Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Incidence of venous thromboembolism in men with prostate cancer and men without prostate cancer: a nationwide population-based cohort study in Sweden

B. Farahmand, Y. Balabanova, P. Stattin, H. Garmo, G. Brobert

1Integrated Evidence Generation, Bayer AB, Stockholm, Sweden,
2Integrated Evidence Generation, Bayer AG, Berlin, Germany,
3Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

Introduction: Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a leading cause of death among cancer patients. Population-based data from the United Kingdom and Denmark suggest that the risk of VTE is 2.6 to 3-fold higher in men with prostate cancer than among men of similar age without cancer. To gain further knowledge in this field, there is a need to obtain comparable data from other countries.

Materials and Methods: We performed a population-based cohort study using linked data from the National Prostate Cancer, the Patient, Materials and Methods: The Cancer and randomly selected age-matched men without prostate cancer from the Swedish general population.

Results: A total of 2955 men with and 9774 men without prostate cancer experienced a VTE. Cumulative incidences are shown in the Figure. The cumulative incidence ratio (men with vs. without prostate cancer) decreased from 2.53 (95% CI: 2.26–2.83) at 6 months to 1.59 (95% CI: 1.52–1.67) at 5 years’ follow-up. Incidence rates per 1000 person-years with 95% confidence intervals (CIs) were calculated, along with hazard ratios (HRs) comparing the risk of VTE in men with and without prostate cancer, adjusted for confounders.

Conclusions: Swedish men with prostate cancer have a mean 50% increased rate of VTE during 5 years’ follow-up, compared to men without prostate cancer of the same age. While this is lower than previous estimates from European cohorts, it still indicates a marked increase in VTE risk to be noted by treating physicians.

Fig. 1 (abstract PO-20).
Table 1 (abstract PO-21)

Clinical characteristics

All patients (n = 39)
Sex – no. (%)
Male 19 (48.7)
Female 20 (51.3)
Age – median (IQR)
61 (50-67)
Comorbidities – no. (%)
Hypertension 15 (38.5)
Diabetes mellitus 4 (10.3)
Dyslipidaemia 10 (25.6)
Obesity (BMI >30) 5 (12.8)
Myocardial infarction 2 (5.1)
Congestive heart failure 2 (5.1)
Peripheral vascular disease 1 (2.6)
COPD 3 (7.7)
Chronic kidney disease 4 (10.3)
Hepatopathy 4 (10.3)
Immunodeficiency 0 (0)
Primary cancer type – no. (%)
Breast 12 (30.8)
Lung 6 (15.4)
Colorectal 6 (15.4)
Prostatic 3 (7.7)
Renal 3 (7.7)
Ovarian 2 (5.1)
Sarcoma 2 (5.1)
Pancreas 1 (2.6)
Stomach 1 (2.6)
Bladder 1 (2.6)
Neuroendocrine tumor 1 (2.6)
Other 1 (2.6)
TNM staging at diagnosis – no. (%)
IV 17 (43.6)
III 10 (25.6)
II 4 (10.3)
I 7 (17.9)
Unknown 1 (2.6)
Clinical staging at COVID-19 diagnosis – no. (%)
Complete remission 14 (39.5)
Localized 1 (2.6)
Locally advanced 5 (12.8)
Metastatic 17 (43.6)
Unknown 2 (5.1)
Cancer status – no. (%)
Active cancer 32 (82.1)
History of cancer 3 (7.7)
Metastatic 17 (43.6)
Unknown 1 (2.6)
ECOG – no. (%)
0 22 (56.4)
1 11 (28.2)
2 1 (2.6)
Unknown 5 (12.8)

PO-22

Venous thromboembolism in cancer patients – data from Regional Centre for transfusion medicine Shtip

M. Shorova

Institute for transfusion medicine, Regional Center Shtip

Introduction: Venous thromboembolism (VTE) is the second leading cause of death and a major cause of morbidity in patients with cancer. Thrombosis of deep vein system (DVD) in lower extremities and the syndrome of migratory superficial thrombophlebitis is the most common form of VTE in cancer patients. All cancer patients should have an assessment of their risk of VTE recurrence as well as their risk of bleeding on anticoagulation.

Aim: To show correlation between appearance of VTE and cancer disease in patients who were treated in our ambulance, in Regional center for transfusion medicine Shtip. This correlation between VTE and cancer may have diagnostic, prognostic and therapeutic significance.

Materials and Methods: In the past 5 years (from 2015 to 2020), 36 patients with DVD and migratory superficial thrombosis were diagnosed and treated in our Regional center. Patients were between 47 and 76 years old, from which 17 man and 19 woman. Ca PVU were 7 woman, Ca colonis 2 man and 2 woman, Ca ovarii 2 woman, Ca prostatic 8 man, Ca pulmonum 6 man, Tu cerebri (astrocytoma) 1 man, 2 patients with Ca pulmonum and 1 patient with Ca recti. In all these patients were made basic hemosthasis tests (fibrinogen, platelet count, PT, aPTT, TT, D-Dimer test) and was prescribed therapy with COPD, chronic obstructive pulmonary disease; G-CSF, granulocyte colonies stimulating factor; LMWH, low molecular weight heparins; DOAC, direct oral anticoagulant; PICC, peripherally inserted central catheter. *Cancer status was classified as: Active cancer defined as diagnosis of cancer within six months before the study inclusion, or receiving treatment for cancer at the time of inclusion or any treatment for cancer during 6 months prior to randomization, or recurrent locally advanced or metastatic cancer. History of cancer defined as last anti-cancer therapy or evidence of cancer more than 6 months ago but during the previous 24 months. Complete remission defined as no evidence of cancer neither anti-cancer therapy in the last 24 months. We included any hormonal treatment (oral contraceptives, hormone replacement therapy, etc) received before starting anti-cancer therapy.*