Metabolites from the Dark Septate Endophyte *Drechslera* sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors

Gastón E. Silles, a,b Gabriela L. Gallardo,a María Alejandra Rodriguez,c,d Yuliet A. Rincón,a,b Alicia M. Godeas,c,d and Gabriela M. Cabreraa,b

aUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina, e-mail: gabyc@qo.fcen.uba.ar
bCONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
cUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
dCONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biotecnología Agrícola y Ambientales (INBA), Buenos Aires, Argentina

Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) *Drechslera* sp., isolated from the roots of rye grass (*Lollium* sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared.

In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect *Lollium* from fungal phytopatogens.

The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics.

Keywords: *Drechslera*, asperpentyn, macrosphelides, lysosphingolipid, SAHA.

Introduction

Dark septate endophytes (DSE) are a group of root-colonizing fungi that belong mostly to a few orders of the phylum Ascomycota. These widely distributed fungi are septate and generally have melanized hyphae that colonize intracellularly and intercellularly the roots, improving plant’s tolerance against harsh climatic conditions, as well as pathogen resistance. There has been an increasing interest in DSE fungi but many aspects of these species are not as well understood as with other type of endophytes. Although it has been established that DSE can improve plant growth, their ecological role is not fully understood, and their metabolome or the activity of their secondary metabolites in plant-host interaction is mostly unknown.[1][2]

The genus *Drechslera* is a vast complex of species commonly associated to algae[3][4] and plants as endophytes[5] or pathogens.[6] Many metabolites produced by *Drechslera* spp. have shown toxicity to plants, animals and humans,[7] suggesting an ecological role for these compounds. Interestingly, the isolated metabolites from these genera belong to several metabolic routes, with terpenoids among the most common, but also with the finding of macrocyclic esters and alkaloids. The rare sesquiterpene drechslerines[3] were produced by *D. dematoidea*, while eremophilanes[8] were produced by *D. gigantea*. The sesterterpene mycotoxins opiobolins were produced by several...
Drechslera spp.[9][10] and a related Cochliobolus sp.[11][12] The macrocyclic ester, pyrenophorin,[13] was isolated from Pyrenophora avenae, a teleomorph of Drechslera, while a related pyrenophorol was isolated from D. avenae. Other non-related metabolites as alkaloids,[14] spirocyclic γ-lactams[15] and anthraquinones[16] have also been reported, showing the great metabolic variability of this genus.

The production of most fungal secondary metabolites is known to be influenced by environmental factors and nutrients. Under standard laboratory culture conditions, only a subset of biosynthetic pathway genes are expressed and therefore only a fraction of potential secondary metabolites are commonly described. Aiming to increase the production of previously unreported secondary metabolites, many culture techniques had been developed in order to induce gene expression, in what has been called the OSMAC approach (one strain, many compounds). This strategy is opposed to the selection of a particular metabolite-producer strain among hundreds of others under standard conditions.[17] Medium composition, solid or liquid media, vessel configuration, shaking, aeration, irradiation and even water composition[18] are some common parameters that had been explored.

The repression of secondary metabolite gene clusters has been attributed to different epigenetic mechanisms, which affect the chromatin structure, restricting the access to the genetic material and thus result in reversible gene silencing. Post-translational modifications of the chromatin structure, mainly histone acetylation and methylation, are factors involved in the silencing or expression of genes. Histone acetylation is controlled by the antagonistic histone acetyltransferases (HATs) and deacetylases (HDACs). It had been noticed that the inhibition of HDAC activity and subsequent hyperacetylation of histone residues leads to an open, and transcriptionally more active chromatin structure. The production of new metabolites was assessed by this approach.[19 – 21]

Rational or random variation of culture conditions could then lead to a better insight to the fungal metabolome, which is essential to understand chemical biology of plant-host interaction, pathogenicity processes and adaptation to harsh climatic conditions.

In the present work, the study of the secondary metabolome of a fungal DSE, Drechslera sp., isolated from the roots of Lolium sp., was conducted in order to understand the role of this strain as a plant colonizer. For this purpose and to gain knowledge of the metabolome, small scale cultures were performed using two different culture media and epigenetic modifiers, HDAC inhibitors (HDACIs), as additives. Suberoylanilidehydroxamic acid (SAHA), sodium valproate (VPA) and a SAHA analog, octanoylhydroxamic acid (OHA) were used as HDACIs (Figure 1). Liquid chromatography coupled to mass spectrometry (LC/MS) was performed on all the culture media and the extracts of the mycelia. Principal component analysis (PCA) of LC/MS data was performed in order to reduce the dimensionality and a graphical comparison was performed between different culture replicates and runs.

Aiming to identify the secondary metabolites, large scale cultures were carried out, followed by the isolation and structural elucidation of the compounds by means of nuclear magnetic resonance (NMR) and MS. Antifungal activity against common phytopathogens was also assessed by direct bioautography on TLC plates for some abundant metabolites in order to obtain some insights on their possible ecological role.

Results and Discussion

Screening of Culture Conditions

Since the three HDCAs inhibitors used in this work can inhibit the growth of the studied strain of Drechslera, it was first necessary to determine the optimal concentration of HDCA and time for inoculation. Once these conditions were obtained, small scale cultures were performed using two different culture media: malt extract liquid culture (ME) and a minimal medium liquid culture (MM). The ME culture was used as a control culture and as the base medium for the addition of the different epigenetic modifiers. Three replicates of each culture condition were performed.

![HDAC inhibitors (HDACIs) used as epigenetic modifiers.](image-url)
The cultures were filtered to separate medium and mycelium; their corresponding organic extracts were obtained and analyzed separately by LC/MS. LC conditions were selected in order to obtain a well resolved – well spread profile of signals in the chromatogram. ESI, in positive ion mode, was used as the standard ionization method. APCI, in both positive and negative ion mode, was also used in some cases for compound identification since it ionizes molecules as [M + H]^+ ions, which give better MS/MS spectra. A peak to peak inspection was made to discriminate common impurities and also to build and interpret the PCA model in later stages. LC/MS base peak chromatograms (BPCs) of medium extracts are shown (Figure 2).

