А. А. Трофимук

Александр Александрович Трофимук — кандидат физико-математических наук, Брестский государственный университет им. А.С. Пушкина (Беларусь, г. Брест).
e-mail: alexander.trofimuk@gmail.com

Аннотация

Подгруппа A группы G называется tcc-подгруппой в G, если существует подгруппа T группы G такая, что $G = AT$ и для любого $X \subseteq A$ и $Y \subseteq T$ существует элемент $u \in \langle X, Y \rangle$ такой, что $XY^u \leq G$. Запись $H \leq G$ означает, что H является подгруппой группы G. В этой статье мы исследуем группу $G = AB$ при условии, что A и B являются tcc-подгруппами в G. Доказано, что такая группа G принадлежит \mathfrak{F}, если подгруппы A и B принадлежат \mathfrak{F}, где \mathfrak{F} — насыщенная формация такой, что $\mathfrak{U} \subseteq \mathfrak{F}$. Здесь \mathfrak{U} — формация всех сверхразрешимых групп.

Ключевые слова: сверхразрешимая группа, толькоперестановочное произведение, насыщенная формация, tcc-перестановочное произведение, tcc-подгруппа.

Библиография: 15 названий.

Для цитирования:
А. А. Трофимук. Замечание о произведении двух формационных tcc-подгрупп // Чебышевский сборник, 2021, т. 22, вып. 1, с. 495–501.
Abstract

A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that $G = AT$ and for any $X \leq A$ and $Y \leq T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. The notation $H \leq G$ means that H is a subgroup of a group G. In this paper we consider a group $G = AB$ such that A and B are tcc-subgroups in G. We prove that G belongs to \mathfrak{F}, when A and B belong to \mathfrak{F} and \mathfrak{F} is a saturated formation such that $\mathfrak{U} \subseteq \mathfrak{F}$. Here \mathfrak{U} is the formation of all supersolvable groups.

Keywords: supersolvable group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup.

Bibliography: 15 titles.

For citation:
A. A. Trofimuk, 2021, "A remark on a product of two tcc-subgroups", Chebyshevskii sbornik, vol. 22, no. 1, pp. 495–501.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [1, 2]. The notation $H \leq G$ means that H is a subgroup of a group G.

It is well known that the product of two normal nilpotent subgroups of a group G is nilpotent. However, the product of two normal supersolvable subgroups of a group G is not necessarily supersolvable. It seems then natural to consider factorized groups in which certain subgroups of the corresponding factors permute, in order to obtain new criteria of supersolubility. A starting point of this research can be located at M. Asaad and A. Shaalan’s paper [3]. In particular, they proved the supersolubility of a group $G = AB$ such that the subgroups A and B are totally permutable and supersolvable, see [3, Theorem 3.1]. Here the subgroups A and B of a group G are totally permutable if every subgroup of A is permutable with every subgroup of B. In [4] Maier showed that this statement is also true for the saturated formations containing the formation \mathfrak{U} of all supersolvable groups. Ballester-Bolinches and Perez-Ramos in [5] extend Maier’s result to non-saturated formations which contain all supersolvable groups. This direction have since been subject of an in-depth study of many authors, see, for example, [6], [7], [8]. The monograph [9, chapters 4–5] contains other detailed information on the structure of groups, which are totally or mutually permutable products of two subgroups.

The following concept was introduced in [8].

Definition . A subgroup A of a group G is called tcc-subgroup in G, if it satisfies the following conditions:

1) there is a subgroup T of G such that $G = AT$;
2) for any $X \leq A$ and $Y \leq T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$.

We say that the subgroup T is a tcc-supplement to A in G.

Now, we can state the main result in [10], which is the following:

Theorem 1. ([10, Theorem A]) Let $G = AB$, where A and B are tcc-subgroups in G. Let \mathfrak{F} be a saturated formation of soluble groups such that $\mathfrak{U} \subseteq \mathfrak{F}$. Suppose that A and B belong to \mathfrak{F}. Then G belongs to \mathfrak{F}.

In this article we show that the hypothesis of solubility in Theorem 1 can be removed.

