Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

Mark G Nielsen*1, Sudhindra R Gadagkar1,2 and Lisa Gutzwiller1,3

Abstract

Background: The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent relationship between tubulin structure and function; small, biochemically similar changes in the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile spermtail axoneme. This has evolutionary implications, not a single non-synonymous substitution is found in beta 2 among 17 species of Drosophila and Hirtodrosophila flies spanning 60 Myr of evolution. This raises an important question, How do tubulins evolve while maintaining their function? To answer, we use molecular evolutionary analyses to characterize the evolution of insect tubulins.

Results: Sixty-six alpha tubulins and eighty-six beta tubulin gene copies were retrieved and subjected to molecular evolutionary analyses. Four ancient clades of alpha and beta tubulins are found in insects, a major isoform clade (alpha 1, beta 1) and three minor, tissue-specific clades (alpha 2-4, beta 2-4). Based on a Homarus americanus (lobster) outgroup, these were generated through gene duplication events on major beta and alpha tubulin ancestors, followed by subfunctionalization in expression domain. Strong purifying selection acts on all tubulins, yet maximum pairwise amino acid distances between tubulin paralogs are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins). Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT) residues, which serve as sites for post-translational modifications (PTMs) and interactions with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins). Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT) residues, which serve as sites for post-translational modifications (PTMs) and interactions with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are large, surprising given their potential for disrupting tubulin coding sequence. Compensatory evolution is found in Drosophila beta 2 tubulin cis-regulation, and reveals selective pressures acting to maintain testis expression without the use of previously identified testis cis-regulatory elements.

Conclusion: Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. They evolve through gene duplication, subfunctionalization in expression domain and divergence of duplication products, largely in CTT residues that mediate interactions with other proteins. This has resulted in the tissue-specific minor insect isoforms, and in particular the highly diverse alpha 3, alpha 4, and beta 2 reproductive tissue-specific tubulin isoforms, illustrating that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection.
Background

Proteins vary in the stringency of their structure/function relationships, which may affect their ability to participate in the adaptive process [1]. Nature has ready opportunity to shape the phenotype through selection on proteins that show non-synonymous allelic variation, for example esterases [2] and glycolytic enzymes [3]. Other proteins, for example actins, show little amino acid variation (~5-7% across metazoans, [4]), and tend to loose function entirely rather than provide altered function in response to change in their amino acid sequence [5]. Such proteins may not typically admit allelic variation, which raises an old, but important question: is selection a shaper of diversity, or merely an executioner [6]?

One of the best-studied proteins with respect to its structure/function relationship is tubulin. In vivo studies of alpha and beta tubulin in the Drosophila melanogaster spermtail axoneme find that small changes in the amino acid sequence of the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile axoneme [7-10]. This stringency has evolutionary implications; comparisons of beta 2 sequences among different species of Drosophila find not a single non-synonymous substitution, indicating the protein has not changed in sequence for more than 60 million years [11]. Together these results indicate that only rarely does beta 2 participate in the adaptive process.

For proteins with stringent structure/function relationships, evolving while maintaining function is problematic. Gene duplication is a fundamental mechanism in answer to this problem [12], yet without additional changes, in expression domain and/or in the proteins with which it co-functions, a duplicate copy will have the same function as the original, will experience the same selective regime as the original and so will not evolve.

Here we characterize insect tubulin evolution, to identify events that release tubulins to evolve, and to more generally serve as a model for the evolution of functionally constrained proteins. Tubulins are a family of eukaryotic structural proteins that comprise microtubules, fundamental components of the spindle in cell division, the axoneme in cilia and flagella, mediators of cell shape, and dynein/kinesin-based cell trafficking [13-15]. Two members of the tubulin family, alpha and beta tubulin, form a dimer that is the building block of the microtubule. All eukaryotes contain at least one major alpha (α1) and beta (β1) tubulin. In addition, Drosophila melanogaster express minor, tissue-specific isoforms in the motile spermtail axoneme (β2), pre-adult tissues (β3, β4, and α2), and the ovary (α4) [16,17].

We studied tubulin evolution in two hemimetabolous insect orders, Phthiraptera (Pediculus humanus corporis, body louse) and Hemiptera (Acythosiphon pisum, pea aphid), and four holometabolous orders, Hymenoptera (Apis millifera honeybee, Nasonia vitripennis jewel wasp), Coleoptera (Tribolium castenatum flour beetle), Lepidoptera (Bombyx mori silkmoth), and Diptera (Aedes aegypti, Anopheles gambiae, and Drosophila melanogaster, D. sechellia, D. yakuba, D. erecta, D. simulans, D. mojavensis, D. grimshawi, D. ananassae, D. persimilis, D. psuedoobscura, D. virilis, D. willistoni). These orders represent well over 80% of the diversity in all insect species [18]. Their evolutionary relationships are not controversial, and each of these orders is considered to be monophyletic [19]. They are known to be quite ancient, the origin of these insect orders has been dated to be >300 Mya using a molecular clock [20], with the oldest beetle (Coleoptera) fossils from the Lower Permian (about 265 million years ago [21]) and the earliest fly (Diptera) fossil from the Upper Triassic of the Mesozoic geological period, some 225 million years ago [22].

We find four clades of alpha and beta tubulins in insects that, for the most part, do not evolve without a gene duplication event. Yet gene duplication is not sufficient to release tubulin evolution, most duplication products are lost, and major tubulin duplication products do not evolve unless followed by subfunctionalization in expression domain. Subfunctionalization has resulted in a number of reproductive tissue-specific tubulins that are diverse in sequence, particularly in CTT residues that mediate integrations with other proteins. Together these results indicate that tubulin evolution is constrained, yet tubulins can in fact participate in the adaptive process.

Methods

Sequence retrieval

Insect tubulins were obtained through BLAST [23] searches of the sequenced insect genome databases [http://flybase.bio.indiana.edu/ and NCBI http://www.ncbi.nlm.nih.gov/] databases using Drosophila melanogaster tubulin cDNAs as query sequences. Tubulin exon/intron structure was determined by aligning retrieved genomic sequences to their Drosophila cDNA orthologs using Sequencher 4.1 (Gene Codes Corporation [24]).

Genealogical reconstruction

DNA sequence alignments were made using ClustalW [25] in the MEGA v. 4.0 software package [26]. Translated sequences were aligned using BLOSUM [27] (gap opening penalty 100, extension penalty 0.1), refined by hand, and untranslated for genealogical analysis using the Bayesian method as implemented in Mr. Bayes v. 3.1.2 [28]. For both alpha and beta tubulins a GTR model was used with 4 rate categories, gamma corrections were estimated by the program, and gaps were coded. For beta tubulins, the analysis was done using first and second codon positions (88 sequences, 947 sites, gamma correc-
tion $\alpha = 0.542$); for alpha tubulins zero-fold degenerate codon positions (69 sequences, 811 sites, gamma correction $\alpha = 0.486$). Analyses were run until the standard deviation of split frequencies was below 0.01, for the alpha tubulins 4,000,000 generations and beta tubulins 1,500,000 generations. A 25% burnin was performed [28], and the majority-rule consensus tree is reported.

Pairwise amino acid distances
The average and maximum pairwise amino acid distances (number of amino acid differences/site) between paralogs and orthologs are presented, these were generated using the Poisson correction method in MEGA v. 4 [26]; standard error estimates were obtained by a bootstrap procedure (2000 replications).

Test of selection
Since tubulins do not appear to be evolving at appreciable rates, they are probably under severe purifying selection. On the other hand, the carboxy terminus tails, which mediate tubulin functional specializations via interactions with other proteins, and are released from protein folding constraints because they lie on the surface of the MT [29], are the most rapidly evolving, and possibly under positive selection. These two hypotheses were tested, first by means of estimating dN (the number of nonsynonymous substitutions per nonsynonymous site), dS (the number of synonymous substitutions per synonymous site), and the ratio dN/dS (ω) by the ML method as implemented in PAML v4.3b [30], and then by means of a likelihood ratio test comparing the null model H_0 with $\omega = 1$ fixed and the alternative model H_1 with ω estimated from the data.

