Microarray analysis of gene expression in the diacylglycerol kinase η knockout mouse brain

Suguru Komenoi, Yuji Suzuki, Maho Asami, Chiaki Murakami, Fumi Hoshino, Sohei Chiba, Daisuke Takahashi, Sayaka Kado, Fumio Sakane

ABSTRACT

We have revealed that diacylglycerol kinase η (DGKη)-knockout (KO) mice display bipolar disorder (BPD) remed-synerg-sensitive mania-like behaviors. However, the molecular mechanisms causing the mania-like abnormal behaviors remain unclear. In the present study, microarray analysis was performed to determine global changes in gene expression in the DGKη-KO mouse brain. We found that the DGKη-KO brain had 43 differentially expressed genes and the following five affected biological pathways: “neuroactive ligand-receptor interaction”, “transcription by RNA polymerase II”, “cytosolic calcium ion concentration”, “Jak-STAT signaling pathway” and “ERK1/2 cascade”. Interestingly, mRNA levels of prolactin and growth hormone, which are augmented in BPD patients and model animals, were most strongly increased. Notably, all five biological pathways include at least one gene among prolactin, growth hormone, forkhead box P3, glucagon-like peptide 1 receptor and interleukin 1β, which were previously implicated in BPD. Consistent with the microarray data, phosphorylated ERK1/2 levels were decreased in the DGKη-KO brain. Microarray analysis showed that the expression levels of several glycosylipid metabolism-related genes were also changed. Liquid chromatography-mass spectrometry revealed that several polyunsaturated fatty acid (PUFA)-containing phosphatidic acid (PA) molecular species were significantly decreased as a result of DGKη deficiency, suggesting that the decrease affects PUFA metabolism. Intriguingly, the PUFA-containing lysPA species were markedly decreased in DGKη-KO mouse blood. Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms for the mania-like behaviors but also information for developing BPD diagnostics.

1. Introduction

Bipolar disorder (BPD) is a mental disorder characterized by unusual shifts in mood from the heights of mania to the depths of depression [1]. Current reports indicate that the lifetime prevalence of BPD may be closer to 5%. Because of the elevated morbidity and mortality suffered by individuals with BPD, the disorder has been increasingly recognized as a major health problem. Particularly, 25%–50% of patients with BPD attempt suicide at least once over their lifetimes, and 8%–19% will complete suicide [2]. Despite advances in its diagnosis, the underlying neurobiology of BPD remains largely unknown.

Therefore, there are only suboptimal treatment options. Moreover, biomarkers for onset and progression, which are essential for precise diagnosis, are presently lacking. Taken together, BPD is still an unmet medical need.

Recently, several genome-wide association studies (GWASs) conducted by Baum et al. [3], Weber et al. [4] and Zeng et al. [5] have consecutively shown that DGKH (diacylglycerol kinase [DGK] η gene) is associated with the etiology of BPD. Moreover, DGKH is located within the BPD linkage region on 13q14 [6, 7]. Furthermore, Moya et al. reported that DGKη mRNA levels were significantly increased in patients with BPD (many of whom are likely in a depressive or normal

Abbreviations: BPD, bipolar disorder; DAVID, Database for AnnotationVisualization and Integrated Discovery; DG, diacylglycerol; DGK, diacylglycerol kinase; ERK, extracellular signal-regulated kinase; Fpr2, N-formyl peptide receptor 2; Gh, growth hormone; Gip1r, glucagon-like peptide 1 receptor; GO:BP, Gene Ontology: Biological Process; GWAS, genome-wide association study; Il1b, interleukin 1β; KEGG, Kyoto Encyclopedia of Genes and Genomes; KO, knockout; LC-MS, liquid chromatography-mass spectrometry; LPA, lysophosphatidic acid; MEK, mitogen-activated protein kinase/ERK kinase; PA, phosphatidic acid; PI, phosphatidylinositol; Prl, prolactin; PUFA, polyunsaturated fatty acid; SERT, serotonin transporter; WT, wild type

Corresponding author. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

E-mail address: sakane@faculty.chiba-u.jp (F. Sakane).

https://doi.org/10.1016/j.bbrep.2019.100660
Received 28 April 2019; Received in revised form 17 June 2019; Accepted 19 June 2019

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
state because the manic state is often brief [8]. Therefore, DGKH is one of the few replicated risk genes for BPD and is attracting much attention as a BPD-associated gene [9].

DGK phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA) [10–13]. To date, ten DGK isoforms have been identified [10–13]. The η isoform of DGK [14,15] belongs to type II DGKs [16], and has a pleckstrin homology domain at its N-terminal and a catalytic domain that is divided into two subdomains. We reported that DGKη is required for the Ras–B-Raf–C-Raf-mitogen-activated protein kinase/ERK kinase (MEK)–extracellular signal-regulated kinase (ERK) signaling cascade in cancer-derived cells [17]. DGKη is most abundantly expressed in the brain [14,18]. Moreover, DGKη was strongly detected in layers II–VI of the cerebral cortex; in the CA1, CA2 and dentate gyri regions of the hippocampus; in the mitral cells and glomerular layer of the olfactory bulb; and in the Purkinje cells in the cerebellum of one- to 32-week-old mice [18]. We recently found that the pleckstrin homology domain of DGKη is bound to phosphatidylinositol (PI) 4,5-bisphosphate [19], which is an important component of PI turnover [20].