Theorem 2. Let $G = AB$, where A and B are tcc-subgroups in G. Let \mathfrak{F} be a saturated formation such that $\mathfrak{U} \subseteq \mathfrak{F}$. Suppose that A and B belong to \mathfrak{F}. Then G belongs to \mathfrak{F}.
2. Preliminaries

In this section we give some definitions and basic results which are essential in the sequel.

A group whose chief factors have prime orders is called supersoluble. If \(H \trianglelefteq G \) and \(H \neq G \), we write \(H < G \). The notation \(H \trianglelefteq G \) means that \(H \) is a normal subgroup of \(G \). Denote by \(Z(G) \), \(F(G) \) and \(\Phi(G) \) the centre, Fitting and Frattini subgroups of \(G \) respectively, and by \(O_p(G) \) the greatest normal \(p \)-subgroup of \(G \). Denote by \(\pi(G) \) the set of all prime divisors of order of \(G \). The semidirect product of a normal subgroup \(A \) and a subgroup \(B \) is written as follows: \(A \rtimes B \).

The monographs [11], [12] contain the necessary information of the theory of formations. A formation \(\mathfrak{F} \) is said to be saturated if \(G/\Phi(G) \in \mathfrak{F} \) implies \(G \in \mathfrak{F} \). In view of Theorems 3.2 and 4.6 in [12, IV], for any non-empty saturated formation \(\mathfrak{F} \) there exists a formation function \(f \) (that is, any function of the form \(f : \mathbb{P} \to \{ \text{formations} \} \)) such that \(\mathfrak{F} = LF(f) := \{ G \mid G/F_p(G) \in f(p) \} \) for all primes \(p \) dividing \(|G| \). Here \(F_p(G) = O_p'(G) \) is the greatest normal \(p \)-nilpotent subgroup of \(G \) [12, IV, Section 7]. Such a function is called a local definition of \(\mathfrak{F} \). Moreover, in view of Proposition 5.4 in [12, III], every non-empty saturated formation \(\mathfrak{F} \) has a unique local definition \(f \) (called the canonical local definition of \(\mathfrak{F} \)) such that \(f(p) = \mathfrak{N}_p f(p) \subseteq \mathfrak{F} \) for all primes \(p \), where \(\mathfrak{N}_p f(p) = \emptyset \) if \(f(p) = \emptyset \) and \(\mathfrak{N}_p f(p) \) is the class of all groups \(A \) with \(A^{f(p)} \leq O_p(A) \) whenever \(f(p) \neq \emptyset \).

If \(H \) is a subgroup of \(G \), then \(H_G = \bigcap_{x \in G} H^x \) is called the core of \(H \) in \(G \). If a group \(G \) contains a maximal subgroup \(M \) with trivial core, then \(G \) is said to be primitive and \(M \) is its primitivator. A simple check proves the following lemma.

Lemma 1. Let \(\mathfrak{F} \) be a saturated formation and \(G \) be a group. Assume that \(G \notin \mathfrak{F} \), but \(G/N \in \mathfrak{F} \) for all non-trivial normal subgroups \(N \) of \(G \). Then \(G \) is a primitive group.

Recall that the product \(G = AB \) is said to be tcc-permutable [7], if for any \(X \leq A \) and \(Y \leq B \) there exists an element \(u \in \langle X, Y \rangle \) such that \(XY^u \leq G \). The subgroups \(A \) and \(B \) in this product are called tcc-permutable.

Lemma 2. ([7, Theorem 1, Proposition 1-2]) Let \(G = AB \) be the tcc-permutable product of subgroups \(A \) and \(B \) and \(N \) be a minimal normal subgroup of \(G \). Then the following statements hold:

1. \(\{ A \cap N, B \cap N \} \subseteq \{ 1, N \} \);
2. if \(N \leq A \cap B \) or \(N \cap A = N \cap B = 1 \), then \(|N| = p \), where \(p \) is a prime.

Lemma 3. ([13, Theorem 4]) Let \(G = AB \) be the tcc-permutable product of subgroups \(A \) and \(B \). Then \([A, B] \leq F(G) \).

