Some rare and remarkable spider species from Hungary (Arachnida: Araneae)

László Mezőfi & Viktor Markó

Abstract. This study reports the first records of two spider species for Hungary: Cyclosa sierra Simon, 1870 (Araneidae) and Porhonna oblitum (O. P.-Cambridge, 1871) (Linyphiidae). Cyclosa sierra also represents the first record of this species from Central Europe. Furthermore, we provide evidence about the occurrence of Dysdera lata Reuss, 1834 and Philodromus marmoratus Kulczyński, 1891 in Hungary and for six further species we report new data: Brigitteva simonia (Simon, 1873) (Dictynidae), Iberina microphthalmalas (Snazzl & Duffey, 1980) (Hahniidae), Mermessus trilobatus (Emerton, 1882) (Linyphiidae), Pulchellodromus ruficapillus (Simon, 1885) (Philodromidae), Lasaelia prona (Menge, 1868) (Theridiidae) and Diaea livens Simon, 1876 (Thomisidae). Comments on the distribution, biology and taxonomy of the ten mentioned spider species are provided.

Keywords: Cyclosa sierra, distribution, Dysdera lata, first record, Philodromus marmoratus, Porhonna oblitum

In the early twentieth century Chyzer & Kulczyński (1918) published the first comprehensive checklist of the spiders from Hungary, and already listed 742 species. More than 80 years later Samu & Szenétár (1999) updated the list according to the present borders of Hungary, thus their list contains 725 species. Since then many new additions have been reported for the fauna (e.g. Szász et al. 2003, Pfliegler et al. 2012, Szenétár & Kovács 2013, Pfliegler 2014, Szenétár et al. 2014, 2015, Korányi et al. 2017) and several new species from the country were described (Szenétár & Samu 2003, Szenétár & Kancsalo 2007, Szenétár et al. 2009, Kovács et al. 2015a). Presently, the Spiders of Europe database lists 800 spider taxa for Hungary (Nentwig et al. 2017), although the list is still far from complete. In this paper we report two further spider species which are new to the fauna of Hungary. We also provide a new data on the occurrence and biology of some rare and interesting spider species.

Material and methods
The spiders were collected sporadically in various parts of Hungary, mainly in apple orchards (Bács-Kiskun, Pest, Szabolcs-Szatmár-Bereg and Tolna counties) and city parks (Budapest, Gödöllő) from 2013 to 2016. Exact locations are indicated with some comments in the Results. A variety of collecting methods were used, including hand collecting, beating, cardboard bands and litter sampling. For collecting overwintering spiders from apple trees, we used corrugated cardboard strips (height 20 cm), which were placed around the tree trunks, at about 20 cm above ground usually in September. The bands and litter samples were collected during winter months, and for processing the litter samples we used Winkler extractors (Sakchoowong et al. 2007). Juvenile specimens of Philodromus marmoratus Kulczyński, 1891 and Pulchellodromus ruficapillus (Simon, 1885) were kept alive and fed with Drosophila hydei Sturtevant, 1921, until its final moult. The collected and reared specimens were stored in 70 % ethanol. Individuals were examined in the laboratory of the Department of Entomology, Szent István University. Identification was made under a binocular stereo microscope (Leica MZ6). In case of female specimens the genitalia were dissected from the specimens, and the epigynes/vulvas were cleared with 20 % KOH. The specimens were identified using various keys (see in the Results section), and were deposited in the first author’s private collection. Philodromus marmoratus and P. ruficapillus habitus pictures were taken with a Nikon D3300 camera equipped with a Sigma 50mm 1:2.8 DG Macro lens. Iberina microphthalmalas (Snazzl & Duffey, 1980), Porhonna oblitum (O. P.-Cambridge, 1871) and P ruficapillus epigynes/vulvas were photographed with a Zeiss Imager A2 light microscope equipped with AxioCam MRc5, and in other cases the photographs were taken with a Sony SX90CR digital interface connected to a Zeiss Stemi 2000 stereomicroscope. The specimens’ parameters were measured with an ocular micrometer calibrated with a stage micrometer, and for post-processing work on the photographs, and for the preparation of the scale bars we used Adobe Photoshop CS3 software. Taxonomic names follow the nomenclature of the WSC (2017).

Results and discussion
As a result of our study the following ten new or rare spider species were recorded from Hungary:

Araneidae Clerck, 1757
Cyclosa sierra Simon, 1870 (Fig. 1)

Determination. Levy 1997, Nentwig et al. 2017
Material examined. 1♂, Sükösd: 17.05.2016 – (46°17’59”N, 19°00’21”E, 100 m a.s.l., organic apple orchard). The specimen (leg. & det. L. Mezőfi) was collected by beating from the canopy of an apple tree.

