Stress-Structure Relationship of the Reversible Associating Polymer Network under Start-up Shear Flow

Ai-Qing Liu\(^a,b\), Li-Jun Liu\(^b\), Wen-Sheng Xu\(^b\), Xiao-Lei Xu\(^b\), Ji-Zhong Chen\(^b\), and Li-Jia An\(^b,c\)

\(^a\) College of Chemistry, Jilin University, Changchun 130012, China
\(^b\) State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
\(^c\) University of Science and Technology of China, Hefei 230026, China

Abstract We adopt Langevin dynamics to explore the stress-structure relationship of telechelic reversible associating polymer gel during start-up shear flow, with shear strengths varying from \(W_i=12.6\) to \(W_i=12640\). At weak shear flow \(W_i=12.6\), the shear stress proportionally increases with shear strain at short times, followed by a strain hardening behavior and then passes through a maximum \((\tau_{\max}, \gamma_{\max})\) and finally decreases until it reaches the steady state. During the evolution of stress, the gel network is only slightly broken and essentially maintains its framework, and the strain hardening behavior originates from the excessive stretching of chains. On the other hand, the stress-strain curve at intermediate shear flow \(W_i=505.6\) shows two differences from that at \(W_i=12.6\), namely, the absence of strain hardening and a dramatic increase of stress at large strains, which is caused by the rupture of gel network at small strains and the network recovery at large strains, respectively. Finally, at very strong shear flow \(W_i=6319.7\), the gel network is immediately broken by shear flow and the stress-strain curve exhibits similar behaviors to those of classical polymeric liquids.

Keywords Associating polymer; Start-up shear; Stress-structure relationship

Citation: Liu, A. Q.; Liu, L. J.; Xu, W. S.; Xu, X. L.; Chen, J. Z.; An, L. J. Stress-structure relationship of the reversible associating polymer network under start-up shear flow. Chinese J. Polym. Sci. 2021, 39, 387–396.

INTRODUCTION

Reversible associating network gels, also known as physical gels, have attracted extensive attention in recent years. A transient gel network is composed of crosslinks that are formed by noncovalent bonds, such as hydrogen bonding, ionic bonds, metal complexation, and \(\pi-\pi\) stacking. Because of their unique abilities such as the outstanding processing and recycling resulting from the nature of reversible cross-linking, physical gels exhibit superior properties over traditional polymer materials, with numerous applications in fields such as biological and industrial technology and engineering artificial tissue. For example, the associated polymeric networks can be used in shape memory,\(^8\)–\(^12\) drug release,\(^13\) response stimulation\(^14\)–\(^17\) and self-healing materials.\(^18\)–\(^24\) In addition, many researchers also focused on polymer hydrogel designs that can absorb water or biological fluids to address medical needs.\(^25\)–\(^28\)

A polymer association gel network is composed of reversible cross-linking multifunctional groups which can be classified into two kinds, i.e., the associating sites distributed along the backbones\(^29\)–\(^31\) and those located at the ends of polymer chain (telechelic polymers).\(^32\)–\(^33\) For telechelic polymers, the terminal monomer tends to aggregate with others in the same or different chains into a cluster that effectively works as a crosslink of the physical gel network. Thus, four types of polymer chains are produced in the gel network, namely, bridge, loop, dangling and free chains. The gel network exhibits rich structural and rheological properties under various conditions due to its nature of reversible association properties. Generally, it is believed that the bridge chains play important roles in the elasticity of gel networks.\(^34\)–\(^36\)

Extensive researches by experiment\(^37\)–\(^38\) and theory\(^37\)–\(^49\) have been performed to understand the structural and rheological properties of gel network. Tanaka and Edwards\(^46\) performed pioneering work in developing theories to explain the complex behaviors of associating polymer gels, such as the mean field theory, percolation network and micelle theory, which describe the assembly and deformation of the networks. They noted that the lifetime of the gel depends on its strength and stability, which are affected by the association group type, location and size. Many other studies examined the dependence of mechanical properties on the structure of the gel network.\(^37\)–\(^38\),\(^50\) It is found that the bridge chains are responsible for the mechanical strength of the gel network, and chains that have only one end attached to the network (dangling) and free chains that do not form a network cannot withstand stress. In recent
SIMULATION METHODS

In our model system, a telechelic polymer is composed of \(N \) beads of mass \(m \). Two beads at the end of a polymer are called stickers. The standard Kremer-Grest model\cite{52} is applied to represent the telechellic polymer chain. The excluded-volume interaction between the stickers is represented by the Lennard-Jones (LJ) potential as follows:

\[
U_{\text{LJ}} = 4\varepsilon_{\text{LJ}} \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \Theta(2.5\sigma - r) \tag{1}
\]

