NONREGULAR IDEALS

MONROE ESKEW

Abstract. Most of the regularity properties of ideals introduced by Taylor are equivalent at successor cardinals. For \(\kappa = \mu^+ \) with \(\cf(\mu) \) uncountable, we can rid the universe of dense ideals on \(P_\kappa(\lambda) \) for while preserving nonregular ideals on the same set.

An ideal on a set \(X \) is a collection of subsets of \(X \) closed under taking subsets and pairwise unions. If \(\kappa \) is a cardinal, an ideal \(I \) is called \(\kappa \)-complete if it is also closed under unions of size less than \(\kappa \). An ideal \(I \) on \(X \) gives a notion of a “negligible” subset of \(X \), and members of \(I \) are called \(I \)-measure-zero. Subsets of \(X \) which are not in \(I \) are called \(I \)-positive, and the collection of these is typically denoted by \(I^+ \). The dual filter to \(I \), the collection of all complements of members of \(I \), constitutes the collection \(I \)-measure-one sets and will be denoted by \(I^* \). If an ideal \(I \) renders every subset of \(X \) either measure zero or measure one, then its dual filter is called an ultrafilter.

The notion of regularity of ultrafilters was introduced by Keisler \[10\] and has had many applications in set theory and model theory \[3\]. An ultrafilter \(U \) is called \((\alpha, \beta)\)-regular when there is a sequence of sets \(\langle A_i : i < \beta \rangle \subseteq U \) such that for all \(z \subseteq \beta \) of ordertype \(\alpha \), \(\bigcap_{i \in z} A_i = \emptyset \). Taylor \[12\] generalized this notion to arbitrary filters (or equivalently, ideals), defining an ideal \(I \) to be \((\alpha, \beta)\)-regular when for every sequence \(\langle A_i : i < \beta \rangle \subseteq I^+ \), there is a refinement \(\langle B_i : i < \beta \rangle \subseteq I^+ \), which means \(B_i \subseteq A_i \) for each \(i \), such that for all \(z \subseteq \beta \) of ordertype \(\alpha \), \(\bigcap_{i \in z} B_i = \emptyset \).

An ideal on a cardinal \(\kappa \) is called simply regular when it is \((\omega, \kappa)\)-regular. Taylor showed some connections between regularity properties of ideals and the structure of their associated quotient boolean algebras, most notably the following:

Theorem 0 (Taylor). A countably complete ideal \(I \) on \(\omega_1 \) is nonregular iff there is a set \(A \in I^+ \) such that \(\mathcal{P}(A)/I \) contains a dense set of size \(\omega_1 \).

Taylor also discussed degrees of regularity indexed by three ordinals. An ideal \(I \) is said to be \((\alpha, \beta, \gamma)\)-regular when for every sequence \(\langle A_i : i < \gamma \rangle \subseteq I^+ \), there is a refinement \(\langle B_i : i < \gamma \rangle \subseteq I^+ \) such that for every \(x \subseteq \gamma \) of ordertype \(\beta \), \(|\bigcap_{i \in x} B_i| \leq \alpha \).

We note the following easy relations between the regularity properties:

1. If \(\alpha_0 < \alpha_1 \), then \((\alpha_0, \beta, \gamma)\)-regularity implies \((\alpha_1, \beta, \gamma)\)-regularity.
2. If \(\beta_0 < \beta_1 \), then \((\alpha, \beta_0, \gamma)\)-regularity implies \((\alpha, \beta_1, \gamma)\)-regularity.
3. If \(\gamma_0 < \gamma_1 \), then \((\alpha, \beta, \gamma_1)\)-regularity implies \((\alpha, \beta, \gamma_0)\)-regularity.
Taylor [12] showed that if I is a κ-complete ideal on a regular cardinal κ, then I is (ω, κ)-regular iff it is $(2, \kappa)$-regular. The latter is known as the disjoint refinement property or Fodor’s property [1]. In [5], the author showed that under GCH, many more degrees of regularity are equivalent for κ-complete ideals on κ, where κ is the successor of a regular cardinal, and this was used to examine the relationship between regularity and density of ideals on cardinals above ω_1. In this paper as elsewhere, we only consider degrees of regularity of ideals on κ for which the last index in the degree is at most κ. Under this restriction, we show that without any assumptions, there are only two possible flavors of two-variable regularity:

Theorem 1. Suppose μ is an infinite cardinal, $\kappa = \mu^+$, and I is a κ-complete ideal on κ. Then I is $(\text{cf}(\mu) + 1, \kappa)$-regular, $(1, \text{cf}(\mu), \kappa)$-regular, and $(2, \delta)$-regular when $\delta < \kappa$. If I is $(\text{cf}(\mu), \kappa)$-regular, then I is $(2, \kappa)$-regular. Furthermore, if I is (α, β, κ)-regular for some $\alpha, \beta < \kappa$ such that $\mu^\beta = \mu$, then I is $(2, \kappa)$-regular.

We show similar results for κ-complete normal ideals on $\mathcal{P}_\kappa(\lambda)$. We will say a normal ideal on $Z \subseteq \mathcal{P}(\lambda)$ is simply regular when it is $(2, \lambda)$-regular.

