Structure and Properties of Isotactic Polypropylene/Polybutene-1 In-reactor Alloys

Ya-Ping Ma, Ning Zhang, Wei-Ping Zheng, Ai-Hua He*, and Chen-Guang Liu*

Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract The composition and structure of polymer largely determine the properties of its final products. As a novel polymer material, the composition, structure, and properties of the isotactic polypropylene/polybutene-1 in-reactor alloy (IPP/IPB alloy) synthesized by sequential two-stage polymerization with Ziegler-Natta catalyst were correlated for the first time in this work. The IPP/IPB alloy was fractionated by temperature rising elution fractionation (TREF) in a broad temperature ranged from –30 °C to 140 °C, and the chain microstructures and sequence distributions of isolated fractions were analyzed by DSC,GPC, 13C-NMR, and FTIR. The IPP/IPB alloy was composed of five components, namely high isotactic PB (PB, 85.8 wt%), medium isotactic PB (mPB, 5.1 wt%), poly((butene-1)-block-propylene) copolymers (PB-b-PP, 4.1 wt%) which contained PB and PP blocks with different lengths according to the isolation temperature, isotactic PP (IPP, 2.7 wt%), and atactic PB (aPB, 2.3 wt%). Compared to other commercial pipe materials, the IPP/IPB alloy presented outstanding thermal creep resistance and gas permeability resistance, high strength and low deformation at high temperature, and appropriate flexural strength. The roles of PP and PB-PP components in the alloy were interpreted. This work is expected to elucidate the potential application of IPP/IPB alloy as pipe materials and provide solutions for the design and synthesis of high performance pipe materials.

Keywords Polybutene-1; Alloy; Block copolymer; Structure; Property

Citation: Ma, Y. P.; Zhang, N.; Zheng, W. P.; He, A. H.; Liu, C. G. Structure and properties of isotactic polypropylene/polybutene-1 in-reactor alloys. Chinese J. Polym. Sci. 2020, 38, 1382–1391.

INTRODUCTION

Isotactic polybutene-1 (IPB) possessing excellent creep resistance, high toughness, and high thermal deformation temperature is widely used in hot-water pipe fields.[1] IPB exhibits complex polymorphic behavior and can crystallize into hexagonal form I′, tetragonal form II, or orthorhombic form III according to the crystallization situations.[2–4] The kinetically favored metastable form II crystallized from molten state can transform into thermodynamically stable form I spontaneously and irreversibly, and finally IPB with significantly enhanced mechanical properties is obtained.[5–11] However, this transformation usually takes more than one week and the long transition period inevitably increases the production cost of the IPB pipes. It was reported that mixing IPB with isotactic polypropylene (IPP) not only accelerated the II-I polymorphic transition, but also enhanced the strength of the final product.[12–14] However, the IPP/IPB blend was a thermodynamically immiscible system and presented phase separated morphology,[15–20] which led to unsatisfied properties of the IPP/IPB blends.[21,22]

* Corresponding authors, E-mail: ahhe@qust.edu.cn, aihuaheiiccas.ac.cn (A.H.H.)
E-mail: liuchenguang@qust.edu.cn (C.G.L.)
Received April 6, 2020; Accepted June 12, 2020; Published online August 24, 2020

© Chinese Chemical Society
Institute of Chemistry, Chinese Academy of Sciences
Springer-Verlag GmbH Germany, part of Springer Nature 2020

The IPP/IPB in-reactor alloys synthesized by sequential two-stage polymerization using MgCl2-supported Ziegler-Natta catalyst are proposed and expected to exhibit outstanding properties of IPP components without the above mentioned problems[23–27] by the incorporation of IPP and PP-b-PP block copolymers. IPP might accelerate polymorphic transition of IPB from form II to form I,[23] and the block copolymers might act as tie molecules to enhance the interfacial strength of IPP and IPB crystals and then contribute to higher impact resistance and higher tensile strength at higher temperature when compared with the mechanically blended IPP/IPB blends.[24] However, the comprehensive properties of these alloys including the creep resistance, gas permeability, and water vapor permeability are not reported due to the small quantity of samples. Our previous works have reported that the IPP/IPB in-reactor alloys were analyzed by solvent extraction fractionation method and components including heptane soluble fraction (IPB), heptane insoluble fraction (IPP and block copolymers), and ether soluble fraction (atactic polymers) were obtained.[25] Nevertheless, the accurate chain composition, chain sequence distribution, and fraction distribution of block copolymers in the IPP/IPB alloy and its influence on the properties of the alloy are not clear.

