1. Introduction

Denote by Mod(S) the mapping class group of a compact, oriented surface $S = S_{g,1}$ of genus $g \geq 2$ with one boundary component; i.e. Mod(S) is the group of homeomorphisms of S fixing ∂S pointwise up to isotopies fixing ∂S pointwise. A basic question to contemplate is: what topological or dynamical data of a mapping class can be extracted from various kinds of algebraic data? Since pseudo-Anosovs are the more complex mapping classes topologically and dynamically, we would like to know if a given mapping class is pseudo-Anosov; i.e. it has a representative homeomorphism which leaves invariant a pair of transverse measured foliations.

One kind of algebraic data is the action of a mapping class on $\Gamma := \pi_1(S, \ast)$ and its various quotients. Specifically, consider the sequence of k-step nilpotent quotients $N_k := \Gamma/\Gamma_{k+1}$ where $\{\Gamma_k\}$ is the lower central series of Γ defined inductively by

$$\Gamma_1 = \Gamma \quad \Gamma_k = [\Gamma, \Gamma_{k-1}] \quad \text{for} \quad k > 1$$

Since elements of Mod(S) fix ∂S pointwise and we choose the basepoint $\ast \in \partial S$, we obtain a representation $\text{Mod}(S) \to \text{Aut}(\Gamma)$, and furthermore since each Γ_k is characteristic, we obtain a representation for each k:

$$\rho_k : \text{Mod}(S) \to \text{Aut}(\Gamma/\Gamma_{k+1})$$

One natural question to ask is: given only the datum of $\rho_k(f)$ for $f \in \text{Mod}(S)$, can we determine if the mapping class is pseudo-Anosov or not? If the mapping class is determined to be pseudo-Anosov, can we detect the dilatation? This paper is one step in answering the first question.

For $k \geq 1$, we define the kth Torelli group to be $\mathcal{I}_k(S) := \ker(\rho_k)$ (and so with our indexing, which is different from some other authors, the classical Torelli group is $\mathcal{I}_1(S)$). To each $f \in \mathcal{I}_k = \mathcal{I}_k(S)$, we associate an invariant $\Psi_k(f) \in \text{End}(H_1(S, \mathbb{Z}))$ which is constructed from $\rho_{k+1}(f)$. We will prove the following:

Theorem 1.1 (Criterion for pseudo-Anosovs). Let $f \in \mathcal{I}_k$. If the characteristic polynomial of $\Psi_k(f)$ is irreducible in $\mathbb{Z}[x]$, then f is pseudo-Anosov.

This follows immediately from the following theorem which we prove in Section 5. For the remainder of this paper, we let $H := H_1(S, \mathbb{Z})$.
Theorem 1.2. Let \(f \in \mathcal{I}_k \). If the characteristic polynomial \(\chi(\Psi_k(f)) \) of \(\Psi_k(f) \in \text{End}(H) \) has no (nontrivial) even degree or degree 1 factors over \(\mathbb{Z} \), then \(f \) is pseudo-Anosov.

Since \(\Psi_k \) uses only the data of \(\rho_{k+1}(f) \) and \(\ker(\rho_{k+1}) = \mathcal{I}_{k+1} \), we obtain the following corollary:

Corollary 1.3. If \(f \in \mathcal{I}_k \) satisfies the hypothesis of Theorem 1.2, then the whole coset \(f\mathcal{I}_{k+1} \) is pseudo-Anosov.

Remark: It is well-known that \(\mathcal{I}_1 \) has pseudo-Anosov elements thanks to criteria of Thurston, Penner, and others [1] [P] [BH]. However, their methods of finding pseudo-Anosovs are all topological as opposed to algebraic in nature. Furthermore, their criteria require the specification of a particular mapping class and thus are not well-suited to dealing with the information of \(\rho_{k+1}(f) \in \text{Aut}(\Gamma_1/\Gamma_{k+1}) \) which only specifies a coset of \(\mathcal{I}_k \). Both Thurston’s criterion and Penner’s criterion require that a mapping class be described in terms of twists about two multi-curves. In [BH], Bestvina–Handel describe an algorithm using train tracks that can determine whether any single mapping class is pseudo-Anosov or not. In fact, this algorithm has been implemented in a computer program by Peter Brinkmann ([Br]).

Let us now outline the contents of the paper. In Section 2 we recall some basic properties of the series \(\{\Gamma_k\} \). We then define for \(f \in \mathcal{I}_k \) the invariant \(\Psi_k(f) \in \text{End}(H) \). \((\Psi_k(f)) \) is in general non-trivial which might be rather surprising given that \(\rho_1(f) \in \text{Aut}(H) \) is necessarily trivial.) To define \(\Psi_k \), we need two ingredients: the Johnson homomorphism \(\tau \) and contractions

\[
\Phi_{2k} : \Gamma_{2k+1}/\Gamma_{2k+2} \to H
\]
Defining Φ_{2k} requires a bit of work and is described in Section 3. In Section 3, we will recall the definition of the Johnson homomorphism τ which we describe here as follows:

$$\tau : \mathcal{I}_k(S) \to \text{Hom} \left(\bigoplus_{m=1}^{\infty} \Gamma_m / \Gamma_{m+1}, \bigoplus_{m=k+1}^{\infty} \Gamma_m / \Gamma_{m+1} \right)$$

We will denote the image of f under τ as τ_f. We define Ψ_k as follows:

$$\Psi_k(f) := \begin{cases} \Phi_k \circ (\tau_f|_H) & k \text{ even} \\ \Phi_{2k} \circ (\tau_2^f|_H) & k \text{ odd} \end{cases} \in \text{End}(H)$$

Note that the map Ψ_k is a homomorphism for k even but not necessarily for k odd.

In Section 5, we prove Theorem 1.2. The general idea of the proof of Theorem 1.2 is to use the Nielsen-Thurston classification which states that a mapping class is pseudo-Anosov if and only if it is neither reducible nor of finite order. Recall that f is reducible if f fixes the isotopy class of an essential 1-dimensional submanifold where essential means that each component is neither null-homotopic nor homotopic to a boundary component. Since \mathcal{I}_1 is torsion-free, the classification reduces to: f is pseudo-Anosov if and only if it is irreducible. We then show that reducibility of f implies that $\chi(\Psi_k(f))$ has a linear or even degree factor by using the fact that a certain subgroup of $\pi_1(S)$ is invariant under $f_* \in \text{Aut}(\pi_1(S))$.

For any particular $f \in \mathcal{I}_k$, the invariant $\Psi_k(f)$ is explicitly computable, provided one can compute τ_f. In Section 6, we show some mapping classes satisfy the hypothesis of Theorem 1.2 by computing $\Psi_k(f)$ directly. Nevertheless, at present the author has not found whole families of pseudo-Anosovs ranging over either g or k which satisfy the hypothesis of Theorem 1.2. Additionally, in section 6 we compare Theorem 1.2 to the Thurston/Penner criteria.

Remark: We choose to work with a surface with a boundary component as opposed to a closed surface to simplify things technically. The fundamental group of a surface with boundary is a free group. As we shall see in Section 2, this will further imply that the Lie algebra associated to the $\{\Gamma_k\}$ is a free Lie algebra. While the author suspects that one may obtain a criterion for closed surfaces from this criterion, he has not done so at present.

Acknowledgements. The author would like to thank Dan Margalit, Nathan Broad- dus, Ian Biringer, Juan Souto, Matthew Day and Asaf Hadari for their helpful comments. He would also like to thank Andy Putman for help during the research stage. He would like to especially thank Benson Farb for extensive comments, posing the question, continuous help and inspiration.
2. Basic facts about the lower central series

For the reader’s convenience, we recall basic facts about central filtrations of a group. Suppose

\[G = G_1 \supset G_2 \supset G_3 \ldots \]

is a filtration of \(G \) by normal subgroups. We call \(G \) a central filtration if \([G_{k+1}, G_k] \subset G_k \). We recount the following folklore result.

Theorem 2.1. Let \(\{G_i\} \) be a central filtration of \(G \) by normal subgroups. Then, the following hold:

1. The function \(G_k \times G_l \to G_{k+l} \) given by \((x, y) \mapsto xyx^{-1}y^{-1} \) induces a well-defined map \(G_k/G_{k+1} \times G_l/G_{l+1} \to G_{k+l}/G_{k+l+1} \).
2. Using the pairing from (1) as a bracket which we denote by \([\cdot, \cdot] \), we obtain a graded \(\mathbb{Z} \)-Lie algebra:

\[L := \bigoplus_k G_k/G_{k+1} \]

For an explanation and proof see Sections 3.1 and 4.5 of [BL]. Also, we recall for the reader that the lower central series is a central filtration (see 4.4 of [BL]).

Recall that the fundamental group of a surface with boundary is a free group. The Lie algebra associated to a free group’s lower central series is special as described in the following theorem which is a rephrasing of Theorem 5.12 of [MKS].

