Oracle Pushdown Automata, Nondeterministic Reducibilities, and the Hierarchy over the Family of Context-Free Languages

Tomoyuki Yamakami

Abstract: We impose various oracle mechanisms on nondeterministic pushdown automata, which naturally induce nondeterministic reducibilities among formal languages in a theory of context-free languages. In particular, we examine a notion of nondeterministic many-one CFL reducibility and conduct a groundwork to formulate a coherent framework for further expositions. Two more powerful reducibilities—bounded truth-table and Turing CFL-reducibilities—are also discussed in comparison. The Turing CFL-reducibility, in particular, makes it possible to induce a useful hierarchy built over the family CFL of context-free languages. Basic structural properties are proven for each level of this CFL hierarchy. The first and second levels of the hierarchy are proven to be different. The rest of the hierarchy (more strongly, the Boolean hierarchy built over each level of the CFL hierarchy) is also infinite unless the polynomial hierarchy over NP collapses. This follows from a characterization of the Boolean hierarchy over the kth level of the polynomial hierarchy in terms of the Boolean hierarchy over the $k + 1$st level of the CFL hierarchy. Similarly, the complexity class Θ^P_k is related to the kth level of the CFL hierarchy. We argue that the CFL hierarchy coincides with a hierarchy over CFL built by application of many-one CFL-reductions. We show that BPCFL—a bounded-error probabilistic version of CFL—is not included in CFL even in the presence of advice. Moreover, we exhibit a relativized world where BPCFL is not located within the second level of the CFL hierarchy.

Keywords: regular language, context-free language, pushdown automaton, oracle, many-one reducibility, Turing reducibility, truth-table reducibility, CFL hierarchy, polynomial hierarchy, advice, Dyck language

1 Backgrounds and Main Themes

A fundamental notion of reducibility has long played an essential role in the development of a theory of NP-completeness. In the 1970s, various forms of polynomial-time reducibility emerged mostly based on a model of oracle Turing machine and they gave a means to study relativizations of associated families of languages. Most typical reducibilities in use today in computational complexity theory include many-one, truth-table, and Turing reducibilities obtained by imposing appropriate restrictions on the functionality of oracle mechanism of underlying Turing machines. Away from standard complexity-theoretical subjects, we will shift our attention to a theory of formal languages and automata. Within this theory, we wish to lay out a framework for a future extensive study on structural complexity issues by providing a solid foundation for various notions of reducibility and their associated relativizations.

Of many languages, we are particularly interested in context-free languages, which are characterized by context-free grammars or one-way nondeterministic pushdown automata (or npda’s, hereafter). The context-free languages are inherently nondeterministic. In light of the fact that the notion of nondeterminism appears naturally in real life, it has become a key to many fields of computer science. The family CFL of context-free languages has proven to be a fascinating subject, simply because every language in CFL behaves quite differently from the corresponding nondeterministic polynomial-time class NP. For instance, whereas NP is closed under any Boolean operations except for complementation, CFL is not even closed under intersection. This non-closure property is caused by the lack of flexibility in the use of memory storage by an underlying model of npda. On the contrary, a restricted use of memory helps us prove a separation between the first and the second levels of the Boolean hierarchy $\{CFL_k \mid k \geq 1\}$ built over CFL, which was defined in [24], by applying Boolean operations (intersection and union) alternatingly to CFL. Moreover, we can prove that a family of languages CFL(k) composed of intersections of k context-free languages truly forms an infinite hierarchy [12]. Such an architectural restriction sometimes becomes a crucial issue in certain applications of pushdown automata. For instance, a one-way probabilistic pushdown automaton (or ppda) with bounded-error probability in general cannot amplify its success probability [8].

A most simple type of reduction is probably many-one reduction and, by adopting the existing formulation of this reducibility, we intend to bring a notion of nondeterministic many-one reducibility into context-free languages under the name of many-one CFL-reducibility. We write CFL_{m1} to denote the family of languages.

*Present Affiliation: Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
that are many-one CFL-reducible to a given oracle A. Notice that Reinhardt [14] earlier considered many-one reductions that are induced by nondeterministic finite automata (or nfa's), which use no memory space. Our goal is to build a hierarchy of language families over CFL using our reducibility by way of immediate analogy with constructing the \textit{polynomial-time hierarchy} over NP [15, 16]. For this purpose, we choose npda's rather than nfa's. Owing mostly to the unique architecture of npda's, our reducibility exhibits quite distinctive features; for instance, this reducibility in general does not admit a transitivity property. (For this reason, our reducibility might have been called a "quasi-reducibility" if the transitive property is a prerequisite for a reducibility notion.) As a consequence, the family CFL is not closed under the many-one CFL-reducibility (that is, CFL$^m_{CFL} \neq$ CFL). This non-closure property allures us to study the family CFL$^m_{CFL}$ whose elements are obtained by the k-fold application of many-one CFL-reductions to languages in CFL. As shown in Section 3.1, the language family CFL$^m_{CFL}$ turns out to coincide with CFL$^{CFL(k)}_{m}$.

We further discuss two more powerful reducibilities in use—bounded-truth-table and Turing CFL-reducibilities based on npda's. In particular, the Turing CFL-reducibility introduces a hierarchy analogous to the polynomial hierarchy: the hierarchy \{$\Delta^CFL_k, \Sigma^CFL_k, \Pi^CFL_k | k \geq 0$\} built over CFL, which we succinctly call the \textit{CFL hierarchy}, and this hierarchy turns out to be quite useful in classifying the computational complexity of a certain group of languages. As a quick example, the languages Dup$_2 = \{xx | x \in \{0,1\}^*\}$ and Dup$_3 = \{xxx | x \in \{0,1\}^*\}$, which are known to be outside of CFL, fall into the second level Σ^CFL_2 of the CFL hierarchy. A simple matching language Match $= \{x#w | \exists u,v [w = uv]\}$ is in Σ^CFL_2. Two more languages $Sq = \{0^n1^n | n \geq 1\}$ and $Prim = \{0^n | n$ is a prime number $\}$ belong to Σ^CFL_3 and Π^CFL_3, respectively. A slightly more complex language $MulPrim = \{0^m|n | m$ and n are prime numbers $\}$ is also in Σ^CFL_3. The first and second levels of the CFL hierarchy are known to be different; more strongly, we can prove that $\Sigma^CFL_2 \not\subseteq \Sigma^CFL_1/n$, where Σ^CFL_1/n is a non-uniform version of Σ^CFL_1, defined in [17] and further explored in [22].

Regarding the aforementioned language families CFL(k) and CFLm_k, we can show later that the families CFL(ω) = $\bigcup_{k \geq 1}$ CFL(k) and BHCFL = $\bigcup_{k \geq 1}$ CFLk belong to the second level $\Sigma^CFL_2 \cap \Pi^CFL_2$ of the CFL hierarchy, from a fact that CFL(ω) \subseteq BHCFL. Despite obvious similarities between their definitions, the CFL hierarchy and the polynomial hierarchy are quite different in nature. In Section 4.1 we show that CFL$^{CFL(k)}_{m}$ is located within Σ^CFL_3. Because of npda's architectural restrictions, "standard" techniques of simulating a two-way Turing machine, in general, do not apply; hence, we need to develop new simulation techniques for npda's.

In this paper, we employ three simulation techniques to obtain some of the aforementioned results. The first technique is of guessing and verifying a \textit{stack history} to eliminate a use of stack, where a stack history means a series of consecutive stack operations made by an underlying npda. The second technique is applied to the case of simulating two or more tape heads by a single tape head. To adjust the different head speeds, we intentionally insert extra dummy symbols to generate a single query word so that an oracle can eliminate them when it accesses the query word. The last technique is to generate a string that encodes a computation to the case of simulating two or more tape heads by a single tape head. To adjust the different head speeds, we intentionally insert extra dummy symbols to generate a single query word so that an oracle can eliminate them when it accesses the query word. The last technique is to generate a string that encodes a computation to simulate a two-way Turing machine in general, do not apply; hence, we need to develop new simulation techniques for npda's.

Reinhardt [14] related the aforementioned hierarchy of his to another hierarchy defined by alternating pushdown automata and he gave a characterization of the polynomial hierarchy by this alternating hierarchy using logarithmic-space (or log-space) many-one reductions. Using an argument similar to his, we can establish in Section 5 an exact characterization of the eth level of the Boolean hierarchy over the kth level Σ^P_k of the polynomial hierarchy in terms of the corresponding eth level of the Boolean hierarchy over the $k+1$st level of the CFL hierarchy. Moreover, we give a new characterization of Θ^P_k (i.e., Wagner's [19] notation for $P_{\omega}(\Sigma^P_{k-1}O(\log n))$) in terms of the kth level of the CFL hierarchy using log-space truth-table reductions. As an immediate consequence, all levels of the Boolean hierarchy over each level of the CFL hierarchy are different unless the polynomial hierarchy collapses.

Another relevant notion induced by reducibility is a \textit{relativization} of language families. For issues not settled by the current knowledge of us, we often resort to a relativization, which helps us discuss the existence of various relativized worlds in which a certain relationship among target language families either holds or fails. For instance, we can construct in Section 4.4 a recursive oracle for which the family BP$^{CFL}_{m}$ of languages recognized by bounded-error one-way npda's is not included within the second level of the CFL hierarchy. (Of course, there also exists an obvious oracle that makes this inclusion hold.) This separation result contrasts a well-known fact that BPP is included in $\Sigma^P_2 \cap \Pi^P_2$ in any relativized world. To deal with oracle-dependent languages in a relativized CFL hierarchy, we utilize its characterization by bounded-depth Boolean circuits of alternating ORs and ANDs. Our proof relies on a special form of the well-known \textit{switching lemma} [10],
in which a circuit of OR of ANDs can be transformed into another equivalent circuit of AND of ORs by partially setting 0 and 1 to input variables. In the unrealativized world, we can prove that $\text{BPCFL} \nsubseteq \text{CFL}/n$. This separation extends a known result of [8] that $\text{BPCFL} \nsubseteq \text{CFL}$.

A Hasse diagram in Fig.1 summarizes some of the inclusion relationships among language families discussed so far. The notation CFLH in the figure denotes the union $\bigcup_{k \geq 1} (\Sigma_k^{\text{CFL}} \cup \Pi_k^{\text{CFL}})$.

Although most results in this paper are embryonic, we strongly believe that these results will pave a road to more exciting discoveries in structural complexity theory of formal languages and automata.

2 A Preparation for Our Expositions

We will briefly explain basic notions and notations that help the reader go through the subsequent sections. Generally, we will follow the existing terminology in a field of formal languages and automata. However, the reader who is familiar with computational complexity theory needs extra attentions to ceratin notations (for instance, $\text{CFL}(k)$ and CFL_k that are used in quite different ways.

2.1 Alphabets, Strings, and Languages

Given a finite set A, the notation $|A|$ expresses the number of elements in A. Let \mathbb{N} be the set of all natural numbers (i.e., nonnegative integers) and set $\mathbb{N}^+ = \mathbb{N} - \{0\}$. For any number $n \in \mathbb{N}^+$, $[n]$ denotes the integer set $\{1, 2, \ldots, n\}$. The term “polynomial” always means a polynomial on \mathbb{N} with coefficients of non-negative integers. In particular, a linear polynomial is of the form $ax + b$ with $a, b \in \mathbb{N}$. The notation $A - B$ for two sets A and B indicates the difference $\{x \mid x \in A, x \notin B\}$ and $\mathcal{P}(A)$ denotes the power set of A; that is, the collection of all subsets of A.

An alphabet is a nonempty finite set Σ and its elements are called symbols. A string x over Σ is a finite series of symbols chosen from Σ and its length, denoted $|x|$, is the total number of symbols in x. The empty string λ is a special string whose length is zero. Given a string $x = x_1x_2\cdots x_n$ with $x_i \in \Sigma$, x^R represents the reverse of x, defined by $x^R = x_nx_{n-1}\cdots x_1$. We set $\emptyset = 1$ and $\emptyset = 0$; moreover, for any string $x = x_1x_2\cdots x_n$ with $x_i \in \Sigma$, \mathcal{P} denotes $\mathcal{P}(x_1x_2\cdots x_n)$. To treat a pair of strings, we adopt a track notation $[x]_y$ of $[x]_y$. For two symbols σ and τ, the notation $[\sigma]_y$ expresses a new symbol and, for two strings $x = x_1x_2\cdots x_n$ and $y = y_1y_2\cdots y_m$ of length n, $[x]_y$ denotes a string $[x_1]_{y_1}[x_2]_{y_2}\cdots [x_n]_{y_m}$ of length n. Since this notation can be seen as a column vector of dimension 2, we can extend it to a k-track notation, denoted conveniently by $[x_1, x_2, \ldots, x_k]^T$, where “$T$” indicates a transposed vector.

A collection of strings over Σ is a language over Σ. A set Σ^k, where $k \in \mathbb{N}$, consists only of strings of length k. In particular, Σ^0 indicates the set $\{\lambda\}$. The Kleene closure Σ^* of Σ is the infinite union $\bigcup_{k \in \mathbb{N}} \Sigma^k$. Similarly, the notation $\Sigma^{\leq k}$ is used to mean $\bigcup_{i=1}^{k} \Sigma^i$. Given a language A over Σ, its complement is $\Sigma^* - A$, which

![Figure 1: Hasse diagram of inclusion relations among language families](image-url)
is also denoted by \(\overline{A} \) as long as the underlying alphabet \(\Sigma \) is clear from the context. We use the following three class operations between two language families \(C_1 \) and \(C_2 \): \(C_1 \cap C_2 = \{ A \cap B \mid A \in C_1, B \in C_2 \} \), \(C_1 \cup C_2 = \{ A \cup B \mid A \in C_1, B \in C_2 \} \), and \(C_1 - C_2 = \{ A - B \mid A \in C_1, B \in C_2 \} \), where \(A \) and \(B \) must be defined over the same alphabet.

As our basic computation models, we use the following types of finite-state machines: one-way deterministic finite automaton (or DFA, in short) with \(\lambda \)-moves, one-way nondeterministic pushdown automaton (or NPDA) with \(\lambda \)-moves, and one-way probabilistic pushdown automaton (or PDDA), where a \(\lambda \)-move (or \(\lambda \)-transition) is a transition of the machine’s configurations in which a target tape head stays still. Notice that allowing \(\lambda \)-moves in any computation of a one-way pushdown automaton is crucial when output tapes are particularly involved.

Formally, an NPDA \(M \) is a tuple \((Q, \Sigma, \{\$,\}\), \(\Gamma, \delta, q_0, Z_0, Q_{acc}, Q_{rej}\)), where \(Q \) is a finite set of states, \(\Sigma \) is an input alphabet, \(\Gamma \) is a stack alphabet, \(Z_0 \) (\(\in \Gamma \)) is the bottom marker of a stack, \(q_0 \) (\(\in Q \)) is the initial state, \(Q_{acc} \subseteq Q \) is a set of accepting states, \(Q_{rej} \subseteq Q \) is a set of rejecting states, and \(\delta \) is a transition function mapping \((Q - Q_{halt}) \times (\Sigma \cup \{\$,\}) \times \Gamma \) to \(P(Q \times \Gamma^*) \) with \(\Gamma = \Sigma \cup \{\$,\} \) and \(Q_{halt} = Q_{acc} \cup Q_{rej} \). Any step associated with an application of transition of the form \(\delta(q, \lambda, a) \) is called a \(\lambda \)-move (or \(\lambda \)-transition). The machine \(M \) is equipped with a read-only input tape and its tape head cannot move backward. On such a read-only input tape, an input string is surrounded by two distinguished endmarkers (\(\$ \) and \(\$ \)) and, as soon as a tape head steps outside of these endmarkers, the machine is thought to be aborted. The machine must halt instantly after entering a halting state (i.e., either an accepting state or a rejecting state). More importantly, we may not be able to implement an internal clock inside an NPDA to measure its runtime. Therefore, we need to demand that all computation paths of \(M \) should terminate eventually; in other words, along any computation path, \(M \) must enter a halting state to stop. For any of the above machines \(M \), we write \(PATH_M(x) \) to express a collection of all computation paths produced by \(M \) on input \(x \) and we use \(ACC_M(x) \) to denote a set of all accepting computation paths of \(M \) on input \(x \).

Whenever we refer to a write-only tape, we always assume that (i) initially, all cells of the tape are blank, (ii) a tape head starts at the so-called start cell, (iii) the tape head steps forward whenever it writes down any non-blank symbol, and (iv) the tape head can stay still only in a blank cell. Therefore, all cells through which the tape head passes during a computation must contain no blank symbols. An output (outcome or output string) along a computation path is a string produced on the output tape after the computation path is terminated. We call an output string valid (or legitimate) if it is produced along a certain accepting computation path. When we refer to the machine’s outputs, we normally disregard any strings left on the output tape on a rejecting computation path.

The notations REG, CFL, and DCFL stand for the families of all regular languages, of all context-free languages, and of all deterministic context-free languages, respectively. An advised language family REG/n in \(\mathbb{L}^n \) consists of languages \(L \) such that there exist an advice alphabet \(\Gamma \), a length-preserving (total) advice function \(h : \mathbb{N} \to \Gamma^* \), and a language \(A \in \text{REG} \) satisfying \(L = \{ x \mid [h(|x|)] \in A \} \), where \(h \) is length preserving if \(|h(n)| = n \) for all natural numbers \(n \in \mathbb{N} \). By replacing REG with CFL in REG/n. Another advised family CFL/n in \(\mathbb{L} \) is obtained from CFL. A language over a single-letter alphabet is called tally and the notation TALLY indicates the collection of all tally languages.

A multi-valued partial function \(f \) is in CFLMV if there exists an NPDA \(M \) equipped with a one-way read-only input tape together with a write-only output tape such that, for every string \(x \), \(f(x) \) is a set composed of all outcomes of \(N \) on the input \(x \) along accepting computation paths.
Let 1-DLIN consist of languages recognized by one-tape linear-time DTM's. For the precise definition of and discussion on a one-tape linear-time deterministic computation, the reader refers to [17].

For each fixed constant \(k \in \mathbb{N} \), \(\text{NC}^k \) expresses a collection of languages recognized by log-space uniform Boolean circuits of polynomial-size and \(O(\log^k n) \)-depth. It is known that \(\text{NC}^0 \) is properly included within \(\text{NC}^1 \); however, no other separations are known to date. Similarly, \(\text{AC}^k \) is defined except that all Boolean gates in a circuit may have unbounded fan-in. Moreover, \(\text{SAC}^1 \) denotes a class of languages recognized by log-space uniform families of polynomial-size Boolean circuits of \(O(\log n) \) depth and semi-bounded fan-in (that is, having AND gates of bounded fan-in and OR gates of unbounded fan-in), provided that the negations appear only at the input level. This class \(\text{SAC}^1 \) is located between \(\text{NC}^1 \) and \(\text{NC}^2 \). Venkateswaran [15] demonstrated that the family of languages log-space many-one reducible to context-free languages characterizes \(\text{SAC}^1 \). Moreover, \(\text{TC}^1 \) consists of all languages recognized by log-space uniform families of \(O(\log n) \)-depth polynomial-size circuits whose gates compute threshold functions.

3 Nondeterministic Reducibilities

A typical way of comparing the computational complexity of two formal languages is various forms of resource-bounded reducibility between them. Such reducibility is also regarded as a relativization of its underlying language family. Hereafter, we intend to introduce an appropriate notion of nondeterministic many-one reducibility to a theory of context-free languages using a specific computation model of one-way nondeterministic pushdown automata (or npda's). This new reducibility catapults a basic architecture of a hierarchy built over the family CFL of context-free languages in Section 3.

3.1 Many-One Reductions by Npda's

Our exposition begins with an introduction of an appropriate form of nondeterministic many-one reducibility whose reductions are operated by npda's. In the past literature, there were preceding ground works on many-one reductions within a framework of a theory of formal languages and automata. Based on deterministic/nondeterministic finite automata (or dfa's/npda's), for instance, Reinhart [13] discussed two many-one reductions between two languages. Tadaki, Yamakami, and Li [17] also studied the roles of various many-one reducibilities defined by one-tape linear-time Turing machines, which turn out to be closely related to finite automata. Notice that those computation models have no extra memory storage to use. In contrast, we attempt to use npda's as a basis of our reducibility.

An \(m \)-reduction machine is an npda equipped with an extra query tape on which the machine writes a string surrounded by blank cells starting at the designated start cell for the purpose of a query to a given oracle. We treat the query tape as an output tape, and thus the query-tape head must move to a next blank cell whenever it writes a non-blank symbol. Formally, an \(m \)-reduction machine is a tuple \((Q, \Sigma, \{\#, \$\}, \Theta, \Gamma, \delta, q_0, Z_0, Q_{acc}, Q_{rej})\), where \(\Theta \) is a query alphabet and \(\delta \) is now of the form

\[
\delta : (Q - Q_{halt}) \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \mathcal{P}(Q \times (\Theta \cup \{\lambda\}) \times \Gamma^*)
\]

There are two types of \(\lambda \)-moves. Assuming \((p, \tau, \xi) \in \delta(q, \sigma, \gamma)\), if \(\sigma = \lambda \), then the input-tape head stays still (or makes a \(\lambda \)-move); on the contrary, if \(\tau = \lambda \), then the query-tape head stays still (or makes a \(\lambda \)-move).

