Symmetry criteria for quantum simulability of effective interactions
Zimborás, Zoltán; Zeier, Robert; Schulte-Herbrüggen, Thomas; Burgarth, Daniel

Published in:
Physical Review A
DOI:
10.1103/PhysRevA.92.042309
Publication date:
2015

Citation for published version (APA):
Zimborás, Z., Zeier, R., Schulte-Herbrüggen, T., & Burgarth, D. (2015). Symmetry criteria for quantum simulability of effective interactions. Physical Review A, 92(4), [042309].
https://doi.org/10.1103/PhysRevA.92.042309
Symmetry criteria for quantum simulability of effective interactions

Zoltán Zimborás,1,* Robert Zeier,2,† Thomas Schulte-Herbrüggen,2,‡ and Daniel Burgarth1,§
1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
2Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
3Department of Mathematics, Aberystwyth University, Aberystwyth SY23 2BZ, United Kingdom
(Received 1 June 2015; published 8 October 2015)

What can one do with a given tunable quantum device? We provide complete symmetry criteria deciding whether some effective target interaction(s) can be simulated by a set of given interactions. Symmetries lead to a better understanding of simulation and permit a reasoning beyond the limitations of the usual explicit Lie closure. Conserved quantities induced by symmetries pave the way to a resource theory for simulability. On a general level, one can now decide equality for any pair of compact Lie algebras just given by their generators without determining the algebras explicitly. Several physical examples are illustrated, including entanglement invariants, the relation to unitary gate membership problems, as well as the central-spin model.

DOI: 10.1103/PhysRevA.92.042309

PACS number(s): 03.67.Ac, 02.30.Yy, 03.67.Lx

I. INTRODUCTION

Thanks to impressive progress on the experimental side, many small- and medium-scale quantum devices are now ready for applications ranging from quantum metrology [1–4] to quantum simulation [5–9]. With quantum information processing as one of the driving but long-term goals (e.g., [10–12]), one of the pressing questions is, what can one do with these devices now? This problem clearly falls into the remit of quantum systems and control engineering, an area naturally receiving increased interest [13–15] both experimentally and theoretically.

Control theory offers a well-known characterization of the operations that a quantum device is capable of on Lie-algebraic grounds [14,16–21]. In this work, we simplify the question to the Hamiltonian membership problem of (finite-dimensional) quantum simulation. It amounts to deciding, for a set of given control interactions \(\mathcal{P} \), whether a set of effective target interactions \(\mathcal{Q} \) can be simulated—without having to establish controllability via nested (and hence tedious) commutator calculations for the so-called Lie closure. Our results reduce the Hamiltonian membership problem to the straightforward solution of homogeneous linear equations.

In the setting of the controlled Schrödinger equation [22] (taken as a bilinear control system [17,23])

\[
\frac{d}{dt} U(t) = \left[-i H + \sum_{v=2}^{p} -iu_v(t) H_v \right] U(t),
\]

we ask whether the given set \(\mathcal{P} := \{ i H_1, \ldots, i H_p \} \) of interactions (which may include a drift term) generates an effective interaction \(i H_{p+1} \) or, more generally, any interaction from a set \(\mathcal{Q} := \{ i H_{p+1}, \ldots, i H_q \} \) assuming all \(H_v \) are represented by Hermitian matrices henceforth. If so, then for every evolution time \(t > 0 \) of a simulated interaction \(i H_v \in \mathcal{Q} \), there is a solution \(U(t) \) of the simulating system (1) for \(0 \leq t \leq \theta \), and controls \(u_v(t) \) such that \(\mathcal{P} \) generates a unitary \(U(\theta) = \exp(-i \tau H_0) \) in the simulation time \(\theta \) starting from the identity at \(t = 0 \) [6,24–31]. In this sense, Hamiltonian simulation of a particular Hamiltonian \(H_0 \) can be considered as an infinitesimal version of creating a particular unitary gate. It also generalizes the universality (or full controllability) question of whether all Hamiltonians can be simulated (or, equivalently, whether all unitary gates can be obtained) [19,28,32–41]. In the context of gates, a familiar elementary example is that all unitary gates in an \(n \)-qubit system can be obtained [32] by combining local gates with CNOT gates. However, the approach of the pioneering age of decomposing every target gate into a sequence of CNOT and local gates is, in practice, all too often imprecise or slow. So implementing gates or simulating Hamiltonians with high fidelity rather asks for optimal control techniques, as explained in a recent road map [42]. As a precondition, here we step back to the Hamiltonian level and give criteria for simulability and controllability.

II. MAIN IDEA

We solve the decision problems of simulability (and controllability) by just analyzing the symmetries of the Hamiltonians of given setups. We show that this decision requires considering both linear and quadratic symmetries, where linear symmetries of a Hamiltonian \(H \) commute with \(H \), while quadratic symmetries of \(H \) are those commuting with the tensor square \((i H \otimes 1 + 1 \otimes i H) \). The term quadratic symmetry is motivated, since the tensor square generates \(U \otimes U \) just as \(i H \) generates the unitary \(U \).

More precisely, our goal is to get a symmetry-based understanding of how a set \(\mathcal{P} \) of available interactions can simulate a set \(\mathcal{Q} \) of desired effective quantum interactions in the sense that the Lie closures coincide, i.e., \(\langle \mathcal{P} \rangle = \langle \mathcal{P} \cup \mathcal{Q} \rangle \). We circumvent brute-force calculation of the Lie closure not only because high-order commutators can entail a significant growth in the appearing matrix entries and may lead to instabilities in numerical computations, but first and foremost because it provides no deeper insight into the problem. Our symmetry analysis leads to a much more systematic understanding of Hamiltonian simulation and quantum system dynamics in general. It provides a powerful argument to decide under which conditions a desired Hamiltonian can, in fact, be simulated or, in turn, which explicit simulations or computations are impossible in a given experimental setup.
Let us summarize our line of thought: As shorthand, let the linear symmetries of \(\mathcal{P} \) (analogously for any set of matrices) be expressed via the commutant \(\mathcal{P}' \), which consists of all matrices \(S \in \mathbb{C}^{d \times d} \) that commute (i.e., \([S, i H_v] = 0\)) with each element \(i H_v \in \mathbb{C}^{d \times d} \) of \(\mathcal{P} \) [43]. Obviously, for \(\mathcal{Q} \) to be simulable by \(\mathcal{P} \), it is necessary that \(\mathcal{Q} \) may not break but rather has to inherit the symmetries of \(\mathcal{P} \), so \(\dim(\mathcal{P}') = \dim(\mathcal{P} \cup \mathcal{Q}') \).

