CHEMO - PHOTOMETRIC EVOLUTION OF STAR FORMING DISK GALAXY

Peter Berczik

Main Astronomical Observatory of Ukrainian National Academy of Sciences,
UA-03680, Golosiiv, Kiev-127, Ukraine, e-mail: berczik@mao.kiev.ua

Abstract

The chemical and photometric evolution of star forming disk galaxies is investigated. Numerical simulations of the complex gasedynamical flows are based on our own coding of the Chemo - Dynamical Smoothed Particle Hydrodynamical (CD - SPH) approach, which incorporates the effects of star formation. As a first application, the model is used to describe the chemical and photometric evolution of a disk galaxy like the Milky Way.

Key words: star formation: chemical and photometric evolution: SPH code

1. Introduction

Galaxy formation is a highly complex subject requiring many different approaches of investigation. Recent advances in computer technology and numerical methods have allowed detailed modeling of baryonic matter dynamics in a universe dominated by collisionless dark matter and, therefore, the detailed gravitational and hydrodynamical description of galaxy formation and evolution. The most sophisticated models include radiative processes, star formation and supernova feedback (e.g. [Katz 1992, Steinmetz & Muller 1994, Friedli & Benz 1995]).

The results of numerical simulations are fundamentally affected by the star formation algorithm incorporated into modeling techniques. Yet star formation and related processes are still not well understood on either small or large spatial scales. Therefore the star formation algorithm by which gas is converted into stars can only be based on simple theoretical assumptions or on empirical observations of nearby galaxies.

Among the numerous methods developed for modeling complex three dimensional hydrodynamical phenomena, Smoothed Particle Hydrodynamics (SPH) is one of the most popular ([Monaghan 1992]). Its Lagrangian nature allows easy combination with fast N-body algorithms, making possible the simultaneous description of complex gas-stellar dynamical systems ([Friedli & Benz 1995]). As an example of such a combination, an TREE - SPH code ([Hernquist & Katz 1989, Navarro & White 1993]) was successfully applied to the detailed modeling of disk galaxy mergers ([Mihos & Hernquist 1996]) and of galaxy formation and evolution ([Katz 1992]). A second good example is a GRAPE - SPH code ([Steinmetz & Muller 1994, Steinmetz & Muller 1995]) which was successfully used to model the evolution of disk galaxy structure and kinematics.

Figure 1. Luminosity evolution of the model galaxy.

2. Model

The hydrodynamical simulations are based on our own coding of the Chemo - Dynamical Smoothed Particle Hydrodynamics (CD - SPH) approach, including feedback through star formation (SF). The dynamics of the "star" component is treated in the frame of a standard N-body approach. Thus, the galaxy consists of "gas" and "star" particles. For a detailed description of the CD - SPH code (the star formation algorithm, the SNII, SNIa and PN production, the chemical enrichment and the initial conditions) the reader is referred to [Berczik & Kravchuk 1996, Berczik 1999]. Here we briefly describe the basic features of our algorithm.
We modify the standard SPH SF algorithm (Katz 1992; Steinmetz & Muller 1994; Steinmetz & Muller 1995), taking into account the presence of chaotic motion in the gaseous environment and the time lag between the initial development of suitable conditions for SF, and SF itself.

Inside a "gas" particle, the SF can start if the absolute value of the "gas" particle gravitational energy exceeds the sum of its thermal energy and energy of chaotic motions:

$$|E_{gr}^i| > E_{th}^i + E_{ch}^i.$$ \hfill (1)

The chosen "gas" particle produces stars only if the above condition holds over the time interval exceeding its free-fall time:

$$t_{ff} = \sqrt{\frac{3 \cdot \pi}{32 \cdot G \cdot \rho}}. \hfill (2)$$

We also check that the "gas" particles remain cool, i.e. $t_{cool} < t_{ff}$. We rewrite these conditions following Navarro & White (1993):

$$\rho_i > \rho_{crit}. \hfill (3)$$

We set the value of $\rho_{crit} = 0.03 \text{ cm}^{-3}$.

When the collapsing particle i is defined, we create the new "star" particle with mass m_{star} and update the "gas" particle m_i using these simple equations:

$$\begin{cases}
 m_{star} = \epsilon \cdot m_i, \\
 m_i = (1 - \epsilon) \cdot m_i.
\end{cases} \hfill (4)$$

In the Galaxy, on the scale of giant molecular clouds, the typical values for SF efficiency are in the range $\epsilon \approx 0.01 \div 0.4$ (Duerr et al. 1982; Wilking & Lada 1983). We did not fix this value but rather also derived ϵ from the "energetics" condition:

$$\epsilon = 1 - \frac{E_{th}^i + E_{ch}^i}{|E_{gr}^i|}. \hfill (5)$$

At the moment of birth, the positions and velocities of new "star" particles are set equal to those of parent "gas" particles. Thereafter these "star" particles interact with other "gas" and "star" or "dark matter" particles only by gravity.

