Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony

Chang Liu 1,2, Hongmei Lei 1, Xueqin Ran Corresp., 1, Jiafu Wang Corresp. 1, 3

1 College of Animal Sciences, Guizhou university, Guiyang, China
2 College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
3 Tongren University, Tongren, China

Corresponding Authors: Xueqin Ran, Jiafu Wang
Email address: xqran@gzu.edu.cn, jfwang@gzu.edu.cn

The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest \(d_{n}/d_{s} \) ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski’s horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.
Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony

Chang Liu1,2, Hongmei Lei1, Xueqin Ran1*, Jiafu Wang1,3*

1 College of Animal Sciences, Guizhou University, Guiyang, China;
2 College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China;
3 Tongren University, Tongren, China.

Corresponding author Email: xqran@gzu.edu.cn (X. Ran), jfwang@gzu.edu.cn (J. Wang)

ABSTRACT

The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest \(d_N/d_S\) ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski’s horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.

INTRODUCTION

The major histocompatibility complex (MHC) genes play a major role in vertebrate immune systems and have a high degree of genetic diversity associated with the adaptive immune response and evolution (Lian et al., 2017; Kamath et al., 2011). The MHC system is divided into class I and class II, which are key parts of the immune system (Hughes et al., 1988). The MHC class II genes are highly polymorphic parts of the immune response that
act by presenting extracellular antigens to T lymphocytes. These molecules are heterodimers with α and β chains encoded by A and B genes. The polymorphic sites of the class II genes are typically located at exon 2, which codes for the first extracellular domain or the antigen binding sites (ABS). The exon 2 codes for a section of the pocket of the MHC molecule. The ABS mainly encoded the second exon of the MHC class II gene, have more variation than the neighboring regions in this sequence (Li et al., 2014), indicating that ABS variation may help to determine the rates of evolution across the MHC (Hughes et al., 1995). Previous studies have shown that exon 2 of MHC class II genes had the most polymorphisms and encoded the α and β domains principally responsible for peptide binding (O'Connor et al., 2007). The polymorphism of the MHC loci is commonly associated with different susceptibilities to infectious diseases (Hill et al., 2001), especially in sheep (Paterson et al., 1998), mice (Meyer-Lucht et al., 2005), voles (Kloch et al., 2010) and lemurs (Schad et al., 2005). The equine MHC class II loci may assist in determining the host response to pathogens encountered by the horse (Miller et al., 2017).

MHC variants play key roles in mate preference, kin recognition, and maternal-fetal interactions (Edwards et al., 1998; Bernatchez et al., 2003; Piertney et al., 2006). The diverse functions and characteristics of MHC molecules is reflected in the evolutionary and adaptive processes within and between populations (Sommer et al., 2005). The mechanisms of negative frequency-dependent selection (NFDS) and over-dominant selection have been well-studied in MHC genes. NFDS maintains intraspecific diversity and may interact with population density (Levitan et al., 2006; Meyer et al., 2007). Over-dominant selection can maintain genetic polymorphisms in populations (Takahata et al., 1990). Correlative and experimental support for the negative frequency-dependent selection of MHC genes has been shown in humans (Trachtenberg et al., 2003), reed warblers (Westerdahl et al., 2004), mice (Kubinak et al., 2012), sticklebacks (Eizaguirre et al., 2012; Bolnick and Stutz, 2017) and guppies (Phillips et al., 2018). There are a number of examples of asymmetric over-dominant selection in populations found in the wild and in the laboratory (Landry et al., 2001; Richman et al., 2001; Lenz et al., 2009; Schwensow et al., 2010; Lenz et al., 2013). These results are supported by several computer-based binding prediction studies (Lenz, 2011; Lau et al., 2015; Buhler et al., 2016; Pierini and Lenz, 2018). Three primary sources of evidence currently support the idea of balancing selection: (i) elevated levels of polymorphisms, (ii) the rates of nonsynonymous (\(d_{N}\)) to synonymous (\(d_{S}\)) nucleotide substitutions (Hughes et al., 1988; Hughes et al., 1989), and (iii) trans-species polymorphisms with alleles among species (Klein et al., 1993). The \(d_{N}/d_{S}\) ratio
is frequently used to measure selective pressure on genes (Yang et al., 2000), and more specifically, the markedly
different rates of evolution across the MHC genes (Hughes et al., 1995). Site-specific methods have found
elevated d_e/d_s ratios at ABS, suggesting substantially different rates of evolution across the MHC. MHC
variation within species and among species has proven to be useful in determining the historical patterns of
selection in various mammals (Cutrera et al., 2007).

In the family Equidae, the horse MHC class II gene, also known as equine leukocyte antigen (ELA) class
II, is located on the short arm of chromosome 20q14-q22 (Mäkinen et al., 1989; Ansari et al., 1988). It contains
the DQA, DQB, DRA, and DRB genes. The DQA and DRA genes encode for the α-chain of ELA class II
molecules, and the polymorphisms of the DQA and DRA genes have been determined in European equids (Luís
et al., 2005; Janova et al., 2009; Kamath et al., 2011). The DQB and DRB genes encode the β-chain of the ELA
class II complex, and high levels of DRB and DQB polymorphisms have been reported in Arabian and European
horses (Fraser et al., 1996; Mashima et al., 2003). Previous reports indicated that exon 2 of the ELA class II gene
is genetically diverse among horse populations (Kamath et al., 2011). We examined the sequence variation in
the second exon to determine the selective pressures and evolutionary path for the Guizhou pony.

The Guizhou pony is an indigenous species that was found in the Guizhou province during the Warring
States Period (475-221 B.C.) in Ancient China. It is one of five Chinese pony species and has a body height of
only 1.1 meters (10-11 hands). The mtDNA/SSR polymorphism has been determined in several pony populations
derived from native Irish, Canadian, and Chinese breeds using mtDNA/SSR markers (McGahern et al. 2006;
Prystupa et al. 2012). We sought to analyze the variation in the MHC II exon 2 of the DQA, DRA, DQB, and
DRB regions and their relationship with the selection and evolution in the GZP.

MATERIAL AND METHODS

Animal collection and DNA isolation

A total of 50 blood samples were collected from GZP in Ziyun County, Anshun, Guizhou Province, China. All
ponies used in our study were 4 to 8 years old. All animal procedures were approved by the Institutional Animal
Care and Use Committee of Guizhou University (Approval number EAE-GZU-2018-P007). The GZP were
randomly selected and were all well-developed and in good health, with heights ranging from 102 to 118 cm and
weights between 210 to 265 kg. Blood samples were collected from the jugular vein and were kept in EDTA
All samples were stored at -20°C until DNA extraction. Genomic DNA was extracted from blood samples using the SQ Blood DNA Kit (OMEGA, USA). The nucleic acid concentration of the extracted genomic DNA was calculated by determining OD260/OD280, and detected by 0.7% agarose gel electrophoresis.