It is easy to see that if a λ-dense normal ideal on $\mathcal{P}(\lambda)$ is nonregular, Taylor’s theorem uses a result of Baumgartner-Hajnal-Máté [1], who showed that if a countably complete ideal on ω_1 is nowhere ω_1-dense, then it has the disjoint refinement property. This generalizes to normal ideals I on $Z \subseteq \mathcal{P}_\kappa(\lambda)$ for κ a successor cardinal, with an additional assumption about the quotient boolean algebra $\mathcal{P}(Z)/I$ that is trivially satisfied for $\kappa = \omega_1$ (see [5]). However, it is possible to separate density and nonregularity above ω_1:

Theorem 2. Suppose $\kappa = \mu^+$, $\omega_1 \leq \text{cf}(\mu)$, $\kappa \leq \lambda$, and there is a nonregular, κ-complete, normal ideal on $\mathcal{P}_\kappa(\lambda)$. There is a cardinal-preserving forcing extension that also has such an ideal, but in which there are no λ-dense, κ-complete, normal ideals on $\mathcal{P}_\kappa(\lambda)$.

By results in [5], the existence of a λ-dense, κ-complete, normal ideal on $\mathcal{P}_\kappa(\lambda)$, where $\kappa = \mu^+$, is consistent relative to an almost-huge cardinal, for any choice of regular μ and λ.

1. **The regularity dichotomy**

This section is devoted to a proof of Theorem 1. We will prove some more general facts about the regularity of normal ideals on $\mathcal{P}(\lambda)$ and show how they imply the desired results about κ-complete ideals on successor cardinals κ.

Our notations are mostly standard. By $\mathcal{P}_\kappa(\lambda)$ we mean $\{z \subseteq \lambda : |z| < \kappa\}$. If x is a set of ordinals, then $\text{ot}(x)$ denotes its ordertype.

The following facts can be found in [7]. Recall that an ideal I on $Z \subseteq \mathcal{P}(X)$ is normal when for all $x \in X$, $\hat{x} := \{z \in Z : x \in z\} \in I^*$, and for all sequences $(A_x : x \in X) \subseteq I$, the diagonal union $\nabla_{x \in X} A_x := \bigcup_{x \in X} (A_x \cap \hat{x}) \in I$. This is equivalent to the statement that for every $A \in I^+$ and every $f : A \rightarrow X$ such that $f(z) \in z$ for all $z \in A$, there is $B \in I^+$ such that f is constant on B.

The smallest normal ideal on a set Z is the nonstationary ideal on Z, which is the dual ideal to the club filter (closed-unbounded filter) generated by sets of the form $\{z \in Z : f[z < \omega] \subseteq z\}$, where f is a function $X^{<\omega} \rightarrow X$. As the name suggests,
positive sets for the nonstationary ideal are called \emph{stationary}. Consequently, if there is a (proper) normal ideal on \(Z \subseteq \mathcal{P}(X) \), then \(Z \) is stationary.

A normal ideal \(I \) on \(Z \subseteq \mathcal{P}(X) \) is \emph{\(\delta \)-saturated} for a cardinal \(\delta \) if there is no sequence \(\langle A_\alpha : \alpha < \delta \rangle \) such that \(A_\alpha \cap A_\beta \in I \) for \(\alpha < \beta \), and simply \emph{saturated} if it is \(|X|^+ \)-saturated. If \(I \) is saturated, then \(\mathcal{P}(Z)/I \) is a complete boolean algebra, with suprema given by diagonal unions. If \(\langle A_x : x \in X \rangle \) is an antichain, then we can use normality to refine it to a pairwise disjoint sequence of \(I \)-positive sets by replacing \(A_x \) with \(A_x \cap \hat{x} \setminus \bigcup_{y \neq x} (A_y \cap \hat{y}) \).

The idea behind the following lemma is taken from \cite{1}.

\textbf{Lemma 3.} Suppose \(I \) is a normal ideal on \(\mathcal{P}(\lambda) \) and \(\delta \leq \lambda \). If there is no \(A \in \mathcal{P}(\lambda) \) such that \(I \upharpoonright A \) is \(\delta \)-saturated, then \(I \) is \((2, \delta) \)-regular.

\textit{Proof.} Let \(\langle A_\alpha : \alpha < \delta \rangle \subseteq I^+ \), and for each \(A_\alpha \), choose a sequence of \(I \)-positive sets \(\langle B^\beta_\alpha : \beta < \delta^+ \rangle \) such that each \(B^\beta_\alpha \subseteq A_\alpha \) and \(B^\beta_\alpha \cap B^{\beta'}_\alpha \in I \) when \(\beta < \beta' < \delta^+ \). For each \(\alpha < \delta \), let \(f(\alpha) \leq \alpha \) be the minimal ordinal such that \(|\{ \beta : A_\alpha \cap B^\beta_\alpha \cap f(\alpha) \in I^+ \}| = \delta^+ \). We can find \(\xi < \delta^+ \) such that for all \(\alpha < \delta \), all \(\alpha' < f(\alpha) \), and all \(\beta \geq \xi \), \(A_\alpha \cap B^\beta_{\alpha'} \in I \).

