Genome-wide identification of long non-coding RNAs in tomato plants irradiated by neutrons followed by infection with *Tomato yellow leaf curl virus*

Yujie Zhou¹, Won Kyong Cho², Hee Seong Byun³, Vivek Chavan¹, Eui-Joon Kil³, Sukchan Lee Corresp.³, Seung-Woo Hong Corresp.⁴

¹ Department of Energy Science, Sungkyunkwan University, Suwon, South Korea
² Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
³ Department of Genetic Engineering, Sungkyunkwan University, Suwon, South Korea
⁴ Department of Physics, Sungkyunkwan University, Suwon, South Korea

Corresponding Authors: Sukchan Lee, Seung-Woo Hong
Email address: cell4u@skku.edu, swhong@skku.ac.kr

Long non-coding RNAs (IncRNAs) play an important role in regulating many biological processes. In this study, tomato seeds were first irradiated by neutrons. Eight tomato mutants were then selected and infected by *Tomato yellow leaf curl virus* (TYLCV). RNA sequencing followed by bioinformatics analyses identified 1,563 tomato IncRNAs. About half of the IncRNAs were derived from intergenic regions, whereas antisense IncRNAs accounted for 35%. There were fewer IncRNAs identified in our study than in other studies identifying tomato IncRNAs. Functional classification of 794 IncRNAs associated with tomato genes showed that many IncRNAs were associated with binding functions required for interactions with other molecules and localized in the cytosol and membrane. In addition, we identified 19 up-regulated and 11 down-regulated tomato IncRNAs by comparing TYLCV infected plants to non-infected plants using previously published data. Based on these results, the IncRNAs identified in this study provide important resources for characterization of tomato IncRNAs in response to TYLCV infection.
Genome-wide identification of long non-coding RNAs in tomato plants irradiated by neutrons followed by infection with *Tomato yellow leaf curl virus*

Yujie Zhou 1,*, Won Kyong Cho 2,*, Hee-Seong Byun 3, Vivek Chavan 4, Eui-Joon Kil 3, Sukchan Lee 3,#, and Seung-Woo Hong 4,#

1Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
2Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
3Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
4Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

*These authors contributed equally to this work.

Corresponding authors:

Sukchan Lee (cell4u@skku.edu), Seung-Woo Hong (swhong@skku.ac.kr)
ABSTRACT

Long non-coding RNAs (lncRNAs) play an important role in regulating many biological processes. In this study, tomato seeds were first irradiated by neutrons. Eight tomato mutants were then selected and infected by *Tomato yellow leaf curl virus* (TYLCV). RNA sequencing followed by bioinformatics analyses identified 1,563 tomato lncRNAs. About half of the lncRNAs were derived from intergenic regions, whereas antisense lncRNAs accounted for 35%. The number of identified lncRNAs in our study was less than those of other previous studies identifying tomato lncRNAs. Functional classification of 794 lncRNAs associated with tomato genes showed that many lncRNAs were associated with binding functions required for interactions with other molecules and localized in the cytosol and membrane. In addition, we identified 19 up-regulated and 11 down-regulated tomato lncRNAs by comparing TYLCV infected plants to non-infected plants using previous published data. Based on these results, the lncRNAs identified in this study provide important resources for characterization of tomato lncRNAs in response to TYLCV infection.

Keywords:
Long non-coding RNA, next-generation sequencing, neutron irradiation, tomato, TYLCV infection, RNA-Seq
INTRODUCTION

Several of the numerous RNAs that are transcribed by plant genomes, such as messenger RNAs, are translated into proteins. However, others without coding capacity, including non-coding RNAs (ncRNAs), are abundantly present in plant cells (Fatica & Bozzoni 2014). Long non-coding RNAs (lncRNAs) are defined as non-coding RNAs longer than 200 nucleotides (nt) (Mercer et al. 2009). Due to the rapid advance of next-generation sequencing (NGS) techniques and bioinformatics tools, a large number of lncRNAs have been identified from various organisms such as animals and plants (Sun et al. 2017b). However, lncRNAs have been identified in a limited number of plant species such as Arabidopsis thaliana, medicago, potato, rice, strawberry, tomato (Solanum lycopersicum), and maize (Guo & Liu 2017; Kang et al. 2017; Nejat & Mantri 2017; Scarano et al. 2017; Zheng et al. 2017; Zhu et al. 2017). Furthermore, studies revealing functional roles of identified lncRNAs in plants are rare. A few studies have shown that lncRNAs might be involved in regulation of several biological functions, such as scaffolding of multiple proteins and gene expression (Ransohoff et al. 2017). In addition, some studies have demonstrated the involvement of plant lncRNAs in biotic and abiotic stresses. For example, previous studies using strand-specific RNA-sequencing has identified several lncRNAs in Arabidopsis (Zhu et al. 2014) and banana (Li et al. 2017), which might be responsible to infection of Fusarium oxysporum. Another study has identified DROUGHT INDUCED lncRNA (DRIR) from Arabidopsis, which plays a role in responses of drought and salt stress (Qin et al. 2017).

