Original article

Zingiber officinale supplementation suppresses eimeriosis and regulates goblet cell response

Murad A. Mubarakia, Felwa A. Thagfanb, Abdulsalam Alkhudhayric, Esam M. Al-Shaebid, Saleh N. Maodaad, Rewaida Abdel-Gaberd, Taghreed A. Hafiza, Saleh Al-Quraishyd, Mohamed A. Dkhile

a Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
b Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
c Department of Biology, College of Science, University of Hafar Albatin, Saudi Arabia
d Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
e Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt

Article history:
Received 16 December 2021
Revised 8 January 2022
Accepted 14 February 2022
Available online 18 February 2022

Keywords:
Coccidia
Zingiber officinale
Mice
Goblet cell
Behavior

ABSTRACT

Coccidiosis affects both domestic and wild animals and negatively impacting industries worldwide. Medicinal plants are widely used against parasites. Using infected mice with Eimeria papillata, we assessed the anticoccidial impact of Zingiber officinale extract (ZE). The animals in the first group were just given distilled water, while the animals in the second group were given ZE. The parasite’s oocysts were infected into the third and fourth groups. The fourth group was given ZE for five days. The oocysts in mice faeces were reduced after treatment with ZE. The total parasitic stages were reduced after treatments by about 50%. Also, gamonts, meronts and oocysts inside the jejunum were decreased after treatment with ZE.

The infection caused hypoplasia of goblet cells of jejunum. ZE was able to ameliorate the goblet cells decrease. Behavioral response of animals to infection and treatment was investigated. All of these improvements could be attributed to the existence of active chemical classes of substances identified using infrared spectroscopy. Additional experiments are required to identify the phytochemical compounds in ZE and to understand their fighting mechanism against the parasite.

© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coccidiosis is an infectious disease caused by protozoan parasites belonging to the Eimeria genus. Animal morbidity and mortality are related with coccidiosis outbreaks, resulting in massive economic losses (Abudabos et al., 2017). Coccidiosis causes animals to become ill and lose weight as a result of symptoms including diarrhea and appetite loss. Coccidiosis can be treated with a range of medications, but usage of these medications contributed in multidrug resistance and an overabundance of parasite infections in tissues. Several medicinal plant extracts were proven for their anticoccidial activity like pomegranate, garlic, mulberry, neem and others (Wunderlich et al., 2014; Thagfan et al., 2021).

The rhizome of Zingiber officinale (Ginger) is used as a delicacy or spice, and it is also widely used in medicine. It belongs to family Zingiberaceae (Li et al., 2021). One advantage of employing natural extracts like ginger is that it reduces the possibility of developing resistance; also, the residues of such natural items in meat are safe for human consumption and have no negative health consequences.

Numerous pharmacological properties of ginger have been identified, including analgesic, anti-inflammatory, gastrointestinal regulating agent, antibacterial, and antioxidant properties (Khan et al., 2012). Also, Z. officinale was effective against some parasites like Giardia duodenalis (de Almeida et al., 2022), leishmania (Mohammadi et al., 2021), Schistosoma mansoni (Abd El Wahab et al., 2021), and Trypanosoma cruzi (Sarto et al., 2021).

Moreover, Z. officinale was found to lower the oocyst number in faeces of chickens infected with E. tenella (Aljedaie and Al-Malki 2020). The anticoccidial efficacy of Z. officinale extract and its influence on goblet cells in infected mice jejunum were demonstrated
in this study. Furthermore, behavioural responses during infection and after treatment were investigated.

2. Materials and methods

2.1. Methanolic extract preparation

Zingiber officinale rhizomes were obtained from the local market in Egypt. A taxonomist at Helwan University's Department of Botany validated the plant's botanical identity. Rhizomes were homogenized. The 70% *Z. officinale* methanolic extract (ZE) was prepared using the process cited in Dkhil (2013).

2.2. Infrared spectroscopy

Fourier-transform Infrared Spectroscopy (FT-IR) to estimate the expected classes of compounds (see details in Al-Quraishy et al. 2020).

