Association of long noncoding RNA MALAT1 polymorphisms with gastric cancer risk in Korean individuals

Jang Hee Hong1,2 | Eun-Heui Jin3 | In Ae Chang1 | Hyojin Kang1 | Sang-Il Lee4 | Jae Kyu Sung5

1Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea
2Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
3Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
4Department of Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
5Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea

Abstract

Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) drives tumorigenesis of various human cancers. However, the association between MALAT1 variants and gastric cancer (GC) risk is unknown. We performed a case-control study to evaluate the possible association between rs619586 and rs3200401 SNPs in MALAT1 and GC risk.

Methods: Samples from 458 patients with GC and 381 controls were genotyped using the TaqMan genotyping assay.

Results: In stratified analyses, we observed that rs3200401 CT in the codominant model and CT+TT in the dominant model were associated with increased GC risk in male patients (CT: OR = 1.81, 95% CI = 1.09–3.01, p = 0.022; CT+TT: OR = 1.74, 95% CI = 1.07–2.83, p = 0.026), and the differentiates (CT: OR = 1.79, 95% CI = 1.18–2.73, p = 0.007; CT+TT: OR = 1.76, 95% CI = 1.17–2.64, p = 0.007), and intestinal (CT: OR = 1.67, 95% CI = 1.11–2.49, p = 0.013; CT+TT: OR = 1.68, 95% CI = 1.14–2.47, p = 0.009) GC subgroups.

Conclusion: MALAT1 rs3200401 increases GC susceptibility and might affect GC development. Further studies are needed to validate our results in large populations and different ethnic groups.

Keywords

case-control study, gastric cancer, long noncoding RNA, metastasis-associated lung adenocarcinoma transcript 1, single-nucleotide polymorphism

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.
1 | INTRODUCTION

Gastric cancer (GC) was the fifth most common cancer and the third leading cause of cancer-related deaths worldwide in 2018. Although GC incidence and mortality rates have decreased in recent decades, the rates remain high in Asia. In Korea, GC is the third most common cancer, with 30,504 new cases and 8264 deaths recorded in 2016 (Bray et al., 2018; Jung et al., 2019). Long noncoding RNAs (lncRNAs) are non-translated RNAs longer than 200 nucleotides. They play pivotal roles in tumorigenesis as proto-oncogenes (Li et al., 2009, 2014) and tumor suppressors (Zhao et al., 2015, 2016) that regulate cell proliferation, invasion, and metastasis (Cruickshanks et al., 2013; Gupta et al., 2010; Liu et al., 2015; Qiu et al., 2015; Zhao et al., 2015, 2016). Recently, genome-wide association studies have demonstrated that a number of single-nucleotide polymorphisms (SNPs) in lncRNAs are related to cancer susceptibility (Cheetham et al., 2013; Chen et al., 2013). According to recent genome-wide association studies, disease-related SNPs are located in noncoding regions consisting of intronic, intergenic, and regulatory regions (Freedman et al., 2011; Hindorff et al., 2009). SNPs in the regulatory regions of lncRNAs affect lncRNA expression by enhancing or disrupting the binding of transcription factors to DNA (Guo et al., 2016; Huang et al., 2014).

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an intergenic lncRNA >800 nucleotides in length located on chromosome 11q13. MALAT1 was first identified as a prognostic marker for non-small-cell lung cancer (NSCLC), and is associated with NSCLC metastasis (Ji et al., 2003). Multiple studies have demonstrated that aberrant expression of MALAT1 is involved in the proliferation, migration, invasion, and metastasis of several human cancers, such as breast cancer (BC), hepatocellular carcinoma (HCC), GC, and esophageal squamous cell carcinoma (ESCC) (Ellis et al., 2012; Hu et al., 2015; Lai et al., 2012; Okugawa et al., 2014). Moreover, recent studies have shown that genetic variations in MALAT1 are associated with the risk of various cancers, including colorectal cancer (CRC), NSCLC, BC, papillary thyroid cancer (PTC), ESCC, and HCC (Li et al., 2017; Peng et al., 2018; Qu et al., 2019; Wang et al., 2017; Wen et al., 2019; Yuan et al., 2019). Recent evidence in the context of GC has shown that plasma levels of MALAT1 are higher in patients with GC with distant metastases than in those with no metastases and healthy controls; that upregulated MALAT1 expression enhances the proliferation, migration, and invasion of GC cells through the phosphoinositide 3-kinase/protein kinase B pathway (PI3K/AKT); and that MALAT1 promotes metastasis by suppressing tumor suppressor protocadherin 10 (PCDH10) via targeting by the MALAT1–EZH2 complex (Xia et al., 2016; Zhu et al., 2019). Although a number of control-case studies have evaluated possible associations between lncRNA SNPs and GC risk, no studies have reported an association between an SNP in MALAT1 and GC risk.

