High Performance Hot-deformed Nd-Fe-B Magnets (Review)

Keiko HIOKI*

Hard Magnetic Materials Research Sect, Corporate Research and Development Center, Daido Steel Co., Ltd.,
2-30 Daido-cho, Minami-ku, Nagoya 457-8545, Japan.

Received April 7, 2021; Revised May 12, 2021; Accepted August 24, 2021

ABSTRACT
Hot-deformed anisotropic Nd-Fe-B magnets may potentially attain high coercivity due to their fine and highly orientated crystal grain microstructure as a result of the unique production process that creates these magnets. However, despite their fine grain size of 100–500 nm, coercivity was only around 25% of the full potential of the anisotropy field. This grain size was close to the critical diameter of the single domain grain size of the Nd-Fe-B magnet. This study investigated the effects of chemical composition and deformation conditions on the magnetic properties of Nd-Fe-B magnets, observing their microstructure to obtain guidance on the ideal microstructure. We also improved the hot-deformation technique in parallel to optimize microstructure by controlling the compositions and hot-deformation conditions based on the results of basic studies. Lastly, we fabricated heavy rare-earth-free magnets with a coercivity exceeding 1600 kA/m (20 kOe), which is 20% higher than that of conventional magnets.

KEY WORDS
hot-deformed Nd-Fe-B magnet, heavy-rare-earth-element free, coercivity, microstructure

ι 緒 言
ネオジム磁石は、1992年に佐川ら1)とCrotaら2)により、
独立に発明された永久磁石材料である。佐川らによるネオジ
ム焼結磁石3)は、工業的に生産されている永久磁石の中で、
今なお世界最強の最大磁気エネルギー値を示している。その
磁気特性と工業生産性の高さから、高性能磁石の主流と言え
る。一方、Crotaらが発明した、メルトスパン法により製造さ
れるネオジム高純度粉末3)は、主にポンド磁石の原料として使
用されている。本論文で紹介する熱間加工ネオジム磁石4)
の原料としても使用されている。ノジム焼結磁石と熱間加
工ネオジム磁石は同程度の磁気特性を示すが、製造方法が異
なるために独自の特徴を有している。この後より、それぞれ
焼結磁石、熱間加工磁石と称することとする。

ネオジム磁石は高磁力を有するため、ハイブリッド車や電気自動車、民生用の電子機器、風力発電用タービンなど幅広

* Corresponding author, E-mail: k-hioki@ac.daido.co.jp

本論文のタイトルは“Science and Technology of Advanced Materials (STAM)”, Vol. 22, No. 1, p. 72-84に掲載済みである。
散法の適用や、結晶粒微細化、粒界相組成制御が有効である。粒界拡散法は、保磁力に強く影響する主相結晶粒層のみに重希土類元素を置換させる技術であり、効率よく高保磁力化させることができるため重希土類元素の使用量を削減でき、さらに焼結粒子では量産適用されており、従来粒子比50%以上の重希土類粒の削減に成功している。一方、結晶粒、微細化、および、粒界相組成制御による保磁力向上は、磁石相である結晶粒の微細化や、結晶粒を被覆するように存在する粒界相の組成や組織制御により、保磁力を高める手法である。熱間加工磁石は、製造方法に起因して結晶粒サイズが微細なため、組織制御による保磁力向上には有利な材料である。しかしながら、保磁力は比較的高いものの、結晶粒径から期待されるほどではないことが指摘されていた。

そこで、筆者らは、熱間加工磁石の組織と磁気特性の関係について詳細に調査を行った。その結果に基づき、工業的に量産生産が可能である（磁気特性だけでなく外観、歩留まり、生産数も考慮して、量産が成り立つ）、ということを前提として、組織の最適化と成形工程での組織制御技術を高め、結晶粒の微細化や粒界相状態の最適化を行った。その結果、重希土類元素を一切使用せずに、保磁力1600 kA/m（20 kOe）以上（従来比20%以上）を有する熱間加工磁石の量産化を実現した。

4章以降でその開発内容について詳しく説明しているが、読者の理解の一助となるべく、まずは2章では熱間加工磁石の製造プロセスを、3章では熱間加工磁石の特徴を紹介する。