2.3. Infection and sampling

Male C57BL/6 mice, aged 10–12 weeks, were used. *E. papillata* oocysts were collected and processed from the faeces of infected mice (see Dkhil et al., 2011). Each mouse orally received 10^3 *E. papillata* sporulated oocysts. The number of oocysts/g faeces was calculated. The animals were placed into four groups, each containing eight mice. The first group was given distilled water and acted as the infection-free control group. The second group received daily oral gavage inoculations of 500 mg/kg ZE (Thomson et al., 2002), the third and fourth groups, on the other hand, were infected with 10^3 oocyst of *E. papillate* inoculated by oral route (Dkhil 2015). The last group was treated with ZE for 5 days. On day 5, oocyst shedding was quantified using a McMaster chamber and expressed as the number of oocysts per gramme of wet faeces. Following that, all mice were euthanized, and portions of the jejunum were preserved in formalin to count parasite stages and goblet cells.

2.4. Parasite number

The jejunum was embedded in paraffin wax and sectioned to 4 μm thicknesses after being fixed in 10% buffered formalin. The hematoxylin and eosin was used to stain the sections. Each animal's oocysts were counted in ten villi using a light microscope.

2.5. Goblet cells

In Alcian blue stained sections, the number of goblet cells was counted and then the average number of goblet cells in each of the 20 villi was then calculated for each animal.

2.6. Animal behavior

Locomotor activity was determined as described by Pontierii et al. (2001) using the activity cage for mice. The measurement of mice grip strength was calculated using the Grip-Strength Meter as detailed in Dkhil et al. (2021). Rota-rod was also used to measure time to the rod, which indicated balance and activity (COMERIO).

![Fig. 1. FT-IR spectroscopic analysis of Z. officinale extracts.](image-url)
2.7. Statistical analysis

The Duncan method was used to make statistical comparisons between groups once the ANOVA analysis was completed in one way. At significance level of \(p < 0.05 \).

3. Results

The FT-IR for ZE is shown in Fig. 1 and Table 1 was extracted from the IR Spectrum Table (sigmaaldrich.com). Different expected classes of compounds were present (alcohol, aliphatic primary amine, alkane, alkyne, thiocyanate, isothiocyanate, allene, conjugated alkene, carboxylic acid, fluoro compound, 1,3-disubstituted, and halo compound) with absorbance from 516.90 to 3846.64 cm\(^{-1}\).

ZE decreased the number of oocysts released in faeces from \(6.7 \times 10^4 \pm 0.5 \) to \(3.9 \times 10^4 \pm 0.6 \) oocyst/g faeces (Fig. 2). Also, the number of gamonts, meronts and formed oocysts in the infected jejunum were reduced after treatment of mice by ZE to be \(80 \pm 11^* \), \(16.2 \pm 3.3^* \) and \(1.6 \pm 1^* \), respectively (Table 2, Fig. 3). The total number of parasite stages inside the infected villi was shown in Fig. 2 and Fig. 4. ZE was able to decrease this number to about 50% on day 5 post infection with oocysts of \(E. papillata \).

In Alcian blue stained sections of the jejunum (Fig. 5), the number of goblet cells reduced after infection (4 ± 1 goblet cell/villus), but increased after treatment to 8 ± 1.3 goblet cell/villus (Fig. 6).

![Fig. 2. Oocysts count in faeces of infected and ZE treated mice. *: The difference between the infected treated groups is significant at (p ≤ 0.05).](image)

![Fig. 3. Parasitic stages of \(E. papillata \) in jejunum. Male (white arrow) and female (black arrow) gamonts, meronts (M) and oocysts (DO).](image)
The behavioral activity of mice was assessed both during infection and after ZE treatment. We obtained no significant change on grip strength and time to the rod experiments. When compared to non-infected control animals, locomotor activity increased after infection and treatment with ZE (Table 3).

4. Discussion

Coccidiosis is caused by Eimeria protozoan parasites and is one of the most dangerous illnesses endangering the commercial chicken industry. Anticoccidial agents from plant source are currently used as food additives for chicken and animals (Muthamilselvan et al., 2016). Here, *Z. officinale* extract was used for the treatment of the experimentally induced coccidiosis in mice. ZE possessed many active classes of compounds (Table 1).