Lemma 4. ([8, Lemma 3.1]) Let \(A \) be a tcc-subgroup in \(G \) and \(Y \) be a tcc-supplement to \(A \) in \(G \). Then the following statements hold:

1. \(A \) is a tcc-subgroup in \(H \) for any subgroup \(H \) of \(G \) such that \(A \leq H \);
2. \(AN/N \) is a tcc-subgroup in \(G/N \) for any \(N \leq G \);
3. for every \(A_1 \leq A \) and \(X \leq Y \) there exists an element \(y \in Y \) such that \(A_1 X^y \leq G \). In particular, \(A_1 M \leq G \) for some maximal subgroup \(M \) of \(Y \) and \(A_1 H \leq G \) for some Hall \(\pi \)-subgroup \(H \) of soluble \(Y \) and any \(\pi \subseteq \pi(G) \);
4. \(A_1 K \leq G \) for every subnormal subgroup \(K \) of \(Y \) and for every \(A_1 \leq A \);
5. if \(T \leq G \) such that \(T \leq A \) and \(T \cap Y = 1 \), then \(T_1 \leq G \) for every \(T_1 \leq A \) such that \(T_1 \leq T \);
6. if \(T \leq G \) such that \(T \cap A = 1 \) and \(T \leq Y \), then \(A_1 \leq N_G(T_1) \) for every \(T_1 \leq T \) and for every \(A_1 \leq A \).

Lemma 5. Let \(G \) be a group and \(N \) a unique minimal normal subgroup of \(G \). If \(G \) has a proper tcc-subgroup \(A \) such that \(A \neq 1 \), then \(N \) is abelian.
Proof. Since A is a tcc-subgroup, it follows that $G = AY$, A and Y are tcc-permutable. If $[A, Y] = 1$, then $A \leq C_G(Y)$. It is clear A and Y are normal in G. Thus $N \leq A \cap Y$. By Lemma 2, $|N| = p$ and N is abelian. Therefore $[A, Y] \neq 1$ and $N \leq [A, Y] \leq F(G) \neq 1$ by Lemma 3. Hence N is abelian. □

Lemma 6. Let $A \neq 1$ be a proper tcc-subgroup in a primitive group G and Y be a tcc-supplement to A in G. Suppose that N is a unique minimal normal subgroup of G. If $N \cap A = 1$ and $N \leq Y$, then A is a cyclic group of order dividing $p - 1$.

Proof. Since $N \cap A = 1$ and $N \leq Y$, by Lemma 4(6), $A \leq N_G(K)$ for any $K \leq N$. By Lemma 5, N is an elementary abelian group. We fix an element $a \in A$. If $x \in N$, then $x^a \in \langle x \rangle$, since $A \leq N_G(\langle x \rangle)$ by hypothesis. Hence $x^a = x^{ma_x}$, where m_x is a positive integer and $1 \leq m_x \leq p$. If $y \in N \setminus \{x\}$, then

$$
(xy)^a = (xy)^{ma_y} = x^{ma_y}y^{ma_y}, (xy)^a = x^a y^a = x^{ma_y},
$$

$$
x^{ma_y}y^{ma_y} = x^{ma_y}y^{ma_y}, x^{ma_y} = y^{ma_y} = 1, m_{xy} = m_x = m_y.
$$

Therefore we can assume that $x^a = x^{na}$ for all $x \in N$, where $1 \leq n_a \leq p$ and n_a is a positive integer. Hence we have A induces a power automorphism group on N. By the Fundamental Homomorphism Theorem, $A/C_A(N)$ is isomorphic to a subgroup of $P(N)$, where $P(N)$ is the power automorphism group of N. Since N is abelian, it follows that $C_G(N) = N$ by [2, Theorem 4.41] and $C_A(N) = 1$. On the other hand, $P(N)$ is a cyclic group of order $p - 1$. Really $P(N)$ is a group of scalar matrices over the field \mathbb{P} consisting of p elements. Hence $P(N)$ is isomorphic to the multiplicative group \mathbb{P}^* of \mathbb{P} and besides, \mathbb{P}^* is a cyclic group of order $p - 1$. Therefore A is a cyclic group of order dividing $p - 1$. □

Lemma 7. Let \mathcal{F} be a formation, G group, A and B subgroups of G such that A and B belong to \mathcal{F}. If $[A, B] = 1$, then $AB \in \mathcal{F}$.

