Up-regulation of PKCγ subunits of rACC neurons contributes to the development of pain sensitivity in bone cancer rats

CURRENT STATUS: POSTED

Meng She
the second hospital of shandong university

Hao Feng
the Second Hospital of Shandong University

Zequan Feng
Queen Mary College, Nanchang University

Gongming Wang
Shandong Provincial Hospital

Guanghui Cheng
the second hospital of shandong university

Kailin Li
the second hospital of shandong university

Ruoyi Wang
the second hospital of shandong university

Xiaohui Li
15153169878@126.com Corresponding Author
ORCiD: https://orcid.org/0000-0003-4650-2295

DOI:
10.21203/rs.2.63/v3

SUBJECT AREAS
Internal Medicine Specialties

KEYWORDS
Bone cancer pain; rat; rACC; PKCγ; gene silencing
Abstract
To explore the role of PKCγ subunits of rostral anterior cingulate cortex (rACC) neurons in the
development of bone cancer pain in rats. Healthy female Sprague-Dawley rats were randomly divided
into five groups: blank control group (naive group), sham operation group (sham group), bone cancer
pain group (BCP group), BCP plus empty lentiviral vector group (vehicle group) and BCP plus
PKCγ/shRNA recombinant lentiviral vector group (PKCγ group). The BCP group, vehicle group and
PKCγ group received a 10 μl intra-tibial injection of MADB-106 rat mammary carcinoma cell
suspension (4.6×10^8 cell/ml). In comparison, the sham group received a 10 μl intra-tibial injection of
saline. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were
assessed on pre-operation day 0 (baseline) and days 3, 7, 14 and 21 after intra-tibial injection,
respectively. To downregulate the PKCγ subunits of rACC neurons, the PKCγ group received a 10 μl
bilateral rACC injection of shRNA/PKCγ recombinant lentivirus (1.25×10^9 TU/ml) on the day 7 after
intra-tibial injection, whereas the vehicle group received an injection of the same dose of empty
lentiviral vector. Western blotting, immunohistochemical and immunofluorescence analysis were
performed to detect the different expression of PKCγ subunits in rACC neurons among these groups
on postoperative days 7 or 21. No significant difference in the baseline of MWT and TWL was found
among these five groups (P > 0.05). However, compared with the naive group and sham group, the
rats with bone cancer (BCP group, vehicle group and PKCγ group) demonstrated marked mechanical
alldynia and thermal hyperalgesia that was evoked starting on postoperative day 7 following intra-
tibial injection of carcinoma cells (P < 0.05). Meanwhile, the western blotting analysis also confirmed
that the expression of PKCγ in rACC neurons was significantly increased in the BCP model groups (P
< 0.05). However, from postoperative days 14-21, the injection of shRNA/PKCγ recombinant lentivirus
in the PKCγ group alleviated mechanical alldynia and thermal hyperalgesia (P < 0.05). The present
study indicates that up-regulation of PKCγ subunits of rACC neurons in bone cancer pain rats
contributes to the development of bone cancer pain.
Background
The pathogenesis of bone cancer pain remains unknown, and there has been no effective treatment

The anterior cingulate cortex (ACC) is an essential part of the cerebral cortex; in particular, the rostral ACC (rACC) is associated with pain perception and regulation [3-5].

Under the persistent action of noxious stimulation, neurons or synapses in the rACC, in terms of their structure and function, undergo long-term changes, collectively known as neuroplasticity. As a critical signalling molecule in cells, PKCγ plays a vital role in neuronal proliferation, differentiation, synapse formation, transmitter release, and long-term potentiation (LTP) of neuron excitability [6,7]. Previous studies have suggested that PKCγ is involved in the processing of peripheral pain signals and plays an essential role in the treatment of noxious stimulation in the dorsal horn of the spinal cord. Do PKCγ subunits of rACC neurons play an essential role in the formation of bone cancer pain? In this study, the role of the PKCγ subunit of rACC neurons in the development of bone cancer pain was studied in a Bone cancer pain (BCP) rat model. The present results show that intra-tibial injection of mammary cancer cells leads to mechanical allodynia and thermal hyperalgesia as well as the upregulation of the PKCγ subunit of rACC neurons. Notably, the silencing of the PKCγ subunit of rACC neurons via bilateral rACC injection of shRNA/PKCγ recombinant lentivirus alleviates mechanical allodynia and thermal hyperalgesia. This finding indicates that PKCγ subunits of rACC neurons contribute to the development of bone cancer pain.

