Weak solutions to the Navier–Stokes equations

Ira Herbst

September 14, 2022

Mathematics Subject Classification (2020): 35Q35, 35D30.

Key words: weak solution, Hölder continuity, Kato approximation.

ABSTRACT: We prove the equivalence of being a Leray-Hopf weak solution of the Navier-Stokes equations in \mathbb{R}^m, $m \geq 3$, to satisfying a well known integral equation and use this equation to derive some regularity properties of these weak solutions.

1 Introduction

The purpose of this work is to prove that the property of being a Leray-Hopf weak solution, $u(t)$, of the Navier-Stokes equations in \mathbb{R}^m, $m \geq 3$, is equivalent to $u(t)$ satisfying the well-known perturbation equation (see Theorem 3.1)

$$u(t) = e^{t\Delta}u_0 - \mathbb{P}\int_0^t e^{(t-s)\Delta}(u(s) \cdot \nabla u(s))ds; \text{ a.e. } t \geq 0$$

(1.1)

including $t = 0$ and to prove some properties of these solutions (see Section 4). The equivalence is known with some definition (probably weaker than that of Leray and Hopf $[1, 5]$) of weak solution (see $[9]$ and for an earlier proof in \mathbb{R}^3 $[8]$). We use the definition of weak solution for which Leray $[1]$ and Hopf $[5]$ proved the existence of global in time solutions given an arbitrary divergence free initial velocity $u_0 \in L^2$. In (1.1) \mathbb{P} is the Leray projector onto divergence free fields and Δ is the Laplacian. We call (1.1) the perturbation equation because in some sense it treats the Navier-Stokes equations as a perturbation of the heat equation (which in many ways it is not). We make the following definition:

Definition $u(t)$ is a weak solution of the Navier-Stokes equations in \mathbb{R}^m if for each $T > 0$, $u \in L^\infty([0, T]; L^2(\mathbb{R}^m)) \cap L^2([0, T]; H^1(\mathbb{R}^m))$, $\nabla_x \cdot u(t, x) = 0$ (distributional derivatives) and

$$\int_0^t [-(u(s), \partial_x \phi(s)) + (\nabla u(s), \nabla \phi(s)) + (u(s) \cdot \nabla u(s), \phi(s))]ds =$$

$$(u_0, \phi(0)) - (u(t), \phi(t)); \text{ a.e. } t \geq 0, \text{ including } t = 0.$$
We do not incorporate the energy inequality (see [1, 5]) in our definition of weak solution.

Here (\cdot, \cdot) is the usual inner product in L^2 where we are abbreviating $(u, v) = \sum_{i=1}^{m}(u_i, v_i)$ and $(\nabla u, \nabla v) = \sum_{i,j}(\partial_x u_j, \partial_x v_j)$ when u and v are vector fields. Sometimes we use the notation (f, g) when possibly neither f nor g is in L^2 but the product fg is in L^1. The test functions, ϕ, are in $C_0^\infty([0, T] \times \mathbb{R}^m)$ and satisfy $\nabla \cdot \phi(s, x) = 0$. The function $u_0 \in L^2$ is the initial fluid velocity. Setting $t = 2$ in (1.2) we find $u(0) = u_0$. The space H^1 is the L^2 Sobolev space of functions f with $||\nabla f||_2^2 + ||f||_2^2 < \infty$. Weak solutions (with the definition above) are known to exist globally, i.e. for all $t \geq 0$, given an arbitrary divergence free initial velocity $u_0 \in L^2(\mathbb{R}^m)$, see [1, 3]. Weak solutions are apriori only defined for almost every t, but as is shown in [2] for $m = 3$ we can choose $u(t)$ for each $t \in [0, \infty)$ so that u is weakly continuous in L^2. For the reader’s convenience we give a proof for $m \geq 3$ in Section 2.

In Section 2 we extend the set of test functions to \{ $\phi \in S(\mathbb{R}^{m+1})$: suppϕ $\subset K \times \mathbb{R}^m$, $\nabla \cdot \phi(s, x) = 0$ \}, where K is a compact subset of $(-\infty, T)$ and $S(\mathbb{R}^{m+1})$ is the Schwartz space of $C^\infty(\mathbb{R}^{m+1})$ functions of rapid decrease. Then after another small extension, in Section 3 we derive (1.1) and show that the validity of this equation is equivalent to the Leray-Hopf definition of weak solution given above. In Section 4 we use the perturbation equation to show that $v(t) = u(t) - e^{\Delta u_0}$ is in $L^1(\mathbb{R}^m)$ and has nearly one distributional space derivative in L^1 (in a sense to be made precise). In addition $v(t)$ is L^1 - Hölder continuous in time of order α for any $\alpha < 1/2$ and L^1 - Hölder continuous in space of order r for any $r < 1$. It would be very interesting to know if this regularity can be improved. The implications of these results for L^p, $1 < p < 2$ are given.

2 Extending the space of test functions

We use Kato’s [3] method of approximating a divergence free field, f, by one of compact support. Let $z_R(x) = \tilde{z}(R^{-1} \log(|x|^2 + 1))$ where $\tilde{z} \in C^\infty(\mathbb{R})$ with $\tilde{z}(t) = 1$ for $t \leq 1$ and $\tilde{z}(t) = 0$ for $t \geq 2$. For $k = 0$ and 1, define

$$Q_k(f)(x) = \int_0^1 t^{n-1-k} f(tx) dt,$$

Kato’s approximation of f is

$$f_R(x)_j = z_R(x)f_j(x) + \sum_{i=1}^{m} \partial_i z_R(x)(x \wedge Q_1(f)(x))_{ij}.$$

Here $(x \wedge g(x))_{ij} = x_ig_j(x) - x_jg_i(x)$. A calculation which we omit gives

$$\nabla \cdot f_R = z_R \nabla \cdot f + (x \cdot \nabla z_R)Q_0(\nabla \cdot f).$$

