Differential Activation of Neuroinflammatory Pathways in Children with Seizures: A Cross-Sectional Study

CURRENT STATUS: POSTED

Luca Bartolini
Brown University Warren Alpert Medical School

luca_bartolini@brown.edu Corresponding Author
ORCID: https://orcid.org/0000-0003-2755-8218

Michael P. Moran
National Institutes of Health Clinical Center

Gina Norato
National Institutes of Health Clinical Center

Bobbe Thomas
Children's National Health System

Alexander D. Dick
Children's National Health System

Elizabeth Wells
Children's National Health System

William Suslovic
Children's National Health System

Adrian Bumbut
Children's National Health System

James M. Chamberlain
Children's National Health System

William H. Theodore
National Institutes of Health Clinical Center

William D. Gaillard
Children's National Health System
Abstract

Background: Experimental and clinical findings suggest a crucial role of inflammation in epileptogenesis. We aimed to analyze levels of inflammatory cytokines in plasma and saliva from children with acute seizures and healthy controls and measure their associations with HHV6 and EBV infection. Methods: We analyzed plasma from 36 children within 24 hours of acute seizures (cases) and 43 healthy controls and saliva from 44 cases and 44 controls with a multiplex immunoassay. Saliva from all controls and 65 cases and blood from 26 controls and 35 cases were also analyzed by ddPCR for viral DNA. Statistical analysis included Wilcoxon Rank Sum test, Fisher’s exact test, ANOVA and Spearman correlation. Results: Compared to controls, children with breakthrough seizures (n=18) had higher levels of CCL11 (p<0.001), CCL26 (p<0.001), IL-8 (p=0.03), CCL4 (p=0.02) in plasma. Children with new onset seizures (n=13) showed higher levels of CCL11 (p=0.05) and IL-6 (p=0.01). Patients with febrile seizures (n=5) had higher levels of IFNg (p<0.001), IL-6 (p<0.001), IL-10 (p<0.001), CXCL10 (p=0.001). CCL11 was higher with 3 or more seizures (p=0.01), seizures longer than 10 minutes (p=0.001) and when EEG showed focal slowing (p=0.02). In saliva, febrile seizures had higher levels of IL-1β (n=7, p=0.04) and new onset seizures had higher IL-6 (n=15, p=0.02). Plasma and saliva cytokine levels did not show correlation. Frequency of HHV-6 and EBV detection was similar across seizure types and not different than controls. We found no correlation between viral load and cytokine levels Conclusions: We showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to HHV-6 infection.

Background

Approximately 15 million people worldwide are affected by pharmaco-resistant epilepsy and experience seizures despite complex therapeutic regimens, often burdened by significant side-effects. Current antiepileptic drugs target seizures symptomatically but not underlying pathophysiological mechanisms.\(^1\) Experimental and clinical findings suggest a crucial role of inflammation in epileptogenesis.\(^2\) New therapeutic strategies are necessary to improve seizure control and quality of life for people with epilepsy. The first step in developing novel therapies is improving understanding
of pathophysiological mechanisms of epileptogenesis.

An emerging hypothesis is that various brain insults, including viral infections, can contribute to epileptogenesis by inducing a cascade of chronic central nervous system (CNS) inflammatory processes and increased blood-brain barrier permeability, leading to enhanced neuronal excitability.3,4 Previous studies highlighted the role of glial cells (astrocytes and microglia) and neurons in production of inflammatory cytokines.5 Preclinical studies showed that interleukin (IL)1β overproduction could enhance susceptibility to adult seizures with hippocampal neuronal injury, and might contribute to development of temporal lobe epilepsy and hippocampal sclerosis.6 Elevated levels of IL1β, IL6, and IL8 have been linked to neuronal hyperexcitability2 and were demonstrated in serum and cerebrospinal fluid (CSF) of patients with epilepsy. Etiology-specific meta-analyses revealed elevated IL6 levels in temporal lobe epilepsy patients.7 IL6, produced by resident cells of the CNS, contributes to development of seizures following viral infections.8 \textit{In vitro} stimulation studies showed increased production of IL1β, IL6 and IL10 by peripheral blood mononuclear cell (PBMCs) in epilepsy and febrile seizure patients.9

In resected epileptogenic tissue, hippocampal C-C Motif Chemokine Ligand (CCL)11 levels are higher than those in entorhinal and temporal cortices.10

There is growing evidence that neurotropic viral infections, such as those from herpesviruses, play an important role in the pathogenesis of seizures. Among herpesviruses, human herpesvirus (HHV)-6 occupies a prominent place, as many studies have linked it to seizures and epilepsy.11 Primary infection with HHV-6B occurs in almost 90\% of children by age two years.12 HHV-6 DNA is present in children with febrile status epilepticus13 and can be detected in resected epileptogenic tissue from temporal lobe epilepsy patients.14-16 Pathological analyses revealed that HHV-6 can infect astrocytes and oligodendrocytes leading to upregulation of several proinflammatory cytokines. Host gene expression analysis of brain samples of patients with mesial temporal lobe epilepsy (MTLE) revealed expression of monocyte chemoattractant protein (MCP)1 and glial fibrillary acidic protein (GFAP) in
the HHV-6-positive versus HHV-6-negative amygdala tissues, with positive correlation with viral load, suggesting an inflammatory process triggered by the virus.17 HHV-6 has been reported to induce IL6 both in vitro18,19 and in vivo20 and to up-regulate the production of CCL2 and IL8.21,22 IL6-mediated cellular and humoral immune responses play a crucial role in determining the outcome of viral infection.23

