IDO/kynurenine pathway in cancer: possible therapeutic approaches

Eslam E. Abd El-Fattah

Abstract
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.

Keywords: Indoleamine 2,3-dioxygenase, Kynurenine, Lung cancer, IDO/kynurenine inhibitors, IDO/kynurenine stimulator

Introduction
Indoleamine 2,3-dioxygenase (IDO) is a 403-amino-acid cytosolic heme-containing enzyme that degrades tryptophan (Trp), an essential amino acid, through the kynurenine (Kyn) pathway (KP). IDO causes Trp to be degraded, which is required for adequate Kyn concentrations and other important cellular activities. Endothelial cells in the placenta and lung, epithelial cells in the female vaginal canal, and mature dendritic cells (DC) in lymphoid organs express IDO in normal human tissues. Endometrial and cervical carcinomas have the most considerable IDO-expressing cells among human malignancies, followed by kidney, lung, and colon cancers. IDO activity has been linked to acquired immunological tolerance, including the suppression of T-cell activation and the activation of regulatory T cells (Tregs), which can allow tumor cells to avoid immune surveillance [1, 2].

The plasma Kyn to Trp ([Kyn]/[Trp]) ratio is frequently used to express or reflect the activity of the extrahepatic IDO [3].

Tang et al. [4] found that as P53 is inactivated in the majority of cancer types, which accounts for the rise in IDO level, p53 may partially dampen IDO signaling in lung cancer cell migration. Additionally, dinaciclib was discovered to be an indirect KP inhibitor and was proven to cause IDO inhibition [5].

Physiological and pathological conditions that favor the anabolic/catabolic pathways of l-tryptophan
Physiologically, Trp is an amino acid required for the production of proteins and cellular survival. Trp can be found in several protein-rich meals, including eggs, cheese, and meat. Trp serves as a coenzyme in the important metabolic pathways nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) and is the precursor of the synthesis...
of Kyn and serotonin. L-tryptophan supplements have been used, and Trp has been researched as a potential treatment for a range of neuropsychiatric disorders by altering the generation of melatonin [6].

Pathologically, Trp deficiency results in depression, behavioral changes, cognitive problems, and mood disturbances [6]. On the other hand, Eosinophilia-myalgia syndrome has been linked to Trp poisoning (EMS). Intense, incapacitating myalgias and severe peripheral eosinophilia are characteristics of EMS [7]. Interferon-gamma (IFN-γ), the classic antitumor-associated T cell effector cytokine, and the agonists of the toll-like receptors 9 (TLR9) and 4 (TLR4), CpG DNA and lipopolysaccharide (LPS), respectively, are among the strongest agonists of IDO transcription [8].

L-tryptophan is converted to serotonin, melatonin, protein, and Kyn through various anabolic/catabolic activities. The rate-limiting breakdown of the Trp indole ring 2,3-double bond and incorporation of molecular oxygen is catalyzed by IDO1 and tryptophan 2,3-dioxygenase (TDO). The ultimate result of this reaction is N-formylkynurenine, which is converted to l-Kyn quickly and spontaneously. Downstream intermediates of the latter catabolite include 3-HK, 3-hydroxyanthranilate (3-HAA), and quinolinic acid, all of which alter immunological responses [9].

Even though IDO1 and TDO catalyze Trp, their quaternary structures, expression in normal vs. altered tissue, and regulation are very different. While monomeric IDO1 can cleave both D- and L-Trp, homotetrameric TDO is enantiomer-specific and can only catabolize L-Trp. IDO1 was the only IDO known to function at the T cell effector level, and IDO2 modulates T cell responses via a β-catenin signaling while maintaining continuous activity in the literature. IDO1 expression is dysregulated in various cancer cell lines such as melanoma, pancreatic cancer, and prostate cancer, over-activating the Kyn pathway, particularly IDO, predicts poor prognosis [18].

Tumor risk factors and IDO expression
Pertovaara et al. [14] found that Smoking subjects have lower IDO enzyme activity, which suggests that the known immunostimulatory effects of smoking may be caused by a decrease in IDO-dependent immunosuppression. Jiang et al. [15] found that in all of the examined brain areas of ethanol addiction/withdrawal animals, IDO1 was discovered to rise at both the mRNA and protein levels. In behavioral tests, alcohol-exposed mice had gradually impaired memory function along with anxious and sad behavior. In the hippocampus, cerebral cortex, and amygdala of ethanol addiction/withdrawal mice, however, it was discovered that KYN was expressed more, 5-hydroxytryptamine (5-HT) was expressed less, and Kynurenic acid (KA) were expressed abnormally.

Regulation of IDO1
Numerous redundant mechanisms lead to IDO1 expression and activity in the literature. IDO1 expression is induced by pro-inflammatory signals such as IFN-γ, CpG DNA, and LPS. Tumor necrosis factor-alpha (TNF-α), IL-6, and IL-1β are only a few cytokines that work together to boost IDO1 expression. Prostaglandin E2, the oncogene c-KIT, and the tumor suppressor Bin1 are all IDO1 modulators. Wnt5 also controls IDO1 activity in DC via α-catenin signaling while maintaining continuous expression in several cancer cell lines via an AhR-IL-6-STAT3 (Signal Transducer And Activator Of Transcription 3) signaling loop, according to new research [16, 17].

In gastrointestinal cancers, lung cancer, glioma, melanoma, prostate cancer, and pancreatic cancer, over-activation of the Kyn pathway, particularly IDO, predicts poor prognosis [18].
Factors that regulate IDO-2 and TDO gene expression and enzymatic activity

Regarding IDO-2, IDO2 mediates the autoreactive B cell response driving arthritis through an IDO1-independent mechanism [19]. IDO2 suppression by 1-MT raises the possibility that the IDO2 enzyme plays a role in tumors’ ability to evade the immune system [20]. IDO2 mRNA expression might be induced in human mesenchymal stem cells and certain cancer cells by IFN-γ. At the same time, it was discovered that LPS, prostaglandin E2, and interleukin-10 (IL-10) all contributed to the activation of IDO2. It’s interesting to note that the expression of IDO2 could be induced by thearyl hydrocarbon receptor (AHR), indicating that the promoter of the ido2 gene contains an AHR responsive region [21].

