Modulation of promoter occupancy dictates the transcriptional response to graded BMP signalling levels in the *Drosophila* embryo

Caroline Hoppe¹, Jonathan Bowles¹, Thomas G. Minchington¹, Catherine Sutcliffe¹, Priyanka Upadhyai¹, Magnus Rattray¹* and Hilary L. Ashe¹*#

Affiliations:
¹Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
²Present address: Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.

*Correspondence: hilary.ashe@manchester.ac.uk, magnus.rattray@manchester.ac.uk
*Lead contact: hilary.ashe@manchester.ac.uk

Keywords: BMP signalling, Drosophila embryo, monoallelic transcription, Dpp, transcription kinetics, bursting, promoter occupancy, MS2, live imaging
SUMMARY
Morphogen gradients specify cell fates during development, with a classic example being the BMP gradient’s conserved role in embryonic dorsal-ventral axis patterning. Here we use quantitative imaging and computational modelling to determine how the BMP gradient is interpreted at single-cell resolution in the *Drosophila* embryo. We show that BMP signalling levels are decoded by modulating promoter occupancy, the time the promoter is active, predominantly through regulating the promoter activation rate. As a result, graded mRNA numbers are detected for BMP target genes in cells across their expression domains. Introducing a heterologous promoter into a BMP target gene changes burst amplitude but not promoter occupancy suggesting that, while the promoter sequence controls amplitude, occupancy depends on the amount of BMP signal decoded by the enhancer. We provide evidence that graded mRNA output is a general feature of morphogen gradient interpretation and discuss how this can impact on cell fate decisions.

INTRODUCTION
A gradient of Bone Morphogenetic Protein (BMP) signalling patterns ectodermal cell fates along the dorsal-ventral axis of vertebrate and invertebrate embryos (Bier and De Robertis, 2015; Hamaratoglu et al., 2014). In *Drosophila*, visualisation of Decapentaplegic (Dpp), the major BMP signalling molecule, reveals a shallow graded distribution in early embryos that subsequently refines to a peak of Dpp at the dorsal midline (Shimmi et al., 2005; Wang and Ferguson, 2005). BMP-receptor activation leads to phosphorylation of the Mad transcription factor, which associates with Medea (Med) to activate or repress target gene transcription (Hamaratoglu et al., 2014). A stripe of phosphorylated Mad (pMad) and Med centred at the dorsal midline has been visualised in the early *Drosophila* embryo (Dorfman and Shilo, 2001; Rushlow et al., 2001; Sutherland et al., 2003), similar to that observed for Dpp (Shimmi et al., 2005; Wang and Ferguson, 2005), although lower pMad levels are also detectable in a few adjacent dorsal-lateral cells (Rushlow et al., 2001). The BMP/pMad gradient activates different thresholds of gene activity, including the peak target genes *Race* and *hindsight* (*hnt*) and intermediate targets *u-shaped* (*ush*) and *tailup* (*tup*) (Ashe et al., 2000).

New insights into transcriptional activation have been obtained by studying this process in single cells using quantitative and live imaging approaches, including single molecule FISH (smFISH) and the MS2/MCP system (Pichon et al., 2018). The latter allowed the first direct visualisation of pulses or bursts of transcriptional activity (Chubb et al., 2006; Golding et al., 2005). Enhancers have been shown to regulate the frequency of transcriptional bursts, with strong enhancers generating more bursts than weaker enhancers (Fukaya et al., 2016; Larson et al., 2013; Larsson et al., 2019; Senecal et al., 2014). In addition, the detection of simultaneous bursts of transcription of two linked reporters by a single enhancer argues against the classic enhancer-promoter looping model (Fukaya et al., 2016).
Based on the simultaneous activation of more than one promoter by an enhancer and the behaviour of super enhancers, a new model of transcriptional activation has been proposed, which invokes compartmentalisation of transcription factors, coregulators and Pol II in dynamic phase separated condensates (Hnisz et al., 2017). Intrinsically disordered regions in transcription factors and coactivators, including subunits of the Mediator complex and the chromatin reader BRD4, promote formation of hubs or condensates at genomic loci, which concentrate Pol II to promote activation (Boija et al., 2018; Cho et al., 2018; Chong et al., 2018; Sabari et al., 2018).

To provide insight into morphogen gradient interpretation at single cell resolution, we have used live imaging and quantitative analysis to determine the kinetics of endogenous target gene activation in response to the BMP gradient in the Drosophila embryo. These data reveal that BMP signalling modulates the fraction of time the promoter of target genes is active. Mechanistically, we provide evidence that the enhancer decodes the BMP signal to regulate the rate the promoter switches on, regardless of the promoter sequence present. In contrast, the promoter predominantly regulates burst amplitude. Overall these data reveal how a signalling gradient is decoded with different transcriptional kinetics to impart positional information on cells.

RESULTS
Monoallelic transcription and graded mRNA outputs in response to the BMP gradient
In order to visualise the transcriptional activity of Dpp target genes in the early Drosophila embryo we first used nascent FISH. While the classic expression patterns (Ashe et al., 2000) are detected for these genes (Fig. S1A), for a proportion of nuclei, the Dpp target gene is only transcribed by a single allele. To facilitate visualisation of the number of active alleles in each nucleus within the expression domain, the nuclei were false coloured based on allelic activity (Fig. 1Ai). Higher magnification images of a subset of nuclei expressing both alleles (biallelic) or only a single allele are shown in Fig. 1Aii. We refer to the latter nuclei as monoallelic, meaning that only one allele is active rather than one being stably inactivated, as observed in imprinting for example (Khamlichi and Feil, 2018). Quantitation shows that around one quarter of active nuclei are monoallelic for the four tested Dpp target genes (Fig. 1B). The false coloured images reveal that the monoallelic nuclei are predominantly localised around the edge of the expression domain (Fig. 1Ai). Consistent with this, quantitation shows that monoallelic nuclei are located significantly further from the midline of the expression domain compared to those nuclei transcribing both alleles (Fig. 1C). This distribution suggests that monoallelic transcription is a consequence of limiting activator levels.

As the FISH data detected differences in the number of active alleles within nuclei across the gene expression domains, we next addressed how this affects mRNA number in individual cells. To this end, we used smFISH with ush exonic probes and single molecule inexpensive FISH (smiFISH) (Tsanov et al., 2016) with ush intronic probes to quantify mRNA number and visualise transcription foci, respectively (Fig. 1D). ush first becomes transcribed in nuclear cleavage cycle 14...
with the number of transcripts per cell increasing with age (Fig. 1Ei). Analysis reveals that the proportion of monoallelic nuclei is highest when the gene is first switched on and then decreases (Fig. S1B), consistent with the proportion observed using FISH (Fig. 1B). Cells with 2 active alleles have a higher mRNA number than cells showing monoallelic transcription (Fig. 1Eii). However, the maximum number of mRNAs in biallelic cells is less than double that detected in monoallelic cells suggesting the latter may have been transcribing both alleles at an earlier time. A low number of mRNAs is also detected in cells without an active allele, also consistent with earlier transcription of at least one allele (Fig. 1Eii). Visualisation of ush mRNA number per cell based on position in early, mid and late nc14 embryos reveals that there is a mRNA gradient similar to that of Dpp, with highest levels at the dorsal midline that diminish in more dorsolateral cells (Fig. 1F). In late nc14 embryos there is a ~10-fold difference in mRNA number per cell between cells located at the centre and edges of the expression domain (Fig. 1F).

Analysis of hnt and tup smFISH data also reveal that the mRNA number per cell increases with developmental age while the proportion of monoallelic cells decreases (Fig. S1C-F). In both cases a gradient of mRNA is detected across the expression domain, again with large differences in transcript number per cell at positions near the middle or edge of the expression domain (Fig. S1D, F). Visualisation of ush and tup transcript numbers across the expression domain by individual cell widths mirrored at the midline reveals that the mRNA number per cell is similar for the first 4 cells on either side of the midline and then declines (Fig. S1Gi). These data show that >60% of the total ush or tup mRNAs in the expression domain are transcribed by these 8 central cells, even though they represent less than one third of the expression domain (Fig. S1Gii). It has been shown previously that the early peak of pMad in stage 5 embryos is 8-10 cells wide (Dorfman and Shilo, 2001; Mizutani et al., 2005) (see Discussion). Together these data show that there is a mRNA gradient of Dpp target genes in the dorsal ectoderm that reflects the Dpp gradient.

Next we tested the hypothesis that nuclei at the edge of the expression domain can only activate one allele due to limiting levels of Dpp signalling and therefore pMad activator. We increased Dpp levels by introducing a transgene with dpp under the control of the even-skipped stripe 2 enhancer (st2-dpp) (Ashe et al., 2000) and visualised transcription foci using smFISH (Fig. 1G). The proportion of monoallelic nuclei located in a region equivalent to the edge of the wildtype (wt) ush expression domain was determined (Fig. 1G, Hi). These data show that there are significantly less monoallelic ush nuclei compared to the same region of a wt embryo (Fig. 1Hii). This supports the idea that the failure of nuclei on the edge of the expression domain to activate both alleles is due to limiting Dpp/pMad levels.

Monoallelic transcription is a general feature of gradient interpretation

To determine if monoallelic transcription is a general feature of gradient activation, we analysed snail (sna), short gastrulation (sog) and brinker (brk), which are target genes of the Dorsal gradient
These genes also show monoallelic transcription (Fig. 2Ai-ii), in around 25% of nuclei within the expression domain (Fig. 2B). Monoallelic nuclei are predominantly located at the edges of the expression domain (Fig. 2C), although this is less pronounced for sna transcription, potentially due to Sna auto-repression (Boettiger and Levine, 2013) (see Discussion).

For sog and brk, the ventral border of the expression pattern is established by Sna repression, whereas the dorsal border is due to limiting Dorsal (Reeves and Stathopoulos, 2009). Therefore, given the above data that suggest monoallelic transcription reflects low activator levels, we predict that there would be more monoallelic transcription on the dorsal edge of the expression domain. Quantitation of the number of monoallelic nuclei on the dorsal and ventral sides separately reveals that there is a significantly higher proportion on the dorsal side of the sog and brk expression domains (Fig. 2D). In contrast, there is no significant difference between the two edges of the symmetric sna or Dpp target gene expression domains in terms of the relative percentage of monoallelic nuclei (Fig. 2E). These data are consistent with some nuclei activating only a single allele, depending on their position with respect to the gradient, due to limiting activator. The presence of monoallelic expression on the ventral side of sog and brk likely reflects asynchronous repression of each allele (see Discussion).

Temporal dynamics of transcriptional activation in response to the BMP gradient

To complement the above snapshot data, we used the MS2 system (Garcia et al., 2013; Lucas et al., 2013) to visualise the temporal dynamics of BMP gradient interpretation during early embryogenesis. We used CRISPR genome engineering to introduce 24 copies of the MS2 stem loops into the endogenous 5′ UTR of the ush and hnt genes (Fig. 3A). Conventional in situ hybridisation showed ush and hnt expression patterns equivalent to those observed in wt embryos (Fig. S2A), indicating that insertion of the loops does not affect the expression patterns. To visualise transcription dynamics, females maternally expressing one copy of MCP-GFP and Histone-RFP were crossed to males carrying the ush or hnt gene with MS2 stem loops, so the resulting embryos have a single allele carrying the MS2 sequence. Confocal imaging of these embryos allows the bright fluorescent signal associated with the nascent transcription site to be recorded, as a measure of transcriptional activity, for each expressing nucleus (Fig. 3B).