As an effective fractionation technique, temperature rising elution fractionation (TREF) has been used to fractionate semi-
crystalline polymers such as polypropylene,[28,29] polypropylene alloys,[30,31] polyethylene/polypropylene alloys,[32,33] trans-1,4-poly(isoprene-co-butadiene),[34] and even poly(1-butene) copolymer[35] according to the crystallizability of the polymer chains. In our recent work, a variety of copolymers containing various lengths of PB segments, PP segments, and poly(propylene-co-butene-1)) segments were fractionated firstly by TREF to analyze the composition of the IPP/PB alloys synthesized with varied vacuum treatment time between the propylene polymerization stage and butene-1 polymerization stage.[36] However, the comprehensive properties of these alloys are not reported due to the small quantity of samples.

Herein, an IPP/PB alloy synthesized with the 50 L autoclave was used to analyze the relationship between structure and properties of the multi-component alloy. Firstly, the alloy was fractionated by TREF within a broader elution temperature ranging from –30 °C to 140 °C. The chain microstructure and sequences distribution of main fractions were investigated by DSC, 13C-NMR, GPC, and FTIR techniques. The crystal-line structures including the lamellae thickness of PB crystals in the alloy were studied by SAXS. The mechanical properties of the IPP/PB alloy were characterized. The correlations between polymer chain structure, aggregation structure and mechanical properties of the IPP/PB alloy were provided in this work. It was interesting to find that the IPP/PB alloy with 93.2 wt% PB, 4.1 wt% PB-(butene-1) segments were fractionated by heptane extraction. No values for MFR and PDI of the IPP/PB alloy were synthesized by sequential two-stage polymerization in 50 L autoclave.[25] As commercial pipe materials, IPP (PB4235, Lyondell Basell) and cross-linked polyethylene (PEX, Korea LG) were used as comparison to the IPP/PB alloy. The physical parameters of these materials are summarized in Table 1.

EXPERIMENTAL

Materials

The IPP/PB alloy was synthesized by sequential two-stage polymerization in 50 L autoclave.[25] As commercial pipe materials, IPP (PB4235, Lyondell Basell) and cross-linked polyethylene (PEX, Korea LG) were used as comparison to the IPP/PB alloy. The physical parameters of these materials are summarized in Table 1.

Sample Preparation

The IPP/PB alloy, IPP, and PEX sheets for the mechanical and physical property measurements were compression molded at 190 °C for 5 min under 10 MPa pressure, and then quenched at room temperature under 10 MPa pressure for 5 min. After room temperature aging for 10 days, the mechanical and physical properties of the sheets were tested.

Thin films of the fractions of IPP/PB alloy for FTIR measurements were prepared by pressing on Specac GS03940 tabletting machine at 160 °C for 5 min under 20 MPa pressure.

P-TREF Experiment

Self-made preparative TREF (P-TREF) instrument with a broad temperature range (from –30 °C to 140 °C) was used to fractionate the IPP/PB alloy. About 1.5 g of IPP/PB alloy and 0.2 g of antioxidant (2,6-di-tert-butyl-4-methylphenol (264)) were added to xylene at 130 °C to get a clear solution with a concentration of 0.005 g/mL. Then the clear solution was quickly introduced into a glass elution column with 20 cm in length and 10 cm in diameter. The elution column stuffed with inert sand (0.3–0.6 mm size) was immersed in oil bath at 130 °C. Then the elution column was slowly cooled from 130 °C to –30 °C with a rate of 2 °C/h. The elution column was then heated up to a preprogrammed temperature from –30 °C to 140 °C with an interval of 10 °C at a rate of 1.0 °C/min, and synchronously eluted with xylene at the preprogrammed temperature for about 10 h after maintained at this temperature for 30 min. The elution solution was concentrated and precipitated by using plenty of ethanol and then filtered. The fractions were obtained by vacuum drying at 45 °C to constant weight. The fraction isolated at –30 °C was named as F–30°C and the fractions of other temperatures were all named according to this nomenclature.

