Hardness-guided domain adaptation to recognise biomedical named entities under low-resource scenarios

Ngoc Dang Nguyen
Monash University
dan.nguyen2@monash.edu

Lan Du*
Monash University
lan.du@monash.edu

Wray Buntine
VinUniversity
wray.b@vinuni.edu.vn

Changyou Chen
University at Buffalo
changyou@buffalo.edu

Richard Beare
Monash University
richard.beare@monash.edu

Abstract

Domain adaptation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as bioNER, domain adaptation methods often suffer from the challenging linguistic characteristics that clinical narratives possess, which leads to unsatisfactory performance. In this paper, we present a simple yet effective hardness-guided domain adaptation (HGDA) framework for bioNER tasks that can effectively leverage the domain hardness information to improve the adaptability of the learnt model in the low-resource scenarios. Experimental results on biomedical datasets show that our model can achieve significant performance improvement over the recently published state-of-the-art (SOTA) MetaNER model.

1 Introduction

Named Entity Recognition (NER) is a fundamental NLP task which aims to locate named entity (NE) mentions and classify them into predefined categories such as location, organization, or person. NER usually serves as an important first sub-task for information retrieval (Banerjee et al., 2019), task-oriented dialogues (Peng et al., 2020) and other language applications. Consequently, NER has seen significant performance improvements with the recent advances of pre-trained language models (PLMs) (Akbik et al., 2019; Devlin et al., 2019). Unfortunately, a large amount of training data is often essential for these PLMs to excel and except for a few high-resource domains, the majority of domains have limited amount of labeled data.

This data-scarcity problem amplifies given the context of biomedical NER (bioNER). Firstly, the annotation process for the biomedical domains is time-consuming and can be extremely expensive. Thus, many biomedical domain corpora, especially for those privately developed, are often scarcely labeled. Furthermore, each biomedical domain can have distinct linguistic characteristics which are non-overlapping with those found in other biomedical domains (Lee et al., 2019). This linguistic challenge often diminishes the robustness of PLMs transferred from high-resource biomedical domains to low-resource ones (Giorgi and Bader, 2019).

Given the premise, this paper focuses on adapting PLMs for bioNER tasks learned from high-resource biomedical domains to low-resource ones. A potential solution is to inject the prior “experience” to this adaptation process. Few works have explored this area such as Li et al. (2020a) and Li et al. (2020b), where the former followed the optimization/meta-learning strategy by (Finn et al., 2017) and the latter introduced a feature critic module similar to the work of Li et al. (2019).

We show that simply incorporating the hardness information that each domain contributes to the learning of the bioNER LMs could significantly boost the adaptation performance of existing learning paradigms under various low-resource settings. This happens since the importance/hardness of biomedical domains can vary significantly, as shown in Table 1. While some domains might contain a lot of NEs, many do not, (e.g., the last row in Table 1), and hence, contribute little to learning the bioNER LMs. Meanwhile, the domain difficulty ties both to the number of entities and to the length of those entities. Given the non-overlapping linguistic characteristics found in biomedical domains, this poses another challenge to effectively adapt the trained bioNER LMs to the new domain. Therefore, we argue that the current adaptation framework proposed by Li et al. (2020b) could be further enhanced using the hardness information. We present two simple but effective ways of incorporating hardness information into our learning framework, named HGDA. We show that our hardness-guided domain adaptation approaches for bioNER tasks outperform the SOTA domain adap-
2 Related Works

Few works have addressed domain adaptation for NER. Both Li et al. (2020a) and Li et al. (2020b) seek a robust representation for the sequence labeling function BiLSTM-CRF using the meta-learning framework (Finn et al., 2017), with the latter further includes an auxiliary network to promote adversarial learning. Hu et al. (2022) consider label dependencies via an auto-regressive framework built on top of Bi-LSTM for cross-domain NER. However, different domains can have different level of hardness which both works have not yet addressed. Existing domain adaptation techniques using meta learning framework to incorporate hardness information via 1) actively ranking the tasks in term of difficulty level (Yao et al., 2021; Zhou et al., 2020; Liu et al., 2020; Achille et al., 2019); 2) designing an adaptive task scheduler (Yao et al., 2021); or 3) relying on generative approaches to quantify the uncertainties of tasks (Kaddour et al., 2020; Nguyen et al., 2021). To our knowledge, we are the first to perform hardness guided domain adaptation for bioNER tasks.

