SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED

TAREK HAMDI

Abstract. We obtain a description for the spectral distribution of the free Jacobi process for any initial pair of projections. This result relies on a study of the unitary operator $RU_tSU_t^*$ where R, S are two symmetries and U_t a free unitary Brownian motion, freely independent from $\{R, S\}$. In particular, for non-null traces of R and S, we prove that the spectral measure of $RU_tSU_t^*$ possesses two atoms at ± 1 and an L^∞-density on the unit circle \mathbb{T}, for every $t > 0$. Next, via a Szegő type transform of this law, we obtain a full description of the spectral distribution of $PU_tQU_t^*$ beyond the $\tau(P) = \tau(Q) = 1/2$ case. Finally, we give some specializations for which these measures are explicitly computed.

1. Introduction

Let P, Q be two projections in a W^*-probability space (\mathcal{A}, τ) which are free with $\{U_t, U_t^*\}$. The present paper is a companion to the series of papers [5, 6, 7, 8, 9, 10] devoted to the study of the spectral distribution, hereafter μ_t, of the self-adjoint-valued process $(X_t := PU_tQU_t^*P)_{t \geq 0}$. Viewed in the compressed algebra $(P \mathcal{A} P, \tau/\tau(P))$, X_t coincides with the so-called free Jacobi process with parameter $(\tau(P)/\tau(Q), \tau(Q))$, introduced by Demni in [6] via free stochastic calculus, as solution to a free SDE there. Properties of its measure play important roles in free entropy and free information theory (see e.g. [15, 16, 17, 18, 24]). Furthermore, μ_t completely determines the structure of the von Neumann algebra generated by P and $U_tQU_t^*$ (see e.g. [17, 22]) for any $t \geq 0$, yielding a continuous interpolation from the law of PQP (when $t = 0$) to the free multiplicative convolution of the spectral measures of P and Q separately (when t tends to infinity). Indeed, the pair $(P, U_tQU_t^*)$ tends towards (P, UQU^*) as $t \to \infty$, where U is a Haar unitary free from $\{P, Q\}$. The two projections P and UQU^* are therefore free (see [21]) and hence $\mu_{PUQU^*P} = \mu_P \boxtimes \mu_{UQU^*} = \mu_P \boxtimes \mu_Q$. This measure was explicitly computed in [11, Example 3.6.7]. Generally, the operators P and $U_tQU_t^*$ are not free for finite t and the process $t \mapsto (P, U_tQU_t^*)$ is known as the free liberation of the pair (P, Q) (cf. [24]). When both projections coincide, the series of papers [7, 8, 9, 10] aim to determine μ_t for any $t > 0$. In particular, when $P = Q$ and $\tau(P) = 1/2$, Demni, Hmidi and myself proved in [9, Corollary 3.3] that the measure μ_t possesses a continuous density on $(0, 1)$ for $t > 0$ which fits that of the random variable $(I + U_{2t} + (I + U_{2t})^*)/4$. In [5], Collins and Kemp extended this result to the case of two projections P, Q with traces $1/2$. Afterwards this result was partially extended by Izumi and Ueda to the arbitrary traces case. They proved the following.

$$\mu_t = (1 - \min\{\tau(P), \tau(Q)\})\delta_0 + \max\{\tau(P) + \tau(Q) - 1, 0\}\delta_1 + \gamma_t$$

where γ_t is a positive measure with no atom on $(0, 1)$ for every $t > 0$ (cf. [18, Proposition 3.1]). When $\tau(P) = \tau(Q) = 1/2$, this measure coincide with the Szegő transformation of the distribution of UU_t where U is a unitary random variable determined by the law of PQP.
(cf. [18, Proposition 3.3]). In [3] Lemma 3.2, Lemma 3.6, Collins and Kemp studied the support of the measure γ_t, for the general case of traces, and the way in which the edges of this support are propagated, but they were still not able to prove the continuity of γ_t.

Our major result in these notes is a complete analysis of the spectral distribution of the unitary operator $RU_tSU^*_t$ (hereafter ν_t) for any symmetries $R,S \in \mathcal{A}$ which are free with $\{U_t, U^*_t\}$. In particular, we prove that the measure

$$\nu_t - \frac{1}{2}|\tau(R) - \tau(S)| \delta_\pi - \frac{1}{2}|\tau(R) + \tau(S)| \delta_0$$

possesses an L^∞-density κ_t on $\mathbb{T} = (-\pi, \pi]$. Using the relationship between μ_t and ν_t, when $\{P,Q\}$ and $\{R,S\}$ are associated (cf. [15, Theorem 4.3]), we deduce the regularity of μ_t for any initial projections. In particular, we prove that the measure γ_t possesses a continuous density on $[0,1]$. Here is our result.