We hypothesized that MALAT1 SNPs might affect genetic susceptibility to GC. Therefore, we performed a case-control study to explore the association between SNPs in MALAT1 and GC risk in a Korean population. We further evaluated the impact of MALAT1 SNPs on GC risk in combination with various characteristics and clinical features, including age, sex, tumor differentiation, histologic type, T classification, lymph node metastasis (LNM), and tumor stage.

2 | MATERIALS AND METHODS

2.1 | Study subjects

This case-control study population consisted of 458 GC patients and 381 controls. GC patients were recruited from the outpatient clinic at the Chungnam National University Hospital and classified according to Lauren’s classification (Lauren, 1965). The control group was randomly selected among healthy volunteers visiting the Chungnam National University Hospital; only individuals who had no history of cancer were included. The blood samples used in this study were provided by the Chungnam National Hospital Biobank, a member of the National Biobank of Korea, which is supported and audited by the Ministry of Health and Welfare of Korea. All individuals enrolled in this study provided written informed consent before blood collection. This study was approved and reviewed by the Ethics Committee of the institutional review board of Chungnam National University Hospital (IRB#201707023).

2.2 | SNP selection and genotyping

Two SNPs (rs619586 and rs3200401) in MALAT1 were selected based on previously reported to be associated with cancer risk (Peng et al., 2018; Qu et al., 2019; Wang et al., 2017; Wen et al., 2019; Yuan et al., 2019). Genomic DNA was isolated from peripheral blood samples of all subjects using the QIAamp DNA Blood Mini Kit (Qiagen GmbH), according to the manufacturer’s instructions. MALAT1 rs619586 and rs3200401 SNPs were genotyped by the Applied Biosystems TaqMan SNP Genotyping Assay using predesigned primer/probe sets (assay ID C_1060479_10 and C_3246069_10, respectively). PCR was performed using the StepOnePlus Real-time PCR System (Applied Biosystems) according to the following conditions: one cycle at 95°C for 10 min; 45 cycles at 92°C for 15 s and 60°C for 90 s.
2.3 | Statistical analysis

Hardy Weinberg equilibrium (HWE) for each SNP in the control groups was assessed using the Chi-square t-test. Linkage disequilibrium (LD) between SNP pairs was analyzed by calculating D' and r^2 values obtained using Haploview software version 4.0 (the Broad Institute). Differences in age and gender between the GC and control groups were calculated using the two-sided Pearson chi-square test and the Mann–Whitney U-test. The association was analyzed with three genetic models, including codominant (ht or mt vs. wt), dominant (ht + mt vs. wt), and recessive (mt vs. wt + ht) models. A binary logistic regression was used to estimate the GC risk according to odds ratios (ORs) and 95% confidence intervals (CIs). The association analysis was adjusted by age and sex, which were included in the model as covariates. Stratified analyses by age, gender, and clinical features (Tumor differentiation, histological type, LNM, T classification, and tumor stage) were performed. All statistical analyses were performed using the SPSS (SPSS Inc.), version 20.0 for Windows. $p < 0.05$ was considered statistically significant.

3 | RESULTS

3.1 | Characteristics of the study subjects

The characteristics and clinical features of the 458 patients with GC and the 381 controls are shown in Table 1. There were significant differences in the age and sex distributions of the GC group and control group ($p < 0.001$ and $p < 0.001$, respectively). The mean age was 65.2 ± 10.1 years for the patients and 55.6 ± 10.9 years for the controls. The proportion of male subjects (70.1%) was higher than that of female subjects.

