AN ETHNOBOTANICAL EXPLORATION OF MEDICINAL PLANTS IN MANAR BEAT, KARAMADAI RANGE, WESTERN GHATS, TAMIL NADU

RAMYA EK*, MOWNIKA S, SHARMILA S
Department of Botany, Vellalar College for Women (Autonomous), Thindal, Erode, Tamil Nadu, India. Email: ekramya16@gmail.com

Received: 12 June 2019, Revised and Accepted: 15 July 2019

INTRODUCTION

The traditional knowledge in the use of plant species is a routine practice in rich diversified countries, India is one of the leading countries in this practice with heritage of cultural traditions [1]. Starting from the ancient time, the medicinal herbs play key source of drugs. According to the WHO, the world’s large population relies on the traditional systems of medicines, particularly on plant-based system to meet their primary health-care needs [2]. Globally estimated that 300,000 plant species are exist, for this only around 15% have been evaluated to determine their pharmacological potential, so invention of new products from natural sources is nowadays highly encouraged [3]. Some of the important medicinal plants are commercially harvested for the extraction of various types of active ingredients. The various medical traditional systems such as Unani, Siddha, and Ayurvedic are hugely depended on the active medicinal properties of plants, whereas the precious wealth of indigenous knowledge is in danger of being lost. The use of traditional tribe’s knowledge also reflects the values embedded in the tradition sub-held by elders, especially about traditional medicine. The landscape is an essential to the efficacy of medicines, which is well understood by the practitioners, it should not be seen as “miracle” cures based on chemical compounds, but due to curative energy that draws its medicinal qualities founded on a relationship between the plants and the people [4].

The conservation and sustainable utilization of biological resources are achieved through documentation of the indigenous knowledge through ethnomedical studies [6]. The key threats for medicinally important plants are due to overdependency by local people, grazing, forest fires, and commercial activities. The local people depend on these plants are due to the effective nature, non-availability of medical facilities, and ethnocultural beliefs. Cultivation is clearly a sustainable alternative to the present collection of medicinal plants from the wild habitat [7].

Based on the above concepts, an extensive ethnobotanical survey was carried out in Manar beat, Karamadai range, to document the information about the traditional medicinal practices based on the medicinal plant species. The aim of the present study is to evaluate the traditional uses of local native plants to provide safe and efficient information gathered from Irulas, a local tribe inhabited in our study area and documentation of native and active plant species used for the treatment and prevention of various diseases and ailments.

METHODS

Study area
Ethnobotanical survey was carried out in Manar beat, Karamadai range, Western Ghats, Tamil Nadu, from January 2018 to December 2018. The study area lies between 11°16’N latitude and 76°58’E longitude. It has tropical climate with maximum temperature beyond 35°C during summer (May–June) and below 21°C during winter (December–January) and average annual rainfall is about 709 mm. Different types of vegetation are available in Karamadai reserve forest, namely, scrub jungle, dry deciduous forest, mixed deciduous forest, moist deciduous forest, and riparian vegetation. Manar beat is an evergreen tropical moist deciduous forest with rich vegetation of floras and faunas. The

