Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Impact of COVID-19 pandemic on access to online therapeutic education programs for children with sickle cell disease

Alizée Sterlin, RN, Mariane de Montalembert, MD, PhD, Melissa Taylor, MD, PhD, Sandrine Mensah, MD, Marie Vandaele, MPsyClin, Agathe Lanzaray, RN, Slimane Allali, MD, PhD

ABSTRACT

Background: Sickle cell disease (SCD) is a lifelong disease for which outcomes may be influenced by patients’ self-care knowledge. Therapeutic education (TPE) is a patient-centered teaching instrument based on patient’s adaptative processes and needs. TPE was developed in the Paris area by a pediatric health network using interactive face-to-face meetings. The COVID-19 pandemic has impacted the TPE modalities by promoting online training. Our aims were to evaluate the accessibility of patients with SCD to online TPE.

Methods: We compared sessions of TPE before and after the onset of the pandemic: the number of sessions, performed face-to-face or online, individual or in a group. We also recorded the number of participants in each session and their age, school level, and department in France.

Findings: We observed an increase in the total number of trained children, but participation varied greatly according to the geographical area of residence, with a decrease from 22.4% to 4.9% in the proportion of attendees living in the most socio-economically deprived French departments.

Discussion: Online TPE is feasible for patients with SCD but with unequal access according to socio-economic status.

Application to practice: Access to TPE needs to be improved for patients living in socially disadvantaged areas.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Patient's previous experience. TPE is a four-step process: educational needs assessment, definition of the individual TPE program with learning priorities, TPE sessions, and assessment of the acquired skills (World Health Organization, 1998; https://www.has-sante.fr/upload/docs/application/pdf/2008-12/therapeutic_patient_education_tpe_-_definition_goals_and_organisation_-_quick_reference_guide.pdf). So far, no report has described the use of TPE in patients with SCD, especially in children.

In our institution, we developed a unit for delivering TPE to parents and to children with SCD, called the Parisian Health Network Réseau Francilien de Soins des Enfants Drépanocytaires (RoFSED) and used it to provide face-to-face TPE sessions.

The COVID-19 pandemic has affected TPE strategies by stopping or greatly reducing direct contact and promoting online training. Several reports focusing on medical training for students have shown the benefits of innovative online teaching concepts (Badawy & Radovic, 2020; Gottschalk et al., 2021; Nourkami-Tutdibi et al., 2021). We were initially concerned because we had no experience with online training and feared poor Internet accessibility for some families. We developed strategies to continue offering TPE to children with SCD after the onset of the COVID-19 outbreak.

Purpose

In this study, we report the strategies we developed in emergency to sustain delivering TPE to patients and families during the COVID-19 pandemic, compare the TPE procedures before and after the onset of the pandemic, and discuss the differences in participation in TPE sessions.

Methods

Setting of the study

TPE is usually delivered to children during face-to-face sessions, individually or in age-paired groups. The sessions are held in the RoFSED unit, located in the pediatric Necker-Enfants malades Hospital in Paris. The RoFSED network is funded by the Paris region Agency for Health (Agence Régionale de Santé Ile de France) and offers care to children with SCD living in the Paris region. Children are referred by SCD expert centers, proximity healthcare centers, and more rarely by school professionals or families themselves. The main objectives are the coordination of care, scholar and psychological support, and TPE. Each year, approximately 250 children are followed up after parents have given their signed informed consent to be included in RoFSED programs.

Organization of TPE in the pediatric Necker-Enfants malades Hospital

TPE is offered to all families with a child with SCD who is over 6 years old. About 50 families are asked to include their child in a TPE program each year, and approximately 30% of them accept. Until the COVID-19 pandemic, TPE sessions took place within RoFSED facilities in the Necker-Enfants malades Hospital.