In a preliminary feasibility study,24 we showed higher levels of IL8 and IL1\beta in saliva from 32 children with seizures compared to 30 age-matched controls with a febrile illness and no seizures. With the present study, we sought to expand the initial data and aimed to investigate the inflammatory response in blood and saliva for different types of seizures in children and elucidate a potential role of HHV-6 infection in triggering activation of a different neuroinflammatory pathway. This is meant as a first step towards the identification of novel therapeutic targets.

Methods

Enrollment: In this cross-sectional study, we enrolled children aged 1 month – 18 years at Children’s National Medical Center, between October 2017 and February 2019. After an initial screening of 439 subjects, a total of 89 children were enrolled, of whom 65 had saliva and 35 had whole blood analyzed by PCR for viral DNA and 44 had saliva and 36 had plasma analyzed by Meso Scale Discovery (MSD) immunoassay for neuroinflammatory cytokines (Supplemental Figure 1). Controls were healthy children who presented to the Children’s Health Center outpatient clinic for a well-child visit. After an initial screening of 140 children, a total of 55 were enrolled, of whom 44 had saliva and 24 had whole blood analyzed by PCR for viral DNA and 44 had saliva and 43 had plasma analyzed by MSD for neuroinflammatory cytokines (Supplemental Figure 2). Children with active or prior neurological, infectious, inflammatory/autoimmune, allergic or neoplastic diseases were excluded. Cases were screened among children presenting to the Emergency Department within 24 hours of one or multiple seizures of any duration and consisted of three categories: 1. New onset seizure, defined as first unprovoked seizure; 2. Breakthrough seizure, defined as acute seizure in the context of chronic epilepsy; and 3. Febrile seizure, either simple or complex.
Medical records were reviewed for laboratory, imaging and electroencephalogram (EEG) results, if available. Study data were collected and managed using a password-protected database (REDCap electronic data capture tools).

Written informed consent was obtained from a parent or legal guardian and written assent from the child, when indicated. Children’s National Medical Center Institutional Review Board approved the study.

Sample collection, processing and analysis: For each participant, simultaneous saliva and blood samples were obtained. All samples were collected, handled and processed following standard biosafety procedures. Saliva was collected utilizing a validated pediatric swab (SalivaBio Oral Swab, Salimetrics). Whole blood was collected in EDTA tubes via a venous puncture. Samples were then centrifuged at 2,300 g for 10 minutes immediately after collection and saliva, plasma, and whole blood were aliquoted. Samples were then then frozen at -80°C immediately after processing and shipped on ice to the Viral Immunology Section of the National Institutes of Health for analysis. After thawing the samples, DNA was extracted utilizing a commercially available kit (DNeasy Blood & Tissue Kit, Qiagen) following the manufacturer’s protocol for plasma and a previously validated protocol for saliva.24

HHV-6 and Epstein-Barr Virus (EBV) viral DNA in saliva and whole blood was quantified using digital droplet PCR (ddPCR). Primers from the highly conserved region u57 (HHV-6) and bamHI (EBV) were selected. Different probes were used to distinguish between HHV-6A and HHV-6B. Ribonuclease P Subunit P30 (RPP30) was used as a cellular housekeeping gene.

Several neuroinflammatory cytokines, including interferon (IFN)γ, IL10, IL1β, IL2, IL4, IL6, IL8, tumor necrosis factor (TNF)alpha, CCL11, CCL13, C-X-C motif chemokine (CXCL)10, MCP1, MCP4, macrophage-derived cytokine (MDC), Macrophage inflammatory protein (MIP)1α, thymus activation regulated chemokine (TARC) were analyzed in plasma and saliva by means of a Custom Human V-PLEX Neuroinflammation Panel, Meso Scale Diagnostics after thawing the samples for the first time. Plasma samples were diluted 1:2, while saliva samples remained undiluted prior to analysis. All
samples were run in duplicates.

Statistical analysis and study outcomes

The primary outcome was cytokine levels in cases vs. controls. Secondary outcomes included frequency of detection of HHV-6 and EBV viral DNA in cases vs. controls and viral loads in cases vs. controls.

Statistical analysis was conducted utilizing R version 3.5.3 and included Pearson Chi-squared test, Fisher’s exact test for relative frequencies for HHV-6 detection, Wilcoxon rank-sum test for cytokine analysis, one-way analysis of variance (ANOVA) on ranks and Spearman’s correlation for correlations between cytokine levels and clinical variables and HHV-6 viral load and clinical variables.

A p value < 0.05 was considered significant.

