Non-monotonic variation of anomalous Hall conductivity with spin orbit coupling strength

M. Chen, Z. Shi, and S. M. Zhou
Surface Physics Laboratory (State Key Laboratory) and Department of Physics,
Fudan University, Shanghai 200433, China

J. Li
Department of Optical Science and Engineering,
Fudan University, Shanghai 200433, China

W. J. Xu
Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

X. X. Zhang
Image-characterization Core Lab, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23900-6900, Kingdom of Saudi Arabia

J. Du
National Laboratory of Solid State Microstructures,
Nanjing University, Nanjing 210093, China

(Dated: April 28, 2010)
Abstract

For L1(0) FePt films, the anomalous Hall resistivity is found to be proportional to spontaneous magnetization M_S. After the M_S temperature effect is eliminated, ρ_{xyo} can be fitted by $\rho_{xyo} = a_o \rho_{xx} + b_o \rho_{xx}^2$. a_o and b_o change non-monotonically with chemical long range ordering degree S. Accordingly, it is indicated that for L1(0) FePt films the spin orbit coupling strength increases monotonically with increasing S.

PACS numbers: 73.50.Jt; 71.70.Ej; 78.20.Ls; 75.47.Np
Anomalous Hall effect (AHE) in ferromagnetic metallic films has been studied extensively because of its intriguing physics [1–16]. It is shown both theoretically and experimentally that the AHE resistivity is fitted by $\rho_{xy} = a\rho_{xx} + b\rho_{xx}^2$ with the longitudinal resistivity ρ_{xx}. One has the anomalous Hall conductivity (AHC) $\sigma_{xy} \simeq -a\sigma_{xx} - b$ when $\rho_{xy} \ll \rho_{xx}$, where $a = -\sigma_{sk}/\sigma_{xx}$ with $\sigma_{xx} = 1/\rho_{xx}$, $b = -\sigma_{sj} - \sigma_{int}$, σ_{sk} arises from the extrinsic skew scattering at impurity sites, σ_{sj} and σ_{int} correspond to the extrinsic side-jump scattering and the intrinsic Karplus-Luttinger terms, respectively [2–4]. Very recently, σ_{int} has been recalculated by the integration of the Berry curvature $\Omega(\vec{k})$ of the Bloch states in the Brillouin zone [6, 7],

$$\sigma_{int} = -\frac{e^2}{\hbar} \int \frac{d^3k}{(2\pi)^3} \Omega^z(\vec{k})$$

(1)

It is theoretically shown that as caused by the spin orbit coupling (SOC), σ_{sk} and σ_{sj} exhibit non-monotonic variations with the SOC strength $\Delta_{SOC} = \xi \vec{l} \cdot \vec{s}$ whereas σ_{int} demonstrates monotonic variation [7–9]. There is still a lack of experimental evidence because most such experimental studies are focused on 3d transition metallic films [11–15] and Δ_{SOC} can be tuned only in a small regime. In contrast, L1(0) FePt films, as important magnetic recording media, may be an ideal object for this purpose because Δ_{SOC} can be tuned by the chemical long range ordering degree S, as demonstrated by the enhancement of magneto-optical Kerr effect (MOKE) and spin Hall effect [17, 18]. More importantly, up to date, the SOC mechanism remains unclear although it is of crucial importance for the magnetism of L1(0) FePt films. For example, Δ_{SOC} in L1(0) FePt films strongly depends on the orbital polarization of Pt atoms but experimental results about the magnitude of the orbital polarization are controversial [19, 20]. Studies of the AHE in L1(0) FePt films as a function of S are helpful to deeply understand the nature of both the AHE and in particular the SOC in L1(0) FePt films.

In this work, we have studied the SOC effect on the AHE by employing L1(0) FePt films, in which the phase transformation and thus S are easily controlled by varying either deposition or post-annealing conditions. ρ_{xy} is found to change in a linear scale of spontaneous magnetization M_S below 300 K. After the thermally driven M_S reduction is considered, ρ_{xyo} can be fitted in a scale of $\rho_{xyo} = a_o\rho_{xx} + b_o\rho_{xx}^2$. It is interesting to find that a_o and b_o both change non-monotonically with S. Based on two dimensional electron gas model [8, 9] and other calculations [7], the present AHE experiments indicate the SOC enhancement in L1(0) FePt films.
A series of 10 nm thick L1(0) Fe\textsubscript{50}Pt\textsubscript{50} (=FePt) films with altering \(S \) were grown on MgO(001) substrates by DC magnetron sputtering at different substrate temperatures. The microstructure and the film thickness were identified by x-ray diffraction (XRD) and reflectometry (XRR), respectively. The films were patterned into normal Hall bar and the Hall resistance \(\rho_H \) was measured from 5 K to 300 K. The longitudinal resistance \(\rho_{xx} \) was also measured in the same temperature regime at zero external magnetic field. In experiments, the magnetoresistance of all samples is less than 0.5\%. \(M_S \) was measured as a function of temperature by PPMS. Polar MOKE spectra were measured at room temperature by a home-made Kerr spectrometer [21].

