REVIEW ARTICLE

Oncoproteomics of hepatocellular carcinoma: from cancer markers’ discovery to functional pathways

Stella Sun, Nikki P. Y. Lee, Ronnie T. P. Poon, Sheung-Tat Fan, Qing Y. He, George K. Lau, and John M. Luk

1 Department of Surgery, LKS Faculty of Medicine, Jockey Club Clinical Research Center, The University of Hong Kong, Pokfulam, Hong Kong
2 Center for Cancer Research, LKS Faculty of Medicine, Jockey Club Clinical Research Center, The University of Hong Kong, Pokfulam, Hong Kong
3 Department of Medicine, LKS Faculty of Medicine, Jockey Club Clinical Research Center, The University of Hong Kong, Pokfulam, Hong Kong
4 Institute of Life and Health Engineering, Jinan University, Guangzhou, China

Keywords
biomarkers – hepatocellular carcinoma – proteomics

Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous cancer with no promising treatment and remains one of the most prevailing and lethal malignancies in the world. Researchers in many biological areas now routinely identify and characterize protein markers by a mass spectrometry-based proteomic approach, a method that has been commonly used to discover diagnostic biomarkers for cancer detection. The proteomic research platforms span from the classical two-dimensional polyacrylamide gel electrophoresis (2-DE) to the latest Protein Chip or array technology, which are often integrated with the MALDI (matrix-assisted laser-desorption ionization), SELDI (surface-enhanced laser desorption/ionization) or tandem mass spectrometry (MS/MS). New advances on quantitative proteomic analysis (e.g. SILAC, ICAT, and ITRAQ) and multidimensional protein identification technology (MudPIT) have greatly enhanced the capability of proteomic methods to study the expressions, modifications and functions of protein markers. The present article reviews the latest proteomic development and discovery of biomarkers in HCC that may provide insights into the underlying mechanisms of hepatocarcinogenesis and the readiness of biomarkers for clinical uses.

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer death in Asia (1). Owing to its asymptomatic nature during the course of neoplastic development and malignant progression, HCC patients are usually presented in the advanced stage when first diagnosed. The late diagnosis of HCC significantly diminishes the options of curative treatments available and augments the chance of disease relapse. With the aim to allow early diagnosis of HCC, researchers in many biological areas now routinely identify and characterize molecular biomarkers for HCC development and progression by cDNA microarray and mass spectrometry (MS)-based proteomic approaches (2–5). Today, proteomics promises to be a powerful tool for cancer biomarker discovery (3, 6). Capitalizing on the newly identified biomarkers from cell lines and clinical samples (serum and tissues), we could develop in vitro clinical assays based on the diagnostic biomarkers set with high throughput and improved efficacy. This would greatly facilitate the implementation of surveillance programmes for high-risk populations, such as cirrhosis patients with chronic hepatitis B (HBV) or hepatitis C (HCV) infections, in order to better our patient management.

In addition to molecular diagnosis, certain proteomic markers are also found in association with tumour histology, aetiology and prognostic values (e.g. disease recurrence and overall survival). Indeed, tumour development invokes different physiologic changes that could elicit the invasion of normal defence mechanisms. Tumorigenesis is a multistep process involved in genetic alterations, which account mainly for the acquisition of invasiveness and metastatic ability based on different mechanistic pathways. The current paradigm of tumour development as described by Hanahan and Weinberg (7) involves the manifestation of six distinct physiological changes that dictates malignant growth and tumorigenesis: (a) growth signal autonomy, (b) growth-inhibitory signal prohibition, (c) resistance to apoptosis, (d) unrestricted replicative

*Equal contribution.
potential, (e) prolonged angiogenesis and (f) tissue invasion and metastasis. These changes occur in tumour cells and their surrounding stromal cells, which differ from normalcy via a series of premalignant states into invasive cancers. A better understanding and further insight into these tumorigenic pathways and pathogenic mechanisms will greatly facilitate our prioritization of cancer biomarkers and validation of therapeutic targets for HCC.

On-go – proteomics: from 2-DE to protein chip

In recent years, the combination of two-dimensional polyacrylamide gel electrophoresis (2-DE), mass spectrometry (MS) and bioinformatic tools has been widely used for proteomic research both in clinical medicine and biopharmaceutical industry (8, 9). Notably, this proteomic approach has been commonly applied in comparative proteome analysis for identification of disease-specific signatures in tumour cell lines, tissues and/or sera. The power of the 2-DE-based technology has been well received earlier by the research community for their usefulness of protein identification with post-translational modifications as well as protein–protein interaction networks. However, as many proteomic projects got underway, the limitations of this technology became gradually apparent. To date, alternative proteomic platforms are emerging to enhance the detection sensitivity and to increase the capacity and capability of the 2-DE-based approach. These include protein quantification by isotope-coded affinity tags (ICAT), the combination of accurate mass tags and Fourier transform ion cyclotron resonance, and protein expression profiling by surface-enhanced laser desorption/ionization (SELDI) (Fig. 1).

Fig. 1. Schematic workflow of various proteomic approaches and the protein information derived. The classic proteomic approach, coupled with mass spectrometry, provides identity and basic information, such as post-translational modifications and isoforms, of proteins. Recently, innovative proteomic methodology has been developed, revealing more information on the proteins, such as glycosylations and phosphorylations. This further extends the proteomic study of proteins towards functional aspects. In addition, the advantages and limitations of different approaches are shown. 2D-DIGE, two-dimensional fluorescence difference gel analysis; 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; HPLC, high-performance liquid chromatography; ICAT, isotope-coded affinity tag; ID, identity; IMAC, immobilized metal-ion affinity chromatography; ITRAQ, isobaric tags for relative and absolute quantification; LMW, low molecular weight; MOAC, metal oxide affinity chromatography; MS, mass spectrometry; MudPIT, multidimensional protein identification technology; SAX, strong anion exchange chromatography; SEC, size-exclusion chromatography; SILAC, stable isotope labelling with amino acids in cell culture; TiO2, titanium dioxide; TOF, time of flight.
Determination of changes in the relative or absolute concentration is fundamental to the discovery of valid biomarkers. ICAT is a protein quantitative-based approach that gives a more accurate, reproducible, and comprehensive result of protein expression patterns in disease vs. normal samples (10). Moreover, protein chip or array is another proteomic platform that provides a versatile method for global analysis of protein–protein interactions and functional or biochemical activities. Besides the SELDI, there are three major types of protein microarrays based on their surface features: functional protein microarray, antibody microarray, and reverse-phase microarrays (11–13). Applications of protein arrays include studies on protein–protein (14), protein–lipid (15), protein–nucleic acid (16), protein–drug (17), and antibody–antigen interactions (18). Detection of autoantibody reactivity is useful in immune profiling and biomarker discovery of tumour-associated antigens that may be useful in immunodiagnosing cancer and indicates the role of important biochemical pathways in disease (19). Both synthetic peptides and recombinant proteins can be printed on an array chip, and today we can use 1 µL of serum or plasma to profile 8000 defined proteins on a commercial protein microarray.

Another commonly used protein chip platform is the SELDI technology, which is based on the utilization of various chromatography principles or biological surfaces to capture proteins from complex biological mixtures according to their physicochemical properties. SELDI-TOF-MS essentially analyses serum samples to generate proteomic fingerprint patterns that may be unique to a particular disease state or malignancy. Recent studies where SELDI-TOF-MS were exploited in HCC include early diagnostic potential for HCC (20), serum profiling for detection of chronic hepatitis C to HCC and complement C3a potential biomarker identification in human chronic hepatitis C (21). These studies suggested that the proteomic pattern generated by SELDI protein chip system is important in disease diagnosis and in prognosis (22, 23). Besides, the newly derived ‘reverse capture’ autoantibody microarray has considerably enhanced the specificity in protein detection (19, 24) and further advanced the protein chip technology in clinical studies. Therefore, this allows identification of multiple biomarkers in a high-throughput manner as well as reliable profiling biomarker expression patterns.

Bioinformatics plays a crucial role in data analysis and interpretation for the generation of a recognizable pattern in disease diagnosis (20, 25–27). For feature selection and model establishment, receiver operating characteristic (ROC) can be first used to estimate the power of each peak in discriminating different groups and then pattern recognition by significant analysis of microarrays (SAM), two-way hierarchical clustering, artificial network (ANN), decision tree, and classification and regression tree (CART). Bioinformatic meta-analysis is a powerful tool to generate data clustering and pattern recognition, which may shed new insights into our understanding in disease mechanisms, diagnosis, treatment and prognosis.

