Robotic subxiphoid-optical thymectomy

Masanori Shimomura, Shunta Ishihara, Satoru Okada and Masayoshi Inoue

Division of Thoracic Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan

*Corresponding author. Division of Thoracic Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan. Tel: +81-75-251-5739; fax: +81-75-251-5739; e-mail: mshimomu@koto.kpum.ac.jp (M. Shimomura).

Received 26 February 2022; received in revised form 6 April 2022; accepted 12 April 2022

Abstract

Robot-assisted thymectomy through a subxiphoid optical approach can provide a good surgical view, similar to that of median sternotomy. We originally used the subxiphoid port only for the robotic scope to avoid instrument collision with the assistant device. This approach, robotic subxiphoid-optical thymectomy, is advantageous for the safe and accurate dissection of the bilateral phrenic nerves and the left brachiocephalic vein, which are especially needed in extended thymectomy for patients with myasthenia gravis.

Keywords: Robotic surgery • Subxiphoid approach • Thymectomy

INTRODUCTION

Robotic thymectomy for thymic tumour and myasthenia gravis (MG) show good perioperative results and low local recurrence with med-term outcomes [1]. Trans-subxiphoid robotic thymectomy (TSRT) recently has the advantage of cosmetic aspects and good views around the left phrenic nerve and the upper pole of the thymus with uniportal assistance [2] or without port assistance [3].

We herein introduce a modified TSRT procedure as robotic subxiphoid-optical thymectomy (RST). The originality of RST is its use of only the robotic scope through the subxiphoid incision to avoid collision between the assistant device and the robotic arm.

TECHNIQUE

The operation is performed under general anaesthesia with differential lung ventilation using a double-lumen tube. The patient is positioned supine with a cushion on the right back and the right upper limb in a mild extended and dropped position. We used the Da Vinci Xi™ surgical system (Intuitive Surgical, Sunnyvale, CA, USA) with 3 arms: 8-mm ports placed in the right 6th intercostal space on the midclavicular line (arm 1), subxiphoid (arm 2: Camera, 30° oblique view) and the left 6th intercostal space on the midclavicular line (arm 3). A 12-mm Air Seal™ port (Conmed, Milford, CT, USA) is placed on the anterior axillary line of the right third intercostal space as an assistant port (Fig. 1A and B). The right thoracic cavity is first observed through the assistant port followed by the insertion of robotic arm-1 and arm-2 ports. The mediastinal pleura is opened to reach the left thoracic cavity, and the operation can be completed under bilateral ventilation using CO₂ insufflation. The arm-3 port is placed, and the patient cart of the Da Vinci Xi™ surgical system is rolled in and docked. The Long Bipolar Grasper™ and Bipolar Maryland Forcep™ (Intuitive Surgical) are used for both hands.

Robotic subxiphoid-optical thymectomy. Interact CardioVasc Thorac Surg 2022; doi:10.1093/icvts/ivac104.
Prefectural University of Medicine instead of obtaining informed consent from all participants.

DISCUSSION

In the present RST procedure, the surgical view is similar to that of median sternotomy, and safe dissection around the phrenic nerves is possible, even in patients with thymic tumours. The lateral approach, which is currently major, is often used for robot-assisted endoscopic thymectomy for thymic tumours and MG to allow easy recognition of mediastinal anatomy from the thoracic cavity [4]. It, however, might occasionally be insufficient to detect the opposite side of the phrenic nerve and of the upper pole of the thymus. We also had the same experiences in the right lateral approach. TSRT is another optional procedure of robotic thymectomy, in which the assist port is placed neighbour to the robotic scope under the xiphoid while reducing the number of ports [2]. However, intraoperative collision with the robotic scope can cause limited manipulation of the assistant, especially during dissection of the upper pole of the thymus. With RST, the

Diseases	N
Thymoma	3
Thymomatous MG	1
Stage^a	
I	2
II	2
III–IV	0
MG	1
Lymphoma	1
Thymic cyst	2
Thymic hyperplasia	2

^Stage on 8th edition of TNM classification.
MG: myasthenia gravis.
assistant port located distant from the robotic scope or instru-
ments can avoid instrument collision and allow safe vascular dis-
section using energy devices by the assistant. Unfortunately, it is
not possible to compare the RST with the lateral approach using
the data.

We have not yet evaluated postoperative pain for this proce-
dure with multiple ports due to the small sample size. We need
to accumulate more cases to evaluate whether RST is a patient-
friendly technique in thymectomy with its long-term outcome of
MG or thymoma.

In conclusion, the RST could be a safe and useful approach for
total thymectomy, which enables comfortable cooperation by
the console surgeon and assistant.

Conflict of interest: none declared.

Reviewer information

Interactive CardioVascular and Thoracic Surgery thanks Clemens Aigner, Rui
Haddad and the other, anonymous reviewer(s) for their contribution to the
peer review process of this article.

REFERENCES

[1] Geraci TC, Ferrari-Light D, Pozzi N, Cerfolio RJ. Midterm results for ro-
botic thymectomy for malignant disease. Ann Thorac Surg 2021;111:
1675–81.
[2] Suda T, Tochii D, Tochii S, Takagi Y. Trans-subxiphoid robotic thymec-
tomy. Interact CardioVasc Thorac Surg 2015;20:669–71.
[3] Kang CH, Na KJ, Song JW, Bae SY, Park S, Park IK et al. The robotic thy-
mectomy via the subxiphoid approach: technique and early outcomes.
Eur J Cardiothorac Surg 2020;58:139–43.
[4] Wei B, Cerfolio R. Robotic thymectomy. J Vis Surg 2016;2:136.