We say that a language \(L \) over alphabet \(\Sigma \) is many-one CFL-reducible to another language \(A \) over alphabet \(\Gamma \) if there exists an \(m \)-reduction machine \(M \) using \(\Sigma \) and \(\Gamma \) respectively as the input alphabet and the query alphabet such that, for every input \(x \in \Sigma^* \), (1) along each computation path \(p \in \text{ACC}_M(x) \), \(M \) produces a valid query string \(y_p \in \Gamma^* \) on the query tape and (2) \(x \in L \) if and only if \(y_p \in A \) for an appropriate computation path \(p \in \text{ACC}_M(x) \). For simplicity, we also say that \(M \) reduces (or \(m \)-reduces) \(L \) to \(A \). In other words, \(L \) is many-one CFL-reducible to \(A \) if and only if there exists a multi-valued partial function \(f \in \text{CFLMV} \) satisfying \(L = \{x \mid f(x) \cap A \neq \emptyset\} \). With the use of this new reducibility, we make the notation \(\text{CFL}_{mA}^A \) denotes the family of all languages \(L \) that are many-one CFL-reducible to \(A \), where the language \(A \) is customarily called an oracle. Making an analogy with "oracle Turing machine" that functions as a mechanism of reducing languages to \(A \), we want to use the term "oracle npda" to mean an npda that is equipped with an extra write-only output tape (called a query tape) besides a read-only input tape. Given an oracle npda \(M \) and an oracle \(A \), the notation \(L(M, A) \) (or \(L(M^A) \)) denotes the set of strings accepted by \(M \) relative to \(A \).

Let us start with a quick example of languages that are many-one CFL-reducible to languages in CFL.
Example 3.1 As the first example, setting $\Sigma = \{0, 1\}$, let us consider the language $Dup_2 = \{xx \mid x \in \Sigma^*\}$. This language is known to be non-context-free (see, e.g., [7])}; however, it can be many-one CFL-reducible to CFL, because an m-reduction machine nondeterministically produces a query word xRy from every input of the form xy using a stack appropriately, and a CFL-oracle checks whether $x = y$ from the input xRy using its own stack. In other words, Dup_2 belongs to CFL^{CFL}. Similarly, the non-context-free language $Dup_3 = \{xxx \mid x \in \Sigma^*\}$ also falls into CFL^{CFL}. For this case, we design a reduction machine to produce $xRyRyRz$ from each input xyz and make an oracle check whether $x = y = z$ by using its stack twice. These examples prove that $CFL^{\text{CFL}} \neq CFL$. A similar language $\text{Match} = \{x\#w \mid \exists u, v[w = uxe]\}$, where $\#$ is a separator not in x and w, also belongs to CFL^{CFL}.

Unlike polynomial-time many-one reducibility, our many-one CFL-reducibility does not, in general, satisfy the transitivity property, in which $A \in CFL^B$ and $B \in CFL^C$ imply $A \in CFL^C$ for any languages A, B, C. To prove this fact, notice that, if CFL is closed under the reducibility, then $CFL^{\text{CFL}} = CFL$ must hold; however, this contradicts what we have seen in Example 3.1. This non-closure property certainly marks a critical feature of the computational behaviors of languages in CFL. In what follows, we will slightly strengthen this separation between CFL^{CFL} and CFL even in the presence of advice.

Proposition 3.2 $CFL^{\text{CFL}} \not\subseteq CFL/n$.

To show this separation, we will briefly review a notion of k-conjunctive closure over CFL. Given each number $k \in \mathbb{N}^+$, the k-conjunctive closure of CFL, denoted $CFL(k)$ in [23], is defined recursively as follows: $CFL(1) = CFL$ and $CFL(k + 1) = CFL(k) \land CFL$. These language families truly form an infinite hierarchy [12]. For convenience, we set $CFL(\omega) = \bigcup_{k \in \mathbb{N}^+} CFL(k)$. For known advised language families, it holds that $CFL \not\subseteq REG/n$ [17], $co-CFL \not\subseteq CFL/n$ [20], and $CFL(2) \not\subseteq CFL/n$ [21]. In the following proof of Proposition 3.2 we attempt to prove that $CFL(2) \not\subseteq CFL^{\text{CFL}}$ and $CFL(2) \not\subseteq CFL/n$.

Proof of Proposition 3.2 Toward a contradiction, we assume that $CFL^{\text{CFL}} \subseteq CFL/n$. In this proof, we need the inclusion relation $CFL(2) \subseteq CFL^{\text{CFL}}$. As for a later reference, we intend to prove a more general statement below.

Claim 1 For every index $k \geq 1$, $CFL(k + 1) \subseteq CFL^{\text{CFL}(k)}$.

Proof. Let L be any language in $CFL(k + 1)$ and take two languages $L_1 \in CFL$ and $L_2 \in CFL(k)$ for which $L = L_1 \cap L_2$. There exists an npda M_1 that recognizes L_1. Without loss of generality, we assume that M_1 enters a final state (either an accepting state or a rejecting state) when it scans the right endmarker $\$. Now, a new oracle npda N is defined to behave as follows. On input x, N starts simulating M_1 on x. While reading each symbol from x, N also copies it down to a write-only query tape. When M_1 halts in a final state, N enters the same inner state. It holds that, for any input x, x is in L if and only if N on the input x produces the query string x in an accepting state and x is actually in L_2. This equivalence implies that L belongs to $CFL^{\text{CFL}(k)}_2$, which is a subclass of $CFL^{\text{CFL}(k)}$.

Since $CFL(2) \subseteq CFL^{\text{CFL}}$ by Claim 1, our assumption implies that $CFL(2) \subseteq CFL/n$. This contradicts the class separation $CFL(2) \not\subseteq CFL/n$, proven in [21]. Therefore, the proposition holds.

A Dyck language L over alphabet $\Sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_d\} \cup \{\sigma'_1, \sigma'_2, \ldots, \sigma'_d\}$ is a language generated by a deterministic context-free grammar whose production set is $\{S \rightarrow \lambda|SS|\sigma_iS\sigma'_i : i \in [d]\}$, where S is a start symbol. For convenience, denote by $DY\text{CK}$ the family of all Dyck languages.

Lemma 3.3 $CFL^{\text{CFL}} = CFL^{\text{DCFL}} = CFL^{DY\text{CK}}$.

In the following proof, we will employ a simple but useful technique of guessing and verifying a correct stack history (namely, a series of consecutive stack transitions). Whenever an oracle npda tries to either push symbols into its stack or pop a symbol from the stack, instead of actually using the stack, we write its stack transition down on a query tape and ask an oracle to verify that it is indeed a correct stack history. This technique will be frequently used in other sections.

Proof of Lemma 3.3 Since $DY\text{CK} \subseteq CFL^{\text{DCFL}} \subseteq CFL^{\text{CFL}}$ trivially holds, we are hereafter focused on proving that $CFL^{\text{CFL}} \subseteq CFL^{DY\text{CK}}$. As the first step toward this goal, we will prove the following characterization of CFL in terms of Dyck languages. Notice that Reinhartd [13] proved a similar statement.
using a language called L_{pp}.

\textbf{Claim 2} $\text{CFL} = \text{NFA}^\text{DYCK}_m$.

\textbf{Proof.} (\subseteq) For any language L in CFL, consider an npda M that recognizes L. Let $\Gamma = \{\sigma_1, \sigma_2, \ldots, \sigma_d\}$ be a stack alphabet of M_1. Corresponding to each symbol σ_i, we introduce another fresh symbol σ'_i and then we set $\Gamma' = \{\sigma'_1, \sigma'_2, \ldots, \sigma'_d\}$. Without loss of generality, it is possible to assume that M makes no λ-move until its tape head reaches $\$$ (see, e.g., \cite{2} for the proof). For convenience, we further assume that, when the tape head reaches $\$$, M must make a series of λ-moves to empty the stack before entering a halting state. Let us construct a new oracle npda N.

In the following description of N, we will intentionally identify all symbols in Γ with "pushed down" symbols, and all symbols in Γ' with "popped up" symbols. Given any input string x, N simulates each step of M’s computation made on the input x. At a certain step, when M pushes a string $w = \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_k} \in \Gamma^*$ in place of the top symbol of the stack, N first guesses this top symbol, say, σ_j, and then writes down σ'_j on its query tape. This is because σ_j is on the top of the stack and thus it must be first popped up before pushing w. When M pops up a symbol, N guesses it, say, σ, and writes down σ'_i (not σ) on the query tape. Finally, B is chosen to be a Dyck language over the alphabet $\Gamma \cup \Gamma'$. Note that, if a query word w encodes a series of correct stack transitions (with the stack becoming empty when the machine halts), then w obviously belongs to B. Therefore, it holds that L is in CFL_m, which is a subclass of CFL^DYCK_m.

(\supseteq) Assume that $L \in \text{NFA}^\text{DYCK}_m$ for an appropriate oracle B in DYCK. Let us take an m-reduction machine M_1 that reduces L to B. Since B is in DCFL ($\subseteq \text{CFL}$), take a deterministic pushdown automaton (or a dpda) M_2 that recognizes B. As before, we assume that M_2 makes no λ-move. We will simulate both M_1 and M_2 by a certain npda N in the following fashion. Given any input x, let the query machine N simulate the m-th copy M_1 on x without using a stack. If M_1 tries to write a symbol, say, σ, on a query tape, then N instead simulates one step of M_2’s computation that corresponds to the scanning of τ together with a certain symbol on the top of the stack. It is not difficult to show that N accepts x if and only if x is in L. Therefore, it follows that $L \subseteq \text{CFL}_m$.

Here, we claim the following equality.

\textbf{Claim 3} $\text{CFL}^A_m = \text{CFL}_m(\text{NFA}^A_m)$ for any oracle A.

\textbf{Proof.} (\subseteq) This is rather trivial by choosing an appropriate oracle npda.

(\supseteq) Assume that $L \in \text{CFL}^A_m$ for a certain language B in NFA^A_m. Let us take an oracle npda M_1 recognizing L relative to B and an oracle npda M_2 recognizing B relative to A. A new machine N is defined to behave as follows. On input x, N simulates M_1 on x. Whenever M_1 tries to write a symbol, say, σ, on a query tape, since M_2 has no stack usage, N can simulate one or more steps (including all possible λ-moves) made by M_2 while it scans σ. Finally, N produces a query word exactly as M_2 does. It is possible to show that N is an oracle npda that recognizes L using A as an oracle. Thus, we obtain the desired membership $L \subseteq \text{CFL}_m$.

By combining Claims 2 and 3, it follows that $\text{CFL}^\text{CFL}_m = \text{CFL}_m(\text{NFA}^\text{DYCK}_m) \subseteq \text{CFL}^\text{DYCK}_m$.

We will introduce another technique of simulating two or more tape heads moving at (possibly) different speeds by a single tape head. Let us consider an npda M with a write-only output tape. Since the tape heads of M may stay still at any moments (by making λ-moves) on both input and output tapes, it seems difficult to synchronize the moves of those two heads so that we can split the output tape into two tracks and produce a string $[x \ y]$ from input string x and output string y of M. The best we can do is to insert a fresh symbol, say, $\hat{\tau}$ between input symbols as well as output symbols to adjust the speeds of two tape heads. For this purpose, it is useful to introduce a terminology to describe strings obtained by inserting $\hat{\tau}$. Assuming that $\hat{\tau} \not\in \Sigma$, a $\hat{\tau}$-extension of a given string x over Σ is a string \hat{x} over $\Sigma \cup \{\hat{\tau}\}$ satisfying that x is obtained directly from \hat{x} simply by removing all occurrences of $\hat{\tau}$ in \hat{x}. For instance, if $x = 01101$, then \hat{x} may be $01\hat{\tau}\hat{\tau}01$ or $01\hat{\tau}\hat{\tau}01\tau$.

Naturally, we can extend Dyck languages by adding a special symbol $\hat{\tau}$ as a part of its underlying alphabet and considering d-tuples of strings over this extended alphabet. More formally, for each index $d \in \mathbb{N}^+$, DYCK^ext_d consists of all languages L such that there exist d extended Dyck languages A_1, A_2, \ldots, A_d for which L consists of elements of the form $[x_1, x_2, \ldots, x_d]$ satisfying the following: for every index $i \in [d]$, x_i belongs to A_i. In particular, when $d = 2$, any language L in DYCK^ext_d has the form $\{[\hat{\tau} x, y] \mid x \in A_1, y \in B\}$ for certain extended Dyck languages A and B. It is worth noting that DYCK^ext_d is a subclass of $\text{DCFL}(d)$.
For every index i in \mathbb{N}^+, CFL(d) = $\text{NFA}^{\text{DYCK}_d^ ket}$.

The following corollary generalizes Claim 2.

Corollary 3.4 For each fixed index $d \in \mathbb{N}^+$, CFL(d) = $\text{NFA}^{\text{DYCK}_d^ ket}$.

In the proof of Corollary 3.3, to simplify the description of simulations of given oracle npda’s, we need to introduce a special terminology. Let M be any oracle npda and A be any oracle. We say that a string w of the form $[\frac{3}{2}]$ encodes input x and query word y along a computation path of M if (i) along a certain accepting computation path p of M on x, M starts with the input x and produces a string y on its query tape, (ii) x and y are z-extensions of x and y, respectively, and (iii) there is another oracle npda N that takes w and, by scanning each symbol in w by a single tape head, it can simulate the computation path p as follows. When scanning a symbol of the form $[\frac{3}{2}]$, if $\sigma \neq z$, then N simulates one step of M while scanning σ on its input tape; on the contrary, if $\sigma = z$, then N simulates one λ-move of M without reading any input symbol. At the same time, if $\sigma \neq z$, then N simulates one step of M while writing τ on its query tape; otherwise, N does nothing. Similarly, we define the concept of “$[\frac{3}{2}]$ encodes stack history y and query word z along a computation path.”

Proof of Corollary 3.4 Let L be any language defined as $L = \bigcap_{i \in [d]} A_i$ for k languages A_1, A_2, \ldots, A_k in CFL. For each index $i \in [d]$, assume that an npda M_i recognizes A_i. Consider the machine N that, on input x, simulates several steps of M_1, M_2, \ldots, M_d in parallel while they scan each input symbol. During this simulation, N writes a stack history of M_i onto the ith track of its query tape. However, to adjust the speeds of d tape heads, we appropriately insert the symbol z. If a query word w correctly represent d stack histories of d machines, then w must be in $\text{DYCK}_d^ ket$.

For later use, we will generalize an argument used in the proof of Claim 2. We say that a language family C is z-extendible if, for every language A in C, two special languages $A_1^z = \{[\frac{3}{2}] \mid z \in A \}$ and $A_2^z = \{[\frac{3}{2}] \mid y \in A \}$ also belong to C, where \tilde{y} and \tilde{z} are any z-extensions of y and z, respectively.

Lemma 3.5 Let C be any nonempty language family. If C is z-extendible, then $\text{CFL}^C_m \subseteq \text{NFA}^{\text{CFL} \cap C}_m$ holds.

Proof. Take any oracle A in C and consider any language L in CFL_m^A. Moreover, let M be any m-reduction machine that reduces L to A. With a similar construction as in the proof of Corollary 3.3 we will construct an oracle npda N that behaves as follows. On input x, N simulates M on x and produces on its own query tape strings of the form $[\frac{3}{2}]$ that encode stack history y and query word z along a computation path of M. Choose a Dyck language D that correctly represents any stack histories of M and then define B as the set $\{[\frac{3}{2}] \mid y \in D, z \in A \}$. It is clear by its definition that B belongs to $\text{DCFL} \land C$.

Hereafter, we will explore the properties of $\text{CFL}_m^{\text{CFL}}$. First, we will see a few examples.

Example 3.6 The language $S_q = \{0^n1^n^2 \mid n \geq 1\}$ belongs to $\text{CFL}_m^{\text{CFL}(3)}$. To see this fact, let us consider the following oracle npda N and oracle A. Given any input w, N first checks if w is of the form 0^n1^n. Simultaneously, N nondeterministically selects (j_1, j_2, \ldots, j_k) satisfying $j_1 = j_2 + j_3 + \cdots + j_k$, and it produces on its query tape a string w' of the form $0^n1^j_11^j_2 \cdots 1^j_k$. An oracle A receives w' and checks if the following three conditions are all met: (i) $j_1 = j_2$, $j_3 = j_4$, ..., (ii) $j_2 = j_3$, $j_4 = j_5$, ..., and (iii) $i = k$ by first pushing 0^j into a stack and then counting the number of λ. It is rather easy to show that A belongs to CFL(3). Therefore, S_q is in CFL_m^A, which is included in $\text{CFL}_m^{\text{CFL}(3)}$. A similar idea proves that the language $\text{Comp} = \{0^n \mid n$ is a composite number $\}$ belongs to $\text{CFL}_m^{\text{CFL}(2)}$. In symmetry, $\text{Prim} = \{0^n \mid n$ is a prime number $\}$ is a member of co-$\text{CFL}_m^{\text{CFL}(2)}$.

The lack of the transitivity property of the many-one CFL-reducibility necessitates an introduction of a helpful abbreviation of a k-fold application of the reductions. For any given oracle A, we recursively set $\text{CFL}_m^A = \text{CFL}_m^A$ and $\text{CFL}_m^{k+1} = \text{CFL}_m^A \cap \text{CFL}_m^{k}$. Given each language family C, the notation CFL_m^C denotes the union $\bigcup_{A \in C} \text{CFL}_m^A$. A close relationship between $\text{CFL}(k)$’s and $\text{CFL}_m^{\text{CFL}(k)}$ is exemplified below.

Theorem 3.7 For every index $k \in \mathbb{N}^+$, $\text{CFL}_m^{\text{CFL}(k)} = \text{CFL}_m^{\text{CFL}(k)}$.
Corollary 3.8 \(\text{CFL}_m^{\text{CFL}(\omega)} = \bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} \).

Proof. Since \(\text{CFL}_m^{\text{CFL}(k)} = \text{CFL}_m^{\text{CFL}(k)} \) by Theorem 3.7, it holds that \(\bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} = \bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} \). Thus, it suffices to show that \(\bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} = \text{CFL}_m^{\text{CFL}(\omega)} \). Since \(\text{CFL}(k) \subseteq \text{CFL}(\omega) \), we obtain \(\bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} \subseteq \bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(\omega)} \). The last term coincides with \(\text{CFL}_m^{\text{CFL}(\omega)} \) since \(\text{CFL}_m^{\text{CFL}(\omega)} \) is independent of the value \(k \). Conversely, let \(k \) be any language in \(\text{CFL}_m^{\text{CFL}(\omega)} \). Take an appropriate oracle \(k \in \text{CFL}_m^{\text{CFL}(\omega)} \) for which \(k \in \text{CFL}(\omega) \). Since \(\text{CFL}(\omega) = \bigcup_{k \in \mathbb{N}^+} \text{CFL}(k) \), \(k \) must be in \(\text{CFL}(k) \) for an appropriate index \(k \in \mathbb{N}^+ \). This implies that \(k \subseteq \text{CFL}_m^{\text{CFL}(k)} \). Therefore, it holds that \(\text{CFL}_m^{\text{CFL}(\omega)} \subseteq \bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{\text{CFL}(k)} \). This completes the proof of the corollary. \(\square \)

Now, we are focused on the proof of Theorem 3.7. When \(k = 1 \), it holds that \(\text{CFL}_m^{\text{CFL}(1)} = \text{CFL}_m^{\text{CFL}(1)} \). The proof of Proposition 3.7 for \(k \geq 2 \) is made up of two lemmas, Lemmas 3.9 and 3.10.

Lemma 3.9 For every index \(k \geq 2 \), \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m^{\text{CFL}(k)} \) holds.

Proof. Let us consider the case where \(k = 2 \). First, we claim the following inclusion relationship.

Claim 4 For every index \(r \in \mathbb{N}^+ \), \(\text{CFL}_m^{\text{CFL}(r)} \subseteq \text{CFL}_m^{\text{CFL}(r) \wedge \text{CFL}} \).

Proof. For a certain language \(A \in \text{CFL}(r) \), let us assume that \(L \in \text{CFL}_m^A \). Furthermore, choose an appropriate set \(B \) and let us consider two \(m \)-reduction machines \(M_1 \) and \(M_2 \) respectively witness the membership relations \(L \in \text{CFL}_m^B \) and \(B \in \text{CFL}_m^A \). We will define a new oracle npda \(N \) in part using a stack-history technique shown in the proof of Claim 2. Let \(\Gamma \) be a stack alphabet of \(M_2 \). Corresponding to \(\Gamma \), we prepare an associated alphabet \(\Gamma' = \{ \sigma' \mid \sigma \in \Gamma \} \) and set \(\Gamma' \cup \Gamma' \) to be a new stack alphabet. On input \(x \), \(N \) simulates \(M_1 \) on the \(x \) in the following way. Whenever \(M_1 \) tries to write a symbol, say, \(b \) on a query tape, \(N \) instead simulates, without using any actual stack, several steps (including \(\lambda \)-moves) of \(M_2 \) that can be made during reading \(b \). When \(M_2 \) tries to push down a string \(s \) by substituting a top symbol of its stack, \(N \) guesses this popped symbol, say, \(z \) and writes \(z \) on the upper track of its query tape. When \(M_2 \) pops a symbol, \(N \) guesses this popped symbol, say, \(z \) and writes \(z \) on the upper track of its query tape. At the same time during the simulation, \(N \) produces \(M_2 \)'s query word on the lower track of the query tape. To fill the idling time of tape heads, we need to insert an appropriate number of symbols \(\tilde{z} \) so that \(\tilde{z} \) encodes stack history \(y \) and query word \(z \) along a computation path of \(M_2 \). Finally, we define \(C \) as a collection of strings of the form \(\tilde{z} \) such that \(\tilde{y} \) (resp., \(\tilde{z} \)) is a \(\rho \)-extension of a correct stack history \(y \) (resp., a valid query string \(z \) in \(A \)). Since the above definition requires the correctness of \(y \) and \(z \), \(C \) belongs to \(\text{CFL}(r) \wedge \text{CFL} \). Moreover, for every string \(x \), \(y \) is in \(L \) if and only if there exists an accepting computation path in \(\text{ACC}_N(x) \), along which \(N \) produces \([\tilde{y} \tilde{z}] \) in \(C \). This relation implies that \(C \) is in \(\text{CFL}_m^C \). \(\square \)

For the case of \(k \geq 3 \), it holds that \(\text{CFL}_m^{\text{CFL}(k)} = \text{CFL}_m(\text{CFL}_m^{\text{CFL}(k-1)}) \subseteq \text{CFL}_m(\text{CFL}_m^{\text{CFL}(k-1)}) \), where the last inclusion comes from the induction hypothesis. Note that \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m(\text{CFL}_m^{\text{CFL}(k-1)}) = \text{CFL}_m^{\text{CFL}(k-1)} \). Claim 4 then implies that \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m^{\text{CFL}(k-1) \wedge \text{CFL}} = \text{CFL}_m^{\text{CFL}(k)} \). \(\square \)

Lemma 3.10 For every index \(k \geq 1 \), \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m^{\text{CFL}} \).