Distribution. Europe to Georgia (WSC 2017). In Europe it occurs in Albania, Bulgaria, Cyprus, France (exclusivelyCorsica), Greece (including North Aegean Islands and Crete),
Italy (including Sardinia), Macedonia, Portugal, Russia (southern European part), Spain, Turkey (European part) and Ukraine (van Helsdingen 2017). It is also present in, e.g., Azerbaijan, Georgia, Iran, Israel, Lebanon, Syria and Turkey (Asian part) (Levy 1997, Kashefi et al. 2013, Komnenov 2013, Uyar et al. 2014).

Remarks. Until now, two representatives of the genus *Cyclosa* were known from Hungary: *C. conica* (Pallas, 1772) and *C. oculata* (Walckenaer, 1802) (Samu & Szinetár 1999). Here we report *C. sierrae* as the third member of this genus in Hungary. This Mediterranean species usually occurs in steppe-like or shrub vegetations, but also occurs in *Pinus* forests (Komnenov 2013, Polchaninova & Prokopenko 2013, Jílán & van Helsdingen 2014, Uyar et al. 2014). *Cyclosa* spiders are easy to recognise by their habit of placing their prey remains and egg sacs in a vertical line crossing the center of their orb webs (Levy 1997). Furthermore, *Cyclosa* species can usually be easily distinguished from their relatives by, among other features, the posterior-dorsal extended opisthosoma which bears various humps (Levy 1997), but the identification of some species within the genus is difficult. In physical characteristics *C. sierrae* strongly resembles *C. conica*, but according to Mccheidze (2014) these two species can be distinguished on the basis of the sternum colouration; in case of *C. sierrae* the sternum is black (or dark brown) with yellow marks on the edge (one anterior transversal, one apical and two lateral marks), while in *C. conica* the sternum is entirely black, without yellow marks. Presumably the small-sized male specimen of this typically southern species reached the sampling site by ballooning. Spreading of this species in a northern direction has not been detected before in Europe.

Dysderidae O. P.-Cambridge, 1871

Brigittea vicina (Simon, 1873) (syn. **Dictyna vicina**) (Fig. 2)

Determination. Lokska 1969

Material examined. ♂♀, Budapest: 1 ♂ 26.05.2016, 3 ♂♀ 23.06.2016 – Haller park (47°28′29″N, 19°04′48″E, 107 m a.s.l., urban green area); 1 ♂ 23.06.2016 – Róbert Károly körút (47°32′09″N, 19°03′48″E, 106 m a.s.l., urban green area); 1 ♂ 19.07.2016, 1 ♂♀ 13.09.2016 – Margit Island (47°31′19″N, 19°02′43″E, 103 m a.s.l., urban green area), urban green area with floodplain-like forest vegetation; 1 ♂♀ 19.07.2016 – Vérmező (47°29′60″N, 19°01′43″E, 127 m a.s.l., urban green area). All the specimens (leg. D. Korányi, det. L. Mezőfi) were collected by beating mainly in urban environments, from canopies of *Acer campestre* trees.

Distribution. Mediterranean to Central Asia (WSC 2017). In Europe it is present in Bulgaria, Croatia, Czech Republic, France (including Corsica), Greece (including Crete), Hungary, Italy, Macedonia, Moldova, Romania, probably in Russia (north-western European part), Slovakia, Ukraine and former Yugoslavia (van Helsdingen 2017).

Remarks. A very rare mesophilic species (Havranek & Molnár 1965, Bryja et al. 2005b), which is critically endangered in, for example, the Czech Republic (Rezač et al. 2015). However, *B. vicina* is not considered to be very rare in Hungary and it can be characterised as a species with a rather sporadic occurrence (Szinetár pers. comm.). It occurs in the herb layer of downy oak forests (Bryja et al. 2005b) or at forest edges (Havranek & Molnár 1965), although *B. vicina* was reported from urban areas (from *Picea abies* trees) as well (Szinetár 1992). In spite of the limited data on this species our results indicate that urban green ecosystems can provide appropriate habitats for *B. vicina.*

Dysdera lata Reuss, 1834 (Fig. 3)

Determination. Kovblyuk et al. 2008, Le Peru 2011, Bosmans et al. 2017

Material examined. 1 ♂, Budapest: 27.07.2016 – Budai Arboretum (47°28′49″N, 19°02′24″E, 120 m a.s.l., urban green area). The specimen (leg. & det. L. Mezőfi) was collected by hand on a pavement near a rockery in the Botanical Garden of the Szent István University.

Distribution. Mediterranean to Georgia (WSC 2017). In Europe this species occurs in Bulgaria, Cyprus, France (exclusively on Corsica), Greece (including North Aegean Islands, Cyclades and Crete), Moldova, Portugal, Romania, Russia (southern European part), Slovakia, Spain (exclusively on the Balearic Islands) and Ukraine (Otto 2015, Bosmans et al. 2017, van Helsdingen 2017, Lissner 2017).