Plant transcriptomes can be affected by diverse environmental stimuli such as biotic and abiotic stresses (Nejat & Mantri 2017). Of the known and diverse irradiations, neutron irradiation can have an effect on the genome and transcriptome of living organisms. Furthermore, there are thousands of low energy neutrons in our natural environment, most originating from cosmogenic
neutron irradiation (Lal 1987). A short duration of cosmogenic neutron irradiation does not significantly damage living organisms; however, accumulated neutron radiation over a long time could be harmful (Bowlt 1994). Recently, neutron radiation has been used to generate deletion mutant populations in diverse plant species, such as barley, rice, pepper, sesame, and Arabidopsis, due to its efficient mutagenesis (Ahloowalia & Maluszynski 2001). In addition, those neutron radiation contributes to the evolution of plants on the earth. Changes of plant genomes by neutron irradiation is not always harmful. Sometimes, mutations caused by neutron irradiation in a plant could provide the resistance against a specific biotic stress such as virus infection.

The tomato is an economically important crop as well as a model plant for plant science. Tomato yellow leaf curl virus (TYLCV) is one of the serious pathogens causing heavy economical losses. TYLCV in the genus Begomovirus is a circular DNA virus and has a broad range of hosts (Moriones & Navas-Castillo 2000; Polston & Lapidot 2007). To date, many studies have conducted to find tomato cultivars resistance to identify resistance genes to TYLCV (Ji et al. 2007; Ji et al. 2009; Zamir et al. 1994). Furthermore, a few recent studies have shown that some lncRNAs are involved in TYLCV defense mechanisms in the tomato. For instance, two different lists of lncRNAs associated TYLCV infection have been identified from resistant and susceptible tomato plants, respectively (Wang et al. 2018a; Wang et al. 2015).

In this study, mutagenesis was performed on tomato seeds by neutron irradiation. The irradiated tomato plants were infected by TYLCV to select tomato mutants showing resistance against TYLCV infection. To reveal the functional roles of lncRNAs against TYLCV infection in neutron irradiated tomato plants, we conducted RNA-Sequencing (RNA-Seq) for the eight selected tomato mutants. As a result, we identified 1,563 tomato lncRNAs using RNA-Seq and bioinformatics analyses. Furthermore, we characterized the functional roles of the identified
IncRNAs and revealed differentially expressed IncRNAs in response to TYLCV infection using public available data.

MATERIALS AND METHODS

Neutron irradiation, plant growth, and TYLCV infection

In this study, we used seeds of the tomato cultivar ‘Seokwang,’ which is susceptible to TYLCV, for neutron irradiation. Two different seed conditions, dry and presoaked, were subjected to neutron irradiation using the MC_50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul, Korea. The presoaked seeds contain a higher portion of oxygen and hydrogen as compared to dry seeds. In particular, it is known that the oxygen can interact with the neutron during irradiation process producing the rapid reactive oxygen species (ROS). ROS plays a pivotal role as a signaling molecule in plants involved in pathogen defense (Apel & Hirt 2004). Thus, it will be interesting to examine possible effects of ROS in the plant transcriptome. The tomato seeds were subjected to neutron irradiation by proton bombardment of beryllium at 40 MeV energy and a 20 μA current. Two different irradiation times of 30 min and 90 min were applied. Neutron-irradiated tomato seeds were grown in a growth chamber under a 16 h light/8 h dark illumination time (CHENG & Edwards 1991). The five-week-old tomato seedlings were infected by TYLCV using a whitefly (Bemisia tabaci) vector. TYLCV infected tomato plants were grown for seven weeks in a growth chamber. The general experimental scheme is drawn in Figure 1A.

Sample collection and total RNA extraction

Leaf samples from individual tomato mutants showing TYLCV disease symptoms were harvested
and immediately frozen in liquid nitrogen. Each sample was examined for TYLCV infection by PCR using TYLCV specific primers. Total RNA was extracted using a Qiagen RNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions. DNase I was used to digest genomic DNA in the extracted RNA. The quantity and quality of RNA were measured by an Eppendorf BioPhotometer (MedWOW Ltd., Istanbul, Turkey) and agarose gel electrophoresis.

