Superoscillations with arbitrary polynomial shape

Ioannis Chremmos1,3 and George Fikioris2

1 Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
2 School of Electrical and Computer Engineering, National Technical University, GR 157-73, Athens, Greece

E-mail: ioannis.chremmos@mpl.mpg.de and gfi@ece.ntua.gr

Received 10 April 2015, revised 19 May 2015
Accepted for publication 19 May 2015
Published 12 June 2015

Abstract
We present a method for constructing superoscillatory functions the superoscillatory part of which approximates a given polynomial with arbitrarily small error in a fixed interval. These functions are obtained as the product of the polynomial with a sufficiently flat, bandlimited envelope function whose Fourier transform has at least $N-1$ continuous derivatives and an Nth derivative of bounded variation, N being the order of the polynomial. Polynomials of arbitrarily high order can be approximated if the Fourier transform of the envelope is smooth, i.e. a bump function.

Keywords: superoscillations, Fourier analysis, signal design

(Some figures may appear in colour only in the online journal)

1. Introduction
Superoscillation is the counter-intuitive property of a bandlimited function to oscillate with local frequencies that are larger than its maximum frequency component. Early explicit reports of this property are found in the field of signals and systems [1, 2], although controlling the oscillations of bandlimited functions through their zeros is a much older subject [3]. From the viewpoint of physics, superoscillations imply the ability of a radiating or imaging system to produce or resolve wave features much finer than the bandwidth of the system suggests. Elements of the phenomenon can therefore be traced back in the classical quest for superdirective antennas (originating from Einstein’s concept of needle radiation) [4] and for optical imaging beyond the diffraction-limit [5]. Interestingly, the term superoscillation was actually born much later within quantum mechanics as part of the concept of

3 Author to whom any correspondence should be addressed.
weak measurements [6, 7], which subsequently motivated the systematic analysis of faster-than-Fourier functions [8, 9] and their temporal or spatial evolution as quantum or optical wavefunctions [10]. In recent years, superoscillations enjoyed a renewed interest within the field of super-resolution imaging, as optical technology enabled their use for focusing light in the far field at spatial scales below the diffraction limit [11, 12]. In any application involving superoscillations, however, one has to fight against the inevitable diminishing of the signal amplitude in the superoscillatory region, as follows from standard Fourier analysis [13].

Physical implications aside, the construction of superoscillatory functions is an interesting mathematical problem in itself. Two general approaches can be distinguished in the literature so far. The first uses the sampling theorem to express a superoscillatory function as a series of shifted sinc functions with only a finite number of non-zero coefficients. The latter are determined through a linear system of amplitude constraints on a finite grid of points [14, 15]. The grid is finer than a Nyquist sampling grid in order to make the function superoscillate. This approach is also related to the old problem of constructing bandlimited functions with a given set of zeros [3]. For this particular problem, there is also the possibility to directly replace some of the zeros of a bandlimited function with the desired ones without changing its bandwidth. The zero-replacement theorem has appeared in several independent works [2, 16], as well as in explicit connection with superoscillations [17].

The second approach involves expressing the superoscillatory function as a Fourier integral and again imposing a set of amplitude constraints on a fine grid of points. Variational techniques are subsequently used to find the minimum-energy function that solves the problem [13, 18]. Constraints for the derivative of the function can be applied as well [19]. The variational approach too has old roots in the field of information theory [20].

In addition to the above methods, the literature provides well-studied examples of superoscillatory functions, such as the familiar $f(t) = (\cos t + ia \sin t)^N$ [6, 10], as well as specific Fourier-type integral representations where superoscillations emerge due to the presence in the transform of a delta-function-like factor centered in the complex plane [8]. A common feature of the existing general methods is that the superoscillatory function is required to satisfy a discrete set of constraints, concerning the value of the function or its derivative on a fine grid of points. This however implies limited control over the actual shape of the function in the superoscillatory interval. In sampling methods in particular, the points at which the sinc basis functions are centered can be chosen quite arbitrarily [14] leading to an infinite number of different functions satisfying the same superoscillatory constraints. A similar lack of control over the shape of superoscillations exists when specific methods or prototype functions are used. Their parameters can be tuned to define the maximum local frequency or the total number of the superoscillations but there is little or no flexibility at all in controlling their shape.

