Optical zeno gate: bounds for fault tolerant operation

Patrick M Leung and Timothy C Ralph
Centre for Quantum Computer Technology, Department of Physics, University of Queensland, Brisbane 4072, Australia
E-mail: pmleung@physics.uq.edu.au

New Journal of Physics 9 (2007) 224
Received 7 April 2007
Published 11 July 2007
Online at http://www.njp.org/
doi:10.1088/1367-2630/9/7/224

Abstract. In principle the Zeno effect controlled-sign gate of Franson et al (2004 Phys. Rev. A 70 062302) is a deterministic two-qubit optical gate. However, when realistic values of photon loss are considered its fidelity is significantly reduced. Here we consider the use of measurement based quantum processing techniques to enhance the operation of the Zeno gate. With the help of quantum teleportation, we show that it is possible to achieve a Zeno CNOT gate (GC-Zeno gate) that gives (near) unit fidelity and moderate probability of success of 0.8 with a two-photon to one-photon absorption ratio $\kappa = 10^4$. We include some mode-mismatch effects and estimate the bounds on the mode overlap and κ for which fault tolerant operation would be possible.

Contents

1. Introduction 2
 1.1. Zeno CZ gate .. 2

2. Zeno gate using Gottesman–Chuang scheme 5
 2.1. Effect of mode-mismatch 5
 2.2. Effect of detector efficiency 7

3. Estimate of bounds for fault tolerance 7
 3.1. Advantage of using state distillation 9

4. Conclusion 9

Acknowledgments 10

References 10
1. Introduction

Photons are a natural choice for making qubits because the quantum information encoded can have a long decoherence time and is easy to manipulate and measure. Also, photonic qubits are the only type of qubits that are feasible for long distance quantum communication. Quantum information processing requires universal two-qubit entangling gates. Knill et al [1] showed that it is theoretically possible to do scalable quantum computing with linear optics by using measurement induced interactions to perform the two-qubit gates. However, despite a continuous effort in reducing the resource requirement [2]–[5], the resource overhead is still high for linear optical quantum computing. Franson et al [6] proposed the use of two-photon absorption nonlinearity and exploitation of the quantum Zeno effect to implement a control sign (CZ) gate that requires much less resources than linear optics schemes. However, the problem with the Zeno gate is that photon loss affects the performance of the gate significantly and the two-photon to single-photon loss ratio requirement is very stringent. One solution could be to combine measurement induced quantum processing with the Zeno gate. Previously we have shown that when using the Zeno gate for qubit fusion [7], state distillation [8] with post-selection can boost the gate fidelity to unity and that for less stringent absorption ratios the gate has an advantage in success probability over linear optics gates for fusing clusters of qubits. These clusters of qubits can then be used for cluster state quantum computing [9]. In addition, Myers and Gilchrist [10] have shown that the performance of the Zeno gate may be enhanced by using error correction codes such as redundancy and parity encoding.

Here we design a high fidelity Zeno CNOT gate suitable for circuit-based quantum computing. Although with the current estimate of the photon loss ratio, only a poor fidelity Zeno gate is directly achievable, we show that it is possible to use two of these Zeno gates to do Bell measurements and implement a Gottesman–Chuang [11] teleportation type of CNOT gate (GC-Zeno gate) that, like the fusion gate, gives high fidelity via state distillation and moderate success probability via partially offline state preparation. We include the effect of mode-mismatch and detector efficiency on the scheme and estimate lower bounds on the parameters which in principle allow fault tolerant operation.

The paper is arranged in the following way. The introduction continues with a subsection on the Zeno CZ gate, which describes the scheme and modelling of the gate and gives descriptions of the modelling parameters that are also used for modelling the Gottesman–Chuang (GC)-Zeno CZ gate. In section 2, we discuss the GC-Zeno gate and the effect of mode-mismatch and detector efficiency on the gate. In section 3, we give estimates of the lower bounds on the photon loss ratio and mode-matching, followed by a subsection on the advantage in using state distillation. We conclude and summarize in section 4.

