Host associations of mosquitoes at eastern equine encephalitis virus foci in Connecticut, USA

John J. Shepard¹, Theodore G. Andreadis¹,², Michael C. Thomas¹ and Goudarz Molaei¹,²*

Abstract

Background: Eastern equine encephalitis virus (EEEV) is a highly pathogenic mosquito-borne arbovirus, with active transmission foci in freshwater hardwood swamps in eastern North America, where enzootic transmission is maintained between the ornithophilic mosquito, Culiseta melanura, and wild passerine birds. The role of other locally abundant mosquito species in virus transmission and their associations with vertebrate hosts as sources of blood meals within these foci are largely unknown but are of importance in clarifying the dynamics of enzootic and epidemic/epizootic transmission.

Methods: Blood-engorged mosquitoes were collected from resting boxes at four established EEEV foci in Connecticut during 2010–2011. Mosquitoes were identified to species, and the identity of vertebrate hosts was determined based on mitochondrial cytochrome b and/or cytochrome c oxidase subunit I gene sequences of polymerase chain reaction products.

Results: The vertebrate hosts of 378 (50.3 % of engorged mosquitoes) specimens, representing 12 mosquito species, were identified. Culiseta morsitans (n = 54; 67.5 %), Culex restuans (n = 4; 66.7 %), and Cx. pipiens (n = 2; 100 %) acquired blood meals exclusively from avian hosts, whereas Aedes cinereus (n = 6; 66.7 %), Ae. canadensis (n = 2; 100 %), and Ae. stimulans (n = 1; 100 %) obtained blood meals solely from mammals. Species that fed opportunistically on both avian and mammalian hosts included: Ae. thibaulti (n = 21 avian, and n = 1 mammalian; 57.2 %), Anopheles punctipennis (n = 8 and n = 40; 44.0 %), An. quadrimaculatus (n = 1 and n = 23; 35.7 %), Coquillettidia perturbans (n = 3 and n = 3; 46.2 %) and Ae. abserratus (n = 1 and n = 2; 23.1 %). Culex territans obtained blood meals from avian and mammalian hosts (n = 18 and n = 5; 26.6 %). Mixed blood meals originating from both avian and mammalian hosts were identified in An. quadrimaculatus (n = 1), and Cx. territans (n = 2).

(Continued on next page)
Background

Eastern equine encephalitis virus (EEEV) (Togaviridae: Alphavirus) is a highly pathogenic mosquito-borne arbovirus that is capable of causing severe neurological disease and fatalities in humans and equines [1–3]. Active transmission foci are largely confined to freshwater hardwood swamps throughout the eastern half of North America extending from the Gulf of Mexico to southern Canada and the upper Midwest. In the northeastern United States, enzootic transmission of EEEV occurs seasonally from mid-May through early October, where the virus is maintained between the ornithophilic mosquito, *Culiseta melanura* (Coquillett), and wild passerine birds. EEEV activity has been historically episodic; however, more recently the frequency of virus activity has changed, and human and equine disease incidence has increased in the northeastern United States (e.g. in Connecticut, Maine and Vermont) [3–9].

Although several studies have reported on the role of *Cs. melanura* in transmission of EEEV among wild birds [10–16], comparatively little is known about the contribution of other mosquito species to enzootic and/or epidemic/epizootic transmission to mammalian hosts including humans and equines. A number of mosquito species, including *Aedes canadensis* (Theobald), *Aedes sollicitans* (Walker), *Aedes vexans* (Meigen), *Coquilletidia perturbans* (Walker), *Culex salinarius* Coquillett, *Anopheles punctipennis* (Say), and *Anopheles quadrimaculatus* Say, have been considered as potential “bridge vectors” of EEEV across its geographic range, based on virus isolations from field-collected mosquitoes, vector competence evaluations, and host association studies [17–22]; however, the details of their contribution in various virus foci has not been fully realized.

Recently, a study on the role of *Cs. melanura* and several avian hosts in transmission and amplification of EEEV was carried out in order to better understand the dynamics of virus transmission at four enzootic foci in Connecticut [16]. The present investigation is an extension of the latter study. Our objective was to examine the host utilization of other locally abundant mosquito species in an attempt to assess their potential contribution to EEEV transmission in these locales. Accordingly, mosquitoes were collected from the virus foci, and vertebrate hosts were identified by analysis of mitochondrial cytochrome b and/or cytochrome c oxidase subunit I gene sequences.

