Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke

Takayoshi Shimohata, Masato Kanazawa, Kunio Kawamura, Tetsuya Takahashi, and Masatoyo Nishizawa

Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan

Key words
hemorrhagic transformation, therapeutic time window, tissue plasminogen activator, vascular endothelial growth factor, vascular protection.

Accepted for publication 21 October 2013.

Correspondence
Takayoshi Shimohata, MD, PhD, Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahi-machi-dori, Chuoku, Niigata, Niigata 951-8585, Japan.
Email: t-shimo@bri.niigata-u.ac.jp

Abstract
Here, we describe a therapeutic strategy for attenuating hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) treatment for acute ischemic stroke. Recent studies have shown that tPA treatment is beneficial within 4.5 h of onset for patients with acute ischemic stroke. However, the risk of serious or fatal symptomatic hemorrhage increases with delayed initiation of treatment. HT is considered to be caused by ischemic/reperfusion injury, as well as the toxicity of tPA itself. Therapeutic strategies to attenuate HT after tPA treatment might involve (i) identification of risk factors for HT after tPA treatment and (ii) the development of thrombolytic drugs, which are less likely to cause bleeding, or drugs that can be concomitantly administered for vascular protection. Several studies have shown that matrix metalloproteinases and free radicals are potential therapeutic targets. In addition, we recently showed that inhibition of the vascular endothelial growth factor (VEGF) signaling pathway might be a promising therapeutic strategy for attenuating HT after tPA treatment. Further studies are required to link the results obtained in experimental animal models to human clinical trials.

Introduction
Tissue plasminogen activator (tPA), a thrombolytic drug used for treating acute ischemic stroke, is a grade A recommendation in Japanese and USA guidelines. However, tPA does not always significantly contribute to the treatment of ischemic stroke primarily because of its temporal limitations, wherein tPA treatment should be initiated within 4.5 h of stroke onset and possible intracerebral hemorrhagic transformation (HT) after tPA treatment. Experimental animal model studies have shown that reperfusion by thrombolysis at an inappropriate time increases the intracerebral HT incidence.1 Furthermore, tPA itself is neurotoxic, which aggravates damage caused by glutamic acid release after ischemia. In addition, it promotes infiltration of leukocytes and production of free radicals after ischemic lesions.2 Herein, we review therapeutic strategies aimed at attenuating intracerebral HT after tPA treatment.

Strategies to improve outcomes of tPA treatment
Reperfusion by thrombolysis is essential for the treatment of acute ischemic stroke; however, this treatment alone is not sufficient to restore blood flow. Although thrombolysis efficiency varies depending on the modalities of tPA treatment (intravenous < intra-arterial < combined intravenous/intra-arterial < combined with mechanical thrombolysis),3 there are differences between the efficiency and therapeutic effects of thrombolysis.4 Thus, it seems difficult to prevent the cascade of ischemic neuronal damage with reperfusion alone. The possible events that can occur after reperfusion are summarized in Table 1.

Potential strategies to improve tPA treatment outcomes could involve: (i) reduction in the delay in initiating tPA treatment; (ii) improvement in the efficiency of thrombolysis (recanalization rate); (iii) extension of the therapeutic time window; (iv) reduction in the inherent neurotoxicity of tPA; and (v) attenuation of intracerebral HT (Table 2).

Characteristics of intracerebral HT after tPA treatment
According to a postmarketing survey, the frequency of symptomatic HT after tPA treatment is 8.5% (out of 6,483 patients) in the Safe Implementation of Thrombolysis in Stroke Monitoring Study (SITS-MOST) in Europe,5,6 5.8% (out of 103 patients) in Alteplase Clinical Trial (J-ACT) in Japan,7 and 0% (out of 58 patients) in J-ACT II using magnetic resonance angiography.8 If the treatment is initiated
Table 1 Possible events after reperfusion

Events
1. Cerebral edema and intracerebral hemorrhage associated with disruption of the blood-brain barrier
2. Induction of cell death processes (e.g. apoptosis, necrosis, and autophagy-related death)
3. Reprogramming of transcription
4. Activation of innate and adaptive immunity
5. No reflow phenomenon

*A phenomenon in which, if a certain period of time elapses after stroke onset, restoration of blood flow is not expected even after reperfusion of the ischemic lesion or hypoperfusion after temporary hyperperfusion.

