Super-linear spreading in local bistable cane toads equations

Emeric Bouin1 and Christopher Henderson2,3

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADE, 75016 Paris, France
2 Department of Mathematics, The University of Chicago, Chicago, IL 60637, United States of America

E-mail: bouin@ceremade.dauphine.fr and henderson@math.uchicago.edu

Received 25 March 2016, revised 2 January 2017
Accepted for publication 1 February 2017
Published 21 February 2017

Abstract
In this paper, we study the influence of an Allee effect on the spreading rate in a local reaction–diffusion–mutation equation modeling the invasion of cane toads in Australia. We are, in particular, concerned with the case when the diffusivity can take unbounded values. We show that the acceleration feature that arises in this model with a Fisher-KPP, or monostable, nonlinearity still occurs when this nonlinearity is instead bistable, despite the fact that this kills the small populations. This is in stark contrast to the work of Alfaro, Gui-Huan, and Mellet–Roquejoffre–Sire in related models, where the change to a bistable nonlinearity prevents acceleration.

Keywords: reaction diffusion equations, bistable reaction, acceleration, cane toads equation, Allee effect
Mathematics Subject Classification numbers: 35Q92, 45K05, 35C07
(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. The biological model

The invasion of cane toads in Australia has interesting features different from the standard spreading observed in most other species. The experimental data [30, 34] show that the invasion speed has steadily increased during the eighty years since the toads were introduced in Australia. In addition, the younger individuals at the edge of the invasion front have a
significantly different morphology compared to other populations—their legs tend to be on average much longer than away from the front. This is just one example of a non-uniform space-trait distribution—see, for instance, a study on the expansion of bush crickets in Britain [35]. Several works have addressed the front invasions in ecology, where the trait is related to the dispersal ability [3, 15]. It has been observed that selection of more mobile individuals can occur, even if they have no advantage in their reproductive rate, due to the spatial sorting [1, 24, 30, 31].

In this paper, we focus on a model for this phenomenon (proposed in [4], based on the classical Fisher-KPP equation [17, 25])\(^4\). The population density is structured by a spatial variable, \(x \in \mathbb{R}\), and a motility variable \(\theta \in \Theta = [\theta, \infty)\), with a fixed \(\theta > 0\). This population undergoes diffusion in the trait variable \(\theta\), with a constant diffusion coefficient \(\alpha > 0\), representing mutation, and in the spatial variable, with the diffusion coefficient \(\theta\), representing the effect of the trait on the spatial spreading rates of the species.

In the model proposed in [4], the reaction is of non-local, monostable type. In the case where \(\Theta\) is bounded, the problem has been shown to be well-posed [36] and exhibit travelling-wave solutions [9]. When \(\Theta\) is unbounded, sharp results have been proven for the local analogue while weaker results have been obtained for the non-local equation [8, 12]. In particular, the Cauchy problem exhibits propagation of of the order \(t^{3/2}\).

1.2. Motivation

With a monostable nonlinearity, acceleration, i.e. super-linear spreading of level sets, has been shown in various settings in mathematical biology [7, 11, 13, 14, 16, 18, 20, 22, 23, 27, 33]. We mention, in particular, the existence of acceleration for Fisher-KPP with fat-tailed initial data and for Fisher-KPP with the fractional Laplacian. In these models, acceleration is related to the notion of pulled fronts. In particular, we see that small populations far from the origin grow exponentially, causing the acceleration. Recently, in these settings, it has been shown that when the nonlinearity is ignition or bistable type, there is no acceleration [2, 19, 28]. Indeed, the small populations that drive the acceleration are killed when the nonlinearity is bistable. In other words, acceleration is a tail phenomenon, so when a bistable nonlinearity kills the tails, there is no acceleration.

In this article, we obtain results in stark contrast with the results discussed above. Indeed, we demonstrate propagation of the order \(t^{3/2}\) in the local cane toads equation with a bistable nonlinearity. This shows that, for the cane toads equation, acceleration is a bulk phenomenon, i.e. that it is not driven by small populations far from the origin.

1.3. Main results

Fix a nonlinearity \(f: [0, 1] \to [0, \infty]\) that is a Lipschitz continuous function such that there exists \(\alpha \in (0, \frac{1}{2})\) with

\[
f(u) \geq u(u - \alpha)(1 - u).
\]

We assume also that \(f(0) = f(1) = 0\). This assumption allows to cover all three of the bistable, ignition and monostable cases in one argument. The monostable case is not really of interest here, since it has been discussed much more precisely in [12]. We are interested in the long-time asymptotics of solutions to the Cauchy problem

\(^4\)Kolmogorov [25]. See [29] pp 105–30 for an English translation.
\[
\begin{aligned}
 u_t &= \theta u_{xx} + u_{yy} + f(u), & (t, x, \theta) &\in \mathbb{R}^+ \times \mathbb{R} \times \Theta, \\
 u_\theta(t, x, \theta) &= 0, & (t, x) &\in \mathbb{R}^+ \times \mathbb{R}, \\
 u(0, x, \theta) &= u_0(x, \theta) & (x, \theta) &\in \mathbb{R} \times \Theta.
\end{aligned}
\]

(1.1)

The initial data function \(u_0 \) is assumed to satisfy

\[
u_0 \geq 1_{\mathbb{R} \times \{E(l + \lambda)\}},
\]

where \(\lambda > 0 \).

Our interest is in understanding where the ‘front’ of \(u \) is. In other words, we will fix a level set and understand its propagation. Using the same equation with a monostable nonlinearity as a super-solution to (1.1), the results from [8, 12] show that no level set can move faster than \(O(t^{3/2}) \). Our main result is to show that a lower bound of the same order holds as well.

Theorem 1.1. Fix any \(m \in (0, 1) \). There exists \(\lambda_0 \in \mathbb{R}^+ \), depending only on \(\alpha \) and \(\theta \), and \(\gamma \in \mathbb{R}^+ \), depending only on \(\alpha \), such that if \(\lambda \geq \lambda_0 \) then

\[
\liminf_{t \to \infty} \frac{\max\{x : \exists \theta \in \Theta, u(t, x, \theta) = m\}}{t^{3/2}} \geq \gamma.
\]

Before we continue, we note that we expect that this theorem holds in much greater generality. However, our interest is in showing that the acceleration in the cane toads equation is a also bulk phenomenon, as opposed to a tail phenomenon. Hence, we seek to simply show that acceleration occurs despite the bistable nonlinearity, and we do not attempt to find the most general setting or the sharpest bounds.

To prove this theorem, we will follow a similar strategy as in a previous paper by the authors and Ryzhik [12] and that also appears in [6, 32]. In rough words, we will slide a suitable ‘bump’ along suitable trajectories in the phase plane \(\mathbb{R} \times \Theta \), making sure that the ball remains below the solution of the original Cauchy problem (1.1). Once the trajectories are well chosen, this will imply the acceleration phenomena claimed in theorem 1.1. However, the ‘bump’ sub-solution is significantly more complicated to create in this setting than in the monostable one. Indeed, in [12], the sub-solution is created almost entirely with the linearized (around zero) problem. In our setting, of course, the linearized problem decays to zero on any traveling ball. We describe how to overcome this difficulty below. This is the main technical difficulty in the present article.