Table 1: Characteristics and clinical features of the GC and control groups

Variables	Gastric cancers	Controls	p
	N (%)	N (%)	
Age (years) (mean ± SD)	458 (65.2 ± 10.1)	381 (55.6 ± 10.9)	<0.001a
<60	198 (43.2)	197 (51.7)	0.014b
≥60	260 (56.8)	184 (48.3)	
Gender (%)			<0.001b
Male	321 (70.1)	122 (32.0)	
Female	137 (29.9)	259 (68.0)	
Tumor differentiation			
Differentiated	222 (48.5)		
Undifferentiated	195 (42.6)		
Missing	41 (8.9)		
Histological type (%)			
Intestinal	259 (56.6)		
Diffuse	145 (31.7)		
Mixed	54 (11.7)		
T classification (%)			
T1	233 (50.9)		
T2	66 (14.4)		
T3	16 (3.5)		
T4	143 (31.2)		
Lymph node metastasis (%)			
Negative	283 (61.8)		
Positive	175 (38.2)		
Tumor stage (%)			
I (A + B)	273 (59.6)		
II (A + B)	54 (11.8)		
III (A + B + C)	131 (28.6)		

Abbreviation: SD, standard deviation.

aMann–Whitney U-test.

bTwo-sided Pearson χ^2 test.
subjects (29.9%) in the GC group, whereas the percentage of female subjects (68.0%) was higher than that of male subjects (32.0%) in the control group (67.2%). The majority of the GC patients was classified into differentiated tumor (48.5%), intestinal type (56.6%), T1 (50.9%), LNM-negative (61.8%), and tumor stage I (59.6%).

3.2 Association of SNPs with GC risk

To evaluate associations between \textit{MALAT1} SNPs and GC risk, we genotyped rs619586 and rs3200401 SNPs in \textit{MALAT1}, which have previously reported association with cancers. The distributions of the rs619586 and rs3200401 genotypes in the control group were in HWE ($p = 0.906$ and $p = 0.908$, respectively). LD coefficients (D') were estimated for two SNPs, and an absolute LD ($D' = 1$ and r^2) was not found for any pair-wise combination of the two SNPs using Haploview 4.0 software. We used three genetic models to determine if the rs619586 and rs3200401 SNPs were associated with GC risk. However, there was no significant association between rs619586 and rs3200401 in \textit{MALAT1} and GC risk (Table 2).

3.3 Stratification analysis for rs619586 and rs3200401 SNPs

As shown in Tables 3 and 4, we performed stratified analyses based on various clinical features, including age, gender, LNM, T classification, and tumor stage, to further evaluate possible associations between the rs619586 and rs3200401 SNPs and GC risk in the GC subgroups. After adjusting for age and gender, in a stratified analysis by gender, rs3200401 showed significant associations with increased GC risk in the GC male subgroup in the codominant (CT) and dominant (CT + TT) models when compared with the CC genotype (OR = 1.81, 95% CI = 1.09–3.01, $p = 0.022$ and OR = 1.74, 95% CI = 1.07–2.83, $p = 0.026$, respectively). In a stratified

TABLE 2 Genotype and allele frequencies of \textit{MALAT1} polymorphisms in subjects and their associations with GC risk

Genotype	\textbf{CON} N (%)	\textbf{GC} N (%)	\textbf{GC vs. CON} AOR (95% CI)a	\textbf{p}a
rs619586				
Codominant				
AA	334 (87.7)	396 (86.5)	1	
AG	46 (12.1)	59 (12.8)	0.95 (0.61–1.49)	0.836
GG	1 (0.3)	3 (0.7)	2.82 (0.26–31.07)	0.0396
Dominant				
AA	334 (87.7)	396 (86.5)	1	
AG + GG	47 (12.3)	62 (13.5)	1.05 (0.66–1.66)	0.848
Recessive				
AA + AG	380 (99.7)	455 (99.3)	1	
GG	1 (0.3)	3 (0.7)	3.84 (0.35–42.21)	0.272
HWE	0.906	0.886		

rs3200401				
Codominant				
CC	280 (73.5)	312 (68.1)	1	
CT	92 (24.1)	133 (29.0)	1.32 (0.94–1.85)	0.104
TT	9 (2.4)	13 (2.9)	1.38 (0.53–3.54)	0.496
Dominant				
CC	280 (73.5)	312 (68.1)	1	
CT + TT	101 (26.5)	146 (31.9)	1.33 (0.96–1.84)	0.088
Recessive				
CC + CT	372 (97.6)	445 (97.1)	1	
TT	9 (2.4)	13 (2.9)	1.28 (0.51–3.26)	0.600
HWE	0.908	0.967		

