Two bright $z > 6$ quasars from VST ATLAS and a new method of optical plus mid-infra-red colour selection

Citation for published version:
Carnall, AC, Shanks, T, Chehade, B, Fumagalli, M, Rauch, M, Irwin, MJ, Gonzalez-Solares, E, Findlay, JR & Metcalfe, N 2015, 'Two bright $z > 6$ quasars from VST ATLAS and a new method of optical plus mid-infra-red colour selection', Monthly Notices of the Royal Astronomical Society: Letters, vol. 451, no. 1, pp. L16-L20. https://doi.org/10.1093/mnrasl/slv057

Digital Object Identifier (DOI):
10.1093/mnrasl/slv057

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Monthly Notices of the Royal Astronomical Society: Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Two bright $z > 6$ quasars from VST ATLAS and a new method of optical plus mid-infra-red colour selection

A. C. Carnall1, T. Shanks1, B. Chehade1, M. Fumagalli1,2, M. Rauch2, M. J. Irwin3, E. Gonzalez-Solares3, J. R. Findlay1,4 and N. Metcalfe1

1Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
2Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
3Institute of Astronomy, University of Cambridge, Madingley Rise, Cambridge, CB3 0HA, UK
4Department of Physics & Astronomy, University of Wyoming, 1000 E. University, Dept. 3905, Laramie, WY 82071, USA

Accepted YYYY Month DD. Received YYYY Month DD; in original form YYYY Month DD

ABSTRACT

We present the discovery of two $z > 6$ quasars, selected as i band dropouts in the VST ATLAS survey. Our first quasar has redshift, $z = 6.31 \pm 0.03$, z band magnitude, $z_{AB} = 19.63 \pm 0.08$ and rest frame 1450Å absolute magnitude, $M_{1450} = -27.8 \pm 0.2$, making it the joint second most luminous quasar known at $z > 6$. The second quasar has $z = 6.02 \pm 0.03$, $z_{AB} = 19.54 \pm 0.08$ and $M_{1450} = -27.0 \pm 0.1$. We also recover a $z = 5.86$ quasar discovered by Venemans et al. (2015, in prep.). To select our quasars we use a new 3D colour space, combining the ATLAS optical colours with mid-infra-red data from the Wide-field Infrared Survey Explorer (WISE). We use $i_{AB} - z_{AB}$ colour to exclude main sequence stars, galaxies and lower redshift quasars, $W1 - W2$ to exclude L dwarfs and $z_{AB} - W2$ to exclude T dwarfs. A restrictive set of colour cuts returns only our three high redshift quasars and no contaminants, albeit with a sample completeness of ~50%. We discuss how our 3D colour space can be used to reject the majority of contaminants from samples of bright $5.7 < z < 6.3$ quasars, replacing follow-up near-infra-red photometry, whilst retaining high completeness.

Key words: quasars: general - quasars: individual: ATLAS J025.6821-33.4627 - quasars: individual: ATLAS J029.9915-36.5658

1 INTRODUCTION

With the exception of transient events, bright quasars are the only objects luminous enough for high signal-to-noise ratio (SNR) spectra to be obtained out to very high redshifts. Such observations are key to our understanding of both the evolution of the intergalactic medium (IGM) during the epoch of reionization (e.g. Fan et al. 2006) and the growth of the first supermassive black holes.

The Lyman alpha (Lyα) forest observed in the spectra of quasars at moderate redshift ($z \approx 3$) arises from filaments of neutral hydrogen in the IGM. Models for reionization suggest that by $z \approx 6$, these filaments have started joining together to form a neutral IGM with high filling factor (e.g. Kuhlen & Faucher-Giguère 2012, Schroeder et al. 2013) resulting in the absorption of almost all flux at wavelengths blueward of Lyα in the quasar rest frame and causing the Gunn-Peterson troughs (Gunn & Peterson 1965) observed in the spectra of quasars at these redshifts.