However, a complete symmetry characterization is nontrivial. It rather requires the following two steps: The first is to introduce quadratic symmetries [19] as those linear symmetries of the system artificially doubled by the tensor square \(\mathcal{P}^{\otimes 2} := \{i H_v \otimes 1_d + 1_d \otimes i H_v, \text{ for } v \in \{1, \ldots, p\}\} \). It defines the quadratic symmetries by its commutant \(\mathcal{P}^{(2)} := (\mathcal{P}^{\otimes 2})' \). Second, let \(C \) denote the center [44] of the commutant \((\mathcal{P} \cup Q)' \) and consider the central projections of \(\mathcal{P} \) and \(\mathcal{P} \cup \mathcal{Q} \) onto \(C \). With these stipulations, we summarize our main result:

Main result (see Result 1 below). The given interactions \(\mathcal{P} \) simulate the desired interactions \(\mathcal{Q} \) in the sense \((\mathcal{P}) = (\mathcal{P} \cup \mathcal{Q}) \) if and only if \(\mathcal{P} \) and \(\mathcal{Q} \) share the same quadratic symmetries (i.e., \(\dim(\mathcal{P}^{(2)}) = \dim(\mathcal{P} \cup \mathcal{Q}^{(2)}) \)) \([\text{condition } (A)]\) and the central projections of \(\mathcal{P} \) and \(\mathcal{P} \cup \mathcal{Q} \) onto \(C \) are of the same rank \([\text{condition } (B)]\).

Let us emphasize that our approach goes beyond the ubiquitous use of linear symmetries in physics, since linear symmetries provide only an incomplete picture of Hamiltonian simulation. The application of higher symmetries is the key here. It is interesting to note that essentially only the quadratic symmetries (and no higher ones) in condition \((A)\) are necessary to characterize the dynamics of a quantum system. One obtains a complete description together with the auxiliary condition \((B)\).

Some remarks also summarizing known approaches are in order. The quadratic symmetries are stronger than the linear ones; actually they include them and thus condition \((A)\) implies that the linear symmetries also agree. Example 1 below illustrates why matching the linear symmetries does not suffice to ensure simulability. As shown in a companion paper [45], one can decide if a subalgebra \(G \subseteq g \) of a compact semisimple Lie algebra \(g \) actually fulfills \(G = g \) (e.g., \((\mathcal{P}) = (\mathcal{P} \cup \mathcal{Q})' \)) just by analyzing quadratic symmetries. But Example 2 elucidates why condition \((A)\) alone does not, in the general compact case, imply simulability. Only after fixing the central projections by condition \((B)\) do the quadratic symmetries decide simulability.

On a much more general scale, condition \((B)\) closes the gap to completely characterizing equality in \(G \subseteq g \) now for all compact Lie algebras (generated by skew-Hermitian interactions) beyond the semisimple ones of [45]. Simplifying within the Lie-algebraic frame, our symmetry approach to decide simulability and the membership \(\mathcal{Q} \subseteq (\mathcal{P}) \) can thus be seen as a major step beyond the well-established Lie-algebra rank condition [14,16,17] and beyond the limited first use of quadratic symmetries to establish full controllability in [19].

III. SYMMETRIES

In this section, we elaborate our method and establish necessary and sufficient conditions for Hamiltonian simulation to arrive at Result 1 below. We also describe important properties of linear and quadratic symmetries and discuss two illustrating examples. Example 1 highlights the importance of quadratic symmetries for deciding Hamiltonian simulation and their relevance for entanglement invariants. The necessity for the auxiliary condition \((B)\) is made evident in Example 2.

The linear symmetries of \(M \subseteq \mathbb{C}^{d \times d} \) are identified [19] with the commutant \(M' \) given as

\[M' := \{S \in \mathbb{C}^{d \times d} \text{ such that } [S, M] = 0 \text{ for all } M \in M\}. \]

The commutant includes all complex multiples of the identity \(1_d \) and it forms a vector space of dimension \(\dim(M') \).

A smaller set of matrices typically shows more symmetries, i.e., for \(M_1 \subseteq M_2 \), one has \(M_1' \supseteq M_2' \) iff \(\dim(M_1') = \dim(M_2') \). By Jacobi’s identity (i.e., \([S, [M_1, M_2]] = [[M_2, S], M_1] + [[S, M_1], M_2]\)), any symmetry \(S \) that commutes with both \(M_1 \) and \(M_2 \) also commutes with their commutator \([M_1, M_2]\). So, \(M \) and the Lie algebra \(\langle M \rangle \) it generates have the same commutant: \(M'_1 = M'_2 \) if \(\langle M_1 \rangle = \langle M_2 \rangle \).

In our context, this implies that \(i H_{p+1} \) cannot be simulated by \(\mathcal{P} \) unless \(\mathcal{P}' = (\mathcal{P} \cup \{i H_{p+1}\})' \), i.e., coinciding symmetries are a necessary but not sufficient condition. This is because the converse does not hold as the following basic example illustrates:

Example 1. The pair interaction \(i H_{2d} := i Z_1 Z_2 \) cannot be simulated by the local interactions \(\mathcal{P} = \{iX_1, iY_1, iX_2, iY_2\} \) of a two-qubit system [46] in spite of coinciding (trivial) commutants \(\mathcal{P}' = (\mathcal{P} \cup \{i H_{2d}\})' = \mathcal{C}_{4,4} \).

