TLAXCALA: a multilingual corpus of independent news

Antonio Toral
School of Computing
Dublin City University
Ireland
atoral@computing.dcu.ie

Abstract
We acquire corpora from the domain of independent news from the Tlaxcala website. We build monolingual corpora for 15 languages and parallel corpora for all the combinations of those 15 languages. These corpora include languages for which only very limited such resources exist (e.g. Tamazight). We present the acquisition process in detail and we also present detailed statistics of the produced corpora, concerning mainly quantitative dimensions such as the size of the corpora per language (for the monolingual corpora) and per language pair (for the parallel corpora). To the best of our knowledge, these are the first publicly available parallel and monolingual corpora for the domain of independent news. We also create models for unsupervised sentence splitting for all the languages of the study.

Keywords: monolingual corpus, parallel corpus, under-resourced languages

1. Introduction
Parallel corpora constitute very useful language resources in multilingual applications of computational linguistics. For example, they are the backbone resources in the thriving field of statistical machine translation. However, the availability of these resources is limited and varies from language to language; while there are language pairs for which parallel corpora comprising millions of sentence pairs are available (e.g. English–Chinese and English–Arabic), for most language pairs the amount of parallel data available is rather limited, if any such resources exist at all. The news domain can be considered a reasonably well represented one in terms of availability of corpora. However, to the best of our knowledge, all of them correspond to either corporate or government sources. Examples of sources of news corpora include Wall Street Journal1 for English, Associated Press2 for French, German and Portuguese, Xinhua news agency for Chinese,3 to mention just a few.

Independent media (news sources free of influence by government or corporate interests), have grown during the last two decades alongside the development of the Internet and reach nowadays a considerable wider audience, thus becoming more influential than they were previously. However, to the best of our knowledge, there are no corpora available from independent media sources.

This paper describes the development of a collection of parallel and monolingual news corpora from independent media. We envisage the resulting novel corpora to be useful in, at least, the following two scenarios:

• Machine translation and computer-assisted translation of independent news.
• Corpus studies of independent news, e.g. characteristics of independent media text, differences in language usage in news between corporate, government and independent sources, etcetera.

The corpora developed in this work are extracted from the Tlaxcala website,4 self-defined as the international network of translators for linguistic diversity. This website publishes newstories and their translations in fifteen languages, ranging from highly-resourced (e.g. English) to poorly-resourced (e.g. Tamazight).

2. Background
Work on corpora acquisition from the Internet can be divided into two broad categories:

• Generic approaches to crawl text from an a priori unknown set of web domains.
• Ad-hoc crawlers to gather text from an a priori known set of web domains.

The pros and cons of each of these approaches are straightforward: the first one is scalable, and thus can be applied, in theory, to any collection of web domains, while the second one, being tailored to specific web domains, should be able to extract better content (i.e. in terms of precision and/or recall) from those web domains.

Generic approaches to obtain monolingual corpora start the process by sending queries to a search engine in order to obtain seed URLs (Baroni et al., 2009) or by traversing a top-domain (e.g. *.es) and performing language identification to keep the web pages in the language of interest, e.g. Catalan (Boleda et al., 2006).

Once that monolingual corpora have been obtained for a set of languages, one can identify document pairs in order to derive parallel corpora. Systems to perform this process include STRAND (Resnik and Smith, 2003), Bitextor (Esplà-Gomis and Forcada, 2010) and ILSP-FC (Papavassiliou et al., 2013).

Ad-hoc approaches allow the developer to tailor the corpora acquisition process to the specific characteristics of the web domains that are to be targeted. This is viable for domains where one could gather valuable data which would not be possible to be acquired by relying on generic approaches.

1http://catalog.ldc.upenn.edu/LDC2000T43
2http://catalog.ldc.upenn.edu/LDC95T11
3http://catalog.ldc.upenn.edu/LDC2003T09
4http://www.tlaxcala-int.org/
Two examples of ad-hoc approaches follow. The SETimes corpus (Tyers and Alperen, 2010) contains parallel corpora for nine languages gathered from newstories found at setimes.com. The OpenSubtitles corpus (Tiedemann, 2009) contains parallel corpora consisting of subtitles. In this case the acquisition process is tailored to the nature of the text, e.g. by using the timing information as part of the alignment algorithm.

3. Methodology

We have developed a set of scripts to carry out the different phases of the corpus acquisition from the Tlaxcala website. Each of them takes care of a specific task of the process. The following subsections cover in detail each of these tasks.

3.1. Crawling

The first step consists on downloading the relevant contents from the web domain: articles and lists of articles. The articles hold the content we are interested in while the lists of articles specify which articles are translations of each other, as well as specifying the language of each article (see Figure 1). A wrapper around the command-line tool wget carries out this task.

3.2. Data Conversion

The content downloaded is in HTML format, and thus it is necessary to convert it to plain text. We identify manually the boiler-plate sections of article pages. These are removed, and the remaining part of the page (article content) is converted to plain text with the aid of two python scripts: html2text.py\(^5\) performs the conversion while decode_entities.py takes care of HTML entities.

3.3. Identification of Document Pairs

Document pairs are extracted from the lists of articles (see Figure 1) and subsequently stored in a tabbed text file with four fields: identifier of the original article, language code of the original article, identifier of the translated article and language code of the translated article. In the following sample of the document pair database the original article with identifier 10017 written in French has translations in Spanish (identifier 10018) and Portuguese (identifier 10019).

\[
\begin{align*}
10017 & \text{ fr } 10018 \text{ es} \\
10017 & \text{ fr } 10019 \text{ pt}
\end{align*}
\]

3.4. Corpora Building

The structure devised for document pairs introduced in the previous section allows us to build different corpora according to the user needs. E.g. we might build an English Spanish parallel corpus made only of English–Spanish document pairs where the original article is in English. In our current work we build (i) monolingual corpora for each of the languages and (ii) parallel corpora for each pair of languages. All the corpora are provided sentence split.

3.4.1. Sentence Splitting

The documents gathered for each language are sentence split with Ulysses.\(^6\) This is a recently developed sentence splitter based on unsupervised learning. For each language we train a splitting model with all the data gathered for that language. Subsequently, we perform sentence splitting on the documents in that language by using Ulysses trained on the splitting model.

3.4.2. Alignment

For producing parallel corpora we carry out one additional step: sentence alignment. We use Hunalign (Varga et al., 2005). For each language pair we gather the corresponding document pairs (see Section 3.3.), concatenate them (as we know the document boundaries we mark them with Hunalign’s special character \texttt{<p>}) and provide them to Hunalign as its input. Alignment is performed in two phases (Hunalign’s \texttt{realign} parameter) and we keep only one to one sentence pairs. For language pairs with more than 25,000 sentence pairs we use Hunalign’s partial align functionality. Chunks of up to 25,000 sentence pairs are identified before alignment according to the detection of long chains of correspondences\(^7\) and alignment is then performed independently on each of these chunks. This procedure is a workaround due to Hunalign’s growth of required memory with input size (Toral et al., 2012).

4. Corpora Statistics

This section presents relevant statistics of the monolingual and parallel corpora that have been built. We have built corpora for the following 15 languages: English (en), Spanish (es), French (fr), German (de), Italian (it), Portuguese (pt), Farsi (fa), Arabic (ar), Greek (el), Turkish (tr), Swedish (sv), Tamazight (ber), Catalan (ca), Russian (ru) and Esperanto (eo).

Table 1 shows the number of sentences, tokens, number of types and type-token ratio for the 15 monolingual corpora. The size of the monolingual corpora range from 1,572 sentences and 30,516 tokens (Esperanto) to 203,040 sentences and almost 5 million tokens (English). In terms of type-token ratio, the values range from .0234 (English) to .2771 (Esperanto).