Rate tests
The tubulins were tested for the molecular clock, to determine: 1) if paralogous tubulins resulting from ancient duplication events (preceding separation of insect orders) evolve at the same rate, 2) if orthologous tubulins evolve at the same rate, and 3) if paralogous tubulins resulting from recent duplication events (post-dating separation of the insect orders) diverge following duplication. All rate tests were performed using Tajima’s relative rates test in MEGA v. 3.0 [26,31].

Test of co-evolution
Stringency in tubulin structure/function relationships may result from the need to maintain proper lateral and longitudinal contacts between alpha and beta tubulin in the microtubule, such that the alpha and beta tubulins must co-evolve for either tubulin component to evolve. Sato’s mirror-tree method [32] compares partial correlation coefficients between candidate co-evolving proteins’ distance matrices to identify co-evolution. This test requires 1) multiple sequences for comparison, 2) sequence variation among those sequences, and 3) knowledge that the alpha and beta isoforms are co-expressed in a cell. These conditions are met only by the Drosophila a2 and $\beta 3$ tubulins, which co-function in visceral mesoderm, the testis cyst cells, and pre-adult sensory neurons [7,8].

Evolution of Drosophila Beta 2 tubulin cis-regulation
An opportunity to study cis-regulatory aspects of tubulin evolution is provided by the D. melanogaster $\beta 2$ gene. Three aspects of $Dm\beta 2$ regulation have been identified, the $\beta 2UE1$ element, required for testsis-specific gene expression, and the $\beta 2UE2$ and $\beta 2DE1$ elements for proper expression levels [33]; these elements are identifiable in most Drosophila species. The core promoter does not contain a TATA box, but uses an Inr sequence found in many TATA-less promoters. We identified these sequences in Drosophila species by scanning the 1000 base pairs 5’ to transcription start for identical and degenerate sequence matches to $Dm\beta 2$ regulation, using Sequencer.

To determine if Drosophila $\beta 2$ is expressed in the testis in species in which these sequences were not found, a PCR approach was used. RNA was extracted from 20 pairs of dissected testes using a guanidine hydrochloride, phenol/chloroform method [34], and DNAase treated to remove DNA contaminants (New England Biolabs). Beta 2-specific primers were used in a reverse transcription reaction, followed by PCR amplification, to identify $\beta 2$ mRNA in testes. For a negative control, PCR was performed on the same RNA template, minus the reverse transcription reaction.

Results

Sequence retrieval and genealogical reconstruction
A total of 86 beta tubulins and 66 alpha tubulins were obtained through blast searches of the completed insect genome projects and NCBI databases (Tables 1, 2; Additional File 1). Homarus americana (American lobster; Crustacea, Decapoda) tubulins were used as an outgroup in the genealogical reconstruction, because Homarus is the closest relation to insects for which the full complement of tubulins has been identified. Homarus has two major beta tubulin isoforms and three major alpha tubulins. Based on this outgroup, duplication products of major alpha and beta tubulin isoforms gave rise to the insect major and minor tubulins.

Beta tubulins
There is posterior probability support (provided in parentheses for the remainder of this section) for four monophyletic beta tubulin clades in insects (Figs. 1, 2). Orthologs of the $Dm\beta 1$ isoform (0.74) form a clade of
Table 1: Insect beta tubulin sequence features.

Isoform Function	Average and maximum pairwise distances	-COOH terminus sequence	Post-translational modification sites/Conserved sequence features	
	Drosophila	Mosquito	All Insects	
•1 Major isoform	0.000 (+/-)	0.002 (+/-)	Average 0.011 (+/-)	Ha·1a EATADEAE FEEEGEVEGE YA
	0.000 (n = 12)	0.002 (n = 2)	Maximum 0.027 (n = 10)	Ha·1b EATADEAE FEEEGEVEGE YD
				Dm·1 EATADEAE FEEEQEAEVD EN
				Ae·1 EATADEAE FDEEQEAEVD EN
				Ag·1 EATADEAE FDEEQEAEVD EN
				Bm·1a EATADEAE FDEEQESEQIIE DN
				Bm·1b EATADEAE FDEEQESEQIE EH
				Tc·1 EATADEAE FDEEQEAEVD EN
				Nv·1a -
				Nv·1b TMNGPRDAP DEDVEVVEEE LRD
				Am·1 EATADEAE FDEEQEAEVD EN
				Ap·1 EATADEAE FDEEQEBEVD EN
				Ph·1 EATADEAE FDEEQEVEVD EN
•2 Testis-specific isoform	0.000 (+/-)	0.060 (+/-)	Average 0.085 (+/-)	Dm·2 EATADEEG EDEEDEGG E
	0.000 (n = 12)	0.011 (n = 2)	Maximum 0.464 (n = 17)	Ae·2 EATADEEG EDEEDEGG E
				Ag·2 EATADEAE MDDEEE GG E
				Bm·2 DATDEDEGE FDEEEAEGL E E
				Tc·2a DATDEDEGE FDEEEAQGNE GEN
				Tc·2b DADEEEVG DEDETE DK EEET
				Nv·2a EATAEDEF EDEEGENEG N
				Nv·2b EATADEAF YDEEDEEED YA
				Nv·2c EATTED E FETEDAGDD FETCDQ
				Am·2a EATAEDEGE FDEEEEGE HP
				Am·2b EATAEDEGE FDEEEETEK
				Ap·2a DATDEDEGE GDDDEEADA
				Ap·2b EATIDETGE EDEEDEDA
				Ap·2c DATDEDEGE GDDDEEADA
				Ap·2d EATVDEAPV VNEE
				Ph·2a EATADEAE DEEEDGGEDE
				Ph·2b EATSEYDE DEEEDGGEDE

PTM sites
- Polyglutamylation - yes
- Polyglycylation - yes
- Phosphorylation - yes

Conserved sequence features
- Axoneme motif - yes, except Agβ2, Tcβ2b, Nvβ2a-c, Apβ2a-d, Phβ2a, b
- Gly56* - yes, except Phβ2b
Table 1: Insect beta tubulin sequence features. (Continued)

	Minor isoform expressed in variety of pre-adult mesodermal and neural domains	Average	Dm·3 EATADDEF PEVNQEEVEGCDCI	PTM sites	Polyglutamylation -- yes	Phosphorylation - yes
·3	0.009 ±0.002 (n = 10)	0.092 ±0.010 (n = 9)	EATADDEFPEVNEEVEGCDCI	Polyglycylation -- yes, except Tcβ3, Nvβ3, Amβ3, Nvβ3, Apβ3		
	0.014 ±0.005 (n = 2)					
	0.032 ±0.005 (n = 11)	0.136 ±0.015 (n = 5)	EATADDEFPEVNEEVEGCDCI	Polyglycylation -- yes, except Tcβ3, Nvβ3, Amβ3, Nvβ3, Apβ3	Phosphorylation - yes	
	0.104 ±0.012 (n = 3)					
	0.148 ±0.016 (n = 6)					

Features of the four beta tubulin isoforms identified in insects are presented. The function and/or expression domain of each sequence in *D. melanogaster* [16,17] and *B. mori* [35], the two insects in which tubulin expression and function have been studied, are presented in Column 2. Average and maximum pairwise distance calculations in Column 3 refer to the average # amino acid differences/site among conserved isoforms, and the maximum pairwise distance between any two orthologs, including divergent duplication products, respectively. For "all insects", the only *Drosophila* species included is *Dm*, to avoid a Dipteran skew in the results. CTT sequences are presented in Column 4, for purposes of inspection as they constitute ~50% of the differences among tubulins. Tubulin post-translational modifications (PTMs) occur on sequence motifs whose presence and absence are presented in the Column 5. Polyglutamylation and polyglycylation sequence motifs are degenerate, the “?” indicates that a potentially modifiable, but experimentally uncharacterized residue(s) is present for these PTMs. Unusual sequence features or motifs known to mediate specific tubulin functional specializations are also noted. The full-length sequences for Nvβ1, Phβ3, Dpβ3, Dsβ3 were not available. Key: *Pediculus humanus corporis* Ph, *Acyrthosiphon pism* Ap, *Apis mellifera* Am, *Nasonia vitripennis* Nv, *Tribolium castenatum* Tc, *Bombyx mori* Bm, *Aedes aegypti* Ae, *Anopheles gambiae* Ag, *Drosophila melanogaster* Dm, *D. sechellia* De, *D. yakuba* Dy, *D. erecta* De, *D. simulans* Ds, *D. mojavensis* Do, *D. grimshawi* Dg, *D. ananassae* Da, *D. persimilis* Dp, *D. psuedoobscura* Du, *D. virilis* Dv, *D. willistoni* Dw).
Table 2: Insect alpha tubulin sequence features.

