DIFFUSION COVARIATION AND CO-JUMPS IN
BIDIMENSIONAL ASSET PRICE PROCESSES WITH
STOCHASTIC VOLATILITY AND INFINITE ACTIVITY
LÉVY JUMPS

Fabio Gobbi∗ and Cecilia Mancini†

February 1, 2008

Abstract

In this paper we consider two processes driven by diffusions and jumps. The jump components are Lévy processes and they can both have finite activity and infinite activity. Given discrete observations we estimate the covariation between the two diffusion parts and the co-jumps. The detection of the co-jumps allows to gain insight in the dependence structure of the jump components and has important applications in finance.

Our estimators are based on a threshold principle allowing to isolate the jumps. This work follows Gobbi and Mancini (2006) where the asymptotic normality for the estimator of the covariation, with convergence speed √h, was obtained when the jump components have finite activity. Here we show that the speed is √h only when the activity of the jump components is moderate.

Keywords: co-jumps, diffusion correlation coefficient, stable Lévy jumps, threshold estimator.

1 Introduction

We consider two state variables evolving as follows

\[dX_t^{(1)} = a_t^{(1)} dt + \sigma_t^{(1)} dW_t^{(1)} + dJ_t^{(1)}, \]
\[dX_t^{(2)} = a_t^{(2)} dt + \sigma_t^{(2)} dW_t^{(2)} + dJ_t^{(2)}, \]

for \(t \in [0, T], \) \(T \) fixed, where \(W_t^{(2)} = \rho_t W_t^{(1)} + \sqrt{1 - \rho_t^2} W_t^{(3)}; \) \(W^{(1)} = (W_t^{(1)})_{t \in [0, T]} \) and \(W^{(3)} = (W_t^{(3)})_{t \in [0, T]} \) are independent Wiener processes. \(J^{(1)} \) and \(J^{(2)} \) are possibly correlated pure jump processes. We are interested in the separate identification of the dependence elements of the processes \(X^{(q)} \), i.e. both of the covariation \(\int_0^T \rho_t \sigma_t^{(1)} \sigma_t^{(2)} dt \) between the two diffusion parts and of the co-jumps \(\Delta J_t^{(1)} \Delta J_t^{(2)} \), the simultaneous jumps of \(X^{(1)} \) and \(X^{(2)} \).

* Dipartimento di Matematica per le Decisioni, Università degli Studi di Firenze
† Dipartimento di Matematica per le Decisioni, Università degli Studi di Firenze

Corresponding author: Fabio Gobbi, Dipartimento di Matematica per le Decisioni, Università di Firenze, via C. Lombroso 6/17, 50134 Firenze.
fgobbi@ds.unifi.it, phone number +39 (0)55 4796809, fax number +39 (0)55 4796800
Given discrete equally spaced observations $X_t^{(1)}, X_t^{(2)}, j = 1, \ldots, n$, in the interval $[0, T]$ (with $t_j = j \Delta$), a commonly used approach to estimate $\int_0^T \rho \sigma_t^{(1)} \sigma_t^{(2)} dt$ is to take the sum of cross products $\sum_{j=1}^n (X_{t_j}^{(1)} - X_{t_{j-1}}^{(1)})(X_{t_j}^{(2)} - X_{t_{j-1}}^{(2)})$; however, this estimate can be highly biased when the processes $X^{(q)}$ contain jumps; in fact, such a sum approaches the global quadratic covariation $[X^{(1)}, X^{(2)}]_T = \int_0^T \rho \sigma_t^{(1)} \sigma_t^{(2)} dt + \sum_{0 \leq s \leq T} J^{(1)}_s J^{(2)}_s$, containing also the co-jumps. It is crucial to single out the time intervals where the jumps have not occurred. Our estimator is based on a threshold criterion (6) allowing to isolate the jumps that have not occurred. In particular, we asymptotically identify when jumps larger than a given threshold occurred in a given time interval $[t_{j-1}, t_j]$, depending on whether the increment $|X_{t_j} - X_{t_{j-1}}|$ is too big with respect to the threshold. In Gobbi and Mancini (2006) we derived an asymptotically unbiased estimator of the continuous part of the covariation process as well as of the co-jumps. More precisely, the following threshold estimator

$$\tilde{q}^{(n)}_{1,1}(X^{(1)}, X^{(2)})_T = \sum_{j=1}^n \Delta_j X^{(1)} 1_{\{(|\Delta_j X^{(1)}|)^2 \leq r(h)} \Delta_j X^{(2)} 1_{\{(|\Delta_j X^{(2)}|)^2 \leq r(h)}},$$

is a truncated version of the realized quadratic covariation and it is shown to be consistent to $\int_0^T \rho \sigma_t^{(1)} \sigma_t^{(2)} dt$, as the number n of observations tends to infinity. Moreover, in the case where each $J^{(q)}$ is a finite activity jump process (i.e. only a finite number of jumps can occur, along each path, in each finite time interval) we show that our estimator is asymptotically Gaussian and converges with speed \sqrt{n}. Here we find the speed of convergence of the estimator of the covariation even in the case of infinite activity jumps, which turns out to be \sqrt{n} only for moderate activity of the jump processes.

For the literature on non parametric inference for stochastic processes driven by diffusions plus jumps, see Gobbi and Mancini (2006).

Applications of the theory we present here is of strong interest in finance, in particular in financial econometrics (see e.g. 4), in the framework of portfolio risk (4) and for hedge funds management.

An outline of the paper is as follows. In section 2 we illustrate the framework; in section 3 we present some preliminary results in the case where each component $J^{(q)}$ of $X^{(q)}$ has finite activity of jump. In section 4 we deal with the more complex case where each $J^{(q)}$ can have an infinite activity jump component $\tilde{J}^{(q)}_2$ (which makes an infinite number of jumps in each finite time interval). We assume that such component $\tilde{J}^{(q)}_2$ is a Lévy process and we show that our estimator is consistent and we develop some preliminaries for the asymptotic normality in the case where $\tilde{J}^{(q)}_2$ have stable-like laws and the joint law is characterized by a Copula ranging in a given class.

2 The framework

Given a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, P)$, let $X^{(1)} = (X_t^{(2)})_{t \in [0, T]}$ and $X^{(2)} = (X_t^{(2)})_{t \in [0, T]}$ be two real processes defined by

$$X_t^{(1)} = \int_0^t \sigma_s^{(1)} ds + \int_0^t \sigma_s^{(1)} dW_s^{(1)} + J_t^{(1)}, \quad t \in [0, T],$$

$$X_t^{(2)} = \int_0^t \sigma_s^{(2)} ds + \int_0^t \sigma_s^{(2)} dW_s^{(2)} + J_t^{(2)}, \quad t \in [0, T],$$

where
Remark 2.1. \(W^{(1)} = (W^{(1)}_t)_{t \in [0,T]} \) and \(W^{(2)} = (W^{(2)}_t)_{t \in [0,T]} \) are two correlated Wiener processes, with \(\rho_t = Corr(W^{(1)}_t, W^{(2)}_t), \ t \in [0,T] \); we can write

\[
W^{(2)}_t = \rho_t W^{(1)}_t + \sqrt{1 - \rho_t^2} W^{(3)}_t,
\]

where \(W^{(1)} \) and \(W^{(3)} \) are independent Wiener processes.