Several compounds originated by biotransformation of the employed HDACs were easily recognized

Figure 2. BPC chromatograms of medium extracts.
in the LC/MS runs (Table 1) based on their MS/MS spectra (Table ST1, Supporting Information). These compounds were identified as dihexosyl and hexosyl SAHA (12 and 16) in the cultures where SAHA was used as additive. In turn, dihexosyl and hexosyl OHA (20 and 21) and octanamide (23) were identified in the cultures where OHA was an additive and two different hydroxyvalproic acids (13 and 15) in those cases where VPA was used. The identifications were straightforward by analysis of the MS and MS/MS spectra of the protonated molecules or deprotonated molecules when using negative ion mode. For example, hexosyl-SAHA (16) with [M + H]+ at m/z 427.2070 (consistent with a molecular formula C20H31N2O8+), showed in the MS/MS spectrum a signal at m/z 265.1547, corresponding with the loss of an hexose (loss of 162 Da) from the protonated ion, in addition to the characteristic fragments of SAHA at m/z 232.1327 and 172.0979 (neutral losses of hydroxylamine and aniline, respectively, from SAHA). As these hexosyl conjugates were only present in the culture broths treated with SAHA and OHA, it is probable that the hydroxamic acid functionality is the glycosylation site. Octanamide (23) was identified by comparison with an authentic sample.

The distribution of the HDACIs and its metabolized products from mycelium and medium are listed in Table 2. It is evident that SAHA, OHA and VPA were mostly present in the medium as expected, but the distribution of the corresponding metabolized products was not the same for all the compounds. Hexosyl-OHA and octanamide were found exclusively in

Table 1. Chemical composition of the extracts of *Drechslera* sp.

rt	No.	Compound	Molecular formula	[M + H]+ [m/z]	Mass accuracy [ppm]	[M + Na]+ [m/z]	Mass accuracy [ppm]
3.6	1	Cyclo(Gly-Pro)	C7H10N2O2	155.0816	-0.5	177.0633	1.1
6.4	2	Cochlione B	C11H14O5	227.0920	-2.5	249.0729	1.9
7.3	3	5-Methoxycochlione B	C13H18O5	241.1061	4.0	263.0892	0.9
8.1	4	Cyclo(Pro-Val)	C12H19N2O2	197.1283	1.0	219.1108	-1.7
8.9	5	Cyclo(Leu/Ile-Hyp)	C11H19N2O3	227.1397	-2.2	249.1203	2.6
9.4	6	Asperpentyn	C11H13O3	193.0867	-4.3	215.0692	-6.3
10.0	7	Cyclo(Phe-Hyp)	C12H17N2O3	261.1233	2.9	283.1038	5.5
10.7	8	Cyclo(Phe-Hyp)	C12H17N2O3	261.1234	0	283.1048	3.7
11.3	9	Cyclo(Leu/Ile-Pro)	C11H16N2O2	211.1443	-1.0	233.1260	0.4
11.8	10	Cyclo(Leu/Ile-Pro)	C11H16N2O2	211.1445	-2.0	233.1259	0.8
13.6	11	3-Hydroxyvalproic acid	C8H16O3	161.1160	7.7	183.0987	2.4
14.0	14	Harveynone	C11H10O3	191.0693	4.9	213.0512	4.7
14.4	15	4-Hydroxyvalproic acid	C8H16O3	161.1178	0.8	183.0985	3.7
14.9	16	Hexosyl-SAHA	C14H27NO7	322.1857	1.1	344.1699	5.6
16.4	17	Siccayne	C11H10O2	175.0754	-0.3	197.0574	-3.5
16.7	18	4-Hydroxy-3-((1R)-1-hydroxy-3-methylbut-3-en-1-yl)benzoic acid	C13H15O4	223.0965	-4.4	245.0780	-1.6
17.2	19	Macrosphelide A or isomer	C16H18O8	343.1402	-4.4	365.1223	-4.4
17.4	20	Dihexosyl-OHA[a]	C20H30N2O12	484.2380	1.7	506.2222	-2.8
19.0	21	Octanoyl-OHA	C11H20N2O4	322.1857	1.1	344.1699	-5.6
19.3	22	Macrosphelide B or isomer	C16H18O8	341.1226	1.6	363.1044	-1.7
20.6	23	Octanamide[c]	C9H17NO	144.1390	-5.2	166.1217	-1.0
20.7	24	4-Hydroxy-3-(3-methylbut-3-en-1-yl)benzoic acid	C13H14O4	203.0709	-3.1	225.0531	-3.8
20.8	25	Macrosphelide C	C16H22O7	327.1448	-3.0	349.1275	-4.9
21.2	26	Macrosphelide C isomer	C16H22O7	327.1446	-2.4	349.1254	1.1
22.1	27	4-Hydroxy-3-prenylbenzoic acid	C13H18O4	207.1018	-1.1	229.0835	1.5
23.4	28	Anofinic acid	C13H19O3	205.0864	-2.4	227.0688	-4.4
23.7	29	Benzophenone	C11H14O3	183.0805	0.4	205.0620	1.8
24.2	30	14-Deoxymacrosphelide C	C16H26O6	311.1488	0.2	333.1311	-0.9
26.4	31	Hexosylphytosphingosine[c]	C24H39NO8	480.3526	1.1	502.3350	5.7
27.6	32	Hexosylsphingosine	C24H41NO8	462.3424	0.2	484.3217	5.7

[a] SAHA: suberoylanilidehydroxamic acid. [b] OHA: octanoylhydroxamic acid. [c] [M + Na]+ not observed.
the medium, thus indicating that the biotransformation of OHA is an efficient detoxification process. SAHA and its derivatives were distributed between medium and mycelium with some tendency to be higher in the mycelium. This fact would be related with the known high affinity of SAHA for several membrane Zn\(^{2+}\) binding proteins. The hydroxvalproic acids were found to be most abundant in the mycelium indicating that they would interact with a biomolecule in the mycelium.

Independently of whether these metabolized products were present in the extracts of medium or mycelium, their presence shows the plasticity of this fungal strain to metabolize xenobiotics by different routes.

PCA Model and Differences Observed in Different Culture Conditions

Principal component analysis allowed the reduction of the dimensionality of the raw data in order to detect the signals with higher variability between runs. Initially, unsupervised principal component analysis of the raw data of LC/MS runs of medium extracts was performed, but although the replicates of each experiment clustered well on the scores chart, and the signals of structurally related metabolites showed some degree of correlation, the first five PCs represented 75% of the total variance. For this reason, the 88 buckets corresponding to the signals of the most relevant metabolites on the chromatograms of the medium extracts were selected for the supervised PCA model and cluster analysis. In this improved model, the first three PCs accounted for 96% of the total variance. The scores biplot (Figure 3,a) showed a clear difference between the control experiments, which clustered together with OHA and VPA, being more similar, and SAHA and MM signals, which clustered separately. Coherence between replicates of each culture run could be appreciated in the dendrogram chart (Figure S1, Supporting Information); all the SAHA LC/MS data grouped together at a low level, in the same way as for the MM data, while the OHA, VPA and control data were grouped together at a higher level.