Table 2 shows the number of articles per language, both as originals and as translations, and it also shows which percentage of the articles collected from the website are in each language. It is interesting to note, for example, that two thirds of the English articles are originals and just the remaining third are translations into this language. Conversely, for all the remaining languages except for Arabic and Russian, there are more translations than originals. All in all there are almost five thousand articles as originals and above six thousand as translations.

Figure 2 provides a graphic representation of the percentages of articles per language (last column of Table 2). Finally, we show quantitative information regarding the parallel corpora produced per language pair in Table 3. The

\(^5\)https://github.com/aaronsw/html2text

\(^6\)https://github.com/sortiz/ulysses-sentence-splitter/releases/tag/v0.1

\(^7\)http://mokk.bme.hu/resources/hunalign/
Table 1: Number of sentences, tokens, types and type-token ratio in the monolingual corpora for each language.

Lang	# sentences	# tokens	# types	Ratio
ar	9,507	245,881	48,213	.1960
ber	4,029	122,008	15,339	.1257
ca	2,216	58,242	9,287	.1594
de	91,519	1,911,770	120,471	.0630
el	9,117	225,228	9,287	.1594
en	203,040	4,904,716	114,894	.0234
eo	1,572	30,516	8,456	.2771
es	175,157	4,677,109	141,958	.0303
fa	16,089	412,766	27,005	.0654
fr	128,782	3,566,861	107,422	.0301
it	63,385	1,765,234	75,818	.0429
pt	56,348	1,459,815	72,840	.0498
ru	4,583	85,975	20,165	.2345
sv	6,419	116,158	20,916	.1800
tr	6,271	103,613	26,108	.2519

Table 2: Number of documents per language as original, translation, overall and the percentage of articles in the corpus in that language.

Lang	# original	# translation	Total	Total (%)
en	2,047	732	2,779	24.97%
es	1,135	1,357	2,492	22.39%
fr	507	1,250	1,757	15.78%
de	377	981	1,358	12.20%
pt	86	720	806	7.24%
it	179	614	793	7.12%
fa	88	239	327	2.94%
ar	158	101	259	2.33%
el	38	100	138	1.24%
tr	15	114	129	1.16%
sv	22	52	74	0.66%
ru	45	26	71	0.64%
ber	3	56	59	0.53%
ca	17	40	57	0.51%
eo	8	24	32	0.29%
Total	4,725	6,406	11,131	100.00%

upper diagonal shows the number of sentence pairs per language pair. The lower diagonal shows the number of tokens per language pair (this figure corresponds to summing up the number of tokens in the document pairs for both languages).

The largest parallel corpus is that for English–Spanish, containing 66,837 sentence pairs and 3,344,998 tokens. Another language pair, Spanish–French, contains more than 2 million tokens. There are several other language pairs with more than 1 million tokens: English–German, English–French, English–Italian and English–Portuguese.
Table 3: Number of sentence pairs and tokens per language pair.

-	ar	ber	ca	de	el	en	eo	es	fa	fr	it	pt	ru	sv	tr
ar	73	71	722	80	2637	209	1,759	235	2,151	723	345	2	55	45	
ber	3,918	0	202	0	1697	83	311	33	733	61	76	0	0	0	
ca	1,532	0	74	18	388	0	1,646	0	294	71	37	0	0	0	
de	26,564	7,466	4,316	-	666	41,380	30	9,784	6,896	16,749	1,556	460	599	1169	145
el	1,714	0	881	27,101	-	2,721	11	2,107	48	2,259	778	294	0	0	0
en	113,621	100,439	19,317	1,809,821	119,084	-	420	66,837	3136	34,640	28,560	29,662	1,209	2,782	2,155
eo	2,474	4,558	0	792	347	24,667	-	559	8	385	20	0	8	8	0
es	109,881	21,399	85,579	438,971	94,774	3,344,998	15,657	-	411	36,951	10,621	6,163	2,028	232	1,494
fa	11,456	1,555	0	272,552	2,853	147,753	375	604,052	0	663,225	-	866	318	3	285
fr	110,866	39,063	13,183	784,100	126,708	1,727,174	20,180	2,102,866	49,882	-	11,882	5,690	451	1,058	331
it	33,790	3,990	4,772	70,914	38,414	1,550,098	1,075	604,052	0	663,225	-	866	318	3	285
pt	14,027	4,704	2,413	18,301	10,720	1,520,698	0	316,966	21	315,027	50,908	-	525	2	2
ru	19	0	0	22,975	0	50,361	348	83,837	319	16,706	14,677	21,320	-	0	0
sv	612	0	0	48,416	0	96,207	329	8,860	311	44,157	129	16	0	-	10
tr	587	0	1,718	4,002	335	65,590	0	59,609	0	14,998	13,281	18	0	243	-

5. Conclusions

The paper has presented corpora from the domain of independent news acquired from the Tlaxcala website. We have built monolingual corpora for 15 languages and parallel corpora for all the combinations of those 15 languages. The paper has detailed the acquisition process and it also has presented detailed statistics of the produced corpora, concerning mainly quantitative dimensions such as the size of corpora per language (for the monolingual corpora) and per language pair (for the parallel corpora).

To the best of our knowledge, these are the first publicly-available parallel and monolingual corpora for the domain of independent news. Moreover, we have built parallel corpora for languages for which only very limited such resources exist (e.g. Tamazight).

All the content in Tlaxcala is publicly available, and so it is the corpora presented in this paper. As a side effect of building the corpora, we have created sentence splitting models for Ulysses, an unsupervised sentence aligner. These models are made publicly available together with the corpora. This is deemed to be a relevant further contribution, as hitherto there are no splitters available for some of the languages tackled in this work.

6. Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement PIAP-GA-2012-324414 (Abu-MaTran).

7. References

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The wacky wide web: a collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 43(3):209–226.

Boleda, G., Bott, S., Castillo, C., Meza, R., Badia, T., and Lpez, V. (2006). Cucweb: a catalan corpus built from the web. In Kilgarriff, A. and Baroni, M., editors, 2nd Web as Corpus Workshop at EACL’06, April.

Esplà-Gomis, M. and Forcada, M. (2010). Combining content-based and url-based heuristics to harvest aligned bitexts from multilingual sites with bitextor. The Prague Bulletin of Mathematical Linguistics, 93:77–86.

Papavassiliou, V., Prokopidis, P., and Thurmair, G. (2013). A modular open-source focused crawler for mining monolingual and bilingual corpora from the web. In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora, pages 43–51, Sofia, Bulgaria, August. Association for Computational Linguistics.

Resnik, P. and Smith, N. A. (2003). The web as a parallel corpus. Comput. Linguist., 29(3):349–380, September.

Tiedemann, J. (2009). News from OPUS - A collection of multilingual parallel corpora with tools and interfaces. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R., editors, Recent Advances in Natural Language Processing, volume V, pages 237–248, John Benjamins, Amsterdam/Philadelphia, Borovets, Bulgaria.

Toral, A., Poch, M., Pecina, P., and Thurmair, G. (2012). Efficiency-based evaluation of aligners for industrial applications. In EAMT 2012: Proceedings of the 16th Annual Conference of the European Association for Machine Translation, pages 57–60, Trento, Italy.

Tyers, F. M. and Alperen, M. S. (2010). SETimes: A parallel corpus of balkan languages. In Workshop on Exploitation of multilingual resources and tools for Central and (South) Eastern European Languages at the Language Resources and Evaluation Conference, pages 1–5.

Varga, D., Nmeth, L., Halcsy, P., Kornai, A., Trn, V., and Nagy, V. (2005). Parallel corpora for medium density languages. In Proceedings of RANLP, pages 590–596, Borovets, Bulgaria.