Proof. By induction on \(k \geq 1 \), we will prove the lemma. Since the lemma is trivially true for \(k = 1 \), let us assume that \(k \geq 2 \). Since \(\text{CFL}(k) \subseteq \text{CFL}_m^{\text{CFL}(k-1)} \) by Claim 4, it instantly follows that \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m^{\text{CFL}(k-1)} \). Moreover, because \(\text{CFL}_m^{\text{CFL}(k-1)} \subseteq \text{CFL}_m^{\text{CFL}(k-1)} \) by our induction hypothesis, we conclude that \(\text{CFL}_m^{\text{CFL}(k)} \subseteq \text{CFL}_m^{\text{CFL}(k-1)} \). \(\square \)

Toward the end of this section, we will make a brief discussion on a relationship between two language families \(\text{CFL} \) and \(\text{TALLY} \). Given a language \(A \) over alphabet \(\Sigma \), the notation \(\text{dense}(A)(n) \) indicates \(\| A \cap \Sigma^n \| \) for every length \(n \in \mathbb{N} \). Let \(\text{DENSE}(f(n)) \) be the collection of all languages \(A \) such that \(\text{dense}(A)(n) \leq f(n) \) holds for all lengths \(n \in \mathbb{N} \). Note that \(\text{TALLY} \subseteq \text{DENSE}(O(1)) \subseteq \text{SPARSE} \), where \(\text{SPARSE} = \text{DENSE}(n^{O(1)}) \).
Proposition 3.11 1. $\text{CFL}/n \subseteq \text{CFL}^{\text{DENSE}(O(1))}_m$.

2. $\text{CFL}^\text{TALLY}_m \subseteq \text{CFL}^\text{CFL(2)}_m/n$.

Proof. (1) This is rather obvious by taking an advice function h and define $A = \{h(n) | n \in \mathbb{N}\}$, which is in $\text{DENSE}(1)$ by the definition.

(2) Let $L \in \text{CFL}^A_m$ for a certain A in TALLY. Let M be a reduction machine that reduces L to A. Without loss of generality, we assume that $A \subseteq \{1\}^*$. For simplicity, we also impose a restriction that $\lambda \notin A$.

Next, we will define N_1 as follows. Let $p(n) = an$ be a linear polynomial that bounds the running time of M on inputs of length $n \geq 1$. We define our advice function h as $h(n) = h_1b_2 \cdots h_n$, for any number $n \in \mathbb{N}^+$, where each symbol h_i equals $[\chi^A(1^{(i-1)a+1})^T, \chi^A(1^{(i-1)a+2})^T, \cdots, \chi^A(1^a)^T]$. Note that $|h(n)| = n$. We then define a language B to satisfy $L = \{x | [h(x)] \in B\}$. On input $[x]$, with $|s| = |x|$, N_1 simulates M on x and generates a query string $[h(x)]$ if M makes a query y, where \tilde{y} and s are \tilde{z}-extensions of y and s, respectively. In this process, if $y \notin \{1\}^*$, then N_1 immediately enters a rejecting state. Another oracle npda N_2 works as follows. On input of the form $[\tilde{z}]$, using a stack appropriately, N_2 eliminates z and produces $y\#s$ on its query tape, where $\#$ is a fresh symbol. The third machine N_3, taking $y\#s$ as input, finds the ith block $h_i = [b_1, b_2, \ldots, b_a]^T$ of s, where $i = |y|/a$, and reads a symbol b_j, where $j = |y| - (i - 1)a$. If $b_j = 1$, then N_3 enters an accepting state and, otherwise, it enters a rejecting state. This whole process puts B to $\text{CFL}^\text{CFL}_m(\text{CFL}(2))$, which is $\text{CFL}^\text{CFL}_m[2]$. By Theorem 3.7 it follows that B is in $\text{CFL}^\text{CFL}_m(\text{CFL}(2))$. It is not difficult to show that, for any string $x, x \in L$ if and only if $[h(x)] \in B$. Therefore, L belongs to $\text{CFL}^\text{CFL(2)}_m/n$. \(\square\)

3.2 Other Powerful Reducibilities by Npda’s

In the previous sections, our primary interest has rested on the many-one CFL-reducibility. It is also possible to introduce two more powerful reducibilities, known as truth-table reducibility and Turing reducibility, into a theory of context-free languages.

We define a notion of Turing CFL-reducibility using a model of npda with a write-only query tape and three extra inner states $q_{\text{query}}, q_{\text{oa}},$ and q_{oer} that represent a query signal and two possible oracle answers, respectively. More specifically, when an oracle npda enters q_{query}, it triggers a query, by which a query word is automatically transferred to an oracle. When an oracle returns its answer, 0 (no) or 1 (yes), the machine automatically sets the oracle npda’s inner state to q_{oa}, or q_{oer}, respectively. Such a machine is called a T-reduction machine (or just an oracle npda as before) and is used to reduce a language to another language. Unlike many-one CFL-reductions, an oracle npda’s computation depends on a series of oracle answers. Since an oracle npda, in general, cannot implement any internal clock to control its running time, we should demand that, no matter what oracle A is provided, its underlying oracle npda M must halt eventually on all computation paths.

Lemma 3.12 For any oracle A, $\text{CFL}^A_m \subseteq \text{CFL}^T_m = \text{CFL}^T_m$.

Proof. The first inclusion is obvious because the Turing CFL-reducibility can naturally simulate the many-one CFL-reducibility by making a single query at the very end of its computation and deciding to either accept or reject an input based on an oracle answer. To see the last equality, let L be any language in CFL^T_m, witnessed by a T-reduction machine M. Now, we want to prove that $L \in \text{CFL}^T_m$ via another T-reduction machine N. This machine N is defined to behave as follows. Given any input x, N simulates M on x and, whenever M receives an oracle answer, say, $b \in \{0, 1\}$, N treats it as if \overline{b} and continues the simulation of M. This definition clearly implies that N accepts x relative to \overline{a} if and only if M accepts x relative to A. Thus, L is in CFL^T_m. We therefore conclude that $\text{CFL}^T_m \subseteq \text{CFL}^T_m$. By symmetry, we also obtain $\text{CFL}^T_m \subseteq \text{CFL}^A_m$, implying that $\text{CFL}^T_m = \text{CFL}^A_m$. \(\square\)

As a simple relationship between the Turing and many-one CFL-reducibilities is exemplified in Proposition 3.11. To describe the proposition, we need a notion of the Boolean hierarchy over CFL, which was introduced in [15] by setting $\text{CFL}_1 = \text{CFL}$, $\text{CFL}_{2k} = \text{CFL}_{2k-1} \land \text{co-CFL}$, and $\text{CFL}_{2k+1} = \text{CFL}_{2k} \lor \text{CFL}$. For simplicity, we denote by BHCFL the union $\bigcup_{k \in \mathbb{N}^+} \text{CFL}_k$. Notice that $\text{CFL} \neq \text{CFL}_2$ holds because $\text{co-CFL} \subseteq \text{CFL}_2$ and $\text{co-CFL} \notin \text{CFL}$.

Proposition 3.13 $\text{CFL}^\text{CFL}_m = \text{CFL}^\text{CFL(2)}_m = \text{NFA}^\text{CFL(2)}_m$.
For the proof of this proposition, the following notation is required. If \(M \) is an (oracle) npda, then \(\overline{M} \) denotes an (oracle) npda obtained from \(M \) simply by exchanging between accepting states and rejecting states.

Proof of Proposition 3.13 In this proof, we will demonstrate that (1) \(\text{CFL}_T^{\text{CFL}} \subseteq \text{CFL}_m^{\text{CFL}_m} \), (2) \(\text{CFL}_m^{\text{CFL}_m} \subseteq \text{NFA}_m^{\text{CFL}_m} \), and (3) \(\text{NFA}_m^{\text{CFL}_m} \subseteq \text{CFL}_T^{\text{CFL}} \). If all are proven, then the proposition immediately follows.

(1) We start with an arbitrary language \(L \) in \(\text{CFL}_T^{A} \) relative to a certain language \(A \) in \(\text{CFL} \). Take a \(T \)-reduction machine \(M \) reducing \(L \) to \(A \), and let \(M_A \) be an npda recognizing \(A \). Hereafter, we will build three new \(m \)-reduction machines \(N_1, N_2, N_3 \) to show that \(L \in \text{CFL}_m^{\text{CFL}_m} \). On input \(x \), the first machine \(N_1 \) tries to simulate \(M \) on \(x \) by running the following procedure. Along each query path, before \(M \) begins producing the \(i \)th query word on a query tape, \(N_1 \) guesses its oracle answer \(b_i \) (either 0 or 1) and writes it down onto its query tape. While \(M \) writes the \(i \)th query word \(y_i \), \(N_1 \) does the same but appends \(y_i \) to \(y_i \).

When \(M \) halts, \(N_1 \) produces a query word \(w \) of the form \(b_1y_1b_2y_2\cdots b_ky_k \), where \(k \in \mathbb{N} \).

The second machine \(N_2 \) works as follows. On input \(w \) of the above form, \(N_2 \) does the following procedure. On reading \(b_i \), if \(b_i = 1 \), then \(N_2 \) simulates \(M_A \) on \(y_i \). If \(b_i = 0 \), then \(N_2 \) skips \(y_i \). Whenever \(M_A \) enters a rejecting state, \(N_2 \) also enters a rejecting state and halts. The third machine \(N_3 \) takes input \(w \) and, if \(b_i = 0 \), then \(N_3 \) simulates \(M_A \) on \(y_i \); otherwise, \(N_2 \) skips \(y_i \). It is not difficult to verify that \(N_1 \) \(m \)-reduces \(L \) to \(L(N_2) \cup L(N_3) \). This leads to a conclusion that \(L \in \text{CFL}_m^{\text{CFL} \cup \text{co-CFL}} \leq \text{CFL}_m^{\text{CFL}_m} \).

(2) Note that \(\text{CFL}_m \) is \(k \)-extendible. Proposition 3.5 implies that \(\text{CFL}_m \subseteq \text{NFA}_m^{\text{CFL}_m} \). Since \(\text{DCFL} \subseteq \text{co-CFL} \), it follows that \(\text{DCFL} \cap \text{CFL}_m \subseteq \text{co-CFL} \cap \text{CFL} \subseteq \text{co-CFL} \cap \text{CFL} = \text{CFL}_m^{\text{CFL}_m} \). The last term clearly equals \(\text{co-CFL} \cap \text{CFL} = \text{CFL}_m \). Thus, we conclude that \(\text{CFL}_m^{\text{CFL}_m} \subseteq \text{NFA}_m^{\text{CFL}_m} \).

(3) Choose an oracle \(A \) in \(\text{CFL} \) and consider any language \(L \) in \(\text{CFL}_m^{A} \). Furthermore, take two languages \(A_1, A_2 \in \text{CFL} \) for which \(A = A_1 \cap \overline{A}_2 \). Let \(M \) be an oracle npda that recognizes \(A \) relative to \(A \). Notice that \(M \) has no stack. We will define an oracle npda \(N \) as follows. On input \(x \), \(N \) first marks \(0 \) on its query tape and start simulating \(M \) on \(x \). Whenever \(M \) tries to write a symbol \(\sigma \) on its query tape, \(N \) writes \(\sigma \) down on a query tape and simultaneously copies it into a stack. After \(M \) halts with a query word, say, \(w \), \(N \) makes the first query with the query word \(0w \). If its oracle answer is \(0 \), then \(N \) rejects the input. Subsequently, \(N \) writes \(1 \) on the query tape (provided that the tape automatically becomes blank), pops the stored string \(w \) from the stack, and copies it to the query tape. After making the second query with \(1w \), if its oracle answer equals \(1 \), then \(N \) rejects the input. When \(N \) has not entered any rejecting state, then \(N \) finally accepts the input. The corresponding oracle \(B \) is defined as \(\{0w \mid w \in A_1 \} \cup \{1w \mid w \in A_2 \} \). It is easy to see that \(x \in L \) if and only if \(N \) accepts \(x \) relative to \(B \). Since \(\text{CFL} \) is closed under reversal (see, e. g., [7]), \(\{0w \mid w \in A_2 \} \) is context-free, and thus \(B \) is in \(\text{CFL} \). We then conclude that \(L \in \text{CFL}_m^{B} \subseteq \text{CFL}_T^{\text{CFL}} \). \(\square \)

As another typical reducibility, we are focused on nondeterministic truth-table reducibility. Notice that an introduction of nondeterministic truth-table reducibility to context-free languages does not seem to be as obvious as that of nondeterministic Turing reducibility. Ladner, Lynch, and Selman [10] first offered such a notion for NP. Another definition, which is apparently weaker than that of Ladner et al., was proposed by Book, Long, and Selman [3] as well as Book and Ko [2]. The following definition follows a spirit of Ladner et al. [10] with a slight twist for its evaluator.

Letting \(k \in \mathbb{N}^+ \), a language \(L \) is in \(\text{CFL}_m^{ktt} \), if there are a language \(B \in \text{REG} \) and an npda \(N \) with \(k \)-write-only output tapes besides a read-only input tape such that, for any input string \(x \), (1) \(\text{ACC}_m(x) \neq 0 \), (2) along every computation path \(p \in \text{ACC}_N(x) \), \(N \) produces a string \(y_p \in \Gamma^* \) on the \(i \)th write-only query tape for each index \(i \in [k] \), (3) from a vector \((y_p^{(1)}, y_p^{(2)}, \ldots, y_p^{(k)}) \) of query words, we generate a \(k \)-bit string \(z_p = \chi_{\gamma}^{(k)}(y_p^{(1)}, y_p^{(2)}, \ldots, y_p^{(k)}) \in \{0,1\}^k \), and (4) \(x \) is in \(L \) if and only if \(z_p \) is in \(B \) for an appropriate computation path \(p \in \text{ACC}_N(x) \). Here, the set \(B \) is called a truth table for \(A \). For convenience sake, we often treat \(B \) as a function defined as \(B(x, y) = 1 \) if \([x] \in \overline{B} \) and \(B(x, y) = 0 \) otherwise. In the end, we set \(\text{CFL}_m^{A}_{ktt} \) to be the union \(\bigcup_{k \in \mathbb{N}^+} \text{CFL}_m^{ktt} \).

It is clear that \(\text{CFL}_m^{A}_{ktt} \subseteq \text{CFL}_m^{A} \). By flipping the outcome (accepting or rejecting) of a computation generated by each dfa that computes a truth-table, we obtain \(\text{CFL}_m^{A}_{ktt} \subseteq \text{CFL}_m^{A} \). In symmetry, \(\text{CFL}_m^{A}_{ktt} \subseteq \text{CFL}_m^{A} \) also holds. Therefore, the statement given below holds.

Lemma 3.14 For every language \(A \) and index \(k \geq 1 \), \(\text{CFL}_m^{A} \cup \text{CFL}_m^{A}_{ktt} \subseteq \text{CFL}_m^{A}_{ktt} = \text{CFL}_m^{A} \).

Unlike NP, we do not know whether \(\text{CFL}_m^{CFL} \subseteq \text{CFL}_m^{CFL} \) holds. This is mainly because of a restriction
of npda’s memory use. It may be counterintuitive that Turing reducibility cannot be powerful enough to simulate truth-table reducibility. On the contrary, the following inclusion holds in a case of a constant number of queries.

Lemma 3.15 Let \(k \in \mathbb{N}^+ \) be any constant. For every language \(A \), \(\text{CFL}^A_{kTT} \subseteq \text{CFL}^A_{ktt} \) holds.

Proof. Let \(M \) be any \(T \)-reduction machine that witnesses the membership \(L \in \text{CFL}^A_{ktt} \). To show that \(L \subseteq \text{CFL}^A_{ktt} \), we will build another \(btt \)-reduction machine \(N \) that is equipped with \(k \) query tapes. This oracle npda \(N \) works as follows. On input \(x \), it simulates \(M \) on the input \(x \). When \(M \) tries to write the \(i \)th query word, say, \(y_i \), \(N \) produces \(y_i \) on its \(i \)th query tape. The machine \(M \) then guesses an oracle answer \(a_i \in \{0,1\} \) for \(y_i \) (without any actual query) and remembers the value \(a_i \) within the machine’s finite control unit. After \(M \) halts in an accepting state, \(N \) makes \(k \) queries to \(A \). Note that \(M^A \) accepts \(x \) if and only if
\[
\chi^A_k(y_1, y_2, \ldots, y_k) \text{ along a certain accepting computation path. Thus, } N \text{ btt-reduces } L \text{ to } A \text{ with only } k \text{ queries.}
\]

Theorem 3.16 \(\text{CFL}^m_{btt} = \text{CFL}^btt = \text{NFA}^btt = \text{CFL}^btt = \text{CFL}^btt \).

Before proving this theorem, we will present a characterization of BHCF in terms of bounded-truth-table reductions. For this purpose, we need to introduce a new relativization of DFA. A language \(L \) is in \(\text{DFA}^m_{btt} \) if there exists an oracle dfa \(M \) that produces \(k \) query words \(y_1, y_2, \ldots, y_k \) such that, for every string \(x \), \(x \in L^A \) if and only if \(B(x, \chi^A_k(y_1, y_2, \ldots, y_k)) = 1 \). We set \(\text{DFA}^m_{btt} = \bigcup_{k \in \mathbb{N}^+} \text{DFA}^A_{ktt} \) and \(\text{DFA}^btt = \bigcup_{A \in C} \text{DFA}^A_{btt} \) for any language family \(C \).

Lemma 3.17 \(\text{BHCF} = \text{DFA}^btt \).

Proof. We split the lemma into the following two separate claims: (1) \(\text{BHCF} \subseteq \text{DFA}^btt \) and (2) \(\text{DFA}^btt \subseteq \text{BHCF} \).

(1) Our goal is to prove by induction on \(k \in \mathbb{N}^+ \) that \(\text{CFL}^k \subseteq \text{DFA}^m_{btt} \). From this assertion, it follows that \(\text{BHCF} = \bigcup_{k \in \mathbb{N}^+} \text{CFL}^k \subseteq \bigcup_{k \in \mathbb{N}^+} \text{DFA}^A_{ktt} = \text{DFA}^btt \).

As for the base case \(k = 1 \), it is clear that \(\text{CFL} \subseteq \text{DFA}^1_{btt} \subseteq \text{DFA}^1_{btt} \). Now, let us concentrate on the induction step \(k \geq 2 \). Meanwhile, we assume that \(k \) is even. Since \(\text{CFL}_k = \text{CFL}_{k-1} \cup \text{co-CFL} \), take two languages \(L_1 \in \text{CFL}_{k-1} \) and \(L_2 \in \text{co-CFL} \) and assume that \(L = L_1 \cap L_2 \). Assume also that an npda \(M_2 \) computes \(T_2 \). Since \(L_1 \in \text{DFA}^A_{(k-1)tt} \) by our induction hypothesis, there is an oracle dfa, say, \(M_1 \) that recognizes \(L_1 \) relative to oracle \(A \) in \(\text{CFL} \). On input \(x \), \(M_1 \) produces \((k-1) \)-tuple \((y_1, y_2, \ldots, y_{k-1}) \) on its query tape and it satisfies that \(B(x, \chi^A_{k-1}(y_1, y_2, \ldots, y_{k-1})) = 1 \) if and only if \(x \) is in \(L_1 \). We want to define a new machine \(N \) as follows. By simulating \(M_1 \), \(N \) generates \(k-1 \) query words \((y_1, y_2, \ldots, y_{k-1}) \) as well as a new query word \(x_2 \), where \(\bar{x} \) is a fresh symbol. Moreover, we define \(A' = A \cup \{x \mid M_2 \text{ accepts } x \} \), which is obviously in \(\text{CFL} \). Now, we define \(B' \) as \(\{x, b_1 b_2 \cdots b_{k-1} b \mid (x, b_1 b_2 \cdots b_{k-1} b) \in B \land b_k = 0 \} \). Clearly, \(B' \) is regular since so is \(B \). It also holds that \(B'(x, \chi^A_{k-1}(y_1, y_2, \ldots, y_{k-1}, x)) = 1 \) if and only if \(B(x, \chi^A_{k-1}(y_1, y_2, \ldots, y_{k-1})) = 1 \) and \(x \in T_2 \). Therefore, \(L \) belongs to \(\text{CFL}^k_{btt} \subseteq \text{CFL}^k_{btt} \).

The case of odd \(k \) is proved by slightly modifying the above proof.

