SYSTEMATIC REVIEW AND META-ANALYSIS

Safety and Efficacy of Leadless Pacemakers: A Systematic Review and Meta-Analysis

Linh Ngo, MD; Daniel Nour, MBBS; Russell A. Denman, MBBS; Tomos E. Walters, MBBS, PhD; Haris M. Haqqani, MBBS, PhD; Richard J. Woodman, PhD; Isuru Ranasinghe, MBChB, MMed (Clin Epi), PhD

BACKGROUND: Leadless pacemaker is a novel technology, and evidence supporting its use is uncertain. We performed a systematic review and meta-analysis to examine the safety and efficacy of leadless pacemakers implanted in the right ventricle.

METHODS AND RESULTS: We searched PubMed and Embase for studies published before June 6, 2020. The primary safety outcome was major complications, whereas the primary efficacy end point was acceptable pacing capture threshold (≤2 V). Pooled estimates were calculated using the Freedman-Tukey double arcsine transformation. Of 1281 records screened, we identified 36 observational studies of Nanostim and Micra leadless pacemakers, with most (69.4%) reporting outcomes for the Micra. For Micra, the pooled incidence of complications at 90 days (n=1608) was 0.46% (95% CI, 0.08%–1.05%) and at 1 year (n=3194) was 1.77% (95% CI, 0.76%–3.07%). In 5 studies with up to 1-year follow-up, Micra was associated with 51% lower odds of complications compared with transvenous pacemakers (3.30% versus 7.43%; odds ratio [OR], 0.49; 95% CI, 0.34–0.70). At 1 year, 98.96% (95% CI, 97.26%–99.94%) of 1376 patients implanted with Micra had good pacing capture thresholds. For Nanostim, the reported complication incidence ranged from 6.06% to 23.54% at 90 days and 5.33% to 6.67% at 1 year, with 90% to 100% having good pacing capture thresholds at 1 year (pooled result not estimated because of the low number of studies).

CONCLUSIONS: Most studies report outcomes for the Micra, which is associated with a low risk of complications and good electrical performance up to 1-year after implantation. Further data from randomized controlled trials are needed to support the widespread adoption of these devices in clinical practice.

Key Words: efficacy ■ leadless pacemaker ■ meta-analysis ■ safety ■ systematic review

Transvenous pacemakers (TVPs), consisting of a subcutaneously implanted pulse generator and one or more transvenous electrodes extending to the heart chamber(s), are a well-established treatment for bradyarrhythmias.1 Nevertheless, implantation of these devices is not devoid of substantial complications.2-5 Studies have shown that TVPs are consistently associated with a 7.76% to 12.4% risk of serious complications at 90 days, with nearly half of these attributable to lead- and generator-related complications.2-4 In the longer term, TVPs have a 1% to 2% risk of complications per year, mainly attributable to lead failure and infection.3 About 1 in 6 patients with a TVP experiences a serious complication by 3 years,3,4 and these complications are exceedingly costly to treat.4,5 Strategies to minimize harm and costs associated with permanent pacemakers are therefore highly desirable.

The leadless pacemaker (LP) is a novel alternative consisting of a capsule-like device containing a generator and electrode system that is implanted into the right ventricle via a percutaneously inserted femoral venous catheter. By omitting the need for a generator...
pocket and transvenous leads, a LP may avoid many of the lead- and generator pocket–related complications typically associated with a TVP. Although the LP was first solely indicated for right ventricular pacing, the emergence of LPs capable of atrioventricular synchronous pacing promises expanding indications for these novel devices. Nevertheless, the initial evidence supporting the use of these devices was limited and came from mostly small observational studies with no randomized control trials that have directly compared safety and efficacy of LPs versus TVPs. Furthermore, despite initial promising data, the Nanostim (Abbott Medical, Abbott Park, IL) LP was withdrawn from premarket testing because of premature battery failure, raising concerns about the long-term performance of LPs.

To date, there has been no systematic review and meta-analysis of LPs beyond narrative reviews and limited reviews of LP-associated cardiac perforation and dislodgement. Accordingly, we sought to perform a systematic review and meta-analysis of published studies to evaluate the safety and efficacy of LPs. Specifically, we examined the pooled incidence of early complications up to 3 months after implant as well as the incidence of complications beyond the early postimplantation period. The pooled odds ratio (OR) was drawn from studies that compared complications associated with LPs versus TVPs. We also evaluated the proportion of patients with a successful implant, and the efficacy of LPs focusing on electrical performance and clinical outcomes.

METHODS

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis protocol. All data used in this study were extracted from individual studies. The authors declare that all supporting data are available within the article and the supplementary documents.

Literature Search

Two independent reviewers (L.N. and D.N.) performed a comprehensive systematic search across PubMed and Embase databases and included all studies published up to the June 6, 2020. The keyword search terms were leadless, pacemaker, Micra, and Nanostim. Studies were included if they explored either the primary safety or efficacy end point of LP implantation in the right ventricle. The exclusion criteria were (1) sample size of <10 patients; (2) review, survey, abstracts, or conference proceedings without full text, editorial comments, or responses (to ensure reliable data could be extracted); (3) studies with concurrent atrioventricular nodal ablation, defibrillator or resynchronization device implantations, or those conducted on patients with heart block requiring pacemaker implantation after transcatheter aortic valve replacement, because complications could be attributable to these additional interventions; (4) studies that reported different results from the same population or outcomes not relevant to LP safety and efficacy; (5) studies in which an LP was implanted through the jugular vein instead of the conventional femoral vein; (6) studies not conducted on live humans; and (7) studies published in languages other than English.

Included studies were agreed on by both reviewers, with discrepancies resolved by a third reviewer (I.R.). All search keywords used are described in Table S1.
chose to report OR because of the lack of reporting of either hazard ratio or statistics to estimate hazard ratio in individual studies. The heterogeneity among studies was evaluated using the I^2 statistic, and the sensitivity of the pooled estimates was examined by subgroup analyses of different types of study design or quality. Results were reported for Micra and Nanostim separately because of the stark differences in design and fixation mechanism of these 2 devices. A 2-tailed P value of <0.05 was considered statistically significant.