Theorem 1.1. Let P,Q be orthogonal projections and U_t a free unitary Brownian motion, freely independent from P,Q. For every $t > 0$, the spectral distribution μ_t of the self adjoint operator $PU_tQU^*_tP$ is given by

$$\mu_t = (1 - \min\{\tau(P), \tau(Q)\})\delta_0 + \max\{\tau(P) + \tau(Q) - 1, 0\}\delta_1 + \frac{\kappa_t(2\arccos(\sqrt{x}))}{2\pi \sqrt{x(1-x)}} 1_{[0,1]}(x)dx.$$

We conclude the paper with the following ‘unexpected’ identities for the measure ν_t when the initial operators are assumed to be freely, classically, boolean and monotone independent with law $\frac{\delta_1 + \delta_1 - 1}{2}$. We have ν_t is constant in t in the first case, and its given by a dilation of the law of U_t in the rest of cases. The result is as follows.

Theorem 1.2. Let λ_t be the probability distribution of the free unitary Brownian motion U_t and $\mu = \frac{\delta_1 + \delta_1 - 1}{2}$ (considered as a law on \mathbb{T}). We denote respectively by $\boxtimes, \star, \otimes$ and \triangleright the free, classical, boolean and monotone multiplicative convolutions. Then, for all $t \geq 0$,

1. The measure $(\mu \boxtimes \mu) \boxtimes \lambda_t$ coincide with $\mu \boxtimes \mu$.
2. The push-forward of $(\mu \star \mu) \boxtimes \lambda_t$ by the map $z \mapsto z^2$ coincide with the law of U_{2t}.
3. The push-forward of $(\mu \otimes \mu) \boxtimes \lambda_t$ by the map $z \mapsto z^3$ coincide with the law of U_{3t}.
4. The push-forward of $(\mu \triangleright \mu) \boxtimes \lambda_t$ by the map $z \mapsto z^4$ coincide with the law of U_{4t}.

The paper is organized as follows. We start in Section 2 with some preliminaries which gathers useful information about the Herglotz transform of probability measures on the unit circle, and the spectral distribution of the free unitary Brownian motion. Section 3 fixes the basic ideas and notations for the rest of the work presented. Section 4 deals with regularity properties of the spectral measure ν_t and gives a proof of the Theorem 1.1. Section 5 consists in explicit computations of densities in certain special cases for initial operators.

2. Preliminaries

This section gives a concise review about some ideas we will use to prove our main results.

2.1. The Herglotz transform

Let $\mathcal{M}_\mathbb{T}$ denotes the set of probability measures on the unit circle \mathbb{T}. The normalized Lebesgue measure on \mathbb{T} will be denoted m. The Herglotz transform
H_μ of a measure $\mu \in \mathcal{M}_T$ is the analytic function in the unit disc \mathbb{D} defined by the formula

$$H_\mu(z) = \int \frac{\zeta + z}{\zeta - z} d\mu(\zeta).$$

This function is related to the moments generating function of the measure μ

$$\psi_\mu(z) = \int \frac{z}{\zeta - z} d\mu(\zeta), \quad z \in \mathbb{D}$$

by the simple formula $H_\mu(z) = 1 + 2\psi_\mu(z)$. Since any distribution on the unit circle is uniquely determined by its moments, we deduce that H_μ determines uniquely μ. One of its major importance is due to the following result (see e.g. [4, Theorem 1.8.9]):

Theorem 2.1 (Herglotz). The Herglotz transform sets up a bijection between the analytic functions H on \mathbb{D} with $\Re H \geq 0$ and $H(0) > 0$ and the non-zero measures $\mu \in \mathcal{M}_T$.

For $0 < p < \infty$, let $H^p(\mathbb{D})$ be the space of analytic functions f on \mathbb{D} such that

$$\sup_{0 < r < 1} \int |f(r\zeta)|^p d\zeta < \infty.$$

For $p = \infty$, let $H^\infty(\mathbb{D})$ denote the Hardy space consisting of all bounded analytic functions on \mathbb{D} with the sup-norm. Let $L^p(\mathbb{T})$ denote the Lebesgue spaces on the circle \mathbb{T} with respect to the normalized Lebesgue measure. The following result proves the existence of a boundary function for all $f \in H^p(\mathbb{D})$ (see [4, Theorem 1.9.4]).

Theorem 2.2 ([4]). Let $0 < p \leq \infty$ and $f \in H^p(\mathbb{D})$, the boundary function $\tilde{f}(\zeta)$ exists for m-almost all ζ in \mathbb{T} and belongs to $L^p(\mathbb{T})$. Furthermore, the norms of f in $H^p(\mathbb{D})$ and of $\tilde{f}(\zeta)$ in $L^p(\mathbb{T})$ coincide.