Table 2 Strategies to improve thrombolytic treatment outcomes

Therapeutic strategy	Specific methods	
(1) Reduction in time before treatment initiation	Awareness campaign for stroke	Reexamination of patient transport methods and treatment after arrival at hospital
(2) Improvement in efficiency of thrombolysis	Examination of administration methods of tPA	Concomitant drugs (e.g. selective thrombin inhibitors, low-molecular-weight heparin, aspirin, and glycoprotein IIb/IIIa inhibitors)
(2) Improvement in efficiency of thrombolysis	Concomitant use of transcranial ultrasound (Combined Lysis of Thrombus in Brain Ischemia with Transcranial Ultrasound and Systemic tPA [CLOTBUST] trial)	
(3) Extension of the therapeutic time window	Selection of patients eligible for treatment using imaging techniques	Development of concomitant drugs that protect the penumbra
(4) Reduction in inherent tPA neurotoxicity	Reduction in tPA doses	Development of novel thrombolytic drugs (e.g. alteplase and desmoteplase)
(5) Attenuation of intracerebral HT	Identification of high-risk patients	Development of novel thrombolytic drugs
(5) Attenuation of intracerebral HT	Development of concomitant vasoprotective drugs	

* tPA, tissue plasminogen activator, HT, hemorrhagic transformation.

Mechanism of intracerebral HT after tPA treatment

Major causes for disruption of the blood-brain barrier (BBB), which is involved in intracerebral HT after tPA treatment, include: (i) cerebral ischemia/reperfusion injury; and (ii) the inherent toxicity of tPA. Cerebral capillaries have a vascular structure composed of vascular endothelial cells and their tight junction, pericytes, basal lamina, and astrocytes surrounding them. This characteristic structure plays an important role maintaining BBB function. Cerebral ischemia/reperfusion injury results in: (i) the disappearance of the vascular permeability barrier; (ii) degradation of protein components of the basal lamina by matrix metalloproteinase (MMP)-2 or MMP-9 followed by detachment of the basal lamina and astrocytes; and (iii) infiltration of inflammatory cells into the vascular wall in the BBB.

Furthermore, the inherent action of tPA can induce intracerebral HT through mechanisms involving: (i) prolonged bleeding times; (ii) plasmin-mediated degradation of protein components of the basal lamina; (iii) production of free radicals associated with reperfusion; and (iv) MMP activation. Through interaction with specific domains of proteins, tPA causes excitatory neurotoxicity, activation of platelet-derived growth factor-CC (PDGF-CC), and activation of microglia (Fig. 2). There is a report that caspase-8-mediated apoptosis is involved in tPA-mediated neurotoxicity.

Regarding the activation of MMP, it has been shown that tPA cleaves low-density lipoprotein (LDL) receptor-related protein (LRP) in the plasma membrane of astrocytes that exist around blood vessels, and the cleaved extracellular fragments induce MMP-9 through the nuclear factor (NF)-κB pathway activation. Table 3 shows the roles of typical MMP in cerebral ischemia.

Strategies to attenuate intracerebral HT after tPA treatment

Possible strategies to attenuate intracerebral HT after tPA treatment include: (i) identification of patients at high risk for the development of intracerebral HT and selection of candidates for tPA treatment; (ii) reduction of tPA doses; and (iii) development of thrombolytic and vasoprotective drugs that are unlikely to cause hemorrhage. For strategy (i), advanced age, severe cases, hypertension, and atrial fibrillation, as well as hyperglycemia, which promotes superoxide production, are recognized as important predictors for...
intracerebral HT.6,19 Plasma MMP-920,21 and fibronectin,21 the substrate of MMP-9, are biomarkers for HT in humans. Imaging studies are also useful to predict intracerebral HT. The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a quick and standardized CT scoring system.22 For this score, the territory supplied by the middle cerebral artery is allotted 10 points, and 1 point is subtracted for each area of early ischemic change for each of

Table 3 Matrix metalloproteinases and their putative roles in acute ischemic stroke

MMP	Putative roles
MMP-2 (gelatinase A)	Attacks major components of the basal lamina around the cerebral blood vessels including type IV collagen, laminin, and fibronectin. Could contribute to infarct and hemorrhagic volume.
MMP-3 (stromelysin-1)	Degrades the extracellular matrix proteins fibronectin, denatured collagen, laminin, and proteoglycans. Plays a key role in the initial opening of the BBB after stroke and development of hemorrhagic transformation, particularly with tPA treatment.
MMP-9 (gelatinase B)	Attacks major components of the basal lamina including type IV collagen, laminin, and fibronectin. Plays a key role in the delayed opening of the BBB after stroke especially in states of systematic inflammation. Implicated in the development of hemorrhagic transformation, particularly with tPA treatment.