3 Hardness-guided domain adaptation

3.1 Problem Setup

Given a set of biomedical corpora from multiple source domains \(D_{\text{source}}\) (e.g., Drug, Gene, Species, etc), we aim to learn a sequence labelling function \(h : \mathcal{X} \rightarrow \mathcal{Y} \) \(^1\) from a set of tasks \(p(T)\) sampled from \(D_{\text{source}}\) so that \(h\) can be adapted to a new task \(T\) sampled from the target domain \(D_{\text{target}}\) (e.g., Disease). This function \(h\) should contain 1) a sentence encoder parameterized with \(\theta\) (e.g., BiLSTM) that captures the contextual information about words, and 2) a tag decoder parameterized with \(\phi\) (e.g., CRF) that assigns the entity tags to these words \(^2\). Thus, the learning objective is to search for the optimal \(\Theta^* \equiv \{\theta, \phi\}\) from \(D_{\text{source}}\). This optimal \(\Theta^*\) should minimise the risk of adapting \(h\) from \(D_{\text{source}}\) to \(T\) from \(D_{\text{target}}\).

3.2 Task Generation

To optimize for \(\Theta^*\) with stochastic optimization, one first needs to sample from \(p(T)\), i.e., task generation. Each bioNER task \(T_i\) in our setting is divided into a support set \(T_i^S\) and a query set \(T_i^Q\), with \(T_i^S \cap T_i^Q = \emptyset\). We further restrict both \(T_i^S\) and \(T_i^Q\) to contain only \(K\) sentences respectively sampled from a domain in \(D_{\text{source}}\). This value of \(K\) is dependent on the amount of data we have during adaptation phase for \(T\) and can be as small as 5 or 10. This is to mimic the same few-shot setting in the training phase which has been shown to reduce the PAC-Bayesian error bound during the adaptation phase (Ding et al., 2021). To encode the hardness information into our task generation process, we further consider the imbalance issue caused by the NER tasks. As shown in Table 2, the majority of the sentences in the biomedical corpora does not contain any NEs. Thus, it is highly likely that the \(K\) randomly-sampled sentences contain no NEs, which can result in a biased sequence labeller that always predicts “O” in the adaption phase. To avoid this issue, we propose our first HGDA approach by selecting the \(K\) sentences in \(T_i^S\) to be those containing at least one biomedical NE, which is shown to be highly effective during the adaptation phase.

3.3 Bilevel Optimization

To regularize \(\theta\), HGDA includes a domain classifier as a separate head on top of the sentence encoder. This enforces the network to learn a domain conditional invariant sentence encoder (Blanchard et al., 2017; Li et al., 2018; Shao et al., 2019). This domain classifier, parameterized with \(\omega\), consists of a fully connected layer and is used to predict which domain the sentences in a task \(T_i\) belong to. The classification function \(f\) will henceforth be used to represent the composition of the sentence encoder and the domain classifier. Consequently, the learning objective of HGDA is

\[
\mathcal{L}_i = \mathcal{L}_{\text{lab}}(h(\theta, \phi), T_i) + \lambda \mathcal{L}_{\text{cls}}(f(\theta, \omega), T_i),
\]

where \(\lambda\) control the trade-off between the labelling loss and the classification loss. As HGDA follows the bilevel optimization framework, we first generate a batch of task from \(p(T)\). For each \(T_i\) in this batch, we train the model on \(T_i^S\) then validate the performance on \(T_i^Q\) using our learning objective. Consequently, we gather the gradients from each \(T_i\) in the current batch of task and make the update to the parameters, finishing one iteration of the training process. This runs until no further improvement can be made. The full algorithm is
We use the pre-processed version of the benchmark corpora (see Tab. 2) which were used by the SOTA bioNER BioBERT (Lee et al., 2019) and are publicly available at BioBERT’s github website.

