Fractal Weyl law for quantum fractal eigenstates

D.L. Shepelyansky

1Laboratoire de Physique Théorique, UMR 5152 du CNRS, Université Toulouse III, 31062 Toulouse, France
(Dated: September 14, 2007)

The properties of the resonant Gamow states are studied numerically in the semiclassical limit for the quantum Chirikov standard map with absorption. It is shown that the number of such states is described by the fractal Weyl law and their Husimi distributions closely follow the strange repeller set formed by classical orbits nonescaping in future times. For large matrices the distribution of escape rates converges to a fixed shape profile characterized by a spectral gap related to the classical escape rate.

PACS numbers: 05.45.Mt, 05.45.Df, 03.65.Sq

The Weyl law [1] gives a fundamental link between the properties of quantum eigenstates in closed Hamiltonian systems, the Planck constant \hbar and the classical phase space volume. The number of states in this case is determined by the system dimension d and the situation is now well understood both on mathematical and physical grounds [2, 3]. Surprisingly, only recently it has been realized that the case of nonunitary operators describing open systems in the semiclassical limit has a number of new interesting properties and the concept of the fractal Weyl law has been introduced to describe the dependence of number of resonant Gamow eigenstates on \hbar [4, 5]. The Gamow eigenstates find important applications for decay of radioactive nuclei [6], quantum chemistry reactions [7], chaotic scattering [8] and microlasers with chaotic resonators [9, 10, 11]. Thus the understanding of their properties in the semiclassical limit represents an important challenge.

According to the fractal Weyl law [4, 5] the number of Gamow eigenstates N_γ, which have escape rates γ in a finite band width $0 \leq \gamma \leq \gamma_b$, scales as

$$N_\gamma \propto \hbar^{-(d-1)}$$

(1)

where d is a fractal dimension of a classical strange repeller formed by classical orbits nonescaping in future (or past) times. By numerical simulations it has been shown that the law (1) works for a 3-disk system [5] and quantum chaos maps with absorption [12, 13] at specific values of d. Recent mathematical results for open quantum maps are presented in [14]. The law (1) for open systems with a fractal dimension $d < 2$ leads to a striking consequence: only a relatively small fraction of eigenstates $\mu \sim N_\gamma/N \propto \hbar^{2(d-2)}$ have finite values of γ while almost all eigenstates of matrix operator of size $N \propto 1/\hbar$ have infinitely large γ. The later states are associated [12] with classical orbits which escapes from the system after the Ehrenfest time [15]. The former states with finite γ are related to the classical fractal repeller and have been named quantum fractal eigenstates due to a fractal structure of their Husimi distributions closely following the classical fractal [16]. The semiclassical description of probability density for such states has been derived recently in [17].

In view of the recent results described above I study numerically a simple model of the quantum Chirikov standard map (kicked rotator) with absorption introduced in [18] which allows to vary continuously the fractal dimension of the classical strange repeller. In this way the fractal Weyl law (1) is verified in the whole interval $1 \leq d \leq 2$. The model also allows to establish the limiting semiclassical distribution over escape rates γ and find its links with the fractal properties of the classical strange repeller. The Chirikov standard map is a generic model of chaotic dynamics and it finds applications in various physical systems including magnetic mirror traps, accelerator beams, Rydberg atoms in a microwave field [19, 20, 21, 22]. The quantum model has been built up in experiments with cold atoms [23]. Thus the results obtained for this model should be generic and should find applications for various systems.

The quantum dynamics of the model is described by the evolution matrix:

$$\psi = \hat{U}\psi = \hat{P}e^{-iT\hat{n}^2/4}e^{-ik\cos \theta}e^{-iT\hat{n}^2/4}\psi,$$

(2)

where $\hat{n} = -i\partial/\partial \theta$ and the operator \hat{P} projects the wave function to the states in the interval $[-N/2, N/2]$. The semiclassical limit corresponds to $k \to \infty$, $T \to 0$ with the chaos parameter $K = kT = \text{const}$ and absorption boundary $a = N/k = \text{const}$. Thus N is inversely proportional to the effective Planck constant $T = \hbar_{eff}$, it gives the number of quantum eigenstates and the number of quantum cells inside the classical phase space. The classical dynamics is described by the Chirikov standard map [19, 20] in its symmetric form:

$$\bar{n} = n + k \sin \left(\theta + \frac{Tn}{2} \right), \bar{\theta} = \theta + \frac{T}{2}(n + \bar{n}).$$

(3)

