Non-destructive and Quantitative Viscoelastic-Mapping of Cellulose Nanofibrils Using Low-Total-Force Contact Resonance Force Microscopy (LTF-CRFM)

Kristen M. Hess
University of Colorado

Jason P. Killgore (jason.killgore@nist.gov)
NIST Boulder Laboratories https://orcid.org/0000-0002-8458-6680

Wil V. Srubar
University of Colorado

Research Article

Keywords: cellulose nanofibril, contact resonance force microscopy, Brownian motion, viscoelastic loss tangent

DOI: https://doi.org/10.21203/rs.3.rs-777439/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Non-destructive and Quantitative Viscoelastic-Mapping of Cellulose Nanofibrils Using Low-Total-Force Contact Resonance Force Microscopy (LTF-CRFM)¹

Kristen M. Hess a, Jason P. Killgore b†, and Wil V. Srubar III a,c

a Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, ECOT 441 UCB 428, Boulder, Colorado 80309-0428 United States
b Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
c Materials Science and Engineering Program, University of Colorado Boulder, UCB 613, Boulder, Colorado 80303, United States
† Corresponding Author: jason.killgore@nist.gov

Abstract. Low-total-force contact resonance force microscopy (LTF-CRFM), an atomic force microscopy method, is introduced as a non-destructive means to quantify the local viscoelastic loss tangent (tan δ) of cellulose nanofibrils (CNFs). The method limits static and dynamic forces during measurement to minimize substrate and geometry effects and to reduce the potential for stress-induced CNF damage. LTF-CRFM uses Brownian motion to achieve the thermally-limited lowest dynamic force, while approaching adhesive pull-off to achieve the low static force. LTF-CRFM measurements were shown to generate analyzable data without evidence of nonlinear artifacts and without damage to the CNF over static forces ranging from 11.6 nN to 84.6 nN. The measured tan δ of CNFs was 0.015 ± 0.0094, which is the first reported tan δ measurement of an isolated CNF. Finally, LTF-CRFM successfully mapped tan δ along the length of CNFs to determine that kink defects along the CNF do not impart a local viscoelastic property change at the length scale of the measurement.

Keywords. cellulose nanofibril, contact resonance force microscopy, Brownian motion, viscoelastic loss tangent.

1.0 Introduction

Cellulose is a linear polymer chain comprised of glucose rings connected through glycosidic bonds (Azizi Samir et al. 2005; J. Moon et al. 2011; Heinze 2015). Hydrogen bonding between hydroxyl groups and oxygen molecules on neighboring glucose rings stabilize the glycosidic bonds, which leads to the linear configuration of cellulose. Hydroxyl groups and oxygen molecules from separate linear chains interact through hydrogen bonding to form parallel assemblies. The aggregation of the parallel assemblies form cellulose fibrils that are 5 nm to 50 nm in diameter and several microns in length. The hydrogen bonding makes cellulose a relatively stable polymer and provides the cellulose fibrils with high axial elastic modulus (i.e., 110 GPa to 220 GPa) (J. Moon et al. 2011). Cellulose has many advantageous attributes including bio-renewability, low cost, widespread availability and high-performance mechanical properties (J. Moon et al. 2011; Heinze

¹ Publication of NIST, an agency of the US government, not subject to copyright in the United States.
2015; Wagner et al. 2016; Aydemir and Gardner 2020). As such, cellulose has been processed into microscale or nanoscale materials, such as cellulose nanocrystals (CNCs) or cellulose nanofibrils (CNFs) (Wagner et al. 2016), for applications ranging from transparent films for electronic displays (Purandare et al. 2014) to biocompatible hydrogels for biomedical technologies (Curvello et al. 2019).

This work focuses on CNFs, which are mechanically separated into rod-like anisotropic structures with nanometer-scale diameters and micron-scale lengths (Zhang et al. 2013; Wagner et al. 2016). Moreover, previous investigation has found CNFs have heterogeneities, namely in its structure (Zhang et al. 2013) and mechanically-induced deformations (Ciesielski et al. 2019). CNFs contain alternating highly ordered crystalline regions and disordered amorphous regions (Zhang et al. 2013), where the elastic modulus is expected to be greater in the crystalline region compared to the amorphous region since the crystalline cellulose modulus is 5 to 10 times greater than the CNF modulus (Nishiyama 2009). For cellulose derived from plant species, the degree of crystallinity typically varies from 40 % to 70 % depending on the source species and processing technique (Mariano et al. 2014; Nechyporchuk et al. 2016). In addition, isolated CNFs have observable kinked defects, which are mechanically induced ex-situ from, for example, processing conditions (Usov et al. 2015; Ciesielski et al. 2019; Zhou et al. 2020). Because of the potential influences of heterogeneities on functional device performance, nanoscale characterization of CNFs is essential.

The inherent characteristics of cellulose (i.e., thin dimensionality, high stiffness and anisotropy) render mechanical property characterization challenging. Despite such challenges, previous studies have utilized atomic force microscopy (AFM) techniques to perform mechanical property measurements. For example, the elastic modulus of CNFs has been quantified using a nanoscale three-point bend technique (Guhados et al. 2005; Cheng and Wang 2008; Cheng et al. 2009; Iwamoto et al. 2009). Briefly, CNFs are dispersed on a substrate with pores or grooves, and a single CNF suspended between two points of contact is identified for measurement. Force spectroscopy is then used to obtain force and displacement data at points along the length of the suspended CNF. To determine the elastic modulus, the collected force and displacement data are analyzed using flexural beam theory. From previous studies, the elastic modulus are reported as (98 ± 6) GPa for Lyocell CNF (i.e., regenerated cellulose), (81 ± 12) GPa for wood pulp CNF, (84 ± 23) GPa for commercial microfibrilated CNF (Cheng et al. 2009) and (78 ± 17) GPa for bacterial CNF (Guhados et al. 2005). Notably, the three-point bend technique only measures properties averaged across the span length of a single fibril. Thus, it is not possible to identify local heterogeneities due to variation in crystallinity, damage or other defects.

