Subphenotyping depression using machine learning and electronic health records

Zhenxing Xu | Fei Wang | Prakash Adekkanattu | Budhaditya Bose | Veer Vekaria | Pascal Brandt | Guoqian Jiang | Richard C. Kiefer | Yuan Luo | Jennifer A. Pacheco | Luke V. Rasmussen | Jie Xu | George Alexopoulos | Jyotishman Pathak

1Weill Cornell Medicine, New York, New York, USA
2University of Washington, Seattle, Washington, USA
3Mayo Clinic, Rochester, Minnesota, USA
4Northwestern University, Chicago, Illinois, USA

Abstract

Objective: To identify depression subphenotypes from Electronic Health Records (EHRs) using machine learning methods, and analyze their characteristics with respect to patient demographics, comorbidities, and medications.

Materials and Methods: Using EHRs from the INSIGHT Clinical Research Network (CRN) database, multiple machine learning (ML) algorithms were applied to analyze 11,275 patients with depression to discern depression subphenotypes with distinct characteristics.

Results: Using the computational approaches, we derived three depression subphenotypes: Phenotype_A (n = 2791; 31.35%) included patients who were the oldest (mean (SD) age, 72.55 (14.93) years), had the most comorbidities, and took the most medications. The most common comorbidities in this cluster of patients were hyperlipidemia, hypertension, and diabetes. Phenotype_B (mean (SD) age, 68.44 (19.09) years) was the largest cluster (n = 4687; 52.65%), and included patients suffering from moderate loss of body function. Asthma, fibromyalgia, and Chronic Pain and Fatigue (CPF) were common comorbidities in this subphenotype. Phenotype_C (n = 1452; 16.31%) included patients who were younger (mean (SD) age, 63.47 (18.81) years), had the fewest comorbidities, and took fewer medications. Anxiety and tobacco use were common comorbidities in this subphenotype.

Conclusion: Computationally deriving depression subtypes can provide meaningful insights and improve understanding of depression as a heterogeneous disorder. Further investigation is needed to assess the utility of these derived phenotypes to inform clinical trial design and interpretation in routine patient care.

KEYWORDS

depression, electronic health records, machine learning, phenotyping
1 | INTRODUCTION

Clinical depression (depressive disorder) is one of the most common psychiatric disorders, which affects about 14% of individuals all over the world. The economic cost resulting from depression is staggering, which is expected to be the second largest contributor to disease burden by 2020. Clinical depression is a complex condition and patients with depression usually present a complex etiology, involving multiple risk factors such as recent stressful events. In addition, clinical depression is usually associated with the elevated risk of other diseases such as cardiac diseases and mortality, including suicide. Furthermore, depression is highly recurrent in general populations. Therefore, the discovery of depression subphenotypes has a potential to improve the understanding of the underlying disease heterogeneity, which could provide benefits for patients in terms of early recognition and more targeted interventions and therapies. However, due to the complex etiology of depression, it is challenging to define depression subphenotypes based on clinical knowledge and empirical evidence.

Recently, the wider availability of Electronic Health Records (EHRs) has created a continuously growing repository of clinical data, which provides new opportunities for population-based studies on a large scale and at low-cost. Multiple data-driven approaches for identifying disease phenotypes with EHRs have been explored. From a data-driven perspective, discovering phenotypes using EHRs can be seen as a "data clustering" problem. The disease manifestations of patients in the same cluster (ie, subphenotype) usually tend to be more similar. Comprehensive and longitudinal data captured in EHRs such as patient demographics, diagnoses, medications, laboratory measurements and procedures provide an opportunity to construct an appropriate representation for patients. The integration of these rich data and existing clustering methods such as hierarchical agglomerative clustering provide a potential to obtain clusters of patients, wherein each cluster corresponds to a unique subphenotype. Multiple statistical testing methods such as Chi-square test can be performed on each cluster, which aim at finding discriminative variables across different clusters and providing interpretation for the computationally derived subphenotypes. The overall objective of this study is to define subphenotypes of depression disorders and investigate its clinical heterogeneity using machine learning methods and EHRs derived prior to patients' first case of depression. The ultimate goal is to provide assistance for the clinicians and further improve the ability to anticipate disease onset, for example, alert clinicians of the need for diagnostic work up for frequently co-occurring disorders in those who fit the phenotype profile (Internists treating people for vascular risks and related disorders may suspect depression. Psychiatrists treating patients for depression may suspect vascular diseases or risk factors).

