Confidence-aware Non-repetitive Multimodal Transformers for TextCaps

Zhaokai Wang¹, Renda Bao², Qi Wu³, Si Liu¹*
¹ Beihang University, Beijing, China
² Alibaba Group, Beijing, China
³ University of Adelaide, Australia
{wzk1015, liusi}@buaa.edu.cn, renda.brd@alibaba-inc.com, qi.wu01@adelaide.edu.au

Abstract
When describing an image, reading text in the visual scene is crucial to understand the key information. Recent work explores the TextCaps task, i.e., image captioning with reading Optical Character Recognition (OCR) tokens, which requires models to read text and cover them in generated captions. Existing approaches fail to generate accurate descriptions because of their (1) poor reading ability; (2) inability to choose the crucial words among all extracted OCR tokens; (3) repetition of words in predicted captions. To this end, we propose a Confidence-aware Non-repetitive Multimodal Transformers (CNMT) to tackle the above challenges. Our CNMT consists of a reading, a reasoning and a generation modules, in which Reading Module employs better OCR systems to enhance text reading ability and a confidence embedding to select the most noteworthy tokens. To address the issue of word redundancy in captions, our Generation Module includes a repetition mask to avoid predicting repeated word in captions. Our model outperforms state-of-the-art models on TextCaps dataset, improving from 81.0 to 93.0 in CIDEr. Our source code is publicly available.

1 Introduction
Image Captioning has emerged as a prominent area at the intersection of vision and language. However, current Image Captioning datasets (Chen et al. 2015; Young et al. 2014) and models (Anderson et al. 2018; Huang et al. 2019) pay few attention to reading text in the image, which is crucial to scene understanding and its application, such as helping visually impaired people understand the surroundings. For example, in Figure 1, Ushahidi on the screen tells the user the website he is browsing. To address this drawback, Sidorov et al. has introduced TextCaps (Sidorov et al. 2020) dataset, which requires including text in predicted captions.

In order to generate captions based on text from images, the model needs to (1) recognize text in the image with Optical Character Recognition (OCR) methods; (2) capture the relationship between OCR tokens and visual scenes; (3) predict caption tokens from fixed vocabulary and OCR tokens based on previous features. Current state-of-the-art model M4C-Captioner (Sidorov et al. 2020), adapted to the TextCaps task from M4C (Hu et al. 2020), fuses visual modality and text modality by embedding them into a common semantic space and predicts captions with multi-word answer decoder based on features extracted from multimodal transformers (Vaswani et al. 2017).

While M4C-Captioner manages to reason over text in images, it is originally designed for TextVQA (Singh et al. 2019), and thus fails to fit into Image Captioning task. It mainly has three problems. Firstly, its OCR system Rosetta (Borisyuk, Gordo, and Sivakumar 2018) is not robust enough, making it suffer from bad recognition results. As words in captions come from either pre-defined vocabulary (common words) or OCR tokens, even a tiny error in recognizing uncommon words can lead to missing key information of the image.

Secondly, compared with answers in TextVQA where all OCR tokens can be queried in questions, captions in TextCaps should only focus on the most important OCR tokens in the image. In Figure 1, the key OCR tokens should be nokia and ushahidi, while others like location, description are dispensable. In fact, having these words in captions makes them verbose and even has negative effects. However, M4C-Captioner simply feeds all the OCR tokens into transformers without paying attention to their semantic significance, so irrelevant OCR tokens can appear in captions.
Thirdly, due to the use of Pointer Network (Vinyals, Fortunato, and Jaitly 2015) which directly copies input OCR tokens to output. M4C-Captioner’s decoding module tends to predict the same word multiple times (e.g. describe one object or OCR token repeatedly) in captions, like describing the image in Figure[1] as a *nokia phone that says nokia*. This redundancy leads to less natural captions which also misses key information *ushahidi*, thus it should be avoided.

In this paper, we address these limitations with our new model Confidence-aware Non-repetitive Multimodal Transformers (CNMT), as shown in Figure[1]. For the first issue, we employ CRAFT (Baek et al. 2019b) and ABCNet (Liu et al. 2020) for text detection, and four-stage STR (Baek et al. 2019a) for text recognition. These new OCR systems help to improve reading ability of our model.

