Corneal fibrosis and scarring, while T3 does not stimulate this scarring outcome. For instance, T1 has been found to be a regulator of different roles that are key in determining the wound-healing response. 1 Transforming growth factor β (TGF-β), has emerged as a key component of the corneal wound-healing process. 2,3 It is involved in the regulation of fibroblast proliferation and differentiation. 12 In addition, PDGFRα co-localizes with SMA, thereby helping to understand the differential functions of TGF-β1 and TGF-β3 in corneal wound healing.

Keywords: TGF-β3, corneal scarring, PDGF, 3D cell culture

Corneal wound healing is a complex and involves a variety of cytokines, growth factors, and proteases, which interact to regulate key phases of corneal healing. One such growth factor, transforming growth factor β (TGF-β), has emerged as a key component of the corneal wound-healing response. 1 Transforming growth factor β has been found to regulate the transformation of quiescent keratocytes into activated fibroblasts, upregulating the secretion of extracellular matrix (ECM) materials, and enhancing the formation of stress fibers. 2 Furthermore, TGF-β directly stimulates the transformation of activated fibroblasts into myofibroblasts, which are filled with α smooth muscle actin (SMA) that forms microfilaments and are major source of light scattering in corneal scars. 3,4

Transforming growth factor β isoforms, in particular, TGF-β1 and -β3 (T1 and T3, respectively), have been shown to play different roles that are key in determining the wound-healing outcome. For instance, T1 has been found to be a regulator of fibrosis and scarring, while T3 does not stimulate this scarring effect in skin, lung, and kidney. 5-7 and in some cases, even stimulates scar-free healing. 8,9 Like the TGFβs, there is also an extensive literature set associating platelet-derived growth factors (PDGFs) with fibrosis in different scarring models. 10 The intrinsic affinity of each PDGF isoform for the two PDGFR subunits determines the type of receptor dimer that is assembled. Platelet-derived growth factor B is the universal ligand, whereas PDGFAB and PDGFBC assemble and activate only PDGFRα homodimers and PDGFRβ heterodimers. Platelet-derived growth factor D activates PDGFRβ homodimers, while PDGFα only activates PDGFRα homodimers. 11 Recently, it has been suggested that these PDGF receptors were activated through an autocrine loop leading to keratocyte proliferation and myofibroblast differentiation. 12 In addition, PDGFRα co-localizes with SMA, and PDGFR-blocking antibodies inhibit the TGFβ-induced differentiation of keratocytes to myofibroblasts. 12

These studies led to the logical supposition that PDGFs contribute to SMA expression by differentially activating the PDGFRs. Therefore, in this study, we utilized our three-dimensional (3D) cell-culture model 13 to study the relationship...
between T1’s and T3’s interaction with PDGFR and determined if this interaction is responsible for their differential stimulation of SMA expression.

Materials and Methods

Generation of Stable PDGFRα Knockdown Cell Line (HCF-P)

Human corneal fibroblasts (HCFs) were isolated as previously described from human corneas obtained from the National Disease Research Interchange (NDRI; Philadelphia, PA, USA). All research adhered to the tenets of the Declaration of Helsinki. Once isolated, HCFs were plated on six-well plates and grown to 75% confluency in media (Eagle’s minimum essential media [EMEM]; American Type Culture Collection [ATCC], Manassas, VA, USA) with 10% serum (fetal bovine serum [FBS]; Atlanta Biologicals, Flowery Branch, GA, USA) and 1% Antibiotic-Antimycotic (ABAM; Thermo Fisher Scientific, Waltham, MA, USA).

To generate the HCF-P cell line, HCFs were infected with a PDGFRα shRNA lentivirus, as previously described. In brief, HCFs were grown to ~70% confluence in six-well cell culture plates. Media with lentivirus particles (pCMV-dR8.91, VSV-G/PM2.2.G, hairpin-pLKO.1 vector containing the PDGFRα shRNA oligo [Dana Farber Cancer Institute/Harvard Medical School, Boston, MA, USA]), and Polybrene (4 μg/mL; Sigma-Aldrich Corp., St. Louis, MO, USA), which was used to improve the transduction efficiency, was prepared. This media was applied to HCFs incubated overnight at 37°C with 5% CO₂, and then the cells were cultured with puromycin (2 μg/mL; Sigma-Aldrich Corp.) for 1 month to exclusively select cells that expressed the PDGFRα shRNA. Samples from HCF-P and HCF were collected for Western blot and examined for PDGFRα knockdown. β-actin was used as a loading control. Four individual shRNA oligo sequences for PDGFRα were tested, and the cell line containing the shRNA with the maximum PDGFRα knockdown was selected and used in these studies (TRCN0000194855; Dana Farber Cancer Institute/Harvard Medical School).