A2. The diffusion stochastic coefficients \(\sigma^{(q)} = (\sigma^{(q)}_t)_{t \in [0,T]}, \ a^{(q)} = (a^{(q)}_t)_{t \in [0,T]}, \ q = 1, 2, \) and \(\rho = (\rho_t)_{t \in [0,T]} \) are adapted càdlàg.

A3. For \(q = 1, 2 \)

\[
J^{(q)} = J^{(q)}_1 + J^{(q)}_2,
\]

where \(J^{(q)}_1 \) are finite activity jump processes

\[
J^{(q)}_{1t} = \int_0^t \gamma^{(q)}_s dN^{(q)}_s = \sum_{k=1}^{N^{(q)}_t} \gamma^{(q)}_{\tau^{(q)}_k}, \ \ q = 1, 2,
\]

where \(N^{(q)} = (N^{(q)}_t)_{t \in [0,T]} \) are counting processes with \(E[N^{(q)}_T] < \infty \); \(\{\tau^{(q)}_k, \ k = 1, \ldots, N^{(q)}_T\} \) denote the instants of jump of \(J^{(q)}_1 \) and \(\gamma^{(q)}_{\tau^{(q)}} \) denote the sizes of the jumps occurred at \(\tau^{(q)}_k \).

We assume

\[
P(\gamma^{(q)}_{\tau^{(q)}} = 0) = 0, \ \forall \ k = 1, \ldots, N^{(q)}_T, \ q = 1, 2.
\]

Denote, for each \(q = 1, 2, \)

\[
\gamma^{(q)} = \min_{k=1,\ldots,N^{(q)}_T} |\gamma^{(q)}_{\tau^{(q)}}|.
\]

By condition (2), a.s. we have \(\gamma^{(q)} > 0. \)

A4. \(J^{(q)}_2 \) are infinite activity Lévy pure jump processes of small jumps,

\[
J^{(q)}_{2t} = \int_0^t \int_{|x| \leq 1} x \mu^{(q)}(dx, ds),
\]

where \(\mu^{(q)} \) is the Poisson random measure of the jumps of \(J^{(q)}_2 \), \(\mu^{(q)}(dx, ds) = \mu^{(q)}(dx, ds) - \nu^{(q)}(dx)ds \) is its compensated measure, where \(\nu^{(q)} \) is the Lévy measure of \(J^{(q)}_2 \) (see [3]).

Each \(\nu^{(q)} \) has the property that \(\nu^{(q)}(\mathbb{R} - \{0\}) = \infty \), which characterizes the fact that the path of \(J^{(q)}_2 \) jumps infinitely many times on each compact time interval. \(J^{(q)}_2 \) is a compensated sum of jumps, each of which is bounded in absolute value by 1, so that substantially \(J^{(q)}_1 \) accounts for the "big" (bigger in absolute value than \(\gamma^{(q)} \)) and rare jumps of \(X^{(q)} \), while \(J^{(q)}_2 \) accounts for the very frequent and small jumps.

Remark 2.1. If \(J^{(q)} \) is a pure jump Lévy process, it is always possible to decompose it as

\[
J^{(q)} = J^{(q)}_1 + J^{(q)}_2,
\]

(see [3]) where \(J_1 \) is a compound Poisson process accounting for the jumps bigger in absolute value than 1, \(J_1 \) satisfies assumption A3 and \(J_2 \) is as in [3].

Notation. \(c \) denotes any constant.
A5. Let α_q be the Blumenthal Getoor index of each $J(\cdot)_q$, $q = 1, 2$ (see [3]). Let each $\nu(\cdot)_q$ satisfy:

\begin{align*}
A5.1 & \quad \int_{|x| \leq \varepsilon} x^2 \nu(\cdot)_q(dx) = O(\varepsilon^{2-\alpha_q}) \\
A5.2 & \quad \int_{\varepsilon < |x| \leq 1} |x| \nu(\cdot)_q(dx) = O(c - c\varepsilon^{1-\alpha_q}).
\end{align*}

Assumption A5 is satisfied if for instance each $\nu(\cdot)_q$ has a density $f(\cdot)_q(x)$ behaving as $K(\cdot)_q(|x|) |x|^{1+\alpha_q}$ when $x \to 0$, where $K(\cdot)_q$ is a real function with $\lim_{x \to 0} K(\cdot)_q(x) \in \mathbb{R} - \{0\}$, and α_q is the Blumenthal-Getoor index of $J(\cdot)_q$.

In particular A5 is true for anyone of the commonly used models (e.g. NIG, VG, CGMY, α-stable, GHL).

Let, for each n, $\pi_{[0,T]}^n = \{0 = t_0,n < t_1,n < \ldots < t_{n,n} = T\}$ be a partition of $[0,T]$. We assume equally spaced subdivisions, i.e. $h_n := t_{j,n} - t_{j-1,n} = T/n$ for every $n = 1, 2, \ldots$. Hence $h_n \to 0$ as $n \to \infty$. Let $\Delta_{j,n}X$ be the increment $X_{t_{j,n}} - X_{t_{j-1,n}}$. To simplify notations we write h in place of h_n and Δ_jX in place of $\Delta_{j,n}X$.

A6. We choose a deterministic function, $h \mapsto r(h)$, satisfying the following properties

\[\lim_{h \to 0} r(h) = 0, \quad \lim_{h \to 0} \frac{h \log h}{r(h)} = 0. \]

We denote $r(h)$ by r_h. Denote also, for each $q = 1, 2$,

\[D_t^{(q)} = \int_0^t a^{(q)}(s)ds + \int_0^t \sigma^{(q)}(s)dW^{(q)}_s, \]

the diffusion part of $X^{(q)}$, and

\[Y_t^{(q)} = D_t^{(q)} + J_{1t}^{(q)}. \]

3 Preliminary results

By the Paul Lévy law of the modulus of continuity of the Brownian motion paths (see [14]), we know that the increments of the diffusion part of each $\Delta_jX^{(q)}$ tend to zero at speed $\sqrt{h \ln \frac{1}{h}}$. This is the key point to understand when an increment $\Delta_jX^{(q)}$ is likely to contain some jumps. In fact if, for small h, $|\Delta_jX^{(q)}| > r_h > \sqrt{h \ln \frac{1}{h}}$, then or some jumps of $J_{1t}^{(q)}$ occurred, or some jumps of $J_{2t}^{(q)}$ larger than $2\sqrt{r_h}$ occurred (Mancini, 2005). In Gobbi and Mancini (2006) we obtain the following consequences.