BBB, blood-brain barrier; MMP, matrix metalloproteinase; tPA, tissue plasminogen activator. Modification of reference17.

Figure 1 The association between parenchymal intracerebral hemorrhage and the time to initiation of tissue plasminogen activator treatment (adapted from Lees KR \textit{et al} 9). The horizontal axis is the time to initiate treatment (min), and vertical axis is odds ratio and 95% confidence interval for type-II parenchymal intracerebral hemorrhage (Stroke 2001; \textbf{32}:1330–5133).

Figure 2 Mechanisms of intracerebral hemorrhagic transformation after tissue plasminogen activator (tPA) treatment and therapeutic targets. APC, activated protein C; BBB, blood-brain barrier; LRP, Low-density lipoprotein receptor-related protein; MMP, matrix metalloproteinase; NMDA, N-methyl-D-aspartate; PAR1, protease activated receptor 1; tPA, tissue plasminogen activator; VEGF, vascular endothelial growth factor.
the defined regions (cut-off value for HT ≤ 7). Diffusion-weighted imaging (DWI)-ASPECTS is a scoring method for assessing the presence of fresh ischemic lesions by using DWI compared with CT-ASPECTS (cut-off value for HT ≤ 5 out of 10 points). ASPECTS + W is a modified ASPECTS for DWI, which includes deep white matter lesions on DWI in addition to the original ASPECTS regions (cut-off value for HT ≤ 7 out of 11 points). In addition, the selection of patients by using diffusion perfusion mismatch on DWI ("malignant profile", characterized by a large DWI lesion volume and/or a large perfusion-weighted image lesion volume with long delays on the Tmax map, as associated with a high risk for fatal symptomatic hemorrhage) or new-extra ischemic microbleeds developed rapidly after tPA treatment on T2*WI or susceptibility-weighted image (SWI) might decrease intracerebral HT after tPA treatment.

The usefulness of the SEDAN score (sugar on admission, early infarct signs and [hyper] dense cerebral artery sign on admission CT head scan, age, and the National Institutes of Health Stroke Scale [NIHSS] score), which is used to estimate risk of symptomatic intracerebral HT by combining these predictors, has been reported (Table 4a). Other predictive scores such as HAT, SITS-ICH risk score, and postthrombolysis risk score have also been proposed (Table 4b).

It has also recently been reported that high signal intensity lesions on fluid-attenuated inversion recovery imaging carried out within 4.5 h after stroke onset and very low cerebral blood volume on the cerebral blood flow map created by perfusion imaging are useful for predicting intracerebral HT.

For strategy (ii), the single-arm case-controlled observational studies showed that the clinical efficacy and safety of low-dose intravenous (IV)-tPA (0.6 mg/kg body weight; maximum 60 mg) in Japanese patients with acute ischemic stroke patients is comparable with those of thrombolysis with standard-dose IV tPA (0.9 mg/kg body weight; maximum 90 mg) in Western population.

Regarding strategy (iii), various drugs that attenuate intracerebral HT after tPA treatment have been investigated in experimental animal models, and MMP were frequently used as therapeutic target molecules in these studies (Table 5). Specifically, the aim of these studies was to inhibit MMP that are possibly released from neutrophils and microglia that cause destruction of tight junctions that connect the basal lamina and endothelial cells. The importance of MMP-9 is shown by the findings that

Table 4 Prediction of symptomatic intracerebral hemorrhage risk: (a) The SEDAN score. (b) Scores predicting the risk of hemorrhagic transformation after thrombolysis