Thus, we further discuss quadratic symmetries [19] defined by the commutant to the tensor square [47],

\[M^{(2)} := (M^{'(2)})' = \{S \in \mathbb{C}^{d^2 \times d^2} \text{ such that } [S, M_1 \otimes 1_d + 1_d \otimes M_2] = 0 \text{ for all } M \in M \subseteq \mathbb{C}^{d \times d}\}. \]

The tensor-square commutant always contains (the subspace spanned by) the identity \(1_{d^2} \) and the swap or commutation matrix \(K_{d,d} \) [48]. Also, the quadratic symmetries include all linear ones, i.e., \(S_1 \otimes 1_d + 1_d \otimes S_1 \in M^{(2)} \) for \(S_1 \in M'. \) By Jacobi’s identity [51], one finds \((M_1)^{(2)} = (M_2)^{(2)} \) if \((M_1) = (M_2) \). As above, in our context this implies that \(i H_{p+1} \) cannot be simulated by \(\mathcal{P} \) unless \(\mathcal{P}^{(2)} = (\mathcal{P} \cup \{i H_{p+1}\})^{(2)} \) holds.

Example 1 (completion). The relevant tensor-square commutants have different dimensions \(\dim(\mathcal{P}^{(2)}) = 4 \) and \(\dim((\mathcal{P} \cup \{i H_{2d}\})^{(2)}) = 2 \), so \(i H_{2d} \) cannot be simulated. Naturally, \((\mathcal{P} \cup \{i H_{2d}\})^{(2)} \) contains \(i_{16} \) and the commutation matrix \(K_{4,4} \), which is related to the joint permutation \((1,3)(2,4)\) of tensor components in \(\mathbb{C}^{16 \times 16} \), while \(P^{(2)} \) contains two additional quadratic symmetries related to the separate permutations \((1,3)\) and \((2,4)\); see Fig. 1. Evidently, the local interactions of \(\mathcal{P} \) cannot generate entanglement. Hence, a quadratic symmetry in \(P^{(2)} \) has a physical interpretation as an entanglement invariant. Indeed, the
concurrency [52] of a two-qubit pure state \(|\psi\rangle\) can be defined as
\[[|\psi\rangle\langle\psi|]_{1,2} - M_{1,2|2,2} \langle\psi|\psi\rangle|\psi\rangle\langle\psi|]^{1/2} / 2 \] [53–56],
where the matrix \(M_p\) is defined by the permutation \(p\).
Any quadratic symmetry \(S \in \mathcal{P}^{(2)}\) relates to a degree-two polynomial invariant \(\text{Tr}(\rho \otimes \rho S)\) in the entries of the density matrix \(\rho\) [57].

Remarkably, symmetries beyond quadratic ones (i.e., those of the tensor square) are not required for a necessary and sufficient condition for simulability [58]. Concerning the tensor-square commutant, we build on two important classification-free results of [45] for compact Lie algebras [59,60] (as generated by skew-Hermitian matrices \(iH_i\): For \((\mathcal{P} \cup \mathcal{Q})\) being semisimple (and compact), Ref. [45] first shows that \(\langle P \rangle = \langle \mathcal{P} \cup \mathcal{Q} \rangle\) holds if and only if \(\dim[\mathcal{P}^{(2)}] = \dim[(\mathcal{P} \cup \mathcal{Q})^{(2)}]\).
Beyond the semisimple case, any compact Lie algebra \(g\) can be uniquely decomposed as \(g = s \oplus c\) into its semisimple part \(s\) and its center \(c\) (where \(s := [g, g]\) and \([g, c] = 0 \) [44]). So Ref. [45] secondly verifies that the semisimple parts of \(\langle \mathcal{P} \rangle\) and \(\langle \mathcal{P} \cup \mathcal{Q} \rangle\) have to agree if \(\dim[\mathcal{P}^{(2)}] = \dim[(\mathcal{P} \cup \mathcal{Q})^{(2)}]\). When generalizing from semisimple to arbitrary compact Lie algebras, the equality of the two tensor-square commutants implies that \(\langle \mathcal{P} \rangle\) and \(\langle \mathcal{P} \cup \mathcal{Q} \rangle\) agree—except for the central elements (commuting with all the other ones). These commuting interactions require condition (B) to fix the central projection, thus resulting in the following complete characterization:

Result 1. Consider two sets \(\mathcal{P} := \{iH_1, \ldots, iH_p\}\) and \(\mathcal{Q} := \{iH_{p+1}, \ldots, iH_{p+q}\}\) of (skew-Hermitian) interactions, and let \(C_a\) denote elements of a linear basis spanning the center \(C\) of the commutant \(\langle \mathcal{P} \cup \mathcal{Q} \rangle\). For the central projections, define the matrix \(T_{a\beta} := \text{Tr}(C_{a}^{\dagger}iH_{\beta})\) for \(1 \leq a \leq \dim(C)\) and \(1 \leq \beta \leq p\). Then, \(\mathcal{P}\) simulates \(\mathcal{Q}\) in the sense \(\langle \mathcal{P}\rangle = \langle \mathcal{P} \cup \mathcal{Q}\rangle\), if and only if both conditions (A) \(\dim[\mathcal{P}^{(2)}] = \dim[(\mathcal{P} \cup \mathcal{Q})^{(2)}]\) and (B) rank(\(T\)) = rank(\(T\)) are fulfilled.