2 熱間加工磁石の製造工程

2.1 製造工程

Fig. 1 (a)にラジアル配向リング磁石（後方押出）とパラレル配向板磁石（前方押出）の製造プロセスと組織の模式図を示す。Fig. 1 (d)と(e)は、それぞれリング磁石と板磁石を赤い矢印（粉末を上から下へ押しつぶしている矢印）で示したプレス方向に対して真横から見た様子を表している。

最初に、原料合金から超急冷法で作製された薄帯を粉末粒子径200 μm程度のフレーク状に粉砕し、初期原料とする（Fig. 1 (a)）。この原料.disposeは、粉末に10-30 nm程度のR₂Fe₁₄B結晶粒（RはNd, Pr, Dy, Tbなどの希土類元素）がランダムな方向を向いているナノ多結晶体系である。このとき原料粉碎は、熱間塑性加工時に必要な液相を確保するため、磁石相であるR₂Fe₁₄Bの組成比よりも希土類元素が多い組成で作製される。この液相は、室温まで冷却された後、磁石相である結晶粒の周囲を被覆する。粒界相と呼ばれる相（層）となる。次に、この粉末を室温で冷間成形した後（Fig. 1 (b)）、800℃程度で熱間成形することにより、ほぼ真密度の成形体を作製する（Fig. 1 (c)）。この時点での、この成形体の径20-50 mmの結晶粒から成る多結晶磁石である。続いて、磁石としての異方性を付与するため、この等方性磁石に対し、800℃程度で熱間塑性加工を行う（Fig. 1 (d, e)）。すると、R₂Fe₁₄B結晶のc軸は、応力的方向と平行方向に配向しながら、径200-500 nm、厚さ20-50 nm程度の扁平状（錠状）の結晶粒に成長する。一般的に、この工程は、塑性加工に必要な液相を確保するために、粒界相の融点以上で行われる。しかしながら、最終製品の組織における異常成長粒の主要因のひとつは成形中の過剰な入熱であるため（2,15），金型設計および、成形条件の最適化が必要となる。

Fig. 1 (d)のリング磁石の場合は、押出方向に対し、後方へ（図中では上方方向）材料が変形する。相対的にリングの円周方向が応力方向と一致するため、R₂Fe₁₄B結晶のc軸はラジ
アル方向に配向する。（後方押出法）この工法では、結晶粒がラジアル方向に均一に配向するため、一般に焼結法では成形が難しいとされる小径、長尺リングでも高特性かつ均一特性の磁石を得ることができる。また、Fig. 1 (e) に示すように、合金形状と押出法を変えることにより、板厚方向にパラレル配向した板磁石の製造も可能であり、両形状ともすでに量産生産されている。

2.2 結晶配向機構について

2.1 で紹介したように、熱間焼結加工により、数10nmのランダム配向した等軸粒が、直径200-500nm、厚さ20-50nm程度の扁平状の結晶粒が積み重なり配向した組織に変化する。組織が変化するに必要な時間は、成形条件にもよるが、およそ10秒である。その変化の過程は組織観察により明確になっているが、変化が起こる理由については、いくつかのメカニズムが提案されており、完全に統一が取れた説明はまだ成立していない。そこで、本節では、先行研究などに基づいて、筆者らが支持するメカニズムを紹介する。

筆者らが行った実験結果をFig. 2, 3 に示す[14]。一般的な成分組成の原料粉を熱処理した後の組織（Fig. 2）と、熱間加工後の成形体に圧縮率を変えて摂え込み加工した後の組織（Fig. 3）を透過型電子顕微鏡（TEM）で観察した。Fig. 3 では、すべてのTEM像において摂え込み加工のプレス方向（図面上下方向）と垂直面の組織を示している。また、プレス時の圧縮率は式 (1) で表される。ここで、R は圧縮率、h₀は加工前の試料高さ、h は加工後の試料高さに応ずる。

\[R = \frac{h_0 - h}{h_0} \times 100 \]

(1)

また、組織変化の模式図をFig. 4 に示す。

Fig. 2 からわかるように、原料粉への熱処理時間が長くなるほど、一部の結晶粒が異方成長する（Fig. 2 (e) の矢印）。この場合、先行研究と同様に[16], 無負荷状態にも関わらず、正方晶である \(R_2Fe_{14}B \) 結晶[15]のc軸と垂直面への優先成長が

Fig. 2 TEM imagery of rapid quenched ribbons annealed at 750°C for (a) 0 min (as quenched); (b) 1 min; (c) 3 min; (d) 5 min; and (e) 10 min (platelet grains are pointed by arrows) [14].