Methods

Animals and grouping

Healthy adult female SD rats, weighing 180-200 g, were provided by the Experimental Animal Center of Shandong University (Jinan, China). All animal procedures were carried out in line with the recommendation of the Principles of Laboratory [8] and the ethics committee of the International Association for the Study of Pain (IASP) [9]. The study was approved by the ethics committee for Animal Care and Use Committees of the Experimental Animal Center of the Second Hospital of Shandong University (Jinan, China) before the start of the experiments (Permit number: KYLL-2017 (LW) 017). The number of animals used was kept as small as possible, and animal suffering was minimized to the lowest degree according to IASP guidelines [9]. All rats were maintained in the following identical conditions: a controlled temperature of 22 °C, a 12-hour light/dark cycle and ad
libitum access to food and water. One week later, the rats were randomly divided into five groups (n=12/group): the blank control group (naive group), sham operation group (sham group), bone cancer pain model group (BCP group), BCP plus empty lentiviral vector group (vehicle group) and BCP plus PKCγ/shRNA recombinant lentiviral vector group (PKCγ and naive groups: healthy rats without any treatment. Sham group: unilateral intra-tibial injection of normal saline. BCP-treated groups (BCP group, vehicle group and PKCγ group): unilateral 10 μl intra-tibial injection of MADB-106 rat mammary cancer cells (cell density 4.6×10^8 cell/ml) (from Cancer Institute of Concord Medical University of Chinese Academy of Medical Sciences).

Preparation of MADB-106 rat mammary cancer cells

MADB-106 rat mammary cancer cells were maintained in Dulbecco's modified Eagle's medium (DMEM); supplemented with 10% foetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin; and cultured at 37 °C in a humidified atmosphere of 5% CO₂. The cells were then passaged hebdomadally in terms of ATCC guidelines. For treatment, the cells were disengaged by scouring and then centrifuged at 900 rpm for 3 minutes. The pill was suspended in Hank's balanced salt solution. Cells in the logarithmic growth phase were selected for experiments and then used for intra-tibial injection.

Establishment of the rat BCP model

The bone cancer pain model of rats was established as previously described [4]. The rats were anaesthesitized with an intraperitoneal injection of 10% chloral hydrate (300 mg/kg). Superficial incisions were made in the skin overlying the patella to expose the tibial head with minimal damage. A 23-gauge needle was inserted into the medullary cavity of the tibia, and 10 μl MADB-106 rat mammary cancer cell suspension (4.6×10^8 cells/ml) was slowly injected into the tibial cavity through the needle. The injection site was closed with bone wax immediately after the syringe was removed to prevent the cell suspension from leaking out. The wound was sutured to avoid leaving a dead space and was disinfected with iodophors to prevent infection. The initial treatment of the vehicle group and
PKCγ group was the same as that of the BCP group. In the sham group, unilateral intra-tibial injection of normal saline was used. No experimental procedures were performed in the naive group.

Construction of lentiviral vectors expressing PKCγ/shRNA

The lentiviral vectors expressing PKCγ/shRNA (LV-PKCγ/shRNA recombinant lentivirus) were packaged using the PKCγ interference sequence TGAATGTGCACCGACGCTG, the plasmid pLVTHM (Shanghai Gene Chem Gene Co., Ltd, Shanghai, China) and the lentiviral packaging plasmid. The PKCγ interference sequence was cloned into the lentiviral vector pLVTHM-GFP (Shanghai Gene Chem Gene Co., Ltd, Shanghai, China). Moreover, the lentiviral vector pLVTHM-GFP and packaged plasmids were co-transfected into 293T cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The final titre of PKCγ/shRNA recombinant lentivirus was 1.25×10^9 TU/ml.

PKCγ/shRNA recombinant lentivirus administration into the rACC

After the BCP model was established, rats were implanted with stainless steel cannulas for intra-rACC drug infusions. For the microinjection studies, rats were anaesthetized with intraperitoneal chloral hydrate (300 mg/kg) and were firmly fastened into a brain stereotactic apparatus with the lambda and bregma at the horizontal level. A 30-gauge stainless steel cannula with a 33-gauge stainless steel stylet plug was bilaterally implanted 0.5 mm above the rACC injection site [2.6 mm anterior to bregma, 0.6 mm lateral from the midline, and 2.5 mm beneath the surface of the skull] in-line with the atlas of Paxinos and Watson [10]. A 10 μl Hamilton syringe with PE-10 tubing was linked to the cannula that extended 0.5 mm over the tip of the guide cannula. The cannula was fixed with denture cement, and all surgical procedures were performed under sterile conditions. Before and at the end of the experiment, the brains were sectioned for cresyl violet staining to verify the cannula position and injection site. The rats were monitored daily after surgery for signs of motor deficiency or infection. In the PKCγ group, 10 μl shRNA/PKCγ recombinant lentivirus (1.25×10^9 TU/ml) was injected into the bilateral rACC over the course of 5 minutes. In the vehicle group, the same dose of empty
recombinant lentivirus was injected. No experimental procedures were performed in the naive, sham and BCP groups.

Assessments of Pain-related behaviours

Before the baseline trial, the rats had a natural appearance and level of activity and ate regularly and were acclimated to the testing environment. The experimental rats were placed in a plastic cage (10x10x15 cm) with a Plantar von-Frey TM Dynamic Plantar Stimulator (Stoelting, USA) at the bottom, and the cage was placed on a wire mesh plate for the experimental operation and observation. After 15 minutes of acclimation, mechanical allodynia was measured as the hind paw withdrawal response to von Frey hair stimulation according to the up-down method. An ascending series of von Frey hairs with logarithmically incremental stiffness (1.0, 2.0, 4.0, 6.0, 8.0, 15.0 and 20.0 g) were applied perpendicularly to the mid-plantar surface (avoiding the less sensitive tori) of each hind paw. The stimulus lasted for ten seconds, and the interval between each measurement was 10 minutes. The minimum stimulus that caused rat paw withdrawal was defined as the MWT.

