Title: Trademark filings and patent application count time series are structurally near-identical and cointegrated: Implications for studies in innovation

Author: Iraj Daizadeh, PhD, Global Regulatory Affairs, Takeda Pharmaceuticals, 40 Landsdowne Street, Cambridge, MA 02139. All correspondence should be sent to: iraj.daizadeh@takeda.com

Abstract:

Through time series analysis, this paper empirically explores, confirms and extends the trademark/patent inter-relationship as proposed in the normative intellectual-property (IP)-oriented Innovation Agenda view of the science and technology (S&T) firm. Beyond simple correlation, it is shown that trademark-filing (Trademarks) and patent-application counts (Patents) have similar (if not, identical) structural attributes (including similar distribution characteristics and seasonal variation, cross-wavelet synchronicity/coherency (short-term cross-periodicity) and structural breaks) and are cointegrated (integration order of 1 – I(1)) over a period of approximately 40 years (given the monthly observations). The existence of cointegration strongly suggests a “long-run” equilibrium between the two indices; that is, there is (are) exogenous force(s) restraining the two indices from diverging from one another. Structural breakpoints in the chrono-dynamics of the indices supports the existence of potentially similar exogeneous forces(s), as the break dates are simultaneous/near-simultaneous (Trademarks: 1987, 1993, 1999, 2005, 2011; Patents: 1988, 1994, 2000, and 2011). A discussion of potential triggers (affecting both time series) causing these breaks, and the concept of equilibrium in the context of these proxy measures are presented. The cointegration order and structural co-movements resemble other macro-economic variables, stoking the opportunity of using econometrics approaches to further analyze these data. As a corollary, this work further supports the inclusion of trademark analysis in innovation studies. Lastly, the data and corresponding analysis tools (R program) are presented as Supplementary Materials for reproducibility and convenience to conduct future work for interested readers.

Keywords: trademarks, patents, innovation, indicator, I(1), cointegration, breakpoint, wavelet, time series

Disclosures and Disclaimers:

The author is an employee of Takeda Pharmaceuticals; however, this work was completed
Introduction

One of the more common methods for inquiring about the dynamics (e.g., rates, structure) of innovativeness in science and technology (IS&T) firms is via intellectual property (IP)-related metrics (Dziallas and Blind, 2018). Simplistically, the rationale of using IP-related proxy measures of innovation primarily rests on the nature of the output (viz., inventions) generated by such firms (Daizadeh et al., 2002). Notably, sponsors may seek one or more patents to protect an invention, assuming such IP meets certain evidentiary standards of utility, novelty, and non-obviousness and perceived future economic rents justify a patent over that of publishing or retaining the knowledge as a trade-secret (ibid). Therefore, one can understand the intrinsic concept captured in a patent, and that the greater number of such IP assets implies greater innovativeness. Optimizing IP generation (and thus innovativeness) has resulted in S&T firms reorienting their organizations, systems, and processes accordingly (Daizadeh, 2003, 2007).

Conceptually, it is more challenging to extend the logic of innovativeness to other forms of IP, especially to that of trademark-related metrics (e.g., filings) of IS&T firms, as the criteria for meriting a trademark is a more amorphous entity, generally defined as ‘word, phrase, symbol, and/or design that identifies and distinguishes the source of the goods of one party from those of other1.’ Some researchers have expressed significant concern over the use of trademarks of IS&T firms. For example, Hipp and Grupp (2005) state “even services containing no or only low levels of innovation can be brand protected. This limits the trademarks statistics’ value as an innovation indicator (ibid, p 526).” Others have been more nuanced with their criticism of the approach, considering the topic as one of definition (Flikkema et al, 2019).

1 https://www.uspto.gov/trademarks-getting-started/trademark-basics/trademark-patent-or-copyright viewed on 19-Nov-2019.
and are leveraging relatively recent research viewing the link between trademarks and innovation accordingly. For exhaustive accounts on the literature on such topics, readers are referred to Dziallas and Blind (2019), Siekierski, et al., (2018), among others.

In the past, among other interesting metrics, Daizadeh (2007, 2009) found strong (>96%; p-value < 0.0001) correlation between patent applications (Patents) and trademarks filings (Trademarks) over a multi-year (1970-2002) period. In the same work, Daizadeh also proposed that the normative model, termed herein the 'Daizadeh Innovation Agenda (DIA)' (see Figure 1 in Daizadeh, 2009), which was conjectured from the legal and financial nature of patents, trademarks, publications, and press releases, may help in understanding the identified correlative patterns. The Innovation Agenda, as proposed, is to be comprised of several socio-economic S&T firm-specific metrics including: US Research and Development Spend, Number of Trademark Filings and Registrations, Number of Patent Applications and Issuances, Number of Press Releases, and various S&T related Stock Indices. While the data used (as is here) is US specific, it may be generalizable to any intellectual-property based entrepreneurial S&T intensive jurisdiction. In that work, Daizadeh found – using annual values for these metrics and based on correlation and partial-correlation analysis – a series of interesting findings including correlation and partial correlation across these selected metrics.

Lastly, the use of Trademark data in innovation studies has been of recent interest. Daizadeh (2007, 2009) added empirical support for the conjecture that if Patents were a proxy measure of innovation, and if Trademarks were strongly correlated with Patents, then Trademarks may also play a role as a proxy measure of innovation. Recently there has been renewed interest in the use of Trademarks (and related data) as measures of innovation (see, e.g., citations in Dziallis and Blind, 2019). Characterizing the inter-relatedness between these metrics beyond that of correlation may further strengthen the argument that Trademarks be a standard measure of innovativeness in S&T firms.
Time series statistical analysis is prevalent across scientific disciplines and includes a diverse assortment of approaches. Statistical practices of relevance to this paper, as we seek to understand the temporal co-mobility (inter-relatedness) of Patents and Trademarks (bivariates), include descriptive statistics (e.g., seasonal variation), cointegration, structural break / change point, and cross-wavelet analyses. While several approaches may have been taken to investigate inter-relatedness of a bivariate system, the methods described below were selected due to several factors including: ease of access, ease of interpretation, prevalence of use (and thus greater confidence in strength and limitations of methods), and intrinsic criteria of data (e.g., non-normality).