Embryos were imaged prior to the onset of nc14 to allow accurate timing of the initial activation of ush and hnt relative to the start of nc14 (Video S1 and S2 for ush and hnt transcription, respectively). We imaged the bulk of the expression domain for ush, whereas for hnt we imaged the central and posterior part; active nuclei are false coloured in a still from the video (Fig. S2Bi). As the ush expression domain is largely uniform along the anterior-posterior (AP) axis, we have focused on the anterior part for subsequent analysis (Fig. S2Bii). hnt expression is more modulated along the AP axis (Ashe et al. 2000), therefore we have analysed nuclei in the central region (Fig. S2Bii), corresponding to the presumptive amnioserosa.
To measure the transcriptional activity of the expression domain, the mean fluorescence was analysed at each time point during nc14, showing that *hnt* has lower transcriptional activity than *ush* (Fig. 3C, Fig. S2C). Both the transcription onset time, based on the first time a fluorescent signal is detected, and the time taken to reach maximal transcriptional activity are delayed for *hnt* relative to *ush* (Fig. 3C, S2C-D). The transcription onset times for *ush* and *hnt* in each nucleus relative to its AP or dorsal-ventral (DV) position show little modulation along the AP axis (Fig. S2E, F). However, the onset times of *ush* and to a lesser extent that of *hnt* expression are delayed in nuclei further from the dorsal midline (Fig. S2E-F). The sum fluorescence of a nucleus, representing the total amount of transcriptional activity, is found to be highest in nuclei closer to the dorsal midline, experiencing peak BMP signalling levels, for both *ush* and *hnt* (Fig. 3D). Resolving the differences in *ush* and *hnt* transcriptional activity further, based on nuclear position, reveals that it is highest in nuclei at the dorsal midline at all time points, then reduces in nuclei towards the edges of the expression domain (Fig. S2G).

As the fluorescence signals for *hnt* and *ush* vary between expressing nuclei, we performed K-means clustering analysis based on all expressing nuclei. For a representative *ush* embryo these data show that the nuclei partition into 3 clusters, which broadly map to the centre, intermediate area and edges of the expression domain (Fig. 3E). Visualisation of the individual fluorescent traces for all nuclei within these clusters as heatmaps shows that nuclei from the middle of the expression domain have a faster onset time and higher fluorescence output than nuclei in the intermediate region with a further reduction in cells at the edge of the expression domain (Fig. 3E). Similar findings are obtained for *hnt*, with the nuclei partitioning into 2 clusters broadly based on their position. Central nuclei, receiving peak Dpp signalling, have faster onset times and higher fluorescent outputs than those on the edge (Fig. 3F). The low transcriptional activity at the edge of the *ush* and *hnt* expression domains observed with the MS2 system (Fig. 3E, F) is consistent with the reduced mRNA numbers detected in these cells by smFISH (Fig 1F, S1D).

Different BMP signalling levels alter transcriptional burst kinetics

Given the different transcriptional behaviours of nuclei, we used a memory adjusted Hidden Markov Model to infer bursting parameters (Fig. 4A, S3Ai) from the transcriptional traces, based on a two state promoter model (Lammers et al., 2019) (Fig. S3Aii). Representative *ush* and *hnt* traces for nuclei from the centre of the expression domain receiving peak Dpp signalling and the inferred promoter states are shown in Fig. 4B-C, revealing different promoter activity profiles for the two Dpp target genes. Traces for nuclei at other positions in the expression domain are shown in Fig. S3B and C.

We used *ush* fluorescent traces from all nuclei within the centre, intermediate and edge clusters to infer the global kinetic parameters for each cluster. For *hnt* we separated cells into 3 clusters to better understand the transcriptional response to differing levels of Dpp signalling. As
the ush clusters are largely partitioned on expression level, we used mean expression to separate hnt expressing cells into 3 clusters. For both ush and hnt, decreasing levels of Dpp signalling between the centre, intermediate and edge clusters is associated with reduced promoter occupancy, equivalent to the fraction of time the promoter is active, k_{on} and burst frequency (Fig. 4D, E). The reduction in k_{on} indicates that the promoter off period ($1/k_{off}$) increases (Fig. S3D, E). In contrast, there is no statistical difference in k_{off} and the linked duration of promoter activity ($1/k_{off}$) between the centre and intermediate ush and hnt clusters (Fig. 4D, E, S3D, E). While k_{off} is unchanged for the edge hnt cluster, an increase is observed in edge nuclei for ush, consistent with a reduced burst duration in the presence of very low Dpp signalling levels (Fig. 4D, S3D). For both ush and hnt, burst size and the Pol II initiation rate, k_{ini} (hereafter referred to as amplitude) also decrease as signalling levels are reduced (Fig. 4D, E). Based on the ush and hnt parameters the theoretical burst profiles of nuclei receiving peak Dpp signalling can be compared (Fig. 4F). These show that while ush is transcribed in relatively low amplitude, long duration bursts, hnt exhibits high amplitude bursts of very high frequency and short duration (Fig. 4F).

Dpp concentration determines promoter occupancy

As many burst parameters change in response to different levels of Dpp signalling, we next addressed which parameter is the major determinant of the transcriptional response. To this end, we inferred burst parameters at single cell resolution and determined the degree of correlation with the mean fluorescence intensity for each nucleus expressing ush (Fig. 5A). Promoter occupancy shows the highest correlation with the mean fluorescence intensity (expression level), such that it almost perfectly predicts the expression level of every active nucleus (Fig. 5B). k_{on} is also strongly correlated, more so than k_{off} (Fig. 5C, D), suggesting that promoter occupancy predicts expression, predominantly through changes in k_{on}. Consistent with this, burst frequency and amplitude show weaker correlations with mean expression (Fig. 5E, F). Similar findings are obtained for hnt bursting parameters at single cell resolution, with promoter occupancy most correlated with mean fluorescence, followed by k_{on} and amplitude, whereas k_{off} is poorly correlated (Fig. S4A-F).

To further address how BMP signalling affects transcriptional bursting, we imaged ush transcription in the presence of ectopic signalling by introducing a single copy of the st2-dpp transgene (Ashe et al., 2000) (Video S3). For the analysis we focused on cells in the region where st2-dpp is expressed (Fig. 6Ai). The ectopic dpp results in an expanded ush expression pattern (Fig. 6Ai) with higher total fluorescence signals detected compared to wt (Fig. 6Aii compare to 3D). The ush transcription onset time is slightly earlier in the presence of st2-dpp (Fig. 6B) and the mean fluorescence is increased, although the time at which maximum fluorescence is reached is similar to wt (Fig. 6C). We next used the memory adjusted Hidden Markov Model to infer burst parameters, after dividing the expression domain into 3 regions based on expression level. These regions are broadly similar to those in wt embryos as, although the ush expression domain is
broader in st2-dpp embryos, we have focused our analysis on a region that is only around 3 cells wider on each edge. A representative trace for the centre cluster is shown in Fig. 6D. The global parameters reveal that in the intermediate regions promoter occupancy and k_{on} are increased relative to wt (Fig. 6E). No change of promoter occupancy in the centre nuclei, and an increase to this level in intermediate nuclei, suggests that occupancy is already close to saturation in wt cells receiving the highest Dpp signalling. Frequency and k_{off} show no change in centre and intermediate nuclei, although both respond to higher Dpp in edge nuclei that normally receive very low Dpp (Fig. 6E). These data suggest that promoter occupancy and not frequency predominantly integrates higher levels of BMP signalling. In addition, st2-dpp increases ush burst amplitude and therefore burst size (Fig. 6E), consistent with amplitude being responsive to Dpp levels. Together, these data are consistent with the analysis of ush and hnt in wt embryos and further support the conclusion that Dpp signalling promotes higher promoter occupancy, predominantly through increasing k_{on}, and to a lesser extent amplitude to generate a stronger transcriptional response.

The enhancer decodes the BMP signal to regulate promoter occupancy

As the above data suggest that BMP signalling level predominantly regulates promoter occupancy, we next addressed the role of the promoter in the transcriptional response by replacing the ush promoter with that of hnt in the endogenous locus (hnt>ush) (Fig. 7A). This line also contains 24 copies of the MS2 stem loops in the ush 5'UTR as described above so that the effect of changing the promoter on burst kinetics can be determined. Analysis of the fluorescent signals for hnt>ush (Video S4) reveals that the cumulative expression pattern, comprised of every cell that activates transcription at one or more time points, is similar but slightly narrower compared to wt ush (Fig. S5A). The times of transcription onset and at which maximum fluorescence is reached for hnt>ush are equivalent to those observed for ush (Fig. 7B-C, Fig. S5B). As hnt has a later onset time than ush (Fig. S2D) and changing the ush promoter to that of hnt has no effect on onset time (Fig. 7B), this suggests that onset time is largely dictated by the enhancer, with only fine-tuning by the promoter. It is also evident from the 3 hnt>ush biological replicates that introducing a heterologous promoter increases variation in the fluorescent signals (Fig. S5B). Clustering of the cells in the hnt>ush expression domain and analysis of the fluorescent traces reveals that cells in each hnt>ush cluster have higher fluorescence compared to wt (Fig. S5C). We next used these clusters to infer global bursting parameters from the model. A representative trace for each cluster is shown in Fig. 7D and S5D. The global parameters show that amplitude and therefore burst size are significantly higher for hnt>ush embryos relative to wt (Fig. 7E). In contrast, there is no significant change in promoter occupancy, k_{on}, k_{off} or frequency (Fig. 7E). This suggests that the promoter predominantly regulates burst amplitude, whereas promoter occupancy is not determined by the actual promoter sequence itself. Given the data above that promoter occupancy is established by the level of BMP signalling, the simplest
interpretation is that promoter occupancy is dictated by the enhancer, depending on the amount of signal/activator, regardless of the promoter present.

Using the \textit{hnt}>\textit{ush} parameters, simulation of the burst profile in the centre region shows that the \textit{hnt}>\textit{ush} traces represent a hybrid profile between that of the short duration, high amplitude \textit{hnt} traces and those of \textit{ush} that are longer and lower amplitude (Fig. 7F). Together, these data suggest that the enhancer controls promoter occupancy but the amplitude of the response depends on the nature of the promoter.

DISCUSSION

Here we analyse the transcriptional burst kinetics of the endogenous \textit{hnt} and \textit{ush} genes at single cell resolution and show that cells interpret different levels of BMP signalling by modulating promoter occupancy, predominantly through altering k_{on}. \textit{hnt} transcription occurs in very short bursts with high frequency and amplitude, whereas \textit{ush} bursts are less frequent but longer duration (~10 fold longer than \textit{hnt} for cells at the midline). \textit{hnt} shows much lower promoter occupancy than \textit{ush}, providing a molecular explanation for the observed threshold responses of these genes to the BMP gradient (Fig. 7G). Our data indicate that \textit{hnt} requires high BMP signalling for its activation, as lower signalling levels are insufficient to maintain the promoter in an active state, resulting in a narrow expression pattern. In contrast, low signalling levels allow sufficient promoter occupancy for \textit{ush}, which therefore has a broader expression pattern. We conclude that k_{on} and promoter occupancy, which are unchanged when the heterologous \textit{hnt} promoter is tested, are dictated by features of the enhancer and dependent on the level of signal received. This is consistent with other studies that have found the enhancer to regulate k_{on} (Fukaya et al., 2016; Lammers et al., 2019; Larson et al., 2013; Larsson et al., 2019; Senecal et al., 2014). Our promoter swap data suggest that the promoter regulates burst amplitude. The \textit{hnt} promoter is associated with a higher initiation rate than the \textit{ush} promoter, and insertion of the \textit{hnt} promoter into the \textit{ush} locus increases burst amplitude. This may relate to the presence of a TATA box in the \textit{hnt} promoter as TATA has been linked to high initiation rates previously (Corrigan et al., 2016), whereas the \textit{ush} promoter has an initiator but lacks a TATA box. However, other differences between the \textit{ush} and \textit{hnt} promoters also exist, including that the \textit{hnt} promoter has a higher degree of Pol II promoter proximal pausing than \textit{ush} (Saunders et al., 2013). Therefore, further studies are required to determine the contribution of different promoter features to burst amplitude.