Remark 3.1. (Mancini, 2005) Under A2 we have a.s.

\[\sup_{1 \leq j \leq n} \frac{\left| \Delta_jD_{1t}^{(q)} \right|}{\sqrt{2h \log n}} \leq K_q(\omega) < \infty, \quad q = 1, 2, \]

where K_q are finite random variables.
Theorem 3.2. (Estimation of the correlation between the continuous parts) Let \((X^{(1)}_t)_{t \in [0,T]}\) and \((X^{(2)}_t)_{t \in [0,T]}\) two processes of the form \([7]\). Assume \(A1-A4\) and \(A6\) are satisfied. Then

\[
\tilde{v}_{1,1}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \int_0^T \rho \sigma_1^{(1)} \sigma_2^{(2)} \, dt,
\]

as \(n \to \infty\), where for \(r\) and \(l\) \(\in \mathbb{N}\)

\[
\tilde{v}_{r,l}^{(n)}(X^{(1)}, X^{(2)})_T = h^{1-\frac{r+l}{2}} \sum_{j=1}^n (\Delta_j X^{(1)})^r (\Delta_j X^{(2)})^l \cdot \mathbb{1}_{\{(\Delta_j X^{(1)})^2 \leq r_h\}} \mathbb{1}_{\{(\Delta_j X^{(2)})^2 \leq r_h\}}.
\]

Remark 3.3. An estimate of the sum of the co-jumps is obtained simply subtracting the diffusion covariation estimator from the quadratic covariation estimator. In fact

\[
\sum_{j=1}^n \Delta_j X^{(1)} \Delta_j X^{(2)} - \tilde{v}_{1,1}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \sum_{0 \leq s \leq T} \Delta J_s^{(1)} \Delta J_s^{(2)},
\]

as \(n \to \infty\). Therefore an estimate of each \(\Delta J_s^{(1)} \Delta J_s^{(2)}\) is obtained using

\[
\Delta_j X^{(1)} \Delta_j X^{(2)} - \Delta_j X^{(1)} \mathbb{1}_{\{(\Delta_j X^{(1)})^2 \leq r_h\}} \Delta_j X^{(2)} \mathbb{1}_{\{(\Delta_j X^{(2)})^2 \leq r_h\}},
\]

with \(j\) such that \(s \in [t_{j-1}, t_j]\), whose limit for \(h \to 0\) coincides with the limit of

\[
\Delta_j X^{(1)} \mathbb{1}_{\{(\Delta_j X^{(1)})^2 > r_h\}} \Delta_j X^{(2)} \mathbb{1}_{\{(\Delta_j X^{(2)})^2 > r_h\}}.
\]

Theorem 3.4. If \(\tilde{J}_2^{(q)} \equiv 0\), under the assumptions \(A1-A3\), and choosing \(r_h\) as in \(A6\), we have

\[
\mathcal{N}(h) := \frac{\tilde{v}_{1,1}^{(n)}(X^{(1)}, X^{(2)})_T - \int_0^T \rho \sigma_1^{(1)} \sigma_2^{(2)} \, dt}{\sqrt{h} \sqrt{\tilde{v}_{2,2}^{(n)}(X^{(1)}, X^{(2)})_T - \tilde{w}^{(n)}(X^{(1)}, X^{(2)})_T}} \xrightarrow{d} Z,
\]

where \(Z\) has law \(\mathcal{N}(0,1)\) and

\[
\tilde{w}^{(n)}(X^{(1)}, X^{(2)})_T = h^{-1} \prod_{j=1}^{n-1} \prod_{i=0}^{1} \Delta_{j+i} X^{(1)} \mathbb{1}_{\{(\Delta_{j+i} X^{(1)})^2 \leq r_h\}} \prod_{i=0}^{1} \Delta_{j+i} X^{(2)} \mathbb{1}_{\{(\Delta_{j+i} X^{(2)})^2 \leq r_h\}}.
\]

4 Main results

In this paper we study the behavior of the normalized bias \(\mathcal{N}(h)\) when infinite activity jump components \(\tilde{J}_2^{(q)}\) are included in the models \(X^{(q)}\). First we show that the standard error

\[
\sqrt{h} \sqrt{\tilde{v}_{2,2}^{(n)}(X^{(1)}, X^{(2)})_T - \tilde{w}^{(n)}(X^{(1)}, X^{(2)})_T}
\]

converges even in the present framework. We need the following notations and remarks.

Remark 4.1. [Remark 4.3 in \([7]\)] Under assumptions \(A2\) and \(A5.2\)
1. If processes a and σ are càdlàg then, under $\textbf{A5}$, a.s., for small h, $1_{\{\Delta_j(D^{(q)})^2 > r_h\}} = 0$, uniformly in j;

2. Let us consider the sequence $\tilde{\pi}_{j_{1,n}}^{(n)}$, $n \in \mathbb{N}$. As long as $\tilde{\pi}_j^{(q)}$ is a semimartingale, we can find a subsequence n_k for which a.s., for large k, for all $j = 1..n_k$, on $\{\Delta_j X^{(q)} \leq 4r(h_k)\}$ we have that

$$(\Delta_j \tilde{J}_2^{(q)})^2 \leq 4r(h_k), \forall s \in [t_{j-1}, t_j].$$

3. If $\tilde{J}_2^{(q)}$ is Lévy and independent of $N^{(q)}$, and if $P\{\Delta_j N \neq 0\} = O(h)$ as $h \to 0$, then for any $j = 1..n$, $nP\{\Delta_j N \neq 0, (\Delta_j \tilde{J}_2^{(q)})^2 > r(h)\} \to 0$ as $h \to 0$.

Notations. For each $q = 1, 2$ we denote

$$\Delta_j \tilde{J}_{2m}^{(q)} := \int_{t_{j-1}}^{t_j} \int_{|x| \leq 2\sqrt{r_h}} x \tilde{m}^{(q)}(dx, dt), \quad \Delta_j \tilde{J}_{2c}^{(q)} := \int_{t_{j-1}}^{t_j} \int_{2\sqrt{r_h} < |x| \leq 1} x \nu^{(q)}(dx)dt$$

so that

$$\Delta_j \tilde{J}_{2m}^{(q)} 1_{\{\Delta_j \tilde{J}_2^{(q)} \leq 2\sqrt{r_h}\}} = \Delta_j \tilde{J}_{2m}^{(q)} - \Delta_j \tilde{J}_{2c}^{(q)}.$$

(4)

We also set

$$\Delta_j J^{(q)} := \Delta_j H^{(q)} 1_{\{\Delta_j X^{(q)} \leq r_h\}}$$

for any process $H^{(q)}$ (e.g. $H^{(q)} = Y^{(q)}$, or $H^{(q)} = \tilde{J}_2^{(q)}$ and so on).