Condition (B) of Result 1 is a basic linear-algebra test solely based on linear symmetries. Each of the matrices \(T\) and \(T\) depends on both \(\mathcal{P}\) and \(\mathcal{Q}\). In Example 1, \(iH_{p+2}\) could not be generated as condition (A) is not satisfied. Before proving Result 1, the following example provides a helpful illustration of condition (B):

Example 2. In a two-qubit system, consider a dipole coupling combined with a tilted magnetic field, i.e., \(\mathcal{P} := \{i(2Z_iZ_2 - X_iX_2 - Y_iY_2), i(X_i - Y_i + X_i + Y_i^2)\}\). We investigate whether a Heisenberg-type interaction of the form \(Q_{a} := \{i(X_1Z_2 + Z_1X_2 + Y_1Z_2 + Z_1Y_2)\}\) can be simulated. Condition (A) is satisfied in both cases as the quadratic symmetries of \(\mathcal{P}\), \(\mathcal{P} \cup \mathcal{Q}\), and \(\mathcal{P} \cup \mathcal{Q}_a\) all coincide (there are 16 of them). The three linear symmetries also agree. Moreover, with the mutually commuting operators

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\quad \text{and}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

forming a basis of the commutants \(\mathcal{P}' = \langle \mathcal{P} \cup \mathcal{Q}_a \rangle = \langle \mathcal{P} \cup \mathcal{Q} \rangle\), they also span the (three-dimensional) center \(C\). For the central projections, one thus gets the matrices

\[
T_a = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 6i \\
4 & 0 & -4
\end{pmatrix},
\quad T_b = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & 0 & 0
\end{pmatrix},
\quad \tilde{T}_a = \tilde{T}_b = \begin{pmatrix}
0 & 0 \\
0 & 0 \\
4 & 0
\end{pmatrix}
\]

Condition (B) reveals rank(\(\tilde{T}\)) \(\neq\) rank(\(T_a\)), rank(\(\tilde{T}\)) = rank(\(T_b\)), so \(Q_a\) cannot be simulated by \(\mathcal{P}\), whereas \(Q_b\) can.

Note the isomorphy types of \(\langle \mathcal{P}\rangle\), \(\langle \mathcal{P} \cup \mathcal{Q}\rangle\), and \(\langle \mathcal{P} \cup \mathcal{Q}_a \rangle\) are \(\text{su}(2) \oplus \text{su}(1)\), \(\text{su}(2) \oplus \text{su}(1)\), and \(\text{su}(2) \oplus \text{su}(1)\), respectively.

Proof of Result 1. Decompose the compact Lie algebras \(\langle \mathcal{P}\rangle\) and \(\langle \mathcal{P} \cup \mathcal{Q}\rangle\) into their semisimple parts and centers. If condition (A) holds, the semisimple parts coincide, \(\langle \mathcal{P}\rangle = \langle \mathcal{P} \cup \mathcal{Q}\rangle\) and \(\langle \mathcal{P} \cup \mathcal{Q} \rangle\) are \(\text{su}(2) \oplus \text{su}(1)\) with \(\mathcal{P} \subseteq \mathcal{P} \cup \mathcal{Q}\). Take the unique decomposition \(iH_1 \mapsto iH_1^* + iH_1^T\) with \(iH_1^* \in \mathfrak{s}\) and \(iH_1^T \in \mathfrak{c}\). Since \(iH_2 \mapsto iH_2^* + iH_2^T\) is real-linear, \(iH_2\) is orthogonal to \(\mathfrak{c}\). If \(\mathcal{P} = \mathcal{P} \cup \mathcal{Q}\) and \(\mathfrak{s} = \mathfrak{c}\), then the rank of \(\mathfrak{c}\) is the same as that of \(\mathfrak{s}\).

IV. ALGORITHMS AND BEYOND

Both linear and quadratic symmetries can readily be computed by standard linear algebra: Linear symmetries \(S \in \mathbb{C}^{d \times d}\) are determined by the commutant and can be obtained by solving the linear equations \(14 \rho \otimes M - M^T \otimes I_d\) \(\text{vec}(S) = 0\) jointly for all \(M \in \mathcal{M} \subseteq \mathbb{C}^{d \times d}\) [19,50]. Here, \(\text{vec}(S)\) is a column vector of length \(d^2\) stacking all columns of \(S\) [49]. The dimension of the solution is \(d^2 - r\), where \(r\) denotes the rank of the matrix formed by vertically stacking the matrices \(14 \otimes M - M^T \otimes I_d\).

Likewise, the quadratic symmetries \(S \in \mathbb{C}^{d \times d^2}\) (given...
by the tensor-square commutant) just amount to solving
\[1_{\mathcal{L}} \otimes (M \otimes 1_d + 1_d \otimes M) - (M \otimes 1_d + 1_d \otimes M) \]
jointly for all \(M \in \mathcal{M} \). The preceding discussion explains how to explicitly determine linear and quadratic symmetries. This allows us to test condition (A) (i.e., \(\dim[\mathcal{P}_Q] = \dim[(\mathcal{P} \cup \mathcal{Q})_Q] \)) by comparing the dimensions of the quadratic symmetries for \(\mathcal{P} \) and \(\mathcal{P} \cup \mathcal{Q} \).

As the commutant \((\mathcal{P} \cup \mathcal{Q})_Q \) represents the linear symmetries of \(\mathcal{P} \cup \mathcal{Q} \), its center \(C \) is readily obtained by solving the linear equations \((1_{\mathcal{L}} \otimes M - M \otimes 1_{\mathcal{L}}) \) \(vec(C) = 0 \) jointly with \(M \) extending over all \(M \in \mathcal{P} \cup \mathcal{Q} \) and \(S \) over all \(S \in (\mathcal{P} \cup \mathcal{Q})_Q \). Solving for \(C \) yields a basis \(C_\alpha \) of the center \(C \), and one can determine the matrices \(T \) and \(T' \) as \(T_{\alpha \beta} = Tr(C_\alpha H_\beta) \) for \(1 \leq \alpha \leq \dim(C) \) and \(1 \leq \beta \leq q \), as well as \(T'_{\alpha \beta} = Tr(C_\alpha H_\beta) \) for \(1 \leq \beta \leq p \). Since condition (B) is given by \(rank(T) = rank(T') \), it can be easily be tested by elementary linear-algebra computations comparing the ranks of \(T \) and \(T' \). To sum up, Result 1 reduces the Hamiltonian membership problem to straightforward solutions of homogeneous linear equations.

