Original Research Article

Identification of Transgressive Segregants with High Zinc in Grains under Aerobic Condition in F4 Population of Rice (Oryza sativa L.)

N.P. Thuy*, D.B. Santhosh and H.E. Shashidhar

Department of Plant Biotechnology, University of Agricultural Sciences, GVKV, Bengaluru, Karnataka, India

*Corresponding author

ABSTRACT

Progenies from a cross between ‘Gopaloddiga’ and ‘ARB6’ cultivars were selected on the basis of combining ability analysis to study the genetics of transgressive segregation for zinc content and agronomic traits using augmented designs. Results revealed the presence of general combining ability and specific combining ability effects, and the parents were found to be good general combiners for zinc in grains, 100 grains weight and grain yield per plant. Higher phenotypic and genetic coefficients of variation for all characters, and high heritability coupled with high genetic advance for most of the traits indicates strong additive genetic control of these traits. Presence of positive relationship between grain yield and grain Zn concentration implies these traits can be used as a selection criterion from F2 generation onwards. These zinc enriched high yielding hybrids can be effectively utilized in the rice biofortification programs.

Keywords: Biofortification, GCV, PCV, zinc, rice (Oryza sativa L.)

Accepted: 08 July 2018
Available Online: 10 August 2018

Introduction

Rice is the most staple food for nearly half of the world’s population (Bi and Yang, 2017) standing the third-highest worldwide production, after sugarcane and maize (FAOSTAT, 2012). Rice is presently grown on 144 million hectares throughout the continent, with China and India dominating with over half of the total area harvested (FAO, 2016). Nearly 90% of the total rice consumption is in Asian countries, where it is a staple food for a majority of the population. Rice, therefore, is of special importance for the nutrition of large reaches of the population (FAO, 2006). However, rice is a poor source of vitamins and essential micronutrients such as Zn (Muthayya et al., 2014).

Micronutrient deficiencies or hidden hunger has become a major nutritional problem affecting more than two billion people in the developing countries of Asia, Africa, and Latin America (Swamy et al., 2016). Zinc (Zn) is one of the essential micronutrients, which serves as a co-factor for more than 300 enzymes involved in the metabolism of carbohydrates, lipids, proteins, and nucleic acids, hence its importance in normal growth and development of plants and animals (Roohani et al., 2013; Sadeghzadeh, 2013).
One-third of the population, particularly children and women, suffer from Zn deficiency related health problems such as growth retardation, loss of appetite, impaired immune function, hair loss, diarrhea, eye and skin lesions, weight loss, delayed healing of wounds, and mental lethargy (Maret and Sandstead, 2006; Prasad, 2003; Wang and Bushey, 2005).

Most of the rice growing areas are Zn deficit and Zn availability in irrigated rice ecosystems is very low due to formation of less soluble Zn complexes under anaerobic conditions. Various approaches have been developed in recent years with the aim of high Zn biofortified rice genotypes to accumulate Zn in grains. Agronomic Zn biofortification through Zn fertilizer application is a complementary approach to increase grain Zn concentration in new elite rice genotypes to ensure adequate root Zn uptake and transport to the grains during reproductive growth stage (Phattarakul et al., 2012; Shivay et al., 2008), but there are higher expenditure associated with the application. In addition, zinc fertilizer application effect can be impaired by physical and chemical characteristics of soil, which reduce the availability of Zn to plants, leading to a disappointing experience for farmers (Henriques et al., 2012). Genetic engineering techniques may be used to biofortify the crops with minerals like iron and Zn (Tiwari et al., 2010) as transgenic rice lines showed an improvement of 15–20 mg kg\(^{-1}\) in Zn levels (Johnson et al., 2011; Masuda et al., 2012 and Slamet-Loedin et al., 2015). At the moment, the application of genetic transformation (or genetic engineering) is seriously hindered because there is controversy on food safety and environmental impacts over any genetically modified (GM) crop (Nicolia et al., 2014).

The genetic biofortification strategy uses plant breeding techniques to produce staple food crops with higher micronutrient levels (Harvest Plus, 2014). The world’s first Zn enriched rice variety was released in 2013 by the Bangladesh Rice Research Institute (BRRI dhan 62), which is claimed to contain 20–22 mg Zn kg\(^{-1}\) for brown rice. Nonetheless this is short of the target of 30 mg Zn kg\(^{-1}\) set by the Harvest Plus program (Shahzad et al., 2014). With the aim of further enrichment of Zn in commercial cultivars, in this study we estimate Zn content in grains, analyze correlation between Zn and grain yield, selection of genotypes for high Zn productivity of F\(_4\) segregating populations.