Fig. 3 TEM imagery for die-upset magnets (perpendicular to compression force direction) with compression ratios, \(R \), of (a) 0%; (b) 20%; (c) 40%; and (d) 60% [14].

Fig. 4 Schematic models of the change in microstructure for (a) cold-pressed body; (b) hot-pressed body; and (c) hot-deformed magnet.
確認された。その一方で、プレス下では、Fig. 3 (a)-(d) に示すように、圧縮力が高くなるに従って、結晶粒サイズだけではなく、アスペクト比も大きくなり、連続的に結晶粒の配向が進行していることがわかる。一連の変化において、組織中に軸位やすべり線は確認されないため、この変化は軸位以外の機構によるものであると考えられる19)。

従って、筆者らは配向メカニズムを次のように推測している。（Fig. 4）

まず、熱間成形の工程で、粒界相の液化と一部の結晶粒の異方成長が始まる（Fig. 4 (b)）。続いて、熱間塑性加工中の応力により、結晶粒の異方成長が促進されるのと同時に、液化した粒界相を潤滑剤として、結晶粒の c 面（扁平状結晶の広い面）の粒界すべりを伴う結晶粒の回転（Fig. 4 (c)）が支配的に起きる20）。液相となった粒界相は、粒界すべりの潤滑剤の役割を果たすと同時に、原子の移動経路となるため、圧縮応力下での結晶粒の異方性粒成長が促進する。最終的に、結晶粒は扁平状となり、c 軸は圧縮応力方向と平行に配向する。熱間塑性加工のプロセス中で、粒界相の化学組成が組織変化に伴って変化することが観察されており21）。そのため、結晶粒の異方成長には粒界相を介した原子移動が寄与していると考えられる。しかしながら、このような圧縮応力下での、原子移動による異方粒成長の物理的原理は、「boundary migration (粒界移動)」22,23) や「interface-controlled solution-precipitation creep（界面制御された溶解-析出機構）24,25)」が提案されているものの、現時点で完全には解明されていない。いずれにしても、結晶粒の異方化と配向は相乗するため、短時間で応力による高配向化が進行すると考えられる。

一方で、R_Fe_3B 結晶の弾性エネルギーの異方性に基づく配向メカニズムも提案された。このメカニズムでは、c 軸のヤング率が a 軸よりも低いため26)，応力方向と c 軸が一致する結晶粒が a 軸方向に成長しやすく27)。そのために、応力方向と c 軸が一致していない周囲の結晶粒を取り込むながら成長し、最終的に組織全体の結晶粒の異方化と配向が完了する。しかし、Fig. 2 より配向は連続的に進行しているため、提案されているような選択的な粒成長は支配的ではないと筆者らは推測している。

このような先行研究に基づくと、特定のメカニズムで配向現象を完全に説明することは難しいが、これらのメカニズム（および未知のメカニズム）は複雑に関連していると考えられる。

3 熱間加工磁石の特徴
3.1 組織と磁気特性の関係
Fig. 5 (a) と (b) は、それぞれ一般的な焼結磁石と熱間加工磁石を同一倍率で観察した SEM 像である。Fig. 5 (b) の破線は元の原料粉末の境界を示し、Fig. 5 (c) と (d) は、それぞれ c 軸に垂直面と平行面を観察した像である。Fig. 5 (c) と (d) より、熱間加工磁石は、扁平な結晶粒 c 軸方向に積み重なった組織であり、一般的な焼結磁石よりも 1 枚程度結晶粒が微細であることがわかる。また、熱間加工磁石の結晶粒サイズは、ネオジム磁石の臨界単位磁束径（0.3 μm）と同程度である28）。

