Surveillance of the rabies-related lyssavirus, Mokola in non-volant small mammals in South Africa

The reservoir host of Mokola virus (MOKV), a rabies-related lyssavirus species endemic to Africa, remains unknown. Only sporadic cases of MOKV have been reported since its first discovery in the late 1960s, which subsequently gave rise to various reservoir host hypotheses. One particular hypothesis focusing on non-volant small mammals (e.g. shrews, sengis and rodents) is buttressed by previous MOKV isolations from shrews (*Crocidura* sp.) and a single rodent (*Lophuromys sikapusi*). Although these cases were only once-off detections, it provided evidence of the first known lyssavirus species has an association with non-volant small mammals. To investigate further, retrospective surveillance was conducted in 575 small mammals collected from South Africa. Nucleic acid surveillance using a pan-lyssavirus quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay of 329 brain samples did not detect any lyssavirus ribonucleic acid (RNA). Serological surveillance using a micro-neutralisation test of 246 serum samples identified 36 serum samples that were positive for the presence of MOKV neutralising antibodies (VNAs). These serum samples were all collected from *Gerbilliscus leucogaster* (Bushveld gerbils) rodents from Meletse in Limpopo province (South Africa). Mokola virus infections in Limpopo province have never been reported before, and the high MOKV seropositivity of 87.80% in these gerbils may indicate a potential rodent reservoir.

Keywords: Bushveld gerbil; lyssavirus; Mokola; non-volant small mammal; rabies-related; reservoir; rodent; surveillance.

The Mokola virus (MOKV), a rabies-related lyssavirus, represents one of 17 recognised species within the *Lyssavirus* genus, all capable of causing a fatal encephalitic disease (Walker et al. 2018). The Mokola virus is exclusively endemic in Africa with only 30 sporadic cases reported since its discovery more than 50 years ago (Figure 1; Table 1) (Coertse et al. 2017; Kgaladi et al. 2013). The reservoir host of MOKV is still unknown, with spillover dead-end hosts such as domestic cats (*Felis catus*) and dogs (*Canis familiaris*), most commonly reported to be infected with MOKV. This has led to the hypothesis that the reservoir of MOKV might be a prey species that interacts with domesticated animals via a prey-to-predator pathway (Kgaladi et al. 2013). Non-volant small mammals (i.e. shrews, sengis and rodents) have been suggested as possible reservoir hosts considering that previous MOKV isolations were in shrews (*Crocidura* spp.), four in Nigeria and one in Cameroon (Causey et al. 1969; Kemp et al. 1972; Le Gonidec et al. 1978), and a single reported case in a rodent (*Lophuromys sikapusi*) in the Central African Republic (Saluzzo et al. 1984). To investigate further, nucleic acid and serological surveillance were retrospectively conducted, targeting non-volant small mammals from specific locations in South Africa.

Non-volant small mammals were captured and sampled in accordance with the field procedure guidelines of Sikes and Gannon (2011) during the period of 2015–2017 from two different sites in South Africa: Meletse area in Limpopo province (24.5914° S, 27.6258° E) and Secunda area in Mpumalanga Province (26.5158° S, 29.1914° E). All the species investigated were designated as of Least Concern by The International Union for Conservation of Nature Red List of Threatened Species. Morphological species identification followed classifications by Meester et al. (1986), Newbery (1999), as well as Monadjem et al. (2015). Following morphological identification, animals were anesthetised with Isofor (Safeline Pharmaceuticals, South Africa), after which blood was collected by cardiac puncture (1 volume/body mass) in 0.8 mL MiniCollect serum separator tubes (Greiner Bio-One, Austria). Serum was separated from whole blood by centrifugation (Centrifuge 5418, Eppendorf, Germany) at 4300 g for 5 min and transferred to 2.0 mL Sarstedt tubes (Sarstedt Inc.). Animals that were not collected as voucher specimens were...
marked with a unique tattoo number near the base of their tail, and released back to their respective capture sites. Voucher specimens were euthanised with an overdose of Isofor, after which their organs were harvested (i.e. brain, tongue, salivary glands, heart, kidney, lungs, pectoral muscle, spleen, intestines, rectum and bladder) in 2.0 mL Sarstedt tubes for a broader pathogen surveillance study and immediately stored in liquid nitrogen until storage at –80 °C. Carcasses were placed in a 3 L PathoPak (Intelsius Solutions, United Kingdom [UK]) containing 80% ethanol and were submitted to Ditsong National Museum of Natural History and the Natural History Collection for Public Health and Economics for voucher-based morphological identification, and museum archiving.

Total ribonucleic acids (RNAs) were extracted from brain samples (n = 329) (nine shrews, four sengis and 316 rodents) using TRIzol™ reagent (Invitrogen, United States [US]), followed by nucleic acid surveillance using a pan-lyssavirus quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay as previously described (Coertse et al. 2019). Serum samples (n = 246) (three shrews, four sengis and 239 rodents) were subjected to serological surveillance using a micro-neutralisation test as previously described (Smith & Gilbert 2017), during which MOKV 12/458 (2012, Felis catus, Durban, KwaZulu-Natal, South Africa) (Coertse et al. 2017) was used as challenge virus. If a reduction or absence of fluorescence was observed at the 1:25 serum dilution during initial screening, the serum sample

Date	Virus/Laboratory Reference Numbers	Host Species	Detection Material	Geographical Location	Reference
Nigeria (n = 6)					
May 1968	lbAn 26801f	Crocidura sp.	Organ pool (heart, lung, liver, spleen & kidney)	Ife Farm, Ibadan, Nigeria	Causey and Kemp (1968); Kemp et al. (1972)
May 1968	lbAn 27157f	Crocidura sp.	Organ pool (heart, lung, liver, spleen & kidney)	Private residence, University of Ibadan, Ibadan, Nigeria	Causey and Kemp (1968); Kemp et al. (1972)
July 1968	lbAn 27377f	Crocidura sp.	Organ pool (heart, lung, liver, spleen & kidney)	Mokola, Ibadan, Nigeria	Causey and Kemp (1968); Kemp et al. (1972)
August 1968	lbAn 29777f	Homo sapiens	Cerebrospinal fluid (CSF)	Inalende, Ibadan, Nigeria	Famulisi and Moore (1971); Kemp et al. (1972)
December 1969	lbAn 51715f	Crocidura sp.	Organ pool (heart, spleen)	Virus Research Laboratory, Ibadan, Nigeria	Causeyand Kemp (1969); Kemp et al. (1972)
March 1971	lbAn 56909f	Homo sapiens	Brain	Idikan, Ibadan, Nigeria	Famulisi and Moore (1971); Kemp et al. (1972)
Cameroon (n = 1)					
January 1974	An Y1307†	Crocidura sp.	Organ pool (brain, liver & spleen)	Nkol-Owona, Yaounde, Cameroon	Le Goniode et al. (1978)
Central African Republic (n = 1)	AnR83247†	Lophuromys sikapusi (Rodent)	Brain	Botami, Bangui, Central African Republic	Saluzzo et al. (1984)
Ethiopia (n = 1)					
1989–1990	Eth.16†	Felis catus (Cat)	Brain	Addis Ababa, Ethiopia	Mebatsion, Cox and Frost (1992)
Zimbabwe (n = 8)					
April 1981	12017†	Felis catus (Cat)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)
May 1981	12245†	Felis catus (Cat)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)
June 1981	12341†	Felis catus (Cat)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)
August 1981	12574†	Felis catus (Cat)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)
October 1981	12900†	Canis familiaris (Dog)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)
March 1982	13270†	Felis catus (Cat)	Brain	Bulawayo, Zimbabwe	Foggins (1983); Foggins (1988)

