SYMPLECTIC S_μ SINGULARITIES

WOJCIECH DOMITRZ AND ŻANETA TRĘBSKA

Abstract. We study the local symplectic algebra of the 1-dimensional isolated complete intersection singularity of type S_μ. We use the method of algebraic restrictions to classify symplectic S_μ singularities. We distinguish these symplectic singularities by discrete symplectic invariants. We also give the geometric description of them.

1. Introduction

In this paper we study the symplectic classification of the 1-dimensional complete intersection singularity of type S_μ in the symplectic space $(\mathbb{R}^{2n}, \omega)$. We recall that ω is a symplectic form if ω is a smooth nondegenerate closed 2-form, and $\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectomorphism if Φ is a diffeomorphism and $\Phi^* \omega = \omega$.

Definition 1.1. Let N_1, N_2 be germs of subsets of symplectic space $(\mathbb{R}^{2n}, \omega)$. N_1, N_2 are symplectically equivalent if there exists a symplectomorphism-germ $\Phi : (\mathbb{R}^{2n}, \omega) \to (\mathbb{R}^{2n}, \omega)$ such that $\Phi(N_1) = N_2$.

The problem of symplectic classification of singular curves was introduced by V. I. Arnold in [A1]. Arnold proved that the A_{2k} singularity of a planar curve (the orbit with respect to standard A-equivalence of parameterized curves) split into exactly $2k + 1$ symplectic singularities (orbits with respect to symplectic equivalence of parameterized curves). He distinguished different symplectic singularities by different orders of tangency of the parameterized curve to the nearest smooth Lagrangian submanifold. Arnold posed a problem of expressing these new symplectic invariants in terms of the local algebra’s interaction with the symplectic structure and he proposed to call this interaction the local symplectic algebra.

In [IJ1] G. Ishikawa and S. Janeczko classified symplectic singularities of curves in the 2-dimensional symplectic space. All simple curves in this classification are quasi-homogeneous. A symplectic form on a 2-dimensional manifold is a special case of a volume form on a smooth manifold. The generalization of results in [IJ1] to volume-preserving classification of singular varieties and maps in arbitrary dimensions was obtained in [DR]. The orbit of action of all diffeomorphism-germs agrees with volume-preserving orbit or splits into two volume-preserving orbits (in the case $\mathbb{K} = \mathbb{R}$) for germs which satisfy a special weak form of quasi-homogeneity e.g. the weak quasi-homogeneity of varieties is a quasi-homogeneity with non-negative weights $w_i \geq 0$ and $\sum_i w_i > 0$.

1991 Mathematics Subject Classification. Primary 53D05. Secondary 14H20, 58K50, 58A10.
Key words and phrases. symplectic manifold, curves, local symplectic algebra, algebraic restrictions, relative Darboux theorem, singularities.

The work of W. Domitrz was supported by Polish MNiSW grant no. N N201 397237.
Symplectic singularity is stably simple if it is simple and remains simple if the ambient symplectic space is symplectically embedded (i.e. as a symplectic submanifold) into a larger symplectic space. In [K] P. A. Kolgushkin classified the stably simple symplectic singularities of parameterized curves (in the \(\mathbb{C} \)-analytic category). All stably simple symplectic singularities of curves are quasi-homogeneous too.

In [DJZ2] new symplectic invariants of singular quasi-homogeneous subsets of a symplectic space were explained by the algebraic restrictions of the symplectic form to these subsets. The algebraic restriction is an equivalence class of the following relation on the space of differential \(k \)-forms:

\[
\omega_1 - \omega_2 = \alpha + d\beta,
\]

where \(\alpha \) is a \(k \)-form vanishing on \(N \) and \(\beta \) is a \((k - 1)\)-form vanishing on \(N \).

In [DJZ2] the generalization of Darboux-Givental theorem ([AG]) to germs of arbitrary subsets of the symplectic space was obtained. This result reduces the problem of symplectic classification of germs of quasi-homogeneous subsets to the problem of classification of algebraic restrictions of symplectic forms to these subsets. For non-quasi-homogeneous subsets there is one more cohomological invariant except the algebraic restriction ([DJZ2], [DJZ1]). The dimension of the space of algebraic restrictions of closed \(2 \)-forms to a \(1 \)-dimensional quasi-homogeneous isolated complete intersection singularity \(C \) is equal to the multiplicity of \(C \) ([DJZ2]). In [D] it was proved that the space of algebraic restrictions of closed \(2 \)-forms to a \(1 \)-dimensional (singular) analytic variety is finite-dimensional.

In [DJZ2] the method of algebraic restrictions was applied to various classification problems in a symplectic space. In particular the complete symplectic classification of the classical \(1 \)-dimensional \(S_5 \) singularity were obtained. Most of different symplectic singularity classes were distinguished by new discrete symplectic invariants: the index of isotropy and the symplectic multiplicity.

In this paper we obtain the complete symplectic classification of the classical isolated complete intersection singularity \(S_\mu \) for \(\mu > 5 \) using the method of algebraic restrictions (Theorem 4.1). We calculate discrete symplectic invariants for this classification (Theorems 4.3 and 4.4) and we present geometric descriptions of symplectic orbits (Theorem 4.9).

In [DT] following ideas from [A1] and [D] new discrete symplectic invariants - the Lagrangian tangency orders were introduced and used to distinguish symplectic singularities of simple planar curves of type \(A - D - E \), symplectic \(S_5 \) and \(T_7 \) singularities.

In this paper using Lagrangian tangency orders we are able to give detailed classification of \(S_\mu \) singularity for \(\mu > 5 \) (Theorem 4.0) and to present a geometric description of its symplectic orbits (Theorem 4.9).

The paper is organized as follows. In section 2 we recall the method of algebraic restrictions. In section 3 we present discrete symplectic invariants. Symplectic classification of \(S_\mu \) singularity is studied in section 4.

2. The method of algebraic restrictions

In this section we present basic facts on the method of algebraic restrictions. The proofs of all results of this section can be found in [DJZ2].

Given a germ of a non-singular manifold \(M \) denote by \(\mathcal{A}^p(M) \) the space of all germs at 0 of differential \(p \)-forms on \(M \). Given a subset \(N \subset M \) introduce the
following subspaces of $\Lambda^p(M)$:

$$\Lambda^p_N(M) = \{\omega \in \Lambda^p(M) : \omega(x) = 0 \text{ for any } x \in N\};$$

$$\mathcal{A}^p_0(N, M) = \{\alpha + d\beta : \alpha \in \Lambda^p_N(M), \beta \in \Lambda^{p-1}_N(M)\}.$$

The relation $\omega(x) = 0$ means that the p-form ω annihilates any p-tuple of vectors in $T_x M$, i.e. all coefficients of ω in some (and then any) local coordinate system vanish at the point x.

Definition 2.1. Let N be the germ of a subset of M and let $\omega \in \Lambda^p(M)$. The **algebraic restriction** of ω to N is the equivalence class of ω in $\Lambda^p(M)$, where the equivalence is as follows: ω is equivalent to $\tilde{\omega}$ if $\omega - \tilde{\omega} \in \mathcal{A}^p_0(N, M)$.

Notation. The algebraic restriction of the germ of a p-form ω on M to the germ of a subset $N \subset M$ will be denoted by $[\omega]_N$. Writing $[\omega]_N = 0$ (or saying that ω has zero algebraic restriction to N) we mean that $[\omega]_N = [0]_N$, i.e. $\omega \in \mathcal{A}^p_0(N, M)$.

Let M and \tilde{M} be non-singular equal-dimensional manifolds and let $\Phi : \tilde{M} \to M$ be a local diffeomorphism. Let N be a subset of M. It is clear that $\Phi^* \mathcal{A}^p_0(N, M) = \mathcal{A}^p_0(\Phi^{-1}(N), \tilde{M})$. Therefore the action of the group of diffeomorphisms can be defined as follows: $\Phi^*([\omega]_N) = [\Phi^*\omega]_{\Phi^{-1}(N)}$, where ω is an arbitrary p-form on M.

Definition 2.2. Two algebraic restrictions $[\omega]_N$ and $[\tilde{\omega}]_{\tilde{N}}$ are called **diffeomorphic** if there exists the germ of a diffeomorphism $\Phi : \tilde{M} \to M$ such that $\Phi(\tilde{N}) = N$ and $\Phi^*([\omega]_N) = [\tilde{\omega}]_{\tilde{N}}$.

Remark 2.3. The above definition does not depend on the choice of ω and $\tilde{\omega}$ since a local diffeomorphism maps forms with zero algebraic restriction to N to forms with zero algebraic restrictions to \tilde{N}. If $M = \tilde{M}$ and $N = \tilde{N}$ then the definition of diffeomorphic algebraic restrictions reduces to the following one: two algebraic restrictions $[\omega]_N$ and $[\tilde{\omega}]_{\tilde{N}}$ are diffeomorphic if there exists a local symmetry Φ of N (i.e. a local diffeomorphism preserving N) such that $[\Phi^*\omega]_N = [\tilde{\omega}]_{\tilde{N}}$.

Definition 2.4. A subset N of \mathbb{R}^m is quasi-homogeneous if there exists a coordinate system (x_1, \cdots, x_m) on \mathbb{R}^m and positive numbers $\lambda_1, \cdots, \lambda_n$ such that for any point $(y_1, \cdots, y_m) \in \mathbb{R}^m$ and any $t \in \mathbb{R}$ if (y_1, \cdots, y_m) belongs to N then a point $(t^{\lambda_1}y_1, \cdots, t^{\lambda_m}y_m)$ belongs to N.