Isoform	Function	Average and maximum pairwise distances	-COOH terminus sequence	Post-translational modification sites/Conserved sequence features		
		Drosophila	Mosquito	All Insects		
·1	Major isoform	0.000	0.04	Average 0.010	Ha·1a DLAALEKDY EEVQVDSADA EGEDEEY	Polyglutamylation -- yes, except Apa1a
·1a	Somatic and Testis function in Dm, somatic only in Bm	(+/-) 0.000	(+/-) 0.002	(+/-) 0.003	Ha·1c DLAALEKDY EEVGIDTADG EDDEEANDY	Polyglycylation - yes, except Apa1a
		(n = 17)	(n = 4)	(n = 9)	Dm·1a DLAALEKDY EEVGMDSDG EGEGAEAY	Acetylation -- yes, except Tca1
·1b	Low level somatic in Dm	0.014	-	Average 0.069	Ae·1a DLAALEKDY EEVGMDSDG EGEGAEAY	Detyrosination -- yes, except Apa1a, Apa1c, Pha1a
		(+/-) 0.004	(+/-)	(+/-) 0.008	Bm·1 DLAALEKDY EEVGMDSAEG EGEGAEAY	Phosphorylation - no
		(n = 10)	(n = 6)	(n = 6)	Tc·1 DLAALEKDY EEVGMDSDG EGEGAEAY	Palmitoylation - yes
·2	Minor isoform often co-expressed with ·3 in variety of pre-adult mesodermal and neural domains in Dm and Bm	0.014	-	Average 0.069	Dm·2 DLAALEKDY EEVQIDSTTE LGEDDEY	Polyglutamylation - ?
		(+/-) 0.004	(+/-)	(+/-) 0.008	Ae·2 DLAALEKDY EEVQIDSTEE VQEGDEY	Polyglycylation - ?
		(n = 10)	(n = 6)	(n = 6)	Bm·2 DLAALEKDY EEVQIDSTEG EDDEENYY	Acetylation - yes
		Absent in Dp and Du	Maximum 0.170	(n = 6)	Tc·2 DLAALEKDY EEVAVDSIEG EDDEEDEY	Detyrosination - yes
					Am·2 DLAALEKDY REVEQADATNT DQEDEY	Phosphorylation - no
					Ph·2 DLAALEKDY EEVQIDSTEE VQEGDEY	Palmitoylation - yes
Table 2: Insect alpha tubulin sequence features. (Continued)

Testis-specific isoform in Bm, absent in Dm	Average	Bm:3	DLAALERDY DEVAIETSDDM QPGADDELPMT sites
	0.231	Tc:3	DLAMLEKDY EEVSIDDIE
	+/-		
	0.003		
	(n = 2)		
Maximum	0.231		
	(n = 2)		

Ovary-specific isoform in Dm, absent in Bm	Average	Dm:4	NIAVLERDF EEVGLDNAEE GGDDEFDEF
	0.560	Ag:4a	DLACLDERY EEVAGDTVAS GEEYYYYDEY
	+/-		
	0.028	Ag:4b	NIRTILKDY EBI
	+/-		
	0.009		
	0.043		
	(n = 12)		
	(n = 2)		
Maximum	0.707	Ph:4	DLAAEKDY EEVGMDSVEG EGEEGGEM
	(n = 5)		

Features of the four alpha tubulin isoforms identified in insects are presented. The function and/or expression domain of each sequence in *D. melanogaster* [16,17] and *B. mori* [35], the two insects in which tubulin expression and function have been studied, are presented in Column 2. Average and maximum pairwise (“All Insects” only) distance calculations in Column 3 refer to the average # amino acid differences/site among conserved isoforms, and the maximum pairwise distance between any two orthologs, including divergent duplication products, respectively. For “all insects”, the only *Drosophila* species included is *Dm*, to avoid a Dipteran skew in the results. CTT sequences are presented in Column 4, for purposes of inspection as they constitute ~50% of the differences among tubulins. Tubulin post-translational modifications (PTMs) occur on sequence motifs whose presence and absence are presented in the Column 5. Polyglutamylation and polyglycylation sequence motifs are degenerate, the “?” indicates that a potentially modifiable, but experimentally uncharacterized residue(s) is present for these PTMs. Unusual sequence features or motifs known to mediate specific tubulin functional specializations are also noted. The full-length sequences for *Nvβ1, Phβ3, Dpβ3, Dsβ3* were not available. Key: *Pediculus humanus corporis* Ph, *Acrithosiphon pismus* Ap, *Anopheles gambiae* Ag, *Drosophila melanogaster* Dm, *D. sechellia* Dc, *D. yakuba* Dy, *D. erecta* De, *D. simulans* Ds, *D. mojavensis* Do, *D. grimshawi* Dg, *D. ananassae* Da, *D. persimilis* Dp, *D. psuedoobscura* Du, *D. virilis* Dv, *D. willistoni* Dw).
Figure 1 Beta tubulin genealogy. Bayesian reconstruction of insect beta tubulin evolutionary relationships. Eighty-six tubulins were analyzed with Homarus americanus (Crustacea, Decapoda) beta tubulins as the outgroup. There are four beta tubulin clades ancestral to insects, the posterior probability scores in support of these clades are in larger font in the figure: β_1 (0.74), β_2 (0.77), β_3 (1.00) and β_4 (0.90). Removal of the 5 most divergent tubulins ($Tc\beta_2b$, $Nv\beta_2b$, c, $Ph\beta_4$ and $Ap\beta_4$) results in support >0.97 for each clade.
Figure 2 Summary of tubulin isoform relationships. Each of the $\beta 1$, $\beta 2$, $\beta 3$, and $\beta 4$ isoforms is represented in both hemimetabolous and holometabolous insect taxa, indicating they evolved prior to the separation of these taxa. The $\beta 2$ isoform duplicated in holometabolous insects following their separation from hemimetabolous insects, based on the clade containing $\text{Am}\beta 2b$, $\text{Nv}\beta 2b$, $\text{Nv}\beta 2c$, $\text{Tc}\beta 2b$. The $\beta 2b$ isoform was lost in the Lepidoptera/Diptera ancestor, and the $\beta 2c$ isoform was lost in every holometabolous taxon except Nv. The $\beta 4$ isoform is represented in hemimetabolous insects and Diptera, suggesting its origin in a duplication event in the common ancestor of Coleoptera, Lepidoptera, and Diptera that was lost in Dipterans.
major somatic isoforms, the most conserved in sequence
of the insect beta tubulins (Table 1). This gene duplicated
in a Bombyx ancestor, giving rise to Bmβ1a and Bmβ1b
(1.0).

A second clade consists of orthologs to the Dmβ2 iso-
form (0.77), which is testis-specific in both Bm and Dm
and supports the motile axoneme [16,17,35]. Insect β2
tubulins share a Gly\(^62\) which mediates doublet microtu-
bulule interactions [36], and a carboxy terminus axoneme
motif "EGEFFFFXXX" (X = Asp or Glu, [37,38]), which serves
as a substrate for polyglutamylation and polyglycylation
[39,40], post-translational modifications characteristic of
motile axonemes. Conversely, the Thr\(^61\) Gly\(^62\) Ala\(^63\) motif,
which contributes to the extreme length of the D. mel-
agonaster β2 protein. Beta 2 duplicated a number of times, in
a Pediculus ancestor (Phβ2a, b: 1.0), an Acrystosiphon
ancestor (Apβ2a-d: 1.0), and in a holometabolous ances-
tor that is not resolved but inferred by the presence of
multiple β2 genes in these taxa (Amβ2b; Nvβ2b, c; Tcβ2b:
(0.82)) and was followed by losses of the β2b and β2c
products in most taxa (Figs. 1, 2).

A third clade consists in orthologs of the Dmβ3 isoform
(1.00), expressed in pre-adult visceral mesoderm, the tes-
tis cyst cells, and sensory neurons [16,17,35]. Beta 3
orthologs contain a 6 codon insertion (5 in Phβ3) in the
internal variable region of the gene, and are the only beta
tubulins that have not duplicated in insects. A fourth
clade consists in orthologs of the Dmβ4 isoform (0.90),
which is expressed in pre-adult tissues [16,17]. Beta 4
orthologs are the most variable beta tubulins in sequence
and in representation among insects, having been lost in
the Tc, Am, and Bm lineages. One Beta 4 duplication
event is found in insects, in an Aedes ancestor (1.0).