Table 1 continues on the next page →

FIGURE 1: Geographical distribution of all reported Mokola virus cases (n = 30) in the African continent.
was subjected to follow-up screening (in duplicate) at 1:10, 1:50, 1:250 and 1:1250 serum dilutions. The 50% end-point (ED) neutralisation titre was calculated by the Reed and Muench method (1938) and considered positive for Mokola virus neutralising antibodies (MOKV VNAs) when they had a 50% ED neutralisation titre at a serum dilution of ≥ 25 (i.e. where ≤ 5 out of the 10 counted fields contain infected cells at the 1:25 serum dilution). If additional material was available, non-volant small mammals that tested positive for the presence of MOKV VNAs were subjected to genetic species identification with the Cytochrome B (CytB) barcoding PCR assay as previously described (Greenberg et al. 2012). Template deoxyribonucleic acid (DNA) required for the barcoding assay was extracted from various biological sample types (such as blood, kidney, heart and pectoral tissue) using the Quick-DNA™ Miniprep Plus Kit (Zymo Research, US).

All of the brain samples were negative for the presence of viral RNA with the pan-lyssavirus qRT-PCR assay (Appendix Table 1-A1). Negative results were expected as these animals were apparently healthy individuals and did not exhibit any visible signs of disease. An overall MOKV seropositivity of 87.80% (36 out of 41) was observed for the gerbils (*Gerbilliscus leucogaster*) tested from Meletse at the cut-off 1:25 serum dilution (Figure 2; Appendix Tables 1-A1, 2-A1, 3-A1 & 4-A1). The titre ranges for this rodent species were high when compared to another serological surveillance study conducted in Zimbabwe (Foggin 1988). Foggin identified MOKV VNAs in 5.63% (18 out of 320) of all rodents that were tested. An overall MOKV seropositivity of 17.57%...

TABLE 1 (Continues...) Summary of all reported Mokola virus cases in Africa.

Date	Virus/Laboratory Reference Numbers	Host Species	Detection Material	Geographical Location	Reference
April 1982	133711† Zim82 RV1035	Felis catus	Brain	Bulawayo, Zimbabwe	Foggin (1983); Foggin (1988)
November 1993	218461† RV1017	Felis catus	Brain	Selous, Zimbabwe	Bingham et al. (2001)
South Africa (n = 13)					
December 1970	700/70† V2116 V241	Felis catus	Brain	IRTH, South Africa	
July 1995	543/95†	Felis catus	Brain	Mdantsane, Eastern Cape, South Africa	Muench et al. (1997); Bingham et al. (2001)
February 1996	112/96† RV1021	Felis catus	Brain	East London, Eastern Cape, South Africa	Muench et al. (1997); Bingham et al. (2001)
May 1996	322/96†	Felis catus	Brain	Yellow Sands, Eastern Cape, South Africa	Muench et al. (1997); Bingham et al. (2001)
May 1997	252/97† V5225 V5203	Felis catus	Brain	Pinetown, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
May 1997	229/97† V50053	Felis catus	Brain	Pinetown, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
March 1998	071/98† V635 S3 RA361	Felis catus	Brain	Pietermaritzburg, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
June 2005	404/05†	Canis familiaris (Dog)	Brain	Umhlanga Rocks, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
March 2006	173/06†	Felis catus	Brain	Farm near East London, Eastern Cape, South Africa	Muench et al. (1997); Bingham et al. (2001)
2008	226/08†	Felis catus	Brain	Grahamstown, Eastern Cape, South Africa	Muench et al. (1997); Bingham et al. (2001)
June 2012	12/458†	Felis catus	Brain	Durban, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
July 2012	12/604†	Felis catus	Brain	Durban, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)
January 2014	14/024†	Felis catus	Brain	Pietermaritzburg, KwaZulu-Natal, South Africa	Muench et al. (1997); Bingham et al. (2001)

Sp., species; RV, rabies virus; IbAn, Ibadan.
†, The original virus reference number as indicated in the reference article(s); †† References form part of Appendix 2.

A total of 36 gerbils neutralised MOKV infection at 1:25 serum dilution during initial screening. Follow-up screening of the 36 gerbils that were positive for the presence of MOKV VNAs at the 1:25 serum dilution, identified 19 gerbils that neutralised MOKV infection until the 1:10 serum dilution, whereas 15 neutralised until the 1:50 serum dilution. Only two gerbils neutralised MOKV infection until the 1:250 serum dilution, whereas none of the gerbils neutralised MOKV infection until the 1:1250 serum dilution. The timing of sampling events is indicated in Table 2-A1.

FIGURE 2: Graphical representation of the micro-neutralisation test results of the *Gerbilliscus leucogaster* serum samples from Meletse (n = 36).
TABLE 2: Genetic and morphological species identification and voucher information for all *Gerbilliscus leucogaster* serum samples from Meletse, Limpopo province that were positive for the presence of Mokola virus neutralising antibodies.

