COHEN-MACAULAY HOMOLOGICAL DIMENSIONS

PARVIZ SAHANDI, TIRDAD SHARIF, AND SIAMAK YASSEMI

Abstract. We introduce new homological dimensions, namely the Cohen-Macaulay projective, injective and flat dimensions for homologically bounded complexes. Among other things we show that (a) these invariants characterize the Cohen-Macaulay property for local rings, (b) Cohen-Macaulay flat dimension fits between the Gorenstein flat dimension and the large restricted flat dimension, and (c) Cohen-Macaulay injective dimension fits between the Gorenstein injective dimension and the Chouinard invariant.

1. Introduction

A commutative Noetherian local ring R is regular if the residue field k has finite projective dimension and only if all R-modules have finite projective dimension [25]. This theorem of Auslander, Buchsbaum and Serre is a main motivation of studying homological dimensions. The injective and flat dimensions have similar behavior.

Auslander and Bridger [1], introduced a homological dimension for finitely generated modules designed to single out modules with properties similar to those of modules over Gorenstein rings. They called it G-dimension and it is a refinement of the projective dimension and showed that a local Noetherian ring (R, m, k) is Gorenstein if the residue field k has finite G-dimension and only if all finitely generated R-modules have finite G-dimension.

To extend the G-dimension beyond the realm of finitely generated modules over Noetherian rings, Enochs and Jenda [12] introduced the notion of Gorenstein projective module. Then the notion of Gorenstein projective dimension was studied in [7].

The notion of Gorenstein injective module is dual to that of Gorenstein projective module and were introduced in the same paper by Enochs and Jenda [12]. Then the notion of Gorenstein injective dimension was studied in [7].

Another extension of the G-dimension is based on Gorenstein flat modules, a notion due to Enochs, Jenda, and Torrecillas [13]. Then the notion of Gorenstein flat dimension was studied in [7].

More recently, the complete intersection dimension has been introduced for finitely generated R-modules, using quasi-deformations and projective dimension, to characterize the complete intersection property of local rings [9]. Parallel to Gorenstein projective, injective and flat dimensions, the complete intersection projective, injective and flat dimensions have been introduced and studied in [22], [23], [24] and [21].

2010 Mathematics Subject Classification. 13H10, 13C15, 13D05.
Key words and phrases. Cohen-Macaulay flat dimension, Cohen-Macaulay projective dimension, Cohen-Macaulay injective dimension.
The **Cohen-Macaulay dimension** of a finitely generated R-module M, as defined by Gerko [16] is

$$\text{CM-dim}_R(M) := \inf \left\{ \text{G-dim}_Q (M \otimes_R R') - \text{G-dim}_Q (R') \mid R \to R' \leftarrow Q \text{ is a CM-quasi-deformation} \right\}$$

(see Section 2 for the definition of CM-quasi-deformation).

The purpose of this paper is to develop a similar theory of projective, injective and flat analogue for Cohen-Macaulay case. Thus we introduce Cohen-Macaulay projective dimension (CM$_{\text{pd}}$), Cohen-Macaulay injective dimension (CM$_{\text{id}}$) and Cohen-Macaulay flat dimension (CM$_{\text{fd}}$) for homologically bounded complexes over commutative Noetherian local rings (R, \mathfrak{m}, k) with identity (see Definition 3.1). In particular CM-dim$_R(M) = \text{CM}_{\text{pd}}_R(M) = \text{CM}_{\text{fd}}_R(M)$, for a finitely generated R-module M. Among other things, we show that these invariants characterize the Cohen-Macaulay property for local rings. We also show that if M is a homologically bounded R-complex, then we have the inequalities

$$\text{Rfd}_R(M) \leq \text{CM}_{\text{fd}}_R(M) \leq \text{Gfd}_R(M),$$

with equality to the left of any finite value. In particular if Gfd$_R(M) < \infty$, then CM$_{\text{fd}}_R(M) = \text{Gfd}_R(M)$, and if CM$_{\text{fd}}_R(M) < \infty$, then

$$\text{CM}_{\text{fd}}_R(M) = \sup \{ \text{depth}_p - \text{depth}_{R_p}(M_p) \mid p \in \text{Spec } (R) \},$$

where Rfd$_R(M)$ is the large restricted flat dimension. Also, we show that there are inequalities

$$\sup \{ \text{depth}_p - \text{width}_{R_p} M_p \mid p \in \text{Spec } (R) \} \leq \text{CM}_{\text{id}}_R(M) \leq \text{Gid}_R(M),$$

such that if Gid$_R(M) < \infty$, then CM$_{\text{id}}_R(M) = \text{Gid}_R(M)$, and if CM$_{\text{id}}_R(M) < \infty$ for a homologically finite R-complex M, then

$$\text{CM}_{\text{id}}_R(M) = \sup \{ \text{depth}_p - \text{width}_{R_p}(M_p) \mid p \in \text{Spec } (R) \} = \text{depth } R - \text{inf}(M).$$

Finally we compare our Cohen-Macaulay homological dimensions with the homological dimensions of Holm and Jørgenson [17].

2. Definitions and Notations

Let (R, \mathfrak{m}, k) and (S, \mathfrak{n}, l) be commutative local Noetherian rings.

We work in the derived category $D(R)$ of complexes of R-modules, indexed homologically. A complex M is **homologically bounded** if $H_i(M) = 0$ for all $|i| \gg 0$; and it is **homologically finite** if $\oplus_i H_i(M)$ is finitely generated.

Fix R-complexes M and N. Let $M \otimes^L_R N$ and $R\text{Hom}_R(M, N)$ denote the left-derived tensor product and right-derived homomorphism complexes, respectively. Let inf(M) and sup(M) denote the infimum and supremum, respectively, of the set \{ $n \in \mathbb{Z}$ | $H_n(M) \neq 0$ \}.

Definition/Notation 2.1. A homologically finite R-complex M is **reflexive** if the complex $R\text{Hom}_R(M, R)$ is homologically bounded and the biduality morphism $\delta_M : M \to R\text{Hom}_R(R\text{Hom}_R(M, R), R)$ is an isomorphism in $D(R)$. Set

$$\text{G-dim}_R(M) := - \text{inf}(R\text{Hom}_R(M, R)),$$
if M is reflexive, and $\text{G-dim}_R(M) := \infty$ otherwise. Set also $\text{G-dim}_R(0) = -\infty$. This is the G-dimension of Auslander and Bridger \[1\] and Yassemi \[27\].

Definition/Notation 2.2. An R-module G is G-projective if there exists an exact sequence of R-modules

$$X = \cdots \to P_1 \xrightarrow{\partial X_1} P_0 \xrightarrow{\partial X_0} P_{-1} \xrightarrow{\partial X_{-1}} P_{-2} \xrightarrow{\partial X_{-2}} \cdots$$

such that $G \cong \text{Coker}(\partial X_1)$, each P_i is projective, and $\text{Hom}_R(X, Q)$ is exact for each projective R-module Q.

