Analysis of the spectral function of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$, obtained by angle resolved photoemission spectroscopy

F. Schmitt1, W. S. Lee1, D.-H. Lu2, W. Meevasana3, E. Motoyama1, M. Greven1,2, Z.-X. Shen1,2,3,11

1Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
2Stanford Synchrotron Radiation Laboratory, Menlo Park, CA 94025, USA
3Department of Physics, Stanford University, Stanford, CA 94305, USA

(Dated: August 21, 2008)

Samples of Nd$_{2-x}$Ce$_x$CuO$_4$, an electron-doped high temperature superconducting cuprate (HTSC), near optimal doping at $x = 0.155$ were measured via angle resolved photoemission (ARPES). We report a renormalization feature in the self energy (“kink”) in the band dispersion at $\approx 50–60$ meV present in nodal and antinodal cuts across the Fermi surface. Specifically, while the kink had been seen in the antinodal region, it is now observed also in the nodal region, reminiscent of what has been observed in hole-doped cuprates.

The high temperature superconducting cuprates (HTSCs) have received much attention since their discovery, as the mechanism of their unusually high critical temperatures remains yet to be determined. Nd$_{2-x}$Ce$_x$CuO$_4$ (NCCO) is a class of cuprates that resides on the relatively less-studied electron (n)-doped side of the phase diagram, which is qualitatively different from the hole (p)-doped side. NCCO has recently been attracting increased interest regarding its links to their more commonly studied hole-doped counterparts.

Angle-resolved photoemission spectroscopy (ARPES) is used as a powerful direct probe of the electronic band structure (the one-particle spectral function)10. Sudden changes in the slope in the band dispersion observed via ARPES allow one to infer the underlying physics causing these renormalizations10. Low-energy renormalizations have been prevalently found in the nodal region of p-doped cuprates via ARPES10,11, but not in the nodal region of n-doped cuprates12, casting doubt on the universality of the renormalization effect in the cuprates for the whole phase diagram.

In this communication, we confirm a renormalization in NCCO near optimal doping ($x = 0.155$) around 55 meV in the antinodal (X-M) region and report one in the nodal (Γ-M) region of about the same energy which was not observed earlier2. We do not observe any change of these renormalizations across the superconducting (SC) phase transition. These results suggest that an oxygen phonon mode with comparable energy is a likely origin of these renormalizations. In light of the presence of phononic coupling effects, one needs to carefully examine the data to separate the respective contributions to the low energy spectra from AF band folding and lattice coupling effects, as the latter can also break the low energy dispersion into two “branches”.

ARPES data were taken at beamline 5-4 of the Stanford Synchrotron Radiation Laboratory with Scienta SES200 and R4000 analyzers at a photon energy of 16.75 eV. The a-(b-)axis was aligned at 45° to the light polarization for the nodal cut, and parallel to the light polarization for the other cuts. The energy resolution was ≈ 10 meV and the angular resolution $\approx 0.3°$. All samples were cleaved at pressures better than 3×10^{-11} torr; the measurement temperature was 10 K unless otherwise specified. Single crystals of NCCO were grown at Stanford University22. The doping level, determined by inductively coupled plasma spectroscopy, is 15.5% ± 0.7% Ce. T_C was determined by SQUID magnetometry to be 25 K with a transition width of ≈ 2 K.

We show three different cuts through the Fermi surface (FS) in fig. 1i one in the antinodal, one in the nodal, and one near the hot spot region (region of low intensity at E_F near the crossing of the FS with the antiferromagnetic (AF) Brillouin zone (BZ) boundary). The insets in fig. 1a, c, and e show the respective locations of the three cuts in the BZ relative to the FS of NCCO. The raw data of these three cuts, including their EDC curves, are shown in fig. 1a-f. MDC analysis, i.e. a fit with a Lorentzian lineshape, is used to extract Re Σ and Im Σ: Im Σ corresponds to the extracted width of the Lorentzian times the Fermi velocity, while Re Σ is obtained by subtracting the extracted position from an assumed bare band. Apart from the assumptions and details of this analysis25, we phenomenologically apply MDC/EDC spectral function analysis as a tool for quantification, lacking a definitive theory.

