Spin alignment around TNG300-1 voids

Federico Dávila-Kurbán,1,2,3,4∗ Marcelo Lares,1,2,3 Diego García Lambas,1,2,3

1 Instituto de Astronomía Teórica y Experimental (IASTE, CONICET/UNC), Córdoba, Argentina
2 Observatorio Astronómico Córdoba, Argentina
3 Consejo de Investigaciones Científicas y Técnicas (CONICET), Argentina
4 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Argentina

ABSTRACT

Using a new statistical approach we study the alignment signal of galactic spins with respect to the center of voids identified in the TNG300–1 simulation. We explore this signal in different samples of galaxies, varying their distance from the void center, mass, spin norm, local density, and velocity. We find a strong tendency (>9σ) of massive, high–spin, and low radial velocity galaxies to be aligned perpendicularly to the void–centric direction in a wide range of distances corresponding to 0.9 to 1.4 void radii. Furthermore, we find that in these subdense environments, local density is irrelevant in the amplitude of spin alignment, while the largest impact is associated to the galaxy void–centric radial velocity in the sense that those at the lowest expansion rate are more strongly aligned perpendicularly to the center of the void. Our results suggest that further analysis at understanding intrinsic alignments and their relation to large scale structures may probe key for weak lensing studies in upcoming large surveys such as Euclid and LSST.

Key words: methods: statistical – software: simulations – large-scale structure of Universe

1 INTRODUCTION

Studies on the galaxy distribution in increasingly large spectroscopic surveys, for instance the Sloan Digital Sky Survey (SDSS; York et al. 2000), have shed light on the nature of a complex hierarchical network of structures, usually referred to as the cosmic web, composed of clusters, filaments, sheets, and voids (e.g., Bond et al. 1996). Preferential orientations, or alignments, between galaxies, their underlying matter structures, and the aforementioned cosmic web are crucial aspects to further a more comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe.

For a sufficiently large sample of galaxies in a homogeneous and isotropic universe one might expect galactic properties such as orientations and ellipticities to be random. For this reason, any detected net preferred orientation with regard to a given direction, any nonvanishing correlation between galaxy alignments, or any other phenomenon that indicates a local violation of isotropy, is usually linked to tidal gravitational forces acting on the galaxies at different evolutionary stages (Peebles 1969; Doroshkevich 1970; White 1984). Furthermore, models of lensing effects, which explain coherent apparent distortions in galaxy images and help constrain cosmological models are themselves restricted by how well we understand any other possible sources of underlying coherent alignment (e.g. Croft & Metzler 2000; Heavens et al. 2000; Hirata & Seljak 2004; Codis et al. 2015). This work studies the orientation of galactic spins in void shells with respect to the void centric direction, within a simulation. Observational studies of orientations and alignments around low density environments such as voids are scarce, in part because, by the very definition of voids, the sample data to analyse are usually very small. However, there have been three widely discussed observational works (Trujillo et al. 2006, hereafter T06; Slosar & White 2009, SW09; Varela et al. 2012, V12) that studied the orientation of galaxies around voids. What these works have in common is the use of the same void finder by Patiri et al. (2006), which searches for the largest non-overlapping spheres within the survey volume devoid of galaxies above a certain threshold of brightness. They worked with SDSS data releases 3, 6, and 7, respectively. T06 additionally considered data from the 2dF Galaxy Redshift Survey and defined similar rest-frame magnitude thresholds. On the other hand, there were significant differences in the selection of the galaxy samples, and the measurement methods for their spins. T06 limited themselves to only selecting edge-on and face-on disc galaxies, while V12 fitted a thick-disc model to all galaxies that were classified as spirals by GalaxyZoo (Lintott et al. 2008).

The standard picture of tidal torque theory (Lee & Pen 2000, 2001; Lee et al. 2007) postulates a preferential net alignment of the spin vector with the intermediate principal axis of the tidal shear tensor which lies tangentially to the surface of the void. In agreement with this picture, T06 found a 99.7 per cent confidence level that spiral galaxies located on the shells of the largest (>10 Mpc h⁻¹) cosmic voids have rotation axes that lie preferentially on the void surface. SW09 found no statistical evidence for departure from random orientations; they argue that the results of T06 might possibly be a statistical fluctuation given that the catalogue used in SW09 is considerably larger and has a much better filling factor that dramatically increases the number of voids. On the other hand, V12 considered voids with minimum radii of 15 Mpc h⁻¹ and found a significant signal (>98.8 per cent) for the alignment of the spin of galaxies around these voids to be preferentially parallel to the radius vector, while for

∗ E-mail: fdavilakurban@unc.edu.ar
Figure 1. Scheme of the analysis performed in the search for alignment signals of galaxy discs around voids. We start with a \(\lambda \) parameter, the acute angle between the spin vector and the galaxy vector position w.r.t. the void center. Then the ratio of galaxies with \(\tan(\lambda) > 1 \) and with \(\tan(\lambda) < 1 \) is compared with a theoretical distribution for a randomly oriented galaxy sample for different bins in radial distance to the void center. Finally, a normalized parameter is defined, \(\zeta \), to show both the trend of alignment, if any, and its statistical significance; e.g. if \(\zeta > 3 \), then this population of galaxies shows a trend of being perpendicularly aligned with a confidence of over 3\(\sigma \).

smaller voids this tendency disappears and the results are consistent with no special alignment. Moreover, V12 also finds that the strength of the alignment depends on the distance between the galaxies and the void surface and that, regardless of void size, for galaxies farther than \(>5 \) Mpc \(h^{-1} \) there is no preferential direction in the distribution of the alignments. Regarding the disagreement with net tangential orientation (T06) or no orientation (SW09), V12 argue that the small size of the galaxy sample around voids with \(R \geq 10 \) Mpc \(h^{-1} \) used in these works could mask the alignment signal that they find.