TPE is delivered by healthcare professionals with specific training. Sessions are individual or in age-paired groups (4 to 8 children) and usually last 90 min. For children, TPE aims not only to improve treatment adherence but also to help them learn about their body, their needs, how to cope with the disease, and the role of preventive measures such as increasing hydration, avoiding getting cold, or warning their parents early when a new symptom occurs. Besides global information on their body, red blood cells, and SCD, children's representations of the disease are also discussed. Specific tools dedicated to SCD (available at www.rofsed.fr) and training sessions focused on hydration, pain, sport, and transition to adult care have been developed. Information and advice on COVID-19 and prevention have been added since the onset of the pandemic. Conferences and sessions are organized by the RoFSED, and access is free for all participants.

Before the pandemic, sessions were all face-to-face, either with individuals or groups. Parents were informed by mail or text messages of the occurrence of a session, according to the way the parents chose.

During the lockdown in France, no TPE was proposed. Since the end of the lockdown, group sessions have all been offered via a videoconferencing software, and individual sessions have been either face-to-face or online, using the same tool and according to the parents' will. A tutorial has been created to explain to parents and patients how to use the application, with the possibility of getting advice by phone when needed.

Design of the study

Variables

In this study, we recorded the number of sessions, noting whether they were face-to-face or online and individual or group, the number of participants in each session, and the age, school level, and department of residence. A session was defined as a training organized for one or a group of patients. A teaching was defined as a lesson received by one patient. Age-paired groups of children were formed by grouping children according to their level of education (with groups for ages 6–10, 11–14, and 15–20 years). The departments where the families lived were recorded, all in the Paris region, including Paris and 7 neighboring departments, in alphabetical order: Essonne, Hauts de Seine, Seine et Marne, Seine Saint Denis, Val de Marne, Val d'Oise, and Yvelines. The annual income per household varies greatly between Paris and other departments, ranging from 21,768 Euros for Seine St Denis, one of the poorest departments in France, to 48,301, 45,966 and 40,281 Euros for Paris, Hauts de Seine and Yvelines, respectively, the 3 wealthiest departments of France (data from the French Minister of Economy, 2019) (https://www.journaldunet.com).

We compared TPE activity between 2018 and 2020, given that in France the first lockdown took place from March 16 to May 11, 2020 and social distancing was still highly recommended after May 2020. We chose the year 2018 for the pre-outbreak period, because the year 2019 was marked by major transportation strikes in the Paris area, which could have affected the ability of parents to come to Necker.
Table 1: Description of the therapeutic education (TPE) activities.

	2018	2020	P
Number of children who had at least 1 TPE session	49	41	
Number of sessions (individual/group)	(7/11)	(24/11)	
Number of teachings	61	71	
Number of sessions per child: mean (SD)	1.24 (0.52)	1.73 (1.60)	0.047*
range	1–3	1–9	

* Comparison between 2018 and 2020, using a Student t-test.

Hospital, and, hence, TPE activity. The number of TPE sessions per child was compared by Student t-test.

Ethical considerations

The local ethics committee was consulted for this study and considered that the research did not require additional ethics approval after signed informed consent was obtained from parents for inclusion in the RoFSED.

Findings

The age distribution of participants did not change significantly between 2018 and 2020: 40% to 45% were 6–10 years old; one third 10–14 years old, and 20% to 26% ≥ 14 years old. Table 1 summarizes the number of children who had at least one TPE session in 2018 and 2020, the total number of sessions, total number of teachings, and mean number of sessions per child. The number of children who had at least one TPE session was stable over the period (about 45 per year). However, the number of sessions increased considerably in 2020, with a total of 35 sessions, including 24 online (as compared with 18 sessions in 2018, not online). The total number of teachings increased from 61 to 71 between 2018 and 2020. The mean number of sessions per child (individually or group) increased from 1.2 ± 0.5 (range 1–3) in 2018 to 1.7 ± 1.6 (range 1–9) in 2020, mainly because of a 3-fold increase in the number of individual sessions. Many children who received at least one individual session in 2020 asked to participate in group sessions afterwards, which was not the case when individual sessions were proposed only face-to-face.