Regarding TDO, The anti-TDO-2 antibody was nevertheless able to recognize the protein generated by the mutant with the 9 bp deletion (tdo-2 (PLD)), even though it was it was lacking exactly three amino acid residues. Higher Trp levels and lower Kyn levels were observed in samples from animals whose TDO-2 proteins had large truncations as well as in samples from the PLD mutants, indicating that the three amino acids missing in this mutant are necessary for TDO-2 enzymatic activity. The deletions resulted in complete knockout mutations [22].

IDO, Kyn, and Trp levels in cancer

Onesti et al. [23] observed that notably increased plasmatic Kyn, Trp, and their ratio in breast cancer patients compared to healthy controls. Onesti et al. [23] observed that in contrast to tumors with hormone receptors, patients with hormone receptor-negative disease have lower plasmatic Trp and a greater Kyn/Trp ratio. Compared to other histologies, lobular tumors had the lowest ratio. Lower Trp levels and higher Kyn/Trp ratios were linked to more advanced tumors, respectively. Higher Kyn readings were related to pathological complete response. Trp, Kyn, and Kyn / Trp ratios in plasma did not predict survival. Suzuki et al. [24] found that lung cancer patients had higher IDO activity, and higher IDO activity was linked to more advanced stages of the disease.

This meta-analysis comprised a total of 31 papers. In general, there was a strong correlation between high IDO expression and poor OS (Overall survival) [25]. IHC staining revealed that 63.2 percent of bladder cancer tissues had high levels of IDO1 expression, compared to 29.4 percent of the adjacent normal tissues. This difference was statistically significant between the bladder tumor tissues and the adjacent normal tissues, and IDO1 expression was significantly correlated with tumor size, T stage, and N stage. [26].

IDO expression was found in all but three patient tumor samples, in all but four autologous non-malignant lung tissues, in three of the nine human lung cancer cell lines, and 28 patients with diverse primary lung cancers. The relative expression of IDO was considerably lower in lung cancer cell lines (4.7 ± 11.1) compared to all patient tumor samples (p = 0.006) and autologous non-affected lung tissues (p = 0.027) [27].

The plasma Kyn/Trp ratio is frequently used to express or reflect the activity of the extrahepatic Trp-degrading enzyme IDO was added as a method of assessment of the IDO/Kyn pathway.

IDO angiogenesis

IDO has no influence on lewis lung cancer cell proliferation, but it can boost adhesion and promote invasion, metastasis, and vasculogenic mimicking abilities. It can also help vascular endothelial cells become more angiogenic, implying that IDO’s immunological role is not the only one. In lewis lung cancer cells, overexpression of IDO enhanced Janus tyrosine kinase 2 (JAK-2) and STAT3 phosphorylation and up-regulated the production of Matrix metalloproteinase-2 (MMP-2) and MMP-9, two essential genes involved in invasion and metastasis [28] (Fig. 1). The microvascular density (MVD)-CD105 level was higher in IDO positive tissue than in IDO negative tissue (10.90 vs 7.46) [29]. CD34 and CD146 protein expression were dramatically reduced in experimental tumor tissues from IDO1 short hairpin RNA (shRNA) treated mice [30]. Gao et al. [31] found that in colon cancer patients, among the TLN without metastases, a higher density of IDO + cells was documented in 21/60 cases (35%).

The numbers of invasion cells transfected with IDO1 Small interfering RNA (siRNA), GL2 siRNA, and control cells, respectively, were 108.6676.658/well, 341.33316.773/well, and 333.33316.442/well, indicating a significant difference [30]. Pagano et al. [32] observed that in a mouse colon cancer xenograft, activation of GPR35 (G Protein-Coupled Receptor 35), a target protein for KYNA and 3-HAA, is linked to increased neoangiogenesis, tumor tissue remodeling, and tumor development. IDO1/TDO expression was found to be positively linked with aquaporin expression, suggesting that IDO1/TDO may play a role in glioma cell motility [33]. Comparing these bladder cancer cells to the control group, IDO1 knockdown decreased their capacity to migrate, and si-IDO1 transfection dramatically decreased the expression of N-cadherin and vimentin proteins as compared to the si-NC group [26].
IDO and apoptosis

The Kyn triggers apoptosis in cells with considerably higher Caspase-3 and Caspase-9 activity [34]. Zhong et al. [35] mentioned that TUNEL research revealed that IDO1−/− fibrosis mice had lower rates of apoptotic cell death in liver tissues than WT fibrosis mice, demonstrating that IDO causes apoptosis. Transgenic expression of IDO increased renal tubular epithelial cells (TEC) death without pro-inflammatory cytokine exposure, suggesting that IDO is involved in TEC damage [36]. The JAK-STAT1 pathway is required for IDO activation by IFN-gamma, and its induction triggers 3OHKyn-mediated apoptosis in HLE-B3 cells [37]. IDO suppression lowered the expression of p53 and p21 in T-cells in mixed lymphocyte reactions (MLRs), indicating that IDO has a pro-apoptotic effect [38]. Sas et al. [39] mentioned that IDO inhibition lowers NAD+ production, which leads to cell death (Fig. 1).

IDO and proliferation

The Ki67 index (mitotic index) and overall survival were favorably linked with IDO1/TDO expression. In human colon cancer cells, diminished IDO1 activity reduced nuclear and activated β-catenin, transcription of its target genes (cyclin D1 and Axin2), and, ultimately, proliferation [33, 40].