1.1. Zeno CZ gate

Franson et al’s CZ gate scheme consists of a pair of optical fibres weakly evanescently coupled and doped with two-photon absorbing atoms. The purpose of the two-photon absorbers is to suppress the occurrence of two photon state components in the two fibre modes via the quantum Zeno effect. This allows the state to remain in the computational basis. After a length of fibre corresponding to a complete swap of the two fibre modes, a π phase difference is produced between the $|11\rangle$ term and the other three basis terms. After swapping the fibre modes by simply crossing them, a CZ gate is achieved. The gate becomes near deterministic and performs a
near unitary operation when the quantum Zeno effect is strong and photon loss is insignificant. However, with current technology, the strength of the quantum Zeno effect is a few orders of magnitude below what is required, and thus the Zeno gate has significant photon loss.

In [7], the gate is modelled as a succession of n weak beam-splitters followed by two-photon absorbers as shown in figure 1. As n tends to infinity and the length of each absorber tends to zero, the model tends to the continuous coupling limit envisaged for the physical realization. The gate operates on the single-rail encoding for which $|0\rangle_L = |0\rangle$ and $|1\rangle_L = |1\rangle$ with the kets representing photon Fock states. Figure 2 shows how the single rail CZ can be converted into a dual rail [12] CZ with logical encoding $|0\rangle_L = |H\rangle$ and $|1\rangle_L = |V\rangle$. We wish to introduce parameters for the transmission rate of an infinitesimal length absorber. We therefore define $\gamma_1 = \exp\left(\frac{-\lambda}{n}\right)$ and $\gamma_2 = \exp\left(\frac{-\lambda}{n}\right)$ as the probability of single-photon and two-photon transmission respectively for one absorber. Here the parameter $\lambda = \chi L$, where χ is the corresponding proportionality constant related to the absorption cross-section. Furthermore, κ is the ratio of the absorption rates of an infinitesimal section of absorber, which specifies the relative strength between γ_1 and γ_2, and relates them by $\gamma_2 = \gamma_1^\kappa$. This CZ gate does the following operation:

$$
|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow \gamma_1^{n/2}|01\rangle, \quad |10\rangle \rightarrow \gamma_1^{n/2}|10\rangle, \quad |11\rangle \rightarrow -\gamma_1^n x|11\rangle + f(|02\rangle, |20\rangle),
$$

(1)
Figure 3. Schematic of distilled Zeno CZ gate.

where the expression for τ is given by:

$$\tau = 2^{-(3/2n)} \left(\left(g + \frac{d}{\sqrt{2}} \right)^n \left(\sqrt{2}d - h \right) + \left(g - \frac{d}{\sqrt{2}} \right)^n \left(\sqrt{2}d + h \right) \right),$$

$$d = \sqrt{\left(1 + \cos \frac{2\pi}{n} \right) (1 + \gamma_2) + 2\sqrt{\gamma_2} \left(\cos \left(\frac{2\pi}{n} \right) - 3 \right)},$$

$$g = \left(\cos \left(\frac{\pi}{n} \right) \right) (\sqrt{\gamma_2} + 1), \quad h = 2 \left(\cos \left(\frac{\pi}{n} \right) \right) (\sqrt{\gamma_2} - 1).$$

The explicit forms of the two-photon terms, $|02\rangle$ and $|20\rangle$ are suppressed. The loss terms in the equation are discarded also, and thus the resulting states are not normalized. The fidelity only explicitly depends on the computational basis terms. Later we assume a measurement based scheme in which detectors are placed at the output to discriminate the loss terms and the two-photon terms that lie outside the computational basis.

From equation (1), it is clear that the amplitude of the four computational states are unequal and this lowers the gate fidelity. With the current best estimate for the largest practical value of $\kappa = 10^4$, the unherald fidelity is only 0.94. If the gate is used in a measurement based strategy then state distillation can be used and the fidelity of the gate can be improved by trading off some success probability. Figure 3 shows the distilled Zeno CZ gate circuit. The τ gate is simply an interferometer consisting of two 50–50 beam-splitters with a single two-photon absorber in each arm, which gives operation: $|00\rangle \rightarrow |00\rangle$, $|01\rangle \rightarrow \sqrt{\gamma_1}|01\rangle$, $|10\rangle \rightarrow \sqrt{\gamma_1}|10\rangle$, and $|11\rangle \rightarrow \sqrt{\gamma_1}\tau|11\rangle$. Here $\gamma_1' = \tau^{1/\kappa}$ is the single photon transmission probability of the absorber. We have adopted the convenient name ‘τ gate’ because it induces an amplitude skew of τ to the $|11\rangle$ term by distilling two-photons, which together with one-photon distillation, helps balance the unequal amplitudes of the terms in the state after the Zeno CZ gate and thus achieves unit fidelity. This gate has a similar operation to the Zeno CZ gate except that no relative phase is induced on $|11\rangle$ and that the magnitude of single-photon skew is $\sqrt{\gamma_1'}$ instead of $\sqrt{\gamma_1'}$. The distillation beam splitters labelled 1–3 have transmission coefficient $\sqrt{\gamma_1'}, \sqrt{\gamma_1}, \sqrt{\gamma_1}\tau$.