UP reference number	Original morphological identification (Field)	Museum number	Morphological identification confirmation	PCR assay	DNA source	Query cover (%)	Per cent (%) identity	GenBank accession number†	Genetic identification information‡
UP12187	*Gerbilliscus leucogaster*	TM50543	*Gerbilliscus leucogaster*	CytB	Kidney	100	99.97	AJ875294	*Gerbilliscus leucogaster*
UP12193	*Gerbilliscus leucogaster*	TM50542	*Gerbilliscus leucogaster*	CytB	Lung	100	93.33	AJ875295	*Gerbilliscus leucogaster*
UP12194	*Gerbilliscus leucogaster*	NHCPHE_MAM-20	*Gerbilliscus leucogaster*	CytB	Kidney	100	99.60	KM454057	*Gerbilliscus leucogaster*
UP12195	*Gerbilliscus leucogaster*	NHCPHE_MAM-21	*Gerbilliscus leucogaster*	CytB	Kidney	100	95.10	AJ875295	*Gerbilliscus leucogaster*
UP12196	*Gerbilliscus leucogaster*	N/A	*Gerbilliscus leucogaster*	CytB	Blood	100	89.29	AJ875295	*Gerbilliscus leucogaster*
UP12197	*Gerbilliscus leucogaster*	NHCPHE_MAM-22	*Gerbilliscus leucogaster*	CytB	Kidney	100	96.59	KM454057	*Gerbilliscus leucogaster*
UP12200	*Gerbilliscus leucogaster*	NHCPHE_MAM-23	*Gerbilliscus leucogaster*	CytB	Kidney	96	99.16	AJ875294	*Gerbilliscus leucogaster*
UP12207	*Gerbilliscus leucogaster*	TM50543	*Gerbilliscus leucogaster*	CytB	Lung	100	93.40	KM453987	*Gerbilliscus leucogaster*
UP12208	*Gerbilliscus leucogaster*	NHCPHE_MAM-3	*Gerbilliscus leucogaster*	CytB	Kidney	99	86.76	KM453992	*Gerbilliscus leucogaster*
UP12221	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	CytB	Blood	100	99.57	AJ875294	*Gerbilliscus leucogaster*
UP12223	*Gerbilliscus sp.*	TM50544	*Gerbilliscus leucogaster*	CytB	Pectoral	100	97.23	AJ875295	*Gerbilliscus leucogaster*
UP12246	*Gerbilliscus sp.*	TM50545	*Gerbilliscus leucogaster*	CytB	Pectoral	100	97.87	AJ875295	*Gerbilliscus leucogaster*
UP12259	*Gerbilliscus sp.*	TM50546	*Gerbilliscus leucogaster*	CytB	Pectoral	100	100.00	AJ875294	*Gerbilliscus leucogaster*
UP12296	*Gerbilliscus leucogaster*	NHCPHE_MAM-24	*Gerbilliscus leucogaster*	CytB	Heart	66	83.78	AJ862594	*Gerbilliscus leucogaster*
UP12297	*Gerbilliscus sp.*	NHCPHE_MAM-5	*Gerbilliscus leucogaster*	CytB	Kidney	100	90.71	KM453986	*Gerbilliscus leucogaster*
UP12303	*Gerbilliscus leucogaster*	TM50547	*Gerbilliscus leucogaster*	CytB	Pectoral	100	99.15	AJ875294	*Gerbilliscus leucogaster*
UP12307	*Gerbilliscus leucogaster*	TM50548	*Gerbilliscus leucogaster*	CytB	Kidney	98	85.41	KM453992	*Gerbilliscus leucogaster*
UP12350	*Gerbilliscus leucogaster*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12354	*Gerbilliscus leucogaster*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12373	*Gerbilliscus leucogaster*	N/A	*Gerbilliscus leucogaster*	CytB	Blood	100	94.08	KM453987	*Gerbilliscus leucogaster*
UP12426	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	CytB	Blood	100	94.24	KM454060	*Gerbilliscus leucogaster*
UP12431	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12457	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12517	*Gerbilliscus sp.*	NHCPHE_MAM-25	*Gerbilliscus leucogaster*	CytB	Pectoral	100	99.57	AJ875294	*Gerbilliscus leucogaster*
UP12518	*Gerbilliscus sp.*	NHCPHE_MAM-26	*Gerbilliscus leucogaster*	CytB	Kidney	96	97.66	AJ875295	*Gerbilliscus leucogaster*
UP12524	*Gerbilliscus sp.*	TM50549	*Gerbilliscus leucogaster*	CytB	Heart	81	97.10	AJ875294	*Gerbilliscus leucogaster*
UP12526	*Gerbilliscus sp.*	TM50550	*Gerbilliscus leucogaster*	CytB	Kidney	97	97.45	AJ875295	*Gerbilliscus leucogaster*
UP12539	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12543	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	
UP12553	*Gerbilliscus sp.*	N/A	*Gerbilliscus leucogaster*	-	-	-	-	-	

UP: University of Pretoria; DNA: deoxyribonucleic acid; N/A: not available; TM: Transvaal museum; NHCPHE_MAM, Natural History Collection of Public Health and Economics; CytB: Cytochrome B; PCR: polymerase chain reaction; BLAST: Basic Local Alignment Search tool.

†, Museum information (i.e. museum number & morphological identification) for vouchers in Ditsong National Museum of Natural History (TM) and Natural History Collection of Public Health and Economics (NHCPHE_MAM). N/A refers to voucher number not available.

‡, Genetic identification information: (1) PCR assay refers to the molecular barcoding assay that was used to determine the genetic identity of the rodent – Cytochrome B (CytB); (2) DNA source refers to the material that was used to extract DNA from for the PCR assay; (3) Query cover refers to how much the submitted sequence (i.e. the query sequence) is covered by the target sequence; (4) Per cent identity refers to the similarity of the query sequence to the target sequence; (5) GenBank accession number refers to GenBank's reference for the target sequence; (6) BLAST results refer to the genetic identity (i.e. genus and species name) of the target sequence's organism; §, The genus and species names associated with the listed GenBank accession numbers from the BLAST results refer to *Tatera leucogaster*. T. leucogaster underwent a taxonomic name change in 2005 and is currently referred to as *Gerbilliscus leucogaster*.
(13 out of 74) was observed for gerbils which neutralised MOKV infection at various serum dilutions that ranged from 1:8, 1:16 to 1:32. None of the other MOKV serological surveillance studies have tested this rodent species for the presence of MOKV VNAs (Aghomo et al. 1990; Kemp et al. 1972; Nottidge, Omobowale & Oladiran 2007; Ogunkoya et al. 1990). Even though MOKV has been shown to cross-react in serological assays with other closely-related lyssaviruses (Kuzmin et al. 2008), cross-reactivity with other phylogroup II lyssaviruses was not investigated in this study.

Of the 36 gerbils showing MOKV seropositivity, only 28 were genetically identified with the CytB barcoding PCR assay (Table 2). The same identification was obtained from morphological examination of 24 voucher specimens (Table 2). Eight gerbils could not be identified to species level as they were released and no additional sample material was available. The Highveld gerbil, Gerbilliscus brantsii, is sympatric with G. leucogaster, however, based on known museum records, no G. brantsii has been caught at Meletse before (Rautenbach 1982) and these were, therefore, allocated to G. cf. leucogaster. The variability observed in the per cent identity (i.e. 83.78% – 100.00%) between the individual gerbils is expected since previous molecular characterisation assays performed on the Gerbilliscus genus have recorded intraspecies genetic variation that range from 1% to 20% (Aghová et al. 2017; Colangelo et al. 2007).

