The difference and ratio of the fractional matching number and the matching number of graphs

Ilkyoo Choi∗ Jaehoon Kim† Suil O‡

December 24, 2015

Abstract

Given a graph G, the matching number of G, written $\alpha'(G)$, is the maximum size of a matching in G, and the fractional matching number of G, written $\alpha'_f(G)$, is the maximum size of a fractional matching of G. In this paper, we prove that if G is an n-vertex connected graph that is neither K_1 nor K_3, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$ and $\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{3n}{2n+2}$. Both inequalities are sharp, and we characterize the infinite family of graphs where equalities hold.

1 Introduction

For undefined terms, see [5]. Throughout this paper, n will always denote the number of vertices of a given graph. A matching in a graph is a set of pairwise disjoint edges. A perfect matching in a graph G is a matching in which each vertex has an incident edge in the matching; its size must be $n/2$, where $n = |V(G)|$. A fractional matching of G is a function $\phi : E(G) \to [0, 1]$ such that for each vertex v, $\sum_{e \in \Gamma(v)} \phi(e) \leq 1$, where $\Gamma(v)$ is the set of edges incident to v, and the size of a fractional matching ϕ is $\sum_{e \in E(G)} \phi(e)$. Given a graph G, the matching number of G, written $\alpha'(G)$, is the maximum size of a matching in G, and

∗Department of Mathematical Sciences, KAIST, Daejeon, South Korea, ilkyoo@kaist.ac.kr research partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1C1A1A02036398)
†School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom, kimJS@bham.ac.uk research partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreements no. 306349 (J. Kim)
‡Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, osuilo@sfu.ca. research partially supported by an NSERC Grant of Bojan Mohar
the fractional matching number of G, written $\alpha_f'(G)$, is the maximum size of a fractional matching of G.

Given a fractional matching ϕ, since $\sum_{e \in \Gamma(v)} \phi(e) \leq 1$ for each vertex v, we have that $2 \sum_{e \in E(G)} \phi(e) \leq n$, which implies $\alpha_f'(G) \leq n/2$. By viewing every matching as a fractional matching it follows that $\alpha_f'(G) \geq \alpha'(G)$ for every graph G, but equality need not hold. For example, the fractional matching number of a k-regular graph equals $n/2$ by setting weight $1/k$ on each edge, but the matching number of a k-regular graph can be much smaller than $n/2$. Thus it is a natural question to find the largest difference between $\alpha_f'(G)$ and $\alpha'(G)$ in a (connected) graph.

In Section 3 and Section 4, we prove tight upper bounds on $\alpha_f'(G) - \alpha'(G)$ and $\alpha_f'(G)/\alpha'(G)$, respectively, for an n-vertex connected graph G, and we characterize the infinite family of graphs achieving equality for both results. As corollaries of both results, we have upper bounds on both $\alpha_f'(G) - \alpha'(G)$ and $\alpha_f'(G)/\alpha'(G)$ for an n-vertex graph G, and we characterize the graphs achieving equality for both bounds.

Our proofs use the famous Berge–Tutte Formula [1] for the matching number as well as its fractional analogue. We also use the fact that there is a fractional matching ϕ for which $\sum_{e \in E(G)} \phi(e) = \alpha_f'(G)$ such that $f(e) \in \{0, 1/2, 1\}$ for every edge e, and some refinements of the fact. We can prove both Theorem 6 and Theorem 8 with two different techniques, and for the sake of the readers we demonstrate each method in the proofs of Theorem 6 and Theorem 8.

2 Tools

In this section, we introduce the tools we used to prove the main results. To prove Theorem 6, we use Theorem 1 and Theorem 2. For a graph H, let $o(H)$ denote the number of components of H with an odd number of vertices. Given a graph G and $S \subseteq V(G)$, define the deficiency $\text{def}(S)$ by $\text{def}(S) = o(G - S) - |S|$, and let $\text{def}(G) = \max_{S \subseteq V(G)} \text{def}(S)$. Theorem 1 is the famous Berge–Tutte formula, which is a general version of Tutte’s 1-factor Theorem [4].

Theorem 1 ([1]). For any n-vertex graph G, $\alpha'(G) = \frac{1}{2} (n - \text{def}(G))$.

For the fractional analogue of the Berge–Tutte formula, let $i(H)$ denote the number of isolated vertices in H. Given a graph G and $S \subseteq V(G)$, let $\text{def}_f(S) = i(G - S) - |S|$ and $\text{def}_f(G) = \max_{S \subseteq V(G)} \text{def}_f(S)$. Theorem 2 is the fractional version of the Berge–Tutte Formula. This is also the fractional analogue of Tutte’s 1-Factor Theorem saying that G has a fractional perfect matching if and only if $i(G - S) \leq |S|$ for all $S \subseteq V(G)$ (implicit in Pulleyblank [2]), where a fractional perfect matching is a fractional matching f such that $2 \sum_{e \in E(G)} f(e) = n$.

2
Theorem 2 ([3] See Theorem 2.2.6). For any \(n \)-vertex graph \(G \), \(\alpha'_f(G) = \frac{1}{2}(n - \text{def}_f(G)) \).

When we characterize the equalities in the bounds of Theorem 6 and Theorem 8, we need the following proposition. Recall that \(G[S] \) is the graph induced by a subset of the vertex set \(S \).

Proposition 3 ([3] See Proposition 2.2.2). The following are equivalent for a graph \(G \).
(a) \(G \) has a fractional perfect matching.
(b) There is a partition \(\{ V_1, \ldots, V_n \} \) of the vertex set \(V(G) \) such that, for each \(i \), the graph \(G[V_i] \) is either \(K_2 \) or Hamiltonian.
(c) There is a partition \(\{ V_1, \ldots, V_n \} \) of the vertex set \(V(G) \) such that, for each \(i \), the graph \(G[V_i] \) is either \(K_2 \) or Hamiltonian graph on an odd number of vertices.

Theorem 4 and Observation 5 are used to prove Theorem 8.

Theorem 4 ([3] See Theorem 2.1.5). For any graph \(G \), there is a fractional matching \(f \) for which
\[
\sum_{e \in E(G)} f(e) = \alpha'_f(G)
\]
such that \(f(e) \in \{0, 1/2, 1\} \) for every edge \(e \).

Given a fractional matching \(f \), an unweighted vertex \(v \) is a vertex with \(\sum_{e \in \Gamma(v)} f(e) = 0 \), and a full vertex \(v \) is a vertex with \(f(vw) = 1 \) for some vertex \(w \). Note that \(w \) is also a full vertex. An \(i \)-edge \(e \) is an edge with \(f(e) = i \). Note that the existence of an 1-edge guarantees the existence of two full vertices. A vertex subset \(S \) of a graph \(G \) is independent if \(E(G[S]) = \emptyset \), where \(G[S] \) is the graph induced by \(S \).

Observation 5. Among all the fractional matchings of an \(n \)-vertex graph \(G \) satisfying the conditions of Theorem 4, let \(f \) be a fractional matching with the greatest number of edges \(e \) with \(f(e) = 1 \). Then we have the following:
(a) The graph induced by the \(\frac{1}{2} \)-edges is the union of odd cycles. Furthermore, if \(C \) and \(C' \) are two disjoint cycles in the graph induced by \(\frac{1}{2} \)-edges, then there is no edge \(uu' \) such that \(u \in V(C) \) and \(u' \in V(C') \).
(b) The set \(S \) of the unweighted vertices is independent. Furthermore, every unweighted vertex is adjacent only to a full vertex.
(c) \(\alpha'(G) \geq w_1 + \sum_{i=1}^{\infty} ic_i, \alpha'_f(G) = w_1 + \sum_{i=1}^{\infty} (\frac{2i+1}{2})c_i, \) and \(n = w_0 + 2w_1 + \sum_{i=1}^{\infty} (2i + 1)c_i \), where \(w_0, w_1, \) and \(c_i \) are the number of unweighted vertices, the number of 1-edges, and the number of odd cycles of length \(2i + 1 \) in the graph induced by \(\frac{1}{2} \)-edges in \(G \), respectively.

Proof. (a) The graph induced by the \(\frac{1}{2} \)-edges cannot have a vertex with degree at least 3 since \(\sum_{e \in \Gamma(v)} f(e) \leq 1 \) for each vertex \(v \). Thus the graph must be a disjoint union of paths.
or cycles. If the graph contains a path or an even cycle, then by replacing weight 1/2 on each edge on the path or the even cycle with weight 1 and 0 alternatively, we can have a fractional matching with the same fractional matching number and more edges with weight 1, which contradicts the choice of f. Thus the graph induced by the $\frac{1}{2}$-edges is the union of odd cycles. If there is an edge uv such that $u \in V(C)$ and $v \in V(C')$, where C and C' are two different odd cycles induced by some $\frac{1}{2}$-edges, then $f(uv) = 0$, since $\sum_{e \in \Gamma(x)} f(e) \leq 1$ for each vertex x. By replacing weights 0 and 1/2 on the edge uv and the edges on C and C' with weight 1 on uv, and 0 and 1 on the edges in $E(C)$ and $E(C')$ alternatively, not violating the definition of a fractional matching, we have a fractional matching with the same fractional matching number with more edges with weight 1, which is a contradiction. Thus we have the desired result.

(b) If two unweighted vertices u and v are adjacent, then we can put a positive weight on the edge uv, which contradicts the choice of f. If there exists an unweighted vertex x, which is not incident to any full vertex, then x must be adjacent to a vertex y such that $f(yy_1) = \frac{1}{2}$ and $f(yy_2) = \frac{1}{2}$ for some vertices y_1 and y_2. By replacing the weights 0, 1/2, and 1/2 on xy, yy_1, and yy_2 with 1, 0, 0, respectively, we have a fractional matching with the same fractional matching number with more edges with weight 1, which is a contradiction.

(c) By the definitions of w_0, w_1, and c_i, we have the desired result.

3 Sharp upper bound for $\alpha'_f(G) - \alpha'(G)$

What are the structures of the graphs having the maximum difference between the fractional matching number and the matching number in an n-vertex connected graph? The graphs may have big fractional matching number and small matching number. So, by the Berge–Tutte Formula and its fractional version, they may have a vertex subset S such that almost all of the odd components of $G - S$ have at least three vertices in order to get S to have small fractional deficiency and big deficiency. This is our idea behind the proof of Theorem 6.

Theorem 6. For $n \geq 5$, if G is a connected graph with n vertices, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$, and equality holds only when either

(i) $n = 5$ and either C_5 is subgraph of G or $K_2 + K_3$ is a subgraph of G, or

(ii) G has a vertex v such that the components of $G - v$ are all K_3 except one single vertex.

Proof. Among all the vertex subsets with maximum deficiency, let S be the largest set. By the Berge-Tutte Formula, $\alpha'(G) = \frac{1}{2}(n - \text{def}(S))$, and by the choice of S, all components of $G - S$ have an odd number of vertices. Let x be the number of isolated vertices of $G - S$, and let y be the number of other components of $G - S$. This implies $n \geq |S| + x + 3y$. If $S = \emptyset$, then $\alpha'(G) \in \{ \frac{n}{2}, \frac{n-1}{2} \}$, depending on the parity of n. In this case, $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$. If $S \neq \emptyset$, then $\alpha'(G) < \frac{n}{2}$, and $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$.
Figure 1: All 5-vertex graphs in Theorem 6 (i) and Theorem 8 (i)

Figure 2: All graphs in Theorem 6 (ii) and Theorem 8 (ii)
\[
\frac{n}{2} - \frac{n-1}{2} = \frac{1}{2} \leq \frac{n^2}{6}, \text{ since } n \geq 5. \text{ Now, assume that } S \text{ is non-empty.}
\]

Case 1: \(x = 0 \). Since \(\text{def}_f(G) \geq 0 \), \(|S| \geq 1\), and \(n \geq |S| + 3y \), we have

\[
\alpha'_f(G) - \alpha'(G) = \frac{1}{2}(n - \text{def}_f(G)) - \frac{1}{2}(n - \text{def}(G)) = \frac{1}{2}(\text{def}(S) - \text{def}_f(G))
\]

\[
\leq \frac{1}{2}(y - |S| - 0) \leq \frac{1}{2}\left(\frac{n - |S|}{3} - |S|\right) = \frac{n - 4|S|}{6} \leq \frac{n - 4}{6} < \frac{n - 2}{6}.
\]

Case 2: \(x \geq 1 \). Since \(n \geq |S| + x + 3y \), \(|S| \geq 1\), and \(x \geq 1 \), we have

\[
\alpha'_f(G) - \alpha'(G) = \frac{1}{2}(n - \text{def}_f(G)) - \frac{1}{2}(n - \text{def}(G)) = \frac{1}{2}(\text{def}(S) - \text{def}_f(G))
\]

\[
\leq \frac{1}{2}(x + y - |S| - (x - |S|)) \leq \frac{y}{2} = \frac{n - x - |S|}{6} \leq \frac{n - 2}{6}.
\]

Equality in the bound requires equality in each step of the computation. When \(n = 5 \), we conclude that (i) follows by Proposition 3. In Case 1, we cannot have equality, and in Case 2, we have \(|S| = 1\), \(x = 1 \), and \(n = |S| + x + 3y = 2 + 3y \). Since \(G \) is connected, the components of \(G - S \) are \(P_3 \) or \(K_3 \) except only one single vertex. If a component of \(G - S \) is a copy of \(P_3 \), then by choosing the central vertex \(u \) of the path, we have \(\text{def}(S \cup \{u\}) = o(G - (S \cup \{u\})) - |S \cup \{u\}| = o(G - S) - |S| \), yet \(|S \cup \{u\}| > |S| \), which contradict the choice of \(S \). Thus we have the desired result. \(\square \)

Corollary 7. For any \(n \)-vertex graph \(G \), we have \(\alpha'_f(G) - \alpha'(G) \leq \frac{n}{6} \), and equality holds only when \(G \) is the disjoint union of copies of \(K_3 \).

Proof. First, we show that if \(n \leq 4 \) and \(G \) is connected, then \(\alpha'_f(G) - \alpha'(G) \leq \frac{n}{6} \), and equality holds only when \(G = K_3 \). If \(n \leq 2 \), then \(G \in \{K_1, K_2\} \), which implies that \(\alpha'_f(G) - \alpha'(G) = 0 < n/6 \). If \(n = 3 \), then \(G \in \{P_3, K_3\} \). Note that \(\alpha'_f(P_3) - \alpha'(P_3) = 1 - 1 = 0 < 3/6 \) and \(\alpha'_f(K_3) - \alpha'(K_3) = 3/2 - 1 = 1/2 \leq 3/6 \). Furthermore, equality holds only when \(G = K_3 \). If \(n = 4 \), then either \(G = K_{1,3} \) or \(G \) contains \(P_4 \) as a subgraph. Since \(\alpha'_f(K_{1,3}) - \alpha'(K_{1,3}) = 1 - 1 = 0 < 4/6 \) and \(\alpha'_f(P_4) - \alpha'(P_4) = 2 - 2 = 0 < 4/6 \), we conclude that for any positive integer \(n \), \(\alpha'_f(G) - \alpha'(G) \leq \frac{n}{6} \). In fact, if \(n \geq 5 \), then by Theorem 6, the difference must be at most \(\frac{n^2 - 2}{6} \). Thus, for connected graphs, equality holds only when \(G = K_3 \).

Now, if we assume that \(G \) is disconnected, then \(G \) is the disjoint union of connected graphs \(G_1, \ldots, G_k \). Let \(|V(G_i)| = n_i \) for \(i \in [k] \). Since

\[
\alpha'_f(G) - \alpha'(G) = [\alpha'_f(G_1) + \cdots + \alpha'_f(G_k)] - [\alpha'(G_1) + \cdots + \alpha'(G_k)]
\]

\[
= [\alpha'_f(G_1) - \alpha'(G_1)] + \cdots + [\alpha'_f(G_k) - \alpha'(G_k)] \leq \frac{n_1}{6} + \cdots + \frac{n_k}{6} = \frac{n}{6},
\]

equality holds only when each \(G_i \) is a copy of \(K_3 \) for \(i \in [k] \). \(\square \)
4 Sharp upper bound for $\frac{\alpha'_f(G)}{\alpha'(G)}$

To prove the upper bound of Theorem 8, we still can use the Berge-Tutte formula and its fractional analogue. However, we provide an alternative way to prove the theorem.

Theorem 8. For $n \geq 5$, if G is a connected graph with n vertices, then $\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{3n}{2n+2}$, and equality holds only when either

(i) $n = 5$ and either C_5 is a subgraph of G or $K_2 + K_3$ is a subgraph of G, or

(ii) G has a vertex v such that the components of $G - v$ are all K_3 except one single vertex.

Proof. Among all the fractional matchings of an n-vertex graph G with the size equal to $\alpha'_f(G)$, let f be a fractional matching such that the number of edges e with $f(e) = 1$ is maximized. We follow the notation in Observation 5.

Case 1: $w_0 = w_1 = 0$. Since G is connected and $n \geq 5$, there exists only one i such that $i \geq 2$ and c_i is not zero, and $\alpha'(G) = ic_i \neq 0$. Then we have

$$\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{(2i+1)c_i}{i c_i} = 1 + \frac{1}{2i} \leq \frac{5}{4}.$$

Case 2: $w_0 \geq 1$ and $w_1 = 0$. By part (b) of Observation 5, this cannot happen.

Case 3: $w_0 = 0$ and $w_1 \geq 1$. Since $\sum_{i=1}^{\infty} c_i \leq \frac{n-2w_1}{3}$, by part (c) of Observation 5, we have

$$\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{w_1 + \sum_{i=1}^{\infty} (\frac{2i+1}{2})c_i}{w_1 + \sum_{i=1}^{\infty} ic_i} = \frac{n-w_0}{n-w_0 - \sum_{i=1}^{\infty} c_i} = \frac{n}{n - \sum_{i=1}^{\infty} c_i} \leq \frac{n}{n - \frac{n-2w_1}{3}} = \frac{3n}{2n + 2w_1} \leq \frac{3n}{2n+2}.$$

Case 4: $w_0 \geq 1$ and $w_1 \geq 1$. Since $\sum_{i=1}^{\infty} c_i \leq \frac{n-2w_1-w_0}{3}$, by part (c) of Observation 5, we have

$$\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{n-w_0}{2(n-w_0 - \frac{n-2w_1-w_0}{3})} = \frac{n-w_0}{n-w_0 - \frac{n-2w_1-w_0}{3}} = \frac{3(n-w_0)}{2(n+w_1-w_0)} < \frac{3n}{2(n+w_1)} \leq \frac{3n}{2(n+1)}.$$

Equality in the bound requires equality in each step of the computation; we only need to check Case 1 and Case 2. In Case 1, we have $i = 2$, which means that $n = 5$ and G contains a copy of C_5. In Case 3, we have $w_1 = 1$ and $\sum_{i=1}^{\infty} c_i = \frac{n-2}{3}$, which means that the graph induced by the $\frac{1}{2}$-edges is the union of K_3. Thus G has $K_2 + kK_3$ as a subgraph for some positive integer k. Note that there is an edge between the copy of K_2 and any copy of K_3 by part (b) of Observation 5. Also, there are no edges between any pair of two triangles by part (a) of Observation 5. Let u and v be the two vertices corresponding to the copy of K_2. If there are two different triangles C and C' in G such that u and v are incident to C and C', respectively, then we have $\alpha'(G) > w_1 + c_1$, which implies that we cannot have equality in the first inequality in Case 3. Thus, we conclude that G contains a copy of either $K_2 + K_3$ as a subgraph or a vertex v such that the components of $G - v$ are all K_3 except only one single vertex.

\[\Box\]
Corollary 9. For any n-vertex graph G with at least one edge, we have $\frac{\alpha_f'(G)}{\alpha'(G)} \leq \frac{3}{2}$, and equality holds only when G is the disjoint union of copies of K_3.

Proof. By the proof of Corollary 7 if $n \leq 4$ and G is connected, then $\frac{\alpha_f'(G)}{\alpha'(G)} \leq \frac{3}{2}$, and equality holds only when $G = K_3$. If we assume that G is disconnected, then G is the disjoint union of connected graphs G_1, \ldots, G_k. Let $|V(G_i)| = n_i$ for $i \in [k]$. Without loss of generality, we may assume that $\frac{\alpha_f'(G_1)}{\alpha'(G_1)} \geq \frac{\alpha_f'(G_i)}{\alpha'(G_i)}$ for all $i \in [k]$. Then we have

$$\frac{\alpha_f'(G)}{\alpha'(G)} = \frac{\alpha_f'(G_1) + \cdots + \alpha_f'(G_k)}{\alpha'(G_1) + \cdots + \alpha'(G_k)} \leq \frac{\alpha_f'(G_1)}{\alpha'(G_1)} \leq \frac{3}{2},$$

and equality holds only when each G_i is a copy of K_3 for $i \in [k]$.

References

[1] C. Berge, Sur le couplage maximum d’un graphe. *C. R. Acad. Sci. Paris* 247 (1958), 258–259.

[2] W.R. Pulleyblank, Minimum node covers and 2-bicritical graphs. *Math. Programming* 17 (1979), no. 1, 91–103.

[3] E.R. Scheinerman and D.H. Ullman, *Fractional Graph Theory: A Rational Approach to the Theory of Graphs* (Wiley & Sons, 2008).

[4] W. T. Tutte, The factorization of linear graphs. *J. London Math. Soc.* 22 (1947), 107–111.

[5] D.B. West, *Introduction to Graph Theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.