Methods

Study sites

Mosquitoes were collected from four historic EEEV foci in Chester (41°23.233′N, 72°29.564′W), Killingworth (41°20.217′N, 72°34.322′W), Madison (41°21.628′N, 72°39.131′W), and North Stonington (41°26.175′N, 71°49.845′W), Connecticut during 2010–2011 (Fig. 1). These freshwater swamps were chosen on the basis of prior isolations of EEEV from mosquito pools as previously described [16]. Common canopy tree species included red maple, *Acer rubrum* Linnaeus, and Atlantic white cedar, *Chamaecyparis thyoides* (L.), which support underground crypt habitats formed by tree root mats and windthrow pools formed by uprooted trees, where *Cs. melanura* larvae were commonly encountered. Well-developed understories were comprised of mountain laurel, *Kalmbia latifolia* L., spicebush, *Lindera benzoin* (L.), *Sphagnum* spp. and ferns.

Mosquito sampling

Mosquitoes were collected from 120 resting boxes and/or stackable fiber pots placed adjacent to the red maple/Atlantic white cedar swamps according to previously described methods [16, 23, 24]. The number of resting boxes per study site was variable, and included Chester and Madison (*n* = 45 each), and Killingworth and North Stonington (*n* = 15 each). Resting boxes were examined daily from May to October 2010 and June to October 2011. Mosquitoes were removed from the resting boxes using hand-held mechanical aspirators, transferred to coolers containing dry ice, and transported to the laboratory. Identification of female mosquitoes to species was
carried out on dry ice with the aid of a dissecting microscope using morphological keys [25, 26]. Individual mosquitoes with visible evidence of blood meals were placed in 1.5 ml microcentrifuge tubes, labeled with a unique number, and stored in an ultra-low temperature freezer.

DNA isolation and blood meal identification

Blood-engorged abdomens were removed using disposable single-edge razor blades with the aid of a dissecting microscope. DNA was extracted from individual abdominal contents using DNAzol BD (Molecular Research Center, Cincinnati, OH, USA) according to the manufacturer’s recommendations with modifications as previously described [12, 27, 28]. Partial mitochondrial cytochrome b gene sequences were obtained through screening extracted DNA by polymerase chain reaction (PCR), using avian- and mammalian-specific primers. Avian-specific primers, 5’-GAC TGT GAC AAA ATC CCN TTC CA-3’ (forward) and 5’-GGT CTT CAT CTY HGG YTT ACA AGA C-3’ (reverse), yielded a 508 bp fragment. Mammalian-specific primers, 5’-CGA AGC TTG ATA TGA AAA ACC ATC GTT G-3’ (forward) and 5’-TGT AGT TRT CWG GGT CHC CTA-3’ (reverse), produced a 772 bp fragment. A Taq PCR Core kit (Qiagen, Valencia, CA, USA) was used for PCR reactions according to the manufacturer’s instructions in a Veriti thermal cycler (Applied Biosystems, Foster City, CA, USA). Thermal cycling conditions and reactions were as previously described [12, 27, 28].

Additional primer sets utilized to screen *Cx. territans* for evidence of blood feeding on amphibian and reptilian hosts included: (i) a primer set with a broad target group based on mitochondrial cytochrome c oxidase subunit I (COI) gene [29]; (ii) an amphibian-primer set based on mitochondrial cytochrome b gene [30]; and (iii) a reptilian-specific primer set targeting mitochondrial cytochrome b gene [30]. The COI primer set, 5’-TGT AAA ACG ACG GCC AGT TCT CAA CCA ACC ACA ARG AYA TYG G-3’, (forward) and 5’-CAG GAA ACA GCT ATG ACT AGA CTT CTG GGT GGC CRA ARA AYC A-3’ (reverse), targeted a 648 bp region. Thermal cycling conditions for COI included an initial denaturation for 2 min at 94 °C, followed by 40 cycles of denaturation at 94 °C for 30 s, annealing at 45 °C for 45 s, and primer extension at 72 °C for 1 min. The final cycle was completed with 10 min of extension at 72 °C.

The amphibian-specific primer set, 5’-THC TNT CNG CHG CCC CVT A-3’ (forward) and 5’-GAG CGD AGR ATN GCR TAR GC-3’ (reverse), targeted a 402 bp region. Thermal cycling conditions for the amphibian-specific primer set included an initial denaturation for 10 min at 95 °C, followed by 36 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 45 s, and primer extension at 72 °C for 90 s. The final cycle was completed with 7 min of extension at 72 °C.

