A&A 477, L13–L16 (2008)
DOI: 10.1051/0004-6361:20078797
c⃝ESO 2007
Astronomy & Astrophysics
Letter to ... observational constraints are needed to prove or
disprove synchronised rotation in hot subdwarf stars. Ellipsoidal

Article published by
EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20078797

Tidal synchronisation of the subdwarf B binary PG 0101+039*,**

S. Geier1, S. Nesslinger1, U. Heber1, S. K. Randall2, H. Edelmann3, and E. M. Green4

1. Introduction

The masses of compact objects like white dwarfs, neutron stars
and black holes are fundamental to astrophysics, but very dif-
ficult to measure. Close binary systems consisting of a visible
primary and an invisible compact object are very useful to this
end, as the companion mass can be constrained from the radial
velocity and the light curve of the primary if the primary mass
and the orbital inclination are known. The latter can be measured
in systems that are eclipsing or show tidally locked rotation. If
the mass of the primary can be estimated, the companion mass
then can be derived. The assumption of tidally locked rotation
has often been used to determine the masses of neutron stars and
black holes in known X-ray binaries (see Charles & Coe 2003
for a review). The same technique has recently been applied to
KPD 1930+2752, a short period binary consisting of a sublumi-
nous B star and a white dwarf (Geier et al. 2007)1.

Subuminous B stars (sdBs) are core helium burning stars
with very thin hydrogen envelopes and masses around 0.5 M⊙
(Heber et al. 1986). A large proportion of the sdB stars are mem-
bers of short period binaries (Maxted et. al 2001; Napiwotzki
et al. 2004). For these systems, common envelope ejection is the
most probable formation channel (Han et al. 2002). The compan-
ions of sdBs in these systems are predominantly white dwarfs,
implying that the system has undergone two phases of common
envelope ejection.

To establish bound rotation for an sdB star the synchroni-
sation time scale has to be smaller than its evolutionary life
time (t_EHB ≈ 108 yr). Two theoretical concepts for comput-
ing synchronisation times have been developed by Zahn (1977)
and Tassoul & Tassoul (1992). While the mechanism proposed
by Zahn is not efficient enough to fully fit the observed levels
of synchronisation, the more efficient mechanism of Tassoul &
Tassoul is matter of a controversy, given its free parameter de-
pendence (see Claret et al. 1995, 1997, and references therein).
The predictions of the two models at hand can differ by orders of
magnitude, especially in the case of hot stars with radiative
envelopes, where tidal forces are less effective in synchronising
the stars. All prior studies were undertaken to match observations
of hot main sequence stars. Hot subdwarf stars have similar tem-
peratures to B-type main sequence stars, but are much smaller
and the internal structure of these helium core burning objects is
different. In addition, the fraction of sdBs residing in close bi-
nary systems is among the highest known of all types of stars.
Observations of hot subdwarfs could provide a new benchmark
to study the yet unresolved problem of tidal dissipation in radia-
tive stellar envelopes.

Independent observational constraints are needed to prove or
disprove synchronised rotation in hot subdwarf stars. Ellipsoidal

References

1 The companion is so massive that the system mass may exceed the
Chandrasekhar mass, making the system a viable Supernova la progen-
itor candidate in the double degenerate scenario.
variations can be used to verify synchronisation of the stellar surface because the light variations would then have to occur at exactly half the orbital period. Two sdB + white dwarf binaries are known to show ellipsoidal variations at half of the orbital period (KPD 0422+5421, Oroz & Wade 1999; KPD 1930+2752, Geier et al. 2007). However, both systems have short orbital periods of about 0.1 d and theory predicts synchronisation times much smaller than the evolutionary time scale. As the synchronisation time strongly increases with increasing period, we expect an upper limit to the period to exist, at which the assumption of tidally locked rotation breaks down. To this end, it would be of utmost importance to find ellipsoidal variations in an sdB binary of longer period and to provide a stringent test for the theory of synchronisation.

Recently a suitable object has been found. PG 0101+039, an sdB+WD binary \((P = 0.567 \, \text{d}, \text{Maxted et al. 2001}) \) was discovered to show very weak luminosity variation at half the orbital period in a 16.9 day long, almost uninterrupted light curve obtained with the MOST satellite (Randall et al. 2005).