Fig. 6 (a) と (b) は、それぞれ、焼結磁石および熱間加工磁石の減少曲線と保磁力の温度依存性を示す。Fig. 6 (a) では、両磁石の磁化曲線形状はほぼ同じである。（各実験の詳細については、Table 1 に示す通りである。）しかしながら、熱間加工磁石の方が高保磁力を示している。一方で、熱間加工磁石の方が焼結磁石より残留磁束密度が低いのは、Table 1 に示した組成と、Fig. 6 (a) の減少曲線の角形状性より、焼結磁石の方が主相の体積率と結晶粒の配向性が高いためである。

Fig. 6 (b) では、焼結磁石と熱間加工磁石の重合磁要素含
高特性熱間加工Nd-Fe-B磁石の開発

Fig. 6 (a) Demagnetization curves; and (b) temperature dependence of coercivities for sintered and hot-deformed Nd-Fe-B magnets. Sintered magnets were not GBD processed samples. The Dy amount of each magnet is described in the figures.

Table 1 Chemical compositions of sintered and hot-deformed magnets in Figures 5-8 and 14; bal. stands for balance. S and HD correspond to sintered and hot-deformed magnets, respectively.

Chemical composition (wt.%)	TRE	Nd	Pr	Dy	Fe	Co	B	Ga	Al,Cu	
Fig. 5 (a) S		31.0	25.9	<0.1	5.1	bal.	2.4	0.9	0.0	0.5
Figs. 5 (b)-(d), 7, 8 (b) (c), 14 (a)-(c) HD		29.8	29.8	<0.1	0.0	bal.	3.4	0.9	0.6	<0.1
Figs. 6 (a) (b) S		30.5	26.2	0.2	4.1	bal.	2.2	1.0	0.0	0.5
Figs. 6 (b) S		30.7	22.1	0.1	8.5	bal.	2.2	1.0	0.0	0.4
Figs. 6 (a) (b) HD		30.4	25.9	0.1	4.2	bal.	3.5	0.9	0.5	<0.1
Figs. 7, 8 (a) S		29.3	22.4	6.3	0.6	bal.	2.0	0.9	0.0	0.5

Fig. 7 Initial magnetization and demagnetization curves of typical sintered and hot-deformed Nd-Fe-B magnets.

3.2 初磁化曲線

Fig. 7は、一般的な焼結磁石と熱間加工磁石の初磁化曲線と減磁曲線である（Table 1）。焼結磁石は磁石で容易に磁化されるが、熱間加工磁石の初磁化曲線は、2段階の磁化過程を示し、ある程度は低磁場で磁化されるが、完全に磁化させるにはさらなる磁場の印加が必要となる。

熱間加工磁石の初磁化曲線において、2段階目の磁化過程（高磁場側）は、保磁力と同程度の磁界から磁化が急増するため、粒界で磁壁移動がビニングされる結晶粒の磁化過程を示していると考えられる。このような粒子は単磁区結晶粒であると推測されるが、最近の磁区構造解析では、保磁力と同等磁場を印加しないと反転しない多磁区粒子の存在が報告されている29)。一方、低磁場側の初磁化曲線は、低外部磁場によって容易に着磁しているため、結晶粒内で容易に磁壁の移動が起こる多磁区粒子の磁化過程が支配的と考えられる。また、単磁区粒子でも、結晶粒周辺の粒界相状態が悪い場合（途切れている、高磁化など）は粒界相で磁壁がビン止めされ難いため、集団として多磁区粒子のような振る舞いをすると推測される。このような組織と初磁化曲線の関係は4.1で述べる。

3.3 磁区構造

Fig. 8 (a)-(c)は、磁気力強微鏡（MFM）で観察された、焼結磁石（Fig. 8 (a)）および熱間加工磁石（Fig. 8 (b, c)）の磁区像を示す。鏡面研磨した観察面（c面）の同一領域について、低電圧走査電子顕微鏡（LV-SEM）で組織を、MFMで熱消磁状態の磁区構造を観察した。Fig. 8 (a) と (b) はそれぞれの磁石を同じ倍率で観察したものので、Fig. 8 (c) は Fig. 8 (b)
Table 2 Chemical compositions and hot-deformation temperatures of samples; bal. stands for balance [28].