We know (see e.g. [4, Lemma 2.1.11]) that $H_\mu \in H^p(\mathbb{D})$ for all $0 < p < 1$, then $\tilde{H}_\mu(\zeta)$ exists for m-almost all ζ in \mathbb{T}. The density of μ can be recovered then from the boundary values of $\Re H_\mu$ by Fatou’s theorem ([4, Theorem 1.8.6]) since $\Re H_\mu = d\mu/dm$ m-a.e. Note that the atoms of $\mu \in \mathcal{M}_T$ can also be recovered from H_μ by Lebesgues dominated convergence theorem, via

$$\lim_{r \to 1^-} (1 - r)H_\mu(r\zeta) = 2\mu\{\zeta\} \quad \text{for all } \zeta \in \mathbb{T}.$$

2.2. Spectral distribution of the free unitary Brownian motion.

For $\mu \in \mathcal{M}_T$, let ψ_μ denote its moments generating function and χ_μ the function $\frac{\psi_\mu}{1 + \psi_\mu}$. If μ has nonzero mean, we denote by χ_μ^{-1} the inverse function of χ_μ in some neighborhood of zero. In this case the Σ-transform of μ is defined by $\Sigma_\mu(z) = \frac{1}{z} \chi_\mu^{-1}(z)$. The distribution λ_t of the free unitary Brownian motion was introduced by Biane in [2] as the unique probability measure on \mathbb{T} such that its Σ-transform is given by

$$\Sigma_{\lambda_t}(z) = \exp\left(\frac{t}{2} \frac{1 + z}{1 - z}\right).$$

This measure λ_t is known as the multiplicative analogues of semicircular distributions. Its moments follow from the large-size asymptotic of observables of the free Brownian motion.
(of dimension d) $(U^t_{d})_{t \geq 0}$ on the unitary group $U(d)$ as follows.

$$\lim_{d \to \infty} \frac{1}{d} \mathbb{E} \left(\text{tr}[U^t_{d}]^{k} \right) = \int_{\mathbb{T}} \zeta^k d\lambda_t(\zeta), \quad k \geq 0.$$

This result was proved independently by Biane and Rains in [2, 23] where these moments are explicitly calculated:

$$\tau(U^t_k) = e^{-kt/2} \sum_{j=0}^{k-1} \frac{(-t)^j}{j!} \binom{k}{j+1} k^{j-1}, \quad k \geq 0. \quad (2.1)$$

The equality (2.1) can be transformed into the PDE

$$\partial_t H + zH \partial_z H = 0, \quad (2.2)$$

with the initial condition $H(0, z) = (1 + z)/(1 - z)$ for the Herglotz transform $H_{\lambda_t}(z)$ (see e.g. the proof of [18, Proposition 3.3]). The measure λ_t is described in [3] from the boundary behaviour of the inverse function of $H_{\lambda_t}(z)$ as follows.

Theorem 2.3 ([3]). For every $t > 0$, λ_t has a continuous density ρ_t with respect to the normalized Lebesgue measure on \mathbb{T}. Its support is the connected arc $\{e^{i\theta} : |\theta| \leq g(t)\}$ with

$$g(t) := \frac{1}{2} \sqrt{t(4-t)} + \arccos \left(1 - \frac{t}{2}\right)$$

for $t \in [0, 4]$, and the whole circle for $t > 4$. The density ρ_t is determined by $\Re h_t(e^{i\theta})$ where $z = h_t(e^{i\theta})$ is the unique solution (with positive real part) to

$$\frac{z-1}{z+1} e^{2z} = e^{i\theta}.$$

3. Reminder and notations

We use here the same symbols as in [15, 16]. To a given pair of projections P, Q in \mathcal{A} that are independent of $(U^t)_{t \geq 0}$ we associate the symmetries $R = 2P - I$ and $S = 2Q - I$. Denote by $\alpha = \tau(R)$ and $\beta = \tau(S)$. We sometimes use the notations $a = |\alpha - \beta|/2$ and $b = |\alpha + \beta|/2$ for simplicity. Keep the symbols μ_t and ν_t above. The unit circle is identified with $(-\pi, \pi)$ by $e^{i\theta}$. According to [15, Theorem 4.3], the measure ν_t is connected to μ_t by the following formula

$$\nu_t = 2\tilde{\mu}_t - \frac{2 - \alpha - \beta}{2} \delta_{-\pi} - \frac{\alpha + \beta}{2} \delta_0,$$

where

$$\tilde{\mu}_t := \frac{1}{2} \left(\mu_t + (\mu_t|_{(0, \pi)}) \circ j^{-1} \right) \quad (3.1)$$

is the symmetrization on $(-\pi, \pi)$, with the mapping $j : \theta \in (0, \pi) \mapsto -\theta \in (-\pi, 0)$, of the positive measure $\mu_t(d\theta)$ on $[0, \pi]$ obtained from $\mu_t(dx)$ via the variable change $x = \cos^2(\theta/2)$. Equivalently, we obtain the following relationship between the Herglotz transforms H_{μ_t} and H_{ν_t} (see [15, Corollary 4.2]).