In recent years, as increasingly higher resolution simulations become available, there have been several studies on alignments of spins as well as galaxy/halo shapes with respect to the various substructures of the cosmic web. Although it might be tempting to think of void shells, which are the focus of this work, as being equivalent to the “sheet” substructures of the cosmic web, it should be noted that the practical algorithms to identify them are significantly different (see e.g. the review Joachimi et al. 2015).

On the observational aspect, the scenario for spin alignments with sheets remains unclear. Using observations based on photographic plate data, Lee & Pen (2002) and Lee et al. (2007) concluded that galaxy spins tend to lie within sheets, whereas using SDSS data, Tempel & Libeskind (2013) and Zhang et al. (2015) found that galaxy angular momenta points preferentially perpendicular to the plane of the sheet, albeit with a weak signal in both types of alignment. The latter results seem consistent with the void result of V12, however, simulation–based results generally coincide in finding that angular momenta lay preferentially parallel to planar structures (e.g. Libeskind et al. 2013), and this tendency seems to get stronger with more massive haloes (e.g. Forero-Romero et al. 2014). Studies of correlations of galaxy shapes located approximately around one void radius have been inconclusive due to the small galaxy sample (e.g. Reischke & Schäfer 2019). Despite this, d’Assignies D. et al. (2022) recently suggested the existence of two regimes for alignment: a large-scale regime of over twice the void radius where the alignment would be radial and an intermediate regime with a projected distance up to 1.5 void radius where the shapes would be aligned tangentially. The authors find this latter regime to be interesting because it would depend directly on the mass distribution inside the void and is therefore
Alignment around voids

2 METHOD AND STATISTICS

The spherical symmetry of voids, both in their geometry and dynamics, allows for a specific direction in which to analyse galactic orientations: the radial direction. Given the problem of vector orientations around a central point we will define the parameters β, η, and ζ that will allow us to study the orientation of galaxies and detect possible excesses with respect to a random distribution. These three parameters are formally introduced and analysed in Dávila Kurbán et al. (submitted), however, the basic definitions are outlined below. The motivation behind this approach is to develop a robust statistic for the measuring of alignment signal that does not rely on Monte Carlo simulations for an estimation of its statistical significance (Dávila Kurbán et al., submitted).

Additionally, complementing the description of this section, Fig. 1 shows a schematic summary for the reader as a quick refresher of the definitions of the parameters, how they relate to one another, and, ultimately, how we start from the measurement of an angle to the visual representation of alignment signal we use to show our results.

2.1 Definition of the β parameter

Given the radial direction \hat{r} of unit norm, one can calculate the parallel and perpendicular components of the spin vector \vec{S}:

$$ S_\parallel = |\vec{S}| \cos(\lambda) = |\vec{S} \cdot \hat{r}|, \quad \text{and} \quad S_\perp = \sqrt{S^2 - S_\parallel^2}, $$

where S_\perp is the perpendicular component of the radial direction, \hat{r}, and S_\parallel is the parallel component of said direction, so that $\vec{S} = S_\perp \hat{r} + S_\parallel$. By taking the absolute value of $\cos(\lambda)$ we determine that λ is in fact the acute angle between the radial direction \hat{r} and the spin vector \vec{S}.

The distribution of the acute angle λ can be used to analyse alignments of the spin vectors, and given the relation of this to the components of the vector, the latter can be used to determine the orientations. Therefore, we define:

$$ \beta = \frac{S_\perp}{S_\parallel} = \tan(\lambda). $$

Now β is also a measure of the orientation of the spin vector \vec{S}. Note that given our definitions of S_\perp and S_\parallel, our parameter β is always positive:

$$ 0 \leq \lambda \leq \pi/2; \quad 0 \leq \beta \leq \infty $$

Spin vectors with $\beta > 1$ lay preferentially on the perpendicular direction with $\pi/4 < \lambda < \pi/2$, while those with $\beta < 1$ have a preferential orientation on the parallel direction with $0 < \lambda < \pi/4$.

Given that the probability distribution function of β is pathological (Dávila-Kurbán et al., submitted), we cannot use this parameter directly if we want to develop a statistic method that is robust. Instead we use β to define below the parameters η and ζ.

2.2 Definition of the η and ζ parameters

Given a population of spin vectors with a measured β parameter, we need an robust estimator to analyse the statistical tendency in said population of preferring a perpendicular or parallel direction, and measure whether this tendency is sufficiently different from random behaviour.