The method of algebraic restrictions applied to singular quasi-homogeneous subsets is based on the following theorem.

Theorem 2.5 (Theorem A in [DJZ2]). Let N be the germ of a quasi-homogeneous subset of \mathbb{R}^{2n}. Let ω_0, ω_1 be germs of symplectic forms on \mathbb{R}^{2n} with the same algebraic restriction to N. There exists a local diffeomorphism Φ such that $\Phi(x) = x$ for any $x \in N$ and $\Phi^*\omega_1 = \omega_0$.

Two germs of quasi-homogeneous subsets N_1, N_2 of a fixed symplectic space $(\mathbb{R}^{2n}, \omega)$ are symplectomorphic if and only if the algebraic restrictions of the symplectic form ω to N_1 and N_2 are diffeomorphic.

Theorem 2.5 reduces the problem of symplectic classification of germs of singular quasi-homogeneous subsets to the problem of diffeomorphic classification of algebraic restrictions of the germ of the symplectic form to the germs of singular quasi-homogeneous subsets.
The geometric meaning of zero algebraic restriction is explained by the following theorem.

Theorem 2.6 (Theorem B in [DJZ2]). The germ of a quasi-homogeneous set \(N \) of a symplectic space \((R^{2n}, \omega)\) is contained in a non-singular Lagrangian submanifold if and only if the symplectic form \(\omega \) has zero algebraic restriction to \(N \).

Proposition 2.7 (Lemma 2.20 in [DJZ2]). Let \(N \subset R^m \). Let \(W \subset T_0 R^m \) be the tangent space to some (and then any) non-singular submanifold containing \(N \) of minimal dimension within such submanifolds. If \(\omega \) is the germ of a \(p \)-form with zero algebraic restriction to \(N \) then \(\omega|_W = 0 \).

The following result shows that the method of algebraic restrictions is very powerful tool in symplectic classification of singular curves.

Theorem 2.8 (Theorem 2 in [D]). Let \(C \) be the germ of a \(K \)-analytic curve (for \(K = R \) or \(K = C \)). Then the space of algebraic restrictions of germs of closed 2-forms to \(C \) is a finite dimensional vector space.

By a **\(K \)-analytic curve** we understand a subset of \(K^m \) which is locally diffeomorphic to a 1-dimensional (possibly singular) \(K \)-analytic subvariety of \(K^m \). Germs of \(C \)-analytic parameterized curves can be identified with germs of irreducible \(C \)-analytic curves.

We now recall basic properties of algebraic restrictions which are useful for a description of this subset ([DJZ2]).

First we can reduce the dimension of the manifold we consider due to the following propositions.

If the germ of a set \(N \subset R^m \) is contained in a non-singular submanifold \(M \subset R^m \) then the classification of algebraic restrictions to \(N \) of \(p \)-forms on \(R^m \) reduces to the classification of algebraic restrictions to \(N \) of \(p \)-forms on \(M \). At first note that the algebraic restrictions \([\omega]|_N\) and \([\omega|_{TM}]_N\) can be identified:

Proposition 2.9. Let \(N \) be the germ at 0 of a subset of \(R^m \) contained in a non-singular submanifold \(M \subset R^m \) and let \(\omega_1, \omega_2 \) be \(p \)-forms on \(R^m \). Then \([\omega_1]|_N = [\omega_2]|_N \) if and only if \([\omega_1|_{TM}]|_N = [\omega_2|_{TM}]|_N \).

The following, less obvious statement, means that the orbits of the algebraic restrictions \([\omega]|_N\) and \([\omega|_{TM}]_N\) also can be identified.

Proposition 2.10. Let \(N_1, N_2 \) be germs of subsets of \(R^m \) contained in equal-dimensional non-singular submanifolds \(M_1, M_2 \) respectively. Let \(\omega_1, \omega_2 \) be two germs of \(p \)-forms. The algebraic restrictions \([\omega_1]|_{N_1}\) and \([\omega_2]|_{N_2}\) are diffeomorphic if and only if the algebraic restrictions \([\omega_1|_{TM_1}]|_{N_1}\) and \([\omega_2|_{TM_2}]|_{N_2}\) are diffeomorphic.

To calculate the space of algebraic restrictions of 2-forms we will use the following obvious properties.

Proposition 2.11. If \(\omega \in A_0^k(N, R^{2n}) \) then \(d\omega \in A_0^{k+1}(N, R^{2n}) \) and \(\omega \wedge \alpha \in A_0^{k+p}(N, R^{2n}) \) for any \(p \)-form \(\alpha \) on \(R^{2n} \).

The next step of our calculation is the description of the subspace of algebraic restriction of closed 2-forms. The following proposition is very useful for this step.

Proposition 2.12. Let \(a_1, \ldots, a_k \) be a basis of the space of algebraic restrictions of 2-forms to \(N \) satisfying the following conditions

\[A_0^k(N, \omega |_N) = \left\{ \omega \in A_0^k(N, \omega |_N) \mid \sum a_i \omega = 0 \right\} \text{ for } a_i \in A_0^k(N, \omega |_N)\]
(1) \(da_1 = \cdots = da_j = 0\),
(2) the algebraic restrictions \(da_{j+1}, \ldots, da_k\) are linearly independent. Then \(a_1, \ldots, a_j\) is a basis of the space of algebraic restriction of closed 2-forms to \(N\).

Then we need to determine which algebraic restrictions of closed 2-forms are realizable by symplectic forms. This is possible due to the following fact.

Proposition 2.13. Let \(N \subset \mathbb{R}^{2n}\). Let \(r\) be the minimal dimension of non-singular submanifolds of \(\mathbb{R}^{2n}\) containing \(N\). Let \(M\) be one of such \(r\)-dimensional submanifolds. The algebraic restriction \([\theta]_N\) of the germ of closed 2-form \(\theta\) is realizable by the germ of a symplectic form on \(\mathbb{R}^{2n}\) if and only if \(\text{rank}([\theta]_{|T_0M}) \geq 2r - 2n\).

Let us fix the following notations:

- \([\Lambda^2(\mathbb{R}^{2n})]_N\): the vector space consisting of algebraic restrictions of germs of all 2-forms on \(\mathbb{R}^{2n}\) to the germ of a subset \(N \subset \mathbb{R}^{2n}\);
- \([Z^2(\mathbb{R}^{2n})]_N\): the subspace of \([\Lambda^2(\mathbb{R}^{2n})]_N\) consisting of algebraic restrictions of germs of all closed 2-forms on \(\mathbb{R}^{2n}\) to \(N\);
- \([\text{Symp}(\mathbb{R}^{2n})]_N\): the open set in \([Z^2(\mathbb{R}^{2n})]_N\) consisting of algebraic restrictions of germs of all symplectic 2-forms on \(\mathbb{R}^{2n}\) to \(N\).

3. Discrete symplectic invariants.

We can use some discrete symplectic invariants to characterize symplectic singularity classes. They show how far is a curve \(N\) from the closest non-singular Lagrangian submanifold.

The first one is a symplectic multiplicity ([DJZ2]) introduced in [IJ1] as a symplectic defect of a curve.

Definition 3.1. The symplectic multiplicity \(\mu_{\text{sympl}}(N)\) of \(N\) is the codimension of a symplectic orbit of \(N\) in an orbit of \(N\) with respect to the action of the group of local diffeomorphisms.

Let \(N\) be a germ of a subset of \((\mathbb{R}^{2n}, \omega)\).

Definition 3.2. The index of isotropy \(\iota(N)\) of \(N\) is the maximal order of vanishing of the 2-forms \(\omega|_{TM}\) over all smooth submanifolds \(M\) containing \(N\).

They can be described in terms of algebraic restrictions.

Proposition 3.3 ([DJZ2]). The symplectic multiplicity of the germ of a quasi-homogeneous subset \(N\) in a symplectic space is equal to the codimension of the orbit of the algebraic restriction \([\omega]_N\) with respect to the group of local diffeomorphisms preserving \(N\) in the space of algebraic restrictions of closed 2-forms to \(N\).

Proposition 3.4 ([DJZ2]). The index of isotropy of the germ of a quasi-homogeneous subset \(N\) in a symplectic space \((\mathbb{R}^{2n}, \omega)\) is equal to the maximal order of vanishing of closed 2-forms representing the algebraic restriction \([\omega]_N\).

One more discrete symplectic invariant were introduced in [D] following ideas from [AI] which is defined specifically for a parameterized curve. This is the maximal tangency order of a curve \(f : \mathbb{R} \to M\) to a smooth Lagrangian submanifold.
If $H_1 = \ldots = H_n = 0$ define a smooth submanifold L in the symplectic space then the tangency order of a curve $f : \mathbb{R} \to M$ to L is the minimum of the orders of vanishing at 0 of functions $H_1 \circ f, \ldots, H_n \circ f$. We denote the tangency order of f to L by $t(f, L)$.

Definition 3.5. The **Lagrangian tangency order** $Lt(f)$ of a curve f is the maximum of $t(f, L)$ over all smooth Lagrangian submanifolds L of the symplectic space.

The Lagrangian tangency order of a quasi-homogeneous curve in a symplectic space can also be expressed in terms of algebraic restrictions.

Proposition 3.6 ([D]). Let f be the germ of a quasi-homogeneous curve such that the algebraic restriction of a symplectic form to it can be represented by a closed 2-form vanishing at 0. Then the Lagrangian tangency order of the germ of a quasi-homogeneous curve f is the maximum of the order of vanishing on f over all 1-forms α such that $[\omega]_f = [d\alpha]_f$.

