Designing and Synthesis of Flavonoids Derivatives and Screening of their Antioxidant Activity

Sharma Mukesh1*, Ahuja Dharmendra2, Jain Anurekha2

1 Research Scholar, Faculty of Pharmaceutical Sciences Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan, India
2 Professor, Faculty of Pharmaceutical Sciences Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan, India

ABSTRACT

The flavonoids present in red wine were responsible this low cardiovascular mortality rate. Epidemiologic studies further suggest that dietary flavonoids are useful to control and protect the CHD. The flavonoids are yellow color substance (pigments) and the name given on the basis of Latin term Flavus which means yellow color. Flavonoids are derivatives of benzo-pyrene. Banzopyrone is a group of heterocyclic aromatic oxygen containing compounds. Finely powdered zinc chloride (8.25) was dissolved in glacial acetic acid (18ml) by heating on sand bath then dry resorcinol (apprx.5.5 gm) was added with continuous stirring to the mixture at 140°C. Antioxidant Screening by hydrogen peroxide scavenging assays. Hydrogen peroxide solution (40 mini moles) was prepared with standard phosphate buffer of pH 7.4. Different concentration of the compound stock solution and 4ml distilled water was added to 0.6 ml of hydrogen peroxide solution. UV absorbance was determined at the wavelength of 230 nm after 10 min with a blank solution containing phosphate buffer without H2O2. Take 4 ml different concentration of sample solution and 1ml sodium nitroprusside solution, added and incubated for 2.5 hrs at 37°C. After incubation baseline was taken with methanol and 1ml sodium nitroprusside solution as blank solution. Griess reagent and methanol was added immediately before recording of readings. The readings were recorded at 546nm wavelength. In the series of synthesized and evaluated compounds of Flavanoid electron withdrawing group at position four shows good activity. 2,3-dihydroflavan-3-ol derivatives showed lower activity than that of 3-hydroxyflavone derivatives. The 4-oxo (keto double bond at position 4 of the C ring), especially in association with the J2-J3 double bond, increases scavenger activity by delocalizing electrons, 3-hydroxy group on the C ring generates an extremely active scavenger; the combination of J2-J3 double bond, 3-hydroxy group and 4-oxo group appears to be the best combination for potent antioxidant activity.

Keywords: Flavonoids, Antioxidant activity, Hydrogen peroxide scavenging, free radicals

INTRODUCTION:

The research based on flavonoids show on the basis of the discovery of the French paradox for example the low cardiovascular mortality rate identify in Mediterranean people in association with red wine intake and a high saturated fat consumption. The flavonoids present in red wine were responsible this low cardiovascular mortality rate. Epidemiologic studies further suggest that dietary flavonoids are useful to control and protect the CHD. However, information about the mechanisms of action of flavonoids was scant till 50 yrs. ago. In year nineteen thirty three some new compound was identify and isolate from oranges, which was supposed to be a member of a new class of vitamins, and was called as vitamin P. When it became clear that this particular compound was a flavonoid known as rutin, a numbers of pharmacological screening began in an attempt to isolate the various flavonoids. Since then numerous flavonoids were isolated and studied for their method by which flavonoids show their activity and extended further to synthetic expedition. The research has shown new diversified action of flavonoids. In-vitro studies also showed that flavonoids possess antioxidant activity.

The study of flavonoid chemistry has observed, like that they are most useful natural compounds obtain from natural sources in the search of some newer compounds and show useful pharmacological properties. The flavonoids are yellow color substance (pigments) and the name given on the basis of Latin term Flavus which means yellow color. Flavonoids are derivatives of benzo-pyrene. Banzopyrone is a group of heterocyclic aromatic oxygen containing compounds. Flavonoids are chromene having basic heterocyclic ring system of benzo-4-pyranone.
Table 1: Main classes of flavonoids, their individual compounds and food sources

Group	Compound	Food sources
Flavones	Apigenin	Apple skins
	Chrysin	Berries
	Luteolin	Celery
Flavonols	Kaempferol	Broccoli
	Myricetin	Fruit peels
	Rutin	Cranberries
	Sibelin	Grapes
	Quercetin	Lettuce
		Olives
		Onions
		Parsley
Flavanones	Fisetin	Citrus fruit
	Hesperetin	Citrus peel
	Narigin	
	Narigenin	
	Taxifolin	
Flavanols	Catechin	Red wine
	Epicatechin	Tea
	Epigallocatechin galate	

