Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

J. Tojo, I. Alekseev, M. Bai, B. Bassalleck, G. Bunce, A. Deshpande, J. Doskow, S. Eilerts, D.E. Fields, Y. Goto, H. Huang, V. Hughes, K. Inai, M. Ishihara, V. Kanavets, K. Kurita, K. Kwiatkowski, B. Lewis, W. Lozowski, Y. Makdisi, H.-O. Meyer, B.V. Morozov, M. Nakamura, B. Przewoski, T. Rinckel, T. Roser, A. Rusek, N. Saito, H. Huang, V. Hughes, M. Ishihara, T. Roser, H.-O. Meyer, and L. Zhu

The analyzing power, \(A_N \), defined by the left-right asymmetry of the cross sections in the scattering plane normal to the beam polarization, can only arise from the interference between a spin-flip and a non-flip amplitude and thus provides important information on the spin-dependence of the interactions. In high energy proton-proton (pp) \(A \) and proton-nucleus (pA) \(B \) elastic scattering at very small momentum transfer, \(A_N \) originates from the interference between the electromagnetic (coulomb) spin-flip and the hadronic (nuclear) non-flip amplitude. This analyzing power has been calculated to have a maximum value of about 4% around momentum transfer \(-t = 2 \times 10^{-3} \text{ (GeV/c)^2}\), and to decrease as \(|t| \) increases. \(A_N \) in this coulomb-nuclear interference (CNI) region of momentum transfer has been suggested as a sensitive probe of the hadronic spin-flip amplitude \(C \). The hadronic spin-flip amplitude is characterized by the ratio of the spin-flip to the non-flip amplitude, \(r_5 = (m/\sqrt{-t}) \times F^h_s/\text{Im} F^h_n \), where \(F^h_s, n \) are the hadronic parts of the spin-flip amplitude, \(F_s, n \), and non-flip amplitude, \(F_n \), and \(m \) is the nucleon mass. Existence of the hadronic spin-flip amplitude introduces a deviation from \(A_N \) calculated with no hadronic spin-flip amplitude. There are theoretical estimates and experimental evidence for the possibility of a non-zero hadronic spin-flip amplitude reflecting helicity non-conservation in the direct channel of the reaction \(D \). A hadronic spin-flip amplitude non-vanishing at high energies carries important physics information on static properties and on the constituent quark structure of the nucleon. In the frame-work of Regge phenomenology, hadronic amplitudes surviving in the high energy asymptotic region are described by Pomeron exchange. The Regge pole model does not limit the value of the Pomeron spin-flip amplitude, but leads to a vanishing contribution to \(A_N \) due to equal phases of the spin-flip and non-flip parts of the Pomeron exchange. \(A_N \) in the CNI region remains sensitive to the Pomeron spin-flip amplitude because of the phase difference between the hadronic and coulomb amplitudes, which is close to \(\pi/2 \). As was pointed out by Kopeliovich and Trueman \(E \), the usage of a carbon target (an isoscalar nuclear target) has an important advantage of eliminating the contribution of the isovector Reggeons and thus allows one to probe the Pomeron spin-flip amplitude through \(A_N \) at medium high energies.

Measurement of \(A_N \) for proton-carbon (pC) elastic scattering in the CNI region has been proposed not only to investigate a hadronic spin-flip amplitude, but also to provide a method for high energy proton polarimetry at the Relativistic Heavy Ion Collider (RHIC) of Brookhaven National Laboratory (BNL) \(F \). Predicted properties of \(A_N \) (large cross section and the weak \(\sqrt{s} \)-dependence), make this process ideal for beam polarization measurements at RHIC.

The E950 experiment at the Alternating Gradient Synchrotron (AGS) of BNL was carried out to measure \(A_N \) for pC elastic scattering in the CNI region at 21.7 GeV/c. The measurement was made in the AGS ring using an internal carbon target. We identified pC elastic scattering by detecting only recoil carbon ions, which had energies...
For each AGS cycle, the beam was debunched and was polarized during the E950 experiment. The average beam polarization, needed for carbon recoil energy loss corrections, was estimated to be \(P = 0.407 \pm 0.036 \text{(stat)} \pm 0.049 \text{(syst)} \).

