Evaluation Metrics for Object Detection for Autonomous Systems

Apurva Badithela1,*, Tichakorn Wongpiromsarn2 and Richard M. Murray1

Abstract—This paper studies the evaluation of learning-based object detection models in conjunction with model-checking of formal specifications defined on an abstract model of an autonomous system and its environment. In particular, we define two metrics – proposition-labeled and class-labeled confusion matrices – for evaluating object detection, and we incorporate these metrics to compute the satisfaction probability of system-level safety requirements. While confusion matrices have been effective for comparative evaluation of classification and object detection models, our framework fills two key gaps. First, we relate the performance of object detection to formal requirements defined over downstream high-level planning tasks. In particular, we provide empirical results that show that the choice of a good object detection algorithm, with respect to formal requirements on the overall system, significantly depends on the downstream planning and control design. Secondly, unlike the traditional confusion matrix, our metrics account for variations in performance with respect to the distance between the ego and the object being detected. We demonstrate this framework on a car-pedestrian example by computing the satisfaction probabilities for safety requirements formalized in Linear Temporal Logic (LTL).

I. INTRODUCTION

In safety-critical autonomous systems, such as self-driving cars, verifying learning-based modules with respect to formal requirements is necessary for safe operation. This presents the two challenges: i) correctly specifying the formal requirements to be verified, and ii) verification of the component. In this paper, we evaluate learning-based object detection and classification models with respect to system-level safety requirements encoded in Linear Temporal Logic (LTL). Inspired by the use of confusion matrices in machine learning [1]–[4], we define two new evaluation metrics for object detection and classification. We provide a framework for coupling these metrics with planning and control to provide a quantitative metric of safety at the complete system-level.

In a typical autonomy software stack, the perception component is responsible for parsing sensor inputs to perform tasks such as object detection and classification, localization, and tracking, and the planning module is responsible for mission planning, behavior planning, and motion planning [5]. Further downstream in the autonomy stack, we have controllers to actuate the system to execute plans consistent with the planning module. Formal specification, synthesis, and verification of high-level plans for robotic tasks has been a successful paradigm in the last decade [6]–[10]. Some of this success can be attributed to the ease of specifying safety, progress, and fairness properties at the system-level [11]–[16]. For instance, it is feasible to formally specify “maintain safe longitudinal distance” as a safety property for a self-driving car [14], [16]. However, using the same formalism to evaluate perception can be challenging since it is difficult to formally characterize “correct” performance (relative to human-level perception) for perception tasks such as object detection and classification [17]. Consider classification of handwritten digits in the MNIST dataset [18], for which it is not possible to formally specify the pixel configuration that differentiates two digits. Likewise, it becomes impractical to express object detection and classification tasks in urban driving scenarios in temporal logic. In computer vision, object detection models are evaluated using metrics such as accuracy, precision and recall [1], [19]. Several of these metrics are derived from the confusion matrix, which is constructed from model performance on an evaluation set [1], [19]. Oftentimes, the training and evaluation of object detection models is subject to a qualitative assessment of whether it would lead to safe outcomes at the system-level. For example, researchers would expect that a model evaluated to have lower recall with respect to pedestrians would lead to better safety guarantees on the overall system. However, this was shown to not always be true — lower recall resulting better performance with respect to some system-level safety requirements came at the cost of poorer performance in other safety requirements [20].

In this work, first, we argue that the evaluation of object detection models should depend on the system-level specifications and the planner used downstream in the autonomy stack. For example, consider a cluster of pedestrians waiting at a crosswalk and an autonomous car with the requirement...
to come to a safe stop. If detecting one pedestrian vs. a group of pedestrians results in the same planning outcome (that is, the car safely stopping), then accounting for every missed pedestrian would not accurately reflect the quantitative satisfaction of the safety requirement of the car. In particular, for quantitatively characterizing overall system satisfaction of safety, the choice of metrics for evaluating object detection must depend on the downstream planning logic. Secondly, object detection performance is better for objects closer to the autonomous system. Confusion matrices, as studied in computer vision, do not account for these two cases.

