruent with an earlier unrooted tree. Congruent trees were pared down in number by removing trees that were fully encompassed by another tree and by combining pairs of compatible trees. Trees were combined by building a new NJ tree with the union set of taxa from the two original trees. The trees were only considered compatible for combining if the process did not cause a disruption of either of the original backbone topologies. For each kept tree, we recorded both the rank of the taxa pair that resulted in its initial formation, and the rank of the last taxa pair added. The largest resulting tree (with 37 taxa) was selected for further study. Additional taxa were added using a process of single taxon addition. In this second round of analysis, moving down the ranked list of genome pairs, we attempted to sequentially add additional taxa to the tree. If the addition of the single taxon disrupted the existing NJ topology, then the taxon was not added.

RESULTS AND DISCUSSION
INITIAL TEST OF GENE ORDER AS AN EVOLUTIONARY DISTANCE

The distribution of raw gene order distances for each of the 10,153 genome pairs for our 143 genomes are plotted in Figure 2A (and available in Supplementary Material). As expected, with raw gene order distance of 0 (or near 0), the two genomes for *Chlamydia trachomatis* and separately the four genomes for *Chlamydophila pneumoniae* define the far left of the distribution. The bulk of the genome pairs, however, show raw gene order distances of greater than 0.9 with a peak near, but below, the value expected randomly (0.983). 82% of the genome pairs have raw distances less than 0.983. Figure 2B shows the same data after an adapted Jukes-Cantor model correction (Equation 2). Using this logarithm–based correction, the gene order distances show a relatively normal distribution with a mean of 7.49 (SD = 1.68). This correction, however, is not possible for raw gene order distance larger than 0.983, and so, such divergent data are missing from Figure 2B. Figure 2C shows a fuller dataset of gene order distances corrected using the method adopted from Tajima (Equation 3). In this case, a very long tail of very large gene order distances is apparent. This tail is caused by large corrections being applied to some dissimilar genome-pairs.

After calculating corrected gene order distances for each genome pair, we compared these values with other measures of genome distance, Jukes-Cantor corrected rRNA distances and
logarithmic gene content distances (data used are available in Supplementary Material). Figure 3A shows a strong correlation between the “Jukes-Cantor” corrected gene order distances and the Jukes-Cantor rRNA distances ($R^2 = 0.24$), especially at rRNA distances shorter than 0.2 ($R^2 = 0.52$). Gene content distances show much less significant correlations with rRNA distance (Figure 3B; $R^2 = 0.04$), and are actually much more strongly correlated with gene order (Figure 3C; $R^2 = 0.22$). However, a very strong correlation between gene content and Jukes-Cantor rRNA distance is apparent at rRNA distances shorter than 0.1 ($R^2 = 0.67$). Apparent in Figure 2B, there is a cluster of genome pairs with similar gene content (low gene content distance) but divergent rRNA sequences (rRNA distances between 0.1 and 0.3 and Gene Content distances of 0.0 and 0.2). This population of genome pairs consists of very small genomes in which extreme genome reduction has occurred. In cases of such extensive genome reduction, the proportion of orthologs shared between two genomes is high even when rRNA sequences indicate that the genomes are relatively distant. With an updated list of genomes, we found our Jukes-Cantor gene order distances were correlated with the divergence of conserved protein genes ($R^2 = 0.13$ overall and $R^2 = 0.23$ for cases with less than one amino acid substitution calculated per site). For this comparison, we identified 87 taxa present in both our data (Table 3) and (Lang et al., 2013) and we extracted the aligned amino acid sequences from their published alignment of 841 sequences. Using MEGA5 we computed pairwise distances under the Dayhoff matrix based model (Schwartz and Dayhoff, 1978).