Physically, the map describes a free particle propagation in presence of periodic kicks with period T (e.g. kicks of optical lattice in [23]). In this model all trajectories (and quantum probabilities) escaping the interval $[-N/2, N/2]$ are absorbed and never return back. It is convenient to fix $K = 7$ so that the phase space have no visible stability.
islands for $a \leq 6$ [24]. Then for the classical dynamics the probability $P(t)$ to stay inside decays exponentially with time as $P(t) \sim \exp(-\gamma_c t)$ [18, 25], where γ_c is the classical escape rate and t is measured in the number of map iterations. For large values of a the spreading goes in a diffusive way and $t_c = 1/\gamma_c \sim N^2/D \approx 2a^2$ where $D \approx k^2/2$ is the diffusion rate for $K \gg 1$. The independence of t_c of N implies $a = N/k = \text{const}$. The quantum operator (2) can be considered as a simplified model of chaotic microlasers where all rays with orbital momenta below some critical value determined by the refraction index escape from a microcavity [9, 10, 11].

The right eigenstates $\psi_n^{(m)}$ and eigenvalues $\lambda_m = \exp(-i\epsilon_m - \gamma_m/2)$ of the evolution operator \hat{U} are determined numerically by direct diagonalization up to a maximal value $N = 22001$ (only states symmetric in n are considered). The Husimi distribution [26], obtained from smoothing of a Wigner function on a Planck constant scale, is shown in Fig. 1 for eigenstates with minimal γ_m at different values of N at $a = 2$. With the increase of N the Husimi distribution converges to a fractal set which is very similar to the classical strange repeller formed by classical orbits never escaping in the future. The classical repeller is obtained by iterating up to 3×10^9 classical trajectories homogeneously distributed in the whole phase space at $t = 0$. The classical remaining probability $P(t)$ decays exponentially with $\gamma_c = 0.2702 \pm 0.0011$ and the computation of the box counting dimension [20, 21] of the strange repeller gives $d = 1.7230 \pm 0.0085$. According to [8, 20, 21] the information dimension d_1 of the repeller can be expressed as $d_1 = 2 - \gamma_c/\Lambda$, where Λ is the Lyapunov exponent. For large a and small γ_c it can be expressed via its value for the Hamiltonian dynamics on a torus where $\Lambda \approx \ln(K/2) = 1.2527$ (for $K = 7$) [19]. This gives $d_1 = 1.7843$ that is rather close to the numerical value of box counting dimension d (usually these two dimensions are rather close and, contrary to [13], I will not make difference between them). However, for smaller values of a the relation $\Lambda = \ln(K/2)$ is no more valid. To have Λ for all values of a its value is computed numerically following approximation used in [19]: $\Lambda = (\ln(K\cos(\theta + Tn/2)) \rangle \langle)$ where the average $\langle \ldots \rangle$ is done over the orbits on the repeller. In this way Λ varies in the interval $1.913 \leq \Lambda \leq 1.294$ for $0.7 \leq a \leq 6$ ($\Lambda = 1.363$ and $d_1 = 1.801$ at $a = 2$).

To check the validity of the fractal Weyl law (1) for various d the absorption border a is varied in the interval $0.7 \leq a \leq 6$ so that the classical fractal dimension and decay rate vary in the intervals $0.9976 \pm 0.0060 \leq d \leq 1.9367 \pm 0.0067$ and $1.6349 \pm 0.0135 \leq \gamma_c \leq 0.0592 \pm 0.0003$. In the quantum case the number of states N_γ is computed in the band width $0 \leq \gamma \leq \gamma_b$ with $\gamma_b = 8/a^2$. In this way $\gamma_b > \gamma_c$ and the band contains a large fraction of fractal eigenstates. To improve the statistics, N_γ is averaged over N_r cases with slightly different values of $k \pm \delta k$ with $\delta k \leq 2$. Such a small variation of k does not affect the semiclassical properties but allows to improve the statistical accuracy. The number of realizations varied from $N_r = 40$ at $N = 101$ to $N_r = 1$ at $N = 22001$. The dependence of integrated number of states N_γ on $N \propto 1/\hbar$ is shown in Fig. 2. The fit $N_\gamma \propto N^\nu$ allows to determine the exponent ν which according to (1) should satisfy the relation $\nu = d - 1$. It is important to stress that $N_\gamma \ll N/2$ at $a \leq 2$, so that the main part of $(N + 1)/2$ eigenvalues has enormously large $\gamma > \gamma_b$.

The dependence of ν on d is shown in Fig. 3. The law (1) is well satisfied for fractal dimensions $1 \leq d < 2$. Certain deviations for d close to 1 should be attributed to rather small values of N_γ (e.g. $N_\gamma = 26$ at $a = 0.7$ and...
In the diffusive case fractal structure of eigenstates has been clearly detected
the dependence (1) has been missed in [16, 18] even if the close to the integer value.

