Spin and valley transports in junctions of Dirac fermions

Takehito Yokoyama
Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
E-mail: yokoyama@stat.phys.titech.ac.jp

Received 19 March 2014, revised 4 June 2014
Accepted for publication 19 June 2014
Published 15 August 2014

Abstract
We study spin and valley transports in junctions composed of silicene and topological crystalline insulators. We consider normal/magnetic/normal Dirac metal junctions where a gate electrode is attached to the magnetic region. In a normal/antiferromagnetic/normal silicene junction, we show that the current through this junction is valley and spin polarized due to the coupling between valley and spin degrees of freedom, and the valley and spin polarizations can be tuned by local application of a gate voltage. In particular, we find a fully valley and spin polarized current by applying the electric field. In a normal/ferromagnetic/normal topological crystalline insulator junction with a strain induced in the ferromagnetic segment, we investigate valley-resolved conductances and clarify how the valley polarization stemming from the strain and exchange field appears in this junction. It is found that by changing the direction of the magnetization and the potential in the ferromagnetic region, one can control the dominant valley contribution out of four valley degrees of freedom. We also review spin transport in normal/ferromagnetic/normal graphene junctions, and spin and valley transports in normal/ferromagnetic/normal silicene junctions for comparison.

Keywords: graphene, silicene, topological crystalline insulator
1. Introduction

There has been a great interest in graphene due to its rich potential from fundamental and applied physics points of view [1–3]. Graphene is composed of carbon atoms on a two-dimensional honeycomb lattice. Consequently, electrons in graphene obey the massless Dirac equation. The recent experimental progress of the fabrication of single graphene sheets has triggered tremendous interest from the scientific community [4–6]. Up to now, many intriguing aspects of graphene have been revealed, such as the half integer and unconventional quantum Hall effect [5, 7, 8], minimum conductivity [6] and Klein tunneling [9–17]. Graphene is also a suitable material for applications: it exhibits gate-voltage-controlled carrier conduction, high field-effect mobilities and a small spin–orbit interaction [18, 19]. Therefore, graphene offers a good testing ground for observing spintronics effects [20–29]. It has been shown that zigzag edge graphene nanoribbon becomes half-metallic by an external transverse electric field due to the different chemical potential shift at the edges [24–26]. This indicates the high controllability of ferromagnetism in graphene and hence paves the way for spintronics application of graphene. In graphene covered by a ferromagnet, spin transport controlled by a gate electrode has been predicted [23, 27, 29]. Also, there are some attempts to use pseudospin (sublattice) degrees of freedom in graphene in order to obtain new functionalities [30–32].

The goal of valleytronics is to manipulate valley degrees of freedom by electric means and vice versa. This field has developed in graphene [33–35], because graphene has two inequivalent Dirac cones at K and K' points, which can be considered as valley degree of freedom. In graphene nanoribbons with a zigzag edge, valley filter and valley valve effects have been predicted [33, 35]. These stem from intervalley scatterings by a potential step and are thus controllable by local application of a gate voltage.

Silicene is a monolayer of silicon atoms on a two-dimensional honeycomb lattice: the silicon analog of graphene [36]. Recently, it has been reported that this material has been synthesized [37–42]. Although silicene is composed of silicon atoms on a honeycomb lattice and hence electrons in silicene obey the Dirac equation around the K and K' points at low energy [43, 44], there are a few important differences from graphene: (i) the honeycomb lattice is buckled. Hence, the mass of the Dirac electrons in silicene can be manipulated by an external electric field [45, 46]. The discovery of this property has triggered many intriguing predictions. It has been predicted that there occurs a topological phase transition between topologically trivial and topological insulators by applying electric field [45, 46]. (ii) Silicene has a large spin–orbit coupling compared to graphene which couples spin and valley degrees of freedom. Therefore, one may expect interesting spin- and valley-coupled physics in silicene.

Topological crystalline insulators are new states of matter defined by a topological invariant constructed by crystal symmetries [47–49]. Topological crystalline insulators possess an even number of gapless surface states on crystal faces that preserve the underlying symmetry. These gapless surface states are topologically protected: they are robust against perturbations as long as the underlying symmetry is preserved. The (001) surface states composed of four Dirac cones in Pb$_x$Sn$_{1-x}$(Te, Se), the first topological crystalline insulator material, have been predicted [48] and observed in angle-resolved photoemission spectroscopy experiments [50–54]. Recently, the measurement of surface transport in epitaxial SnTe thin films has been also reported [55]. Since these materials have four Dirac cones in contrast to honeycomb systems, topological crystalline insulators have a potential to be placed ahead of graphene for valleytronics applications [56].
In this paper, we first review spin transport in normal/ferromagnetic/normal graphene junctions, and spin and valley transports in normal/ferromagnetic/normal silicene junctions. Then, we study spin and valley transports in junctions composed of silicene and topological crystalline insulators. We consider normal/magnetic/normal Dirac metal junctions where a gate electrode is attached to the magnetic region. In a normal/antiferromagnetic/normal silicene junction, we show that the current through this junction is valley and spin polarized due to the coupling between valley and spin degrees of freedom, and the valley and spin polarizations can be tuned by local application of a gate voltage. In particular, we find a fully valley and spin polarized current by applying the electric field. In normal/ferromagnetic/normal topological crystalline insulator junction with a strain induced in the ferromagnetic segment, we investigate valley-resolved conductances and clarify how the valley polarization stemming from the strain and exchange field appears in this junction. It is found that by changing the direction of the magnetization and the potential in the ferromagnetic region, one can control the dominant valley contribution out of four valley degrees of freedom.

2. Graphene

Here, we review spin transport in normal/ferromagnetic/normal graphene junctions, following [27].

