COMPACT KÄHLER MANIFOLDS WITH QUASI-POSITIVE SECOND
CHERN-RICCI CURVATURE

XIAOKUI YANG

ABSTRACT. Let X be a compact Kähler manifold. We prove that if X admits a smooth
Hermitian metric ω with quasi-positive second Chern-Ricci curvature $\text{Ric}^{(2)}(\omega)$, then X is
projective and rationally connected. In particular, X is simply connected.

CONTENTS

1. Introduction 1
2. Singular Hermitian metrics on vector bundles 4
3. Vanishing theorems for singular Hermitian metrics 5
4. The proof of main theorems 7
Reference 8

1. INTRODUCTION

The geometry of complex manifolds are characterized by various positivity notions
in complex differential geometry and algebraic geometry. Since the seminal works of
Mori and Siu-Yau on the solutions to Hartshorne conjecture and Frankel conjecture ([Mor79], [SY80]) on the characterizations of projective spaces, many remarkable
generalizations have been established, for instances, Mok’s uniformization theorem
on compact Kähler manifold with non-negative holomorphic bisectional curvature ([Mok88]) and the works of Campana, Demailly, Peternell and Schneider ([CP91],
[DPS94]) on the structure of projective manifolds with nef tangent bundles. For more
generic characterizations, we refer to [Mok88, CP91, DPS94, DPS01, WZ02, CT12,
LWZ13, Liu14, FLW17, HLT18, NZ19, Liu19, LOY19, LOY20] and the references therein.

The holomorphic sectional curvature also carries much geometric information
of complex manifolds. Indeed, thanks to the breakthrough work [WY16a] of Wu-
Yau, it is well-known that a compact Kähler manifold X with negative or quasi-
negative holomorphic sectional curvature is algebraic and has ample canonical bundle ([TY17, WY16b, DT19]), which settles down a long-standing conjecture of S.-T. Yau
affirmatively. For more recent works on non-positive holomorphic sectional curvature,

2010 Mathematics Subject Classification. 53C55,14E08,32Q15.
Key words and phrases. Chern-Ricci curvature, vanishing theorem, rational connectedness.
we refer to [Won81, HLW10, HLW16, HLWZ18, Nom18, Gue18, YZ19, WY20] and the references therein. On the other hand, in his A¹JProblem section, S.-T. Yau proposed the well-known conjecture [Yau82, Problem 47] that compact Kähler manifolds with positive holomorphic sectional curvature must be projective and rationally connected. Recently, we solved this conjecture affirmatively in [Yan18c] by introducing the concept of RC-positivity for abstract vector bundles, and many properties of such bundles are developed in [Yan18c, Yan18b, Yan18a, Yan18d]. For instance, we proved in [Yan18a] that a compact Kähler manifold with uniformly RC-positive tangent bundle must be projective and rationally connected. By using the ideas of RC-positivity and some deep analytical techniques in algebraic geometry, Shin-ichi Matsumura established in [Mat18a, Mat18b, Mat18c] a structure theorem for projective manifolds with non-negative holomorphic sectional curvature, which is analogous to fundamental works in [Mok88, CDP15, CH17, CH19] for manifolds with various non-negative properties (see also an approach in [HW15]). In the same spirit, Lei Ni and Fangyang Zheng introduced in [NZ18a, NZ18b] various notions of Ricci curvature and scalar curvature to obtain rational connectedness of compact Kähler manifolds.

In this paper, we investigate the geometry characterized by the first and second Chern-Ricci curvatures on Hermitian manifolds. Recall that for a Hermitian metric \(\omega \), its Chern curvature tensor has components \(R_{ijkl} \). The first Chern-Ricci curvature is

\[
\operatorname{Ric}^{(1)}(\omega) = \sqrt{-1} \left(\partial \bar{\partial} \log \det(\omega_{ij}) \right) dz^i \wedge d\zbar^j = -\sqrt{-1} \partial \bar{\partial} \log \det(h_{ij})
\]

and the second Chern-Ricci curvature is

\[
\operatorname{Ric}^{(2)}(\omega) = \sqrt{-1} \left(\partial \bar{\partial} \partial \bar{\partial} \log \det(h_{ij}) \right) dz^i \wedge d\zbar^j.
\]

When the Hermitian metric \(\omega \) is not Kähler, \(\operatorname{Ric}^{(1)}(\omega) \) and \(\operatorname{Ric}^{(2)}(\omega) \) are not necessarily the same. It is well-known that \(\operatorname{Ric}^{(1)}(\omega) \) represents the first Chern class of the complex manifold. However, the geometry of \(\operatorname{Ric}^{(2)}(\omega) \) is still mysterious.