1.4. **Strategy of the proof: constructing the sub-solution**

We will now end this introduction by describing and presenting more precisely the major objects that are needed to prove theorem 1.1, namely the suitable trajectory and ‘bump’, see figure 1. To begin, we fix a large \(T > 0 \) and any level set height \(m \in (0, 1) \). We then define a trajectory in the space \(\mathbb{R} \times \Theta \) by

\[
t \mapsto (X_T(t), \Theta_T(t)),
\]

for any \(t \in [0, T] \). The coordinate functions \((X_T, \Theta_T) \) will be defined later on (see section 2), and are crucial for our analysis. In order to slide a bump along this trajectory, we define the moving (growing) ellipse

\[
E_{t, \Lambda} = \left\{ (x, \theta) \in \mathbb{R} \times \Theta : \left(\frac{x - X_T(t)}{\Theta_T(t)} \right)^2 + (\theta - \Theta_T(t))^2 \leq \Lambda^2 \right\}
\]

(1.2)

and the moving (growing) annulus
where Λ is a positive constant to be chosen later that encodes the sizes of this two objects. For now, our only assumption on Λ is that $\Lambda \leq \lambda \theta / 8$. Our goal is to build a sub solution to \ref{eq:1.1} on the bigger ellipse $A_{t,\Lambda} \cup E_t$, what we called a ‘bump’ above.

Since it is the main issue of the paper, let us now explain how we build a sub solution on $A_{t,\Lambda} \cup E_t$. We shall patch together a solution w^+ of

\[
\begin{aligned}
 w^+_t &= \theta w^+_{xx} + \Theta \Theta^2 \left(\frac{\theta}{\Theta} \right)^2 + \Theta^2 \leq 4\Lambda^2, \\
 w^+ &= \alpha, \quad (x, \theta) \in E_{t,\Lambda}, \\
 w^+ &= \alpha, \quad (x, \theta) \in \partial E_{t,\Lambda},
\end{aligned}
\]

and a positive solution $w^- \leq \alpha$ on $A_{t,\Lambda}$ of

\[
\begin{aligned}
 w^-_t &= \theta w^-_{xx} + \Theta \Theta^2 \left(\frac{\theta}{\Theta} \right)^2 + \Theta^2 \leq 4\Lambda^2, \\
 w^- &= \alpha, \quad (x, \theta) \in A_{t,\Lambda}, \\
 w^- &= 0, \quad (x, \theta) \in \partial A_{t,\Lambda} \cup \partial E_{t,\Lambda}.
\end{aligned}
\]

Notice that in these two previous definitions, there is a small but important discrepancy between the nonlinearities used and in \ref{eq:1.1}. The new nonlinearity f_r is defined as follows for any $r \in (2\alpha, 1]$:

\[
f_r(u) \overset{\text{def}}{=} \begin{cases}
 u(u - \alpha)(1 - u), & \text{for } u \leq \alpha, \\
 c_r(u - \alpha)(r - u), & \text{for } u > \alpha.
\end{cases}
\]

where we define $c_r = (1 - \alpha)(r - \alpha)^{-1}$. It is easily verified that $f_r(u) \leq f(u)$ for all u, and it is clear that f_r is Lipschitz continuous. For technical reasons, we are required to take r to be slightly less than 1 in the sequel.

Now that we have defined w^\pm, we obtain a sub solution w of \ref{eq:1.1} on $\mathbb{R}^+ \times \mathbb{R} \times \Theta$ defined by

\[
w(t, x, \theta) = w^+ 1_{E_{t,\Lambda}} + w^- 1_{A_{t,\Lambda}}.
\]

By construction, w is Lipschitz continuous. However, it need not be a C^1 function along $\partial A_{t,\Lambda} \setminus \partial E_{t,\Lambda}$ and $\partial E_{t,\Lambda}$. In order to be a sub solution, we must check the convexity of w along both boundaries. The positivity of w^- ensures that the convexity of w is correct at the
boundary $\partial A_{\Lambda, \Lambda} \setminus \partial E_{t, \Lambda}$. However, to make sure that it is indeed a sub-solution at the boundary $\partial E_{t, \Lambda}$ we need to check properly that the normal derivatives along this boundary are well ordered:

$$|\partial_n w^+| \geq |\partial_n w^-| \quad \text{on } \partial E_{t, \Lambda},$$

(1.8)

where ∂_n is the (outward) normal derivative to the boundary of $E_{t, \Lambda}$. This is the main technical issue at hand in the proof.

1.5. Numerics and comments

1.5.1. Numerics

Let us enlighten theorem 1.1 by showing in figure 2 some numerical insights of the acceleration behavior. One can compare these to [8, 10] that are numerics related to the study of the acceleration in the nonlocal cane toads equation.

1.5.2. A nonlocal bistable model

We conclude the introduction by discussing a nonlocal version of (1.1):

$$
\begin{align*}
 n_t &= \partial_t n_{xx} + n_{yy} + n(\rho - \alpha)(1 - \rho), & (t, x, \theta) &\in \mathbb{R}^+ \times \mathbb{R} \times \Theta, \\
 \rho(t, x) := \int_{\mathbb{R}}^{\infty} n(t, x, \theta) \, d\theta, & (t, x) &\in \mathbb{R}^+ \times \mathbb{R}, \\
 n_0(t, x, \theta) &= 0, & (t, x) &\in \mathbb{R}^+ \times \mathbb{R}, \\
 n(0, x, \theta) &= n_0(x, \theta) & (x, \theta) &\in \mathbb{R} \times \Theta.
\end{align*}
$$

(1.9)

It is easy to see that one many bound the propagation rate above by using the monostable model with growth rate $\rho = \sup_{\rho \in \mathbb{R}} ((\rho - \alpha)(1 - \rho)) = (1 - \alpha)^2/4$. This implies that the propagation can be no faster than $O(t^{3/2})$. However, obtaining a lower bound is significantly more complicated. We are led to the following conjecture, which we are unable to prove at this time.

Conjecture 1.2. The model (1.9) exhibits acceleration. That is, the level sets of ρ move super-linearly in time.

We provide some numerics in figure 3 to support this conjecture. However, the proof of such a result is far beyond the scope of this paper. Indeed, it requires to study the dynamics of the zone where ρ is greater that α, which is not at the edge of the front at all, so that an argument by contradiction as in [12] is impossible. Moreover, to our knowledge, it is not possible to derive a probabilistic framework such as in [8] (and the references therein) to be able to study the nonlocal model (1.9). As new tools will be needed to study this model, we thus leave this conjecture for further investigation.

1.6. Outline of the article

In section 2, we give the main outline of the proof of theorem 1.1 assuming the main proposition 2.1. In section 3, we prove this proposition by finishing the construction of the sub-solution (1.7), and reducing it to showing a proposition 3.2 that gives (1.8). This main lemma involves understanding a related steady state problem, which we analyze in sections 4 and 5.
2. The acceleration feature—proof of theorem 1.1

In this section, we prove theorem 1.1. For this purpose, we first define carefully the trajectory that has been introduced in the previous section. Second, we take for granted the existence of a sub-solution of the form (1.7) (this will the object of section 3) and we show how this implies the acceleration feature stated in theorem 1.1.

We now define the trajectory $t \in [0, T] \mapsto (X_T(t), \Theta_T(t)) \in \mathbb{R} \times \Theta$. For this purpose, we concatenate two trajectories $t \mapsto (X^{[1]}_T(t), \Theta^{[1]}_T(t))$ and $t \mapsto (X^{[2]}_T(t), \Theta^{[2]}_T(t))$.