Results

Cytokine analysis

Clinical characteristics and cytokine levels are summarized in Table 1 (plasma) and Table 2 (saliva). Compared to controls, children with breakthrough seizures (n=18) had higher levels of CCL11 (p<0.001), CCL26 (p<0.001), IL8 (p=0.03), CCL4 (p=0.02) in plasma (Figure 1). Children with new onset seizures (n=13) showed higher levels of CCL11 (p=0.05) and IL6 (p=0.01) (Figure 1). Patients with febrile seizures (n=5) had higher levels of IFNg (p<0.001), IL6 (p<0.001), IL10 (p<0.001), CXCL10 (p=0.001) (Figure 1). CCL11 was higher than controls in children with 3 or more seizures (p=0.01) (Figure 2), in those with seizures longer than 10 minutes (p=0.001) (Figure 3) and when EEG showed focal slowing (p=0.02) (Figure 4).

In saliva, we observed higher levels of IL1b in febrile seizures (n=7, p=0.04) and IL-6 in new onset seizures (n=15, p=0.02) (Supplemental Figure 3). Cytokine levels in plasma and saliva were not associated with the height of fever. We did not observe a correlation between plasma and saliva cytokine levels (data not shown).

Viral droplet digital PCR
Frequency of HHV-6 and EBV detection was similar across seizure types and not different from controls (Supplemental Table 1). We found no correlation between viral load and cytokine levels.

Discussion

In our cross-sectional study we analyzed blood and saliva samples from children with different types of acute seizures to investigate the levels of inflammatory cytokines and the presence of HHV-6 and EBV viral DNA. We showed differential activation of inflammatory pathways in plasma from different seizure etiologies vs. controls. Children with febrile seizures had activation of the IFNg/CXCL10/IL10 pathway, highlighting a potential link with viral infection, possibly other than HHV-6 or EBV. Children with new onset seizures had higher levels of CCL11, a cytokine that can enhance microglial inflammation and reduce hippocampal neurogenesis. CCL11 was even higher in children with chronic epilepsy, perhaps suggesting that its production by resident CNS cells may contribute to epileptogenesis. CCL11 also correlated with important clinical variables, including number of seizures, duration of seizures and with the presence of focal slowing on EEG.

Viral infections can trigger a strong activation of innate and adaptive immunity, resulting in significant production of IFNg. This cytokine mediates several immunological effects including activation of macrophages and induction of class II MHC molecule expression. CXCL10 is secreted by monocytes, fibroblasts and endothelial cells in response to IFNg, and therefore their activity is tightly connected. Because we found higher levels of IFNg/CXCL10 in our young children with febrile seizures irrespective of the height of fever, and not in other patients with new onset of seizures or chronic epilepsy, we speculate that this inflammatory pathway is triggered by a viral infection and not by seizures themselves. The frequency of detection of HHV-6 and EBV in these children was similar than controls, suggesting that a different virus, or more than one virus, may be implicated in the pathogenesis of febrile seizures. Our results are different than previous studies, which have described an association between HHV-6 detection and febrile seizures and febrile status epilepticus. While our cohort of children with febrile seizures is small, a strength of our observations consists in the fact that we analyzed both saliva and blood and compared our results with simultaneous samples
from a fairly large population of healthy children. Nevertheless, given the low n, results need to be interpreted with caution and replicated in a larger cohort. Blood from 4/26 (15%) of our controls tested positive for HHV-6 DNA, which is not different than 54/169 (32%) previously reported for a larger multi-center cohort of children with febrile status epilepticus.13 Importantly, we observed an even higher positivity rate in saliva (28/44, 63%). Other studies are in agreement with our findings of similar detection rates of HHV-6 DNA when comparing children with febrile seizures and simultaneous controls.30,31 Other investigators32 showed a potential role of rhinoviruses, adenoviruses and enteroviruses in the onset of febrile seizures and a lesser role of HHV-6, frequently in the context of co-infection.

CCL11 (Eotaxin-1), a cytokine involved in eosinophil chemotaxis, is another important mediator of neuroinflammation. Inflammatory insults have been observed to stimulate CCL11 secretion in primary cultures of astrocytes, pericytes, and microglia.33 Levels of CCL11 are elevated in the sera and CSF of patients with neuroinflammatory disorders such as multiple sclerosis,34 and neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease.35 CCL11 promotes microglial migration, upregulates nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1) in microglia, and increases microglial production of reactive oxygen species (ROS), which potentiates glutamate-induced neurotoxicity.36 Microglial activation is thought to play a key role in the neuroinflammatory response leading to epileptogenesis.2 Also, plasma levels of CCL11 correlate with reduced hippocampal neurogenesis after joining an aged mouse to a young partner (heterochronic parabiosis).25 Given the pivotal role of alterations in hippocampal signaling and structure in the onset of seizures, especially of temporal lobe onset,37 it is reasonable to conclude that CCL11 may have a proepileptogenic effect. This hypothesis has been corroborated by studies that have shown that in resected epileptogenic tissue, hippocampal CCL11 levels are higher than those in the entorhinal and temporal cortices.38 In our study, we observed higher levels of CCL11, and of the other Eotaxin family member CCL26, in children with chronic epilepsy and breakthrough seizures and to a lesser extent in
new onset of seizures. This finding may suggest that Eotaxins could be an early biomarker of epileptogenesis in children with seizures and warrant further studies. Interestingly, we also observed that CCL11 levels positively correlated with clinical variables of severity such as seizure duration and number of seizures and with focal slowing on EEG, which is a common finding in the context of focal epilepsy. Other EEG features, such as generalized slowing and epileptiform discharges had no such correlation, possibly indicating that CCL11 may be a biomarker of localized brain dysfunction rather than diffuse or excitatory processes.

