Automated Fetal Head Classification and Segmentation Using Ultrasound Video

KHALID RASHEED1, FARAZ JUNEJO1, AYESHA MALIK2, and MUHAMMAD SAQIB3

1Faculty of Computing and Engineering Science, SZABIST, Karachi, Pakistan (e-mail: Khalid.rasheed@szabist.edu.pk, faraz.junejo@szabist.edu.pk)
2Department of Obstetrics and Gynecology, Agha Khan University Hospital, Karachi, Pakistan (e-mail: ayesha.malik@aku.edu)
3Faculty of Mechanical Science and Engineering, Institute of Materials Science, Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany (e-mail: muhammad.saqib@tu-dresden.de)

Corresponding authors: Khalid Rasheed (e-mail: khalid.rasheed@szabist.edu.pk) and ;
Muhammad Saqib (e-mail: muhammad.saqib@tu-dresden.de).

ABSTRACT
During pregnancy, fetal ultrasound provides essential insight into a baby’s growth and development. In this ultrasound, accurate assessment of fetal head biometry is critical to the clinical management of pregnancy. Current methodologies used for fetal head biometry heavily rely upon sonographer skills and experience to locate a baby’s head. In this paper a novel approach is proposed to automate the fetal head biometry using live ultrasound feed; which is also capable of tackling low abdominal contrast against surroundings. Proposed model is trained on ALEXNET and UNET for classification and segmentation of headframes respectively from ultrasound video. To compute biparietal diameter (BPD) and head circumference (HC); which are essential requirements to compute gestational age, an ellipse is drawn on the contour of the annotated segmented fetal head. It should be noted that to validate gestational age estimate, ellipse are drawn on multiple best classified headframes obtained using ALEXNET. The proposed system is able to estimate gestational age within clinically acceptable ± one week of observed gestational age with an accuracy of 96%. Moreover, it uses robust machine vision features to reduce the sonographer’s interaction with the system, thus reducing the overall procedure time and making it independent of sonographer’s skill.

INDEX TERMS fetal ultrasound, fetal head biometry, head classification and segmentation, image processing, machine learning

I. INTRODUCTION
The current process of fetal ultrasound requires sonographers to locate the fetal organs such as the head, abdomen, and femur by examining the video feed while moving the probe [1] - [3]. The slightest movement in the probe results in a drastic change in the appearance of an organ’s image, while the noise produced in the video feed also hinders locating the organ [4]. Consequently, the resultant error in fetal biometry and time required are inconsistent, which may vary over the period as the sonographer gains experience [5] - [7].

Furthermore, continuous movement of the probe may irritate the mother that can lead to undesirable movement, which in turn, enhances the resultant error [8]. It should also be noted that the availability of skilled sonographers poses a great challenge [9], [10]. Consistency in ultrasound (US) measurement during the second and third trimester is of paramount importance as any error in measurement may result in inaccurate prediction with regards to fetus health [11] - [15].

For example, an 8mm error in HC causes a one-week error in gestational age estimation in the second trimester. While, in the third trimester, a 5mm error in HC causes a one-week error in gestational age. [16] importantly, this error leads to the wrong Estimated Delivery Date (EDD) that increases the risk for mother and child health [17] - [19].

Head circumference (HC) and biparietal diameter (BPD), shown in Figure 1; are essential biometry parameters to estimate fetal gestational age (GA) [20], [21]. In the recent past, several systems have been proposed to automatically calculate fetal HC and BPD [22] – [32]. Lu W et al. used randomized hough transform and K-mean algorithms to automate the measurements of BPD and HC [33]. Furthermore, McManigle et al. applied a novel approach of boundary fragment model using random forest (RF) edge classification to automate segmentation and estimation of HC ellipse [34]. Similarly, Li et al. used RF with Ellipse fitting method and developed a learning-based framework that used prior
knowledge of gestational age (GA) and ultrasound scanning [35]. Ciurte et al. proposed a framework based on semisupervised segmentation and minimum cut problem to help in formulating fetal head segmentation and tumors detection [36]. Moreover, in addition to Hough Transform Foi et al. [37] and Van den Heuval et al. [38] have used the Global multiscale and multi-start Nelder-Mead algorithm, respectively, with dynamic programming, to automate and detect fetal head based on 2D images. With dynamic programming to automate and detect fetal head based on 2D images.