Rats were placed under a cage on a glass plate that was elevated to allow manoeuvring of a radiant heat source from below. Controlled radiant heat stimuli were applied to the plantar surface of the hind-paw (BME-410A bolometer, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences). The time from the onset of radiant heat application to the withdrawal of the hind paw was defined as the TWL. The glass plate was kept dry and clean during the measurement. Both hind paws were tested independently with a 5 minutes interval between trials so that pain could be restored to normal. A blocking time of 20 seconds was imposed on the stimulus duration to prevent tissue damage. The paw of each rat was tested three times, and the average value was taken. Both MWT and TWL were commonly used as the index to assess mechanical alldynia and thermal hyperalgesia and were measured during a 3-week period: Pre-operative day 0 (baseline) and on days 3, 7, 14 and 21 following the intra-tibial injection.

Western blotting analysis

After the behavioural tests, rats in all groups were anaesthetized with an overdose of chloral hydrate
before the perfusion of 100 ml of phosphate-buffered saline (PBS) through the ascending aorta and
then rapidly sacrificed by decapitation. On days 7 or 21 after intra-tibial injection, the rACC tissues
were immediately removed and frozen in liquid nitrogen, washed with cold PBS containing 2 mM EDTA
and lysed with denaturing SDS-PAGE sample buffer using standard methods. Protein lysates were
separated and transferred onto a polyvinylidene fluoride membrane (Millipore, Bedford, MA). The
membranes were blocked and then incubated with rabbit polyclonal anti-PKCγ antibody (dilution at
1:300; Santa Cruz Biotechnology, Santa Cruz, CA) at 4°C overnight. After the membranes were
washed, they were incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit
immunoglobulin G (IgG) antibody (dilution at 1:5,000; Santa Cruz) at room temperature for 2 hours.
Western blotting was performed to detect the expression of PKCγ in rACC tissues.

Immunohistochemistry analysis

To further verify the expression level of PKCγ in neurons after lentiviral vector injection,
immunohistochemistry analysis was performed. On postoperative day 21, rats were deeply
anaesthetized with an overdose of chloral hydrate and perfused transcardially with 100 ml of PBS,
followed by 250 ml of ice-cold 4% paraformaldehyde. The rACC sections were removed and fixed at 4
°C for 5 hours and then transferred to 30% sucrose/PBS for 24 hours. rACC sections (20 mm) were
incubated for 2 hours at room temperature in a blocking solution (3% normal goat serum) and then
incubated for 48 hours at 4 °C with rabbit polyclonal anti-PKCγ antibody (dilution of 1:500; Santa
Cruz). Following incubation, the tissue sections were washed and incubated for 3 hours at room
temperature in the secondary antibody solution HRP-conjugated goat anti-rabbit IgG antibody
(dilution of 1:2,000; Santa Cruz). The rACC sections were analysed using an LSM confocal imaging
system (Carl Zeiss Japan, Tokyo, Japan).

Statistical analysis

Data are shown as the mean ± standard deviation (SD) and were analysed using SPSS 23.0 software
(IBM SPSS, Armonk, NY, USA). Data from the pain-related behavioural assessments were analysed
using a two-way repeated ANOVA to detect the difference among the groups; whereas One-way
ANOVA followed by Student-Newman-Keuls (SNK) post hoc test was used to compare MWT and TWL at different time points and the differences in the numbers of PKCγ-immune-positive cells and protein expression levels of PKCγ among the groups. A P value of less than 0.05 (two-tailed) was considered to indicate a statistically significant difference.

Results

Rats with bone cancer exhibit increased mechanical allodynia and thermal hyperalgesia.

Comparison of the baseline in MWT and TWL, no significant differences in pain-related behavioural tests were demonstrated among these groups ($P > 0.05$). Furthermore, no significant differences in behavioural tests were measured among the naive and sham groups in the time period examined ($P > 0.05$). But following the intra-injection of mammary cancer cells, rats with bone cancer (the groups BCP, vehicle and PKCγ) demonstrated significantly decreased MWT and TWL on postoperative day 7 compared with the naive and sham groups ($P < 0.05$). Moreover, the reduction of MWT and TWL in groups BCP and vehicle continued until day 21 (Figure 1, 2). This suggests that the rats with intra-injection of mammary cancer cells consistently develop mechanical allodynia and thermal hyperalgesia.

Intra-tibial injection of mammary cancer cells specifically increases PKCγ protein expression levels in the rACC.