The electrons in graphene obey a massless Dirac equation given by

$$H_z = v_F \left(\sigma_x k_x + \eta \sigma_y k_y \right)$$

with Pauli matrices σ_x and σ_y which operate on the sublattice space of the honeycomb lattice. The $\eta = \pm$ sign corresponds to the two valleys of K and K' points in the Brillouin zone. Also, there is a valley degeneracy. Hence, one can consider one of the two valleys (H_z) [57]. The linear dispersion relation is valid for Fermi levels up to 1 eV [58], where the electrons in graphene behave like Weyl fermions in the low-energy regime.

We consider a two-dimensional normal/ferromagnetic/normal graphene junction where a gate electrode is attached to the ferromagnetic region. This junction may be realized by putting a ferromagnetic insulator on top of graphene or doping magnetic atoms into graphene. See figure 1 for the schematic of the model. We assume that the interfaces are parallel to the y-axis and located at $x = 0$ and $x = L$. Due to the valley degeneracy, we consider the Hamiltonian H_z with $H_z = v_F \left(\sigma_x k_x + \sigma_y k_y \right) - V(x), V(x) = E_F$ in the normal graphenes and $V(x) = E_F + U \pm H$ in the ferromagnetic graphene. Here, $E_F = v_F k_F$ is the Fermi energy, U is the potential shift controllable by the gate voltage, and H is the exchange field. Here, \pm signs correspond to majority and minority spins. The wavefunctions in each region can be written as
ψ_{1} = \left(\frac{1}{e^{i\theta}} \right) e^{ip \cos \theta + ipy} + a_{\pm} \left(\frac{1}{-e^{-i\theta}} \right) e^{-ip \cos \theta + ipy},

\psi_{2} = b_{\pm} \left(\frac{1}{e^{i\theta}} \right) e^{ip' \cos \theta' + ipy} + c_{\pm} \left(\frac{1}{-e^{-i\theta}} \right) e^{-ip' \cos \theta' + ipy},

\psi_{3} = d_{\pm} \left(\frac{1}{e^{i\theta}} \right) e^{ip \cos \theta + ipy}

\text{with angles of incidence } \theta \text{ and } \theta', \ p = (E + E_{F})/v_{F} \text{ and } p' = (E + E_{F} + U \pm H)/v_{F}. \ \text{Here}, \ \psi_{1} \text{ and } \psi_{3} \text{ denote wavefunctions in the left and right normal graphenes, respectively, while } \psi_{2} \text{ is a wavefunction in the ferromagnetic graphene. Due to the translational invariance in the } y \text{-direction, the momentum parallel to the } y \text{-axis is conserved: } p_{y} = p \sin \theta = p' \sin \theta'.

By matching the wave functions at the interfaces, we obtain the coefficients in the above wavefunctions in equations (2)–(4). Note that these conditions lead to current conservation at the interfaces because they are reduced to \hat{\psi} = \hat{\psi} at x = 0 and \hat{\psi} = \hat{\psi} at x = L where \hat{\psi} is the velocity operator given by \hat{\psi} = \partial k_{x}/\partial E = v_{F} \sigma_{x}.

The transmission coefficient is represented as

\[d_{\pm} = \frac{\cos \theta \cos \theta' e^{-ipl \cos \theta}}{\cos(p_{Lx}L \cos \theta') \cos \theta \cos \theta' - i \sin(p_{Lx}L \cos \theta')(1 - \sin \theta \sin \theta')} \]

Thus, the dimensionless spin-resolved conductances \(G_{1,1} \) are obtained as

\[G_{1,1} = \frac{1}{2} \int_{-\pi/2}^{\pi/2} d\theta \cos \theta T_{1,1}(\theta) \]

with \(T_{1,1}(\theta) = |d_{\pm}(\theta)|^{2} \). Finally, the spin conductance \(G_{s} \) is defined as \(G_{s} = G_{\uparrow} - G_{\downarrow} \). Below, we focus on the conductances at zero voltage, setting \(E = 0 \).

First, we will explain the underlying mechanism of spin manipulation by the gate voltage. In the limit of \(|U \pm H| \gg E_{F} \), we have \(\theta' \to 0 \), and therefore, the transmission coefficient becomes

\[d_{\pm} \to \frac{\cos \theta e^{-ipl \cos \theta}}{\cos \chi_{\pm} \cos \theta - i \sin \chi_{\pm}} \]

with \(\chi_{\pm} = \chi \pm \chi_{H}, \chi = UL/v_{F} \) and \(\chi_{H} = HL/v_{F} \). The transmission probability is thus given by

\[T_{1,1}(\theta) \to \frac{\cos^{2}\theta}{1 - \sin^{2}\theta \cos^{2}\chi_{\pm}} \]

From equation (8), we find the \(\pi \)-periodicity with respect to \(\chi_{\pm} \) or \(\chi \) \([9, 23, 59, 60]\). It is also seen that \(G_{1,1} \) has a maximum (minimum) value of 1 (2/3) at \(\chi_{\pm} = 0 \) (\(\pi/2 \)). The phase difference between \(G_{1} \) and \(G_{1} \) is given by \(\chi_{\pm} - \chi_{H} = 2\chi_{H} = 2HL/v_{F} \). If the phase difference is equal to the half period \(\pi/2 \) (i.e., \(H/E_{F} = \pi/4k_{F}L \)), one can expect a large spin current which oscillates with \(\chi \) i.e., the gate voltage, because when one of \(G_{1} \) and \(G_{1} \) has a maximum at a certain \(\chi \), the other has a minimum at the same \(\chi \). As a result, the value of \(G_{s} \) oscillates between \(-1/3\) and \(1/3\). Notice that the electrical conductance \(G_{1} + G_{1} \) in the junctions is always positive and hence spin current reversal in our model is not accompanied with the charge current reversal.
In Figure 2, we show the results in this limiting case. Figure 2(a) depicts spin-resolved conductances as a function of χ. Here, the phases of G_\uparrow (solid line) and G_\downarrow (dotted line) are shifted by half a period, $\chi_\uparrow - \chi_\downarrow = \pi/2$. As shown in Figure 2(b), we obtain a finite spin current. Interestingly, the spin conductance G_s oscillates with the period π with respect to χ but is never damped.