We also observed elevation in other cytokines such as IL8 in blood from children with chronic epilepsy. Several studies have shown that this cytokine is increased after seizures, including focal, generalized tonic-clonic, myoclonic, atypical absence, and typical absence seizures in serum and CSF of patients with epilepsy.39-41 In a previous study24 found higher levels of this cytokine in saliva from children with epilepsy but this time we could not confirm this finding in the same biological compartment.

The only cytokine in our current study that was consistently elevated in both plasma and saliva in children with new onset of seizures was IL6. In previous studies, this mediator is increased within 24 hours after generalized tonic-clonic seizures and febrile seizures but is not changed after seizures in patients with chronic focal epilepsy.42 At 6 hours after focal unaware or secondary generalized tonic-clonic seizures in patients with MTLE or extratemporal epilepsies, only the MTLE group showed a significant rise in plasma levels of IL6.43 Saliva may represent a less invasive and less expensive method for quantification of this biomarker and further studies are needed to validate this finding. While prior evidence suggests that salivary components may originate from the salivary glands or may be derived from the blood by passive diffusion or active transport,44 studies reveal mixed results when comparing blood and salivary cytokines both in physiologic and pathologic conditions. Some reveal no cross-talk between the two compartments,45 while others find positive correlations only for few cytokines, including IL6 similarly to our study,46 IL1b,47 IL2, IL12 and IFNg.48 These differences may possibly be owing to several factors such as different half-life of cytokines in different biological
compartments, factors influencing the biome of the oral cavity (such as oral hygiene, presence of oral pathology, etc.) resulting in faster degradation of cytokines or falsely increased levels, and finally insufficient extravasation of cytokines into saliva or very low local production. Data on proinflammatory cytokine profiles in saliva from children with systemic, and in particular with neurological diseases are lacking.

The main strength of our study is that we examined a population of young children with seizures and analyzed samples from different biological compartments for presence of viral DNA from common viruses and at the same time we studied the levels of a pool of cytokines that are associated with neuroinflammation. We also included several clinical variables in our analysis and compared the results with simultaneous age-balanced healthy controls. The main limitation of our study is the sample size, which will need to be expanded in further studies to validate our preliminary findings. In addition, we were not able to match all blood and saliva samples for PCR and cytokine analysis, we did not perform PCR for other viruses than HHV-6 and EBV and we did not have serological data. In this study, Type-I error and false positive results were not of primary concern as the focus was on hypothesis generating and exploration. All cytokines that indicate some utility across key outcomes of interest may be further investigated in future trials in a more tightly controlled manner. Also, CSF could not be obtained from study participants and therefore our observations may represent indirect measures of inflammatory activation in the periphery.

Conclusions
In our study we showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to HHV-6 infection. Children with febrile seizures had activation of the IFNg/CXCL10/IL10 pathway, highlighting a potential link with viral infection, possibly other than HHV-6 or EBV. Children with new onset seizures and chronic epilepsy had higher levels of CCL11, a cytokine that can enhance microglial neuroinflammation and reduce hippocampal neurogenesis.

Further longitudinal studies are needed to examine children with new onset of seizures and those with febrile seizures/status epilepticus and their cytokine profiles over time and possibly include CSF in the
analysis. By correlating these findings with imaging and EEG, and by expanding the panel of viruses analyzed, we may contribute to shedding light on the pathophysiology of different seizure types and identifying a biomarker of risk of developing epilepsy, with the ultimate aim of selecting a population that may benefit from early immunomodulatory or antiviral therapy.

List Of Abbreviations

CNS, central nervous system
IL, interleukin
CSF, cerebrospinal fluid
PBMCs, peripheral blood mononuclear cells
CCL, C-C Motif Chemokine Ligand
HHV, human herpesvirus
MTLE, mesial temporal lobe epilepsy
MCP, monocyte chemoattractant protein
GFAP, glial fibrillary acidic protein
MSD, Meso Scale Discovery
EEG, electroencephalogram
EBV, Epstein-Barr Virus
ddPCR, digital droplet PCR
RPP30, Ribonuclease P Subunit P30
IFN, interferon
TNF, tumor necrosis factor
MDC, macrophage-derived cytokine
MIP, Macrophage inflammatory protein
TARC, thymus activation regulated chemokine
ANOVA, one-way analysis of variance
NOX, nicotinamide adenine dinucleotide phosphate-oxidase
ROS, reactive oxygen species
Declarations

Ethics approval and consent to participate

Written informed consent was obtained from a parent or legal guardian and written assent from the child, when indicated. Children’s National Medical Center Institutional Review Board approved the study.

