Limited Feedback based Adaptive Power Allocation and Subcarrier Pairing for OFDM DF Relay Networks with Diversity

Yong Liu, and Wen Chen, Senior Member, IEEE

Abstract—A limited feedback based dynamic resource allocation algorithm is proposed for a relay cooperative network with Orthogonal Frequency Division Multiplexing (OFDM) modulation. A communication model where one source node communicates with one destination node assisted by one half-duplex Decode-and-Forward (DF) relay is considered in this paper. We first consider the selective DF scheme, in which some relay subcarriers will keep idle if they are not advantageous to forward the received symbols. Furthermore, we consider the enhanced DF scheme where the idle subcarriers are used to transmit new messages at the source. We aim to maximize the system instantaneous rate by jointly optimizing power allocation and subcarrier pairing on each subcarrier based on the Lloyd algorithm. Both sum and individual power constraints are considered. The joint optimization turns out to be a mixed integer programming problem. We then transform it into a convex optimization by continuous relaxation, and achieve the solution in the dual domain. The performance of the proposed joint resource allocation algorithm is verified by simulations. We find that feedback bits can achieve most of the performance gain of the perfect CSI based resource allocation algorithm at different levels of SNR.

Index Terms—Limited Feedback, Power Allocation, Subcarrier Pairing, OFDM, Decode-and-Forward, Lloyd Algorithm.

I. INTRODUCTION

Considering the limited budget of transmit power and hardware complexity, cooperative relaying has recently attracted a lot of research interests, which is employed to exploit spatial diversity, combat wireless channel fading and extend coverage without antenna arrays [1]-[2]. For example, IEEE 802.16 currently integrates relays for multihop communications [3]. Two main relay strategies have been adopted in such scenarios: Amplify-and-Forward (AF) and Decode-and-Forward (DF). The AF relay amplifies and retransmits the received signal without decoding, while the latter re-encodes the received signal before retransmission.

Orthogonal Frequency Division Multiplexing (OFDM) is a technique to mitigate the frequency selectivity and inter-symbol interference with its inherent robustness against frequency-selective fading [4]. Because of its potential for high spectral efficiency, OFDM-based relaying offers a more promising perspective in improving system performance.

Power allocation is always critical in wireless networks due to the limited budget of transmit power. It has been widely discussed in the context of both single-carrier and multi-carrier relaying channels [5]-[12]. We have proposed limited feedback based power allocation algorithms for a single-carrier relaying channel and a multi-carrier based relaying model in [5] and [6] respectively. In [7], Ahmed et al. propose a power control algorithm for AF relaying with limited feedback. Then they study the rate and power control to improve the throughput gain of DF in [8]. On the other hand, power allocation for OFDM-based relaying is also extensively studied. Authors in [9] investigate the power allocation for an OFDM based AF relaying by separately optimizing the source and relay powers. In [10], the same authors propose a power allocation scheme for MIMO-OFDM relay system in the same way. In [11], Ying et al. work on the similar problem but for DF relaying OFDM systems. Ma et al. introduce power loading algorithms to minimize the transmit power for OFDM based AF and selective DF modes with respect to various power-constraint conditions in [12].

Due to the independent fading on each subcarrier in each hop, subcarrier pairing is employed in OFDM power allocation to further improve system performance [13]-[17]. Most works in literature focus only on relay models without diversity. A sorted subcarrier pairing scheme is proposed in [13]. The authors determine the pairing sequence by ordering the the source-relay (SR) subcarriers and the relay-destination (RD) subcarriers, respectively, according to the channel gains. Authors in [14] prove that the sorted pairing method is optimal for both DF and AF relaying without the source-destination (SD) link. Authors in [15] jointly optimize channel pairing, channel-user assignment, and power allocation in a multiple-access system by a polynomial-time algorithm based on continuous relaxation and dual minimization. Wang et al. in [16] propose a joint subcarrier pairing and power allocation algorithm for an OFDM two-hop relay system with separate power constraints, and find the solution by separately considering the subcarrier pairing and the power allocation. Authors in [17] investigate optimal subcarrier assignment and power allocation schemes for multi-user multi-relay model, and obtain the optimal sub-
carrier and power allocation policy in a quasi-closed form.

Resource allocation utilizing channel state information (CSI) can yield significant performance improvement \cite{5,6,18,19}. Tremendous innovation that realize instantaneous channel adaptation is to use feedback whose history may trace back to Shannon \cite{20}. It is proved that with perfect CSI at source, the error and capacity performance are significantly better than that without CSI \cite{19,21}. Some research have been carried out to achieve the performance gain based on limited feedback, since perfect CSI at source is always impractical. One can either send back a quantized CSI or quantized power allocation vectors \cite{7}, or the index of the best vector in a power allocation codebook shared by all nodes \cite{22,23}. These works are mostly studied in point-to-point MIMO and OFDM systems. Only a few works exist on OFDM relay networks. Authors in \cite{24} investigate the power allocation issue for a single OFDM AF relay network with limited feedback. They construct the codebook based on the Lloyd algorithm. Similarly, Zhang \textit{et al.} introduce the same idea into DF model in \cite{25}.

In view of the lack of joint optimization of power allocation and subcarrier pairing for OFDM relay systems with diversity based on limited feedback, we aim to solve this problem in this paper. This work is developed based on our previous works \cite{5} and \cite{6}. We present a limited feedback based joint power allocation and subcarrier pairing for a selective OFDM DF relay network under different levels of quantized CSI feedback. In our feedback scheme, we construct a codebook based on an iterative Lloyd algorithm with a modified distortion measure. The joint optimization problem is formulated as a mixed integer programming problem which is hard to solve. We transform it into a convex problem by continuous relaxation \cite{26,27}, and solve it in the dual domain instead. In our simulation, we observe that the duality gap virtually turns out to be zero when the number of subcarriers is reasonably large, which is consistent with that observed in \cite{27} and \cite{29}.

We then relax the constraint that only the relay can transmit in the relaying phase. When the relay does not transmit on some subcarriers, we employ the enhanced DF which allows the source to transmit new messages on these idle subcarriers. Then we extend the joint optimization problem for selective DF to that for enhanced DF under both sum power constraint and individual power constraints. It is shown that the extra direct-link transmission leads to a remarkable rate enhancement in the simulation. Besides, some existing schemes such as the conventional uniform power allocation without subcarrier pairing (UPA w/o SP), the optimal power allocation without subcarrier pairing (OPA w/o SP), and the uniform power allocation with subcarrier pairing (UPA with SP) are compared with the proposed algorithm. Simulation results demonstrate that the proposed algorithm outperforms the existing ones. We also find that a negligible performance loss can be achieved with just a few feedback bits at different levels of SNR.

The remainder of the paper is organized as follows. The system model is introduced in Section II. In Section III, we solve the joint optimization problem for selective DF relay networks, and propose a limited feedback based resource allocation algorithm. In Section IV, we solve the optimization problem for enhanced DF relay networks, and then consider the joint optimization under individual power constraints. Simulations are performed in Section V to verify the performance of the proposed algorithm. Finally the conclusions are drawn in Section VI.