To assess PKCγ protein expression in rACC neurons following the development of mechanical pain and thermal hyperalgesia, rats were sacrificed and then rACC tissues were removed on day 7 after intra-tibial injection. As outlined in Figure 3, the expressions of PKCγ protein among the groups were examined by western blotting. Compared with naive and sham groups, the expression levels of PKCγ protein in the rats with bone cancer were significantly increased on postoperative day 7 ($P < 0.05$) (Figure 3a). Intra-tibial injection of mammary cancer cells in the BCP group resulted in a 12.9 % increase in PKCγ protein expression levels, as compared with the naive groups ($P < 0.05$) (Figure 3b).

Bilateral intra-rACC injection of LV-PKCγ/shRNA reduce mechanical allodynia and thermal hyperalgesia in a BCP model.
To investigate whether the downregulation of PKCγ gene in the rACC could moderate bone cancer pain, the pain-related behaviours of the rats were observed for 14 days following the injection of the lentiviral vectors. The rats exhibited a natural appearance and level of activity and ate regularly following bilateral intra-rACC injection of the LV-PKCγ/shRNA. Remarkably, all rats with bone cancer demonstrated increased mechanical allodynia and thermal hyperalgesia at day 7 following mammary cancer cell inoculation; whereas bilateral intra-rACC injection of LV-PKCγ/shRNA improved tactile allodynia in the PKCγ group from postoperative days 14-21 ($P < 0.05$). On the contrary, intra-rACC administration of empty lentiviral vectors had no notable effect on tactile allodynia or thermal hyperalgesia in the rats with bone cancer ($P > 0.05$) (Figure 1, 2). This indicates that mechanical allodynia and thermal hyperalgesia of rats in PKCγ group alleviate.

Bilateral intra-rACC injection of LV-PKCγ/shRNA decrease PKCγ protein expression levels in the rACC.

To evaluate the expression level of PKCγ protein in rACC neurons following bilateral intra-rACC injection of LV-shRNA/PKCγ, rats were killed and then rACC tissues were removed on day 21 after intra-tibial injection. As shown in Figure 4, the expressions of PKCγ protein among the groups were examined by western blotting. Compared with the BCP and vehicle groups, the expression level of PKCγ protein in the rats with LV-PKCγ/shRNA injection was significantly decreased ($P < 0.05$) (Figure 4a). Consistent with the immunohistochemical results, intra-rACC injection of LV-PKCγ/shRNA resulted in a XXX% reduction in PKCγ protein expression levels, as compared with the BCP group ($P < 0.05$) (Figure 4b, 5).

Accurate location of PKCγ reduction within the bilateral rACC following intra-rACC administration of LV-PKCγ/shRNA

To investigate whether LV-PKCγ/shRNA decreased the PKCγ protein expression within the bilateral rACC areas, intra-rACC administration of LV-RNAs was performed in rats with bone cancer. PKCγ-positive neurons in the rACC neurons were assessed by semi-quantitative analysis of immunohistochemical staining on postoperative day 21. The Image J software was used to measure...
the staining intensity. The immunoreactivity of PKCγ protein was found predominantly in superficial laminae of the rACC. Furthermore, the number of PKCγ-positive neurons in rats with intra-rACC administration were lower than that in BCP and vehicle groups ($P < 0.05$) (Figure 5a). In the BCP, vehicle and PKCγ groups, the number of positive neurons of PKCγ within the bilateral rACC were 218.5, 213.5 and 181.5, respectively (Figure 5b). The results not only confirmed that rACC-administered LV-PKCγ/shRNA infection decreased the PKCγ protein expression, but also suggesting that lentivirus microinjection was accurately positioned in rACC area.

Discussion

The present study found that the mechanical allodynia and thermal hyperalgesia developed following intra-tibial injection of mammary cancer cells, and the results in the vitro experiments suggested that pain-related behaviour in rat with bone cancer correlated with increased PKCγ protein expression.

Moreover, it was interesting to note that bilateral intra-rACC injection of LV-PKCγ/shRNA alleviated the mechanical allodynia and thermal hyperalgesia which were accompanied by the diminished PKCγ protein expression level. The results indicate that upregulation of the PKCγ subunit of rACC neurons in rat with bone cancer may contributes to the development of bone cancer pain.

Bone cancer pain is one of the symptoms in terminal cancer patients which has been described as a deep, burning-like chronic pain and has strong inflammatory and neuropathic components [1]. Large of cancer pain animal models have been performed to examine the mechanisms that underlie tumor-evoked pain and hyperalgesia. Using models in which mammary cancer cells are implanted into the tibial bone, researchers have begun to clarify the pathophysiological processes by which cancer produces pain [11]. So far, although there are treatments such as opioid, diphosphonate, radiotherapy, chemotherapy and surgery for relieving cancer pain, it has been reported that many cancer patients have inadequate and undermanaged pain control [12,13]. Therefore, in order to solve this problem, the pathophysiological causes of bone cancer pain need to be further concerned. Some mechanism of bone cancer pain for initiation and maintenance of pain symptoms in spinal cord have been found in rats. [14]. In the present study we discovered that the hind paw mechanical withdrawal threshold and thermal withdrawal latency gradually declined by the infusions of mammary cancer
cells in bone from postoperative days 7-21. This suggests that bone cancer caused both induction and maintenance of the cancer-induced persistent nociception. Moreover, we found that pain hypersensitivity only acquired in the rats suffered from bone cancer but not in the other rats from the remaining time period examined. It suggested that intra-tibial mammary cancer cells injection caused pain-related behaviours which were further shown to be pathologically and physiologically meet to the intended clinical situation.