*Fig. 1: Left palp of *Cyclosa sierrae* male from Hungary; a. prolateral view; b. retrolateral view*

*Fig. 2: Cleared, dissected epigyne/vulva of *Brigittea vicina* female from Hungary; a. epigyne, ventral view; b. epigyne/vulva, dorsal view*
In this paper we confirm the occurrence of *I. microphthalmalma* as a ‘soil spider’. Nonetheless, its occurrence in the canopy of apple trees (at a height of approximately 1.5 m above the ground) suggests that besides the soil layer or the ground level *I. microphthalmalma* can sometimes also occur on plants.

Linyphiidae Blackwall, 1859

Mermessus trilobatus (Emerton, 1882)

Determination. Nentwig et al. 2017, Šestákova et al. 2017

Material examined. 2♂♂, 3♀♀ 15.12.2015 – Monorierdő (47°19′13″N, 19°31′12″E, 158 m a.s.l., organic apple orchard); 1♂ 05.02.2016 – Újfehértó (47°49′13″N, 21°39′58″E, 121 m a.s.l., organic apple orchard); 1♂, 1♀ 09.12.2016 – Sükösd (46°17′59″N, 19°00′21″E, 100 m a.s.l., organic apple orchard). The specimens (leg. & det. L. Mezőfi) were collected by litter sampling.

Distribution. North America. Introduced to Azores, Europe (WSC 2017). In Europe it is present in Austria, Belgium, Croatia, Czech Republic, France, Germany, Great Britain, Hungary, Italy, Netherlands, Poland, Portugal (exclusively on Azores), Slovakia, Slovenia, Switzerland and Ukraine (Dolanský et al. 2009, Katušić 2009, Kovács et al. 2015b, Szinetár et al. 2015, van Helsdingen 2017, Hirna 2017).

Remarks. This North American linyphiid spider was first found in Germany in the early 1980s and *M. trilobatus* is probably now the most frequently occurring alien spider in Europe (Nentwig & Kobelt 2010). This invasive ground-living species is probably spreading primarily by ballooning (Kosiúč et al. 2013, Blandenier et al. 2014) and its high colonization ability may relate to this, although the exact reasons for the success of *M. trilobatus* are still unclear (Eichenberger et al. 2009). In Hungary the first specimen was collected in 2012 (Kovács et al. 2015b), and since then it was found in several locations, especially in the western part of the country (e.g. pipe traps which were designed to catch subterranean invertebrates. Snazell & Duffey (1980) propose that some of the characteristics of the spider suggest subterranean habitat use and Růžička & Dolanský (2016) consider *I. microphthalmalma* as a ‘soil spider’. Nonetheless, its occurrence in the canopy of apple trees (at a height of approximately 1.5 m above the ground) suggests that besides the soil layer or the ground level *I. microphthalmalma* can sometimes also occur on plants.
Kovács & Szinetár 2015, Kovács et al. 2015b, Szinetár et al. 2015). Our results indicate that in recent years this species colonized almost the entire country, the central (Monorierdő), the southern (Süksöd) and the eastern (Újfehértó) parts equally. The species can also be expected to reach Serbia and Romania in the near future.

Porrhomma oblitum (O. P.-Cambridge, 1871) (Fig. 5)

Material examined. Merrett 1994, Russell-Smith 2009

Determination. Pulchellodromus ruficapillus

Distribution. Only in Austria, Bulgaria, Czech Republic, Hungary, Slovakia, Ukraine and former Yugoslavia (with newer data from Serbia) (Grbić & Savić 2010, van Helsdingen 2017).

Remarks. A very rare species (Bryja et al. 2005a, 2005b), which is endangered in, e.g., the Czech Republic (Režák et al. 2015) and occurs near wetlands or floodplain forests (Jäger 1995, Bryja et al. 2005b). This species belongs to the *Philodromus aureolus* group (Segers 1992) and was originally described as *P. aureolus* ssp. *marmoratus* (in Chyzer & Kulczyński 1891). Segers (1992) firstly mentioned that *P. buddenbrocki* is possibly a synonym of *P. aureolus marmoratus* and later Kubcová (2004) clarified the situation and established *P. buddenbrocki* as a junior synonym of *P. marmoratus*. Although Chyzer & Kulczyński (1918), in their spider checklist reported several *P. aureolus marmoratus* records from the present territory of Hungary, surprisingly *P. marmoratus* was not included in the Hungarian checklist of spiders (Samu & Szinetár 1999), probably because of its uncertain taxonomic status. Our data provide further evidence for the occurrence of *P. marmoratus* in Hungary. Furthermore, one individual (♂) was successfully reared from the egg. After the spider had emerged, it moulted nine times until maturity was reached. The other reared specimens (♂) which had been collected as a small nymph also moulted nine times until it reached adult stage. These observations indicate that *P. marmoratus* may have nine or more instars before maturity.

