A revised Barremian–Aptian age for the Mitarai Formation (lower Tetori Group, Makito area of central Japan), previously considered Middle Jurassic–earliest Cretaceous

The Tetori Group of central Japan, dated in the past as Middle Jurassic–Early Cretaceous, has been widely used in correlation and even for dating Asian non-marine Late Mesozoic strata, because it is composed of marine and non-marine deposits, containing marine molluscs and various non-marine fossils. However, when comparing the marine bivalve faunas, four out of 11 species previously recorded from the Mitarai Formation (a critical formation in determining the age of the Tetori Group) of the lower Tetori Group in the Makito/Shokawa area of northern Gifu Prefecture, central Japan (i.e., Palaeonucula makitosenis (Hayami) Entolium inequivale Hayami, Thracia shokawensis Hayami, and Pleuromya hidensis Hayami) could be recognized from the Barremian–Aptian Qihulin and Yunshan formations of the Longzhaogou Group in the Yunshan area of eastern Heilongjiang, NE China. These formations yield Barremian ammonites and the global late Barremian–middle Albian (mainly Aptian) index Aucellina caucasica–Aucellina aptiensis assemblage, suggesting that the Japanese Mitarai Formation is late Early Cretaceous (Barremian–Aptian, mainly Barremian) rather than Middle Jurassic or Late Jurassic–earliest Cretaceous in age, and implying that the basal formation of the Tetori Group, the Ushimaru Formation, is likely to be no older than Hauterivian.

Introduction

The Tetori Group is widely distributed in the regions of Hakusan and Jinzu in the Inner Zone of Southwest Japan (e.g., Maeda, 1952, 1961; Hayami and Yoshida, 1991a, b; Kusuhashi et al., 2002, 2006; Fujita, 2003 and references therein; Matsukawa et al., 2006; Matsukawa and Fukui, 2009). It consists, in ascending order, of the Kuzuryu Subgroup/lower Tetori Group, Itohiro Subgroup/middle Tetori Group, and Akaiwa Subgroup/upper Tetori Group, and formerly was dated as the Bathonian (Middle Jurassic) (e.g., Hayami and Yoshida, 1991a), Bajocian (Matsukawa and Ido, 1993)–Early Cretaceous Aptian (e.g., Hayami and Yoshida, 1991b; Fujita, 2003), and even as young as Albian (e.g., Matsukawa et al., 2006) in age. It has been widely used in correlation of Upper Mesozoic strata across parts of Asia, particularly in correlating and dating the non-marine Late Mesozoic strata, because it is composed of marine and non-marine deposits and yields both marine fossils including ammonites (e.g., Sato and Kanie, 1963; Sato et al., 2003, 2008), brachiopods, and bivalves, as well as various non-marine macro- and microfossils, including dinosaurs, molluscs, insects, plants, charophytes, and sporopollen (e.g., Maeda, 1952, 1961, 1962; Hayami, 1959a, b, 1960, 1975; Matsukawa and Nakada, 1999; Kusuhashi et al., 2002; Fujita, 2003; Umetu and Matsuoka, 2003; Matsukawa et al., 2003, 2006; Sano et al., 2008; Yamada and Uemura, 2008; Matsukawa and Fukui, 2009), particularly trigonioidid bivalves, which are widely distributed in Asia and parts of Europe (Sha, 2007a, 2010).

The depositional history of the group varies across the basins/areas. In the Makito (= Makido/Shokawa area of northern Gifu Prefecture, central Japan (i.e., Palaeonucula makitosenis (Hayami) Entolium inequivale Hayami, Thracia shokawensis Hayami, and Pleuromya hidensis Hayami) could be recognized from the Barremian–Aptian Qihulin and Yunshan formations of the Longzhaogou Group in the Yunshan area of eastern Heilongjiang, NE China. These formations yield Barremian ammonites and the global late Barremian–middle Albian (mainly Aptian) index Aucellina caucasica–Aucellina aptiensis assemblage, suggesting that the Japanese Mitarai Formation is late Early Cretaceous (Barremian–Aptian, mainly Barremian) rather than Middle Jurassic or Late Jurassic–earliest Cretaceous in age, and implying that the basal formation of the Tetori Group, the Ushimaru Formation, is likely to be no older than Hauterivian.