Table 2: Biomedical corpora used in our experiments (Habibi et al., 2017; Lee et al., 2019; Zhu et al., 2018).

3https://github.com/dmis-lab/biobert

Table 1: Examples of domain hardness scores (computed from our method) for tasks generated from three domains (gene, drug, and species respectively) during the training procedure. The score is based on a scale from 0 to 1, the higher the score, the more challenging the domain is. The NEs are put in brackets with red color for each sentence.

Example	Score
Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor...more durable inhibition of HIV -1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone. Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes. Here we report the fabrication of single-molecule transducers based on individual C60 molecules connected to gold electrodes. The contractile effects of [myosin, prostaglandin F2alpha and their combined use on human pregnant myometrium were studied in vitro. Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein]. The difference between the effects of the two dose levels of Z...more durable inhibition of HIV -1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone. The correlation between tissue inhibitor...more durable inhibition of HIV -1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone. Our analysis reveals that the ovuduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.	
0.46	
0.18	
0.01	

The NEs are put in brackets with red color for each sentence. Table 1 shows how HGDA ranks the contribution of each task towards the gradient updates. The score is based on a scale from 0 to 1, the higher the score, the more challenging the domain is. The NEs are put in brackets with red color for each sentence.
We implement two variants of HGDA and compare them with the SOTA MetaNER (Li et al., 2020b).

- **MetaNER** will act as our major baseline. It is the latest and most related work to HGDA, showing SOTA performance. We followed the parameter settings that the authors detailed in their paper and tried to replicate the MetaNER model based on our understandings. We validated our implementation by comparing its performance to the baseline multi-tasking method used in MetaNER.

- **BioBERT** is used to demonstrate the difficulty that deep PLMs face in low-resource scenarios.

- **HGDA** is one of our set-ups that re-calibrates the gradient updates of \(\{ \theta, \phi, \omega \} \) using equation (2).

- **HGDA-NEs** follows the strategy in the task generation discussion, *i.e.*, HGDA-NEs only trains with sentences that contains at least one bioNE.

As our HGDA and HGDA-NEs can either use BiLSTM or BERT as the sequence encoder, we will clearly highlight this information in the presentation of results to avoid any confusions. Additionally, corpora from the target domain are unseen by the model during the training phase. For instance, if the “Disease” domain is treated as \(T \), given \(T \)'s size is 5, we adapt our HGDA variants following the strategy in the task generation discussion, i.e., HGDA-NEs are one of our set-ups that re-calibrates the gradient updates of \(\{ \theta, \phi, \omega \} \) using equation (2).

We then repeat this process with 20 different \(T \) of size 5, average the final results, and report the results using this table. HGDA and HGDA-NEs use BiLSTM as the sentence encoder, while HGDA* and HGDA-NEs* use BERT as the sentence encoder. Unless otherwise specified, the HGDA-variants outperform their baselines with a p-value < 0.05.

Table 3: Average F1-performance of the sequence encoder adaptation for bioNER tasks with the best performance

Size	MetaNER	BioBERT	HGDA	HGDA-NEs	HGDA*	HGDA-NEs*
5	0.2729	0.0428	0.3001	0.2825	0.2285	0.3125
Drug	0.2171	0.0352	0.2698	0.2530	0.0678	0.1290
Gene	0.5784	0.0600	0.6102	0.5517	0.4794	0.6066
Species	0.2212	0.0237	0.2464	0.2571	0.1288	0.2359
Overall	0.2175	0.0727	0.3687	0.3776	0.3691	0.3292

Table 3 presents the NER performance of MetaNER, BioBERT, HGDA and their variants under the previously defined adaptation settings. We have the following observations:

- **MetaNER v.s. HGDA**: By simply incorporating the hardness information in the gradient update, HGDA achieves a significant performance improvement over MetaNER with an average of 4 – 5% improvement in terms of F1 score. In multiple cases (e.g., JNLPBA 5 shots, BC2GM 10 shots, etc), the performance gain of HGDA goes up to 15% in terms of F1-score. This result demonstrates that using the hardness to differentiate the importance of
each task in the gradient update will contribute to the NER performance.