Characterization

Differential scanning calorimetry (DSC) of polymer samples was carried out on DSC-8500 (PerkinElmer instruments) under the nitrogen flow. Firstly, about 5–10 mg of samples were heated from 30 °C to 200 °C with a rate of 10 °C/min. After maintained at 200 °C for 5 min to eliminate thermal history, the samples were cooled to 30 °C followed by reheating to 200 °C at 10 °C/min. The cooling and second heating curves of fractions of IPP/PB alloy were recorded accordingly. The first heating curves of IPP/PB alloy, IPP and PEX samples for mechanical tests were recorded. The relative crystallinity (Xc) of PB in IPP/PB alloy was determined according to the Eq. (1) and the Xc of IPP and PEX was determined according to the Eq. (2).

\[X_c(\%) = \frac{\Delta H_m}{(1-x_{PP})\Delta H_T^i} \times 100\% \]
\[X_c(\%) = \frac{\Delta H_m}{\Delta H_f^t} \times 100\% \]

where \(\Delta H_m \) is the melting enthalpy tested from the first DSC heating curve, \(\Delta H_f^t \) is the melting enthalpy of 100% crystallized PB (form I, 141 J/g) or PE (288 J/g),[37] and \(x_{PP} \) is the weight percentage of PP in IPP/PB alloy.

13C-nuclear magnetic resonance (NMR) measurements of the fractions were operated on 100 MHz Bruker AVANCE III spectrometer at 120 °C, and 1,2-dichlorobenzene-d6 was used as the solvent. In the 13C-NMR spectra of PB, the characteristic signals at 40.3, 35.1, 27.8, and 10.8 ppm were ascribed to the main chain methylene, methyne, side chain methylene, and methyl, respectively. The concentration of pendant sequence [m(nmm)] of PB and PP was calculated from the CH3 at 10.8 ppm and CH2 at 21.8 ppm, respectively.[38] In the 13C-NMR spectra of block copolymer fractions, signals at 42.6, 32.7 and

Table 1. Physical parameters of the samples.

Sample	MFR a	Mw b \(\times 10^{-4} \)	PDI b	Isotactic c (wt%)	PP d (wt%)
IPP/PB alloy	0.48	79.0	7.8	97.8	13.8
IPP/PB alloy	0.54	73.0	5.1	97.4	–
PEX	–	–	–	–	–

a Melt flow rate measured at 190 °C (2.16 kg) for IPP/PB alloy and IPP.
b Measured by high-temperature GPC. c Obtained by 13C-NMR. d Obtained by heptane extraction. No values for MFR and Mw of PEX due to cross-linking of this material.

https://doi.org/10.1007/s10118-020-2468-9
RESULTS AND DISCUSSION

TREF Fractionation and Fraction Analysis

In order to elucidate the exact fraction distribution as well as the structure and component of main fractions, the IPP/IPB alloy was fractionated step by step from −30 °C to 140 °C with TREF technology. Based on the fractionation principle, the crystallizability of the fractions increased with the increase in the elution temperature.[35] The information of all fractions is summarized in Table 2. The main fractions were characterized with NMR, DSC, FTIR, and GPC.

Atactic PB components

The fractions isolated at rather low elution temperature normally have poor crystallizability.[34,36] The BBBB sequences with 1,2-2,1,2-1,2-insertion of butene-1 monomers (a2 peak in Fig. 1A) and 36.7% pentad sequence concentration ([mmm]) indicated the F−30°C was atactic PB (aPB). F−10°C and F0°C with rather weak melting temperature (T_m) peak (melting enthalpy about 0.7 J/g) (Fig. 2) were assigned to aPB. The rather weak bands at 923 cm$^{-1}$ attributed to form I of iPB were observed in the FTIR spectra of F10°C and F20°C (Fig. 1B), indicating fractions including F10°C and F20°C were aPB. Therefore, the fractions eluted from −30 °C to 20 °C were aPB.

Medium isotactic PB components

Typical signals at 40.3, 35.1, 27.8, and 10.8 ppm representing the characteristic chemical shifts of main chain methylene, methyne, side chain methylene, and methyl of PB, respectively, were observed in the 13C-NMR spectrum of F40°C with about 88.8% [mmm] (Fig. 3). The relatively low T_m at about 60 °C (Table 2) and relatively low T_m at about 105 °C (Fig. 2) observed in F30°C and F40°C indicated these two fractions were medium isotactic PB (mPB).

High isotactic PB components

The F50°C, F60°C, and F70°C fractions showing typical chemical shifts of PB (Fig. 4) with 94.5%–94.8% [mmm] (Table 2) and the high melting temperatures at about 113 °C (Fig. 2) were assigned to high isotactic PB (iPB).[

Copolymer fractions

The fractions including F80°C−F110°C exhibited two T_m (Fig. 2) indicating the existence of both PB crystals ($T_m = 116$ °C) and PP crystals ($T_m = 145$–160 °C) in these fractions. Further, the 2.4 mol%−5.5 mol% propylene-butene dyad sequence concentration ([PP] in F90°C, F100°C, and F110°C (Fig. 5, Table 2) proved the high melting temperatures at about 113 °C (Fig. 2) were observed in the 13C-NMR spectrum of F40°C with about 88.8% [mmm] (Fig. 3). The relatively low T_m at about 60 °C (Table 2) and relatively low T_m at about 105 °C (Fig. 2) observed in F30°C and F40°C indicated these two fractions were medium isotactic PB (mPB).