In general, these various analyses have shown that the distributed gene order distances are better correlated with sequenced-based distances (both rRNA and conserved proteins) than are gene content distances. Assuming rRNA and protein distances are useful approximations of evolutionary divergence, our results suggest that gene order distance may be useful for taxonomy or phylogenetics in a similar way that genome-to-genome sequence comparison has proven useful as a genomic measure to replace laboratory DNA-DNA hybridization. Both gene content and gene order have their specific issues and so we would not recommend that either genomic method is ever considered the best, but rather that each be used to help inform more traditional molecular sequence analyses when these methods show signal and can be reasonably interpreted. It is also important to note that horizontal gene transfers likely bring in orthologs in the same order, and so gene order does not necessarily avoid complications of integration arising from such transfers, if they are on a large scale.

GENE ORDER TREE BUILDING STARTING FROM 143 TAXA USING NEIGHBOR JOINING

Encouraged by the strong correlation between our distributed gene order distances and those of rRNA, we proceeded to build gene order-based neighbor joining (NJ) trees. Figure 4 shows a phylogram based on all 143 taxa, although unresolved single taxon are not shown for clarity. Similarly, Figure 5 shows the bootstrap NJ tree when all taxa are included. The results show that major bacterial taxonomic groups are mostly correctly clustered. With the largest number of resolved taxa, the γ-Proteobacteria shows the best resolution, and has a branching order reasonably consistent with published reports (House et al., 2003; Brown and Volker, 2004; Belda et al., 2005). In contrast, Archaea are almost completely unresolved, with only generic-level similarity yielding clustering (e.g., *Pyrococcus, Methanosarcina, Sulfolobus*, and *Thermoplasma*). Interestingly, the Actinobacteria are resolved with high confidence as a sister group to the bulk of the Firmicutes (including *Bacillus, Clostridium, Lactobacillus, Listeria, Oceanobacillus, Staphylococcus*, and *Thermoaerobacter*). In contrast, our bootstrap tree (Figure 5) does not cluster any of
ID	Name
ACIFV	Acidaminococcus fermentans
ACIS3	Acidibacter saccharovorans
ACIFD	Acidimicrobium ferrooxidans
ACIF5	Acidithiobacillus ferrooxidans
ACIBS	Acinetobacter baumannii
ACIAD	Acinetobacter sp.
AERHH	Aeromonas hydrophila hydrophila
AERS4	Aeromonas salmonicida
ALCBS	Alcanivorax borkumensis
ALIAD	Alicyclobacillus acidocaldarius
ALTMD	Alteromonas macleodii
AMYMU	Amycolatopsis mediterranei
ANAVT	Anaerovibrio variabilis
ANOFW	Anoxybacillus flavithermus
ARCHD	Arcanobacter baumannii haemolyticum
ARFCU	Archaeoglobus fulgidus
ARCPA	Archaeoglobus profundus
ARCVS	Archaeoglobus venificus
AZOEC	Azotobacter vinelandii
BAC2	Bacillus amylobiofaciens
BACP2	Bacillus pumilus
BACIE	Bacillus selenitireducens
BEUC1	Beutenbergia cavernae
BIFAA	Bifidobacterium adolescentis
BIFAR	Bifidobacterium animalis animalis
BIFAR0	Bifidobacterium animalis lactis
BURMA	Burkholderia mallei
BURTA	Burkholderia thailandensis
CAMJC	Campylobacter jejuni HS:41
CAMLR	Campylobacter lari
CATAD	Catenulipora acidiphila
CAUCR	Caulobacter crescentus
CAUST	Caulobacter segnis
CELGA	Cellvibrio glivus
CELGU	Cellvibrio japonicus
CENSY	Cenarchaeum symbiosum
CLONN	Clostridium novyi
CLOPS	Clostridium perfringens
CLOTE	Clostridium tetani
CORGP	Coriobacterium glomerans
CORJK	Corynebacterium jeikeium
CORK4	Corynebacterium kroppenstedtii
CORU7	Corynebacterium urealyticum
DECAR	Dechloromonas aromatic
DESV	Desulfovibrio vulgaris
DESK1	Desulfuromonas kamchatkensis
DESM0	Desulfurococcus mucosus
DICNV	Dichelobacter nodosus
ENTCS	Enterobacter cloacae
ENT38	Enterobacter sp.
ENTF4	Enterococcus faecalis

(Continued)