Proof. Since

$$
[A, B] = \langle [a, b] \mid a \in A, b \in B \rangle = 1,
$$

it follows that $ab = ba$ for all $a \in A, b \in B$. Let

$$
A \times B = \{ (a, b) \mid a \in A, b \in B \},
$$

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2), \ \forall a_1, a_2 \in A, b_1, b_2 \in B -$$

be the external direct product of groups A and B. Since $A \in \mathcal{F}, B \in \mathcal{F}$ and \mathcal{F} is a formation, we have $A \times B \in \mathcal{F}$. Let $\varphi : A \times B \rightarrow AB$ be a function with $\varphi((a, b)) = ab$. It is clear that φ is a surjection. Because

$$
\varphi((a_1, b_1)(a_2, b_2)) = \varphi((a_1a_2, b_1b_2)) = a_1a_2b_1b_2 = a_1b_1a_2b_2 = \varphi((a_1, b_1))\varphi((a_2, b_2)),
$$

it follows that φ is an epimorphism. The core $\text{Ker} \varphi$ contains all elements (a, b) such that $ab = 1$. In this case $a = b^{-1} \in A \cap B \leq Z(G)$. By the Fundamental Homomorphism Theorem,

$$
A \times B/\text{Ker} \varphi \cong AB.
$$

Since $A \times B \in \mathcal{F}$ and \mathcal{F} is a formation, $A \times B/\text{Ker} \varphi \in \mathcal{F}$. Hence $AB \in \mathcal{F}$. □

Lemma 8. ([14, Lemma 2.16]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a group with a normal subgroup E such that $G/E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.
3. Proof of Theorem 2

Assume that the claim is false and let G be a minimal counterexample. Suppose that G is simple. By Lemma 3, A and B are normal in G, a contradiction. Hence let K be an arbitrary non-trivial normal subgroup of G. The quotients $AK/K \simeq A/A \cap K$ and $BK/K \simeq B/B \cap K$ are tcc-subgroups in G/K by Lemma 4(2), $AK/K \simeq A/A \cap K \in \mathfrak{F}$ and $BK/K \simeq B/B \cap K \in \mathfrak{F}$, because \mathfrak{F} is a formation. Hence the quotient $G/K = (AK/K)(BK/K) \in \mathfrak{F}$ by induction.

Since \mathfrak{F} is a saturated formation, it follows that $\Phi(G) = 1$, G has a unique minimal normal subgroup N and G is primitive by Lemma 1. By Lemma 5, N is abelian and $F(G) = N = C_G(N) = O_p(G)$, $G = N \rtimes M$, where $|N| = p^n$ and M is a primitivator.

By Lemma 2, G is either $|N| = p$, or $N \leq A$ and $N \cap Y = 1$, or $N \cap A = 1$ and $N \leq Y$, where Y is a tcc-supplement to A in G. In the first case, by Lemma 8, $G \in \mathfrak{F}$. Suppose that $N \leq A$ and $N \cap Y = 1$. Since Y is a tcc-subgroup in G, it follows that by Lemma 6, Y is a cyclic group of order dividing $p - 1$. Then $Y \leq g(p)$, where g is the canonical local definition of \mathfrak{F}. Since $\mathfrak{F} \subseteq \mathfrak{F}$, we have by [12, Proposition IV.3.11], $g(p) \subseteq f(p)$, where f is the canonical local definition of \mathfrak{F}. Hence $Y \leq f(p)$.

Let Q be a Sylow q-subgroup of Y. It is obvious that $Q \leq G_q$ for some Sylow subgroup G_q of G. Then we can always choose a primitivator H of G such that $Q \leq H$. Really $G_q = M_q^g$ and $G_q \leq M^g = H$ for some $g \in G$ and some Sylow q-subgroup M_q of M. It is clear that H is a maximal subgroup of G. If $N \leq H$, then $G = NM = NM^q = NH = H$, a contradiction. Hence $NH = G$.

Because N is abelian, then $N \cap H = 1$ and H is a primitivator.