In Figure 2, we show the results in this limiting case. Figure 2(a) depicts spin-resolved conductances as a function of χ. Here, the phases of G_\uparrow and G_\downarrow are shifted by half a period, $\chi_\uparrow - \chi_\downarrow = \pi/2$. As shown in Figure 2(b), we obtain a finite spin current. Interestingly, the spin conductance G_s oscillates with the period π with respect to χ. This indicates that one can reverse the spin current by changing the gate voltage. Here, we have focused on the limiting case. For more general cases, see [27].

3. Silicene

Spin and valley transports in a normal/ferromagnetic/normal silicene junction have been studied in [61]. Here, we review spin and valley transports in this junction and investigate them in a normal/antiferromagnetic/normal silicene junction as shown in Figure 1.

3.1. Formulation

The Hamiltonian of the (anti)ferromagnetic silicene is given by [43–46]

$$H = \hbar v_F \left(k_x \tau_x - \eta k_y \tau_y \right) - \Delta_{so} \tau_z - \sigma h$$

with $\Delta_{so} = \eta \sigma \Delta_{so} - \Delta_z + \sigma h_z$, τ is the Pauli matrix in sublattice pseudospin space. Δ_{so} denotes the spin–orbit coupling. Δ_z is the onsite potential difference between A and B sublattices, which can be manipulated by an electric field applied perpendicular to the plane. $h(h_z)$ is the ferromagnetic (antiferromagnetic or staggered) exchange field in the ferromagnetic (anti-ferromagnetic) region. $\eta = \pm 1$ corresponds to the K and K' points. $\sigma = \pm 1$ denotes the spin indices. The large value of $\Delta_{so} = 3.9$ meV in silicene [44] leads to a coupling between the valley and spin degrees of freedom, which is a clear distinction from graphene. In the normal regions, we set $\Delta_z = h = h_z = 0$. Thus, the gate electrode is attached to the magnetic segment.
The eigenvalues of the Hamiltonian in the normal and magnetic silicene are given by
\[
E = \pm \sqrt{(\hbar v_F k)^2 + (\Delta_N)^2} = \pm \sqrt{(\hbar v_F k')^2 + (\Delta_F)^2} - \sigma \hbar
\]
(10)
with \(\Delta_N = \eta \sigma \Delta_{\eta \sigma} \) and \(\Delta_F = \eta \sigma \Delta_{\eta \sigma} - \Delta_c + \sigma \hbar c \cdot k \) and \(k' \) are momenta in the normal and the magnetic regions, respectively. Let the \(x \)-axis be perpendicular to the interface and assume translational invariance along the \(y \)-axis. The interfaces between the normal and the magnetic silicene are located at \(x = 0 \) and \(x = L \) where \(L \) is the length of the magnetic silicene. Then, the wavefunctions for valley \(\eta \) and spin \(\sigma \) in each region can be written as
\[
\psi(x < 0) = \frac{1}{\sqrt{2EE_N}} e^{ik_x x} \left(\frac{\hbar v_F k_+}{E_N} \right) + \frac{r_{\eta \sigma}}{\sqrt{2EE_N}} e^{-ik_x x} \left(-\frac{\hbar v_F k_-}{E_N} \right),
\]
(11)
\[
\psi(0 < x < L) = a_{\eta \sigma} e^{ik_x x} \left(\frac{\hbar v_F k_+}{E_F} \right) + b_{\eta \sigma} e^{-ik_x x} \left(-\frac{\hbar v_F k_-}{E_F} \right),
\]
(12)
\[
\psi(L < x) = \frac{t_{\eta \sigma}}{\sqrt{2EE_N}} e^{ik_x x} \left(\frac{\hbar v_F k_+}{E_N} \right)
\]
(13)
with \(\hbar v_F k_x = \sqrt{(E + \sigma \hbar c)^2 - (\Delta_F)^2 - (\hbar v_F k_x)^2} \), \(E_N = E + \Delta_N \), \(E_F = E + \sigma \hbar c + \Delta_F \) and \(k_\pm = k_x^{(\eta \sigma)} \pm i k_y^{(\eta \sigma)} \). Here, \(r_{\eta \sigma} \) and \(t_{\eta \sigma} \) are reflection and transmission coefficients, respectively. By matching the wavefunctions at the interfaces, we obtain the transmission coefficient:
\[
t_{\eta \sigma} = 4k_x k_+ E_N E_F e^{-ik_x L}/A,
\]
(14)
\[
A = (\alpha^{-1} - \alpha) k^2 E_F^2 + (\alpha^{-1} - \alpha)(k')^2 E_N^2 + E_N E_F \left[k_+ (\alpha^{-1} k_+ + \alpha k_-) \right. \\
\left. + k_- (\alpha^{-1} k_- + \alpha k_+) \right]
\]
(15)
with \(\alpha = e^{ik_x L} \).

