The genome resources for conservation of Indo-Pacific humpback dolphin, *Sousa chinensis*

Yao Ming¹, Jianbo Jian¹, Xueying Yu², Jingzhen Wang² & Wenhua Liu¹

The Indo-Pacific humpback dolphin (*Sousa chinensis*), is a threatened marine mammal and belongs to the First Order of the National Key Protected Wild Aquatic Animals List in China. However, limited genomic information is available for studies of its population genetics and biological conservation. Here, we have assembled a genomic sequence of this species using a whole genome shotgun (WGS) sequencing strategy after a pilot low coverage genome survey. The total assembled genome size was 2.34 Gb: with a contig N50 of 67 kb and a scaffold N50 of 9 Mb (107.6-fold sequencing coverage). The *S. chinensis* genome contained 24,640 predicted protein-coding genes and had approximately 37% repeated sequences. The completeness of the genome assembly was evaluated by benchmarking universal single copy orthologous genes (BUSCOs): 94.3% of a total 4,104 expected mammalian genes were identified as complete, and 2.3% were identified as fragmented. This newly produced high-quality assembly and annotation of the genome will greatly promote the future studies of the genetic diversity, conservation and evolution.

Background & Summary

The Indo-Pacific humpback dolphin (*Sousa chinensis*) normally appears in southeast Asia (in both the Indian and Pacific oceans), from at least the southeastern bay of Bengal east to central China, and then south to the Indo-Malay Archipelago¹. The *S. chinensis* found in Chinese waters are locally known as Chinese white dolphins (the giant panda of the sea). Populations of *S. chinensis* in China have been known to be distributed from the Beibu Gulf near the border with Vietnam to the mouth of the Yangtze River²⁻⁵, the waters around Hainan island are also recently identified as one part of this species’ distribution⁶ (Fig. 1). At least four species are now indicated to make up the genus *Sousa*: the Atlantic humpback (*Sousa teuszii*), the Indian Ocean humpback (*Sousa plumbea*), the Australian humpback (*Sousa sahulensis*) and the Indo-Pacific humpback (*S. chinensis*) dolphins⁷. Further molecular evidence suggests that humpback dolphins in the bay of Bengal may comprise a fifth species⁷. However, as the classification and population genetics of genus *Sousa* was mainly based on the limited evidences from morphology, genetic markers and the mitochondrial sequences⁷⁻⁹, the newly produced genome of *S. chinensis* would greatly facilitate the classification and identification of *Sousa* genetic resources.

S. chinensis are among the most threatened cetaceans for their coastal inhabitation, which are vulnerably impacted by human activities¹. It has been listed in the First Order of the National Key Protected Wild Aquatic Animals List in China (refer to: List of Wildlife under Special State Protection, which was designated by the Chinese State Council in 1988) and in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The species is currently categorized as Near Threatened by the International Union for Conservation of Nature (IUCN). The threats include entanglement in fishing nets (primarily gillnets), habitat destruction and degradation, vessel traffic and environmental pollutants, are all serious and fatal to *S. chinensis¹,¹⁰⁻¹⁵. As a result, much greater efforts are needed for conservation of this species to stop its apparent decline¹. At present, most of the research has mainly focused on the morphology¹⁶, reproduction and growth¹⁵,¹⁷, population distribution¹⁸, biodiversity¹⁹ and toxicology studies of this species²¹,²²,²³. Genetic research of *S. chinensis* was mainly based on genetic markers⁴, specific genes²², mitochondrial DNA⁵,⁶ and transcriptome²⁴. The genomic background and molecular mechanism of its evolution and conservation are still unknown. The high-quality

1Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, P.R. China. 2Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, 535011, P.R. China. Correspondence and requests for materials should be addressed to J.W. (email: wangjingzhen-1@163.com) or W.L. (email: whliu@stu.edu.cn)
whole genome sequences information would be a valuable resource for the biology, ecology, conservation and evolutionary studies.

To obtain a high-quality genome sequence of *S. chinensis*, we first performed a pilot genome survey with low depth coverage sequencing (32.9X) (Table 1) by using Illumina Hiseq 4000 to estimate the genome size and heterozygosity of the species. The assembled genome size is about 2.29 Gb (contig N50 = 13 Kb and scaffold N50 = 163 Kb) and the completed BUSCO evaluated is just about 76% in genome survey. The low depth sequencing estimated the genome size is about 2.7 Gb and generated an insufficient completeness genome. Therefore, we constructed four additional insert size libraries (beside the previous 500 bp and 2 Kb in genome survey) and generated a total of 290.5 Gb (~107.6X clean data) (Tables 1 and 2). The *S. chinensis* genome was finally assembled into scaffolds with a total size of 2.34 Gb (Tables 1 and 3). The contig and scaffold

Table 1. Comparison of the new genome with our previously published survey assembly of *S. chinensis* genome.