Ionised regions at $z > 6$ are believed to be the direct result of photoionization by nearby AGN and star forming galaxies. Observations of these “bubbles” of ionised gas and the intervening neutral IGM, when illuminated by background quasars, can be used to probe the metallicity and ionised fraction of gas in the IGM, and in the vicinity of protogalaxies during the epoch of reionization. In the case of the current highest redshift known quasar, ULAS J1120+0641 at $z = 7.1$ (Mortlock et al. 2011), the gas in the vicinity of the object was shown to be significantly neutral and extremely metal poor (Simcoe et al. 2012, Finlator et al. 2013), providing a first glimpse of the formation processes influencing protogalaxies at $z \approx 7$, and of the evolution and enrichment of the IGM during reionization.

Furthermore, the apparent existence of $\sim 10^9 \text{M}_\odot$ black holes at this early point in cosmic history challenges our canonical pictures for the formation of black holes from accreting seeds, and the collapse of the dark matter haloes in which they reside. Two competing scenarios for mas-
sive black hole formation over such a short timescale exist (e.g. Haiman 2010). Firstly, the direct collapse of vast quantities of warm gas may take place, a scenario which would require very specific conditions for collapse in the early Universe. Secondly, the merger of many smaller black holes, formed from the first generation of population III stars may take place within deep potential wells due to massive dark matter haloes (\(\gtrsim 10^{12} \, M_\odot \)), potentially leading to an anti-hierarchical distribution of black hole masses (Volonteri & Rees 2006).

Future progress in these fields will require high resolution spectroscopy of larger samples of \(z \gtrsim 6 \) quasars. However, the spatial density of bright high redshift quasars is very low, with the luminosity function of Willett et al. (2010) predicting only \(\sim 110 \) \(z > 5.7 \) quasars with \(z_{AB} < 20.0 \) across the whole sky.

Conveniently, the sharp drop in flux blueward of Ly\(\alpha \) due to IGM absorption allows high redshift quasar candidates to be selected from wide field optical survey data as dropouts at all wavelengths shorter than the \(z \) band for redshifts \(5.7 < z < 6.5 \) and the \(Y \) band for objects with \(6.5 < z < 7.2 \). However candidate lists obtained using this method, pioneered by Fan et al. (2001) and later papers, Jiang et al. (2008, 2009) and Willott et al. (2007, 2009, 2010). These authors select objects with blue colours in \(z_{AB} - j \) to exclude L and T dwarfs.

Where near-infra-red photometry is available from survey data, a multidimensional colour space can be constructed without follow-up observations, e.g. by Fan et al. (2001) and later papers, Jiang et al. (2008, 2009) and Willett et al. (2007, 2009, 2010). These authors select objects with blue colours in \(z_{AB} - j \) to exclude L and T dwarfs.

\[z_{AB} < 20.0 \] high redshift quasars. In Section 3 we report the discovery of two bright quasars selected from VST ATLAS survey data. In Section 4 we discuss the utility of our selection method and how it can be more widely applied to select i band dropout quasars from optical survey data. We conclude and summarise our results in Section 5.

Throughout this paper, the following cosmological parameters are assumed: \(H_0 = 70 \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \Omega_M = 0.28 \) and \(\Omega_\Lambda = 0.72 \) (Komatsu et al. 2009). All magnitudes are quoted on the AB system except for WISE magnitudes, W1 (3.4 \(\mu \text{m}) \) and W2 (4.6 \(\mu \text{m}) \) which are on the Vega system.

2 CANDIDATE SELECTION

2.1 The VST ATLAS Survey

The Very Large Telescope Survey Telescope (VST) ATLAS survey is an optical ugriz survey on the 2.6m VST at Paranal, which aims to image \(\sim 5000 \) square degrees of the southern sky at similar depths to the Sloan Digital Sky Survey (SDSS) in the north. However VST ATLAS is deeper in the \(z \) band, with a mean 5\sigma limiting magnitude of 20.89 (as opposed to \(\sim 20.5 \) for SDSS), and also has considerably better seeing, with median seeing in the range \(\approx 0.5 – 1.0 \)\('' \) for all five bands (Shanks et al. 2012).