PCR amplification, cloning, and sequencing

The exon 2 regions of the *ELA-DQA, DQB, DRA,* and *DRB* genes were amplified from genomic DNA using PCR with specific primers. We amplified 246 bp of the *DRA* using the equid-specific primers *DRA*-F and *DRA*-R (Albright Fraser et al., 1996), 246 bp of the *DQA* using the primers *DQA*-F and *DQA*-R (Fraser et al., 1998), 276 bp of the *DRB* using the primers *DRB*-F and *DRB*-R (Fraser et al., 1996), and 230 bp of the *DQB* using the primers *DQB*-F and *DQB*-R (Mashima et al., 2003). All primers were synthesized by the Bio-Engineering Company (Shanghai, China) (*Table 1*). The total PCR volume was 20 μL, and contained 10 μL of 2 × PCR Mixture (0.1 U Taq Plus Polymerase/μL, 500 μM dNTP each, 20 mM Tris-HCl (pH8.3), 100 mM KCl, 3 mM MgCl₂), 0.4 μL of upstream/downstream primers (10 μmol/L), and 1 μL templates. PCR amplification was carried out with initial denaturation at 95 °C for 5 min, followed by 30 cycles (95 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 s), and a final extension at 72°C for 10 min. PCR products were extracted and purified using the Gel Extraction Kit (OMEGA, USA), and were ligated into pGEM®-T vectors and transformed into *E. coli* competent cells. Twenty positive clones of each sample were removed with a sterile toothpick and were detected using the Sanger sequencing method (Invitrogen, China). Alleles were confirmed if the same allele was observed in at least two different individuals.

DNA sequence polymorphism analysis

The base composition of the *DRA, DRB, DQA* and *DQB* genes was analyzed using MEGA7 software (Kumar et al., 2016). Standard descriptive diversity indices for each locus within the GZP were calculated using MEGA7 software, including the variable sites (V), parsim-info sites (P), singleton sites (S), and the transition/transversion bias ratio (R). It was important to ascertain whether the variability was uniformly distributed or was confined to small segments of the variable regions when determining the nature of the variable region. The Wu–Kabat variability index was calculated using the formula by Wu and Kabat (Wu et al., 1970) with respect to amino acids at peptide-binding pockets. The variation of amino acids was calculated by the mutation rate (variability =
number of different amino acids at a certain position/frequency of the most common amino acids at this position) (Wu et al., 1970). Selection was estimated using MEGA7 software in terms of the relative rates of nonsynonymous (d_N) and synonymous (d_S) mutations, according to Nei and Gojobori’s method with the Jukes and Cantor (JC) correction (Nei et al., 1986). The selection Z-Test ($P < 0.05$) was performed for all sites under the null hypothesis of neutrality ($d_N = d_S$) and the alternative hypotheses of non-neutrality ($d_N \neq d_S$), positive selection ($d_N > d_S$), and purifying selection ($d_N < d_S$).

Site-specific selection analyses and protein 3D structure analysis

We estimated the nonsynonymous and synonymous substitutions in the overall domain, ABS, and non-ABS for the DQA, DQB, DRA and DRB alleles. We assessed the positive selection using CodeML subroutine in the PAML program (Yang, 2007), which was more sensitive than other methods for assessing selection at the molecular level (Anisimova et al., 2001). The PAML program used the maximum likelihood estimation to examine heterogeneity in rates of $\omega = d_N/d_S$ among codons (Bielawski et al., 2003). The PAML program was able to better detect the molecular evidence of selection compared to other programs (Anisimova et al., 2003). We assessed heterogeneity in ω ($\omega < 1$: purifying selection, $\omega = 1$: neutral evolution, $\omega > 1$: positive selection) across the four alleles (DQA, DQB, DRA and DRB) to identify codons under positive selection. The observed ω value followed six models in PAML: M0 (one ratio, average ω across all sites), M1a (nearly neutral), M2a (positive selection), M3 (discrete), M7 (beta), and M8 (beta and omega) (Yang et al., 2000). We used the online SWISS-MODEL program (Biasini et al., 2014; Waterhouse et al., 2018) (https://swissmodel.expasy.org/interactive) to make predictions about the DQA, DQB, DRA and DRB protein structures.

Phylogenetic allele networks

We constructed a median-joining haplotype network to infer the phylogenetic relationships among the sequence haplotypes (Bandelt et al., 1999) using the maximum parsimony in Network 4.6.1 (http://www.fluxus-engineering.com/sharenet.htm). The haplotype median networks of DQA, DQB, DRA and DRB between GZP and known horse species ($Eqca$, $E.callabus$; $Eqpr$, $E.przewalski$; $Eqki$, $E.kiang$; $Eqgr$, $E.grevyi$; $Eqas$, $E.asinus$; $Eqbu$, $E.burchelli$; $Eqze$, $E.zebra$; $Eqhe$, $E.hemionus$) from GenBank were plotted using NetWork 4.6. The frequency information and population proportion of the alleles were incorporated into the visualization of the
network. Sequences from the horse, including *E. callabus*, *E. przewalskii*, *E. burchellii*, *E. asinus*, were incorporated to evaluate the distance from the Guizhou pony’s haplotypes (Table 2).

RESULTS

Analysis of nucleotide diversity

184 alleles were identified from 1000 sequencing clones, with 118 effective alleles selected from the total. Of the 118 alleles, there were 18 novel *DQA* alleles (GenBank accession number: MT304744 - MT304761), 38 new *DQB* alleles (MT304705 - MT304743), 22 new *DRA* alleles (MT304762 - MT304783) and 28 new *DRB* alleles (MT304784 - MT304811) (Table S1). The alignment results are listed in Table S1 for the effective alleles from *DQA*, *DQB*, *DRA*, *DRB* and the sequences of JQ254059, AF034122, AJ575295, and AF144564. A considerable sequence diversity within the genus was revealed based on the *DQA*, *DQB*, *DRB* alignment results. The nucleotide diversity in *DRA* was much lower than in *DQA/B* and *DRB* in GZP, which is comparable with the level of nucleotide diversity in *DRA* from other species in the Equus genus (Kamath et al., 2011). Within the GZP, the genetic diversity was much higher in *DQA*, *DQB*, and *DRB* than in *DRA* and the ratio (variable sites/length) was the lowest at the *DRA* locus (15.04%) and highest at the DQB locus (46.08%).

Analysis of nucleotide compositions

The GC contents of *DQB* and *DRB* were higher than those of *DQA* and *DRA* (Table S2). The content of G+C (48.10 %) was slightly lower than that of A+T (51.90 %) at *DQA*, and the content of G+C (48.10 %) was lower than that of A+T (51.90 %) at *DRA*, which revealed that *DQA* and *DRA* had lower GC percentages. However, the base composition of G+C (64.20 %) was higher than that of A+T (35.80 %) in *DQB* alleles, and the base composition of G+C (61.90 %) was more than that of A+T (38.10 %) in *DRB* alleles, revealing that *DQB* and *DRB* had a higher GC content. The R (transitions/transversions) was 1.357 and 2.241 in the *DQA* and *DRA* alleles, respectively. However, there was an R of 0.778 and 0.573 in the *DQB* and *DRB* alleles, respectively. Our results revealed that the *DRA* locus was more well-conserved than the other loci.

