On the maximal multiplicity of long zero-sum free sequences over $C_p \oplus C_p$

May 5, 2014

Yushuang Fan1 Linlin Wang1 Qinghai Zhong1

1Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China

Abstract

In this paper, we point out that the method used in [Acta Arith. 128(2007) 245-279] can be modified slightly to obtain the following result. Let $\varepsilon \in (0, \frac{1}{4}]$ and $c > 0$, and let p be a sufficiently large prime depending on ε and c. Then every zero-sumfree sequence S over $C_p \oplus C_p$ of length $|S| \geq 2p - c \sqrt{p}$ contains some element at least $\lfloor p^{1-\varepsilon} \rfloor$ times.

Keywords: zero-sumfree, multiplicity.

1. Introduction

The structure of long zero-sumfree sequences over a finite cyclic group has been well studied since 1975 (See [1], [7], [14], [15] and [11]). For example, it has been proved by Savchev and Chen [14], and by Yuan [15] independently, that every zero-sumfree sequence over C_n of length at least $\frac{n^2}{4} + 1$ is a partition (up to an integer factor co-prime to n) of a positive integer smaller than n. But for the group $G = C_n \oplus C_n$, the structure of zero-sumfree sequences S over G has been determined so far only for the case that S is of the maximal length $2n - 2$. In 1969, Emde Boas and Kruyswijk [3] conjectured that every minimal zero-sum sequence over $C_p \oplus C_p$ of length $2p - 1$ contains some element $p - 1$ times, and in 1999, Gao and Geroldinger [6] conjectured that the same result holds true for any group $C_n \oplus C_n$. It is easy to see that the above conjecture is equivalent to that every zero-sum-free sequence S over G of length $2n - 2$ contains some element at least $n - 2$
Our notation and terminology are consistent with [9]. We briefly gather some key notions and fix the notations concerning sequences over finite abelian groups. Let \(\mathbb{N} \) denote the set of positive integers, \(\mathbb{P} \) the set of prime integers and \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). For any two integers \(a, b \in \mathbb{N} \), we set \([a, b] = \{ x \in \mathbb{N} : a \leq x \leq b \} \). Throughout this paper, all abelian groups will be written additively, and for \(n, r \in \mathbb{N} \), we denote by \(C_n \) the cyclic group of order \(n \), and denote by \(C_r \) the direct sum of \(r \) copies of \(C_n \).

Let \(G \) be a finite abelian group and \(\exp(G) \) its exponent. Let \(F(G) \) be the free abelian monoid, multiplicatively written, with basis \(G \). The elements of \(F(G) \) are called sequences over \(G \). We write sequences \(S \in F(G) \) in the form

\[
S = \prod_{g \in G} g^{v_g(S)}, \text{ with } v_g(S) \in \mathbb{N}_0 \text{ for all } g \in G.
\]

We call \(v_g(G) \) the multiplicity of \(g \) in \(S \), and we say that \(S \) contains \(g \) if \(v_g(S) > 0 \). Further, \(S \) is called squarefree if \(v_g(S) \leq 1 \) for all \(g \in G \). The unit element \(1 \in F(G) \) is called the empty sequence. A sequence \(S_1 \) is called a subsequence of \(S \) if \(S_1 | S \in F(G) \). For a subset \(A \) of \(G \) we denote \(S_A = \prod_{g \in A} g^{v_g(S)} \). If a sequence \(S \in F(G) \) is written in the form \(S = g_1 \cdot \ldots \cdot g_l \), we tacitly assume that \(l \in \mathbb{N}_0 \) and \(g_1, \ldots, g_l \in G \).
For a sequence

$$S = g_1 \cdot \ldots \cdot g_l = \prod_{g \in G} g_{v(g)} \in \mathcal{F}(G),$$

we call

- $|S| = l = \sum_{g \in G} v_g(G) \in \mathbb{N}_0$ the length of S,
- $h(S) = \max\{v_g(S) | g \in G\} \in [0, |S|]$ the maximum of the multiplicities of S,
- $\text{supp}(S) = \{g \in G | v_g(S) > 0\} \subset G$ the support of S,
- $\sigma(S) = \sum_{i=1}^l g_i = \sum_{g \in G} v_g(S)g \in G$ the sum of S,
- $\sum_k(S) = \{\sum_{i \in I} g_i | I \subset [1, l] \text{ with } |I| = k\}$ the set of k-term subsums of S, for all $k \in \mathbb{N}$,
- $\sum_{\leq k}(S) = \bigcup_{j \leq k} \sum_j(S)$, $\sum_{\geq k}(S) = \bigcup_{j \geq k} \sum_j(S)$,
- $\sum(S) = \sum_{\leq 1}(S)$ the set of all subsums of S.