Consent for publication

Not applicable.

Availability of data and materials:

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests:

The authors declare that they have no competing interests.

Funding:

This study was funded by the American Epilepsy Society/Epilepsy Foundation of America Research Training Fellowship for Clinicians, the NINDS Division of Intramural Research and by WBCARN U03MC00006 Children’s National PECARN site.

Funding bodies were not involved in the design of the study, data collection, analysis and interpretation or writing the manuscript.

Authors contributions:

LB designed the study, contributed to data analysis and interpretation, and drafting and revising of the manuscript for intellectual content.

MM contributed to data analysis and interpretation and drafting and revising of the manuscript for intellectual content.

GN conducted the statistical analysis and contributed to data interpretation and drafting and revising of the manuscript for intellectual content.

BT contributed to data collection and drafting and revising of the manuscript for intellectual content.

AD contributed to data collection and drafting and revising of the manuscript for intellectual content.
EW contributed to data interpretation and drafting and revising of the manuscript for intellectual content.

WS contributed to data collection and drafting and revising of the manuscript for intellectual content.

AB contributed to data collection and drafting and revising of the manuscript for intellectual content.

JC contributed to study design, data analysis and interpretation, and drafting and revising of the manuscript for intellectual content.

WT contributed to study design, data analysis and interpretation, and drafting and revising of the manuscript for intellectual content.

WG contributed to study design, data analysis and interpretation, and drafting and revising of the manuscript for intellectual content.

SJ contributed to study design, data analysis and interpretation, and drafting and revising of the manuscript for intellectual content.

Acknowledgments:

Not applicable.

Authors information:

LB is the Director of the Pediatric Epilepsy Program at Hasbro Children’s Hospital and Assistant Professor of Pediatrics, Assistant Professor of Neurology and Assistant Professor of Neurosurgery at the Warren Alpert Medical School of Brown University.

MM is currently a medical student and was a post-bac intramural research training awardee at the National Institutes of Health for the study.

GN is a Biostatistician at the National Institutes of Health.

BT is a Research Manager at Children’s National Medical Center.

AD is currently a medical student and was the research coordinator at Children’s National Medical Center for the study.

EW is the Director of Inpatient Neurology at Children’s National Medical Center and Associate Professor of Neurology at the George Washington University School of Medicine and Health Sciences.

WS is a Research Assistant at Children’s National Medical Center.
AB is a Research Manager at Children’s National Medical Center.

JC is the Director, Data Analytics and Informatics at Emergency Medicine and Trauma Services, Children’s National Medical Center, and Professor of Pediatrics and Professor of Emergency Medicine at the George Washington University School of Medicine and Health Sciences.

WT is Chief of the Clinical Epilepsy Section, NINDS, NIH. He is also the Treasurer of the American Epilepsy Society.

WG is the Division Chief, Neurology, Division Chief, Epilepsy and Neurophysiology, Director, Comprehensive Pediatric Epilepsy Program, Associate Director, Center for Neuroscience Research at Children’s National Medical Center. He is Professor of Pediatrics and Neurology at the George Washington University School of Medicine and Health Sciences and Professor of Neurology at Georgetown University. He is also the First Vice President of the American Epilepsy Society.

SJ is the Chief of the Viral Immunology Section, NINDS, NIH.

References

1. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004;5:553–564.

2. Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol 2011;7:31–40.

3. Bartolini L, Libbey JE, Ravizza T, Fujinami RS, Jacobson S, Gaillard WD. Viral Triggers and Inflammatory Mechanisms in Pediatric Epilepsy. Mol Neurobiol. 2019;56(3):1897-1907

4. Theodore WH. Epilepsy and viral infections. Epilepsy Curr. 2014;14:35-42.

5. Vezzani A, Ravizza T, Balosso S et al. Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 2008;49:24–32.

6. Fukuda M, Ito M, Yano Y, et al. Postnatal interleukin-1β administration after experimental prolonged febrile seizures enhances epileptogenesis in adulthood. Metab Brain Dis. 2015;30(3):813-9.
7. de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:177-90.

8. Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS. Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol. 2011;85(14):6913-22.

9. Matsuo M, Sasaki K, Ichimaru T, Nakazato S, Hamasaki Y. Increased IL-1beta production from dsRNA-stimulated leukocytes in febrile seizures. Pediatr Neurol. 2006;35:102-106.

10. Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation. 2016;13(1):270.

11. Bartolini L, Theodore WH, Jacobson S, Gaillard WD. Infection with HHV-6 and its role in epilepsy. Epilepsy Res. 2019;153:34-39.

12. Okuno T, Takahashi K, Balachandra K, et al. Seroepidemiology of human herpesvirus 6 infection in normal children and adults. J Clin Microbiol. 1989;27:651-3.

13. Epstein LG, Shinnar S, Hesdorffer DC, Nordli DR, Hamidullah A, Benn EK, Pellock JM, Frank LM, Lewis DV, Moshe SL, Shinnar RC, Sun S; FEBSTAT study team. Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. Epilepsia. 2012;53(9):1481-8.

