Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development

Guohu Chen1,2,3*, Jian Wang1,2, Hao Wang1, Chenggang Wang1,2,3*, Xiaoyan Tang1,2, Jie Li1, Lei Zhang1, Jianghua Song1, Jinfeng Hou1 and Lingyun Yuan1

Abstract

Background: Proline-rich extension-like receptor protein kinases (PERKs) are an important class of receptor kinases located in the plasma membrane, most of which play a vital role in pollen development.

Results: Our study identified 25 putative PERK genes from the whole Brassica rapa genome (AA). Phylogenetic analysis of PERK protein sequences from 16 Brassicaceae species divided them into four subfamilies. The biophysical properties of the BrPERKs were investigated. Gene duplication and synteny analyses and the calculation of Ka/Ks values suggested that all 80 orthologous/paralogous gene pairs between B. rapa and A. thaliana, B. nigra and B. oleracea have experienced strong purifying selection. RNA-Seq data and qRT-PCR analyses showed that several BrPERK genes were expressed in different tissues, while some BrPERKs exhibited high expression levels only in buds. Furthermore, comparative transcriptome analyses from six male-sterile lines of B. rapa indicated that 7 BrPERK genes were downregulated in all six male-sterile lines. Meanwhile, the interaction networks of the BrPERK genes were constructed and 13 PERK coexpressed genes were identified, most of which were downregulated in the male sterile buds.

Conclusion: Combined with interaction networks, coexpression and qRT-PCR analyses, these results demonstrated that two BrPERK genes, Bra001723.1 and Bra037558.1 (the orthologs of AtPERK6 (AT3G18810)), were downregulated beginning in the meiosis II period of male sterile lines and involved in anther development. Overall, this comprehensive analysis of some BrPERK genes elucidated their roles in male sterility.

Keywords: Brassica rapa, Comparative genome analysis, Male sterile, Proline-rich receptor-like protein kinase, Transcriptomic analysis

Background

Unique membrane receptor-like kinases (RKs) have evolved to regulate biological processes in plants [1, 2]. These plasma membrane RKs perceive various stimuli and direct them to downstream signaling networks via the phosphorylation of specific domains [3]. In Arabidopsis, approximately 610 RKs have been predicted, which comprise a variety of extracellular ligand-binding domains and are implicated in a wide range of functions, from plant growth and development to plant-environment interactions [2, 4, 5]. These RK proteins can be grouped into many different classes according to

*Correspondence: cgh@ahau.edu.cn; cgwang@ahau.edu.cn
1Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
their extracellular domain motifs [6, 7]. For instance, the leucine-rich repeat receptor kinases (LRR-RKs) are the largest of the RK family in Arabidopsis and sense a diverse set of hormone signaling pathways to regulate cell proliferation and expansion, stomatal development and stem cell maintenance [5, 8–10].

Proline-rich extension-like receptor-kinases (PERKs) are a small family of RKs containing cytoplasmic kinase-like domains, transmembrane motifs and extracellular proline-rich domains [1, 11, 12]. The first PERK gene was identified in Brassica napus, which is rapidly induced by wounding, ubiquitously expressed in the stem, petals and pistils and controls root and stem branching [13, 14]. Recent work addressing the PERK family of Gossypium hirsutum has revealed the expression patterns of these genes in response to various abiotic stresses and hormonal homeostasis [15]. In addition to these functions, PERKs are thought to act as sensors/receptors to monitor changes in the cell wall during its expansion [1, 12].

In Arabidopsis, the PERK family includes 15 members, and the analysis of their expression pattern shows that several of these genes are broadly expressed, while some AtPERK genes are specifically expressed [16]. For example, AtPERK1 (NsAK) is ubiquitously expressed, and AtPERK2 is mainly expressed in rosette leaf veins, stems and pollen [14, 17]; AtPERK4, a Ca2+ signaling regulator, is implicated in root growth and seed germination and is highly expressed in mature pollen and pollen tubes [18–20]; AtPERK8 and AtPERK13 (RHS10) are specifically expressed in root hairs [11, 16, 21]; and AtPERKS, AtPERK6, AtPERK7, AtPERK11 and AtPERK12 (IGII) are highly expressed in pollen but are almost undetectable in sporophytic tissues [1, 11, 22, 23].