Pulchellodromus ruficapillus (Simon, 1885)

(syn. *Philodromus ruficapillus*) (Fig. 7)

Material examined. 2♂♂, 2♀♀ Budapest: 1♂ (leg. V. Hoffmann, det. L. Mezőfi) 20.04.2016, 1♀, 1♂ (leg. D. Gyóni, det. L. Mezőfi) 29.07.2016 – Margit Island (47°31′19″N, 19°02′43″E, 103 m a.s.l., urban green area with floodplain-like forest vegetation) (The male is a reared specimen, reached maturity after the ninth moult on 29.05.2017.). All specimens were collected by beating from shrubs. 1♂ (det. L. Mezőfi) an additional individual, an offspring of the female collected on 29.07.2016 was also examined. This reared specimen emerged from the egg on 10.08.2016 and reached maturity after the ninth moult on 19.05.2017.

Distribution. In Europe it was found in Albania, Austria, France, Greece (including North Aegean Islands and Crete), Hungary, Italy, Portugal, Romania, Spain and Ukraine (van Helsdingen 2017).

Remarks. In 2012 the genus *Pulchellodromus* was separated from the genus *Philodromus* by Wunderlich (2012), and the genus now contains 13 cryptic species (WSC 2017), mostly from the Mediterranean region (Muster et al. 2007, Wunderlich 2012). Two of them have data from Hungary: *P. pulchellus* (Lucas, 1846) (Déri et al. 2007, Kancsl et al. 2010) and *P. ruficapillus*, the latter of which seems to have the largest distribution area among the other species of the genus (Duma
Interesting Hungarian spiders

2008). Until now, in Hungary *P. ruficapillus* has been found in Fertő-Hanság (Northwestern Hungary) (Muster et al. 2007) and in the Balaton Upland (Szinetár et al. 2016), but our data (Nagykálló, Northeastern Hungary) suggest that it is widespread throughout Hungary. Furthermore, all the records of *P. pulchellus* from Hungary need to be re-checked, because they probably all belong to *P. ruficapillus* (Szinetár et al. 2016). *Pulchellodromus ruficapillus* occurs usually in wetlands or along riverbanks and also on seashores (Muster et al. 2007, Duma 2008, Szinetár et al. 2016).

Fig. 6: *Philodromus marmoratus* specimens from Hungary; a. male, general appearance, dorsal view; b. female, general appearance, dorsal view; c. male’s left palp, ventral view; d. epigyne, ventral view; e. epigyne/vulva, dorsal view

Fig. 7: *Pulchellodromus ruficapillus* female from Hungary; a. general appearance, dorsal view; b. epigyne/vulva, dorsal view

Theridiidae Sundevall, 1833

Lasaeola prona (Menge, 1868) (syn. *Dipoena prona*)

Determination. Roberts 1985, Le Peru 2011

Material examined. 1♂, 2♀, 3 sub ♀♀, 4 sub ♂♂, 1 nymph: 2♂♂ (leg. C. Nagy, det. L. Mezőfi) 28.04.2014 (The specimens were collected from their webs, at the base of apple trees.), 1♂ (leg. & det. L. Mezőfi) 09.07.2014 (This specimen was consumed by a *Carrhotus xanthogramma* (Latreille, 1819) nymph (det. L. Mezőfi) on an apple tree.) – Újfehértó (47°49’13”N, 21°39’58”E, 121 m a.s.l., organic apple orchard). The spi-
ders were collected by hand. 1 sub δ 01.12.2013 – Zsurk (48°24’54”N, 22°12’45”E, 103 m a.s.l., commercial apple orchard); 1 sub Ω 01.12.2013 – Zsurk (48°23’30”N, 22°12’52”E, 105 m a.s.l., commercial apple orchard). These specimens (leg. M. Paróczai, det. L. Mezőfi) were collected by the cardboard band method. 1 nymph 22.09.2015 – Nyírcsaholy (47°55’17”N, 22°18’43”E, 126 m a.s.l., organic apple orchard); 1 sub Ω 05.02.2016 – Újfertóhér (47°49’13”N, 21°39’58”E, 121 m a.s.l., organic apple orchard). These specimens (leg. & det. L. Mezőfi) were collected by the cardboard band method. 1 sub δ, 3 sub Ω 05.02.2016 – Újfertóhér (47°49’13”N, 21°39’58”E, 121 m a.s.l., organic apple orchard). The specimens (leg. & det. L. Mezőfi) were collected by litter sampling.