Introduction

The Tetori Group is widely distributed in the regions of Hakusan and Jinzu in the Inner Zone of Southwest Japan (e.g., Maeda, 1952, 1961; Hayami and Yoshida, 1991a, b; Kusuhashi et al., 2002, 2006; Fujita, 2003 and references therein; Matsukawa et al., 2006; Matsukawa and Fukui, 2009). It consists, in ascending order, of the Kuzuryu Subgroup/lower Tetori Group, Itohiro Subgroup/middle Tetori Group, and Akaiwa Subgroup/upper Tetori Group, and formerly was dated as the Bathonian (Middle Jurassic) (e.g., Hayami and Yoshida, 1991a), Bajocian (Matsukawa and Ido, 1993)–Early Cretaceous Aptian (e.g., Hayami and Yoshida, 1991b; Fujita, 2003), and even as young as Albian (e.g., Matsukawa et al., 2006) in age. It has been widely used in correlation of Upper Mesozoic strata across parts of Asia, particularly in correlating and dating the non-marine Late Mesozoic strata, because it is composed of marine and non-marine deposits and yields both marine fossils including ammonites (e.g., Sato and Kanie, 1963; Sato et al., 2003, 2008), brachiopods, and bivalves, as well as various non-marine macro- and microfossils, including dinosaurs, molluscs, insects, plants, charophytes, and sporopollen (e.g., Maeda, 1952, 1961, 1962; Hayami, 1959a, b, 1960, 1975; Matsukawa and Nakada, 1999; Kusuhashi et al., 2002; Fujita, 2003; Umetu and Matsuoka, 2003; Matsukawa et al., 2003, 2006; Sano et al., 2008; Yamada and Uemura, 2008; Matsukawa and Fukui, 2009), particularly trigonioidid bivalves, which are widely distributed in Asia and parts of Europe (Sha, 2007a, 2010).

The depositional history of the group varies across the basins/areas. In the Makito (= Makido/Shokawa area of northern Gifu Prefecture, central Japan (i.e., Palaeonucula makitosenis (Hayami) Entolium inequivale Hayami, Thracia shokawensis Hayami, and Pleuromya hidensis Hayami) could be recognized from the Barremian–Aptian Qihulin and Yunshan formations of the Longzhaogou Group in the Yunshan area of eastern Heilongjiang, NE China. These formations yield Barremian ammonites and the global late Barremian–middle Albian (mainly Aptian) index Aucellina caucasica–Aucellina aptiensis assemblage, suggesting that the Japanese Mitarai Formation is late Early Cretaceous (Barremian–Aptian, mainly Barremian) rather than Middle Jurassic or Late Jurassic–earliest Cretaceous in age, and implying that the basal formation of the Tetori Group, the Ushimaru Formation, is likely to be no older than Hauterivian.

Introduction

The Tetori Group is widely distributed in the regions of Hakusan and Jinzu in the Inner Zone of Southwest Japan (e.g., Maeda, 1952, 1961; Hayami and Yoshida, 1991a, b; Kusuhashi et al., 2002, 2006; Fujita, 2003 and references therein; Matsukawa et al., 2006; Matsukawa and Fukui, 2009). It consists, in ascending order, of the
Figure 1. Correlated areas (marked by three five-pointed stars in (A) and litho- and biostratigraphy of the Longzhaogou Group in the Yunshan area and the Jixi Group in the Jixi Basin of eastern Heilongjiang Province, NE China (B), and of the Tetori Group in the Makito/Shokawa area of northern Gifu Prefecture, central Japan (C).

The deposits below and above the Mitarai Formation all contain marine to brackish-water and/or non-marine (brackish-, freshwater, and terrestrial) fossils. The Ushimaru Formation, the basal formation of the Tetori Group, and the Otaniyama and Okurodani formations of the Itoishio Subgroup/middle Tetori Group all contain a marine to brackish-water bivalve assemblage with *Myrene* (*Mesocorbula*) *tetoriensis* (Kobayashi et Suzuki) and *Tetoria* (*Tetoria*) *yokoyamai* (Kobayashi et Suzuki). The Okurodani Formation of the upper middle Cretaceous is widely distributed in Asia, especially in East Asia. However, the Akaiwa Subgroup/upper Tetori Group only contains a few plant fossils (e.g., Maeda, 1962; Kushuhashi et al., 2002; Matsukawa et al., 2003).

Sato and Kanie (1963) described the Callovian ammonite *Lilloetia* sp. from the Mitarai Formation. The bivalve fauna from the formation was suggested to be Late Jurassic in age by Hayami in 1959a, b and 1960, and then Callovian in 1975. Thus, the Mitarai Formation and the Kuzuryu Subgroup/lower Tetori Group were confirmed and widely accepted by geoscientists as being Middle–Late Jurassic in age (e.g., Hayami and Yoshida, 1991a; Fujita, 2003). However, 40 years later, when a larger collection of ammonites became available, Sato et al. (2003) revised the ammonite fauna to represent the topmost Jurassic–basal Cretaceous and dated the Mitarai Formation as latest Tithonian–earliest Berriasian (spanning the Jurassic–Cretaceous boundary). This view was followed by some palaeontologists (e.g., Matsukawa et al., 2006; Matsukawa and Fukui, 2009). In 2008, Sato et al. discovered the ammonite *Neocosmoceras* sp. (cf. *N. huneviciense*) from Mitarai (Gifu Prefecture), and assigned the ammonite-bearing strata of the Mitarai Formation to the Berriasian.