Thanks to the celebrated Calabi-Yau theorem ([Yau78]), we know that a compact Kähler manifold \(X \) has a Hermitian metric with positive first Chern-Ricci curvature \(\operatorname{Ric}^{(1)}(\omega) \) if and only if \(X \) is Fano. As an analog, we proved in [Yan18c] that if a compact Kähler manifold admits a smooth Hermitian metric with positive second Chern-Ricci curvature \(\operatorname{Ric}^{(2)}(\omega) \), then \(X \) is projective and rationally connected. This result is also a generalization of the classical result of Campana [Cam92] and Kollár-Miyaoka-Mori [KMM92] that Fano manifolds are rationally connected. The main result of this paper is the following theorem.

Theorem 1.1. Let \(X \) be a compact Kähler manifold. If there exist a smooth Hermitian metric \(\omega \) on \(X \) and a smooth Hermitian metric \(h \) on the holomorphic tangent bundle \(TX \) such that

\[
\operatorname{tr}_\omega R^{(TX,h)} \in \Gamma(X, \End(TX))
\]

is quasi-positive. Then \(X \) is projective and rationally connected. In particular, \(X \) is simply connected.
Compact Kähler manifolds with quasi-positive second Chern-Ricci curvature

Xiaokui Yang

Here quasi-positive means non-negative everywhere and strictly positive at some point. We follow the ideas in [CDP15] and [GHS03] in the proof of Theorem 1.1, and the key new ingredient is an integration argument for singular Hermitian metrics instead of the pointwise maximum principle for RC-positive vector bundles employed in [Yan18c], since the latter does not work for manifolds with quasi-positive curvature tensors. It is easy to see that many compact Kähler manifolds with stable tangent bundle and positive slope can support smooth Hermitian metrics with positive or quasi-positive second Chern-Ricci curvature as required in Theorem 1.1 (e.g. [UY86, Don87]). On the other hand, the Kähler condition in Theorem 1.1 is necessary ([LY17, Section 6]). As a special case of Theorem 1.1, one has

Corollary 1.2. Let X be a compact Kähler manifold. If X admits a smooth Hermitian metric ω with quasi-positive second Chern-Ricci curvature $\text{Ric}^{(2)}(\omega)$, then X is projective and rationally connected. In particular, X is simply connected.

By using Corollary 1.2 and Yau’s theorem [Yau78], one has the following generalization of the result of Campana [Cam92] and Kollár-Miyaoka-Mori [KMM92].

Corollary 1.3. Let X be a compact Kähler manifold. If X admits a smooth Hermitian metric ω with quasi-positive first Chern-Ricci curvature $\text{Ric}^{(1)}(\omega)$, then X is projective and rationally connected. In particular, X is simply connected.

Similarly, for quasi-negative first Chern-Ricci curvature $\text{Ric}^{(1)}(\omega)$, one has

Theorem 1.4. Let (X, ω) be a compact Hermitian manifold with quasi-negative first Chern-Ricci curvature $\text{Ric}^{(1)}(\omega)$. If X contains no rational curve, then X is projective and K_X is ample.

This result is a straightforward consequence of deep results in complex analytical and algebraic geometry ([Mor82, Siu84, Dem85, Kaw85, BCHM10, Cas13]), which would be of independent interest from the viewpoint of complex differential geometry. It is known that compact complex manifolds with quasi-negative (or quasi-positive) first Chern-Ricci curvature $\text{Ric}^{(1)}(\omega)$ are Moishezon ([Siu84, Dem85]), which are not necessarily projective (e.g. [MM07]). There are also many compact complex manifolds containing no rational curves, for instances, hyperbolic manifolds and Hermitian manifolds with non-positive holomorphic sectional curvature. Theorem 1.4 also provides another proof of [Lee18, Corollary 1.1] that compact Hermitian manifolds with non-positive holomorphic bisectional curvature and quasi-negative first Chern-Ricci curvature are projective manifolds with ample canonical bundles, which was established by purely analytical method.

The following conjecture on quasi-positive holomorphic sectional curvature is well-known and still widely open (e.g. [Yan18a, Conjecture 1.9]) and in the special case when X is projective it was confirmed affirmatively by Matsumura ([Mat18b]).

Conjecture 1.5. Let (X, ω) be a compact Kähler manifold. If it has quasi-positive holomorphic sectional curvature, then X is projective and rationally connected.