(2) We will prove that, for any index \(k \in \mathbb{N}^+ \), \(\text{DFA}^m_{btt} \subseteq \text{CFL}_{k^{2k+1}} \). We begin with the case where \(k = 1 \). Assume that \(L \in \text{DFA}^A_1 \) for a certain language \(A \) in \(\text{CFL} \). Let \(M_1 \) be an oracle npda that recognizes \(L \) relative to \(A \) and let \(B \) be a truth-table used for \(M_1 \). Moreover, let \(M_2 \) be an npda that recognizes \(A \). Without loss of generality, we assume that \(M_2 \) makes no \(\lambda \)-move. A new machine \(N_1 \) works in the following way. Given any input \(x \), \(N_1 \) first checks if \(B(x, 1) = 1 \). Simultaneously, \(N_1 \) simulates \(M_1 \) on \(x \). When \(M_1 \) tries to write a symbol, say, \(b \), on the \(i \)th query tape, \(N_0 \) simulates one step of \(M_2 \)'s computation during the scanning of \(b \). Similarly, we define \(N_0 \) except that (i) it checks if \(B(x, 0) = 1 \) and (ii) if \(M_2 \) enters an accepting state (resp., a rejecting state), then \(N_0 \) enters a rejecting state (resp., an accepting state). It is important to note that this machine \(N_0 \) is co-nondeterministic, and thus \(L(N_0) \) is in \(\text{co-CFL} \), whereas \(L(N_1) \) belongs to \(\text{CFL} \). It also follows that \(L = L(N_0) \cup L(N_1) \). Hence, \(L \) belongs to \(\text{CFL} \lor \text{co-CFL} \), which is included in \(\text{CFL}_{k} \subseteq \text{CFL}_{k} \), as requested.

For the case \(k \geq 2 \), we need to generalize the above argument. Assume that \(L \in \text{DFA}^A_{kTT} \) for a certain language \(A \) in \(\text{CFL} \). Let \(M_1 \) be a \(kTT \)-reduction machine that reduces \(L \) to \(A \) and let \(M_2 \) be an npda recognizing \(A \). Here, we assume that \(M_2 \) makes no \(\lambda \)-move. In the following argument, we fix a string \(b = b_1 b_2 \cdots b_k \in \{0,1\}^k \). Letting \(\text{CFL}^{(0)}_{2} = \text{co-CFL}_{2} \) and \(\text{CFL}^{(1)}_{2} = \text{CFL}_{2} \), we define \(\text{CFL}^{(b_1 b_2 \cdots b_k)}_{2} \) as an abbreviation of \(\text{CFL}^{(b_1)}_{2} \lor \text{CFL}^{(b_2)}_{2} \lor \cdots \lor \text{CFL}^{(b_k)}_{2} \).
Now, we will introduce two types of machines $N_{b,0}$ and $N_{b,1}$. The machine $N_{b,1}$ takes input x and checks if $B(x, b) = 1$. At the same time, $N_{b,0}$ guesses a number $i \in [k]$ and simulates M_1 on x if $b_i = 1$ (and, otherwise, it enters an accepting state instantly). Whenever M_1 tries to write a symbol, say, σ, on its own query tape, $N_{b,1}$ simulates one step of M_2’s computation corresponding to the scanning of σ. As for the other machine $N_{b,0}$, it simulates M_1 on x if $b_i = 0$ (and accepts instantly otherwise). Note that $N_{b,0}$ is a co-nondeterministic machine. For each index $i \in \{0, 1\}$, let $A_{b,i}$ be composed of strings accepted by $N_{b,i}$ and we set $A_b = A_{b,0} \cup A_{b,1}$, which obviously belongs to CFL. It is not difficult to show that $L = \bigcup_{b \in \{0, 1\}^k} A_b$; thus, L is in $\bigvee_{b \in \{0, 1\}^k} \text{CFL}(b)$, which equals $\bigvee_{b \in \{0, 1\}^k} (\bigvee_{i=0}^{k^2-1} \text{co-CFL})$. By a simple calculation, the last term coincides with $\bigvee_{i=0}^{k^2-1} \text{co-CFL} \subseteq \text{CFL} \cap \text{CFL}$, it follows that $\bigvee_{i=0}^{k^2-1} \text{co-CFL} \subseteq \bigvee_{i=1}^{k^2-1} (\text{CFL} \cap \text{CFL}) = (\bigvee_{i=1}^{k^2-1} \text{CFL}) \cap (\bigvee_{i=1}^{k^2-1} \text{CFL}) = \bigvee_{i=1}^{k^2-1} \text{CFL}$. Therefore, L belongs to $\bigvee_{i=1}^{k^2-1} \text{CFL}$. Note that $\text{CFL}_{k^2+i+1} = \bigvee_{i=1}^{k^2-1} \text{CFL}$ by Claim 3. We thus conclude that L is in CFL_{k^2+i+1}.

Finally, we will present the proof of Theorem 3.16 for this proof, we need to introduce the third simulation technique of encoding a computation path of an npda into a string. Notice that a series of nondeterministic choices made by an npda M uniquely specifies which computation path the machine has followed. We encode such a series into a single string. Let δ be a transition function of M. First, we rewrite δ in the following way: If δ has an entry of the form $(q, \sigma, \tau, \eta) = \{(p_1, \xi_1, \zeta_1), (p_2, \xi_2, \zeta_2), \ldots, (p_m, \xi_m, \zeta_m)\}$, then we split it into two transitions: $(q, \sigma, \tau, \eta) = (p_1, \xi_1, \zeta_1)$ and $(q, \sigma, \tau, \eta) = (p_2, \xi_2, \zeta_2)$. Let D be the collection of all such new transitions. Next, we index all such new transitions using numbers in the integer interval $\{D \mid D \in [1, 2, \ldots, |D|]\}$. A series of transitions can be expressed as a series of those indices, which is regarded as a string over the alphabet $\Sigma = \{D \mid D \in [1, 2, \ldots, |D|]\}$. We call such a string an encoding of a computation path of M.

Proof of Theorem 3.16. In this proof, we will prove three inclusions: $\text{CFL}_{btt} \subseteq \text{NFA}_{btt} \subseteq \text{CFL}_{m}(\text{DFA}_{btt}) \subseteq \text{CFL}_{btt}^\dagger$. Obviously, these inclusions together ensure the desired equations given in the theorem.

Claim 5 $\text{CFL}_{btt} \subseteq \text{NFA}_{btt}^\dagger$.

Proof. Fix $k \in \mathbb{N}^+$ and let L be any language in CFL_{btt}^\dagger, for a certain oracle $A \in \text{CFL}$. For this L, there is an oracle npda, M, that recognizes L using A as an oracle. We want to define another machine N by modifying M_1 in a similar way presented in the proof of Claim 2. On input x, N simulates M_1 on x using $k + 1$ query tapes as follows. When M_1 tries to push $\sigma_1\sigma_2 \cdots \sigma_n$ in place of a certain symbol on the top of a stack, N guesses this symbol, say, σ, and then writes down $\sigma'\sigma_1\cdots\sigma_n$ on the $k + 1$st query tape. If M_1 pops a certain symbol, then N first guesses this symbol, say, σ, and writes down σ' on the $k + 1$st query tape. Finally, we define B' as the set $\{(x, y_1, y_2, \cdots, y_k) \mid B(x, y_1, y_2, \cdots, y_k) = 1\}$. Associated with N’s $k + 1$st query, we choose an appropriate language C in DYN^C. Define $A' = A \cup C$, assuming that C is based on a different alphabet. Note that x is in L if and only if $B'(x, \chi^k_{k+1}(x)) = 1$. Hence, L belongs to NFA_{btt}^\dagger, which is a subclass of NFA_{btt}.

Claim 6 $\text{NFA}_{btt} \subseteq \text{CFL}_{m}(\text{DFA}_{btt})$.

Proof. Let $k \geq 1$. Assume that $L \in \text{NFA}_{btt}^\dagger$ with a certain oracle $A \in \text{CFL}$. Let M be a tt-reduction machine that reduces L to A. To show that $L \in \text{CFL}_{m}(\text{DFA}_{btt})$, we define an oracle npda N_1 as follows. Given any input x, N_1 simulates M by writing a string that encodes a computation path y of M. At any time when M tries to write any symbol on its own query tapes, N_1 simply ignores the symbol and continues the above simulation. Next, we define N_2 as follows. On input of the form $[y_0]$, N_2 deterministically simulates M on x by following a series of nondeterministic choices specified by y, and N_2 produces k query strings as M does. Note that N_1 m-reduces L to $L(N_2, A)$ and that $L(N_2, A)$ is in DFA_{btt}. Therefore, L belongs to $\text{CFL}_{m}(\text{DFA}_{btt})$.

Claim 7 $\text{CFL}_{m}(\text{DFA}_{btt}) \subseteq \text{CFL}_{btt}^\dagger$.

Proof. Take any oracle $A \in \text{DFA}_{btt}$ and assume that $L \in \text{CFL}_{btt}^\dagger$. Let M_1 be an m-reduction machine reducing L to A. Fixing $k \in \mathbb{N}^+$, we assume that M_2 is a tt-reduction machine that reduces A to a certain language B in CFL. Now, we define N as follows. On input x, N simulates M_1 on x. When M_1
writes a symbol, say, b. N simulates one or more steps (including λ-moves) of M_2’s computation during the scanning of b. Finally, N outputs M_2’s k query strings. It holds that N κtt-reduces L to B, and thus L is in $\text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}_{\text{ REG}}$. \(\square\)

We have just proven that $\text{CFL}_{\kappa\text{tt}} = \text{NFA}_{\kappa\text{tt}} = \text{CFL}_m(\text{DFA}_{\kappa\text{tt}})$. By Lemma 3.17, the last term equals $\text{CFL}_{\text{ BHCFL}}$. This completes the proof. \(\square\)

3.3 Languages That are Low for CFL

We will briefly discuss a notion of lowness, which concerns oracles that contain little information to help underlying oracle machines improve their recognition power. More precisely, consider a language family \mathcal{C} that is many-one relativizable. A language A is called many-one low for \mathcal{C} if $C_A \subseteq \mathcal{C}$ holds. We define $\text{low}_\mathcal{C}$ to be the set of all languages that are low for \mathcal{C}; that is, $\text{low}_\mathcal{C} = \{ A \mid C_A \subseteq \mathcal{C} \}$. Similarly, we define $\text{low}_{\kappa\text{tt}} \mathcal{C}$ and $\text{low}_T \mathcal{C}$ as a collection of all languages that are “κtt low for \mathcal{C}” and “Turing low for \mathcal{C},” respectively.

Languages in REG, when playing as oracles, have no power to increase the computational complexity of relativized CFL.

Lemma 3.18 $\text{CFL}_{\text{REG}} = \text{CFL}_{\kappa\text{tt}} = \text{CFL}_T$.

Proof. Since $\text{CFL} \subseteq \text{CFL}_{\text{REG}}$ and $\Sigma^* \in \text{REG}$ for $\Sigma = \{0, 1\}$, it follows that $\text{CFL} \subseteq \text{CFL}_{\text{REG}}$. Moreover, by Lemmas 3.12 and 3.14, it holds that $\text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}_{\text{REG}}$ and $\text{CFL}_T \subseteq \text{CFL}_{\text{REG}}$. To show that $\text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}$, take any language L in $\text{CFL}_{\kappa\text{tt}}$ for a certain index $k \in \mathbb{N}^+$ and a certain language $A \in \text{REG}$. Let M be an oracle npda equipped with two write-only query tapes that κtt-reduces L to A. In addition, let N denote a dfa recognizing A. We aim at proving that $L \in \text{CFL}$. Let us consider the following algorithm. We start simulating M on each input without using any write-only tapes. When M tries to write down a k-tuple of symbols (s_1, s_2, \ldots, s_k), we instead simulate N using only inner states. Note that we do not need to keep on the query tapes any information on (s_1, s_2, \ldots, s_k). Along each computation path, we accept the input if both M and N enter accepting states. Since the above algorithm requires no query tapes, it can be implemented by a certain npda. Moreover, since the algorithm correctly recognizes L, we conclude that L is in CFL.

Based on a similar idea, we can prove that $\text{CFL}_T \subseteq \text{CFL}$. \(\square\)

Lemma 3.19

1. $\text{REG} \subseteq \text{low}_T \text{CFL} \cap \text{low}_{\kappa\text{tt}} \text{CFL} \subseteq \text{low}_T \text{CFL} \cup \text{low}_{\kappa\text{tt}} \text{CFL} \subseteq \text{low}_m \text{CFL} \subseteq \text{CFL}$.
2. $\text{low}_{\kappa\text{tt}} \text{CFL} \subseteq \text{CFL} \cap \text{co-CFL}$.

Proof. (1) From Lemma 3.13, it holds that $\text{CFL}_{\text{REG}} = \text{CFL}_{\kappa\text{tt}} = \text{CFL}_T$. Thus, it follows that $\text{REG} \subseteq \text{low}_T \text{CFL} \cap \text{low}_{\kappa\text{tt}} \text{CFL}$. The third inclusion comes from the fact that $\text{CFL}_A \subseteq \text{CFL}_{\kappa\text{tt}} \cap \text{CFL}_T$ for any oracle A. The last inclusion is shown as follows. Take any language A in $\text{low}_m \text{CFL}$. This means that $\text{CFL}_A \subseteq \text{CFL}_T$. Since A belongs to CFL_A, it holds that $A \in \text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}_T$. Next, we wish to show that $\text{CFL} \neq \text{low}_m \text{CFL}$. If $\text{CFL} = \text{low}_m \text{CFL}$ holds, we obtain $\text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}$.

Since $\text{CFL}(2) \subseteq \text{CFL}_{\kappa\text{tt}}$ by Lemma 3.11, we immediately conclude $\text{CFL}(2)$. This is indeed a contradiction against the well-known result that $\text{CFL}(2) \neq \text{CFL}$. Thus, it must hold that $\text{low}_m \text{CFL} \neq \text{CFL}$.

(2) For this inclusion, let us consider any language A in $\text{low}_{\kappa\text{tt}} \text{CFL}$; that is, $\text{CFL}_{\kappa\text{tt}} \subseteq \text{CFL}$. Since $A, \overline{A} \in \text{CFL}_{\kappa\text{tt}}$, it follows that $A, \overline{A} \in \text{CFL}$. Thus, A must belong to $\text{CFL} \cap \text{co-CFL}$.

For the last proper inclusion, we assume that $\text{low}_{\kappa\text{tt}} \text{CFL} = \text{CFL} \cap \text{co-CFL}$. Thus, $\text{CFL}_{\kappa\text{tt}} \cap \text{co-CFL} = \text{CFL}$. This implies $\text{CFL}_m \subseteq \text{CFL}$, because $\text{CFL}_m \subseteq \text{CFL}_{\kappa\text{tt}}$ and $\text{DCFL} \subseteq \text{CFL} \cap \text{co-CFL}$. However, this is a contradiction because $\text{CFL}_m \not\subseteq \text{CFL}_{\kappa\text{tt}}$ by Proposition 3.2 and Lemma 3.3. \(\square\)

It is not known whether all inclusion relations in the lemma are actually proper.

4 The CFL Hierarchy

Nondeterministic polynomial-time Turing reductions have been used to build the polynomial hierarchy, each level of which is induced from its lower level by applying the reductions. With use of our Turing CFL-reducibility defined in Section 3.2, a similar construction applied to CFL introduces a unique hierarchy,
which we call the CFL hierarchy. We will explore fundamental properties of this new hierarchy throughout this section.

4.1 Turing CFL-Reducibility and a Hierarchy

Applying Turing CFL-reductions to CFL level by level, we can build a useful hierarchy, called the CFL hierarchy, whose kth level consists of three language families $\Sigma_k^{\text{CFL}}, \Pi_k^{\text{CFL}}$, and Δ_k^{CFL}. To be more precise, for each level $k \geq 1$, we set $\Delta_k^{\text{CFL}} = \Pi_k^{\text{CFL}} = \Sigma_k^{\text{CFL}}$. Moreover, the fact that $\Sigma_k^{\text{CFL}} \subseteq \Pi_k^{\text{CFL}} \subseteq \Delta_k^{\text{CFL}}$ is in co-(CFL)

T is shown to belong to CFL

Example 4.1 We have seen in Example 3.6, the language $\text{Dup}_2 = \{xx \mid x \in \{0,1\}^*\}$. Moreover, since $\text{CFL}_m^A \subseteq \text{CFL}_m^B$ for any oracle A, every language in CFL_m^\ast belongs to $\text{CFL}_2^\ast = \Sigma_2^\ast$. The first machine M_1 nondeterministically partitions a given input 0^k into (y_1, y_2, \ldots, y_n) and produces $w = y_1 y_2 \cdots y_n$ on a query tape by appending a fresh symbol $\#$. During this process, M_1 pushes $u = y_1 \#^k$ to a stack, where $\#$ is a fresh symbol. In the end, M_2 accepts w or w in the query tape. In receiving $w \#u$ as an input, the second machine M_2 checks if $y_{2i-1} = y_{2i}$ for $i = 1, 2, \ldots$. At any moment when the checking process fails, M_2 enters a rejecting state and halts. Next, M_2 nondeterministically partitions y_1 into (z_1, z_2, \ldots, z_n) and in 1^\ast into (x_1, x_2, \ldots, x_d) and then it produces $w \#u \#v'$ on the query tape, where $u' = z_1 z_2 \cdots z_c$ and $v' = x_1 x_2 \cdots x_d$. In receiving $w \#u \#v'$, the third machine M_3 checks if $y_{2i+1} = y_{2i+1}$ for $i = 1, 2, \ldots$ Whenever this process fails, M_3 instantly halts in a rejecting state. Next, M_3 nondeterministically chooses a bit b. If $b = 0$, then M_3 checks if $z_{2i-1} = z_{2i}$ and also $x_{2i-1} = x_{2i}$ for $i = 1, 2, \ldots$; on the contrary, if $b = 1$, then M_3 checks if $z_{2i} = z_{2i+1}$ and $x_{2i} = x_{2i+1}$ for $i = 1, 2, \ldots$. If this checking process is successful, then M_3 enters a rejecting state; otherwise, it enters an accepting state. By combining those three machines, MulPrim is shown to belong to $\text{CFL}_m^{\text{co-CFL}}$, which equals Σ_3^{CFL}.

Several basic relationships among the components of the CFL hierarchy are exhibited in the next lemma. More structural properties will be discussed later in Section 4.2.

Lemma 4.2 Let k be any integer satisfying $k \geq 1$.

1. $\text{CFL}_T(\Sigma_k^{\text{CFL}}) = \text{CFL}_T(\Pi_k^{\text{CFL}})$ and $\text{DCFL}_T(\Sigma_k^{\text{CFL}}) = \text{DCFL}_T(\Pi_k^{\text{CFL}})$.
2. $\Sigma_k^{\text{CFL}} \cup \Pi_k^{\text{CFL}} \subseteq \Delta_k^{\text{CFL}} \subseteq \Sigma_{k+1}^{\text{CFL}} \cap \Pi_{k+1}^{\text{CFL}}$.
3. $\text{CFL} \subseteq \text{DSPACE}(O(n))$.

Proof. (1) This is a direct consequence of Lemma 3.12 since $\Pi_k^{\text{CFL}} = \text{co-}\Sigma_k^{\text{CFL}}$. The case of Turing DCFL-reduction is similar in essence. (2) Let $k \geq 1$. Since $A \subseteq \text{DCFL}_k^A$ holds for any oracle A, it follows that $\Sigma_k^{\text{CFL}} \subseteq \text{DCFL}_T(\Sigma_k^{\text{CFL}}) = \Delta_k^{\text{CFL}}$. Similarly, we obtain $\Pi_k^{\text{CFL}} \subseteq \text{DCFL}_T(\Pi_k^{\text{CFL}}) = \text{DCFL}_T(\Sigma_k^{\text{CFL}}) = \Delta_k^{\text{CFL}}$, where the first equality comes from (1). Moreover, since $\text{DCFL}_k^A \subseteq \text{CFL}_k^A$ for all oracles A, it follows that $\Delta_k^{\text{CFL}} = \text{DCFL}_T(\Sigma_k^{\text{CFL}}) \subseteq \text{DCFL}_T(\Sigma_k^{\text{CFL}}) = \Sigma_k^{\text{CFL}} \cap \Pi_k^{\text{CFL}}$. Finally, using the fact that $\text{DCFL}_k^A = \text{co-}\text{DCFL}_k^A$ for any oracle A, we easily obtain $\Delta_k^{\text{CFL}} = \text{co-}\Delta_k^{\text{CFL}} \subseteq \text{co-}\Sigma_k^{\text{CFL}} \cap \Pi_k^{\text{CFL}}$. (3) Note that CFL belongs to $\text{DSPACE}(O(\log n))$ which is obviously included in $\text{DSPACE}(O(n))$. Moreover, the fact that A is in $\text{DSPACE}(O(n))$ leads to $\text{CFL} \subseteq \text{DSPACE}(O(n))$, implying the desired containment $\Sigma_k^{\text{CFL}} \subseteq \text{DSPACE}(O(n))$ for every index $k \in \mathbb{N}^+$.

Hereafter, we will explore fundamental properties of our new hierarchy. Our starting point is a closure property under substitution. A substitution on alphabet Σ is actually a function $s : \Sigma \rightarrow \mathcal{P}(\Sigma^*)$ and this function is extended from the finite domain Σ into the infinite domain Σ^* as follows. Given a string $x = x_1 x_2 \cdots x_n$, where each x_i is a symbol in Σ, we set $s(x)$ to be the language $\{y_1 y_2 \cdots y_n \mid i \in [n], y_i \in s(x_i)\}$. 15
Moreover, for any language $A \subseteq \Sigma^*$, we define $s(A) = \bigcup_{x \in A} s(x)$. Each language family Σ_k^{CFL} is closed under substitution in the following sense.

Lemma 4.3 (substitution property) Let $k \in \mathbb{N}^+$ and let s be any substitution on alphabet Σ satisfying $s(\sigma) \in \Sigma_k^{CFL}$ for each symbol $\sigma \in \Sigma$. For any language A over Σ, if $L \in \Sigma_k^{CFL}$, then $s(L)$ is also in Σ_k^{CFL}.