![Figure 2. Numerical simulations of the Cauchy problem of equation (1.1) at a fixed time, in the phase space $\mathbb{R} \times \Theta$. From top left to bottom right, the first five plots are: the initial data, $t = 30$, $t = 60$, $t = 90$, $t = 116$ (when the simulation terminated). One can track the accelerated behavior, for example on the space axis. The invasion at the back in the θ-direction is expected to be linear in time. This pattern is very similar as for the monostable cane toads equation, see also [8, 10, 12]. The final plot is the distance the front has travelled divided by time—here, we define the location of the front $\phi(t) := \max\{x \in \mathbb{R} : \exists \theta, n(t, x, \theta) = 1/2\}$. The positive slope shows that the front accelerates; were the front moving linearly, the curve would be asymptotically constant.](image-url)
Figure 3. Numerical simulations of the Cauchy problem of equation (1.9) at a fixed time, in the phase space $\mathbb{R} \times \Theta$. From top left to bottom right, the first five plots are: the initial data, $t = 45$, $t = 90$, $t = 135$, $t = 180$. Here we see the distinctive ‘up-and-over’ behavior that leads to acceleration for the non-local, monostable model. One can track the accelerated behavior, for example on the space axis. The final graph is a plot of the distance the front has travelled divided by time—here, we define the location of the front $x_f(t) := \max\{x \in \mathbb{R} : \rho(t, x) = 1/2\}$. The positive slope shows that the front accelerates; were the front moving linearly, the curve would be asymptotically constant.
These latter trajectories are defined by
\[
\forall t \in \left[0, \frac{T}{2}\right], \quad (X_t^{(1)}, \Theta_t^{(1)})(t) = \left(-\frac{\lambda}{4} \theta, ct + \left(1 + \frac{3\lambda}{4}\right)\theta\right),
\]
and
\[
\forall t \in \left[\frac{T}{2}, T\right], \quad (X_t^{(2)}, \Theta_t^{(2)})(t) = \left(\frac{c(t - \frac{T}{2})T}{\sqrt{T^2 + (1 + \frac{\lambda}{2})\theta}} - \frac{\lambda}{4} \theta, \frac{cT}{2} + \left(1 + \frac{3\lambda}{4}\right)\theta\right).
\]

See figure 4 for a schematic of the trajectories \((X_t, \theta_t)\). In related works \([10, 12]\) about the standard local and non-local cane toads equations, some trajectories of the same kind have been introduced.

Before continuing, we point out that our choice of \(\Lambda \leq \lambda \theta / 8\) gives us that
\[
\mathcal{E}_{0, \Lambda} \cup \mathcal{A}_{0, \Lambda} \subset (-\infty, 0] \times \left[\theta, (1 + \lambda)\theta\right].
\]
This implies that \(w\) will initially sit below \(u\), allowing us to apply the maximum principle. With this in mind, we state in (a very minimalist fashion) a proposition that will imply our main theorem \(1.1\).

Proposition 2.1. Fix \(m \in (0, 1)\). There exist positive constants \(\lambda_0, \Lambda_0, T_0, c_0\), such that if \(\Lambda \geq \Lambda_0, T \geq T_0, c \leq c_0\), then there exists a sub-solution \(w\) of the form \((1.7)\) satisfying \((1.8)\) such that
\[
\forall (x, \theta) \in \mathcal{E}_{T, \frac{T}{2}}: w(T, x, \theta) \geq m.
\]

In addition, all constants \(\lambda_0, \Lambda_0, c_0, T_0\) are bounded for \(m\) bounded away from 1, and \(\lambda_0\) depends on \(\Lambda\).

We will prove this proposition in section 3. Let us now conclude the proof of theorem 1.1.

We simply write, as a consequence of the comparison principle, the following:
\[
\liminf_{T \to \infty} \frac{\max \{x : \exists \theta \in \Theta, u(T, x, \theta) \geq m\}}{T^{1/2}} \geq \liminf_{T \to \infty} \frac{\max \{x : \exists \theta \in \Theta, w(T, x, \theta) \geq m\}}{T^{1/2}}
\]
\[
\geq \liminf_{T \to \infty} \frac{X_T^2(T)}{T^{1/2}}
\]
\[
= \liminf_{T \to \infty} \left(\frac{c T^2}{\sqrt{T^2 + (1 + \frac{\lambda}{2})\theta}} - \frac{\sqrt{(1 + \frac{3\lambda}{4})\theta}}{T^{1/2}}\right)
\]
\[
= \frac{c}{\sqrt{2}}.
\]

After calling the latter constant \(\gamma\), this finishes the proof.
Remark 2.2. To find optimal constants, one could write a general framework for the trajectories such as for the cane toads equation in [12] and try to optimize afterwards. However, in this paper, the suboptimal trajectories are not the only reason for sub-optimality. One would have to quantify all the constants in various lemmas in this paper, that are not strongly related to the definition of the trajectories themselves. Since this is not our main interest, we opt for the simplest possible presentation.

3. Building the sub-solution \(w \) along trajectories

In this section, we will prove proposition 2.1, by working on the two components of the trajectories separately. Since we want to build a sub-solution along a trajectory \((X_T, \Theta_T)\), we work in the moving coordinates introduced in [12]

\[y = \frac{x - X_T}{\sqrt{\Theta_T}}, \quad \eta = \theta - \Theta_T. \]

The moving ellipse and annulus \(\mathcal{E}_{t, \Lambda} \) and \(\mathcal{A}_{t, \Lambda} \) are respectively transformed into the following stationary circle and annulus \(\mathcal{E}_\Lambda \) and \(\mathcal{A}_\Lambda \):

\[\mathcal{E}_\Lambda = \{(y, \eta) : y^2 + \eta^2 < \Lambda^2\}, \quad \mathcal{A}_\Lambda = \{(y, \eta) : \Lambda^2 < y^2 + \eta^2 < 4\Lambda^2\}. \]

The Dirichlet boundary condition that we enforce on \(\partial \mathcal{E}_{t, \Lambda} \) pushes us to make the following change of unknown functions:

\[w^+(t, x, \theta) = \alpha + v^+(t, y, \eta), \quad w^-(t, x, \theta) = \alpha - v^-(t, y, \eta). \]

We see directly that \(v^+ \) and \(v^- \) solve respectively, for \(t \in [0, T] \),

\[
\begin{align*}
 v^+_t - c_1(t) v^+_y - c_2(t) v^+_{\eta} &= d(\eta, t)v^+_y + v^+_{\eta\eta} + f_\alpha + v^+, \\
 v^-(t, y, \eta) &= 0,
\end{align*}
\]

(3.1)
\[
\begin{aligned}
\dot{v}_t - c_1(y, t) v_t - c_2(t) v_{\eta} = d(y, t) v_{\eta} + f_\alpha(\alpha - v^-), & \quad (y, \eta) \in A_\Lambda, \\
v^-(t, y, \eta) = 0, & \quad (y, \eta) \in \partial E_L, \\
v^+(t, y, \eta) = \alpha, & \quad (y, \eta) \in \partial A_\Lambda \setminus \partial E_L.
\end{aligned}
\]

(3.2)

where we have defined
\[
c_1(y, t) := \frac{X_T}{\sqrt{\Theta_T}} + \frac{y \Theta_T}{2 \Theta_T}, \quad c_2(t) := \Theta_T, \quad d(y, t) := 1 + \frac{\eta}{\Theta_T}.
\]

The maximum principle assures us that \(0 \leq v^- \leq \alpha\) holds everywhere in time and space as long as the initial conditions of \(v^-\) satisfy the same bound. Similarly, The maximum principle assures us that \(0 \leq v^+ \leq r - \alpha\) holds everywhere in time and space as long as the initial conditions of \(v^+\) satisfy the same bound.

We now need to fix the initial conditions. It is easy to see that the non-constant coefficients in the equation vanish as \(\lambda\) tends to infinity. Hence, it behooves us to look at the steady state solutions to (3.1) and (3.2) where the dependence on \(\lambda\) disappears.