RESULTS

Characteristics of Included Studies

A total of 1281 studies were screened, and 36 were included for our analysis [8–11, 19, 20, 24–53] (Figure 1). Table 1 summarizes the characteristics of the included studies, all of which were observational (details of the 36 studies are provided in Tables 2 through 6, and Table S2). Eight studies [8, 10, 27–32] used the same cohort as other included studies but reported outcomes at a different follow-up interval, leaving 28 studies with unique patient cohorts (n=4748 patients; mean age, 83.3 years [95% CI, 80.9–85.6], 61.0% [95% CI, 59.6%–62.4%] were men). Most of the patients had comorbid hypertension (69.7%; 95% CI, 64.2%–75.0%) and atrial fibrillation (66.7%; 95% CI, 59.7%–73.5%). Only 24.3% (95% CI, 18.0%–31.3%) of patients had a history of heart failure at implantation. Median sample size was 66 patients (range, 10–1817 patients), with 64.3% having a sample size <100 patients. Median follow-up time was 6 months (range, 0–24 months). Among the 36 studies included, 10 were retrospective (27.8%), 22 were prospective (61.1%), and 4 (11.1%) did not clearly state the design. Five studies (13.9%) analyzed the Nanostim LP, whereas 25 (69.4%) explored the Micra LP (Medtronic, Minneapolis, MN), 5 (13.9%) analyzed both, and 1 study did not clearly report the type of LP used. 24 Seven studies compared LPs with TVPs, 3 of which used propensity score–matched controls [29, 30, 44] and 1 used a historical control group. [27]

Proportion of Patients With a Successful Implant

A total of 23 studies (n=4769 patients) reported the proportion of patients with a successful implant. The pooled proportion was 99.85% (95% CI,
99.59%–99.99%; \(I^2=0.00\%) for Micra and 97.12% (95% CI, 95.86%–98.20%; \(I^2=0.00\%)) for Nanostim (Table S2 and Figure 2).

Safety of LPs

Overall, 12 studies (n=2376 patients) reported safety end points at up to 90 days after implant (Table 2 and Figure 3A). Three (n=768 patients) used the Nanostim LP and reported a 90-day complication incidence of 5.85% to 23.5%, with pooled estimates not drawn because of the small number of studies. The pooled incidence of complications of the Micra LP (n=1608 patients) was 0.46% (95% CI, 0.08%–1.05%; \(I^2=0.00\%)). When individual complications associated with Micra devices were considered, incidences of device dislodgement (0.00%; 95% CI, 0.00%–0.00%; \(I^2=0.00\%)), tamponade/cardiac perforation (0.00%; 95% CI, 0.00%–0.26%; \(I^2=0.00\%)), infection (0.00%; 95% CI, 0.00%–0.00%; \(I^2=0.00\%)), and vascular injury (0.05%; 95% CI, 0.00%–0.77%; \(I^2=0.00\%)) at 90 days were low. Incidences of other complications, such as minor vascular injury or pericardial effusion that did not require intervention, could not be reliably extracted from the included studies.

Sixteen studies (n=3827 patients) with follow-up times beyond 90 days reported safety endpoints at ≈12 months after implantation (Table 3 and Figure 3B). A pooled estimate for Nanostim was also not drawn.
Table 1. Characteristics of Included Studies

Characteristics	No. of Studies (No. of Patients)	Summary Estimate
Patient demographics		
Age, y, pooled mean (95% CI)	24 (4335 patients)	83.3 (80.9–85.6)
Men*	28 (4748 patients)	61.0% (59.6%–62.4%)
Comorbidities		
Heart failure	18 (4580 patients)	24.3% (18.0%–31.3%)
Hypertension	23 (4881 patients)	69.7% (64.2%–75.0%)
Coronary artery disease	20 (4556 patients)	28.5% (23.1%–34.2%)
Atrial fibrillation	20 (4611 patients)	66.7% (59.7%–73.5%)
Diabetes mellitus	21 (4695 patients)	23.3% (20.5%–26.3%)
Atroventricular block	18 (3786 patients)	43.5% (28.2%–59.5%)
Study design		
Prospective	22	61.1%
Retrospective	10	27.8%
Not reported	4	11.1%
Quality assessment		
Good	20	55.6%
Fair	15	41.7%
Poor	1	2.8%
Device used		
Nanostim	5	13.9%
Micra	25	69.4%
Both devices	5	13.9%
Not reported	1	2.8%

*Eight studies used the same cohort as another included study but reported outcomes at a different follow-up interval, leaving 28 studies with unique patient cohorts, 24 of which reported mean and standard deviation for age, and all 28 studies reported the percentage of male patients. CI indicates confidence interval; and y, years.

The proportion of patients having a pacing capture threshold ≤2 V at 1 year reported for the Nanostim LP ranged from 90% to 100% in 3 studies (Table 5 and Figure 4, pooled estimate not drawn). For the Micra LP, among 12 studies (n=1376 patients), the pooled proportion of patients with a pacing capture threshold ≤2 V at 1 year was 98.96% (95% CI, 97.26%–99.94%) (Figure 4). Only 2 studies, all with Micra implantation, reported an efficacy endpoint beyond 1 year, with 100% (41) and 91.53% (52) of patients having pacing threshold ≤2 V at 13 and 24 months, respectively. Examination of electrical performance beyond 2 years was lacking.

Four studies reported clinical outcomes as their efficacy end point, among which 2 showed improved quality of life and good patient satisfaction (Table 6). The other 2 examined right ventricular and tricuspid valve (TV) function, with 1 reporting that 43% of 53 patients experienced worsening TV regurgitation, whereas the other found 1 out of 23 patients (4.35%) experienced significantly deteriorated TV function.

Sensitivity Analysis

Given the low number of studies investigating the Nanostim system, all sensitivity analyses were performed using studies that reported data for the Micra LP. When we examined good-quality studies only (12 studies, n=3270 patients), the pooled proportion of patients with a successful implant (99.85%; 95% CI, 99.56%–99.99%; R=0.00%) and the pooled incidence of complications at 90 days (0.50%; 95% CI, 0.00%–1.78%; R=0.00%) were comparable to the overall results. However, the complication incidence at 1 year was higher, with an estimated incidence of 2.39% (95% CI, 1.14%–3.99%; R=55.10%).

DISCUSSION

In this systematic review and meta-analysis, we found that a LP, especially the Micra, is associated with a high...
Author (y)	Study Design	Study Population	Device	Sample Size	Follow-Up Time, mo	Major Complications	Dislodgment	Tamponade	Infection	Vascular Injury
Reddy (2014)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	33	3	2	1	1	0	0
Cantillon (2018)	Prospective, 2-arm, multicenter cohort study	Patients implanted with Nanostim were propensity-score matched in a 1:2 ratio with 1436 patients implanted with TVP.	Nanostim	718	1	42	7	7	0	8
Vaidya (2019)	Retrospective, 2-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Nanostim	17	2.1	4	0	0	0	0
Ritter (2015)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Micra	140	3	2	0	1	0	1
Pachón (2016)	Single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	10	1.8	0	0	0	0	0
da Costa (2017)	Prospective, single-arm, single-center cohort study	Consecutive patients with full or relative contraindications of traditional TVP	Micra	14	3	0	0	0	0	0
Roberts (2017)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Micra	795	1	12	1	1	1	6
Vaidya (2019)	Retrospective, 2-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	73	2.1	0	0	0	0	0
Kiani (2019)	Retrospective, single-arm, multicenter cohort study	Patients underwent LP implantations, among which 26 continued oral anticoagulation during implantation and 144 patients did not.	Micra	170	0	2	0	1	0	1
Grabowski (2020)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	10	0	1	0	0	0	1
Mohammed (2020)	Retrospective, single-arm, single-center cohort study	Patients underwent LP implantations using different types of dilators.	Micra	84	0	2	0	0	0	0
El Amrani (2020)	Prospective, single-arm, single-center cohort study	Consecutive patients ≥70 y with an attempted LP implant, among which 41 were aged ≥90 y	Micra	129	1	3	0	0	0	1
Pagan (2020)	Retrospective, 2-arm, multicenter cohort study	Patients ≥85 y implanted with a Micra	Micra	183	0	2	0	1	0	0