An R-module G is G-flat if there exists an exact sequence of R-modules

$$Y = \cdots \to F_1 \xrightarrow{\partial Y_1} F_0 \xrightarrow{\partial Y_0} F_{-1} \xrightarrow{\partial Y_{-1}} F_{-2} \xrightarrow{\partial Y_{-2}} \cdots$$

such that $G \cong \text{Coker}(\partial Y_1)$, each F_i is flat, and $I \otimes_R Y$ is exact for each injective R-module I.

An R-module G is G-injective if there exists an exact sequence of R-modules

$$Z = \cdots \to I_1 \xrightarrow{\partial Z_1} I_0 \xrightarrow{\partial Z_0} I_{-1} \xrightarrow{\partial Z_{-1}} I_{-2} \xrightarrow{\partial Z_{-2}} \cdots$$

such that $G \cong \text{Coker}(\partial Z_1)$, each I_i is injective, and $\text{Hom}_R(I, Z)$ is exact for each injective R-module I.

Let M be a homologically bounded R-complex. A G-projective resolution of M is an isomorphism $H \simeq M$ in $\mathcal{D}(R)$ where H is a complex of G-projective R-modules such that $H_i = 0$ for all $i < 0$. The G-projective dimension of M is

$$\text{Gpd}_R(M) := \inf \{\sup \{n \mid H_n \neq 0\} \mid H \simeq M \text{ is a } G\text{-projective resolution}\}.$$

The G-flat dimension of M is defined similarly and denoted $\text{Gfd}_R(M)$, while the G-injective dimension $\text{Gid}_R(M)$ is dual \[7\]. These are the G-projective, G-flat, and G-injective dimensions of Enochs, Jenda and Torrecillas (which they consider only in the case of modules) \[12\] and \[13\].

Remark 2.3. (1) It is known that, for a homologically bounded R-complex M, $\text{Gpd}_R(M)$ and $\text{Gfd}_R(M)$ are simultaneously finite \[21\] Proposition 4.3].

(2) Let $R \to S$ be a flat local homomorphism and M a finitely generated R-module. Then it is well-known that, $\text{G-dim}_R(M) = \text{G-dim}_S(M \otimes_R S)$ and $\text{G-dim}_R(M) = \text{Gfd}_R(M) = \text{Gpd}_R(M)$ \[9\].

(3) The finiteness of G-projective, G-flat, and G-injective dimensions characterize the Gorenstein property of local rings \[7\].

Definition/Notation 2.4. A finitely generated R-module M is called G-perfect if G-dim$_R M = \text{grade}_R M := \inf \{i \mid \text{Ext}^i_R(M, R) \neq 0\}$. Let Q be a local ring and J an ideal of Q. By abuse of language we say that J is G-perfect if the Q-module Q/J has the corresponding property.

A CM-deformation of R is a surjective local homomorphism $Q \to R$ such that $J = \ker(Q \to R)$ is a G-perfect ideal in Q. A CM-quasi-deformation of R is a diagram of local homomorphisms $R \to R' \leftarrow Q$, with $R \to R'$ a flat extension and $R' \leftarrow Q$ a CM-deformation.
The Cohen-Macaulay dimension of a nonzero finitely generated R-module M, as defined by Gerko [16] is

\[\text{CM-dim}_R(M) := \inf \left\{ \text{G-dim}_Q(M \otimes_R R') - \text{G-dim}_Q(R') \left| \begin{array}{c} R \rightarrow R' \leftarrow Q \text{ is a} \\ \text{CM-quasi-deformation} \end{array} \right. \right\}, \]

and set $\text{CM-dim}_R(0) = -\infty$.

Remark 2.5. By [16] Theorems 3.8 and 3.9, and Proposition 3.10 we have

1. R is Cohen-Macaulay if and only if $\text{CM-dim}_R(k) < \infty$.
2. If M is a finitely generated R-module such that $\text{CM-dim}_R(M) < \infty$, then

\[\text{CM-dim}_R(M) = \text{depth } R - \text{depth } R(M). \]

3. For each prime ideal p of R, $\text{CM-dim}_{R_p}(M_p) \leq \text{CM-dim}_R(M)$.

Definition/Notation 2.6. A finitely generated R-module C is semidualizing if the homothety morphism $\chi_C^R : R \rightarrow R\text{Hom}_R(C,C)$ is an isomorphism in $\mathcal{D}(R)$. A finitely generated R-module D is canonical if it is semidualizing and $\text{id}_R(D)$ is finite.

Let $\varphi : R \rightarrow S$ be a local ring homomorphism. We denote \hat{R} the completion of R at its maximal ideal and let $\varepsilon_R : R \rightarrow \hat{R}$ denote the natural map. The completion of φ is the unique local ring homomorphism $\hat{\varphi} : \hat{R} \rightarrow \hat{S}$ such that $\hat{\varphi} \circ \varepsilon_R = \varepsilon_S \circ \varphi$. The semi-completion of φ is the composition $\varepsilon_S \circ \varphi : R \rightarrow \hat{S}$.

3. Cohen-Macaulay Projective, Flat and Injective Dimensions

In this section we introduce a Cohen-Macaulay projective dimension, Cohen-Macaulay flat dimension, and Cohen-Macaulay injective dimension for homologically bounded R-complexes and derive their basic properties. When M is a module, Definition 3.1 is from [22], which is in turn modeled on [3] and [16].

Definition 3.1. Let (R, m) be a local ring. For each homologically bounded R-complex M, define the Cohen-Macaulay projective dimension, Cohen-Macaulay flat dimension and Cohen-Macaulay injective dimension of M as,

- $\text{CM}_*\text{-pd}_R(M) := \inf \left\{ \text{Gpd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \left| \begin{array}{c} R \rightarrow R' \leftarrow Q \text{ is a} \\ \text{CM-quasi-deformation} \end{array} \right. \right\}$
- $\text{CM}_*\text{-fd}_R(M) := \inf \left\{ \text{Gfd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \left| \begin{array}{c} R \rightarrow R' \leftarrow Q \text{ is a} \\ \text{CM-quasi-deformation} \end{array} \right. \right\}$
- $\text{CM}_*\text{-id}_R(M) := \inf \left\{ \text{Gfd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \left| \begin{array}{c} R \rightarrow R' \leftarrow Q \text{ is a} \\ \text{CM-quasi-deformation} \end{array} \right. \right\}$

respectively.

Remark 3.2.

1. It is known that $\text{Gpd}_R(M)$ and $\text{Gfd}_R(M)$ are simultaneously finite by Remark 2.3(1). Hence $\text{CM}_*\text{-pd}_R(M)$ and $\text{CM}_*\text{-fd}_R(M)$ are simultaneously finite.