We define for \(i = 1, 2\), corresponding to each part of the trajectory,
\[
c^i_0 := (c^i_{0\alpha}, c^i_{0\lambda}).
\]

For clarity, we emphasize that \(c^i_{0\lambda}\) corresponds to the limit of the functions \(c_1\) and \(c_2\) on the interval \([0, T/2]\) and \(c^i_{\infty}\) corresponds to the limit of the functions \(c_1\) and \(c_2\) on the interval \([T/2, T]\). For any \(\Lambda \in \mathbb{R}^+\), we thus look for solutions \(\varphi^i_{(0)}\) of
\[
\begin{aligned}
-\Delta \varphi^-_{(0)} - c^\infty_{0\lambda} \cdot \nabla \varphi^-_{(0)} = -f_{c_0}(\alpha - \varphi^-_{(0)}), & \quad (y, \eta) \in A_\Lambda, \\
\varphi^-_{(0)}(y, \eta) = 0, & \quad (y, \eta) \in \partial E_L, \\
\varphi^-_{(0)}(y, \eta) = \alpha, & \quad (y, \eta) \in \partial A_\Lambda \setminus \partial E_L.
\end{aligned}
\]

(3.3)

and
\[
\begin{aligned}
-\Delta \varphi^+_{(0)} - c^\infty_{0\lambda} \cdot \nabla \varphi^+_{(0)} = f_{c_0}(\alpha + \varphi^+_{(0)}), & \quad (y, \eta) \in A_\Lambda, \\
\varphi^+_{(0)}(y, \eta) = 0, & \quad (y, \eta) \in \partial E_L.
\end{aligned}
\]

(3.4)

where we choose \(r_{(1)} = 1\) and we leave \(r_{(2)} \in (\max\{m, 2\alpha\}, 1)\) to be determined. We now state the lemma regarding these steady solutions that we require.

Lemma 3.1. There exists positive constants \(c_0\) and \(\Lambda_0\) such that if \(\|c^\infty_{0\lambda}\| \leq c_0\) and \(\Lambda > \Lambda_0\), then there exist non-trivial solutions \(\varphi^+_{(0)}\) and \(\varphi^-_{(0)}\) to (3.3) and (3.4), respectively. Moreover, if \(\varphi^-_{(0)}\) is any steady solution to (3.4), then for any \(\epsilon > 0\), there exist \(\Lambda_\epsilon\) and \(L_\epsilon \leq \Lambda_\epsilon/2\), both depending only on \(\epsilon\) such that if \(\Lambda > \Lambda_\epsilon\), then
\[
\varphi^+_{(0)}(y, \eta) \geq r_{(1)} - \alpha - \epsilon
\]

whenever \(\text{dist}((y, \eta), \partial E_L) > L_\epsilon\).

(3.5)

We postpone the proof of this lemma to section 4. We shall now explain how we will construct the sub-solution \(w\). With a abuse of notation, we will define \(w\) piecewise with \(w_{(1)}\) and \(w_{(2)}\), on each part of the trajectory, respectively, and thus differently on \([0, T/2]\) and \([T/2, T]\). We emphasize that this is acceptable as soon that we respect the ordering between (sub-
solutions at time $t = T/2$ (the regularity of the solution at this time is not important). Roughly speaking, we start at time $t = 0$ travelling on the first portion of the trajectory, stop at time $t = T/2$. We then measure the size of the (sub-)solutions at this time. We then restart at time $T/2$ with a sub-solution $w_{(2)}$ that lies underneath $w_{(1)}$ (and thus u) at this time. We then travel for another $T/2$ and measure the size of the sub-solution $w_{(2)}$ at the final time T.

We now complete the definition of the function w by setting the initial conditions

$$w_{(1)}(0, \cdot) = \varphi_{(1)}^-$$

and

$$w_{(2)}(T/2, \cdot) = \varphi_{(2)}^-$$

With $v_{(2)}^+$ defined, we may now state a proposition guaranteeing that w will satisfy the condition (1.8) ensuring that it is a sub-solution. This proposition will be proved at the end of this section.

Proposition 3.2. There exists positive constants Λ_0, T_0, and c_0, such that if $\Lambda \geq \Lambda_0$, $T \geq T_0$, and $c \leq c_0$, then v^+ and v^-, defined above, satisfy

$$|\partial_n v_{(i)}^+| \geq |\partial_n v_{(i)}^-|$$

on E.

With the initial conditions we have fixed for v^\pm, it is clear that as Λ tends to infinity, v^\pm should tend to φ^\pm uniformly in the C^1 topology. The following lemma ensures that this convergence holds and is uniform in T.

Lemma 3.3. Fix $\varepsilon > 0$. There exists Λ, and λ, such that if $\Lambda \geq \Lambda$, and $\lambda \geq \lambda$, then

$$\|v_{(i)}^\pm(t, \cdot) - \varphi_{(i)}^\pm(\cdot)\|_{L^\infty} \leq \varepsilon.$$

Moreover, this convergence holds uniformly in t.

We postpone the proof of this lemma until the dedicated section 5. We now show how the combination of lemmas 3.1 and 3.3 finally implies proposition 2.1. After changing variables it is equivalent to proving the same result for v^+. This is exactly now that we are going to travel along the trajectory (X_T, Θ_T) and play with parameters.

We start with the first part of the trajectory. Fix a positive constant $\varepsilon < (1 - m)/3$. The discussion above implies that we may find Λ_0, T_0 and δ_0 such that if $\Lambda \geq \Lambda_0$, $T \geq T_0$, and $c \leq c_0$, then we have that v^+ gives a sub-solution to u such that

$$u \left(\frac{T}{2}, \cdot \right) \geq \alpha + v^+ \left(\frac{T}{2}, \cdot \right) \geq \varphi_{(1)}^+ (\cdot) - \varepsilon + \alpha \geq 1 - 2\varepsilon$$

on the set $E_{\Lambda/2}$. This concludes our sliding over the first part of the trajectory.

First, by increasing Λ_0 if necessary, we may find $\Lambda_2 := r \geq \varepsilon + m$ in the interval $(2\alpha, 1 - 2\varepsilon)$. By the maximum principle any solution to (1.4) will be less than or equal to r.

With the choice $\Lambda = \Lambda/2$, we find that, by increasing T_0 and Λ_0, if necessary, if $T \geq T_0$ and $\Lambda \geq \Lambda_0$, then w is a sub-solution to u such that

$$u(T, \cdot) \geq w_{(2)}^+(T, \cdot) = v_{(2)}^+(T, \cdot) + \alpha \geq \varphi_{(2)}^+ (\cdot) - \varepsilon + \alpha \geq m.$$
on the set $E_\frac{\alpha}{\varepsilon}$. We point out that (3.7) is crucial to guarantee that w is a sub-solution to u on the interval $[T/2, T]$.

We finish this section by reducing proposition 3.2 to the following lemma.

Lemma 3.4. For Λ sufficiently large,

$$|\partial_\nu \varphi^+ (\Lambda \hat{v})| > |\partial_\nu \varphi^- (\Lambda \hat{v})|$$

(3.8)

holds uniformly in $\hat{v} \in S^1(\mathbb{R}^2)$.

We postpone the proof of this lemma to section 4 below.

Proof of proposition 3.2. Fix any unit vector $\hat{v} \in S^1(\mathbb{R}^2)$ and look at any point $\Lambda \hat{v}$ on the boundary of E_Λ. Then (3.6) follows from lemmas 3.3 and 3.4.

4. Lemmas about the steady solutions

In this section, we prove lemmas 3.1 and 3.4, which give the desired behavior for the steady states φ^\pm. To simplify the notation, we drop the (i) notation.

Proof of lemma 3.1. The existence of φ^\pm is follows from compactness methods like e.g. [21, theorem 6.13] so long as we can build sub- and super-solutions to φ^\pm. This is easy for φ^-. $\varphi^- \equiv 0$ is a sub-solution while $\varphi^\pm \equiv \alpha$ is a super-solution. The super-solution for φ^+ is easy as we may simply take $\varphi^+ \equiv \eta_0 \alpha - \alpha$ as a super-solution. To find a sub-solution, we simply let $\varphi^\pm = \alpha \mp \varepsilon R$ where ψ_R and λ_R are the positive principle eigenfunction and eigenvalue, respectively, satisfying $-\Delta \psi_R - c^\infty \cdot \nabla \psi_R = \lambda_R \psi_R$ with $\|\psi_R\|_\infty = 1$. Choosing ϵ small enough, R large enough, and c^∞ small enough, we may obtain that

$$\lambda_R \leq \min_{u \in [0, \alpha]} \frac{f_\varepsilon (\alpha + u)}{u}$$

and hence that

$$-\Delta \varphi^+ - c^\infty \cdot \nabla \varphi^+ = \lambda_R \varphi^+ \leq f_\varepsilon (\alpha + \varphi^+).$$

Hence φ^+ is a super-solution to φ^+. With this in hand, arguing as in [21, theorem 6.13] yields the existence of φ^\pm.