LP indicates leadless pacemaker; and TVP, transvenous pacemaker.
Table 3. Studies Included for Meta-Analysis of Incidence of Complications at ≈1 Year After Implant

Author (y)	Study Design	Study Population	Device	Sample Size	Follow-Up Time, mo	Major Complications
Reddy (2015)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	300	6	20
Knops (2015)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	33	12	2
Sperzel (2018)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	300	6	16
Reynolds (2016)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	20	6	25
Martínez-Sande (2017)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	725	6	25
El-Chami (2018)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Micra	30	5.3	0
Bongiorni (2018)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	1817	12	41
Kazczmarek (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	52	13	0
Valton (2019)	Retrospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Micra	133	13.9	0
Roberts (2019)	Retrospective, single-arm, multicenter cohort study	Patients implanted with Micra LP for cardioinhibitory vasovagal syncope	Micra	92	12	8
Garweg (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	32	13.5	1
Denman (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	10	13	1
Hai (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	79	11.8	1
Haeberlin (2020)	Prospective, single-arm, 2-center cohort study	Consecutive patients undergoing LP implantations	Micra	51	7.3	1
Turagam (2020)	Retrospective, 2-arm, multicenter cohort study	Patients with cardio inhibitory vasovagal syncope implanted with LP	Micra	111	13	3
Tachibana (2020)	Retrospective, 2-arm, single-center cohort study	Consecutive patients ≥85 y underwent LP implantation	Micra	27	6	2

LP indicates leadless pacemaker.
Table 4. Studies Comparing Incidence of Complications Between Leadless Pacemakers and Transvenous Pacemakers

Author (y)	Study Design	Study Population	Device	Sample Size of the LP Group	Follow-Up Time, mo	Major Complications in the LP Group	Sample Size of the TVP Group	Major Complications in the TVP Group	Reported Hazard Ratio
Tjong (2018)30	Retrospective, 2-arm, multicenter cohort study	• LP group included 220 among 254 consecutive patients undergoing LP implantation, most of whom participated in 1 or more of LEADLESS trial9, LEADLESS Observational study9, or LEADLESS II9. • TVP group was identified using the prospective FOLLOWPACE nationwide cohort study1.	Both	220	26.7	9	220	21	HR, 0.20 (0.04–0.89; P=0.02) excluding PM advisory-related events* HR, 2.09 (0.94–4.62; P=0.06) including PM advisory-related events
Cantillon (2018)29	Prospective, 2-arm, multicenter cohort study	• LP group: 718 patients implanted with Nanostim were propensity score-matched in 1:2 ratio with 1436 patients implanted with TVP. • TVP group: matched control patients were selected among 9376 patients implanted with single-chamber pacemakers identified in the MarketScan database.	Nanostim	718	1	42	1436	165	Adjusted HR, 0.44 (0.32–0.60); P<0.001
Vaidya (2019)44†	Retrospective, 2-arm, single-center cohort study	• LP group: consecutive patients underwent LP implantation. • TVP group: age- and sex-matched patients who underwent single-chamber TVP implantation using billing databases.	Nanostim	17	2.1	4	90	5	Not reported
Vaidya (2019)44†	Retrospective, 2-arm, single-center cohort study	• LP group: consecutive patients underwent LP implantation. • TVP group: age- and sex-matched patients who underwent single-chamber TVP implantation using billing databases.	Micra	73	2.1	0	90	5	Not reported
Duray (2017)27	Prospective, 2-arm, multicenter cohort study	• LP group: patients recruited in the MCRATA TPS11. • TVP group: derived from individual patient level data set of 2667 patients with de novo pacemakers from 6 recent Medtronic trials of dual-chamber pacing.	Micra	726	12	29	2667	209	HR, 0.52 (0.35–0.77); P=0.001

(Continued)
Author (y)	Study Design	Study Population	Device	Sample Size of the LP Group	Follow-Up Time, mo	Major Complications in the LP Group	Sample Size of the TVP Group	Major Complications in the TVP Group	Reported Hazard Ratio
Tachibana (2020)	Retrospective, 2-arm, single-center cohort study	• LP group: consecutive patients ≥85 y underwent LP implantation • TVP group: consecutive patients ≥85 y implanted with single-chamber TVP during the same study period at the same institute	Micra	27	6	1	35	4	Not reported
Pagan (2020)	Retrospective, 2-arm, multicenter cohort study	• LP group: patients ≥85 y implanted with a Micra • TVP group: patients ≥85 y implanted with single-chamber TVP during the same study period by the same electrophysiologists	Micra	183	0	2	119	4	Not reported
Turagam (2020)	Retrospective, 2-arm, multicenter cohort study	• LP group: patients with cardioinhibitory vasovagal syncope implanted with LP • TVP group: patients implanted with dual-chamber TVP during the same study period	Micra	21	12	1	48	5	Not reported

HR indicates hazard ratio; LP, leadless pacemaker; MICRA TPS, Micra transcatheter pacing study; and TVP, transvenous pacemaker.

*During the study, a pacemaker advisory was issued for the Nanostim LP on the occurrence of device failures because of abrupt battery failure. The authors performed separate analyses including and excluding pacemaker advisory-related complications to examine the differences in performance with and without the effects of this advisory.

†Vaidya et al. reported complications for both Nanostim (17 patients) and Micra LPs (73 patients) compared with those associated with TVPs (90 patients).
Author (Y)	Study Design	Study Population	Device	No. of Patients at Follow-Up	No. of Patients With Acceptable Capture Threshold
Knops (2015)	Prospective, single-arm, multicenter cohort study	Consecutive patients undergoing LP implantations	Nanostim	12	31
Reddy (2015)	Prospective, single-arm, multicenter cohort study	Consecutive patients implanted with LP	Nanostim	6	300
Spiering (2018)	Prospective, single-arm, multicenter cohort study	Consecutive patients implanted with LP	Nanostim	6	390
Reynolds (2018)	Prospective, single-arm, multicenter cohort study	Consecutive patients implanted with LP	Nanostim	6	390
Pachón (2016)	Single-arm, single-center cohort study	Consecutive patients underwent LP implantation attempts	Micra	6	292
Da Costa (2017)	Single-arm, single-center cohort study	Consecutive patients implanted with LP	Micra	1.8	10
El-Chami (2018)	Prospective, single-arm, multicenter cohort study	Consecutive patients with full or relative contraindications of TVP implantation	Micra	12	566
Kiani (2019)	Retrospective, single-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	1.5	125
Demian (2019)	Retrospective, single-arm, multicenter cohort study	Patients undergoing LP implantation attempts	Micra	11.8	74
Kaczmarek (2019)	Retrospective, single-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	13.9	23
Valiton (2019)	Retrospective, single-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	12	30
Garweg (2019)	Retrospective, single-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	10.4	66
Hai (2019)	Retrospective, 2-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	7.3	45
Tachibana (2020)	Retrospective, 2-arm, multicenter cohort study	Patients with an attempted LP implantation attempt	Micra	6	23