• HGDA v.s. HGDA-NEs: Both HGDA and HGDA-NEs work well in our experiments, outperforming the strong baseline by a large margin. HGDA re-weights the gradient update based on the task difficulty and HGDA-NEs trains the learner exclusively only on sentences containing NEs. It is not surprising to see both approaches perform similarly when \(T' \) increases, as HGDA automatically tries to down-weight tasks with sentences containing few/no NEs dynamically.

• It is interesting that both HGDA and HGDA-NEs might perform worse than MetaNER on the LINNAEUS corpus. Table 2 shows that 87% of LINNAEUS sentences contains no bioNEs. Since both HGDA and HGDA-NEs toss out those sentences implicitly and explicitly during training, this could have attributed to the performance loss.

• The BioBERT performance shows the weakness of adapting deep PLMs in the low-resource scenarios for bioNER tasks. Under our HGDA settings, both HGDA* and HGDA-NEs*, which use BERT as the sentence encoder, perform significantly better than the BioBERT baseline. This might suggest that our techniques are architecture invariant. Additionally, the significant performance gaps when \(T' = \{5,10\} \) further elevate the necessity of HGDA for deep sentence encoder.

Additionally, we also provide the precision and recall results for all of our experiments, these results can be found in the appendix, Table 4 and Table 5.

5 Conclusion

We have proposed simple yet effective methods that effectively leverage the domain hardness information to improve the effectiveness of the learnt model under the low-resource NER settings. Experiments on biomedical corpora have shown that the sequence labelling function derived from our HGDA have achieved substantial performance improvements compared to current SOTA baselines.

We have not applied HGDA to other languages to further verify the performance so this can be a potential area for future works. To make sure that the batch of tasks are constructed properly, we have to make modifications to the dataloaders. This prevents the GPUs to be fully utilised during training and leads to long training time, e.g., taking up to 48 hours to train with 1 NVIDIA RTX3090. We use multiple RTX3090s to train our models; thus, for GPUs with lower memory, the batch size must be changed which might affect the results. Since we try to validate the performance of each configuration for 20 times as discussed in the experimental results section, it takes a considerable amount of time to finish the validation of the adaptation performance. Finally, due to the limitation of available pages, we cannot show detailed information of p-values that suggests the significance of our work.

Ethics Statement

Our works comply with ACL Ethics Policy. In this work, we include solely publicly available biomedical corpora that are widely used as benchmarks to measure the bioNER performance and provide proper citations to the authors of these corpora.

References

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. 2019. Task2Vec: Task embedding for meta-learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6430–6439.

Alan Akbik, Tanja Bergmann, and Roland Vollgraf. 2019. Pooled contextualized embeddings for named entity recognition. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 724–728, Minneapolis, Minnesota. Association for Computational Linguistics.

Partha Sarathy Banerjee, Baisakhi Chakraborty, Deepak Tripathi, Hardik Gupta, and Sourabh S Kumar. 2019. A information retrieval based on question and answering and ner for unstructured information without using sql. Wireless Personal Communications, 108(3):1909–1931.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. 2017. Domain generalization by marginal transfer learning. arXiv preprint arXiv:1711.07910.
Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-learning algorithms. CoRR, abs/1803.02999.

Evangelos Pafilis, Sune P. Frankild, Lucia Fanini, Sarah Faulwetter, Christina Pavlouidi, Aiakaterini Vasileiadou, Christos Arvanitidis, and Lars Juhl Jensen. 2013. The species and organisms resources for fast and accurate identification of taxonomic names in text. PLOS ONE, 8(6):1–6.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-deh, Lars Liden, and Jianfeng Gao. 2020. Soloist: Few-shot task-oriented dialog with a single pre-trained auto-regressive model. arXiv preprint arXiv:2005.05298.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019. Meta-learning with implicit gradients. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. 2019. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10023–10031.