Table 2: Synthetic Work Up

Hydroxyacetophenone	Aromatic aldehyde	Chalcone	Flavonol	2,3-dihydroflavan-3-ol
2-hydroxyacetophenone	Salicylaldehyde	J1	V1	R1
2-hydroxyacetophenone	4-Isopropylbenzaldehyde	J2	V2	R2
2-hydroxyacetophenone	4-Methylbenzaldehyde	J3	V3	R3
2,4-dihydroxyacetophenone	Salicylaldehyde	J4	V4	R4
2,4-dihydroxyacetophenone	4-Isopropylbenzaldehyde	J5	V5	R5
2,4-dihydroxyacetophenone	4-Methylbenzaldehyde	J6	V6	R6

EXPERIMENTAL WORK:

Flavones can be synthesized in various ways. Robinson's synthesis, Auwer's synthesis, Baker–Venkataraman synthesis etc are route for synthesis.

Scheme

O-hydroxyarylketone

In Allan-Robinson reaction is the chemical reaction of o-hydroxyaryl ketones with aromatic anhydrides to form flavones.

2, 4-dihydroxyacetophenone

Finely powdered zinc chloride (8.25) was dissolved in glacial acetic acid (18ml) by heating on sand bath then dry resorcinol (appx.5.5 gm) was added with continuous stirring to the mixture at 140°C. The solution was heated until the solution just begins boil and kept it for 20 min at 150°C temperatures. Dilute HCl was added to mixture and cooled at the temperature of 5°C then filter & washed with dil. Hydrochloric acid (1:3) and crystallized from hot water containing a little HCl.

Chalcone synthesis

Procedure:
A solution of Appx. 2.2 g. of NaOH in 196 ml. of water and 122 ml of 95% alcohol were placed into closed vessel. The mixture was placed in ice bath and stirred continuously. 0.42 moles of Hydroxy acetophenone was poured in above mixture while stirring. Subsequently 0.42 moles benzaldehyde derivative was added. The temperature of mixture was maintained between 20-30°C. Mixture was stirred(2-3 hours) till it became thick. Mixture was kept overnight in ice chest. The mixture became thick paste composed of small shot-like grains suspended in an almost colorless liquid. It was cooled in a freezing mixture, filtered and washed with water until the washings are neutral to litmus, and finally washed with 20 ml of 95% alcohol, which was previously been cooled to 0°C.

Cyclization of chalcone to flavonol

Procedure:
To a suspension of chalcone (0.01mole) in ethanol (85ml) was added 20% aqueous sodium hydroxide (10ml) with stirring, followed by careful addition of 20% hydrogen peroxide (18ml) over a period of half hr. The reaction mixture was stirred for 2-3 hrs. at 280°C and poured onto crushed ice containing 5N HCl. The precipitate was filtered, washed, dried and crystallized from chloroform: methanol [9:1].
Pharmacological Screening

Antioxidant Screening by Hydrogen peroxide scavenging assays:

Hydrogen peroxide solution (40 mini moles) was prepared with standard phosphate buffer of pH 7.4. Different concentration of the compound stock solution and 4ml distilled water was added to 0.6 ml of hydrogen peroxide solution. UV absorbance was determined at the wavelength of 230 nm after 10 min with a blank solution containing phosphate buffer without H2O2. The percentage scavenging activity at different concentrations of the different derivatives compared with the standard of vitamin C.

Nitric oxide scavenging assay

The Griess reagent was freshly prepared at the time of checking UV absorbance by following procedure.

Procedure:

Take 4 ml different concentration of sample solution and 1ml sodium nitroprusside solution, added and incubated for 2.5 hrs at 37°C. After incubation baseline was taken with methanol and 1ml sodium nitroprusside solution as blank solution. Griess reagent and methanol was added immediately before recording of readings. The readings were recorded at 546nm wavelength.1

\[
\text{% Inhibition} = \frac{\text{Blank} - \text{Test}}{\text{Blank}} \times 100
\]