LP indicates leadless pacemaker; and TVP, transvenous pacemaker.
Table 6. Studies Reporting Clinical Outcomes as Efficacy End Points

Author (y)	Study Design	Study Population	Follow-Up Time	Efficacy End Point	Results
Cabanas-Grandío (2020)	2-arm, multicenter cohort study	One hundred six patients (64 patients implanted with TVP and 42 patients implanted with LP). The choice of TVP or LP was based on clinical criteria and operator availability.	6 mo	Quality of life evaluated by the SF-36 questionnaire	LP is associated with significantly higher scores on physical function (63 vs 42; P<0.001), physical role (64 vs 36; P=0.004), and mental health (75 vs 65; P=0.017) compared with TVP. LP is also associated with lower discomfort and physical restrictions compared with TVP. Hazard/odds ratio not reported.
Tjong (2018)	Prospective, multicenter, single-arm cohort study	Seven hundred twenty patients. Number of patients who completed the SF-36 questionnaire at baseline, 3, and 12 mo was 702, 661, and 635, respectively.	3 and 12 mo	Health-related quality of life evaluated using the SF-36 questionnaire	Health-related quality of life was improved at 3 and 12 mo after LP implantation (mental component score improved by 28.4% at 3 mo and 26.9% at 12 mo; increases in physical component score were 26.8% and 25.3%, respectively). At 3 mo, most patient were satisfied with the treatment.
Beurskens (2019)	Retrospective, 2-arm, single-center cohort study	Fifty-six consecutive patients underwent LP implantations, but only 53 patients (28 Nanostim and 25 Micra) with quality echocardiography images were included.	12 mo	Tricuspid valve regurgitation grade evaluated by echocardiography	Tricuspid valve regurgitation worsened in 23 (43%) patients but comparable to that (38%) in those with TVP (P=0.39) and was unrelated to pacing rates. Hazard/odds ratio not reported.
Salaun (2018)	Single-arm, single-center cohort study	Twenty-nine consecutive patients implanted with LP, but only 23 were included for analysis (14 with Nanostim and 9 with Micra). Three patients were excluded because of lack of echocardiography images, and 3 refused to participate.	2 mo	Right ventricular and tricuspid valve function evaluated by echocardiography	No significant change in right ventricular function was observed. One patient experienced significantly deteriorating tricuspid valve regurgitation that was related to pulmonary hypertension caused by chronic obstructive lung disease.

LP indicates leadless pacemaker; SF-36, Short Form-36; and TVP, transvenous pacemaker.
proportion of patients having a successful implant and a low incidence of complications at 90 days and 1 year after implantation. In the few studies that compared LPs with TVPs, Micra devices were associated with 51% lower odds of complications. Furthermore, the combined data suggested that LPs have good

Table

Author (year)	Estimate (95% CI)
Nanostim	
Reddy (2014)¹⁸	96.97% (84.24% - 99.92%)
Reddy (2015)³⁹	95.82% (93.74% - 97.36%)
Sperzel (2018)³⁶	96.57% (94.50% - 98.03%)
Vaidya (2019)⁴⁴	100% (80.49% - 100%)
Sub total (I²=0.0%, p=0.910)	97.12% (95.86% - 98.20%)
Micra	
Reynolds (2016)¹¹	99.17% (98.21% - 99.70%)
Pachon (2016)³³	100% (69.15% - 100%)
Martinez-Sande (2016)³⁵	100% (88.43% - 100%)
Da Costa (2017)³⁴	100% (76.84% - 100%)
El-Chami (2018)²⁰	99.12% (98.57% - 99.50%)
Bongiorni (2018)³⁷	100% (93.15% - 100%)
Hal (2019)⁴⁰	100% (93.02% - 100%)
Garweg (2019)⁴⁹	100% (97.26% - 100%)
Denman (2019)³⁸	96.20% (89.30% - 99.21%)
Kaczmarek (2019)⁴¹	100% (85.75% - 100%)
Valiton (2019)⁴⁵	97.83% (92.37% - 99.74%)
Roberts (2019)³³	100% (89.11% - 100%)
Vaidya (2019)⁴⁴	100% (95.07% - 100%)
Turagram (2020)⁵³	100% (83.89% - 100%)
Pagan (2020)⁵⁰	98.36% (95.28% - 99.66%)
El Amrani (2020)⁴⁶	98.45% (94.51% - 99.81%)
Grabowski (2020)⁴⁷	100% (69.15% - 100%)
Tachibana (2020)⁵¹	100% (87.23% - 100%)
Tolosana (2020)⁵²	98.18% (93.59% - 99.78%)
Haeberlin (2020)⁴⁸	95.50% (89.80% - 98.52%)
Sub total (I²=0.0%, p=0.536)	99.85% (99.59% - 99.99%)

Figure 2. Pooled proportion of patients with a successful implant. Catillon et al (2018)²⁹ and Roberts et al (2017)²⁸ both reported the proportion of patients with a successful implant, but they used the same population as the Reddy et al (2015)⁹ study (LEADLESS II trial) and El-Chami et al (2018)³⁰ study (Micra Post-Approval Registry), and therefore were not included in this meta-analysis.

Figure 3. Meta-analysis of the safety of the leadless pacemaker (LP). A. Pooled incidence of overall complications at up to 90 days after LP implantation. B. Pooled incidence of overall complications at ≈1 year after LP implantation in studies that reported safety outcomes beyond 90 days. C. Incidence of overall complications in studies that compared the LP with the transvenous pacemaker (TVP) implantation. *Vaidya et al⁴⁴ reported complications for both Nanostim (17 patients) and Micra LPs (73 patients) compared with those associated with a TVP (90 patients). OR indicates odds ratio.
Table A: Incidence of complications