The reptilian-specific primer set, 5’-GGN TCR TCC AAC CCA AY W G-3’ (forward) and 5’-TTT DGC DAD DGG DCG RAA N-3’ (reverse), targeted a 518 bp region. Thermal cycling conditions for the reptilian-specific primer set included an initial denaturation for 10 min at 95 °C, followed by 36 cycles of denaturation at 94 °C for 30 s, annealing at 50 °C for 40 s, and primer extension at 72 °C for 1 min. The final cycle was completed with 7 min of extension at 72 °C.

Sequencing reactions were carried out on a 3730xL DNA Analyzer (Applied Biosystems) at the Keck Sequencing Facility, Yale University, New Haven, Connecticut. Nucleotide sequences were analyzed and annotated using ChromasPro version 1.7.5 (Technelysium Pty, Ltd., Tewantin, Australia), and the identity of host species were determined by comparisons to the GenBank sequence database (using the BLAST search) maintained at the National Center of Biological Information [31].

Results

In our earlier investigation, a total of 1798 *Cs. melanura* with visible blood meals were collected from the four
virus foci, and blood meal sources were identified in 1127 (62.7 %) specimens by DNA sequencing [16]. In the present study, a total of 2773 engorged and unengorged female mosquitoes, representing 18 species (excluding Cs. melanura), were collected from 120 resting boxes at four virus foci during 2010–2011. The blood meal sources of 378 (50.3 % of engorged mosquitoes) specimens, comprising 12 species, were identified to vertebrate species (Table 1). Infrequently collected mosquito species with no evidence of blood meal or inconclusive blood meal results included: Aedes excrucians (Walker), Aedes trivittatus (Coquillett), Anopheles barberi Coquillett, Anopheles crucians Wiedemann, Psorophora ferox (von Humboldt) and Uranotaenia sapphirina (Osten Sacken).

Culiceta morstanis (Theobald) (n = 54; 67.5 % of engorged mosquitoes), Culex rustians Theobald (n = 4; 66.7 %) and Culex pipyri L. (n = 2; 100 %) acquired blood meals exclusively from avian hosts; whereas Aedes cinereus Meigen (n = 6; 66.7 %), Ae. canadensis (n = 2; 100 %), and Aedes stimulans (Walker) (n = 1; 100 %) obtained blood meals solely from mammals (Table 1). Mosquito species that opportunistically obtained blood meals from avian and mammalian hosts included: Aedes thibaulti Dyar & Knab (n = 21 avian and n = 181 mammalian; 57.2 %), An. punctipennis (n = 8 and n = 40; 44.0 %), An. quadrimaculatus (n = 1 and n = 23; 35.7 %), Cq. perturbans (n = 3 and n = 3; 46.2 %), and Aedes abserratus (Felt & Young) (n = 1 and n = 2; 23.1 %) (Table 1). Culex territans Walker obtained blood meals from avian and amphibian hosts (n = 18 and n = 5; 26.6 %). Mixed blood meals originating from both avian and mammalian hosts were identified from specimens of An. quadrimaculatus (n = 1) and Cx. territans (n = 2) (Table 1).

Results of 112 avian-derived blood meals identified from nine mosquito species are presented in Table 2. Twenty-four bird species, representing 14 families in six orders, were identified as hosts. Passeriformes constituted 92.0 % of the total avian-derived blood meals. The most frequently fed upon passerine families were Turdidae (Thrushes, 43.7 %), Paridae (Chickadees and Titmice, 25.2 %), Icteridae (Blackbirds, 12.6 %), Vireonidae (Vireos, 8.7 %) and Mimidae (Mockingbirds and Thrashers, 3.9 %). Other avian orders included: Accipitriformes (4.5 %), and Anseriformes, Columbiformes, Cuculiformes and Piciformes (0.9 % each). The wood thrush Hylocichla mustelina (Gmelin) was the most frequent avian host (n = 39; 34.8 %), followed by the tufted titmouse, Baeolophus bicolor L. (n = 21; 18.8 %), red-winged blackbird, Agelaius phoeniceus (L.) (n = 7; 6.3 %), American robin, Turdus migratorius L. and yellow-throated vireo, Vireo flavifrons Vieillot (n = 6; 5.4 % each). Other avian hosts included: black-capped chickadee, Poecile atricapillus L., common grackle, Quiscalus quiscula (L.) (n = 5; 4.5 % each) and gray catbird, Dumetella carolinensis (L.) (n = 4; 3.6 %). Sixteen additional bird species infrequently served as hosts (Table 2).