Acknowledgements. The author would like to thank Jie Liu, Wenhai Ou, Valentino Tosatti and S.-T. Yau for inspiring discussions and useful communications.
2. SINGULAR HERMITIAN METRICS ON VECTOR BUNDLES

Let \(X \) be a complex manifold and \(\omega \) be a smooth Hermitian metric on \(X \). Locally, we can write the curvature tensor of \((T_X, \omega) \) as

\[
R_{i\bar{j}k\bar{l}} = -\frac{\partial^2 g_{i\bar{k}}}{\partial z^j \partial \bar{z}^l} + g^{p\bar{q}} \frac{\partial g_{i\bar{q}k}}{\partial z^j} \frac{\partial g_{p\bar{l}}}{\partial \bar{z}^l},
\]

where \(\omega = \sqrt{-1} g_{i\bar{j}} dz^i \wedge d\bar{z}^j \). The first Chern-Ricci curvature \(\text{Ric}^{(1)}(\omega) = \sqrt{-1} R_{i\bar{j}} dz^i \wedge d\bar{z}^j \) has components \(R_{i\bar{j}}^{(1)} = g^{k\bar{l}} R_{i\bar{j}k\bar{l}} = -\frac{\partial^2 \log \det(g_{i\bar{j}})}{\partial z^j \partial \bar{z}^l} \). The second Chern-Ricci curvature is \(\text{Ric}^{(2)}(\omega) = \sqrt{-1} R_{i\bar{j}}^{(2)} dz^i \wedge d\bar{z}^j \) where \(R_{i\bar{j}}^{(2)} = g^{k\bar{l}} R_{k\bar{l}i\bar{j}} \). The scalar curvature \(s \) of the Chern connection is \(\text{tr}_\omega \text{Ric}^{(1)}(\omega) \) which is also the same as \(\text{tr}_\omega \text{Ric}^{(2)}(\omega) \).

Let \(E \to X \) be a holomorphic vector bundle and \(h \) be a smooth Hermitian metric on \(E \). The curvature \(R_E \) of the Chern connection \(\nabla \) on \((E,h) \) has a similar formula

\[
R_{i\bar{j}k\bar{l}}^E = -\frac{\partial^2 h_{i\bar{k}}}{\partial z^j \partial \bar{z}^l} + h^{-\frac{s}{2}} \frac{\partial h_{i\bar{k}}}{\partial z^j} \frac{\partial h_{\bar{l}j}}{\partial \bar{z}^l}.
\]

We define \(R_{i\bar{j}}^{(1)} = h^{k\bar{l}} R_{i\bar{k}j\bar{l}} \) and \(R_{i\bar{j}}^{(2)} = g^{k\bar{l}} R_{k\bar{l}i\bar{j}} \). We also call \(\text{tr}_h R_E = \sqrt{-1} R_{i\bar{j}}^{(1)} dz^i \wedge d\bar{z}^j \) and \(\text{tr}_\omega R_E = \sqrt{-1} R_{i\bar{j}}^{(2)} dz^i \wedge d\bar{z}^j \) the first and second Chern-Ricci curvature of \((E,h) \) with respect to the Hermitian manifold \((X,\omega) \) respectively. When \((E,h) = (TX,\omega) \), they are exactly the same as those curvatures of \((X,\omega) \). A smooth Hermitian \((1,1) \)-form \(A = \sqrt{-1} A_{i\bar{j}} dz^i \wedge d\bar{z}^j \) on \(X \) is call quasi-positive, if \(A_{i\bar{j}} \) is non-negative everywhere and positive at some point of \(X \). Similarly, we can define it for a tensor \(A \in \Gamma(X,\End(E)) \).

Singular Hermitian metrics on line bundles are introduced in [Dem92] by Demailly. Let \(L \) be a holomorphic vector bundle. A singular metric \(h^L \) on \(L \) can be written locally as \(h^L = e^{-L} \) for some \(\varphi \in L^1_{\text{loc}}(X,\mathbb{R}) \), and the curvature \(R^L = -\sqrt{-1} \partial \bar{\partial} \log h^L \) is defined in the sense of distributions. For singular Hermitian metrics on vector bundles, the definition would be very subtle, and we refer to [PT18, Section 2] for a detailed discussion (see also [dC98, Rau15, DWZZ20]). Recall that, for a smooth Hermitian metric \(h \) on \(E \), its curvature also takes the local form \(R_E = \bar{\partial} (h^{-1} \partial h) \). For the specified purpose in this paper, we only consider singular metrics such that \(h^{-1} \partial h \) is locally integrable, and then we can use standard theory on distributions (e.g. [Dem12]) to define the notion of weak positivity.

Definition 2.1. Let \(X \) be a complex manifold. A vector bundle \(E \) is called to have positive second Chern-Ricci curvature in the sense of distributions, if there exist a smooth metric \(\omega \) on \(X \) and a singular Hermitian metric \(h^E \) on \(E \) such that

\[
\text{tr}_\omega R_E \in \Gamma(X,\End(E))
\]

is strictly positive in the sense of distributions. The definition for non-negativity, quasi-positivity and etc. can be defined similarly.
Remark 2.2. Of course, the notion of second Chern-Ricci curvature can be defined in a broader way by using similar constructions as in \cite{dC98}. So far, it is not clear to the author whether the notions of Griffiths positivity or Nakano positivity for singular metrics defined in \cite{PT18, Rau15, DWZZ20} can imply the positivity of the second Chern-Ricci curvature in suitable sense, though it is obvious for smooth Hermitian metrics.