Alpha tubulins

There is support for four alpha tubulin insect clades,
though their relationships are less resolved than the beta
tubulins (Figs. 2, 3). There is a major a1 clade with
numerous polynomies (0.68). These are orthologs of the
major Drosophila a1 isoform, expressed in somatic cells
and the testis [16,17], and are most conserved alpha tubu-
Table 2. The second clade consists in the minor a2
isoforms (0.95) expressed in Drosophila visceral meso-
derm and testis cyst cells [8,16,17]. The a2 isoform is
absent in Acrystosiphon, Nasonia, Anopheles, and D. per-
similis and D. psuedoobscura. The a3 clade (1.0) are
orthologs of the Bma3 testis-specific isoforms [35].

The alpha 3 clade falls within the a1 tubulins, indicating
its origin in an a1 duplication event in a Coleopteran/Lepi-
dopteran/Dipteran ancestor that was lost in Dipterans.
The fourth clade consists in the a4 isoforms (0.97), which
is ovary-specific in Dm [16,17], with losses in Ap, Nv, Bm,
and Ae.

Duplications of the major a1 isoform occurred in a
number of insect lineages Acrystosiphon (Apa1-a-c: (0.97,
0.94), Hymenoptera [Apis (Ama1a, b) and Nasonia
(Nva1-a-c): (0.96)]. While not supported in the zero-fold
degeneracy codon tree, a three codon NJ tree (not shown)
provides strong support for independent a1 duplication
events in Aedes a1a, b: (99), Anopheles Aga1a, b: (98) and
melanogaster subgroup Drosophila Ds, De, Dy, De and
Dma1a, b: (99) ancestors respectively.

Sequence distances and carboxy terminus tail sequences

The greatest pairwise distances between any two beta
and alpha tubulin protein sequences are 0.464 (Tcβ4 vs.
Nvβ1) and 0.700 (Aga2 vs. Ama4) respectively, which
reveals that a wide range of amino acid sequence identi-
ties are capable of supporting microtubule assembly per-
ses (Tables 1, 2). Within this overall diversity, orthologs
sequence identities are highly conserved, with average
pairwise distances among orthologs less than 0.011 for
the major α1 and β1 isoforms, and less than 0.140 for the
α2, β2 (excluding divergent duplication products), β3,
and β4 minor isoforms. This suggests that tubulin evolution
is not constrained by microtubule assembly, but by cell-type
specific functions. The a3 testis and a4 ovary-specific
isoforms, and testis β2 tubulin duplication products are
exceptions, with average pairwise distances >0.23, >0.55
and >0.46 respectively. These reproductive isoforms are
the most variable tubulins in sequence. The major iso-
forms are the most conserved, and there is not a single
non-synonymous substitution among the Drosophila β1
and a1 tubulins.

Over 50% of the residues that distinguish tubulin paral-
logs from each other are found in the carboxy terminus
tails (CTT). The CTT lies on the surface of the tubulin
protein, being free from protein folding permits its
greater variability [29]. Because it serves as a site for
many tubulin post-translational modifications (PTMs)
and for binding tubulin interacting proteins, it is an
important mediator of tubulin function.

PTM motifs

Tubulins can undergo numerous post-translational modi-
fications, which occur on specific tubulin sequence
motifs. Polyglutamylation, polyglycylation, detyrosina-
ation, and acetylation are modifications associated with
stable MT arrays and motile axonemes [40,41], phospho-
rylated MTs are excluded from mitotic arrays [42], palmi-
toylation may contribute to the membrane localization
of tubulin [43], and interactions with +TIPS (plus-end
tracking proteins) have been shown to be inhibited by
detyrosination [44].

PTMs that occur on the beta tubulins are polyglutamy-
lation and polyglycylation on a subset of glutamic acid
residues on the CTTs [38-40], and phosphorylation of a
Figure 3 Alpha tubulin genealogy Bayesian reconstruction of insect alpha tubulin evolutionary relationships. Eighty-four tubulins were analyzed with *Homarus americanus* (Crustacea, Decapoda) alpha tubulins as the outgroup. There are four alpha tubulin clades ancestral to insects, the posterior probability scores in support of these clades are in larger font in the figure: α1 (0.68) which contains numerous polytomies; α2 (0.95); α3 (1.0) present in *Bombyx* and *Tribolium*; and α4 (0.97).
conserved Ser178 [42]; these sites are found on most beta tubulins (Table 1). The same PTMs that occur on beta tubulins also occur on alpha tubulins, in addition, alpha tubulins can undergo acetylation of Lys30, detyrosination of the 3' terminal Tyr, and palmitoylation of Cys387 [[43-45]; Table 2]. Alpha tubulins show much more variation in PTM motifs than beta tubulins, both between paralogs and among orthologs, indicating alpha tubulins more typically underlie PTM-based microtubule specializations. Note that presence of a PTM sequence motif is necessary, but not sufficient for a PTM to occur; regulation of tubulin modifying proteins will play an important role in PTM-based cell type specializations.

Selection Tests
Selection tests performed between Drosophila tubulin orthologs and recent gene duplication products (Bm\textbeta1a, b; Tc\textbeta2a, b; Nv\textbeta2a-c; Ap\textbeta2a-d; Ae\textbeta4a, b; Aea\textbeta, b; Aga\textbeta1a, b; Ama\textbeta1a, b; Nva\textbeta1a-c; Apa\textbeta1a-c) find strong purifying selection; dN/dS ranges from 0.070 to 0.000 in all pairwise comparisons with a high degree of statistical significance (p = 0.00) (Additional File 2). The last 60 nucleotides that comprise the CTT were also tested for mode of selection based on their different role in tubulin folding and function [29]. There is evidence of positive selection acting on the CTT of beta 2 duplication products, and on some D. spp. a4 tubulins (p < 0.01), however, the small alignment length after gap removal requires this result be taken with caution.

Rate Tests
The branch lengths in the genealogy indicate clear differences in tubulin evolutionary dynamics not captured by tests of selection, such that we used Tajima's rate test to identify substitution rate difference among tubulin proteins.

Rates tests between ancient tubulin paralogs
The major and minor insect isoforms have their origin in duplication events on major tubulin ancestors. The lack of overlap in major and minor isoform expression domains in Bombyx and Drosophila, the two insects in which expression data is available, indicates subfunctionalization followed these duplication events, resulting in the minor isoforms. Amino acid rate tests find that minor tubulins evolve more rapidly than major a1 and \beta1 tubulins (Table 3); divergence in sequence followed duplication and subfunctionalization.

Rate tests between tubulin orthologs
Tubulin major isoform orthologs vary in the amount of pleiotropy in their function, which may have rate effects. All insects have a \beta2 and \beta3 isoforms, but some do not have \beta4, a2, a3 and/or a4 isoforms. In these taxa the major isoform takes on this minor isoform function, resulting in different amounts of pleiotropy for the major isoforms. For example, the major Nva1 isoform supports both somatic, testis, and ovary alpha tubulin function, vs. the Tca1 isoform that only supports somatic function. These differences in pleiotropy do not affect their rates of evolution, all of the insect major a1 and \beta1 proteins evolve at the same rate respectively (Table 4).

The tubulin minor orthologs in general evolve at the same rate (Table 4), with the exception of the a4 ovary-specific proteins, and divergent testis \beta2 duplication products (Table 5).

Recent duplication events
With respect to more recent duplication events, those post-dating separation of the insect orders, gene duplication did not necessarily result in divergent duplication products. Most recent gene duplications appear in the major alpha 1 and minor beta 2 clades. Recent duplication events always generated at least one conserved product (evolving at the same rate as its orthologs in taxa that did not experience gene duplication). The second product was also conserved in two of the eight minor \beta2 isoform duplication events, and in six of the eight major a1 isoform duplications (Table 5).

