Effects of Planted Pollinator Habitat On Bee Health And Interspecific Pathogen Detection

Hannah K. Levenson (hklevens@ncsu.edu)
North Carolina State University https://orcid.org/0000-0002-1667-0127

David R. Tarpy
North Carolina State University https://orcid.org/0000-0001-8601-6094

Research Article

Keywords: bee, pathogen, bee health, shared floral resources, pollinator habitat

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1178773/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Shared resources can instigate pathogen spread due to large congregations of individuals in both natural and human modified resources. Of concern is the addition of pollinator habitat in conservation efforts as it attracts bees of various species, potentially instigating interspecific sharing of pathogens. Common pathogens have been documented across a wide variety of pollinators with shared floral resources instigating their spread in some, but not all, cases. To evaluate the impact of augmented pollinator habitat on bee health, we screened samples from eight bee species across three families against a panel of 9 pathogens using RT-qPCR. While we found that some habitat characteristics influenced pathogen detection, we found no evidence that pathogen detection in one bee species was correlated with pathogen detection in another. These findings suggest factors other than the habitat itself may be more critical in the dissemination of diseases among bee species. However, we found high levels of gut parasites in some bee species which may be of concern, such as Bombus pensylvanicus. Future monitoring of bee health at augmented pollinator habitat is needed to ensure pathogens do not build up over time to then spread within their communities.

Introduction

Shared resources can pose health risks to organisms; this is true for naturally occurring resources such as mating grounds or watering holes, but also for human modified resources such as supplemental wildlife feed, hunter attractants, and even bird feeders. These shared resources can result in dense congregations of individuals potentially causing them to act as "hotspots," leading to pathogen build up that can then spread throughout the environment. Further, the interspecific spread within these congregations can intensify if resources are scarce or limited. In some cases, the resource itself can harbor pathogens, increasing pathogen spread within populations. However, interspecific and intraspecific pathogen spread depends on the host competency of the individual and the species for each pathogen in question. Rather than acting as a hotspot, an incompetent host in a biologically diverse community can dilute the spread of a pathogen.

Pollinator population declines have been repeatedly suggested to be driven by factors including agricultural intensification, nutritional stress, habitat alteration and fragmentation, and pathogens, all of which can interact synergistically. Habitat loss in particular has arguably received the most attention in recent years. To combat this, augmenting habitat to support pollinators is becoming an increasingly popular conservation tool, especially in agricultural settings. While such habitat has been found to support pollinator abundance and diversity, it is being implemented en masse with limited scientific evidence for best practices. Evaluating the impacts of this habitat on bee populations and bee health is critical to ensure that we are not exacerbating the exact pressures that are intended to be alleviated.

Parallels can easily be drawn between human modified pollinator habitat to support bees and the shared resource examples of watering holes, supplemental wildlife feed, and bird feeders. There is a great wealth of previous literature exploring the potential for pathogen cross-over among bee species (Tables 1 and 2), particularly because similar pressures are of concern; for example, there is evidence that high abundance of common species can intensify pathogen occurrence. Additionally, certain flower species have been found to harbor pathogens; however, this could be counteracted or ameliorated with increased flower community diversity. As differing results have been documented (Tables 1 and 2), it begs the question: will augmented pollinator habitat act to congregate individuals leading to hotspots of pathogen spread, or will these habitats attract a diverse pollinator community leading to pathogen dilution? And what role do the habitats themselves play in pathogen spread or dilution? To evaluate how pollinator habitat influences pathogen dynamics within bee communities, we evaluated the pathogen prevalence in eight bee species from three families across 2 years. To do this, we sampled newly established pollinator habitat across North Carolina as part of the North Carolina Department of Agriculture and Consumer Services' mandate titled "Protecting NC Pollinators." We investigated pathogen dynamics within Apis mellifera, within Bombus impatiens, between Apis mellifera and Bombus impatiens, and within six other bee species that have rarely if ever been quantified in this context.

Materials And Methods

Sample Collection

Samples were collected at established pollinator habitat at 12 sites across North Carolina in 2017 and 2018. Collection events occurred once a month for 4 months during peak bloom at each plot, for a total of four sampling events per locations per year (hereafter referred to as Spring, Early Summer, Late Summer, and Fall), utilizing hand nets for 30 ± 10 minutes along haphazard transects. Focus was placed on the most commonly occurring species to ensure sufficient replication. Each individual bee collected was placed into a separate 1.7 ml microcentrifuge tube and transported back to the lab on dry ice where they were then stored at -80 °C until further processing. At each station during each sampling event, the flower cover and flower diversity within the plot was documented and categorized into low, medium, or high. All samples were collected in accordance with the guidelines established by the NC Department of Agriculture and NC Fish and Wildlife Service.
Table 1
A summary of previous screenings of bees for interspecifically similar pathogen presence. A two-letter code is used for each country, with a two-letter state code also included for US projects. The total number of bee species tested is shown, followed by what common species are included. Similarly, the total number of pathogens tested is shown, followed by what common pathogens are included. This table shows infection and traditional PCR results only.