3. VANISHING THEOREMS FOR SINGULAR HERMITIAN METRICS

The main result of this section is the following theorem.

Theorem 3.1. Let E be a holomorphic vector bundle over a compact complex manifold X. Suppose there exist a smooth Hermitian metric ω on X and a smooth Hermitian metric h on E such that

$$\text{tr}_\omega R^{(E,h)} \in \Gamma(X, \text{End}(TX))$$

is quasi-positive. We have the following assertions.

1. Any invertible subsheaf L of $O(\otimes^k E^*)$ ($k \geq 1$) is not pseudo-effective.
2. $\det E^*$ is not pseudo-effective.

The key difficulty in the proof of Theorem 3.1 is to deal with a line bundle L which is only a subsheaf of $O(\otimes^k E^*)$. If it is indeed a subbundle, then its follows from a simple observation (c.f. \cite{CDP15}).

Lemma 3.2. The second Chern-Ricci curvature is decreasing in subbundles and increasing in quotient bundles.

It is well-known that the first Chern-Ricci curvature is not necessarily monotone as described in Lemma 3.2. The proof follows from a standard computation and we include details here since we need it for the distribution case.

Proof. Let (E, h) be a Hermitian vector bundle and S be a holomorphic subbundle of E. Let r be the rank of E and s the rank of S. Without loss of generality, we can assume, at a fixed point $p \in X$, there exists a local holomorphic frame $\{e_1, \cdots, e_r\}$ of E centered at point p such that $\{e_1, \cdots, e_s\}$ is a local holomorphic frame of S. Moreover, we can assume that $h(e_\alpha, e_\beta)(p) = \delta_{\alpha\beta}$ for $1 \leq \alpha, \beta \leq r$. Hence, the curvature tensor of S at point p is

$$R^S_{\alpha\beta\gamma\delta} = -\frac{\partial^2 h_{\alpha\beta}}{\partial z^i \partial \bar{z}^j} + \sum_{\gamma=1}^s \frac{\partial h_{\alpha\gamma}}{\partial z^i} \frac{\partial h_{\gamma\beta}}{\partial \bar{z}^j}$$

where $1 \leq \alpha, \beta \leq s$. For any Hermitian metric $\omega = \sqrt{-1} g_{i\bar{j}} dz^i \wedge d\bar{z}^j$ on X, we have

\begin{equation}
(\text{tr}_\omega R^E)|_S - \text{tr}_\omega R^S = \text{tr}_\omega (R^E|_S) - \text{tr}_\omega R^S = \sqrt{-1} \sum_{\alpha,\beta=1}^s g^a \left(\sum_{\gamma=s+1}^r \frac{\partial h_{a\gamma}}{\partial z^i} \frac{\partial h_{\gamma\beta}}{\partial \bar{z}^j} \right) e^a \otimes \bar{e}^\beta.
\end{equation}

It is easy to see that the right hand side of (3.1) is non-negative. The proof for quotient bundles is similar. \qed
Corollary 3.3. Let E be a holomorphic vector bundle over a complex manifold X.

1. If E has positive (resp, non-negative) second Chern-Ricci curvature, then each quotient bundle has positive (resp, non-negative) second Chern-Ricci curvature.
2. If E has negative (resp, non-positive) second Chern-Ricci curvature, then each subbundle has negative (resp, non-positive) second Chern-Ricci curvature.
3. If E has positive (resp, non-negative, quasi-positive, negative, non-positive, quasi-negative) second Chern-Ricci curvature, then so is $\otimes^k E$ for each $k \geq 1$.
4. If E has positive (resp, non-negative, quasi-positive, negative, non-positive, quasi-negative) second Chern-Ricci curvature, then so is $\text{Sym}^k E$ (1 ≤ $p \leq \text{rk}(E)$).

Proof. We only need to prove (3). From the expression of the induced curvature formula of $(\otimes^k E, \otimes^h)$, one has

$$R(\otimes^k E, \otimes^h) = \otimes^k R(E, h) \in \Gamma \left(X, \Lambda^{1,1} X \otimes \text{End}(\otimes^k E) \right),$$

and

$$\text{tr}_\omega R(\otimes^k E, \otimes^h) = \text{tr}_\omega \left(\otimes^k R(E, h) \right) = \otimes^k \left(\text{tr}_\omega R(E, h) \right) \in \Gamma \left(X, \text{End}(\otimes^k E) \right).$$

Hence, the result follows. □

Remark 3.4. By standard distribution theory, one has similar results as in Lemma 3.2 and Corollary 3.3 for singular Hermitian metrics in Definition 2.1.