By setting \(k_x = k \cos \phi \) and \(k_y = k \sin \phi \), we define normalized valley- and spin-resolved conductance:
\[
G_{\eta \sigma} = \frac{1}{2} \int_{-\pi/2}^{\pi/2} |t_{\eta \sigma}|^2 \cos \phi d\phi.
\]
(16)

The valley- and spin-resolved conductances, \(G_{K^{\eta \sigma}} \) and \(G_{1(\eta \sigma)} \), and valley and spin polarizations, \(G_v \) and \(G_s \), are defined as follows:
\[
G_{K^{\eta \sigma}} = \frac{G_{K^{\eta \sigma}} + G_{K^{\eta \sigma}}}{2},
\]
(17)
\[
G_{1(\eta \sigma)} = \frac{G_{1(\eta \sigma)} + G_{K^{\eta \sigma}}}{2},
\]
(18)
\[
G_v = \frac{G_k - G_K}{G_k + G_K},
\]
(19)
\[
G_s = \frac{G_\uparrow - G_\downarrow}{G_\uparrow + G_\downarrow}.
\]
(20)
3.2. Results

In the following, we fix L and Δ_{so} as $k_F L = 3$ and $\Delta_{so} / E = 0.5$ where $k_F = E / (\hbar v_F)$. We consider a finite chemical potential by doping in silicene.

First, let us review the ferromagnetic junctions with $h_s = 0$ [61]. Figure 3 depicts (a) valley-resolved conductance $G_{K(K')}$ and (b) spin-resolved conductance $G_{\uparrow\downarrow}$ as a function of Δ_z. As seen from figure 3(a), with increasing Δ_z, the current stemming from the K' point strongly decreases. Then, G_K gives a dominant contribution to the current. We find that G_{\uparrow} dominates over G_{\downarrow} for large Δ_z as seen in figure 3(b). These behaviors are attributed to the band structures in the ferromagnetic region [61]. Figure 4 illustrates (a) G_v and (b) G_s as functions of Δ_z and h for $h_s = 0$. The valley polarization G_v is odd with respect to Δ_z and h. For large Δ_z, G_v becomes large as we found in figure 3(a). However, for smaller Δ_z, the magnitude of G_v can be still ~ 0.5. We find that even the sign of the valley polarization can be changed by varying Δ_z. It is also seen that G_v changes significantly by varying the exchange field h. This indicates that the valley
polarization can be manipulated magnetically. The spin polarization G_s is odd in h but even in Δ_z. For large h, G_s becomes large as expected. Even for small h, G_s can be large for large Δ_z. From figure 4, it is also found that fully valley- and spin-polarized currents are realized for large Δ_z but relatively high polarizations (≥ 0.5) can be realized in a wide parameter regime.

The condition to realize fully valley polarized transport can be obtained as follows. For simplicity, let us focus on the regime with $\Delta_z > 0$ and $h > 0$. To locate the Fermi level $E(>\Delta_{so})$ within the band gap at the K' point ($\eta = -1$), $-\sigma\Delta_{so} + \Delta_z < \sigma h < \sigma\Delta_{so} + \Delta_z$ should be satisfied. Therefore, we obtain the condition necessary for the fully valley polarized transport as

$$\Delta_z > \max(h, \Delta_{so}, 2\Delta_{so} - h).$$

(21)

Next, consider the antiferromagnetic junctions with $h = 0$. Figure 5 depicts (a) valley-resolved conductance $G_{K(K')}^v$ and (b) spin-resolved conductance $G_{(1)(1)}^{\uparrow\downarrow}$ as a function of Δ_z. As seen from figure 5(a), with increasing Δ_z, the current coming from the K' point strongly decreases. Then, G_K gives a dominant contribution to the current. We also find that G_{\uparrow} dominates over G_{\downarrow} for large Δ_z as seen from figure 5(b). These behaviors are again attributed to the band structures in the antiferromagnetic region.

Figure 6 shows (a) G_v and (b) G_s as functions of Δ_z and h_{1z} for $h = 0$. The valley polarization G_v is an even function of Δ_z but an odd function of h_{1z}. For large Δ_z, G_v becomes large, which is consistent with figure 5(a). We find that the sign of the valley polarization can be changed by varying Δ_z. In contrast to the ferromagnetic case with finite h, the G_v can be large for $\Delta_z = 0$ but with finite h_{1z}. It is also seen that G_v changes significantly by varying the exchange field h_{1z}. This again indicates that the valley polarization can be controlled magnetically. The spin polarization G_s is odd in h_{1z} and Δ_z. Thus, the G_s becomes zero at $\Delta_z = 0$. This can be also understood from the fact that the bands are spin degenerate for $\Delta_z = 0$. Even for small h_{1z}, G_s can be large for large Δ_z. From this figure, it is found that fully valley—and spin-polarized currents are realized for large Δ_z and h_{1z} regime. Interestingly, we find some parameter regions where $G_v = 0$ but $G_s = \pm 1$ or $G_v = \pm 1$ but $G_s = 0$. Namely, by changing the tunable parameter Δ_z, one can realize transitions from a fully valley polarized state without spin polarization to a fully spin polarized state without valley polarization.

