Square metallic tubular sections bonded with high strength carbon fibre sheets under compression

S Sivasankar¹, L Ponraj Sankar², A Praveen Kumar³, M Shunmugasundaram³ and J Nagarjun³

¹Department of Civil Engineering, CMR Technical Campus, Hyderabad, Telangana
²Department of Civil Engineering, CMR Institute of Technology, Hyderabad, Telangana
³Department of Mechanical Engineering, CMR Technical Campus, Hyderabad, Telangana

E - mail:sivasankar.civil@cmrtc.ac.in

Abstract: This paper presents the strength and stiffness enhancement of square steel hollow sections wrapped by Carbon Fibre Reinforced Polymer (CFRP) strips. Main factors used were number of layers and size of the CFRP. Distances between the adjacent strips are kept constant spacing of 40 mm. According to the objective of the study, twelve hollow steel sections are wrapped by carbon fibre strips and two samples are without wrapping is kept reference for comparison. Results confirmed that the strength and stiffness are improved better for carbon fibre wrapped samples compared to unwrapped sample.

Keywords: Hollow steel section, FRP sheet, Compression, Stiffness, Number of layers and width of CFRP

1. Introduction
Metallic building constructions are increased widespread in recent times owing to improved advantages like strength and ductility. They are available in different forms in structural applications and hollow steel tubular members are frequently used as beams and columns now a day. Few reasons such as severe environmental exposure, heavy impact loads and fatigue loads causes buckling failure in hollow steel tubular members [1]. Construction industry needs a permanent solution without any further maintenance until their service life. Another important parameter considered before choose the repair/strengthening material is the self-weight. Fibre Reinforced Polymer (FRP) composites satisfy the above needs with easy application in the field with limited labour and time period. There have been sufficient researches conducted on concrete column with FRP strengthening [2, 3, 4, 5 and 6]. Sectional stiffness and deflection [7], cracking behaviour [8] and flexural behaviour [9 and 10] and ultimate strength of RC retrofitted beams [11] were discussed by many researchers. Study related to metallic structural strengthening and repair by FRP composites are explained in detail. For example, corroded circular steel columns retrofitted by AFRP sheets and the ultimate strength and stiffness improvement were discussed [12]. Fatigue strength of butt weld square steel sections are improved by CFRP sheets [13]. Elephant foot’s buckling of metallic cylindrical shell was improved by FRP [14, 15 and 16]. Concrete- filled stainless- steel tubes wrapped by CFRP sheets to enhance flexural behaviour and a model was developed to correlate the test results [17]. Centre cracked steel plates are restored by CFRP material and the fatigue strength were investigated [18]. Ultimate load enhancement of about 97% and 169% was achieved by repair and reinforcement of steel pipeline [19]. Strength improvement...
of around 79% was achieved in steel concrete composite girder using CFRP sheets. A model was suggested to predict the results [20].

2. Investigational Segments

2.1 Ingredients

2.1.1. Metallic sections

Metallic Hollow sections are selected based on IS IS 1161-1998 of size (91.5× 91.5) mm square shape and 3.6 mm thickness.

2.1.2 Carbon filament sheet

Carbon fibre sheet (MBRACE 240) issued by BASF were considered for wrapping the metallic section having a thickness of 0.234 mm. Tensile and yield value of fibre sheet is 3800 Mpa and 240000 Mpa respectively.

2.1.3 Bonding matrix

Resin (Epoxy) and hardener ratio of 100: 40 were considered as bonding agent (Mbrace saturant).

2.2 Specimen

Specimens were shortening into required size of 600 mm height. Totally four samples were used in the present research and their specimen ID’s and the wrapping pattern are presented in the Table 1. Sand blasting technique was performed to attain perfect bonding. Carbon sheets are cut into required size and glued on steel section with the help of resin mix based on wrapping pattern.

Sl.no	Specimen title	Width of sheet	Spacing	Number of layers
1	Control (CC)	---	---	0
2	70 mm (1 layer)	70 mm	50 mm	1
3	70 mm (2 layers)	70 mm	50 mm	2
4	70 mm (3 layers)	70 mm	50 mm	3

3. Equipment arrangement

Pictorial representation of equipment arrangement was presented in Figure 1. Compression test was performed under 150 tonnes capacity column testing machine [21-2]. Load cell kept in position over the specimen and hydraulic jack is used for apply uniform loading. Three LVDT’s are kept at different places to measure the deformation and is connected to the sixteen channel data logger. Samples were loaded till their failure.