3D Construct Assembly

Constructions were assembled as previously described. Brieﬂy, the HCFs or HCF-Ps were plated at a density of 10⁶ cells/mL on six-well plates containing polycarbonate membrane inserts with 0.4-μm pores (Transwell; Corning Costar, Charlotte, NC, USA). Human corneal fibroblasts or HCF-Ps were cultured for 4 weeks in construct medium (EMEM, 10% FBS, and a stable vitamin C [VitC] derivative [0.5 mM 2-O-glucopyranosyl-L-ascorbic acid; Wako Chemicals USA, Richmond, VA, USA]). Three different groups were tested, per cell type: (1) control or C: construct medium; (2) T1: construct medium containing 0.1 ng/mL T1; and (3) T3: construct medium containing 0.1 ng/mL T3. Experiments using all groups were repeated at least three times, collected, and processed for reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence.

Reverse Transcription–Quantitative Polymerase Chain Reaction

Total RNA was extracted (Trizol; Thermo Fisher Scientific) from the constructs, and cDNA was synthesized (High Capacity cDNA Reverse Transcription Kit; Applied Biosystems, Carlsbad, CA, USA) according to manufacturer’s protocols. The cDNA was combined with qPCR master mix (KAPA SYBR Fast qPCR master mix; KAPA Biosystems, Wilmington, MA, USA) and primers (Table: SMA, PDGFA, PDGFB, PDGFC, PDGFD, or glyceraldehyde 3-phosphate dehydrogenase [GAPDH]20), and then ampliﬁed (Masterecyl er ep realplex real-time PCR system; Eppendorf, Hauppauge, NY, USA) with the following thermal cycling conditions: 2 minutes at 50°C, 10 minutes at 95°C, 40 cycles of 15 seconds at 95°C, and 1 minute at 60°C. GAPDH, an endogenous control, was used to normalize target genes. The primers for each gene were prepared by the CCIB DNA Core Facility at Massachusetts General Hospital (Cambridge, MA, USA), and the sequences are given in the Table below. The relative gene expression of the growth factors was calculated by using the comparative Ct method.

Migration Assay

Human corneal fibroblasts or HCF-Ps were cultured in six-well cell culture plates. After growing to confluence, a scratch was made in the middle of the well using the end of a 200-μL pipette tip. Three different groups were examined in serum-free construct media per cell type: (1) control: no growth factors; (2) T1: 0.1 ng/mL T1; and (3) T3: 0.1 ng/mL T3. The cells were imaged using a brightﬁeld microscope (Nikon E8000; MicroVideo Instruments, Avon, MA, USA) at 0 and 24 hours, and were quantiﬁed using ImageJ (version 5.2; https://imagej.nih.gov/ij/ provided in the public domain by National Institutes of Health, Bethesda, MD, USA). The percent migration was calculated by measuring the area without cells at 0 and 24 hours and then dividing by the corresponding 0-hour value, then multiplying by 100.

Immunofluorescence Staining

The constructs were collected and processed for immunofluorescence, as previously described. In brief, constructs were ﬁxed in 4% paraformaldehyde for at least 24 hours, placed in blocking buffer (1% bovine serum albumin [BSA] and 0.1% Triton-X [Sigma-Aldrich Corp.]) for 1 hour, and incubated overnight at 4°C with primary antibody against SMA (Dako North America, Carpinteria, CA, USA) in blocking buffer. The next day, constructs were washed and incubated overnight at 4°C with secondary antibody (donkey anti-mouse IgG-FITC; Jackson ImmunoResearch, West Grove, PA, USA) in blocking buffer. TO-PRO-3 (Thermo Fisher Scientiﬁc) was used as a marker of all cell nuclei. Constructs were washed, mounted, and analyzed using a confocal microscope (Leica TCS SP8, Leica Microsystems, Wetzlar, Germany) and ImageJ software (version 5.2; https://imagej.nih.gov/ij/).
RESULTS

Comparison of SMA RNA Expression and Construct Thickness

In Figure 2A, SMA mRNA expression was examined by RT-qPCR in HCF and HCF-P constructs in response to T1 or T3. Upon T1 stimulation, SMA expression was significantly increased in both HCF (\(P < 0.05\)) and HCF-P (\(**P < 0.01\)) when compared to their respective controls; however, with T3, a differential response was observed between the two cell types. In HCF, the SMA mRNA expression remained similar to its control, whereas, in HCF-P as with T1 stimulation, T3 increased SMA mRNA expression significantly, as compared to its control (\(***P < 0.01\)). This suggests that PDGFR\(\alpha\) plays a critical role in the stimulation of SMA by T3.