Evidence from Arabidopsis shows that most PERKs not only contribute to cell growth and cell wall deposition but also play important roles in male-female interactions and precisely control pollen/pollen tube behaviors [1, 18]. Male gametogenesis requires several metabolic pathways, including the tapetum development, callose metabolism, anther dehiscence, pollen wall and pollen tube wall formation pathways [24–26], and defects in any of these processes can cause abnormal development and ultimately lead to male sterility [26]. However, the molecular mechanisms of PERKs function in pollen development, especially in male sterility, are still unknown.

Thus far, the genome-wide characterization of PERK genes has been reported only in cotton and Arabidopsis [15, 16]. Little information on the PERK family and their biological functional roles in B. rapa are available. Chinese cabbage (B. rapa L.) is one of the most important species in the Brassicaceae family and is widely cultivated in most parts of China [26, 27]. In this study, we performed a systematic analysis of the PERK family in B. rapa. The biophysical properties of BrPERK genes were determined. Furthermore, RNA-Seq data from six male-sterile plants (two male-sterile mutants [26, 28], two GMS lines [29, 30] and two ogu-CMS lines [27, 31]) were analyzed, and tissue-specific expression patterns were examined to identify the specific PERK genes related to pollen development and male sterility in B. rapa. The present study will contribute to a detailed understanding of the molecular and biological functions of BrPERK genes in male-sterile plants of B. rapa.

Results
Identification of PERK proteins
In our study, a total of 418 PERK gene family members in 16 Brassicaceae species were identified based on several confirmations. With the exception of B. juncea (n = 18), B. napus (n = 19) and Camelina sativa (n = 20), the PERK gene numbers in the other 13 species ranged from 17 to 27 (Table S1; Fig. S1), which might be related to their chromosome numbers and indicated that the PERK genes have undergone expansion in Brassicaceae species. A maximum likelihood (ML) tree was generated for these PERK proteins, showing that all PERKs were grouped into four subfamilies (Groups I–IV; Fig. 1, Table S2). Although Group III contained the fewest PERKs (only 22 members), it included PERK members from all Brassicaceae species, and most species exhibit only one PERK (Table S2).

Among Brassica species, 25, 27 and 22 PERK family members were identified in B. rapa (AA), B. nigra (BB) and B. oleracea (CC), respectively (Table S1; Fig. S1). The phylogenetic tree of these genes along with those of A. thaliana showed that the total 89 PERKs could again be divided into four groups (Fig. 2a, Groups 1–4). Group 1 and Group 3 constituted the largest clades, containing a total of 65 PERKs, and accounted for 46.07 and 38.20% of the sequences, respectively. Interestingly, the PERK protein numbers of the three Brassica species in Groups 1–3 were almost the same (Fig. 2b), indicating that these PERK genes from the three Brassica plants may have come from a common ancestor. Furthermore, the sequence logos of the homologous domain sequences of the PERK proteins revealed that the domain sequences of the PERK proteins were highly conserved in A. thaliana and the three Brassica species (Fig. S2).

We also determined the physical and chemical characteristics of BrPERK proteins. The BrPERK proteins showed wide variation in their length, molecular weight (MW) and isoelectric point (pI) (Table S3). Moreover, the majority of the proteins were localized to the chloroplast thylakoid membrane, followed by the endoplasmic reticulum (membrane), plasma membrane, cytoplasm, nucleus and chloroplast stroma (Table S3).
Conserved motifs, gene structures and cis-elements analyses

The functional motifs and gene exon-intron positions were analyzed based on evolutionary tree relationships (Fig. 3). The ten most conserved motifs were identified in the BrPERK members (Fig. S3), showing that almost all of the BrPERK proteins contained the same motifs in terms of both the type and distribution patterns of the motifs, except for Bra037558 (Fig. 3b). The exon-intron organization suggested that all BrPERK genes showed conserved patterns of gene structure, and all conserved motifs were associated with the Pkinase domain (Pkc-like superfamily and STKc_IRAK) (Fig. 3c). Overall, the highly similar gene structures and motif distributions of the BrPERK members were consistent with their phylogenetic relationships (Fig. 3). cis-element analysis showed that several promoters contained meristem expression motifs, and a few promoters contained
endosperm and seed-specific expression, cell cycle regulation and circadian control elements (Table S4; Fig. S4), indicating the roles of several PERK genes in plant flowering.