Example 3 (central-spin model). Consider a central spin interacting with \(n \) surrounding spins via a star-shaped coupling graph (where the surrounding spins may be taken as uncontrolled spin bath) [61–63]. The interactions amount to a drift term (tunneling plus coupling) and just a local \(Z \) control on the central spin, \(\mathcal{P} := \{ i \hat{X}_1 + i \sum_{k=2}^n \lambda_k \hat{X}_k | \hat{X}_1, \hat{X}_k \} \). We ask whether the central spin can be fully controlled, i.e., if \(Q := \{ i \hat{X}_1 \} \) can be simulated. Depending on the interaction strengths \(J_k \in \mathbb{R} \) for \(k \geq 2 \), different cases are possible: (a) with \(J_1 = 1 \) and (b) with \(J_1 = 2 \) for even \(k \), and \(J_1 = 1 \) otherwise.

Computational results for the central-spin model have been obtained using exact arithmetic [64] for a moderate number of spins, as detailed in Table I. These results vary significantly for different coupling strengths \(J_k \). But our approach for deciding simulability allows for analytic reasoning even beyond specific choices of \(J_k \). For Hamiltonian simulation, it thus provides a powerful technique to analyze and understand the dynamics of general quantum systems. This even holds if the symmetries cannot be calculated explicitly. Showcases for the strength of explicit symmetries are given in Examples 1–3, while Example 3 also makes use of symmetries implicitly (in parts where they cannot be calculated explicitly) via the proofs of the Appendix A. These proofs motivate the following:

Conjecture. In the central-spin model of Example 3, the central spin is fully controllable for a finite number of spins and any choice of \(J_k \) (i.e., \(i \hat{X}_1 \) can be simulated, and the surrounding spins can be uncoupled by applying the control).

V. DISCUSSION

Similar to the Hamiltonian membership problem for interactions solved here, one may address membership for groups, e.g., (i) in the (prototypical) discrete case, (ii) in connected compact Lie groups, and (iii) in nonconnected compact groups including finite groups.

In **discrete groups** (i), asking the question (a) if \(\hat{Q} = \{ U_{p+1} \} \) is (exactly) contained in the group generated by the unitaries \(\hat{P} = \{ U_1, \ldots, U_p \} \) is undecidable for SU(\(N \)) (at least for \(N \geq 4 \)) [65]. Yet the question (b) of approximate universality [66,67], i.e., if all unitaries in SU(\(N \)) can be approximated, is decidable [65,68] by comparing the matrix algebra generated by elements \(\hat{U}_1, \hat{U}_2 \) for \(\hat{U}_r \in \hat{P} \) with its equivalent for SU(\(N \)) (plus other conditions). Still, the tedious algebra closure is needed, similar to the Lie closure. Question (b) is equivalent to comparing the **topological closure** of the group generated by \(\hat{P} \) to SU(\(N \)) and thus leads to (ii).

In **continuous groups** (ii), Result 1 applies to decide if two connected, compact Lie groups (given by their infinitesimal generators) are equal:

Result 2. Given two sets \(\mathcal{P} \) and \(\mathcal{Q} \) of (skew-Hermitian) interactions, the elements of \(\mathcal{P} \) simulate the ones of \(\mathcal{Q} \) and vice versa iff both \(\langle \mathcal{P} \rangle = \langle \mathcal{P} \cup \mathcal{Q} \rangle \) and \(\langle \mathcal{Q} \rangle = \langle \mathcal{P} \cup \mathcal{Q} \rangle \) hold, where each condition can be tested by Result 1.

Our findings do not generalize to **nonconnected compact groups** (iii), nor are they implied by the representation theory of compact groups. In particular, finite groups with trivial quadratic symmetries \(\{ S, U_1, U_2 \} = 0 \) only (known as group designs [69]) do not contradict our work.
VI. CONCLUSION

We have presented a complete symmetry approach to
decide Hamiltonian simulability, i.e., whether given drift
and control Hamiltonians can simulate a target (effective)
Hamiltonian in finite dimensions. Quadratic symmetries lead
to an understanding that allows one to algebraically prove
simulability in classes of many-body systems where the usual
computational assessment via the Lie closure is infeasible.
This is exemplified by proving simulability for interesting
cases of the central-spin model (see the Appendix) for which
only very restricted cases were addressed before [63].

Achievability of specific target interactions is particularly
important for fault tolerance, where the simulation of a par-
ticular Hamiltonian (or universality) is needed only on logical
subspaces and not globally. While linear symmetries have
been often used in those cases [70–73], going a step further
by applying quadratic symmetries to ensure controllability
or simulability on a noise-protected subspace could be an inter-
esting application, simplifying complicated system-algebraic
analysis. For instance, in Ref. [74], we examined standard
scenarios of noise-protected subspaces, where controllability
was (moderately) easy to assess. However, in more realistic
settings, analyzing quadratic symmetries and their restrictions
to protected subspaces is anticipated to be much easier than
establishing Lie closures over restricted subspaces.

Moreover, our results on quadratic symmetries distinguishing
local properties from global ones can be generalized
as follows. Assuming that condition (A) in the different
cases below, which is equivalent to showing that $D(iX_1)v = 0$
holds for all vectors $v \in \mathbb{C}^d$ with $d := 2^n$ and
$D(iH_I)v = 0$. Here, the linear operator
\[
D(M) := [i_d \otimes (M \otimes 1_d + 1_d \otimes M)] - (M \otimes 1_d + i_d \otimes M)^\dagger \otimes i_d
\]
is a shortcut in order to define the linear equations
$D(M)v = 0$ for the matrix $M \in \mathbb{C}^{d \times d}$ and quadratic
symmetries S where $v := \text{vec}(S)$. One naturally obtains
that both of the equations $[D(M_1), D(M_2)] = D([M_1, M_2])$
and $\exp[D(M_1)]D(M_2) \exp[-D(M_1)] = D[\exp(M_1)M_2 \exp(-M_1)]$
hold for all matrices M_1, M_2.