Deposited at ambient temperature, the FePt film is of disordered fcc structure with (111) preferred orientation. At high substrate temperatures, peaks begin to appear near 24 degrees and 48 degrees corresponding to L1(0) phase (001) and (002) orientations, as shown in Fig. 1(a). It is found that when the substrate temperature is increased, \(S \) as calculated from the intensities of (001) and (002) peaks [22] increases from 0 to 0.86 and the lattice constant along the \(c \) axis decreases from 0.382 nm to 0.374 nm. Therefore, the long range chemical ordering and the lattice distortion happened simultaneously. Due to its crucial importance for calculations of \(\rho_{xy} \) and \(\rho_{xx} \), the film thickness was measured by XRR at low angles, as shown in Fig. 1(b), and found to be 10 ± 0.5 nm.

Figure 1(c) shows typical Hall loops at 5 K. For \(S = 0 \), the Hall loop is slanted with hard axis along the film normal direction. For large \(S \), the loop becomes squared with large coercivity. Apparently, the perpendicular magnetic anisotropy is established in L1(0) FePt films. For the Hall loop of ferromagnetic films, Hall resistivity \(\rho_H = R_O H + 4\pi M(H)R_S \), where \(R_O \) and \(R_S \) are coefficients of ordinary and anomalous Hall effects, respectively. By extrapolating the saturation curve of \(\rho_H \) versus \(H \), the AHE resistivity \(\rho_{xy} \) is achieved and found to decrease for large \(S \) [23]. As shown in Fig. 1(d), for \(S = 0 \) and 0.86 the normalized spontaneous magnetization decreases by about 15\% with increasing temperature from 5 K to 300 K. Apparently, the \(M_S \) reduction cannot be ignored because the Curie temperature of 700-750 K is not sufficiently high [24]. Moreover, for \(S = 0 \) and 0.86, \(M_S \) changes in a linear scale of \(T^2 \), hinting either the excitation of interacting spin waves or long-wavelength, low-frequency fluctuations [13, 25]. For all samples, one has \(M_S = M_0 f(T) \), where \(M_0 \) and \(f(T) \) are the spontaneous magnetization at zero temperature and the temperature dependent factor, respectively.
Figures 2(a) and 2(b) show that ρ_{xx} and ρ_{xy} both increase with temperature but decrease with S. ρ_{xx} approaches the residual resistance ρ_o near zero temperature and the latter becomes small for high S possibly due to both improvement of the crystalline quality and reduction of the density of static defects at elevated substrate temperatures. Figures 2(c) and 2(d) show typical curves of ρ_{xy}/ρ_{xx} versus ρ_{xx} as a function of temperature. For all samples, the curves of ρ_{xy}/ρ_{xx} versus ρ_{xx} have downward curvatures and cannot be fitted with the formula $\rho_{xy}/\rho_{xx} = a + b\rho_{xx}$. In order to reveal the relationship between ρ_{xy} and ρ_{xx}, they are often measured as a function of temperature. At the same time, M_S generally decreases with increasing temperature for ferromagnetic materials with low Curie temperature. If ρ_{xy} is proportional to M_S, one has the following equation.

$$\rho_{xy} = \rho_{xy0} f(T)$$

(2)