Gene duplication, synteny and Ka/Ks analyses

The mapping of the BrPERK genes to chromosomal loci showed that an inconsistent distribution of the genes, with 1 to 5 genes being distributed on chromosomes A1-A9 (Fig. S5A; Table S3). Synteny and Ka/Ks analyses indicated that 13 paralog pairs were distributed on different chromosomes, not including the A04 and A10 chromosomes (Table S5, Fig. S5B). The Ks values ranged from 0.29 to 1.23, and the average duplication time of paralog pairs was indicated to be 22.84 million years ago (Mya) (Table S5, Fig. S6A), possibly because some BrPERK gene duplications occurred before the whole-genome triplication observed in *B. rapa*.

Further analyses of PERK gene evolution and divergence among *A. thaliana* and the three *Brassica* species showed that a total of 67 orthologous gene pairs exhibited a collinear relationship (17 Br-At, 27 Br-Bni, 23 Br-Bo; Fig. 4, Table S5). These results demonstrated that the PERK genes of these *Brassica* species appeared to be derived from a common ancestor and that the function of these PERK genes of *Brassica* plants might be the same as those of *A. thaliana*. In addition, among the orthologous gene pairs, each AtPERK gene presented 1–3 BrPERK orthologous genes (Fig. 4 and S7, Table S5), suggesting that a few BrPERK genes had been duplicated by genome triplication. The Ka/Ks values of these gene pairs were all less than 0.35 except for one pair (Bra028371.1-Bo1013798, Ka/Ks = 0.56), and the average divergence times were estimated to be 17.12 Mya (Br-At), 11.96 Mya (Br-Bni), and 8.95 Mya (Br-Bo) (Table S5, Fig. S6B-D). These results demonstrated that the PERK gene pairs shared between *B. rapa* and *B. nigra*, *B. oleracea*, and *A. thaliana* had undergone strong purifying selection with limited functional divergence after whole-genome duplication (13–17 Mya [32]).

Tissue-specific expression pattern analysis

The RNA-Seq data from different tissues of *B. rapa* showed that the BrPERK members exhibited variable
expression patterns; several genes were broadly expressed in all different tissues, while some members were exhibited a more tissue-specific pattern and were especially highly expressed in flower tissue (Fig. 5a). The qRT-PCR results from different organs confirmed the RNA-Seq data, and several BrPERK genes were highly expressed in sepals and petals (Fig. 5b). Furthermore, BrPERK gene expression differed in different anther developmental stages, with some of these genes exhibiting high expression in the uninucleate, binucleate and mature pollen periods (Fig. 5c-d and S 8). Together, these results suggested that some BrPERK genes may play important roles in flower development, especially in pollen development.

Comparative transcriptome analysis of BrPERK genes in B. rapa male-sterile lines

Transcriptome datasets from six different male-sterile lines were analyzed, including two ogura cytoplasmic male-sterile (ogu-CMS) lines (wucai and turnip), two genic male-sterile (GMS) lines (AB01 and AB03) and two male-sterile mutants (msm and fms). A total of 14 differentially expressed genes (DEGs) of BrPERKs were detected, and seven of them were downregulated in all male-sterile (MS) plants (Fig. 6 and S9A). qRT-PCR analysis of different developing buds showed that these BrPERK genes presented variable expression patterns, and most of them were downregulated after the tetrad period (Fig. 6b and c). These results demonstrated that these downregulated BrPERK genes participated in another development.

