Characterization of the dust content in the ring around Sz 91: indications for planetesimal formation?

Karina Maucó
Postdoc @Universidad de Valparaíso

Co-Is: Carlos Carrasco-González, Matthias R. Schreiber, Anibal Sierra, Johan Olofsson, Amelia Bayo, Claudio Caceres, Hector Canovas, and Aïna Palau
Why do we care about Protoplanetary Disks?
Protoplanetary Disk Structure

Different wavelengths (frequencies) trace different regions.

emission lines (e.g., CO)

IR scattered light

(sub-)mm/cm continuum
(+ optically thin lines; e.g., C18O)

atmosphere

gas + small dust grains

midplane

gas + larger solids

modified from Andrews et al. (2020)
Different wavelengths (frequencies) trace different regions.

modified from Andrews et al. (2020)
Different wavelengths (frequencies) trace different regions.
Radial drift dilemma

Dust particles drift along the pressure gradient

A 1 m body will drift inward in a few hundred years!!

modified from Andrews et al. (2020)
Disk Sub-structures

High-resolution images

sub-mm structures (1.25 mm)

1-10 Myr

Mean age ~1 Myr

DSHARP; Andrews et al. (2018) and ref there in
Disk Sub-structures

High-resolution images

sub-mm structures (1.25 mm)

DSHARP; Andrews et al. (2018) and ref there in

1-10 Myr

Mean age \(~1\) Myr

Modified from Carrera et al. (2021)
Disk Sub-structures

High-resolution images

sub-mm structures (1.25 mm)

1-10 Myr

Mean age ~1 Myr

Modified from Carrera et al. (2021)

DSHARP; Andrews et al. (2018) and ref there in

Planetary systems

v_drift	Particle trap

Modified from Carrera et al. (2021)
Sz 91

A young Transition Disk in Lupus

- **Lupus III** Molecular cloud
 - ~160 pc (Gaia EDR3)
- \(M_* = 0.58 \, M_\odot \)
- \(\text{Teff} = 3800 \, \text{K}, \, \text{Spt} = \text{M0} \)
- \(M_{\text{dot}} \sim 10^{-8.8} \, M_\odot / \text{yr} \) (Alcalá+2017)

Mauró et al. (2020); Tsukagoshi et al. (2019)

Dynamical clearing by **multiple planets** is the most likely **gap-opening** mechanism in Sz 91

Canovas et al. (2015)
High-resolution ALMA Observations

Goals

- **New ALMA observations at 2.1 mm (band 4)** + archival data at **0.9 mm** (band 7) and **1.3 mm** (band 6)

- **Spectral index** of dust emission
 - grain growth

- **Radial analysis** of the (ALMA) SED
 - Including **scattering** effects*
 - Without assuming **any optical depth** value at any wavelength

- **Optical depth, dust surface density, maximum grain size**

* from Sierra et al. (2019) + HL Tau (Carrasco-González et al. 2019)

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Results

High-resolution ALMA Observations

B4, B6, B7 Radial Intensity Profiles

\[\alpha = 3.34 \]

Maucó et al. (2021)

\(\alpha (0.8-2.7 \text{ mm}) = 3.36 \rightarrow \text{Canovas et al. (2015)} \)
Results

High-resolution ALMA Observations

B4, B6, B7 Radial Intensity Profiles

Radius (au)	Normalized Flux
0	0.0
20	0.2
40	0.4
60	0.6
80	0.8
100	1.0
120	1.2
140	1.2
160	1.0
180	0.8
200	0.6
220	0.4

@220 mas (35 au)

\(\alpha = 3.34 \)

Classical Approach

\[\alpha_{\text{thin}} = 2 + \beta_{\kappa} \]

\(1 \text{ mm} < a_{\text{max}} < 2.5 \text{ mm} \)

\(\alpha(0.8-2.7 \text{ mm}) = 3.36 \rightarrow \) Canovas et al. (2015)

Maucó et al. (2021)
Results

Optical Depth

Dust emission \textbf{NOT} optically thick!

\[\tau = 0.1 - 0.6 \text{ (with scattering)} \]
\[\tau = 0.1 - 0.01 \text{ (without scattering)} \]

\textbf{DSHARP} sample
\[\tau = 0.2 - 0.6 \]
Dullemond+2018

Maucó et al. (2021)
Sz 91

Dust mass & Maximum grain size

Results

\[a_{\text{max}} = 0.61 \text{ mm} \]

\[M_{\text{dust}} = 31.3 \, M_{\odot} \]

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Results

Dust mass & Maximum grain size

Classical Approach

\[a_{\text{max}} = 1-2.5 \text{ mm} \]
\[M_{\text{dust}} = 31.3 \ M_\odot \]

>

\[a_{\text{max}} = 0.61 \text{ mm} \]
\[M_{\text{dust}} = 8.89 \ M_\odot \]

Optically thin, no scattering, single dust opacity, single dust temperature

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Results

Mass budget problem for planet formation

Dust mass in protoplanetary disk appears to be **too low** to form the observed exoplanetary systems → assuming **optically thin** emission!