In [DT] the above invariant were generalized for germs of curves and multi-germs of curves which may be parameterized analytically since Lagrangian tangency order is the same for every ‘good’ analytic parameterization of a curve.

Consider a multi-germ $(f_i)_{i \in \{1, \ldots, r\}}$ of analytically parameterized curves f_i. For any smooth submanifold L in the symplectic space we have r-tuples $(t(f_1, L), \ldots, t(f_r, L))$.

Definition 3.7. For any $I \subseteq \{1, \ldots, r\}$ we define the **tangency order of the multi-germ** $(f_i)_{i \in I}$ to L:

$$t[(f_i)_{i \in I}, L] = \min_{i \in I} t(f_i, L).$$

Definition 3.8. The **Lagrangian tangency order** $Lt((f_i)_{i \in I})$ of a multi-germ $(f_i)_{i \in I}$ is the maximum of $t[(f_i)_{i \in I}, L]$ over all smooth Lagrangian submanifolds L of the symplectic space.

For multi-germs one can also define relative invariants according to selected branches or collections of branches [DT].

Definition 3.9. For fixed $j \in I$ the **Lagrangian tangency order related to** f_j of a multi-germ $(f_i)_{i \in I}$ denoted by $Lt((f_i)_{i \in I} : f_j)$ is the maximum of $t[(f_i)_{i \in I \setminus \{j\}}, L]$ over all smooth Lagrangian submanifolds L of the symplectic space for which $t(f_j, L) = Lt(f_j)$.

These invariants have geometric interpretation. If $Lt(f_i) = \infty$ then a branch f_i is included in a smooth Lagrangian submanifold. If $Lt((f_i)_{i \in I}) = \infty$ then exists a Lagrangian submanifold including all curves f_i for $i \in I$.

We may use these invariants for distinguishing symplectic singularities.
4. Symplectic S_μ-singularities

Denote by (S_μ) (for $\mu > 5$) the class of varieties in a fixed symplectic space $(\mathbb{R}^{2n}, \omega)$ which are diffeomorphic to

\[(4.1) \quad S_\mu = \{ x \in \mathbb{R}^{2n+1} : x_1^2 - x_2^2 - x_3^{\mu-3} = x_2x_3 = x_{23} = 0 \} \]

This is the classical 1-dimensional isolated complete intersection singularity. Let $N \in (S_\mu)$. Then N is the union of two 1-dimensional components invariant under action of local diffeomorphisms preserving N: C_1 - diffeomorphic to A_1 singularity and C_2 - diffeomorphic to $A_{\mu-4}$ singularity. N is quasi-homogeneous with weights $w(x_1) = w(x_2) = \mu - 3$, $w(x_3) = 2$ when μ is an even number, or $w(x_1) = w(x_2) = (\mu - 3)/2$, $w(x_3) = 1$ when μ is an odd number. In our paper we often use the notation $r = \mu - 3$.

We will use the method of algebraic restrictions to obtain a complete classification of symplectic singularities in (S_μ) presented in the following theorem.

Theorem 4.1. Any stratified submanifold of the symplectic space $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dp_i \wedge dq_i)$ which is diffeomorphic to S_μ is symplectically equivalent to one and only one of the normal forms $S_{\mu}^{(1)}$. The parameters c_i of the normal forms are moduli.

\[
S_{\mu}^{(1)} : \quad p_1^2 - p_2^2 - q_1^2 = 0, \quad p_2q_1 = 0, \quad q_2 = c_1q_1 - c_2p_1, \quad p_{23} = q_{23} = 0; \\
S_{\mu}^{(2)}(1 \leq k \leq 5) : \quad p_k^2 - p_2^2 - q_1^2 = 0, \quad p_1q_1 = 0, \quad q_2 = c_3p_1 + \frac{c_4}{k} q_1, \quad p_{23} = q_{23} = 0, \quad c_{4+k} \neq 0; \\
S_{\mu}^{(3)}(1 \leq k \leq 6) : \quad p_k^2 - q_1^2 - q_2^2 = 0, \quad q_1q_2 = 0, \quad p_2 = p_1q_1^k (c_{4+k} + c_{5+k}q_2), \quad p_{23} = q_{23} = 0, \quad c_{4+k} \neq 0; \\
S_{\mu}^{(4)}(1 \leq k \leq 4) : \quad p_k^2 - q_1^2 - q_2^2 = 0, \quad q_1q_2 = 0, \quad p_2 = c_{\mu-1}p_1q_2^{-2}, \quad p_{23} = q_{23} = 0; \\
S_{\mu}^{(5)}(2 \leq k \leq 4) : \quad p_k^2 - p_2^2 - p_3^2 = 0, \quad p_2p_3 = 0, \quad q_1 = \frac{1}{k} p_2^k, \quad q_2 = -c_4p_3, \quad p_{24} = q_{24} = 0; \\
S_{\mu}^{(6)}(2 \leq k \leq 4) : \quad p_k^2 - p_2^2 - p_3^2 = 0, \quad p_2p_3 = 0, \quad q_1 = \frac{1}{k} p_2^k, \quad q_2 = -c_4p_3, \quad p_{24} = q_{24} = 0; \\
S_{\mu}^{(5)}(2 \leq k \leq 4) : \quad p_k^2 - p_2^2 - p_3^2 = 0, \quad p_2p_3 = 0, \quad q_1 = \frac{1}{k} p_2^k, \quad q_2 = -c_4p_3, \quad p_{24} = q_{24} = 0; \\
S_{\mu}^{(6)}(2 \leq k \leq 4) : \quad p_k^2 - p_2^2 - p_3^2 = 0, \quad p_2p_3 = 0, \quad p_{24} = q_{24} = 0, \quad (by \ r \ we \ denote \ \mu - 3).
\]

In section 4.1 we calculate the manifolds $[\text{Symp}(\mathbb{R}^{2n})]_{S_\mu}$ and classify its algebraic restrictions. This allows us to decompose S_μ into symplectic singularity classes. In section 4.2 we transfer the normal forms for algebraic restrictions to symplectic normal forms to obtain the proof of Theorem 4.1. In section 4.3 we use Lagrangian tangency orders to distinguish more symplectic singularity classes. In section 4.4 we propose a geometric description of these singularities which confirms this more detailed classification. Some of the proofs are presented in section 4.5.

4.1. Algebraic restrictions and their classification

One has the relations for (S_μ)-singularities

\[(4.2) \quad [d(x_2x_3)]_{S_\mu} = [x_2dx_3 + x_3dx_2]_{S_\mu} = 0 \]

\[(4.3) \quad [d(x_1^2 - x_2^2 - x_3^{\mu-3})]_{S_\mu} = [2x_1dx_1 - 2x_2dx_2 - (\mu - 3)x_3^{\mu-4}dx_3]_{S_\mu} = 0 \]

Multiplying these relations by suitable 1-forms we obtain the relations in Table I.
The proof of Theorem 4.4 is presented in section 4.5.

In the first column of Table 2 by \((S_\mu)^{i,j}\) we denote a subclass of \((S_\mu)\) consisting of \(N \in (S_\mu)\) such that the algebraic restriction \([\omega]_N\) is diffeomorphic to some algebraic restriction of the normal form \([S_\mu]^{i,j}\) where \(i\) is the codimension of the class and \(j\) denotes index of isotropness of the class. Classes \((S_\mu)_2^i\) and \((S_\mu)_r^i\) can be
Symplectic S_μ singularities.

cod – codimension of the classes; μ^{sym} – symplectic multiplicity;

ind – index of isotropness.

distinguished geometrically (see section 4.4) and by relative Lagrangian tangency

Theorem 2.5. Theorem 4.4 and Proposition 4.3 imply the following statement.

Proposition 4.5. The classes $(S_\mu)^{i,j}$ are symplectic singularity classes, i.e. they are

closed with respect to the action of the group of symplectomorphisms. The class

(S_μ) is the disjoint union of the classes $(S_\mu)^{i,j}$. The classes $(S_\mu)^0, (S_\mu)^1$ and $(S_\mu)^i$

for $1 \leq i \leq \mu - 4$ are non-empty for any dimension $2n \geq 4$ of the symplectic space; the
classes $(S_\mu)^{i,1}$ for $3 \leq i \leq \mu - 2$ and $(S_\mu)^{i,j-3}$ for $5 \leq i \leq \mu - 1$ and $(S_\mu)^\mu$ are

empty if $n = 2$ and not empty if $n \geq 3$.