As it is known, signals belonging to buckets of largest variability between runs have larger values on the different PCs of the loadings biplot, and buckets circumscribed to the same direction are correlated, that is, they vary in a coordinated fashion among runs. As shown in Figure 3,b, the signals of the diketopiperazines (DKPs) 1, 4, 5, 7 – 11 (Figure 4) are correlated; when one DKP signal was attenuated, which was observed when HDACIs were added to the cultures, all other signals of the DKPs were also attenuated, probably because these metabolites are biosynthetically related to each other. SAHA signals showed to be correlated with compounds 29 and 31, which were later identified as hexosylphytosphingosine and benzophenone, respectively.

These results indicated that all the experiments gave different profiles, and SAHA was the additive which produced the greatest effect in the culture, although it did not trigger the biosynthesis of other compounds than those observed on control experiments. The use of minimal medium produced significant changes in the metabolite profile: the production of DKPs decayed significantly, while at the same time the signals of other metabolites started to appear (Figure 2). The MS/MS mass spectra of the metabolites which were produced exclusively in the MM experiment showed many fragments and neutral losses in common, indicating that these compounds belonged to the same family.

Secondary Metabolites Produced by Drechslera sp.

A detailed analysis was performed of the MS and MS/MS spectra in order to identify the compounds as tentative candidates or probable structures by a database search, or by de novo analysis. The chromatographic processing of large-scale cultures allowed the isolation and identification of the secondary metabolites which could not be identified by means of MS and MS/MS and also the confirmation of tentative candidates. The chemical composition of the extracts of Drechslera sp. is shown in Table 1 and complementary data are presented in Table ST1 (Supporting Information). The structures of the compounds are exhibited in Figure 4.

Diketopiperazines (DKPs) were the compounds with greater relative abundance in the LC/MS runs of medium and mycelium extracts. The identification of DKPs 1, 4, 5 and 7 – 11 was straightforward based on

Table 2. Relative abundances of HDACIs and its derivatives in mycelium and medium extracts

No.	tR	Compound	% Mycelium	% Medium
12	13.9	Dihexosyl-SAHA	32	68
16	14.9	Hexosyl-SAHA	55	45
A	15.2	SAHA	27	73
13	13.9	3-Hydroxyvalproic acid	71	29
15	14.4	4-Hydroxyvalproic acid	88	12
B	23.8	Valproic acid	12	88
21	19.0	Hexosyl-OHA	0	100
C	19.7	OHA	18	82
23	20.6	Octanamide	0	100

© 2018 Wiley-VHCA AG, Zurich, Switzerland
their MS and MS/MS spectra. Two of them, cyclo(L-Leu-L-Pro) (10) and cyclo(L-Phe-L-Pro) (11), were also isolated and identified by their NMR and MS spectra. DKPs are common fungal metabolites with structural characteristics that enable them to bind with high affinity to a large variety of receptors, showing a broad range of biological activities.

Compound 2 showed NMR and MS spectra identical with those of cochlione B, previously isolated from the endophyte Cochliobolus sp., a member of the

Figure 3. a) Scores and b) loadings biplots of supervised PCA analysis.
Pleosporaceae family, the same as Drechslera. Molecular modeling was employed to confirm the relative configuration of the asymmetric centers (Supporting Information).

Compound 3 is described here for the first time. Its mass spectrum showed a signal at m/z 241.1061, indicating a molecular formula of C_{12}H_{16}O_{5}. The MS/MS spectrum of the precursor ion m/z 241 showed signals corresponding to the loss of C_{4}H_{8} in the same way as in compound 2. The 1H- and 13C-NMR spectra showed most of the signals in common with compound 2, except for the presence of an additional methoxy group at δ(H) 3.42 in compound 3, suggesting that this compound is closely related to 2 with an additional methoxy group. The HMBC experiment allowed the unambiguous localization of this methoxy group at C-5, as the signal of MeO protons at δ(H) 3.42 ppm correlated with C-5 at δ(C) 73.7 ppm. Thus, the structure of 3 was confirmed as 5-methoxycochlione B.

Related deoxygenated chromanones were previously reported from a common grapevine pathogen, Eutypa lata[25] and also some chlorinated derivatives were isolated from a mangrove-derived fungus Pestalotiopsis sp.[26] There are no reports about any biological activity for these related compounds.

Compound 6, the most abundant metabolite of the ME large scale extract, showed 1H-, 13C- and 2D-NMR, HR-ESI-MS spectra and optical rotation coincident with those of (−)-asperpentyn. This highly
functionalized prenylquinoid was previously isolated from several strains obtained from very different environments like the soil fungus *Aspergillus duricaulis* and the marine fungus *Curvularia inaequalis*. Both genera belong also to the *Pleosporaceae* family.

The absolute configuration of 6 was confirmed by comparison with data of the synthesized (+) - and (−) - asperpentyns.

Other biosynthetically related compounds were also isolated and identified like harveynone (14), siccayne (17), the 4-hydroxy-3-prenylbenzoic acids 18, 24 and 27, and the chromene 28. Compound 18 is described here for the first time. Its mass spectrum was consistent with a molecular formula C₁₂H₁₂O₃, the ¹H-, ¹³C- and 2D-NMR spectra were consistent with a trisubstituted benzene ring, with a prenyl chain with a terminal double bond, a carboxylic acid and a hydroxylated methine as substituents. Further analysis of the HMCB and NOESY spectra allowed the location of each substituent in the benzene ring, leading to the structure shown in Figure 4.

The MS and MS/MS spectra and the retention time of compound 29 matched with those of a standard of commercial benzophenone.

Compounds 31 and 32 were identified as a hexosylphosphatidylcholine and hexosylphosphatidylcholine, respectively, by means of their MS and MS/MS spectra. Collisional induced decomposition (CID) of the corresponding [M + H]⁺ ions at m/z 480.3526 and 462.3424, respectively, yielded product ions with the loss of a hexose (162 Da) in addition to those typical of sphingosines. (Glyco)sphingolipids are an important class of outer membrane compounds involved in structure, recognition and signal transduction, found in essentially all animals, plants and fungi, as well as in some prokaryotic organisms.