Figure 2B compares the mean construct thickness of both HCF and HCF-P in response to T1 or T3. As seen in the graph, HCF produced a significantly thicker construct than HCF-P overall (\(**P < 0.01\)). As expected, the thickness of T1- and T3-treated HCF constructs was significantly greater than that of HCF-P.

Figure 1. Graph and Western blot showing PDGFR\(\alpha\) expression in HCF and HCF-P cell line. Platelet-derived growth factor receptor \(\alpha\) expression significantly decreased in the HCF-P as compared with HCF (\(P < 0.05\), \(n = 3\)). Representative Western blot shows PDGFR\(\alpha\) expression characterized by bands at 170 kDa (mature) and 160 kDa (immature). In the HCF these bands are prominent; however, in HCF-P these bands are less intense, indicating that the PDGFR\(\alpha\) has been knocked down. \(\beta\)-actin (42 kDa) was used as the loading control.

Figure 2. Comparison of SMA mRNA expression and mean thickness of constructs in HCF and HCF-P cell line treated with Control (no growth factors), TGF-\(\beta\)-mediated corneal SMA expression, we generated HCF that had PDGFR\(\alpha\) expression permanently knocked down (HCF-P). As seen in Figure 1A, both the mature (170 kDa) and immature (160 kDa) bands of the dimeric form of PDGFR\(\alpha\) were visible for the control HCF, while it was greatly reduced in HCF-P. This result was further confirmed by image analysis (Fig. 1B), which showed that PDGFR\(\alpha\) expression was significantly reduced (\(P < 0.05\)) in HCF-P when compared to HCF.

Statistical Analysis

All experiments were performed in triplicate and analyzed for statistical significance (\(P < 0.05\); GraphPad Prism version 5a; GraphPad Software, Inc., La Jolla, CA, USA) with either Student’s \(t\)-test or ANOVA followed by Tukey’s post hoc test.
HCF controls (*\(P < 0.05\)); however, neither T1 nor T3 had any effect on the HCF-P construct thickness, compared to HCF-P controls.

Visualization of SMA Using Immunofluorescence

In order to visualize the presence of SMA in HCF (Fig. 3) and HCF-P (Fig. 4) constructs, as well as to quantify the amount of SMA staining, immunofluorescence was performed on each of the replicates. T1-treated samples had higher amounts of SMA staining (Fig. 3B) when compared to both the control (Fig. 3A) and T3-treated samples (Fig. 3C). When the area of SMA staining in each of the replicates was measured using ImageJ (Figs. 3A–C insets, 3D), SMA staining in T3-treated HCF constructs was found to be ~95% (*\(P < 0.05\)) lower than in T1-treated samples (Fig. 3D).

However, in HCF-P constructs (Fig. 4), both T1 (Fig. 4B) and T3 (Fig. 4C) showed an increase in the amount of SMA staining when compared to their control (Fig. 4A). No significant difference was noted between T1 and T3 treatment when the amount of SMA staining was quantified (Figs. 4A–C, insets, 4D). Therefore, in these samples, T3 increased the amount of SMA-staining in HCF-P cells, while it failed to do so in regular HCF.

Comparison of RNA Expression of PDGF Isoforms

Since our results suggested that PDGFR\(\alpha\) plays an important role in the differential effect of T1 and T3, we then examined the expression of various PDGF ligands (PDGFA, PDGFB, PDGFC, and PDGFD) in both cell types in response to T1 or T3, in the hopes that these ligands may help in determining the dramatic difference between treatments. In both HCF and HCF-P, no change was noted in the mRNA expression of PDGFA (Fig. 5A) and PDGFB (Fig. 5B), except for a slight decrease in PDGFB when cells were stimulated with T3. In both cell types, T1 increased the expression of PDGFC (Fig. 5C) and PDGFD (Fig. 5D); however, T3 failed to stimulate the
expression of PDGFC and only slightly decreased the expression of PDGFD. For comparing the treatment groups within the same cell line, ANOVA followed by Tukey’s post hoc test was used. Student’s t-test was used for comparing individual gene expression between HCF and HCF-P (Fig. 5E). If \(P < 0.05 \), then “y,” and if no significance, then “n.”