Materials and Methods

The experiment was carried out during Kharif season of 2016 using augmented experimental design as described by Federer (1961) under aerobic condition at the field of the Department of Plant Biotechnology University of Agricultural Sciences, GVK, Bengaluru. Ninety seven transgressive segregants of F\(_4\) population derived from Gopaldoddiga x ARB6 cross were sown in 10 blocks using Gopaldoddiga, ARB6, AM 143 and AM65 as checks under aerobic condition.

Observations were recorded on following attributes *viz*: days to 50 per cent flowering, days to maturity, plant height (cm), number of tillers per plant, number of productive tillers per plant, panicle length (cm), grain yield per plant (g) at appropriate stages of crop. Biomass of plant (g), harvest index (%), 100 grains weight (g) and brown rice Zn mg kg\(^{-1}\) were recorded after harvest.

Grains of individual lines were harvested manually and hand threshed to avoid any contamination. The grains were then manually dehusked. Unbroken, uniform grains were then washed in dilute hydrochloric acid followed by washing with double distilled water to remove any surface contamination.
contaminants and dried in hot air oven at 70 °C for 72 hours. The Zn content in these grains was estimated using X-ray fluorescence (XRF) (Paltridge et al., 2012). Five grams of brown rice from each plant was subjected to the XRF and content (mg kg⁻¹) was recorded. The experimental data was compiled by taking mean values of three replications for each genotype.

The analysis of variance for different characters was computed as suggested by Rana et al., (1991). Both phenotypic and genotypic coefficient of variability for traits was estimated using the formulae of Burton and DeVane (1953). Heritability and genetic advance were calculated as per the method outlined by Hanson et al., (1956). Phenotypic coefficients of correlation between various characters were obtained as suggested by Al-Jibouri et al., (1958). Path coefficient analysis was carried out following the method of Dewey and Lu (1959).

Results and Discussion

Analysis of Variance (ANOVA)

Results from analysis of variance for growth traits, grain zinc content and yield attributing traits in F₄ generation of Gopaldoddiga X ARB6are presented in Table 1. Mean sum of squares of progenies exhibited highly significant difference for all the traits in the cross under study. Analysis of variance for both progenies and checks, and checks versus progenies also displayed significant difference for characters such as day to 50% flowering, plant height, number of productive tillers, panicle length, grain yield per plant, harvest index, 100 grains weight, biomass per plant and brown rice zinc. This indicates that the differences occur between genotypes, not simply because of environmental influences. The performance of checks or F₄ generation will be influenced by two factors: the genetic properties it carries and the environment where it is cultivated; if the environment is uniform, the plant character will be influenced only by the genetic properties. Similar findings were reported earlier by Bekele et al., (2013), Rashid et al., (2017) and Barokah et al., (2018).

Genetic variability parameters

Higher estimates (>15%) of GCV and PCV were observed for biomass per plant, grain yield per plant, total number of tillers, number of productive tillers and harvest index (Figures 1 and Table 2). GCV and PCV estimates were moderate (<15%) for 100 grains weight, plant height, day to 50% flowering, panicle length and brown rice zinc. The PCV values were only slightly higher than GCV values, so the similar magnitude of PCV and GCV for all traits suggested that these characters were under the strong influence of genetic control and less influence of the environment. Thus individual plant selection can be practiced for these characters. Similar results were reported by Bisne et al., (2009), Akinwale et al., (2011), Govindharaj et al., (2016), Revathi et al., (2016), Yugandhar et al., (2017), Prasad et al., (2017), Abebe et al., (2017), Rajpoot et al., (2017), Ajmera et al., (2017), Nandeshwar et al., (2010), Shet et al., (2012), Kiran et al., (2013), Bekele et al., (2013), Tuhina-Khatun et al., (2015) and Mamata et al., (2018).

High PCV and GCV was observed for grain zinc content, which is consistent with previous reports Pursothaman et al., (2010); Samak et al., (2011); Shashidhara et al., (2013), Sala et al., (2014), Anjali (2017), Ajmera et al., (2017); Madhubabu et al., (2017) and Shashidhara et al., (2017).