As such, the $f(T)$ independent AHE resistivity ρ_{xy0} can be fitted by $\rho_{xy0}/\rho_{xx} = a_o + b_o\rho_{xx}$. As shown in Figs. 2(c) and 2(d), ρ_{xy0}/ρ_{xx} can be fitted by a linear function of ρ_{xx}. Such salient linear dependence indicates that for FePt films ρ_{xy} is proportional to M_S in the sampling temperature region. Similar phenomena have been observed in Ni alloys, Heuslers(CoMnSb, NiMnSb, and Co$_2$CrAl), Si-based magnetic semiconductor, and other ferromagnetic compounds [13, 26–31]. It has been pointed out that the skew scattering contribution has linear dependence on M_S [8, 32]. As a result, one has $a = a_o f(T)$ and $b = b_o f(T)$, where a_o and b_o are $f(T)$ independent. The intrinsic σ_{int} is proved to have linear dependence on M_S by both the Karplus-Luttinger model and the integration of the Berry curvature [2, 13], so does σ_{sj}. Therefore, one has $\sigma_{xy0} \approx -a_o \sigma_{xx} - b_o$, where $a_o = -\sigma_{sko}/\sigma_{xx}$; $b_o = -\sigma_{sjo} - \sigma_{\text{into}}$, and $\sigma_{xy0(\text{sko, sjo or into})} = \sigma_{xy(\text{sk, sj or int})}/f(T)$. In the following, we will become concerned about corresponding $f(T)$ independent physical quantities.

Figures 3(a) and 3(b) show that a_o and b_o change non-monotonically with S. For $S = 0$ and 0.86, a_o approaches zero and has a minimal value at intermediate S. b_o is equal to 700 (Ωcm)$^{-1}$ for $S = 0$ and increases with a maximal value of 900 (Ωcm)$^{-1}$, and finally approaches a saturation value of 600 (Ωcm)$^{-1}$ for $S = 0.86$. Opposite signs of a_o and b_o indicate that the skew scattering has contribution to the AHC in an opposite way to those of the side-jump and the Karplus-Luttinger terms, as observed in bcc Fe films [15]. Very recently, a new approach has been proposed to fit the data by Tian et al [15], in which ρ_o (induced by impurity) and ρ_{xxT} (contributed by phonon) are considered
to have different contributions in the skew scattering term. For L1(0) FePt films, one has
\[\rho_{xyo} = a'\rho_o + a''\rho_{XXT} + b'\rho_{xx}^2. \] As shown in Fig. 3(b), the values of \(b_o \) and \(b'_o \) are close to each other for high \(S \). This is possibly because when \(\rho_o \) becomes small, the difference between the new and the conventional approaches becomes negligible as observed in Fe films [15]. More importantly, \(b'_o \) also exhibits non-monotonic variation with \(S \) similarly to \(b_o \). Finally, the AHE of L1(0) FePt films with \(S = 0.8 \) has very recently been studied [16], in which values of \(a \) and \(b \) are dramatically different from the present results of \(a_o \) and \(b_o \), which is likely because all data in Ref.[16] were analyzed from \(\rho_{xy} \) instead of \(f(T) \) independent \(\rho_{xyo} \).

It is easy to understand the non-monotonic variations of \(a_o \) and \(b_o \) according to theoretical models about the AHC [7–9] under the assumption that \(\Delta_{SOC} \) increases monotonically with \(S \), i.e., the SOC constant \(\xi \) of Pt and Fe atoms is *equivalently* enhanced during the phase transformation. Here, the effect of the exchange split energy on the AHC can be neglected although the AHC arises from the interplay between the SOC and the exchange split. This is because the effective spin magnetic moment does not change much during phase transformation and thus the exchange splitting energy between spin-up and spin-down bands is expected to change little with \(S \) [19, 20]. Firstly, Sinitsyn *et al* have studied the AHC dependence on \(\xi \) in the two-dimensional Dirac model system by a modified semiclassical transport approach [8]. According to Eq.72 in this literature, \(\sigma_{sko} \) has a minimum at \(\Delta_{gap}/vk_F \simeq 0.5 \) with \(\Delta_{gap} \propto \xi^2 \) and \(v \) being the model parameter [16, 33]. Alternatively, in the framework of quantum transport theory, Wölle and Muttalib have studied the AHE in (quasi) two-dimensional disordered metallic band ferromagnet [9]. According to Eq.12 in Ref.[9], \(\sigma_{sko} \) achieves a minimum at \(\xi/\xi_o \simeq 0.8 \) with \(\xi_o \) being the bare one. Since \(\sigma_{xx} \) is independent of \(\xi \), the non-monotonic variation of \(a_o \) in Fig. 3(a) is easily understood.