Recent studies have also shown that the excitability of neurons in the supraspinal cord, such as the ACC, and the enhancement of synaptic transmission play essential roles in the development of chronic pain [15]. The ACC is a considerably large structure of the limbic system that reflects affective and motivational aspects of pain. ACC, especially the rACC, transmits and regulates the nociceptive information [16]. Imaging studies have also reported an increased ACC activity under noxious stimulation and chronic pain conditions [17]. Resection of peripheral cortical tissue, including the rACC can reduce the patient's pain and emotional responses, but does not affect the intensity and location of the pain stimulus [18]. Furthermore, we already have known that the efferent nerves from the ACC area innervate the gray matter around the midbrain aqueduct and the involvement of the rostral loop [19]. Studies have also demonstrated that spinal nociception is regulated by descending modulation from supraspinal structures, including neurons in the ACC and insular cortex[c]. These findings suggested that neuronal activity in the ACC may affect spinal nociception through descending modulatory systems. Meanwhile, Some relevant reports have been involved in the spinal cord areas that peripheral nerve and spinal dorsal horn takes an influential role in the processing of noxious stimulation after suffered from chronic constriction injury [20], but no relevant reports have reported the role of the supraspinal nervous system. Therefore, the experiment results indicated for the first time that pre-injection with the LV-PKCy/shRNA in the rACC partially decrease MWT and TWL, while intra-rACC injection of empty LV failed to prevent pain hypersensitivity. Furthermore, semi-quantitative analyses of the immunohistochemical staining following the injection of LV-PKCy/shRNA into rACC revealed that the reduced PKCy expression levels demonstrated in the present study were statistically significant and largely limited to the superficial laminae of rACC tissues. All of these
results further demonstrated that enhanced nerve excitability of rACC region may play a vital effects in both the induction and maintenance of the bone cancer-induced mechanical and heat hyperalgesia. According to the structural and functional characteristics of different subtypes, PKCs can be divided into conventional (α, βI/II, γ), novel (δ, ε, η, θ) and atypical (ζ, λ, ι, μ) forms [21]. The PKC family has a wide range of functions. When the cell membrane receptor coupled to phospholipase C is activated, DAG is produced, followed by activation of PKC, thus exerting a biological effect. Previous studies demonstrated that PKCs may be important in the processing of nociceptive information in chronic hyperalgesia. PKCγ activates the protein kinase system in neurons, thereby changes the phosphorylation state of the substrate and considers to be a central molecular integrator of nociceptive signaling [22]. In particular, increasing evidence suggests that PKCγ is highly involved in central sensitization [22] as well as synaptic remodeling of neurons and long-term potentiation. Many studies have also indicated that some enhanced processes of reactivities, such as hyperalgesia, may be related to central sensitization. The molecular mechanisms underlying PKCγ-mediated pain hypersensitivity have been examined in recent studies. PKCγ in the trigeminal nucleus caudalis participated in the pathogenesis of chronic migraine [23]. Spinal protein kinase C was also involved in induction and maintenance of both persistent spontaneous inching reflex and contralateral heat hyperalgesia induced by subcutaneous bee venom in the conscious rat [24]. Huang also found that CCR5/ PKCγ signaling pathway may contribute to the maintenance of CIBP in rats [25]. However findings in rACC regions related to PKCγ-mediated pain have not been well established. In this present study, The PKCγ expression in the rACC was measured and found that BCP surgery markedly upregulated the expression of this protein, suggesting that increased PKCγ may participated in inflammatory and neuropathic pain formation. Subsequently, we investigated whether PKCγ in the rACC played a critical role in the development of BCP in rat. The semi-quantitative analysis of immunohistochemical staining and western blotting also showed that the number of PKCγ immunoreactive neurons in rACC was significantly decreased following rats suffered from injection of LV-PKCγ/shRNA. Therefore, these results suggest that BCP activated PKCγ in rACC neurons. We also found that the inhibition of PKCγ by LV-PKCγ/shRNA injection increased the hind paw TWL and MWT.
However the activation of PKCγ by BCP establishment reduced the paw TWL and MWT. It indicates that when PKCγ is silenced, or its function is inhibited, the hyperexcitability of rACC neurons can be no longer induced. Malmberg found that acute pain in PKCγ knockout mice was not affected significantly, while chronic pain was weakened, which is consistent with the present study[26]. The antiallodynic effects of PKCγ antagonists have also been reported in other animal models of chronic pain[25].