Regulatory subnetworks involving BrPERKs and other genes

To gain further insight into the roles of these downregulated BrPERK genes in anther development, interaction networks of the BrPERK genes in Chinese cabbage were constructed. From the STRING database, 19 coexpressed genes were identified (Fig. 7a). RNA-Seq data from 6 male-sterile lines and qRT-PCR results were analyzed to assess the expression patterns of these genes. Ten genes were identified in at least 2 male lines (Fig. 7b), and most of the genes were downregulated in these male sterile buds (Fig. 7b). The interaction network of these genes with BrPERKs and their expression levels during pollen development are shown in Fig. 7c and d, respectively. Gene Ontology (GO) analysis indicated that 8 genes were enriched in pectinesterase activity, nucleic acid binding, cation binding, the membrane, and protein kinase activity; Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that three genes were involved in starch and sucrose metabolism, metabolic pathways, and pentose and glucuronate interconversion (Table S6).
In the present study, we successfully identified 25 BrPERK members from the whole-genome sequence of *B. rapa* and analyzed their biophysical properties (Table S3). However, 6 more BrPERK members were identified in our analyses that have been reported in previous studies [1]. Among the 25 BrPERKs, 6 members (Bra022359, Bra037558, Bra034626, Bra011374, Bra004022 and Bra037291) were shorter, which generally lacked partial sequences in the 5' flanking region (Fig. 3c); all of these proteins are extracellular proteins (Table S3) and exhibit similar patterns of the main motif distribution (Fig. 3b). These shortened proteins might exist because partial sequences were deleted in the process of gene duplication [33, 34]. Nevertheless, these 6 genes still belong to the PERK gene family, and they were retained in the subsequent analyses. Unlike AtPERK members [1, 13, 16], all of the proline-rich regions of BrPERKs contained less than 2 Ser-Pro(2–3) motifs in the 5' flanking region (data not shown).

In addition to *B. rapa* and *A. thaliana*, we identified PERKs in 14 other Brassicaceae species (Table S1), and the number of PERKs did not differ greatly in these species.
species except in three polyploid plant species, suggesting that the PERK family is well conserved in these species [17]. The phylogenetic tree of a total of 418 PERKs showed that Group III among the four subgroups is an ancient clade, similar to the findings from a previous phylogenetic tree of 207 PERKs from 15 other plant species [15]. Interestingly, in Group III, most of the Brassicaceae species presented only one PERK member, except for C. rubella (n = 8) and T. salsuginea (n = 7) and three polyploid plant species, B. juncea (n = 18), B. napus (n = 19) and C. sativa (n = 20) (Fig. 1, Table S2), which exhibited far more PERK members than other diploid plant species (Fig. S1, Table S1). These results revealed that the PERK gene family is affected by polyploidy and has experienced segmental and genome duplication in these species [15, 35].

The phylogenetic tree of the three Brassica species with A. thaliana showed that Groups 1–3 included almost equal numbers of PERKs in these three Brassica species, while Group 4 lacked an AtPERK gene (Fig. 2); the PERK genes of this group might acquire new functions via divergence following duplication [33, 34, 36, 37]. Furthermore, the sequence logos of the conserved PERK amino acid residues showed that the PERK genes are evolutionarily conserved among the Brassica species and A. thaliana (Fig. S2). This situation can be attributed to the fact that B. rapa underwent whole-genome duplication twice in the Brassicaceae lineage and experienced an additional whole-genome triplication event [32, 34].

Additionally, we estimated the divergence times of the orthologous PERK pairs between B. rapa and A. thaliana, B. nigra, and B. oleracea (Fig. 4 and S7), which showed Ka/Ks ratios less than 0.35 and indicating the occurrence of strong purifying selection (Fig. S6, Table S5), reflecting the strong control exerted over these genes in evolution [38]. Moreover, the average divergence times of B. rapa from A. thaliana, B. nigra, and B. oleracea were estimated to be 17.12, 11.96 and 8.95 Mya, respectively (Table S5, Fig. S6), indicating that Brassica species shared a common ancestor and exhibit different differentiation times [32, 35, 39, 40]. It has been reported that the divergence time of the genomes of B. rapa and A. thaliana was approximately 13 to 17 Mya [41]. These results imply that the PERK gene family might be a good candidate molecular reference for analysis of plant evolution. In addition, we analyzed BrPERK gene duplication events within the B. rapa genome, which are thought to play important roles in the amplification of the genome [42, 43]. In B. rapa, 13 paralog pairs of duplicated BrPERK genes have been retained, but none of the gene pairs exhibit tandem duplication (Fig. S5A), suggesting that segmental duplication events have played a leading role in BrPERK family evolution, similar to what is observed in the IQD gene family of B. rapa [44].

It has been reported that AtPERK members are involved in several biochemical pathways related to developmental processes in A. thaliana, such as pathways that are active in root, rosette leaf, stem and poll
In *B. rapa*, the functions of BrPERKs were explored on the basis of RNA-Seq datasets and qRT-PCR results (Fig. 5). Among different tissues, the gene expression levels of different BrPERK genes clearly differed, and some of these genes were very highly and specifically expressed in reproductive organs. These results were similar to those obtained in *A. thaliana* [11, 16] and *Gossypium hirsutum* [15], suggesting that some PERK genes play important roles in reproductive developmental processes and might be related to sterility and fertility.