Multidimensional protein identification technology (MudPIT), an emerging technique for the proteome analysis, is capable of analysing highly complex proteomic mixtures such as whole proteomes, organelles, and protein complexes. The MudPIT approach, which was developed by Yates and colleagues (28, 29), uses two chromatography separation steps interfaced back to back in a fused silica capillary in order to increase the resolution of proteome characterization by at least 10-fold. Peptides are trypsin digested and separated firstly by charge using a strong cation exchange resin and then by hydrophobicity using reverse-phase chromatography (30). The capillary channel is opened into a mass spectrometer that will typically be a tandem electrospray, and so peptides are ionized in the liquid phase and tandem mass spectrum will then be generated. The major advantage of MudPIT over the traditional 2D-GE is the process speed, as MudPIT couples 2D-LC with mass spectrometry and is an online process (31, 32). Although both high performance liquid chromatography/liquid chromatography–mass spectrometry mass spectrometry (HPLC/LC-MSMS) and MudPIT MS/MS are chromatographic based, however, MudPIT-MS/MS couples biphasic or triphasic microcapillary columns to HPLC, and can therefore be used to analyse complex peptide mixtures generated from biofluids, tissues, cells, organelles and detect proteins with post-translational modification (32). Moreover, the recent development of mass spectrometry has improved abilities of accurate mass measurements and resolution. For instance, Ion Cyclotron Resonance Fourier Transform (FT-ICR) mass spectrometer reduces the mass measurement to a frequency measurement and is therefore potentially capable of exceedingly high mass accuracy (33, 34). Orbitrap-MS operates by radically trapping ions about a central spindle electrode. Features of the Orbitrap include high mass resolution (up to 150,000), large space charge capacity, high mass accuracy (2–5 p.p.m.) and increased dynamic range (>10^5) (35, 36). Both these high-resolution spectrometers have greatly been applied in both proteomic and metabonomic.
applications for both peptide and metabolite characterization respectively.

Nevertheless, there are several advantages of 2-DE-based approaches that are currently unmatched by other proteomic methods. A number of modifications have been introduced into the 2-DE-based methodology to improve the sensitivity and accuracy. Current advancements include the following: (a) prefractionation of proteins by different chromatography or HPLC before 2-DE separation to reduce the complexity of the protein mixtures; (b) laser capture microdissection for sample preparation to enrich tumour cells from tissue specimens that are commonly used in clinical proteomic studies (37); and (c) fluorescent dye utilization to increase the sensitivity or visibility of protein detection in 2-DE gels. For instance, the fluorescence 2-D difference gel electrophoresis (DIGE) technology is a fluorescence prelabelling 2-DE-based approach (38). Protein mixtures are labelled with up to three fluorescent dyes known as CyDye DIGE fluoros. Quantitative protein analysis is achieved by exciting the different dyes at specified wavelengths and separated on the same 2-DE gel. With these recent advancements, 2-DE-based technology will remain an important tool for proteomic research in the near future.

Functional proteomics

Proteomics is used to study the complete set of proteins expressed in given cell lines, tissues, and biofluids, to elucidate the mechanisms behind HCC development and progression, and to discover new diagnostic and prognostic biomarkers and therapeutic targets (39). With the recent advent of new molecular and cellular techniques, many biomarkers related to tumour metastasis and recurrence and patient’s survival have been characterized with respect to their functionalities. Note that many of these cancer biomarkers are the key components in the regulatory pathways that govern the functional acquisition of tumour growth and invasion. While both the clinical tissues and cell lines are commonly used for cancer marker discovery, the diagnostic values of biomarkers identified in circulating body fluid (blood, urine) have drawn attention and increasing interest, owing to the easy access and accessibility from clinical subjects. Herein, we describe and summarize the HCC oncoproteomics with special reference to functional classifications of clinical biomarkers (those identified in HCC tissues and sera) over the past 5 years. We outline the common HCC signalling pathways or physiologic changes that may be involved in tumour development and associated with clinical prognosis. Given such information (as summarized in Table 1), researchers may exploit new biomarkers and speculate the potential role(s) or clinical values relating to HCC. The following sections focus on markers that have been reported in both the HCC tissues and serum samples and have been outlined according to the molecular, cellular or physiological functions.

Tissues

Acute phase reaction

Apolipoprotein E (ApoE), an acute phase-reactive protein, is one of the recently identified potential biomarkers in HCC (Table 1). Overexpression of ApoE has already been observed in a variety of cancers, which include brain (54), breast (55), ovarian (56) and prostate (57) cancers. ApoE has been shown to modulate immune function (inhibition of interleukin-2 production and lymphocyte proliferation) (58), inhibit tumour growth (59) and alter β-catenin distribution, inducing cell growth and migration (60). Although ApoE has been incriminated as a risk factor for many cancers, the role of ApoE in HCC is still speculative.

Ubiquitin-conjugating enzyme E2N, is another protein in this functional group that is found to be upregulated in both the HBV- and HCV-associated HCC tumours (40). The ubiquitin–proteasome system involves the attachment of ubiquitin to protein targets for processing by the 26S proteasome (61). Evidence also suggested that perturbations of the ubiquitin system were related to tumour progression through alternations in cell cycle and immune control (62).

Biotransformation

Proteins that belong to this functional group are mostly enzyme reductases that participate in glucose metabolism and osmoregulation. The aldo–keto reductase family is believed to play a protective role against toxic aldehydes derived from lipid peroxidation and steroidogenesis, which could affect cell growth/differentiation when accumulated (63). Li et al. (40) identified two members of the chlordecone reductase family, named aldo–keto reductase family 1, members C2 and C3, to be upregulated in HBV-related HCC tissues. Genes from the chlordecone reductase family were also found to be upregulated at the transcriptome level (64). Concordant results were obtained from the proteomic and transcriptomic expression profiles, indicating overexpression of the chlordecone reductase family in HCC. Another protein member in this group, aldo–keto reductase family
Table 1. Functional classification of hepatocellular carcinoma (HCC) biomarkers in proteomics studies

Protein species	MW (kDa)/pI	HBV/HCV	Progn. values	Pattern in HCC	MS tools	Validation	References
A. HCC tumour tissue							
Acid–base balance							
Carbonic anhydrase I	28.91/6.59	HBV	Poor	M, L	Q, M, L (40, 41)		
Carbonic anhydrase II	28.75/6.63	HBV		L	(9)		
Acute phase reaction							
α-1B glycoprotein	54.27/5.58	HCV		M, L	(42)		
Apolipoprotein E	36.15/5.65	HCV		M, L	WB (42, 43)		
Fibrinogen, α chain isoform	70.23/8.23	HBV		M, L	(40)		
Fibrinogen-like 1 precursor	36.38/5.58	HCV		M, L	(42)		
Serum amyloid P	25.39/6.1	HCV		M, L	(42)		
Ubiquitin carboxyl-terminal esterase L3	26.34/4.84	HBV		M, L	(40)		
Ubiquitin-conjugating enzyme E2N	17.18/6.13	HBV		M, L	(40)		
Ubiquitin-specific protease 14	56.07/5.2	HCV		M, L	(42)		
Amino acid metabolism							
3-Hydroxyanthranilate 3,4-dioxygenase	32.54/5.62	HCV		M, L	(42)		
Adenosylhomocysteinase	47.72/5.92	HCV	Poor	M, L	(41, 42)		
Aminocyclase	45.86/5.77		M, L		(9)		
Aminocyclase 1	45.89/5.77	HCV	Poor	M, Q	(41, 42)		
Arginase 1	34.73/6.72	HCV	Poor	M, L	WB	(41, 6)	
Betaine-homocysteine methyltransferase	44.97/6.4	HCV		M, L	(42)		
Betaine-homocysteine S-methyltransferase	44.87/6.4	Well		Q, M	(41)		
C-1-Tetrahydrofolate synthase, cytoplasmic	101.56/6.9	Poor		Q, M	(41)		
Carbamoyl-phosphate synthase (ammonia) precursor	164.83/6.28	HBV		M, L	(40)		
Carbamoyl-phosphate synthetase 1, mitochondrial	164.94/6.3	HCV		M, L	(42)		
Catechol-O-methyltransferase isoform	24.83/5.15	HBV		M, L	(40)		
Dimethylarginine dimethylaminohydrolase 1	31.12/5.53	HCV		M, L	(42)		
Formiminotransferase cyclodesaminase	58.93/5.58	HCV	Poor	M, L	(41, 42)		
Glutamate synthase	42.15/6.61	HCV		M, L	(40)		
Glycine N-methyltransferase	32.74/6.5	Poor		M, L	(41)		
Hepatic peroxysomal alanine:glyoxylate aminotransferase	39.78/6.85	HBV		M, L	(40)		
Methionine adenosyltransferase	37.54/6.9	M		L	(9)		
Methionine adenosyltransferase 1	43.65/5.86	HCV		M, L	(42)		
Methylenaldehyde dehydrogenase 1	83.16/4.4	HCV		M, L	(42)		
Phenylalanine hydroxylase	51.86/6.15	HCV		M, L	(42)		
Pyrroline-5-carboxylate reductase 1	33.38/7.18	HBV		M, L	(40)		
Transglutaminase C	89.79/5.68	HCV		M, L	(42)		
Anti-oncogene, differentiation							
Human thioredoxin mutant with Cys 73 replaced by Ser (reduced form)	11.72/4.82	HBV		M, L	(40)		
Fumarate hydratase precursor, mitochondrial	50.39/7.23	HBV		M, L	(40)		
Hccl-2	40.7/5.52	Poor		M	PCR (44)		
Nm 23	17.15/5.83	HCV		M, L	(5)		
N-myc downstream-regulated gene 1 protein	42.84/5.49	HCV		M, L	(42)		
PKCp-interacting protein PICOT	37.69/5.31	HBV		M, L	(40)		
Biotransformation							
Aldo–keo reductase family 1, member B10	36.02/7.1	Poor		M, Q	(41)		
Aldo–keo reductase family 1, member C2	36.74/7.13	HBV		M, L	(40)		
Aldo–keo reductase family 1, member C3	37.23/8.06	HBV		M, L	(40)		
Aldose reductase	35.8/6.5		M	IHC (45)			
Aryl sulphotransferase ST1A3	34.3/6.16	HBV		M, L	(40)		