The lack of a contribution of burst duration ($1/k_{off}$) to decoding BMP signalling is in stark contrast to the interpretation of Notch signalling in \textit{Drosophila} and \textit{C. elegans}, whereby Notch alters the duration, but not frequency, of transcription bursts (Falo-Sanjuan et al., 2019; Lee et al., 2019). Increasing gene expression through high k_{on} rates can decrease the noise level, whereas lengthening burst duration is associated with more noise (Wong et al., 2018). In addition, regulation of burst frequency may allow genes to respond with more sensitivity to activator
concentration than when burst duration is modulated (Li et al., 2018). Therefore, perhaps regulation of BMP target genes by promoter occupancy, via \(k_{on} \), has the advantage of allowing more sensitive regulation with less noise. Our findings for decoding BMP signalling are similar to the strategy described for modulation of gap gene transcription during AP patterning, where the key regulatory parameter is also the fraction of time the promoter is active (Zoller et al., 2018). It remains to be determined whether other signals will be interpreted through changes in promoter occupancy or duration.

The phase separation model of transcriptional control proposes that transcription factors, Mediator and other coactivators form dynamic condensates associated with activation (Hnisz et al., 2017). The Smads interact with Mediator subunits (Zhao et al., 2013) and Smad3 can form condensates in vitro and in cells (Zamudio et al., 2019). The CBP histone acetyltransferase is a Smad transcriptional coactivator (Ashe et al., 2000; Waltzer and Bienz, 1999) and modification of transcription regulators, including by acetylation, has been implicated in formation of phase-separated transcription condensates (Hnisz et al., 2017). Therefore, based on these data, it is likely that pMad-Medea, CBP and Mediator form a transcription hub that allows gene activation. Live imaging has provided evidence for groups of closely spaced Pol II, referred to as convoys, which elongate along a gene together. Knockdown of a Mediator subunit reduced the promoter on time, lowered the number of Pol II molecules in the convoy and increased spacing between them, suggesting that Mediator is important for quick succession of initiation events (Tantale et al., 2016). Therefore, we suggest that the higher pMad levels associated with increased BMP signalling will recruit more Mediator, resulting in the target promoter being active for longer and a larger Pol II convoy, explaining the effect of BMP signalling on promoter occupancy and amplitude.

The different burst kinetics of BMP target gene transcription in cells within the expression domain provides an explanation for the observed monoallelic expression (Fig. 7G). Cells on the edge of the expression domain have low burst frequency and duration, resulting in typically only one allele being active. Similarly, stochastic transcriptional bursting events from one allele have been suggested to explain rare cases of random monoallelic expression observed for less than 1% of genes in mouse fibroblasts and human CD8+ T cells (Reinius and Sandberg, 2015), with supporting evidence for this obtained for poorly expressed genes in the mouse kidney (Symmons et al., 2019). Our study highlights how a gene can show monoallelic or biallelic expression within the same expression domain, depending on cellular position with respect to graded signalling levels. Monoallelic transcription has also been reported for zygotic *hunchback* (*hb*) transcription, which is activated by the Bicoid gradient, particularly at the anterior tip and posterior border of the expression domain (Lucas et al., 2013; Porcher et al., 2010). As we also detect one active allele of Dorsal target genes in some cells, we suggest that monoallelic transcription with a concomitant reduction in mRNA number, is a general feature of gradient interpretation for cells receiving low signal.
sna transcription, however, differs from that of the other Dorsal targets brk and sog as we detect monoallelic sna nuclei more evenly distributed throughout the expression domain. There is unusual homogeneity in the number of sna mRNAs in each cell, due to a rapid transcription rate and autorepression (Boettiger and Levine, 2013). Allele by allele repression has been observed in the Drosophila embryo, potentially because repressors are better able to act in the refractory period following a burst (Esposito et al., 2016). Therefore, the more intermingled appearance of monoallelic sna nuclei that we observe can be explained by Sna autorepression silencing one allele at a time, as repression occurs in the refractory period between bursts that are not entirely synchronous between the two alleles. Similarly, allele by allele repression can also explain why monoallelic nuclei are observed at the ventral borders of the brk and sog expression domains, where levels of the Dorsal activator are high.

The number of ush and tup mRNAs per cell is relatively constant in cells within the first 8 rows centred on the dorsal midline, but then sharply declines. As a result, for ush and tup, >60% of the total transcripts in the expression domain are synthesised by the dorsal most 8 cells, despite these cells only constituting around one third of the expression pattern. This mRNA distribution reflects the spatial BMP gradient as the peak of pMad is 8-10 cells initially then refines to 6 cells wide (Dorfman and Shilo, 2001; Mizutani et al., 2005). Moreover, modelling suggests that the concentration of BMP bound receptor complexes at the dorsal midline doubles between 20 min and 30 min into nc14 (Mizutani et al., 2005; Umulis et al., 2006). These times correspond to the onset times of ush and hnt, respectively, suggesting that ush transcription can respond to the initial low levels of signalling, whereas the peak threshold hnt requires more activated receptors. Furthermore, BMP-receptor levels peak at ~40 min into nc14 (Umulis et al., 2006), which coincides with the observed maximum fluorescence output we detect for ush and hnt (means of 41 and 46 min, respectively).

Based on our data, we suggest a threshold model of cell fate whereby cells on the edge of the expression domain synthesise sufficient mRNAs to adopt a particular cell fate, whereas cells in the centre would have a surplus of transcripts. In this model, the difference in mRNA numbers in cells across the expression domain can explain the lack of robustness when shadow enhancers are deleted (Antosova et al., 2016; Frankel et al., 2010; Perry et al., 2010). Perturbation of the system, such as removal of a shadow enhancer, would lead to a further reduction in mRNA number per cell so that those on the edge would only just exceed the threshold level. Another challenge, such as high temperature or reduced activator level, would further decrease the transcriptional output such that there are insufficient mRNAs to specify the correct cell fate. It will be interesting in the future to test how the different numbers of mRNAs per cell from key BMP target genes impact on the robustness of dorsal ectoderm cell fate decisions.
ACKNOWLEDGEMENTS
We thank Lauren Forbes-Beadle for helpful discussions, the Bloomington Drosophila Stock Center for flies, the Vincent lab for plasmids, the Ronshaugen lab for reagents, the Cambridge Fly Facility for microinjections, Peter March and Egor Zindy for image analysis advice and the University of Manchester Bioimaging Facility for support. This project was supported by a Wellcome Trust Investigator Award to H.L.A. and M.R. (204832/Z/16/Z) and Wellcome Trust PhD studentships to C.H. (205975/Z/17/Z), J.B. (215187/Z/19/Z) and T.G.M. (110566/Z/15/Z).

AUTHOR CONTRIBUTIONS
Conceptualization: C.H., J.B., M.R. and H.L.A.; Investigation: C.H, C.S. and P.U.; Software: J.B. and T.G.M.; Writing-original draft: C.H. and H.L.A.; Writing – Reviews & Editing: J.B, T.G.M, C.S., P.U. and M.R.; Supervision: M.R. and H.L.A.; Funding Acquisition: M.R. and H.L.A.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
Antosova, B., Smolikova, J., Klimova, L., Lachova, J., Bendova, M., Kozmikova, I., Machon, O., and Kozmik, Z. (2016). The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet 12, e1006441.
Ashe, H.L., Mannervik, M., and Levine, M. (2000). Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305-3312.
Bier, E., and De Robertis, E.M. (2015). EMBRYO DEVELOPMENT. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 348, aaa5838.
Boettiger, A.N., and Levine, M. (2013). Rapid transcription fosters coordinate snail expression in the Drosophila embryo. Cell Rep 3, 8-15.
Boija, A., Klein, I.A., Sabari, B.R., Dal'l'Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M., et al. (2018). Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 175, 1842-1855 e1816.
Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, II (2018). Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415.
Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., et al. (2018). Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361.
Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. (2006). Transcriptional pulsing of a developmental gene. Curr Biol 16, 1018-1025.
Corrigan, A.M., Tonnacliffe, E., Cannon, D., and Chubb, J.R. (2016). A continuum model of transcriptional bursting. Elife 5.

Dorfman, R., and Shilo, B.Z. (2001). Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. Development 128, 965-972.

Esposito, E., Lim, B., Guessous, G., Falahati, H., and Levine, M. (2016). Mitosis-associated repression in development. Genes Dev 30, 1503-1508.

Falo-Sanjuan, J., Lammers, N.C., Garcia, H.G., and Bray, S.J. (2019). Enhancer Priming Enables Fast and Sustained Transcriptional Responses to Notch Signaling. Dev Cell 50, 411-425.

Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., and Stern, D.L. (2010). Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466, 490-493.

Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional Bursting. Cell 166, 358-368.

Garcia, H.G., Tikhonov, M., Lin, A., and Gregor, T. (2013). Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23, 2140-2145.

Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036.

Hamaratoglu, F., Affolter, M., and Pyrowolakis, G. (2014). Dpp/BMP signaling in flies: from molecules to biology. Semin Cell Dev Biol 32, 128-136.

Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K., and Sharp, P.A. (2017). A Phase Separation Model for Transcriptional Control. Cell 169, 13-23.

Khamlich, A.A., and Feil, R. (2018). Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 34, 954-971.

Lammers, N.C., Galstyan, V., Reimer, A., Medin, S.A., Wiggins, C.H., and Garcia, H.G. (2019). Multimodal transcriptional control of pattern formation in embryonic development. biorxiv.

Larson, D.R., Fritzsch, C., Sun, L., Meng, X., Lawrence, D.S., and Singer, R.H. (2013). Direct observation of frequency modulated transcription in single cells using light activation. Elife 2, e00750.

Larsson, A.J.M., Johnsson, P., Hagemann-Jensen, M., Hartmanis, L., Faridani, O.R., Reinius, B., Segerstolpe, A., Rivera, C.M., Ren, B., and Sandberg, R. (2019). Genomic encoding of transcriptional burst kinetics. Nature 565, 251-254.

Lee, C., Shin, H., and Kimble, J. (2019). Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell 50, 426-435.

Li, C., Cesbron, F., Oehler, M., Brunner, M., and Hofer, T. (2018). Frequency Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation. Cell Syst 6, 409-423 e411.

Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A.M., Coppey, M., and Dostatni, N. (2013). Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr Biol 23, 2135-2139.
Mizutani, C.M., Nie, Q., Wan, F.Y., Zhang, Y.T., Vilmos, P., Sousa-Neves, R., Bier, E., Marsh, J.L., and Lander, A.D. (2005). Formation of the BMP activity gradient in the Drosophila embryo. Dev Cell 8, 915-924.

Perry, M.W., Boettiger, A.N., Bothma, J.P., and Levine, M. (2010). Shadow enhancers foster robustness of Drosophila gastrulation. Curr Biol 20, 1562-1567.

Pichon, X., Lagha, M., Mueller, F., and Bertrand, E. (2018). A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Mol Cell 71, 468-480.

Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., and Dostatni, N. (2010). The time to measure positional information: maternal hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription. Development 137, 2795-2804.

Reeves, G.T., and Stathopoulos, A. (2009). Graded dorsal and differential gene regulation in the Drosophila embryo. Cold Spring Harb Perspect Biol 1, a000836.

Reinius, B., and Sandberg, R. (2015). Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 16, 653-664.

Rushlow, C., Colosimo, P.F., Lin, M.C., Xu, M., and Kirov, N. (2001). Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev 15, 340-351.

Sabari, B.R., Dall'Agnese, A., Boja, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science 361.

Saunders, A., Core, L.J., Sutcliffe, C., Lis, J.T., and Ashe, H.L. (2013). Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 27, 1146-1158.

Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F.E., Zimmer, C., Mueller, F., and Darzacq, X. (2014). Transcription factors modulate c-Fos transcriptional bursts. Cell Rep 8, 75-83.

Shimm, O., Umulis, D., Othmer, H., and O'Connor, M.B. (2005). Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873-886.

Sutherland, D.J., Li, M., Liu, X.Q., Stefancsik, R., and Raftery, L.A. (2003). Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo. Development 130, 5705-5716.

Symmons, O., Chang, M., Mellis, I.A., Kalish, J.M., Park, J., Susztak, K., Bartolomei, M.S., and Raj, A. (2019). Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genet 15, e1007874.

Tantale, K., Mueller, F., Kozulic-Pirher, A., Lesne, A., Victor, J.M., Robert, M.C., Capozi, S., Chouaib, R., Backer, V., Mateos-Langerak, J., et al. (2016). A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 7, 12248.
Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi, A.M., Gostan, T., Weber, C., Zimmer, C., Zibara, K., Walter, T., Peter, M., et al. (2016). smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res 44, e165.

Umulis, D.M., Serpe, M., O'Connor, M.B., and Othmer, H.G. (2006). Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proc Natl Acad Sci U S A 103, 11613-11618.

Waltzer, L., and Bienz, M. (1999). A function of CBP as a transcriptional co-activator during Dpp signalling. EMBO J 18, 1630-1641.

Wang, Y.C., and Ferguson, E.L. (2005). Spatial bistability of Dpp-receptor interactions during Drosophila dorsal-ventral patterning. Nature 434, 229-234.

Wong, V.C., Bass, V.L., Bullock, M.E., Chavali, A.K., Lee, R.E.C., Mothes, W., Gaudet, S., and Miller-Jensen, K. (2018). NF-kappaB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise. Cell Rep 22, 585-599.

Zamudio, A.V., Dall'Agnese, A., Henninger, J.E., Manteiga, J.C., Afeyan, L.K., Hannett, N.M., Coffey, E.L., Li, C.H., Oksuz, O., Sabari, B.R., et al. (2019). Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol Cell.

Zhao, M., Yang, X., Fu, Y., Wang, H., Ning, Y., Yan, J., Chen, Y.G., and Wang, G. (2013). Mediator MED15 modulates transforming growth factor beta (TGFbeta)/Smad signaling and breast cancer cell metastasis. J Mol Cell Biol 5, 57-60.

Zoller, B., Little, S.C., and Gregor, T. (2018). Diverse Spatial Expression Patterns Emerge from Unified Kinetics of Transcriptional Bursting. Cell 175, 835-847 e825.

MAIN FIGURE LEGENDS

Figure 1: BMP target genes show monoallelic transcription and graded mRNA outputs

(A) Expression patterns of BMP target genes *Race*, *hnt*, *ush* and *tup* in *Drosophila* embryos. Nuclei are false coloured according to the number of active transcription foci based on FISH images (Figure S1A). A line of best fit shows the midline of the expression domain (i).

Enlarged regions from FISH images (full images in Figure S1A) show monoallelic (yellow outline) and biallelic (pink outline) transcription of BMP target genes (ii).

(B) Proportion of nuclei displaying monoallelic or biallelic transcription within the expression domain (n = 3 embryos).

(C) The median distance of monoallelic or biallelic nuclei to the middle of the expression domain (n = 3 embryos).

(D) Detection of nascent transcription sites (smiFISH, magenta) and single *ush* mRNAs (smFISH, green).

(E) Number of mRNAs per cell in single embryos of increasing age in nc14 (i) with quantitation
based on the number of active transcription foci shown for the oldest embryo (ii). Spearman correlation coefficient is shown for each pair of variables.

(F) The number of ush mRNAs per cell plotted according to the nuclear distance from the dorsal midline are shown at three time points (data from embryos 1, 4 and 6 in Ei). Embryos are ordered by increasing age and points are coloured based on the number of active transcription foci.

(G) smFISH image of the ush transcription domain in a st2-dpp embryo. The white rectangle highlights the analysis region; the red rectangles show the wt expression domain edge positions.

(H) Nuclei in the regions highlighted in (G) are coloured based on the number of active transcription foci (i) and quantitated (ii). Data for st2-dpp edges from Hi (n = 3) and for wt edges from data in F (n = 3).

All embryos are oriented dorsally with anterior to the left. Scale bar, 3 μm (Aii), 5 μm (D) or 20 μm (G). *p < 0.05, ***p < 0.001, ****p < 0.0001. Mean ± SD (B, Hii), mean (C) or median ± 95% confidence intervals (Eii). Student’s t-test (C), a Kruskal-Wallis test with a Dunn’s multiple comparisons test (Eii) or Student’s t-test between the proportions of monoallelic nuclei (Hii). See also Figure S1.

Figure 2: Monoallelic transcription is a general feature of gradient interpretation

(A) Representation of the expression patterns of Dl target genes sog, brk and sna in Drosophila embryos, with nuclei false coloured according to the number of active transcription foci based on FISH images (i). A line of best fit shows the midline of the expression domain. Enlarged regions from the associated FISH images showing monoallelic (yellow outline) or biallelic (pink outline) transcribing nuclei (ii).

(B) Proportion of nuclei displaying monoallelic or biallelic transcription within the expression domain.

(C) As in (B) but distance to the middle of the expression domain is plotted.

(D) Proportion of monoallelic transcription in the dorsal (purple) versus the ventral (pink) half of the expression domain for each embryo analysed in (C).

(E) Analysis of monoallelic transcription of BMP target genes and sna between each half (green or blue) of the expression domain half. Data for BMP target genes are from Figure 1C.

Embryos in (Ai) are oriented anterior to the left and positioned laterally (sog, brk) or ventrally (sna). Biological replicates = 5 (sog), 4 (brk) and 3 (sna) embryos. Scale bar, 3 μm (Aii). *p < 0.05, ***p < 0.001, ****p < 0.0001, ns = not significant. Mean ± SD (B) or mean (C). Student’s t-test (C) or a paired Student’s t-test (D, E).
Figure 3: Temporal dynamics of BMP target gene transcription

(A) Cartoon summarising the endogenous genomic imaging locus for *ush* (orange) and *hnt* (blue) with 24xMS2 loops inserted into the 5’UTR.

(B) Maximum projected still from Video S1 showing *ush* transcription false coloured based on fluorescence intensity. Enlarged region (bottom) shows the active transcription site in each nucleus.

(C) Mean fluorescence of *ush* and *hnt* transcription, with time of maximum fluorescence shown, for one representative embryo (209 (*ush*) and 192 (*hnt*) active nuclei). See Figure S2C for biological replicates.

(D) Schematics of the *ush* (anterior) and *hnt* (central) analysis domains (red boxes). Cumulative expression domains of representative embryos are coloured depending on the sum fluorescence produced by nuclei throughout nc14 (note different scales).

(E) Clustering analysis data shown for one representative embryo. (Left) Nuclei are coloured by cluster. (Middle) Heatmaps of single-cell traces, sorted according to transcription onset (scale as indicated, grey indicates periods where nuclei were not tracked). Time of transcriptional onset was traced to visualise onset fronts of different clusters and the position at which half the nuclei in a cluster initiated transcription is indicated (T_{50}). (Right) Mean fluorescence values of nuclei in each cluster. Number of data points given next to heatmaps.

(F) As in (E) showing single cell traces for *hnt* transcription profiles.

Embryos are oriented dorsally with anterior to the left. Scale bar, 10 μm (B, top) and 3 μm (B, bottom). Mean ± SEM (C) or median ± 95% confidence intervals (E, F right). See also Figure S2.

Figure 4: Different BMP signalling levels alter transcriptional burst kinetics

(A) Schematic of the transcription burst parameters and key parameter definitions.

(B, C) Representative fluorescence trace from a central cluster nucleus showing *ush* (B) and *hnt* (C) transcription and inferred promoter states.

(D, E) Global analysis of burst parameters for *ush* (D) and *hnt* (E) transcription in different spatial domains. Data points are coloured according to clusters.

(F) Bursting simulation of *ush* (orange) and *hnt* (blue) transcription based on mean burst parameter values from the central expression domains and shown for typical transcription periods of 30 min for *ush* and 20 min for *hnt*.

Mean ± SD (D, E) for n = 3 biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant. One-way ANOVA with a Dunnett’s multiple comparisons test shows the difference to the central cluster (D, E). See also Figure S3.
Figure 5: BMP signaling level is decoded by modulating promoter occupancy
(A) Mean fluorescence output of nuclei transcribing ush plotted according to the nuclear position across the dorsal midline for one representative embryo.
(B-F) Burst kinetic parameters of single ush nuclei plotted across the midline and against mean fluorescence intensity for promoter occupancy (B), k_{on} (C), k_{off} (D), burst frequency (E) and amplitude (F). Pearson correlation coefficient is shown for each pair of variables between burst parameter and mean fluorescence. Linear regression is shown ± 95% confidence intervals. See also Figure S4.

Figure 6: Increased BMP signalling levels increase promoter occupancy
(A) Schematic shows the imaging region (dotted line) and the analysis domain (red line). Cumulative expression domain of ush shows all active nuclei in one representative st2-dpp embryo (i) and coloured depending on the sum fluorescence produced by nuclei throughout nc14 (ii).
(B) Transcription onset times of ush shown for biological replicates with n = 3 in MS2 wt embryos (209, 186, 223 nuclei) and n = 3 in st2-dpp embryos (121, 89, 107 nuclei).
(C) Mean fluorescence of ush transcription over time in st2-dpp and wt MS2 embryos, with the indicated time point of maximum fluorescence. Data are from one representative wt MS2 embryo with 209 nuclei and biological replicates for st2-dpp embryos with 121, 89 and 107 active nuclei, respectively.
(D) Representative fluorescence trace from a central cluster nucleus showing ush transcription in a st2-dpp background and inferred promoter states.
(E) Global analysis of burst parameters for ush transcription in different spatial domains. Data points are coloured according to genotypes. Embryos are oriented dorsally with anterior to the left. Mean ± SD (B, E) or mean ± SEM (C) for n = 3 biological replicates. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ns = not significant. Student’s t-test (B) and a two-way ANOVA with a Sidak’s multiple comparisons test shows the difference between means of the two genotypes (E). Data for ush transcription in ush MS2 wt embryos were analysed in previous Figures and are shown here for comparison.

Figure 7: BMP responsive promoters integrate signalling levels through modulation of burst size.
(A) Summary of the endogenous genomic imaging loci for embryos with a ush promoter (orange) or the hnt promoter (green) and 24xMS2 loops present in the ush 5’UTR.
(B) Transcription onset times of ush transcription in ush and hnt>ush embryos. Median onset time of biological replicates are plotted with n = 3 for ush (209, 186, 223 nuclei) and hnt>ush (159, 187, 202 nuclei).
(C) Mean fluorescence of ush transcription and time point of maximum fluorescence in
representative embryos for n = 1 biological replicates with 209 (ush) and 186 (hnt>ush) active nuclei. See Figure S5B for biological replicates.