In human colon cancer cells, inhibiting IDO1 activity reduced nuclear and activated β-catenin, transcription of its target genes such as cyclin D1, and, ultimately, proliferation [41]. IDO1 and other Kyn pathway genes were decreased by dinaciclib, a cyclin-dependent kinase (CDK) inhibitor [5]. In a colorectal model, Kyn treatment caused fast and dose-dependent Protein kinase B (Akt) activation, as demonstrated by elevations in pAKT S472 and phosphorylated PRAS40 pT246, a direct target of Akt activity [42]. IDO reduced the expression of C-chain, c-Myc, LDH-A, and GLS2 in MLRs when compared to untreated MLRs [38]. Compared to usual settings, KYNA serum deprivation decreased the growth of U-343 MG cells [43] (Fig. 1).

The CCK-8 assay revealed that IDO1 knockdown dramatically reduced the proliferation of T24 and UMUC3 cells, and after 2 weeks of culture, the colony formation rate of cells with IDO1 knockdown was significantly reduced in comparison to the control group [26].

IDO and oxidative stress

3-HK produces hydrogen peroxide and other reactive oxygen species (ROS), linked to neuronal cell death in a brain region implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease [44]. IDO-1 is induced in response to oxidative stress as well as inflammation. The inflammatory mediators up-regulate IDO-1 expression; TNF-α, IL-1β, IL-2, and IL-6 [45].

Accordingly, IDO1 activation and resultant L-Trp metabolism along the Kyn pathway can protect against...
oxidative stress via promoting de novo NAD+ synthesis in a human astroglialoma cell line exposed to hydrogen peroxide (H2O2) [46]. 3-OH-KYN is transferred into cells by neutral amino acid transporters. Only after interaction with cellular xanthine oxidase is 3-OH-KYN capable of producing sufficient amounts of ROS, such as superoxide radicals, hydrogen peroxide, and hydroxyl radicals, inducing internucleosomal DNA cleavage leading to apoptosis [47].

IDO and hypoxia

Indoleamine 2, 3-dioxygenase is an enzyme that metabolizes Trp which up-regulates degradation of L-tryptophan and increases hypoxia-inducible factor-1 expression [48]. Endogenous Trp derivatives, such as Kyn and ITE (2-(10H-indole-30-carbonyl)-thiazole-4-carboxylic acid methyl ester), may play opposite roles in cancer progression and stemness, regulating OCT4 expression through AhR modulation: accumulation of the low-affinity AhR agonist Kyn in the tumor microenvironment favors carcinogenesis, whereas the high-affinity AhR agonist ITE promotes its binding to the OCT4 promoter to suppress its transcription and, consequently, inducing cell differentiation in U87 glioblastoma neurospheres [49].

IDO and CSCs

Indoleamine 2, 3-dioxygenase mRNA was enhanced four to sevenfold in spheres compared to adherent counterparts for different cell types. Trp in the media with spherical cells decreased by 3 mg/ml in 24 h, whereas adherent cells declined only 1–1.5 mg/ml [50]. Low et al. [51] found that IDO1 protein expression was upregulated in cervical tumorspheres from HeLa and SiHa cervical cancer cells compared to 2D cultured cells. In addition to the protein level, the IDO1 activity, which was determined by the conversion of Kyn from Trp using Ehrlich reagent, was also increased in HeLa and SiHa tumorspheres in comparison to 2D cultured cells. Compared to control shRNA transduced cells, the colony number of IDO1 knockdown cervical tumorsphere cells derived from HeLa and SiHa cells reduced dramatically as radiation increased [51].

IDO and cancer energetics (NAD)

Using human MDMs has provided evidence that indicates that an immune-mediated increase in IDO activity does increase NAD biosynthesis concomitantly with an increase in NAD catabolism [52] (Fig. 1).

IDO/Kyn and cancer immune escape

The main theory linking IDO, TDO, and IDO2 to immunosuppression focuses on how each of them contributes individually and/or collectively to Trp metabolism. This dogma’s foundation is the Trp Starvation Theory, which holds that Trp depletion at or below 1M, which is considered to be nearly absolute, promotes the accumulation of uncharged tRNAs, which in turn activates the GCN2 kinase pathway and causes T cells to malfunction. Studies conducted in vitro lend credence to the idea that Trp depletion suppresses the main metabolic regulators mTOR and protein kinase C (PKC) in cancer cells, hence promoting autophagy and Treg formation, respectively.

Through the production of Kyn and other downstream derived metabolites, Trp degradation may also inhibit immune cell activity. Kyn activates the AhR, a ligand-activated transcription factor that has significant effects on immune cells and is implicated in the differentiation of inducible Tregs, in vitro and further requires co-treatment with transforming growth factor-beta (TGF-β). Kyn metabolites from the downstream pathway, such as KA, xanthurenic acid (XA), and cinnabarinic acid (CA), interact with AhR and may influence the immunological response. Contrastingly, it has been shown that Trp catabolites can also cause CD4+ T cell death. Kyn, 3-HK, and 3-HAA inhibit T cell growth concurrently with apoptotic induction. This data was independently proving that Kyn selectively trigger the apoptosis of murine thymocytes and Th1-cells, but not Th2-cells, in vitro. Maintaining peripheral lymphocyte homeostasis and preventing the buildup of autoreactive and/or inflammatory lymphocytes may depend on Kyns’ immunoregulatory effects on several lymphocyte subsets [8].

Drugs that inhibit IDO/KYN pathways

1-methyl-DL-tryptophan (1-MT)/(indoximod)

Indoximod is similarly effective in suppressing IDO1 enzymatic activity in human monocyte-derived DCs [53, 54].