14. Donati D, Akhyani N, Fogdell-Hahn A, et al. Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology. 2003;61(10):1405-11.

15. Fotheringham J, Donati D, Akhyani N, et al. Association of human herpesvirus-6B with mesial temporal lobe epilepsy. PLoS Med. 2007;4(5):e180.
16. Kawamura Y, Nakayama A, Kato T, et al. Pathogenic role of human herpesvirus 6B infection in mesial temporal lobe epilepsy. J Infect Dis 2015;212:1014–21.

17. Kawamura Y, Nakayama A, Kato T, Miura H, Ishihara N, Ihira M, Takahashi Y, Matsuda K, et al. Pathogenic role of human herpesvirus 6B infection in mesial temporal lobe epilepsy. J Infect Dis. 2015;212:1014-1021.

18. Mayne M, Cheadle C, Soldan SS, et al. Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. J Virol. 2001;75(23):11641-50.

19. Yoshikawa T, Asano Y, Akimoto S, et al. Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J Med Virol. 2002;66(4):497-505.

20. Go T, Nakamura K. Frequent seizures with elevated interleukin-6 at the eruptive stage of exanthema subitum. Eur J Paediatr Neurol. 2002;6(4):221-3.

21. Caruso A, Rotola A, Comar M, et al. HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. J Med Virol. 2002;67(4):528-33.

22. Inagi R, Guntapong R, Nakao M, et al. Human herpesvirus 6 induces IL-8 gene expression in human hepatoma cell line, Hep G2. J Med Virol. 1996;49(1):34-40.

23. Lan T, Chang L, Wu L, Yuan YF. IL-6 Plays a Crucial Role in HBV Infection. J Clin Transl Hepatol. 2015;3(4):271-6.

24. Bartolini L, Piras E, Sullivan K, Gillen S, Bumbut A, Lin CM, Leibovitch EC, Graves JS, Waubant EL, Chamberlain JM, Gaillard WD, Jacobson S. Detection of HHV-6 and EBV and Cytokine Levels in Saliva From Children With Seizures: Results of a Multi-Center Cross-Sectional Study. Front Neurol. 2018;9:834.

25. Villeda SA, Luo J, Mosher K1, Zou B, Britschgi M, Bieri G, et al. The ageing systemic
milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477(7362):90-4.

26. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41-101.

27. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22(3):121-30.

28. Kondo K, Nagafuji H, Hata A, Tomomori C, Yamanishi K. Association of human herpesvirus 6 infection of the central nervous system with recurrence of febrile convulsions. J Infect Dis. 1993;167(5):1197-200.

29. Suga S, Yoshikawa T, Asano Y, Kozawa T, Nakashima T, Kobayashi I, Yazaki T, Yamamoto H, Kajita Y, Ozaki T, et al. Clinical and virological analyses of 21 infants with exanthem subitum (roseola infantum) and central nervous system complications. Ann Neurol. 1993;33(6):597-603.

30. Hukin J, Farrell K, MacWilliam LM, Colbourne M, Waida E, Tan R, Mroz L, Thomas E. Case-control study of primary human herpesvirus 6 infection in children with febrile seizures. Pediatrics. 1998;101(2):E3.

31. Laina I, Syriopoulou VP, Daikos GL, Roma ES, Papageorgiou F, Kakourou T, Theodoridou M. Febrile seizures and primary human herpesvirus 6 infection. Pediatr Neurol. 2010;42(1):28-31.

32. Francis JR, Richmond P, Robins C, Lindsay K, Levy A, Effler PV, Borland M, Blyth CC. An observational study of febrile seizures: the importance of viral infection and immunization. BMC Pediatr. 2016;16(1):202.

33. Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to
lipopolysaccharide. J Neuroinflammation. 2011;8:139.

34. Khaibullin T, Ivanova V, Martynova E, Cherepnev G, Khabirov F, Granatov E, Rizvanov A, Khaiboullina S. Elevated Levels of Proinflammatory Cytokines in Cerebrospinal Fluid of Multiple Sclerosis Patients. Front Immunol. 2017;8:531.

35. Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol. 2018;189:29-33.

36. Parajuli B, Horiuchi H, Mizuno T, Takeuchi H, Suzumura A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia. 2015;63(12):2274-84.

37. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989;495(2):387-95.

38. Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation. 2016;13(1):270.

39. Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia. 2007;48(9):1739-1749.

40. Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, Schoch S, Becker AJ, Grote A. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure. 2013;22(8):675-8.

41. Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli DR Jr, Lewis DV, Frank LM, Seinfeld S, Shinnar RC, Cornett K, Liu B, Moshé SL, Sun S; FEBSTAT Investigator Team. Plasma cytokines associated with febrile status epilepticus in children: A potential biomarker for acute hippocampal injury. Epilepsia. 2017;58(6):1102-1111.
42. Lehtimäki KA, Keränen T, Huhtala H, Hurme M, Ollikainen J, Honkaniemi J, Palmio J, Peltola J. Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration. J Neuroimmunol. 2004;152(1-2):121-5.