Technique Sample Processing	Reference	Location	No. of Species	Apis	Bombus	Other	Method	Cycle Number	No. of Path. Tested	BQCV	DWV	IAPV
Infection Validation Pool	24	UK	1 *				PCR	35	1			
Indiv.	46	DE	2 *				RT-PCR	35	1			*
	41	N/A	2 *		*		RT-PCR	35	1			
	40	NL	2 *		*		qPCR	40	3			*
PCR and RT-PCR Pool	47	JP	2 *				RT-PCR	35	7	*	*	*
	48	AR	1 *				RT-PCR	40	7	*	*	*
	49	EU	3 *				RT-PCR	NR	9			
	50	BE	6 *				RT-PCR	35	16	*	*	
	51	BE	4 *				RT-PCR	35	12			
	52	CA	2 *				RT-PCR	40	7	*	*	*
	53	BE	8 *				RT-PCR	35	10			
	54	TX, US	15 *				RT-PCR	30	6	*	*	
	43	FR	30 *				RT-PCR	35	7			
PCR and RT-PCR Pool	55	AR	6 *				PCR	30	4			
Indiv.	56	PA, US	15 *		*		RT-PCR	35; 38	5	*	*	*
	57	UT, US	1 *				RT-PCR	40	1			
	21	PA, US	30 *		*		RT-PCR	35; 38	5	*	*	*
	58	G.B.	2 *		*		RT-PCR	NR	2			
	59	EN	7 *				RT-PCR	35	6			
	60	CO	1 *				PCR	35	10			*
	35	N/A	2 *		*		RT-PCR	35	5	*		
	61	DE	33 *		*		RT-PCR	40	6			*
	62	PL	4 *				PCR; RT-PCR	35	6			
	63	US	28 *				PCR	40	3			
	64	AR	3 *				RT-PCR	35	10	*	*	*
	65	DE	24 *		*		PCR	35	1			
	66	NY, US	2 *		*		RT-PCR	NR	3	*	*	
	67	NZ	24 *		*		RT-PCR	35	5	*	*	
	14	NY, US	9 *		*		PCR	40	5			
	68	NE, US	4 *		*		RT-PCR	40	4	*	*	*
Both	69	IT	1 *				RT-PCR	50	7	*		
Table 2
Similar to Table 1, this table summarizes previous screenings of bees for interspecifically similar pathogens. This table shows qPCR results only.

Technique Sample Processing	Reference	Location	No. of Species	Apis	Bombus	Other	Method	Cycle Number	No. of Path. Tested	BQCV	DWV	IAPV
qPCR and qRT-PCR	Pool	UT, US	1	*			RT-qPCR	30	1	*		
		MX	1	*			qPCR	40	10	*	*	
		IA, US	5	*		*	RT-qPCR	40	5	*		*
		IT	1	*			RT-qPCR	50	1	*		
		VT, US	3	*	*		RT-qPCR	40	3	*	*	*
		PA, US	3	*	*	*	qPCR	35	5	*		*
Indiv.		UK	17	*	*	*	PCR; RT-PCR	40	4	*		
		G.B.	2	*			RT-qPCR	40	6	*		
		UK	5	*		*	RT-qPCR	45	5	*		
		CH	2	*			qPCR	40	1			
		PE; BO	3	*			qPCR	NR	5			
		IL	5	*			RT-qPCR	35	4			
		MI, US	4	*		*	RT-PCR	30-37	3			
		IA, US	3	*			RT-qPCR	45	3			
Both	This paper	NC, US	8	*	*	*	RT-qPCR	28-32	9	*	*	*

Pathogen Screening

Eight different bee species (Apidae: *Apis mellifera*, *Bombus impatiens*, *Bombus pensylvanicus*, *Svastra obliqua*, *Xylocopa virginica*, *Xylocopa micans*; Halictidae: *Halictus poeyi/ligatus*; and Megachilidae: *Megachile xylocopoides*; Table 3) were screened against a panel of 9 different pathogens (Acute Bee Paralysis Virus [ABPV], Black Queen Cell Virus [BQCV], Chronic Bee Paralysis Virus [CBPV], Deformed Wing Virus: Strain A [DWVa], Deformed Wing Virus: Strain B [DWVb], Israeli Acute Paralysis Virus [IAPV], Lake Sanai Virus [LSV], *Trypanosome* Universal primer [*Trypanosome* spp.], and *Vairimorpha* primer [as a *Nosema* universal primer was used during screening, results from this target will henceforth be referred to as *Nosema* spp. for simplicity]; as well as two reference genes (*Apocrita* 28s [Apo28s] and Actin; *Supplemental Table 1*). All primer working stocks were diluted to 5 mmol. North Carolina is on the border of the range for *H. poeyi* and *H. ligatus*; because these two species are cryptic species and morphologically identical\(^{18}\) samples of this species complex are referred to as *H. poeyi/ligatus*.