The repulsive, shifted, and truncated 6–12 Lennard-Jones potential (known as the WCA potential) is taken into account between the nonstickers:

\[
U_{\text{WCA}} = 4\varepsilon_{\text{WCA}} \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} + \frac{1}{4} \Theta(2.5\sigma - r) \right] \tag{2}
\]

where \(r = |r_i - r_j| \) denotes the distance between the beads \(i \) and \(j \), \(\Theta(\alpha) \) is the Heaviside function (\(\Theta(\alpha) = 0 \) for \(\alpha < 0 \) and \(\Theta(\alpha) = 1 \) for \(\alpha > 0 \)). The WCA potential is also used to model the nonbonded potential between nonsticker and sticker beads. The standard reduced LJ units, in terms of which all physical for). The WCA potential is also used to model the

\[
U_{\text{FENE}} = -\frac{1}{2} k R_0^2 \ln \left[1 - \frac{r^2}{R_0^2} \right] \tag{3}
\]

where we use the classic diameters \(k = 30\varepsilon/\sigma^2 \) and the fully stretched bond length \(R_0 = 1.5 \), guaranteeing a certain stiffness of the bonds while avoiding high-frequency modes and chain crossing.\cite{52}

In the simulation, we set the chain length to be 120. There are 1.008×10^8 beads that are confined in a sheared rectangular box with Lees-Edwards boundary conditions and the density is \(\rho = 0.2 \). The box size is \(L_x = 140 a \), and \(L_y = L_z = 60 a \) (where \(a \) denotes the distance between the coordinates \(x, y, \) and \(z \) refer to the flow, vorticity, and gradient direction, respectively). A wide range of shear rates \(\gamma \), spanning several orders of magnitude (from 0.001 to 0.1), are used in these simulations. The strength of the telechelic polymer depends on the mutual interaction between the associative sites.\cite{53,54} We choose a parameter \(\varepsilon_{\text{LJ}} = 6.0 \) to ensure the formation of a perfect gel network. The association strength \(\varepsilon_{\text{LJ}} \) affects the lifetime of clusters. The reversible association of stickers gives rise to two characteristic time: the lifetime of being attached to a cluster \(T_\gamma \) and the time for a sticker to find a partner of a new cluster \(r_{\text{pce}} \). For strong association, it is difficult to break and find new partners for a cluster. In addition to the association strength, chain length and concentration also affect the equilibrium constant of association/dissociation.\cite{55,56} In this work, the interaction of the solvent is expressed by random force and friction. Each monomer in the system is subjected to conservative forces, random forces, and friction forces. The following formula shows the force of each monomer:

\[
m r_i = F_i^r + F_i^\gamma - \zeta (v_i - r_i \cdot \nabla v_i) \tag{4}
\]

where \(r_i, \zeta \), and \(v_i \) refer to the position, friction coefficient, and velocity of the monomers, respectively. Here, \(\nabla v_i \) refers to the velocity gradient tensor. We choose a parameter to ensure the velocity gradient tensor \(\nabla v_i = (0, 0, 0; 0, 0, 0; \gamma, 0, 0) \), and we have to deduct the speed of the flow field. The friction constant is set to \(1.0 r^{-1} \), and the temperature \(T \) is 1.0. We choose the time step to be 0.01. The random force is calculated by this function

\[
F_i^\gamma(t) = \hat{6} k_B T \delta_0 \delta(t - t') \tag{4}
\]

To improve the efficiency of the calculation, we utilize GALAMOST\cite{57,58} to perform an equilibrium simulation. First, the pure repulsive potential energy between all the monomers is simulated in 20 million steps, and then the repulsive potential (WCA) between the stickers is replaced by the attractive potential (LJ). Then, 80 million steps are performed to make the system fully reach equilibrium, and a new network structure is formed. After equilibration, the initial configurations for the nonequilibrium Langevin dynamics simulations are produced from the equilibrium simulations every 10 million steps, start-up shear simulations are performed by LAMMPS.\cite{59}

In the start-up shear simulations, we average a sample within a strain \(\gamma = 0.1 \), and the calculated maximum strain is 40. The results are obtained based on sample averages from 30 to 50 in our chosen system. For structural analysis of the gel networks, we utilize cluster analysis\cite{60} to obtain the fractions of four polymer types and cluster sizes. We acquired a transient formation of polymers every 0.1y. When the telechelic polymers are dissolved in solvents, the stickers located at the extremes of the polymer chains can aggregate into a cluster due to attraction. Within an attractive distance \(r_c = 2.5 \), stickers constitute the same cluster. We judge the type of a polymer by the following rules: if two ends of a polymer are attached to