For the second issue, we record recognition confidence of each OCR token as a semantic feature, based on the intuition that OCR tokens with higher recognition confidence are likely to be crucial and should be included in captions, as they are frequently more conspicuous and recognizable. For instance, among all the OCR tokens in Figure[1] tokens with high recognition confidence (*nokia, ushahidi*) are consistent with our analysis on the key information in the image, while less recognizable ones (*location, description*) match dispensable words. Besides, tokens with lower confidence are more likely to have spelling mistakes. Therefore, we use recognition confidence to provide confidence embedding of OCR tokens. In Reasoning Module, OCR tokens and their recognition confidence are embedded together with multiple OCR token features, and fed into the multimodal transformers with object features of the image, fusing these two modalities in a common semantic space.

For the third issue, we apply a repetition mask on the original pointer network (Vinyals, Fortunato, and Jaitly 2015) in the decoding step, and predict caption tokens iteratively. Repetition mask helps our model avoid repetition by masking out words that have appeared in previous time steps. We ensure that the repetition mask ignores common words such as a, an, the, of, says, for they act as an auxiliary role in captions and are essential for fluency. As shown in Figure[1] at decoding step 1, predicted score of *nokia* is masked out as it appeared at step 2, allowing our model to generate the correct caption *a nokia phone that says ushahidi* without repetition. Meanwhile, previously predicted common words *a, says* is not affected in case of necessary repetition of them.

In summary, our contributions are threefold: (1) We propose our Confidence-aware Non-repetitive Multimodal Transformers (CNMT) model, which employs better OCR systems to improve reading ability, and uses confidence embedding of OCR tokens as representation of semantic significance to select the most important OCR tokens; (2) With the repetition mask, our model effectively avoids redundancy in predicted captions, and generates more natural captions; (3) Our model significantly outperforms current state-of-the-art model of TextCaps dataset by 12.0 in CIDEr on test set, improving from 81.0 to 93.0.

2 Related Work

Text based Image Captioning. In recent years, many works have focused on vision or language tasks (Zheng et al. 2019; Gao et al. 2020; Liao et al. 2020). Conventional Image Captioning datasets (Chen et al. 2015; Young et al. 2014) aim to describe each image with a caption, but they tend to ignore text in the images as another modality, which is of great importance when describing the key information in the image. Recently TextCaps (Sidorov et al. 2020) dataset has been introduced, which requires reading text in the images. State-of-the-art models for conventional Image Captioning like BUTD (Anderson et al. 2018), AoANet (Huang et al. 2019) fail to describe text in TextCaps images. M4C-Captioner (Sidorov et al. 2020), adapted from TextVQA (Singh et al. 2019) benchmark model M4C (Hu et al. 2020), is proposed to fuse text modality and image modality to make predictions. It employs multimodal transformers (Vaswani et al. 2017) to encode image and text and predicts captions with an iterative decoding module. However, its performance is limited by poor reading ability and its inability to select the most semantically important OCR token in the image. Besides, its decoding module, originally designed for TextVQA task, shows redundancy in predicted captions. In this paper, we propose our CNMT model, which applies confidence embedding, better OCR systems and a repetition mask to address these limitations.

Optical Character Recognition (OCR). OCR helps to read text in images, which is crucial to TextCaps task. OCR involves two steps: detection (find text regions in the image) and recognition (extract characters from text regions). One way of text detection method is to use box regression adapted from popular object detectors (Liao, Shi, and Bai 2018). Another method is based on segmentation (Long et al. 2018). For text detection, CRAFT (Baek et al. 2019b) effectively detects text regions by exploiting character-level affinity. Recent work ABCNet (Liu et al. 2020) presents a way to fit arbitrarily-shaped text by using Adaptive Bezier-Curve. For scene text recognition (STR), existent approaches have benefited from the combination of convolutional neural networks and recurrent neural networks (Shi, Bai, and Yao 2016) and employment of transformation modules for text normalization such as thin-plate spline (Shi et al. 2016). Baek et al. introduce four-stage STR framework for text recognition. As for the TextCaps task, M4C-Captioner uses Rosetta (Borisyuk, Gordo, and Sivakumar 2018) as OCR processor, but it is not robust enough to read text correctly. To solve this problem, our model adapts CRAFT (Baek et al. 2019b) and ABCNet (Liu et al. 2020) as the detection module, and four-stage STR (Baek et al. 2019a) as the recognition module.