Heritability and genetic advance

The estimates of heritability act as predictive instrument in expressing the reliability of phenotypic selection. Therefore, high
heritability helps in effective selection for a particular character. In this study, high estimates of broad sense heritability along with high genetic advance (expressed as percent of mean) was observed for day to 50% flowering, plant height, total number of tillers, number of productive tillers, panicle length, grain yield per plant, harvest index, biomass per plant and brown rice zinc (Figure 2 and Table 2). It indicates the presence of strong additive gene effects and there is potential for genetic improvement of these traits in future breeding programmes. From the results of the present study, it can be concluded that single plant selection could be effectively made as environment does not have any significant influence in the variation of traits. High heritability and genetic advance as per cent of mean was earlier reported by Babu et al., (2012), Bekele et al., (2013), Sadimantara et al., (2014); Soman et al., (2015); Limbani et al., (2017); Yadav et al., (2017); Sumanth et al., (2017) and Shamim et al., (2017).

Correlation of Zinc plant with growth parameters and yield component characters

Highly significant and positive phenotypic correlations were observed for biomass per plant, harvest index with grain yield (Table 3). These traits may indirectly contribute for increased grain yield. These were in accordance with the results of Bekele (2012) and Ashlesha (2015).

Brown rice zinc showed a positive correlation with day to 50% flowering, total number of tillers, number of productive tillers, biomass, grain yield per plant, harvest index and 100 grains weight were consistent with the reports of Tiwari et al., (2010) and Morete et al., (2011). Thus, it can be concluded that it is possible to develop high yielding varieties with high levels of Zn.

Gregorio (2002) reported that a positive relationship between grain yield and grain Zn concentration was observed under Zn-deficient soil. From the results of the present study, assessment of the relationship between brown rice zinc and grain yield per plant using linear regression showed that there was a positive correlation between these traits (Figure 3). Hence, these characters could be considered as criteria for selection for higher yield as they were mostly interrelated positively in addition to a positive association with grain zinc. This result was in conformity with the results of Rathod et al., (2017) and Ajmera et al., (2017).

![Graphical representation of phenotypic (PCV) and genetic (GCV) coefficients of variation](image-url)
Figure 2 Graphical representation of heritability and genetic advancement as percentage of mean (GAM)

Figure 3 Relationship between brown rice zinc and grain yield per plant in F$_4$ population of Gopaldoddiga X ARB6 in Kharif-2016
Table 1: Analysis of variance (mean sum of squares) for 10 different characters in F₄ population of Gopaldoddiga X ARB6 in Kharif-2016

Source of variation	Df	Day to 50% flowering	Day to 50% flowering	Plant height	Total number of tillers	Number of productive tillers	Panicle length
Blocks (eliminating check + var)	9	3.111	4.871	1.456	1.469	1.051	
Progenies + Checks	103	199.134	337.325	122.456	33.045	20.335	20.335***
Checks	3	2142.892	7272.637	445.433	417.558	332.761	332.761***
Progenies	99	131.768	121.682	96.121	85.163	9.511	9.511***
Checks vs. Progenies	1	1037.161	880.071	1760.643	1135.801	154.626	154.626***
Error	27	1.708	3.287	1.544	1.929	1.469	

Source of variation	Df	Biomass per plant	Grain yield per plant	Harvest index	100 grains weight	Brown rice zinc
Blocks (eliminating check + var)	9	4.335	0.955	0.001	0.025	2.544
Progenies + Checks	103	160.683	120.501	0.136	0.179	39.402
Checks	3	1964.702	352.343	0.068	1.110	130.268
Progenies	99	107.000	76.769	0.102	0.109	27.283
Checks vs. Progenies	1	63.240	3754.460	3.751	4.277	966.619
Error	27	3.928	1.317	0.002	0.021	1.854

* Significant at 5%; ** Significant at 1%; *** Significant at 0.1%
Df: Degrees of freedom.
Table 2 Estimate of genetic parameters for different traits in F$_4$ population of Gopaldoddiga X ARB6 in Kharif-2016

Sl.No.	Plant characters	Min.	Max.	Mean ± S.E	GCV (%)	PCV (%)	h2 (%)	GAM (%)
1	Day to 50% flowering	70.00	108.00	88.21 ± 1.16	11.27	11.37	98.31	23.02
2	Plant height (cm)	73.80	120.40	92.26 ± 1.12	10.31	10.50	96.48	20.87
3	Total number of tillers	7.00	40.00	25.28 ± 0.99	33.95	34.31	97.90	69.19
4	Number of productive tillers	7.00	39.00	23.02 ± 0.94	34.95	35.48	97.05	70.93
5	Panicle length (cm)	16.67	28.67	21.52 ± 0.32	11.50	12.80	96.48	20.87
6	Biomass per plant (g)	16.60	59.30	36.66 ± 1.06	24.27	24.87	95.23	48.79
7	Grain yield per plant (g)	3.70	40.60	21.32 ± 0.93	29.72	30.06	97.76	60.53
8	Harvest index (%)	0.19	0.78	0.57 ± 0.01	37.88	38.29	97.86	77.20
9	100 grains weight (g)	1.80	3.60	2.64 ± 0.03	9.83	11.27	76.13	17.67
10	Brown rice zinc (mg kg$^{-1}$)	19.50	37.90	30.33 ± 0.53	14.57	15.25	91.26	28.68