Author (year)	Estimate (95% CI)
Nanostim	
Reddy (2014)	6.06% (0.74% - 20.23%)
Cantillon (2018)	5.85% (4.25% - 7.82%)
Vaidya (2019)	23.53% (6.81% - 49.90%)
Micra	
Ritter (2015)	1.43% (0.17% - 5.07%)
Pachon (2016)	0.00% (0.00% - 30.85%)
Roberts (2017)	1.51% (0.78% - 2.62%)
Da Costa (2017)	0.00% (0.00% - 23.16%)
Kiani (2019)	1.18% (0.14% - 4.19%)
Vaidya (2019)	0.00% (0.00% - 4.93%)
El Amrani (2020)	2.33% (0.48% - 6.65%)
Pagan (2020)	1.09% (0.13% - 3.89%)
Mohammed (2020)	2.38% (0.29% - 8.34%)
Grabowski (2020)	10.0% (0.25% - 44.50%)
Sub total (I²=0.0%, p=0.791)	**0.46% (0.08% - 1.05%)**

Table B: Incidence of complications

Author (year)	Estimate (95% CI)
Nanostim	
Reddy (2015)	6.67% (4.12% - 10.11%)
Knops (2015)	6.06% (0.74% - 20.23%)
Sperzel (2018)	5.33% (3.08% - 8.52%)
Micra	
Reynolds (2016)	3.45% (2.24% - 5.05%)
Martinez-Sande (2016)	0.00% (0.00% - 11.57%)
El-Chami (2018)	2.26% (1.62% - 3.05%)
Bongiorni (2018)	0.00% (0.00% - 6.85%)
Hai (2019)	1.96% (0.05% - 10.45%)
Kaczmarek (2019)	0.00% (0.00% - 14.25%)
Vaitlon (2019)	8.70% (3.83% - 16.42%)
Roberts (2019)	3.13% (0.08% - 16.22%)
Garweg (2019)	0.00% (0.00% - 2.74%)
Denman (2019)	1.27% (0.03% - 6.85%)
Tachibana (2020)	7.41% (0.91% - 24.29%)
Haeberlin (2020)	2.70% (0.56% - 7.70%)
Turagam (2020)	4.76% (0.12% - 23.82%)
Sub total (I²=51.2%, p=0.017)	**1.77% (0.76% - 3.07%)**

Table C: Odds of complications associated with LP vs. TVP

Author (year)	Estimate OR (95% CI)	Events/Sample size (LP)	Events/Sample size (TVP)
Nanostim			
Cantillon (2018)	0.48 (0.34 – 0.68)	42/718	165/1436
Vaidya (2019)	2.23 (1.24 – 4.04)	4/17	5/90
Micra			
Duray (2017)	0.51 (0.34 – 0.76)	29/726	202/2667
Vaidya (2019)	0.11 (0.01 – 1.94)	0/73	5/90
Turagam (2020)	0.43 (0.05 – 3.93)	1/21	5/45
Pagan (2020)	0.32 (0.06 – 1.76)	2/183	4/119
Tachibana (2020)	0.62 (0.10 – 3.67)	2/27	4/35
Sub total (I²=0.0%, p=0.536)	**0.49 (0.34 – 0.80)**	**34/1030**	**220/2959**
electrical performance up to 1 year after implantation, with >90% of devices having an adequate pacing capture threshold. However, the current literature is predominantly based on the Micra LP and includes only observational data with limited follow-up time, with electrical performance and clinical outcomes rarely being reported beyond the second year. Although the available data are promising, robust randomized trials with longer-term clinical outcome data are required to confirm these findings.

This study represents the first systematic evaluation of the safety and efficacy of LPs implanted in the right ventricle. There are 2 systematic reviews related to LPs that examined the incidences of cardiac perforation and device dislodgement, although neither reported pooled estimates because they included only 2 and 3 LP studies, respectively. We extend the literature by providing pooled estimates of overall as well as specific complications. Notably, the pooled complication incidence associated with Micra is considerably lower than the 7.76% to 12.4% incidence of early complications (within 3 months) or the 15% to 16% incidence of long-term complications that are typically associated with TVPs. Our meta-analysis of studies comparing LPs and TVPs confirmed this observation, with the Micra LP having half the odds of TVPs. Collectively, these findings suggest that LP implantation is safe and associated with less harm than TVPs.

Besides the good safety profile, the implant success and the short-term efficacy of LPs were high. However, there was a lack of efficacy data beyond 2 years, which leaves uncertainty about the longevity of the device performance. The unexpected premature battery failure of the Nanostim LP occurred at 2.3 to 4.0 years after implantation. Although no such concern has been reported with the Micra LP, the only LP currently approved by the Food and Drug

Author (year)	Estimate (95% CI)
Nanostim	
Reddy (2015)⁹	90.0% (86.03% - 93.15%)
Knops (2015)¹⁹	100% (88.78% - 100%)
Sperzel (2018)³⁶	100% (99.06% - 100%)
Micra	
Pachon (2016)³³	100% (69.15% - 100%)
Da Costa (2017)³⁴	100% (76.84% - 100%)
Roberts (2017)²⁸	97.0% (95.46% - 98.14%)
El-Chami (2018)²⁰	97.0% (95.23% - 98.24%)
Hai (2019)⁴⁰	100% (92.13% - 100%)
Valiton (2019)⁴⁵	90.0% (73.47% - 97.89%)
Garweg (2019)³⁹	100% (94.56% - 100%)
Denman (2019)³⁸	100% (95.14% - 100%)
Kiani (2019)⁸¹	100% (97.09% - 100%)
Tachibana (2020)⁵¹	86.96% (66.41% - 97.22%)
Turagam (2020)⁵³	90.48% (69.62% - 97.22%)
Tolosana (2020)⁵²	97.14% (91.88% - 99.41%)
Sub total (I²=58.76%, p=0.005)	98.96% (97.26% - 99.94%)

![Figure 4](image-url) Pooled proportion of patients having a pacing capture threshold ≤2 V at 1 year after implantation.
published articles are considered more reliable and generally necessarily provide all required information.

CONCLUSIONS
Based on pooled observational data, leadless pacemakers have a low incidence of complications (0.46% at 3 months and 1.77% at 1 year for the Micra LP) and good short-term electrical performance, with >90% of LPs having acceptable pacing threshold at 1 year. A Micra is also associated with 51% lower odds of complications when compared with a TVP. Further data from well-designed randomized controlled trials with longer follow-up time are still required to determine longer-term safety and efficacy of LPs to support the widespread adoption of these novel devices in clinical practice.

ARTICLE INFORMATION
Received September 3, 2020; accepted April 20, 2021.

Affiliations
School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia (L.N., T.E.W., H.M.H., I.R.); Department of Cardiology, The Prince Charles Hospital, Brisbane, QLD, Australia (L.N., D.N., R.A.D., H.M.H., I.R.); Cardiovascular Centre, E Hospital, Hanoi, Vietnam (L.N.); St Vincent’s Private Hospital Northside, Brisbane, QLD, Australia (T.E.W.); and Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia (R.J.W.).

Sources of Funding
Dr Ngo is supported by a Research Training Program Scholarship from The University of Queensland. Dr Ranasinghe is supported by National Heart Foundation of Australia Future Leader Fellowships (ID 101186).