Since $A = A \cap G = A \cap NH = N(A \cap H)$, we have

$$G = AY = N(A \cap H)Y.$$

Prove that $(A \cap H)Y$ is a primitivator of G. Since

$$[A \cap H, Q] \leq [A, Y] = F(G) = N$$

by Lemma 3 and $[A \cap H, Q] \leq H$, it follows that $[A \cap H, Q] \leq H \cap N = 1$. Therefore $A \cap H \leq C_G(Q) = T$. Besides $Y \leq T$. Then

$$T = T \cap G = T \cap N(A \cap H)Y = (A \cap H)Y(N \cap T).$$

It is obvious that $N \cap T$ is normal in T and hence $N \cap T$ is normal in $G = N(A \cap H)Y = NT$, since N is abelian. Thus is either $N \leq T$, or $N \cap T = 1$. In the first case, $T = G$ and $Q \leq Z(G)$, a contradiction. Otherwise, $T = (A \cap H)Y$ and $G = N \rtimes T$. Hence $T = (A \cap H)Y$ is a primitivator of G. Thus we can always choose a primitivator M_1 of G such that $G = N \rtimes M_1$, $Y \leq M_1$ and $M_1 = (A \cap M_1)Y$.

Because $A \in \mathfrak{F}$, it follows that $A/F_p(A) \in f(p)$. Since $N = C_G(N)$ and $N \leq A$, we have that $N \leq F_p(A) = F(A)$. Let N_1 is a minimal normal subgroup of A such that $N_1 \leq N$. Then $F(A) \leq C_A(N_1)$ by [2, Lemma 4.21]. Since A is a tcc-subgroup in G, it follows that by Lemma 4(5), N_1 is normal in G. Hence $N = N_1$ and $C_A(N_1) = C_A(N) = N$. Then $F_p(A) = N$ and $A \cap N_1 \simeq A/N \leq f(p)$.

Since $f(p)$ is a formation, $A \cap M_1 \leq f(p)$, $Y \leq f(p)$ and $[A \cap M_1, Y] = 1$, it follows that $M_1 \leq f(p)$ by Lemma 7. Because $N \in \mathfrak{F}$, we have $G \in \mathfrak{F}f(p) = f(p) \subseteq \mathfrak{F}$. So, we assume that $N \cap A = 1$ and $N \leq Y$. Similarly, we can show that $N \cap B = 1$ and $N \leq X$, where X is a tcc-supplement to B in G. By Lemma 6, A and B are cyclic. Hence G is supersoluble and therefore $G \in \mathfrak{F}$. The theorem is proved.
4. Conclusion

Clear that by condition 2 of Definition 1, \(G = AT \) is the tcc-permutable product of the subgroups \(A \) and \(T \). If \(G = AB \) is the tcc-permutable product of subgroups \(A \) and \(B \), then the subgroups \(A \) and \(B \) are tcc-subgroups in \(G \). The converse is false.

Example 1. The dihedral group \(G = < a > \rtimes < c > \), \(|a| = 12, |c| = 2 \) ([15], IdGroup=24,6) is the product of tcc-subgroups \(A = < a^3c > \) of order 2 and \(B = < a^{10} > \rtimes < c > \) of order 12. But \(A \) and \(B \) are not tcc-permutable. Indeed, there are the subgroups \(X = A \) and \(Y = < c > \) of \(A \) and \(B \) respectively such that doesn’t exist \(u \in \langle X, Y \rangle = < a^3 > \rtimes < c > \) such that \(XY^u \leq G \).

Hence we have the following result.

Corollary 1. 1. Let \(A \) and \(B \) be tcc-subgroups in \(G \) and \(G = AB \). If \(A \) and \(B \) are supersoluble, then \(G \) is supersoluble, ([8, Theorem 4.1])

2. Let \(\mathfrak{F} \) be a saturated formation containing \(\mathfrak{U} \). Let the group \(G = HK \) be the tcc-permutable product of subgroups \(H \) and \(K \). If \(H \in \mathfrak{F} \) and \(K \in \mathfrak{F} \), then \(G \in \mathfrak{F} \), ([13, Theorem 5]).