Proof. Since the basis case $k = 1$ is well-known to hold (see, e.g., [4]), it suffices to assume that $k \geq 2$. For each symbol σ in Σ, take an oracle npda M_σ that recognizes $s(\sigma)$ relative to a certain language A_σ in Π_k^{CFL}. In addition, let M denote an oracle npda recognizing L relative to a certain oracle $A \in \Sigma_k^{CFL}$. For simplicity, we assume that, when each oracle npda halts, it must empty its own stack (except for its bottom marker). Consider a new oracle npda N that behaves in the following manner. On input w, N nondeterministically splits w into (y_1, y_2, \ldots, y_n) satisfying $w = y_1 y_2 \cdots y_n$. Sequentially, at stage $i \in [n]$, N guesses a symbol, say, $\sigma_i \in \Sigma$ and simulates using a stack one or more steps of M while reading σ_i. In the end of this simulation stage, N places a special marker $#$ on the top of the stack in order to share the same stack with M_σ_i. Next, N simulates M_σ_i on the input $\langle y_1, z \rangle$ using an empty portion of the stack, provided that $#$ is regarded a new bottom marker for M_σ_i. To make intact the saved data in the stack during this simulation of M_σ_i, whenever M_σ_i tries to remove $\#$, N instantly aborts the simulation and halts in a rejecting state. When M_σ_i queries a string, say, z_i, N instead produces $\sigma_i z_i$ on its query tape, where σ_i indicates which oracle is targeted. If all npda’s M_σ_i enter certain accepting states, then N accepts w; otherwise, it rejects w.

Finally, an oracle B is defined as the set of strings of the form σz for which z is in A_σ, where $\sigma \in \Sigma$. It can be observed that w is in $s(L)$ if and only if N accepts w relative to B. Moreover, since all A_σ’s are in Σ_{k-1}^{CFL}, the set B is also in Σ_{k-1}^{CFL}. Therefore, $s(L)$ belongs to Σ_k^{CFL}.

Once the closure property under substitution is established for Σ_k^{CFL}, other well-known closure properties (except for reversal and inverse homomorphism) follow directly.

Lemma 4.4 For each index $k \in \mathbb{N}^+$, the family Σ_k^{CFL} is closed under the following operations: concatenation, union, reversal, Kleene closure, homomorphism, and inverse homomorphism.

Proof. When $k = 1$, Σ_1^{CFL} (CFL) satisfies all the listed closure properties (see, e.g., [7][11]). Hereafter, we assume that $k \geq 2$. All the closure properties except for reversal and inverse homomorphism follow directly from Lemma 4.3. For completeness, however, we will include the proofs of those closure properties. The remaining closure properties require different arguments.

[**union**] Given two languages A_1 and A_2 in Σ_k^{CFL}, we define $L = \{1, 2\}$ and take a substitution s satisfying $s(i) = A_i$ for each $i \in \{1, 2\}$. Since $s(L) = A_1 \cup A_2$, Lemma 4.3 implies that $s(L)$ belongs to Σ_k^{CFL}.

[**concatenation**] For any languages $A_1, A_2 \in \Sigma_k^{CFL}$, we set $L = \{12\}$ and define $s(1) = A_1$ and $s(2) = A_2$. Since $s(L) = \{xy \mid x \in A_1, y \in A_2\}$, we apply Lemma 4.3 to $s(L)$ and obtain the desired containment $s(L) \in \Sigma_k^{CFL}$.

[**Kleene closure**] Given any language A in Σ_k^{CFL}, we define $s(1) = A$ and $L = \{1\}^*$, which obviously imply $s(L) = A^*$. Now, we apply Lemma 4.3 and then obtain the desired membership $s(L) \in \Sigma_k^{CFL}$.

[**homomorphism**] This is trivial since a homomorphism is a special case of a substitution.

[**inverse homomorphism**] Let Σ and Γ be two alphabets and take any language A in Σ_k^{CFL} over Σ and any homomorphism h from Σ to Γ^*. Our goal is to show that $h^{-1}(A)$ is in Σ_k^{CFL}. Let M be an oracle npda that recognizes A relative to an oracle, say, B in Σ_k^{CFL}. Now, we will construct another oracle npda N. Given any input $x = x_1 x_2 \cdots x_n$ of length n, N applies h symbol by symbol. On reading x_i, N simulates several steps (including λ-moves) of M’s computation conducted during the scanning of $h(x_i)$. If N accepts x using B as an oracle, then the string $h(x) = h(x_1) \cdots h(x_n)$ is in A; otherwise, $h(x)$ is not in A. Thus, $h^{-1}(A)$ belongs to Σ_k^{CFL}.

[**reversal**] This proof proceeds by induction on $k \in \mathbb{N}^+$. As noted before, it suffices to show the induction step $k \geq 2$. Assume that $A \in \Sigma_k^{CFL}$ and let M be an oracle npda that recognizes A relative to a certain oracle $B \in \Sigma_{k-1}^{CFL}$. We aim at proving that the reversal $A^R = \{x^R \mid x \in A\}$ also belongs to Σ_k^{CFL}. Now, we will construct the desired reversing npda M_R. First, we conveniently set our new input instance is of the form $\$s^R\$. Intuitively, we need to "reverse" the entire computation of M from an accepting configuration with the head scanning $\$t$ to an initial configuration. To make the following description simple, we assume that M has only one accepting state that M empties its stack before entering a halting state.
A major deviation from a standard proof of the case \(k = 1 \) is the presence of a query tape and a process of querying a word and receiving its oracle answer. Now, let us consider a situation that \(M \) produces a query word \(y \) and receives its oracle answer \(b \). Since we try to reverse the entire computation of \(M \), conceptually, we need to design \(M_R \) to (i) receive the oracle answer \(b \) from an oracle and then (ii) produce the reversed word \(y^R \) on the query tape. However, we cannot know the oracle answer before actually making a query. To avoid this pitfall, we force \(M_R \) to guess \(b \) and start producing \(y^R \). After finishing \(y^R \), we force \(M_R \) to make an actual query. If its actual oracle answer equals \(b \), then \(M_R \) continues the simulation of \(M \); otherwise, \(M_R \) enters a rejecting state. To make this strategy work, we also need the reversed oracle \(B^R \) in place of \(B \). By the induction hypothesis, the set \(B^R \) is in \(\Sigma^{k-1}_{\text{BHCFL}} \). By formalizing the above argument, \(L^R \) can be shown to be recognized by \(M_R \) relative to \(B^R \).

In Example 5.1, we have seen that the two languages \(\text{Dup}_2 \) and \(\text{Dup}_3 \) are in \(\Sigma^2_{\text{CFL}} \). Since they are not context-free, these examples actually prove that \(\Sigma^1_{\text{CFL}} \neq \Sigma^2_{\text{CFL}} \). Since \(\text{co-CFL} \not\subseteq \text{CFL}/n \) [20] and \(\text{co-CFL} \subseteq \Sigma^2_{\text{CFL}} \), we obtain a slightly improved separation as shown in Proposition 4.3.

Proposition 4.5 \(\Sigma^2_{\text{CFL}} \not\subseteq \text{CFL}/n \).

Let us recall the language family \(\text{BHCFL} \), the Boolean hierarchy over \(\text{CFL} \). Here, we will show that the second level of the \(\text{CFL} \) hierarchy contains \(\text{BHCFL} \).

Proposition 4.6 \(\text{BHCFL} \subseteq \Sigma^2_{\text{CFL}} \cap \Pi^2_{\text{CFL}} \).

Proof. Obviously, \(\text{CFL}_1 \subseteq \Sigma^2_{\text{CFL}} \) holds. It is therefore enough to show that \(\text{CFL}_k \subseteq \Sigma^2_{\text{CFL}} \) for every index \(k \geq 2 \). For this purpose, we will present a simple characterization of the \(k \)-th level of the Boolean hierarchy over \(\text{CFL} \), despite the fact that \(\text{CFL} \wedge \text{CFL} \neq \text{CFL} \).

Claim 8 For every index \(k \geq 1 \), \(\text{CFL}_{2k} = \bigvee_{i \in [k]} \text{CFL}_i \) and \(\text{CFL}_{2k+1} = (\bigvee_{i \in [k]} \text{CFL}_i) \cup \text{CFL} \).

Proof. In [24, Claim 4], it is shown that \(\text{BCFL}_{2k} = \text{BCFL}_{2k-2} \cup \text{BCFL}_2 \) (and thus \(\text{BCFL}_{2k} = \bigvee_{i \in [k]} \text{BCFL}_i \)) follows for the family \(\text{BCFL} \) of bounded context-free languages. Essentially the same proof works to show that \(\text{CFL}_{2k} = \bigvee_{i \in [k]} \text{CFL}_2 \). Moreover, since \(\text{CFL}_{2k+1} = \text{CFL}_{2k} \cup \text{CFL} \) by the definition, we obtain \(\text{CFL}_{2k+1} = (\bigvee_{i \in [k]} \text{CFL}_2) \cup \text{CFL} \).

Now, we want to show that \(\text{CFL}_{2k}, \text{CFL}_{2k+1} \subseteq \Sigma^2_{\text{CFL}} \) for all indices \(k \geq 1 \). We proceed by induction on \(k \geq 1 \). The case of \(k = 2 \) will be shown as follows.

Claim 9 \(\text{CFL}_2 \subseteq \Sigma^2_{\text{CFL}} \).

Proof. Let \(L \) be any language in \(\text{CFL}_2 \) and take two context-free languages \(A \) and \(B \) satisfying \(L = A \cap B \). Let \(M \) be an appropriate npda recognizing \(A \). Consider the following procedure: on input \(x \), copy \(x \) to the query tape and, at the same time, run \(M \) on \(x \). When \(M \) enters an accepting state along a certain computation path, make a query \(x \) to \(B \). This demonstrates that \(L \) is in \(\text{CFL}_2 \), which is included in \(\text{CFL}_{\text{co-CFL}} \subseteq \text{CFL}_{\text{co-CFL}} = \Sigma^2_{\text{CFL}} \).

Assuming \(k \geq 2 \), let us consider the language family \(\text{CFL}_{2k} \). Claim 8 implies that \(\text{CFL}_{2k} = \bigvee_{i \in [k]} \text{CFL}_i \). Since \(\text{CFL}_2 \subseteq \Sigma^2_{\text{CFL}} \) by Claim 9 we obtain \(\text{CFL}_{2k} \subseteq \bigvee_{i \in [k]} \Sigma^2_{\text{CFL}} \). As is shown in Lemma 179, \(\Sigma^2_{\text{CFL}} \) is closed under union and this fact implies that \(\text{CFL}_{2k} \subseteq \Sigma^2_{\text{CFL}} \). Next, we consider \(\text{CFL}_{2k+1} \). Since \(\text{CFL}_{2k+1} = \text{CFL}_{2k} \cup \text{CFL} \) by the definition, the above argument implies that \(\text{CFL}_{2k+1} \subseteq \Sigma^2_{\text{CFL}} \cup \text{CFL} \). Since \(\text{CFL} \subseteq \Sigma^2_{\text{CFL}} \) and the closure property of \(\Sigma^2_{\text{CFL}} \), it follows that \(\text{CFL}_{2k+1} \subseteq \Sigma^2_{\text{CFL}} \cup \Sigma^2_{\text{CFL}} = \Sigma^2_{\text{CFL}} \). As a consequence, we conclude that \(\text{BHCFL} \subseteq \Sigma^2_{\text{CFL}} \). Therefore, \(\text{BHCFL} \subseteq \Sigma^2_{\text{CFL}} \).

Furthermore, we will prove that \(\text{BHCFL} \subseteq \Pi^2_{\text{CFL}} \). It is possible to prove by induction on \(k \in \mathbb{N}^+ \) that \(\text{co-CFL}_k \subseteq \text{CFL}_{k+1} \). From this inclusion, we obtain \(\text{co-BHCFL} \subseteq \text{BHCFL} \). By symmetry, \(\text{BHCFL} \subseteq \text{co-BHCFL} \) holds. Therefore, we conclude that \(\text{BHCFL} = \text{co-BHCFL} \). Therefore, the earlier assertion \(\text{BHCFL} \subseteq \Pi^2_{\text{CFL}} \) implies \(\text{BHCFL} \subseteq \Pi^2_{\text{CFL}} \) as well.

Let us turn our attention to \(\text{CFL}(\omega) \). A direct estimation of each language family \(\text{CFL}(k) \) shows that \(\text{CFL}(\omega) \) is included in \(\text{BHCFL} \).

Proposition 4.7 \(\text{CFL}(\omega) \subseteq \text{BHCFL} \) (thus, \(\text{CFL}(\omega) \subseteq \Sigma^2_{\text{CFL}} \cap \Pi^2_{\text{CFL}} \)).
Proof. A key to the proof of the first part of this proposition is the following claim.

Claim 10 For every index \(k \geq 1 \), \(\text{CFL}(k) \subseteq \text{CFL}_{2k+1} \) holds.

Proof. We will proceed by induction on \(k \geq 1 \). When \(k = 1 \), the claim is obviously true since \(\text{CFL}(1) = \text{CFL}_3 \). For the induction step, assume that \(k \geq 2 \). The induction hypothesis implies that \(\text{CFL}(k-1) \subseteq \text{CFL}_{2k-1} \). Since \(\text{CFL}(k) = \text{CFL}(k-1) \cap \text{CFL} \), we obtain \(\text{CFL}(k) \subseteq \text{CFL}_{2k-1} \cap \text{CFL} \). In contrast, it follows by the definition that \(\text{CFL}_{2k+1} = \text{CFL}_{2k} \cup \text{CFL} = (\text{CFL}_{2k-1} \cap \text{co-CFL}) \cup \text{CFL} \). The last term equals \((\text{CFL}_{2k-1} \cup \text{CFL}) \cap (\text{CFL} \cup \text{co-CFL}) \). Clearly, this language family includes \(\text{CFL}_{2k-1} \cap \text{CFL} \) as a subclass. Therefore, we conclude that \(\text{CFL}(k) \subseteq \text{CFL}_{2k+1} \). \(\Box \)

By Claim 10 it follows that \(\text{CFL}(\omega) = \bigcup_{k \in \mathbb{N}^+} \text{CFL}(k) \subseteq \bigcup_{k \in \mathbb{N}^+} \text{CFL}_{2k+1} \subseteq \text{BHCF}. \) The second part of the proposition follows from Proposition 4.6. \(\Box \)

Let us argue that the language family \(\text{CFL}^{\text{CFL}(\omega)} \) is located within the third level of the CFL hierarchy.

Proposition 4.8 \(\text{CFL}^{\text{CFL}(\omega)} \subseteq \Sigma^3_3 \).

Proof. Proposition 4.7 implies that \(\text{CFL}^{\text{CFL}(\omega)} \) is included in \(\text{CFL}^{\text{BHCF}} \). By Theorem 4.6 it follows that \(\text{CFL}^{\text{BHCF}} \) is included in \(\text{CFL}^{m}(\Pi^2_{1}) \), which is obviously a subclass of \(\text{CFL}^{\text{T}}(\Pi^2_{1}) = \Sigma^3_3 \). \(\Box \)

4.2 Structural Properties of the CFL Hierarchy

After showing fundamental properties of languages in the CFL hierarchy in Section 4.1, we will further explore structural properties that characterize the CFL hierarchy. Moreover, we will present three alternative characterizations (Theorem 4.11 and Proposition 4.13) of the hierarchy.

Let us consider a situation in which Boolean operations are applied to languages in the CFL hierarchy. What is missing in the list of the above lemma is two language families \(\Sigma^k_0 \text{CFL} \) and \(\Sigma^k_0 \text{CFL} \cup \Pi^k_1 \text{CFL} \).

Lemma 4.9

1. \(\Sigma^k_0 \text{CFL} \cup \Sigma^k_0 \text{CFL} = \Sigma^k_0 \text{CFL} \) and \(\Pi^k_1 \text{CFL} \cap \Pi^k_1 \text{CFL} = \Pi^k_1 \text{CFL} \) for any \(k \geq 1 \).

2. \(\Sigma^k_0 \text{CFL} \cap \Pi^k_1 \text{CFL} \subseteq \Sigma^k_1 \text{CFL} \cap \Pi^k_1 \text{CFL} \) and \(\Sigma^k_0 \text{CFL} \cup \Pi^k_1 \text{CFL} \subseteq \Sigma^k_1 \text{CFL} \cap \Pi^k_1 \text{CFL} \) for any \(k \geq 1 \).

Proof. In what follows, we are focused only on the \(\Sigma^k_0 \text{CFL} \) case since the \(\Pi^k_1 \text{CFL} \) case is symmetric.

(1) When \(k = 1 \), since CFL is closed under union, the statement follows immediately. Assume that \(k \geq 2 \) and let \(L \) be any language in \(\Sigma^k_0 \text{CFL} \cup \Sigma^k_0 \text{CFL} \). Now, we take two oracle npda’s \(M_0, M_1 \) and two languages \(A, B \in \Pi^k_1 \text{CFL} \) satisfying that \(L = L(M_0, A) \cup L(M_1, B) \). Our goal is to show that \(L \in \Sigma^k_0 \text{CFL} \). Let us consider another oracle npda \(M \) that behaves as follows. On input \(x, M \) guesses a bit \(b \), writes it down on a query tape, and simulates \(M_b \) on \(x \). Thus, when \(M \) halts with a query word \(y_b \) produced on its query tape, \(N \) does the same with \(y_b \). Let us define \(C \) as the union \(\{ y_b \mid y \in A \} \cup \{ y_b \mid y \in B \} \). We will show that \(C \) is in \(\Pi^k_1 \text{CFL} \). To see this fact, consider the complement \(\overline{C} \). Note that \(\overline{C} = \{ 0y \mid y \in A \} \cup \{ 1y \mid y \in B \} \). Because \(A, B \in \Sigma^k_1 \text{CFL} \), \(\Pi^k_1 \text{CFL} \) by induction hypothesis, \(\overline{C} \) belongs to \(\Sigma^k_1 \text{CFL} \). Since \(L = L(N, C) \), holds, we conclude that \(L \in \Sigma^k_1 \text{CFL} \cup \Sigma^k_1 \text{CFL} \).

(2) Assuming \(k \geq 2 \), let \(L \) be any language in \(\Sigma^k_0 \text{CFL} \cap \Pi^k_1 \text{CFL} \) and take an oracle npda \(M \) and two languages \(A \in \Pi^k_1 \text{CFL} \) and \(B \in \Pi^k_1 \text{CFL} \), for which \(L = L(M, A) \cap B \). Here, we define a new oracle npda \(N \) to simulate \(M \) on input \(x \) and produce an encoding \(\lfloor x \rfloor \) of a computation \(M \) on \(x \) with query word \(y \). Next, let us define \(C \) as the set \(\{ \lfloor x \rfloor \mid x \in A, y \in B \} \), which belongs to \(\Pi^k_1 \text{CFL} \) by (1) using a fact that \(\Pi^k_1 \text{CFL} \subseteq \Pi^k_1 \text{CFL} \). Since \(L = L(N, C) \), \(L \) is in \(\Sigma^k_1 \text{CFL} \), which is a subclass of \(\Sigma^k_1 \text{CFL} \). In a similar fashion, we can prove that \(L \in \Sigma^k_1 \text{CFL} \).

What is missing in the list of the above lemma is two language families \(\Sigma^k_0 \text{CFL} \cap \Sigma^k_0 \text{CFL} \) and \(\Sigma^k_0 \text{CFL} \cup \Pi^k_1 \text{CFL} \). As we have seen, it holds that \(\text{CFL} \cap \text{CFL} = \text{CFL}(2) \neq \text{CFL} \). Therefore, the equality \(\Sigma^k_0 \text{CFL} \cap \Sigma^k_0 \text{CFL} \) does not hold in the first level (i.e., \(k = 1 \)). Surprisingly, it is possible to prove that this equality actually holds for any level more than 1.

Proposition 4.10 \(\Sigma^k_0 \text{CFL} \cap \Sigma^k_0 \text{CFL} = \Sigma^k_1 \text{CFL} \) and \(\Pi^k_1 \text{CFL} \cup \Pi^k_1 \text{CFL} = \Pi^k_1 \text{CFL} \) for all levels \(k \geq 2 \).

This proposition is not quite trivial and its proof requires two new characterizations of \(\Sigma^k_0 \text{CFL} \) in terms of many-one reducibilities. Note that these characterizations are a natural extension of Claim 13 and, for our purpose, we introduce two many-one hierarchies. The many-one CFL hierarchy consists of language families \(\Sigma^k_{m,k} \) and \(\Pi^k_{m,k} \) (\(k \in \mathbb{N} \)) defined as follows: \(\Sigma^0_{m,0} = \Pi^0_{m,0} = \text{DCFL} \), \(\Sigma^1_{m,1} = \text{CFL} \), \(\Pi^1_{m,k} = \text{co-}\Sigma^k_{m,k} \).

18
and $\Sigma_{m,k}^{\text{CFL}} = \text{CFL}_m(\Pi_{m,k}^{\text{CFL}})$ for any $k \geq 1$, where the subscript “m” stands for “many-one.” A relativized many-one NFA hierarchy, which was essentially formulated in [14], is defined as follows relative to oracle A: $\Sigma_{m,0}^{\text{NFA},A} = \text{DFA}_m^A$, $\Sigma_{m,1}^{\text{NFA},A} = \text{NFA}_m^A$, $\Pi_{m,k}^{\text{NFA},A} = \text{co-}\Sigma_{m,k}^{\text{NFA},A}$, and $\Sigma_{m,k+1}^{\text{NFA},A} = \text{NFA}_m(\Pi_{m,k}^{\text{NFA},A})$ for every index $k \geq 1$. Given a language family \mathcal{C}, the notation $\Sigma_{m,k}^{\text{NFA},\mathcal{C}}$ (or $\Sigma_{m,k}^{\text{NFA},\{\mathcal{C}\}}$) denotes the union $\bigcup_{A \in \mathcal{C}} \Sigma_{m,k}^{\text{NFA},A}$.

