ON UNIVERSAL MINIMAL COMPACT G-SPACES

VLADIMIR USPENSKIJ

ABSTRACT. For every topological group G one can define the universal minimal compact G-space $X = M_G$ characterized by the following properties: (1) X has no proper closed G-invariant subsets; (2) for every compact G-space Y there exists a G-map $X \to Y$. If G is the group of all orientation-preserving homeomorphisms of the circle S^1, then M_G can be identified with S^1 (V. Pestov). We show that the circle cannot be replaced by the Hilbert cube or a compact manifold of dimension > 1. This answers a question of V. Pestov. Moreover, we prove that for every topological group G the action of G on M_G is not 3-transitive.

1. Introduction

With every topological group G one can associate the universal minimal compact G-space M_G. To define this object, recall some basic definitions. A G-space is a topological space X with a continuous action of G, that is, a map $G \times X \to X$ satisfying $g(hx) = (gh)x$ and $1x = x$ ($g, h \in G$, $x \in X$). A G-space X is minimal if it has no proper G-invariant closed subsets or, equivalently, if the orbit Gx is dense in X for every $x \in X$. A map $f : X \to Y$ between two G-spaces is G-equivariant, or a G-map for short, if $f(gx) = gf(x)$ for every $g \in G$ and $x \in X$.

All maps are assumed to be continuous, and ‘compact’ includes ‘Hausdorff’. The universal minimal compact G-space M_G is characterized by the following property: M_G is a minimal compact G-space, and for every compact minimal G-space X there exists a G-map of M_G onto X. Since Zorn’s lemma implies that every compact G-space has a minimal compact G-subspace, it follows that for every compact G-space X, minimal or not, there exist a G-map of M_G to X.

The existence of M_G is easy: consider the product of a representative family of compact minimal G-spaces, and take any minimal closed G-subspace of this product for M_G. It is also true that M_G is unique, in the sense that any two universal minimal compact G-spaces are isomorphic \cite{1}. For the reader’s convenience, we give a proof of this fact in the Appendix.

If G is locally compact, the action of G on M_G is free \cite{2} (see also \cite{3}, Theorem 3.1.1), that is, if $g \neq 1$, then $gx \neq x$ for every $x \in M_G$. On the other hand, M_G is a singleton for many naturally arising non-locally compact groups G. This property of G is equivalent to the following fixed point on compacta (f.p.c.) property: every compact G-space has a G-fixed point. (A point x is G-fixed if $gx = x$ for all $g \in G$.) For example, if H is a Hilbert space, the group $U(H)$ of all unitary operators on H, equipped with the pointwise convergence topology, has the f.p.c. property (Gromov

\textit{Date:} June 10, 2000.

\textit{2000 Mathematical Subject Classification.} Primary 22F05. Secondary 22A05, 22A15, 54D30, 54H15, 57S05, 57S25.

1
another example of a group with this property, due to Pestov, is $H_+(\mathbb{R})$, the group of all orientation-preserving self-homeomorphisms of the real line. We refer the reader to beautiful papers by V. Pestov [3, 4, 5] on this subject.

Let S^1 be a circle, and let $G = H(S^1)$ be the group of all orientation-preserving self-homeomorphisms of S^1. Then M_G can be identified with S^1, Theorem 6.6.

The question arises whether a similar assertion holds for the Hilbert cube Q. This question is due to V. Pestov, who writes in [3], Concluding Remarks, that his theorem “tends to suggest that the Hilbert cube I^ω might serve as the universal minimal flow for the group Homeo (I^ω)”.

The aim of the present paper is to answer this question in the negative. Let us say that the action of a group G on a G-space X is 3-transitive if $|X| \geq 3$ and for any triples (a_1, a_2, a_3) and (b_1, b_2, b_3) of distinct points in X there exists $g \in G$ such that $ga_i = b_i$, $i = 1, 2, 3$.

Theorem 1.1. For every topological group G the action of G on the universal minimal compact G-space M_G is not 3-transitive.

Since the action of $H(Q)$ on Q is 3-transitive, it follows that $M_G \neq Q$ for $G = H(Q)$. Similarly, if K is compact and G is a 3-transitive group of homeomorphisms of K, then $M_G \neq K$. This remark applies, for example, if K is a manifold of dimension > 1 or a Menger manifold and $G = H(K)$.

Question 1.2. Let $G = H(Q)$. Is M_G metrizable?

A similar question can be asked when Q is replaced by a compact manifold or a Menger manifold.