These compounds were able to reduce the number of expelled oocysts in the faeces as well as the parasitic stages in the intestine. Ashraf et al. (2020) reported the anticoccidial efficacy of *Z. officinale* against *Eimeria* species of goats in central Kashmir. Also, Aljeadaie and Al-Malki studied the efficacy of *Z. officinale* against *E. tenella* in chicken. According to Sharifi-Rad et al. (2017), ginger contains a variety of chemical components that have medicinal value.

One of the cellular immune responses in the intestine is the goblet cell response. It produces mucous. Mucus works as a first line of defense against infections, protecting the gut epithelial layer from pathogens (Uddin et al., 2021). Improvements in the induced hypoplasia of goblet cells due to infection with *E. papillata* have been investigated by the use of several medicinal plants like pomegranate, neem, garlic and grape (Wunderlich et al., 2014, Thagfan...
et al., 2021). Active compounds in ZE may be the reason of the increased number after infection.

The behavior was studied because a signal could be sent to the neurological system to control behavior in some intestinal illnesses (Singh and Aballay 2019a, 2019b), and they discovered a neural route that triggers a behavioral host defenses against infection. Here, only the locomotors activity was changed after infection and treatment with ZE.

Because of its significant anticoccidial activities and capacity to modify the goblet cell response after infection, we concluded that ginger might be utilized as a food supplement in animals infected with Eimeria. Additional studies are required for the potential protective role in some organs as well as the biochemical and molecular mechanism of working where this study was focused on the parasitological effects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This study was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R96). Princess Nourah Bint Abdulrahman University and also was supported by Researchers Supporting Project (RSP 2021/03), King Saud University. Riyadh, Saudi Arabia.

References

Abd El Wahab, W.M., El-Badry, A.A., Mahmoud, S.S., El-Badry, Y.A., El-Badry, M.A., Handy, D.A., Le Clec’h, W., 2021. Ginger (Zingiber Officinale)–derived nanoparticles in Schistosoma mansoni infected mice: Hepatoprotective and enhancer of etiological treatment. PLoS Neglected trop. Dis. 15 (5), e0009423.

Abudabos, A.M., Alyemni, A.H., Swilam, E.O., Al-Ghadi, M.A., 2017. Comparative anticoccidial effect of some natural products against eimeria ssp. infection on performance traits, intestinal lesion and oocyst number in broiler. Pak. J. Zool. 49, 1989–1995.

Aljedaie, M.M., Al-Malki, E.S., 2020. Anticoccidial activities of Salvadora persica (araki), Zingiber officinalis (ginger) and Curcuma longa (turmeric) extracts on the control of chicken coccidiosis. J. King Saud Univ. Sci. 32 (3), 2207–2211.

Al-Quraishy, S., Qasem, M.A.A., Al-Shaebi, E.M., Mursheed, M., Mares, M.M., Dkhil, M. A., 2020. Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. J. King Saud Univ. Sci. 32 (3), 2207–2211.

Al-Quraishy, S., Qasem, M.A.A., Al-Shaebi, E.M., Mursheed, M., Mares, M.M., Dkhil, M. A., 2020. Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. J. King Saud Univ. Sci. 32 (3), 2207–2211.

Ashraf, A., Shahzad, R.A., Bulbul, K.H., Wani, Z.A., Alli, M., Mahkdoomi, D.M., Bhat, H.F., Rather, M.A., 2020. Anticoccidial efficacy of Curcuma longa (turmeric) and Zingiber officinale (ginger) in goats in central Kashmir. J. Pharmacogn. Phytochem. 9 (4S), 354–360.

De Almeida, C.R., Bezrago, R.C., Colli, C.M., Romera, L.L., Ferrari, A., Gomes, M.L., 2022. Elimination of Giardia duodenumis BIV in vivo using natural extracts in microbiome and dietary supplements. Parasitol. Int. 86, 102484. https://doi.org/10.1016/j.parint.2021.102484.