Members of the Gerbilliscus genus are nocturnal and terrestrial, exhibit no sexual dimorphism (Skinner & Chimimba 2005) and occupy simple to complex, deep burrows (i.e. warrens) (De Graaff 1981; Granjon & Dempster 2013). They are physiologically, morphologically and behaviourally adapted to live in arid climates (Granjon & Dempster 2013; Monadjem et al. 2015). Gerbilliscus leucogaster, however, is less arid adapted and can be found along rivers and drainage lines in open grasslands and wooded savannas (Dempster 2013; Monadjem et al. 2015). The breeding pattern and social organisation of G. leucogaster rodents are not well-understood, however, studies have reported a communal nature (De Graaff 1981; Smithers 1971) with burrows being occupied by a pair (Skinner & Chimimba 2005) and some warrens housing families or several adults (Choaite 1972). The ecological nature of Bushveld gerbils may potentially be the reason why this specific rodent species are more likely to be MOKV seropositive compared to solitary rodent species belonging to the Steatomys and Rhabdomys genera occurring at Meletse.

More nucleic acid and serological surveillance studies in non-volant small mammal populations are required to obtain a better understanding of MOKV distribution, prevalence and its potential reservoir species. Brain and serum samples in this study were collected from seemingly healthy small mammals in areas that do not coincide with areas where previous MOKV cases have been reported in South Africa. Surveillance should be expanded to areas where MOKV spillover infections in cats and dogs have previously been reported. Furthermore, because lyssavirus distribution and dynamics might be influenced by seasonality, surveillance efforts should also include samples that were collected in different seasons and over multiple years. This expansion, together with representative sample sizes of certain non-volant small mammal species, will collectively increase the possibility of identifying more of these animals that are infected or that have previously been exposed to MOKV.

Acknowledgements

Competing interests

The authors declare that they have no financial or personal relationships that may have inappropriately influenced them in writing this article.

Authors’ contributions

W.C.M. performed all experiments associated with this study which forms part of his M.Sc. Medical Virology degree. J.C. and W.M. provided academic guidance and supervised the overall process and operations of this study. T.K., M.K. and L.H.S. assisted with non-volant small mammal sample collection and species identification in the field. T.K. provided museum information from the Ditsong National Museum of Natural History. All authors contributed equally to the construction of this research communication.

Ethical considerations

This study formed part of a larger surveillance programme of the Bio-surveillance and Ecology of Emerging Zoonoses Research Group in the Centre for Viral Zoonoses that focuses on zoonotic pathogens in bats and non-volant small mammals. The overall research had animal ethical clearance from the University of Pretoria’s Animal Ethics Committee (AEC) (principal investigator: W.M.; project reference number: EC071-15) and had permission to do research in terms of Section 20 of the Animal Diseases Act of 1984 (Act No. 35 of 1984) from the Department of Agriculture, Land Reform and Rural Development (DALRRD) (Project Name: Epidemiology of zoonotic pathogens in rodents, shrews and sengis in Southern Africa; project reference number: 12/11/1/1/18). Sampling permits were obtained from Limpopo’s Department of Economic Development, Environment and Tourism (ZA/LP/83642 [2017–2018]) and Mpumalanga’s Tourism and Parks Agency (MPB.5583 [2017]). The M.Sc. Committee from the University of Pretoria’s School of Medicine, Faculty of Health Sciences approved the protocol of this research project (Project Reference Number: 13057368). Individual animal ethical clearance (Principal Investigator: WM.; Project Reference Number: H008-18), as well as research ethical clearance was obtained from the University of Pretoria’s AEC and Research Ethics Committee (Project Reference Number: 426/2018).

Funding information

This study was funded by the South African Research Chair in Infectious Diseases of Animal (Zoonoses) from the
National Research Foundation of the Department of Science and Innovation, W.M. (UID98339), as well as additional grants awarded to W.M. by the NRF (UID92524, UID85756 and UID91496). The National Research Foundation for funding the equipment based at the DNA Sanger Sequencing Facility in the Faculty of Natural of Agricultural Sciences, University of Pretoria (UID78566) and the Poliomyelitis Research Foundation.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Disclaimer

The contents of this research communication are solely the responsibility of the authors. The opinions, findings and conclusions expressed do not necessarily reflect the official view of the National Research Foundation.

References

Aghomo, H.O., Tomorí, O., Oduye, D.O. & Rupprecht, C.E., 1990, 'Detection of Moloka virus neutralising antibodies in Nigerian dogs', Research in Veterinary Science 48(2), 264. https://doi.org/10.1016/0034-5288(88)13005-1

Aghová, T., Šumbera, R., Piálek, L., Mikula, O., McDonough, M.M., Lavrenchenko, L.A. et al., 2017, 'Multilocus phylogeny of East African gerbils (Rodentia, Gerbilliscus) illuminates the history of the Somali-Masai savanna', Journal of Biogeography 44(10), 2295–2307. https://doi.org/10.1111/jbi.13017

Ca毒y, O.R., Kemp, G.E., Madbouly, M.H. & Lee, V.H., 1969, 'Arbovirus surveillance in Nigeria, 1964–1967', Bulletin de la Société de Pathologie Exotique 62(2), 249–253.

Choate, T.S., 1972, 'Behavioural studies on some Rhodesian rodents', African Zoology 7(1), 103–118. https://doi.org/10.1080/00445096.1972.11447433

Coertse, J., Markotter, W., Le Roux, K., Stewart, D., Sabeta, C.T. & Nel, L.H., 2017, 'New isolations of the rabies-related Moloka virus from South Africa', BMC Veterinary Research 13(1), 37. https://doi.org/10.1186/s12917-017-0948-0

Coertse, J., Weyer, J., Nel, L.H. & Markotter, W., 2019, 'Reverse transcription associated rabies virus in Africa', PLoS One 14(7), e2019292. https://doi.org/10.1371/journal.pone.0201929

Colangeló, P., Granjon, L., Taylor, P.J. & Corti, M., 2007, 'Evolutionary systematics in African gerbilline rodents of the genus Gerbilliscus: Inference from mitochondrial genes', Molecular Phylogenetics and Evolution 42(3), 876–806. https://doi.org/10.1016/j.ympev.2006.10.001

De Graaff, G., 1981, 'The rodents of southern Africa: Notes on their identification, distribution, ecology, and taxonomy', Butterworth-Heinemann, Oxford, United Kingdom.

Dempster, E.R., 2013, 'Gerbilliscus leucogaster', Mammals of Africa 3, 279–281.

Faggin, C.M., 1988, 'Rabies and rabies-related viruses in Zimbabwe: Historical, virological and ecological aspects', PhD thesis, University of Zimbabwe, Harare.

Granjon, L. & Dempster, E.R., 2013, 'Genus Gerbilliscus gerbils', Mammals of Africa 3, 268–270.