Recently, some studies have been performed to enhance the accuracy of fetal measurements examinations. For instance, Danny Rahayu et al. [39] have used a Gaussian Filter, Morphology Operation and Canny Edge Detection to reduce noises and enhance the scanning results for accurate fetal measurements. Similarly, Kirthana. LP et al. [40] have used a deep-learning-based methodology named UNET with Hough transformation to improve the process of head segmentation. Despite the advancements in fetal biometry automation, accuracy and reliability of these proposed approaches highly depend on sonographer skills, as input images are handpicked by the sonographer, which results in very limited the sample size for any given fetus. It is therefore desirable to have an automated ultrasound measurement, i.e., making the procedure independent of the skill and experience of the sonographer.

This study presents a robust automated fetal gestational age estimation technique using live ultrasound feed. The process starts from classifying headframes using ALEXNET obtained from the video instead of the image captured by a sonographer. Furthermore, occipitofrontal diameter (OFD) measurement, shown in Figure 1, is used to validate classified headframes. Subsequently, segmentation on head classified frames is performed by a UNET with mask and annotated images, and then Least Square Ellipse (LSE) is employed to get the HC and BPD measurements. These measurements, in turn, are used by Hadlock formula [41] to compute the fetus’s gestational age (GA).

A. PROBLEM STATEMENT

Standard practice to measure fetal biometry by a sonographer or a doctor is to take images and measure linear contour and ellipsoid diameter on screen as required by American Institute for Ultrasound in Medicine (AIUM). All measurements are taken manually by the physician or sonographer; this requires both knowledge and experience. Ultrasound images are produced from sound waves, full of obnoxious noises [42], such as Gaussian noise, Poisson noise, and atmospheric absorption and scattering [43]. Owing to these noises, identifying organs becomes difficult and time-consuming for examiners [44], [45]. Furthermore, manual measurements are usually inconsistent [46] and require substantial experience [47] for repeatability. Furthermore, continued keystrokes during image acquisition may cause muscle injury to the examiner [48] - [49].

There is a shortage of trained sonographers, especially in developing countries [50] - [51]. This situation warrants a tremendous demand for an automated fetal biometry system. This the study employs clinically applicable automated classification, detection, localization, segmentation for fetal head biometry using ultrasound video to estimate (GA).

II. METHODOLOGY

This research proposes an approach to automate the fetal head biometry in real-time rather than on static images as employed by [22] – [32], [36]. Initially, the system autodetects i.e., classifies frames of interest to measure fetal head biometry from an ultrasound video as shown in Figure 2. For this purpose, multiple ultrasound videos of fully developed singleton fetuses, i.e., during second and third trimesters; have been used courtesy of Agha Khan Hospital, Karachi. Once the fetal head has been extracted from ultrasound video, then segmentation (as shown in Figure 3) is performed to obtain parameters i.e., BPD and HC; required for fetal Gestational age estimation.

A. DATASET CONSISTENCY

This study utilizes two different datasets; provided by AKUH. The first of these datasets contain 10,000 labeled images of each class, i.e., fetal head, femur, and abdomen. For fetal head biometry such as HC, BPD, and Gestational age (GA) specified by the sonographer. These images used to train ALEXNET for classification purposes. A second Dataset consisted of 1,000 ultrasound videos (DICOM Files) validated to validate the proposed model. Each tape contained all three classes, i.e., fetal head, femur, and abdomen.

B. INCLUSION & EXCLUSION CRITERIA

Inclusion criterion were:

- Maternal age between 18 and 45 years old;
- Planned delivery at AKUH; with Body mass index at first official prenatal appointment below 35.0 kg/m²;

FIGURE 1. Fetal head ultrasound shows HC, BPD and OFD.
• Only fetal ultrasound of second and third trimester with gestational age between 18 and 42 weeks; and
• A singleton pregnancy where external fetus body fully developed to measure (abdomen, femur, and head).

