Wide Grain 3, a GRAS Protein, Interacts with DLT to Regulate Grain Size and Brassinosteroid Signaling in Rice

Weilan Chen†, Xiaoling Hu†, Li Hu†, Xinyue Hou†, Zhengyan Xu†, Fanmin Yang†, Min Yuan†, Feifan Chen†, Yuxiao Wang†, Bin Tu†, Ting Li†, Liangzhu Kang†, Shiwen Tang†, Bingtian Ma†, Yuping Wang†, Shigui Li†, Peng Qin†* and Hua Yuan†*

Abstract

Background: Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown.

Findings: We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weight. Cytological analysis showed that WG3 regulates grain size by affecting cell proliferation. MutMap-based gene cloning and a transgenic experiment demonstrated that WG3 encodes a GRAS protein. Moreover, we found that WG3 directly interacts with DWARF AND LOW-TILLERING (DLT), a previously reported GRAS protein, and a genetic experiment demonstrated that WG3 and DLT function in a common pathway to regulate grain size. Additionally, a brassinosteroid (BR) sensitivity test suggested that WG3 has a positive role in BR signaling in rice. Collectively, our results reveal a new genetic and molecular mechanism for the regulation of grain size in rice by the WG3-DLT complex, and highlight the important functions of the GRAS protein complex in plants.

Conclusion: WG3 functions directly in regulating grain size and BR signaling in rice.

Keywords: Rice, Grain size, WG3, DLT, GRAS, Brassinosteroid signaling

Findings

Rice (*Oryza sativa* L.) is a staple food for more than half of the world’s population, and thus increasing rice yield is an important way to ensure food security. Grain size, including grain length, width, and thickness, is a direct determinant of grain weight and yield in rice and an important target trait for breeding selection (Xing et al. 2010; Zuo et al. 2014; Zhao et al. 2022). In recent years, numerous genes related to grain size have been identified. These genes are involved in different regulatory pathways, including G protein signaling pathway, ubiquitin-proteasome degradation pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and as phytohormones, and transcriptional regulators (Zuo et al.
GRAS protein, named from the first three identified members, GIBBERELLIC ACID INSENSITIVE (GAI), REPRESSOR of GAI (RGA), and SCARECROW (SCR) (Pysh et al. 1999), is a large plant-specific gene family. GRAS proteins have a highly conserved C-terminal region, also known as the GRAS domain, and a variable N-terminal region (Pysh et al. 1999), which may confer functional versatility (Sun et al. 2012). GRAS proteins are involved in a variety of biological processes, including gibberellin and BR signal transduction (Ikeda et al. 2003; Chen et al. 2013), nodulation signaling pathway (Oldroyd et al. 2003), plant growth and development (Li et al. 2010; Xu et al. 2015; Vleesschauwer et al. 2016; Wang et al. 2021; Lu et al. 2022). A total of 60 GRAS members have been identified in rice (Liu et al. 2014), but only a few have been functionally characterized. For instance, SLENDER RICE 1 (SLR1) and SLR1-like1 (SLRL1) are negative regulators of gibberellin signaling (Ikeda et al. 2001; Itoh et al. 2005); DWARF AND LOW-TILLERING (DLT)/GRAIN SIZE 6 (GS6) positively regulates brassinosteroid (BR) signaling but negatively regulates grain width in rice (Tong et al. 2009; Sun et al. 2013); NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 regulate strigolactone biosynthesis in rice (Liu et al. 2011); MONOCULM 1 (MOC1) positively controls rice tillering (Li et al. 2003); OsGRAS23 positively modulates rice drought tolerance (Xu et al. 2015); and OsSCL7/OsGRAS19 has positive roles in BR signaling and disease resistance in rice (Chen et al. 2013; Lu et al. 2022). However, the functions of GRAS proteins in regulating plant growth and development, especially grain size in rice, are still largely unknown.

In this study, we identified a wide grain 3 (wg3) mutant from the ethyl methanesulfonate mutant library of the indica restorer line Shuhui 498 (R498) (Fig. 1a). Compared with R498, the grain width of wg3 significantly increased by 14.65%, and although the grain length was slightly but significantly decreased, the final 1000-grain weight was increased (Fig. 1b-e). In general, grain size is coordinately controlled by cell proliferation and cell expansion in the spikelet hull (Li et al. 2018). We investigated the cell size and number in spikelet hulls by paraffin section, and found that the cell size in wg3 was not significantly different compared with R498, but the cell number in the transverse direction was significantly increased in wg3 (Fig. 1f-l). Additionally, we compared the expression levels of 26 cell-cycle related genes between R498 and wg3, including 18 putatively involved in the G1/S phase and eight in the G2/M phase, and found that most of the genes involved in the G1/S phase were significantly up-regulated in the wg3 mutant (Additional file 1: Figure S1). These results indicated that WG3 regulates grain size by affecting cell proliferation.

To identify the causal gene responsible for wide grains of wg3 mutants, we generated an F2 population by crossing wg3 with its wild-type plant R498. There were 86 plants with wide grains, and 325 plants with normal grains, conforming to a 1:3 segregation ratio \((\chi^2 = 3.43 < \chi^2_{0.05(1)} = 3.84) \) (Additional file 1: Figure S2a), indicating that one recessive locus was responsible for the wide grains of wg3. We then identified the wg3 mutation using the MutMap strategy (Abe et al. 2012). Two mutation sites with Euclidean distance (ED) of 4 were identified by alignment with the reference genome *Nipponbare*; however, mutation 2 (M2) was not different between the normal grain and wide grain bulks, and only M1 located in the coding region of LOC_Os03g51330 were co-regulated with the wide grain phenotype (Additional file 1: Figure S2b-d); M1 leads to a stop codon (Fig. 1 m; Additional file 1: Figure S3). LOC_Os03g51330, encoding a GRAS protein, has a relatively high expression level in developing young panicles (Fig. 1 m; Additional file 1: Figure S4). Therefore, mutation in LOC_Os03g51330 was likely responsible for the wide grain of wg3, hereafter, LOC_Os03g51330 was named WG3.

To further confirm the function of WG3, we generated knockout (KO) mutants of WG3 in the *japonica* cultivar Zhonghua 11 (ZH11) background using the CRISPR/Cas9 genome editing system (Ma et al. 2015). Three independent homozygous WG3-KO lines were obtained (Fig. 1 m, n), and all the KO lines harbored a truncated protein of WG3 without the conserved GRAS domain (Additional file 1: Figure S3). As expected, WG3-KO lines showed significantly increased grain width and 1000-grain weight, though the grain length showed no significant difference (Fig. 1o-r). Taken together, these results demonstrated that WG3 is essential in regulating grain size and grain weight in rice.

In addition to grain size, we noted that both wg3 mutant and WG3-KO lines showed other phenotypic differences, including decreased plant height, tiller number, panicle length, and seed setting rate (Additional file 1: Table S1), which are reminiscent of the phenotypes in the *dlt* mutant (Tong et al. 2009). Considering that GRAS proteins can function as heterodimers (Cui et al. 2007; Hirsch et al. 2009), we wondered whether these two GRAS proteins, WG3 and DLT, could also form a complex. To test this hypothesis, we performed a bimolecular fluorescence complementation (BiFC) assay, and observed unambiguous nuclear localization of YFP fluorescence signals when WG3-YFP\(^C\) was co-expressed with DLT-YFP\(^N\) in leaf epidermal cells of *Nicotiana*.
Fig. 1 WG3 regulates grain width by affecting cell proliferation in rice. (A) Plant architecture of R498 and wg3 at the mature stage. Scale bar, 10 cm. (B) Comparison of grain width between R498 and wg3. Scale bar, 3 mm. (C-E) Statistical analysis of grain width (C), grain length (D), and 1000-grain weight (E) between R498 and wg3. The position of the cross-section is indicated by a black dotted line in F. Scale bars, 3 mm. (G, H) Cross-sections of the spikelet hulls of R498 and wg3. Scale bars, 200 μm. (I-J) Magnified views of the cross-section boxes in G and H. Scale bars, 50 μm. (K, L) Comparison of cell area (K) and cell number (L) in the outer parenchyma layer. (M) Schematic diagram of the WG3 gene, and alignment of WG3 sequences between ZH11 and WG3-KO mutants. The GRAS domain, knockout target site, and the mutation site in wg3 are shown. The PAM sequences are highlighted in red and the target sequences are highlighted in blue. (N) Plant architecture of ZH11 and WG3-KO mutants at the mature stage. Scale bar, 10 cm. (O) Comparison of grain width between ZH11 and WG3-KO mutants. Scale bar, 3 mm. (P-R) Statistical analysis of grain width (P), grain length (Q), and 1000-grain weight (R) between ZH11 and WG3-KO mutants. Data are given as means ± SD (n = 3 replicates, and each replicate contained five plants in (C-E); n = 20 in (K, L), n = 6 plants in (P-R)). Significant differences between wild type and corresponding mutants (*P < 0.05 and **P < 0.01) were determined using a Student's t-test.
benthamiana (Fig. 2a), indicating that WG3 can interact with DLT in plant cells.

Coincidentally, we identified another mutant with phenotypes similar to those of wg3 in the same R498 mutant library, including decreased plant height and tiller number, and increased grain width and 1000-grain weight (Additional file 1: Figure S5a-e), but which was not allelic to wg3. MutMap and co-separation analysis demonstrated that a 50-bp deletion located in the exon of DLT (LOC_Os06g03710), which led to a premature stop code and truncated GRAS domain (Additional file 1: Figure S5f-i), was responsible for these phenotypes. Thereafter, we named this mutant dlt. To further analyze the genetic relationship between WG3 and DLT, we generated a
double mutant, \textit{wg3/dlt}, by crossing \textit{wg3} with \textit{dlt} single mutant (Fig. 2b). The phenotypes of the double mutant, including plant architecture and grain size, were indistinguishable from those in \textit{wg3} and \textit{dlt} single mutants (Fig. 2b-f; Additional file 1: Figure S6). These results suggested that \textit{WG3} and \textit{DLT} function in a common genetic pathway to regulate plant architecture and grain size in rice.

Considering that \textit{DLT} is a positive regulator of \textit{BR} signaling (Tong et al. 2009), and \textit{WG3} functions in a common pathway with \textit{DLT} (Fig. 2b-f), we performed a \textit{BR}-induced lamina inclination assay to investigate whether \textit{WG3} is involved in \textit{BR} signaling in rice. As expected, the lamina joint angle of wild-type \textit{R498} was significantly increased with 24-epibrassinolide (24-epiBL) treatment in a dose-dependent manner, however, the \textit{wg3} mutant showed greatly reduced sensitivity to 24-epiBL treatment (Fig. 2g-h). It is well known that \textit{BR}-signaling related mutants usually initiate feedback regulation of \textit{BR} biosynthetic genes (Tong et al. 2009; Yuan et al. 2017, 2022). Because of this, we investigated the expression levels of four \textit{BR} biosynthetic genes in the young panicles of \textit{R498} and \textit{wg3}, and found that two of them (\textit{OsDWARF} and \textit{OsDWARF4}) were significantly up-regulated in \textit{wg3} (Fig. 2i). This indicated that the feedback regulation of \textit{BR} biosynthesis genes was activated in \textit{wg3} plants. These results suggested that \textit{WG3} is positively involved in \textit{BR} signaling in rice.

Taken together, we identified a new grain size related gene, \textit{WG3}, which encodes a \textit{GRAS} protein. \textit{WG3} regulates grain size by affecting cell proliferation. Importantly, \textit{WG3} directly interacts with \textit{DLT}, and they regulate grain size in a common genetic pathway. Additionally, \textit{WG3} positively participates in \textit{BR} signaling in rice. Thus, our results highlight the important roles of the \textit{GRAS} protein complex in regulation of grain size and \textit{BR} signaling in rice.

Abbreviations

Abbreviation	Description
\textit{WG3}	Wide Grain 3
\textit{DLT}	Dwarf and low-tillering
\textit{R498}	Shuhua 498
ZH11	Zhonghua 11
\textit{MAPK}	Mitogen-activated protein kinase
BR	Brassinosteroid
\textit{CRISPR}	Clustered regularly interspaced short palindromic repeats
\textit{KO}	Knockout
\textit{BiFC}	Bimolecular fluorescence complementation
\textit{YFP}	Yellow fluorescent protein
24-epiBL	24-epibrassinolide

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12284-022-00601-4.

Additional file 2: Materials and Methods.

Acknowledgements

This work was supported by the High-Performance Computing Platform of Sichuan Agricultural University.

Author contributions

WC and HY conceived the experiments and wrote the manuscript. WC, XLH, LH, XYH, ZX, and FY performed most of the experiments. MY, FC, and YXW performed cytological analysis and gene mapping. BT, TL, LK, ST, BM, and LH, XYH, ZX, and FYW participated in construction of plant materials and agronomic trait investigation. SL and PQ supervised the study and revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (32001489) and the Natural Science Foundation of Sichuan Province (2022NSFSC0157).

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 22 September 2022 / Accepted: 9 October 2022

Published online: 03 November 2022

References

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

Chen X, Xiong G, Cui XY, Yan M, Xu T, Qian Q, Xue Y, Li J, Wang Y (2013) OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. Mol Plant 6:988–991

Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Bilou I, Scheres B, Benley PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

De Vleesschauwer D, Seifi HS, Filipe O, Haeck A, Huu SN, Demeestere K, Hofte M (2016) The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice. Plant Physiol 170:1831–1847

Fan Y, Li Y (2019) Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Mol Breed 39:163

Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557

of the \textit{wg3} mutant using the MutMap strategy. Figure S3. Alignment of the amino acid sequences of \textit{WG3} from WT and mutants. Figure S4. Expression pattern analysis of \textit{WG3}. Figure S5. A dlt mutant was identified from the \textit{R498} mutant library using the MutMap strategy. Figure S6. Plant architecture related traits of \textit{R498}, \textit{wg3}, \textit{dlt}, and \textit{wg3/dlt} plants. Table S1. Agronomic traits of \textit{R498}, \textit{wg3}, ZH11, and \textit{WG3-KO} mutants. Table S2. Primers used for qRT–PCR analysis in this study. Table S3. Primers used for PCR amplification and plasmid construction.

Additional file 1: Figure S1. Comparison of the expression levels of cell-cycle related genes in young panicles of \textit{R498} and \textit{wg3} by qRT–PCR. Figure S2. Identification of the causal gene responsible for wide grains.
Hughes TE, Langdale JA (2022) SCARECROW is deployed in distinct contexts during rice and maize leaf development. Development 149
Ikeda A, Ueguchi-Tanaka M, Kamiya N, Hasegawa Y, Ashikari M, Matsuoka M (2005) Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Plant J 44:669–679
Li GM, Tang JY, Zheng JK, Chu CC (2022) Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J 9:577–589
Li N, Xu R, Duan P, Li Y (2018) Control of grain size in rice. Plant Reprod 31:237–251
Li N, Xu R, Li Y (2019) Molecular Networks of Seed Size Control in Plants. Annu Rev Plant Biol 70:435–463
Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621
Li X, Ma S, Zhao Q, Lv D, Wang B, Xiao K, Zhu J, Li S, Yang W, Liu X, Wang H, Zhou H, Chen R (2021b) ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize. J Integr Plant Biol 63:2031–2037
Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865
Liu X, Widmer A (2014) Genome-wide Comparative Analysis of the GRAS Gene Family in Populus, Arabidopsis and Rice. Plant Mol Biol Rep 32:1129–1145
Lu L, Diao Z, Yang D, Wang X, Zheng X, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621
Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y-G (2015) A Robust CRISPR/Cas9 System for Convenient, High- Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Mol Plant 8:1274–1284
Oldroyd GED, Long SR (2003) Identification and Characterization of Nodulation-Signaling Pathway 2, a Gene of Medicago truncatula Involved in Nod Factor Signaling. Plant Physiol 131:1027–1032
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-like genes. Plant J 18:111–119
Sun L, Li X, Fu Y, Zhu Z, Alan T, Li F, Sun X, Sun X, Sun C (2013) GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol 55:938–949
Sun X, Jones WT, Rikkerink EH (2012) GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem J 442:1–12
Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816
Wang Z, Wong DCJ, Wang Y, Xu G, Ren C, Liu Y, Xu G, Fan P, Li S, Xin H, Liang Z (2021) GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiol 186:1660–1678
Xie J, Xiao H, Wang X, Zhang X, Ni J, Li Y, Tian W, Sang X (2019) OBL/OsGRAS-32, regulating leaf width and thickness by controlling cell number in Oryza sativa. Mol Breed 39:104
Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442
Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141
Yuan H, Fan S, Huang J, Zhan S, Wang S, Gao P, Chen W, Tu B, Ma B, Wang Y, Qin P, Li S (2017) 0BSG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice. Rice (N Y) 10:25
Yuan H, Xu Z, Chen W, Deng C, Liu Y, Yuan M, Gao P, Shi H, Tu B, Li T, Kang L, Ma B, Wang Y, Wang J, Chen X, Li S, Qin P (2022) OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. J Exp Bot 73:5529–5542
Zhao D, Zhang C, Li Q, Liu Q (2022) Genetic control of grain appearance quality in rice. Biotechnol Adv 60:108014
Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.