In order to verify that we indeed see ellipsoidal variations, we have to show that the observed light curve can be consistently modelled. Beforehand, we have to derive the complete set of system parameters. As the spectrum is single lined, the analysis of the radial velocity curve yields the mass function only. Complementing it with an estimate of the sdB mass and with measurements of the sdB’s projected rotational velocity, as well as its gravity, allows one to solve for all binary parameters and compute the light curve.

2. Binary parameters

2.1. Radial velocity curve

Based on spectra obtained in 1998, Moran et al. (1999) determined the period \(P = 0.569908 \pm 0.000007 \, \text{d} \). However, these ephemerides are not accurate enough to phase the MOST photometry, because the time span of six years between spectroscopic and photometric observations is too long. Therefore we combined the velocities of Moran (1999) with those from eight MMT-spectra taken in 1996, 1997 and 2002 (Randall et al. 2005) and five spectra obtained with the Steward 2.3 m Bok telescope from 2000. The latter were determined using the double-precision version of the IRAF fxcor package, against the combined template for the star. In addition we obtained three high precision version of the IRAF fxcor package, against the companion from 2000. The latter were determined using the double- and five spectra obtained with the Steward 2.3 m Bok telescope.

We computed the light curve.

If the companion is synchronised the rotational velocity \(\nu_{\text{rot}} \) and gravity, allows one to solve for all binary parameters and compute the light curve.

2.2. Gravity and projected rotational velocity

Low resolution spectra obtained by Randall et al. (2005) and Maxted et al. (2001) were used to derive the atmospheric parameters. Particular attention should be paid to the gravity determination as it provides a mass-radius relation, and its error propagates into the mass determination (see Sect. 4).

Synthetic line profiles calculated from metal line-blanketed LTE model atmospheres with solar metal content (Heber et al. 2000) were matched to the observed Balmer and helium line profiles using a \(\chi^2 \) fit procedure described by Napiwotzki et al. (1999). The resulting parameters are \(T_{\text{eff}} = 27.700 \, \text{K}, \log g = 5.55, \log N(\text{He})/N(\text{H}) = -2.62 \) from the spectra of Randall et al. (2005) and \(T_{\text{eff}} = 27.300 \, \text{K}, \log g = 5.50, \log N(\text{He})/N(\text{H}) = -2.71 \) from the spectra of Maxted et al. (2001) with formal statistical fitting errors of less than 100 K, 0.02 dex and 0.02 dex, respectively, which are unrealistically low. The true uncertainties are dominated by systematic inaccuracies in both the observations and model atmospheres, and can be estimated from repeated observations and the use of different model grids. Taking into account the discussion of typical systematic errors obtained when applying this method in Geier et al. (2007), we adopt \(T_{\text{eff}} = 27.500 \pm 500 \, \text{K}, \log g = 5.53 \pm 0.07, \log N(\text{He})/N(\text{H}) = -2.66 \pm 0.1 \).

In order to derive \(\nu_{\text{rot}} \sin i \) and the elemental abundances, we compared the observed high resolution spectra with rotationally broadened, synthetic line profiles. The projected rotational velocity was measured simultaneously with the elemental abundances to \(\nu_{\text{rot}} \sin i = 10.9 \pm 1.1 \, \text{km s}^{-1} \) using 17 suitable metal lines.

2.3. Analysis

The analysis strategy is the same as for KPD 1930+2752 and therefore is described here only briefly. For details we refer the reader to Geier et al. (2007).

Since the spectrum of PG 0101+039 is single-lined, it contains no information about the orbital motion of the companion, and thus only the mass function \(f_m = M_\text{comp} \sin^3 i = \frac{M_\text{comp} \sin^3 i}{2M_\text{sdB}} \) can be calculated. Although the RV semi-amplitude \(K \) and the period \(P \) are determined by the RV curve, \(M_\text{sdB}, M_\text{comp} \) and \(\sin^3 i \) remain free parameters.

Nevertheless, the masses can be constrained by assuming tidal synchronisation. Combining the orbital parameters with an estimate of the sdB mass, and with the measurements of its \(\nu_{\text{rot}} \sin i \) and gravity, allows the mass of the invisible companion to be constrained tightly. The mass of the sdB primary is constrained from the population synthesis models (Han et al. 2002) that predict a mass range of \(M_{\text{sdB}} = 0.30-0.48 \, M_\odot \) for sdBs in binaries, which experienced a common envelope ejection. The mass distribution shows a sharp peak at a mass of about 0.47 \(M_\odot \).