Theorem 4.11 $\Sigma_k^{\text{CFL}} = \Sigma_{m,k}^{\text{CFL}} = \Sigma_{m,k}^{\text{NFA}}(\text{DYCK})$ for every index $k \geq 1$.

Since the proof of Theorem 4.11 is involved, prior to the proof, we will demonstrate how to prove Proposition 4.10 using the theorem.

Proof of Proposition 4.10 In what follows, it suffices to prove that $\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}} = \Sigma_k^{\text{CFL}}$, since $\Pi_k^{\text{CFL}} \lor \Sigma_k^{\text{CFL}} = \Pi_k^{\text{CFL}}$ is obtained by symmetry. First, take any language L in $\Sigma_k^{\text{CFL}} \land \Sigma_k^{\text{CFL}}$ and assume that $L = L_1 \cap L_2$ for two languages $L_1, L_2 \in \Sigma_k^{\text{CFL}}$. Theorem 4.11 implies that L_1 and L_2 are both in $\Sigma_{m,k}^{\text{NFA}}(\text{DYCK})$. Now, we choose oracle npda’s M_1 and M_2 that respectively recognize L_1 and L_2 relative to oracles A_1 and A_2, where $A_1, A_2 \in \Pi_{m,k-1}^{\text{NFA}}(\text{DYCK})$. Let us consider a new npda N that works in the following fashion. In scanning each input symbol, say, σ, N simulates in parallel one or more steps of M_1 and M_2 using two sets of inner states for M_1 and M_2. Such a parallel simulation of two machines is possible because M_1 and M_2 use no stacks. Moreover, whenever M_1 (resp., M_2) tries to write a symbol, N writes it on the upper (resp., lower) track of its query tape. To write two query strings y_1 and y_2 of M_1 and M_2, respectively, onto N’s single query tape, we actually write their z-extensions. Now, let $[\#]$ denote a query string produced by N so that $[\#]$ encodes computations of M_1 and M_2. A new oracle B is finally set to be $\{[\#] \mid y \in A_1, z \in A_2\}$. Since $\Pi_k^{\text{CFL}} = \Pi_{m,k-1}^{\text{NFA}}(\text{DYCK})$, Lemma 4.11 ensures that B is also in $\Pi_{m,k-1}^{\text{NFA}}(\text{DYCK})$. By the above definitions, it holds that N reduces L to B. Therefore, it immediately follows that $L \in \text{NFA}_m^B \subseteq \Sigma_{m,k}^{\text{NFA}}(\text{DYCK}) = \Sigma_k^{\text{CFL}}$. \hfill \Box

The first step toward the proof of Theorem 4.11 is to prove a key lemma given below.

Lemma 4.12 For every index $k \geq 1$, it holds that $\Sigma_{k+1}^{\text{CFL}} \subseteq \text{CFL}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}})$.

Proof. The proof of the lemma proceeds by induction on $k \in \mathbb{N}^+$. Notice that the base case $k = 1$ has already been proven as Proposition 3.13. Therefore, in what follows, we aim at the induction step of $k \geq 2$ by proving the following two inclusions: (1) $\Sigma_{k+1}^{\text{CFL}} \subseteq \text{CFL}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}})$ and (2) $\text{CFL}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}})$.

1. Let us recall the proof of Proposition 3.13 in particular, the proof of the following inclusion: $\text{CFL}_T^{\text{CFL}} \subseteq \text{CFL}_m(\text{CFL}_T \land \text{co-CFL}_T)$. We note that this proof is relativizable (that is, it works when we append an oracle to underlying npda’s). To be more precise, essentially the same proof proves that $\text{CFL}_T(\text{CFL}_T) \subseteq \text{CFL}_m(\text{CFL}_T \land \text{co-CFL}_T)$ for any oracle A. If we choose an arbitrary language in $\Sigma_{k+1}^{\text{CFL}}$ as A, then we conclude that $\text{CFL}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \Sigma_{k+1}^{\text{CFL}} \land \Pi_{k+1}^{\text{CFL}}$.

2. By setting $\mathcal{C} = \Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}$ in Lemma 3.5, we obtain $\text{CFL}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \text{NFA}_m(\text{DCFL}_m \land \mathcal{C})$. Note that $\text{DCFL}_m \land (\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) = \Sigma_k^{\text{CFL}} \land (\text{DCFL}_m \land \Pi_k^{\text{CFL}})$. Since $\text{DCFL}_m \land \Pi_k^{\text{CFL}} \subseteq \Pi_k^{\text{CFL}}$, it instantly follows that $\text{DCFL}_m \land \Pi_k^{\text{CFL}} \subseteq \Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}$ by Lemma 4.11. In summary, we obtain the desired inclusion $\text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}})$. \hfill \Box

The second step is to establish the following inclusion relationship between two language families $\text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}})$ and $\text{CFL}_m(\Pi_{k-1}^{\text{CFL}})$.

Lemma 4.13 For any two indices $k \geq 1$ and $c \geq k - 1$, it holds that $\text{NFA}_m(\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}) \subseteq \text{CFL}_m(\Pi_{k-1}^{\text{CFL}})$.

Proof. Let L be any language in $\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}$, where A is a certain language in $\Sigma_k^{\text{CFL}} \land \Pi_k^{\text{CFL}}$. Now, we express A as $A_1 \cap A_2$ using appropriate languages $A_1 \subseteq \text{CFL}_m^{B_1}$ and $A_2 \subseteq \Pi_{m,c+1}^{\text{CFL}}$, where $B_1 \subseteq \Pi_{m,c+1}^{\text{CFL}}$. Our goal is to construct an oracle npda N and an oracle C for L. The desired machine N takes input x and simulates M on x. When M tries to write a symbol, say, σ, N writes σ on the upper track of its query tape and also simulates one or more steps of M_1’s computation during the scanning of σ using a stack. When M_1 writes a symbol, N uses the lower track to keep the symbol. Finally, N produces a query string of the form $[\#]$, where y is a query word of M and z is a query word of M_1. Next, we define C to be $\{[\#] \mid y \in A_2, z \in B_1\}$. This language C obviously belongs to $\Pi_{m,c+1}^{\text{CFL}}$, which equals $\Pi_{m,c+1}^{\text{CFL}}$ by Lemma 3.5, since $c \geq k - 1$. \hfill \Box
Therefore, L is in $\text{CFL}_m^C \subseteq \text{CFL}_m(\Pi_{m,e}^{\text{CFL}})$.

Finally, we are ready to give the proof of Theorem 4.11.

Proof of Theorem 4.11. The proof of the theorem proceeds by induction on $k \geq 1$. Since Lemma 8.3 handles the base case $k = 1$, it is sufficient to assume that $k \geq 2$. First, we will show the second equality given in the theorem.

Claim 11. For any index $k \geq 1$, $\Sigma_{m,k}^{\text{CFL}} = \Sigma_{m,k}^{\text{NFA}}(DYCK)$ holds.

Proof. If $k = 1$, then the claim is exactly the same as Claim 2. In the case of $k \geq 2$, assume that $L \in \text{CFL}_m^A$ for a certain language A in $\Pi_{m,k-1}^{\text{CFL}}$. A proof similar to that of Claim 2 proves the existence of a certain Dcyk language D satisfying that $\text{CFL}_m^A = \text{NFA}_m^B$, where B is of the form $\{(y, z) \mid y \in D, z \in A\}$ and y and z are ξ-extensions of y and z, respectively. The definition places B into the language family $\text{DCFL} \cap \Pi_{m,k-1}^{\text{CFL}}$, which equals $\Pi_{m,k-1}^{\text{CFL}}$ because of $k \geq 2$. By the induction hypothesis, $\Pi_{m,k-1}^{\text{CFL}} \subseteq \Pi_{m,k-1}^{\text{NFA}}(DYCK)$ holds. It thus follows that $\text{NFA}_m^B \subseteq \text{NFA}_m(\Pi_{m,k-1}^{\text{NFA}}(DYCK)) = \Sigma_{m,k}^{\text{NFA}}(DYCK)$, and thus we obtain $L \in \Sigma_{m,k}^{\text{NFA}}(DYCK)$.

Next, we will establish the first equality in the theorem. Clearly, $\Sigma_{m,k}^{\text{CFL}} \subseteq \Sigma_{m,k}^{\text{NFA}}$ holds since $\text{CFL}_m^A \subseteq \text{CFL}_m^A$ for any oracle A. Now, we target the other inclusion. By Lemma 4.12, it follows that $\Sigma_{m,k}^{\text{CFL}} \subseteq \text{NFA}_m(\Sigma_{m,k}^{\text{CFL}} \cap \Pi_{m,k}^{\text{CFL}})$. Since $\Sigma_{m,k-1}^{\text{CFL}} = \Sigma_{m,k}^{\text{CFL}} \cap \Pi_{m,k-1}^{\text{CFL}}$, we obtain $\Sigma_{m,k}^{\text{CFL}} \subseteq \text{NFA}_m(\Sigma_{m,k-1}^{\text{CFL}} \cap \Pi_{m,k-1}^{\text{CFL}})$. Lemma 11.3 further implies that $\text{NFA}_m(\Sigma_{m,k-1}^{\text{CFL}} \cap \Pi_{m,k-1}^{\text{CFL}}) \subseteq \text{CFL}_m(\Pi_{m,k-1}^{\text{CFL}}) = \Sigma_{m,k}^{\text{CFL}}$. In conclusion, $\Sigma_{m,k}^{\text{CFL}} \subseteq \Sigma_{m,k}^{\text{NFA}}$ holds.

An upward collapse property holds for the CFL hierarchy except for the first level. Similar to the notation CFL_e expressing the eth level of the Boolean hierarchy over CFL, a new notation $\Sigma_{m,k}^{\text{CFL}}$ is introduced to denote the eth level of the Boolean hierarchy over $\Sigma_{m,k}^{\text{CFL}}$. Additionally, we set $\text{BH}_{\Sigma_{m,k}^{\text{CFL}}} = \bigcup_{e \in \mathbb{N}^+} \Sigma_{m,k}^{\text{CFL}}$. Notice that, when $k = 1$, $\text{BH}_{\Sigma_{1,k}^{\text{CFL}}}$ coincides with BH_{CFL}.

Lemma 4.14. (upward collapse properties) Let k be any integer at least 2.

1. $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k+1}^{\text{CFL}}$ if and only if $\text{CFL}_k = \Sigma_{k,k+1}^{\text{CFL}}$.
2. $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$ if and only if $\text{BH}_{\Sigma_{k,k}^{\text{CFL}}} = \Sigma_{k,k}^{\text{CFL}}$.
3. $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$ implies $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k+1}^{\text{CFL}}$.

Proof. (1) It is obvious that $\text{CFL}_k = \Sigma_{k,k}^{\text{CFL}}$ implies $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k+1}^{\text{CFL}}$. Now, assume that $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k+1}^{\text{CFL}}$. By applying the complementation operation, we obtain $\Pi_{k,k}^{\text{CFL}} = \Pi_{k,k+1}^{\text{CFL}}$. Thus, it follows that $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}} \subseteq \Pi_{k,k+1}^{\text{CFL}}$. Similarly, it is possible to prove by induction on $e \in \mathbb{N}^+$ that $\Sigma_{k,k+1}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$. Therefore, $\Sigma_{k,k}^{\text{CFL}}$ holds.

(2) Since $\Pi_{k,k}^{\text{CFL}} \subseteq \text{BH}_{\Sigma_{k,k}^{\text{CFL}}}$, obviously $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k}^{\text{CFL}}$ implies $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$. Next, assume that $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$. By induction on $e \in \mathbb{N}^+$, we wish to prove that $\Sigma_{k,k}^{\text{CFL}} \subseteq \Sigma_{k,k+1}^{\text{CFL}}$. The case where $e = 1$ is trivial. Firstly, let us consider the language family $\Sigma_{k,2e}^{\text{CFL}}$ for $e \geq 1$. Note that the induction hypothesis implies $\Sigma_{k,2e}^{\text{CFL}} \subseteq \Sigma_{k,k}^{\text{CFL}}$. It thus holds that $\Sigma_{k,2e+1}^{\text{CFL}} = \Sigma_{k,2e}^{\text{CFL}} \cup \Sigma_{k,2e+1}^{\text{CFL}} \subseteq \Sigma_{k,k}^{\text{CFL}} \cup \Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k+1}^{\text{CFL}}$ by Lemma 4.19.1. Secondly, we consider the family $\Sigma_{k,2e}^{\text{CFL}}$. It holds that $\Sigma_{k,2e}^{\text{CFL}} = \Sigma_{k,2e+1}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}} \subseteq \Sigma_{k,k+1}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}}$. Since $\Pi_{k,k}^{\text{CFL}} = \Sigma_{k,k}^{\text{CFL}}$, we obtain $\Sigma_{k,2e}^{\text{CFL}} \subseteq \Sigma_{k,k+1}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$ by Lemma 4.19.1. The last term obviously equals $\Sigma_{k,k}^{\text{CFL}}$ from our assumption. Overall, we conclude that $\text{BH}_{\Sigma_{k,k}^{\text{CFL}}} = \Sigma_{k,k}^{\text{CFL}}$.

(3) Assume that $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$ and focus our attention to $\Sigma_{k,k}^{\text{CFL}}$. Since Theorem 4.11 implies $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k}^{\text{CFL}}$, our assumption is equivalent to $\Sigma_{k,k}^{\text{CFL}} = \Pi_{k,k}^{\text{CFL}}$. By Lemma 4.12, it follows that $\Sigma_{k,k+1}^{\text{CFL}} \subseteq \text{NFA}_m(\Sigma_{k,k}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}})$. By Lemma 11.3, this is included in $\text{NFA}_m(\Sigma_{k,k}^{\text{CFL}})$ by Lemma 11.3. Since $\Sigma_{k,k}^{\text{CFL}} \subseteq \Sigma_{k,k}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}}$, Lemma 4.13 implies that $\Sigma_{k,k}^{\text{CFL}} \subseteq \text{NFA}_m(\Sigma_{k,k}^{\text{CFL}} \cap \Pi_{k,k}^{\text{CFL}}) = \text{CFL}_m(\Pi_{k,k}^{\text{CFL}}) = \Sigma_{m,k}^{\text{CFL}}$, which equals $\Sigma_{k,k}^{\text{CFL}}$ by Theorem 4.11 again.

From Lemma 4.14 if the Boolean hierarchy over $\Sigma_{k,k}^{\text{CFL}}$ collapses to $\Sigma_{k,k}^{\text{CFL}}$, then the CFL hierarchy collapses. It is not clear, however, that a much weaker assumption like $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k}^{\text{CFL}}$ suffices to draw the collapse of the CFL hierarchy (for instance, $\Sigma_{k,k}^{\text{CFL}} = \Sigma_{k,k}^{\text{CFL}}$).

We note that Theorem 4.11 also gives a logical characterization of $\Sigma_{k,k}^{\text{CFL}}$. We define a function Ext as $\text{Ext}(\tilde{x}) = x$ for any ξ-extension \tilde{x} of string x.

20
Proposition 4.15 Let $k \geq 1$. For any language $L \in \Sigma_k^{\text{CFL}}$ over alphabet Σ, there exists another language $A \in \text{DCFL}$ and a linear polynomial p with $p(n) \geq n$ for all $n \in \mathbb{N}$ that satisfies the following equivalence relation: for any number $n \in \mathbb{N}$ and any string $x \in \Sigma^n$,

$$x \in L \iff \forall y \left(\exists z \left(x = Ext(z) \wedge |z| \leq p(n) \right) \right)$$

where Q_k is \exists if k is odd and is \forall if k is even. Moreover, \bar{x} is a z-extension of x.

Let us recall from Section 3.2 the notion of “encoding of a computation path” of a nondeterministic computation.

Proof of Proposition 4.15 This proof proceeds by induction on $k \in \mathbb{N}^+$. First, we will target the case of $k = 1$ and we begin with the assumption that $L \in \Sigma_1^{\text{CFL}} (= \text{CFL})$. Moreover, we assume that L is recognized by a certain ndpa, say, M and let p be a linear polynomial that bounds the running time of M. Consider the following new language A. This language A is defined as the collection of all strings of the form $|z|$ that encodes an accepting computation path of M on input x. It is not difficult to verify that A is in DCFL. Moreover, the definition of A indicates that, for every string x, x is in L if and only if there exist a z-extension \bar{x} of x and $|z|$ is in A. The latter condition is logically equivalent to $\exists z_1 (|z_1| \leq p(n)) \exists y_1 (|y_1| \leq p(n)) \{ x = Ext(\bar{x}) \wedge |y_1| \in A \}$.

For the induction step $k \geq 2$, let us assume that $L \in \Sigma_k^{\text{CFL}}$. Theorem 4.11 implies that L is many-one NFA-reducible to a certain oracle B in $\Pi^{\text{NFA}}_{k-1}(\text{DYCK}) (= \Pi^{\text{NFA}}_{k-1})$ via an oracle nfa M. Note that k, running time of M is upper-bounded by a certain linear polynomial, say, p. Since \overline{B} is in Σ_k^{CFL}, our induction hypothesis ensures that there are a linear polynomial q and a language C in DCFL such that, for any string z_1, z_1 is in \overline{B} if and only if $\exists z_1 (|z_1| \leq q(n')) \exists \bar{w}_2 (u_2 \leq q(n')) \exists t_q u_4 (u_4 \leq q(n')) \exists z_4 (|z_1| = Ext(\bar{w}_2) \wedge |z_1, u_2, ..., u_4|^T \in C)$, where Q_k is \exists if k is even and is \forall if k is odd, and $n' = |z_1|$. In a similar way as in the base case of $k = 1$, we can define a language D in DCFL that is composed of strings $[\bar{x}, u_1, \bar{z}_1]^T$ encoding an accepting computation path of M with input x and query word z_1. Note that, for any given pair (z_1, u_1), there is at most one string z_1 such that $[\bar{x}, u_1, \bar{z}_1]^T \in D$. From such a unique \bar{z}_1, a string $z_1 = Ext(\bar{z}_1)$ is also uniquely determined. Note that x is in L if and only if there exist z-extensions \bar{x} of input x and \bar{z}_1 of query word z_1 and u_1 is an accepting computation path such that $[\bar{x}, u_1, \bar{z}_1]^T \in D$.

To complete the proof, we want to combine two strings $[\bar{x}, u_1, \bar{z}_1]^T$ and $[\bar{z}_1, u_2, ..., u_k]^T$ satisfying $Ext(\bar{z}_1) = Ext(\bar{z}_1)$ into a single string by applying a technique of inserting z so that a single tape head can read off all information from the string at once. For convenience, we introduce three languages. Let $D' = \{ |z| \mid \exists u_1, \bar{z}_1 (Ext(\bar{w}_1) = |z| \wedge |z| \in D), C' = \{ \bar{w}_2, y_3, ..., y_k | \exists z_1 (|z_1| \leq q(n')) \exists \bar{t}_q u_4 (u_4 \leq q(n')) \exists z_4 (|z_1| = Ext(\bar{w}_2) \wedge |z_1, u_2, ..., u_k|^T \in C) \}$, and $E = \{ \bar{y}_1 | \exists u_1, \bar{z}_1 (Ext(\bar{w}_1) = |z_1| \wedge Ext(\bar{z}_1) = Ext(\bar{z}_1)) \}$. Finally, we define a language $G = \{ [\bar{x}, y_1, y_2, ..., y_k]^T | \exists y_k (y_k \in E) \wedge |y_k| \leq q(n) \}$.

It is not difficult to show that G is in DCFL. Now, let $r(n) = q(p(n))$ for all $n \in \mathbb{N}$. With this language G, it follows that, for any string x, x is in L if and only if $\exists z_1 (|z_1| \leq p(n)) \exists y_1 (|y_1| \leq p(n)) \forall y_2 (|y_2| \leq r(n)) \forall y_3 (|y_3| \leq r(n)) \forall y_k (|y_k| \leq r(n)) \{ x = Ext(\bar{x}) \wedge |y_1, y_2, ..., y_k|^T \in G \}$. Therefore, we have completed the induction step.

4.3 BPCFL and a Relatedized CFL Hierarchy

Let us consider a probabilistic analogue of CFL. The bounded-error probabilistic language family BPCFL consists of all languages that are recognizable by npda’s whose error probability is bounded from above by an absolute constant $\varepsilon \in (0, 1/2)$. This family is naturally contained in the unbounded-error probabilistic language family PCFL. Horankoic and Schnitger [8] studied properties of BPCFL and showed that BPCFL and CFL are incomparable; more accurately, BPCFL $\not\subseteq$ CFL and CFL $\not\subseteq$ BPCFL. It is possible to strengthen the last separation using advice in the following way.

Proposition 4.16 BPCFL $\not\subseteq$ CFL/n.

Proof. Let us consider the example language Equal_n that is composed of all strings w over the alphabet $\Sigma_0 = \{a_1, a_2, ..., a_6, \#\}$ such that each symbol except $\#$ appears in w the same number of times. It is shown in [20] that Equal_n does not belong to CFL/n. To complete this proof, it is enough to show that Equal_n actually falls into BPCFL.
We set \(N = 5 \) and consider the following probabilistic procedure. Let \(w \) be any input and define \(\alpha_i = \#a_i(w) \) for every \(i \in \{6\} \). In the case where all \(\alpha_i \)'s are at most \(N \), we deterministically determine whether \(w \in \text{Equal}_6 \) without using any stack. Hereafter, we consider the case where \(\alpha_i > N \) for all \(i \in \{6\} \).