Fewer AFM measurements have assessed the elastic modulus of cellulose supported on a solid substrate. Such measurements allow for the full resolution of AFM to be employed by revealing nanometer-scale heterogeneities. Using AFM force-distance curves and a finite element model, the transverse elastic modulus of wood CNCs at 0.1 % relative humidity (RH) was reported to range from 18 GPa to 50 GPa (Lahiji et al. 2010). Applying a similar approach, the transverse elastic modulus of tunicate CNCs at 0.1 % RH was reported as 6 ± 6 GPa from AFM force-distance curves collected along the length of the CNC but analyzed using the Hertz-based DMT model (Postek et al. 2011). Wagner et al. (2016) used contact resonance force microscopy (CRFM) and contact mechanics models to measure and quantify the elastic modulus of wood CNFs. CRFM measures the resonance frequency of the AFM cantilever when the tip is in repulsive contact with the sample of interest. Variations in stiffness of the sample result in corresponding shifts in the resonance frequency, which can be translated into mechanical properties via models of the
cantilever dynamics and contact mechanics. Compared to AFM force-distance, Wagner et al. (2016) demonstrated that CRFM afforded sufficient sensitivity due to the resonance enhancement to resolve the stiffness contrast between CNFs and substrate. However, the results were shown to vary by up to an order of magnitude depending on whether and how the applied contact mechanics model considered the thinness of the CNFs (Wagner et al. 2016).

Beyond the elastic CRFM measurements reported in (Wagner et al. 2016), CRFM also allows for the measurement of viscoelastic properties, such as storage modulus (\(E'\)), loss modulus (\(E''\)), and loss tangent (\(\tan \delta\)). This work seeks to address some of the limitations of prior CRFM work by operating with much lower total forces while simultaneously expanding the materials characterization to include viscoelasticity. Understanding the viscoelastic behavior of a material is important for material development and performance. Notably, the unexpected effects of viscoelastic behavior discovered during the usage of a material can be anticipated and mitigated. As shown in Figure 1a, dynamic mechanical analysis (DMA) is a common technique to measure viscoelastic properties. To summarize, a sinusoidal stress is applied to a sample and the recorded strain response will lag by a phase angle (\(\delta\)) that is related to the time lag (\(\Delta t\)). From the stress, strain and \(\delta\), the viscoelastic properties of the sample can be calculated. \(E'\) is a measure of the stored energy and represents the elastic portion of the viscoelastic measurement. \(E''\) is a measure of the dissipated energy and represents the viscous portion of the measurements. Finally, \(\tan \delta\) is a function of the elastic and viscous response, where \(\tan \delta = \frac{E''}{E'}\), and provides a ratio of the

Figure 1: Experimental set-up schematic and representative collected data for viscoelastic measurements of a sample using (a) DMA and (b) AFM where illustrative Material A has a higher \(\tan \delta\) compared to illustrative Material B.
dissipated and stored energy in the material (Lakes 2009). Although it is possible to perform sine-wave modulated viscoelastic measurements via AFM, the resultant phase lag measurements are often high noise and subject to considerable cross-talk (Hurley and Killgore 2013). CRFM can address these limitations by calculating tan δ from the quality factor (\(Q_n\)) and frequency (\(f_n\)) of the resonance peak at mode \(n\) (Hurley and Killgore 2013; Killgore and DelRio 2018). For comparison, traditional sine-wave modulated viscoelastic measurements (e.g., DMA and lower frequency AFM) are shown in Figure 1a and CRFM viscoelastic measurements are shown in Figure 1b where illustrative Material A and Material B have relatively low and high tan δ, respectively. It is seen that the modest shift in phase lag in Figure 1a corresponds with a dramatic reduction in \(Q_n\) in Figure 1b.

Applying viscoelastic CRFM methods to fragile, dimensionally constrained CNFs requires novel modifications of previous methods. The low-total-force (LTF) CRFM method developed here operates with the lowest total combined static and dynamic forces. LTF-CRFM measurements are performed at a static force close to the tip-sample adhesion force (i.e., low static force) and the cantilever is driven by Brownian motion (i.e., lowest dynamic force). Most often in AFM, Brownian motion or thermal noise excitation is used for well-established calibration methods to determine cantilever spring constant or optical sensitivity prior to AFM measurements (Hutter and Bechhoefer 1993; Sader et al. 1995; Proksch et al. 2004). However, some studies have found other advantages of using Brownian motion. Tung et al. (2014) used Brownian motion excitation to alleviate the “forest of peaks” and mitigate the fluid-born excitation phenomena for CRFM measurements of borosilicate glass samples immersed in water (Tung et al. 2014). In addition, Gonzalez-Martinez et al. (2019) used Brownian motion excitation to reduce damage when performing CRFM measurements on polyurethane (PU) samples. The technique was found to be sensitive to changes in the viscoelasticity in the PU films as relative humidity increased, as indicated by resonance peak shape and quantified tan δ values (Gonzalez-Martinez et al. 2019).

The above studies demonstrate some benefits of Brownian motion CRFM, which are expanded upon here with LTF-CRFM. First, LTF-CRFM improves linearity of the tip-sample contact, which is necessary to satisfy small amplitude approximations when calculating a sample stiffness and damping, especially at low static forces. Typically, with an external dynamic force (e.g., piezo actuation or photothermal) the tip-sample contact would be highly non-linear close to pull off because the dynamic force is of similar or greater magnitude to the static force. Second, LTF-CRFM minimizes the size of the stress field in the sample such that it is wholly contained within the CNF, similar to recent applications of low-force force-modulation AFM for of ultra-thin (< 10 nm) and ultra-hard (100 GPa to 1000 GPa) 2D materials (Cellini et al. 2019). This mitigates modeling uncertainties when the sample is not an infinite half space and reduces systematic contributions of substrate properties to measured sample properties. Third, the low applied forces induce less sample damage from either static or dynamic indentation. Overall, when applied to CNFs, LTF-CRFM is shown to maintain tip-sample linearity, eliminate CNF damage, provide quantification of tan δ, and reveal that heterogeneity in CNFs is minimal, even in the vicinity of kinked defects.