We now show the lower bound for φ^\pm. We first show a preliminary lower bound for φ^+ that we will bootstrap to the lower bound (2.1). To do so, we will build a sub-solution, ψ, of φ^+ by using the linearized problem and the principle eigenfunction on a well-chosen set and then directly obtaining a uniform lower bound on φ^\pm from ψ. To this end, let $c_0 > 0$ be small enough that if $|c^\infty| \leq c_0$ then we may fix L such that

$$\frac{\|c^\infty\|^2}{4} + \frac{\pi^2}{4L^2} \ll \frac{c_0 \alpha (r - \alpha)}{2}.$$

Let $(\gamma_\varepsilon, \eta_\varepsilon)$ be the location of the maximum of

$$e^{-\frac{1}{2}c^\infty (\gamma_\varepsilon, \eta_\varepsilon)} \cos \left(\frac{\pi \gamma_\varepsilon}{2L} \right) \cos \left(\frac{\pi \eta_\varepsilon}{2L} \right)$$
Now fix any point \((y_0, \eta_0)\) such that
\[
\text{dist}((y_0, \eta_0), \partial \mathcal{E}_\Lambda) \geq 2L + |y_L| + |\eta_L|.
\] (4.1)

Then define
\[
\psi(y, \eta) = e^{-\frac{1}{2} \frac{1}{c_2} (y + y_L - y_0, \eta + \eta_L - \eta_0)} \cos \left(\frac{\pi}{2L}(y + y_L - y_0) \right) \cos \left(\frac{\pi}{2L}(\eta + \eta_L - \eta_0) \right),
\] (4.2)

and notice that, by construction, the maximum of \(\tilde{\psi}\) occurs at \((y_0, \eta_0)\). Define
\[
\tilde{\psi} = \gamma \frac{\psi(y, \eta)}{\psi(y_0, \eta_0)},
\] (4.3)

where \(\gamma\) is a small parameter to be chosen later. It is easy to check that
\[
-\Delta \psi - e^\infty \nabla \psi \cdot f_\alpha(\alpha + \psi) \leq \left(\frac{\|e^\infty\|^2}{4} + \frac{\pi^2}{2L^2} - \frac{c_2 \alpha (r - \alpha)}{2} \right) \psi < 0,
\] (4.4)
on the set
\[
\mathcal{L}_L = \{(y, \eta) : |y - (y_0 - y_L)| < L \text{ and } |\eta - (\eta_0 - \eta_L)| < L \} \subset \mathcal{E}_\Lambda.
\]

The fact that \(\mathcal{L}_L \subset \mathcal{E}_\Lambda\) follows from (4.1). The first inequality in (4.4) follows by a simple computation and by choosing \(\gamma\) sufficiently small, depending only on \(r\) and \(f\), such that
\[
\frac{c_2 \alpha (r - \alpha)}{2} u \leq f_\alpha(\alpha + u)
\]
for all \(u \in [0, \gamma]\). The last inequality follows by our choice of \(c_2\) and \(L\) above.

Hence, \(\psi\) is sub-solution to \(\varphi^+\) that satisfies Dirichlet boundary conditions on the square \(\mathcal{C}_L\). Since \(\mathcal{L}_L \subset \mathcal{E}_\Lambda\), we have \(\psi \leq \varphi^+\) on \(\mathcal{L}_L\). This, in turn, implies that
\[
\varphi^+(y_0, \eta_0) \geq \gamma.
\]

Now we claim that \(\varphi^+\) tends to \(r - \alpha\) uniformly in the set \(\mathcal{E}_{\Lambda - L}\) as \(\Lambda\) and \(L\) tend to \(\infty\) when \(L \leq \Lambda/2\). To prove this, we argue by contradiction. If this is not true, then we may find a positive \(\epsilon > 0\), sequences \(L_k \leq \Lambda_k/2\) tending to infinity, and a sequence of points \((y_k, \eta_k) \in \mathcal{E}_{\Lambda - L_k}\) such that \(\varphi^+ (y_k, \eta_k) \leq r - \alpha - \epsilon\).

Let \(\varphi_k^+(y, \eta) = \varphi^+(y + y_k, \eta + \eta_k)\). By assumption, we have that \(\varphi_k^+(0, 0) \leq r - \alpha - \epsilon\). Also, our earlier bounds imply that \(\varphi_k^+(y, \eta) \in [0, r - \alpha]\), and thus, by elliptic regularity, \(\varphi_k^+\) is uniformly bounded in \(C^{2,\delta}\) for any \(\delta > 0\). In addition, \(\varphi_k^+\) satisfies the partial differential equation in (3.4) on the set \(B_k := \{(y, \eta) : |(y - y_k, \eta - \eta_k)| \leq L_k/2\}\). Also, by our work above, we have that \(\varphi_k^+ \geq \gamma\) for some \(\gamma > 0\) on \(B_k\) for all \(k\) sufficiently large. We point out that \(L_k \to \infty\) so \(B_k\) expands to fill up all of \(\mathbb{R}^2\). In fact, \(\varphi_k^+\) is smooth and satisfies this equation on a larger set, but this is not necessary for this proof.

By Arzela–Ascoli, we may, up to taking a subsequence if necessary, obtain a function \(\varphi^+_\infty\) defined on all of \(\mathbb{R}^2\), such that \(\varphi_k^+\) converges locally uniformly in \(C^2\) to \(\varphi^+_\infty\). From our bounds in the preceding paragraph, we have that
\[0 < \gamma \leq \varphi_\infty^+(y, \eta) \leq r - \alpha \] (4.5)

for all \((y, \eta) \in \mathbb{R}^2\) and that \(\varphi_\infty^+(0, 0) \leq r - \alpha - \epsilon\). In addition, the convergence in \(C^2\) implies that \(\varphi_\infty^+\) satisfies the partial differential equation in (3.4). By re-centering, if necessary, we may assume that \(\varphi_\infty^+\) achieves its infimum, which must be between \(\gamma\) and \(r - \alpha - \epsilon\). By the maximum principle, such a minimum may only be achieved where \(f_\epsilon(\alpha + \varphi_\infty^+)\) is zero. In other words, the minimum must occur where \(\varphi_\infty^+\) is zero or \(r - \alpha\). This contradicts the earlier conclusion that the minimum of \(\varphi^+\) is between \(\gamma\) and \(r - \alpha - \epsilon\). This finishes the proof. \(\square\)

We are now in a position to prove lemma 3.4, showing the ordering of the normal derivatives for the steady states \(\varphi^\pm\).

Proof of lemma 3.4. We assume the contrary. Suppose there is a sequence of \(\hat{\nu}_k\) and \(\Lambda_k\), with \(\Lambda_k\) tending to infinity, such that

\[|\partial_\nu \varphi^+(\Lambda_k \hat{\nu}_k)| \leq |\partial_\nu \varphi^-(\Lambda_k \hat{\nu}_k)| + o_k \to +\infty(1), \] (4.6)

By the compactness of the unit circle, \(\hat{\nu}_k\) converges (up to a subsequence) to some unit vector \(\hat{\nu}_\infty\).