Distribution. North America, Europe, Caucasus, Japan (WSC 2017). In Europe it is widely distributed: Albania, Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Great Britain, Greece, Hungary, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Russia (eastern European, northern European and Kaliningrad Region), Slovakia, Slovenia, Spain, Sweden, Switzerland and Ukraine (van Helsdingen 2017).

Remarks. Although widely distributed in Europe, this is quite a rare species and its biology is partly unknown (Nentwig et al. 2017). *Lasaea prona* was classified as near threatened in the Carpathian Red List (Gajdos et al. 2014), while in the Czech Republic it is critically endangered (Rezáč et al. 2015). Although much of its biology was previously unknown, more is known about it today. This thermophilous species usually occurs in open xerothermic habitats (Bryja et al. 2005b, Franc & Korenko 2008) and is often found at ground level, e.g. under stones (Roberts 1985). Adult individuals appear mostly from early June to the end of August (Szinetár 1995, Franc & Korenko 2008, Kovblyuk et al. 2012, Kostanjšek & Korenko 2013, Akra et al. 2016), and our data indicates that the mentioned species overwinters mainly in the subadult stage under bark or in the litter. Therefore, it seems that *L. prona* is a stenochronous species with a summer reproductive and dispersing period. Furthermore, we have observed the two collected female individuals (see above) preying on ants [*Lasius niger* (Linnaeus, 1758), det. C. Nagy]. In *Dipoena sensu lato* myrmecophagy is a known phenomenon (Roberts 1985, Le Peru 2011), therefore *L. prona* is probably also a myrmecophagous species.

Thomisidae Sundevall, 1833

Diaeus livens Simon, 1876 [syn. *D. ptilis* (Banks, 1896)]

Determination. Buchar & Thaler 1984, Nentwig et al. 2017

Material examined. 2♂♂, 1 ♀, 2 sub δ♂, 1 sub Ω♀, 3 nymphs: 1♂ 30.05.2015 – Gödlőllo (47°35’35”N, 19°21’38”E, 222 m a.s.l., urban green area). The spider (leg. V. Hoffmann, det. L. Mezőfi) was collected by hand from a shrub. 1♂ 27.04.2016, 1 sub δ 14.10.2016 – Budapest, Normafa (47°30’24”N, 18°57’43”E, 463 m a.s.l., urban green area with deciduous forest vegetation); 1♀ 26.05.2016, 1 nymph 14.09.2016, 1 sub δ 14.10.2016 – Budapest, Széchenyi-hegy (47°29’43”N, 18°58’31”E, 462 m a.s.l. urban green area); 1 sub Ω 14.09.2016, 1 nymph 14.10.2016 – Budapest, Hűvösvölgy (47°32’31”N, 18°57’46”E, 228 m a.s.l., urban green area with deciduous forest vegetation); 1 nymph 14.09.2016 – Budapest, Zugligeti út (47°31’04”N, 18°59’08”E, 180 m a.s.l., urban green area). These specimens (leg. D. Korányi, det. L. Mezőfi) were collected by beating mainly in urban forest areas from canopies of *Acer campestre* trees.

Distribution. Southern and Central Europe, Turkey, Caucasus. Introduced to USA (WSC 2017). In Europe it is present in Albania, Austria, Bulgaria, Czech Republic, France, Germany, Greece, Hungary, Italy, Serbia, Slovakia, Slovenia, Spain, Switzerland, Turkey (European part) and Ukraine (Tomić & Gribić 2008, van Helsdingen 2017).

Remarks. Throughout Europe this is a very rare species (Nentwig et al. 2017) which was classified as vulnerable in the Carpathian Red List (Gajdos et al. 2014) while in the Czech Republic it is endangered (Rezáč et al. 2015). In Hungary it was firstly detected by Szinetár (1995) and since then the spider was found at several locations within the country (Bogyai et al. 1999, Horváth & Szinetár 2002, Szita et al. 2002, Horváth et al. 2009, Kovács et al. 2009, Szinetár et al. 2011, Keresztes 2013, Szita et al. 2014), although *D. livens* is still a quite rare species here. This species is a facultative bark-dweller (Szinetár & Horváth 2006) and occurs almost exclusively in oak forests on shrubs and lower branches of trees (Szinetár 1995, Szinetár et al. 2011, Nentwig et al. 2017). Although it has several records from other habitats/plants: e.g. from apple (Keresztes 2013) and pear (Bogyai et al. 1999) orchards, from *Pinus nigra*, *Platanus hybridra* (Szinetár & Horváth 2006), *Tilia* spp. and from *Acer* spp. trees (Stenchly et al. 2007, Keresztes 2013). We collected several specimens from *A. campestre* trees as well, which suggests that *D. livens* might be less tightly bound to the oak forests. The specimen collected in Gödlőllo was consuming a *Smaraugina aurita* (Linnaeus, 1767) (*Chrysomelidae*) (det. L. Mezőfi) adult on a shrub.