$$H_{\nu_t}(z) = \frac{z-1}{z+1} H_{\mu_t} \left(\frac{4z}{(1+z)^2} \right) - 2(\alpha + \beta) \frac{z}{z^2 - 1}. \quad (3.2)$$
The function \(H_\nu(z) \), which we shall denote by \(H(t, z) \), is analytic in both variables \(z \in \mathbb{D} \) and \(t > 0 \) (see [5, Theorem 1.4]) and solves the PDE (see [15, Proposition 2.3])

\[
\partial_t H + z H \partial_z H = \frac{2z(\alpha z^2 + 2\beta z + \alpha)(\beta z^2 + 2\alpha z + \beta)}{(1 - z^2)^3}.
\] (3.3)

Let

\[
K(t, z) := \sqrt{H(t, z)^2 - \left(a \frac{1 - z}{1 + z} + b \frac{1 + z}{1 - z}\right)^2}.
\] (3.4)

The PDE (3.3) is then transformed into

\[
\partial_t K + z H(t, z) \partial_z K = 0.
\]

Note that steady state solution \(K(\infty, z) \) is the constant \(\sqrt{1 - (a + b)^2} \) (see [15, Remark 3.3]). The ordinary differential equations (ODEs for short) of characteristic curve associated with this PDE are as follows.

\[
\begin{cases}
\partial_t \phi_t(z) = \phi_t(z) H(t, \phi_t(z)), & \phi_0(z) = z, \\
\partial_t [K(t, \phi_t(z))] = 0
\end{cases}
\] (3.5)

The second ODE of (3.5) implies that \(K(t, \phi_t(z)) = K(0, z) \), while the first one is nothing else but the radial Loewner ODE (see [20, Theorem 4.14]) which defines a unique family of conformal transformations \(\phi_t \) from some region \(\Omega_t \subset \mathbb{D} \) onto \(\mathbb{D} \) with \(\phi_t(0) = 0 \) and \(\partial_z \phi_t(0) = e^t \). Moreover, from [20, Remark 4.15], \(\phi_t \) is invertible from \(\Omega_t \) onto \(\mathbb{D} \) and it has a continuous extension to \(T \cap \Omega_t \) by [16, Proposition 2.1]. Integrating the first ODE in (3.5), we get

\[
\phi_t(z) = z \exp \left(\int_0^t H(s, \phi_s(z)) ds \right).
\]

Let us define

\[
h_t(r, \theta) = 1 - \int_0^t \frac{1 - |\phi_s(re^{i\theta})|^2}{-\ln r} \int_\mathbb{T} \frac{1}{|\xi - \phi_s(re^{i\theta})|^2} \nu_s(\xi) ds,
\]

so that

\[
\ln |\phi_t(re^{i\theta})| = \ln r + \Re \int_0^t H(s, \phi_s(re^{i\theta})) ds = (\ln r) h_t(r, \theta).
\] (3.6)

Define \(R_t : [-\pi, \pi] \to [0, 1] \) as follows

\[
R_t(\theta) = \sup \{ r \in (0, 1) : h_t(r, \theta) > 0 \},
\]

and let

\[
I_t = \{ \theta \in [-\pi, \pi] : h_t(\theta) < 0 \}
\]

where \(h_t(\theta) = \lim_{r \to 1^+} h_t(r, \theta) \in \mathbb{R} \cup \{-\infty\} \) (see the fact exposed under Lemma 3.2 in [16]).

The next result, giving a description of \(\Omega_t \) and its boundary, was proved in [16, Proposition 3.3].

Proposition 3.1 ([16]). For any \(t > 0 \), we have

1. \(\Omega_t = \{ re^{i\theta} : h_t(r, e^{i\theta}) > 0 \} \)
2. \(\partial \Omega_t \cap \mathbb{D} = \{ re^{i\theta} : h_t(r, e^{i\theta}) = 0 \text{ and } \theta \in I_t \} \).
(3) \(\partial \Omega_t \cap \mathbb{T} = \{ e^{i\theta} : h_t(r, e^{i\theta}) = 0 \text{ and } \theta \in [-\pi, \pi] \setminus I_t \} \).

In closing, we recall the following result which will be of use later on (see the proof of Theorem 1.1 in [16]).

Lemma 3.2 ([16]). *For every* \(t > 0 \), *the function* \(K(t, \cdot) \) *has a continuous extension to the unit circle* \(\mathbb{T} \).