Liver International (2007) © 2007 The Authors. Journal compilation © 2007 Blackwell Munksgaard
Protein species	MW (kDa)/pI	HBV/HCV	Prognos. values	Pattern in HCC	MS tools	Validation	References
Glutathione peroxidase	22.23/6.15	HBV	↓	M, L	(40)		
Manganese superoxide dismutase	24.71/8.35	HBV	↓	M, L	(40)		
Superoxide dismutase 1	15.94/5.7	HBV	↓	M, L	(40)		
Carbohydrate metabolism							
Aldolase B	39.85/8.28	HBV	↓	M, L	(40)		
α-Enolase	47.17/7.01	HCV	Poor, VI, size	L WB, IHC	(46)		
Enolase-1	47.48/7.01	HBV	↑	M, L	(40)		
Fructose-1,6-biphosphatase	36.81/6.54	HCV	↓	M, L	(42)		
Fructose-1,6-bisphosphatase	36.81/6.5	Poor	↓	M, Q	(41)		
Fructose-bisphosphatase	37.2/6.54	HBV	↓	M, L	(41)		
Fructose-bisphosphate aldolase	39.44/8	↓	L	(9)			
Fructose-bisphosphate aldolase B	39.47/8	Poor	↓	Q, M	(41)		
Fumarate hydratase, mitochondrial precursor	54.64/8.9	HBV	Well	↓	Q, M	(41)	
Catabolism							
4-Hydroxyphenylpyruvate dioxygenase	44.8/6.5	Poor	↓	Q, M	(41)		
Acetyl-CoA acetyltransferase, mitochondrial precursor	45.2/9	Poor	↓	Q, M	(41)		
Fumarase	46.37/6.5	Poor	↓	Q, M	(41)		
Glycine amidinotransferase, mitochondrial precursor	48.46/8.2	Poor	↓	Q, M	(41)		
Homogentisate 1,2-dioxygenase	49.97/6.5	Poor	↓	Q, M	(41)		
Isocitrate dehydrogenase, cytoplasmic	46.63/6.2	Well	↓	Q, M	(41)		
Pyridoxine 5'-phosphate oxidase	29.99/6.6	Poor	↓	Q, M	(41)		
Cell cycle							
14-3-3 Protein γ	28.15/4.8	↑	L	WB	(9)		
Cell proliferation and growth							
Cofilin 2 isoform 1	18.84/7.66	HBV	↑	M, L	(40)		
Mitochondrial ribosomal protein L12	21.38/9.05	HBV	↑	M, L	(40)		
Nucleophosmin	28.5/5.56	HBV	↓	M, L	(40)		
Phosphinositol 4-phosphate adaptor protein-2	57.65/5.23	HBV	↑	M, L	(40)		
Proliferating cell nuclear antigen	28.77/4.57	HBV	↑	M, L	WB	(40)	
Stathmin 1	17.3/5.76	HBV	↑	M, L	WB	(40)	
Chaperones							
FK506-binding protein 4	51.8/5.35	HBV	↑	M, L	(40, 42)		
Glucose-regulated protein 75	73.68/5.87	HBV	↑	M, L	(40)		
Glucose-regulated protein 78	72.3/5.1	VI	↑	Q	WB, IHC	(47)	
GrpE-like protein cochaperone	24.28/8.24	HBV	↑	M, L	(40)		
Heat shock protein 27	22.8/6.0	AFP	↑	M, L	WB, IHC	(9, 47)	
Heat shock protein 60	61.05/5.7	HCV	↑	M, L	(42)		
Heat shock protein 70	70/5.5	↑	Q, L	WB, IHC	(9, 47)		
Heat shock protein 70 protein 5	72.45/0.7	HBV	↑	M, L	(40)		
Heat shock protein 70 protein 6	71.03/5.81	HCV	↑	M, L	(42)		
HSPC231	11.88/5.48	HBV	↑	M, L	(40)		
Mitochondrial heat shock protein 75	74.02/5.97	HBV	↑	M, L	(40)		
Table 1. Continued.

Protein species	MW (kDa)/pl	HBV/HCV	Prognos. values	Pattern in HCC	MS tools	Validation	References
Stress-induced phosphoprotein 1	62.64/6.4	HBV	↑	M, L	(40)		
Cytoskeleton and extracellular matrix/mechanism							
Actin γ1	41.77/5.31		↑	L	(9)		
Actin-related protein 2/3 complex subunit 5	16.18/5.47		↓	L	(9)		
Class IV b tubulin	49.72/4.82		↑	L	(9)		
Collagen α 1	108.64/5.26	HCV	↓	M, L	(42)		
Cytokeratin 8	53.56/5.52	HCV	↓	M, L	(42)		
Cytokeratin 10	59.52/5.1		Poor	Q, M	(41)		
Cytokeratin 18	47.33/5.27	HCV	↓	M, L	(42)		
Cytoplasmic dynein intermediate chain 2C	68.35/5.2	HCV	↑	M, L	(42)		
Macrophage capping protein (actin-3)	38.5/5.82	HCV	↓	M, L	(42)		
Mutant β-actin	42.13/5.22	HBV	↓	M, L	(40)		
Profilin, chain A	14.84/8.46		↑	L	(9)		
Smoothelin	99.52/9.16	HCV	↓	M	(6)		
TPMsk3 (tropomyosin fragment)	28.79/4.72		↑	L	(9)		
β-Tubulin cofactor A	32.85/4.66	HCV	↓	M	(6)		
Villin-2	69.41/5.94	HCV	↓	M, L	(42)		
Vimentin	53.59/5.06	HBV	↓	M, L	(40)		
Detoxication, oxidoreduction							
Alcohol sulphotransferase	33.78/5.71	HCV	↓	M, L	(42)		
Aldehyde dehydrogenase	54.86/6.3	HCV	↓	M, L	(42)		
Aldehyde dehydrogenase 1A1	55.45/6.3	HBV	↑	M, L	(40)		
Aldehyde dehydrogenase 3	50.34/5.99	HCV	↑	M, L	(42)		
Aldehyde dehydrogenase 5	57.31/6.54	HCV	↓	M, L	(42)		
Aldehyde dehydrogenase 9	53.8/5.69	HCV	↓	M, L	(42)		
Aldehyde dehydrogenase B	56.38/6.63	HCV	↓	M, L	(42)		
Aldehyde dehydrogenase, mitochondrial precursor	56.39/6.6	Poor	↓	Q, M	(41)		
Antioxidant protein 2	25.04/6	Poor	↓	Q, M	(42)		
α-1-Antitrypsin precursor	46.74/5.4	Poor	↓	Q, M	(41)		
Catalase	59.63/7	Poor	↓	Q, M	(41)		
Cytochrome b5	15.33/4.88	HCV	↓	M, L	(42)		
Epoxide hydrolase 2	62.62/5.91	HCV	↓	M, L	(42)		
Fibrinogen γ chain precursor	55.28/5.2	HCV	↓	M, L	(42)		
Flavin reductase	32.85/4.66	HCV	↓	M, L	(42)		
Glutamate-cysteine ligase regulatory protein	30.73/5.7	HCV	↑	M, L	(42)		
Glutathione-S-transferase	27.57/6.24	HCV	↓	M, L	(42)		
Glutathione-S-transferase A1	25.63/8.9	Poor	↓	Q, M	(41)		
Glutathione-S-transferase omega 1	23.33/6.75		↑	L	(9)		
Glutathione synthetase	52.39/5.67	HCV	↓	M, L	(42)		
Heat shock protein 70 9B	73.73/6.03	HCV	↑	M, L	(42)		
Haeme-binding protein	21.1/5.7	HCV	↑	M, L	(42)		
Human aldose reductase-like protein 1	36/7.4		↑	M	IHC		
Liver carboxyesterase	62.52/6.15	HCV	↓	M, L	(42)		
MAWD-binding protein	31.79/6.06	HBV/HCV	Poor	Q, M	(40, 42)		
NADH dehydrogenase (ubiquinone) Fe-S protein	79.47/5.89	HCV	↓	M, L	(42)		
Peroxiredoxin 1	22.11/8.27	HCV	↓	M, L	(42)		
Peroxiredoxin 2	27.69/7.68	HCV	↓	M, L	(42)		
Proteasome β-chain	2.79/4.37	HCV	↓	M, L	(42)		
Selenium-binding protein 1	52.31/6.13	HCV	↓	M, L	(42)		
Thioredoxin	11.74/4.82	HCV	↑	M, L	(42, 9)		
Thiosulphate sulphurtransferase	33.64/6.77	HBV/HCV	↓	M, L	(40, 42)		
Transaldolase	37.63/7.67	HCV	↑	M, L	(42)		
Table 1. Continued.