The amino acid composition analyses

We determined that the exon 2 of the *DQA*, *DQB*, *DRA*, and *DRB* nucleotide sequences encoded 82, 76, 81, and 79 amino acid sequences, respectively. The underlined residues in Fig.1 indicated an assumed ABS, based on the HLA equivalents (Brown et al., 1988; Brown et al., 1993), and may contact the antigen peptides (Fig 1.A-
D). There were 38 (45.12 %), 51 (67.10 %), 16 (19.75 %), and 49 sites (62.02 %) that were variable in the predicted amino acid sites of the DQA, DQB, DRA and DRB of GZP populations, respectively. For the ABS, 17 of 21 sites (80.95 %), 12 of 18 sites (66.67 %), 5 of 20 sites (25.00 %), and 13 of 14 sites (92.85 %) were diverse at the DQA, DQB, DRA and DRB loci. The amino acid compositions of DQA, DQB, DRA, and DRB at ABS were calculated using MEGA 7 software (Fig. 2). There were more polar R-amino acids at the DQA locus (46.30 %), and included Gly, Cys, Ser, Tyr, Thr, Asn, and Gln (Fig. 2). The non-polar R-amino acids at the DRA locus had the highest percentage (58.86 %), and included Ala, Leu, Val, Trp, Ile, Phe, Pro, and Met (Fig. 2). The largest proportion of charged R-amino acids (30.70 %) was located at DQB, and consisted of Arg, Lys, His, Glu, and Asp (Fig. 2).

Global selection analyses

The Wu-Kabat variability index was not used to select all of the variable amino acids (Wu et al., 1970). A total of fifteen amino acids at the DQA locus were strongly selected at residues 10, 17, 18, 21, 23, 30, 46, 51, 52, 58, 60, 61, 62, 65 and 72, with the highest variability occurring at residue 60 (Fig. 3). Many polymorphic sites were observed at the DQB locus, with eight high mutation loci at residues at 16, 27, 38, 46, 47, 57, 61, and 65 (Fig. 3). 12 residues were found to be polymorphic at the DRA locus, including residues at 12, 14, 15, 19, 29, 39, 47, 49, 63, 64, 67 and 69 (Fig. 3). Amino acid residues at six different positions in the DRB locus had high values (more than 30) on the Wu-Kabat variability index, and the strongly selected amino acid regions were found at residues 1, 2, 4, 5, 6, 7, 8, 12, 19, 28, 36, 47, 48, 50, 56, 58, 61, 62, 65 and 69 (Fig. 3). A comparison of the \(d_N/d_S \) ratio averaged across the whole coding region suggested that positive selection occurred at loci DQB \((d_N/d_S = 1.127, p=0.322) \) and DRB \((d_N/d_S =1.228, p=0.202) \), and purifying selection appeared at DQA \((d_N/d_S = 0.779, p=0.143) \) and DRA \((d_N/d_S =0.560, p=0.069) \) (Table 3). All codon sites were not statistically significant according to the Z-tests \((p > 0.05, \text{ Table 3}) \). The estimates of \(d_N/d_S \) suggested that DQA and DRA were not affected by the positive selection at the genetic level.

Site-specific selection analyses

It is unlikely for selection to act uniformly across MHC genes over evolutionary time. Selection was more likely to occur at specific codons based on their functional role. The rate of nonsynonymous substitutions for the ABS \((d_N =0.594 \pm 0.132) \) exceeded the number of synonymous substitutions four times \((d_S=0.128 \pm 0.080) \) at the
Our results are in agreement with those observed in the Argentine Creole horse, which exhibited rates of nonsynonymous substitutions more than four times the number of synonymous substitutions at exon 2 of ELA-DRB (Díaz et al., 2001). The ABS rates of synonymous substitutions and nonsynonymous substitutions for DQA and DQB were similar (d_N=0.330±0.088, d_S=0.287±0.110; d_N=0.206±0.079, d_S=0.133±0.076, respectively) (Table 3). The ABS sites at the DRA exhibited less nonsynonymous substitutions (d_N=0.017±0.008) than synonymous substitutions (d_S=0.028±0.022) with a d_N/d_S ratio of 0.607 (Table 3). Z-tests performed separately on ABS were significant for DRB ($p = 0.001$) providing evidence for positive selection at these sites. We could not reject the null hypothesis of neutral evolution at the non-ABS site (Table 3). The Z-tests by site type at the DQA, DQB, and DRA sites could not reject the null hypothesis of neutrality ($p > 0.05$).

In contrast, the non-ABS sites showed more synonymous substitutions than nonsynonymous substitutions with d_N/d_S ratios of 0.581, 0.895, 0.520, and 0.678 at DQA, DQB, DRA and DRB, respectively (Table 3).

The results from the selection analyses in PAML revealed different levels of selection for the four loci (Table 4). The variable evolutionary rates across the codon sites (M3) fit our data better than the M0 model and models M2a and M8 had higher log-likelihoods than positive selection (M1a and M7). The M2a and M8 models implied that approximately 2% of sites may be under positive selection at the DQA site ($\omega = 8.583$, $\omega = 8.425$) (Table 4). The posterior means of ω were estimated across the DQA codons under positive selection models and predicted fourteen sites (positions 10, 17, 18, 30, 46, 51, 52, 60, 61, 65, 68, 69, 70, 72) that may be under selection ($\omega > 1$), nine (10, 30, 46, 51, 52, 61, 65, 68, and 72) of which were also putative ABS, based on the HLA equivalents (Fig. 4). However, the discrete model (M3: 3 discrete evolutionary rate classes) had the highest log-likelihood and estimated that only 6.6% of codon sites had ω values greater than one ($\omega = 10.031$) with the remaining 93.4% of sites being assigned ω values close to 0 (Table 4).

However, the posterior means of ω across DQB codon sites estimated by M2a ($\omega = 6.240$) and M8 ($\omega = 6.373$) predicted that only five codons were under significant positive selection (positions 16, 27, 47, 57, 61). These five codons were also known as putative ABS based on the HLA equivalents (Fig. 4). The M3 model at the DQB estimated that approximately 8% of codon sites had ω values greater than one (7.3% with $\omega = 1.283$; 0.6% with $\omega = 6.935$) with the remaining 92% of sites being assigned ω values close to 0 ($\omega = 0.054$) (Table 4).

The M3 model estimated that only 6.6% of codon sites had ω values greater than one ($\omega = 10.031$) with
the remaining 93.4% of sites being assigned ω values close to 0 for the DRA (Table 4). Moreover, the posterior means of ω across the DRA codon sites estimated by M2a ($\omega=10.286$) and M8 ($\omega=10.323$) predicted that nine codons (positions 12, 14, 15, 16, 18, 19, 49, 64, 68) were under significant positive selection. However, only two sites (19 and 49) were known as putative ABS based on the HLA equivalents (Fig. 4).

The M3 model estimated that 14.6% of codon sites had ω values greater than one ($\omega_1=1.351$, $\omega_2=6.823$) at the DRB (Table 4), which was higher than the other MHC class II codons (DQA, DQB and DRA). The posterior means of ω across the DRB codon sites were estimated by the M2a ($\omega=5.972$) and M8 ($\omega=5.961$) models and predicted that twelve codons (positions 1, 2, 23, 28, 47, 48, 58, 61, 62, 65, 69, and 77) were under significant positive selection, seven (2, 28, 48, 58, 61, 69, and 77) of which were also putative ABS based on the HLA equivalents (Fig. 4).

Evolutionary analysis

We could not determine the genealogy of DQA, DQB, DRA and DRB due to the presence of loops in the network (Fig 5.A-D). Some alleles were more likely to be ancestral based on their internal position in the network and a greater frequency of mutational connections. These alleles seemed more likely to be ancestral at the DQA locus, including DQA1, DQA3, Eqca17, and Eqca18. Allele DQA1 appears to be ancestral for most alleles, namely DQA12, DQA13, DQA14, DQA15, DQA49, Eqca10, Eqbu6, Eqca20, Eqas1, Eqas2, Eqbu5, Eqca19, Eqbu4, and Eqbu12. Three haplotypes of Przewalski’s horse (Eqpr 3, Eqpr4 and Eqpr2) were separated from DQA3 by two mutational steps and were most closely related to GZP haplotypes. Meanwhile, the DQA1 allele was shared among four species (Eqca15, Eqgr1, Eqbu2 and Eqze1), DQA2 was shared with Eqca14, and DQA3 was shared between two species (Eqca16 and Eqbu20). At the DQB locus, allele DQB1 appears to be ancestral for most alleles, including DQB31, DQB23, DQB32, DQB10, DQB30, DQB33, DQB29, DQB3, DQB24, DQB34, DQB40, Eqas7 and Eqas4. We found that haplotypes DQB5 and DQB13 were shared between Eqca1 and Eqca7, respectively. Allele DRA5 was shared between Eqbu7 and Eqca5, and DRA1 was shared with DRA3 for the DRA locus. Interestingly, allele DRA1 seemed more likely to be ancestral, containing twenty alleles, including DRA21, DRA15, DRA13, DRA8, DRA18, DRA7, DRA14, DRA6, DRA20, DRA19, DRA17, DRA16, DRA2, DRA11, DRA10, DRA12, Eqca2, Eqca6, Eqca7, and Eqca8. Haplotypes Eqhe and DRA9 were separated from DRA1 by as two mutations step as are most closely related GZP haplotypes. Allele DRA5 seemed more likely to be
ancestral, Eqbu, Eqze, Eqgr, Egas were separated from DRA5 by one or two mutational step and are most closely related to the GZP haplotypes. Most DRB alleles were dispersed throughout the whole network, and there was a closer genetic relationship between GZP and other horse species. Wild ass haplotypes, Eqas3, Eqas4 and Eqas6, were separated from DRB28 by one mutational step, as are most closely-related GZP haplotypes. Furthermore, the haplotypes DRB2 (Eqpr1) and DRB3 (Eqpr2) were shared by GZP and Przewalski's horse. The haplotypes DRB1 (Eqca5), DRB2 (Eqca12), DRB4 (Eqca7), DRB5 (Eqca1), DRB15 (Eqca2) and DRB23 (Eqca8) were shared between GZP and the European horse.

DISCUSSION

Our study revealed the diversity of the four ELA class II gene regions, DQA, DQB, DRA and DRB, and the contribution of many novel alleles identified in GZP. Our data determined within-species variation using the numbers of alleles. 21 DQA alleles, 45 DQB alleles, 22 DRA alleles, and 31 DRB alleles were unequivocally identified from the GZP.

The DRA locus was relatively well-conserved in four GZP loci compared with the other three loci. The alignments of the DQA, DQB, and DRB genes revealed considerable sequence diversity. However, DRA had a lower nucleotide diversity. Our results are consistent with the level of nucleotide diversity at the genus level for Equus ELA genes as reported by Kamath et al (2011). DQB had the highest level of polymorphisms with a ratio of polymorphic sites of 46.08 %, this was followed by DRB and DQA. DRA had the lowest level of polymorphisms (15.04 %), which was consistent with the results of the DRA locus in dogs (Wagner et al., 1999), cats (Yuhki et al., 1995), goats (Takada et al., 1998), and pigs (Chardon et al., 1999). The genetic diversity of ELA is reportedly important for immune functions involving the resistance and susceptibility to pathogens (Trowsdale et al., 2004) with a probable mechanism of gene selection in the evolution process of the pony (Penn et al., 1999).

We detected the balancing selection events by determining the rate of non-synonymous/synonymous substitutions (dN/dS ratio) of nucleotides. Our results revealed a high genetic variability at the DQA, DQB, DRA, and DRB loci. The dN/dS ratio (dN/dS =0.560) at the DRA locus was the lowest, which was similar to the low levels of polymorphisms detected by sequence alignment. It has been established that the number of synonymous substitutions is greater than non-synonymous substitutions due to strong functional and structural constraints on
the protein (Kamath et al., 2011). The number of polymorphisms at the DRA locus may be attributed to the selective pressure for DRA haplotypes that present pathogenic antigens for the host species more efficiently (Albright-Fraser et al., 1996).

We found nine DQA codons, five DQB codons, nine DRA codons, and seven DRB codons under significant positive selection. The majority of these codons were predicted to be the ABS of ELA. The amino acids under site-specific selection were located on the protein surface based on SWISS-MODEL prediction results (Fig. 4) and were found on the inner surface of the MHC cleft with bound peptides in the antigen presentation (Madden et al., 1995). Several reports indicated that the diversity and nonsynonymous mutations at the ABS could improve the host’s ability to recognize pathogens (Hughes et al., 1988; Hughes et al., 1989). These data suggest that the different rates of non-synonymous and synonymous substitutions in DQA, DQB, DRA and DRB were closely related to the ABS changes in the GZP. In particular, the \(d_\text{s}/d_\text{S} \) ratio in the ABS was greater than that in the non-ABS region at the DQA, DQB and DRB loci, which is common in the Argentine Creole horse (Díaz et al., 2001). The \(d_\text{s}/d_\text{S} \) ratio of ABS was higher than the other regions, which may be due to balancing selection (Albright-Fraser et al., 1996), and the positive selection results in MHC polymorphisms (Yang et al., 2000).

The haplotype median network of DQA, DQB, DRA and DRB between GZP and other horses (Eqca, E. callabus; Eqpr, E. przewalski; Eqki, E. kiang; Eqgr, E. grevyi; Eqas, E. asinus; Eqbu, E. burchelli; Eqze, E. zebra; Eqhe, E. hemionus) were analyzed. Among these, several wild ass haplotypes were separated from DQA1, DQB1, and DRB28 by one or two mutational steps and are more closely related to GZP haplotypes. The divergence time between the horse and ass has been estimated to be 0.88–2.3 Ma (Krüger et al., 2005). One E. hemionus haplotype (Eqhe2) was separated from DRA by two mutational steps and is most closely related to GZP haplotypes. It suggested that DQA1, DQA3, DQB1, DRA1, DRA5, and DRB28 may be the oldest alleles.

The haplotypes DRB2 and DRB3 were shared between GZP and the Przewalski’s horse at the DRB locus. Przewalski’s horse haplotypes Eqpr3, Eqpr4 and Eqpr2 were separated from DQA3 by two mutational steps. Przewalski’s horse was discovered on the Asian steppes in the 1870s and it is the only surviving species of wild horse in the world (Wakefield et al., 2002). It is thought that the Przewalski’s horse and the domesticated horse populations separated about 45,000 years ago and maintained a certain degree of gene-flow (Der Sarkissian et al., 2015). Some haplotypes were shared between the GZP and European horses, including DQA1, DQA3, DQB5,
DQB13, DRB1, DRB2, DRB15, DRB23, DRB4, and DRB5. The allele DQA1 appears to be the ancestor for the three alleles, Eqca10, Eqca20, and Eqca19. Allele DRA1 seemed more likely to be ancestral for four alleles, including Eqca2, Eqca6, Eqca7, and Eqca8. The genes of the domesticated Asian horse may have dispersed into European populations because of the gene flow (Bjørnstade et al., 2003). Interestingly, the haplotypes DQA1, DQA3, and DRA5 were shared between the GZP and E. burchelli, E. grevyi and zebra. The divergence time between horses and zebras is estimated to be 0.86–2.3 Ma based on microsatellite trees (Krüger et al. 2005). The common ancestor of all extant forms may have existed about 3.9 Ma, and speciation leading to the zebra, ass, and horse may have occurred within the following 0.5 Ma (George et al., 1986). These data and our results indicated that the GZP is an ancient variety of equid. Additional studies on the GZP may advance our knowledge of unique haplotypes and their roles in the adaptation to local environmental pressures such as the unique pathogenic microorganisms in the mountainous and humid districts in Guizhou province, China.

CONCLUSION

Nucleotide diversity was detected from exon 2 of ELA-DQA, DQB, DRA, and DRB genes in the GZP using direct sequencing technology. Of those four loci, the DRA locus was relatively well-conserved and possessed the lowest diversity. Many codons in the ABS underwent positive selection, including nine DQA codons, five DQB codons, nine DRA codons, and seven DRB codons. The amino acids coded by selected codons were found on the inner surface of the cleft of the ELA complex and were bound to an antigen peptide. The selected sites may be related to the GZP’s ability to defend against foreign pathogens from the surrounding habitat. Many ancient alleles were detected at the DQA, DQB, DRA and DQB gene regions of GZP. Two older haplotypes of DRB (DRB2 and DRB3) were shared by the GZP and Przewalski’s horse. Two older haplotypes of DRA (DRA1 and DRA5) were separated from Eqbu, Eqze, Eqgr, and Egas by one or two mutations steps, and four older haplotypes of GZP (DQA1, DQA3, DQB1, and DRB28) were closer to the wild ass and Przewalski’s horse by only one or two mutational steps. The indigenous breed, GZP, may have retained ancient haplotyes in ELA genes. There may be a large number of unique haplotypes dispersed in GZP resulting from the long process of ELA molecule evolution. The unique genetic characteristics of GZP have been unclear, undervalued, and confused with other ponies. The genetic uniqueness revealed in our study is helpful to understand its genetic conservation of this ancient variety of pony.
References

Albright-Fraser DG, Reid R, Gerber V, Bailey E. 1996. Polymorphism of DRA among equids. Immunogenetics 43(5):315-7.

Anisimova M, Bielawski JP, Yang Z. 2001. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol. 8(1):1585-92.

Anisimova M, Nielsen R, Yang Z. 2003. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics (3):1229-36.

Ansari HA, Hediger R, Fries R, Stranzinger G. 1988. Chromosomal localization of the Major Histocompatibility Complex of the horse (ELA) by insitu hybridization. Immunogenetics 28(5):362-364.

Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37-48 DOI: 10.1093/oxfordjournals.molbev.a026036.

Bernatchez L, Landry C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16(3):363-77.

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252-8.

Bielawski JP, Yang Z. 2003. Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics 3(1-4):201-12.

Bjørnstad G, Nilsen NO, Røed KH. 2003. Genetic relationship between Mongolian and Norwegian horses? Anim Genet 34(1):55-8.

Bolnick DI, Stutz WE. 2017. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature. 2017;546(7657):285-288.

Bontrop RE, Otting N, de Groot NG, Doxiadis GG. 1999. Major histocompatibility complex class II polymorphisms in primates. Immunol Rev 167:339-50.

Brown JJ, Thomson W, Clegg P, Eyre S, Kennedy LJ, Matthews J, Carter S, Ollier WE. 2004. Polymorphisms of the equine major histocompatibility complex class II DRA locus. Tissue Antigens
64(2):173-9 DOI: 10.1111/j.1399-0039.2004.00269.x.

Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC. 1988. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 333(6175):786 DOI: 10.1038/332845a0.

Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 364(6432):33-9. DOI: 10.1038/364033a0

Buhler S, Nunes JM, Sanchez-Mazas A. 2016. HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics 68(6-7):401-416.

Chardon P, Renard C, Vaiman M. 1999. The major histocompatibility complex in swine. Immunol Rev 167:179-92.

Cutrera AP, Lacey EA. 2007. Trans-species polymorphism and evidence of selection on class II MHC loci in tuco-tucos (Rodentia: Ctenomyidae). Immunogenetics 59(12):937-48 DOI: 10.1007/s00251-007-0261-3.

Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafer B, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L. 2015. Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse. Curr Biol 25(19):2577-83 DOI: 10.1016/j.cub.2015.08.032.

Díaz S, Giovambattista G, Dulout FN, Peral-García P. 2001. Genetic variation of the second exon of ELA-DRB genes in Argentine Creole horses. Anim Genet 32(5):257-63.

Edwards SV, Hedrick PW. 1988. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13(8):305-11.

Eizaguirre C, Lenz TL, Kalbe M, Milinski M. 2012. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:621.

Figueroa F, Günther E, Klein J. 1988. MHC polymorphism pre-dating speciation. Nature 335(6187):265-7
Fraser DG, Bailey E. 1996. Demonstration of three DRB loci in a domestic horse family. Immunogenetics 44(6):441-5 DOI: 10.1007/bf02602805.

Fraser DG, Bailey E. 1998. Polymorphism and multiple loci for the horse DQA gene. Immunogenetics 1998, 47(6):487-490.

George M Jr, Ryder OA. 1986. Mitochondrial DNA evolution in the genus Equus. Mol Biol Evol 3(6):535-46 DOI: 10.1093/oxfordjournals.molbev.a040414.

Hill AV. 2001. The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2:373-400 DOI: 10.1146/annurev.genom.2.1.373.

Hughes AL, Nei M. 1988. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335(6186):167-70 DOI: 10.1038/335167a0.

Hughes AL, Nei M. 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl AcadSci U S A 86(3):958-62 DOI: 10.1073/pnas.86.3.958.

Hughes AL, Hughes MK. 1995. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics 42(4):233-43 DOI: 10.1007/bf00176440.