Greenberg, J.A., DiMenna, M.A., Hanelt, B. & Hofkin, B.V., 2012, 'Analysis of post-bloody meal flight distances in mosquitoes utilizing zoo animal blood meals', Journal of Vector Ecology 37(1), 83–89. https://doi.org/10.1148/jvec.0148-7134.2012.00203X

Kemp, G.E., Causey, O.R., Moore, D.L., Odelola, A. & Fabiyi, A., 1972, 'Moloka virus', The American Journal of Tropical Medicine and Hygiene 21(3), 356–359. https://doi.org/10.4269/ajtmh.1972.21.356

Kgaladi, J., Wright, N., Coertse, J., Markotter, W., Marston, D., Fooks, A.R. et al., 2013, 'Diversity and epidemiology of Moloka virus', PLoS Neglected Tropical Diseases 7(10), e2511. https://doi.org/10.1371/journal.pntd.0002511

Kuzmin, I.V., Nizzgoda, M., Franka, R., Agwanda, B., Markotter, W., Beagley, J.C. et al., 2008, 'Lagos bat virus in Kenya', Journal of Clinical Microbiology 46(4), 1451–1451. https://doi.org/10.1128/JCM.00016-08

Le Gonidec, G., Rickenbach, A., Robin, Y. & Heme, G., 1978, 'Isoléement d’une souché de virus Moloka au Cameroun', Annales des Microbiologie (Institute Pasteur) 129(A), 245–249.

Meester, J.A.J., Rutenbera, I.L., Dippenaar, N.J. & Baker, C.M., 1986, 'Classification of Southern African mammals', Transvaal Museum Monograph 5(1), 1–359.

Monadjem, A., Taylor, P.I., Denys, C. & Cotterrell, F.R., 2015, 'Rabies of sub-Saharan Africa: A biogeographic and taxonomic synthesis', Walter de Gruyter GmbH & Co. KG, Berlin, Germany.

Newberry, C.H., 1999, 'A key to the Soricidae, Macroscelididae, Gliridae and Muridae of Gauteng, North West Province, Mpumalanga and the northern Province, South Africa', Koedoe 42(1), 51–55. https://doi.org/10.4102/koedoe.v42i1.221

Nottidge, H.O., Omobowale, T.O. & Gl Adiandri, O.O., 2007, 'Moloka virus antibodies in humans, dogs, cats, cattle, sheep, and goats in Nigeria', International Journal of Applied Research in Veterinary Medicine 5(3), 103.

Ogunkoya, A.B., Beran, G.W., Umoh, J.U., Gomez, N.E. & Abdulakadir, I.A., 1990, 'Serological evidence of infection of dogs and man in Nigeria by lyssaviruses (family Rhabdoviridae)', Transactions of the Royal Society of Tropical Medicine and Hygiene 84(6), 842–845. https://doi.org/10.1016/S0035-9203(90)90103-4

Rutenbera, I.L., 1982, Mammals of the Transvaal, Ecoplan monograph no. 11–211, Transvaal Museum, Pretoria.

Reed, J.J. & Muench, H., 1938, 'A simple method of estimating fifty per cent endpoints', American Journal of Epidemiology 27(3), 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

Saluzzo, J.F., Rollin, P.E., Dauguet, C., Digoutte, J.P., Georges, A.J. & Sureau, P., 1984, 'Premier isolement du virus Moloka a partir dun rongeur (Lophurumus siklupsii)', Annales de l'Institut Pasteur/Virologie 135(1), 57–66. https://doi.org/10.1016/S0767-2617(84)80039-8

Sikes, R.S. & Gannon, W.L., 2011, 'Guidelines of the American society of mammalogists for the use of wild mammals in research', Journal of Mammalogy 92(1), 235–253. https://doi.org/10.1644/10-MAMM-F-355.1

Skinner, J.D. & Chimimba, C.T., 2005, The mammals of the Southern African sub-region, Cambridge University Press, United Kingdom.

Smathers, R.H.N., 1971, A checklist of the mammals of Botswana, Trustees of the National Museum of Rhodesia, Salisbury.

Smith, T.G. & Gilbert, A.T., 2017, 'Comparison of a micro-neutralization test with the rapid fluorescent focus inhibition test for measuring rabies virus neutralizing antibodies', Tropical Medicine and Infectious Disease 2(3), 24. https://doi.org/10.3390/tropicalmed2030024

Walker, P.J., Brayla, B.K., Kalyansundaram, C.H., Dittzgen, R.G., Fooks, A.R. et al., 2018, 'Rhabdoviridae', in J.H. Kuhn & S.G. Siddell (eds.), ICTV Report Negative-sense RNA viruses, Journal of General Virology, 99, 447–448. viewed 24 May 2020, from https://talk.ictvonline.org/ictv-reports/ictv_online_report/negativesense-ma-viruses/w/rhabdoviridae

http://www.ojvr.org
Appendix 1

TABLE 1-A1: Non-volant small mammal species included in the surveillance of Mokola virus in South Africa.

Non-volant small mammal type	Non-volant small mammal species	Brain samples	Serum samples		
		Amount tested	Amount positive	Amount tested	Amount positive
Meletse, Limpopo, South Africa (n = 473)	Shrews (n = 9)	2	0	2	0
	Crocidura hirta	1	0	1	0
	Crocidura maquassiensis	3	0	0	0
	Suncus lixus	4	0	4	0
	Elephantulus brachyrhynchos	2	0	3	0
	Acomys selousi	1	0	1	0
	Aethomys sp.	30	0	23	0
	Aethomys ineptus	20	0	16	0
	Aethomys chrysophilus	1	0	5	0
	Gerbilliscus sp.	1	0	5	5
	Gerbilliscus leucogaster	33	0	36	31
	Graphiurus murinus	3	0	2	0
	Lemniscomys rosalia	9	0	7	0
	Mastomys coucha	45	0	23	0
	Mastomys natalensis s.l.	13	0	12	0
	Microlamys sp.	0	0	3	0
	Microlamys namaqueensis	11	0	10	0
	Mus (Nannomys) minutoides	29	0	12	0
	Rattus sp.	2	0	0	0
	Saccostomus campestris	19	0	19	0
	Steatomys sp.	13	0	1	0
	Steatomys pratensis	21	0	16	0
Total amount of samples tested for Meletse	262	0	211	36	

Secunda, Mpumalanga, South Africa (n = 102)

Non-volant small mammal type	Non-volant small mammal species	Brain samples	Serum samples		
	Shrews (n = 3)	2	0	0	0
	Suncus sp.	1	0	0	0
	Rodents (n = 101)	40	0	26	0
	Mastomys sp.	3	0	3	0
	Mastomys natalensis	21	0	6	0
Total amount of samples tested for Secunda	67	0	35	0	

Note: Positive results are indicated in bold.