Protein species	MW (kDa)/pI	HBV/HCV	Prognos. values	Pattern in HCC	MS tools	Validation	References
Energy metabolism							
ATP synthase β chain, mitochondrial precursor	56.56/5.26	HCV	↓	M, L		(42)	
Electron transfer flavoprotein, α polypeptide	35.08/8.62	HBV	↓	M, L		(40)	
Electron transfer flavoprotein α subunit mitochondrial precursor	35.08/8.6	Poor	↓	Q, M		(41)	
H⁺-transporting two-sector ATPase β chain precursor, mitochondrial	56.53/5.26	HBV	↓	M, L		(40)	
Liver-type aldolase	39.47/8.01	HCV	↓	M	WB	(6)	
Succinate dehydrogenase	72.69/7.06	HCV	↓	M, L		(42)	
Ethanol catabolism							
Alcohol dehydrogenase	36.42/6.34	Poor	↓	L, M, Q		(9, 41)	
Fatty acid metabolism							
2,4-Dienoyl CoA reductase 1 precursor	36.33/9.35	HBV	↓	M, L		(40)	
3-Hydroxy-3-methylglutaryl-coenzyme A synthase 1	57.35/5.33	HCV	↑	M, L		(42)	
3-Hydroxy-3-methylglutaryl-coenzyme A synthase 2	56.64/8.4	HCV	↓	M, L		(42)	
Acyl-CoA dehydrogenase, short chain specific, mitochondrial precursor	44.3/8.1	Poor	↓	Q, M		(41)	
Enoyl-CoA hydratase	31.39/8.34	HCV	Well	Q, M		(6, 41)	
Fatty acid-binding protein	14.12/6.6			L		(9)	
Fatty acid-binding protein 1	14.2/6.6	HCV	↓	M, L		(42)	
Glycerol-3-phosphate dehydrogenase, cytoplasmic	37.59/5.8	Poor	↓	Q, M		(41)	
Glycerol-3-phosphate dehydrogenase 1	37.57/5.81	HCV	↓	M, L		(42)	
α-Crystallin	34.3/5.95	HBV/HCV	↓	M, L		(40, 42)	
Leukotriene A4 hydrolase (Grp 94)	69.29/5.8	HCV	↓	M, L		(42)	
Mitochondrial short-chain enoyl-coenzyme A hydratase 1 precursor	31.37/8.34	HCV	↓	M, L		(42)	
Immunity							
Chain A, Cypa complexed with hagpia	17.88/7.82	HBV	↑	M, L		(40)	
Haptoglobin precursor	38.43/6.13		↓	L		(9)	
IgM rheumatoid factor RF-DI3, variable heavy chain	14.08/9.39	HBV	↑	M, L		(40)	
Serologically defined colon CA-10	42.81/5.51	HBV	↑	M, L		(40)	
Iron buffering							
Ferritin light chain	20.01/5.51	HCV	↓	Q, M	WB, IHC	(6, 9)	
Metastasis and apoptosis							
Lamin B1	66.41/5.11	HCV	↑	M, L		(42)	
Laminin receptor 1	32.95/4.79	HBV	↑	M, L		(40)	
Non-metastatic cells 1 protein	17.15/5.83	HBV	↑	M, L		(40)	
P47	40.55/5.03	HBV	↑	M, L		(40)	
Serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 9	43/5.61	HBV	↓	M, L		(40)	
Nitrogen metabolism							
Glutamate dehydrogenase	61.36/7.66		↓	L		(9)	
Nucleotide, nucleic acid, cofactors, and vitamins metabolism							
ADP-sugar pyrophosphatase YSA1H	24.6/4.87	HBV	↑	M, L		(40)	
Guanine deaminase	51/5.44	HCV	↓	M, L		(42)	
Regucalcin	33.25/5.89	HCV	↓	M, L		(42)	
Senescence marker protein-30	33.25/5.9	Poor	↓	Q, M		(41)	
Nicotinamide N-methyltransferase	29.56/5.56	HCV	↓	M, L		(9, 42)	
β-Ureidopropionase	43.65/6.09	HBV	↓	Q, M		(40, 41)	
Table 1. Continued.

Protein species	MW (kDa)/pl	HBV/HCV	Prognos. values	Pattern in HCC	MS tools	Validation	References
Others							
Albumin	69.37/5.92	HCV					(6)
CGI-150 protein	55.01/8.99	HCV					(42)
Differentially expressed in FDCP (mouse homolog) 6	39.58/6.53	HBV			M, L		(40)
Perchloric-acid-soluble translational inhibitor p14.5	14.54/8.74	HBV			M, L		(40)
S-adenosylmethionine synthase α and β forms	43.65/5.7	Poor			Q, M		(41)
SH3-binding glutamate-rich protein	12.77/5.22	HBV			M, L		(40)
Wnt-1	40.98/9.28	HBV/HCV	↑		M, L	WB	(48)
Peptidase/proteases/protease inhibitors							
Cathepsin A	54.47/6.16	HBV	↑		M, L		(40)
Cathepsin D	44.55/6.1	HCV	↓		M, L		(42)
Cathepsin D, chain A	10.67/5.65	HCV	↓		L		(9)
chain B	26.23/5.31						
N-acetylaminoacyl-peptide hydrolase	81.22/5.29	HCV			M, L		(42)
Phosphatidylethanolamine-binding protein	20.93/7.4	Poor			Q, M		(41)
Pro tease inhibitor 2	42.74/5.9	HCV	↑		M, L		(42)
Tripeptidyl-peptidase I	61.23/5.97	HCV	↑		M, L		(42)
Protein metabolism							
Elongation factor Tu, mitochondrial precursor	49.54/7.3	Poor			Q, M		(41)
Peptidylprolyl isomerase	18/7.68	↑			L		(9)
Peptidylprolyl isomerase A	18.01/7.68	HBV	↑		M, L		(40)
Ribonucleoprotein, transcription							
60 Far upstream element-binding protein	67.69/7.18	HBV	↑		M, L		(40)
DNA directed RNA polymerase II	31.76/4.79	HBV	↑		M, L		(40)
Eukaryotic translation elongation factor 1 α 1	50.45/9.1	HBV	↓		M, L		(40)
Eukaryotic translation initiation factor 5A	16.83/5.07	HCV			M, L		(42)
Heterogeneous nuclear ribonucleoprotein K	50.98/5.39	HCV	↑		M, L		(42)
HNRPC protein	33.64/9.9	HBV	↑		M, L		(40)
Nucleophosmin	32.58/4.64	HCV	↑		M, L		(42)
TATA-binding protein interacting protein 49 kDa	50.23/6.02	HBV	↑		M, L		(40)
Transcription factor E2F-4	44.54/4.66	HBV	↓		M, L		(40)
Steroid metabolism							
3-Hydroxysteroid dehydrogenase	37.07/6.71	↑			L		(9)
Translation							
Eukaryotic translation elongation factor 1 delta isoform 2	31.22/4.9	HBV	↑		M, L		(40)
Eukaryotic translation elongation factor 3 subunit 4	35.61/5.78	HBV	↑		M, L		(40)
Ribosomal protein P0	34.42/5.71	HBV	↑		M, L		(40)
Splicing factor, arginine/serine-rich 1	27.75/10.37	HBV	↑		M, L		(40)
Transport							
Annexin IV	36.08/5.84	HBV	↓		M, L		(42)
Annexin V	35.84/4.98	HBV	↓		M, L		(40)
Annexin VI	75.87/5.42	HBV	↓		M, L		(42)
Chloride intracellular channel 1	26.92/5.09	HCV	↑		M, L	WB	(42)
Human rab GDI	50.66/5.94	HCV	↑		M, L		(42)
1, member B10 had been found by the Liang group (41) to be overexpressed in poorly differentiated HCC.

