Abstract. We prove derived equivalence of Calabi–Yau threefolds constructed by Ito–Miura–Okawa–Ueda as an example of non-birational Calabi–Yau varieties whose difference in the Grothendieck ring of varieties is annihilated by the affine line.

In a recent paper [IMOU] there was constructed a pair of Calabi–Yau threefolds X and Y such that their classes $[X]$ and $[Y]$ in the Grothendieck group of varieties are different, but

$$([X] - [Y])[\mathbb{A}^1] = 0.$$

The goal of this short note is to show that these threefolds are derived equivalent

$$\mathcal{D}(X) \cong \mathcal{D}(Y).$$

In course of proof we will construct an explicit equivalence of the categories.

We denote by k the base field. All the functors between triangulated categories are implicitly derived.

As explained in [IMOU] the threefolds X and Y are related by the following diagram

Here

- F is the flag variety of the simple algebraic group of type G_2,
- Q and G are the Grassmannians of this group:
 - Q is a 5-dimensional quadric in $\mathbb{P}(V)$, where V is the 7-dimensional fundamental representation, and
 - $G = \text{Gr}(2, V) \cap \mathbb{P}(W)$, where $W \subset \wedge^2 V$ is the 14-dimensional adjoint representation (this intersection is not dimensionally transverse!),
- $\pi: F \to Q$ and $\rho: F \to G$ are Zariski locally trivial \mathbb{P}^1-fibrations,
- M is a smooth half-anticanonical divisor in F,
- $\pi_M := \pi|_M: M \to Q$ is the blowup with center in the Calabi–Yau threefold X,
- $\rho_M := \rho|_M: M \to G$ is the blowup with center in the Calabi–Yau threefold Y,
- D and E are the exceptional divisors of the blowups,
- $p := \pi_D: D \to X$ and $q := \rho_E: E \to Y$ are the contractions.

I was partially supported by the Russian Academic Excellence Project “5-100”, by RFBR grants 14-01-00416, 15-01-02164, 15-51-50045, and by the Simons foundation.
We denote by h and H the hyperplane classes of Q and G, as well as their pullbacks to F and M. Then h and H form a basis of $\text{Pic}(F)$ in which the canonical classes can be expressed as follows:

(1) $K_Q = -5h, \quad K_G = -3H, \quad K_F = -2H - 2h, \quad K_M = -H - h.$

The classes h and H are relative hyperplane classes for the \mathbb{P}^1-fibrations $\rho: F \to G$ and $\pi: F \to Q$ respectively. We define rank 2 vector bundles \mathcal{X} and \mathcal{U} on Q and G respectively by

(2) $\pi_* \mathcal{O}_F(H) \cong \mathcal{X}^\vee, \quad \rho_* \mathcal{O}_F(h) \cong \mathcal{U}^\vee.$

Then

$$\mathbb{P}_Q(\mathcal{X}) \cong F \cong \mathbb{P}_G(\mathcal{U}).$$

It follows from (2) that $X \subset Q$ is the zero locus of a section of the vector bundle $\mathcal{X}^\vee(h)$ on Q and $Y \subset G$ is the zero locus of a section of the vector bundle $\mathcal{U}^\vee(H)$ on G.

Since H and h are relative hyperplane classes for $F = \mathbb{P}_Q(\mathcal{X})$ and $F = \mathbb{P}_G(\mathcal{U})$ respectively, we have on F exact sequences

$$0 \to \omega_{F/Q} \to \mathcal{X}^\vee(-H) \to \mathcal{O}_F \to 0, \quad 0 \to \omega_{F/G} \to \mathcal{U}^\vee(-h) \to \mathcal{O}_F \to 0.$$

By (1) we have $\omega_{F/Q} \cong \mathcal{O}_F(3h - 2H)$ and $\omega_{F/G} \cong \mathcal{O}_F(H - 2h)$. Taking the determinants of the above sequences and dualizing, we deduce