The sequence S is called

- a zero–sum sequence if $\sigma(S) = 0$.
- zero–sumfree if $0 \notin \sum(S)$.

3. Proof of the main results

Lemma 3.1 [9] Lemma 2.6] Let G be prime cyclic of order $p \in \mathbb{P}$ and S a sequence in $\mathcal{F}(G)$. If $v_0(S) = 0$ and $|S| = p$, then $\sum_{\leq h(S)}(S) = G$.

Lemma 3.2 [9] Let G be prime cyclic of order $p \in \mathbb{P}$, $S \in \mathcal{F}(G)$ a squarefree sequence and $k \in [1, |S|]$.

1. $|\sum_k(S)| \geq \min\{p, k(|S| - k) + 1\}$;
2. If $k = [|S|/2]$, then $|\sum_k(S)| \geq \min\{p, (|S|^2 + 3)/4\}$;
3. If $|S| = [\sqrt{4p - 7}] + 1$ and $k = [|S|/2]$, then $\sum_k(S) = G$.

Lemma 3.3 [9] Lemma 4.2] Let $G = C_p \oplus C_p$ with $p \in \mathbb{P}$, (e_1, e_2) a basis of G and

$$S = \prod_{i=1}^l (a_i e_1 + b_i e_2) \in \mathcal{F}(G),$$

where $a_1, b_1, \ldots, a_l, b_l \in \mathbb{F}_p$,
a zero-sumfree sequence of length $|S| = l \geq p$. Then

$$\left| \left\{ \sum_{i \in I} b_i | \emptyset \neq I \subset [1, l] \text{ with } \sum_{i \in I} a_i = 0 \right\} \right| \geq l - p + 1.$$
Lemma 3.4 Let $\varepsilon \in (0, \frac{1}{2})$, $c > 0$ and $1 < r \in \mathbb{N}$, and let p be a sufficiently large prime depending on ε, c and r. Let $G = C_p$, and let S be a sequence over G of length $|S| \geq p$. Suppose that $|S_{g+H}| \leq [cp^\frac{1}{2}-\varepsilon]$ holds for all subgroups H of order p^{r-1} and all $g \in G$. Then $0 \in \Sigma(S)$.

Proof. Let p be a sufficiently large prime depending on ε, c and r. Assume to the contrary that there exists a zero-sumfree sequence

$$S = \prod_{i=1}^s g_i \in \mathcal{F}(G)$$

of length $|S| = s \geq p$

and such that

$$|S_{g+H}| \leq [cp^\frac{1}{2}-\varepsilon]$$

for any subgroup H of order p^{r-1} and any $g \in G$.

Let $\hat{G} = \text{Hom}(G, \mathbb{C}^\times)$ be the character group of G with complex values, $\chi_0 \in \hat{G}$ the principal character, and for any $\chi \in \hat{G}$ let

$$f(\chi) = \prod_{i=1}^s (1 + \chi(g_i)).$$

Clearly, we have $f(\chi_0) = 2^s$ and

$$f(\chi) = 1 + \sum_{g \in \Sigma(S)} c_g \chi(g),$$

where $c_g = |\{0 \neq I \subset [1, s] : \sum_{i \in I} g_i = g\}|$. Since S is zero-sumfree, we have $0 \notin \Sigma(S)$ and the Orthogonality Relations (see [8], Lemma 5.5.2) imply that

$$\sum_{\chi \in \hat{G}} f(\chi) = \sum_{\chi \in \hat{G}} (1 + \sum_{g \in \Sigma(S)} c_g \chi(g)) = |\hat{G}| + \sum_{g \in \Sigma(S)} c_g \sum_{\chi \in \hat{G}} \chi(g) = |G|.$$

Let $\chi \in \hat{G} \setminus \{\chi_0\}$. We set $M = [cp^\frac{1}{2}-\varepsilon]$ and

$$|S| = (2k - 1)M + q$$

with $q \in [0, 2M - 1]$, and continue with the following assertion:

A1. $|f(\chi)| \leq 2s \exp(-\pi^2v/(2p^2))$ with $v = 2M(1^2 + 2^2 + \cdots + (k - 1)^2) + qk^2$.