4. Summaries of Results

4.1 Specimens Failure criteria

Failure mode for specimen zero wrapping is local buckling happened at the bottom which is shown in the figure 1. As in the case of 70 mm width and 50 mm space wrapped samples the failure is purely fibre rupture due to outward buckling and the pictorial representation is given in figure 2. Number of layers plays major role in the peak load improvement compared to zero layers by providing
additional confinement. Comparing all wrapping, 3 layers wrapped sample shows high ultimate load compared to 1 and 2 layer. Also it was noticed that, from the three cases 70 mm with three layers displayed high load compared to 1 and 2 layers.

Figure 1. Failure criteria – Zero layer

Figure 2. Failure criteria- Wrapped member

4.2 Number of Sheets on Stress-Strain Characteristics

Figure 3 denoted the influence of number of layers on stress-strain characteristics for thirty mm width and fifty mm width CFRP sheets. The curve displayed similar pattern for single, double and three layers. But the increase in trend after the linear portion of zero layers is high due to the activation of fibre sheets. From the curve, the 70 mm wrapped with 3 layers displayed high nonlinear characteristics with low strain compared to 70 mm width having one and two layers. The peak load of all samples and the corresponding deflections were listed in the Table 2.

Figure 3. Seventy millimetre strips (Stress-strain)
Table 2. Peak load and deformation details

Sl.No	Title ID	Highest load (kilo Newton)	Percentage increase (%)	Deformation (millimeter)
1	CC1	560.00	---	8.94
2	CC2	565.00	---	8.89
3	HS-70-50-T1(1)	717.00	26.90	8.08
4	HS-70-50-T1(2)	719.00	27.26	8.01
5	HS-70-50-T2(1)	745.00	31.86	7.79
6	HS-70-50-T2(2)	747.00	32.21	7.72
7	HS-70-50-T3(1)	769.00	36.11	7.67
8	HS-70-50-T3(2)	771.00	36.46	7.65

4.3 Influence of number of layers in Strength improvement

Pictorial representation of strength improvement at peak load with respect to layers wrapped is presented in figure 4. According to this picture, for single layer, the average compressive strength are 26.90 %, for double layer the average compressive strength was 32.21 % and three layer the average compressive strength was 36.46 % high than the zero layer wrapped member. Among the two schemes, the three layer wrapped sample provided high compression value than the single and double layer wrapped. Also it was observed that the seventy millimetres width and three layers prove to be the better among the schemes.

![Figure 4. Peak load Vs layers wrapped](image_url)
4.4 Influence of number of layers on Stiffness

Figure 7 shows the stiffness with respect to different layers and constant breadth. The increase in stiffness was significant compared to zero layers for 70 mm breadth CFRP strips. Average stiffness for specimens 70 mm (1 layer), 70 mm (2 layers) and 70 mm (3 layers) were 89.76kN/mm, 96.76kN/mm and 100.78kN/mm, respectively. Also the percentage increase of single layer, double layer and triple layers compared to zero layers were 41.24%, 52.25% and 58.58% respectively. The increase was steady up to the peak load due to fibre activeness and thereafter a sudden drop occurs when the fibre starts rupture.

![Figure 5. Stiffness with respect to number of sheets](image)

5. Conclusions

Based on compression test performed on samples, the following conclusions are drawn. Number layers not changing the failure mode, but they increase the peak load by delay the buckling and deformation. Compression load percentage at peak for single layer (70mm breadth and 50 mm space) is 27.26% for two layers (70 mm breadth and 50 mm space) is 32.21%, for three layers (70 mm breadth and 50 mm space) is 36.46% respectively more than control. Seventy millimeters (70mm) wrapped with 3 layers displayed high nonlinear characteristics with low strain compared to one and two layers. The average stiffness for specimens 70 millimetre (1 layer), 70 millimetre (2 layer), 70 millimetre (3 layer), were 89.76kN/mm, 96.76kN/mm and 100.78kN/mm respectively. Overall the members wrapped by three layers showed higher strength and stiffness improvement.

REFERENCES

[1] Okan Ozcan, Baris Binici, Erdem Canbay, and Guney Ozcebe, Repair and strengthening of reinforced concrete columns with CFRP’s, Journal of Reinforced Plastics and Composites, (2010), 29(22) 3411–3424.
[2] Xiao Y and Wu H, Compressive behavior of concrete confined by various types of FRP composite jackets. Journal of Reinforced Plastics and Composites, (2003) 22(13): 1187–1201.
[3] Rochette P and Labossiere P, Axial testing of rectangular column models confined with composites. J Compos Constr ASCE 2000; 4: 129–136.
[4] Fraldi M, Nunziante L, Carannante F, et al. On the prediction of the collapse load of circular concrete columns confined by FRP. Eng Struct 2008; 30: 3247–3264.
[5] Wu YF and Wang LM. Unified strength model for square and circular concrete columns confined by external jacket. J Struct Eng ASCE 2009; 135: 253–261.

[6] Sivasankar, S, PonrajSankar, L, Praveen Kumar, A, and Shunmugasundaram, M. “Compression behavior of cylinder reinforced with aramid fiber reinforced polymer”, Materials Today: Proceedings, 27 (2020), PP. 764–771.

[7] Zhang P, Zhu H, Meng SP, Calculation of sectional stiffness and deflection of FRP sheets strengthened reinforced concrete beams. J Build Struct 2011; 32: 87–94.

[8] Tan KH and Saha MK. Cracking characteristics of RC beams strengthened with FRP system. J Compos Constr 2008; 12: 513–521.

[9] Spadea G, Bencardino F and Swamy RN. Structural behavior of composite RC beams with externally bonded CFRP. J Compos Construct ASCE 2008; 2: 132–137.

[10] Martin J and Lamanna A. Performance of mechanically fastened FRP strengthened concrete beams in flexure. J Compos Constr 2008; 12: 257–265.

[11] Wu YF, Yan JH, Zhou YW, et al. Ultimate strength of reinforced concrete beams retrofitted with hybrid bonded fiber-reinforced polymer. ACI Struct J 2010; 107: 451–460.

[12] A. Nabajyoti Modak, Sivasankar, ‘Axial Behavior of Corroded CHST Members Confined with AFRP Sheets’ International Journal of Recent Technology and Engineering,(2019),vol.8, Issue-2, pp.5791-5798.

[13] Mohsen Amraei, Hui Jiao, Xiao-Ling Zhao, Le-Wei Tong, Fatigue testing of butt-welded high strength square hollow sections strengthened with CFRP, Thin-Walled Structures 120 (2017) 262–268.

[14] M.Bhatikha, J.F.Chen, J.M. Rotter and J.G.Teng, Strengthening metallic cylindrical shell against elephant’s foot buckling with FRP, Thin-Walled Structures 47 (2009) 1078–1091.

[15] Sundarraja, M.C., and Sivasankar, S. “Experimental investigation on FRP confined HSS tubular member under compression”. Journal of Structural Engineering, (2013), 40, pp.215-221.

[16] S.Sivasankar and S.Vijaya Bhaskar Reddy, “Axial Behaviour of square HSS Tubular Members Strengthening with CFRP Sheets”, International Journal of Engineering and Advanced Technology, (2019), 8 (5), pp. 914-919.

[17] Yu Chen, Ran Feng, Kang He, Xixiang Chen, Junfei Huang, Flexural behaviour of concrete-filled stainless steel SHS and RHS tubes strengthened by CFRP, Thin-Walled Structures 122 (2018) 208–229.

[18] Tao Chen, Cheng Huang, Liang Hu, Xiaobin Song, Experimental study on mixed-mode fatigue behaviour of center cracked steel plates repaired with CFRP materials, Thin-Walled Structures 135 (2019), pp. 486–493.

[19] Mohamed Elchalakani, Ali Karrech, Hakan Basarir, M.F. Hassanein, Sabrina Fawzia, CFRP strengthening and rehabilitation of corroded steel pipelines under direct indentation, Thin-Walled Structures 119 (2017), pp. 510–521.

[20] Amir Fam, Colin MacDougall, Amr Shaat, Upgrading Steel-Concrete composite girders and repair of damaged steel beams using bonded CFRP laminates, Thin-Walled Structures 47 (2009), pp. 1122–1135.

[21] A. Praveen Kumar, M. Shunmugasundaram, An axial crushing characteristics of hybrid kenaf/glass fabric wrapped aluminium capped tubes under static loading, International Journal of Mechanical and Production Engineering Research and Development 8 (6) (2018) pp. 201–206.

[22] A. Praveen Kumar, M. Shunmugasundaram, S. Sivasankar, N.K. Amudhavalli (2020) "Evaluation of axial crashworthiness performance of composite wrapped metallic circular tubular structures." Materials Today: Proceedings 27(2): 1268–1272.

[23] A. Praveen Kumar, M. Shunmugasundaram, S. Sivasankar, L.Ponraj Sankar (2020) "Static axial crushing response on the energy absorption capability of hybrid Kenaf/Glass fabric cylindrical tubes." Materials Today: Proceedings 27(2): 783-787.