Carbon micro-ribbon targets were employed by bundling several ribbons together (each of which were 6 \(\mu \)m wide \(\times \) 3 cm long by 3.7\(\pm \)0.2 \(\mu \)g/cm\(^2\)) in order to get sufficient counting rate. The effective target thickness, needed for carbon recoil energy loss corrections, was estimated to be 6.6\(\pm \)4.0 \(\mu \)g/cm\(^2\) from the multiple scattering width of the recoil carbon angular distributions.

The detector system consisted of two symmetric left and right arms detecting recoil carbon ions. Fig. 1 shows a schematic layout of the experimental setup. Each detector arm consisted of a thin 5 \(\mu \)g/cm\(^2\) carbon foil as a secondary electron emitter, an accelerating grid, an electrostatic mirror and a micro-channel plate (MCP) assembly, all followed by a silicon strip detector (SSD). The SSD had a thickness of 400 \(\mu \)m, sensitive area of 24 mm wide and 10 mm long and was segmented into 6 strips of 4 mm by 10 mm. The SSD covered a polar angle of \(\theta = 90.0 \pm 2.7^\circ \) and an azimuthal angle of \(\phi = \pm 1.1^\circ \) in the laboratory frame. The MCP assembly, consisting of two layers of MCPs and a single anode, had a sensitive area of 27 mm in diameter. Recoil carbon ions passed through the carbon foil and were detected with the SSD. The SSD provided the kinetic energy and the time-of-flight (TOF) from the target to the SSD. Secondary electrons, emitted from the carbon foil primarily by the passage of recoil carbon ions, were accelerated and reflected to the MCP with electrostatic fields. The MCP detected those electrons and provided a better start time than the RF pulse from the AGS, but with efficiency too low to be used in the final analysis. Data collected with the MCPs were used in systematic checks of the measurement and a background estimation.

Data were recorded for every AGS cycle. The primary trigger was a coincidence between the signal from one of the SSD strips and the RF pulse. The dead time of the data acquisition system was measured to be typically 5 \%. Energy calibration of each of the SSD strips was carried out with an \(^{241} \text{Am} \) (5.486 MeV \(\alpha \) particles) radioactive source.

Low energy recoil carbon ions were clearly seen as a kinematical correlation between \(E \) and \(T_{\text{SSD}} \), where \(E \) and \(T_{\text{SSD}} \) are the energy deposit and the timing in the SSD strip respectively. Fig. 2 (a) shows the correlation obtained from one of the SSD strips. Energy losses in the target, the carbon foil and the SSD dead layer (22.6 \(\pm \)1.0 \(\mu \)g/cm\(^2\) Si equivalent) were corrected.
to obtain the kinetic energy of recoil carbon ions. The detector resolution was determined from the time-energy correlation and the reconstructed mass distribution of recoil carbon events. The resolution of T_{SSD} was 7.0 ± 0.5 ns independent of E and consistent with the beam bunch width. The resolution of $(T_{SSD} - T_{MCP})$, where T_{MCP} is the timing in the MCP, was $1.2 - 3.8$ ns, decreasing with E. The energy resolution of the SSD, obtained from both the time resolutions and the mass distribution, was $\Delta E/E = 0.05/\sqrt{E}$ (MeV) $\pm C$ (quadratic sum), where the constant value of C varied in SSD strips from 0.05 to 0.12.

The momentum transfer in pC elastic scattering can be defined by the kinetic energy of the recoil carbon as t_E or by the TOF from the target to the SSD as t_T. Taking into account detector resolution smearing, momentum transfer was defined by the resolution-weighted mean, $t = (w_E t_E + w_T t_T)/(w_E + w_T)$, where the weights, w_E and w_T, were determined from the energy resolution and the time resolution respectively. The calculation was dominated by t_E since $w_E/(w_E + w_T)$ ranged from 0.6 to 0.9 depending upon t. The t-range covered to obtain A_N was $9.0 \times 10^{-3} < -t < 4.1 \times 10^{-2}$ (GeV/c)2.