Results of the 258 mammalian-derived blood meals are shown in Table 3. Eight species were identified as the source of blood meals, but the majority (n = 230; 89.1 %) of feedings were from white-tailed deer, Odocoileus virginianus (Zimmermann). Human-derived blood meals were infrequent and only identified from Ae. thibaulti, representing 0.4 % (n = 1) of all mammalian-derived

Table 1

Mosquito species	Avian No. (%)	Mammalian No. (%)	Amphibian No. (%)	Mixed No. (%)	Blood meal ID* No. (%)	Engorged specimens
Aedes thibaulti	21 (10.4)	181 (89.6)			202 (57.2)	353
Culiceta morstanis	54 (100)				54 (67.5)	80
Anopheles punctipennis	8 (16.7)	40 (83.3)			48 (44.0)	109
Anopheles quadrimaculatus	1 (4.0)	23 (92.0)	1 (4.0)		25 (35.7)	70
Culex territans	18 (72.0)	5 (20.0)	2 (8.0)		25 (26.6)	94
Aedes cinereus	6 (100)				6 (66.7)	9
Coquillettidia perturbans	3 (50.0)	3 (50.0)			6 (46.2)	13
Culex restians	4 (100)				4 (66.7)	6
Aedes abserratus	1 (33.3)	2 (66.7)			3 (23.1)	13
Culex pipiens	2 (100)				2 (100)	2
Aedes canadensis	2 (100)				2 (100)	2
Aedes stimulans	1 (100)				1 (100)	1
Total	112	258	5	3	378	752

*Blood meal ID, number of blood meals successfully identified to species level
Table 2 Number and percentage of avian-derived blood meals identified from nine mosquito species in four eastern equine encephalitis virus foci in Connecticut, 2010–2011

Order	Family	Species	RC	Ae. abserratus	Ae. thibaulti	An. punctipennis	An. quadrimaculatus	Cq. perturbans	Cx. pipiens	Cx. restuans	Cx. territans	Total
				No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)
Pass.	Turdidae	Wood thrush	S	1 (1.2)				34 (63.0)	1 (50.0)	1 (25.0)	2 (11.1)	39
	Turdidae	American robin	P, T	1 (100)	1 (4.8)			1 (33.3)	3 (5.6)			6
	Paridae	Tufted titmouse	P	8 (38.1)	2 (25.0)			1 (33.3)	3 (5.6)	1 (50.0)		21
	Paridae	Black-capped chickadee	P	3 (14.3)	1 (12.5)			1 (33.3)				5
	Icteridae	Red-winged blackbird	P, T	4 (19.0)	2 (25.0)			1 (1.9)				7
	Icteridae	Common grackle	P, T	2 (9.5)				1 (1.9)		2 (11.1)		5
	Icteridae	Brown-headed cowbird	P, T	1 (12.5)								1
	Vireonidae	Yellow-throated vireo	S	2 (9.5)				4 (22.2)				6
	Vireonidae	Warbling vireo	S					2 (11.1)				2
	Vireonidae	Red-eyed vireo	S					1 (25.0)				1
	Mimidae	Gray catbird	S					3 (5.6)				4
	Polioptilidae	Blue-gray gnatcatcher	S					1 (100)				1
	Emberizidae	Chipping sparrow	S					1 (5.6)				1
	Emberizidae	Field sparrow	S					1 (4.8)				1
	Sturnidae	European starling	P					1 (1.9)				1
	Cardinalidae	Northern cardinal	P					1 (1.9)				1
	Cardinalidae	Scarlet tanager	S					1 (1.9)				1
Acci.	Accipitridae	Broad-winged hawk	S					2 (3.7)				2
	Accipitridae	Red-tailed hawk	P					1 (1.9)				2
	Accipitridae	Sharp-shinned hawk	P					1 (1.9)				1
Anser.	Anatidae	Canada goose	P					1 (25.0)				1
Columb.	Columbidae	Mourning dove	P					1 (1.9)				1
Cucul.	Cuculidae	Yellow-billed cuckoo	S					1 (12.5)				1
Pici.	Picidae	Northern flicker	P					1 (1.9)				1
Total				1	21	8	1	3	54	2	4	18