4.2. Symplectic normal forms. Proof of Theorem 4.1. Let us transfer the

normal forms $[S_\mu]^{i,j}$ to symplectic normal forms using Theorem 2.12 i.e. realizing

the algorithm in section 2. Fix a family $\omega^{i,j}$ of symplectic forms on \mathbb{R}^{2n} realizing

the family $[S_\mu]^{i,j}$ of algebraic restrictions. We can fix, for example

$\omega^0 = \theta_1 + c_2 \theta_2 + c_3 \theta_3 + dx_2 \wedge dx_4 + \sum_{i=3}^n dx_{2i-1} \wedge dx_{2i}$;

$\omega^k = \theta_1 + 2c_3 \theta_3 + c_{4+k} \theta_{4+k} + dx_1 \wedge dx_4 + \sum_{i=3}^n dx_{2i-1} \wedge dx_{2i}$, $c_{4+k} \neq 0$, $1 \leq k \leq \mu - 5$;

$\omega^{2-4} = \theta_2 + c_3 \theta_3 + c_\mu \theta_\mu + dx_1 \wedge dx_4 + \sum_{i=3}^n dx_{2i-1} \wedge dx_{2i}$, $c_\mu \neq 0$;

$\omega^{1+k} = \theta_3 + c_{4+k} \theta_{4+k} + dx_1 \wedge dx_4 + \sum_{i=3}^n dx_{2i-1} \wedge dx_{2i}$, $c_{4+k} \neq 0$, $1 \leq k \leq \mu - 6$;

$\omega^{1-4} = \theta_3 + c_\mu \theta_\mu - dx_1 \wedge dx_4 + \sum_{i=3}^n dx_{2i-1} \wedge dx_{2i}$;

$\omega^{3,1} = c_\theta_\theta + \sum_{i=1}^3 dx_i \wedge dx_{i+3} + dx_{i+3} \wedge dx_{i+6}$;

$\omega^{2+k,1} = \theta_4 + c_{4+k} \theta_{4+k} + \sum_{i=1}^3 dx_i \wedge dx_{i+3} + \sum_{i=4}^n dx_{2i-1} \wedge dx_{2i}, 2 \leq k \leq \mu - 4$;

$\omega^{3+k,k} = \theta_4 + \sum_{i=1}^3 dx_i \wedge dx_{i+3} + \sum_{i=4}^n dx_{2i-1} \wedge dx_{2i}, 2 \leq k \leq \mu - 4$;

$\omega^\mu = \sum_{i=1}^3 dx_i \wedge dx_{i+3} + \sum_{i=4}^n dx_{2i-1} \wedge dx_{2i}$.
Let $\omega = \sum_{i=1}^{2n} dp_i \wedge dq_i$, where $(p_1, q_1, \ldots, p_n, q_n)$ is the coordinate system on $\mathbb{R}^{2n}, n \geq 3$ (resp. $n = 2$). Fix a family $\Phi^{i,j}$ of local diffeomorphisms which bring the family of symplectic forms $\omega^{i,j}$ to the symplectic form ω: $(\Phi^{i,j})^* \omega^{i,j} = \omega$. Consider the families $S^{i,j}_\mu = (\Phi^{i,j})^{-1}(S_\mu)$. Any stratified submanifold of the symplectic space $(\mathbb{R}^{2n}, \omega)$ which is diffeomorphic to S_μ is symplectically equivalent to one and only one of the normal forms $S^{i,j}_\mu$ presented in Theorem 4.1. By Theorem 4.4 we obtain that parameters c_i of the normal forms are moduli.

4.3. Distinguishing symplectic classes of S_μ by Lagrangian tangency orders. Lagrangian tangency orders will be used to obtain a more detailed classification of (S_μ). A curve $N \in (S_\mu)$ may be described as a union of two invariant components C_1 and C_2. C_1 is diffeomorphic to A_1 singularity and consists of two parametrical branches B_{1+} and B_{1-}. C_2 is diffeomorphic to $A_{\mu-4}$ singularity and consists of one parametric branch if μ is even number and consists of two branches B_{2+} and B_{2-} if μ is odd number. The parametrization of these branches is given in the second column of Table 3 or Table 4. To distinguish the classes of this singularity completely we need following three invariants:

- $Lt(N) = Lt(C_1, C_2)$
- $L_1 = Lt(C_1) = \max_L \{\min\{t(B_{1+}, L), t(B_{1-}, L)\}\}$
- $L_2 = Lt(C_2)$

where L is a smooth Lagrangian submanifold of the symplectic space.

Considering the triples $(Lt(N), L_1, L_2)$ we obtain detailed classification of symplectic singularities of S_μ. Some subclasses appear (see Table 3 and 4) having a natural geometric interpretation (Table 5).

Theorem 4.6. A stratified submanifold $N \in (S_\mu)$ of a symplectic space $(\mathbb{R}^{2n}, \omega)$ with the canonical coordinates $(p_1, q_1, \ldots, p_n, q_n)$ is symplectically equivalent to one and only one of the curves presented in the second column of Table 3 or 4. The Lagrangian tangency orders of the curve are presented in the fifth, the sixth and the seventh column of these tables and the codimension of the classes is given in the fourth column.

Remark 4.7. The numbers L_1 and L_2 can be easily calculated knowing Lagrangian tangency orders for A_1 and $A_{\mu-4}$ singularities (see Table 2 in [DT]) or by direct applying the definition of the Lagrangian tangency order and finding the nearest Lagrangian submanifold to components. Next we calculate $Lt(N)$ by definition knowing that it can not be greater than $\min(L_1, L_2)$.

We can compute L_1 using the algebraic restrictions $[\omega^{i,j}]_{C_1}$ where the space $[Z^2(\mathbb{R}^{2n})]_{C_1}$ is spanned only by the algebraic restriction to C_1 of the 2-form θ_3. For example for the class $(S_\mu)^0$ we have $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{C_1} = [c_3 \theta_3]_{C_1}$ and thus $L_1 = 1$ when $c_3 \neq 0$ and $L_1 = \infty$ when $c_3 = 0$.

We can compute L_2 using the algebraic restrictions $[\omega^{i,j}]_{C_2}$ where the space $[Z^2(\mathbb{R}^{2n})]_{C_2}$ is spanned only by the algebraic restrictions to C_2 of the 2-forms θ_1, θ_{4+k} for $k = 1, 2, \ldots, \theta_{\mu-1}$. For example for the class $(S_\mu)^0$ we have $[\theta_1 + c_2 \theta_2 +$
$c_3 \theta_2 | C_2 = [\theta_1 | C_2$ and thus $L_2 = \mu - 3$ if μ is an even number and $L_2 = \frac{\mu - 3}{2}$ if μ is an odd number.

$Lt(N) \leq 1 = \min(L_1, L_2)$ when $c_3 \neq 0$. Applying the definition of $Lt(N)$ we find the smooth Lagrangian submanifold L described by the conditions: $p_i = 0, i \in \{1, \ldots, n\}$ and we get $Lt(N) \geq t(N, L) = 1$ in this case.

If $c_3 = 0$ then $Lt(N) \leq L_2 = \min(L_1, L_2)$, but applying the definition of $Lt(N)$ we have $t(N, L) \leq 2$ (resp. $t(N, L) \leq 1$) for all Lagrangian submanifolds L. For L described by the conditions: $q_i = 0, i \in \{1, \ldots, n\}$ we get $Lt(N) = t(N, L) = 2$ if μ is an even number and $Lt(N) = t(N, L) = 1$ if μ is an odd number.

Remark 4.8. We are not able to distinguish some classes $(S_\mu)_2^0$ and $(S_\mu)_r^0$ by the triples $(Lt(N), L_1, L_2)$ but we can do it using relative Lagrangian tangency orders. We define $L_{2,1} = Lt[C_2 : B_{1+}] = \maxLt[C_2 : B_{1+}, Lt[C_2 : B_{1-}]]$.

Since branches B_{1+} and B_{1-} are smooth curves then $Lt(B_{1+}) = Lt(B_{1-}) = \infty$ and $L_{2,1} = \maxLt(C_2, L)$ where L is a smooth Lagrangian submanifold containing B_{1+} or B_{1-}.

Considering such smooth Lagrangian submanifolds we obtain $L_{2,1} = \frac{2}{\lambda_\mu}$ for the classes $(S_\mu)_2^0$ and $L_{2,1} = \frac{\mu - 2}{\lambda_\mu}$ for the classes $(S_\mu)_r^0$ ($\lambda_\mu = 1$ for even μ and $\lambda_\mu = 2$ for odd μ).

Class	Parametrization of branches $B_{1\pm}$ and C_2	Conditions for subclasses	cod	$Lt(N)$	L_1	L_2
$(S_\mu)_0^0$	$(t, 0, \pm t, -c_3 t, 0, \ldots)$	$c_3 \neq 0$	0	1	1	r
$2n \geq 4$	$(t, t^2, 0, c_3 t^2 - c_3 t, 0, \ldots)$	$c_3 = 0$	1	2	∞	r
$(S_\mu)^k_{\frac{n}{k}}$	$(t, 0, \pm t, c_3 t, 0, \ldots)$	$c_3 \neq 0$	k	1	1	$r+2k$
$2n \geq 4$	$(0, t^2, t^4, \frac{c_4 + k}{k} t^{1+2k}, 0, \ldots)$	$c_3 = 0, c_4 + k \neq 0$	$k+1$	2	∞	$r+2k$
$(S_\mu)^{\mu-4}$	$(t, 0, \pm t, c_3 t, 0, \ldots)$	$c_3 \neq 0$	$\mu-4$	1	1	∞
$2n \geq 4$	$(0, t^2, t^4, \frac{c_4 + k}{k} t^{1+2k}, 0, \ldots)$	$c_3 = 0$	$\mu-3$	2	∞	∞
$(S_\mu)^{1-4k}$	$(t, 0, \pm t, c_3 t, 0, \ldots)$	$c_3 \neq 0$	$k+1$	1	1	$r+2k$
$2n \geq 4$	$(t^2, 0, (c_4 + k + t^2)^{t+2k}, t^2, 0, \ldots)$	$1 \leq k \leq \mu - 6$	$\mu-4$	1	1	$3r-4$
$(S_\mu)^{\mu-4}$	$(t, 0, \pm t, 0, \ldots)$	$c_3 \neq 0$	$\mu-1$	0	$\mu-3$	$\mu-3$
$2n \geq 4$	$(t, 0, c_4 + t^{3\mu-4}, t^2, 0, \ldots)$	$c_3 \neq 0$	$\mu-1$	0	1	∞
$(S_\mu)^{3,1}$	$(t, 0, \pm t, 0, \ldots)$	$c_3 \neq 0$	$\mu-2$	0	$\mu-2$	∞
$2n \geq 6$	$(t, t^2, t^4, 0, -c_4 t^{1+2k}, t^2, 0, \ldots)$	$2 \leq k \leq \mu - 5$	$k+2$	0	$r+2k$	∞
$(S_\mu)^{2+4,k,1}$	$(t, 0, \pm t, 0, 0, \ldots)$	$c_3 \neq 0$	$\mu-2$	0	$\mu-2$	∞
$2n \geq 6$	$(t, \frac{c_4 + k}{k} t^{1+2k}, 0, c_4 + k + t^2, 0, \ldots)$	$2 \leq k \leq \mu - 5$	$k+2$	0	$r+2k$	∞
$(S_\mu)^{3+4,k,1}$	$(t, 0, \pm t, 0, 0, \ldots)$	$c_3 \neq 0$	$\mu-2$	0	$\mu-2$	∞
$2n \geq 6$	$(t, 0, c_4 + t^{2(k+1)}, 0, t^2, 0, \ldots)$	$2 \leq k \leq \mu - 5$	$k+3$	0	$3r-2$	∞
$(S_\mu)^{\mu}$	$(t, 0, \pm t, 0, 0, \ldots)$	$c_3 \neq 0$	μ	∞	∞	∞