3. Suppose that \(A \) and \(B \) are supersoluble subgroups of \(G \) and \(G = AB \). Suppose further that \(A \) and \(B \) are totally permutable. Then \(G \) is supersoluble, ([3, Theorem 3.1]).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Huppert B. Endliche Gruppen I. Berlin-Heidelberg-New York: Springer, 1967.
2. Monakhov V. S. Introduction to the Theory of Finite Groups and Their Classes [in Russian]. Minsk: Vysh. Shkola, 2006.
3. Asaad M., Shaalan A. On the supersolubility of finite groups // Arch. Math. 1989. Vol. 53. P. 318-326.
4. Maier R. A completeness property of certain formations // Bull. Lond. Math. Soc. 1992. Vol. 24. P. 540-544.
5. Ballester-Bolinches A., Perez-Ramos M.D. A question of R. Maier concerning formations // J. Algebra. 1996. Vol. 182. P. 738-747.
6. Guo W., Shum K.P., Skiba A.N. Criterions of supersolubility for products of supersoluble groups Publ. Math. Debrecen. 2006. Vol. 68, №3-4. P. 433-449.
7. Arroyo-Jorda M., Arroyo-Jorda P. Conditional permutability of subgroups and certain classes of groups // Journal of Algebra. 2017. Vol. 476. P. 395-414.
8. Trofimuk A.A. On the supersolubility of a group with some tcc-subgroups // Journal of Algebra and Its Applications. 2021. 2150020 (18 pages).
9. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of finite groups. Berlin: Walter de Gruyter, 2010.
10. Trofimuk A.A. Trofimuk A. A. On a product of two formational tcc-subgroups // Algebra and Discrete Mathematics. 2020. Vol. 30, № 2. P. 282-289.
11. Ballester-Bolinches A., Ezquerro L.M. Classes of Finite Groups. Dordrecht: Springer, 2006.
12. Doerk K., Hawkes T. Finite soluble groups. Berlin-New York: Walter de Gruyter, 1992.
13. Arroyo-Jorda M., Arroyo-Jorda P., Martinez-Pastor A., Perez-Ramos M.D. On conditional permutability and factorized groups // Annali di Matematica Pura ed Applicata. 2014. Vol. 193. P.1123-1138.

14. Skiba A.N. On weakly s-permutable subgroups of finite groups // J. Algebra. 2007. Vol. 315. P.192-209.

15. Groups, Algorithms, and Programming (GAP), Version 4.11.0. [Электронный ресурс] // URL: http://www.gap-system.org (дата обращения 22.09.2020).

REFERENCES

1. Huppert, B. 1967, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York.
2. Monakhov, V. S. 2006, Introduction to the Theory of Final Groups and Their Classes [in Russian], Vysh. Shkola, Minsk.
3. Asaad, M. & Shaalan, A. 1989, “On the supersolubility of finite groups”, Arch. Math., vol. 53, pp. 318-326.
4. Maier, R. 1992, “A completeness property of certain formations”, Bull. Lond. Math. Soc., vol. 24, pp. 540-544.
5. Ballester-Bolínches, A. & Perez-Ramos, M.D. 1996, “A question of R. Maier concerning formations”, J. Algebra, vol. 182, pp. 738-747.
6. Guo, W., Shum, K. P. & Skiba, A. N. 2006, “Criteria of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, vol. 68, no. 3-4, pp. 433-449.
7. Arroyo-Jorda, M. & Arroyo-Jorda, P. 2017, “Conditional permutability of subgroups and certain classes of groups”, Journal of Algebra, vol. 476, pp. 395-414.
8. Trofimuk, A.A. 2021, “On the supersolubility of a group with some tcc-subgroups”, Journal of Algebra and Its Applications, 2150020 (18 pages).
9. Ballester-Bolínches, A., Esteban-Romero, R. & Asaad, M. 2010, Products of finite groups, Walter de Gruyter, Berlin.
10. Trofimuk, A.A. 2020, “On a product of two formational tcc-subgroups”, Algebra and Discrete Mathematics, vol. 30, no. 2, pp. 282-289.
11. Ballester-Bolínches, A. & Ezquerro, L. M. 2006, Classes of Finite Groups, Springer, Dordrecht.
12. Doerk, K. & Hawkes, T. 1992, Finite soluble groups, Walter de Gruyter, Berlin-New York.
13. Arroyo-Jorda, M., Arroyo-Jorda, P., Martinez-Pastor, A. & Perez-Ramos, M.D. 2014, “On conditional permutability and factorized groups”, Annali di Matematica Pura ed Applicata, vol. 193, pp. 1123-1138.
14. Skiba, A. N. 2007, “On weakly s-permutable subgroups of finite groups”, J. Algebra, vol. 315, pp. 192-209.
15. Groups, Algorithms, and Programming (GAP), Version 4.11.0. (2020). Available at http://www.gap-system.org (accessed 22 september 2020).