Incremental Multiple Longest Common Sub-Sequences

Luís M. S. Russo, Alexandre P. Francisco, Tatiana Rocher

Abstract—We consider the problem of updating the information about multiple longest common sub-sequences. This kind of sub-sequences is used to highlight information that is shared across several information sequences, therefore it is extensively used namely in bioinformatics and computational genomics. In this paper we propose a way to maintain this information when the underlying sequences are subject to modifications, namely when letters are added and removed from the extremes of the sequence. Experimentally our data structure obtains significant improvements over the state of the art.

1 INTRODUCTION

In this paper we consider the problem of updating multiple longest common subsequences (MLCS). Figure 1 illustrates this problem. The top box shows an MLCS of four strings. The particular MLCS is the string \texttt{AAAAABACA}. This string occurs as a subsequence in all four strings, this is illustrated by gray line segments. Therefore this string is a multiple common subsequence. Moreover any other multiple common subsequence has at most nine letters. Hence this particular string is actually a longest such subsequence.

We consider the problem of determining the size of an MLCS, when the underlying strings are modified. In particular we consider the following modifications:

- \texttt{Pop()}, removes the first letter from one of the strings.
- \texttt{Append()}, adds a letter to the end of some of the strings.

This paper studies how to perform this computation efficiently. Our main contributions are the following:

- We describe a data structure to represent the MLCS information, Section 3. We describe the appropriate update algorithms that are applied when the underlying strings are modified. The \texttt{Append()} operation is described in Section 3 and the \texttt{Pop()} operation is described in Section 4.1. We discuss appropriate data structures for implementing these operations. Section 4.2.
- We present our data structure’s implementation and experimental results that highlight the performance of our approach, Section 4.3. The experimental results show that our structure is efficient for a large spectrum of MLCS parameters and, in some cases, it outperforms state of the art algorithms.

2 THE PROBLEM

For our particular purpose we adopt the view that algorithms for solving the MLCS problem are a sort of match classification process where a match is a tuple that corresponds to the same letter in all four strings. The gray line segments in Figure 1 represent this precise concept. For example the first match in the top box corresponds to the tuple \((4, 2, 1, 1)\), the underlying letter is ‘\texttt{A}’. This letter occurs in position 4 in the first string, position 2 in the second string and so on. We also refer to these tuples as multi-dimensional points, thus exploring the geometrical nature of the problem. A critical geometric property is point dominance. We say that the point \((6, 3, 5, 3)\) dominates the point \((4, 2, 1, 1)\) because in every coordinate the values of the first point are strictly larger than the values of the second point, i.e., \(6 > 4; 3 > 2; 5 > 1\) and \(3 > 1\). This is a desirable property. When a match point dominates another match,
both matches are compatible for the same multiple common subsequence (MCS). In particular both the points we mentioned are part of the MLCS in the top box of Figure 1. On the contrary the match (2, 9, 4, 8), corresponding to letter ‘B’, does not dominate the match (4, 2, 1, 1), because in the first coordinate we have 2 < 4. These two matches are not compatible and therefore may not both occur in a MCS.

Using this formulation an MCS is simply a sequence of matches p_1, . . . , p_n where for every i < n we have that p_{i+1} dominates p_i. If such a sequence is not a sub-sequence of any other MCS, it is maximal and corresponds to an MLCS. Instead of comparing several sub-sequences, which would be infeasible, we assign levels to each match. A match belongs to level l if it occurs as p_i in some MCS, i.e., it is the i-th match of some MCS. For example (4, 2, 1, 1) belongs to level 1, which is not surprising because every match belongs to at least level 1. The match (6, 3, 5, 3) on the other hand belongs to levels 1 and 2 as it may appear in the second position of an MCS. Therefore it is enough to identify the maximum level of a match, as it must necessarily also contain all smaller levels.

Figure 2 shows several matches and their corresponding maximum levels, the top and bottom small gray numbers. In general to determine the maximum levels we use the rule that a match’s maximum level is ℓ + 1 if it dominates a match with maximum level ℓ.

The simplest and most well known approach to determine maximum levels is a dynamic programming algorithm that computes the maximum level of every single point, not only matches. The main advantage of this approach is that for any point only a few neighbor points need to be verified. The value D[a, b, c, d], that represents the maximum level of point (a, b, c, d), is computed recursively as follows:

\[
D[a, b, c, d] = \begin{cases}
0, & \text{if some coordinate is 0} \\
D[a - 1, b - 1, c - 1, d - 1] + 1, & \text{if } (a, b, c, d) \text{ is a match} \\
\max \{D[a - 1, b, c, d], \\
D[a, b - 1, c, d], \\
D[a, b, c - 1, d], \\
D[a, b, c, d - 1]\}, & \text{Otherwise}
\end{cases}
\]

However the total amount of points that are processed may be extremely large: for k strings of size m this amounts to \(O(m^k)\) points. Moreover this approach is not compatible with modification operations. Obtaining the MLCS size after a pop() operation requires rebuilding the whole table from scratch. For the Append() operation the table can actually be extended, instead of re-computed, but the corresponding performance is still \(O(m^{k-1})\).