Our contributions in this work are the following. First, we study if distance does indeed result in a significant difference in the confusion matrix evaluation and eventual performance of the system with respect to safety requirements. For this, we use NuScenes [21] as a dataset to evaluate object detection models and construct the corresponding confusion matrices. We propose a distance-parametrized variation of the traditional confusion matrix to account for the effect of distance on object detection performance. Second, we define a proposition-labeled confusion matrix, and empirically show that is quantitatively more accurate with respect to the planner on discrete state examples.

II. PRELIMINARIES

In this section, we give an overview of temporal logic, which is useful in specifying system-level requirements formally. We then provide a background of performance metrics used to evaluate object detection and classification models in the computer vision community. Finally, we set up a discrete-state car-pedestrian system as a running example.

A. Temporal Logic for Specifying System-level Properties

System Specification. We use the term system to refer to the autonomous agent and its environment. The agent is defined by variables V_A, and the environment is defined by variables V_E. The valuation of V_A is the set of states of the agent S_A, and the valuation of V_E is the set of states of the environment S_E. Thus, the states of the overall system is the set $S := S_A \times S_E$. Let AP be a finite set of atomic propositions over the variables V_A and V_E. An atomic proposition $a \in AP$ is a statement that can be evaluated to true or false over states in S.

We specify formal requirements on the system in LTL (see [11] for more details). An LTL formula is defined by (a) a set of atomic propositions, (b) logical operators such as: negation (\neg), conjunction (\wedge), disjunction (\vee), and implication (\rightarrow), and (c) temporal operators such as: next (\mathcal{O}), eventually (\circ), always (\mathcal{F}), and until (\mathcal{U}). The syntax of LTL is defined inductively as follows: (a) An atomic proposition p is an LTL formula, and (b) if φ and ψ are LTL formulae, then $\neg\varphi$, $\varphi \vee \psi$, $\mathcal{O}\varphi$, $\varphi \mathcal{U} \psi$ are also LTL formulæ. Further operators can be defined by a temporal or logical combination of formulæs with the aforementioned operators. For an infinite trace $\sigma = s_0s_1 \ldots$, where $s_i \in 2^{AP}$, and an LTL formula φ defined over AP, we use $\sigma \models \varphi$ to denote that σ satisfies φ. For example, the formula $\varphi = \mathcal{O}p$ represents that the atomic proposition $p \in AP$ is satisfied at every state in the trace, i.e., $\sigma \models \varphi$ if and only if $p \in s_t, \forall t$. In this work, these traces σ are executions of the system, which we model using a Markov chain.

Definition 1 (Markov Chain [11]). A discrete-time Markov chain is a tuple $M = (S, Pr, t_{init}, AP, L)$, where S is a non-empty, countable set of states, $Pr : S \times S \rightarrow [0,1]$ is the transition probability function such that for all states $s \in S$, $\Sigma_{s' \in S} Pr(s, s') = 1$, $t_{init} : S \rightarrow [0,1]$ is the initial distribution such that $\Sigma_{s \in S} t_{init}(s) = 1$, AP is a set of atomic propositions, and $L : S \rightarrow 2^{AP}$ is a labeling function. The labeling function returns the set of atomic propositions that evaluate to true at a given state. Given an LTL formula φ (defined over AP) that specifies requirements of a system modeled by the Markov Chain M, the probability that a trace of the system starting from $s_0 \in S$ will satisfy φ is denoted by $P_M(s_0) = \varphi$. The definition of this probability function is detailed in [11].

B. Performance Metrics for Object Detection

We consider object detection to include both the detection and the classification tasks. In this section, we provide background on metrics used to evaluate performance with respect to these perception tasks. Let the evaluation dataset $D = \{(f_i, b_i, d_i, x_i)\}_{i=1}^N$ consists of N objects in which each object the image frame token f_i, the bounding box coordinates specified in b_i, the distance of the object to ego d_i and the true annotation of the object x_i. When a specific object detection algorithm is evaluated on D, each object has a predicted bounding box \hat{b}_i, and predicted object class \hat{x}_i. We store these predictions in the set $E = \{(\hat{b}_i, \hat{x}_i)\}_{i=1}^N$. Now, we define the confusion matrix, a metric used to evaluate object detection models.