* Significant at 5%; PCV = Phenotypic Coefficient of variation; GCV = Genotypic Coefficient of variation; h2 % = Heritability percentage in broad sense; GAM: Genetic Advance as per Mean.

Table 3 Estimates of phenotypic correlation coefficients for different quantitative traits in F$_4$ population of Gopaldoddiga X ARB6 in Kharif-2016

	Plant height (cm)	Total number of tillers	Number of productive tillers	Panicle length (cm)	Biomass per plant (g)	Grain yield per plant (g)	Harvest index	100 grains weight (g)	Brown rice zinc (mg kg$^{-1}$)
Day to 50% flowering	-0.931**	0.977**	0.974**	0.225*	0.05	0.10	0.10	-0.851**	0.11
Plant height (cm)	1	-0.943**	-0.949**	-0.15	-0.09	-0.14	-0.11	0.804**	-0.10
total number of tillers	1	0.994**	0.288**	0.05	0.10	0.09	-0.846**	0.11	
Number of productive tillers	1	0.254*	0.06	0.11	0.10	-0.854**	0.10	0.10	
Panicle length (cm)	1	1	-0.03	0.77**	0.20	-0.03	0.20	0.19	
Biomass per plant (g)	1	1	-0.08	0.76**	0.08	-0.08	0.09	0.13	
Harvest index	1	1	-0.08	0.76**	0.08	-0.08	0.09	0.13	
100 grains weight (g)	1	1							

* Significant at 5%; ** Significant at 1%
Table 4: Estimates of phenotypic path coefficient analysis for different quantitative traits in F₄ population of Gopaldoddiga X ARB6 in Kharif-2016

	Day to 50% flowering	Plant height (cm)	Total number of tillers	Number of productive tillers	Panicle length (cm)	Biomass per plant (g)	Harvest index	100 grains weight (g)	Brown rice zinc (mg kg⁻¹)
Day to 50% flowering	0.042	0.039	-0.041	-0.041	-0.010	-0.002	-0.004	0.036	-0.005
Plant height (cm)	0.020	-0.021	0.020	0.020	0.003	0.002	0.002	-0.017	0.002
Total number of tillers	0.131	-0.126	0.134	0.134	0.039	0.006	0.013	-0.113	0.015
Number of productive tillers	-0.109	0.106	-0.111	-0.112	-0.028	-0.007	-0.011	0.095	-0.011
Panicle length (cm)	-0.005	0.003	-0.006	-0.006	-0.022	0.001	-0.001	0.005	0.001
Biomass per plant (g)	0.032	-0.058	0.030	0.038	-0.017	0.646	0.128	-0.018	0.126
Harvest index	0.060	-0.068	0.060	0.062	0.017	0.126	0.633	-0.050	0.055
100 grains weight (g)	0.012	-0.011	0.012	0.012	0.003	0.000	0.001	-0.014	-0.002
Brown rice zinc (mg kg⁻¹)	0.001	-0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.007
Table 5: Transgressive lines selected from F₄ population of Gopaldoddiga X ARB6 based on grain zinc content grown in Kharif-2016