Let P be the pseudoarc (= the unique hereditarily indecomposable chainable continuum) and $G = H(P)$. The action of G on P is transitive but not 2-transitive, and the following question remains open:

Question 1.3. Let P be the pseudoarc and $G = H(P)$. Can M_G be identified with P?

2. Proof of the main theorem

The proof of Theorem 1.1 depends on the consideration of the space of maximal chains of closed sets. For a compact space K let $\text{Exp}K$ be the (compact) space of all non-empty closed subsets of K, equipped with the Vietoris topology. A subset $C \subset \text{Exp}K$ is a chain if for any $E, F \in C$ either $E \subset F$ or $F \subset E$. If $C \subset \text{Exp}K$ is a chain, so is the closure of C. It follows that every maximal chain is a closed subset of $\text{Exp}K$ and hence an element of $\text{Exp}\text{Exp}K$. Let $\Phi \subset \text{Exp}\text{Exp}K$ be the space of all maximal chains. Then Φ is closed in $\text{Exp}\text{Exp}K$ and hence compact. Let us sketch a proof. Clearly the closure of Φ consists of chains. Assume $C \in \text{Exp}\text{Exp}K$ is a non-maximal chain. We construct a neighbourhood \mathcal{U} of C in $\text{Exp}\text{Exp}K$ which is disjoint from Φ. One the following cases holds: (1) the first member of C has more than one point, or (2) the last member of C is not K, or (3) the chain C contains “big gaps”: there are $F_1, F_2 \in C$ such that $|F_2 \setminus F_1| \geq 2$ and for every
F ∈ C either F ⊂ F_1 or F_2 ⊂ F. For example, consider the third case (the first two cases are simpler). Find open sets U, V_1, V_2 in K with pairwise disjoint closures such that F_1 ⊂ U and F_2 meets both V_1 and V_2. Let \(\mathcal{W} = \{ D \in \text{Exp Exp} K : \) every member of \(D \) either is contained in \(U \) or meets both \(V_1 \) and \(V_2 \}. Then \(\mathcal{W} \) is a neighbourhood of \(C \) which does not meet \(\Phi \). Indeed, suppose \(D \in \mathcal{W} \cap \Phi \). Let \(E_1 \) be the largest member of \(D \) which is contained in \(\hat{U} \). Let \(E_2 \) be the smallest member of \(D \) which meets both \(V_1 \) and \(V_2 \). For every \(E \in D \) we have either \(E \subset E_1 \) or \(E \subset E \), and \(|E_2 \setminus E_1| \geq 2 \). Pick a point \(p \in E_2 \setminus E_1 \). The set \(E_1 \cup \{ p \} \) is comparable with every member of \(D \) but is not a member of \(D \). This contradicts the maximality of \(D \). We have proved that \(\Phi \) is compact.

Suppose \(G \) is a topological group and \(K \) is a compact \(G \)-space. Then the natural action of \(G \) on \(\text{Exp} \text{Exp} K \) is continuous, hence \(\text{Exp} \text{Exp} K \) is a compact \(G \)-space, and so is \(\text{Exp} \text{Exp} K \). Since the closed set \(\Phi \subset \text{Exp} \text{Exp} K \) is \(G \)-invariant, \(\Phi \) is a compact \(G \)-space, too.

Proposition 2.1. Let \(G \) be a topological group. Pick \(p \in M_G \), and let \(H = \{ g \in G : gp = p \} \) be the stabilizer of \(p \). There exists a maximal chain \(C \) of closed subsets of \(M_G \) such that \(C \) is \(H \)-invariant: if \(F \subset C \) and \(g \in H \), then \(gF \subset C \).

Note that members of an \(H \)-invariant chain need not be \(H \)-invariant.

Proof. Every compact \(G \)-space \(X \) has an \(H \)-invariant point. Indeed, there exists a \(G \)-map \(f : M_G \rightarrow X \), and since \(p \) is \(H \)-invariant, so is \(f(p) \in X \).

Let \(\Phi \subset \text{Exp} \text{Exp} M_G \) be the compact space of all maximal chains of closed subsets of \(M_G \). We saw that \(\Phi \) is a compact \(G \)-space. Thus \(\Phi \) has an \(H \)-invariant point. \(\square \)

Theorem 1.1 follows from Proposition 2.1.