Definition 2 (Confusion Matrix). Let D be an evaluation set of objects along with their true and predicted labels. Let C be a set of object classes in D, and let n denote the cardinality of C. The confusion matrix corresponding to the classes C and dataset D, and predictions E is an $n \times n$ matrix $CM(C, E, D)$ with the following properties:

- $CM(C, E, D)[i, j]$ is the element in row i and column j of $CM(C, E, D)$, and represents the number of objects that are predicted to have label $c_i \in C$, but have the true label $c_j \in C$, and
- the sum of elements of the j^{th} column of $CM(C, E, D)$ is the total number of objects in D belonging to class $c_j \in C$.

Several performance metrics for object detection and classification such as true positive rate, false positive rate, precision, accuracy, and recall can be identified from the confusion matrix [1], [2], [19].

Remark 1. In this work, we use $c_e = empty$ (also abbreviated to emp in figures) as an auxiliary class label in the construction of confusion matrices. If an object has a true label c_i but is not detected by the object detection algorithm, then this gets counted in $CM(C, E, D)[i, e]$ as a false negative with respect to class c_i. If the object was not
The agent should not stop at any cell C_i, that is, $x_e \models ped$, then the car must stop at cell C_{k-1}. Otherwise, it must not stop.

labeled originally, but is detected and classified as a class c_i, then it gets counted in $CM(C,E,D)[i, n]$ as a false negative of the empty class. We expect that in a properly annotated dataset, false negatives $CM(C,E,D)[i, n]$ to be small. We ignore these extra detections in constructing the confusion matrix because by not being annotated, they are not relevant to the evaluation of object detection models.

C. Example

Consider a car-pedestrian example, modeled using discrete transition system as illustrated in Figure 2. The true state of the environment is denoted by x_e, the state of the car comprises of its position and speed (x_c, v_c). The safety requirement on the car is that it “shall stop at the crosswalk if there is a waiting pedestrian, and not come to a stop, otherwise”. The overall system specifications are formally expressed as safety specifications in equations 1-3. A more detailed description of this example can be found in [20].

(S1) If the true state of the environment does not have a pedestrian, i.e. $x_e \not\models ped$, then the car must not stop at C_{k-1}.

(S2) If $x_e = ped$, the car must stop on C_{k-1}.

(S3) The agent should not stop at any cell C_i, for all $i \in \{1, \ldots, k-2\}$.

$\varphi_1 = \Box((x_e = ped) \lor \neg(x_e = C_{k-1} \land v_c = 0))$,

(1)

$\varphi_2 = \Box(\neg(x_e = ped) \lor \neg(x_e = C_{k-1} \lor \ldots \lor x_e = C_N) \lor (x_e = C_{k-1} \land v_c = 0))$,

(2)

$\varphi_3 = \Box(\neg(\bigvee_{i=1}^{k-1} (x_e = C_i \land v_c = 0)))$.

(3)

The specifications (S1), (S2), and (S3) correspond to formulae φ_1, φ_2, and φ_3, respectively, and the specification the agent is expected to satisfy is $\varphi := \varphi_1 \land \varphi_2 \land \varphi_3$. III. METRICS FOR EVALUATING OBJECT DETECTION

In this section, we present two methods for constructing confusion matrices to evaluate object detection. The construction of the proposition-labeled and class-labeled confusion matrix is outlined in Algorithms 1 and 2, respectively. While the confusion matrix provides useful metrics for evaluating object detection models, we would like to use these metrics in evaluating the performance of the end-to-end system with respect to formal constraints in temporal logic. In [20], we provided an algorithm that did system-level analysis by accounting for classification performance using the canonical confusion matrix. In this paper, we introduce two variants of the canonical confusion matrix as candidate metrics. For each confusion matrix, we evaluate the system end-to-end using the framework introduced in [20], and compare the results.

A. Proposition-labeled Confusion Matrix

In many instances, the planner does not need to correctly detect every object for high-level decision-making. For instance, for the planner to decide to stop for a group of pedestrians 20m away, the object detection does not need to correctly detect each and every pedestrian. In terms of quantifying system-level satisfaction of safety requirements, it is sufficient for the object detection to identify that there are pedestrians 20m away, and not necessarily the precise number of pedestrians. Thus, we introduce the notion of using atomic propositions as class labels in the confusion matrix instead of the object classes themselves.