Copolymer fractions

The fractions including F80°C−F110°C exhibited two T_m (Fig. 2) indicating the existence of both PB crystals ($T_m = 116$ °C) and PP crystals ($T_m = 145$–160 °C) in these fractions. Further, the 2.4 mol%−5.5 mol% propylene-butene dyad sequence concentration ([PP] in F90°C, F100°C, and F110°C (Fig. 5, Table 2) proved that these fractions were copolymers with PB and PP blocks.[35] The 93.4%−97.4% [mmm] in the copolymers indicated the high isotactivity of both PB and PP blocks in these fractions.

However, the 13C-NMR spectra of these fractions were totally different. Especially, the ([PP]/[mPB]) ratio in the fractions varied according to the fractionation temperature, indicating the exact chain sequence structures of these fractions were different. The propylene-propylene dyad sequence concentration ([PP]) increased from 22.7 mol% in F90°C to 50.3 mol% in F100°C, and then to 87.2 mol% in F110°C. Meanwhile, as the [PP] gradually increased with the increase of elution temperature, the T_m values of PP crystals in these fractions also increased from 145 °C to 161 °C, indicating much longer PP blocks formed more perfect crystals in fraction obtained at higher elution temperature. With the in
increase in elution temperature, the butene-butene dyad sequence concentration [BB] decreased from 74.9 mol% in F90°C to 44.2 mol% in F100°C and then to 9.8 mol% in F110°C, while \(T_m \) of the PB crystals dropped from 116 °C to 114 °C, indicating that the much shorter PB block in F110°C did not affect the perfection of PB crystals greatly. According to the DSC and \(^{13}C\)-NMR results, these fractions F80°C–F110°C were deemed as poly(butene-1)-block-propylene (PB-b-PP) copolymers containing different length, of PB blocks and PP blocks.

High isotactic PP components

Fractions including F120°C, F130°C, and F140°C presenting one melting peak at 164.6 °C (Fig. 2), typical chemical shifts at 46.5, 28.9, and 21.8 ppm assigned to the main chain methylene,

\(\text{Chemical shift (ppm)} \)

\begin{align*}
\text{a1} & \quad 28.9 \\
\text{a2} & \quad 21.8 \\
\text{b} & \quad 46.5 \\
\text{c} & \quad 10.7 \\
\text{d} & \quad 10.2 \\
\end{align*}

Fig. 1 \(^{13}C\)-NMR spectrum of F–30°C (A) and FTIR spectra of fractions (B).
methyne and side chain methyl of PP (Fig. 6), and 96.7% (Table 2) were high isotactic PP (\(i\)PP) component.

The component distribution of \(i\)PP/\(i\)PB alloy including the chain sequence structure and weight-average molecular weight of copolymer fractions are summarized in Fig. 7 and Table 2. Based on the above analysis, the \(i\)PP/\(i\)PB alloy was composed of \(i\)PB (85.8 wt%, \(>94\%\)), \(m\)PB (5.1 wt%), \(PB-b-PP\) copolymers (4.1 wt%), \(i\)PP (2.7 wt%, \(>96\%\)) and \(\alpha\)PB (2.3 wt%). PB component including \(i\)PB and \(m\)PB fractions as the major component occupied 90.9 wt% of the alloy.

The length of PP blocks in \(PB-b-PP\) copolymers increased with the increase in elution temperature (Fig. 7b). The weight-average molecular weight (\(M_w\)) of \(i\)PP component obtained in the first polymerization stage was about \(36.5 \times 10^4\), while \(M_w\) of \(i\)PB component obtained in the second polymerization stage was in the range of \(67.9 \times 10^4-79.3 \times 10^4\). \(M_w\) of block copolymers \(F80^\circ C\) and \(F110^\circ C\) was \(77.8 \times 10^4\) and \(15.7 \times 10^4\), respectively, reflecting the active centers producing \(F80^\circ C\) and \(F110^\circ C\) might lie in different locations in the PP particles and have different sensitivities to the chain transfer agents.

\[\text{https://doi.org/10.1007/s10118-020-2468-9} \]
Properties of the iPP/iPB Alloy Compared with Other General Pipe Materials