2 | METHODS

2.1 | Study data preparation

The INSIGHT Clinical Research Network (CRN) database was used to identify patients with depression between January 2008 and November 2017. This database includes records from more than 1 million patients consisting of demographics, comorbidities, encounters, procedures, medications, vital signs, and laboratory results. The INSIGHT CRN is the largest urban clinical network in the United States and reflects the racial, ethnic, and socioeconomic diversity of the national population as well as the range of healthcare facilities and services available in the United States. The collaborative EHR dataset compiles EHRs of 12 million patients from five large medical centers across New York City: Albert Einstein School of Medicine/Montefiore Medical Center, Columbia University and Weill Cornell Medicine/New York-Presbyterian Hospital, Icahn School of Medicine/Mount Sinai Health System, Clinical Director's Network, and New York University School of Medicine/Langone Medical Center. Regarding the inclusivity and stability of the patient population, the INSIGHT CRN captures 471 federally qualified health centers, safety net clinics, primary care practices, and hospice centers staffed by 37,000 providers across the New York City metropolitan area. It also spans 11 years of longitudinal data on patients.

Figure 1 shows our exclusion cascade that led to the derivation of our "case" population of 11,275 patients who were diagnosed with depression and treated via pharmacotherapy. Patients aged 18 years and older were included if they had a gap of 30 to 180 days between 2 consecutive depression diagnoses and received an antidepressant 0 to 180 days after any depression diagnosis. We used 70 ICD9/10 codes (45.7% ICD9 codes, 54.3% ICD10 codes) for depression and a large number of RxNorm codes specific to antidepressant medication (Appendix S1).

In this study, we also identified a "control" population (1:1 ratio) matched on age, gender, and comorbidity using propensity risk scoring. To select the best control subject (non-depressed patient) for each case subject (depressed patient), we used Nearest Neighbor Matching and matched covariates using the propensity score distance measure. The "control" group is used for model training and then obtains the best classifier that is used to choose important variables to perform clustering. The basic summary statistics of our dataset are shown in Table 1.

For this cohort, all demographic information (age, gender, race, and ethnicity) was extracted. Multiple comorbidities were also extracted based on the CMS Chronic Conditions Warehouse (CCW). Medication data was mapped to the Anatomical Therapeutic Chemical (ATC) Classification System, which classifies the active ingredients of drugs by taking into account their therapeutic, pharmacological and chemical properties. In the ATC system, drugs are classified into groups at five different levels. In this study, the fourth level was used to map medication information, which is usually more appropriate to identify pharmacological subgroups. All demographic, comorbidity and medication information were used to train the classifiers on multiple machine learning models. There are more than 500 features used for training machine learning models. We encoded medications and comorbidities as ever/never (1/0).

2.2 | Classification and clustering

In order to choose multiple variables that are useful for discovering the subphenotypes, the "current classification" experimental setting was applied in this study. In particular, let t be the time of "first diagnosis" for
depression either during an outpatient or inpatient encounter. In this setting, we considered all the data prior to time t and extracted patient demographics, comorbidities, and medications for training multiple machine learning models to classify depression. For each patient in the control group, the "time t" is the time of the last record of the patient in our dataset, which means we extracted all data for patients in the

TABLE 1	Characteristics of case (depressed) and control (non-depressed) groups	
Item	Depressed ($n = 11,275$)	Non-depressed ($n = 11,275$)
Age (mean (SD))	62.6 (19.5)	63.7 (20.1)
18 to 24	234 (2.1%)	249 (2.2%)
25 to 44	2134 (18.9%)	2101 (18.6%)
45 to 64	3729 (33.1%)	3340 (29.6%)
≥65	5178 (45.9%)	5585 (49.5%)
Gender		
Female	7777 (69.0%)	7698 (68.3%)
Race		
White	3590 (31.8%)	2475 (22.0%)
Black or African American	981 (8.7%)	3260 (28.9%)
Asian	456 (4.0%)	253 (2.2%)
American Indian or Alaska Native	26 (0.2%)	39 (0.3%)
Native Hawaiian or Other Pacific Islander	17 (0.2%)	9 (0.1%)
Ethnicity		
Not Hispanic or Latino	6359 (56.4%)	8220 (72.9%)
Hispanic or Latino	1502 (13.3%)	631 (5.6%)
control group. Machine learning models included L2 norm regularized Logistic Regression (Ridge)19, Random Forest (RF)20, Support Vector Machine (SVM)21, and Gradient Boosting Decision Tree (GBDT). For each classification model, fivefold cross validation was adopted based on empirical knowledge. For Ridge, RF, SVM, we used the Scikit-learn software library.22 For the GBDT, we chose XGBoost software library.23