Conclusions

Given their presence in neighbouring countries and distribution in Europe, the occurrence of the new records (*C. sierrae* and *P. obtitum*) for Hungary is not surprising. Probably the two above mentioned species were naturally spread to Hungary, because human-mediated dispersal is less typical for Araneidae and Linyphiidae species (Nentwig 2015). At the moment, the Spiders of Europe database lists 800 spider taxa for Hungary (Nentwig et al. 2017), but the spiders reported here, and the many other recently described and first recorded species, indicate that the list is still far from complete. Therefore, in Hungary the number of spider species can be estimated to be much higher than 800. According to Nentwig (2015) international trade and climate change are the major factors that facilitate the spread and establishment of alien spider species. Currently one alien spider species per year is introduced to Europe, but this rate will surely increase in future. Therefore, it is important to continue the arachnological exploration of Hungary because, as in the case of Europe in general, many new species are expected to emerge in this country and also not all species that supposedly occur in Hungary have been found and listed yet.

Acknowledgements

The authors would like to thank Árpád Szabó for his help with the preparation of the photographs, Éva Szita for her help with the identification of *I. microphthalma* and checking *D. lata*, and Dávid Korányi, Viktória Hoffmann, Dorottya Gyóni, Csaba Nagy and Márton Paróczai for collecting many of the specimens. We would also like to thank Dóra Hoppál and István Bernát for their assistance.
in collecting and processing the samples. The study was financially supported by the National Research, Development and Innovation Office of Hungary (K112743).