Seven of the pathogen targets are viruses and were selected because they are some of the most commonly occurring honey bee pathogens that have been shown to negatively affect honey bee health\(^{19}\). Although little is known about the true impact of most of these pathogens on native bee health and longevity\(^{14}\), interspecific infection is possible and transmission has been previously suggested for several of these viruses\(^{20-22}\). The remaining pathogens are gut parasites; these pathogens were selected because they are commonly detected, known to negatively impact
A summary of the number of individuals and pools screened for each bee species during pathogen analysis. The number of samples screened, total number of samples included, number of positive detections for each pathogen, and total number of pathogens detected are shown.

Species	Sample Status	Sample Number	Number of Samples with Positive Detections	Number of Pathogens
Apis mellifera	Individual	189	1 ABPV, 40 BQCV, 32 CBPV, 8 DWVb, 1 IAPV, 27 LSV, 26 Try. spp., 22 Nos. spp.	8
Bombus impatiens	Individual	201	- - - - - - - 68 1 2 58 260 - - - - - 6 1 2	2
Bombus pensylvanicus	Pooled	19	- - - - - - - 6 5 2	2
Halictus poeyi/ligatus	Pooled	58	- - - - - - - 0	0
Megachile xylocopoides	Pooled	2	- - - - - - - 0	0
Svastra obliqua	Pooled	12	- - - - - - - 1 - 2	2
Xylocopa micans	Individual	1	- - - - - - - 1 - 1	1
Xylocopa virginica	Individual	20	- - - - - - - 0	0
Totals		502	1 40 0 32 8 1 27 108 29	29

bee health, interspecific transmission has been previously documented, and infection of gut parasites has been linked to population losses in some cases.

Sample Preparation: Individual bee samples

Samples of *A. mellifera* and *B. impatiens* were processed as individuals as the sample sizes of these species were the highest in our study. Samples of *X. virginica* and *X. micans* were processed as individuals due to their large body size. When processing these individual samples, we removed each specimen from cold storage and kept it on dry ice until crushed, following an adapted protocol from Leite et al. 2012 to ensure successful pulverization and the highest quality RNA due to sample brittleness. We used two Zirconium beads (3.0 mm) for *A. mellifera* and *B. impatiens* and three Zirconium beads for *X. virginica* and *X. micans*, placing each tube into the Iovclor Silamat S6 in order to crush the sample. Once completely pulverized, we extracted RNA using the TRizol® Reagent and the Zymo Direct-zol™ RNA Miniprep Kit, following the Directzol protocol. After extraction, we assessed RNA quantity and quality using the Thermo Scientific NanoDrop ND-1000 Spectrophotometer and diluted to 200 ng/microliter. All RNA was again stored at -80 °C until further analysis.

Sample Preparation: Pooled bee samples

Due to sample size and low pathogen detection (discussed below), we tested *B. pensylvanicus*, *H. poeyi/ligatus*, *S. obliqua*, and *M. xylocopoides* in pools of up to five individuals (depending on how many were collected during each sampling event) using whole bodies (summarized in Table 3). To process pooled samples, we took up to five bees per sampling event per station out of ultracold storage and immediately placed them into a sanitized ceramic mortar. Sufficient liquid nitrogen was immediately added to cover all bee material and allowed to sublimate to ensure that the samples were brittle. We then immediately and quickly pulverized samples using a pestle. Once completely crushed, we filled a new 1.7 microliter tube approximately halfway with the powdered materials so as to leave enough space for the TRizol® Reagent. As individuals of *H. poeyi/ligatus* are small, we combined these pooled samples into one new 1.7 tube and crushed them using the Zirconium bead protocol described above for individual samples. RNA extraction of pooled samples followed the same protocol as described above.