Epacadostat

Epacadostat is an IDO1 selective inhibitor with little activity against IDO2 that is currently in clinical development and is expected to be the first IDO1 inhibitor to achieve registration approval. In its early phase I/II trials, epacadostat demonstrated preliminary promising anticancer effects when used in conjunction with anti-programmed cell death protein (anti-PD-1) drugs such as pembrolizumab and nivolumab in individuals with advanced malignant melanoma [55, 56].

Doxorubicin (DOX) and navoximod combination

Doxorubicin treatment of breast tumor cells resulted in IDO1 upregulation. These findings showed other potential methods of DOX impact on tumor repression, particularly in metastatic breast cancer, where traditional DOX treatment causes a variety of adverse effects and
consequent therapeutic failure [57]. Recent improvements in understanding the immunological changes caused by chemotherapy and advances in combining checkpoint IDO1 inhibitors with conventional chemotherapy are promising for increasing numbers of cancer [58]. Navoximod is a potent IDO pathway inhibitor with promising pharmacological effects for treating cancer-related immunosuppression [59].

Linrodostat
Linrodostat is a small molecule effectively and specifically inhibits IDO1, preventing Trp from being converted into the immunosuppressive Kyn [60] to lower serum Kyn levels and inhibit tumor. IDO1’s heme is particularly labile, and linrodostat inhibits IDO1 by binding to the heme-free (apo) form of the enzyme [60, 61].

Imatinib
Imatinib stimulated CD8+ T cells and triggered Treg death within the tumor via decreasing IDO1 expression on tumor cells. In a mouse model of the spontaneous gastrointestinal stromal tumor (GISTs), IDO1 regulation was shown to contribute significantly to imatinib’s anticancer effects [62].

Nimesulide
Epithelial malignancies could over-express cyclooxygenase-2 (COX-2) like non-small lung cancer (NSLC). Consequently, it gives it malignancy and metastatic characters [63]. COX-2 enhances immunosurveillance escape which is demonstrated by the finding that inhibiting COX-2/PGE2 in animals with lung cancer reduces Treg-cell frequencies while increasing the frequency of anti-tumor effector T cells [64]. A cancer study in an animal model derived us from understanding the relationship between COX-2 and IDO1. In the tumor site, the inhibition of COX2 can down-regulate IDO1 expression and fall serum Kyn levels [65, 66]. Nimesulide, a selective COX-2 inhibitor, lowered IDO1 mRNA/protein and decreased Kyn production, implying that total IDO1 inhibition was caused by both reduced IDO1 gene transcription and hindered IDO1 catalytic activity [67].

Metformin
Patients with insulin resistance were accompanied by elevated Kyn metabolites before hyperglycemia signs appeared [68]. It was found that patients on the metformin regimen had normal Trp metabolism and Kyn metabolites [69].

Dinaciclib
Dinaciclib is a CDK inhibitor that could suppress the Kyn pathway in glioblastoma multiforme (GBM) as well as head and neck squamous cell carcinomas (HNSCC) [5].

Selective serotonin reuptake inhibitor treatment with probiotic bacteria Lactobacillus plantarum
Selective serotonin reuptake inhibitor (SSRI) and probiotic bacteria Lactobacillus plantarum 299v could significantly decrease Kyn level, associated with cognitive functions improvement [70].

Galanal
Methanol extraction of Myoga flower buds contains galanal which was found to significantly inhibits IDO1 activity [71].

The galanthamine–memantine combination
The galanthamine–memantine combination could affect the receptors of alpha7 nicotinic acetylcholine and N-methyl-d-aspartate; moreover, it can inhibit KA in the Kyn pathway [72].

M4112
Although M4112 could block IDO1 activity in vitro and there was a safety dose margin, the Kyn plasma level did not change and may need further investigations [73].

Candesartan
The candesartan derivatives were associated with IDO 1 inhibition through the enzymatic active site and not through the haem region [74].

Desipramine
Desipramine inhibits the expression of IDO1 and IDO2 in peripheral blood mononuclear cells (PBMCs) [75].

Simvastatin and sildenafil
It is possible to conclude that co-administration of simvastatin and sildenafil had provided a neuroprotective effect against irradiation-induced brain injury. The protection mechanism was through NO donor/tetrahydrobiopterin (BH4). Besides, the combination offered anti-inflammatory and anti-oxidant properties with IDO/KYN modulation [76].

Lacosamide
Anti-epileptic lacosamide was used to treat partial-onset seizures in children (> 1 year), and adults had significant against a neuroinflammation-mediated model
of concurrent seizures with depression by Kyn levels reduction in hippocampal [77].

Eicosapentaenoic acid
Eicosapentaenoic acid is one of the omega-3 fatty acids extracted from animals and marine plants. It had a significant effect on Kyn levels, decreasing its level with increasing T-cells survival. The anti-tumor action of eicosapentaenoic acid contributed to IDO1 expression blockage [78].

Sulfonamide
Sulfonamides have a variety of pharmacological properties in vivo, including anti-carbonic anhydrase and anti-t dihydropteroate synthetase, which allows them to be used to treat a variety of diseases such as diuresis, hypoglycemia, thyroiditis, inflammation, bacterial infection, and glaucoma. Sulfonamide has significant potent IDO1 inhibitory action with similar efficacy to Epacadostat in vivo Lewis lung cancer [79].

Carbidopa
Carbidopa had a similar structure to phenylhydrazine, which is an IDO1 inhibitor. Carbidopa could significantly decrease in vitro and in vivo pancreatic cancer cell proliferation [80].

PCC0208009
PCC0208009 had significant selective pain suppressing, as it acts as a potent, selective IDO1 inhibitor, effective in treating neuropathic pain [80].

Lavender oil
The mechanism of action of lavender oil and its derivatives, linalool, α-pinene, and limonene involved in the catabolism of IDO1 and neopterin production through GTP, cyclohydrolase-I, and IFN-γ [82].