Figure 5. (a) Valley-resolved conductance $G_{K(K')}^v$ as a function of Δ_z. (b) Spin-resolved conductance $G_{(1)(1)}^{\uparrow\downarrow}$ as a function of Δ_z. We set $h = 0$ and $h/E = 0.3$. New J. Phys. 16 (2014) 085005 T. Yokoyama
The conditions to realize fully valley or spin polarized transports are obtained as follows. Let us focus on the regime with $\Delta_z > 0$. The gap for valley η and spin σ is given by $-\Delta_{\sigma,\eta} + \Delta_z + \sigma h_z$. To realize the fully valley polarized transport $G_v = 1$, the gaps at the K' point should be larger than the Fermi energy: $-\Delta_{\sigma,\eta} + \Delta_z + \sigma h_z > E$. Thus, we obtain

$$-\Delta_z + E + \Delta_{so} < h_z < \Delta_z - E + \Delta_{so}. \quad (22)$$

For $\Delta_{so}/E = 0.5$, this reduces to $-\Delta_z/E + 1.5 < h_z/E < \Delta_z/E - 0.5$, which is consistent with figure 6(a). Similarly, to obtain $G_v = -1$, we require $-\Delta_{\sigma,\eta} - \Delta_z + \sigma h_z > E$, leading to

$$\Delta_z + E - \Delta_{so} < h_z. \quad (23)$$

For $\Delta_{so}/E = 0.5$, this reduces to $\Delta_z/E + 0.5 < h_z/E$, which is consistent with figure 6(a). To obtain the fully spin polarized transport, $G_p = 1$, the gaps for spin up states are required to be larger than the Fermi energy: $\Delta_{so} + \Delta_z + h_z$, $\Delta_{so} - \Delta_z - h_z > E$. Thus, we obtain

$$-\Delta_z + E + \Delta_{so} < h_z. \quad (24)$$

For $\Delta_{so}/E = 0.5$, this reduces to $\Delta_z/E + 1.5 < h_z/E$, consistent with figure 6(b). Also, note that when $\Delta_z = h_z$ and $2\Delta_z > E + \Delta_{so}$ are satisfied, the gaps for spin up states at the K and K' points coincide and the gaps for spin down states are larger than the Fermi energy. Thus, we have $G_v = 0$ and $G_p = 1$ in this case, as seen in figure 6.

For a ferromagnetic silicene with $k_F L = 1$ and $E = 10$ meV, since $v_F \sim 5 \times 10^5$ m s$^{-1}$, we have $L \sim 10$ nm. For $\Delta_z \sim E$, the electric field applied perpendicular to the plane is estimated as 34 meV/Å since the distance between the A and B sublattice planes is 0.46 Å. Here, we have assumed the zero temperature limit. This assumption is justified for a temperature regime lower than Δ_{so}, Δ_z, h and h_z.

Recently, based on first-principles calculations, stability and electronic structures of silicene on Ag(111) surfaces have been investigated [62, 63]. It is found that Dirac electrons are absent near the Fermi level in all the stable structures due to buckling of the Si monolayer and mixing between Si and Ag orbitals. It is also proposed that either a BN substrate or a hydrogen-processed Si surface are good candidates to preserve Dirac electrons in silicene [62].

A ferromagnetic exchange field could be induced in silicene by the magnetic proximity effect with a magnetic insulator EuO as proposed for graphene, which could be of the order of
1 meV [23]. Exchange fields on A and B sublattices can be induced by sandwiching silicene by two (different) ferromagnets or attaching a honeycomb-lattice antiferromagnet such as antiferromagnetic manganese chalcogenophosphates (MnPX₃, X = S, Se) in monolayer form [64–66].

4. Topological crystalline insulator

4.1. Formulation

Consider normal/ferromagnetic/normal topological crystalline insulator junctions with flat interfaces at $x = 0$ and $x = L$ (see figure 1). We here study transports on the (001) surface of the topological crystalline insulator. The topological crystalline insulator has four Dirac cones with the same chirality at Λ_X, Λ_X', Λ_Y and Λ_Y' points in the (001) surface [67–71]. The effective Hamiltonian of the topological crystalline insulator around the Λ_X point is given by [67–71]

$$H_X = v_1 \hat{k}_x \sigma_y - v_2 \hat{k}_y \sigma_x + \tilde{m} \sigma_z + U$$ \hspace{1cm} (25)

where typically $v_1 = 1.3$eVÅ, $v_2 = 0.84$eVÅ, σ is the Pauli matrix in spin space, and

$$\hat{k}_x = k_x + \frac{1}{v_1} \left(\lambda_{11} e_{11} + \lambda_{22} e_{22} + \lambda_{33} e_{33} + h_x \right), \quad \hat{k}_y = k_y - \frac{1}{v_2} \left(\lambda_{12} e_{12} + h_y \right),$$ \hspace{1cm} (26)

$$\tilde{m} = \frac{n'}{\sqrt{n'^2 + (n')^2}} \left(\lambda_{23} e_{23} + h_z \right) \approx 0.35 \left(\lambda_{23} e_{23} + h_z \right).$$ \hspace{1cm} (27)

Here, U is the potential, ϵ_{ij} and λ_{ij} ($i, j = 1, 2, 3$) are the strain tensor and electron–phonon couplings of the topological crystalline insulator, respectively. Strain may be induced by substituting Se for Sn [72], or by attaching a piezoelectric material such as BaTiO₃ [71]. $n = 70$meV and $n' = 26$ meV describe the intervalley scattering [56, 67–70]. h_i ($i = x, y, z$) represents the induced exchange field in the ferromagnetic region given by

$$(h_x, h_y, h_z) = h (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$$ \hspace{1cm} (28)

We set $\epsilon_{ij} = h = U = 0$ in the normal regions and consider a scattering problem through a barrier region induced by the ferromagnetism and strain.