SL. No.	Superior plants	Day to 50% flowering	Plant height (cm)	Total number of tillers	Number of productive tillers	Panicle length (cm)	Biomass per plant (g)	Grain yield per plant (g)	Harvest index	100 grains weight (g)	Brown rice zinc (mg kg⁻¹)
1	GA 247-12-101	99.00	100.00	18.00	16.00	19.00	29.90	8.60	0.29	2.83	37.70
2	GA 247-12-141	80.00	97.00	20.00	18.00	19.67	23.40	10.70	0.46	2.80	37.40
3	GA 247-12-984	77.00	100.40	11.00	10.00	17.67	28.40	19.40	0.68	3.04	36.90
4	GA 240-450-35	93.00	81.80	34.00	31.00	20.33	40.20	20.40	0.51	2.37	37.90
5	GA 240-450-58	100.00	87.20	31.00	29.00	24.00	25.50	12.80	0.50	2.45	36.80
6	GA 240-450-21	104.00	89.40	39.00	37.00	25.33	30.40	22.50	0.74	2.77	37.50
7	GA 287-621-48	75.00	109.40	12.00	12.00	18.00	47.00	14.70	0.31	2.93	37.40
8	GA 287-63-172	96.00	80.80	35.00	31.00	28.67	33.00	16.70	0.51	2.34	36.40
9	GA 287-63-245	108.00	82.60	38.00	35.00	24.33	54.60	36.70	0.67	2.16	36.80
10	GA 287-63-25	87.00	91.80	24.00	22.00	21.33	32.80	10.80	0.33	2.65	36.50
11	GA 214-132-20	99.00	82.80	32.00	30.00	28.67	33.90	12.80	0.38	2.42	37.10
12	GA 214-132-51	108.00	81.40	38.00	35.00	24.33	34.60	13.20	0.38	2.11	36.90
13	GA 214-132-136	99.00	76.20	36.00	33.00	24.00	50.00	29.80	0.60	2.26	37.10
14	GA 214-132-26	101.00	84.40	36.00	32.00	23.33	30.00	14.90	0.50	2.34	36.50
15	GA 214-132-279	75.00	110.40	11.00	9.00	17.00	46.80	27.40	0.59	3.15	36.90
Check -1	Gopaldoddiga	72.5	100.68	8.10	7.80	24.11	26.54	6.80	0.26	2.72	29.74
Check -2	ARB 6	99.4	80.04	21.1	19.9	18.72	27.57	12.45	0.45	1.96	22.27
Parent -1	AM 143	102.2	75.22	23.1	22.6	20.75	41.48	16.05	0.39	2.08	22.19
Parent -2	AM 65	103.2	134.52	16.3	15.6	31.84	56.36	20.88	0.37	2.22	23.33
Path coefficient analysis

Using path coefficient analysis, correlation between two variables can be partitioned into their direct and indirect effects through other traits (Wright, 1921). In this study we calculated direct and indirect effects of yield and yield contributing characters. When the magnitude of relationship between a casual factor and the effect is almost equal to its direct effect, it explains the true relationship and a direct selection through this trait can be applied. However, when the correlation is positive, but the direct effect is negative or negligible, the indirect effects apparently cause that positive correlation. In such situation the other factors are to be considered simultaneously for selection. When the correlation coefficient is negative but direct effect is positive and high, we need to apply some restriction to nullify the undesirable indirect effects in order to make use of direct effect.

The phenotypic path-coefficient analysis indicated high positive direct effect of biomass per plant (0.646), harvest index (0.633) and total number of tillers (0.134) on grain yield per plant (Table 4). These results are in agreement with Solomon and Wegary (2016), Muthuramu and Sakthivel, (2016) and Soman et al., (2014). Number of productive tillers (-0.112), 100 grains weight (-0.014) had negative direct effect of on grain yield per plant. Similar result was reported by Muthuvijayaragavan and Murugan (2017). Path-coefficient analysis gives information for the direct and indirect effects of different traits on grain yield. The trait brown rice zinc (0.007) expressed direct effects on grain yield. This was in conformity with the findings of Ashlesha (2015) and Rathod et al., (2017). This indicated that grain zinc concentration does not have any role in enhancing grain yield per plant.

Selected superior segregants in F₄ segregating generations

Ten progenies with high zinc in grain as well as some additional important traits such as day to 50% flowering, plant height, total number of tillers, number of productive tillers, panicle length, biomass per plant, grain yield per plant, harvest index, 100 grains weight and brown rice zinc, were selected from F₄ segregating populations (Table 5). From the selection it was observed that high yielding progenies have higher brown rice zinc per plant. As these progenies were still segregating, more generations need to be tested before releasing for multi-location trial.

Acknowledgements

We sincerely thank the Department of Biotechnology, Ministry of Science & Technology, New Delhi, India for providing the financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Abebe, T., Alamerew, S. and Tulu, L., 2017, Genetic variability, heritability and genetic advance for yield and its related traits in rainfed lowland rice (Oryza sativa L.) genotypes at Fogera and Pawe, Ethiopia. Adv. Crop. Sci. Tech., 5(2): 1–8.
Ajmera, A., Kumar, S.S. and Ravindrababu, V., 2017, Evaluation of Genetic Variability, Heritability and Genetic Advance for Yield and Yield Components in Rice Genotypes. Int. J. Pure App. Biosci., 5(4): 909–915.
Al-Jibouri, H.A., Miller, P.A. and Robinson, H.F., 1958, Genotypic and
Bi, H. and Yang, B., 2017, Gene Editing With TALEN and CRISPR/Cas9 in Rice. ProgMolBiolTransl Sci., 149:81-98.