We consider the fraction of values of β that are greater than some critical value. Given that when the perpendicular and parallel components are equal there is no preference for either direction, we propose that the critical value be $\beta = 1$. Therefore, we define the parameter

$$ \eta = \frac{n(\beta > 1)}{n(\beta < 1)} $$

where n is the number of observations of a sample that fulfills the conditions indicated in parentheses.

It can be shown (Dávila-Kurbán et al., submitted) that this variable η, under the null hypothesis of no alignment, closely follows
a Gaussian distribution and is therefore completely described by its
first two moments, given by:

\[E(\eta) = \eta_0 = \frac{1}{\sqrt{2} - 1} \approx 2.4142 \quad (3) \]

\[\text{Var}(\eta) = \left(\frac{1}{Nq} \right)^2 + \left(\frac{p}{Nq^2} \right)^2 Npq + 2 \frac{1}{Nq} \frac{p}{Nq^2} Npq \]

\[= \frac{28.1421}{N}, \quad (4) \]

where \(p = 1/\sqrt{2}, q = 1 - p, \) and \(N \) is the total size of the sample.

The expected value, \(E[\eta] \), can be understood as the volume ratio of the two sections within a sphere delimited by a 45 degree angle from a reference direction. A statistical formalism for the derivation of this value is detailed in Dávila-Kurbán et al. (submitted), as well as the derivation of the variance (Eq. 4). Here, in Fig. 2 we show the ratio of Monte Carlo estimations of the variance of \(\eta \) and the derived theoretical value, Eq. 4, with different sample sizes. It can be observed that for sample sizes larger than roughly 100 the theoretical expression is a suitable estimation of the variance of \(\eta \) (this criterion is met throughout this work, see Sec. 3.4).

Finally, we define \(\zeta \), the variable that will be used to express alignment signal, by normalizing \(\eta \) as follows:

\[\zeta = \frac{\eta - \eta_0}{\sigma_{\eta}(N)}. \quad (5) \]

where \(\sigma_{\eta}(N) \) is calculated with the square root of Eq. 4. Note that \(\zeta \) follows a normalized Gaussian distribution, and so \(\zeta > 0 \) indicates a preferentially perpendicular orientation, \(\zeta < 0 \) indicates a preferentially parallel orientation, and absolute values above 1, 2, and 3 indicate a confidence level of 1–, 2–, and 3–\(\sigma \) respectively. An estimation for the error of \(\zeta \) is calculated using a bootstrap resampling technique, represented with error bars in Fig. 1.

3 DATA

3.1 TNG300-1 Simulation

We apply the previously described method to galaxy data from the IllustrisTNG project (TNG, Pillepich et al. 2018; Marinacci et al. 2018; Naiman et al. 2018; Springel et al. 2018; Nelson et al. 2018, 2019a, b; Pillepich et al. 2019). IllustrisTNG is a suite of cosmological magneto-hydrodynamic simulations obtained with the moving-mesh code AREPO (Springel 2010), and adopting the Planck cosmology (Collaboration et al. 2016): \(\Omega_m = 0.3089, \Omega_b = 0.0486, \Omega_{\Lambda} = 0.6911, \sigma_8 = 0.8159, n_s = 0.9667 \), and \(h = 0.6774 \). These simulations present exhaustive models for galaxy formation physics, and improve upon their predecessor, Illustris, by including magnetic fields and improving galactic wind models and AGN feedback.

The TNG project encompasses three different volumes with identical initial conditions and physical models: TNG50, TNG100, and TNG300. In particular, we employ the TNG300-1 with a periodic box of 205 Mpc \(h^{-1} \), the largest box with highest resolution from the suite. The haloes (groups) and subhaloes (galaxies) in TNG are found with a standard friends-of-friends (FoF) algorithm with linking length \(b = 0.2 \) (in units of the mean interparticle spacing) run on the dark matter particles, and the SUBFIND algorithm (Springel et al. 2001) respectively. The latter detects substructure within the groups and defines locally overdense, self-bound particle groups, where the baryonic component in the substructure is defined as a galaxy. We analyze the simulations at the final redshift, \(z = 0 \), considering galaxies with stellar mass of \(10^9 M_{\odot} \leq M_* \leq 10^{13} M_{\odot} \). The spin of the galaxies in the TNG suites is defined as the total spin per axis computed as the mass weighted sum of the relative coordinate times relative velocity of all member particles. The lower cut in mass mentioned above allows us to employ only galaxies in which the spin is well defined.

3.2 Void identification and their galaxy population

The identification of voids in the simulation follows the algorithm described in Ruiz et al. (2015), a modified version of previous algorithms presented in Padilla et al. (2005) and Ceccarelli et al. (2006). The algorithm estimates the density profile with a Voronoi tessellation over density tracers, in particular, in this work, TNG galaxies. Underdense regions are obtained by selecting Voronoi cells below a density threshold and are selected as void candidates. Centered in these cells, the integrated density contrast \(\Delta(r) \) is computed at increasing values of \(r \). Void candidates are then selected as the largest spheres satisfying the condition \(\Delta(R_v) < 0.9 \) where \(R_v \) is the void radius. Void centers are then randomly displaced so that the spheres are allowed to grow. This is done because the algorithm is likely to yield spherical voids where their shells do not precisely fit with the surrounding structures, and the recentering procedure provides structures with borders that better agree with the surrounding local density field. Finally, the void catalog comprises the largest underdense, non overlapping spheres of radius \(R_v \). After applying this algorithm to the TNG300-1, using subhaloes as tracers, and cutting off shot–noise voids, we are left with a sample of 82 voids with radii in the range 7–11 Mpc \(h^{-1} \).