The wavefunctions in each region can be written as

$$\psi(x \leq 0) = \frac{1}{\sqrt{2E}} e^{ik_x x} \left(-i v_1 k_x - v_2 k_y \right) \frac{1}{E} + \frac{r}{\sqrt{2E}} e^{-ik_x x} \left(iv_1 k_x - v_2 k_y \right) \frac{1}{E},$$ \hspace{1cm} (29)

$$\psi(0 < x < L) = \frac{a}{\sqrt{2E' (E' - \tilde{m})}} e^{ik_x x} \left(-i v_1 k_x - v_2 k_y \right) \frac{1}{E' - \tilde{m}} + \frac{b}{\sqrt{2E' (E' - \tilde{m})}} e^{-ik_x x} \left(iv_1 k_x - v_2 k_y \right) \frac{1}{E' - \tilde{m}},$$ \hspace{1cm} (30)

$$\psi(x \geq L) = \frac{t}{\sqrt{2E}} e^{ik_x x} \left(-i v_1 k_x - v_2 k_y \right) \frac{1}{E}.$$ \hspace{1cm} (31)
Here, \(r \) and \(t \) are the reflection and transmission coefficients, respectively. We set \(E' = E - U \) and assume that the Fermi energy is positive, \(E > 0 \). The dispersion relations are then given by

\[
E = \sqrt{(v_1 k_x)^2 + (v_2 k_y)^2} = \pm \sqrt{(v_1 k'_x)^2 + (v_2 \tilde{k}_y)^2 + \tilde{m}^2 + U}.
\]

Note that due to the translational symmetry in the \(y \)-direction, the momentum parallel to the \(y \)-axis is conserved, while the momentum parallel to the \(x \)-axis is not conserved.

By matching the wavefunctions at the interfaces,

\[
\psi(+0) = \psi(-0), \quad \psi(L + 0) = \psi(L - 0),
\]
we obtain the transmission coefficient:

\[
t = \frac{4pv_1 k'_x E e^{-ikL} \cos \phi}{e^{-ikL} (iv_1 k'_x + v_2 \tilde{k}_y + ipe^{i\phi}) (iv_1 k'_x - v_2 \tilde{k}_y + ipe^{-i\phi}) + e^{ikL} (-iv_1 k'_x + v_2 \tilde{k}_y + ipe^{i\phi}) (iv_1 k'_x + v_2 \tilde{k}_y - ipe^{-i\phi})}.
\]

Here, \(p = 1 - (U + \tilde{m})/E \), and we set \(v_1 k_x = E \cos \phi \) and \(v_2 k_y = E \sin \phi \). The normalized conductance stemming from the \(\Lambda_X \) point is calculated as

\[
G_X = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \langle |t|^2 \cos \phi \rangle d\phi.
\]

The conductance coming from the \(\Lambda_X' \) point \(G_X' \) can be obtained by the substitution \(\lambda_{23} e_{23} \rightarrow -\lambda_{23} e_{23} \) in the above result [67–71].

The effective Hamiltonian around the \(\Lambda_Y \) point is given by

\[
H_Y = v_2 \tilde{k}_x \sigma_y - v_1 \tilde{k}_y \sigma_x + \tilde{m} \sigma_z + U
\]

where

\[
\tilde{k}_x = k_x + \frac{1}{v_2} \left(\lambda_{11} e_{22} + \lambda_{22} e_{11} + \lambda_{33} e_{33} + h_x \right), \quad \tilde{k}_y = k_y + \frac{1}{v_1} (\lambda_{12} e_{12} - h_x),
\]

\[
\tilde{m} = \sqrt{n' \left(-\lambda_{13} e_{13} + h_x \right)}.
\]

The effective Hamiltonian around the \(\Lambda_Y' \) point is given by the replacement \(\lambda_{13} e_{13} \rightarrow -\lambda_{13} e_{13} \) in \(H_Y \) [67–71]. The conductances originating from the \(\Lambda_Y \) and \(\Lambda_Y' \) points, \(G_Y \) and \(G_{Y'} \), can be obtained in a way similar to that from the \(\Lambda_X \) point (by replacement of corresponding parameters). Note that \(G_Y \) is given by

\[
G_Y = \frac{v_2}{2v_1} \int_{-\pi/2}^{\pi/2} \langle |t|^2 \cos \phi \rangle d\phi.
\]

The factor of \(\frac{v_2}{v_1} \) is included in this expression because the velocity operator for \(H_Y \) is given by

\[
\hat{v}_y = \frac{\partial H_Y}{\partial \tilde{k}_x} = v_2 \sigma_y.
\]
Finally, the total conductance \(G \) is defined as
\[
G = G_X + G_X' + G_Y + G_Y'.
\] (39)

4.2. Results

In the following, we fix \(\hbar/E = \lambda_{12} \epsilon_{12}/E = 0.2, \lambda_{23} \epsilon_{23}/E = \lambda_{13} \epsilon_{13}/E = 0.1, EL/v_1 = 1 \) and \(v_2/v_1 = 0.65 \).

Figure 7 shows the valley-resolved conductances: (a) \(G_X \), (b) \(G_X' \), (c) \(G_Y \) and (d) \(G_Y' \) as functions of the direction of the exchange field \(\theta \) and \(\varphi \) for \(U = 0 \). A valley filtering effect is seen.

Finally, the total conductance \(G \) is defined as
\[
G = G_X + G_X' + G_Y + G_Y'.
\] (39)

4.2. Results

In the following, we fix \(\hbar/E = \lambda_{12} \epsilon_{12}/E = 0.2, \lambda_{23} \epsilon_{23}/E = \lambda_{13} \epsilon_{13}/E = 0.1, EL/v_1 = 1 \) and \(v_2/v_1 = 0.65 \).