Thus if f is divergence free, f_R has compact support and is divergence free. We estimate $||f_R - f||_p$ and $||\nabla(f_R - f)||_p$. First we have (p' is the dual index to p)
\[\frac{1}{L^2} \leq \int |\xi|^2 |\hat{f}(\xi)|^2 d\xi = \sum_{|\alpha| \leq k} \int |\partial^\alpha f(x)|^2 dx \] for all time we can ensure that \(\chi_r(\xi) = e^{-r/|\xi|^2}, \) \(r > 0, \) defined to be 0 when \(\xi = 0. \) If the vector function \(f \in S(\mathbb{R}^m) \) then the function \(f_r \) with Fourier transform given by \(\chi_r(\xi) \hat{f}(\xi) \) has the property that \(\mathbb{P} f_r \) is also in \(S(\mathbb{R}^m) \) since \(\hat{f}_r \) and all its derivatives are zero at the origin so that no singularity arises from applying \(\mathbb{P}. \) With \(H^k(\mathbb{R}^m) \) the \(L^2 \) Sobolev space with norm \(||f||_{H^k}^2 = \sum_{|\alpha| \leq k} \int |\partial^\alpha f(x)|^2 dx \) we find

\[
\lim_{r \to 0} ||\mathbb{P}(f - f_r)||_{H^k(\mathbb{R}^m)} = 0.
\]

Before replacing the test functions in \(\ref{test_functions} \) with a larger class we follow the ideas in \(\ref{test_functions} \) to show that by making a particular definition of \(u(t) \) for all time we can ensure that \(u \) is \(L^2 \) weakly continuous. First choosing \(\alpha(s) \in C_0^\infty(\mathbb{R}) \) with \(\alpha(s) = 1 \) for \(s \in [t_1, t_2] \) and letting \(\phi(s, x) = \alpha(s)\phi(x) \) with \(\phi \in C_0^\infty(\mathbb{R}^m) \) with \(\nabla \cdot \phi = 0 \) we subtract \(\ref{test_functions} \) with \(t = t_1 \) from \(\ref{test_functions} \) with \(t = t_2 \) to obtain

\[
\int_{t_1}^{t_2} \left((\nabla u(s), \nabla \phi) + (u(s) \cdot \nabla u(s), \phi) \right) ds = (u(t_1), \phi) - (u(t_2), \phi)
\]

for a.e. \(t_1 \) and \(t_2 \) but including \(t_1 = 0. \) With \(m' \) the dual index to \(m \)

\[
||u(s) \cdot \nabla u(s)||_{m'} \leq c ||\nabla u(s)||_2^2.
\]

This follows from

\[
||u \cdot \nabla u||_{m'} \leq c' ||u||_{(2^{-1} - m^{-1})^{-1}} ||\nabla u||_2 \leq c ||\nabla u||_2^2,
\]

where the first inequality is just Hölder’s inequality and the last is a Sobolev inequality.

It is convenient to replace \(\int_{t_1}^{t_2} (u(s) \cdot \nabla u(s), \phi) ds \) with \(\int_{t_1}^{t_2} (u(s) \cdot \nabla u(s), \phi) ds \) and then use the estimates above to replace the class of test functions in \(\ref{test_functions} \) by \(\phi \in S(\mathbb{R}^m). \) That is this is
possible follows easily. We now would like to show that we can replace the class $S(\mathbb{R}^m)$ with $B = H^1(\mathbb{R}^m) \cap L^m(\mathbb{R}^m)$, in other words that $S(\mathbb{R}^m)$ is dense in B. Let $\chi, \psi \in C_0^\infty(\mathbb{R}^m)$ with $\chi(x) \in [0, 1]$, $\chi(x) = 1$ for $|x| \leq 1$, and $\psi \geq 0$ with $\int \psi dx = 1$. Define $\chi_\delta(x) = \chi(\delta x)$, $\psi_\epsilon(x) = \epsilon^{-m} \psi(x/\epsilon)$. Then if $\phi \in B$, $\phi_{t,\delta} = \chi_\delta(\psi_\epsilon) \in S$ and converges to ϕ in both H^1 and L^m. Then we have

$$u(t) - u_0 = \int_0^t g(s) ds, a.e.$$

(2.3)

where $g(s) \in B^*$ for almost every s. We have

$$\langle g(s), \phi \rangle = - (\nabla u(s), \nabla \phi) - (\mathbb{P}(u(s) \cdot \nabla u(s)), \phi)$$

so that $||\langle g(s), \phi \rangle \leq c||\nabla u(s)||_2^2||\phi||_m + ||\nabla u(s)||_2^2||\phi||_{H^1}$. Thus $||g(s)||_{B^*}$ is integrable over $[0,T]$ for any T. We choose $u(t)$ so that $u(t) - u_0 \in C([0,T],B^*)$, $T > 0$. We would like to show that for our choice of $u(t)$, $||u(t)||_2 \leq ||u||_{L^2([0,T];L^2)} =: c_0$ for all $t \in [0,T]$. Choose $t_n \to t$ with $||u(t_n)||_2 \leq c_0$. Then there is some subsequence of $\{t_n\}$ for which $u(t_n)$ converges weakly to some $v \in L^2$. We relabel the subsequence so that $u(t_n)$ converges weakly to v in L^2. Suppose $f \in S(\mathbb{R}^m)(\subset B)$. Then $(u(t_n), f) \to (v, f)$ and since $u(t) - u_0 \in C([0,T];B^*)$, $(u(t_n), f) \to (u(t), f)$. Thus $u(t) = v$ and since $c_0 \geq \lim sup ||u(t_n)||_2 \geq ||v||_2$ we have $||u(t)||_2 \leq c_0$. Using the convergence of $u(t_n) - u_0$ to $u(t) - u_0$ in B^* for any sequence $t_n \to t$ we have $(u(t_n), f) \to (u(t), f)$ for $f \in S$. Since $||u(t_n) - u(t)||_2 \leq 2c_0$ this follows for all $f \in L^2$. Thus we have for our choice of $u(t)$,

Lemma 2.1 $u(\cdot)$ is L^2 - weakly continuous.

We now show how to replace the test functions in (1.2) with a larger class. We first see how to replace those test functions in $C_0^\infty(0, T) \times \mathbb{R}^m$ and satisfying $\nabla_x \cdot \phi_x(s, x) = 0$ with functions $\phi \in \mathcal{T}_1$. Consider each term in (1.2) where $0 < t < T$: With $\phi \in \mathcal{T}_1$, as $R \to \infty$,

$$| \int_0^t (u(s), \partial_s(\phi_R(s, \cdot)) - \phi(s, \cdot))ds | \leq \int_0^t ||u(s)||_2(||1 - z_R)\partial_s\phi(s)||_2 + c'R^{-1}||\partial_x\phi(s)||_2)ds \to 0.$$