Table 3. Lagrangian tangency orders for symplectic classes of S_μ singularity (μ even).
4. Geometric conditions for the classes \((S_\mu)^{i,j}\). The classes \((S_\mu)^{i,j}\) can be distinguished geometrically, without using any local coordinate system.

Let \(N \in (S_\mu)\). Then \(N\) is the union of two singular 1-dimensional irreducible components diffeomorphic to \(A_1\) and \(A_{\mu-4}\) singularities. In local coordinates they have the form

\[
C_1 = \{x_1^2 - x_2^3 = 0, \ x_{\geq 3} = 0\},
\]

\[
C_2 = \{x_1^2 - x_3^{\mu-3} = 0, \ x_2 = x_{\geq 4} = 0\}.
\]

Denote by \(\ell_{1+}, \ell_{1-}\) the tangent lines at 0 to the branches \(B_{1+}\) and \(B_{1-}\) respectively. These lines span a 2-space \(P_1\). Denote by \(\ell_2\) the tangent line at 0 to the component \(C_2\) and let \(P_2\) be 2-space tangent at 0 to component \(C_2\). Define line \(\ell_3 = P_1 \cap P_2\). The lines \(\ell_{1\pm}, \ell_2, \ell_3\) span a 3-space \(W = W(N)\). Equivalently \(W\) is the tangent space at 0 to some (and then any) non-singular 3-manifold containing \(N\). The classes \((S_\mu)^{i,j}\) satisfy special conditions in terms of the restriction \(\omega|_W\), where \(\omega\) is the symplectic form. For \(N = S_\mu\) it is easy to calculate

\[
\ell_{1\pm} = \text{span}(\partial/\partial x_1 \pm \partial/\partial x_2), \ \ell_2 = \text{span}(\partial/\partial x_3), \ \ell_3 = \text{span}(\partial/\partial x_1).
\]

Theorem 4.9. A stratified submanifold \(N \in (S_\mu)\) of a symplectic space \((\mathbb{R}^{2n}, \omega)\) belongs to the class \((S_\mu)^{i,j}\) if and only if the couple \((N, \omega)\) satisfies corresponding conditions in the last column of Table 4.
Class	Normal form	Geometric conditions		
$(S_\mu)^0$	$[S_\mu]^0 = \{ \theta_1 + c_2 \theta_2 + c_3 \theta_3 \}$	$\omega	_{t_2 + t_3} \neq 0$ and none of components is contained in a Lagrangian submanifold	
$(S_\mu)^0$	$[S_\mu]^0 = \{ \theta_1 + c_2 \theta_2 \}$	$\omega	_{t_1 + t_1} \neq 0$ (so component C_1 is contained in a Lagrangian submanifold)	
$(S_\mu)^0_2$	$[S_\mu]^0_2 = \{ \theta_2 + c_3 \theta_3 \}$	$\omega	_{t_1 + t_1} = 0$ (so component C_1 is contained in a Lagrangian submanifold)	
$(S_\mu)^2$	$[S_\mu]^2 = \{ \theta_2 + c_3 \theta_3 + c_{4+k} \theta_{4+k} \}$	$\omega	_{t_1 + t_1} \neq 0$ but $\omega	_{t_1 + t_2} \neq 0$
$(S_\mu)^2$	$[S_\mu]^2 = \{ \theta_2 + c_3 \theta_3 \}$	$\omega	_{t_1 + t_1} \neq 0$ and $L_2 = \frac{r+2k}{\lambda_\mu}$	
$(S_\mu)^2$	$[S_\mu]^2 = \{ \theta_2 + c_3 \theta_3 \}$	$\omega	_{t_1 + t_1} \neq 0$ and component C_2 is contained in a Lagrangian submanifold	
$(S_\mu)^2$	$[S_\mu]^2 = \{ \theta_2 + c_3 \theta_3 \}$	$\omega	_{t_1 + t_1} = 0$, both components are contained in Lagrangian submanifolds	
$(S_\mu)^r$	$[S_\mu]^r = \{ \theta_2 \}$	$\omega	_{t_1 + t_1} = 0$ and component C_2 is contained in Lagrangian submanifolds	
$(S_\mu)^{1+k}$	$[S_\mu]^{1+k} = \{ \theta_2 + c_3 \theta_3 + c_{4+k} \theta_{4+k} \}$	none of components is contained in a Lagrangian submanifold and $L_2 = \frac{r+2k}{\lambda_\mu}$		
$(S_\mu)^{1+k}$	$[S_\mu]^{1+k} = \{ \theta_2 + c_3 \theta_3 \}$	none of components is contained in a Lagrangian submanifold and $L_2 = \frac{r+2k}{\lambda_\mu}$		
$(S_\mu)^{r-1}$	$[S_\mu]^{r-1} = \{ \theta_3 \}$	component C_2 is contained in Lagrangian submanifolds		
$(S_\mu)^{r}$	$[S_\mu]^{r} = \{ \theta_3 \}$	$\omega	_{t_1 + t_1} = 0$ and component C_1 is contained in a Lagrangian submanifold	
$(S_\mu)^{2+k}$	$[S_\mu]^{2+k} = \{ \theta_4 + c_{4+k} \theta_{4+k} \}$	$\omega	_{t_1 + t_1} \neq 0$ and $L_2 = \frac{r+2k}{\lambda_\mu}$ and $Lt(N) = \frac{r+2k}{\lambda_\mu}$	
$(S_\mu)^{2+k}$	$[S_\mu]^{2+k} = \{ \theta_4 + c_{4+k} \theta_{4+k} \}$	both components are contained in Lagrangian submanifolds and $Lt(N) = \frac{r+2k}{\lambda_\mu}$		
$(S_\mu)^{2+k}$	$[S_\mu]^{2+k} = \{ \theta_4 + c \theta_4 \}$	both components are contained in Lagrangian submanifolds and $Lt(N) = \frac{r+2k}{\lambda_\mu}$		
$(S_\mu)^{r}$	$[S_\mu]^{r} = \{ \theta_4 \}$	both components are contained in the same Lagrangian submanifold		

Table 5. Geometric interpretation of singularity classes of S_μ; W - the tangent space to a non-singular 3-dimensional manifold in $(\mathbb{R}^{2n} \geq 4, \omega)$ containing $N \in (S_\mu)$, $\lambda_\mu = 1$ for even μ and $\lambda_\mu = 2$ for odd μ.
Proof of Theorem 4.4. The conditions on the pair (ω, N) in the last column of Table 5 are disjoint. It suffices to prove that these conditions the row of $(S_\mu)^{1,3}$, are satisfied for any $N \in (S_\mu)^{1,3}$. This is a corollary of the following claims:

1. Each of the conditions in the last column of Table 5 is invariant with respect to the action of the group of diffeomorphisms in the space of pairs (ω, N);
2. Each of these conditions depends only on the algebraic restriction $[\omega]|_N$;
3. Take the simplest 2-forms $\omega^{i,j}$ representing the normal forms $[S_\mu]^{i,j}$ for algebraic restrictions. The pair $(\omega = \omega^{i,j}, S_\mu)$ satisfies the condition in the last column of Table 5 the row of $(S_\mu)^{1,3}$.

The first statement is obvious, the second one follows from Lemma 2.7.

To prove the third statement we note that in the case $N = S_\mu = (4.1)$ one has $W = \text{span}(\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3)$ and $\ell_1 \pm = \text{span}(\partial/\partial x_1 \pm \partial/\partial x_2)$, $\ell_2 = \text{span}(\partial/\partial x_3)$, $\ell_3 = \text{span}(\partial/\partial x_1)$. By simply calculation and observation of Lagrangian tangency orders we obtain that the conditions in the last column of Table 5 the row of $(S_\mu)^{1,3}$ are satisfied.

\[\square \]

4.5. Proof of the theorem 4.4.

Proof. In our proof we use vector fields tangent to $N \in S_\mu$. Any vector fields tangent to $N \in S_\mu$ may be described as $V = g_1 E + g_2 H$ where E is the Eulerian vector field and H is the Hamiltonian vector field and g_1, g_2 are functions. It was shown in [DT] (Prop.6.13) that the action of the Hamiltonian vector field on any 1-dimensional complete intersection is trivial.