43. Alapirtti T, Lehtimäki K, Nieminen R, Mäkinen R, Raitanen J, Moilanen E, Mäkinen J, Peltola J. The production of IL-6 in acute epileptic seizure: A video-EEG study. J Neuroimmunol. 2018;316:50-55.

44. Williamson S, Munro C, Pickler R, Grap MJ, Elswick RK Jr. Comparison of biomarkers in blood and saliva in healthy adults. Nurs Res Pract. 2012;2012:246178.

45. Soto-Méndez MJ, Romero-Abal ME, Aguilera CM, Rico MC, Solomons NW, Schümann K, Gil A. Associations among Inflammatory Biomarkers in the Circulating, Plasmatic, Salivary and Intraluminal Anatomical Compartments in Apparently Healthy Preschool Children from the Western Highlands of Guatemala. PLoS One. 2015;10(6):e0129158.

46. Assareh A, Haybar H, Yoosofi H, Bozorgmanesh M. Bedside-Friendly Prediction for Presence of Post-Myocardial Infarction Systolic Dysfunction Using Multimarker Panel: Integrating Salivary Diagnostics into Clinical Practice. Korean Circ J. 2013;43:246-254.

47. Riis J, Out D, Dorn L, Beal S, Denson L, Pabst S, et al. Salivary cytokines in healthy adolescent girls: Intercorrelations, stability, and associations with serum cytokines, age, and pubertal stage. Developmental Psychobiol. 2014;56:797-811.

48. Byrne M, O’Brien-Simpson N, Reynolds E, Walsh K, Laughton K, Waloszek JM, et al. Acute phase protein and cytokine levels in serum and saliva: a comparison of detectable levels and correlations in a depressed and healthy adolescent sample. Brain Behav Immun. 2013;34:154-175.

Table
Table 1. Clinical characteristics and cytokine analysis in plasma

Seizure type	N	Age mean (SD)	Male N (%)	N Sz Duration mean (SD)	EEG	MRI
New onset	13	6.1 (5.1)	8 (62%)	<10 min: 13 (100%)	2	2
Breakthrough	18	6.0 (5.4)	8 (55%)	<10 min: 14 (78%); >10 min: 4 (22%)	9	10
Febrile	5	3.4 (2.1)	5 (100%)	<10 min: 5 (100%)	4	1

Assay	Controls (n=43) Mean ± SD	Febrele (n=5) Mean ± SD	Breakthrough (n=18) Mean ± SD	New onset (n=13) Mean ± SD	p-value
CCL11	191.3 ± 126.6	174.8 ± 69.8	378.0 ± 236.7	266.8 ± 125.4	<0.001
CCL26	67.2 ± 76.5	63.1 ± 9.5	248.9 ± 402.0	81.2 ± 31.8	0.01
IFN-γ	28.1 ± 91.8	1339.5 ± 2298.6	76.5 ± 116.8	12.1 ± 7.4	<0.001
IL-10	1.6 ± 1.2	17.6 ± 21.7	1.9 ± 1.0	1.4 ± 0.6	<0.001
IL-13	2.5 ± 1.7	1.2 ± 0.0	2.4 ± 1.3	2.9 ± 1.6	0.19
IL-1β	0.6 ± 0.9	0.3 ± 0.1	0.5 ± 0.6	0.3 ± 0.1	0.5
IL-2	1.3 ± 2.2	2.0 ± 2.6	1.5 ± 2.3	0.9 ± 0.3	0.73
IL-4	0.5 ± 0.4	0.4 ± 0.2	0.4 ± 0.2	0.5 ± 0.3	0.62
IL-6	1.8 ± 1.7	24.1 ± 14.7	3.3 ± 3.3	3.3 ± 2.7	<0.001
IL-8	11.1 ± 6.2	16.0 ± 11.5	22.2 ± 20.3	16.4 ± 16.7	0.03
IP-10	1208.8 ± 4318.7	6084.7 ± 5532.1	6374.0 ± 573.8	3732.0 ± 171.6	0.02
MCP-1	223.2 ± 147.4	337.1 ± 281.7	346.9 ± 332.2	223.7 ± 105.6	0.14
MDC	3019.1 ± 848.3	1974.8 ± 605.6	2822.2 ± 1197.6	2816.4 ± 1553.4	0.23
MIP-1α	137.8 ± 318.9	26.6 ± 11.1	235.5 ± 730.7	71.0 ± 153.8	0.7
MIP-1β	139.1 ± 93.6	163.9 ± 53.1	239.0 ± 207.1	149.6 ± 62.9	0.04
TARC	595.1 ± 910.4	360.4 ± 313.0	528.6 ± 503.3	505.4 ± 416.5	0.91
TNF-α	5.9 ± 3.5	7.7 ± 2.0	6.0 ± 3.5	5.8 ± 4.0	0.73