3 Methods

3.1 Pipeline Overview

Our CNMT is composed of three modules as shown in Figure[2]. The input image is first fed into Reading Module to extract OCR tokens along with their recognition confidence, as the token-confidence table on the top right part. Then Reasoning Module extracts object features of the image, embeds
Figure 2: Overview of our CNMT model. In Reading Module, we extract OCR tokens with better OCR systems, and record their recognition confidence. Then Reasoning Module fuses OCR token features and object features with multimodal transformers, and Generation Module predicts caption tokens iteratively from a fixed vocabulary OCR tokens based on pointer network. A repetition mask is employed to avoid repetition in predictions.

3.2 Reading Module
As shown in the top part of Figure 2, Reading Module detects text regions in the image, and extracts OCR tokens from these regions, jointly with confidence features of tokens.

OCR systems. We use two models for text detection, CRAFT (Baek et al. 2019b) and ABCNet (Liu et al. 2020). Text regions detected separately by CRAFT and ABCNet are combined together and fed into the text recognition part, as the four blue OCR boxes in the top part of Figure 2. For text recognition, we use deep text recognition benchmark based on four-stage STR framework (Baek et al. 2019a). We combine OCR tokens extracted from our new OCR systems with the original Rosetta OCR tokens, and feed them into Reasoning Module.

Confidence embedding. Our previously mentioned intuition is that OCR tokens with higher recognition confidence tend to be crucial that should be included in captions, as they are frequently more conspicuous, recognizable and less likely to have spelling mistakes. Based on this, we record recognition confidence x_{conf} of each OCR token from our text recognition system STR, where x_{conf} is between 0 and 1. We then feed these confidence features into the next module to provide confidence embedding. As original Rosetta tokens do not include recognition confidence, OCR tokens that only appear in Rosetta recognition result are recorded by a default confidence value c_{default}. As shown in the top right part of Figure 2, we get several token-confidence pairs as the result of Reading Module.

3.3 Reasoning Module
For Reasoning Module we mainly follow the design of M4C-Captioner (Sidorov et al. 2020), but with better OCR token embedding. As shown in the bottom left part of Figure 2, object features and OCR token features are jointly projected to a d-dimensional semantic space, and extracted by multimodal transformers.

Object embedding. To get object embedding, we apply pretrained Faster R-CNN (Ren et al. 2015) as the detector to extract appearance feature x_{fr}^m of each object m. In order to reason over spatial information of each object, we denote its location feature by $x_{\text{lb}}^m = \left[x_{\text{min}}/W, y_{\text{min}}/H, x_{\text{max}}/W, y_{\text{max}}/H \right]$. The final object embedding x_{obj}^m is projected to a d-dimensional vector as $x_{\text{obj}}^m = LN(W_1 x_{fr}^m) + LN(W_2 x_{lb}^m)$ (1), where W_1 and W_2 are learnable parameters, and LN denotes layer normalization.

OCR token embedding. To get rich representation of OCR tokens, we use FastText (Bojanowski et al. 2017), Faster R-CNN, PHOC (Almazán et al. 2014) to extract subword feature x_{ft}^i, appearance feature x_{fr}^i and character-level feature x_{cl}^i respectively. Location feature is represented as $x_{\text{lb}}^i = \left[x_{\text{min}}/W, y_{\text{min}}/H, x_{\text{max}}/W, y_{\text{max}}/H \right]$. Then we add the confidence feature x_{conf}^i, based on the intuition that our model should focus more on tokens with higher recognition confidence. The final OCR token embedding x_{ocr}^i is a list of d-dimensional vectors.
\[x_i^{\text{ocr}} = LN(W_3 x_i^f + W_4 x_i^R + W_5 x_i^p) + LN(W_6 x_i^f) + LN(W_7 x_i^{con}) \]

where \(W_3, W_4, W_5, W_6, \) and \(W_7 \) are learnable parameters, and \(LN \) denotes layer normalization.