PDGFR\(\alpha\) Knockdown Inhibited Cell Migration

A migration assay was performed to assess the functional effect of knocking down PDGFR\(\alpha\). Figure 6 shows the images of HCF (Fig. 6A) and HCF-P (Fig. 6B) in response to T1 or T3 at day 0, immediately after a pipette scratch (Figs. 6A, 6B, 6Ba, 6Bc, 6Be), and 24 hours after the scratch (Figs. 6A, 6B, 6Bb, 6Bd, 6Bf). For control samples (Figs. 6A-a-b, 6B-a-b, 6C), the percent migration for the HCF and HCF-P (Fig. 5E). If \(P < 0.05 \), then “y,” and if no significance, then “n.”

Interestingly, T1- and T3-treated HCF-P (Figs. 6Bc-d, 6Be-f, 6C) had no significant difference when compared to the control (Figs. 6Ba-b, 6C), suggesting that T1 and T3’s effect on migration is dependent on PDGFR\(\alpha\).

DISCUSSION

In this study, we hypothesized that T1 and T3 induced diametrically opposed responses in HCF by differentially activating PDGFR\(\alpha\). To test this hypothesis, PDGFR\(\alpha\) was permanently knocked down in HCF-P. These cells were grown either on plates or in our 3D cell-culture model, stimulated in response to T1 or T3, and examined for SMA mRNA expression and protein localization, as well as cell migration. Our data showed that in HCF, T1 significantly stimulated SMA mRNA expression, while T3 had little, if any, effect compared with control (Figs. 2A), which is in agreement with our previous papers\(^1\text{4}-\text{25}\); however, in HCF-P, both T1 and T3 significantly
increased mRNA SMA expression to ~3 times that of control HCF-P (Fig. 2A). These results were confirmed by immunofluorescence results (Figs. 3, 4).

To determine if the difference in T1 and T3’s effect on SMA levels was due to the stimulation of PDGF isoforms, we examined the expression of all four PDGF isoforms (A, B, C, and D) in both cell types (Fig. 5). Interestingly, PDGFC (Fig. 5C), which has been shown to play an important role in the regulation of fibrosis in different organs,24,25 notably increased in both HCF and HCF-P upon T1 stimulation. However, no significant difference was apparent with any of the PDGFs upon T3 stimulation when compared to controls for both cell types. Therefore, since PDGFC has been found to regulate fibrosis in various organs,24,25 T1 may be involved in fibrosis through PDGFC in HCF. Platelet-derived growth factor C also has been shown to activate both PDGFRα and PDGFRβ,26 which may explain the residual increase in PDGFC expression in HCF-P. Therefore, our results suggest that in normal HCF, T1’s high SMA expression may be through its high PDGFC stimulation, while T3 fails to stimulate PDGFC, thus leading to low SMA expression. However, this fails to explain T3’s role in stimulating SMA in HCF-P, which leads us to believe that T3 may be acting through a different mechanism. Further studies are required to understand these relationships; however, we feel these results are quite exciting, in that they are the first data we have obtained that may begin to explain the disparate effects of T1 and T3.

Finally, to look at the functional differences between the two cell types, we looked at construct thickness and cell migration. In previous papers, we have used the thickness of the construct as a measure of the amount of ECM produced and showed that our 3D cell culture model produced a matrix that had a similar structure to the human stroma and contained Collagen type I and V.23 Measuring the thickness of the
In this paper, we found that both T1- and T3-treated cells produced a thicker construct than their untreated control (Fig. 2B). This may be due to the effects of TGFB's mitogenic properties. The human corneal fibroblast-P constructs, in contrast, were significantly thinner than HCF constructs (Fig. 2B) and also had a slower migration rate than HCF (Fig. 5B). We believe this might be due to the fact that PDGFRα is strongly associated with the proliferation and migration of cells. Interestingly, neither T1 nor T3 had an effect on HCF-P migration or construct thickness. According to the literature, both PDGFRα and PDGFRβ stimulate fibroblast migration; however, it appears that PDGFRβ does not compensate for the loss of PDGFRα in our model. These results are consistent with our biochemical results that indicated that PDGFRα played a major role in determining T3’s mechanism of action in stimulating SMA (Figs. 2, 3).

To summarize, in this present study we have captured the difference in function of T1 and T3 using our 3D cell culture model. We also showed that the presence or absence of PDGFRα affects T3’s ability to stimulate SMA. We believe understanding this relationship between PDGFRα and T3 may be the first step toward developing T3 as an antiscarring therapy for the cornea.

Acknowledgments

Supported by National Institutes of Health/National Eye Institute (NIH/NEI) Grant No. EY03790 (Core) and EY005665 (JDZ).
Absence of PDGFRα Makes TGFβ3 Stimulate SMA

References

1. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993;122:103-111.

2. Srinivas S, Robinson P, Pi L, Lewin AS, Schultz G. Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts. Invest Ophthalmol Vis Sci 2013;54:8214-8223.

3. Blalock TD, Duncan MR, Varela JC, et al. Connective tissue growth factor expression and action in human corneal fibroblast cultures and rat corneas after photorefractive keratectomy. Invest Ophthalmol Vis Sci 2004;45:1879-1887.

4. Møller-Pedersen T, Li HF, Petroll WM, Cavanagh HD, Jester JV. Confocal microscopic characterization of wound repair after photorefractive keratectomy. Invest Ophthalmol Vis Sci 1998;39:487-501.

5. O’Kane S, Ferguson MW. Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol. 1997;29:63-78.

6. Schrementi ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen. 2008;16:80-86.

7. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(pt 3):985-1002.

8. Saika S. TGFbeta pathology in the eye. Lab Invest. 2006;86:106-115.

9. So K, McGrouther DA, Bush JA, et al. Avotemini for scar improvement following scar revision surgery: a randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast Reconstr Surg. 2011;128:163-172.

10. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255-273.

11. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isofoms. Cytokine Growth Factor Rev. 2004;15:197-204.

12. Jester JV, Huang J, Petrilli WM, Cavanagh HD. TGFβeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp Eye Res. 2002;75:645-657.

13. Karamichos D, Guo XQ, Hutcheon AEK, Zieske JD. Human corneal fibrosis: an in vitro model. Invest Ophthalmol Vis Sci. 2010;51:1382-1388.

14. Karamichos D, Hutcheon AEK, Zieske JD. Reversal of fibrosis by TGF-β3 in a 3D in vitro model. Exp Eye Res. 2014;124:31-36.

15. Lei H, Rhéaume M-A, Velez G, Mukai S, Kazlauskas A. Expression of PDGFRα is a determinant of the PVR potential of ARPE19 cells. Invest Ophthalmol Vis Sci. 2011;52:5016-5021.

16. Guo X, Hutcheon AEK, Zieske JD. Molecular insights on the effect of TGF-β1/β3 in human corneal fibroblasts. Exp Eye Res. 2016;146:233-241.

17. Guo X, Hutcheon AEK, Melotti SA, Zieske JD, Trinkaus-Randall V, Ruberti JW. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2007;48:4050-4060.

18. Karamichos D, Hutcheon AEK, Zieske JD. Transforming growth factor-β3 regulates assembly of a non-fibrotic matrix in a 3D corneal model. J Tissue Eng Regen Med. 2011;5:e228-e238.

19. Sharma A, Mehan MM, Sinha S, Cowden JW, Mohan RR. Trichostatin A inhibits corneal haze in vitro and in vivo. Invest Ophthalmol Vis Sci. 2009;50:2695-2701.

20. Suo G, Jiang Y, Cowan B, Wang JYJ. Platelet-derived growth factor C is upregulated in human uterine fibroids and regulates uterine smooth muscle cell growth. Biol Reprod. 2009;81:749-758.

21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402-408.

22. Lei H, Qian CX, Lei J, Haddock LJ, Mukai S, Kazlauskas A. RasGAP promotes autophagy and thereby suppresses platelet-derived growth factor receptor-mediated signaling events, cellular responses, and pathology. Mol Cell Biol. 2015;35:1673-1685.

23. Karamichos D, Rich CB, Zarcian R, et al. TGF-β3 stimulates stromal matrix assembly by human corneal keratocyte-like cells. Invest Ophthalmol Vis Sci. 2013;54:6612-6619.

24. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford). 2008;47(suppl 5):v2-v4.

25. Martin IV, Borkham-Kamphorst E, Zok S, et al. Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis. Am J Pathol. 2013;182:107-117.

26. Gilbertson DG, Duff ME, West JW, et al. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor. J Biol Chem. 2001;276:27406-27414.

27. Donovan J, Shiwen X, Norman J, Abraham D. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis Tissue Repair. 2013;6:10.

28. Yu J, Moon A, Kim H-RC. Both platelet-derived growth factor receptor (PDGFR)-α and PDGFR-β promote murine fibroblast cell migration. Biochem Biophys Res Commun. 2001;282:697-700.