The Bm\textbeta1a and Bm\textbeta1b duplication products are undergoing subfunctionalization. Both have wide, but only partially overlapping expression domains; of 16 expression domains tested, they overlap in five, nine are unique to Bm\textbeta1a, and two are unique to Bm\textbeta1b [35]. Both Bm\textbeta1a and Bm\textbeta1b proteins have the same substitution rates as other \beta1 isoforms (Table 5). The Dma\textalpha1a, b products of the melanogaster subgroup a1 duplication are also undergoing subfunctionalization, but of a different kind. Dma\textalpha1b it is expressed in the same domain as the Dma\textalpha1a duplication product, but at much reduced levels [16,17]. These products are evolving at the same, slow rate as the other a1 proteins (Table 5).

Co-evolution between alpha and beta tubulin
Co-functional links between alpha and beta tubulin must be relatively strong to be detected in co-evolution between proteins. Nonetheless, Sato's Mirror-Tree test of co-evolution finds that the alpha-beta tubulins in the Drosophila a2-\beta3 dimer co-evolve (Correlation 0.4258, p < 0.01). As there is nothing unusual about the a2-\beta3 dimer to indicate it is not representative of other tubulins, co-function in the dimer may attenuate rates of tubulin evolution, as change in one tubulin to some extent requires change in the other. Contacts between alpha and beta tubulin along the protofilament and between filaments (inter- and intradimer contacts) are known [46], based on these, none of the a2-\beta3 co-evolving amino acids are in contact with each other. On the other hand, the CTT residues are sites of PTMs, and co-function in this regard could underlie a2-\beta3 co-evolution. Evolving amino acids in a2: (first, nucleotide-binding domain: 42, 50, 68, 70, 128; second, taxol-binding domain: 236, 289;
Third, carboxy-terminus domain: 430, 448, CTT 451-57). Evolving amino acids in β3: (nucleotide-binding domain: 5, 23, 32, 33, 47, 58, 60, 98; taxol-domain: 291; CTT: 442-444.

Intron evolution
Forty-five different introns are present in alpha and beta tubulins (Fig. 4, Additional Files 3, 4), and their distribution indicates they are very mobile. Given the potential for intron insertion and removal to alter tubulin coding sequence, the abundance and dynamic movement of introns among tubulins is surprising.

One way to assess intron evolution is to plot their presence on an insect phylogeny [19], and assume that introns present in more than one isoform were present in the major isoform ancestor to all insect tubulins (Fig. 4). Twenty-three beta tubulin introns were identified. The DGIPRST and U introns each are unique gains in the beta tubulins in which they reside. The CJMP and Q introns are common to insect β4, with losses of MP and Q in Dipteran β4. The remaining 9 introns, ABEFHKLNO, are present in >1 beta tubulin isoform, suggesting they were present in the major beta ancestor to the insect tubulins. However, except for the A intron, the number of independent losses required for this explanation seems sufficiently large to argue against it. Rather, a combination of independent gains, losses, and lateral transfer via recombination between paralogs, for example in EN and P, likely explains their representation.

Twenty-two alpha tubulin introns were identified. Eleven introns, BFHIKLQRTU, are unique gains in the alpha tubulins in which they reside. Three introns, DM and S, are found only in α2 isoforms. The remaining seven introns, ACEGIN and O, are present in >1 isoform. Again, except for the A intron, their presence/absence patterns require too many independent losses to assume they were present in the major alpha ancestor to the insect tubulins.

An important mechanism of intron loss is through recombination with reverse transcribed tubulin mRNA sequences [47,48]. The most 5’ introns are in general the most conserved in both alpha and beta tubulins, consistent with this mechanism. Mechanisms of intron insertion remain largely a mystery [49,50]. Introns found in two paralogs in the same species, such as the beta tubulin EN and P introns and the alpha tubulin E intron, indicate horizontal transfer of the intron through gene conversion or double recombination between paralogs [50].

The majority of introns are found at sites that are highly conserved across all tubulins (Additional Files 3, 4), suggesting intron insertion must accommodate sequence requirements of the protein, rather than visa versa. There are preferences for certain amino acids bracketing insertion sites, for example, glycine resides bracket 16% of intron splice sites, more than twice their frequency in insect tubulins. There are a few observations indicating intron insertion either altered coding sequence or unusual coding sequence facilitated intron insertion. Five of the 20 unique introns (found only in a single tubulin) are correlated with unusual amino acid identities at the insertion sites, the Amα4 F and I introns, the Amα2 H and G introns, and the Phβ2b D intron.

Table 3: Rate tests between major and minor tubulin paralogs.

Major isoform	Minor isoform	Rate test (mean Chi-Sq. +/- Sdv)	n
Insect β1	Insect β2	5.12 +/- 3.81	9
Insect β1	Insect β3	11.85 +/- 4.33	9
Insect β1	Insect β4	21.34 +/- 21.15	9
Insect α1	Insect α2	10.66 +/- 17.34	9
Insect α1	Insect α3	71.19 +/- 9.91	2
Insect α1	Insect α4	97.87 +/- 62.34	2

Protein evolutionary rates were compared between major and minor tubulin paralogs resulting from ancient duplication events predating separation of insect orders, using Ha major alpha and beta tubulins as outgroups. The average and standard deviation of chi-square values for pairwise rate tests are presented (eg. Insect β1 vs. Insect β2 = (Chi-sq. Dmβ1 vs. Dmβ2 + Chi-sq. Agβ1 vs. Agβ2 + Chi-sq. Aeβ1 vs. Aeβ2...)/9). In taxa with multiple copies of an isoform, rate tests are performed using the conserved isoform. The only Drosophila species included is Dm, to avoid a Dipteran skew in the results. Chi-Sq. values > 3.8 have a probability of p < 0.05; Chi-Sq. values > 5.2, p < 0.01.
Table 4: Rate tests on tubulin orthologs.

	Beta 1	Mean Chi-Sq. Vs. Orthologs (n = 8)	Beta 2	Mean Chi-Sq. Vs. Orthologs (n = 8)	Beta 3	Mean Chi-Sq. Vs. Orthologs (n = 8)	Beta 4	Mean Chi-Sq. Vs. Orthologs (n = 4)
Dmβ1	1.08 +/- 0.91	Dmβ2 1.02 +/- 2.09	Dmβ3 0.71 +/- 0.70	Dmβ4 1.62 +/- 1.72				
Aeβ1	1.49 +/- 1.51	Aeβ2 1.47 +/- 3.28	Aeβ3 1.61 +/- 1.46	Aeβ4a 1.29 +/- 0.44				
Agβ1	0.96 +/- 0.98	Agβ2 5.54 +/- 2.11	Agβ3 1.19 +/- 1.20	Agβ4 1.68 +/- 1.65				
Bmβ1a	1.65 +/- 1.05	Bmβ2 1.01 +/- 1.42	Bmβ3 2.31 +/- 1.89	Apβ4 2.53 +/- 1.49				
Tcβ1	1.19 +/- 1.58	Tcβ2a 1.56 +/- 2.47	Tcβ3 2.82 +/- 1.75	Phβ4 29.84 +/- 24.42				
Amβ1	0.97 +/- 0.98	Amβ2a 1.50 +/- 1.94	Amβ3 1.44 +/- 1.22					
Nvβ1	0.74 +/- 1.09	Nvβ2a 1.25 +/- 2.06	Nvβ3 1.48 +/- 1.35					
Apβ1	2.18 +/- 2.17	Apβ2a 0.57 +/- 0.93	Apβ3 2.69 +/- 1.81					
Phβ1	0.51 +/- 0.44	Phβ2a 0.18 +/- 0.16	Phβ3 5.91 +/- 3.03					

	Alpha 1	Mean Chi-Sq. Vs. Orthologs (n = 8)	Alpha 2	Mean Chi-Sq. Vs. Orthologs (n = 4*)	Alpha 3	Mean Chi-Sq. Vs. Orthologs (n = 1)	Alpha 4	Mean Chi-Sq. Vs. Orthologs (n = 5)
Dma1a	0.29 +/- 0.23	Dma2 2.37 +/- 3.34	Bma3 0.56	Dma4 7.29 +/- 10.41				
Aea1a	1.42 +/- 0.98	Aea2 4.76 +/- 0.60	Tca3 0.56	Ago4a 5.46 +/- 5.83				
Aga1a	0.48 +/- 0.42	Bma2 1.69 +/- 2.91	Tca4 13.31 +/- 18.91					
Bma1	0.74 +/- 1.05	Tca2 1.51 +/- 2.31	Ama4 22.17 +/- 11.79					
Tca1	0.43 +/- 0.71	Ama2 56.30 +/- 6.55						
Ama1a	0.45 +/- 0.69	Pha2 1.63 +/- 1.72						
Nva1a	0.29 +/- 0.25	Pha1a 0.83 +/- 0.44						

Protein evolutionary rates were compared among tubulin orthologs. The average +/- Sdv of chi-square values between each tubulin isoform and its insect orthologs is presented (eg. Dmβ1 = (Chi-sq. Dmβ1 vs. Agβ1 + Chi-sq. Dmβ1 vs. Aeβ1 + ...)/8), using Pediculus humanus corporis orthologs as outgroups; Pediculus rates tested with Acyrthosiphon pisum outgroups. In taxa with multiple copies of an isoform, the conserved isoform is used in the rate test. *The highly divergent Ama2 isoform is an outlier, and was removed from the analysis. Chi-Sq. values > 3.8 have a probability of p < 0.05; Chi-Sq. values > 5.2, p < 0.01.
Table 5: Rate tests on tubulin gene duplication products.