Theorem 2.2. Let \(G \) be a free group with generators \(a_1, \ldots, a_n \) and lower central series \(G_1 \supset G_2 \supset \ldots \). Then the (graded) \(\mathbb{Z} \)-Lie algebra

\[L := \bigoplus_k G_k/G_{k+1}, \ [\cdot, \cdot] \]

is a free \(\mathbb{Z} \)-Lie algebra. \(L \) has as its generating set \(\{a_1, \ldots, a_n\} \) viewed as a subset of \(G_1/G_2 \).

The definition of free Lie algebra is exactly what one expects: given a \(\mathbb{Z} \)-Lie algebra \(L' \) and elements \(x_1, \ldots, x_n \in L' \), there exists a unique Lie algebra homomorphism \(h : L \to L' \) such that \(h(a_i) = x_i \). The free Lie algebra in general is fairly complicated. Even computing the rank of \(G_k/G_{k+1} \) for arbitrary \(k \) is nontrivial. Thankfully, free Lie algebras embed in simpler Lie algebras.

A free associative \(\mathbb{Z} \)-algebra \(A \) with generators \(b_1, \ldots, b_n \) is a noncommutative ring with the universal property that given a \(\mathbb{Z} \)-algebra \(A' \) and elements \(x_1, \ldots, x_n \in A' \), there is a unique homomorphism \(h : A \to A' \) such that \(h(b_i) = x_i \). More concretely, \(A \) is (canonically isomorphic to) the noncommutative polynomial ring in \(n \) variables over \(\mathbb{Z} \). However, viewing \(A \) as a polynomial ring is not particularly convenient for the purposes of this paper. If we let \(M := \mathbb{Z}^{\mathbb{N}} \), then \(A \) is isomorphic to the tensor algebra \(\bigoplus_{k=0}^\infty M \otimes k \) where \(M \otimes 0 := \mathbb{Z} \). The algebra \(A \) has a canonical Lie bracket:
Thus, we have a canonical Lie homomorphism $\mathcal{L} \to A$ defined by $a_i \mapsto b_i$. From Corollary 0.3 and Theorem 0.5 of [R], we obtain the following.

Theorem 2.3. If L is a free \mathbb{Z}-Lie algebra with generators a_1, \ldots, a_n and A is a free associative algebra over \mathbb{Z} with generators b_1, \ldots, b_n, then the canonical Lie homomorphism induced by $a_i \mapsto b_i$ is injective.

Moreover, it is not hard to check that the map $L \to A$ respects the grading.

Now, let us apply Theorems 2.2 and 2.3 to the group $\Gamma := \pi_1(S)$ with (free) generators a_1, \ldots, a_{2g}. Let \mathcal{L} be the graded Lie algebra associated to $\{\Gamma_k\}$. Let \mathcal{A} be the tensor algebra $\bigoplus_{k=0}^\infty H \otimes^k$ where $H \otimes^0 := \mathbb{Z}$. Since $H \cong \mathbb{Z}^{2g}$, the algebra \mathcal{A} is a free associative algebra. To simplify notation, let us define $L_k := \Gamma_k/\Gamma_{k+1}$. Recall that $\mathcal{A} \cong \bigoplus_{k=0}^\infty M \otimes^k$ where $M = \mathbb{Z}^{2g}$. We have defined the a_i as elements of $\pi_1(S)$, but we can also consider the equivalence class of a_i in $\Gamma_1/\Gamma_2 \subset \mathcal{L}$ or in $H = H_1 \subset \mathcal{A}$. Thus, we obtain a natural, injective map $\mathcal{L} \to \mathcal{A}$ defined by sending $"a_i"$ to $"a_i"$.

The mapping class group has a natural action on \mathcal{L} by considering $\mathcal{L} = \bigoplus_{k=1}^{\infty} \Gamma_k/\Gamma_{k+1}$ as a direct sum of representations $\text{Mod}(S) \to \text{Aut}(\Gamma_k/\Gamma_{k+1})$. We obtain an action on $\mathcal{A} = \bigoplus_{k=0}^\infty H \otimes^k$ from the action on H. It is not hard to check that the map $\mathcal{L} \to \mathcal{A}$ respects this action. Since the $\text{Mod}(S)$-action on \mathcal{A} is induced by the action on H, it factors through to an $\text{Sp}(2g, \mathbb{Z})$-action and so the $\text{Mod}(S)$-action on \mathcal{L} factors through $\text{Sp}(2g, \mathbb{Z})$ also (This can also be proven directly.).

3. The Johnson Homomorphisms

All of the results in this section are the work of Johnson, Morita, Hain and others. Recall that

$$\mathcal{I}_k := \ker(\text{Mod}(S) \to \text{Aut}(\Gamma_1/\Gamma_{k+1}))$$

and $H = H_1(S)$. A preliminary version of the Johnson homomorphism is a map:

$$\tau : \mathcal{I}_k \to \text{Hom}(H, \Gamma_{k+1}/\Gamma_{k+2})$$

for each k. Note that the image of f under τ will be denoted τ_f as is standard. We define the preliminary version as follows. Let $f \in \mathcal{I}_k$. Since f_* acts trivially on Γ_1/Γ_{k+1}, we obtain a well-defined map of sets

$$t_f : \Gamma_1/\Gamma_{k+2} \to \Gamma_{k+1}/\Gamma_{k+2}; x \mapsto f_*(x)x^{-1}$$

The following result is one part of Proposition 2.3 in [M3].
Proposition 3.1 (Johnson, Morita). The set map \(t_f : \Gamma_1/\Gamma_{k+2} \to \Gamma_{k+1}/\Gamma_{k+2} \) induces a well-defined homomorphism \(H \to \Gamma_{k+1}/\Gamma_{k+2} \) which is \(\tau_f \). Moreover, \(\tau \) is a homomorphism.

Proof. By the very definition of the lower central series, \(\Gamma_{k+1}/\Gamma_{k+2} \) is in the center of \(\Gamma_1/\Gamma_{k+2} \). Thus,

\[
f_*(xy)(xy)^{-1} = f_*(xy)y^{-1}x^{-1} = f_*(x)(f_*(y)y^{-1})x^{-1} = f_*(x)x^{-1}(f_*(y)y^{-1})
\]

and so \(t_f \) is in fact a homomorphism. As \(\Gamma_{k+1}/\Gamma_{k+2} \) is abelian, this homomorphism factors through the abelianization of \(\Gamma_1/\Gamma_{k+1} \) which is \(\Gamma_1/[\Gamma_1,\Gamma_1] = \Gamma_1/\Gamma_2 = H \). Hence, we obtain a homomorphism \(H \to \Gamma_{k+1}/\Gamma_{k+2} \). Now, suppose we are given \(f, g \in I_k \).

Then, we have

\[
f_*(g_*(x))x^{-1} = f_*(g_*(x)x^{-1})f_*(x)x^{-1}
\]

and

\[
= (f_*(g_*(x)))t_g(x)f_*(x)x^{-1} = t_f(g_*(x))t_g(x)t_f(x)
\]

Since \(t_g(x) \in \Gamma_{k+1}/\Gamma_{k+2} \subseteq \ker t_f \), we find that \(f_*(g_*(x))x^{-1} = t_g(x)t_f(x) \). \(\square \)

Remark: In the above proof, we see that \(\ker(t_f) \supseteq \Gamma_2/\Gamma_{k+2} \), and so for \(x \in \Gamma_2/\Gamma_{k+2} \) we have

\[
1 = t_f(x) = f_*(x)x^{-1} \Rightarrow f(x) = x
\]

Thus \(f \) acts trivially on \(\Gamma_2/\Gamma_{k+2} \) and in particular on \(\Gamma_{k+1}/\Gamma_{k+2} \). Looking at the short exact sequence

\[
1 \to \Gamma_{k+1}/\Gamma_{k+2} \to \Gamma_1/\Gamma_{k+2} \to \Gamma_1/\Gamma_{k+1} \to 1
\]

one might think that \(f \) must act trivially on \(\Gamma_1/\Gamma_{k+2} \) itself, but this is not the case. Elements in \((\Gamma_1/\Gamma_{k+2}) \setminus (\Gamma_2/\Gamma_{k+2}) \) may be changed by elements in \(\Gamma_{k+1}/\Gamma_{k+2} \) and this is precisely what \(\tau_f \) measures.

In view of the remark, we see that \(\tau_f \) retains the information of \(f_* \in \operatorname{Aut}(\Gamma_1/\Gamma_{k+2}) \). Furthermore, \(\tau_f \) determines \(f_* \) as an element of \(\operatorname{Aut}(\Gamma_1/\Gamma_{k+2}) \) (assuming \(f \in I_k \)). We simply note that \(f_*(x) = \tau_f(\overline{x})x \) where \(\overline{x} \) is the projection of \(x \) to \(H \). Moreover, the following sequence is exact: (see Proposition 2.3 of [M3])

\[
1 \to \operatorname{Hom}(H, \Gamma_{k+1}/\Gamma_{k+2}) \to \operatorname{Aut}(\Gamma_1/\Gamma_{k+2}) \to \operatorname{Aut}(\Gamma_1/\Gamma_{k+1})
\]

Given \(f \in I_k \), one can similarly define a function

\[
\Gamma_m/\Gamma_{m+k+1} \to \Gamma_m/\Gamma_{m+k+1}
\]

\[
x \mapsto f_*(x)x^{-1}
\]

As before, this induces a well-defined homomorphism \(\Gamma_m/\Gamma_{m+1} \to \Gamma_{m+k}/\Gamma_{m+k+1} \). (See Lemma 3.2 of [M2].)