Note that for each $q = 1, 2$

$$E[(\Delta_j \tilde{J}_{2m}^{(q)})^2] = h \int_{|x| \leq 2\sqrt{r_h}} x^2 \nu^{(q)}(dx) := hn^2(2\sqrt{r_h}) \to 0$$

as $h \to 0$, and under assumption $\textbf{A5}$ we have

$$\Delta_j \tilde{J}_{2c}^{(q)} = O\left(h(c - cr_h - \frac{1-n}{r_h})\right).$$

(5)

Theorem 4.2 (standard error). Under the assumptions $\textbf{A1-6}$, if $\frac{h\log^2_\beta}{r_h} \to 0$, and $r_h = h^\beta$, $\beta \in [0,1[$, then

$$\tilde{v}_{2,2}^{(n)}(X^{(1)}, X^{(2)})_T - \tilde{w}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \int_0^T (1 + \rho_t^2)(\sigma^{(1)}_t)^2(\sigma^{(2)}_t)^2 dt$$

as $n \to \infty$.

Proof. We prove that

$$\tilde{v}_{2,2}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \int_0^T (2\rho_t^2 + 1)(\sigma^{(1)}_t)^2(\sigma^{(2)}_t)^2 dt$$

and

$$\tilde{w}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \int_0^T \rho_t^2(\sigma^{(1)}_t)^2(\sigma^{(2)}_t)^2 dt.$$
Let us now deal with $\bar{v}^{(n)}_{22}$. As in the proof of proposition 3.5 in [4] we can write

$$
\bar{v}^{(n)}_{22}(X^{(1)}, X^{(2)}) - \int_0^T (2\rho_1^2 + 1)(\sigma_1^{(1)})^2(\sigma_1^{(2)})^2 dt =
$$

$$
h^{-1} \sum_{j=1}^n (\Delta_j Y^{(1)})^2 (\Delta_j Y^{(2)})^2 - \int_0^T (2\rho_1^2 + 1)(\sigma_1^{(1)})^2(\sigma_1^{(2)})^2 dt \leq 0
$$

(8)

$$
+ (\Delta_j j_1^2)^2 (\Delta_j j_2^2)^2 + 2(\Delta_j j_1^2) (\Delta_j j_2^2) (\Delta j_1^2) (\Delta j_2^2) + 2(\Delta_j Y^{(1)}) (\Delta_j j_1^2) (\Delta j Y^{(2)})^2 + 2(\Delta j Y^{(1)}) (\Delta j j_2^2) (\Delta j Y^{(2)})^2 + 4(\Delta j Y^{(1)}) (\Delta j j_1^2) (\Delta j Y^{(2)}) (\Delta j j_2^2)
$$

$$
=: \sum_{k=1}^9 I_k(h).
$$

The terms of the right hand side within brackets are denoted by $I_k(h)$ and can be split into two parts by adding and subtracting the quantity $h^{-1} \sum_{j=1}^n (\Delta_j Y^{(1)})^2 1_{\{\Delta_j Y^{(1)} < 4r_k\}} (\Delta_j Y^{(2)})^2 1_{\{\Delta_j Y^{(2)} < 4r_k\}}$ in the following way

$$
|I_1(h)| = |h^{-1} \sum_{j=1}^n (\Delta_j Y^{(1)})^2 (\Delta_j Y^{(2)})^2 - \int_0^T (2\rho_1^2 + 1)(\sigma_1^{(1)})^2(\sigma_1^{(2)})^2 dt| \leq
$$

$$
h^{-1} \sum_{j=1}^n (\Delta_j Y^{(1)})^2 1_{\{\Delta_j Y^{(1)} < 4r_k\}} (\Delta_j Y^{(2)})^2 1_{\{\Delta_j Y^{(2)} < 4r_k\}} - \int_0^T (2\rho_1^2 + 1)(\sigma_1^{(1)})^2(\sigma_1^{(2)})^2 dt +
$$

$$
h^{-1} \sum_{j=1}^n (\Delta_j Y^{(1)})^2 (\Delta_j Y^{(2)})^2 1_{\{\Delta_j Y^{(1)} < 4r_k\}} 1_{\{\Delta_j Y^{(2)} < 4r_k\}} - 1_{\{\Delta_j Y^{(1)} < 4r_k\}} 1_{\{\Delta_j Y^{(2)} < 4r_k\}} |
$$

(9)

The first term of the right hand side of (9) tends to zero in probability by proposition 5.1. Developing the second one we find that it is the sum of terms which a.s. for small h are zero because by remark 4.1 point 1 we have

$$
1_{\{\Delta_j Y^{(1)} < 4r_k\}} 1_{\{\Delta_j Y^{(2)} < 4r_k\}} \leq 1_{\{\Delta_j j_1^2 > \sqrt{r_k}\}}
$$

(10)

and

$$
1_{\{\Delta_j Y^{(1)} < 4r_k\}} 1_{\{\Delta_j Y^{(2)} < 4r_k\}} \leq 1_{\{\Delta_j D^{(1)} > \sqrt{r_k}\}} + 1_{\{\Delta_j j_1^2 > \sqrt{r_k}\}} = 1_{\{\Delta_j j_1^2 > \sqrt{r_k}\}},
$$

(11)

uniformly in j, so that the terms containing $\Delta_j j_1^2$ tends to zero by remark 4.1 point 3, whereas

$$
h^{-1} \sum_{j=1}^n (\Delta_j D^{(1)})^2 (\Delta_j D^{(2)})^2 1_{\{\Delta_j j_1^2 > \sqrt{r_k}\}} 1_{\{\Delta_j j_2^2 > \sqrt{r_k}\}} \leq
$$

$$
K_1^2(\omega)K_2^2(\omega)hlog^2 \frac{1}{h} \sum_{j=1}^n 1_{\{\Delta j_1^2 > \sqrt{r_k}\}},
$$

which converges to zero in L^1

$$
E[hlog^2 \frac{1}{h} \sum_{j=1}^n 1_{\{\Delta j_1^2 > \sqrt{r_k}\}}] \leq hlog^2 \frac{1}{h} E[1_{\{\Delta j_1^2 > \sqrt{r_k}\}}] = T \frac{hlog^2 \frac{1}{h}}{r_h} \eta_2^2(1) \to 0
$$

The other terms in the right hand side of (8) tend to zero in probability. We only deal with I_2, I_3, I_5, I_8 and I_9, the other ones being analogue. Note that for each $q = 1, 2$

$$
E \left[\sup_{1 \leq j \leq n} \frac{(\Delta j j_2^q)^2 1_{\{\Delta j j_1^q \leq 2\sqrt{r_k}\}}}{h} \right] \leq 2 \sup_{1 \leq j \leq n} \frac{E(\Delta j j_2^q)^2}{h} + 2 \sup_{1 \leq j \leq n} \frac{E(\Delta j j_3^q)^2}{h} \leq
$$

1
\[= 2\eta_q^2 \left(2\sqrt{\kappa_n}\right) + O\left(2h(e - cr_h^{\frac{1+\alpha}{2}})^2\right) = O\left(h^{1+\beta(1-\alpha_q)}\right)\]

and \(h^{1+\beta(1-\alpha_q)}\) tends to zero as \(h \to 0\). That is trivial if \(\alpha_q \leq 1\); however even if \(\alpha_q\) belongs to \([1, 2]\) it is ensured that \(1 + \beta(1-\alpha_q) > 0\), i.e. \(\beta < \frac{1}{\alpha_q-1}\), since \(\beta < 1\) while \(\frac{1}{\alpha_q-1} > 1\). We have then that as \(h \to 0\)

\[
\sup_{1 \leq j \leq n} \frac{(\Delta_j \tilde{j}_2^{(q)})^2}{h} 1_{\{(|\Delta_j \tilde{j}_2^{(q)}| \leq 2\sqrt{\kappa_n}\}} P \to 0. \tag{12}
\]