Content	The pilot study published	This study
Sequencing data and depth	107.6 Gb (~32.9X clean data)	290.5 Gb (~107.6X clean data)
The number of insert size libraries	2 (500 bp and 2 Kb)	6 (300 bp, 500 bp, 800 bp, 2 Kb, 5 Kb and 10 Kb)
Genome assembly methods	SOAPdenovo2	Platanus v1.2.4
Assembled genome size	2.29 Gb	2.34 Gb
Assembled quality	contig N50:13 Kb; scaffold N50:163 Kb	contig N50: 67 Kb; scaffold N50: 9 Mb
Assembly completeness evaluation (BUSCO)	76%	94.3%

Fig. 1 Geographical distribution and photograph of *S. chinensis*. (a) Distribution of *S. chinensis* reported in Chinese waters and the sampling site of this study. (b) *S. chinensis* photographed during the boat surveys in Guangxi Beibu Gulf, China.
N50 of assembly results was 67 Kb and 9 Mb, the N50 number and N90 number of scaffolds was 78 and 283 respectively (Table 3). 94.3% of 4,104 conserved genes were completed identified by BUSCO 28 (Table 4). The newly assembled genome quality was much better than the genome survey (Table 1). In total, 878.3 Mb (37.41%) of genomic regions consist of repeat sequences (Table 5). The gene annotation of the genome yielded 24,640 coding genes and 91.2% of the predicted genome were annotated from biological databases (Tables 6 and 7). Approximately 95% of the “total complete BUSCOs” were identified by BUSCO pipeline based on the annotation result (Table 8), which suggested a good quality genome annotation.

Methods

Sample collection, DNA extraction and sequencing. The same sample collection and DNA extraction methods have been reported in a previously published study26. In addition to the previously constructed 500 bp and 2 kb libraries, new 300 bp and 800 bp small insert and 5 kb and 10 kb mate pair libraries were constructed according to the manufacturer’s protocol (Illumina, San Diego, CA, USA). After library construction, we used Illumina HiSeq X Ten to sequence PE150 reads for 300 bp library. PE125 reads for 800 bp library, and PE50 reads for 5 Kb and 10 Kb libraries were sequenced by Illumina HiSeq 4000 platform. A total of approximately 370 Gb raw data was obtained. Then, we filtered the reads with stringent filtering criteria using SOAPnuke29 and 290.5 Gb of clean data was generated (107.6X genome coverage) (Table 2).

Genome assembly and evaluation. We used all the clean data to assemble the genome by Platanus 30. First, the contigs were constructed based on the de Bruijn graphs from paired-end reads. Second, the order of the contigs was fixed using the paired end (mate-pair) information in the scaffold construction process. Third, in the Gap-closing step, each set of assembled reads were used to close the gaps, and each gap was covered with

Pair-end Libraries	Insert Size	Reads Length (bp)	Raw Data (Gb)	Clean Data (Gb)	Sequence Depth (X)
300 bp	150	157.6	108.1	40	
500 bp*	125	67	60.3	22.3	
800 bp	125	59	51.2	19	
2kb*	50	40.7	28.5	10.6	
5kb	50	19	11.6	4.3	
10kb	50	46.9	30.8	11.4	
Total		370.2	290.5	107.6	

Table 2. Statistics of raw and clean data. Note: Assuming the genome size is 2.7 Gb. *The data was used in previously pilot study project26.

Contig Length (bp)	Contig Number	Scaffold Length (bp)	Scaffold Number
N10 160,909	1,135	21,984,446	9
N20 124,084	2,787	17,517,993	21
N30 100,087	4,874	14,735,920	36
N40 81,924	7,437	11,330,947	54
N50 66,998	10,567	9,008,636	78
N60 54,491	14,403	6,903,794	108
N70 42,832	19,193	5,150,637	147
N80 31,884	25,446	3,635,400	202
N90 19,905	34,515	2,124,572	283
Max length 541,590	40,839,098		
Total length 2,315,724,921	84,941	2,339,085,850	20,903

Table 3. Statistics of the assembled sequence length.