New Journal of Physics 9 (2007) 224 (http://www.njp.org/)
respectively. With these distillations in place, the operation of the distilled Zeno CZ gate is:

\[
\begin{align*}
|00\rangle & \rightarrow \gamma_1^n \gamma_1' \tau |00\rangle, \\
|01\rangle & \rightarrow \gamma_1^n \gamma_1' \tau |01\rangle, \\
|10\rangle & \rightarrow \gamma_1^n \gamma_1' \tau |10\rangle, \\
|11\rangle & \rightarrow -\gamma_1^n \gamma_1' \tau |11\rangle + f(|02\rangle, |20\rangle).
\end{align*}
\] (3)

After measuring the output (as will occur in the scheme of the next section) and treating the photon bunching terms (|02⟩, |20⟩) and the terms with photon loss as failures (excluded from equation (3) for clarity), renormalizing the states gives unit heralded fidelity independent of \(\lambda\) and probability of success \(P_s = \gamma_2^n \gamma_1' \tau^2 = e^{-2\lambda/\kappa} \tau^{2+2/\kappa} \).

2. Zeno gate using Gottesman–Chuang scheme

As argued above, state distillation can improve the fidelity of the Zeno gate to unity by trading off success probability. However, the output of the distilled Zeno gate contains terms outside the computational basis due to photon loss and photon bunching. Hence if we want the gate to have unit fidelity, it is necessary to measure the output and exclude these failure terms by post-selection. However, such post-selection means that the gate can no longer be used directly as a CNOT gate for circuit-based quantum computing.

Gottesman and Chuang [11] showed the viability in using state teleportation and single qubit operations to implement a CNOT gate. The scheme requires the four qubit entangled state \(|\chi\rangle = ((|00\rangle + |11\rangle)|00\rangle + (|01\rangle + |10\rangle)|11\rangle)/2\). Preparing the entangled state requires a CZ operation, which can be done offline with linear optics and high fidelity. Bell measurements are made between the input qubits and the first and last qubits of \(|\chi\rangle\). The measurement results are fed forward for some single qubit corrections such that the circuit gives a proper CNOT operation. Here, we propose using such scheme, as shown in figure 4, to implement a GC-Zeno CNOT gate with high fidelity. Since this gate includes state distillation, post-selection and offline state preparation, the gate has unit fidelity (under perfect mode-matching) and moderate success probability. Figure 5 plots the probability of success against the two-photon to one-photon absorption ratio \(\kappa\). It shows that with \(\kappa = 10^4\) (current largest practical estimate), the probability of success is about 0.80, which is better than the break even point of 0.25 for the linear optics version of this gate [1]. In the next section, we discuss the scalability of the gate but here we note that such a gate would still make small scale application more promising. For an application that requires 10 gates, with linear optics, the success rate is less than 1 part in a million, whereas with the GC-Zeno gate, the rate is greatly increased to more than 10%.

2.1. Effect of mode-mismatch

From source preparation to gate operation to detection, mode-mismatch is an unavoidable issue in optical quantum computing that causes unlocated errors which lowers the fidelity of the device\(^1\). Fortunately, with the help of quantum error correction, a certain amount of unlocated error rate, including but not limited to mode-mismatch errors, can be tolerated. A reliable quantum gate must therefore have unlocated error rates below this threshold.

\(^1\) Note that mode mismatch in CZ and \(\tau\) gate causes unlocated error that lowers the fidelity, in which we find that it cannot be improved with state distillation.
Figure 4. Schematic of GC-Zeno gate. The state $|\chi\rangle$ is $\frac{(|00\rangle + |11\rangle|00\rangle + (|01\rangle + |10\rangle)|11\rangle)}{2}$.