2. By taking the trivial CM-quasi-deformation $R \rightarrow R \leftarrow R$, one has

\[\text{CM}_*\text{-pd}_R(M) \leq \text{Gpd}_R(M), \]

\[\text{CM}_*\text{-fd}_R(M) \leq \text{Gfd}_R(M), \]
\[\CM_*-\id_R(M) \leq \Gid_R(M). \]

(3) By Remark 2.3(2) it can be seen that if \(M \) is a finitely generated \(R \)-module then, \(\CM_*-\pd_R(M) = \CM_*-\fd_R(M) = \CM\dim_R(M) \).

The following two theorems show that the finiteness of these dimensions characterize the Cohen-Macaulay rings.

Theorem 3.3. The following conditions are equivalent:

1. The ring \(R \) is Cohen-Macaulay.
2. \(\CM_*-\pd_R(M) < \infty \) for every homologically bounded \(R \)-complex \(M \).
3. \(\CM_*-\pd_R(k) < \infty \).
4. \(\CM_*-\fd_R(M) < \infty \) for every homologically bounded \(R \)-complex \(M \).
5. \(\CM_*-\fd_R(k) < \infty \).

Proof. (1)\(\Rightarrow \) (2) Let \(\hat{R} \) be the \(\m \)-adic completion of \(R \). Since \(R \) is Cohen-Macaulay, so is \(\hat{R} \). Therefore by Cohen’s structure theorem, \(\hat{R} \) is isomorphic to \(Q/J \), where \(Q \) is a regular local ring. By Cohen-Macaulay-ness of \(\hat{R} \) and regularity of \(Q \), the ideal \(J \) is G-perfect. Thus \(R \to \hat{R} \leftarrow Q \) is a CM -quasi-deformation. Since \(Q \) is regular \(\Gpd_Q(M \otimes_R \hat{R}) < \infty \) for every homologically bounded \(R \)-complex \(M \). Thus \(\CM_*-\pd_R(M) \) is finite.

(2)\(\Rightarrow \) (3) and (4)\(\Rightarrow \) (5) are trivial.

(2)\(\Rightarrow \) (4) and (3)\(\Rightarrow \) (5) are trivial since \(\CM_*-\fd_R(M) \leq \CM_*-\pd_R(M) \).

(5)\(\Rightarrow \) (1) It follows from Remark 3.2(3) that \(\CM\dim_R(k) = \CM_*-\fd_R(k) < \infty \). Now Remark 2.5(1), completes the proof. \(\square \)

Theorem 3.4. The following conditions are equivalent.

1. The ring \(R \) is Cohen-Macaulay.
2. \(\CM_*-\id_R(M) < \infty \) for every homologically bounded \(R \)-complex \(M \).
3. \(\CM_*-\id_R(k) < \infty \).

Proof. (1)\(\Rightarrow \) (2) is the same as proof of part (1)\(\Rightarrow \) (2) of Theorem 3.3.

(2)\(\Rightarrow \) (3) is trivial.

(3)\(\Rightarrow \) (1) Suppose \(\CM_*-\id_R(k) < \infty \). So that there is a CM -quasi-deformation \(R \to \hat{R} \leftarrow Q \), such that \(\Gid_Q(k \otimes_R \hat{R}) \) is finite. It is clear that \(k \otimes_R \hat{R} \) is a cyclic \(Q \)-module. Consequently \(Q \) is a Gorenstein ring by [15, Theorem 4.5]. We plan to show that \(\hat{R} \) is a Cohen-Macaulay ring. Let \(I = \ker(Q \to \hat{R}) \) which is G-perfect by definition. We have

\[\text{ht } I = \text{grade } (I, Q) \]
\[= \text{G-dim}_Q \hat{R} \]
\[= \text{depth } Q - \text{depth } Q \hat{R} \]
\[= \text{depth } Q - \text{depth } R' \]
\[= \text{dim } Q - \text{depth } R' \]
\[= \text{ht } I + \dim R' - \text{depth } R', \]

in which the equalities follow from Cohen-Macaulay-ness of \(Q \); \text{G-perfectness of} \(I \); Auslander-Buchsbaum formula; [4, Exercise 1.2.26]; Cohen-Macaulay-ness of \(Q \); and [4, Corollary 2.1.4] respectively. Therefore we obtain that \(\dim R' - \text{depth } R' = \)
0, that is \(R' \) is Cohen-Macaulay. Now [4, Theorem 2.1.7] gives us the desired result. \[\Box \]

The proof of the above theorem says something more, viz., a local ring \(R \) is Cohen-Macaulay if and only if there exists a cyclic \(R \)-module of finite Cohen-Macaulay injective dimension.

Corollary 3.5. Assume that \(C \neq 0 \) is a cyclic \(R \)-module. Then \(R \) is a Cohen-Macaulay ring if and only if \(\text{CM}_* \text{id}_R C < \infty \).

Remark 3.6. Let \(M \) be a homologically finite \(R \)-complex such that \(\text{Gid}_R(M) < \infty \). Then by [15, Theorem 3.6], we obtain that \(\text{Gid}_{\hat{R}}(M \otimes_R \hat{R}) < \infty \). Hence using [11, Corollary 2.3], we have

\[
\text{Gid}_{\hat{R}}(M \otimes_R \hat{R}) = \text{depth} \hat{R} - \inf(M \otimes_R \hat{R}) = \text{depth} R - \inf(M) = \text{Gid}_R(M).
\]

Proposition 3.7. Let \(M \) be a homologically finite \(R \)-complex. Then

\[
\text{CM}_* \text{id}_R(M) = \inf \left\{ \text{Gid}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \mid \begin{array}{c}
R \to R' \leftarrow Q \text{ is a CM-quasi-deformation such that } Q \text{ is complete}
\end{array} \right\}.
\]

Proof. It is clear that the left hand side is less than or equal to the right hand side. Now let \(R \to R' \leftarrow Q \) be a CM-quasi-deformation. Then note that \(R \to \hat{R} \leftarrow \hat{Q} \) is also a CM-quasi-deformation such that

\[
\text{Gid}_Q(M \otimes_R R') = \text{Gid}_{\hat{Q}}(M \otimes_R R' \otimes_Q \hat{Q}) = \text{Gid}_{\hat{Q}}(M \otimes_R \hat{R'}),
\]

and \(\text{Gfd}_Q(R') = \text{Gfd}_{\hat{Q}}(\hat{R'}) \), where the first equality holds by Remark 3.6. So we can assume in the CM-quasi-deformation \(R \to R' \leftarrow Q \) that, \(Q \) is a complete local ring. This shows the equality. \[\Box \]

Proposition 3.8. Let \(M \) be a homologically bounded \(R \)-complex. Then

\[
\text{CM}_* \text{fd}_R(M) = \inf \left\{ \text{Gfd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \mid \begin{array}{c}
R \to R' \leftarrow Q \text{ is a CM-quasi-deformation such that } Q \text{ is complete}
\end{array} \right\}.
\]

Proof. The proof is the same as proof of Proposition 3.7, but here use [19, Corollary 8.9] instead of Remark 3.6. \[\Box \]

Let \(M \) be homologically bounded \(R \)-complex. Then Foxby showed that

\[
\text{Gpd}_{\hat{R}}(M \otimes_R \hat{R}) \leq \text{Gpd}_R(M)
\]
(see [10, Ascent table II(b)]).