BUSCO benchmark	Number	Percentage (%)
Complete BUSCOs	3,870	94.3
Complete and single-copy BUSCOs	5,802	92.6
Complete and duplicated BUSCOs	68	1.7
Fragmented BUSCOs	94	2.3
Missing BUSCOs	140	3.4
Total BUSCO groups searched	4,104	100

Table 4. Evaluation of genome assembly completeness.
reads mapped on the scaffolds by the Platanus pipeline. After that, we filled the gaps with GapCloser31. Finally, scaffolds were extended by SSPACE32 using the mate-paired library data. The final total assembled genome length was 2.34 Gb with a contig N50 of 67 kb, and a scaffold N50 of 9 Mb (Table 3). The assembly and gene annotation qualities were assessed using BUSCO software28. The total number of mammal gene sets used in the evaluation was 4,104.

Genome annotation. The genome was searched for tandem repeats using Tandem Repeats Finder33. Interspersed repeats were mainly identified using homology-based approaches. The Repbase34 (known repeats) database and a de novo repeat library generated by RepeatModeler (http://www.repeatmasker.org/RepeatModeler.html) were used. The database was mapped by using RepeatMasker (http://www.repeatmasker.org). The repeat content of this species is 37.4\% (Table 5).

Type	Repeat Size	% of genome
Trf	27,926,236	1.19
Repeatmasker	592,428,741	23.23
Proteinmask	67,881,250	2.89
De novo	813,811,498	34.66
Total	878,297,072	37.41

Table 5. General statistics of repeats in genome.

Gene set	Number	Average transcript length (bp)	Average CDS length (bp)	Average exon per gene	Average exon length (bp)	Average intron length (bp)
Homolog						
Boa taurus	30,592	17,124	1,122	6	182	3,101
Tursiops truncatus	23,909	22,700	1,315	7	180	3,398
Orcinus orca	27,223	20,725	1,260	7	180	3,251
Balaena mysticetus	30,618	12,062	1,025	6	180	2,360
RNA-seq	27,938	13,517	1,682	6	298	2,546
Final set	24,640	24,148	1,283	7	174	3,516

Table 6. General statistics of predicted protein-coding genes (Note: The average transcript length does not contain UTR).

BUSCO benchmark	Number	Percentage (%)
Complete BUSCOs	3,900	95.1
Complete and single-copy BUSCOs	3,803	92.7
Complete and duplicated BUSCOs	97	2.4
Fragmented BUSCOs	61	1.5
Missing BUSCOs	143	3.4
Total BUSCO groups searched	4,104	100

Table 7. Statistics of function annotation. Note: Five protein databases were chosen to assist in predicting function of genes. They are InterPro, Gene ontology, KEGG, Swissprot and TrEMBL. The table shows numbers of genes match to each database.

BUSCO benchmark	Number	Percentage (%)
Complete BUSCOs	3,900	95.1
Complete and single-copy BUSCOs	3,803	92.7
Complete and duplicated BUSCOs	97	2.4
Fragmented BUSCOs	61	1.5
Missing BUSCOs	143	3.4
Total BUSCO groups searched	4,104	100

Table 8. Evaluation of genome annotation completeness.
The coding genes in the *S. chinensis* genome were annotated based on evidence derived from known proteins and published RNA sequences. For protein homology-based prediction, proteins of *B. taurus*, *T. truncatus*, *O. orca*, and *B. mysticetus* were downloaded from NCBI and aligned to the *S. chinensis* genome using TBLASTN with an E-value $\leq 1E^{-5}$. Homologous genome sequences were aligned to the matched proteins to predict the gene models by Genewise. We filtered the sequences for redundancy and retained the models with the highest scores. RNA-seq data provided a good supplement for gene prediction based on the homology-based method, as most of open reading frames (ORF) in the homology-based gene models were not intact. First, transcriptome data (total 4,305,634,920 nucleotides) of *S. chinensis* was sequenced by Illumina Hiseq2000 platform and published in 2013. These reads were aligned to the assembled genome sequence using hisat. Subsequently, hisat mapping results were merged and sorted, and transcripts were assembled using stringtie with the default parameters. Finally, the Genewise results were extended using the transcripts ORFs following the strategy of the Ensembl gene annotation system. This method and strategy were used extensively in the genome research. The 24,640 (Table 6) predicted genes were then functionally annotated by aligning to five databases: InterPro, Gene ontology, KEGG, Swissprot and TrEMBL. 91.2% of the predicted genes were annotated with function (Table 7).

Data Records

This genome assembly and annotation results have been deposited at DDBJ/ENA/GenBank. Raw read files are available at NCBI Sequence Read Archive.

Technical Validation

Evaluation the completeness of the genome assembly and annotation. To evaluate the completeness of the genome assembly and annotation, BUSCO pipeline was used to investigate the presence of highly conserved orthologous genes in the genome assembly and annotation result we obtained. BUSCO was run over the mammalian set, which includes total of 4,104 orthologue groups. 94.3% and 95.1% of the “total complete conserved orthologous genes” were identified by BUSCO pipeline based on the genome assembly and annotation result respectively (Tables 4 and 8), which evidenced a good quality of the genome assembly and gene sets annotation.