Sample Testing

To determine the concentrations of pathogen infections in the samples, we used a two-step reverse transcriptase quantitative PCR analysis. In step one, we used 1.0 microliter of the extracted RNA to synthesize cDNA using the BioBasic High Reverse Transcriptase Kit (Biobasic, Markham, Canada), after which we diluted the cDNA 5-fold. In step two, we performed real-time PCR in triplicate on 384-well plates using Life Technologies PowerUp SYBER Green chemistry with a Quant Studio 6 Flex machine. We included standards for absolute quantification in each plate, which involved a serial dilution of known quantities of a custom synthesized plasmid containing the targets, with one negative control containing only water also included. We ran each PCR with a reaction volume of 5 microliters with modified cycling conditions from the PowerUp SYBER Green protocol. Even though under this protocol each plate completed 40 cycles during the PCR stage, we only included positive results that were within the range of the quantified standards. If a sample contained a positive result at a cycle number higher than the positive standards, it was not considered to be biologically relevant. Thus, the cycle
number cutoff ranged from 28 – 32 cycles, depending on the target and the specific target’s standard’s results. We performed analyses using the included Quant Studio software and then normalized results to the reference gene levels using GeNorm28.

In 2018, we collected a subset of the flowers on which the bees were foraging and conducted pathogen screening in order to determine if they contained similarly detectable levels of the pathogens. Five flower heads per sampling event were removed, placed in individual bags, and transported back on dry ice as was done with the bee samples. We screened these flowers against our panel of pathogens as detailed above; however, no pathogens were detected (data not included) and as such we did not analyze these data.

Statistical Analysis

Since there is an overdispersion of zeros in our dataset, we used a Zero Inflated Negative Binomial model (ZINB)29 with a logit link. Detection levels of each pathogen were analyzed in two ways; copy number (standardized to the reference gene), and relative intensity (categorized into non-detect (ND) if zero, and low, medium, or high based on the bottom two, third, and fourth quartiles of the natural log transformed copy numbers of each pathogen, respectively). To explore the pathogen dynamics of *A. mellifera* and *B. impatiens*, we included season, flower cover, and flower diversity as independent variables and copy number of each pathogen as dependent variables in a ZINB model. To explore the dynamics between these two species, we used ANOVA in base R and compared *A. mellifera* presence and relative intensity with the presence and relative intensity of *B. impatiens*.

When constructing our ZINB models, year was not found to significantly impact pathogen detection in *A. mellifera* (all p > 0.34), except for BQCV detections (p < 0.05). As such, year was only included as a random effect in models when analyzing BQCV detection in *A. mellifera*. Additionally, sampling location was not found to significantly impact pathogen detection in *A. mellifera* (all p > 0.16), except for Nosema spp. detections (p < 0.0001). However, in order to maintain statistical power, it was not included in any of our models. Both year (p < 0.0001) and station (p < 0.005) were found to significantly impact *Trypanosome* spp. detections in *B. impatiens*, however through an AIC based approach for best model selection these variables were not included in our final model.

Due to low sample size and low pathogen presence, we were not able to conduct further analyses on the pathogen results from the remaining six bee species; however, these findings are summarized descriptively below. All analyses were conducted in RStudio (version 3.6.2) using base R30, the pscl31 package, and the boot32 packages.

Results

We originally collected and screened 616 bee samples; however, we removed 114 samples from analysis as the amplification levels of one or both of the reference genes were at an unacceptably low level. As such, we included a total of 502 samples in our analysis—411 individually processed samples and 91 pooled samples (Figure 1 and Table 3).

Apis mellifera was the only bee species in which we detected any of the viruses in our study. The most commonly detected pathogen in *A. mellifera* was BQCV (40 individuals), followed by DWVs (32), LSV (27), *Trypanosome* spp. (26), Nosema spp. (22), ABPV (1), IAPV (1), and finally CBPV with no detections (Table 3). Further, many individuals were found to be simultaneously infected with multiple pathogens, with two individuals infected with four pathogens (Figure 3). We found that LSV had the highest copy number overall, but that BQCV (29.0% of positive detections) and *Trypanosome* spp. (52.9% of positive detections) more often fell into the high category of relative intensity. Due to low, or no, positive detections, we were unable to analyze ABPV, CBPV, DWVs, and IAPV results for *A. mellifera*. From the pathogens we were able to analyze, we found that BQCV copy number was significantly highest in the spring (logq = -1.34; DF = 11; p < 0.0001, SE ± 1.10), and was lowest at medium flower diversity (p < 0.005, SE ± 2.04). LSV did not significantly change across the sampling season or flower diversity (all p-values > 0.18), but we detected the highest copy numbers in low flower cover (logq = -1.07; DF = 17; p < 0.0001, SE ± 1.51). Conversely, we detected the highest *Trypanosome* spp. copy number at high flower cover (logq = -0.25; DF = 17; p < 0.0005, SE ± 1.20; Figure 2) and when flower diversity was low (p < 0.0001, SE ± 1.27). Additionally, copy number of *Trypanosome* spp. was highest in late summer (p < 0.01, SE ± 1.71; Figure 3). To analyze the Nosema spp. results, flower diversity was removed from the model. We found that copy number detection level of Nosema spp. was highest in fall (logq = -0.44; DF = 13; p < 0.001, SE ± 1.63) and spring (p < 0.0001, SE ± 1.33) and was not significantly impacted by flower cover (p = 0.64). DWVs was not significantly influenced by any of the variables in our model (all p-values > 0.06).