If the companion is synchronised the rotational velocity \(\nu_{\text{rot}} \) can be calculated. The radius of the primary is given by the mass radius relation \(R = \sqrt{\frac{M_\odot G}{\nu_{\text{rot}}^2}} \). The measurement of the projected rotational velocity \(\nu_{\text{rot}} \sin i \) therefore allows us to constrain the inclination angle \(i \). With \(M_{\text{sdB}} \) as a free parameter the mass function can be solved, and both the inclination angle and the companion mass can be derived. Because of \(\sin i \leq 1 \) a
lower limit for the sdB mass is given by $M_{\text{sdB}} \geq \frac{g_{\text{orb}} \sin i^2 R^4}{4\pi^2 G}$. There are no visible spectral signatures of the companion. A main sequence companion with a mass higher than $0.45 M_\odot$ can therefore be excluded because its luminosity would be sufficiently high to be detectable in the spectra.

The relationship between the primary and the secondary mass is shown in Fig. 1. The allowed mass range for the companion is consistent with that of a white dwarf and therefore consistent with the common envelope ejection scenario. For the most likely sdB mass of 0.47 M_\odot the binary parameters are: $R_{\text{sdB}} = 0.19 \pm 0.02 R_\odot$, $M_{\text{WD}} = 0.72 \pm 0.10 M_\odot$, inclination $i = 40 \pm 6^\circ$ and separation $a = 3.1 \pm 0.4 R_\odot$.

3. Light curve and ellipsoidal variations

The MOST photometric data were folded on the orbital period and re-binned to get a better signal to noise ratio (see Fig. 2). As PG 0101+039 is a pulsating sdB star of V1093 Her type, the light curve had to be pre-whitened for the pulsational frequencies beforehand.

Each bin contains more than 400 original measurements. Light curve variations at half the orbital period with a semi-amplitude of 0.025% were detected. Therefore PG 0101+039 shows the smallest ellipsoidal variation ever measured. In order to compare with synthetic light curves, we had to phase the photometry properly, taking the zero point from the orbital solution. Because the amplitude of the variation is very low, Doppler boosting arising from the orbital motion affects the lightcurve significantly. A resulting factor of $(1 - v(t)/c)$ was applied to the total flux to correct for this effect.

The light curve was modelled with the light curve synthesis and solution code MORO, based on the model by Wilson & Devinney (1971). The details of the Bamberg implementation are given by Drechsel et al. (1995). The software uses a modified Roche model for light curve synthesis. It is capable of simulating the distortions of the stars induced by a companion. Light curves for different component masses and orbital inclinations were synthesised. For typical values of M_{sdB} appropriate ranges of i and R_{sdB} values were computed as described in Sect. 2, covering the full parameter space (including error limits) allowed by the spectroscopic analysis.

We used sdB masses from 0.3–0.7 M_\odot to calculate the model light curves and compared the models to the observations in Fig. 2. The synthetic light curve matches the semi-amplitude of the observed light curve quite well. Taking into account the extremely low amplitude of the variation, the consistency with the model is remarkable. However, there is a significant phase shift between the observed and the predicted light curve. The best fit to the data is phase shifted by -0.1 with respect to the model calculated with proper orbital phase (see Fig. 2). Despite our efforts to derive a high precision orbital period, we can not rule out completely the possibility that this shift is caused by systematic effects when RV measurements from different instruments are combined. To match the observed light curve would require the period to differ by 0.00008 d from our results. Given the overall consistency of our orbital parameter determination, such a large deviation ($80\times$ period error) seems to be rather unlikely.

4. Discussion

Tidally locked rotation in close binary systems has been assumed to measure masses of invisible compact companions, in particular in X-ray binaries. The synchronisation time is very difficult to calculate for stars with radiative envelopes, and is plagued with large uncertainties. Therefore, observational constraints are of utmost importance. Ellipsoidal variations can be used to verify the assumption, at least for the surface layers. We applied this technique to the sdB/WD binary PG 0101+039, for which...
a very weak luminosity variation at half the orbital period has been discovered in a 16.9 day long, almost uninterrupted light curve obtained with the MOST satellite.