Define \((y_k, \eta_k) = \Lambda_k \hat{\nu}_k\). We center the solutions on it. In other words, we define

\[
\begin{align*}
\eta_k(y, \eta) &= \varphi^-(y_k + y, \eta_k + \eta), \\
\eta_k^+(y, \eta) &= \varphi^+(y_k - y, \eta_k - \eta).
\end{align*}
\]

The new function \(\eta_k^+\) satisfies

\[
\begin{align*}
-\Delta \eta_k^+ + c^\infty \cdot \nabla \eta_k^+ &= f_\epsilon(\alpha + \eta_k^+), \\
\eta_k^+(y, \eta) &= 0, \\
\eta_k^+(y, \eta) &= \alpha,
\end{align*}
\] (4.7)

We point out that

\[
(y - y_k, \eta - \eta_k) \in \mathcal{E}_\Lambda_k \iff \|(y, \eta)\|^2 - 2(y, \eta) \cdot (\Lambda_k \hat{\nu}_k) + \Lambda_k^2 \leq \Lambda_k^2,
\]

\[
\iff \|(y, \eta)\|^2 \leq 2\Lambda_k(y, \eta) \cdot \hat{\nu}_k.
\]

The new function \(\eta_k^-\) satisfies

\[
\begin{align*}
-\Delta \eta_k^- + c^\infty \cdot \nabla \eta_k^- &= -f_\epsilon(\alpha - \eta_k^-), \\
\eta_k^-(y, \eta) &= 0, \\
\eta_k^-(y, \eta) &= \alpha,
\end{align*}
\] (4.8)

We point out that the condition

\[
(y + y_k, \eta + \eta_k) \in \mathcal{A}_\Lambda_k \iff \Lambda_k^2 \leq \|(y, \eta)\|^2 + 2(y, \eta) \cdot (\Lambda_k \hat{\nu}_k) + \Lambda_k^2 \leq 4\Lambda_k^2,
\]

\[
\iff 0 \leq \|(y, \eta)\|^2 + 2\Lambda_k(y, \eta) \cdot \hat{\nu}_k \leq 3\Lambda_k^2.
\]

By elliptic regularity theory, since \(\eta_k^+\) and \(\eta_k^-\) are bounded uniformly in \(L^\infty\), then they are bounded uniformly in \(C^{2,\delta}\) for any \(\delta > 0\). Hence, passing to a subsequence if necessary, we may take local uniform limits in \(C^2\) of \(\eta_k^\pm\) to obtain \(\eta^\pm\), which solve

\[
\begin{align*}
-\Delta z^+ + c^\infty \cdot \nabla z^+ &= f_\epsilon(\alpha + z^+), \\
z^+(y, \eta) &= 0,
\end{align*}
\] (4.9)
and
\[
\begin{aligned}
\begin{cases}
-\Delta z^- - c^\infty \cdot \nabla z^- = -f_\varepsilon(\alpha - z^-), & (y, \eta) \in P, \\
z^-(y, \eta) = 0, & (y, \eta) \in \partial P,
\end{cases}
\end{aligned}
\tag{4.10}
\]
where we have defined the half-plane
\[P \overset{\text{def}}{=} \{(y', \eta') : (y', \eta') \cdot \hat{v}_\infty > 0\} \]

Due to lemma 3.1, we conclude the following about \(z^\pm \). They are uniformly positive away from the boundary of \(P \). Furthermore, \(z^+(y, \eta) \) converges to \(r - \alpha \) and \(z^-(y, \eta) \) converges to \(\alpha \) as the distance between \((y, \eta) \) and \(\partial P \) tends to infinity.

Finally, we point out that (4.6) implies that \(|\partial^k z^\pm(0, 0)| \leq |\partial^k z^\pm(0, 0)| + \alpha(1) \) for all \(k \). By the convergence of \(\hat{v}_k \rightarrow \hat{v}_\infty \), which is the normal vector of \(P \), along with the convergence of \(z^\pm_k \) in \(C^2 \), we obtain that \(\partial^k z^+(0, 0) \leq \partial^k z^-(0, 0) \), where we have removed the absolute values since the sign of both quantities is clearly positive.

This contradicts the following lemma, which we prove in the following section as it requires the results from lemma 5.1.

Lemma 4.1. There exists \(\delta > 0 \) such that if \(\|c^\infty\| \leq \delta \), then \(\partial^k \hat{v}_\infty > 0 \).

Since we have reached a contradiction, it must be that (3.8) holds for all \(\Lambda \) sufficiently large. This finishes the proof of lemma 3.4.

\[\square \]

5. **Convergence to the steady states: proof of lemma 3.3**

Before we prove lemma 3.3, we prove a few useful lemmas. The first of these is the uniqueness of solutions to the related steady half-plane problem. We require this to prove lemma 4.1, stated above.

We also note that lemma 5.1 with \(c^\infty = 0 \) is well-known. We include the proof of the case with constant \(c^\infty \), which is virtually unchanged, for completeness.

Lemma 5.1. Let \((y_0, \eta_0) \in \mathbb{R}^2\) and \(\hat{v} \in S(\mathbb{R}^2) \). Define
\[P = \{(y, \eta) : 0 < (y + y_0, \eta + \eta_0) \cdot \hat{v}\} \]

For any choice of \(c^\infty \), there is at most one solution to
\[
\begin{aligned}
\begin{cases}
-\Delta z^+ + c^\infty \cdot \nabla z^+ = f_\varepsilon(\alpha + z^+), & (y, \eta) \in P, \\
z^+(y, \eta) = 0, & (y, \eta) \in \partial P,
\end{cases}
\end{aligned}
\tag{5.1}
\]
which satisfies Dirichlet boundary conditions on \(\partial P \) and which tends uniformly to \(r - \alpha \) as \(\text{dist}((y, \eta), \partial P) \) tends to infinity.

In addition, for any choice of \(c^\infty \), there is at most one solution to
\[
\begin{aligned}
\begin{cases}
-\Delta z^- + c^\infty \cdot \nabla z^- = -f_\varepsilon(\alpha - z^-), & (y, \eta) \in P, \\
z^-(y, \eta) = 0, & (y, \eta) \in \partial P,
\end{cases}
\end{aligned}
\tag{5.2}
\]
which satisfies Dirichlet boundary conditions on \(\partial P \) and which tends uniformly to \(\alpha \) as \(\text{dist}((y, \eta), \partial P) \) tends to infinity.
Proof of lemma 5.1. We show the argument for z^+ but the argument for z^- is identical. By rotation and translation, we may assume that $\hat{v} = (1, 0)$ and that $(y_0, \eta_0) = (0, 0)$. Our proof is very similar to the application of the sliding method in [5].

We proceed by contradiction and assume that z_1 and z_2 solve (5.1) and satisfy $z_2(y_0, \eta_0) < z_1(y_0, \eta_0)$ for some point $(y_0, \eta_0) \in P$.

Fix $u_0 \in (0, r - \alpha)$ large enough such that $f_\alpha(u + u_0)$ is monotonically decreasing for $u \geq u_0$.

Since z_1 and z_2 tend uniformly to $r - \alpha$ as y tends to infinity, we may find L such that if $y > L$, then $z_i(y, \eta) \geq u_0$ for $i = 1, 2$.

We define
\[z_i^+(y, \eta) := z_i(y + \tau, \eta). \]

Since z_2 converges uniformly to $r - \alpha$ as y tends to infinity, we may find τ_0 sufficiently large that $z_2^+ > z_1$ on the set
\[P_L = \{(y, \eta) \in P : 0 < y < L\}. \]

We claim that $z_2^+ \geq z_1$ on P. If not, let $\psi = z_2^+ - z_1$ and let $G = \{\psi < 0\}$. It is easy to see that $G \subset P \setminus P_L$, by construction. Also, it is easy to check that ψ satisfies
\[
-\Delta \psi = c^\infty \cdot \nabla \psi = \frac{\left(\hat{f}(z_2^+) - \hat{f}(z_1)\right)}{z_2^+ - z_1} \psi,
\]
\[\psi = f(y, \eta) \]
on the set G. Since ψ is zero on ∂G and since $\hat{f} \leq 0$, by our assumptions on L and u_0, the maximum principle ensures that $\psi \equiv 0$ on G, which is a contradiction. Hence, we have that $z_2^+ \geq z_1$ on P.