Ketoprofen and sertraline combination
Ketoprofen is a nonsteroidal anti-inflammatory drug (NSAID) while sertraline is SSRI antidepressant drug. Sertraline and ketoprofen had significant results in decreasing IDO1 levels and inflammation and immunity modulation in major depression disorder. The ketoprofen provided a synergistic effect to sertraline towards IDO1 inhibition and benefited action for T-helper and T-reg cells [83].

Chloroquine
The 4-aminoquinoline-based medicines chloroquines are primarily used to treat malaria. In vitro studies of human PBMCs, chloroquine had interfered with IFN-γ. Moreover, it could stimulate neopterin synthesis and Trp catabolism. For that reason, chloroquine had significant anti-inflammatory properties to be used clinically [84].

2-hydrazinobenzothiazole
In vitro, a potent inhibitor for IDO1 was 2-hydrazinobenzothiazole, while phenylhydrazine bound to haem and inhibited IDO1 [85].

Nitroglycerin
Nitroglycerin is a vasodilator that is commonly used to treat angina chest discomfort. An animal study revealed that nitroglycerin could significantly down-regulate the Kyn level [86].

Nitric oxide (NO)
Nitric oxide produces cGMP, which induces vascular relaxation. NO could successfully block IDO1 [87].

Curcumin
Based on IFN-γ stimulation of IDO1 expression, curcumin could inhibit IDO1 and suppress immunological t-cells. Consequently, the downregulation of IDO1 in DC is a vital mechanism of immunological changes induced by curcumin which could be used in cancer therapy [88].

Flavonoids
Flavonoids bind non-competitively with IDO1 confirmed by plasmon resonance assays. It was significantly used in cancer immunotherapy [89].

Progesterone
Progesterone could significantly inhibit the IFN-γ Kyn pathway induction, decreasing excitotoxin quinolinic acid concentration. It could promote neuroprotection and reduce neopterin. It provided an interpretation of gender variations in the inflammatory response [90].

Nicotine
Smokers had significantly lower activity of IDO1 than non-smokers with unknown mechanisms of smokers’ immunostimulatory action [91].

N-acetyl-cysteine
N-acetylcysteine (NAC) is the mainstay of therapy for acetaminophen toxicity. The significant cellular protection from Kyn causes programmed cell death with antioxidant NAC. It also inhibits NK cells mediated ROS pathway in addition to the IDO1 blocking effect [92].

Lithium
Lithium has been the therapy of choice for bipolar disorder (BD) for more than six decades. Lithium could inhibit IDO1 action in primary cells in immortalized human
Moreover, it increased the production of IL-10. Lithium blocks the Kyn inflammatory pathway in the microglia part of the human brain [93].

Melatonin

Melatonin is produced by the pineal gland during the night in reaction to darkness. Exogenous melatonin could inhibit neuroinflammation through attenuating IDO expression (94).

Hydroxyamidines

In vitro analysis, Hydroxyamidines have significantly inhibited the metabolism of Trp in colon carcinoma and pancreatic carcinoma cells and in vivo cancers in lymph...
node drainage. INCB024360 has a significant IDO1 inhibitor with desirable clinical outcomes in cancer patients [95].

Benserazide
Benserazide is a dihydroxyphenylalanine (DOPA) decarboxylase inhibitor that does not penetrate CNS and is used as an addition to levodopa in treating Parkinsonism.

Table 2 Drugs that stimulate IDO/Kyn pathway

Drug	Main target	Species	Model or cells	References
1 Statin	IDO1 (Gene expression)	Human	Asthma	[98]
2 Nandrolone	IDO1 (IDO activity)	Murine	Depression	[99]
3 Escitalopram	Kyn (enzyme–substrate binding)	Human	Neurotoxicity	[100]
4 Dexamethasone	IDO1 (IDO activity)	Human	Peripheral blood monocytes	[101]
5 Valproate	Kyn (enzyme–substrate binding)	Murine	Brain	[102]
6 Interferon	IDO1 (IDO activity)	Human	Peripheral blood monocytes	[101]
7 Tocilizumab	IDO1 (IDO activity)	Human	Diabetes	[103]

Table 3 Clinical trials that target IDO/Kyn pathway

NCT Number	Title	Conditions
NCT03047928	Combination Therapy With Nivolumab and PD L1/IDO Peptide Vaccine to Patients With Metastatic Melanoma	Metastatic Melanoma
NCT01219348	IDO Peptide Vaccination for Stage III-IV Non-Small-cell Lung Cancer Patients	NSCLC Lung Cancer
NCT02967419	The Study of the Relationship Between TWEAK/Fn14, JAK/STAT3, and IDO in the Immune Microenvironment of Endometrium in Repeated Implantation Failure	Repeated Implantation Failure
NCT01397916	IDO Activity in Patients With Chronic Lymphocytic Leukemia (CLL)	CLL
Benserazide inhibits the Kyn metabolism peripherally and treats olanzapine-induced metabolic syndrome [96].

Caffeine

Caffeine is the most used stimulant in the world. There was a significant correlation between anxiety caused by caffeine and the Kyn level. The Kyn level is proportional to anxiety peaks [97].

The following table (Table 1) summarizes the above-mentioned drugs that inhibit IDO/Kyn pathway.