Figure 7 shows the valley-resolved conductances: (a) \(G_X \), (b) \(G_X' \), (c) \(G_Y \) and (d) \(G_Y' \) as functions of \(\theta \) and \(\varphi \) for \(U = 0 \). As shown in reference [73], the inplane exchange field shifts the Fermi surface in momentum space. The conductance is suppressed due to this shift along the \(k_y \)-direction since \(k_y \) is conserved. As for \(G_X \) and \(G_X' \), when \(h_x \) is positive, the shift of the Fermi surface along the \(k_y \)-direction is enhanced since \(\lambda_{12} \epsilon_{12} > 0 \). Hence, the conductance is strongly suppressed at \(\varphi = 0 \) as seen from figures 7 (a) and (b). On the other hand, when \(h_x \) is negative, the shift of the Fermi surface along the \(k_y \)-direction is canceled. The conductance then becomes large at \(\varphi = \pi \). Since the term with \(\lambda_{12} \epsilon_{12} \) in \(H_Y \) and \(H_Y' \) has a sign opposite to that of \(h_x \), \(G_Y \) and \(G_Y' \) become large at \(\varphi = 0 \) but small at \(\varphi = \pi \) as shown in figures 7 (c) and (d). As \(\theta \) deviates from \(\pi/2 \), the exchange fields points to the \(z \)-direction, and the dependence of the conductances on \(\varphi \) becomes weak. Since \(\lambda_{23} \epsilon_{23} > 0 \), the mass gap for \(H_{X(Y)} \) at \(\theta = 0 \) is larger than that at \(\theta = \pi \). Hence, \(G_{X(Y)} \) at \(\theta = 0 \) is smaller than that for \(\theta = \pi \). With the same reasoning, we find
that $G_X(Y)$ at $\theta = 0$ is larger than that for $\theta = \pi$. It is also seen that in the parameter region where G_X and G'_X are large, G_Y and G_Y' can be small and vice versa, indicative of a valley filtering effect.

In figure 8, the valley-resolved conductances are plotted as functions of θ and φ for $U/E = 1$. We find a valley filtering effect different from that in figure 7. In contrast to figure 7, in a parameter region with large $G_X(Y)$, $G''_{X(Y)}$ can be small and vice versa for $U/E = 1$. This indicates that the valley filtering effects are controllable by varying the potential in the ferromagnetic region and the direction of the magnetization.

In figure 9, we show valley-resolved conductances as a function of U/E for (a) $\theta = \varphi = 0$ and (b) $\theta = 0.5\pi$ and $\varphi = 0$. In figure 9(a), it is found that the relative magnitudes of the conductances depend on U/E which is tunable by gating. For $U/E < 0.8$, G_X and G_Y give dominant contributions. At around $U/E = 0.9$, G_X and G_Y are dominant, while at around $U/E = 1$, G_X shows a dominant contribution. As shown in figure 9(b), G_Y and G_Y' are dominant contributions at around $U/E = 1$. These results indicate that by changing the direction of the
magnetization and the potential in the ferromagnetic region, one can control the dominant valley contribution out of four valley degrees of freedom.

We show the total conductance G as functions of θ and φ in figures 10(a) and (b), and as a function of U/E in figure 10(c). At $U = 0$, G takes a maximum at around $\theta = \varphi = 0.5\pi$ and a minimum at around $\theta = 0.5\pi$ and $\varphi = 0$ as seen from figure 10(a). On the other hand, at $U/E = 1$, G takes a maximum for $\theta = 0.5\pi$ and $\varphi = \pi$ as shown in figure 10(b). We also have a large magnetoconductance effect compared to the case with $U = 0$. Comparing figures 10(a) and (b), it is found that by changing U, the direction of the magnetization at maximum conductance and that at minimum conductance are exchanged. In figure 10(c), G is plotted as a function of U/E. It is found that the total conductance also depends strongly on the potential in the ferromagnetic region. Therefore, the total conductance is also tunable by electric and magnetic means.

Here, we have considered transport properties on the (001) surface of the topological crystalline insulator. Our formalism is also applicable to the (110) or (111) surfaces of the topological crystalline insulator. Recently, angle-resolved photoemission spectroscopy on the (111) surface of the topological crystalline insulator has been reported. Dirac cones at the Γ and \bar{M} points have been observed [74, 75]. It has been also revealed that the energy location of the Dirac point and the Dirac velocity are different at the Γ and \bar{M} points [74]. These characteristics can be taken into account in our formalism by changing parameters v_1, v_2 and U at each valley.

5. Conclusions

In summary, we have investigated spin and valley transports in junctions composed of silicene and topological crystalline insulators. We have considered normal/magnetic/normal Dirac metal junctions where a gate electrode is attached to the magnetic region. In a normal/antiferromagnetic/normal silicene junction, it is shown that the current through this junction is valley and spin polarized due to the coupling between valley and spin degrees of freedom, and the valley and spin polarizations can be tuned by local application of a gate voltage. In
particular, we have found a fully valley and spin polarized current by applying the electric field. In a normal/ferromagnetic/normal topological crystalline insulator junction with a strain induced in the ferromagnetic segment, we have investigated valley-resolved conductances and clarified how the valley polarization stemming from the strain and exchange field appears in this junction. It is found that by changing the direction of the magnetization and the potential in the ferromagnetic region, one can control the dominant valley contribution out of four valley degrees of freedom. We have also reviewed spin transport in normal/ferromagnetic/normal graphene junctions, and spin and valley transports in normal/ferromagnetic/normal silicene junctions.

The role of magnetism is different in graphene, silicene and topological crystalline insulator junctions. In graphene junctions, the ferromagnetism induces different chemical potential shifts for up and down spin states, which leads to the shift of the oscillation of the conductances. As a result, a finite spin current appears. In silicene junctions, the (anti) ferromagnetism opens different spin dependent band gaps at K and K' points. This results in spin and valley polarized transports in these junctions. In topological crystalline insulator junctions, the ferromagnetism also induces valley dependent band gaps and inplane ‘vector potentials’ in combination with strain effects. These properties lead to valley dependent transports.

Figure 10. Total conductance $G = G_x + G_y + G_{t1} + G_{t2}$ as functions of θ and ϕ for (a) $U = 0$ and for (b) $U/E = 1$, and as a function of (c) U for a. $\theta = \phi = 0$, and b. $\theta = 0.5\pi$ and $\phi = 0$.

New J. Phys. 16 (2014) 085005 T Yokoyama
Note added in proof. Recently, we learned of a related work on ferromagnetic silicene junctions [76].

Acknowledgments

The author thanks S Murakami, Y Okada, M Ezawa and X Hu for helpful comments and discussions. This work was supported by a Grant-in-Aid for Young Scientists (B) (no. 23740236) and the ‘Topological Quantum Phenomena’ (no. 25103709) Grant-in Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

[1] Ando T 2005 J. Phys. Soc. Jpn 74 777
[2] Katsnelson M I and Novoselov K S 2007 Solid State Commun. 143 3
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005 Nature 438 201
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[7] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Kastenelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nature Phys. 2 177
[8] Yang K 2007 Solid State Commun. 143 27
[9] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[10] Cheianov V V and Falko V I 2006 Phys. Rev. B 74 041403
[11] Cayssol J, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428
[12] Huard B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[13] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[14] Ozzyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S and Kim P 2007 Phys. Rev. Lett. 99 166804
[15] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[16] Young A F and Kim P 2009 Nature Physics 5 222
[17] Young A F and Kim P 2011 Annual Review of Condensed Matter Physics 2 101
[18] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[19] Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426
[20] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature (London) 448 571
[21] Ohishi M, Shiraishi M, Nouchi R, Nozaki T, Shinjo T and Suzuki Y 2007 Jap. J. Appl. Phys. 46 L605
[22] Cho S, Chen Y-Fu and Fuhrer M S 2007 Appl. Phys. Lett. 91 123105
[23] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[24] Son Y-W, Cohen M and Louie S G 2006 Nature 444 347
[25] Kan E-J, Li Z, Yang J and Hou J G 2007 Appl. Phys. Lett. 91 243116
[26] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[27] Yokoyama T 2008 Phys. Rev. B 77 073413
[28] Linder J, Yokoyama T, Huertas-Hernando D and Sudbo A 2008 Phys. Rev. Lett. 100 187004
[29] Yokoyama T and Linder J 2011 Phys. Rev. B 83 081418(R)
[30] San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
[31] Xia F, Farmer D B, Lin Y-M and Avouris P 2010 Nano Lett. 10 715
[32] Majidi L and Zareyan M 2011 Phys. Rev. B 83 115422
[33] Rycerz A, Tworzydło J and Beenakker C W J 2007 Nature Phys. 3 172
[34] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[35] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
[36] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[37] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[38] De Padova P et al 2010 Appl. Phys. Lett. 96 261905
[39] De Padova P, Quaresima C, Olivier B, Perfetti P and le Lay G 2011 Appl. Phys. Lett. 98 081909
[40] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and le Lay G 2012 Phys. Rev. Lett. 108 155501
[41] Lin C-L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[42] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[43] Liu C-C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[44] Liu C-C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[45] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[46] Ezawa M 2012 New J. Phys. 14 033003
[47] Fu L 2011 Phys. Rev. Lett. 106 166802
[48] Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nature Comm. 3 982
[49] Slager R-J, Mesaros A, Juricic V and Zaanen J 2012 Nature Phys. 9 98
[50] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nature Phys. 8 800
[51] Xu S-Y et al 2012 Nature Com. 3 1192
[52] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczepakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nature Mat. 11 1023
[53] Wojek B M et al 2013 Phys. Rev. B 87 115106
[54] Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K and Ando Y 2013 Phys. Rev. B 87 155105
[55] Taskin A A, Sasaki S, Segawa K and Ando Y 2014 Phys. Rev. B 89 121302
[56] Ezawa M 2014 Phys. Rev. B 89 195413
[57] Morpurgo A F and Guinea F 2006 Phys. Rev. Lett. 97 196804
[58] Wallace P R 1947 Phys. Rev. 71 622
[59] Bhattacharjee S and Sengupta K 2006 Phys. Rev. Lett. 97 217001
[60] Lindner J and Sudbo A 2007 Phys. Rev. Lett. 99 147001
[61] Yokoyama T 2013 Phys. Rev. B 87 241409(R)
[62] Guo Z-X, Furuya S, Iwata J and Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714
[63] Wang Y-P and Cheng H-P 2013 Phys. Rev. B 87 245430
[64] Ezawa M 2013 Phys. Rev. B 87 155415
[65] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl Acad. Sci. USA 110 3738
[66] Liu J, Duan W and Fu L 2013 Phys. Rev. B 88 241303
[67] Fang C, Gilbert M J, Xu S-Y, Bernevig B A and Hasan M Z 2013 Phys. Rev. B 88 125141
[68] Liu J, Hsieh T H, Wei P, Duan W, Moodera J and Fu L 2014 Nature Mat. 13 178
[69] Wang Y J, Tsai W-F, Lin H, Xu S-Y, Neupane M, Hasan M Z and Bansil A 2013 Phys. Rev. B 87 235317
[70] Fang C, Gilbert M J and Bernevig B A 2014 Phys. Rev. Lett. 112 046801

T Yokoyama
[72] Okada Y et al 2013 Science 341 1496
[73] Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401
[74] Tanaka Y, Shoman T, Nakayama K, Souma S, Sato T, Takahashi T, Novak M, Segawa K and Ando Y 2013 Phys. Rev. B 88 235126
[75] Polley C M et al 2014 Phys. Rev. B 89 075317
[76] Soodchomshom B 2014 J. Appl. Phys. 115 023706