Lemma 3.5. Suppose that E has non-negative second Chern-Ricci curvature in the sense of distributions and L is a pseudo-effective line bundle. If $\sigma \in H^0(X, E^* \otimes L^*)$ is a non-trivial holomorphic section, then σ does not vanish everywhere.

Proof. Let ω be a smooth Hermitian metric on X and h^E be a singular metric such that $\text{tr}_\omega R^E$ is non-negative in the sense of distributions. Since

$$\text{tr}_{\omega'} R^E = e^{-f} \text{tr}_\omega R^E,$$

we can assume further that ω is a Gauduchon metric ([Gau77]), i.e. $\partial\bar{\partial} \omega^{n-1} = 0$ where $\dim X = n$. Let h^E be a singular metric on L such that its curvature $\theta = -\sqrt{-1} \partial \bar{\partial} \log h^E \geq 0$ in the sense of distributions. For any $\sigma \in H^0(X, E^* \otimes L^*)$, we have

$$\text{tr}_\omega \left(\sqrt{-1} \partial \bar{\partial} |\sigma|^2_{h^E \otimes h^{L*}} \right) = |\nabla |\sigma|^2_{h^E \otimes h^{L*}} + (\text{tr}_\omega R^E \cdot h^{L*} + \text{tr}_\omega \theta \cdot h^{L*})(\sigma, \sigma).$$

Note that we are dealing with positive currents, and the product makes sense. An integration by part argument with respect to the Gauduchon metric ω shows that $\nabla |\sigma|^2 = 0$ a.e., and

$$(\text{tr}_\omega \sqrt{-1} \partial \bar{\partial}) |\sigma|^2_{h^E \otimes h^{L*}} \geq 0$$

in the sense of distributions. We know $|\sigma|^2_{h^E \otimes h^{L*}}$ is a global constant on the compact base X. If σ is non-trivial, this constant is nonzero, i.e. σ does not vanish everywhere. □

Corollary 3.6. Suppose that E has non-negative second Chern-Ricci curvature in the sense of distributions, and L is an invertible subsheaf of $\mathcal{O}(E^*)$. If L is pseudo-effective, then L is a line subbundle of E^*.

6
Proof. Note that the subsheaf morphism $f : L \to \mathcal{O}(E^*)$ induces a nonzero section $\sigma \in H^0(X, E^* \otimes L^*)$. By Lemma 3.5, σ does not vanish everywhere. This gives a trivial line subbundle \mathcal{C} of the vector bundle $E^* \otimes L^*$, and so L is a line subbundle of E^*.

Theorem 3.7. Suppose that E has quasi-positive second Chern-Ricci curvature in the sense of distributions, and L is a pseudo-effective line bundle. Then

\begin{equation}
H^0(X, E^* \otimes L^*) = 0.
\end{equation}

Proof. By using a similar argument as in the proof of Lemma 3.5, for any holomorphic section $\sigma \in H^0(X, E^* \otimes L^*)$, we deduce from (3.2) that the holomorphic section σ vanishes on an open subset of X. By Aronszajn’s principle ([Aro57]), σ is a zero section.

Proof of Theorem 3.1. Let L be an invertible subsheaf of $\mathcal{O}(\otimes^k E^*)$ for some $k \geq 1$. Suppose to the contrary—that L is pseudo-effective. By Corollary 3.3, $\otimes^k E$ has quasi-positive second Chern-Ricci curvature. By Corollary 3.6, the pseudo-effective invertible subsheaf L is actually a line subbundle of $\otimes^k E^*$. It is easy to see that if $\otimes^k E$ has quasi-positive second Chern-Ricci curvature, then its dual bundle $\otimes^k E^*$ has quasi-negative second Chern-Ricci curvature. By decreasing principle in Lemma 3.2, the second Chern-Ricci curvature of L is quasi-negative. Since L is a line bundle, that means, the induced metric h^L has quasi-negative Chern scalar curvature $s = \text{tr}_\omega(-\sqrt{-1} \partial \bar{\partial} \log h^L)$. Without loss of generality, we can assume ω is Gauduchon. Therefore

\begin{equation}
\int_X s\omega^n = n \int_X \omega_{BC}^1(L) \wedge \omega^{n-1} < 0.
\end{equation}

Hence, L can not be pseudo-effective ([Yan19, Proposition 3.1],). This is a contradiction.

On the other hand, since $\det E^*$ is a subbundle of $\otimes^k E^*$ for some large k, we deduce $\det E^*$ can not be pseudo-effective.