Proposition 1. The interaction iX_1 can be simulated if all
couplings J_k are either (a) equal, i.e., $J_k = J$, (b) equal up
to an odd integer α_k, i.e., $J_k = J_0k$ where α_k may depend on $k,$
or (c) Q-linear independent.

Proof. Let us consider the two definitions $i\hat{H}_{zz} := i\sum_{k=1}^{n} J_k Z_k Z_k = iH_0 + [iH_1, [iH_1, iH_2]]/4 \in \mathcal{P}$
and $i\hat{H}_z := iX_1 + i\sum_{k=2}^{n} J_k (X_1 X_k + Y_1 Y_k) = iH_1 - i\hat{H}_{zz} \in \mathcal{P}$. We assume in the following that $D(iH_1)v = D(iH_2)v = 0$ holds in order to prove
$D(iX_1)v = 0$.

The joint eigenbasis of the operators $D(iZ_k/2)$ and
$D(iZ_k/2)\otimes (k \to 2, \ldots, n)$ is given by the computational
basis, and its basis vectors are $|b_k \rangle = |b_k \rangle \otimes \cdots \otimes |b_n \rangle$ with
$|b_k \rangle \in \{0, 1\}, |0 \rangle := |0, 1 \rangle$, and $|1 \rangle := |1, 0 \rangle$. This implies that the eigenvalue equations are
$D(iZ_k)w(b) = i\mu_k(b)w(b)$ and
$D(iZ_k/2)w(b) = i\lambda_k(b)w(b)$, and the corresponding
eigenvalues are given by
\[
\mu_k(b) = \frac{1}{2}(-s_k - s_n + s_{n-k} + s_{3n-1}),
\lambda_k(b) = \frac{1}{2}(-s_k - s_n + s_{n-k} + s_{3n-1} + s_{3n-k}),
\]
where $\mu_k(b) \in \{-2, -1, 0, 1, 2\}$, $\lambda_k(b) \in \{-2, -1, 0, 1, 2\}$, and $s_j := 2b_j - 1$. By checking all of the 2^8 cases for
$s_{18-1} \in \{-1, +1\}$ and $e \in \{0, 1, 2, 3\}$, one concludes that
$\mu_k(b) \mod 2 = \lambda_k(b) \mod 2$ holds if $D(iZ_1)w(b) = 0$. Re-
call that $D(iZ_1)v = D(iH_1)v = 0$ and expand $v = \sum_k a_k \hat{X}_k w(b)$. It follows that the equations $D(iZ_k)v(b) = 0$ and
$D(iH_k)v(b) = 0$ hold for $a_k \neq 0$ as each $w(b)$ is an eigenvector of $D(iZ_k)$ and $D(iH_k) = \sum_{k=2}^{n} 2 J_k D(iZ_k/2)$. Assuming
$D(iZ_1)v(b) = 0$, this also means that the re-
lation $\mu_k(b) \mod 2 = \lambda_k(b) \mod 2$ holds for the eigen-
value $\mu_k(b)$ of $D(iZ_k/2)$ and the eigenvalue $i\lambda_k(b)$ of
$D(iZ_k/2) \otimes (k \to 2)$. Moreover, we obtain for $a_k \neq 0$
that $0 = D(iH_k)w(b) = [i \sum_{k=2}^{n} 2 J_k \lambda_k(b)] w(b)$ and, conse-
quently, $\sum_{k=2}^{n} 2 J_k \lambda_k(b) = 0$.

The proof depends now on the particular cases, and
we prove in each case that $\mu_k(b) \mod 2 = 0$: For case (a)
with $J_k = J$, it follows that $\lambda_k(b) = \sum_{k=2}^{n} \lambda_k(b) = 0$.
This implies that $\mu_k(b) \mod 2 = 0$. In case (b), we
obtain $J_k = J_0k$ and $\lambda_k(b) \mod 2 = \sum_{k=2}^{n} \lambda_k(b) \mod 2 =\sum_{k=2}^{n} a_k \lambda_k(b) \mod 2 = 0$, which also shows that $\mu_k(b) \mod 2 = 0$. For case (c), $\sum_{k=2}^{n} 2 J_k \lambda_k(b) = 0$ means that $\lambda_k(b) = 0$ for all k since the couplings J_k are Q-linear independent
and $\lambda_k(b) \in \mathbb{Z}$. In particular, it follows that $\lambda_k(b) = \sum_{k=2}^{n} \lambda_k(b) = 0$, which proves again that $\mu_k(b) \mod 2 = 0$.
Define the operator
\[W := \exp \left[\pi \sum_{k=2}^{n} D(i Z_k/2) \right]. \]

Using the properties of \(\sum_{k=2}^{n} D(i Z_k/2) \), one gets that the equation \(W w(b) = e^{i \mu(b) \pi} w(b) \) holds for each \(w(b) \) with \(\mu \neq 0 \), where the last equality follows from \(\mu(b) \) mod 2 = 0. Thus, we obtain
\[W e = W \sum_{b} \alpha_b w(b) = \sum_{b} \alpha_b W w(b) = \sum_{b} \alpha_b w(b) = v. \]

We also have that
\[W D(X_{1} X_{k} + Y_{1} Y_{k}) W^\dagger = i D(G[X_{1} X_{k} + Y_{1} Y_{k}]/G) \]
using the notation
\[G := \exp \left(\pi \sum_{k=2}^{n} i Z_k/2 \right) = \prod_{k=2}^{n} \exp(\pi i Z_k/2) = \prod_{k=2}^{n} i Z_k. \]

It follows that
\[W D(X_{1} X_{k} + Y_{1} Y_{k}) W^\dagger = i D[\prod_{k' \not= k}^{n} (i Z_{k'}) D_{k'} D(i X_{k} X_{k} + Y_{1} Y_{k}) (i Z_{k}) \]
\[= i D(X_{1} X_{k} + Y_{1} Y_{k}), \]
if \(2 \leq k \leq n_0 \) since \(X_{Z_k} Z_k = -X_k \) and \(Z_k Y_k Z_k = -Y_k \), and
\[W(i X_{1}) (W(i X_{1}))^\dagger = D(i X_{1}) \] is also satisfied.

