Assessment of the biological effect of metal ions and their complexes using *Allium cepa* and *Artemia salina* assays: a possible environmental implementation of biological inorganic chemistry

Chrysoula S. Tzima¹ · Christina N. Banti¹ · Sotiris K. Hadjikakou¹,²

Received: 11 April 2022 / Accepted: 4 September 2022 / Published online: 23 September 2022
© The Author(s) 2022

Abstract
The pollution of aquatic ecosystems due to the elevated concentration of a variety of contaminants, such as metal ions, poses a threat to humankind, as these ecosystems are in high relevance with human activities and survivability. The exposure in heavy metal ions is responsible for many severe chronic and pathogenic diseases and some types of cancer as well. Metal ions of the groups 11 (Cu, Ag, Au), 12 (Zn, Cd, Hg), 14 (Sn, Pb) and 15 (Sb, Bi) highly interfere with proteins leading to DNA damage and oxidative stress. While, the detection of these contaminants is mainly based on physicochemical analysis, the chemical determination, however, is deemed ineffective in some cases because of their complex nature. The development of biological models for the evaluation of the presence of metal ions is an attractive solution, which provides more insights regarding their effects. The present work critically reviews the reports published regarding the toxicity assessment of heavy metal ions through *Allium cepa* and *Artemia salina* assays. The in vivo toxicity of the agents is not only dose depended, but it is also strongly affected by their ligand type. However, there is no comprehensive study which compares the biological effect of chemical agents against *Allium cepa* and *Artemia salina*. Reports that include metal ions and complexes interaction with either *Allium cepa* or *Artemia salina* bio-indicators are included in the review.

Christina N. Banti
cbanti@uoi.gr

Sotiris K. Hadjikakou
shadjika@uoi.gr

¹ Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

² Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
Keywords Environmental biological inorganic chemistry · Allium cepa · Artemia salina · Metal complexes · Metal ions

Abbreviations

Abbreviation	Full Form
%MIA	% Mitotic Index Alteration
2,3BTSTCH2	Thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone)
AdNH2	Amantadine
aphaOEt	2-Acetylpyridine ethyl hydrazinocacetate hydrochloride
bipy	2,2-Bipyridine
BzimetTSCH	1-(1H-Benzimidazol-2-yl)ethan-1-one thiosemicarbazone
CA	Chromosomal abnormalities
CAH	Cholic acid
CIPH	Ciprofloxacin
dapha(OEt)2	2,6-Diacetylpyridine ethyl hydrazinocacetate hydrochloride
FAO	Food and Agriculture Organization of the United Nations
GlyH	Glycine
H2Am4DH	2-Pyridineformamide thiosemicarbazone
H2Am4Et	N(4)-Ethyl-2-pyridineformamide thiosemicarbazone
H2Am4Me	N(4)-Methyl-2-pyridineformamide thiosemicarbazone
H2Am4P	N(4)-Phenyl-2-pyridineformamide thiosemicarbazone
H2mna	2-Mercapto-nicotinic acid
INH	Isoniazid
LC50	Lethal Concentration (mM) that eliminates the 50% of the nauplii
LD50	Lethal Dose (mg/mL) that eliminates the 50% of the nauplii
Me2DTC	Dimethyldithiocarbamate
MI	Mitotic index
MMI	2-Mercapto-1-methyl-imidazole
MN	Micronucleus
NA	Nuclear abnormalities
NCS	N-Chlorosuccinimide
NMP	N-Methyl pyrrolidone
ORLE	Extract from oregano leaves
PenH	Penicillin G
phen	1,10-Phenanthroline
salH2	Salicylic acid
SCP	Sulfachloropyridazine
SDM	Sulfadimetoxine
SMX	Sulfamoxole
TPP	Triphenylphosphate
valp	Valproic acid
WHO	World Health Organization
Introduction

Although some metal trace elements are essential for life, playing an important role e.g., in transportation and signaling between cells, however, metal ions, such as Cd, Pb, As, Cr and Hg, is considered as hazardous to the health even at low concentration [1, 2]. The toxicity of heavy metals is emerged from their ability to inhibit enzymes, cause oxidative stress and suppress the antioxidant mechanisms, leading to DNA damage [2]. Moreover, the heavy metals impair the function of the nervous system causing Alzheimer’s disease and neuronal disorders [1]. Chronic inflammatory diseases and cancer are some of the most well-known pathogenic effects of heavy metals in humans [2]. Ni and its compounds may cause respiratory cancer, inhalation disorders, dermatitis and reproductive problems [3]. Extended exposure to Ni leads to genotoxic and epigenetic changes, rendering Ni a possible carcinogenic agent [3]. Pb mainly induces oxidative stress and renin–angiotensin system stimulation [1]. It may disrupt the normal regulation of heart’s autonomic nerve, provoking many heart diseases, such as hypertension, coronary heart disease, stroke and peripheral arterial disease [1]. In addition, its presence has been linked with erythropoiesis and heme biosynthesis problems, anemia and some cancer types [1]. Cd is also carcinogenic and affects kidneys, bone metabolism and reproductive and endocrine systems [1]. Cd’s ability to activate calmodulin results in muscle dysfunctions and diseases like Itai-Itai disease and renal tubular dysfunction [1]. Moreover, Hg binds to enzymes and proteins, causing pneumonitis, non-cardiogenic pulmonary edema and acute respiratory distress [1]. It is considered to be an extremely hazardous element, because of its ability to cross the blood–brain barrier [1]. Methylmercury is a known neurotoxin [1]. Minamata disease is one of the diseases caused by Hg [1].

Humans are exposed to heavy metals mainly through food, cosmetic products, automobiles, radiation and effluents from a variety of industries [4]. The effort to restrict the exposure, the intake and the absorption of heavy metals by humans led the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO) and European Union (EU) to the establishment of guidelines regarding their concentration in food [5], drinking water [6] and water for irrigation purposes [7]. Especially the contamination of the environment due to heavy metals is a severe problem with which humankind has to deal [8]. Thus, the monitoring and the assessment of heavy metals in ecosystems is considered essential to manage the pollution they cause [8]. Since complexes formation of metal ions with ligands change the metal adsorption, bioavailability, bioaccumulation, toxicity behavior, etc. of free metal ions, the evaluation of metal complexes in ecosystems is also a research, technological and financial issue of great importance [9].

The most common way to detect the presence of heavy metals is the use of physicochemical analysis of water or sediment samples [10]. However, due to the complex nature of environmental wastes, a short-term toxicity based bioassays may increase the efficiency of the chemical analytical techniques [10, 11]. Biological systems are important indicators of aquatic pollution in combination with the pre-mentioned characterizations [10]. Therefore, biological assays, such as *Allium cepa* and *Artemia salina* assays, were already used for detecting the genotoxicity [12, 13]. *Allium cepa* assay has been standardized by the United Nations Environment Program and the Environmental Protection Agency’s (EPA) international programs as bio-indicator for the risk assessment of heavy metals ions contamination and the determination of their genotoxicity [14, 15]. *A. cepa* assay enables the detection of different genetic endpoints for the cytotoxic, genotoxic, clastogenic and aneugenic effects of toxic substances [12]. The Mitotic index (MI), chromosomal abnormalities (CA), nuclear abnormalities (NA) frequencies and micronucleus (MN) can be used as indicators to assess the cytotoxicity of several agents [12]. *Artemia salina* is a zooplanktonic crustacean [13] and it can be found in a variety of seawater systems [13]. *A. salina* interacts with the aquatic environment and faces high risk exposure to contaminants [13]. For the toxicological evaluation, endpoints can be used, such as hatching, mortality, swimming, morphology and biomarkers [13]. Moreover, nauplii of the brine shrimp have been considered a simple and suitable model system for acute toxicity tests [13].

Within this review, the reports on the assessment of the biological effect of metal ions and their complexes using the *Allium cepa* and *Artemia salina* assays are critically discussed. Reports that include metal ions and complexes interaction with either *Allium cepa* or *Artemia salina* bio-indicators are included in the review. Metal ions of the groups 11 (Cu, Ag, Au), 12 (Zn, Cd, Hg), 14 (Sn, Pb) and 15 (Sb, Bi), was selected during the literature search. Therefore, all works published on this subject were included to the best of our knowledge.

Results and discussion

Allium cepa assay

The need for in vivo sensitive tools for toxicity monitoring is increasing and experimental models, besides animals, are becoming popular. *A. cepa* exhibits many similarities with the mammalian test models [13]. The assay based on this plant is useful for the detection and the evaluation of the
effects or the presence of a contaminant, such as metal ions [13]. The influence of such contaminants on the MI and the DNA damage (CA, NA, MN) is estimated after the 24 h or 48 h exposure of A. cepa roots in different concentrations of the contaminant [13].

This review examines the effects of heavy metal ions on the MI and the CA, which were observed in the onion cells. The MI% is defined as the ratio between the cells in a population undergoing mitosis to the cells not undergoing mitosis [16]. CAs emerge from the exposure to physical or chemical agents and are presented as changes in chromosomal structure or in the total number of chromosomes [17]. MN is arisen from the development of CA, and result from damages, not or wrongly repaired, in the parental cells [14]. More specifically, chromosomal loses and fragments, which are not included in the main nucleus, form a smaller structure, which is called micronucleus [14]. CAs are chromosomal bridges, chromosomal loss, stickiness, c-mitosis, etc. [17]. The first two belongs to clastogenic aberrations, along with chromosomal breaks, while the others are included to physiological aberrations [18]. Stickiness is emerged from the high condensation of chromosomes or the depolymerization of DNA and its outcome is cell death in most cases [18]. C-mitosis is the scattering of the chromosomes all over the cell because of the prevention of the formation of spindle fibers due to colchicines [18]. Vagrant and laggard/lagging chromosomes are also physiological aberrations [18]. The first one describes the movement of a chromosome ahead of its group, leading to unequal separation, while the second refers to the chromosomes that fail to attach to the spindle fiber [18]. Another chromosomal aberration is called clumping and reports the appearance of a cluster of chromosomes in different phases of cell cycle [19]. Chromosomal adherence is another term for approximately the same effect, namely the presence of attached chromosomes [14]. Finally, tripolar mitosis describes the separation of chromosomes in three poles due to the presence of three strands of a division spindle [20]. Some common CA types are presented in Fig. 1.

To compare the MI% values of the A. cepa root cells after their exposure to different metal complexes or salts, we introduce a new term the % Mitotic Index Alteration upon their incubation in a particular concentration of the agent (% MIA(C)). This is necessity due to the control samples quality diversity used as well as the variety of A. cepa bulb types. Thus, % MIA(C) corresponds to a specific MI % control value at a specific concentration (C).

\[
\% MIA(C) = \frac{100 \times MI(C)_{\text{sample}}}{MI(C)_{\text{control}}}
\]

% MIA(C) indicates the percentage of the cells which undergo mitosis in a specific concentration, in respect to the corresponding percentage in the control sample. So, a reduction in % MIA(C) reflects the reduction of the number of cells undergoing mitosis and, consequently, the decrease of

Fig. 1 CA observed in A. cepa root cells. A Chromosomal loss or fragment in anaphase, B Chromosomal loss or fragment in metaphase, C Chromosomal loss or fragment in prophase, D Chromosomal bridge in anaphase, E C-mitosis and F Micronucleus.

© Springer
cell viability. According to ISO 10993-5:2009, a substance is considered as non-toxic, if it promotes the death of < 30% of the cells (viability ≥ 70%) [21, 22]. We extend here the assumption that if an agent introduces % MIA(C) ≥ 70%, then it is considered as a non-toxic as well. It is pointed out that the samples numbering shows their ingredients, in a particular concentration.

Group 10 metals (Ni, Pd, Pt) complexes

Platinum: Samples of platinum(II) compounds with the thiosemicarbazone 1-(1H-Benzimidazol-2-yl)ethan-1-one thiosemicarbazone (BzimetTSC), formulae [Pt(BzimetTSC)(Cl)2H2O (1) and [Pt(BzimetTSC)(TPP)Cl]H2O-MeCN (2) (TPP = triphenylphosphine) were examined for their in vivo toxicity at 3 (1.1 and 2.1), 30 (1.2 and 2.2) and 300 (1.3 and 2.3) μM (Table 1). The range of % MIA values lies between 54.0 and 73.0% for the samples 1.1–1.3, while in the case of the samples 2.1–2.3, is between 73.0 and 64.0% (Table 1). In the case of the samples 2.2–2.3, the CA are increased in contrast to control [23].

The in vivo toxicity of tetrapyridylporphyrin containing four chloro(2,2′-bipyridine)platinum(II) complex (3-H2TPt-PyP) (3.1–3.4) attached at the meta position of the peripheral pyridine ligand was tested at 0.6–5.5 μM (Table 1). The sample shows no in vivo toxicity since the %MIA is almost 100 at the highest concentration (3.4), which is in consistent with the % root length [24].

Allium cepa bulbs were exposed for 24 h to aqueous solutions of cisplatin (4.1–4.4) and carboplatin (5.1–5.5) (Table 1). The % MIA values showed that cisplatin was toxic at the concentration of 1 and 5 μM, whereas carboplatin was not toxic in the tested concentrations [25].

Group 11 metals (Cu, Ag, Au) complexes

Copper: *Allium cepa* bulbs were incubated with samples of nano-silica Schiff-base Cu(II) (Silica-NMP-Cu, NMP = N-methyl pyrrolidone) (1.50 (6.1), 3.00 (6.2) and 6.00 (6.3) mg/L) (Table 1). The samples numbering corresponds to their ingredients, in a particular concentration. For example, the code 6.1 refers to the sample of Silica-NMP-Cu at the concentration of 1.50 mg/L. The % MIA of the Cu(II) was in the range of 90.4–96.8%, suggesting that its in vivo genotoxicity is low (Table 1). The percentage of CAs was similarly to those observed in lower concentrations. Chromosome adherences or chromosome losses were the most common types of CAs [29].

Silver: *Allium cepa* bulbs were incubated with [Ag3(Gly)2NO3]6 (GlyH = glycine) (AGGLY) at the concentrations range of 24–98 μM (7.1–7.3) (Table 1) [23]. The % MIA values varied from 68 (7.3) to 92 (7.2) %. The CA was 0.5% for 7.1, 0.33% for 7.2 and 0.41% for 7.3. These values suggest a low in vivo toxic activity (ISO 10993–5:2009) of [Ag3(Gly)2NO3]6 [27].

The combination of the antibiotic ciprofloxacin (CIPH) with silver(I) ions resulted to the [[Ag(CIPH)2]NO3·0.75MeOH·1.2H2O (CIPAG)] [16]. The silver(I) compound was assessed for its in vivo toxicity through *A. cepa* test in different concentrations (0.3 (8.1), 3 (8.2) and 30 (8.3) μM). The %MIA values were 90 (8.3)–99% (8.1) (Table 1). The CA values were 0.0–1.0% (8.3–8.1) (Table 1). Thus, neither %MIA nor CA are affected by the presence of the silver compound [16].

The in vivo toxicity of the silver(I) compound of formula [[Ag6(μ2-Hmna)(μ2-mna)F3−·(Et3NH)+12·(DMSO)2·(H2O)} (H2mna = 2-mercapto-nicotinic acid) (AGMNA) was tested in the concentrations of 3 (9.1), 30 (9.2) and 300 (9.3) μM (Table 1) [28]. The cell division rate of *A. cepa* root cells was not affected by the presence of AGMNA since the range of % MIA lies between 82 and 94%. The same trend was followed by CAs, (0.4% (9.2) to 0.8% (9.3)). Therefore, AGMNA has no in vivo toxic or mutagenic effects according to ISO 10993-5:2009 [21, 22].

The in vivo toxicity of [Ag(salH)]2 (salH2 = salicylic acid) (AGSAL) (3 (10.1), 30 (10.2) and 300 (10.3) μM) is tested by *A. cepa* assay (Table 1) [29]. No variation in % MIA values was observed at the concentrations up to 30 μM (Table 1). However, when *Allium cepa* were incubated with AGSAL at the concentration of 300 μM, the % MIA values reduced to the 34%, while the CAs doubled in respect to those observed in lower concentrations. Chromosome adherences or chromosome losses were the most common types of CAs [29].

Samples of two silver(I) compounds [AgBr(μ2-S-MMI) (TPP)]2 (11.1–11.3) and [AgCl(TPP)2(MMI)] (12.1–12.3) (TPP = triphenylphosphine, MMI = 2-mercapto-1-methyl-imidazole or methimazole) were evaluated through *A. cepa* assay (Table 1) [30]. No effect in % MIA was observed upon their incubation with 11.1–11.3 and 12.1–12.3. The absence of variations in the CA values indicates the absence of in vivo toxic behavior [30].

The samples of the silver(I) compounds [Ag(SCP)] (13.1–13.5) and [Ag3(Ag(SCN)3(SCP))·H2O] (SCP = Sulfa-chloroppyridazine) (14.1–14.5) were tested with *A. cepa* assay (Table 1). In vivo toxicity was detected considering both % MIA and root lengths, after their exposure to silver complexes solutions for 24 h (Table 1) [31]. Thus, the % MIA in the case of 13.2–13.5 lies between 42 and 68%. This is consistent with the high percentage reduction of the root length (20–60%), toward the corresponding of the control sample. However, the presence of SCN− anion in the coordination sphere increases the in vivo toxic limit at the concentration of 1.4 mM (14.5), with the % MIA value to be 33% for this concentration [31].

Similarly, the samples of compounds Ag(SDM) (15.1–15.5), Ag3SDM(SCN)2·H2O (16.1–16.5) and Ag5(SDM)2·phen ·H2O (17.1–17.5)
Code	Molecular formula	Molecular weight (g/mol)	C (μM)	MI (%)	MIA%	CA (%)	Refs.			
1.1	[Pt(BzimetTSCH)Cl]·2H2O	498.86	3	4.7	70%	0.9	[23]			
1.2	[Pt(BzimetTSCH)Cl]·2H2O	498.86	30	4.9	73%	1.3	[23]			
1.3	[Pt(BzimetTSCH)Cl]·2H2O	498.86	300	3.6	54%	1.8	[23]			
2.1	[Pt(BzimetTSCH)(tpp)Cl2H2O·MeCN	784.17	3	4.4	66%	1.2	[23]			
2.2	[Pt(BzimetTSCH)(tpp)Cl2H2O·MeCN	784.17	30	4.9	73%	2.1	[23]			
2.3	[Pt(BzimetTSCH)(tpp)Cl2H2O·MeCN	784.17	300	4.3	64%	2.7	[23]			
2.4	ddH2O			6.7	1.3		[23]			
3.1	3-H2TPtPyP	2165.58	0.6	57.0*	04%		[24]			
3.2	3-H2TPtPyP	1.1	54.0	98%			[24]			
3.3	3-H2TPtPyP	2.2	56	102%			[24]			
3.4	3-H2TPtPyP	5.5	56	102%			[24]			
3.5	Control			55			[24]			
4.1	[Pt(NH3)2Cl2]	300.05	0.1	11	81%		[25]			
4.2	[Pt(NH3)2Cl2]	300.05	0.5	10.5	78%		[25]			
4.3	[Pt(NH3)2Cl2]	300.05	1	2.5	19%		[25]			
4.4	[Pt(NH3)2Cl2]	300.05	5	1.4	10%		[25]			
4.5	Control cisplatin			13.5			[25]			
5.1	Carboplatin	371.25	0.5	19	136%		[25]			
5.2	Carboplatin	371.25	1	15	107%		[25]			
5.3	Carboplatin	371.25	10	12.5	89%		[25]			
5.4	Carboplatin	371.25	50	14.5	104%		[25]			
5.5	Carboplatin	371.25	100	13	93%		[25]			
5.6	Control carboplatin			14			[25]			
6.1	Silica-NMP-Cu	1.0 e2	0.9	96.8	0.05		[26]			
6.2	Silica-NMP-Cu	3.0 e2	0.9	93.6	0.06		[26]			
6.3	Silica-NMP-Cu	6.0 e2	0.9	90.4	0.06		[26]			
6.4	ddH2O			6.7	0.5		[26]			
7.1	([Ag3(Gly)2NO3]n)	542.75	24	8.2	85%	0.5	[27]			
7.2	([Ag3(Gly)2NO3]n)	542.75	49	8.9	92%	0.3	[27]			
7.3	([Ag3(Gly)2NO3]n)	542.75	98	6.6	68%	0.4	[27]			
7.4	ddH2O			9.7			[27]			
8.1	([Ag(CIPH)2]NO3·0.75MeOH·1.2H2O	872.78	0.3	6.6	99%	1	[16]			
8.2	([Ag(CIPH)2]NO3·0.75MeOH·1.2H2O	872.78	3	6.2	93%	0.6	[16]			
8.3	([Ag(CIPH)2]NO3·0.75MeOH·1.2H2O	872.78	30	6	90%	0	[16]			
8.4	ddH2O			6.7	0.5		[16]			
Code	Molecular formula	Molecular weight (g/mol)	C (µM)	MI (%)	MIA%	CA (%)	Refs.			
------	------------------	--------------------------	--------	--------	------	--------	-------			
9.1	{[Ag₆(μ₃-Hmna)₄(μ₃-mna)₂]²⁻·(Et₃NH)₂·(DMSO)₂·(H₂O)}	1948.7	3	4.1	82%	0.5	[28]			
9.2	{[Ag₆(μ₃-Hmna)₄(μ₃-mna)₂]²⁻·(Et₃NH)₂·(DMSO)₂·(H₂O)}	1948.7	30	4.5	90%	0.4	[28]			
9.3	{Ag₆(μ₃-Hmna)₄(μ₃-mna)₂}²⁻·(Et₃NH)₂·(DMSO)₂·(H₂O)}	1948.7	300	4.7	94%	0.8	[28]			
9.4	dH₂O	-	-	-	-	-	[28]			
10.1	[Ag(saH)]₂	489.96	3	7.2	107%	0.6	[29]			
10.2	[Ag(saH)]₂	489.96	30	6.7	100%	0.3	[29]			
10.3	[Ag(saH)]₂	489.96	300	2.3	34%	0.8	[29]			
10.4	dH₂O	-	-	-	6.7	100%	0.4	[29]		
11.1	[AgBr(μ₂-S-MMI)(TPP)]₂	1128.44	3	6.8	117%	1.4	[30]			
11.2	[AgBr(μ₂-S-MMI)(TPP)]₂	1128.44	30	5.3	91%	0.3	[30]			
11.3	[AgBr(μ₂-S-MMI)(TPP)]₂	1128.44	300	5.3	91%	0.7	[30]			
12.1	[AgCl(TPP)₂(MMI)]	782.04	3	4.8	83%	1.1	[30]			
12.2	[AgCl(TPP)₂(MMI)]	782.04	30	5.2	90%	0.6	[30]			
12.3	[AgCl(TPP)₂(MMI)]	782.04	300	5.5	95%	1	[30]			
12.4	dH₂O	-	-	-	5.8	1.1	[30]			
13.1	[Ag(SCP)]	391.58	3.2	39.6	71%		[31]			
13.2	[Ag(SCP)]	391.58	16	38	68%		[31]			
13.3	[Ag(SCP)]	391.58	63.8	28.4	51%		[31]			
13.4	[Ag(SCP)]	391.58	159.6	26	47%		[31]			
13.5	[Ag(SCP)]	391.58	319.2	23.6	42%		[31]			
13.6	Control	[Ag(SCP)]	-	-	55.6	100%		[31]		
14.1	(Ag₃[Ag(SCN)₃(SCP)]H₂O)	907.41	1.4	37	101%		[31]			
14.2	(Ag₃[Ag(SCN)₃(SCP)]H₂O)	907.41	6.9	47	129%		[31]			
14.3	(Ag₃[Ag(SCN)₃(SCP)]H₂O)	907.41	27.6	35.9	98%		[31]			
14.4	(Ag₃[Ag(SCN)₃(SCP)]H₂O)	907.41	68.9	27.8	76%		[31]			
14.5	(Ag₃[Ag(SCN)₃(SCP)]H₂O)	907.41	137.8	12	33%		[31]			
14.6	Control	[Ag₃[Ag(SCN)₃(SCP)]H₂O)	-	-	36.6	100%		[31]		
15.1	Ag(SDM)	417.19	31	-	176%	-	[32]			
15.2	Ag(SDM)	417.19	153	-	99%	-	[32]			
15.3	Ag(SDM)	417.19	306	-	100%	-	[32]			
15.4	Ag(SDM)	417.19	458	-	81%	-	[32]			
15.5	Ag(SDM)	417.19	611	-	103%	-	[32]			
16.1	Ag₃(SDM)[SCN]₂·H₂O	767.12	16.4	131%	-	[32]				
16.2	Ag₃(SDM)[SCN]₂·H₂O	767.12	82	118%	-	[32]				
Code	Molecular formula	Molecular weight (g/mol)	C (μM)	MI (%)	MIA%	CA (%)	Refs.			
------	-------------------	--------------------------	--------	--------	------	--------	-------			
16.3	Ag₃SDM(SCN)₂·H₂O	767.12	164	126%	–	–	[32]			
16.4	Ag₃SDM(SCN)₂·H₂O	767.12	246	74%	–	–	[32]			
16.5	Ag₃SDM(SCN)₂·H₂O	767.12	328	120%	–	–	[32]			
16.6	Control for [Ag(SDM)]₂Ag₃SDM(SCN)₂·H₂O	–	–	–	–	–	[32]			
17.1	Ag₂(SDM)₂·o-phen]·H₂O	1032.61	12.5	97%	–	–	[32]			
17.2	Ag₂(SDM)₂·o-phen]·H₂O	1032.61	62.6	0%	–	–	[32]			
17.3	Ag₂(SDM)₂·o-phen]·H₂O	1032.61	125	0%	–	–	[32]			
17.4	Ag₂(SDM)₂·o-phen]·H₂O	1032.61	188	0%	–	–	[32]			
17.5	Ag₂(SDM)₂·o-phen]·H₂O	1032.61	250	0%	–	–	[32]			
17.6	Control for Ag₂(SDM)₂·o-phen]·H₂O	–	–	–	–	–	[32]			
18.1	[Ag₂(SMX)₂]·H₂O	766.34	1.6	37.8	78%	–	[33]			
18.2	[Ag₂(SMX)₂]·H₂O	766.34	8.2	37.7	77%	–	[33]			
18.3	[Ag₂(SMX)₂]·H₂O	766.34	32.6	36.2	74%	–	[33]			
18.4	[Ag₂(SMX)₂]·H₂O	766.34	81.2	28.4	58%	–	[33]			
18.5	[Ag₂(SMX)₂]·H₂O	766.34	326.2	17.2	35%	–	[33]			
18.6	Control [Ag₂(SMX)₂]·H₂O	–	–	–	–	–	[33]			
19.1	[Ag₄(SCN)₃(SMX)]·H₂O	890.03	1.3	45.6	98%	–	[33]			
19.2	[Ag₄(SCN)₃(SMX)]·H₂O	890.03	6.4	51.1	110%	–	[33]			
19.3	[Ag₄(SCN)₃(SMX)]·H₂O	890.03	25.5	37.3	67%	–	[33]			
19.4	[Ag₄(SCN)₃(SMX)]·H₂O	890.03	63.8	31	41%	–	[33]			
19.5	[Ag₄(SCN)₃(SMX)]·H₂O	890.03	280.9	19	41%	–	[33]			
19.6	Control [Ag₄(SCN)₃(SMX)]·H₂O	–	–	–	–	–	[33]			
20.1	[Au(tpp)Cl]	494.7	3	6.7	102%	0.3	[34]			
20.2	[Au(tpp)Cl]	494.7	30	3.7	56%	0.3	[34]			
20.3	[Au(tpp)Cl]	494.7	300	3.7	56%	1.5	[34]			
20.4	ddH₂O	–	6.6	22%	0.6	–	[34]			
21.1	ZnO-NPs	5*3	60	42%	–	–	[35]			
21.2	ZnO-NPs	50*3	31	22%	–	–	[35]			
21.3	control	–	144	–	–	–	[35]			
22.1	Zn(NO₃)₂	189.36	0.77	110	183%	0	[36]			
22.2	Zn(NO₃)₂	189.36	7.7	41	68%	2	[36]			
22.3	Zn(NO₃)₂	189.36	76.9	20	33%	2.3	[36]			
23.1	Cd(NO₃)₂	236.42	0.44	53	88%	0.8	[36]			
23.2	Cd(NO₃)₂	236.42	4.4	32	53%	1.6	[36]			
Code	Molecular formula	Molecular weight (g/mol)	C (μM)	MI (%)	MIA%	CA (%)	Refs.			
------	-------------------	--------------------------	--------	--------	-------	--------	-------			
23.3	Cd(NO₃)₂	236.42	44.4	16	27%	1.9	[36]			
23.4	control		62				[36]			
24.1	CdCl₂	183.31	50	39.2	41.7	74%	91%	5.9	2.9	[37]
24.2	CdCl₂	183.31	80	49.9	49.8	94%	109%	4.7	4.5	[37]
24.3	CdCl₂	183.31	100	35.7	44.2	67%	96%	20	2	[37]
24.4	dH₂O		-	53.2	45.9	100%	100%	0	0	[37]
25.1	PH₃Sn(CA)	757.5	0.1	2.7		77%	0.6	[38]		
25.2	PH₃Sn(CA)	757.5	1	3.5		100%	2.8	[38]		
25.3	PH₃Sn(CA)	757.5	10	1.3		37%	2.5	[38]		
26.1	n-BuSn(CA)	697.5	0.1	4		114%	0.7	[38]		
26.2	n-BuSn(CA)	697.5	1	3.5		100%	1.7	[38]		
26.3	n-BuSn(CA)	697.5	10	2.2		63%	1.2	[38]		
27.1	Ph₂Sn(CA)₂	1087.9	0.1	2.8		80%	0.3	[38]		
27.2	Ph₂Sn(CA)₂	1087.9	1	2.7		77%	0.7	[38]		
27.3	Ph₂Sn(CA)₂	1087.9	10	2.6		74%	1	[38]		
28.1	(n-Bu)₂Sn(CA)₂	1047.9	0.1	3.6		103%	1	[38]		
28.2	(n-Bu)₂Sn(CA)₂	1047.9	1	3.7		106%	1.4	[38]		
28.3	(n-Bu)₂Sn(CA)₂	1047.9	10	3.5		100%	1.3	[38]		
28.4	ddH₂O		-	3.5		100%	0.6	[38]		
29.1	Pb(NO₃)₂	331	0.24	50	83%		1	[36]		
29.2	Pb(NO₃)₂	331	2.41	22	36%		2.6	[36]		
29.3	Pb(NO₃)₂	331	24.1	10	17%		3.3	[36]		
29.4	control		60					[36]		
30.1	{[SbBr(Me₂DTC)₂]ₙ}	441.11	0.01	10.5		135%	0.7	[17]		
30.2	{[SbBr(Me₂DTC)₂]ₙ}	441.11	0.1	10.8		138%	0.5	[17]		
30.3	{[SbBr(Me₂DTC)₂]ₙ}	441.11	1	8.4		108%	0.5	[17]		
31.1	{[Sb(Me₂DTC)₂]ₙ}	499.11	0.01	2.6		33%	0.8	[17]		
31.2	{[Sb(Me₂DTC)₂]ₙ}	499.11	0.1	6.4		82%	0.5	[17]		
31.3	{[Sb(Me₂DTC)₂]ₙ}	499.11	1	5.1		65%	1.9	[17]		
32.1	{[Me₂DTC]Sb µ₂-I[Sb(Me₂DTC)]₂}	1232	0.01	4.4		56%	1.8	[17]		
32.2	{[Me₂DTC]Sb µ₂-I[Sb(Me₂DTC)]₂}	1232	0.1	8.3		106%	1.2	[17]		
32.3	{[Me₂DTC]Sb µ₂-I[Sb(Me₂DTC)]₂}	1232	1	1.6		21%	1.7	[17]		
32.4	Control		7.8			100%	0.5	[17]		

*1Exposed for 96 h days, *2 mg/L, *3 μg/mL.
(SDM = sulfadimethoxine, phen = 1,10-phenanthroline) have also been evaluated in the same manner. The % MIA values suggest no in vivo toxic behavior in the case of 15.1–15.5 and 16.1–16.5 (Table 1) [32]. However, by taken into consideration the % root length variations, an in vivo toxicity might be proposed for these samples, but the confidence limits of these values exceed or lie to the values themselves (Table 1) [32]. The null % MIA values in the case of samples 17.2–17.5 show in vivo toxicity since there is no cell division [32].

The in vivo toxicity of the samples of Ag(I) complexes with sulfamoxole (SMX), formulae [Ag₂(SMX)₂]·H₂O (18.1–18.5) and [Ag₄(SCN)₃(SMX)]·H₂O (19.1–19.5) was also examined (Table 1). The % MIA values of 58% and 67% suggest that these complexes were toxic at concentrations higher than 81.2 and 25.5 μM, respectively. In addition, the root length was affected at concentrations higher than 32.6 and 6.4 μM, respectively [33].

Gold: The genotoxicity of gold complex [Au(TPP)Cl] (TPP = triphenylphosphine) (20.1–20.3) was tested via A. cepa root cells, in three different concentrations (3 (20.1), 30 (20.2) and 300 (20.3) μM) (Table 1) [34]. The % MIA values of 20.2 and 20.3 were 56% indicating in vivo toxicity, which is also concluded by high % CA values (Table 1) [34].

Group 14 metals (Sn, Pb) complexes

Organotins: Organotin compounds derived from cholic acid (CAH) R₃Sn(CA) [R = Ph- (25), n-Bu- (26)] and R₂Sn(CA)₂ [R = Ph- (27) and n-Bu- (28)] were evaluated for their in vivo toxicity at the concentrations 0.1 μM (25.1, 26.1, 27.1, 28.1), 1 μM (25.2, 26.2, 27.2, 28.2) and 10 μM (25.3, 26.3, 27.3, 28.3) (Table 1). The diorganotin compounds show no in vivo genotoxicity in contrast to tri-organotin ones. The % MIA in the case of diorganotin is in the range of 74–106% while those of tri-organotin in between 37 and 114% [38].

Lead: The % MIA values of A. cepa cells upon their treatment with 0.24, 2.41 and 24.13 μM Pb ions (in the form of Pb(NO₃)₂) (samples id: 29.1–29.3 respectively) were 82%, 36% and 16% (Table 1). Based on this, the in vivo toxicity of Pb is concluded over 2.41 μM. The corresponding CAs were 1.1%, 2.6% and 3.3% [36].

Group 15 metals (Sb, Bi) complexes

Antimony: Three antimony compounds with the formulae {[SbBr(Me₂DTC)₂]ₙ} (30), {[SbI(Me₂DTC)₂]ₙ} (31) and {[Me₂DTC]₂Sb(μ₂-I)Sb[Me₂DTC]₂} (32) (Me₂DTC = dimethylthiodiacarbamide) were evaluated for their in vivo toxicity. Samples at concentrations 0.01 (30.1, 31.1, 32.1), 0.10 (30.2, 31.2, 32.2) and 1.00 (30.3, 31.3, 32.3) μM were used (Table 1). The compound of antimony bromide exhibits no genotoxicity (% MIA 108–135% 30.1–30.3) in contrast to antimony iodides (% MIA 33–82% 31.1–31.3 and 21–106% 32.1–32.3 respectively). Consequently, the % CA in the case of samples 31.1–31.3 and 32.1–32.3 is increased. Sticky, bridges and vagrant chromosomes were commonly observed on the samples [17].

Artemia salina assay

Along with A. cepa, Artemia salina is also a biological model widely used for acute toxicity tests [13] (Fig. 2). The nauplii of the zooplanktonic crustacean is highly sensitive
to contaminants in the aquatic environment [13]. The advantages of the usage of *A. salina* in genotoxicity tests are its short lifetime, its availability, low cost and easy and safe use and its high offspring number [13]. The examined indicators in this assay are the Lethal Concentration (LC50 in mM) or Dose (LD50 in mg/mL) that eliminates the 50% of the nauplii. *A. salina* is considered as dead when it exhibits no any internal or external movement for 10 s of observation [13].

Group 10 metals (Ni, Pd, Pt) complexes

Nickel: The LD50 value of nickel metal organic framework (Ni-MOFs) (33) was estimated 138.33 μg/mL (Table 2) [39].

The LD50 value of Ni complex (34) with the Schiff base 3-((4-phenylthiazol-2-ylimino) methyl)-2-hydroxybenzoic acid (L) against brine shrimp was 117.4 μg/mL, while the corresponding value of free ligand was 254.7 μg/mL (Table 2) [40].

The toxicity of Ni complexes with formula \([\text{Ni}_2L^1_2(\mu-1,1-N_3)_2(N_3)_2]·4\text{H}_2\text{O}\) (35), and \([\text{Ni}_2L^2_2(\mu-1,1-N_3)_2(N_3)_2]·6\text{H}_2\text{O}\) (36) \((\text{H}_2\text{L}^1\text{Cl} = (E)-N,N,N\text{-trimethyl-2-oxo-2-(2-(1-(thiazol-2-yl)ethylidene)hydrazinyl)}\text{ethan-1-aminium chloride, H}_2\text{L}^2\text{Cl} = (E)-N,N,N\text{-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)}\text{ethan-1-aminium chloride}\) exhibit LC50 0.86 and 0.82 mM, respectively (Table 2). The positive control \((\text{K}_2\text{Cr}_2\text{O}_7)\) shows LD50 0.077 mM [41].

The complexes of formulae \([\text{Ni}(L^1)^2\text{Cl}_2] \) \((L^1 = L^1\cdot L^6) \) \([L^1 = \text{N-}(4,6\text{-Dimethylpyrimidine-2-yl})\text{-4-}[\text{furan-2-ylmethylene}]\text{amino}]\text{benzene sulfonamide, L}^2 = 4-\text{[(Furan-2-ylmethylene)]amino}\text{benzene sulfonamide, L}^3 = 4-\text{[(Furan-2-ylmethylene)]amino}\text{ethyl]benzenesulfonamide, L}^4 = 4-\text{[(Furan-2-ylmethylene)]amino}N-(5\text{-methylisoxazol3-yI})\text{benzenesulfonamide, L}^5 = 4-\text{[(5-Methylfuran-2-ylmethylene)]amino}\text{benzenesulfonamide, L}^6 = 4-\text{[(5-Methylfuran-2-ylmethylene)]amino}\text{ethyl]benzenesulfonamide}\) were tested in vivo toxicity. The

Nickel(II) complexes of 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone, \((\text{H}_3\text{L}^1: R = H, \text{H}_3\text{L}^2: R = \text{CH}_3, \text{H}_3\text{L}^3: R = \text{C}_6\text{H}_5\text{ and } \text{H}_3\text{L}^4: R = \text{C}_2\text{H}_5) (43–50)\) show a range of LD50 values between 0.059 to 0.096 mg/mL (Table 2) [43].

The LC50 value is 0.64 mM for Ni(BF_4)2·6H2O (51) (Table 2) [41].

Group 11 metals (Cu, Ag, Au) complexes

Copper: The in vivo toxicity of copper complex with amantadine \((\text{AdNH}_2), \{(\text{AdNH}_3)^+\}[\text{CuCl}_3^-] (52)\), was examined through *A. salina* assay. The larvae were exposed to long range of concentrations. The LC50 or LD50 value was determined at 0.428 mM (0.138 mg/mL) (Table 2) [44].

The complexes of formulae \([\text{Cu}(L^1)^2\text{Cl}_2] \) \((L^1 = L^1\cdot L^6) \) \([L^1 = \text{N-}(4,6\text{-Dimethylpyrimidine-2-yl})\text{-4-}[\text{furan-2-ylmethylene}]\text{amino}]\text{benzene sulfonamide, L}^2 = 4-\text{[(Furan-2-ylmethylene)]amino}\text{benzene sulfonamide, L}^3 = 4-\text{[(Furan-2-ylmethylene)]amino}\text{ethyl]benzenesulfonamide, L}^4 = 4-\text{[(Furan-2-ylmethylene)]amino}N-(5\text{-methylisoxazol3-yl})\text{benzenesulfonamide, L}^5 = 4-\text{[(5-Methylfuran-2-ylmethylene)]amino}\text{benzenesulfonamide, L}^6 = 4-\text{[(5-Methylfuran-2-ylmethylene)]amino}\text{ethyl]benzenesulfonamide}\) were tested in vivo toxicity. The
Code	Molecular formula	Molecular weight (g/mol)	LC50 (mM)	LD50 (mg/mL)	Refs.
33	Ni-MOFs	-	-	0.138	[39]
34	[NiL(Cl)2]	459.9	0.255	0.117	[34]
35	[NiL2·(μ-1,1-N3)2(N3)2]·4H2O	838.12	0.860	0.720	[41]
36	([NiL2·(μ-1,1-N3)2(N3)2]·6H2O)	862.09	0.820	0.710	[41]
37	[Ni(L2)2Cl2]	842.49	> 1.19	> 1.00	[42]
38	[Ni(L2)2Cl2]	630.14	> 1.59	> 1.00	[42]
39	[Ni(L2)2Cl2]	686.25	> 1.46	> 1.00	[42]
40	[Ni(L5)2Cl2]	792.29	> 1.26	> 1.00	[42]
41	[Ni(L5)2Cl2]	658.20	> 1.52	> 1.00	[42]
42	[Ni(L5)2Cl2]	714.30	> 1.93	> 1.40	[42]
43	[Ni(L5)2Cl2]	847.25	> 1.19	> 1.00	[41]
44	[Ni(L5)2Cl2]	635.00	0.185	0.120	[41]
45	[Ni(L5)2Cl2]	691.10	0.182	0.130	[41]
46	[Ni(L5)2Cl2]	797.14	> 1.250	> 1.00	[41]
47	[Ni(L5)2Cl2]	663.05	> 1.510	> 1.00	[41]
48	[Ni(L5)2Cl2]	719.16	> 1.390	> 1.00	[41]
49	[Ni(L5)2Cl2]	962.56	> 1.039	> 1.00	[45]
50	[Ni(L5)2Cl2]	906.46	601	545	[45]
51	[Ni(L5)2Cl2]	940.51	484	455	[45]
52	[Ni(L5)2Cl2]	912.46	> 1.069	> 1.00	[45]
53	[Ni(L5)2Cl2]	916.54	606	555	[45]
54	[Ni(L5)2Cl2]	834.39	627	523	[45]
55	[Ni(L5)2Cl2]	750.31	536	402	[46]
56	[Ni(L5)2Cl2]	778.36	676	526	[46]
57	[Ni(L5)2Cl2]	806.42	490	395	[46]
58	[Ni(L5)2Cl2]	562.4	> 1.78	> 1.00	[47]
59	[Ni(L5)2Cl2]	590.4	> 1.70	> 1.00	[47]
60	[Ni(L5)2Cl2]	652.4	> 31.53	> 1.00	[47]
61	[Ni(L5)2Cl2]	716.5	0.600	0.430	[47]
62	[Ni(L5)2Cl2]	624.5	0.570	0.354	[47]
63	[Ni(L5)2Cl2]	594.5	> 1.68	> 1.00	[47]
64	[Ni(L5)2Cl2]	772.70	0.012	0.004	[49]
65	[Ni(L5)2Cl2]	344.70	0.001	0.0004	[49]
66	[Ni(L5)2Cl2]	357.75	0.002	0.0006	[49]
67	[Ni(L5)2Cl2]	369.3	0.007	0.0027	[49]
68	[Ni(L5)2Cl2]	395.27	1.540	0.601	[41]
69	[Ni(L5)2Cl2]	432.71	1.040	0.450	[41]
70	[Ni(L5)2Cl2]	878.55	0.460	0.404	[41]
71	[Ni(L5)2Cl2]	408.71	0.042	0.017	[50]
72	[Ni(L5)2Cl2]	544.00	0.014	0.008	[50]
Code	Molecular formula	Molecular weight (g/mol)	LC50 (mM)	LD50 (mg/mL)	Refs.
------	-------------------	--------------------------	-----------	--------------	-------
86	[Cu(NCO)₂(INH)₂]·4H₂O	493.86	0.494	0.244	[50]
87	[Cu(L¹)(H₂O)Cl]	406.40	1.021	0.410	[51]
88	[Cu(L²)(H₂O)Cl]	422.04	2.396	1.010	[51]
89	[Cu(L³)(H₂O)Cl]	386.54	> 2.467	0.950	[51]
90	[Cu(L⁴)(H₂O)Cl]	414.54	0.748	0.310	[51]
91	[Cu(L⁵)(H₂O)Cl]	379.34	> 2.515	0.950	[51]
92	[Cu(L⁶)(H₂O)Cl]	395.04	1.028	0.410	[51]
93	[Cu(L⁷)(H₂O)Cl]	358.09	> 2.792	1.000	[51]
94	[Cu(L⁸)(H₂O)Cl]	374.04	> 2.674	1.000	[51]
95	[Cu(L⁹)(H₂O)Cl]	338.54	0.994	0.340	[51]
96	[Cu(L¹⁰)(H₂O)Cl]	366.54	0.873	0.320	[51]
97	[Cu(L¹¹)(H₂O)Cl]	331.04	> 2.891	0.960	[51]
98	[Cu(L¹²)(H₂O)Cl]	347.04	1.124	0.390	[51]
99	Cu(NO₃)₂·3H₂O	241.6	0.240	0.060	[41]
100	CuCl₂·2H₂O	170.48	0.007	0.001	[49]
101	CuCl₂·6H₂O	370.54	0.280	0.104	[41]
102	([Ag(pen)(CH₃OH)]₂	946.49	532	0.504	[52]
103	AgNPs(ORLE)	-	-	217.8	[53]
104	[Zn(valp)₂phen(H₂O)]	551.0	0.142	0.078	[54]
105	Zn(valp)₂(bipy)	508.98	0.804	0.409	[54]
106	[Zn(INH)₃](ClO₄)₂·6H₂O	646.68	268	0.174	[55]
107	[ZnL¹(NCS)₂·2H₂O	457.85	1.27	0.581	[41]
108	[ZnL²(NCS)₂·0.5MeOH	431.83	0.980	0.420	[41]
109	Zn(BF₄)₂·6H₂O	347.08	0.880	0.310	[41]
110	Zn(OAc)₂·2H₂O	587.47	1.180	0.690	[41]
111	[CdCl₂(2,3BTSTCH₂)]	505.65	0.300	0.115	[56]
112	[CdBr₂(2,3BTSTCH₂)]	594.65	0.240	0.240	[56]
113	CdHL₁(NCS)₂	515.92	0.530	0.273	[41]
114	[CdCl₂(aphaOEt)(DMF)]	955.33	3.300	3.150	[57]
115	[CdCl₂(dapha(OEt)₂)]·1.5H₂O	1147.49	1.390	1.600	[57]
116	CdCl₂	183.31	3.030	0.560	[57]
117	Cd(NO₃)₂·4H₂O	236.42	0.500	0.118	[41]
25	PH₃Sn(CA)	757.50	0.006	0.005	[38]
26	n-BuSn(CA)	697.52	0.004	0.003	[38]
27	Ph₂Sn(CA)₂	1087.91	0.023	0.025	[38]
28	(n-Bu)₂Sn(CA)₂	1047.92	0.006	0.006	[38]
118	[Sn(2Am₄DH)Cl₃]	419.28	0.025	0.010	[58]
119	[Sn(2Am₄Me)Cl₃]	433.31	0.014	0.006	[58]
120	[Sn(2Am₄Et)Cl₃]	447.36	0.013	0.006	[58]
121	[Sn(2Am₄Ph)Cl₃]	495.40	0.002	0.001	[58]
122	[(n-Bu₂Sn)₂L]	816.11	0.032	0.039	[59]
123	MeSnCl(dact)	458.55	0.081	0.037	[60]
124	BuSnCl(dact)	500.62	0.133	0.061	[60]
125	PhSnCl(dact)	520.62	0.040	0.018	[60]
126	Ph₂Sn(dact)	562.28	0.022	0.010	[60]
127	Bu₂Sn(Acac)(4-MePCDT)	506.28	0.165	0.084	[61]
LC₅₀ values are in the range of 0.182 to higher than 1.5 mM (Table 2) [42].

The LC₅₀ values of compounds with formulae Cu(L₁–H₂)₂(H₂O)₂ (59–64) (L¹ = N-(4,6-dimethylpyrimidin-2-yl)-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide, L₂ = N-(pyrimidin-2-yl)-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide, L₃ = N-(3,4-dimethylisoxazol-5-yl)-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide, L₄ = N-(5-methylisoxazol-3-yl)-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide, L₅ = N-(thiazol-2-yl)-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide, L₆ = N-carbamimidoyl-4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-benzenesulfonamide) toward A. salina assay are in the range of 484 mM to higher than 1000 mM (Table 2) [45].

Complexes of formula Cu(L¹–H₂)₂(H₂O)₂ (65–67) (L¹ = 4-[(2-hydroxynaphthalen-1-yl)methyleneamino-]benzenesulfonamide, L² = 4-[(2-hydroxynaphthalen-1-yl)methyleneamino]benzenesulfonamide and L³ = 4-[(2-hydroxynaphthalen-1-yl)methyleneamino]-ethyl benzenesulfonamide) were used in vivo by A. salina assay. The range of LC₅₀ values is between 490 and 676 mM (Table 2) [46].

The toxicity of copper complexes [CuLCl](NO₃), [CuCl](ClO₄) and [Cu₂L₂(μ-1,1-N₂)₂](ClO₄)₂ (81–83) (H₂LCl = (E)-N,N,N-trimethyl-2-oxo-2-(1-pyridinediyldihyrazinyl)ethyl ether, L = 1-aminomethyl-1-phenol, L⁴ = 2-[(2-(2-Thienyllmethylene) amino)ethyl]imino]-methyl}thienyl, L⁵ = 2-[(2-Thienyllmethylene) amino]phenyl)imino]-methyl]pyrrol, L⁶ = 2-[(2-Thienyllmethylene) amino]phenyl)imino]-methyl]pyrrol, L⁷ = 2-[(2-Furillylmethylene) amino]ethyl]imino]-methyl]pyrrol, L⁸ = 2-[(2-Furillylmethylene) amino]ethyl]imino]-methyl]pyrrol, L⁹ = 2-[(2-Furillylmethylene) amino]ethyl]imino]-methyl]pyrrol, L¹₀ = 2-[(2-Furillylmethylene) amino]ethyl]imino]-methyl]pyrrol, L¹₁ = 2-[(2-Furillylmethylene) amino]ethyl]imino]-methyl]pyrrol, L¹₂ = 2-[(2-Thienyllmethylene) amino]ethyl]imino]-methyl]pyrrol) are between 0.87 to higher than 2.9 mM (Table 2) [51].

Copper salts: The LC₅₀ value is 0.24 mM for Cu(NO₃)₂·3H₂O (99) (Table 2) [41]. Moreover, the LC₅₀ value of CuCl₂·2H₂O (100) was 7.0 μM [49]. The LC₅₀ values of Cu(CIO₄)₂·6H₂O (101) is 0.28 mM (Table 2) [41].

Silver(I): The combination of penicillin G (PenH) with silver(I) ions resulted in the formation of a new metallodrug with the formula [(Ag(pen)(CH₃OH))₂] (102). Its toxicity was evaluated through A. salina assay at a range of concentration 0.04 to 1.05 mM. The LC₅₀ was determined at 0.532 mM (or 0.504 mg/ml) (Table 2) [52].

The extract from oregano leaves (ORLE) was used for the synthesis of silver nanoparticles, AgNPs(ORLE) (103). The tested concentrations were in the range of 150 to 300 mg/mL. The LC₅₀ was determined 217.8 mg/mL (Table 2) [53].
Group 12 metals (Zn, Cd, Hg) complexes

Zinc: Two zinc complexes [Zn(valp)_2phen(H_2O)] (104) and Zn(valp)_3(bipy) (105) (valp = valproic acid, phen = 1,10-phenanthroline, bipy = 2,2-bipyridine) show LD_{50} value against A. salina 0.078 and 0.409 mg/mL respectively (Table 2) [54].

The LC_{50} value of compound Zn(INH)_2[CIO_4]_2·6H_2O (106) (INH = isoniazid) was calculated at 268 μM (Table 2) [55].

The LC_{50} values of zinc complexes, [ZnL^1(NCS)_2]·2H_2O (107) and [ZnL^2(NCS)_2]·0.5MeOH (108) (HL^1Cl ligand = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-((thiazol-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride, HL^2Cl = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride, NCS = N-Chlorosuccinimide), are calculated at 1.27 and 0.98 mM, respectively (Table 2) [41].

The LD_{50} of zinc salts, Zn(BF_4)_2·6H_2O (109) and Zn(OAc)_2·2H_2O (110), exhibited a range of 0.88 to 1.18 mM (Table 2) [41].

Cadmium complexes of thioene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH_2) with formulae [CdCl_3(2,3BTSTCH_2)] (111) and [CdBr_2(2,3BTSTCH_2)] (112) were assessed through A. salina test. The LC_{50} (or LD_{50}) values were 0.3 mM (or 0.115 mg/mL) (111) and 0.24 (or 0.132 mg/mL) (112) mM, respectively (Table 2) [56].

The LC_{50} value of the complex CdHL^2(NCS)_2 (113) (HL^2Cl = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-((pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride, NCS = N-Chlorosuccinimide) is 0.53 mM (Table 2) [41].

Cd complexes with derivatives of 2-acetylpyridine ethyl hydrazinoacetate hydrochloride (alphaOEt) or 2,6-diacetylpyridine ethyl hydrazinoacetate hydrochloride (dapha(OEt)_2, formulae CdCl_2(alphaOEt)(DMF) (114) and [CdCl_2(dapha(OEt)_2)]·1.5H_2O (115), show LC_{50} values 3.30 and 1.39 mM, respectively (Table 2) [57].

The LC_{50} value of CdCl_2 (116) is 3.03 mM [57] and 0.50 mM for Cd(NO_3)_2·4H_2O (117) (Table 2) [41].

Group 14 metals (Sn, Pb) complexes

Organotins: Organotin compounds derived from cholic acid (CAH), R_3Sn(CA) [R = Ph- (25), n-Bu- (26)] and R_2Sn(CA)_2 [R = Ph- (27) and n-Bu- (28)] were evaluated for their in vivo toward A. cepa and were also studied using A. salina. The range of LC_{50} values are between 3.9 and 23.3 μM (Table 2) [38].

Tin(IV) complexes [Sn(2Am4DH)Cl_3] (118), [Sn(2Am4Me)Cl_3] (119), [Sn(2Am4Et)Cl_3] (120) and [Sn(2Am4Ph)Cl_3] (121) (H_2Am4DH = 2- pyridineformamide thiosemicarbazone, H_2Am4Me = N(4)-methyl 2-pyridineformamide thiosemicarbazone, H_2Am4Ph = N(4)-methyl 2-pyridineformamide thiosemicarbazone, H_2Am4Me = N(4)-methyl 2-pyridineformamide thiosemicarbazone, H_2Am4Ph = N(4)-methyl 2-pyridineformamide thiosemicarbazone) were tested via A. salina assay a LD_{50} value of 83.7 μg/mL (Table 2) [61].

Table 3 Summary of the most common CAs induced by a specific metal

Metal	Most common CAs	Refs.
Ag	Chromosome adherences, chromosome losses, single bridges and fragments	[16, 20, 27–29]
Sb	Stickiness, bridges and vagrant chromosomes	[17, 38]
Cd	Chromosomal bridge, break, stickiness, clumping, c-mitosis, stickiness	[37]
Ni	C-mitosis	[62]
Hg	Stickiness	[62]

Moreover, the value % Mitotic Index Alteration (%MIA(C)) was introduced to overcome the quality of

Conclusion

The biological effects of metal ions and their compounds in the living organisms (A. cepa and A. salina) are reviewed here with the aim on the development of in vivo toxicity models for the evaluation of their genotoxicity and toxicity. To accomplish this goal, their microscopic parameters (such as MI and CA) as well as their macroscopic ones (root length) were reviewed and compared, and the LC_{50} or LD_{50} values are summarized.

The study revealed that some CAs are usually observed after the treatment with a metal ion [16, 17, 20, 27–29, 37, 38, 62] (Table 3). However, a specific abnormality of the chromosomes could not be linked with the presence of a particular metal ion, since different metal ions may promote the appearance of the similar result. In agreement to this, Leme et al. [14] reported previously that the grouping of metal ions regarding their cytological effects is not possible.

Moreover, the value % Mitotic Index Alteration (%MIA(C)) was introduced to overcome the quality of
Fig. 3 %MIA in *A. cepa* root cells induced by exposure to different concentrations of groups 10, 11, 12, 14 and 16
control water used as well as the variety of A. cepa bulb types. A substance could be considered as non-toxic, if it promotes the death of < 30% of the cells (viability ≥ 70%) (ISO 10993-5:2009) [21, 22]. This classification is extended within this work to categorize any agent that caused %MIA(C) ≤ 70% as a potent genotoxic one, with the rests to be considered as a non-genotoxic.

No conclusion can be drawn for the time scale (24 or 48 h) of the effect since no sufficient data are available (Table 1). On the contrary, Jaishankar et al. [63], have reported that metal ion toxicity depends not only on its dosage but on the duration of this exposure as well [63].

Among the metal ions and their compounds of the group of elements studied here, those of 12 show %MIA ≤ 70 against A. cepa at lower concentration (1–10 μM), since they affecting strongest the mitosis of the bulb (Table 1, Fig. 3). However, lacking a large number of samples that would lead to reliable conclusions for the elements of all groups studied the very low toxicity of silver and its compounds can be suggested (%MIA ≤ 70 at 250–600 μM) (Fig. 3).

Comparing the % MIA of silver(I) complexes with various ligands, differences in genotoxicity are observed (Fig. 3). Therefore, the presence of the ligand affects the genotoxicity of the metal ion, as it alters its environment [64]. This is expected since different chemical environment of the metal ion influences the lipophilicity of the complex and, as a consequence, its ability to permeate the cell membrane [65]. Thus, different ligands lead to different absorption and uptake levels in different organs or cell organelles [66]. These differences result in a wide range of toxicity observed. Moreover, the precursor of the gold complexes [Au(tpp)Cl] [20] does not affect the mitotic index up to the concentration of 30 μM. In the case of the tin and antimony complexes, their genotoxicity is induced at the concentrations of 10 and 0.01 μM, respectively.

In the case of *Artemia salina* assay, the mean of LC_{50} values of the complexes is between 0.04 and 126 mM. The most potent toxic compounds seem to be the tin compounds (LC_{50}^{mean} = 0.04 mM, count = 14), while the less toxic seems to be the copper complexes (LC_{50}^{mean} = 126, count = 32). Generally, the toxicity order is Cu < Zn < Cd < Ni < Sn (with LC_{50}^{mean} 126 (Cu), 39 (Zn), 1.3 (Zn), 0.29 (Ni) and 0.04 (Sn) mM).

In conclusion, two biological assays, namely *Allium cepa* and *Artemia salina*, were reviewed regarding the toxicity risk assessment of metal ions. The findings highlight the effect of the metal ions and their complexes in the biological systems, such as plants, aquatic organisms and hence humans. Their toxicity is in high relevance with their concentration. Considering that humankind is continuously dependent on surface waters the contribution of the environmental biological inorganic chemistry toward the refinement of the environment can be of great importance, and it initiates a new era in the field of environmental chemistry and biological sciences.

Acknowledgements This work was carried out in fulfillment of the requirements for the Master thesis of Ms. C.S.T. according to the curriculum of the International Graduate Program in “Biological Inorganic Chemistry”, which operates at the University of Ioannina within the collaboration of the Departments of Chemistry of the Universities of Ioannina, Athens, Thessaloniki, Patras, Crete and the Department of Chemistry of the University of Cyprus (http://bic.chem.uoi.gr/BIC-En/index-en.html) under the supervision of Prof. S.K.H.

Funding Open access funding provided by HEAL-Link Greece.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3:94–99
2. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JJB (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuators B Chem 213:515–533
3. Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, Oller AR (2019) Concise review of nickel human health toxicology and ecotoxicology. Inorganics 7:89
4. Morais S, Costa FG, de L. Pereira M (2012) Environmental health: emerging issues and practice. InTech, Croatia, pp 227–230
5. ‘Standards CODEXALIMENTARIUS FAO-WHO’, https://www.fao.org/who-codexalimentarius/codex-texts/list-standards/en/
6. ‘Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum’. https://www.who.int/publications-detail-redir ect/9789241549950
7. ‘Water quality for agriculture’, can be found under https://www. fao.org/3/t0234e/t0234e01.htm#TopOfPage
8. Kumar V, Parihar RD, Sharma A, Bakhsh P, Singh Sidhu GP, Bali AS, Karaozus I, Bhardwaj R, Thukral AK, Gyasi-Agyei Y, Rodrigo-Comino J (2019) Global evaluation of heavy metal pollution indices and multivariate statistical analyses. Chemosphere 236:124364
cytotoxicity and DNA cleavage studies. Indian J Pharm Educ Res 51:490–501
41. Stevanović N, Pio Mazzeo P, Bacchi A, Matić IZ, Crnogorac MD, Stanojković T, Vujčić M, Novaković I, Radanović D, Šumar-Ristović M, Sladić D, Čobelić B, K. (2021) Andelković, synthesis, characterization, antimicrobial and cytotoxic activity and DNA-binding properties of d-metal complexes with hydrazones of Girard’s T and P reagents. J Biol Inorg Chem 26:863–880
42. Chohan ZH, Shaikh AU, Naseer MM, Supuran CT (2006) In vitro antibacterial, antifungal and cytotoxic properties of metal-based furanyl derived sulfonamides. J Enzyme Inhib Med Chem 21:771–781
43. H.B. Shawish, M. Paydar, C.Y. Looi, Y.L. Wong, E. Movahed, S.N. Abdul Halim, W.F. Wong, M.-R. Mustafa, M.J. Maah, Nickel(II) complexes of polyhydroxybenzaldehyde N4-thiosemicarbazones: synthesis, structural characterization and antimi-
crobial activities, Transit. Met. Chem., 2014, 39, 81–94
44. Banti CN, Kourkoumelis N, Hatzidimitriou AG, Antoniadou I, Dimou A, Rallis M, Hoffmann A, Schmidtke M, McGuire K, Busath D, Kolocouris A, Hadjikakou SK (2020) Amantadine copper(II) chloride conjugate with possible implementation in influenza virus inhibition. Polyhedron 185:114590
45. Chohan ZH, Supuran CT (2008) Structure and biological properties of first row d-transition metal complexes with N-substituted sul-
fonamides. J Enzyme Inhib Med Chem 23:240–251
46. Chohan ZH, Shad HA (2008) Structural elucidation and biological signif-
cance of 2-hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates. J Enzyme Inhib Med Chem 23:369–379
47. Chohan ZH, Arif M, Shafiq Z, Yaqub M, Supuran CT (2006) In vitro antibacterial, antifungal & cytotoxic activity of some isoni-
cotinoylhydrazide Schiff’s bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes. J Enzyme Inhib Med Chem 21:95–103
48. Ribeiro N, Galvão AM, Gomes CSB, Ramos H, Pinheiro R, Saravia L, Ntungwe E, Isca V, Rijo P, Cavaco I, Ramilo-Gomes F, Guedes RC, Pessoa JC, Correia I (2019) Naphthohydrazones: coordination to metal ions and biological screening. New J Chem 43:17801–17818
49. Ferraz KO, Wardell SMSV, Wardell JL., Louro SRW, Beraldo H (2009) Copper(II) complexes with 2-pyridineformamide-derived thiosemicarbazones: spectral studies and toxicity against Artemia salina. Spectrochim Acta A 73:140–145
50. P. B. d. Silva, P. C. d. Souza, G. M. F. Calixto, E.D. O. Lopes, R. C. G. Frem, P. V. G. Netto, A. E. Mauro, F. R. Pavan, M. Chorilli, (2016) In vitro activity of copper(II) complexes, loaded or unloaded into a nanostructured lipid system, against mycobac-
teriun tuberculosis. Int J Mol Sci 17:745–757
51. Chohan ZH, Arif M, Rashid A (2008) Copper (II) and zinc (ii) metal based salicyl-, furanyl-, thienyl- and pyrrolyl-derived ONNO, NNNO, ONNS & NNNS donor asymmetrically mixed Schiff-bases with antibacterial and antifungal potentials. J Enzyme Inhib Med Chem 23:785–796
52. Kekitiši I, Banti CN, Kourkoumelis N, Tsiafoulis CG, Papachristodoulou C,Kalampounias AG, Hadjikakou SK (2020) Conjugation of Penicillin-G with Silver(I) ions expands its antimicrobial activity against gram negative bacteria. Antibiotics 9:25
53. Meretoudi A, Banti CN, Rapits PK, Papachristodoulou C, Kourk-
oumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK (2021) Silver nanoparticles from oregano leaves’ extracts as antimicrobial components for non-infected hydrogel contact lenses. Int J Mol Sci 22:3539
54. dos Santos PR, Ely MR, Dumas F, Moura S (2015) Synthesis, structural characterization and previous cytotoxicity assay of Zn(II) complex containing 1,10-phenanthroline and 2,2’-bipyri-
lyl with valproic acid. Polyhedron 90:239–244
55. Freitas MCR, António JMS, Ziolli RL, Yoshida MI, Rey NA, Diniz R (2011) Synthesis and structural characterization of a zinc(II) complex of the mycobacterial drug isoniazid—toxic-
ity against Artemia salina. Polyhedron 30:1922–1926
56. Alomar K, Landreau A, Ailhaud M, Bouet G, Larcher G (2013) Synthesis, structure and antifungal activity of thiophene-2,3-di-
carboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex. J Inorg Biochem 126:76–83
57. Filipovic N, Todorovic T, Randanovic D, Divjakovic V, Markovic R, Pajic I, Andelkovic K (2012) Solid state and solution structures of Cd(II) complexes with two N-heteroaromatic Schiff bases containing ester groups. Polyhedron 31:19–28
58. Mendes IC, Costa FB, de Lima GM, Ardisson JD, Garcia-San-
tos I, Castiñeiras A, Beraldo H (2009) Tin(IV) complexes with 2-pyridineformamide-derived thiosemicarbazones; antimicrobial and potential antineoplastic activities. Polyhedron 28:1179–1185
59. Shujah S, Khalid N, Ali S (2017) Homobimetallic Organotin(IV) complexes with succinohydrazide Schiff base: synthesis, spec-
troscopic characterization, and biological screening. Russ J Gen Chem 87:515–522
60. Affan MA, Salam MA, Ahmad FB, White F, Ali HM (2012) Organotin(IV) complexes of 2-hydroxyacetophenone-N(4)-cyclohexylthiosemicarbazone (H2dact): synthesis, spectral charac-
terization, crystal structure and biological studies. Inorganica Chim Acta 387:219–225
61. Khan SH, Ali S, Shaahzadi S, Sharma SK, Qanungo K (2010) Syn-
thesis, spectroscopy, semiemipirical, phytotoxicity, antibacterial, antifungal, and cytotoxicity of Diorganotin(IV) Complex derived from Bu3Sn(=Ac)2 and 4methyl1piperidinecarbodiatic acid. Russ J Coord Chem 36:310–316
62. Fiskejö G (1988) The allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res 197:243–260
63. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72
64. Egorova KS, Ananikov VP (2017) Toxicity of metal compounds: knowledge and myths. Organometallics 36:4071–4090
65. Fernández-Delgado E, Estirado S, Espino J, Viñuelas-Zahínos KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72
66. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability to plants: a challenge to global food security. Sci Total Environ 435:141–152
67. Egorova KS, Ananikov VP (2017) Toxicity of metal compounds: knowledge and myths. Organometallics 36:4071–4090
68. Fernández-Delgado E, Estirado S, Espino J, Viñuelas-Zahínos KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72
69. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability to plants: a challenge to global food security. Sci Total Environ 435:141–152
70. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72
68. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability to plants: a challenge to global food security. Sci Total Environ 435:141–152
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.