Recursively choose a refinement \(\langle C_\alpha : \alpha < \delta \rangle \) of \(\langle A_\alpha : \alpha < \delta \rangle \) and an increasing sequence of ordinals \(\langle \beta_\alpha : \alpha < \delta \rangle \) as follows. Let \(C_0 = B^0_0 \) and \(\beta_0 = \xi \). Given \(\langle C_\alpha' : \alpha' < \alpha \rangle \), let \(C_\alpha \) be an \(I \)-positive set of the form \(A_\alpha \cap B^{\beta_\alpha}_{f(\alpha)} \), where \(\beta_\alpha \geq \sup_{\alpha' < \alpha} (\beta_{\alpha'} + 1) \). Note that whenever \(\alpha \neq \alpha' \) are less than \(\delta \), it is ensured that \(C_\alpha \cap C_{\alpha'} \in I \). This is because if \(f(\alpha) = f(\alpha') = \eta \), then \(B^\beta_{\eta'} \cap B^\beta_{\eta'} \in I \) by construction, and if \(f(\alpha) < f(\alpha') \), then \(B^\beta_{f(\alpha)} \cap A_{\alpha'} \in I \).

Finally, we refine \(\langle C_\alpha : \alpha < \delta \rangle \), to a pairwise disjoint sequence \(\langle D_\alpha : \alpha < \delta \rangle \) by putting \(D_\alpha = C_\alpha \cap \hat{\alpha} \setminus \bigcup_{\alpha' \neq \alpha} (C_{\alpha'} \cap \hat{\alpha'}) \).

The following lemma contains the key combinatorial idea of this section: constructing a full disjoint refinement from a collection of partial ones under certain assumptions.

\textbf{Lemma 4.} Suppose \(I \) is a normal ideal on \(\mathcal{P}(\lambda) \), \(\mu \) is a cardinal such that \(\{ \alpha : \mathop{\text{cf}}(\sup z) \geq \mu \} \subseteq \mathcal{P}(\lambda) \), and for all \(A \in \mathcal{P}(\lambda) \) and \(\delta < \lambda \), \(I \upharpoonright A \) is not \(\delta^+ \)-saturated. If \(I \) is \((\mu, \lambda) \)-regular, then \(I \) is regular.

\textit{Proof.} Let \(\langle A_\alpha : \alpha < \lambda \rangle \subseteq I^+ \). We may assume that for all \(\alpha < \lambda \) and all \(z \in A_\alpha \), \(\mathop{\text{cf}}(\sup z) \geq \mu \) and \(\alpha \in z \). Let \(\langle B_\alpha : \alpha < \lambda \rangle \subseteq I^+ \) be such that \(B_\alpha \subseteq A_\alpha \) for all \(\alpha \), and for all \(z \), \(s(z) := \{ \alpha : z \in B_\alpha \} \) has size \(< \mu \). Note that \(s(z) \subseteq z \). For all \(z \in \bigcup_{\alpha < \lambda} B_\alpha \), let \(f(z) \in z \) be such that \(s(z) \subseteq f(z) \). By normality, for all \(\alpha \), there is an \(I \)-positive \(C_\alpha \subseteq B_\alpha \) on which \(f \) is constant. Let \(g(\alpha) \) be this constant value, and note that \(g(\alpha) > \alpha \).

For each \(\alpha < \lambda \), choose a pairwise disjoint refinement \(\langle D^\alpha_\beta : \beta < \alpha \rangle \subseteq I^+ \) of \(\langle C_\beta : \beta < \alpha \rangle \), using Lemma 3. Then let \(E_{\alpha_0} = D^\alpha_{\alpha_0}(\alpha) \). If \(g(\alpha_0) = g(\alpha_1) \), then \(E_{\alpha_0} \cap E_{\alpha_1} = \emptyset \) by construction. If \(g(\alpha_0) \neq g(\alpha_1) \), then \(E_{\alpha_0} \cap E_{\alpha_1} = \emptyset \), since for \(i < 2 \) and \(z \in E_{\alpha_i} \), \(f(z) = g(\alpha_i) \).

\textbf{Lemma 5.} Suppose \(I \) is a normal ideal on \(\mathcal{P}(\lambda) \), \(\mu \) is a cardinal such that \(\{ \alpha : \mathop{\text{cf}}(\sup z) = \mu \} \subseteq \mathcal{P}(\lambda) \), and \(\lambda \) is regular. Then \(I \) is \((\mathop{\text{cf}}(\mu) + 1, \lambda) \)-regular. If the function \(z \mapsto \sup z \) is \(\leq \delta \) to one on a set in \(I^* \), then \(I \) is \((\delta, \mathop{\text{cf}}(\mu), \lambda) \)-regular.
Proof. Let \(\langle A_i : i < \lambda \rangle \subseteq I^+ \). Let \(Z = \{ z \subseteq \lambda : \text{cf}(\sup z) = \mu \} \). For each \(z \in Z \), let \(c_z \subseteq z \) be a cofinal subset of ordertype \(\text{cf}(\mu) \). By induction, we build an increasing sequence \(\langle i < \lambda \rangle \subseteq \lambda \) and a refinement \(\langle B_i : i < \lambda \rangle \subseteq I^+ \) of \(\langle A_i : i < \lambda \rangle \) as follows. Given \(\langle i < j \rangle, \sup z > \sup_{i < j} \alpha_i \) for \(I \)-almost all \(z \in A_j \). For such \(z \), let \(\sup_{i < j} \alpha_i < \alpha_j(z) \in c_z \). Let \(B_j \subseteq A_j \) be an \(I \)-positive set on which the function \(z \mapsto \alpha_j(z) \) is constant, and let \(\alpha_j \) be this constant value. For each \(z \), let \(s(z) = \{ i < \lambda : z \in B_i \} \). Note that \(z \in B_i \) implies \(\alpha_i \in c_z \), so \(\sup(s(z)) \leq \text{cf}(\mu) \). Also, if \(\sup(s(z)) = \text{cf}(\mu) \), then \(s(z) \) is cofinal in \(c_z \) and thus in \(z \). Thus, if \(z \mapsto \sup z \) is \(\leq \delta \) to one on a set in \(I^* \), then we may take the sequence \(\langle B_i : i < \lambda \rangle \) such that \(|\{ i \in X : B_i \}| \leq \delta \) whenever \(\sup x = \mu \).