Let n be the cardinality of the set of classes C of objects of interest in the dataset D. Let p_i be the atomic proposition: “there exists an object of class $c_i \in C$”, and, let $P = \{p_1, \ldots, p_n\}$ denote the set of all atomic propositions. For some $k \in \{1, \ldots, k_{max}\}$, let $0 < x_1 < \ldots < x_k < x_{k+1} < \ldots x_{k_{max}}$ denote progressively increasing distance from the autonomous vehicle. Let $D_k \subset D$ be the subset of the dataset that includes objects that are in the distance range $d_k = (x_k, x_{k+1})$ from the autonomous system. Let E_k denote the predictions of the object detection algorithm corresponding to dataset D_k. For each parameter k, we define

![Fig. 2: Running example of a car and pedestrian. If there is a pedestrian at crosswalk cell C_k, that is, $x_e \models ped$, then the car must stop at cell C_{k-1}. Otherwise, it must not stop.](image1)

![Proposition-labeled confusion matrix parametrized by distance to ego vehicle. The classes of interest are the atomic propositions: p_{ped} = "there is an object of class ped", obs = "there is an object of class obs", and p_{emp} = "there are no objects". The term (p_{ped}, p_{obs}) denotes the conjunction of atomic propositions p_{ped} and p_{obs}.](image2)
the proposition-labeled confusion matrix $CM_{prop,k}$:

$$CM_{prop,k} := CM(2^P, E_k, D_k).$$

with the classes characterized by the set 2^P and dataset D_k. Algorithm 1 shows the construction of the proposition-labeled confusion matrix.

Algorithm 1 Proposition-labeled Confusion Matrix

1. procedure PropCM(Dataset $D = \{(f_i, b_i, d_i, x_i)\}_{i=1}^N$, Classes C
2. Define distance parameters: $0 < d_1 < \ldots < d_{k_{max}}$
3. Run object detection algorithm to get predictions E, $D_{0\ldots k_{max}} := D$ \triangleright Split dataset by distance
4. $\mathcal{E}_0, \ldots, \mathcal{E}_{k_{max}} := \mathcal{E}$ \triangleright Split predictions
5. for do $c_j \in C$
6. $P_j \leftarrow$ object is of class c_j
7. $\mathcal{P} \leftarrow \bigcup P_j$ \triangleright Set of atomic propositions
8. for do $k \in \{1, \ldots, k_{max}\}$
9. Denote $CM_{prop}(D_k, E_k, 2^P)$ as $CM_{prop,k}$
10. $CM_{prop,k} \leftarrow$ zero matrix
11. for do $f_i \in \{f_1, \ldots, f_m\}$ \triangleright Loop over images
12. Group objects in D_k with image token f_i
13. Group predictions in E_k with image token f_i
14. $P_i \leftarrow$ Predicted set of propositions
15. $P_j \leftarrow$ True set of propositions
16. $CM_{prop,k}[P_i, P_j] \leftarrow CM_{prop,k}[P_i, P_j] + 1$
17. $CM_{prop}(D, E, 2^P) := \{k : CM_{prop}(D_k, E_k, 2^P)\}$
18. return $CM_{prop}(D, E, 2^P)$

At every time step, for the distance range (x_k, x_{k+1}), the true environment is associated by a set of atomic propositions evaluating to true. Suppose, there is a pedestrian and a trash can in the distance range (x_k, x_{k+1}), then the true class of the environment in the confusion matrix corresponds to $x_e = (\text{ped}, \text{trash})$. Note that for every possible environment, there is only one corresponding class in the confusion matrix. Thus, for a given true environment, the predicted class of the environment at distance d_k could be any one of the elements in 2^P. Therefore, the outcomes of a environment at each time step are $Outc = 2^P$. The tuple $(Outc, 2^{Outc})$ forms a σ-algebra for defining a probability function over the confusion matrix. Since the set $Outc$ is countable, we can define a probability function $\mu : Outc \to [0, 1]$ such that $\sum_{e \in Outc} \mu(e) = 1$. For a confusion matrix $CM_{prop,k}$ with classes in the set $Outc$, and for every true environment class P_j, we can define the corresponding probability function $\mu_k(\cdot, P_j) : Outc \to 2^{Outc}$ as follows,