Let
\[\tau = \inf\{\tau : z_2^+ \geq z_1 \text{ on } P\}, \]
and notice that $\tau \leq \tau_0$. By continuity, it follows that $z_2^+ \geq z_1$. We claim that $\tau = 0$, and we proceed by supposing the opposite, that is $\tau > 0$. There are two cases: either $\inf_{P_L}(z_2^+ - z_1) > 0$, or $\inf_{P_L}(z_2^+ - z_1) = 0$.

We handle the former case first. In this case, elliptic regularity ensures that z_1, z_2 are uniformly Lipschitz continuous, and that we may then decrease τ to a positive constant $\tau' < \tau$ and preserve the fact that $z_2^+ \geq z_1$ on P_L. Arguing as above, this implies that $z_2^+ \geq z_1$ on P. This is contradiction the definition of τ.

Now we handle the latter case. Assume that $\inf_{P_L}(z_2^+ - z_1) = 0$. Then there exists a sequence of points $(y_k, \eta_k) \in P_L$ such that $z_2^+(y_k, \eta_k) - z_1(y_k, \eta_k)$ tends to zero. Defining
\[z_{1, k}(y, \eta) = z_1(y, \eta + \eta_k), \quad z_{2, k}(y, \eta) = z_2(y, \eta + \eta_k), \]

By elliptic regularity, we may, taking a subsequence if necessary, find z_i which are the local limits in C^2 of $z_{i, k}$ as k tends to infinity. In addition, y_k converges to some τ since $(y_k, \eta_k) \in P_L$ implies that $y_k \in (0, L)$. Hence we have that z_i satisfy (5.1) on P_L and satisfy that $z_i(\tau, 0) = z_i(\tau, 0)$.

1371
Since z_i converge to z_i in C^2 then the difference $\psi := z_2 - z_1$ satisfies a partial differential equation of the form (5.3), above. Moreover, notice that $\psi(0, \eta) > 0$ for all η because $z_1(0, \eta) \equiv 0$ and, by the argument in the proof of lemma 3.1, $z_2(0, \eta) = z_2(\tau, \eta)$ is uniformly positive for all η as $\tau > 0$. There are two cases: $\tau = 0$ and $\tau \in (0, L]$. The first cannot happen because $\psi(0, \eta) > 0$. The maximum principle rules out the second case, along with the fact that $\psi > 0$ on ∂P and $\psi \geq 0$ on P rules out the second case as well. This is a contradiction.

Hence, it must hold that $\tau = 0$. By the definition of τ, this implies that $z_2 = z_2 = 0$. This contradicts our original assumption that $z_2(y_0, \eta_0) < z_1(y_0, \eta_0)$. This finishes our proof. □

With lemma 5.1 in hand, we may now conclude the proof lemma 4.1.

Proof of lemma 4.1. Suppose that this is not true. Then there exist a sequence δ_k tending to 0 as k goes to infinity and a sequence δ_k such that

$$\|\phi_k\| \leq \delta_k$$

and functions z^{∞}_k and $z^{-\infty}_k$ solving (4.9) and (4.10) respectively which satisfy

$$\partial_\alpha z^{\infty}_k(0, 0) \leq \partial_\alpha z^{-\infty}_k(0, 0).$$

(5.4)

By elliptic regularity theory, we may take local uniform limits to obtain that z^{∞}_k and $z^{-\infty}_k$ converge to z^{∞}_C and $z^{-\infty}_C$, respectively, which are the unique solutions to (4.9) and (4.10) with $c^\infty = 0$.

Rotating if necessary, we may now assume that $\psi = (1, 0)$. Using lemma 5.1, it is easy to see that z^{∞}_C and $z^{-\infty}_C$ depend only on the y-variable. It is easily checked that

$$\psi_\alpha(\alpha + u) - \psi_\alpha(\alpha - u).$$

Hence, we may use the sliding technique [5] (see also lemma 5.1 above) to show that $z^{\infty}_C > z^{-\infty}_C$. Finally, the Hopf lemma implies that $\partial_\alpha z^{\infty}_C > \partial_\alpha z^{-\infty}_C$, which contradicts (5.4). This finishes the proof.

The following lemma addresses the issue of uniqueness for the steady state problem (3.4) on the bounded ellipse Ω. While we expect uniqueness to hold in this setting, we are unable to prove it because f_ε need not satisfy the condition that $f_\varepsilon(\alpha + u)/u$ that is usually used for uniqueness results of this type. As such, we settle for a type of asymptotic uniqueness, stated below.

Lemma 5.2. For any $\varepsilon > 0$, there exists Λ_ε such that if $\Lambda \geq \Lambda_\varepsilon$, any two positive solutions to (3.4) must be ε-close in the L^∞ norm.

Proof of lemma 5.2. Suppose the opposite, that there is a positive constant ε, a sequence of Λ_k tending to infinity, and two sequences of functions $\varphi_{1,k}$ and $\varphi_{2,k}$ which both solve (3.4) such that $\|\varphi_{1,k} - \varphi_{2,k}\|_{\infty} \geq \varepsilon$. Then we may find a sequence of points (y_1, η_1) such that $\varphi_{1,k}(y_1, \eta_1) \geq \varphi_{2,k}(y_1, \eta_1) + \varepsilon$. We may select (y_1, η_1) to be a local maximum of $\varphi_{1,k} - \varphi_{2,k}$.

Now define functions

$$\tilde{\varphi}_{i,k}(y, \eta) = \varphi_{i,k}(y + y_1, \eta + \eta_1)$$

for $i = 1, 2$.

By elliptic regularity, it follows that $\tilde{\varphi}_{i,k}$ converge, along a subsequence, if necessary, locally uniformly to $\tilde{\varphi}_i$.

There are two cases to consider here: either (y_1, η_1) remains a finite distance from the boundary of B_{Λ_k} or it does not. The latter cannot happen due to lemma 3.1. Hence it follows that $\tilde{\varphi}_i$ solve (3.4) on a half-space.
\[
P = \{(y, \eta) : (y + y_\infty, \eta + \eta_\infty) \cdot \hat{v} > 0\}
\]

for some unit vector \(\hat{v}\) and some translation \((y_\infty, \eta_\infty)\), with Dirichlet boundary conditions on \(\partial P\). From lemma 5.1, we know that (3.4) has a unique positive solution on \(P\). From this, it follows that \(\varphi_1 = \varphi_2\). This contradicts the fact that \(\varphi_1(0, 0) > \varphi_2(0, 0) + \epsilon\). This contradiction finishes the proof of the claim.

Lastly, we need one more ingredient in order to prove lemma 3.3. This is a uniform lower bound to \(v^\pm\) to ensure that when taking limits in the arguments, we do not lose positivity of \(v^\pm\).

Lemma 5.3. There exists \(\Lambda_0\) and \(\lambda_0\) such that if \(\Lambda \geq \Lambda_0\) and \(\lambda \geq \lambda_0\) then \(v^+\) and \(v^-\) are uniformly positive for any subset \(K\) of \(E\) and \(A\), respectively. Moreover, the lower bound may be chosen in such a way to depend only on the distance between the subset \(K\) and the boundary \(\partial E\) and \(\partial A\), respectively.

Proof of lemma 5.3. This follows easily by using the time dependent eigenvalues of lemmas 5.1 and 5.2 from [12] along with the strategy from lemma 3.1. As such we omit the proof.

We now finally tackle the convergence result of lemma 3.3.

Proof of lemma 3.3. Before we begin, we point out that, by parabolic regularity, it is enough to show that \(v^\pm\) converges to \(\varphi^\pm\) uniformly in \(L^\infty\). In addition, we prove the claim for \(v^+\) and \(\varphi^+\), but the proof is identical for \(v^-\) and \(\varphi^-\).