Sp., species.

TABLE 2-A1: Sampling event details of collected Gerbilliscus leucogaster serum samples from Meletse, Limpopo province and their seropositivity.

Sampling (Month & year)	Associated season†	Number of serum samples collected	Number of serum samples positive for MOKV VNAs	Percentage	Seropositivity
February 2015	Summer	1	1	100.00	1/1
January 2016	Summer	1	0	0.00	0/1
June 2016	Winter	1	1	100.00	1/1
September 2016	Spring	1	1	100.00	1/1
November 2016	Spring	1	1	100.00	1/1
March 2017	Autumn/Fall	17	15	88.24	15/17
May 2017	Autumn/Fall	9	7	77.78	7/9
August 2017	Winter	3	3	100.00	3/3
November 2017	Spring	7	7	100.00	100/100
Total		41	36	87.80%	36/41

MOKV VNAs, Mokola virus neutralising antibodies.

†, Season delineation in South Africa: (1) Summer, 01 December to 28/29 February; (2) Autumn/Fall, 01 March to 31 May; (3) Winter, 01 June to 31 August; (4) Spring, 01 September to 30 November.
TABLE 3-A1: The 50% end-point neutralisation titres of all Gerbilliscus leucogaster serum samples from Meietse, Limpopo province that were positive for the presence of Moloka virus neutralising antibodies.

Reference number	Serum sample information	Initial screening†	Follow-up screening†								
	Sample collection date	Sex	1:10 (i)	1:25 (i)	1:10 (f)	1:25 (f)	Log ED₅₀ (i)	1:10 (f)	1:25 (f)	Log ED₅₀ (f)	Average Log ED₅₀ ± s.d.
UP4962†	26 Feb 2015	M	1	3	1	3	1.59	1.6	10	1.6	1.53 ± 0.03
UP12086†	08 June 2016	M	0	2	0	2	1.83	1.5	8	1.76	1.48 ± 0.04
UP12133†	06 Sept. 2016	M	2	4	2	4	1.53	2.6	10	1.48	1.51 ± 0.03
UP12166†	09 Nov. 2016	M	0	1	0	2	2.17	0.3	7	2.05	2.11 ± 0.06
UP12183	27 Mar. 2017	F	1	2	0	2	1.92	0.5	9	1.77	1.85 ± 0.08
UP12185†	27 Mar. 2017	F	0	3	1	3	1.97	0.4	8	1.92	1.95 ± 0.03
UP12187†	27 Mar. 2017	F	1	5	1	4	1.40	1.6	9	1.58	1.49 ± 0.09
UP12193	28 Mar. 2017	M	0	1	0	1	2.10	0.4	8	1.92	2.01 ± 0.09
UP12194†	28 Mar. 2017	F	0	0	0	0	2.05	0.3	7	2.05	2.05
UP12195†	28 Mar. 2017	M	0	0	1	0	2.05	0.3	7	2.05	2.05
UP12196†	28 Mar. 2017	F	1	0	0	0	-	-	-	-	-
UP12197†	28 Mar. 2017	M	0	0	0	0	1.83	0.4	9	1.87	1.85 ± 0.02
UP12202†	28 Mar. 2017	F	1	3	0	4	1.40	0.6	8	1.40	1.40
UP12207†	28 Mar. 2017	M	0	0	0	0	2.46	0.2	4	2.51	2.49 ± 0.02
UP12221	29 Mar. 2017	F	0	2	0	1	1.50	0.8	10	1.44	1.47 ± 0.03
UP12223†	29 Mar. 2017	M	1	3	0	2	1.98	1.5	8	1.76	1.87 ± 0.11
UP12246†	30 Mar. 2017	M	0	5	1	6	1.44	0.8	10	1.44	1.44
UP12259†	31 Mar. 2017	F	0	5	0	4	1.44	0.8	10	1.44	1.44
UP12296†	16-May-2017	M	0	4	1	5	1.45	2.8	10	1.35	1.40 ± 0.05
UP12297†	16 May 2017	F	1	5	0	5	1.50	0.7	10	1.50	1.50
UP12303†	16 May 2017	F	2	4	2	5	1.45	2.8	10	1.35	1.40 ± 0.05
UP12307†	16 May 2017	F	0	5	0	0	2.17	0.4	6	2.05	2.11 ± 0.06
UP12350	18 May 2017	M	2	5	1	5	1.45	1.8	10	1.40	1.42 ± 0.03
UP12354	18 May 2017	F	0	3	0	2	1.83	0.5	9	1.77	1.80 ± 0.03

UP: University of Pretoria; MOKV VNA, Moloka virus neutralising antibodies; ED₅₀, effective dose; s.d., standard deviation; F, female; M, male.