4. The proof of main theorems

In this section, we prove Theorem 1.1, Corollary 1.3 and Theorem 1.4.

Proof of Theorem 1.1. We set $(E, h) = (TX, h)$. By Corollary 3.3 and Theorem 3.7, we have

$$H^0(X, (T^* X)^{\otimes k}) = 0.$$

It is well-known that for any p satisfying $1 \leq p \leq \dim X$, $\Lambda^p T^* X$ is a direct summand of $(T^* X)^{\otimes k}$ for some large k. Therefore, we have

$$H^0_{\sigma}(X, \mathcal{C}) \cong H^0(X, \Lambda^p T^* X) = 0.$$

In particular, $H^2_{\sigma}(X, \mathcal{C}) = 0$. Since X is Kähler, we deduce that X is projective ([Kod54]). Now we following the ideas in [GHS03, Pet06, CDP15] to get the rational connectedness. By using Theorem 3.1, we conclude that $K_X = \det T^* X$ is not pseudo-effective. Thanks to [BDPP13], X is actually uniruled. Let $\pi : X \dasharrow Z$ be the associated MRC fibration of X. After possibly resolving the singularities of π and Z, we may assume that π is a proper morphism and Z is smooth. By [GHS03, Corollary 1.4], it follows that the target
of the MRC fibration is either a point or a positive dimensional variety which is not uniruled. Suppose \(X \) is not rationally connected, then \(\dim Z \geq 1 \) and \(Z \) is not uniruled. By using [BDPP13] again, \(K_Z \) is indeed pseudo-effective. Since \(K_Z = \det(T^*Z) \) is a direct summand of the vector bundle \((T^*Z)^\otimes k \) for some large \(k \) and \(\mathcal{O}((T^*Z)^\otimes k) \) is a subsheaf of \(\mathcal{O}(T^*(X)^\otimes k) \), we obtain a pseudo-effective invertible subsheaf \(K_Z \) of \(\mathcal{O}(T^*(X)^\otimes k) \), which contradicts to part (1) of Theorem 3.1.

Proof of Corollary 1.3. By the celebrated Calabi-Yau theorem, there exists a smooth Kähler metric \(\omega_0 \) on \(X \) such that

\[
\text{Ric}^{(1)}(\omega_0) = \text{Ric}^{(1)}(\omega).
\]

Since \(\omega_0 \) is Kähler, one can deduce

\[
\text{Ric}^{(2)}(\omega_0) = \text{Ric}^{(1)}(\omega_0).
\]

Therefore, Corollary 1.3 follows from Corollary 1.2.

Proof of Theorem 1.4. By using the criterion of Siu-Demailly ([Siu84, Dem85]), we know \(X \) is a Moishezon manifold and \(K_X \) is big. On the other hand, by the deep result [BCHM10, Corollary 1.4.6], it is proved in [Cas13, Theorem 3.1] that a Moishezon manifold without rational curve must be projective. Moreover, by the base-point-free theorem and the relative cone theorem [Mor82, Kaw85, KMM92], one can deduce that \(K_X \) is ample since \(X \) is a projective manifold of general type without rational curve.

References

[Aro57] Nachman Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9), 36:235–249, 1957.

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.

[BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 22(2):201–248, 2013.

[Cam92] Frédéric Campana. Connexité rationnelle des variétés de Fano. Ann. Sci. École Norm. Sup. (4), 25(5):539–545, 1992.

[Cas13] Paolo Cascini. Rational curves on complex manifolds. Milan J. Math., 81(2):291–315, 2013.

[CDP15] Frédéric Campana, Jean-Pierre Demailly, and Thomas Peternell. Rationally connected manifolds and semipositivity of the Ricci curvature. In Recent advances in algebraic geometry, volume 417 of London Math. Soc. Lecture Note Ser., pages 71–91. Cambridge Univ. Press, Cambridge, 2015.

[CH17] Junyan Cao and Andreas Höring. Manifolds with nef anticanonical bundle. J. Reine Angew. Math., 724:203–244, 2017.

[CH19] Junyan Cao and Andreas Höring. A decomposition theorem for projective manifolds with nef anticanonical bundle. J. Algebraic Geom., 28(3):567–597, 2019.

[CP91] Frédéric Campana and Thomas Peternell. Projective manifolds whose tangent bundles are numerically effective. Math. Ann., 289(1):169–187, 1991.

[CT12] Albert Chau and Luen-Fai Tam. On quadratic orthogonal bisectional curvature. J. Differential Geom., 92(2):187–200, 2012.