Lyso-glycosphingolipids have been implicated in a variety of regulatory roles in cell signaling, and the galactosyl-sphingosine psychosine, was linked to the pathogenesis of several diseases like Krabbe disease. Psychosine was already known to be cytotoxic, inhibiting protein kinase C and disturbing cytokinesis. In particular, sphingolipids have also been reported to be involved in the growth and virulence in *Fusarium graminearum*.

The loadings plot of the unsupervised PCA analysis (Figure 5) showed several aligned (correlated) signals on MM extracts, not present in ME extracts. Closer inspection of LC/MS and MS/MS runs yielded fragmentation patterns for compounds belonging to the same family. Losses of C₄H₆O₂ and C₆H₆O₂ in their MS/MS spectra were characteristic for these compounds. For this reason, a larger scale culture on MM was also performed. From the extract of this culture, two compounds, 25 and 30, were isolated and identified by NMR and MS analysis as macrosphelide C and 14-deoxymacrosphelide C, 16-membered macrolides having two subunits of sorbic acid (C₆) and one subunit of 3-hydroxybutyric acid (C₄). Careful interpretation of the MS/MS spectra allowed the recognition of a characteristic pattern which in turn led to the characterization of the minor compounds of the same family directly from the LC/MS runs without need for isolation. Compounds 19 and 22 are macrosphelides A and B or diastereoisomers of these,
while 26 is a diastereoisomer of macrosphelide C. 14-Deoxymacrosphelide C (30) has been previously obtained as an intermediate in the synthesis of macrosphelides and is reported here as a natural product for the first time. Macrosphelides A and B were first isolated from the soil fungi Microsphaeropsis sp. Their ability to inhibit the cell-cell adhesion of HL-60 cells to human umbilical vein endothelial cells, among many other intriguing bioactivities, have driven to extensive biological studies and their total synthesis.

Macrosphelides 25 and 30, compound 27 and anofinic acid (28) showed antifungal activity against the fungal pathogen of soybean Fusarium tucumaniae, responsible for the sudden death syndrome, with inhibition halos of 20, 12, 20 (± 1) mm, respectively, comparable with those of the positive controls carbendazim and benomyl. Compounds 27 and 28 also showed antifungal activity against the fungal pathogen of soybean Macrophomina phaseolina, with inhibition halos of 8 and 12 (± C6) mm, respectively, also comparable with those of the positive controls. These results suggest a possible ecological role for these compounds in the defense of the plant against pathogens.

Other metabolites previously described from other Drechslera strains have not been detected in this work: sesterpenes like ophiobolines from Drechslera gigan-tea or sesquiterpenes like drechslerines.

Metabolite Distribution

It is generally accepted that the extra-cellular metabolites present in a culture filtrate may be associated with the combative relationship of the organism with its environment, whilst the metabolites present in the mycelium extract may have a biological related to the protection of the organism. For this reason, the distribution of the metabolites between medium and mycelium is relevant to have a clue about their possible biological role.

The relative abundances (RA) of the identified metabolites produced by Drechslera sp. in both media and mycelia in all the experiments are shown in Table 3. DKPs showed a tendency to have higher

Table 3. Relative abundances of the identified compounds in the different experiments

Compound class(a)	No.	Compound	Mycelium extract		Medium extract							
			ME	SAHA	OHA	VPA	MM	ME	SAHA	OHA	VPA	MM
DKPs	1	Cyclo(Gly-Pro)	30.7	2.0	1.6	2.9	1.0	6.2	2.8	6.3	7.4	1.0
	4	Cyclo(Pro-Val)	7.7	5.0	1.8	8.3	1.0	26.6	2.7	22.0	15.6	1.0
	5	Cyclo(Leu/Ile-Hyp)	7.4	5.1	2.1	7.9	1.0	23.1	5.4	1.0	20.8	2.5
	7	Cyclo(Phe-Hyp)	8.3	6.6	2.0	4.1	1.0	18.2	2.7	12.2	15.7	1.0
	8	Cyclo(Phe-Hyp)	10.1	6.6	2.4	4.9	1.0	9.0	1.8	3.9	7.7	1.0
	9	Cyclo(Leu/Ile-Pro)	4.1	2.3	1.0	5.0	0.0	131.2	14.2	107.9	80.4	1.0
	10	Cyclo(-Leu-L-Pro)	4.8	2.9	1.2	4.0	1.0	16.1	1.6	15.2	8.0	1.0
	11	Cyclo(-Phe-L-Pro)	14.8	8.1	3.1	17.3	1.0	23.1	2.4	21.0	16.3	1.0
PQs	6	Asperpentyn	3.6	1.2	1.0	2.6	2.5	2.3	1.0	1.3	1.9	2.1
	14	Harveynone	1.5	1.2	1.0	2.1	5.2	2.6	1.0	45.3	18.7	79.6
PHBAs	18	5.0	1.0	0.0	3.7	1.2	10.5	1.0	6.1	4.4	1.4	
	24	5.2	1.0	4.6	1.0	3.0	11.5	3.0	19.8	2.1	1.0	
	27	2.9	2.6	5.0	1.2	1.0	6.2	1.0	4.9	1.0	1.0	
Chromanes	2	Cochlione B	8.1	1.0	5.0	8.1	4.6	64.9	1.0	1.7	80.4	15.8
	3	5-Methoxycochlione B	0.0	0.0	0.0	0.0	1.0	1.6	0.0	1.0	4.3	1.2
	28	Anofinic acid	9.3	1.0	6.9	3.2	3.3	107.4	3.7	1.0	8.5	17.1
MSP	19	Macrosphelide A/isomer	1.8	5.8	1.2	1.0	391.0	0.0	1.0	0.0	249.6	1.0
	22	Macrosphelide B/isomer	2.9	1.0	0.0	1.5	68.4	31.9	8.6	3.4	1.0	499.3
	25	Macrosphelide C	3.8	1.0	1.3	15.6	72.1	18.0	4.5	1.0	3.4	452.6
	26	Macrosphelide C isomer	1.0	0.0	0.0	0.0	45.2	3.5	3.5	1.8	1	577.4
	30	14-DeoxyMSP C	1.0	1.2	1.0	0.0	101.0	1.8	1.0	4.0	0.0	92.7
	29	Benzophenone	1.2	17.6	1.0	0.0	120.0	0.0	73.9	1.3	1.0	1.4
SphL	31	Hexosylphytosphingosine	1.0	2.1	1.0	0.7	1.7	1.2	65.4	1.2	0.0	1.0
	32	Hexosylphilosine	2.9	3.2	1.0	1.2	3.2	0.0	1.0	0.0	0.0	0.0