$$\forall P_i \in 2^P, \quad \mu_k(P_i, P_j) := \frac{CM_{prop,k}[P_i, P_j]}{\sum_{i=1}^{2^P} CM_{prop,k}[P_i, P_j]},$$

where $CM_{prop,k}[P_i, P_j]$ is the element of the confusion matrix corresponding to the row labeled by set of atomic propositions P_i and column labeled by set of atomic propositions labeled P_j. That is, we can define 2^{2^P} different probability functions, one for each possible true environment, for the confusion matrix $CM_{prop,k}[P_i, P_j]$. Thus, for each distance parameter k, we can define a probability function μ_k that characterizes the probability of detecting one set of propositions P_i, given that the true environment corresponds to P_j propositions. This helps us formally define the state transition probability of the overall system as following.

Definition 3 (Transition probability function for proposition-labeled confusion matrices). Let x_e be the true state of the environment corresponding to the proposition P_j, and let $s_{n,1}, s_{n,2} \in S$ be states of the car. Let $O(s_{n,1}, s_{n,2})$ denote the set of all observations of the environment that prompt the system to transition from $s_1 = (s_{n,1}, x_e)$ to $s_2 = (s_{n,2}, x_e)$. At state s_1, let k be the distance parameter of objects in the environment causing the agent to transition from state $s_{n,1}$ to state $s_{n,2}$. The corresponding confusion matrix is $CM_{prop,k}$.

Then, the transition probability from state s_1 to s_2 is defined as follows,

$$Pr(s_1, s_2) := \sum_{P_i \in O(s_1, s_2)} \mu_k(P_i, P_j).$$

Remark 2. For brevity, we choose to assume that object at a specific distance range dominate the system transition from s_1 to s_2. However, this choice depends on the agent’s planner and can be extended to the case in which objects at multiple distances are dominating influences. For that, we would consider the probability of detecting correct propositions in one distance range independent of correctly detecting propositions for a different distance range.

B. Class-labeled Confusion Matrix parametrized by distance

This performance metric builds on the class-labeled confusion matrix defined in Definition 2. As denoted previously, let $C = \{c_1, \ldots, c_n\}$ be the set of different classes of objects in dataset D. For every object in D_k, the predicted class of the object will be one of the class labels c_1, \ldots, c_n. For each distance parameter k, we define the class-labeled confusion matrix as follows:

$$CM_{class,k} := CM(C, E_k, D_k).$$

Algorithm 2 shows the construction of the class-labeled confusion matrix. Therefore, the outcomes of the object detection algorithm for any given object will be defined by the set $Outc = \{c_1, \ldots, c_n\}^m$, where m is the total number of objects in the true environment in distance d_k. The tuple $(Outc, 2^{Outc})$ forms a σ-algebra for defining a probability function over the confusion matrix $CM_{class,k}$. Similar to the definition of a probability function in the prior section, for every true environment c_j, the probability function $\mu_k(\cdot, c_j) : Outc \to [0, 1]$ can be defined as follows,

$$\mu_k(c_j, c_j) := \frac{CM_{class,k}[c_i, c_j]}{\sum_{i=1}^{n} CM_{class,k}[c_i, c_j]}.$$
objects of the same class are in region d_k). Let x_e be a tuple comprising of true labels of objects in the environment, and let $s_{a,1}, s_{a,2} \in S$ be states of the car. Let $O(s_1, s_2)$ denote the set of all observations of the environment that prompt the system to transition from $s_1 = (s_{a,1}, x_e)$ to $s_2 = (s_{a,2}, x_e)$. Likewise, let the tuple y_e represent the observations of the environment. Then, the transition probability function from state s_1 to s_2 is defined as follows,

$$Pr(s_1, s_2) := \sum_{y_e \in O(s_1, s_2)} \prod_{i=1}^{|y_e|} \mu_k(y_e(i), x_e(i)).$$

For both transition probability functions, we can check (by construction) that $\forall s_1 \in \mathcal{S}, \sum_{s_2} Pr(s_1, s_2) = 1$. In the running example, if the sidewalk were to have another pedestrian and a non-pedestrian obstacle, then the probability of detecting each object is considered independently of the others. This results in the product of probabilities $\mu_k(\cdot, x_e(\cdot))$ in equation (9).