Proof of Theorem 1.1. Assume that the action of \(G \) on \(X = M_G \) is 3-transitive. Pick \(p \in X \), and let \(H = \{ g \in G : gp = p \} \). According to Proposition 2.1, there exists an \(H \)-invariant maximal chain \(C \) of closed subsets of \(X \). The smallest member of \(C \) is an \(H \)-invariant singleton. Since \(G \) is 2-transitive on \(X \), the only \(H \)-invariant singleton is \(\{ p \} \). Thus \(\{ p \} \subset C \), and all members of \(C \) contain \(p \). Our definition of 3-transitivity implies that \(|X| \geq 3 \). Thus there exists \(F \subset C \) such that \(F \neq \{ p \} \) and \(F \neq X \). Pick \(a \in F \setminus \{ p \} \) and \(b \in X \setminus F \). The points \(p, a, b \) are all distinct. Since \(G \) is 3-transitive on \(X \), there exists \(g \in G \) such that \(gp = p \), \(ga = b \) and \(gb = a \). Since \(a \in F \) and \(b \notin F \), we have \(b = ga \in gF \) and \(a = gb \notin gF \). Thus \(a \in F \setminus gF \) and \(b \in gF \setminus F \), so \(F \) and \(gF \) are not comparable. On the other hand, the equality \(gp = p \) means that \(g \in H \). Since \(C \) is \(H \)-invariant and \(F \subset C \), we have \(gF \subset C \). Hence \(F \) and \(gF \) must be comparable, being members of the chain \(C \). We have arrived at a contradiction. \(\square \)

Example 2.2. Consider the group \(G = H_+(S^1) \) of all orientation-preserving self-homeomorphisms of the circle \(S^1 \). According to Pestov's result cited above, \(M_G = S^1 \). This example shows that the action of \(G \) on \(M_G \) can be 2-transitive. Pick \(p \in S^1 \), and let \(H \subset G \) be the stabilizer of \(p \). Proposition 2.1 implies that there must exist \(H \)-invariant maximal chains of closed subsets of \(S^1 \). It is easy to see that there are precisely two such chains. They consist of the singleton \(\{ p \} \), the whole circle and of all arcs that either "start at \(\hat{p} \)" or "end at \(\hat{p} \)", respectively.
Remark 2.3. Let P be the pseudoarc, and let $G = H(P)$. Pick a point $p \in P$, and let $H \subset G$ be the stabilizer of p. Then there exists an H-invariant maximal chain C of closed subsets of P. Namely, let C be the collection of all subcontinua $F \subset P$ such that $p \in F$. Since any two subcontinua of P are either disjoint or comparable, it follows that C is a chain. The chain C can be shown to be maximal, and it is obvious that C is H-invariant. Thus Proposition 2.4 does not contradict the conjecture that $M_G = P$. This observation motivates our question 1.3.

3. Appendix: Uniqueness of M_G

We sketch a proof of the uniqueness of M_G up to a G-isomorphism.

Let G be a topological group. The greatest ambit $X = \mathcal{S}(G)$ for G is a compact G-space with a distinguished point e such that for every pointed compact G-space (Y, e') there exists a unique G-morphism $f : X \to Y$ such that $f(e) = e'$. The greatest ambit is defined uniquely up to a G-isomorphism preserving distinguished points. We can take for $\mathcal{S}(G)$ the Samuel compactification of G equipped with the right uniformity, which is the compactification of G corresponding to the algebra of all bounded right uniformly continuous functions. The distinguished point is the unity of G. See [3, 4, 5] for more details.

The greatest ambit X has a natural structure of a left-topological semigroup. This means that there is an associative multiplication $(x, y) \mapsto xy$ on X (extending the original multiplication on G) such that for every $y \in X$ the self-map $x \mapsto xy$ of X is continuous. Let $x, y \in X$. There is a unique G-map $r_y : X \to X$ such that $r_y(e) = y$. Define $xy = r_y(x)$. If y is fixed, the map $x \mapsto xy$ is equal to r_y and hence is continuous. If $y, z \in X$, the self-maps $r_x r_y$ and $r_y z$ of X are equal, since both are G-maps sending e to $y z = r_z(y)$. This means that the multiplication on X is associative. The distinguished element $e \in X$ is the unity of X: we have $e x = r_x(e) = x$ and $x e = r_e(x) = x$. If $g \in G$ and $x \in X$, the expression $g x$ can be understood in two ways: in the sense of the exterior action of G on X and as a product in X; these two meanings agree. If $f : X \to X$ is a G-self-map and $a = f(e)$, then $f(x) = f(x e) = x f(e) = x a = r_a(x)$ for all $x \in X$. Thus the semigroup of all G-self-maps of X coincides with the semigroup $\{r_y : y \in X\}$ of all right multiplications.