The present authors suggested a Barremian–Aptian age for the bivalve fauna of the Mitarai Formation of the Makito/Shokawa area while studying the bivalve collections kept in the Tokyo University Museum in 2007 (manuscript by Sha and Hirano), and Professor Hayami (pers. comm., 2007) thought the age should be changed from the Callovian to the earliest Cretaceous. We compared the bivalve specimens from the Mitarai Formation, kept in the Tokyo University Museum, with those collected from the Longzhaogou and Jixi groups of eastern Heilongjiang Province, northeastern China (Fig. 1 A, B) and figured by Gu et al. (1997). Four species of the Mitarai Formation bivalve fauna from the Mitarai Formation could be recognized from the Barremian–Aptian Qihulin and Yunshan formations of the Longzhaogou Group of the Yunshan area, eastern Heilongjiang Province, NE China. They suggest that the Mitarai Formation is Barremian–Aptian, younger than Hauterivian, in age, and imply that the Totori Group is unlikely to be older than Hauterivian in the Makito/Shokawa area.
Comparison of the bivalve faunas between the Mitarai Formation of Central Japan and the Qihulin and Yunshan formations of NE China

Although the bivalve fauna from the Mitarai Formation of Central Japan comprises 20 taxa, only 11 of them could be indentified at the species level (Hayami, 1959a, b, 1960, 1975). Among them, the following four species, which are briefly described and discussed below, could be easily recognized also from the Qihulin and Yunshan formations of the Longzhaoou Group of the Yunshan area, eastern Hei longjiang, NE China, though they were figured as different species (Fig. 2).

Palaeoncula maitoensis (Hayami) (Fig. 2a–d)

This species was established by Hayami in 1959a (pp. 143–145, pl. 12, figs. 4–6) based on specimens from the Mitarai Formation of the Makito/Shokawa area, northern Gifu Prefecture. It is characterized by its small size, inequilateral but equivale shell, rounded subtriangular outline and smooth (except for fine commarginal growth lines) (e.g., Fig. 2c, d). This species was referred to the genus Nuculopsis by Hayami in 1959a, and named both as maitoensis (p. 143) and as makoenos (explanation of plate 12, figs. 4-6). However, in 1975 (p. 20), Hayami chose maitoensis rather than maitoensis because he thought the latter was erroneously spelled, which is accepted in the present article.

The specimens referred to Palaeoncula cf. maitoensis (Hayami) from the Qihulin and Yunshan formations of the Longzhaoou Group of Yunshan area, eastern Hei longjiang (Gu et al., 1997, pp. 7–8, pl. 1, figs. 8–12, synonyms of Late Mesozoic bivalves from eastern Hei longjiang listed on p. 7), are very similar to the Japanese ones in all aspects of size, outline, and ornamentation (Fig. 2a, b).

Entolium inequivalve Hayami (Fig. 2e–h)

The Japanese specimens of Entolium inequivalve are medium-sized for the genus Entolium, inequivalve but subequilateral, and suborbicular in outline. It is characterized by its concentric grooves and numerous feeble commarginal growth lines between grooves on the right, but only commarginal growth lines on the left shell surface (e.g., Fig. 2g, h). The species comes from the Mitarai Formation (Hayami, 1959b, pp. 154–156, pl. 13, figs. 3–8; 1975, p. 72, pl. 3, fig. 2) and probably extends upwards into the Otaniyama Formation of the Itoishio Subgroup/middle Tetori Group (Matsukawa and Nakada, 1999).

Compared with the Japanese species, the concentric grooves and commarginal growth lines of Entolium extension Li et Yu figured by Gu et al. (1997, pp. 78–80, pl. 9, figs. 14–19, pl. 10, figs. 1–9) from the Qihulin and Yunshan formations are weaker (e.g., Fig. 2e, f). However, such a difference falls most likely within intraspecific variation. The Chinese taxon is, therefore, regarded as conspecific with Japanese Entolium inequivalve Hayami (Fig. 2g, h).

Thracia shokawensis Hayami (Fig. 2i–l)

This taxon was established by Hayami in 1959b (pp. 162–163, pl. 13, figs. 17–19) based on fossils from the Mitarai Formation. It is medium- to small-sized for the genus Thracia, much longer than high, inequilateral, and subrectangular in outline with a slightly rostrate posterior margin. The left valve is slightly larger than the right one, the shell surface is marked with numerous fine commarginal growth lines and irregular commarginal undulations are impressed on the inner surface (Fig. 2k, l).

The specimens of Thracia yunshanensis Yu et Li and Thracia cf. phillipsi Römer figured by Gu et al. (1997, pp. 237–238, pl. 37, figs. 4–10; pp. 240–241, pl. 38, figs. 10–18) from the Qihulin and Yunshan formations (Fig. 2i, j) are identical to those of Thracia shokawensis from Japan (Fig. 2k, l).