Keywords: Ethnobotany, Manar beat, Irulas, Medicinal plants, International Union for Conservation of Nature.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34562
S. No.	Botanical name	Family name	Local name	Habit	Parts used	Active principle	Therapeutic uses	Mode of preparation
1.	Acacia caesia Willd.	Mimosaceae	Nanjupattai	Climbing shrub	Bark, leaves	Phenols	Wound healing and skin diseases	Paste
2.	Acacia concinna Dc.	Mimosaceae	Shiakakai	Climbing shrub	Bark, leaves	Alkalds	Jaundice, constipation, skin problems, and astringent	Powder
3.	Acalypha fruticosa Forsk.	Euphorbiaceae	Ceern sedi	Shrub	Roots, leaves, and stem	Terpenoids and tannins	Pebrifuge, whooping cough, toothache, constipation, and eye infection	Extraction
4.	Acanthus ilicifolius L.	Acanthaceae	Kalata mulli	Shrub	Roots, leaves, and stem	Steroids and terpenoids	Rheumatism, asthma, paralysis, psoriasis, astringent, wounds, and leukorrhea	Decoction
5.	Achyranthes aspera L.	Amananthaceae	Nayuruvi	Herb	Whole plant	Alkalds and steroids	Stomach ache, piles, menstrual disorder, and dysentery	Extraction
6.	Adenanthera pavonina L.	Mimosaceae	Ani kundumani	Tree	Leaves	Fatty acids	Wound healing, injuries, and worms Skin diseases and wound healing	Juice
7.	Adenostemma lavenia O. Kze.	Asteraceae	Vadakala	Herb	Leaves and root	Alkalds	Skin diseases and wound healing	Extraction
8.	Aerva lanata Juss.	Amananthaceae	Ciru-pulai	Herb	Roots	Glycosides, saponins, and steroids	Snakebite, cough, asthma, and headache Skin diseases, jaundice, rheumatism arthritis, loose stool, herpes, and blood disorders	Decoction
9.	Ailanthus excelsa Roxb.	Simaroubaceae	Peru	Tree	Bark	Alkalds and flavonoids	Hemorrhoids, rheumatism, joint pains, and connective tissue disorders	Paste
10.	Alangium salvifolium Wang.	Alangiaceae	Alandi	Tree	Root, seeds, and leaves	Flavonoids, glycosides	Hemorrhoids, rheumatism arthritis, loose stool, herpes, and blood disorders	Decoction and paste
11.	Albizia amara Boiv.	Mimosaceae	Onnjapattai	Tree	Bark and root leaves	Terpenoids, saponins and alkaloids	Inflammation, joint pains, skin diseases, jaundice, and fever	Decoction
12.	Alysicarpus monilifer DC.	Fabaceae	Kasukkoti	Herb	Leaves, stem, and root	Alkalds and flavonoids	Antispasmodic, diaphoretic, rheumatic pain, dyspepsia, and colic Jaundice	Paste
13.	Anisomeles malabarica R.Br.	Lamiaceae	Payemiratti	Herb	Whole plant and leaves	Alkalds and flavonoids	Antispasmodic, diaphoretic, rheumatic pain, dyspepsia, and colic Jaundice	Paste
14.	Anodendron paniculatum A. DC.	Apocynaceae	Sarakkodi	Climber	Leaves and fruits	Alkalds and flavonoids	Diabetes, skin diseases, cough, astringent, and purgative	Powder
15.	Argyreia cuneata Ker Gawl.	Convolvulaceae	Kanvalipoo	Climber	Leaves and fruits	Alkalds and flavonoids	Asthma and skin diseases	Decoction
16.	Aristolochia indica Linn.	Aristolochiaceae	-	Climber	Whole plant and fruit	Alkalds and flavonoids	Asthma, fever, and diarrhea	Juice
17.	Artocarpus hirsuta Linn.	Moraceae	Ajyinipilla	Tree	Root bark	Flavonoids, terpenoids and Alkalds	Rheumatism, joint pains, and connective tissue disorders	Decoction
18.	Artocarpus integrifolia Linn.	Moraceae	Palamarum	Tree	Whole plant	Alkalds	Asthma and skin diseases	Extraction
19.	Atalanta monophylla Correa.	Rutaceae	Kattuvelumeachi	Shrub	Whole plant	Alkalds	Rheumatism, joint pains, and connective tissue disorders	Decoction