Various descriptive statistics were performed to provide insight into the distribution (e.g., normality) and stability (e.g., stationarity), and to better select further statistical analyses. As previously mentioned, Daizadeh (2007, 2009) found a strong correlation between Patents and Trademarks. Using time series decomposition and cross-wavelet analyses, as a qualitative tool, the nature of the correlation (synchronicity) was further explored including elucidating periodicity contributing the most to the correlation pattern. This work empirically explores monthly observations over a period of roughly 40 years for both time series. Generally, this report finds that Trademarks and Patents (time series) are similar statistical moments (mean, variance, skew, and kurtosis), non-normal and non-stationary with seasonal variation, with short-term periodicity, across all years explored. A cross-wavelet analysis was also performed to obtain a view into latent periodicity. The analysis reconfirmed the high correlation but resolved interesting dynamics in short-term periodicity associated over the most recent decade.

Cointegration (unlike correlation) analysis captures so-called ‘long-run equilibrium’ derived from stochastic relationships restricting co-movement divergence between the timeseries under-study (Granger, 1981; Engle and Granger, 1987; Dolado, et al., 1999). That is, cointegration regards the degree...
of differences in the timeseries as opposed to the directionality of the co-movement (e.g., positive correlation in which the bivariates move in the same direction). The cointegration statistical analyses, included those of the Johansen and Philips and Ouliaris tests, confirmed that the time series were co-moving, implying that some exogeneous effect(s) were imposing a constraint on this system.

As other statistics, cointegration may be affected by a non-trivial change in the course of the timeseries, which may be termed a ‘structural break,’ ‘structural change,’ or a ‘regime shift.’ While there are several definitions for a structural break, and thus methods to elucidate or predict such changes, the following is illustrative: “Structural break as an unpredictable event in which the relationship among the variables in a model changes, and this change cannot be predicted in any sense from past data (Maheu and Gordon, 2008).” Should such abrupt changes occur (quasi)-simultaneously, then it may be presumed that the same exogeneous event affects both Trademarks and Patents, adding further (if not confirmatory) evidence of not only inter-relatedness between the variables. Here, it is found from generalized fluctuation tests that structural breaks exist and identify and date the breakpoints as: Trademarks: 1987, 1993, 1999, 2005, 2011; Patents: 1988, 1994, 2000, and 2011, using standard models (see below for details and associated citations). A discussion of potential triggers for these dates is presented below.

In this paper, assuming the DIA model for the IP-intensive S&T firm, the base hypothesis explored is that if Patents and Trademarks are both affected by the same and/or similar exogenous variables, then their respective timeseries should be ‘inter-related.’ Further, these data add support to an assumption proposed in the DIA; namely, that an exogeneous factor(s) was applied to patent applications and trademark filings, leading to the inter-relationship. Bivariate inter-relatedness is explored empirically using descriptive statistics, structural break point, and cointegration analyses on the bivariate monthly
timeseries over an extended period (1977-2016; see Methodology) compared with the original Daizadeh paper. Observation of simultaneous/quasi-simultaneous structural changes, existence of cointegration (which would imply a ‘long term equilibrium’ restraining the differences between the timeseries), and other structural co-movements (such as synchronicity, coherence) in the bivariate timeseries would support the theory that common (or similar) exogeneous factors exist, and thus further add additional supportive evidence to DIA theory (necessary for formalizing further study), as well as illustrates the import of trademarks to the innovation process and thus to IS&T firms generally (see Results). This manuscript concludes with a discussion of the assumptions and limitations of the approach, and avenues for future development.

All datasets and the R Program script is presented in the Supplementary Materials section of this manuscript for reproducibility and convenience to conduct future work. Interested readers are strongly encouraged to either try their own approaches to investigate the structure of the bivariate timeseries with or without considering the materials provided.

Methodology:

Data sources and preparation:

The data were comprised of the monthly number of US patent applications (Patents) and the monthly number of US trademarks filings (Trademarks) from 1977 to 2016.

Number of patent applications and trademark filings: The data on Patents and Trademarks were obtained from the respective publicly available websites supported by the United States Patent and Trademark Office (USPTO) as described below:

Variable	USPTO Publicly Available Search Site	Search Characteristics*
Patents	http://patft.uspto.gov/netahml/PTO/search-adv.htm	Application Filing
Two searches were manually executed, resulting in 472 datapoints for each variable and captured in Excel for import into R. The 472 datapoints for each variable represents monthly observations over the period of study (approximately 40 years). The data is presented in the Supplementary Materials section of the manuscript for ease of reference and for the sake of reproducibility.

Statistical Analysis.

Methodology followed standard implementation, and default parameters were used throughout. While the R code (R Core Team, 2019) is presented in the Supplemental Materials section of this manuscript for reproducibility, the general algorithm for the analysis is as follows:

- Load bivariate timeseries, identify and replace outliers with average of prior and posterior-month values (R package ‘tsoutliers’ (López-de-Lacalle, 2019). Note: 3 outliers were determined for Trademarks (September 1982; November 1989; and June 1999) and 4 for Patents (September 1982, June 1995, October 2007, and March 2013).
- Decompose data and perform descriptive statistics, including deriving kurtosis, skew (R package ‘moments’ (Komsta and Novomestky, 2015)), nonparametric (Spearman and Kendall) correlation coefficients (ibid), and cross-wavelet analyses (R Package ‘biwavelet,’ (Gouhier, et al. 2019)) on full timeseries.
- Test for structural breakpoints (SBPs) using empirical fluctuation processes (R package ‘strucchange’ (Zeileis, et al., 2002, 2003)):
Results:

Descriptive Statistics:

The distributions of the two time-series were similar (e.g., approximately symmetric (skew) and platykurtic) and thus no transformation was performed on the data (Table 1). The respective trends of the time-series generally evolve in time in an ‘exponential manner,’ both have similar per-annum quarterly seasonal effects, with increased contributions from the stochastic (random) elements post-2010, with a spike at circa 2000 and circa 1995 for Trademarks and Patents, respectively (Figures 1 and 2). Qualitatively it would seem that Trademarks present somewhat greater degree of ‘randomness’ than Patents.

< Insert Table 1, Figure 1, and Figure 2 here.>

Caption table 1: Descriptive statistics of Trademarks and Patents
Correlation and Cross-Wavelet Analysis

Spearman and Kendall analysis finds a strong coefficient of correlation of 0.94 and 0.80, respectively, between Trademarks and Patents; this reconfirms the work of Daizadeh (2007, 2009) for an extended period of time (1977-2016). Further examination using cross-wavelet analysis shows broadly high to very high (1) coherency (red to dark-red splotches) across the Trademark/Patent spectra and periods. Relatively low periods post-1995 and more uniformly post-2002 demonstrate increased bivariate synchronicity (at 5% statistical significance).

