An Improved Buck PFC Converter with High Power Factor

E.VENKATA CHALAPATHI¹, P.ANJAPPA², V.RAMESH³

M.Tech Student [Power Electronics] Department of EEE, GVIC Engineering College, Madanapalli, AP, India¹
HOD & Associate Professor Department of Electrical Engineering, GVIC Engineering College,
Madanapalli, A.P, India²
Assistant Professor Department of Electrical Engineering, GVIC Engineering College,
Madanapalli, A.P, India³

Abstract: In this paper, an improved buck power factor correction (PFC) converter topology is proposed in this paper. By adding an auxiliary switch and two diodes, the dead zones in ac input current of traditional buck PFC converter can be eliminated. An improved constant ON-time control is proposed and utilized in this improved buck PFC converter to force it that operates in critical conduction mode (CRM). In this paper of voltage source and current waveform in by using MATLAB/SIMULINK

Keywords: Buck Power Factor Correction (PFC), critical conduction mode (CRM), zero voltage switching (ZVS).

I. INTRODUCTION

Nowadays, most ac/dc power converters are forced to reduce the harmonic current to meet the special power products such as lighting equipment Power factor correction (PFC) is a good method for providing an almost sinusoidal input current. The boost converter is the most popular topology for PFC applications due to its inherent current shaping ability [1]–[2]. However, with universal input, usually a 400 V ac output voltage is required for the boost PFC. The boost PFC cannot achieve high efficiency at low line input because it works with large duty cycle in order to get high-voltage conversion gain. Therefore, it is hard to increase the power density of boost PFC converter due to the thermal concern at low line input. The Sepic converter [3], [4] and quadratic buck-boost [5], [6] can achieve high power factor (PF) and reduce the output voltage stress. But the voltage stress of switch in these two topologies is much higher than that in the boost PFC converter that reduces the efficiency and increases the cost. In this paper, an improved buck PFC converter is proposed, as shown in Fig.1. Compared with the conventional buck PFC converter, an auxiliary switch and two diodes are added in the improved buck PFC converter. The proposed converter has two different operation modes in a line period. When the input voltage is higher than the output voltage, the proposed converter operates in buck mode, which is same as the conventional buck converter. When the input voltage is lower than the output voltage, the proposed converter operates in boost mode. The buck PFC converter has some attractive merits. First, the output voltage of buck converter is always regulated lower than the boost converter. Second, the voltage across the main switch of the buck converter is almost clamped to the input voltage. Therefore, the buck PFC converter can achieve relatively high efficiency within the universal input voltage range and it has drawn more and more attention in the past years [9] How-ever, if the buck converter operates in hard switching mode, the switching loss especially at high input will be large, which deteriorates the merit of the buck converter. The buck dc–dc converter operating in critical continuous conduction mode (CRM) can eliminate the reverse recovery loss in diode and achieve zero voltage switching (ZVS) for the switch. The constant ON-time (COT) control for CRM buck PFC con-verter is introduced in With COT control, the peak current in the switch is almost proportional to the input voltage, and then high PF can be achieved.

II. PRINCIPLE OF OPERATION

In the proposed converter operates in CRM will be analysed in detail. To simplify the analysis, the transitions between the switches and the output diode are omitted. After that, there still exist eight operation stages in a line period. Fig. 2 shows the equivalent circuits of the stages easy into it.

A. Positive Buck-Boost Operation Mode

When the input voltage V_{in} is in positive half cycle and the magnitude of V_{in} is smaller than V_o, the proposed converter operates in buck-boost mode. During this mode, switch Q_i
keeps OFF and switch Q_2 keeps switching. There are two stages when the proposed converter operates under this mode:

Stage 1: When switch Q_2 is ON, the proposed converter operates in stage 1. The equivalent circuit of this stage is shown in Fig. 2(a). The inductor L is charged by V_{ac} through D_1 and D_6, and i_L increases during this stage.

![Fig:2(a) Equivalent circuits of the proposed converter in First stages](image)

Stage 2: When switch Q_2 is OFF, the proposed converter operates in stage 2. The equivalent circuit of this stage is shown in Fig. 2(b). The inductor L is discharged by V_o through D_6, and i_L decreases during this stage.

![Fig:2(b) Equivalent circuits of the proposed converter in Second stages](image)

B. Positive Buck Operation Mode

When the input voltage V_{ac} is in positive half cycle and the magnitude is larger than V_o, the proposed converter operates in buck mode. During this mode, switch Q_2 keeps OFF and switch Q_1 keeps switching. There are two stages when the proposed converter operates under this mode:

Stage 3: When switch Q_1 is ON, the proposed converter operates in stage 3. The equivalent circuit of this stage is shown in Fig. 2(c). The inductor L is charged by V_{ac} through D_1 and D_6, and i_L increases during this stage.

![Fig:2(c) Equivalent circuits of the proposed converter in Third stages](image)

Stage 4: When switch Q_1 is OFF, the proposed converter operates in stage 4. The equivalent circuit of this stage is same as that of stage 2, as shown in Fig. 2(b).

![Fig:2(d) Equivalent circuits of the proposed converter in Five stages](image)

The inductor L is discharged by V_o through D_6, and this section, the proposed converter operates in CRM will be analyzed in detail. To simplify the analysis, the transitions between the switches and the output diode D_o are omitted. After that, there still exist eight operation stages in a line period. Fig. 2 shows the equivalent circuits of the stages separated into four operation stages defined as stages 5–8, and the equivalent circuits include Fig. 2(b), (d), and (e). The negative half cycle operation processes of the proposed converter are similar to those of the positive half cycle. For simplicity, the negative operation processes are not depicted in detail here.