Product 1	Product 2	Rate test (Chi-Sq., p)
Bmβ1a	Bmβ1b	1.80 p = 0.179
Tcβ2a	Tcβ2b	79.45 p = 0.000
Amβ2a	Amβ2b	5.40 p = 0.020
Nvβ2a	Nvβ2b	61.81 p = 0.000
Nvβ2a	Nvβ2c	76.17 p = 0.000
Apβ2a	Apβ2b	0.14 p = 0.705
Apβ2a	Apβ2c	0.00 p = 1.00
Apβ2a	Apβ2d	24.00 p = 0.000
Phβ2a	Phβ2b	18.96 p = 0.000
Aeβ4a	Aeβ4b	11.31 p = 0.001
Dma1a	Dma1b	2.00 p = 0.157
Aeα1a	Aeα1b	1.00 p = 0.317
Aγα1a	Aγα1b	0.33 p = 0.563
Ama1a	Ama1b	0.00 p = 1.000
Nva1a	Nva1b	0.20 p = 0.654
Nva1a	Nva1c	1.29 p = 0.256
Apα1a	Apα1b	7.36 p = 0.007
Apα1a	Apα1c	4.00 p = 0.046
Aγα4a	Aγα4b	10.64 p = 0.001

Protein evolutionary rates are compared between tubulin duplication products that postdate separation of insect orders, using Pediculus humanus corporis outgroups. Apβ2a is used as the outgroup in Pediculus rate tests.
Figure 4 Beta and alpha tubulin introns. Beta and alpha tubulin introns are plotted on an insect phylogeny [19], and on Dmα1 and Dmβ1 protein sequences. Introns are labeled A-W and A-V, from the most 5' to most 3' intron found in beta and alpha tubulins. Introns for taxa with multiple copies of an isoform are presented in order, ie. Nvaα1a/Nvaα1b/Nvaα1c.
Tubulin introns are typically large and could therefore be prone to splicing mistakes [51,52]. While ortholog-specific introns are likely promoted by selection, by virtue of the intron insertion event coinciding with the duplication event that led to the isoform, the evolutionary benefit of unique introns in established isoforms requires an explanation. Alternate splicing is not known in tubulin, and thus does not provide a utility to introns. However, regulatory sequences are known to reside in tubulin introns [7,53,54], and if present provide a plausible benefit for intron insertion into established isoforms. Large introns could benefit tubulins, as they reduce Hill-Robertson interference within genes [55].

There is evidence that movement from phase 0 to 1 or 2 accompanies the evolution of old introns as splice signals move from the exon to the intron, while disrupting coding sequence might bias recent introns to phase 0 insertion [56]. There is no association between intron phase and age, 6/11 conserved (old) introns and 7/20 unique (new) introns are phase zero, and except in the few previously mentioned cases, intron insertion regardless of phase does not affect tubulin coding sequence. Intron splice sites tend to remain conserved over time; only the beta tubulin Q and R introns and alpha J and K introns are possibly the same intron undergoing splice site movement.

Evolution of Drosophila beta 2 tubulin cis-regulation

D. melanogaster \(\beta_2\) regulatory elements are conserved in some Diptera, in others they are not found (Table 6). In a subset of these species (D. willistoni, D. ananassae, D. persimilis, D. pseudoobscura) testis expression of the \(\beta_2\) gene was tested, and confirmed through RT-PCR (Fig. 5). The maintenance of testis expression in view of the loss of previously identified testis regulatory elements indicates that compensatory evolution has occurred in their \(\beta_2\) cis-regulation. While the basis of this compensation is not known, it may be more complex than simple re-positioning of regulatory elements, as this would have been identified through our analysis.

Discussion

Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. Gene duplication, subfunctionalization in expression domain, and divergence, particularly in CTT sequences has resulted in the specialized, minor tissue-specific insect isoforms. Conservation of ortholog sequence identities and expression patterns in Bm and Dm suggests ortholog function might be ancient and largely shared among insects, having been established in their common ancestor. The exception to conservation is in the \(a_3, a_4, \) and \(\beta_2b, c\) isoforms. The great sequence variability in these reproductive tissue-specific tubulins indicates species-specific function, and illustrates that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection [57,58].

Pairwise distances between tubulin paralogs reveals a wide variety of tubulin sequences are able to generate an MT array, such that the slow rate of ortholog evolution does not result from a lack of sequences able to generate microtubule arrays. Furthermore, testis-specific isoforms support a wider diversity of microtubule arrays than do major somatic tubulins, yet show more sequence diversity than major isoforms, moreover, somatic tubulins with reproductive function, like Nvr1, do not evolve more slowly than those without. These observations indicate that pleiotropy in microtubule array support does not constrain tubulin evolution; more generally, that support of MT arrays \textit{per se} is not main source of purifying selection on tubulin sequence.

Path-dependence in the order of amino acid change has been proposed as an important constraint in the evolution of beta 2 tubulin residues that participate in an amino acid synergism [1], and may be a general constraint in residues involved in protein folding. This local constraint would result in purifying selection, yet allow for variation among paralogs to build over time as viable evolutionary pathways are found.

In addition, ortholog conservation may result from support of more subtle, cell-type specific aspects of tubulin function that involve sorting among different MT arrays and the timing of MT array generation. These aspects are mediated by CTT sequences. CTTs do not participate in protein folding, but mediate the tubulin code by providing sequence motifs for PTMs, and by mediating interactions with tubulin associated proteins. CTT sequences can influence subcellular localization of different MT arrays, interactions with plus-end tracking proteins (+TIPS) that influence dynamic instability, and sites for motor proteins to preferentially bind [41]. CTT variation can provide MT specializations, for example, insects with unusual axonemes show reduced levels of both polyglutamylation and polyglycylation [39,59]. Conversely, avoiding unusual MT arrays may contribute to the conservation of major somatic isoform CTTs, which need to function in "normal" MT arrays across a diversity of cell types.

Role of gene duplication in tubulin evolution

Insight into the ancient duplication events that generated the major and minor insect tubulins can be found in more recent duplication events. Duplication events that post-
date separation of the insect orders are unevenly distributed among tubulins, with most occurring on alpha 1 and beta 2 templates. Many duplication products are lost, likely because they are deleterious; tubulins are incorporated into MT arrays as a function of cellular concentration, thus diverging duplication products have the potential to poison existing MT arrays, resulting in selection against them. This argues against the classical model of duplication and divergence [60], as without positive selection, in most cases a duplicate gene would be lost before finding novel function. The duplication-degeneration-complementation model [61] proposes that degenerative mutations may accumulate in each duplication product, resulting in subfunctionalization. This alleviates the need for positive selection to operate in order to maintain duplicated genes. Subfunctionalization may

