Frontier Orbitals of Dehydrogenated Tetrahydrocurcumin in Water Solvent: A Theoretical Study

Lusia S. P. Boli1, Vera Khoirunisa1,2, Adhitya G. Saputro1,3, Mohammad K. Agusta1,3, Febdian Rusydi4, Heni Rachmawati3,5, Hermawan K. Dipojono1,3*

1Engineering Physics Research group, Institut Teknologi Bandung, Indonesia
2Engineering Physics Program, Institut Teknologi Sumatera, Indonesia
3Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Indonesia
4Research Center for Computational Quantum Engineering, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
5School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia

*Corresponding author : dipojono@gmail.com

Abstract. We studied two frontier orbitals - the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) - of tetrahydrocurcumin (THC) using density-functional theory (DFT) in water solvent. These orbitals were observed in THC molecule without one hydrogen atom (dehydrogenated THC). The loss of hydrogen atom is due to the transfer of the atom from THC molecule toward reactive oxygen species (ROS) (Hydrogen atom transfer –HAT- mechanism). We began our investigation by optimizing dehydrogenated THC at three X-H sites. Then, water solvent was added by using polarized continuum model (PCM) method. This study observed that dehydrogenated THC at two O-H sites has wider gap of HOMO-LUMO compare to C-H site.

1. Introduction

Studying dehydrogenation of THC is an initial step to understand the role of THC as antioxidant based on hydrogen atom transfer (HAT). In biological system, excessive amount of reactive oxygen species (ROS) promotes oxidative stress [1]. Thus, THC is proposed as one of the antioxidant agents that can prevent oxidative stress in biological system. In playing its role, THC is expected to transfer one of its hydrogen atom toward ROS to neutralize the free radical molecule[2]. This is called hydrogen atom transfer mechanism. Due to HAT mechanism, THC is left with one less hydrogen atom or so called dehydrogenated THC. A good antioxidant agent is expected to maintain the stability of its dehydrogenated form[3].

There are two frontier orbitals used to assess stability of dehydrogenated THC. They are the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Gap between this two orbitals will decide the ability of electrons to jump from HOMO to LUMO. Wide gap means is correlated to high stability while narrow gap is correlated to low stability[4].

In this research, we intend to study two frontier orbitals of THC produced by THC dehydrogenated using first principles. We choose density functional theory (DFT) as our research framework since it can produce frontier orbitals of dehydrogenated THC by constructing electronic structures only. Thus
this is called first principles study. Result of this study will guide us to decide the stability of dehydrogenated THC after transferring a hydrogen atom from an X-H site. We analyze the HOMO and LUMO energy of three X-H sites of THC to lead us to our final conclusion. THC performs better antioxidant reactivity in polar medium [5], so we choose polar water medium as our simulation environment. We are aware of the problematic of PCM in modeling water as solvent in our previous works where the trend predicted by DFT-PCM calculations always break when using water solvent [6,7].

Figure 1. Molecular geometry of (a) THC molecule and (b) dehydrogenated THC produced by abstracting a hydrogen atom from CH site.

2. Computational details
We performed geometry optimization of three THC radicals at site OH1, OH2 and CH using UM05-2X functional and 6-31++G(d,p) basis set. Some authors have successfully used M05-2X functional to study the antioxidant properties of polyphenols [8, 9]. The developer of this functional was also suggesting it for thermochemistry calculations [10]. Since our system was an open shell system of THC dehydrogenated, we performed an unrestricted calculation. Our simulation was done in water environment to represent a polar medium. This solvent effect was included using polarized continuum model (PCM), where water was modelled as cavity that interacts electrostatically with THC radical placed within the cavity [11]. All calculations were performed using Gaussian 09 suite program [12] at 298.15 K.

3. Results and discussion
Figure 1(a) shows model of our molecule of interest which is a THC molecule. Site CH, OH1 and OH2 mark three targeted sites with the ability of transferring a hydrogen atom. We abstract one hydrogen atom from each of this site respectively to create dehydrogenated THC. Figure 1(b) shows
dehydrogenated THC at C-H site. Our DFT calculations coupled with PCM confirms that the geometry of our system is in minimum energy with doublet spin states.

