INTRODUCTION

The information about antioxidant properties is needed to evaluate the potential activity of the drug candidate as anti-cancer. The antioxidant possesses the ability to protect the cell from the damage caused by free radical because it donates one or more electrons to the free radical. Free radicals are the reactive species that have one or more unpaired electron and attempt to get an electron from another molecule or it can release the unpaired electron [1]. In general, the antioxidants are compounds that could inhibit and delay the oxidation process. Most of the plants’ compounds that have secondary metabolites including alkaloids, phenolics, and terpenoids represent extremely rich biogenic resources for the novel drug discovery. The recent study found that natural products and their derivatives represent more than 50% of all the drugs in clinical use in the world [2].

Zanthoxylum acanthopodium DC. has been used as aromatic substances, tonicum, and treat dysentery. Indian people have used andaliman to treat paralyzed and skin disease such as abscess and leprosy. Andaliman has been used as spices at North Sumatera, especially at North Tapanuli [3-5]. The plants from Zanthoxylum genus contain many compounds such as phenol hydroquinones, flavonoids, steroids/triterpenoids, tannins, glycosides, volatile oils, alkaloids, coumarins, lignans, amides, and terpenes. Ethyl acetate extract of andaliman fruits (EAF) was showed to have cytotoxicity effect against MCF-7 and T47D cell lines. EAF was found to have a synergistic effect when combined with doxorubicin. EAF was showed to have anticancer activity toward mice induced with benzo(a)pyrene, having cardio protective effect and active on T47D resistance cells [6-14]. The aim of this study was to determine antioxidant activity alkaloid fractions of Z. acanthopodium DC. fruits using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay.

METHODS

Plant and chemicals material

Fresh fruits of Z. acanthopodium DC. were collected from Onan Rungu village, Samosir Regency, Sumatera Utara Province, Indonesia. Chemicals used were distilled water and DPPH (Sigma).

Preparation of extract and fractionation

The air-dried and powdered fruits of Z. acanthopodium DC. (1 kg) were repeatedly extracted by cold maceration with ethanol 96% (3 × 3 days, 7.5 L) at room temperature with occasional stirring. The filtrate was collected and then evaporated with rotary evaporator (Stuart, Stone, UK) under reduced pressure to give a viscous extract and then freeze-dried to dry [15]. Viscous extract was fractionated with n-hexane and chloroform at pH 3, 7, 9, and 11 to obtained alkaloid fractions. Antioxidant activity for extract and fractions was determined with 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay.

RESULTS AND DISCUSSION

Antiradical activity

Antiradical power of the plant samples was measured in terms of hydrogen-donating ability using DPPH which is a stable, nitrogen-centered free radical and produces deep purple color in methanol solution [19]. DPPH test, which is based on the ability of DPPH, a stable free radical, to decolorize in the presence of antioxidants, is a direct and reliable method for determining radical scavenging action [20] and has been largely used as a quick, reliable, and reproducible method for the novel drug discovery. The reducing capacity of compounds could serve as an indicator of potential antioxidant property [17,18,22,23]. IC50 for extract and fractions in DPPH assay is shown in Table 1.
As seen on Table 1, it seems that alkaloid compounds containing in the fractions are capable of scavenging the free radical DPPH. The pH 7 chloroform fraction showed strong antioxidant and the pH 9 showed the strongest antioxidant. A compound has antioxidant properties if the IC₅₀ value is <200 ppm [24]. The percentage inhibition of free radical DPPH by Z. acanthopodium DC. fruit extract and fractions may be due to the structure and high percentage of alkaloids containing in this fruits. It probably that the alkaloids of Z. acanthopodium DC. fruits act as lipid-soluble antioxidant which protects the fatty membrane cellular of the cell from free radicals striking [25]. Lipid-soluble antioxidant such as vitamin E acts as neutralizing antioxidant that plays the role in inhibiting lipid peroxidase (ROO·) [26]. The antioxidant activity of some plants has some mechanisms such as (1) prevention of chain initiation, (2) binding of transition metal ion catalyst, (3) decomposition of peroxides, (4) prevention of hydrogen abstraction, and (5) radical scavenging [1]. According to the results obtained, the chloroform fraction of pH 7 and 9 is potential as antioxidant.

CONCLUSION

The results reveal that Z. acanthopodium DC. fruits alkaloid fractions provide effective as an antioxidant.

ACKNOWLEDGMENTS

We gratefully thank to DP2M DIKTI (Directorate of Higher Education) Ministry of Research Technology and High Education, Indonesia, through “Hibah Penelitian Unggulan Perguruan Tinggi” Research Grant 2017 for financial support in the study with contract “No: 003/SPZ/ LT/DRPM/IV/2017. date 20 April 2017.”

REFERENCES

1. Hasibuan PA, Ilyas SR, Nasution MP. Antioxidant and cytotoxic activities of Pelicularia ambiochina (Lour.) spreng. extracts. Int J Pharm Teach Pract 2013;4:755-8.
2. Othman SN, Sarker SD, Nahar L, Basar N. The ethnomedicinal phytochemical and pharmacological properties of Phaleria macrocarpa (scheff.) boerl. Tang Hum Med 2014;4:1-12.
3. Yang YC, Lu FH, Wu JS, Wu CH, Chang CJ. The protective effect of habitual tea consumption on hypertension. Arch Intern Med 2004;164:1534-40.
4. Angraeni R, Hadisahputra S, Silalahi J, Satria D. Combinational effects of ethylactate extract of Zanthoxylum acanthopodium DC. With doxorubicin on T47D breast cancer cells. Int J PharmTech Res 2014;6:2032-5.
5. Barnett GC, Shah M, Redman K, Easton DF, Ponder BA, Pharoah PD, et al. Risk factors for the incidence of breast cancer: Do they affect survival from the disease? J Clin Oncol 2008;26:3310-6.
6. Suryanto E, Sastrohanadijojo H, Raharjo S, Tranggongo. Antiradical activity of ananthal (Zanthoxylum acanthopodium DC.) fruit extract. Ind Food Nutr Prog 2004;11:15-9.
7. Hynniewta SR, Kumar Y. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. Indian J Trad Knowl 2008;7:581-6.
8. Fernandez CC, Vieira PC, da Silva VC, Dall’Oglio EL, da Silva LE, de Sousa PT. 6-acetonyl-N-methyl-dihydrodorecanine, a new alkaloid from Zanthoxylum nitidum. J Nat Prod 2004;67:379-82.