\section{System Model}

The scenario of three nodes DF diversity model is considered, where one source communicates with one destination assisted by one half-duplex relay as shown in Fig. 1. The channel on each hop is divided into N subcarriers. Communication takes place in two phases. The source broadcasts its signal in the listening phase, while the relay and the destination listen. The relay decodes and forwards in the relaying phase. It is assumed that each subcarrier in the listening phase is paired with one subcarrier in the relaying phase. So the number of subcarrier pairs is N. We utilize $SP(m,n)$ to denote the subcarrier m in the listening phase pairing with the subcarrier n in the relaying phase. For subcarrier pair $SP(m,n)$, it might not be the actual pair participating in communication. If $SP(m,n)$ actually participates in communication, it is said to be “selected”. We denote $h_{s,n}^d$, $h_{s,n}^r$ and $h_{s,n}^d$ as channel coefficients of the nth subcarrier of source-destination and source-relay, and the nth subcarrier of relay-destination respectively. For a potential $SP(m,n)$, the source transmits symbol s_m over subcarrier m with power $P_{m,n}^s$ in the listening phase, the received signals at the relay and destination are respectively given by

$$
y_{rm} = \sqrt{P_{m,n}^s} h_{SR} h_{SD} s_m + z_{rm}, \tag{1}
y_{dn}^{(1)} = \sqrt{P_{m,n}^s} h_{SD} s_m + z_{dn}^{(1)},$$

where $z_{dn}^{(1)} \sim \mathcal{CN}(0,\sigma_d^2)$ and $z_{rm} \sim \mathcal{CN}(0,\sigma_r^2)$ are the additive noises at the relay and the destination, respectively. In the relaying phase, the relay transmits the re-encoded signal \hat{s}_m with power $P_{m,n}^r$ on nth subcarrier, the received signal at the destination is

$$y_{dn}^{(2)} = \sqrt{P_{m,n}^r} h_{RD} \hat{s}_m + z_{dn}^{(2)}, \tag{2}$$

where $z_{dn}^{(2)} \sim \mathcal{CN}(\mu,\sigma_d^2)$ is the additive noise at the destination in the relaying phase.

Let $\lambda_{SR}^m = \frac{|h_{SR}^m|^2}{\sigma_r^2}$, $\lambda_{RD}^n = \frac{|h_{RD}^n|^2}{\sigma_d^2}$, and $\lambda_{SD}^n = \frac{|h_{SD}^n|^2}{\sigma_d^2}$ denote the normalized channel gains respectively. Depending on whether the relay is helpful, each subcarrier pair $SP(m,n)$
may work in either the relaying mode or the idle mode in a selective DF relay [30]. For an SP \((m, n)\), the relay forwards the message \(s_m\) on subcarrier \(n\) in the relaying phase when it works in the relaying mode; while in the idle mode, the relay does not forward \((P_{R,m,n} = 0)\), and the \(s_m\) is transmitted to destination by the SD link in the listening phase only. Then the end-to-end rate achieved by SP \((m, n)\) during the two phases is given by

\[
R_{m,n} = \begin{cases}
\frac{1}{2} \log_2 (1 + P_{S,m,n} \lambda_{SR}^m), & \text{idle mode,} \\
\min \{ \log_2 (1 + P_{S,m,n} \lambda_{SD}^m + P_{R,m,n} \lambda_{RD}^m), \\
\log_2 (1 + P_{S,m,n} \lambda_{SR}^m) \}, & \text{relaying mode.}
\end{cases}
\]

Authors in [11] and [30] present a criterion to decide the working mode of SP \((m, n)\), that is, using relay is advantageous when

\[
\min \{ \lambda_{SR}^m, \lambda_{RD}^m \} > \lambda_{SD}^m, \quad (4)
\]

in selective DF mode. Otherwise the relay keeps idle on the subcarrier \(n\) in the relaying phase for \(s_m\).

III. LIMITED FEEDBACK BASED OPTIMAL RESOURCE ALLOCATION

In this section, we analyze the joint optimization of power allocation and subcarrier pairing for selective DF based on the limited feedback. The optimization problem is formulated first, and then solved in the dual domain.

A. Optimization Problem Formulation

Let \(P_{m,n} = P_{S,m,n} + P_{R,m,n}\) for the SP \((m, n)\). We first consider the rate \(R_{m,n}\) in the relaying mode. Then the sum rate is maximized when

\[
\log_2 (1 + P_{S,m,n} \lambda_{SR}^m) = \log_2 (1 + P_{S,m,n} \lambda_{SD}^m + P_{R,m,n} \lambda_{RD}^m),
\]

that is,

\[
(1 + P_{S,m,n} \lambda_{SR}^m) = (1 + P_{S,m,n} \lambda_{SD}^m + P_{R,m,n} \lambda_{RD}^m).
\]

Together with \(P_{m,n} = P_{S,m,n} + P_{R,m,n}\), we obtain

\[
\begin{align*}
P_{S,m,n} &= \frac{\lambda_{RD}^m}{\lambda_{SR}^m + \lambda_{RD}^m - \lambda_{SD}^m} P_{m,n}, \\
P_{R,m,n} &= \frac{\lambda_{SD}^m}{\lambda_{SR}^m + \lambda_{RD}^m - \lambda_{SD}^m} P_{m,n}. \quad (7)
\end{align*}
\]

When the system works in the idle mode, we can easily get

\[
\begin{align*}
P_{S,m,n} &= P_{m,n}, \\
P_{R,m,n} &= 0. \quad (8)
\end{align*}
\]

Denote \(\lambda_{m,n}\) as the equivalent channel gain given by

\[
\lambda_{m,n} = \begin{cases}
\frac{\lambda_{SR}^m}{\lambda_{SR}^m + \lambda_{RD}^m - \lambda_{SD}^m}, & \text{relaying mode,} \\
\frac{\lambda_{SD}^m}{\lambda_{SR}^m + \lambda_{RD}^m - \lambda_{SD}^m}, & \text{idle mode.}
\end{cases}
\]

By now, we can unify the rate as

\[
R_{m,n} = \log_2 (1 + P_{m,n} \lambda_{m,n}). \quad (9)
\]

We define a subcarrier pairing parameter \(t_{m,n} \in \{0, 1\}\), which takes 1 if SP \((m, n)\) is selected, and 0 otherwise. Then the sum rate optimization problem can be formulated as

\[
\max_{\{P, t\}} \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} R_{m,n}, \\
\text{s.t.} \quad C1 : \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} P_{m,n} \leq P_t, \quad C2 : P_{m,n} \geq 0, \forall m, n, \\
C3 : \sum_{t_{m,n} = 1} \sum_{n=1}^{N} t_{m,n} = 1, \forall n, \quad C4 : \sum_{t_{m,n} = 1} \sum_{m=1}^{N} t_{m,n} = 1, \forall m, \quad (10)
\]

where \(P_t\) is the transmit power budget, \(t\) and \(P\) are two \(N \times N\) matrices with the \((m, n)\)-th entry \(t_{m,n}\) and \(P_{m,n}\) respectively. C3 and C4 correspond to the pairing constraint that each subcarrier \(m\) in listening phase only pairs with one subcarrier \(n\) in relaying phase.

Since it is a mixed integer programming problem that is difficult to solve, we relax the integer constraint of \(t_{m,n} \in \{0, 1\}\) as \(t_{m,n} \in [0, 1]\), \(\forall m, n\) as in [26], [34]. Denote \(S_{m,n} = t_{m,n} P_{m,n}\) as the actual power consumed on SP \((m, n)\). Then the optimization problem becomes

\[
\max_{\{S, t\}} \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \frac{1}{2} \log_2 \left(1 + S_{m,n} \frac{\lambda_{m,n}}{t_{m,n}} \right), \\
\text{s.t.} \quad C5 : \sum_{t_{m,n} \geq 1} \sum_{m=1}^{N} \sum_{n=1}^{N} \frac{1}{2} \log_2 \left(1 + S_{m,n} \frac{\lambda_{m,n}}{t_{m,n}} \right) \\
C6 : \sum_{m=1}^{N} \sum_{n=1}^{N} S_{m,n} \leq P_t, \quad C7 : S_{m,n} \geq 0, \forall m, n, \text{ and } C3 - C4, \quad (11)
\]

where \(S = (S_{m,n})_{N \times N}\) is an \(N \times N\) matrix. Obviously the above objective function is concave with respect to \((S, t)\). In the following, we will employ dual method [27], [28] to solve this optimization problem.