Consider the free associative algebra \(A \) as defined in the previous section. Suppose one has chosen \(2g \) elements \(\{x_1, ..., x_{2g}\} \subseteq A \). From general theory about the free associative algebra, we know there is then a unique derivation \(D : A \to A \) such that
$D(a_i) = x_i$ where the a_i are generators of A (see [R]). The following computation shows that $D(L) \subseteq L$ and that D is a derivation on L:

$$D[y, z] = D(yz - zy) = (Dy)z + yDz - (Dz)y - zDy = [Dy, z] + [y, Dz]$$

Thus, given $f \in I_k$, there is a unique derivation D_f of A which extends τ_f. It turns out that extending τ_f to all of L yields the same result regardless of whether one restricts D_f or uses \mathfrak{I}. The following proposition follows more or less from Lemma 2.3 and Proposition 2.5 of [M2].

Proposition 3.2 (Morita). For all $m \geq 1$, the map defined by \mathfrak{I} induces a homomorphism $\Gamma_m/\Gamma_{m+1} \to \Gamma_{m+k}/\Gamma_{m+k+1}$ and is equal to the map $D_f|_{\mathcal{L}}$.

By abuse of notation, we will denote the extention to L by τ_f. The map τ has other nice algebraic properties. They are collected in the following theorem.

Theorem 3.3 (Morita). Let τ be as defined above, a collection of homomorphisms $I_k \to \text{Der}(L)$, one for each k. Then, the following hold:

(a) The map $\tau : I_k \to \text{Der}(L)$ is a homomorphism with kernel $I_{k+1}(S)$. Hence, it induces a well-defined homomorphism $I_k/I_{k+1}(S) \to \text{Der}(L)$

(b) The abelian group

$$\bigoplus_{k=1}^{\infty} I_k/I_{k+1}(S)$$

has a Lie algebra structure induced by

$$I_m(S) \times I_n(S) \to I_{m+n}(S)

(f, g) \mapsto fgf^{-1}g^{-1} =: [f, g]$$

(c) τ induces a Lie algebra homomorphism

$$\bigoplus_{k=1}^{\infty} I_k(S)/I_{k+1}(S) \to \text{Der}(L)$$

Furthermore, τ respects the conjugation action of $\text{Mod}(S)$ on I_k and $\text{Der}(L)$.

Proof Sketch: This proof sketch will consist mainly of citations. For (a), recall that by Proposition 3.1 $\tau_{f,g}|_H = \tau_f|_H + \tau_g|_H$. Since the derivations $\tau_{f,g}$ and $\tau_f + \tau_g$ agree on generators, they must agree on all of L. One deduces the kernel is $I_{k+1}(S)$ from the exact sequence in [R]. Part (b) is Proposition 4.1 of [M1]. Also Proposition 4.7 of [M1] shows (in slightly different notation) that $\tau_{|f,g}|_H = (\tau_{f|g} - \tau_{g|f})|_H$. Since the two derivations $\tau_{|f,g}$ and $\tau_{f|g} - \tau_{g|f}$ agree on H and since H generates L, we must have equality. To show that the $\text{Mod}(S)$ action is respected, we use the definition of τ_f given by [R]. Suppose $g \in \text{Mod}(S)$. In Γ_m/Γ_{m+k+1}

$$\tau_{gfg^{-1}}(x) = g(f(g^{-1}(x)))x^{-1} = g(f(g(x))g^{-1}(x^{-1})) = g(f^{-1}(g^{-1}(x))^{-1}) = g(\tau_f(g^{-1}(x)))$$

\square
Remark: *A priori,* it may seem that, for \(f \in \mathcal{I}_k \), we are using the entire action of \(f_* \) on \(\pi_1(S) \) since we use the action on \(\Gamma_m/\Gamma_{m+k+1} \) for all \(m \). This would conflict with the characterization given in the introduction that we only use the data of \(f_* \in \operatorname{Aut}(\Gamma_1/\Gamma_{k+2}) \). However, since \(\tau_f \) is a derivation on \(\mathcal{L} \) which is generated by \(H \), it is completely determined by \(\tau_f|_H \) which is itself determined by \(f_* \in \operatorname{Aut}(\Gamma_1/\Gamma_{k+2}) \).

4. The Contractions \(\Phi_k \)

Our goal in this section is to find a contraction \(\mathcal{L}_{k+1} \to \mathcal{L}_1 \) respecting the Sp-action and thus the \(\operatorname{Mod}(S) \)-action by the results of Section 2. We remark that we want to respect the action so that \(\chi(\Psi_k(f)) \) will depend only on the conjugacy class of \(f \) and because the argument in Section 3 implicitly uses a change of coordinates.

The following theorem simplifies this problem. Below, \(\operatorname{Hom}_{\text{Sp}} \) will denote the set of homomorphisms which respect the Sp action, and, for \(X \) an Sp-representation, \(X_{\text{Sp}} \) will indicate the space of vectors fixed by the Sp action. While I suspect the following may be known, I was not able to find it in the literature.

Theorem 4.1. If \(f \in \operatorname{Hom}_{\text{Sp}}(\mathcal{L}_{k+1}, \mathcal{L}_1) \), then \(\exists n \in \mathbb{Z} \) such that \(nf \) is the restriction of an element \(g \in \operatorname{Hom}_{\text{Sp}}(\mathcal{A}_{k+1}, \mathcal{A}_1) \), where \(\mathcal{A}_m \) is the summand \(H^{\otimes m} \subset \mathcal{A} \).

Proof. The theorem will follow if we can find a bilinear pairing on each \(\mathcal{A}_{k+1} \) which is nondegenerate on both \(\mathcal{A}_{k+1} \) and \(\mathcal{L}_{k+1} \). Let \(\{a_1, b_1, ..., a_g, b_g\} \) be a symplectic basis of \(H_1(S) \). The \(a_i \) and \(b_i \) also serve as a free generating set of \(\mathcal{L} \) as a Lie algebra and of \(\mathcal{A} \) as an associative algebra. We can easily define a pairing \(\langle \cdot, \cdot \rangle \) which is nondegenerate on \(\mathcal{A}_{k+1} \). If \(x = x_1 \otimes x_2 ... \otimes x_{k+1} \) and \(y = y_1 \otimes y_2 ... \otimes y_{k+1} \), then set

\[
\langle x, y \rangle := \langle x_1, y_1 \rangle \langle x_2, y_2 \rangle ... \langle x_{k+1}, y_{k+1} \rangle
\]

where \(\langle x_i, y_i \rangle \) is the algebraic intersection pairing on \(H \).

Now, let \(\theta \in \operatorname{Aut}(\mathcal{A}) \) be the algebra homomorphism defined by \(\theta(a_i) = b_i \) and \(\theta(b_i) = -a_i \). In particular, if \(w = x_1 \otimes x_2 ... \otimes x_n \) then \(\theta(w) = \theta(x_1) \otimes \theta(x_2) ... \otimes \theta(x_n) \). Let \(Y_k \) be the canonical basis of \(H^{\otimes k} \) induced by the basis of \(H \) (i.e., tensoring the \(a \)'s and \(b \)'s in every possible order). For two elements \(y, y' \in Y_k \), one easily sees that \(\langle y, y' \rangle \neq 0 \) if and only if \(y' = \pm \theta(y) \). Then, for \(P = \sum_y c_y y \), we have \(\langle P, \theta(P) \rangle > 0 \), since all “cross terms” vanish and we are left with \(\sum_y c_y^2 \langle y, \theta(P) \rangle \).

We now wish to show that \(\langle \cdot, \cdot \rangle \) is nondegenerate on the embedded copy of \(\mathcal{L}_{k+1} \), but this is almost immediate. We only need that \(P \in \mathcal{L}_{k+1} \) implies \(\theta(P) \mathcal{L}_{k+1} \). Indeed, since \(\mathcal{L} \) is the Lie subalgebra of \(\mathcal{A} \) generated by \(\{a_1, b_1, ..., a_g, b_g\} \) and since \(\theta \) preserves the Lie bracket and (up to sign) permutes the generators \(\{a_1, b_1, ..., a_g, b_g\} \), we see that \(\theta(\mathcal{L}) = \mathcal{L} \).