Library preparation and RNA sequencing

The poly(A) RNA libraries were prepared using an NEB Next Ultra RNA Library Prep Kit for Illumina (New England BioLabs Inc., Ipswich, MA, USA) according to manufacturer’s instructions. The prepared libraries were analyzed by a 2100 Bioanalyzer instrument (Agilent Genomics, Waldbronn, Germany) to measure quality. A total of eight libraries were paired-end (101 bp × 2) sequenced by an Illumina HiSeq 2000 system at Macrogen, Seoul, Korea. The raw sequenced data from this study were deposited in the SRA database at the National Center for Biotechnology Information with the following accession numbers, SRR6019475-SRR6019483. The detailed information of samples is provided in Table 1.

Assembly of tomato transcripts using RNA-Seq data

All raw data from eight libraries were aligned using Tophat 2.1.1 to the tomato reference genome (ITAG2.4_genomic.fasta) from the International Tomato Genome Sequencing Project (Trapnell et al. 2012). In addition, the Gene Transfer Format (ITAG2.4_gene_models.gff3) file was used for alignment using Tophat resulting in a single BAM file. The BAM file was subjected to Cufflinks 1.3.0 (Trapnell et al. 2010) to assemble transcripts. Finally, Cuffcompare was used to annotate
lncRNAs (Trapnell et al. 2010). We obtained assembled transcripts using Cufflinks. The assembled transcripts were subjected to Cuffcompare to annotate the assembled transcripts by comparing the assembled tomato transcripts to the tomato reference annotation. After that, all transcripts including lncRNAs were annotated. Based on annotation, identified lncRNAs were categorized as intergenic regions, antisense, overlapping, and intronic regions.

Identification of tomato lncRNAs

As shown in Figure 1B, several steps were used to predict novel lncRNAs from the assembled transcripts. First, we extracted assembled transcripts in a fasta format using the gffread program (Weirick et al. 2015). The assembled transcripts were subjected to the Coding Potential Calculator 2 (CPC2) to predict the coding capacity of each transcript with default parameters (Kang et al. 2017). Only transcripts labelled with “noncoding” predicted by CPC2 were included for further analyses. Second, the assembled transcripts were subjected to BLASTX (version 2.2.31) against a tomato protein database with an evalue of 1e-3 as a cutoff to exclude transcripts with a shared sequence similarity to known tomato proteins. In addition, the transcripts with lengths of less than 200 nt were discarded (Nagata et al. 2004). Third, the transcripts were subjected to PfamScan (version 31.0) with default parameters against the hmmer protein database (version 3.0b2) to identify those containing conserved protein domains (Li et al. 2016). Fourth, results from CPC2, PfamScan, and BLASTX were compared to exclude transcripts with coding capacities. Fifth, we excluded transcripts that showed sequence similarity to known miRNA precursors. For this, BLASTN with an evalue of 1e-3 as a cutoff was conducted against the plant miRNA precursors, house-keeping ncRNAs, small nucleolar RNAs (snoRNAs), and non-redundant (NR) protein databases (Liu et al. 2005; Pruitt et al. 2005; Xiao et al. 2009). Finally, we calculated the fragments
per kilobase of transcript per million mapped reads (FPKM) to identify IncRNAs using the Binary
version of Sequence Alignment (BWA) followed by the BBMap program with default parameters
(Li & Durbin 2010; Rodríguez-García et al. 2017). The transcripts in which FPKM values were
greater than one were considered putative IncRNAs.

Functional classification of IncRNAs and gene ontology (GO) enrichment analysis
To obtain a broad functional overview of identified IncRNAs, we predicted targets of identified
IncRNAs by BLASTN search against tomato mRNA sequences using an e-value of 1e-5 as a
cutoff. Finally, we selected 794 IncRNAs associated with tomato mRNAs. To predict The selected
tomato gene sequences were blasted against Arabidopsis genes (https://www.arabidopsis.org/) to
obtain known functions. A majority of tomato genes were converted to the corresponding
Arabidopsis locus. Using Arabidopsis loci, we conducted GO enrichment analysis using the
GOEAST program with default parameters (Zheng & Wang 2008). The GO terms obtained for
tomato genes possessing IncRNAs were classified according to biological process, molecular
function, and cellular component. The REVIGO program was used for visualization of enriched
GO terms (Supek et al. 2011).