4. Analysis of spectral distributions of \(RU_t SU_t^* \)

In this section, we shall prove the Theorem 1.1. To this end, we start by giving a description of the spectral measure \(\nu_t \) of \(RU_t SU_t^* \) for any \(t > 0 \), and deriving a formula for its density. We notice that from the asymptotic freeness of \(R \) and \(U_t SU_t^* \), the measure \(\nu_t \) converges weakly as \(t \to \infty \) (see [15, Proposition 2.6]) to

\[

\nu_\infty = a\delta_\pi + b\delta_0 + \frac{\sqrt{-\cos \theta - r_+ \cos \theta - r_-}}{2\pi \lvert \sin \theta \rvert} 1_{(\theta_-, \theta_+), \cup(-\theta_+, -\theta_-)} d\theta \quad (4.1)

\]

with \(r_\pm = -\alpha \beta \pm \sqrt{(1 - \alpha^2)(1 - \beta^2)} \) and \(\theta_\pm = \arccos r_\pm \). The following theorem asserts that an analogous result holds for finite \(t \).

Theorem 4.1. *For every* \(t > 0 \), *\(\nu_t - a\delta_\pi - b\delta_0 \) is absolutely continuous with respect to the normalized Lebesgue measure on \(\mathbb{T} = (-\pi, \pi] \). Moreover, its density \(\kappa_t \) *at the point* \(e^{i\theta} \) *is equal to the real part of* \(\sqrt{K(t, e^{i\theta})^2 + (a + b)^2 - 1 - \frac{(\cos \theta - r_+)(\cos \theta - r_-)}{\sin^2 \theta}} \).

Proof. Define the function

\[

L(t, z) = \int e^{i\theta} (\nu_t - a\delta_\pi - b\delta_0)(d\theta) = H(t, z) - a \frac{1 - z}{1 + z} - b \frac{1 + z}{1 - z}.

\]

The real part of this function is nothing else but the Poisson integral of the measure \(\nu_t - a\delta_\pi - b\delta_0 \). Using (3.1) and multiplying by the conjugate, we get

\[

L(t, z) = \frac{K(t, z)^2}{\sqrt{K(t, z)^2 + (a \frac{1 - z}{1 + z} + b \frac{1 + z}{1 - z})^2 + a \frac{1 - z}{1 + z} + b \frac{1 + z}{1 - z}}} = \frac{(1 - z^2)K(t, z)^2}{\sqrt{[(1 - z^2)K(t, z)]^2 + [a(1 - z)^2 + b(1 + z)^2]^2 + a(1 - z)^2 + b(1 + z)^2}}.

\]

Note that \(K(t, z) \) extends continuously to \(\mathbb{T} \) by Lemma 3.2. The denominator of the above expression does not vanish on the closed unit disc and

\[

z \mapsto (1 - z^2)^2 K(t, z)^2 + [a(1 - z)^2 + b(1 + z)^2]^2 = (1 - z^2)H(t, z)^2
\]

does not take negative values. These together imply that \(L(t, z) \) has a continuous extension on the boundary \(\mathbb{T} \). Hence, by uniqueness of Herglotz representation (see Theorem 2.1), the
measure $\nu_t - a\delta_\pi - b\delta_0$ is absolutely continuous with respect to the Haar measure in \mathbb{T} and its density is given by:

$$\Re \left[H(t, e^{i\theta}) - a \frac{1 - e^{i\theta}}{1 + e^{i\theta}} - b \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right] = \Re \sqrt{\left[K(t, e^{i\theta}) \right]^2 + \left[a \frac{1 - e^{i\theta}}{1 + e^{i\theta}} - b \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right]^2}$$

To complete the proof, we need only show that

$$[a \tan(\theta/2) - b \cot(\theta/2)]^2 = 1 - (a + b)^2 + \frac{(\cos \theta - r_+)(\cos \theta - r_-)}{\sin^2 \theta}$$
or equivalently that

$$(1 - a^2 - b^2) \sin^2 \theta - a^2 \sin^2 \theta \tan^2(\theta/2) - b^2 \sin^2 \theta \cot^2(\theta/2) = -(\cos \theta - r_+)(\cos \theta - r_-).$$

Working from the left-hand side and using the identities

$$\sin^2 \theta = 1 - \cos^2 \theta, \quad \sin^2 \theta \tan^2(\theta/2) = (1 - \cos \theta)^2, \quad \sin^2 \theta \cot^2(\theta/2) = (1 + \cos \theta)^2,$$

we get

$$(1 - a^2 - b^2)(1 - \cos^2 \theta) - a^2(1 - \cos \theta)^2 - b^2(1 + \cos \theta)^2.$$

Rearranging these terms, we obtain

$$-\cos^2 \theta + 2(a^2 - b^2) \cos \theta - 2(a^2 + b^2) + 1.$$

So, by substituting the equalities $\alpha \beta = b^2 - a^2$ and $\alpha^2 + \beta^2 = 2(a^2 + b^2)$, we obtain the required formula:

$$-\cos^2 \theta - 2\alpha \beta \cos \theta + 1 - a^2 - \beta^2 = -(\cos \theta - r_+)(\cos \theta - r_-).$$

\[\Box\]

Proposition 4.2. The support of ν_t is a subset of $\{\phi_t (R_t(\theta) e^{i\theta}) : \theta \in I_t\}$.