Disclosures
Dr Denman has delivered talks for Medtronic on LPs, has run 4 training courses for Medtronic at The Prince Charles Hospital to train other physicians in how to implant the Micra LP. Dr Denman is also a local principal investigator for the St Jude Nanostim study. Dr Haqqani has received speaking and proctoring honoraria from Medtronic and has served on the scientific advisory board of Medtronic. Dr Haqqani has also received speaking honoraria from Abbott. The remaining authors have no disclosures to report.

Supplementary Material
Tables S1–S3
References 8–11, 20, 24–53

REFERENCES
1. Kusumoto Fred M, Schoenfeld Mark H, Barrett C, Edgerton James R, Ellenbogen Kenneth A, Gold Michael R, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2019;140:e382–e482.

2. Ranasinghe I, Labrosciano C, Horton D, Ganesan A, Curtis JP, Krumholz HM, McGavigan A, Hossain S, Air T, Hanhuraparthan S, et al. Institutional variation in quality of cardiovascular implantable electronic device implantation: a cohort study. Ann Intern Med. 2019;171:309–317. DOI: 10.7326/M18-2810.

3. Udo EO, Zulthoff NPA, van Hemel NM, de Cock CC, Hendriks T, Doevendans PA, Moons KGM. Incidence and predictors of short- and long-term complications in pacemaker therapy: the
FOLLOWPACE study, Heart Rhythm. 2012;5:728–735. DOI: 10.1016/j.hrthm.2011.12.014.

4. Cantillon DJ, Exner DV, Badie N, Davis K, Gu NY, Nabutovsky Y, Doshi R. Complications and health care costs associated with transcatheter pacemakers in a nationwide assessment. JACC Clin Electrophysiol. 2017;3:1296–1305. DOI: 10.1016/j.jcpace.2017.05.007.

5. Ludwig S, Theis C, Wolf C, Nicole E, Witthohn A, Götte A. Complications and associated healthcare costs of transcatheter cardiac pacemakers in Germany. J Comp Eff Res. 2019;8:589–597. DOI: 10.1007/s12967-018-0114-0.

6. Chintiz L, Ritter P, Khelia SK, Iacopino S, Garweg C, Grazia-Bongiorni M, Neuzil P, Johansen JB, Mont L, Gonzalez E, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: results from the Micra atrioventricular feasibility studies. Heart Rhythm. 2018;15:1363–1371. DOI: 10.1016/j.hrthm.2018.05.004.

7. Steinwender C, Khelai SK, Garweg C, Chan JYS, Ritter P, Johansen JB, Sagi V, Epstein LM, Piccini JP, Pasqual M, et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 study. JACC Clin Electrophysiol. 2020;6:94–1016. DOI: 10.1016/j.jciecep.2019.10.017.

8. Reddy YY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR, Crossley GH, Hummel JD, Narasimhan C, Omar R, et al. Patient selection, pacing indications, and subsequent outcomes with de novo leadless ventricular pacemakers in the real-world setting: a comparison to the investigational study and a transvenous historical control. Heart Rhythm. 2018;15:1800–1807. DOI: 10.1016/j.hrthm.2018.08.005.

9. Nyaga VN, Arbyn M, Aerts M. Metapop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72:3258–3729. DOI: 10.1186/2049-3258-72-39.

10. Harris R, Bradburn M, Deeks J, Harbord R, Altman D, Sterne J. Meta-analysis of fixed- and random-effects meta-analysis. Stata J. 2008;8:3–28. DOI: 10.1177/153687270800800102.

11. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188. DOI: 10.1016/0197-2456(86)90046-2.

12. Cabanas-Grandio P, Garcia Campo E, Bisbal F, Garcia-Seara J, Pachón M, Juan-Salvadores P, Paredes E, Molinero A, Martínez-Sande JL, Arias MA, et al. Quality of life of patients undergoing conventional vs leadless pacemaker implantation: a multicenter observational study. J Cardiovasc Electrophysiol. 2020;31:330–336. DOI: 10.1111/jce.14322.

13. Beurskens NEG, Tjong FY, Du Bruin-Bon RA, Dassaëlaer KJ, Kuitj WJ, Wilde AAM, Knops RE. Impact of leadless pacemaker therapy on cardiac and atrioventricular valve function through 12 months of follow-up. Circ Arrhythm Electrophysiol. 2019;12:e007124.

14. Salama E, Tommassian L, Simonetti B, Giorgi R, Franceschi F, Koubli- Franchi JL, Houdrain J, Habib G, Deharo J-C. Right ventricular and tricuspid valve function in patients chronically implanted with leadless pacemakers. Europace. 2019;20;823–828. DOI: 10.1093/europace/eux101.

15. Duray GZ, Ritter P, El-Chami M, Narasimchan C, Omar R, Tosloa JM, Zheng S, Soejima K, Steinhoven C, Cappolinii L, et al. Long-term performance of an entirely intracardiac leadless pacemaker: results from the Micra Transcatheter Pacemaker Study. Heart Rhythm. 2017;14:702–709. DOI: 10.1016/j.hrthm.2017.01.035.

16. Roberts PR, Clementy N, Al Samadhi F, Garweg C, Martinez-Sande JL, Iacopino S, Johansen JB, Vinolas Prat X, Kowal RC, Klug D, et al. A leadless pacemaker in the real-world setting: the Micra Transcatheter Pacing System Post-Approval Registry. Heart Rhythm. 2017;14:1375–1379. DOI: 10.1016/j.hrthm.2017.05.017.

17. Cantillon DJ, Dukkipati SR, Ip JH, Exner DV, Niazi IK, Banker RS, Rajathin M, Puchol A, Akerström F, Rodrigues M, et al. Permanent leadless cardiac pacemakers. Heart Rhythm. 2018;15:1023–1030. DOI: 10.1016/j.hrthm.2018.04.022.

18. Tjong FY, Knops RE, Udo EO, Brouwer TF, Dukkipati SR, Koruth JS, Petru J, Sediva L, van Hemel NM, Neuzil P, et al. Leadless pacemaker versus transvenous single-chamber pacemaker therapy: a propensity score-matched analysis. Heart Rhythm. 2018;15:1387–1393. DOI: 10.1016/j.hrthm.2018.04.027.

19. Kiani S, Black GB, Rao B, Thakkar N, Massad C, Patel AV, Lu MLR, Merchant FM, Hoskins MH, Lurio DB, et al. The safety and feasibility of a one-day discharge after implantation of MIgRA transcatheter leadless pacemaker system. J Arrhythm. 2019;12:2153. DOI: 10.4022/jarrh.2153.

20. Tjong FY, Beurskens NEG, Groot J, Wauerw, Liu S, Ritter P, Reynolds D, Wilde AAM, Knops RE. Health-related quality of life impact of a transcatheter pacing system. J Cardiovasc Electrophysiol. 2018;29:1697–1704. DOI: 10.1111/jce.13726.