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; CON, control; GC, gastric cancer; HWE, Hardy-Weinberg equilibrium.

aAdjusted for age and gender. The significant results are in bold.
TABLE 3 Stratified analysis of the MALAT1 SNPs rs619586 and rs3200401 by age and gender in GC patients and controls

Variables	GC vs. CON	Codominant (ht/wt)	Dominant (ht+mt/wt)					
	GC	CON	OR (95% CI)^a	p^a	GC	CON	OR (95% CI)^a	p^a
rs619586								
Age (years)								
<60	29/169	20/176	1.30 (0.65-2.61)	0.460	29/169	21/176	1.25 (0.62-2.48)	0.534
≥60	30/227	26/158	0.91 (0.49-1.70)	0.771	33/227	26/158	1.01 (0.55-1.86)	0.966
Gender								
Male	48/271	15/107	1.26 (0.68-2.34)	0.470	50/271	15/107	1.31 (0.71-2.44)	0.391
Female	11/125	31/227	0.65 (0.31-1.35)	0.246	12/125	32/227	0.68 (0.34-1.38)	0.288
rs3200401								
Age (years)								
<60	58/134	51/144	1.39 (0.83-2.33)	0.214	64/134	53/144	1.51 (0.91-2.51)	0.108
≥60	75/178	41/136	1.42 (0.88-2.29)	0.155	82/178	48/136	1.30 (0.83-2.05)	0.257
Gender								
Male	98/215	24/95	1.81 (1.09-3.01)	0.022	106/215	27/95	1.74 (1.07-2.83)	0.026
Female	35/97	68/185	1.03 (0.63-1.67)	0.913	38/97	74/185	1.07 (0.68-1.71)	0.765

Abbreviations: CI, confidence interval; CON, controls; GC, gastric cancer; ht, heterozygous; mt, mutant; OR, odds ratio; wt, wild-type.

*Adjusted by age and gender. The significant results are in bold.

MALAT1 is one of the first lncRNAs identified as a proto-oncogene in early stage NSCLC (Ji et al., 2003), and it promotes cancer proliferation, migration, and metastasis (Bi et al., 2017; Li et al., 2009; Wu et al., 2014). We performed the first investigation of the association between the rs619586 and rs3200401 SNPs in MALAT1 and GC susceptibility in a Korean population. Although we did not observe statistically significant associations between MALAT1 rs619586 or rs3200401 and overall GC risk, we found significant associations between rs3200401 and GC risk in stratified analyses by gender, tumor differentiation, and histological type. In our stratified analyses, we found that the rs3200401 CT genotype in the codominant model and the CT + TT genotype in the dominant model were significantly associated with 1.81- and 1.74-times higher GC risk in the male subgroup, 1.79- and 1.76-times higher GC risk in the differentiated GC subgroup, and 1.67- and 1.68-times higher GC risk in the intestinal-type GC subgroup than the wild-type genotype. Furthermore, the rs3200401 CT genotype was associated with the highest GC risk (1.81 times greater than the wild-type genotype) in the male subgroup. Consistent with our results, Qu et al. (2019) showed, through stratified analysis, that the rs3200401 CT, TT, and CT + TT genotypes in the dominant model were associated with increased ESCC risk in the group that never smoked compared with the CC genotype. In contrast to our results, Wang et al. (2017) found that the rs3200401 CT and CT + TT genotypes were associated with decreased risk of death by NSCLC, and Peng et al. (2018) also showed that the CT genotype was associated with decreased BC risk in the subgroup >50 years old compared with the CC + TT genotype. However, the rs3200401 CT genotype was associated with the highest GC risk (1.81 times greater than the wild-type genotype) in the male subgroup. Consistent with our results, Qu et al. (2019) showed, through stratified analysis, that the rs3200401 CT, TT, and CT + TT genotypes in the dominant model were associated with increased ESCC risk in the group that never smoked compared with the CC genotype. In contrast to our results, Wang et al. (2017) found that the rs3200401 CT and CT + TT genotypes were associated with decreased risk of death by NSCLC, and Peng et al. (2018) also showed that the CT genotype was associated with decreased BC risk in the subgroup >50 years old compared with the CC + TT genotype. Further studies are needed to elucidate the different roles of rs3200401 SNP in different cancers. Wen et al. (2019) and Yuan et al. (2019) evaluated
possible associations between rs3200401 and PTC and HCC risks, respectively, but found no associations. Moreover, we found no association between rs619586 and GC risk, even in stratified analyses. However, in contrast to our results, four studies observed an association between rs619586 and cancer risk. Peng et al. (2018) found that the rs619586 AG and AG + GG genotypes were associated with decreased BC risk, Wen et al. (2019) found that the rs619586 GG genotype was associated with decreased PTC risk. Qu et al. (2019) observed that the rs619586 GG genotype was associated with decreased risk of ESCC in the subgroup that never drank alcohol, and Yuan et al. (2019) showed that the rs619586 AG and AG + GG genotypes were associated with decreased risk of HCC in the subgroup of patients <55 years old.