Suppose \(f \in \operatorname{Hom}_{\text{Sp}}(\mathcal{L}_{k+1}, \mathcal{L}_1) \cong (\mathcal{L}_{k+1}^* \otimes \mathcal{L}_1)_{\text{Sp}} \). Since \(\mathcal{L}_{k+1} \) and \(\mathcal{L}_{k+1}^* \) are finitely generated free \(\mathbb{Z} \)-modules, the pairing \(\langle \cdot, \cdot \rangle \) gives an embedding \(\mathcal{L}_{k+1} \hookrightarrow \mathcal{L}_{k+1}^* \) whose image has finite index. Thus, there is some \(n \in \mathbb{Z} \) such that \(nf \) is in the image of...
(L_{k+1} \otimes L_1)_{SP}$, but we have
$$(L_{k+1} \otimes L_1)_{SP} \hookrightarrow (A_{k+1} \otimes A_1)_{SP} \hookrightarrow (A_{k+1}^* \otimes A_1)_{SP} \cong \text{Hom}_{SP}(A_{k+1}, A_1)$$
Thus, nf is the restriction of some $g \in \text{Hom}_{SP}(A_{k+1}, A_1)$. □

Theorem 4.1 and its proof reduce our problem to finding tensors in $(A_{k+1} \otimes A_1)_{SP} \cong \bigotimes_{k+2,1} A_1$. Thus, if $k = 2n$ is even, we obtain such a tensor by taking the symplectic pairing $\omega_0 = \sum_i (a_i \otimes b_i - b_i \otimes a_i)$ and taking high tensor powers, i.e. $\omega_0^{\otimes(n+1)}$. The element $\omega_0^{\otimes(n+1)}$ represents the contraction $x_1 \otimes x_2 ... \otimes x_{k+1} \mapsto \prod_{j=1}^n \langle x_{2j-1}, x_{2j} \rangle x_{k+1}$

This contraction is what we denote by Φ_k.

There is an obvious action of the permutation group S_{2m} on $H^{\otimes 2m}$. Since $\text{Sp}(2g, \mathbb{Z})$ acts diagonally on $H^{\otimes 2m}$, it is easy to see that for any $\sigma \in S_{2m}$, we have $\eta \in (H^{\otimes 2m})_{SP}$ if and only if $\sigma(\eta) \in (H^{\otimes 2m})_{SP}$. Thus, all the vectors $\sigma(\omega_0^{\otimes 2m})$ are Sp-invariant as well. For every $\sigma \in S_{2m}$, there is a corresponding σ' so that $\sigma(\omega_0^{\otimes 2m})$ corresponds to the contraction $x_1 \otimes x_2 ... \otimes x_{m-1} \mapsto \prod_{j=1}^n \langle x_{\sigma'(2j-1)}, x_{\sigma'(2j)} \rangle x_{\sigma'(m-1)}$

Furthermore, it is a classical result of Weyl (see, e.g., Section 4.1 of [M4]) that $\{\sigma(\omega_0^{\otimes 2m})\}_{\sigma \in S_{2m}}$ is a generating set for $((H \otimes \mathbb{Q})^{\otimes 2m})_{SP(2g, \mathbb{Q})}$.

5. Proof of Theorem 1.2

Recall from above that for each $k \geq 1$ we defined a map
$$\Psi_k : I_k \rightarrow \text{End}(H)$$
$$f \mapsto \left\{ \begin{array}{ll}
\Phi_k \circ (\tau_f|_H) & k \text{ even} \\
\Phi_{2k} \circ (\tau_f^2|_H) & k \text{ odd}
\end{array} \right.$$

We remark that the following proof of the main theorem remains valid if we replace Φ_k with any of the contractions induced by a $\sigma(\omega_0^{k+2})$ described in Section 4. In the following, all factorization and irreducibility is with respect to $\mathbb{Z}[x]$.

Proof of Theorem 1.2 Let $f \in I_k$. Recall that the Nielsen–Thurston classification and torsion-freeness of $I_1 \supseteq I_k$ imply that f is pseudo-Anosov if and only if f is irreducible. It is well-known that I_1 is pure, meaning that if an isotopy class of 1-submanifold is fixed, then each component of the 1-submanifold is fixed (see Theorem 1.2 of [II]). Thus, the proof of Theorem 1.2 reduces to proving the following two claims.

Claim 1: Suppose f fixes an essential separating curve. Then, the characteristic polynomial of $\Psi_k(f)$ factors into two (nontrivial) even degree polynomials in $\mathbb{Z}[x]$.
Claim 2: Suppose f fixes a nonseparating curve. Then, $\Psi_k(f)$ has an eigenvector over \mathbb{Z}.

Before we begin the proofs of Claims 1 and 2, we state a theorem that will be used for both. (This is Theorem 2.5 in [R])

Theorem 5.1 (Shirshov, Witt). If \mathcal{L}' is a subalgebra of a free Lie algebra \mathcal{L} over a field, then \mathcal{L}' is a free Lie algebra.

Proof of Claim 1: Let γ be the (oriented) separating curve such that $f(\gamma) = \gamma$. Cutting along γ separates S into a $\Sigma_{g_1,1} =: S_1$ and a $\Sigma_{g_2,2} =: S_2$ where $g_1 + g_2 = g$. Let C (resp. D) be the image of $H_1(S_1, \mathbb{Z})$ (resp. $H_1(S_2, \mathbb{Z})$) in H. Since, $f(S_1) = S_1$ (up to isotopy), one might hope that either $\Psi_k(f)(C) \subseteq C$ or $\Psi_k(f)(D) \subseteq D$. We will show that this actually holds for D.

We begin by defining a submodule of \mathcal{L}:

$$M := \bigoplus_m (\Lambda \cap \Gamma_m / \Lambda \cap \Gamma_{m+1})$$

where $\Lambda := \pi_1(S_2)$. Note that $M \cap \mathcal{L}_1 = D$. Step 1 is to show that $\tau_f(M) \subseteq M$. Step 2 is to show that M is a free Lie subalgebra and give generators of M as a Lie algebra. Step 3 is to show, using the generators, that for any $x \in M$ we have $\Phi_n(x) \in D$. Then, it is clear from the definition of Ψ_k that for $d \in D$, we have $\Psi_k(f)(d) \in D$. Since D is an even rank subspace, that will complete the proof.

First, we need to set up some notation. Let $p_1 \in \partial S_1$ (resp. $p_2 \in \partial S_2$) be the basepoint of S_1 (resp S_2 and S). Let α be a path from p_2 to p_1, and let $\tilde{\gamma} = \alpha \gamma \alpha^{-1} \in \pi_1(S_2)$. Let ι (resp. $\hat{\iota}$) denote geometric (resp. algebraic) intersection number of unbased homotopy classes of closed curves. Choose $\{c'_i\}_{i=1}^{2g_1} \in \pi_1(S_1, p_1)$ and $\{d'_i\}_{i=1}^{2(g_2)} \in \pi_1(S_1, p_2)$ with the following properties (see Figure 1):

(a) The set $\{c'_i\}_{i=1}^{2g_1}$ (resp. $\{\tilde{\gamma}\} \cup \{d'_i\}_{i=1}^{2(g_2)}$) generates $\pi_1(S_1, p_1)$ (resp. $\pi_1(S_2, p_2)$).

(b) For all m, n, we have $\iota(c'_m, d_n) = \iota(c'_m, d_n) = 0$. Furthermore,

$$\iota(c'_m, c'_n) = \begin{cases} 1 & \text{if } m = n + g_1 \text{ or } m = n - g_1 \\ 0 & \text{otherwise} \end{cases}$$

$$\iota(d_m, d_n) = \begin{cases} 1 & \text{if } m = n + g_2 \text{ or } m = n - g_2 \\ 0 & \text{otherwise} \end{cases}$$

and for $1 \leq i \leq g_1$ (resp. $1 \leq i \leq g_2$), we have $\hat{\iota}(c'_i, c'_{i+g_1}) = 1$ (resp. $\hat{\iota}(d_i, d_{i+g_2}) = 1$).

(c) As an element of $\pi_1(S_1, p_1)$, we have $\gamma = \Pi_{i=1}^{2g_1} [c'_i, c'_{i+g_1}]$.

In particular, the union \(\{c'_i\}_{i=1}^{2g_1} \cup \{d_i\}_{i=1}^{2g_2} \) gives a symplectic basis in \(H \). Now, let \(c_i := \alpha c'_i \alpha^{-1} \). We have \(\tilde{\gamma} = \prod_{i=1}^{g_1} [c_i, c_{i+g_1}] \) and \(\pi_1(S, p_2) = \langle \{c_i\}, \{d_i\} \rangle \). Furthermore, denote the inclusion map of \(S_2 \) by \(j : S_2 \hookrightarrow S \). In the following, we will frequently view \(d_i \in \mathcal{L}_1 \) and \(\tilde{\gamma} \in \mathcal{L}_2 \).

Figure 1.