Chemical composition (at.%)	Hot-deformation temperature (°C)						
Nd	Dy	Fe	Co	B	Ga		
A	12.8	0.0	bal.	3.85	5.65	0.46	750, 775, 800, 825, 850, 875, 900
B	13.5	0.0	bal.	3.82	5.64	0.57	750, 775, 800, 825, 850, 875, 900
C	14.2	0.0	bal.	3.81	5.66	0.71	725, 750, 775, 800, 825, 850
D	12.4	1.0	bal.	3.85	5.59	0.57	775, 800, 825, 850, 875, 900
E	11.5	2.0	bal.	3.91	5.56	0.58	750, 775, 800, 825, 850, 875, 900

Fig. 9 Initial magnetization and demagnetization curves for Sample C following deformation at 725, 750, 775, 800, 825, and 850°C [28].
形状の結晶粒の長軸方向の径とした。Fig. 10 より、すべての組成において SDGR は、平均結晶粒径の増加に伴い低下する。これは、試料中の単結晶構造の体積比率が低下することを示唆している。

Fig. 11 (a)～(f) は、725℃～850℃で成形した試料 C の SEM 像である。観察面は c 軸と平行面である。SEM 像より明らかになように、成形温度が高くなるに従い、結晶粒が成長する。

Fig. 12 (a) および (b) は、室温および180℃における平均結晶粒径と保磁力および残留磁束密度の関係を示す。Fig. 12 (a) に示すように、全ての組成（A-E）において、保磁力は平均結晶粒径が小さくなるに従って増加している。この結果はまた、Dy を添加するだけでなく、総希土類元素量を増やすことも保磁力が向上することを示している。ここで、180℃において、平均結晶粒径が400 nm以下の組成 C（Dy = 0）の保磁力は、平均結晶粒径が800 nmの組成 D（Dy = 1.0 at.%）の保磁力と同程度であることに関目した。

Fig. 12 (b) では、平均結晶粒径が小さくなるのに従って残留磁束密度が減少している。これは2-2で述べたように、結晶粒の配向にはある程度の結晶粒の異方成長が必要なためである。しかし、過剰に高温で成形を行う場合には、結晶粒の異常な粗大化を引き起こし、他の結晶粒の配向を阻害するため、配向不足により残留磁束密度が低下する。

Fig. 13 (a), (b) は、全ての試料について、保磁力と残留磁束密度の温度係数βとαの室温から180℃までの温度変化を示す。ここで、αとβは以下のよう与えられる。

\[
\beta = \frac{H_s(23^\circ C) - H_s(180^\circ C)}{(23^\circ C - 180^\circ C)} \times \frac{100}{H_s(23^\circ C)} \tag{3}
\]

\[
\alpha = \frac{B_r(23^\circ C) - B_r(180^\circ C)}{(23^\circ C - 180^\circ C)} \times \frac{100}{B_r(23^\circ C)} \tag{4}
\]

Fig. 13 (b) および、残留磁束密度の温度係数αは、Dy 添加により若干改善するものの、総希土類元素量や結晶粒径には一切依存していない。その一方で、Fig. 13 (a) の保磁力の温度係数βは、Dy 添加の他、総希土類量の増加や平均粒径の減
Fig. 12 Dependence of (a) coercivity; and (b) remanence on average grain size for Samples A—E at room temperature and 180°C. Lines provide visual guides [28].