TABLE 2 Performance of machine learning models for current classification of depression

Model	Precision	Recall	AUC
L2 norm regularized Logistic Regression (Ridge)	0.8511 ± 0.0078	0.6802 ± 0.0068	0.857 ± 0.0053
Support Vector Machine (SVM)	0.8855 ± 0.0088	0.5815 ± 0.0075	0.8376 ± 0.0052
Random Forest (RF)	0.6055 ± 0.0067	0.9074 ± 0.0072	0.8066 ± 0.0081
Gradient Boosting Decision Tree (GBDT)	0.8583 ± 0.0084	0.6919 ± 0.0097	0.8711 ± 0.0058

FIGURE 2 The heatmap obtained from Clustergram based on the selected variables. The x and y axis represents the patients’ unique ID. The similarity among the individual patients was computed using the Jaccard Index. The “green rectangles” represent the three depression subphenotypes. The smaller the distance of patients were, the darker the color was, the greater the degree of similarity among patients were. The clusters can be approximately outlined on the clustermap by observing the distribution of colors along the diagonal line of the distance matrix.
The area under the receiver operating characteristic (AUC) was used to evaluate the model performance. Features from the model that performed the best, were ranked and ordered based on their variable importance measure, and subsequently used as inputs for the hierarchical agglomerative clustering algorithm to identify subphenotypes. We used the hierarchical agglomerative clustering algorithm from the Scikit-learn software library. The only continuous variable (age) was excluded during this process, and similarity between the clusters was computed using the Jaccard Index. Clustergram was used to visualize the derived subphenotypes. Note that, during computing the similarity of patients using Jaccard Index method, we chose the patients who had at least 3 encounters in their historical records to minimize data sparsity. We finally chose 8930 patients for clustering. Multiple statistical analyses, such as Chi-square test for binary variables and Kruskal-Wallis H-test for continuous variables with non-normal distribution, were performed on experimental results to investigate the significance of features among clusters.

3 | RESULTS

3.1 | The performance of classification and obtaining the depression subphenotypes

As shown in Table 2, GDBT achieved the highest performance for the current classification task in terms of AUC. By extracting feature importance scores from the GBDT model, we obtained multiple variables, including demographics, comorbidities and medications, with feature importance scores greater than zero. These variables were subsequently used as inputs for the clustering algorithm. By using Jaccard Index and hierarchical clustering, we obtained three depression subphenotypes (Figure 2). The optimal number of clusters was obtained by using the McClain index.

3.2 | Association of comorbidities with the depression subphenotypes

Figure 3 shows the distribution of comorbidities across all three subphenotypes. We observe that patients in Phenotype_A and Phenotype_C had the highest and lowest number of comorbidities, respectively. In particular, within Phenotype_A, cardiovascular conditions such as hyperlipidemia (57.18%), hypertension (64.41%), and diabetes (42.17%) were commonly observed. In Phenotype_B, most patients suffered from asthma (26.22%) and chronic pain and fatigue (39.29%), whereas in Phenotype_C, anxiety (42.7%) and tobacco use (15.96%) was commonly observed. From this table, we also observe that Phenotype_B had the most number of patients (n = 4687) accounting for more than half of all patients. The average age in this subphenotype was 68.44 ± 19.09 years. Patients in Phenotype_A and Phenotype_C are the oldest and the youngest, respectively. Note that, there is no significance (P-value >.05) in...
terms of age among these three phenotypes. In addition, in Phenotype_A and Phenotype_B, the number of females is nearly twice the number of males.

3.3 Association of medications with the depression subphenotypes

Figure 4 shows the distribution of medications across all three subphenotypes. In general, we observe that patients in Phenotype_A and Phenotype_C took more and fewer medications, respectively. In particular, patients in Phenotype_A had higher rates of prescriptions for antidepressants, beta blockers, and insulin. In Phenotype_B, we observed higher rates of prescriptions for opioids, proton pump inhibitors, and adrenergic β2 receptor agonists. Finally, for Phenotype_C, benzodiazepines were the most commonly prescribed medication.