We only analyzed *Trypanosome* spp. copy number within *B. impatiens* as no viruses were detected in any of our *B. impatiens* samples and only one individual was detected with Nosema spp. Copy numbers within *B. impatiens* (68 individuals) were higher than copy numbers in *A. mellifera*. We found that *Trypanosome* spp. copy number was significantly lowest in the fall (logq = -0.85; DF = 17; p < 0.005, SE ± 0.91; Figure 3) and significantly highest with medium flower diversity (p < 0.05, SE ± 0.88) and low (p < 0.01, SE ± 0.70; Figure 2) flower diversity. *Trypanosome* spp. copy number was not significantly influenced by flower cover (all p-values > 0.24).

When exploring pathogen dynamics between *A. mellifera* and *B. impatiens* we focused on *Trypanosome* spp. detections, as this was only pathogen detected in both species with high sample numbers. We did not find any evidence that pathogen detection of one species was correlated with the pathogen detection of the other. Presence of a positive *Trypanosome* spp. detection in *A. mellifera* had no correlation with any relative intensity category in *B. impatiens* (all p-values > 0.15). Similarly, the relative intensity of *Trypanosome* spp. in *A. mellifera* had no correlation to the presence or relative intensity of *Trypanosome* spp. in *B. impatiens* (all p-values > 0.18).
While we did not find any positive detections of viruses in the other bee species tested in this study, we did find gut pathogens. *Trypanosome* spp. were detected in *B. pensylvanicus* (6 pools), *H. poeyi/ligatus* (6), *S. obliqua* (1), and *X. micans* (1 individual; Table 3 and Figures 2-3). *Nosema* spp. was also detected in *B. pensylvanicus* (5 pools) and *S. obliqua* (1). Within these gut pathogen results, *B. pensylvanicus* had the highest copy number detection level for *Nosema* spp., by an entire order of magnitude, followed by *S. obliqua* and then *A. mellifera*. *Bombus pensylvanicus* had the highest copy number detection level of *Trypanosome* spp. again followed by *S. obliqua* and then *B. impatiens*.

Discussion

Apis mellifera was the only pollinator species in which we detected any of the viruses included in our pathogen panel. However, we detected gut pathogens across most of the bee species tested. Some pathogen copy numbers—such as BQCV and *Nosema* spp. in *A. mellifera*, and *Trypanosome* spp. in both *A. mellifera* and *B. impatiens*—significantly changed across the sampling season, a finding that is similar to previous literature. While other pathogen copy numbers—such as LSV in *A. mellifera* and *Trypanosome* spp. in both *A. mellifera* and *B. impatiens*—were significantly influenced by flower cover; however, this occurred in opposite directions where LSV was highest at low flower cover and *Trypanosome* spp. were highest at high flower cover. Similar to previous literature, *Trypanosome* spp. detection levels were highest in low flower diversity. While *Trypanosome* spp. detection patterns were similar in *A. mellifera* and *B. impatiens*, we found no evidence of correlations between these two species. These results suggest that the habitat is not acting as a pathogen hotspot for interspecific bee pathogen dynamics but rather some other mechanism may be more critical in pathogen dissemination within bee communities. One explanation could be that even though shared floral resources have been documented as a source of spread for some pathogens, the occurrence may actually be rather rare and its success depends on the bee and flower species in question. It has also been suggested that non-host bees can reduce infection levels through the dilution effect. It is possible that as time progresses and bees continue to utilize these habitats, the pathogen pressures will intensify intraspecifically. Further long-term testing will be necessary to evaluate this possibility.