The raw spectrum in fig. 1a of the antinodal cut reveals a renormalization at about 50 meV binding energy. The corresponding EDC curves in fig. 1b display a sharp quasiparticle peak near the E_F crossing. This peak terminates with a dip at about 50 meV binding energy. The linewidth decreases upon approaching E_F. To determine the self energy, a parabolic bareband has been assumed and constructed by fixing the E_F–crossing point and the band bottom, which are determined by a linear fit to a MDC analysis < 40 meV, and a parabolic fit to an EDC analysis ≥ 250 meV, respectively (cf. fig. 1a). The band bottom thus obtained is at about 300 meV. The discrepancy between the EDC and MDC fitting around 250 meV shows the limits of both analyses10.

The raw spectrum of the nodal region cut depicted in fig. 1c exhibits a similar renormalization feature at a similar energy of about 50 meV as seen in the antinodal
region. The EDCs (fig. 1d) show a peak at the E_F crossing. Again, the peak terminates at roughly 50 meV. A resemblance is found in the peak-dip-hump (PDH) structure seen over a wide temperature range in the nodal EDCs of the single-layer compound Bi220111 which is attributed to electron-phonon interaction, although a hump is absent here in the antinodal and faint in the nodal cuts. The assumed linear bare band was modeled by connecting the E_F crossing point obtained by a linear fit to the MDC dispersion < 40 meV, and a point at 300 meV obtained by a linear fit to the MDC dispersion between 250 and 330 meV (cf. fig. 1c). We note that assuming different bare bands changes the extracted renormalization strength, but not appreciably the energy of sharp features in the real part of the self energy.

The spectrum of the hot spot region is displayed in fig. 1e. Since the hot spot is located on the AF BZ boundary, the low-energy physics and thus the kink will be influenced by a crossover of two bands that could originate from backfolding at the AF BZ boundary as we discuss later. Bare band assumption and construction are analogous to the antinodal region.

The real and imaginary parts of the self energy are displayed in fig. 2a-f. A peak in Re Σ is clearly visible at 60 ± 5 meV in the antinodal region (fig. 2a), with a corresponding drop at about the same energy in Im Σ (fig. 2b), as expected from causality arguments. Likewise, in the nodal region a plateau is observed at about 50 ± 10 meV in Re Σ (fig. 2c). The drop in Im Σ (fig. 2d) is much less clear, but the data seem qualitatively consistent with the Kramers-Kronig relations. The difference in our ability to extract the real and imaginary parts of the self-energy can easily be understood from the fact that, for a relatively broad feature, it is much easier to...
determine its position than width.

We believe the reason why we are now able to resolve the kink in the nodal region and not before is mainly due to the improvement of the momentum resolution. The photon energy (16.75 eV) we used as compared to that used in previous measurements (53 eV) doubles our resolution in k-space. Indeed, the line width — which depends significantly on sample quality and resolution — is smaller (cf. fig. 2 b, d) in our data presented in this communication.

A change in slope can also be seen in Re Σ near the hot spot region (fig. 2 e) around 50 ± 10 meV. However, the relation of its cause to the features in the nodal and antinodal regions remains speculative, even though we find its appearance at the same energy suggestive.

Lastly, a weak change of slope at a higher energy of around 160 meV can be observed in Re Σ in both the nodal and antinodal region (fig. 2 a,c). Within the statistics of the data, no change is visible in either of the corresponding Im Σ (fig. 2 b,d) at this energy. It is currently being investigated and will not be discussed here.

The temperature dependence of the observed ubiquitous feature in the nodal and the antinodal region is shown in fig. 3. Within the statistics, there is no change visible in either region below (<6 K, 10 K) and above (30 K, 50 K) the SC transition.

For further clarification, the velocities obtained by linear fits against the MDC Lorentz position above (- 40 meV < $E - E_F$ < -20 meV) and below (-135 meV < $E - E_F$ < -100 meV) the renormalization are graphed versus temperature for both nodal and antinodal regions in fig. 3 c. The data result from seven different measurements on four samples in the nodal, and four different measurements on three samples in the antinodal region. First, neither of these velocities change appreciably across the SC transition. Second, the Fermi velocities of the nodal and antinodal regions are the same, confirming previous results 2. Third, the ratio of renormalized and unrenormalized velocities — which are indicative of the renormalization strength of the electronic band — do not seem to change within the statistics in both nodal and antinodal regions, cf. fig. 3 d.