As universally used gene delivery systems, recombinant lentiviral vectors is capable of infecting the intermitotic cells and mitotic cells. Once a virus binds to a cell, its genes can be incorporated into the genomes of cells as a stable component of cytogenetics that can be passed on to its offspring during cell division. Meanwhile, the pathogenic genes of lentivirus have been deleted, so recombinant lentiviral vectors are used to express small interfering RNA (short interference RNA, siRNA) [27]. One way to deliver siRNA in vivo is to clone siRNA sequences into plasmid vectors as shRNA (short hairpin RNA). Viral delivery of shRNA expression cassettes allows efficient transduction in brain tissues. In our previous study, We successfully transfected LV-GluN2B/shRNA in rACC neurons and relieved the debilitating pain of bone cancer by selectively decreasing GluN2B expression levels in the rACC [28].

To further explore whether the PKC subunit of rACC neurons play a significant role in bone cancer pain, we injected PKCγ/shRNA recombinant lentiviral vectors into the bilateral rACC to silence the PKCγ subunits of rACC neurons after establish the BCP model. Following intra-rACC administration of LV-PKCg/shRNA, western blotting and immunohistochemistry staining demonstrated a marked decrease in protein expression levels of PKCγ in the rACC. Recombinant lentiviral vectors can play the role of down-regulating the expression of target gene safely and persistently. Compared with Protein inhibitor, lentiviral vectors have the advantages of robust targeting and high specificity and are not limited by the half-life of the drug. The lentiviral vector can maintain a stable "blood concentration" by integrating the host gene into the target gene, which provides an experimental basis for the specific long-term down-regulation of PKCγ expression in rACC. In our study, we found that the analgesic effect did not diminished until postoperative day 21, which may be related to RNA interference inhibiting the function of the PKCγ gene and long-term impact on the expression of PKCγ
protein. This experiment also showed hyperalgesia on postoperative day 7, and the level of pain was not notably reduced until postoperative day 14. This phenomenon was due to the fact that a week was needed for the target gene of the recombinant lentiviral vector to integrate into the target cell genome and to be regularly expressed. This result further supports the hypothesis that RNAi-mediated gene silencing is a potential therapeutic tool for the treatment of various nervous diseases. In our study, the pain sensitivity was significantly reduced after administration of the lentiviral vector PKCγ/shRNA. It proved that upregulation of the PKCγ does play a role in the development of bone cancer pain, whereas the degree of pain sensitivity in rats did not fully return to normal. This result may be related to both the interference of our target sequence, which could only partially downregulate the expression of PKCγ and other mechanisms of bone cancer pain. Therefore, a Follow-up study should exclude more affecting factors and obtain more accurate results, and we need to screen out more representative genes that affect the development of bone cancer pain.

Conclusions
In summary, this is the first study to show that mechanical allodynia and thermal hyperalgesia develop following intra-tibial injection of mammary cancer cells injection accompanied by enhancement of PKCγ expression in the rACC region. Whereas the silencing of PKCγ protein in rACC neurons by bilateral rACC injection of shRNA/PKC recombinant lentivirus reversed mechanical and thermal hyperalgesia. These results are significant and suggests that PKCγ subunits in rACC neurons contribute to the development of bone cancer pain.

List Of Abbreviations
ACC: Anterior cingulate cortex, rACC: Rostral Anterior cingulate cortex, LTP: Long-term potentiation, MWT: Mechanical withdrawal threshold, TWL: Thermal withdrawal latency

Declarations

Ethics approval and consent to participate
All experimental procedures and animal handling were performed according to both the Guiding Principles for the Care and Use of Laboratory Animals. The protocol was approved by the committee on the Ethics of Animal Experiments of the Shandong University.

Consent for publication
Not applicable

Availability of data and material

The datasets generated and analyzed during the current study are not publicly available due to copyright issues, but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the Development Projects of Science and Technology of Shandong Province (GG201709250218 and 2014GSF118160) and the Key Research and Development Project of Shandong Province (2018GSF118165). The funding had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

MS, HF, GW, and KL submitted Ethics application, participated in provision of teaching sessions, collected data and prepared manuscript. ZF, RW and GC carried out compilation of data and performed statistical analysis. HF and XL designed study, assisted with ethics application, participated in design and delivery of teaching sessions and supervised preparation of manuscript writing. All authors read and approved the final manuscript.

Acknowledgements

The author wish to express special thanks to Chuanliang Peng (the Second Hospital of Shandong University) for data management and outstanding technical assistance.

Authors’ information

Not applicable.

References

1. Glare PA, Davies PS, Finlay E, Gulati A, Lemanne D, Moryl N, Oeffinger KC, Paice JA, Stubblefield MD, Syrjala KL: Pain in cancer survivors. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2014, 32(16):1739-1747.
2. Li, P., Zhang, Q., Xiao, Z., Yu, S., Yan, Y., & Qin, Y.: Activation of the P2X7 receptor in midbrain periaqueductal gray participates in the analgesic effect of tramadol in bone cancer pain rats. *Molecular Pain* 2018, 14.

3. Winkelman JW, Plante DT, Schoerling L, Benson K, Buxton OM, O'Connor SP, Jensen JE, Renshaw PF, Gonenc A: Increased Rostral Anterior Cingulate Cortex Volume in Chronic Primary Insomnia. *Sleep* 2013, 36(7):991-998.