Expression profiles for 1,563 IncRNAs in response to TYLCV infection
To establish the expression profiles for the 1,563 IncRNAs in this study, we used previously
published RNA-Seq data (PRJNA291401) (Wang et al. 2015). The published RNA-Seq data
consisted of three mock and three TYLCV infected samples. The identified 1,563 IncRNAs were
used as reference sequences. Raw sequence reads from the published RNA-Seq data were mapped
on the 1,563 IncRNAs using Tophat (Trapnell et al. 2012). Transcript assembly was conducted by
Cufflinks. TYLCV infected samples were compared to mock samples to identify differentially expressed genes (DEGs) using Cuffdiff based on a p-value less than 0.05 and a log$_2$(fold change) greater than one.

RESULTS

Assembly of tomato transcripts using eight RNA-Seq data

To maximize the identification of lncRNAs, we combined all raw data from eight libraries. Raw sequence reads from eight different libraries were subjected to mapping on the reference tomato genome. Of the 128 million reads from eight libraries, almost 117 million (92.2%) were mapped to the tomato genome, whereas about 11 million (8.8%) were not mapped (Table 2). The number of mapped reads ranged from 14,824,307 (30S1) to 16,273,849 (90D2), whereas the portion of unmapped reads ranged from 7.4% (90D2) to 12.0% (30S1). These mapped reads were used for transcript assembly by Cufflinks, resulting in a total of 39,067 transcripts (Figure 1B).

Identification of tomato lncRNAs

To identify putative tomato lncRNAs, nine different processes were applied (Figure 1B). First, 19,780 (50.63%) transcripts with coding capacity were excluded by the CPC2 program, and then a BLASTX search against tomato proteins excluded 17,029 (43.58%) transcripts. In total, 165 transcripts with lengths less than 200 nt were excluded. PfamScan was conducted to exclude three transcripts encoding conserved protein domains. This was followed by a BLASTN search against a miRNA precursor database, which excluded 13 transcripts. In addition, 89 and 10 transcripts were excluded by a BLASTN search for showing sequence similarity to known ncRNAs and snoRNAs, respectively. Finally, the remaining transcripts were subjected to a BLASTX search...
against the NR protein database in NCBI, which excluded 553 transcripts. As a result, we obtained 1,563 lncRNAs from eight tomato samples (Table S1).

Classification of identified tomato lncRNAs

The lengths of the identified lncRNAs ranged from 201 nt to 4,647 nt. About 26% (416 lncRNAs) of identified lncRNAs were more than 1,000 nt, while 74% of identified lncRNAs were less than 1,000 nt. However, most protein coding transcripts (94.3%) were less than 1,000 nt in size. Among the lncRNAs less than 1,000 nt, lengths ranged from 301 to 800 nt (Figure 2A). We compared the length distribution of identified lncRNAs between our study and a previous study (Wang et al. 2015). Both studies showed similar length distribution of identified lncRNAs. In particular, the length of lncRNAs ranged from 400 nt to 500 nt was the highest proportion in both studies. In addition, we examined the number of exons in lncRNAs as well as protein coding transcripts (Figure 2B). Most lncRNAs (90.2%) were derived from a single exon, and there were two lncRNAs, TCONS_00021506 and TCONS_00021507, derived from six and seven exons, respectively. However, the functions of corresponding genes were unknown. In comparison, half of the protein coding transcripts contain a single exon, whereas 11.7% of the protein coding transcripts have more than 10 exons.

Next, we categorized the identified lncRNAs. Most lncRNAs (49%) were derived from intergenic regions, followed by antisense lncRNAs (35%), overlapping (4%), and intronic regions (3%) (Figure 2C). Apart from the 769 lncRNAs derived from intergenic regions, 794 lncRNAs were associated with a gene. We further classified the 794 lncRNAs according to chromosome. Five lncRNAs were not assigned to any chromosome. It seems that they were located on random scaffold. With the exception of 110 lncRNAs on chromosome 1, the number of lncRNAs on each
chromosome ranged from 50 (Chromosome 12) to 77 (Chromosome 3), as shown in Figure 2D. The positions of identified lncRNAs on each tomato chromosome are indicated in a circos diagram (Figure 2E). In order to visualize the distribution of identified lncRNAs on different chromosomes, a combination of different graphs including bar plots and volcano plots were used. Interestingly, most lncRNAs were highly enriched at the beginning and the ending of each chromosome. There were relatively few lncRNAs located in the middle of individual chromosome.

Expression profiles of identified lncRNAs in eight samples

We examined the expression of 1,563 lncRNAs in eight different samples by calculating the FPKM values. Some lncRNAs were not expressed in eight conditions; however, most lncRNAs were highly expressed. In order to examine the distribution of the expression values for all identified lncRNAs, we generated a box plot using log_{10} converted FPKM values (Figure 3A). Although standard deviation showed a high degree of difference in each sample, minimum, median, and maximum values among samples did not show significant difference. Next, we conducted PCA analysis to cluster eight conditions based on gene expression of lncRNAs. Our result showed that seven conditions except the condition for soaked sample for 30 min (30S1) were clustered together (Figure 3B).