One can now verify that
\[0 = W D(i \tilde{H}) v = W D(i \tilde{H}) (W(i X_{1}))^\dagger W v \]
\[= \left[D(i X_{1}) - \sum_{k=2}^{n} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} \right] v \]
\[= D(i \tilde{H}) v - 2 \sum_{k=2}^{n} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v}. \]

This implies \(\sum_{k=2}^{n} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} = 0 \), and one concludes that
\[D(i \tilde{H}) v - \sum_{k=2}^{n} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} = D(i X_{1}) v = 0. \]

The techniques in the proof of Proposition 1 can be generalized in order to establish the following result:

Proposition 2. The interaction \(i X_{1} \) can be simulated if \(J_k = J \) for \(2 \leq k \leq n_0 \) and \(J_k = 2 J \) for \(n_0 < k \leq n \).

Proof. We establish again all the properties of the first two paragraphs in the proof of Proposition 1. Then, it follows that
\[\sum_{k=2}^{n_0} J_k(b) + \sum_{k=n_0+1}^{n} 2 J_k(b) = 0. \]

Let \(\mu_0(b) \) be the eigenvalue of \(\sum_{k=2}^{n_0} D(i Z_k)/2 \). One obtains that \(\mu_0(b) \) mod 2 = 0 for each \(w(b) \) with \(\alpha_b \neq 0 \). Define the operator
\[W^{(0)} := \exp \left[\pi \sum_{k=2}^{n_0} D(i Z_k/2) \right]. \]

We apply the properties of \(\sum_{k=2}^{n_0} D(i Z_k/2) \) and conclude that the equation \(W^{(0)} w(b) = e^{i \mu_0(b) \pi} w(b) = w(b) \) holds for each element \(w(b) \) satisfying \(\alpha_b \neq 0 \), where the last equality follows from \(\mu_0(b) \) mod 2 = 0. Thus, we obtain
\[W^{(0)} w(b) = W^{(0)} \sum_{b} \alpha_b w(b) = \sum_{b} \alpha_b W^{(0)} w(b) = \sum_{b} \alpha_b w(b) = v. \]

We also have that
\[W^{(0)} D(X_{1} X_{k} + Y_{1} Y_{k}) (W^{(0)})^\dagger = i D[G^{(0)}(X_{1} X_{k} + Y_{1} Y_{k}) (G^{(0)})^\dagger] \]
using the notation
\[G^{(0)} := \exp \left(\pi \sum_{k=2}^{n_0} i Z_k/2 \right) = \prod_{k=2}^{n_0} \exp(\pi i Z_k/2) = \prod_{k=2}^{n_0} i Z_k. \]

It follows that
\[W^{(0)} i D(X_{1} X_{k} + Y_{1} Y_{k}) (W^{(0)})^\dagger \]
\[= i D \left[\prod_{k'=2}^{n_0} (i Z_{k'}) D_{k'} D(i X_{1} X_{k} + Y_{1} Y_{k}) (i Z_{k}) \right] \]
\[= -i D(X_{1} X_{k} + Y_{1} Y_{k}), \]
where \(0 \leq k \leq n_0 \) since \(X_{Z_k} Z_k = -X_k \) and \(Z_k Y_k Z_k = -Y_k \), and
\[W^{(0)} i D(X_{1} X_{k} + Y_{1} Y_{k}) (W^{(0)})^\dagger = i D(i X_{1}) \] is also satisfied.

One can now verify that
\[0 = W^{(0)} D(i \tilde{H}) v = W^{(0)} D(i \tilde{H}) (W^{(0)})^\dagger W v \]
\[= \left[D(i X_{1}) - \sum_{k=2}^{n_0} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} \right] v \]
\[+ \sum_{k=n_0+1}^{n} 2 i J D(X_{1} X_{k} + Y_{1} Y_{k}) \]
\[= D(i \tilde{H}) v - 2 \sum_{k=2}^{n_0} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v}, \]
which implies \(\sum_{k=2}^{n_0} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} = 0 \). Thus, one can conclude that
\[D(i \tilde{H}) v - \sum_{k=2}^{n_0} \frac{i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} = D(i \tilde{H}) v = 0, \]
where we introduced the notation \(i \tilde{H} := i X_{1} + \sum_{k=n_0+1}^{n} 2 J(X_{1} X_{k} + Y_{1} Y_{k}). \)

Furthermore, the equation
\[D(i \tilde{H}) v = D(i \tilde{H}) v = D(i H_{zz}) v \]
implies the important commutator identity
\[\left[\frac{\sum_{k=2}^{n} i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v}, \right] \frac{\sum_{k=2}^{n} i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} \]
\[= 64 J^2 D \left(i \frac{\sum_{k=2}^{n} Y_k}{v} \right). \]

Thus, \(D(i \sum_{k=n_0+1}^{n} Y_k) v = 0 \). Now, we also get that
\[0 = \left[\frac{\sum_{k=2}^{n} i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v}, \frac{\sum_{k=2}^{n} i J_k D(X_{1} X_{k} + Y_{1} Y_{k})}{v} \right] v \]
\[= -4 D(i \tilde{H}) v, \]
where \(i \tilde{H} := i \sum_{k=n_0+1}^{n} 2 J Z_k Z_k. \) Considering the expansion
\[v = \sum_{b} \alpha_b w(b), \]
we obtain from \(D(i \tilde{H}) v = 0 \) that the condition \(\lambda_{zz}^{(1)}(b) = 0 \) holds for the eigenvalue \(i \lambda_{zz}^{(1)}(b) \) of \(\sum_{k=n_0+1}^{n} D(i Z_k)/2 \) with respect to a vector \(w(b) \) with \(\alpha_b \neq 0 \). As we have for any \(w(b) \) with \(D(i Z_k) w(b) = 0 \) that the eigenvalue \(i \mu_{zz}^{(1)}(b) \) of \(\sum_{k=n_0+1}^{n} D(i Z_k)/2 \) satisfies \(\mu_{zz}^{(1)}(b) \) mod 2 = 0, we can now define the operator
\[W^{(1)} := \exp \left[\pi \sum_{k=n_0+1}^{n} D(i Z_k/2) \right]. \]
Using the properties of \(\sum_{k=m_0+1}^{n} D(iZ_k/2)\), one gets that the equation \(W^{(1)}(w(b)) = e^{i\mu^{(1)}(b)x} w(b) = w(b)\) holds for each \(w(b)\) with \(\alpha_b \neq 0\), where the last equality follows from \(\mu^{(1)}(b) \mod 2 = 0\). Thus, we obtain \(W^{(1)}v = W^{(1)}(\sum_b \alpha_b w(b)) = \sum_b \alpha_b W^{(1)}(w(b)) = \sum_b \alpha_b w(b) = v\).

We also have that \(W^{(1)} D(X_1 X_k + Y_1 Y_k)(W^{(1)})^\dagger = i D(G^{(1)}(X_1 X_k + Y_1 Y_k)(G^{(1)})^\dagger)\) using the notation

\[G^{(1)} := \exp (\pi \sum_{k=m_0+1}^{n} iZ_k/2) = \prod_{k=m_0+1}^{n} \exp (\pi iZ_k/2) \]

\[= \prod_{k=m_0+1}^{n} iZ_k. \]

With these preparations, one can now verify that

\[0 = W^{(1)} D(i \bar{H})v = W^{(1)} D(i \bar{H}) (W^{(1)})^\dagger W^{(1)} v = \left[D(iX_1) - 2 \sum_{k=m_0+1}^{n} i JD(X_1 X_k + Y_1 Y_k) \right] v = D(i \bar{H})v - 4 \sum_{k=m_0+1}^{n} i JD(X_1 X_k + Y_1 Y_k) v, \]

which hence implies \(\sum_{k=m_0+1}^{n} i J D(X_1 X_k + Y_1 Y_k) v = 0\). Consequently, one can finally conclude that \(D(i \bar{H})v - \sum_{k=m_0+1}^{n} 2i JD(X_1 X_k + Y_1 Y_k) v = D(iX_1) v = 0\).

[1] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
[2] V. Buzek, R. Derka, and S. Massar, Phys. Rev. Lett. 82, 2207 (1999).
[3] A. Andrè, A. S. Sørensen, and M. D. Lukin, Phys. Rev. Lett. 92, 230801 (2004).
[4] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011).
[5] S. Lloyd, Science 273, 1073 (1996).
[6] C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu, and G. Vidal, Phys. Rev. A 66, 012305 (2002).
[7] M. Johanning, A. F. Varón, and C. Wunderlich, J. Phys. B 42, 154009 (2009).
[8] B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nat. Chem. 2, 106 (2010).
[9] J. Casanova, A. Mezzacapo, L. Lamata, and E. Solano, Phys. Rev. Lett. 108, 190502 (2012).
[10] S. Lloyd, Science 319, 1209 (2008).
[11] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Yang, and T. Schulte-Herbrüggen, J. Math. Phys. 52, 113510 (2011).
[12] I. Popescu, A. Dür, and U. Helmke, IEEE Trans. Auto. Control 57, 1984 (2012).
[13] Z. Zimborás, R. Zeier, M. Keyl, and T. Schulte-Herbrüggen, Eur. Phys. J. Quantum Technol. 1, 11 (2014).
[14] D. D’Alessandro, Modern Quantum Mechanics, revised ed. (Addison-Wesley, Reading, 1994).
Here, \(X_{k, h} \) denotes the matrix \(X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) occurring at position \(k \) in \(\mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes X \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} \); also for the other Pauli matrices \(Y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \) and \(Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).

The interaction \(i \mathbb{1} \otimes \mathbb{1} \otimes i H \) generates the unitary matrix \(\exp(-itH) = \exp[-t(i \mathbb{1} \otimes \mathbb{1} \otimes i H)] \).

The \(d \times d \times d \) matrix \(K_{d,d} \) [19, 49, 50] permutes \(A, B \in \mathbb{C}^{d \times d} \) in \(K_{d,d}(A \otimes B) = (B \otimes A)K_{d,d} \), which implies \(K_{d,d} \in \mathcal{M}^{(2)} \) as \(K_{d,d}(M \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M) = (M \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M)K_{d,d} \).

If \(K_{d,d} \) commutes with both \(M \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M \) for \(M \in \mathcal{M} \).

Reference [19] showed for controllability, i.e., \((\mathcal{P}) \subseteq \mathfrak{su}(d) \), that \((\mathcal{P}) = \mathfrak{su}(d) \) iff \(\dim(\mathfrak{su}(d)) = 2 \). Note \(\dim(\mathfrak{su}(d^{2})) = 2 \). See [21, 45] for similar results with subalgebras of \(\mathfrak{su}(d) \).

In this work, \(\mathbb{C}^{d \times d} \) denotes the set of complex \(d \times d \) matrices and \(\mathbb{1} \) signifies the \(d \times d \) identity matrix.

The center of a set \(\mathcal{M} \) of matrices contains all \(M_{1} \in \mathcal{M} \) that commute (i.e., \([M_{1}, M_{2}] = 0 \)) with every \(M_{2} \in \mathcal{M} \).

In this case, Jacobi’s identity says that a symmetry in \(\mathcal{M}^{(2)} \) commutes with the commutator \([M_{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M_{1}, M_{2} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M_{2}] = [M_{1}, M_{2}] \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes [M_{1}, M_{2}] \) if it commutes with both \(M_{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} \otimes M_{1} \) for \(M_{1} \in \mathcal{M} \).

In this case, \(\mathcal{M} \) signifies the \(d \times d \times d \times d \) identity matrix.