TABLE 4
Associations of the clinical features of GC with the MALAT1 rs619586 and rs3200401 SNPs in GC patients and controls

Variables	GC vs. CON	Codominant (ht/wt)	Dominant (ht + mt/wt)						
		GC	CON	OR (95% CI)*	p*	GC	CON	OR (95% CI)*	p*
Tumor differentiation									
Differentiated		27/193	46/334	0.96 (0.54-1.69)	0.878	28/193	47/334	0.98 (0.56-1.72)	0.937
Undifferentiated		25/169	46/334	1.00 (0.58-1.73)	0.999	27/169	47/334	1.07 (0.63-1.83)	0.799
Histological type									
Intestinal		31/226	46/334	0.91 (0.53-1.57)	0.741	32/226	47/334	0.93 (0.54-1.59)	0.784
Diffuse		19/125	46/334	1.01 (0.56-1.83)	0.971	21/125	47/334	1.12 (0.63-1.98)	0.708
Lymph node metastasis									
Negative		38/243	46/334	1.06 (0.64-1.75)	0.822	40/243	47/334	1.11 (0.68-1.83)	0.671
Positive		21/153	46/334	0.87 (0.48-1.57)	0.640	22/153	47/334	0.89 (0.50-1.59)	0.695
T classification									
T1/T2		37/260	46/334	0.97 (0.58-1.61)	0.902	39/260	47/334	1.04 (0.58-1.87)	0.902
T3/T4		22/136	46/334	1.02 (0.62-1.68)	0.939	23/136	47/334	1.06 (0.60-1.89)	0.842
Tumor stage									
I (A + B)/II (A + B + C)		41/284	46/334	0.98 (0.60-1.61)	0.948	43/284	47/334	1.03 (0.63-1.67)	0.910
III (A + B + C)		18/112	46/334	1.03 (0.55-1.93)	0.925	19/112	47/334	1.06 (0.58-1.97)	0.845

rs3200401									
Tumor differentiation		73/142	92/280	1.79 (1.18-2.73)	0.007	80/142	101/280	1.76 (1.17-2.64)	0.007
Undifferentiated		53/138	92/280	1.18 (0.78-1.78)	1.175	57/138	101/280	1.16 (0.77-1.73)	0.481
Histological type									
Intestinal		82/168	92/280	1.67 (1.11-2.49)	0.013	91/168	101/280	1.68 (1.14-2.47)	0.009
Diffuse		38/104	92/280	1.20 (0.76-1.89)	0.436	41/104	101/280	1.19 (0.76-1.85)	0.349
Lymph node metastasis									
Negative		85/192	92/280	1.43 (0.98-2.09)	0.066	91/192	101/280	1.38 (0.95-1.99)	0.090
Positive		48/120	92/280	1.27 (0.82-1.97)	0.286	55/120	101/280	1.34 (0.88-2.04)	0.172
T classification									
T1/T2		89/204	92/280	1.37 (0.94-1.99)	0.101	95/204	101/280	1.33 (0.93-1.92)	0.123
T3/T4		44/108	92/280	1.33 (0.84-2.10)	0.219	51/108	101/280	1.39 (0.90-2.14)	0.140
Tumor stage									
I (A + B)/II (A + B + C)		99/220	92/280	1.41 (0.98-2.03)	0.067	107/220	101/280	1.38 (0.97-1.96)	0.077
III (A + B + C)		34/92	92/280	1.20 (0.73-1.97)	0.465	39/92	101/280	1.26 (0.78-2.01)	0.345

Abbreviations: CI, confidence interval; CON, controls; GC, gastric cancer; ht, heterozygous; mt, mutant; OR, odds ratio; wt, wild-type.