Step 1: First note that since \(S \) and \(S_2 \) share a base point, \(\pi_1(S_2) \) gives a well-defined subgroup of \(\pi_1(S) = \Gamma \) which is invariant under \(f^* \). We remark that a similar statement is not true for \(S_1 \). Indeed, to embed \(\pi_1(S_1) \) in \(\pi_1(S) \) requires that we choose a path connecting base points (e.g. \(\alpha \)); even after choosing a representative homeomorphism of \(f \) which fixes \(\gamma \) pointwise, this path is not necessarily preserved (up to homotopy rel endpoints).

Recall that one way of defining \(\tau_f \) is to induce it from the map

\[
\begin{align*}
\Gamma_m & \to \Gamma_{m+k} \\
x & \mapsto f^*(x)x^{-1}
\end{align*}
\]

Since \(f^*(\Lambda) = \Lambda \), it is easy to see that

\[
M = \bigoplus_m (\Lambda \cap \Gamma_m / \Lambda \cap \Gamma_{m+1})
\]

is a \(\tau_f \)-invariant submodule of \(\mathcal{L} \).

Step 2: We wish to show \(M \) is a Lie subalgebra and find its generators. We will do this showing that \(M \) is the Lie algebra homomorphic image of a Lie algebra \(N \) whose generators are easily found.
We first define a filtration of Λ which is a slight alteration of the lower central series. We let
\[
\Lambda_1 := \pi_1(S_2) \quad \Lambda_2 := \langle [\Lambda_1, \Lambda_1], \tilde{\gamma} \rangle \quad \Lambda_m := \langle [\Lambda_{m-n}, \Lambda_n] \rangle_{n=1}^{\frac{m}{2}} \text{ for } m \geq 3
\]
By Theorem 2.1,
\[
N := \bigoplus_n \Lambda_n/\Lambda_{n+1}
\]
is a graded \mathbb{Z}-Lie algebra under the commutation bracket. Since $j_*(\Lambda_n) \subseteq \Gamma_n$, there is an induced Lie algebra homomorphism $N \to L$. It is easy to check that, as a Lie algebra, N is generated by $\{d_i\}_{i=1}^{2g_1} \cup \{\tilde{\gamma}\}$ and so its image $M' := j_*(N)$ in L is also generated by $\{d_i\}_{i=1}^{2g_2} \cup \{\tilde{\gamma}\}$ (viewed in L).

Proposition 5.2. N maps isomorphically onto M'

Proof of Proposition 5.2. We wish to use Theorem 5.1, but L is not an algebra over a field. As \mathbb{Q} is a flat \mathbb{Z}-module, we have $M' \otimes \mathbb{Q} \hookrightarrow L \otimes \mathbb{Q}$, and so $M'_\mathbb{Q} := M' \otimes \mathbb{Q}$ is a free Lie algebra generated by $\{d_i\}_{i=1}^{2g_2} \cup \{\tilde{\gamma}\}$, but it is not a priori clear that these generators are free. In the proof of Theorem 5.1 in [R], a recipe is given for finding free generators of a subalgebra, which we describe now.

For any subset $X \subseteq L \otimes \mathbb{Q}$, let $\langle X \rangle$ denote the Lie subalgebra of $L \otimes \mathbb{Q}$ generated by X. Let
\[
E_n = M'_\mathbb{Q} \cap \left(\bigoplus_{i=1}^n L_i \otimes \mathbb{Q} \right)
\]
and let $E_n' = E_n \cap \langle E_{n-1} \rangle$. If we let $X_n :=$ a set of generators (as a \mathbb{Q} vector space) for E_n mod E_n', then $X = \bigcup_n X_n$ is a free generating set of $M'_\mathbb{Q}$.

We now show the afore-mentioned generators of $M'_\mathbb{Q}$ to be free. Clearly, we can set $X_1 := \{d_i\}_{i=1}^{2g_2}$. The only question is whether $\tilde{\gamma}$ is in the Lie algebra generated by X_1. Recall that $\tilde{\gamma} = \prod_{i=1}^{2g_1} [c_i, c_{i+g_1}]$ and so in L_2, we have $\tilde{\gamma} = \sum_{i=1}^{g_1} [c_i, c_{i+g_1}]$. As elements of H, the c_i and d_i freely generate $L \otimes \mathbb{Q}$, so $\tilde{\gamma} \notin \langle X_1 \rangle$. Thus, we can set $X_2 = \{\tilde{\gamma}\}$, and so $\{d_i\}_{i=1}^{2g_2} \cup \{\tilde{\gamma}\}$ freely generates $M'_\mathbb{Q}$. But then clearly it freely generates M'.

Now, we can define an inverse Lie homomorphism $M' \to N$ by sending generators to generators, and so $N \to L$ is injective. \qed

By the proposition, we have $\Lambda_n \setminus \Lambda_{n+1} \hookrightarrow \Gamma_n \setminus \Gamma_{n+1}$, but this implies that in fact $\Lambda_n = \Lambda \cap \Gamma_n$. Thus, $M = M'$.

Step 3: Recall that $C = \text{image of } H_1(S_1)$ and $D = \text{image of } H_1(S_2)$ in H; i.e. $C = \langle \{c_i\}_{i=1}^{2g_1} \rangle$ and $D = \langle \{d_i\}_{i=1}^{2g_2} \rangle$. Suppose $x \in D$. Then, by Steps 1 and 2,
\[
y := \begin{cases}
\tau_f(x) & k \text{ even} \\
\tilde{\tau}_f(x) & k \text{ odd}
\end{cases}
\]
is an element of M. We can write $\tilde{\gamma}$ in A as $\sum_{i=1}^{2g_1}(c_i \otimes c_{i+g_1} - c_{i+g_1} \otimes c_i)$. Thus, M is contained in the subring generated by
\[
\left\{ \sum_{i=1}^{2g_1}(c_i \otimes c_{i+g_1} - c_{i+g_1} \otimes c_i) \right\} \cup \{d_i\}_{i=1}^{2(g_2)}
\]
Consequently, we can write $y = \sum_{m} y_{m,1} \otimes \cdots \otimes y_{m,n}$ where an even number of the elements of $\{y_{m,1}, \ldots, y_{m,n}\}$ are in C and the rest are in D. Since $\hat{\iota}(c_i, d_j) = 0$ for all i, j, we have $\Phi_{n-1}(y_{m,1} \otimes \cdots \otimes y_{m,n}) \neq 0$ only if $y_{m,n} \in D$. Thus, $\Psi_k(f)(D) \subset D$, and we are done with Claim 1.

Proof of Claim 2: Let α be the nonseparating curve which is fixed by $f \in I_k$. Let \hat{S} be the surface obtained by cutting along α, and $j : \hat{S} \rightarrow S$ the canonical immersion. Similar to the proof of Claim 1, we will show that $\Psi_k(f)(C) \subset C$ where $C := \text{image of } H_1(\hat{S}, \mathbb{Z})$ in H. Analogous to the above, we let
\[
M := \bigoplus_n \hat{\Gamma} \cap \Gamma_n / \hat{\Gamma} \cap \Gamma_{n+1}
\]
where $\hat{\Gamma} = \pi_1(\hat{S})$. We go through the same 3 steps as in the proof of Claim 1:

- **Step 1:** Show that $\tau_f(M) \subset M$.
- **Step 2:** Show that M is a Lie subalgebra of \mathcal{L} and find generators.
- **Step 3:** Show that $\Phi_k(M \cap \mathcal{L}_{k+1}) \subset C$.

Let us first set up some notation. Let α_1 and α_2 be the boundary curves of \hat{S} such that $j_*(\alpha_1) = j_*(\alpha_2) = \alpha$. Choose based representatives a, a_1 and a_2 of α, α_1 and α_2 respectively as in Figure 2; in particular, $j_*(a_1) = a$. Also, let b be as depicted in Figure 2. Extend $\{a, b\}$ to a “standard” generating set $\{a, b\} \cup \{c_i\}_{i=1}^{2(g-1)}$; i.e. the following hold:

(a) The set $\{a, b\} \cup \{c_i\}_{i=1}^{2(g-1)}$ gives a symplectic basis in homology.

(b) $\iota(a, b) = \iota(a, b) = 1$.

(c) All c_i can be homotoped to lie entirely inside the interior of \hat{S}.

Letting a_1 and a_2 be as in Figure 2, one can easily check that $j_*(a_1 a_2^{-1}) = [a, b^{-1}]$.