Secondly, as the sum of \(\sigma_{sjo} \) and \(\sigma_{into} \), the non-monotonic variation of \(b_o \) in Fig. 3(b) further confirms above assumption. On one hand, \(\sigma_{into} \), which exists in perfect crystals, is theoretically predicted to increase linearly at small \(\xi \) and to reach saturation for large \(\xi \) as shown by Fig.4 in Ref.[7] and Eq.58 in Ref.[8]. It is indirectly confirmed by the Kerr rotation and the ellipticity enhancement in L1(0) FePt films, compared with the disordered FePt films, as shown in Fig. 4 [17]. By utilizing sum rules for the optical constants [34], the intrinsic AHC (at the circle frequency \(\omega = 0 \)) is suggested to be enhanced because the intrinsic AHC has the same origin (both spin polarization and SOC) as the
MOKE [7]. On the other hand, since σ_{sjo} obeys the ξ dependence similar to that of a_o as shown by Eq.76 in Ref.[8] and Eq.17 in Ref.[9], it also changes non-monotonically with S. Furthermore, it should be pointed out that the impurity state can be excluded for the non-monotonic variation trends of a_o and b_o. Since σ_{sko} and σ_{xx} are both inversely proportional to the impurity concentration, as the ratio σ_{sko}/σ_{xx}, a_o is independent of the impurity concentration. σ_{sjo} is also independent of the impurity concentration albeit it arises from the interplay of the impurity scattering and the SOC [10]. As a consequence of the SOC in ideal crystals, σ_{into} is not related to the impurity state at all. According to the theoretical prediction by Yao, Sinitsyn, and Wölffe et al [7–9], the present experimental results indicate that the Δ_{SOC} increases with increasing S.

Theoretical calculations are encouraged to address observed features of the AHC in L1(0) FePt films with varying S. Here, well defined crystalline structure in L1(0) FePt films favors direct comparison between experiments and calculations. Although σ_{int} is proportional to M_S in the temperature regime from 0 K to 300 K, the SOC effect on the AHC cannot be taken into account by perturbation approach because a_o and b_o vary non-monotonically with ξ as discussed above. Since M_S is shown to obey linear dependence on T^2, the M_S reduction is proposed to be caused by long-wavelength, low frequency fluctuation of spin orientation at finite temperatures by Zeng et al [13]. Accordingly, this difficulty in theory is overcome. For L1(0) FePt films with small S, σ_{sj} also shows the linear dependence on M_S, however, different from observations of Mn$_5$Ge$_3$ where σ_{sj} is neglected. Furthermore, the increase of Δ_{SOC} with S indicates the enhancement of orbital polarization of Pt atoms due to chemical long range ordering because the SOC at Pt sites plays a dominant role in the magnetism of L1(0) FePt alloys [35, 36], although the orbital polarization of Fe atoms is observed to be enhanced by about 300% [19, 20]. In calculations, the lattice distortion and the chemical ordering should be taken into account because the former and the latter ones have great impact on the orbital polarization in the magnitude and the anisotropic distribution, respectively.

In conclusion, it is likely the first time to have studied the AHC dependence on Δ_{SOC} in experiments, by employing L1(0) FePt films. As the ratio $\rho_{xy}/f(T)$, ρ_{xyo} can be parameterized by $\rho_{xyo} = a_o\rho_{xx} + b_o\rho^2_{xx}$. Accordingly, ρ_{xy}, σ_{xy}, σ_{sk}, σ_{int}, and in particular σ_{sj} are all proportional to M_S as a function of temperature in the regime of 0-300 K. It is interesting to find that a_o and b_o change non-monotonically with S. Accordingly, Δ_{SOC} is
verified to be enhanced in L1(0) FePt films and to increase monotonically with S. The present state of the art results will also be helpful to study electronic structure of L1(0) FePt films.