L. Smith, L. Tanabe, R. Ando, C. Kuo, I-Fang Chung, C. Hsu, Y. Lin, R. Klinger, Christoph Friedrich, K. Ganchev, M. Torii, Hongfang Liu, Barry Haddow, Craig Struble, Richard Povinelli, Andreas Vlachos, William Baumgartner Jr, Lawrence Hunter, B. Carpenter, and W. Wilbur. 2008. Overview of BioCreative II gene mention recognition. Genome Biology, 9.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu Lian, and Chelsea Finn. 2021. Meta-learning with an adaptive task scheduler. arXiv preprint arXiv:2110.14057.
Algorithm 1 HGDA

Require: \(p(T) \) from source domains
Require: \(\alpha, \beta, \lambda \) hyper-parameters
Require: \(m \) tasks batch size
1: Initialize \(\theta, \phi, \omega \)
2: while not converge do
3: \(\mathcal{T}_i \sim p(T) \)
4: \(\mathcal{T}_i^S, \mathcal{T}_i^Q = \mathcal{T}_i \) s.t. \(\mathcal{T}_i^S \cap \mathcal{T}_i^Q = \emptyset \)
5: \(\mathcal{L}_i^{lab}, \mathcal{L}_i^{cls} = \text{algorithm 2} \)
6: \(\mathcal{L}_i = \mathcal{L}_i^{lab} + \lambda \mathcal{L}_i^{cls} \)
7: \(\Gamma_1, \ldots, \Gamma_m = \text{equation 2} \)
8: \(\phi \leftarrow \phi - \alpha \sum_i \gamma_i^\phi \nabla_{\phi} \mathcal{L}_i^{lab} \)
9: \(\omega \leftarrow \omega - \alpha \sum_i \gamma_i^\omega \nabla_{\omega} \mathcal{L}_i^{cls} \)
10: \(\mathcal{T}_i \leftarrow \mathcal{T}_i^Q \)
11: \(\theta \leftarrow \theta - \alpha \sum_i \gamma_i^\theta \nabla_{\theta} \mathcal{L}_i \)
12: end while
13: return \(\Theta = (\theta, \phi) \)

A Appendix

Detailed experimental setups HGDA and HGDA-NES can use either BiLSTM or BERT as the sentence encoder. When BiLSTM is used as the sentence encoder, we use CRF as the tag decoder and a fully connected layer as the domain classifier. The size of the token embeddings from BioWordVec is 200. Aside from using this token embeddings to feed to the sentence encoder, we also have one LSTM and one CNN network to learn the character embeddings with the output of 50. Combining the token embeddings and the character embeddings gives the input of 300 to the BiLSTM sentence encoder. The output of this BiLSTM is 256 (128*2), this output is then fed to two separate heads in the general texts. The default learning rates \(\alpha \) and \(\beta \) for \(K \) of 32 are set to 1e-5 and are subjected to changes as shown in Eq. 3. The output from the BERT sequence encoder will then be fed into two separate fully connected layers. One of them is to predict the tagging sequence. The other is to predict which domain for the sentences in \(\mathcal{T}_i \).

All models are trained using the SGD optimizer (Kiefer and Wolfowitz, 1952) with a linear learning rate scheduler (Wolf et al., 2020). We set the gradient clip at 5; momentum at 0.9; weight decay at 1e-6; and dropout rate at 0.2 for all our training (Li et al., 2020b). After cross-validating for different values of \(\lambda \), we use \(\lambda = 1 \) for all HGDA variants to control the trade-off between the sequence labelling loss and the domain classifying loss. Additionally, since HGDA involves the bilevel optimization framework, we have to approximate for the gradients acquired from \(\mathcal{T}_i^Q \) using first order gradient approximations (Nichol et al., 2018) and implicit gradients (Rajeswaran et al., 2019) to avoid the computation for the Jacobian matrix. Please contact the corresponding author for the codes to re-implement this work.