(3) $\det(\mathcal{X}) \cong \mathcal{O}_Q(-3h), \quad \det(\mathcal{U}) \cong \mathcal{O}_G(-H).$

Furthermore, twisting the sequences by $\mathcal{O}_F(H)$ and $\mathcal{O}_F(h)$ respectively, we obtain

(4) $0 \to \mathcal{O}_F(3h - H) \to \mathcal{X}^\vee \to \mathcal{O}_F(H) \to 0,$

and

(5) $0 \to \mathcal{O}_F(H - h) \to \mathcal{U}^\vee \to \mathcal{O}_F(h) \to 0.$

Derived categories of both Q and G are known to be generated by exceptional collections. In fact, for our purposes the most convenient collections are

(6) $\mathbf{D}(Q) = \langle \mathcal{O}_Q(-3h), \mathcal{O}_Q(-2h), \mathcal{O}_Q(-h), \mathcal{S}, \mathcal{O}_Q, \mathcal{O}_Q(h) \rangle,$

where \mathcal{S} is the spinor vector bundle of rank 4, see [Kap], and

(7) $\mathbf{D}(G) = \langle \mathcal{O}_G(-H), \mathcal{U}, \mathcal{O}_G, \mathcal{U}^\vee, \mathcal{O}_G(H), \mathcal{U}^\vee(H) \rangle.$

This collection is obtained from the collection of [Kuz, Section 6.4] by a twist (note that $\mathcal{U} \cong \mathcal{U}^\vee(-H)$ by (3)). In fact, for the argument below one even does not need to know that this exceptional collection is full; on a contrary, one can use the argument to prove its fullness, see Remark [Kuz].

Using two blowup representations of M and the corresponding semiorthogonal decompositions

(8) $\langle \pi_M^*(\mathbf{D}(Q)), i_* p^*(\mathbf{D}(X)) \rangle = \mathbf{D}(M) = \langle \rho_M^*(\mathbf{D}(G)), j_* q^*(\mathbf{D}(Y)) \rangle$

together with the above exceptional collections, we see that $\mathbf{D}(X)$ and $\mathbf{D}(Y)$ are the complements in $\mathbf{D}(M)$ of exceptional collections of length 6, so one can guess they are equivalent. Below we show that this is the case by constructing a sequence of mutations transforming one exceptional collection to the other.

We start with some cohomology computations:
Lemma 1. (i) Line bundles $\mathcal{O}_F(th-H)$ and $\mathcal{O}_F(tH-h)$ are acyclic for all $t \in \mathbb{Z}$.

(ii) Line bundles $\mathcal{O}_F(-2H)$ and $\mathcal{O}_F(2h-2H)$ are acyclic and

$$H^*(F, \mathcal{O}_F(3h-2H)) = k[-1].$$

(iii) Vector bundles $\mathcal{U}(-2H)$, $\mathcal{U}(-H)$, $\mathcal{U}(h-H)$, and $\mathcal{U} \otimes \mathcal{U}(-H)$ on F are acyclic and

$$H^*(F, \mathcal{U}(h)) = k, \quad H^*(F, \mathcal{U} \otimes \mathcal{U}(h)) \cong k[-1].$$

Proof. Part (i) is easy since $\pi_*\mathcal{O}_F(-H) = 0$ and $\rho_*\mathcal{O}_F(-h) = 0$. For part (ii) we note that

$$(9) \quad \pi_*\mathcal{O}_F(-2H) \cong (\det \mathcal{X})[-1] \cong \mathcal{O}_Q(-3h)[-1],$$

so acyclicity of $\mathcal{O}_F(th-2H)$ for $-1 \leq t \leq 2$ and the formula for the cohomology of $\mathcal{O}_F(3h-2H)$ follow. For part (iii) we push forward the bundles $\mathcal{U}(-2H)$, $\mathcal{U}(-H)$, $\mathcal{U}(h-H)$, and $\mathcal{U} \otimes \mathcal{U}(-H)$ to G and applying [2] we obtain

$$\mathcal{U}(-2H), \mathcal{U}(-H), \mathcal{U} \otimes \mathcal{U}(-H), \mathcal{U} \otimes \mathcal{U}(-H).$$