Void surroundings can provide physical insight on the nature and evolution of void properties, since their hierarchy stems from the mass assembly in the growing structure nearby (Sheth et al. 2004; Paranjape et al. 2012). Some voids collapse onto themselves with their surrounding structure while other voids remain as underdense regions. These two types of evolution are determined by the surrounding density: voids surrounded by an environment resembling
with a smoothly rising integrated radial profile are classified as R–type voids, while those embedded in a globally overdense region are classified as S–type. We employ subhaloes as tracers of the density around voids; the same tracers employed to identify the voids. The top panel in Fig. 3 shows, in solid orange lines, the density contrast of shell voids (S–type) while the dashed blue lines represent those of rising voids (R–type). In practice, the classification of voids is done by evaluating \(\Delta(3R_v) \), labeling them as R–type or S–type when the value is under or over zero, respectively. We study the alignment signal in each of these two types of voids as well as in the complete void sample. In that analysis we will refer to the complete void sample as “all void types”.

3.3 Galaxy velocities and environment

In this section we study the dynamics of these galaxies and their local environment in order to better interpret the results. To this end we explore the mean radial and transverse velocity of galaxies as a function of their radial distance from the void center (both R– and S–type voids), as shown in the bottom panel of Fig. 3. As expected, at approximately 1\(R_v \) and beyond, void–centric radial velocities start to decrease while transverse velocities continue to rise driven by the more frequent overdense structures such as filaments and massive clusters.

We stress the fact that in the range of void–centric distances analysed, the radial velocities of galaxies are still quite large, generally in the range 25 to 120\(\text{km s}^{-1} \) for S– and R–type voids, respectively. This confirms that these regions are still in global expansion, associated to an underdense large–scale environment.

To confirm this, we computed the accumulated density contrast, same as in the top panel of Fig. 3, but as a function of the void radii in the 0.8–1.5\(R_v \) range of distances. The density contrast of R–type voids is below -0.25 for this entire distance range, with only a few voids actually surpassing the -0.50 value at the furthest distances of \(\sim 1.5R_v \). More on this below.

3.4 Properties of galaxies in voids and their classification

We focus in this subsection at exploring the alignment dependence on different galaxy characteristics. We consider intrinsic properties, mass and total spin, and also their local density environment and expansion velocity with respect to void centre. In order to study the latter we consider increasingly larger, non–overlapping shells of width 0.1\(R_v \). Also, we divide the population within the shells into “high” and “low” velocity samples with respect to the median values. We take account of the local density environment using the \(\Sigma_3 \) statistical parameter defined in Sec. 4.3. We find that the expansion velocity and local density are independent variables so it is feasible to study them separately.

In order to distinguish the galaxy populations into high and low spin systems requires to analyse the spin mass correlation.

The middle panel of Fig. 3 shows the spin and mass of a population of galaxies selected at random, corresponding to a shell of 1.0–1.1\(R_v \) of inner and outer radii of a void with \(R_v \approx 8\text{Mpc h}^{-1} \). A simple differentiation into high/low spin galaxies is done by performing a linear regression on the spin-mass relation as shown with a solid line in the middle panel of Fig. 3 which divides the sample into similar number of objects. We have considered three mass ranges corresponding roughly to terciles of the sample: \(M_1 = 10^{9.2} M_\odot \) and \(M_2 = 10^{9.9} M_\odot \); these two limits are shown in vertical dashed lines.

Figure 3. This figure encompasses several aspects of the data we work with. The upper panel shows the density profiles of the voids we identified in the simulation, and their classification into R–type and S–type voids. The middle panel plots the logarithm of the norm of the spin vector \(\vec{S} \) of a galaxy as a function of the logarithm of its mass in units of \(M_\odot \). The solid line is a linear regression, which we use to classify the galaxies into “high” and “low” spin, while the dotted vertical lines correspond to the logarithmic mass values: -0.8 and -0.4 which classify the galaxies into “low”, “intermediate” and “high” mass. Finally, the bottom panel shows radial and transverse velocity as a function of distance to the center of the void in units of void radius. Transverse velocity increases with distance, as expected, given that the closer galaxies are to outer structures, they are more likely to be affected by non–radial gravitational pulls. Radial velocity, on the other hand, peaks before 1\(R_v \), and the behaviour differs, as expected, for R– and S–type voids; the curve of the former averages at 120\(\text{km s}^{-1} \) while that of the latter drops steadily. Positive radial velocity indicates that the environments we are studying are very much in expansion, especially R–type voids, and must therefore be underdense.
Then we present the results for each of the subsamples population in the selected distances from the center of the void, signal with no galaxy classification, i.e. the signal of the entire galaxy perpendicular (subsamples. With this approach, we look for parallel (void center, and analyze if it changes significantly for the different alignment as a function of the radial position with respect to the void center, considering the full sample of voids, along with the R–type and S–type subsamples. The light and dark grey regions represent 3σ and 1σ significance, respectively, calculated using Eq. 4, while the error bars are calculated with 1000 bootstrap resamplings of the galaxies in each distance bin across the stacked voids in consideration. A general trend can be seen favouring a perpendicular alignment signal of the spin vectors w.r.t. the void–centric direction. This result can be interpreted as suggesting a preference of discs to be found perpendicularly to the void center (i.e., ζ > 0). The significance of this probability excess is between 1 and 3σ for the full sample in distances between 1 and 1.5 void radii. In spite of a marginal signal, it is consistently positive in a wide range, covering at least five bins in normalized distance. In general, the signal for R–type voids seems to be stronger than that for S–type voids, and there is a noticeable alignment peak for both types in the shell centered in 1.05Rv. For further away bins, the signal for S–type voids increases faster than that of R–type voids.