Figure 2: Number of therapeutic education sessions in 2018 and 2020 according to departments in France.

Discussion

SCD is a chronic disease that predominantly affects people of Afro-Caribbean origin (Osunkwo et al., 2021; Hassell, 2010). Quality of life, life expectancy, and lifetime income are lower in patients with SCD than matched individuals without SCD in the United States (Lubeck et al., 2019) and in France (unpublished data). Self-care interventions enhancing access to education and self-efficacy have been developed, mostly for adolescents and young adults. However, in clinics, education programs are poorly attended.

Cognitive behavioral techniques (CBTs), many of them accessed by mobile apps, have been used for SCD adolescents and young adults in different programs, with interesting results (Badawy et al., 2018; Crosby et al., 2020; Hoods et al., 2021; Palermo et al., 2018; Schatz et al., 2015). Young patients’ motivation is increased when using mobile technologies, desktop/laptop computers or mobile phones, even more so if apps are patient-centered and with interactive/social features (Crosby et al., 2017). In the United States, the CaRISMA study is comparing the effectiveness of education delivered by mobile phones in adults, using CBT or pain and SCD education, with results expected in 2023 (ClinicalTrials.gov: NCT04419168) (Badawy et al., 2021). CBT is delivered by psychologists or behavioral pain specialists.

TPE is a different tool, delivered by a stakeholder after at least 40 h of training, which allows for non-SCD-specialized physicians and nurses as well as patients to receive the training. According to the World Health Organization definition, TPE helps patients acquire or maintain the skills they need to manage their life in the best possible way (World Health Organization, 1998; https://www.has-sante.fr/upload/docs/application/pdf/2008-12/therapeutic_patient_education_tpe_-_definition_goals_and_organisation_-_quick_reference_guide.pdf). It is a 4-step procedure, involving an educational diagnosis; defining an individually tailored TPE...
program with learning priorities; planning and providing individual or group sessions, or both, in alternation; assessing the skills acquired; and program implementation. A key feature is to take into account the patient’s experience of the disease in the TPE program. Regular follow-ups consider when the patient needs to revise their goals and educational procedure and update the educational diagnosis. TPE has been mostly used in patients with diabetes and hemophilia (Baudrant et al., 2007; Wintz et al., 2010). SCD was not mentioned by the World Health Organization report in 1998, which listed only hemophilia and thalassemia in the group of blood disorders that could benefit from TPE (World Health Organization, 1998). Children with SCD are now recognized as good candidates for TPE, although we were not able to find any published tool for TPE for SCD patients in the literature. We have now 10 years of experience with TPE in children with SCD, beginning after age 6 years, and have developed educational tools adapted for children (available at www.rofseď.fr).

Our study did not aim to evaluate the effectiveness of TPE in children with SCD because it is currently being evaluated in an ongoing randomized study (ClinicalTrials.gov: NCT03786549) (Hoegy et al., 2020). Rather, it aimed to assess the feasibility of continuing TPE during the COVID-19 pandemic. We found that providing sessions online was associated with an increase in the total number of sessions per child. However, the participation in online sessions seemed easier for children and families living in departments with higher family incomes. In these departments, TPE was attractive enough to encourage children to attend more sessions. The increased participation in TPE may have been associated with the families being confined to home and therefore able to participate without the burden of transportation and with the ability to sign out at any time, which constitutes significant advantages for patients. In some cases and upon the parents’ request, sessions were performed later in the evening to allow parents and children to attend more easily. In the youngest age groups (6–10 years for sure and probably also 11–14 years), the app was initially driven by the parents, but it soon seemed that children were at least as confident as their parents in using the app. The high level of stress related to the COVID-19 pandemic likely contributed to the interest in online discussions, and over the same period, the RoFSED developed psychological support, which helped children and families communicate their fears and questions. Of note, the increase in number of sessions resulted from an increase in the number of individual trainings, but the number of group sessions did not change, which may be related to worrying about being in group after the pandemic onset. That families living in the most socio-economically deprived French department had less use of TPE may have several explanations. For online sessions, we speculate that reduced access to the Internet and more difficulty using the app are possible causes. For face-to-face sessions, families living in more crowded conditions may have had fears related to COVID-19 and hesitated to use public transportation. Furthermore, in the more affluent areas, parents may have had jobs from which they were able to work from home and provide supervision for online sessions and app usage, while those in the less affluent areas may have needed to be outside the home to work and were less available to schedule or participate in sessions.