Proposition 3.9. Let \(M \) be a homologically bounded \(R \)-complex. Then

\[
\text{CM}_* \text{pd}_R(M) = \inf \left\{ \text{Gpd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \mid \begin{array}{c}
R \to R' \leftarrow Q \text{ is a CM-quasi-deformation such that } Q \text{ is complete}
\end{array} \right\}.
\]

Proof. The proof is the same as proof of Proposition 3.7, but here use the comment just before the proposition instead of Remark 3.6. \[\Box \]
A homological dimension should not grow under localization. Let \(p \) be a prime ideal of \(R \) and \(M \) a homologically bounded \(R \)-complex. It is well known that
\[
\text{Gfd}_R(M_p) \leq \text{Gfd}_R(M),
\]
and Foxby showed that (when \(R \) has finite Krull dimension)
\[
\text{Gpd}_R(M_p) \leq \text{Gpd}_R(M)
\]
(see [9, Page 262]). On the other hand if \(R \) has a dualizing complex then,
\[
\text{Gid}_R(M_p) \leq \text{Gid}_R(M)
\]
by [9, Proposition 5.5].

Theorem 3.10. Let \(M \) be a homologically finite \(R \)-complex. For each prime ideal \(p \in \text{Spec}(R) \) there is an inequality
\[
\text{CM}_* \text{-id}_{R_p}(M_p) \leq \text{CM}_* \text{-id}_R(M).
\]

Proof. Assume that \(\text{CM}_{*} \text{-id}_R(M) < \infty \). Let \(R \to R' \leftarrow Q \) be a CM-quasi-deformation with \(Q \) a complete local ring, such that \(\text{Gid}_Q(M \otimes R') < \infty \) and
\[
\text{CM}_{*} \text{-id}_R(M) = \text{Gid}_Q(M \otimes R') - \text{Gfd}_Q(R') \text{ by Proposition 3.7.}
\]
Hence \(Q \) admits a dualizing complex.

Let \(p \) be a prime ideal of \(R \). Since \(R \to R' \) is a faithfully flat extension of rings, there is a prime ideal \(\mathfrak{p}' \) in \(R' \) lying over \(p \). Let \(q \) be the inverse image of \(\mathfrak{p}' \) in \(Q \). The map \(R_p \to R'_p \) is flat, and \(R'_p \leftarrow Q_q \) is a CM-deformation and note that \(\text{Gfd}_{Q_q}(R'_p) = \text{Gfd}_{Q}(R') \). Therefore the diagram \(R_p \to R'_p \leftarrow Q_q \) is a CM-quasi-deformation with
\[
\text{Gid}_{Q_q}(M_p \otimes R'_p) = \text{Gid}_{Q_q}((M \otimes R') \otimes Q Q_q) \leq \text{Gid}_Q(M \otimes R') < \infty,
\]
where the inequality holds by [9, Proposition 5.5]. Hence \(\text{CM}_{*} \text{-id}_{R_p}(M_p) < \infty \). So we obtain
\[
\text{CM}_{*} \text{-id}_{R_p}(M_p) \leq \text{Gid}_{Q_q}(M_p \otimes R'_p) - \text{Gfd}_{Q_q}(R'_p)
\leq \text{Gid}_Q(M \otimes R') - \text{Gfd}_Q(R')
= \text{CM}_{*} \text{-id}_R(M).
\]
Thus the desired inequality follows. \(\square \)

We do not know when the inequality \(\text{CM}_{*} \text{-id}_{R_p}(M_p) \leq \text{CM}_{*} \text{-id}_R(M) \) holds in general. However for \(\text{CM}_{*} \text{-pd}_R(M) \) and \(\text{CM}_{*} \text{-fd}_R(M) \) we have

Theorem 3.11. Let \(M \) be a homologically bounded \(R \)-complex. For each prime ideal \(p \in \text{Spec}(R) \) there is an inequality
\begin{enumerate}
\item \(\text{CM}_{*} \text{-pd}_{R_p}(M_p) \leq \text{CM}_{*} \text{-pd}_R(M) \).
\item \(\text{CM}_{*} \text{-fd}_{R_p}(M_p) \leq \text{CM}_{*} \text{-fd}_R(M) \).
\end{enumerate}

Proof. The proof is the same as proof of Theorem 3.10, but here we do not need \(Q \) is a complete local ring. \(\square \)
Proposition 3.12. Let M be a homologically finite R-complex. Then there is an equality

$$CM_\ast\text{-id}_R(M) = \inf \left\{ Gid_Q(M \otimes_R R') - Gfd_Q(R') \mid R \to R' \xleftarrow{Q} \text{ is a CM-quasi-deformation such that the closed fibre of } R \to R' \text{ is Artinian} \right\}.$$

Proof. It is clear that the left hand side is less than or equal to the right hand side. Let $R \to R' \xleftarrow{Q}$ be a CM-quasi-deformation with Q a complete local ring, such that $CM_\ast\text{-id}_R(M) = Gid_Q(M \otimes R') - Gfd_Q(R')$ by Proposition 3.13. Hence Q admits a dualizing complex. Now choose $p' \in \text{Spec}(R')$ such that it is a minimal prime ideal containing mR'; thus $m = p' \cap R$ and $p' = q/J$ for some $q \in \text{Spec}(Q)$, where $J = \ker(Q \to R')$. Now the diagram $R \to R'_p \xleftarrow{Q_p}$ is a CM-quasi-deformation such that the closed fiber of $R \to R'_p$ is Artinian. It is clear that $Gfd_Q R' = Gfd_{Q_p} R'_p$. Also we have

$$Gid_{Q_p} (M \otimes_R R'_p) = Gid_{Q_p} (M \otimes_R (R'_p \otimes_Q Q_p)) = Gid_{Q_p} ((M \otimes_R R'_p) \otimes_Q Q_p) \leq Gid_Q (M \otimes_R R'_p),$$

where the inequality holds by [9 Proposition 5.5]. Hence $Gid_{Q_p} (M \otimes_R R'_p) - Gfd_{Q_p} (R'_p) \leq CM_\ast\text{-id}_R(M)$. So the proof is complete. □