Pleuromya hidensis Hayami (Fig. 2m–p)

According to Hayami (1959b, pp. 158–159, pl. 13, figs. 12, 13), this taxon is medium- to small-sized for the genus Pleuromya, with an equivale but inequilateral shell, ca. 1.5 times longer than high, and subrounded subtrapezoidal in outline. The posterodorsal margin is distinctly subtruncated, the umbones are placed at one-quarter to two-sevenths of shell length from the anterior end, and the shell is very thin. The shell surface is smooth except for several irregularly-spaced commarginal folds and numerous faint commarginal growth lines (Fig. 2o, p).

Pleuromya sp. nov. 2 figured by Gu et al. (1997, pp. 235–236, pl. 38, figs. 8, 9) from the Yunshan Formation is identical to Pleuromya hidensis except that in the former the commarginal growth folds are stronger than in the latter. Such a distinction is most probably a preservation feature and/or represents intraspecific variation.

Stratigraphic significance

From a biostratigraphic point of view, the Mitarai Formation of the lower Tetori Group of the Makito/Shokawa area could be correlated with the Qihulin and Yunshan formations of the Longzhaoou Group of the Yunshan area, eastern Hei longjiang Province, judging from the four species described above, which are common to both areas.

In eastern Hei longjiang, the Longzhaoou Group in the Yunshan area is correlated with the Jixi Group, which consists of coal measures intercalated with marine deposits in the Jixi Basin (Fig. 1 A, B). It is composed of alternating marine and non-marine coal-bearing strata yielding various marine and non-marine macro- and microfossils, unconformably overlying Permian strata or older granitic basement rocks, and disconformably overlain by the Huashan Group containing the Albian bivalves Trigonoides (T) heilongjiangensis Sha et Gu and Sphaerium coreanicum Kobayashi et Suzuki. In ascending order, this group comprises the Peide, Qihulin, Yunshan and Zhushan formations (Fig. 1 B). The Peide Formation consists of non-marine deposits with peats and coals; the Qihulin Formation is mainly composed of littoral and sub-littoral rocks with coals; the Yunshan Formation comprises marine and non-marine strata with coals; and the Zhushan Formation consists of interbedded non-marine and marine deposits, yielding coals (e.g., Sha, 1990, 1991, 2007b; Sha et al., 1994, 2002, 2007, 2008).

The Qihulin Formation has been assigned a Barremian age based on the presence of the Barremian–Aptian ammonites Pseudo-haploceras and Silisites group (Sha et al., 1994), Phyllopachyceras sp., and Pseudohaploceras cf. liptoviense (Zeuschner) (Futakami et al., 1995), and the bivalves Filosina subovalis Yao, J. Chen et Gu
Figure 2. Bivalve species common to the Qihulin and Yunshan formations of the Longzhaogou Group of Yunshan area, eastern Heilongjiang Province, NE China (a, b, e, f, i, j, m, n) and the Mitarai Formation of the lower Tetori Group of Makito/Shokawa, northern Gifu Prefecture, central Japan (c, d, g, h, k, l, o, p). Repositories: Specimens from China: Collection Department of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS); Shenyang Institute of Geology and Mineral Resources of the Chinese Academy of Geological Sciences (BH); Japanese specimens: Tokyo University Museum (MM). Scale bar = 10 mm.

a–d: *Palaeonucula makitoensis* (Hayami). a: right internal mould, NIGPAS 81336; b: left composite mould, BH1176. They were described as *Palaeonucula cf. makitoensis* Hayami by Gu et al. (1997). c: right valve, MM3142 (paratype, figured by Hayami, 1959a, pl. 12, fig. 6a-b), d: left internal mould, MM3141 (holotype, figured by Hayami, 1959a, pl. 12, fig. 4).

e–h: *Entolium inequivalve* Hayami. e: right external mould, BH1062–2; f: right internal mould, BH1050–2. They were described as *Entolium extensum* Yu et Li by Gu et al. (1997). g: right external mould, MM3166 (holotype, figured by Hayami, 1959b, pl. 13, fig. 8); h: right internal mould, MM3168 (figured by Hayami 1959b, pl. 13, fig. 3).

i–l: *Thracia shokawensis* Hayami. i: right internal mould, BH0239; j: left valve, BH0724. These two specimens were described as *Thracia cf. phillipsi* Römer, and *Thracia yunshanensis* Yu et Li, respectively by Gu et al. (1997). k: steinkern, right side view, MM3188 (holotype, figured by Hayami, 1959b, pl. 13, fig. 17a-b); l: steinkern, left side view, MM3191 (paratype, figured by Hayami, 1959b, pl. 13, fig. 19).

m–p: *Pleuromya hidensis* Hayami. m: eroded left valve, NIGPAS82058; n: right internal mould, NIGPAS82060. They were described as *Pleuromya sp. nov.? 2* by Gu et al. (1997). o, p: steinkern, o: left side view, p: right side view, MM3179 (holotype, figured by Hayami, 1959b, pl. 13, fig. 12a-b).
and *Thracia rotundata* (J. de C. Sowerby) (Sha et al., 2002, 2003; Sha, 2007b). Furthermore, it contains a dinocyst assemblage consisting of *Oligosphaeridium* spp., *Odontochitina operculata* (Wetzel), *Gardolinium trabeculosum* (Gocht) and *Palaeorhodolithus reticulatum* (Pocock), which cannot be older than middle Barremian or younger than Aptian (Sha et al., 2003; Sha, 2007b).