Algorithm 2 Bilevel optimization for \(\mathcal{T}_i \)

Require: \(\mathcal{T}_i = (\mathcal{T}_i^S, \mathcal{T}_i^Q) \) s.t. \(\mathcal{T}_i^S \cap \mathcal{T}_i^Q = \emptyset \)
Require: \(\theta, \phi, \omega \) current iteration parameters
Require: \(\beta, \lambda \) hyper-parameters
1: Initialize \(\theta_i, \phi_i, \omega_i \) with \(\theta, \phi, \omega \)
2: for \(i = 1, \ldots, \) adaptation steps do
3: \(\mathcal{L}_i^{lab} = \mathcal{L}(h(\theta_i, \phi_i), \mathcal{T}_i^S) \)
4: \(\mathcal{L}_i^{cls} = \mathcal{L}(f(\theta_i, \omega_i), \mathcal{T}_i^Q) \)
5: \(\mathcal{L}_i = \mathcal{L}_i^{lab} + \lambda \mathcal{L}_i^{cls} \)
6: \(\theta_i \leftarrow \theta_i - \beta \nabla_{\theta} \mathcal{L}_i \)
7: \(\phi_i \leftarrow \phi_i - \beta \nabla_{\phi} \mathcal{L}_i^{lab} \)
8: \(\omega_i \leftarrow \omega_i - \beta \nabla_{\omega} \mathcal{L}_i^{cls} \)
9: end for
10: \(\mathcal{L}_i^{lab} = \mathcal{L}(h(\theta_i, \phi_i), \mathcal{T}_i^Q) \)
11: \(\mathcal{L}_i^{cls} = \mathcal{L}(f(\theta_i, \omega_i), \mathcal{T}_i^Q) \)
12: return \(\mathcal{L}_i^{lab}, \mathcal{L}_i^{cls} \)
\(T\)	Size	Disease	Drug	Gene	Species
5	20	MetaNER	HGDA	HGDA-Nes*	HGDA-Nes*
		0.4699	0.3751	0.5316	0.3625
		0.3907	0.3751	0.3048	0.4067
		0.5968	0.3751	0.4836	0.4910
		0.5698	0.3751	0.4745	0.4805
		0.3634	0.3751	0.3918	0.3467
		0.4354	0.3751	0.3722	0.3428
10	50	MetaNER	HGDA	HGDA-Nes*	HGDA-Nes*
		0.4154	0.3751	0.4938	0.5030
		0.5661	0.3751	0.3963	0.5114
		0.6659	0.3751	0.5035	0.5141
		0.6320	0.3751	0.5587	0.5901
		0.5060	0.3751	0.4202	0.3820
		0.5536	0.3751	0.4971	0.4697

Table 4: Average precision-performance of the sequence encoder adaptation for bioNER tasks with the best performance boldfaced. All results have the same settings with those from Table 3.

\(T\)	Size	Disease	Drug	Gene	Species
5	20	MetaNER	HGDA	HGDA-Nes*	HGDA-Nes*
		0.2493	0.1689	0.4818	0.1725
		0.1029	0.1294	0.0828	0.0369
		0.2780	0.2084	0.5446	0.2027
		0.2247	0.1934	0.4852	0.2471
		0.2617	0.0485	0.4759	0.1251
		0.3342	0.1048	0.6442	0.3728
10	50	MetaNER	HGDA	HGDA-Nes*	HGDA-Nes*
		0.3555	0.3913	0.6381	0.3574
		0.1275	0.0970	0.2724	0.0997
		0.3887	0.3904	0.6486	0.4135
		0.3627	0.3481	0.6261	0.3996
		0.4631	0.4704	0.7061	0.4870
		0.4503	0.3216	0.7438	0.4740
20	50	MetaNER	HGDA	HGDA-Nes*	HGDA-Nes*
		0.4559	0.4859	0.7116	0.4460
		0.3126	0.2429	0.5582	0.2351
		0.5362	0.5235	0.7167	0.5194
		0.5418	0.5019	0.7009	0.4768
		0.5406	0.6074	0.7846	0.5911
		0.5395	0.5945	0.7717	0.6138

Table 5: Average recall-performance of the sequence encoder adaptation for bioNER tasks with the best performance boldfaced. All results have the same settings with those from Table 3.