All VST ATLAS data is processed by the Cambridge Astronomical Survey Unit (CASU) and the calibrated images and single band catalogues made available to the consortium and the Wide Field Astronomy Unit (WFAU) in Edinburgh. WFAU then produce band merged catalogues, available through the Omegacam Science Archive (OSA).

![Figure 1. Colour diagram for separating dwarf stars from high redshift quasars. The shaded region denotes our selection criteria. L and T dwarfs are plotted in green and red respectively. The quasar trace based solely upon the SDSS composite is plotted in brown and the truncated, power law extended trace in black (see Section 2.1). Both have points at \(\Delta z = 0.1 \) intervals, starting from \(z = 5.7 \). The 13 published quasars with \(z > 5.7 \), \(z_{AB} < 20.0 \) and W1, W2 SNR > 3.0 are plotted in blue. The three high redshift quasars detected in VST ATLAS (Table 4) are plotted in pink.](attachment:image1.png)
Table 1. VST ATLAS and ALLWISE magnitudes for the three quasars selected from the VST ATLAS survey using the method described in Section 2. None of the objects are detected in the i band and 3σ limiting magnitudes are provided.

Quasar	Redshift	i (AB mag)	z (AB mag)	$W1$ (Vega mag)	$W2$ (Vega mag)
ATLAS J025.6821-33.4027	6.31 ± 0.03	>22.2	19.63 ± 0.06	16.12 ± 0.05	15.48 ± 0.09
ATLAS J029.9915-36.5658	6.02 ± 0.03	>22.7	19.54 ± 0.08	16.70 ± 0.08	15.87 ± 0.13
VIKINGKIDS J0328-3253	5.86 ± 0.03	>22.5	19.75 ± 0.12	16.90 ± 0.07	16.19 ± 0.13

2.2 Initial Criteria

For this paper we use the ATLASv20131029 proprietary release, including data up to 31st March 2013 and containing 2060 square degrees imaged in the i and z bands. To produce an initial list of i band dropout objects within this area from the WFAU band merged catalogue, we specified that objects must have:

(i) $18.0 < z_{AB} < 20.0$.
(ii) Point source classification in the CASU catalogue (see Chehade et al. 2015, in prep. for a discussion of the robustness of this classification), and no WFAU error flags.
(iii) No catalogued detection in the i band (the catalogue detection limit is 5σ) or $i_{AB} - z_{AB} > 2.2$.
(iv) No catalogued detection in the u, g or r bands.

The upper limit imposed by (i) is necessary in order to confirm dropout status for objects undetected in the i band, the 5σ i band detection limit for VST ATLAS being $i_{AB} = 22.0$.

The lower limit on magnitude imposed by (i) was based upon the prediction by the luminosity function of Willott et al. (2010) that the spatial density of $z > 5.7$, $z_{AB} < 18.0$ quasars is less than one per 10,000 square degrees, therefore none were expected in our search area.Criterion (iv) excludes a very small number of sources which are assumed to be either due to imperfections in the catalogue band merging process or poor i band data in some fields.

After imposing these criteria on the data set, 9,607 objects remained in our sample. In order to exclude any spurious z band detections polluting the sample, and to facilitate our subsequent WISE colour selection process the following steps were then implemented. Objects must have:

(v) A detection in the ALLWISE catalogue within 3".
(vi) SNR > 3.0 in W1 and W2, corresponding to mean mag limits at -35° declination of 17.9 in W1 and 17.0 in W2.

After these criteria had been implemented, 3,452 objects remained in our sample. A visual inspection of a random sample of these candidates revealed significant contamination by objects which were either misclassified as i band dropouts due to imperfections in the band merging process or which could not be confirmed as i band dropouts due to areas of poor i band data.

To reject these objects, it is necessary to inspect cutout images of every candidate, however our sample is also still contaminated by L and T dwarfs. Our intention was to reject dwarfs using optical plus mid-infra-red colour selection and it was likely that a significant proportion of the other contaminants would also be rejected by this process. It was therefore decided to apply our selection to remove dwarf stars before inspecting cutout images for the full sample.