DSC and WAXD

For comparison, the crystalline structures of iPP/iPB alloy and two commercial polymers including iPB and PEX were studied. The iPP/iPB alloy after aging at room temperature for more than one week showed a melting peak at 129.2 °C (Fig. 8a) assigned to form I of PB (Fig. 8b) with crystallinity (X_c) of 52.2 %,[3] which was very close to the commercial iPB (T_m = 129.6 °C, X_c = 50.2%) and PEX (T_m = 130.9 °C, X_c = 60.6%) (Figs. 8a and 8b).[3][7] However, the iPB after aging at room temperature for more than one week showed residue and weak diffraction peak of form II, which almost disappeared in the pattern of iPP/iPB alloy (Fig. 8b). This result indicated that the iPP/iPB alloy had much higher form II-I transformation rate and higher relative fraction of the form I (X_c = 0.93) than that in iPB (X_c = 0.89).[10] The weak melting peak at 162.7 °C observed in the iPP/iPB alloy in Fig. 8(a) was assigned to α-PP crystal as proved by the weak diffraction peak at 2θ = 14.1° in Fig. 8(b).

SAXS

Two ordered scattering peaks were observed in one-dimensional scattering intensity distribution curves (Fig. 9a), indicating the formation of regular stacked layered crystal structures in these samples.[3] The values of d_{100}, d_{200} and d_{220} of PB form I in iPB and iPP/iPB alloy calculated by resultant correlation function curves of Fig. 9(b) are shown in Fig. 9(c).[3][11] The d_{100} of iPP/iPB alloy was 19.0 nm, which was a little larger than that of iPB (18.3 nm) and much larger than that of PEX (12.6 nm). The crystalline structures of the semi-crystalline polymers determine the properties and applications of the products. The highest crystalline lamellae thickness of PB in the iPP/iPB alloy was expected to contribute to the increased stiffness, modulus (E), yield stress (σ_y), chemical resistance and dimensional stability, and decreased yield strain (ε_y).[12] In addition, dense chain packing in the crystalline phase reduced the free volume of the
gas transportation and thus improved the gas resistance of the iPP/iPB alloy.\(^\text{[43]}\)

Creep resistance

Creep resistance as one of the most important properties was used to characterize the size stability at high temperature for materials as pipe application. iPB as the polyolefin with the best creep resistance was used as comparison to evaluate the creep behavior of iPP/iPB alloy.\(^\text{[1]}\) Fig. 10 clearly illustrates that iPP/iPB alloy containing a small amount of iPP and block copolymer components showed excellent thermal creep properties at 70 °C with much smaller deformation than that of iPB. Therefore, the incorporation of 2.7 wt% iPP and 4.1 wt% block copolymer components did improve the creep resistance of the alloy.

Permeability resistance

As another important parameter to evaluate the pipe material, permeabilities including gas permeability (Fig. 11a) and water vapor permeability (Fig. 11b) of samples were investigated. It can be seen that CO\(_2\) permeability was the highest and the air

Fig. 9 Evolution of one-dimensional scattering intensity distribution (a), \(K(z)\) curves calculated by correlation function (b), and crystalline parameters \(d_{ac}, d_c, d_a\) (c) of iPP/iPB alloy, iPB, and PEX.

Fig. 10 Creep behaviors of iPP/iPB alloy and iPB at 70 °C.

Fig. 11 Gas permeability (a) and water vapor permeability (b) of iPP/iPB alloy, iPB, and PEX.
permeability was the lowest for all three materials (Fig. 11a). The permeability is mainly influenced by the molecular size, solubility in the membrane, and condensation temperature of the gas molecules.[46] Compared with other gases, CO₂ with higher solubility in the membrane and small molecular size showed higher permeability.[46] It was worth noticing that IPP/IPP alloy showed the lowest permeability for air, O₂, and CO₂, and much lower than that of iPB, indicating the IPP/IPP alloy had much better gas permeability resistance when compared with iPB. The water vapor permeabilities of IPP/IPP alloy and iPB were almost similar (Fig. 11b), both lower than that of PEX. The higher water vapor permeability resistance of these materials when compared with that of gas was due to the polarity of water vapor providing high difficulty in permeability.[46]