Drugs that stimulate IDO/KYN pathways
Statin
Asthmatic patients were administered inhaled corticosteroids; when they were given statins as statins enhance the anti-inflammatory effect, IDO1 activity was altered through increasing IDO induction [98].
Nandrolone decanoate
Nandrolone decanoate is one of the most often abused anabolic androgenic steroid molecules globally. However, it comes with a slew of side effects. Nandrolone decanoate could promote IDO1 activity, increasing Kyn concentration in the brain [99] (Fig. 2).
Escitalopram
Antidepressant selective serotonin reuptake inhibitor, Escitalopram, is a drug that is used to treat major depressive disorder and anxiety disorders. The synthesis of neurotoxic Kyn metabolites could be significantly performed by escitalopram; moreover, it could inhibit inflammatory response [100] (Fig. 2).
Dexamethasone
Dexamethasone belongs to the corticosteroid family that is used to treat chronic obstructive pulmonary disease, severe allergies, rheumatic disorders, and asthma. Dexamethasone could increase the effect of IFN-γ as a super-stimulation of IDO1. It could modulate the immune system and regulate the metabolism of Trp [101] (Fig. 2).
Valproate
Valproate sodium is an anti-epileptic and mood stabilizer that could stimulate increasing Kyn in the brain with its similar mechanism of action. Valproate could displace Trp from albumin, consequently increasing the Kyn of the brain [102] (Fig. 2).
Interferon
The only type II interferon, IFN-γ, is innate and adaptive immune responses. In human peripheral blood monocytes, IFN-γ had significant stimulation of IDO and more induction of Trp catabolism. Besides, IFN-γ had a higher effect than interferon-alpha [101] (Fig. 2).
Tocilizumab
Tocilizumab is an anti-human IL-6 receptor (IL-6R) monoclonal antibody authorized for rheumatoid arthritis. It blocks IL-6 signaling by binding soluble IL-6R and membrane IL-6R. Tocilizumab could provide Trp-derived catabolites and block IL6 activities [103] (Fig. 2).

Table 2 summarizes the above-mentioned drugs that stimulate IDO/Kyn pathway.

Besides these are some of the clinical trials that target the IDO/Kyn pathway as mentioned in https://www.clinicaltrials.gov (Table 3).

Conclusion

As IDO and its metabolite Kyn are potential targets for cancer control due to their immunosuppressive effect, IDO/Kyn also induces its carcinogenic effect on proliferation, apoptosis, angiogenesis, metastasis, oxidative stress, and cancer stemness potentiality. Besides, many drugs inhibit IDO/KYN pathway in different diseases, which can be tested for their effectiveness against cancer progression. On the other hand, different drugs induce the IDO/KYN pathway, which may potentiate cancer progression and thus look for alternatives in case of cancer risk with other comorbidities.

Acknowledgements

Not applicable.

Author contributions

EEAE: Conceptualization, methodology, investigation, writing—original draft preparation, reviewing, and editing. The author read and approved the final manuscript.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). Our review did not receive any financial support from any governmental, private or non-profit organization.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author declares that there is no conflict of interest.

Received: 8 March 2022 Accepted: 25 July 2022
Published online: 02 August 2022
Abd El-Fattah Journal of Translational Medicine (2022) 20:347

References

1. Larkin PB, Sathyaasaiakumar KV, Notarangelo FM, Funakoshi H, Nakamura T, Schwarz R, et al. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice. Biochem Biophys Acta. 2016;1860(1 Pt A):2345–54.

2. Abd El-Fattah EE, Abdelhamid AM, Benzo[a]pyrene immunogenicity and immune archetype reprogramming of lung. Toxicology. 2021;463:152994.

3. Badawy AAB, Guillemin G. The plasma [kynurenine]/[tryptophan] ratio and indoleamine 2,3-dioxygenase: time for appraisal. Int J Tryptophan Res. 2019;12:178649619868978.

4. Tang D, Yue L, Yao R, Zhou L, Yang Y, Lu L, et al. P53 prevent tumor invasion and metastasis by down-regulating IDO in lung cancer. Oncotarget. 2017;8(33):54548–57.

5. Riess C, Schneider B, Kehnscherper H, Gesche J, Irmscher N, Shokraie I, et al. Activation of the kynurenine pathway in human malignancies can be suppressed by the cyclin-dependent kinase inhibitor dinaciclib. Front Immunol. 2020;11:55.

6. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Milburn DS, Myers CW. Tryptophan toxicity: a pharmacoepidemiologic review of eosinophilia-myalgia syndrome. DICP Ann Pharmacother. 1999;33(1):5–60.

7. Milburn DS, Myers CW. Tryptophan toxicity: a pharmacoepidemiologic review of eosinophilia-myalgia syndrome. DICP Ann Pharmacother. 1991;25(11):1259–62.

8. Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu I, Sosman JA, et al. Immunosuppressive IDO in cancer: mechanisms of action, animal models, and targeting strategies. Front Immunol. 2020;11:1185.

9. Jiang X, Xu L, Tang L, Liu F, Chen Z, Zhang J, et al. Role of the indoleamine-2,3-dioxygenase/kynurenine pathway of tryptophan metabolism in behavior alterations in a hepatic encephalopathy rat model. J Neuroinflamm. 2018;15(1):3.

10. Platten M, von Knebel DN, Dezen J, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/IDO2 and their downstream effectors. Front Immunol. 2009;25(2):63–62.

11. Georganaki M, Ramachandran M, Tuit S, Núñez NG, Karampatzakis T, et al. Understanding the mechanisms of action of IDO1 and IDO2 in cancer and targeting strategies. Front Immunol. 2020;11:1185.

12. Michels H, Seinstra RI, Uitdehaag JC, Koopman M, van Faassen M, Marinelena CN, et al. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase. Sci Rep. 2016;6:39199.

13. Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med. 2019;17(1):239.

14. Suzuki Y, Suda T, Fujiwara K, Suzuki M, Fujie M, Hahimoto D, et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer. 2010;67(3):361–5.

15. Wang S, Wu J, Shen H, Wang J. The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis. BMC Cancer. 2020;20(1):471.

16. Zhang W, Zhang J, Zhang Z, Guo Y, Wu Y, Wang B, et al. Overexpression of indoleamine 2,3-dioxygenase 1 promotes epithelial-mesenchymal transition by activation of the IL-6/STAT3/PI3K/AKT pathway in bladder cancer. Transl Oncol. 2019;12(3):485–92.