ID	Name
FRAAA	Frankia alni
FRASC	Frankia sp.
GARV4	Gardnerella vaginalis
GEOKA	Geobacillus kaustophilus
GEOSW	Geobacillus sp.
GEOTN	Geobacillus thermodenitrificans
GLOVI	Gloeobacter violaceus
HAHCH	Haellia chejuensis
HALSA	Halobacterium salinarum
HALOH	Halothermotrix orenii
HELM1	Helicobacter mustelae
HELP5	Helicobacter pylori
HYDTT	Hydrogenobacter thermophiles
KINRD	Kineococcus radiotolerans
KORCO	Korarchaeum cryptofilum
LACFC	Lactobacillus fermentum
LACH4	Lactobacillus helveticus
LACSC	Lactobacillus salivarius
LACL	Lactococcus lactis subsp. Lactis
LEGPL	Legionella pneumophila
LEGPH	Legionella pneumophila pneumophila
LEUGT	Leuconostoc citreum
LEUST	Leuconostoc gasamicomitatum
LEUS2	Leuconostoc sp.
LISM	Listeria monocytogenes serotype 4b
LISM0	Listeria monocytogenes serovar 1/2a
LISHW	Listeria welshimeri serovar 6b
LYSSC	Lysinibacillus sphaericus
MAGSM	Magnetococcus sp.
METSW	Methanobacterium sp.
METFA	Methanocaldococcus fervens
METIM	Methanocaldococcus infermus
ETVM	Methanocaldococcus vulcanius
METCZ	Methanocella concradi
META3	Methanococcus aeolicus
METVS	Methanococcus vanniellii
METV3	Methanococcus voltai
METKA	Methanopyrus kandleri
METKG	Methanoseta concili
METH6	Methanoseta harundinacea
METTP	Methanoseta thermophile
METAC	Methanosarcina acetivorans
METBF	Methanosarcina barkeri
METMA	Methanosarcina mazei
METFK	Methyllobacillus flagellates
METCA	Methylcoccus capsulatus
MICAN	Microcystis aeruginosa
MICAI	Micromonospora aurantiaca
MICSL	Micromonospora sp.
MORCR	Moraxella catarrhalis
NANEQ	Nanoarchaeum equitans

(Continued)
Table 3 | Continued

ID	Name
NATTJ	Natranaerobius thermophiles
NAUPA	Nautilia profundicola
NEIML	Neisseria meningitides
NEIMG	Neisseria meningitidis serogroup B
NITEU	Nitrosomonas europaea
NITEC	Nitrosopumilus maritimus
NITMG	Nitrososphaera gargensis
NOCCG	Nocardia cyriaceogorgica
NOCSJ	Nocardia farcinica
NOSA0	Nocardoides sp.
NOSP7	Nostoc azolae
NOS51	Nostoc punctiforme
NOSU	Nostoc sp.
OCEIH	Oceanobacillus iheyensis
PARBH	Parvularcula bermudensis
PASMU	Pasteurella multocida
PROM4	Prochlorococcus marinus
PROMP	Prochlorococcus marinus pastoris
PROAC	Propionibacterium acnes
PROFH	Propionibacterium propionicum
PSEF1	Pseudomonas fulva
PSEU5	Pseudomonas stutzeri
PSY2A	Psychrobacter arcticus
PSY7F	Psychrobacter sp.
RHIEC	Rhizobium etli
RHIIME	Rhizobium mellioti
RHOCA	Rhodobactor capsulatus
RHOCA	Rhodobacter capulatus
RHOCS	Rhodobacter sphaeroides
RHPS1	Rhodopseudomonas palustris
RHOCB	Rhodospirillum centenum
RHORT	Rhodospirillum rubrum
RICPR	Rickettsia prowazekii
RICTY	Rickettsia typhi
RUBKX	Rubrobacter xylanophilus
SACVD	Saccharomonospora viridis
SACEN	Saccharopolyspora erythraea
SPPWM	Sphingomonas wittichii
STACT	Staphylococcus carnosus
STAES	Staphylococcus epidermidis
STALH	Staphylococcus lugdunensis
STRPZ	Streptococcus pyogenes M49
STRPG	Streptococcus pyogenes M5
STRTD	Streptococcus thermophilis
STRAW	Streptomyces avermitilis
STRCO	Streptomyces coelicolor
STRDG	Streptomyces griseus
STRR2	Streptosporangium roseum
SULAC	Sulfolobus acidocaldarius
SULIM	Sulfolobus islandicus
SULS9	Sulfolobus solfataricus
THEIA	Thermoanaerobacter italicus
THEM3	Thermoanaerobacter mathrani

(Continued)
ribsomal operons) appreciably reduces the robustness of the results.