(D) Representative fluorescence trace from a central cluster nucleus showing ush transcription in a hnt>ush embryo and the inferred promoter states.

(E) Global analysis comparing burst parameters for ush transcription spatially and between genotypes. Data points are coloured according to genotype.

(F) Bursting simulation of ush (orange), hnt (blue) and hnt>ush (green) transcription based on mean burst parameter values from the central expression domains and typical transcription onset times.

(G) Cartoon shows the different promoter state profiles for ush and hnt, how these respond to altered BMP signalling levels, and the resulting effects on allele activity and mRNA number. Mean ± SD (B, E) or mean ± SEM (C) for n = 3 biological replicates. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ns = not significant. Student’s t-test (B) and a two-way ANOVA with a Sidak’s multiple comparisons test shows the difference between means of the two genotypes (E). Data for ush transcription in ush MS2 wt embryos were analysed in previous Figures and are shown here for comparison. See also Figure S5.
Aii

Race DAPI hnt DAPI ush DAPI tup DAPI

D

ush int. ush ex. DAPI ush intronic ush exonic

F

ush

increasing age

0 active alleles 1 active allele ≥ 2 active alleles

G

ush smFISH, DAPI

H

ush time course

Ei

ush time course

Eii

r^2 = 0.78

Hii

% of nuclei in wt edge region

0 active alleles 1 active allele ≥ 2 active alleles

Edge 1 Edge 2
Ai

0 active alleles	1 active allele	≥ 2 active alleles
sog	brk	sna

Aii

| sog DAPI | brk DAPI | sna DAPI |

B

% of nuclei in expression domain	sog	brk	sna
≥ 2 active alleles			
1 active allele			
0 active alleles			

C

Relative distance to midline (au)	sog	brk	sna
0.0			
0.5			
1.0			
1.5			
2.0			

D

Monoallelic expression at Dorsal vs Ventral border

% of nuclei with monoallelic expression

sog	brk
p=0.0126	p=0.0339

E

% of nuclei with monoallelic expression

Race	hnt	ush	tup	sna
ns				

A

Chr 2L, *ush*

Chr X, *hnt*

B

His-RFP	MCP-GFP	Merge
![Image](image1)	![Image](image2)	![Image](image3)

C

Mean fluorescence over time

- *ush 1*:
 - Mean sum fluorescence
 - 40.2 min

- *hnt 1*:
 - Mean sum fluorescence
 - 47.3 min

D

Analysis setup

E

K-Means cluster

- **ush 1**
 - Centre cluster
 - Intermediate cluster
 - Edge cluster

F

K-Means cluster

- **hnt 1**
 - Centre cluster
 - Edge cluster

Fluorescent intensity (au)
Amplitude

Fluor. intensity (au)

Centre Interm. Edge

Burst size (au)

Fluor. intensity (au)

Promoter

Frequency

Burst frequency (min$^{-1}$)

Occupancy

Promoter occupancy (au)

Size

Burst size (au)

Frequency

Burst frequency (min$^{-1}$)

Occupancy

Promoter occupancy (au)

Frequency

Burst frequency (min$^{-1}$)

Occupancy

Promoter occupancy (au)

Frequency

Burst frequency (min$^{-1}$)

Recreated central cluster bursts

Hoppe_Figure 4

Burst size = Duration x amplitude
Promoter occupancy = Frequency x duration

A

B

C

D

E

F
A. ush 1 mean Fluor.

B. Promoter occupancy

C. k_{on}

D. K_{off}

E. Burst frequency

F. Amplitude

Hoppe_Figure 5

Position across the midline

mean Fluor.

Burst frequency (min$^{-1}$)

Amplitude (au)

Burst frequency (min$^{-1}$)

Amplitude (au)

K_{off} (min$^{-1}$)

$r = 0.88$

$r = -0.61$

$r = 0.62$

$r = 0.77$

$r = 0.88$

$r = 0.97$

$r = 0.77$

Mean fluor. intensity (au)

K_{off} (min$^{-1}$)

$r = 0.61$

$r = 0.88$

$r = 0.77$

Mean fluor. intensity (au)
Ai

Expression domain

Aii

Sum expression

B

Median onset time

C

Mean fluorescence over time

D

Centre cluster

E

Occupancy

k_{on}

k_{off}

Frequency

Amplitude

Size
METHODS

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental animals

Drosophila melanogaster flies were grown and maintained at 18°C while fly crosses for imaging were raised and maintained at 25°C. All flies were raised on standard fly food (yeast 50g/L, glucose 78g/L, maize flour 72g/L, agar 8g/L, nipagen 27ml/L, and propionic acid 3ml/L). Embryos were collected on apple juice agar plates that contained yeast paste. The following fly lines were used for experiments in this study; st2-dpp (Ashe et al., 2000), y¹w*;P{His2Av-mRFP1}II.2; P{nos- MECFP2} (BDSC Cat# 60340, RRID:BDSC_60340), y⁶⁷c²³w¹¹⁸, 24xMS2-ush (this study), y⁶⁷c²³w¹¹⁸, hnt>24xMS2-ush (this study), y¹M{vas-Cas9}ZH-2Aw¹¹⁸, 24xMS2-hnt (this study), and y⁶⁷c²³w¹¹⁸ which we used as wildtype.

Generation of endogenous MS2 lines

Live imaging fly lines were generated through a two-step method of CRISPR/Cas9 genome editing with homologous recombination and ϕC31 integrase-mediated site-specific transgenesis.

First deletions in the 5'UTR regions of *ush* isoform RC (456bp; Chr 2L: 523446-523902, dm6 genome) and *hnt* isoforms RA and RB (705bp; ChrX: 4617319-4618023, dm6 genome) were generated. Two PAM sites (flyCRISPR Optimal Target Finder tool: http://flycrispr.molbio.wisc.edu/tools) were used to create double strand breaks.

The plasmid pTVcherry (gift from the Vincent lab; DGRC #1338) was used as a donor plasmid containing an attP reintegration site flanked on either side by homology arm sequences. Homology arms were inserted using KpnI and SpeI restriction sites, respectively.

ush HA1: forward primer GGTACCgtgcatagcagcaggtttagg, reverse primer GGTACCcggggacgagacgacgaccttta

ush HA2: forward primer ACTAGTggaagtgacaacataattgcc, reverse primer ACTAGTtccagccctcactcactc

hnt HA1: forward primer GCTAGCggaaggttgtgtggttacc, reverse primer GCTAGCcatagggtgctgtgtgtgtg
hnt HA2: forward primer ACTAGTcaactgttgaacacaatattc, reverse primer ACTAGTcacacatgcatacatccagtc

The pU6-BbsI-chiRNA plasmid (RRID:Addgene_45946) was used to deliver guide RNAs (gRNA). 5’ phosphorylated oligonucleotides were annealed and ligated into the BbsI restriction site. Together, gRNA plasmids and the donor plasmid were injected into Cas9 expressing flies (BDSC Cat# 51323, RRID:BDSC_51323) by the Cambridge University injection service.

ush gRNA1: forward primer cttcgtctcgtctgcgtcc, reverse primer aaacgagcggggacgagacgagac
ush gRNA2: forward primer cttcgattatgttgtcacttccc, reverse primer aaacacgggaagtgacaacataatc

hnt gRNA1: forward primer cttcgccgcaaataaggattacat, reverse primer aaacatgtgtaatcctatttgcgc
hnt gRNA2: forward primer cttcgattgttcaacagttgca, reverse primer aaactgcaactgttgaaacaacaatc

Next, the attB-attP system was used for site-specific reintegration. Reintegration fragments were inserted into the RIVcherry plasmid (gift from the Vincent lab; DGRC #1331). Wildtype sequences of promoter and 5’UTR regions, previously removed in the CRISPR process, were inserted into RIVcherry using the NotI site to reconstitute wildtype loci. The 24xMS2-loop cassette (pCR-24xMS2L-stable, RRID:Addgene_31865) was inserted using the BglII site. The RIVcherry plasmid was co-injected with a ϕC31 integrase plasmid (Injection service) into the balanced CRISPR fly lines. Successful transformants were balanced and the marker region was removed by crossing to a Cre-recombinase expressing fly line (BDSC Cat# 1501, RRID:BDSC_1501).

Promoter swap fly line hnt>ush
The core promoter sequence of **hnt** was inserted into the previously generated fly line carrying the **ush** 5’UTR deletion and an attP site. The core **hnt** promoter sequence and annotation (200 bp; Chr X: 4,617,464 - 4,617,663 dm6 genome) was determined based on peaks from Global Run-On Sequencing (GRO-Seq) data (Saunders et al., 2013). After co-injection with the ϕC31 plasmid, successful transformants were crossed to a Cre-recombinase expressing fly line (BDSC Cat# 1501, RRID:BDSC_1501). Full cloning details available upon request.
All MS2 tagged lines generated for this study are homozygous viable and fertile.

METHOD DETAILS

Fluorescence in situ hybridisation

Embryo collections (2-4h), RNA probe synthesis and in situ hybridisation with digoxygenin-UTP-labelled (Sigma, 11277073910) or biotin-UTP-labelled probes (Sigma, 11685597910) were performed as described (Kosman et al., 2004). Antisense probes were approximately 1kb in length (Primer sequences in Table S1). The following primary and secondary antibodies were used: Sheep Anti-Digoxigenin Antibody (1:250 Roche Cat# 11333089001, RRID:AB_514496), mouse anti-biotin (1:250 Roche, 1297597), donkey anti-Sheep IgG Secondary Antibody, Alexa Flue or 555 (1:500; Thermo Fisher Scientific Cat# A-21436, RRID:AB_2535857) and donkey anti-Mouse IgG Secondary Antibody, Alexa Fluor 647 (1:500; Thermo Fisher Scientific Cat# A-31571, RRID:AB_162542). Samples were incubated with DAPI (1:500; NEB, 4083) and mounted in ProLong Diamond Antifade Mountant (Thermo Fisher, P36965).

DNA oligonucleotides

Exonic probe sets for smFISH (Biosearch Technologies) and intronic probe sets for smiFISH (Sigma) can be found in Table S2. Probes for smFISH were conjugated to Quasar 570 fluorophores and smiFISH probes were hybridised to Z-flaps conjugated to Quasar 647 fluorophores (hnt and ush) or to X-flaps which were conjugated to Quasar 647 fluorophores (tup) (gift from the Ronshaugen lab, 2B Scientific).

smFISH/smiFISH

smiFISH probes were hybridised to Flaps as described (Tsanov et al., 2016) and mixed with smFISH probes. Fixed embryos, staged to be 2-4h old, were transferred into Wheaton vials (Z188700-1PAK, Sigma), washed 5 min in 50% methanol/50% phosphate-buffered saline with 0.1% Tween-20 (9005-64-5, Sigma) (PBT), followed by four 10 min washes in PBT, a 10 min wash in 50% PBT/5% wash buffer (10% formamide in 2X SSC; 300mM NaCl and 30mM trisodium citrate adjusted to pH 7) and two 5 min washes in 100% wash buffer. Next, embryos were rinsed once and incubated 2h at 37°C in smFISH hybridisation buffer (2.5mM dextran sulphate, 10% formamide in 2X SSC). During that time the hybridisation buffer was exchanged twice. Probes were diluted in hybridisation buffer to a final concentration of 1.25mM for smFISH Stellaris probes, and 4mM probe/FLAP duplex for smiFISH probes. Embryos were incubated in probe solution for 14h at 37°C, washed min in pre-warmed hybridisation buffer at 37°C, followed by three 15 min washes in pre-warmed wash buffer at 37°C. At room temperature, embryos were 15 min in wash buffer and three times 15 min in
PBT in the dark. One of the PBT washes included DAPI (1:500). Embryos were then mounted in ProLong Diamond Antifade Mountant. All washes were performed with agitation. The number of cytoplasmic mRNA molecules was quantified based on signal in the exonic smFISH probe channel. The number of nascent transcription sites was determined based on signal in the intronic smiFISH channel.