Similarly

$$| \int_0^t (\nabla u(s), \nabla(\phi_R(s, \cdot) - \phi(s, \cdot)))ds |$$

$$\leq \int_0^t ||\nabla u(s)||_2(||(1 - z_R)\nabla \phi(s)||_2 + c''R^{-1}||\phi(s)||_2 + ||\nabla \phi(s)||_2)) \to 0$$

where we use the Schwarz inequality and the fact that $\int_0^t ||\nabla u(s)||_2^2ds < \infty$. For the $u \cdot \nabla u$ term we have

$$| \int_0^t (u(s) \cdot \nabla u(s), \nabla(\phi_R(s, \cdot) - \phi(s, \cdot)))ds | \leq \int_0^t ||u(s) \cdot \nabla u(s)||_{m'} ||\nabla(\phi_R(s, \cdot) - \phi(s, \cdot))||_m ds.$$
As we showed above

\[||\nabla (\phi_R(s,\cdot) - \phi(s,\cdot))||_p \to 0 \]

for all \(p \in [2, \infty] \) and this is uniform for \(s \in [0,t] \) so this term \(\to 0 \). The remaining two terms in (1.2) also converge to what they are supposed to and thus we can use \(\phi \in \mathcal{T}_1 \) in (1.2). Basically the same ideas allows us to replace test functions in \(\mathcal{T}_1 \) with test functions in \(\mathcal{T} \). We need to show that the terms in (1.2) with \(\phi(s) \) replaced with \(\mathbb{P}(\phi_r(s,\cdot) - \phi(s,\cdot)) \) tend to 0. Here we use that \(\mathbb{P} \) is bounded on \(L^p(\mathbb{R}^m) \) for \(1 < p < \infty \). We omit the details. Using the \(L^2 \) - weak continuity of \(u(t) \) it is easy to see that (1.2) is true for all \(t \).

3 The perturbation equation

In this section we prove the following theorem.

Theorem 3.1 Suppose \(u \) is a weak solution (see (1.2) of the Navier-Stokes equations so that \(u \in L^\infty([0,T];L^2(\mathbb{R}^m)) \cap L^2([0,T];H^1(\mathbb{R}^m)), \nabla \cdot u(t,x) = 0 \) for all \(T > 0 \) and with \(u(0) = u_0 \), \(0 \leq t \leq T \),

\[
\int_0^t \left[-(u(s), \partial_s \phi(s)) + (\nabla u(s), \nabla \phi(s)) + (u(s) \cdot \nabla u(s), \phi(s)) \right] ds = (u_0, \phi(0)) - (u(t), \phi(t)), \text{ a.e. } t > 0
\]

for all \(\phi \in C_0^\infty([0,T] \times \mathbb{R}^m) \) satisfying \(\nabla \cdot \phi(s,x) = 0 \). Then \(u \) satisfies the perturbation equation

\[
u(t) = e^{t\Delta} u_0 - \mathbb{P} \int_0^t e^{(t-s)\Delta} (u(s) \cdot \nabla u(s)) ds \tag{3.2}
\]

for a.e. \(t \geq 0 \), including \(t = 0 \). Conversely if for all \(T > 0 \), \(u \in L^\infty([0,T];L^2(\mathbb{R}^m)) \cap L^2([0,T];H^1(\mathbb{R}^m)), \nabla \cdot u(t,x) = 0 \) and the perturbation equation (3.2) holds for a.e. \(t \geq 0 \) including \(t = 0 \), then \(u \) is a weak solution of the Navier-Stokes equations.

Proof Fix \(t \) with \(0 < t < T, \epsilon \in (0,t) \), and \(\alpha_\epsilon \in C_0^\infty((-\infty,T)) \) with \(\alpha_\epsilon(s) = 1 \) for \(s \in [0,t-\epsilon] \) and \(\alpha_\epsilon(s) = 0 \) for \(s \geq t \). In addition we take \(0 \geq \alpha'_\epsilon(s) \) for \(s \in (t-\epsilon,t) \). We define a test function \(\phi_\epsilon(s,\cdot) = \mathbb{P}e^{(t-s)\Delta} \alpha_\epsilon(s)f(\cdot) \) where \(f \in \mathcal{S}(\mathbb{R}^m) \). Notice that \(\phi_\epsilon \in \mathcal{T} \). We consider

\[
\int_0^t (u(s), \partial_s \phi_\epsilon(s)) ds = \int_{t-\epsilon}^t (u(s), e^{(t-s)\Delta} f) \alpha'_\epsilon(s) ds - \int_0^t (u(s), e^{(t-s)\Delta} f) \alpha_\epsilon(s) ds.
\]

From (1.2) it follows that

\[
- \int_{t-\epsilon}^t (u(s), e^{(t-s)\Delta} f) \alpha'_\epsilon(s) ds + \int_0^t (u(s) \cdot \nabla u(s), \mathbb{P}e^{(t-s)\Delta} f) \alpha_\epsilon(s) ds = (u_0, e^{t\Delta} f).
\]

The first term does not change if we choose \(u(s) \) for all \(s \) such that \(u(s) \) is weakly continuous (see Lemma 2.1). Then since \(u(s) \) converges weakly to \(u(t) \) as \(s \to t \) and \(e^{(t-s)\Delta} f \) converges strongly to \(f \) as \(s \uparrow t \), \((u(s), e^{(t-s)\Delta} f) \) converges to \((u(t), f) \) as \(s \uparrow t \). Since \(\int_{t-\epsilon}^t \alpha'_\epsilon(s) ds = 0 \),

\[
\int_0^t (u(s), e^{(t-s)\Delta} f) \alpha_\epsilon(s) ds = (u_0, e^{t\Delta} f),
\]

\[
\int_0^t (u(s), e^{(t-s)\Delta} f) \alpha_\epsilon(s) ds = (u_0, e^{t\Delta} f).
\]
Integrating on the interval \([0, t]\),\(\alpha'_\epsilon(s)ds = 1\), the first term above converges to \((u(t), f)\) as \(\epsilon \to 0\). In the second term we use the Lebesgue dominated convergence theorem, \(|\alpha_\epsilon(s)| \leq 1\) in \([0, t]\) and the fact that the integrand is bounded by \(c||u(s) \cdot \nabla u(s)||_m||P e^{(t-s)\Delta} f||_m \leq c ||\nabla u(s)||_2^2||f||_m\) which is independent of \(\epsilon\) and integrable. Thus \(\alpha_\epsilon\) can be replaced by 1 in the limit.

It follows that for the weakly continuous version of \(u\), for every \(t > 0\),

\[
(u(t), f) + \left(\int_0^t (Pe^{(t-s)\Delta} u(s) \cdot \nabla u(s), f) \right) = (e^{t\Delta} u_0, f)
\]

for all \(f \in \mathcal{S}({\mathbb{R}}^m)\) and thus we have (1.1) for all \(t \geq 0\) for the weakly continuous version and for almost every \(t \geq 0\) for any version.