In such a case the dimension is very
of states

FIG. 2: (color online) Dependence of the integrated number of states \(N_\nu \) with escape rates \(\gamma \leq \gamma_b = 8/\alpha^2 \) on matrix size \(N \). Symbols show numerical data for various values of absorption border \(\alpha = N/k: 4 \) (circles), \(2.5 \) (diamonds), \(2 \) (+), \(1.5 \) (x), \(1 \) (triangles), \(0.8 \) (*), \(0.7 \) (squares). Dashed lines show algebraic fits \(N_\nu \propto N^\nu \) with the fractal Weyl exponent \(\nu = 0.8930 \pm 0.0028 \) (\(a = 4 \)), \(\nu = 0.7129 \pm 0.0073 \) (\(a = 2 \)), \(\nu = 0.5697 \pm 0.0042 \) (\(a = 1 \)), \(\nu = 0.3559 \pm 0.0094 \) (\(a = 0.8 \)) \(\nu = 0.1175 \pm 0.0069 \) (\(a = 0.7 \), here \(\gamma_b = 4/\alpha^2 \)). Logarithms are natural.

\(N = 22001 \) so that even larger \(N \) values are required to see the asymptotic behavior. The relation \(\nu = 1 - \gamma_c/\Lambda \) also works rather well even if the Lyapunov exponent \(\Lambda \) should be probably computed in a more exact way for small values of \(\alpha \sim 0.7 \). Thus, the data of Fig. 3 confirms the validity of the fractal Weyl law in the whole available interval of fractal dimensions.

In addition to the integrated characteristic (1) it is interesting to consider the differential distribution \(dW/d\gamma \) which determines the number of states in the interval \(d\gamma \) at given \(\gamma \). The evolution of distributions \(dW/d\gamma \) with the growth of \(N \) is shown in Fig. 4. The data clearly show that in the semiclassical limit \(dW/d\gamma \) converges to a certain limiting distribution independent of \(N \). Such an effect has been noticed already in first studies [18] where mainly the diffusive limit with \(\alpha = 10 \) and \(\gamma_c \ll \Lambda \) has been considered. In such a case the dimension is very close to the integer value \(\alpha = 2 \) and due to that the fractal dependence (1) has been missed in [16, 18] even if the fractal structure of eigenstates has been clearly detected [16]. In the diffusive case \(\alpha \approx 2 \) one has \(dW/d\gamma \propto 1/\gamma^{3/2} \) for \(\gamma > \gamma_c \) that is explained by simple estimates [18] and more rigorous analytical treatment [27]. When the fractal dimension \(\alpha \) is noticeably less than 2 then \(\gamma_c < \gamma_b \) sharp

FIG. 3: (color online) Dependence of the fractal Weyl exponent \(\nu \) on the fractal box counting dimension \(s \); full circles show numerical data, the straight line shows the fractal Weyl law (1) \(\nu = d - 1 \), pluses show \(1 - \gamma_c/\Lambda \) versus \(d - 1 \) which should follow the relation \(d_1 = 1 - \gamma_c/\Lambda \), where \(\Lambda \) is the Lyapunov exponent computed approximately (see text). Here \(0.7 \leq \alpha \leq 6.0 \), \(0.1175 \leq \nu \leq 0.9402 \), \(0.9976 \leq d \leq 1.9367 \).

FIG. 4: (color online) Dependence of the distribution \(\gamma_c dW/d\gamma \) on the rescaled escape rate \(\gamma/\gamma_c \) for different values of \(\gamma \) at \(\alpha = 2 \). Here \(\gamma_c = 0.2702 \), \(d = 1.7230 \), the probability \(dW/d\gamma \) is normalized to unity in the interval \(\gamma_b \) and \(N \) is 22001 (blue/black full curve \(N = 1278 \)), 12801 (maroon/gray full \(N = 1022 \)), 6401 (green/gray full \(N = 500 \)), 3201 (red/gray full \(N = 293 \)), 1601 (orange/gray dashed \(N = 181 \)), 801 (turquoise/gray dashed \(N = 114 \)), 401 (magenta/gray dashed \(N = 68.7 \)).

peak at \(\gamma = \gamma_c \) followed by a smooth drop at \(\gamma > \gamma_c \) (this drop is compatible with dependence \(1/\gamma^{3/2} \)).