Species	B2UE1	B2UE2	Inr	B2DE1	ATG
D. melanogaster	(-51)	(-32)	(-3)	(+51)	+172
	ATCGTAGTAGCCTA	GAACAT	TTCAGTT	AAAATTATACGT	
				TTAAT	
D. ananassae	(-103)	(-57)	(-3)	(+47)	+212
	ACCCGAGTATCGTT	GAACAG	TCCACCT	AAAATTATACGT	
				TAAAT	
D. erecta	(-51)	(-32)	(-3)	(+51)	+211
	ATCGTAGTAGCCCA	GAACAT	TTCAGTC	AAAATTATACGT	
				TTAAT	
D. grimshawi	(-328)	(-256)	(-3)	(+49)	+155
	ATCAGATTGTTG	GAATAT	CTCATTC	AAAATTAAAGCT	
				GAAAAA	
D. mojavensis	(-51)	(-32)	(-3)	(+48)	+187
	ATCCCCAGTAGTTCC	GTGCTA	CTCATTC	AAAATTATACGT	
				TAAAT	
D. persimilis	(-304)	(-55)	(-3)	(+43)	+196
	CATGTAGAGACCCA	GAACAA	CTCATTC	TACCTTTAAAAAA	
				TTCATT	
D. pseudoobscura	(-304)	(-55)	(-3)	(+43)	+195
	CATGTAGAGACCCA	GAACAA	CTCATTC	TACCTTTAAAAAA	
				TTCATT	
D. sechellia	(-51)	(-32)	(-3)	(+51)	+169
	ATCGCAGTAGCCTA	GAACAT	TTCAGTT	AAAATTATACGT	
				TTAAT	
D. simulans	(-51)	(-32)	(-3)	(+51)	+165
	ATCGCAGTAGCCTA	GAACAT	TTCAGTT	AAAATTATACGT	
				TTAAT	
D. virilis	(-51)	(-32)	(-3)	(+48)	+169
	ATCGAAGTAGCTTA	GGACAT	CTCATTC	AAAATTATACGT	
				AAAAT	
D. willistoni	(-189)	(-165)	(-3)	(+46)	+205
	ATCGAAGAATATTAA	GAACAT	TCCACGT	AAAATTATACGT	
				ACAAAAA	
D. yakuba	(-51)	(-32)	(-3)	(+51)	+155
	ATCGTAGTAGCCCA	GAATAT	CTCAGTC	AAAATTATACGT	
				TTAAT	
Anopheles	(-79)	(-52)	(-3)	(+45)	+188
gambiae	GCCGTACGTGGCGG	GAACCT	TCCATTC	AAAACTAGAAATT	
				TGCTGA	

The cis-regulatory elements required for beta 2 tubulin expression in the testis at appropriate levels have been identified in D. melanogaster; these sequences (when identifiable) are presented for other Drosophila species. Numerical positions indicating sequence position relative to transcription start site (= +1). The B2UE1 element is required for testis-specific gene expression, the B2UE2 and B2DE1 elements for proper expression levels, the Inr element is part of the beta 2 core promotor, and ATG is the start of beta 2 coding sequence.
explain why major and minor duplication products differ in their fate: 8/10 minor isof orm duplications result in a rapidly-evolving and a conserved product, while 7/9 major isof orm duplications result in two equally conserved products. Minor isof orm expression is already confined to narrow expression domain, removing cis-evolution (and subfunctionalization) as a potential prerequisite for their retention and diversification.

Roles of beta and alpha tubulin in specialized MT arrays

Beta tubulins vary little in PTM sites, such that functional variation among them resides in the tubulin modifying protein composition of a cell, not the beta tubulin. Conversely, the alpha tubulins both experience a wider range of PTMs, and show more variation in PTM sequence motifs, and therefore might be more fundamental in mediating the tubulin code.

In addition to this role in PTMs, alpha tubulin may also have the greater potential to specialize in function, thereby playing a role in adaptation, because it seems more dispensable. Only one alpha tubulin, α1, is present in every insect order, as compared to three beta tubulins, β1, β2, β3. Loss of the α2 gene in *D. persimilis* and *D. pseudoobscura* correlates with short sperm and oval testis morphology unique in their genus. Alpha tubulins also show a great amount of standing variation in "unevolved" α1 duplication products that have the potential to participate in the adaptive process.

On the other hand, Tuszynski in his review of vertebrate tubulins [15] suggests the beta tubulin component may be more associated with MT array specializations, the number of beta minor isof orms is greater in most vertebrates than alpha minor isof orms, and more beta minor isof orms co-function with a major, "vanilla" alpha major isof orm than visa versa. This seems to also hold largely true for the insects, as many insect species express only the major alpha isof orm, but multiple beta isof orms, while all but *Bombyx* have 4 distinct beta isof orms.

The rapid evolution of the reproductive tubulins also reveals a use for divergent tubulins. It also provides chance a fundamental role in shaping tubulin evolution it terms of when these events occur, providing an allele for selection to choose from. "Evidence" of this role being real is seen in the odd distribution of isof orms, duplication events, and divergent duplication products, and which component of the dimer, alpha, beta, or both, underlies a microtubule specialization.

One important exception is in reproductive tissue-specific isof orms, which show a large amount of variation potentially capable of responding to sexual selection, a fundamental force in insect evolution. Reproductive isof orms have the fewest PTMs, and the most unusual spermatid axonemes are accompanied by reduction of PTM
modifications [59]. Relaxation of the informational aspect of tubulin function might release tubulins to contribute to specialized testis phenotypes typical of insect evolution. Continued study might show more such relaxations, a form of co-evolution fostering the evolvability of an important gene family.

Additional material

Additional file 1 Insect tubulin sequence accessions. Insect species, tubulin isoform, and accessions are presented. Accessions beginning with gi derive from Flybase blast searches, other accessions from Genbank.

Additional file 2 Likelihood tests of mode of selection acting on tubulin. Maximum likelihood tests of selection are performed on Drosophila tubulins, and genes resulting from recent duplication events (those restricted to a single insect order) show that duplicated genes evolve under purifying selection. The entire coding sequence (beta tubulin nt 1-1422, alpha tubulin nt 1-1422) was analyzed. Analyses were conducted using the Nei-Guoday method in PAML [30]. Alignment gaps were eliminated by complete deletion.

Additional file 3 Beta Tubulin Intron Features. Intron representation in insect tubulins, intron phase, length, and splice donor/acceptor sites are presented. The amino acids bracketing the splice site, whether the splice site is within unique S' and 3' codon sequence, and whether tubulins with the intron share the same sequence is presented, to indicate associations between intron presence/absence and tubulin coding sequence. Key: K = A or C, G = G or T, R = A or G, Y = C or T, W = A or T, S = C or G, V = not T, H = not G.

Additional file 4 Alpha Tubulin Intron Features. Intron representation in insect tubulins, intron phase, length, and splice donor/acceptor sites are presented. The amino acids bracketing the splice site, whether the splice site is within unique S' and 3' codon sequence, and whether tubulins with the intron share the same sequence is presented, to indicate associations between intron presence/absence and tubulin coding sequence. Key: K = A or C, G = G or T, R = A or G, Y = C or T, W = A or T, S = C or G, V = not T, H = not G.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MN conceived of the study, carried out the sequence retrieval, determination of intron/exon structure, and performed the data analysis, and editing the manuscript. LG performed the tests RNA preparations and RT-PCR for the different Drosophila species. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the National Science Foundation (MCR-0316359 to MN) for their support of this research, and four anonymous reviewers for very helpful comments.

Author Details

1Department of Biology University of Dayton, Dayton, OH 45467, USA, 2Department of Natural Sciences Central State University 1400 Brush Row Road Wilberforce OH 45384, USA and 3Division of Developmental Biology University of Cincinnati Children's Hospital 3333 Burnet Ave. Cincinnati, OH 45229, USA

Received: 11 August 2009 Accepted: 27 April 2010 Published: 27 April 2010

References

1. Nielsen MG, Raff EC: The best of all worlds or the best possible world? Developmental constraint in the evolution of beta tubulin and the sperm tail axoneme. *Evolution & Development* 2002; 4:303-315.

2. Levowitz RI, Hubby JI: A molecular approach to the study of generic heterozygosity in natural populations. II. of variation and degree of heterozygosity in natural populations of *Drosophila pseudobscura*. Genetics 1966, 54:595-609.

3. Wheat CW, Watt WB, Pollock DD, Schulte PM: From DNA to fitness differences: sequences and structures of adaptive variants of *Colias phosphoglucose isomerase* (PGI). *Mol Biol Evol* 2006, 3:499-512.

4. Meagher RB, Hightower RC: The Molecular Evolution of Actin. *Genetics* 1986, 114:315-332.

5. Fyrberg EA, Fyrberg CC, Biggs JR, Saville D, Beall CJ, Ketchum A: Functional nonequivalence of *Drosophila* actin isoforms. *Biocom Genet* 1998, 36:271-287.