Abbreviations: Pass. Passeriformes, Acci. Accipitriformes, Anser. Anseriformes, Columb. Columbiformes, Cucul. Cuculiformes, Pici. Piciformes, RC residency codes, P permanent resident (found year round in the state), S summer resident (present in the state during the nesting season), T transient.
blood meals. Among the other seven mammalian species that served as hosts, the horse, *Equus caballus* L., was the most frequently fed upon (*n* = 19; 7.4 %), and identified in three mosquito species: *Ae. thibaulti* (*n* = 12), *An. quadrimaculatus* (*n* = 6) and *An. punctipennis* (*n* = 1). Infrequently fed upon mammalian hosts included: eastern chipmunk, *Tamias striatus* (L.) and sheep, *Ovis aries* L. (*n* = 2; 0.8 % each); and domestic cat, *Felis catus* L., eastern cottontail rabbit, *Sylvilagus floridanus* (Allen), raccoon, *Procyon lotor* (L.) and Virginia opossum, *Didelphis virginiana* Kerr (*n* = 1; 0.4 % each) (Table 3).

The mammalian host species in all mixed blood meals was white-tailed deer, two of which mixed with the warbling vireo, *Vireo gilvus* (Vieillot), and one with the chipping sparrow, *Spizella passerina* (Bechstein).

Amphibian species identified as hosts for *Cx. territans* included the green frog *Lithobates clamitans* (L.) (*n* = 3), wood frog, *L. sylvaticus* (Le Conte) (*n* = 1) and gray tree frog, *Hyla versicolor* Le Conte (*n* = 1).

Discussion

Results obtained in this study provide additional knowledge on the host associations of 12 locally abundant mosquito species that inhabit four freshwater EEEV foci, and provide further insight on their potential roles in enzootic transmission among wild birds and epidemic/epizootic transmission of the virus to humans and equines in the region.

Overall, approximately half (50.3 %) of all mosquito blood meals were successfully identified to species level. This varied by species, however, ranging from fairly low success (26.6 % of 94 in the case of *Cx. territans*) to moderate success (67.5 % of 80 for *Cs. morsitans*). Therefore, these results should be interpreted with varying levels of caution, as the preponderance of unidentified meals could have originated from any variety of hosts. It is noteworthy that all mosquitoes with fresh or visible blood remnants were examined and positive identification and host species assignment were made when exact or nearly exact match were obtained. Sequences that did not meet the criteria were assumed unknown. Several factors contribute to successful identification of the blood meal source including the amount of vertebrate blood acquired by mosquitoes, digestion of the blood meal in the mosquito gut, rapid degradation of host DNA, the time between capturing mosquitoes and processing for blood meal analysis, quality and quantity of isolated DNA, quality of the sequences and availability of the species-specific target gene sequences in the GenBank database, the degrees of sequence homology among the vertebrate hosts present in the study area, and the possibility of mixed blood meals from multiple vertebrate species.

Aedes spp.

Aedes cinereus and *Ae. canadensis* fed upon white-tailed deer, albeit the samples sizes were small. Our findings are in agreement with the results of other studies indicating that these mosquitoes demonstrate a propensity for feeding upon large mammals [22, 32–34]. While abundant in Connecticut, the rather few specimens collected in this study was likely due to inefficiency of resting boxes in collecting these species in comparison to CO₂-baited CDC light traps [35]. Earlier studies have identified *Ae. canadensis* as a potential “bridge vector” of EEEV in epidemic/epizootic transmission based on abundance, relatively frequent virus isolations from field-collected mosquitoes, and vector competence.
Aedes canadensis has been shown to feed primarily on exclusively acquired blood meals – and Aedes cinereus has been greatest during the West Nile virus transmission has been considered to feed heavily upon turtles. In an earlier study, this mosquito species was a dominant species collected from turtles encountered in the wild and from those exposed to mosquitoes, even though several other mosquito species were also numerous at the study sites [37]. Aedes cinereus has been reported with relatively high EEEV titers [5], but the contribution of this species to virus transmission is not well defined. Several studies have shown predisposition of Aedes cinereus for feeding upon mammalian hosts [22, 32–34], which may limit its role as a “bridge vector”.

As the most abundant mosquito species examined in the present study, Ae. thibaulti obtained blood meals from several vertebrate hosts. Earlier blood meal analyses in Connecticut [22] and New Jersey [34] reported Ae. thibaulti as an exclusive mammalian biter. However, we identified blood meals from eight mammalian and seven avian host species. The vector competence of this species for EEEV has not been assessed, nor has the virus been isolated from field-collected specimens. Although Ae. thibaulti breeds in the same habitats as Cx. melanura, its role as a potential “bridge vector” remains unclear.