(a) DKPs: diketopiperazines, PQs: prenylquinoids, PHBAs: prenylhydroxybenzoic acids, MSP: macrospherelides, SphL: sphingolipids, ME: control.
relative abundances in the medium extracts than mycelium extracts, higher in ME than ME with additives, and always presented the minimum RA values in MM experiments. These facts may be related to phytotoxicity, which has been previously associated with DPKs.\cite{45,46}

Asperpentyn (6) was present in all the experiments with minimal changes in RA, becoming then a good biomarker for the strain. Prenylquinoids (PQs) 14 and 17, prenylhydroxybenzoic acids (PHBAs) 18, 24, 27 and 28, and chromanes 2 and 3 exhibited higher abundances in the medium than in the mycelium extracts. In general, these compounds were more abundant in the control experiments than in presence of the HDACs inhibitors, with the highest differences for cochlione B (2) and anofinic acid (28). Harveynone (14) was at least 15 times more abundant in MM experiments and cochlione B (2) was especially abundant in ME with VPA.

It is particularly remarkable that the most antifungal compound, anofinic acid (28), was mostly released to the medium, allowing it to exert efficiently its biological role.

Medium extracts of culture broths treated with SAHA showed a prominent peak corresponding to hexosylphytosphingosine (31) at 26.4 min (Figure 2), which was almost absent in the medium extracts of control experiments (Table 3). This fact suggests that the HDAC inhibitor SAHA triggers the overproduction of 31 and its release to the medium. In the opposite sense, hexosylsphyngosine (32) was observed mainly in the mycelium extracts. These compounds are known to be signal transducers, cytotoxic and are related to pathogenesis.\cite{47} Their release to the medium as a response to the presence of the inhibitor may indicate that compound 31 may play a role as an activation factor. Benzophenone (29) was also produced with higher abundances in the medium and mycelium extracts of the SAHA experiments.

Macrophelides were produced almost exclusively in MM and were highly abundant in both medium and mycelium extracts. Considering its antifungal activity, these compounds also could protect Lollium sp. from common phytopathogens.

Conclusions

From the cultures of a strain of Drechslera sp., a dark septate endophyte (DSE) isolated from the rye grass Lollium sp., 25 metabolites were identified. Two of them, the chromanone 3 and the prenylhydroxybenzoic acid 18, were isolated and identified for the first time. Other metabolites belonging to different compound classes, the chromanes 2 and 3, the prenylquinoids derivatives 6, 14 and 17, the prenylhydroxybenzoic acids 18, 24 and 27, and the macrophelides 19, 22, 25, 26 and 30 were first described for Drechslera, being 30 first described also as a natural product. Metabolites 18, 25, 27, 28 and 30 displayed good antifungal activity against the phytopathogen F. tucumaniae, and a role for these compounds as chemical defenses in the host plant is plausible.

It was established that the addition of different HDACIs as epigenetic modifiers to the culture broths produced changes in the concentration of the metabolites. Particularly, the use of SAHA produced the greatest changes, with a noticeable increment in the production of benzophenone (29) in the medium and mycelium extracts, and the release of lyso-glycosphingolipids to the medium, which are known cellular response inducers.

Additionally, this Drechslera strain presented a high ability to metabolize xenobiotics, a capability that may be useful for the fungal protection from the environment.

Experimental Section

General

LC/MS grade methanol and water were purchased from Carlo Erba (Milan, Italy). DMSO, sodium valproate and hydroxylamine hydrochloride were purchased from Sigma–Aldrich. SAHA and OHA were synthesized by known procedures.\cite{48} Octanamide was synthesized from octanoic acid through the octanoyl chloride treated with aqueous concentrated ammonia. Optical rotations were recorded on a PerkinElmer 343 polarimeter. 1H- and 13C-NMR spectra were recorded on a Bruker Avance II spectrometer operating at 500.13 and 125.77 MHz, respectively; \(\delta\) in ppm, \(J\) in Hz. Two-dimensional NMR spectra COSY, HSQC-DEPT and HMBC were performed using standard Bruker software. The residual non-deuterated solvent signal was used for calibration.

Fungal Material

DSE strain Drechslera sp. was isolated from the roots of rye grass (Lollium sp.) as previously reported\cite{49} and was deposited with the BAFC Culture Collection (FCEN-UBA, CONICET) under the accession number BAFC 3419. This strain was previously characterized molecularly and the ITS sequence was deposited with the GenBank with accession number FJ868975.
Fermentation of Small Scale Cultures with HDACIS

DSE strain was cultured and maintained in malt extract agar (MEA), composed by 30 g malt extract, 5 g peptone and 15 g agar per liter. A 5 mm diameter agar disk of cultured fungus was cut with a sterile cork bore and used to inoculate 125 mL Erlenmeyer flasks containing 50 mL of malt extract medium (ME). Fermentation was carried out at 25 °C for 48 h with orbital shaking. After this time, 3 mL of culture broth were used to inoculate 125 mL Erlenmeyer flasks containing 50 mL of malt extract medium (3 x control, 3 x SAHA, 3 x OHA, 3 x VPA) or minimal medium (3 x MM). Fermentation was carried out at 25 °C for 72 h with orbital shaking, when inhibitors were added in 100 μL DMSO to a final concentration of 500 μM. Control cultures (3 x control and 3 x MM) without the addition of inhibitors were spiked with 100 μL DMSO. Finally, fermentation was carried out for further 12 days under static conditions at 25 °C. All the experiments were made at least by triplicate.

Fermentation of Large Scale Cultures

Solid medium culture was cut into 1 x 1 cm plugs and used for inoculation of three 250 mL Erlenmeyer flasks containing 75 mL of malt extract medium composed of 30 g malt extract and 5 g peptone per liter. Fermentation was carried out for 7 days at 25 °C, and the fermentation broth was inoculated to five 4 L Erlenmeyer flasks containing 1 L each of the same liquid medium. Finally, fermentation was carried out under static conditions at 25 °C for 7 days.