Table 1

1	(1,9,4,8); (2,11,8,9); (4,2,1,1); (15,1,2,2)					
2	(2,11,8,9); (4,10,5,10); (5,9,4,8); (6,3,5,3); (15,4,2,2); (16,2,5,3)					
3	(3,12,9,14); (4,13,10,10); (5,11,8,14); (6,10,5,10); (7,5,7,4); (15,6,7,6); (16,5,5,3); (17,5,7,4); (18,9,4,8); (19,6,5,7)					
4	(5,15,14,14); (6,17,15,12); (7,13,7,12); (8,7,10,5); (11,9,8,8); (15,6,11,7); (15,14,6,11); (16,5,7,10); (17,7,7,4); (19,4,11,7); (19,6,6,7); (20,9,8,8);					
5	(8,17,10,13); (9,10,15,6); (11,9,14,8); (11,15,8,14); (12,11,9,9); (14,10,10,10); (15,8,11,7); (16,7,15,10); (16,17,7,12); (17,7,10,12); (18,9,8,8); (19,6,11,11);					
6	(10,13,17,10); (11,11,16,8); (13,12,14,14); (14,10,15,10); (14,13,10,10); (15,14,18,7); (18,9,14,8); (19,8,11,15); (19,8,18,11); (20,11,9,9);					
7	(14,13,17,10); (15,14,11,11); (18,11,16,14); (20,9,14,20); (20,11,16,9); (21,12,14,14);					
8	(15,14,18,11); (16,17,15,12); (18,15,14,14); (19,16,12,15);					
9	(16,17,20,12); (19,16,18,15);					

| Fig. 2. Illustration of level classification of matches. |

3 Our Approach

To avoid having to process such a huge amount of points we focus only on points that correspond to matches. In general this significantly reduces the number of points to process. However some bad configurations have \(O(m^6)\) matches. For example when all the strings consist of repetitions of the same letter, i.e., \(A^m\). To avoid this problem we use the notion of covered matches. The general definition is that a match p covers a match q if both have the same maximum level and for every coordinate its value in p is less than or equal to the value of the same coordinate in q, moreover for at least one of the coordinates the value is equal. The equal coordinate condition follows from the fact that both p and q belong to the same maximum level, as otherwise q would dominate p and have a larger maximum level. In our example, the match (6, 3, 5, 3) covers the match (6, 5, 5, 4) because both have the same maximum level of 2 and 6 = 3 ≤ 5; 5 ≤ 5 and 3 ≤ 4.

We can now restrict our attention to non covered matches. In the example where all the strings are \(A^m\) the number of non covered matches is only \(O(m)\) and thus much smaller than the total number of matches. Table 1 shows the classification of all the non covered matches that exist in the strings of the top box of Figure 1. The matches that are drawn in the Figure are shown inside gray boxes.

Our data structure stores a list of points for each level value. The i-th list contains the non covered matches whose maximum level is i. We can now focus on how this structure changes when the underlying strings are modified. The Append() operation is simpler and faster than the Pop() operation. Hence let us start with the Append() operation.

In the example of Figure 1 we considered an Append() operation that added the letter ‘C’ to the end of the third string. This generates a set of new matches that we should insert into our lists. One approach would be to generate all the new matches, i.e., the set \{15, 19\} \times \{1, 4, 6, 8, 14, 16, 18\} \times \{21\} \times \{2, 7, 11, 15, 16, 17, 18, 19\}.

Fig. 2. Illustration of level classification of matches.
Note that for each string we considered the set of positions of \(\mathcal{C} \), except for the third string where we considered only the new position, i.e., 21. We would therefore need to consider 112 matches, most of which are covered. Instead we use the notion of match generation. We can use a non covered match to generate a new match, that is potentially non covered, but that may turn out to be covered. Consider for instance the match \((16, 17, 20, 12)\) in Table\(\text{[I]}\). To generate a match using letter \(\mathcal{C} \) we find the next occurrence of this letter, in each string. In the first string the next occurrence of \(\mathcal{C} \) after position 16 is in position 19. In the second string the next occurrence after position 17 is in position 18. Continuing this process generates the match \((19, 18, 21, 15)\). The new match is added to the list of matches of the next level. In this case it is added to the list of level 10, because the point \((16, 17, 20, 12)\) was on the list of level 9.

We used the point \((16, 17, 20, 12)\) to generate this match, but there was no particular reason to single this point out from all the points in Table\(\text{[I]}\). The remaining points might also yield new uncovered matches. Hence let us consider the point \((21, 12, 14, 14)\) from the list of level 7. Trying to use letter \(\mathcal{C} \) to generate a new match raises a tricky problem. As position 21 is the last position of the first string, there is no occurrence of the letter \(\mathcal{C} \) after it, therefore it is not necessary to consider point \((21, 12, 14, 14)\). This defines our first criteria: we only need to consider the points in Table\(\text{[I]}\) that are dominated by the point \((19, 18, 21, 19)\), where this point consists of the positions of the last occurrences of \(\mathcal{C} \) in the respective strings. This avoids considering points that can not generate matches with the given letter.