Sample	Average Grain Size (nm)	Coercivity (kOe)	Remanence (A/m)
A	1200	12.9	13.0
B	1000	14.0	14.0
C	800	15.0	15.0
D	600	16.0	16.0
E	400	17.0	17.0

Fig. 13 Dependence of (a) temperature coefficient of coercivity; and (b) temperature coefficient of remanence on average grain size for Samples A—E. Lines provide visual guides [28].
30°Cでは、ほぼすべての結晶粒が同じ方向に磁化されている。しかし、210°Cの磁区像では、矢印で示すように粉
末境界で磁化方向が変わる箇所が確認された。Fig. 15は、
Fig. 14 (c)の磁化方向が変わる場所に対応し、原料粉末の
境界部の組織を示している。Fig. 15 (b)は、2.2で述べた過
剩磁性による粗大かつ無配向の結晶粒に対応する。これらの
結果より、磁化方向は一部の粉末境界に存在する、粗大か
つ無配向な結晶粒から起こりやすいことがわかった。
このような組織を減らすため、金型設計と成形条件の見直
しを行った。Fig. 16に、組織の均質性改善前後の減磁曲線を
示す。改善後では、結晶粒粗大部減少のために保磁力が改善
した。そして、無配向粒が減少したため、組織全体の配向度
が向上し、残留磁束密度も改善した。
4.1では、結晶粒径の微細化と粒界相の厚みおよび希土類
比を増加させることで、重希土類元素を添加しなくても保磁
力が向上することを述べた。しかし、それら手法では、主相
比減少による残留磁束密度の低下は避けられない。そのた
め、粉末境界の粗大粒、無配向粒の低減による組織均質化を
同時に行うことで、残留磁束密度の低下を抑制し、保磁力を
改善することが可能となった。
4.3 磁気特性マップ
Fig. 17 (a) (b)は、重希土類フリーおよび省重希土類タ
イプの熱間加工磁石の磁気特性マップである。
4.1と4.2で述べたような原料組成と磁石組織の改善により
以前より磁気特性が向上した。特に、重希土類元素フリー熱
間加工磁石の保磁力は、1600 kA/m (20 kOe) を越え、ハイ
プリッド車の駆動モータ用磁石材料として採用されている(3)

Fig. 14 (a) Microstructure; and (b)–(c) magnetic domain pattern during the thermal demagnetization process observed by MFM at 30 and 210°C.

Fig. 15 Microstructure at a raw powder boundary equivalent to where magnetization reversal occurs in Fig. 14 (c).

Fig. 16 Demagnetization curves for hot-deformed magnets before and after the reduction of coarse and misaligned grains at powder boundaries.

5 量産製品
Fig. 18は、熱間加工磁石のラジアル配向リング磁石とパラ
レル配向板磁石の製品写真である。これらの磁石の特徴は以
下の通りである。
(1) ラジアル配向リング磁石では、外径5〜80 mm、高さ最
大 80 mm までの製品形状が多品種可能。
(2) 熱間塑性加工により結晶粒を配向させるため、リング磁
石の高さに関して、高さ方向に均一な磁束が得られる。
(3) 様々な着磁パターンと精密な着磁速度制御が可能。
(4) 比較的良質な耐腐食性を有している(4)。
(5) ほぼネットシェイプでの製造が可能。
6 まとめと今後の開発

4章で紹介したように、重希土類元素を使用せずに熱間加工磁石の保磁力を改善するため、原材の成分組成と熱間加工磁石の成形条件が磁石の磁気特性に及ぼす影響を調査した。同時に調査材料に対し、詳細な組織観察を行なった。これらの結果を基に、成分組成や熱間加工条件を最適化した結果、重希土類元素フリーで1600 kA/m（20 kOe）以上の保磁力を持つ、ハイブリッド車関連モータ用の高性能熱間磁石の開発に成功した33)。しかし、顧客からの新たな要求に対応するためには、さらなる開発が必要である、その例としては、以下のようになるものがある。

(1) 成形技術のさらなる向上。2.2で述べたような配向機能に基づいて、より多様な成形プロファイルを構築することにより、組織制御の精度を高める。

(2) 成形技術とモータ設計技術の融合により、モータ材料として最適な磁石材料を提供できるようにする34)。そのために、磁気特性だけでなく、磁石形状と配向方向の自由度を高める検討を実施している。