In [27], the authors have shown that under a so-called time-sharing condition, the duality gap of the optimization problem is always zero, regardless of the convexity of the objective function. Further, the authors show that the time-sharing condition is always satisfied for practical multiuser spectrum optimization problems in multi-carrier systems when the number of frequency carriers goes to infinity. This suggests that we can solve the problem by the dual method [28], which will provide an upper bound for the original problem. More importantly, the method can guarantee \(t_{m,n}\) being integer-valued.

B. Solution by the Dual Method

Dualizing the constraints C4 and C6, we obtain the generated Lagrange function as

\[
L(S, t, \alpha, \beta) = \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \log_2 \left(1 + S_{m,n} \frac{\lambda_{m,n}}{t_{m,n}} \right) + \alpha \left(P_t - \sum_{m=1}^{N} \sum_{n=1}^{N} S_{m,n} \right) + \sum_{m=1}^{N} \beta_{m} \left(1 - \sum_{n=1}^{N} t_{m,n} \right), \quad (12)
\]
where $\alpha \geq 0$ and $\beta = (\beta_1, \beta_2, \ldots, \beta_N) \geq 0$ are dual variables. Then the dual objective function and the dual problem are respectively

$$g(\alpha, \beta) = \max_{(s,t)} L(s,t,\alpha,\beta), \quad s.t. \ C3, \ C5, \ C6,$$

and

$$\min g(\alpha, \beta) \quad s.t. \ \alpha \geq 0, \beta \geq 0.$$

Since a dual function is always optimized by first optimizing some variables and then optimizing the remaining ones [28], we first optimize $S^{m,n}$ with the assumption that α and β_m are given. Taking partial differentiation of L with respect to $S^{m,n}$, we have

$$\nabla L = \frac{m,n}{2} - \alpha = 0,$$

that is

$$\frac{1}{2} \sum_{m,n} \lambda_{m,n} \frac{m,n}{t_{m,n}} - \alpha = 0.$$

Together with constraint $S^{m,n} \geq 0$, we obtain the optimal solution

$$S^{m,n}_* = t_{m,n} \left[\frac{1}{2\alpha} - \frac{1}{t_{m,n}} \right]^{+},$$

where $[x]^+ = \max\{0, x\}$. We find that $S^{m,n}_*$ is associated with the subcarrier pairing parameter $t_{m,n}$. To find the optimal solution for $t_{m,n}$, we first substitute (13) into (13) to obtain the updated Lagrange function

$$L(p, t, \alpha, \beta) = \sum_{m=1}^{N} \sum_{n=1}^{N} \frac{t_{m,n}}{2} \log_2 \left(1 + \lambda_{m,n} \left[\frac{1}{2\alpha} - \frac{1}{t_{m,n}} \right]^+ \right) + \alpha \left(P_t - \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \left[\frac{1}{2\alpha} - \frac{1}{t_{m,n}} \right]^+ \right) + \sum_{m=1}^{N} \beta_m \left(1 - \sum_{n=1}^{N} t_{m,n} \right) = \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} T_{m,n} + \left(\alpha P_t + \sum_{m=1}^{N} \beta_m \right) \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} T_{m,n} + \left(\alpha P_t + \sum_{m=1}^{N} \beta_m \right),$$

where

$$T_{m,n} = \frac{1}{2} \log_2 \left(1 + \lambda_{m,n} \left[\frac{1}{2\alpha} - \frac{1}{t_{m,n}} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{t_{m,n}} \right]^+ \beta_m.$$

Since both $S^{m,n}_*$ and $t_{m,n}^*$ include the dual variables α and β_m, we have to find values α and β_m that minimize $g(\alpha, \beta_m)$. Given $S^{m,n}_*(t)$ and $t_{m,n}^*$ in the i-th iteration, the optimal values of dual variables can be iteratively achieved by the sub-gradient method [35],

$$\begin{cases}
\alpha^{(i+1)} = \alpha^{(i)} - a^{(i)} \left(P_t - \sum_{m=1}^{N} \sum_{n=1}^{N} S^{m,n}_*(t^{(i)}), \\
\beta^{(i+1)} = \beta^{(i)} - b^{(i)} \left(1 - \sum_{m=1}^{N} t_{m,n}^*(t^{(i)}), \right),
\end{cases}$$

in which i is the iteration number, $a^{(i)}$ and $b^{(i)}$ are step sizes designed properly. Within each iteration, the subcarrier pairing parameter and power allocation vectors can be respectively updated by (18) and (21) with the updated α and β_m. Then the algorithm to find the optimal resource allocation vectors can be designed as in Algorithm 1.

Algorithm 1

The Optimal Resource Allocation Algorithm

Step 1: Set $i = 1$, and initialize $\alpha^{(i)}$, $\beta^{(i)}$, ε and maxiter.

Step 2: If $(i < \text{maxiter})$, $\alpha^{(i)} = b^{(i)} = 0.01/\sqrt{t}$, exit and output α^* and β^*.

Step 3: Compute $t_m^{(i)}$ by Eq. (21) using $\alpha = \alpha^{(i)}$ and $\beta_m = \beta^{(i)}$.

Step 4: Compute $S^{m,n}_{(i)}$ by Eq. (13) using $\alpha = \alpha^{(i)}$ and $t_{m,n} = t_{m,n}^{(i)}$.

Step 5: Compute $\alpha^{(i+1)}$, $\beta^{(i+1)}$ by Eq. (22) using $\alpha = \alpha^{(i)}$, $\beta_m = \beta^{(i)}$, $S^{m,n}_{(i)}$ and $t_{m,n} = t_{m,n}^{(i)}$.

Step 6: If $|\alpha^{(i+1)} - \alpha^{(i)}| < \varepsilon$ and $|\beta^{(i+1)} - \beta^{(i)}| < \varepsilon$, exit and output $\alpha^* = \alpha^{(i+1)}$, $\beta^* = \beta^{(i+1)}$, $S^{m,n}_* = S^{m,n}_{(i)}$, and $t_{m,n}^* = t_{m,n}^{(i)}$; otherwise set $i = i + 1$ and go to Step 2.

Denote the optimal values of the original problem (11), the relaxed problem (12), and the relaxed dual problem (14) as R_o, R_e, and R_d respectively. It is obviously $R_d \geq R_e \geq R_o$.

Because the optimal $t_{m,n}^*$ achieved by solving (14) and (15) satisfy C3, C4 and $t_{m,n} \in \{0, 1\}$, R_d is also the dual optimum value for problem (11). In our simulation, we find that the duality gap is asymptotically zero when the number of subcarriers is reasonably large. Based on the analysis and simulations of [27, 29] as well as our paper, it can be concluded that $R_d \approx R_e \approx R_o$ for most of the practical cases.

If the subcarrier number is N, the total number of all possible pairing configuration is N^4. The complexity of computing the achieved rate (11) is $O(N \cdot N^4)$ for a given subcarrier pairing scheme. Thus, the complexity of exhaustive search is $O(N \cdot N^4)$, which is prohibitively high. However, within each iteration of Algorithm 1, the complexity of the proposed algorithm is dominated by the computation of (19), which is $O(N^2)$ in terms of logarithmic and multiplication operations.

The complexity of computing the optimal power allocation and the sum rate is $O(N)$. Therefore, the total complexity for Algorithm 1 is $O(kN^2)$, where k is the number of iterations. It is obvious that the complexity is tractable.