*Adjusted by age and gender. The significant results are in bold.
There were a few limitations to our study. First, the sample size was too small to have statistical power for the stratification analysis. Second, cases and controls were not matched on age and gender. Therefore, binary logistic regression models with adjustment for age and gender were used to reduce the effect of covariate. Third, we failed to explore the association between the SNPs and other clinical features, such as *Helicobacter pylori* infection, smoking, and drinking, due to a lack of data from both the GC and control groups. Finally, our findings cover only a specific ethnic group.

In conclusion, we suggest that the MALAT1 rs3200401 SNP is associated with increased GC risk in male patients, and those in the differentiated and intestinal tumor subgroups. The SNP may contribute to GC development as a proto-oncogene by altering MALAT1 expression, as has been observed in other cancers. Further studies are required to validate our findings in large populations and different ethnic groups.

ACKNOWLEDGMENTS

This work was supported by the research fund of the Chungnam National University, by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (NRF-2016R1D1A3B03936067), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B04033515, NRF-2018R1D1A1B07050285, and NRF-2019R1F1A1063469).

CONFLICT OF INTEREST

The authors have declared that no competing interest exists.

AUTHOR’S CONTRIBUTIONS

Sung JK, Hong JH, and Jin EH concepted and designed the research; Chang IA and Kang H performed the experiments; Lee SI contributed the selection of subjects and clinical data acquisition; Jin EH and Chang IA performed the data and statistical analysis; Sung JK, Lee SI, Hong JH, and Jin EH contributed to writing and revision of the manuscript.

ORCID

Jang Hee Hong https://orcid.org/0000-0002-0623-5455
Eun-Heui Jin https://orcid.org/0000-0003-1383-4429
Sang-II Lee https://orcid.org/0000-0003-2669-8577
Jae Kyu Sung https://orcid.org/0000-0002-9068-624X

REFERENCES

Bi, S., Wang, C., Li, Y., Zhang, W., Zhang, J., Lv, Z., & Wang, J. (2017). LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. *Tumour Biology, 39*, 1010428317699796. https://doi.org/10.1177/1010428317699796

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians, 68*, 394–424. https://doi.org/10.3322/caac.21492

Cheetham, S. W., Gruhl, F., Mattick, J. S., & Dinger, M. E. (2013). Long noncoding RNAs and the genetics of cancer. *British Journal of Cancer, 108*, 2419–2425. https://doi.org/10.1038/bjc.2013.233

Chen, G., Qiu, C., Zhang, Q., Liu, B., & Cui, Q. (2013). Genome-wide analysis of human SNPs at long intergenic noncoding RNAs. *Human Mutation, 34*, 338–344. https://doi.org/10.1002/humu.22239

Cruickshanks, H. A., Vafadar-Isfahani, N., Dunican, D. S., Lee, A., Sproul, D., Lund, J. N., Meehan, R. R., & Tufarelli, C. (2013). Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. *Nucleic Acids Research, 41*, 6857–6869. https://doi.org/10.1093/nar/gkt438

Ellis, M. J., Ding, L. I., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., Van Tine, B. A., Hoog, J., Goiffon, R. J., Goldstein, T. C., Ng, S., Lin, L. I., Crowder, R., Snider, J., Ballman, K., Weber, J., Chen, K., Koboldt, D. C., Kandoth, C., … Mardis, E. R. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. *Nature, 486*, 353–360. https://doi.org/10.1038/nature11143

Freedman, M. L., Monteiro, A. N. A., Gaythor, S. A., Coetzee, G. A., Risch, A., Plass, C., Casey, G., De Biasi, M., Carlson, C., Duggan, D., James, M., Liu, P., Tichelaar, J. W., Vikis, H. G., You, M., & Mills, I. G. (2011). Principles for the post-GWAS functional characterization of cancer risk loci. *Nature Genetics, 43*, 513–518. https://doi.org/10.1038/ng.840