ADDITIONAL GENE ORDER TREE BUILDING STARTING FROM 143 TAXA

To complement our NJ tree building exercise using all 143 taxa, we aimed to address the fundamental problem that only a portion of our 10,153 pairwise gene order distances were significant and should be useful for tree building. The inclusion of genome pairs that are too diverged with respect to their gene order has the potential to alter the observed position of other taxa on a tree. This concern is not unique to gene order data. It has long been known that with sequence data, the uncertainty on an estimated distance goes up greatly with the magnitude of the divergence (Kimura and Ohta, 1972). Gene order data though provide a dramatic example of how it can be difficult to accurately estimate divergence when organisms are highly diverged. To minimize this problem, we proceeded with two additional tree studies.

We tried developing a novel hierarchical and iterative tree building strategy (see Materials and Methods) based on the principle that our shorter distances are known with a higher degree of confidence than our larger distances. The goal of this approach is to provide a systematic and objective way to build a tree that includes as many of the pairwise gene order distances as possible without letting very distant (random) pairs adversely influence the observed phylogenetic positions of the more closely related taxa. Detailed results of this work are listed in the Supplemental Material. Figure 6 shows the largest tree formed starting this process with all 143 taxa. The tree in Figure 7 has 37 taxa added in the initial clustering process and another 8 taxa added during a second phase (single taxon addition). The result shows reasonable clusters representing the \(\alpha\)-Proteobacteria, \(\gamma\)-Proteobacteria, Actinobacteria, and Firmicutes, plus a few other taxa from different poorly represented groups. The midpoint-rooted result again shows the Actinobacteria clustering with the bulk of the Firmicutes in a similar fashion to that shown in Figures 4, 5. The other well-supported trees from this analysis either also show such a clustering or do not contain taxa that can address the relationship between the Actinobacteria and Firmicutes. Also, observed in Figure 6 is the splitting of the Firmicutes into two groups with the Streptococcaceae (\textit{Streptococcus} and \textit{Lactococcus}) falling away from the bulk of the Firmicutes. A similar result was observed in the Figure 4, albeit with a different ultimate affinity for the taxonomic groups labeled. Actinobacteria are shown in green, and the two clusters of Firmicutes are shown in blue. The Actinobacteria are grouped with the bulk of the Firmicutes.
Streptococcaceae. The inconsistent placing of this group on the trees found in Figures 4, 7, plus the unresolved placing of this group in Figure 5 and the exclusion of this group from Figure 6, collectively suggests that gene order is unable to confidently place this group on the tree—leaving it inconclusive to the question of whether they belong with the rest of the Firmicutes or even clustered with the gram-positive bacteria, but diverged prior to the Actinobacteria. However, the fact that Lactobacillus (labeled lp) is consistently clustered with the bulk of Firmicutes suggests that the Lactobacillales (which includes the Streptococcaceae) do belong
FIGURE 6 | Midpoint-rooted NJ phylogram based on our hierarchical tree building starting with 143 genomes (see Materials and Methods) using the same gene order data distances as the tree shown in Figure 4. This resultant tree includes the most taxa during the initial round of clustering with solid lines and bold font. Taxa connected with dashed lines are those found to be compatible during a second round of single taxon addition. “Bootstrap values” shown are the number of times a node is found when NJ trees are formed using these taxa and the 100 replicate gene order distances. The values listed for individual taxa are the number of times that taxon is found in the biggest tree formed by the initial round of clustering when the 100 replicate gene order distances are used. Taxa not shown that were found 60 or more times in the largest tree after the initial clustering were: vc (70), cbf (67), vv (65), sty (63), set (61), and vp (60).

with the rest of the Firmicutes, and therefore, in this case, the Streptococcaceae appear to be misplaced due to an artifact related to “long branch attraction.”

