Hearing deficits associated with cognitive impairment have attracted much recent interest, motivated by emerging evidence that impaired hearing is a risk factor for cognitive decline. However, dementia and hearing impairment present immense challenges in their own right, and their intersection in the auditory brain remains poorly understood and difficult to assess. Here, we outline a clinically oriented, symptom-based approach to the assessment of hearing in dementias, informed by recent progress in the clinical auditory neuroscience of these diseases. We consider the significance and interpretation of hearing loss and symptoms that point to a disorder of auditory cognition in patients with dementia. We identify key auditory characteristics of some important dementias and conclude with a bedside approach to assessing and managing auditory dysfunction in dementia.

Keywords Hearing · Auditory · Dementia · Alzheimer’s disease · Frontotemporal dementia · Progressive aphasia · Lewy body disease

Introduction

Although hearing impairment is not generally regarded as a cardinal feature of dementia, hearing in patients with dementia is a focus of growing clinical interest. Recent evidence suggests that hearing loss may predict or accelerate cognitive deterioration [1–3], and alterations of hearing may manifest as complex cognitive and behavioural symptoms relevant to the differential diagnosis of dementias [4–10]. Interventions targeting auditory processes (most notably, music) have gained wide currency [4, 11]. However, the organisation of the human auditory brain is complex and incompletely understood. Moreover, neuropsychological frameworks for characterising hearing disorders produced by brain disease and practical tools for assessing auditory functions suitable for use in cognitively impaired patients are often lacking.

In this review, we outline a clinically oriented, symptom-based approach to hearing in dementia, informed by recent progress in the clinical auditory neuroscience of these diseases. We consider the problem of hearing loss (impaired detection of sound and how this interacts with cognitive function) and symptoms that point to a disorder of auditory cognition (impaired understanding or behavioural responses to sound). We identify key auditory characteristics of some important dementias. We conclude
with a bedside approach to assessing and managing auditory dysfunction in dementia.

The auditory brain and dementia

Neuropsychology of hearing

Hearing (considered broadly as the function of the human auditory brain and its peripheral end organs) has been aligned with other complex neuropsychological processes based on studies of the normal brain and focal brain damage [12, 13]. Together, this evidence suggests a hierarchical organisation that differentiates categories and stages of auditory information processing (Table 1). Processing of sound begins in the ascending auditory pathways extending from cochlea to primary auditory cortex in Heschl’s gyrus: this is not a passive relay but involves considerable signal transformation [12]. While the terminology of hearing disorders is problematic, in consideration of disease associations, it is useful to attempt to distinguish between peripheral (predominantly cochlear or auditory nerve), subcortical (ascending auditory pathway), and cortical auditory dysfunction. Auditory cognition—processing beyond sound detection leading to auditory perception and understanding—is mediated by distributed networks involving auditory cortex and its cerebral connections; disorders affecting these networks produce characteristic symptoms and syndromes of auditory cognitive dysfunction (summarised in Table 1).

As a framework for analysing disorders of auditory cognition, it is useful to consider complex sounds (speech, voices, music, and environmental noises) as ‘auditory objects’ that must be disambiguated from the auditory background and organised into coherent perceptual representations [13]. The processing of such sound objects entails perceptual analysis (encoding of acoustic features, such as pitch, rhythm, and timbre) leading to semantic processing (extraction of associated meaning, leading to sound recognition) [13, 14]. In the world at large, sounds are embedded in auditory scenes that must be actively deconstructed to identify and track sounds of interest [10]: this, in turn, requires the representation of sound location and movement (auditory spatial analysis) and abstraction of identifying sound characteristics under varying listening conditions (auditory apperceptive processing). Many sounds also have emotional and behavioural relevance.

The burden of dementia

Dementia is arguably the most significant public health problem confronting ageing societies, with an estimated 800,000 sufferers currently in the United Kingdom alone [15]. However, ‘dementia’ designates a syndrome of acquired, progressive, socially and/or occupationally significant cognitive and/or behavioural decline: this definition embraces over a hundred highly diverse diseases, the most common of which is Alzheimer’s disease (AD) [4, 16–18]. Here, we focus on major neurodegenerative causes of dementia in mid to later life, collectively characterised by pathogenic protein spread over large-scale cerebral networks and distinctive profiles of regional brain atrophy and clinical deficits (summarised in Table 2). Brain networks targeted by these diseases overlap the temporal, parietal, frontal, and subcortical circuitry that supports auditory cognition (Tables 1, 2): this is key to anticipating and understanding the disorders of hearing that accompany particular dementia syndromes.

Hearing loss and dementia

Epidemiological evidence

Significant hearing loss (operationally, >20 dB elevation of threshold for pure tone detection) affects around 40% of those aged over 65 [19] and has important links to cognitive impairment and dementia. Age-related hearing loss (presbycusis) commonly results from cochlear dysfunction, though age-related alterations in more central auditory pathways may also be relevant and have probably been under-recognised [20]. The balance of epidemiological evidence across populations suggests that hearing loss is associated with cognitive decline and constitutes a risk factor for development of dementia in older adults, though the strength of this association is somewhat variable [20, 21]. One meta-analysis concluded that cognitive and hearing impairment are correlated and that hearing loss impacts on multiple domains of cognition [21]; this is not simply attributable to hearing loss confounding speech-based cognitive tasks [20] and has been observed in those with and without dementia [22]. Hearing loss ~25 dB has an effect on cognitive deterioration equivalent to around 7 years of ageing [1] and risk of dementia increases with increasing severity of hearing impairment [2].

The role of peripheral hearing

While the association between hearing loss and cognitive decline appears robust, the mechanism remains unresolved. Hearing impairment might accelerate cognitive decline by compounding sensory and social isolation, increasing cognitive load, and thereby exhausting compensatory cognitive reallocation, or constitute a non-specific marker of frailty [20]. However, the association
Table 1 An outline of core operations in auditory cognition and their clinical and neuroanatomical correlates

Auditory cognitive operation	Clinical correlates	Neuropsychological tests	Procedurea	Neuroanatomical correlates [13, 82]
Feature detection	Cortical deafnessb, tinnitusd	Sound detection	Detection of any sound (e.g., tone) behaviourally/EP [83]	PAC, lat HG, PT, pSTG, subcortical circuits
		Gap-in-noise detection	Detection of short silent interval in white noise burst [76]	
		AM/FM^e detection	Detection of modulation (vibrato) of intensity/pitch in carrier tone [76]	
		Spatial lateralisation	Detection of right-left sound shift based on inter-aural phase/ intensity cues [76]	
Feature analysis	Word deafness^e, dystimbria, amusia^g	Phoneme discrimination	Discrimination of sound pairs/sequences differing in pitch, temporal or timbral characteristics [49, 79, 84]	lat HG, pSTG/STS, aSTG, subcortical circuits
		MBEA pitch/temporal subtests	Labelling of features in a single sound (e.g., tone glide direction ‘up’ or ‘down’) [7]	
Scene analysis	Auditory disorientation	SSI-ICM	Identification of a sentence spoken over background message same ear [34]	PT/pSTG, IPL, PFC, hippocampus, subcortical circuitsⁱ
		Speech-in-noise^b	Identification of words against background noise/multi-talker babble	
		Spatial localisation	Discrimination of sound location/movement in real or virtual space [9, 10]	
		Dichotic listening	Attention to one of two stimuli played simultaneously via each ear [23]	
Object representation	Auditory apperceptive agnosias, musical and verbal hallucinations	Melody discrimination	Discrimination of (unfamiliar) melodies [56, 85]	PT, pSTG/STS, IPL, aSTG
(apperceptive processing)		Distorted melodies	Identification of an altered familiar melody [85]	
		Voice discrimination	Discrimination of (unfamiliar) speakers [57]	
		Accent processing	Speech perception under unfamiliar accents [8, 52]	
Object recognition	Auditory associative agnosias (including phonagnosia)	Environmental sound, melody, voice recognition	Recognition of familiar sounds, tunes, voices; conventionally assessed by naming the target but can be assessed by forced-choice or matching cross-modally (e.g., sound–picture) [56] or within-modality (perceptually dissimilar sound excerpts, categorisation based on semantic characteristic) [7, 49, 54, 55], familiarity decision [56] in patients with aphasia	aSTG, TP, insula
(semantic processing)				
Emotional valuation	Receptive dysprosodia, auditory anhedonia, Musicophilia	Emotion recognition	Naming, forced choice [55, 64, 66, 86] or cross-modal labelling of emotions in sounds	MTL, insula, OFC, ACC, mesolimbic/ striatal circuits
		Emotional response	Behavioural rating of valence, arousal; autonomic indices [68]	
Working memory/attention^j	Auditory neglect/ inattention	Compare sequential sounds	n-back tasks (e.g., [77])	Fronto–parieto–temporal, subcortical circuits
		Oddball detection	Sustained attention with detection of target deviants behaviourally/EP [87]	
		Dichotic listening	Attention to one of two stimuli played simultaneously via each ear [75]	

ACC anterior cingulate cortex, AM/FM amplitude/frequency modulation, a/pSTG anterior/posterior superior temporal gyrus, EP electrophysiological evoked potentials, IPL inferior parietal lobe, lat HG lateral Heschl’s gyrus, MBEA Montreal Battery for Evaluation of Amusia, MTL mesial temporal lobe, OFC orbitofrontal cortex, PAC primary auditory cortex, PFC prefrontal cortex, PT planum temporale, SSI-ICM synthetic sentence identification with ipsilateral competing message, STS superior temporal sulcus, TP temporal pole

^a Few widely available tests or population norms are available for auditory cognition. These are mainly used in research settings, but certain instruments may be suitable for systematic clinical assessment of cognitively impaired patients (e.g., Newcastle Auditory Battery [76]; Montreal Battery for Evaluation of Amusia [77]; Queen Square Tests of Auditory Cognition for auditory object processing, voice and scene analysis [6–9, 48, 57])

^b Subtotal cortical deafness often manifests as auditory agnosia

^c Tinnitus is mediated by distributed circuitry also including subcortical, anterior and limbic structures

^d Neuroanatomical correlates vary with modulation rate

^e Mechanism of word deafness may be heterogeneous

^f Impaired perception of timbre (that property distinguishing two sounds of identical pitch, duration and loudness, e.g., musical instrument voices)

^g Impaired perception of music due to a cerebral cause

^h Speech-in-noise perception is impaired with cochlear dysfunction so interpretation of any more central deficit must be cautious [23]

ⁱ Maintaining alertness and attention

^j Particularly during auditory scene analysis but relevant to auditory sequence processing more generally (auditory neglect/inattention unusual in dementia but impaired monitoring of acoustic events common)
Disease/syndrome	Core clinical phenotype	Key auditory symptoms	Auditory cognitive processes	Pathological neuroanatomy
AD: typical	Episodic, topographical memory loss, parietal deficits	Difficulty tracking sound objects and information in busy acoustic environments, auditory disorientation, increased sound sensitivity	+ ++ + – ++	PCC, precuneus, temporo-parietal cortices
PCA [9]	Visuo-perceptual, visuo-spatial, other parietal deficits	– + + + +	– +	
LPA [7, 48, 50, 64]	Anomia, phonemic and verbal working memory deficits	Auditory hallucinations	–	Cortico–subcortical circuits
PDD/DLB [59, 60, 87, 95]	Fluctuating executive, attentional deficits, bradyphrenia, visual hallucinations, parkinsonism	–	–	
FTLD: sporadic/undefined				
bvFTD [51, 54, 68, 96, 97]	Socio-emotional, executive dysfunction with disinhibition, apathy, obsessionality, other behavioural abnormalities	Sound aversion, phonagnosia, altered attentive processing of auditory stimuli	– – + ++ ++	Auditory and multimodal association cortex in ant TL, OFC, insula, ACC, striatal circuits
SD [5, 48, 49, 51, 53, 54, 56, 57, 68, 98]	Vocabulary loss, visual agnosia due to impaired semantic memory, behavioural changes similar to bvFTD	Musicophilia, tinnitus; phonagnosia/nonverbal sound agnosia	– + ++ ++ –	Auditory/multimodal association cortex in ant TL, OFC, insula
PNFA [7, 8, 48, 49, 52, 64]	Speech production deficits, agrammatism	Agnosia for environmental sounds, accents, word deafness	++ + + + ++	Peri-Sylvian networks
FTLD: genetic				
MAPT [51, 54, 99]	Similar bvFTD, may have associated parkinsonism	Altered hedonic responses to sound	+ ++ ++	Ant TL/fronto–subcortical network
C9orf72 [56, 68, 99, 100]	Similar bvFTD or PNFA, may have associated motor neuron features	Auditory hallucinations	– + + +	Cortico–thalamo–cerebellar network
GRN [7, 64, 101, 102]	Similar bvFTD or mixed aphasia, often prominent parietal signs	Limited information	+ + – – +	Distributed intra-hemispheric networks
between impaired hearing and cognition remains after controlling for other demographic and comorbidity factors [2, 23]. Peripheral hearing loss might hasten neurodegenerative processes more directly. Hearing loss in older adults correlates with tissue volume loss in auditory cortex [24], temporal lobe, and whole brain [3], and is associated with functional reorganisation of auditory cortical networks consistent with more effortful listening and reduced cognitive reserve [25]. Though limited histopathological evidence is available concerning the auditory system in common dementias, major auditory relay nuclei are involved pathologically in AD [26, 27], while animal models suggest that peripheral deafferentation disrupts hippocampal function [28, 29].

The role of ‘central’ auditory processing

Auditory deficits in AD may be disproportionate to any abnormality of sound detection or otological markers [20, 30–34]: while the neuroanatomical correlates of ‘central’ hearing measures have not been fully defined, such deficits may reflect disordered cortical mechanisms of auditory scene analysis (Table 1). This is corroborated by other evidence that abnormalities of auditory cortical evoked potentials predate clinical symptoms in young carriers of pathogenic AD mutations [35]. Information for other dementias remains very limited. Relatively, a few studies of hearing in dementia have addressed cortical auditory processing specifically, perhaps partly

Disease/syndrome	Core clinical phenotype	Key auditory symptoms	Auditory cognitive processes	Pathological neuroanatomy		
CBS/PSP [103, 104]	Executive deficits, bradyphrenia in context, parkinsonism, supranuclear gaze palsy, limb dystonia – apraxia	Agnosia for environmental sounds, disordered voice emotion processing	−	+	+	Cortico–subcortical circuits, IFG
HD [105, 106]	Executive and behavioural changes with chorea	Attentive processing of auditory stimuli	+	+	Cortico–subcortical circuits	
Prion diseases [40, 44, 67]	Usually rapid global dementia with prominent myoclonus, ataxia; wide phenotypic variation (especially genetic forms)	Occasionally tinnitus, cortical deafness, auditory hallucinations, increased sound sensitivity	+	+	Primary auditory cortex	

ACC anterior cingulate cortex, AD Alzheimer’s disease, ant TL anterior temporal lobe, App auditory apperception (including parsing of auditory scenes into constituent sound objects), bvFTD behavioural variant frontotemporal dementia, C9orf72 mutations in open reading frame 72 on chromosome 9, CBS/PSP corticobasal syndrome/progressive supranuclear palsy, Ep mem episodic memory for nonverbal sounds (including music), Em emotion processing from sounds (including music/prosody), FTLD frontotemporal lobar degeneration, GRN progranulin gene mutations, HD Huntington’s disease, LPA logopenic aphasia, MAPT microtubule-associated protein tau gene mutations, OFC orbitofrontal cortex, PCA posterior cortical atrophy, PCC posterior cingulate cortex, Perc early auditory perception (acoustic feature detection and analysis), PDD/DLB Parkinson’s disease/Lewy body dementia, PNFA progressive nonfluent aphasia, SD semantic dementia, Sem semantic processing of sounds (including melodies), Wm/Att nonverbal auditory working memory/attention

− deficit documented, ++ particularly severe in relation to other deficits, − deficit absent/inconsistent, blank cells indicate no adequate data available

a Defined by performance on behavioural tests
b Distribution of pathological changes in brain networks relevant to auditory deficits, as assessed using voxel-based morphometry, functional MRI and/or post mortem material
c Underpinned by Alzheimer pathology in >80 % of cases
d Abnormalities of rhythm processing in basal ganglia and cerebellar degenerations [95, 107]
e Limited information currently for progressive aphasia presentation only
Impaired perception of sound features

Patients with dementia may have reduced perception of sound disproportionate to any damage involving cochlea or ascending auditory pathways: this may manifest as cortical deafness (described rarely in prion disease: [43, 44]) or relatively selective ‘word deafness’ or auditory agnosia, more commonly described with progressive nonfluent aphasia and (for unknown reasons) in Japanese patients [45–47]. A useful clinical clue to word deafness is substantially better comprehension of written than spoken language. Speech perception may be particularly vulnerable as it depends on precise temporal feature decoding but may signify a more generic impairment of auditory feature analysis in syndromes with peri-Sylvian degeneration [48, 49].

Impaired perception of auditory scenes and objects

Frank auditory disorientation is uncommon in dementia though does occur (usually accompanying visual disorientation) in patients with posterior cortical degenerations [50]. However, patients with both posterior cortical atrophy and clinically typical AD commonly report difficulty following conversations and other sounds against background noise, and this may contribute to their avoiding social situations and a general dislike of busy auditory environments [51]. Such symptoms may develop early in the course of the illness and without other evidence of hearing loss and (though often attributed to a nonspecific memory or attentional deficit) may signify AD-associated impairments of auditory scene and auditory spatial analysis, correlated in structural and functional neuroanatomical studies with disintegration of a core parieto-temporal network [6, 9, 10]. Auditory scene analysis depends on accurate parsing of the acoustic stream into constituent sound objects, mediated by sensory computational mechanisms under attentional and executive control; these mechanisms interact in temporoparietal cortical ‘hub’ regions.

Other symptoms, experienced particularly by patients with AD and progressive nonfluent aphasia suggest auditory apperceptive dysfunction: disproportionate difficulty identifying or understanding sound objects under unusual or degraded listening conditions. The patient may not recognise a familiar voice over a noisy telephone line or may fail to understand a message delivered in an unfamiliar accent [8, 52]). Such symptoms may have a neuroanatomical substrate in posterior peri-Sylvian cortices, similar to that underpinning impaired auditory scene analysis.

Impaired recognition of sounds

Patients with semantic dementia develop deficits of nonverbal sound recognition (auditory associative agnosia) as
Disease	Aud	Cogn	Associated features	Diagnostic investigations	
Inflammatory					
Antiphospholipid syndrome	F,	C	Headache, seizures, chorea, myelopathy, optic neuritis, vestibulopathy	Antibody profile with compatible clinical phenotype	
Multiple sclerosis	U;	RC^a	F^b	Compatible clinical and MRI features of CNS demyelination, (McDonald criteria), supported by CSF unmatch ed oligoclonal bands	
Neuro-Behçet’s syndrome	F;	RC^a	U^c	None specifically; International Study Group criteria (with pathergy test) for systemic disease	
Neurosarcoïdosis	U;	RC	F	Contrast MRI sensitive but not specific; whole body PET, biopsy involved peripheral tissue	
Susac’s syndrome	T;	C^a,d	T	MRI (callosal ‘snowball’ lesions); retinal fluorescein angiography (multifocal distal arteriolar occlusions)	
Infectious					
Cryptococcal meningitis	U;	RC^e	F	CSF Cryptococcal antigen	
Neuroborreliosis	U;	RC^e	U^f	Lyme serology	
Neurosyphilis	U;	RC^g	T	Treponemal serology (blood and CSF)	
Genetic					
CADASIL	U;	C^a	T	Characteristic MRI with marked anterior temporal/external capsule white matter involvement Notch3 mutations	
MELAS/other mitochondrial syndromes	T/F; C	T/F	Migraine, seizures, stroke-like episodes, ophthalmoplegia, myopathy, lactic acidosis, diabetes mellitus	Various mitochondrial DNA mutations	
HSAN IE	T;	C	RC^a,b	Sensory and autonomic neuropathy, optic neuropathy, narcolepsy	DNMT1 mutations
IBMPFD	U;	RC?	T	Frontotemporal dementia with inclusion body myositis, Paget’s disease of bone	VCP mutations
Niemann-Pick type C	F;	RC	T	Ataxia, supranuclear gaze palsy, dystonia, psychiatric features, cataplexy, seizures, splenomegaly	Skin fibroblast studies (accumulation of unesterified cholesterol), genotyping
Oculo-leptomeningial amyloidosis	F;	C	RC^a	Seizures, stroke-like episodes, headache, ataxia, myelo-radiculoopathy, subarachnoid haemorrhage, ocular amyloid	Abnormal meningeal enhancement on contrast MRI Transthyretin mutations
Refsum disease	F;	RC	U	Retinitis pigmentosa, anosmia, polyneuropathy	Raised plasma phytanic acid PHYH mutation
Spinocerebellar ataxias	F;	C	F	Truncal/limb ataxia, bulbar deficits, proprioceptive impairment, neuropathy, variably prominent across group	Various mutations (most frequently, trinucleotide repeat expansions)
Friedreich’s ataxia					
SCA13	Gait/limb ataxia, dysarthria, hyperreflexia, vibration sense loss	KCNC3 mutations			
Wolfram’s syndrome	T;	RC	F^j	Optic atrophy, diabetes	WFS1 mutations
part of a pan-modal erosion of semantic memory, linked to antero-mesial temporal lobe dysfunction [48, 53, 54]. Interestingly, in individual cases, there may be relatively preserved knowledge of melodies over environmental sounds [55, 56], perhaps because the abstract, nonreferential meaning systems of music have neural substrates that are separable from those mediating knowledge about the world at large (knowledge of musical instrument timbres may be affected comparably to other categories of objects). Impaired recognition of familiar voices (despite retained ability to distinguish between voices) may be a salient symptom of right temporal lobe degeneration [57, 58]: such ‘associative phonagnosia’ may be relatively selective for voices or accompany other deficits of person knowledge or more generalised auditory agnosia.

Auditory hallucinations

Patients with semantic dementia commonly report tinnitus (an elementary auditory hallucination), linked to structural alterations in a fronto–temporo–subcortical network [5]; while hallucinations of ‘muffled’ sounds or voices are often reported by patients with Lewy body dementia, frank verbal hallucinations are uncommon and generally occur as a component of more complex, multimodal hallucinations [59]. In contrast, persistent musical hallucinations (typically comprising familiar, banal tunes) are relatively commonly reported in patients with Lewy body disease and less frequently, other dementias [60]: only a minority has significant hearing loss, suggesting that aberrant cortical activity plays a key role though there may be a facilitatory effect from peripheral deafferentation [61].

Abnormal auditory behaviours

Altered emotional or ‘hedonic’ behavioural responses to sound are increasingly recognised in patients with dementia. Impaired processing of emotional prosody has been described in AD, Parkinson’s disease, behavioural variant frontotemporal dementia, and progressive aphasia syndromes [62–65], and impaired recognition of musical and nonverbal vocal emotions in Parkinson’s disease and...
frontotemporal dementia syndromes [65, 66]. Many patients with frontotemporal dementia (and some with AD) exhibit sound aversion, while abnormal craving for music (musicophilia) is particularly associated with semantic dementia [51]; these patients may show increased sensitivity to sound (hyperacusis [5]), also described in prion disease [67]. Explicit behavioural responses may dissociate from autonomic responses to sound in dementia syndromes [68, 69]. Altered auditory hedonic behaviours in dementia have been linked to involvement of distributed cortico–subcortical circuitry that processes emotion and reward [51].

A practical approach to the patient with dementia and altered hearing

A clinical framework for assessing and managing the patient presenting with cognitive impairment and altered hearing is outlined in Table 4 and Fig. 2.
Clinical assessment

Hearing function should be assessed in all patients receiving a diagnosis of dementia: to identify a factor that may be detracting from quality of life and impeding care [70], to gauge disability as fully as possible, and to address any reversible peripheral component. Assessment begins with a history to elicit key auditory symptoms (Table 4; Fig. 2) and systematic neurological and otological examination. Hearing impairment can easily go undetected in patients with dementia and may lead to misattribution or overestimation of cognitive compromise [71]; cognitive screening instruments that do not rely on hearing (such as the TYM test [72]) may be preferable to verbally administered tests such as the mini–mental state examination. The patient’s premorbid competence in particular domains (notably, music) should be documented, and an auditory handicap questionnaire may be useful in defining the functional consequences of hearing impairment [73].

In patients with known hearing impairment, any supervening cognitive decline should be thoroughly characterised. This is particularly challenging in those with pre-
lingual profound hearing loss. British Sign Language (BSL) users form a close-knit minority group defined culturally as well as linguistically; they often have difficulty in accessing appropriate assessment services and, therefore, may have more advanced dementia when diagnosed. Ideally, assessment of such individuals should be undertaken in a clinic with special expertise in working with deaf people, engaging a neuropsychologist with relevant communication skills and expertise and BSL interpreters trained in the requirements of cognitive assessment. Management in all cases should involve consideration of environmental and behavioural modification strategies that optimise the patient’s residual hearing function (see text) and involvement of multidisciplinary services to assess their needs and plan appropriate care delivery; we have a low threshold for a trial of hearing aids or other assistive listening devices if there is the possibility of a contributing peripheral hearing loss and in patients with more complex or central auditory deficits, onward referral to a specialist cognitive or auditory clinic may be helpful. Asterisk particularly in younger patients or where there are associated neurological or systemic features; double asterisk more specialised tests of central hearing functions if available may be useful in defining the phenotype of an auditory cortical disorder, particularly where all standard tests of hearing are unremarkable; ABR auditory brainstem evoked responses, AHQ auditory handicap questionnaire, ALD assistive listening device, behav behavioural, env environmental, DLT dichotic listening test, Gin gap-in-noise perception, HA hearing aid, MBEA Montreal Battery for Evaluation of Amusia, MRI brain magnetic resonance imaging, NAB Newcastle Auditory Battery, neuropsych neuropsychology, OAE otoacoustic emissions, PTA pure tone audiometry, SIN speech-in-noise perception

Fig. 2 A clinical approach to the patient presenting with cognitive decline and altered hearing. Our approach is based on initial thorough bedside history taking and examination to identify key auditory symptoms (see also Table 4) supplemented by investigations to characterise the nature of the patient’s hearing and cognitive deficits. As clinical symptoms are rarely specific and disorders at different levels of the auditory processing hierarchy frequently coexist, we recommend a core hearing assessment battery in all cases, corroborated by general neuropsychological assessment and brain MRI. Together, these assessments often allow the patient’s hearing deficit to be localised predominantly to the cochlea or ascending auditory pathways (untitled oblongs) or to cerebral circuitry (black filled oblongs) and direct further more specific assessment for the diagnoses listed in Tables 2, 3. Other patients will have auditory deficits that are more difficult to localise or may have mixed deficits (grey oblongs); speech-in-noise perception is a useful index of real world hearing impairment but needs care in interpretation as this can be affected by pathology at different levels of the auditory system. Management in all cases should involve consideration of environmental and prelingual profound hearing loss. British Sign Language (BSL) users form a close-knit minority group defined culturally as well as linguistically; they often have difficulty in accessing appropriate assessment services and, therefore, may have more advanced dementia when diagnosed. Ideally, assessment of such individuals should be undertaken in a clinic with special expertise in working with deaf people, engaging a neuropsychologist with relevant communication skills and expertise and BSL interpreters trained in the requirements of cognitive assessment. Until recently, there were no normative data on cognition in deaf subjects; however, a cognitive screening instrument based on British Sign Language has now been developed [74]. As with any cognitive assessment, it is essential to obtain a corroborating history from an advocate or caregiver.

INVESTIGATIONS

BEDSIDE	INVESTIGATIONS	MANAGEMENT
Informant history, AHQ, neurologic/otologic exam	PTA, SIN, GIN, DLT, OAE, ABR, neuropsych, MRI	SALT, local services, env / behav strategies
↓ sound detection	Abnormal PTA and/or OAE, ABR	consider Table 3*
Abnormal auditory perception	Abnormal GIN or DLT	consider Table 2
Abnormal auditory behaviour	Auditory cognitive profile: NAB, MBEA, other tests of central hearing**	refer for ALD
Auditory cognitive profile: NAB, MBEA, other tests of central hearing**	refer for ALD	

Investigations

Pure tone audiometry and otoacoustic emissions (supplemented by brainstem auditory evoked potentials if available) are relatively simple and well-tolerated techniques to assess cochlear and ascending auditory pathway function in cognitively impaired patients. Measurement of speech-in-noise perception (Table 1) more closely reflects ‘real world’ hearing impairment than pure tone audiometry and (if impaired disproportionately to other indices of cochlear or ascending auditory pathway function) may provide an index of auditory cortical processing; this can be supplemented by tests such as gap-in-noise perception or dichotic listening that depend more sensitively on cortical processing of sound [75] (Table 1). If the patient or caregiver...
reports symptoms suggesting auditory cognitive dysfunction, a more comprehensive evaluation may be appropriate: age norms are available for the Newcastle Auditory Battery [76] and Montreal Battery for Evaluation of Amusia [77]. General neuropsychological assessment can identify concurrent executive or attentional deficits that may confound performance on auditory tests and may also define associated (visual and verbal) apperceptive or semantic impairments to corroborate any auditory cognitive deficit. If a complex or unusual disorder (such as auditory agnosia) is suspected, referral to a specialist clinic may be indicated. Investigation of any patient with suspected dementia should focus on identifying reversible processes and establishing the primary cause as accurately as possible (for general reviews, see [16–18]); this should include brain MRI, which may further characterise the likely neuroanatomical basis of the auditory deficit (Table 2).

Management

While effects on specific aspects of cognitive function are difficult to predict, correction of reversible hearing deficits has been shown to benefit global functioning in daily life [20, 21, 23, 78, 79]. Simple interventions such as earwax removal can be highly effective [79]. In addition, prescription of hearing aids and other assistive listening devices where appropriate, environmental modification strategies may be useful in managing altered hearing in patients with dementia. Examples include the use of written communication aids and electronic devices, conducting conversations face-to-face and free of significant background noise, avoiding sounds known to provoke distress, and masking techniques for musical and other auditory hallucinations. Anecdotally, cholinesterase inhibitors may benefit some patients with musical hallucinations [80]; however, there is currently little role for specific pharmacotherapy in managing auditory dysfunction in dementia. Specific auditory training protocols based on speech and nonspeech sounds have been shown to improve speech intelligibility in hearing-impaired adults [81] but have yet to be adequately assessed in dementia. Though music is unquestionably a welcome source of solace for many patients and caregivers and often a useful displacement activity, evidence for a specific role of music therapy in the management of dementia awaits better-controlled trials [11]. Assistive listening devices incorporating a mobile microphone are a promising strategy to compensate for deficits of auditory scene processing [73], but their utility in patients with dementia remains to be established. Management of hearing loss in dementia is an inter-disciplinary enterprise, and close collaboration with audiology, speech and language therapy, and social services is invaluable.

Conclusions and future directions

Hearing has long been the poor relation of memory and vision in the cognitive clinic. The emerging epidemiological evidence may shortly transform this situation. The comprehensive assessment of hearing in dementia presents both challenges and opportunities. There is a need to develop practical and reliable tests that can disambiguate the effects of peripheral hearing and auditory cognitive dysfunction, to develop auditory interventions directed to cognitively impaired people and to assess these systematically and longitudinally in a range of dementia, referenced to healthy older people. In addition to capturing disability and improving quality of life, a more detailed picture of the spectrum of auditory dysfunction in dementia would have considerable neurobiological and clinical resonance. Sound is a dynamic and computationally demanding sensory signal that engages complex emotional and other behaviours: the processing of sounds taxes brain networks targeted by neurodegenerative pathologies and may yet yield novel cognitive ‘stress tests’ for diagnosis and treatment tracking in these diseases.

Compliance with ethical standards

Conflicts of interest The Dementia Research Centre is supported by Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. CJDH holds an MRC PhD Studentship. CRM is funded by a Clinical Research Fellowship from the Leonard Wolfson Experimental Neurology Centre. HLG was supported by an Alzheimer Research UK PhD Fellowship. CNC is supported by The National Brain Appeal—Frontotemporal Dementia Research Fund. JDW received salary support from the Wellcome Trust (Wellcome Trust Senior Clinical Fellowship 091673/Z/10/Z). The authors report no conflicts of interest.

Study funding This work was funded by the Wellcome Trust, the UK Medical Research Council and the NIHR Queen Square Dementia Biomedical Research Unit.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Lin FR, Ferrucci L, Metter EJ et al (2011) Hearing loss and cognition in the Baltimore Longitudinal Study of aging. Neuropsychology 25:763–770. doi:10.1037/a0024238
2. Lin FR, Metter EJ, O’Brien RJ et al (2011) Hearing loss and incident dementia. Arch Neurol 68:214–220. doi:10.1001/archneurol.2010.362.Hearing
3. Lin F, Ferrucci L, An Y et al (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90:84–92. doi:10.1016/j.neuroimage.2013.12.059
60. Golden EC, Josephs KA (2015) Minds on replay: musical hallucinations in music and in speech prosody. J Clin Exp Neuropsychol 35:373–392. doi:10.1080/13803395.2013.776518
66. Omar R, Henley SMD, Bartlett JW et al (2011) The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration. Neuroimage 56:1814–1821. doi:10.1016/j.neuroimage.2011.03.002
67. Merkler AE, Prasad M, Lavi E, Safdieh J (2014) Hyperacusis as the initial presentation of Creutzfeldt-Jakob disease. Neurol Neuroimmunol Neuroinflamm 1:e32. doi:10.1212/NXI.0000000000000332
68. Fletcher PD, Nicholas JM, Shakespeare TJ et al (2015) Physiological phenotyping of dementias using emotional sounds. Alzheimer’s Dement Diagn Assess Dis Monit 1:170–178.
69. Fletcher PD, Nicholas JM, Shakespeare TJ et al (2015) Dementias show differential physiological responses to salient sounds. Front Behav Neurosci 9:73. doi:10.3389/fnbeh.2015.00073
70. Weinstein BE, Ventry IM (1982) Hearing loss and senile dementia in the institutionalized elderly. J Speech Hear Res 25:593–599. doi:10.1044/jshr.2504.593
71. Weinstein B (1986) Hearing loss and senile dementia in the institutionalized elderly. Clin Gerontol 4:3–15. doi:10.1300/J018v04n03_02
72. Brown J, Pengas G, Dawson K, Brown LA, Clatworthy P (2009) Self administered cognitive screening test (TYM) for detection of Alzheimer’s disease: cross sectional study. BMJ 338:b2030. doi:10.1136/bmj.b2030
73. Martin JS, Jerger JE (2005) Some effects of aging on central auditory processing. J Rehabil Res Dev 42:25–44. doi:10.1682/JRJD.2004.12.0164
74. Atkinson J, Denmark T, Marshall J et al (2015) Detecting cognitive impairment and dementia in deaf people: The British Sign Language cognitive screening test. Arch Clin Neuropsychol 30:694–711. doi:10.1093/arclin/avv042
75. Musiek FE, Chermak GD (2015) Psychophysical and behavioral peripheral and central auditory tests. Handb Clin Neurol 129:313–332. doi:10.1016/B978-0-444-62630-1.00018-4
76. Griffiths TD, Dean JL, Woods W et al (2001) The Newcastle Auditory Battery (NAB). A temporal and spatial test battery for use on adult naive subjects. Hear Res 327:235–244. doi:10.1016/j.heares.2015.07.006
77. Peretz I, Champod AS, Hyde K (2003) Varieties of musical hallucinations and delusions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:734–738
78. Golden EC, Josephs KA (2015) Minding the reals: musical hallucinations and their relationship to neurological disease. Brain 138:3793–3802. doi:10.1093/brain/awv286
79. Griffiths TD (2000) Musical hallucinosis in acquired deafness: phenomenology and brain substrate. Brain 123:2065–2076. doi:10.1093/brain/123.10.2065
80. Horley K, Reid A, Burnham D (2010) Emotional prosody perception and production in dementia of the Alzheimer’s type. J Speech Lang Hear Res 53:1132–1146. doi:10.1044/1092-4388(2010)09-0030
81. Dara C, Kirsch-Darlow L, Ochfeld E et al (2013) Impaired emotion processing from vocal and facial cues in frontotemporal dementia compared to right hemisphere stroke. Neurocase 19:521–529. doi:10.1080/13557949.2012.701641
82. Rohrer JD, Sauter D, Scott S et al (2012) Receptive prosody in nonfluent primary progressive aphasias. Cortex 48:308–316. doi:10.1016/j.cortex.2010.09.004
83. Lima CF, Garrett C, Castro SL (2013) Not all sounds sound the same: Parkinson’s disease affects differently emotion processing in music and in speech prosody. J Clin Exp Neuropsychol 35:373–392. doi:10.1080/13803395.2013.776518
84. Kay J, Lesser R, Coltheart M (1992) Psycholinguistic assessments of language processing in aphasia. Lawrence Erlbaum Associates, Hove
123. Rance G, Fava R, Baldock H et al (2008) Speech perception ability in individuals with Friedreich ataxia. Brain 131:2002–2012. doi:10.1093/brain/awn104
124. Middlebrooks JC, Nick HS, Subramony SH et al (2013) Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms. PLoS One 8:e76749. doi:10.1371/journal.pone.0076749
125. Santarelli R (2010) Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Med 2:91. doi:10.1186/gm212
126. Salazar R, Cerghet M, Ramachandran V (2014) Bilateral hearing loss heralding sporadic Creutzfeldt-Jakob disease: a case report and literature review. Otol Neurotol 35:1327–1329. doi:10.1097/MAO.0000000000000485
127. Fearnley JM, Stevens JM, Rudge P (1995) Superficial siderosis of the central nervous system. Brain 118:1051–1066. doi:10.1093/brain/118.4.1051