Multimodal transformers. After extracting object embedding and OCR token embedding, a stack of transformers (Vaswani et al. 2017) are applied to these two input modalities, allowing each entity to attend to other entities from the same modality or the other one. Decoding output of previous step is also embedded and fed into the transformers, like previous output \(x_{i-1}^{\text{dec}} \) is the corresponding weight of the linear layer in Generation Module (if previous output is from vocabulary), or OCR token embedding \(x_i^{\text{ocr}} \) (if from OCR tokens). The multimodal transformers provide a list of feature vectors as output:

\[[z_{i}^{\text{obj}}, z_{i}^{\text{ocr}}, z_{i}^{\text{dec}}] = mmt([x_{i}^{\text{obj}}, x_{i}^{\text{ocr}}, x_{i-1}^{\text{dec}}]) \]

where \(mmt \) denotes multimodal transformers.

3.4 Generation Module

Generation Module takes output of multimodal transformers in Reading Module as input, predicts scores of each OCR token and vocabulary word, employs repetition mask, and selects the predicted word of each step, as shown in the bottom right part of Figure 2.

Predicting scores. Each token in the predicted caption may come from fixed vocabulary words \(\{ w_{i}^{\text{voc}} \} \) or OCR tokens \(\{ w_{i}^{\text{ocr}} \} \). Following the design of M4C-Captioner, we compute scores of these two sources based on transformer output \(z_{i}^{\text{dec}} \) (corresponding to input \(x_{i}^{\text{dec}} \)). Scores of fixed vocabulary words and OCR tokens are calculated with a linear layer and Pointer Network (Vinyals, Fortunato, and Jaitly 2015) respectively. Pointer Network helps to copy the input OCR token to output. Linear layer and Pointer Network generate a \(V \) dimensional OCR score \(y_{i}^{\text{ocr}} \) and a \(N \) dimensional vocabulary score \(y_{i}^{\text{voc}} \). Here \(V \) is the number of words in the fixed vocabulary and \(N \) is pre-defined max number of OCR tokens in an image. This process can be shown as:

\[y_{i}^{\text{ocr}} = PN(z_{i-1}^{\text{dec}}) \]
\[y_{i}^{\text{voc}} = W z_{i-1}^{\text{dec}} + b \]

where \(PN \) denotes Pointer Network. \(W \) and \(b \) are learnable parameters.

Previous approaches consider scores of OCR tokens and vocabulary separately even if one word appears in both sources. However, this may lead to two sources competing with each other and predicting another inappropriate word. Therefore, we add scores of one word from multiple sources together to avoid competition. Adding scores of \(n \)-th vocabulary word can be described as:

\[y_{i,n}^{\text{add}} = y_{i,n}^{\text{voc}} + \sum_{i:w_{i}^{\text{ocr}}=w_{i}^{\text{voc}}} y_{i}^{\text{ocr}} \]

Then the final scores are the concatenation of added vocabulary scores and OCR scores:

\[y_{i} = [y_{i}^{\text{add}}, y_{i}^{\text{ocr}}] \]

Repetition mask. As we have mentioned in Section 1, repetition in captions brings negative effects on their fluency. In order to avoid repetition, we apply a repetition mask in Generation Module. At step \(t \) of inference, the \(N + V \) dimensional concatenated scores \(y_{i} \) is added by a mask vector \(M_{i} \in \mathbb{R}^{N+V} \), where the \(i \)-th element of \(M_{i} \) is

\[M_{i,i} = \begin{cases} \infty & \text{if word}_i \text{ appeared in previous steps} \\ 0 & \text{otherwise} \end{cases} \]

\(m \) is set to a minimum value. This helps to minimize the scores of elements that have appeared in previous steps, like the masked word “billboard” in Figure 2.

Note that \(M \) is applied only during inference. It focuses on repeating words, so when one word appears in both fixed vocabulary and OCR tokens or in multiple OCR tokens, all the sources will be masked out together. In addition, we ignore common words when applying mask, considering words like \(a, an, of, says, on \) are indispensable to the fluency of captions. Common words are defined as top-\(C \) frequency words in ground-truth captions of training set, where \(C \) is a hyper-parameter.

In Figure 3 we show an illustration of the repetition mask. Each row shows outputs (left) and predicted scores (right) at each decoding step. Since “nokia” is predicted at step 2, its score is masked out from step 3 to the end (marked as grey). Scores of “phone” are masked out from step 4. Common words “a, that and says” are not masked. This mask prevents our model from predicting “nokia” at the last step.