The authors in [27, 29] showed that the duality gap of the optimization problem is always zero when time-sharing condition is satisfied, regardless of the convexity of the objective function. They also showed that the time-sharing condition
will be satisfied if the optimal value of the optimization problem is a concave function of the constraints. In our case, the optimal subcarrier pairing may vary as the power constraint changes. So the maximum sum rate as a function of the sum power constraint may have discrete changes in the slope at the transition points where the optimal subcarrier pairing scheme changes. The sudden jump in the slope might make the optimization non-concave with the sum power. But notice that the optimization of finding the regions and optimal resource allocation scheme is equivalent to designing a vector quantizer with a modified distortion measure [29]. Taking the optimal rate performance as the design criterion, we use the error distance function to measure the average distortion. Using the centroid condition and the nearest neighbor rule iteratively, the error distance will decreases.

Suppose that the destination has perfect CSI $\mathbf{h} = (h_{SD}, h_{SR}, h_{RD})$, where $\mathbf{h}_{SD} = (h_{SD,1}, ..., h_{SD,N})$, $\mathbf{h}_{SR} = (h_{SR,1}, ..., h_{SR,N})$, $\mathbf{h}_{RD} = (h_{RD,1}, ..., h_{RD,N})$ respectively denote the CSIs of SD, SR, and RD at a particular period. Given b bits of feedback, the space defined by all possible sets of \mathbf{h} is quantized into $B = 2^b$ regions. In the sequel, we set codeword as $c = \{(P_{m,n}^m, P_{n,n}^m, t_{m,n}) | m, n = 1, ..., N\}$, and denote $R(c|h)$ as the end-to-end sum rate of a given channel condition \mathbf{h} and codeword c. Then

$$R(c|h) = \frac{1}{2} \sum_{m,n=1}^{N} t_{m,n} \log_2 (1 + P_{m,n}^m \lambda_{m,n}). \quad (23)$$

We first randomly generate the training channel condition set $\mathbf{H} = \{\mathbf{h}_l, l = 1, ..., M\}$ with $M \gg B$. Then we can easily obtain the training code set $\mathbf{T} = \{c(h)|\mathbf{h} \in \mathbf{H}\}$, in which the $c(h)$ denotes the optimal code achieved by Algorithm 1 for a given $\mathbf{h} \in \mathbf{H}$. The objective of Lloyd algorithm based codebook design is to randomly choose a codebook $\mathcal{C} = \{c_1, c_2, ..., c_B\}$ of size B from the training code set \mathbf{T} and refine it. The error distance function is defined as

$$D(\mathcal{C}) = E_{\mathbf{h} \in \mathbf{H}} \left\{ R(c(h)|\mathbf{h}) - \max_{0 \leq k \leq B} R(c_k|h) \right\}, \quad (24)$$

where $E\{\cdot\}$ is the expectation of a random variable. Using this distortion function, the codebook design algorithm can be summarized as in Algorithm 2.

Algorithm 2 The Lloyd Algorithm Based Codebook Design

Step 1: Set $j = 1, \varepsilon > 0$, randomly generate the training code set and select the initial codebook $\mathcal{C}_j = \{c_1, c_2, ..., c_B\}$ from \mathbf{T}, then calculate $D(\mathcal{C}_j)$ by (24);

Step 2: Cluster the set of possible channel realization vectors \mathbf{H} into B quantization regions with the k-th region Q_k^l, $k = 1, ..., B$, denoted as

$$Q_k^l = \{\mathbf{h} | R(c_k^l|h) \geq R(c_l|h), \forall l \in \{1, 2, ..., B\}\};$$

Step 3: Using Eq. (23), generate a new codebook \mathcal{C}_{j+1} with the k-th codeword c_k^{j+1} defined as

$$c_k^{j+1} = \arg \max_{c \in \mathbf{T}} E_{\mathbf{h} \in Q_k^l} \{ R(c|h) \}, \quad k = 1, 2, ..., B;$$

Step 4: Calculate the average distortion $D(\mathcal{C}_{j+1})$ by (24);

Step 5: If $D(\mathcal{C}_{j+1}) < D(\mathcal{C}_j) + \varepsilon$ for some small ε, stop iteration and set the optimal $\mathcal{C}^* = \mathcal{C}_{j+1}$; otherwise set $j = j + 1$ and go back to Step 2.

While the offline design of codebook seems to be computationally complex and time consuming, the real-time feedback process is quite simple.
D. Feedback Scheme

Upon receiving the instantaneous CSI \(h\), the destination searches over all the codewords in the designed codebook of size \(B\), and selects the \(q\)-th codeword provided with maximum sum rate, i.e., \(q = \arg\max_q (R(\mathbf{c}_q|h))\). Afterward the destination sends back the index \(q\) to both the source and relay through a noiseless feedback link. Since the source and relay have been equipped with the same codebook copies, upon receiving \(q\), the source transmits with power \(P_{m,n}^S\) and the relay with power \(P_{R,m,n}\) indexed by \(q\).

IV. OPTIMAL RESOURCE ALLOCATION FOR ENHANCED DF MODE

Depending on whether the relay is helpful, each subcarrier pairing may work in either the relaying mode or the idle mode. For a subcarrier pair working in the idle mode, the idle subcarrier in the relaying phase is not utilized. We further allow the source to transmit extra messages on those idle subcarriers in the relaying phase, which is called enhanced DF mode in this paper.

A. Formulation of the Optimization Problem

Similarly, the achieved rate of the enhanced DF mode is given at the top of the next page. \(P_{S,1}^m, P_{S,2}^m, P_{R}^m\) and \(P_{R}^m\) respectively denote the source power in the listening phase, the source power in the relaying phase and the relay power in the relaying phase. Because the condition to activate the relay depends not only on the channel gains but also on the power allocation, we define an indicator \(\rho_{m,n} \in \{0, 1\}\) to show the status of \(\text{SP}(m, n)\) at relay, i.e., the relay is used for \(\text{SP}(m, n)\) if \(\rho_{m,n} = 1\), otherwise, it is not used. Let the equivalent channel gain \(\lambda_{m,n}^1 = \frac{\lambda_{m,n}^S}{\lambda_{m,n}^S + \lambda_{m,n}^R}\), and let \(P_{m,n}^S = P_{S,1}^m + P_{S,2}^m\). Then the optimization problem based on the sum rate of the enhanced DF mode can be formulated as

\[
\text{max}_{\{\mathbf{P}, \mathbf{t}, \rho\}} \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \left\{ \rho_{m,n} \log_2 \left(1 + P_{m,n}^m \lambda_{m,n}^1 \right) + (1 - \rho_{m,n}) \log_2 \left(1 + P_{m,n}^m \lambda_{m,n}^S \right) \right\},
\]

s.t. \(D1: \sum_{m=1}^{N} t_{m,n} = 1, \forall n, \sum_{n=1}^{N} t_{m,n} = 1, \forall m,\)

\(D2: \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \left(1 - \rho_{m,n} \right) \left(P_{S,1}^m + P_{S,2}^m \right) \leq P_t,\)

\(D3: P_{S,1}^m + P_{S,2}^m + P_{R}^m \geq 0, \forall m, n,\)

where \(\mathbf{p} = \left(P_{S,1}^m, P_{S,2}^m, P_{R}^m \right) \in \mathbb{R}^N\), \(\mathbf{t} = (t_{m,n}) \in \mathbb{R}^{N \times N}\) and \(\rho = (\rho_{m,n}) \in \mathbb{R}^{N \times N}\).