Culex spp.

Both Cx. pipiens and Cx. restuans acquired blood meals from avian hosts, supporting their potential contribution to enzootic transmission of EEEV. Close interactions of Cx. pipiens and Cx. restuans with avian hosts, particularly the gray catbird, red-eyed vireo Vireo olivaceus (L.), tufted titmouse, and wood thrush have been reported [38, 39]. These birds are considered important reservoir and amplifying hosts for EEEV throughout the region (e.g., New Jersey, New York, Connecticut and Massachusetts) [10, 11, 16, 40]. Although the role of Cx. pipiens and Cx. restuans in West Nile virus transmission has been well established [27, 41, 42], their role in EEEV transmission remains to be defined. It is notable that in an earlier study, six isolations of EEEV were obtained from Cx. pipiens during an epizootic outbreak in this same region of southeastern Connecticut in 1996 [43], reaffirming the apparent ability of this species to support virus replication.

Culex territans has been shown to feed primarily on amphibian and reptilian hosts [30, 33, 44–46], but recent evidence demonstrates that this species feeds on avian and mammalian hosts as well [22, 34, 45, 46]. In our investigation, Cx. territans obtained blood meals from avian and amphibian hosts, as well as two mixed blood meals from avian and mammalian species. Several competent or moderately competent bird species, including tufted titmouse and wood thrush, were identified as hosts. Studies indicate that Cx. territans may readily feed on several vertebrate classes [34, 45, 46]. Considering recent reports of the involvement of reptilian species in the amplification of EEEV and the blood feeding potential of Cx. territans on these vertebrate hosts [47, 48], it is conceivable this mosquito species could transmit the virus among several host classes. EEEV has been isolated from field-collected Cx. territans in the northeastern United States [36, 49, 50]; however, the vector competence of this species is not known.

Culiseta spp.

In accordance with the findings of other studies [15, 32, 33, 51], Cs. morsitans exclusively acquired blood meals from avian hosts in the present study. Our results, in conjunction with other lines of evidence including abundance, presumed vector competence, and frequent infection in field-collected mosquitoes [2, 12, 22, 51], including this region in Connecticut [43], further establishes the role of this species in enzootic transmission of EEEV among wild birds. Wood thrush served as the most frequent host for Cs. morsitans, comprising 63.0 % of the total blood meals. This finding provides further evidence that regional populations of Cs. morsitans readily blood feed on wood thrush, consistent with the results of blood meal analysis conducted at an EEEV focus in NY, where 30.9 % (n = 42) of blood meals were identified from this species [12]. Using an empirically-informed mathematical model, wood thrush and a few other avian species were identified as potential superspreaders of EEEV at the same virus foci in Connecticut [16]. Notably, the prevalence of wood thrush-derived blood meals from Cs. morsitans was greatest during the month of August (28 of 34), similar to that of Cs. melanura on wood thrush in the latter study [16]. Other avian species including American robin, gray catbird and tufted titmouse, that served as hosts for Cs. morsitans, have been identified as competent or moderately competent amplification hosts for EEEV in the northeastern United States [10, 11, 40].

Coquillettidia spp.

Coquillettidia perturbans has been considered as a “bridge vector” of EEEV to humans and equines in the northeastern United States based on its local abundance, vector competence, frequent infection in field collected mosquitoes (including those collected from this region of southeastern Connecticut), and established opportunistic biting [2, 4, 18–20, 22, 32–34, 36, 43, 52–54]. Our identification of EEEV-competent avian species including American robin, black-capped chickadee, and tufted titmouse, as well as white-tailed deer, as hosts for Cq. perturbans in the present study support the view that this species could facilitate epidemic/enzootic transmission of the virus.
Anopheles spp.
Anopheles punctipennis and An. quadrimaculatus obtained the majority of blood meals from mammalian hosts, consistent with the findings of earlier studies [15, 22, 33, 34, 38, 55, 56]. White-tailed deer was the most frequent host for both species, comprising 95.0 and 73.9 % of blood meals for An. punctipennis and An. quadrimaculatus, respectively. Horse-derived blood meals were also identified from 2.5 % of An. punctipennis and 26.1 % of An. quadrimaculatus. EEEV has been isolated from field-collected An. quadrimaculatus in the eastern United States [4, 5, 20, 55], and sufficient viremia required for subsequent transmission to mammalian hosts has also been reported [5, 19]. Although reports of avian blood feeding by these mosquitoes have been relatively rare, 16.7 % of An. punctipennis and 4.0 % of An. quadrimaculatus blood meals in the present study were from avian hosts. Anopheles quadrimaculatus has been identified as a moderately competent vector of EEEV [19] and is abundant in virus foci, seeking hosts from mid-summer to early fall [20, 35, 55], thus it is plausible that this species serves as an epidemic/epizootic vector of the virus. The vector competence of An. punctipennis for EEEV; however, has not been well established.