Proof. By (3.6), we have

$$\int_0^t \Re H(s, \phi_s (R_t(\theta) e^{i\theta})) \, ds = -\ln R_t(\theta)$$

where we used the fact that $\ln |\phi_t (R_t(\theta) e^{i\theta})| = 0$ due to the equality $|\phi_t (R_t(\theta) e^{i\theta})| = 1$. Then, by continuity of $s \mapsto \Re H(s, \phi_s (R_t(\theta) e^{i\theta}))$ on $[0, t]$, we deduce that the assertion $\Re H(t, \phi_t (R_t(\theta) e^{i\theta})) > 0$ yields $R_t(\theta) \neq 1$. Finally, by definition of $R_t(\theta)$ and I_t, we have

$$\{\theta : R_t(\theta) \neq 1\} = \{\theta : \exists r_0 \in (0, 1), \ h_t(r_0, e^{i\theta}) = 0\} = \{\theta : h_t(\theta) < 0\} = I_t.$$

\[\Box\]

Proposition 4.3. The density κ_t of $\nu_t - a\delta_\pi - b\delta_0$ belongs to $L^\infty(\mathbb{T})$.
Proof. By (3.4), we have
\[
K(t, z)^2 = H(t, z)^2 - \left(a \frac{1 - z}{1 + z} + b \frac{1 + z}{1 - z} \right)^2.
\]
Then
\[
\Re L(t, z) \leq K(t, z)^2.
\]
Since the function \(K(t, z) \) is analytic in \(D \) and extends continuously to \(T \), it becomes then of Hardy class \(H_\infty(D) \), and hence the density of \(\nu_t = a \delta_\pi + b \delta_0 \) belongs to \(L_\infty(T) \) by [19, Theorem p. 15]. □

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. Using Theorem 4.1 and in [15], we have
\[
\nu_t = a \delta_\pi + b \delta_0 = 2 |\hat{\mu}_t - (1 - \min \{\tau(P), \tau(Q)\}) \delta_\pi - \max \{\tau(P) + \tau(Q) - 1, 0\} \delta_0|.
\]
From Theorem 4.3, this measure is absolutely continuous with respect to the normalized Lebesgue measure \(d\theta/2\pi \) on \(T = (-\pi, \pi] \) with density the function \(\kappa_t \). Hence, by (3.1), we have
\[
(\hat{\mu}_t - (1 - \min \{\tau(P), \tau(Q)\}) \delta_\pi - \max \{\tau(P) + \tau(Q) - 1, 0\} \delta_0)(d\theta) = \kappa_t(\theta) \frac{d\theta}{2\pi}, \quad \theta \in [0, \pi]
\]
and so the desired assertion holds via the variable change \(\theta = 2 \arccos(\sqrt{t}) \). □

5. Special cases

We present here some specializations for which the measure \(\nu_t \) (and hence \(\mu_t \)) is explicitly determined.

5.1. Centered initial operators. i.e. \(\tau(R) = \tau(S) = 0 \) or \(a = b = 0 \). In this case, the PDE (3.3) rewrites
\[
\partial_t H + z H \partial_z H = 0,
\]
and the measure \(\nu_t \) becomes identical to the probability distribution of \(UU_2t \) where \(U \) is a free unitary whose distribution is \(\nu_0 \) (see [18, Proposition 3.3] or [15, Remark 4.7]). Hence, the measure \(\nu_t \) is given by the multiplicative free convolution \(\nu_0 \boxtimes \lambda_{2t} \) studied by Zhong in [25]. The density of this measure and its support are explicitly computed in [25, Theorem 3.8 and Corollary 3.9]. In particular, when \(\nu_0 \) is a Dirac mass at 1 (on the unit circle), the Herglotz transforms \(H(t, z) \) of \(\nu_t \) satisfy the PDE
\[
\partial_t H + z H \partial_z H = 0, \quad H(0, z) = \frac{1 + z}{1 - z}.
\]
Then it follows from uniqueness of solution of (2.2) that \(H(t, z) = H_{\lambda_{2t}}(z) \), and by uniqueness of Herglotz representation, \(\nu_t \) coincide with the law \(\lambda_{2t} \) of \(U_{2t} \). Hence, by Theorem 2.3 the density of \(\nu_t \) is given by the formula \(\kappa_t(\omega) = \rho_{2t}(\omega) \) and the support is the full unit circle for \(t > 2 \) and the set \(\{e^{i\theta} : |\theta| < g(2t)\} \) for \(t \in [0, 2] \).
In the rest of the paper, we illustrate how the family of measure \((\nu_t)_{t \geq 0}\) provides a continuous interpolation between freeness and different type of independence.