Proof of A1. Let $ j \in [- (p - 1)/2, (p - 1)/2]$ and $g \in G$ with $\chi(g) = \exp(2\pi ij/p)$. Note that for any real x with $|x| < \pi/2$, we have $\cos x \leq \exp(-x^2/2)$. Thus

$$|1 + \chi(g)| = 2 \cos\left(\frac{\pi j}{p}\right) \leq 2 \exp\left(\frac{-\pi^2j^2}{2p^2}\right).$$

If $H = \text{Ker}(\chi)$, then $|H| = p^{r-1}$ and $g + H = \chi^{-1}(\exp(2\pi ij/p))$. Thus applying

$$|S_{g+H}| \leq M$$

there are at most M elements $h \mid S$ such that $\chi(h) = \exp(2\pi ij/p)$. Consequently, the upper bound for $f(\chi)$, obtained by repeated application of (1), is maximal if the values $0, 1, -1, \ldots, k-1, -(k-1)$ are
accepted M times each and the values $k, -k$ are accepted q times as images of $\chi(g)$ for $g \in \text{supp}(S)$. Therefore
\[
|f(\chi)| \leq 2^s \exp\left(-\pi^2v/(2p^2)\right).
\]
Since $|S| = s = (2k - 1)M + q$, we get $k = \frac{s-q+M}{2M}$ and hence
\[
v = 2M \sum_{j=1}^{k-1} j^2 + qk^2 = 2M \frac{(k-1)(2k-1)k}{6} + qk^2
\]
\[
= \frac{(s-q-M)(s-q+M)(s-q) + 3q(s-q+M)^2}{12M^2}.
\]
Since $q \in [0, 2M-1]$ and $q \leq s$, it follows that
\[
v = \frac{s(s^2-M^2)}{12M^2} + \frac{q(2M-q)(2M+3s-2q)}{12M^2} \geq \frac{s(s^2-M^2)}{12M^2}.
\]
We deduce that (here we need p sufficiently large)
\[
\exp\left(\frac{\pi^2v}{2p^2}\right) = \exp\left(\frac{\pi^2s(s^2-M^2)}{24M^2p^2}\right) > 2p^r,
\]
where the last inequality holds because $s \geq p$ and p is sufficiently large and then $s^2-M^2 > \frac{p^2}{2}$ and
\[
\frac{\pi^2s(s^2-M^2)}{24M^2p^2} > \frac{\pi^2 p^{2\epsilon}}{2 \cdot 24c^2} > \ln(2p^r).
\]
Therefore it follows that
\[
p^r = |G| = \sum_{\chi \in G} f(\chi) \geq f(\chi_0) = \sum_{\chi \neq \chi_0} |f(\chi)|
\]
\[
\geq 2^s(1 - (p^r - 1)\exp\left(-\frac{\pi^2v}{2p^2}\right)) > 2^s(1 - \frac{p^r - 1}{2p^r}) > 2^{s-1} > p^r,
\]
a contradiction.

\[\square\]

Proof of Theorem 1.1 We may assume that $c > 8$. Let (e_1, e_2) be a basis of G and for $i \in [1, 2]$ let $\varphi_i : G \rightarrow \langle e_i \rangle$ denote the canonical projections. Let $\varepsilon > 0$, and let p be sufficiently large and assume to the contrary that there exists a zero-sumfree sequence
\[
S = \Pi_{i=1}^{|S|}(a_i e_1 + b_i e_2) \in \mathcal{F}(G), \text{ with } a_1, b_1, \ldots, a_s, b_s \in [0, p-1]
\]
of length $|S| = s \geq 2p - c \sqrt{p}$ and with $h(S) \leq p^{\frac{1}{3} - \varepsilon}$. Let T denote a maximal squarefree subsequence of S and set $h_0 = h(\varphi_1(T))$. After renumbering if necessary we may assume that
\[
T = \Pi_{i=1}^{|T|}(a_i e_1 + b_i e_2), \text{ } a_1 = \cdots = a_h = a.
\]
Now we set
\[W = \prod_{i=1}^{h_0} (ae_1 + b_ie_2), \quad S_1 = SW^{-1} \]
and distinguish three cases.