An immediate question is whether one can construct superoscillatory functions in a more continuous way, namely having control over the shape of the function at least in the superoscillatory region. More specifically, one may ask if it is possible to construct a superoscillatory function $f(t) \in L^2(R)$ (square integrable in the entire real line) that approximates a desired analytic function $p(t)$ with arbitrary accuracy in a certain interval $(-a, a)$. The accuracy of the approximation can be quantified in terms of a norm of the difference $f(t) - p(t)$ over the interval, say $\|f - g\|_2$, namely

$$\left(\int_{-a}^{a} |f(t) - p(t)|^2 dt \right)^{1/2} < \epsilon,$$

for some small ϵ. Of course, for an arbitrary analytic function $p(t)$, one can generally speak only of an approximation because a strict equality $f(t) = p(t)$ over a finite interval would
imply, by analyticity, an equality for all \(t \) which is generally impossible since \(p(t) \) may not even belong in \(L^2(R) \), as for example in the case of a polynomial or a trigonometric function.

The answer to the above question is positive. Generally speaking, one may expand \(f(t) \) in a basis of bandlimited functions \(\psi_k(t) \) choosing the coefficients (and the number of functions) so that \(f(t) \) approximates \(p(t) \) in the given interval. The prolate spheroidal wave functions is an appropriate basis for this purpose being both bandlimited and orthogonal and complete in a finite interval [21]. This approach is computationally demanding since it requires to calculate the integrals \((f, \psi_k) \) (with \(f \) having fine superoscillatory features), while the basis functions themselves have to be computed numerically as eigenfunctions of the finite Fourier transform [22].

We here present a straightforward and far simpler method for the continuous design of superoscillations. It allows to construct superoscillatory functions that approximate a given polynomial \(p_N(t) \) (\(N \) being the order) with arbitrarily small error in a finite interval. Although the method refers to polynomials, general analytic functions \(p(t) \) can be treated too by first expanding them into their Taylor series around some \(t_0 \in (-a, a) \). The expansion is truncated to some order \(N \) so that the corresponding Taylor polynomial \(p_N(t) \) is an approximation of \(p(t) \) in this interval in the sense \(\| p - p_N \|_2 < \epsilon \). Then a superoscillatory function \(f(t) \) can be found that approximates this polynomial in the sense \(\| f - p_N \|_2 < \epsilon_2 \). By the triangle inequality \(\| f - p \|_2 \leq \| f - p_N \|_2 + \| p - p_N \|_2 < \epsilon_1 + \epsilon_2 \) which is a number that can be made smaller than any given \(\epsilon \).

2. Method

We consider the Paley–Wiener space \(\text{PW}_e \) of real square integrable functions \(f(t) \in L^2(R) \) whose Fourier transform \(F(\omega) \) is supported on \([-\pi, \pi] \), namely bandlimited functions with finite energy and bandwidth \(\pi \). We also assume the real polynomial

\[
p_N(t) = \sum_{n=0}^{N} a_n t^n
\]

as the target or desired shape of our function in the superoscillatory interval \((-a, a)\). For having at least two zeros in this interval, one requires \(N \geq 2 \). Now consider a known function \(e(t) \in \text{PW}_e \) that we term the envelope function. We additionally assume that its Fourier transform \(E(\omega) \) is at least \(C^{N-1}(-\infty, \infty) \) (i.e. it has at least \(N-1 \) continuous derivatives for all real \(\omega \)) and has a \(\text{Nth} \) derivative of bounded variation. Then by the familiar property of Fourier analysis the function \(f(t) = p_N(t)e(t) \) has the Fourier transform

\[
F(\omega) = \sum_{n=0}^{N} a_n \omega^n E^{(n)}(\omega),
\]

where the superscript \((n) \) indicates the \(n \)th derivative with respect to the argument. By our assumptions, the above transform is clearly zero for \(|\omega| > \pi \) and of bounded variation (hence \(L^p \) integrable, \(p > 0 \)), therefore \(f(t) \in \text{PW}_e \).