5.2. **Free initial operators.** If \(R\) and \(S\) are free, then Proposition 2.5 in \([15]\), implies that

\[
H(0, z) = \sqrt{1 + 4z \left(\frac{b^2}{(1 - z)^2} - \frac{a^2}{(1 + z)^2} \right)}.
\]

Then it follows from (3.4) that

\[
K(0, z) = \sqrt{H(0, z)^2 - \left(a \frac{1 - z}{1 + z} + b \frac{1 + z}{1 - z} \right)^2} = \sqrt{1 - (a + b)^2}.
\]

But the facts exposed (under the ODEs (3.3)) in section 3 show that \(K(t, z) = K(0, \phi_t^{-1}(z))\) holds for every \(z \in \mathbb{D}\). This implies that \(K(t, z) = \sqrt{1 - (a + b)^2}\) for any \(t \geq 0\), and therefore \(\nu_t\) coincides with the measure \(\nu_\infty\).

5.3. **Classically independent initial operators.** In this case, the measure \(\nu_t\) is considered as a \(t\)-free convolution which interpolates between classical independence and free independence (see \([1]\)). Let \(R, S\) two independent symmetries, from the facts exposed above Lemma 5.4 in \([15]\), we have

\[
H(0, z) = 1 + 2 \sum_{n \geq 1} \tau(R^n)\tau(S^n)z^n = \frac{1 + z^2 + 2z\tau(R)\tau(S)}{1 - z^2}.
\]

In particular, when \(\tau(R) = \tau(S) = 0\), the function \(H(t, z)\) satisfies the PDE

\[
\partial_t H + z\partial_z H = 0, \quad H(0, z) = \frac{1 + z^2}{1 - z^2}
\]

and hence, by (2.2), it coincide with \(H_\chi_t(z^2)\). We retrieve then the result obtained in \([1]\) Theorem 3.6: for any \(t \geq 0\), the push-forward of \(\nu_t\) by the map \(z \mapsto z^2\) coincide with the law of \(U_{4t}\). In particular, the density of \(\nu_t\) is given by \(\kappa_t(\omega) = \rho_{4t}(\omega^2)\) for any \(\omega\) in the unit circle and the support is the full unit circle for \(t > 1\) and the set \(\{e^{i\theta} : |\theta| < g(4t)/2\}\) for \(t \in [0, 1]\).

5.4. **Boolean independent initial operators.** To a given probability measure \(\mu\) on the unit circle, we keep the same notations \(\psi, H, \mu, \chi\) as in section 2. Let \(\mu_1, \mu_2 \in \mathcal{M}_\tau\) and set \(F_\mu(z) = \frac{1}{2} \chi_\mu(z)\). Then the multiplicative boolean convolution \(\mu = \mu_1 \uplus \mu_2\) is uniquely determined by (see \([14]\) or \([13]\) for more details)

\[
F_\mu(z) = F_{\mu_1}(z)F_{\mu_2}(z).
\]

Then, for boolean independent symmetries \(R, S\) with law \(\mu = \delta_t + \delta_{-t}\), we have

\[
\psi_t(z) = \frac{z^2}{1 - z^2}, \quad \mu(z) = z^2, \quad \chi_t(z) = z^2, \quad F_{\mu}(z) = z
\]

and therefore \(F_{\mu \uplus \chi}(z) = F_{\mu}(z)^2 = z^2\). It follows that

\[
\psi_{\mu \uplus \chi}(z) = \frac{z^3}{1 - z^3} \quad \text{and} \quad H_{\mu \uplus \chi}(z) = \frac{1 + z^3}{1 - z^3}.
\]
Hence, by (2.2) the Herglotz transform $H(t, z)$ of ν_t and $H_{\lambda t}(z^2)$ solve the same PDE with the initial condition $H(0, z) = (1 + z^3)/(1 - z^3)$. By uniqueness, it follows that the push-forward of ν_t by the map $z \mapsto z^3$ coincide with the law of $U_{\lambda t}$, for any $t \geq 0$. In particular, we have $\kappa_t(\omega) = \rho_{\lambda t}(\omega^3)$ for any ω in the unit circle and ν_t is supported in the full unit circle for $t > 2/3$ and the set $\{e^{i\theta} : |\theta| < g(\lambda t)/3\}$ for $t \in [0, 2/3]$.