Algorithm 2 Class-labeled Confusion Matrix

1: procedure ClassCM(Dataset $\mathcal{D} = \{(f_i, b_i, d_i, x_i)\}_{i=1}^N$, Classes \mathcal{C})
2: Run object detection algorithm to get predictions \mathcal{E}, $\mathcal{O}_0, \ldots, \mathcal{O}_{\text{max}} \leftarrow \mathcal{D}$ \Comment{Split dataset by distance}
3: $\mathcal{E}_0, \ldots, \mathcal{E}_{\text{max}} \leftarrow \mathcal{E}$ \Comment{Split predictions}
4: for $k \in \{1, \ldots, \text{max}\}$ do
5: Denote $CM_{\text{class}}(\mathcal{D}_k, \mathcal{E}_k, 2P)$ as $CM_{\text{class}, k}$
6: $CM_{\text{class}, k}(\cdot, \cdot) \leftarrow$ zero matrix
7: for $f_i \in \mathcal{O}_1, \ldots, \mathcal{O}_m$ do
8: for do object in \mathcal{D}_k
9: $c_i \leftarrow$ Predicted class label of object
10: $c_j \leftarrow$ True class label of object in \mathcal{E}_k
11: $CM_{\text{class}, k}(c_i, c_j) \leftarrow CM_{\text{class}, k}(c_i, c_j) + 1$
12: $CM_{\text{class}}(\mathcal{D}, \mathcal{E}, 2P) = \{k : CM_{\text{class}}(\mathcal{D}_k, \mathcal{E}_k, 2P)\}$
13: return $CM_{\text{class}}(\mathcal{D}, \mathcal{E}, 2P)$

C. Markov Chain Construction [20]

For each confusion matrix, we can synthesize a corresponding Markov chain of the system state evolution as per Algorithm 3. As a result of prior work shown in [20], using off-the-shelf probabilistic model checkers such as Storm [22], we can compute the probability that the trace of a system satisfies its requirement. $\mathbb{P}(s_0 \models \varphi)$, by evaluating the probability of satisfaction of the requirement φ on the Markov chain. Let $O(x_e)$ be the set of all possible predictions of true environment state x_e by the object detection model. Given a system controller $K : \mathcal{S} \times O(x_e) \rightarrow \mathcal{S}$ takes as inputs the current state of the agent and the environment, $s_0 \in S$, and environment state predictions $y_e \in O(x_e)$ passed down by the object detection model. Based on the predictions, it chooses an end state $s_f \in S$ by actuating the agent. For the car pedestrian running example, we use a correct-by-construction controller for the specifications $\{1, 2, 3\}$ corresponding to each true environment $x_e \in \{\text{ped}, \text{obs}, \text{emp}\}$. At each time step, the agent makes a new observation of the environment (y_e) and chooses an action with the controller corresponding to y_e. For the running example, the runtime for constructing the Markov chain was on the order of 0.1 seconds.

Algorithm 3 Markov Chain Construction

1: procedure Markov Chain($S, K, O(x_e), CM, x_e$)
2: $Pr(s, s') = 0, \forall s, s' \in S$
3: for $s_0 \in S$ do
4: $\iota_{\text{init}}(s_0) = 1$
5: for $y_e \in O(x_e)$ do
6: $s_f \leftarrow K(s_o, y_e)$ \Comment{Controller}
7: Identify k relevant to s_0 to s_f transition
8: $p \leftarrow CM_{k}(y_e, x_e)$ \Comment{Distance parametrized confusion matrix}
9: $Pr(s_0, s_f) \leftarrow Pr(s_0, s_f) + p$
10: return $\mathcal{M} = (S, Pr, \iota_{\text{init}}, AP, L)$

Proposition 1. Suppose we are given: i) φ as a temporal logic formula over system states S, ii) true state of the environment x_e, iii) agent initial state $s_{a,0}$, and iv) a Markov chain \mathcal{M} constructed via Algorithm 3 for the distance parameterized confusion matrices constructed from Algorithm 2 then $\mathbb{P}(s_0 \models \varphi)$ is equivalent to computing $\mathbb{P}_{\mathcal{M}}(s_0 \models \varphi)$, where $s_0 = (s_{a,0}, x_e)$.