Figure 2 presents HOMO and LUMO profiles of dehydrogenated THC at C-H site. As shown in 2(a), the HOMO profile is located at dehydrogenated site while in 2(b), the LUMO profile is located in the middle of the molecule. This result is also true for site OH1 and OH2.

Figure 3 summarizes the relative HOMO-LUMO energy of our three dehydrogenated THC systems. In general, O-H sites have higher relative HOMO-LUMO energy than CH site. Higher relative HOMO-LUMO energy means electrons cannot jump easily from HOMO to LUMO. As a result, dehydrogenated THC at O-H sites is more stable than at C-H sites. Site OH1 and OH2 possess very similar value of relative energy HOMO-LUMO. This result predicts that hydrogen atom transfer from both sides will produce the same stability of dehydrogenated THC in water environment. We compare our results to one of our previous work for relative HOMO-LUMO of THC in gas phase [13] and conclude that water solvent does not affect the stability of dehydrogenated THC.

4. Conclusion
The study of frontier orbitals of dehydrogenated THC in water solution showed that when hydrogen atom transfer occurred at O-H site, the stability of dehydrogenated THC is higher than when it occurred at C-H site. Hydrogen atom transfer at two O-H sites in THC will produce dehydrogenated THC with the same stability.
Figure 3. Relative energy diagram of THC radicals in OH1, OH2 and CH sites

Acknowledgement
The authors are grateful to Lembaga Pengelola Dana Pendidikan (LPDP) that has sponsored this research.

References
[1] Halliwell B 1991 Reactive oxygen species in living systems: source, biochemistry, and role in human disease The American Journal of Medicine 91 S14-S22
[2] Portes E, Gadrat C and Castellan A 2007 A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids Tetrahedron 63 9092-99
[3] Ingold K U and Pratt D A 2014 Advances in radical-trapping antioxidant chemistry in 21st century: a kinetics and mechanisms perspective Chemical Reviews 114 9022-9046
[4] Anh N T 2007 Frontier Orbitals a practical manual John Wiley & Sons
[5] Khopde S M, Priyadarshini K I, Guha S N, Satav J G, Venkatesan P and Aswathanarana Rao M N 2000 Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis Bioscience, Biotechnology and Biochemistry 64 503-509
[6] Fadilla R N, Aisyah N D, Dipojono H K and Rusydi F 2017 The first-principle study on the stability of trans-HCOH in various solvents IOP Conf. Series:Journal of Physics: Conf.Series 853 012031
[7] Rusydi F, Shukri G, Saputro A G, Agusta M K, Dipojono H K, Suprijadi S 2017 Dipole strength calculation based on two-level system approximation to study Q/B-band intensity ratio of ZnTBP in solvent Journal of the Physical Society of Japan 86 044706
[8] Martinez A, Galano A and Vargas R 2011 Free radical scavenger properties of α-mangostin: thermodynamics and kinetics of HAT and RAF mechanisms Journal of Physical Chemistry B 115 12591-8
[9] Iuga C, Alvarez-Ildaboy J R and Russo N 2012 Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetic study Journal of Organic Chemistry 77 3868-77
[10] Zhao Y, Schultz N E, and Truhlar D G 2006 Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions J.Chem. Theory Comput 2 364-84
[11] Mennucci B , Tomasi J, Cammi R, Cheeseman J R, Frisch M J, Devlin F J, Gabriel S and Stephens P J 2002 Polarizable continuum model (PCM) calculations of solvent effects on
optical rotations of chiral molecules *Journal of Physical Chemistry* **106** 6102-13

[12] Wallingford CT Gaussian 09, revision C.01 *Gaussian Inc* Wallingford CT 2010

[13] Boli L S P, Khoirunisa V, Saputro A G, Agusta M K, Rusydi F, Rachmawati H and Dipojono H K 2017 Theoretical study on frontier orbitals of tetrahydrocurcumin in hydrogen atom transfer mechanism *IOP Conference Proceedings* (submitted, under review)