Secondly, using our original NJ trees, we identified the agreement subtrees for the 100 replicate NJ trees that had previously been constructed (and used for bootstrap analysis). Starting with the 100 trees, 18 agreement subtrees (each containing 18 taxa) were found. Together, the agreement subtrees contained a total of 23 different taxa. These 23 taxa were then used to build a new NJ tree (Figure 7) using the dataset constructed from all 10 million iterations. The result shows with high confidence three microbial groups—the Actinobacteria, the Firmicutes, and the γ-Proteobacteria. This pruned tree is the consistent core of the 100 replicate trees, and indicates that there is significant (but small) gene order conservation between these three taxonomic groups. When this tree is midpoint-rooted, the Actinobacteria and Firmicutes are united as sister groups with high confidence, which further suggests that the gram-positive bacteria might be
monophyletic (as long as the assumptions inherent to midpoint-rooting are met). Based both of the conservative nature of this agreement sub-trees approach and the sensible results that it produces, we think that this is our best option for constructing a large gene order-based tree of prokaryotes.

GENE ORDER TREE BUILDING STARTING FROM A MORE REPRESENTATIVE 172 TAXA

Finally, we repeated our agreement sub-trees approach for our updated study of the relations of prokaryotes using 172 complete genomes (Table 3) better representing a wider-diversity of prokaryotes. With this fuller dataset, starting with 100 replicate NJ trees, the agreement subtree only contained 13 taxa. These 13 taxa were then used to build a NJ tree as before (Figure 7). As before, the resultant tree shows with high confidence that Actinobacteria and Firmicutes are sister groups (Figure 8). We also repeated this final analysis selecting five orthologs in the same order rather than six. This resulted in a summary agreement sub-tree with 56 taxa suggesting there is significantly more genomic gene order signal with five genes than with six. The 56 taxa tree (Figure 9), which now includes Archaea and Bacteria, again shows with high confidence that Actinobacteria and Firmicutes are sister groups forming a gram-positive clade (Figure 9). The midpoint rooting of this final tree (Figure 9) places Archaea as a sister group to the \(\gamma \)-Proteobacteria. At face value, this suggests there is a little more gene order conservation between the Archaea and the \(\gamma \)-Proteobacteria than with any other bacterial group. Gene order conservation between Archaea and the \(\gamma \)-Proteobacteria would argue against the “neomuran origin” for the archaea cell (Cavalier-Smith, 2002). A pairing of Archaea with the \(\gamma \)-Proteobacteria, though, should be taken with significant caution because the result is completely dependent on the midpoint rooting, which may incorrectly represent the history of these evolving groups. Using the Archaea as an outgroup, naturally would place the Proteobacteria with the other bacterial phylum represented. In either case, though, the tree supports the notion that the gram positive bacteria (Actinobacteria and Firmicutes) evolved once from a gram-negative relative. It is also notable that the genome-wide synteny tree of 89 microbes published by Shifman et al. (2014) also shows the Actinobacteria and Firmicutes united as sister groups, even though that particular work used different genomes and a different approach to estimate gene order similarity across genomes.

IMPLICATIONS OF GENE ORDER CONSERVATION FOUND

At this point, we can conclude that starting from a large number of genomes, we find, perhaps surprising, that there is some gene order conservation between a few major groups, namely Firmicutes, Actinobacteria, and Proteobacteria (Figures 4–9) and less robustly the Archaea and Proteobacteria (Figure 9). Comparison of genomes from closely related species reveals that inversions are quite common. Large inversions involving up to half of the genome are found frequently between closely related species (e.g., within the *Pyrococcus* genus, Zivanovic et al. (2002), within the *Yersinia* genus, Darling et al., 2008). Given this potentially very rapid rate of divergence in gene order, it is surprising to find residual phylogenetic signal still uniting such distant groups as the Actinobacteria and the Firmicutes. However, while large inversions are common, they are not random in their distribution. For example inversions that disrupt the symmetry of the replicons are frequently not tolerated (Eisen et al., 2000; Zivanovic et al., 2002; Darling et al., 2008). Thus, the rapid changes may be restricted in their range leaving large portions of the genome with potentially conserved gene order over large time scales.