Now, by (6) and (7) a.s. for small \(h\)

\[
|I_2 + I_3 + I_5 + I_8| \leq h^{-1} \sum_{j=1}^{n} \left| (\Delta_j D^{(1)})^2 (\Delta_j \tilde{j}_2^{(2)})^2 + 2(\Delta_j D^{(1)})^2 (\Delta_j D^{(2)}) (\Delta_j \tilde{j}_2^{(2)}) \right|
\]

\[
+ (\Delta_j \tilde{j}_2^{(1)})^2 (\Delta_j \tilde{j}_2^{(2)}) + 2(\Delta_j D^{(1)}) (\Delta_j \tilde{j}_2^{(1)}) (\Delta_j \tilde{j}_2^{(2)})^2
\]

\[
+ 4(\Delta_j D^{(1)}) (\Delta_j \tilde{j}_2^{(1)}) (\Delta_j D^{(2)}) (\Delta_j \tilde{j}_2^{(2)}) \left| 1_{\{(|\Delta_j X^{(1)}| \leq r_h\}} 1_{\{(|\Delta_j X^{(2)}| \leq 2\sqrt{\kappa_n}\}} \right|
\]

and since \(1_{\{(|\Delta_j X^{(2)}| \leq 2\sqrt{\kappa_n}\}} = 1_{\{(|\Delta_j X^{(2)}| \leq r_h, \Delta_j \tilde{j}_2^{(2)} \leq 2\sqrt{\kappa_n}\}} + 1_{\{(|\Delta_j X^{(2)}| \leq r_h, \Delta_j \tilde{j}_2^{(2)} > 2\sqrt{\kappa_n}\}}\) by (7) the terms containing the indicator of the set \(\{\Delta_j \tilde{j}_2^{(2)} \leq 2\sqrt{\kappa_n}\}\) are dominated by

\[
\sup_{1 \leq j \leq n} \frac{(\Delta_j \tilde{j}_2^{(2)})^2}{h} 1_{\{(|\Delta_j \tilde{j}_2^{(2)}| \leq 2\sqrt{\kappa_n}\}} \left[\sum_{j=1}^{n} (\Delta_j D^{(1)})^2 + \sum_{j=1}^{n} (\Delta_j \tilde{j}_2^{(1)})^2 + \sum_{j=1}^{n} (\Delta_j D^{(1)}) (\Delta_j \tilde{j}_2^{(1)}) \right]
\]

\[
+ 2\tilde{K}^2 h \ln \frac{1}{h} \sum_{j=1}^{n} (\Delta_j D^{(2)}) (\Delta_j \tilde{j}_2^{(2)})
\]

\[
+ 4 \sup_{1 \leq j \leq n} \frac{|\Delta_j \tilde{j}_2^{(1)}|}{\sqrt{h}} \sup_{1 \leq j \leq n} \frac{|\Delta_j \tilde{j}_2^{(2)}|}{\sqrt{h}} \sum_{j=1}^{n} (\Delta_j D^{(1)}) (\Delta_j D^{(2)})
\]

where \(\tilde{K} := \sqrt{2}(K_1 \vee K_2)\). Each term tends to zero in probability by (12) and using that

\[
\sum_{j=1}^{n} (\Delta_j \tilde{j}_2^{(2)})^2 \xrightarrow{P} T \int_{|x| \leq 1} x^2 \mu(dx) < \infty \text{ a.s.}, \quad \sum_{j=1}^{n} (\Delta_j D^{(q)}) (\Delta_j \tilde{j}_2^{(q)}) \xrightarrow{P} [D^{(1)}, \tilde{j}_2^{(2)}]_T = 0 \text{ and }
\]

\[
\sum_{j=1}^{n} (\Delta_j D^{(1)}) (\Delta_j D^{(2)}) \xrightarrow{P} \int_{0}^{T} \rho \sigma_1^{(1)} \sigma_2^{(2)} dt < \infty \text{ a.s.}, \text{ where by } [M, N] \text{ we denote the quadratic covariation process associated to two semimartingales } M \text{ and } N \text{ (see [3]).}
\]

It remains to consider

\[
h^{-1} \sum_{j=1}^{n} \left| (\Delta_j D^{(1)})^2 (\Delta_j \tilde{j}_2^{(2)})^2 + 2(\Delta_j D^{(1)})^2 (\Delta_j D^{(2)}) (\Delta_j \tilde{j}_2^{(2)}) \right|
\]

\[
+ (\Delta_j \tilde{j}_2^{(1)})^2 (\Delta_j \tilde{j}_2^{(2)})^2 + 2(\Delta_j D^{(1)}) (\Delta_j \tilde{j}_2^{(1)}) (\Delta_j \tilde{j}_2^{(2)})^2
\]

\[
+ 4(\Delta_j D^{(1)}) (\Delta_j \tilde{j}_2^{(1)}) (\Delta_j D^{(2)}) (\Delta_j \tilde{j}_2^{(2)}) \left| 1_{\{(|\Delta_j X^{(1)}| \leq r_h, (\Delta_j \tilde{j}_2^{(2)})^2 \leq 2\sqrt{\kappa_n}\}} 1_{\{(|\Delta_j X^{(2)}| \leq 2\sqrt{\kappa_n}\}} \right|
\]

Now observing that on \(\{(|\Delta_j X^{(2)}| \leq r_h, (\Delta_j \tilde{j}_2^{(2)})^2 > 2\sqrt{\kappa_n}\}, q = 1, 2\), we have \(\{(|\Delta_j Y^{(q)}| \leq r_h\}\), so that, a.s. for small \(h\)

\[
1_{\{(|\Delta_j X^{(2)}| \leq r_h, (\Delta_j \tilde{j}_2^{(2)})^2 > 2\sqrt{\kappa_n}\}} \leq 1_{\{(|\Delta_j Y^{(1)}| > \sqrt{T}\}} + 1_{\{(|\Delta_j Y^{(2)}| > \sqrt{T}\}} \leq 1_{\{\Delta_j N^{(q)} \neq 0\}}
\]
by remark 4.1 point 3 we note that all terms tend to zero. We can conclude that $I_2 + I_3 + I_5 + I_8 + I_9 \xrightarrow{P} 0$ as $h \to 0$, and this concludes the proof of the convergence of \tilde{c}_{22}.