The following result was independently observed by Burke-Matsubara \([2] \) and Foreman-Magidor \([3] \). Its proof uses deep results of Shelah \([11] \) and Cummings \([4] \).

Lemma 6. Suppose \(I \) is a normal saturated ideal on \(\mathcal{P}(\lambda) \). Then \(\{ z : \text{cf}(\sup z) = \text{cf}(\|z\|) \} \subseteq I^* \).

The following basic fact can be proved in multiple ways, for example via Ulam matrices or via generic ultrapowers (see \([6] \)).

Lemma 7. If \(\kappa \) is a successor cardinal, then no \(\kappa \)-complete ideal on \(\kappa \) is \(\kappa \)-saturated, and no \(\kappa \)-complete normal ideal on \(\mathcal{P}_\kappa(\lambda) \) is \(\lambda \)-saturated.

Theorem 8. Suppose \(\kappa = \mu^+ \) and \(I \) is a \(\kappa \)-complete normal ideal on \(\mathcal{P}_\kappa(\lambda) \). If \(I \) is \((\text{cf}(\mu), \lambda) \)-regular, then \(I \) is regular. If \(\lambda \) is regular, then \(I \) is \((\text{cf}(\mu) + 1, \lambda) \)-regular.

Proof. Let \(\langle A_\alpha : \alpha < \lambda \rangle \subseteq I^+ \). We first separate the saturated and non-saturated parts. We choose an initial refinement by putting \(B_\alpha = A_\alpha \) if there is no \(B \subseteq A_\alpha \) such that \(I \upharpoonright B \) is saturated, and otherwise choose \(B_\alpha \subseteq A_\alpha \) such that \(I \upharpoonright B_\alpha \) is saturated. Let \(Y_0 \) be the ordinals below \(\lambda \) falling into the first case, and \(Y_1 \) those falling into the second. Note that whenever \(\alpha \in Y_0 \) and \(\beta \in Y_1 \), we have \(B_\alpha \cap B_\beta \subseteq I^+ \).

As in the proof of Lemma \([3] \), we may refine to a sequence \(\langle C_\alpha : \alpha < \lambda \rangle \) such that \(C_\alpha \cap C_\beta = \emptyset \) whenever at least one of \(\alpha, \beta \) is in \(Y_0 \). If we put \(C = \bigcup_{\alpha \in Y_1} C_\alpha \), then \(I \upharpoonright C \) is saturated, since if \(\langle D_\alpha : \alpha < \lambda^+ \rangle \) is an antichain in \(\mathcal{P}(C)/I \), then for some \(\beta < \lambda \), there are \(\lambda^+ \)-many \(\alpha \) such that \(C_\beta \cap D_\alpha \subseteq I^+ \).

We may assume \(\text{cf}(\sup z) = \text{cf}(\mu) \) for all \(z \in C \). Since \(I \upharpoonright A \) is not \(\lambda \)-saturated for any \(A \subseteq I^+ \), Lemma \([1] \) implies that if \(I \) is \((\text{cf}(\mu), \lambda) \)-regular, then there is a disjoint refinement of \(\langle C_\alpha : \alpha \in Y_1 \rangle \) into \(I \)-positive sets \(\langle D_\alpha : \alpha \in Y_1 \rangle \). Putting this together with \(\langle C_\alpha : \alpha \in Y_0 \rangle \), we have a disjoint refinement of the original sequence into \(I \)-positive sets.

If \(\lambda \) is regular, then by Lemma \([5] \) there is a refinement \(\langle E_\alpha : \alpha \in Y_1 \rangle \subseteq I^+ \) of \(\langle C_\alpha : \alpha \in Y_1 \rangle \) such that \(\bigcap_{\alpha \in Y} E_\alpha = \emptyset \) whenever \(\sup(x) > \text{cf}(\mu) \), showing that \(I \) is \((\text{cf}(\mu) + 1, \lambda) \)-regular.

In order to prove Theorem \([11] \) we use some results from \([12] \) which allow a reduction to normal ideals:

Lemma 9 (Taylor). Let \(I \) be a \(\kappa \)-complete ideal on \(\kappa \).

1. Suppose every sequence \(\langle A_i : i < \kappa \rangle \subseteq I^+ \) has a refinement \(\langle B_i : i < \kappa \rangle \subseteq I^+ \) such that \(I \upharpoonright B_i \) is \((\alpha, \beta, \kappa) \)-regular for each \(i \). Then \(I \) is \((\alpha, \beta, \kappa) \)-regular.