Evidence application to Practice and Research implication

This work has been led in France, where TPE is more developed than CBT techniques, one possible reason being that it can be used by a large panel of stakeholders after a training of 40 h. As TPE combines largely otherwise used psychological, social, and medical approaches, we assume our observations using this technique can be transposable to other self-care techniques in different other countries. Whatever the causes, socioeconomic deprivation seems a risk factor for less access to information and self-care knowledge. Poverty in children with SCD was previously found associated with not only reduced quality of life but also increased pain burden and healthcare utilization (Lee et al., 2019; Panepinto et al., 2009; Raphael et al., 2009). COVID-19 appears to amplify the disparities in healthcare provision for socio-economically deprived children with SCD.

Limitation

Our study has several limitations, such as a single-center recruitment and small simple size. We did not assess individual socioeconomic characteristics or parental education levels. Also, we did not evaluate the efficacy of our TPE program. Finally, we did not control for parent and child satisfaction with the sessions and would like to implement a questionnaire comparing the clarity and comprehensibility of online and face-to-face sessions.

Conclusions

The COVID-19 pandemic has brought an urgent need to enhance digital approaches to healthcare (Badawy & Radovic, 2020). Our findings show that patients and families may find interest in these tools, which could help in patients’ daily lives. However, access to these interventions is likely unequal, with the risk of enhancing pre-existing social disparities [Abman et al., 2020]. Increasing access to online training can help optimize healthcare equity and address disparities in access to care.

Fig. 3. Number of children attending therapeutic education sessions in 2018 and 2020 according to departments in France.
related to race and ethnicity and socioeconomic status. There is need for future research, in particular an assessment of the safety and efficacy of digital tools in SCD and the possibility to offer such tools equally to all patients and families.

Conflicts of interest

The authors have no financial relationship relevant to this article to disclose.

Credit authorship contribution statement

Alizée Sterlin: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing. Mariane de Montalembert: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing. Melissa Taylor: Investigation, Writing – review & editing. Sandrine Mensah: Investigation, Writing – review & editing. Marie Vandaele: Investigation, Writing – review & editing. Agathe Lanzeray: Investigation, Writing – review & editing. Louise Poiraudeau: Investigation, Writing – review & editing. Slimane Allali: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing.

Acknowledgments

The authors thank the patients and families.

References

Abman, S. H., Bogue, C. W., Baker, S., Carlo, W., Daniels, S. R., De Baun, M. R., et al. (2020). Mobile health use predicts self-efficacy and self-management in adolescents with sickle cell disease. Translational Behavioral Medicine, 11(10), 1823–1831. doi.org/10.1093/ten thr804.

Hodges, J. R., Phillips, S. M., Norell, S., Nwosu, C., Khan, H., Luo, L., & Porter, J. (2020). Intentional and unintentional nonadherence to hydroxyurea among people with sickle cell disease: A qualitative study. Blood Advances, 4(18), 4463–4473. https://doi.org/10.1182/bloodadvances.202001701.

Hoey, D., Bleyzac, N., Gauthier-Vasseron, A., Cannas, G., Denis, A., Hot, J., et al. (2020). Impact of a paediatric-adult care transition programme on the health status of patients with sickle cell disease: Study protocol for a randomized controlled trial (the DREPAO study group). JAMA Network Open, 3(11) Article e2013774. https://doi.org/10.1001/jamanetworkopen.2020.13774.