Recently, we generated DGKη-knockout (KO) mice and performed behavioral tests [21]. Intriguingly, DGKη-KO mice displayed an overall behavioral profile that is similar to the typical BPD model of PI turnover, hyperactivity, reduced anxiety and lower depressive states. Moreover, these phenotypes were significantly attenuated by the administration of lithium, a therapeutic agent for BPD (mania) [21]. These results strongly implied the existence of a relationship between BPD and DGKη. However, the molecular mechanisms explaining how mania-like behaviors were caused by DGKη deficiency remains unknown.

The purpose of the present work was to elucidate differences between the brains of DGKη-KO mice and wild-type (WT) sibling controls. To determine this, we performed a microarray analysis. The analysis revealed that the deficiency of DGKη appears to modulate gene expression in five biological pathways including “neuroactive ligand-receptor interaction”, “positive regulation of transcription by RNA polymerase II”, “positive regulation of cytosolic calcium ion concentration”, “Jak-STAT signaling pathway” and “Positive regulation of ERK1 and ERK2 cascade”. Notably, all five biological pathways include at least one gene among Prl (prolactin), Gh (growth hormone), Foxp3 (forkhead box P3), Glpr (glucagon-like peptide 1 receptor) and Il1b (interleukin 1b), which have previously been implicated in BPD. Regarding glycerolipid metabolism, the expression levels of several glycerolipid-related genes were changed. We found that polyunsaturated fatty acid (PUFA)-containing PA species, such as 18:1/18:2, 18:0/20:3, 18:0/22:5, 20:0/20:4 and 18:1/22:2-PA, were significantly decreased in the DGKη-KO mouse brain and that 18:2 and 20:5-lysoPA (LPA) were markedly decreased in DGKη-KO mouse blood.

2. Materials and methods

2.1. Mice

This study received approval from the Animal Experiment Committee of Chiba University (permission number: 28–77 and 29–195 and 30–185). All procedures relating to animal care and treatment were conducted in compliance with the National Institutes of Health: Guide for the Care and Use of Laboratory Animals. The mice, male (12-week-old, ~25 g) were housed in groups of 3–4 in standard cages at 24 ± 2 °C under a 12 h light–dark cycle (lights on from 7:00 to 19:00) with ad libitum access to food and water. DGKη-KO mice (dgkh−/−, Accession No. CD80606K) were generated as previously described [21]. In brief, we deleted part of the catalytic domain encoded by exons 5 and 6 of the DGKη gene in mice by homologous recombination. We confirmed that DGKη protein was not detectable in DGKη-KO mice [21]. DGKη-KO mice were originated from C57BL/6 and CBA background, and then backcrossed with C57BL/6 mice (Japan SLC, Hamamatsu, Japan). We used WT (C57BL/6) male littermates as a control group for DGKη-KO mice.

2.2. Microarray analysis

Cerebral cortices were homogenized in QiAzo1 lysis reagent (Qiagen, Hilden, Germany), and total RNA was isolated with the Direct-zol® RNA Miniprep (ZYMO RESEARCH, Irvine, CA). Microarray hybridization (SurePrint G3 Mouse Gene Expression 8 × 60K Microarray, Agilent, Santa Clara, CA, USA) was performed at the TaKara Bio (Kusatsu, Japan). Three experiments using independent cohorts were carried out.

Differential gene expression in DGKη-KO mice was normalized to WT data (WT = 1 (log21 = 0)) to obtain the fold-change values of all genes. The values are presented as the mean (log2 ± SEM of three independent experiments. Statistical comparisons were performed using Student’s t-tests. A cut-off P-value < 0.05 and fold-change ≥ absolute 2 (log21 = 1 or log21/2 = −1) were applied.

2.3. Analysis of biological processes

Functional annotation lists of Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categories were generated in the Database for Annotation, Visualization and Integrated Discovery (DAVID: https://david.ncifcrf.gov/).

2.4. Reverse transcription polymerase chain reaction (RT-PCR)

Total RNA isolation, reverse transcription and PCR amplification were performed as previously described [22]. PCR amplification was performed using rTaq polymerase (Toyobo, Osaka, Japan) and the following mouse Prl, Gh- and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-specific oligonucleotide primers in the outlined conditions: Prl, forward primer (5′-ATGACCATGAAACGCGACGGGT-3′) and reverse primer (5′-TTCCTCAATCCTTGGTCCTGATTAGAT-3′) with PCR conditions of 94 °C for 3 min, then 30 (DGKη-KO) or 35 (WT) cycles of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 1 min, and finally 72 °C for 5 min; Gh, forward primer (5′-ATGGCTACAGACTCTGGGACCTC-3′) and reverse primer (5′-CTGACATCACGGCTTGGATGC-3′) with PCR conditions of 94 °C for 3 min, then 34 (DGKη-KO) or 39 (WT) cycles of 94 °C for 30 s, 53 °C for 30 s, and 72 °C for 1 min, and finally 72 °C for 5 min; GAPDH, forward primer (5′-TGGTGTAGGACGGTGGATTTGCGGTATT-3′) and reverse primer (5′-ATCTAGGCGCTATGGTTCCAC-3′) with PCR conditions of 94 °C for 3 min, then 35 cycles of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 1 min; and finally 72 °C for 5 min. The amplified PCR products were separated by agarose gel electrophoresis and stained with ethidium bromide (Wako Pure Chemical Industries, Osaka, Japan).