2. If \(\kappa = \mu^+ \) and \(I \) is \(\kappa^+ \)-saturated, then there is \(A \subseteq I^+ \) and a bijection \(f : \kappa \to \kappa \) such that \(\{ f[X] : X \subseteq I \upharpoonright A \} \) is a normal ideal on \(\kappa \).
Let I be a κ-complete ideal on $\kappa = \mu^+$. Then by Lemmas 3 and 7, I is $(2, \delta)$ regular for $\delta < \kappa$. For the other regularity properties, let $(A_\alpha : \alpha < \kappa) \subseteq I^+$. Let $B_\alpha \subseteq A_\alpha$, be an I-positive set such that $I \upharpoonright B_\alpha$ is κ^+-saturated if there is such a B_α. In such a case, part (2) of Lemma 9 implies that we can find an I-positive $C_\alpha \subseteq B_\alpha$ such that $I \upharpoonright C_\alpha$ is isomorphic to a normal ideal. By Lemmas 5 and 9, $I \upharpoonright C_\alpha$ is $(\text{cf}(\mu) + 1, \kappa)$-regular and $(1, \text{cf}(\mu), \kappa)$-regular whenever C_α is defined. If C_α is undefined, then $I \upharpoonright A_\alpha$ is regular by Lemma 8. Part (1) of Lemma 9 then gives that I is $(\text{cf}(\mu) + 1, \kappa)$-regular and $(1, \text{cf}(\mu), \kappa)$-regular. If I is $(\text{cf}(\mu), \kappa)$-regular, then so is each $I \upharpoonright C_\alpha$ when C_α is defined, and thus $I \upharpoonright C_\alpha$ is regular by Theorem 8. Again by part (1) of Lemma 9 I is regular in this case. This concludes the proof of the part Theorem 3 that assumes no cardinal arithmetic.

To show that “furthermore” part of Theorem 3 we introduce an extension of Taylor’s three-variable notion of regularity. Let us say an ideal I is $(\text{cf}(\mu), \alpha, \beta)$-regular if every sequence $(\langle A_i : i < \beta \rangle \subseteq I^+$ has a refinement $(B_i : i < \beta) \subseteq I^+$ such that $\bigcap_{i \in x} B_i \in I$ whenever $\text{ot}(x) \geq \alpha$. If I is a κ-complete ideal on κ, then $(I, \alpha, \beta, \kappa)$-regularity is a weakening of (α, β, κ)-regularity for every $\alpha < \kappa$.

Lemma 10. Suppose $\kappa = \mu^+$ and I is a κ-complete ideal on κ. If I is $(I, \alpha, \beta, \kappa)$-regular, where $\mu^{\mu^X} = \mu$, then I is regular.

Proof. Let $(\langle A_\alpha : \alpha < \kappa \rangle \subseteq I^+$, and let $(\langle B_\alpha : \alpha < \kappa \rangle \subseteq I^+$ be a refinement such that $B_\alpha \subseteq \hat{\alpha}$ for all α, and $\bigcap\{B_\alpha : \alpha \in I\}$ whenever $\text{ot}(x) \geq \xi$. For every $\alpha < \kappa$ we can define an I-positive $C_\alpha \subseteq B_\alpha$ by

$$C_\alpha = B_\alpha \setminus \bigcup_{x \in [\alpha]^\xi} \bigcap_{\beta \in x} B_\beta.$$

If x is a subset of κ of ordertype $\xi + 1$, then let $\alpha = \text{max}(x)$. If $\beta \in C_\alpha$, then $\beta \notin \bigcap_{\gamma \in x'\alpha} C_\gamma$. This shows I is $(\xi + 1, \kappa)$-regular and therefore regular by the first part of Theorem 3. \square

2. Consistency results

This section is devoted to a proof of Theorem 2. If $V \subseteq W$ are models of set theory and $I \subseteq V$ is an ideal, then in W we can generate an ideal \check{I} from I by taking all sets which are covered by a set from I. Let us first show the preservation of nonregular ideals by forcings with a strong enough chain condition, as a consequence of Theorem 8.

Lemma 11. Suppose $\kappa = \mu^+$, $\lambda \geq \kappa$, and I is a nonregular, κ-complete, normal ideal on $Z \subseteq P_\kappa(\lambda)$. If \mathbb{P} is c.c.c., then in $V^{\mathbb{P}}$, the ideal \check{I} generated by I is nonregular.

Proof. Let $(\langle A_\alpha : \alpha < \lambda \rangle \subseteq I^+$ in V. If $p \Vdash \check{I}$ is regular, then there is a \mathbb{P}-name for a refinement $(\check{B}_\alpha : \alpha < \lambda)$ such that each $z \in Z$ is forced by p to be in at most one B_α. In V, for each α let $C_\alpha = \{z \in A_\alpha : (\exists q \leq p)q \Vdash z \in B_\alpha\}$. Since $p \Vdash \check{B}_\alpha \subseteq \check{C}_\alpha$, each C_α is I-positive. By the chain condition, for each z, the set $s(z) := \{\alpha : (\exists q \leq p)q \Vdash z \in B_\alpha\} = \{\alpha : z \in C_\alpha\}$ has size $< \text{cf}(\mu)$. This shows that I is $(\text{cf}(\mu), \lambda)$-regular in V, and thus regular by Theorem 8. \square

If \check{I} is a κ-complete normal ideal and \mathbb{P} is a κ-c.c. forcing, then it is easy to show that the ideal generated by I is also κ-complete and normal in $V^{\mathbb{P}}$. If I is saturated, then Foreman’s Duality Theorem 7 allows us to say much more. This is
connected to the forcing properties of the quotient algebra and generic elementary embeddings.