Their acyclicity follows from orthogonality of $\mathcal{U}^\vee(H)$ to the collection $(\mathcal{O}_G(-H), \mathcal{U}, \mathcal{O}_Q, \mathcal{U}^\vee)$ in view of the exceptional collection [7]. Analogously, pushing forward $\mathcal{U}(h)$ to G we obtain $\mathcal{U} \otimes \mathcal{U}^\vee$, and its cohomology is k since \mathcal{U} is exceptional. Finally, using [5] we see that $\mathcal{U} \otimes \mathcal{U}(h)$ has a filtration with factors $\mathcal{O}_F(-h)$, $\mathcal{O}_F(h-H)$, and $\mathcal{O}_F(3h-2H)$. The first two are acyclic by part (i) and the last one has cohomology $k[-1]$ by part (ii). It follows that the cohomology of $\mathcal{U} \otimes \mathcal{U}(h)$ is also $k[-1]$. \qed

Corollary 2. The following line and vector bundles are acyclic on M:

$$\mathcal{O}_M(h-H), \mathcal{O}_M(3h-H), \mathcal{U}(h-H).$$

Moreover,

$$H^*(M, \mathcal{U}(h)) = k, \quad H^*(M, \mathcal{U} \otimes \mathcal{U}(h)) = k[-1].$$

Proof. Since $M \subset F$ is a divisor with class $h+H$ we have a resolution

$$0 \to \mathcal{O}_F(-h-H) \to \mathcal{O}_F \to \mathcal{O}_M \to 0.$$

Tensoring it with the required bundles and using the Lemma [1] we obtain the required results. \qed

Proposition 3. We have an exact sequence on F and M:

$$(10) \quad 0 \to \mathcal{U} \to \mathcal{I}' \to \mathcal{U}^\vee(-h) \to 0,$$

where \mathcal{I}' is (the pullback to F or M of) a rank 4 vector bundle on Q.

Later we will identify the bundle \mathcal{I}' constructed as extension [10] with the spinor bundle \mathcal{I} on Q.

Proof. We will construct this exact sequence on F, and then restrict it to M. First, note that by Lemma [1] we have $\mathrm{Ext}^*(\mathcal{U}^\vee(-h), \mathcal{U}) \cong H^*(F, \mathcal{U} \otimes \mathcal{U}(h)) \cong k[-1]$, hence there is a canonical extension of $\mathcal{U}^\vee(-h)$ by \mathcal{U}. We denote by \mathcal{I}' the extension, so that we have an exact sequence [10]. Obviously, \mathcal{I}' is locally free of rank 4. We have to check that it is a pullback from Q.

Using exact sequences

$$0 \to \mathcal{O}_F(-h) \to \mathcal{U} \to \mathcal{O}_F(h-H) \to 0 \quad \text{and} \quad 0 \to \mathcal{O}_F(H-2h) \to \mathcal{U}^\vee(-h) \to \mathcal{O}_F \to 0$$

(obtained from [5] by the dualization and a twist) and the cohomology computations of Lemma [1] we see that extension [10] is induced by a class in $\mathrm{Ext}^1(\mathcal{O}_F(H-2h), \mathcal{O}_F(h-H)) \cong H^1(F, \mathcal{O}_F(3h-2H)) = k[-1]$. By [1] the corresponding extension is $\mathcal{I}^\vee(-2h)$. It follows that the sheaf \mathcal{I}' has a 3-step filtration with factors being $\mathcal{O}_F(-h)$, $\mathcal{I}^\vee(-h)$, and \mathcal{O}_F. All these sheaves are pullbacks from Q, and since the subcategory $\pi^*(\mathcal{D}(Q)) \subset \mathcal{D}(F)$ is triangulated (because the functor π^* is fully faithful), it follows that \mathcal{I}' is also a pullback from Q. \qed
Now we are ready to explain the mutations. We start with a semiorthogonal decomposition
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-H), \mathcal{U}, \mathcal{O}_M, \mathcal{U}^\vee, \mathcal{O}_M(H), \mathcal{U}^\vee(H), \Phi_0(\mathbf{D}(Y)) \rangle,
\end{equation}
\begin{equation}
\Phi_0 = j_* \circ q^*: \mathbf{D}(Y) \to \mathbf{D}(M),
\end{equation}
obtained by plugging (7) into the right hand side of (3). Now we apply a sequence of mutations, modifying the functor \(\Phi_0\).