Taken together, our results suggest that the Actinobacteria is a sister group to the Firmicutes, which in turn implies a single origin for the gram-positive cell. Since the first few whole genome sequences were published, some genomic trees have failed to unite these groups (Brown et al., 2001; Fu and Fu-Liu, 2002; Korbel et al., 2002), while others have found weak support for the pairing (House et al., 2003) or have found the pairing under a subset of conditions tried (Deeds et al., 2005). There are three possible disparate causes for these results. First, it is possible that the gram-positive cell has evolved more than once in Earth history. In particular, it has been suggested that *Mycobacterium* may have a close relationship to gram-negative bacteria (Fu and Fu-Liu,
Second, it has been hypothesized that gram-positive bacteria are more primitive than gram-negative bacteria (Gupta, 1998; Errington, 2013). Third, some researchers are of the opinion that the failure of genomic methods to unite the gram-positive bacteria together indicates that genomic methods are still inadequate to address this relationship (Olsen, 2001), and that ultimately, we will find that the gram-positive bacteria could be united as a monophyletic group. In particular, the strong similarity in the structure of the cell walls of Firmicutes and Actinobacteria argues for a single origin. The gram-positive cell type, found in both Firmicutes and Actinobacteria, consists of thick layers of peptidoglycan with teichoic acids and a single membrane. Gram-negative bacteria have a thin peptidoglycan layer, lack teichoic acid, and have a second outer membrane with lipopolysaccharides.

Considering that our gene order analyses have consistently produced trees with the Actinobacteria united with the bulk of the Firmicutes to the exclusion of other bacterial groups (mostly the Proteobacteria), our results support the uniting of these groups and argue against multiple origins for the gram-positive cell type. The strongest evidence against a strict monophyletic pairing of the Firmicutes with the Actinobacteria comes from the (unrooted) phylogenetic analysis of 31 concatenated bacterial genes (Wu et al., 2009) and 24 concatenated bacterial genes (Lang et al., 2013), which appear to support a mostly gram-positive clade of Firmicutes, Actinobacteria, Chloroflexi, and Cyanobacteria. Incidentally, Lang et al. (2013) also show the Tenericutes as part of the Firmicutes. At present, we cannot rule out such a larger (primarily) gram-positive clade because it is possible that other phyla (like the Tenericutes) will be included within our Firmicutes/Actinobacteria cluster when taxa sampling increases for gene order studies. Generally, one can argue that because several of our trees (those restricted to agreement subtrees) do not include any taxa from bacterial groups other than the Proteobacteria, we cannot rule out the possibility that one of the other phyla, such as the Cyanobacteria, would break up our Firmicutes/Actinobacteria clade. However, such reasoning does

FIGURE 8 | NJ phylogram, starting with 172 representative taxa, limited to only the 23 taxa found in the agreement subtrees for the 100 replicate trees formed using iterations of six predicted orthologs.

"Bootstrap values" shown are the number of times a node is found when NJ trees are formed using these taxa and the 100 replicate gene order distances.
requires the taxa within such a phyla to have all scrambled their
gene order to the point to which they show no affinity to either
the Firmicutes or Actinobacteria in spite of their supposed closer
affinity. Our results though still show a uniquely strong conserva-
tion of gene order between the Firmicutes and Actinobacteria.

We, therefore, feel that our results are indicative of a tree of life
in which most other bacteria phyla diverged prior to the base
of a gram-positive cluster (either Firmicutes/Actinobacteria or a
larger similar clade). This interpretation in turn implies a single
origin for the gram-positive cell. Our results also indicate that

ends up functionally equivalent to using $D' = -\ln(1-D)$. "Bootstrap
values" shown are the number of times a node is found when NJ trees are
formed using these taxa and the 100 replicate gene order distances with *
representing a bootstrap value of 100.