Gut parasites are currently considered a serious threat to several bee species, especially bumble bees, of particular concern in North America is the American Bumble Bee (*B. pensylvanicus*). In our study, *B. pensylvanicus* had the greatest positive detections of gut parasites out of all the bee species tested, supporting the hypothesis that gut parasites pose a threat to their populations. At the time of writing this paper—but after the period when samples were collected and analyzed—the United States Fish and Wildlife Service (FWS) has announced a 90-day findings petition for *B. pensylvanicus* populations in order to inform decisions surrounding its population status, and status reviews are underway in state FWS offices. Currently in North Carolina, *B. pensylvanicus* is listed at "W3: Rare but Questionable Documentation" and "Vulnerable/Apparently Secure", meaning more documentation is needed on this species before making any regulatory decision. Information from this study will be important in making future conservation decisions surrounding this and other species, and data from this study has already been shared with the NC FWS to do so. As gut pathogens are considered a threat to this species' population, monitoring should be continued in future work. However, one consideration is noting the species of gut parasites being detected. All samples in this study were screened for *N. ceranae* and preliminary results showed that some samples tested positive for the *Nosema* spp. primer but did not test positive for *N. ceranae*. It is possible that native bee populations are facing their own *Nosema* species which are not being actively monitored for; however, as the results were inconclusive, the data are not included here. Further, it is important to note that detecting a pathogen neither equates to infection nor demonstrates specific health impacts of the pathogen. For example, it has been suggested that the presence of *N. ceranae* in *B. terrestris* may be due to ingested spores passing through the gut rather than true infection. Future research should prioritize evaluating the true infectivity and health impacts of these pathogens on a variety of bee species, taking into consideration the use of species-specific pathogen primers.

Many studies have previously found the presence of what are traditionally called 'honey bee' viruses in various native bee species, something this study does not confirm. Given that several other recently published papers have also documented fewer detections than previous research, the unexpected results require speculation as to why. Unlike most other studies, we collected honey bee samples as individual foragers rather than groups from nest entrances or even inside managed hives. This could have resulted in lower infection levels in our samples (e.g., heavily infected bees may not live long enough or be sufficiently healthy to forage) resulting in reduced pathogen detection and spread. Alternatively, floral diversity has been documented as an important factor for pathogen sharing and infection levels. Thus, plant diversity could potentially be used as a tool to intentionally limit pathogen sharing between honey bees and native bees at these augmented habitats. This is something that should be investigated further in future research and taken into consideration when establishing new pollinator habitat.

Another factor to consider when comparing the results from this study to previously published work is the techniques used to screen for pathogens. Many previous papers evaluating co-occurrence of pathogens between honey bees and native bees have used traditional PCR or qPCR reactions at very high cycle numbers, often using pooled samples (summarized in Tables 1 and 2). However, these results could be due to spurious PCR amplification, which is known to occur at 30 cycles and above. When our RT-qPCR results from individual samples were re-scored at 35 cycles (the cycle cutoff in 46.3% of previous studies) rather than the cycle number recorded from the serially diluted standards, we saw an 81.3% increase in positive detections across all targets and all bee species (Figure 4). Similarly, we saw a 239.8% increase in positive detections when our samples were re-scored at 40 cycles (the cycle cutoff in 34.1% of previous studies). Within our standardized results, we saw no detection of CBPV in any bee species and only one individual each infected with ABPV and IAPV. When scoring at 35 and 40 cycles, however, all three of these pathogens were detected at much higher levels. While we believe these detections to be spurious, if they are true detections, it begs the question of biological relevance when pathogen infections are present.
at such low levels. Comparing across studies, therefore, should be done with extreme caution, because the different methodologies make direct comparisons difficult and potentially misleading.

As planted habitat for pollinators will likely continue to be used as a tool in pollinator conservation, we should take care to establish this habitat with plant species that provide oral resources while limiting pathogen transmission. We should also prioritize conducting long-term monitoring of the bees within these habitats to ensure it continues to protect pollinator populations and their health over time.

Declarations

Acknowledgements

Thank you to the NCDA&CS and NCSU research stations for maintaining the sampling plots. Thank you to members of the Tarpy Lab for their assistance in collecting samples in the field and/or processing samples in the laboratory with special thanks to Ashley Rua, Chesney Banasik, Erin McDermott, Kaya Hamilton, Nicole Hanselman, and Rachel Laminack.

Funding

This work was supported by the NCSU Biology Graduate Program, Garden Club of America [grant number 566558-02697], and Southern SARE [grant number GS19-215].

References

1. Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).
2. Sorensen, A., Van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).
3. Gortázar, C., Acevedo, P., Ruiz-Fons, F. & Vicente, J. Disease risks and overabundance of game species. Eur J Wildl Res 52, 81–87 (2006).
4. Brittingham, M. C. & Temple, S. A. Avian disease and winter bird feeding. Passeng. Pigeon 50, (1998).
5. Franz, M., Kramer-Schadt, S., Greenwood, A. D. & Courtiol, A. Sickness-induced lethargy can increase host contact rates and pathogen spread in water-limited landscapes. Funct. Ecol. 32, 2194–2204 (2018).
6. Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).
7. Miers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B Biol. Sci. 373, (2018).
8. Keessing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
9. Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).
10. Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: pressures on pollinators. Front Ecol Env. 11, 251–259 (2013).
11. Buhk, C. et al. Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecol. 18, (2018).
12. Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).
13. Williams, N. M. et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 25, 2119–2131 (2015).
14. Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).
15. Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).
16. Daughenbaugh, K. F. et al. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 13, 291 (2021).
17. Hayes, S. E., Tuiwawa, M., Stevens, M. I. & Schwarz, M. P. A recipe for weed disaster in islands: a super-generalist native pollinator aided by a ‘Parlourmaid’ plant welcome new arrivals in Fiji. Biol. Invasions 21, 1643–1655 (2019).
18. Danforth, B. N., Mitchell, P. L. & Packer, L. Mitochondrial DNA Differentiation Between Two Cryptic Halictus (Hymenoptera: Halictidae) Species. Ann. Entomol. Soc. Am. 91, 387–391 (1998).
19. Grozinger, C. M. & Flenniken, M. L. Bee viruses: ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).
20. McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).
21. Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. *Virus Res.* **176**, 232–240 (2013).

22. Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. *Lancet* **386**, 1964–1972 (2015).

23. Antúnez, K. et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporida). *Environ. Microbiol.* **11**, 2284–2290 (2009).

24. Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. *J. Invertebr. Pathol.* **114**, 114–119 (2013).

25. Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. *PNAS* **108**, 662–667 (2011).

26. Leite, G. M., Magan, N. & Medina, A. Comparison of different bead-beating RNA extraction strategies: an optimized method for filamentous fungi. *J. Microbiol. Methods* **88**, 413–418 (2012).

27. Simms, D., Cizdziel, P & Chomczynski, P. TRizol: a new reagent for optimal single-step isolation of RNA. *Focus (Madison)*. **15**, 99–102 (1993).

28. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* **3**, (2002).

29. Mwalili, S. M., Lesaffre, E. & Declerck, D. The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research. *Stat. Methods Med. Res.* **17**, 123–139 (2008).

30. R Core Team. *R: Language and Environment for Statistical Computing*. *R Foundation for Statistical Computing* (2018). Available at: https://www.r-project.org/.

31. Jackman, S. et al. *Package ‘pscl’*. (2020).

32. Canty, A. & Ripley, B. *Package ‘boot’*. (2021).

33. McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. *Sci. Rep.* **10**, 1–12 (2020).

34. Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. *Ecol. Lett.* **23**, 1212–1222 (2020).

35. Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. *Proc. R. Soc. B* **282**, (2015).

36. Alger, S. A., Burnham, P. A. & Brody, A. K. Flowers as viral hot spots: honey bees (Apis mellifera) unevenly deposit viruses across plant species. *PLoS One* **14**, (2019).

37. Fearon, M. L. & Tibbetts, E. A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. *Ecology* **102**, (2021).

38. National Heritage Program. *Species/Community Search*. *National Heritage Program: Natural and Cultural Resources* (2021). Available at: ncnhp.org/data/speciescommunity-search.

39. Hatfield, R. et al. *IUCN Assessments for North American Bombus spp.* (2014).

40. Gisder, S. et al. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. *Appl. Environ. Microbiol.* **86**, (2020).

41. Pritchard, Z. A. et al. Do viruses from managed honey bees (Hymenoptera: Apidae) endanger wild bees in native prairies? *Environ. Entomol.* **50**, 455–466 (2021).

42. Dalmone, A. et al. Possible spillover of pathogens between bee communitites foraging on the same floral resources. *Insects* **12**, (2021).

43. Jones, L. J., Ford, R. P., Schilder, R. J. & López-Uribe, M. M. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. *J. Invertebr. Pathol.* **185**, 107667 (2021).

44. Brownie, J. et al. The elimination of primer-dimer accumulation in PCR. *Nucleic Acids Res.* **25**, (1997).

45. Genersch, E., Yue, C., Fries, I. & De Miranda, J. R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. *J. Invertebr. Pathol.* **91**, 61–63 (2006).

46. Kojima, Y. et al. Infestation of Japanese Native Honey Bees by Tracheal Mite and Virus from Non-native European Honey Bees in Japan. *Microb. Ecol.* **62**, 895–906 (2011).

47. Reynaldi, F. J., Sguazza, G. H., Albicoro, F. J., Pecoraro, M. R. & Galosi, C. M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. *Brazilian J. Biol.* **73**, 797–800 (2013).

48. Graystock, P. et al. The Trojan hive: Pollinator pathogens, imported and distributed in bumblebee colonies. *J. Appl. Ecol.* **50**, 1207–1215 (2013).

49. Genersch, E., Yue, C., Fries, I. & De Miranda, J. R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. *J. Invertebr. Pathol.* **91**, 61–63 (2006).