The n-doped HTSCs possess hot spots that lie on the AF BZ boundary 15, and recently, pockets were observed suggesting a band back-folding at the AF BZ boundary 14, a possible mechanism could be (π, π)-scattering due to some short range or remnant antiferromagnetic (SDW) ordering. To first order, this folding results in a pair of new band sheets (cf. fig. 4 a,b,c). Whenever there is a crossover from one folded band sheet to another, as for example at ($\pi, 0$) in the antinodal region (solid curve to solid curve in fig. 3), one expects a kink-like feature in the dispersion. We do not however think that this is the sole cause for the low energy feature, since this crossover takes place at the band bottom (≈ 300 meV) in the antinodal and above the Fermi energy in the nodal region, leading to a highly anisotropic behavior both in shape and energy of the feature, contradicting our observed isotropy in both energy and renormalization strength.

If we were to invoke an electron energy dependence of the scattering, $V_{\pi, \pi}(\omega_k)$, whereas the interaction is nonzero only for $|\omega_k| < \omega_{\text{max}} \approx 50$ meV, a fade-over is produced between the unrenormalized, unfolded band (dotted curve in fig. 4) and one of the renormalized, folded bands (solid curves; cf. fig. 4 b and c) around ω_{max}. However, we do not know of any interaction with above-mentioned energy dependence. Provided it exists, the produced crossover results in a downwards kink in the nodal and an upwards kink in the antinodal region, contradicting our observations.

We also argue against a magnetic resonance or spin flip waves as the origin of the low energy renormalization we discuss here, since the characteristic energy scales for electron-doped cuprates are too different from the 55 meV observed by us. First, the relevant region of the spin excitation dispersion relation is about 0.3 eV. Second, a resonance has been reported at about 10 meV in PLCCO 16 and in NCCO 18. This is still disputed; at least for NCCO, recent data show even lower energy scales (within 4-8 meV) for the SC gap and a possible resonance 19. Whether a more complicated interaction mechanism could explain our data is to be investigated.

FIG. 3: (Color online) Temperature dependence of the MDC-derived dispersions in the antinodal (a) and nodal (b) regions, with 3σ errors from the fit (thick horizontal bars). The black dotted lines serve as guide to the eye. The data have been average-subtracted in the gray region (dotted arrow) to overlay them. c) Temperature dependent velocities in both nodal and antinodal region above and below the kink energy, extracted from gray regions indicated by I-IV in a) and b). d) Temperature dependent fractions of the respective velocities below and above the kink energy for the nodal and antinodal region. T_C is indicated in c) and d) (vertical gray line).
A phononic origin on the other hand could account for the isotropy of the renormalization strength and energy of the kink observed by us in a simple picture (although more intricate phononic interactions may result in anisotropic renormalization\(^{30,22}\) and even d-wave SC gaps\(^{20,24}\)). Furthermore, a softening with doping of oxygen phonon modes in the relevant energy regime has been observed via inelastic x-ray scattering\(^{22}\) and inelastic neutron scattering\(^{24}\). Raman and IR spectra also show the existence of oxygen modes of the relevant energies\(^{25}\).

In addition, the fact that the kink at both nodal and antinodal region does not change across the SC transition lends further support to the electron-phonon coupling scenario. The absence of a change of the kink energy across the superconducting phase transition is due to the small superconducting gap in NCCO. Also, the EDCs at the \(E_F\) crossing exhibit the same structure as in Bi2201 — a small peak near \(E_F\) and a shallow dip at the same energy of the renormalization seen in Re \(\Sigma\) (cf. fig. 4 b, d)\(^{31}\).

Within the context of electron-phonon interaction, a renormalization at around 70 meV is seen in the nodal region of p-doped HTSCs in ARPES and has been attributed to electron-phonon interactions\(^{10,26}\). A softening of an oxygen mode was seen as well for the n-doped compound NCCO via inelastic neutron and X-ray scattering (55 meV\(^{23,27}\), and now also in the nodal region via ARPES as observed by us in the same relevant energy region. Independently, Park et al.\(^{28}\) and Liu et al.\(^{29}\) discovered a kink in the nodal region in several n-doped HTSCs and came to very similar conclusions regarding its origin\(^{30}\). If interpreted as due to electron-phonon coupling, our results suggest that electronic coupling to the oxygen phonon mode may be even more universal, now stretching across the phase diagram. We speculate that these phonon modes may play a vital role in determining the low energy physics of the HTSCs\(^{20,22}\).