In addition, to further investigate the characteristics of three subphenotypes, we performed multiple statistical analyses on our results. As shown in Table 3, the results indicate that comorbidities including hypertension, hyperlipidemia, diabetes, asthma, chronic pain and fatigue, and tobacco use were significantly different across the subphenotypes. Similarly, the results suggest that use of antidepressants, insulin, opioids, adrenergic β2 receptor agonists and benzodiazepines was significantly different across the subphenotypes.

4 DISCUSSION

Three distinct depression subphenotypes were computationally derived from EHR data including patient demographics, comorbidities and medications using machine learning methods. Among the derived subphenotypes, statistically significant differences were observed with respect to disease burden and medication prescriptions. Such an
approach provides an opportunity to improve our understanding of a heterogeneous disorder such as depression, and potentially enables improved diagnosis and treatment.

In particular, across the three depression subphenotypes, patients in Phenotype_A (n = 2791; 31.35%) were relatively older (mean (SD) age, 72.55 (14.93) years), had the highest number of vascular comorbidities and took the most number of medications. These results are consistent with previous reports. For example, prior studies have shown that depression was two to three times more likely in people with multimorbidity compared to people without multimorbidity or those who have no chronic physical condition.26 Hypertension may be an important factor for patients with depression in this group. For example, a population-based study in Stockholm County, Sweden demonstrated that hypertension was probably underdiagnosed and ignored in individuals with psychiatric disorders.27 Multiple studies have also suggested that the risk of developing depression was increased in individuals with diabetes28 and that there was significant association between depression and diabetes.29 The connections between depression and hyperlipidemia have also been shown30 and few studies have suggested that pre-existing hyperlipidemia could be an independent predictor of new-onset depression.31 In our study, Phenotype_C (n = 1452; 16.31%) was the youngest (mean (SD) age, 63.47 (18.81) years) and included the least number of patients with fewer comorbidities and prescription medications. Furthermore, the comorbidities of anxiety and tobacco use were common in this subphenotype. Patients in this subphenotype also showed mild loss of their body function. Strong associations exist between depression and anxiety and previous studies have suggested that more than 50% of patients with an anxiety disorder had depression.32

| TABLE 3 Characteristics of the three depression subphenotypes |
|------------------|------------------|------------------|
| **Characteristic** | **Phenotypes** | |
| | A | B | C |
| No. of patients (%) | 2791 (31.35) | 4687 (52.65) | 1452 (16.31) |
| Age, Mean (SD) | 72.55 (14.93) | 68.44 (19.09) | 63.47 (18.81) |
| Sex, No. (%) | | | |
| Female | 1716 (61.48) | 3341 (71.29) | 866 (59.66) |
| Male | 1075 (38.52) | 1346 (28.71) | 586 (40.34) |
| Comorbidity, No. (%) | | | |
| Hypertension | 1798 (64.41) | 1403 (29.93) | 203 (13.96) |
| Diabetes | 1176 (42.17) | 714 (15.23) | 64 (4.42) |
| Hyperlipidemia | 1596 (57.18) | 1379 (29.42) | 198 (13.61) |
| RAOA | 623 (23.22) | 788 (16.81) | 60 (4.14) |
| Anemia | 632 (22.64) | 1014 (21.63) | 90 (6.18) |
| Asthma | 459 (16.45) | 1229 (26.22) | 96 (6.6) |
| CPF | 667 (23.9) | 1842 (39.29) | 181 (12.49) |
| Anxiety | 448 (16.05) | 1564 (32.13) | 620 (42.7) |
| TU | 231 (8.28) | 478 (10.2) | 232 (15.96) |
| Obesity | 572 (20.49) | 769 (16.41) | 111 (7.65) |

Drugs, No. (%)					
Selective serotonin reuptake inhibitors	1064 (38.11)	926 (19.75)	191 (13.12)	≤0.05	≤0.05
Beta blocking agents, selective	1069 (38.3)	1262 (26.92)	176 (12.11)	≤0.05	≤0.05
Insulins and analogues for injection, long-acting	961 (34.42)	613 (13.08)	136 (9.4)	≤0.05	≤0.05
Natural opium alkaloids	571 (20.46)	1370 (29.22)	232 (15.98)	≤0.05	≤0.05
Proton pump inhibitors	935 (33.5)	1171 (24.98)	214 (14.77)	≤0.05	≤0.05
Selective beta-2-adrenoreceptor agonists	290 (10.38)	980 (20.9)	98 (6.77)	≤0.05	≤0.05
Benzodiazepine derivatives	287 (10.28)	963 (20.54)	489 (33.65)	≤0.05	≤0.05
Benzodiazepine related drugs	310 (11.12)	571 (12.19)	406 (27.93)	≤0.05	≤0.05
Other antidepressants	266 (9.54)	300 (6.41)	415 (28.59)	≤0.05	≤0.05
Expectorants	302 (10.82)	967 (20.64)	87 (5.98)	≤0.05	≤0.05

Abbreviations: CPF, Chronic Pain and Fatigue; Fibromyalgia; RAOA, Rheumatoid Arthritis/Osteoarthritis; TU, Tobacco Use.