Table 2. Clinical characteristics and cytokine analysis in saliva
Seizure type	N	Age mean (SD)	Male N (%)	N Sz duration mean (SD)	EEG	MRI	
New onset	15	6.7 (5.2)	7 (47%)	1-2: 13 (86%) >2: 2 (14%)	<10 min: 15 (100%)	2 (13%) focal slow 1 (6%) gen slow 8 (53%) epilept 1 (6%) sz 1 (6%) N/A	1 (6%) epilept 13 (86%) 1 (6%)
Breakthrough	22	6.8 (5.5)	10 (46%)	1-2: 17 (77%) >2: 5 (23%)	<10 min: 18 (82%) >10 min: 4 (18%)	9 (41%) focal slow 7 (32%) gen slow 11 (50%) epilept 3 (13%) sz 1 (4%) N/A	9 (45%) epilept 10 (45%) 3 (14%)
Febrile	7	2.7 (2.3)	7 (100%)	1-2: 5 (72%) >2: 2 (28%)	<10 min: 6 (86%) >10 min: 1 (14%)	1 (14%) focal slow 4 (57%) normal 2 (28%) N/A	2 (28%) 5 (72%)

Assay	Controls (n=44) Mean ± SD	Febrile (n=7) Mean ± SD	Breakthrough (n=22) Mean ± SD	New onset (n=15) Mean ± SD	p-value
CCL11	2.1 ± 2.8	1.0 ± 1.7	0.3 ± 0.2	0.7 ± 1.7	0.03
CCL26	0.3 ± 0.4	0.2 ± 0.2	0.2 ± 0.3	0.2 ± 0.3	0.66
IFN-γ	0.0 ± 0.1	0.2 ± 0.3	0.0 ± 0.1	0.4 ± 1.1	0.03
IL-10	1.8 ± 2.1	1.3 ± 0.5	1.6 ± 0.8	2.3 ± 1.7	0.61
IL-1β	66.0 ± 97.3	110.5 ± 83.3	84.8 ± 80.7	190.0 ± 197.2	0.02
IL-2	1.9 ± 1.6	1.5 ± 1.5	2.4 ± 1.5	3.1 ± 1.9	0.09
IL-4	1.4 ± 1.1	1.3 ± 1.3	1.6 ± 1.1	2.1 ± 1.5	0.37
IL-6	10.3 ± 21.3	37.3 ± 52.9	15.4 ± 21.4	18.8 ± 18.0	0.07
IL-8	1219.8 ± 2357.7	1375.7 ± 1224.2	1124.9 ± 951.9	3471.3 ± 5370.1	0.09
IP-10	1413.4 ± 4150.0	2338.4 ± 4230.3	684.8 ± 1671.6	1063.0 ± 2582.4	0.76
MCP-1	215.2 ± 720.0	75.6 ± 147.6	47.2 ± 50.1	1434.5 ± 3859.0	0.09
MIP-1α	2.1 ± 6.3	1.2 ± 1.1	0.2 ± 0.1	0.6 ± 0.9	0.52
MIP-1β	1.6 ± 6.1	0.4 ± 0.9	0.1 ± 0.1	1.5 ± 5.1	0.76
TNF-α	9.2 ± 12.2	9.6 ± 13.3	9.9 ± 8.0	22.0 ± 23.2	0.06

Additional File Legends
Supplemental Figure 1.tif
Enrollment flowchart of cases.

Supplemental Figure 2.tif
Enrollment flowchart of controls.

Supplemental Figure 3.tif
Cytokine levels in saliva.

PCR_SuppTable1_Aug14.docx

Frequency of detection of HHV-6 and EBV viral DNA by ddPCR and viral loads.

Figures

Figure 1

Cytokine levels in plasma by seizure type. Levels (pg/mL) for selected cytokines in plasma from children with different seizure types (breakthrough seizures in chronic epilepsy, green; febrile seizures, purple; and new onset seizures, orange) vs. controls (blue). Compared to controls, children with breakthrough seizures (n=18) had higher levels of CCL11 (p<0.001), CCL26 (p<0.001), IL-8 (p=0.03), CCL4 (p=0.02). Children with new onset seizures (n=13) showed higher levels of CCL11 (p=0.05) and IL-6 (p=0.01). Patients with febrile seizures (n=5) had higher levels of IFN (p<0.001), IL-6 (p<0.001), IL-10 (p<0.001), CXCL10 (p=0.001).
Cytokine levels in plasma by seizure number. Cytokine levels in plasma (pg/mL) grouped by number of seizures, showing higher CCL11 levels than controls in children with 3 or more seizures (top left plot and blow-up box, bottom right; p=0.01). N/A = not applicable.
Cytokine levels in plasma by seizure duration. Cytokine levels in plasma (pg/mL) grouped by seizure duration, showing higher CCL11 levels than controls in children with seizures longer than 10 minutes (top left plot and blow-up box, bottom right; p=0.001). N/A = not applicable
CCL11 level in plasma and EEG focal slowing. Higher CCL11 levels in plasma (pg/mL) than controls were detected in children with focal slowing on EEG (top left plot and blow-up box, bottom right; p=0.02). N/A = not applicable

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplemental Figure 2.tiff
Supplemental Figure 3.jpeg
Supplemental Figure 1.tiff
PCR_SuppTable1_Aug14.docx