White-tailed deer served as the most frequent mammalian host for mosquitoes in the present study. Although deer have been considered as dead-end hosts for EEEV [57], the use of these ruminant mammals as indicators of EEEV activity has recently been proposed [58, 59]. Serologic evidence suggests that deer are exposed to EEEV over relatively large geographic regions in Maine, Vermont, and Georgia, in areas not always associated with virus foci [58–60]. Moreover, EEEV has been reported to cause mortality or neurological impairment in deer populations in Georgia and Michigan, and the virus has been isolated from the brain tissue of these mammals [60, 61]. Fatalities caused by EEEV infection in white-tailed deer have also been reported from New York, where infections of a deer and a horse occurred within two weeks of one another in the same town [9]. Nonetheless, the exposure of deer to EEEV does not indicate whether these animals maintain viremia sufficient to infect mosquitoes. The extent of the contribution of a host with any virus titer to transmission has yet to be defined; however, it is conceivable that low viremia could also lend some support to arbovirus transmission. Probabilistic models may be useful in explaining the transmission of an arbovirus from a “dead-end” host, such as white-tailed deer, to an uninfected mosquito [62].

Conclusions

Our findings indicate that wood thrush, tufted titmouse, and a few other avian species serve as hosts for mosquitoes and likely contribute to amplification of EEEV. Our study supports the role of Cx. morsitans in enzootic transmission of EEEV among avian species. Culex territans will seek blood from multiple vertebrate classes, suggesting that this species may contribute to epizootic transmission of the virus. Our findings support roles for Cx. perturbans and An. quadrimaculatus as epidemic/epizootic vectors to humans, horses, and white-tailed deer. Despite its abundance, the potential of Ae. thibaulti to serve as a “bridge vector” for EEEV remains unclear in the absence of any definitive knowledge on its competency for the virus. The contribution of white-tailed deer to the dynamics of EEEV transmission is not fully understood, but findings indicate repeated exposure due to frequent blood feeding by vector competent mosquito species.
24. Culex pipiens