The above can be stated alternatively using the smoothness-decay property of Fourier transforms [23]. If the Fourier transform of the envelope function is at least \(C^{N-1}(-\infty, \infty) \) and has an \(\text{Nth} \) derivative of bounded variation, then \(e(t) \) decays at least as \(O(|t|^{N+1}) \) as \(|t| \to \infty \), so that \(p_N(t)e(t) \) is still a function in \(\text{PW}_e \), despite the polynomial growth of \(p_N(t) \).

Moreover, if \(e(0) = 1 \) and \(e(t) \) is sufficiently flat at \(t = 0 \), one has \(f(t) \approx p_N(t) \) in the interval of interest \((-a, a)\). The flatness of \(e(t) \) can be independently controlled through a
dilation transformation \(e(t) \rightarrow e(t/D) \) where \(D \geq 1 \). Our superoscillatory function finally reads

\[
\begin{align*}
 f(t) &= p_N(t) e \left(\frac{t}{D} \right), \\
 \end{align*}
\]

(4)

Note that the dilation confines the spectrum of \(e(t) \) even more hence \(e(t/D) \) is still a member of \(\text{PW}_\pi \). We will later see that the improvement of the error \(\|f - g\|_2 \) with increasing \(D \) comes at the cost of increasing the amplitude of \(f(t) \) outside the superoscillatory interval.

3. An example

As an example consider the function

\[
 f(t) = p_3(t) e \left(\frac{t}{D} \right) = 3 \sqrt{3} \left(\frac{t^3}{3} - \frac{t}{s} \right) \sin^4 \left(\frac{t}{4D} \right),
\]

(5)

where \(\sin(x) = \sin(ax)/(ax) \). It is easy to show, by successive convolutions of the Fourier transform of the \(\text{sinc} \) function (which is equal to 1 for \(|\omega| < \pi \) and zero otherwise), that the function \(e(t) = \sin^4(t/4) \) has the Fourier transform

\[
 E(\omega) = \int_{-\infty}^{\infty} e(t)e^{-i\omega t}dt = \frac{16}{\pi^3} \begin{cases} \\
 |\omega|^3 - \pi \omega^2 + \frac{\pi^3}{6}, & |\omega| \leq \frac{\pi}{2} \\
 \frac{1}{3}(\pi - |\omega|)^3, & \frac{\pi}{2} < |\omega| \leq \pi \\
 \end{cases}
\]

(6)

and zero for \(||\omega| > \pi \) (plotted in figure 1(c)). The above is \(C^2(-\infty, \infty) \) differentiable with an integrable third derivative hence, according to the previous discussion, \(\sin^4(t/4) \) is an appropriate envelope to multiply with a cubic polynomial and obtain a \(f(t) \in \text{PW}_\pi \). For \(s < 1 \) and \(D \geq 1 \), the \(f(t) \) of equation (5) superoscillates in \((-s, s)\) approximately as the cubic polynomial \(p_3(t) = 3 \sqrt{3} \left((t/s)^3 - t/s \right) \). The prefactor sets the amplitude of the superoscillation to 1.

An example of the function of equation (5) is shown in figure 1(a) for \(s = 0.1 \) and \(D = 1 \). Notice that its Fourier transform, shown in figure 1(b), is hardly distinguishable from the third derivative of the Fourier transform of \(\sin^4(t/4) \). Indeed, according to equation (3), we have for our example

\[
 F(\omega) = -3 \sqrt{3} \left(\frac{1}{\pi^3} E^{(3)}(\omega) + \frac{1}{s} E^{(1)}(\omega) \right)
\]

(7)

which shows that the third derivative term dominates for \(s \ll 1 \). However, even in the case of vanishingly small \(s \), the first derivative term cannot be neglected as it corresponds to the linear term in the target polynomial \(p_3(t) \) which is responsible for its oscillatory (or sinusoidal) shape. This verifies the nature of superoscillations as a delicate interference effect, something that has already been noted in the literature [10] from a different perspective (our present point of view is that of the spectrum).

4. On the spectrum

Generalizing the above remark, consider a function \(f(t) \in \text{PW}_\pi \) that superoscillates in \((-a, a)\) with the oscillation amplitude in the order of unity. In the context of our approach, the
behaviour of $f(t)$ in $(-a, a)$ can be approximated with the help of a polynomial as for example its truncated Taylor series around $t = 0$. If the superoscillations have a characteristic scale $s \ll 1$, the Taylor polynomial will be of the form

$$p_N(t) = \sum_{n=0}^{N} a_n \left(\frac{t}{s} \right)^n$$ \hspace{1cm} (8)

with the real coefficients a_n being in the order of 1. Stating that alternatively, the magnitude of the derivative $f^{(n)}(0)$ is in the order of s^{-n}. This is easily understood by considering polynomials with roots separated by multiples of s, for example.
In the context of our method, the entire superoscillatory function $f(t)$ is the product of such an approximating polynomial with an envelope function $e(t)$ that decays sufficiently fast as $|t| \to \infty$ and is flat enough around $t = 0$ with $e(0) = 1$. Multiplying equation (8) with such an envelope and taking the Fourier transform we obtain

$$F(\omega) = \sum_{n=0}^{N} \frac{a_n}{\omega^{N-n}} E^{(n)}(\omega).$$

Thus $F(\omega)$ contains contributions of the derivatives of $E(\omega)$ weighted with ω^{-n} which makes the contribution of the highest-order derivative $E^{(N)}(\omega)$ dominant. Nevertheless, despite the spectrum of $f(t)$ resembling $E^{(N)}(\omega)$, its superoscillatory behaviour is actually due to the progressively weaker, essentially perturbative, contributions of the lower-order derivatives $E^{(n)}(\omega)$ with $n < N$. This explains why it is difficult to tell if a bandlimited function is superoscillatory from its spectrum (‘there is no hint of superoscillations in the power spectrum’ [10]).

The smallness of the amplitude of superoscillations can also be quantified in the context of our approach. Having normalized their amplitude to unity, the amplitude of the function increases outside the interval $(-a, a)$ according to the approximating polynomial $p_N(t)$. The maximum is reached at some $t \sim D$ and, according to equation (9), is in the order of $(D/s)^N$. Since N determines the number of zeros in the superoscillatory interval, we have verified the dependence of the maximum amplitude of $f(t)$ on the number and the scale (s) of superoscillations [13]. Note also the dependence of the amplitude on the dilation factor D or equivalently the bandwidth πD^{-1}. A larger D makes $f(t)$ a better approximation of $p_N(t)$ within $(-a, a)$ but at the same time increases the maximum amplitude of $f(t)$ outside $(-a, a)$. The closer is the shape of superoscillations to the desired polynomial the less is the fraction of their energy over the total energy of the signal.

5. Conclusion

We have presented a simple method for designing superoscillatory functions that approximate a given polynomial $p_N(t)$ with arbitrarily low error within a given interval. The functions are obtained by multiplying the polynomial with a sufficiently flat bandlimited envelope function $e(t)$ whose Fourier transform is (at least) as smooth as needed to keep the product in the Payley–Wiener space. Appropriate envelope functions can be obtained, for example, as powers of the sinc function or, more generally, as the Fourier transform of polynomial splines. Envelope functions that work with polynomials of arbitrarily high order N can also be constructed. Such are the inverse Fourier transforms of bump functions, namely $C_c^\infty(-\infty, \infty)$ functions with a compact support, as for example $E(\omega) = \exp(-((\pi^2 - \omega^2)^{1/2}))$ for $|\omega| < \pi$ and $E(\omega) = 0$ for $|\omega| \geq \pi$. We have finally seen that the superoscillatory nature of a bandlimited function constructed with present method is hidden in its spectrum as a series of geometrically diminishing contributions from derivatives of the envelope’s Fourier transform.