[dC98] Mark Andrea A. de Cataldo. Singular Hermitian metrics on vector bundles. J. Reine Angew. Math., 502:93–122, 1998.
Compact Kähler manifolds with quasi-positive second Chern-Ricci curvature

Xiaokui Yang

[Dem85] Jean-Pierre Demailly. Champs magnétiques et inégalités de Morse pour la d''-cohomologie. *Ann. Inst. Fourier (Grenoble)*, 35(4):189–229, 1985.

[Dem92] Jean-Pierre Demailly. Singular Hermitian metrics on positive line bundles. In *Complex algebraic varieties (Bayreuth, 1990)*, volume 1507 of *Lecture Notes in Math.*, pages 87–104. Springer, Berlin, 1992.

[Dem12] Jean-Pierre Demailly. *Analytic methods in algebraic geometry*, volume 1 of *Surveys of Modern Mathematics*. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.

[Don87] S. K. Donaldson. Infinite determinants, stable bundles and curvature. *Duke Math. J.*, 54(1):231–247, 1987.

[DPS94] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Compact complex manifolds with numerically effective tangent bundles. *J. Algebraic Geom.*, 3(2):295–345, 1994.

[DPS01] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Pseudo-effective line bundles on compact Kähler manifolds. *Internat. J. Math.*, 12(6):689–741, 2001.

[DT19] Simone Diverio and Stefano Trapani. Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle. *J. Differential Geom.*, 111(2):303–314, 2019.

[DWZZ20] Fusheng Deng, Zhiwei Wang, Liyou Zhang, and Xiangyu Zhou. Linear invariants of complex manifolds and their plurisubharmonic variations. *J. Funct. Anal.*, 279(1):108514, 2020.

[FLW17] Huitao Feng, Kefeng Liu, and Xueyuan Wan. Compact Kähler manifolds with positive orthogonal bisectional curvature. *Math. Res. Lett.*, 24(3):767–780, 2017.

[Gau77] Paul Gauduchon. Fibrés hermitiens à endomorphisme de Ricci non négatif. *Bull. Soc. Math. France*, 105(2):113–140, 1977.

[GHS03] Tom Graber, Joe Harris, and Jason Starr. Families of rationally connected varieties. *J. Amer. Math. Soc.*, 16(1):57–67, 2003.

[Gue18] Henri Guenancia. Quasi-projective manifolds with negative holomorphic sectional curvature. *preprint*, arXiv:1808.01854, 2018.

[HLTT18] Shaochuang Huang, Man-Chun Lee, Luen-Fai Tam, and Freid Tong. Long time existence of Kähler Ricci flow and holomorphic sectional curvature. *arXiv preprint*, 1805.12328, 2018.

[HLW10] Gordon Heier, Steven S. Y. Lu, and Bun Wong. On the canonical line bundle and negative holomorphic sectional curvature. *Math. Res. Lett.*, 17(6):1101–1110, 2010.

[HLW16] Gordon Heier, Steven S. Y. Lu, and Bun Wong. Kähler manifolds of semi-negative holomorphic sectional curvature. *J. Differential Geom.*, 104(3):419–441, 2016.

[HLWZ18] Gordon Heier, Steven S. Y. Lu, Bun Wong, and Fangyang Zheng. Reduction of manifolds with semi-negative holomorphic sectional curvature. *Math. Ann.*, 372(3-4):951–962, 2018.

[HW15] Gordon Heier and Bun Wong. On projective Kähler manifolds of partially positive curvature and rational connectedness. *arXiv preprint*, arXiv:1509.02149, 2015.

[Kaw85] Y. Kawamata. Pluricanonical systems on minimal algebraic varieties. *Invent. Math.*, 79(3):567–588, 1985.

[KMM92] János Kollár, Yoichi Miyaoka, and Shigefumi Mori. Rational connectedness and boundedness of Fano manifolds. *J. Differential Geom.*, 36(3):765–779, 1992.

[Kod54] K. Kodaira. On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). *Ann. of Math.* (2), 60:28–48, 1954.

[Lee18] Man-Chun Lee. Compact hermitian manifolds with quasi-negative curvature. *To appear in Math. Ann.*, arXiv:1810.07325, 2018.

[Liu14] Gang Liu. Compact Kähler manifolds with nonpositive bisectional curvature. *Geom. Funct. Anal.*, 24(5):1591–1607, 2014.

[Liu19] Jie Liu. Characterization of projective spaces and \mathbb{P}^n-bundles as ample divisors. *Nagoya Math. J.*, 233:155–169, 2019.

[LOY19] Duo Li, Wenhao Ou, and Xiaokui Yang. On projective varieties with strictly nef tangent bundles. *J. Math. Pures Appl.* (9), 128:140–151, 2019.

