ABSTRACT AND REFERENCES

Materials Science

DOI: 10.15587/1729-4061.2019.171619
EXPLORING A POSSIBILITY TO CONTROL THE STRESSED STRAINED STATE OF CYLINDER LINERS IN DIESEL ENGINES BY THE TRIBOTECHNOLOGY OF ALIGNMENT (p. 6-16)

Viktor Aulin
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Andrii Hrynkiv
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Sergii Lyasenko
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Aleksandr Dykha
Khmelnytskyi National University, Khmelnytskyi, Ukraine

Taras Zamota
Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine

Volodymyr Dzyura
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Our research into the formation of a functional copper-containing surface layer on parts of automobile engines by using an alignment tribotechnology has established a decrease in the wear of parts during their operation. It was found that the formed coating creates an elastic layer that reduces strains in a material of engine parts. Our experimental study of the coercive force of parts' working surfaces has confirmed a decrease in the accumulation of destructive stresses in the near-surface layers of components' material. In turn, a comparative analysis of the obtained results by using a coecrmetric method confirms that the proposed aligning tribotechnology leads to reduction of the stressed-strained state and makes it possible to improve wear resistance and enhance the technical condition of diesel engine cylinder liners: the magnitude of coercive force reduces by 7.5 %, while operating time increases by 16 %. In this case, at larger operating time: 254.8 thousand km against 220.5 thousand km, according to data on the coercive force (13.2…9.0) A/cm, it is almost in the same condition.

The functional surface layer forms when introducing a composite oil to the tribotechnology of cold alignment of an automobile powertrain. We have proposed and implemented a circuit to connect electric current to components at an engine’s cylinder-piston group as a result of studying the developed tribotechnology of alignment. The features of this scheme are that the constant electric current is supplied by the plus polarity, through the brush-collector node, to the crankshaft, and by the minus polarity, through the clamping contact, to the crankcase block.

The research results suggest a possibility to control the internal strains and the subsequent magnitude of wear in a material of working heavily-loaded components of automobile powertrains provided they are serviced properly. The proposed tribotechnology of alignment could be of interest for both service departments at trucking companies and for car service stations.

Keywords: liner, additive, copper glycerate, alignment, surface layer, electrolyte, coercive force, electrical circuit, strain, cylinder liner.

References
1. Aulin, V., Hrynkiv, A., Chernovol, M., Lyashuk, O., Lyasenko, S. (2018). Substantiation of diagnostic parameters for determining the technical condition of transmission assemblies in trucks. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 4–13. doi: https://doi.org/10.15587/1729-4061.2018.125349
2. Aulin, V., Hrynkiv, A., Lyasenko, S., Rohovskii, I., Chernovol, M., Lyashuk, O., Zamota, T. (2019). Studying truck transmission oils using the method of thermal-oxidative stability during vehicle operation. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156150
3. Osadchyi, I. S., Kalich, V. M., Didyk, O. K. (2013). Structural identification of unmanned supercavitation vehicle based on incomplete experimental data. 2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD). doi: https://doi.org/10.1109/apuavd.2013.6705294
4. Chernovol, M. I., Solov’ykh, E. K. (1997). Prediction of thickness of solid-lubricant film formed at friction of metal-polymer composite coating. Journal of Friction and Wear, 18 (2), 40–45. Available at: https://www.sciencedirect.com/science/article/pii/0242480286900764
5. Dykha, A., Aulin, V., Makovkin, O., Posonskii, S. (2017). Determining the characteristics of viscous friction in the sliding supports using the method of pendulum. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.99823
6. Levcan, I., Zarodzhnaya, E., Vichnyakov, D. (2019). Influence of Friction Geo-modifiers on HTHS Viscosity of Motor Oils. Proceedings of the 4th International Conference on Industrial Engineering, 967–972. doi: https://doi.org/10.1007/978-3-319-95630-5_101
7. Abd Al-Samieh, M. F. (2019). Surface Roughness Effects for Newtonian and Non-Newtonian Lubricants. Tribology in Industry, 41 (1), 56–63. doi: https://doi.org/10.24874/ti.2019.41.01.07
8. Sokolovskij, M. F., Chernovol, M. I., Chabannya, V. Ya., Nalivajko, V. N., Pavlyuk-Moroz, V. A. Increasing the chemical apparatus component service life using contact welding-on. Available at: https://www.researchgate.net/publication/295822572_Increasing_the_chemical_apparatus_component_service_life_using_contact_welding-on
9. Sokolovskij, M. F., Chernovol, M. I., Chabannya, V. Ya., Nalivajko, V. N., Pavlyuk-Moroz, V. A. (1992). Increasing the life of chemical apparatus parts by contact surfacing. Chemical and Petroleum Engineering, 28 (11), 695–697. doi: https://doi.org/10.1007/bf01150933
We have developed a comprehensive technology to strengthen printing cylinders by forming a regular microrelief at the surface followed by chromium-plating.