These properties of the distribution \(dW/d\gamma \) remain essentially the same when \(\gamma_c \) is changed by a factor 3.5 as it is shown in Fig. 5. Indeed, the shape of the distribution varies very little for \(\alpha \leq 1.5 \) and becomes broader only at \(\alpha < 1.5 \). The later case have however relatively
small statistics N_c and probably larger N should be used to reach a limiting distribution for $a < 1.5$. It is interesting to note that $dW/d\gamma$ has certain similarities with the Wigner proper times distribution discussed in [28].

In conclusion, the obtained data confirm the validity of the fractal Weyl for all fractal dimensions in the interval $1 \leq d \leq 2$. They show the existence of the limiting distribution of the Gamow resonances $dW/d\gamma$ which has a gap of size γ_c above which the distribution has a sharp peak (see Figs. 4, 5). Thus the classical decay rate γ_c essentially determines the quantum decay rates on the quantum fractal corresponding to the classical strange repeller with orbits never escaping in future times (Fig. 1). The analytical computation of the limiting distribution $dW/d\gamma$ still remains an open problem. It is possible that the analytical methods pushed forward recently [17] will allow to make progress in this direction. Also, it would be interesting to check the validity of the fractal Weyl law for dimensions $d > 2$. In such a case it is natural to expect that $N_c \propto \hbar^{-\nu}$ with $\nu = d - n_f$ where d is the fractal dimension of the classical strange repeller and n_f is the number of degrees of freedom (in the present model $n_f = 1, d \leq 2$).

At present the properties of large nonunitary matrices find important applications in various areas including search on the Internet [29, 30] and it is possible that the fractal quantum eigenstates may have there certain applications since they give an example of important non-trivially connected fractal sets of small measure.

I thank S. Nonnenmacher for highlighting of his results and K.M. Frahm for stimulating discussions.

[1] H. Weyl, Math. Ann. 141, 441 (1912).
[2] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semiclassical Limit, Cambridge Univ. Press, Cambridge (1999).
[3] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nauka, Moscow (1989).
[4] J. Sjöstrand, Duke Math. J 60, 1 (1990); M. Zworski, Not. Am. Math. Soc. 46, 319 (1999); J. Sjöstrand and M. Zworski, math.SP/0506307.
[5] W. T. Lu, S. Sridhar and M. Zworski, Phys. Rev. Lett. 91, 154101 (2003).
[6] G. A. Gamow, Z. für Phys. 51, 204 (1928).
[7] N. Moiseyev, Phys. Rep. 208, 211 (1991).
[8] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge Univ. Press, Cambridge (1998).
[9] C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivco and A. Y. Cho, Science 280, 1556 (1998).
[10] T. Harayama, P. Davis and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[11] T. Tanaka, M. Hentschel, T. Fukushima and T. Harayama, Phys. Rev. Lett. 98, 033902 (2007).
[12] H. Schomerus and J. Tworzydlo, Phys. Rev. Lett. 93, 154102 (2004).
[13] S. Nonnenmacher and M. Rubín, Nonlinearity 20, 1387 (2007).
[14] S. Nonnenmacher and M. Zworski, Commun. Math. Phys. 269, 311 (2007).
[15] B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Sov. Sci. Rev. 2C, 199 (2001); Physica D 33, 77 (1988).
[16] G. Casati, G. Maspero and D.L. Shepelyansky, Physica D 131, 311 (1999).
[17] J.P. Keating, M. Novaes, S.D. Prado and M. Sieber, Phys. Rev. Lett. 97, 150406 (2006).
[18] F. Borgonovi, I. Guarneri and D.L. Shepelyansky, Phys. Rev. A 43, 4517 (1991).
[19] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[20] A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York (1992).
[21] E. Ott, Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge (1993).
[22] G. Casati, I. Guarneri and D.L. Shepelyansky, IEEE J. Quant. Elect. 24, 1420 (1988).
[23] P.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram and M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).
[24] In absence of islands other K values show similar behavior.
[25] G. Casati, G. Maspero and D.L. Shepelyansky, Phys. Rev. E 56, R6233 (1997).
[26] S.-J. Chang and K.-J. Shi, Phys. Rev. A 34, 7 (1986).
[27] S.E. Skipetrov and B.A. van Tiggelen, Phys. Rev. Lett. 96, 043902 (2006).
[28] P.W. Brouwer, K.M. Frahm, and C.W.J. Beenakker, Waves in Random Media 9, 91 (1999).
[29] S. Brin and L. Page, Computer Networks and ISDN Systems, 33, 107 (1998).
[30] D. Austin, http://www.ams.org/featurecolumn/archive/pagerank.html.