Running title: Arabidopsis polyrenyl pyrophosphate synthase

Corresponding author:
Andrew H.-J. Wang
Address: Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei 115, Taiwan
Tel: +886 2 2788 1981
Fax: +886 2 2788 2043
Email: ahjwang@gate.sinica.edu.tw

Journal research area: Biochemical Processes and Macromolecular Structures
Structure and mechanism of an Arabidopsis medium/long-chain length prenyl pyrophosphate synthase

Fu-Lien Hsieh², Tao-Hsin Chang², Tzu-Ping Ko, and Andrew H.-J. Wang*

Institute of Biological Chemistry (F.-L.H., T.-H.C., T.-P.K., A.H-J.W.) and Core Facilities for Protein Production and X-ray Structural Analysis (T.-P.K., A.H.-J.W.), Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan (F.-L.H., A.H.-J.W.).
This work was supported by Academia Sinica and Core Facility for Protein Production and X-ray Structural Analysis (grant NSC97-3112-B-001-035-B4 to A.H.-J.W.). The Protein Crystallography Facility of National Synchrotron Radiation Research Center (NSRRC) is supported by the National Research Program for Genomic Medicine.

These authors contributed equally to this work; Present address: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK

*Corresponding author: ahjwang@gate.sinica.edu.tw

The author responsible for distribution of material integral to the finding presented in this article in accordance with the policy described in the instructions for authors (www.plantphysiol.org) is: Andrew H.-J. Wang (ahjwang@gate.sinica.edu.tw).
ABSTRACT

Prenyltransferases (PTSs) are involved in the biosynthesis of terpenes with diverse functions. Here a novel PTS from Arabidopsis thaliana is identified as a trans-type polyprenyl pyrophosphate synthase (AtPPPS), which forms a trans double bond during each homoallylic substrate condensation, rather than a homomeric C_{10\text{-geranyl}} pyrophosphate synthase as originally proposed. Biochemical and genetic complementation analyses indicate that AtPPPS synthesizes C_{25} to C_{45} medium/long-chain products. Its close relationship to other long-chain PTSs is also uncovered by phylogenetic analysis. A mutant of contiguous surface polar residues was produced by replacing four charged surface amino acids with alanines to facilitate the crystallization of the enzyme. The crystal structures of AtPPPS determined here in apo and ligand-bound forms further reveal an active-site cavity sufficient to accommodate the medium/long-chain products. The two monomers in each dimer adopt different conformations at the entrance of the active site depending on the binding of substrates. Taken together, these results suggest that AtPPPS is endowed with a unique functionality among the known PTSs.

Keywords: Arabidopsis thaliana, crystal structure, enzyme mechanism, geranyl pyrophosphate synthase, genetic complementation, isoprenoid, isoprenyl pyrophosphate synthase, prenyltransferase, terpene, surface entropy reducing mutation, X-ray crystallography
INTRODUCTION

Over 55,000 terpenes (isoprenoids), the largest class of plant metabolites, have been identified to be involved in numerous vital biological processes, including growth, development, and response to environment stresses (Fig. 1) (Pichersky et al., 2006; Gershenzon and Dudareva, 2007). Terpenes also have considerable applications as pharmaceuticals, fragrances, and nutritional supplements (Kirby and Keasling, 2009). These diverse compounds are derived from the rather simple universal precursors of linear prenyl pyrophosphates (LPPs), ranging from C_{10} to C_{10,000} in the number of carbon atoms, which are synthesized by groups of conserved prenyltransferases (PTSs) (Kellogg and Poulter, 1997; Liang et al., 2002). The various chain lengths of these LPPs, reflecting their distinctive physiological functions (Fig. 1), in general are determined by the highly developed active site of PTSs via condensation reactions of allylic substrates (dimethylallyl diphosphate, C_{5}-DMAPP; geranyl pyrophosphate, C_{10}-GPP; farnesyl pyrophosphate, C_{15}-FPP; geranylgeranyl pyrophosphate, C_{20}-GGPP) with corresponding number of isopentenyl pyrophosphates (C_{5}-IPP, homoallylic substrate) (Liang, 2009).

PTSs are generally classified into cis- and trans-type enzymes on the basis of the stereochemistry of double-bound formation between the homoallylic substrate C_{5}-IPP and the allylic substrates (Liang et al., 2002). In addition, the two types of PTSs not only differ completely in their primary amino acid sequences and tertiary structures, but also utilize distinct mechanisms for substrate binding and catalysis despite sharing the allylic and homoallylic substrates (Liang, 2009). The sequences of each trans-type PTSs generally have less than 30 % conserved amino acids, although they possess the similar protein fold as well as two functional aspartate-rich motifs DD(X)_{n}D (in which X encodes any amino acid, and n = 2 or 4), reflecting the required diversity to achieve
their specific condensation reactions (Kellogg and Poulter CD, 1997; Ogura and Koyama, 1998; Liang et al., 2002).

In plant, C_{10}-GPP synthase (GPPS) which catalyzes the condensation of C_{5}-DMAPP with C_{5}-IPP into C_{10}-GPP is a key enzyme in the C_{10}-monoterpene biosynthesis of plant volatiles to attract pollinators, mediators in inter-plant communication, and secondary metabolites for defense (Kessler and Baldwin, 2001; Gershenzon and Dudareva, 2007). Intriguingly, enzymes possessing the GPPS activity have been identified to be either homo- or heteromeric proteins (Burke et al., 1999; Bouvier et al., 2000; Burke and Croteau, 2002; Tholl et al, 2004; Van Schie et al., 2007; Schmidt and Gershenzon, 2008; Orlova et al., 2009; Wang and Dixon, 2009; Schmidt et al., 2010), in contrast to most homomeric PTSs (Liang, 2009). We previously reported the structure of mint heterotetrameric GPPS composed of two active catalytic large subunits (LSU) and two regulatory non-catalytic small subunits (SSU) (Chang et al., 2010), which is distinct from known homomeric PTSs such as C_{15}-FPP synthase (FPPS) and C_{20}-GGPP synthase (GGPPS) (Chang et al., 2006; Kavanagh et al., 2006). The LSU is closely akin to the subunit of homomorphic PTSs but lacks enzymatic activity on its own, and it requires the interactions with SSU to achieve a functional assembly (Kloer et al, 2006; Chang et al, 2010). The product fidelity of heterotetrameric GPPS is regulated via a regulatory loop in the SSU, which controls the product release from the catalytic LSU (Hsieh et al., 2010).