First, we mutate \(\Phi_0(\mathbf{D}(Y))\) two steps to the left:
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-H), \mathcal{U}, \mathcal{O}_M, \mathcal{U}^\vee, \Phi_1(\mathbf{D}(Y)), \mathcal{O}_M(H), \mathcal{U}^\vee(H) \rangle,
\end{equation}
\begin{equation}
\Phi_1 = \mathbf{L}(\mathcal{O}_M(H), \mathcal{U}^\vee(H)) \circ \Phi_0.
\end{equation}
Here \(\mathbf{L}\) denotes the left mutation functor.

Next, we mutate the last two terms to the far left (these objects got twisted by \(K_M = -h - H\))
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{U}^\vee(-h), \mathcal{O}_M(-H), \mathcal{U}, \mathcal{O}_M, \mathcal{U}^\vee, \Phi_1(\mathbf{D}(Y)) \rangle.
\end{equation}
Next, we mutate \(\mathcal{O}_M(-h)\) and \(\mathcal{U}^\vee(-h)\) one step to the right. As \(\text{Ext}^\bullet(\mathcal{U}^\vee(-h), \mathcal{O}_M(-H)) \cong H^\bullet(M, \mathcal{U}(h - H)) = 0\), and \(\text{Ext}^\bullet(\mathcal{O}_M(-h), \mathcal{O}_M(-H)) \cong H^\bullet(M, \mathcal{O}_M(h - H)) = 0\) by Corollary 2 we obtain
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{O}_M(-h), \mathcal{U}^\vee(-h), \mathcal{O}_M, \mathcal{U}^\vee, \mathcal{O}_M, \mathcal{U}^\vee, \Phi_1(\mathbf{D}(Y)) \rangle.
\end{equation}
Next, we mutate \(\mathcal{U}\) one step to the left. As \(\text{Ext}^\bullet(\mathcal{U}^\vee(-h), \mathcal{U}) \cong H^\bullet(\mathcal{U} \otimes \mathcal{U}(h)) \cong k[-1]\) by Corollary 2 the resulting mutation is an extension, which in view of (10) gives \(\mathcal{S}'\). Thus, we obtain
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{O}_M(-h), \mathcal{S}', \mathcal{U}^\vee(-h), \mathcal{O}_M, \mathcal{U}^\vee, \mathcal{O}_M, \mathcal{U}^\vee, \Phi_1(\mathbf{D}(Y)) \rangle.
\end{equation}
Next, we mutate \(\mathcal{O}_M(-H)\) to the far right (this object got twisted by \(-K_M = h + H\)):
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{S}', \mathcal{U}^\vee(-h), \mathcal{O}_M, \mathcal{U}^\vee, \Phi_1(\mathbf{D}(Y)), \mathcal{O}_M(h) \rangle.
\end{equation}
Next, we mutate \(\Phi_1(\mathbf{D}(Y))\) one step to the right:
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{S}', \mathcal{U}^\vee(-h), \mathcal{O}_M, \mathcal{U}^\vee, \mathcal{O}_M(h), \mathcal{O}_M(h), \Phi_2(\mathbf{D}(Y)) \rangle,
\end{equation}
\begin{equation}
\Phi_2 = \mathbf{R}_{\mathcal{O}_M(h)} \circ \Phi_1.
\end{equation}
Here \(\mathbf{R}\) denotes the right mutation functor.