Thus, we assayed 6 RNA-Seq datasets from *B. rapa* male-sterile mutants [26, 28], GMS [29, 30] and CMS [27, 31] lines, and found that 9 BrPERK genes were downregulated in at least five MS lines (Fig. 6a). Among these genes, Bra024608.1 and Bra016342.1 were paralogous genes and they were all orthologs of *IGI1* (AT1G23540); Bra022359.1, Bra001723.1 and Bra037558.1 were also paralogous genes, and they were all orthologs of *AtPERK6* (Fig. 4, Table S5). *IGI1* is strongly expressed in the anthers, and the *igi1* mutant exhibited semisterility and smaller siliques [22]. In addition, a phosphoproteomic study of mature *Arabidopsis* pollen grains showed that *AtPERK6* (AT3G18810) was phosphorylated during pollen grain development [23]. In our study, Bra024608.1 and Bra016342.1 were found to be downregulated during anther development from the tetrad period onward, and Bra001723.1 and Bra037558.1 were downregulated beginning in the meiosis II period (Bra022359.1 could not be detected; Fig. 6b and c). Thus, these results suggested that the four BrPERK genes might be related to male sterility.

Further analysis of the coexpression network revealed 19 genes that were coexpressed with 13 downregulated BrPERKs (except Bra004331.1 in Fig. 6a) screened by STRING (Fig. 7a), and 13 coexpressed genes were identified in the 6 male-sterile RNA-Seq datasets, almost all of which were also downregulated (Fig. 7b). Among these coexpressed genes, no gene coexpressed with Bra024608.1 and Bra016342.1 was screened; nevertheless, 7 genes coexpressed with Bra001723.1 and Bra037558.1 were identified (Fig. 7c, Table S6). In addition, it was reported that
Bra001723.1 (Unigen37636) was participated in anther and pollen development [27], and this gene was involved in starch and sucrose metabolism (ko00500) and other metabolic pathways (ko01100) (Table S6). These results demonstrated that Bra001723.1 and Bra037558.1 interact in the regulation of anther and pollen development and the downregulation of these genes might be related to male sterility in *B. rapa*. However, further research is required to investigate the detailed regulatory mechanisms of Bra001723.1 and Bra037558.1 related to male sterility in *B. rapa*.

Conclusions

In this study, we identified 418 PERK gene family members in 16 Brassicaceae species and characterized 25 BrPERK genes in *B. rapa*. Analyses of phylogenetic relationships, conserved motifs, gene structures, cis-elements, gene duplication and synteny were performed to comprehensively evaluate their biophysical properties in *B. rapa*. Additionally, expression pattern assays based on RNA-Seq and qRT-PCR data revealed that some PERKs present tissue-specific patterns and are involved in reproductive development, especially pollen development.
Combined analyses of RNA-Seq datasets from six male-sterile lines of *B. rapa* demonstrated that 13 *BrPERK* genes were downregulated in the buds of at least four male-sterile lines, possibly indicating crucial roles in pollen tissue. The expression profiles of these *BrPERK* genes showed that Bra024608.1, Bra016342.1, Bra001723.1 and Bra037558.1 were downregulated during anther development, suggesting that their abnormal expression might be related to male sterility. Furthermore, the coexpression networks assay exhibited that only Bra001723.1 and Bra037558.1 can be detected the coexpressed genes among these four *PERK* genes. These results provided basic information for studying the mechanism of Bra001723.1 and Bra037558.1 function in the male sterility of *B. rapa*.

Methods

Identification of *PERK* genes in 16 Brassicaceae species

The sequences of *AtPERK* family proteins were downloaded from the TAIR website following Nakhamchik et al. [16] and served as queries in BLAST searches to identify *PERK* members in the other 15 Brassicaceae species in the *Brassica* Database (BRAD) [32]. After the removal of redundant sequences, all candidate protein sequences were verified using the SwissProt database [45] and the SMART [46], Pfam [47] and InterProScan tools [48]. The confirmed protein sequences were aligned and used to generate a phylogenetic tree in MEGA 7.0 [49]. The conserved amino acid sequence logos were constructed with the WEBLOG tool [50].