Exclusion criterion were:
• Suspected fetal growth restriction or malformation of the head;
• Obesity; as it make it difficult to visualize fetal structures;
• Oligohydramnios; determined by amniotic fluid index less than 5cm; and
• Fetal distress or unstable maternal condition.

C. CLASSIFICATION
ALEXNET was used to classify, i.e., extract fetal head from ultrasound videos, which in addition to fetal head contains abdomen and femur. For this purpose, training and testing of ALEXNET were performed using 10,000 static images of each class, i.e., fetal head, abdomen, and femur. Furthermore, augmentation was performed to increase the data size and simulate various organs orientations in ultrasound videos. Figure 4 enlists steps taken for data augmentation.

Classification score of ALEXNET architecture are shown in Table 1.

	precision	recall	F1-score	support
Abdomen	0.912	0.515	0.658	200
Femur	0.894	0.715	0.794	200
Head	0.581	0.950	0.721	200
Accuracy	0.727			600
Macro Avg.	0.795	0.727	0.725	600
Weighted Avg.	0.795	0.727	0.725	600

Figure 7 depicts ALEXNET accuracy in extracting fetal head, which in turn is used to obtain threshold value used to identify the best fetal head frames from the video as shown in Figure 8. After extensive trials and in consultation with gynecologist; this threshold value has been identified as 90% i.e., for fetal head biometry, only those frames used which are given a score of 90 or above by ALEXNET.

Figure 9 shows some of the best head classified frames obtained using ALEXNET.

1) Segmentation
Upon completion of classification, all valid head frames are used to produce a video containing fetal head only. A single frame of such video is shown in Figure 6, which enlist the probability of each organ and frame number. This video is then used for head segmentation and biometry purposes.

For segmentation purposes, UNET model is trained with 10,000 labeled fetal head images. UNET model is trained with different variations; enlisted in Table 2 using both Masked and annotated approaches. Results show that highest accuracy obtained using Mask and Annotated approach are 98.44% and 97.82% respectively; and increase of convolve and transpose layers to UNET architecture does not improve results.

Figure 10 shows result of best performing UNET configuration model (selected from Table 2) with Mask approach.

However, during validation (some results shown in Figure 11, it was determined that sometimes a complete ellipse is not found using Mask approach, which is an essential requirement for fetal head biometry.

After training of UNET model with mask; localization and segmentation are performed on all classified head frames. To obtain a perfect ellipse depicting fetal head, Least Square Ellipse [55] - [57] approach is used on the contour of the predicted mask. It can be seen from Figure 12, that resultant ellipse is not a true representation of fetal head.

Training of UNET model with mask approach was therefore abandoned instead annotated approach was used as shown in Figure 13.

Furthermore, Figure 14 shows results for different precisions of head class obtained using ALEXNET. As discussed earlier; only frames with precision higher than a threshold of 90% or more are used for segmentation purposes.

It can be seen from Figure 15 that better segmentation results i.e. Biparietal bones are clearly visible; are obtained for valid head frames (threshold > 90%) obtained using
ALEXNET. However, presence of noises imply that Binarization must be applied.

FIGURE 3. Summarized the view of the proposed methodology.

FIGURE 4. Process flow used for data augmentation.
The primary objective of this study is to identify the best frame on which fetal biometry can be performed. It should be noted that a sonographer spends a significant amount of time ascertaining the best frames for repeated measurements [58]. To measure fetal head circumference, initially, grayscale images, shown in Figure 15 were binarize using eq(1) as shown in Figure 16.

\[
g(x, y) = \begin{cases}
1 & \text{if } f(x, y) \geq T \\
0 & \text{otherwise}
\end{cases} \quad (1)
\]

where \(g(x, y)\) is a thresholded version of \(f(x, y)\) at some global threshold \(T\).

After Binarization, it can be seen from Figure 16 that noises are removed and contour of Biparietal bones are...
Fetal gestational age is then computed for all frames through two parameters i.e. HC and BPD separately using respective Headlock formulas [61], as shown in Table 3. It is evident from Table 3 that as expected frames with only two objects yield gestational age with better accuracy when compared with gestational age observed by sonographer. To compare between frames containing two objects and more than two objects; two different videos were made. One video contained all frames (shown in Figure 21) and the other video contained only frames having two objects (as shown in Figure 22).