https://doi.org/10.1007/s10118-020-2487-6
RESULTS AND DISCUSSION

Stress-Strain Response

When exposed to start up shear, classic polymeric liquids usually behave similarly to elastic solids in short time frames; that is, shear stress proportionally increases with shear strain. However, polymers are viscoelastic, meaning that they exhibit both elastic solid and simple liquid properties. The liquid feature makes the shear stress drop under large strains, which eventually presents a small but nonzero plateau value. Evidently, between the increasing and decreasing regions, a stress peak will emerge and has been widely reported in various polymeric liquids, including solutions,[64,65] melts,[66–68] and gels.[51,69] Typically, this stress overshoot can usually be observed when the imposed shear rate is greater than the reciprocal of relaxation time.[64,67–69] A polymer gel has a backbone connected by telechelic polymer chains, exhibiting a dynamic network under imposed shear. Clearly, its structural responses under shear are more complicated than those in polymer solutions or melts, including both the network and polymer chain levels, which may lead to various stress responses.

The strength of applied shear flow is characterized by the dimensionless Weissenberg number $W_i = \gamma \tau_p$, where γ is shear rate and τ_p is the longest equilibrium relaxation time of chains by calculating the autocorrelation function of the terminal vector. Here the relaxation time τ_p is about 126393τ. To reveal the stress-structure relationship in polymer gels, we first evaluate the strain dependent shear stresses at various shear strengths ($W_i=12.6, 505.6, 6319.7$) corresponding to the shear rates ($\gamma=0.0001, 0.004, 0.05$), as shown in Figs. 1(a), 1(b), and 1(c), respectively. σ_{xz} is obtained by the tensor version of the virial theorem:

$$\sigma = \frac{1}{2} \left(\sum_{ij} \frac{P_{pi}}{m} + \frac{1}{2} \sum_{ij} r_i \hat{r}_j \hat{F}_{ij} \right).$$

At shear strength $W_i=12.6$, the shear stress-strain curve shows a similar shape to that of polymer melts, $i.e.$, σ first increases rapidly, then passes through a maximum ($\sigma_{\text{max}}=Y_{\text{max}}$) and finally decreases until it reaches the steady state ($\sigma_{\text{steady}}=Y_{\text{steady}}$), with Y_{steady} representing the position where shear stress reaches σ_{steady} for the first time. Correspondingly, we divide the whole curve into three regions I, II, and III. Thus, there exist two characteristic strains: the first characteristic point ($\sigma_{\text{max}}=0.028, Y_{\text{max}}=5.7$) between I and II and the second point ($\sigma_{\text{steady}}=0.004, Y_{\text{steady}}=22$) between II and III. Specifically, we fit the stress-strain curve by an elastic deformation $\sigma = G\gamma$ in re-

![Fig. 1](https://doi.org/10.1007/s10118-020-2487-6)

The stress-strain curves at shear strengths W_i of (a) 12.6, (b) 505.6 and (c) 6319.7. The curves are divided into three regions: I, II, and III, with black line denoting the elastic deformation. (d) The corresponding transient viscosities.
As discussed above, under shear, two levels of structural responses exist in polymer gels, i.e., network-level and chain-level responses. To reveal the relationship between the stress response and network evolution, we investigate the details of the network under shear. Generally, the gel network can be characterized by four types of polymer chains: loop, bridge,

![Fig. 2](https://doi.org/10.1007/s10118-020-2487-6)
dangling and free, as shown in Fig. 3(a). Hence, we characterize the structural changes of the gel network by calculating the proportions of four types of chains, i.e., f_l, f_b, f_d, and f_f with their values equal to the number of corresponding type chains normalized by the total number of polymers. Note that at equilibrium, f_l, f_b, f_d, and f_f have values of 14%, 86%, 0%, and 0%, respectively. The absence of dangling and free chains indicates the formation of a perfect gel network. The structural changes of the gel network under various shear strengths are displayed in Figs. 3(b), 3(c) and 3(d), with the discussed shear strengths ($W_i=12.6$, 505.6, 6319.7) corresponding to those in Fig. 1. In detail, at the weak shear strength $W_i=12.6$ shown in Fig. 3(b), it is clear that up to $\gamma=4.0$, f_l, f_b, f_d, and f_f remain almost unchanged from those at equilibrium, indicating that the network is only deformed, and its backbone is maintained in this region. This situation causes the continuous and excessive stretching of chains, closely consistent with the conjecture suggested from the strain hardening behavior in Fig. 1(a). On the other hand, when the shear strain exceeds $\gamma=4.0$, the proportion of bridge chains f_b slightly decreases with an amplitude of approximately 3%, i.e., from 86% to 83%, while the dangling chains weakly increase, implying slight rupture to the network; this rupture will surely lead to a decrease in stress, which is also consistent with the behavior of region II. Under further large shear strain, the network remains steady, the chains of the four types dynamically evolve with time, and the shear stress develops a plateau region. It should be noted that during the entire shear flow process, loop f_l and free f_f chains remain unchanged from the equilibrium state. In short, the gel network is only slightly ruptured and remains unbroken at weak shear.