Our research into the influence of comprehensive machining of a printing cylinder on the quality of printed products has established the mechanism for obtaining high quality parameters for the working surface of printing cylinders. Application of vibratory tool with a radius of R=2 mm, at effort P=550 N, the surface roughness amounted to the arithmetic mean deviation Ra 0.63 μm, which is 7.6 times lower than that without applying the surface-plastic deformation. A comprehensive machining of a printing cylinder includes a combination of the vibration knurling with the formation of the all-new regular microrelief followed by chromium-plating. Vibration knurling was performed at a tool indentation effort of 50–600 N; a spindle rotation frequency of 25–2,000 rpm; a deformative tool eccentricity of 0.2–1.0 mm; a deformative tool frequency of oscillations of 1,000–2,000 double step per minutes; a deformative tool feed of 0.08–12.5 mm/rev. The chromium-plating involved the electrolyte CrO3=290 g/l and H2SO4=3 g/l; the electrolyte temperature was 57 °C; duration of chromium was 20 min; a current density was 80 A/dm², time activation was 20 s. As a result of this, it became possible to obtain the developed surface of the cylinder with high operational characteristics. Our experimental research has confirmed that the machining modes significantly change surface roughness, hardness, and microhardness. This reinforces the surface strengthening of the printing cylinder. In particular, it was found that the integrated technology contributed to a 1.2–1.6-time increase in hardness compared to the base metal hardness, and a 2.7–3.3-time increase compared with chromium-plated surface. That makes it possible to argue on that the revealed formation mechanism matches the predefined properties.

Thus, there is reason to assert that it is possible to prolong the service life of printing cylinders, to ensure stable operation of the equipment, to improve the quality of printed products owing to the application of the integrated technology followed by chromium-plating.

Keywords: surface-plastic deformation, chromium-plating, microrelief, surface roughness, durometric surface properties, printing cylinder.

References
1. Derefinka, I. S. (2007). Stan i analiz suchasnykh metodiv pidvyshchen

Department of Surface Technology and Metallurgy, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

DOI: 10.10587/1729-4061.2019.171808

EFFECT OF the INTEGRATED TREATMENT ON THE MANUFACTURING OF PRINTING CYLINDERS (p. 22-28)

Svetlana Zhulina
National Technical University of Ukraine
"Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-0469-9433

Oksana Barauskienė
National Technical University of Ukraine
"Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-3998-1032

effect of exothermic reaction among its components. Increasing the rate of heating from 150 to 600 °C makes it possible to improve the hardness and crack resistance of the dense material by, respectively, 1.0 GPa and 1.5MPa m^{1/2}. It was revealed that the structure of the dense material, newly formed during HP(Hot pressing) of the mixture Cr₂O₃–15AlN_{nano}, is of the dispersed-strengthened type: the matrix phase from a solid solution of variable composition from the composition (Cr₅₋ₓAlₓ)O₃ (0.5<x<0.9). The fracture toughness of the material, obtained in the course of research, is 1.5 times larger, while the hardness is 1.2 GPa less, than similar characteristics for the most common ceramics of the “mixed” type based on Al₂O₃–TiC.

Keywords: ceramics, Cr₂O₃, AlN-, nano-, micro powders, composite material, cutting plates, hot pressing.

References
1. Panov, V. S., Malochkin, O. V. (2003). U’tradispersnyi osid tsikloni kaka osnova metalloobrabatyvayushchego instrumenta. Po-rodorazushayschii i metalloobrabatyvayschii instrument tekhniki i tehnologiya ego izgotovleniya i primeneniya, 3, 245–246.

2. Gleiter, H. (2000). Nanostructured materials: basic concepts and microstructure. Acta Materialia, 48 (1), 1–29. doi: https://doi.org/10.1016/s1359-6454(99)00265-2

3. Rahula, A. V. (2006). Keramichni nanokompozity dlia novoho pokolinnia rizhukhych instrumentiv i vzbukhovantshazhnykh zno- sostiykhykh komponentiv Nauka ta innovatsiyi, 4, 47.

4. Skorohod, V. V., Ragalya, A. V. (2003). Nanostrukturnaya ceramika i nanokompozity: dostizheniya i perspektivy. Vol. 2. Prohresvesny materialy i tehnolohiyi. Kyiv: Akademperiodyka, 7–34.