[LOY20] Jie Liu, Wenhao Ou, and Xiaokui Yang. Projective manifolds whose tangent bundle contains a strictly nef subsheaf. *arXiv preprint*, 2004.08507, 2020.
Xiaokui Yang

Compact Kähler manifolds with quasi-positive second Chern-Ricci curvature

[LY17] Kefeng Liu and Xiaokui Yang. Ricci curvatures on Hermitian manifolds. Trans. Amer. Math. Soc., 369(7):5157–5196, 2017.

[Mat18a] Shin-ichi Matsumura. On morphisms of compact Kähler manifolds with semi-positive holomorphic sectional curvature. arXiv preprint, arXiv:arXiv:1809.08859, 2018.

[Mat18b] Shin-ichi Matsumura. On projective manifolds with semi-positive holomorphic sectional curvature. arXiv preprint, arXiv:1811.04182, 2018.

[Mok88] Ngaiming Mok. The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differential Geom., 27(2):179–214, 1988.

[Nor79] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2), 110(3):593–606, 1979.

[Nor82] Shigefumi Mori. Threefolds whose canonical bundles are not numerically effective. Ann. of Math. (2), 116(1):133–176, 1982.

[NZ18a] Lei Ni and Fangyang Zheng. Comparison and vanishing theorems for Kähler manifolds. Calc. Var. Partial Differential Equations, 57(6):Paper No. 151, 31, 2018.

[NZ18b] Lei Ni and Fangyang Zheng. Positivity and kodaira embedding theorem. arXiv preprint, arXiv:1804.09696, 2018.

[NZ19] Lei Ni and Fangyang Zheng. Kähler manifolds and cross quadratic bisectional curvature. arXiv preprint, arXiv:1903.02701, 2019.

[PT18] Mihai Păun and Shigeharu Takayama. Positivity of twisted relative pluricanonical bundles and their direct images. J. Algebraic Geom., 27(2):211–272, 2018.

[Rau15] Hossein Raufi. Singular hermitian metrics on holomorphic vector bundles. Ark. Mat., 53(2):359–382, 2015.

[Siu84] Yum-Tong Siu. A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differential Geom., 19(2):431–452, 1984.

[TYT17] Valentino Tosatti and Xiaokui Yang. An extension of a theorem of Wu-Yau. J. Differential Geom., 107(3):573–579, 2017.

[UYY66] Karen Keskulla Uhlenbeck and Shing-Tung Yau. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. volume 39, pages S257–S293. 1986. Frontiers of the mathematical sciences: 1985 (New York, 1985).

[Won81] B. Wong. The uniformization of compact Kähler surfaces of negative curvature. J. Differential Geometry, 16(3):407–420 (1982), 1981.

[WY16a] Damin Wu and Shing-Tung Yau. Negative holomorphic curvature and positive canonical bundle. Invent. Math., 204(2):595–604, 2016.

[WY16b] Damin Wu and Shing-Tung Yau. A remark on our paper “Negative holomorphic curvature and positive canonical bundle” [MR3489705]. Comm. Anal. Geom., 24(4):901–912, 2016.

[WY20] Damin Wu and Shing-Tung Yau. Invariant metrics on negatively pinched complete Kähler manifolds. J. Amer. Math. Soc., 33(1):103–133, 2020.

[WZ20] Hung-Hsi Wu and Fangyang Zheng. Compact Kähler manifolds with nonpositive bisectional curvature. J. Differential Geom., 61(2):263–287, 2002.

[Yan18a] Xiaokui Yang. RC-positive metrics on rationally connected manifolds. arXiv preprint, arXiv:1807.03510, 2018.
[Yan18b] Xiaokui Yang. RC-positivity and the generalized energy density I: Rigidity. arXiv preprint, 1810.03276, 2018.

[Yan18c] Xiaokui Yang. RC-positivity, rational connectedness and Yau’s conjecture. Camb. J. Math., 6(2):183–212, 2018.

[Yan18d] Xiaokui Yang. RC-positivity, vanishing theorems and rigidity of holomorphic maps. To appear in J. Inst. Math. Jussieu, arXiv:1807.02601, 2018.

[Yan19] Xiaokui Yang. A partial converse to the Andreotti-Grauert theorem. Compos. Math., 155(1):89–99, 2019.

[Yau78] Shing-Tung Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 31(3):339–411, 1978.

[Yau82] Shing-Tung Yau. Problem section. In Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 669–706. Princeton Univ. Press, Princeton, N.J., 1982.

[YZ19] Xiaokui Yang and Fangyang Zheng. On real bisectional curvature for Hermitian manifolds. Trans. Amer. Math. Soc., 371(4):2703–2718, 2019.

XIAOKUI YANG, DEPARTMENT OF MATHEMATICS AND YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING, 100084, CHINA
E-mail address: xkyang@mail.tsinghua.edu.cn