4. Lu Y, Zhu L, Gao Y-J: Pain-related aversion induces astrocytic reaction and proinflammatory cytokine expression in the anterior cingulate cortex in rats. *Brain research bulletin* 2011, 84(2):178-182.

5. Grone M, Dyck M, Koush Y, Bergert S, Mathiak KA, Alawi EM, Elliott M, Mathiak K: Upregulation of the rostral anterior cingulate cortex can alter the perception of emotions: fMRI-based neurofeedback at 3 and 7 T. *Brain topography* 2015, 28(2):197-207.

6. Martin, W. J., Liu, H., Wang, H., Malmberg, A. B., & Basbaum, A. I.: Inflammation-induced up-regulation of protein kinase Cgamma immunoreactivity in rat spinal cord correlates with enhanced nociceptive processing. *Neuroscience* 1999, 88(4), 1267-1274.

7. Alba-Delgado C, El Khoueiry C, Peirs C, Dallel R, Artola A, Antri M: Subpopulations of PKCgamma interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach. *Pain* 2015, 156(9):1714-1728.

8. Council NR: *Guide for the Care and Use of Laboratory Animals. Washington, DC: The National Academies Press* 1996.

9. Zimmermann M: *Ethical Guidelines For Investigations Of Experimental Pain In Conscious Animals. Pain* 1983, 16(2):109-110.

10. Paxinos G, Watson C: *The rat brain in stereotaxic coordinates: hard cover*
11. Remeniuk, B., Sukhtankar, D., Okun, A., Navratilova, E., Xie, J. Y., King, T., & Porreca, F: Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain 2015, 156(10), 1864.

12. Rolke R, Radbruch L: Pain therapy in cancer and palliative medicine. Schmerz 2015, 29(5):557-561.

13. Mao-Ying QL, Zhao J, Dong ZQ, Wang J, Yu J, Yan MF, Zhang YQ, Wu GC, Wang YQ: A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochemical and biophysical research communications 2006, 345(4):1292-1298.

14. Hang, L. H., Li, S. N., Dan, X., Shu, W. W., Luo, H., & Shao, D. H.: Involvement of spinal CCR5/PKCγ signaling pathway in the maintenance of cancer-induced bone pain. Neurochemical research 2017, 42(2), 563-571.

15. Becerra, L., Navratilova, E., Porreca, F., & Borsook, D. : Analogous responses in the nucleus accumbens and cingulate cortex to pain onset (aversion) and offset (relief) in rats and humans. Journal of neurophysiology 2013, 110(5), 1221-1226.

16. LaGraize, S. C., & Fuchs, P. N.: GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Experimental neurology 2007, 204(1), 182-194.

17. Hsieh, J. C., Stone-Elander, S., & Ingvar, M.: Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neuroscience letters 1999, 262(1), 61-64.

18. Qu, C., King, T., Okun, A., Lai, J., Fields, H. L., & Porreca, F.: Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous
neuropathic pain following partial or complete axotomy. *PAIN*® 2011, 152(7), 1641-1648.

19. Zhuo, M.: *Molecular mechanisms of pain in the anterior cingulate cortex.* *Journal of neuroscience research* 2006, 84(5), 927-933.

20. Zou, W., Song, Z., Guo, Q., Liu, C., Zhang, Z., & Zhang, Y.: *Intrathecal lentiviral-mediated RNA interference targeting PKCγ attenuates chronic constriction injury-induced neuropathic pain in rats.* *Human gene therapy* 2010, 22(4), 465-475.

21. Sossin W, Wayne S. *Isoform specificity of protein kinase Cs in synaptic plasticity.* *Learning & memory* 2007, 14(4): 236-246.

22. Velázquez, Kandy T., Husam Mohammad, and Sarah M. Sweitzer. *Protein kinase C in pain: involvement of multiple isoforms.* *Pharmacological research* 2007, 55(6): 578-589.

23. Wu, B., Wang, S., Qin, G., Xie, J., Tan, G., Zhou, J., & Chen, L.: *Protein kinase Cγ contributes to central sensitization in a rat model of chronic migraine.* *Journal of Molecular Neuroscience* 2017, 63(2), 131-141.

24. Li, K. C., Zheng, J. H., & Chen, J.: *Involvement of spinal protein kinase C in induction and maintenance of both persistent spontaneous flinching reflex and contralateral heat hyperalgesia induced by subcutaneous bee venom in the conscious rat.* *Neuroscience letters* 2000, 285(2), 103-106.

25. Hang, L. H., Li, S. N., Dan, X., Shu, W. W., Luo, H., & Shao, D. H.: *Involvement of spinal CCR5/PKCγ signaling pathway in the maintenance of cancer-induced bone pain.* *Neurochemical research* 2017, 42(2), 563-571.

26. Malmberg, A. B., Chen, C., Tonegawa, S., & Basbaum, A. I.: *Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ.* *Science* 1997, 278(5336),
279-283.