![Fig:2(e) Equivalent circuits of the proposed converter in six stages](image)

An improved COT control is applied for the proposed buck PFC converter to force it that operates in CRM, as shown in Fig. 3. The output voltage is detected with a voltage reference V_{fb}, and the resistors R_a–R_d are omitted. Some key waveforms are shown in Fig. 4. As shown in Fig. 3, the control signal V_{fb} used to control the converter either in buck mode or buck-boost mode is achieved by comparing the detected V_{in} signal V' with a voltage reference V_{bound}. Usually, V_{bound} is set to reflect the output voltage V_o with the same ratio as that V_{in} reflects V_{in}. V_{fb} is high logic when V_{in} is higher than V_{bound} and is low logic when V_{in} is lower than V_{bound}. The detected output signal V_{FB} is sent to the negative input of the error amplifier U_f. The error between V_{FB} and the set reference V_{ref} is amplified by the compensation networks C_f and an amplified error signal V_{com} is achieved. The dc voltage signal V_{com} applied to control the conduction period T_{on} is achieved from V_{com} through a control networks formed by resistors R_1 and R_2 and switch S_1. Switch S_1 is controlled by the control signal V_{fb}. The proposed converter operates in buck mode when...
S1 is OFF and operates in buck-boost mode when S2 is ON. \(V_{\text{comp}} - p \) is a step function controlled by \(V_{\text{ph}} \), as shown in (1)

\[
V'_{\text{comp}} = \begin{cases}
V_{\text{comp}} & V_{\text{in}} > V_o \\
 k \cdot V_{\text{comp}} & V_{\text{in}} \leq V_o
\end{cases}
\]

(1)

III. SCHEMATIC OF THE PROPOSED BUCK PFC CONVERTER WITH AN IMPROVED COT

![Schematic of the proposed buck PFC converter with an improved COT control](image)

This level transition sets the driving signal from low level to high level. According to the aforementioned analysis, the rising slope of \(V_{\text{saw}} \) is constant due to the constant current source \(I_1 \) charging during the whole line period. Therefore, the ON-time (TON) of the switches is determined by \(V_{\text{comp}} \) proportionally. Smaller value of \(k \) leads to smaller TON and smaller peak values of \(i_L \) when the proposed converter is operating in buck-boost mode.

As shown in Figs. 3 and 4, the driving signals \(V_{G1} \) and \(V_{G2} \) are controlled by \(V_{\text{ph}} \) for the different operation modes alternately. Different coefficient \(k \) results in the different PF correction performance and the overall efficiency.

Where \(k \) is a coefficient equal to \(R_1 / (R_1 + R_2) \). Similar to the conventional COT control, a constant current source \(I_1 \), capacitor-tor \(C_1 \), and switch \(S_1 \) are used to generate a saw tooth wave form \(V_{\text{saw}} \). When \(V_{\text{saw}} \) reaches \(V_{\text{comp}} - p \), the output of comparator \(U_{c1} \) jumps from low level to high level. This level transition results the driving signal from high level to low level.

The zero-crossing point of the inductor current \(i_L \) is detected by the auxiliary winding of the inductor \(L \). This inductor current zero-crossing detection signal \(V_{ZC_D} \) can be applied in both buck and buck-boost modes. When the inductor current \(i_L \) falls to zero, the output voltage auxiliary winding \(V_{ZC_D} \) starts to fall. Once \(V_{ZC_D} \) falls to zero, the output of comparator \(U_{c2} \) jumps from low level to high level.

IV. SIMULATION RESULTS

A. CONVENTIONAL CIRCUIT

![Conventional Circuit Buck PFC Converter with High Power Factor](image)

B. PROPOSED CIRCUIT

![Proposed Circuit Buck PFC Converter with High Power Factor](image)
V. CONCLUSION

The improved buck PFC converter topology proposed in this paper is easy to achieve as the structure of the topology is simple. To operate in CRM, an improved COT control is proposed. The main disadvantage of this proposed topology is that two diodes and a switch are required and the added switch needs a floating driving circuit. However, the cost and size increase little compared to the whole cost and size. In conclusion, this proposed converter is very suitable for industrial application.

REFERENCES

[1] Electromagnetic Compatibility (EMC), Part 3-2: Limits–Limits for Harmonic Current Emissions (Equipment Input Current≤1A Per Phase), International Standard IEC 61000-3-2, 2005.

[2] E. L. Huber, B. T. Irving, and M. M. Jovanovich, “Effect of switching and switching-frequency limitation on line-current distortions of DCM/CCM boundary boost PFC converters,” IEEE Trans. Power Electron., vol. 24, no. 2, pp 339–347, Feb. 2009.

[3] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC rectifier with reduced components and conduction losses,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sep. 2011.

[4] E. H. Ismail, “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1147–1157, 2009.

[5] M. A. Al-Saffar, E. H. Ismail, and A. J. Sabzali, “Integrated buck–boost–quadratic buck PFC rectifier for universal input applications,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2886–2896, Dec. 2009.

[6] J. M. Alonso, J. Viña, D. Gacio, L. Campa, G. Martínez, and R. Osorio, “Analysis and design of the quadratic buck-boost converter as a high-power-factor driver for power-LED lamps,” in Proc. IEEE IECON, Nov. 2010, pp 2541–2546.