Structural analysis of *PERK* genes

The biophysical properties, protein localization sites, signal peptides, and transmembrane helices of the proteins were predicted using the ExPASy program [51], ProtComp (v6), PSORT Prediction, SignalP [52] and TMHMM Servers (v2.0), respectively. Information on the exon/intron structure, conserved motifs and domains of *BrPERK* genes was obtained from BRAD with the MEME [53] and CDD [54] tools. The predicted motifs were annotated by InterProScan [48], Tttools (v0.6679) [55] was used for visual analysis. The promoter regions (1.5 kb upstream sequences) of all *BrPERK* genes were used to predict *cis*-acting elements in the PlantCARE database [56], and promoter structures were obtained with the GSDS (v2.0) [57] tool.

Genomic distribution and collinearity analyses

The distribution of the *BrPERK* genes on chromosomes was searched and plotted using Ttools. Synteny analysis among the three *Brassica* crops and *A. thaliana* genomes was conducted via all against all BLASTP comparisons. The entire protein sequences were used as queries to search the corresponding protein sequence data (*E* < 1e-5, top 5 matches). Collinear pairs were extracted using MCScanX [58] to identify syntenic blocks and duplications within the *PERKs*.

Calculation of *K*_s/*K*_a values

The rates of synonymous (*K*_s) and nonsynonymous (*K*_a) substitutions were calculated for duplicated *BrPERK* genes with the KaKs calculator [59]. *K*_s values > 2.0 were discarded to avoid the risk of substitution saturation, and the divergence time was calculated according to Khan et al. [35] and Yuan et al. [44].

RNA-Seq data analysis

Seven raw RNA-Seq datasets of *B. rapa* plant were obtained from the NCBI Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) [26–31, 60]. One of these datasets consisted of the genome-wide transcriptomes of tissues [60], and the other six datasets consisted of the transcriptomes of male-sterile lines, including two male-sterile mutants [26, 28], two GMS lines [29, 30] and two ogu-CMS lines [27, 31]. These male-sterile lines are no pollen phenotype and their anther abortion occurs during the tetrad period. The raw data were filtered and mapped onto the *B. rapa* genomes (V1.5 and V3.0). Gene expression levels were estimated using Reads Per Kilobase of exon model per Million mapped reads (FPKM) values [61], and differentially expressed genes (DEGs) were determined with the DESeq or DEGseq software package [62]. The transcriptome expression of *PERKs* was illustrated via heatmap analysis [27].

Microscopy observations, gene expression and interaction network analyses

The ogu-CMS line 4-2B and its 4-2A maintainer line from wucai (*B. rapa* ssp. Chinensis var. rosularis Tsen) were used as the plant materials in this study, as described previously [63, 64]. Different developmental stages of buds from CMS and fertile lines were used for paraffin section and qRT-PCR analyses (Table S7) according to our previous reports [27, 63, 65]. The interaction network associated with *BrPERK* genes was constructed using the STRING database [66] and Cytoscape software [67].

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-06802-9.

Additional file 1: Table S1. Gene locus ID of 16 Brassicaceae plants from Brassica Database.

Additional file 2: Table S2. Statistics of *PERKs* in different groups of phylogenetic tree from 16 Brassicaceae species.

Additional file 3: Table S3. Biophysical properties of *BrPERK* genes.
Authors

Yingqing Yang (Institute of Vegetables and Flowers, CAAS) for providing the manuscript. HW and XT helped to analyze the data. JL and LZ designed the research. GC and JW carried out the experiments, and GC contributed.

Acknowledgements

We are grateful to the Researcher Feng Cheng, Dr. Kang Zhang and Ms. Yingqing Yang (Institute of Vegetables and Flowers, CAAS) for providing the manuscript. HW and XT helped to analyze the data. JL and LZ designed the research. GC and JW carried out the experiments, and GC contributed.

Funding

National Natural Science Foundation of China (31801853); Outstanding Talents Cultivation Project in Colleges and Universities (gsgnfx2019001); Anhui Provincial Natural Science Foundation (1908085MC36); Key Projects of Natural Science Research Funds in Support of Colleges (K2017A153).