25. Culex restuans

26. Culex nigripalpus

27. Culex quinquefasciatus

28. Culex tarsalis

29. Culex salinarius

30. Culex tarsalis

31. Culex tarsalis

32. Culex tarsalis

33. Culex tarsalis

34. Culex tarsalis

35. Culex tarsalis

36. Culex tarsalis

37. Culex tarsalis

38. Culex tarsalis

39. Culex tarsalis

40. Culex tarsalis

41. Culex tarsalis

42. Culex tarsalis

43. Culex tarsalis

44. Culex tarsalis

45. Culex tarsalis

46. Culex tarsalis

47. Culex tarsalis

48. Culex tarsalis

49. Culex tarsalis

50. Culex tarsalis

51. Culex tarsalis

52. Culex tarsalis

53. Culex tarsalis

54. Culex tarsalis

55. Culex tarsalis

56. Culex tarsalis

57. Culex tarsalis

58. Culex tarsalis

59. Culex tarsalis

60. Culex tarsalis

61. Culex tarsalis

62. Culex tarsalis

63. Culex tarsalis

64. Culex tarsalis

65. Culex tarsalis

66. Culex tarsalis

67. Culex tarsalis

68. Culex tarsalis

69. Culex tarsalis

70. Culex tarsalis

71. Culex tarsalis

72. Culex tarsalis

73. Culex tarsalis

74. Culex tarsalis

75. Culex tarsalis

76. Culex tarsalis

77. Culex tarsalis

78. Culex tarsalis

79. Culex tarsalis

80. Culex tarsalis

81. Culex tarsalis

82. Culex tarsalis

83. Culex tarsalis

84. Culex tarsalis

85. Culex tarsalis

86. Culex tarsalis

87. Culex tarsalis

88. Culex tarsalis

89. Culex tarsalis

90. Culex tarsalis

91. Culex tarsalis

92. Culex tarsalis

93. Culex tarsalis

94. Culex tarsalis

95. Culex tarsalis

96. Culex tarsalis

97. Culex tarsalis

98. Culex tarsalis

99. Culex tarsalis

100. Culex tarsalis

101. Culex tarsalis

102. Culex tarsalis

103. Culex tarsalis

104. Culex tarsalis

105. Culex tarsalis

106. Culex tarsalis

107. Culex tarsalis

108. Culex tarsalis

109. Culex tarsalis

110. Culex tarsalis

111. Culex tarsalis

112. Culex tarsalis

113. Culex tarsalis

114. Culex tarsalis

115. Culex tarsalis

116. Culex tarsalis

117. Culex tarsalis

118. Culex tarsalis

119. Culex tarsalis

120. Culex tarsalis

121. Culex tarsalis

122. Culex tarsalis

123. Culex tarsalis

124. Culex tarsalis

125. Culex tarsalis

126. Culex tarsalis

127. Culex tarsalis

128. Culex tarsalis

129. Culex tarsalis

130. Culex tarsalis

131. Culex tarsalis

132. Culex tarsalis

133. Culex tarsalis

134. Culex tarsalis

135. Culex tarsalis

136. Culex tarsalis

137. Culex tarsalis

138. Culex tarsalis

139. Culex tarsalis

140. Culex tarsalis

141. Culex tarsalis

142. Culex tarsalis

143. Culex tarsalis

144. Culex tarsalis

145. Culex tarsalis

146. Culex tarsalis

147. Culex tarsalis

148. Culex tarsal
and vector potential of adult *Culiseta maritans* (Diptera: Culicidae). J Med Entomol. 1981;18:313–6.
52. Hayes RO. Host preferences of *Culiseta melanura* and allied mosquitoes. Mosq News. 1961;21:179–87.
53. Edman JD. Host-feeding patterns of Florida mosquitoes I. *Aedes*, *Anopheles*, *Coquillettidia*, *Mansonia* and *Psorophora*. J Med Entomol. 1971;8:687–95.
54. Cupp EW, Klingler K, Hassan HK, Viquers LM, Unnasch TR. Transmission of eastern equine encephalomyelitis virus in central Alabama. Am J Trop Med Hyg. 2003;68:495–500.
55. Cupp EW, Tennesen KI, Oldland WK, Hassan HK, Hill GE, Katholi CR, et al. Mosquito and arbovirus activity during 1997–2002 in a wetland in northeastern Mississippi. J Med Entomol. 2004;41:495–501.
56. Molaei G, Farajollahi A, Armstrong PM, Oliver J, Howard JJ, Andreadis TG. Identification of bloodmeals in *Anopheles quadrimaculatus* and *Anopheles punctipennis* from eastern equine encephalitis virus foci in northeastern USA. Med Vet Entomol. 2009;23:350–6.
57. Schmitt SM, Cooley TM, Fitzgerald SD, Bolin SR, Lim A, Schaefer SM, et al. An outbreak of eastern equine encephalitis virus in free-ranging white-tailed deer in Michigan. J Wildl Dis. 2007;43:635–44.
58. Mutebi JP, Lubelczyk C, Eisen R, Panella N, MacMillan K, Godsey M, et al. Using wild white-tailed deer to detect eastern equine encephalitis virus activity in Maine. Vector Borne Zoonotic Dis. 2011;11:1403–9.
59. Berl E, Eisen RJ, MacMillan K, Swope BN, Saxton-Shaw KD, Graham AC, et al. Serological evidence for eastern equine encephalitis virus activity in white-tailed deer, *Odocoileus virginianus*, in Vermont, 2010. Am J Trop Med Hyg. 2013;88:103–7.
60. Tate CM, Howerth EW, Stallknecht DE, Allison AB, Fischer JR, Mead DG. Eastern equine encephalitis in a free-ranging white-tailed deer (*Odocoileus virginianus*). J Wildl Dis. 2005;41:241–5.
61. Kiupel M, Fitzgerald SD, Pannick KE, Cooley TM, O’Brien DJ, et al. Distribution of eastern equine encephalomyelitis viral protein and nucleic acid within central nervous tissue lesions in white-tailed deer (*Odocoileus virginianus*). Vet Pathol. 2013;50:1058–62. doi:10.1177/0300985813488956.
62. Lord CC, Rutledge CR, Tabachnick WJ. Relationships between host viremia and vector susceptibility for arboviruses. J Med Entomol. 2006;43:623–30.

Submit your next manuscript to *BioMed Central* and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit