Sodium–glucose co-transporter 2 inhibition in patients hospitalized for acute decompensated heart failure: rationale for and design of the EMPULSE trial

Jasper Tromp¹,²,³, Piotr Ponikowski⁴, Afshin Salsali⁵,⁶, Christiane E. Angermann⁷, Jan Biegus⁴, Jon Blatchford⁸, Sean P. Collins⁹, João Pedro Ferreira¹⁰, Claudia Grauer⁸, Mikhail Kosiborod¹¹,¹², Michael E. Nassif¹¹, Mitchell A. Psotka¹³, Martina Brueckmann⁸,¹⁴, John R. Teerlink¹⁵, and Adriaan A. Voors¹*¹

¹Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; ²Duke-NUS Medical School, Singapore; ³National Heart Centre Singapore, Singapore; ⁴Department of Heart Diseases, Medical University, Wrocław, Poland; ⁵Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA; ⁶Faculty of Medicine, Rutgers University, New Brunswick, NJ, USA; ⁷Comprehensive Heart Failure Center, University and University Hospital, Würzburg, University Hospital Würzburg, Würzburg, Germany; ⁸Boehringer Ingelheim International GmbH, Ingelheim, Germany; ⁹Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; ¹⁰Université de Lorraine, Inserm, Centre d’Investigation Clinique plurithématique 1433, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France; ¹¹Saint Luke’s Mid America Heart Institute and the University of Missouri, Kansas City, MO, USA; ¹²The George Institute for Global Health and the University of New South Wales, Sydney, NSW, Australia; ¹³Inova Heart and Vascular Institute, Falls Church, VA, USA; ¹⁴Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany; and ¹⁵Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, San Francisco, CA, USA

Received 21 December 2020; revised 2 February 2021; accepted 16 February 2021; online publish-ahead-of-print 10 March 2021

Aims
Treatment with sodium–glucose co-transporter 2 (SGLT2) inhibitors improves outcomes in patients with chronic heart failure (HF) with reduced ejection fraction. There is limited experience with the in-hospital initiation of SGLT2 inhibitors in patients with acute HF (AHF) with or without diabetes. EMPULSE is designed to assess the clinical benefit and safety of the SGLT2 inhibitor empagliflozin compared with placebo in patients hospitalized with AHF.

Methods
EMPULSE is a randomized, double-blind, parallel-group, placebo-controlled multinational trial comparing the in-hospital initiation of empagliflozin (10 mg once daily) with placebo. Approximately 500 patients admitted for AHF with dyspnoea, signs of fluid overload, and elevated natriuretic peptides will be randomized 1:1 stratified to HF status (de-novo and decompensated chronic HF) to either empagliflozin or placebo at approximately 165 sites across North America, Europe and Asia. Patients will be enrolled regardless of ejection fraction and diabetes status and will be randomized during hospitalization and after stabilization (between 24 h and 5 days after admission), with treatment continued up to 90 days after initiation. The primary outcome is clinical benefit at 90 days, consisting of a composite of all-cause death, HF events, and ≥5 point change from baseline in Kansas City Cardiomyopathy Questionnaire total symptom score (KCCQ-TSS), assessed using a ‘win-ratio’ approach. Secondary outcomes include assessments of safety, change in KCCQ-TSS from baseline to 90 days and change in natriuretic peptides from baseline to 30 days.

Conclusion
The EMPULSE trial will evaluate the clinical benefit and safety of empagliflozin in patients hospitalized for AHF.

Keywords
Heart failure • Sodium–glucose co-transporter 2 inhibitors • Trial design
Introduction

Heart failure (HF) is one of the most prevalent chronic diseases associated with high mortality and morbidity, and one of the most important reasons for hospital admission.1 After discharge, up to 40% of patients are readmitted within 6 months, and 1-year post-discharge mortality is high.2 The cost burden of treating patients with HF is substantial, and approximately 80% of costs are related to hospital admission.3 Unfortunately, previous trials investigating treatment options in patients hospitalized for acute HF (AHF) did not reduce post-discharge mortality or readmission rates.4