Item	Value	Score
a) The SEDAN score		
Blood sugar	≤ 144 mg/dL	0
	145-216 mg/dL	1
	> 216 mg/dL	2
Early ischemic signs on CT	Absent	0
	Present	1
Hyperdense artery sign	Absent	0
	Present	1
Age	≤ 75 years	0
	> 75 years	1
NIH Stroke Scale score	0-9 points	0
	≥ 10 points	1

Component	Risk assessment
SEDAN age, NIHSS score, HDMCA signs, early infarct signs on CT, glucose at presentation	Increased risk of ICH for scores 0–6
HAT DM or glucose at presentation ≥ 200 mg/dL, NIHSS score, hypodensity on CT	Increased risk of ICH for scores 0–5
SITS-ICH Risk Score age, body weight, history of hypertension, use of aspirin/clopidogrel, NIHSS score, SBP, glucose at presentation, OTT	Increased risk of ICH for scores 0–12
Postthrombolysis Risk Score age > 60 years, NIHSS > 10, glucose > 8.325 mmol/L, platelets < 150 000/mm³	Increased risk of ICH for scores 0–4

*Sugar on admission, early infarct signs and (hyper) dense cerebral artery sign on admission CT head scan, age, and the National Institutes of Health Stroke Scale (SEDAN) scores range from 0–6 points. The absolute risk of symptomatic intracerebral hemorrhage is 1.0–1.4% for 0 point, 2.9–3.5% for 1 point, 5.1–8.5% for 2 points, 9.2–12.2% for 3 points, 16.9–21.7% for 4 points, and 27.8–33.3% for 5 points (refer to reference29). DM, diabetes mellitus; HAT hemorrhage after thrombolysis; HDMCA, hyperdense middle cerebral artery; ICH, intracranial hemorrhage; NIHSS, National Institutes of Health Stroke Scale; OTT, onset of symptoms to treatment; SBP, systolic blood pressure; SITS-ICH, Safe Implementation of Treatments in Stroke-symptomatic Intracerebral Hemorrhage Modification of reference.55
Table 5 Drug candidates

Drug	Reference	Animal	Model
MMP inhibitors			
BB-94 (pan-MMP inhibitor)	Sumii *et al.* Stroke, 2002	SHR	eMCAO
Activated protein	Cheng *et al.* Nat Med, 2006	Rat	eMCAO
Anti-TNFα antibody	Lapchak *et al.* Brain Res, 2007	rabbit	eMCAO
Minocycline	Murata *et al.* Stroke, 2008	SHR	eMCAO
AHA (pan-MMP inhibitor)	Copin *et al.* Exp Neurol, 2008	Rat	eMCAO
Proteasome inhibitor	Zhang *et al.* Stroke, 2010	Rat	eMCAO
Cilostazol	Ishiguro *et al.* Plos One, 2010	Mouse	tMCAO
Anti-VEGF antibody/receptor inhibitor	Kanazawa *et al.* JCBFM, 2011	Rat	eMCAO
Fasudil (rho kinase inhibitor)	Ishiguro *et al.* Neuroscience, 2012		
Free radical scavengers			
NXY-059	Lapchak *et al.* Stroke, 2002	Rabbit	eMCAO
Edaravone	Yamashita *et al.* JCBFM, 2009	SHR	tMCAO
Melatonin	Chen *et al.* J Pineal Res, 2006	Mouse	eMCAO
Immunosuppressants			
FK506	Okubo *et al.* Brain Res, 2007	Rat	eMCAO
Fingolimod	Campos *et al.* Stroke, 2013	Mouse	eMCAO
Statins			
Atorvastatin	Zhang *et al.* JCBFM, 2009	Rat	eMCAO
Simvastatin	Lapchak *et al.* Brain Res, 2009	Rabbit	eMCAO
Others			
Caffeineol	Aronowski *et al.* Stroke, 2003	Rat	tCCA/MCAO
Imatinib (PDGFR-α antagonist)	Su *et al.* Nat Med, 2008	Mouse	eMCAO
High density lipoprotein	Lapergue *et al.* Stroke, 2013	Rat	eMCAO/tMCAO
Insulin	Fan *et al.* Stroke, 2013	Rat	eMCAO
Gases			
Hyperbaric oxygen therapy	Qin *et al.* Stroke, 2007	Rat	tMCAO
Normobaric oxygen therapy(95% O₂)	Liu *et al.* Stroke, 2009	Rat	tMCAO
Xenon	David *et al.* JCBFM, 2010	Rat	eMCAO

AHA, acetohydroxamic acid; eMCAO, embolic middle cerebral artery occlusion; MMP, matrix metalloproteinase; PDGFR, platelet-derived growth factor receptor; SHR, spontaneous hypertensive rat; tCCA/MCAO, transient common carotid artery/ middle cerebral artery occlusion; tMCAO, transient middle cerebral artery occlusion TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.

![Figure 3](https://image-url.com)
Figure 3 Vascular endothelial growth factor (VEGF) signal cascade and anti-VEGF therapy. After cerebral ischemia, VEGF are expressed in the microvascular wall, and receptors conjugated to VEGF as a ligand are phosphorylated and activated. Subsequent activation of matrix metalloproteinase (MMP-9) and degradation of protein components in the basal lamina cause intracerebral hemorrhage. VEGF signaling is inhibited by the anti-VEGF antibody that neutralizes VEGF as well as by VEGF receptor inhibitors that inhibit VEGF receptors from being phosphorylated.

pathological examination of the brains from patients who died of intracerebral HT after tPA treatment revealed accumulation of MMP-9-positive neutrophils in microvessels\(^22\) and that disruption of the BBB is unlikely to be observed after cerebral ischemia in MMP-9 knockout (KO) mice.\(^41\) Regarding the mechanism underlying MMP-9 activation,
the roles of tPA and free radicals are emphasized. A previous study has shown that in tPA KO mice, cerebral infarct size was smaller and cerebral edema was milder as compared with wild-type mice, and the mechanism involved lack of MMP-9 activity after cerebral ischemia. The aforementioned LRP and protease-activated receptor 1 (PAR1) are involved in pathways through which tPA activates MMP-9 (Fig. 2). The LRP inhibitor targets LRP, and activated protein C (APC) targets PAR1. Furthermore, MMP-3 is involved in the occurrence of intracerebral HT. It has also been reported that intracerebral HT is unlikely to occur after tPA treatment in MMP-3 KO mice, and that LRP is associated with MMP-3 activation after tPA treatment (Fig. 2).

In addition, focal cerebral ischemia models of mice deficient for superoxide dismutase (SOD) 2, an oxidation reduction enzyme, showed increased MMP-9 activation and intracerebral HT, suggesting that production of free radicals activates MMP-9.

Vascular endothelial growth factor as a novel therapeutic target molecule

We identified vascular endothelial growth factor (VEGF) as a therapeutic target molecule for intracerebral HT after tPA treatment. VEGF induces proliferation, migration, and enhanced permeability of vascular endothelial cells. Administration of VEGF to animal models in the early phase of acute cerebral ischemia enhances vascular permeability, whereas administration in the recovery phase promotes angiogenesis. By using embolic middle cerebral artery occlusion models, we showed that VEGF signaling is activated at the BBB in the marginal zone of the ischemic lesion after ischemia, thereby activating MMP-9 and degrading protein components of the baslamina, and thereby resulting in intracerebral hemorrhage. These changes were noticeable when tPA was administrated after the therapeutic time window. Furthermore, all changes involving MMP-9 were inhibited using the anti-VEGF neutralizing antibody or receptor antagonist. Thus, it appears that the VEGF signaling cascade is located upstream of MMP-9, and VEGF is a promising therapeutic target molecule for intracerebral HT after tPA treatment (Fig. 3).

Dual nature of therapeutic target molecules

Many therapeutic target molecules have received considerable attention for having dual natures. However, the pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab. 2004; 24: 351–71. Flavin MP, Zhao G. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J. Neurosci. Res. 2001; 63: 388–94. Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007; 38: 967–73. Lee M, Hong KS, Saver JL. Efficacy of intra-arterial fibrinolysis for acute ischemic stroke: meta-analysis of randomized controlled trials. Stroke 2010; 41: 932–7. Wahlgren N, Ahmed N, Davalos A et al. Thrombolysis with alteplase for acute ischemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 2007; 369: 275–82.
13 Su EJ, Fredriksson L, Geyer M et al. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST). Stroke 2008; 39: 3316–22.

7 Yamaguchi T, Mori E, Minematsu K et al. Alteplase at 0.6 mg/kg for acute ischemic stroke within 3 hours of onset: Japan Alteplase Clinical Trial (J-ACT). Stroke 2006; 37: 1810-5.

9 Lees KR, Bluhmki E, von Kummer R et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375: 1695–703.

21 Castellanos M, Sobrino T, Millan M et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke 2007; 38: 1855-9.

22 Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000; 355: 1670-4.

14 Rodriguez-Gonzalez R, Blanco M, Rodriguez-Yanez M, Moldes et al. Activation of PDGF-CC receptor-related protein mediate cerebral ischemia-induced nuclear factor-kappaB pathway activation. Nat. Med. 2008; 14: 727-32.

6 Wahlgren N, Ahmed N, Eriksson N et al. Matrix metalloproteinases increase very early during ischemic stroke. Thrombolytic therapy in acute ischemic stroke: a multicenter biomarkers for the prediction of parenchymal hematoma after recombinant tissue plasminogen activator following cerebral ischaemia. Br. J. Pharmacol. 2009; 156: 673–9.

23 Cuicchiara B, Kasner SE, Tanne D et al. Factors associated with intracerebral hemorrhage after thrombolytic therapy for ischemic stroke: pooled analysis of placebo data from the Stroke-Acute Ischemic NXY Treatment (SAINT) I and SAINT II Trials. Stroke 2009; 40: 3067–72.

39 Kufner A, Galinovic I, Brunecker P et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 2001; 7: 59–64.

10 Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1999; 19: 624–33.

12 Nicole O, Drocagne F, Ali C et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 2001; 7: 59–64.

11 Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 2005; 50: 329–39.

18 Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhage after stroke thrombolysis: The SEDAN score. Ann. Neurol. 2012; 71: 634–41.

19 Su EJ, Fredriksson L, Geyer M et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat. Med. 2008; 14: 731–7.

31 Mazya M, Egido JA, Ford GA et al. The HAT Score: a simple grading scale for predicting hemorrhage after thrombolysis. Neurology 2008; 71: 1417–23.

22 Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000; 355: 1670-4.

107 Yamaguchi T, Mori E, Minematsu K et al. Alteplase at 0.6 mg/kg for acute ischemic stroke within 3 hours of onset: Japan Alteplase Clinical Trial (J-ACT). Stroke 2006; 37: 1810-5.

1999; 107: 333.
38 Lu A, Clark JF, Broderick JP et al. Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp. Neurol. 2008; 210: 549–59.
39 Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009; 8: 205–16.
40 Xue M, Yong VW. Matrix metalloproteinases in intracerebral hemorrhage. Neurol. Res. 2008; 30: 775–82.
41 Asahi M, Sumii T, Fini ME, Itohara S, Lo EH. Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. NeuroReport 2001; 12: 3003–7.
42 Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008; 39: 1121–6.
43 Tsuji K, Aoki T, Tejima E et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke 2005; 36: 1954–9.
44 Wang X, Lee SR, Arai K, Tsuji K, Rebeck GW, Lo EH. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat. Med. 2003; 9: 1313–7.
45 Cheng T, Petraglia AL, Li Z et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 2006; 12: 1278–85.
46 Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR. Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J. Thromb. Haemost. 2007; 5: 1732–9.
47 Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH. Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann. Neurol. 2006; 59: 929–38.
48 Kanazawa M, Igarashi H, Kawamura K et al. Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. J. Cereb. Blood Flow Metab. 2011; 31: 1461–74.
49 Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am. J. Pathol. 1996; 149: 293–305.
50 Zhang ZG, Zhang L, Jiang Q et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 2000; 106: 829–38.
51 Okubo S, Igarashi H, Kanamatsu T, Hasegawa D, Orima H, Katayama Y. FK-506 extended the therapeutic time window for thrombolysis without increasing the risk of hemorrhagic transformation in an embolic rat stroke model. Brain Res. 2007; 1143: 221–7.
52 Bergers G, Brekken R, McMahon G et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000; 2: 737–44.
53 Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat. Med. 2008; 14: 497–500.
54 Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 2010; 65: 859–72.
55 Rabinstein A, Rundek T. Prediction of outcome after ischemic stroke: the value of clinical scores. Neurology 2013; 80: 15–6.