We next examined the expression profile of 1,563 lncRNAs in response to TYLCV infection using previously published data (Wang et al. 2015). As a result, 915 lncRNAs out of 1,563 were expressed in mock and TYLCV infected sample (Table S2). A volcano plot showed that the number of up-regulated lncRNAs (19 lncRNAs) was higher than that of down-regulated lncRNAs (11 lncRNAs) (Figure 3C). Expression of 30 differentially expressed lncRNAs were visualized by a heat map (Figure 3D). Unfortunately, the functions of those 30 differentially
expressed lncRNAs are not currently known due to lack of functional studies associated with tomato lncRNAs.

Functional classification of tomato genes associated with identified lncRNAs

Of the 1,563 lncRNAs identified, 794 were associated with tomato genes (Table S3). In order to reveal the functional roles of tomato genes associated with lncRNAs, we examined GO using corresponding *Arabidopsis* genes. GO enrichment analyses revealed that 47 GO terms (biological process), eight GO terms (cellular component), and 14 GO terms (molecular function) were highly enriched in tomato gene associated lncRNAs (Table S4). In relation to biological processes, GO terms associated with positive regulation of the abscisic acid-activated signaling pathway, organic substance metabolism, gluconeogenesis, organelle organization, and cellular catabolism were highly enriched (Figure 3E). Based on cellular component analysis, GO terms related to cytosol, membrane, and cell junction were highly enriched (Figure 3F). Interestingly, according to molecular function, many GO terms were associated with binding. For example, heterocyclic compound binding, phospholipase D activity, and ubiquitin protein ligase binding were frequently identified (Figure 3G).

Identification of target tomato mRNAs of the 1,563 lncRNAs

GO enrichment analysis revealed that many genes associated with lncRNAs have binding functions important for interaction of lncRNAs with other molecules such as RNAs and proteins. We identified target tomato mRNAs that showed strong sequence similarity to the lncRNAs identified by BLASTN search (Table S5).

Of the lncRNAs identified, 824 showed sequence similarity to at least one tomato mRNA.
For instance, 566 lncRNAs has a single target, whereas two lncRNAs showed sequence similarity to 10 different nucleotide sequences (Figure 4A). The lncRNA TCONS_00000794 (Figure 4B), which was 2,297 nt in length, displayed 10 different regions of six genes. The lncRNA TCONS_00003273, which was 2,081 nt in length, displayed 10 different regions of six genes (Figure 4C).

Of 30 differentially expressed lncRNAs, six lncRNAs showed sequence similarity to tomato mRNAs; however, functions of only three corresponding mRNAs are known. For instance, the lncRNA TCONS_00005642, which was down-regulated by TYLCV infection, is associated with BHLH transcription factor (Solyc02g063440.2). Two lncRNAs, TCONS_00020980 and TCONS_00035472, showed sequence similarity to a gene coding pyruvate decarboxylase 2 (Solyc06g082140.2) and a gene coding ariadne-like ubiquitin ligase (Solyc11g008590.1), respectively. Both lncRNAs were up-regulated by TYLCV infection.

DISCUSSION

In this study, we identified tomato lncRNAs that might be associated with at least two different factors. One is neutron irradiation, which causes mutagenesis in the tomato genome, and the other is TYLCV infection, which could change the tomato transcriptome. The irradiated tomato plants showed no significant disease symptoms after TYLCV infection. This result indicates that the genomes of tomato plants could be mutated by neutron irradiation. Thus, the transcriptional regulation in those tomato plants could be changed. We examined lncRNAs to check the change of transcriptome caused by neutron irradiation. Moreover, there were several previous studies identifying lncRNAs in response to TYLCV infection, which facilitates comparison of the lncRNAs among different studies. Since the release of the draft tomato genome sequence
(Consortium 2012), several studies have identified diverse tomato lncRNAs. To date, the identified
tomato lncRNAs are related with tomato fruit development (Scarano et al. 2017; Sun & Xiao 2015;
Wang et al. 2018b; Zhu et al. 2015) and TYLCV infection (Wang et al. 2018a; Wang et al. 2015).
It seems that fruit development and TYLCV infection, which was included in our study, are two
of the most important biological processes and pathogen responses associated with lncRNAs in
tomato plants.