FISH/smFISH microscopy

Images were acquired with a Leica TCS SP8 AOBS inverted microscope using a 40x/ 1.3 HC Pl Apo CS2 or 63x/ 1.4 Plan APO objective with 2x line averaging. The confocal settings were as follows, pinhole 1 airy unit, scan speed 400Hz and format 2048 x 2048 pixels. Images were collected with either Photon Multiplying Tube Detectors or Hybrid Detectors and illuminated using a white laser. The following detection mirror settings were used: Photon Multiplying Tube Detector at 405nm (4.66%); Hybrid Detectors: 490nm (10%, 0.3 to 6us gating), 548nm (26.1%, 0.3 to 6us gating) and 647nm (17%, 0.3 to 6us gating). All images were collected sequentially and optical stacks were acquired at 300nm spacing. Raw images were then deconvolved using Huygens Professional software (SVI, RRID:SCR_014237) and maximum intensity projections are shown in the figures.

Live Imaging microscopy

Female flies of the genotype His2av-RFP; MCP-GFP (BDSC Cat# 60340, RRID:BDSC_60340) were crossed to wildtype or st2-dpp (Ashe et al., 2000) expressing males. Female offspring from this cross were mated with males homozygous for the 24xMS2 tagged target gene locus to supply a maternal source of His-RFP; MCP-GFP. Embryos were dechorionated in bleach and positioned dorsally on top of a coverslip (Nr. 1, 18x 18 mm; Deltalab, D101818), thinly coated with heptane glue. A drop of halocarbon oil mix (4:1, halocarbon oil 700: halocarbon oil 27; Sigma H8898 and H8773) was placed in the middle of a Lumox imaging dish (Sarstedt, 94.6077.305) and two coverslips (Nr. 0, 18x 18mm; Scientific Laboratory Supplies, PK200) were placed on either side of the oil drop, creating a bridge. The coverslip with the embryos glued to it was then inverted into the oil, sandwiching the embryos between the imaging dish membrane and the coverslip.

Embryos were imaged on a Leica TCS SP8 AOBS inverted confocal microscope with a resonant scan head, using a 40x/ 1.3 HC PL apochromatic oil objective. Images were obtained with the following confocal settings, pinhole 1.3 airy units, scan speed 8000Hz bidirectional, format 1024 x 700 pixels at 8 bit. Images were collected using the white laser with 488nm (8%) and 574nm (2%) at 8x line averaging and detected with hybrid detectors. Three-dimensional optical sections were acquired at 1 μm distance, a final depth of 55 μm.
and a final temporal resolution of 20 seconds per time frame. Images were processed with the Leica lightning deconvolution software. The mounting medium refractive index was estimated to be 1.41. Maximum intensity projections of 3D stacks are shown in the result sections. Embryos were imaged for 70-90 min and included the cleavage cycle of nc14 and the onset of gastrulation. During analysis all datasets were adjusted in time to account for slight temperature differences during imaging that can alter the speed of development. Therefore, nc14 was defined as the time between telophase of cleavage cycle 14 and the beginning of cephalic furrow formation. For the purpose of this study, nc14 was defined to last for 50 min similar to (Berrocal et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Analysis of static FISH and smFISH images in Imaris

Nuclei and RNA puncta were initially detected using the Imaris software 9.2 (Bitplane, Oxford Instruments, Concord MA, RRID:SCR_007370). RNA puncta were then assigned to nuclei in a proximity based method using custom python scripts. Nuclei were identified and segmented using the Imaris "surface" function. Nascent transcription foci were identified using Imaris "spots" function and estimated to be 0.6 µm in diameter with a z-axis point spread function of 1 µm. Single mRNA puncta were identified with spot volumes of 0.3 µm across and 0.6 µm in the z direction. Customised Python scripts were used to analyse the data extracted from Imaris and are described below.

Quantification of cell width bins for expression domain edge comparison

Bins of one cell width were defined to be 5 µm wide. The wt expression domain of ush was determined to be approximately 100 µm in width and the wt edge region was defined as the outermost 15% of the expression domain. The wt edge domain in st2-dpp and wt embryos was defined as 15 µm wide area located approximately 30-45 µm away from the dorsal midline.

Nuclear tracking and spot identification in live imaging data sets in Imaris

Nuclei were first smoothed and blurred using a wavelet filter (Imaris X-tension by Egor Zindy) and then segmented using the Imaris "surface" function based on the His-RFP fluorescent channel. Nuclei were tracked through time in 3D using the inbuilt autoregressive motion with a maximum frame gap size of 5 and a maximum travel distance of 5 µm. Active transcription sites were detected using the Imaris "spots" function in three-dimensions. Transcription foci were estimated to be 1.8 µm across with a z-axis point spread function estimation of 7.8 µm. To determine the background fluorescence of the data set, a set of "spots" were generated for background correction. Here, four spots were inserted every third
time frame, avoiding nascent transcription sites. The background correction spots have the identical volume to the transcription site spots.

Custom python scripts for live imaging data analysis

1. **Spot assignment to nuclei**
 For both static and live imaging spots were assigned to nuclei using the long axis of the nucleus as a reference for the midline of each nucleus. The long axis for each nucleus was calculated, using the Imaris 9.2 ellipsoid axis C and spots were then assigned to the nearest nuclei axis within the 3D space. The number of spots assigned to each nuclei was recorded.

2. **Nuclei distance to midline**
 The midline for the expression domain was calculated by fitting a polynomial (2-dimensions) using the coordinates of the mRNA spots as detected by Imaris 9.2. The distance of each nucleus was then calculated back to the midline and reported in µm.

3. **Mitotic Wave correction**
 To correct for time differences in transcriptional onset due to the mitotic wave, the temporal profile of cell areas was synchronised. The microscopy time frame at which of telophase was noted for each cell area along the AP axis. These data were then used to set the zero time point for each position along the long axis of the embryo were adjusted relative to this time point.

4. **Background subtraction**
 Background was recorded from the first time point where fluorescent foci were identified in the MS2 data. Background was then recorded every 3 frames until the end of the video. The background was then fit as a linear polynomial (1 dimension). The equation of the line was then used to calculate the background level at every time point. The raw value was then corrected for background as in: \[
\text{raw value - background} \quad \frac{\text{raw value - background}}{\text{background}}.
\]

Modelling Changes in Kinetic Parameters of Transcription

We used a memory-adjusted hidden Markov model (mHMM) to infer the promoter state activity given MS2 flourescence data (Lammers et al., 2019). The model parameters are the transition rates between on and off states of the promoter and the mean/variance of the signal in the on and off states. In order to investigate the spatial regulation of transcriptional parameters, K-means clustering (using sklearn.cluster.KMeans) of the MS2 fluorescence traces was used to partition each ush and hnt>ush embryo into three clusters of cells with similar dynamics. The MS2 fluorescence dataset for each hnt embryo was instead divided into three approximately equally-sized groups of cells based on expression level, due to the
inability of the K-means algorithm to subdivide the narrower hnt expression domain into three distinct clusters. The mHMM was trained separately on each of these three cell cluster datasets per embryo in order to generate the graphs showing global transcriptional parameters per cluster or expression group. Inferred global transcriptional parameters included promoter switching on rate \((kon)\), promoter switching off rate \((koff)\), Pol II initiation rate \((kini, \text{ expressed in terms of A.U.})\), promoter mean occupancy \((<n>)\), burst size \((kini / koff)\) and burst frequency \(((kon * koff) / (kon + koff))\) (Zoller et al., 2018). The global parameters for each embryo were then used to generate a set of inferred posterior promoter traces for each individual cell within the embryo (using the Forward-Backward algorithm) allowing for estimation of cell-specific promoter switching rates, mean occupancy, burst frequency and amplitude.

The model state-space for the mHMM is the sequence of promoter on-off states within a window of length \(K\) which is determined by the elongation time (determined by length of the gene and estimated transcription speed, see Lammers et al., 2019). The state-space of the mHMM is therefore \(2^K\) in size. This state-space is too large for us to use the original matlab implementation of the model here because of computational space and time limitations, and therefore we reimplemented the model in python using a truncated state-space approximation. We used the Forward algorithm to rank states dynamically by probability given the current and previous observations in the sequence and we removed states below \(M\) in rank at each time, where \(M\) is a user-defined number of stored states that determined the accuracy of the approximation. Full details of this scalable implementation of the memory adjusted HMM are described in a forthcoming publication (Bowles et al., in preparation).

Statistical Analysis

Statistical comparisons were performed using two-tailed Student’s t tests, Mann-Whitney test, Kruskal-Wallis test with multiple comparison, one-way ANOVA with multiple comparison, two-way ANOVA with multiple comparison and paired Student’s t tests using GraphPad Prism (RRID: SCR 002798) and R. Statistical test and sample sizes can be found in Figure legends. Statistical significance was assumed by \(p<0.05\). Individual \(p\) values are indicated in Figure legends.

METHOD REFERENCES

Ashe, H.L., Mannervik, M., and Levine, M. (2000). Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305–3312.

Berrocal, A., Lammers, N., Garcia, H.G., and Eisen, M.B. (2018). Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene. BioRxiv 335901.
Kosman, D., Mizutani, C.M., Lemons, D., Cox, W.G., McGinnis, W., and Bier, E. (2004). Multiplex Detection of RNA Expression in Drosophila Embryos. Science. 305, 846–846.

Lammers, N.C., Galstyan, V., Reimer, A., Medin, S.A., Wiggins, C.H., and Garcia, H.G. (2019). Multimodal transcriptional control of pattern formation in embryonic development. BioRxiv 335919.

Saunders, A., Core, L.J., Sutcliffe, C., Lis, J.T., and Ashe, H.L. (2013). Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev. 27, 1146–1158.

Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi, A.-M., Gostan, T., Weber, C., Zimmer, C., Zibara, K., Walter, T., Peter, M., et al. (2016). smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res. 44, e165.

Zoller, B., Little, S.C., and Gregor, T. (2018). Diverse Spatial Expression Patterns Emerge from Unified Kinetics of Transcriptional Bursting. Cell 175, 835-847.e825.

SUPPLEMENTARY INFORMATION

Figure S1: BMP target gene transcription during nc14. Refers to Figure 1.
(A) Expression patterns of BMP target genes Race, hnt, ush and tup in Drosophila embryos. Insets are shown in Figure 1 Aii.

(B) Percentages of monoallelic and biallelic ush transcription in each time course embryo.

(C) Number of hnt mRNAs per cell in single embryos of increasing age in nc14 (i), proportion of monoallelic and biallelic transcription (ii), with quantitation based on the number of active transcription foci shown for the oldest embryo (iii). Spearman correlation coefficient is shown for each pair of variables.

(D) The number of hnt mRNAs per cell plotted according to the nuclear distance from the dorsal midline is shown for embryos from (Ci). Embryos are ordered by increasing age and points are coloured based on the number of active transcription foci.