Conversely suppose \(u \in L^\infty([0, T]; L^2({\mathbb{R}}^m)) \cap L^2([0, T]; H^1({\mathbb{R}}^m)), \nabla_x \cdot u(t, x) = 0\) and (1.1) holds for almost all \(t > 0\) and for \(t = 0\). Choose a test function \(\phi \in C_0^\infty((-\infty, T) \times {\mathbb{R}}^m)\) with \(\nabla_x \cdot \phi(t, x) = 0\) and for \(0 < t < T\) consider

\[
(u(t), \partial_t \phi(t)) = (e^{t\Delta} u_0 - \int_0^t e^{(t-s)\Delta} (u(s) \cdot \nabla u(s))ds, \partial_t \phi(t)) =
\]

\[
(u_0, -e^{t\Delta} \Delta \phi(t) + \partial_t (e^{t\Delta} \phi(t))) + \int_0^t (u(s) \cdot \nabla u(s), e^{(t-s)\Delta} \Delta \phi(t))ds - \int_0^t (u(s) \cdot \nabla u(s), \partial_t (e^{(t-s)\Delta} \phi(t)))ds =
\]

\[
-(u(t), \Delta \phi(t)) + (u_0, \partial_t (e^{t\Delta} \phi(t))) - \int_0^t (u(s) \cdot \nabla u(s), \partial_t (e^{(t-s)\Delta} \phi(t)))ds.
\]

Integrating on the interval \([0, t]\) we have

\[
\int_0^t (u(s), \partial_s \phi(s))ds =
\]

\[
\int_0^t (\nabla u(s), \nabla \phi(s))ds + \int_0^t \partial_s (u_0, e^{s\Delta} \phi(s))ds - \int_0^t \int_0^s (u(\tau) \cdot \nabla u(\tau), \partial_s (e^{(s-\tau)\Delta} \phi(\tau)))d\tau ds =
\]

\[
\int_0^t (\nabla u(s), \nabla \phi(s))ds + (u_0, e^{t\Delta} \phi(t)) - \int_0^t (e^{(t-s)\Delta} (u(\tau) \cdot \nabla u(\tau)), \phi(t))d\tau - (u_0, \phi(0))
\]

\[
+ \int_0^t (u(\tau) \cdot \nabla u(\tau), \phi(\tau))d\tau =
\]

\[
\int_0^t (\nabla u(s), \nabla \phi(s))ds + (u(t), \phi(t)) - (u_0, \phi(0)) + \int_0^t (u(s) \cdot \nabla u(s), \phi(s))ds.
\]

From (1.1), the last equality holds a.e. This is (1.2).

\[\square\]
4 Consequences of the perturbation equation: \(L^1\) regularity

In this section we show that if \(u(t)\) is a weak solution to the Navier-Stokes equations, then \(v(t) = u(t) - e^{t\Delta}u_0\) is in \(L^1(\mathbb{R}^m)\) with some mild smoothness properties in the \(x\) variable; more explicitly in some sense almost one distributional derivative in \(L^1\). In addition, in the \(L^1\) norm, we prove Hölder continuity in the \(t\) variable of degree \(\alpha\) for any \(\alpha < 1/2\). We consider the consequences of these results for \(L^p, 1 < p < 2\).

We will work with the spaces \(L^p_r(\mathbb{R}^m) \subset L^p(\mathbb{R}^m)\) defined as \((1 - \Delta)^{-r/2} L^p(\mathbb{R}^m)\) with norm \(\|f\|_{L^p_r} = \|(I - \Delta)^{r/2} f\|_p\) (see \([6]\) and \([7]\) for a discussion of these spaces). The next Proposition shows that \(v(t) \in L^r(\mathbb{R}^m)\) for \(0 \leq r < 1\). And see an extension in Corollary 4.3.

Theorem 4.1 Suppose \(u(t)\) is a weak solution to the Navier-Stokes equations in dimension \(m \geq 3\). Then \(v(t) = u(t) - e^{t\Delta}u_0 \in C([0, \infty); L^1_r(\mathbb{R}^m))\) for \(0 \leq r < 1\) with norms bounded uniformly for \(t\) and \(r\) in compact subsets of \([0, \infty)\) and \([0, 1)\) respectively.

Proof We have \((I - \Delta)^{r/2} v(t) = -\mathbb{P} \int^t_0 (I - \Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds\). The fact that \(\mathbb{P}\) is not a bounded operator on \(L^1\) complicates the proof. Since \(\mathbb{P} = I - (I - \mathbb{P})\) we begin by estimating \((I - \mathbb{P})(I - \Delta)^{r/2} K_t(x)\) where \(K_t\) is the integral kernel for the operator \(e^{t\Delta}\) in \(\mathbb{R}^m\), \(K_t(x-y) = (4\pi t)^{-m/2} e^{-|x-y|^2/4t}\). We have \(\mathcal{F}((I - \mathbb{P})f)(\xi) = \sum_j \xi^j |\xi_j|^{-2} \mathcal{F} f_j(\xi)\) where \(\mathcal{F}\) is the Fourier transform. Thus working in \(x\)-space with \(y = x/\sqrt{t}\) we have

\[
\partial_{x_i} \partial_{x_j} (I - \Delta)^{r/2} K_t(x) = -(2\pi)^{-m} t^{-m/2} \left(t \sum_j \frac{\partial^2}{\partial x_j \partial x_{j'}} (I - \Delta)^{r/2} K_t(x) \right) \cdot \eta_j \cdot \partial_j \int (t + |\eta|^2)^{r/2} |\eta|^{-2} e^{-|\eta|^2} \frac{i^{\eta_j}}{\sqrt{t}} d\eta.
\]

A bit more calculation gives

\[
(I - \mathbb{P})_{i,j} (I - \Delta)^{r/2} K_t(x) = ct^{-(m+r)/2} (\omega_i \omega_j g_{r,t}(|y|)) + |y|^{-1} \left(\delta_{i,j} - \omega_i \omega_j \right) g_{r,t}(|y|),
\]

where \(\omega_i = y_i/|y|\) and

\[
g_{r,t}(w) = \int_0^\infty \int_{-1}^1 (t + s^2)^{r/2} s^{m-2} e^{-s^2} e^{isw\lambda} (1 - \lambda^2)^{(m-3)/2} d\lambda ds.
\]

Here \(c\) is an \(m\) dependent constant.