17. Karanikas V, Zamanakou M, Kerenidis T, Dahabreh J, Hevas A, Nakou M, et al. Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther. 2007;6(8):525–62.

18. Su C, Zhang P, Liu J, Cao Y. Eriani inhibits indoleamine 2,3-dioxygenase-induced tumor angiogenesis. Biomed Pharmacother. 2017;88:521–8.

19. Wei L, Zhu S, Li M, Li F, Wei F, Li J, et al. High indoleamine 2,3-dioxygenase is correlated with microvesSEL density and worse prognosis in breast cancer. Front Immunol. 2018;9:724.

20. Pan J, Yuan K, Peng S, Huang Y, Zhang J, Hu Y, et al. Gene silencing of indoleamine-2,3-dioxygenase hinders tumor growth through angiogenesis inhibition. Int J OncoL. 2017;50(6):2136–44.

21. Gao Y-F, Peng R-Q, Li J, Ding Y, Zhang X, Wu X-J, et al. The paradoxical patterns of expression of indoleamine 2,3-dioxygenase in colon cancer. J Transl Med. 2009;7(1):71.

22. Pagano E, Elias JE, Schneider G, Savellieva S, Holland LM, Borrelli F, et al. Activation of the GPR35 pathway drives angiogenesis in the tumour microenvironment. Gut. 2022. https://doi.org/10.1136/gutjnl-2020-323363.

23. Du L, Xing Z, Tao B, Li T, Yang D, Li W, et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-ARH-AQP4 signaling pathway. Signal Transduct Target Ther. 2020;5(1):10.

24. Mailankot M, Nagaraj RH. Induction of indoleamine 2,3-dioxygenase in response to CD40-stimulating immunotherapy. Oncoimmunology. 2020;9(1):1730538.

25. Abd El-Fattah EE, Saber S, Yousef ME, Eissa H, El-Ahwany E, Amin NA, et al. AKT-AMPKα-MTOR-Independent HIF-1α activation is a new therapeutic target for cancer treatment: a novel approach to repositioning the antidiabetic drug sitagliptin for the management of hepatocellular carcinoma. Front Pharmacol. 2021;12:720173.
41. Thaker AI, Rao MS, Bishnupuri KS, Kerr TA, Foster L, Marinshaw JM, et al. IDO1 metabolites activate β-cat신aling to promote cancer cell proliferation and colon tumorigenesis in mice. Gastroenterology. 2013;145(2):416–25.

42. Bishnupuri KS, Alsayed DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Can Res. 2019;79(6):1138–50.

43. Serio CD, Angeli I, Doria L, Micucci I, Pellerito S, et al. Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF-1) and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol. 2005;25(6):981–93.

44. Mazarei G, Leavitt BR. Indoleamine 2,3 dioxygenase as a potential therapeutic target in Huntington’s disease. J Huntington Dis. 2015;4(2):109–18.

45. Abuezzel SA, Hendawy N, Magdy Y. Targeting oxidative stress, cytokines and serotonin interactions via indoleamine 2,3 dioxygenase by coenzyme Q10: role in suppressing depressive like behavior in rats. J Neurommun Pharmacol. 2017;12(2):277–91.

46. Grant RS, Naff H, Espinosa M, Kapoor V. IDO induction in IFN-γ stimulated human primary mononuclear cells. Int J Immunol. 2006;17(4):2391–92.

47. Wichers MC, Maes M. The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatri Neuropsychi. 2004;29(11):1–7.

48. Elefteriadis T, Pissas G, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase up-regulates hypoxia-inducible factor-1α expression by degrading L-tryptophan but not its activity in human alveolar macrophages. In: Respir. Cancer Prev Res. 2011;4(8):1198–208.

49. Cho YM, Kwon S, Park YK, Seol HW, Choi YM, Park DJ, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006;348(4):1472–8.

50. Stapelberg M, Zobalova R, Nguyen MN, Walker T, Stantic M, Goodwin J, et al. Reciprocal regulation between indoleamine 2,3-dioxigenase 1 and notch1 involved in radiation response of cervical cancer stem cells. Cancers. 2020;12(6):1547.

51. Fox E, Oliver T, Rowe M, Thomas S, Zakharia Y, Gilman PB, et al. Indoxifen: an immunometabolic adjuvant that empowers T cell activity in cancer. J Exp Clin Cancer Res. 2021;40(1):1–4.

52. Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, et al. Probiotic Lactobacillus plantarum 29v reduces kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22.

53. Yamamoto R, Yamamoto Y, Imai S, Fukutomi R, Ozawa Y, Abe M, et al. Effects of various phytochemicals on indoleamine 2, 3-dioxygenase 1 activity: galanol is a novel, competitive inhibitor of the enzyme. PLoS ONE. 2014(9):e88789.

54. Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galanthamine-memantine combination and kynurenine pathway enzyme inhibitors in the treatment of neuropsychiatric disorders. Complex Psychiatry. 2021;7(1–2):19–33.

55. Naing A, Eder JP, Piha-Paul SA, Gimmi C, Hussey E, Zhang S, et al. Preclinical investigations and a first-in-human phase I trial of M4112, the first dual inhibitor of indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase 2, in patients with advanced solid tumors. J Immunother Cancer. 2020;8(2):e000870.

56. Matsuno K, Yamazaki H, Isaka Y, Takai K, Unno Y, Ogo N, et al. Desipramine decreases expression of human and murine indoleamine 2,3-dioxygenase-1 and -2. MedChemComm. 2012;3(4):475–9.

57. Brooks AK, Janda TM, Lawson RA, Rytlich JL, Smith RA, Ocampo-Solis C, et al. Desipramine decreases expression of human and murine indoleamine-2, 3-dioxygenases. Brain Behav Immun. 2017;62:219–29.