Figure 5. Plot of probability of success versus $\log(\kappa)$ (in base 10) for GC-Zeno gate. Note that the success probability is not one at $\kappa = 10^8$, but that the curve asymptotically approaches one for very large κ. Results are per two input qubits.

The dominant source of mode-mismatch error in the GC-Zeno gate is from the CZ gate and τ gate, where two-photon interaction occurs. Here we follow Rohde et al’s [14] analysis to examine the effect of such error. We take the simplest model in which the mode-mismatch is present between the photons entering the gate but remain constant through the gate. In this case, the mode-mismatch in two-photon interaction can be analysed as having two-photons fail to interact with some probability. This allows us to write the operations for the CZ gate as follows, where $0 < \Gamma < 1$ quantifies the overlap of the two wavepackets. Γ^2 is the probability that the two photons successfully interacted and $\Gamma = 0$ for completely mode-mismatched and $\Gamma = 1$ for...
completely mode-matched. The bar in the $|\bar{1}1\rangle$ term indicates mode-mismatched component of the state.

$$
|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow |\sqrt{\gamma_1^2}|01\rangle, \quad |10\rangle \rightarrow |\sqrt{\gamma_1^2}|10\rangle, \\
|11\rangle \rightarrow -\Gamma \gamma_1^2 \tau |11\rangle + \sqrt{1 - \Gamma^2} \gamma_1^2 |\bar{1}1\rangle + f(|02\rangle, |20\rangle). \quad (4)
$$

And similarly for the operations of τ gate:

$$
|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow |\sqrt{\gamma_1^2}|01\rangle, \quad |10\rangle \rightarrow |\sqrt{\gamma_1^2}|10\rangle, \\
|11\rangle \rightarrow \Gamma \gamma_1^2 \tau |11\rangle + \sqrt{1 - \Gamma^2} \gamma_1^2 |\bar{1}1\rangle + f(|02\rangle, |20\rangle). \quad (5)
$$

With the equations for the CZ and τ gate2, and given a normalized input state $(\alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \epsilon|\bar{1}1\rangle)$, we can obtain analytical expression for the fidelity F (per qubit) and success probability P_s (per qubit) of the GC-Zeno gate as follows. Equations (6) and (7) show that both the fidelity and success probability are state dependent due to mode-mismatch. The worst case of fidelity occurs when the input state is the equal superposition $(|00\rangle + |01\rangle + |10\rangle + |11\rangle)/2$ (i.e. $\alpha = \delta = \beta = \epsilon = 1/2$) and the worst case of success probability occurs when the input state is the pure state $|11\rangle$ (i.e. $\alpha = \beta = \delta = 0$ and $\epsilon = 1$).

$$
F = \frac{\alpha^* A_1 + \beta^* A_2 + \delta^* A_3 + \epsilon^* A_4}{\sqrt{|A_1|^2 + |A_2|^2 + |A_3|^2 + |A_4|^2}}, \quad (6)
$$

$$
P_s = \frac{e^{-2\lambda/\kappa} \kappa^{2/\kappa}}{2(1 + e^{-\lambda/\kappa} \kappa^{1/\kappa})} \sqrt{|A_1|^2 + |A_2|^2 + |A_3|^2 + |A_4|^2}, \quad (7)
$$

where $A_1 = \alpha a_1^2 + \beta a_1 a_2 + \delta a_1 a_3 + \epsilon a_2^2$, $A_2 = \alpha a_3 a_2 + \beta a_2 a_3 + \delta a_1 a_4 + \epsilon a_2 a_4$, $A_3 = \alpha a_1 a_3 + \beta a_3 a_1 + \delta a_3 a_3 + \epsilon a_2 a_4$, $A_4 = \alpha a_2^2 + \beta a_3 a_4 + \delta a_4 a_4 + \epsilon a_1^2$, and $a_1 = (\tau + \Gamma + \sqrt{1 - \Gamma^2})$, $a_2 = (\tau - \Gamma + \sqrt{1 - \Gamma^2})$, $a_3 = (\tau - \tau \Gamma - \sqrt{1 - \Gamma^2})$, $a_4 = (\tau + \tau \Gamma - \sqrt{1 - \Gamma^2})$.

2.2. Effect of detector efficiency

In practice, even for the most advanced photon detector, detector inefficiency is always present. The effect of this noise is to reduce the probability of success of the gate but not the fidelity because the errors are locatable.