- Classical Approach
- \(a_{\text{max}} = 1-2.5 \text{ mm} \)

Planets form extremely **fast**

\[M_{\text{dust}} = 31.3 \, M_\odot \]

\[> \]

\[M_{\text{dust}} = 8.89 \, M_\odot \]

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Sz 91

Sz91 in Context: Spectral index

Results

Lupus disk population

\[\alpha = 3.34 \]

spectral indices and fluxes from Tazzari et al. (2020), Ansdell et al. (2018)

STAR FORMATION: FROM CLOUDS TO DISCS, A Tribute to the Career of Lee Hartmann
Results

Sz 91

Sz91 in Context: Spectral index

Lupus disk population

\[\alpha = 3.34 \]

TD in other regions

spectral indices and fluxes from Tazzari et al. (2020), Ansdell et al. (2018)

grain size \(\alpha = 3.34 \)

op. thick

spectral indices from Pinilla et al. (2014, 2015, 2019), cavity sizes are taken from Pinilla et al. (2014), Francis & van der Marel et al. (2020), van der Marel et al. (2015), Cieza et al. (2020) and Ribas et al. (2016)

Zhu+2019

spectral indices from Pinilla et al. (2014, 2015, 2019), cavity sizes are taken from Pinilla et al. (2014), Francis & van der Marel et al. (2020), van der Marel et al. (2015), Cieza et al. (2020) and Ribas et al. (2016)
Results

Sz91 in Context: Spectral index

Lupus disk population

$\alpha = 3.34$

TD in other regions

spectral indices and fluxes from Tazzari et al. (2020), Ansdell et al. (2018)

spectral indices from Pinilla et al. (2014, 2015, 2019), cavity sizes are taken from Pinilla et al. (2014), Francis & van der Marel et al. (2020), van der Marel et al. (2015), Cieza et al. (2020) and Ribas et al. (2016)

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Interpretation

- **Optically thick** disk with scattering
- Dust albedo ~ 0.9
 - $a_{\text{max}} = 0.1 - 1 \text{mm}$
- **Spectral index**
 - $\alpha \sim 2$ (thick)
 - $\alpha > 2.5$ (thin)

Zhu et al. (2019)

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Interpretation

- **Optically thick** disk with scattering
- Dust albedo ~ 0.9
 - $a_{\text{max}} = 0.1 - 1\text{mm}$
- Spectral index
 - $\alpha \sim 2$ (thick)
 - $\alpha > 2.5$ (thin)

Valid inner disk ($r < 50\text{ au}$)
rings modeled with Gaussians profiles
Interpretation

- **Optically thick** disk with scattering
 - Dust albedo ~0.9
 - $a_{\text{max}} = 0.1 - 1\text{mm}$
 - Spectral index
 - $\alpha \approx 2$ (thick)
 - $\alpha > 2.5$ (thin)

Zhu et al. (2019)

- Dust albedo ~0.9
 - $a_{\text{max}} = 0.1 - 1\text{mm}$

Optically thick disk with scattering

Macías et al. (2021)

Valid inner disk ($r < 50$ au)

Rings modeled with Gaussians profiles
Interpretation

Stammler et al. (2019)

- 1D-model (Birnstiel+2010)
- dust growth, fragmentation
- Planetesimal formation
 - streaming instability
- 2th ring in HD 163296
Interpretation

Stammler et al. (2019)

- 1D-model (Birnstiel+2010)
- dust growth, fragmentation
- Planetesimal formation
 - streaming instability
- 2th ring in HD 163296

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Interpretation

Stammler et al. (2019)

- 1D-model (Birnstiel+2010)
- dust growth, fragmentation
- Planetesimal formation
 - streaming instability
- 2th ring in HD 163296
Interpretation

Planetesimal formation

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Interpretation

Planetesimal formation

Spectral index

STAR FORMATION: FROM CLOUDS TO DISCS. A Tribute to the Career of Lee Hartmann
Carrera et al. (2021): extremely robust process in protoplanetary disks.
Conclusions

- We obtained 2.1 mm ALMA observations @0.1” resolution
- Well resolved ring of dust peaking at ~90 au from the central star
- By using multi-wavelengths observations we found an almost constant spectral index of $\alpha \approx 3.34$.
- Compare to the disk population of Lupus, Sz 91 has the highest α
 - optically thick regions in un-resolved sources may account for the low α
- Compare to TDs in other regions, Sz 91 behaves as expected for a TD with a huge cavity.
 - By performing a radial fitting of the ALMA SED we found:
 - optical depths: 0.1 - 0.6 (same as for the DSHARP sample)
 - $a_{\text{max}} \approx 0.61$ mm
 - $M_{\text{dust}} = 31.3 \, M_\odot$

Evidence of grain growth due to accumulation of mm particles in the ring. Possible on-going planetesimal formation in a transition disk.

It remains to be tested if the ring-like accumulations around the dust depleted cavities in transition disks show similar characteristics as the sub-structures of the DSHARP disks.
Thanks!

(Lee)