Now, we show that $\tilde{v}^{(n)}(X^{(1)}, X^{(2)})_T \xrightarrow{P} \int_0^T \rho_t^2(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt$. Note that

$$
\left|h^{-1} \sum_{j=1}^{n-1} \prod_{q=1}^2 \Delta_j X^{(q)} \prod_{j=1+*, q=1}^2 \Delta_j X^{(q)} - \int_0^T \rho_t^2(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt \right|
$$

is the sum of

$$
\left|h^{-1} \sum_{j=1}^{n-1} \prod_{q=1}^2 \Delta_j Y^{(q)} \prod_{j=1+*, q=1}^2 \Delta_j Y^{(q)} - \int_0^T \rho_t^2(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt \right|
$$

and of other 15 terms of type $h^{-1} \sum_{j=1}^n \Delta_j M^{(1)} \Delta_{j+1, *} H^{(1)} \Delta_j M^{(2)} \Delta_{j+1, *} H^{(2)}$ where (since $\Delta_j X^{(q)} = \Delta_j Y^{(q)} + \Delta_j \tilde{J}_2$ for each $q = 1, 2$) both M and H can be Y or \tilde{J}_2 and at least one factor is the increment of one of the two $\tilde{J}_2^{(q)}$, $q = 1, 2$. Each one of the 15 terms tends to zero in probability as $h \to 0$. In fact the terms where only one factor is the increment of one of the $\tilde{J}_2^{(q)}$'s are bounded by

$$
\sqrt{h^{-1} \sum_{j=1}^n (\Delta_j + s \tilde{J}_2^{(q)})^2} \leq 2 \sqrt{\rho_{1, 0}} (\Delta_j + s \tilde{J}_2^{(q)})^2 \sqrt{h^{-1} \sum_{j=1}^n (\Delta_j + s D^{(2)})^2}, \quad (14)
$$

where $s = 0$ or 1, \tilde{s} is 1 if s is 0 and $q, r \in \{1, 2\}$. Using (12), (13) and using that $h^{-1} \sum_{j=1}^n (\Delta_j + s D^{(1)})^2$, $(\Delta_j + s D^{(2)})^2 = v_{22}(D^{(1)}, D^{(2)})_T$ converges to the a.s. finite correlation term $\int_0^T (1 + 2 \rho_t^2(\sigma_1^{(1)})^2(\sigma_1^{(2)})^2 dt$ (2), and cfr proposition 5.1, we reach that (15) tends to zero in probability.

The terms containing two increments of kind $\tilde{J}_2^{(q)}$ are dominated in probability, thanks to (12), by

$$
o(1) \sum_{j=1}^n \Delta_j D^{(r)} (\Delta_j + s D^{(q)}) \leq o(1) \sqrt{\sum_{j=1}^n (\Delta_j D^{(r)})^2 \sum_{j=1}^n (\Delta_j + s D^{(q)})^2} \xrightarrow{P} 0.
$$

The terms containing three increments of kind $\tilde{J}_2^{(q)}$ are dominated by

$$
o(1) \sum_{j=1}^n \Delta_j + u \tilde{J}_2^{(r)} (\Delta_j + s D^{(q)}) \leq o(1) \sqrt{\sum_{j=1}^n (\Delta_j + u \tilde{J}_2^{(r)})^2 \sum_{j=1}^n (\Delta_j + s D^{(q)})^2} \xrightarrow{P} 0,
$$

where $u, s \in \{0, 1\}$. The unique term of type (??) containing four increments of kind $\tilde{J}_2^{(q)}$ is simply dominated, thanks to (12), by $o(1) n \tilde{c}_{22} \to 0$.

As for (14), adding and subtracting

$$
h^{-1} \sum_{j=1}^{n-1} \prod_{q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j X^{(q)})^2 \leq 4 r_h)} \prod_{j=1+*, q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j +1 X^{(q)})^2 \leq 4 r_h)},
$$

we obtain

$$
\left|h^{-1} \sum_{j=1}^{n-1} \prod_{q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j X^{(q)})^2 \leq 4 r_h)} \prod_{j=1+*, q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j +1 X^{(q)})^2 \leq 4 r_h)} - \int_0^T \rho_t^2(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt \right|
\leq \left|h^{-1} \sum_{j=1}^{n-1} \prod_{q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j X^{(q)})^2 \leq 4 r_h)} \prod_{j=1+*, q=1}^2 \Delta_j Y^{(q)} 1_{((\Delta_j +1 Y^{(q)})^2 \leq 4 r_h)} - \int_0^T \rho_t^2(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt \right|
$$

We continue...
\[-h^{-1} \sum_{j=1}^{n-1} \Delta_j Y^{(1)} \Delta_{j+1} Y^{(1)} \Delta_j \tilde{J}_2^{(2)} \times \]
\[\times \left\{ 1_{\{(\Delta_j X^{(1)})^2 \leq r_h, (\Delta_{j+1} X^{(1)})^2 \leq r_h, (\Delta_j X^{(2)})^2 \leq r_h, (\Delta_{j+1} X^{(2)})^2 \leq r_h \}} + \\
-1_{\{(\Delta_j Y^{(1)})^2 \leq 4r_h, (\Delta_{j+1} Y^{(1)})^2 \leq 4r_h, (\Delta_j Y^{(2)})^2 \leq 4r_h, (\Delta_{j+1} Y^{(2)})^2 \leq 4r_h \}} \right\}. \]

The first term tends to zero in probability by theorem 5.1 whereas for the second one we note that developing the difference of the two indicators we obtain a sum of terms which are dominated by indicators as in (10) and (11) and thus they vanish a.s. for small \(h \) (analogously as in (9)).

Next we check the speed of convergence to zero of the estimation error \(\hat{\delta}_{1,1}^{(n)}(X^{(1)}, X^{(2)})_T - \int_0^T \rho_t \sigma_t^{(1)} \sigma_t^{(2)} dt \).

Within \(\hat{\delta}_{1,1}^{(n)}(X^{(1)}, X^{(2)})_T - \int_0^T \rho_t \sigma_t^{(1)} \sigma_t^{(2)} dt \) it is the co-jumps term \(\sum_{s \leq t} \Delta \tilde{J}_2^{(1)} \Delta \tilde{J}_2^{(2)} \) to determine such a speed. However the speed of convergence of such term depends both on the amount of jump activity of each \(\tilde{J}_2^{(q)} \) and on the dependence structure giving the joint law \((\tilde{J}_2^{(1)}, \tilde{J}_2^{(2)})(P) \). We specialize our analysis to the case where \(\tilde{J}_2^{(q)} \) have stable-like laws and the joint law is characterized by a copula \(C \) ranging in a given class.

\textbf{A7} Assume \(\alpha_q \in [0, 2] \) for each \(q = 1, 2 \). Consider (w.l.g.) \(\alpha_1 \leq \alpha_2 \).

Each marginal law \((\tilde{J}_2^{(q)})(P) \) has a Stable-like density of the form

\[\nu^{(q)} = c_q x^{-1-\alpha_q} 1_{\{x > 0\}} + d_q |x|^{-1-\alpha_q} 1_{\{x < 0\}}. \]

For simplicity, but w.l.g., we develop our proofs for the case where each \(\tilde{J}_2^{(q)} \) has only positive jump sizes, i.e.

\[\nu^{(q)} = c_q x^{-1-\alpha_q} 1_{\{x > 0\}}, \]

which have support \(\mathbb{R}_+ \).