Guo, H., Ahmed, M., Zhang, F., Yao, C. Q., Li, S. D., Liang, Y. I., Hua, J., Soares, F., Sun, Y., Langstein, J. L., Li, Y., Poon, C., Bailey, S. D., Desai, K., Fei, T., Li, Q., Sendorek, D. H., Fraser, M., Prensner, J. R., … He, H. H. (2016). Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. *Nature Genetics, 48*, 1142–1150. https://doi.org/10.1038/ng.3637

Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M.-C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R. B., van de Vijver, M. J., Sukumar, S., & Chang, H. Y. (2010). Long non-coding RNA HOTAIR programs chromatin state to promote cancer metastasis. *Nature, 464*, 1071–1076. https://doi.org/10.1038/nature08975

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., & Manolio, T. A. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. *Proceedings of the National Academy of Sciences of the United States of America, 106*(23), 9362–9367. https://doi.org/10.1073/pnas.0903103106

Hu, L., Wu, Y., Tan, D., Meng, H., Wang, K., Bai, Y., & Yang, K. (2015). Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. *Journal of Experimental & Clinical Cancer Research, 34*, 7. https://doi.org/10.1186/s13046-015-0123-z

Huang, Q., Whittington, T., Gao, P., Lindberg, J. F., Yang, Y., Sun, J., Vaisänen, M.-R., Szulkin, R., Annala, M., Yan, J., Eggev, L. A., Zhang, K., Lin, R., Jolma, A., Nykter, M., Manninen, A., Wiklund, F., Vaarala, M. H., Visakorpi, T., … Wei, G.-H. (2014). A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. *Nature Genetics, 46*, 126–135. https://doi.org/10.1038/ng.2862

Ji, P., Diederichs, S., Wang, W., Büning, S., Metzger, R., Schneider, P. M., & Müller-Tidow, C. (2003). MALAT-1, a novel noncoding RNA,
and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041. https://doi.org/10.1038/sj.onc.1206928

Jung, K. W., Won, Y. J., Kong, H. J., & Lee, E. S. (2019). Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2016. Cancer Research and Treatment, 51, 417–430. https://doi.org/10.4143/crt.2019.138

Lai, M.-C., Yang, Z., Zhou, L., Zhu, Q.-Q., Xie, H.-Y., Zhang, F., Wu, L.-M., Chen, L.-M., & Zheng, S.-S. (2012). Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Medical Oncology, 29, 1810–1816. https://doi.org/10.1007/s12032-011-0004-z

Lauren, P. (1965). The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathologica Et Microbiologica Scandinavica, 64, 31–49. https://doi.org/10.1111/apm.1965.64.1.31

Li, H., Yu, B., Li, J., Su, L., Yan, M., Zhu, Z., & Liu, B. (2014). Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 5, 2318–2329. https://doi.org/10.18632/oncotarget.1913

Li, L., Feng, T., Lian, Y., Zhang, G., Garen, A., & Song, X. (2009). Role of human noncoding RNAs in the control of tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 12956–12961. https://doi.org/10.1073/pnas.090605106

Li, Y., Bao, C., Gu, S., Ye, D., Jing, F., Fan, C., & Chen, K. (2017). Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer. Oncotarget, 8, 92604–92614. https://doi.org/10.18632/oncotarget.21507

Liu, B., Sun, L., Liu, Q., Gong, C., Yao, Y., Lv, X., Lin, L., Yao, H., Su, F., Li, D., Zeng, M., & Song, E. (2015). A cytoplasmic NF-kB interacting long noncoding RNA blocks IkB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27, 370–381. https://doi.org/10.1016/j.ccc.2015.02.004

Miyagawa, R., Tano, K., Mizuno, R., Nakamura, Y., Ijiri, K., Rakwal, R., Shibato, J., Masuo, Y., Mayeda, A., Hirose, T., & Akimitsu, N. (2012). Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA, 18, 738–751. https://doi.org/10.1261/rna.028639.111

Okugawa, Y., Toiyama, Y., Hur, K., Toden, S., Saigusa, S., Tanaka, K., Inoue, Y., Mohri, Y., Kusunoki, M., Boland, C. R., & Goel, A. (2014). Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis, 35, 2731–2739. https://doi.org/10.1093/carcin/bgu200