5. Vovk, R. V. (2018). Investigation of structure and properties of composite material Al₂O₃–SiC obtained by electrocondosoliation process. Functional materials, 25 (1), 43–47. doi: https://doi.org/10.15407/ fnm25.01.043

6. Vovk, R. V., Hervorkian, E. S., Nervatskii, V. P. et. al. (2017). Novyi keramichni komponzisnyi materialy i nanokompozity. Kharkiv, 248.

7. Prokopiv, N. M., Gorban’, A. E. (1999). Strukturoobrazovanie pri go-ryachem pressovanii shihty Cr₂O₃–AlN. Sverhtv. materialy, 4, 36–39.

8. Volkov, A. I., Zharskiy, I. M. (2005). Bol’shoy himicheskiy spravochnik. Moscow: Sovremennaya shkola, 608.

9. Prokopiv, M. M., Horban, A. Ye. (1997). Patent No. 28622. Shykhta dlia rodonarov i nanokompozity: dostizheniya i perspektivy. Vol. 2. Prohresvesny materialy i tehnolohiyi zmitsnennia poverkhni detalei mashynobuduvannia, 2, 132–135.

10. Guglya, A. G. (2008). Structure, phase and electronic characteristics of Cr₅₋ₓAlₓN– and Cr₅₋ₓVₓN coatings. Voprosy atomnoy nauki i tekhniki, 2, 155–158.

DOI: 10.15587/1729-4061.2019.171808

EFFECT OF the INTEGRATED TREATMENT ON THE MANUFACTURING OF PRINTING CYLINDERS (p. 22-28)
7. Neskhoezvskiy, A. V., Kirichok, P. A., Zgulya, S. N., Lototskaya, O. I. (2014). Analiz pokrytii tsilindrov listovyh ofsetnyh pechatnyh mashin. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tehnologii i dizayna, 3, 54–58.

8. Vitsiuk, Yu. Yu., Roik, T. A., Havrysh, A. P., Melnyk, O. O. (2010). Pidvyshhennea pratsediatsnosti vyziv tertia polirafichnykh mashyn. Tekhnolohiya i technika drukarstva, 2, 4–9.

9. Dan’ko, K. A., Zorik, I. V. (2010). Analiz sostoyaniya problemy povyshenienia zhimennogo tsiska detalii aviatissnyh dvigateley tehnologichszkami metodami. Aviatsionno-kosmicheskaya tehnicha i tehnologiya, 4 (71), 47–53.

10. Shreyas, P., Thrishul, M. A. (2014). Overview of research on Surface temperature chromizing treatment. Surface and Coatings Technology, 6, 642–646. Available at: http://www.fundamental-research.ru/en/article/view?id=30091

11. Neskhoezvskiy, A. V. (2011). Tekhnolohichne zabezpechennia vid-novlennia detalii polirafichnoho obladannia. Drukbarstvo vodoluk, 2, 4–9.

12. Krynych, P. O., Lototska, O. I. (2011). Ekspertnialnyi doslidzhennia heometrychnykh parametriv tsylindrychnykh detalii polirafichnyh mashyn pry kompleksni obrobki. Tekhnolohiya i technika drukarstva, 3, 4–12.

13. Lototska, O. I. (2008). Pidvyshhennea ekspluatatsiisnykh vlasty-vosti detalii polirafichnyh mashyn. Tekhnolohiya i technika drukarstva, 3-4, 16–20.

14. Shreys, P., Trishul, M. A. (2014). Overview of research on Surface Mechanical Attraction Treatment (SMAT). IARSET, 205–207. doi: https://doi.org/10.17148/iarset.2014.1403

15. Krynych, P. O., Khmilianchuk, O. I. (2009). Ekspertnialnyi doslidzhennia protesos ozdoblikovalno-rntsimiunicho obrobky. Tekhnolohiya i technika drukarstva, 4, 4–15.

16. Wang, Z. B., Lu, J., Lu, K. (2006). Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment. Surface and Coatings Technology, 201 (6), 2796–2801. doi: https://doi.org/10.1016/j.surfcoat.2006.05.019

17. Lee, J.-W., Duh, J.-G. (2004). Evaluation of microstructures and mechanical properties of chromized steels with different carbon contents. Surface and Coatings Technology, 177-178, 525–531. doi: https://doi.org/10.1016/j.surfcoat.2003.08.031

18. Bogoduhov, S. L., Grebenyuk, V. F., Proskurin, A. D. (2005). Obrobka uprochnyh poverhnostey v mashinostroitel’nym re- nom proizvodstvene. Moscow: Mashinostroneie, 230.