Next, we mutate simultaneously \(\mathcal{U}^\vee(-h)\) and \(\mathcal{U}^\vee\) one step to the right. As \(\text{Ext}^\bullet(\mathcal{U}^\vee(-h), \mathcal{S}') \cong \text{Ext}^\bullet(\mathcal{U}^\vee, \mathcal{O}_M(h)) = H^\bullet(M, \mathcal{U}(h)) = k\) by Corollary 2 the resulting mutation is the cone of a morphism, which in view of (3) and its twist by \(\mathcal{O}_M(-h)\) gives \(\mathcal{O}_M(H - 2h)\) and \(\mathcal{O}_M(H - h)\) respectively. Thus we obtain
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{S}', \mathcal{O}_M, \mathcal{O}_M(H - 2h), \mathcal{O}_M(h), \mathcal{O}_M(H - h), \Phi_2(\mathbf{D}(Y)) \rangle.
\end{equation}
Next, we mutate \(\mathcal{O}_M(h)\) one step to the left. As \(\text{Ext}^\bullet(\mathcal{O}_M(H - 2h), \mathcal{O}_M(h)) \cong H^\bullet(M, \mathcal{O}_M(3h - H)) = 0\) by Corollary 2 we obtain
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{S}', \mathcal{O}_M, \mathcal{O}_M(h), \mathcal{O}_M(H - 2h), \mathcal{O}_M(H - h), \Phi_2(\mathbf{D}(Y)) \rangle.
\end{equation}
Next, we mutate \(\Phi_2(\mathbf{D}(Y))\) two steps to the left:
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-h), \mathcal{S}', \mathcal{O}_M, \mathcal{O}_M(h), \Phi_3(\mathbf{D}(Y)), \mathcal{O}_M(H - 2h), \mathcal{O}_M(H - h) \rangle,
\end{equation}
\begin{equation}
\Phi_3 = \mathbf{L}_{\mathcal{O}_M(H - 2h), \mathcal{O}_M(H - h)} \circ \Phi_2.
\end{equation}
Finally, we mutate \(\mathcal{O}_M(H - 2h)\) and \(\mathcal{O}_M(H - h)\) to the far left:
\begin{equation}
\mathbf{D}(M) = \langle \mathcal{O}_M(-3h), \mathcal{O}_M(-2h), \mathcal{O}_M(-h), \mathcal{S}', \mathcal{O}_M, \mathcal{O}_M(h), \Phi_3(\mathbf{D}(Y)) \rangle.
\end{equation}
Now we finished with mutations, and it remains to check that the resulting semiorthogonal decomposition provides an equivalence of categories. To do this, we first observe the following

Lemma 4. The bundle \mathcal{S}' is isomorphic to the spinor bundle \mathcal{S} on Q.

Proof. The first six objects in (17) are pullbacks from Q by π_M. Since π_M^* is fully faithful, the corresponding objects on Q are also semiorthogonal. In particular, the bundle \mathcal{S}' on Q is right orthogonal to \mathcal{O}_Q and $\mathcal{O}_Q(h)$ and left orthogonal to $\mathcal{O}_Q(-3h)$, $\mathcal{O}_Q(-2h)$, and $\mathcal{O}_Q(-h)$. By (3) the intersection of these orthogonals is generated by the spinor bundle \mathcal{S}. Therefore, \mathcal{S}' is a multiple of the spinor bundle \mathcal{S}. Since the ranks of both \mathcal{S} and \mathcal{S}' are 4, the multiplicity is 1, so $\mathcal{S}' \cong \mathcal{S}$.