At the intermediate shear strength $W_i=505.6$ shown in Fig. 3(c), the bridge chains f_b considerably decrease at a relatively small shear strain of approximately $\gamma=1.8$ when compared with the weak shear $W_i=12.6$, while the decreasing amplitude can reach 8.5%. It is clear that the excessive stretching of polymer chains will not occur at such a small strain level; hence, the strain hardening behavior in region I disappears, and moreover, it also leads the stress peak (σ_{max}, γ_{max}) to move to a smaller strain. As expected, the proportion of dangling chains f_d correspondingly increases along with the decrease in bridge chains. With the further increase in shear strain, it is found that the proportion of bridge chains f_b remarkably shows a successive recovery process rather than remains steady and gradually reaches the value at equilibrium. This process can enhance the strength of the network and eventually result in the stress rising in region III, which is closely consistent with the stress behaviors. Note that the network recovery means the dangling chains f_d will decrease, as shown, and during the shear process, the loop and free chains remain almost unchanged with time. In summary, the gel network is first broken at short time frames and then gradually recovers to its equilibrium state at intermediate shear.

At the very strong shear $W_i=6319.7$ shown in Fig. 3(d), the proportion of bridge chain f_b starts to decrease immediately after the onset of shear flow, with a large amplitude ranging from 86% to 72%. This serious rupture to the network causes the stress peak (σ_{max}, γ_{max}) to emerge at a very small strain. Again, the proportion of dangling chains f_d correspondingly increases. However, those of loop f_l and free f_f chains show very different behaviors here when compared with those at weak and intermediate shear strengths. That is, the proportion of loop chains f_l slightly decreases and, more importantly,
that of the free chains f_i dramatically increases, rather than both of them remaining steady with time. The emergence of free chains indicates that the network is broken. At further large shear strains, the four chain types f_i, f_0, f_d, and f_l remain steady, and no obvious network recovery is found. In short, the gel network is seriously ruptured and broken under strong shear.

In the gel network, chain end monomers aggregate into clusters of different sizes. To further elaborate the structural properties of the network, we analyze the transient size distribution of these clusters, as shown in Fig. 4. N_k denotes the number of stickers in a cluster, and f represents the number of clusters at this size. Again, the shear strengths $W_i=12.6$, 505.6, and 6319.7 indicate weak, intermediate and strong shear flows, respectively. As we can see in Fig. 4(a), at weak shear, the distribution is nearly Gaussian in the absence of shear flow, which can be described by $f(x) = 11.6 \exp\left(-\frac{(x-13)^2}{30}\right)$. At small strains such as $\gamma=4.0$ in region I, the distribution function f remains unchanged from the equilibrium state, indicating a perfect gel network in this range of shear once again. With increasing shear strain, f becomes more expansive, while its shape remains almost unchanged. According to our results, even in the very large strain $\gamma=30.0$, the number of chain end monomers that anchor in the gel network is nearly the same as that in the absence of shear flow (approximately 1680), which means that the network is unbroken all the time. On the other hand, the evolution of the distribution function at the intermediate shear strength is quite different. As shown in Fig. 4(b), the number of clusters that have a small size, such as $N_i=1$, 2, or 3, first undergoes an increase and then drops at large strains. Correspondingly, the number of end monomers belonging to the gel network drops to 1615 at $\gamma=3.0$ from the equilibrium value 1680 and then recovers to 1650 at large strains $\gamma=30.0$. These results confirm that the network is partly broken and finally recovers, as predicted.

At strong shear flow, our results have already indicated that the network is broken, and dangling and even free chains begin to appear in the system. As expected, the data in Fig. 4(c) show a dramatic growth in the quantity of clusters with small sizes, exhibiting a bimodal distribution. Note that no obvious decay of the first peak is observed, even in the largest strain studied, confirming that the network is broken and can no longer recover.

Structural Properties of Polymer Chain

As we stressed before, under shear, two levels of structural responses exist in the gel solutions, i.e., network level and chain level responses, both of which can deeply determine the macroscopic stress behaviors. Hence, following the network analysis, we investigate the structural properties of the chains, including chain stretching and orientation behaviors. In Fig. 5, we calculate the mean-square end-to-end distances of polymer chains. Fig. 5(a) graphically illustrates the definition of end-to-end distances. Because the end-to-end distance of the loop chain is always zero and the proportion of free chains is very low, we only show the results of the other two main kinds of chains, i.e., bridge and dangling chains, denoted as $\langle R_{\text{end}}^2 \rangle_b$ and $\langle R_{\text{end}}^2 \rangle_d$, respectively. In addition, the average end-to-end
distance for all the polymer chains $\langle R_{\text{ee}}^2 \rangle$ is also presented. At the weak shear shown in Fig. 5(b), $\langle R_{\text{ee}}^2 \rangle$, $\langle R_{\text{ee}}^2 \rangle_b$, and $\langle R_{\text{ee}}^2 \rangle_d$ are displayed, while $\langle R_{\text{ee}}^2 \rangle_d$ is ignored because of the absence of dangling chains. The evolutions of $\langle R_{\text{ee}}^2 \rangle$ and $\langle R_{\text{ee}}^2 \rangle_b$ with increasing shear strain are essentially synchronous since the major contribution of $\langle R_{\text{ee}}^2 \rangle$ comes from the bridge chains. It can be found that at the small strains, polymers show affine deformation with shear due to the constraint of the network; in other words, $\langle R_{\text{ee}}^2 \rangle_b$ and $\langle R_{\text{ee}}^2 \rangle_d$ increase rapidly. Then, $\langle R_{\text{ee}}^2 \rangle_b$ and $\langle R_{\text{ee}}^2 \rangle_d$ exhibit overshoot behavior and begin to decrease, indicating a chain retraction due to the rupture of the network. At large strains, $\langle R_{\text{ee}}^2 \rangle_b$ and $\langle R_{\text{ee}}^2 \rangle_d$ tend to level off. In this region, bridge chains are not permanently anchored in the network but dynamically switch between each other, resulting in a reasonable degree of chain stretching rather than excessive stretching. At intermediate shear strength, $\langle R_{\text{ee}}^2 \rangle_b$ and $\langle R_{\text{ee}}^2 \rangle_d$, as well as the $\langle R_{\text{ee}}^2 \rangle_d$, are presented in Fig. 5(c). As shown, $\langle R_{\text{ee}}^2 \rangle_b$ first undergoes an overshoot and then begins to decrease due to the rupture of the network. With the further increase of strains, $\langle R_{\text{ee}}^2 \rangle_b$ shows an evident increment rather than the plateau behavior at weak shear, originating from the recovery process of the gel network. Because bridge chains dominate in gel solutions, it can be expected that the behavior of $\langle R_{\text{ee}}^2 \rangle$ is similar to that of $\langle R_{\text{ee}}^2 \rangle_b$. In addition, the dangling chains show a plateau region at large strains after the overshoot behaviors because of the existence of chain free ends. Finally, the chain stretching at strong shear flow is shown in Fig. 5(d). As we can see, $\langle R_{\text{ee}}^2 \rangle_d$ reaches its peak value at a very small strain, confirming that the network is broken at the onset of shear flow. In addition, the overshoot point of $\langle R_{\text{ee}}^2 \rangle_d$ appears at a much larger strain since the dangling chains can be further stretched after the rupture of the network, while the bridge chains cannot be stretched. For both $\langle R_{\text{ee}}^2 \rangle_b$ and $\langle R_{\text{ee}}^2 \rangle_d$, the curve tends to level off at large strains, exhibiting a plateau region. Note that even though the bridge chains predominate, the behavior of $\langle R_{\text{ee}}^2 \rangle_b$ is similar to that of $\langle R_{\text{ee}}^2 \rangle_d$ rather than $\langle R_{\text{ee}}^2 \rangle_b$, since the former is several orders of magnitude larger than the latter.

The orientation behaviors of polymer chains under shear flow are presented in Fig. 6. Symbol θ refers to the angle between the projection of the unit eigenvector of the chain on the flow-gradient plane and the direction of the flow field, as denoted by the inset. Angle θ can characterize the degree of chain orientation along the flow direction. As we can see, the directions of the polymer are isotropic in the absence of shear flow and rapidly orient into the flow direction with the application of shear flow. At weak shear flow, θ gradually de-

https://doi.org/10.1007/s10118-020-2487-6
increases from 45° at equilibrium to a plateau value of 8° at large strains. At an intermediate shear strength $W_i = 505.6$, θ drops much faster than that at weak shear, undergoes an undershoot and then climbs to a plateau value of approximately 12°. The undershoot and the subsequent rising behaviors indicate a stronger resistance to the applied shear flow, originating from the recovery of the network. At a strong shear strength, θ rapidly drops to its minimum at approximately $\gamma = 5.0$, and no obvious recovery process is observed.

CONCLUSIONS

In this work, we studied a reversible association gel network under start-up shear by adopting Langevin dynamics to explore the relationship between the stress response and the structural properties of the gel network. Various shear rates from 10^{-4} to 10^{-1} are studied, and three typical shear strengths of $W_i = 12.6$, 505.6, and 6319.7 corresponding to the shear rates $\dot{\gamma} = 0.0001$, 0.004, and 0.05 are chosen to represent weak, intermediate and strong shear flows, respectively. The stress-strain curves, as well as the structural properties that include information of two levels, i.e., network-level and chain-level, are discussed in detail. The main conclusions of this paper are as follows: at weak shear flow, elastic deformation is first observed at the onset of shear flow, i.e., shear stress linearly depends on shear strain, followed by a novel region of strain hardening that originates from the excessive stretching of polymer chains. With a further increase in shear strain, the network begins to break, and the stress reaches its maximum and then drops rapidly. A plateau region of stress appears in the large strain limit due to the steadiness of the gel network and polymer chains. At intermediate shear flow, strain hardening disappears due to the breakage of the gel network at relatively small strains, and the plateau region in large strains is replaced by a rising region that is caused by the recovery process of the gel network. At strong shear flow, the serious rupture of the network leads the stress overshoot point to move to a very small value of strain, and a plateau region similar to that of classic polymer liquids is observed in the large strains.

For polymer gels, the association strength is a key factor that can determine both the structural and stress responses in shear flow. To precisely estimate its effect on those properties, another gel solution with an intermediate association strength of $\varepsilon = 4.0$ is studied. It is found that the association strength only quantitatively affects the stress responses and the structural properties under shear flow. Most of the reported results, including the stress rising at intermediate shear flow, as well as the corresponding evolution of network and polymer chains, such as the rupture or recovery of network and the stretching or retraction of polymer chains, are reproduced. In addition to the association strength, there are many other factors, such as chain length and solution concentration, that can affect the structural, rheological and dynamic properties of polymer gels, which will be discussed in future work.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873092, 21774127, 21790341, 21790342), the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH027) and the Jilin Provincial science and technology development program (No. 2019010311JH).

REFERENCES

1. Brassine, J.; Fustin, C. A.; Golhy, J. F. Polymer gels constructed through metal-ligand coordination. J. Inorg. Organomet. Polym. Mater. 2013, 23, 24–40.
2. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 2001, 101, 4071–4097.
3. Seiffert, S.; Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 2012, 41, 909–930.
4. Gold, B. J.; Hovelmann, C. H.; Luhmann, N.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. The microscopic origin of the rheology in supramolecular entangled polymer networks. J. Rheol. 2017, 61, 1211–1226.
5. Louhichi, A.; Jacob, A. R.; Bouteiller, L.; Vlassopoulos, D. Humidity affects the viscoelastic properties of supramolecular living polymers. J. Rheol. 2017, 61, 1173–1182.
6. Chen, Q.; Huang, C. W.; Weiss, R. A.; Colby, R. H. Viscoelasticity of reversible gelation for ionomers. Macromolecules 2015, 48, 1221–1230.
7. Noro, A.; Matsushita, Y.; Lodge, T. P. Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 2009, 42, 5802–5810.
8. Li, J. H.; Lewis, C. L.; Chen, D. L.; Anthamatten, M. Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 2011, 44, 5336–5343.
9. Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2013, 2, 694–699.
10. Li, J. H.; Viveros, J. A.; Wu, M. H.; Anthamatten, M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 2007, 19, 2851–2855.
11. Ware, T.; Hearon, K.; Lonnecker, A.; Wookey, K. L.; Maitland, D. J.; Voit, W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012, 45, 1062–1069.
12. Dong, J.; Weiss, R. A. Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 2011, 44, 8871–8879.
13. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for...
intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. 2003, 42, 4640–4643.

14 Du, Z. K.; Dong, R. F.; Ke, K.; Ren, B. Y. Multiple stimuli-responsive rheological behavior of a functionalized telechelic associative model polymer in aqueous solution. J. Rheol. 2018, 62, 1233–1243.

15 Du, Z. K.; Ren, B. Y.; Chang, X. Y.; Dong, R. F.; Tong, Z. An end-bifunctionalized hydrophobically modified ethoxylated urethane model polymer: multiple stimuli-responsive aggregation and rheology in aqueous solution. Macromolecules 2017, 50, 1688–1699.

16 Li, D.; Zhang, X. Y.; Yao, J. F.; Simon, G. P.; Wang, H. T. Stimuli-responsive polymer hydrogels as a new class of drug agent for forward osmosis desalination. Chem. Commun. 2011, 47, 1710–1712.

17 Amaral, A. J. R.; Pasparakis, G. Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym. Chem. 2017, 8, 6464–6484.

18 Chawla, P.; Srivastava, A. R.; Pandey, P.; Chawla, V. Hydrogels: a journey from diapers to gene delivery. Curr. Med. Chem. 2014, 20, 154–167.

19 Chen, Y. L.; Kushner, A. M.; Williams, G. A.; Guan, Z. B. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.

20 Cao, P. F.; Li, B. R.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K. Y.; Vogiatzis, K. D.; Wang, Y. Y.; Mays, J. W.; Sokolov, A. P.; Saito, T. Superstretchable, self-healing polymeric elastomers with tunable properties. Adv. Funct. Mater. 2018, 28, 1800741.

21 Yan, T. Z.; Schroter, K.; Herbst, F.; Binder, W. H.; Thurn-Albrecht, T. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 2016, 6, 32356.

22 Sottos, N. R.; Moore, J. S. Materials chemistry spot-on healing. Nature 2011, 472, 299–300.

23 Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

24 Schmolke, W.; Perner, N.; Seiffert, S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing. Macromolecules 2015, 48, 8781–8788.

25 Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.

26 Foyt, D. A.; Norman, M. D. A.; Yu, T. T. L.; Gentleman, E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv. Healthcare Mater. 2018, 7, 1700939.

27 Lai, S. N.; Zhou, X. Y.; Ouyang, X. F.; Zhou, H.; Liang, Y. J.; Xia, J.; Zheng, B. Artificial cells capable of long-lived protein synthesis by using aptamer grafted polymer hydrogel. ACS Synth. Biol. 2020, 9, 76–83.

28 Lee, J.; Song, B.; Subbiah, R.; Chung, J. J.; Choi, U. H.; Park, K.; Kim, S. H.; Oh, S. J. Effect of chain flexibility on cell adhesion: semi-flexible model-based analysis of cell adhesion to hydrogels. Sci. Rep. 2019, 9, 2463.

29 Indel, T.; Takimoto, J. Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers. J. Chem. Phys. 2010, 133, 194902.

30 Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 1640–1655.

31 Carrillo, J. M. Y.; Chen, W. R.; Wang, Z.; Sumpter, B. G.; Wang, Y. Chain conformation of polymer melts with associating groups. J. Phys. Chem. 2013, 3, 035007.

32 Urane, C. Telechelic polymers. J. Polym. Sci. 1960, 46, 535–539.

33 Lo Verso, F.; Likos, C. N. End-functionalized polymers: versatile building blocks for soft materials. Polymer 2008, 49, 1425–1434.

34 Watanabe, H.; Sato, T.; Otsuki, K. Concentration dependence of loop fraction in styrene-isoprene-styrene triblock copolymer solutions and corresponding changes in equilibrium elasticity. Macromolecules 2000, 33, 2545–2550.

35 Amin, D.; Likhtman, A. E.; Wang, Z. W. Dynamics in supramolecular polymer networks formed by associating telechelic chains. Macromolecules 2016, 49, 7510–7524.

36 Park, G. W.; Ianniruberto, G. A new stochastic simulation for the rheology of telechelic associating polymers. J. Rheol. 2017, 61, 1293–1305.

37 Tripathi, A.; Tam, K. C.; McKinley, G. H. Rheology and dynamics of associative polymers in shear and extension: theory and experiments. Macromolecules 2006, 39, 1981–1999.

38 Thornell, T. L.; Subramaniam, K.; Erik, K. A. The impact of damage accumulation on the kinetics of network strength recovery for a physical polymer gel subjected to shear deformation. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1693–1701.

39 Manassero, C.; Castellano, C. Evaluation of viscosity and shear stress in a telechelic polymer when various shear rates are applied. J. Polym. Res. 2014, 22, 621.

40 Li, S. J.; Chen, J. Z.; Xu, D. H.; Shi, T. F. Topological constraints of network chains in telechelic associative polymer gels. J. Chem. Phys. 2015, 143, 244902.

41 Pereyra, R. G.; Al-Maadeed, M. A.; Carignano, M. A. Modeling polymeric gels: the role of chain flexibility on the structure of physical gels. Express. Polym. Lett 2017, 11, 199–208.

42 Moghim, E.; Chubak, I.; Statt, A.; Howard, M. P.; Founta, D.; Polymeropoulos, G.; Netakis, K.; Hadjichristidis, N.; Panagiotopoulos, A. Z.; Likos, C. N.; Vlassopoulos, D. Self-organization and flow of low-functionality telechelic star polymers with varying attraction. ACS Macro Lett. 2019, 8, 766–772.

43 Green, M. S.; Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 1946, 14, 80–92.

44 Lodge, A. S. A network theory of flow birefringence and stress in concentrated polymer solutions. Trans. Faraday Soc. 1956, 52, 120–130.

45 Yamamoto, M. The visco-elastic properties of network structure 3. Normal stress effect (weissenberg effect). J. Polym. Sci. Jpn. 1958, 13, 1200–1211.

46 Tanaka, F.; Edwards, S. F. Viscoelastic properties of physically cross-linked networks 1. Nonlinear stationary viscoelasticity. J. Nonnewton Fluid Mech. 1992, 43, 247–271.

47 Tanaka, F. Thermoreversible gelation of associating polymers. Physica A 1998, 257, 245–255.

48 Semenov, A. N.; Joanny, J. F.; Khokhlov, A. R. Associating polymers—equilibrium and linear viscoelasticity. Macromolecules 1995, 28, 1066–1075.