The homomorphic Arabidopsis thaliana GPPS (ArGPPS) has been used as a model target for assessing the GPPS activity in angiosperm in the past decade (Bouvier et al, 2000; Lange and Ghassemian, 2003; Van Schie et al, 2007; Orlova et al, 2009). A recent study showed that A. thaliana also expresses a heteromeric GPPS distinct from the homomorphic type in their subunit compositions and sequence homology (Supplemental Fig. S1) (Wang and Dixon, 2009). This discovery raises two questions:
Why does *A. thaliana* need to develop two separate types of GPPS? Does *A. thaliana* benefit from possessing both types of enzymes? Furthermore, no structure of homomeric GPPS is available so far, and its enzymatic regulation mechanism is difficult to predict from the currently known structures of homomeric PTSs and heteromeric GPPS (Chang et al., 2006; Chang et al., 2010; Hsieh et al., 2010).

In an effort to address the above questions, the putative homomeric AtGPPS was cloned, expressed, and characterized by X-ray crystallography in combination with biochemical and genetic complementation analyses. Surprisingly, our results suggest that this enzyme from *A. thaliana* is actually a nonspecific polyprenyl pyrophosphate synthase (AtPPPS), an unusual PTS generating multiple products with medium/long chain length ranging from C25 to C45, rather than a GPPS as previously reported (Bouvier et al., 2000). Hence, we rename this homomeric AtGPPS to AtPPPS based on its enzymatic activity. These results should provide significant insights into the plant medium/long-chain PTSs and encourage further study to re-evaluate the enzymatic functions and physiological roles of angiosperm GPPSs.
RESULTS

Phylogenetic relationship

By sequence analyses, homomeric GPPSs in plants have been classified into two groups, one from gymnosperm and the other from angiosperm (Bouvier et al., 2000; Burke and Croteau, 2002; Van Schie et al., 2007; Schmidt and Gershenzon, 2008; Schmidt et al., 2010). Arabidopsis PPS (AtPPPS) has high identity, reaching about 70%, to other angiosperm homomeric GPPSs (Supplemental Fig. S2 and Table S1). However, detailed sequence alignment suggests that AtPPPS is actually similar to the long-chain PTSs (approximately 50% identity), which generate products beyond C_{35} (Fig. 2; Supplemental Fig. S3 and Table S1).

To resolve this controversy, we further analyzed the phylogenetic relationships between AtPPPS and other plant PTSs (Fig. 3). The phylogenetic tree shows that AtPPPS is evolutionarily more closely related to the long-chain PTSs (e.g., C_{45}-solanesyl pyrophosphate synthase (SPPS) and C_{50}-decaprenyl pyrophosphate synthase (DPPS) than to the short-chain PTSs (e.g., GGPPS and FPPS). An exception, naturally, is the grouping with other angiosperm GPPSs. Previous studies suggest that the active site of PTSs has been exquisitely developed to control their substrate and product specificities (Ohnuma et al., 1996; Tarshis et al., 1996; Guo et al., 2004; Sun et al., 2005; Chang et al., 2006). Therefore, the specifically conserved amino acid sequence of PTSs has been used to predict the chain length of the final product (Kellogg and Poulter CD, 1997; Ogura and Koyama, 1998; Liang, 2009). Our results imply that AtPPPS and long-chain PTSs may have similar functions.

The catalytic activity

To investigate the genuine enzymatic function of AtPPPS, we expressed and
purified the protein in a pseudo-mature form by removing the plastid targeting sequence (Supplemental Table S2). Its activity was subsequently measured using four allylic substrates (C5-DMAPP, C10-GPP, C15-FPP, and C20-GGPP) in the presence of C5-[14C]IPP. Surprisingly, the reaction yielded a broad spectrum of multiple products ranging from C25 to C45 (Fig. 4). Except for C5-DMAPP, AtPPPS can recognize the other three allylic substrates and react them with C5-[14C]IPP, resulting in similar multiple product distribution patterns having C35 as the major product (Fig. 4 and Table I). In the subsequent time-course assay, multiple products were detected simultaneously (i.e., not sequentially) in the chain elongation process (Supplemental Fig. S4). This observation further indicates the products of medium/long-chain lengths as synthesized by AtPPPS (Fig.4) are not a result of the longer reaction time. Additionally, our results also imply that the released products having longer chain lengths than C25 would have a lower frequency of re-binding to the active site for further product elongation. Based on its product distribution, we rename this enzyme as a polyprenyl pyrophosphate synthase (PPPS). Intriguingly, most PTSs are mono-functional enzymes that exclusively synthesize single chain-length products (Tarshis et al., 1996; Ogura & Koyama, 1998; Guo et al., 2004; Sun et al., 2005; Chang et al., 2006), whereas a few PTSs from Cryptosporidium parvum, Menthanobacterium thermoautotrophicum, Myzus persicae, Picea abies, Toxoplasma godii, and Zea mays also possess the catalytic promiscuity to produce more than one product (Chen and Poulter, 1993; Cervantes-Cervantes et al., 2006; Ling et al., 2007; Artz et al., 2008; Vandermoten et al, 2008; Schmidt et al., 2010).

Overall structure and active site

To further understand its function, we determined the crystal structure at 2.6-Å resolution of the wild-type AtPPPS in its apo form, denoted WT-AtPPPS (Fig. 5A and
Table II). While WT-AtPPPS shares less than 30% sequence identity with other PTSs, it clearly adopts the conserved all-α-helix fold of PTSs (Tarshis et al., 1996; Liang, 2009). A stable homodimer was also detected by gel filtration analysis in a protein-concentration independent manner (Supplemental Fig. S5), consistent with previous studies that most PTSs exist as homodimers under physiological conditions (Guo et al., 2004; Sun et al., 2005; Chang et al., 2006; Kloer et al., 2006; Hsiao et al., 2008). The dimerization interface is mainly contributed by the respective helices F and G (Fig. 5A). Each subunit is composed of 16 antiparallel α-helices (A-P) that surround the active site, with the two conserved DD(X)_nD motifs (D = aspartate; X = any residue; n = 2 or 4) facing each other on helices D and J (Fig. 5A). The electron density maps of a few loop regions (residues 1-7, 35-46, 68-81, and 110-125 for chain A; residues 1-8, 35-46, 68-81, and 111-125 for chain B) were not clearly visible (Fig. 5A). The active-site region of WT-AtPPPS is embedded with highly conserved catalytic amino-acid residues to be implemented in its enzymatic reaction. The consensus catalytic mechanism of PTSs has been demonstrated to be a set of sequential ionization-condensation-elimination reactions: the homoallylic substrate attacks the allylic substrate, which forms a carbocation intermediate by removing its pyrophosphate group, with concomitant removal of a proton from the adduct (Liang et al., 2002; Liang, 2009). The binding of the allylic substrate is mainly contributed by the DD(X)_nD motifs, Mg³⁺ ions, and the associated water molecules. The homoallylic substrate is bound in a positively charged pocket surrounded by residues of Arg 54, His 100, and Arg 117.