(3) 熱間加工磁石への粒界改質技術の適用。飛躍的に磁気特性を改善するため、重希土類合金を改質材とした粒界改質を適用する35~38)。

(4) 最近では、粒子レベルの磁化反転を実験的に観察するところも可能となった39)。このような研究から導かれる結果より、高精度かつ定量的な理想組織を得る。(5) 低廉希土類元素（Ce, La）の活用による資源問題の回避。基本物性値が明らかにすると、これらをNdと置換することにより、磁気特性を低下する。しかし、LaはCoとの複合添加により、物性値ほど特性が低下しないという報告もされている40,41)。また、Ceは粒界相の形態を低下させるため、熱間加工磁石に対して、成形性を改善して、配向度の向上や生産性が著しい影響をもたらす可能性が示されている42,43)。

(6) 磁石材料の高抵抗化。モータ稼働中に磁石表面に発生する発熱流により、磁石の温度は上昇する。発熱流を増加したためには磁石の高電気抵抗化が有効である。熱間加工磁石では、原料物を高電気抵抗材料を混合する検討が行われている44,45)。

謝辞

本論文で紹介した熱間加工磁石の微細組織解析について、共同研究者である国立研究開発法人、物質・材料研究機構の宝野和博博士、大久保忠勝教授、Hossein Sepahi-Amin博士に多大なご協力、および、ご助言を頂いた18,29,30)、ここに深く感謝致します。また、保磁力機構の理解のため、磁化
反転機構の直接観察を通じ \(^{23,30}\)。ご助言およびご協力して頂いた、共同研究者の東北大学周本聡教授に深く感謝致します。