The following facts can be found in \([6]\). If \(I \) is an ideal on \(Z \) and \(G \subseteq \mathcal{P}(Z)/I \) is generic, then in \(V[G] \), we can form the ultrapower embedding \(j: V \to V^Z/G \). If \(Z \subseteq \mathcal{P}(\lambda) \) and \(I \) is normal, then the pointwise image of \(\lambda \) under \(j \) is represented in the ultrapower by the identity function on \(Z \), i.e., \([\text{id}]_G = j[\lambda] \). If \(I \) is \(\kappa \)-complete, \(\kappa = \mu^+ \), and \(Z \subseteq \mathcal{P}_\kappa(\lambda) \), then \(\kappa \) is the critical point of \(j \), and \(V^Z/G \models |j[\lambda]| < j(\kappa) \). Consequently, \(V[G] \models |\lambda| = |\mu| \). This implies that there is no condition \(A \in I^+ \) such that \(I \upharpoonright A \) is \(\lambda \)-saturated. Thus in this context, \(I \) being saturated is the same as \(\mathcal{P}(Z)/I \) having the best possible chain condition. If this occurs, then \(I \) is \(\textit{precipitous} \), meaning that whenever \(G \subseteq \mathcal{P}(Z)/I \) is generic, \(V^Z/G \) is well-founded and thus isomorphic to a transitive class \(M \subseteq V[G] \).

Theorem 12 (Foreman \([7]\)). Suppose \(I \) is a \(\kappa \)-complete precipitous ideal on \(Z \), and \(\mathbb{P} \) is a \(\kappa \)-c.c. forcing. In \(V^\mathbb{P} \), let \(\tilde{I} \) denote the ideal generated by \(I \), and let \(j \) denote a generic ultrapower embedding obtained from forcing with \(\mathcal{P}(Z)/I \). Then there is an isomorphism

\[
\iota: B(\mathbb{P} \ast \mathcal{P}(\tilde{Z})/\tilde{I}) \cong B(\mathcal{P}(Z)/I \ast j(\mathbb{P}))
\]

given by \(\iota(p, \tilde{A}) = ||\text{id}|| \in j(\tilde{A})|| \wedge (1, j(\tilde{p})) \).

The next proposition shows the relevance of the cardinal arithmetic assumption in Lemma \([6]\). For example, we can produce a model in which CH fails and there is a nonregular ideal \(I \) on \(\omega_2 \) which is \((I, \omega, \omega_2)-\text{regular} \).

Proposition 13. Suppose \(\kappa = \mu^+ \), \(\nu \leq \mu \) is such that \(\nu^{\kappa \nu} = \nu \), and \(I \) is a saturated, nonregular, \(\kappa \)-complete ideal on \(\kappa \). If \(G \subseteq \text{Add}(\nu, \kappa) \) is generic, then in \(V[G] \), \(I \) is \((I, \nu, \kappa)-\text{regular} \).

Proof. Add(\(\nu, \kappa \)) is \(\nu^{\kappa \text{c.c.}} \). By Theorem \([12]\) in \(V[G] \), there is an isomorphism \(\sigma: \mathcal{P}(\kappa)/I \cong B(\mathcal{P}(\kappa)^V/I \times \text{Add}(\nu, \kappa^+)) \). If \((A_\alpha: \alpha < \kappa) \subseteq \tilde{I}^+ \), choose for each \(\alpha \) some \((B_\alpha, p_\alpha) \leq \sigma(A_\alpha) \). Let \(\beta < \kappa^+ \) be such that \(\text{dom} \ p_\alpha \subseteq \beta \times \nu \) for all \(\alpha \). Let \(q_\alpha = \{((\beta + \alpha, 0), 0)\} \) for \(\alpha < \kappa \), and choose \(C_\alpha \leq \sigma^{-1}(B_\alpha, p_\alpha \wedge q_\alpha) \). The intersection of any \(\nu \)-many \(C_\alpha \) is in \(I \), since there is no lower bound to \(\nu \)-many \(q_\alpha \).

Lemma 14. Suppose \(I \) is a normal ideal on \(Z \subseteq \mathcal{P}(X) \). Then \(I \) is \(|X|^+ \)-saturated iff every normal \(J \supseteq I \) is equal to \(I \upharpoonright A \) for some \(A \subseteq Z \).

Proof. Suppose \(I \) is \(|X|^+ \)-saturated. Let \(\{A_x: x \in X\} \) be a maximal antichain in \(J \cap I^+ \). Then \(\nabla A_x \) is the \(\delta \)-largest element of \(J \cap I^+ \), so \(J = I \upharpoonright (Z \setminus \nabla A_x) \). Now suppose \(I \) is not \(|X|^+ \)-saturated, and let \(\{A_\alpha: \alpha < \delta\} \) be a maximal antichain such that \(\delta \geq |X|^+ \). Let \(J \) be the ideal generated by \(\bigcup\{\Sigma_\alpha \in Y | A_\alpha| Y \in \mathcal{P}(X)^{\langle \delta \rangle}\} \). Then \(J \) is a proper normal ideal extending \(I \). \(J \) cannot be equal \(I \upharpoonright A \) for some \(A \in I^+ \) because if this were so, there would some \(\alpha \) such that \(A \cap A_\alpha \in I^+ \). \(A \cap A_\alpha \in J \) by construction, but every \(I \)-positive subset of \(A \) is \((I \upharpoonright A) \)-positive.