To further evaluate the accuracy of genome, the paired-end short insert size library reads were aligned to the assembled genome by the BWA-mem (v0.7.15) with default parameters. After sorting mapped reads according to mapping coordinates in Picard (ver. 1.118) (http://broadinstitute.github.io/picard/), the mapping rate is 99.92% and the unique mapping rate is 75.81%. A total of 98.27% assembled genome was covered by the reads and the mapping coverage with at least 4X, 10X, 20X is respectively 98.16%, 98.97% and 97.32%.

Comparison with other cetacean genomes.

Species	Assembled genome size (Gb)	Genome coverage (X)	Contig N50 (Kb)	Scaffold N50 (Kb)	Number of genes	Reference
Balaena mysticetus	2.3	154.3	34.8	877	22,677	14
Balaenoptera acutorostrata	2.44	128	22.6	12,800	20,605	14
Lipotes vexillifer	2.53	114.6	30	2,260	22,168	14
Orcinus orca	2.37	200	70.3	12,735	27,924	14
Sousa chinensis	2.34	107.6	67	9,008	24,640	14

To further validate the high-quality genome assembly of the threatened Indo-Pacific humpback dolphin. The genome resource would greatly enhance the further studies of the gene function and conservation biology of *S. chinensis*. Our study is an important step towards comprehensive understanding of the genetic background of *S. chinensis* at the genomic level. The data will be also valuable for facilitating studies of cetacean evolution, as well as population genetic and ecology.

Code Availability

Several tools have been implemented in the data analyses, whose versions, settings and parameters are described below.

1. SOAPnuke: version 1.5.3, parameters used were -n 0.1 -l 20 -q 0.4 -d -M 1 -Q 2 -i -G -seqType 1; 2. Platanus: version 1.2.4, parameters used were: contig step: -k 32 -u 0.1 -d 0.5 -c 2 -t 30 -s 10 -n 300G; scaffold step: -t 30 -u 0.1; gapclose step: default parameters; 3. GapCloser: version 1.1.2, parameters used were -l 150 –p 25 –t 30; (4) SSSPACE: version 1.1, default parameters; (5) BUSCO: version 3.0.2; (6) TRF: version 4.0.7b, default
parameters; (7) Repbase: version 21.01; (8) RepeatModeler: version 1.0.4, default parameters; (9) RepeatMasker: open-4–0–6, default parameters; (10) Blast: version 2.2.26, parameters used were -F -m 8 -p tblastn -e 1e-05 -a 5; (11) Genewise: version 2.4.1, default parameters; (12) Hisat: version 2–2.0.1-beta, parameters used were -p 4 –mmax-intron 50000 –dta –dta-cufflinks–phred45–no-discordant–no-mixed; (13) Stringtie: version 1.2.2, default parameters; (14) InterPro: version 5.16–55.0; (15) GO: version 20141201; (16) KEGG: version 84.0; (17) Swissprot: version release-2017-09; (18) TrEMBL: version release-2017-09; (19) BWA-mem: version 0.7.15, default parameters; (20) Picard: version 1.118, default parameters.