The Yunshan Formation yields the *Aucellina* (A.) *caucasica–A. (A.) aptiensis–Filosina subovalis–Thracia rotundata* bivalve assemblage and the *Odontochitina operculata–Vesperopris didaenosis* dinocyst assemblage (Sha, 1990, 1991, 1992a, b, 2002, 2007b; Sha and Fürsich, 1993, 1994; Sha et al., 1994, 2002, 2003, 2007, 2008, 2009). The *Aucellina* (A.) *caucasica–A. (A.) aptiensis* assemblage was widely distributed in the northern and southern hemispheres during the latest middle/late Barremian–middle Albian, but particularly in Aptian strata (Sha, 2012). The age of the congeneric-range-zone of *Aucellina, Filosina subovalis* (which extends downwards into the Qihulin Formation), *Thracia rotundata*, and *Odontochitina operculata* is Aptian (Sha and Fürsich, 1993; Sha et al., 1994, 2002, 2003, 2007, 2009; Sha, 2002, 2007b).

In summary, on the basis of the marine bivalve assemblage, the Qihulin and Yunshan formations range from the Barremian to Aptian (Sha, 1990, 1991, 1992a, b, 2002, 2007b; Sha and Fürsich, 1993, 1994; Sha et al., 1994, 2002, 2003, 2007, 2008, 2009), the corresponding Mitarai Formation is, therefore, most probably also Barremian–Aptian in age, even most probably mainly Barremian. The radiometric age of the zircon in the formation indicates an Aptian age, and thus the 129.8±1.0 Ma U-Pb age measured from the zircon in the formation (Fig. 1 C) by Kusuhashi et al. (2006), but definitely not Callovian or Middle–Late Jurassic (e.g., Maeda, 1952, 1961; Hayami, 1959b, 1975; Sato and Kanie, 1963; Hayami and Yoshida, 1991a; Fujita, 2003; Matsukawa and Nakada, 1999) nor Tithonian–earliest Berriasian or Berriasian (e.g., Sato et al., 2003, 2008; Matsukawa et al., 2006; Matsukawa and Fukui, 2009).

The age of the strata/fossils below and above the Mitarai Formation, in fact the age of the whole Tetori Group in the Makito/Shokawa area, can be constrained by the Barremian–Aptian (mainly Barremian) age of the Mitarai Formation, as discussed below.

(1) The basal strata of the Tetori Group, the Ushimaru Formation, conformably overlie the Mitarai Formation and unconformably overlying basement rocks older than 200 Ma (Fig. 1 C) (Kusuhashi et al., 2006), is most likely not older than Hauterivian rather than Jurassic as previously proposed (e.g., Hayami, 1975; Hayami and Yoshida, 1991a; Matsukawa and Nakada, 1999; Fujita, 2003; Matsukawa et al., 2006; Matsukawa and Fukui, 2009), which has been confirmed by the 130.2±1.7 Ma zircon U-Pb age measured from the tuff beds of the formation (Kusuhashi et al., 2006).

(2) The Otaniyama Formation, the lower formation of the Itoshiro Subgroup/middle Tetori Group, conformably overlies the Mitarai Formation (Fig. 1 C). It is probably Barremian–Aptian age too, as it yields the typical marine bivalve *Entolium inequivalve* Hayami (Matsukawa and Nakada, 1999), extended from the underlying Mitarai Formation. Although there is no typical marine fossil in the Okuradani Formation, the upper formation of the Itoshiro Subgroup conformably overlies the Otaniyama Formation (Fig. 1 C). However, the 117.5±0.7 Ma U-Pb age of the zircon in the formation indicates an Aptian age, and thus, definitely younger than Barremian, rather than early or mainly early Cretaceous as proposed earlier (e.g., Fujita, 2003; Matsukawa et al., 2006; Matsukawa and Fukui, 2009).

(3) Consequently, the Akaia Subgroup/upper Tetori Group, conformably overlying the Itoshiro Subgroup/middle Tetori Group, is likely Aptian in age, and probably even extends upwards into the early Late Cretaceous, since it is sandwiched between the underlying Aptian Okuradani Formation and the overlying Nohi Rhyolite younger than 100 Ma (Fig. 1 C) (Kusuhashi et al., 2006).