2.5. Western blotting

Western blotting of brain tissues were performed as previously described [18]. The cerebral cortices of mice were homogenized in lysis buffer (50 mM HEPES, pH7.2, 150 mM NaCl, 5 mM MgCl2) containing complete™ EDTA-free protease inhibitor (Roche Diagnostics, Basel, Switzerland) and centrifuged at 1,000 g for 5 min. The tissue lysates (20 μg of protein) were separated on SDS-PAGE (10% acrylamide gel). The separated proteins were transferred to a polyvinylidene difluoride membrane (Pall Life Sciences, Port Washington, NY). The membrane was blocked with 5% skim milk and incubated with an anti-ERK1/2 antibody (1:1000 dilution, BRID: AB_330744, Cell Signaling Technology, Danvers, MA), an anti-phospho-ERK1/2 antibody (1:1000 dilution, BRID: AB_331646, Cell Signaling Technology) or an anti-β-actin polyclonal antibody (1:1000 dilution, BRID: AB_476693, Sigma-Aldrich, St Louis, MO) overnight at 4 °C. The immunoreactive bands were visualized using a peroxidase-conjugated anti-rabbit IgG antibody (1:10000 dilution, BRID: AB_2337943, Jackson ImmunoResearch Laboratories, West Grove, PA) and the ECL Western Blotting Detection System (GE Healthcare Bio-Sciences, Piscataway, NJ).
2.6. Lipid extraction

The cerebral cortices of mice were homogenized in ice-cold lysis buffer (50 mM HEPES, pH 7.2, 150 mM NaCl, 5 mM MgCl2 and Complete™ EDTA-free protease inhibitor, followed by centrifugation at 1000 × g for 5 min at 4 °C. Total lipids were extracted from the mouse brain (cerebral cortex) according to the method of Bligh and Dyer [23].

2 ml of methanol and 1 ml of chloroform were added to the 700 μl of sample. 100 μl of 3 M HCl was added to the sample in order to improve recovery ratio of acidic phospholipids [24]. The solvent containing lipids was dried under N2 gas, and the extracted lipids were reconstituted in 100 μl of chloroform/methanol (2:1, v/v).

2.7. Liquid chromatography (LC)–mass spectrometry (MS)

PA species in extracted cellular lipids (10 μl) containing 40 pmol of the 14:0/14:0-PA internal standard (Sigma-Aldrich, St. Louis, MO, USA) were analyzed by LC-MS using an Accela LC system (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a Unison UK-Silica column (3 μm, 150 × 2.0 mm i.d., Imtakt, Kyoto, Japan) and coupled online to an Exactrip Orbitrap MS (Thermo Kyoto Scientific) equipped with an electrospray ionization source as described previously [24]. A binary gradient consisting of two solvents: solvent A (chloroform/methanol (89:10) containing 0.28% ammonia) and solvent B (chloroform/methanol/water (55:39:5) containing 0.28% ammonia). The gradient elution program was 20% B for 5 min, 20%–30% B for 10 min, 30%–60% B for 25 min, 60%–100% B for 5 min, 100% B for 25 min, followed by 100%–20% B for 1 min. The flow rate was 0.3 ml/min, and chromatography was performed at 25 °C. The MS peaks are presented in the form of X:Y, where X is the total number of carbon atoms and Y is the number of double bonds in both acyl chains of the PA. All LC-MS data were normalized based on the inorganic phosphate content and the intensity of the internal standard.

2.8. Lipid extraction and analysis of LPA molecular species

Total lipids were extracted from mouse serum according to the method of Bligh and Dyer [23]. LPAs in extracted serum lipids (10 μl) containing 4 pmol of the 17:0-LPA internal standard (Sigma-Aldrich) were analyzed with the LC-MS described above.

2.9. LC-MS/MS

For the identification of fatty acid residues in PA molecular species by LC-MS/MS. Total lipids were extracted from the cerebral cortices as described above. The extracted lipids (10 μl) were separated on a LC...
system (Shimadzu Corporation, Kyoto, Japan) using a Unison UK-Silica column (3 μm, 150 x 2.0 mm i.d., Imtakt, Kyoto, Japan) as described previously [24]. This LC system was controlled by the Analyst® software (AB SCIEX, Washington D.C., USA). A binary gradient consisting of two solvents: solvent A (chloroform/methanol (89:10) containing 0.28% ammonia) and solvent B (chloroform/methanol/water (55:39:5) containing 0.28% ammonia). The gradient elution program was 20% B for 5 min, 20%–30% B for 10 min, 30%–60% B for 25 min, 60% for 5 min, 60%–20% B for 1 min, followed by 20% B for 14 min. The flow rate was 0.3 ml/min, and chromatography was performed at 25 °C.

The LC system was coupled online to Triple Quad™ 4500 (AB SCIEX), a triple-quadrupole tandem mass spectrometer equipped with turbo spray ionization source. The experimental conditions are: ion spray voltage – 4500 v, curtain gas 30 psi, collision gas 6 psi, temperature 300 °C, declustering potential – 160 v, entrance potential – 10 v, collision energy – 42 v, collision cell exit potential – 11 v, ion source gas I 70 psi and ion source gas II 30 psi. PA molecular species were detected in a multiple reaction monitoring (MRM) mode.

2.10. Statistical analysis

The Kolmogorov-Smirnov test was carried out to assess the normality of data. Statistical comparisons were performed using a two-tailed t-test or one-way ANOVA followed by Tukey’s post hoc test (Prism 5, GraphPad Software, La Jolla, CA, USA). No sample size calculation was performed. No test for outliers was conducted.

3. Results

3.1. Differential gene expression in DGKζ-KO mice

To determine differences in gene expression between the cerebral cortices of DGKζ-KO male mice and those of WT sibling controls (three animals per genotype (WT: n = 3, KO: n = 3)), we performed a microarray analysis. To obtain a broad overview of differential gene expression, all genes meeting the cut-off values (P-value < 0.05 and fold-change ≥ absolute 2 (log₂ 1 or log₂ −1)) in DGKζ-KO mice were analyzed. There was a total of 43 (26 up- and 17 downregulated) differentially regulated genes in DGKζ-KO mice (Table 1). Overall, there were considerably more upregulated genes than downregulated genes.