To further unveil details in the product elongation region of AtPPPS, we sought to solve the structure of WT-AtPPPS in complex with its ligand. Despite extensive efforts, WT-AtPPPS failed to crystallize in a ligand-bound form. Crystallization is generally believed to involve the free energy change upon assembly of the protein.
molecules into crystal lattice. Hence, replacing high entropy polar amino acids on the protein surface with alanines has been used to reduce the entropy, in favor of crystal contact formation (Derewenda, 2004; Goldschmidt et al., 2007). To enhance the crystallizability of AtPPPS, we used the Surface Entropy Reduction prediction server (http://nihserver.mbi.ucla.edu/SER/) to analyze the primary sequence, and located several flexible polar residues with high entropy values. We then constructed several mutants according to the prediction and finally obtained a mutant of contiguous surface polar residues, denoted SM-AtPPPS, by replacing four residues (Glu 178, Gln 179, Glu 281 and Lys 282; see Fig. 2) on the protein surface with alanines to facilitate crystal lattice formation. Although the mutations reduced the enzymatic activity slightly when C10-GPP was used as the allylic substrate, the overall functional activity and product distribution pattern of SM-AtPPPS remained comparable with those of WT-AtPPPS (Supplemental Fig. S6, Table I).

The SM-AtPPPS crystal solved at 2.65-Å resolution contains an octamer (chain A-H) as its asymmetric unit, comprising four identical dimers related by three orthogonal non-crystallographic two-fold axes and expressing a tetrahedral 222 symmetry (Fig. 5B and Table II). Those four mutations generate additional intermolecular crystal contacts both within the asymmetric unit and between different octamers in the unit cell (Supplemental Fig. S7). Although the two monomers in each dimer adopt distinct conformations, a dimer as the basic assembly unit is consistent with WT-AtPPPS and other known structures of PTSs (Tarshis et al., 1996; Guo et al., 2004; Hosfield et al., 2004; Sun et al., 2005; Chang et al., 2006; Kavanagh et al., 2006; Kloer et al., 2006). Judging by its gel filtration chromatography profile, SM-AtPPPS also exists as a dimer in solution (data not shown). The electron density map clearly shows that different monomer is bound with either Mg2+ ions, an inactive C5-IPP analogue isopentenyl thiolopyrophosphate (C5-IPSP) and C15-FPP, or Mg2+ ions, PPi
and C₁₅-FPP, in its active site (Fig. 5C; Supplemental Fig. S8). The crystal structure of homodimeric *Sinapis alba* GGPPS was found to contain different ligands bound to different subunits as well (Kloer et al., 2006). The N-terminal residues and some surface loops were disordered.

Further structural analyses show that the aliphatic-tail of C₁₅-FPP is located in a large hydrophobic cleft starting with the active site cavity (AC) and connecting with the elongation cavity (EC) adjacent to the dimer interface (Fig. 6A). Previous studies suggest that the regulation of product chain length specificity and substrate selectivity is determined by the size of the tunnel-shaped cleft of PTSs since the product elongation extends along the EC tunnel (Tarshis et al., 1996; Ohnuma et al., 1998; Guo et al., 2004; Sun et al., 2005; Chang et al., 2006). The bound substrate models and the critical amino-acid residues in the active site of *ArPPPS* are similar to those of all other known PTSs, as verified by the biochemical and crystallographic studies (Liang et al., 2002; Liang, 2009). The residues located on helices D, E, and G that surround the EC tunnel are highly conserved among long-chain PTSs (Fig. 2).

Overall, the present structural studies of *ArPPPS* allow an unambiguous identification of a cavity to accommodate longer products beyond C₁₀-GPP (Fig. 5C and 6A; Supplemental Fig. S8).

Comparison of apo form and ternary complex

Superposition of WT-*ArPPPS* and SM-*ArPPPS* allows the identification of three notable regions with significant conformational changes (Supplemental Fig. S9). First, the disordered region of helices D–F shows ligand binding-induced conformational changes to act as a gate for substrate entry and product release, consistent with previous studies (Sun et al., 2005; Kloer et al., 2006). Second, the region connecting helices A and C has extensive conformational change. Helix B becomes an ordered
structure when the C5-IPP substrate is bound (Supplemental Fig. S9). Therefore, this highly mobile region may be induced to become ordered by the binding of C5-IPP. Third, the orientation of the first N-terminal helix A protrudes into the top of the other subunit and seems to be involved in regulating the conformational change during the catalytic reaction (Supplemental Fig. S8 and S9). It is in accordance with an alternating catalytic mechanism in the dimer, i.e., when one subunit is in action, the other subunit is empty in its active site (Sun et al., 2005; Kloer et al., 2006). The alternating mechanism is also reflected in the asymmetric binding of different ligands to different protein subunits of the homodimeric enzyme. This kind of enzymatic regulation mechanism may be used to control the steps of substrate entry and product release. Hence, these observations in the crystal structure further explain why the basic functional unit of PTSs is a dimer instead of monomer.

The mechanism of product elongation

To investigate how the EC tunnel accommodates the long-chain products, two hydrophobic residues, Ile 99 on helix D and Val 162 on helix G, in the middle of EC tunnel are substituted by larger phenylalanines to serve as a new floor to block the product chain elongation beyond C20-GGPP (Fig. 6A). AtPAPS(I99F/V162F) generates C20-GGPP as the major product, plus a small amount of farnesylgeranyl pyrophosphate (C25-FGPP) (Fig. 6B and Table I). The shorter product chain length is consistent with the reduced size of EC tunnel as a result of the mutations. As expected, the mutant enzyme showed lower activity to recognize the C20-GGPP as the allylic substrate to implement the chain-elongation reaction, while the activity for C15-FPP was largely unaffected (Fig. 6B). The altered active-site structure might have unfavorable effect in retaining the short-chain intermediate, and therefore the enzymatic activity for reacting C10-GPP with C5-IPP was reduced.
Although C_{20}-GGPP from the AtPPPS(I99F/V162F) mutant can be detected by *in vitro* assay, it remains to be validated under *in vivo* conditions. The genetic complementation method (Zhu et al., 1997; Engprasert et al., 2004; Chang et al., 2010) was employed to investigate whether this mutant exhibits the GGPPS activity *in vivo*. The *crt* gene cluster of *Pantoea ananatis*, responsible for biosynthesis of the yellow pigment carotenoid except *crtE*, which encodes GGPPS, was constructed into pACCAR25ΔcrtE (Fig. 6C) (Zhu et al., 1997). *E. coli* does not possess intrinsic GGPPS gene, and therefore the *E. coli* cells carrying the pACCAR25ΔcrtE vector and the empty vector pET-16 cannot accumulate the yellow pigment (Fig. 6D). In contrast, transformants harboring pACCAR25ΔcrtE and pET-32 that contains the *Saccharomyces cerevisiae* GGPPS or AtPPPS(I99F/V162F) gene showed a visible yellow color and the extracted pigments were further measured by optical absorption (Fig. 6D; Supplemental Fig. S10). Taken together, these results confirm that the double mutant produces C_{20}-GGPP as the major product both *in vitro* and *in vivo* (Fig. 6B, D).
DISCUSSION