It can be seen from these videos that as expected gestational age measured using video containing frames with only two objects is closer to gestational age observed by sonographer. However, still for such frames i.e. containing two objects only, occasionally age measured using BPD and HC are far apart as shown in Figure 22. It is also noted that age estimation using BPD is accurate in comparison to age computed using HC, it is primarily due to the fact that due to surrounding noise biparietal bones do not appear to meet each other, hence approximation is involved in computing HC. To overcome this problem, age computed using HC and BPD are compared with each other, as shown in Table 4. Afterwards, only frames for which difference in estimated age using both parameters i.e. BPD and HC is within one week of each other using eq(3, 4 and 5) i.e. within allowable tolerance are compared with each other, as shown in Table 4. Afterwards, only frames for which difference in estimated age using both parameters i.e. BPD and HC is within one week of each other using eq(3, 4 and 5) i.e. within allowable tolerance are shortlisted for fetal biometry as shown in Table 5. Finally, a video is made containing only shortlisted frames; as shown in Table 6 and as shown in Figure 23. As discussed earlier, in some cases ellipses are not properly touching contour of Biparietal bones, which results in erroneous measurement. To exclude such frames; initially for each frame an annotated image is created by superimposing respective binary ellipse on a dark image i.e. containing all pixels of 0; as shown in Figure 19. Now; interception is performed between each binarize segmented frame (shown in Figure 16) and corresponding annotated image (shown in Figure 19). This will yield only common pixels as shown in Figure 20. Based on pixel connectivity, it can be seen that for cases in which overlap occurs between ellipse and Biparietal bones, there are only two objects as shown in Figure 20. Whereas; otherwise number of objects are greater than two as shown in Figure 20. However, this interception process is quite time consuming. To overcome this problem, frames with invalid OFD are identified and discarded. For this purpose, major axis of ellipse i.e. OFD is computed for each frame. This value of OFD is then compared with specified range of OFD defined for second and third trimester [59] [60]. Now, interception is performed using eq(2) for only frames with valid OFD.

\[
I_i = A_i \cap B_i
\]

where \(n \) = no of classified head frames from ultrasound video,

\(A \) = Binarized segmented frame

\(B \) = Annotated frame

\(I \) = Intercepted image

Now for drawing of an ellipse, as shown in Figure 17; Least Square Ellipse method is used. It can be seen that for some cases, i.e., Frame 0, 2, 6, 8 and 9, ellipses are not properly touching the contour of Biparietal bones.

Afterward, for validation purposes; the resultant Ellipses are superimposed on the actual frames, as shown in Figure 18.

As discussed earlier, in some cases ellipses are not properly touching contour of Biparietal bones, which results in erroneous measurement. To exclude such frames; initially for each frame an annotated image is created by superimposing respective binary ellipse on a dark image i.e. containing all pixels of 0; as shown in Figure 19. Now; interception is performed between each binarize segmented frame (shown in Figure 16) and corresponding annotated image (shown in Figure 19). This will yield only common pixels as shown in Figure 20. Based on pixel connectivity, it can be seen that for cases in which overlap occurs between ellipse and Biparietal bones, there are only two objects as shown in Figure 20. Whereas; otherwise number of objects are greater than two as shown in Figure 20. However, this interception process is quite time consuming. To overcome this problem, frames with invalid OFD are identified and discarded. For this purpose, major axis of ellipse i.e. OFD is computed for each frame. This value of OFD is then compared with specified range of OFD defined for second and third trimester [59] [60]. Now, interception is performed using eq(2) for only frames with valid OFD.

\[
M = \frac{1}{j} \sum_{k=1}^{n} \text{mk}
\]

where \(n \) = no of classified head frames from ultrasound video,

\(j \) = no of frames having Age Diff <= 1

\(A \) = Calculated Age Using BPD Approach

\(B \) = Calculated Age Using HC Approach

\(M \) = Proposed Age

As discussed, ultrasound video of 36th week gestational age is used; all figures are shown for pre-processing and post-processing of model classification, and segmentation are used to show frames of a sample video. Then, all steps are combined to produce an ultrasound video clip containing the fetal head of 36th week gestational age with approximately 480 frames, having a speed of 60 frames per second. Finally, the result is obtained as mentioned in Table 7 with 27 frames selected.
in the ultrasound video clip. Each frame is classified with a fetal head frame. Besides, a system proposed in this study produces only 27 frames, and all frames give a result with a minimum error on the estimation of fetal gestational age as shown in Figure 23.