49 Tanaka, F.; Koga, T. Nonaffine transient network theory of associating polymer solutions. Macromolecules 2006, 39, 5913–5920.

50 Sing, M. K.; Ramirez, J.; Olsen, B. D. Mechanical response of transient telechelic networks with many-part stickers. J. Chem. Phys. 2017, 147, 194902.

51 Koga, T.; Tanaka, F.; Kaneda, J.; Winnik, F. M. Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers. Langmuir 2009, 25, 8626–8638.

52 Kremer, K.; Grest, G. S.; Carmesin, I. Crossover from rouse to reptation dynamics—a molecular-dynamics simulation. Phys. Rev. Lett 1988, 61, 566–569.

53 Fu, C. L.; Sun, Z. Y.; An, L. J. Relationship between structural gel and mechanical gel for aba triblock copolymer in solutions: a
molecular dynamics simulation. J. Phys. Chem. B 2011, 115, 11345–11351.
54 Nguyenmira, M.; Mattice, W. L. Miscellization and gelation of symmetrical triblock copolymers with insoluble end blocks. Macromolecules 1995, 28, 1444–1457.
55 Rubinstein, M.; Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules 2001, 34, 1058–1068.
56 Amin, D.; Wang, Z. W. Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows. J. Rheol. 2020, 64, 581–600.
57 Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. Galamost: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013, 34, 2197–2211.
58 Zhu, Y. L.; Pan, D.; Li, Z. W.; Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y.; Sun, Z. Y. Employing multi-GPU power for molecular dynamics simulation: an extension of galamost. Mol. Phys. 2018, 116, 1065–1077.
59 Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 1–19.
60 Rapaport, D. C. A. R., Dennis, C. The art of molecular dynamics simulation. Cambridge university press, 2004.
61 Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J. Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 2007, 40, 6748–6757.
62 Auhl, D.; Ramirez, J.; Likhtman, A. E.; Chambon, P.; Fernyhough, C. Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J. Rheol. 2008, 52, 801–835.
63 Macosko, C. W. Rheology principles, measurements, and applications. Wiley-VCH, Inc., 1994.
64 Ravindranath, S.; Wang, S. Q. Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions. J. Rheol. 2008, 52, 681–695.
65 Stephanou, P. S.; Schweizer, K.; Kroger, M. Communication: appearance of undershoots in start-up shear: experimental findings captured by tumbling-snake dynamics. J. Chem. Phys. 2017, 146, 161101.
66 Ramirez-Hernandez, A.; Detcheverry, F. A.; Peters, B. L.; Chappa, V. C.; Schweizer, K. S.; Muller, M.; de Pablo, J. J. Dynamical simulations of coarse grain polymeric systems: Rouse and entangled dynamics. Macromolecules 2013, 46, 6287–6299.
67 Schweizer, K. S.; Xie, S. J. Physics of the stress overshoot and chain stretch dynamics of entangled polymer liquids under continuous startup nonlinear shear. ACS Macro Lett. 2018, 7, 218–222.
68 Cao, J.; Likhtman, A. E. Simulating startup shear of entangled polymer melts. ACS Macro Lett. 2015, 4, 1376–1381.
69 Drozdov, A. D. Finite viscoplasticity of non-affine networks: stress overshoot under shear. Continuum Mech. Thermodyn. 2004, 16, 73–95.
70 Erk, K. A.; Shull, K. R. Rate-dependent stiffening and strain localization in physically associating solutions. Macromolecules 2011, 44, 932–939.
71 Serero, Y.; Jacobsen, V.; Berret, J. F.; May, R. Evidence of nonlinear chain stretching in the rheology of transient networks. Macromolecules 2000, 33, 1841–1847.
72 Berret, J. F.; Serero, Y. Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys. Rev. Lett. 2001, 87, 048303.
73 Thornell, T. L.; Helfrech, B. A.; Mullen, S. A.; Bawiskar, A.; Erk, K. A. Fracture-healing kinetics of thermoreversible physical gels quantified by shear rheophysical experiments. ACS Macro Lett. 2014, 3, 1069–1073.
74 Snijkers, F.; Vlassopoulos, D. Cone-partitioned-plate geometry for the ares rheometer with temperature control. J. Rheol. 2011, 55, 1167–1186.
75 Costanzo, S.; Huang, Q.; Ianniruberto, G.; Marrucci, G.; Hassager, O.; Vlassopoulos, D. Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 2016, 49, 3925–3933.
76 Xie, S. J.; Schweizer, K. S. Consequences of delayed chain retraction on the rheology and stretch dynamics of entangled polymer liquids under continuous nonlinear shear deformation. Macromolecules 2018, 51, 4185–4200.

https://doi.org/10.1007/s10118-020-2487-6