The point \((9, 10, 15, 6)\), from the list of level 5, passes this first criteria. Looking for the letter \(\mathcal{C} \) generates the point \((15, 14, 18, 7)\). However this point already exists at level 6, see Table\(\text{[I]}\). We conclude that it was not necessary to consider the point \((9, 10, 15, 6)\). This problem occurred because it uses position 15 for the third string. This means that the generated point used position 18 for the third string and not 21. Therefore the generated match is not one of the new matches that arise from the Append() operation. Hence it is not useful to consider the point \((9, 10, 15, 6)\). Therefore our second criteria is to consider only the points that have the value of 19 or more for the third string, where 19 is the position of the last occurrence of \(\mathcal{C} \) in the third string before the Append() operation. In other words we only consider the matches that dominate the point \((0, 0, 19 − 1, 0)\).

Using this second criteria on the matches in Table\(\text{[I]}\) yields only the point \((16, 17, 20, 12)\), which also satisfies the first criteria because it is dominated by \((19, 18, 21, 19)\). Hence we conclude that to update our data structure after the Append() operation it is only necessary to add a list for level 10 containing the point \((19, 18, 21, 15)\). Hence only one of the 112 new matches is non covered. In this case the generated match is the only point at level 10 and no further processing is necessary, but in general we still have to verify if the generated point is not covered by any one of the points at level 10. In which case it would not be accepted in the list. Moreover if any point of the list is covered by the point being inserted then the covered point should be removed from the list. This is a general check that is always performed when inserting matches into a list. Whenever we mention inserting a point into a list we assume that this procedure is being performed, in particular it will be necessary for the Pop() operation.

This concludes the description on how to update our data structure after an Append() operation. In the next Section we describe the analogous process for the Pop() operation and discuss several technical and practical considerations.

4 The Details

4.1 The Pop() operation

Updating the information in our data structure after a Pop() operation is fairly more elaborated because it involves transferring matches from one list to another and searching for covered points that suddenly become uncovered.

Let us consider the Pop() operation in Figure\(\text{[II]}\) that removes the first letter of the fourth string. This implies that all the matches in the set \(\{4, 6, 7, 8, 9, 10, 14, 16, 17\} \times \{2, 3, 5, 7, 10, 13, 17\} \times \{1, 5, 7, 10, 15, 17, 20\} \times \{1\}\) that occur in our data structure (Table\(\text{[I]}\)) need to be removed. Notice that we selected these matches by using the sets of positions of letter \(\mathcal{A} \) in the first three strings and the position 1 in the fourth string. Because the last coordinate is fixed to the first letter of the fourth string, these matches can not dominate other matches hence all of them must be at level 1. Therefore all matches are covered matches except possibly the first match \((4, 2, 1, 1)\).

Instead of generating all of these 441 matches we only need to consider the first match \((4, 2, 1, 1)\), that corresponds to the first position of \(\mathcal{A} \) in each string. This first match does occur in Table\(\text{[I]}\) in the list of level 1. We therefore remove this point from the list. This has an impact in the structure. First some covered points may become non covered, this happens with the point \((4, 2, 1, 3)\). For this particular case uncovering is simple, we consider the point that indicates the first positions of letter \(\mathcal{A} \) in each of the strings. In this case the position of the first occurrence of \(\mathcal{A} \) in the fourth string is 3 thus yielding this particular point. The uncovered point gets inserted into the list of level 1 before the next verification. Note that before inserting \((4, 2, 1, 3)\) into the list of level 1 it is necessary to verify that it is not covered by any match on that list, noting that at this time the point \((4, 2, 1, 1)\) is not part of the list. Therefore the point \((4, 2, 1, 3)\) gets accepted. Moreover if \((4, 2, 1, 3)\) covered any points on the list those points would have to be removed, but this is not the case.

The second important consequence of removing the match \((4, 2, 1, 1)\) from the list of level 1 is that some matches at level 2 may be relying on this match and may have to be transferred to level 1. In particular this is the case of \((6, 3, 5, 3)\) and \((15, 4, 2, 2)\). Since neither of them dominates \((4, 2, 1, 3)\), nor the other points in level 1, they do have to be moved. In this process \((6, 3, 5, 3)\) is eliminated because it is covered by \((4, 2, 1, 3)\) and \((15, 4, 2, 2)\) is eliminated because it is covered by \((15, 1, 2, 2)\). Hence they are removed and disappear. We now need to further update the structure to account for the fact that these points got moved. For both of these matches we need to check if they uncover points and if there are matches at level 3 that relied on them and that have
to be pulled to level 2. This process continues until there are no more matches to move to a lower level. The final result of this process is shown in Table 2 where the highlighted changes are shown with gray boxes. In this particular case the process ends at level 6.

Moving points to a lower level is fairly straightforward, as described before it requires checking that the point is not covered in the lower level and removing any points that it covers. However the uncovering process is a bit more complex than what was previously exemplified. To describe the complete process consider the match (11, 11, 16, 8) at level 6. This point is moved to level 5 but in that list it is covered by the point (11, 9, 14, 8) and disappears. However before that it will leave the point (12, 11, 16, 9) as an uncovered match at level 6. The exact process to uncover this match is the following. First notice that the letter that corresponds to the match (11, 11, 16, 8) is ‘B’. We start of by considering the point indicating the last positions of ‘B’, in this case (21, 15, 16, 20). We combine this point with (11, 11, 16, 8) using only one value from the match and the remaining values from the point of last positions. In this case the resulting points are (11, 15, 16, 20); (21, 11, 16, 20); (21, 15, 16, 20) and (21, 15, 16, 8). The reason for generating these four points is that a covered match must be equal in at least one coordinate. Therefore we test all of them.

For each one of these points we determine the points at level 5 that are dominated by at least one of them. In this particular case it is enough to check for the points dominated by (21, 15, 16, 20), as any point dominated by the other three is also dominated by (21, 15, 16, 20). Consulting the matches at level 5 in Table 2 we can observe a large number of dominated points. In particular there is the match (11, 9, 14, 8). From each one of these matches we generate a new match by using the letter ‘B’. Hence from (11, 9, 14, 8) we obtain (12, 11, 16, 9) as expected. Also note that the match (9, 10, 15, 10) is also dominated by (21, 15, 16, 20) and it generates the match (11, 11, 16, 14), which also becomes a new uncovered match.

It may seem that this elaborated process is unrelated to the previous description we gave for uncovering. In particular there should be no level 0 list. However we include one such list, containing only the point (−1, −1, −1, −1). This point does not correspond to an actual match, but it behaves as a sentinel in the data structure. This reduces the elaborated uncover procedure to the simple description we gave before, as once the sentinel point is selected it then is used to generate the first match of a given letter. Moreover for the same reason this sentinel is useful for the Append() operation.

The only remaining detail about our data structure is how to represent the lists of points. We could use actual lists, but instead we used orthogonal range trees. The reason being that an orthogonal range tree allows us to compute dominance in \(O(\log^kn)\) time, where \(k\) is the number of strings, or dimension of the point space, and \(n\) is the number of points in the list. Hence the steps in the previous description that mentioned determining the matches of a list dominated by a given point \(p\) can be determined in this time. The underlying algorithmic primitive is known as an orthogonal range query and it can also be used to support the double condition described in the procedure of the Append() operation. This primitive allows us to filter a list of points by specifying intervals that each coordinate should respect. In our example of Section 3 we concluded that to perform the Append() operation we need to filter the points in Table 1 that where dominated by the point (19, 18, 21, 19) and that dominated the point (0, 0, 18, 0). From these two points we can then consider the orthogonal range \([0 + 1, 19 − 1] \times [0 + 1, 18 − 1] \times [18 + 1, 21 − 1] \times [0 + 1, 19 − 1]\), defined as the Cartesian product of the intervals that restrict the coordinates. Hence a query of this range in Table 1 yields the desired point (16, 17, 20, 12).

In the next Section we describe several implementation choices we made and the resulting performance analysis. Namely we need to support the dynamic nature of our lists, where points are inserted and removed during the course of the algorithms. The orthogonal range queries are actually interleaved among these modifications. Obtaining such a dynamic implementation requires a particular implementation that we will now describe.

4.2 Dynamic Orthogonal Range Trees

In this section we give a simple description of the implementation of dynamic orthogonal range trees. Our approach to the problem is simple and pragmatic. The description is also similar in spirit. Our implementation still lacks several refinements that may yield further polylog speed-ups, i.e., \(O(\log^cn)\), for some constant \(c\). We plan to implement those techniques soon, but the current state of the software is sufficient to establish the validity of the algorithm we describe in the paper.

The simplest instance of the problem is the one dimensional case, were the data structure stores a set of points (single numbers) and the query consists of an interval. An example of a query would be to search for all the numbers contained in the interval [3, 7]. The result would depend on
the points that are stored. If the list of points consisted of \{1, 4, 5, 7, 10\} then the result of the query would be the set \{4, 5, 7\}.

To compute queries we store the points in a binary search tree (BST). We can build a completely balanced BST in \(O(n)\) time, for a set with \(n\) points. We assume that the points are pre-sorted and that we only need to build the tree structure itself. As points are added or removed this balanced property is likely to be lost. In particular, long branches may arise. This is undesirable as traversing them takes longer than the desired performance bound. To avoid this problem several balancing schemes have been proposed in the literature. For our particular application we favor an approach that does not use rotations, meaning that once a node is considered unbalanced its entire sub-tree needs to be rebuilt. This approach is simple and adequate for orthogonal range trees, because rebuilds can not be avoided even when using rotations.

We use a weight balanced BST, similar to BB-\(\alpha\) trees. We will use a balancing scheme that is simple to implement and provides good performance. Let us consider a node \(u\) with weight \(w(u)\). The weight of a node is the number of points stored in its sub-tree. To make sure that the tree is balanced we force the weight to decrease by a factor \(\alpha < 1\). Therefore if \(v\) is a child of \(u\) we must have that Inequality (1) holds.

\[
\text{w}(v) \leq \alpha \text{w}(u) \tag{1}
\]

When this condition on \(v\) and similar condition on \(v'\) are verified the node \(u\) is considered balanced, where \(v'\) is the other child of \(u\). If a child node does not exist its weight is considered to be 0. Therefore a leaf is always balanced. A node \(u\) that is not balanced is unbalanced.

In order for Equation (1) to be meaningful we must have \(\alpha < 1\). Moreover we should also have \(1/2 < \alpha\), as anything below \(1/2\) is impossible to ensure for both children. Even \(1/2\) is unreasonable as every modification might imply a rebuild. In conclusion we should choose \(\alpha\) to respect \(1/2 < \alpha < 1\).

Now let us consider a branch of length \(h\) that starts at the root, with weight \(n\), and finishes at a leaf, with weight 1. If we iterate Equation (1) along the branch, of length \(h\) we obtain the restriction that \(1 \leq \alpha^h n\). This restriction implies \(h \leq \log_{1/\alpha} n\).

Let us turn to the analysis of the modification operations. The analysis is amortized. We associate to each node \(u\) of the tree a potential \(\Phi(u)\) defined in Equation (2).

\[
\Phi(u) = \left(\frac{2 \max\{w(v), w(v')\} - w(u)}{2\alpha - 1}\right) \tag{2}
\]

The overall potential of the data structure is the sum of the \(\Phi(u)\) values, for all the nodes. The important properties of \(\Phi(u)\) are that it is 0 when the sub-tree below \(u\) is completely balanced and that it is at least \(w(u)\) when the condition in Inequality (1) fails. Hence when a node becomes unbalanced there are enough credits to rebuild the corresponding sub-tree.

When a point is inserted into the sub-tree rooted at \(u\) the weight value \(w(u)\) increases by 1. One of the weights \(w(h)\) or \(w(v')\) also increase by 1. The conclusion in terms of the analysis is that it is sufficient to stock up \(1/(2\alpha - 1)\) credits for each node in the corresponding branch. This branch is the path that the insertion procedure traverses. Given the bound on the size of the branches \(h\) we obtain an \(O((1/(2\alpha - 1)) \log_{1/\alpha} n)\) amortized time for the insertion operation. A similar argument, and bound, also holds for deletion.

In our experiments we use \(\alpha = 3/4\). This is a reasonably good value. Each node needs to stock up 2 credits per node on modification operations and the factor \(1/\log(1/\alpha)\) is around 2.4. Which is reasonable, given that for AVL trees the corresponding factor is 1.44 and for red-blacks its 2.0.

Finally we discuss general orthogonal range trees (ORT), for points in \(k\) dimensions. General ORTs are defined recursively. As we have seen, a 1D ORT is simply a BST. A \(k\) dimensional ORT is also a BST, ordered by the last coordinate of the points. Moreover each node in this BST stores a \(d - 1\) ORT which contains the same points as its sub-tree, but the points are projected to a \(k - 1\) space by removing the last coordinate. Computing a query on the trees consists in traversing a branch on the \(k\) dimensional tree and for each node in this branch traversing the corresponding branches on the \(k - 1\) tree and so on. The total amount of nodes visited is at most \(h\) for dimension \(k\), at most \(h^2\) for dimension \(k - 1\) and so on up to \(h^k\) nodes for dimension 1. Adding the resulting geometric series yields a total of \(h(h^k)/(h - 1) = O(h^k)\) nodes. Hence the resulting time bound for the \(k\) dimensional query operations is \(O(\log_{1/\alpha} n)\).

A similar series is used for the modification operations. To build a \(k\) dimensional ORT with \(n\) points we use a procedure that requires \(O(n \log^{k - 1} n)\) time. For any \(k > 1\) we find the median in \(O(n)\) time and split the points into two sets of \(n/2\) points. We also need to build the tree with the same \(n\) points in dimension \(k - 1\). Let \(T(n, k)\) represent the time necessary to build a \(k\) dimensional tree with \(n\) points. We have that \(T(n, 1) = O(n)\). For the general case with \(k > 1\), the procedure we explained can be accounted by the recurrence in Equation (3).

\[
T(n, k) = 2T(n/2, k) + T(n, k - 1) + O(n) \tag{3}
\]

This recurrence yields a bound of \(T(n, k) = O(n \log^{k - 1} n)\) construction time.

Now we update the potential function of Equation (2) by including an \(\log^{k - 1} n\) factor. The resulting amount of credits to stock in a node of a \(k\) dimensional tree is \((1/(2\alpha - 1)) \log^{k - 1} n\). Hence the total amount of credits necessary is given by the following geometric series:

\[
\frac{1}{2\alpha - 1} \left(h \log^{k - 1} n + h^2 \log^{k - 2} n + \ldots + h^k \right) \tag{4}
\]

We can now conclude that the amortized time bound of modification operations is \(O((1/(2\alpha - 1))h^k) = O((1/(2\alpha - 1))\log_{1/\alpha} n)\).

There is a final refinement to our implementation, which has a very significant impact in the practical performance of the structure. We choose a parameter \(c\) that we estimate is close to the height \(h\). In the one dimensional case whenever the weight \(w(u)\) of a node is smaller than \(c\) we can skip the sub-tree of \(u\) and store the points in an array. In a general dimension \(k\) we check if \(k \times w(u) < c^k\), when this condition is true we store the points in an array. To be absolutely
precise we check for \(\binom{c + k}{k} \) instead of \(c^k \) as this seems a more precise estimate of operation complexity. The intuition is that this number counts the number of possible root to leaf paths, where we only need to choose when to move to a lower dimension. The resulting data structure is a sort of graft tree that along is branch is an orthogonal range tree up to a certain threshold and after that is an array of points.

4.3 Experimental Results

We implemented the data structure that we described in the previous sections. We measured both execution time and memory usage. We used a virtual machine running Debian 4.9.144-3.1 the x86_64 version with 8Gb of Ram and an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz with 4 cores. The implementation was developed in C and compiled with gcc with optimization flag -O3.

We also implemented, in C, the Dynamic programming algorithm mentioned in Section 2.4 and the Quick-DP algorithm\(^4\) that will be briefly described in Section 5. The source code is available at https://github.com/LuisRusso-INESC-ID/IMLCS. Since the Naive and Quick-DP algorithms are not designed for the \texttt{Pop()} operation execute them from scratch whenever this operation is applied. For the \texttt{Append()} operation we simply do nothing. Meaning that the algorithms are only executed when a \texttt{Pop()} operation is applied. However the DP and Quick-DP algorithms are still forced to execute at least once before the prototypes terminate. This simulates the fact that the DP and Quick-DP algorithms could be adapted to support \texttt{Append()} efficiently and that in fact \texttt{Pop()} is the intricate and inefficient operation. This means that the comparison of the experimental results is in favor of the DP and Quick-DP algorithms. Therefore whenever our IMLCS algorithm is more efficient than these algorithms the comparison is in favor of the DP and Quick-DP algorithms.

We generated random sequences of \texttt{Append()} and \texttt{Pop()} operations. Each generated sequence is defined by a few parameters:

- \texttt{S} the size of the alphabet.
- \texttt{k} the number of strings.
- \texttt{m} the size of the strings.

The general generation procedure is the following. First one of the \(k \) sequences is chosen uniformly at random. Then we consider the size of that string. If the size of the string is smaller than \(m \) an \texttt{Append()} operation is selected. If the size of the string is larger than \(2 \times m \) then a \texttt{Pop()} operation is selected. Otherwise either \texttt{Pop()} or \texttt{Append()} is selected with 50% probability each. If an \texttt{Append()} operation is selected the letter is chosen uniformly from the alphabet. An experiment executes several operations and reports the average time per operation by dividing total time by number of operations. We selected three plots to present in Figure 4. In these plots we used a double log scale. These scales turn polynomials into straight lines, after a certain point. The inclination of the lines indicates the respective polynomial degree. It also means that gaps of what appears

1. We believe our Quick-DP implementation is as efficient as possible, it includes an \(O(n \log^k m) \) algorithm for multidimensional minima.

From these plots we can observe that our approach obtains the best results for larger alphabets and when the number of strings \(k \) increases. However in these cases the size of the underlying MLCS decreases. To partially factor out this condition we devised a second generator, that produces longer MLCS. This time if the operation selected is \texttt{Append()} we decide with a probability of \(1/k \) to insert the same letter in all \(k \) string. We present similar the plots from this generator (Figure 4) and the full set of plots in the Appendix.

As expected, the longer MLCS does have an impact in the resulting performance. Still, for the larger alphabets, our approach still achieves significantly better performance.

As a final test we experimented with actual protein sequences. Therefore the underlying alphabet has a fixed size of 21. We obtained the sequences from PFAM, corre-
Fig. 4. Average value of m versus average operation time for different combinations of k strings and alphabets S.

Fig. 5. Sliding window of size m versus average operation time for different combinations of k protein sequences.

responding to the AP_endonuc_2 family (A0AMF1, A0B937, A0AF79, A0JS78, A0LNH5, A0K062, A0JT54, A0NI89). To generate the tests we chose a fixed size of m. The generator uses k sliding windows of size m that passes through the sequences. The sliding windows of all the k sequences move in sync. Whenever a sliding window reaches the end of a sequence it wraps around to its first letter. The resulting performance is shown in Figure 5.

Clearly in these tests our prototype largely benefits from the alphabet size and generally out performs the alternatives. Thus our data structure is particularly well suited for this kind of application. More tests and memory results are given in the Appendix.

5 Related Work

Let us now revise previous work. As far as we are aware this is the first work to consider the dynamic multiple longest common subsequence problem. Previous worked considered either dynamic longest common substrings, i.e., with only two strings, or the multiple longest common subsequence in the static setting. We revise both these lines of research.

The work on dynamic longest common substrings, denominated incremental string comparison, was initiated by Landau, Myers, and Schmidt [12], which obtained an $O(m)$ time algorithm to implement a Prepend() operation, where the letter is added to the beginning of the strings. A simpler version, with the same performance was presented by Kim and Park [9], which is simultaneously incremental and decremental. This solution was presented for the edit distance. Ishida, Inenaga, Shinohara, and Takeda [7] presented an algorithm which reduced the time complexity from $O(m^2)$ to $O(m \lambda)$ and was fully incremental, where λ is the size of the LCS. The algorithms was presented for the LCS. The space requirements were also reduced from $O(m^2)$ to $O(m \lambda)$.

Landau, Myers, and Ziv-Ukelson [13] studied the problem of consecutive suffix alignment problem, which obtained the size of the LCS between all the suffixes of a string...
A and a string B, the final version of the paper appeared in [2007]. The authors presented two algorithms for this problem, which required $O(m \lambda)$ and $O(m \lambda + m \log \sigma)$ time, where σ is the size of the alphabet of the underlying strings. Their approach uses a structure similar to the T_k lists from the Hunt-Szymanski algorithm Hunt and Szymanski [3]. Moreover their structure is not decremental. Because of these nuances the relation to LTSS is not immediate which justifies the algorithm of Kosowski [11], in the same year.

A corner stone of all these results is the algorithm from Hunt and Szymanski [3], which contains several crucial ideas. One fundamental idea was the focus on matches, instead of all the points in the dynamic programming table. This idea carried over naturally to the multiple LCS cases. Another crucial idea was the reduction from the LCS to the Longest Increasing Subsequence, although this was not immediately clear in the original presentation. It was partially identified by Apostolico [1], Apostolico and Guerra [2] and made explicit by Jacobson and Vo [8] and independently by Pevzner and Waterman [16]. Interestingly the original presentation of Hunt and Szymanski [3] reported an $O((m + n) \log n)$ time bound, where n is the number of matches. This is a significant improvement over the plain dynamic programming algorithm, which always requires $O(m^2)$ time. Although in the worst case n may be $O(m^2)$, in general it may be significantly smaller. The original complexity was not always faster than the plain algorithm, because n may be $O(m/\log n)$. This issue was addressed by Apostolico [1] which obtained $O(m^2)$ time worst case guarantees. Improvements of the Hunt-Szymanski algorithm based on bitwise operations where proposed by Crochemore, Iliopoulos, and Pinzon [4].

The general Multiple Longest Common Subsequence problem is not restricted to only two strings, instead it considers k strings at a time. This problem was shown to be NP-Hard by Maier [15]. Considering $k > 2$, but fixed, several efficient algorithms were proposed Chen et al. [3], Hakata and Imai [5], Korkin et al. [10], Wang et al. [17]. Most of these methods use the Hunt-Szymanski approach of processing only match points. Moreover the increasing subsequence problem is generalized nicely to the notion of point domination, which we also adopted in Section 2.

This line of research obtained increasingly more efficient algorithms based on T_k lists from the second generator, described in Section 4.3. Moreover this algorithm contains several key insights that we used in designing our procedures for the modification operations. First they divided the matches according to their maximum levels, like in Table 2. In Quick-DP these matches are generated incrementally by level, meaning that all the level 2 matches are generated before the level 3 and so on. After all the matches of a level are generated they are filtered by efficient algorithm to compute geometrical minima. The resulting matches are the ones we defined as non-covered matches in Section 3. One key achievement of the algorithm by Wang, Korkin, and Shang [17] is that determining non-covered matches was possible without having to process all possible matches, as they pointed out in Section 3.2. We used a similar approach in our procedure for the Append() operation, essentially the notion of point generation we mentioned.

Given the nature of the Append() operation we can not use such a tight level separation as in Quick-DP. Instead to obtain a procedure that follows the same principles we need to use the orthogonal range trees to replace the multidimensional minima algorithm. This overhead actually leads to one advantage as we use one letter to generate points, whereas Quick-DP used the complete alphabet.

6 CONCLUSIONS AND FURTHER WORK

This paper presented the problem of computing the longest common subsequence of multiple strings when these strings are subject to modifications, in particular the Append() and Pop() operations, Sections 3 and 4.1. We proposed a data structure to represent the underlying MLCS that is well suited to the modification operations we considered. This structured relied on dynamic orthogonal range trees, described in Section 4.2 to support the modification algorithms.

We tested these algorithms experimentally, Section 4.3, and confirmed that these algorithms can outperform state of the art alternatives. Particularly when the alphabet size is big and/or the number of strings to consider is big. This makes it particularly well suited for the bioinformatics, in particular we tested subsequences of proteins.

We plan to further develop this line of research, in particular by extending the amount of operations, for example Prepend() and Trim(). Where Prepend() inserts a letter at the beginning of a sequence and Trim() removes the last letter from a sequence. Like the Append() operation the Trim() operation seems to be the simplest, it should only require deleting some matches from the structure. The Prepend() operation on the other hand seems similar to the Pop() operation and will involve transferring matches among lists. We also intend to study much more general operations, such as Insert() and Delete() that inserts or removes a letter from an arbitrary position of the string.

APPENDIX

In this section we show all the plots we obtained from our experimental results. The first set of plots are obtained from the first generator. The second set of plots are obtained from the second generator, the title of these second plots ends in λ. The final results, with $S = 21$, are from the protein data set.

![Graph showing performance comparison](attachment://graph.png)
The diagrams show the memory usage and time taken for different methods (IMLCS, Naive, Quick) for varying values of m and time. The graphs depict how memory usage and time change with respect to m and time for different random_S1_Kn and random_S2_Kn datasets.

For instance, in the graph for `random_S1_K2`, the memory usage (y-axis) increases with m (x-axis) for all methods, and the time (x-axis) increases as well. The graphs illustrate the efficiency of the methods, with Quick generally showing the fastest time and IMLCS having the highest memory usage.
random_S2_K2

random_S2_K3

random_S2_K4

random_S2_K5

random_S2_K6

random_S2_K7

random_S3_K2
IIMLCS Naive Quick

100ns 1us 10us 100us 1ms 10ms 100ms

time

100kb 10kb 1kb

Memory

m

random_S9_K2

random_S9_K3

random_S9_K5

random_S9_K7

random_S9_K4

random_S9_K9
ACKNOWLEDGMENTS

We are grateful to Hideo Bannai for interesting discussions on this topic, at StringMasters, Lisbon 2018.

The work reported in this article was supported by national funds through Fundação para a Ciência e Tecnologia (FCT) through projects NGPHYLO PTDC/CCI-BIO/29676/2017 and UID/CEC/50021/2019. Funded in part by European Unions Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions grant agreement No 690941.

REFERENCES

[1] Alberto Apostolico. Improving the worst-case performance of the hunt-szymanski strategy for the longest common subsequence of two strings. Information Processing Letters, 23(2):63–69, 1986.

[2] Alberto Apostolico and Concettina Guerra. The longest common subsequence problem revisited. Algorithmica, 2(1-4):315–336, 1987.

[3] Yixin Chen, Andrew Wan, and Wei Liu. A fast parallel algorithm for finding the longest common sequence of multiple biosequences. BMC Bioinformatics, 7(S4), Dec. 2006. ISSN 1471-2105. doi: 10.1186/1471-2105-7-s4-s4. URL http://dx.doi.org/10.1186/1471-2105-7-S4-s4.

[4] Maxime Crochemore, Costas S Iliopoulos, and Yoan J Pinzon. Speeding-up hirschberg and hunt-szymanski lcs algorithms. Fundamenta Informaticae, 56(1-2):89–103, 2003.

[5] Koji Hakata and Hiroshi Imai. Algorithms for the longest common subsequence problem for multiple strings based on geometric maxima. Optimization Methods and Software, 10(2):233260, Jan 1998. ISSN 1029-4937. doi: 10.1080/10556789808805713. URL http://dx.doi.org/10.1080/10556789808805713.

[6] James W Hunt and Thomas G Szymanski. A fast algorithm for computing longest common subsequences. Communications of the ACM, 20(5):350–353, 1977.

[7] Yusuke Ishida, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda. Fully incremental LCS computation. In International Symposium on Fundamentals of Computation Theory, pages 563–574. Springer, 2005.

[8] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems. In Annual Symposium on Combinatorial Pattern Matching, pages 52–66. Springer, 1992.

[9] Sung-Ryul Kim and Kunsoo Park. A dynamic edit distance table. In Annual Symposium on Combinatorial Pattern Matching, pages 60–68. Springer, 2000.

[10] Dmitry Korkin, Qingguo Wang, and Yi Shang. An efficient parallel algorithm for the multiple longest common subsequence (mlcs) problem. 2008 37th International Conference on Parallel Processing, Sep 2008. doi: 10.1109/icpp.2008.79. URL http://dx.doi.org/10.1109/ICPP.2008.79.

[11] Adrian Kosowski. An efficient algorithm for the longest tandem scattered subsequence problem. In International Symposium on String Processing and Information Retrieval, pages 93–100. Springer, 2004.
[12] Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. Incremental string comparison. *SIAM Journal on Computing*, 27(2):557–582, 1998.

[13] Gad M Landau, Eugene Myers, and Michal Ziv-Ukelson. Two algorithms for LCS consecutive suffix alignment. In *Annual Symposium on Combinatorial Pattern Matching*, pages 173–193. Springer, 2004.

[14] Gad M. Landau, Eugene Myers, and Michal Ziv-Ukelson. Two algorithms for LCS consecutive suffix alignment. *Journal of Computer and System Sciences*, 73(7):1095 – 1117, 2007. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.2007.03.004. Bioinformatics III.

[15] David Maier. The complexity of some problems on subsequences and supersequences. *Journal of the ACM (JACM)*, 25(2):322336, Apr 1978. ISSN 1557-735X. doi: 10.1145/322063.322075. URL http://dx.doi.org/10.1145/322063.322075.

[16] Pavel A Pevzner and Michael S Waterman. Matrix longest common subsequence problem, duality and hilbert bases. In *Annual Symposium on Combinatorial Pattern Matching*, pages 79–89. Springer, 1992.

[17] Qingguo Wang, Dmitry Korkin, and Yi Shang. A fast multiple longest common subsequence (mlcs) algorithm. *IEEE Transactions on Knowledge and Data Engineering*, 23(3):321334, Mar 2011. ISSN 1041-4347. doi: 10.1109/tkde.2010.123. URL http://dx.doi.org/10.1109/TKDE.2010.123.

Luís M. S. Russo Luís M. S. Russo received a Ph.D. degree from Instituto Superior Técnico, Lisbon, Portugal, in 2007. He is currently an Assistant Professor with Instituto Superior Técnico. His current research interests include algorithms and data structures for string processing and optimization.

Alexandre P. Francisco Alexandre P. Francisco has a Ph.D. degree in Computer Science and Engineering and he is currently an Assistant Professor at the CSE Dept. IST, University of Lisbon. His current research interests include the design and analysis of data structures and algorithms, with applications on network mining and large data processing.

Tatiana Rocher Tatiana Rocher received a Ph.D. in computer science in 2018 in Lille, France. She currently has a post-doctoral position in INESC-ID in Lisbon. Her research interests include string algorithms and data structures.