Table 3: Preparation of Griess Reagent

Sr. No.	Reagent	Preparation
1.	Griess reagent	0.665ml H3PO4 + 0.25g sulfanillic acid + 0.025g α-naphthyl-ethylenediaminedihydrochloride in 25ml distilled water
2.	Sodium nitroprusside solution	0.065g in 25ml phosphate buffer (pH-7.4)
3.	Phosphate buffer (pH-7.4)	2.718g in 100ml Distilled water 0.8g NaOH in 100ml Distilled water (50 ml 0.2M KH2PO4 + 39.1 ml 0.2M NaOH)

RESULT AND DISCUSSION:

Antioxidant Screening:

Concentration	50 μg/ml	100 μg/ml	200 μg/ml
J1	40.2	60.40	75.27
J2	35.8	53.63	83.27
J3	19.41	21.53	30.00
J4	35.5	50.80	88.28
J5	30.45	40.52	84.24
J6	35.51	50.80	88.48
V1	44.23	65.75	73.43
V2	50.87	72.99	90.67
V3	48.02	70.34	89.80
V4	19.09	21.93	66.00
V5	32.90	46.15	80.70
V6	49.02	70.34	89.80
R1	27.72	32.48	68.36
R2	26.33	30.82	66.32
R3	17.52	30.47	65.12
R4	19.46	22.03	49.58
R5	21.87	26.83	72.00
R6	17.52	28.47	66.32
Ascorbic acid	49.41	61.32	79.96
Figure 1 Hydrogen Peroxide Scavenging Activity

Figure 2 % Inhibition of chalcone derivatives

Figure 3 % Inhibition of 3-hydroxy flavone derivatives

Figure 4 % Inhibition of 2,3-hydroflavan-3-ol derivative
Table 5: Nitric Oxide Scavenging Activity

compound	200ug/ml	500ug/ml	1000ug/ml
J1	79.61	92.72	95.22
J2	78.93	91.56	95.97
J3	65.96	73.08	81.01
J4	79.83	91.56	93.18
J5	77.96	89.78	92.94
J6	76.4	85.85	87.24
V1	74.79	97.71	97.42
V2	77.95	84.87	88.77
V3	77.44	87.85	89.24
V4	80.04	96.36	96.14
V5	79.67	93.12	95.02
V6	77.41	82.85	85.24
R1	71.14	87.09	95.17
R2	79.11	93.81	95.62
R3	78.48	91.08	93.57
R4	74.91	81.52	95.35
R5	71.11	74.43	76.34
R6	77.42	84.85	82.24
Ascorbic acid	74.02	79.61	99.98

CONCLUSION:
The results of antioxidant screening showed that flavone derivatives have better antioxidant activity than their corresponding Chalcones. In the series of synthesized and evaluated compounds of Flavanoid electron withdrawing group at position four shows good activity. 2,3-dihydroflavan-3-ol derivatives showed lower activity than that of 3-hydroxyflavone derivatives. The 4-oxo (keto double bond at position 4 of the C ring), especially in association with the J2-J3 double bond, increases scavenger activity by delocalizing electrons; 3-hydroxy group on the C ring generates an extremely active scavenger; the combination of J2-J3 double bond,3-hydroxy group and 4-oxo group appears to be the best combination for potent antioxidant activity.
REFERENCES:

1. Middleton EJ, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol, 1992; 43:1167–79.
2. Brash and Harve, PNAS ; 99:13969
3. Zohara Yaniv, Uriel 2002Bachrach, Handbook of Medicinal Plants, Published by Haworth Press. 2005.
4. Tony Hayek; Bianca Fuhrman et al, Reduced Progression of Atherosclerosis in Apolipoprotein-E Deficient Mice Following Consumption of Red Wine, or Its Polyphenols Quercetin or Catechin, Is Associated With Reduced Susceptibility of LDL to Oxidation and Aggregation Arteriosclerosis, Thrombosis, and Vascular Biology, 1992; 7:2744–2752.
5. Hertog M.G, Kromhout D, Aravanis C, Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med, 1995; 155:381–6.
6. http://www.drugs.com/news/finding-out-flavonoids-protect-heart-12955.html
7. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinane N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr., 2000; 130:2243–50.
8. US patent: US 6087585 Pershadsingh.
9. Houtil JR, Moroney MA, Paya M. Actions of flavonoids and coumarins on lipoygenase and cyclooxygenase. Methods Enzymol, 1994; 234:443–54.
10. Fotis T, Pepper MS, Akta E, Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res,1997; 57:2916–21.
11. Shaji K, Inhibitory Effects of Polyphenols on P-Glycoprotein-Mediated Transport, Biol. Pharm. Bull. 2006; 29(1):1-6.
12. Chen-I-Li, Synthesis and antiproliferative evaluation of amide-containing flavone and isoflavone derivatives, Bioorganic and Medicinal Chemistry, 2008; 16:7639–7645
13. Sung I Koo and Sang K. Noh, Green Tea as Inhibitor of the Intestinal Absorption of Lipids: Potential Mechanism for its Lipid-Lowering Effect. J Nutr Biochem., 2007; 18(3):179–183.
14. Osman HE, Maalej N, Shanmuganayagam D, Folts JD. Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J Nutr, (1998), 128:2307-12.
15. Gryglewski RJ, Korbút R, Robák J, Swies J. On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol.(1987), 36: 317–22.
16. Wang HK, Xia Y, Yang ZY, Natschke SL, Lee KH. Recent advances in the discovery and development of flavonoids and their analogues as antimutagens and anti-HIV agents. Adv Exp Med Biol(1998), 439: 191–225.
17. Bae EA, Han MJ, Lee M, Kim DH. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol Pharm Bull, (2000), 23:1122–4.
18. A.R.Tapas, D.M.Sakarkar and R.B. Kakade, Flavonoids as neutrauticals: Review , Tropical Journal of Pharmaceutical Research,2008; 7(3):1089-1099
19. Hegarty V. M, May HM, Khaw KT. Tea drinking and bone mineral density in older women. Am J Clin Nutr, 2000; 71:1009–7.
20. Schuier, Maximilian, Helmut Sies, Beate Illek, and Horst Buchholz, Process for preparing flavonoid derivatives, (2006), US patent: US 7009062
21. Desai, A., Waddekar Raju, Free radical scavenging activity of aqueous extract of roots of Balonchitum montatum Mull-Arg, International Journal of Green Pharmacy, 2008; 2(1):31-34.
22. Mahmood Reza Moein, Radical Scavenging and Reducing Power of Salvia miryazani Subfractions, Molecules, 2008; 13, 2804-2813
23. Alessandra Bendini, Protective effects of extra virgin olive oil phenolic compounds on oxidative stability in the presence or absence of copper ions. J. Agric. Food Chem., 2006; 54(13):4880-4887
24. Allaker Robert P., Novel anti-microbial therapies for dental plaque-related diseases, International Journal of Antimicrobial Agents, 2009; 33:8-13.
25. http://www.rxlist.com/urlpas-drug.htm
26. Diosmin - Wikipedia, the free encyclopedia.htm
27. http://www.bodybuilding.com/store/univ/iso.html
28. http://www.shopping.com/xPF-Solgar_Solgar_Rutin_500mg_50_Tablets
29. http://www.healthsuperstore.com/p-jarrow-resveratrol-synergy.htm
30. http://www.frs.org/science/frs-formula.html
31. http://en.wikipedia.org/wiki/Flavonoid
32. Ed’s Derek Barton, W.David Ollins, Comprehensive Organic Chemistry,The Synthesis and reactions of Organic Compounds, (2007), Vol A, Pergomann press, 629-690.
33. Mihokneet, N-substituted carbamoyloxy flavone, (2003), US patent 6610738
34. Ares, Use of flavone derivative for gastroprotection, (1995), US patent: US 5399584.
35. Buchholz, Process for preparing flavonoid derivatives, (2006), US patent: US 7009062
36. Barry Halliwell and John M.C. Gutteridge, Free Radicals in Biology and Medicine, 3rd edition, Oxford Science Publications.
37. Ghosh, M.N. Fundamentals of experimental Pharmacology, 2nd edition,(1971) Calcutta: Scientific book agency, 146-147.
38. Markham, K.R. Techniques of flavonoid identification, (1982), Academic press, London, 36-49.
39. Sharma Ajay, Bharadwaj Sudhir, Maan A.S., Jain Amit and Kharya M.D. Screening of antioxidants for dental plaque-related diseases, International Journal of Antimicrobial Agents, 2009; 33:8-13.
40. Willian J., Hauser J.R., Kenneth L, Herrmann T, Shadowy J, Manual of Clinical Microbiology, 5th edition, (1991), 1059.