III. RESULTS AND DISCUSSION
A total of 1000 ultrasound videos of the second and the third trimesters (range: 18 to 40 weeks gestational age) were used to evaluate the performance of the proposed system in predicting fetal gestational age. It should be noted that allowable tolerance is ±1 week. For this purpose, initially, gestational age is calculated using fetal biometry parameters,

FIGURE 9. Example of best classified head frames with respective probability (% FH) obtained using ALEXNET.

FIGURE 10. Localization and segmentation with UNET (Mask approach).
i.e., HC and BPD separately, as shown in Figure 24 and Figure 25, respectively.

Comparison of calculated age with observed age for different trimesters using HC and BPD measurement, respectively, shows reasonable accuracy of 92% - 97% as depicted in Figure 26 and Figure 27, respectively.

It was observed that age estimation using BPD parameter provides better accuracy in comparison to that with HC parameter for both second and third trimesters as depicted in Table 8. Primarily, in few instances presence of excessive noise occurs in the region where due to the invisibility of solid tissues of the fetal head causes gaps, as shown in
Figure 14. Taking best-classified frame (a. shows head classified frame b. segmentation using UNET of classified head frames c. thresholding on segmentation.

Table 3. Measurement of calculated and observed BPD, HC, OFD and gestational age using BPD and HC approach on best-classified head frames from ultrasound video of 36th week gestational age

BI	Obs BPD	Cal BPD	BPD Error	Obs OFD	Calc OFD	OFD Error	Obs HC	Calc HC	HC Error	Obs Age	Calc Age BPD	Calc Age HC
5	88	83.220	2.780	112	117.920	-5.920	312	325.200	-11.200	36W0D	34W3D	37W2D
5	88	83.740	3.100	112	110.860	1.640	312	311.820	-0.180	36W0D	35W3D	36W1D
5	89	84.370	3.630	112	124.640	-12.640	312	334.350	-22.350	36W0D	34W3D	35W2D
5	88	88.100	-0.100	112	104.460	1.260	312	303.560	8.440	36W0D	36W1D	35W2D
5	88	88.100	-0.100	112	103.750	0.180	312	302.360	9.640	36W0D	36W1D	35W2D
5	88	88.100	-0.100	112	113.170	-23.170	312	352.250	-40.250	36W0D	33W5D	40W1D
5	89	88.320	2.380	112	112.250	-2.250	312	320.780	-8.780	36W0D	34W3D	37W1D
5	88	88.380	-0.380	112	101.790	10.210	312	323.370	-11.370	36W0D	34W4D	37W3D
5	88	88.380	-0.380	112	115.170	-23.170	312	352.250	-40.250	36W0D	33W5D	40W1D
5	88	88.380	-0.380	112	117.420	-5.420	312	322.820	-10.820	36W0D	34W3D	37W2D
5	88	88.380	-0.380	112	112.270	5.110	312	314.300	-2.300	36W0D	35W1D	36W3D
5	88	88.380	-0.380	112	118.250	-5.420	312	320.780	-8.780	36W0D	34W3D	37W1D
5	88	88.380	-0.380	112	114.350	-2.150	312	316.980	-4.980	36W0D	34W3D	36W5D
5	85	85.620	1.200	112	111.450	-1.50	312	310.980	-4.980	36W0D	34W3D	36W5D
5	85	85.620	1.200	112	117.420	-5.420	312	322.820	-10.820	36W0D	34W3D	37W2D
5	85	85.620	1.200	112	112.250	-2.250	312	314.300	-2.300	36W0D	35W1D	36W3D
5	85	85.620	1.200	112	112.250	-2.250	312	314.300	-2.300	36W0D	35W1D	36W3D
5	85	88.380	-0.380	112	118.250	-5.420	312	320.780	-8.780	36W0D	34W3D	37W1D
5	85	88.380	-0.380	112	114.350	-2.150	312	316.980	-4.980	36W0D	34W3D	36W5D