In Fig. 5 we show the results of splitting the galaxy sample according to high and low mass, spin, local density, and velocity. The blue and orange lines represent populations with high and low values of the parameter of interest, respectively. We will explore the results of splitting the sample with respect to the mentioned parameters in the following subsections.

4 RESULTS

In this section, we explore the alignment signal of galactic discs and its relation with galactic properties and environmental features, such as the spin norm, the mass, the velocity, and the local density of galaxies. To that end, we make use of the ζ parameter, defined in Sec. 2.2. Our analysis aims at determining what properties of the galaxy sample produce a significant change in the alignment signal. To study the dependency of the alignment signal ζ with respect to the radial position r we first stack galaxies belonging to the full void sample, and then consider the rising (R-type) and the shell (S-type) void samples separately. We select galaxies within spherical shells of 0.1Rv depth, from 0.8Rv to 1.5Rv, comprising a total of 7 bins.

Once we have determined the population of galaxies to be studied, we split it into “low” and “high” values of the galactic property we are studying, e.g. low and high spin, with the exception of mass which also has an “intermediate” classification, as discussed in Sec. 3.4.

Then, for each of the subsamples we calculate ζ(rRv⁻¹), i.e. the alignment as a function of the radial position with respect to the void center, and analyze if it changes significantly for the different subsamples. With this approach, we look for parallel (ζ < 0) or perpendicular (ζ > 0) alignment trends. First, we show the alignment signal with no galaxy classification, i.e. the signal of the entire galaxy population in the selected distances from the center of the void. (Fig. 4). Then we present the results for each of the subsamples determined by the general classifications mentioned above (Fig. 5 and Secs. 4.1 through 4.4). Finally, in Sec. 4.5 we study the alignment in every possible combination of the mentioned selection criteria.

4.1 Alignment dependence on mass

We follow the mass classification discussed above and in Sec. 3.4, and show in the first row of Fig. 5 the results of the alignment signal for samples with low, intermediate, and high mass. Low and intermediate mass samples are mostly consistent with no alignment signals. However, a consistent signal above 1σ is found when analyzing high mass samples. In particular, shells with significant perpendicular signal, i.e. above the 3σ shaded region, are found centered in 1.15Rv around R–type voids, and 1.45Rv around S–type voids. Taking all void types into account, a stronger signal is also found in shells centered in 1.35Rv.

These results do not indicate a clear mass–dependent spin flip in void shells with this mass binning. However, the results suggest a trend of changing from no alignment to perpendicular alignment with increasing mass. There is a phenomenon resembling a spin flip for shells centered in 1.15Rv around R–type voids, in which low-mass galaxies seem to show alignment signal of ζ ~2±1, however this is not a strong enough signal for us to conclude in favor of the existence of a spin flip in this instance.

4.2 Alignment dependence on spin

We follow the spin classification discussed above and in Sec. 3.4, and show in the second row of Fig. 5 the results for the alignment signal for low and high spin samples.

Low spin galaxies results are mostly consistent with no alignment across all void classifications, i.e. ζ(rRv⁻¹) ≈ 0. On the other hand, high spin galaxies, i.e. galaxies that have acquired relevant rotation, show a strong and significant (ζ ≥ 3) tendency to be perpendicular for r > 1Rv, especially in R–type voids. Shells that exhibit an above–3σ signal are centered around 1.05, 1.15, 1.35 and 1.45Rv in the all
void types sample, and 1.05Rv in R–type voids. No such signal is
found in S–type voids. Furthermore, for S–type voids, there seems
to be no statistically significant difference in alignment between low
and high spin galaxies for r > 1.2Rv.

4.3 Alignment dependence on local environment density

The nearest neighbour approach studies the environment density by
considering a variable scale estimator. Usually the surface density
parameter is calculated as Σn = n/nπr^2, where n is the number of
neighbours within a circumference with radius equal to r_n, the
distance to the nth nearest neighbour. Defined in this way galaxies with
closer neighbours, i.e. larger Σn, are located in denser environments.
In this work we chose to utilize Σ5, defined as

Σ5 = 5

nr^2.