19. Moroz, S., Ptashenchuk, V. (2013). Research micro-geometry parameters workpiece surface after firming-smoothing operations. Visnyk Khmelnytskogo nacionalnogo universytetu, 2, 62–65.

DOI: 10.15587/1729-4041.2019.171787

DETERMINING FEATURES OF APPLICATION OF FUNCTIONAL ELECTROCHEMICAL COATINGS IN TECHNOLOGIES OF SURFACE TREATMENT (p. 29-38)

Anna Karakurkchi
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-1287-3859

Mykola Sakhnenko
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-5525-9525

Maryna Ved
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-5719-6284

Iryna Yermolenko
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-5496-9621

Sergey Pavlenko
National Academy of the National Guard of Ukraine, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-5944-8107

Vadym Yevsiciev
National Academy of the National Guard of Ukraine, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-0164-2991

Yaroslav Pavlov
National Academy of the National Guard of Ukraine, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-8352-5659

Vladislav Yemanyov
National Academy of the National Guard of Ukraine, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-8263-6844

Approaches to the use of electrochemical coatings in surface treatment technologies are analyzed. It is shown that directed surface modification allows expanding the functional properties of the treated material, in particular, increasing the strength, wear resistance, corrosion resistance, catalytic activity.

The method for treating non-alloy steel and cast irons by forming thin-film coatings of ternary alloys of iron and cobalt with molybdenum and tungsten is proposed. It is shown that the incorporation of refractory metals up to 37 at. % into the surface layer leads to a change in the phase structure of the coating. This is found to provide an increase in wear resistance by 40 %, microhardness by 2.5–3.5 times, as well as a decrease in friction coefficient by 3–4 times in comparison with the substrate material. The resulting materials can be used for hardening and protection of surfaces in various industries.

To modify the surface of piston silumin, it is proposed to use the method of plasma electrolytic oxidizing with the formation of ceramic-like coatings. It is shown that in the galvanostatic mode, from alkaline electrolyte solutions containing manganese and cobalt salts, it is possible to obtain uniform, dense, highly adhesive to the base metal, oxide coatings, doped with catalytic components whose content varies within 25–35 at. %. It is shown that the morphology and phase structure of the surface layers changes with the incorporation of dopant metals. The formed coatings have a high degree of surface development, which is a prerequisite for enhancing their functional properties. The proposed approach is used to modify the surface of the KamAZ-740 piston. It is found that the use of ceramic-like coatings of the engine piston leads to a decrease in hourly fuel consumption and amount of toxic substances with exhaust gases, which makes them promising for use in in-cylinder catalysis.

Keywords: surface treatment, electrochemical coating, functional properties, repair.

References
1. Suslov, A. G., Bezyazchnyi, V. F., Panfilov, Yu. V., Bishutin, S. G. (2008). Zhenerheriya povernosti detalей. Moscow: Mashinostroneie, 329.
2. Kolmykov, D. V., Gomcharov, A. N. (2012). Kombinirovannye metody uprochneniya. Visnyk Sumskogo nacionalnogo ahrarnogo universytetu, 6 (24), 46–50.
3. Meille, V. (2006). Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General, 315, 1–17. doi: https://doi.org/10.1016/j.apcata.2006.08.031
4. Rudnev, V. S., Lukyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titan-
coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.97550

39. Yar-Muhkamedova, G. S., Ved’, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: https://doi.org/10.1088/1757-899x/213/1/012020

40. Karakurkchi, A., Sakhnenko, M., Ved., M., Galak, A., Petrokhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: https://doi.org/10.15587/1729-4061.2017.109885

41. Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y., Nenastina, T. A. (2018). Nanostructured Functional Coatings of Iron Family Metals with Refractory Elements. Springer Proceedings in Physics, 3–34. doi: https://doi.org/10.1007/978-3-319-92567-7_1

42. Yermolenko, I. Y., Ved’, M. V., Sakhnenko, N. D., Sachanov, Y. I. (2017). Composition, Morphology, and Topography of Galvanic Coatings Fe-Co and Fe-Co-Mo. Nanoscale Research Letters, 12 (1). doi: https://doi.org/10.1186/s11671-017-2128-3

43. Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi: https://doi.org/10.1344/s2070205116010093

44. Vasilyeva, M. S., Rudnev, V. S., Ustinov, A. Y., Korostenko, I. A., Modin, E. B., Voitenko, O. V. (2019). Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 257 (4), 1229–1246. doi: https://doi.org/10.1016/j.apsusc.2019.08.031

45. Krishtal, M. M. (2008). Oxide Layer Formation by Micro-Arc Oxidation on Structurally Modified Al-Si Alloys and Applications for Large-Sized Articles Manufacturing. Advanced Materials Research, 59, 204–208. doi: https://doi.org/10.4028/www.scientific.net/amr.59.204

46. Parsadanov, I. V., Sakhnenko, N. D., Ved’, M. V., Rykova, I. V., Khyzhniak, V. A., Karakurkchi, A. V., Gorokhivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosy Khimi i Khimicheskoi Tekhnologii, 6, 75–81.

47. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: https://doi.org/10.1016/j.surfcoat.2016.06.076

DOI: 10.15587/1729-4061.2019.168863

A STUDY OF ELECTROCHROMIC Ni(OH)2 FILMS OBTAINED IN THE PRESENCE OF SMALL AMOUNTS OF ALUMINUM (p. 39-45)

Valerii Kotok
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
Vyatka State University, Kirov, Russian Federation
ORCID: http://orcid.org/0000-0001-8879-7189

Vadym Kovalenko
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
Vyatka State University, Kirov, Russian Federation
ORCID: http://orcid.org/0000-0002-8012-6732

The research is related to the synthesis of electrochromic films of nickel hydroxide with aluminum as a dopant. Films were deposited via cathodic template synthesis in the presence of polyvinyl alcohol from solutions containing 0.01 M Ni(NO3)2 and Al(NO3)3. Aluminum nitrate was added in different concentrations: 0.138, 0.257 and 0.550 mM. The necessary aluminum concentration was calculated based on the theoretical grounding with the use of Faraday’s law equation. All of the prepared films demonstrated electrochemical activity, and the film deposited from the solution containing 0.01 M Ni(NO3)2 and 0.138 mM Al(NO3)3 demonstrated the best results. The film cycled reversibly with the coloration degree of – 81 %. At the same time, the film prepared under the same conditions without the dopant demonstrated the coloration degree of 75.8 %.

All films deposited in the presence of aluminum had lower switching, especially bleaching, speed in comparison to the undoped reference sample.

Morphology study of the prepared films revealed that the latter differs little. The film deposited in the presence of 0.138 mM Al(NO3)3 had spherical formations on its surface. It was also found that the morphology of the substrate, which was glass coated with SnO2:F differed significantly from the morphology of the films deposited with and without the dopant.

The film deposited from the solution of 0.01 M Ni(NO3)2 and 0.138 mM Al(NO3)3 was confirmed to contain aluminum. The mass ratio of aluminum to nickel in the Ni–Al–138 film varied between 1:10.23 and 1:16.44.

Keywords: Ni(OH)2, nickel hydroxide, electrochromism, electrodeposition, cyclic voltamperometry, aluminum, solubility product.

References

1. Deb, S. K. (1969). A Novel Electrophotographic System. Applied Optics, 8 (51), 192–195. doi: https://doi.org/10.1364/ao.8.000192
2. Hurditch, R. (1975). Electrochromism in hydrated tungsten-oxide films. Electronics Letters, 11 (7), 142. doi: https://doi.org/10.1049/el:19750109
3. Rosseinsky, D. R., Mortimer, R. J. (2001). Electrochromic Systems and the Prospects for Devices. Advanced Materials, 13 (11), 783–793. doi: https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-d
4. Livage, J., Ganguli, D. (2001). Sol–gel electrochromic coatings and devices: A review. Solar Energy Materials and Solar Cells, 68 (3-4), 365–381. doi: https://doi.org/10.1016/s0927-0248(00)00369-x
5. Cai, G., Eh, A. L.-S., Ji, L., Lee, P. S. (2017). Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 1 (12), 1700074. doi: https://doi.org/10.1002/adsu.201700074
6. Kondulkar, V. V., Mali, S. S., Kharede, R. R., Khot, K. V., Patil, P. B., Mane, R. M. et al. (2015). High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis. Dalton Transactions, 44 (6), 2788–2800. doi: https://doi.org/10.1039/c5dt02953d
7. Monk, P. (1995). The effect of doping electrochromic molybdenum oxide with other metal oxides: Correlation of optical and kinetic properties. Solid State Ionics, 80 (1-2), 75–85. doi: https://doi.org/10.1016/0167-2738(95)00130-x
8. Özer, N., Sabuncu, S., Cronin, J. (1999). Electrochromic properties of sol-gel deposited Ti-doped vanadium oxide film. Thin Solid Films, 338 (1-2), 201–206. doi: https://doi.org/10.1016/s0040-6090(98)00974-2
9. Smart windows: electrochromic windows for building optimisation. Available at: https://www.sageglass.com/sites/default/files/masdar_technology_journal_issue_5_september_2018_smart_windows.pdf
10. Arzens, A., Granqvist, C. (2003). Electrochromic smart windows: energy efficiency and device aspects. Journal of Solid State Electrochemistry, 7 (2), 64–68. doi: https://doi.org/10.1002/s10008-002-0313-4
11. Shen, P. K. (1991). The Performance of Electrochromic Tungsten Trioxide Films Doped with Cobalt or Nickel. Journal of The Elec-
trochemical Society, 138 (9), 2778–2783. doi: https://doi.org/10.1149/1.2086054
12. Zhang, J., Cai, G., Zhou, D., Tang, H., Wang, X., Gu, C., Tu, J. (2014). Co-doped NiO nanoflake array films with enhanced electrochromic properties. Journal of Materials Chemistry C, 2 (34), 7013–7021. doi: https://doi.org/10.1039/c4tc01033g
13. Patil, P. S., Mujawar, S. H., Sadale, S. B. (2005). Electrochromic properties of spray deposited TiO2-doped WO3 thin films. Applied Surface Science, 250 (1–4), 117–123. doi: https://doi.org/10.1016/j.apsusc.2004.12.042
14. Schmitt, M., Aegeert, M. A. (2001). Electrochromic properties of pure and doped Nb2O5 coatings and devices. Electrochimica Acta, 46 (13–14), 2105–2111. doi: https://doi.org/10.1016/s0013-4686(01)00300-2
15. Lou, X., Zhao, X., Feng, J., Zhou, X. (2009). Electrochromic properties of Al doped B-substituted NiO films prepared by sol-gel. Progress in Organic Coatings, 64 (2–3), 300–303. doi: https://doi.org/10.1016/j.porgcoat.2008.09.006
16. Lin, F., Nordlund, D., Weng, T.-C., Moore, R. G., Gillaspe, D. T., Dillon, A. C. et al. (2013). Hole Doping in Al-Containing Nickel Oxide Materials To Improve Electrochromic Performance. ACS Applied Materials & Interfaces, 5 (2), 301–309. doi: https://doi.org/10.1021/ame20097b
17. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (67)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
18. Garcia, G., Buonsanti, R., Llordes, A., Runnerstrom, E. L., Bergerud, A., Milliron, D. J. (2013). Near-Infrared Spectrally Selective Plasmonic Electrochromic Thin Films. Advanced Optical Materials, 1 (3), 215–220. doi: https://doi.org/10.1002/adom.201200051
19. Bi, Z., Zhang, S., Xu, X., Hu, X., Li, X., Gao, X. (2015). A novel nano-composite of WO3 modified Al-doped ZnO nanowires with enhanced electrochromic performance. Materials Letters, 160, 186–189. doi: https://doi.org/10.1016/j.matlet.2015.07.107
20. Wu, Z.-S., Ren, W., Xu, L., Li, F., Cheng, H.-M. (2011). Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 5 (7), 5463–5471. doi: https://doi.org/10.1021/nn2006249
21. Cao, D., Lan, J., Wang, W., Smit, B. (2009). Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials. Angewandte Chemie International Edition, 48 (28), 4730–4733. doi: https://doi.org/10.1002/anie.200900960
22. Kotok, V. A., Malyshov, V. S., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.007171jss
23. Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A., Burbok, A. A., Kohylinska, N. G. et al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2-based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353. Available at: http://www.arpnjournals.org/jeas/research_papers(rp_2019/jeas_019_7562.pdf
24. Kotok, V., Kovalenko, V. (2018). A study of the effect of cycling modes on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 62–69. doi: https://doi.org/10.15587/1729-4061.2018.150377
25. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
26. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabeate, S., Mehdi, A. et al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977. Available at: https://pdfs.semanticscholar.org/5628/61836625c1b46d0adb7be73e7db5338519.pdf
27. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (1 (89)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
28. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

DOI: 10.15587/1729-4061.2019.169627
PREDICTION OF THE ELECTRICAL RESISTANCE OF MULTILAYER CARBON FIBER COMPOSITES (p. 46-54)

Vadym Stavychenko
National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-8265-5542

Svitlana Purhina
National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-6992-5210

Pavlo Shestakov
National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-4286-1218

Maryna Shevtsova
National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-0876-0712

Lina Smovziuk
National Aerospace University Kharkiv Aviation Institute, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-9848-4200