(Contd...)
S. No.	Botanical name	Family name	Local name	Habit	Parts used	Active principle	Therapeutic uses	Mode of preparation
21.	*Azadirachta indica* A. Juss.	Meliaceae	Vembu	Tree	Whole plant	Flavonoids	Virus infection, anti-inflammatory, insecticide, and skin diseases	Extraction
22.	*Bachanania axillaris* (Desr.)	Anacardiaceae	Kolamaavu	Tree	Bark, fruit, and leaves	Phenols and flavonoids	Anticancer, anti-diabetic, anti-inflammatory, antioxidant, depurative, purgative, and tonic diseases, anorexia, and ascitis	Decoction
23.	*Bauhinia racemosa* Lamk.	Fabaceae	Vellaimantarai	Tree	Whole plant	Phenols and flavonoids	Cough, abdominal diseases, anorexia, and ascitis	Juice and decoction
24.	*Begonia malabarica* Lamk.	Begoniaceae	-	Herb	Leaves and whole plant	Phenoloids and steroids	Cough, abdominal diseases, anorexia, and ascitis	Decoction and paste
25.	*Bennara malabarica* Lamk. Tiveng.	Rubiaceae	Sirukarai	Thorny small tree	Leaves	Alkaloids and flavonoids	Abdominal pain and throat infection	Juice and paste
26.	*Blachia umbellata* Bail.	Euphorbiaceae	Aatthumanthai	Shrub	Leaves	Alkaloids and flavonoids	Wound healing, ulcers, nasal, asthma, throat inflammation, spleen disorders, diarrhoea, urinary disorder, kidney stone, and nervous disorders	Paste and tonic Decoction
27.	*Blepharis boerhaaviaefolia* Pers.	Acanthaceae	-	Under shrub	Leaves, root, fruit, and seeds	Alkaloids and flavonoids	Abdominal pain and throat infection	Juice and decoction
28.	*Cadaba fruticosa* (L.) Druce.	Capparidaceae	Chikondai	Shrub	Leaves	Alkaloids and glycosides	Antirheumatic, antihelmentic, antibacterial, and viral infection	Juice
29.	*Cadaba trifoliata* Wight. & Arn.	Capparidaceae	Kattagatti	Shrub	Leaves, stem, and roots	Tannins	Antirheumatic, antihelmentic, antibacterial, and viral infection	Decoction and extraction
30.	*Calamus rotang* Linn.	Arecaceae	Pirambu	Climber	Fruit and leaves	Flavonoids	Dysentery, diarrhoea, body pain, and poisonous bites	Decoction
31.	*Capparis grandis* Linn. f.	Capparidaceae	Pachara	Tree	Whole plant	Alkaloids and flavonoids	Ulcer, asthma, and anorexia	Tonic and juice
32.	*Capparis zeylanica* Linn.	Capparidaceae	Adhandai	Shrub	Root	Fatty acids and flavonoids	Dysentery and diarrhoea	Extraction
33.	*Caralluma ascendens* R.Br.	Asclepiadaceae	Kallimudayan	Herb	Stem, root, and flower	Lipids	Ulcer, asthma, and anorexia	Extraction
34.	*Caralluma pauciflora* N. E.Br.	Asclepiadaceae	Pulyanprinadai	Herb	Leaves and whole plant	Flavonoids and saponins	Ulcer, rheumatism, diabetes, and inflammation	Decoction and paste
35.	*Caralluma umbellata* Haw.	Asclepiadaceae	Erumaikalli mulayan	Herb	Stem	Glycosides	Stomach disorder, abdominal pain, obesity, diabetes, and ulcer problems	Juice
36.	*Cassia javanica* L.	Caesalpinaceae	Konari	Tree	Seeds and bark	Glycosides and flavonoids	laxative, antipyretic, fever, and emesis	Decoction

(Contd...)
37. **Cassia occidentalis** Linn.
Caesalpiniaceae
Peyaverai
Shrub
Seeds, leaves, root, fruit, and whole plant
Glycosides
Cutaneous diseases, cough, asthma, sweetish, bitter, stomachic, fever, good for sore throat, diuretic, ringworm, scorpion, elephantiasis, sting, snakebite, ascites, purgative, febrifuge, sore eyes, and skin diseases
Extraction

38. **Celtis phillipensis** Blanco
Cannabaceae
Kodalimuruki
Tree
Root
Terpenoids
Diarrhea
Decoction

39. **Cenchrus ciliaris** Linn.
Poaceae
Kollukattai pullu
Herb
Leaves
Lipids
Kidney pain, wound healing, and tumors
Decoction

40. **Centella asiatica** Urb.
Apiaceae
Vallarai
Creeping herb
Leaves
Terpenoids and glycosides
Wound healing, brain tonic, and cardi tonic
Infusion

41. **Cereus pterogonus** Lamk.
Cactaceae
Ooci kalli
Shrub
Whole plant
Proteins
Purgative, astringent, constipation, refrigerant, antiperiodic, and antipyretic
Extraction

42. **Ceropegia juncea** Roxb.
Asclepiadaceae
Jaathili
Climbing herb
Leaves and root
Alkaloids and steroids
Bacterial infection, ulcer, and inflammation
Decoction and juice

43. **Chamaecrista pumila** (Lam.) K. Larsen.
Fabaceae
-
Shrub
Whole plant and leaves
Tannins and flavonoids
Diarrhea and bacterial infection
Decoction