In the same way, a large-scale culture was performed on minimal medium, composed by sacharose (10 g) and a solution of salts (100 mL) per liter. The solution of salts contained MgSO4 · 7 H2O (7.31 g), KNO3 (0.8 g), KCl (0.65 g), KH2PO4 (48 mg), Ca(NO3)2 · 4 H2O (2.88 g), NaFeEDTA (0.08 g), KI (7.5 mg), MnCl2 · 4 H2O (60 mg), ZnSO4 · 7 H2O (26.5 mg), H3BO3 (15 mg), CuSO4 · 5 H2O (1.3 mg), Na3MoO4 · 2 H2O (0.2 mg), glycine (30 mg), thiamine chloride hydrate (1 mg), pyridoxine chloride hydrate (1 mg) and nicotinic acid (5 mg) per liter.

Extract Preparation

The culture broths (50 mL) were filtered. The mycelia were sonicated in EtOH for 30 min, then filtered and extracted with AcOEt (3 x 50 mL); the media of the culture broths were extracted with 3 x 50 mL of AcOEt. In both cases, mycelia and media, the organic solvents were removed at reduced pressure; the residue was dissolved in 2 mL of methanol and filtered through a 0.22 μm pore size nylon membrane.

Liquid Chromatography

LC/MS analyses of each extract were performed on a RRLC Agilent 1200 using a Luna C18 column (3 μm, 2.0 x 100 mm; Phenomenex, Torrance, CA, USA). The mobile phase consisted of water containing 0.1% formic acid (A) and methanol (B). The flow rate was 0.3 mL/min and thecolumn temperature was set at 30 °C. Linear gradient elution was performed as follows: 10 – 75% B (0 – 25 min), 75 – 100% B (25 – 26 min), 100% B (26 – 46 min). Detection was performed with a DAD detector from 190 to 950 nm coupled to a mass spectrometer. All the runs were repeated at least three times.

Mass Spectrometry

Mass spectrometric analyses were performed using a Bruker MicrOTOF-Q II mass spectrometer (BrukerDaltonics, Billerica, MA, USA), equipped with electrospray and APCI ion sources. The instrument was operated at a capillary voltage of 4.5 kV with an end plate offset of 500 V, a dry temperature of 200 °C using N2 as dry gas at 6.0 L/min and a nebulizer pressure of 3.0 bar. Multi-point mass calibration was carried out using a sodium formate solution from m/z 50 to 1200 in positive ion mode. For APCI the corona was set at 4000 nA and the vaporizer temperature at 250 °C and an Agilent tuning mix APCI/APPI was employed as calibrant. Data acquisition and processing were carried out using the software Bruker Compass Data Analysis version 4.0 supplied with the instrument.

Data Analysis and Principal Component Analysis

Extraction and bucketing of the raw LC/MS data and unsupervised PCA model was performed using Profile Analysis 2.0 (BrukerDaltonics), obtaining a (31 x 9300) matrix data of (analyses x (tR/m/z)), which was converted to csv data for further analysis. Supervised PCA, clustering and dendrogram were applied to simplified data matrix of most relevant data using MATLAB v.7.6 (R2008a, MathWorks Inc., Natick, MA).

Antifungal Assay

Direct bioautography on TLC was employed as the method for detecting the antifungal activity. A concentration level of 20 μg/spot of each assayed compound was used. Carbendazim and benomyl, which
were used as positive control, showed inhibition zones of 22 ± 2 and 20 ± 1 mm, respectively.

Extraction and Isolation of Metabolites

The 5 × 1 L ME culture broths were filtered and the combined filtrates were partitioned with AcOEt. The extracts were subjected to dry column flash chromatography using silica gel, with mixtures of dichloromethane/AcOEt as eluants, yielding fractions I to V. Fractions II and III resulted positive in the antifungal assay. Fraction II was subjected to column chromatography using silica gel using dichloromethane/AcOEt as eluants, yielding asperpentyn (as its main component). Fraction II was subjected to preparative HPLC (YMC of hexane/AcOEt as eluants, yielding asperpentyn (16 mg), harveynone (14; 4.8 mg) and 18 (2.2 mg). Fraction III was subjected to preparative HPLC (YMC column C18, 5 µm, 22.5 × 2.5 cm, eluant MeOH/H2O (6:4), 5 mL/min; detection: UV 254 nm, RI), yielding compound 27 (5.5 mg), anofinic acid (28; 4.7 mg), macrophelide C (25; 1.6 mg) and 14-deoxymacrophelide C (30; 0.9 mg).

5-Methoxychlocine B = (1αS,2R,3S,7bS)-2-Hydroxy-3-methoxy-6,6-dimethyl-1a,2,3,5,6,7b-hexahydro-4H-oxireno(h)chromen-4-one; 3). Amorphous yellow solid. 1H-NMR (500 MHz, CDC13): 4.51 (br. t, J = 2.1, 1H, H-6), 4.44 (br. t, J = 2.1, 1H, H-5), 3.75 (dt, J(7,8) = 3.7, J(6,7) = 6/5,7 = 2.5, 1H, H-7), 3.46 (br. d, J = 3.7, 1H, H-8), 3.42 (s, 3H, MeO), 2.68 (d, J = 16.5, 1H, H2-3), 2.51 (d, J = 16.5, 1H, H3-2), 1.53 (s, 3H, H-10), 1.43 (s, 3H, H-9); 13C-NMR (125 MHz, CDC13): 190.7 (C-4), 167.4 (C-8a), 107.5 (C-4a), 83.4 (C-2), 73.7 (C-5), 65.6 (C-6), 58.3 (MeO), 57.0 (C-7), 48.7 (C-8), 47.2 (C-3), 26.9 (C-10), 25.4 (C-9). El-MS (70 eV): 240 (M+); 5), 225 ([M – CH3]+); 1), 182 (54), 83 (58).