We denote for each \(q = 1, 2 \) by

\[U_q(x) := \nu^{(q)}([x, +\infty]) = c_q x^{-\alpha_q} \]

the tail integral of the marginal law of \(\tilde{J}_2^{(q)} \).

\textbf{A8} The joint law \((\tilde{J}_2^{(1)}, \tilde{J}_2^{(2)})(P) \) has tail integrals given by

\[U(x, y) = C_{\gamma}(U_1(x), U_2(y)) \]

where \(C_{\gamma}(u, v) \) is a Lévy copula (see [9]) of the form

\[C_{\gamma}(u, v) = \gamma C_{\perp}(u, v) + (1 - \gamma) C_{||}(u, v), \]

where \(C_{\perp}(u, v) = u 1_{\{u = +\infty\}} + v 1_{\{v = +\infty\}} \) is the independence copula, \(C_{||}(u, v) = u \wedge v \) is the total dependence copula and \(\gamma \) ranges in \([0, 1]\).

Such choices are quite representative since in fact many commonly used models in finance (Variance Gamma model, CGMY model, NIG model, etc.) have \(\nu^{(q)} \) related to the ones in assumption \textbf{A7} in the sense that they are tempered stable processes where the order of magnitude of the tail integrals as \(x_q \to 0 \)
Remark 4.3. We need assumption A8 in order to control the speed of convergence to zero of integrals like
\(\int_{0 \leq x, y \leq \varepsilon} xy\nu(dx, dy) \), \(\int_{0 \leq x, y \leq \varepsilon} x^2y^2\nu(dx, dy) \), where \(\nu \) is the bivariate Lévy measure of (\(\tilde{J}_2^{(1)} \), \(\tilde{J}_2^{(2)} \)). Note that when the copula within \(\nu \) is the independence copula then both integrals are zero so that under assumption A8
\[\int_{0 \leq x, y \leq \varepsilon} x^k y^k \nu(dx, dy) = (1 - \gamma) \int_{0 \leq x, y \leq \varepsilon} x^k y^k dC(U_1(x), U_2(y)) \]
for \(k = 1, 2 \), and the speed is given only by the complete dependence component.

Now we compute the speed of convergence to zero of the small co-increments of the two \(\tilde{J}_2^{(q)} \).

Theorem 4.4. Choose \(r_h = h^\beta, \beta \in]0, 1[\) and \(C_r(u, v) \equiv C_\| (u, v) \) (i.e. \(\gamma = 0 \)). Assume A1-A8. Then
\[\frac{\sum_{j=1}^n \Delta_j \tilde{J}_2^{(1)} 1_{\{(\Delta_j, \tilde{J}_2^{(1)})^2 \leq 4r_h\}} \Delta_j \tilde{J}_2^{(1)} 1_{\{(\Delta_j, \tilde{J}_2^{(2)})^2 \leq 4r_h\}} - nE[H_{n1}]}{\sqrt{nVar(H_{n1})}} \xrightarrow{d} \mathcal{N}(0, 1), \]
as \(h \to 0 \), where for \(j = 1 \ldots n \)
\[H_{n1} := \Delta_j \tilde{J}_2^{(1)} 1_{\{(\Delta_j, \tilde{J}_2^{(1)})^2 \leq 4r_h\}} \Delta_j \tilde{J}_2^{(1)} 1_{\{(\Delta_j, \tilde{J}_2^{(2)})^2 \leq 4r_h\}} \]
is such that as \(h \to 0 \)
\[E[H_{n1}] = O(h^{1+\beta - 1 - \alpha_1 - \alpha_2}) + h^2 O\left((c - ch^{\frac{1-\alpha_1}{2}})(c - ch^{\frac{1-\alpha_2}{2}})\right) \]
and
\[Var(H_{n1}) = O(h^{2+\frac{\beta}{2}(4-\alpha_1 - \alpha_2)}) + O(h^{1+\beta - 1 - \alpha_1 - \alpha_2}). \]

Proof. We use the Lindeberg-Feller theorem. Using A7 and (4) we have
\[E[H_{n1}] = h \int_{0, h \mathbb{Q}} \int_{0, h \mathbb{Q}} xy\nu(dx, dy) + \Delta_j \tilde{J}_2^{(1)} \Delta_j \tilde{J}_2^{(2)} \]
and
\[Var(H_{n1}) = O(h^{2+\frac{\beta}{2}(4-\alpha_1 - \alpha_2)}) + O(h^{1+\beta - 1 - \alpha_1 - \alpha_2}). \]

Moreover, since
\[E[(\Delta_j \tilde{J}_2^{(1)} \Delta_j \tilde{J}_2^{(2)})^2] = h \int_{0, h \mathbb{Q}} \int_{0, h \mathbb{Q}} x^2 y^2 \nu(dx, dy) + h^2 \int_{0, h \mathbb{Q}} \int_{0, h \mathbb{Q}} x^2 y^2 \nu(dx, dy) \]
and
\[E[(\Delta_j \tilde{J}_2^{(1)} \Delta_j \tilde{J}_2^{(2)})^2] = h \int_{0, h \mathbb{Q}} \int_{0, h \mathbb{Q}} x^2 y^2 \nu(dx, dy) \]
and

\[E[\Delta_j \tilde{j}^{(1)}_{2m}(\Delta_j \tilde{j}^{(2)}_{2m})^2] = h \int_{[0, h^{1/2}]} \int_{[0, h^{1/2}]} xy^2 \nu(dx, dy), \]

we get

\[\text{Var}(H'_n) = O(h^{2+\frac{\alpha_1}{2}>(4-\alpha_1-\alpha_2)}) + O\left(+h^{1+\beta}\frac{2\alpha_1+2\alpha_2+\alpha_1\alpha_2}{2\alpha_1}\right). \]

Notice that \(\forall \alpha_q \in [0, 2] \) we have \(\frac{\alpha_1+\alpha_2-\alpha_1\alpha_2}{2\alpha_1} > 0 \). Denote

\[H_{nj} = \frac{H'_{nj} - E[H'_n]}{\sqrt{n \text{Var}(H'_n)}} \]

the normalized versions of \(H'_n \). In order to verify the Lindeberg condition we consider the following sets

\[\{|H_{nj}| > \eta\} = \left\{ \frac{|H'_{nj} - E[H'_n]|}{\sqrt{n \text{Var}(H'_n)}} > \eta \right\} = \left\{ |H'_{nj} - E[H'_n]| > \eta \sqrt{n \text{Var}(H'_n)} \right\}. \]