Janova E, Matiasovic J, Vahala J, Vodicka R, Van Dyk E, Horin P. 2009. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics 61(7):513-27 DOI: 10.1007/s00251-009-0380-0.DOI: 10.1007/s00251-009-0380-0.

Kamath PL, Getz WM. 2011. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus. BMC Evol Biol 11:128. DOI: 10.1186/1471-2148-11-128.

Klein J, Satta Y, Takahata N, O'hUigin C. 1993. Trans-specific Mhc polymorphism and the origin of species in primates. J Med Primatol 22(1):57-64.

Kloch A, Babik W, Bajer A, Siński E, Radwan J. 2010. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19 Suppl 1:255-65.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33(7):1870-4. DOI: 10.1093/molbev/msw054.

Krüger K, Gaillard C, Stranzinger G, Rieder S. 2005. Phylogenetic analysis and species allocation of
individual equids using microsatellite data. 122 Suppl 1:78-86.

Kubinak JL, Ruff JS, Hyzer CW, Slev PR, Potts WK. 2012. Experimental Viral Evolution to Specific Host MHC Genotypes Reveals Fitness and Virulence Trade-Offs in Alternative MHC Types. Proc Natl Acad Sci U S A 109(9):3422-7.

Landry C, Bernatchez L. 2001. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10(10):2525-39.

Lau Q, Chow N, Gray R, Gongora J, Higgins DP. 2015. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea). J Hered 106(4):395-402.

Lenz TL, Wells K, Pfeiffer M, Sommer S. 2009. Diverse MHC IIB Allele Repertoire Increases Parasite Resistance and Body Condition in the Long-tailed Giant Rat (Leopoldamys Sabanus). BMC Evol Biol 9:269.

Lenz TL, Eizaguirre C, Kalbe M, Milinski M. 2013. Evaluating patterns of convergent evolution and trans-species polymorphism at MHC immunogenes in two sympatric stickleback species. Evolution 67(8):2400-12.

Lenz TL. 2011. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution. 2011 ;65(8):2380-90.

Levitan DR, Ferrell DL. 2006. Selection on gamete recognition proteins depends on sex, density, and genotype frequency. Science 312, 267–269.

Lewin HA, Russell GC, Glass EJ. 1999. Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev. 167:145-58.

Li L, Wang BB, Ge YF & Wan QH. 2014. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. International Journal of Immunogenetics 41, 401–12.

Lian XD, Zhang XH, Dai ZX, Zheng YT. 2017. Characterization of Classical Major Histocompatibility Complex (MHC) Class II Genes in Northern Pig-Tailed Macaques (Macaca Leonina). Infect Genet Evol.56:26-35.
Luis C, Cothran EG, Oom MM, Bailey E. 2005. Major histocompatibility complex locus DRA polymorphism in the endangered Sorraia horse and related breeds. J Anim Breed Genet 122(1):69-72.

Mäkinen A, Chowdhary B, Mahdy E, Andersson L, Gustavsson I. 1989. Localization of the equine Major Histocompatibility Complex (ELA) to chromosome-20 by in situ hybridization. Hereditas 1989, 110(1):93-96.

Madden KS, Felten SY, Felten DL, Bellinger DL. 1995. Sympathetic nervous system--immune system interactions in young and old Fischer 344 rats. Ann N Y Acad Sci 771:523-34.

Mashima S. 2003. Comparative sequence analysis of equine and human MHC class II DQB genes. Cytogenet Genome Res 102(1-4):196-200 DOI: 10.1159/000075748.

McGahern AM, Edwards CJ, Bower MA, Heffernan A, Park SD, Brophy PO, Bradley DG, MacHugh DE, Hill EW. 2006. Mitochondrial DNA sequence diversity in extant Irish horse populations and in ancient horses. Anim Genet 37(5):498-502DOI: 10.1111/j.1365-2052.2006.01506.x.

Meyer-Lucht Y, Sommer S. 2005. MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14(7):2233-43 DOI: 10.1111/j.1365-294X.2005.02557.x.

Meyer JR, Kassen R. 2007. The effects of competition and predation on diversification in a model adaptive radiation. Nature 446, 432–435.

Miller D, Tallmadge RL, Binns M, Zhu B, Mohamoud YA, Ahmed A, Brooks SA, Antczak DF. 2017. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. Immunogenetics 69(3):145-15 DOI: 10.1007/s00251-016-0964-4.

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418-26 DOI: 10.1093/oxfordjournals.molbev.a040410.

O'Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O'Connor DH. 2007. Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 59(6):449-62.

Paterson S, Wilson K, Pemberton JM. 1998. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. Proc Natl Acad Sci U S A 95(7):3714-9 DOI: 10.1073/pnas.95.7.3714.
Piertney SB, Oliver MK. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96(1):7-21 DOI: 10.1038/sj.hdy.6800724.

Penn DJ, Potts WK. 1999. The Evolution of Mating Preferences and Major Histocompatibility Complex Genes. Am Nat 153(2):145-164 DOI: 10.1086/303166.

Phillips KP, Cable J, Mohammed RS, Herdegen-Radwan M, Raubic J, Przesmycka KJ, van Oosterhout C, Radwan J. 2018. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc Natl Acad Sci U S A 115(7):1552-1557.

Pierini F, Lenz TL. 2018. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol Biol Evol 35(9):2145-2158.

Prystupa JM, Hind P, Cothran EG, Plante Y. 2012. Maternal lineages in native Canadian equine populations and their relationship to the Nordic and Mountain and Moorland pony breeds. J Hered 103(3):380-90 DOI: 10.1093/jhered/ess003 DOI: 10.1093/jhered/ess003.

Richman AD, Herrera LG, Nash D. 2001. MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculatus): implications for models of balancing selection. Mol Ecol 10(12):2765-73.

Schad J, Ganzhorn JU, Sommer S. 2005. Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59(2):439-50.

Schwensow N, Dausmann K, Eberle M, Fietz J, Sommer S. 2010. Functional associations of similar MHC alleles and shared parasite species in two sympatric lemur species. Infect Genet Evol 10(5):662-8.

Sommer S. 2005. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16 DOI: 10.1186/1742-9994-2-16.

Takada T, Kikkawa Y, Yonekawa H, Amano T. 1998. Analysis of goat MHC class II DRA and DRB genes: identification of the expressed gene and new DRB alleles. Immuno genetics. 48(6):408-12 DOI: 10.1007/s002510050452.

Takahata N, Nei M. 1990. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124(4):967-78.

Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R, Fugate M, Theiler J, Hsu YS, Kunstman K, Wu S, Phair J, Erlich H, Wolinsky S. 2003. Advantage of rare HLA supertype
in HIV disease progression. Nat Med 9(7):928-35.

Trowsdale J, Parham P. 2004. Mini-review: defense strategies and immunity-related genes. Eur J Immunol 34(1):7-17 DOI: 10.1002/eji.200324693.

Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 24(2):318-9.

Wagner JL, Burnett RC, Storb R. 1999. Organization of the canine major histocompatibility complex: current perspectives. J Hered 90(1):35-8 DOI: 10.1093/jhered/90.1.35.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauroiello G, Gumieny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296-W303.

Wakefield S, Knowles J, Zimmermann W, van Dierendonck M. 2002. Chapter 7: Status and Action Plan for the Przewalski’s Horse (Equus ferus przewalskii) In: Moehlman PD, editor. Equids: Zebras, Asses, and Horses: Status Survey and Conservation Action Plan. IUCN/SCC Equid Specialist Group, IUCN (The World Conservation Union); Gland Switzerland and Cambridge.

Westerdahl H, Wittzell H, von Schantz T, Bensch S. 2004. MHC Class I Typing in a Songbird With Numerous Loci and High Polymorphism Using Motif-Specific PCR and DGGE. Heredity (Edinb) 92(6):534-42.

Wu TT, Kabat EA. 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132(2):211-50 DOI: 10.1084/jem.132.2.211.

Yuhki N, O’Brien SJ. 1997. Nature and origin of polymorphism in feline MHC class II DRA and DRB genes. J Immunol 158(6):2822-33.

Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496-503.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586-91 DOI: 10.1093/molbev/msm088.

Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-substitution models for heterogeneous selection
pressure at amino acid sites. Genetics 155(1):431-49.
Figure 1

The amino acid alignment of the $DQA(A)$, $DQB(B)$, $DRA(C)$ and $DRB(D)$ locus.

Underlined below amino acids indicated antigen binding sites (ABS). The missing amino acid was denoted with hyphen.
Figure 2

The distribution of amino acids with non-polar, polar and positively, negatively charged residues.

Non-polar R-amino acids: Ala, Leu, Val, Trp, Ile, Phe, Pro, Met; polar R-amino acids: Gly, Cys, Ser, Tyr, Thr, Asn, Gln; charged R-amino acids: Arg, Lys, His, Glu, Asp.
Figure 3

Wu-Kabat variability index of $DQA(A)$, $DQB(B)$, $DRA(C)$ and $DRB(D)$ loci.

The vertical index indicated the Wu-Kabat index at each amino acid position. The horizontal axis showed the consensus amino acids in the DQA, DQB, DRA and DRB peptides.
Figure 4

Fig. 4 The ABS binding residues of \textit{DQA} (A), \textit{DQB} (B), \textit{DRA} (C) and \textit{DRB} (D) in GZP.

The non-ABS region was circled in white color, the equivalent position of ABS were in red (Non-polar R-amino acids), blue (polar R-amino acids), green (positively charged R-amino acids) and purple (negatively charged R-amino acids), respectively.
Figure 5

Figure 5 Median-joining network of DQA(A), DQB(B), DRA(C) and DRB(D) sequences in the Equidae family.

The circle size was proportional to haplotype frequency.
Table 1 The primers for DRA, DRB, DQA and DQB gene detection.
Table 1 The primers for DRA, DRB, DQA and DQB gene detection.

Gene name	Primer name	Primer sequence (5'→3')	length (bp)
DRAexon2	DRA-F	AGGATCACGTGATCATCCAG	246
	DRA-R	CATTGGTGTGTGGAGTGTG	
DRBexon2	DRB-F	CTCTGCAGCACATTTCTGGAG	276
	DRB-R	CGCCGCTGCACCCAGGA	
DQBexon2	DQB-F	CTCGGATCCGCTAGTGCTACTTCACCAACG	230
	DQB-R	GAGCTGACGCTAGTGCTCTGCACAC	
DQAexon2	DQA-F	CTGATCACTTTGCTCTCTATG	246
	DQA-R	TGGTAGCAGAGCAGTTATGG	
Table 2 (on next page)

Table 2 General information regarding the horse populations analyzed in this Network study.
Table 2 General information regarding the horse populations analyzed in this Network study.

Locus	Breed	Source	GenBank ID
DQA	Guizhou pony	This study	MT304744 - MT304761
DQA	Equus przewalskii	NCBI	JX088699, JX088698, JX088697, JX088696, U92509, U92509
DQA	Equus caballus	NCBI	AF115329, AF115328, AF115327, AF115326, AF115325, AF115324, U92508, U92519, U92518, U92517, U92516, U92515, U92514, U92513, U92512, U92511, U92510, U92507, U92506, U92505
DQA	Equus burchellii	NCBI	EU935838, EU935837, EU935836, EU935834, EU935833, EU935832, EU935829, EU930130, HQ637409, HQ637408, HQ637407, HQ637397, HQ637406, HQ637405, HQ637404, HQ637403, HQ637402, HQ637401, HQ637400, HQ637399, HQ637398,
DQA	Equus zebra	NCBI	EU935838, EU935831, EU935830, EU935828
DQA	Equus asinus	NCBI	U92522, U92521
DQA	Equus hemionus	NCBI	U92520, EU930135
DQA	Equus kiang	NCBI	EU930134, EU930133, EU930132
DQB	Guizhou pony	This study	MT304705 - MT304743
DQB	Equus asinus	NCBI	AF034125, AF034124, AF034123, AF034122, U31776, U31775, U31774, XM_014839831.1
DQB	Equus przewalskii	NCBI	XM_008508365.1
DQB	Equus caballus	NCBI	JQ254069.1, L33910.1, XM_005603501.3, JQ254075.1, JQ254071.1, NM_001317256.1
DRA	Guizhou pony	This study	MT304762 - MT304783
DRA	Equus hemionus	NCBI	L47173, EU930128
DRA	Equus kiang	NCBI	FJ657514, EU930127
DRA	Equus greyvi	NCBI	EU930125, EU930116
DRA	Equus zebra	NCBI	EU930117, EU930119, EU930123, EU930124, EU930129
DRA	Equus burchellii	NCBI	EU930118, EU930120, EU930121, EU930122, EU930126, HQ637392, HQ637393, HQ637394, HQ637396, HQ637395, AJ575299
DRA	Equus caballus	NCBI	L47172, L47174, AJ575295, JN035631, JN035630, JN035629
DRB	Species	Source	GenBank Accession Numbers
----------	------------------	-----------------	---
DRB	*Equus asinus*	AJ575298, AJ575297, AJ575296, HM165492, FJ487912, L47171, AF541938	
DRB	*Guizhou pony*	This study	MT304784 - MT304811
DRB	*Equus przewalskii*	NCBI	AF084188.1, XM_008511984.1
DRB	*Equus caballus*	NCBI	L76972, L76978, L76976, L76975, L76974, L76977, L76973, AF170067, L77079, AF144564, XM_023624024.1, JQ254087.1, XR_002801945.1, XR_001379170.2, XM_023624023.1, XM_014734203.2, XM_014734205.1, NM_001142816.1, JN035625.1, JQ254096.1, JQ254095.1, L25644.1, JN035627, JN035623.1, JN035622.1, JN035621.1, JN035624.1, JQ254099.1, JN035626.1, JQ254093.1, XM_014846373.1, XR_001398881.1, XM_014846372.1, KJ596517.1, KJ596507.1, KJ596519.1, KJ596510.1, KJ596516.1, KJ596511.1, JQ254087.1
DRB	*Equus asinus*	NCBI	XM_014846373.1, XR_001398881.1
Table 3 The Indices of selection at the DQA, DQB, DRA and DRB loci.

aa distance: average pair-wise amino acid distance; d_N: nonsynonymous; d_S: synonymous; Z test p-values for rejecting the null hypothesis of neutrality ($d_N = d_S$) for the alternative hypotheses of non-neutrality ($d_N \neq d_S$), positive selection ($d_N > d_S$), and purifying selection ($d_N < d_S$).
Table 3 The Indices of selection at the DQA, DQB, DRA and DRB loci.

Allele	Type	No.	aa distance	d_N	d_S	d_N/d_S	Z;	Z;	Z;
				$d_S\neq d_S$	$d_S>d_S$	$d_S<d_S$			
DQA	All	82	0.213±0.029	0.138±0.024	0.177±0.042	0.779	0.296	1.000	0.143
	ABS	21	0.416±0.066	0.330±0.088	0.287±0.110	1.150	0.728	0.361	1.000
	non-ABS	61	0.148±0.031	0.086±0.021	0.148±0.041	0.581	0.123	1.000	0.061
DQB	All	76	0.155±0.026	0.097±0.018	0.086±0.018	1.127	0.621	0.322	1.000
	ABS	19	0.264±0.071	0.206±0.079	0.133±0.076	1.549	0.248	0.123	1.000
	non-ABS	57	0.124±0.024	0.068±0.014	0.076±0.019	0.895	0.734	1.000	0.371
DRA	All	81	0.028±0.007	0.014±0.004	0.025±0.007	0.560	0.138	1.000	0.069
	ABS	20	0.042±0.019	0.017±0.008	0.028±0.022	0.607	0.649	1.000	0.317
	non-ABS	61	0.023±0.007	0.013±0.004	0.025±0.008	0.520	0.133	1.000	0.077
DRB	All	79	0.212±0.028	0.141±0.023	0.114±0.025	1.228	0.429	0.202	1.000
	ABS	15	0.524±0.057	0.594±0.132	0.128±0.080	4.640	0.001	0.001	1.000
	non-ABS	64	0.144±0.025	0.076±0.015	0.112±0.029	0.678	0.247	1.000	0.129

aa distance: average pair-wise amino acid distance; d_N: nonsynonymous; d_S: synonymous; Z test p-values for rejecting the null hypothesis of neutrality ($d_N = d_S$) for the alternative hypotheses of non-neutrality ($d_N \neq d_S$), positive selection ($d_N > d_S$), and purifying selection ($d_N < d_S$).
Table 4 Estimation of codon evolution models for the ELA class II DQA, DQB, DRA and DRB loci.

Note: $p =$ number of free parameters in the ω distribution; $\ln L =$ log-likelihood; Model parameter estimates include the nonsynonymous to synonymous rate ratio (ω) and proportion of sites (p) under each ω site class. Sites under selection were predicted by the Bayes Empirical Bayes (BEB) approach: sites inferred to be under positive selection with posterior probabilities $>99\%$.

Locus	Nested model pairs	p	ln L	Parameter estimates	Site under positive selection
DQA					
M0: one-ratio	2	-1411.41	ω=1.002	NA	
M3: discrete	6	-1286.74	ω0=0.000, p0=0.585	NA	
			ω1=0.283, p1=0.361	NA	
			ω2=6.020, p2=0.054	NA	
M1a: nearly neutral	3	-1336.18	ω0=0.000, p0=0.851	NA	
M2a: positive selection	5	-1281.72	ω0=0.000, p0=0.775	10,17,18,30,46,51,60,61,65,69,70,72	
			ω1=0.283, p1=0.361	NA	
			ω2=6.020, p2=0.054	NA	
M7: beta	3	-1338.52	p=0.008, q=0.054	NA	
M8: beta&ω	5	-1281.73	p0=0.979, p1=0.021	10,17,18,30,46,51,52,60,61,65,68,69,70,72	
			p=0.005, q=0.020, ω=8.425	NA	
DQB					
M0: one-ratio	2	-1682.05	ω=0.449	NA	
M3: discrete	6	-1461.64	ω0=0.054, p0=0.921	NA	
			ω1=1.283, p1=0.073	NA	
			ω2=6.935, p2=0.006	NA	
M1a: nearly neutral	3	-1508.29	ω0=0.025, p0=0.951	NA	
M2a: positive selection	5	-1462.34	ω0=0.043, p0=0.913	16,27,57,61	
			ω1=1.000, p1=0.081	NA	
			ω2=6.240, p2=0.005	NA	
M7: beta	3	-1519.53	p=0.008, q=0.054	16,27,47,57,61	
M8: beta&ω	5	-1467.39	p0=0.994, p1=0.005	p=0.072, q=0.490, ω=6.373	
DRA					
M0: one-ratio	2	-632.76	ω=0.778	NA	
M3: discrete	6	-612.55	ω0=0.000, p0=0.924	NA	
			ω1=0.000, p1=0.010	NA	
			ω2=10.031, p2=0.066	NA	
M1a: nearly neutral	3	-626.11	ω0=0.000, p0=0.687	NA	
M2a: positive selection	5	-612.55	ω0=0.000, p0=0.934	12,14,15,16,18,19,49,64,68	
			ω1=1.000, p1=0.001	NA	
			ω2=10.286, p2=0.065	NA	
M7: beta	3	-627.68	p=0.013, q=0.020	12,14,15,16,18,19,49,64,68	
M8: beta&ω	5	-612.54	p0=0.934, p1=0.065	p=0.005, q=6.831, ω=10.323	
DRB					
M0: one-ratio	2	-1720.32	ω=0.772	NA	
M3: discrete	6	-1534.47	ω0=0.074, p0=0.854	NA	
			ω1=1.351, p1=0.131	NA	
\[\omega_2 = 6.823, \ p_2 = 0.015 \]

Model	Selection Type	Sites	log-likelihood	\[\omega_0, \ p_0 \]	\[\omega_1, \ p_1 \]	\[\omega_2, \ p_2 \]	Sites Under Selection
M1a	nearly neutral	3	-1580.21	\[0.030, 0.913 \]	\[1.000, 0.087 \]	NA	
M2a	positive selection	5	-1535.16	\[0.054, 0.827 \]	\[1.000, 0.158 \]	\[5.972, 0.015 \]	1,2,23,28,48,58,61,62,65,69,77
M7	beta	3	-1583.97	\[0.016, 0.104 \]		\[0.087, 0.328 \]	\[5.961 \]
M8	beta & \omega	5	-1536.75	\[0.984, 0.015 \]		\[0.087, 0.328 \]	\[5.961 \]

Note: \(p \) = number of free parameters in the \(\omega \) distribution; \(\ln L \) = log-likelihood; Model parameter estimates include the ratio of nonsynonymous to synonymous rate ratio \(\omega \) and proportion of sites \(p \) under each \(\omega \) site class. Sites under selection were predicted by the Bayes Empirical Bayes (BEB) approach: sites inferred to be under positive selection with posterior probabilities >99%.