To validate the microarray findings, we quantified the expression of two particular genes, Prl (prolactin) and Gh (growth hormone), which were the most upregulated (log₂ 5.4 ± 1.7 (absolute 42.2 ± 3.2) fold, $P = 0.031$ and $\log_2 5.3 \pm 1.8$ (absolute 39.4 ± 3.5) fold, $P = 0.042$, respectively) (Table 1), using RT-PCR. RT-PCR confirmed a similar pattern of upregulated fold-change expression of Prl and Gh ($\log_2 5.4 \pm 1.5$ (absolute 42.2 ± 2.8) fold, $P = 0.004$ and $\log_2 4.7 \pm 0.8$ (absolute 26.0 ± 1.7) fold, $P = 0.001$, respectively) (Suppl. Fig. 1).

We analyzed the relationship between BPD and individual genes affected in DGKζ-deficient mice (Table 1). Prl [25], Gh [26], I11b (interleukin 1β) [27], Foxp3 (forkhead box P3), Glp1r (glucagon-like peptide 1 receptor) [28,29] and Arg1 (arginase) [30], which were intensively increased by DGKζ-KO (Table 1), were reported to be related to BPD (see Discussion).

3.2. Identification of affected biological processes in DGKζ-KO mice

To gain some insight into the biological role of the affected genes found (Table 1) and how they may contribute to BPD remedy (lithium)-sensitive mania-like behaviors caused by DGKζ deficiency, we annotated the 43 genes (Table 1) using functional lists of Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in the DAVID bioinformatics resources. The analysis revealed that the deficiency of DGKζ appears to affect gene expression in five biological pathways (Table 2). In addition to the central nervous system-related pathway “neuroactive ligand-receptor interaction (KEGG:mmu04080)”, four pathways such as “positive regulation of transcription by RNA polymerase II (GO:0045944)”, “Jak-STAT signaling pathway (KEGG: mmu04630)”, “positive regulation of cytosolic calcium ion concentration (GO:0007204)” and “positive regulation of ERK1 and ERK2 cascade (GO:0070374)” were affected by DGKζ-KO (Table 2).

3.3. BPD-related biological processes affected in DGKζ-KO mice

We next analyzed the relationship between BPD and biological pathways affected in DGKζ-KO mice. As mentioned above, all five biological pathways include at least one gene previously implicated in BPD (Table 2). “Neuroactive ligand-receptor interaction”, which can be directly related to BPD (mania)-like behaviors of DGKζ-deficient mice, contains three genes, Glp1r, Gh and Prl, previously implicated with BPD.

In addition to “Neuroactive ligand-receptor interaction”, “Jak-STAT signaling pathway” is influenced by DGKζ-KO. This pathway contains Gh and Prl (Table 2). Intriguingly, the antidepressant actions of current treatments have been shown to be mediated by JAK/STAT-dependent mechanisms [34].

Fig. 1. Western blot analysis of phosphorylated ERK1/2.

(A) Western blotting of lysates (20 μg) from WT or KO mouse cerebral cortices was performed to detect total ERK1/2 and phosphorylated ERK1/2 (P-ERK1/2). (B, C) Quantitative analysis of Western blotting (total ERK (B) and P-ERK/total ERK (C)). The bands were scanned and quantified using the ImageJ software. The values of WT mice were set to 1. The values are presented as the mean ± SEM of seven animals per genotype (WT: n = 7, KO: n = 7). *p < 0.05 vs. WT mice.
Positive regulation of transcription by RNA polymerase II (GO:0045421) is closely related to BPD [41]. A and dysfunctions play a pathophysiological role in some BPD patients by “pathogenesis of BPD. Indeed, this pathway contains three BPD-related lithium and valproate, BPD (mania) remedies [35].

Percentage of the value of each PA molecular species in control mouse cerebral cortex are indicated with a red font. (For interpretation of the references to PA molecular species that were decreased in the DGK-KO mouse cerebral cortexes. (B) The results are presented as the percentage (Table 2). ERK1/2 was reported to be activated by deficiency (Table 2). It was reported that increased levels of 3.5. Analysis of PA molecular species in DGK-KO mice were small (Fig. 1) because DGK-KO deficiency of DGK-KO on the ERK1 and ERK2 cascade 3.4. Effects of DGK-ΔKO on the ERK1 and ERK2 cascade Because “Positive regulation of ERK1 and ERK2 cascade” is affected by DGKΔ deficiency (Table 2) and because DGKΔ activates the Ras–Raf–MEK–ERK1/2 signaling cascade [17], we examined phosphorylation (activation) levels of ERK1/2 in the DGKΔ-deficient brains. Indeed, the phosphorylation levels of ERK1/2 were significantly decreased in DGKΔ-KO mouse cerebral cortexes (89.2 ± 9.8%, P = 0.041) (Fig. 1). Therefore, we confirmed that the ERK1/2 cascade is regulated by DGKΔ in vivo. It is possible that changes in ERK phosphorylation levels in DGKΔ-KO mice were small (Fig. 1) because DGKΔ is expressed only in a part of the mouse cerebral cortex [18].