Existence, testing, and Dating of Structural Break points, and subsequent segmenting of the timeseries:

The empirical fluctuation processes (EFPs) (ordinary least squares (OLS) and recursive modeling (REC)) test the null hypothesis of “‘no structural change’ [which] should be rejected when the fluctuation of the empirical processes gets improbably large compared to the fluctuation of the limiting process (Zeileis, et al., 2002, p. 6).” The EFPs were executed with a significance criterion (alpha) of 5%. The results of these four tests for Trademarks are presented in Figure 4; a similar result was found for all tests for Patents (figure not shown but calculations may be reproduced in the Supplemental Materials). Significance testing for the existence of SBPs are presented in Table 2, with p-values less than or equal to 0.01.

As can be seen in either of Figures 4 and Table 2, the EFPs cross the critical value boundary, and therefore rejecting the null hypothesis of no SBP at the 5% level. Further, the complex structures for
both (Approvals and Guidances) timeseries across the tests suggest multiple structural breakpoints (Zeileis et al., 2005).

< Insert Figure 4 and Table 2 here.

Caption Figure 4: Existence of structural breakpoints for Trademarks:

Caption Table 2: Significance testing (p-value) for the existence of structural breakpoints in Trademarks and Patents>

Dating of structural breakpoints

The general idea of the Bai-Perron dynamic programming algorithm to date the structural breakpoints is to elucidate the breakpoints through minimizing the residual sum of squares of a linear regression model (additional details may be found in Bai and Perron, 2003 and Zeileis, et al., 2003). SBPs (including confidence limits) are presented in Figure 5 and in Table 3.

< Insert Figure 5 and Table 3 here.

Caption Figure 5: Structural breakpoints with corresponding confidence intervals (see Table 3) identified in Trademarks (black) and Patents (red)

Caption Table 3: Dating (via Bai-Perron) of the structural break points in Trademarks and Patents >

The data suggests several segments in which there is no abrupt changes in the intrinsic variability of the timeseries (stationarity). Thus, several time segments of stationarity were elucidated, and affords an ease in further analyses given minimal statistical variance/fluctuations. The existence of stationarity during these periods of time strongly suggests the lack of strength of any exogeneous factor (e.g., promulgation of novel legal frameworks and/or technologies) on the time-course of these variables. Thus, the heuristic was defined to be the longest time between Trademarks and Patents structural break points (Table 4); 6 such time-segments were identified and used for the rest of the analysis.
Cointegration and the maximum order of integration (I(d)):

Results for the Johansen Procedure and Phillips and Ouliaris tests demonstrated cointegration at alpha \(\leq 1\% \) for the full bivariate timeseries and the third-, fifth-, and sixth-time segments. The size of the test statistic is notable for both tests across the full timeseries (Table 5).

Discussion and Conclusion:

The DIA model offers a formal normative scaffold to explore variables of interest to innovation on the company, sector, industry, or national basis for science and technology firms with a specific focus on securing economic rents from specific forms of IP (notably, patents and trademarks) and their communication and subsequent monetization (Daizadeh, 2007, 2009, 2006, 2007b). While inquiries into the DIA model were restricted to only broad correlation analysis and a specific case study, additional work is needed to further validate the model. Importantly, this additional work may also provide insights into metrics investigating innovative productivities of firms.
Specifically, the DIA model suggests an inter-relationship between various metrics. Here, the inter-relationship between trademark filings (Trademarks) and patent applications (Patents) are explored using a set of statistical analysis that seek to empirically identify structural similarities between the temporal evolution of Trademarks and Patents. The descriptive analysis demonstrated that the distributions of the timeseries are similar. Correlation and cross-wavelet analysis clearly showed synchronicity and coherence between the timeseries. Cointegration analysis demonstrates a ‘long-run’ equilibrium (restricting divergence) has been established between the timeseries.

The DIA model proposes that R&D expenditure is a driver in patent and trademark originations. This is consistent with the time series (cointegration) analysis performed by Verbeek and Debackere (2006). These authors find “patent evolution is strongly related to ... levels of public and private R&D expenditure... (see abstract and conclusions in ibid).”

With regards to the dating of structural breakpoints in the bivariate time series, while additional statistical work is required to better understand sensitivity (as different approaches may realize different dates), it is challenging to link economic shocks that may have caused the abrupt concomitant temporal perturbations to the dates of simultaneous / near simultaneous shocks in the bivariate time series (viz., 1988, 1993/1994, 1999/2000, and 2011). For example, one can hypothesize (and therefore test) that domestic economic hardships affecting R&D (e.g., the dot-com crisis) or the end of a bull market may have been a direct or contributing factor to the abrupt temporal changes in the IP-assets of S&T firms such as Patents and Trademarks (see, e.g., Bleoca, 2014;). Simultaneously, one can also hypothesize that there was an ‘event’ associated with the start of the recent “bull market” over the last decade that may have been initiative in the early 2010’s (potentially irrespective of or in addition to fluctuations in the legal landscape (notably, from a patent perspective, the ‘Leahy-Smith America
Further work would need to be done to examine such causal factors during the years identified in this work.

Lastly, from a conceptual perspective, the “long-run” equilibrium of R&D expenditure spill-over effects such as IP-related assets (Trademarks and Patents) and the equilibrium (stationary) processes elucidated between the structural breakpoints (herein called ‘regimes’ – see Table 4) may be recast along the lines of Schumpeter’s theory of business cycles and more generally innovation theory. From this work, while there may be abrupt discontinuations (assumed to be due to non-endogenous / exogenous factors) within short periods of time (approximately < 2 years), overall economic and innovative progress (as defined by several metrics including those of intellectual property) has continued during the relatively long-time course under-study (monthly intervals of over 40 years). The approach taken herein treats Trademarks and Patents as macro-socio-economic variables averaging across degrees (e.g., radical versus incremental), types (e.g., process versus product) and sectors (e.g., biotech versus manufacturing) of innovativeness. Aligned with Schumpeterian thought around business cycles, and in terms of cointegration of certain macro-socio-economic variables, Konstantakis and Michaelides (2017; page 20) note that “it is exactly upon the existence of this equilibrium relationship that Schumpeterian business cycles were founded, since progressive evolution of innovative activity expressed through technology, leads to the evolution of economic activity as a whole.”