Proposition 3.13. Let M be a homologically bounded R-complex. Then there are equalities

$$CM_\ast\text{-pd}_R(M) = \inf \left\{ Gpd_Q(M \otimes_R R') - Gfd_Q(R') \mid R \to R' \xleftarrow{Q} \text{ is a CM-quasi-deformation such that the closed fibre of } R \to R' \text{ is Artinian} \right\},$$

$$CM_\ast\text{-fd}_R(M) = \inf \left\{ Gfd_Q(M \otimes_R R') - Gfd_Q(R') \mid R \to R' \xleftarrow{Q} \text{ is a CM-quasi-deformation such that the closed fibre of } R \to R' \text{ is Artinian} \right\}.$$

Proof. The proof is the same as proof of Proposition 3.12 but here we do not need Q is a complete local ring. □

Remark 3.14. (1) Let M be a homologically finite R-complex. Then, one can combine the proofs of Propositions 3.12 and 3.13 to obtain an equality

$$CM_\ast\text{-id}_R(M) = \inf \left\{ Gid_Q(M \otimes_R R') - Gfd_Q(R') \mid R \to R' \xleftarrow{Q} \text{ is a CM-quasi-deformation such that } Q \text{ is complete and the closed fibre of } R \to R' \text{ is Artinian} \right\}.$$
(2) Likewise for a homologically bounded R-complex M, one can combine the proofs of Propositions 3.8, 3.9 and 3.12 to obtain the equalities

$$\text{CM}_*\text{-fd}_R(M) = \inf \left\{ \text{Gfd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') : \begin{array}{l} R \to R' \leftarrow Q \text{ is a } \text{CM-}\text{-quasi-deformation} \\ \text{such that } Q \text{ is complete} \\ \text{and the closed fibre of } R \to R' \text{ is Artinian} \end{array} \right\},$$

$$\text{CM}_*\text{-pd}_R(M) = \inf \left\{ \text{Gpd}_Q(M \otimes_R R') - \text{Gfd}_Q(R') : \begin{array}{l} R \to R' \leftarrow Q \text{ is a } \text{CM-}\text{-quasi-deformation} \\ \text{such that } Q \text{ is complete} \\ \text{and the closed fibre of } R \to R' \text{ is Artinian} \end{array} \right\}.$$

4. LARGE RESTRICTED FLAT DIMENSION AND CHOINUARD’S INVARIANT

Recall from [8], that the large restricted flat dimension is defined by

$$\text{Rfd}_R(M) := \sup \{ \sup(F \otimes_R^L M) : F \text{ an } R\text{-module with } \text{fd}_R(F) < \infty \}.$$

This number is finite, as long as $H(M)$ is nonzero and the Krull dimension of R is finite; see [8, Proposition 2.2]. It is useful to keep in mind an alternative formula [8, Theorem 2.4] for computing this invariant:

$$\text{Rfd}_R(M) = \sup \{ \text{depth } R_p - \text{depth } R_{M_p} : p \in \text{Spec } (R) \}.$$

Recall here that the depth of a homologically bounded R-complex M is defined by

$$\text{depth}_R(M) = -\sup(\text{RHom}_R(k, M)),$$

and it is shown that $\text{depth}_R(M) \geq -\sup(M)$.

It is proved in [19, Theorem 8.8] that for an R-complex M, $\text{Rfd}_R(M)$ is a refinement of $\text{Gfd}_R(M)$, that is

$$\text{Rfd}_R(M) \leq \text{Gfd}_R(M),$$

with equality if $\text{Gfd}_R(M)$ is finite.

First, we plan to show that, when the Cohen-Macaulay flat dimension of a homologically bounded R-complex M is finite, then it is equal to the large restricted flat dimension of M. The following proposition is the main tool.

Proposition 4.1. Let $R \to S \leftarrow Q$ be a CM-quasi-deformation, and let M be a homologically bounded R-complex. Then

$$R\text{fd}_R(M) = R\text{fd}_Q(M \otimes_R S) - R\text{fd}_Q(S).$$

Proof. First we prove the equality

$$\text{Rfd}_S(Y) = \text{Rfd}_Q(Y) - \text{G-dim}_Q(S),$$

for a homologically bounded S-complex Y. To this end, choose by [8, Theorem 2.4(b)] a prime ideal p of S such that the first equality below holds. Let q be the
inverse image of p in Q. Therefore there is an isomorphism $Y_p \cong Y_q$ of Q_q-modules and a CM-deformation $Q_q \to S_p$. Hence

$$\text{Rfd}_S(Y) = \text{depth}_{S_p} - \text{depth}_{Q_q} Y_p$$

$$= \text{depth}_{Q_q} S_p - \text{depth}_{Q_q} Y_p$$

$$= \text{depth}_{Q_q} - \text{G-dim}_{Q_q} S_p - \text{depth}_{Q_q} Y_p$$

$$\leq \text{Rfd}_Q(Y) - \text{G-dim}_{Q_q}(S_p)$$

$$= \text{Rfd}_Q(Y) - \text{G-dim}_Q(S).$$

The second equality holds since $Q_q \to S_p$ is surjective and [18, Proposition 5.2(1)]; the third equality holds by Auslander-Bridger formula [1]; the fourth equality is due to the G-perfectness assumption of S over Q; while the inequality follows from [8, Theorem 2.4(b)]. Now by [26, Proposition 3.5] we have

$$\text{Rfd}_Q(Y) \leq \text{Rfd}_S(Y) + \text{Rfd}_Q(S) \leq \text{Rfd}_Q(Y) - \text{G-dim}_Q(S) + \text{Rfd}_Q(S) = \text{Rfd}_Q(Y),$$

which is the desired equality.

Now we have

$$\text{Rfd}_Q(M \otimes_R S) \leq \text{Rfd}_S(M \otimes_R S) + \text{Rfd}_Q(S)$$

$$= \text{Rfd}_S(M \otimes_R S) + \text{G-dim}_Q(S)$$

$$= \text{Rfd}_Q(M \otimes_R S),$$

where the inequality is in [26, Proposition 3.5], the first equality follows from the hypotheses, and the second equality follows from the above observation. Hence

$$\text{Rfd}_Q(M \otimes_R S) - \text{Rfd}_Q(S) = \text{Rfd}_S(M \otimes_R S) = \text{Rfd}_R(M)$$

where the second equality holds by [19, Lemma 8.5(1)].

Corollary 4.2. Let M be a homologically bounded R-complex. Then we have the inequalities

$$\text{Rfd}_R(M) \leq \text{CM}_* - \text{fd}_R(M) \leq \text{Gfd}_R(M),$$

with equality to the left of any finite value. In particular if $\text{CM}_* - \text{fd}_R(M) < \infty$, then

$$\text{CM}_* - \text{fd}_R(M) = \sup\{\text{depth}_{R_p} - \text{depth}_{R_p}(M_p) \mid p \in \text{Spec}(R)\}$$

$$\leq \dim R + \sup(M).$$

Now using Corollary [172] we investigate the effect of change of ring on Cohen-Macaulay flat dimension.