3.5. Analysis of PA molecular species in DGKΔ-KO mouse cerebral cortex

Olr1 (oxidized low-density lipoprotein (lectin-like) receptor 1) and Ces2c (carboxylesterase 2C) (Table 1) are glycerolipid-related genes. Glp1r (Tables 1 and 2) is intimately linked to lipid metabolism [44]. Moreover, we noted that the FPR2 (N-formyl peptide receptor 2) [45] (Table 1), which is listed under “Neuroactive ligand-receptor interaction” and “Positive regulation of cytosolic calcium ion concentration” (Table 2), binds to lipoxin A4 derived from PUFA (arachidonic acid). In addition, PUFA is implicated in the pathophysiology and etiology of recurrent mood disorders including BPD [46,47]. Furthermore, DGKΔ itself is a glycerolipid-metabolizing enzyme that phospholipases DG to generate PA [10–13]. Therefore, we next investigated the effects of DGKΔ deficiency on the amounts of PA molecular species, which are the reaction products of DGK.

We examined whether the amounts of PA molecular species were decreased in the cerebral cortex of the DGKΔ-KO mouse using a recently established LC-MS method [24,48]. As shown in Fig. 2A, several PA species were reduced. To facilitate comparison, the averages of the relative values (DGKΔ-KO mice versus control mice) from four independent experiments are displayed (Fig. 2B). In the DGKΔ-KO mouse cerebral cortexes, several PUFA-containing PA species, such as 36:3-, 38:3-, 40:5-, 40:4- and 40:3-PA, were significantly decreased (Fig. 2). LC-MS/MS analysis showed that the main molecular species of these PA species were 18:1/18:2 (36:3)-, 18:0/20:3 (38:3)-, 18:0/22:5 (40:5)-, 20:0/20:4 (40:4)- and 18:1/22:2 (40:3)-PA (Suppl. Table 1). These results support our microarray data showing that the deficiency of DGKΔ affects PUFA-containing glycerophospholipid metabolism. It is likely

Table 2
Biological pathways affected in the DGKΔ-KO mouse cerebral cortex.

Database category	Biological pathway	P-value	Gene Count	Genes
GOTERM_BP	Positive regulation of transcription by RNA polymerase II (GO:0045421)	0.004	8	Ilx, Foxp3, Glp1r, Ifih1a, Il1b, Neurog1, Serpinf2,
KEGG_PATHWAY	Neuroactive ligand-receptor Interaction (mmu04080)	0.031	4	Ppr2, Glp1r, Gh, Prl
GOTERM_BP	Positive regulation of cytosolic calcium ion concentration (GO:0007204)	0.039	3	Ppr2, Glp1r, Il1b
KEGG_PATHWAY	Jak-STAT signaling pathway (mmu04630)	0.049	3	Gh, Prl, Tpha
GOTERM_BP	Positive regulation of ERK1 and ERK2 cascade (GO:0070374)	0.059	3	Il1b, Serpinf2, Tpha

For each term, an EASE score cut-off of P-value < 0.1 was applied along with gene count ≥3. Along with database category for GO and KEGG using DAVID, Benjamini false discovery rate-corrected P-value, gene count and gene lists are presented. Genes and biological pathways implicated in BPD are indicated in bold font.

S [31], *h* [32–34], *f* [35,36], *d* [37,38], *e* [28,29], *g* [27], *f* [26], *h* [39,40].

Fig. 2. Analysis of PA molecular species in DGKΔ-KO mouse cerebral cortex. (A) A representative LC-MS analysis result of major PA species from control and DGKΔ-KO mouse cerebral cortexes. (B) The results are presented as the percentage of the value of each PA molecular species in control mouse cerebral cortex. The values are presented as the mean ± SEM of four animals per genotype (WT: n = 4, KO: n = 4). *p < 0.05, **p < 0.005 versus control. PA molecular species that were decreased in the DGKΔ-KO mouse cerebral cortex are indicated with a red font. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

“Positive regulation of cytosolic calcium ion concentration” and “Positive regulation of transcription by RNA polymerase II” are altered by DGKΔ deficiency (Table 2). It was reported that increased levels of intracellular calcium enhances glycerone synthase kinase (GSK) 3β activity [36], which is closely related to BPD [41–43]. Mitochondrial dysfunctions play a pathophysiological role in some BPD patients by affecting intracellular calcium regulation [31]. A wide variety of impairments in transcription regulation are suggested to be critical to the pathogenesis of BPD. Indeed, this pathway contains three BPD-related genes including Foxp3, Gh and Prl (Table 2).

“Positive regulation of ERK1 and ERK2 cascade” is also affected by DGKΔ deficiency (Table 2). ERK1/2 was reported to be activated by lithium and valproate, BPD (mania) remedies [35]. The
that changes in the levels of PUFA-containing PA species with KO were relatively small (Fig. 2) because DGKζ is expressed only in a part of the mouse cerebral cortex [18] as mentioned above. Moreover, PA species that are generated from multiple pathways, such as the de novo synthesis, the hydrolysis of phosphatidylcholine by phospholipase D and the phosphorylation of DG by other DGK isozymes probably caused high background.

3.6. Analysis of LPA molecular species in DGKζ-KO mouse serum

We next examined whether the amounts of LPA species were decreased in DGKζ-KO mouse serum using the LC-MS analysis [24,48]. As shown in Fig. 3A, the levels of several LPA species were reduced. To facilitate comparison, the averages of the relative values (DGKζ-KO mouse versus control mice) from six independent experiments are displayed (Fig. 3B). We found that the amounts of PUFA-containing LPA species 18:2- and 20:5-LPA were significantly decreased in DGKζ-KO mouse blood (Fig. 3).

4. Discussion

It was strongly suggested that DGKζ is one of the key enzymes related to the etiology of BPD. However, the molecular mechanisms by which the DGKζ-KO induces mania-like behaviors has been unclear. In the present study, we revealed that the expression levels of 43 genes are significantly decreased in DGKζ-KO mouse cerebral cortex (Table 1). Moreover, the database for annotation identified five affected biological pathways. The central nerve system-related pathway “neuroactive ligand-receptor interaction” was annotated (Table 2). Impairments of “Neuroactive ligand-receptor interaction” can be a direct cause of BPD (mania)-like behaviors of DGKζ-KO mice.

“Jak-STAT signaling pathway” is affected in DGKζ-KO mice (Table 2). Notably, the antidepressant actions of current treatments have been shown to be mediated by JAK-STAT-dependent mechanisms [34]. “Jak-STAT signaling pathway” is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease [49]. IL1β (interleukin 1β) and Foxp3 (forkhead box P3) (Tables 1 and 2) are also involved in the immune-inflammatory response system [37,38]. It is interesting to note that there are now several meta-analyses showing that BPD is accompanied by an immune-inflammatory response with increased levels of pro-inflammatory cytokines, acute phase proteins, and other compounds released by an activated immune-inflammatory response system [32-34]. For example, there was a higher incidence in the inflammatory bowel disease cohort compared to controls for BPD [32].

“Positive regulation of ERK1 and ERK2 cascade” is also affected by DGKζ deficiency (Table 2). Indeed, we demonstrated that phosphorylation (activation) levels of ERK1/2 were decreased in DGKζ-KO mouse cerebral cortices (Fig. 1). It was reported that ERK was activated by lithium and valproate, BPD (mania) remedies [35]. The B-Raf/C-Raf–MEK–ERK1/2 cascade inhibits GSK3β [36], which is associated with BPD [41-43]. Moreover, B-Raf mRNA and protein levels were significantly reduced in BPD patient brains [50]. It was reported that B-Raf inhibitors stimulate inflammation some activation and IL-1β production [51]. Interestingly, we recently found that DGKζ enhanced the Ras–B-Raf/C-Raf–MEK–ERK1/2 signaling [17] and that deficiency of DGKζ activated GSK3β [21].

Prl (prolactin), which is an anterior pituitary hormone, was intensely increased by DGKζ-KO (log2 5.4 ± 1.7 (absolute 42.2 ± 3.2) fold, Table 1). Prolactin is commonly included in the annotation groups “neuroactive ligand-receptor interaction”, and “Jak-STAT signaling pathway” (Table 2). Prolactin levels were reported to be higher in BPD patients compared to controls [25]. BPD patients undergoing lithium treatment exhibited decreased prolactin levels [25,52]. Moreover, the administration of lithium significantly inhibited prolactin secretion in rats [53]. Intriguingly, lithium attenuated DGKζ-deficient-induced mania-like phenotypes as well [21]. In contrast to lithium, it is widely known that many antipsychotic medications were reported to strongly increase prolactin levels in BPD patients in addition to schizophrenia patients [40,54]. The increased prolactin leads to serious side effects. It will be interesting to determine the relationship between the effects of antipsychotic medications and DGKζ.

Gh (growth hormone), which is an anterior pituitary hormone, similarly to prolactin, was also strongly increased by DGKζ deficiency (log2 5.3 ± 1.8 (absolute 39.4 ± 3.5) fold, Table 1) and is listed under “neuroactive ligand-receptor interaction” and “Jak-STAT signaling pathway” (Table 2). The administration of lithium significantly attenuated GH secretion in addition to prolactin in rats [53]. GH was more strongly increased in mania patients than healthy controls in response to a challenge with a GABAB receptor agonist [26]. There may be similarities between the effects of GABAζ receptor agonists for mania and DGKζ-KO.

Il1β (interleukin 1β), which was significantly increased in DGKζ-KO mouse brains (Table 1), is commonly included in the annotation groups “positive regulation of transcription by RNA polymerase II”, “positive regulation of cytotoxic calcium ion concentration”, and “Positive regulation of ERK1 and ERK2 cascade” (Table 2). Il1β, which is a neuroinflammatory marker, was previously reported to increase in the cerebral cortex of BPD patients [27].

Foxp3 (forkhead box P3), which was significantly increased in DGKζ-KO mouse brains (Table 1), is listed under “positive regulation of transcription by RNA polymerase II” (Table 2). Foxp3 functions as a master regulator of the regulatory pathway in the development and function of regulatory T cells [55]. It was found that BPD patients exhibited reduced proportions of natural T regulatory cells (CD4+ CD25+ Foxp3+) [37,38].

The expression of GIP1r (glucagon-like peptide 1 receptor), which is...
annotated in “positive regulation of transcription by RNA polymerase II,” “positive regulation of cytosolic calcium ion concentration” and “neuroactive ligand-receptor interaction” (Table 2), was significantly enhanced (Table 1). Glp1r is widely expressed in the central nervous system. Interestingly, Glp1r agonists were reported to be promising therapeutic options for BPD [28,29].

Arg1 (arginase) was substantially increased in DGKη-KO mouse brains (Table 1). Plasma arginase activities were found to be significantly lower in patients with BPD compared with controls [30].

There are several BPD-related proteins including GSK3β and Clock. Contrary to DGKη, transgenic mice of GSK3β exhibited mania-like behaviors [56,57]. As expected, Prl and Gh levels were significantly lower in rats treated either with AZ1080, a GSK3β-selective inhibitor, or lithium, which also inhibits GSK3β [58], in contrast to DGKη-KO. Mice deficient in Clock also constitute a representative BPD (mania) model [59]. Consistent with DGKη-KO mice, Gh mRNA was increased in the Clock-mutated mouse brains [60].

We found that the deficiency of DGKη decreased PUFA-containing PA species, 36:3 (18:1/18:2)-, 38:3 (18:0/20:3)-, 40:5 (18:0/22:5)-, 40:4 (18:0/22:4)- and 40:3 (18:0/22:3)-PA, in the mouse cerebral cortex (Fig. 2 and Suppl. Table 1). Thus, these PA species may directly affect the functions of BPD-related proteins. Intriguingly, PUFA is implicated in the pathogenesis of BPD [46,47] and our microarray data showed that the gene encoding FPR2 [45], which binds to ligands derived from PUFA, was increased (Table 1). Additionally, GWAS has recently revealed that fatty acid desaturase, which regulates unsaturation of fatty acids, is associated with BPD [61]. These results suggest that DGKη-KO might cause BPD-like behaviors through abnormal PUFA-related glycerophospholipid metabolism affected by decreases in PUFA-containing PA molecular species.

To date, ten DGK isozymes have been identified [10–13]. We previously demonstrated that DGKδ generated 32:0 (16:0/16:0)-PA during Neuro-2a neuroblastoma cell differentiation [62] and that DGKδ produced relatively broad PA species such as 30:0 (14:0/16:0), 30:1 (14:0/16:1), 32:0 (16:0/16:0), 32:1 (16:0/16:1), 34:0 (16:0/18:0) and 34:1 (16:0/18:1)-PA in glucose-stimulated C2C12 myoblasts [48]. These profiles are clearly different from that (36:3 (18:1/18:2), 38:3 (18:0/20:3), 40:5 (18:0/22:5), 40:4 (18:0/22:4) and 40:3 (18:0/22:3)-PA) of DGKη in the brain (Fig. 2 and Suppl. Table 1). These results further support the fact that DGKη isozymes utilize distinct DG molecular species as substrates in different cells under different conditions (stimuli). However, DGKη does not have a preference for different DG species in vitro [63]. Therefore, it is speculated that the enzyme preferentially accesses to a PUFA-containing DG species-rich pool in vivo. Alternatively, there could also be changes in the membrane environment that affects the specificity of DGKη as has recently been found with DGKε [64]. DG species derived from PI turnover mainly consist of 18:0/20:4-DG [20]. Therefore, although the pleckstrin homology domain of DGKη interacts with PI4,5-bisphosphate [19], DGKη would utilize DG species supplied from a PI turnover-independent pathway.

LC-MS analysis revealed that the PUFA-containing LPA species, 18:2- and 20:5-LPA, were significantly decreased in DGKη-KO mouse serum (Fig. 3). Particularly, 18:2-LPA was dominantly affected (Fig. 3). The decrease in amounts of PUFA-containing LPA species (18:2-LPA) in DGKη-KO mice (Fig. 3) may be due to the reduction of 18:2-containing PA species such as 18:1/18:2 (36:3)-PA in the brain (Fig. 2 and Suppl. Table 1). In this case, phospholipase A may produce the LPA species via hydrolysis of 18:1/18:2-PA. Alternatively, we revealed that DGKη exhibits 2-monoyacylglycerol kinase activity in addition to DGK activity [65], suggesting that the LPA species (18:2-LPA) was generated from 2-monoyacylglycerol (18:2-monoyacylglycerol) through phosphorylation by DGKη. Similarly, 20:5-LPA (Fig. 3) may be derived from 20:0/20:5 (40:5)-PA (Fig. 2 and Suppl. Table 1) and/or 20:5-monoyacylglycerol. Because the DGKη gene was not brain-specifically deleted, we cannot rule out general effects across tissues other than the brain. Notably, the amounts of LPA species in blood are noninvasively measurable.

Moreover, DGKη expression is changed in BPD patients [5] and GWASs of BPD have suggested that single nucleotide polymorphisms in the DGKη gene are associated with BPD [3–5]. Therefore, there is the possibility that these LPA species could be novel and useful biomarkers for BPD.

Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms of how BPD-related mania-like behaviors were caused by DGKη-KO but also information for developing BPD diagnostics. However, the molecular mechanisms by which DGKη-KO induces mania-like behaviors are not yet fully understood. Further studies will be necessary to explore this issue in more detail.

Funding

This work was supported in part by grants from MEXT/JSPS KAKENHI Grant Numbers 26291017 (FS), 15K14470 (FS), 17H03650 (FS), and 16J06865 (SKo); the Futaba Electronic Memorial Foundation (FS); the Ono Medical Research Foundation (FS); the Japan Foundation for Applied Enzymology (FS); the Food Science Institute Foundation (FS); the Skylark Food Science Institute (FS); the Asahi Group Foundation (FS); the Japan Milk Academic Alliance (FS); the Japan Food Chemical Research Foundation (FS) and the SENSHEIN Medical Research Foundation (FS).

Author contributions

S.Ko. designed and conducted the experiments, analyzed the data and wrote the manuscript. Y.S., C.M., F.H., M.A., S.C. and S.Ka. performed the experiments and analyzed the data. D.T. designed the study and revised it critically for important intellectual content. F.S. conceived the study and wrote the manuscript.

Conflicts of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbrep.2019.100660.

References

[1] K. Martinovich, R.J. Schloesser, H.K. Manji, Bipolar disorder: from genes to behavior pathways, J. Clin. Investig. 119 (2009) 726–736.
[2] K. Latalova, D. Kamaradova, J. Prasko, Suicide in bipolar disorder: a review, Psychiatr. Danub. 26 (2014) 108–114.
[3] A.E. Baum, N. Akula, M. Cabanero, et al., A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder, Mol. Psychiatry 13 (2008) 197–207.
[4] H. Weber, S. Kittel-Schneider, A. Geimer, et al., Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD, Neuropsychopharmacology 36 (2011) 2076–2085.
[5] Z. Zeng, T. Wang, T. Li, et al., Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population, Mol. Psychiatry 16 (2011) 473–475.
[6] J.A. Badner, E.S. Gerdsen, Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia, Mol. Psychiatry 7 (2002) 405–411.
[7] S.D. Detera-Wadleigh, F.J. McMahon, G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis, Biol. Psychiatry 60 (2006) 106–114.
[8] P.R. Murray, D.L. Murphy, F.J. McMahon, J.R. Wendland, Increased gene expression of diacylglycerol kinase eta in bipolar disorder, Int. J. Neuropsychopharmacol. 13 (2010) 1127–1128.
[9] F. Sakane, S. Mizuno, S. Komenoi, Diacylglycerol kinases as emerging potential drug targets for a variety of diseases: an update, Front. Cell Dev. Biol. 4 (2016) 82.
[10] K. Goto, Y. Hozumi, H. Kondo, Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus, Biochim. Biophys. Acta 1761 (2006) 535–541.
[11] I. Merida, A. Avila-Flores, E. Merino, Diacylglycerol kinases: at the hub of cell
signalling. Biochem. J. 409 (2008) 1–18.
[12] F. Sakane, S. Imai, M. Kai, S. Yasuda, H. Kanoh, Diacylglycerol kinases: why so many of them? Biochem. Biophys. Acta 1771 (2007) 793–806.
[13] M.K. Topham, R.M. EPand, Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms, Biochim. Biophys. Acta 1790 (2009) 416–424.
[14] T.M. Klauck, X. Xu, B. Mousseau, S. Jaken, Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase, J. Biol. Chem. 271 (1996) 19781–19788.
[15] T. Murakami, F. Sakane, S. Imai, K. Hosui, H. Kanoh, Identification and characterization of two splice variants of human diacylglycerol kinase zeta, J. Biol. Chem. 278 (2003) 34364–34372.
[16] H. Sakai, F. Sakane, Recent progress on type II diacylglycerol kinases: the physiolog-ical functions of diacylglycerol kinase delta and eta in the developing mouse brain, J. Histochern. Cytochem. 63 (2015) 57–68.
[17] A. Kume, K. Kawase, S. Komenoi, T. Usuki, E. Taketsuru, H. Sakai, F. Sakane, The pleckstrin homology domain of diacylglycerol kinase eta strongly and selectively binds to phosphatidylinositol 4,5-bisphosphate, J. Biol. Chem. 291 (2016) 8150–8161.
[18] M.J. Berridge, The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, and cell signaling, J. Biol. Chem. 284 (2009) 29559–29570.
[19] T. Usuki, H. Sakai, T. Shionoya, N. Sato, F. Sakane, Expression and localization of type II diacylglycerol kinase isoforms delta and eta in the developing mouse brain, J. Histochern. Cytochem. 63 (2015) 57–68.
[20] A. Kume, K. Kawase, S. Komenoi, T. Usuki, E. Taketsuru, H. Sakai, F. Sakane, The pleckstrin homology domain of diacylglycerol kinase eta strongly and selectively binds to phosphatidylinositol 4,5-bisphosphate, J. Biol. Chem. 291 (2016) 8150–8161.
[21] M.J. Berridge, The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, and cell signaling, J. Biol. Chem. 284 (2009) 29559–29570.
[22] T. Usuki, H. Sakai, T. Shionoya, N. Sato, F. Sakane, Expression and localization of type II diacylglycerol kinase isoforms delta and eta in the developing mouse brain, J. Histochern. Cytochem. 63 (2015) 57–68.
[23] H.O. Kalkman, Potential opposite roles of the extracellular signal-regulated kinase (ERK) pathway in inflammatory bowel disease and biologics, Neurosci. Biobehav. Rev. 36 (2012) 2206–2213.
[24] C.H. do Prado, L.B. Rizzo, A. Wieck, R.P. Lopes, A.L. Teixeira, R. Grassi-Oliveira, C.H. do Prado, L.B. Rizzo, A. Wieck, R.P. Lopes, A.L. Teixeira, R. Grassi-Oliveira, Increased excitotoxicity and neurodegeneration in α-synuclein-expressing mice, Neurobiol. Dis. 59 (2015) 1272–1277.
[25] J.C. Bozelli Jr., W. Jennings, S. Black, et al., Membrane curvature allosterically regulates theactivation of mammalian diacylglycerol kinase, J. Biol. Chem. 283 (2008) 32512–32520.
[26] M. Bros, BRAF inhibitors stimulate in-duction of anoikis and inhibit metastasis, J. Biol. Chem. 291 (2016) 26607–26617.
[27] E.R. Bertone-Johnson, Vitamin D and the occurrence of disease: causal associ-ation or circumstantial evidence? Nutr. Rev. 67 (2009) 481–492.
[28] E. Messamore, D.M. Almeida, R.J. Jandaekc, R.K. McNamara, Polyunsaturated fatty acids and recurrent mood disorders: phenomenology, mechanisms, and clinical application, J. Psychopharmacol. 28 (2014) 1–13.
[29] H. Sakai, F. Sakane, Diacylglycerol kinase δ augments C-Raf activity and B-Raf/C-Raf heterodimerization, J. Biol. Chem. 284 (2009) 29559–29570.
[30] T. Usuki, H. Sakai, T. Shionoya, N. Sato, F. Sakane, Expression and localization of type II diacylglycerol kinase isoforms delta and eta in the developing mouse brain, J. Histochern. Cytochem. 63 (2015) 57–68.