Compared to two other studies associated with lncRNAs in response to TYLCV infection
(Wang et al. 2018a; Wang et al. 2015), the number of lncRNAs identified in our study (1,563
lncRNAs) is comparable (1,565 and 2,056 lncRNAs, respectively). A recent study demonstrated
that most lncRNAs with low expression are tissue-specific, whereas constitutively expressed
lncRNAs are highly conserved in plant species (Deng et al. 2018). Thus, it is important to identify
lncRNAs from diverse plant samples because some could be highly regulated by specific
environmental factors such as stress conditions, tissues, and developmental stage. For instance, a
recent study combining 134 RNA-Seq data has identified 70,635 lncRNAs (Wang et al. 2018b),
while the number of lncRNAs identified in other studies ranged from 1,565 (Wang et al. 2015) to
10,774 (Scarano et al. 2017).

Although we used a tomato cultivar susceptible to TYLCV, most neutron-irradiated plants
showed reduced disease symptoms or no symptoms. Thus, the expression of lncRNAs in our study
might be associated with a previous study using a tomato cultivar (CLN2777A) resistant to
TYLCV (Wang et al. 2015). The expression profile of the 1,563 lncRNAs in our study using the
previous study showed that about 59% of lncRNAs (915 lncRNAs) were transcribed. We
hypothesize cautiously that different genetic backgrounds caused by neutron irradiation change
the transcription of several lncRNAs, although both studies performed RNA-Seq followed by
TYLCV infection.

Although RNA-Seq facilitates the identification of numerous lncRNAs in many plant species, only a few lncRNAs were annotated and characterized (Liu et al. 2015). For instance, several studies showed that some lncRNAs are involved in biotic and abiotic stresses (Nejat & Mantri 2017). An Arabidopsis lncRNA known as ELENA1 interacts with MED19a to regulate PR1 expression functions in increased resistance against Pseudomonas syringae pv tomato DC3000 (Seo et al. 2017). As shown in previous studies, it is very important for lncRNAs to interact with DNAs to form a stable RNA-DNA complex to control the transcriptional activities of target genes (Liu et al. 2015). Previous studies also demonstrated that functions of lncRNAs rely on their binding properties with other nucleic acids and proteins (Marchese et al. 2017; Sun et al. 2017a). For example, many lncRNAs contain several functional regions which are required for interaction with other factors such as ribonucleoproteins and diverse RNA-binding proteins. Similarly, we found that many lncRNA associated mRNAs have binding functions such as nucleotide, small molecule, anion, and histone binding. This result directly suggests that the interaction of lncRNAs with target molecules is an important step in their transcriptional regulation of diverse biological processes, as shown recently (Shi et al. 2017).

Cytoplasm is the place where many lncRNAs are activated (Rashid et al. 2016). Similarly, GO enrichment analysis showed that the lncRNAs in our study were associated with the cytosol and plasma membrane, suggesting that these two cellular components are important places for lncRNAs. In addition, we found that many mRNA targets of lncRNAs were targeted to organelles such as plastids and mitochondria suggesting strong involvements of lncRNAs in organelle biogenesis. A recent study suggests that involvement of lncRNAs not only in nucleus but also in outside of the nucleus (Krause 2018). Of identified biological processes related to target mRNAs...
of lncRNAs, functions associated with hormone metabolism, lignin metabolism, developmental processes such as post-embryonic development and developmental process involved in reproduction were highly enriched. Similarly, recent studies also demonstrated the involvement of lncRNAs in metabolisms (An et al. 2018; Lu et al. 2016).

Most known lncRNAs were derived from intergenic regions. For example, a previous study showed that 89% of tomato lncRNAs were derived from intergenic regions, while antisense lncRNAs accounted for only 10% (Wang et al. 2018b). In contrast, our study revealed that 49% of lncRNAs was derived from intergenic regions, and antisense lncRNAs accounted for 35%. Moreover, the sizes of the lncRNAs in our study were relatively smaller than that of a previous study (Wang et al. 2015). We hypothesize cautiously that mutagenesis caused by neutron irradiation interferes with the transcriptional regulation of lncRNA expression, resulting in fewer small-sized lncRNAs.

Based on sequence similarity BLASTN search, we found several mRNA targets corresponding to identified lncRNAs. Most lncRNAs has a single mRNA target but some lncRNAs have multiple mRNA targets which might be members in the same gene family with strong sequence similarity. Therefore, it is likely that the lncRNAs with multiple target regulate expression of target mRNAs simultaneously.

CONCLUSION

The present study provides a comprehensive bioinformatics analysis of lncRNAs in tomato plants irradiated by neutrons, followed by TYLCV infection. Mutagenesis caused by neutrons influences the transcription of many lncRNAs with shorter lengths and increases the number of antisense lncRNAs. Furthermore, we identified key lncRNAs that are important for TYLCV infection. Based
on these results, the lncRNAs identified in this study provide important resources for characterization of tomato lncRNAs in response to diverse stimuli.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2017R1A2B2005117).