27. Zhai, Z., Sooksa-nguan, T., & Vatamaniuk, O. K.: Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant physiology 2009, **149**(2), 642-652.

28. Xu, Y., Wang, G., Zou, X., Yang, Z., Wang, Q., Feng, H., & Zhang, M.: siRNA-mediated downregulation of GluN2B in the rostral anterior cingulate cortex attenuates mechanical allodynia and thermal hyperalgesia in a rat model of pain associated with bone cancer. Experimental and therapeutic medicine 2016, **11**(1), 221-229.

Tables
Due to technical limitations, tables are only available as a download in the supplemental files section.

Figures
Mechanical allodynia after intra-tibial injection and rACC microinjection of lentiviral vectors. Animals were either not operated on (naive group) or were intra-tibially injected with saline (sham group), or intra-tibially injected with mammary cancer cells (BCP group), or with empty lentiviral vector (vehicle group), or with LV-PKCγ/shRNA (PKCγ group). The rats subjected to the bone cancer showed a significant reduction in MWT (P < 0.05). The rats treated with LV-PKC/shRNA showed a significant increase in MWT compared with the groups BCP and vehicle (P < 0.05). The MWT was measured pre-operation day 0 (baseline) and on days 3, 7, 14 and 21 after intra-tibial injection. Furthermore, “pre-op” is the time point of the baseline of MWT before rats with intra-tibial injection, and “3,7,14 and 21” is the time point of 3,7,14 and 21 days after intra-tibial injection. Significance was defined as *P < 0.05, compared with the naive or sham group; #P < 0.05, compared with the BCP or vehicle group. Data are presented as mean±SD for 6 rats per group.
Figure 2

Thermal hyperalgesia after BCP treatment and rACC microinjection of lentiviral vectors. Animals were either not operated on (naive group) or were intra-tibially injected with saline (sham group), or intra-tibially injected with mammary cancer cell (BCP group), or with empty lentiviral vector (vehicle group), or with LV-PKCγ/shRNA (PKCγ group). The groups subjected to the intra-tibial injection showed a significant reduction in TWL (P < 0.05). The rats treated with LV-PKCy/shRNA showed a significant increase in TWL compared with groups BCP and vehicle (P < 0.05). The TWL was measured pre-operation day 0 (baseline) and on days 3, 7, 14 and 21 after intra-tibial injection. “pre-op” is the time point of the baseline of TWL before intra-tibial injection in rats, “3,7,14 and 21” is the time point of 3,7,14 and 21 days after intra-tibial injection. Significance was defined as *P < 0.05, compared with the naive or sham group; #P < 0.05, compared with the BCP or vehicle group. Data are presented as mean±SD for 6 rats per group.
PKCγ protein expression in the rACC neurons was assessed 7 days after intra-tibial injection. Western blot analysis showed that PKCγ protein was up-regulated in the rats with bone cancer (BCP group, vehicle group and PKCγ group), 7 days after intra-tibial injection (P < 0.05). Lane 1, naive group; lane 2, sham group; lane 3, BCP group; lane 4, vehicle group; lane 5, PKCγ group. Significance was defined as *P < 0.05, compared with naive or sham group. Data are presented as mean±SD for 3 rats per group.
PKCγ protein expression in the rACC neurons was assessed 21 days after intra-tibial injection. Western blot analysis showed that PKCγ protein was up-regulated in the groups treated with intra-tibial injection (BCP group, vehicle group and PKCγ group), 21 days after BCP model establishment (P < 0.05), however, PKCγ protein was downregulated by LV-PKCγ/shRNA, 21 days after intra-tibial injection compared with the naive and sham groups (P < 0.05). Lane 1, naive group; lane 2, sham group; lane 3, BCP group; lane 4, vehicle group; and lane 5, PKCγ group. Significance was defined as *P < 0.05 compared with the naive or sham group; #P < 0.05, compared with the BCP or vehicle group. Data are presented as mean±SD for 3 rats per group.
PKCγ immunohistochemistry in the rACC neurons of the rat bilateral rACC after rACC microinjection. Immunoreactivity of PKCγ was found predominantly in the superficial laminae of the rACC sections. PKCγ immunoreactivity was increased in the rat with intra-tibial injection (C, D and E) when compared with the naive and sham groups (A and B) (P < 0.05). PKCγ immunoreactivity was decreased significantly in the PKCγ group (E) compared with groups BCP and vehicle (C and D) (P < 0.05). Rats treated with LV-PKCγ/shRNA showed a more significant decrease in the number of cells with active PKCγ (staining intensity) than the vehicle and BCP groups (C and D) (P < 0.05). Tissues were collected 21 days after rat with intra-tibial injection. Significance was defined as *P < 0.05, compared with the naive or sham group; #P < 0.05, compared with the BCP or vehicle group. Data are presented as mean±SD for 3 rats per group. Immunohistochemistry graph A. naive group B. sham group C. BCP group D. vehicle group E. PKCγ group. SABC×200tb

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
ARRIVE.pdf
Tables.pdf