6. St. Mivart. On the Genesis of Species (London 1871).

7. Hoyle HD, Raff EC: Two *Drosophila* beta tubulin isoforms are not functionally equivalent. *J Cell Biol* 1990, 111:1009-26.

8. Hutchens JA, Hoyle HD, Turner FR, Raff EC: Structurally similar *Drosophila* alpha-tubulins are functionally distinct in vivo. *Mol Biol Cell* 1997, 8:481-500.

9. Raff EC, Hutchens JA, Hoyle HD, Nielsen MG, Turner FR: Conserved axoneme symmetry altered by a component beta-tubulin. *Curr Biol* 2000, 10:1391-4.

10. Nielsen MG, Turner FR, Hutchens JA, Raff EC: Axoneme-specific beta-tubulin specialization and conserved C-terminal motif specifies the central pair. *Curr Biol* 2001, 11:529-533.

11. Nielsen MG, Caserta JM, Kidd SJ, Phillips CM: Functional constraint underlies 60 million year stasis of Dipteran testis-specific beta-tubulin. *Evol Dev* 2006, 8:23-29.

12. Hughes AL. Gene duplication and the origin of novel proteins. *Proc Natl Acad Sci USA* 2002, 102(25):8933-8.

13. Dutcher SK. The tubulin fraternity: alpha to eta. *Curr Opin Cell Biol* 2001, 13:49-54.

14. McKeen PG, Vaughan S, Gull K. The extended tubulin superfamily. *J Cell Sci* 2001, 114:2723-2733.

15. Tuszynski JA, Carpenter EJ, Huzil JT, Malinski W, Luchko T, Luduena RF. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. *Int J Dev Biol* 2006, 50:331-358.

16. Matthews KA, Miller DF, Kaufman TC. Developmental distribution of RNA and protein products of the *Drosophila* alpha-tubulin gene family. *Dev Biol* 1989, 132:45-61.

17. Natzel JE, McCarthy BJ. Regulation of *Drosophila* alpha- and beta-tubulin genes during development. *Dev Biol* 1984, 104:187-98.

18. Whiting M. Phylogeny of holometabolus insect orders: molecular evidence. *Zoologica Scripta* 2002, 313-17.

19. Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lenczer MI. Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. *Genome Res* 2006, 16(11):1334-8.

20. Pononarenko AG. The geological history of beetles. *Biology, phylogeny, and classification of Coleoptera, papers celebrating the 80th birthday of Roy A. Crowdon* Edited by: Pakaluk, Slipinski. *Museum and Institute of Zoology Warszaw, Poland*, 1990; 155-171.

21. Everhust NL. Catalogue of the fossil flies of the world (Insecta: Diptera). *Leiden: Backhuys Publishers*, 1994.

22. Gaunt MW, Miles MA. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. *Mol Biol Evol* 2002, 19:748-761.

23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol* 1990, 215(3):403-410.

24. Sequencer, Gene Codes, Ann Arbor, MI.

25. Higgins DJ, Thompson JD, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 1998, 26:3545-3550.

26. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Briefings in Bioinformatics* 2004, 5:150-163.

27. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. *Proc Natl Acad Sci USA* 1992, 89:10195-10199.

28. Ronquist F, John P, Huelsenbeck JP, Mark P van der. *Mr. Bayes v. 3.1*. 2005.
29. Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391:199-203.
30. Yang Z. PAML 4: a program package for phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 2007, 24:1586-1591.
31. Tajima F. A statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
32. Saito T, Yamashita Y, Horimoto K, Kanahisia M, Hiroysku T. Partial correlation coefficient between distance matrices as a new indicator of protein interactions. Bioinformatics 2006, 22(20):2488-2492.
33. Santel A, Kaufmann J, Hyldan R, Renkawitz-Pohl R. The initiator element of the Drosophila beta2 tubulin gene core promoter contributes to gene expression in vivo but is not required for male germ-cell specific expression. Nucleic Acids Res 2000, 28:1439-46.
34. Ashburner M. Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1998.
35. Kawasahi H, Sugaya K, Quan GX, Nohata J, Mita K. Analysis of alpha- and beta-tubulin genes of Bombyx mori using an EST database. Insect Mol Biol 2003, 33:1-7.
36. Raff EC, Hoyle HD, Popodi EM, Turner FR. Axoneme beta-tubulin sequence determines attachment of outer dynein arms. Current Biology 2008, 18:911-914.
37. Raff EC, Fackenthal JD, Hutchens JA, Hoyle HD, Turner FR. Microtubule architecture specified by a beta-tubulin isomorph. Science 1997, 275:70-73.
38. Vent J, Wyatt TA, Smith DD, Banerjee A, Ludueña RF, Sisson JH, Hallworth R. Direct involvement of the isotype-specific C-Terminus of beta tubulin in ciliary beating. J Cell Sci 2005, 118(Pt 19):4333-41.
39. Hoyle HD, Turner FR, Raff EC. Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. Cell Motil Cytoskeleton 2008, 65(4):295-313.
40. Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bré M-H, Levilliers N, Gorovsky MA, Gaertig J. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 2003, 160:1097-1106.
41. Verhey K, Gaertig J. The Tubulin Code. Cell Cycle 2007, 6:2152-2160.
42. Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, Juillan-Binard C, Lantez V, Job D. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol Biol Cell 2006, 17(3):1041-50.
43. Zambito AM, Wolf J. Palmitoylation of tubulin. J Biochem Biophys Res Commun 1997, 239(3):550-4.
44. Peris I, Thery M, Fauré J, Saoudi Y, Lafanechère L, Chilton JK, Gordon-Weeks P, Gallart N, Bornens M, Wordeman L, Wehland J, Andrieux A, Job D. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 2006, 174(6):639-49.
45. Palazzo1 A, Ackerman B, Gunderson GG. Tubulin acetylation and cell motility. Nature 2003, 421:230.
46. Nogales E, Whitaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999, 96(1):79-88.
47. Rodríguez-Trelles F, Tarrio R, Ayala FJ. Origins and evolution of splicesosomal introns. Annu Rev Genet 2006, 40:47-76.
48. Sverdlov AV, Babenko VN, Rogozin IB, Koonin EV. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion. Genome 2004, 338(3):385-91.
49. Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biology Direct 2006, 1:22.
50. Roy SW. The origin of recent introns: transposons? Genome Biology 2004, 5:251.
51. Fux-Walsh KL, Dou Y, Lam BJ, Hung SP, Baldi PF, Hertel KJ. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci USA 2005, 102(45):16176-81.
52. Hertel KJ. Combinatorial control of exon recognition. JBC 2008, 283(12):1211-1215.
53. Gasch A, Hinz U, Renkawitz-Pohl R. Introns and upstream sequences regulate expression of the Drosophila B83 tubulin gene in the visceral and somatic musculature, respectively. Proc Natl Acad Sci USA 1989, 86:3215-3218.
54. Gianà S, Morello L, Bardim M, Breviairo A. Tubulin intron sequences: multi-functional tools. Cell Biology International 2003, 27:203-205.
55. Matas G, Nouvellet P, Knightley PD, Charlesworth B. Intron size and exon evolution in Drosophila. Genetics 2005, 170(1):481-5.
56. Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV. Evidence of splice site migration from exon to intron during intron evolution. Curr Biol 2003, 13(24):2170-4.
57. Cvetka A, Singh RS. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J Mol Evol 1995, 41:1085-1095.
58. Tongerson DG, Singh RS. Rapid Evolution Through Gene Duplication and Subfunctionalization of the Testes-Specific 4 Proteasome Subunits in Drosophila. Genetics 2004, 168:1421-1432.
59. Mencarelli C, Caroti D, Bré MH, Levilliers N, Dallas R. Tubulin glycylation and glutamylation deficiencies in unconventional insect axonemes. Cell Motil Cytoskeleton 2005, 61(4):226-36.
60. Ohno S. Evolution by Gene Duplication. Springer Verlag, New York, 1970.
61. Force A, Lynch M, Pickett FB, Amaores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative and specialization: a new paradigm. Genetics 1999, 151:1531-1545.
62. Duan J, Gorovsky MA. Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice. Curr Biol 2002, 12(4):313-6.