It is shown in the Appendix that the \(C^\infty\) function \(g_{r,t}\) and its derivatives obey the following estimates

\[
|g^{(n)}_{r,t}(w)| \leq C_n (1 + |w|)^{-(m+n-1)},
\]

for all \(r \geq 0\), uniformly for \(t\) in compact sets of \([0, \infty)\).

We need to estimate the following \(L^1\) norm:

\[
\int_0^t \int_0^t \int_0^t |\partial_{x_i} \partial_{x_j} (I - \Delta)^{r/2} K_s(x-z) f_j(t-s, z) dz dz ds| dx
\]
where \(f_j(s, z) = u(s, z) \cdot \nabla u_j(s, z) \). For a reason that will be apparent only at the end of the proof we decouple the \(j \) indices and replace \(f_j \) by \(f_a \) where now \(i, j, a \) can be all different.

We first look at the term involving the derivative \(g_{r,t} \) in (4.1):

\[
\int \int_{0}^{t} s^{-(m+r)/2} \int \omega_j \omega_j g_{r,s}'(|y|) f_a(t - s, z) dz ds |dx|
\]

where \(y = (x - z)/\sqrt{s} \) and \(\omega_i = y_i/|y| \). We write

\[
f_a(s, z) = \sum_k (\partial/\partial z_k)(u_k(s, z)u_a(s, z))
\]

and integrate by parts in the \(z \) integral. We use \((\partial/\partial z_k)|y| = O(s^{-1/2}), (\partial/\partial z_k)\omega_i = O(|y|^{-1}s^{-1/2})\) to get

\[
|(\partial/\partial z_k)(\omega_i \omega_j g_{r,t}'(|y|))| \leq cs^{-1/2}|y|^{-1}(1 + |y|)^{-m}
\]

which gives

\[
\int_{0}^{t} \int_{s}^{r} s^{-(m+r)/2} \int |(\partial/\partial z_k)[\omega_i \omega_j g_{r,s}'(|y|)]|dx)|u_k(t - s, z)u_a(t - s, z)|dz ds \leq (4.3)
\]

For the term involving \(|y|^{-1} g_{r,s} \) in (4.1) we again integrate by parts and use

\[
|(\partial/\partial z_k)(|y|^{-1} g_{r,s}(|y|))| \leq cs^{-1/2}(|y|^{-2}g_{r,s}(|y|) + |y|^{-1}g_{r,s}'(|y|)) \leq C s^{-1/2}|y|^{-2}(1 + |y|)^{-m+1}.
\]

This term is then estimated in the same way as the previous term involving \(g_{r,t} \), which results in

\[
\| (I - \mathbb{P}) \int_{0}^{t} (I - \Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds \|_{L^1} \leq C_{r,t}
\]

where \(C_{r,t} \) is bounded uniformly for \(r \) and \(t \) in compacts of \([0, 1]\) and \([0, \infty)\) respectively. To show that

\[
\| \mathbb{P} \int_{0}^{t} (I - \Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds \|_{L^1}
\]

is bounded we note \(\mathbb{P} = I - (I - \mathbb{P}) \) so we just need to deal with the identity term. But \(\sum_j \partial x_j \partial x_j \Delta^{-1} = I \) so that the bound proved for

\[
(I - \mathbb{P})_{i,j} \int_{0}^{t} (I - \Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u_a(s) ds
\]

immediately gives the desired estimate.
It remains to prove the continuity in t. With $\delta > 0$ we have

$$\|\mathbb{P} \int_0^{t+\delta} (I - \Delta)^{r/2} e^{(t+\delta-s)\Delta} u(s) \cdot \nabla u(s) ds - \mathbb{P} \int_0^t (I - \Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds\|_1 \leq \|\mathbb{P} \int_t^{t+\delta} (I - \Delta)^{r/2} e^{(t+\delta-s)\Delta} u(s) \cdot \nabla u(s) ds\|_1 + \|\mathbb{P} \int_t \int_0^{t+\delta} (I - \Delta)^{r/2} e^{(t+s)\Delta} u(s) \cdot \nabla u(s) ds\|_1.$$

The first term is just

$$\|/(e^{\delta\Delta} - I)(I - \Delta)^{r/2} v(t)\|_1$$

which tends to zero as $\delta \downarrow 0$ since $\{e^{t\Delta}\}$ is a C_0 semi-group on L^1. For the second term we refer to (4.3). The estimate we need is the last term where t is replaced by $t + \delta$ and 0 is replaced by t. We obtain

$$\|\mathbb{P} \int_t^{t+\delta} (I - \Delta)^{r/2} e^{(t+\delta-s)\Delta} u(s) \cdot \nabla u(s) ds\|_1 \leq c \int_t^{t+\delta} (t + \delta - s)^{-1+1/2} ds\|u\|^2_{L^\infty([0,T],L^2)} =$$

$$= 2c(1 - r)^{-1} \delta^{1-r/2}\|u\|^2_{L^\infty([0,T],L^2)}$$

where T can be taken any number larger than say $t + 1$ (where $\delta < 1$).

When we consider $v(t - \delta) - v(t)$ with $\delta > 0$ the proof needs the following lemma (which we will also make use of in the corollary which follows):

Lemma 4.2 Suppose $\epsilon \in (0,1]$. Then

$$\|/(I - e^{h\Delta})(I - \Delta)^{-\epsilon}\|_{L^1 \rightarrow L^1} \leq Ch^\epsilon$$

Proof We write

$$(I - e^{h\Delta})(I - \Delta)^{-\epsilon} = \Gamma(\epsilon)^{-1}(I - e^{h\Delta}) \int_0^\infty t^{-1} e^{-t} e^{t\Delta} dt =$$

$$\Gamma(\epsilon)^{-1}\left(\int_0^\infty t^{-1} e^{-t} e^{t\Delta} dt - \int_0^\infty t^{-1} e^{-t} e^{(t+h)\Delta} dt\right) =$$

$$\Gamma(\epsilon)^{-1}\left(\int_h^\infty (t^{-1} e^{-t} - (t-h)^{-1} e^{-(t-h)}) e^{t\Delta} dt + \Gamma(\epsilon)^{-1}\left(\int_0^h t^{-1} e^{-t} e^{t\Delta} dt\right)\right).$$

Since $\|e^{t\Delta}\|_{L^1 \rightarrow L^1} = 1$,

$$\|/(I - e^{h\Delta})(I - \Delta)^{-\epsilon}\|_{L^1 \rightarrow L^1} \leq \Gamma(\epsilon)^{-1}\left(\int_0^h t^{-1} e^{-t} dt + \int_0^\infty ((t-h)^{-1} e^{-(t-h)} - t^{-1} e^{-t}) dt\right).$$