Thus the first six objects of (17) generate $\pi_M^*(\mathcal{D}(Q))$. Comparing (17) with (5) and (8), we conclude that the last component $\Phi_3(\mathcal{D}(Y))$ coincides with $i_*q^*(\mathcal{D}(X))$. Altogether, this proves the following

Theorem 5. The functor

$$
\Phi_3 = \mathbf{L}(\mathcal{O}(H-2h),\mathcal{O}(H-h)) \circ \mathbf{R}(\mathcal{O}(h)) \circ \mathbf{L}(\mathcal{O}(H),\mathcal{H}(H)) \circ j_* \circ q^*: \mathcal{D}(Y) \to \mathcal{D}(M)
$$

is an equivalence of $\mathcal{D}(Y)$ onto the triangulated subcategory of $\mathcal{D}(M)$ equivalent to $\mathcal{D}(X)$ via the embedding $i_* \circ p^*: \mathcal{D}(X) \to \mathcal{D}(M)$. In particular, the functor

$$
\Psi = p_* \circ i^* \circ \mathbf{L}(\mathcal{O}(H-2h),\mathcal{O}(H-h)) \circ \mathbf{R}(\mathcal{O}(h)) \circ \mathbf{L}(\mathcal{O}(H),\mathcal{H}(H)) \circ j_* \circ q^*: \mathcal{D}(Y) \to \mathcal{D}(X)
$$

is an equivalence of categories.

Remark 6. Let us sketch how the arguments above can be also used to prove fullness of (7). Denote by \mathcal{C} the orthogonal to the collection (7) in $\mathcal{D}(G)$. Then we still have a semiorthogonal decomposition (14), with $\Phi_0(\mathcal{D}(Y))$ replaced by $\langle \mathcal{C}', \mathcal{D}(Y) \rangle$. We can perform the same sequence of mutation, keeping the subcategory \mathcal{C} together with $\mathcal{D}(Y)$. For instance, in (13) we write $\mathbf{L}(\mathcal{O}(H,H),\mathcal{H}(H)) \circ \mathbf{L}(\mathcal{O}(H),\mathcal{H}(H)) \circ j_* \circ q^*$ instead of just $\Phi_1(\mathcal{D}(Y))$ and so on. In the end, we arrive at (17) with $\Phi_3(\mathcal{D}(Y))$ replaced by $\langle \mathcal{C}', \mathcal{C}' \rangle$ with \mathcal{C}' equivalent to \mathcal{C}. Comparing it with (6) and (8), we deduce that $\mathcal{D}(X)$ has a semiorthogonal decomposition with two components equivalent to \mathcal{C} and $\mathcal{D}(Y)$. But X is a Calabi–Yau variety, hence its derived category has no nontrivial semiorthogonal decompositions by [Bri]. Therefore $\mathcal{C} = 0$ and so exceptional collection (7) is full.

Acknowledgement: I would like to thank Shinnosuke Okawa and Evgeny Shinder for their comments on the first draft of the paper.

References

[Bri] T. Bridgeland, Equivalences of triangulated categories and Fourier–Mukai transforms, Bull. London Math. Soc. 31, no. 1 (1999), 25–34.

[IMOU] Ito, A., Miura, M., Okawa, S., Ueda, K., The class of the affine line is a zero divisor in the Grothendieck ring: via G_2-Grassmannians, arXiv preprint arXiv:1606.04210.

[Kap] Kapranov, M., On the derived categories of coherent sheaves on some homogeneous spaces, Inventiones mathematicae, 92(3) 1988, 479–508.

[Kuz] Kuznetsov, A., Hyperplane sections and derived categories, Izvestiya RAN: Ser. Mat. 70:3 (2006) p. 23–128 (in Russian); translation in Izvestiya: Mathematics 70:3 (2006) p. 447–547.

ALGEBRAIC GEOMETRY SECTION, STEKLOV MATHEMATICAL INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES, 8 GUBKIN STR., MOSCOW 119991 RUSSIA

THE PONCELET LABORATORY, INDEPENDENT UNIVERSITY OF MOSCOW

LABORATORY OF ALGEBRAIC GEOMETRY, NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS, RUSSIAN FEDERATION

E-mail address: akuznet@mi.ras.ru