44. **Cipadessa baccifera** Miq.
Meliaceae
Pullipanchelli
Shrub
Whole plant
Alkaloids
Indigestion, cough, and antifertility
Juice

45. **Cissampelos pareira** Linn.
Menispermaceae
Malai Thangivaer
Climber
Root and leaves
Flavonoids and alkaloids
Wound healing, antidote, anorexia, indigestion, blood purification, and anti-inflammation
Paste

46. **Cissus quadrangularis** Linn.
Vitaceae
Pirandai
Climbing shrub
Stem, root, and leaves
Flavonoids and terpenoids
Bone breakage, appetite dyspepsia, indigestion, and piles
Juice

47. **Clausena dentata** (Willd.) M. Roem.
Rutaceae
Kattu karuveppilai
Small tree
Leaves and root
Alkaloids and coumarins
Gastrointestinal disorders, fever, rheumatism, headache, hypotension, and sore throat
Tonic and paste

48. **Clerodendron serratum** Spr.
Verbenaceae
Angaravalli
Shrub
Leaves, stem, seed, and root
Flavonoids and phenols
Asthma and respiratory diseases
Paste and decoction

49. **Coccinia grandis** (Linn.) Voigt.
Cucurbitaceae
Kovakai
Climber
Fruit
Alkaloids and glycosides
Leprosy, fever, asthma, bronchitis, and jaundice
Juice

50. **Combretum albidum** G. Don.
Combretaceae
Odai Kodai
Climber
Leaves, fruit, and stem bark
Terpenoids and flavonoids
Pepic ulcer, diarrhea, dysentery, jaundice, and skin diseases
Paste, juice, and decoction

51. **Cordia sinensis** Lam.
Boraginaceae
Sellai
Small tree
Leaves and fruit
Flavonoids
Anti-inflammatory, blood pressure, hypotensivenes, and diuretic
Decoction

52. **Crataeva adansonii** D.C.
Capparidaceae
Marvilingam
Small tree
Stem bark
Phenols
Joint pain
Decoction