The average medians of Σ5, i.e. the critical values by
which we split the sample into high and low, across all bins
of distance are 〈M(Σ5,all)〉 = 4.01e-6, 〈M(Σ5,R-type)〉 = 3.66e-6,
〈M(Σ5,S-type)〉 = 5.58e-6, all in units of Mpc^{-2} h.

It can be observed in the third row of Fig. 5 that we find no
statistically significant difference in filtering the sample into high
and low values of Σ5. The high Σ5 curve for the full void sample
seems to be qualitatively similar to the analogous curve in Fig. 4,
while the low Σ5 curve exhibits an even further dampening of the
signal. This means that by selecting for high or low local density we
are not affecting the detection of alignment signal, other than diluting
it due to a lesser sample size. In other words, alignment seems to be
independent of the local density of galaxies.

4.4 Alignment signal dependence on void–centric velocities

In this subsection we explore the relation between spin orientation
systematics and galaxy void–centric velocities which could keep
relics of preferred encounter direction and spin acquisition. We define
radial and transverse velocities as

v_{rad} = v \cdot \hat{r}

v_{tra} = \sqrt{v^2 - v_{rad}^2}

Figure 5. Alignment signal results as a function of radial distance to the void center, ζ (r R^1_v), for different galaxy samples. Blue lines represent samples with high values of the filtering galactic property while orange lines shows the samples with lower values. For completion we included the intermediate mass range in the first row indicated with a dotted black line. Strongly shaded regions encompass 1σ level of confidence while the light shade represents 3σ confidence regions. These regions correspond to uncertainties of reference samples and are calculated with the theoretical expression from the derivation of ζ (Eq. 4), while the error bars of the signal are obtained from bootstrap resampling. Signals of over 3σ are found when filtering for high mass, high spin, and low radial velocity. Filtering for high and low Σv appears to have no significant effect. The galactic property that yields the strongest signal in this range of radial distances is low radial velocity.
respectively, where \(v \) is the total velocity of the galaxy and \(\hat{r} \) its void central direction.

We find a significant difference between the low and high radial velocity samples. The last row of Fig. 5 shows that a much higher perpendicular signal is found for galaxies with low radial velocity. The difference in alignment signal between samples with low and high radial velocity is particularly strong in R-type voids. It is also noteworthy that for the all void types sample the signal persists above the 3\(\sigma \) confidence region for every shell \(r > 1R_v \). On the other hand, we have also explored subsamples with low and high transverse velocity finding similar alignment signals in each case (not presented in the figure). By comparison of the last row of Fig. 5 to the previous ones it can be observed that radial velocity appears as the galactic property that most strongly correlates with the spin alignment signal, perpendicular to the void–centric direction.

4.5 Spin alignment signals in combination of samples

We have previously explored the alignment dependence on 5 galactic properties separately: spin norm, mass, \(\Sigma_\delta \), transverse and radial velocity, finding the highest spin alignment signal for low void–centric radial velocity galaxies. In this subsection we study spin alignments in all combination of subsamples considering high and low values of the parameters defining galactic properties. For a simpler cross–referencing we name these subsamples from one to 80 as “Ss1” (subsample one) to “Ss80” (subsample 80), with the entire galaxy sample with no selection regarding any galactic property being dubbed “S0” (sample zero).

For simplicity we also consider galaxies within a single shell with a depth of 0.5\(R_v \), with inner and outer radii of 0.9 and 1.4\(R_v \) respectively, giving a single value of the parameter \(\zeta \) for each different void type. The results are shown in Tables 1 and 2, where we highlight in bold fonts values with a large statistical significance, i.e. \(|\zeta| > 3 \) (see Sec. 2.2).

Given that in the previous sections we find that low radial velocity is the galactic property that most strongly correlates with perpendicular signal, we have divided the total set of results into two tables. Table 1 shows every possible combination of high and low galactic properties restricted to high void–centric radial velocities, while the remaining set of subsamples with low radial velocity are shown in Table 2.

Subsamples with alignment signals above the 3\(\sigma \) confidence level are highlighted in bold face across the Tables 1 and 2. These are S0 and subsamples with high mass, high spin, or low radial velocities. This result is consistent with the ones presented in previous subsections. The strongest spin alignment signals are found at approximately the 9\(\sigma \) level for subsamples Ss55 and Ss57. These two subsamples have in common high spin values and a low void–centric radial velocity selection (see Table 2).

The restriction of high or low \(\Sigma_\delta \) galaxies dampen the previous signal–to–noise of the subsample; e.g., Ss9 and Ss18 with respect to S0, similarly as Ss17 and Ss26 with respect to Ss8. This further confirms our finding that local density, as measured with the \(\Sigma_\delta \) parameter, is not directly correlated to spin alignment around voids.

Furthermore, to study the dependency of the alignment signal with the other galactic properties, we can look at subsamples Ss1 (high spin), Ss8 (high mass), and Ss54 (low velocity). We have \(\zeta=5.8\pm1.0 \) for high spin and \(\zeta=5.6\pm1.1 \) for high mass, for all void types, so none of these parameters correlates more strongly with alignment than the other. We conclude that only the selection of high mass and high spin galaxies has a strong incidence on systematic spin alignments. The strongest signal obtained for the three subsamples and for all void types, is found for Ss54 at \(\zeta=6.8\pm1.0 \), confirming our finding that a low void–centric velocity is the greatest predictor of alignment amongst the parameters analysed.