FIGURE 9 | Midpoint-rooted NJ phylogram, starting with 172
representative taxa, limited to only the 56 taxa found in the agreement
subtrees for the 100 replicate trees formed using iterations of five
predicted orthologs with the same distance equation as before, which
Shao, M., Lin, Y., and Moret, B. (2013). Sorting genomes with rearrangements and segmental duplications through trajectory graphs. *BMC Bioinformatics* 14:S9. doi: 10.1186/1471-2105-14-S15-59

Shifman, A., Ninio, N., Gophna, U., and Snir, S. (2014). Phylo SI: a new genome-wide approach for prokaryotic phylogeny. *Nucleic Acids Res.* 42, 2391–2404. doi: 10.1093/nar/gkt1138

Snél, B., Bork, P., and Huynen, M. A. (1999). Genome phylogeny based on gene content. *Nat. Genet.* 21, 108–110. doi: 10.1038/5052

Swenson, K. M., Arndt, W., Tang, J., and Moret, B. M. (2008). "Phylogenetic reconstruction from complete gene orders of whole genomes," in Asia Pacific Bioinformatics Conference Proceedings (Kyoto), 241–250.

Tajima, F. (1993). Unbiased estimation of evolutionary distance between nucleotide sequences. *Mol. Biol. Evol.* 10, 677–688.

Tamura, T., Matsuzawa, T., Oji, S., Ichikawa, N., Hosoyama, A., Katsumata, H., et al. (2012). A genome sequence-based approach to taxonomy of the genus Nocardia. *Antonie Van Leeuwenhoek* 102, 481–491. doi: 10.1007/s10482-012-9780-5

Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., et al. (2003). The COG database: an updated version includes eukaryotes. *BMC Bioinformatics* 4:41. doi: 10.1186/1471-2105-4-41

Tekaià, F., Lazcano, A., and Dujon, B. (1999). The genomic tree as revealed from whole proteome comparisons. *Genome Res.* 9, 550–557.

Watterson, W. A., Ewens, W. J., Hall, T. E., and Morgan, A. (1982). The chromosome inversion problem. *J. Theor. Biol.* 99, 1–7. doi: 10.1016/0022-5193(82)90384-8

Woese, C. R. (1987). Bacterial evolution. *Microbiol. Rev.* 51, 221–271.

Wolf, Y. I., Rogozin, I. B., Grishin, N. V., and Koonin, E. V. (2002). Genome trees and the tree of life. *Trends Genet.* 18, 472–479. doi: 10.1016/S0168-9525(02)02744-0

Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L., and Koonin, E. V. (2001). Genome trees constructed using five different approaches suggest new major bacterial clades. *BMC Evol. Biol.* 1:8. doi: 10.1186/1471-2148-1-8

Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., et al. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. *Nature* 462, 1056–1060. doi: 10.1038/nature08656

Yang, S., Doolittle, R. F., and Bourne, P. E. (2005). Phylogeny determined by protein domain content. *Proc. Natl. Acad. Sci. U.S.A.* 102, 373–378. doi: 10.1073/pnas.0408810102

Zhang, Y., Hu, F., and Tang, J. (2010). “Phylogenetic reconstruction with gene rearrangements and gene losses,” in *Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference* (Hong Kong: IEEE), 35–38.

Zivanovic, Y., Lopez, P., Philippe, H., and Forterre, P. (2002). *Pyrococcus* genome comparison evidences chromosome shuffling-driven evolution. *Nucleic Acids Res.* 30, 1902–1910. doi: 10.1093/nar/30.9.1902

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 July 2014; accepted: 21 December 2014; published online: 20 January 2015.

Citation: House CH, Pellegrini M and Fitz-Gibbon ST (2015) Genome-wide gene order distances support clustering the gram-positive bacteria. *Front. Microbiol.* 5:785. doi: 10.3389/fmicb.2014.00785

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal *Frontiers in Microbiology*.

Copyright © 2015 House, Pellegrini and Fitz-Gibbon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.