Bisne, R., Sarawgi, A.K. and Verulkar, S.B., 2009, Study of heritability, genetic advance and variability for yield contributing characters in rice. Bangladesh J. Agril. Res., 34(2): 175–179.

Burton, G.W. and DeVane, E.H., 1953, Estimating Heritability in Tall Fescue (Festuca arundinacea) from Replicated Clonal Material. Agronomy J., 45(10): 478–481.

Dewey, D. R. And Lu, K. H., 1959, A correlation and path-coefficient analysis of components of crested wheat grass seed production. Agron. J., 51: 515 - 518.

Food and Agriculture Organization Of United Nations (FAO). 2016. Statistical database. [online] Rome: Food and Agricultural Organization of the United Nations. Available at: http://faostat3.fao.org/home/E. [Accessed 2016, August 24].

Akinwale, M.G., Gregorio, G., Nwilene, F., Akinyele, B.O., Ogunbayo, S.A. and Odiyi, A.C., 2011, Heritability and correlation coefficient analysis for
yield and its components in rice (*Oryza sativa* L.). Afr. J. Plant Sci., 5(3): 207–212.

Govintha Raj, P., Tannidi, S., Swaminathan, M. and Sabariappan, R., 2016, Estimates of Genetic Variability, Heritability and Genetic Advance for Blast Resistance Gene Introgressed Segregating Population in Rice. Int. J. Curr. Microbiol. App. Sci., 5(12): 672–677.

Gregorio, G.B., 2002, Progress in Breeding for Trace Minerals in Staple Crops. J. Nutr., 132: 500–502.

Shashidhara, N., Biradar, H. and Hittalmani, S., 2017, Qualitative and quantitative genetic variations in the F2 inter varietal cross of rice (*Oryza sativa* L.) under aerobic condition and parental polymorphism survey. Int. J. Curr. Microbiol. App. Sci., 6(4): 2215-2225.

Hanson, C.H., Robinson, H.F. and Comstock, R.E., 1956, Biometrical Studies of Yield in Segregating Populations of Korean Lespedeza. Agron. J., 48(6): 268–272.

Harvestplus 2014. Biofortification progress briefs.

Henriques, A.R., Chalfun-Junior, A. and Aarts, M., 2012, Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazilian J. Pl. Physiol., 24(1): 3–8.

Johnson, A.A.T., Kyriacon, B., Callahan, D.L., Carruthers, L., Stangoulis, J., Lombi, E. and Tester, M., 2011, Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PloS One, 6(9): e24476.

Kiran, K.K., Rao, M.R.G. and Suresh, K., 2013, Variability and frequency distribution studies in F2 population of two crosses of rice (*Oryza sativa* L.). Asian J. Bio. Sci., 8(2): 153 - 159.

Limbani, P.L., Gangani, M.K. and Pandya, M.M., 2017, Genetic Variability, Heritability and Genetic Advance in Rice (*Oryza sativa* L.). Int. J. Pure App. Biosci., 5(6): 1364–1371.

Madhubabu, P., Suman, K., Rathod, R., Fiyaz, R., Rao, D., Sudhakar, P., Satya, A., Babu, V. and Neeraja, C., 2017, Evaluation of Grain Yield, Quality and Nutrients Content in Four Rice (*Oryza sativa* L.) Genotypes. Curr. J. Appl. Sci. Techn., 22 (1): 1–12.

Mamata, K., Rajanna, M.P. and Savita, S.K., 2018, Assessment of genetic parameters for yield and its related traits in F2 populations involving traditional varieties of rice (*Oryza sativa* L.). Int. J. Curr. Microbiol. App. Sci., 7(1): 2210–2217.

Maret, W. and Sandstead, H.H., 2006, Zinc requirements and the risks and benefits of zinc supplementation. J. Trace. Elem. Med. Biol., 20(1): 3–18.

Masuda, H., Ishimaru, Y., Aung, M.S., Kobayashi, T., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H. and Nishizawa, N.K., 2012, Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific Reports, 2: 543.

Morete, M. J., Impa, S. M., Rubianes, F. And Beebout, S. E. J., 2011, Characterization of Zn uptake and transport in rice under reduced conditions in agar nutrient solution, International Rice Research Institute, Philippines.