A partial order is said to be \(\kappa \)-dense if it has a dense subset of size \(\leq \kappa \). It is said to be \(\textit{nowhere} \kappa \)-dense if it is not \(\kappa \)-dense below any condition. An ideal is said to be \(\lambda \)-dense or nowhere \(\lambda \)-dense when its associated boolean algebra has these properties.
Lemma 15. Suppose $\kappa = \mu^+$, $\nu \leq \mu$ is such that $\nu^\nu = \nu$, and $Z \subseteq \mathcal{P}_\kappa(\lambda)$ is stationary. Let $\mathbb{P} = \text{Add}(\nu, \theta)$ for some $\theta \geq \kappa$. Then in $V^\mathbb{P}$, there are no normal, κ-complete, λ-dense ideals on Z.

Proof. Suppose $p \Vdash \dot{J}$ is a κ-complete, λ^+-saturated, normal ideal on Z. Let $I = \{X \subseteq Z : p \Vdash X \in \dot{J}\}$. It is easy to check that I is normal and κ-complete.

The map $\sigma : \mathcal{P}(Z)/I \to \mathcal{B}(\mathbb{P} \upharpoonright p \ast \mathcal{P}(Z)/\dot{J})$ that sends X to $(||X \in \dot{J}||, [X]_\dot{J})$ is an order-preserving and antichain-preserving map, so I is λ^+-saturated.

Let H be \mathbb{P}-generic over V with $p \in H$. Since \mathbb{P} is κ-c.c., I remains normal. By Theorem 12, the map $e : q \mapsto (1, j(q))$ is a regular embedding of \mathbb{P} into $\mathcal{P}(Z)/I \ast j(\mathcal{P})$. Thus in $V[H]$, $\mathcal{P}(Z)/\dot{I} \cong \mathcal{P}^V(Z)/I \ast \text{Add}(\nu, \dot{\eta})$, where $\Vdash \dot{\eta} = \text{ot}(j(\theta) \upharpoonright j(\theta))$. Since $j(\kappa) = \lambda^+$, $\Vdash \dot{\eta} \geq \lambda^+$.

\dot{I} is normal and λ^+-saturated, and $\dot{I} \subseteq J$. By Lemma 14 there is $A \subseteq \dot{I}^+$ such that $J = \dot{I} \upharpoonright A$. Since $\text{Add}(\nu, \eta)$ is nowhere λ-dense, $\mathcal{P}(Z)/\dot{I}$ is nowhere λ-dense. Thus J is not λ-dense.

Thus we may rid the universe of dense ideals that concentrate on $\mathcal{P}_\kappa(\lambda)^V$. This finishes the job if $\kappa = \lambda$, but not necessarily in other cases. For example, Gitik showed [3] that if $V \subseteq W$ are models of set theory, $\kappa < \lambda$ are regular in W, and there is a real number in $W \setminus V$, then $\mathcal{P}_\kappa(\lambda)^W \setminus \mathcal{P}_\kappa(\lambda)^V$ is stationary. In order to take care of such problems, we use some arguments of Laver and Hajnal-Juhasz that are reproduced in [6].

The notation \[\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \gamma \\ \delta \end{pmatrix} \] stands for the assertion that for every $f : \alpha \times \beta \rightarrow \eta$, there is $A \in [\alpha]^{\gamma}$ and $B \in [\beta]^\delta$ such that f is constant on $A \times B$. As usual with arrow notations, if ordinals on the left side are increased and ordinals on the right side are decreased, then we get a weaker statement.

Lemma 16. Suppose there is a λ-dense, κ-complete, normal ideal I on $\mathcal{P}_\kappa(\lambda)$ such that every I-positive set has cardinality $\geq \eta$. Then for $\mu, \nu < \kappa$,

\[\begin{pmatrix} \lambda^+ \\ \lambda < \kappa \end{pmatrix} \rightarrow \begin{pmatrix} \mu \\ \eta \end{pmatrix}^\nu. \]

Proof. Let $\theta = \lambda^{<\kappa}$, and enumerate $\mathcal{P}_\kappa(\lambda)$ as $\langle z_\alpha : \alpha < \theta \rangle$. Let $f : \lambda^+ \times \theta \rightarrow \nu$. By κ-completeness, for each $\alpha < \lambda^+$, there is $\gamma < \nu$ such that $X_\alpha := \{\beta : f(\alpha, \beta) = \gamma\} \in I^+$. By λ-density, there is a set $S \subseteq [\lambda^+]^{\lambda^+}$, a set $D \subseteq I^+$, and a $\gamma^* < \nu$ such that for all $\alpha \in S$, $D \subseteq I_X \alpha$ and $f(\alpha, \beta) = \gamma^*$ for $z_\beta \in X_\alpha$. Let $A \subseteq S$ have size μ. Since $\bigcap_{\alpha \in A} X_\alpha$ is I-positive, there is a set $B \subseteq \theta$ of size $\geq \eta$ such that for all $\alpha \in A$ and all $\beta \in B$, $f(\alpha, \beta) = \gamma^*$.

