Perturbativity constraints on $U(1)_{B-L}$ and Left-Right Models

Garv Chauhan
Washington University, USA

23rd DAE-BRNS HEP Symposium
IIT Madras
Dec 12, 2018

In collaboration with
P.S.B Dev, R.N Mohapatra & Y. Zhang (arXiv: 1811.08789)
Outline

- Introduction & Motivation
- Theoretical Constraints
- Bounds in $U(1)_{B-L}$ model
- Bounds in Minimal LRSM
- Conclusions
The Standard Model (SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.
The Standard Model (SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.

From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.
The Standard Model (SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.

From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.

Many TeV scale extensions introduce extended gauge groups like extra $U(1)$'s or $SU(2) \times U(1)$.
The Standard Model (SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.

From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.

Many TeV scale extensions introduce extended gauge groups like extra $U(1)'s$ or $SU(2) \times U(1)$.

Our results apply to a subclass of these gauge extensions of SM, where the generators of the extra gauge groups contribute to the electric charge.
In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity up to GUT scale.
In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity upto GUT scale.

The motivation is to embed the TeV-scale gauge extension into a larger gauge symmetry at GUT scale.
In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity upto GUT scale.

The motivation is to embed the TeV-scale gauge extension into a larger gauge symmetry at GUT scale.

We’ll specifically focus on $U(1)_{B-L}$ & minimal LRSM, and discuss the implications for gauge boson searches.
Theoretical Constraint on Gauge Couplings

Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$
Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

Then following relation holds:

$$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2}$$
Theoretical Constraint on Gauge Couplings

- Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

- Then following relation holds:

$$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2} \quad \leftarrow \text{This holds even if coupling } g_X \text{ is } SU(2)$$
Theoretical Constraint on Gauge Couplings

- Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

 $$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

- Then following relation holds:

 $$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2} \quad \leftarrow \text{This holds even if coupling } g_X \text{ is } SU(2)$$

- Then requiring that coupling g_Z is perturbative at breaking scale,

 $$\Rightarrow \quad r_g \equiv \frac{g_X}{g_L} > \tan \theta_W \left(1 - \frac{4\pi}{g_Z^2} \frac{\alpha_{EM}}{\cos^2 \theta_W}\right)^{-1/2}$$
\(U(1)_{B-L} \) model

- Particle content of the \(SU(2)_L \times U(1)_{I_3R} \times U(1)_{B-L} \) model:

	\(SU(2)_L \)	\(U(1)_{I_3R} \)	\(U(1)_{B-L} \)
\(Q \)	2	0	\(\frac{1}{3} \)
\(u_R \)	1	\(\frac{1}{2} \)	\(\frac{1}{3} \)
\(d_R \)	1	\(-\frac{1}{2} \)	\(\frac{1}{3} \)
\(L \)	2	0	\(-1 \)
\(N \)	1	\(\frac{1}{2} \)	\(-1 \)
\(e_R \)	1	\(-\frac{1}{2} \)	\(-1 \)
\(H \)	2	\(-\frac{1}{2} \)	0
\(\Delta_R \)	1	\(-1 \)	2
$U(1)_{B-L}$ model

- Particle content of the $SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ model:

	$SU(2)_L$	$U(1)_{I3R}$	$U(1)_{B-L}$
Q	2	0	$\frac{1}{3}$
u_R	1	$\frac{1}{2}$	$\frac{1}{3}$
d_R	1	$-\frac{1}{2}$	$\frac{1}{3}$
L	2	0	-1
N	1	$\frac{1}{2}$	-1
e_R	1	$-\frac{1}{2}$	-1
H	2	$-\frac{1}{2}$	0
Δ_R	1	-1	2

- The RGEs for the gauge couplings of the two $U(1)$‘s are respectively

$$16\pi^2 \beta(g_{I3R}) = \frac{9}{2} g_{I3R}^3, \quad 16\pi^2 \beta(g_{BL}) = 3 g_{BL}^3.$$
$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)
$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)
$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)

$0.398 < g_R < 0.768; \quad 0.416 < g_{BL} < 0.931$, with $0.631 < r_g < 1.218$

at $v_R = 5$ TeV
$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Z_R searches)

\[r_g = \frac{g_R}{g_L} \]

\[v_R = 5 \text{ TeV} \]

(ATLAS-CONF-2016-045)

(CMS-PAS-EXO-16-031)
\(SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L} \) (\(Z_R \) searches)

\[
rg = g_R/g_L
\]

\(\nu_R = 5 \text{ TeV} \)

\(M_{Z_R} = 5 \text{ TeV} \)

(\text{ATLAS-CONF-2016-045})

(CMS-PAS-EXO-16-031)
$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Z_R searches)

collider	M_{Z_R} [TeV]	v_R [TeV]
LHC13	[3.6, 4.2]	[3.02, 3.57]
HL-LHC	[6.0, 6.6]	[4.60, 5.82]
FCC-hh	[27.9, 31.8]	[19.9, 26.8]

Z_R mass [TeV]