Proposition 4.3. Let M be a homologically bounded R-complex. Let $R \to R'$ be a local flat extension, and $M' = M \otimes_R R'$. Then

$$\text{CM}_* - \text{fd}_R(M) \leq \text{CM}_* - \text{fd}_{R'}(M')$$

with equality when $\text{CM}_* - \text{fd}_{R'}(M')$ is finite.

Proof. Suppose that $\text{CM}_* - \text{fd}_{R'}(M') < \infty$, and let $R' \to R'' \leftarrow Q$ be a CM-quasi-deformation with $\text{Gfd}_Q(M' \otimes_R R'') < \infty$. Since $R \to R'$ and $R' \to R''$ are flat extensions, the local homomorphism $R \to R''$ is also flat. Hence $R \to R'' \leftarrow Q$ is a
CM-quasi-deformation with $Gfd_Q(M \otimes_R R') < \infty$. It follows that $CM_*-fd_R(M)$ is finite. Now by Corollary 4.2 and [19, Lemma 8.5(1)], we have

$$CM_*-fd_R(M) = Rfd_R(M) = Rfd_{R'}(M') = CM_*-fd_{R'}(M'),$$

to complete the proof. □

Proposition 4.4. For every homologically bounded R-complex M

$$CM_*-fd_R(M) = CM_*-fd_{\hat{R}}(M \otimes_R \hat{R}).$$

Proof. If $CM_*-fd_R(M) = \infty$, then we obtain that $CM_*-fd_{\hat{R}}(M \otimes_R \hat{R}) = \infty$ by Proposition 4.3. Now assume that $CM_*-fd_R(M) < \infty$. Using Proposition 4.3, it is sufficient to prove that $CM_*-fd_{\hat{R}}(M \otimes_R \hat{R})$ is finite. To this end, choose a CM-quasi-deformation $R \to \hat{R} \leftarrow Q$ of R such that $Gfd_Q(M \otimes_R \hat{R}) < \infty$. So we have $\hat{R} \to \hat{R}' \leftarrow \hat{Q}$ is a CM-quasi-deformation of \hat{R} with respect to their maximal ideal-adic completions. Now using [19, Corollary 8.9] we obtain

$$Gfd_{\hat{Q}}((M \otimes_R \hat{R}) \otimes_R \hat{R}') = Gfd_Q(M \otimes_R R') < \infty.$$ Hence $Gfd_{\hat{Q}}((M \otimes_R \hat{R}) \otimes_R \hat{R}')$ is finite which in turn implies that $CM_*-fd_{\hat{R}}(M \otimes_R \hat{R})$ is finite. □

Next, recall that the width of an R-complex M is defined by

$$width_R(M) = \inf(M \otimes_R k),$$

and that $width_R(M) \geq \inf(M)$. Also, if M is homologically finite, then

$$width_R(M) = \inf(M).$$

It is the dual notion for depth $R(M)$. In particular by [3] Proposition 4.8, we have

$$width_R(M) = \text{depth}_R(R\text{Hom}_R(M, E_R(k))),$$

where $E_R(k)$ denotes the injective envelope of k over R.

The Chouinard invariant [6, Corollary 3.1] is denoted by $Ch_R(M)$ and

$$Ch_R(M) := \sup\{\text{depth}_p - width_{R_p}(M_p) | p \in \text{Spec}(R)\}.$$ It is proved in [11] Theorem 2.2] that for an R-complex M, $Ch_R(M)$ is a refinement of $Gid_R(M)$, that is

$$Ch_R(M) \leq Gid_R(M),$$

with equality if $Gid_R(M)$ is finite. Now we want to show that the Cohen-Macaulay injective dimension is bounded below by the Chouinard’s invariant.

Lemma 4.5. Suppose that $Q \to S$ is a surjective local homomorphism and Y is an S-complex. Then we have

$$width_S(Y) = width_Q(Y).$$
Proof. We have the following equalities:

\[
\text{width}_S(Y) = \text{depth}_S \text{RHom}_S(Y, E_S(k)) \\
= \text{depth}_S \text{RHom}_S(Y, \text{Hom}_Q(S, E_Q(k))) \\
= \text{depth}_Q \text{RHom}_Q(Y, E_Q(k)) \\
= \text{width}_Q(Y),
\]

where the first one is by [8, Proposition 4.8]; the second one is by [5, Lemma 10.1.15]; the third one is by adjointness of Hom and tensor; the fourth one is true since \(Q \to S \) is surjective and [18, Proposition 5.2(1)]; while the last one is again by [8, Proposition 4.8]. Here we used \(k \) for the residue fields of \(Q \) and \(S \), and \(E_Q(k) \) and \(E_S(k) \) for the injective envelopes of \(k \) over respectively \(Q \) and \(S \).

\[\square\]

Lemma 4.6. Suppose that \(R \to S \) is a flat local ring homomorphism, and \(M \) is a homologically bounded \(R \)-complex. Then we have

\[
\text{width}_S(M \otimes_R S) = \text{width}_R(M).
\]

Proof. A standard application of the Künneth formula yields the equality. \[\square\]

Proposition 4.7. Let \(R \to S \) be a flat local homomorphism and let \(M \) be a homologically bounded \(R \)-complex. Then

\[
\text{Ch}_R(M) \leq \text{Ch}_S(M \otimes_R S).
\]

Proof. Let \(p \in \text{Spec}(R) \) such that the first equality below holds. Let \(q \in \text{Spec}(S) \) contain \(p \) minimally. Since \(R \to S \) is a flat local homomorphism we have \(p = q \cap R \). Hence:

\[
\text{Ch}_R(M) = \text{depth}_R p - \text{width}_R (M_p) \\
= \text{depth}_R q - \text{width}_S (M_p \otimes_R S_q) \\
= \text{depth}_S q - \text{width}_S (M \otimes_R S)_q \\
\leq \text{Ch}_S(M \otimes_R S),
\]

in which the second equality holds by Lemma 4.6 and the fact that \(R_p \to S_q \) has Artinian closed fibre. \[\square\]

Proposition 4.8. Let \(Q \to S \) be a CM-deformation, and \(Y \) be a homologically bounded \(S \)-complex. Then

\[
\text{Ch}_S(Y) \leq \text{Ch}_Q(Y) - \text{Gfd}_Q(S).
\]

Proof. Choose a prime ideal \(p \) of \(S \) such that the first equality below holds. Let \(q \) be the inverse image of \(p \) in \(Q \). Therefore there is an isomorphism \(Y_p \cong Y_q \) of
Q_q-complexes and a CM-deformation $Q_q \to S_p$. Hence
\[
\text{Ch}_S(Y) = \text{depth } S_p - \text{width } s_q(Y_p)
\]
\[
= \text{depth } Q_s S_p - \text{width } Q_q(Y_p)
\]
\[
\leq \text{Ch}_Q(Y) - \text{Gfd } Q_q(S_p)
\]
\[
= \text{Ch}_Q(Y) - \text{Gfd } Q(S).
\]