Here we have used the positivity of the last integrand. Thus we have

$$\|/(I - e^{h\Delta})(I - \Delta)^{-\epsilon}\|_{L^1 \rightarrow L^1} \leq \Gamma(\epsilon)^{-1} 2h^\epsilon (\epsilon \Gamma(\epsilon))^{-1} = 2h^\epsilon \Gamma(1 + \epsilon)^{-1}. $$
Proof (continued)

\[||P\int_0^{t-\delta} (I-\Delta)^{r/2} e^{(t-\delta-s)\Delta} u(s) \cdot \nabla u(s) ds - P\int_0^t (I-\Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds||_1 \leq \]

\[||P\int_0^{t-\delta} (I-\Delta)^{r/2} (e^{(t-s)\Delta} - e^{(t-\delta-s)\Delta}) u(s) \cdot \nabla u(s) ds||_1 + ||P\int_0^t (I-\Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds||_1. \]

The first term above is

\[||(I-e^{\delta \Delta})(I-\Delta)^{-\epsilon/2}P\int_0^{t-\delta} (I-\Delta)^{(r+\epsilon)/2} e^{(t-\delta-s)\Delta} u(s) \cdot \nabla u(s) ds||_1. \]

Since \(r < 1 \) we can choose \(\epsilon > 0 \) so that \(r+\epsilon < 1 \). Then using the lemma and the boundedness of the \(L^1 \) norm of

\[P\int_0^{t-\delta} (I-\Delta)^{(r+\epsilon)/2} e^{(t-\delta-s)\Delta} u(s) \cdot \nabla u(s) ds \]

which we have shown above for \(r+\epsilon < 1 \) (uniformly for \(0 \leq t-\delta \leq T \), \(T \) fixed but arbitrary) we have

\[||P\int_0^{t-\delta} (I-\Delta)^{r/2} (e^{(t-s)\Delta} - e^{(t-\delta-s)\Delta}) u(s) \cdot \nabla u(s) ds||_1 \leq C\delta^{r/2}. \]

The remaining term is handled the same way as with \(t + \delta \) so that we have

\[||P\int_{t-\delta}^t (I-\Delta)^{r/2} e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds||_1 \leq C\int_{t-\delta}^t s^{-(r+1)/2} ds ||u||^2_{L^\infty([0,T],L^2)} \leq 2(1-r)^{-1}\delta^{(1-r)/2} ||u||^2_{L^\infty([0,T],L^2)}. \]

The following corollary is actually a corollary of the proof of Theorem 4.1:

Corollary 4.3 \(v(\cdot) \) is Hölder continuous in the norm of \(L^1_r(R^m) \) for \(0 < r < 1 \).

\[||v(t+h) - v(t)||_{L^1_r} \leq c_\alpha |h|^\alpha \quad (4.4) \]

if \(0 < \alpha < (1-r)/2, t, t+h \geq 0, |h| \leq 1. c_\alpha \) is bounded uniformly in \(t \) for \(t \) in any compact interval of \([0, \infty)\).

Proof See the last two inequalities above which apply in the cases \(h = \delta \) and \(h = -\delta, \delta > 0. \)
Theorem: If for $r > 0$ we define $h_{r,t}$ by the equation
\[
(I - \Delta)^{r/2}K_t(x) = (2\pi)^{-m-1} t^{-m/2} e^{i\eta x} dy = \int (t + |\eta|^2)^{r/2} e^{-|\eta|^2} e^{iy\eta} dy = Ct^{-(m+r)/2} h_{r,t}(|y|),
\]
with C defined so that
\[
h_{r,t}(w) := \int_0^\infty \int_{\eta}^1 e^{is\lambda} (t + s^2)^{r/2} s^{m-1} e^{-s^2} (1 - \lambda^2)^{(m-3)/2} d\lambda ds,
\]
it can be shown that
\[
|h_{r,\epsilon}(w)| \leq C(1 + |w|)^{-(m+\epsilon)}
\]
for $\epsilon \in [0, r)$. Here C is uniformly bounded for t in compacts of $[0, \infty)$. Thus for $r > 0$ the integration by parts in the above proof is not necessary to show $|| (I - \Delta)^{r/2} \int_0^t e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds ||_1 < \infty$. In fact we have
\[
|| (I - \Delta)^{r/2} K_t ||_1 \leq c t^{r/2} \int \nabla h_{r,t}(|y|) dy \leq c't^{r/2}.
\]

Thus
\[
|| (I - \Delta)^{r/2} \int_0^t e^{(t-s)\Delta} u(s) \cdot \nabla u(s) ds ||_1 \leq c' \int_0^t (t-s)^{-r/2} || u(s) ||_2 || \nabla u(s) ||_2 ds \leq c' || u ||_{L^\infty([0, T]; L^2)} (T^{1-r}/(1-r))^{1/2} \left(\int_0^T || \nabla u(s) ||^2 ds \right)^{1/2}
\]
where $T \geq t$.

The following proposition is a simple consequence of Theorem 4.1, Corollary 4.3 and interpolation:

Proposition 4.4 $v(t) \in L^p_s(\mathbb{R}^m)$ and $v(\cdot)$ is Hölder continuous in the $L^p_s(\mathbb{R}^m)$ norm whenever $1 \leq p < m/(m - 1 + s)$. Explicitly given $s \geq 0$ and p so that $1 \leq p < m/(m - 1 + s)$ then
\[
|| v(t + h) - v(t) ||_{L^p} \leq C \epsilon |h|^\epsilon
\]
for $0 < \epsilon < (m/2)(p^{-1} - p_0^{-1})$, $p_0 = m/(m - 1 + s)$. If $1 \leq p < 2$, $v(t) \in L^p$ and $v(\cdot)$ is Hölder continuous in the L^p norm:
\[
|| v(t + h) - v(t) ||_p \leq C' \epsilon |h|^\epsilon
\]
for $0 < \epsilon < p^{-1} - 2^{-1}$. Note that if $s = 0$, $p^{-1} - 2^{-1} - (m/2)(p^{-1} - p_0^{-1}) = ((m/2) - 1)p^{-1} \geq 0$.