The plant GPPS-encoding genes have been identified in both gymnosperm and angiosperm (Burke et al., 1999; Bouvier et al., 2000; Burke and Croteau, 2002; Tholl et al., 2004; van Schie et al., 2007; Schmidt and Gershenzon, 2008; Wang and Dixon, 2009; Schmidt et al., 2010). Interestingly, enzymes exhibiting this catalytic activity can be further classified into homo- and heteromeric proteins. In contrast to the studies of homomeric proteins (Chang et al, 2006; Liang, 2009), the crystal structure of a heteromeric GPPS and its enzymatic regulation mechanism were elucidated very recently (Chang et al, 2010; Hsieh et al., 2010). The production of C_{10}-GPP is the key branching point in the C_{10}-monoterpene biosynthesis by which the plant volatiles with the critical bioactivities involved in plant growth, development, and defense are made (Pichersky et al., 2006; Gershenzon and Dudareva, 2007).

The model plant, *A. thaliana*, is generally believed to be a self-pollinating plant. However, several pieces of evidence support that insect-mediated cross-pollination also happens in the wild population (Jones, 1971; Snape and Lawrence, 1971; Davis et al., 1998). Arabidopsis has been confirmed to synthesize plant volatiles and emits a range of these compounds from its flower (Aharoni et al., 2003; Chen et al., 2003). Remarkably, the emission of volatiles is a major feature of most insect-pollinated flower (Dudareva and Pichersky, 2000). In addition, the C_{10}-monoterpene could also protect the reproductive organs from pathogen attack or oxidative damage (Wu et al., 2006). Consequently, the presence of homomeric GPPS in *A. thaliana* can be responsible for providing the C_{10}-GPP in the critical metabolism of C_{10}-monoterpenes. On the other hand, Wang et al. have also identified a new plastidic *A. thaliana* heteromeric GPPS, comprising of SSU (AtSSU) and GGPPS isoform 11 (AtGGPPS11) (Wang and Dixon, 2009).
Here we showed that the homomeric GPPS in Arabidopsis should be a novel enzyme to generate multiple products with medium/long-chain lengths, rather than a GPPS as previously reported (Bouvier et al., 2000) The previous study used C5-DMAPP and C5-[14C]IPP in a ratio of 2 to 1. A homolog from tomato was also proposed to possess the GPPS activity when the ratio of C5-DMAPP to C5-[14C]IPP was 2.5 to 1 (Van Schie et al., 2007). In contrast, we used various ratios of 1 to 15, 1 to 14, 1 to 13, and 1 to 12 for C5-DMAPP to C5-[14C]IPP, C10-GPP to C5-[14C]IPP, C15-FPP to C5-[14C]IPP, and C20-GGPP to C5-[14C]IPP, respectively, to assure sufficient homoallylic substrates (C5-IPP) for the condensation reaction (see MATERIALS AND METHODS) and determined the preferred allylic substrate of AtPPPS. Even in this assay condition, two unexpected products of C15-FPP and C20-GGPP were detected by using radio-gas chromatography. Hence, if the sufficient C5-[14C]IPP is provided for the continued enzymatic reaction, the short-chain products would turn out to become the medium/long-chain products.

Although AtPPPS showed some GPPS activity when the isotope signal was measured prior to performing thin-layer chromatography, it was barely detectable and insignificant. By reacting C5-[14C]IPP with the other three allylic substrates (C10-GPP, C15-FPP, and C20-GGPP), the similar multiple medium/long-chain product distribution patterns were observed (Fig. 4). It is also consistent with our phylogenetic analysis that AtPPPS is closely related to long-chain PTSs and the previous studies that the long-chain PTSs generally prefer using C15-FPP as the allylic substrate instead of C5-DMAPP (Kellogg and Poulter, 1997; Ogura and Koyama, 1998; Liang et al., 2002). The long-chain PTSs possess a long hydrophobic tunnel, which has higher affinity for intermediates with a longer aliphatic-tail. Because C5-DMAPP has the shortest tail, it would be harder for C5-DMAPP to remain in the long hydrophobic tunnel and easier to escape from the active site into the bulk solvent than the other
allylic substrates. The subtle balance between substrate binding and product release seems to determine the product chain-length distribution.

Moreover, the crystal structures of AtPPPS, in its apo and ligand-bound forms, indicate that its substrate binding cleft is capable of accommodating the products larger than C_{10}-GPP. The two point mutations of AtPPPS(I99F/V162F) in the cleft lead to the short chain-length product of C_{20}-GGPP, with consistent results both in vitro and in vivo. Our results not only clarify the originally thought homomeric GPPS to be AtPPPS, but also help explain the actual role of Arabidopsis heteromeric GPPS in the process of C_{10}-monoterpene biosynthesis.

Nevertheless, two other questions remain to be investigated. First, does the regulation system of heteromeric GPPS in A. thaliana act like other plant heteromeric GPPSs to modulate the distribution of C_{10}-GPP and C_{20}-GGPPS and display the tissue-specific expression pattern (Tholl et al., 2004; Orlova et al., 2009; Wang and Dixon, 2009)? Second, what is the exact biological role of AtPPPS in plants? As shown in previous studies of cellular compartment (Bouvier et al., 2000), AtPPPS has been indentified to be capable of transporting into non-green plastids and chloroplasts photosynthetic cell. Additionally, plant SPPSs, closely related to AtPPPS by our phylogenetic analysis, are generally considered to be employed in generating the long-chain prenyl products to serve as the terpene side chains of ubiquinone and plastoquinone, essential components of the electron transport machinery (Hirooka et al., 2003; Jun et al., 2004). Soll et al. also reported that the final steps of plastoquinone biosynthesis are implemented on the inner envelope of chloroplasts (Soll et al., 1985). Judging by these findings, it is therefore tempting to suggest that AtPPPS may play a role in Arabidopsis ubiquinone and plastoquinone biosynthesis. However, we cannot exclude that AtPPPS may also function in other terpene biosyntheses such as gibberellin, carotenoid, and chlorophyll. It is thus an open
question regarding the physiological roles of such multiple medium/long-chain products, generated by AtPPPS. It remains to be investigated whether these multiple products can serve as precursor pools to precisely balance di-, tri-, tetra- and polyterpene metabolisms, because the dysfunctioning in the terpene biosynthesis has been reported to have a deleterious effect on plant growth and development (Orlova et al., 2009). We also survey sequences similar to AtPPPS by using the conventional sequence homology search to provide an insight for future investigation (Supplemental Table S3). In the end, the role played by AtPPPS remains yet to be clarified and our findings encourage re-evaluating its enzymatic function in the complex system of metabolite biosyntheses.
CONCLUSION