Peng, R., Luo, C., Guo, Q., Cao, J., Yang, Q., Dong, K., Wang, S., Wang, K., & Song, C. (2018). Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and mRNA expression of MALAT1 in Chinese Han population. Gene, 642, 241–248. https://doi.org/10.1016/j.gene.2017.11.013

Qiu, J. J., Lin, Y. Y., Ding, J. X., Feng, W. W., Jin, H. Y., & Hua, K. Q. (2015). Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. International Journal of Oncology, 46, 2497–2505. https://doi.org/10.3892/ijo.2015.2943

Qu, Y., Shao, N., Yang, W., Wang, J., & Cheng, Y. (2019). Association of polymorphisms in MALAT1 with the risk of esophageal squamous cell carcinoma in a Chinese population. Oncotargets and Therapy, 12, 2495–2503. https://doi.org/10.2147/OTT.S191155

Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, A., Bubulya, P. A., Blencowe, B. J., Prasanth, S. G., & Prasanth, K. V. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938. https://doi.org/10.1016/j.molcel.2010.08.011

Wang, J.-Z., Xiang, J.-J., Wu, L.-G., Bai, Y.-S., Chen, Z.-W., Yin, X.-Q., Wang, Q., Guo, W.-H., Peng, Y., Guo, H., & Xu, P. (2017). A genetic variant in long non-coding RNA MALAT1 associated with survival outcome among patients with advanced lung adenocarcinoma: a survival cohort analysis. BMC Cancer, 17, 167. https://doi.org/10.1186/s12885-017-3151-6

Wen, J., Chen, L., Tian, H., Li, J. L., Zhang, M., Cao, Q., Zhang, W., Chen, S., & Shi, L. (2019). Effect of MALAT1 polymorphisms on papillary thyroid cancer in a Chinese population. Journal of Cancer, 10, 5714–5721. https://doi.org/10.7150/jca.28887

Wu, X.-S., Wang, X.-A., Wu, W.-G., Hu, Y.-P., Li, M.-L., Ding, Q., Weng, H., Shu, Y.-J., Liu, T.-Y., Jiang, L., Cao, Y., Bao, R.-F., Mu, J.-S., Tan, Z.-J., Tao, F., & Liu, Y.-B. (2014). MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biology and Therapy, 15, 806–814. https://doi.org/10.4161/cbt.28584

Xia, H., Chen, Q., Chen, Y., Ge, X., Leng, W., Tang, Q., Ren, M., Chen, L., Yuan, D., Zhang, Y., Liu, M., Gong, Q., & Bi, F. (2016). The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget, 7, 56209–56218. https://doi.org/10.18632/oncotarget.10941

Yuan, L. T., Chang, J. H., Lee, H. L., Yang, Y. C., Su, S. C., Lin, C. L., Yang, S. F., & Chien, M. H. (2019). Genetic variants of lncRNA MALAT1 exert diverse impacts on the risk and clinicopathologic characteristics of patients with hepatocellular carcinoma. Journal of Clinical Medicine, 8, 1406. https://doi.org/10.3390/jcm8091406

Zhao, B., Hou, X., & Zhan, H. (2015). Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells. International Journal of Clinical and Experimental Medicine, 8, 18482–18487.

Zhao, J.-J., Hao, S., Wang, L.-L., Hu, C.-Y., Zhang, S., Gao, L.-J., Zhang, G., Gao, B. O., Jiang, Y., Tian, W.-G., & Luo, D.-L. (2016). Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-β/Smad signaling pathway. Oncotarget, 7, 57903–57918. https://doi.org/10.18632/oncotarget.11087

Zhu, K., Ren, Q., & Zhao, Y. (2019). IncRNA MALAT1 overexpression promotes proliferation, migration and invasion of gastric cancer by activating the PI3K/AKT pathway. Oncology Letters, 17, 5335–5342. https://doi.org/10.3892/ol.2019.10253

How to cite this article: Hong JH, Jin EH, Chang IA, Kang H, Lee SI, Sung JK. Association of long noncoding RNA MALAT1 polymorphisms with gastric cancer risk in Korean individuals. Mol Genet Genomic Med. 2020;8:e1541. https://doi.org/10.1002/mgg3.1541