Recoil carbon events were identified by the mass reconstructed from the kinetic energy and the TOF from the target to the SSD. Fig. 3(b) shows the mass distribution in the measured t-range. The mass resolution was $2.1 - 3.8$ GeV/c2 as a function of t. A 2.5-sigma mass resolution cut was applied to select recoil carbon events. Backgrounds in the selected recoil carbon events were estimated as a function of t. Backgrounds estimated from the target-empty data were $0.3 - 2.7 \%$. Backgrounds due to target fragments (dominated by α’s) were estimated to be $0.8 - 11.9 \%$ from the mass distribution reconstructed from the kinetic energy and the TOF from the carbon foil to the SSD, using $(T_{SSD} - T_{MCP})$ with the mass resolution of $1.2 - 2.5$ GeV/c2. Total background was $1.4 - 13.9 \%$ and was subtracted from the selected recoil carbon events for each spin state separately. Angular distribution of the selected recoil carbon events for each t was obtained from the distribution of the hit position in the SSD. The recoil angle, θ, and the multiple scattering width, $\Delta \theta$, in the measured t-range were determined to be $89.0^\circ < \theta < 89.7^\circ$ and $0.8^\circ < \Delta \theta < 1.3^\circ$. The recoil angle as a function of t was consistent with that of pC elastic scattering kinematics. A total of 2.2×10^7 pC elastic scattering events were thus identified for the A_N calculation.

The analyzing power of pC elastic scattering was determined as a function of t using the formula (1).

$$A_N = \frac{1}{P_B} \frac{N_L^+ \cdot N_R^- - N_L^- \cdot N_R^+}{N_L^+ \cdot N_R^+ + N_L^- \cdot N_R^-},$$

where $N_L^+(N_R^+)$ represent the number of events, in which the scattered proton was in the left (right) side and the recoil carbon was in the right (left) side to the beam axis with the polarization direction up (down). Eq. (1) cancels out the acceptance difference between the left and right detector arm and the beam intensity difference between the up and down polarized state. Each square root represents a geometric mean of two independent measurements of the same quantity which follows the rotational symmetry of the cross section around the beam axis. The resulting A_N is shown in Table 1 and Fig. 3 and is nonzero at the lower t-range with high statistical precision. The systematic error in the raw asymmetry measurement was estimated from a number of possible systematic effects, mainly from the uncertainty in the event selection of recoil carbon ions. The time-dependent variation of the measured raw asymmetry was consistent with a statistical fluctuation, $\chi^2/dof = 1.16$. The normalization error in the P_B measurement was 12 %, which comes from the uncertainty of A_N^{pp}. Our result of A_N is in marked disagreement with the model-independent calculation with no hadronic spin-flip amplitude ($r_5 = 0$) shown in Fig. 3, 4, 5.

The ratio of hadronic spin-flip to non-flip amplitude, r_5, was determined by fitting the measured A_N with the theoretical formula of Ref. 4. Errors used for A_N in the fitting were the linear sum of three errors in Table 1. The fitted function with 1-sigma error band is shown in Fig. 3. The best fit gave a value of r_5 as $Re r_5 = 0.088 \pm 0.058$ and $Im r_5 = -0.161 \pm 0.226$ with $\chi^2/dof = 0.57$. The result of r_5 and its associated χ^2 contours are shown in Fig. 4.

The magnitude of the hadronic spin-flip amplitude has
been a long-standing question. The E581/E704 experiment at Fermilab measured A_N for pp elastic scattering in CNI region at 200 GeV/c [3]. The result was consistent with no hadronic spin-flip amplitude within the limited statistical precision. Theoretical estimates of r_5 based on several approaches have been made [2] indicating $|r_5| < 0.15$ from the E581/E704 result and $|r_5| < 0.10$ for the RHIC energy range of $\sqrt{s} = 50 - 500$ GeV. The present results using the carbon target provide a better determination of spin properties of scattering amplitudes which may help to reveal the dynamical mechanisms for scattering in the high energy asymptotic region. To understand the asymptotic spin properties of scattering amplitudes more systematically, it is necessary to measure A_N in the CNI region at higher energies where the Pomeron amplitude is dominant. This may be performed by our method at RHIC.

In conclusion, we measured for the first time the A_N for pC elastic scattering in CNI region of $9.0 \times 10^{-3} < t < 4.1 \times 10^{-2}$ (GeV/c)2 at 21.7 GeV/c with high statistical precision. A nonzero value of r_5 was obtained from A_N to be $\text{Re} r_5 = 0.088 \pm 0.058$ and $\text{Im} r_5 = -0.161 \pm 0.226$. The experimental method used is applicable to high energy proton polarimetry at RHIC [4].