The issues of calculation of electrical phenomena in multilayer carbon fiber composite materials are considered. The method for assessing the reliability of composite material models for modeling electrical phenomena in composite structures is proposed. The method is based on the comparison of the calculated and experimental values of the electrical resistance of material specimens with certain lay-up sequences of the layers. Experimental determination of the electrical resistance of specimens of single-layer and multilayer composites based on fiber reinforcement materials is carried out. The calculation of resistance of the composites on the basis of these materials using the homogeneous model, as well as the layered model of composite material implemented by the finite element method was carried out. The initial data for modeling in the form of the coefficients of the electrical conductivity of the layers were obtained from the experimental results. The calculation of the comparison results of the homogeneous and layered models with the experimental results was carried out. On the basis of the obtained numerical results, as well as by distribution analysis of electric potential in the models of the specimens, the application areas of the models were evaluated. According to the results of the analysis, the homogeneous model gives acceptable...
results with an accuracy of 12% for materials that have an alternation of layers with different reinforcement angles. For the material where the layers with one reinforcement angle form clusters, the homogeneous model gave an error exceeding 50%. In all cases considered, the layered model of the material provides high accuracy of modeling with an error less than 10%. Based on the analysis, practical recommendations are given for modeling electrical phenomena in composite structures.

Keywords: composite material, homogeneous model, layered model, electrical conductivity, finite element method.

References

1. Mohd Radzuan, N. A., Sulong, A. B., Sahari, J. (2017). A review of electrical conductivity models for composite polymer composite. International Journal of Hydrogen Energy, 42 (14), 9262–9273. doi: 10.1016/j.ijhydene.2016.03.045

2. Stavychenko, V., Purhina, S., Shestakov, P. (2018). Prediction of specific electrical resistivity of polymeric composites based on carbon fabrics. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 46–53. doi: 10.15587/1729-4061.2018.129062

3. Piche, A., Revel, I., Peres, G. (2011). Experimental and Numerical Methods to Characterize Electrical Behaviour of Carbon Fiber Composites Used in Aeronautic Industry. Experimental and Numerical Methods to Characterize Electrical Behaviour of Carbon Fiber Composites Used in Aeronautic Industry. doi: https://doi.org/10.5772/17563

4. Zhao, Y., Tong, J., Yang, C., Chan, Y., Li, L. (2016). A simulation model of electrical resistance applied in designing conductive woven fabrics. Textile Research Journal, 86 (16), 1688–1700. doi: 10.1177/0040517515590408

5. Piche, A., Andissac, D., Revel, I., Lepetit, B. (2011). Dynamic electrical behaviour of a composite material during a short circuit. Proceedings of EMC Europe 2011 York. 10th International Symposium on Electromagnetic Compatibility, 128–132.

6. Holloway, C. L., Sarto, M. S., Johansson, M. (2005). Analyzing Carbon-Fiber Composite Materials With Equivalent-Layer Models. IEEE Transactions on Electromagnetic Compatibility, 47 (4), 833–844. doi: 10.1109/temc.2005.854101

7. Angelidis, N., Khemiri, N., Irving, P. E. (2003). Damage detection in CFRP laminates using electrical potential techniques. Proceedings of SPIE. The International Society for Optical Engineering. doi: 10.1117/12.508892

8. Roh, H. D., Lee, S.-Y., Jo, E., Kim, H., Ji, W., Park, Y.-B. (2019). Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement. Composite Structures, 216, 142–150. doi: 10.1016/j.compstruct.2019.02.100

9. De Toro Espejel, J. F., Sharif Khodaei, Z. (2017). Lightning Strike Simulation in Composite Structures. Key Engineering Materials, 754, 181–184. doi: 10.4028/www.scientific.net/ kem.754.181

10. Gao, S.-P., Lee, H. M., Gao, R. X.-K., Lin, Q. F., Thitsartarn, W., Liu, E.-X., Png, C. E. (2017). Effective modeling of multidirectional CFRP panels based on characterizing unidirectional samples for studying the lightning direct effect. 2017 XXXIIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). doi: 10.23919/ursigas.2017.8165177

11. Athanasopoulos, N., Kostopoulos, V. (2012). Calculation of an equivalent electrical conductivity tensor for multidirectional carbon fiber reinforced materials. Progress in Electromagnetics Research Symposium Proceedings. Moscow, 1013–1018.