Case 1: \(h_0 \geq \lfloor \sqrt{4p - 7} \rfloor + 1 \). We set \(k = \lfloor \sqrt{4p - 7} \rfloor + 1, \ l = \lfloor k/2 \rfloor \) and
\[S_2 = \prod_{i=k+1}^{i=t} (ae_1 + b_ie_2). \]
By Lemma 3.2(3) we have
\[\sum_i (\prod_{j=1}^{i} b_ie_2) = \langle e_2 \rangle. \tag{3} \]
Consider the sequence \(\varphi_1(S_2) = \prod_{i=k+1}^{i=t} a_ie_1. \) Let \(v_0(\varphi_1(S_2)) = t \) and after renumbering if necessary we may set
\[W_1 = \prod_{i=k+1}^{i=t+1} (ae_1 + b_ie_2), \ W_1 \mid S_2. \]
Since \(W_1 \) is zero-sumfree, the sequence \(\varphi_2(W_1) = \prod_{i=k+1}^{i=t+1} b_ie_2 \) is a zero-sumfree sequence over \(C_p \). It follows from Lemma 3.2(3) that \(|\text{supp}(\varphi_2(W_1))| \leq \lfloor \sqrt{4p - 7} \rfloor \). By the contrary hypothesis we have that \(h(\varphi_2(W_1)) = h(W_1) \leq h(S) < p^{1/4} \). Therefore, \(t = |\varphi_2(W_1)| \leq h(\varphi_2(W_1)) \mid \text{supp}(\varphi_2(W_1)) | \leq p^{1/4} \lfloor \sqrt{4p - 7} \rfloor \geq p \).
Thus Lemma 3.1 implies that \(\sum(\varphi_1(S_2)) = \langle e_1 \rangle \). In particular, \(S_2 \) has a non-empty subsequence \(S_3 \) such that \(\sigma(\varphi_1(S_3)) = -lae_1 \). By equation (3) there is a subset \(I \subset [1, k] \) such that \(\sum_{i \in I} b_ie_2 = -\sigma(\varphi_2(S_3)) \) and \(|I| = l \). Therefore, \(S_3 \prod_{i \in I} (ae_1 + b_ie_2) \) is a non-empty zero-sum subsequence of \(S \), a contradiction.

Case 2: \(cp^{1/2} \leq h_0 \leq \lfloor \sqrt{4p - 7} \rfloor \). Setting \(k = \lfloor h_0/2 \rfloor \) and \(h_1 = h(\varphi_1(S_1)) \) then Lemma 3.2(2) implies that
\[|\sum_i (\prod_{j=1}^{i} b_ie_2) | \geq \frac{h_0^2 + 3}{4} \tag{4} \]
and by the assumption of Case 2 we get
\[h_1 \leq h(\varphi_1(T))h(S) < h_0p^{1/4}. \]
Therefore,
\[|\varphi_1(S_1)| - v_0(\varphi_1(S_1)) \geq |S_1| - h_1 > 2p - cp^{1/2} - h_0 - h_0p^{1/4} \geq p - 1, \]
whence Lemma 3.1 implies \(\sum_{i \leq h_1} (\varphi_1(S_1)) = \langle e_1 \rangle \). In particular, \(S_1 \) has a non-empty subsequence \(S_4 \) such that
\[\sigma(\varphi_1(S_4)) = -kae_1, \ |S_4| \leq h_1. \tag{5} \]
By equations (4) and (5) we infer that
\[\sigma(S_4) + \sum_\ell (W) \subset \langle e_2 \rangle, \ |\sigma(S_4) + \sum_\ell (W) | \geq \frac{h_0^2 + 3}{4}. \tag{6} \]
Set \(S_5 = S(S_4)W^{-1} \). By Lemma 3.3 we have
\[|\sum (S_5) \cap \langle e_2 \rangle | \geq |S_5| - p + 1. \]
Therefore, since \(c > 8 \) and \(p \) is sufficiently large,

\[
|\sigma(S_4) + \sum_k(W)| + |\sum(S_5) \cap \langle e_2 \rangle| \geq \frac{h_0^2 + 3}{4} + |S_5| - p + 1
\]

\[
\geq \frac{h_0^2 + 3}{4} + 2p - cp^{1/2} - h_0p^{1/4} - h_0 - p + 1
\]

\[
\geq \frac{h_0^2 + 3}{4} - h_0(p^{1/4} + 1) - cp^{1/2} + 1 + p
\]

\[
= h_0(\frac{1}{4}h_0 - p^{1/4} - 1) - cp^{1/2} + \frac{7}{4} + p
\]

\[
\geq cp^{1/4}(\frac{c}{4} - 1)p^{1/4} - 1) - cp^{1/2} + \frac{7}{4} + p \geq p.
\]

It follows from the Cauchy-Davenport theorem that

\[
(\sigma(S_4) + \sum_k(W)) + (\sum(S_5) \cap \langle e_2 \rangle) = \langle e_2 \rangle,
\]

whence \(0 \in \sigma(S_4) + \sum_k(W)) + (\sum(S_5) \cap \langle e_2 \rangle) \subset \sum(S) \), a contradiction.