Muthayya, S., Sugimoto, J.D., Montgomery, S. and Maberly, G.F, 2014, An overview of global rice production, supply, trade, and consumption: Global rice production, consumption, and trade. Annal. New York Acad. Sci., 1324(1): 7–14.
Muthuramu, S. and Sakthivel, S., 2016, Correlation and Path Analysis for Yield Traits in Upland Rice (*Oryza sativa*). Research Journal of Agricultural Sciences, 7 (4/5): 763–765.

Muthuvijayaragavan, R. and Murugan, E., 2017, Inter – Relationship and path analysis in F_{2} generation of rice (*Oryza sativa* L.) under submergence. Int. J. Curr. Microbiol. App. Sci., 6 (8): 2561–2571.

Nandeshwar, B.C., Pal, S., Senapati, B.K. and De, D.K., 2010, Genetic variability and character association among biometrical traits in F_{2} generation of some Rice crosses. Elect. J. Plant Breed., 1(4): 758 - 763.

Nicolia, A., Manzo, A., Veronesi, F. and Rosellini, D., 2014. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol., 34 (1): 77–88.

Paltridge, N.G., Palmer, L.J., Milham, P.J., Guild, G.E. and Stangoulis, J.C.R., 2012, Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant and Soil, 361(1–2): 251–260.

Phattarakul, N., Rerkasem, B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H., Sohu, V.S., Kang, B.S., Surek, H., Kalayci, M., Yazici, A., Zhang, F.S. and Cakmak, I., 2012. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil, 361(1–2): 131–141.

Prasad, A. S., 2003, Zinc deficiency. Bmj., 326(7386): 409–410.

Prasad, K.R., Krishna, K.V.R., Bhave, M.H.V. and Rao, L.V.S., 2017, Genetic variability, Heritability and Genetic advance in Boro Rice (*Oryza sativa* L.) germplasm. Int. J. Curr. Microbiol. Appl. Sci., 6(4): 1261–1266.

Purusothaman, R., 2010, Genetic analysis for high Fe and Zn content in rice (*Oryza sativa* L.) grains. M.Sc., (Ag.) Thesis (Unpubl.), TNAU, Coimbatore.

Rajpoot, P., Singh, P., Verma, O. and Tripathi, N., 2017, Studies on genetic variability and heritability for quantitative characters in rice (*Oryza sativa* L.) under sodic soil. J. Pharmaco. Phytochem., 6 (4): 1162–1165.

Rana, R. S., Sapra, R. L., Agrawal, R. C. And Gambhir, R.,1991, Germplasm evaluation; Augmented design. In: Plant genetic resources; documentation and information management. National bureau of plant genetic resource, New Delhi, pp.37 - 44.

Rashid, M., Nuruzzaman, M., Hassan, L. and Begum, S. 2017. Genetic variability analysis for various yield attributing traits in rice genotypes. J. Bangladesh Agricult. Univ.,15(1): 15.

Rathod, R., Sanjeeva Rao, D., RavindraBabu, V. and Bharathi, M., 2017, Correlation and path coefficient analysis for yield, yield attributing and nutritional traits in rice (*Oryza sativa* L.). Int. J. Curr. Microbiol. Appl. Sci., 6(11): 183–188.

Revathi, S., Sakthivel, K., Manonmani, S., Umadevi, M., Ushakumari, R. and Robin, S., 2016, Genetics of wide compatible gene and variability studies in rice (*Oryza sativa* L.). J. Genetics, 95(2): 463–467.

Roohani, N., Hurrell, R., Kelishadi, R. and Schulin, R., 2013, Zinc and its importance for human health: An integrative review. J. Res. Med. Sci., 18(2): 144–157.

Sadeghzadeh, B., 2013, A review of zinc nutrition and plant breeding. J. Soil. Sci. Plant Nut., 13(4): 905–927.
Sadimantara, G. R., Muhidin and Cahyono, E., 2014, Genetic analysis on some agro-morphological characters of hybrid progenies from cultivated paddy rice and local upland rice. Adv. Stud. Biol., 6(1): 7 - 18.

Sala, M. And Ananda Kumar, C. R., 2014, Variability studies for quality traits in rice with high iron and zinc content in segregating population. Int. J. Sci. Res., 3(12): 1988 - 1990.

Samak, N. R., Hittalmani, S, Shashidhar, N. And Birada, H., 2011, Exploratory studies on genetic variability and genetic control for protein and micronutrient content in F₄ and F₅ generation of rice. Asian J. Plant Sci., 10 (7): 376 - 379.