Sodium–glucose co-transporter 2 (SGLT2) inhibitors reduced the risk of cardiovascular (CV) death in patients with type 2 diabetes (T2D) at increased CV risk.5–7 These effects were accompanied by a mean 23% relative risk reduction in hospitalizations for heart failure (HFrEF), both in those with and without a history of HF. However, these trials primarily included patients with T2D, most without HF at baseline, and those with a history of HF were not well phenotyped. Two large randomized clinical trials (DAPA-HF and EMPEROR-Reduced) in patients with stable chronic HF and reduced ejection fraction (HFrEF) provided definitive evidence that treatment with the SGLT2 inhibitors dapagliflozin and empagliflozin reduced the composite of CV death or HF hospitalization; no i.v. vasodilators including nitrates within the last 6h, and no i.v. inotropic drugs for 24h. In addition, patients are required to have elevated natriuretic peptides of N-terminal pro-B-type natriuretic peptide (NT-proBNP) >1600pg/mL or B-type natriuretic peptide (BNP) >400pg/mL. Patients in atrial fibrillation at inclusion must have a concentration of NT-proBNP ≥2400pg/mL or BNP ≥600pg/mL. Finally, all patients must have been treated with a minimum dose of 40mg (20mg for Japanese patients) of i.v. furosemide or equivalent (Table 1).

The mechanisms by which SGLT2 inhibitors reduce CV death and HF are likely multifactorial and may include among others possible direct effects on the myocardium,8–11 nephroprotection, improvements in cardiac metabolism and cardiac adenosine triphosphate (ATP) production.12–15 In addition, the early benefit of SGLT inhibitors seen in DAPA-HF, EMPEROR-Reduced and SOLOIST-WHF are thought to be (partly) caused by its diuretic effects. The diuretic effects of empagliflozin in patients started early after a HF hospital admission were demonstrated in a small pilot study.16 In addition, SOLOIST-WHF included patients during a HF hospital admission, but was limited to patients with T2D. However, whether in-hospital initiation leads to clinical benefit and is safe in patients with and without diabetes and irrespective of left ventricular ejection fraction (LVEF) remains unclear. If in-hospital initiation of empagliflozin is proven to be safe and will improve clinical outcome, this might lead to easier and better clinical adoption of these highly efficacious agents and benefiting this vulnerable patient group that has high burden of debilitating symptoms and is at very high risk of recurrent admissions and death. We therefore designed and initiated the EMPULSE trial. The aim of this paper is to describe the rationale and design of this trial.

Methods

Trial structure and oversight

EMPULSE is a multinational, multicentre, randomized, double-blind superiority trial to evaluate the effects of once daily oral empagliflozin 10mg compared to placebo on clinical benefit, safety, and tolerability in patients hospitalized for AHF after initial stabilization. The trial is registered at ClinicalTrials.gov identifier NCT04157751, and is being conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines. The institutional review board, ethics committee or relevant national competent authority of each participating centre has to approve the study, and all participants provide written informed consent prior to study entry. EMPULSE was designed jointly and trial oversight is provided by the Executive Committee consisting of Academic members and representatives of Boehringer Ingelheim.

Study participants

Participants in the EMPULSE trial are men and women aged ≥18 years (≥21 years in Japan, being the age of legal consent) hospitalized with a primary diagnosis of AHF, regardless of LVEF (Table 1 and Figure 1). Full inclusion and exclusion criteria are provided in online supplementary Table S1. Patients are required to have dyspnoea with at least two of the following signs of decompensation: congestion on chest X-ray, rales on chest auscultation; clinically relevant oedema, or elevated jugular venous pressure. Patients will be enrolled during hospitalization (following stabilization between 24 h and 5 days after admission). Patients are considered stabilized if they have: a systolic blood pressure ≥100 mmHg and no symptoms of hypotension in the preceding 6h; no increase in the intravenous (i.v.) diuretic dose for 6h prior to randomization; no i.v. vasodilators including nitrates within the last 6h, and no i.v. inotropic drugs for 24h. In addition, patients are required to have elevated natriuretic peptides of N-terminal pro-B-type natriuretic peptide (NT-proBNP) ≥1600pg/mL or B-type natriuretic peptide (BNP) ≥400pg/mL. Patients in atrial fibrillation at inclusion must have a concentration of NT-proBNP ≥2400pg/mL or BNP ≥600pg/mL. Finally, all patients must have been treated with a minimum dose of 40mg (20mg for Japanese patients) of i.v. furosemide or equivalent (Table 1).