Where:
- BI: Number of objects identified during interception;
- Obs BPD, Obs HC & Obs Age: BPD, HC and gestational age observed by sonographer;
- Cal BPD, Cal HC & Cal Age: Calculated BPD, HC and gestational age using proposed approach

Figure 28: which in turn causes error in drawing the best fit ellipse. Furthermore, accuracy improves in the third trimester in comparison to the second trimester as with the progression of pregnancy organs growth implies that they appear with more the clarity in ultrasound. It can be seen that when both parameters i.e., HC and BPD are used simultaneously to calculate gestational age, accuracy improves slightly, as shown in Table 8.

It is therefore proposed to use both parameters in computing gestational age, as it results in the accuracy of 96 – 97%. Week wise results of proposed approach are shown in Figure 29.

IV. CONCLUSION AND FUTURE WORK

The proposed system can estimate gestational age within clinically acceptable ± one week of observed gestational age with an accuracy of 96%. Moreover, it uses robust machine vision features to reduce the sonographer’s interaction with...
the system, thus reducing the overall procedure time and independent of the sonographer’s skill. The extension of the study can be to automated measurements of femur length and abdomen circumference; for fetal weight estimation.

V. ACKNOWLEDGMENTS
The authors would like to thank Dr. Noruddin Badruddin, Head of Obstetrics and Gynecology Department, AKUH, and his team’s helpful advice during the data acquisition.
FIGURE 16. Binarization of segmented frames.

FIGURE 17. Least Square Ellipse method to draw an ellipse on the contour of binarized frames.
FIGURE 18. Calculated ellipses on actual frame.

FIGURE 19. Annotation on best classified head frames.
FIGURE 20. BitwiseAnd between threshold segmented and annotated images of head classified frames of ultrasound video.

TABLE 4. Measurement of calculated and observed gestational age using BPD and HC approach with difference in age on best-classified head sample frame from ultrasound video of 36th week gestational age

Frame	BI	Observed Age	Cal Age Using BPD	Cal Age Using HC	Diff
0	5	36W0D	34W5D	37W2D	2W4D
1	2	36W0D	35W3D	36W1D	0W5D
2	5	36W0D	34W3D	38W3D	4W1D
3	2	36W0D	36W1D	35W2D	0W6D
4	5	36W0D	33W4D	41W2D	7W4D
5	2	36W0D	36W1D	35W1D	1W0D
6	5	36W0D	33W5D	40W1D	6W3D
7	2	36W0D	36W2D	34W5D	1W3D
8	5	36W0D	33W6D	39W4D	5W4D
9	2	36W0D	33W6D	39W7D	6W1D
10	5	36W0D	34W1D	36W5D	1W5D
11	4	36W0D	34W7D	37W2D	2W2D
12	4	36W0D	34W3D	37W1D	2W5D
13	5	36W0D	34W4D	37W3D	2W5D
14	5	36W0D	33W6D	39W5D	5W6D
15	2	36W0D	35W1D	36W3D	1W1D
16	2	36W0D	35W1D	36W0D	0W6D
17	5	36W0D	34W3D	37W1D	3W3D
18	2	36W0D	35W1D	36W3D	1W2D

Where:
- BI: Number of objects identified during interception;
- Obs Age: gestational age observed by sonographer;
- Cal Age: Calculated gestational age using proposed approach
- Diff: difference in age between age calculated using BPD and HC
TABLE 5. Mean gestational age between gestational age calculation using BPD and HC approach on sample frames having two objects identified during interception from ultrasound video of 36th week gestational age

BI	Observed Age	Calc Age Using BPD	Calc Age Using HC	Diff	Mean Age
2	36W0D	36W1D	35W1D	0W5D	35W6D
2	36W0D	36W1D	35W2D	1W0D	35W4D
2	36W0D	36W1D	35W1D	1W0D	35W4D
2	36W0D	36W2D	34W5D	1W3D	35W4D
2	36W0D	36W1D	35W1D	1W0D	35W4D
2	36W0D	36W3D	35W1D	0W6D	35W4D
2	36W0D	36W1D	35W1D	1W2D	35W5D