21. Pachón M, Puchol A, Akerström F, Rodríguez-Padial L, Arias MA. Implantation of the Micra transcatheter pacing system: initial experience in a single Spanish center. Rev Esp Cardiol (Engl Ed). 2016;69:346–349. DOI: 10.1016/j.rec.2015.11.020.

22. Da Costa A, Axiots A, Romeyer-Bouchard C, Abdelouafi L, Atif Z, Guichard JB, Gerbay A, Isaa K. Transcatheter leadless cardiac pacing: the new alternative solution. Int J Cardiol. 2017;227:122–126. DOI: 10.1016/j.ijcard.2016.11.196.

23. Martínez-Sande JL, García-Seara J, Rodríguez-Mañero M, Fernández- López XA, González-Melchor L, Redondo-Díezguez A, González- Ferrerro R, González-Juanatey JR. The Micra leadless transcatheter pacemaker. Implantation and mid-term follow-up results in a single center. Rev Esp Cardiol. 2017;70:275–281.

24. Sperzel J, Delafaye P, Dechauro JC, García-Guerrero JJ, Knops RE, Tondo C, Deharo J-C, Wong T, Neuzil P. Primary safety results from the LEADLESS Observational Study, Europace. 2018;20:1491–1497. DOI: 10.1093/eurheartj/eux359.

25. Bongiorni MG, Della Tommasina V, Barletta V, Di Cori A, Rogani S, Viani S, Segregi L, Paperni L, Soldati E, De Lucia R, et al. Feasibility and long-term effectiveness of a non-apical Micra pacemaker implantation.
in a referral centre for lead extraction. Europace. 2019;21:114–120. DOI: 10.1093/europace/euy116.

38. Denman RA, Lee AC, Mengei C, Townsend S, Betts J, Bovey N, Wright D, Davison O, Haqgani HM. Leadless permanent pacing: a single centre Australian experience. Heart Lung Circ. 2019;28:1677–1682. DOI: 10.1016/j.hlc.2018.09.014.

39. Garweg C, Vandenberk B, Foulon S, Haemers P, Ector J, Willems R. Leadless pacing with Micra TPS: a comparison between right ventricular outflow tract, mid-septal, and apical implant sites. J Cardiovasc Electrophysiol. 2019;30:2002–2011. DOI: 10.1111/jce.14083.

40. Hai J-J, Fang J, Tam C-C, Wong C-K, Lau C-P, Tse H-F. Safety and feasibility of a midseptal implantation technique of a leadless pacemaker. Heart Rhythm. 2019;16:896–902. DOI: 10.1016/j.hrthm.2018.12.007.

41. Kaczmarek K, Cygankiewicz I, Czarniak B, Jakubowski P, Strzelecki A, Wranicz JK, Ptaszyniski P. Septal implantation of the Micra transcatheter pacing system guided by intraprocedural transophageal echocardiography. Kardiol Pol. 2019;77:1190–1192. DOI: 10.33963/kp.15043.

42. Kiani S, Black GB, Rao B, Thakkar N, Massad C, Patel AV, Merchant FM, Hoskins MH, Lurgio DB, Patel AM, et al. Outcomes of Micra leadless pacemaker implantation with uninterrupted anticoagulation. J Cardiovasc Electrophysiol. 2019;30:1313–1318. DOI: 10.1111/jce.13965.

43. Roberts PR, Pepper C, Rinaldi CA, Bates MGD, Thornley A, Somani R, Abozguia K, Harris S, Rao A, Pedersen M, et al. The use of a single chamber leadless pacemaker for the treatment of cardioinhibitory vasovagal syncope. Int J Cardiol Heart Vasc. 2019;23:100349. DOI: 10.1016/j.ijchv.2019.100349.

44. Vaidya VR, Dai M, Asirvatham SJ, Rea RF, Thorne TM, Srivathsan K, Mulpuru SK, Kusumoto F, Venkatachalam KL, Ryan JD, et al. Real-world experience with leadless cardiac pacing. Pacing Clin Electrophysiol. 2019;42:366–373. DOI: 10.1111/pace.13601.

45. Vaiton V, Graf D, Pruvot C, Carroz P, Froner M, Bischof L, Tran VN, Cook S, Scharf C, Burri H, et al. Leadless pacing using the transcatheter pacing system (Micra TPS) in the real world: initial Swiss experience from the Romandie region. Europace. 2019;21:275–280. DOI: 10.1093/europace/euy195.

46. El Amrani A, Campos B, Alonso-Martín C, Guerra-Ramos JM, Rodríguez-Font E, Moreno-Weidmann Z, Alcalde-Rodriguez O, Méndez-Zurita FJ, Santaló M, Espinosa-Viamonte H, et al. Performance of the Micra cardiac pacemaker in nonagenarians. Rev Esp Cardiol (Engl Ed). 2020;73:307–312.

47. Grabowski M, Michalak M, Gawalko M, Gajda S, Cacko A, Januszkiewicz Ł, Kolodzińska A, Mitkowski PP, Duray GZ, Opolski G, et al. Implantation of the Micra transcatheter pacing system: Single Polish center experience with the real costs of hospitalization analysis. Cardiol J. 2020;27:47–53. DOI: 10.5603/CJ.Ja2018.0075.

48. Haeberlin A, Kozhuharov N, Knecht S, Tanner H, Schaer B, Noti F, Osswald S, Servatius H, Baidinger S, Seiler J, et al. Leadless pacemaker implantation quality: importance of the operator’s experience. Europace. 2020;22:939–946. DOI: 10.1093/europace/euaa097.

49. Mohammed M, Arshi J, Ramza BM, Wimmer AP, Steinhaus DA, Giocoando MJ, Gupta SK, Youssif SK. Outcomes using a single tapered dilator for Micra leadless pacemaker implant. Indian Pacing Electrophysiol J. 2020;20:105–111. DOI: 10.1016/j.ipej.2020.03.001.

50. Pagan E, Gabriels J, Khodak A, Chang D, Beldner S, Epstein LM, Willner J. Safety of leadless pacemaker implantation in the very elderly. Heart Rhythm. 2020;17:2023–2028. DOI: 10.1016/j.hrthm.2020.05.022.

51. Tachibana M, Banba K, Matsumoto K, Ohara M. The feasibility of leadless pacemaker implantation for superelderly patients. Pacing Clin Electrophysiol. 2020;43:374–381. DOI: 10.1111/pace.13894.

52. Tolosana JM, Guasch E, San Antonio R, Apolo J, Pujol-López M, Chipasani F, Trucco E, Roca-Luque I, Brugada J, Mont L, et al. Very high pacing thresholds during long-term follow-up predicted by a combination of implant pacing threshold and impedance in leadless transcatheter pacemakers. J Cardiovasc Electrophysiol. 2020;31:868–874. DOI: 10.1111/jce.14360.