We randomly pick up two numbers \(x \) and \(y \) from \([N]\). We scan \(w \) from left to right. Whenever we scan \(a_1 \) (resp., \(a_2 \) and \(a_3 \)), we push 1 (resp., \(1^2 \) and \(1^3 \)) into the stack. On the contrary, when we scan \(a_4 \) (resp., \(a_5 \) and \(a_6 \)), we pop 1 (resp., \(1^2 \) and \(1^3 \)) from the stack. If the stack becomes empty during the pop-ups, then we instead push a special symbol “−1” to indicate that there is a deficit in the stack content. If this happens, when we push 1’s, we actually pops the same number of 1’s. After reading up \(w \), if the stack becomes empty, then we accept the input; otherwise, we reject it. Note that there is \(\ell = \left(|(a_1 - a_4)| + x(a_2 - a_3) + y(a_3 - a_6) \right) \) symbols in the stack.

If \(w \) is in \(\text{Equal}_6 \), then \(\ell = 0 \) obviously holds for any choice of \((x, y) \in \mathbb{N} \times \mathbb{N} \). Conversely, we assume that \(w \notin \text{Equal}_6 \) and we will later argue that the error probability \(\varepsilon \) (i.e., the probability of obtaining \(\ell = 0 \)) is at most 1/3. This clearly places \(\text{Equal}_6 \) in \(\text{BPCFL} \).

Let us assume that \(w \notin \text{Equal}_6 \) and \(\ell = 0 \). For any two pairs \((x_1, y_1), (x_2, y_2) \in \mathbb{N} \times \mathbb{N} \) that force \(\ell \) to be zero, we obtain \((a_1 - a_4) + x_1(a_2 - a_3) + y_1(a_3 - a_6) = 0 \) for any index \(i \in \{1, 2\} \). From these two equations, it follows that \((*) \) \((x_1 - x_2)(a_2 - a_3) = (y_2 - y_1)(a_3 - a_6) \).

1. Consider the case where \(a_2 = a_5 \) but \(a_3 \neq a_6 \). By \((*)\), we conclude that \(y_1 = y_2 \); that is, there is a unique solution pair \((x, y) \) for the equation \(\ell = 0 \). Hence, the total number of \((x, y) \) that forces \(\ell = 0 \) is exactly \(N \), and thus \(\varepsilon \) equals 1/N, which is smaller than 1/3. The case where \(a_2 \neq a_5 \) and \(a_3 = a_6 \) is similar.

2. Consider the case where \(a_2 \neq a_5 \) and \(a_3 \neq a_6 \). There are two cases to consider separately.

 (a) If \(a_2 - a_5 \) and \(a_3 - a_6 \) are relatively prime, then we conclude that \(x = x' \) and \(y = y' \) from \((*)\). This indicates that there is a unique solution pair \((x, y) \) for the equation \(\ell = 0 \). Thus, the error probability \(\varepsilon \) is \(1/N^2 \), implying \(\varepsilon < 1/3 \).

 (b) If \(a_2 - a_5 = \beta(a_3 - a_6) \) holds for a certain non-zero integer \(\beta \), then it follows that \(x - x' = \beta(y' - y) \). Since \(|x - x'|, |y' - y| \leq 4 \), there are at most 12 cases for \((x, y, x', y') \) with \(x > x' \) that satisfy \(x - x' = \beta(y' - y) \) for a certain non-zero integer \(\beta \). Hence, \(\varepsilon \) is at most \(12/25 \), which is obviously smaller than 1/3.

 (3) The case where \(a_1 \neq a_4, a_2 = a_5 \), and \(a_3 = a_6 \) never occurs because \(\ell \) is always non-zero. \(\square \)

It is not clear whether \(\text{BPCFL} \) is located inside the \(\text{CFL} \) hierarchy, because a standard argument used to prove that \(\text{BPP} \subseteq \Sigma^P_2 \cap \Pi^P_2 \) requires an amplification property but a ppda cannot, in general, amplify its success probability [8].

Since a relationship between \(\text{BPCFL} \) and \(\Sigma^\text{CFL}_2 \cap \Pi^\text{CFL}_2 \) is not clear, we may resort to an oracle separation between those language families. For this purpose, we will introduce a relativization of the target language families. First, we introduce a relativization of \(\text{BPCFL} \). Similar to \(\text{CFL}^m \), \(\text{BPCFL}^m \) is defined simply by providing underlying ppda’s with extra query tapes. Second, we define a relativized \(\text{CFL} \) hierarchy. Relative to this \(A \), a relativized \(\text{CFL} \) hierarchy \(\{\Delta^A_k, \Sigma^A_k, \Pi^A_k \mid k \in \mathbb{N} \} \) consists of the following families:

\[
\Delta^A_{k+1} = \text{DCFL}_T^A, \quad \Sigma^A_k = \text{CFL}_T^A, \quad \Pi^A_k = \text{co-CFL}_T^A, \quad \Delta^A_k = \text{DCFL}_T^A, \quad \Sigma^A_{k+1} = \text{CFL}_T^A, \quad \Pi^A_{k+1} = \text{co-CFL}_T^A \]

for all indices \(k \geq 1 \). As this definition hints, any oracle-dependent language \(L^A \) in \(\Sigma^\text{CFL}_k \) can be recognized by a chain of \(k T \)-reduction machines whose last machine makes queries directly to \(A \). As for later reference, we refer to this chain of \(k \) machines as a defining machine set for \(L^A \).

Proposition 4.17 There exists a recursive oracle \(A \) such that \(\text{BPCFL}^m \nsubseteq \Sigma^\text{CFL}_2 \).

For the proof of Proposition 4.17 we need to consider certain non-uniform families of levelable Boolean circuits, where a circuit is levelable if (i) all nodes are partitioned into levels, (ii) edges exist only between adjacent levels, (iii) the first level of a circuit has the output node, (iv) the gates at the same level are of the same type, (v) two gates at two adjacent levels are of the same type, and (vi) all input nodes (labeled by literals) are at the same level (see, e.g., [6]). The notation \(\text{CH}_k(n, m) \) denotes the collection of all levelable circuits \(C \) that satisfy the following conditions: (1) \(C \) has depth \(k \) (i.e., \(k \) levels of gates), (2) the top gate (i.e., the root node) of \(C \) is \(\text{OR} \), (3) \(C \) has alternating levels of \(\text{OR} \) and \(\text{AND} \), (4) the bottom fan-in (i.e., the maximum fan-in of any bottom gate) of \(C \) is at most \(m \), (5) the fan-in of any gate except for the bottom gates is at most \(n \), and (6) there are at most \(n \) input variables.

Lemma 4.18 Let \(L^A \) be any oracle-dependent language over alphabet \(\Sigma \) in \(\Sigma^\text{CFL}_k \), where \(A \) is any oracle over alphabet \(\Theta \). Let \((M_1, M_2, \ldots, M_k) \) be a defining machine set for \(L^A \). Let \(a \) and \(c \) be two positive constants such that the running time of each \(M_i \) is bounded from above by \(c|x| \) and any query word \(y \) produced by \(M_k \)
has length at most $a|x|$, where x is an input string to L^A. For every length $n \in \mathbb{N}^+$ and every input $x \in \Sigma^n$, there exist a Boolean circuit C in $\text{CIR}_{k+1}(2^n, c_k)$ such that (1) all variables $x_1, x_2, \ldots, x_{t(n)}$ of C are strings (and their negations) included in $\Theta^{\leq n}$ and (2) for any oracle A, it holds that x is in L^A if and only if C outputs 1 on inputs $(\chi^A(x_1), \chi^A(x_2), \ldots, \chi^A(x_{t(n)}))$.

Proof. We will prove this lemma by induction on $k \geq 1$. We begin with the base case $k = 1$. Let L^A be any oracle-dependent language in CFL_k^A, where A is any oracle. Let M, a, c satisfy the premise of the lemma. Fix n and $x \in \Sigma^n$. By an argument similar to the proof of Proposition 4.13, we can modify M so that, before starting writing the ith query word y_i, it must guess its oracle answer b_i and produces $b_i y_i$ on a query tape and, instead of making an actual query, it assumes that A returns b_i. After this modification, a string produced on a query tape must be of the form $b_1 y_1 b_2 y_2 \cdots b_i y_i$. Let V_2 be composed of all such query strings produced along accepting computation paths. Note that $\| V_2 \| \leq 2^{2^n}$ since M halts within time an.

Next, we will define a circuit C, which is an OR of ANDs, as follows. The top OR gate has edges labeled by strings in V_2. For each $y \in V_2$, an associated subcircuit consisting of an AND gate, has input nodes labeled by literals of the from $y_i^{(b_1)}, y_i^{(b_2)}, \ldots, y_i^{(b_k)}$, where $y_i^{(1)} = y_i$ and $y_i^{(b_k)} = \overline{y_i}$. Let $x_1, x_2, \ldots, x_{t(n)}$ be all distinct variables (of the positive form) appearing in C. It is not difficult to verify that, for any oracle A, $x \in L^A$ if and only if $C(\chi^A(x_1), \chi^A(x_2), \ldots, \chi^A(x_{t(n)})) = 1$.

Let us consider the induction step $k \geq 2$. Assume that L^A is in CFL_k^A for a certain oracle $B^A \in \Pi^P_{\text{CFL}}$. Let M be a T-reduction machine reducing L^A to B^A. By a similar argument as in the base case, we can modify so that it generates query words of the form $b_1 y_1 \cdots b_i y_i$ without making actual queries. We set V_2 to be the collection of all such strings produced along accepting computation paths. Since $B^A \in \Sigma_{k-1}^{\text{CFL}}$, by the induction hypothesis, for each string $y \in V_2$, there exists a circuit D_y satisfying the lemma. Instead of D_y, we consider its dual circuit \overline{D}_y. Here, we define C to be an OR of all \overline{D}_ys for any $y \in V_2$. A similar reasoning as in the base case shows that, for any oracle A, $x \in L^A$ if and only if $C(\chi^A(x_1), \chi^A(x_2), \ldots, \chi^A(x_{t(n)})) = 1$.

Our example language is $L^A = \{0^n \mid \| A \cap \Sigma^n \| > 2^{n-1}\}$, where $\Sigma = \{0, 1\}$. To guarantee that L^A is in BPCFL_m^A, we will aim at constructing an oracle A satisfying that either $\| A \cap \Sigma^n \| \leq 2^n/3$ or $\| \overline{A} \cap \Sigma^n \| \leq 2^n/3$ for every length $n \in \mathbb{N}^+$. This is done by recursively choosing a pair of reduction machines that define each language B^{A_k} in Σ_k^{CFL} and by defining a large enough length $n \in \mathbb{N}$ and a set $A_n (= A \cap \Sigma^n)$ such that $0^n \in L^A \iff 0^n \notin B^A$.

Proof of Proposition 4.17. Let $\Sigma = \{0, 1\}$ and consider an example language $L^A = \{0^n \mid \| A \cap \Sigma^n \| > 2^{n-1}\}$. To guarantee that L^A is in BPCFL_m^A, we consider only oracles A that satisfy the condition (4) that either $\| A \cap \Sigma^n \| \leq 2^n/3$ or $\| \overline{A} \cap \Sigma^n \| \leq 2^n/3$ for every length $n \in \mathbb{N}^+$.

Next, we will construct an appropriate oracle A satisfying that $L^A \notin \Sigma_k^{\text{CFL}}$. For this purpose, we use Lemma 4.18. First, we enumerate all oracle-dependent languages in Σ_k^{CFL} and consider their corresponding depth-3 Boolean circuit families that satisfy all the conditions stated in Lemma 4.18.

Recursively, we choose such a circuit family and define a large enough length n and a set $A_n (= A \cap \Sigma^n)$. Initially, we set $n_0 = 0$ and $A_0 = \emptyset$. Assume that, at stage $i - 1$, we have already defined n_{i-1} and A_{i-1}. Let us consider stage i. Take the ith circuit family $\{C_n\}_{n \in \mathbb{N}}$ and two constants $a, c > 0$ given by Lemma 4.18. First, we set $n_i = \max\{n_{i-1} + 1, 2^{a n_{i-1}} + 1, c' + 1\}$, where a' and c' are constants taken at stage $i - 1$. The choice of n_i guarantees that A_{n_i} is not affected by the behaviors of the circuits considered at stage $i - 1$.

In the rest of the proof, we will examine two cases.

(1) Consider the base case where the bottom fan-in is exactly 1. For each label $y \in \{0, 1\}^a$, let $Q(y)$ be the set of all input variables that appear in subcircuits connected to the top OR gate by a wire labeled y. In particular, $Q^+(y)$ (resp., $Q^-(y)$) consists of variables in $Q(y)$ that appear in positive form (resp., negative form). Let us consider two cases.

(a) Assume that there exists a string y_0 such that $\| Q^+(y_0) \| \leq 2^n/3$. In this case, we set A_n to be $Q^+(y_0)$. It is obvious that $0^n \notin L^A$ and $C_n(\chi^A(x_1), \ldots, \chi^A(x_{t(n)})) = 1$.

(b) Assume that, for all y, $\| Q^+(y) \| \geq 2^n/3$. Recursively, we will choose at most $an/\log(3^2/2)+1$ strings. At the first step, let $B_0 = \{0, 1\}^{an}$. Assume that B_{i-1} has been defined. We will define B_i as follows. Choose lexicographically the smallest string w such that the set $\{y \in B_{i-1} \mid w \notin Q^+(y)\}$ has the largest cardinality. Finally, we define w_i be this string w and set $B_i = \{y \in B_{i-1} \mid w_i \notin Q^+(y)\}$. In what follows, we will show that $\| B_i \| \leq (2/3) \| B_{i-1} \|$.
Claim 12 \(\| B_i \| \leq (2/3) \| B_{i-1} \| \).

Proof. Let \(d \) satisfy \(\| B_i \| = d \cdot \| B_{i-1} \| \). For each index \(i \in [2an] \), let \(X_i = \{ y \mid x_i \in Q^+(y) \} \). Since \(\| Q^+(y) \| > 2an/3 \) for all \(y \)'s, it holds that \(\sum_{i=1}^{2an} \| X_i \| \cdot d \geq (2an/3) \| B_{i-1} \| \). Note that \(\sum_{i=1}^{2an} \| X_i \| = 2an \). Thus, we obtain \(d \geq 1/3 \). Since \(\| B_i \| = \| B_{i-1} \| - \| B_i \| \), it follows that \(\| B_i \| \leq (2/3) \| B_{i-1} \| \). \(\square \)

From the above claim, it follows that \(\| B_i \| \leq (2/3)^i \| B_0 \| = (2/3)^{2an} \). Let \(i_0 \) denote the minimal number such that \(\| B_i \| = 0 \). Since \(i > an/ \log(3/2) \) implies \(\| B_i \| < 1 \), we conclude that \(i_0 \leq an/ \log(3/2) + 1 \). Now, we write \(W \) for the collection of all \(w_i \)'s \((1 \leq i \leq i_0)\) defined in the above procedure. The desired \(A_n \) is defined to be \((2^{an} - W) \cup \bigcup_{i=0}^{\infty} Q^-(y)\).

(2) Second, we will consider the case where the bottom fan-in is more than 1. To handle this case, we will use a special form of the so-called switching lemma to reduce this case to the base case.

A restriction is a map \(\rho \) from a set of \(n \) Boolean variables to \(\{0, 1, \ast\} \). We define \(R_{n, \ell, q}^\rho \) to be the collection of restrictions \(\rho \) on a domain of \(n \) variables that have exactly \(\ell \) unset variables and a \(q \)-fraction of the variables are set to be 1. For any circuit \(C \), \(b(f)(C) \) denotes the bottom fan-in of \(C \).

Claim 13 Let \(C \) be a circuit of \(OR \) of \(ANDs \) with bottom fan-in at most \(r \). Let \(n > 0, s \geq 0, \ell = pn \), and \(p \leq 1/7 \). It holds that \(\| \{ \rho \in R_{n, \ell, q}^\rho \mid \exists D : AND \ of \ ORs \ [b(f)(D) \geq s] \| \leq (2pr/q^2)^s \| R_{n, \ell, q}^\rho \| \).

Consider any subcircuit \(D \), an \(AND \) of \(ORs \), attached to the top \(OR \)-gate. By setting \(q = 1/3 \) and \(r = c \), we apply Claim 12 to \(D \). The probability that \(D \) is written as an \(OR \) of \(ANDs \) with bottom fan-in at most \(an \) is upper-bounded by \((1 - (18pc)^{an})\). Moreover, the probability that all such subcircuits \(D \) are simultaneously written as circuits, each of which is an \(AND \) of \(ORs \), is at most \((1 - (18pc)^{an})^{2an} \geq 1 - 2an(18pc)^{an} = 1 - (36pc)^{an} \). If we choose \(p = 1/72c \), then the success probability is at least \((1 - (36pc)^{an} \geq 1 - (1/2)^{an} \), which is larger than \(1/2 \) for any integer \(n \geq 2/a \). Since every subcircuit \(D \) is written as an \(AND \) of \(ORs \), the original circuit \(C \) can be written as an \(OR \) of \(ANDs \) with bottom fan-in at most \(an \). Finally, we apply the base case to this new circuit. \(\square \)

There also exists an obvious oracle for which \(BPCFL \) equals \(\Sigma_{2}^{CFL} \) since the following equivalence holds.

Proposition 4.19 \(BPCFL_T^{PSPACE} = \Sigma_{2}^{CFL, PSPACE} \supseteq PSPACE \).

Proof. It is obvious that \(BPCFL_T^B \subseteq PSPACE_T^B \) for every oracle \(B \), where \(PSPACE_T^B \) is a many-one relativization of \(PSPACE \) relative to \(B \). Hence, it follows that \(BPCFL_T^{PSPACE} \subseteq PSPACE \). Conversely, it holds that \(PSPACE \subseteq BPCFL_T^{PSPACE} \). The case of \(\Sigma_{2}^{CFL, PSPACE} \) is similar. \(\square \)

We have just seen an oracle that supports the inclusion \(BPCFL \subseteq \Sigma_{2}^{CFL} \) and another oracle that does not. As this example showcases, some relativization results are quite counterintuitive. Before closing this subsection, we will present another plausible example regarding a parity \(NFA \) language family \(\oplus NFA \) whose elements are languages of the form \(\{ x \mid ACC_M(x) = 1 \ \mod 2 \} \) for arbitrary \(nfa \)'s \(M \). In the unrealativized world, it is known that \(\oplus NFA \subseteq TC^1 \subseteq PH \); however, there exists another oracle that defies this fact.

Lemma 4.20 There exists an oracle such that \(\oplus NFA_A^A \not\subseteq PH^A \).

Proof. Let us consider a special language \(L_A = \{0^n \mid \bigoplus_{x \in \Sigma^n} \chi^A(x) = 1 \ \mod 2 \} \) relative to oracle \(A \). It is easy to show that, for any oracle \(A \), \(L_A \) is in \(\oplus NFA_A^m \) by guessing a string \(x \) in \(\Sigma^n \) and querying it to \(A \). Since it is shown in [9] that \(L_A \not\subseteq PH^A \) for a random oracle \(A \), we immediately obtain the desired oracle separation. \(\square \)

5 A Close Relation to the Polynomial Hierarchy

Through the last section, the CFL hierarchy has proven to be viable in classifying certain languages and it can be characterized by two natural ways, as shown in Theorem 4.11. Moreover, we know that the first two levels of the CFL hierarchy are different (namely, \(\Sigma_{1}^{CFL} \neq \Sigma_{2}^{CFL} \)); however, the separation of the rest of the hierarchy still remains unknown. In this section, we will discuss under what conditions the separation is possible.

Given a language \(A \), a language \(L \) is in \(L_A^A \) if there exists a logarithmic-space (or log-space) DTM \(M \) with an extra write-only query tape (other than a two-way read-only input tape and a two-way read/write work
We want to demonstrate separately that, for every index $k \geq 1$, the claim will be proven by induction on $\Sigma^CFL = CFL$. For every index $k \geq 1$, by Claim 14, $L_{\Sigma^CFL} \subseteq L_{\Sigma^P}$ holds. This is shown as follows. From BPCFL \subseteq PCFL, it follows that $L_{\Sigma^{BPCFL}} \subseteq L_{\Sigma^{PCFL}} \subseteq L_{\Sigma^CFL}$. However, by Claim 14, $L_{\Sigma^{CFL}} = L_{\Sigma^P}$ holds for every index $k \geq 1$. It thus suffices to show that $\Sigma^CFL \subseteq \Sigma^P$. As noted before, it is known that $L_{\Sigma^CFL} \subseteq L_{\Sigma^P}$. Occasionally, we also write L_{Σ^CFL} to mean L_{Σ^P}. Obviously, it holds that $N_1(x) \subseteq C$ iff $M(x) \subseteq B$. It thus suffices to show that $C \subseteq \Sigma^P$.

To show that $C \subseteq \Sigma^P$, let us consider an npda N_2 that behaves as follows. On input $w = y_1 y_2 \cdots y_k$ if M on input x outputs y, N_2 sequentially simulates M_i on input y_i, starting with $i = 1$. After each simulation of $M_i(y_i)$, we always clear the stack so that each simulation does not affect the next one. Moreover, as soon as M_i rejects y_i, N_2 enters a rejecting state. It is obvious that $C \subseteq \Sigma^P$ is recognized by N_2.

The CFL hierarchy turns out to be a useful tool because it is closely related to the polynomial hierarchy $\{\Sigma^P_k, \Pi^P_k, \Pi^P_k \mid k \in \mathbb{N}\}$. Reinhart [13] first established a close connection between his alternating hierarchy over CFL and the polynomial hierarchy. Similar to Σ^CFL_k, the notation $\Sigma^P_{k,e}$ stands for the eth level of the Boolean hierarchies over Σ^P_k. We want to demonstrate the following intimate relationship between $\Sigma^CFL_{k+1,e}$ and $\Sigma^P_{k,e}$.