2.3 Optical Plus mid-infra-red Selection

It has been well documented that quasars have redder colour in W1 - W2 than main sequence stars (e.g. Blain et al. 2012, Stern et al. 2012, Blain et al. 2013). L dwarf stars also have bluer W1 - W2 colours, which we can exploit to reject L dwarfs from i band dropout samples by a W1 - W2 colour cut. T dwarfs inhabit a temperature range for which the black body components of their spectra peak in the mid-infra-red, and also exhibit temperature dependent methane absorption in the W1 band, giving them a broad range of redder W1 - W2 colours. However these objects are very dim by comparison in the optical, allowing us to split them off from high redshift quasars up to $z \sim 6.3$ by their very red $z_{AB} - W2$ colour.

In order to define suitable colour cuts, we first collected catalogues of L and T dwarfs in order to assess the distribution of their colours. We obtained samples of dwarf stars from Burgasser et al. (2004), Scholz et al. (2009), Schmidt et al. (2010), Kirkpatrick et al. (2010), Reylé et al. (2010), Albert et al. (2011) and Kirkpatrick et al. (2014) and matched them with the ALLWISE catalogue.

To understand the distribution of high redshift quasars in colour space we obtained magnitudes for all 17 published quasars with $z > 5.7$, $z_{AB} < 20.0$ (Fan et al. 2006, Mortlock et al. 2009, Baines et al. 2014 and Wu et al. 2014). Of these, 13 have SNR greater than 3.0 in the W1 and W2 bands. We also produced a trace of the evolution of quasar colour with redshift by applying synthetic photometry to the median composite quasar spectrum of Vanden Berk et al. (2001) (hereafter the SDSS composite).

IGM Lyα absorption was modelled by applying the corrections proposed by Songaila (2004) between rest frame 1026Å and 1216Å. Flux blueward of Lyβ was assumed to be zero. The SDSS composite is known to be subject to greater host galaxy contamination at rest frame wavelengths above ~5000Å than is expected for highly luminous high redshift quasars. We attempted to mitigate this effect by truncating the SDSS composite at rest frame 4200Å and extending to longer wavelengths using the blue $\alpha_v = -0.44$ power law used to fit the SDSS composite bluewards of 5000Å. Figure 1 shows the W1 – W2 vs $z_{AB} - W2$ plane with the resulting trace plotted in black, along with the other data samples. A trace produced without truncation of the SDSS composite is shown in brown for comparison.

For this work, we defined a restrictive set of colour criteria based upon this information to select the best quasar candidates in our field. Our final criteria are as follows. Objects must have:

(vii) $0.55 < W1 - W2 < 1.2$
(viii) $3.2 < z_{AB} - W2 < 4.5$

These colour criteria are also shown in Figure 1. It was found that $W1 - W2$ colour greater than 0.55 is a good criterion for excluding L dwarf stars, and $z_{AB} - W2 < 4.5$ discriminates well between T dwarfs and high redshift quasars up to $z \sim 6.3$. The upper limit on $W1 - W2$ and the lower limit on $z_{AB} - W2$ were chosen so as to reject objects misclassified as i band dropouts and thus reduce the number of candidates to be visually checked, without rejecting objects with colours similar to high redshift quasars. It must be stressed that the colour selection shown in Figure 1 is only effective at selecting high redshift quasars if the sample being considered are all i band dropouts. The selection of Figure 1 alone is not enough to exclude extragalactic contaminants such as lower redshift quasars.

After applying (vii) and (viii), 200 objects remained within our selection criteria. Upon visual inspection using the CASU postage stamp browser, 197 of these were found to be either obvious misclassifications for which the i band detection had not been successfully associated with the z band detection, or areas of poor i band data where dropout status could not be confirmed. Magnitudes for the three remaining sources are given in Table 1. Of these sources, one was recognised as the only known $z > 5.7$, $z_{AB} < 20.0$ quasar in our search area, VIKINGKiDS J0328-3253 (Venemans et al. 2015, in prep.). As the luminosity function of Willett et al. (2010) predicts six $z > 5.7$, $z_{AB} < 20.0$ quasars within our search area, we decided to proceed to spectroscopic confirmation of the two remaining candidates.