The second equality holds since $Q_q \to S_p$ is surjective; the third equality holds by Auslander-Bridger formula [1]; the fourth equality is due to the G-perfectness assumption of S over Q. □

Theorem 4.9. Let M be a homologically bounded R-complex. Then there is the inequality
\[
\text{Ch}_R(M) \leq \text{CM}_* - \text{id}_R(M).
\]

Proof. We can assume that $\text{CM}_* - \text{id}_R(M) < \infty$. Choose a CM-quasi-deformation $R \to R' \leftarrow Q$, such that $\text{CM}_* - \text{id}_R(M) = \text{Gid}_R(M \otimes_R R') - \text{Gfd } Q(R')$. Hence we have
\[
\text{CM}_* - \text{id}_R(M) = \text{Gid}_R(M \otimes_R R') - \text{Gfd } Q(R')
\]
\[
= \text{Ch}_R(M \otimes_R R') - \text{Gfd } Q(R')
\]
\[
\geq \text{Ch}_R(M \otimes_R R') \geq \text{Ch}_R(M),
\]
in which the second equality comes by [11, Theorem 2.2], and inequalities follow Propositions 4.8 and 4.7 respectively. □

Corollary 4.10. Let M be a homologically bounded R-complex. Then there are inequalities
\[
\text{Ch}_R(M) \leq \text{CM}_* - \text{id}_R(M) \leq \text{Gid}_R(M),
\]
such that if $\text{Gid}_R(M) < \infty$, then $\text{Gid}_R(M) = \text{CM}_* - \text{id}_R(M)$.

Proof. The inequalities hold by Theorem 4.9 and Remark 3.2(2). And if $\text{Gid}_R(M) < \infty$, then the equality holds by [11, Theorem 2.2]. □

Corollary 4.11. Let M be a homologically finite R-complex such that $\text{CM}_* - \text{id}_R(M)$ is finite. Then
\[
\text{CM}_* - \text{id}_R(M) = \text{Ch}_R(M) = \text{depth } R - \inf(M)
\]
\[
\leq \text{dim } R - \inf(M).
\]

Proof. By Proposition 4.12 there is a CM-quasi-deformation $R \to R' \leftarrow Q$ such that the closed fibre of $R \to R'$ is Artinian and the first equality below holds. So
that
\[CM_*-\text{id}_R(M) = \text{Gid}_Q(M \otimes_R R') - \text{Gfd}_Q(R') \]
\[= \text{depth} Q - \inf(M \otimes_R R') - \text{depth} Q + \text{depth} R' \]
\[= \text{depth} R' - \inf(M \otimes_R R') \]
\[= \text{depth} R - \inf(M). \]

The second equality holds by [11, Corollary 2.3] and the Auslander-Bridger formula [1], while the last equality holds, because the closed fiber of \(R \to R' \) is Artinian and [4, Proposition 1.2.16].

Now by Theorem 4.9, \(\text{depth} R - \inf(M) \leq \text{Ch}_R(M) \leq CM_*-\text{id}_R(M) = \text{depth} R - \inf(M). \) Therefore \(CM_*-\text{id}_R(M) = \text{Ch}_R(M) = \text{depth} R - \inf(M). \)

\[\square \]

In concluding, recall that there are notions of Cohen-Macaulay projective dimension, Cohen-Macaulay flat dimension and Cohen-Macaulay injective dimension of Holm and Jørgensen, which are different with our Definition 3.1.

Definition 4.12. (cf., [17, Definition 2.3]) Let \((R, m)\) be a local ring. For each homologically bounded \(R \)-complex \(M \), the Cohen-Macaulay projective, flat and injective dimension, of \(M \) is defined as, respectively,

\[CM_{pd} R(M) := \inf \{ \text{Gpd}_{R \otimes C}(M) | C \text{ is a semidualizing module} \} \]
\[CM_{fd} R(M) := \inf \{ \text{Gfd}_{R \otimes C}(M) | C \text{ is a semidualizing module} \} \]
\[CM_{id} R(M) := \inf \{ \text{Gid}_{R \otimes C}(M) | C \text{ is a semidualizing module} \} \]

Here \(R \otimes C \) denotes the trivial extension ring of \(R \) by \(C \); it is the \(R \)-module \(R \oplus C \) equipped with the multiplication \((r, c)(r', c') = (rr', rc' + r'c) \).

Remark 4.13. (1) For each homologically bounded \(R \)-complex \(M \), we have

\[CM_*-pd_R(M) \leq CM_{pd} R(M) \]
\[CM_*-fd_R(M) \leq CM_{fd} R(M) \]
\[CM_*-id_R(M) \leq CM_{id} R(M). \]

More precisely, assume that \(CM_{pd} R(M) < \infty \) and choose a semidualizing \(R \)-module \(C \) such that \(CM_{pd} R(M) = \text{Gpd}_{R \otimes C}(M) \). Then by [16, Lemma 3.6], we have the CM-quasi-deformation \(R \to R \xleftarrow{\tau} Q \) where \(Q := R \otimes C \) and \(\tau(r, c) = r \), such that \(\text{Gdim}_Q(R) = 0 \). Thus we obtain

\[\text{Gpd}_Q(M \otimes_R R) - \text{Gfd}_Q(R) = \text{Gpd}_{R \otimes C}(M). \]

This shows the first inequality. The proof of the other two inequalities are the same as the first one.

(2) The finiteness of the Cohen-Macaulay homological dimensions in Definition 4.12 characterize Cohen-Macaulay rings admitting a canonical module [17, Theorem 5.1].

(3) Assume that \((R, m, k)\) is a Cohen-Macaulay ring, not admitting a canonical module (e.g., see [14] for such an example). Then \(CM_*-pd_R(k) < \infty \) (and, \(CM_*-fd_R(k) < \infty \), \(CM_*-id_R(k) < \infty \)) but \(CM_{pd} R(k) = \infty \) (and, \(CM_{fd} R(k) = \infty \), \(CM_{id} R(k) = \infty \)).
Lemma 4.14. Assume that C is a semidualizing R-module and let M be a homologically bounded R-complex. Consider M as a $R \otimes C$-complex via the natural surjection $\tau : R \otimes C \to R$.

1. If $\Gfd_{R \otimes C}(M) < \infty$, then $\Gfd_{R \otimes C}(M) = \Rfd_{R}(M)$.
2. If $\Gid_{R \otimes C}(M) < \infty$, then $\Gid_{R \otimes C}(M) = \Ch_{R}(M)$.