The authors would like to thank the AGS staff for supporting this experiment. We are grateful to B.Z. Kopeliovich and T.L. Trueman for theoretical support and advice. This research was supported by the U.S. Department of Energy and National Science Foundation, the Science and Technology Agency of Japan and the Japan Society for the Promotion of Science.

TABLE I: A_N as a function of t (GeV/c)2. Errors in t are the systematic error from the estimation of the energy loss at the target. The three errors in A_N are the statistical error, the systematic error in the raw asymmetry and that in the beam polarization respectively.

t ((GeV/c)2)	A_N
$(0.90 \pm 0.03) \times 10^{-2}$	$(1.30 \pm 0.22 \pm 0.35 \pm 0.16) \times 10^{-2}$
$(1.26 \pm 0.04) \times 10^{-2}$	$(1.48 \pm 0.11 \pm 0.12 \pm 0.18) \times 10^{-2}$
$(1.72 \pm 0.04) \times 10^{-2}$	$(1.19 \pm 0.11 \pm 0.17 \pm 0.14) \times 10^{-2}$
$(2.20 \pm 0.05) \times 10^{-2}$	$(1.05 \pm 0.13 \pm 0.11 \pm 0.13) \times 10^{-2}$
$(2.69 \pm 0.05) \times 10^{-2}$	$(0.12 \pm 0.15 \pm 0.18 \pm 0.01) \times 10^{-2}$
$(3.17 \pm 0.06) \times 10^{-2}$	$(-0.03 \pm 0.18 \pm 0.10 \pm 0.00) \times 10^{-2}$
$(3.65 \pm 0.06) \times 10^{-2}$	$(-0.20 \pm 0.21 \pm 0.25 \pm 0.02) \times 10^{-2}$
$(4.13 \pm 0.06) \times 10^{-2}$	$(-0.15 \pm 0.24 \pm 0.29 \pm 0.02) \times 10^{-2}$

FIG. 4: Ratio of hadronic spin-flip to non-flip amplitude, r_5, and the 1-, 2- and 3-sigma contours of χ^2.

* Present address: RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan.
1 Present address: Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan
2 Present address: Department of Physics, Kyoto University, Kyoto 606-8502, Japan
3 Present address: Fermi National Accelerator Laboratory, Batavia, Illinois 60510.
4 Present address: Department of Physics, Osaka City University, Osaka 55-8585, Japan.
5 Present address: Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.

[1] B.Z. Kopeliovich and L.I. Lapidus, Sov. J. Nucl. Phys. 19, 114 (1974); N.H. Buttimore, E. Gotsman, and E. Leader, Phys. Rev. D 18, 694 (1978).
[2] N.H. Buttimore et al., Phys. Rev. D 59, 114010 (1999), and references therein.
[3] N.H. Buttimore, in High Energy Spin Physics, Brookhaven, 1982, edited by G.M. Bunce, AIP Conf. Proc. No. 95 (AIP, New York, 1983), p. 634.
[4] B.Z. Kopeliovich and T.L. Trueman, Phys. Rev. D 64, 034004 (2001).
[5] B.Z. Kopeliovich and B.G. Zakharov, Phys. Lett B 226, 156 (1989); T.L. Trueman, hep-ph/9610429.
[6] Physics of Polarimetry at RHIC, proceedings of RIKEN BNL Research Center Workshop, 1998, Report No. BNL-65926.
[7] H. Huang et al., Phys. Rev. Lett. 73, 2982 (1994).
[8] M. Bai et al., Phys. Rev. Lett. 80, 4673 (1998).
[9] K. Krueger et al., Phys. Lett. B 459, 412 (1999); C.E. Allgower et al., Phys. Rev. D 65, 092008 (2002).
[10] W.R. Lozowski and J.D. Hudson, Nucl. Instr. and Meth. A 303, 34 (1991).
[11] G.G. Ohlsen and P.W. Keaton, Jr., Nucl. Instr. and Meth. 109, 41 (1973).
[12] B.Z. Kopeliovich and T.L. Trueman (private communication). The main theoretical uncertainty is in the realistic parametrization for the nuclear density distribution used in Ref. [1]. Both the harmonic oscillator and the Woods-Saxon parametrization gave the identical result.
[13] N. Akchurin et. al, Phys. Lett. B 229, 290 (1989); N. Akchurin et. al, Phys. Rev. D 48, 3026 (1993).
[14] Based on this measurement, the "pC CNI polarimeter" was constructed and installed in the RHIC ring.