(E, F) As in (C, D), but data are for tup.

(Gi) Number of ush and tup transcripts produced by cells within 1 cell wide bins mirrored at the midline and shown for the oldest time course embryos containing n = 453 (ush) and 364 (tup) cells in total. Inset cartoon shows pMad step-gradient during nc14. Bin width = 5μm from the midline.

(Gii) Contribution of cells (1-4 cell widths and >5 cell widths from the midline) to the overall number of transcripts for n = 6 (ush) and 3 (tup) embryos. Embryos are oriented dorsally with anterior to the left. Scale bar, 20 μm (A). **p < 0.01, ***p < 0.0001. Median ± 95% confidence intervals (Ci, Eii, Gi) or mean ± SD (Gii). Kruskal-Wallis test with a Dunn’s multiple comparisons test (Ci, Eiii).
SUPPLEMENTAL INFORMATION

A

Race DAPI hnt DAPI ush DAPI tup DAPI

B

ush	hnt	tup
≥ 2 active alleles	1 active allele	≥ 2 active alleles

C

Time into nc14	No. of mRNAs per cell	% of nuclei in expression domain
increasing age		

D

hnt
increasing age

E

tup
increasing age

F

tup
increasing age

G

ush	tup
No. of mRNAs per cell	No. of mRNAs per cell
Contribute to total mRNA number (%)	Contribute to total mRNA number (%)

H

Race DAPI	hnt DAPI	ush DAPI	tup DAPI
No. of mRNAs per cell			
% of nuclei in expression domain			

I

ush	tup
Distance to the midline (μm)	Distance to the midline (μm)
Contribution to total mRNA number (%)	Contribution to total mRNA number (%)

J

Race DAPI	hnt DAPI	ush DAPI	tup DAPI
No. of mRNAs per cell			
% of nuclei in expression domain			

K

ush	tup
No. of mRNAs per cell	No. of mRNAs per cell
Contribution to total mRNA number (%)	Contribution to total mRNA number (%)
Figure S2: Characterisation of ush and hnt transcription dynamics using live imaging. Refers to Figure 3.

(A) ISH of ush (top) or hnt (bottom) in wt embryos and embryos homozygous for the MS2-loop tagged gene locus.

(Bi) Schematics of the ush and hnt imaging domains (yellow boxes). Stills from time-lapse data sets (Video S1, S2) false coloured for active transcription show the expression pattern at 37.5 min into nc14.

(Bii) Schematics of the ush and hnt analysis domains (red boxes). The cumulative expression patterns for representative embryos are shown.

(C) Mean fluorescence of ush and hnt transcription, with the time of maximum fluorescence shown for all biological replicates.

(D) Transcription onset times of ush and hnt transcription. Median onset times of biological replicates are plotted (n = 3 for ush (209, 186, 223 nuclei) and hnt (192, 183, 188 nuclei)).

(E) The transcription onset time of ush is plotted according to the nuclear position along the AP and DV axes for one representative biological replicate. Each dot represents one nucleus.

(F) As in (E) except transcription onset times of hnt are plotted.

(G) Mean fluorescence values of ush and hnt transcriptionally active nuclei divided into positional bins along the embryo cross section. Bin width = 10 μm, time resolution = 5 min. Data were pooled from all biological replicates. Note different y-axis.

Embryos and schematics are oriented anterior to the left and positioned dorsally. Scale bar, 20μm (Bi). Mean ± SEM (C), mean ± SD (D) or mean ± 95% confidence intervals (G).
Figure S3: Changes in burst kinetics during *ush* and *hnt* transcription in response to different BMP signalling levels. Refers to Figure 4.

(A) Burst parameter definitions (Zoller et al. 2018) that are used to investigate changes in burst kinetics (i) and schematic of a two-state promoter model where the promoter switches between an active ON and an inactive OFF state. When in the ON state mRNA is produced with the rate of k_{ini}. The probability of switching between the two states is contained in the rates k_{on} and k_{off} (ii).

(B, C) Representative fluorescence trace from an intermediate and edge cluster nucleus showing *ush* (B) and *hnt* (C) transcription and inferred promoter states.

(D, E) Global analysis of mean burst duration ($1/k_{off}$) and promoter off period ($1/k_{on}$) for *ush* (D) and *hnt* (E) transcription in different spatial domains. Data points are coloured according to spatial regions.

Mean ± SD (D, E) for $n = 3$ biological replicates. *p < 0.05, **p < 0.001, ***p < 0.0001, ns = not significant. One-way ANOVA with a Dunnett’s multiple comparisons test shows the difference to the central cluster (D, E).
Parameter definitions:

- **Burst frequency:** $k_{\text{ini}} 	imes k_{\text{off}} / (k_{\text{on}} + k_{\text{off}})$
- **Burst size:** Duration \times amplitude
- **Pol II loading rate:** k_{on}
- **Burst duration:** $1 / k_{\text{off}}$
- **Promoter off period:** $1 / k_{\text{on}}$
- **Promoter occupancy:** $k_{\text{on}} / (k_{\text{on}} + k_{\text{off}})$

(Zoller et al., 2018)

Ai

- **Aii**

B

us

Intermediate cluster

Fluor. intensity (au)

C

hnt

Intermediate cluster

Fluor. intensity (au)

D

ush

Off period

Dur**ation**

E

hnt

Off period

Promoter period (min)

Dur**ation**

Hoppe_Figure S3
Figure S4: Contribution of individual burst parameters to mean expression level. Refers to Figure 5.

(A) Mean fluorescence output of nuclei transcribing hnt plotted according to the nuclear position across the dorsal midline for one representative embryo.

(B-F) Burst kinetic parameters of single hnt nuclei plotted across the midline and against mean fluorescence intensity for promoter occupancy (B), k_{on} (C), k_{off} (D), burst frequency (E) and amplitude (F). Pearson correlation coefficient is shown for each pair of variables between burst parameter and mean fluorescence. Linear regression is shown ± 95% confidence intervals.
A
$hnt\ 1$ mean Fluor.

B
Promoter occupancy

C
k_{on}

D
k_{off}

E
Burst frequency

F
Amplitude

$\text{Amplitude (au)} \ r = 0.77$

$\text{Position across the midline}$

$\text{Mean fluor. intensity (au)}$

$r = 0.73$

$r = 0.21$

$r = 0.93$

$r = 0.65$

$r = 0.77$
Figure S5: Replacing the ush promoter sequence changes burst amplitude. Refers to Figure 7.

(A) Cumulative expression domains of *ush* transcription in *ush* (orange) and *hnt>ush* (green) embryos.

(B) Mean fluorescence of *ush* transcription in *ush* and *hnt>ush* embryos, with time of maximum fluorescence listed for all replicates.

(C) Clustering analysis data shown for one representative embryo for each genotype. (Left) Nuclei are coloured by cluster. (Middle) Heatmaps of single-cell traces, sorted according to transcription onset (scale as indicated, grey indicates periods where nuclei were not tracked). Time of transcriptional onset was traced to visualise onset fronts of different clusters and the position at which half the nuclei in a cluster initiated transcription is indicated (T_{50}). (Right) Mean fluorescence values of nuclei in each cluster. Number of data points given next to heatmaps.

(D) Representative fluorescence trace from an intermediate and edge cluster nucleus showing *ush* transcription and inferred promoter states in a *hnt>ush* embryo. Embryos are oriented dorsally with anterior to the left. Mean ± SEM (B), median ± 95% confidence intervals (C, right). \(* * * * p < 0.0001.\) Mann-Whitney test (C). Data for *ush* transcription in *ush* wt embryos were analysed in previous Figures and are shown here for comparison.
A

Cumulative expression domain

Analysis domain

ush wt
hnt>ush

B

Mean fluorescence over time

Max. fluorescence intensity

	ush wt 1	ush wt 2	ush wt 3	hnt>ush 1	hnt>ush 2	hnt>ush 3
Time	40.2 min	41.3 min	42.8 min	36.8 min	39.2 min	42.5 min

C

ush 1 hnt>ush 1

Centre cluster

Intermediate cluster

Edge cluster

D

Intermediate cluster

Edge cluster
Video S1: Maximum intensity projection of a representative embryo showing endogenous 24xMS2-ush transcription (grey) and Histone-RFP (red) imaged with a 40x objective and 20 sec time resolution during nc14.

Video S2: As in Video S1 but showing hnt transcription.

Video S3: Maximum intensity projection of a representative embryo showing endogenous 24xMS2-ush transcription (grey) and Histone-RFP (red) imaged with a 40x objective and 20 sec time resolution during nc14. The expression domain is broadened by a single copy of the st2-dpp transgene.

Video S4: As in Video 1 but showing ush transcription in a hnt>ush embryo.

Table 1: Primer pairs used to generate intronic RNA probes used for in situ hybridisation, related to Methods.

Gene	Primer	Primer sequence (T3 or T7 promoter in lower case)
Race sense	attaaccctcactaaagggaAGTAGAAACATTATTGGCAAT	
Race antisense	gaattaatcagtactataggggaAGCAAAAAATTACGTTTTT	
hnt sense	attaaccctcactaaagggaATTCCAAAACCCCTTCCTT	
hnt antisense	gaattaatcagtactataggggaCCAGTCTTCGATGTGCCG	
ush sense	attaaccctcactaaagggaGTGGAATTATTCATAC	
ush antisense	gaattaatcagtactataggggaATTAAACTACAGT	
tup sense	attaaccctcactaaagggaTAATTACAAACAAATATT	
tup antisense	gaattaatcagtactataggggaATTAAATATTTACC	
sog sense	attaaccctcactaaagggaAATTTTATTTTTCAATCTATT	
sog antisense	gaattaatcagtactataggggaAAAAACGAGAAATA	
brk sense	attaaccctcactaaagggaAACAGTTGAACGGCAGGGAGGCTT	
brk antisense	gaattaatcagtactataggggaCGATTCCTCAATAGCCATGCAG	
sna sense	attaaccctcactaaagggaACACCGGAAAGGAACCTCAG	
sna antisense	gaattaatcagtactataggggaTCTGTTTGTTTGGTCTTCG	

Table 2: smFISH and smiFISH probes used for FISH and complementary to intronic and exonic sequences in hnt, ush and tup, related to Methods.