The germ of a vector field tangent to S_μ of non trivial action on algebraic restriction of closed 2-forms to S_μ may be described as a linear combination germs of the following vector fields: $X_0 = E$, $X_1 = x_1 E$, $X_2 = x_2 E$, $X_3 = x_3 E$, $X_{1+2} = x_3^1 E$ for $1 < l < \mu - 3$, where E is the Euler vector field $E = \sum_{i=1}^{3} \lambda_i x_i \partial/\partial x_i$ and λ_i are weights for x_i.

Proposition 4.10. When μ is an even number then the infinitesimal action of germs of quasi-homogeneous vector fields tangent to N on the basis of the vector space of algebraic restrictions of closed 2-forms to N is presented in Table 6.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\mathcal{L}_{x_i}[\theta_j] & [\theta_1] & [\theta_2] & [\theta_3] & [\theta_4] & [\theta_{4+k}] \text{ for } 0 < k < r \\ \hline
X_0 = E & (r + 2)[\theta_1] & (r + 2)[\theta_2] & 2r[\theta_3] & (r + 2)[\theta_4] & (r + 2(k + 1))[\theta_{4+k}] \\ \hline
X_1 = x_1 E & 0 & -(r + 2)[\theta_4] & 0 & 0 & 0 \\ \hline
X_2 = x_2 E & -r[\theta_4] & 0 & -3/2[\theta_3] & 0 & 0 \\ \hline
X_3 = x_3 E & (r + 4)[\theta_4] & 0 & r[\theta_4] & 0 & (r + 2(k + 2))[\theta_{4+k}] \\ \hline
X_{1+2} = x_3^1 E & (r + 2l + 2)[\theta_{4+l}] & 0 & 0 & 0 & (r + 2(k + l + 1))[\theta_{4+l+k}] \\ \hline
X_{1+2} = x_3^1 E & (r + 2l + 2)[\theta_{4+l}] & 0 & 0 & 0 & 0 \\ \hline
\end{array}
\]

Table 6. Infinitesimal actions on algebraic restrictions of closed 2-forms to S_μ. $E = (\mu - 3)x_1 \partial/\partial x_1 + (\mu - 3)x_2 \partial/\partial x_2 + 2x_3 \partial/\partial x_3$.
Remark 4.11. When μ is an odd number we obtain a very similar table, we only have to divide by 2 all coefficients in Table [6]. The next part of the proof is written for even μ. In the case of odd μ we repeat the same scheme.

Let $A = [\sum_{l=1}^{\mu} c_l \theta_l]_{S_\mu}$ be the algebraic restriction of a symplectic form ω.

The first statement of Theorem [4.4] follows from the following lemmas.

Lemma 4.12. If $c_1 \neq 0$ then the algebraic restriction $A = [\sum_{l=1}^{\mu} c_l \theta_l]_{S_\mu}$ can be reduced by a symmetry of S_μ to an algebraic restriction $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$.

Proof of Lemma 4.12. We use the homotopy method to prove that A is diffeomorphic to $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$. Let $B_t = [c_1 \theta_1 + c_2 \theta_2 + c_3 \theta_3 + (1 - t) \sum_{l=1}^{\mu} c_l \theta_l]_{S_\mu}$ for $t \in [0; 1]$. Then $B_0 = A$ and $B_1 = [c_1 \theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$. We prove that there exists a family $\Phi_t \in Symm(S_\mu)$, $t \in [0; 1]$ such that

$$\Phi_t^* B_t = B_0, \quad \Phi_0 = \text{id.}$$

Let V_t be a vector field defined by $\frac{d\Phi_t}{dt} = V_t(\Phi_t)$. Then differentiating (4.5) we obtain

$$\mathcal{L}_{V_t} B_t = \sum_{l=1}^{\mu} c_l \theta_l.$$

We are looking for V_t in the form $V_t = \sum_{k=1}^{\mu-2} b_k(t) X_k$ where $b_k(t)$ for $k = 1, \ldots, \mu-2$ are smooth functions $b_k : [0; 1] \to \mathbb{R}$. Then by Proposition 4.10 equation (4.6) has a form

$$\begin{pmatrix} -r+2 & 0 & 0 & 0 \\ 0 & r-4 & 0 & 0 \\ 0 & 0 & (r+6) & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & (r+2k) & 0 \\ 0 & 0 & 0 & \frac{3}{2} r+3 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} b_1(t) \\ b_2(t) \\ b_3(t) \\ \vdots \\ b_{k+1}(t) \\ \vdots \\ b_{\mu-2}(t) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{\mu-3} \\ c_{\mu-2} \end{pmatrix}$$

If $c_1 \neq 0$ we can solve (4.7).

We obtain $b_3(t) = \frac{c_1}{c_2 (r+2)}$, and we may choose any b_1.

Other functions b_k are determined by that choice.

Let $b_1(t) = 0$. This imply $b_2(t) = \frac{c_1 c_3 - c_1 c_4}{(r+2)c_1}$, and we may choose any b_1.

Next $b_3(t) = \frac{c_2 c_3 - c_3 c_4}{(r+2)c_1} - \frac{(1-t)}{c_1} c_5 b_3(t)$, $b_5(t) = \frac{c_5 c_6 - c_5 c_7}{(r+2)c_1} - \frac{(1-t)}{c_1} (c_6 b_3(t) + c_6 b_4(t))$, consequently $b_{k+1}(t) = \frac{c_{k+3} c_{k+4} - c_{k+4} c_{k+5}}{(r+k+2)c_1} - \frac{(1-t)}{c_1} \sum_{l=3}^{k-1} c_{k+5-l} b_l(t)$ for $k < \mu - 3$, and eventually $b_{\mu-2}(t) = \frac{c_{\mu-4} c_{\mu-5} - c_{\mu-5} c_{\mu-6}}{(r+2k)c_1} - \frac{(1-t)}{c_1} \sum_{l=3}^{\mu-3} c_{\mu-2-l} b_l(t)$.

Diffeomorphisms Φ_t may be obtained as a flow of vector field V_t. The family Φ_t preserves S_μ, because V_t is tangent to S_μ, and $\Phi_t^* B_t = A$. Using the homotopy arguments we have A diffeomorphic to $B_1 = [c_1 \theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$. By the condition $c_1 \neq 0$ we have a diffeomorphism $\Psi \in Symm(S_\mu)$ of the form

$$\Psi : (x_1, x_2, x_3) \mapsto (c_1 \frac{x_1}{x_1}, c_1 \frac{x_2}{x_2}, c_1 \frac{x_3}{x_3})$$
and we obtain
\[\Psi^*(B_1) = [\theta_1 + \frac{c_2}{c_1} \theta_2 + c_3 \theta_3]S_\mu = [\theta_1 + \overline{c}_2 \overline{\theta}_2 + \overline{c}_3 \overline{\theta}_3]S_\mu. \]

Lemma 4.13. If \(c_1 = 0 \) and \(c_2 \neq 0 \) and \(c_{4+k} \neq 0 \) and \(c_l = 0 \) for \(5 \leq l < 4 + k \) then the algebraic restriction \(\mathcal{A} = [\sum_{l=1}^{\mu} c_l \theta_l]S_\mu \) can be reduced by a symmetry of \(S_\mu \) to an algebraic restriction \([\theta_2 + \overline{c}_3 \theta_3 + \overline{c}_{4+k} \theta_{4+k}]S_\mu \).

Proof of Lemma 4.13. We use similar methods as above to prove that lemma. If \(c_1 = 0 \) and \(c_2 \neq 0 \) and \(c_{4+k} \neq 0 \) and \(c_l = 0 \) for \(5 \leq l < 4 + k \) then \(\mathcal{A} = [c_2 \theta_2 + c_3 \theta_3 + \sum_{l=4+k}^{\mu} c_l \theta_l]S_\mu. \)

Let \(B_i = [c_2 \theta_2 + c_3 \theta_3 + (1 - t) c_4 \theta_4 + c_{4+k} \theta_{4+k} + (1 - t) \sum_{l=5+k}^{\mu} c_l \theta_l]S_\mu \) for \(t \in [0; 1] \). Then \(\mathcal{B}_0 = \mathcal{A} \) and \(\mathcal{B}_1 = [c_2 \theta_2 + c_3 \theta_3 + c_{4+k} \theta_{4+k}]S_\mu. \) We prove that there exists a family \(\Phi_t \in \text{Symm}(S_\mu) \), \(t \in [0; 1] \) such that
\[\Phi_t^* \mathcal{B}_i = \mathcal{B}_0, \quad \Phi_0 = \text{id}. \]

Let \(V_i \) be a vector field defined by \(\frac{d\phi}{dt} = V_i(\Phi_t) \). Then differentiating (4.9) we obtain
\[\mathcal{L}_{V_i} \mathcal{B}_i = [c_4 \theta_4 + \sum_{l=5+k}^{\mu} c_l \theta_l]S_\mu. \]

We are looking for \(V_i \) in the form \(V_i = \sum_{k=1}^{\mu-2} b_k(t)X_k \) where \(b_k(t) \) are smooth functions \(b_k : [0; 1] \to \mathbb{R} \) for \(k = 1, \ldots, \mu - 2 \). Then by Proposition 4.10 equation (4.10) has a form
\[\begin{bmatrix} -(r+2)c_2 & 0 & r c_3 & 0 & \cdots & 0 \\ 0 & 0 & (r+2k+4)c_{k+4} & 0 & \cdots & 0 \\ 0 & 0 & r c_l & 0 & \cdots & 0 \\ 0 & -\frac{3r^2}{2} c_3 & 3(1-t) r c_{l-1} & \cdots & 3 r c_{k+4} & 0 \cdots & 0 \end{bmatrix} \begin{bmatrix} b_1(t) \\ b_2(t) \\ b_3(t) \\ \vdots \\ b_{\mu-2}(t) \end{bmatrix} = \begin{bmatrix} c_4 \\ c_k+5 \\ \vdots \\ c_\mu \end{bmatrix}. \]