Given the Results above, there is a strong and intimate inter-relationship exists between Trademarks and Patents. Beyond supporting the DIA model, this work thus adds to the emerging literature (beginning in part with Daizadeh, 2007) that Trademarks should be of interest as an innovation metric as a unique entity and/or in combination with other such metrics.

\[\text{Short Title: Timeseries analysis of trademarks filings and patent applications: Implications on Innovation}\]

\[\text{Invents Act’ that became law in 2011}^2\).

\[\text{https://www.govinfo.gov/app/details/PLAW-112publ29}\]
As with any statistical analysis, there are advantages and disadvantages as well as practical aspects (e.g., computational intensity or algorithm complexity) of the methodologies used within the constraints of the data collected (Daizadeh, 2020). Thus, multiple, complementary, and orthogonal methods to investigate the inter-relationship were used. For example, wavelet analysis is well-known to be of utility across a broad range of implementations (e.g., cross-wavelet) with non-stationary timeseries (Rhif et al, 2019) well complemented both the decomposition (notably seasonal effects) results and the correlation coefficient calculations; two different cointegration tests were performed: Johansen trace test (Johansen, 1988) and Phillips and Ouliaris test (Phillips and Ouliaris, 1990).

The analysis presented in this paper provide supportive evidence for a component of the DIA model as well as metrics tracking innovativeness, however, much further inquiries remain. Future experiments may include:

- Geography: e.g., ex-US versus US inter-relationship inquiries
- Additional trademark and patent variables: e.g., granted patents and designated trademarks
- Integration of additional DIA variables: e.g., numbers of press releases over time and financial metrics
- Deepened analysis: Mapping identified structural breakpoints to the introduction of promulgation of new/updated legal frameworks and/or new technologies to better understand impact
- Comparison of IP-metrics (e.g., trademarkmetrics/patentmetrics) to broader econometrics and scientometrics: e.g., comparing I(1) processes
References:

1. Dziallas, M.; Blind, K. (2019) Innovation indicators throughout the innovation process: An extensive literature analysis. Technovation 80-81: 3-29.

2. Daizadeh, I.; Miller, D.; Glowalla, A.; Learner, M.; Nandi, R.; Numark, C.I. (2002) A general approach for determining when to patent, publish, or protect information as a trade secret. Nature Biotechnology 20: 1053-1054.

3. Daizadeh, I. Integrating intellectual property within the organizational social structure. Nature Biotechnology 21, 573–575 (2003) doi:10.1038/nbt0503-573

4. Daizadeh, I. (2007). Intellectual property management in R&D intensive firms. International Journal of Intellectual Property Management, 1(3), 184–205.

5. Hipp, C.; Grupp, H. (2005) Innovation in the service sector: The demand for service-specific innovation measurement concepts and typologies. Research Policy 34: 517-535.

6. Flikkema, M.; Castaldi, C.; De Man, A-P.; Seip, M. (2015) Explaining the trademark-innovation linkage: The role of patents and trademark filing strategies. Paper presented at DRUID15, Rome, June 15-17 2015. Obtained from: https://conference.druid.dk/acc_papers/nv9r3f3sl6p5e0431rj6sxfrbv4g.pdf on 19-Nov-19.

7. Daizadeh, I. (2007) Issued US patents, patent-related global academic and media publications, and the US market indices are inter-correlated, with varying growth patterns. Scientometrics 73(1): 29-36. https://doi.org/10.1007/s11192-007-1749-1

8. Daizadeh, I. (2009) An intellectual property-based corporate strategy: An R&D spend, patent, trademark, media communication, and market price innovation agenda. Scientometrics 80(3): 731-746.
9. Siekierski, P., Lima, M., Borini, F. and Pereira, R. (2018), "International academic mobility and innovation: a literature review", Journal of Global Mobility, 6:3/4, pp. 285-298.
https://doi.org/10.1108/JGM-04-2018-0019

10. Granger, C.W.J. (1981) Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 23, 121-130.

11. Engle, R.F.; Granger, C.W.J. (1987) Co-integration and error correction: Representation, estimation and testing. Econometrica 55, 251-76.

12. Doladoa, J.J.; Gonzalo, J.; Marmol, F. (1999) A Primer in Cointegration. Obtained on 26-November-2019 http://www.eco.uc3m.es/~jgonzalo/cointegration.pdf

13. Maheu, J.; Gordon, S. (2008) Learning, forecasting and structural breaks. Journal of Applied Econometrics. 23 (5): 553–583 https://doi.org/10.1002/jae.1018

14. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Version 3.6.1 (2019-07-05)

15. López-de-Lacalle, J. (2019). tsoutliers: Detection of Outliers in Time Series. R package version 0.6-8. https://CRAN.R-project.org/package=tsoutliers

16. Komsta, L.; Novomestky, F. (2015). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. https://CRAN.R-project.org/package=moments

17. Zeileis, A.; Leisch, F.; Hornik, F.; Kleiber, C. (2002). strucchange: An R Package for Testing for Structural Change in Linear Regression Models. Journal of Statistical Software, 7(2), 1-38. URL http://www.jstatsoft.org/v07/i02/

18. Zeileis A., Kleiber C., Krämer W., Hornik K. (2003), Testing and Dating of Structural Changes in Practice, Computational Statistics and Data Analysis. 44, 109-123. doi:10.1016/S0167-9473(03)00030-6.
19. Bai J., Perron P. (2003), Computation and Analysis of Multiple Structural Change Models, Journal of Applied Econometrics. 18, 1-22.

20. Gouhier, T.C.; Grinsted, A.; Simko, V. (2019). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.19). Available from https://github.com/tgouhier/biwavelet

21. Pfaff, B. (2008) Analysis of Integrated and Cointegrated Time Series with R. Second Edition. Springer, New York. ISBN 0-387-27960-1

22. Trapletti, A.; Hornik, K. (2019). tseries: Time Series Analysis and Computational Finance. R package version 0.10-47.

23. Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay L; O'Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. (2019). forecast: Forecasting functions for time series and linear models. R package version 8.8, <URL:http://pkg.robjhyndman.com/forecast>.

24. Hyndman R.J.; Khandakar, Y. (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 26(3), 1-22. <URL:http://www.jstatsoft.org/article/view/v027i03>.