Therefore, the output word at step \(t \) is calculated as

\[\text{output}_t = \arg \max (y_t + M_t) \]

Our model iteratively predicts caption tokens through greedy search, starting with the begin token “\(\langle \text{\textless} \rangle \)”. Decoding ends when \(\langle \text{\textgreater} \rangle \) is predicted.

![Figure 3: Illustration of the repetition mask. We show scores of words and predicted word at each step. Grey indicates masked word. Common words like “a, that, says” are ignored for their essentiality.](image-url)
Table 1: Evaluation on TextCaps validation set. We provide a comparison with prior works. Benefiting from better OCR systems, recognition confidence embedding and the repetition mask, our model outperforms state-of-the-art approach by a significant amount.

#	Method	BLEU-4	METEOR	ROUGE_L	SPICE	CIDEr
1	BUTD (Anderson et al. 2018)	20.1	17.8	42.9	11.7	41.9
2	AoANet (Huang et al. 2019)	20.4	18.9	42.9	13.2	42.7
3	M4C-Captioner (Sidorov et al. 2020)	23.3	22.0	46.2	15.6	89.6
4	CNMT (ours)	24.8	23.0	47.1	16.3	101.7

Table 2: Evaluation on TextCaps test set. Our model achieves state-of-the-art performance on all of the TextCaps metrics, narrowing the gap between models and human performance.

#	Method	BLEU-4	METEOR	ROUGE_L	SPICE	CIDEr
1	BUTD (Anderson et al. 2018)	14.9	15.2	39.9	8.8	33.8
2	AoANet (Huang et al. 2019)	15.9	16.6	40.4	10.5	34.6
3	M4C-Captioner (Sidorov et al. 2020)	18.9	19.8	43.2	12.8	81.0
4	CNMT (ours)	20.0	20.8	44.4	13.4	93.0
5	Human (Sidorov et al. 2020)	24.4	26.1	47.0	18.8	125.5

4 Experiments

We train our model on TextCaps dataset, and evaluate its performance on validation set and test set. Our model outperforms previous work by a significant margin. We also provide ablation study results and qualitative analysis.

4.1 Implementation Details

For text detection, we use pretrained CRAFT (Baek et al. 2019b) model and ABCNet (Liu et al. 2020) model with 0.7 confidence threshold. Affine transformation is applied to adjust irregular quadrilateral text regions to rectangular bounding box. We use pretrained four-stage STR framework (Baek et al. 2019a) for text recognition. For OCR tokens that only appear in Rosetta results, we set default confidence $c_{\text{default}} = 0.90$. We set the max OCR number $N = 50$, and apply zero padding to align to the maximum number. The dimension of the common semantic space is $d = 768$. Generation Module uses 4 layers of transformers with 12 attention heads. The other hyper-parameters are the same with BERT-BASE (Devlin et al. 2018). The maximum number of decoding steps is set to 30. Words that appear ≥ 10 times in training set ground-truth captions are collected as the fixed vocabulary, together with $\langle \text{pad} \rangle$, $\langle \text{s} \rangle$ and $\langle \text{\textless s} \rangle$ tokens. The total vocabulary size $V = 6736$. Common word ignoring threshold C of the repetition mask is set to 20.

The model is trained on the TextCaps dataset for 12000 iterations. The initial learning rate is $1e^{-4}$. We multiply learning rate by 0.1 at 5000 and 7000 iterations separately. At every 500 iterations we compute the BLEU-4 metric on validation set, and select the best model based on all of them. The entire training takes approximately 12 hours on 4 RTX 2080 Ti GPUs. All of our experimental results are generated by TextCaps online platform submissions.

4.2 Comparison with SoTA

We measure our model’s performance on TextCaps dataset using BLEU (Papineni et al. 2002), METEOR (Banerjee and Lavie 2005), ROUGE_L (Lin 2004), SPICE (Anderson et al. 2016) and CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015), and mainly focus on CIDEr when comparing different methods, following the original TextCaps paper (Sidorov et al. 2020).

We evaluate our model on TextCaps validation set and test set, and compare our results with TextCaps baseline models BUTD (Anderson et al. 2018), AoANet (Huang et al. 2019) and state-of-the-art model M4C-captioner(Sidorov et al. 2020), as shown in Table 1 and Table 2. Our proposed model outperforms state-of-the-art models on all five metrics by a large margin, improving by around 12 CIDEr scores on both validation set and test set. While the original gap between human performance and M4C-Captioner is 44.5 in CIDEr, our model narrows this gap by 27% relative.

4.3 Ablation Study

We conduct ablation study on OCR systems, confidence embedding and the repetition mask on validation set, and prove their effectiveness.

Ablation on OCR systems.

We first examine our new OCR systems through ablation study. We extract new OCR tokens with CRAFT and ABCNet model with 0.7 confidence threshold. Affine transformation is applied to adjust irregular quadrilateral text regions to rectangular bounding box. We use pretrained four-stage STR framework for text recognition. For OCR tokens that only appear in Rosetta results, we set default confidence $c_{\text{default}} = 0.90$. We set the max OCR number $N = 50$, and apply zero padding to align to the maximum number. The dimension of the common semantic space is $d = 768$. Generation Module uses 4 layers of transformers with 12 attention heads. The other hyper-parameters are the same with BERT-BASE. The maximum number of decoding steps is set to 30. Words that appear ≥ 10 times in training set ground-truth captions are collected as the fixed vocabulary, together with $\langle \text{pad} \rangle$, $\langle \text{s} \rangle$ and $\langle \text{\textless s} \rangle$ tokens. The total vocabulary size $V = 6736$. Common word ignoring threshold C of the repetition mask is set to 20.

The model is trained on the TextCaps dataset for 12000 iterations. The initial learning rate is $1e^{-4}$. We multiply learning rate by 0.1 at 5000 and 7000 iterations separately. At every 500 iterations we compute the BLEU-4 metric on validation set, and select the best model based on all of them. The entire training takes approximately 12 hours on 4 RTX 2080 Ti GPUs. All of our experimental results are generated by TextCaps online platform submissions.
To prove the essentiality of ignoring common words when applying the repetition mask, we evaluate our model with an indiscriminate repetition mask, i.e., all words include words like a, an, says are masked out once they appear in previous steps. The result is shown in line 2 of Table 6, where we find a large decrease in CIDEr, demonstrating the importance of ignoring common words. In fact, we find indiscriminate mask often generating unnatural captions, such as a poster for movie called kaboom with man holding gun where articles a are masked out, or a coin from 1944 next to other monedas where money is replaced with rarely used synonym monedas. Such examples indicate that it is necessary to allow repetition of common words.

We conduct further experiments on hyper-parameter C, which is shown in Table 6. When C is set to a relatively small value, the repetition mask is applied on more commonly appeared words, and becomes indiscriminate when $C = 0$. On the contrary, when C is set to a large value, the scope of the repetition mask is limited, which brings negative effects. We observe that the best performance is achieved when C is set to 20.

4.4 Qualitative Analysis

In Figure 4, we provide example images of validation set and predictions from our model and M4C-Captioner. In Figure 4(e), with the help of confidence embedding, our model chooses the most recognizable OCR token instead of the original rich OCR token embedding.
of out-of-region word *CKET* which is predicted by M4C-Captioner. Figure 4(b,f) shows our model’s robust reading ability towards curved text and unusual font text. From Figure 4(a,c,g) we can see that our model significantly avoids repetition of words from both vocabulary and OCR tokens, and generates more fluent captions. While our model can detect multiple OCR tokens in the image, it is not robust enough to combine these tokens correctly, as shown in Figure 4(d) where our model puts the token *field* in a wrong position. In Figure 4(h), our model fails to infer *deadline* from text *before Oct. 1*. As it requires more than simply reading, reasoning based on text remains a tough issue of predicting captions on the TextCaps dataset.

5 Conclusion

In this paper we introduce CNMT, a novel model for TextCaps task. It consists of three modules: Reading module which extracts text and recognition confidence, Reasoning Module which fuses object features with OCR token features, and Generation Module which predicts captions based on output of Reading module. With recognition confidence embedding of OCR tokens and better OCR system, our model has stronger reading ability compared with previous work. We also employ a repetition mask to avoid redundancy in predicted captions. Experiments suggest that our model significantly outperforms current state-of-the-art model of TextCaps dataset by a large margin. We also present a qualitative analysis of our model. Further research on avoiding repetition may include making the model learn by itself with reinforcement learning approach. As for semantic significance of OCR tokens, other features besides recognition confidence can be explored. We leave these as future work.
Acknowledgement
This work was partially supported by the National Natural Science Foundation of China (Grant 61876177), Beijing Natural Science Foundation (Grant 4202034), Fundamental Research Funds for the Central Universities and Zhejiang Lab (No. 2019KD0AB04).