Carbohydrate metabolism

Fructose-bisphosphate aldolase B is a liver-specific enzyme for glucose and fructose metabolism. A functional change of this enzyme may effect changes from metabolism to proliferation that accelerate the metastasis of HCC. For instance, fructose-1,6-bisphosphate aldolase in this group is a glycolytic enzyme that catalyses the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, whereas fructose-1,6-bisphosphatase catalyses the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate and inorganic phosphate. Both these enzymes are predominant in the human liver and muscle. Liang et al. (41) reported a relatively

Table 1. Continued.

Protein species	MW (kDa)/pI	HBV/HCV	Prognos. values	Pattern in HCC	MS tools	Validation	References
Interferon-induced viral resistance protein MxA	75.58/5.65	HCV	↓ M, L	(42)			
Non-specific lipid-transfer protein, mitochondrial precursor	58.99/6.4	Poor	↓ Q, M	(41)			
Rho GDP dissociation inhibitor β	23.02/4.96	HBV/HCV	↓ M, L	(40, 42)			
Serotransferrin precursor	77.05/6.8	Well	↓ Q, M	(41)			
Sterol carrier protein 2-related form	58.85/6.15	HCV	↓ M, L	(42)			
Transferrin receptor	84.9/6.18	↑ M, L	(43)				
Vesicle amine transport protein	41.92/5.88	HCV	↓ M, L	(42)			

B. Serum

Acute phase reaction

| Apolipoprotein A1 isoform | 30.78/5.56 | ↓ M | (49) |

Chaperones

| Heat shock protein 27 | 22.8/5.98 | ↑ Q WB | (50) |

Detoxification and oxidoreduction

α1 antitrypsin	46.7/5.37	↑ Q	(50)	
Ceruloplasmin	157.2/5.27	HBV	↑ Q	(50)
Fatty acid metabolism				
Clusterin	37.2/4.89	↑ Q	(50)	

Growth factor and cytokines

| Brain-derived neurotrophic factor (BDNF) | 27/– | ↑ R | M, Q PCR, WB | (51) |

Immunity

Autoantibodies, calreticulin	–/–	↑ M	(52)
Autoantibodies, Cytokeratin 8	–/–	↑ M	(52)
Autoantibodies, Fv-1,6-ATP synthase β-subunit	–/–	↑ M	(52)
Autoantibodies, Nucleotide diphosphate kinase A	–/–	↑ Q	(52)

Complement C3a	53.86/6.2	HCV	↑ S, L CI, WB	(21)
Complement C3 fragment	41.49/4.96	HBV	↓ M	(49)
Haptoglobin α2 chain	45.2/6.13	↑ Q	(50)	

Others

| α-Fetoprotein | 47.3/5.97 | ↑ Q | (50) |

Transport

Transferrin	76.9/6.81	HBV	↓ Q	(50)
Transthyretin	15.8/5.52	↓ Q	(50)	
Vitronectin precursor, C-terminal fragment	8.9/–	Size	S PCR	(53)

Cl, chip immunoassay; HBV, hepatitis B virus; HCV, hepatitis C virus; R, recurrence; IHC, immunohistochemistry; LC, liquid chromatography; MALDI, matrix-assisted laser desorption/ionization-time of flight; MS, mass spectrometry; MS/MS, tandem mass spectrometry; MW, molecular weight; RT-PCR, reverse transcription-polymerase chain reaction; SELDI, surface-enhanced laser desorption/ionization; WB, Western blot.

Mass spectrometry methods used for protein identification: L, LC-MS/MS; M, MALDI-ToF/MS; Q, tandem MS/MS; S, SELDI-ToF.
low-expression protein level in poorly differentiated HCC, and parallel results were observed at the transcriptomic level. Kim et al. (65) suggested that downregulation of fructose-bisphosphate aldolase B in HBV-associated HCC was mainly attributed to the diminished liver-enriched transcription factors. Other groups also reported similar findings (66, 67).

Cell proliferation and growth

Two proteins in this functional group, proliferating cell nuclear antigen (PCNA) and Stathmin 1, were overexpressed in HCC (40). As an index of cell proliferation, overexpression of PCNA is used as a reliable marker for the assessment of tumour progress, premalignant evolution and clinical prognosis of patients with various malignancies. Chromosomal localization of the PCNA gene, 20pter-p12, was mapped within a cancer-related chromosome region 20pter-q12 (serologically defined breast cancer antigen 84). Stathmin 1 is a cytoplasmic tubulin-binding phosphoprotein that is known to play an important role in cellular proliferation (68, 69). It functions as a depolymerizer of microtubules and is known to be overexpressed in ovarian cancer and breast cancer. In addition, the Stathmin 1 mRNA level was also found to be up-regulated in HCC (70). Chromosomal localization of the Stathmin 1 gene, 1p36.1-p35, is associated with three cancer-related chromosome regions: 1p36 (breast and ductal cancer), 1p36 (prostate cancer–brain cancer susceptibility), and 1p36.11 (upregulated in liver cancer 1). This suggests that a link between the genomic and proteomic data may provide a better insight into the disease pathology and metastasis.

Transport

Blanc et al. (42) have found that chloride intracellular channel 1 (CLIC-1) was upregulated in a majority of HCV-HCC-related patients. This protein is a member of the class of chloride ion channels. The CLIC family proteins are involved in a wide variety of cellular functions, which include the regulation of anion secretion, cell division, and apoptosis (71). More importantly, the role of CLIC-1 in hepatocarcinogenesis has recently been reported by a few studies (42, 72). Another transport protein that was reported to be upregulated in HCC is the transferrin receptor protein, TfR (43). This protein is responsible for iron transport and storage, mainly for iron homeostasis. It has been well anticipated that excess iron in the hepatocyte is associated with increased risk for HCC (73). In Park’s report, TfR was shown to be overexpressed in HCC tissues (43). However, there is no direct correlation between mRNA and protein expression of this protein and no difference in the relative mRNA expression levels of TfR between normal and HCC tumours. This result is consistent with the previous report by Yamashita et al. (74).

Others

Different disease-related biomarkers could be grouped according to their functions. Biomarkers identified recently are mainly classified into three main functional groups, which include (a) amino acid metabolism, (b) cytoskeleton and extracellular matrix, (c) detoxication and oxidoreduction. However, most of the biomarkers in these groups have not yet been fully validated. Other functional groups including acid–base balance, ethanol catabolism, iron buffering, steroid metabolism, and nitrogen metabolism are comparatively smaller groups with less biomarkers identified for HCC.

Serum

Growth factors and cytokines

Brain-derived neurotrophic factor (BDNF) and glypican-3 are the two fervent serum biomarkers in this group. BDNF is a member of the nerve growth factor family; it was found to be gradually upregulated during tumour development in both HCC serum and tissues (51, 75). A comparatively low expression of this protein was also found in the adjacent nontumourous tissues and cirrhotic liver tissues. Re-elevated expression of BDNF was also found in an orthotopic rat HCC model during HCC recurrence. This clearly suggested that BDNF is involved in both HCC development and recurrence. Further confirmation of BDNF’s role in hepatocarcinogenesis was presented in tumour cell lines of HCC with elevated protein expression but not in normal cell lines. Glypican-3 (GPC3) is a member of heparin sulphate proteoglycans, which plays a role in cell growth, differentiation, and migration (76). GPC3 has been proposed as markers for HCC diagnosis (77). Overexpression of GPC3 mRNA and protein levels were detected in the serum and tissues of HCC patients (78) but not in normal hepatocytes and nonmalignant liver disease. More importantly, the NH2 terminal portion [(soluble GPC3 (sGPC3)] is cleaved between Arg358 and Ser359 of GPC3 and that of sGPC3 can be specifically detected in the sera of HCC patients. Combined use of both the GPC3 and α-fetoprotein (AFP) biomarkers was shown...
to improve significantly the diagnostic test sensitivity of HCC (79).