53. Turagam MK, Gopinathannair R, Park PH, Tummala RV, Vasanreddy C, Shah A, Koerber S, Krauthammer Y, Di Blase L, Murtaza G, et al. Safety and efficacy of leadless pacemaker for cardio inhibitory vasovagal syncope. Heart Rhythm. 2020;17:1575–1581. DOI: 10.1016/j.hrthm.2020.05.006.

54. Al-bawardy R, Krishnaswamy A, Rajeswaran J, Bhargava M, Wazni O, Wilkoff B, Tuzcu EM, Martin D, Thomas J, Blackstone E, et al. Tricuspid regurgitation and implantable devices. Pacing Clin Electrophysiol. 2015;38:259–266. DOI: 10.1111/pace.12530.

55. Lee RC, Friedman SE, Kono AT, Greenberg ML, Palac RT. Tricuspid regurgitation following implantation of endocardial leads: incidence and predictors. Pacing Clin Electrophysiol. 2015;38:1267–1274. DOI: 10.1111/pace.12701.

56. Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J Am Coll Cardiol. 2017;69:2331. DOI: 10.1016/j.jacc.2017.02.055.
Table S1. Search strategy and keywords.

DATABASE	SEARCH KEYWORDS
Pubmed	(Micra[tiab] OR Nanostim[tiab] OR Leadless[tiab]) AND (pacemaker*[tiab] OR pacemaker[mh])
Embase	(‘micra’:ti,ab OR ‘nanostim’:ti,ab OR ‘leadless’:ti,ab) AND (‘pacemaker’/exp OR ‘pacemaker’:ti,ab)
Table S2. Studies included for meta-analysis of proportion of patients with a successful implant.

Author (year)	Study design	Study population	Device	Number of patients with implant attempt(s)	Number of patients with successful implant
Reddy (2014)	Prospective, single-arm, multi-center cohort study	Consecutive patients undergoing LP implantations	Nanostim	33	32
Reddy (2015)	Prospective, single-arm, multi-center cohort study	Consecutive patients undergoing LP implantations	Nanostim	300	289
Sperzel (2018)	Prospective, single-arm, multi-center cohort study	Consecutive patients undergoing LP implantations	Nanostim	467	451
Vaidya (2019)	Retrospective, two-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Nanostim	17	17
Reynolds (2016)	Prospective, single-arm, multi-center cohort study	Consecutive patients undergoing LP implantations	Micra	725	719
Pachon (2016)	Single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	10	10
Martinez-Sande (2017)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	30	30
Da Costa (2016)	Prospective, single-arm, single-center cohort study	Consecutive patients with full or relative contraindications of traditional TVP	Micra	14	14
Bongiorni (2018)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	52	52
El-Chami (2018)	Prospective, single-arm, single-center cohort study	Consecutive patients implanted with Micra devices after approval	Micra	1817	1801
Deman (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	79	76
Kaczmarek (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	24	24
Roberts (2019)	Retrospective, single-arm, multi-center cohort study	Patients implanted with Micra LP for cardioinhibitory vasovagal syncope	Micra	32	32
Vaidya (2019)	Retrospective, two-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	73	73
Valiton (2019)	Retrospective, single-arm, multi-center cohort study	Consecutive patients undergoing LP implantations	Micra	92	90
Garweg (2019)	Prospective, single-arm, single-center cohort study	Patients implanted with Micra LP for cardioinhibitory vasovagal syncope	Micra	133	133
Hai (2019)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	51	51
Turagam (2020)	Retrospective, two-arm, multi-center cohort study	Patients with cardio inhibitory vasovagal syncope implanted with LP.	Micra	24	24
Tachibana (2020)	Retrospective, two-arm, single-center cohort study	Consecutive patients ≥85 years underwent LP implantation	Micra	27	27
Haebelin (2020)	Prospective, single-arm, two-center cohort study	Consecutive patients undergoing LP implantations	Micra	111	106
Grabowski (2020)	Prospective, single-arm, single-center cohort study	Consecutive patients undergoing LP implantations	Micra	10	10
El Amrani (2012)	Prospective, single-arm, single-center cohort study	Consecutive patients >70 years with an attempted LP implant	Micra	129	127
Pagan (2020)	Retrospective, two-arm, multi-center cohort study	Patients ≥85 years implanted with a Micra LP	Micra	183	180
Tolosana (2020)	Single-arm, single-center v	Consecutive patients undergoing LP implantations	Micra	110	108

LP = leadless pacemaker
Table S3. Study quality assessment results.

Author (Year)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Quality
Reddy (2014)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Knops (2015)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Reddy (2015)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Ritter (2015)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Pachon (2016)	Y	Y	Y	Y	Y	Y	Y	Y	Y	X					GOOD
Reynolds (2016)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Da Costa (2017)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Duray (2017)	Y	Y	NA	Y	NA	NA	NA	NA	Y	NA	N	N	Y	NA	FAIR
Martinez-Sande (2017)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N				FAIR
Roberts (2017)	Y	Y	Y	Y	Y	Y	Y	N	Y	N					FAIR
Cantillon (2018)	Y	Y	Y	Y	Y	Y	Y	N	Y	Y					FAIR
El-Chami (2018)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Sperzel (2018)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Tjong (2018)	Y	Y	NA	N	NA	NA	NA	NA	Y	NA	Y	N	Y	NA	FAIR
Bongiorni (2018)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Denman (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Garweg (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N				FAIR
Hai (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Kaczemarek (2019)	Y	Y	Y	Y	Y	N	Y	Y	N	Y					FAIR
Kiani (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					GOOD
Researcher	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Evaluation				
--------------------------	---	---	---	---	---	---	---	---	---	---	--------------				
Kiani (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	GOOD				
Roberts (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	FAIR				
Vaidya (2019)	Y	Y	NA	N	Y	Y	Y	Y	Y	Y	FAIR				
Valiton (2019)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	GOOD				
El Amrani (2020)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	GOOD				
Grabowski (2020)	Y	Y	Y	Y	Y	N	N	Y	N	Y	FAIR				
Haeberlin (2020)	Y	Y	Y	Y	Y	Y	N	Y	N	N	FAIR				
Mohammed (2020)	Y	Y	Y	Y	Y	N	N	Y	Y	Y	FAIR				
Pagan (2020)	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	FAIR				
Tachibana (2020)	Y	Y	NA	Y	NA	NA	NA	NA	Y	NA	N	N	Y	NA	FAIR
Tolosana (2020)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	GOOD				
Turagam (2020)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	GOOD				
Salaun (2018)	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	FAIR				
Tjong (2018)	Y	Y	NA	N	NA	NA	NA	NA	Y	NA	Y	N	Y	Y	FAIR
Beurskens (2019)	Y	Y	NA	Y	NA	NA	NA	NA	Y	NA	Y	N	Y	Y	GOOD
Cabanas-Grandio (2019)	Y	Y	NA	Y	NA	NA	NA	NA	Y	NA	Y	N	Y	Y	GOOD

NA=Not applicable, N=No, Y=Yes.