Taken together, the crystal structures of AtPPPS in combination with phylogenetic analysis and both *in vitro* and *in vivo* biochemical assays have clarified the role of this enzyme, which was thought to be a GPPS in previous studies (Bouvier et al., 2000), to be an unusual PTS that synthesizes multiple medium/long-chain products. Our results, along with the identification of a heteromeric GPPS from *A. thaliana* (Wang and Dixon, 2009), suggest that the precursor C_{10}-GPP for C_{10}-monoterpane biosynthesis in *A. thaliana* may be provided only by heteromeric GPPS. The integrated approach as described here can also be a good example of how gene functions in plant terpene biosynthesis are unraveled.
MATERIALS AND METHODS

Cloning and mutagenesis

The sequence information of AtPPPS was downloaded from the NCBI data library with the accession number of AT2G34630. The PCR product without its plastid targeting sequences was amplified by PCR from the A. thaliana cDNA libraries using the primers of LIC-TEV-At-F and LIC-At-R, and cloned into pET-32 Xa/LIC (Novagen) (Supplemental Table S2). The forward primer of LIC-TEV-At-F includes a Tobacco Etch Virus (TEV) protease cleavage site allowing for N-terminal fusion tag removal. To enhance the Ni-resin binding affinity, the vector WT-AtPPPS/pET-32 was constructed to insert one additional His6-tag by site-directed mutagenesis. The TEV protease was cloned into pET-51 Ek/LIC (Novagen) by using primers of LIC-TEV-F and LIC-TEV-R (Table S2). Other mutant constructs, SM-AtPPPS/pET-32 and AtPPPS(I99F/V62F)/pET-32, were used WT-AtPPPS/pET-32 as template and prepared by site-directed mutagenesis. The primers were showed in Supplemental Table S2.

Protein expression and purification

WT-AtPPPS/pET-32 was transformed to E. coli BL21 (DE3) (Novagen) and induced with 0.1 mM isopropyl β-thiogalactopyranoside (IPTG) in Luria-Bertani (LB) medium containing 100 μg/ml carbenicillin at 10 °C for 24 h. Cell pellets were harvested and resuspended in extraction buffer (50 mM Tris, pH 8.5, 40 mM imidazole, 0.75 M NaCl, 25% (w/v) glycerol, 0.2 M sorbitol, 10 mM MgCl2, 2 mM tris(2-carboxyethyl) phosphine hydrochloride (TCEP), and 2 ng/ml of benzonase (Novage), and Protease Inhibitor Cocktail (Roche)). Cell lysate was prepared by Cell Disruption Solutions (Constant Systems) and centrifuged at 38,000 rpm (Beckman...
Ti45) for 60 min at 4 °C to remove cell debris. After filtration by using Stericup (Millipore), the supernatant was loaded onto a Ni-NTA column (GE Healthcare) pre-equilibrated with extraction buffer. The column was washed with wash buffer (25 mM Tris, pH 8.0, 20 mM imidazole, 0.5 M NaCl, 10% (w/v) glycerol, 10 mM MgCl2, 1 mM TCEP) following 10% (v/v) elute buffer (25 mM Tris, pH 8.0, 250 mM imidazole, 0.5 M NaCl, 10% (w/v) glycerol, 10 mM MgCl2, 2 mM TCEP) and eluted with a linear gradient to 100% (v/v) elute buffer. The isolated sample was dialyzed twice against 5 liter buffer (1xPhosphate buffered saline, pH 7.5, 10% glycerol (w/v), 2 mM dithiothreitol) and then incubated with TEV protease, purified as previously described (Louise et al., 2001). The digested sample was loaded onto a Ni-NTA column linking with ion-exchange column (Hitrap Q HP, GE Healthcare) pre-equilibrated with balance buffer (25 mM Tris, pH8.5, 5% (w/v) glycerol, 2 mM TCEP) and eluted using 50 to 500 mM NaCl gradient. The homodimeric protein was further purified twice by using gel filtration (HiLoad 16/60 superdex 200 and HiLoad 16/60 superdex 75, GE Healthcare) in 25 mM Tirs, pH 8.5, 5% (w/v) glycerol and 2 mM TCEP. Purification of the AtPPPS mutants followed similar procedures. The recombinant proteins of TmOPPS, SsHPPS, and ScGGPPS(H139A) served as the standard in the biochemical assay were expressed and purified as previously described (Guo et al., 2004; Sun et al., 2005; Chang et al., 2006). The molecular assembly of AtPPPS in solution was further determined on an analytic gel filtration column (Superdex 200 10/300 GL High Performance, GE Healthcare) by comparing with those protein molecular mass standards (Supplemental Fig. S5).

Crystallization, data collection, and structure determination

Crystals of WT-AtPPPS were grown in hanging-drop by vapor diffusion method at 20 °C for 3 months in a mixture of 2 μl the protein solution (4 mg/ml; 25 mM Tirs,
pH 8.5, 5% (w/v) glycerol, 2 mM TCEP), 2 μl reservoir solution (60% (v/v) Tacsimate, pH 7.0), and 0.5 μl silver bullets kit (Hampton Research). At a higher concentration the protein tended to aggregate and form clustered crystals. Notably, during such a long spell of crystal growth, no protein degradation or other defect was found in the process of data collection and structure determination of Wt-AtPPPS. The crystals were transferred to a cryoprotectant (reservoir solution and 20% (v/v) Sucrose) and flash frozen in liquid nitrogen prior to data collection. For co-crystallization by using vapor diffusion method, the SM-AtPPPS crystals were obtained by mixing 2 μl protein solution (4 mg/ml; 25 mM Tirs, pH 8.5, 5% (w/v) glycerol, 2 mM TCEP) in the present of 1.25 mM ligands (MgCl₂, C₁₅-FPP and C₅-IPSP) with 2 μl reservoir solution (18% (w/v) PEG3350, 0.17 M Sodium thiocyanate, pH 6.0) at 20 °C for 3 weeks. The crystallization drop was stepwise supplemented with 10% (v/v) PEG200 and then covered with Perfluoropolyether PFO-X175/08 (Hampton Research) before flash-cooling to 100 K in a stream of cold nitrogen. Diffraction data for the WT-AtPPPS and SM-AtPPPS were collected at Taiwan Contract BL12B2 station at Spring-8 (Hyogo, Japan) and BL 5A at the Photon Factory (Tsukuba, Japan). Data were processed and scaled by using HKL2000 package (Otwinowski & Minor, 1997). 5% randomly selected diffraction data were used for calculating R_free (Brunger, 1993).