(4) The marine–brackish-water *Myrene* (*Mesocrubula*) *tetoriensis* and *Tetoria* (*Tetoria*) *yokoyamai* bivalve assemblage occurring in the Ushimaru, Otaniyama, and Okuradani formations of the lower and middle Tetori Group has a fairly long range (Hauterivian–Aptian), but does not extend back to the Late Jurassic (as proposed earlier, e.g., Hayami, 1975). The non-marine molluscan assemblage of the bivalves *Unio? ogamigoensis, Nakamuraana chingshanensis (= Nangdongia soni), Nipponoanaia tetoriensis* and *Sphaerium coreanicum*, and the gastropod *Viviparus onogonsis* appearing in the Okuradani Formation of the upper middle Tetori Group should be assigned an Aptian–Albian (mainly Aptian) age, definitely younger than Barremian, and thus could not be as early as latest Jurassic (as proposed earlier, e.g., Maeda, 1962).

(5) As a result, the plant remains of the Akaia Subgroup/upper Tetori Group unconformably overlain by rhyolite younger than 100 Ma are presumably Albian or might be early Late Cretaceous.

Conclusion

To sum up, in the Makito/Shokawa area, the Mitarai Formation/upper lower Tetori Group is here referred to the Barremian–Aptian (mainly Barremian), the Otaniyama and Okuradani formations of the Itoshiro Subgroup/middle Tetori Group to the Barremian–Aptian and Aptian, respectively, and the Tetori Group to the Hauterivian–Albian, corresponding to the Longzhaogou Group. This Group is correlated with the Jixi Group of eastern Heilongjiang and the Jehol Group yielding the Jehol Biota of western Liaoning, NE China (Sha, 1990, 1991, 2002, 2007b; Sha and Fürsich, 1993; Sha et al., 2002, 2003, 2007), and the non-marine *Unio? ogamigoensis, Nakamuraanaia chingshanensis (= Nangdongia soni), Nipponoanaia tetoriensis, Sphaerium coreanicum, and Viviparus onogonsis* molluscan assemblage, widely distributed in East Asia, is assigned an Aptian–Albian (mainly Aptian) age. These conclusions are backed by the zircon U-Pb ages measured by Kusuhashi et al. (2006) for the Ushimaru Formation (130.2±1.7 Ma), the lowest formation of the Tetori Group, corresponding to late Hauterivian. The radiometric age of the Mitarai Formation is 129.8±1.0 Ma, corresponding to the Barremian; and Okuradani Formation is 117.5±0.7 Ma, corresponding to the Aptian.

Although these revised ages are mainly based on a comparison of marine bivalve faunas of the Mitarai Formation and the Qihulin and Yunshan formations, they will contribute to revising the correlation of strata, determining the age of non-marine beds, and particularly will contribute to a better palaeogeographical reconstruction and to understanding the evolution of Late Mesozoic sedimentary basins of Asia.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 91114201, 40632010), the Bureau
of Geological Survey of China (1212011120116), the National Basic Research Program of China (973 Program) (2012CB821906), and the Japan Society for Promotion of Science, for which the authors are grateful. In particular we sincerely thank Prof. Itaru Hayami, Drs. Shin-ichi Sano and Nao Kusushashi for providing very kind and helpful discussions and useful references, and Drs. Franz T. Fürsich and Spencer G. Lucas for critically reading the manuscript. The paper is also a contribution to UNESCO-IUGS IGCP project 506.

References

Fujita, M., 2003, Geological age and correlation of the vertebrate-bearing horizons in the Tetori Group: Memoir of the Fukui Prefectural Dinosaur Museum, v. 2, pp. 3–14.

Futakami, M., Matsukawa, M., Chen, P.J., Cao, Z.Y., and Chen, J.H., 1995, Barremian ammonites from the Longzhaoegou Group in eastern Heilongjiang, northeast China: Journal of the Geological Society of Japan, v.101, pp. 79-85.

Gu, Z.W., Li, Z.S., and Yu, X.H., 1997, Lower Cretaceous bivalves from the eastern Heilongjiang province of China: Beijing, Science Press, 301 pp.

Hayami, I., 1959a, Late Jurassic hipodont, taxodont and dysodont pelecypods from Makito, central Japan: Japanese Journal of Geology and Geography, v. 30, pp. 153–150.

Hayami, I., 1959b, Late Jurassic isodont and myacid pelecypods from Makito, central Japan: Japanese Journal of Geology and Geography, v. 30, pp. 151–167.

Hayami, I., 1960, Jurassic inoceramids in Japan: Journal of the Faculty of Science. University of Tokyo, Section 2, v. 12, pp. 277–328.

Hayami, I., 1975, A systematic survey of the Mesozoic Bivalvia from Japan: Bulletin of the University Museum, the University of Tokyo, v. 10, pp. 1–249.

Hayami, I., and Yoshida, S., 1991a, The Jurassic. In Kimura, T., Hayami, I. and Yoshida, S. (eds.), Geology of Japan: Tokyo, University of Tokyo Press, pp. 80–101.

Hayami, I., and Yoshida, S., 1991b, The Cretaceous. In Kimura, T., Hayami, I. and Yoshida, S. (eds.), Geology of Japan: Tokyo, University of Tokyo Press, pp. 101–137.

Kusushashi, N., Matsuoka, H., Mimaiya, H., and Setoguchi, T., 2002, Stratigraphy of the late Mesozoic Tetori Group in the Hakena Region, central Japan: an overview: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, v. 59, pp. 9–31.

Kusushashi, N., Matsumoto, A., Murakami, M., Tagami, T., Hirata, T., Iizuka, T., Handa, T., and Matsuoka, H., 2006, Zircon U–Pb ages from tuff beds of the upper Mesozoic Tetori Group in the Shokawa district, Gifu Prefecture, central Japan: Island Arc, v. 15, pp. 378–390.

Maeda, S., 1952, A stratigraphical study of the Tetori Series in the upper Shokawa district in Gifu Prefecture: Journal of the Geological Society of Japan, v. 58, pp. 145–153 (in Japanese with English abstract).

Maeda, S., 1961, On the geological history of the Mesozoic Tetori Group in Japan: Journal of the College of Arts and Science, Chiba University, v. 3, pp. 369–426 (in Japanese with English abstract).

Maeda, S., 1962, On the occurrence of Nippomonadina in the Late Mesozoic Tetori Group: Transactions and Proceedings of the Palaeontological Society of Japan, New Series, v. 46, pp. 243–248.

Matsukawa, M., and Fukui, M., 2009, Hauterivian-Barremian marine molluscan fauna from the Tettori Group in Japan and late Mesozoic marine transgressions in East Asia: Cretaceous Research, v. 30, pp. 615-631.

Matsukawa, M., and Ido, K., 1993, Nonmarine Mollusca communities and palaeoecology in the Jurassic–Cretaceous Tetori Group, Japan: Cretaceous Research, v. 14, pp. 365–381.

Matsukawa, M., Ito, M., Nishida, N., Koarai, K., Lockley, M.G., and Nichols, D.J., 2006, The Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in Asia: Cretaceous Research, v. 27, pp. 199–225.

Matsukawa, M., Koarai, K., Shionoya, S., Shinkai, T., Nakada, K., Matsu, T., Aono, H., Kobayashi, N., Okubo, A., Hayashi, K., and Ito, M., 2003, Stratigraphy and sedimentary basin developments of the Tetori Group in its main area, central Japan: Journal of the Geological Society of Japan, v. 109, pp. 383–398 (in Japanese with English abstract).

Matsukawa, M., and Nakada, K., 1999, Stratigraphy and sedimentary development of the Tetori Group in its central distribution based on nonmarine molluscan assemblages: Journal of the Geological Society of Japan, v. 105, pp. 817–835 (in Japanese with English abstract).

Sano, S., Kubota, K., and Yabe, A., 2008, “The Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in Asia” [Cretaceous Research 27 (2006) 199–225] – Discussion: Cretaceous Research, v. 29, pp. 168–173.

Sato, T., Asami, T., Hachiya, K., and Mizuno, Y., 2008, Discovery of Neocosmoceras, a Berriasian (early Cretaceous) ammonite, from Mitarai in the upper reaches of the Shokawa River in Gifu Prefecture, Japan: Bulletin of the Mizunami Fossil Museum, v. 34, pp. 77–80 (in Japanese with English abstract and systematic description).

Sato, T., Hachiya, K., and Mizuno, Y., 2003, Latest Jurassic–Early Cretaceous ammonites from the Tetori Group in Gifu Prefecture: Bulletin of the Mizunami Fossil Museum, v. 30, pp. 151-167 (in Japanese with English abstract and systematic description).

Sha, J.G., 2010, Discovery of Auscellina (Bivalvia) in eastern Heilongjiang: Journal of Stratigraphy, v. 14, pp. 226–230 (in Chinese with English abstract).

Sha, J.G., 1991, A different opinion on the geological ages of the Longzhaoegou and Jixi groups of eastern Heilongjiang, China: Acta Geologica Sinica, v. 65, pp. 376–383 (in Chinese with short English abstract).

Sha, J.G., 1992a, On the distinction between Auscellina and Bucic. Geological Review, v. 38, pp. 131–139 (in Chinese with English abstract).

Sha, J.G., 1992b, Bucia and Auscellina beds of eastern Heilongjiang: Journal of Stratigraphy, v. 16, pp. 41–48 (in Chinese with English abstract).

Sha, J.G., 2002, Major achievements in studying the Early Cretaceous biostratigraphy of eastern Heilongjiang: Earth Science Frontiers, v. 9, pp. 95–101 (in Chinese with English abstract).