(Contd...)
S. No.	Botanical name	Family name	Local name	Habit	Parts used	Active principle	Therapeutic uses	Mode of preparation
53.	*Crataeva religiosa* Forst.	Capparidaceae	Mavilaikai	Small tree	Bark	Phenols and terpenoids	Urinary complaints, snakebite, and ascites	Decoction
54.	*Crotalaria hebecarpa* (DC.) Rudd.	Fabaceae	Godhadi	Herb	Whole plant	Flavonoids	Skin diseases, snakebites, and jaundice	Paste and powder
55.	*Crotalaria pallida* Aiton.	Fabaceae	Kluukiluppi	Shrub	Leaves	Alkaloids and flavonoids	Fever, cough, and anti-inflammation	Extraction
56.	*Cyrtococcum patens* A. Cam.	Poaceae	-	Herb	Leaves	Alkaloids	Nervous disorder	Decoction
57.	*Cyrtococcum trigonum* A. Cam.	Poaceae	Abbu karkai	Herb	Leaves and root	Alkaloids	Nervous disorder	Paste and decoction
58.	*Doezia extensa* R.Br.	Asclepiadaceae	Kodalma	Climber	Whole plant	Saponins and tannins	Gastric ulcers, uterine, and menstrual complaints	Juice and decoction
59.	*Dalbergia coromandeliana* Prain.	Fabaceae	Nukkam	Shrub	Leaves, bark, and fruit	Alkaloids and saponins	Wound healing and skin diseases	Decoction and paste
60.	*Dalbergia lanceolata* Linn. f.	Fabaceae	Ergai	Tree	Seeds, root, and leaves	Phenols and flavonoids	Mild laxatives and inflammatory	Tonic and juice
61.	*Dioscorea hirsuta* Blume	Dioscoreaceae	Pulidumpa	Climber	Leaves and stem	Saponins	Diuretic, rheumatism, and snakebites	Decoction, juice, and paste
62.	*Dioscorea oppositifolia* Linn.	Dioscoreaceae	Kavala-kodi	Climber	Tuber	Saponins	Stomach pain, spleen disorders, and cancer of uterus	Decoction
63.	*Diospyros buxifolia* (Blume) Hiern.	Ebenaceae	Irampalai	Tree	Leaves, stem, and flower	Alkaloids and flavonoids	Antiviral, anti-HIV, and indigestion	Decoction
64.	*Diplocisia glucoses* Diels.	Menispermaceae	Kottaiyachachi	Climber	Leaves and fruit	Tannins and alkaloids	Diarrhea, biliousness, gonorrhea, and syphilis	Powder and juice
65.	*Dodonaea viscosa* Linn.	Sapindaceae	Virali	Shrub	Whole plant Bark and leaves	Terpenoids	Headache and wound healing	Paste
66.	*Drypetes roxburghii* (Wall.) Hurus.	Euphorbiaceae	Irukoli	Tree	Bark and leaves	-	Joint pain and rheumatism	Decoction and infusion
67.	*Ficus bengalensis* Linn.	Moraceae	Aal	Tree	Bark and latex	Steroids and flavonoids	Rheumatism, dysentery, diabetes, gonorrhea, and piles	Juice
68.	*Ficus benjamina* Linn.	Moraceae	Pimprī	Tree	Whole plant	Alkaloids	Ulcers and leprosy	Decoction
69.	*Ficus racemosa* Linn.	Moraceae	Atthi	Tree	Roots and fruits	Flavonoids and terpenoids	Blood purifier and laxative	Decoction
70.	*Ficus religiosa* Linn.	Moraceae	Arasu	Tree	Bark and leaves	Flavonoids and terpenoids	Purgative, vomiting, and mouth ulcer	Decoction
71.	*Ficus tiakela* Burm.	Moraceae	-	Tree	Leaves and stem	Phenols	Fever, cough, and cold	Decoction
72.	*Ficus tomentosa* Roxb.	Moraceae	-	Tree	Leaves and bark	Phenols	Poultice, boils, cuts, and wound	Paste and crushed leaves
73.	*Gardenia resinifera* Roth.	Rubiaceae	Kambipicin	Tree	Buds and leaves	Flavonoids	Antispasmodic, expectorant, carminative, and stimulant	Paste, tonic, and infusion
74.	*Heliceres isora* Linn.	Sterculiaceae	Vadampiri	Large shrub	Root, bark, and stem bark	Flavonoids and terpenoids	Expectorant, demulcent, astrigent, intestinal worms, diarrhea, and dysentery	Decoction and juice
75.	*Heterostemma tanjorense* Wight. and Arn.	Apocynaceae	Palakeerani	Climber	Leaves	Alkaloids	Antiviral, antibacterial, skin diseases, and fever	Paste, tonic, and infusion
vegetation is floristically rich compared to other regions and represents several unique habitats. The vegetation was conducted in six small villages of Manar beat situated in Karamadai range which are occupied by Irula tribals.

Data collection

Fieldwork was conducted over the 12 months period focusing on collecting ethnobotanical information from local people about the medicinal plants in Manar beat. A total of 15 tribal people (seven men and eight women) aged between 35 and 85 who were cooperating fully were interviewed. Interview was conducted using semi-structured questionnaires and open-ended conversations at homes. The vegetation of the study area, plants therapeutical properties, and the kind of ailments used were among the questions asked. All kinds of information were documented and recorded.

Table 1: (Continued)