The structure of WT-AtPPPS was determined by molecular replacement (MR) with MOLREP (Lebedev et al., 2008). The most possible MR template of GGPPS (PDB accession code: 1WYO) from Pyrococcus horikoshii Ot3 are searched using MrBUMP (Keegan & Winn, 2008) and further modified by Chainsaw (Schwarzenbacher et al., 2004) to remove unaligned residues and truncate the side-chain of nonconserved residues to the gamma position based on sequence alignment. The model was rebuilt into electron density map using Coot (Emsley &
Cowtan, 2004) and the phases derived from the resulting model was subject to automatic model building in Buccaneer (Cowtan, 2006). The octameric SM-ArPPPS was solved by using the monomer of WT-ArPPPS as search model. The first four molecules in the asymmetric unit were found with PHASER (McCoy, 2007) and the other four molecules were further placed with MOLREP (Lebedev et al., 2008) after the first four molecules was located. Manual checking and building were performed in Coot (Emsley & Cowtan, 2004) and refinement was done using Crystallography and NMR System (Brunger et al., 1998) and REFMAC (Murshudov et al., 1997) with non-crystallographic symmetry restraints and TLS refinement. The topology and parameter files of ligand molecules were generated by HIC-Up and their position and conformation were validated by $|F_o - F_i|$ map (Kleywegt, 2007). Structure analysis and stereochemical quality were done with PROCHECK (Laskowski R A, 1993) and MOLPROBITY (Chen et al., 2010). The Ramachandran plots of WT-ArPPPS and SM-ArPPPS calculated by MOLPROBITY indicated 96.7%/2.8%/0.2% and 96%/3.2%/0.8% residues in favored/allowed/outside regions, respectively. The crystallographic statistics are listed in Table I. High-quality images of the molecular structures were created with PyMOL (http://www.pymol.org/).

Enzymatic assay

The biochemical assays followed similar protocols as described previously (Guo et al., 2004; Sun et al., 2005; Chang et al., 2006; Chang et al., 2010; Hsieh et al., 2010). The substrate mixtures (10 μM C5-DMAPP with 150 μM C5-[14C] IPP, 10 μM C10-GPP with 140 μM C5-[14C] IPP, 10 μM C15-FPP with 130 μM C5-[14C] IPP, 10 μM C20-GGPP with 120 μM C5-[14C] IPP) were incubated with 1 μM enzyme for 24 h at 25 °C in the reaction buffer (100 mM HEPES, pH 7.5, 0.1% (w/v) Triton X-100, 5
mM MgCl₂, 50 mM KCl) for the determination of product chain length. The products were separated on thin-layer chromatography using acetone:water (29:1) as the mobile phase.

Genetic complementation assay

The construct of pACCAR25ΔcrtE containing the *crt* gene cluster except the deleted *crtE* encoding GGPPS were prepared for identification of GGPPS activity (Zhu et al., 1997; Kainou et al., 1999; Misawa et al., 1990; Engprasert et al., 2004; Ye et al., 2007; Chang et al., 2010). The empty vectors of pET-16 and *Sc*GGPPS/pET-32 (yeast GGPPS) were used here. The constructs were co-transformed into *E. coli* BL21 (DE3) harvesting pACCAR25ΔcrtE supplying 100 μg/ml ampicillin and 34 μg/ml chloramphenicol. The transformed *E. coli* cells were induced with 0.5 mM IPTG for 72 h at 20 °C in LB medium. To quantify the yellow carotenoid, the same wet weight pellets were harvested by centrifugation and resuspended in 90% (v/v) acetone to extract the pigment. The concentration of pigment was measured by absorption at a wavelength of 450 nm (Perkin-Elmer Lambda Bio40).

Phylogenetic analysis

The full-length amino acid sequences are aligned by using ClustalW (Thompson et al., 1994). The evolution history was inferred using the neighbor-joining method (Saitou and Nei 1987). The percentage of replicate trees which were evaluated by using bootstrap test with 1000 replicates is shown next to the branches (Fesenstein J, 1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolution distances used to infer the phylogenetic tree. Phylogenetic tree was conducted by using MEGA4 (Tamura et al., 2007). The abbreviations and accession numbers: *La, Lupinus albus* FPPS (U15777); *Aa, Artemisia annua* FPPS (U36376);
Zm, Zea may FPPS (L39789); At, A. thaliana FPPS1 (AT5G47770); At, A. thaliana FPPS2 (AT4G17190); At, A. thaliana PPS (AT2G34630); Cr, Catharanthus roseus GPPS (ACC77966); Cs, Citrus sinensis GPPS (CAC16851); Qr, Quercus robur GPPS (CAC20852); Sl, Solanum lycopersicum GPPS (ABB88703); Vv, Vitis vinifera GPPS (AAR08151); Os, Oryza sativa SPPS (NM_001062973); Sl, Solanum lycopersicum SPPS (DQ889204); Hb, Herea brasiliensis SPPS (DQ437520); At, A. thaliana SPPS1 (AT1G78510); At, A. thaliana SPPS2 (AT1G17050); Am, Antirrhinum majus SSU (AAS82859); Hl, Humulus lupulus SSU (ACQ90681); Mp, Mentha piperita SSU (ABW86880); At, A. thaliana SSU (AT4G38460); Sa, Sinapis alba GGPPS (CAA67330); Hl, H. lupulus LSU (ACQ90682); Am, A. majus LSU (AAS82860); Mp, M. piperita LSU (ABW86879); At, A. thaliana GGPPS1 (AT1G49530); At, A. thaliana GGPPS2 (AT2G18620); At, A. thaliana GGPPS3 (AT2G18640); At, A. thaliana GGPPS4 (AT2G23800); At, A. thaliana GGPPS5 (AT3G14510); At, A. thaliana GGPPS6 (AT3G14530); At, A. thaliana GGPPS7 (AT3G14550); At, A. thaliana GGPPS8 (AT3G20160); At, A. thaliana GGPPS9 (AT3G29430); At, A. thaliana GGPPS10 (AT3G32040); At, A. thaliana GGPPS11 (AT4G36810); Ag, Abies grandis GPPS (AF513111); Pa, Picea abies GPPS (EU432047); Pa, P. abies GPPS/GGPPS (GQ369788).

Accession codes

Coordinates and structure factors of WT-AtPPPS and SM-AtPPPS were deposited in the Protein Data Bank (www.rcsb.org) with codes 3APZ and 3AQ0 respectively.
Supplemental Data

The following materials are available in the online version of this article.

Supplementary Figure S1. Multiple sequence alignment of heteromeric and homomeric AtGPPS.

Supplementary Figure S2. Multiple sequence alignment of plant GPPSs.

Supplementary Figure S3. Amino acid sequence alignment of plant PTSs.

Supplementary Figure S4. Time course assays of substrate and product specificities of WT-AtPPPS.

Supplementary Figure S5. Analytic gel filtration of WT-AtPPPS.

Supplementary Figure S6. Products synthesized by the SM-AtPPPS.

Supplementary Figure S7. The additional crystal contacts are used to facilitate the crystal lattice formation.

Supplementary Figure S8. The architectures of SM-AtPPPS individual dimer and electron density maps for the ligands.

Supplementary Figure S9. Subunit comparisons of WT-AtPPPS and SM-AtPPPS.

Supplementary Figure S10. The optical absorption was used to quantify the accumulated yellow carotenoid in *E. coli* carrying pACCAR25ΔcrtE and respective vectors.

Supplementary Table 1| Full-length amino acid sequence relatedness of AtPPPS with GPPSs from angiosperm and SPPSs.

Supplementary Table 2| The primers used to construct the following clones and mutants of AtPPPS

Supplementary Table 3| The BLAST relatedness of AtPPPS and other plant PTSs.
ACKNOWLEDGEMENTS

We thank Dr. Makoto Kawamukai (Shimane University, Japan) for providing the construct of pACCAR25ΔcrtE, Photon Factory and SPring-8 for beam time allocations, and Dr. Cheng-Chung Lee (Academia Sinica, Taiwan) for collecting the SM-ArPPPS diffraction data.
LITERATURE CITED

Aharoni A, Giri AP, Deuerlein S, Grieppink F, de Kogel WJ, Verstappen FW,
Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866-2884

Artz JD, Dunford JE, Arrowood MJ, Dong A, Chruszcz M, Kavanagh KL, Minor W, Russell RG, Ebetino FH, Oppermann U, Hui R (2008) Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis. Chem Biol 15: 1296-1306

Bouvier F, Suire C, d'Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpane synthesis in plant cells. Plant J 24: 241-252

Brunger AT (1993) Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr 49: 24-36

Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905-921

Burke C, Croteau R (2002) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405: 130-136

Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci U S A 96: 13062-13067
Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol **141**: 220-231

Chang TH, Guo RT, Ko TP, Wang AH, Liang PH (2006) Crystal structure of type-III geranylgeranyl pyrophosphate synthase from *Saccharomyces cerevisiae* and the mechanism of product chain length determination. J Biol Chem **281**: 14991-15000

Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AH (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (*Mentha piperita*) reveals intersubunit regulation. Plant Cell **22**: 454-467

Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell **15**: 481-494

Chen A, Poulter CD (1993) Purification and characterization of farnesyl diphosphate/geranylgeranyl diphosphate synthase. A thermostable bifunctional enzyme from *Methanobacterium thermoautotrophicum*. J Biol Chem **268**: 11002-11007

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr **66**: 12-21

Cowtan K (2006) The Buccaneer software for automated model building. Tracing protein chains. Acta Crystallogr D Biol Crystallogr **62**: 1002-1011

Davis AR, Pylatuik JD, Paradis JC, Low NH (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta **205**: 381-387.
Delano WL (2002). *The PyMOL molecular Graphic System* (DeLano Scientific).

Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. *Structure* **12**: 529-535

Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. *Plant Physiol* **122**: 627-633

Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**: 2126-2132

Engprasert S, Taura F, Kawamukai M, Shoyama Y (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from *Coleus forskohlii* Briq. *BMC Plant Biol* **4**: 1-18

Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. *Nat Chem Biol* **3**: 408-414

Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D (2007) Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. *Protein Sci* **16**: 1569-1576

Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AH (2004) Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic *Thermotoga maritima* and mechanism of product chain length determination. *J Biol Chem* **279**: 4903-4912

Hirooka K, Bamba T, Fukusaki E, Kobayashi A (2003) Cloning and kinetic characterization of *Arabidopsis thaliana* solanesyl diphosphate synthase. *Biochem J* **370**: 679-686

Hosfield DJ, Zhang Y, Dougan DR, Broun A, Tari LW, Swanson RV, Finn J (2004) Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. *J Biol Chem* **279**: 8526-8529
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH (2008) A novel homodimeric geranyl diphosphate synthase from the orchid *Phalaenopsis bellina* lacking a DD(X)_2,4D motif. Plant J 55: 719-733

Hsieh FL, Chang TH, Ko TP, Wang AH (2010) Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions. J Mol Biol 404: 859-873

Jun L, Saiki R, Tatsumi K, Nakagawa T, Kawamukai M (2004) Identification and subcellular localization of two solanesyl diphosphate synthases from *Arabidopsis thaliana*. Plant Cell Physiol 45: 1882-1888

Kainou T, Kawamura K, Tanaka K, Matsuda H, Kawamukai M (1999) Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. Biochim Biophys Acta 1437: 333-340

Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci U S A 103: 7829-7834

Keegan RM, Winn MD (2008) MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr D Biol Crystallogr 64: 119-124

Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1: 570-578

Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141-2144

Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60: 335-355

Kleywegt GJ (2007) Crystallographic refinement of ligand complexes. Acta Crystallogr D Biol Crystallogr 63: 94-100
Kloer DP, Welsch R, Beyer P, Schulz GE (2006) Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba. Biochemistry 45: 15197-15204

Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51: 925-948

Laskowski, RA, MacArthur, MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst 26: 283-291

Lebedev AA, Vagin AA, Murshudov GN (2008) Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D Biol Crystallogr 64: 33-39

Liang PH (2009) Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48: 6562-6570

Liang PH, Ko TP, Wang AH (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269: 3339-3354

Ling Y, Li ZH, Miranda K, Oldfield E, Moreno SN (2007) The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J Biol Chem 282: 30804-30816

Louise JL, Robert TB, Jennifer AD (2001) Large-scale purification of a stable form of recombinant tobacco etch virus protease. BioTechniques 30: 544-554

McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63: 32-41

Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid
biosynthetic pathway by functional analysis of gene products expressed in
Escherichia coli. J Bacteriol **172**: 6704-6712

Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr **53**: 240-255

Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev **98**: 1263-1276

Ohnuma S, Hirooka K, Hemmi H, Ishida C, Ohto C, Nishino T (1996) Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essential amino acid residues for chain length determination of prenyltransferase reaction. J Biol Chem. **271**: 18831-18837.

Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell **21**: 4002-4017

Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular Crystallography **276**: 307-326. San Diego: Academic Press Inc

Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science **311**: 808-811

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol **4**: 406-425

Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (*Picea abies*).
Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in *Picea abies*. Plant Physiol **152**: 639-655

Schwarzenbacher R, Godzik A, Grzechnik SK, Jaroszewski L (2004) The importance of alignment accuracy for molecular replacement. Acta Crystallogr D Biol Crystallogr **60**: 1229-1236

Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys **238**: 290-299

Sun HY, Ko TP, Kuo CJ, Guo RT, Chou CC, Liang PH, Wang AH (2005) Homodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon *Sulfolobus solfataricus* displays asymmetric subunit structures. J Bacteriol **187**: 8137-8148

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol **24**: 1596-1599

Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A **93**: 15018-15023

Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N (2004) Formation of monoterpenes in *Antirrhinum majus* and *Clarkia breweri* flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell **16**: 977-992

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res 22: 4673-4680

Van Schie CC, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC (2007) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J 52: 752-762

Vandermoten S, Charleaux B, Santini S, Sen SE, Beliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M, Haubrue E (2008) Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Lett 582: 1928-1934

Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci U S A 106: 9914-9919

Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24: 1441-1447

Ye Y, Fujii M, Hirata A, Kawamukai M, Shimoda C, Nakamura T (2007) Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol Biol Cell 18: 3568-3581

Zhu XF, Suzuki K, Okada K, Tanaka K, Nakagawa T, Kawamukai M, Matsuda K (1997) Cloning and functional expression of a novel geranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant Cell Physiol 38: 357-361
Figure legend

Figure 1. Catalytic reactions and terpenoid biosynthesis. Schematic diagram shows the catalytic reactions of PTSs and outlines the terpenoid biosynthesis that lead to diverse products. The basic five-carbon building blocks of C$_5$-IPP and its isomer, C$_5$-DMAPP are synthesized *in vivo* via the cytosolic mevalonate (MEV) pathway or the methylerithritol phosphate (MEP) pathway. The various chain lengths of linear prenyl pyrophosphates (LPPs) serving as the critical precursor for terpenoid biosynthesis are catalyzed by their respective PTSs. For C$_{30}$- to C$_{50}$-terpenes, the hydrophobic tail of quinine are derived from the long-chain LPPs. The number of carbons in the prenyl-tail differs from plastoquinone to ubiquinone and varies among the plant species. The abbreviation of OPP indicates the pyrophosphate group.

Figure 2. Structure-based multiple sequence alignment. The alignment of the deduced amino acid sequences of *A. thaliana* PTSs includes PPPS (AtPPPS, AT2G34630), SPPS isoform 1 (AtSPPS1, AT1G78510), SPPS isoform 2 (AtSPPS2, AT1G17050), GGPPS isoform 1 (AtGGPPS1, AT1G49530), GGPPS isoform 11 (AtGGPPS11, AT4G36810), FPPS isoform 1 (AtFPPS1, AT5G47770), and FPPS isoform 2 (AtFPPS2, AT4G17190). Regions of AtPPPS corresponding to the α-helices are denoted by purple cylinders. Identical and similar amino acid residues are shaded in black and grey, respectively. Dashes indicate the sequence gaps introduced to optimize the amino acid sequence alignment. The conserved functional motifs, DD(X)$_n$D, are boxed in cyan color. The conserved residues surrounding the elongation cavity are boxed in green color. The black triangle indicates the truncate site for AtPPPS expressed in *E. coli* as a pseudomature form by removing the plastid...
targeting presequence. The mutation sites of SM-AtPPPS and AtPPPS(I99F/V162F) are marked by green asterisks and red dots, respectively. All sequences presented here have the N-terminal signal peptides omitted.

Figure 3. Phylogenetic analysis of amino acid sequences of plant PTSs. A neighbor-joining phylogenetic tree was constructed by using the MEGA4 package (Tamura et al., 2007). The branch lengths of the lines indicate the evolution distances and numbers reveal the tree confidence calculated by bootstrap analysis with 1000 replicates. The abbreviations and accession numbers are detailed in the MATERIALS AND METHODS.

Figure 4. Biochemical assays of product synthesis by WT-AtPPPS. The experiments were carried out in the presence of various allylic substrates with C₅-[¹⁴C] IPP. The products of Sulfolobus solfataricus C₃₀-HPP synthase (SsHPPS) and Thermotoga maritima octaprenyl pyrophosphate (C₄₀-OPP) synthase (TmOPPS), synthesizing C₃₀-HPP and C₄₀-OPP, were used as markers (Guo et al., 2004; Sun et al., 2005). The product distributions are summarized in Table I.

Figure 5. Overall structure of AtPPPS. A, Representation of the apo form dimeric WT-AtPPPS. Disordered regions are indicated by red and blue dashed lines for the monomers colored in rainbow (chain A) and grey (chain B), respectively. The conserved DD(X)ₙD motifs are shown as sticks in magenta. B, Ternary complex of SM-AtPPPS with bound Mg²⁺ ions, C₅-IPSP, C₁₅-FPP and PPi groups. The octamer comprises an asymmetric unit. Monomers belonging to the same dimer are colored similarly. The squares and circles associated with chain names denote two different
subunit conformations. C, The ligand-bound monomer structure of SM-AtPPPS. The disordered region is indicated by black dashed lines. The electron density maps of Mg$^{2+}$ ions, C$_5$-IPSP and C$_{15}$-FPP ($2|F_o|-|F_c|$ map) are contoured at 1.0 σ.

Figure 6. Determination of product specificity. A, Surface representations of the active-site region in SM-AtPPPS. The residues Ile 99 and Val 162 are highlighted in yellow. The C$_{15}$-FPP (magenta) and C$_5$-IPSP (blue) ligands are represented as sticks and Mg$^{2+}$ ions as green balls. Green and orange dotted circles denote the elongation cavity (EC) and active-site cavity (AC), respectively. The purple arrow indicates a hole for product elongation beyond C$_{20}$- or C$_{25}$-prenyl pyrophosphate intermediates. The blue dashed arrow denotes the possible product elongation pathway. B, *In vitro* analysis of product distributions of the mutant AtPPPS(I99F/V62F). C, Schematic diagram for the carotenoid biosynthesis pathway, beginning with a coupled reaction of two C$_{20}$-GGPP molecules, and the construct of pACCAR25ΔcrtE. D, Genetic complementation assay for detecting yellow pigment production in *E. coli* harboring pACCAR25ΔcrtE and the expression vectors.