Similarly, we make a continuous relaxation to the optimization problem and obtain a standard convex problem. Moreover, we respectively denote \(S_{SR}^{m,n} = t_{m,n} \rho_{m,n} P_{SR}^m, S_{S,1}^{m,n} = t_{m,n} (1 - \rho_{m,n}) P_{S,1}^m\) and \(S_{S,2}^{m,n} = t_{m,n} (1 - \rho_{m,n}) P_{S,2}^m\) as the actual power consumption at the source and the relay in the two phases. Then the relaxed optimization problem is formulated as

\[
\text{max}_{\{\mathbf{s}, \mathbf{t}, \rho, \alpha, \beta\}} \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \left\{ \rho_{m,n} \log_2 \left(1 + S_{SR}^{m,n} \lambda_{m,n}^1 \right) + (1 - \rho_{m,n}) \log_2 \left(1 + S_{S,1}^{m,n} \lambda_{m,n}^S \right) \right\},
\]

s.t. \(D4: t_{m,n} \geq 0, \forall m, n, D5: \rho_{m,n} \geq 0, \forall m, n, D6: \sum_{m=1}^{N} \sum_{n=1}^{N} \left(S_{SR}^{m,n} + S_{S,1}^{m,n} + S_{S,2}^{m,n} \right) = P_t, D7: S_{S,1}^{m,n}, S_{S,2}^{m,n}, S_{SR}^{m,n} \geq 0, \forall m, n,\)

\(25\)

B. Dual Solution of the Relaxed Problem

Dualizing the constraints \(D1\) and \(D6\), we obtain the Lagrangian

\[
L(\mathbf{s}, \mathbf{t}, \rho, \alpha, \beta) = \sum_{m=1}^{N} \sum_{n=1}^{N} t_{m,n} \left\{ \rho_{m,n} \log_2 \left(1 + S_{SR}^{m,n} \lambda_{m,n}^1 \right) + (1 - \rho_{m,n}) \log_2 \left(1 + S_{S,1}^{m,n} \lambda_{m,n}^S \right) \right\},
\]

\(26\)

\[
\alpha \left(P_t - \sum_{m=1}^{N} \sum_{n=1}^{N} \left(S_{S,1}^{m,n} + S_{S,2}^{m,n} \right) \right) + \sum_{n=1}^{N} \beta_n \left(1 - \sum_{m=1}^{N} t_{m,n} \right),
\]

\(27\)

where \(\alpha\) and \(\beta_n\) are dual variables as before. Then the dual objective function and the dual problem can be respectively expressed as

\[
g(\alpha, \beta) = \text{max}_{\{\mathbf{s}, \mathbf{t}, \rho, \alpha, \beta\}} L(\mathbf{s}, \mathbf{t}, \rho, \alpha, \beta), \text{ s.t. } D1, D4 - D6,
\]

\(28\)

and

\[
\text{min} g(\alpha, \beta) \text{ s.t. } \alpha \geq 0, \beta \geq 0.
\]

Taking derivatives of \(L\) with respect to \(S_{SR}^{m,n}, S_{S,1}^{m,n}\) and \(S_{S,2}^{m,n}\), we obtain the optimal solutions

\[
S_{SR}^{m,n} = t_{m,n} \rho_{m,n} \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{m,n}^1} \right]^+, \]

\(29\)

\[
S_{S,1}^{m,n} = t_{m,n} (1 - \rho_{m,n}) \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{m,n}^S} \right]^+, \]

\(30\)

and

\[
S_{S,2}^{m,n} = t_{m,n} (1 - \rho_{m,n}) \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{m,n}^S} \right]^+.
\]

\(31\)
Denote $R^R_{m,n}$ as the rate contribution of SP(m,n) to the Lagrangian in the relaying mode, and $R^I_{m,n}$ in the idle mode. Then we have

$$R^R_{m,n} = \frac{1}{2} \log \left(1 + \lambda_{1,m}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_1^m} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_1^m} \right]^+,$$

$$R^I_{m,n} = \frac{1}{2} \log \left(1 + \lambda_{SD}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ + \frac{1}{2} \log \left(1 + \lambda_{SD}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+. \tag{32}$$

Easily we obtain the optimal indicator as

$$\rho^*_{m,n} = \begin{cases} 1, & \text{when } R^R_{m,n} > R^I_{m,n}, \\ 0, & \text{otherwise}. \end{cases} \tag{34}$$

Denote $\rho^*_{m,n}$ as the rate contribution of SP(m,n) to the Lagrangian in the idle mode, and $\rho^I_{m,n}$ in the idle mode. Then we have

$$\rho^R_{m,n} = \frac{1}{2} \log \left(1 + \lambda_{1,m}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_1^m} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_1^m} \right]^+,$$

$$\rho^I_{m,n} = \frac{1}{2} \log \left(1 + \lambda_{SD}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ + \frac{1}{2} \log \left(1 + \lambda_{SD}^n \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+ \right) - \alpha \left[\frac{1}{2\alpha} - \frac{1}{\lambda_{SD}^n} \right]^+. \tag{33}$$

We similarly update the Lagrange multipliers α and β by subgradient method as

$$\alpha(i+1) = \alpha(i) - \frac{1}{N} \sum_{m=1}^N \sum_{n=1}^N \left(S_{SR}^m + S_{SR}^m + S_{SR}^m \right),$$

$$\beta(i+1) = \beta(i) - \frac{1}{N} \sum_{m=1}^N \sum_{n=1}^N \left(\lambda_{SD}^n - \lambda_{SD}^n \right), \quad m = 1, \ldots, N. \tag{35}$$

With the updated α and β in each iteration, we can update the subcarrier pairing $t_{m,n}$, the power allocation vectors $(S_{SR}^m, S_{SR}^m, S_{SR}^m)$ as well as the indicator $\rho^*_{m,n}$ by Algorithm 1. Notice that the iteration procedure in Algorithm 1 should be modified in some places. For example, before computing $t_{m,n}$ in the Algorithm 1, we have to figure out $R^R_{m,n}$, $R^I_{m,n}$ and $\rho^*_{m,n}$ by [33], [35] and [36] respectively. Similarly, we can use Algorithm 2 to design codebook for limited feedback.

C. Resource Allocation Under Individual Power Constraints

In this subsection, we investigate the resource allocation under individual power constraints for the source and the relay. For the individual power constraints, the sum powers at the source and the relay have separate constraints, which can be expressed as:

$$\sum_{m=1}^N P_{S,m,n} \leq P_S, \quad \sum_{n=1}^N P_{R,n} \leq P_R, \tag{37}$$

where P_S and P_R denote the source power constraint and the relay power constraint respectively. For a given subcarrier pairing SP(m,n), the mode selection criterion [30], [31] is expressed as

Relaying mode: $\lambda_{SR}^m P_{S,m,n} \geq \lambda_{SD}^n P_{S,m,n} + \lambda_{RD}^n P_{R,n}^m. \tag{38}$

Then we can similarly obtain a Lagrangian

$$L = \sum_{m=1}^N \sum_{n=1}^N R_{m,n}^R + \mu_S \left(\sum_{m=1}^N \sum_{n=1}^N P_{S,m,n} - P_S \right) + \mu_R \left(\sum_{n=1}^N \sum_{m=1}^N P_{R,n}^m - P_R \right) + \rho_{m,n} \left(\lambda_{SR}^m P_{S,m,n} - \lambda_{SD}^n P_{S,m,n} - \lambda_{RD}^n P_{R,n}^m \right), \tag{39}$$

where S_R is SP set of relaying mode. The Lagrange coefficients $\mu_S, \mu_R \geq 0$ are chosen such that the individual power constraints are satisfied. Lagrange multiplier $\rho_{m,n} \geq 0$ corresponds to the mode selection criterion. For almost all of the subcarrier pairs belonging to relaying mode, the authors in [31] conclude that the selection criterion will be satisfied when

$$\lambda_{SR}^m P_{S,m,n} = \lambda_{SD}^n P_{S,m,n} + \lambda_{RD}^n P_{R,n}^m, \tag{40}$$

with a possible exception pair satisfying $\lambda_{SD}^n/\lambda_{RD}^n = \lambda_R/\lambda_S$. However, usually there will be at most one subcarrier pair in this set. Fortunately, we find that the exception SP(m,n) have the same contribution and cost to the Lagrangian in the model, which are respectively $\frac{1}{2} \log \left(\frac{\lambda_{SR}^m}{\lambda_{SD}^n} \right)$ and $\mu_S \left(\lambda_{SR}^m - \lambda_{SD}^n \right)$, no matter it is classified into relaying mode or idle mode. So we assign it to relaying mode thereafter.