Autoantibodies and immune-related proteins

Le Naour *et al.* (52) suggested that a distinct repertoire of autoantibodies was associated with HCC that may have utility in the early diagnosis of HCC among high-risk subjects with chronic hepatitis. Calreticulin and a novel truncated form of calreticulin (Crt32) were found to induce autoantibodies in HCC patients. First, calreticulin was upregulated in HCC tumour tissue as compared with the non-tumour counterpart. It is a component of major histocompatibility complex I peptide-loading complex, and there are elevated levels of calreticulin in the nuclear matrix fraction of HCC but not in nonmalignant liver tissue (80). In the same study, cytokeratin 8 (CK8) and F1-ATP synthase β-subunit autoantibodies were also found in patients with HCC. Cancer cells are known to secrete CK8-containing protein complexes in *vitro* and in *vivo* (81). Many cell types express only one acidic (Type I) CK and one neutral-based (Type II) CK. For example, both CK8 and CK18 were found to be upregulated in hepatocytes of HCC patients (52).

Complement C3a is another biomarker that was found to be overexpressed in patients with chronic hepatitis C and HCV-related HCC (21). It has been recently identified by SELDI-TOF MS profiling analysis and the protein level is confirmed by PS20 chip immunoassay and Western blotting. Complement components are important mediators of inflammation and contribute to the regulation of the immune response. In cancer patients, complement activation with subsequent deposition of complement components on tumour tissue has been demonstrated (82). In addition, C3a, which is a proteolytic fragment of C3, has been reported as a potent inflammatory mediator of innate immune response, and contributes essentially to the early priming stages of hepatocyte regeneration after toxic injury and partial hepatectomy (83). However, Lee *et al.* (21) suggested that C3a was upregulated only in HCV-related HCC, but not in HBV-related HCC. It is well known that the molecular hepatocarcinogenesis might be different in the context of HBV and HCV infections, yielding a difference in C3a levels in HCC patients.

Chaperones

Heat shock protein (HSP) 27 has recently been identified as a potential biomarker for HCC by tissue and serum proteome analysis and the result was validated by Western blot (50). HSP27 is a stress-inducible cytosolic protein that is ubiquitous in many normal tissues. Recent studies, however, have shown that HSP27 may play important roles in thermo-tolerance, cellular proliferation and apoptosis, oestrogen response and molecular chaperoning (84, 85). HSP27 is not a specific tumour marker for HCC, as overexpression of this protein has been reported in many kinds of tumour tissues, which include brain tumour and breast cancer (86, 87). Further studies on the molecular mechanisms of HSP27 in HCC carcinogenesis are necessary.

Detoxification and oxidoreduction

α1 Antitrypsin (α1AT) and ceruloplasmin (Cp) are the two biomarkers belonging to the detoxification and oxidoreduction, and elevated levels were found in HCC sera (50). Liver disease with α1AT deficiency is caused by a gain of toxic function mechanism engendered by the accumulation of a mutant glycoprotein in the endoplasmic reticulum. It is the most common cause of metabolic paediatric liver disease and is one of the potent inhibitors of proteolytic enzymes naturally existing in serum. α1AT is considered to be a useful tumour marker for HCC (88) and studies have suggested that there is an increased level of this protein in HCC patients (89, 90). Cp is an acute phase protein, and increases in expression during inflammation. Pousset *et al.* (91) suggested that there was an increased level of Cp in the serum of transgenic mice developing HCC. Moderately increased levels of Cp have been reported to occur in human HCC, and increased plasma Cp concentrations were related to the more rapidly progressing tumours (92).

Others

Other functional groups with potential serum biomarkers for HCC include acute phase reaction, fatty acid metabolism and transport. Identification of biomarkers from the serum is comparatively more difficult than in tissue owing to the complex nature of serum. At present, different methodologies are used to identify serum biomarkers in HCC patients but often there are problems of reproducibility of the findings in other laboratories.

HCC signalling pathways

Phenotypic and molecular abnormalities accompanied by liver tumorigenesis often lead to reversion of cell adhesion functions and dysregulation of cellular
mechanisms. These observations obviously do not usually come alone without good causes. Indeed, these events occur because of abrupt alterations in the morphological features of the malignant cells owing to viral hepatitis infection or acute damage inflicted by toxicants or carcinogens (93). During these processes, signalling pathways vary when subjected to those stimuli, resulting in the undesirable phenomenon and alteration in cell physiology that collectively dictate malignant growth. Some of the HCC signalling pathways are known to be involved in the acquired capabilities of cancer and as such are the mitogen-activated protein kinase (MAPK) and ubiquitin/proteasome degradation pathways (94). In addition, specialized pathways associated with Wnt and Hedgehog are described as one of those factors triggering the malignant outcomes owing to liver disorder (94, 95). However, not all of them can be readily detected or identified using proteomic approaches and there are upfront limitations in finding biomarker-related pathways. In fact, it is believed that phosphorylation and dephosphorylation of some HCC pathway components can master the process and promote HCC pathogenesis. Moreover, characterization of protein phosphorylation sites is essential for the understanding of protein function and regulation in HCC, and is also an important part of many proteomic studies. To be able to identify phosphoproteins by mass spectrometry, isolation and enrichment are necessary prior to MS analysis (96). There are now commercially available tools for detection, isolation and quantification of phosphoprotein, kinases, and phosphatases. Besides, the application of chemical, metabolic or enzymatic incorporation of stable isotopes into phosphopeptides or phosphoproteins provides a platform to quantify the relative changes of phosphorylation events. Indeed, the interrelationship between HCC signalling pathways and phosphorylation events will continue to be an analytical challenge for proteomics for many years to come. Given below are the outlined pathways that are related to HCC and can be broadly classified into one or more of the acquired capabilities towards tumour development.

HSP/stress response signalling

Several members of the HSP family have been found to be closely correlated with different aspects of HCC progression by the proteomic profiling approach (40, 42, 47) (Table 1). These results postulate that heat shock conditions or stress inductions are possible mediators in HCC development. Under environmental stimuli or stress conditions, HSPs undergo phosphorylation and/or dephosphorylation. Interestingly, a negative correlation in the level of serine-phosphorylated HSP27 is observed in advanced HCC stages, whereas a positive correlation is found with the total HSP27 level under similar conditions (97). Regarding the signalling pathways involved, HSP90 is defined to have a role in IL-6/STAT-3 signalling (98). On the other hand, studies in other organs indicate that the functions of HSP72 have a positive role in modulating the gene expression controlled by NF-κB in sepsis (99).

However, whether other HSPs resemble the roles of HSP72 in interacting with the NF-κB pathway remains to be defined in human liver deficiency.

Wnt pathway

The Wnt-signalling pathway is another major signalling pathway related to HCC incidence and development (100). This signalling cascade is important for cell fate determination during embryonic development as well as for maintenance of tissue homeostasis. More importantly, it has been linked to HCC arising from several aetiological factors, such as HBV/HCV infections or alcoholic liver cirrhosis (101). Apart from livers, Wnt signalling has been implicated in other cancers, such as gastrointestinal and colorectal cancers (102, 103). In addition to Wnt, frizzled-7 and β-catenin are two candidates that participate in the Wnt-signalling pathway (104). Up-regulation of frizzled-7, accompanied by dephosphorylation of β-catenin, is frequently exhibited in HCC tissues (105, 106).

MAPK pathway

Many biological processes, including cell adhesion mechanisms, follow the MAPK pathway (107–109). This signalling pathway is highly involved in cell proliferation, cell differentiation and cell survival. In hepatic chronic inflammation, hepatitis viruses are known to act directly on different component proteins along the MAPK signalling pathways (110). For instance, HCV virtually has the ability to influence the extracellular signal-regulated kinase (ERK) pathway within the hepatocytes (110). In HCV-associated HCC, the MAPK/ERK pathway is activated, having a positive role in promoting HCC proliferation (111). As such, blocking these pathways with specific inhibitors is used as a means to map the pathways involved in these processes. Recently, the Sprouty-related protein with an Ena-/vasodilator-stimulated phosphoprotein homology-1 domain (Spred) was implicated as physiological inhibitor of the ERK pathway. Its...
expression level is inversely correlated with the incidence of tumour invasion and metastasis. It is noted that forced expression of this protein, which inhibits the ERK pathway, can successfully reverse the proliferation activities of HCC cells (112) through a reduction in the secretion of matrix metalloproteinase-9 (MMP-9) and MMP-2. These studies unequivocally reveal the role of the MEK–ERK pathway in HCC tumorigenesis. By assembling all this information, it is believed that phosphorylation and dephosphorylation of the pathway components can master the HCC process and promote tumour pathogenesis.