From spectroscopy we measured the mass function, apparent rotation and surface gravity of PG 0101+039. Stellar evolution models suggest that the sdB mass is close to $0.47 M_\odot$. Assuming tidally locked rotation, this information is sufficient to solve for all parameters of the binary system. The companion mass is found to be $M_{WD} = 0.72 \pm 0.10 M_\odot$, typical for a white dwarf. The light curve was then synthesised and was found to match the observed amplitude well. However, a problem with the phasing of the light curve to the radial velocity curve became apparent. Due to a six-year difference between the MOST photometry and published radial velocities, the phase errors were far too large for any conclusion to be drawn. Therefore we added 16 radial velocities from three observatories. The statistical error of the period decreased sufficiently to enable proper phasing of the photometry. The synthesised light curve was found to be offset by 0.1 cycles from the observed one, indicating that our systematic error estimate may be overly optimistic. Alternative explanations, like supersynchronous rotation of the sdB that may cause the observed phase shift, seem to be unlikely because a deviation of 10% from equilibrium would require fast rotation of the sdB. In this case the inclination would be very low and the companion mass would rise dramatically.

A simultaneous measurement of the radial velocity curve and a high precision light curve would be necessary to solve this problem since the theoretical understanding of angular momentum transfer in hot stars with radiative envelopes is still very limited. In conclusion, we found a strong indication that the surface rotation of the sdB star PG 0101+039 is tidally locked to its orbit.

The synchronisation times for any given type of primary depend strongly on the orbital period (Zahn 1977; Tassoul & Tassoul 1992). Hence, other sdB stars in close binaries should also be synchronised if their orbital period is less than that of PG 0101+039 ($P = 0.567$ d). We conclude that tidally locked surface rotation is established in sdB binaries with orbital periods of less than half a day. The assumption of tidally locked rotation can be safely applied to such systems, even if they are too faint to measure such extremely small light variations as observed here.

Acknowledgements. S.G. is supported by the Deutsche Forschungsgemeinschaft under grant He1354/40-3. We would like to thank P. F. L. Maxted and T. Marsh for providing us with the radial velocity measurements of C. Moran. Furthermore we thank H. Drechsel for his kind advice.

References
Charles, P. A., Coe, M. J. 2006, in Compact Stellar X-ray Sources, ed. W. H. G. Lewin, & M. van der Klis, Cambridge Astrophysics Series, 39, 215
Claret, A., & Cunha, N. C. S. 1997, A&A, 318, 187
Claret, A., Giménez, & Cunha, N. C. S. 1995, A&A, 299, 724
Drechsel, H., Haas, S., Lorenz, R., & Gayler, S. 1995, A&A, 294, 723
Geier, S., Nesslinger, S., Heber, U., et al. 2007, A&A, 464, 299
Han, Z., Podsadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 449
Heber, U. 1986, A&A, 155, 33
Heber, U., Reid, I. N., & Werner, K. 2000, A&A, 363, 198
Maxted, P. F. L., Heber, U., Marsh, T. R., & North, R. C. 2001, MNRAS, 326, 139
Moran, C. 1999, Ph.D. Thesis, Univ. Southampton
Moran, C., Maxted, P. F. L., Marsh, T. R., Saffer, R. A., & Livio, M. 1999, MNRAS, 304, 535
Napiwotzki, R. 1999, A&A, 350, 101
Napiwotzki, R., Edelmann H., Heber U., et al. 2001, A&A 378, L17
Napiwotzki, R., Yusof, L., Nelemans, G. et al. 2004, in Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, Proc. of the Workshop held 20–24 October 2003 in Dubrovnik, Croatia, ed. R. W. Hilditch, H. Hensberge, & K. Pavlovski, ASP Conf. Ser., 318, 402
Orosz, J. A., & Wade, R. A. 1999, MNRAS, 310, 773
Randall, S. K., Matthews, J. M., Fontaine, G., et al. 2005, ApJ, 633, 460
Tassoul, J.-L., & Tassoul, M. 1992, ApJ, 395, 259
Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
Zahn, J.-P. 1977, A&A, 57, 383