3. Estimate of bounds for fault tolerance

We now wish to estimate lower bounds on the mode-matching, Γ, and photon loss ratio, κ, that will still allow fault-tolerant operation. We allow a small amount of detector inefficiency but assume all other parameters are ideal. To make this estimate we directly use the bounds

2 Due to mode-mismatch, the τ gate is less effective in two-photon distillation. It is true that we can increase the two-photon absorption strength in the τ gate to make up for the inefficiency. However, here we assume that we do not know the mode-matching parameter Γ of the input wavepackets, and therefore this adjustment cannot be made. In addition, increasing the two-photon distillation will increase single-photon loss as well, which lowers the probability of success.

New Journal of Physics 9 (2007) 224 (http://www.njp.org/)
Figure 6. Lower bounds of amount of mode-matching Γ required for a fault tolerant GC-Zeno gate versus two-photon to one-photon absorption ratio κ. The bounds are derived from Dawson et al’s [12] results on deterministic error correction protocol. The top and bottom curves are for the 7-qubit Steane code and the 23-qubit Golay code respectively. Above the curves are the regions where the amount of mode-mismatch is tolerable. Here we have used the worst case input.

obtained by Dawson et al [13] for a deterministic error correction protocol. For this protocol, they numerically derived one bound using the 7-qubit Steane code and another bound using the 23-qubit Golay code.

In order to use the Dawson et al’s bounds we need to identify the unlocated and located error rates for our gate. In general, the unlocated error rate is less than $1 - F$ but here we take it to be $1 - F$ because in our analysis, γ is almost 1, which means the other terms involved are very small. The located error rate is simply $1 - P_s$ (both F and P_s are per qubit). Using these relationships, we convert each of the bounds into a fidelity versus success probability bound. For a gate built with two-photon absorbers that have a certain two-photon to single-photon absorption ratio κ, we can find an optimal λ (i.e. choosing an optimal total absorber length) that gives a maximum success probability. Hence, by matching the success probability with the bound, we can determine the corresponding fidelity threshold and therefore find the least amount of mode-matching required for fault tolerant gate operation. We note that the error model used by Dawson et al is specific to their optical cluster state architecture and will differ in detail from the appropriate error model for the GC-Zeno gate. Nonetheless we assume that a comparison based on the total error rates will give a good estimate of the bounds.

Figure 6 shows the lower bounds on the mode-matching parameter Γ for a gate with a certain κ. Since the fidelity and success probability are state dependent due to mode-mismatch, in that figure, we have plotted for the case of worst fidelity input state (i.e. the equal superposition state). The top and bottom curves are best fit curves for using the 7-qubit Steane code and the 23-qubit Golay code respectively. The curves show that highly mode-matched photons are essential for robust gate operation. With the worst fidelity input state, $\langle (00) + |01\rangle + |10\rangle + |11\rangle \rangle/2$, for the Steane code, the lowest Γ required for fault tolerant operation is about 0.998, where $\kappa = 10^6$, and for the Golay code, the lowest Γ required is about 0.996, where $\kappa = 5 \times 10^5$. With the worst success probability input state, $|11\rangle$, for the Steane code, the lowest Γ required for fault tolerant
operation is about 0.995, where $\kappa = 10^6$, and for the Golay code, the lowest Γ required is about 0.989, where $\kappa = 5 \times 10^5$. Figure 6 also shows that under (near) perfect mode-matching, the required κ can be as low as approximately 6000 for the Steane code and 2000 for the Golay code. Two-photon absorbers with such κ values may be achievable with the best of current technology.

3.1. Advantage of using state distillation

State distillation allows us to trade off some success probability against fidelity for the GC-Zeno gate, or in other words, reducing the unlocated error rate by having a larger located error rate. Since the deterministic error correction protocol can tolerate both unlocated and located errors, therefore we should ask whether state distillation is truly advantageous? We can answer this question by comparing the GC-Zeno gate with the original distillation free Zeno gate in the case of perfect mode matching. Detector inefficiency is included in both cases. For the GC-Zeno gate, the deterministic error correction protocol with the 7-qubit Steane code can tolerate errors of a GC-Zeno gate with $\kappa = 6100$, and with the 23-qubit Golay code, it can tolerate errors of a GC-Zeno gate with $\kappa = 2100$. For state distillation to be advantageous under the same protocol, these values of κ must be smaller than the values of κ for the case of the bare Zeno gate 3.