Growth factors/cytokines and HCC

Groups of growth factors are known to take part in HCC progression. Studies have uncovered the roles of vascular endothelial growth factor (VEGF) (113) and fibroblast growth factor (FGF) (114) in HCC development. On the other hand, cytokines, in combination with other growth factors, also share an essential role in modulating the HCC progression and development. Tumour necrosis factor α (TNF-α) is found to have dual roles in liver injury (115). Despite all those studies, no growth factors or cytokines have been discovered using the proteomics approach. However, emerging results relating to the differential expression of cytokines in different liver clinical situations have been identified using the genomics methodology. Strategies using function-blocking antibodies or specific inhibitors are used to verify their roles in HCC. The use of anti-transforming growth factor–β (TGF–β) antibodies demonstrated the suppression of HCC, illustrating the harmful role of excess TGF–β (116). Also, epidermal growth factor receptor (EGFR) inhibitors can prevent HCC development in the rat liver (117).

Other pathways

In addition to the mechanism mentioned above, other pathways also exist that take part in regulating the molecular dynamics of HCC. Cellular transport is an important aspect to ensure the successful translocation of targets to its destined locations. During the course of HCC progression, this event is usually hampered. MAL2, an integral protein necessary for delivering glycosylphosphatidylinositol-anchored protein, failed to carry out its task in the hepatoma cells (118). In addition, the classical physiological transporters, such as annexins and transferrin receptors, are also involved in HCC development (42, 119). Liver tumour development also affects other physiological processes, such as apoptosis (120), alcohol metabolism (121) and ubiquitin protein metabolism (122).

Concluding remarks and future perspectives

Hepatocellular carcinoma is a heterogeneous cancer with no promising treatment. Proteomics is used to identify panels of biomarkers for diagnosing HCC. Using protein biomarkers, the mechanism of the development and growth of tumour cells in livers can be elucidated. Recent clinical efforts to modulate hepatocarcinogenesis have stressed on the utilization of pathway inhibitors, such as the inhibitor against the MEK–ERK pathway that has anticancer properties (123), in this area, hoping to provide a new insight into designing a more effective treatment option for these detrimental diseases. More importantly, with the belief that phosphorylation and dephosphorylation of the MAPK pathway components can master the HCC process and promote tumour pathogenesis, the recently developed phosphoproteome technology searching for phospho-biomarkers may provide an area of research in the future. By combining this information, biomarker identification in the manipulation of the HCC-related signalling pathway is an alternate approach in the line of diagnosis and prognosis of this disease. This knowledge not only advances the understanding of the malignancy, but at the same time can provide clues on the therapeutic treatment and prognosis of liver pathogenesis. New efforts are necessary to analyse systematically the cancer signalling phosphoproteomes in response to growth/angiogenic factors and stress conditions in the tumour microenvironment.

Acknowledgements

This work was supported by Research Grants Council of Hong Kong (HKU7320/02M; N_HKU718/03), the CRGC seed funding grant and the Sun Chieh Yeh Research Foundation for Hepatobiliary and Pancreatic and Surgery of the University of Hong Kong.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153–6.
2. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674–87.
3. Chignard N, Beretta L. Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology 2004; 127: S120–5.
4. Luk JM, Su YC, Lam CT, et al. Proteomic identification of Ku70/Ku80 autoantigen recognized by monoclonal-antibody against hepatocellular carcinoma. Proteomics 2005; 5: 1980–1986.
5. Lopez JB. Recent developments in the first detection of hepatocellular carcinoma. Clin Biochem Rev 2005; 26: 65–79.
6. Yokoyama Y, Kuramitsu Y, Takashima M, et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 2004; 4: 2111–6.
7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
8. Beranova-Giorgianni S. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends Anal Chem 2003; 22: 273–81.
9. Lee IN, Chen CH, Sheu JC, et al. Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J Proteome Res 2005; 4: 2062–9.
10. Yan W, Lee H, Deutsch EW, et al. A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol Cell Proteom 2004; 3: 1039–41.
11. Kung LA, Snyder M. Proteome chips for whole-organism assays. Nat Rev Mol Cell Biol 2006; 7: 617–22.
12. LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 2005; 9: 14–9.
13. Qin S, Qiu W, Ehrlich JR, et al. Development of a “reverse capture” autoantibody microarray for studies of antigen-autoantibody profiling. Proteomics 2006; 6: 3199–209.
14. Yuk JS, Jung SH, Jung JW, et al. Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor. Proteomics 2004; 4: 3468–76.
15. Zhu H, Bilgin M, Snyder M. Proteomics. Annu Rev Biochem 2003; 72: 783–812.
16. Winsinger N, Ficarro S, Schultz PG, Harris JL. Profiling protein function with small molecule microarrays. Proc Natl Acad Sci USA 2002; 99: 11139–44.
17. Haab BB. Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Dev 2001; 4: 116–23.
18. Uhlen M, Ponten F. Antibody-based proteomics for human tissue profiling. Mol Cell Proteom 2005; 4: 384–93.
19. Zhang JY, Megliorino R, Peng XX, Tan EM, Chen Y, Chan EK. Antibody detection using tumor-associated antigen mini-array in immunodiagnosing human hepatocellular carcinoma. J Hepatol 2007; 46: 107–14.
20. Kamuruma S, Uto H, Kusumoto K, et al. Early diagnostic potential for hepatocellular carcinoma using the SELDI ProteinChip system. Hepatology 2007; 45: 948–56.
21. Lee IN, Chen CH, Sheu JC, et al. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomics 2006; 6: 2865–73.
22. Seibert V, Wiesner A, Buschmann T, Meuer J. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and protein chip technology in proteomics research. Pathol Res Pract 2004; 200: 83–94.
23. Seibert V, Ebert MP, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genom Proteom 2005; 4: 16–26.
24. Ehrlich JR, Qin S, Liu BC. The ‘reverse capture’ autoantibody microarray: a native antigen-based platform for autoantibody profiling. Nat Protoc 2006; 1: 452–60.
25. Eddes JS, Kapp EA, Frecklington DF, et al. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies. Proteomics 2002; 2: 1097–103.
26. Muller U, Ernst G, Melle C, Guthke R, von Eggeling F. Convergence of the proteomic pattern in cancer. Bioinformatics 2006; 22: 1293–6.
27. Poon TC, Yip TT, Chan AT, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem 2003; 49: 752–60.
28. Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999; 17: 676–82.
29. Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–7.
30. Cagney G, Park S, Chung C, et al. Human tissue profiling with multidimensional protein identification technology. J Proteome Res 2005; 4: 1757–67.
31. Paoletti AC, Zybailov B, Washburn MP. Principles and applications of multidimensional protein identification technology. Expert Rev Proteom 2004; 1: 275–82.
32. Florens L, Washburn MP. Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 2006; 328: 159–75.
33. Schrader W, Klein HW. Liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (LC/FTICR MS): an early overview. Anal Bioanal Chem 2004; 379: 1013–24.
34. Olsen JV, de Godoy LM, Li G, et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteom 2005; 4: 2010–21.
35. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005; 40: 430–43.
36. Makarov A, Denisov E, Lange O, Horning S. Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 2006; 17: 977–82.
37. Curran S, McKay IA, McLeod HL, Murray GI. Laser capture microscopy. Mol Pathol 2000; 53: 64–68.
38. Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005; 382: 669–78.

39. Feng JT, Shang S, Beretta L. Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene 2006; 25: 3810–7.

40. Li C, Tan YX, Zhou H, et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: identification of potential tumor markers. Proteomics 2005; 5: 1125–39.

41. Liang CR, Leow CK, Neo JC, et al. Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2005; 5: 2258–71.

42. Blanc JF, Lalanne C, Plomion C, et al. Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C. Proteomics 2005; 5: 3778–89.

43. Park KS, Kim H, Kim NG, et al. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 2002; 35: 1459–66.

44. Nissom PM, Lo SL, Lo JC, et al. Hcc-2, a novel mammalian ER thioredoxin that is differentially expressed in hepatocellular carcinoma. FEBS Lett 2006; 580: 2216–26.

45. Zeindl-Eberhart E, Haraida S, Liebmann S, et al. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatol 2004; 39: 540–9.

46. Takashima M, Kuramitsu Y, Yokoyama Y, et al. Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 2005; 5: 1686–92.

47. Luk JM, Lam CT, Siu AF, et al. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 2006; 6: 1049–57.

48. Lee TH, Tai DJ, Cheng CJ, et al. Enhanced nuclear factor-kappa B-associated Wnt-1 expression in hepatitis B- and C-related hepatocarcinogenesis: identification by functional proteomics. J Biomed Sci 2006; 13: 27–39.