Key exclusion criteria include cardiogenic shock, current hospitalization for AHF primarily caused by acute myocardial infarction, major cardiac surgery or interventions planned during the study or in the prior 30 days, or an estimated glomerular filtration rate (eGFR) <<20 mL/min/1.73 m² during hospitalization or patients requiring dialysis. Key exclusion criteria are listed in Table 1. Additional exclusion criteria are listed in online supplementary Table S1 and include current or prior treatment with SGLT1 or SGLT2 inhibitors in the 90 days prior to enrolment, and patients who previously received a cardiac transplant, are expected to receive a transplant during the course of the trial, have planned palliative care for HF or currently using or planning to use a left ventricular assist device or intra-aortic balloon pump, or outpatient inotropic support.

Patients should receive usual care per current relevant local and regional guidelines, as defined by their clinician. Patients can be enrolled regardless of T2D status or ejection fraction. Enrolment is stratified according to patients with de-novo HF and worsening chronic HF.

Study visits and follow-up

Screening for the study will start when patients are admitted (Visit 1), where informed consent is signed (Figure 1). Patients are subsequently randomized between 24 h and 5 days after admission (Visit 2a) to double-blind treatment via an IRT system with an equal number of patients (1:1) planned in each group. Visit 2b (day 3) and 2c (day 5) will occur only if patients are still hospitalized. Patients will return to the study site for regularly scheduled visits at 15, 30, and 90 days after...
Table 1 Key inclusion and exclusion criteria

Key inclusion criteria	Key exclusion criteria
1. ≥18 years currently hospitalized for the primary diagnosis of acute HF	1. Cardiogenic shock
2. Dyspnoea (exertional or at rest) and two of the following signs:	2. Current hospitalization for acute HF primarily triggered by pulmonary embolism,
- Congestion on chest X-ray	cerbrovascular accident, or acute myocardial infarction
- Rales on chest auscultation	3. Interventions in the past 30 days prior to randomization or planned during the study:
- Clinically relevant oedema (e.g. ≥1+ on a 0 to 3+ scale)	- Major cardiac surgery, or TAVI, or PCI, or MitraClip
- Elevated jugular venous pressure	- Implantation of cardiac resynchronization therapy device
3. Stabilization criteria (while in the hospital):	- Cardiac mechanical support implantation
- SBP ≥100 mmHg and no symptoms of hypotension in the preceding 6 h	- Carotid artery disease revascularization
- No increase in i.v. diuretic dose for 6 h prior to randomization	4. Acute coronary syndrome/myocardial infarction, stroke or transient ischaemic attack in the past 90 days prior to randomization
- No i.v. vasodilators including nitrates within the last 6 h prior to randomization	5. Current or expected heart transplant, left ventricular assist device, intra-aortic balloon pump, or patients with planned isotropic support in an outpatient setting
- No i.v. inotropic drugs for 24 h prior to randomization	6. Haemodynamically severe uncorrected primary cardiac valvular disease planned for surgery or intervention during the course of the study
4. NT-proBNP ≥1600 pg/mL or BNP ≥400 pg/mL	7. eGFR <20 mL/min/1.73 m² during hospitalization or patients requiring dialysis
Patients with AF: NT-proBNP ≥2400 pg/mL or BNP ≥600 pg/mL	8. Type 1 diabetes mellitus
Measured during index hospitalization, or in the 72 h prior to hospital admission	9. History of ketoacidosis, including diabetic ketoacidosis
5. Treatment with a minimum dose of 40 mg of i.v. furosemide or equivalent	AF, atrial fibrillation; BNP, B-type natriuretic peptide; eGFR, estimated glomerular filtration rate; HF, heart failure; i.v., intravenous; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PCI, percutaneous coronary intervention; SBP, systolic blood pressure; TAVI, transcatheter aortic valve implantation.