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Abbreviations

BRAD: Brassica Database; CMS: Cytoplasmic male sterile; DEG: Differentially expressed gene; FPKM: Reads per kilobase of exon model per million mapped reads; GEO: Gene Expression Omnibus; GMS: Genetic male sterile; GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; LRR-RRK: Leucine-rich repeat receptor kinase; ML: Maximum likelihood; MW: Molecular weight; Mx: Male-sterile; Mya: Million years ago; PERK: Proline-rich extension-like receptor protein kinase; pt: Isoelectric point; qRT-PCR: Quantitative real-time PCR; RX: Receptor-like kinase; RNA-Seq: RNA sequencing; SRA: Sequence read archive.

References

1. Borassi C, Sede AR, Mechizia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. J Exp Bot. 2016;67(2):477–87.
2. Hohmann U, Lau K, Hochmann M. The structural basis of ligand perception and signal activation by receptor kinases. Annu Rev Plant Biol. 2017;68(1):109–37.
3. Osakabe Y, Yamaguchiishinokazi K, Shinazaki K, Tran LSP. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot. 2013;64(2):445–58.
4. Muschietti JP, Wengler DL. How many receptor-like kinases are required to operate a pollen tube. Curr Opin Plant Biol. 2018;41:73–82.
5. Gish LA, Clark SE. The RLK/Pelle family of kinases. Plant J. 2011;66(1):117–27.
6. Shu SH, Bleeker AB. Plant receptor-like kinase gene family: diversity, function, and signaling. Science’s Site. 2001;11:322.
7. Shin Han S, Bleeker B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132(2):530–43.
8. Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Neuhold J, Lehner A, Kong J, Grunwald K et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature. 2018;553(7688):342–5.
9. Brandt B, Hothorn M. SERK co-receptor kinases. Curr Biol. 2016;26(6):225–6.
10. Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Wang Deng X, Wu J, et al. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. J Integr Plant Biol. 2019. https://doi.org/10.1111/jipb.12897.
11. Humphrey TV, Hasen KE, Aldredbynges MG, Sun H, Zayed Y, Indriolo E, Goring DR, PERK-RPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana. J Exp Bot. 2015;66(1):71–83.
12. Humphrey TV, Bonetta DT, Goring DR. Sentinel at the cell wall end receptors and sensors. New Phytol. 2007;176(1):71–9.
13. Silva NF, Goring DR. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol. 2002;50(4):667–85.
14. Haffani YZ, Silva-Gagliardi NF, Sevter SK, Aldea MG, Zhao C, Nakhamchik A, Cameron RK, Goring DR. Altered expression of PERK receptor kinases in Arabidopsis leads to changes in growth and floral organ formation. Plant Growth. 2006;155(1):251–60.
15. Qambar G, Liu J, Yu D, Liu Z, Lu L, Mo H, Ma S, Wang Z, Yang Z. Genome-wide identification and characterization of the PERK5 family gene in Gossypium hirsutum reveals gene duplication and functional divergence. Int J Mol Sci. 2015;20(17):56.
16. Nakhamchik A, Zhao Z, Provat NJ, Shu SH, Keatley SK, Cameron RK, Goring DR. A comprehensive expression analysis of the Arabidopsis Proline-rich Extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol. 2009;50(12):1875–81.
17. Fiorentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Barata-Pereira MC, Fontes EP. A PERK-like receptor kinase interacts with the gumnivirus nuclear shuttle protein and potentiates viral infection. J Virol. 2006;80(13):6648–56.
18. Ling B, Guozeng Z, Yun Z, Zhaocie Z, Wei Y, Yanan N, Zhongyi W, Chunpeng S. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signaling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J. 2009;60(1):334–7.
19. Bai L, Zhou Y, Song C. Arabidopsis proline-rich extensin-like receptor kinase 4 modulates the early event toward abscisic acid response in root tip growth. Plant Signal Behav. 2009;4(11):1075–7.
20. Qin Y, Leydon Alexander R, Marnello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Ravishankar P. Penetration of the stigma and style elicits a...
novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5(8):e1000621.
21. Won S, Lee Y, Lee H, Heo Y, Cho M, Cho H. Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol. 2009;150(3):1459–73.
22. Indeck H, Soo Young K, Cheol Soo Y, Yoonkyung P, Giri R, Tae Seong-Ki, Hyunsook C. Over-expression of the G2L leading to altered shoot-branching development related to MAX pathway in Arabidopsis. Plant Mol Biol. 2010;73(6):629–41.
23. Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühn T, Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 2012;72(1):189–101.
24. Chen L, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol. 2014;65(1):579–606.
25. Wu Y, Min L, Wu Z, Yang L, Zhu L, Wang X, Duan G, Guo X, Zhang X. Defective pollen wall contributes to male sterility in the male sterile line 135SA of cotton. Sci Rep. 2015;5:6608.
26. Tan C, Liu Z, Huang S, Li C, Ren J, Tang X, Liu W, Peng S, Feng H. Pectin methylesterase inhibitor (PME) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Gen Genomics. 2018;293(2):343–57.0000.
27. Cheng G, Ye X, Zhang S, Yuan L, Zhu S, Hou J, Wang C. Comparative transcriptome analysis between fertile and CMS flower buds in Wucai (Brassica campestris L.). BMC Genomics. 2018;19:998.
28. Huang S, Peng S, Liu Z, Li C, Tan C, Yao R, Li D, Li Y, Hou L, Feng H. Investigation of the genes associated with a male sterility mutant (msm) in Chinese cabbage (Brassica campestris ssp. pekinensis). using RNA-Seq. Mol Genet Genomics. 2019. https://doi.org/10.1007/s00438-019-01618-z.
29. Liu C, Liu Z, Li C, Zhang Y, Feng H. Comparative transcriptome analysis of fertile and sterile buds from a genetically male sterile line of Chinese cabbage. In Vitro Cell Dev Biol Plant. 2016;52(2):130–9.
30. Zhou X, Liu Z, J R, Feng H. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mol Gen Genomics. 2017;292:967–90.
31. Lin S, Miao Y, Su S, Xu J, Jin L, Sun D, Peng R, Huang L, Guo J. Comprehensive analysis of Osgura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera L.) using RNA sequencing analysis and bioinformatics. Plos One. 2019;14(6):e0218029.
32. Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun HJ, Bancroft I, Cheng F, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011;43(10):1035–U117.
33. Khan N, Hu CM, Khan WA, Wang W, Ke H, Dong H, Zhang Z, Hou X. Genome-wide identification, classification, and expression pattern of homeobox gene family in Brassica rapa under various stresses. Sci Rep. 2018;8:16256.
34. Cheng F, Mandakova T, Wu J, Xie Q, Lyak MA, Wang X. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell. 2013;25:1541–54.
35. Khan N, He H, Hu CM, Nasiri E, Haider MS, Ayaz A, Khan WA, Wang J, Hou X. Genome-wide identification, evolution, and transcriptional profiling of PP2C gene family in Brassica rapa. Biomed Res Int. 2019;2019:606535.
36. Conant G, Wolfe K. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938–51.
37. Yang Z, Qian G, Qin W, Yang Z, Yuan C, Liu L, Ge X, Zhang C, Wu Z, Li F. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. BMC Plant Biol. 2017;17:113.
38. Liu T, Yu H, Xiong X, Yue X, Yu Y, Huang L, Cao J. Genome-wide identification, molecular evolution, and expression profiling analysis of pectin methylesterase inhibitor genes in Brassica campestris ssp. chinensis. Int J Mol Sci. 2018;19(5):1338.
39. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Sarah M. Dated phylogenies indicate a Miocene origin for Arabidopsis molecular phylogenies and dates of divergence between Brassica and other Angiosperm lineages. J Mol Evol. 1999;48(5):597–604.
40. Tong C, Wang X, Ye J, Tian W, Li W, Huang J, Dong C, Wei H, Liu S. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics. 2013;14(1):1–10.
41. Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren M, Salzberg S, Wold B, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
42. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
43. Zhang S, Wang J, Chen G, Ye X, Zhang L, Zhu S, Yuan L, Hou J, Wang C. Functional analysis of a MYB transcription factor BcMYF7 in the tapetum development of Wucai (Brassica rapa ssp.). Sci Hortic. 2019;257:108728.
44. Chen G, Zeng F, Wang J, Ye X, Zhu S, Yuan L, Hou J, Wang C. Transgenic Wucai (Brassica campestris L) produced via Agrobacterium-mediated anther transformation in planta. Plant Cell Rep. 2019;38(5):577–86.
65. Chen G, Ye X, Zeng F, Wang J, Yuan L, Hou J, Cheng Y, Wang C. Characterization and utilization of a cytoplasmic male sterility line of Wucai (Brassica campestris L.). Hortic Environ Biotech. 2019;60(3):373–82.

66. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47(D1):607–13.

67. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.