S. No.	Botanical name	Family name	Local name	Habit	Parts used	Active principle	Therapeutic uses	Mode of preparation
76.	*Hibiscus micranthus* Linn. f.	Malvaceae	Sutraamutti	Shrub	Leaves and roots, Seed, root, and leaves	Tannins and anthraquinones Alkaloids and steroids	Asthma, diuretic, and febrifuge Antihelmintic, diuretic, and laxative	Decoction
77.	*Ipomoea obscura* Ker-Gawl.	Convolvulaceae	Sutraalali	Climber	Leaves	Terpenoids	Antidiabetes and dysentery Anti-inflammatory, antiseptic, and dysentery	Juice
78.	*Kyllinga triceps* Rothb.	Cyperaceae	Veluttanirbasi	Herb	Leaves	Terpenoids and steroids	Bones of the nose and hard palate, syphilis, and cure earache	Juice
79.	*Lantana camara* Linn.	Verbenaceae	Unnrichedi	Shrub	Leaves	Terpenoids and steroids	Bones of the nose and hard palate, syphilis, and cure earache	Juice
80.	*Neptunia oleracea* Lour.	Mimosaceae	Sundaiikirai	Herb	Root	Phenols	Bones of the nose and hard palate, syphilis, and cure earache	Juice
81.	*Oldenlandia herbacea* Roxb.	Rubiaceae	Nonnanampullu	Herb	Whole plant and leaves	Glycosides	Elephantiasis, fever, verminosis, inflammation, asthma, bronchitis, and ulcer	Decoction and paste
82.	*Perotis indica* O. Ktz.	Poaceae	Narival	Herb	Whole plant	-	Snakebites and bronchitis Fever, jaundice, gastritis, urinary difficulties, bone fractures, menorrhagia, leucorrhoea, asthma, endometritis, wound healing, and liver diseases	Infusion
83.	*Phyllanthus debilis* Hook.f.	Euphorbiaceae	Arulundi	Tree	Root, leaves, and whole plant	Tannins and terpenoids	Fever, jaundice, gastritis, urinary difficulties, bone fractures, menorrhagia, leucorrhoea, asthma, endometritis, wound healing, and liver diseases	Paste and decoction
84.	*Pongamia pinnata* (L.) Pierre	Fabaceae	Pungan	Tree	Leaves, stem, seed, and flower	Steroids	Antidiabetic, rheumatism, Anti-inflammatory, piles, skin diseases, and wounds	Juice and paste
85.	*Salvadora persica* Linn.	Salvadoraceae	Uka	Shrub	Leaves	Flavonoids	Gastric irritable, dysentery, skin diseases, and gonorrhea	Tonic
86.	*Santalum album* Linn.	Santalaceae	Sandhanam	Tree	Leaves and stem	Fatty oils	Heart disease, ulcers, dysentery, and wounds	Paste
87.	*Terminalia arjuna* (Roxb.) Wight and Arn.	Combretaceae	Marudhamaram	Tree	Bark, leaves	Flavonoids	Heart disease, ulcers, dysentery, and wounds	Decoction and powder
88.	*Vallaris solanacea* O. Kze.	Apocynaceae	-	Climber	Root and bark	Terpenoids	Analgesic, anti-diarrheal, and dysentery	Tonic and paste
89.	*Ziziphus oenoplia* Mill.	Rhamnaceae	Churipala chedi	Climbing shrub	Fruit and bark	Flavonoids and phenols	Diarrhea, diabetes, and anti-cancerous	Decoction

Fig. 1: Hill view of Manar beat, Karamadai range
Identification
Identity of the collected plant species was done with the volumes of The Flora of the Nilgiri and Pulney Hill-tops [8], The Flora of Presidency of Madras [9], and The Flora of Tamil Nadu Carnatic [10]. The identity is authenticated by matched with type specimens available in the herbarium of Botanical Survey of India, Southern Circle, TNAU Campus, Coimbatore, Tamil Nadu. Herbarium specimens were collected and deposited in the Herbarium of Botany Department, Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India, for future reference.

RESULTS
Altogether 89 medicinally important plants belonging to 42 families and 71 genera were documented from the study area (Figs. 1 and 2). The documented medicinal plants and their vernacular name, family, status, active principle, and ethnomedicinal uses along with mode of preparation have been summarized in Table 1 and Plate 1. These plant species are used for the treatment of many diseases by tribal people. Among the 89 species of angiosperms, 80 species belong to dicotyledons and 9 species belong to monocotyledons. Dicotyledons (90%) are dominant than the monocotyledons (10%). Of 42 families, 37 families belong to dicotyledons and 5 families belong to monocotyledons are recorded in Table 2. Fabaceae and Moraceae were dominated with eight species.

As per the Red Data List formulated by the International Union for Conservation of Nature, around nine plants were enumerated in the Red Data List. Among these, eight plants are least concern and they possess valuable medicinal properties and one plant is vulnerable (Table 3).

The result of habit wise analysis shows that the tree diversity dominates in the study area. Tree recorded 31 species (35%), shrub 24 species (27%), herb 18 species (22%), climber 13 species (15%), and epiphyte 1 species (1%) shown in Fig. 5.