49. Steel LF, Shumpert D, Trotter M, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics 2003; 3: 601–9.

50. Feng JT, Liu YK, Song HY, et al. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 2005; 5: 4581–8.

51. Yang ZF, Ho DW, Lam CT, et al. Identification of brain-derived neurotrophic factor as a novel functional protein in hepatocellular carcinoma. Cancer Res 2005; 65: 219–25.

52. Le Naour F, Brichory F, Misek DE, Brechot C, Hanash SM, Beretta L. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 2002; 1: 197–203.
the microtubule assembly]. Pathol Biol (Paris) 2003; 51: 33–8.
70. Paradis V, Bieche I, Dargere D, et al. Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 2003; 163: 733–41.
71. Ashley RH. Challenging accepted ion channel biology: p64 orders of iron and heme metabolism. Hematol Educ Program) 2000; 1: 39–50.
72. Huang JS, Chao CC, Su TL, et al. Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 2004; 315: 950–8.
73. Brittenham GM, Weiss G, Brissot P, et al. Clinical consequences of new insights in the pathophysiology of disorders of iron and heme metabolism. Hematology (Am Soc Hematol Educ Program) 2000; 1: 39–50.
74. Yamashita T, Kaneko S, Hashimoto S, et al. Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun 2001; 282: 647–54.
75. Xiao ZY, Wang YD, Chen XP. [Effect of brain-derived neurotrophic factor on in vitro metastasis of hepatocellular carcinoma cell line HepG2]. Ai Zheng 2006; 25: 287–91.
76. Wang XY, Degos F, Dubois S, et al. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 2006; 37: 1435–41.
77. Spangenberg HC, Thimme R, Blum HE. Serum markers of hepatocellular carcinoma. Semin Liver Dis 2006; 26: 385–90.
78. Hippo Y, Watanabe K, Watanabe A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004; 64: 2418–23.
79. Filmus J, Capurro M. Glypican-3 and alphafetoprotein as diagnostic tests for hepatocellular carcinoma. Mol Diagn 2004; 8: 207–12.
80. Yoon GS, Lee H, Jung Y, et al. Nuclear matrix of calreticulin in hepatocellular carcinoma. Cancer Res 2000; 60: 1117–20.
81. Gonias SL, Hembrough TA, Sankovic M. Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci 2001; 6: D1403–11.
82. Jurianz K, Ziegler S, Garcia-Schuler H, et al. Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol 1999; 36: 929–39.
83. Markiewski MM, Mastellos D, Tudoran R, et al. C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury. J Immunol 2004; 173: 747–54.
84. Landry J, Chretien P, Lambert H, Hickey E, Weber LA. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 1989; 109: 7–15.
85. Charettet SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602–12.
86. Assimakopoulou M, Sotiropoulou-Bonikou G, Maraziotis T, Varakis I. Prognostic significance of Hsp-27 in astrocytic brain tumors: an immunohistochemical study. Anticancer Res 1997; 17: 2677–82.
87. Storm FK, Gilchrist KW, Warner TF, Mahvi DM. Distribution of Hsp-27 and HER-2/neu in in situ and invasive ductal breast carcinomas. Ann Surg Oncol 1995; 2: 43–8.
88. Hong WS, Hong SI. Clinical usefulness of alpha-1-antitrypsin in the diagnosis of hepatocellular carcinoma. J Korean Med Sci 1991; 6: 206–13.
89. Chio LF, Oon CJ. Changes in serum alpha 1 antitrypsin, alpha1 acid glycoprotein and beta 2 glycoprotein I in patients with malignant hepatocellular carcinoma. Cancer 1979; 43: 596–604.
90. Falletti E, Pirisi M, Fabris C, et al. Increase of serum alpha 1-acid glycoprotein despite the decline of liver synthetic function in cirrhotics with hepatocellular carcinoma. Eur J Clin Chem Clin Biochem 1993; 31: 407–11.
91. Pousset D, Piller V, Bureau N, Piller F. High levels of ceruloplasmin in the serum of transgenic mice developing hepatocellular carcinoma. Eur J Biochem 2001; 268: 1491–9.
92. Senra Varela A, Lopez Saez JI, Quintela Senra D. Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Lett 1997; 121: 139–45.
93. Coleman WB. Mechanisms of human hepatocarcinogenesis. Curr Mol Med 2003; 3: 573–88.
94. Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 2005; 25: 212–25.
95. Sicklick JK, Li YY, Jayaraman A, et al. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006; 27: 748–57.
96. Goshe MB. Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief Funct Genom Proteom 2006; 4: 363–76.
97. Yasuda E, Kumada T, Takai S, et al. Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochem Biophys Res Commun 2005; 337: 337–42.
98. Sehgal PB. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim Pol 2003; 50: 583–94.
99. Chen HW, Kuo HT, Wang SJ, Lu TS, Yang RC. In vivo heat shock protein assemblies with septic liver NF-kappaB/I-kappaB complex regulating NF-kappaB activity. Shock 2005; 24: 232–8.
100. Lee HC, Kim M, Wands JR. Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci 2006; 11: 1901–15.
101. Edamoto Y, Hara A, Biernat W, et al. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 2003; 106: 334–41.
102. Giles RH, van Es JH, Clevens H. Caught up in a Wnt storm: wnt signaling in cancer. Biochim Biophys Acta 2003; 1653: 1–24.
Oncoproteomics of hepatocellular carcinoma

103. Doucas H, Garcea G, Neal CP, Manson MM, Berry DP. Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance. *Eur J Cancer* 2005; 41: 365–79.

104. Kikuchi A, Kishida S, Yamamoto H. Regulation of wnt signaling by protein-protein interaction and post-translational modifications. *Exp Mol Med* 2006; 38: 1–10.

105. Merle P, Kim M, Herrmann M, et al. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. *J Hepatol* 2005; 43: 854–62.

106. Merle P, de la Monte S, Kim M, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. *Gastroenterology* 2004; 127: 1110–22.

107. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. *Growth Factors* 2006; 24: 21–44.

108. Torii S, Nakayama K, Yamamoto T, Nishida E. Regulatory mechanisms and function of ERK MAP kinases. *J Biochem* (Tokyo) 2004; 136: 557–61.

109. Wong CH, Cheng CY. Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis: a review of recent data. *Dev Biol* 2005; 286: 1–15.

110. Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? *Virus Res* 2003; 92: 131–40.

111. Zhao LJ, Wang L, Ren H, et al. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. *Exp Cell Res* 2005; 305: 33–41.

112. Yoshida T, Hisamoto T, Akiba J, et al. Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. *Oncogene* 2006; 25: 6056–66.

113. Yoshiji H, Noguchi R, Kuriyama S, et al. Different cascades in the signaling pathway of two vascular endothelial growth factor (VEGF) receptors for the VEGF-mediated murine hepatocellular carcinoma development. *Oncol Rep* 2005; 13: 853–7.

114. Huang X, Yu C, Jin C, et al. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. *Cancer Res* 2006; 66: 1481–90.

115. Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. *Am J Physiol Gastrointest Liver Physiol* 2006; 290: G583–9.

116. Breitkopf K, Haas S, Wiercisnska E, Singer MV, Dooley S. Anti-TGF-beta strategies for the treatment of chronic liver disease. *Alcohol Clin Exp Res* 2005; 29: 1215–31S.

117. Schiffer E, Housset C, Cacheux W, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. *Hepatology* 2005; 41: 307–14.

118. de Marco MC, Puertollano R, Martinez-Menarguez JA, Alonso MA. Dynamics of MAL2 during glycosylphosphatidylinositol-anchored protein transcytotic transport to the apical surface of hepatoma HepG2 cells. *Traffic* 2006; 7: 61–73.

119. Park KS, Cho SY, Kim H, Paik YK. Proteinic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma. *Int J Cancer* 2002; 97: 261–5.

120. Fleischer B, Schulze-Bergkamen H, Schuchmann M, et al. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. *Int J Oncol* 2006; 28: 329–35.

121. McKillop IH, Schrum LW. Alcohol and liver cancer. *Alcohol* 2005; 35: 195–203.

122. Kaur S, Wang F, Venkataraman M, Arsuram M. X-linked inhibitor of apoptosis (XIAP) inhibits c-Jun N-terminal kinase 1 (JNK1) activation by transforming growth factor beta1 (TGF-beta1) through ubiquitin-mediated proteosomal degradation of the TGF-beta1-activated kinase 1 (TAK1). *J Biol Chem* 2005; 280: 38599–608.

123. Wiesnauer CA, Yip-Schneider MT, Wang Y, Schmidt CM. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. *J Am Coll Surg* 2004; 198: 410–21.