Figure 1 Study design.

randomization. A detailed schedule of assessments is provided in online supplementary Table S2. These on-site visits will assess the occurrence of safety and efficacy outcomes, and will include measurement of renal function (eGFR), natriuretic peptides, HF severity [New York Heart Association (NYHA) class], and health status using the Kansas City Cardiomyopathy Questionnaire (KCCQ). The selected dose of empagliflozin was 10 mg based on previous evidence of efficacy in improving HF outcomes in large scale trials of patients with ambulatory HF and in trials of patients with T2D.10

Primary and secondary outcomes
The primary outcome of EMPULSE is clinical benefit at 90 days (Table 2). Clinical benefit is defined as a hierarchical composite
outcome of time to all-cause death, the number of HF events (HFE), time to first HFE and a ≥ 5 point increase from baseline in KCCQ total symptom score (KCCQ-TSS) after 90 days of treatment. HFEs include AHF, urgent HF visits, and unplanned outpatient visits. The definition of a HFE includes the presence of symptoms of HF, signs or laboratory findings corroborating diagnosis, and intensification of therapy (augmentation of either oral diuretics, i.e. diuretics, vasoactive agent, or mechanical or surgical intervention). The full definition is provided in online supplementary Table S3.

Secondary outcomes include an improvement in KCCQ-TSS of ≥10 points after 90 days of treatment, change from baseline in log-transformed NT-proBNP levels over 30 days, days alive and out of hospital until 30 days (after initial hospital discharge) and 90 days (after randomization), time to first occurrence of CV death or HF until end of trial visit, and change in KCCQ-TSS between baseline and 90 days. The remainder of the secondary outcomes are listed in Table 2.

To analyse the primary outcome, the ‘win ratio’ will be used (online supplementary Table S4). The efficacy and safety analyses will follow the intention-to-treat principle, assigning patient to treatment groups as randomized. The win ratio compares each patient in the trial to every other patient within each stratum (new-onset HF vs. decompensated chronic HF) in a pairwise hierarchical fashion. The win ratio is calculated as the total number of wins in the empagliflozin group across all strata divided by the total number of losses. No adjustment for multiple comparisons is planned. HF status (de-novo vs. decompensated chronic HF) will be included as a fixed effect. Safety parameters include volume depletion, hypotension and worsening renal function during follow-up.

Sample size calculations and study conduct
Under a set of assumptions outlined in online supplementary Table S5, including a hazard ratio for death of 0.8, and 0.7 for HFE, we estimated a sample size of 500 (250 per treatment group) randomized patients for a power of 87% and a one-sided significance level of 0.025. The full details on the power calculations are presented in the online supplementary Appendix.

Modifications due to the COVID-19 pandemic
Due to the substantial challenges for conduct of clinical trials stemming from the COVID-19 pandemic, several adjustments to the study protocol have been made, outlined in Table 3. First, in exceptional cases where the patient is unable to come to the study site for a study visit, the visits may be performed as home (physical) or remote (virtual) visits or a combination of home and remote visits. Assessments that can be performed during these visits include NYHA class, parts of the congestion score (dyspnoea, orthopnoea, fatigue), adverse events, concomitant therapy, and the Patient Global Impression of Severity of Heart Failure Symptoms (PGI-S). The KCCQ can be completed by the patient at home. If blood sample collection for the central lab is not possible, blood analysis for safety labs can be done locally. Urine measurements will not be done in a local lab. Lastly, if the investigator judges it as favourable and safe to continue trial medication, this can be shipped from the site to the patient if the patient is unable to come to the site.

Table 2 Primary and secondary outcomes of the EMPULSE trial
Primary outcome
Clinical benefit, a composite of death, number of heart failure events (including HHFs, urgent heart failure visits and unplanned outpatient visits), time to first heart failure event and change from baseline in KCCQ-TSS after 90 days of treatment assessed by the win ratio.
Secondary outcomes
- Improvement in KCCQ-TSS of ≥10 points after 90 days of treatment.
- Change from baseline in KCCQ-TSS after 90 days of treatment.
- Change from baseline in log-transformed NT-proBNP level over 30 days of treatment.
- Days alive and out of hospital from study drug initiation until 30 days after initial hospital discharge.
- Days alive and out of hospital from study drug initiation until 90 days after randomization.
- Time to first occurrence of cardiovascular death or heart failure event until end of trial visit.
- Occurrence of AHF until 30 days after initial hospital discharge.
- Occurrence of chronic dialysis or renal transplant or sustained reduction of ≥40% eGFR, or
- Sustained eGFR <15 mL/min/1.73 m² for patients with baseline eGFR ≥30 mL/min/1.73 m²
- Sustained eGFR <10 mL/min/1.73 m² for patients with baseline eGFR <30 mL/min/1.73 m².
- Weight loss per mean daily loop diuretic dose after 15 days of treatment.
- Weight loss per mean daily loop diuretic dose after 30 days of treatment.