References
Aakra K, Morka GH, Antonsen A, Farlund M, Wrånes RE, Frølandshagen R, Løvbrekke H, Furuseth P, Fjellberg A, Lemke M, Pfieger LN, Andersen S, Olsen KM, Aallden L & Berggren K 2016 Spiders new to Norway (Arachnida, Araneae) with ecological, taxonomical and faunistic comments. – Norwegian Journal of Entomology 63: 6-43
Blandenier G, Bruggisser OT & Bersier L-F 2014 Do spiders respond to global change? A study on the phenology of ballooning spiders in Switzerland. – Ecoscience 21: 79-95 – doi: 10.2980/21-1/3-3636
Blick T, Pitschner WP & Luka H 2000 Epigäische Spinnen auf Äckern der Nordwest-Schweiz im mitteleuropäischen Vergleich (Arachnida: Araneae). – Mitteilungen der Deutschen für Gesellschaft allgemeine und angewandte Entomologie 12: 267-276
Bogya S, Szinetár C & Markó V 1999 Species composition of spider (Araneae) assemblages in apple and pear orchards in the Carpathian Basin. – Acta Phytopathologica et Entomologica Hungarica 34: 99-121
Bosmans R, Lissner J & Hernández-Corral J 2017 The spider family Dysderidae in the Balearic Islands. – Zootaxa 4329: 375-391 – doi: 10.11646/zootaxa.4329.4.4
Bryja V, Řezáč M, Kubcová L & Kúrka A 2005a Three interesting species of the genus Philodromus Walckenaer, 1825 (Araneae: Philodromidae) in the Czech Republic. – Acta Musei Moraviae, Scientiae Biologicae 90: 185-194
Bryja V, Svatoň J, Chytil J, Majkus Z, Růžička V, Kasal P, Dolanský J, Buchar J, Chvátalová I, Řezáč M, Kubcová L, Erhart J & Fenclová I 2005b Spiders (Araneae) of the Lower Morava Biosphere Reserve and closely adjacent localities (Czech Republic). – Acta Musei Moraviae, Scientiae Biologicae 90: 13-184
Buchar J & Thaler K 1984 Eine Zweite Art in Mitteleuropa: Diaea pictilis (Aranea, Thomisidae). – Věstník Československé Zoologické Společnosti v Praze 48: 1-8
Chyzer K & Kulczyński L 1891 Araneae Hungariae. Tomus I: Salticoidae, Oxyopoidae, Lycosoidae, Heteropodoidae, Misumenoidae, Euctenioidae, Tetragnathoidae, Uloboroidae, Pholcoidae, Scytodidae, Urocteidae, Eresoidae, Dictynidae. Academiae Scientiarum Hungaricae, Budapest. pp. 147-366, pl. VI-X
Chyzer K & Kulczyński L 1918 Ordo Araneae. In: A Magyar Birodalom Állatvilága. Királyi Magyar Természettudományi Társulat, Budapest. 33 pp.
Deeleman-Reinhold CL & Deelemans PR 1988 Revision des Dysderinae (Araneae, Dysderidae), les especes mediterraneennes occidentales et centrales. – Tijdschrift voor Entomologie 131: 141-269
Déri E, Horváth R, Lengyel S, Nagy A & Varga Z 2007 Zoológiai élettudomány és tájegységben. [Zoological studies on the effects of mowing in six geographical regions of Hungary]. – Állattani Közlemények 92: 59-70
Dolansky J, Řezáč M & Kúrka A 2009 Mermessus trilobatus (Emerton, 1882) (Araneae, Linyphiidae) – a new spider species in the Czech Republic. – Východočeský sborník přírodovědné – Práce a studie 16: 143-144
Duma I 2008 Philodromus ruficapillus Simon, 1885 (Araneidae: Philodromidae): new data on the morphological variability and northern distribution limits of the species. – North-Western Journal of Zoology 4: 150-153
Eichenberger B, Siegenthaler E & Schmidt-Entling MH 2009 Body size determines the outcome of competition for webs among alien and native sheetweb spiders (Araneae: Linyphiidae). – Ecological Entomology 34: 363-368 – doi: 10.1111/j.1365-2311.2008.01085.x
Franc V & Korenko S 2008 Spiders (Araneae) from the Pansky diel (Starohorské vrchy Mts, Slovakia). – Arachnologische Mitteilungen 36: 9-20 – doi: 10.5431/aramit3603
Gajdoš P, Moscaliuc LA, Rozvátila R, Hrina A, Majkus Z, Gubáňy A, Heltai MG & Svatoň J 2014 Red list of spiders (Araneae) of the Carpathian Mts. In: Kadlecik J (ed.) Carpathian red list of forest habitats and species – Carpathian list of invasive alien species (DRAFT). Staťa ochrana prírody Slovenskej republiky, Banská Bystrica, pp. 118-171
Grbic G & Savić D 2010 Contribution to the knowledge of the spider fauna (Arachnida, Araneae) on the Fruska Gora Mt. – Acta Entomologica Serbica 15: 243-260
Havrenek L & Molnár H 1965 Preliminary report on the Arachnidea-fauna of the Tisza-valley. – Tisza: 1: 93-107
Hirna A 2017 First record of the alien spider species Mermessus trilobatus (Araneae: Linyphiidae) in Ukraine. – Arachnologische Mitteilungen 54: 41-43 – doi: 10.5431/aramit5409
Horváth R & Szinetár C 2002 Ecofunctional study of bark-dwelling spiders (Araneae) on black pine (Pinus nigra) in urban and forest habitats. – Acta Biologica Debrecina 24: 87-101
Horváth R, Magura T, Szinetár C & Tóthmérész B 2009 Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: A field study (East Hungary, Nyírség). – Agriculture, Ecosystems and Environment 130: 16-22 – doi: 10.1016/j.agee.2008.11.031
Ijland S & Helsingd PJ van 2014 On some spiders (Arachnida, Araneae) from the surroundings of Castellabate, Italy. – Nieuwsbrief SPINED 34: 16-33
Jäger P 1995 Spinnenaufsammlungen aus Ostösterreich mit vier Erstnachweisen für Österreich. – Arachnologische Mitteilungen 9: 12-25 – doi: 10.5431/aramit0902
Kancsal B, Szinetár C, Bognár V & Angyal D 2010 Data to the spider fauna (Araneae) of Lake Velence. – Natura Somogyiensis 17: 133-140
Kashefi R, Ghassemzadeh F, Kami HG & Mirshamsi O 2013 New species of the genus Oxyopes in eastern Macedonia. – Fauna Balkana 2: 1-267
Kerestes B 2011 The spider genus Pulchellophorus Wunderlich, 2012 in the Crimea (Aranea: Philodromidae). – Arthropoda Selecta 23: 279-283
Kozek S, Kostanjšek R & Gorjan A 2013 A contribution to the Slovenian idea-fauna of the Tisza-valley. – Tiscia 1: 93-107
Korányi D, Mezőfi L & Markó V 2017 First record of the jumping spider Mermessus trilobatus (Emerton, 1882) (Araneae: Linyphiidae) in Hungary. – Arachnologische Mitteilungen 10.5431/aramit3603
Kostanjšek R, Gorjan A & Kostanjšek C 2013 Contribution to the knowledge of the spider fauna – II. – Natura Sloveniae 15: 5-12
Korányi D, Mezőfi L & Markó V 2017 First record of the jumping spider Mermessus trilobatus (Emerton, 1882) (Araneae: Linyphiidae) in Croatia]. In: 10. Hrvatski biologiski kongres s medunarodnim sudjelovanjem, 14-29 September 2009, Zbornik sažetaka. Hrvatsko biološko društvo, Zagreb. pp. 207–208 (in Croatian and English) – Internet: http://bib.irb.hr/ prikazi-rad/rad/661261 (October 31, 2017)
Kotarinnik V 2009 Növényvédelmi technológiák hatása pók (Araneae) gyümölcsszemületére, fás szárú kertészeti kultúrákban. [Effect of pest management systems on spider (Araneae) assemblages in woody horticultural crops]. Ph.D. thesis, Institute of Plant Protection, Georgikon Faculty, University of Pannonia, Keszthely. 221 pp.
Kovács M 2013 Spider fauna of the Osogovo Mt. Range, Northern Macedonia. – Fauna Balkana 2: 1-67
Korányi D, Mezőfi L & Markó V 2017 First record of the jumping spider Ixius subinermis (Araneae, Salticidae) in Hungary. – Arachnologische Mitteilungen 54: 38-40 – doi: 10.5431/aramit5408
Kostanjšek R & Gorjan A 2013 A contribution to the Slovenian spider fauna – II. – Natura Sloveniae 15: 5-12
Kortunič O, Novaković L & Šrstar P 2013 Epigiec spiders (Araneae) from the Malá Dohoda Quarry (Moravian Karst Protected Lands-
Gnaphosidae) from Hungary. – ZooKeys 16: 197-208 – doi: 10.3897/zookeys.16.234