Theorem 5.2 For every index $e, k \in \mathbb{N}^+$, $L_m(\Sigma^CFL_{k+1,e}) = \Sigma^P_{k,e}$ holds.

Proof. Fixing k arbitrarily, we will show the theorem by induction on $e \in \mathbb{N}^+$. Our starting point is the base case where $e = 1$.

Claim 14 $L_m(\Sigma^CFL_{k+1}) = \Sigma^P_k$ holds for every index $k \in \mathbb{N}^+$.

Proof. We want to demonstrate separately that, for every index $k \in \mathbb{N}^+$, (1) $L_m(\Sigma^CFL_{k+1}) \subseteq \Sigma^P_k$ and (2) $\Sigma^P_k \subseteq L_m(\Sigma^CFL_{k+1})$.

(1) To prove that $L_m(\Sigma^CFL_{k+1}) \subseteq \Sigma^P_k$, we start with the following useful relationship between Σ^CFL_k and Σ^P_k.

Claim 15 $\Sigma^CFL_{k+1} \subseteq \Sigma^P_k$ holds for every index $k \in \mathbb{N}^+$.

Proof. This claim will be proven by induction on $k \geq 1$. A key to the following proof is the fact that $\text{CFL}^A \subseteq \text{NP}^A$ holds for every oracle A. When $k = 1$, it holds that $\text{CFL}^A = \text{CFL}^A \subseteq \text{NP}^A$. Since $\text{CFL} \subseteq \text{P}$, we obtain $\text{NP}^CFL \subseteq \text{NP}^P = \text{NP}$, yielding the desired containment $\text{CFL} \subseteq \text{NP}$. When $k \geq 2$, by the induction hypothesis, we assume that $\Sigma^CFL_k \subseteq \Sigma^P_{k-1}$. It therefore follows that $\Sigma^CFL_{k+1} = \text{CFL}^A(\Pi^CFL_k) \subseteq \text{NP}(\Pi^CFL_k) \subseteq \text{NP}(\Pi^CFL_{k-1}) = \Sigma^P_k$. The inclusion $L_m(\Sigma^CFL_{k+1}) \subseteq L_m(\Sigma^P_k)$ follows from Claim 15. Hence, using the fact that $L_m(\Sigma^P_k) \subseteq \Sigma^P_k$, we conclude that $L_m(\Sigma^CFL_{k+1}) \subseteq \Sigma^P_k$.

(2) Next, we will show that $\Sigma^P_k \subseteq L_m(\Sigma^CFL_{k+1})$. An underlying idea of the following argument comes from [16]. Our plan is to define a set of k quantified Boolean formulas, denoted QBF_k, which is slightly different from a standard BQF_k and to prove that (a) QBF_k is log-space complete for Σ^P_k and (b) QBF_k indeed belongs to Σ^CFL_k. Combining (a) and (b) implies that $\Sigma^P_k \subseteq L^QBF_k \subseteq L_m(\Sigma^CFL_{k+1})$.
First, we will discuss the case where \(k \) is odd. The language \(QBF_k \) must be of a specific form so that an input-tape head of an oracle npda can read through a given instance of \(QBF_k \) from left to right without back-tracking. First, we prepare the following alphabet of distinct input symbols: \(\Sigma = \{ \exists, \forall, \land, \lor, +, -, 0, a_1, a_2, \ldots, a_n \} \). A string \(\phi \) belongs to \(QBF_k \) exactly when \(\phi \) is of the following form:
\[
\exists m^1_1 \forall a_2^m_2 \cdots \exists Q_ka_k^m_k [c_1 \land c_2 \land \cdots \land c_m],
\]
where each \(m_i \) and \(m \) are in \(\mathbb{N}^+ \), \(Q_k \) is \(\exists \), each \(c_i \) is a string \(c_i, c_{i\ell}, c_{i\ell-1} \cdots c_{i1} \) in \(\{ +, -, 0 \}^k \) for a certain number \(\ell_i \) satisfying \(\ell_i \geq m = \sum_{j=1}^k m_j \), and, moreover, the corresponding quantified Boolean formula
\[
\tilde{\phi} \equiv \exists x_1, \ldots, x_m, \forall x_{m+1}, \ldots, x_{m+2m} \cdots Q_k x_{m'+1}, \ldots, x_{m'+m} [C_1 \land C_2 \land \cdots \land C_m]
\]
is satisfied, where \(m' = m - m_k \), \(C_i \) is a formula of the form \((\vee_{j \in S_+(i)} x_j) \lor (\vee_{j \in S_-(i)} x_j)\), \(S_+(i) = \{ j \in [\ell] \mid j \leq m, c_{i\ell-j+1} = + \} \), and \(S_-(i) = \{ j \in [\ell] \mid j \leq m, c_{i\ell-j+1} = - \} \).

When \(k \) is even, we define \(BQF_k \) by exchanging the roles of \(\land \) and \(\lor \) and by setting \(Q_k = \forall \) in the above definition. As is shown in [15], it is possible to demonstrate that \(QBF_k \) is log-space many-one complete for \(\Sigma_k^P \), that is, every language in \(\Sigma_k^P \) belongs to \(L_{QBF_k}^P \). If \(QBF_k \) is in \(\Sigma_{k+1}^{CFL} \), then we obtain \(\Sigma_k^P \subseteq L_{QBF_k}^P \subseteq L_m(\Sigma_{k+1}^{CFL}) \), as requested.

Therefore, what remains undone is to prove that \(QBF_k \) is indeed in \(\Sigma_{k+1}^{CFL} \) by constructing a chain of \(m \)-reduction machines for \(QBF_k \). As done in Section 13, we also call such a chain of \(m \)-reduction machines computing \(QBF_k \) by a \(m \)-reduction machine for \(QBF_k \). Given an index \(i \in [k] \), we define a string \(\phi_i \) as \(\phi_i \equiv Q_i a_i^m \cdots \exists Q_i a_i^m (\forall c_1 \land c_2 \land \cdots \land c_m) \). Now, let \(\psi_i \) denote \(\phi_i \). The \((i+1)\)st machine works as follows.

Assume that an input string \(\psi_i \) to the machine has the form \([a_{i1}^m] \cdots [a_{i1}^{m-1}] \phi_i \). While reading \(m_i + 1 \) symbols of “\(Q_i a_i^m \)” until the next symbol \(Q_i+1 \), the machine generates all strings \(s_1 = s_1 s_2 \cdots s_{i1} \) in \(\{ 0, 1 \}^m \) and then produces corresponding strings \([a_{i1}^m] \cdots [a_{i1}^1] \phi_i+1 \) on a query tape. Note that, at any moment, if the machine discovers that the input does not have a valid form, it immediately enters a rejecting state and halts. The last machine \(N \) works in the following manner, when \(\psi_k \) is given as an input. First, \(N \) stores the string \([a_{k1}^1] \cdots [a_{k1}^{m-1}] \) in its stack, guesses a binary string \(s_k \) of length \(m_k \), and stores \([a_{k1}^m] \) also in the stack.

Finally, let us consider the case where \(e \geq 2 \). A key to the proof of this case is the following simple fact. For convenience, we say that a language family \(C \) admits input redundancy if, for every language \(L \) in \(C \), two languages \(L' = \{ xyz \mid x \in L \} \) and \(L'' = \{ xzy \mid y \in L \} \) are both in \(C \), provided that \(z \) is a fresh symbol that never appears in \(x \) as well as \(y \).

Claim 16 If two language families \(C_1 \) and \(C_2 \) admit input redundancy, then \(L_{C_1} \cap L_{C_2} \subseteq L_{C_1 \land C_2} \) and \(L_{C_1} \lor L_{C_2} \subseteq L_{C_1 \lor C_2} \).

Proof. We will show only the first assertion of the lemma, because the second assertion follows similarly. Take any language \(L \) and assume that \(L \in L_{C_1} \land L_{C_2} \) for certain two languages \(A_1 \in C_1 \) and \(A_2 \in C_2 \), there are two log-space \(m \)-reduction machines \(M_1 \) and \(M_2 \) such that, for every string \(x, \) \(x \) is in \(L \) if and only if \(M_1^x \) outputs \(y_l \) and \(y_l \in A_1 \), for any index \(i \in \{ 1, 2 \} \). Now, we want to define another machine \(M \) as follows. On input \(x, M \) first simulates \(M_1 \) on \(x \) and produces \(y_1 \) on its query tape. Moreover, \(M \) simulates \(M_2 \) on \(x \) and produces \(y_2 \) also on the query tape following the string \(y_1 \). The language \(C = \{ y_1 y_2 \mid y_1 \in A_1, y_2 \in A_2 \} \) clearly belongs to \(C_1 \land C_2 \). Thus, it is obviously that \(L \) is in \(L_{C_1 \land C_2} \).

Claim M implies that \(L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) = L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) \subseteq L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) \). Since \(L_m(\Sigma_{k+1}^{CFL}) = \Sigma_k^P \) and \(L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) = \Sigma_k^{2e} \) by the induction hypothesis, we obtain \(L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) = \Sigma_k^{2e} \lor \Sigma_k^P = \Sigma_k^{2e+1} \). Similarly, we conclude that \(L_m(\Sigma_{k+1}^{CFL} \cap \Pi_{k+1}^{CFL}) = k_{2e+2} \).

Unfortunately, the proof presented above does not apply to obtain, for instance, \(L_m(\Sigma_{k+1} \cap \Pi_{k+1}^{CFL}) = \Sigma_k^P \cap \Pi_k^P \), simply because no many-one complete languages are known for \(\Sigma_k^P \cap \Pi_k^P \). This remains as a challenging question.

An immediate consequence of Theorem 5.2 is given below.

26
Corollary 5.3 If the polynomial hierarchy is infinite, then so is the Boolean hierarchy over Σ_k^{CFL} at every level $k \geq 2$. In particular, if the polynomial hierarchy is infinite, then so is the CFL hierarchy.

Proof. Let $k \geq 2$. Theorem 5.2 implies that, if the Boolean hierarchy over Σ_k^P is infinite, then the Boolean hierarchy over Σ_k^{CFL} is also infinite. Earlier, Kadin [9] showed that, if the polynomial hierarchy is infinite, then the Boolean hierarchy over Σ_k^P is infinite for every index $k \geq 1$. By combining those statements, we instantly obtain the desired consequence. \hfill \Box

More specifically, the following separation holds for the kth level and the $(k+1)$st level of the CFL hierarchy.

Corollary 5.4 Let $k \geq 2$. If $PH \neq \Sigma_k^P$, then $\Sigma_k^{CFL} \neq \Sigma_{k+1}^{CFL}$.

In terms of the inclusion relationship, as shown in Claim 5.3, Σ_{k+1}^{CFL} is upper-bounded by Σ_k^P. It is possible to show that this bound is tight under the assumption that Δ^p_{k+1} is different from Σ^p_{k+1}.

Corollary 5.5 For any index $k \geq 2$, if $\Delta^p_{k+1} \neq \Sigma^p_{k+1}$, then $\Sigma_k^{CFL} \not\subseteq \Sigma_{k+1}^{CFL}$.

Proof. We want to show the contrapositive of the corollary. We start with the assumption that $\Sigma_k^{CFL} \subseteq \Sigma_{k+1}^{CFL}$. From this inclusion, it follows that $L_m(\Sigma_{k+1}^{CFL}) \subseteq L_m(\Sigma_k^P)$. Since $L_m(\Sigma^p_1) = \Sigma^p_{k+1}$ holds by Theorem 5.2, we obtain $\Sigma^p_{k+1} \subseteq L_m(\Sigma^p_k)$. On the contrary, it holds that $L_m(\Sigma^p_k) \subseteq \Delta^p_{k+1}$, since Σ^p_k is included in Δ^p_{k+1}. Since $\Delta^p_{k+1} \subseteq \Sigma^p_{k+1}$ is obvious, $\Delta^p_{k+1} = \Sigma^p_{k+1}$ follows immediately. \hfill \Box

Let us recall that CFL$(\omega) \subseteq \Sigma_2^{CFL} \cap \Pi_2^{CFL}$ by Proposition 5.3 and CFL$(\omega) \subseteq \Sigma_1^{CFL} \subseteq \Delta^p_2$ by Lemma 3.6. It suffices to show that $\Delta^p_2 \subseteq \Sigma_2^{CFL}$ holds, since Σ_2^{CFL} is upper-bounded by Σ_1^{CFL}. It is easy to show that a truth-table reduction can simulate Boolean operations that define each level of the Boolean hierarchy over CFL. Hence, the Boolean hierarchy BHCF is “equivalent” to CFL under the log-space truth-table reducibility.

Lemma 5.7 $L_{tt}^{BHCF} = L_{tt}^{CFL}$.

Proof. We need to show the equality $L_{tt}^{BHCF} = L_{tt}^{CFL}$ for every index $k \geq 1$. Since $CFL \subseteq BHCF$, it holds that $L_{tt}^{BHCF} \subseteq L_{tt}^{CFL}$. Conversely, we will show that $L_{tt}^{BHCF} \subseteq L_{tt}^{CFL}$ by induction on $k \geq 1$. Since the base case $k = 1$ is trivial, we hereafter assume that $k \geq 2$. Let B be any language in L_{tt}^{BHCF}. Moreover, let M be a log-space oracle DTM and A be an oracle A in CFL$_k$ such that M reduces A to L. Now, consider the case where k is even. We will construct a new oracle npda N as follows. On input x, when M produces m query words y_1, y_2, \ldots, y_m, N produces $2m$ query words $0y_1, 1y_1, 0y_2, 1y_2, \ldots, 0y_m, 1y_m$. Assume that $A = B \cap C$ for two appropriate languages $B \in$ CFL$_{k-1}$ and $C \in$ co-CFL. We define $B' = \{0y \mid y \in B \}$ and $C' = \{1y \mid y \notin C \}$ and set A' to be $B' \cup C'$, which is in CFL$_{k-1} \cap$ co-CFL. Since CFL$_{k-1}$ is closed under union with CFL, note that y_i is in A if and only if $0y_i \notin B'$ and $1y_i \in C'$. We use this equivalence relation as a truth table to judge the membership of x to L. When k is odd, since $A = B \cup C$ for certain languages $B \in$ CFL$_{k-1}$ and $C \in$ CFL, it suffices to transform B and C to $B' = \{0y \mid y \in B \}$ and $C' = \{1y \mid y \in C \}$. The rest of the argument is similar to the previous case. \hfill \Box

Wagner [19] introduced a convenient notation Θ_{k+1}^P as an abbreviation of $P_T(\Sigma_k^P[O(\log n)])$ for each level $k \geq 1$, where the script “$[O(\log n)]$” means that the total number of queries made in an entire computation tree on an input of size n to an oracle in Σ_k^P is bounded from above by $c \log n + d$ for two absolute constants $c, d \geq 0$.

Theorem 5.8 For all levels $k \geq 1$, $L_{tt}(\Sigma_{k+1}^{CFL}) = \Theta_{k+1}^P$ holds.

Proof. Let $k \geq 1$. First, we will give a useful characterization of Θ_{k+1}^P in terms of Σ_k^P using two
different truth-table reductions. In a way similar to \(L_k \), the notation \(P^A_{tt} \) (or \(P_{tt}(A) \)) is introduced using polynomial-time DTMs instead of log-space DTMs.

Claim 17 For every index \(k \in \mathbb{N}^+ \), it holds that \(\Theta^P_{k+1} = P_{tt}(\Sigma^P_{k+1}) = L_{tt}(\Sigma^P_k) \).

Proof. It suffices to show that \(P_{tt}(\Sigma^P_k) \subseteq L_{tt}(\Sigma^P_k) \) and \(\Theta^P_{k+1} = P_{tt}(\Sigma^P_k) \) since \(L_{tt}(\Sigma^P_k) \subseteq P_{tt}(\Sigma^P_k) \) is obvious. Note that the proof of \(P_{tt}(\Sigma^P_k) \subseteq L_{tt}(\Sigma^P_k) \) by Buss and Hay \[4\] relativizes; namely, \(P_{tt}(NP^A) \subseteq L_{tt}(NP^A) \) for any oracle \(A \). Recall the language \(QBF_k \) defined in the proof of Claim 15. By choosing \(QBF_k \), we obtain \(P_{tt}(\Sigma^P_k) = P_{tt}(NP^{QBF_k}) \subseteq L_{tt}(NP^{QBF_k}) \). Moreover, the proof of \(P_{tt}(\Sigma^P_k) \subseteq P_{tt}(\Sigma^P_k) \) given in, e.g., \[1\] also relativizes. By a similar argument as above, it also follows that \(P_{tt}(\Sigma^P_k) = P_{tt}(\Sigma^P_k) \). \(\square \)

Since we have earlier shown that \(\Sigma^CFL_{k+1} \subseteq \Sigma^P_k \), it follows that \(L_{tt}(\Sigma^CFL_{k+1}) \subseteq L_{tt}(\Sigma^P_k) = \Theta^P_{k+1} \), where the last equality comes from Claim 17. In what follows, we intend to argue that \(\Theta^P_{k+1} \subseteq L_{tt}(\Sigma^CFL_{k+1}) \). Assume that \(L \in \Theta^P_{k+1} \); thus, \(L \) is in \(L_{tt}(\Sigma^P_k) \) by Claim 17. Since \(QBF_k \) is log-space many-one complete for \(\Sigma^P_k \), we can replace \(\Sigma^P_k \) with \(QBF_k \). Since \(\Sigma^P_k \subseteq L_{tt}(QBF_k) \), it holds that \(L \in L_{tt}(L_{tt}(QBF_k) = L^P_{tt}(QBF_k) \). Since \(QBF_k \) belongs to \(\Sigma^CFL_{k+1} \) by the proof of Claim 15, we conclude that \(L \in L_{tt}(\Sigma^CFL_{k+1}) \). \(\square \)

References

[1] P. W. Beame. Lower bounds for recognizing small cliques on CRCW PRAM’s. *Discrete Applied Mathematics*, 29 (1990) 3–20.

[2] R. Book and K. Ko. On sets truth-table reducible to sparse sets. *SIAM J. Comput.* 17 (1988) 903–919.

[3] R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. *SIAM J. Comput.* 13 (1984) 461–487.

[4] S. R. Buss and L. Hay. On the truth-table reducibility to SAT. *Inf. Comput.* 91 (1991) 86–102.

[5] J.-Y. Cai. With probability one, a random oracle separates PSPARSE from the polynomial-time hierarchy. In *Proc. of the 18th ACM Symposium on Theory of Computing*, pp.21–29, 1986.

[6] D. Du and K. Ko. *Theory of Computational Complexity*. John Willey & Sons, 2000.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Second Edition. Addison-Wesley, 2001.

[8] J. Hromkovič and G. Schnitger. On probabilistic pushdown automata. *Inf. Comput.* 208 (2010) 982–995.

[9] J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. *SIAM J. Comput.* 17 (1988) 1263–1282. Erratum appears in *SIAM J. Comput.* 20 (1991) p.404.

[10] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial-time reducibilities. *Theor. Comput. Sci.* 1 (1975) 103–123.

[11] P. Linz. *An Introduction to Formal Languages and Automata*. Fourth Edition. Jones and Barlett Publishers, 2006.

[12] L. Y. Liu and P. Weiner. An infinite hierarchy of intersections of context-free languages. *Math. Systems Theory* 7 (1973) 185–192.

[13] I. I. Macarie and M. Ogihara. Properties of probabilistic pushdown automata. *Theor. Comput. Sci.* 207 (1998) 117–130.

[14] K. Reihardt. Hierarchies over the context-free languages. In *Proc. of the 6th International Meeting of Young Computer Scientists on Aspects and Prospects of Theoretical Computer Science* (IMYCS), Lecture Notes in Computer Science, Springer, vol.464, pp.214–224, 1990.

[15] L. J. Stockmeyer. The polynomial-time hierarchy. *Theor. Comput. Sci.* 3 (1976) 1–22.

[16] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In *Proc. of the 5th Annual ACM Symposium on Theory of Computing*, pp.1–9, 1973.

[17] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Turing machines. *Theor. Comput. Sci.* 311 (2010) 22–43. An extended abstract appeared in the Proc. of the 30th SOFSEM Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2004), Lecture Notes in Computer Science, Springer, vol.2932, pp.335–348, 2004.

[18] H. Venkateswaran. Properties that characterize LOGCFL. *J. Comput. System Sci.* 42 (1991) 380–404.

[19] K. W. Wagner. Bounded query classes. *SIAM J. Comput.* 19 (1990) 833–846.

[20] T. Yamakami. Swapping lemmas for regular and context-free languages. Available at arXiv:0808.4122 2008.
[21] T. Yamakami. Pseudorandom generators against advised context-free languages. Available at arXiv:0902.2774 2009.

[22] T. Yamakami. The roles of advice to one-tape linear-time Turing machines and finite automata. *Int. J. Found. Comput. Sci.* 21 (2010) 941–962. An early version appeared in the Proc. of the 20th International Symposium on Algorithms and Computation (ISAAC 2009), Lecture Notes in Computer Science, Springer, vol.5878, pp.933–942, 2009.

[23] T. Yamakami. Immunity and pseudorandomness of context-free languages. *Theor. Comput. Sci.* 412 (2011) 6432–6450.

[24] T. Yamakami and Y. Kato. The dissecting power of regular languages. *Inf. Pross. Lett.* 113 (2013) 116–122.

[25] D. H. Young. Recognition and parsing of context-free languages in time n^3. *Inf. Control* 10 (1967) 189–208.