References

[1] Sayegh S I and Saleh B E 1983 Image design: generation of a prescribed image at the output of a band-limited system IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5 441–5
[2] Bucklew J A and Saleh B E A 1985 Theorem for high-resolution high-contrast image synthesis J. Opt. Soc. Am. A 2 1233–6

[3] Bond F and Cahn C 1958 On sampling the zeros of bandwidth limited signals IRE Trans. Inf. Theory 4 110–3

[4] Oseen C W 1922 Einstein’s pinprick radiation and Maxwell’s equations Ann. Phys., Lpz. 69 202–4

[5] Toraldo Di Francia G 1952 Super-gain antennas and optical resolving power Il Nuovo Cimento 9 426–38

[6] Aharonov Y, Albert D Z and Vaidman L 1988 How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100 Phys. Rev. Lett. 60 1351–4

[7] Aharonov Y, Anandan J, Popescu S and Vaidman L 1990 Superpositions of time evolutions of a quantum system and a quantum time-translation machine Phys. Rev. Lett. 64 2965–8

[8] Berry M 1994 Faster than Fourier Quantum Coherence and Reality, In Celebration of the 60th Birthday of Yakir Aharonov: International Conference on Fundamental Aspects of Quantum Theory ed J S Anandan and J L Safko (Singapore: World Scientific) pp 55–65

[9] Berry M 1994 Evanescent and real waves in quantum billiards and gaussian beams J. Phys. A: Math. Gen. 27 391–8

[10] Berry M and Popescu S 2006 Evolution of quantum superoscillations and optical superresolution without evanescent waves J. Phys. A: Math. Gen. 39 6965–77

[11] Rogers E, Lindberg J, Roy T, Savo S, Chad J, Dennis M and Zheludev N 2012 A super-oscillatory lens optical microscope for subwavelength imaging Nat. Mater. 11 432–5

[12] Rogers E and Zheludev N 2013 Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging J. Opt. 15 094008

[13] Ferreira P and Kempf A 2006 Superoscillations: faster than the Nyquist rate IEEE Trans. Signal Process. 54 3732–40

[14] Ferreira P J S G, Kempf A and Reis M J C S 2007 Construction of Aharonov–Berry’s superoscillations J. Phys. A: Math. Theor. 40 5141

[15] Lee D G and Ferreira P 2014 Direct construction of superoscillations IEEE Trans. Signal Process. 62 3123–34

[16] Requicha A A 1980 The zeros of entire functions: theory and engineering applications Proc. IEEE 68 308–28

[17] Qiao W 1996 A simple model of Aharonov–Berry’s superoscillations J. Phys. A: Math. Gen. 29 2257

[18] Kempf A and Ferreira P J S G 2004 Unusual properties of superoscillating particles J. Phys. A: Math. Gen. 37 12067

[19] Lee D G and Ferreira P 2014 Superoscillations of prescribed amplitude and derivative IEEE Trans. Signal Process. 62 3371–8

[20] Levi I 1965 Fitting a bandlimited signal to given points IEEE Trans. Inf. Theory 11 372–6

[21] Huang F M and Zheludev N I 2009 Super-resolution without evanescent waves Nano Lett. 9 1249–54

[22] Slepian D and Pollak H O 1961 Prolate spheroidal wave functions, Fourier analysis and uncertainty: I. Bell Syst. Tech. J. 40 43–63

[23] Trefethen L N 2001 Spectral Methods in MATLAB (Philadelphia: SIAM) p 2