25. Daizadeh, I. (2006) Using intellectual property to map the organisational evolution of firms: Tracing a biotechnology company from startup to bureaucracy to a multidivisional firm. Journal of Commercial Biotechnology 13(1):28-36 https://doi.org/10.1057/palgrave.jcb.3050032

26. Daizadeh (2007b) ‘Patent journalism’: An emergence of a new form of science communication. World Patent Information. 30(3): 244-247 https://doi.org/10.1016/j.wpi.2007.10.005

27. Rhif, M.; Ben Abbes, A.; Farah, I.R.; (2019) Martínez, B.; Sang, Y. Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review. Applied Sciences 9(7), 1345; https://doi.org/10.3390/app9071345.
28. Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12, 231–254.

29. Phillips, P. C. B.; Ouliaris, S. (1990): Asymptotic Properties of Residual Based Tests for Cointegration. Econometrica 58, 165–193.

30. Verbeek, A., Debackere, K. Patent evolution in relation to public/private R&D investment and corporate profitability: Evidence from the United States. Scientometrics 66, 279–294 (2006). [https://doi.org/10.1007/s11192-006-0021-4]

31. Bleoca, L. (2014), Knowledge management, innovation, and intellectual capital corporate value in the United States. Journal of Business and Economics (ISSN: 2155-7950). 5(9): 1614-1636

32. Santoni, G.J. (1987) The great bull markets 1924-29 and 1982-87: Speculative bubbles or economic fundamentals. Federal Reserve Bank of St. Louis. Obtained on June 1, 2020, from [https://pdfs.semanticscholar.org/ba2e/46724cbdc30372a8294bafab4985cf0988f8.pdf]

33. Konstantakis, K.N.; Michaelides, P.G. (2017) Does technology cause business cycles in the USA? A Schumpeter-inspired approach. Structural Change and Economic Dynamics 43: 15-26.

34. Daizadeh I. Investigating Rates of Food and Drug Administration Approvals and Guidances in Drug Development: A Structural Breakpoint/Cointegration Timeseries Analysis [published online ahead of print, 2020 Jan 31]. Ther Innov Regul Sci. 2020;10.1007/s43441-020-00123-5. doi:10.1007/s43441-020-00123-5
Figure 1: Timeseries decomposition of Trademarks
Figure 2: Timeseries decomposition of Patents
Figure 3: Cross-wavelet analysis of Trademarks and Patents; solid black contour lines designate the 5% significance
Figure 4: Existence of structural breakpoints for Trademarks
Figure 5: Structural breakpoints with corresponding confidence intervals (see Table 3) identified in Trademarks (black) and Patents (red)
Table 1: Descriptive statistics of Trademarks and Patents

Variable	Minimum	1st Quartile	Median	Mean	3rd Quartile	Maximum	Standard Deviation	Skewness	Kurtosis
Trademarks	1895	5537	15456	15276	23574	37317	9418.054	0.202	1.76
Patents	3134	7598	14468	13930	19422	30969	6523.347	0.185	1.76

Table 2: Significance testing (p-value) for the existence of structural breakpoints in Trademarks and Patents

Variable	OLS-CUSUM	OLS-MOSUM	REC-CUSUM	REC-MOSUM
Trademarks	< 2.2e-16	0.01	< 2.2e-16	0.01
Patents	< 2.2e-16	0.01	< 2.2e-16	0.01

Table 3: Dating (via Bai-Perron) of the structural break points in Trademarks and Patents

	Trademarks	Patents
2.7% Breakpoint	Feb 1987	Jan 1998
May 1987	Jul 1987	Apr 1988
Jan 1993	Mar 1993	Dec 1993
Apr 1993	Mar 1999	Apr 1994
Oct 1998	Dec 1999	Feb 2000
Feb 2000	Nov 2005	Jul 2000
Oct 2004	Feb 2011	Apr 2010
Sept 2010	Apr 2011	Feb 2011

Table 4: Segments identified as longest length of time between Trademarks and Patents structural break points (see Results for description)

Segment	Heuristic: Longest time between Trademarks and Patents structural break points*
1	Sep 1977 to April 1987
2	Feb 1988 to Feb 1993
3	May 1994 to Dec 1998
4	Mar 2000 to Jan 2005
5	Mar 2005 to Jan 2011
6	Mar 2011 to Dec 2016

*That is, the origin to the month prior to breakpoint: October 1983
Table 5: Results of cointegration tests across full bivariate timeseries and each time-segment

Segment	Johansen procedure (trace statistics, without linear trend and constant)	Phillips and Ouliaris Test	
	r<=1: Test statistic versus (v) critical value of test (at lowest level of alpha)	r=0 Test statistic versus (v) critical value of test (at lowest level of alpha)	Value of Test Statistic versus (v) critical value of test (at lowest level of alpha)
Full timeseries	75.47 v 24.60 (1%)	222.6575 v 55.1911 (1%)	
1	23.37 v 19.96 (5%)		
2	36.34 v 24.60 (1%)		
3	24.64 v 24.60 (1%)	51.1519 v 40.8217 (5%)	
4	9.95 v 9.24 (5%)	74.61 v 24.60 (1%)	
5	11.58 v 9.24 (5%)	83.56 v 24.60 (1%)	83.8507 v 55.1911 (1%)
6	33.83 v 24.60 (1%)	54.1304 v 40.8217 (5%)	

Table 6: Number of differences required to bring the time-series into stationarity.

Variable	Segment	KPSS	ADF	PP
Trademarks	Full dataset	1	1	1
Patents	1	1	1	1
Trademarks	2	1	0	0
Patents	1	0	0	
Trademarks	3	1	1	1
Patents	1	1	0	
Trademarks	4	1	0	0
Patents	0	0	0	
Trademarks	5	0	0	0
Patents	0	0	0	
Trademarks	6	1	1	1
Patents	0	0	0	
- Begin Supplementary Materials

Trademarks

Go to TESS: http://tmsearch.uspto.gov/bin/gate.exe?f=tess&state=4804:57thz4.1.1

Manually search and collect Number of Trademarks as follows:

By Filing Date: "(198712$)[FD]" - Where 198712$ is the %Y%m$.

Patents

Go to PATFT: http://patft.uspto.gov/netahtml/PTO/search-adv.htm

By Application Filing Date: "APD/12/$/2018"

The patent and trademark filings data were collected from Sept 1977 to Dec 2018.