Tensile tests

The mechanical properties including strengths at different deformations (10%, 100%) at constant temperature ranging from 20–100 °C are represented in Fig. 12. It can be observed that the strengths of all samples decreased and the elongations at break increased with increasing test temperature, which resulted in the gradual melting of the crystals and movements of the polymer chains. iPB and IPP/IPP alloy showed the similar strength at 10% and 100% elongation. Although the strengths at 10% elongation of PEX at 20–60 °C were higher than those of iPB and IPP/IPP alloy, the strengths of PEX at 80–100 °C became lower than those of iPB and IPP/IPP alloy (Fig. 12a). The higher strength at the high temperature of IPP/IPP alloy was attributed to its thicker lamellae thickness, which provided the integrity of the aggregation structure and then higher thermal stability of the IPP/IPP alloy at the higher temperature. The strengths at 100% elongation of IPP/IPP alloy and iPB were higher (Fig. 12b), and the elongations at break of IPP/IPP alloy and iPB (Fig. 12c) were lower than those of PEX at all testing temperatures. The IPP/IPP alloy possessed excellent size stability under higher temperature. Flexural strength of IPP/IPP alloy was around 15 MPa (Fig. 12d), which is similar to those of iPB and PEX, and can meet the requirements of winding, installation, and debugging of pipes, sheets, etc. in actual production.[1]

Discussion on the Relations for Composition, Structure and Properties of the IPP/IPP Alloy

The superior properties of semi-crystalline materials are naturally attributed to their structural advantages, which are mainly reflected by the microstructure and crystal structure of the materials.[46] Our previous work has proved that IPP/IPP blends showed the low critical solution temperature (LCST)-like phase-separated structure.[20] However, compared with the IPP/IPP blends containing the same PP content by mechanical blending method, the IPP/IPP alloy exhibited phase-separated structure with much smaller PP domains, which was attributed to the compatibilization of block copolymers.[24] As shown in Fig. 13,
the block copolymers in the iPP/iPB alloy may act as a tie molecule to enhance the interfacial entanglements between the PB and PP domains in the molten state.[24] The subsequent cooling and crystallization led to the stronger interfacial interaction between the PB and PP crystals, which could promote the stability of molecular chains and effectively constrain the mobility of polymer chains, resulting in higher mechanical properties of the iPP/iPB alloy, including excellent creep resistance and high strength at higher temperature.[24-26] The PP component in iPP/iPB alloy not only significantly accelerated the transformation of form II-I, but also acted as nucleating agents to induce PB to crystallize at a higher temperature than that of neat iPB[24] and resulted in much thicker PB lamellae in iPP/iPB alloy.[25] The thicker lamellae of PB in the iPP/iPB alloy could provide the integrity of the aggregation structure and higher thermal stability at higher temperature, which contributed to a higher strength at high temperature and improving the gas resistance.[49]

CONCLUSIONS

The iPP/iPB in-reactor alloy synthesized by sequential two-stage polymerization using MgCl2-supported Ziegler-Natta catalyst was mainly composed of 85.8 wt% iPB, 5.1 wt% mPB, 2.7 wt% iPP, 4.1 wt% PB-b-PP, and 2.3 wt% dPB. The minor PP component in iPP/iPB alloy not only accelerated the transformation of form II-I, but also benefited the increase in PB lamellae thickness without destroying the integrity of PB aggregate structures. The PB-b-PP block copolymers acting as the tie molecules improved the interfacial interactions between PP and PB crystals. Consequently, the resultant iPP/iPB alloy with thicker PB lamellae and improved interfacial interactions between PP and PB crystals presented the greatly satisfied mechanical properties including improved creep resistance and gas permeability resistance, tensile strength at high temperature compared with other general pipe materials.

ACKNOWLEDGMENTS

This work was financially supported by the Major Scientific and Technological Innovation Project of Shandong Province (No. 2019JZZY010352), Natural Science Foundation of Shandong Province (No. ZR2019MB072) and Taishan Scholar Program.