If \(c_2 \neq 0 \) we can solve (4.11). Diffeomorphisms \(\Phi_t \) may be obtained as a flow of vector field \(V_i \). The family \(\Phi_t \) preserves \(S_\mu \), because \(V_i \) is tangent to \(S_\mu \) and \(\Phi_t^* \mathcal{B}_i = \mathcal{A} \). Using the homotopy arguments we have that \(\mathcal{A} \) is diffeomorphic to \(\mathcal{B}_1 = [c_2 \theta_2 + c_3 \theta_3 + c_{4+k} \theta_{4+k}]S_\mu \). By the condition \(c_2 \neq 0 \) we have a diffeomorphism \(\Psi \in \text{Symm}(S_\mu) \) of the form
\[\Psi : (x_1, x_2, x_3) \mapsto (c_2 \overline{r} \overline{\theta}_3 x_1, c_2 \overline{r} \overline{\theta}_3 x_2, c_2 \overline{r} \overline{\theta}_3 x_3) \]
and we obtain
\[\Psi^*(\mathcal{B}_1) = [\theta_2 + c_3 c_2 \overline{r} \overline{\theta}_3 + c_{4+k} c_2(1+\frac{2k}{r}) \theta_{4+k}]S_\mu = [\theta_2 + \overline{c}_3 \overline{\theta}_3 + \overline{c}_{4+k} \overline{\theta}_{4+k}]S_\mu. \]

Lemma 4.14. If \(c_1 = 0 \) and \(c_2 \neq 0 \) and \(c_{4+k} = 0 \) for \(k \in \{1, \ldots, \mu - 5\} \) then the algebraic restriction \(\mathcal{A} = [\sum_{l=1}^{\mu} c_l \theta_l]S_\mu \) can be reduced by a symmetry of \(S_\mu \) to an algebraic restriction \([\theta_2 + \overline{c}_3 \overline{\theta}_3 + \overline{c}_\mu \theta_\mu]S_\mu \) where \(\overline{c}_3 \overline{c}_\mu = 0 \).
Proposition 4.10 equation (4.14) has a form V. We are looking for A homotopy arguments we have that c. In the case t Lemma 4.15. If $c_3 = 0$ we can solve only the first equation of (4.15). Using the homotopy arguments we have that A is diffeomorphic to $B_1 = [c_2 \theta_2 + c_3 \theta_3]_{S^\mu}$. By the condition $c_2 \neq 0$ we have a diffeomorphism $\Psi \in Symm(S^\mu)$ of the form

\[(4.16) \quad \Psi : (x_1, x_2, x_3) \mapsto (c_2^{-\frac{\alpha}{r_2}} x_1, c_2^{-\frac{\alpha}{r_2}} x_2, c_2^{-\frac{\alpha}{r_2}} x_3) \]

and we obtain

\[\Psi^* (B_1) = [\theta_2 + c_3 c_2^{-\frac{\alpha}{r_2}} \theta_3]_{S^\mu} = [\theta_2 + \bar{c}_3 \theta_3]_{S^\mu}. \]

In the case $c_3 = 0$ we take $B_1 = [c_2 \theta_2 + (1-t)c_4 \theta_4 + c_5 \theta_5]_{S^\mu}$ for $t \in [0;1]$ and we can solve only the first equation of (4.15). Using the homotopy arguments we have that A is diffeomorphic to $B_1 = [c_2 \theta_2 + c_5 \theta_5]_{S^\mu}$. Using the diffeomorphism (4.16) we obtain

\[\Psi^* (B_1) = [\theta_2 + c_2 c_5^{-\frac{\alpha}{r_5}} \theta_5]_{S^\mu} = [\theta_2 + \bar{c}_5 \theta_5]_{S^\mu}. \]

\[\square \]

Lemma 4.15. If $c_1 = 0$ and $c_2 = 0$ and $c_3 c_4 + k \neq 0$ and $c_l = 0$ for $5 \leq l \leq 4 + k$ then the algebraic restriction $A = \sum_{i=1}^{\mu} c_i \theta_i]_{S^\mu}$ can be reduced by a symmetry of S^μ to an algebraic restriction $[\theta_3 + \bar{c}_4 \theta_4 + k + c_5 \theta_5 + k]_{S^\mu}$.

Proof of Lemma 4.15: If $c_1 = 0, c_2 = 0$ and $c_3 \neq 0$ and $c_4 + k \neq 0$ and $c_l = 0$ for $5 \leq l \leq 4 + k$ then $A = [c_3 \theta_3 + c_4 \theta_4 + \sum_{i=4+k}^{\mu} c_i \theta_i]_{S^\mu}$. Let $B_1 = [c_3 \theta_3 + (1-t)c_4 \theta_4 + c_4 + k \theta_4 + k + \sum_{i=5+k}^{\mu} c_i (t) \theta_i]_{S^\mu}$ for $t \in [0;1]$ where $c_i (t)$ are smooth functions $\bar{c}_i (t) : [0;1] \to \mathbb{R}$ such that $\bar{c}_i (0) = c_i$. Then $B_0 = A$ and $B_1 = [c_3 \theta_3 + c_4 \theta_4 + k + \sum_{i=5+k}^{\mu} \bar{c}_i (1) \theta_i]_{S^\mu}$.

Let Φ_t, $t \in [0;1]$, be the flow of the vector field $V = \frac{\alpha}{r_2} X_3$. We show that there exist functions \bar{c}_i such that

\[\Phi_t^* B_1 = B_0, \quad \Phi_0 = id. \]
Then differentiating (4.17) we obtain

\begin{equation}
\mathcal{L}_V B_l = [c_\ell \theta_\ell - \sum_{l=5+k}^\mu \frac{d\tilde{c}_l}{dt} \theta_l]S_\mu.
\end{equation}

We can find the \(\tilde{c}_l \) as solutions of the system of first order linear ODEs defined by (4.18) with the initial data \(\tilde{c}_l(0) = c_l \) for \(l = 5 + k, \ldots, \mu \). This implies that \(B_0 = A \) and \(B_1 = [c_3 \theta_3 + c_4 + k \theta_4 + k + \sum_{l=5+k}^\mu \tilde{c}_l(1) \theta_l]S_\mu \) are diffeomorphic. Denote \(\hat{c}_l = \tilde{c}_l(1) \) for \(l = 5 + k, \ldots, \mu \).

Next let \(C_\ast = [c_3 \theta_3 + c_4 + k \theta_4 + k + \tilde{c}_5 + k \theta_5 + k + (1 - t) \sum_{l=6+k}^\mu \hat{c}_l(\theta_l)]S_\mu \) for \(t \in [0; 1] \).

Then \(C_0 = B_1 \) and \(C_1 = [c_3 \theta_3 + c_4 + k \theta_4 + k + \tilde{c}_5 + k \theta_5 + k]S_\mu \).

We prove that there exists a family \(\Psi_\ast C_l = C_0, \Psi_0 = id \).

Let \(V_l \) be a vector field defined by \(\frac{d^\mu}{dt^\mu} = V_l(\Psi_t) \). Then differentiating (4.19) we obtain

\begin{equation}
\mathcal{L}_{V_l} B_l = \left[\sum_{l=6+k}^\mu \hat{c}_l \theta_l \right]S_\mu.
\end{equation}

We are looking for \(V_l \) in the form \(V_l = \sum_{k=4}^{\mu-2} b_k(t)X_k \) where \(b_k(t) \) are smooth functions \(b_k : [0; 1] \rightarrow \mathbb{R} \) for \(k = 4, \ldots, \mu - 2 \). Then by Proposition 4.10 equation (4.20) has a form

\begin{equation}
\begin{bmatrix}
(r + 2k + 6)c_{k+4} & 0 & 0 & \cdots & 0 \\
(r + 2k + 8)c_{k+5} & (r + 2k + 8)c_{k+4} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
3r(1 - t)\tilde{c}_{\mu-1} & 3r\tilde{c}_{\mu-2}(1 - t) & 3r\tilde{c}_{\mu-3} & \cdots & 3r\tilde{c}_{\mu-6}
\end{bmatrix}
\begin{bmatrix}
b_4(t) \\
b_5(t) \\
\vdots \\
b_{\mu-2}(t)
\end{bmatrix}
= \begin{bmatrix}
\hat{c}_{k+6} \\
\hat{c}_{k+7} \\
\vdots \\
\hat{c}_{\mu}
\end{bmatrix}
\end{equation}

If \(c_{4+k} \neq 0 \) we can solve (4.21) and \(\Psi_t \) may be obtained as a flow of vector field \(V_l \). The family \(\Psi_t \) preserves \(S_\mu \), because \(V_l \) is tangent to \(S_\mu \) and \(\Psi_\ast C_l = C_0 = B_1 \). Using the homotopy arguments we have that \(A \) is diffeomorphic to \(B_1 \) and \(B_1 \) is diffeomorphic to \(C_1 \). By the condition \(c_3 \neq 0 \) we have a diffeomorphism \(\Psi \in Symm(S_\mu) \) of the form

\begin{equation}
\Psi : (x_1, x_2, x_3) \mapsto (|c_3|^{-\frac{1}{4}} x_1, |c_3|^{-\frac{1}{4}} x_2, |c_3|^{-\frac{1}{4}} x_3)
\end{equation}

and we obtain

\begin{equation}
\Psi_\ast(C_1) = \left[\frac{c_3}{|c_3|} \theta_3 + \tilde{c}_4 + k \theta_4 + k + \tilde{c}_5 + k \theta_5 + k \right]S_\mu = [sgn(c_3)\theta_3 + \tilde{c}_4 + k \theta_4 + k + \tilde{c}_5 + k \theta_5 + k]S_\mu.
\end{equation}