Confirm version of R:

```r
> citation()
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
```

```r
> version

```

```r

```

Read into R:

```r
> IP<- read.csv("C:/Users/DAIZAI/Desktop/patent/Patent-Trademark.csv", sep="",)
```

Confirm dataframe - length/variables and shrink by 24m to avoid so-called 'patent cliff':

```r
> str(IP)
```
Short Title: Timeseries analysis of trademarks filings and patent applications: Implications on Innovation

'data.frame': 496 obs. of 3 variables:
$ Date: Factor w/ 496 levels "1/1/1978","1/1/1979",..: 455 42 84 126 1 168 209 250 291 332 ...
$ Number.of.Trademark.Applications: int 2669 2597 2552 2604 2386 2370 3126 2738 3028 3088 ...
$ Number.of.Patent.Applications: int 5760 5898 5731 5064 5439 6660 5799 6487 6419 ...

Shrinking by 24 months due to so-called "patent-cliff"
> TrademarksTotal<-IP$Number.of.Trademark.Applications[1:472]
> PatentsTotal<-IP$Number.of.Patent.Applications[1:472]

Convert to Time-Series, decompose time-series, and perform descriptive statistics
> tsTrademarks<-ts(TrademarksTotal,start=c(1977,9),frequency=12)
> tsPatents<-ts(PatentsTotal,start=c(1977,9),frequency=12)

> tsTrademarks

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1977 2669 2597 2552 2604
1978 2386 2370 3126 2738 3028 3088 2708 2638 2465 2793 2636
1979 2518 2350 2920 2968 2953 2794 2741 2829 2438 2956 2676
1980 2469 2607 3035 2893 3094 2883 2590 2928 4081 3412 3559
1981 3329 4113 3906 4297 3871 4358 4077 3815 3688 3879 4162
1982 3594 4009 5128 4868 5244 4942 5264 15843 1895 3126 3529
1983 3915 4224 4297 4389 4543 4192 4893 4265 4634 4189 4296
1984 4281 4472 5167 5068 4762 4837 4914 4803 4064 4896 4922
1985 4296 4408 5087 5417 5537 4914 5537 5215 4627 5218 4747
1986 4785 4677 5569 5153 5397 5630 5152 5715 4787 4950 4931
1987 4188 4826 5528 5780 5372 5860 6269 5990 5309 5624 5454
1988 4758 5756 5730 6518 6358 5706 5473 6341 5776 5899 5384
1989 5546 5761 6615 6230 7071 6496 5995 6567 6867 11400 8450
1990 9209 8797 10687 9936 9836 9707 9319 9634 8167 9567 8417
1991 7906 7986 9192 9734 9441 8962 9371 9260 8884 9073 8805
1992 7486 8612 10248 9940 8776 10078 10019 9701 9348 7853 8599
1993 9143 9143 11059 11352 10594 11897 11160 11628 11448 10374 11248
1994 9599 10388 12173 11664 12292 12902 10728 12536 11443 11932 11339
1995 10961 11857 14860 12391 14323 13644 12325 14434 12631 13726 12926
1996 12582 13872 15117 15636 15565 14433 15447 15590 15234 16299 14727
1997 14060 15229 16962 17079 16460 16465 16425 15363 16089 16901 14367
1998 13510 15465 17624 17224 15805 17862 17515 16270 16331 17426 16737
1999 16002 18431 22143 20957 20515 24106 21999 23891 22563 24753 24225
2000 23412 25815 30423 25204 26986 24831 21769 24626 21644 22962 20340
2001 19248 18923 20732 19781 20778 18551 18311 19608 14770 17727 15587
2002 16273 16357 18555 18946 19622 17734 18359 18958 17639 19111 16487
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1977	5760	5898	5731	6630								
1978	5064	5439	6660	5799	6487	6419	5671	5831	5697	6012	5756	6210
1979	5303	5240	6131	6071	6247	6087	5726	5999	5541	6459	5913	6399
1980	5492	5619	6491	5971	6292	6325	6077	5328	6143	6246	5414	6726
1981	4899	5351	6548	5857	5583	6377	5907	5539	5489	5726	5602	6354
1982	4677	5313	6793	5724	5702	6543	5894	5834	10870	3134	4604	5926
1983	4698	4900	6279	5451	5657	6202	5390	5621	5740	5648	5544	6507
1984	4940	5557	6360	6216	6391	6522	6033	6230	5708	6631	6319	6774
1985	5381	6111	6664	6807	6895	6257	6713	6290	6814	7204	6247	7251
1986	5730	6296	7137	7026	6837	6982	6994	6486	7150	7544	6200	7814
1987	5918	6753	7899	7633	7027	7852	7784	6968	7510	7814	7539	8614
1988	6315	7682	8992	7850	8040	8737	7843	8262	8551	8721	8082	9321
1989	7616	8117	9466	8379	9123	9378	8133	8702	8588	9083	8706	9308
1990	8151	8472	9707	9061	9197	9331	8963	9269	8533	10444	8128	9421
1991	7879	8270	9363	9413	9406	9080	9394	8954	9327	9737	9155	9704
1992	8237	8485	10025	9591	8881	10282	9822	8666	10009	9586	9180	10693
1993	8063	8728	11064	9963	9246	10500	9793	9531	10232	9904	10034	11401
1994	9243	9614	12007	10453	10893	12276	10303	11300	12499	11444	11444	13760
1995	10445	10716	13835	11945	17222	28123	8860	10340	11124	10913	11152	12746
1996	10346	11112	13067	12689	13000	13285	13677	13195	14326	14524	13319	15858
1997	13121	13531	15641	15287	15015	16286	15456	14815	16658	16871	14529	16885
1998	12722	13746	16543	15062	14511	16769	15660	14426	15607	15603	14861	18092
1999	12865	14204	17997	15791	15337	17893	15963	16308	17160	16447	16702	19417
2000	14586	16451	20021	15922	17884	19641	15521	18278	19273	17834	18532	19122
2001 16493 17127 17692 18593 20122 18202 19753 17856 19239 18210 19660
2002 17694 17281 20278 18963 19891 19568 19240 18754 19562 20034 17799 21302
2003 16740 16898 19990 18907 18242 19748 18830 17542 19825 19708 16896 22063
2004 15528 16931 21274 18212 16712 20593 17779 17943 19884 17521 18130 22102
2005 14968 17021 22490 18546 17987 21090 16914 18462 19787 17592 18133 22188
2006 14550 16931 22216 18212 17560 19240 18754 19568 19240 18754 19568 22766
2007 16930 17539 22271 18427 19480 20506 18797 20267 19143 25045 18195 21820
2008 16717 18825 21168 19762 19318 21035 19896 21495 21413 18120 23736
2009 15375 17696 21848 18816 17438 20736 19164 17736 20407 19603 18327 23801
2010 14972 17696 19786 20199 19019 22414 19760 19867 21604 20657 20612 25143
2011 17261 18992 25367 20428 20964 23822 20058 22268 26472 20658 21926 26522
2012 17222 19167 21736 22546 23921 25237 23054 24756 27051 22929 24437 27708
2013 18316 23728 42788 19501 22634 22932 23350 23313 25042 25126 23015 28838
2014 19391 22253 30969 23387 24040 25581 24700 23086 27091 25141 21855 29294
2015 19599 21643 24767 23184 22546 26852 23783 22590 25856 23159 21726 27049
2016 18970 20933 23298 19948 20837 22912 18417 20752 21299 17774 17791 19436

> plot(decompose(tsTrademarks,type="additive"))
> plot(decompose(tsPatents,type="additive"))

#Identify outliers
#Javier López-de-Lacalle (2019). tsoutliers: Detection of Outliers in Time Series. R package version 0.6-8.
https://CRAN.R-project.org/package=tsoutliers
library(tsoutliers)
> TrademarksOutliers<-tso(tsTrademarks,types = c("AO","LS","TC"),maxit.iloop=10)
> PatentsOutliers<-tso(tsPatents,types = c("AO","LS","TC"),maxit.iloop=10)

> TrademarksOutliers
Series: tsTrademarks
Regression with ARIMA(2,1,1)(0,1,2)[12] errors
Coefficients:
 ar1 ar2 ma1 sma1 sma2 AO61 LS147 LS262
-1.0107 -0.5826 0.4306 0.4939 0.2779 12137.5320 4527.2969 3409.3950
 s.e. 0.0834 0.0440 0.1067 0.0480 0.0458 669.2913 681.1637 674.9746
sigma^2 estimated as 868751: log likelihood=-3790.79
AIC=7599.58 AICc=7599.98 BIC=7636.74

Outliers:
 type ind time coefhat tstat
1 AO 61 1982:09 12138 18.135
2 LS 147 1989:11 4527 6.646
3 LS 262 1999:06 3409 5.051
Regression with ARIMA(3,0,0)(2,1,2)[12] errors

Coefficients:

	ar1	ar2	ar3	sar1	sar2	sma1	sma2	AO61	AO214	AO362	AO427	AO362	AO427
	0.2731	0.2776	0.4185	-0.3230	-1.4584	0.6303	15515.5416			5591.8986	15515.5416		
s.e.	0.0480	0.0438	0.0468	0.1133	0.0673	0.1146	0.0879	773.2661	764.2898	773.2661	764.2898	773.2661	764.2898

Outliers:

type	ind	time	coefhat	tstat
AO	61	1982:09	5592	7.232
AO	214	1995:06	15516	20.301
AO	362	2007:10	5058	6.677
AO	427	2013:03	17556	21.950

#Clean/smooth data - replace identified outliers (X) with average of prior (X(t-1)) and posterior (X(t+1))

```r
> plot(TrademarksOutliers); X11(); plot(PatentsOutliers)

>Trademarks<-tsTrademarks; Patents<-tsPatents
>Trademarks[61]= (Trademarks[62]+Trademarks[64]) / 2
>Trademarks[147]= (Trademarks[146]+Trademarks[148]) / 2
>Trademarks[262]= (Trademarks[261]+Trademarks[263]) / 2
>Patents[61]= (Patents[62]+Patents[64]) / 2
>Patents[214]= (Patents[213]+Patents[215]) / 2
>Patents[362]= (Patents[361]+Patents[363]) / 2
>Patents[427]= (Patents[426]+Patents[428]) / 2
```

#Lukasz Komsta and Frederick Novomestky (2015). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. https://CRAN.R-project.org/package=moments

#Use fitted output from tsoutliers

```r
>summary(Trademarks); sd(Trademarks); skewness(Trademarks); kurtosis(Trademarks)
>summary(Patents); sd(Patents); skewness(Patents); kurtosis(Patents)
```
#note: skew/kurtosis comparative - no need to transform

#Perform correlation analysis, auto- and partial-correlation and cross-wavelet
> cor(Trademarks, Patents, method="spearman");
[1] 0.9431803
> cor(Trademarks, Patents, method="kendall");
[1] 0.8024742

#Perform cross-wavelet analysis
> DATE<-seq(as.Date("1977/9/01"), as.Date("2016/12/01"), "months")
> tTrademarks <- cbind(DATE, Trademarks)
> tPatents <- cbind(DATE, Patents)
> XWTradePatent<-xwt(tTrademarks,tPatents)
Warning messages:
1: In arima(d1[, 2], order = c(1, 0, 0), method = arima.method): possible convergence problem: optim gave code = 1
2: In arima(x, order = c(1, 0, 0), method = arima.method): possible convergence problem: optim gave code = 1
> plot(XWTradePatent, xaxt="n")
> axis(side=1, at=c(seq(as.Date("1977/9/01"), as.Date("2016/12/01"), "months")),
labels=c(seq(as.Date("1977/9/01"), as.Date("2016/12/01"), "months")))

#Perform Structural Change Analysis: Confirm existence of structural break within timeseries using
#Achim Zeileis, Friedrich Leisch, Kurt Hornik and Christian Kleiber (2002). strucchange: An R Package for
#Testing for Structural Change in Linear Regression Models. Journal of Statistical Software, 7(2), 1-38.
#URL http://www.jstatsoft.org/v07/i02/

#Achim Zeileis, Christian Kleiber, Walter Kraemer and Kurt Hornik (2003). Testing and Dating o
#Structural Changes in Practice. Computational Statistics & Data Analysis, 44, 109-123.
>library(strucchange)

#Trademarks: OLS-CUSUM/OLS-MOSUM/#REC-CUSUM/REC-MOSUM
>Trademarks.olscus<- efp(Trademarks~1, type="OLS-CUSUM"); plot(Trademarks.olscus)
>Trademarks.olsmus<- efp(Trademarks~1, type="OLS-MOSUM"); plot(Trademarks.olsmus)
>Trademarks.reccus<- efp(Trademarks~1, type="Rec-CUSUM"); plot(Trademarks.reccus)
>Trademarks.recmus<- efp(Trademarks~1, type="Rec-MOSUM"); plot(Trademarks.recmus)