4-Hydroxy-3-[(1R)-1-hydroxy-3-methylbut-3-en-1-yl]benzoic Acid (18). Amorphous yellow solid. [α]D5 = +16.5 (c = 0.22, MeOH). 1H-NMR (500 MHz, CDCl3): 8.88 (s, 1H, OH), 7.93 (dd, J = 8.5, 2.1, 1H, H-6), 7.76 (d, J = 2.1, 1H, H-2), 6.93 (d, J = 8.5, 1H, H-5), 5.05 (br. s, 1H, Hb-11), 5.03 (dd, J = 10.8, 3.4, 1H, H-8), 4.93 (br. s, 1H, Ha-11), 2.60 (dd, J = 13.8, 10.8, 1H, Hb-9), 2.49 (dd, J = 13.8, 3.3, 1H, Hb-9), 1.86 (s, 3H, H-12). 13C-NMR (125 MHz, CD3OD): 169.6 (C-7), 161.0 (C-1), 141.3 (C-10), 131.6 (C-6), 129.8 (C-2), 125.9 (C-3), 120.5 (C-1), 117.6 (C-5), 115.6 (C-11), 72.6 (C-8), 46.6 (C-9), 22.1 (C-12). The configuration at C-8 was assigned on basis of closely related structures. [51 – 53]

Supplementary Material

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cbdv.201800133.

Acknowledgements

The authors thank Universidad de Buenos Aires (W670 and 100352), CONICET (PICT 2008-1394) for partial financial support.

Author Contribution Statement

G. E. Siless made the fungal cultures in different conditions, analyzed LC/MS runs and performed PCA analyses. G. E. Siless and G. L. Gallardo isolated and identified the compounds. G. M. Cabrera is the director of the project, and also performed and analyzed LC/MS runs. Y. A. Rincón performed the bioassays. M. A. Rodríguez and A. M. Godeas isolated, characterized and classified the fungal strain.

References

[1] K. K. Newsham, ‘A Meta-Analysis of Plant Responses to Dark Septate Root Endophytes’, *New Phytol*. 2011, 190, 783 – 793.

[2] S. N. Kivlin, S. M. Emery, J. A. Rudgers, ‘Fungal Symbionts Alter Plant Responses to Global Change’, *Am. J. Bot.* 2013, 100, 1445 – 1457.

[3] C. Osterhage, G. M. König, U. Höller, A. D. Wright, ‘Rare Sesquiterpenes from the Algicolous Fungus Drechslera dematioides’, *J. Nat. Prod.* 2002, 65, 306 – 313.

[4] A. Abdel-Lateff, T. Okino, W. M. Alarif, S. S. Al-Lihaibi, ‘Sesquiterpenes from the Marine Algicolous Fungus Drechslera sp.’, *J. Saudi Chem. Soc.* 2013, 17, 161 – 165.

[5] M. M. A. A. El-Gendy, N. M. Ten, H. A. E-H. Ibrahim, D. H. A. El-Baky, ‘Heavy Metals Biosorption from Aqueous
Solution by Endophytic Drechslera hawaiiensis of Morus salba L. Derived from Heavy Metals Habitats’, Mycobiology 2017, 45, 73 – 83.

[6] M. A. Kastanias, M. Chrysayi-Tokousbalides, ‘Herbicidal Potential of Pyrenophoral Isolated from a Drechslera avanae Pathotype’, Pest Manag. Sci. 2000, 56, 227 – 232.

[7] E. Read, J. Edwards, M. Deseo, G. Rawlin, S. Rochfor, ‘Current Understanding of Acute Bovine Liver Disease in Australia’, Toxins 2017, 9, 8.

[8] F. Sugawara, Y. F. Hallock, G. D. Bunkers, D. S. Kenfield, G. Strobel, S. Yoshida, ‘Phytotherapeutic and Immunomodulatory Properties of Drechslera gigantea’, Biocis. Biotech. Bioch. 1993, 57, 236 – 239.

[9] A. Evidente, A. Andolfi, A. Cimmino, M. Vurro, M. Fracchiolla, R. Charudattan, A. Motta, ‘Ophiobolin E and 8-epiophiobolin J Produced by Drechslera gigantea, a Potential Mycoherbicid of Weedy Grasses’, Phytochemistry 2006, 67, 2281 – 2287.

[10] F. Sugawara, G. Strobel, R. N. Strange, J. N. Siedow, G. D. Van Duyne, J. Clardy, ‘Phytoxins from the Pathogenic Fungi Drechslera maydis and Drechslera sorghicola’, Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 3081 – 3085.

[11] G.-F. Zhang, Z.-K. Guo, W. Wang, J.-T. Cui, R.-X. Tan, H.-M. Gu, ‘Neuraminidase Inhibitory Terpenes from Endophytic Cochliobolus sp’., J. Asian Nat. Prod. Res. 2011, 13, 761 – 764.

[12] S. Nozoe, M. Morisaki, K. Tsuda, Y. Iitaka, N. Takahashi, S. Phongpaichit, J. Buatong, J. Sakayaroj, ‘A Novel Alleneoxypoxycyclohexane and Related Compounds from Eutypa lata (Pers: F. Tu)’, Helv. Chim. Acta 1989, 72, 1262 – 1267.

[13] S. Klaiklay, V. Rukachaisirikul, K. Tadpetch, Y. Sukpong, S. Phongpaichit, J. Buatong, J. Sakayaroj, ‘Chlorinated Chromone and Diphenyl Ether Derivatives from the Mangrove-derived Fungus Pestalotiopsis sp. PSU-MA69’, Tetrahedron Lett. 2012, 68, 2299 – 2305.

[14] A. Mühlenfeld, H. Achenbach, ‘Asperpentyn, a Novel Acetylcylohexene Epoxide from Aspergillus duricaulis’, Phytochemistry 1988, 27, 3853 – 3855.

[15] S. Awaichuk, V. Rukachaisirikul, K. Tadpetch, Y. Sukpong, S. Phongpaichit, J. Buatong, J. Sakayaroj, ‘Butyrolactone, Cytochalasin, Cyclic Carbonate, Eutypinic Acid, and Phenalenone Derivatives from the Soil Fungus Aspergillus sp. PSURSPG185’, J. Nat. Prod. 2014, 77, 2375 – 2382.

[16] O. F. Smetanina, A. N. Yurchenko, A. I. Kalinovskii, V. Y. Khudykova, N. N. Kiruchik, M. V. Pivkin, S. Ayfitallou, V. M. Mikhailov, ‘–Asperpentyn from the Facultative Marine Fungus Curvularia inaequalis’, Chem. Nat. Compd. 2014, 50, 1120 – 1121.