IV. SIMULATION RESULTS

We present the distance-parametrized proposition-labeled and class-labeled confusion matrices for a pre-trained YoLo-v3 model [23] evaluated on a portion of the NuScenes dataset [21]. Furthermore, we compute the probability of satisfaction that the car will meet its safety requirements in the car-pedestrian example. The pre-trained YoLo-v3 [23] model was trained on the MS COCO dataset [24]. Note that we chose to evaluate a model on an evaluation set different from the source of the training set. We used the first 85 scenes of the Full NuScenes v1.0 dataset. Each scene is 20 seconds long, with 3D object annotations made at 2 Hz for 23 different classes. All objects with NuScenes annotation “human” are clustered under the class ped, and all objects annotated as “vehicle”, “static obstacle”, and moving

![Fig. 4: YoLo-v3 detecting the car and truck as objects of class obs, but not detecting the pedestrians. The red boxes denote the YoLo predictions and the light blue boxes denote the corresponding ground truth annotations for correctly detected objects.](image-url)
Fig. 5: Ground truth annotations of a NuScenes frame with 3D annotation boxes projected to 2D.

Pred	True	ped	obs	emp
ped	31	0	0	
obs	0	191	0	
emp	127	734	3227	

Fig. 6: Class-labeled Confusion matrix for distance \(d \leq 10.0\).

obstacle are annotated as “obs”. We use all 40 frames from each scene in our dataset \(D\). We also project the 3D bounding boxes to 2D to match the predicted object detections from the YoLov3 model.

The class-labeled confusion matrix for objects less than 10 m from the autonomous vehicle is given in Figure 6 and the proposition-labeled confusion matrix for objects less than 10 m from the autonomous vehicle is given in Figure 7. Due to space restrictions, we have the rest of the distance parametrized confusion matrices on this GitHub repository.

The satisfaction probabilities of safety requirements are relatively low at around 20\%. This is for several reasons. First, we evaluated a model trained with one modality (2D object detection with vision); typically the best models are multi-modal and use data from several different sensors to make predictions. Secondly, we used a pre-trained model that was not trained on the NuScenes dataset. Finally, we do not consider tracking in our evaluation. However, since training object detection models is not the central focus of this work, we chose to evaluate a pre-trained model trained on a different dataset. Yet, we still see insightful differences in the temporal logic analysis of evaluating probability of satisfaction resulting from the choice of confusion matrix. Between

https://github.com/abadithela/Dist-ConfusionMtrx

Fig. 7: Proposition-labeled Confusion matrix for distance \(d \leq 10.0\).

As expected, the sum total of samples for each label are no larger than for the corresponding label in the class-based confusion matrix.

canonical class based confusion matrix and its distance parametrized counterpart (see Figures 8a and 8b), we see a two-fold increase in satisfaction probability \(\mathbb{P}_{M}(s_0 = \phi)\) for low speeds. Similar trends hold for for proposition-based confusion matrix and its distance parameterized variants as seen in Figures 8c and 8d. Across all confusion matrices, satisfaction probability decreases with speed, corresponding to not being able to recover from misdetections at higher speed, which is due to our choice of controller. Lastly, the proposition-labeled confusion matrix results in higher satisfaction probabilities than its class-based counterpart.

V. CONCLUSION

We introduced two evaluation metrics, a proposition-labeled confusion matrix and a class-labeled distance parameterized confusion matrix, for object detection tasks. Parameterizing the confusion matrix with distance accounts for differences in detection performance in the temporal logic analysis with the planning module. We empirically observed that the proposition-based confusion matrix resulted in higher satisfaction probability. Additionally, the distance-based metrics give a more optimistic probability of satisfaction. As a next step, we would like to conduct this analysis on richer object detection models trained using LIDAR and RADAR modalities in addition to vision, and also incorporate richer planners designed for lower levels of abstraction of the system. Future work also includes i) studying other perception tasks such as localization and tracking in the context of system-level analysis with respect to formal requirements, ii) extending the analysis in this framework to account for reactive environments, and iii) validating the temporal logic analysis presented in the paper with experiments on hardware.