By the following symmetry of \(S_\mu^* \): \((x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3) \), we have that \(\theta_\mu \) is diffeomorphic to \([\theta_3 - \tilde{c}_4 + k \theta_4 + k - \tilde{c}_5 + k \theta_5 + k]S_\mu \).

\[\square \]

Lemma 4.16. If \(c_1 = 0 \) and \(c_2 = 0 \) and \(c_3 \neq 0 \) and \(c_l = 0 \) for \(5 \leq l < \mu - 1 \) then the algebraic restriction \(A = \sum_{l=1}^{\mu} c_l \theta_l |S_\mu \) can be reduced by a symmetry of \(S_\mu \) to an algebraic restriction \([\theta_3 + c_{\mu-1} \theta_{\mu-1}]S_\mu \).
Proof of Lemma 4.16 The prove of this lemma is very similar to previous case. It suffices to notice that if \(c_3 \neq 0 \) we can solve the following equation

\[
\begin{bmatrix}
0 & rc_3 \\
-\frac{n^2}{c_3} 3rc_{\mu-1} \\
\end{bmatrix}
\begin{bmatrix}
b_2 \\
b_3 \\
\end{bmatrix}
= \begin{bmatrix}
c_4 \\
c_\mu \\
\end{bmatrix}
\]

\[
(4.23)
\]

Lemma 4.17. If \(c_1 = c_2 = c_3 = 0 \) and \(c_{4+k} \neq 0 \) and \(c_1 = 0 \) for \(5 \leq l < 4 + k \) then the algebraic restriction \(\mathcal{A} = [\sum_{l=1}^{\mu} c_l \theta_l]_{S_{\mu}} \) can be reduced by a symmetry of \(S_{\mu} \) to an algebraic restriction \([c_4 \theta_4 + c_{4+k} \theta_{4+k}]_{S_{\mu}}.\)

Proof of Lemma 4.17 We use similar methods as above to prove that lemma. In this case \(\mathcal{A} = [c_4 \theta_4 + \sum_{l=4+k}^{\mu} c_l \theta_l]_{S_{\mu}}. \) Let \(B_t = [c_4 \theta_4 + c_{4+k} \theta_{4+k} + (1-t) \sum_{l=5+k}^{\mu} c_l \theta_l]_{S_{\mu}} \) for \(t \in [0;1]. \) Then \(B_0 = \mathcal{A} \) and \(B_1 = [c_4 \theta_4 + c_{4+k} \theta_{4+k}]_{S_{\mu}}. \) We prove that there exists a family \(\Phi_t \in \text{Symm}(S_{\mu}), t \in [0;1] \) such that

\[
\Phi_t^* B_t = B_0, \quad \Phi_0 = \text{id}.
\]

Let \(V_t \) be a vector field defined by \(\frac{d\Phi_t}{dt} = V_t(\Phi_t). \) Then differentiating \((4.24)\) we obtain

\[
(4.25)
\]

We are looking for \(V_t \) in the form \(V_t = \sum_{k=3}^{\mu-2} b_k(t)X_k \) where \(b_k(t) \) are smooth functions \(b_k : [0;1] \to \mathbb{R} \) for \(k = 3, \ldots, \mu - 2. \) Then by Proposition 4.10 equation \((4.25)\) has a form

\[
(4.26)
\]

If \(c_{4+k} \neq 0 \) we can solve \((4.26)\) and \(\Phi_t \) may be obtained as a flow of vector field \(V_t. \)

The family \(\Phi_t \) preserves \(S_{\mu} \), because \(V_t \) is tangent to \(S_{\mu} \) and \(\Phi_t^* B_t = \mathcal{A}. \) Using the homotopy arguments we have that \(\mathcal{A} \) is diffeomorphic to \(B_1 = [c_4 \theta_4 + c_{4+k} \theta_{4+k}]_{S_{\mu}}. \)

When \(c_4 \neq 0 \) we have a diffeomorphism \(\Psi \in \text{Symm}(S_{\mu}) \) of the form

\[
\Psi : (x_1, x_2, x_3) \mapsto ([c_4, -\frac{2c_4}{c_4+k} x_1, c_4, -\frac{2c_4}{c_4+k} x_2, c_4, -\frac{2c_4}{c_4+k} x_3])
\]

and we obtain

\[
\Psi^*(B_1) = [\text{sgn}(c_4) \theta_4 + c_{4+k} |c_4|^{-\frac{2k+2}{c_4+k}} \theta_{4+k}]_{S_{\mu}} = [\pm \theta_4 + \bar{c}_{4+k} \theta_{4+k}]_{S_{\mu}}.
\]

By the following symmetry of \(S_{\mu} \): \((x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3) \), we have that \([\theta_4 + \bar{c}_{4+k} \theta_{4+k}]_{S_{\mu}} \) is diffeomorphic to \([\theta_4 + c_{4+k} \theta_{4+k}]_{S_{\mu}}. \)

When \(c_{4+k} \neq 0 \) then we may use a diffeomorphism \(\Psi_1 \in \text{Symm}(S_{\mu}) \) of the form

\[
\Psi_1 : (x_1, x_2, x_3) \mapsto ([c_4 + \frac{2c_4}{c_4+k} x_1, c_4 + \frac{2c_4}{c_4+k} x_2, c_4 + \frac{2c_4}{c_4+k} x_3])
\]

and we obtain

\[
\Psi_1^*(B_1) = [c_4 c_{4+k}^{-\frac{2k+2}{c_4+k}} \theta_4 + \theta_{4+k}]_{S_{\mu}} = [\bar{c}_4 \theta_4 + \theta_{4+k}]_{S_{\mu}}.
\]
Statement (ii) of Theorem 4.4 follows from Theorem 4.9.

(iii) Now we prove that the parameters c_i are moduli in the normal forms. The proofs are very similar in all cases. We consider as an example the normal form with two parameters $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$. From Table 6 we see that the tangent space to the orbit of $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$ at $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$ is spanned by the linearly independent algebraic restrictions $[r\theta_1 + rc_2 \theta_2 + 2c_3 \theta_3]_{S_\mu}$, $[\theta_4]_{S_\mu}, [\theta_5]_{S_\mu}, \ldots, [\theta_\mu]_{S_\mu}$. Hence the algebraic restrictions $[\theta_2]_{S_\mu}$ and $[\theta_3]_{S_\mu}$ do not belong to it. Therefore the parameters c_2 and c_3 are independent moduli in the normal form $[\theta_1 + c_2 \theta_2 + c_3 \theta_3]_{S_\mu}$.

Statement (iv) of Theorem 4.4 follows from conditions in the proof of part (i).

REFERENCES

[A1] V. I. Arnold, First step of local symplectic algebra, Differential topology, infinite-dimensional Lie algebras, and applications. D. B. Fuchs’ 60th anniversary collection. Providence, RI: American Mathematical Society. Transl., Ser. 2, Am. Math. Soc. 194(44), 1999,1-8.

[AG] V. I. Arnold, A. B. Givental Symplectic geometry, in Dynamical systems, IV, 1-138, Encyclopedia of Mathematical Sciences, vol. 4, Springer, Berlin, 2001.

[AVG] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birhauser, Boston, 1985.

[D] W. Domitrz, Local symplectic algebra of quasi-homogeneous curves, Fundamentae Mathematicae 204 (2009), 57-86.

[DJZ1] W. Domitrz, S. Janeczko, M. Zhitomirskii, Relative Poincare lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety, Ill. J. Math. 48, No.3 (2004), 803-835.

[DJZ2] W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of varietes: the method of algebraic restrictions, J. reine und angewandte Math. 618 (2008), 197-235.

[DT] W. Domitrz, Z. Tr¸ ebska, Symplectic T7 singularities and Lagrangian tangency orders, [arXiv:1001.3351]

[DR] W. Domitrz, J. H. Rieger, Volume preserving subgroups of A and K and singularities in unimodular geometry, Mathematische Annalen 345(2009), 783-817.

[G] M. Giusti, Classification des singularités isolées d’intersections complètes simples, C. R. Acad. Sci., Paris, Sr. A 284 (1977), 167-170.

[IJ1] G. Ishikawa, S. Janeczko, Symplectic bifurcations of plane curves and isotropic liftings, Q. J. Math. 54, No.1 (2003), 73-102.

[IJ2] G. Ishikawa, S. Janeczko, Symplectic singularities of isotropic mappings, Geometric singularity theory, Banach Center Publications 65 (2004), 85-106.

[K] P. A. Kolgushkin, Classification of simple multigerm of curves in a space endowed with a symplectic structure, St. Petersburg Math. J. 15 (2004), no. 1, 103-126.

[W] C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, 63, Cambridge University Press, Cambridge, 2004.

[Z] M. Zhitomirskii, Relative Darboux theorem for singular manifolds and local contact algebra, Can. J. Math. 57, No.6 (2005), 1314-1340.

Warsaw University of Technology, Faculty of Mathematics and Information Science, Plac Politechniki 1, 00-661 Warsaw, Poland,
E-mail address: domitrz@mini.pw.edu.pl

Warsaw University of Technology, Faculty of Mathematics and Information Science, Plac Politechniki 1, 00-661 Warsaw, Poland,
E-mail address: ztrebska@mini.pw.edu.pl