Step 1: Choosing the same basepoint for \hat{S} and S, we have that $j_* : \pi_1(\hat{S}) \rightarrow \pi_1(S)$ is injective and $\hat{\Gamma} = \pi_1(\hat{S})$ is invariant under f_*. Thus, we have
\[
M := \bigoplus_n \hat{\Gamma} \cap \Gamma_n / \hat{\Gamma} \cap \Gamma_{n+1}
\]
is a τ_f-invariant submodule of \mathcal{L}. It is also easy to see $M \cap \mathcal{L}_1 = C$.
Step 2: Just as in the proof of Claim 1, we choose a filtration of $\pi_1(\hat{S})$ which is a slight alteration of the lower central series:

\[
\hat{\Gamma}_1 = \pi_1(\hat{S})
\]

\[
\hat{\Gamma}_2 = \langle [\hat{\Gamma}_1, \hat{\Gamma}_1], a_1a_2^{-1} \rangle
\]

\[
\hat{\Gamma}_n = \langle [\hat{\Gamma}_{n-k}, \hat{\Gamma}_k]\rangle_{k=1}^{\lfloor \frac{n}{2} \rfloor} \quad n \geq 3
\]

By Theorem 2.1 we get a corresponding graded \mathbb{Z}-Lie algebra which we denote by \hat{M}. Again, since $j_*(\hat{\Gamma}_n) \subseteq \Gamma_n$, we get an induced Lie algebra homomorphism $\hat{M} \to \mathcal{L}$. Note that \hat{M} is generated by $\{a_1\} \cup \{c_i\}_{i=1}^{\lfloor g^{-1} \rfloor} \in \hat{M}_1$ and $a_1a_2^{-1} \in \hat{M}_2$. Since $a_1a_2^{-1} \mapsto [a, b^{-1}]$, we have that $\{a, [a, b^{-1}]\} \cup \{c_i\}_{i=1}^{\lfloor g^{-1} \rfloor}$ generates $j_*(\hat{M})$.

Proposition 5.3. The Lie algebra \hat{M} maps isomorphically onto $j_*(\hat{M})$.

Proof of Proposition 5.3. Since the set $\{a, b\} \cup \{c_i\}_{i=1}^{\lfloor g^{-1} \rfloor}$ is a free generating set of \mathcal{L}, we have $[a, b^{-1}] \notin \langle a, \{c_i\}_{i=1}^{\lfloor g^{-1} \rfloor} \rangle$. Thus, by reasoning similar to that in the separating case, $\{a, [a, b^{-1}]\} \cup \{c_i\}_{i=1}^{\lfloor g^{-1} \rfloor}$ is a free generating set of $j_*(\hat{M})$. We obtain an inverse
Lie algebra map \(j_*(\hat{M}) \to \hat{M} \) induced by

\[
\begin{align*}
 a & \mapsto a_1 \\
 [a, b^{-1}] & \mapsto a_1 a_2^{-1} \\
 c_i & \mapsto c_i
\end{align*}
\]

Since \(\hat{M} \) injects into \(\mathcal{L} \), we have

\[
\hat{\Gamma}_m \setminus \hat{\Gamma}_{m+1} \hookrightarrow \Gamma_m \setminus \Gamma_{m+1}
\]

and so \(\hat{\Gamma}_m = \hat{\Gamma} \cap \Gamma_m \). Thus, \(j_*(\hat{M}) = M \).

Step 3: Now, let \(x \in C := \langle a, \{c_i\}_{i=1}^{2(g-1)} \rangle \subseteq H \). Then

\[
y := \begin{cases}
 \tau_f(x) & k \text{ even} \\
 \tau_2(x) & k \text{ odd}
\end{cases}
\]

is an element of \(M \). As an element of \(\mathcal{A} \), we may write \(y = \sum y_{m,1} \otimes \ldots \otimes y_{m,n} \) where each \(y_{m,r} \) is a multiple of one of \(a, b, c_i \). Since \([a, b] = a \otimes b - b \otimes a\) as an element of \(\mathcal{A} \) and \(y \in M \), there are at least as many \(a \) terms as \(b \) terms in \(y_{m,1}, \ldots, y_{m,n} \). Since \(b \) pairs nontrivially only with \(a \) in the set \(\{a, b\} \cup \{c_i\}_{i=1}^{2(g-1)} \), we have \(\Phi_{n-1}(y_{m,1} \otimes \ldots \otimes y_{m,n}) \neq 0 \) only if \(y_{m,n} \neq a \) multiple of \(b \), in which case \(\Phi_{n-1}((y_{m,1} \otimes \ldots \otimes y_{m,n}) \in C \). Thus, \(\Psi_k(f)(C) \subseteq C \), and since \(C \) has rank \(2g - 1 \), the characteristic polynomial of \(\Psi_k(f) \) factors into a product of a degree 1 and degree \(2g - 1 \) polynomial.

\[\square \]

6. **Theorem 1.2 vs. the Thurston–Penner Criteria**

In this section we will compare the criterion of Theorem 1.2 to the Thurston–Penner criteria. Since the Thurston–Penner criteria are topological and Theorem 1.2 is algebraic, one might expect that there is essentially no relation between the two. We will show this to be true in the following sense. There exist examples satisfying the Thurston or Penner criteria but not the hypothesis of Theorem 1.2 and examples satisfying both. As of the writing of this paper, it has not been proven that there are examples of pseudo-Anosovs which do not satisfy the Thurston–Penner criteria. However, we will give an example satisfying the hypothesis of Theorem 1.2 to which the Thurston–Penner criteria do not seem to apply directly.

Since we will be dealing with Dehn twists about separating curves, we first describe \(\Psi_2(T_\gamma) \) where \(\gamma \) is a “standard” separating curve and \(T_\gamma \) is the Dehn twist about \(\gamma \). First let us set up a symplectic basis. Let \(\{\alpha_i, \beta_i\} \) be the curves as depicted in Figure 3 with \(a_i = [\alpha_i] \) and \(b_i = [\beta_i] \) their homology classes. Our ordered basis of \(H \) throughout this section will be \(\{a_1, b_1, a_2, b_2, \ldots, a_g, b_g\} \). By “standard” separating curve, we will mean one of the \(\gamma_i \) as depicted in Figure 3.
Lemma 6.1. With \(\{a_i, b_i\} \) and \(\{\gamma_i\} \) as above, the element \(\Psi_2(T_{\gamma_i}) \in \text{End}(H) \) is the map defined by:

\[
\begin{align*}
a_j & \mapsto \begin{cases}
(2i + 1)a_j & j \leq i \\
0 & j > i
\end{cases} \\
b_j & \mapsto \begin{cases}
(2i + 1)b_j & j \leq i \\
0 & j > i
\end{cases}
\end{align*}
\]

Remark: Note that with the given indexing, \(i \) is the genus of \(\gamma_i \).

Proof. We can lift \(a_i, b_i, \gamma_i \) to \(\tilde{a}_i, \tilde{b}_i, \tilde{\gamma}_i \in \pi_1(S) \) by connecting \(\alpha_i, \beta_i \) and \(\gamma_i \) to the basepoint via paths. Furthermore, we can do it in such a way that \(\tilde{\gamma}_i = \prod_{j=1}^{i} [\tilde{a}_j, \tilde{b}_j] \) in \(\pi_1(S) \) and

\[
T_{\gamma_i}(\tilde{a}_j) = \begin{cases}
\tilde{\gamma}_i \tilde{a}_j \tilde{\gamma}_i^{-1} & j \leq i \\
\tilde{a}_j & j > i
\end{cases}
\]

\[
T_{\gamma_i}(\tilde{b}_j) = \begin{cases}
\tilde{\gamma}_i \tilde{b}_j \tilde{\gamma}_i^{-1} & j \leq i \\
\tilde{b}_j & j > i
\end{cases}
\]

Thus, for \(j \leq i \) and \(f_i = T_{\gamma_i} \), we compute \(f_i(\tilde{a}_j)\tilde{a}_j^{-1} = [\tilde{\gamma}_i, \tilde{a}_j] \) and

\[
\tau_{f_i}(a_j) = \left[\sum_{k=1}^{i} [a_k, b_k], a_j \right] = \sum_{k=1}^{i} ((a_k \otimes b_k - b_k \otimes a_k) \otimes a_j - a_j \otimes (a_k \otimes b_k - b_k \otimes a_k))
\]

For \(j > i \), we easily see that \(\tau_{f_i}(a_j) = 0 \). Recall that \(\Phi_2(c_1 \otimes c_2 \otimes c_3) = i(c_1, c_2)c_3 \). We then compute for \(j \leq i \) that \(\Psi_2(f_i) = \Phi_2(\tau_{f_i}(a_j)) = (2i + 1)a_j \). Clearly, \(\Phi_2(\tau_{f_i}(a_j)) = 0 \) for \(j > i \). The computation for \(b_j \) is the same but with the the roles of \(a \) and \(b \) switched.