文献
1) M. Sagawa, S. Fujimura, N. Mogawa, H. Yamamoto, Y. Matsuura: J. Appl. Phys., 55(6)(1984) 2083-2087.
2) J. J. Croat, F. H. Herbst, R. W. Lee, F. E. Pinkerton: J. Appl. Phys., 55(6)(1984) 2078-2082.
3) R. W. Lee: Appl. Phys. Lett., 46(8)(1985) 790-791.
4) S. Hirotsawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa: J. Appl. Phys., 59(3)(1986) 873-879.
5) K. T. Park, K. Hiraga, M. Sagawa: Proceedings of the 16th International Workshop on Rare-Earth Permanent Magnets and their Applications, (2000) 257-264.
6) K. Hirota, H. Nakamura, T. Minowa, M. Honshima: IEEE Trans. Magn., 42(10)(2006) 2909-2911.
7) Y. Ume, M. Sagawa: J. Japan Inst. Met. Mater., 76(1)(2012) 12-16.
8) W. B. Cui, Y. K. Takahashi, K. Hono: Acta Mater., 59(20)(2011) 7768-7775.
9) H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono: Scr. Mater., 63(11)(2010) 1124-1127.
10) T. T. Sasaki, T. Ohkubo, Y. Takada, T. Sato, A. Kato, Y. Kaneko, K. Hono: Scr Mater., 113(1)(2016) 218-221.
11) K. Hono, H. Sepehri-Amin: Scr. Mater., 67(6)(2012) 530-535.
12) K. K. Mishra, E. G. Brewer, R. W. Lee: J. Appl. Phys., 63(8)(1988) 3528-3530.
13) K. K. Mishra, T.-Y. Chu, L. K. Rabenberg: J. Magn. Magn. Mater., 84(1-2)(1990) 89-94.
14) R. Shioi, H. Miyawaki, T. Morita: Denkiseiko, 82(1)(2011) 31-37.
15) J. F. Herbst, J. J. Croat, F. E. Pinkerton, W. B. Yelon: Phys. Rev. B., 29(7)(1984) 4176-4178.
16) P. Tenaud, A. Chamberod, F. Vanoni: Soli State Commun., 63(4)(1987) 303-305.
17) K. K. Mishra: J. Appl. Phys., 62(3)(1987) 967-971.
18) J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioaki, A. Hattori, K. Hono: J. Appl. Phys., 115(4)(2014) 17A744.
19) W. Grünberger, D. Hinz, A. Kirchner, K.-H. Müller, L. Schultz: J. Alloys. Compd., 257(1-2)(1997) 293-301.
20) W. Grünberger: Proceedings of the 15th International Workshop on Rare-Earth Permanent Magnets and their Applications, 1(1998) 333-348.
21) Yang Luo, Nin Zhang: Proceedings of the 10th International Workshop on Rare-Earth Permanent Magnets and their Applications, (1989) 275-281.
22) Lin Li, C. D. Graham Jr.: J. Appl. Phys., 67(9)(1990) 4756-4758.
23) L. Li, C. D. Graham Jr.: IEEE Trans. Mag., 28(59)(1992) 2130-2132.
24) J. D. Livingston: J. Appl. Phys., 57(8)(1985) 4137-4139.
25) M. Takeuchi, T. Yomogita, N. Kikuchi, A. Okamoto, O. Kitakami, K. Toyoki, S. Kobayashi, Y. Kotani, T. Nakamura, A. Hattori, K. Hioaki: Abstract of the 43rd Annual Conference on Magnetics in Japan, (2019) 28.
26) K. Khlopovk, O. Gutleisch, D. Hin, K.-H. Müller, L. Schultz: J Appl Phys., 102(2)(2007) 023912.
27) J. Thielisch, H. Stopfel, U. Wolf, V. Neu, T. G. Woodcock, K. Gütth, L. Schultz, O. Gutleisch: J. Appl. Phys., 111(10)(2012) 103901.
28) K. Hioki, A. Hattori, T. Iriyama: J. Magn. Soc. Jpn., 38(3-1)(2014) 79-82.
29) J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, T. Schreffl, K. Hono: Acta Mater., 61(14)(2013) 5387-5399.
30) J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, T. Schreffl, K. Hono: Acta Mater., 82(2015) 336-343.
31) H. Sepehri-Amin, T. Ohkubo, M. Gruber, T. Schreffl, K. Hono: Scr. Mater., 89(2014) 29-32.
32) J. Fujisaki, A. Furuya, Y. Uehara, K. Shimizu, T. Ataka, T. Tanaka, H. Oshima, T. Ohkubo, S. Hirosawa, K. Hono: AIP Adv., 6(2016) 056028.
33) S. Soma, H. Shimizu, E. Shirado, S. Fujishiro: SAE Int. J. Alt. Power, 6(2017) 290-297.
34) Product information [Internet]. Japan: Daido electronics Co., Ltd. http://www.daido-electronics.co.jp/english/product/neoquench_dr/coating/index.html
35) Y. Kano, T. Yabumii: IEEE Trans. Ind. Appl., 140(4)(2020) 255-264.
36) H. Sepehri-Amin, J. Liu, T. Ohkubo, K. Hioki, A. Hattori, K. Hono: Scr. Mater., 69(9)(2013) 647-650.
37) J. Li, Lihua Liu, H. Sepehri-Amin, Xin Tang, T. Ohkubo, N. Sakuma, T. Shoji, A. Kato, T. Schreffl, K. Hono: Acta Mater., 161(2018) 171-181.
38) Xin Tang, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hioaki, A. Hattori, K. Hono: Acta Mater., 203(2021) 116479.
39) T. Yomogita, S. Okamoto, N. Kikuchi, O. Kitakami, H. Sepehri-Amin, Y. K. Takahashi, T. Ohkubo, K. Hono, K. Hioki, A. Hattori: Acta Mater., 201(2020) 7-13.
40) J. Jin, G. Bui, Z. Zhang, Y. Mi: J. Alloys Compd., 763(2018) 854-860.
41) Xin Tang, S. Y. Song, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hono: Acta Mater., 190(2020) 8-15.
42) Y. Kasai, H. Yamada, T. Iriyama, N. Yoshikawa: Japanese Patent Application No. H10-475, Date of filing: January. 5. 1998.
43) I. Poenaru, A. Lixandru, S. Riegg, B. Fayyazi, A. Taubel, K. Güth, R. Gauß, O. Gutleisch: J. Magn. Magn. Mater., 478(2019) 198-205.
44) M. Marinescu, A. M. Gabay, J. F. Liu, G. C. Hadjipanayis: J. Appl. Phys., 105(7)(2009) 07A711.
45) H. W. Kwon, K. M. Kim, M. S. Kang, D. Wu, M. Yue, J. G. Lee, J. H. Yu: Abstract Book of the 25th International Workshop on Rare-Earth Permanent Magnets and their Applications, (2018) 76.

2022年1月