Severe open angle glaucoma in hereditary hemorrhagic telangiectasia

Rachel W. Kuchtey, George T. Naratadam & John Kuchtey
Vanderbilt Eye Institute, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, Tennessee 37232

Correspondence
Rachel W. Kuchtey, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, Tennessee 37232. Tel: 615-936-7190; Fax: 615-936-1540; E-mail: rachel.kuchtey@vanderbilt.edu

Funding Information
This work was supported by the National Eye Institute Grant EY020894 (RWK), Unrestricted Grant from Research to Prevent Blindness (Vanderbilt Eye Institute) and the Vanderbilt Vision Research Center (P30EY008126).

Received: 28 April 2015; Accepted: 24 May 2015

Clinical Case Reports 2015; 3(9): 725–727
doi: 10.1002/ccr3.324

Introduction
Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness world-wide [1]. Major risk factors for POAG include positive family history, thin central cornea, elevated intraocular pressure (IOP), and older age.

Case Report
We report here a 52-year-old white male who presented with complaint of gradual decreased vision, especially in his left eye. He was found to have elevated IOP, in the mid-30 s mmHg. His vision with moderate myopic correction was 20/40 in his right eye and 20/200 in his left eye. His central corneal thickness in each eye was normal. Slit lamp examination was unremarkable, notably with no conjunctival telangiectasia detected (Fig. 1A). Gonioscopy examination revealed normal wide open iridocorneal angles. Dilated fundus examination showed advanced cupping in both eyes, but no evidence of retinal vascular abnormality (Fig. 1B).

Key clinical message
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease. Conjunctival telangiectasias and retinal vascular malformations are known ocular manifestations. We report here the first case of open angle glaucoma in a patient with HHT caused by a nonsense mutation, C471X in the ACVRL1 gene.

Keywords
glaucoma, hereditary hemorrhagic telangiectasia, transforming growth factor beta.
Based on the Curacao criteria for HHT diagnosis, the patient was formally diagnosed with type II HHT (HHT2, OMIM 600376). His two children, aged 9 and 7 years, also have recurrent epistaxis. Genetic testing revealed that both children are heterozygous for the C471X mutation in \textit{ACVRL1}. Complete eye examination of the children showed no evidence of elevated IOP or glaucomatous optic nerve damage. The patient’s younger sister was also diagnosed with HHT and glaucoma at 48 years of age (Fig. 1F), although no detailed history was available.

\textbf{Discussion}

Two previous studies specifically investigated ocular abnormalities in HHT patients. In one report [4], 47
HHT patients aged 20–90 years were examined, with 20 cases found to have conjunctival telangiectasia and one case with retinal vascular abnormality. Another study [5] examined 20 HHT patients aged 11–68 years and found seven with conjunctival telangiectasia and two with retinal vascular malformations. Glaucoma was not reported in either study. To our knowledge, the case presented here is the first report of glaucoma in a patient with HHT.

HHT is an autosomal dominant disease caused by mutations in genes involved in TGFβ superfamily signaling [2]. Since TGFβ superfamily signaling is disrupted in HHT, it is intriguing to consider that elevated TGFβ likely plays an important role in glaucoma pathogenesis [6], suggesting a possible mechanistic linkage between HHT and glaucoma. Diagnosis of HHT and glaucoma in the patient’s sister also suggests possible linkage of the conditions. As POAG is an age-related disease, the patient’s young children should be monitored closely. Development of POAG in the patient’s HHT-affected children would further support an association between POAG and HHT.

Based on this report, healthcare providers of HHT patients should be aware of possible development of POAG with advancing age. Surgical intervention is often needed to reduce the progression of glaucoma, especially in patients with advanced glaucoma. Caution must be taken should glaucoma surgery be required, since intraoperative choroidal hemorrhage in patients with HHT has been reported [7].

Acknowledgments

This work was supported by the National Eye Institute Grant EY020894 (RWK), Unrestricted Grant from Research to Prevent Blindness (Vanderbilt Eye Institute) and the Vanderbilt Vision Research Center (P30EY008126).

Conflict of interest

None of the authors have potential conflicts of interest related to this work.

References

1. Tham, Y. C., X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C. Y. Cheng. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090.
2. Govani, F. S., and C. L. Shovlin. 2009. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur. J. Hum. Genet. 17:860–871.
3. Bossler, A. D., J. Richards, C. George, L. Godmilow, and A. Ganguly. 2006. Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): correlation of genotype with phenotype. Hum. Mutat. 27:667–675.
4. Vase, I., and P. Vase. 1979. Ocular lesions in hereditary haemorrhagic telangiectasia. Acta Ophthalmol. (Copenh) 57:1084–1090.
5. Brant, A. M., A. P. Schachat, and R. I. White. 1989. Ocular manifestations in hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease). Am. J. Ophthalmol. 107:642–646.
6. Fuchshofer, R., and E. R. Tamm. 2012. The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 347:279–290.
7. Mahmoud, T. H., V. A. Deramo, T. Kim, and S. Fekrat. 2002. Intraoperative choroidal hemorrhage in the Osler-Rendu-Weber syndrome. Am. J. Ophthalmol. 133:282–284.