The fate of vacancy-induced supersolidity in 4He

M. Boninsegni,1 A.B. Kuklov,2 L. Pollet,3 N.V. Prokof’ev,4,5,6 B.V. Svistunov,4,6 and M. Troyer3

1Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1
2Department of Engineering Science and Physics, CUNY, Staten Island, NY 10314
3Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
4Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
5BEC-INFMI, Dipartimento di Fisica, Università di Trento, Via Sommarive 14, I-38050 Povo, Italy
6Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

(Dated: March 23, 2022)

The supersolid state of matter, exhibiting non-dissipative flow in solids, has been elusive for thirty five years. The recent discovery of a non-classical moment of inertia in solid 4He by Kim and Chan provided the first experimental evidence, although the interpretation in terms of supersolidity of the ideal crystal phase remains subject to debate. Using quantum Monte Carlo methods we investigate the long-standing question of vacancy-induced superflow and find that vacancies in a 4He crystal phase separate instead of forming a supersolid. On the other hand, non-equilibrium vacancies relaxing on defects of poly-crystalline samples could provide an explanation for the experimental observations.

PACS numbers: 75.10.Jm, 05.30.Jp, 67.40.Kh, 74.25.Dw

The observation of a non-classical moment of inertia in solid 4He by Kim and Chan (KC) has provided the first experimental evidence of a possible supersolid phase of matter 1,2, which is characterized by crystalline order and frictionless flow. Early theories of supersolidity were based on the assumption that the low-temperature 4He crystal may be incommensurate (the number of atoms is not an integer multiple of that of lattice sites). As a consequence of their quantum behavior, point defects such as vacancies and interstitials can Bose condensate at low temperature, giving rise to superflow.

In particular, the Andreev-Lifshitz-Chester (ALC) scenario 3,4 assumes that the gain in kinetic energy by delocalizing the vacancy can overcome the potential energy cost of creating it in a perfect crystal, such that a dilute gas of highly mobile vacancies can be stabilized. The energetics of this scenario is illustrated in the lower curve in Fig. 1. Similar supersolid ground states with a low density of strongly correlated vacancies were recently put forward by Dai, Ma and Zhang (DMZ) 5 and also by Anderson, Brinkman and Huse (ABH) 6. Their scenarios are possible even when single-vacancy excitations in the perfect crystal are gapped, as indicated in Fig. 1. It was also recently suggested that the onset of supersolidity leads to anomalies in the elastic moduli 7.

Although the initial experimental observation by KC has been confirmed by other groups 8,9,10, the interpretation in terms of superflow in the crystal phase is becoming increasingly questionable. Repeated cycles of annealing make the supersolid signal weaker to vanishing 8. Measurements of pressure-driven flow have yielded a null result in hexagonal-close-packed (hcp) 4He 11,12. Experimental evidence 13,14 points toward a commensurate hcp ground state in 4He, as the measured vacancy activation energy is approximately 10 – 15 K, and appears to rule out thermally activated vacancies at the characteristic temperatures below 0.2 K of the KC experiment. X-ray measurements 15 on hcp 4He put the tightest upper bound on the vacancy concentration $n_{V}(T \to 0)$, disfavoring the ALC and DMZ/ABH scenarios, although ABH debate the interpretation of these measurements 16. On the theoretical side, two of us have proven that a superfluid crystal must generically be incommensurate 15, a view which is supported by recent numerical simulations showing that ideal hcp crystals of 4He are insulating 16,17,18.

The physics of vacancies in solid Helium is an important open problem, even aside from its relevance to the experiment of KC, and has been studied for a long time. The majority of microscopic calculations have been variational 19,20,21, and focused on the properties of a single vacancy. Various estimates of the vacancy activation energy 19,20, including the one obtained by Ceperley and Bernu using Path Integral Monte Carlo simulations 16, are in quantitative agreement with experiment. However, Galli and Reatto questioned the reliability of all previous numerical calculations, including their own ones 21, by raising the importance of finite size effects.

Here we present results of a Quantum Monte Carlo study of vacancies in hcp 4He at low temperature (0.2 K $\leq T \leq 2$ K). For single crystals in the thermodynamic limit, we find large vacancy and interstitial activation energies Δ_{V} and Δ_{I} at all densities, ruling out the ALC scenario. We then proceed with the discussion on finite vacancy concentrations to see if activated vacancies form a (meta)stable gas (upper dashed line in Fig. 1), or if they support the DMZ/ABH-type state with a small vacancy concentration n_{V}. It turns out that the only minima in the grand-canonical (free) energy are at zero vacancy concentration, corresponding to a commensurate solid, and at high vacancy concentration such that the system is in a liquid phase. In Fig. 1 this scenario is called “unstable”.