Szinetár C, Erdélyi F & Szűts T 2011 Pókfaunisztikai vizsgálatok a nagykőrösi pusztai tölgyesek területén. [Results of the spider fauna (Araneae) investigations in steppe oak woods of Nagykőrös]. – Rosalia 6: 209-221

Szinetár C, Kovács P & Eichardt J 2015 A kisalföldi meszes homokpuszta katonai használatú gyepterületeinek pókfaunája (Araneae). [Spiders (Araneae) of the Győr-Gönyű military shooting range]. – RENCE 1: 237-260

Szinetár C, Rákóczi AM, Bleicher K, Botos E, Kovács P & Samu F 2012 A Sas-hegyi pókfaunája II. A Sas-hegy Faunakutatásának 80 éve – A hegyről kimutatott pókfajok kommentált listája. [Spider fauna of Mt Sas-hegy II. 80 years of fauna research on Mt Sas-hegy, with the annotated list of spiders]. – Rosalia 8: 333-362

Szinetár C, Szita É & Kovács P 2016 Pókfaunisztikai vizsgálatok a szigligeti Kongó-réten. [Arachnofaunistical studies in the Kongó meadow (Szigliget)]. – Folia Musei Historico-Naturalis Bakonyiensis 33: 75-86

Szinetár C, Török T & Szűts T 2014 Zoropsis spinimana, mint új épületlakó pókfaj Magyarországon. [Zoropsis spinimana (Dufour, 1820) new synanthrop spider species in Hungary]. – A NyME Savaria Egyetemi Központ Tudományos Közleményei XX. Természetetudományok 15: 105-113

Szita É, Fetykó K, Botos E, Rákóczi AM & Samu F 2014 Adatok Simontornya és környéke pókfaunájához (Araneae). In: Szita É, Fetykó K, Kovács T & Horváth A (eds.) Simontornya ízeltlábúi. Magyar Biodiverzitás-kutató Társaság, Budapest. pp. 32-41

Szita É, Samu F, Bleicher K & Botos E 1998 Data to the spider fauna (Araneae) of Körös-Maros National Park (Hungary). – Acta Phytopathologica et Entomologica Hungarica 33: 341-348

Szita É, Szinetár C & Szűts T 2002 Faunisztikai vizsgálatok a spider fauna (Araneae) of the Fertő-Hanság National Park. In: Mahunka S (ed.) The fauna of the Fertő-Hanság National Park I. Hungarian Natural History Museum, Budapest. pp. 231-244

Szűts T, Szinetár C, Samu F & Szita É 2003 Checklist of the Hungarian Salticidae with biogeographical notes. – Arachnologische Mitteilungen 25: 45-61 – doi: 10.5431/aramit2505

Tomić V & Grbić G 2008 Preliminary notes on spider fauna of Mt. Fruška Gora. In: Ćurčić S & Šimić S (eds.) Invertebrates (Invertebrata) of the Fruška Gora Mountain I. Matica Srpska, Novi Sad. pp. 57-62

Uyar Z, Bosmans R & Uğurtaş İH 2014 New Faunistic Data for the Family Araneidae (Araneae) in West Anatolia (Turkey). – Entomological News 124: 120-130 – doi: 10.3157/021.124.0207

WSC 2017 World Spider Catalog, version 18.5. Natural History Museum, Bern, – Internet: http://wsc.nmbe.ch (December 14, 2017)

Wunderlich J 2012 Contribution to taxonomy and evolution of the European genera of the spider family Philodromidae (Araneae). – Beiträge zur Araneologie 7: 25-56