Hoods, A., Nwankwo, C., Walton, A., McTate, E., Joffe, N., Quin, C. T., et al. (2020). A digital approaches to remote pediatric health care delivery: A qualitative study. JMIR Pediatr Parent Health Care, 3(4), e114. https://doi.org/10.2196/114.

Kanter, J., Smith, W. R., Desai, P. C., Treadwell, P. C., Andemariam, B., Joffe, N. E., et al. (2020). Building access to care in adult sickle cell disease: Defining models of care, essential components, and economic aspects. Blood Advances, 4(16), 3804–3813. https://doi.org/10.1182/bloodadvances.202001743.

Lee, L., Smith-Whitley, K., Banks, S., & Puckrin, G. (2019). Reducing health care disparities in sickle cell disease: A review. Public Health Reports, 134(6), 599–607. https://doi.org/10.1177/0033354918813574.

Lubeck, D., Agoda, I., Bhakti, N., Danese, M., Pappu, K., Howard, R., Gleeson, M., Halperin, L., & Landron, S. (2019). Estimated life expectancy and income of patients with sickle cell disease compared with those without sickle cell disease. JAMA Network Open, 2(11) Article e19153774. https://doi.org/10.1001/jamanetworkopen.2019.13574.

Nourkami-Tutdibi, N., Hofer, M., Zemlin, M., Abdul-Halig, H., & Tutdibi, E. (2021). Teaching children to cope with sickle cell pain: Design of a randomized controlled trial of a smartphone and a web-based pain self-management program for youth with sickle cell disease. Contemporary Clinical Trials, 74, 88–96. https://doi.org/10.1016/j.cct.2020.10.006.

Papanioto, J., Foerster, L., Sabnis, S., Paejewski, N., & Hoffmann, R. (2009). Impact of poverty and sickle cell disease on the health-related quality of life of children. Quality of Life Research, 18(1), 5–13. https://doi.org/10.1007/s11136-008-9412-8.

Raphael, J., Dietrich, C., Whitmire, D., Mahoney, D., Mueller, B. U., & Giardino, A. P. (2009). Web-based technology to improve disease knowledge among adolescents with sickle cell disease: Pilot study. JMB Pediatr Parent, 3(1), Article e15093. https://doi.org/10.2196/jmpp.15093.

Roberts, C. W., Taljaard, M., Marchand, C. B., Gauthier-Vasserot, A., Cannas, G., Denis, A., Hot, J., et al. (2019). iManage: A self-management app co-designed by children aged 7 to 11 and their parents. JMIR Pediatr Parent Health Care, 3(4), e15093. https://doi.org/10.2196/jmpp.15093.

Schatz, J., Schlenz, A., McLellan, C. B., Puffer, E. S., Hardy, S., Pfeiffer, M., & Roberts, C. W. (2015). Changes in coping, pain and activity following cognitive-behavioral training: a randomized clinical trial for pediatric sickle cell disease using smartphones. The Clinical Journal of Pain, 31(6), 536–547. https://doi.org/10.1097/AJP.0000000000000183.

Shahine, R., Kurdadi Badr, L., & Abboud, M. (2015). Educational intervention to improve the health outcomes of children with sickle cell disease. Journal of Pediatric Health Care, 29(1), 54–60. https://doi.org/10.1016/j.pedhc.2014.08.007.

Ware, R. E., de Montalembert, M., Tshilolo, L., & Abboud, M. R. (2017). Sickle cell disease. Lancet, 390(10191), 311–323. https://doi.org/10.1016/S0140-6736(17)30193-9.

Witzl, L., Sanniti, T., Ayaguer, S., Guerois, C., Bernhard, J. P., Valluet, D., et al. (2010). Patient resources in the therapeutic education of haemophiliacs in France: Their skills and roles as defined by a consensus working group. Haemophilia, 16(3), 447–454. https://doi.org/10.1111/j.1365-2516.2009.02163.x.

World Health Organization (1998). Therapeutic patient organization.