† Small non-volant mammal individuals that were collected as voucher specimens and whose brains were negative for the presence of MOKV RNA. Animal ethics clearance was obtained from the University of Pretoria’s Animal Ethics Committee (Reference Numbers: ECO71-15 & H008-18). †† Results for the 1:10, 1:25, 1:50, 1:250 & 1:1250 serum dilutions are recorded as a number that represents the number of fields (out of a total of 10) that contain MOKV 12/458 infected cells for both initial (i) and duplicate (f) rounds of the micro-neutralisation test. †§ The average log10 50% end-point (ED) neutralisation titre for each serum sample as calculated by Reed and Munch (1938). †¶ The log10 50% end-point (ED) neutralisation titre for each serum sample as calculated by Reed and Munch (1938). †† Follow-up screening could not be completed as the serum sample was depleted during initial screening.
Sample collection date	Non-volant small mammal type	Non-volant small mammal species	Reference number	Serum sample information
22 July 2015	Rodent	Aethomys chrysophilus	10	10
27 Feb. 2015	Rodent	Aethomys chrysophilus	10	10
20 Jan. 2016	Rodent	Aethomys ineptus	8	9
19 Jan. 2016	Rodent	Aethomys ineptus	10	10
15 Sept. 2015	Rodent	Aethomys ineptus	9	10
06 Apr. 2016	Rodent	Aethomys ineptus	9	9
05 Mar. 2015	Rodent	Aethomys ineptus	8	10
10 May 2015	Rodent	Elephantulus brachyrhynchos	10	10
12 May 2015	Rodent	Mastomys coucha	10	10
12 May 2015	Rodent	Elephantulus brachyrhynchos	9	10
12 May 2015	Rodent	Mastomys natalensis	10	9
22 July 2015	Rodent	Aethomys chrysophilus	8	10
23 July 2015	Shrew	Crocidura maquassiensis	10	10
24 July 2015	Rodent	Mastomys coucha	10	9
24 July 2015	Rodent	Mus (Nannomys) minutoides	9	10
15 Sept. 2015	Rodent	Mus (Nannomys) minutoides	9	9
15 Sept. 2015	Rodent	Micaelamys namaquensis	9	10
15 Sept. 2015	Rodent	Aethomys ineptus	10	10
17 Sept. 2015	Rodent	Mus (Nannomys) minutoides	9	10
10 Nov. 2015	Rodent	Mastomys coucha	10	10
11 Nov. 2015	Rodent	Aethomys chrysophilus	10	10
12 Nov. 2015	Rodent	Aethomys ineptus	5	9
13 Nov. 2015	Rodent	Aethomys ineptus	10	10
13 Nov. 2015	Rodent	Steatomys proteenis	10	10
19 Jan. 2016	Rodent	Mastomys coucha	10	10
19 Jan. 2016	Rodent	Steatomys proteenis	10	10
19 Jan. 2016	Rodent	Gerbilliscus leucogaster	10	10
20 Jan. 2016	Rodent	Mastomys coucha	10	10
20 Jan. 2016	Rodent	Saccostomus campestris	9	10
20 Jan. 2016	Rodent	Mastomys coucha	9	10
05 Apr. 2016	Rodent	Saccostomus campestris	10	9
06 Apr. 2016	Rodent	Graphiurus murnius	10	10
06 Apr. 2016	Rodent	Aethomys ineptus	9	10
07 June 2016	Rodent	Mastomys natalensis	10	9
07 June 2016	Rodent	Aethomys ineptus	2	8
07 June 2016	Rodent	Aethomys ineptus	10	10
08 June 2016	Rodent	Acomys selousi	10	10
08 June 2016	Rodent	Saccostomus campestris	8	10
08 June 2016	Rodent	Micaelamys namaquensis	10	10
06 Sept. 2016	Rodent	Micaelamys sp.	8	10
07 Sept. 2016	Rodent	Micaelamys sp.	9	10
07 Sept. 2016	Rodent	Elephantulus brachyrhynchos	9	9
09 Sept. 2016	Rodent	Micaelamys sp.	8	9
09 Sept. 2016	Rodent	Micaelamys namaquensis	9	10
09 Sept. 2016	Rodent	Acomys selousi	10	9
09 Sept. 2016	Rodent	Steatomys proteenis	10	9
09 Sept. 2016	Rodent	Saccostomus campestris	10	10
09 Sept. 2016	Rodent	Saccostomus campestris	10	10
09 Nov. 2016	Rodent	Micaelamys namaquensis	9	10
08 Nov. 2016	Rodent	Aethomys chrysophilus	9	10

Table 4-A1 continues on the next page →
TABLE 4-A1 (Continues...): Micro-neutralisation test results of all non-volant small mammal serum samples that tested negative for the presence of Mokola virus neutralising antibodies.

Reference number	Sample collection date	Rodent	Non-volant small mammal type	Non-volant small mammal species	Initial screening†
Spp.			Serum sample information		
12159	09 Nov. 2016	Rodent	Saccostomus campestris	1:10 (i)	
12167	09 Nov. 2016	Rodent	Aethomys chrysophilus	10	
12168	10 Nov. 2016	Rodent	Micaelomys namaquensis	10	
12169	10 Nov. 2016	Rodent	Mus (Nannomys) minutoides	10	
12170	10 Nov. 2016	Rodent	Aethomys chrysophilus	10	
12171	11 Nov. 2016	Rodent	Acomys spp.	10	
12176	07 Feb. 2017	Rodent	Saccostomus campestris	10	
12177	08 Feb. 2017	Rodent	Aethomys chrysophilus	10	
12178	08 Feb. 2017	Rodent	Aethomys ineptus	10	
12179	08 Feb. 2017	Rodent	Aethomys ineptus	10	
12180	09 Feb. 2017	Rodent	Aethomys chrysophilus	10	
12181	09 Feb. 2017	Rodent	Aethomys chrysophilus	10	
12184	27 Mar. 2017	Rodent	Gerbilliscus leucogaster	10	
12188	27 Mar. 2017	Rodent	Saccostomus campestris	10	
12189	27 Mar. 2017	Rodent	Saccostomus campestris	10	
12190	27 Mar. 2017	Rodent	Steatomys pratensis	10	
12191	27 Mar. 2017	Rodent	Steatomys pratensis	10	
12192	28 Mar. 2017	Rodent	Steatomys pratensis	10	
12200	28 Mar. 2017	Rodent	Gerbilliscus leucogaster	10	
12201	28 Mar. 2017	Rodent	Steatomys pratensis	10	
12203	28 Mar. 2017	Rodent	Mastomys coucha	10	
12204	28 Mar. 2017	Rodent	Aethomys ineptus	10	
12205	28 Mar. 2017	Rodent	Mastomys coucha	10	
12206	28 Mar. 2017	Rodent	Mastomys coucha	10	
12207	29 Mar. 2017	Rodent	Aethomys chrysophilus	10	
12210	29 Mar. 2017	Rodent	Mastomys coucha	10	
12211	29 Mar. 2017	Rodent	Steatomys pratensis	10	
12212	29 Mar. 2017	Rodent	Aethomys chrysophilus	10	
12213	29 Mar. 2017	Rodent	Shrew	10	
12214	29 Mar. 2017	Rodent	Micaelomys namaquensis	10	
12216	29 Mar. 2017	Rodent	Steatomys pratensis	10	
12217	29 Mar. 2017	Rodent	Mastomys coucha	10	
12218	29 Mar. 2017	Rodent	Saccostomus campestris	10	
12219	29 Mar. 2017	Rodent	Steatomys pratensis	10	
12223	30 Mar. 2017	Rodent	Saccostomus campestris	10	
12237	30 Mar. 2017	Rodent	Mus (Nannomys) minutoides	10	
12238	30 Mar. 2017	Rodent	Mastomys coucha	10	
12240	30 Mar. 2017	Rodent	Saccostomus campestris	10	
12242	30 Mar. 2017	Rodent	Aethomys ineptus	10	
12244	30 Mar. 2017	Rodent	Saccostomus campestris	10	
12248	30 Mar. 2017	Rodent	Saccostomus campestris	10	
12256	31 Mar. 2017	Rodent	Graphiurus murinus	10	
12258	31 Mar. 2017	Rodent	Steatomys pratensis	10	
12260	31 Mar. 2017	Rodent	Steatomys pratensis	10	
12285	16 May 2017	Rodent	Micaelomys namaquensis	10	
12289	16 May 2017	Rodent	Saccostomus campestris	10	
12291	16 May 2017	Rodent	Micaelomys namaquensis	10	
12292	16 May 2017	Rodent	Aethomys ineptus	10	
12294	16 May 2017	Rodent	Aethomys ineptus	10	
12296	16 May 2017	Rodent	Aethomys ineptus	10	
12298	16 May 2017	Rodent	Mastomys coucha	10	
12299	16 May 2017	Rodent	Mus (Nannomys) minutoides	10	
12300	16 May 2017	Rodent	Mastomys coucha	10	
12301	16 May 2017	Rodent	Mastomys coucha	10	
12302	16 May 2017	Rodent	Aethomys sp.	10	
12304	16 May 2017	Rodent	Aethomys sp.	10	
12305	16 May 2017	Rodent	Lemniscomys rosalia	10	
12306	16 May 2017	Rodent	Mastomys coucha	10	
12311	17 May 2017	Rodent	Mastomys natalensis	10	

Table 4-A1 continues on the next page
Table 4-A1 continues on the next page →
TABLE 4-A1 (Continues...): Micro-neutralisation test results of all non-volant small mammal serum samples that tested negative for the presence of Mokola virus neutralising antibodies.