A subset $I \subset X$ is a left ideal if $XI \subset I$. Closed G-subspaces of X are the same as closed left ideals of X. An element x of a semigroup is an idempotent if $x^2 = x$. Every closed G-subspace of X, being a left ideal, is moreover a left-topological compact semigroup and hence contains an idempotent, according to the following fundamental result of R. Ellis (see [3], Proposition 2.1 or [2], Theorem 3.11):

Theorem 3.1. Every non-empty compact left-topological semigroup K contains an idempotent.

Proof. Zorn’s lemma implies that there exists a minimal element Y in the set of all closed non-empty subsemigroups of K. Fix $a \in Y$. We claim that $a^2 = a$ (and hence Y is a singleton). The set $Y a$, being a closed subsemigroup of Y, is equal to Y. It follows that the closed subsemigroup $Z = \{x \in Y : xa = a\}$ is non-empty. Hence $Z = Y$ and $xa = a$ for every $x \in Y$. In particular, $a^2 = a$. \qed
Let M be a minimal closed left ideal of X. We have just proved that there is an idempotent $p \in M$. Since Xp is a closed left ideal contained in M, we have $Xp = M$. Thus the G-map $r_p : X \to M$ defined by $r_p(x) = xp$ is a retraction of X onto M. In particular, $xp = x$ for every $x \in M$.

Proposition 3.2. Every G-map $f : M \to M$ has the form $f(x) = xy$ for some $y \in M$.

Proof. The composition $h = fr_p : X \to M$ is a G-map of X into itself, hence it has the form $h = r_y$, where $y = h(e) \in M$. Since $r_p \upharpoonright M = \text{Id}$, we have $f = h \upharpoonright M = r_y \upharpoonright M$.

Proposition 3.3. Every G-map $f : M \to M$ is bijective.

Proof. According to Proposition 3.2, there is $a \in M$ such that $f(x) = xa$ for all $x \in M$. Since Ma is a compact G-space contained in M, we have $Ma = M$ by the minimality of M. Thus there exists $b \in M$ such that $ba = p$. Let $g : M \to M$ be the G-map defined by $g(x) = xb$. Then $fg(x) = xba = xp = x$ for every $x \in M$, therefore $fg = 1$ (the identity map of M). We have proved that in the semigroup S of all G-self-maps of M, every element has a right inverse. Hence S is a group. (Alternatively, we first deduce from the equality $fg = 1$ that all elements of S are surjective and then, applying this to g, we see that f is also injective.)

We are now in a position to prove that every universal compact minimal G-space is isomorphic to M. First note that the minimal compact G-space M is itself universal: if Y is any compact G-space, there exists a G-map of the greatest ambit X to Y, and its restriction to M is a G-map of M to Y. Now let M' be another universal compact minimal G-space. There exist G-maps $f : M \to M'$ and $g : M' \to M$. Since M' is minimal, f is surjective. On the other hand, in virtue of Proposition 3.3 the composition $gf : M \to M$ is bijective. It follows that f is injective and hence a G-isomorphism between M and M'.

References

[1] J. Auslander, *Minimal Flows and Their Extensions*, North-Holland Mathematics Studies **153**, North-Holland, Amsterdam–NY–London–Tokyo, 1988.

[2] J.F. Berghun, H.D. Junghenn and P. Milnes, *Analysis on Semigroups*, John Wiley, New York et al., 1989.

[3] V.G. Pestov, *On free actions, minimal flows, and a problem by Ellis*, Trans. Amer. Math. Soc. **350** (1998), 4149-4165.

[4] V. Pestov, *Some universal constructions in abstract topological dynamics*, in: Topological Dynamics and its Applications. A Volume in Honor of Robert Ellis, Contemp. Math. **215** (1998), 83–99; e-print available at http://front.math.ucdavis.edu/func-an/9705003

[5] V. Pestov, *Topological groups: Where to from here?*, e-print available at http://xxx.lanl.gov/abs/math.GN/9910144

[6] W.A.F. Ruppert *Compact Semitopological Semigroups: An Intrinsic Theory*, Lecture Notes in Mathematics, Vol. **1079**, Springer, 1984.

[7] W.A. Veech, *Topological dynamics*, Bull. Amer. Math. Soc. **83** (1977), 775-830.

Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701, USA

E-mail address: uspensk@bing.math.ohiou.edu