For the thermal budget of the ISM, SNIIs play the main role. Following to Katz (1992); Friedli & Benz (1995), we assume that the energy from the explosion is converted totally to thermal energy. The total energy released by SNII explosions (10^{44} J per SNII) within "star" particles is calculated at each time step and distributed uniformly between the surrounding "gas" particles (Raiteri et al. 1996).

In our SF scheme, every new "star" particle represents a separate, gravitationally bound, star formation macro region (like a globular clusters). The "star" particle has its own time of birth t_{begSF} which is set equal to the moment the particle is formed. After the formation, these particles return the chemically enriched gas into surrounding "gas" particles due to SNII, SNIa and PN events.

We concentrate our treatment only on the production of 16O and 56Fe, yet attempt to describe the full galactic time evolution of these elements, from the beginning up to present time (i.e. $t_{evol} \approx 15.0$ Gyr).

The code also includes the photometric evolution of each "star" particle, based on the idea of the Single Stellar Population (SSP) (Bressan et al. 1994; Tantalo et al. 1996).
At each time - step, absolute magnitudes: M_U, M_B, M_V, M_R, M_J, M_K, M_M and M_{bol} are defined separately for each "star" particle. The SSP integrated colours (UBVRIKM) are taken from Tantalo et al. (1996). The spectro - photometric evolution of the overall ensemble of "star" particles forms the Spectral Energy Distribution (SED) of the galaxy.

We do not model the energy distribution in spectral lines nor the scattered light by dust. However according to Tantalo et al. (1996) our approximation is reasonable, especially in the UBV spectral brand.

3. RESULTS

The model presented describes well the time evolution of the basic chemical and photometric parameters of a disk galaxy similar to the Milky Way. The metallicity, luminosity and colors obtained are typical of such disk galaxies.

– Figure 1. Luminosity evolution of the model galaxy.
– Figure 2. Photometric evolution of the model galaxy.
– Figure 3. Color index evolution of the model galaxy.
– Figure 4. Evolution of the model galaxy in the (B-V) vs. V plane.
– Figure 5. Evolution of the model galaxy in the (U-B) vs. (V-K) plane.
– Figure 6. Evolution of the model galaxy in the (U-B) vs. (B-V) plane.
– Figure 7. Evolution of the model galaxy in the [Fe/H] vs. V plane.
– Figure 8. The "real" M_{star}/L_V evolution of the model galaxy.

ACKNOWLEDGEMENTS

The author is grateful to Yu.I. Izotov and L.S. Pilyugin for fruitful discussions during the process of preparing this work.

The work was supported by the German Science Foundation (DFG) under grants No. 436 UKR 18/2/99, 436 UKR 17/11/99 and partially supported by NATO grant NIG 974675.
Figure 7. Evolution of the model galaxy in the [Fe/H] vs. V plane.

Figure 8. The "real" M_{star}/L_V evolution of the model galaxy.

Special thanks for hospitality to the Astronomisches Rechen-Institute (ARI) Heidelberg, where part of this work has been done.

It is a pleasure to thank Christian Boily for comments on an earlier version of this work.

REFERENCES

Berczik P., 1999, A&A 348 371, [astro-ph/9907375]
Bressan A., Chiosi C., Fagotto F., 1994, ApJS 94 63
Duerr R., Imhoff C.L. & Lada C.J., 1982, ApJ 261 135
Friedli D., Benz W., 1995, A&A 301 649
Hernquist L., Katz N., 1989, ApJS 70 419
Katz N., 1992, ApJ 391 502
Mihos J.C., Hernquist L., 1996, ApJ 464 641
Monaghan J.J., 1992, ARA&A 30 543
Navarro J.F., White S.D.M., 1993, MNRAS 265 271
Raiteri C.M., Villata M., Navarro J.F., 1996, A&A 315 105
Steinmetz M., Muller E., 1994, A&A 281 L97
Steinmetz M., Muller E., 1995, MNRAS 276 549
Tantalo R., Chiosi C., Bressan A., Fagotto F., 1996, A&A 311 361
Wilking B.A. & Lada C.J., 1983, ApJ 274 698