Now let us consider \(T_{\gamma} \) where \(\gamma \) is an arbitrary separating curve not homotopic to the boundary. Recall that \(\Psi_k \) is \(\text{Mod}(S) \)-equivariant (This follows from the \(\text{Mod}(S) \)-equivariance of \(\Phi_k \) and \(\tau \)). The \(\text{Mod}(S) \) action on \(\text{End}(H) \) is as follows. If \(\varphi \in \text{Mod}(S) \)
and \(h \in \text{End}(H) \), then

\[
\varphi \cdot h = [\varphi]h[\varphi]^{-1}
\]

where \([\varphi]\) denotes the projection of \(\Phi \) to \(\text{Sp}(2g, \mathbb{Z}) \). Thus, for \(f \in \mathbb{Z}_2 \) and \(\varphi \in \text{Mod}(S) \), we find that \(\Psi_k(\varphi f \varphi^{-1}) = [\varphi] \Psi_k(f)[\varphi]^{-1} \). Recall that if for a fixed \(g' \), two separating curves \(\eta_1 \) and \(\eta_2 \) both cut \(S \) into a \(\Sigma_{g',1} \) and \(\Sigma_{g'-g',2} \), then there is some \(\varphi \in \text{Mod}(S) \) such that \(\varphi(\eta_1) = \eta_2 \). Thus, \(\Psi_2(T_\eta) \) is of the form \(\varphi \Psi_2(T_\eta) \varphi^{-1} \) for some \(i \) and some \(\varphi \in \text{Sp}(2g, \mathbb{Z}) \). Similarly, if \(A \) is a multicurve of separating curves and \(T_A \) the multicurve twist, then

\[
\Psi_2(T_A) = \varphi \Psi_2(\prod_{k=1}^m T_{\gamma_k}) \varphi^{-1}
\]

for some \(\varphi \in \text{Sp}(2g, \mathbb{Z}) \) and some subset \(\{\gamma_k\} \) of \(\{\gamma_i\} \).

For the reader’s convenience, we recall a few definitions and state a corollary to both the Thurston and Penner criteria. A pants decomposition is a maximal set of pairwise nonisotopic simple closed curves which are pairwise disjoint not null-homotopic. For an \(S_{g,b} \), a pants decomposition consists of \(3g - 3 + 2b \) curves. Recall that a simple closed curve \(\gamma \) is essential if it is neither homotopically trivial nor homotopic to a boundary component. We say that two curves \(\eta \) and \(\nu \) fill a surface \(S \) if, for any essential simple closed curve \(\gamma \), the curve \(\gamma \) either intersects \(\eta \) or \(\nu \) nontrivially. We define the notion of filling for two multicurves similarly.

Corollary 6.2 (Thurston, Penner). If two multicurves \(A \) and \(B \) fill a surface, then the product of multicurve twists \(T_A T_B^{-1} \) is pseudo-Anosov.

6.1. Negative Results for Theorem [1, 2]

In this section we show that there is a pseudo-Anosov in \(\mathbb{Z}_2(S_{g,1}) \) for each \(g \geq 2 \) which satisfies the Thurston–Penner criteria but not the hypothesis of Theorem [1, 2]. Let \(T_\gamma \) denote the twist about a simple closed curve \(\gamma \).

Theorem 6.3. For each \(g \geq 2 \), there exists two simple closed curves \(\gamma_{g,1} \) and \(\gamma_{g,2} \) filling \(S = S_{g,1} \) such that \(f_g := T_{\gamma_{g,1}} T_{\gamma_{g,2}}^{-1} \) does not satisfy the hypothesis of Theorem [1, 2]. However, by the Thurston–Penner criteria, we know \(f_g \) is pseudo-Anosov.

Proof. We break the proof into two cases. For \(g = 2 \), we will explicitly compute \(\Psi_2(f_2) \). For \(g \geq 3 \), we will show that there is an \(f'_g \) such that \(f'_g \) is reducible and \(\Psi_2(f'_g) = \Psi_2(f_g) \). Of course, then it is impossible for \(\Psi(f_g) \) to satisfy the hypothesis of Theorem [1, 2] since \(\Psi(f'_g) \) does not.

We also need a consequence of Lemma 2 of Expose 13 of [FLP] to construct the \(f_g \). For the reader’s convenience, we state the consequence.

Lemma 6.4. Let \(S \) be a surface. Let \(\gamma \) be a simple closed curve on \(S \) and \(P = \{\alpha_1, \ldots, \alpha_{3g-3}\} \) a pants decomposition of \(S \) such that \(i(\gamma, \alpha_i) \neq 0 \) for all \(\alpha_i \) that are not boundary components. Then, the curves \(\gamma \) and \(T_P(\gamma) \) fill the surface. nontrivially.
Case $g = 2$: Let $\gamma_{2,1}$ and the η_i be as in Figure 4. Since the η_i are disjoint and $\{\eta_i\}$ is a 4 element set, $P = \{\eta_i\}$ is a pants decomposition. By Lemma 6.4, we know that $\gamma_{2,1}$ and $\gamma_{2,2} := T_P(\gamma)$ fill S.

![Figure 4.](image)

We now explicitly compute $\Psi_2(f_2)$ and see that its characteristic polynomial has degree 2 factors. Since Ψ_2 is a homomorphism and $\text{Mod}(S)$-equivariant, we find that

$$
\Psi_2(T_{\gamma_{2,1}}^{-1}T_{T_P(\gamma_{2,1})}) = \Psi_2(T_{\gamma_{2,1}}) - [T_P] \circ \Psi_2(T_{\gamma_{2,1}}) \circ [T_P]^{-1} = \Psi_2(T_{\gamma_{2,1}}) - [T_{\eta_1}]T_{\eta_2}T_{\eta_3}T_{\eta_4} \Psi_2(T_{\gamma_{2,1}})T_{\eta_4}^{-1}T_{\eta_1}^{-1}T_{\eta_2}^{-1}T_{\eta_3}^{-1}$$

Note that since η_2 is separating, $[T_{\eta_2}]$ is trivial. For any simple closed curve β and $c \in H$, one can show that $[T_\beta](c) = c + i([\beta], c)[\beta]$ where $[\beta]$ is the homology class of β. We see that $[\eta_1] = a_1 + a_2$ and $[\eta_3] = b_2 - b_1$ and so one computes

$$
\Psi_2(T_{\gamma_{2,1}}^{-1}T_{T_P(\gamma_{2,1})}) = 3 \times \begin{pmatrix}
-1 & 0 & 1 & 1 \\
0 & -1 & 1 & -1 \\
-1 & -1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{pmatrix}
$$

The characteristic polynomial is computed to be $(9 + x^2)^2$

Case $g \geq 3$: First, we find a pair of filling curves using Lemma 6.4. Let $\gamma_{g,1}$ be the curve depicted in Figure 5 and P the pants decomposition depicted in Figure 6. One sees that $\gamma_{g,1}$ intersects every curve of P nontrivially. Thus, by the lemma, $\gamma_{g,1}$ and $\gamma_{g,2} := T_P(\gamma_{g,1})$ fill $S_{g,1}$.

Now, we show that there is some $f'_g \in I_2$ such that $\Psi_2(f'_g) = \Psi(f_g)$ and f'_g is reducible. Let

$$
P_{\text{nosep}} = \{\eta \in P \mid \eta \text{ is nonseparating}\}$$
Since \([T_\eta] = Id\) for all \(\eta\) that are separating, we see that
\[
\Psi_2(f_g) = \Psi_2(T_{\gamma_{g,1}} T_{\gamma_{g,1}}^{-1}) = \Psi_2(T_{\gamma_{g,1}}) - [T_P] \Psi_2(T_{\gamma_{g,1}})[T_P^{-1}]
\]
\[
= \Psi_2(T_{\gamma_{g,1}}) - [T_{P\text{nosep}}] \Psi_2(T_{\gamma_{g,1}})[T_{P\text{nosep}}^{-1}] = \Psi_2(T_{\gamma_{g,1}} T_{P\text{nosep}}(\gamma_{g,1}))
\]

We let \(f_g' = T_{\gamma_{g,1}} T_{P\text{nosep}}(\gamma_{g,1})\). Notice that the curve \(\nu\) in Figure 5 intersects neither \(\gamma_{g,1}\) nor \(T_{P\text{nosep}}(\gamma_{g,1})\), and so \(f_g'(\nu) = \nu\). Thus, \(f'\) is reducible and we are done. \(\square\)

6.2. **Positive Results for Theorem 1.2.** In this section, we will exhibit two examples of mapping classes which satisfy the hypothesis of Theorem 1.2. We begin with an example satisfying both Theorem 1.2 and the Thurston–Penner criteria.