For relaying mode, [40] implies $P_{S,m,n}^R = -\lambda_{SD}^n P_{S,m,n} P_{R,n}^m$. Then $P_{S,m,n}^R$ and $P_{R,n}^m$ will be zero or positive simultaneously. Thus in the relaying mode, we can first allocate total power of SP(m,n) and then obtain the corresponding $P_{S,m,n}^R$ and $P_{R,n}^m$. Let

$$P_{S,m,n}^R = -\lambda_{SD}^n P_{S,m,n} P_{R,n}^m, \tag{41}$$

in the relaying mode, and

$$P_{R,n}^m = 0. \tag{42}$$
in the idle mode. Denote the equivalent channel gain of \(SP(m, n) \) by

\[
\chi^{m,n} = \begin{cases}
\frac{\lambda_{SR}}{\lambda_{SR} + \lambda_{RD}} & \text{relaying mode}, \\
\frac{\lambda_{SD}}{\lambda_{SD}} & \text{idle mode}.
\end{cases}
\]

We can also use an unified rate expression to demonstrate the original optimization as

\[
R_{m,n} = \frac{1}{2} \log (1 + \chi^{m,n} P_{m,n}).
\]

The unified rate helps simplifying the optimization in the same way. Let

\[
R = \sum_{m=1}^{N} \sum_{n=1}^{N} \frac{t_{m,n}}{2} \left(\rho_{m,n} \log_2 \left(1 + \frac{p_{m,n}}{t_{m,n} \rho_{m,n}} \right) \right) + \left(1 - \rho_{m,n} \right) \left(\log_2 \left(1 + \frac{p_{m,n}}{t_{m,n} \rho_{m,n}} \right) \right) + \log_2 \left(1 + \frac{p_{m,n}}{t_{m,n} \rho_{m,n}} \right),
\]

where \(p_{m,n} \) is the sum power of \(SP(m, n) \) in the relaying mode, which can be obtained from (41). \(P_{2,m,n} \) and \(P_{3,m,n} \) are respectively the powers used by the direct-link of \(SP(m, n) \) in the listening and relaying phases. Then the sum rate optimization is formulated as

\[
\max_{(S, t, \rho)} R,
\]

\(\text{s.t.} \ E1 : \sum_{m=1}^{N} t_{m,n} = 1, \forall n, \quad E2 : \sum_{n=1}^{N} t_{m,n} = 1, \forall m, \quad E3 : \rho_{m,n} \in \{0, 1\}, \quad E4 : t_{m,n} \in \{0, 1\}, \quad E5 : \sum_{m=1}^{N} \sum_{n=1}^{N} \eta_{S} p_{m,n} P_{1,m,n} + P_{2,m,n} + P_{3,m,n} \leq P_{S}, \quad E6 : \sum_{m=1}^{N} \sum_{n=1}^{N} \eta_{R} P_{1,m,n} \leq P_{R}, \quad E7 : P_{1,m,n} \geq 0, \forall j. \)

Let \(P = (P_{1,m,n}, P_{2,m,n}, P_{3,m,n}) \in \mathbb{R}^{N \times 3} \) and \(\rho = (\rho_{m,n}) \in \mathbb{R}^{N \times N} \). Denote

\[
\eta_{S} = \begin{cases}
\frac{\lambda_{SR}}{\lambda_{SR} + \lambda_{RD}} & \text{relaying mode}, \\
1 & \text{idle mode},
\end{cases}
\]

and

\[
\eta_{R} = \begin{cases}
\frac{\lambda_{SR}}{\lambda_{SR} + \lambda_{RD}} & \text{relaying mode}, \\
0 & \text{idle mode}.
\end{cases}
\]

We dualize the constraints \(E1, E5, E6 \) and (40). Then the generated Lagrange function is

\[
L(P, t, \lambda_{S}, \lambda_{R}, \beta) = R + \sum_{n=1}^{N} \beta_{n} \left(1 - \sum_{m=1}^{N} t_{m,n} \right) + \mu_{S} \left(P_{S} - \sum_{m=1}^{N} \sum_{n=1}^{N} (\eta_{S}^{m,n} P_{1,m,n} - P_{2,m,n} - P_{3,m,n}) \right) + \mu_{R} \left(P_{R} - \sum_{m=1}^{N} \sum_{n=1}^{N} \eta_{R}^{m,n} P_{1,m,n} \right),
\]

where \(\mu_{S} \geq 0, \mu_{R} \geq 0 \) and \(\beta = (\beta_{1}, \beta_{2}, ..., \beta_{N}) \geq 0 \) are dual variables. The dual objective function is

\[
g(\mu_{S}, \mu_{R}, \beta) = \max_{(P, t, \rho)} L(P, t, \mu_{S}, \mu_{R}, \beta, \rho)
\]

\(\text{s.t.} \ E2, E7, E8, E9, \)

and the dual problem is

\[
\min_{(\mu_{S}, \mu_{R}, \beta)} g(\mu_{S}, \mu_{R}, \beta) \quad \text{s.t.} \ \mu_{S} \geq 0, \mu_{R} \geq 0.
\]

We take derivatives of \(L \) with respect to \(P_{1,m,n} \), \(P_{2,m,n} \) and \(P_{3,m,n} \) and obtain

\[
P_{1,m,n} = t_{m,n} \rho_{m,n}, \quad P_{2,m,n} = t_{m,n} (1 - \rho_{m,n}) \left(\frac{1}{2 \mu_{S}} - \frac{1}{\lambda_{SD}} \right)^{+}, \quad P_{3,m,n} = t_{m,n} (1 - \rho_{m,n}) \left(\frac{1}{2 \mu_{R}} - \frac{1}{\lambda_{SD}} \right)^{+}.
\]

Denote \(R_{m,n}^{R} \) and \(R_{m,n}^{I} \) as the rate contribution of \(SP(m, n) \) to the Lagrange function in relaying mode and idle mode respectively. Then

\[
R_{m,n}^{R} = \frac{1}{2} \log \left(1 + \chi^{m,n} P_{1,m,n} \right) - \mu_{S} \eta_{S}^{m,n} P_{1,m,n} \quad \text{and} \quad R_{m,n}^{I} = -\mu_{R} \eta_{R}^{m,n} P_{1,m,n}^{+},
\]

\[
P_{m,n}^{+} = \left[\frac{1}{2 \mu_{S}} - \frac{1}{\lambda_{SD}} \right]_{+}^{+} \quad \text{and} \quad P_{3,m,n}^{+} = \left[\frac{1}{2 \mu_{R}} - \frac{1}{\lambda_{SD}} \right]_{+}^{+}.
\]

Easily we obtain

\[
\rho^{+}_{m,n} = \begin{cases}
1, & \text{when } R_{m,n}^{R} > R_{m,n}^{I}, \quad \text{otherwise},
\end{cases}
\]

Substitute (52) into (49) we obtain

\[
L(P, t, \mu_{S}, \mu_{R}, \beta) = t_{m,n} T_{m,n} + K_{\mu_{S}, \mu_{R}, \beta},
\]

where \(T_{m,n} = \rho_{m,n} R_{m,n}^{R} + (1 - \rho_{m,n}) R_{m,n}^{I} + \beta_{n} \) and \(K_{\mu_{S}, \mu_{R}, \beta} = \mu_{S} P_{S} + \mu_{R} P_{R} + \sum_{n=1}^{N} \beta_{n} \). Both \(T_{m,n} \) and \(K_{\mu_{S}, \mu_{R}, \beta} \) are independent of \(t_{m,n} \). So the optimal \(t_{m,n} \) is obtained as

\[
t^{+}_{m,n} = \begin{cases}
1 & m = \arg \max_{m=1, \ldots, N} T_{m,n}, \quad \forall n, \\
0 & \text{otherwise}.
\end{cases}
\]
\(\mu_s, \mu_R \) and \(\beta_n \) that minimize \(g(\mu_S, \mu_R, \beta) \) are achieved by the subgradient method

\[
\begin{align*}
\mu_s^{(i+1)} &= \mu_s^{(i)} - \alpha^{(i)} \left(P_S - \sum_{m=1}^{N} \sum_{n=1}^{N} (g_{S,n}^{m,n} P_{m,n}^{m,n} - P_{m,n}^{m,n} - P_{m,n}^{m,n}) \right), \\
\mu_R^{(i+1)} &= \mu_R^{(i)} - b^{(i)} \left(P_R - \sum_{m=1}^{N} \sum_{n=1}^{N} g_{R,n}^{m,n} P_{m,n}^{m,n} \right), \\
\beta_n^{(i+1)} &= \beta_n^{(i)} - c^{(i)} \left(1 - \sum_{m=1}^{N} t_{m,n}^{(i)} \right), \quad n = 1, \ldots, N.
\end{align*}
\]

By now, we have obtained the optimal mode selection vector, subcarrier pairing vector \(r_{m,n}^{*} \) as well as the power allocation vector \((P_{1s}^{m,n}, P_{2s}^{m,n}, P_{3s}^{m,n}) \) for given dual variables respectively. We can similarly update the subcarrier pairing and power allocation vectors as in Algorithm 1 with some slight modifications. The Lloyd algorithm can be employed again to design the codebook.

V. SIMULATION RESULTS

We present some simulations to demonstrate the performance of the proposed algorithms in this section. The channels of the subcarriers are independent and identically distributed (i.i.d.) subject to Rayleigh fading, with a large scale fading path loss exponent 2.5. The channel coefficients are assumed to be constant within two phases, and varying independently from one period to another. We assume equal noise power at relay and destination nodes, i.e., \(\sigma_n^2 = \sigma_t^2 \). In the simulations, QPSK modulation is adopted, and the step sizes \(\alpha^{(i)} \) and \(b^{(i)} \) for the subgradient method are set to be \(\frac{0.01}{\sqrt{i}} \), where \(i \) is the iteration index. The size of CSI set in Algorithm 2 is \(10^4 \), which is far more than the quantized regions. Several existing schemes are compared with the proposed algorithm in terms of sum rate. These existing schemes include:

(i) UPA w/o SP: the messages transmitted on subcarrier \(m \) at the source node will be retransmitted on the subcarrier \(m \) at the relay node; the power is allocated equally at the source and relay subcarriers.

(ii) OPA w/o SP: the messages transmitted on the subcarrier \(m \) at the source node will be retransmitted on the subcarrier \(m \) at the relay node; the power allocation is performed according to water-filling at the source and the relay subcarriers.

(iii) UPA with SP: the messages transmitted on the subcarrier \(m \) at the source node will be retransmitted on the subcarrier \(n \) at the relay node by subcarrier pairing; the power is allocated equally at the source and relay subcarriers.

Then the performance of the proposed algorithm with different feedback bits are demonstrated. Besides, the performance gap between the enhanced DF and the selective DF modes versus the subcarrier number is also revealed in our simulations.

A. Rate Comparison for Different Schemes

Schemes (i)-(iii) are compared with the proposed algorithm with perfect CSI and limited feedback scheme in Fig. 2. The upper curve denotes the proposed joint power allocation and subcarrier pairing for the enhanced DF scheme with perfect CSI. The second upper curve denotes the proposed joint power allocation and subcarrier pairing for the enhanced DF scheme with 2 bits feedback. The other three curves denote the existing schemes (i)-(iii) respectively. We can observe that, only with 2 bits feedback, the proposed joint power allocation and subcarrier pairing for the enhanced DF relay outperforms the existing schemes (i)-(iii) greatly. So we can conclude that the joint power allocation and subcarrier pairing make valuable contribution to system sum rate.

B. Rate Comparison for Different Feedback Bits

The joint power allocation and subcarrier pairing for the enhanced DF relay with different feedback bits are compared in Fig. 3. We can find that only a few feedback bits are enough to achieve most of the performance gain of the perfect feedback. For example, with 4 bits of feedback at rate of 2.5 in Fig. 3, there is only a \(-1.7dB\) gap to the perfect CSI case, and we also notice that further increasing the feedback bits bring degressive improvement, which implies that the feedback bits as well as the codebook size in the model are not necessarily too large.

C. Rate Versus Different Subcarrier Numbers Under Sum and Individual Power Constraints

With the sum and individual power constraints, the sum rates versus the number of subcarriers for the selective DF and the enhanced DF relaying modes are illustrated in Fig. 4 and Fig. 5. We consider the cases that subcarrier number \(N = 2, 4, 8, 16 \) with fixed feedback bit level of 2. For the sake of fairness, we assume \(P_S + P_R = P_t \). In addition, as for the case with individual power constraints, we assume \(P_S = 3P_R \). The constraints are set with the practical consideration that the relay often plays the role of assisting the transmission between the source and the destination. Moreover, if more power is assigned to the relay node, the achievable rate will be limited since some of the relay power will not be used. Assuming \(P_S = \frac{4}{3}P_t \) will make the comparison with the sum...
power constraints much fairer. Besides, we assume that the relay locates in a line between the source and the destination and the SD distance is one unit. Denote d ($0 < d < 1$) as the SR distance. Thus the RD distance is $1 - d$. Fig. 4 is obtained with $d = 0.4$, while $d = 0.8$ in Fig. 5. We find that the enhanced DF mode always outperforms the selective DF mode and the schemes without subcarrier pairing, especially when the channel condition of RD is relatively poor. We can also observe that the bigger the subcarrier number is, the bigger the performance gap between the two modes is. As for the cases under different constraints, the performance of the sum power constraint is better than that of the individual power constraints, which is due to the more flexibility of power allocation between source and relay under the sum power constraint. Besides, we consider the duality gaps in the two figures. The simulation results exactly coincide with our analysis in section III. We find that the dual solutions approximate to the optimal values of 45 in our simulation. The duality gaps turn out to be nearly 0 when the number of subcarriers is reasonably large, which is consistent with the prediction in 29.

D. The Effect of Relay Location On Rate

In order to exploit the system rate versus SNR for different relay locations, we simulate the rate versus SNR by setting $d = 0.25$, $d = 0.5$ and $d = 0.75$ respectively. Fig. 6 demonstrates the effect of relay location to system sum rate at different SNR with a fixed feedback bit level of 2. We can find that the enhanced DF mode always outperforms the selective DF mode and the OPA w/o SP in any kind of d, and the channel condition of SR plays a more important role than the channel condition of RD in general. Besides, We find that the gap between the system sum rates achieved by the enhanced DF and the selective DF is larger when $|d - 0.5|$ is larger; while the performance gap between the enhanced DF and the selective DF is tiny when $d = 0.5$.