[17] J. Li, S. Park, R. L. Miller, D. Lee, ‘Tandem Enyne Metathesis-Metalloporphyrin [1,3]-Shift for a Concise Total Syntheses of (+)-Asperpentyn, (−)-Harveyone, and (−)-Tricholomenyn A’, Org. Lett. 2009, 11, 571 – 574.

[18] G. Mehta, S. Roy, C. S. Pan, ‘Enantioselective Syntheses of Bioactive Epoxyquinone Natural Products (+)-Harveyone and (−)-Asperpentyn’, Tetrahedron Lett. 2012, 53, 4093 – 4095.

[19] T. Nagata, Y. Ando, A. Hirota, ‘Phytoxins from Tea Gray Blight Fungi, Pestalotiopsis longiseta and Pestalotiopsis theae’, Biosci. Biotech. Biochem. 1992, 56, 810 – 811.

[20] M. Pinaud, Y. Frangin, J.-P. Genet, H. Zamarlik, ‘Total Synthesis of Siccayne’, Synthesis 1990, 10, 935 – 937.

[21] J. Kupka, T. Anke, W. Steglich, L. Zechlin, ‘Antibiotics from Basidiomycetes. XI. The Biological Activity of Siccayne, Isolated from the Marine Fungus Halocynthia nigrolineus J. & E. Kohlmeyer’, J. Antibiot. 1981, 34, 298 – 304.

[22] S. Frank, H. Geyer, R. Geyer, ‘Microscale Analysis of Glycosphingolipids from Schistosomamansoni cercariae’, J. Carbohydr. Chem. 2011, 30, 233 – 248.

[23] A. H. Merrill Jr, K. Sandhoff, in Biochemistry of Lipids, Lipoproteins and Membranes, Eds. D. E. Vance and J. E.
Vance, Elsevier Science B.V., Amsterdam, 2002, Vol. 36, p. 373.

[37] L. M. Obeid, Y. Okamoto, C. Mao, ‘Yeast Sphingolipids: Metabolism and Biology’, Biochim. Biophys. Acta 2002, 1585, 163 – 171.

[38] L. C. Castelvetri, M. I. Givogri, A. Hebert, B. Smith, Y. Song, A. Kaminska, A. Lopez-Rosas, G. Morfini, G. Pigino, M. Sands, S. T. Brady, E. R. Bongarzone, ‘The Sphingolipid Psychosine Inhibits Fast Axonal Transport in Krabbe Disease by Activation of GSK3/β and Deregulation of Molecular Motors’, J. Neurosci. 2013, 33, 10048 – 10056.

[39] C. Colacios, F. Sabourdy, N. Andrieu-Abadie, B. Séguil, T. Levade, ‘Bioactive Sphingolipids in Cancer Biology and Therapy’, Springer International Publishing, Switzerland, 2015.

[40] V. Ramamoorthy, E. B. Cahoon, M. Thokala, J. Kaur, J. Li, D. M. Shah, ‘Sphingolipid C-9 Methyltransferases are Important for Growth and Virulence but not for Sensitivity to Antifungal Plant Defensins in Fusarium graminearum’, Eukaryot. Cell 2009, 8, 217 – 229.

[41] K. Ishihara, T. Kawaguchi, Y. Matsuuya, H. Sakurai, I. Saiki, H. Nemoto, ‘Synthesis and Biological Evaluation of Macrosphelide Cores’, Eur. J. Org. Chem. 2004, 3973 – 3978.

[42] S. Takamatsu, Y.-P. Kim, M. Hayashi, H. Hiraoka, M. Natori, K. Komiyama, S. Omura, ‘Macrosphelide, a Novel Cell-Cell Adhesion Molecule. II. Physicochemical Properties and Structural Elucidation’, J. Antibiot. 1995, 49, 95 – 98.

[43] C. Häcker, B. Plietker, ‘General Stereoconvergent Enantioselective Total Synthetic Approach toward Macrosphelides A-G and M’, J. Org. Chem. 2015, 80, 8055 – 8064.

[44] S.-M. Paek, ‘Development of Advanced Macrosphelides: Potent Anticancer Agents’, Molecules 2015, 20, 4430 – 4449.

[45] J. R. Hanson, ‘The Chemistry of Fungi’, RSC Publishing, Cambridge, 2008.

[46] S. H. Park, A. Stierle, G. A. Strobel, ‘Metabolism of Maculosin, a Host-Specific Phytotoxin Produced by Alternaria alternata on Spotted Knapweed (Centaurea maculosa)’, Phytochemistry 1993, 35, 101 – 106.

[47] D. M. Heringdorf, K. H. Jakobs, ‘Lysophospholipid Receptors: Signalling, Pharmacology and Regulation by Lysophospholipid Metabolism’, Biochim. Biophys. Acta 2007, 1768, 923 – 940.

[48] L. K. Gediyi, P. Chopra, P. Purushottamachar, N. Maheshwari, V. C. O. Njar, ‘A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells’, J. Med. Chem. 2005, 48, 5047 – 5051.

[49] V. A. Silvani, S. Fracchia, L. Fernández, M. Pérgola, A. Goddeas, ‘A Simple Method to Obtain Endophytic Microorganisms from Field-Collected Roots’, Soil Biol. Biochem. 2008, 40, 1259 – 1263.

[50] A. L. Homans, A. Fuchs, ‘Direct Bioautography on Thin-Layer Chromatography as a Method for Detecting Fungitoxic Substances’, J. Chromatogr. 1970, 51, 325 – 328.

[51] J. H. Brewster, ‘A Useful Model of Optical Activity. I. Open Chain Compounds’, J. Am. Chem. Soc. 1959, 81, 5475 – 5483.

[52] T. Wang, X.-Q. Hao, J.-J. Huang, J.-L. Niu, J.-F. Gong, M.-P. Song, ‘Chiral Bis(imidazolinyl)phenyl NCN Pincer Rhodium (III) Catalysts for Enantioselective Allylation of Aldehydes and Carbonyl–Ene Reaction of Trifluoropyruvates’, J. Org. Chem. 2013, 78, 8712 – 8721.

[53] S. Zhao, X. Zhang, Y. Zhang, H. Yang, Y. Huang, K. Zhang, T. Du, ‘A Ce(OTf)3/PyBox Catalyzed Enantioselective Hosomi–Sakurai Reaction of Aldehydes with Allytrimethylsilane’, New J. Chem. 2015, 39, 7734 – 7737.

Received March 29, 2018
Accepted May 28, 2018