Table 2: Distribution of species occurred in different families

S. No.	Name of the families	Number of the species
1.	Acanthaceae	2
2.	Alangiaceae	1
3.	Amaranthaceae	2
4.	Anacardiaceae	1
5.	Apiceae	1
6.	Apocynaceae	3
7.	Arecales	1
8.	Aristolochiaceae	1
9.	Asclepiadaceae	5
10.	Asteraceae	1
11.	Begoniaceae	1
12.	Boraginaceae	1
13.	Cactaceae	1
14.	Caesalpiniaaceae	2
15.	Camabaceae	1
16.	Capparidaceae	6
17.	Combretaceae	2
18.	Convolvulaceae	2
19.	Cucurbitaceae	1
20.	Cyparaceae	1
21.	Dioscoreaceae	2
22.	Ebenaceae	1
23.	Euphorbiaceae	4
24.	Fabaceae	8
25.	Lamiaeceae	1
26.	Malvaceae	1
27.	Meliaceae	2
28.	Menispermaceae	2
29.	Mimosaceae	5
30.	Moraceae	8
31.	Orchidaceae	1
32.	Poaceae	4
33.	Rhamnaceae	1
34.	Rubiaceae	3
35.	Rutaceae	2
36.	Salvadoraceae	1
37.	Santalaceae	1
38.	Sapindaceae	1
39.	Simaroubaceae	1
40.	Sterculiaceae	1
41.	Verbenaaceae	2
42.	Vitaceae	1
The result of part wise plant species used to cure different ailments was recorded. The plant parts such as leaves (35%), root (16%), whole plant (13%), bark (11%), stem (9%), fruits (8%), seeds (6%), and flower (2%) were used for illness. Among these plant parts used, leaves are top in list (Fig. 4).

After the part wise analysis, the mode of the action of ethnomedicinal plants used for curing diseases in the form of decoction (38%), paste (23%), juice (18%), extraction (8%), tonic (6%), infusion (4%), and dry powder (3%) shown in Fig. 5.

DISCUSSION

From this survey, we have recorded 89 plants belonging to 42 families, most of the plants belong to Fabaceae family in earlier research also supported that even they could find most of the plants belong to Fabaceae family in different regions [11,12]. Fabaceae is of great ethnobotanical importance in indigenous and urban communities throughout the world. Their medicinal value lies partly in their effectiveness in the treatment of a wide variety of human ailments. The variety of chemically active constituents, such as tannins, flavonoids, alkaloids, and terpenoids often found in members of this family, are substances with a high level of biological activity, and the fact that they are used extensively would suggest a pattern of global ethnomedicinal knowledge [13].

Plate 1: Photograph of some of the surveyed ethnomedicinal plants
Leaves and roots are generally forming the most frequently used plant parts in traditional medicine [14,15]. Among the plant parts, the leaves are most frequently used for the treatment of diseases. This is in consonance with the findings [16]. The roots, fruits, bark, gum and latex, stem, seeds, and flowers are also used as per their availability and curing ability. Many indigenous communities throughout the world also utilized mostly leaves for the preparation of herbal medicine [17,18]. Leaves of Azadirachta indica are used for the treatment of skin diseases. The present finding is agreed with the previous report [19,20]. Among the plant part, the root of Aerva lanata is used for the treatment of asthma [21].

The present population is switching back to natural medicine, and in this aspect, documentation of medicinal plants is an important one. This type of documentation will help in the conservation of medicinal plants.

CONCLUSION

The present study revealed that the traditional healers of Manar beat, Karamadai range, are rich in ethnobotanical knowledge. Documentation of 89 medicinal plant species which Fabaceae and Moraceae was occurred in highest proportion of medicinal plants. From this listed plants, nine plants were enumerated in the Red Data List. Medicinal plants used in local health-care traditions are regularly being exploited due to overutilization, population explosion, and for other anthropogenic reasons. Therefore, it is essential to conserve such knowledge secreted in the different parts of the country and people should be promoted and protect the medicinal plants for future.

ACKNOWLEDGMENTS

The authors of this paper are gratefully acknowledged the Department of Biotechnology, New Delhi, for funding as micro grant research project. Corresponding author thanks to Tamil Nadu Collegiate Education, Chennai for providing scholarship to carry out the research work. Authors thankful to the tribal people of Manar beat, Karamadai range, Coimbatore district for sharing their valuable knowledge and help during my field work.

AUTHORS’ CONTRIBUTIONS

Author 1 and 3 to investigate and supervised the findings of this work. Author 1 and 2 performed to separate the tables, figures in category wise and Author 1 performed to writing of the manuscript.