Acknowledgments

The authors are indebted to C. Kim, P. Armitage, T. Devereaux, B. Moritz, and S. Johnston for enlightening discussions. The SSRL/Stanford work was supported by DOE Office of Science, Division of Materials Science, with contracts DE-FG03-01ER45929-A001 and DE-AC02-76SF00515, and NSF grants DMR-0604701 and DMR-0705086.

1. Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).
2. H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Uefuji, and K. Yamada, Phys. Rev. Lett. 94, 047005 (2005).
3. N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, Z. X. Shen, Y. Onose, et al., Phys. Rev. Lett. 87, 147003 (2001).
4. N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z. X. Shen, P. K. Mang, et al., Phys. Rev. Lett. 88, 257001 (2002).
5. N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, X. J. Zhou, W. L. Yang, et al., Phys. Rev. B 68, 064517 (2003).
6. K. Yamada, K. Kurahashi, T. Uefuji, M. Fujita, S. Park, S.-H. Lee, and Y. Endoh, Phys. Rev. Lett. 90, 137004 (2003).
7. E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven, Nature 445, 186 (2007).
8. P. Li, K. Behnia, and R. L. Greene, Phys. Rev. B 75, 020506 (2007).
9. Y. Dagan, M. M. Qazilbash, C. P. Hill, V. N. Kulkarni, and R. L. Greene, Phys. Rev. Lett. 92, 167001 (2004).
10. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
11. A. Lanzara, P. V. Bogdanov, X. J. Zhou, N. Kaneko, H. Eisaki, M. Greven, Z. Hussain, and Z. X. Shen, J. Phys. Chem. Solids 67, 239 (2006).
12. E. M. Motoyama, P. K. Mang, D. Petitgrand, G. Yu, O. P. Vajk, I. M. Vishik, and M. Greven, Phys. Rev. Lett. 96, 137002 (2006).
13. A. Kaminski, M. Randeria, J. C. Campuzano, M. R. Norman, H. Fretwell, J. Mesot, T. Sato, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 86, 1070 (2001).
S. R. Park, Y. S. Roh, Y. K. Yoon, C. S. Leem, J. H. Kim, B. J. Kim, H. Koh, H. Eisaki, N. P. Armitage, and C. Kim, Phys. Rev. B 75, 060501 (2007).

N. P. Armitage, Ph.D. thesis, Stanford University, Stanford, CA 94305 (2001).

S. D. Wilson, S. Li, H. Woo, P. Dai, H. A. Mook, C. D. Frost, S. Komiyai, and Y. Ando, Phys. Rev. Lett. 96, 157001 (2006).

S. D. Wilson, P. Dai, S. Li, S. Chi, H. J. Kang, and J. W. Lynn, Nature 442, 59 (2006).

J. Zhao, P. Dai, S. Li, P. G. Freeman, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 99, 017001 (2007).

G. Yu, Y. Li, E. M. Motoyama, K. Hradil, R. A. Mole, and M. Greven, arXiv:0803.3250 (2008).

Z. X. Shen, A. Lanzara, S. Ishihara, and N. Nagaosa, Philos. Mag. B 82, 1349 (2002).

T. P. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, Phys. Rev. Lett. 93, 117004 (2004).

D. M. Newns and C. C. Tsuei, Nature 3, 184 (2007).

M. d’Astuto, P. K. Mang, P. Giura, A. Shukla, P. Ghigna, A. Mirone, M. Braden, M. Greven, M. Krisch, and F. Sette, Phys. Rev. Lett. 88, 167002 (2002).

H. J. Kang, P. Dai, D. Mandrus, R. Jin, H. A. Mook, D. T. Adroja, S. M. Bennington, S.-H. Lee, and J. W. Lynn, Phys. Rev. B 66, 064506 (2002).

A. P. Litvinchuk, C. Thomsen, P. Murugaraj, E. T. Heyen, and M. Cardona, Phys. Rev. B 43, 13060 (1991).

A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, et al., Nature 412, 510 (2001).

M. Braden, L. Pintschovius, T. Uefuji, and K. Yamada, Phys. Rev. B 72, 184517 (2005).

S. R. Park, D. J. Song, C. S. Leem, C. Kim, C. Kim, B. J. Kim, and H. Eisaki, arXiv:0808.0559 (2008).

H. Liu, G. Liu, W. Zhang, L. Zhao, J. Meng, X. Jia, X. Dong, W. Lu, G. Wang, Y. Zhou, et al., arXiv:0808.0802 (2008).

We can not, however, currently confirm the feature at ≈23 meV in the nodal region observed by Liu et al.