Proof. Note that $\Spec(R \otimes C) = \{p \otimes C \mid p \in \Spec(R)\}$ and $(R \otimes C)_{p \otimes C} \cong R_{p} \otimes C_{p}$ by [5] Exercise 6.2.12. Let L be an R-module which is an $R \otimes C$-module via the surjection $\tau : R \otimes C \to R$, and let p be a prime ideal of R. Then $\varphi : L_{p \otimes C} \to L_{p}$ sending $l/(r,c)$ to l/r is an R_{p}-isomorphism. By [19] Theorem 8.8 we have the first equality below.

$$\Gfd_{R \otimes C}(M) = \sup\{\depth R_{p} \otimes C_{p} - \depth (R \otimes C)_{p \otimes C}(M_{p \otimes C}) \mid p \in \Spec(R)\} = \sup\{\depth R_{p} \otimes C_{p} - \depth R_{p \otimes C}(M_{p \otimes C}) \mid p \in \Spec(R)\} = \sup\{\depth R_{p} - \depth R_{p}(M_{p}) \mid p \in \Spec(R)\} = \Rfd_{R}(M).$$

The third equality holds since there is a surjection $R_{p} \otimes C_{p} \to R_{p}$ and [18] Proposition 5.2(1). The fourth equality uses

$$\depth R_{p} \otimes C_{p} = \min\{\depth R_{p}, \depth R_{p}(C_{p})\} = \depth R_{p}.$$ The proof of (2) is the same as (1) using [11] Theorem 2.2 instead of [19] Theorem 8.8, and Lemma 4.5 instead of [18] Proposition 5.2(1).

Corollary 4.15. Let M be a homologically bounded R-complex.

1. If $\CMfd_{R}(M) < \infty$, then $\CMfd_{R}(M) = \CM_{e}-fd_{R}(M)$.
2. If $\CMid_{R}(M) < \infty$, then $\CMid_{R}(M) = \CM_{e}-id_{R}(M)$.

Proof. Note that there are the inequalities

$$\Rfd_{R}(M) \leq \CM_{e}-fd_{R}(M) \leq \CMfd_{R}(M) = \Rfd_{R}(M)$$

(resp., $\Ch_{R}(M) \leq \CM_{e}-id_{R}(M) \leq \CMid_{R}(M) = \Ch_{R}(M)$) by Corollary 4.2 (resp., Theorem 4.3), and Lemma 4.14.

Acknowledgement. The authors would like to thank the referee for his/her careful reading of the manuscript and several comments which greatly improved the paper. Parviz Sahandi would like to thank Sean Sather-Wagstaff for comments on an earlier version of this paper. Part of this work was completed while Siamak Yassemi was visiting the Institut des Hautes Etudes Scientifiques (IHES) in Bures-sur-Yvette, France. He wishes to express his gratitude to the Institute for its warm hospitality and for providing a stimulating research environment.

References
1. M. Auslander and M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. 94 (1969).
2. M. Auslander and D. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390–405.
3. L. L. Avramov, V. N. Gasharov, and I. V. Peeva, Complete intersection dimension, Inst. Hautes Etudes Sci. Publ. Math. no. 86 (1997), 67–114.
4. W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, **39**, Cambridge University Press, Cambridge, 1998.
5. M. Brodmann and R. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge Studies in Advanced Mathematics, **136**, Cambridge University Press, Cambridge, 2013.
6. L. W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Mathematics, **1747**, Springer, Berlin, 2000.
7. L. W. Christensen, H. B. Foxby, and A. Frankild, *Restricted homological dimensions and Cohen-Macaulayness*, J. Algebra **251** (2002), no. 1, 479–502.
8. L. W. Christensen, A. Frankild, and H. Holm, *On Gorenstein projective, injective and flat dimensions-A functorial description with applications*, J. Algebra **302** (2006), 231–279.
9. L. W. Christensen, H. Holm, *Ascent properties of Auslander categories*, Canad. J. Math. **61**, (2009), 76–108.
10. L. W. Christensen, S. Sather-Wagstaff, *Transfer of Gorenstein dimensions along ring homomorphisms*, J. Pure Appl. Algebra **214** (2010), 982–989.
11. E. E. Enochs and O. M. G. Jenda, *Gorenstein injective and projective modules*, Math. Z. **220** (1995), no. 4, 611–633.
12. E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, *Gorenstein flat modules*, Nanjing Daxue Xuebao Shuxue Bannian Kan. **10** (1993), 1–9.
13. D. Ferrand and M. Raynaud, *Fibres formelles d’un anneau local noethérien*, Ann. Sci. Norm. Sup. (4), **3**, (1970), 295–311.
14. H. B. Foxby and A. Frankild, *Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings*, Ill. J. Math. **51**, no. 1, (2007), 67–82.
15. A. A. Gerko, *On homological dimensions*, Sb. Math. **192** no.8 (2001), 1165–1176.
16. H. Holm and P. Jørgensen, *Cohen-Macaulay homological dimensions*, Rend. Sem. Mat Univ. Padova **117** (2007), 87–112.
17. S. Iyengar, *Depth for complexes, and intersection theorems*, Math. Z. **230**, (1999), 545–567.
18. S. Iyengar and S. Sather-Wagstaff, *G-dimension over local homomorphisms. Applications to the Frobenius endomorphism*, J. Algebra **48**, (1999), no. 1, 241–272.
19. M. Raynaud and L. Gruson, *Critères de platitude et de projectivité*. Techniques de “platification” d’un module*, Invent. Math. **13** (1971), 1–89.
20. P. Sahandi, T. Sharif and S. Yassemi, *Complete intersection flat dimension and the intersection theorem*, Algebra Colloq. **19**, (2012), 1161–1166.
21. P. Sahandi, T. Sharif, and S. Yassemi, *Homological flat dimensions*, preprint (2007), arXiv:0709.4078.
22. P. Sahandi, T. Sharif and S. Yassemi, *Depth formula via complete intersection flat dimension*, Comm. Algebra, **39**, no. 11, (2011), 4002–4013.
23. S. Sather-Wagstaff, *Complete intersection dimensions and Foxby classes*, Journal Pure Appl. Algebra, **212**, (2008), 2594–2611.
24. J.-P. Serre, *Sur la dimension homologique des anneaux et des modules noethériens*, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955 (Tokyo), Science Council of Japan, 1956, pp. 175–189.
26. T. Sharif and S. Yassemi, *Depth formulas, restricted Tor-dimension under base change*, Rocky Mountain J. Math. **34** (2004), 1131–1146.
27. S. Yassemi, *G-dimension*, Math. Scand. **77**, (1995), 161–174.

(Sahandi), Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

E-mail address: sahandi@ipm.ir

(Sharif), School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box. 19395-5746, Tehran, Iran.

E-mail address: sharif@ipm.ir

(Yassemi), School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

E-mail address: yassemi@ut.ac.ir