Reference number	Sample collection date	Non-volant small mammal type	Non-volant small mammal species	Initial screening†
5532	30 June 2015	Rodent	Mastomys sp.	9 9 10 10
5552	01 July 2015	Rodent	Mastomys sp.	10 10 10 10
5553	01 July 2015	Rodent	Mastomys sp.	4 6 5 6
5566	02 July 2015	Rodent	Mastomys sp.	9 10 10 9
5567	02 July 2015	Rodent	Mastomys sp.	9 10 10 10
5568	02 July 2015	Rodent	Rhabdomys sp.	10 10 10 10
5569	02 July 2015	Rodent	Rhabdomys sp.	10 10 10 10
5570	03 July 2015	Rodent	Mastomys sp.	10 10 10 9
5571	03 July 2015	Rodent	Mastomys sp.	10 9 10 10
5572	03 July 2015	Rodent	Mastomys sp.	10 10 10 10
5573	03 July 2015	Rodent	Mastomys sp.	10 10 10 10
5574	03 July 2015	Rodent	Mastomys sp.	10 10 10 10
5575	03 July 2015	Rodent	Rhabdomys sp.	9 10 10 9
5576	03 July 2015	Rodent	Rhabdomys sp.	9 10 10 10
5577	03 July 2015	Rodent	Mastomys sp.	9 10 10 10
5580	03 July 2015	Rodent	Mastomys sp.	10 10 10 10
5581	03 July 2015	Rodent	Mastomys sp.	9 10 9 9
5582	03 July 2015	Rodent	Mastomys sp.	10 10 9 10
5584	03 July 2015	Rodent	Mastomys sp.	10 10 10 10
5585	03 July 2015	Rodent	Mastomys sp.	9 10 10 9
5586	03 July 2015	Rodent	Mastomys sp.	9 10 10 10
12025	26 Jan. 2016	Rodent	Mastomys natalensis	9 10 9 10
12026	26 Jan. 2016	Rodent	Mastomys natalensis	10 10 10 10
12027	26 Jan. 2016	Rodent	Mastomys natalensis	10 10 10 10
12028	27 Jan. 2016	Rodent	Mastomys sp.	9 10 8 10
12029	27 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10
12030	27 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10
12031	27 Jan. 2016	Rodent	Rhabdomys sp.	10 10 10 10
12032	27 Jan. 2016	Rodent	Mastomys sp.	5 8 5 7
12034	27 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10
12035	28 Jan. 2016	Rodent	Mastomys sp.	8 10 3 10
12036	28 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10
12037	28 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10
12038	28 Jan. 2016	Rodent	Mastomys sp.	9 10 10 10
12050	29 Jan. 2016	Rodent	Mastomys sp.	10 10 10 10

Sp., species.

† Results for the 1:10 and 1:25 serum dilutions are recorded as a number that represents the number of fields (out of a total of 10) that contain MOKV 12/458 infected cells for both initial (i) and duplicate (f) rounds of the micro-neutralisation test.
Appendix 2
Additional References

Bingham, J., Javangwe, S., Sabeta, C.T., Wandeler, A.I. & Nel, L.H., 2001, ‘Report of isolations of unusual lyssaviruses (rabies and Mokola virus) identified retrospectively from Zimbabwe’, Journal of the South African Veterinary Association 72(2), 92–94. https://doi.org/10.4102/jsava.v72i2.624

Causey, O.R. & Kemp, G.E., 1968, ‘Surveillance and study of viral infections of vertebrates in Nigeria’, Nigerian Journal of Science 2, 131–135.

Familusi, J.B. & Moore, D.L., 1972, ‘Isolation of a rabies-related virus from the cerebrospinal fluid of a child with “aseptic meningitis”’, African Journal of Medical Sciences 3(1), 93–96.

Foggin, C.M., 1982, ‘Atypical rabies virus in cats and a dog in Zimbabwe’, Veterinary Record 110(14), 338–338. https://doi.org/10.1136/vr.110.14.338

Foggin, C.M., 1983, ‘Mokola virus infection in cats and a dog in Zimbabwe’, The Veterinary Record 113(5), 115. https://doi.org/10.1136/vr.113.5.115

Mebatsion, T., Cox, J.H. & Frost, J.W., 1992, ‘Isolation and characterization of 115 street rabies virus isolates from Ethiopia by using monoclonal antibodies: Identification of 2 isolates as Mokola and Lagos bat viruses’, Journal of Infectious Diseases 166(5), 972–977. https://doi.org/10.1093/infdis/166.5.972

Meredith, C.D. & Nel, L.H., 1996, ‘Further isolation of Mokola virus in South Africa’, The Veterinary Record 138(5), 119–120.

Nel, L., Jacobs, J., Jaftha, J., Von Teichman, B. & Bingham, J., 2000, ‘New cases of Mokola virus infection in South Africa: A genotypic comparison of Southern African virus isolates’, Virus Genes 20(2), 103–106. https://doi.org/10.1023/A:1008120511752

Sabeta, C.T., Blumberg, L., Mihai, D., Shumba, W. & Wandeler, A., 2010, ‘Mokola virus involved in a human contact (South Africa)’, Virology & Medical Microbiology 58(1), 85–90. https://doi.org/10.1111/j.1574-695X.2009.00609.x

Sabeta, C.T., Markotter, W., Mahale, D.K., Shumba, W., Wandeler, A.I. & Nel, L.H., 2007, ‘Mokola virus in domestic mammals, South Africa’, Emerging Infectious Diseases 13(9), 1371. https://doi.org/10.3201/eid1309.070466

Von Teichman, B.F., De Koker, W.C., Bosch, S.E., Bishop, G.C., Meredith, C.D. & Bingham, J., 1998, ‘Mokola virus infection: Description of recent South African cases and a review of the virus epidemiology: Case report’, Journal of the South African Veterinary Association 69(4), 169–171. https://doi.org/10.4102/jsava.v69i4.847