Acknowledgements This work was supported by the National Science Foundation of China Grant Nos. 50625102, 50871030, and 10974032, the National Basic Research Program of China under grant No. 2009CB929201, 973-Project under Grant No. 2006CB921300, and Shanghai Leading Academic Discipline Project under grant B113.
[1] E. H. Hall, Philos. Mag. 12, 157(1881)
[2] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154(1954)
[3] J. Smit, Physica (Amsterdam) 24, 39(1958)
[4] L. Berger, Phys. Rev. B 2, 4559(1970)
[5] L. Berger and G. Bergmann, The Hall Effect and Its Applications, edited by C. L. Chien and C. R. Westgate (Plenum, New York, 1980)
[6] T. Jungwirth et al, Phys. Rev. Lett. 88, 207208(2002)
[7] Y. G. Yao et al, Phys. Rev. Lett. 92, 037204(2004)
[8] N. A. Sinitsyn et al, Phys. Rev. B 75, 045315(2007)
[9] P. Wölfle and K. A. Muttalib, Ann. Phys. (Leipzig), 15, 508 (2006)
[10] N. A. Sinitsyn, J. Phy. Condens. Matter, 20, 023201(2008)
[11] A. Fert and O. Jaoul, Phys. Rev. Lett. 28, 303(1972)
[12] W. L. Lee et al, Science 303, 1647(2004)
[13] C. G. Zeng et al, Phys. Rev. Lett. 96, 037204(2006)
[14] Y. Pu et al, Phys. Rev. Lett. 101, 117208(2008)
[15] Y. Tian et al, Phys. Rev. Lett. 103, 087206(2009)
[16] K. M. Seemann et al, Phys. Rev. Lett. 104, 076402(2010)
[17] B. M. Lairason and B. M. Clemens, Appl. Phys. Lett. 63, 1438(1993); A. Cebollada et al, Phys. Rev. B 50, 3419(1994)
[18] T. Seki et al, Nature Mater. 7, 125(2008)
[19] N. Jaouen et al, Phys. Rev. B 76, 104421 (2007)
[20] C. Antoniak et al, Phys. Rev. Lett. 97, 117201(2006)
[21] L. Y. Chen et al, Opt. Eng. 36, 3188(1997)
[22] J. A. Christodoulides, IEEE Trans Magn. 37, 1292(2001)
[23] J. Moritz et al, J. Phys. D: Appl. Phys. 41, 135001(2008)
[24] S. Okamoto et al, Phys. Rev. B 66, 024413(2002)
[25] G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339(1985)
[26] M. J. Otto et al, J. Phys.: Condens. Matter 1, 2351(1989)
[27] N. Manyala et al, Nat. Mater. 3, 255(2004)
[28] B. C. Sales et al, Phys. Rev. B 73, 224435(2006)

[29] A. Husmann and L. J. Singh, Phys. Rev. B 73, 172417(2006)

[30] Y. Onose et al, Phys. Rev. B 73, 174421(2006)

[31] M. Lee et al, Phys. Rev. B 75, 172403(2007)

[32] P. Nozieres and C. Lewiner, J. Phys. (France) 34, 901(1973)

[33] H. K. Min et al, Phys. Rev. B 74, 165310(2006)

[34] W. Reim and J. Schoenes, in Ferromagnetic Materials, edited by K. H. J. Buschow and E. P. Wohlfarth (North-Holland, Amsterdam, 1990) Vol.5, p.157

[35] P. Ravindran et al, Phys. Rev. B 63, 144409(2001)

[36] T. Burkert et al, Phys. Rev. B 71, 134411(2005)
FIGURE CAPTIONS

Figure 1 Typical XRD spectra at high angles (a) and XRR at low angles (b), Hall loops at 5 K(c), and temperature dependence of the normalized spontaneous magnetization, i.e., \(f(T) \)(d). In (d), the lines refer to linear fit results.

Figure 2 \(\rho_{xx} \)(a) and \(\rho_{xy} \)(b) versus temperature for FePt films with various \(S \), the ratio (\(\alpha \)) of \(\rho_{xy}/\rho_{xx} \)(black squares) and \(\rho_{xyo}/\rho_{xx} \)(red circles) versus \(\rho_{xx} \) for \(S = 0.86 \) (c) and 0 (d). Here, symbols in (a)-(d) refer to measured results, solid lines for \(\rho_{xyo}/\rho_{xx} \) curves in (c) and (d) to fitted results by the linear function, and other lines in (a)-(d) serve a guide to the eye.

Figure 3 \(a_0 \)(a), \(b_0 \) and \(b'_0 \)(b) as a function of \(S \), which are fitted from the curves of \(\rho_{xyo}/\rho_{xx} \) versus \(\rho_{xx} \).

Figure 4 Polar Kerr rotation \(\theta_K \) (a) and ellipticity \(\epsilon_K \) (b) spectra of FePt films with \(S = 0 \) and 0.86. During measurements, the samples were in the saturation state. Lines serve a guide to the eye.
FIG. 1:
FIG. 2:
\(b_0 \) and \(b'_0 \) (10^3 \text{ cm}^{-1})

FIG. 3:
FIG. 4: