A review of the phytochemical compounds and pharmacological activities from selected Ficus plants

Insanu M*, Santoso F R C, Fidrianny I
Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung-40132, Indonesia

Article History:
Received on: 21 May 2020
Revised on: 10 Aug 2020
Accepted on: 17 Sep 2020

Keywords:
Ficus, Moraceae, Traditional, Phytochemical

ABSTRACT

The Ficus genus belongs to the Moraceae family were used for medicinal purposes. Distributed in America, Asia, Africa, and Australia, there were sixteen species accepted in Indonesia. They were *Ficus callosa*, *Ficus melinocarpa*, *Ficus elastica*, *Ficus drupacea*, *Ficus geocarpa*, *Ficus Superba*, *Ficus heteropoda*, *Ficus fistulosa*, *Ficus hirta*, *Ficus ampalas*, *Ficus adenosperma*, *Ficus ardisioideis*, *Ficus consociate*, *Ficus ribes*, *Ficus lyrata*, *Ficus virens* Aiton. This article reviewed the scientific work of the Ficus genus. Their traditional usage, phytochemical compounds, and pharmacological activity were summarized. This study aims at providing a collection of publications on selected species of Ficus genus. A critical review of the literature data revealed secondary metabolite like triterpenoid, steroid, saponin, flavonoid, phenolic compound and alkaloid were found in some species of Ficus. Some pure compounds such as quercetin, quercetin 3-O-α-L-arabinopyranoside, epilupeol acetate, oleanolic acid, friedelin, elastiquinone, pinocembrin-7-O-D-glucoside, and ficusoxide B were isolated. A wide range of pharmacological activities was observed. Antimicrobial, antioxidant, antiviral, antiparasitic, cytotoxic, and antimalarial were found in previous researches. Ficus genus was potential to be developed as a medicinal plant.

*Corresponding Author
Name: Insanu M
Phone: +62-222504852
Email: muhamad.insanu@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11iSPL4.4225

© 2020 | All rights reserved.

INTRODUCTION

Family Moraceae consists of over 50 genera and nearly 1400 species distributed in the tropical and subtropical region as American, Asia, Afrika, and Australia (Zerega et al., 2005). Ficus is one large family plant comprises of over 800 species (Herre et al., 2008) and one of about 40 genera of mulberry family Moraceae (Hamed, 2011). Twenty-two species were recorded in Indonesian, among which 16 are accepted name and six synonyms, which are all deciduous plants, and most are essentially hemiepiphytic. Ficus plant species can be edible food and traditional medicine to improve the human health of about ten thousand years. Several species used were recorded in Ayurvedic and traditional Chinese medicine (Lansky et al., 2008). People who live at Xishuangbanna in Southwest China consumed Ficus leaves as wild vegetables by the ethnic group. Ficus have many edible species such as *Ficus virens* Ait var. sub lanceolata (Miq.) Corner, *Ficus auriculata* Lour., *Ficus vasculosa* Wall ex Miq., *Ficus callosa* Willd, *Ficus virens* Ait var. verins, *Ficus racemosa* L. and *Ficus oligodon* Miq (Shi et al., 2011).

Traditional uses

Several of Ficus plants have been applied in tradi-
Table 1: Traditional uses of Ficus genus in Pakistan

Ficus species	Local name	Plant Part	Traditional uses
F. elastica	rubber plant	bark, fruits and leaves	Enlargement of liver and spleen, dysentery, diarrhea, diabetes, leprosy, lung complaints, leucorrhoea, heart diseases, cough, asthma, piles, ulcers, gonorrhea, rheumatism and for different skin diseases (Nisar *et al.*, 2014; Teinkela *et al.*, 2018)
F. lyrata	beeri patta	whole plant	Gastrointestinal problems, anthelmintic, diabetes, anti-tumor activity, asthma, cough, sexual disorders, diarrhea, ear-ache and toothache, migraine, eye troubles, scabies, gonorrhea, bleeding, paralysis, bone fracture, antiseptic and astringent (Nisar *et al.*, 2014).
F. virens	jangli pipit	leaves, fruit and bark	Diabetes, ulcer, menstrual disorder, leucorrhoea (Khan *et al.*, 2011)

Table 2: IC_{50} from various extracts of Ficus species

Ficus species	Plant Part	Extract	IC_{50}	Ref.
F. carica	Leaves	Water	76.38 mg/ml	(Wahyuni and Hertiani, 2016).
		Methanol	275.23 µg/ml	(Ayoub *et al.*, 2019).
F. pareintalis	Fruits	Water	33.38 mg/ml	(Wahyuni and Hertiani, 2016).
F. deltoidea	Leaves	Water	44.01 mg/ml	(Wahyuni and Hertiani, 2016).
	Fruits	Water	35.69 mg/ml	
F. maclellandii	Fruits	Methanol	111.2 µg/ml	(Misbah *et al.*, 2013).
		Ethanol	16.5 µg/ml	(Aslam *et al.*, 2017).
F. racemosa	Fruits	Ethanol	210.3 µg/ml	(Tamuly *et al.*, 2015).
		Ethanol	228.4 µg/ml	
Ficus species	Plant Part	Extract	Bacterial/Fungi	
---------------------	------------	---------------	--	
F. callosa	Leaves	Methanol	*Escherichia coli, Staphylococcus aureus, Bacillus subtilis*	
			(Wibowo et al., 2018b)	
F. drupacea	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
	Stem/	n-Hexane	*Aspergillus flavus, A. versicolor, A. niger, A. ochraceus, Candida albicans,*	
	bark		*Penicillium funiculosum, P. ochrochloron*	
			B. cereus, Listeria monocytogenes, Micrococcus flavus, S. aureus, E. coli,	
			Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter cloaceae	
			(Yessoufou et al., 2015)	
F. melinocarpa	Leaves	Methanol	*S. aureus, B. subtilis*	
	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
F. geocarpa	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
F. consociata	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
F. ribes	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
F. ardisioides	Leaves	Methanol	*E. coli, S. aureus, B. subtilis*	
	Root	MeOH/CHCl3	*Enterococcus faecalis, S. aureus, S. saprophyticus,*	
	barks		*S. epidermidis, Trichophyton rubrum,*	
			C. albican, E. coli, Klebsiella pneumoniae,	
			and S. typhi	
			(Teinkela et al., 2018)	
F. heteropoda	Leaves	Methanol	*S. aureus, B. subtilis*	
F. hirta	Leaves	Methanol	*S. aureus*	
F. elastica	Roots	Methanol	*S. aureus, E. coli, Proteus vulgaris,*	
			Providencia stuartii, P. aeruginosa,	
			C. albicans	
	Root	MeOH/CHCl3	*Enterococcus faecalis, S. aureus,*	
	barks		*S. saprophyticus,*	
			S. epidermidis,	
			Trichophyton rubrum,	
			C. albican,	
			E. coli,	
			Klebsiella pneumoniae,	
			and S. typhi	
			(Mbosso et al., 2012)	
F. fistulosa	Leaves	Methanol,	*E. coli, E. coli mutants,*	
		Water	*S. aureus, B. subtilis*	
			K. pneumoniae,	
			P. aeruginosae	
			(Raka et al., 2019)	
F. hirta	Fruits	Ethanol	*Penicillium italicum*	
F. lyrata	Latex	Ethyl acetate	*C. albicans*	
	Leaves	Ethanol	*S. aureus, E. coli,*	
			K. pneumoniae,	
			P. aeruginosae,	
			mecillin-resistant	
			Staphylococcus aureus,	
			S. pneumoniae	
			(Tkachenko et al., 2016)	
F. carica	Leaves	Ethanol	*E. coli, P. aeruginosa,*	
			MRSA, S. aureus	
			(Tkachenko et al., 2017)	
tional medicine for many countries. Thailand people used fresh young leaves of leab (F. Superba) and phak hueda Daeng (F. virens) as a vegetable as a curry or used in a salad (Chantarasuwan and Welzen, 2012). The Ayurveda book recorded that traditional people use bark, latex, leaves and fruit of F. virens Aiton for vertigo, blood diseases, diabetes, rheumatism and antioxidant (Rajani et al., 2008). People in Vanuatu used latex from leaves of F. adenosperma for menorrhagia; this plant is added to the coconut water (Bourdy and Walter, 1992). Different from people in Papua New Guinea, used for sores and scabies, but fresh roots of F. adenosperma is chewed to treat malaria (Mahyar et al., 1991). In Vietnam, leaves of F. drupacea is taken to treat malaria, paragonimiasis, nasosinusitis, sinusitis, and anasarca (Phan et al., 2013). Still, the leaves, roots and bark from F. microcarpa were applied to reduce fever and anti-inflammatory. The usage of Ficus species in Pakistan for traditional medicine can be seen in Table 1.

Many kinds of Ficus have been used in Indonesian culture like leaves of uyah-uyah (F. quercifolia) to treat skin disease in Balinese people. Gayo ethnic used leaves of leng (F. deltoidea) for aphrodisiac like Sundanese people. Another kind of Ficus, fruits of amis Mata (Ficus Montana) is used by Sundanese ethnic to treat urinary stones. Ficus fistulosa leaves also are used to treat wounds by sharp objects and for anthelmintic in Sumba people. The bark of Ficus septic is used for sprue, but the leaves can use for mothers who have just given birth.

Phytochemical compound

Phytochemical screening found that many secondary metabolites such as flavonoid and phenolic compound, p-coumaric acid, caffeic acid, kaemferol, quercetin and leucoanthocyanins frequently occurred in leaves. Triterpenoid (Chiang et al., 2001, 2005), steroid, flavonoid (Kiem et al., 2011), lignin (Li and Kuo, 2000), saponin, and alkaloid were known from some species of Ficus (Berg et al., 2006). The structure of some phytochemical compound is shown in Figure 1.

Flavonoid was discovered in all Ficus genus, and several isolates were found from methanol extract of F. callosa leaves as megastigmene glycoside, ficalloside (Van et al., 2011). Quercetin, quercetin-3-O-α-D-arabinopyranoside, quercetin-3-O-β-D-galactopyranoside, kaempferol-3-O-α-D-arabinopyranoside, kaempferol-3-O-β-D-galactopyranoside, and vogelin J. were obtained from methanol extract of F. virens Aiton (Orabi and Orabi, 2016). Other biochemical compounds from stem bark extracts of F. drupacea included β-amyrin, β-sitosterol-3-O-β-D-glucopyranoside, 5-O-methylatilifolin, oleanolic acid, epifriedelanol, friedelin and epilupeol acetate were isolated and identified (Yessoufou et al., 2015).

Chemical investigation of the ethyl acetate extract of F. consociata leaves led to the isolation and structural elucidation of seven compounds. They were luteolin, cirsiliol, isouquerctin, quercetin 3-O-α-L-arabinopyranoside, nikotoflin, hesperidin, and (2E,4E,1’S,2’R,4’S,6’R)- dihydrophaseic acid (Dat et al., 2019). Ursolic acid and oleanic acid were isolated from the dichloromethane extract F. ampelas. Butyrospermol cinnamate and isolation of lutein from leaves of F. ampelas were also exposed (Ragasa et al., 2014).

Methanol extract roots of Ficus elastic contained steroidal glucosides called as sitosteroyl 3-O-β-D-glucopyranoside, elasticamide, and the highest antimicrobial are elastiquinone, ficusoside B (Teinkela et al., 2018), ficusamide, and elasticoside (Mbossou et al., 2012). Pinocembrin-7-O-β-D-glucoside, in the ethanol extract of F. hirta fruits, had antifungal activity (Wan et al., 2017).

Pharmacological activities

Pharmacological activities of some Ficus species were shown in the explanation below:

Antioxidant Activity

Ethanol extract of young leaves of F. virens Aiton and Ficus callosa had antioxidant activity with DPPH and ABTS assays, which IC₅₀ of DPPH F. virens Aiton was 0.34 mg/ml, and IC₅₀ of ABTS 0.23 mg/ml. It was different with F. callosa, IC₅₀ of DPPH 0.95 mg/ml, and ABTS 0.35 mg/ml. F. virens Aiton had higher

Table 4: Cytotoxic activity of isolated compound

Compounds	HeLa	MCP-7	Jurkat	HT-29	T24
Oleanolic acid	20.38 ± 2.6	16.28 ± 1.3	21.17 ± 2.2	25.58 ± 1.3	27.61 ± 1.3
Friedelin	20.42 ± 2.3	22.81 ± 2.1	29.15 ± 2.3	37.21 ± 3.61	12.81 ± 1.4
Epilupeol acetate	15.16 ± 1.6	20.03 ± 3.2	19.64 ± 2.6	26.21 ± 1.7	58.26 ± 2.3
flavonoid and phenolic compounds, which correlated with its antioxidant activity (Shi et al., 2011).

Quercetin from methanol leaves extract of *F. virens Aiton* was the most active DPPH radical scavenging activity with IC_{50} 14 ± 1.12 μg/ml (Orabi and Orabi, 2016). (Hilfi, 2019), reported that ethanol extract of *F. elastic* gave antioxidant activity with EC_{50} DPPH 6.4166 mg/ml and 0.0768 mg/ml with ABTS. Ficuselastic acid and (1'S,6'R)-8-O-D-glucopyranosyl abscisate sodium showed antioxidant activity (Kiem et al., 2012). The methanol extract of leaves of *Ficus ϔistulosa* presented IC_{50} DPPH 16.66 μg/ml (Raka et al., 2019).

Some Ficus from other country had antioxidant compounds, such as C-glycosylϐlavone from ethanolic leaves extract of *F. microcarpa* (Kiem et al., 2011), and aqueous roots extracts of *F. beecheyana* (Yen et al., 2018). Philippines peoples used antioxidants from the ethanol extract of leaves and fruits of *F. nota* (Santiago et al., 2017). *F. sur* is a traditional medicine from Togo, had antioxidant activity for the whole plant, the highest activity was given by ethanolic bark extract (56.50 ± 0.29 μg QE/mg), and the ripe fruit had lowest activity (7.3 ± 0.30 μg QE/mg) (Saloufou et al., 2018). The old leaves of *F. deltoidea* had more potent antioxidant activity than the fresh leaves (Manurung et al., 2017). The value of IC_{50} from other extracts of Ficus species are reported in Table 2.

Antiparasitic Activity

Methanol roots extract of *Ficus elastica* exhibited antiparasitic activity against *Trypanosoma brucei*, with IC_{50} 0.9 μg/mL (Teinkela et al., 2018). The antischistosomal activity was shown by ether latex extract of *F. elastica* (after washing off toxic rubber materials) (el Din et al., 2014).

Antimalarial Activity

The methanol extract of *F. elastica* roots demonstrated plasmocidal activity (IC_{50} 9.5 μg/ml) against *Plasmodium falciparum* strain 3D7 (Teinkela et al., 2018).

Antimicrobial Activity

The antimicrobial activity of Ficus species has been evaluated by the agar diffusion method. It can be proposed that flavonoids, triterpenoid, and steroid had antimicrobial activities (Wibowo et al., 2018a). Ficus species showed antimicrobial activity against at least one bacteria, which can be seen in Table 3.

Antiviral Activity

Antiviral activity *in vitro* of flavonoids, which was found from *F. virens Aiton* on Coxsackie B4 (CVB4), and hepatitis A virus (HAV) were also carried out. Antiviral activities were also given by quercetin and quercetin-3-O-β-D-glactopyranoside isolated from *F. virens Aiton*. It was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Quercetin gave the highest inhibitory activity (20.3%) on CVB4; meanwhile, quercetin-3-O-β-D-glactopyranoside presented the highest inhibitory activity (12.3%) on HAV (Orabi and Orabi, 2016).

F. ϔistulosa leaves extract showed antiviral activity (IC_{50} 15.0 μg/ml) against HCV J6/JFH1-P47 strain
and HCV J6/IFH1-P1 strain with IC_{50} 5.7 µg/ml. The chloroform fraction had an anti-HCV activity with IC_{50} 5.67 ± 1.54 µg/ml, while butanol fraction gave lower activity (IC_{50} 74.10 ± 18.24 µg/ml) (Hafid et al., 2016). Methanol leaves extract of F. septica had antiviral activity against Dengue virus (DENV-1 and DENV-2) with IC_{50} 13.3±2.6 µg/ml and 10.6±1.1 µg/ml (Huang et al., 2017).

Cytotoxic Activity

Flavonoid compounds are the secondary metabolites responsible for pharmacological activity in Ficus species. The flavonoid from F. virens Aiton showed low cytotoxic activity in Vero cells by the MTT method (Orabi and Orabi, 2016). The ethanol leaves extract of F. fistulosa had cytotoxicity concentration (CC_{50}) >200 µg/ml, which was not toxic, while butanol and chloroform fractions gave CC_{50} >100 µg/ml (Hafid et al., 2016). The methanol extract of F. septica root inhibited nasopharyngeal carcinoma (HONE-1) and gastric adenocarcinoma (NUGC) cell (Damu et al., 2009) while the ethanolic extract of roots from F. beecheyana inhibited HL-60 cell (Yen et al., 2018).

Ficusamide is an isolated compound from F. elastica that had medium cytotoxic activity on A-549 lung cancer (Mbossou et al., 2012). Other compounds from F. elastica showed weak cytotoxic activity (IC_{50} values 20 µg/ml) on HeLa cell (Teinkela et al., 2018). Meanwhile, compounds from F. drupacea stem barks demonstrated the highest antiproliferative activities against most cancer cells, are reported in Table 4 (Yessoufou et al., 2015).

Other Pharmacological Activities

Methanol fruit extract of Ficus carica with a concentration of 924 µmol/l reduced 54% the formation of uric acid in mice, which injected with potassium oxonate (Mohamed and Al-Okbi, 2008). F. carica leaves showed oedema inhibitory activity (anti-inflammatory) in rats induced by carrageenan as much as 48.8% (Ali et al., 2012). Previous research demonstrated that ethanolic fruit extract of F. carica could inhibit α-glucosidase, α-amylase, and pancreatic lipase (Mopuri and Islam, 2016).

CONCLUSIONS

We summarized the traditional usage, phytochemical compounds, and pharmacological activity of selected Ficus plants. Based on the literature review was reported that most of the species were used as a traditional medicine in Asian countries such as Indonesia, Papua New Guinea, Vietnam, Pakistan, Thailand, and Vanuatu. Some species of the Ficus genus need further research on pharmacological activities, based on mechanisms and chemical contents.

ACKNOWLEDGEMENT

The authors are thankful to the Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia, for providing the facilities.

Conflict Of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Ali, B., Mujeeb, M., Aeri, V., Mir, S. R., Faiyazuddin, M., Shakeel, F. 2012. Anti-inflammatory and antioxidant activity of Ficus caricafifolia leaves. Natural Product Research, 26(5):460–465.

Aslam, M., Sin, M., Mamat, A., Ahmad, M. 2017. Total phenolic content and anti-oxidant potential of Ficus deltoidea using green and non-green solvents. Journal of Pharmaceutical Negative Results, 8(1):15–15.

Ayoub, L., Hassan, F., Hamid, S., Abdelhamid, Z., Souad, A. 2019. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation, 15(3):226–232.

Berg, C. C., Corner, E. J. H., Jarrett, F. M. 2006. Moraceae genera other than Ficus. Flora Malesiana-Series, 1(1):1-146.

Bidarigh, S., Khoshkholgh, P. M., Massiha, A., Issazadeh, K. 2011. In vitro anti Candida activity of Ficus lirata L. ethyl acetate latex extract and nystatin on clinical isolates and standard strains of Candida albicans. Int Conf Biotechnol Environ Manage, 18:115–124.

Bourdy, G., Walter, A. 1992. Maternity and medicinal plants in Vanuatu I. The cycle of reproduction. Journal of Ethnopharmacology, 37(3):179–196.

Chantarasuwan, B., Welzen, P. C. V. 2012. Which Species of Ficus subsection Urostigma in Thailand are used as Food, Ornamental Plants or Sacred Trees. The Thailand Natural History Museum Journal, 6:145–151.

Chiang, Y. M., Chang, J. Y., Kuo, C. C., Chang, C. Y., Kuo, Y. H. 2005. Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 66(4):495–501.
Chiang, Y. M., Su, J. K., Liu, Y. H., Kuo, Y. H. 2001. New Cyclopropyl-Triterpenoids from the Aerial Roots of Ficus microcarpa. *Chemical & Pharmaceutical Bulletin, 49*(5):581–583.

Damu, A., Kuo, P. C., Li, C. Y., Su, C. R., Wu, T. S. 2009. Cytotoxic Phenanthroindolizidine Alkaloids from the Roots of Ficus septica. *Planta Medica, 75*:1152–1156.

Dat, H. N., Tien, L. H. T., Dzung, N. T. M., Kieu, N. V., Huy, D. T., Tuyet, N. T. A., Phung, N. K. P. 2019. Chemical constituents of Ficus consociaata Blume (Moraceae). *Vietnam Journal of Chemistry, 57*(2):202–207.

el Din, S. H. S., El-Lakkany, N. M., Mohamed, M. A., Hamed, M. M., Sterner, O., Botros, S. S. 2014. Potential effect of the medicinal plants Calotropis procera. Ficus elasticaindZingiber officinalisagainst Schistosoma mansoniin mice. *Pharmaceutical Biology, 52*(2):144–150.

Hafid, A. F., Permanasari, A. A., Tumewu, L., Adianti, M., Aoki, C., Widyawaruyanti, A., Soetjipto, Lusida, M. I., Hotta, H. 2016. Activities of Ficus fistulosa Leave Extract and Fractions against Hepatitis C Virus. *Procedia Chemistry, 18*:179–184.

Hamed, M. A. 2011. Beneficial effect of Ficus religiosa Linn. on high-fat-diet-induced hypercholesterolemia in rats. *Food Chemistry, 129*(1):162–170.

Herre, E. A., Jandé, K. C., Machado, C. A. 2008. Evolutionary Ecology of Figs and Their Associates: Recent Progress and Outstanding Puzzles. *Annual Review of Ecology, Evolution, and Systematics, 39*(1):439–458.

Hilфи, Z. A. F. A. 2019. Chemical Composition And Antioxidant Activity Of Ficus Elastica Roxb. Ex Hornem And Raphanus Sativus L. Selective Dry Extracts With Potential Antidiabetic Activity. *Pharmacia, 65*(7):764–771.

Huang, N. C., Hung, W. T., Tsai, W. L., Lai, F. Y., Lin, Y. S., Huang, M. S., Chang, T. H. 2017. Ficus septica plant extracts for treating Dengue virus in vitro. *PeerJ, 5*:1–12.

Khan, K. Y., Khan, M. A., Ahmad, M., Mazari, P., Hussain, I., Ali, B., Khan, I. Z. 2011. Ethno-medicinal species of genus Ficus L. used to treat diabetes in Pakistan. *Journal of Applied Pharmaceutical Science, 1*(6):29–29.

Kiern, P., Van, Minh, C., Van, Nhiem, N. X., Tai, B. H., Quang, T. H., Anh, H. L. T., Kim, Y. H. 2012. Chemical Constituents of the Ficus elastica Leaves and Their Antioxidant Activities. *Bulletin of the Korean Chemical Society, 33*(10):3461–3464.

Kiern, P. V., Cuong, N. X., Nhiem, N. X., Thu, V. K., Ban, N. K., Minh, C. V., Tai, B. H., Hai, T. N., Lee, S. H., Jang, H. D., Kim, Y. H. 2011. Antioxidant activity of a new C-glycosyllavone from the leaves of Ficus microcarpa. *Bioorganic & Medicinal Chemistry Letters, 21*(2):633–637.

Lansky, E. P., Paavilainen, H. M., Pawlus, A. D., Newman, R. A. 2008. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. *Journal of Ethnopharmacology, 119*(2):195–213.

Li, Y. C., Kuo, Y. H. 2000. Four New Compounds, Ficususquilligian A, B, and Ficusolidi Diacetate from the Heartwood of Ficus microcarpa. *Chemical & Pharmaceutical Bulletin, 48*(12):1862–1865.

Mahyar, U. W., Burley, J. S., Gyllenhaal, C., Soejarto, D. D. 1991. Medicinal plants of Seberida (Riau Province, Sumatra, Indonesia). *Journal of Ethnopharmacology, 31*(2):217–237.

Manurung, H., Kustiawan, W., Kusuma, I. W. 2017. Total flavonoid content and antioxidant activity of tabat Barito (Ficus deltoidea Jack) on different plant organs and ages. *Journal of Medicinal Plants, 5*(6):120–125.

Mbooso, E. J. T., Nguedia, J. C. A., Meyer, F., Lenta, B. N., Ngouela, S., Lallemand, B., Mathieu, V., Antwerpen, P. V., Njunda, A. L., Adiogo, D., Tsamo, E., Loosey, Z., Kiss, R., Wintjens, R. 2012. Ceramide, cerebrosidetripterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). *Phytochemistry, 83*:95–103.

Misbah, H., Aziz, A. A., Aminudin, N. 2013. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. *BMC Complementary and Alternative Medicine, 13*(1).

Mohamed, D. A., Al-Okbi, S. Y. 2008. Evaluation of anti-gout activity of some plant food extracts. *Polish journal of food and nutrition sciences, 58*:389–395.

Mopuri, R., Islam, M. S. 2016. Antidiabetic and anti-obesity activity of Ficus carica: In vitro experimental studies. *Diabetes & Metabolism, 42*(4):300–300.

Nisar, M. F., Jalief, F., Waseem, M., Ismail, S., Toor, Y., Haider, S. M., Zhong, J. L. 2014. Ethno-medicinal Uses of Plants from District Bahawalpur, Pakistan. *Current Research Journal of Biological Sciences, 6*(5):183–190.

Orabi, M. A., Orabi, E. A. 2016. Antiviral and antioxidant activities of flavonoids of Ficus virens: Experimental and theoretical investigations. *Journal of Pharmacognosy and Phytochemistry, 5*(3):120–128.
Phan, V., Kiem, Chau, V. M., Nguyen, X. N., Pham, H. Y., Hoang, L. T. A., Nguyen, X. C., Kwon, S. U. 2013. Chemical constituents of Ficus drupacea leaves and their α-glucosidase inhibitory activities. *Bulletin of the Korean Chemical Society*, 34(1):263–266.

Ragasa, C. Y., Cuevas, O., Mandia, E. H., Bernardo, L. O., Shen, C. 2014. Chemical constituents of Ficus ampelas. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 5(2):355–359.

Rajani, M., Anandjiwala, S., Bagul, M. S., Parabia, M. 2008. Evaluation of free radical scavenging activity of an ayurvedic formulation, *Panchvalkala*. *Indian Journal of Pharmaceutical Sciences*, 70(1):31–31.

Saloufou, K. I., Boyode, P., Simalou, O., Eloh, K., Idoh, K., Melila, M., Toundou, O., Kpegbia, K., Agbonon, A. 2018. Chemical composition and antioxidant activities of different parts of Ficus sur. *Journal of Herbdmed Pharmacology*, 7(3):185–192.

Santiago, L. A., Saguinsin, S. G. C., Reyes, A. M. L., Guerrero, R. P., Nuguid, A. M. N., Santos, A. C. N. 2017. Total phenolic and flavonoid contents and free radical scavenging components of Ficus nota Merr. (Moraceae) ethanolic leaf extract. *International Food Research Journal*, 24(5):2050–2058.

Shi, Y. X., Xu, Y. K., Hu, H. B., Na, Z., Wang, W. H. 2011. Preliminary assessment of antioxidant activity of young edible leaves of seven Ficus species in the ethnic diet in Xishuangbanna, Southwest China. *Food Chemistry*, 126(4):889–894.

Tamuly, C., Buragohain, R., Hazarika, M., Bora, J., Gajurel, P. R. 2015. Assessment of Antioxidant Activity of Six Ficus Species—Underutilized Fruits from Arunachal Pradesh in North East India. *International Journal of Fruit Science*, 15(1):85–99.

Teinkela, J. E. M., Noundou, X. S., Nguefou, E. L., Meyer, F., Wintjens, R., Isaacs, M., Mpond, A. E. M., Hoppe, H. C., Krause, R. W. M., Azebaze, A. G. B. 2018. Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antimarial, antitrypanosomal and cytotoxicity evaluation. *Saudi Journal of Biological Sciences*, 25(1):117–122.

Tkachenko, G., Buyun, L., Osadosky, Z., Truhan, M., Sosnowski, E., Prokopiv, A., Goncharenko, V. 2016. In vitro screening of antimicrobial activity of ethanolic extract obtained from Ficus lyrata Warb. (Moraceae) leaves. *агроекологічний журнал*, 4(2):155–160.

Tkachenko, H. M., Buyun, L. I., Osadoski, Z., Honcharenko, V. I., Prokopiv, A. I. 2017. Antimicrobial Screening of the ethanolic leaves extract of Ficus carica L. (Moraceae) — an ancient fruit plant. *Plant Introduction*, 73:78–87.

Van, P., Kiem, Cuong, N. X., Nhiem, N. X., Hang, D. T., Nam, N. H., Ban, N. K., Kim, Y. H. 2011. Chemical constituents and antioxidant activity of Ficus callosa. *Natural product communications*, 6(2):159–162.

Wahyuni, O. T., Hertiandi, T. 2016. DPPH radical scavenging activity, total phenolics and flavonoids of water soluble extracts derived from leaves and fruit of Ficus carica L and Ficus parietalis B1. *Traditional Medicine Journal*, 21(2):86–92.

Yen, G. C., Chen, C. S., Chang, W. T., Wu, M. F., Cheng, F. T., Shiau, D. K., Hsu, C. L. 2018. Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. *Journal of Food and Drug Analysis*, 26(1):182–192.

Yessoufou, K., Elansary, H. O., Mahmoud, E. A., Skalicka-Woźniak, K. 2015. Antifungal, antibacterial and antitumor activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. *Industrial Crops and Products*, 74:752–758.

Zerega, N. J., Clement, W. L., Datwyler, S. L., Weiblen, G. D. 2005. Biogeography and divergence times in the mulberry family (Moraceae). *Molecular Phylogenetics and Evolution*, 37(2):402–416.