5.5. Monotone independent initial operators.

For $\mu_1, \mu_2 \in M_T$, the multiplicative monotone convolution $\mu = \mu_1 \triangleright \triangleright \mu_2$ is uniquely determined by (see [14] or [12] for more details)

$$\chi_\mu(z) = \chi_{\mu_1}(\chi_{\mu_2}(z)).$$

Here, we shall compute the measure ν_t for monotone independent symmetries R, S with law $\mu = \frac{\delta_1 + \delta_1}{2}$. As usual, we have

$$\psi_\mu(z) = \frac{z^2}{1 - z^2}, \quad \chi_\mu(z) = z^2,$$

and then $\chi_{\mu \triangleright \triangleright \mu}(z) = \chi_\mu(\chi_\mu(z)) = z^4$. Hence,

$$\psi_{\mu \triangleright \triangleright \mu}(z) = \frac{z^4}{1 - z^4} \quad \text{and} \quad H_{\mu \triangleright \triangleright \mu}(z) = \frac{1 + z^4}{1 - z^4}.$$

It follows that $H(t, z) = H_{\lambda t}(z^4)$ by uniqueness. Thus, the push-forward of ν_t by the map $z \mapsto z^4$ coincide with the law of $U_{\lambda t}$, for any $t \geq 0$. In particular, we have $\kappa_t(\omega) = \rho_{\lambda t}(\omega^4)$ for any ω in the unit circle and ν_t is supported in the full unit circle for $t > 1/2$ and the set $\{e^{i\theta} : |\theta| < g(\lambda t)/4\}$ for $t \in [0, 1/2]$.

Finally, we remind (see the section 5.1) that $\nu_t = \nu_0 \boxplus \lambda_{2t}$ for centered initial operators R, S (i.e. $\tau(R) = \tau(S) = 0$). Hence, the discussions so far can be summarized in the Theorem 1.2.

References

[1] F. Benaych-Goerges, T. Lévy. A continuous semigroup of notions of independence between the classical and the free one. Ann. Probab. 39 (2011), 904-938.
[2] P. Biane. Free Brownian motion, free stochastic calculus and random matrices. Fields. Inst. Commun., 12, Amer. Math. Soc. Providence, RI, (1997), 1-19.
[3] P. Biane. Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144. (1997), 232-286.
[4] J. Cima, A. L. Matheson, W. T. Ross. The Cauchy transform. Mathematical Surveys and Monographs, 125. American Mathematical Society.
[5] B. Collins, T. Kemp. Liberation of projections. J. Funct. Anal. 266 (2014), 1988-2052.
[6] N. Demni. Free Jacobi processes. J. Theor. Probab. 21 (2008), 118-143.
[7] N. Demni. Free Jacobi process associated with one projection: local inverse of the flow. Complex Anal. Oper. Theory. 10 (2016), 527-543.
[8] N. Demni, T. Hamdi. Inverse of the flow and moments of the free Jacobi process associated with one projection. Preprint (2016) arXiv:1611.00233
[9] N. Demni, T. Hamdi, T. Hmidi. Spectral distribution of the free Jacobi process. Indiana Univ. Math. J. 61 (2012), 1351-1368.
[10] N. Demni, T. Hmidi. Spectral distribution of the free Jacobi process associated with one projection. Colloq. Math. 137 (2014), 271-296.
[11] K. J. Dykema, A. Nica, D. V. Voiculescu. Free Random Variables. CRM Monograph Series. 1. 1992.
[12] U. Franz. Multiplicative monotone convolutions. Banach Center Publications 73 (2006),153-166.
U. Franz. Boolean convolution of probability measures on the unit circle. Analyse et probabilités, Sémin. Congr. 16 (2008), 83-94.

T. Hamdi. Monotone and boolean unitary Brownian motions. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 18 (2015), 1550012.

T. Hamdi. Liberation, free mutual information and orbital free entropy. Preprint (2017), arXiv:1702.05783.

T. Hamdi. Free mutual information for two projections. Preprint (2017), arXiv:1710.05986.

T. Hamdi. Liberation, free mutual information and orbital free entropy. Nagoya Math. J 220 (2015), 45-66.

P. Koosis. Introduction to H^p Spaces, 2nd ed., with two appendices by V. P. Havin. Cambridge Tracts in Math 115, Cambridge University Press, Cambridge, 1998.

G. F. Lawler. Conformally Invariant Processes in the plane. Mathematical Surveys and Monographs 114, Americal Mathematical Society, Providence, RI, 2005.

A. Nica, R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. 2006.

I. Raeburn, A. Sinclair. The C-algebra generated by two projections. Math. Scand. 65 (1989), 278-290.

Rains, E. M. Combinatorial properties of Brownian motion on the compact classical groups. J. Theoret. Probab. 10 (1997), 659-679.

D. V. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory. VI. Liberation and mutual free information. Adv. Math. 146 (1999), 101-166.

P. Zhong. On the free convolution with a free multiplicative analogue of the normal distribution. J. theor. Probab. 28 (2015), 1354-1379.

Department of Management Information Systems, College of Business Administration, Qassim University, Saudi Arabia and Laboratoire d’Analyse Mathématiques et Applications, LR11ES11, Université de Tunis El-Manar, Tunisie.

E-mail address: tarek.hamdi@mail.com