10
4 CONSEQUENCES OF THE PERTURBATION EQUATION: L^1 REGULARITY

Proof From the representation $(1 - \Delta)^{-w/2} f(x) = \int k_w(x - y) f(y) dy$ with

$$k_w(x) = \Gamma(w/2)^{-1} \int_0^\infty e^{-t(w-2)/2} K_t(x) dt$$

for $w > 0$, it is easy to derive the bound $k_w(x) \leq C_w e^{-|x|^2/2} |x|^{-(m-w)}$ for $0 < w < 1$. Given p and $s \geq 0$ with $1 \leq p < p_0$, we choose $0 < 1 - r < m(p-1 - p_0^{-1})$ or what is the same $p < m/(m - r + s)$. We have

$$||(I - \Delta)^{s/2}(v(t + h) - v(t))||_p = ||(I - \Delta)^{(r-s)/2}(I - \Delta)^{r/2}(v(t + h) - v(t))||_p.$$

Using Minkowski’s inequality we have

$$||(I - \Delta)^{s/2}(v(t + h) - v(t))||_p \leq ||k_{r-s}||_p||(I - \Delta)^{r/2}(v(t + h) - v(t))||_1.$$

Clearly $||k_{r-s}||_p < \infty$ if $p(m - (r-s)) < m$ which combined with Corollary 4.3 gives the first result. The fact that $v(t) \in L^p_t$ follows from a similar interpolation.

To prove the second inequality, for $1 \leq p < 2$ we interpolate to obtain with $\theta = 2(p^{-1} - 2^{-1})$

$$||v(t+h) - v(t)||_p \leq ||v(t+h) - v(t)||_1^{1-\theta}||v(t+h) - v(t)||_1^{\theta} \leq ||v(t+h) - v(t)||_1^{\theta}||v(t+h) - v(t)||_1^{1-\theta}$$

for T large enough. The desired Hölder continuity follows from Corollary 4.3. Basically the same interpolation gives $v(t) \in L^p$.

\[\blacksquare\]

The somewhat abstract condition of belonging to the space $L^p_T(\mathbb{R}^m)$ has a more down to earth consequence. We prove the following Hölder condition: For $|h| \leq 1$

Proposition 4.5

$$||v(t)(\cdot + h) - v(t)(\cdot)||_p \leq c(r)|h|^r||v(t)||_{L^p_T}.$$

where $1 \leq p < m/(m - 1 + r)$ and $0 \leq r < 1$.

Proof This is a result which has nothing to do with the Navier-Stokes equation and is probably well-known. We give a simple proof a result which holds for $1 \leq p < \infty$ and $0 < r$. Define $(U(h)w)(x) = w(x + h)$. We will estimate the norm of $(U(h) - \bar{I})(-\Delta + \bar{I})^{-r/2}$ as a self-map of $L^p(\mathbb{R}^m)$. We consider the integral kernel of this operator

$$(U(h) - \bar{I})(-\Delta + \bar{I})^{-r/2}(x, y) = \Gamma(r/2)^{-1} \int_0^\infty e^{-t^{r/2}} K_t(x + h - y) - K_t(x - y) dt / t.$$

We will use Minkowski’s inequality in integral form so we calculate with $y = \frac{x}{2\sqrt{t}}$ and $h = (\lambda, 0, ..., 0)$ with $\lambda \geq 0$

$$\int |K_t(x+h) - K_t(x)| dx = (4\pi)^{-m/2} \int \int e^{-|x+h|^2/4t} - e^{-|x|^2/4t} dx = \pi^{-m/2} \int e^{-|y| + \frac{h}{\lambda^2}} - e^{-|y|^2} |dy| =$$

\[\int \int e^{-|x+h|^2/4t} - e^{-|x|^2/4t} |dx| = \pi^{-m/2} \int e^{-|y| + \frac{h}{\lambda^2}} - e^{-|y|^2} |dy| = \pi^{-m/2} \int e^{-|y|^2} |dy| = \pi^{-m/2} \pi^{m/2} = \pi^0 = 1.$$
\[\pi^{-1/2} \int_{-\infty}^{\infty} |e^{-(s+w/2)^2} - e^{-(s-w/2)^2}|ds. \]

where \(w = \frac{\lambda}{2\sqrt{t}} \). Thus

\[\int |K_t(x+h) - K_t(x)|dx = 2\pi^{-1/2} \int_0^{\infty} \int_0^1 \left(d/dt \right) [e^{-(s-tw/2)^2} - e^{-(s+tw/2)^2}]dt ds = \]
\[w\pi^{-1/2} \int_0^1 \int_0^{\infty} [(s-tw/2)e^{-(s-tw/2)^2} + (s+tw/2)e^{-(s+tw/2)^2}]ds dt. \]

We have \(\int_0^{\infty} (s-tw/2)e^{-(s-tw/2)^2}ds = \int_{-\infty}^{\infty} u e^{-u^2}du \leq \int_0^{\infty} u e^{-u^2}du = 1/2 \), while similarly \(\int_0^{\infty} (s+tw/2)e^{-(s+tw/2)^2}ds \leq 1/2 \). Since we also have \(\int |K_t(x+h) - K_t(x)|dx \leq 2 \) we obtain
\[\int |K_t(x+h) - K_t(x)|dx \leq cw(1+w)^{-1} \]

Finally
\[\|(U(h) - I)(-\Delta + I)^{-r/2}\|_{L^p \rightarrow L^p} \leq c \int_0^{\infty} e^{-t} t^{r/2} \frac{2\sqrt{t}}{1 + \frac{\lambda}{2\sqrt{t}}} dt \]

This integral is easy to estimate. We find
\[\|(U(h) - I)(-\Delta + I)^{-r/2}\|_{L^p \rightarrow L^p} \leq c(r) |h|^r; r < 1 \]
\[\leq c|h| \log |h|^{-1}; r = 1 \]
\[\leq c(r) |h|; r > 1 \]

5 Acknowledgement

Thanks go to my colleague Zoran Grujic for pointing out that a version of Theorem 3.1 is proved in [9] and in [8].

6 Appendix

In this appendix we derive bounds on \((I - P)_{i,j}(I - \Delta)^{r/2}K_t(x) \) where \(K_t \) is the integral kernel for the operator \(e^{t\Delta} \) in \(\mathbb{R}^m \). Explicitly, \(K_t(x-y) = (4\pi t)^{-m/2}e^{-|x-y|^2/4t} \). We have
\[(I - P)_{i,j}(I - \Delta)^{r/2}K_t(x) = ct^{-(m+r)/2}(\omega_i \omega_j g_{r,t}(|y|)) + |y|^{-1}(\delta_{i,j} - \omega_i \omega_j)g_{r,t}(|y|), \]
where \(y = x/\sqrt{t} \), \(\omega_i = y_i/|y| \) and
\[g_{r,t}(w) = \int_0^{\infty} \int_{-1}^{1} \left(t + s^2 \right)^{r/2} s^{m-2} e^{-s^2} e^{isw\lambda}(1 - \lambda^2)^{(m-3)/2}d\lambda ds. \] (6.1)

Here \(c \) is an \(m \) dependent constant.
Proposition 6.1 \(g_{r,t} \in C^\infty(\mathbb{R}) \) and
\[
|g_{r,t}^{(n)}(w)| \leq C_n(1 + |w|)^{-(m+n-1)} \tag{6.2}
\]
for any \(r \geq 0 \) uniformly for \(t \in [0, T] \), for any \(T > 0 \).