REFERENCES

1. Luciani, L.; Seppala, J.; Lofgren, B. Poly-1-butene: its preparation, properties and challenges. _Prog. Polym. Sci._ 1988, _13_, 37–62.
2. Qiao, Y. N.; Wang, Q.; Men, Y. F. Kinetics of nucleation and growth of form II to I polymorphic transition in polybutene-1 as revealed by stepwise annealing. _Macromolecules_ 2016, _49_, 5126–5136.
3. Li, L.; Liu, T.; Zhao, L. Direct melt-crystallization of isotactic poly-1-butene with form I using high-pressure CO2. _Polymer_ 2011, _52_, 5659–5668.
4. Lee, K. H.; Givens, S. R.; Snively, C. M.; Givens, S.; Chase, D. B.; Rabolt, J. F. Time-dependent transformation of an electrosprun isotactic poly(1-butene) fibrous membrane. _Macromolecules_ 2007, _40_, 2590–2595.
5. He, A. H.; Xu, C. S.; Shao, H. F.; Yao, W.; Huang, B. C. Effect of molecular weight on the polymorphic transformation of isotactic poly(1-butene). _Poly. Degrad. Stab._ 2010, _95_, 1443–1448.
6. Qiu, X.; Hu, C. L.; Li, J. Q.; Huang, D. H.; Jiang, S. C. Role of conformation in crystal formation and transition of polybutene-1. _Cryst. Eng. Commun._ 2019, _21_, 4243–4249.
7. Qiao, Y. N.; Men, Y. F. Intercrystalline links determined kinetics of form II to I polymorphic transition in polybutene-1. _Macromolecules_ 2017, _50_, 5490–5497.
8. Qiao, Y. N.; Yang, F.; Lu, Y.; Liu, P. R.; Li, Y. S.; Men, Y. F. Spontaneous form II to I transition in low molar mass polybutene-1 at crystallization temperature reveals stabilization role of intercrystalline links and entanglements for metastable form II crystals. _Macromolecules_ 2018, _51_, 8298–8305.
9. Qiao, Y. N.; Wang, H.; Men, Y. F. Retardance of form II to form I transition in polybutene-1 at late stage: a proposal of a new mechanism. _Macromolecules_ 2018, _51_, 2232–2239.
10. Ma, Y. P.; Zheng, W. P.; Liu, C. G.; Shao, H. F.; Nie, H. R.; He, A. H. Differential polymorphic transformation behavior of polybutene-1 with multiple isotactic sequences. _Chinese J. Polym. Sci._ 2020, _38_, 164–173.
11. Shao, H. F.; Ma, Y. P.; Nie, H. R.; He, A. H. Solvent vapor annealing induced polymorphic transformation of polybutene-1. _Chinese J. Polym. Sci._ 2016, _34_, 1141–1149.
12. Siegmann, A. Crystallization of crystalline/crystalline blends: polypropylene/polybutene-1. _J. Appl. Polym. Sci._ 1982, _27_, 1033–1065.
13. Shieh, Y.; Lee, M.; Chen, S. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. _Polymer_ 2001, _42_, 4439–4448.
14. Jones, A. T. Cocrystallization in copolymers of α-olefins II-butene-1 copolymers and type II/I crystal phase transition. _Polymer_ 1966, _7_, 23–59.
15. Ji, Y. X.; Su, F. M.; Cui, K. P.; Huang, N. D.; Qi, Z. M.; Li, L. B. Mixing assisted direct formation of isotactic poly(1-butene) form I crystals from blend melt of isotactic poly(1-butene)/polypropylene. _Macromolecules_ 2016, _49_, 1761–1769.
16. Wang, Z. F.; Dong, X.; Liu, G. M.; Xing, Q.; Cavallo, D.; Jiang, Q. H.; Müller, A. J.; Wang, D. J. Interfacial nucleation in iPP/iPB-1 blends promotes the formation of polybutene-1 trigonal crystals. _Polymer_ 2018, _138_, 396–406.
17. Zhong, Z. X.; Su, Z. H. Effects of molecular weight on polybutene-1 cold crystallization from polybutene-1/polypropylene blend. _Polymer_ 2019, _174_, 52–60.
18. Xu, Y.; Ma, Y. P.; Liu, C. G.; Men, Y. F.; He, A. H. Crystallization of forms I’ and form II of polybutene-1 in stretched polypropylene/polybutene-1 blends. _Polymer_ 2019, _182_, 121817.
19. Cham, P. M.; Lee, T. H.; Marand, H. On the state of miscibility of isotactic poly(propylene)/isotactic poly(1-butene): competitive liquid-liquid demixing and crystallization processes.
Xue, Y. H.; Liu, W.; Li, P.; Men, Y. F.; Bo, S. Q.; Ji, X. L. Preparative elution fractionation and fraction characterization of butadiene). Polym. Int., 122015.

Shao, H. F.; Ren, S. T.; Wang, R. G.; He, A. H. Temperature rising elution fractionation and fraction characterization of polyethylene/polypropylene in-reactor alloy synthesized in gas phase with spherical Ziegler-Natta catalyst. Macromolecules, 50, 1646−1653.

Xue, Y. H.; Fan, Y. D.; Bo, S. Q.; Ji, X. L. Characterization of the microstructure of impact polypropylene alloys by preparative temperature rising elution fractionation. Eur. Polym. J., 2011, 47, 1646−1653.

Liu, W.; Zhang, J. Q.; Hong, M.; Li, P.; Xue, Y. H.; Chen, Q.; Ji, X. L. Chain microstructure of two highly impact polypropylene resins with good balance between stiffness and toughness. Polymer 2020, 188, 122146.