50. Schoonvrae, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. *PLoS One* **11**, (2016).

51. Melathopoulos, A. et al. Viruses of managed alfalfa leafcutting bees (Megachile rotundata Fabricus) and honey bees (Apis mellifera L.) in Western Canada: incidence, impacts, and prospects of cross-species viral transmission. *J. Invertebr. Pathol.* **146**, 24–30 (2017).
53. Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. *Front. Microbiol.* **9**, (2018).

54. Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. *Sci. Rep.* **10**, (2020).

55. Plischuk, S. *et al.* South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). *Environ. Microbiol. Rep.* **1**, 131–135 (2009).

56. Singh, R. *et al.* RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. *PLoS One* **5**, (2010).

57. Peng, W. *et al.* Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii. *Apidologie* **42**, 650–658 (2011).

58. Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. *Nature* **506**, 364–366 (2014).

59. Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. *PeerJ* **2**, (2014).

60. Gamboa, V. *et al.* Bee pathogens found in Bombus atratus from Colombia: a case study. *J. Invertebr. Pathol.* **129**, 36–39 (2015).

61. Radzevičiūtė, R. *et al.* Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. *J. Invertebr. Pathol.* **146**, 14–23 (2017).

62. Sokół, R., Michalczyk, M. & Micholap, P. Preliminary studies on the occurrence of honeybee pathogens in the national bumblebee population. *Ann. Parasitol.* **64**, 385–390 (2018).

63. Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). *J. Invertebr. Pathol.* **153**, 147–155 (2018).

64. Bravi, M. E. *et al.* Wild bumble bees (Hymenoptera: Apidae: Bombini) as a potential reservoir for bee pathogens in northeastern Argentina. *J. Apic. Res.* **58**, 710–713 (2019).

65. Müller, U., McMahon, D. P. & Roff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. *Agric. For. Entomol.* **21**, 363–371 (2019).

66. Murray, E. A. *et al.* Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny. *Environ. Microbiol.* **21**, 972–983 (2019).

67. Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. *Viruses* **12**, 13–15 (2020).

68. Olgun, T., Everhart, S. E., Anderson, T. & Wu-Smart, J. Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. *PLoS One* **15**, (2020).

69. Mazzei, M. *et al.* Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. *Sci. Rep.* **9**, (2019).

70. Li, J. *et al.* Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. *J. Econ. Entomol.* **104**, 732–739 (2011).

71. Sachman-Ruiz, B., Narváez-Padilla, V. & Reynaud, E. Commercial Bombus impatients as reservoirs of emerging infectious diseases in central México. *Biol. Invasions* **17**, 2043–2053 (2015).

72. Dolezal, A. G. *et al.* Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. *PLoS One* **11**, (2016).

73. Mazzei, M. *et al.* First detection of replicative deformed wing virus (DWV) in Vespa velutina nigrithorax. *Bull. Insectology* **71**, 211–216 (2018).

74. Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). *PLoS One* **14**, e0217822 (2019).

75. Evison, S. E. F. *et al.* Pervasiveness of parasites in pollinators. *PLoS One* **7**, (2012).

76. Bailes, E. J. *et al.* First detection of bee viruses in hoverfly (syphilid) pollinators. *Biol. Lett.* **14**, (2018).

77. Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. *Int. J. Parasitol.* **49**, 605–613 (2019).

78. Plischuk, S. *et al.* Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae: Bombus spp.) from highlands in Bolivia and Peru. *Stud. Neotrop. Fauna Environ.* (2020). doi:10.1080/01650521.2020.1743551

Figures
Figure 1

Results for the pathogen screening of *A. mellifera* (left) and *B. impatiens* (right) in 2017 (top) and 2018 (bottom). Each panel represents a particular location, each row represents an individual sample, and each column represents a different target listed in alphabetical order (A = ABPV; B = BQCV; C = CBPV; Da = DWVa; Db = DWVb; I = IAPV; L = LSV; T = *Try. spp.*; and N = *Nos. spp.*. Relative intensity is represented with a color gradient from low (bright yellow) to high (bright red).

Figure 2

[Graph showing Trypanosoma spp. copy number across different flower cover levels for *A. mellifera*, *B. impatiens*, and *B. pensylvanicus*.]
Copy number of *Trypanosome* spp. for *A. mellifera, B. impatiens,* and *B. pensylvanicus* across the different levels of flower cover.

Figure 3

Copy number of *Trypanosome* spp. for *A. mellifera, B. impatiens,* and *B. pensylvanicus* across the sampling season.

Figure 4

Displays the change in percent of positive detections for each pathogen depending on if results were scored based on our quantified standards (standardized), 35 cycles, and 40 cycles. Panel A shows results for *Apis mellifera,* Panel B shows results for *Bombus impatiens,* and Panel C shows results for *Bombus pensylvanicus*
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryDocument.docx