Competing Interests

The authors declare that they have no competing interests.

Author contributions

Y.Z., W.K.C., S.L., and S.W.H. designed the research; Y.Z., H.S.B., E.J.K., and V.C. performed the research; Y.Z. and W.K.C. analyzed the data; and Y.Z., W.K.C., S.L., and S.W.H. wrote the paper.

Data Availability

Raw sequence reads derived from eight samples as fastq files were deposited in the NCBI SRA database with respective accession numbers. Most detailed information associated with RNA-Seq data can be accessed in the SRA database with the project number PRJNA403767.
References

Ahloowalia B, and Maluszynski M. 2001. Induced mutations–A new paradigm in plant breeding. Euphytica 118:167-173.

An N, Fan S, Wang Y, Zhang L, Gao C, Zhang D, and Han M. 2018. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene 666:44-57.

Apel K, and Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399.

Bowlt C. 1994. Environmental radioactivity: Measurements and their meaning. Contemporary Physics 35:385-398.

CHENG SH, and Edwards G. 1991. Influence of long photoperiods on plant development and expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant, Cell & Environment 14:271-278.

Consortium TG. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635.

Deng P, Liu S, Nie X, Weining S, and Wu L. 2018. Conservation analysis of long non-coding RNAs in plants. Science China Life Sciences 61:190-198.

Fatica A, and Bozzoni I. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics 15:7-21.

Guo J, and Liu Y-G. 2017. Long non-coding RNAs play an important role in regulating photoperiod-and temperature-sensitive male sterility in rice. Science China Life sciences 60:443.
Ji Y, Schuster DJ, and Scott JW. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. *Molecular Breeding* 20:271-284.

Ji Y, Scott JW, Schuster DJ, and Maxwell DP. 2009. Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. *Journal of the American Society for Horticultural Science* 134:281-288.

Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, and Gao G. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. *Nucleic acids research* 45:W12-W16.

Krause HM. 2018. New and prospective roles for IncRNAs in organelle formation and function. *Trends in Genetics*.

Lal D. 1987. Cosmogenic nuclides produced in situ in terrestrial solids. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 29:238-245.

Li H, and Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. *Bioinformatics* 26:589-595.

Li H, Wang Y, Chen M, Xiao P, Hu C, Zeng Z, Wang C, Wang J, and Hu Z. 2016. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii. *Scientific reports* 6:34109.

Li W, Li C, Li S, and Peng M. 2017. Long noncoding RNAs that respond to Fusarium oxysporum infection in ‘Cavendish’banana (Musa acuminata). *Scientific reports* 7:16939.
Liu C, Bai B, Skogerbø G, Cai L, Deng W, Zhang Y, Bu D, Zhao Y, and Chen R. 2005. NONCODE: an integrated knowledge database of non-coding RNAs. *Nucleic acids research* 33:D112-D115.

Liu J, Wang H, and Chua NH. 2015. Long noncoding RNA transcriptome of plants. *Plant biotechnology journal* 13:319-328.

Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, and Guo L. 2016. Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). *PLoS One* 11:e0156723.

Marchese FP, Raimondi I, and Huarte M. 2017. The multidimensional mechanisms of long noncoding RNA function. *Genome biology* 18:206.

Mercer TR, Dinger ME, and Mattick JS. 2009. Long non-coding RNAs: insights into functions. *Nature Reviews Genetics* 10:155-159.

Moriones E, and Navas-Castillo J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. *Virus research* 71:123-134.

Nagata T, Iizumi S, Satoh K, Ooka H, Kawai J, Carninci P, Hayashizaki Y, Otomo Y, Murakami K, and Matsubara K. 2004. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. *Molecular Biology and Evolution* 21:1855-1870.

Nejat N, and Mantri N. 2017. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. *Critical Reviews in Biotechnology*:1-13.

Polston JE, and Lapidot M. 2007. Management of Tomato yellow leaf curl virus: US and Israel perspectives. *Tomato yellow leaf curl virus disease*: Springer, 251-262.
Pruitt KD, Tatusova T, and Maglott DR. 2005. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic acids research* 33:D501-D504.

Qin T, Zhao H, Cui P, Albesher N, and Xiong L. 2017. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. *Plant physiology*; pp. 00574.02017.

Ransohoff JD, Wei Y, and Khavari PA. 2017. The functions and unique features of long intergenic non-coding RNA. *Nature Reviews Molecular Cell Biology*.

Rashid F, Shah A, and Shan G. 2016. Long non-coding RNAs in the cytoplasm. *Genomics, proteomics & bioinformatics* 14:73-80.