Proof We easily derive \((d/dw)^n e^{isw\lambda} = w^{-n} \sum_{j=1}^{n} n_j (sD)^j e^{isw\lambda}\) where the \(n_j \) are integers and \(D = d/ds \). Integrating by parts in the \(s \) integral we obtain
\[
g_{r,t}^{(n)}(w) = w^{-n} \int_{-1}^{1} \int_{0}^{\infty} e^{isw\lambda} h(s) \lambda (1 - \lambda^2)^{(m-3)/2} ds d\lambda
\]
where
\[
h(s) = \sum_{j=1}^{n} n_j (-Ds)^j [(t + s^2)^{r/2}s^{m-2}e^{-s^2}]
\]
and \(D \) is \(d/ds \). In the following we use \(|D^{l}(t + s^2)^{r/2}| \leq C_l(t + s^2)^{(r-l)/2} \) with \(C_l = C_l(t) \) bounded for \(t \) in compacts of \([0, \infty)\).

We integrate by parts \(2l \) times using \([-w^2\lambda s)^{-1} (\partial^2 / \partial s \partial \lambda) e^{isw\lambda} = e^{isw\lambda} \) and \([- (d/d\lambda) \lambda^{-1}] (1 - \lambda^2)^{k/2} = k\lambda(1 - \lambda^2)^{(k-2)/2} \). We obtain
\[
g_{r,t}^{(n)}(w) = w^{-2l-n}c_{l,m} \int_{0}^{\infty} \int_{-1}^{1} e^{isw\lambda} (Ds^{-1})^l h(s) \lambda (1 - \lambda^2)^{-l+(m-3)/2} d\lambda ds. \tag{6.3}
\]

If \(m \) is odd we take \(l = (m-3)/2 \) and obtain
\[
g_{r,t}^{(n)}(w) = w^{-(m+n-3)}c_{m} \int_{0}^{\infty} \int_{-1}^{1} e^{isw\lambda} (Ds^{-1})^{(m-3)/2} h(s) \lambda d\lambda ds.
\]

Integrating by parts once more we have
\[
g_{r,t}^{(n)}(w) = 2iw^{-(m+n-1)}c_{m} \int_{0}^{\infty} \frac{\sin(ws)}{s} D(Ds^{-1})^{(m-3)/2} h(s) ds,
\]
and integrate by parts one final time to obtain
\[
g_{r,t}^{(n)}(w) = -2iw^{-(m+n-1)}c_{m} \int_{0}^{\infty} (\int_{0}^{\infty} \frac{\sin(\tau)}{\tau} d\tau) D^2(Ds^{-1})^{(m-3)/2} h(s) ds \tag{6.4}
\]
If \(r = 0 \) then \(D^2(Ds^{-1})^{(m-3)/2} h(s) = \) (polynomial) \(e^{-s^2} \).

If \(r > 0 \) and \(t = 0 \) terms of the form \(s^{-1+r}e^{-s^2} \) arise which look singular for small \(r \) at \(s = 0 \). This is because we are not keeping track of coefficients. We do not lose any information if we keep \(r \) away from 0 since bounds on \(||(I - \Delta)^{r/2} f|| \) for small \(r \geq 0 \) follow from those for larger \(r \). It is not hard to see from (6.4) that \(g_{r,t}^{(n)}(w) = O(w^{-(m+n-1)}) \) uniformly for \(t \) in compact subsets of \([0, \infty)\). To see the situation more explicitly it might help to note that \((Ds^{-1})^l = \sum_{j=1}^{l} m_j D^j s^{-2l-j} \) for certain integers \(m_j \).
Now we turn to even m. Using (6.3) with $l = (m - 2)/2$ we find
\[g_{r,t}(w) = w^{-(m+n-2)}c'_m \int_0^\infty \int_{-1}^1 e^{iws\lambda}(Ds^{-1})(m-2)/2 h(s)\lambda(1 - \lambda^2)^{-1/2} d\lambda ds. \]

Another integration by parts in the s integral gives
\[g_{r,t}(w) = w^{-(m+n-1)}ic'_m \int_0^\infty \int_{-1}^1 e^{iws\lambda}D(Ds^{-1})(m-2)/2 h(s)(1 - \lambda^2)^{-1/2} d\lambda ds + \]
\[+w^{-(m+n-1)}ic'_m [(Ds^{-1})(m-2)/2 h(s)]_{s=0} \int_{-1}^1 (1 - \lambda^2)^{-1/2} d\lambda \]
so that $g_{r,t}(w) = O(w^{-(m+n-1)})$. From (6.1) it is clear that $g_{r,t}^{(n)}$ is bounded for all $r \geq 0$ uniformly for t in compacts of $[0, \infty)$.

References

[1] Jean Leray, *Sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Mathematica, 63, (1934), 193–248.

[2] James Robinson, José Rodrigro, Witold Sadowski, *The three-dimensional Navier-Stokes equations*, Cambridge University Press, (2016).

[3] Tosio Kato, *Non-self-adjoint operators with singular first order coefficients*, Proc. Roy. Soc. Edinburgh, 96A, (1984), 323–329.

[4] Solomon Mikhlin, *Multidimensional singular integrals and integral equations*, International Series of Monographs in Pure and Applied Mathematics, vol. 83, (1965).

[5] Eberhard Hopf, *Über die Anfangswertproblem für die hydrodynamischen Grundgleichungen*, Math. Nachr., 4, (1951), 213–231.

[6] Elias Stein, *Singular integrals and differentiability properties of functions*, Princeton University Press, (1970).

[7] Barry Simon, *A Comprehensive Course in Analysis, Part 3, Harmonic Analysis*, Amer. Math. Soc., (2015).

[8] G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, *Unicité dans $L^3(\mathbb{R}^3)$ et d’autres espaces limites pour Navier-Stokes*, Revista Mat. Iberoamer, 16, (2000), 605–667.

[9] P. G. Lemarié-Rieusset, *Recent developments in the Navier-Stokes problem*, Chapman and Hall/CRC, London, (2002).