To exploit the effect of relay location to the system performance, we simulate the sum rate versus relay location d in Fig. 7. The figure is obtained with the fixed feedback bit 2 and subcarrier number $N = 4$. We find that the rate reaches maximum at about $d = 0.45$. We also observe that comparing with the proposed scheme with 2-bit feedback, the performance loss of the scheme OPA with SP is not very big at this location, which implies that if none of SR or RD channels is very poor, or there is no great difference between the channel conditions of SR and RD, and the scheme OPA with SP can provide acceptable performance with $N = 4$. But if at least one of these channel conditions is very poor, we’d better dynamically allocate the power and subcarrier resources, since the proposed algorithm can achieve remarkable performance gain. In addition, the performance

Fig. 3. System sum rate versus SNR for the proposed enhanced DF relay scheme with different levels of feedback bits. The upper curve denotes the perfect CSI case, the lowest curve denotes the scheme without feedback, where the power is uniformly allocated. Others curves demonstrate the effect of different feedback bits on sum rate.

Fig. 4. The sum rate versus the number of subcarriers for the enhanced DF, selective DF with fixed feedback bit of 2. These curves are obtained with $d = 0.4$.

Fig. 5. The sum rate versus the number of subcarriers and the performance gap between the schemes with modified idle and selective relaying modes. We assume that system operates with fixed feedback bit level of 2. The curves are obtained with $d = 0.8$.
loss of scheme UPA with SP increases with the number of subcarriers due to frequency diversity and more flexibility in pairing of large N. Fig. 8 and Fig. 9 are obtained with N = 32, 64 respectively. We observe that the performance gains of the proposed algorithm are much more remarkable. The remarkable performance gain results from much more pairing degree provided by the big subcarrier number. There is another general trend can be observed from the two figures. The rate gap between the enhanced DF and the selective DF is larger when |d − 0.5| is larger. The performance improvement of the enhanced DF is due to the extra direct-link transmission in the second phase, since the relay has high possibility to be idle when S-R or R-D channel is poor because of the large |d − 0.5|.

VI. CONCLUSION

In this paper, we discuss a limited feedback based joint power allocation and subcarrier pairing algorithm for the OFDM DF relay networks with diversity. When the relay does not forward the received symbols on some subcarriers, we further allow the source node to transmit new messages on these idle subcarriers. Both sum power constraint and individual power constraints for the source and relay nodes are considered. Since the formulated optimization is a mixed integer programming problem, we transform it into a convex problem by continuous relaxation and then solve it in the dual domain. Simulations show that the proposed algorithms can achieve considerable rate gain with tractable complexities. It outperforms several existing schemes under various channel conditions. The contribution of the extra direct-link transmission is also clearly demonstrated in the simulation. In addition, we notice that a negligible performance loss can be achieved with just a few feedback bits at different levels of SNR values.

REFERENCES

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: efficient protocols and outage behavior," *IEEE
[2] A. Host Madsen and J. Zhang, "Capacity bounds and power allocation in wireless relay channel," IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2020-2040, June 2005.

[3] C. Hoymann, K. Klappes, and M. Schinnenberg, "Multihop communication in Relay Enhanced IEEE 802.16 networks," in Proc. IEEE PMRC’06, pp. 1-4, Sept. 2006.

[4] N. R. Van and P. Ramjee, OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.

[5] Y. Liu, W. Chen, "Power Allocation for the Fading Relay Channel with Limited Feedback," in Proc. IEEE ICC2010, May, 2010.

[6] Y. Liu, W. Chen, X. P. Huang, "Capacity Based Adaptive Power Allocation for the OFDM Relay Networks with Limited Feedback," in Proc. IEEE ICC2011, June, 2011.

[7] N. Ahmed, M. A. Khojastepour, A. Sabharwal and B. Aazhang, "Outage Minimization With Limited Feedback for the fading Relay Channels," IEEE Trans. Commun., vol. 54, no. 4, pp. 659-669, April 2006.

[8] N. Ahmed and B. Aazhang, "Throughput Gains Using Rate and Power Control in Cooperative Relay Networks," IEEE Trans. Commun., vol. 55, no. 4, pp. 656-660, April 2007.

[9] I. Hamnerstrom and A. Wittneben, "On the Optimal Power Allocation for Nonregenerative OFDM Relay Links," in Proc. IEEE ICC06, vol. 10, pp. 4463-4468, June 2006.

[10] I. Hamnerstrom and A. Wittneben, "Power Allocation Schemes for Amplify-and-Forward MIMO-OFDM Relay Links," IEEE Trans. on Wireless Commun., vol. 6, no. 8, pp. 2798-2802, Aug. 2007.

[11] W. Ying, Q. Xin-chun, W. Tong and L. Bao-ling, "Power Allocation and Subcarrier Pairing Algorithm for Regenerative OFDM Relay System," in Proc. IEEE Vehicular Technology Conf. (VTC’07), pp. 2727-2731, April 2007.

[12] Y. Ma, N. Yi, and R. Tafazolli, "Bit and Power Loading for OFDM Based Three-Node Relaying Communications," IEEE Trans. on Signal Processing, vol. 56, pp. 3236-3247, July 2008.

[13] M. Herdin, "A chunk based OFDM amplify-and-forward relaying scheme for 4G mobile radio systems," in Proc. IEEE ICC 2006, Istanbul, vol. 10, pp. 4507-4512, June 2006.

[14] Y. Li, W. Wang, J. Kong, and M. Peng, "Subcarrier pairing for amplify-and-forward and decode-and-forward OFDM relay links," IEEE Commun. Lett., vol. 13, no. 4, pp. 209-211, APRIL 2009.

[15] M. Hajiaghayi, M. Dong, and B. Liang, "Optimal channel assignment and power allocation for dual-hop multi-channel multi-user relaying," in Proc. IEEE Conf. on INFOCOM, Mini-Conference, pp. 76-80, Apr. 2011.

[16] W. Wang and R. Wu, "Capacity Maximization for OFDM Two-Hop Relay System With Separate Power Constraints," IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 4943-4954, Nov. 2009.

[17] D. Wang, Z. Li, and X. Wang, "Jointly Optimal Subcarrier and Power Allocation for Wireless Cooperative Networks over OFDM Fading Channels," to be published in IEEE Trans. Veh. Technol., 2011.

[18] T. T. Kim and M. Skoglund, "Diversity-multiplexing tradeoff in MIMO channels with partial CSIT," IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2743-2759, Aug. 2007.

[19] S. Tatikon, S. Mitter, "The Capacity of Channels With Feedback," IEEE Trans. Inform. Theory, vol. 55, no. 1, pp. 323-349, Jan. 2009.

[20] C. E. Shannon, "Channels with side information at the transmitter," IBM Journal Research and Dev., vol. 2, pp. 289-293, Oct. 1958.

[21] B. Bhaskar, A. Sabharwal, and B. Aazhang, "Feedback gain in multiple antenna systems," IEEE Trans. Commun., vol. 50, no. 5, pp. 785-798, May 2002.

[22] J. Choi and R. W. Heath, "Interpolation based transmit beamforming for MIMO-OFDM with limited feedback," IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4125-4135, Nov. 2005.

[23] D. J. Love and R. W. Heath, "OFDM power loading using limited feedback," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1773-1780, Sept. 2005.

[24] M. Hajiaghayi, M. Dong, and B. Liang, "Using Limited Feedback in Power Allocation Design for a Two-Hop Relay OFDM System", Pro. IEEE ICC 2009, pp. 1-6, 2009.

[25] G. Zhang, W. Zhan, and J. Qin, "Power Allocation in Decode-and-Forward Cooperative OFDM Systems Using Perfect and Limited Feedback", Chinese Journal of Electronics, Vol. 19, No. 2, Apr. 2010.

[26] W. Yu and J. M. Cioffi, "FDMA capacity of Gaussian multiple-access channels with ISI," IEEE Trans. Commun., vol. 50, no. 1, pp. 102-111, Jan. 2002.

[27] W. Yu and R. Liu, "Dual methods for nonconvex spectrum optimization of multi-carrier systems," IEEE Trans. Commun., vol. 54, no. 7, pp. 1310-1322, Jul. 2006.