References
1. Jefferson, T. A. & Smith, B. D. In Adv Mar Biol Vol. 73 (eds Thomas, A. Jefferson & Barbara E., Curry) 1–26 (Academic Press, 2016).
2. Chen, B. et al. Conservation Status of the Indo-Pacific Humpback Dolphin (Sousa chinensis) in the Northern Beibu Gulf, China. Adv Mar Biol 73, 119–139 (2016).
3. Karczmarski, L. et al. Humpback Dolphins in Hong Kong and the Pearl River Delta: Status, Threats and Conservation Challenges. Adv Mar Biol 73, 27–64 (2016).
4. Wang, L. et al. A framework for the assessment of the spatial and temporal patterns of threatened coastal dolphins. Sci Rep 6, 19883 (2016).
5. Wang, J. Y. et al. Biology and Conservation of the Taiwanese Humpback Dolphin, Sousa chinensis taiwanensis. Adv Mar Biol 73, 91–117 (2016).
6. Li, S. L. et al. First record of the Indo-Pacific humpback dolphins (Sousa chinensis) southwest of Hainan Island, China. Mar Biodivers Rev 9, 3 (2016).
7. Jefferson, T. A. & Curry, B. E. Humpback Dolphins: A Brief Introduction to the Genus Sousa. Adv Mar Biol 72, 1–16 (2015).
8. Chen, L., Caballero, S., Zhou, K. & Yang, G. Molecular phylogenetics and population structure of Sousa chinensis in Chinese waters inferred from mitochondrial control region sequences. Biochem Syst Ecol 38, 897–905 (2010).
9. Lin, W. et al. Differentiated or not? An assessment of current knowledge of genetic structure of Sousa chinensis in China. J Exp Mar Biol Ecol 416, 17–20 (2012).
10. Slooten, E. et al. Impacts of fisheries on the Critically Endangered humpback dolphin Sousa chinensis population in the eastern Taiwan Strait. Endanger Species Res 22, 99–114 (2013).
11. Gui, D. et al. Bioaccumulation and biomagnification of persistent organic pollutants in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary, China. Chemosphere 104, 106–111 (2014).
12. Hung, C. L. et al. A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback dolphin (Sousa chinensis) in the northwestern waters of Hong Kong. Chemosphere 56, 643–651 (2004).
13. Ng, S. L. & Leung, S. Behavioral response of Indo-Pacific humpback dolphin (Sousa chinensis) to vessel traffic. Mar Environ Res 56, 555–567 (2003).
14. Jia, K. et al. In vitro assessment of environmental stress of persistent organic pollutants on the Indo-Pacific humpback dolphin. Toxicol In Vitro: an international journal published in association with BIBRA 30, 529–535 (2015).
15. Jefferson, T. A., Hung, S. K., Robertson, K. M. & Archer, F. I. Life history of the Indo-Pacific humpback dolphin in the Pearl River Estuary, southern China. Mar Mammal Sci 28, 84–102 (2012).
16. Song, Z., Zhang, Y., Berggren, P. & Wei, C. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature. J. Acoust. Soc. Am. 141, 681 (2017).
17. Chang, W. L., Karczmarski, L., Huang, S. L., Gailey, G. & Chou, L. S. Reproductive parameters of the Taiwanese humpback dolphin (Sousa chinensis taiwanensis). Reg Stud Mar Sci 8, 459–465 (2016).
18. Jefferson, T. A. & Hung, S. K. A Review of the Status of the Indo-Pacific Humpback Dolphin (Sousa chinensis) in Chinese Waters. Aquat Mamm 30, 149–158 (2004).
19. Hayano, A., Yoshioka, M., Tanaka, M. & Amano, M. Population differentiation with single-copy orthologs. Mol Phylogenet Evol 75, 907–911 (2015).
20. Yeung, L. W. et al. Total fluorine, extractable organic fluorine, perfluorooctane sulfonate and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China. Environ Pollut 157, 17–23 (2009).
21. Wu, Y. et al. Evaluation of organochlorine contamination in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary, China. Sci Total Environ 444, 423–429 (2013).
22. Zhang, X. et al. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection. J Hered 107, 143–152 (2016).
23. Lin, W., Zhou, R., Porter, L., Chen, J. & Wu, Y. Evolution of Sousa chinensis: a scenario based on mitochondrial DNA study. Mol Phylogenet Evol 57, 907–911 (2010).
24. Gui, D. et al. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response. PLoS One 8, e72417 (2013).
25. Ming, Y., Jian, J., Yu, F., Xu, X., Wang, J. & Liu, W. Sousa chinensis isolate MY-2018, whole genome shotgun sequencing project. GenBank, http://identifiers.org/nrscid=QWLW00000000.1 (2018).
26. Ming, Y. et al. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics, https://doi.org/10.1016/j.ygeno.2018.07.015 (2018).
27. Ming, Y. et al. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics, https://doi.org/10.1016/j.ygeno.2018.07.015 (2018).
28. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
29. Chen, Y. et al. SOAPnude: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).
30. Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24, 1381–1395 (2014).
31. Luo, R. et al. SOAPDenoovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
32. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Provana, W. Scaffolding pre-assembled contigs using SPACe. Bioinformatics 27, 578–579 (2011).
33. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580 (1999).
34. Bao, W., Kojima, K. K. & Kohnay, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11 (2015).
35. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997).
36. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res 14, 988–995 (2004).
Author Contributions
Y.M. and W.H.L. conceived this study. X.Y.Y. and J.Z.W. collected and prepared the samples. Genome sequencing was performed by BGI-Shenzhen; Y.M. performed bioinformatics analyses and data statistics. Y.M., J.B.J., J.Z.W. and W.H.L. discussed and interpreted the results. Y.M. wrote the manuscript, J.B.J., J.Z.W., X.Y.Y. and W.H.L. revised the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2019