In the case of the bare Zeno gate, the fidelity (unheralded) of the gate becomes state dependent. In the parameters space of interest, the input that gives the worst fidelity is $|11\rangle$. With this input state, we find that for the protocol using the 7-qubit Steane code, the critical κ is about 8.1×10^6. Similarly, for the protocol using the 23-qubit Golay code, the critical κ is about 1.5×10^6. Hence it is evident that state distillation is advantageous. Also, it should be noted that it is better to have only located error, which is the case for the GC-Zeno gate, than have unlocated error, which is the case for the bare Zeno gate.

4. Conclusion

In this paper, we have shown that it is possible to build a high fidelity Zeno CNOT gate with two distilled Zeno gates implemented in the Gottesman–Chuang teleportation CNOT scheme. For two-photon to one-photon absorption ratio $\kappa = 10^4$ (current largest practical estimate), the gate has a success probability of 0.8 under perfect mode-matching. Such a gate would still make small scale application more promising than a linear optics gate. Furthermore, the virtue of this teleportation Zeno gate scheme is that the only source of unheralded error is from mode-mismatch, whilst for the original Zeno gate, both photon loss and mode-mismatch would generate unheralded error. When including measurement noise that equals one-tenth of the gate’s noise, and the effect of mode-mismatch in the CZ and τ gate, we find that with the deterministic error correction protocol using the 7-qubit Steane code, the lowest Γ required for fault tolerant gate operation is 0.998, where $\kappa = 10^6$. For using the 23-qubit Golay code, the lowest Γ required is 0.996, where $\kappa = 5 \times 10^5$. Hence, the requirement on mode-matching is stringent for a fault tolerant GC-Zeno gate. We have seen that considering the bare Zeno gate alone requires very high κ that is difficult to achieve experimentally and poses a major obstacle. However, by using the teleportation technique, we have lowered the required κ by about three orders of magnitude,3 An ideal Zeno gate requires strong quantum Zeno effect and strong quantum Zeno effect corresponds to a large κ value. However such large nonlinearity is difficult to engineer. Hence it is desirable to have a gate that works with modest κ.

3 An ideal Zeno gate requires strong quantum Zeno effect and strong quantum Zeno effect corresponds to a large κ value. However such large nonlinearity is difficult to engineer. Hence it is desirable to have a gate that works with modest κ.

New Journal of Physics 9 (2007) 224 (http://www.njp.org/)
which makes the optical Zeno gate much more promising for small scale applications. Future work may include ways of lowering the κ requirement further to an experimentally convenient value.

Acknowledgments

This work was supported by the Australian Research Council and the DTO-funded US Army Research Office contract no. W911NF-05-0397.

References

[1] Knill E, Laflamme R and Milburn G J 2001 *Nature* **409** 46–52
[2] Yoran N and Reznik B 2003 *Phys. Rev. Lett.* **91** 037903
[3] Nielsen M A 2004 *Phys. Rev. Lett.* **93** 040503
[4] Hayes A J F, Gilchrist A, Myers C R and Ralph T C 2004 *J. Opt. B: Quantum Semiclass. Opt.* **6** 533
[5] Browne D E and Rudolph T 2005 *Phys. Rev. Lett.* **95** 010501
[6] Franson J D, Jacobs B C and Pittman T B 2004 *Phys. Rev. A* **70** 062302
[7] Leung P M and Ralph T C 2006 *Phys. Rev. A* **74** 062325
[8] Thew R T and Munro W J 2001 *Phys. Rev. A* **63** 030302 (R)
[9] Raussendorf R and Briegel H J 2001 *Phys. Rev. Lett.* **86** 5188
[10] Myers C R and Gilchrist A 2006 Preprint quant-ph/0612176
[11] Gottesman D and Chuang I L 1999 *Nature* **402** 6760
[12] Lund A P and Ralph T C 2002 *Phys. Rev. A* **66** 032307
[13] Dawson C M, Haselgrove H L and Nielsen M A 2006 *Phys. Rev. Lett.* **96** 020501
[14] Rohde P P and Ralph T C 2006 *Phys. Rev. A* **73** 062312