Lemma 17. Suppose θ is regular and $\mu < \theta$ is such that $\mu^{<\mu} = \mu$. If $G \subseteq \text{Add}(\mu, \theta)$ is generic, then in $V[G]$,

\[\begin{pmatrix} \theta^+ \\ \theta \end{pmatrix} \rightarrow \begin{pmatrix} \mu \\ \theta \end{pmatrix}^2. \]

Proof. In V, choose an almost-disjoint family $\{X_\alpha : \alpha < \theta^+\} \subseteq \mathcal{P}(\theta)$, and for each α, let $\langle \gamma^*_\alpha \beta : \beta < \theta \rangle$ enumerate X_α in increasing order. In $V[G]$, let $f : \lambda^+ \times \theta \rightarrow 2$ be defined by $f(\alpha, \beta) = G(\gamma^*_\alpha \beta, 0)$. Let $A \subseteq \theta^+$ be a set of size μ in $V[G]$. By the chain condition, there is a $\zeta < \theta$ such that $G = G_0 \times G_1$, where G_0 is $\text{Add}(\mu, \zeta)$-generic, and $A \in V[G_0]$. In $V[G_0]$, let $\zeta < \delta < \theta$ be such that $\{X_\alpha \setminus \delta : \alpha \in A\}$ is pairwise
disjoint. For any \(p \in \text{Add}(\mu, \theta \setminus \zeta) \) and any \(\eta \geq \delta \), there are \(q \leq p \) and \(\alpha, \beta \in A \) such that \(q(\gamma^\alpha_0, 0) \neq q(\gamma^\beta_0, 0) \). Since \(G_1 \) is generic, we have that for all \(\eta \geq \delta \), there are \(\alpha, \beta \in A \) such that \(f(\alpha, \eta) \neq f(\beta, \eta) \). Thus there is no \(B \subseteq \theta \) of size \(\theta \) such that \(f \) is constant on \(A \times B \).

We can now prove Theorem\(^2\) Suppose that in \(V, I \) is a nonregular, \(\kappa \)-complete, normal ideal on \(P_\kappa(\lambda) \), where \(\kappa = \mu^+ \) and \(\text{cf}(\mu) \) is uncountable. Let \(\theta > \lambda^\mu \) be regular and such that \(\theta^\mu = \theta \). Let \(G \subseteq \text{Add}(\omega, \theta) \) be generic. By Lemma 11, \(\bar{I} \) is nonregular in \(V[G] \). Suppose \(Z \subseteq P_\kappa(\lambda) \) has cardinality \(< \theta \). Then there is \(\zeta < \theta \) such that \(G = G_0 \times G_1 \), where \(G_0 \) is \(\text{Add}(\omega, \zeta) \)-generic, and \(Z \in V[G_0] \). By Lemma 15, there is no \(\lambda \)-dense, \(\kappa \)-complete, normal ideal concentrating on \(Z \) in \(V[G] \). Since \(\lambda^\mu = \theta \) in \(V[G] \), Lemmas 16 and 17 imply that there is no \(\lambda \)-dense, \(\kappa \)-complete, normal ideal on \(P_\kappa(\lambda) \) for which every positive set has size \(\theta \).

References

[1] James Baumgartner, András Hajnal, and Attila Máté, *Weak saturation properties of ideals*, Infinite and finite sets, vol. 10, North-Holland, Amsterdam, 1975, pp. 137–158.

[2] Douglas Burke and Yo Matsubara, *The extent of strength in the club filters*, Israel J. Math. 114 (1999), 253–263.

[3] Chen Chun Chang and H. Jerome Keisler, *Model theory*, third ed., Stud. Logic Found. Math., 73, North-Holland, 1990.

[4] James Cummings, *Collapsing successors of singulars*, Proc. Amer. Math. Soc. 125 (1997), no. 2, 2703–2709.

[5] Monroe Eskew, *Measurability properties on small cardinals*, Ph.D. thesis, UC Irvine, 2014.

[6] Matthew Foreman, *Ideals and generic elementary embeddings*, Handbook of set theory (Matthew Foreman and Akihiro Kanamori, eds.), vol. 2, Springer, Dordrecht, 2010, pp. 885–1147.

[7] , *Calculating quotient algebras of generic embeddings*, Israel J. Math. 193 (2013), no. 1, 309–341.

[8] Matthew Foreman and Menachem Magidor, *Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on\(P_\kappa(\lambda) \)*, Acta Math. 186 (2001), no. 2, 271–300.

[9] Moti Gitik, *Non-splitting subset of\(P_\kappa(\kappa^+) \)*, J. Symbolic Logic 50 (1985), no. 4, 881–894.

[10] H. Jerome Keisler, *On cardinalities of ultraproducts*, Bull. Amer. Math. Soc. 70 (1964), 644–647.

[11] Saharon Shelah, *Proper forcing*, Lec. Notes in Math. 940, Springer-Verlag, 1982.

[12] Alan Taylor, *Regularity properties of ideals and ultrafilters*, Ann. Math. Logic 16 (1979), no. 1, 33–55.

Kurt Gödel Research Center, University of Vienna, 25 Währinger Strasse, 1090 Vienna, Austria