2.0 Material and Methods²

² Commercial equipment, instruments, or materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of
2.1 Materials

The materials for this study included cellulose-β nanofibrils (purified from green alga Cladophora according to the method reported in (Sugiyama et al. 1991)), silicon wafers (Ted Pella, Redding, CA), and glass slides (Millipore Sigma, St. Louis, MO).

2.2 LTF-CRFM Nanomechanical Measurements

CRFM experimental techniques and analysis are well documented within the literature (Rabe et al. 2000; Rabe 2006; Hurley and Killgore 2013). To summarize, the AFM cantilever is excited over a range of frequencies and the response spectrum is recorded. When the cantilever tip is vibrated in free space, resonant modes occur at certain frequencies depending on the cantilever shape and material. When the cantilever is vibrated with the tip in contact with the sample surface, the resonant mode occurs at a frequency that is greater than the free resonance frequency due to tip-sample interaction. Using the free and contact resonance frequencies, material properties of the sample can be determined using appropriate models. In this work, the resonance peaks from mode 1 and mode 3 were used for analysis.

Figure 2: Minimizing the applied static and dynamic forces to investigate LTF-CRFM measurements. The applied static force corresponds to points along the well-established tip-sample interaction curve where the static force is either incremented from or held at a starting static force. The applied dynamic force was minimized using Brownian motion excitation and compared to conventional photothermal excitation, where the dynamic force (ΔF) is proportional to the cantilever response amplitude (Δd) due to excitation. CRFM measurements were completed at a single point, over a line of single points, and over a grid of single points.

Figure 2 illustrates LTF-CRFM nanomechanical measurements, where total force combines applied static and dynamic forces. To perform LTF-CRFM, the cantilever is excited using the lowest possible dynamic force (i.e., Brownian motion) at the lowest static force while still maintaining contact with the sample. Using Brownian motion to modulate the cantilever minimizes the oscillation range, while reducing the AFM deflection setpoint minimizes the static force. As Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.
such, LTF-CRFM simultaneously minimizes the applied static and dynamic forces to perform
nanomechanical measurements at the lowest total force and, consequently, the smallest induced
stress field. For comparison to LTF-CRFM, traditional CRFM measurements were completed at
higher static and dynamic forces, as shown in Figure 2. Higher dynamic forces were achieved by
photothermal excitation. The LTF-CRFM measurements were completed at single points, along a
line of points, and across a grid of points.

2.2.1 Controlling the Applied Static Force

The applied static force is determined by the product of the cantilever displacement and spring
constant and controlled by the deflection setpoint. To complete the experimental schemes (Section
2.3), the static force was either (1) incrementally decreased from a starting static force until the
static force was lower than the adhesive force causing the cantilever tip to release from the sample
surface or (2) held at a select starting static force and then the cantilever tip was abruptly removed
from the sample surface. Once the cantilever tip is away from the cantilever surface, it is translated
to a new measurement location (Figure 2).

2.2.2 Controlling the Applied Dynamic Force Using Brownian Motion and Photothermal
Excitation

The applied dynamic force (ΔF) is a function of the cantilever’s dynamic stiffness and the
amplitude of any external drive force. Brownian motion excitation occurs independent of external
drive force due to the thermal energy from the random motion of molecules causing the cantilever
to vibrate. This produces a white noise excitation over all possible frequencies, which translates
into cantilever motion primarily at frequencies in the vicinity of the cantilever resonances. Thus,
Brownian motion is the lowest possible dynamic force at a given temperature. To apply
photothermal excitation, a power-modulated 405 nm laser is focused at the base of the cantilever
and the absorbed energy causes the cantilever to vibrate at the modulation frequency. The
modulation amplitude of the photothermal laser is used to control the dynamic force. In addition,
the oscillation of the cantilever causes a corresponding cyclic fluctuation in the total force, as
schematically depicted in Figure 2. For example, decreasing ΔF proportionally decreases Δd,
which reduces the fluctuation in total force at any static force along the tip-sample interaction
curve.

2.3 Development and Validation of LTF-CRFM Nanomechanical Measurements

2.3.1 Sample Preparation and Experimental Set-Up

Cellulose-β fibrils were dispersed using an aqueous solution on a UV-ozone- and plasma- treated
silicon wafer or a UV-ozone- and plasma- treated glass slide. The AFM measurements were
conducted at room temperature ($\approx 18 ^\circ C$) using a Cypher S AFM microscope (Asylum Research,
Santa Barbara, CA). The AFM cantilevers (FM-AUD, Nanosensors, Switzerland) used in these
methods had measured spring constants and first free resonances of ≈ 1.51 N/m and ≈ 53.3 kHz,
≈ 3.51 N/m and ≈ 76.3 kHz, and 3.61 ± 0.34 N/m and ≈ 80.3 kHz for the methods described in Section
2.3.3, Section 2.3.4, and Sections 2.3.5 and 2.3.6, respectively.

2.3.2 Using AFM Tapping Mode Measurements to Identify and Observe Isolated CNFs

Tapping mode measurements generated high-resolution images that were used to identify and
focus on an isolated CNF. First, $5 \mu m \times 5 \mu m$ regions were scanned at 2.44 Hz with 19.5 nm pixel
size until an area with dispersed CNF was observed. Next, a $5 nm \times 5 nm$ region of the identified
isolated CNF was scanned at 2.44 Hz and 0.0195 nm pixel size. As needed, the region area, rate, and pixel size were tailored to generate an image that better resolved an isolated CNF for investigation. Once nanomechanical measurements were performed, 5 μm × 5 μm regions were again scanned at 2.44 Hz with 19.5 nm pixel size to locate another CNF. For all tapping mode measurements, the typical setpoint amplitude was 60% of the free amplitude to ensure measurements remained in the repulsive regime.