58. Thabet NM, Rashid ER, Abdel-Rafei MK, Mostafa EM. Modulation of the nitric oxide/BHA pathway protects against irradiation-induced neuronal damage. Neurochem Res. 2016;41(7):1641–8.

59. Agarwal S, Vyas P, Nirwan N, Vohora D. Effect of lacosamide on neuroinflammation in a phase 1/2a trial. Cancer Research; 2017: AMER ASSOC CANCER.
inhibitors with in vivo anti-tumor efficacy. Bioorg Med Chem Lett. 2020;30(8): 127038.

80. Ogura J, Miyaiuhc1 S, Shimono K, Yang S, Gonchigar S, Ganapathy V, et al. Carbidopa is an activator of aryl hydrocarbon receptor with potential for cancer therapy. Biochemical J. 2017;474(20):3391–402.

81. Wang Y, Li C-M, Han R, Wang Z-Z, Gao Y-L, Zha Z-Y, et al. PCC02088009, an indirect IDO1 inhibitor, alleviates neuropathic pain and co-morbidities by regulating synaptic plasticity of ACC and amygdala. Biochem Pharmacol. 2020;177:113926.

82. Gostner JM, Ganzera M, Becker K, Geisler S, Schroecksnadel S, Überall F, et al. Lavender oil suppresses indoleamine-2, 3-dioxygenase activity in association with pro-inflammatory and immune regulatory cytokines. 2018.

83. Gostner JM, Schröcksnadel S, Becker K, Jenny M, Schennach H, Überall F, et al. Antimalarial drug chloroquine counteracts activation of indoleamine (2, 3)-dioxygenase activity in human PBMC. FEBS Open Bio. 2012;2:241–5.

84. Fung S-Ps, Wang H, Tomek P, Squire CJ, Flanagan JU, Palmer BD, et al. Discovery and characterisation of hydrazines as inhibitors of the immune suppressive enzyme, indoleamine 2, 3-dioxygenase 1 (IDO1). Bioorganic & medicinal chemistry. 2013;21(24):7595–603.

85. Nagy-Grócz G, Laborc KF, Veres G, Bajtai A, Bohár Z, Zádori D, et al. The effect of systemic nitroglycerin administration on the kynurenine pathway in the rat. Front Neurol. 2017;8:278.

86. Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2, 3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem. 1994;269(20):14457–64.

87. Jeong Y-I, Kim SW, Jung ID, Lee JS, Chang JH, Lee C-M, et al. Cucumin suppresses the induction of indoleamine 2, 3-dioxygenase by blocking the Janus-activated kinase-protein kinase C6-STAT1 signaling pathway in interferon-γ-stimulated murine dendritic cells. J Biol Chem. 2009;284(6):3700–8.

88. Kwon M, Ko S-K, Jang M, Kim G-H, Ryoo I-J, Son S, et al. Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2, 3-dioxygenase 1 activity. J Enzyme Inhib Med Chem. 2019;34(1):1481–8.

89. de Bie J, Lim C, Guillemin G. Progesterone alters kynurenine pathway activation in IFN-γ-activated macrophages–relevance for neuroinflammatory diseases. London: SAGE Publications Sage; 2016.

90. Pertovaara M, Helløvaara M, Raitala A, Oja S, Knekt P, Humre M. The activity of the immunoregulatory enzyme indoleamine 2, 3-dioxygenase is decreased in smokers. Clin Exp Immunol. 2006;145(3):469–73.

91. Song H, Park H, Kim Y-S, Kim KD, Lee H-K, Cho D-H, et al. L-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol. 2011;11(8):932–8.

92. Goettert R, Fidzinski P, Kraus L, Schneider UC, Holtkamp M, Endres M, et al. Antimalarial drug chloroquine counteracts activation of indoleamine (2, 3)-dioxygenase activity in human PBMC. FEBS Open Bio. 2012;2:241–5.

93. Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neelan CL, Haley PJ, et al. Hydroxyamidine inhibitors of indoleamine-2, 3-dioxygenase potentially suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther. 2010;9(2):489–98.

94. Oxenkrug G, Summergrad P. Benserazide, an inhibitor of peripheral kynurenine metabolism, attenuates olanzapine-induced weight gain, insulin resistance, and dyslipidemia in C57Bl/6j mice. Mol Neurobiol. 2020;57(1):135–8.

95. Orlikov A, Ryoo I. Caffeine-induced anxiety and increase of kynurenine concentration in plasma of healthy subjects: a pilot study. Biol Psychiat. 1991;29(4):391–6.

96. Manechotesuwan K, Ejkiartrakul W, Kasetsinsombat K, Wongkajornsila A, Barnes PJ. Statins enhance the anti-inflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2, 3-dioxygenase. J Allergy Clin Immunol. 2010;126(4):754–62.

97. Souza LC, de Brito MLO, Jesse CR, Boeira SP, de Gomes MG, Goes ATR, et al. Involvement of kynurenine pathway in depressive-like behaviour induced by nandrolone decanoate in mice. Steroids. 2020;164:108727.

98. Halari A, Myint A-M, Savant V, Mersesh E, Lim E, Guillenm G, et al. Does escitalopram reduce neurotoxicity in major depression? J Psychiatr Res. 2015;66:118–26.

99. Ozaki Y, Edelstein MP, Duch DS. The actions of interferon and anti-inflammatory agents on induction of indoleamine 2, 3-dioxygenase in human peripheral blood monocytes. Biochem Biophys Res Commun. 1987;144(3):1147–53.

100. Macejak P, Szynkler J, Turzyńska D, Sobolewska A, Kolosowska K, Lehner M, et al. The kynurenine pathway: a missing piece in the puzzle of valproate action? Neuroscience. 2013;234:135–45.

101. Belladonna ML, Orabona C. Potential benefits of tryptophan metabolism to the efficacy of tocilizumab in COVID-19. Front Pharmacol. 2020;11:959.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.