Table 3: International Union for Conservation of Nature plant list category recorded in the study area

S. No.	Name of the plants	International Union for Conservation of Nature category
1.	Acanthus ilicifolius	LC
2.	Azadirachta indica	LC
3.	Cenchrus ciliaris	LC
4.	Centella asiatica	LC
5.	Dolbergia lanceolata	LC
6.	Kyllinga triceps	LC
7.	Neptunia oleracea	LC
8.	Pongamia pinnata	LC
9.	Santalum album	V

LC: Least concern, V: Vulnerable

CONFLICTS OF INTEREST

There are no conflicts of interest.

REFERENCES

1. Pant S, Samant SS, Arya SC. Diversity and indigenous household remedies of the inhabitants surrounding mornaula reserve forest in West Himalaya. Indian J Tradit Knowl 2009;8:606-10.
2. Kala CP, Sajwan BS. Sustainable development of medicinal plant resources in India. ENVIS For Bull 2007;7:1-14.
3. De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: A revolution in the making. Science 2012;336:1658-61.
4. Jenden LJ. Spiritual link is part of traditional knowledge. Nature 2003;421:313.
5. Azaizeh H, Fulder S, Khalil K, Said O. Ethanomedicinal knowledge of local Arab practitioners in the middle East region. Fitoterapia 2003;74:98-108.
6. Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, Indian J Ethnobiol Ethnomed 2006;2:43.
7. Gilani AH, Rahman A. Trends in ethnopharmacology. J Ethnopharmacol 2005;100:43-9.
8. Fyson PF. The Flora of the Nilgiri and Pulney Hill Tops. Vol. 3. Madras: Superintendent, Government Press; 1915-20.
9. Gamble JS, Fischer CE. Flora of the Presidency of Madras. Vol. 1-3. Calcutta; Botanical Survey of India: 1967.
10. Matthew KM. The Flora of the Tamil Nadu Carnatic. Vol. 3. Tiruchirappalli: The Rapinet Herbarium, St. Joseph’s College: 1983.
11. Rao SS. Ethno botanical study of medicinal plants of Sri Pancha Narasimha Swamy and Sri Matsyagiri. J Medic Plants Stud 2015;3:37-42.
12. Sadale AN, Karadge BA. Survey on ethno-medicinal plants of Ajara Tahsil, district Kolhapur, Maharashtra-India. Trends Life Sci 2013;2:21-5.
13. Molares S, Ladio A. The Usefulness of edible and medicinal fabaceae in argentine and chilean patagonia: environmental availability and other sources of supply. Evid Based Complement Altern Med 2011;2012:1-12.
14. Rahmatullah M, Ferdausi D, Mollik AH, Jahan R, Chowdhury MH, Haque WM, et al. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med 2009;7:91-7.
15. Giday M, Asfaw Z, Elmqvist T, Woldu Z. An ethnomedicinal study of medicinal plants used by the Zay People in Ethiopia. J Ethnopharmacol 2009;3:45-52.
16. Premamalini P, Sharmila S. Ethnomedicinal perspectives of botanicals used by the people of pavalamalai, gobi, Erode District, Tamil Nadu for curing various ailments. Int J Adv Herb Sci Technol 2017;3:67-75.
17. Ganesan S, Suresh N, Kesavan I. Ethnobotanical survey of Lower Palni Hills of Tamil Nadu. Indian J Tradit Knowl 2004;3:299-304.
18. Gonzalez JA, Garcia-Barriuso M, Amich F. Ethnobotanical study of medicinal plants traditionally used in the Arribes del Duero, Western Spain. J Ethnopharmacol 2010;131:343-55.
19. Suresh K, Goyal S and Parveen F. Ethno medico botany of household remedies of Kolayat tehsil in Bikaner district, Rajasthan. Indian J Tradit Knowl 2003;2:357-65.
20. Dhivya SM, Kalaichelvi K. Ethnomedicinal plants used to treat skin disease and poisonous bites by the tribals of Karamadai range, Western Ghats, Tamil Nadu, India. Int J Plant Anim Environ Sci 2016;6:53-8.
21. Sharmila S, Mowinka S, Ramya EK. Survey of medicinal plants in Vellalar college for women campus, Erode, Tamil Nadu, India. Int J Pharm Sci Rev Res 2018;53:4-13.