Fu, Z. S.; Fan, Z. Q.; Zhang, Y. Z.; Xu, J. T. Chain structure of polyethylene/polypropylene in-reactor alloy synthesized in gas phase with spherical Ziegler-Natta catalyst. Polym. Int., 2004, 53, 1169−1173.

Xu, J. T.; Fu, Z. S.; Fan, Z. Q.; Feng, L. X. Temperature rising elution fractionation of PP/PE alloy and thermal behavior of the fractions. Eur. Polym. J., 2002, 38, 1739−1743.

Shao, H. F.; Ren, S. T.; Wang, R. G.; He, A. H. Temperature rising elution fractionation and fraction characterization of trans-1,4-poly(isoprene-co-butadiene). Polym. 2020, 186, 122015.

Xue, Y. H.; Liu, W.; Li, P.; Men, Y. F.; Bo, S. Q.; Ji, X. L. Preparative temperature rising elution fractionation of one poly(1-butene) copolymer and its chain microstructure characterization. Ind. Eng. Chem. Res., 2019, 58, 16869−16876.

Zheng, W. P.; Du, D. L.; He, A. H.; Ma, Y. P.; Shao, H. F.; Liu, C. G.; Hsiao, B. S. Temperature rising elution fractionation and fraction compositional analysis of polybutene-1/polypropylene in-reactor alloys. Mater. Today, Commun., 2020, 23, 100868.

Mirabella, F. M.; Bafna, A. Determination of the crystallinity of polyethylene/α-olefin copolymer by thermal analysis: relationship of the heat of fusion of 100% polyethylene crystal and the density. J. Polym. Sci., Part B: Polym. Phys., 2010, 40, 1637−1643.

Asakura, T.; Demura, M.; Nishiya, Y. Carbon-13 NMR spectral assignment of five polyolefins determined from the chemical shift calculation and the polymerization Mechanism. Macromolecules 1991, 24, 2334−2340.

Randall, J. A. 13C-NMR determination of the comonomer sequence distributions in propylene-butene-1 copolymers. Macromolecules 1978, 11, 592−597.

Doi, Y.; Asakura, T. Carbon-13 nuclear magnetic resonance analysis of inverted monomeric units in regioregular poly(1-butene). Macromolecules 1981, 14, 69−71.

Wang, Y. T.; Lu, Y.; Jiang, Z. Y.; Men, Y. F. Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1. Macromolecules 2014, 47, 6401−6407.

Krishnaswamy, R. K.; Yang, Q.; Fernandez-Ballestre, L.; Kornfield, J. A. Effect of the distribution of short-chain branches on crystallization kinetics and mechanical properties of high-density polyethylene. Macromolecules 2008, 41, 1693−1704.

Gao, H. W.; Bai, Y. P.; Liu, H. H.; He, J. M. Mechanical and gas barrier properties of structurally enhanced polyethylene terephthalate by introducing 1,6-hexanediolamine unit. Ind. Eng. Chem. Res., 2019, 58, 21872−21880.

Semsarzadeh, M. A.; Ghalei, B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J. Membr. Sci., 2012, 401−402, 97−108.

Hu, H.; Zhang, R. Y.; Wang, J. G.; Ying, W. B.; Zhu, J. Synthesis and structure-property relationship of biobased biodegradable poly(butylene carbonate-co-furanicarboxylate). ACS Sustain. Chem. Eng., 2018, 6, 7488−7498.

Shi, W. C.; Chen, F. H.; Zhang, Y.; Han, C. Viscelastic phases and interface assisted crystallization in a highly immiscible iPP/PMMA blend. ACS Macro Lett., 2012, 1, 1086−1089.

Chaffin, K. A. High-strength welds in metallocene polypropylene/polyethylene laminates. Science 2000, 288, 2187−2190.

Xu, J.; Eagan, J. M.; Kim, S. S.; Pan, S. S.; Lee, B.; Klimovica, K.; Jin, K. L.; Lin, T. W.; Howard, M. J.; Ellison, C. J.; LaPointe, A. M.; Coates, G. W.; Bates, F. S. Compatibilization of isotactic polypropylene (PP) and high-density polyethylene (HDPE) with iPP-PE multiblock copolymers. Macromolecules 2008, 51, 8585−8596.

Hui, J.; Ren, P. G.; Sun, Z. F.; Ren, F.; Xu, L.; Zhang, Z. P.; Ji, X. Interfacial adhesion on gas barrier property of functionalized graphene oxide/ultra-high-molecular-weight polyethylene composites with segregated structure. Compos. Interf., 2017, 24, 729−741.

Ma, Y. P. et al. Chinese J. Polym. Sci. 2020, 38, 1382−1391