References
Almazán, J.; Gordo, A.; Fornés, A.; and Valveny, E. 2014. Word spotting and recognition with embedded attributes. *IEEE transactions on pattern analysis and machine intelligence* 36(12): 2552–2566.

Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S. 2016. Spice: Semantic propositional image caption evaluation. In *European Conference on Computer Vision*, 382–398. Springer.

Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; and Zhang, L. 2018. Bottom-up and top-down attention for image captioning and visual question answering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 6077–6086.

Baek, J.; Kim, G.; Lee, J.; Park, S.; Han, D.; Yun, S.; Oh, S. J.; and Lee, H. 2019a. What is wrong with scene text recognition model comparisons? dataset and model analysis. In *Proceedings of the IEEE International Conference on Computer Vision*, 4715–4723.

Baek, Y.; Lee, B.; Han, D.; Yun, S.; and Lee, H. 2019b. Character region awareness for text detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 9365–9374.

Banerjee, S.; and Lavie, A. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization*, 65–72.

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. Enriching word vectors with subword information. *Transactions of the Association for Computational Linguistics* 5: 135–146.

Borisuyk, F.; Gordo, A.; and Sivakumar, V. 2018. Rosetta: Large scale system for text detection and recognition in images. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, 71–79.

Chen, X.; Fang, H.; Lin, T.-Y.; Vedantam, R.; Gupta, S.; Dollár, P.; and Zitnick, C. L. 2015. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint arXiv:1504.00325*.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Gao, C.; Chen, Y.; Liu, S.; Tan, Z.; and Yan, S. 2020. Adversarialalnas: Adversarial neural architecture search for gans. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 5680–5689.

Hu, R.; Singh, A.; Darrell, T.; and Rohrbach, M. 2020. Iterative answer prediction with pointer-augmented multimodal transformers for textvqa. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 9992–10002.

Huang, L.; Wang, W.; Chen, J.; and Wei, X.-Y. 2019. Attention on attention for image captioning. In *Proceedings of the IEEE International Conference on Computer Vision*, 4634–4643.

Liao, M.; Shi, B.; and Bai, X. 2018. Textboxes++: A single-shot oriented scene text detector. *IEEE transactions on image processing* 27(8): 3676–3690.

Liao, Y.; Liu, S.; Li, G.; Wang, F.; Chen, Y.; Qian, C.; and Li, B. 2020. A Real-Time Cross-Modality Correlation Filtering Method for Referring Expression Comprehension. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, 74–81.

Liu, Y.; Chen, H.; Shen, C.; He, T.; Jin, L.; and Wang, L. 2020. ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 9809–9818.

Long, S.; Ruan, J.; Zhang, W.; He, X.; Wu, W.; and Yao, C. 2018. Textsnake: A flexible representation for detecting text of arbitrary shapes. In *Proceedings of the European conference on computer vision (ECCV)*, 20–36.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. BLEU: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, 311–318.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Advances in neural information processing systems*, 91–99.

Shi, B.; Bai, X.; and Yao, C. 2016. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. *IEEE transactions on pattern analysis and machine intelligence* 39(11): 2298–2304.

Shi, B.; Wang, X.; Lyu, P.; Yao, C.; and Bai, X. 2016. Robust scene text recognition with automatic rectification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 4168–4176.

Sidorov, O.; Hu, R.; Rohrbach, M.; and Singh, A. 2020. TextCaps: a Dataset for Image CaptioningWith Reading Comprehension.

Singh, A.; Natarjan, V.; Shah, M.; Jiang, Y.; Chen, X.; Parikh, D.; and Rohrbach, M. 2019. Towards VQA Models That Can Read. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 8317–8326.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information processing systems, 5998–6008.

Vedantam, R.; Lawrence Zitnick, C.; and Parikh, D. 2015. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4566–4575.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer networks. In Advances in neural information processing systems, 2692–2700.

Young, P.; Lai, A.; Hodosh, M.; and Hockenmaier, J. 2014. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics 2: 67–78.

Zheng, Z.; Wang, W.; Qi, S.; and Zhu, S.-C. 2019. Reasoning visual dialogs with structural and partial observations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6669–6678.