Dkhil, M.A., 2013. Anti-coccidial, anthelmintic and antioxidative activities of pomegranate (Punica granatum) peel extract. Parasitol. Res. 112 (7), 2639–2646.

Dkhil, M.A., 2015. Sex-determined susceptibility and differential MUC2 mRNA expression during the course of murine intestinal eimeriosis. Parasitol. Res. 114 (6), 101544.

Dkhil, M.A., Abdel-Baki, A.S., Wunderlich, F., Sies, H., Al-Quraishy, S., 2011. Anticoccidial and antiinflammatory activity of garlic in murine Eimeria papillata infections. Vet. Parasitol. 175 (1–2), 66–72.

Dkhil, M.A., Thagfan, F.A., Al-Shaebi, E.M., Moussa, S.N., Abdel-Gaber, R., Hasif, T.A., Mubarak, M.A., Al-Quraishy, S., 2021. Brain oxidative status and behavioral response of mice infected with Trypanosoma evansi. J. King Saud Univ. – Sci. 33 (6), 101544.

Dkhil, R.U., Naz, S., Nikousefat, Z., Tufarelli, Y., Javdani, M., Qureshi, M.S., Laudadio, V., 2012. Potential applications of ginger (Zingiber officinale) in poultry diets. World’s Poult. Sci. J. 68 (2), 245–252.

Dkhil, R.U., Naz, S., Nikousefat, Z., Tufarelli, Y., Javdani, M., Qureshi, M.S., Laudadio, V., 2012. Potential applications of ginger (Zingiber officinale) in poultry diets. World’s Poult. Sci. J. 68 (2), 245–252.

E., 2019. Intestinal infection regulates behavior and learning via microbial Colonization Activates an Immune Fight-and-Flight response of mice infected with Eimeria papillata. J. King Saud Univ. Sci. 32 (3), 2207–2211.

E.R., 2001. Behavioral sensitivity to heroin by cannabind pretreatment in the rat. Eur. J. Pharmacol. 421 (3), R1–R3.

E., Iriti, M., Basile, A., Rigano, D., 2017. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules (Basel, Switzerland) 22 (12), 2145.

E., Ababli, A., Singh, J., 2019a. Intestinal infection regulates behavior and learning via neuroendocrine signaling. Elife 1 (8) e50031.

E., Ababli, A., 2019b. Microbial Colonization Activates an Immune Fight-and-Flight Response via Neuroendocrine Signaling. Dev. Cell. 49 (1), 89–99.e4.

E., Al-Megrin, W.A., Al-Shaebi, E.M., Al-Quraishy, S., Dkhil, M.A., 2021. Protective Role of Morus nigra Leaf Extracts Against Murine Infection with Eimeria papillata. Combinatorial Chem. High Throughput Screening 24 (10), 1603–1608.

E., A., Amini, H., Al-Qattan, K.K., Al-Sawan, S.M., Alnaqeeb, M.A., Khan, I., Ali, M., 2002. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antimicrobial agent. Prostaglandins, Leukot. Essent. Fatty Acids 67 (6), 475–478.

E., Leslie, J.L., Petri, W.A., 2021. Host Protective Mechanisms to Intestinal Amebiasis. Trends Parasitol. 37 (2), 165–175.

E., Al-Quraishy, S., Steinbrenner, H., Sies, H., Dkhil, M.A., 2014. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products. Parasitol. Res. 113 (10), 3547–3556.

Table 3

Group	Activity	Grip strength records	Time on the rod
Control	Horizontal	485 ± 49	542 ± 112
Control	Vertical	27 ± 11	57 ± 21
ZE	Horizontal	670 ± 95*	530 ± 109
ZE	Vertical	53 ± 9	35 ± 11
Infected	Horizontal	701 ± 102*	458 ± 93
Infected	Vertical	45 ± 13	26 ± 5
Infected + ZE	Horizontal	672 ± 114*	462 ± 23
Infected + ZE	Vertical	44 ± 10	51 ± 25

*, significance against control group.