#Patents: OLS-CUSUM/OLS-MOSUM/#REC-CUSUM/REC-MOSUM
>Patents.olscus<- efp(Patents~1, type="OLS-CUSUM"); plot(Patents.olscus)
>Patents.olsmus<- efp(Patents~1, type="OLS-MOSUM"); plot(Patents.olsmus)
>Patents.reccus<- efp(Patents~1, type="Rec-CUSUM"); plot(Patents.reccus)
>Patents.recmus<- efp(Patents~1, type="Rec-MOSUM"); plot(Patents.recmus)

#Perform significance tests for Empirical fluctuation processes: Null hypothesis: No structural change
Short Title: Timeseries analysis of trademarks filings and patent applications: Implications on Innovation

```r
>sctest(Trademarks.olscus);sctest(Trademarks.olsmus);sctest(Trademarks.reccus);sctest(Trademarks.recmus)
>sctest(Patents.olscus);sctest(Patents.olsmus);sctest(Patents.reccus);sctest(Patents.recmus)

#Perform dating of structural change / break points via Bai-Perron

#Tradenames:
>bTrademarks<-breakpoints(Trademarks~1)
>cTrademarks<-confint(bTrademarks)

#Patents:
>bPatents<-breakpoints(Patents~1)
>cPatents<-confint(bPatents)

>cTrademarks; cPatents

>library (tseries); seqplot.ts(Trademarks,Patents); lines(cTrademarks); lines(cPatents) #R package tseries 
#(Trapletti and Hornik, 2019)

>bTrademarks; bPatents

#Based on SBPs, determine segments through heuristic of longest time between any two SBPs:
#Segment 1: 1:116    Sep 1977 to April 1987
#Segment 2: 126:186   Feb 1988 to Feb 1993
#Segment 3: 201:256   May 1994 to Dec 1998
#Segment 4: 271:329   Mar 2000 to Jan 2005
#Segment 5: 331:401   Mar 2005 to Jan 2011
#Segment 6: 403:472   Mar 2011 to Dec 2016

>tseg1<-Trademarks[1:116]; tseg2<-Trademarks[126:186]; tseg3<-Trademarks[201:256]; tseg4<-Trademarks[271:329]; tseg5<-Trademarks[331:401]; tseg6<-Trademarks[403:472]

>pseg1<-Patents[1:116]; pseg2<-Patents[126:186]; pseg3<-Patents[201:256]; pseg4<-Patents[271:329]; pseg5<-Patents[331:401]; pseg6<-Patents[403:472]

> Segment0<- as.matrix(as.data.frame(cbind(Trademarks, Patents))) #Full Dataset
> Segment1<- as.matrix(as.data.frame(cbind(Trademarks[1:116],Patents[1:116])))
> Segment2<- as.matrix(as.data.frame(cbind(Trademarks[126:186],Patents[126:186])))
> Segment3<- as.matrix(as.data.frame(cbind(Trademarks[201:256],Patents[201:256])))
> Segment4<- as.matrix(as.data.frame(cbind(Trademarks[271:329],Patents[271:329])))
> Segment5<- as.matrix(as.data.frame(cbind(Trademarks[331:401],Patents[331:401])))
> Segment6<- as.matrix(as.data.frame(cbind(Trademarks[403:472],Patents[403:472])))

#Cointegration analyses: Test for cointegration across entire and then sections
```
Adrian Trapletti and Kurt Hornik (2019). tseries: Time Series Analysis and Computational Finance. R
package version 0.10-47.
Pfaff, B. (2008) Analysis of Integrated and Cointegrated Time Series with R. Second Edition. Springer,
New York. ISBN 0-387-27960-1

> install.packages("tseries"); library(tseries)
> install.packages("urca"); library(urca)

Johansen Procedure
> summary(ca.jo(Segment0, ecdet="const",type="trace"))
> summary(ca.jo(Segment1, ecdet="const",type="trace"))
> summary(ca.jo(Segment2, ecdet="const",type="trace"))
> summary(ca.jo(Segment3, ecdet="const",type="trace"))
> summary(ca.jo(Segment4, ecdet="const",type="trace"))
> summary(ca.jo(Segment5, ecdet="const",type="trace"))
> summary(ca.jo(Segment6, ecdet="const",type="trace"))

Philips and Ouliaris Test
> summary(ca.po(Segment0, type= "Pz"))
> summary(ca.po(Segment1, type= "Pz"))
> summary(ca.po(Segment2, type= "Pz"))
> summary(ca.po(Segment3, type= "Pz"))
> summary(ca.po(Segment4, type= "Pz"))
> summary(ca.po(Segment5, type= "Pz"))
> summary(ca.po(Segment6, type= "Pz"))

Perform unit and stationarity assessments
> library(forecast)
> ndiffs(Trademarks, test="kpss"); ndiffs(Trademarks, test="adf"); ndiffs(Trademarks, test="pp")
> ndiffs(Patents, test="kpss"); ndiffs(Patents, test="adf"); ndiffs(Patents, test="pp")
> ndiffs(tseg1, test="kpss"); ndiffs(tseg1, test="adf"); ndiffs(tseg1, test="pp")
> ndiffs(pseg1, test="kpss"); ndiffs(pseg1, test="adf"); ndiffs(pseg1, test="pp")
> ndiffs(tseg2, test="kpss"); ndiffs(tseg2, test="adf"); ndiffs(tseg2, test="pp")
> ndiffs(pseg2, test="kpss"); ndiffs(pseg2, test="adf"); ndiffs(pseg2, test="pp")
> ndiffs(tseg3, test="kpss"); ndiffs(tseg3, test="adf"); ndiffs(tseg3, test="pp")
> ndiffs(pseg3, test="kpss"); ndiffs(pseg3, test="adf"); ndiffs(pseg3, test="pp")
> ndiffs(tseg4, test="kpss"); ndiffs(tseg4, test="adf"); ndiffs(tseg4, test="pp")
> ndiffs(pseg4, test="kpss"); ndiffs(pseg4, test="adf"); ndiffs(pseg4, test="pp")
> ndiffs(tseg5, test="kpss"); ndiffs(tseg5, test="adf"); ndiffs(tseg5, test="pp")
> ndiffs(pseg5, test="kpss"); ndiffs(pseg5, test="adf"); ndiffs(pseg5, test="pp")
```r
> ndiffs(tseg6, test="kpss"); ndiffs(tseg6, test="adf"); ndiffs(tseg6, test="pp")
> ndiffs(pseg6, test="kpss"); ndiffs(pseg6, test="adf"); ndiffs(pseg6, test="pp")
```

```
#### - End Supplementary Materials ####
```