We show that in fact, for small \(h \), \(H'_m \leq E[H'_n] + \sqrt{n \text{Var}(H'_n)} \forall j \), thus \(\{|H_{nj}| > \eta\} = 0 \). Actually, after boring computations\(^2\) we reach that

\[E[H'_n] + \eta \sqrt{n \text{Var}(H'_n)} = O(h^{1+\beta} + h^{1+\beta}\frac{2\alpha_1+2\alpha_2+\alpha_1\alpha_2}{2\alpha_1}) \]

as \(h \to 0 \). Note that, using \((11)\) and \((10)\),

\[H'_{nj} = \Delta_j \tilde{j}^{(1)}_{2m}\Delta_j \tilde{j}^{(2)}_{2m} - \Delta_j \tilde{j}^{(1)}_{2m}\Delta_j \tilde{j}^{(2)}_{2c} - \Delta_j \tilde{j}^{(1)}_{2c}\Delta_j \tilde{j}^{(2)}_{2m} + \Delta_j \tilde{j}^{(1)}_{2c}\Delta_j \tilde{j}^{(2)}_{2c} \]

\[= \Delta_j \tilde{j}^{(1)}_{2m}\Delta_j \tilde{j}^{(2)}_{2m} - \Delta_j \tilde{j}^{(1)}_{2m}O(h(c - ch^{1-\alpha_1})) + \]

\[-\Delta_j \tilde{j}^{(2)}_{2m}O(h(c - ch^{1-\alpha_1})) + O(h(c - ch^{1-\alpha_1}))O(h(c - ch^{1-\alpha_2})) , \]

therefore

\[H'_{nj} = o\left(E[H'_n] + \eta \sqrt{n \text{Var}(H'_n)} \right) \]

as \(h \to 0 \). Since \(h^{\frac{\alpha_1}{2}(c - ch^{1-\alpha_1})} \to 0 \) it follows that \(h^2(c - ch^{1-\alpha_1})(c - ch^{1-\alpha_2}) = o\left(E[H'_n] + \eta \sqrt{n \text{Var}(H'_n)} \right) \). Moreover for each \(q = 1, 2 \)

\[\Delta_j \tilde{j}^{(q)}_{2m}O(h(c - ch^{1-\alpha_2})) \]

\[= \left(\Delta_j \tilde{j}^{(q)}_{2m}\right)_{1(|\Delta_j \tilde{j}^{(q)}_{2m}| \leq 2\sqrt{h})} + \int_{1}^{t_j} \int_{-1}^{1} x \nu^{(q)}(dx)dt O(h(c - ch^{1-\alpha_2})) \]

\[\leq (2\sqrt{h} + O(h(c - ch^{1-\alpha_2})))O(h(c - ch^{1-\alpha_2})) \]

\[= O(h^{\frac{\alpha_1}{2}} + O(h(c - ch^{1-\alpha_2})))O(h(c - ch^{1-\alpha_2})) \]

\[= o\left(h^{1+\beta}+\frac{2\alpha_1+2\alpha_2+\alpha_1\alpha_2}{2\alpha_1}\right) , \]

so that as \(h \to 0 \)

\[\Delta_j \tilde{j}^{(q)}_{2m}O(h(c - ch^{1-\alpha_2})) = o\left(E[H'_n] + \eta \sqrt{n \text{Var}(H'_n)} \right) . \]

\(^2\)These are available if requested.
Now using (4) we can write
\[\Delta_j \tilde{J}^{(1)} + \Delta_j \tilde{J}^{(2)} \leq \Delta_j \tilde{J}^{(2)} O(h^{2}) + \Delta_j \tilde{J}^{(2)} O(h(c - ch^{1 - \alpha_1})). \]
But
\[E \left| \frac{(\Delta_j \tilde{J}^{(2)} + h \tilde{\pi})}{\sqrt{h^{\alpha_1 - \alpha_2}}(1 - \alpha_1 - \alpha_2)} \right| \leq \frac{h^{\alpha_1 - \alpha_2}}{h^{\alpha_1 - \alpha_2}} \sqrt{E[(\Delta_j \tilde{J}^{(2)})^2]} = \frac{h^{\alpha_1 - \alpha_2}}{h^{\alpha_1 - \alpha_2}} \to 0, \]
as \(h \to 0 \). It follows, using also (17), that \(\Delta_j \tilde{J}^{(1)} \Delta_j \tilde{J}^{(2)} = o \left(E[H_{n_j}'] + \eta \sqrt{n \text{Var}(H_{n_j})} \right) \). Therefore for small \(h \), uniformly on \(j \), we have \(\{ |H_{n_j}| < \eta \} = \emptyset \) and the Lindeberg condition is satisfied and the proof of theorem is complete.

5 Appendix

Proposition 5.1. (Proposition 3.5 in [4]) If \(\tilde{J}^{(q)} \equiv 0 \), under the assumptions \(A1-A3 \), and choosing \(r_h \) as in \(A5 \), we have
\[\tilde{v}^{(n)}_{22}(X^{(1)}, X^{(2)}) \rightarrow P \int_0^T (2 \rho_t^2 + 1)(\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt, \]
and
\[\tilde{w}^{(n)}(X^{(1)}, X^{(2)}) \rightarrow P \int_0^T (\sigma_t^{(1)})^2(\sigma_t^{(2)})^2 dt. \]

Theorem 5.2 (Lindeberg-Feller). Let \(\{H_{nj}, j = 1, \ldots, j_n, n = 1, 2, \ldots\} \) be a double array of r.v.s independent in each row such that \(E[H_{nj}] = 0 \) and \(E[H_{nj}^2] = \sigma_{nj}^2 < \infty \) for each \(n \) and \(j \) and moreover \(\sum_{j=1}^{j_n} \sigma_{nj}^2 = 1 \). Let \(F_{n_j} \) be the distribution function of \(H_{nj} \). In order that

1. \(\max_{1 \leq j \leq j_n} P(|H_{nj}| > \epsilon) \rightarrow 0, \forall \epsilon > 0, \)
2. \(\sum_{j=1}^{j_n} H_{nj} \rightarrow d N(0,1), \)

it is necessary and sufficient that for each \(\eta > 0 \) that the Lindeberg condition holds, i.e.
\[\sum_{j=1}^{j_n} \int_{|x| > \eta} x^2 F_{n_j}(dx) = \sum_{j=1}^{j_n} E[H_{nj}^2 1_{|H_{nj}| > \eta}] \rightarrow 0. \]

References

[1] Andersen, T.G., Bollerslev, T., Diebold, F.X. (2005): Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility. Manuscript, Northwestern University, Duke University and University of Pennsylvania.

[2] Barndorff-Nielsen, O.E., Shephard, N. (2004): Econometric analysis of realized covariation: high frequency based covariance, regression and correlation in financial economics. *Econometrica*, (2004), 72, 885-925.

[3] Cont, R., Tankov, P. (2004): *Financial Modelling with jump processes*. Chapman and Hall-CRC.

[4] Gobbi, F., Mancini, C. (2006): Identifying the diffusion covariation and the co-jumps given discrete observations, working paper.
[5] Mancini, C. (2004) Estimation of the parameters of jump of a general Poisson-diffusion model, *Scandinavian Actuarial Journal*, 1:42-52

[6] Mancini, C. (2005): *Estimating the integrated volatility in stochastic volatility models with Lévy type jumps*. Working paper, Dipartimento di Matematica per le Decisioni, Università di Firenze.