Where:
- BI: Number of objects identified during interception;
- Obs Age: gestational age observed by sonographer;
- Cal Age: Calculated gestational age using proposed approach
- diff: difference in age between age calculated using BPD and HC

TABLE 6. Less than one week gestational age difference between gestational age calculation using BPD and HC approach on sample frames having two objects identified during interception and from ultrasound video of 36th week gestational age

BI	Observed Age	Calc Age Using BPD	Calc Age Using HC	Diff	Mean Age
2	36W0D	35W3D	36W1D	0W5D	35W6D
2	36W0D	36W1D	35W2D	0W6D	35W4D
2	36W0D	36W1D	35W1D	1W0D	35W4D
2	36W0D	35W1D	36W0D	0W6D	35W4D

Where:
- BI: Number of objects identified during interception;
- Obs Age: gestational age observed by sonographer;
- Cal Age: Calculated gestational age using proposed approach
- diff: difference in age between age calculated using BPD and HC

TABLE 7. Result with performance in frame selection and Fetal Gestational Age Estimation on 2 different Fetus Ultrasound videos of 36 and 18 weeks

Gender	BOY	GIRL
Pixel Size	0.194	0.105
Total Frames	480	3135
Total head classified frames in ultrasound video using ALEXNET	275	2825
Total frames having two objects identified during interception	79	115
Total frames with less than one week age difference between calculated age using HC and BPD approach	27	98
Observed gestational age	36 week (s) 0 Day (s)	18 week (s) 4 Day (s)
Proposed gestational age	35 week (s) 5 Day (s)	18 week (s) 1 Day (s)

TABLE 8. Trimester wise statistics for acceptance of ultrasound videos with ± One Week tolerance

Parameter used	Trimester	Total Videos	with in ± one week	> ± one week	Acceptance Rate
HC	First Trimester	485	447	38	92.20%
BPD	Second Trimester	461	24	20	95.10%
Proposed (HC & BPD)	Second Trimester	465	20	20	95.10%
HC	Third Trimester	515	481	34	93.40%
BPD	Third Trimester	499	16	16	96.90%
Proposed (HC & BPD)	Third Trimester	500	15	15	97.10%
FIGURE 21. US video frames with estimation of head circumference using Least Square Ellipse.

FIGURE 22. US video frames with estimation of head circumference using LSE for only frames having bones after BitwiseAnd of annotated and thresholded images of ultrasound best-classified frames.

FIGURE 23. US Video summarizes the view of all steps taken to select the best frames.
FIGURE 24. Correlation Gestational Age for Observed and Calculated using HC approach with lower and upper bound of One Week.
FIGURE 25. Correlation Gestational Age for Observed and Calculated using BPD approach with lower and upper bound of One Week.
FIGURE 26. Week Wise Gestational Age Accuracy with HC approach and breakdown with semester wise.
FIGURE 27. Week Wise Gestational Age Accuracy with BPD approach and breakdown with semester wise.

FIGURE 28. showing curve regions produced while scanning fetal head ultrasound and corresponding binary segmented image (a) noise on ultrasound image (b) gap between biparietal bones on ultrasound image (a1) noise in binary segmented ultrasound image (b1) gap between biparietal bones in binary segmented ultrasound image.
FIGURE 29. Correlation Gestational Age for Observed and Calculated using Proposed approach with lower and upper bound of One Week.
REFERENCES

[1] Kang, L., Wu, Q. Q., Sun, L. J., Gao, F. Y., & Wang, J. J. (2021). Predicting fetal weight by three-dimensional limb volume ultrasound (AWD/TVol) and abdominal circumference. Chinese Medical Journal, 154(9), 1070.

[2] Dyer, E., & Chudleigh, T. (2021). Peer review of third trimester abdominal circumference reference measurements. Ultrasound, 29(2), 83-91.