DOI: 10.15587/1729-4061.2019.156799

EFFECT OF QUENCHED AND TEMPER ON HARDNESS AND WEAR OF HRP STEEL (ARMOR STEEL CANDIDATE) (p. 55-61)

Abstract and References. Materials Science
5. Sampath, K. (2007). How to Choose Electrodes for Joining High-Strength Steels. Welding Journal, 26–28. Available at: https://app.aws.org/www/wj/2007/07/WJ_2007_07.pdf?_ga=2.143746806.298708127.1558695448-1529157542.1558695448
6. Messler, R. W. (1999). Principles of Welding. John Wiley & Sons. doi: https://doi.org/10.1002/9783527617487
7. Krauss, G. (1999). Martensite in steel: strength and structure. Materials Science and Engineering: A, 273-275, 40–57. doi: https://doi.org/10.1016/s0921-5093(99)00288-9
8. Wei, M. X., Wang, S. Q., Wang, L., Cui, X. H., Chen, K. M. (2011). Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel. Tribology International, 44 (7-8), 898–905. doi: https://doi.org/10.1016/j.triboint.2011.03.005
9. Dziurka, R., Pacyna, J. (2011). The influence of carbon content on the kinetics of phase transformations of undercooled austenite of the Cr-Mn-Mo model alloys. Archives of Materials Science and Engineering, 47 (2), 77–84.
10. Zhang, J., Cai, Q., Wu, H., Zhang, K., Wu, B. (2012). Effect of Tempering Temperature on Microstructure and Properties of E690 Offshore Plate Steel. Journal of Iron and Steel Research International, 19(3), 67–72. doi: https://doi.org/10.1006/s1006-7066(12)60076-4
11. Mishra, B., Jena, P. K., Ramakrishna, B., Madhu, V., Bhat, T. B., Gupta, N. K. (2012). Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. International Journal of Impact Engineering, 44, 17–28. doi: https://doi.org/10.1016/j.ijimpeng.2011.12.004
12. Matsunia, H., Mizuno, R., Funakawa, Y., Seto, K., Matsuoka, S., Tanaka, Y. (2013). Effects of auto-tempering behaviour of martensite on mechanical properties of ultra high strength steel sheets. Journal of Alloys and Compounds, 577, S661–S667. doi: https://doi.org/10.1016/j.jallcom.2012.04.108
13. Persson, E. (2014). Austenite grain growth in bearing steels. An investigation on steel grades 100Cr6 and 100CrMnMoSi8-4-6. Stockholm, 97.
14. Zdravecká, E., Tkáčová, J., Ondlák, M. (2014). Effect of microstructure factors on abrasion resistance of high-strength steels. Research in Agricultural Engineering, 60 (3), 115–120. doi: https://doi.org/10.17221/20/2013-rac
15. González, G., Molina, R., Delvalle, M., Moro, L. (2015). Variation of Creep Resistance in Ferritic Steels by a Heat Treatment. Procedia Materials Science, 9, 412–418. doi: https://doi.org/10.1016/j.mspro.2015.05.011
16. Sahu, D. C., Biro, E., Gerlich, A. P., Zhou, Y. (2016). Effects of tempering mode on the structural changes of martensite. Materials Science and Engineering: A, 673, 467–475. doi: https://doi.org/10.1016/j.msea.2016.07.092
17. Ebrahimi, A., Ghasemi Banadkouki, S. S. (2017). Mutual mechanical effects of ferrite and martensite in a low alloy ferrite-martensite dual phase steel. Journal of Alloys and Compounds, 708, 43–54. doi: https://doi.org/10.1016/j.jallcom.2017.02.287
18. Hidalgo, J., Findley, K. O., Santofimia, M. J. (2017). Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Materials Science and Engineering: A, 690, 337–347. doi: https://doi.org/10.1016/j.msea.2017.03.017
19. Hosmani, S. D., Kurhatti, R. V., Kabadi, V. K. (2017). Wear Behavior of Spherodized Cementite in Hyper Eutectoid Plain Carbon Steel. International Advanced Research Journal in Science, Engineering and Technology, 4 (7), 257–262. Available at: https://iarjset.com/upload/2017/july-17/IARJSET%2044.pdf
20. Chen, Y., Ping, D., Wang, Y., Zhao, X. (2018). An atomic mechanism for the formation of nanotwins in high carbon martensite. Journal of Alloys and Compounds, 767, 68–72. doi: https://doi.org/10.1016/j.jallcom.2018.07.099
21. Behrens, B.-A., Yilkiran, D., Schöler, S., Özkaya, F., Hübsner, S., Möhwald, K. (2018). Wear investigation of selective n-Fe2O3 oxide layers generated on surfaces for dry sheet metal forming. Procedia Manufacturing, 15, 923–930. doi: https://doi.org/10.1016/j.promfg.2018.07.404
22. Laboratory team, 2019, Modul Praktikum Uji Aus (Indonesian). Mechanical Engineering Departement, Faculty of Engineering, Yogyakarta, Gadjah Mada University.
23. Soejanto, Irwan (2009). Desain Eksperimen dengan Metode Taguchi. Yogyakarta, Graha Ilmu.
24. Krishaiah, K., Shahabudeen, P. (2012). Applied Design of Experiments and Taguchi Methods. New Delhi, 371.