3 TWO NEW Z > 6 QUASARS

3.1 Spectral Observations

We obtained long-slit spectra for our two candidates on the night of 16th January 2015 using the LDSS-3 instrument on the Magellan-II telescope at Las Campanas Observatory (observer M. Rauch). Exposures of 600s for each object were taken using the VPH RED grism and a 1.70 slit. The data obtained are shown in Figure 2. Both objects show a strong spectral peak in the near-infra-red which we identify as Lyα emission, and a break in continuum flux blueward of this point. We now discuss the features of each spectrum in turn.

3.2 ATLAS J025.6821-33.4627

This quasar exhibits a broad Lyα emission line from which we have estimated a redshift, $z = 6.31 \pm 0.03$. By scaling the template spectrum employed in Section 2.3 to the observed redshift and z band magnitude of the object we estimate it has $M_{1450} = -27.8 \pm 0.2$. This is the same as estimated for SDSS J1148+5251 by Fan et al. (2006), making this the joint second most luminous known $z > 6$ quasar, after SDSS J0100+2802 (Wu et al. 2012).

The spectrum exhibits a faint signal consistent with Lyβ, and an excess in transmission between 8700Å and 8800Å. This could indicate an ionised region close to the quasar, however near-infra-red spectroscopy is needed to better constrain the exact quasar redshift and hence the nature of any ionised regions.

3.3 ATLAS J029.9915-36.5658

For this quasar, we estimate a redshift of $z = 6.02 \pm 0.03$ based upon the position of the broad Lyα line. Following the same procedure as above, we estimate an absolute magnitude of $M_{1450} = -27.0 \pm 0.1$. There is a probable absorption feature superimposed on the Lyα emission line, as can also be observed in the spectra of several of the quasars first reported by B\u{n}ados et al. (2014).

4 DISCUSSION

In this work we have employed a restrictive set of colour criteria. This approach was chosen in order to prove the concept of our optical plus mid-infra-red selection method by reducing contamination to a very low level. Naturally this takes a toll on the completeness of the sample of high redshift quasars obtained. The luminosity function of Wilott et al. (2010) predicts six quasars with redshift $z > 5.7$ and z band magnitude $z_{AB} < 20.0$ over the 2060 square degrees of our search area. The confirmation of all three of our candidates as high redshift quasars confirms the extremely clean nature of our colour selection, and places the completeness of our sample at $\sim 50\%$. This is supported by the fact that 9 of the 17 published $z > 5.7$, $z_{AB} < 20.0$ quasars fall into our selection criteria, suggesting a completeness of $\sim 53\%$.

When considering how to extend our colour selection to obtain a more complete sample of quasars, it is instructive to analyse the location in colour space of the eight quasars which do not meet our selection criteria as plotted in Figure 1. Four quasars are not detected in the ALLWISE source catalogue within 3.7° with SNR above 3.0 in the W1 and W2 bands. A further two fall to the left of our selection box, with W1 - W2 colours of 0.38 and 0.44, closer to the distribution of L dwarf stars. Two other objects fall just above our selection box with $z_{AB} - W2 = 4.56$ and 4.69. Our selection criteria could be extended and coupled with follow-up observations in the optical to select a more complete population of bright $5.7 < z < 6.3$ quasars. A natural method for this would involve relaxing the lower bound on $W1 - W2$ and upper bound on $z_{AB} - W2$, then conducting follow-up i band observations to exclude L and T dwarfs within the extended selection region. This selection still results in the removal of the majority of L and T dwarfs, meaning a significant reduction in the number of candidate objects for which follow-up observations are required.