[3] Plotka, S., Wodarczyk, T., Klaas, A., Lipa, M., Szetek, A., & Trzcinski, T. (2021). FetalNet: Multi-task deep learning framework for fetal ultrasound biometric measurements. arXiv preprint arXiv:2107.06943.

[4] Julia Milner; Jane Arezina. The accuracy of ultrasound estimation of fetal weight in comparison to birth weight: A systematic review Ultrasound. 2018 Feb; 26(1): 32–41. Published online 2018 Feb 7. doi: 10.1055/s-0037-16132807.

[5] Laneo, J., Lanowski, G., von Ehr, J., Jentschke, M., Hillelmanns, P., Kuehne, E., & Staboulidou, I. (2017). Impact of Ultrasound Training and Experience on Accuracy regarding Fetal Weight Estimation at Term Creative Education. Creative Education, 8, 1761-1773.

[6] Sara Kritzer; Kristin, Magner; Carri R, Warshak Carri, R. Warshak. Increasing Maternal Body Mass Index and the Accuracy of Sonographic Estimation of Fetal Weight Near Delivery, December 2014Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine (33)(12):2173-9.

[7] Eran Ashwall-Liran, HierschNir Melamed, Yariv YogeV. Does the Level of Anniotic Fluid have an Effect on the Accuracy of Sonographic Estimated Fetal Weight at Term? June 2014Journal of Maternal-Fetal and Neonatal Medicine.

[8] N. H. Khan, E. Tegnander, J. M. Dreier, S. Eik-Nes, H. Torp and G. Kuehnle, E., & Staboulidou, I. (2017). Impact of Ultrasound Training and Experience on Accuracy regarding Fetal Weight Estimation at Term Creative Education. Creative Education, 8, 1761-1773.

[9] Foi, Alessandro and Maggioni, Matteo and Pepe, Antonietta and Rueda, CIurte A, Bresson X, Cuisenaire O, Houhou N, Nedevschi S (2014) Detection and measurement of cranial bone age on ultrasound images using a novel deep convolutional network architecture. Physica Medica, 88, 127-137.

[10] Fiorentino, M. C., Moccia, S., Capparuccini, M., Giambertini, S. and Frontoni, E. (2021). A regression framework to head-circumference delineation from US fetal images. Computer Methods and Programs in Biomedicine, 198, 105771.

[11] Prieto, J. C., Shah, H., Rosenbaum, A. J., Jiang, X., Musonda, P., Price, J. T. and Stringer, J. S. (2021, February). An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation. In Medical Imaging 2021: Image Processing (pp. 11596, 115961N). International Society for Optics and Photonics.

[12] Farsana, W. F., & Kowsalya, N. (2020). AUTOMATICFETAL HEAD CIRCUMFERENCE MEASUREMENT ON 2D ULTRASOUND IMAGES USING HISTOGRAM OF ORIENTED GRADIENT. Technology and Design Education, 11(12), 484-491.

[13] Li, W., Tan, J., Floyd, R. and Aykut, A. (2021). Measuring Maximum Head Circumference Within Resource-Limited Countries. Ultrasound in medicine & biology, 45(3), 773-785.

[14] McComb, J. G. (2021). Measuring Maximum Head Circumference Within Resource-Limited Countries. Ultrasound in medicine & biology, 45(3), 773-785.

[15] Kuehnle, E., & Staboulidou, I. (2017). Impact of Ultrasound Training and Experience on Accuracy regarding Fetal Weight Estimation at Term Creative Education. Creative Education, 8, 1761-1773.
MUHAMMAD SAQIB received the B.S. degree in biomedical engineering from the Sir Syed University of Engineering and Technology, Pakistan, and the M.S. degree in electronic engineering from Hamdard University, Karachi, Pakistan. He is currently pursuing the Ph.D. degree in biomedical engineering at Fraunhofer IKTS, Dresden, Germany and TU Dresden, Dresden, Germany. He has gained academic and industrial experience in his professional career. His research interest includes the stent degradation, bioinstrumentation, biomaterials, biomechanics, corrosion. He has two patents and several peer-reviewed conference and journal publications. Mr. Saqib got the HEC Pakistan/DAAD scholarship for his PhD studies.