2.3.3 Comparing LTF and Traditional CRFM

Single point CRFM measurements were taken at four single points (Figure 2) along the length of a CNF on a silicon substrate. For each single point CRFM measurement, three dynamic forces were applied over an incrementally decreasing range of static forces to investigate total forces. The three dynamic forces have increasing magnitudes using Brownian motion excitation for the lowest dynamic force (ΔF_{BM}) and two photothermal excitations for the higher dynamic force (ΔF_{PT1}) and the highest dynamic force (ΔF_{PT2}). The cantilever tip starts in contact mode at a static force of 14 nN. The Brownian motion response spectra are recorded first, then the photothermal excitations are applied. Using setpoint increments, the static force is decreased and, at each increment, the spectra corresponding to each of the three dynamic forces are recorded. At a certain deflection setpoint, the tip-sample distance is large enough that the tip is no longer in contact with the sample, as indicated by the cantilever exhibiting the free resonance frequency rather than the contact resonance frequency.

2.3.4 Evaluating CNF Damage from LTF Compared to Increasing Total Force CRFM

CRFM measurements were taken at single points (Figure 2) along the length of the identified CNF on silicon. Measurements were acquired with four starting static forces of 11.3 nN, 16.9 nN, 45.1 nN, and 84.6 nN, with Brownian motion (ΔF_{BM}) and photothermal (ΔF_{PT3}) dynamic excitation. ΔF_{PT3} is approximately equal to ΔF_{PT2} except for variation due to laser position. Before each CRFM measurement, tapping mode AFM images were acquired to identify a pristine section of the CNF. For the CRFM measurement, the cantilever tip starts in contact at one of the starting static forces and the response spectrum from ΔF_{BM} is recorded. The ΔF_{BM} acquisition is repeated at incrementally lower force setpoint until the cantilever is free. Next, tapping mode measurements were performed to obtain topographical data of the tested section of the CNF. If no damage is observed, the single point CRFM measurement is repeated at the same starting static force but applying ΔF_{PT3}. If damage is observed, the measurement location is moved to a pristine portion of the CNF to complete the single point CRFM measurement repeated at the same starting static force but applying ΔF_{PT3}. Single point CRFM measurements are continued until each dynamic force and starting static force combination has been completed. Tapping mode measurements are taken before and after each combination of dynamic forces and starting static forces to collect topographical data for damage identification.

2.3.5 Using LTF-CRFM to Quantify tan δ of CNFs on Silicon and Glass Substrates

LTF-CRFM measurements were taken in a line of single points (Figure 2) perpendicular to the long axis of the fibril, across five different CNFs. Two of the CNFs were on a silicon substrate, while the remaining three CNFs were on a glass substrate. In addition, single point CRFM measurements were taken at four and five single points on silicon and glass substrates, respectively. 25 points were measured for each CNF, starting and ending at the substrate, as identified by tapping mode AFM. Only Brownian motion excitation was used for these measurements.
2.3.6 Using LTF-CRFM to Map Heterogeneity in $\tan \delta$ along the Length of a CNF

LTF-CRFM measurements were taken in grids of single points (Figure 2) to map loss tangent of four different CNFs on a silicon substrate. The selected nanofibrils had straight sections and kink defects in order to investigate mechanical heterogeneity at the defect. High-resolution tapping mode images (Section 2.3.2) were generated for each selected nanofibril. To complete the LTF-CRFM mapping measurements, Brownian motion was recorded at a single ≈ 10.0 nN static force. Three maps were acquired with 50×50, 50×50, and 25×50 single points over 400 nm x 400 nm, 175 nm x 175 nm, and 100 nm x 200 nm areas, respectively.

2.4 Data Processing Techniques

Four data processing techniques were selected and applied to the appropriate collected data set from the experimental schemes. First, static force calculations were performed for all data sets. Second, the relative magnitude of the dynamic force was determined for the data sets involving multiple dynamic forces, as described in Sections 2.3.3 and 2.3.4. Third, peak fitting functions were used for all data sets. Finally, the viscoelastic properties (i.e., $\tan \delta$ and Q^n_c) were determined for the data sets that demonstrate the utility of using Brownian motion as the dynamic force, as described in Sections 2.3.5 and 2.3.6. A detailed explanation of the four data processing techniques including any relevant equations, tables, or figures is provided in Section S8.0 of the Supplementary Information (SI).

3.0 Results

3.1 Response Spectra Analysis for LTF Compared to Higher Total Force CRFM

To evaluate the effect of total force on CRFM response, Figure 3 shows the results from Brownian motion excitation (i.e., lowest dynamic force) compared to small and large amplitude photothermal excitations (i.e., increasing dynamic forces) as static force decreases from ~ 14 nN down to the tip-sample detachment force. Thus, analysis of Figure 3 examines the lowest total forces at which quantifiable measurements can be obtained. The measurements reveal conditions of good and poor agreement between different excitation schemes, while also providing some guidance on mechanisms for the discrepancy in agreement. Quantification of dynamic force in CRFM is more challenging than for tapping-mode or force-spectroscopy because the contact-dependent-vibrational-shape affects the calibration of optical lever sensitivity in a difficult-to-predict fashion. Nonetheless, the relative amplitudes of cantilever motion can be compared at identical CR frequency. The average relative magnitudes of the three dynamic forces increase from 1 to 53 to 550 for ΔF_{BM}, ΔF_{PT1} and ΔF_{PT2}, respectively. Figure 3a shows mode 1 contact response spectra at a representative low (i.e., 1.2 nN) and high (i.e., 14 nN) static force and three increasing dynamic forces (i.e., ΔF_{BM}, ΔF_{PT1}, ΔF_{PT2}). Figure 3a shows the contact resonance peaks fitted to the damped harmonic oscillator (DHO) model. The contact frequency (f^c_1) and quality factor (Q^c_1) results, shown in Figure 3b and Figure 3b, are obtained from the DHO model fit of each contact resonance peak.

Figure 3a shows the response spectra for Brownian motion (as power spectral density (PSD)) and photothermal excitation (as amplitude vs frequency) at 1.2 nN and 14.1 nN applied static forces, with corresponding DHO model fits. At the higher static force of 14.1 nN, the contact resonance peaks for all dynamic forces are easily detectable. However, the contact resonance peak for the highest dynamic force (ΔF_{PT2}) shows a nonlinear response as evidenced by the asymmetric skew in the peak and the deviation from the DHO fit. At the lower static force of 1.2 nN, the peaks
become broader as the dynamic force increases resulting in a reduced capacity for peak detection. In the absence of non-linear effects or varying contact properties (e.g., tip radius and sample viscoelasticity), it is expected that all three excitation techniques would result in identical f_1^c and Q_1^c results as a function of applied force. In the cases shown, the f_1^c and Q_1^c appear reduced for the low static forces with larger amplitude photothermal excitation compared to the smaller excitation amplitudes. Although this non-linear effect is less pronounced than the skew at higher force, it would directly affect calculated elastic and dissipative material properties. For example, a lower f_1^c will correspond to a lower contact stiffness and thus Young’s modulus of the surface. The lower Q_1^c, at the same resonance frequency, will correspond to an inversely proportional higher $\tan \delta$ for the material. Both of these interpretations are likely artifacts, not related to surface mechanical properties. At the same time, the lower applied forces will result in a more localized stress field within the cellulose crystal. Thus, accuracy in interpreting the cantilever’s dynamic response at low applied static force is essential to localized mechanical property measurements on geometrically confined materials. Given the apparent improvements in linearity of the resonance response with smaller excitation amplitude, we assert that more reliable characterization is possible with Brownian motion compared to larger external excitation.

![Image](image_url)

Figure 3: Representative mode 1 contact response spectra fitted to the damped harmonic oscillator (DHO) model (a) from single point CRFM measurements at combinations of three increasing dynamic forces (where the lowest dynamic force uses Brownian motion and the two higher dynamic forces use photothermal excitation) and two selected static forces (i.e., 1.2 and 14.1 nN). Mode 1 static force compared to contact frequency (b) and mode 1 contact frequency compared to quality factor (c) from single point CRFM measurements at four locations along the CNF length where the inset in (c) shows the percent error in the power fit between the photothermal (i.e., ΔF_{PT1} and ΔF_{PT2}) and Brownian motion (i.e., ΔF_{BM}) dynamic forces.

Figure 3b expands on this effect of total force on CR response by analyzing the mode 1 contact resonance spectra using the DHO fit while static force decreases at three dynamic forces. At high static force, all three dynamic forces produce similar and consistent f_1^c results, but high static forces induce a larger stress field from tip indentation compared low static forces. When the stress field is larger than the sample cross section, substrate effects need to be considered when evaluating the elastic modulus of the sample. Decreasing the static force mitigates substrate effects.
by limiting the stress field induced by the tip indentation to the sample cross section. However, the amplitude of the dynamic force can prevent the tip from maintaining linear contact with the sample at low static force. Compared to ΔF_{BM}, the higher dynamic forces (i.e., ΔF_{PT1} and ΔF_{PT2}) underestimate f_1^C as the static force approaches zero, consistent with less linearity in the tip-sample contact.

Figure 3c shows Q_1^C as it relates to f_1^C for mode 1. At a given f_1^C, $\tan \delta$ is inversely proportional to Q_1^C (Figure 1b). Over the range of f_1^C, the Q_1^C trends higher as the applied dynamic force increases from ΔF_{BM} to ΔF_{PT1} to ΔF_{PT2}. To further analyze the difference in Q_1^C between the dynamic forces, a power fit was applied to each dynamic force data set. Then, as shown in the inset, the % change in Q_1^C was computed using the power fit to compare ΔF_{BM} to ΔF_{PT1} and ΔF_{PT2}, respectively. When compared to ΔF_{BM}, the % change in Q_1^C for ΔF_{PT1} and ΔF_{PT2} varies from 33 % to 15 % and 44 % to 40 %, respectively, as f_1^C increases from 215 kHz to 255 kHz. A given % variation in Q_1^C between dynamic forcing schemes will result in a corresponding % variation in the calculated $\tan \delta$ analyzed using the beam dynamics. For example, the use of ΔF_{PT2} would result in up to 44 % higher apparent $\tan \delta$ compared to ΔF_{BM}. Moreover, the % change in Q_1^C is higher for both ΔF_{PT1} and ΔF_{PT2} at lower static forces, which are preferable to reduce the indentation induced stress field.

3.2 Damage Evaluation of CNFs from CRFM due to Increasing Applied Total Forces

In addition to localizing the stress field, total forces must also be considered in regard to potential damage they may inflict on the cellulose fibril. Varying the maximum applied dynamic and static forces used during single point CRFM measurements, followed by tapping mode topographic imaging, was used to observe any associated damage to the CNF. Figure 4a shows topographical tapping mode AFM images of the CNF before and after single point CRFM measurements were performed. The single point CRFM measurements were taken at the approximate locations denoted by triangles representing the cantilever tip. From the comparisons of topography before and after the measurement, it is clear that significant damage has occurred in some cases. The labeled sections A though E correspond to the approximate locations of the height profiles of the CNF in Figure 4b. An apparent change in the height profile from before to after a single point CRFM measurement denotes damage to the CNF from the applied static and dynamic forces associated with the measurement. The starting static force for measurement locations within sections A, B, C, D, and E increased from 11.3 nN to 16.9 nN to 45.1 nN to 84.6 nN to 84.6 nN, respectively. For each section, the results show the height profile of the CNF before any measurements, after a single point CRFM measurement using ΔF_{BM}, and after a single point CRFM measurement using ΔF_{PT3}. For this comparison, the average relative magnitude of ΔF_{PT3} was calculated as $\approx 625 \Delta F_{BM}$, comparable to ΔF_{PT2} discussed in Section 3.1.
Figure 4: Damage evaluation of a CNF from point measurements with varying static and dynamic forces. A topographical image of the CNF (a) is shown before and after measurements where the denoted sections correspond to the approximate lengths of the height profiles (b) that follow the top of the CNF. For each section with a corresponding starting static force, a height profile is shown before any measurements (left), after a point measurement using ΔF_{BM} (center), and after a point measurement using ΔF_{PT3} (right). Note, at 84.6 nN static force, two separate locations, D and E, were used for ΔF_{BM} and ΔF_{PT3}, respectively. The height profiles have been manually y-offset for clarity. The root mean square (RMS) roughness is shown to indicate change in the height profile.

From Figure 4a, the change in topography of the CNF from pristine to post-measurement condition shows evidence of damage due to total forces (i.e., combined static and dynamic), particularly on segments C and E. Height profiles along the length of the CNF (Figure 4b) make the damage more apparent and allow assessment of whether the damage has occurred as a result of the static force or total force. The root mean square (RMS) roughness (Maradudin 2007) was computed for each height profile and reported in Figure 4a. The average and standard deviation of the RMS roughness for all pristine sections ($\mu_{pristine} \pm \sigma_{pristine}$) is (0.26 ± 0.07) nm. If the post-measurement RMS roughness is greater than $\mu_{pristine} + 2 \cdot \sigma_{pristine}$ (i.e., 0.4 nm), damage is considered to have occurred. After ΔF_{BM} measurements, all sections at static forces ranging from
11.3 nN to 84.6 nN remain undamaged. After ΔF_{PT3} measurements, Sections A and B at static forces of 11.3 nN and 16.9 nN, respectively, remain undamaged, but Sections C and E at static forces of 45.1 nN and 84.6 nN, respectively, incur damage. At the lower static forces of 11.3 nN and 16.9 nN, ΔF_{PT3} measurements do not cause damage to the CNF, but resonance non-linearity is likely to occur and affect the accuracy of the result, as described in Section 3.1. At the higher static forces of 45.1 nN and 84.6 nN, ΔF_{BM} measurements do not cause damage to the CNF, but ΔF_{PT3} measurements do cause damage. It is notable that the static forces alone do not cause any damage in the static force range (i.e., 11.3 nN to 84.6 nN) investigated. Therefore, using Brownian motion as the dynamic force offers a non-damaging method of obtaining analyzable CRFM measurements of CNFs.

3.3 Quantifying $\tan \delta$ of CNFs using LTF-CRFM

With some initial benefits of LTF-CRFM on CNFs established, the method was used to perform quantitative contact stiffness (k^*) and $\tan \delta$ measurements on the cross section of the CNF. By traversing the cross section, the top surface of the CNF can be identified from the height profile and the ability to differentiate sample from substrate via LTF-CRFM can be ensured. Figure 5 shows the results from LTF-CRFM measurements that were taken at spot locations in a line over a CNF. The representative plots for a representative single CNF, shown in Figure 5a and Figure 5b, show the height of the CNF on the z-axis, the applied static force on the y-axis, and the lateral position on the x-axis. Correspondingly, the color scale in the images represents k^* and $\tan \delta$ in Figure 5a and Figure 5b, respectively. The CNF is identified by its height above the substrate. For a given static force, the CNF has lower k^* than the substrate, and the k^* decreases as expected with decreasing static force. Some low-stiffness edge artifacts are observed when the tip interacts with the sides of the CNF, accordingly these measurements can be discarded based on the corresponding topography. The contrast in k^* between the CNF and substrate confirms mechanical sensitivity to the dimensionally confined CNFs, allowing viscoelastic $\tan \delta$ analysis to proceed.

In Figure 5b, the CNF tops are highlighted to reflect variations in $\tan \delta$ with static force. $\tan \delta$ measurements are generally independent of contact area, and thus expected to exhibit consistent value regardless of applied force, assuming substrate-independence. As shown in Figure 5b and Figure 5c (where 3 fibrils on each of glass and silicon substrate were measured), $\tan \delta$ measurements exhibit a force-dependence below ≈ 8 nN, then plateau to a value of 0.015 ± 0.0094. The higher $\tan \delta$ trend observed below 8 nN is attributed to a contribution from surface water, which provides additional damping in the contact. This additional contribution is minimized at the higher forces, when material damping becomes the dominant signal. For reference, additional k^* and $\tan \delta$ results from glass and silicon substrate measurements taken as part of the line of spot locations and at discrete single spot locations using a sharp and blunted cantilever tip, respectively, have been provided in Figure S6. The CNF $\tan \delta$ results (Figure 5b) are greater than the substrate $\tan \delta$ results using the blunted tip cantilever (Figure S6), which demonstrates that the cellulose $\tan \delta$ does not reflect the bottom end sensitivity threshold of the measurement.

In Figure 5d, the measured $\tan \delta$ from this study is compared to other reported $\tan \delta$ values for different wood species, a plant cell wall, and fabricated CNF materials. The reported $\tan \delta$ results were most commonly determined using dynamic mechanical analysis, but nanoscale $\tan \delta$ results were also obtained using nanoindentation and AFM CRFM methods. Compared to wood species, the measured $\tan \delta$ from this study is lower. This result is expected due to the cellular structure of wood and the presence of other lignocellulosic polymers, which would increase the damping in
the material. As reported in (Churnside et al. 2015), CRFM has been previously used to measure the viscoelastic properties of other lignocellulosic materials. In this case, the $\tan \delta$ of the plant cell wall from *Arabidopsis Thaliana* is much higher because the measurements were performed in water. When compared to fabricated CNF materials, the quantified $\tan \delta$ from this study is lower which is likely due to the influence of the epoxy constituent and cellulose-cellulose interaction. The low value of $\tan \delta$ from this study substantiates the crystalline molecular structure that occurs in CNFs (J. Moon et al. 2011).

![Figure 5](image)

Figure 5: Representative data for k^* (a) and $\tan \delta$ (b) from a CNF on a glass substrate. The compiled $\tan \delta$ results (c) from CNFs on glass and silicon substrates as static force increases at three point locations on the top of the CNF, as exemplified in (b), where the shaded region refers to the quantified $\tan \delta$. The quantified $\tan \delta$ from this study relates to previously published $\tan \delta$ measurements (d) using different experimental methods for woods: *ulmus americana* (△), *pinus strobus* (△), *oak* (○), *beech* (●), *spruce* (◇), *carapa procera* (◇); plant cell walls: *arabidopsis thaliana* in water (●); and CNFs: CNF and epoxy composite (▽), CNF sheet (◇), and CNF (○) (Olsson and Salmén 1997; Placet et al. 2007; Zhang et al. 2012; Qing et al. 2015; Churnside et al. 2015; Venkatesh et al. 2018).

3.4 Mapping $\tan \delta$ of CNFs using LTF-CRFM

In addition to its utility for viscoelastic measurements at single locations or along lines, LTF-CRFM can also be applied in mapping modalities. Due to the relatively lengthy acquisition duration per point, mapping requires an instrument with low thermal drift. Even with such an instrument, a full suite of static force increments may lead to unacceptable drift when mapping the few-hundred-nm lateral dimension of CNFs. To reduce measurement duration, mapping was performed at a single low static force. LTF-CRFM was acquired across arrays of points, at a single, low static force of \approx10 nN. The setpoint static force was a compromise between feedback reliability and stress field optimization. Overall, the mapping $\tan \delta$ values in **Figure 6** are slightly
higher than the full LTF-CRFM analysis in Section 3.3. However, considering the contact stiffness results in Figure 5a showing contrast between CNF and substrate, LTF-CRFM performed at a select static force can still reflect relative variations in CNF properties.

For demonstration purposes, the LTF-CRFM mapping measurements probed spatial variations in tan δ associated with kinked defects, or ‘kinks’, along the CNF. Kinks in CNFs and CNCs have been a recent subject of research, with implications on biofuel production and nanomechanical composite reinforcement (Elazzouzi-Hafraoui et al. 2008; Usov et al. 2015; Chen et al. 2018; Ciesielski et al. 2019; Zhou et al. 2020). Previous work using molecular simulations showed that the atomic structure of the CNF is highly ordered along the straight segments and relatively disordered at the kinks (Ciesielski et al. 2019). Of interest here was whether the disordered polymer chains at the kinks resulted in a detectable increase in local tan δ values due to the presence of amorphous rather than crystalline structure.

Figure 6: AFM topographical images (top) of 4 selected CNF arrangements for mapping tan δ and corresponding plots (bottom) of tan δ at points along the section line normalized by the average tan δ value for the entire section line. To determine tan δ along the top of the CNF, the computed tan δ was correlated to the height measurement taken within the same single point CRFM measurement. As such, the section lines along the CNFs shown in the AFM topographical images (top) correspond to the approximate location of the tan δ result and shown for illustration. The average tan δ values are 0.028, 0.026, 0.041, and 0.041 for Sections 1, 2, 3, and 4, respectively. The plotted error represents the coefficient of variation.

Four CNF arrangements, shown in Figure 6, were identified for tan δ property mapping to analyze variation along the length of the CNFs. The selected CNFs have alignments with observable kinks or straight segments. In addition to selecting CNFs with different alignments, the resolution was also varied. For Sections 1 and 2, 2500 LTF-CRFM point measurements were taken over a 400 nm x 400 nm region resulting in a resolution of 8 nm/point. For Section 3, 2500 LTF-CRFM point measurements were taken over a 175 nm x 175 nm region resulting in a resolution of 4 nm/point. Finally, for Section 4, 1250 LTF-CRFM point measurements were taken over a 100 nm x 200 nm
region resulting in a resolution of 3.5 nm/point. As such, the density of the LTF-CRFM point
measurements was increased to further identify any material property variation along the CNFs.

Due to the aforementioned experimental drift, the height data collected during the LTF-CRFM
measurements were used to identify the top of the CNF for \(\tan \delta \) property mapping. The \(\tan \delta \)
results were averaged over two pixels wide for each position along the CNF length in order to
obtain a mean and standard deviation. These mean \(\tan \delta \) values were then overlaid as color-scaled
section lines on the corresponding higher-resolution tapping mode topography maps, as shown in
Figure 6. As a representative example, the correlation between the LTF-CRFM height and \(\tan \delta \)
results for Sections 1 and 2 is provided in Figure S7.

Figure 6d shows the mapped \(\tan \delta \) results normalized by the average \(\tan \delta \) value for the entire
section along the top of CNFs. The approximate kink locations are also indicated. The \(\tan \delta \) of the
CNF in the vicinity of the kinks does not vary outside the bounds of the variability exhibited on
the straight segments even as the pixel-resolution decreased from 8 to 3.5 nm/point. A statistical
t-test analysis showed no significant difference (p > 0.05) in the mean \(\tan \delta \) between kink and
straight locations along the four CNFs. The consistent \(\tan \delta \) results quantified herein provides
increased confidence for applications requiring constant and reliable material properties, such the
reinforcement constituent of composites materials, but suggests that higher resolution or enhanced
sensitivity may be needed to resolve natural defects in the crystalline structure of cellulose. In
(Ciesielski et al. 2019), for a CNF only 1 nm to 2 nm in width, the extent of the amorphized
material was \(\approx 3 \) nm for a 90° kink, which is less than the pixel spacing and contact-mechanics-
imposed resolution in LTF-CRFM. Despite the prior possibility of a larger diameter CNF having
a larger amorphized region at the kink, the \(\tan \delta \) results (Figure 6) cannot prove such an effect.
The disordered structure at the kink may be very localized and limited to the atomic scale or the
nanoscale \(\tan \delta \) is dominated by lateral movement between the molecular chains and not
influenced by the longitudinal order or disorder of the molecular chains.

4.0 Conclusions

In this work, a new non-destructive LTF-CRFM was developed to quantify viscoelastic material
properties, namely \(\tan \delta \), of stiff rod-shaped CNFs with diameters ranging from 5 nm to 15 nm.
LTF-CRFM uses Brownian motion to achieve the thermally limited lowest dynamic force, while
approaching adhesive pull-off to achieve the lowest static force. First, LTF-CRFM measurements
were shown to generate analyzable response spectra without evidence of nonlinear resonance
softening. Second, CRFM measurements using Brownian motion did not damage CNFs for static
forces ranging from 11.6 nN to 84.6 nN. Third, the quantified \(\tan \delta \) of CNFs is reported as 0.015
\(\pm 0.0094 \) and demonstrates substrate independence within the standard deviation of the
measurement. Finally, \(\tan \delta \) does not vary in the transverse direction over the length of CNFs with
straight segments and kinks at the length scale of the measurement.

In conclusion, this work demonstrates the utility of LTF-CRFM for characterizing the viscoelastic
material properties of thin and stiff nanoscale structures, such as CNFs. Moreover, LTF-CRFM
can be applied to determine either localized \(\tan \delta \) at a single point location or more broadly to map
variation in \(\tan \delta \) over an area of interest.

5.0 Acknowledgments
This research was made possible by the National Institute of Standards and Technology, the Department of Civil, Environmental, and Architectural Engineering, the College of Engineering and Applied Sciences, and the Living Materials Laboratory (LMLab) at the University of Colorado Boulder with support from the National Science Foundation (Award No. CMMI-1537194).

6.0 Conflicts of Interest

There are no conflicts of interest to declare.

7.0 References

Aydemir D, Gardner DJ (2020) The effects of cellulosic fillers on the mechanical, morphological, thermal, viscoelastic, and rheological properties of polyhydroxybutyrate biopolymers. Polymer Composites 41:3842–3856. https://doi.org/10.1002/pc.25681

Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 6:612–626. https://doi.org/10.1021/bm0493685

Cellini F, Gao Y, Riedo E (2019) Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. Sci Rep 9:4075. https://doi.org/10.1038/s41598-019-40636-0

Chen P, Ogawa Y, Nishiyama Y, et al (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25:4345–4355. https://doi.org/10.1007/s10570-018-1860-x

Cheng Q, Wang S (2008) A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Composites Part A: Applied Science and Manufacturing 39:1838–1843. https://doi.org/10.1016/j.compositesa.2008.09.007

Cheng Q, Wang S, Harper DP (2009) Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Composites Part A: Applied Science and Manufacturing 40:583–588. https://doi.org/10.1016/j.compositesa.2009.02.011

Churnside AB, Tung RC, Killgore JP (2015) Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid–Liquid Interface. Langmuir 31:11143–11149. https://doi.org/10.1021/acs.langmuir.5b02860

Ciesielski PN, Wagner R, Bharadwaj VS, et al (2019) Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. PNAS 116:9825–9830. https://doi.org/10.1073/pnas.1900161116

Curvello R, Raghuvanshi VS, Garnier G (2019) Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science 267:47–61. https://doi.org/10.1016/j.cis.2019.03.002

Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, et al (2008) The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 9:57–65. https://doi.org/10.1021/bm700769p

Gonzalez-Martinez JF, Kakar E, Erkselius S, et al (2019) Effect of Relative Humidity on the Viscoelasticity of Thin Organic Films Studied by Contact Thermal Noise AFM. Langmuir 35:6015–6023. https://doi.org/10.1021/acs.langmuir.8b04222

Guhados G, Wan W, Hutter JL (2005) Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy. Langmuir 21:6642–6646. https://doi.org/10.1021/la0504311

Heinze T (2015) Cellulose: Structure and Properties. In: Rojas OJ (ed) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Springer International Publishing, Cham, pp 1–52

Hurley DC, Killgore JP (2013) Dynamic Contact AFM Methods for Nanomechanical Properties. In: Yablon DG (ed) Scanning Probe Microscopy in Industrial Applications. John Wiley & Sons, Inc, Hoboken, NJ, pp 115–149

Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Review of Scientific Instruments 64:1868–1873. https://doi.org/10.1063/1.1143970
Manuscript Submitted to: *Cellulose*

Wagner R, Moon RJ, Raman A (2016) Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy. Cellulose 23:1031–1041. https://doi.org/10.1007/s10570-016-0883-4

Zhang T, Bai SL, Zhang YF, Thibaut B (2012) Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Sci Technol 46:1003–1016. https://doi.org/10.1007/s00226-011-0458-3

Zhang Y, Nypelö T, Salas C, et al (2013) Cellulose Nanofibrils. Journal of Renewable Materials 1:195–211. https://doi.org/10.7569/JRM.2013.634115

Zhou Y, Ono Y, Takeuchi M, Isogai A (2020) Changes to the Contour Length, Molecular Chain Length, and Solid-State Structures of Nanocellulose Resulting from Sonication in Water. Biomacromolecules 21:2346–2355. https://doi.org/10.1021/acs.biomac.0c00281
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- ViscoelasticMappingofCNFsUsingLTFCRFMSI.pdf