Shahzad, Z., Rouached, H. and Rakha, A., 2014, Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals. Compr. Rev. Food Sci. F., 13(3): 329–346.

Shamim, M.Z., Sharma, V.K., Manzar, H. and Bhushan, S., 2017, Grain Yield Components Analysis in Locally Adapted Rice Varieties. Internat. J. Agricul. Envr. Biotechnol.,10(4): 435.

Shashidhara, N., Biradar, H. and Hittalmani, S., 2013, genetic variation in F₃ and F₄ population of rice (Oryza sativa L.) for grain protein content (GPC), seed nutrients, yield attributing parameters and parental polymorphisms. Bioinfolet, 10(2): 572 - 580.

Shet, R.M., Rajanna, M.P., Ramesh, S., Sheshshayee, M.S. and Mahadevu, P., 2012, Genetic variability, correlation and path coefficient studies in F₃ generation of aerobic rice (Oryza sativa L.). Elec. J. Pl. Breed.,3(3): 925–931.

Shivay, Y.S., Kumar, D. and Prasad, R., 2008, Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice–wheat cropping system. Nutr. Cycling Agroecosyst, 81(3): 229–243.

Slamet-Loedin, I.H., Johnson-Beebout, S.E., Impa, S. and Tsakirpaloglou, N., 2015, Enriching rice with Zn and Fe while minimizing Cd risk. Front. Plant Sci., 6:121.

Solomon, H. and Wegary, D., 2016, Phenotypic correlation and path coefficient analysis of yield and yield component in rice (Oryza sativa L.). Int. J. Res. Rev., 3(7): 1–5.

Soman, R., Gande, N. Kumar, Ambati, R., Kundur, P.J., Shwathanarayana, R., Bekele, B.D. and Shashidhar, H.E., 2014. genetic variability and correlation studies for grain iron concentration and yield related traits in recombinant inbred lines of rice (Oryza sativa L.) grown under aerobic condition. Int. J. Curr. Res., 6(3): 5869–5874.

Soman, R., Gande, N., Kundur, J. P., Ambati, R., Ashwathanarayana, R., Bekele, D. B. and Shashidhar, H. E., 2015, Identification and validation of putative candidate gene markers for grain iron content in recombinant inbred lines of rice (Oryza sativa L.). International J. Agric. Innov. Res.,3(3): 923 - 930.

Sumanth, V., Suresh, B.G., Ram, B.J. and Srujana, G., 2017, Estimation of genetic variability, heritability and genetic advance for grain yield components in rice (Oryza sativa L.). J. Pharmacognosy Phytochem., 6(4): 1437–1439.

Swamy, B.P.M., Rahman, M.A., Inabangan–Asilo, M.A., Amparado, A., Manito, C., Chadha-Mohanty, P., Reinke, R. and Slamet-Loedin, I.H., 2016, Advances in breeding for high grain Zinc in Rice. Rice, 9.
Tiwari, V.K., Rawat, N., Neelam, K., Kumar, S., Randhawa, G.S. and Dhaliwal, H.S., 2010, Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor. Appl. Genet., 121(2): 259–269.

Tuhina-Khatun, M., Hanafi, M.M., Rafii Yusop, M., Wong, M.Y., Salleh, F.M. and Ferdous, J., 2015, Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits. BioMed. Res. Int., 1-7.

Wang, L.C., Busbey, S. and Bushey, S., 2005, Images in clinical medicine. Acquired acrodermatitis enteropathica. N Engl J Med., 352(11):1121.

Wright, S., 1921, Correlation and Causation. J. Agric. Res., 20: 557-585.

Yadav, R., Rajpoot, P., Verma, O., Singh, P., Singh, P. and Pathak, V., 2017, Genetic variability, heritability and genetic advance in Rice (Oryza sativa L.) for grain yield and its contributing attributes under sodic soil. J. Pharmacognosy Phytochem., 6(5): 3.

Yugandhar, P.R., Dahat, D.V., Barahte, K.K. and Suneetha, K., 2017, Study on variability, heritability and genetic advance for agro-morphological and grain quality parameters in restorer lines of rice (Oryza sativa L.). Int. J. Pure App. Biosci., 5(4): 1202–1206.

How to cite this article:

Thuy, N.P., D.B. Santhosh and Shashidhar, H.E. 2018. Identification of Transgressive Segregants with High Zinc in Grains under Aerobic Condition in F₄ Population of Rice (Oryza sativa L.). Int.J.Curr.Microbiol.App.Sci. 7(08): 1172-1186.
doi: https://doi.org/10.20546/ijcmas.2018.708.132