Gene	Probe	sequence	Gene	Probe	sequence
hnt	1	aatggcgaattttgcgttg	hnt	25	cggaatagctgtgcata
hnt	2	tagtccactcacaatgatgc	hnt	26	gttgggactggaacatgag
hnt	3	gatagcacccttgcaaacat	hnt	27	gttggtcataaaagggaa
hnt	4	gcacacttctcttgctcgttg	hnt	28	gatgtcactgttgctgta
hnt	5	agatgtggtgcttgcttg	hnt	29	aggaactcactcattcagtac
hnt	6	atgtttggttttgatgtc	hnt	30	agcaggtctccagagccaa
hnt	7	cccaaaggttgccatcagct	hnt	31	cgaacgccgcgtaaatctg
hnt	8	gcaacttccagcaacgcca	hnt	32	tgtgcatagaactcgcag
hnt	9	tgtatgtcactgctgcatc	hnt	33	cgaatgccgacgcatgcatc
Gene	Probe	sequence	Gene	Probe	sequence
------	-------	----------	------	-------	----------
hnt	10	gacgatggtggtgcaagatc	hnt	34	caacagatccggttcttt
hnt	11	gtaagcagaacaglgcgac	hnt	35	ccaagtgcaggagaggatt
hnt	12	tgcctgtgcctcagataca	hnt	36	ctcatgtacatgcgggtt
hnt	13	tzgcaggtgcctcagatatc	hnt	37	ggctgcctcatcagaaatca
hnt	14	aacttggaagctgagctggtt	hnt	38	cttgacgcatcgcgtttt
hnt	15	ttcacggactcgaagatg	hnt	39	actcttcttggaggttttcc
hnt	16	tgcactgactcggtacatttt	hnt	40	atctcttagctggaacagtg
hnt	17	ggcacagggagttcggaa	hnt	41	tggcaatatcggacaggagac
hnt	18	aatgtgcacggatgtgacc	hnt	42	tctggtggtggagaacagac
hnt	19	aacgcagtcagcaacagatc	hnt	43	cagcagctcttgtcagat
hnt	20	tgaagcagctggtcagacg	hnt	44	gcaaagcagacaccacagata
hnt	21	ctgcagctgctcgaagatg	hnt	45	tgtgcgtcagtggaacctc
hnt	22	glgcgcactcgcagcagaa	hnt	46	tcactctgcccaatatagat
hnt	23	cttggagatgtcctcattt	hnt	47	tactccagatatttagcctc
hnt	24	gctgatgatccaaacatcta	hnt	48	cttggtgatcgttgaagccgg
ush	1	tctgcgggtatcggaacatc	ush	25	gtccagggaaagtgtacttaa
ush	2	atccctggaactcttgcttg	ush	26	ggggcaatagtagtctct
ush	3	ggaatgtcagctgatcctt	ush	27	ggacagtctcagacattc
ush	4	cgaaactcgatcctcata	ush	28	acagcagactgtgctctcac
ush	5	tgaagatgctgttctgttc	ush	29	aatgggtcgaagttggtttg
ush	6	aacgcagccgacacataac	ush	30	agatgaggcctgatgtaagc
ush	7	tggagcgcaacagctgaatg	ush	31	agggatgtcacaagtaagc
ush	8	tcccttgtctctaaatctatg	ush	32	agggtgagacatacttgctcag
ush	9	catggtgccatgtggaga	ush	33	agtacactctgtatctgctg
ush	10	tcatctctgtctgggaaga	ush	34	accgtggtcatactcggaat
ush	11	cgggttgcgtgctagacgta	ush	35	gagcagctctcttctacac
ush	12	cttgtatgctgtgtaaccgg	ush	36	cagttagctcttcagttatc
ush	13	cgaactcgcagctgtaattt	ush	37	tcagtaagactcttgtaag
ush	14	aaggtggtcgtagcagatccg	ush	38	cgtgaatcaccctcaagct
ush	15	acaatatgatccgggtgggt	ush	39	gaggctaggattcattag
ush	16	ttggctctgtgaaataacag	ush	40	ttcgggtgtgtgatagat
ush	17	cagattcttacgttcacct	ush	41	ggaatttggtcggttgtcaag
ush	18	aagcatgtgtaatcaggg t	ush	42	tcggtaagctggaagatgca
ush	19	cttctacatcggatgagac	ush	43	tgtgtatccttttagtggt
ush	20	gaggagcgactccagattgc	ush	44	gtagcttggctcatgcatta
ush	21	actactactgttttggcagaaa	ush	45	gccctcaattaatctgtct
ush	22	ccccttcttcacagatctg	ush	46	ccagctcattgcaacacttg
ush	23	acaatagtgcactccatga	ush	47	agaatgtctgcgtttttaggg
ush	24	tgccagagtgtttcactct	ush	48	cttttggtgccacacact
tup	1	catctctgtgcctatttc	tup	24	ggggtcgttgctccttaata
tup	2	tagctgtgagccacatatg	tup	25	cttgacagctgctggcacac
tup	3	tgtgtgtgtgtgtattgca	tup	26	tgaagcgatcgtgaagactt
Gene	Probe	sequence	Gene	Probe	sequence
------	-------	----------	------	-------	----------
tup	4	cgatggctgtaaatcagtt	tup	27	gcggattcagattgaacga
tup	5	ccaaatccaggtgatggtt	tup	28	tcttcgtagcgcacagcag
tup	6	tatccagctgtgctcaatgg	tup	29	gatgactgcgccgccccag
tup	7	ctcgccagctgctttgagata	tup	30	gcgtctttgcagacctgaat
tup	8	tactgatcgtgatcggagtc	tup	31	cgccgctagacgaagcagcag
tup	9	acctccagctgggggcaac	tup	32	tctcattgcagctcacttcc
tup	10	tcttgccctttccacagcag	tup	33	aactggcgatcatggggcat
tup	11	tacaggttttcttttggaga	tup	34	cctgaagattcagtgggggag
tup	12	tgccatgcggcacaacaccaaa	tup	35	cggttgattcctccgagccttcc
tup	13	aaccttcgctttcagcttgg	tup	36	aagtcgcttagcgcctggcag
tup	14	ggcagctcgaagacatacgct	tup	37	gatgagatcggcggctgagga
tup	15	cagctgtgctgctttgagata	tup	38	gcgtctttgcagctcacttcc
tup	16	agaattttgccatattgcagct	tup	39	aactgcctttagcagctgctg
tup	17	ggcagcttcagaaacacactcag	tup	40	ctcggctggcttcctgcttg
tup	18	cagcactttgtgctgctttgagata	tup	41	gatgagatcggcggctgagga
tup	19	gctcttttcttttttgtgctg			

smiFISH probe sets

hnt	1	tgtactgtcagctgtcagcactcag	hnt	25	tgtactgtcagctgtcagcactcag
hnt	2	gctcttttcttttttgtgctg			
hnt	3	actatttttcttttttgtgctg			
hnt	4	tgtactgtcagctgtcagcactcag			
hnt	5	tgtactgtcagctgtcagcactcag			
hnt	6	tgtactgtcagctgtcagcactcag			
hnt	7	tgtactgtcagctgtcagcactcag			
hnt	8	tgtactgtcagctgtcagcactcag			
hnt	9	tgtactgtcagctgtcagcactcag			
hnt	10	tgtactgtcagctgtcagcactcag			
hnt	11	tgtactgtcagctgtcagcactcag			
hnt	12	tgtactgtcagctgtcagcactcag			
hnt	13	tgtactgtcagctgtcagcactcag			
hnt	14	tgtactgtcagctgtcagcactcag			
hnt	15	tgtactgtcagctgtcagcactcag			
hnt	16	tgtactgtcagctgtcagcactcag			
hnt	17	tgtactgtcagctgtcagcactcag			
hnt	18	tgtactgtcagctgtcagcactcag			
hnt	19	tgtactgtcagctgtcagcactcag			
hnt	20	tgtactgtcagctgtcagcactcag			
hnt	21	tgtactgtcagctgtcagcactcag			
hnt	22	tgtactgtcagctgtcagcactcag			

45
Gene	Probe	sequence	Gene	Probe	sequence
hnt	23	tgagataaagattcctccc	hnt	47	aatcaggcgcattcaggggt
hnt	24	cgtgtccttagagctaa	hnt	48	ggatggtgggagaaacga
ush	1	attgtcatgtttttctctt	ush	25	atgttcttttttgcagatt
ush	2	tgttaattgctcaatgcgg	ush	26	cagataaatcccactcact
ush	3	agcaccacattaaatgttc	ush	27	agggagcccatgcccccaaag
ush	4	altgccttaaggctgctaa	ush	28	taaccccaactgcccattag
ush	5	aggctctaacagtaatggctg	ush	29	aaacacatcaggggccccgac
ush	6	atcaacctctgcaggttatt	ush	30	tcctcaagatagcccaagcc
ush	7	attttcagtttttgcttttctt	ush	31	atgttccccgcataaaacag
ush	8	actacagtgtgctcaagctg	ush	32	gctgatgctttttgtttgct
ush	9	cgaactgctgagacactt	ush	33	tgaactccgcaccaaccacat
ush	10	cgcagataggcgactgataa	ush	34	gccagacatcaccacccacat
ush	11	aactacagtacccagagtac	ush	35	gctattttgtgctttttctca
ush	12	atgcagatacatatgagccg	ush	36	gccacacttggagatgatgga
ush	13	gcacacacagatactcgtac	ush	37	ggagccgaaaggaggcaaaa
ush	14	tcaccgagatctgagtaag	ush	38	gctttgtgttggttcatttc
ush	15	ttcctgttgatccactgtc	ush	39	acacgagccagaggaggttg
ush	16	gccttctggcttttttctca	ush	40	ggaaccgcaaaagagggccaa
ush	17	aactacagagctgccagtt	ush	41	taggccccgaaaaagaggttg
ush	18	gttactacgcacagtagtt	ush	42	agacacatcattcatccaa
ush	19	ccagtatctttgtcattttt	ush	43	ggtgtgactaagttgagct
ush	20	catttgtgctttttgcac	ush	44	aaataaagggccacccacat
ush	21	ttccccccaatagttttagctt	ush	45	attcccaaaagaggggaggc
ush	22	ttatagcatgtcgcagacta	ush	46	taatagctttgtctgttg
ush	23	gtagattgagcagtaatcc	ush	47	atcaagaaagaaagggcccc
ush	24	gaggttctgcttccccatccc	ush	48	gaaactacgtltcgcagaaacc
tup	1	gcatttgttaaacacgcttt	tup	25	cgaatgttagatgccccg
tup	2	gttagacacaactgtcagccaa	tup	26	gggcataactcagaggtttta
tup	3	cgactactgagaaagtccg	tup	27	ggaattgagatgaatgcccc
tup	4	agcgatctcggactacata	tup	28	ttccgagatgaggtgggcc
tup	5	agcatcgggtatggtggct	tup	29	tgcctagggcagccaaata
tup	6	ttcatctagctttaggcagc	tup	30	cagccgtatgacaccagttg
tup	7	acaacacctgacctatgact	tup	31	ttgcggacacgctacaattg
tup	8	accactgtctgttaagttttt	tup	32	ctaacgaagacaagggctaa
tup	9	gttttactgttgccgagactg	tup	33	aatggcgttggtcatcacaag
tup	10	attttttttctacccacactt	tup	34	cttttgttaagggctcagc
tup	11	atatatttctacgccagcc	tup	35	ggaccagctgtttgtaggaa
tup	12	gaaatgcaacacgcctgga	tup	36	tgcagctcaatactttacg
tup	13	aagcagccatataagttgcc	tup	37	cgtagccaaacacccagtt
tup	14	acitcataaagccacacagtca	tup	38	tgcagctcagatagttgcca
tup	15	agatgtttaagttctcatcc	tup	39	agctttgacgtttaatcag
tup	16	attttttttctcgctgattgc	tup	40	catcaatcatcgcagagc
tup	17	agatgtttagatggaattgctt	tup	41	atcgatgagtgagcccagagtg
Gene	Probe	sequence	Gene	Probe	sequence
------	-------	----------------	------	-------	-----------------
tup	18	ttaggcagctagaatgcttc	tup	42	aaattcttttgcagtgccg
tup	19	gatctgcaaaactctcaact	tup	43	cagagctgttttatggctat
tup	20	cgaaaaaggcggcgagctcg	tup	44	acacaatttcaaggggggtg
tup	21	caaagagcgaagagctctg	tup	45	acagccctgaatgatcttcac
tup	22	acagtttctcagttttcgc	tup	46	gaagatccccctgatggagc
tup	23	gtacctgattccagatccac	tup	47	ggtgatatttccttaatccag
tup	24	acatatttgcatttgctg	tup	48	accagaatcccctttttccctt