Our method has two limitations, the first of which is the requirement that candidates be bright enough in the mid-infra-red to appear in the W1 and W2 bands with a SNR greater than 3.0. Currently, this limits the usefulness of our method in selecting lower luminosity quasars, however ongoing and future deeper surveys in the mid-infra-red such as the Spitzer-IRAC Equatorial Survey (SpIES) and NEOWISE will soon allow this method to be applied to objects with lower intrinsic luminosities. Secondly the steep increase of the $z_{AB} - W2$ colour of quasars with redshift above $z \sim 6.2$ means we cannot select clean samples of quasars with $z > 6.3$ using our method. An analogous colour selection for higher redshift objects using $Y - W2$ colour fails to efficiently separate T dwarfs from high redshift quasars.

5 CONCLUSION

In summary we have proven the concept of a new method of optical plus mid-infra-red colour selection for $5.7 < z < 6.3$ quasars. Using a restrictive set of colour criteria we identified two candidates which were confirmed to be bright quasars at redshifts of 6.31 ± 0.03 and 6.02 ± 0.03, with $M_{1450} = -27.8 \pm 0.2$ and -27.0 ± 0.1 respectively. The former is the joint second most luminous known $z > 6$ quasar and both are well positioned for observation by powerful current and future Southern observatories. Our method allows selection of i band dropout quasars to proceed from optical catalogues with a significant reduction to the volume of follow-up observations by replacing Y or J band follow-up photometry with publicly available mid-infra-red WISE data.

ACKNOWLEDGMENTS

This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). This paper is based on observations obtained as part of the VST ATLAS Survey, ESO Program, 177.A-3011 (PI: Shanks). The UK STFC is acknowledged for postdoctoral support for J. R. Findlay, PhD studentship support for B. Chehade and for support for the Cambridge Astronomical Surveys Unit and the Wide-Field Astronomy Unit. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This paper also includes data gathered with the 6.5 metre Magellan Telescopes located at Las Campanas Observatory, Chile.

REFERENCES

Albert L. et al., 2011, AJ, 141, 203
Astropy Collaboration, 2013, A&A, 558, 33
Bañados E. et al., 2014, AJ, 148, 14
Blain A. W. et al., 2013, ApJ, 778, 113
Burgasser A. J. et al., 2004, AJ, 127, 2856
Fan X. et al., 2001, AJ, 122, 2833
Fan X. et al., 2006, AJ, 132, 117
Finlator et al., 2013, MNRAS, 436, 1818
Gunn & Peterson, 1965, ApJ, 142, 1633
Haiman Z., 2010, in American Institute of Physics Conference Series, Vol. 1294
Jiang L. et al., 2008, AJ, 135, 1057
Jiang L. et al., 2009, AJ, 138, 305
Kirkpatrick J. D. et al., 1999, ApJ, 519, 802
Kirkpatrick J. D. et al. 2010, MNRAS, 406, 1885
Kirkpatrick J. D. et al., 2011, ApJS, 197, 19
Komatsu E. et al., 2009, ApJS, 180, 330
Kuhlen M., Faucher-Giguère C.-A., 2012, MNRAS, 423, 862
Mortlock D. J. et al., 2009, A&A, 505, 97
Mortlock D. J. et al., 2011, Nature, 474, 616
Mortlock D. J. et al., 2012, A&A, MNRAS, 419, 390
Reylé C. et al., 2010, A&A, 2010, 522, 112
Schmidt S. J. et al., 2010, AJ, 139, 1808
Scholz R. D. et al., 2009, A&A, 494, 949
Schroeder J. et al., 2013, MNRAS, 428, 3058
Shanks, T et al., 2015, arXiv:1502.05432
Simcoe et al., 2012, Nature, 492, 79
Songaila A., 2004, AJ, 127, 2598
Stern D. et al., 2012, ApJ, 753, 30
Vanden Berk D. E. et al., 2001, AJ, 122, 549
Venemans B. P. et al., 2013, ApJ, 779, 24
Volonter M., Rees M. J., 2006, ApJ, 650, 669
Willott C. J. et al., 2007, AJ, 134, 2435
Willott C. J. et al., 2009, AJ, 137, 3541
Willott C. J. et al., 2010, AJ, 139, 906
Wright E. L. et al., 2010, AJ, 140, 1868
Wu X. -B. et al., 2015, Nature, 518, 512W