eGFR, estimated glomerular filtration rate; AHF, hospitalization for heart failure; KCCQ-TSS, Kansas City Cardiomyopathy Questionnaire total symptom score; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

Discussion
Acute HF is the leading cause of hospitalizations in the United States and Western Europe. Patients with AHF are at high risk for readmission and death following discharge. There is a clear unmet need in this patient population for effective treatment options to improve post-discharge clinical outcomes. The on-going EMPULSE trial is assessing the clinical benefit and safety of empagliflozin in patients with or without diabetes hospitalized with AHF. Results of this trial will add important evidence regarding the use of empagliflozin in patients not included in previous trials with empagliflozin or other SGLT2 inhibitors. Unique aspects of the EMPULSE trial include: (i) enrolling patients during hospitalization for AHF at the very beginning of what is often called ‘the vulnerable phase’ of HF; (ii) a follow-up of 90 days with continuous treatment of empagliflozin throughout the post-discharge period; (iii) inclusion of patients with and without T2D, and with both HFrEF and HF with preserved ejection fraction (HFrEF); and (iv) the use of a win
might specifically target tissue congestion29 rather than intravascular congestion. Yet, while this can explain the short-term effects of SGLT2 inhibition, this might not explain the long-term positive effects. In the EMBRACE-HF study, empagliflozin reduced pulmonary artery pressure, which was not explained by the diuretic effect of empagliflozin alone.30 Thus, other processes including direct effects on the cardiomyocyte, nephroprotection, and improvements in cardiac metabolism and cardiac adenosine triphosphate (ATP) production may be responsible for long-term benefits.14,31

Patient selection

EMPULSE includes patients regardless of diabetic status, unlike the prematurely terminated SOLOIST-WHF trial, which only included patients hospitalized for AHF with T2D.12 Diabetes status did not modify the efficacy or safety of SGLT2 inhibition in either the DAPA-HF or EMPEROR-REDUCED trials.9,10 Secondly, EMPULSE includes patients with no limitation of LVEF. An analysis from the DECLARE-TIMI 58 trial suggested that dapagliflozin was equally effective in reducing the risk for CV death or hospitalization for HF in patients with HFrEF and HfP EF at baseline.6 The recent SOLOIST-WHF trial suggests that the mixed SGLT1/SLGT2 inhibitor sitagliptin effectively reduced the primary outcome of CV death and total HF in patients with HFrEF and HfP EF,12 however it remains unclear if these results can be extrapolated to empagliflozin in those with and without diabetes. Finally, patients with HFrEF and HfP EF present with a comparable state of venous congestion,32 and previous trials showing successful decongestion did not show a difference in effect between HFrEF and HfP EF.23,24 Together, preliminary data from previous SGLT2 trials suggest equal efficacy across the severity spectrum— and a greater absolute risk reduction as a result in sicker patients. Importantly, inclusion of patients with HFrEF and HfP EF allows us to assess efficacy of empagliflozin in patients across the LVEF spectrum. The absolute risk is very high in patients with AHF; thus, these patients might experience an even greater absolute benefit.

Study design

Two unique aspects of the EMPULSE design are the window of inclusion and duration of follow-up. Unlike previous trials with SGLT2 inhibitors, EMPULSE targets patients hospitalized for AHF (Figure 2)35,36 within the first 5 days of hospitalization and continues treatment only during ‘the vulnerable post-discharge phase’. Treatment initiation in EMPULSE is even earlier than in the SOLOIST-WHF and PIONEER-HF trials, which enrolled patients up to a maximum of 5 and 10 days post-discharge respectively,25 and exclusively targets an in-hospital population as compared to the recent VICTORIA (<3–6 months after discharge)37 and GALACTIC-HF26 (from admission to 1 year post-discharge) trials (Figure 2).

Previous interventions targeting an AHF population showed no improvement in long-term outcomes.38–42 The common theme amongst these earlier studies was that treatment was given only for
a short time in-hospital,39–42 or for up to 60 days38 post-discharge. EMPULSE is unique, because it targets patients with AHF in the ‘vulnerable’ phase of HF. While there is much discussion on the duration of this phase,20 most reports suggest a period between 60–90 days post-discharge.20 Due to the mode of action of SGLT2 inhibitors, we expect an early in-hospital benefit on congestion relief and outcomes that will transition into the efficacy seen in EMPEROR-Reduced. An early benefit on outcomes was also observed in the DAPA-HF, EMPEROR-Reduced, and EMPA-RESPONSE-AHF studies and supports the choice of timeframe for inclusion and follow-up of EMPULSE.9,10,17 In both the DAPA-HF and EMPEROR-Reduced trials, there was an early benefit in reducing CV death or HHF, observed within days of randomization. Similar trials targeting hospitalized patients with AHF are DICTATE-AHF43 and DAPA ACT HF-TIMI 68.44 However, the DICTATE-AHF randomizes only patients with T2D within 24 h, and continues treatment until discharge.43 Importantly, DICTATE-AHF is an open-label study comparing dapagliflozin to usual care. The DAPA ACT HF-TIMI 68 is currently enrolling patients with HFrEF (LVEF ≤40%) both with and without T2D, but excludes patients with HfPEF.44

Choice of outcome and statistical considerations

EMPULSE utilizes a composite outcome analysed using a stratified win ratio. In the EMPEROR-Reduced trial, empagliflozin significantly reduced the combined outcome of all-cause death and HF events as soon as 12 days following randomization.45 Similarly, in a sub-analysis of patients hospitalized for AHF in the EMPA-REG OUTCOME trial, empagliflozin significantly reduced the rates of 90-day post-discharge all-cause death or HHF (12.7% vs. 23.2% for placebo).46 Thus, given these data and the efficacy of empagliflozin for improving both HF and non-HF events, we feel incorporating all-cause death into the win ratio more appropriately captures its impact. The use of the win ratio was first proposed by Finkelstein and Schoenfeld in 1999.47 The benefit of using a win ratio over a conventional time-to-event analysis of a composite outcome is that it gives higher priority to more clinically important events, i.e. mortality. Secondly, it gives a more holistic measure of the improvement of the individual patient, which is very flexible and can be tailored to specific disease areas. There are very few studies using the win ratio as the pre-specified primary analysis.48,49 The ATTR-ACT study used a primary outcome consisting of all-cause mortality and the frequency of CV hospitalizations, which was analysed using the win ratio.49 In a re-analysis of 16 large CV trials, hazard ratio and win ratio estimates showed similar treatment effects.46 However, as the win ratio prioritizes fatal outcomes, it may lead to smaller -values in trials that show a large effect on fatal events, but larger -values in trials without difference in fatal events. In totality, usage of the win ratio enables more proportional weighting of hard outcomes such as mortality over non-fatal events, which are often weighted equally in conventional approaches. Furthermore, the win ratio allows incorporation of both unfavourable events (death, HHF) and favourable outcomes (improvement in health status/KCCQ-TSS). The choice for the KCCQ-TSS rather
than the overall summary score or physical domains of the KCCQ, reflects the short nature of the trial, where changes in quality of life are expected earlier than changes in physical domains of the KCCQ or social limitations.

Conclusion

The EMPULSE trial is well positioned to determine the clinical benefit and safety of empagliflozin in a population hospitalized for AHF with continuation of treatment throughout the vulnerable post-discharge phase. Results of EMPULSE will provide insight as to whether positive results observed in earlier trials performed in patients with chronic HFrEF can be extended to hospitalized patients with HFrEF and HFpEF, both with and without diabetes.

Supplementary Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Funding

The EMPULSE trial is funded by the Boehringer Ingelheim & Eli Lilly and Company Diabetes Alliance.

The sponsor of the EMPULSE trial (Boehringer Ingelheim) is committed to responsible sharing of clinical study reports, related clinical documents, and patient level clinical study data. Researchers are invited to submit inquiries via the following website: https://trials.boehringer-ingelheim.com.

Conflict of interest

J.T. has been a consultant for Roche Diagnostics, and eKoai, and has received personal fees from Olink Proteomix, and is shareholder of eKoai. C.E.A. has received research/grant support and/or has been a consultant for Abbott, Boehringer Ingelheim, Medtronic, Novartis, ResMed, Thermo Fisher, Vifor and German Federal Ministry of Education and Research. S.P.C. is a consultant for Ortho Clinical, Bristol-Myers Squibb and Boehringer Ingelheim and receives research support from the NIH, PCORI and AstraZeneca. J.P.F. is a consultant for Boehringer Ingelheim and receives research support from AstraZeneca. J.B., A.S., C.G., and M.B. are employees of Boehringer Ingelheim. M.K. has received research grants from AstraZeneca and Boehringer Ingelheim, and has served as a consultant for AstraZeneca, Amgen, Applied Therapeutics, Bayer, Boehringer Ingelheim, Eli Lilly, Janssen, Merck (Diabetes and Cardiovascular), Novo Nordisk, Sanofi and Vifor. M.E.N. has received speaking honoraria from Abbott, and is a consultant for Vifor, Roche and Amgen. J.R.T. has received research support from AstraZeneca, Bayer AG, Boehringer Ingelheim, Bristol-Myers Squibb, Cytokinetikos, Medtronic, Merck, Novartis, Servier, and Windtree Therapeutics. A.A.V. has received research support and/or has been a consultant for Amgen, AstraZeneca, Bayer AG, Boehringer Ingelheim, Cytokinetikos, Merck, Myokardia, Novo Nordisk, Novartis, and Roche Diagnostics.

References

1. Tromp J, Ferreira JP, Janwarishastoporn S, Shah M, Greenberg B, Zannad F, Lam CS. Heart failure around the world. Eur J Heart Fail 2019;21:1187–1196.
2. Tromp J, Bamadjaj S, Cleave GJ, Angermann CE, Dahlstrøm U, Ouwewerk E, W T, Dickstein K, Eri T, Hassanin M, Perrone SV, Ghanadan F, Schweizer A, Obergfell A, Lam CS, Filippatos G, Collins SP. Post-discharge prognosis of patients admitted to hospital for heart failure by world region, and national level of income and income disparity [REPORT-HF]: a cohort study. Lancet Glob Health 2020;8:e411–e422.
3. Heiderveerh PA, Albert NM, Allen LA, Bloemke DA, Butler J, Fonarow GC, Ikonomidou JS, Khayou J, Konstant MA, Maddox TM, Nicholls N, Pfeifer M, Pilia IL, Trogdon JG. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 2013;6:606–619.
4. Voors AA, Van Veldhuisen DJ. Why do drugs for acute heart failure fail? Eur J Heart Fail 2012;14:955–956.
5. Râtholm K, Figtberg E, Perkovics V, Solomon SD, Mahafey KW, De Zeeuw D, Fulcher G, Barrett TD, Shaw W, Desai M, Matthews DR, Neal B. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS Program. Circulation 2018;138:458–468.
6. Kato ET, Silverman MG, Mosenzon O, Zeiniker TA, Cahn A, Furtado RH, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JP, Ruff CT, Desai AS, Goto S, Johansson PA, Gause-Nilsson I, Johansson P, Langkilde AM, Raz I, Sabatine MS, Wiviott SD. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019;139:2528–2536.
7. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mathieux M, George J, Woerle HJ, Broedl UC, Von Eynatten M, Zinnman B. EMPA-REG OUTCOME Investigators. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018;137:119–129.
8. Zeiniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonna CA, Mosenzon O, Kato ET, Cahn A, Furtado RH, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019;393:31–39.
9. McMurray JJ, Solomon SD, Inzucchi SE, Kober L, Koseborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Böhm L, Böhm M, Chiang C-E, Chopra VK, de Boer RA, Desai AS, Dias M, Drozdz J, Dukat A, Ge J, Howell JG, Katouva T, Kitaake AM, Luqman CE, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Doherty KF, Jhund PS, Bengtsson O, Simpson AM, Langkilde AM. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381:1995–2008.
10. Pack M, Anker SD, Butler J, Filipagotis G, Pocock SJ, Carson PJ, Januzzi J, Verma S, Tsutsui H, Bueckmeck M, Jamal W, Kimura K, Schnee JZ, Celler D, Cotton DN, Bocci E, Böhm M, Choi DJ, Choyra V, Chuquive E, Giannetti N, Janssens S, Zhang J, Gonzalez Juante EK, Kaul S, Brunner-La Rooppa HC, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Satar N, Senni M, Seronde MP, Spinar J, Sipos A, Taddei S, Wanner C, Zannad F; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020;383:1413–1424.
11. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filipagotis G, Bueckmeck M, Ofsad AP, Pfarr E, Jamal W, Pack M. SGLTI2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020;396:819–829.
12. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, Lewis JB, Riddle JC, Vroes EA, Metra M, Lund LH, Komajda M, Testani JM, Wilcox CS, Ponikowski P, Lopes V, Verma S, Lapuerta P, Pitt B; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 2021;384:117–128.
13. Pack M. Reconceptualization of the molecular mechanism by which sodium-glucose cotransporter 2 inhibitors reduce the risk of heart failure events. Circulation 2019;140:443–445.
14. Yurista SR, Sillaje HH, Oberdorfer-Maas SA, Schouk ET, Pazev G, Iannini MG, Hillebrands JL, van Goor H, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Sodium-glucose co transporter-2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail 2019;21:862–873.
15. McMurray JJ, Pack M, Desai A, Gong J, Greenlaw L, Felsowith M, Rizkala A, Sh I, Voulois J, Solomon S, Swedberg K, Zile MR, Andersen K, Arango JL, Arnold M, Böhlöhlov É, Böhm M, Boycott S, Burgess L, Cabrera W, Chen CH, Eregis A, Fu M, Gomaz E, Gonzalez A, Hagedue AA, Katova T, Katsohstrauke I, Kim KS, Bayram E, Martine E, Merkely B, Mendoza I, Moster A, Negrouz-Kawecka M, Peukhunin K, Ramires F, Regiarda J, Senni M, Sibulo AS Jr, Silva-Cardoso J, Siqueira I, Starling RC, Vinereana D, Teerlink JR.
Rationale for and design of the EMPULSE trial

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
44. Dapagliflozin and Effect on Cardiovascular Events in Acute Heart Failure -Thrombolysis in Myocardial Infarction 68 (DAPA ACT HF-TIMI 68). https://clinicaltrials.gov/show/NCT04363697. 2020. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02093765/full (14 December 2020)

45. Packer M, Anker SD, Butler J, Filippatos GS, Ferreira JP, Pocock S, Carson PE, Anand IS, Doehner W, Haas M, Komajda M, Miller AB, Pehmon S, Teerlink JR, Brueckmann M, Jamal W, Zeller C, Schnaidt S, Zannad F. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: the EMPEROR-Reduced trial. Circulation 2020;143:326–336.

46. Savarese G, Sattrar N, Januzzi J, Verma S, Lund LH, Fitchett D, Zeller C, George JT, Brueckmann M, Ofstad AP, Inzucchi SE, Wanner C, Zinman B, Butler J. Empagliflozin is associated with a lower risk of post-acute heart failure rehospitalization and mortality. Circulation 2019;139:1458–1460.

47. Finkelstein DM, Schoenfeld DA. Combining mortality and longitudinal measures in clinical trials. Stat Med 1999;18:1341–1354.

48. Ferreira JP, Jhund PS, Duarte K, Claggett BL, Solomon SD, Pocock S, Petrie MC, Zannad F, McMurray JJ. Use of the win ratio in cardiovascular trials. JACC Heart Fail 2020;8:441–450.

49. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlino G, Waddington-Cruz M, Kristen AV, Grogan M, Witteles R, Dany T, Drachman BM, Shah S, Hanna M, Judge DP, Barsdorf AI, Huber P, Patterson TA, Riley S, Schumacher J, Stewart M, Sultan MB, Rapezzi C; ATTR-ACT Study Investigators. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007–1016.