With regards to void classification, we find more statistically significant signal values around R–type voids than around S–type voids. The highest value for R–type voids is found in Ss55 while the highest value for S–type voids belongs in Ss57. Both of these subsamples are low in radial velocity and can be seen in Table 2. As seen in Sec. 4.4, for a given distance from the void center, R–type voids inhabit a less dense environment than S–type voids. This means that we are detecting higher alignment signal in globally less dense environments.

We chose the subsample with the largest signal, Ss57 (high spin and mass, and low radial velocity), to plot its normalized alignment signal \(\zeta \) as a function of normalized distance to the center of the void. The black dotted line represents the signal of the stacking of all voids, while the solid red and dash-dot blue lines represent that of R– and S–type voids respectively. We find a peak of perpendicular alignment signal of over 5\(\sigma \) in the distance bin centered in 1.15\(R_v \) around R–type voids. The bottom panel shows that this is a very underdense region. In this panel we plot the cumulative density contrast in the same distance scale, and it is readily observable that, for R–type voids, the density contrast in this scale is \(\Delta(1.15R_v) \approx -0.75 \). The dots are the means of \(\Delta(r) \), while the error bars and shaded regions represent the errors of the mean and the standard deviation of the data respectively.
5 CONCLUSIONS AND DISCUSSION

We have analyzed the orientations of galactic spins in subdense environments in the Illustris TNG300-1 simulation. Our study shows a strong evidence that large galaxies in cosmic voids exhibit an excess of spins perpendicular to the void centric radial direction. The statistics used to detect the alignment signal is robust and allows to explore its dependence on different regions in the parameter space, including the radial distance to the void center, spin magnitude, galaxy mass, local galaxy density, and the radial component of the velocity of galaxies relative to the cosmic void centre.

We find the highest alignment signal (at more than 9σ level) for massive galaxies with relevant rotation residing in void environments and with a low expansion velocity w.r.t. void centres. We stress that...
this sample of large galaxies with the highest rotation are the most reliable from the dynamical point of view of spin alignments. The fact that the strongest correlation is related to the void–centric expansion gives a hint that departures from the global dynamics of voids is a key ingredient to understand the origin of alignments. Furthermore, we find that spin alignments are strongly dependent on the magnitude of the expansion velocity with respect to the void centre. The fact that the most highly aligned spins are those in galaxies with a lower void–centric expansion velocity suggests that galaxies may gain an aligned spin as they lose linear momentum in their expansion away from the void center. In this scenario with galaxy peculiar velocities having a strong contribution from void global expansion, the void–centric direction is privileged for galaxy encounters and accretion processes, a fact worth to study in future works.

On the other hand, the lack of dependence of the alignment results on Σ_5 shows that the local galaxy density plays a minor role in the evolution of spin vectors. The inclusion of void classification provides further hints on the origin of the effect. Our analysis show that R–type voids are those exhibiting the highest spin alignment effects. This is an indication that it is the void dynamics and its interaction with the evolving galaxies rather than the void surroundings that generates the systematic spin orientations.

In general, previous studies of spin alignments have been related to filaments or other over–dense structures or local environments. Here we detect alignment in under–dense regions as shown in Sec. 3.3. Our finding of a preferential perpendicular orientation is consistent with the observational work of Trujillo et al. (2006), which was later rebutted by similar works such as Slosar & White (2009) and Varela et al. (2012), pointing at a statistically small sample as the main reason for the discrepancy; however, this shortcoming is not present in our work. Furthermore, our findings are consistent with the predictions of TTT and observational studies of Lee & Pen (2000, 2002) and Lee et al. (2007), where, in the latter, the tidal tensor field is calculated and a preferential alignment for spins is found with its intermediate principal axis, which lies within the sheets (a proxy for our void surfaces). However, the alignment signal we find is particularly strong for galaxies that deviate from global void dynamics (low velocity seems to correlate with alignment), which can be due to encounters and would therefore be outside the scope of TTT. On the other hand, we do not find this kind of alignment for massive galaxies as found by Codis et al. (2018); Kraljic et al. (2019), most likely due to the vastly different environment densities these galaxies reside in. Furthermore, we remark that, when taking into account massive galaxies, we find strong alignment signals only for those with high spin. We find no significant alignment signal for high–mass, low–spin galaxies (see Sx3 and Sx6 subsamples in Table 1). Although this effect could be due to the more accurate determination of the spin axis in the case of high-spin galaxies, it could also hint at an important difference between galaxies with high or low rotation-to-mass relation. We notice, however, that a direct comparison between some of these previous works and the present paper is difficult to assess, since we have not performed a calculation of the tidal tensor field, and the void–centric direction can only be taken as a statistical proxy for the direction of the major principal axis.

In future a work we will explore if these effects are redshift-dependent and whether the velocities and alignments correlate along the two-dimensional structure of void shells.
ACKNOWLEDGEMENTS

This work was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), the Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba, Argentina, and the Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Ministerio de Ciencia, Tecnología e Innovación, Argentina. The IllustrisTNG project used in this work (TNG300) have been run on the HazelHen Cray XC40-system at the High Performance Computing Center Stuttgart as part of project GCS-ILLU of the Gauss centres for Supercomputing (GCS). This research has made use of NASA’s Astrophysics Data System. Visualizations made use of python packages and inkscape software.

DATA AVAILABILITY

The data underlying in this article are available on request to the corresponding author.

REFERENCES

Bond J. R., Kofman L., Pogosyan D., 1996, Nature, 380, 603
Ceccarelli L., Padilla N. D., Valotto C., Lambas D. G., 2006, MNRAS, 373, 1440
Ceccarelli L., Paz D., Lares M., Padilla N., García Lambas D., 2013, MNRAS, 434, 1435
Codis S., et al., 2015, MNRAS, 448, 3391
Codis S., Jindal A., Chisari N. E., Vibert D., Dubois Y., Pichon C., Devriendt J., 2018, MNRAS, 481, 4753
Collaboration P., et al., 2016, A& A, Volume 594, id.A13., 594, A13
Croft R. A. C., Metzler C. A., 2000, ApJ, 545, 561
Doroshkevich A. G., 1970, Astrophysics, 6, 320
Forero-Romero J. E., Contreras S., Padilla N., 2014, MNRAS, 443, 1090
Heavens A., Refregier A., Heymans C., 2000, MNRAS, 319, 649
Hirata C. M., Seljak U., 2004, Phys. Rev. D, 70, 063526
Joachimi B., et al., 2015, Space Science Reviews, Volume 193, Issue 1-4, pp. 1-65, 193, 1
Kraljic K., Dave R., Pichon C., 2019, MNRAS, 493, 362
Lee J., Pen U.-L., 2000, ApJ, 532, L5
Lee J., Pen U.-L., 2001, ApJ, 555, 106
Lee J., Pen U.-L., 2002, ApJ, 567, L111
Lee J., Erdogdu P., Lee J., Erdogdu P., 2007, ApJ, 671, 1248
Libeskind N. I., Hoffman Y., Forero-Romero J., Gottlöber S., Knebe A., Steinmetz M., Klypin A., 2013, MNRAS, 428, 2489
Lintott C. J., et al., 2008, MNRAS, 389, 1179
Marinacci F., et al., 2018, MNRAS, 480, 5113
Naiman J. P., et al., 2018, MNRAS, 477, 1206
Nelson D., et al., 2018, MNRAS, 475, 624
Nelson D., et al., 2019a, Computational Astrophysics and Cosmology, Volume 6, Issue 1, article id. 2, 6, 2
Nelson D., et al., 2019b, MNRAS, 490, 3234
Padilla N. D., Ceccarelli L., Lambas D. G., 2005, MNRAS, 363, 977
Paranjape A., Lam T. Y., Sheth R. K., 2012, MNRAS, 420, 1648
Patiri S. G., Betancort-Rijo J. E., Prada F., Klypin A., Gottlöber S., 2006, MNRAS, 369, 335
Paz D., Lares M., Ceccarelli L., Padilla N., Lambas D. G., 2013, MNRAS, 436, 3480
Peebles P. J. E., 1969, ApJ, 155, 393
Pillepich A., et al., 2018, MNRAS, 473, 4077
Pillepich A., et al., 2019, MNRAS, 490, 3196
Reischke R., Schäfer B. M., 2019, J. Cosmology Astropart. Phys., 2019, 031
Ruiz A. N., Paz D. J., Lares M., Luparello H. E., Ceccarelli L., Lambas D. G., 2015, MNRAS, 448, 1471
Sheth R. K., van de Weegaert R., Sheth R. K., van de Weegaert R., 2004, MNRAS, 350, 517
Slosar A., White M., 2009, Journal of Cosmology and Astroparticle Physics, Issue 06, id. 009 (2009), 2009, 009
Soussie T., 2013, Astrophysics Source Code Library, record ascl:1302.015, p. ascl:1302.015
Springel V., 2010, MNRAS, 401, 791
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328, 726
Springel V., et al., 2018, MNRAS, 475, 676
Tempel E., Libeskind N. I., 2013, ApJ Letters, Volume 775, Issue 2, article id. L42, (2013.), 775, L42
Trujillo I., Carretero C., Patiri S. G., 2006, ApJ, 640, L111
Varela J., Betancort-Rijo J., Trujillo I., Ricciardelli E., 2012, ApJ, 744, 82
White S. D. M., 1984, ApJ, Part 1 (ISSN 0004-637X), vol. 286, Nov. 1, 1984, p. 38-41. NASA-supported research, 286, 38
York D. G., et al., 2000, AJ, 120, 1579
Zhang Y., Yang X., Wang H., Wang L., Luo W., Mo H. J., Van Den Bosch F. C., 2015, ApJ, 798, 17
d’Assignies D. W., Chisari N. E., Hamaus N., Singh S., 2022, MNRAS, 509, 1985

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.