*ANCOVA was performed to adjust significance in terms of age variable. The only continuous variable age is tested by using Kruskal-Wallis H-test. Other binary variables are tested by using Chi-square test.

In particular, across the three depression subphenotypes, patients in Phenotype_A (n = 2791; 31.35%) were relatively older (mean (SD) age, 72.55 (14.93) years), had the highest number of vascular comorbidities and took the most number of medications. These results are consistent with previous reports. For example, prior studies have shown that depression was two to three times more likely in people with multimorbidity compared to people without multimorbidity or those who have no chronic physical condition.26 Hypertension may be an important factor for patients with depression in this group. For example, a population-based study in Stockholm County, Sweden demonstrated that hypertension was probably underdiagnosed and ignored in individuals with psychiatric disorders.27 Multiple studies have also suggested that the risk of developing depression was increased in individuals with diabetes28 and that there was significant association between depression and diabetes.29 The connections between depression and hyperlipidemia have also been shown30 and few studies have suggested that pre-existing hyperlipidemia could be an independent predictor of new-onset depression.31 In our study, Phenotype_C (n = 1452; 16.31%) was the youngest (mean (SD) age, 63.47 (18.81) years) and included the least number of patients with fewer comorbidities and prescription medications. Furthermore, the comorbidities of anxiety and tobacco use were common in this subphenotype. Patients in this subphenotype also showed mild loss of their body function. Strong associations exist between depression and anxiety and previous studies have suggested that more than 50% of patients with an anxiety disorder had depression.32 An association between tobacco use and depression
has also been shown by multiple previous studies and cigarette use was positively associated with depressive symptoms among young people such as college students. Phenotype_B (n = 4687; 52.65%) included most patients (mean SD) age, 68.44 (19.09) years) in our study. The common comorbidities in this subphenotype were asthma and chronic pain and fatigue. Associations between asthma and clinically significant levels of depressive symptoms and a lifetime psychiatric disorder have been reported in several studies. The relationship between depression and chronic pain have been shown in previous studies, which considered multiple factors such as inflammatory, infectious, and autoimmune disorders in terms of the development of fibromyalgia. Identifying depressive subtypes with distinct patterns of medical comorbidity may help to generate hypotheses on the etiopathogenesis of late-life depressive syndromes and provide targets for treatment development.

Few studies have also investigated the identification of depression subphenotypes using multimodal data. For example, Drysdale et al used functional magnetic resonance imaging (fMRI) data and machine learning algorithms to detect four neurophysiological depression subtypes defined by distinct patterns of dysfunctional connectivity in limbic and frontostriatal networks. Tokuda et al also used fMRI data to detect three neurophysiological subtypes of depression that related to Selective Serotonin-Reuptake Inhibitor (SSRI) treatment outcomes. Musil et al used the DSM-IV specifiers on a cohort of 833 patients to manually classify melancholic, atypical and anxious subtypes of depression. There are few key differences between these studies and our study. First, our work leverages routinely collected EHRs from multiple health systems in an urban population. Such data, while not pristine compared to curated datasets from clinical trials or prospective studies, reflects actual clinical care, including diagnosis and treatment. Second, at least to our knowledge, our study cohort of more than 20 000 subjects (cases and controls) to detect depression subphenotypes is one of the largest to date. And finally, we demonstrate the applicability of off-the-shelf machine learning algorithms for subphenotyping which provides a more interpretable and generalizable framework for implementing our approach in external datasets for future replication studies.