$rg = g_R/g_L$

$r_g = g_R/g_L$

$M_{Z_R} = 5$ TeV

$v_R = 5$ TeV

50 TeV

20 TeV

10 TeV

$U(1)_{B-L}$ model

perturbative limit

FCC–hh

HL–LHC

LHC13
Particle content of the minimal LRSM based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$:

	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
Q_L	2	1	$\frac{1}{3}$
Q_R	1	2	$\frac{1}{3}$
ψ_L	2	1	-1
ψ_R	1	2	-1
Φ	2	2	0
Δ_R	1	3	2
The RGEs for the gauge couplings in the minimal LRSM are \(^1\)

\[
16\pi^2 \beta(g_L) = -3 g_L^3 ,
\]

\[
16\pi^2 \beta(g_R) = -\frac{7}{3} g_R^3 ,
\]

\[
16\pi^2 \beta(g_{BL}) = \frac{11}{3} g_{BL}^3
\]

\(^1\)I. Z. Rothstein, Nucl. Phys. B358, 181 (1991)
\(SU(2)_L \times SU(2)_R \times U(1)_{B-L} \) (Gauge Couplings)
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Gauge Couplings)
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Gauge Couplings)

\[0.406 < g_R < \sqrt{4\pi}; \quad 0.369 < g_{BL} < 0.857, \quad \text{with} \quad 0.648 < r_g < 5.65 \]

at $v_R = 10$ TeV
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Scalar sector)
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Scalar sector)

$r_g = 1.1$, $v_R = 6$ TeV

$r_g = 1.1$, $v_R = 12$ TeV
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Z_R and W_R searches)

$(ATLAS-CONF-2016-045)$
$(CMS-PAS-EXO-16-031)$
$(arXiv: 1809.11105)$
$(arXiv: 1803.11116)$
\[SU(2)_L \times SU(2)_R \times U(1)_{B-L} \ (Z_R \text{ and } W_R \text{ searches}) \]

\(W_R\) mass [TeV]	\(Z_R\) mass [TeV]
Perturbative limit (gauge)	Perturbative limit (scalar)
\(v_R = 5\) TeV	\(v_R = 5\) TeV
\(50\) TeV	\(50\) TeV
\(20\) TeV	\(20\) TeV
\(10\) TeV	\(10\) TeV

\(r_g = g_R/g_L\)

LHC13
HL–LHC
FCC–hh

(ATLAS-CONF-2016-045)
(CMS-PAS-EXO-16-031)
(arXiv: 1809.11105)
(arXiv: 1803.11116)
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Z_R and W_R searches)

\begin{align*}
W_R \text{ mass [TeV]} & \quad v_R = 5 \text{ TeV} & \quad v_R = 5 \text{ TeV} \\
50 \text{ TeV} & \quad 20 \text{ TeV} & \quad 10 \text{ TeV} \\
2.0 & \quad 1.5 & \quad 1.0 \quad 0.5
\end{align*}

\begin{align*}
Z_R \text{ mass [TeV]} & \quad v_R = 5 \text{ TeV} & \quad v_R = 5 \text{ TeV} \\
50 \text{ TeV} & \quad 20 \text{ TeV} & \quad 10 \text{ TeV} \\
2.0 & \quad 1.5 & \quad 1.0 \quad 0.5
\end{align*}

collider	W_R searches	Z_R searches		
	M_{W_R} [TeV]	v_R [TeV]	M_{Z_R} [TeV]	v_R [TeV]
LHC13	–	–	–	–
HL-LHC	[6.09, 6.47]	[10.3, 14.8]	–	–
FCC-hh	[35.6, 42.2]	[38.3, 87.5]	[27.9, 35.4]	[21.8, 26.8]
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (ν_R bound)
$SU(2)_L \times SU(2)_R \times U(1)_{B-L} (\nu_R \text{ bound})$

\[
r_g = \frac{g_R}{g_L}
\]

W_R searches
- Perturbative limit (gauge)
- Perturbative limit (scalar)
- $M_{W_R} = 5 \text{ TeV}$
- FCC-hh
- HL-LHC
- LHC13

\[
\nu_R \text{ [TeV]}
\]

Z_R searches
- Perturbative limit (gauge)
- Perturbative limit (scalar)
- $M_{Z_R} = 5 \text{ TeV}$
- FCC-hh
- HL-LHC
- LHC13
There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
Conclusions

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- For $U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for ν_R at 5 TeV.
There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.

For $U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for v_R at 5 TeV.

For minimal LRSM, we found W_R and Z_R couldn’t have been seen at LHC13.
Conclusions

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- For $U(1)_{B-L}$ model, we found that it can be probed (almost) at HL-LHC for ν_R at 5 TeV.
- For minimal LRSM, we found W_R and Z_R couldn’t have been seen at LHC13.
- In case, Z_R is found in HL-LHC run then couldn’t be from minimal LRSM.
Conclusions

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- For $U(1)_{B-L}$ model, we found that it can be probed (almost) at HL-LHC for v_R at 5 TeV.
- For minimal LRSM, we found W_R and Z_R couldn’t have been seen at LHC13.
- In case, Z_R is found in HL-LHC run then couldn’t be from minimal LRSM.
 - The results can be generalized to other gauge group extensions.

Thank you! Questions?