Case 3: \(h_0 < cp^{1/4} \). Note that \(|\text{supp}(S) \cap (ae_1 + \langle e_2 \rangle)| = h_0 \). Thus we may suppose that, for every subgroup \(H \subset G \) with \(|H| = p \) and every \(g \in G \), we have

\[
|S_{g+H}| \leq h_0h(S) \leq \lfloor cp^{\frac{1}{4} - \varepsilon} \rfloor,
\]

since otherwise we choose a different basis \((e'_1, e'_2)\) of \(G \) and are back to Case 1 or Case 2. Therefore applying Lemma 3.4 with \(r = 2 \) we deduce that \(S \) is not zero-sum-free, a contradiction. \(\square \)

Lemma 3.5 ([5], Theorem 6.7) Every sequence over \(C_n \oplus C_n \) of length \(3n - 2 \) contains a zero-sum subsequence of length \(n \) or \(2n \).

Proof of Theorem 1.2 Let \(k = 3p - 2 - |S| \). Then,

\[
k \leq \lfloor c \sqrt[p]{p} \rfloor - 1 < p.
\]

Let \(W = 0^kS \). Then, \(W \) is a sequence over \(C_p \oplus C_p \) of length \(|W| = 3p - 2 \). By Lemma 3.6 \(W \) contains a zero-sum sequence \(T \) of length \(p \) or \(2p \). So, \(T_1 = T0^{-v_1(T)} \) is a nonempty zero-sum subsequence of \(S \). Since \(S \) contains no short zero-sum subsequence, we infer that \(|T_1| > p \) and \(|T| = 2p \), and \(T_1 \) is minimal zero-sum. It follows that \(2p \geq |T_1| \geq 2p - k \geq 2p - \lfloor c \sqrt[p]{p} \rfloor + 1 \). Take an arbitrary element \(g|T_1 \). Therefore, \(T_1g^{-1} \) is zero-sum free and \(h(T_1g^{-1}) \geq p^{\frac{1}{4} - \varepsilon} \) by Theorem 1.1. \(\square \)

Lemma 3.6 ([4], Theorem 2) Let \(G \) be a finite abelian group, and let \(S \) be a sequence over \(G \) of length \(|S| = |G| + k \) with \(k \geq 1 \). If \(S \) contains no zero-sum subsequence of length \(|G| \), then there exist a subsequence \(T|S \) of length \(|T| = k + 1 \) and an element \(g \in G \) such that \(g + T \) is zero-sum free.
Proof of Theorem 1.3. By Lemma 3.6, there exist a subsequence $T|S$ and an element $g \in C_p \oplus C_p$ such that $g + T$ is zero-sum free and $|g + T| = |T| = |S| - p^2 + 1 \geq 2p - c \sqrt{p}$. It follows from Theorem 1.1 that $h(S) \geq h(T) = h(g + T) \geq p^{1/4} - \varepsilon$. □

Acknowledgments. This work was supported by the PCSIRT Project of the Ministry of Science and Technology, and the National Science Foundation of China.

References

[1] J.D. Bovey, P. Erdős and I. Niven, Conditions for a zero sum modulo n, Canad. Math. Bull. 18(1975)27-29.

[2] J.A. Dias da Silva and Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26(1994)140-146.

[3] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, ZW 1969-008, Math. Centrum, Amsterdam.

[4] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58(1996)100-103.

[5] W.D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24(2006)337-369.

[6] W.D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Periodica Mathematica Hungarica 38(1999)179-211.

[7] W.D. Gao and A. Geroldinger, On the structure of zerofree sequences, Combinatorica 18(1998)519C527.

[8] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman & Hall/CRC, 2006.

[9] W.D. Gao, A. Geroldinger and W.A. Schmid, Inverse zero-sum problems, Acta Arithmetica, 128(2007)245-279.

[10] W.D. Gao, A. Geroldinger and D.J. Grynkiewicz, Inverse Zero-Sum Problems III, Acta Arith. 141(2010)103-152.

[11] W.D. Gao, Y.L. Li, J.T. Peng and F. Sun, Subsums of a Zero-sum Free Subset of an Abelian Group, Electronic J Combinatorics 15(2008) R116.

[12] W.D. Gao and R. Thangadural, A variant of Kemmitze conjecture, J. Combin. Theory Ser. A 107(2004)69-86.
[13] C. Reiher, *A proof of the theorem according to which every prime number possesses Property B*, preprint, 2010.

[14] S. Savchev and F. Chen *Long zero-free sequences in finite cyclic groups*, Discrete Math 307(2007)2671-2679.

[15] P.Z. Yuan, *On the index of minimal zero-sum sequences over finite cyclic groups*, J Comb Theory Ser A 114(2007) 1545-1551.