Fix \(\epsilon > 0\). Choose \(\Lambda\) large enough that we may apply lemma 5.2 to get that all non-trivial solutions to (3.4) are within \(\epsilon/4\) in the \(L^\infty\) norm.

Now we proceed by contradiction. Namely, we assume that there exists \(y_k, \eta_k, \lambda_k, T_k\) and \(t_k \in [0, T_k]\) such that \(\lambda_k\) and \(T_k\) tend to infinity and such that

\[
|v^+(t_k, y_k, \eta_k) - \varphi^+(y_k, \eta_k)| \geq \epsilon.
\]

Define \(v_k(t, \cdot) = v^+(t + t_k, \cdot)\).

By the compactness of \(E\), we have that \((y_k, \eta_k)\) tends, along a sub-sequence if necessary, to a point \((\bar{y}, \bar{\eta})\). In addition, lemma 5.3 ensures that \(v_k\) is uniformly positive on any compact subset of \(E\).

There are two cases: either \(t_k\) is bounded or not. If it is bounded, then the choice of initial conditions for \(v^+\) along with parabolic regularity, see e.g. [26], implies that \(v_k\) converges to \(\varphi^+\). Hence it must be that \(t_k\) tends to infinity.

In this case, it is easy to check that \(v_k^\pm\) falls within \(3\epsilon/4\) of a steady state of (3.4). Indeed, consider the limit \(v_{\infty}^\pm(t, y, \eta)\). First, notice that this must solve the parabolic analogue of (3.4).

Second, notice that, for any \(t_0 > 0\),

\[
w_0(y, \eta) \leq v_\infty(-t_0, y, \eta)
\]

for a positive lower bound \(w_0\) independent of \(t_0\), given by lemma 5.3. Using the linearized equation for \(v_\infty\) it is clear that we may find \(w_0 \leq w_0\) which is a super-solution to the related elliptic problem (3.4). Letting \(w\) be the solution to the parabolic analogue of (3.4) starting from \(w_0\) we have that

\[
w(t_0, y, \eta) \leq v_\infty(0, y, \eta)
\]
by the maximum principle. By our choice of initial conditions, it must be that \(w > 0 \) for all times and for all \(y \) and \(\eta \). By the boundedness of \(w \), it follows that \(w \) tends uniformly to zero and hence, to a solution of equation (3.4). We may similarly find an upper bound for \(\nu_\infty(0, y, \eta) \) in terms of a non-trivial solution of equation (3.4). Hence, choosing \(t_0 \) large enough and applying lemma 5.2 with the choice \(\epsilon_\Theta = \epsilon_8 \), we have that \(\nu_\infty \) is within \(\epsilon/4 \) of a steady state.

Applying lemma 5.2 again implies that \(v^+ \) and \(\varphi^+ \) are within \(\epsilon/2 \), using again our choice of \(\Lambda \) above. However, this contradicts our assumption that \(|v^+(0, \tau, \eta) - \varphi^+(\tau, \eta)| \geq \epsilon \), finishing the proof.

Acknowledgments

EB is very grateful to Cambridge University for its hospitality during the second semester of the academic year 2015–2016. EB and CH acknowledge the support of the ERC Grant MATKIT (ERC-2011-StG). Part of this work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). In addition, this project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 639638).

References

[1] Thomas C D and Simmons A D 2004 Changes in dispersal during species range expansions *Am. Nat.* 164 378–95

[2] Alfaro M 2017 Slowing Allee effect versus accelerating heavy tails in monostable reaction diffusion equations *Nonlinearity* 30 687

[3] Arnold A, Desvillettes L and Prévost C 2012 Existence of nontrivial steady states for populations structured with respect to space and a continuous trait *Commun. Pure Appl. Anal.* 11 83–96

[4] Bénichou O, Calvez V, Meunier N and Voituriez R 2012 Front acceleration by dynamic selection in fisher population waves *Phys. Rev. E* 86 041908

[5] Berestycki H, Hamel F and Monneau R 2000 One-dimensional symmetry of bounded entire solutions of some elliptic equations *Duke Math. J.* 103 375–96

[6] Berestycki H, Hamel F and Nadin G 2008 Asymptotic spreading in heterogeneous diffusive excitable media *J. Funct. Anal.* 255 2146–89

[7] Berestycki J, Brunet E, Harris J W, Harris S C and Roberts M I 2015 Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential *Stoch. Process. Appl.* 125 2096–145

[8] Berestycki N, Mouhot C and Raoul G 2015 Existence of self-accelerating fronts for a non-local reaction-diffusion equations (arXiv:1512.00903)

[9] Bouin E and Calvez V 2014 Travelling waves for the cane toads equation with bounded traits *Nonlinearity* 27 2233–53

[10] Bouin E, Calvez V, Meunier N, Mirrahimi S, Perthame B, Raoul G and Voituriez R 2012 Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration *C. R. Math. Acad. Sci. Paris* 350 761–6

[11] Bouin E, Calvez V and Nadir G 2015 Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts *Arch. Ration. Mech. Anal.* 217 571–617

[12] Bouin E, Henderson C and Ryzhik L 2016 Super-linear spreading in local and non-local cane toads equations *J. Math. Pures Appl.* at press (arXiv:1512.07793)

[13] Cabré X, Coulon A-C and Roquejoffre J-M 2012 Propagation in Fisher-KPP type equations with fractional diffusion in periodic media *C. R. Math. Acad. Sci. Paris* 350 885–90

[14] Cabré X and Roquejoffre J-M 2013 The influence of fractional diffusion in Fisher-KPP equations *Commun. Math. Phys.* 320 679–722
[15] Champagnat N and Méla Y 2007 Invasion and adaptive evolution for individual-based spatially
structured populations J. Math. Biol. 55 147–88
[16] Coulon A-C and Roquejoffre J-M 2012 Transition between linear and exponential propagation in
Fisher-KPP type reaction-diffusion equations Commun. PDE 37 2029–49
[17] Fisher R 1937 The wave of advance of advantageous genes Ann. Eugenics 7 355–69
[18] Garnier J 2011 Accelerating solutions in integro-differential equations SIAM J. Math. Anal.
43 1955–74
[19] Gui C and Huan T 2015 Traveling wave solutions to some reaction diffusion equations with
fractional Laplacians Calc. Var. Partial Differ. Equ. 54 251–73
[20] Hamel F and Roques L 2010 Fast propagation for KPP equations with slowly decaying initial
conditions J. Differ. Equ. 249 1726–45
[21] Han Q and Lin F 2011 Elliptic Partial Differential Equations (Courant Lecture Notes in Mathematics
vol 1) 2nd edn (Providence, RI: American Mathematical Society)
[22] Harris J W and Harris S C 2007 Survival probabilities for branching Brownian motion with
absorption Electron. Commun. Probab. 12 81–92 (electronic)
[23] Henderson C 2016 Propagation of solutions to the Fisher-KPP equation with slowly decaying
initial data Nonlinearity 29 3215–40
[24] Kolmogorov A N, Petrovskii I G and Piskunov N S 1937 Étude de l’équation de la chaleur de
matière et son application à un problème biologique Bull. Moskov. Gos. Univ. Mat. Mekh. 1 1–25
[25] Krylov N V 1996 Lectures on Elliptic and Parabolic Equations in Hölder Spaces (Graduate Studies
in Mathematics vol 12) (Providence, RI: American Mathematical Society)
[26] Méla Y and Mirrahimi S 2015 Singular limits for reaction-diffusion equations with fractional
Laplacian and local or nonlocal nonlinearity Commun. PDE 40 957–93
[27] Ronce O 2007 How does it feel to be like a rolling stone? Ten questions about dispersal evolution
Annu. Rev. Ecol. Evol. Syst. 38 231–53
[28] Roquejoffre J-M and Ryzhik L 2014 Lecture notes in a Toulouse school on KPP and probability
[29] Turanova O 2015 On a model of a population with variable motility Math. Models Methods Appl.
Sci. 25 1961–2014