Sha, J.G., 2007a, Cretaceous tragnoiidioi (non-marine Bivalvia) assemblages and biostratigraphy in Asia with special remarks on the classification of Trigonoidacae: Journal of Asian Earth Sciences, v. 29, pp. 62–83.

Sha, J.G., 2007b, Cretaceous stratigraphy of northeastern China: Non-marine and marine correlation: Cretaceous Research, v. 28, pp. 146–170.

Sha, J.G., 2010, Historical distribution patterns of tragnoiidioi (non-marine Cretaceous bivalves) in Asia and their palaeogeographic significance: Proceedings of the Royal Society B, v. 277, pp. 227–283.

Sha, J.G., 2012, A comparison of Auscellina between Argentina and NE China: Relationship of bipolar bivalves: Revue de Paléobiologie, v. 11 (spec), pp. 399–407.

Sha, J.G., Cai, H.W., He, C.Q., Gu, Z.W., Jiang, J.H., Yin, D.S., Zhao, X.F., Liu, Z.X., and Jiang, B.Y., 2002, Studies on the Early Cretaceous Longzhaoegou and Jixi groups of eastern Heilongjiang, northeast China, and their bearing on the age of supposed Jurassic strata in eastern Asia: Journal of Asian Earth Sciences, v. 20, pp. 141–150.

Sha, J.G., and Fursich, F.T., 1993, Biostratigraphy of the Upper Jurassic–Lower Cretaceous bivalves Bucia and Auscellina of eastern Heilongjiang, northeastern China: Geological Magazine, v. 130, pp. 533–542.

Sha, J.G., and Fursich, F.T., 1994, Bivalve faunas of eastern Heilongjiang, northeastern China. II. The Late Jurassic and Early Cretaceous bucidal fauna: Beringeria, v. 12, pp. 3–93.

Sha, J.G., Fursich, F.T., and Grant-Mackie, J.A., 1994, A revised Early Cretaceous age for the Longzhaoegou and Jixi groups of eastern Heilongjiang, China, previously considered Jurassic: Palaeogeographic implications: Newsletters on Stratigraphy, v. 31, pp. 101–114.

Sha, J.G., Hirano, H., Yao, X.G., and Pan, Y.H., 2008, Late Mesozoic
transgressions of eastern Heilongjiang and their significance in tectonics, and coal and oil accumulation in northeastern China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 263, pp. 119-130.

Sha, J.G., Matsukawa, M., Cai, H.W., Jiang, B.Y., Ito, M., He, C.Q., and Gu, Z.W., 2003, The Upper Jurassic – Lower Cretaceous of eastern Heilongjiang, northeast China: Stratigraphy and regional basin history: Cretaceous Research, v. 24, pp. 715-728.

Sha, J.G., Wang, J.P., Kirilova, G., Pan, Y.H., Cai, H.W., Wang, Y.Q., Yao, X.G., and Peng, B., 2009, Upper Jurassic and Lower Cretaceous of Sanjiang-Middle Amur basin: Non-marine and marine correlation: Science in China Series D: Earth Sciences, v. 52, pp. 1873-1889.

Sha, J.G., Yao, X.G., Hirano, H., Pan, Y.H., Zhang, X.L., and Wang, Y.Q., 2007, Correlation amongst the Longzhaoou, Jixi and Jehol groups in northeastern China: A review: Beringeria, v. 37, pp. 189-202.

Umetsu, K., and Matsuoka, A., 2003, Early Cretaceous fossil spores and pollen from the Tetori Group in the upper reaches of the Kuzuryu River, Fukui Prefecture, central Japan: Journal of Geological Society of Japan, v. 109, pp. 420–423 (in Japanese with English abstract).

Yamada, T., and Uemura, K., 2008, The plant fossils from the Kaizara Formation (Callovian, Jurassic) of the Tetori Group in the Izumi district, Fukui Prefecture, Central Japan: Paleontological Research, v. 12, pp. 1–17.

Jingeng Sha is a Research Professor of Palaeontology and Stratigraphy of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS). After finishing his PhD at NIGPAS and the British Museum (Natural History), he serves in NIGPAS. His interests are on Mesozoic bivalves, stratigraphy, palaeogeography and lake systems, and the geological evolution of Qinghai–Xizang (Tibet) Plateau.

Hiromichi Hirano is Full Professor of Palaeontology in Waseda University, Tokyo. After he studied Lower Jurassic ammonoids and zonation in Japan in his Master’s Degree, he changed his subject to the evolution of Cretaceous ammonoids and obtained his Ph D in 1974. He was the Project Leader of IGCP 434 “Carbon cycle and bio-diversity change during Cretaceous in Asia” (1999–2004), and the President of the Palaeontological Society of Japan in 2001–2003. Since he began IGCP 434, his major interests have focused on Stable Carbon Isotope Stratigraphy for the marine and non-marine Cretaceous in Asia.