We first make some preliminary remarks. If \(A\) and \(B\) are multicurves and \(T_A T_B^{-1}\) is pseudo-Anosov, then it is clear that \(A \cup B\) fills \(S\). Thus, if \(T_A T_B^{-1}\) satisfies the hypothesis of Theorem 1.2 it immediately follows that \(T_A T_B^{-1}\) must satisfy the Thurston–Penner criteria.
Now let us describe our example explicitly. Let $S = S_{5,1}$. We let $A = \{\gamma_1, \gamma_2, \gamma_3\}$ and $B' = \{\gamma_1, \gamma_2\}$ where the γ_i are the “standard” separating curves given in Figure 3. Let $h \in \text{Mod}(S)$ be any mapping class such that its projection to $\text{Sp}(2g, \mathbb{Z})$ is given by

$$[h] = \begin{pmatrix}
2 & 0 & 1 & 1 & 1 & 1 & 2 & 0 & 1 & 0 \\
1 & 2 & -2 & 0 & 0 & -1 & 1 & -1 & 2 & -2 \\
3 & 3 & 2 & -1 & 2 & 0 & 0 & 1 & 2 & -3 \\
1 & -1 & 0 & 2 & 1 & 0 & 2 & 0 & 1 & 1 \\
4 & 3 & 2 & -1 & 2 & 1 & 1 & 0 & 2 & -2 \\
0 & -1 & 2 & 0 & 0 & 1 & 0 & 1 & -1 & 1 \\
0 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
6 & 0 & 7 & 2 & 5 & 2 & 3 & 4 & 2 & 0 \\
1 & -1 & 2 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Let $B = h(B')$. If we let $e_{i,j}$ be the elementary matrix with a 1 in the (i, j)th entry and 0’s everywhere else, then using Lemma 6.1 we find

$$T_A = 15(e_{1,1} + e_{2,2}) + 12(e_{3,3} + e_{4,4}) + 7(e_{5,5} + e_{6,6})$$

and

$$T_{B'} = 8(e_{1,1} + e_{2,2}) + 5(e_{3,3} + e_{4,4})$$

Putting this together, we compute (via Mathematica)

$$\Psi_2(T_AT_B^{-1}) = \Psi(T_A) - [h]\Psi(T_{B'})[h]^{-1}$$

$$= \begin{pmatrix}
42 & 0 & -6 & -33 & -26 & -33 & -25 & 11 & -5 & 26 \\
0 & 42 & -44 & 14 & -8 & 30 & -116 & 18 & -16 & 24 \\
14 & 33 & -28 & 0 & -14 & 24 & -89 & 14 & -19 & 38 \\
44 & -6 & 0 & -28 & -28 & -36 & -22 & 8 & -2 & 20 \\
30 & 33 & -36 & -24 & -22 & 0 & -89 & 22 & -19 & 46 \\
8 & -26 & 28 & -14 & 0 & -22 & 68 & -10 & 8 & -8 \\
18 & -11 & 8 & -14 & -10 & -22 & 13 & 0 & 3 & 2 \\
116 & -25 & 22 & -89 & -68 & -89 & 0 & 13 & -10 & 68 \\
24 & -26 & 20 & -38 & -8 & -46 & 68 & -2 & 8 & 0 \\
16 & -5 & 2 & -19 & -8 & -19 & 10 & 3 & 0 & 8
\end{pmatrix}$$

We compute (via Mathematica) the characteristic polynomial to be

$$(x^5 - 21x^4 + 107x^3 + 3837x^2 - 13500x + 151200)^2$$

We find, using Mathematica, that modulo 17 the polynomial

$$x^5 - 21x^4 + 107x^3 + 3837x^2 - 13500x + 151200$$

is irreducible, and hence irreducible over \mathbb{Z}. Thus, by Theorem 1.2 $T_AT_B^{-1}$ is pseudo-Anosov and we are done.

We now exhibit a mapping class $f \in I_1(S_{4,1})$ for which there is no obvious way to apply the Thurston–Penner criteria. First, let us recall some facts about the Johnson
homomorphism on I_1. There is the following sequence of canonical embeddings and isomorphisms:

$$\Lambda^3 H \hookrightarrow \Lambda^2 H \otimes H \cong (\Gamma_2/\Gamma_3) \otimes H \cong \text{Hom}(H, \Gamma_2/\Gamma_3)$$

Theorem 1 of [J] tells us that

$$\tau(I_1/I_2) = \text{image}(\Lambda^3 H) \subseteq \text{Hom}(H, \Gamma_2/\Gamma_3)$$

We define a bounding pair to be a pair of nonisotopic disjoint curves whose union separates the surface. The bounding pair map associated to an ordered bounding pair (η, γ) is the product of Dehn twists $T_\eta T_\gamma^{-1}$. Let $h = T_{\beta_i} T_{\beta'_i}^{-1}$ be the bounding pair map for β_i and β'_i as given in Figure 7.

![Figure 7](image)

In Lemma 4B of [J], Johnson computes that

$$(4) \quad \tau_h = \left(\sum_{j=1}^{i-1} a_j \land b_j \right) \land b_i$$

Now, let us describe the example. Let

$$y = (a_4 + b_2 + b_3) \land a_1 \land b_1 + (a_3 + b_4) \land a_2 \land b_2$$
$$+ (a_1 + a_2 + b_1) \land a_3 \land b_3 + (a_1 + a_2) \land a_4 \land b_4 \in \Lambda^2 H$$

From the previous paragraph, we know there exists $f \in I$ such that $\tau_f = y$ which we construct now. Consider the bounding pairs illustrated in Figures 8.a - 8.h. Let f be the product of bounding pair maps about these bounding pairs. Since τ is a homomorphism to an abelian group, τ_f is the same regardless of how the bounding pair maps are composed. Using [J], one computes that $\tau_f = y$.

[Figure 7: Diagram of bounding pairs]
Figure 8. The product of the bounding pair maps indicated in a - h yields y

Via computation (with Mathematica), we find that with respect to the symplectic basis \{a_1, b_1, \ldots, a_4, b_4\}

\[
\Psi_1(f) = \begin{pmatrix}
-6 & -2 & 2 & 0 & 2 & 2 & -2 & 0 \\
4 & 2 & 2 & -2 & 2 & 2 & 2 & -2 \\
4 & -2 & 2 & 0 & -2 & 2 & 2 & 0 \\
-2 & 4 & -2 & 0 & 0 & 2 & 0 & 2 \\
-4 & -4 & 2 & 4 & -2 & 4 & 0 & -2 \\
-4 & -4 & 0 & 6 & 2 & 2 & -2 & 0 \\
-2 & 4 & -2 & 2 & 2 & 2 & 2 & 2 \\
4 & -2 & -2 & -4 & -4 & 2 & 4 & 0
\end{pmatrix}
\]

The characteristic polynomial of \(\Psi_1(f)/2\) is

\[
\chi(\Psi_1(f)/2) = x^8 - 8x^6 + 26x^5 - 18x^4 - 76x^3 + 241x^2 - 558x + 553
\]
This polynomial is found to be irreducible mod 11 via Mathematica and is hence irreducible. By Theorem 1.2, \(f \) is pseudo-Anosov. Note that curves \(c_2, d_2, \) and \(g_2 \) in Figure 8 all pairwise intersect, and so the criteria of Thurston and Penner do not seem to apply directly to \(f \).

References

[BL] H. Bass, A. Lubotzky, Linear - central filtrations on groups, in *The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions*, Ed. by W. Abikoff, J. Birman, and K. Kuiken, Contemp. Math. 169, Amer. Math. Soc., Providence, 1994, pp. 45 – 98.

[BH] M. Bestvina, M. Handel, Train-tracks for surface homeomorphisms, *Topology* 34 (1995), no. 1, 109–140.

[Br] P. Brinkmann, XTrain, available at http://www.sci.ccny.cuny.edu/~brinkman/.

[CB] A. Casson, S. Bleiler, *Automorphisms of surfaces after Nielsen and Thurston*, Cambridge University Press, Cambridge, 1988.

[FLM] B. Farb, C. Leininger, D. Margalit, The lower central series and pseudo-Anosov dilatations, Preprint, http://www.arxiv.org/pdf/math.GT/0603675.

[FM] B. Farb, D. Margalit, *A primer on mapping class groups*, in preparation.

[FLP] A. Fathi, F. Laudenbach, V. Poenaru, et al., Travaux de Thurston sur les surfaces, *Astérisque* 66-67 (1979).

[I] N. Ivanov, *Subgroups of Teichmüller modular groups*, Transl. Math. Monogr., vol. 115, American Mathematical Society, Providence, RI, 1992.

[J] D. Johnson, An abelian quotient of the mapping class group \(I_g \), *Math. Ann.* 249 (1980), no.3, 225–242.

[L] C. Leininger, On groups gnerated by two positive multi-twists: Teichmüller curves and Lehmer’s number, *Geometry & Topology* 8 (2004), 1301 - 1359.

[MKS] W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory: presentations of groups in terms of generators and relations*, Pure Appl. Math. 13, Interscience Publishers, New York, 1966.

[M1] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, *Duke Math Journal* 70 (1993), no. 3, 699 – 726.

[M2] S. Morita, On the structure of the Torelli group and the Casson invariant, *Topology* 30 (1991), no. 4, 603 – 621.

[M3] S. Morita, The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, *Invent. Math.* 111 (1993), no. 1, 197–224.

[M4] S. Morita, Structure of the mapping class group of surfaces: a survey and prospect, *Geometry & Topology Monographs* 2 (1999), 349–406.

[P] R. Penner, A construction of pseudo-Anosov homeomorphisms, *Trans. Amer. Math. Soc.* 310 (1988), no. 1, 179–197.

[R] C. Reutenauer, *Free lie algebras*, London Math. Soc. Monogr. (N.S.), vol. 7, Oxford Univ. Press, Oxford, 1993.

[T] W. Thurston, *On the geometry and dynamics of diffeomorphisms of surfaces*, Bull. Am. Math. Soc. (New Ser.) 19 (1988), 417–431.