However, the results of our study should be considered in light of several limitations. First, it should be noted that this study examines a niche group of depressed patients who were treated via pharmacotherapy within a very narrow time window. During the 2008 to 2017 time span of observation, detection standards for depression are not well defined and documentation routines are highly variable. In addition, off-label use of antidepressants is common in treating sleep problems, eating disorders, smoking cessation, and managing chronic pain even when depression is not involved. By restricting the study cohort to depressed patients treated via pharmacotherapy, we might be missing patients whose prescription data is not captured in the INSIGHT CRN. It is possible that many of these patients received an antidepressant from a private provider outside the INSIGHT CRN network or received alternative therapies such as psychotherapy or cognitive behavioral therapy (CBT) to treat their depressive symptoms. Unfortunately, our dataset is unable to capture these treatment modalities. It is also possible that patients initiated alternative treatments like psychotherapy and CBT during the 0 to 180 day time window but later transitioned into treatment via pharmacotherapy (eg, antidepressant). With careful consideration given to limitations including a dramatically smaller cohort, we selected a highly sensitive case definition that minimizes the inclusion of false positives and ensures a highly chronic dual diagnosis sample. Second, we only considered patient demographics, diagnoses, and prescription medication data extracted from the EHR for deriving the subphenotypes. Prior work by others and our team has demonstrated that for mood disorders, processing of unstructured clinical text via natural language processing is critical to detect symptoms, diagnosis and treatment. Third, we did not consider temporal information (eg, age of disease onset) for our classification and clustering tasks. Temporal data may correspond to a patient’s current therapy, their overall health status, or any other discrete state, and the transition time information represents the duration of each of those states. In future work, we plan to leverage recent research in temporal pattern mining for clustering analysis. Finally, with an emphasis on algorithm interpretation, portability and generalizability, we investigated traditional machine learning algorithms in this study. As we have done in other studies, future work will explore advanced deep learning methods for depression subphenotyping.

5 | CONCLUSION

Using routinely collected longitudinal EHRs and ML algorithms, we computationally derived depression subphenotypes that can potentially guide improved diagnosis and treatment of clinical depression. The derived subphenotypes had statistically significant differences with respect to patient demographics, comorbidities and treatment suggesting that depression is a heterogeneous disorder with multiple phenotypes.

ACKNOWLEDGEMENTS

This work was supported in part by funding from NIH R01GM105688, R01MH105384, R01MH119177 and P50MH113838.

ORCID

 Veer Vekaria https://orcid.org/0000-0001-9801-2250
 Pascal Brandt https://orcid.org/0000-0001-5116-0555
 Jie Xu https://orcid.org/0000-0001-5291-5198

REFERENCES

1. Huang SH, LePendu P, Iyer SV, Tai-Seale M, Carrell D, Shah NH. Toward personalizing treatment for depression: predicting diagnosis and severity. JAMIA. 2014;21(6):1069-1075.
2. Xu Z, Zhang Q, Li W, Li M, Yip PSF. Individualized prediction of depressive disorder in the elderly: a multitask deep learning approach. Int J Med Inform. 2019;132:103973.
3. Lustman PJ, Griffith LS, Gavard JA, Clouse RE. Depression in adults with diabetes. Diabetes Care. 1992;15(11):1631-1639.
4. Ribeiro Â, Ribeiro JP, von Doelling O. Depression and psychodynamic psychotherapy. Rev Bras Psiquiatr. 2018;40(1):105-109.
49. Calvo RA, Milne DN, Sazzad Hussain M, Christensen H. Natural language processing in mental health applications using non-clinical texts. *Nat Lang Eng*. 2017;23(5):649-685.

50. Ryu E, Chamberlain AM, Pendegraft RS, Petterson TM, Bobo WV, Pathak J. Quantifying the impact of chronic conditions on a diagnosis of major depressive disorder in adults: a cohort study using linked electronic medical records. *BMC Psychiatry*. 2016;16:114.

51. Giannoula A, Gutierrez-Sacristán A, Bravo Á, Sanz F, Furlong LI. Identifying temporal patterns in patient disease trajectories using dynamic time warping: a population-based study. *Sci Rep*. 2018;8(1):4216.

52. Maziero, Danilo, Tonicarlo R. Velasco, Carlos E. G. Salmon, and Victoria L. Morgan. 2018. "Two-dimensional temporal clustering analysis for patients with epilepsy: detecting epilepsy-related information in EEG-fMRI concordant, discordant and spike-less patients." *Brain Topogr* 31 (2): 322–36.

53. Min X, Yu B, Wang F. Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: a case study on COPD. *Sci Rep*. 2019;9(1):2362.

54. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. *Brief Bioinform*. 2018;19(6):1236-1246.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Xu Z, Wang F, Adekkanattu P, et al. Subphenotyping depression using machine learning and electronic health records. *Learn Health Sys*. 2020;4:e10241.
https://doi.org/10.1002/lrh2.10241