We employ the worm algorithm 22, a grand-canonical...
Path Integral Monte Carlo technique formulated in the configuration space of the single-particle Matsubara Green’s function. In our simulations, we use a three-dimensional cell, designed to fit a perfect finite crystal of \(N \) \(^4\)He atoms, with periodic boundary conditions in all directions. Our microscopic model of \(^4\)He is standard, based on the accepted Aziz pair potential \(^{[23]}\). Single-particle properties can be deduced from the Matsubara Green function

\[
G(\mathbf{r}, \mathbf{r}', \tau) = \langle \mathcal{T} \{ \hat{\psi}(\mathbf{r}, \tau) \hat{\psi}^\dagger(\mathbf{r}', 0) \} \rangle, \tag{1}
\]

which can easily be sampled in the worm algorithm. Here \(\langle \ldots \rangle \) stands for the thermal expectation value, \(\mathcal{T} \) is the time-ordering operator, \(-\beta/2 \leq \tau \leq \beta/2\), \(\hat{\psi}(\mathbf{r}, \tau) \) and \(\hat{\psi}(\mathbf{r}, \tau) \) are Bose particle creation and annihilation operators, respectively. For \(\tau > 0 \) (\(\tau < 0 \)) one is computing the Green function for an interstitial atom (vacancy).

In Fig. 2 we show the spatially averaged Green function \(G(\mathbf{k} = 0, \tau) \) for the hcp \(^4\)He crystal at melting density \(n = 0.0287 \) \(\text{Å}^{-3} \) and for a low temperature \(T = 0.2 \) K. Results are shown for a system of \(N = 800 \) atoms. Since vacancies and interstitials are gapped by a finite activation energy, the low temperature Green function \(G(\mathbf{k} = 0, \tau) \) decays asymptotically as

\[
G(\mathbf{k} = 0, \tau) \sim e^{-|\tau|\Delta},
\]

with activation energies \(\Delta = \Delta_V (\Delta_I) \) for \(\tau < 0 \) (\(\tau > 0 \)).

The same Green function analysis was extended to higher densities. From Fig. 3 we infer that both \(\Delta_V \) and \(\Delta_I \) increase with density, or equivalently, pressure. This can be understood intuitively, as the cost for creating a defect in a denser system is higher. Large activation energies thus prevent the ALC scenario in solid Helium at any density. It seems reasonable to extend this con-
ing density. The gaps $\Delta V(I)$ to the curve labeled "unstable" in Fig. 1 is realized in phase, which does not melt: The scenario corresponding a vacancy-rich and a perfectly crystalline vacancy-free concentrations occurs, leading to a liquid phase.

We conclude that a uniform dilute gas of vacancies is thermodynamically unstable against separation into a vacancy-rich and a perfectly crystalline vacancy-free phase, which does not melt: The scenario corresponding to the curve labeled "unstable" in Fig. 1 is realized in 4He, no DMZ/ABH-type state is found. The instability occurs not only at a finite vacancy concentration, but also for a few vacancies in a large crystal.

In order to confirm this conclusion, we performed simulations in the canonical ($N - V - T$) ensemble, keeping the number of particles fixed. The instability translates into phase separation, with the vacancies forming clusters inside a perfect crystal. Indeed, our simulations produce the spontaneous formation of vacancy clusters for temperatures up to 1 K, regardless of pressure and the initial configuration. Phase separation is also supported by energy calculations, since the energy difference $(E(nV) - E(0))/nV$ is not monotonically increasing with vacancy concentration n_V.

Inspection of the simulations revealed that already three vacancies cluster easily and form a tight bound state, as shown in the inset of Fig. 3. The vacancy-vacancy correlation function is the quantity most sensitive to the sign of their effective interaction. We have computed it by first averaging atomic world lines over an imaginary-time scale of the order of 0.2 K$^{-1}$, which is much longer than the zero-point atomic motion but much shorter than the vacancy-atom exchange time. Next, we compare the obtained atomic positions with the lattice points in an hcp crystal. Using a similar procedure as in Ref. 15, we repeatedly remove the closest particle-lattice point pairs from the list, until we end up with a small number of unmatched lattice points which we define as the vacancy positions. The decay of the vacancy-vacancy correlation function $\nu(r)$ in Fig. 4 shows that the vacancy-vacancy interaction is attractive and that three vacancies form a tight bound state. A similar study for two vacancies also yielded attractive correlations but was less conclusive regarding a bound state; if it exists, it is rather shallow with a binding energy of about 1K.

The observed attractive interaction between vacancies – leading to phase separation – arises from the elas...
interactions. These are long ranged, decaying as \(1/r^3\), and are attractive in certain directions (in the basal plane and along the c-axis) due to dominant quadrupolar terms [23, 24]. A similar effect was previously suggested for bound states of substitutional \(^3\)He atoms [27, 28], and it is also reminiscent of a proposal for oxygen vacancies in high-temperature superconductors [29]. The strong effective short-range attraction is due to the local minimum in the pair potential.

Given the instability of the vacancy gas, the only remaining possibilities accounting for the experimental data of KC are inhomogeneous scenarios, due to a less than ideal sample quality [17, 30]. Metastable vacancies can play a pivotal role in this case. When a large vacancy cluster is formed, the system can macroscopically lower its energy by deforming the cluster into a dislocation loop. We found, by simulating artificially created edge dislocations in the hcp crystal, that these can be either insulating or sustain superflow depending on the annealing procedure for the initial setup. In particular, in the presence of a large stress field close to the dislocation core, the core first melts locally into a liquid, which then forms a highly disordered superfluid (an undercooled superglass [17]).

Other scenarios include the migration of vacancies towards the grain boundaries and boundary edges, along which superflow might be possible: imagine, as a schematic example, an insulating grain boundary, where the potential driven by the crystal bulk forces the atoms at the interface to form an insulating Mott state. When vacancies relax on the grain boundary, they effectively dope the Mott insulator and may make it superfluid — a phenomenon well documented in lattice models.

In conclusion, we have shown that vacancies are unstable in a \(^4\)He crystal. They form clusters and the system phase separates into a vacancy-rich phase and a perfect, insulating crystal. Recent experimental results [3] are in perfect agreement with the fact that the ground state of solid \(^4\)He is thus never a supersolid, but a commensurate crystal. The experimental observation of a non-classical moment of inertia in solid helium is due to non-equilibrium quantum behavior, such as superflow along defects or the formation of a superglass around crystallographic defects. High resolution structural analysis of defects in the \(^4\)He samples and large scale simulations of elementary defects will be important in completing our understanding.

We are grateful to P. W. Anderson, V. S. Boyko, W. F. Brinkman, D. M. Ceperley, R. A. Guyer, R. B. Hallock, D. A. Huse, A. E. Meyerovich, W. J. Mullin, and T. M. Rice for stimulating discussions. This work was supported by the National Aero and Space Administration grant NAG3-2870, the National Science Foundation under Grants Nos. PHY-0426881, PHY-0456261 and PHY-0426814, the Natural Science and Engineering Research Council of Canada, under research grant G121210893, the Swiss National Science Foundation, the Kavli Institute for Theoretical Physics in Santa Barbara and the Aspen Center for Physics. Parts of the simulations were performed on Beowulf clusters: Hreidar at ETH Zurich and Typhon at CSI.

[1] E. Kim and M. H. W. Chan, Nature, 427, 225 (2004);
[2] E. Kim and M. H. W. Chan, Science 305, 1941 (2004).
[3] A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).
[4] G. V. Chester, Phys. Rev. A 2, 256 (1970).
[5] X. Dai, M. Ma, and F.-C. Zhang, Phys. Rev. B 72, 132504 (2005).
[6] P. W. Anderson, W. F. Brinkman and D. A. Huse, Science 310, 1164 (2005).
[7] A. T. Dorsey, P. M. Goldbart and J. Toner, Phys. Rev. Lett. 96, 055301 (2006).
[8] A. S. Rittner and J. D. Reppy, cond-mat/0604528.
[9] M. Kubota et al., unpublished (2006);
[10] K. Shirahama et al., unpublished (2006).
[11] J. Day, T. Herman, and J. Beamish, Phys. Rev. Lett. 95, 035301 (2005).
[12] J. Day and J. Beamish, Phys. Rev. Lett. 96, 105304 (2006).
[13] B. A. Fraass, P. R. Granfors and R. O. Simmons, Phys. Rev. B 39, 124 (1989).
[14] M. W. Meisel, Physica B 178, 121 (1992).
[15] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).
[16] D. M. Ceperley and B. Bernu, Phys. Rev. Lett. 93, 155303 (2004); in private communication, the authors acknowledged that their result for \(\Delta t\) may need to be revised.
[17] M. Boninsegni, N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006).
[18] B. K. Clark and D. M. Ceperley, Phys. Rev. Lett. 96, 105302 (2006).
[19] F. Pederiva, G. V. Chester, S. Fantoni and L. Reatto, Phys. Rev. B 56, 5909 (1997).
[20] B. Chaudhuri, F. Pederiva and G. V. Chester, Phys. Rev. B 60, 3271 (1999).
[21] D. E. Galli and L. Reatto, Phys. Rev. Lett. 96, 165301 (2006).
[22] M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006).
[23] R. A. Aziz, V. P. S. Nain, S. Carley, W. L. Taylor and G. T. McConville, J. Chem. Phys. 70, 4330 (1979).
[24] J. F. Jarvis, D. Ramm, and H. Meyer, Phys. Rev. 170, 320 (1968).
[25] J.D. Eshelby, in Solid State Physics, edited by F. Seitz and D. Turnbull, vol. 3, p. 79 (Academic Press, New York (1956)).
[26] A. F. Andreev, Sov.Phys.-JETP 41, 1170 (1976);
[27] M. G. Richards, J. H. Smith, P. S. Tofts, and W. J. Mullin, Phys. Rev. Lett. 34, 1545 (1975).
[28] (W. J. Mullin, R. A. Guyer and H. A. Goldberg, Phys. Rev. Lett. 35, 1007 (1975).
[29] D.I. Khomskii, K.I. Kugel, Europhys. Lett. 55, No. 2,
208-213 (2001);
[30] E. Burovski, E. Kozik, A. Kuklov, N. Prokof’ev, and B. Svistunov Phys. Rev. Lett. 94, 165301 (2005).