Rodríguez-García A, Sola-Landa A, and Barreiro C. 2017. RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics. *Microbial Steroids*: Springer, 59-72.

Scarano D, Rao R, and Corrado G. 2017. In Silico identification and annotation of non-coding RNAs by RNA-seq and De Novo assembly of the transcriptome of Tomato Fruits. *PLoS One* 12:e0171504.

Seo JS, Sun H-X, Park BS, Huang C-H, Yeh S-D, Jung C, and Chua N-H. 2017. ELF18-INDUCED LONG NONCODING RNA associates with Mediator to enhance expression of innate immune response genes in Arabidopsis. *The Plant Cell*; tpc. 00886.02016.

Shi W, Quan M, Du Q, and Zhang D. 2017. The interactions between the long non-coding RNA NERDL and its target gene affect wood formation in Populus tomentosa. *Frontiers in plant science* 8:1035.
Sun X, Ali MSSH, and Moran M. 2017a. The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. *Biochemical Journal* 474:2925-2935.

Sun Y, and Xiao H. 2015. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. *BMC genomics* 16:948.

Sun Z, Nair A, Chen X, Prodduturi N, Wang J, and Kocher J-P. 2017b. UClncR: Ultrafast and comprehensive long non-coding RNA detection from RNA-seq. *Scientific reports* 7:14196.

Supek F, Bošnjak M, Škunca N, and Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS One* 6:e21800.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, and Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature protocols* 7:562.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, and Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature biotechnology* 28:511.

Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T, Ji Y, Yu W, and Zhang B. 2018a. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. *BMC plant biology* 18:104.

Wang J, Yu W, Yang Y, Li X, Chen T, Liu T, Ma N, Yang X, Liu R, and Zhang B. 2015. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. *Scientific reports* 5:16946.
Wang M, Zhao W, Gao L, and Zhao L. 2018b. Genome-wide profiling of long non-coding RNAs from tomato and a comparison with mRNAs associated with the regulation of fruit ripening. *BMC plant biology* 18:75.

Weirick T, Militello G, Müller R, John D, Dimmeler S, and Uchida S. 2015. The identification and characterization of novel transcripts from RNA-seq data. *Briefings in bioinformatics* 17:678-685.

Xiao B, Zhang X, Li Y, Tang Z, Yang S, Mu Y, Cui W, Ao H, and Li K. 2009. Identification, bioinformatic analysis and expression profiling of candidate mRNA-like non-coding RNAs in Sus scrofa. *Journal of Genetics and Genomics* 36:695-702.

Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, and Van-Oss H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. *Theoretical and Applied Genetics* 88:141-146.

Zheng Q, and Wang X-J. 2008. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. *Nucleic acids research* 36:W358-W363.

Zheng Y, Wang Y, Ding B, and Fei Z. 2017. Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans-Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. *Journal of Virology* 91:e00247-00217.

Zhu B, Yang Y, Li R, Fu D, Wen L, Luo Y, and Zhu H. 2015. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. *Journal of experimental botany* 66:4483-4495.
Zhu M, Zhang M, Xing L, Li W, Jiang H, Wang L, and Xu M. 2017. Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. *Genes* 8:274.

Zhu QH, Stephen S, Taylor J, Helliwell CA, and Wang MB. 2014. Long noncoding RNA s responsive to *Fusarium oxysporum* infection in *Arabidopsis thaliana*. *New phytologist* 201:574-584.
Figure legends

Figure 1. Schematic workflow to identify tomato IncRNAs.

(A) Experimental workflow for neutron irradiation, TYLCV infection, and RNA-Seq. The detailed experimental processes have been shown. First, tomato seeds were divided into two groups. The dry and soaked seeds were placed in distilled water for eight hours before being submitted to neutron irradiation for 30 and 90 minutes, respectively. Second, after irradiation, the seeds were cultivated in a growth chamber and then infected by TYLCV using whitefly. Third, total RNAs were extracted from samples, followed by library preparation and RNA sequencing. (B) Bioinformatic procedures to identify IncRNAs using RNA-Seq data. Paired-end sequence data from eight libraries were subjected to transcript assembly using Tophat and Cufflinks. For each step, the number of excluded transcripts was provided. Full nucleotide sequences and detailed information for 1,563 IncRNAs can be found on the figshare website (https://doi.org/10.6084/m9.figshare.5914396.v1).

Figure 2. Classification of identified tomato IncRNAs.

(A) Size distributions of identified IncRNAs and protein-coding transcripts in this study are visualized by green and red bars, respectively. (B) The proportions of exons associated with IncRNAs and protein-coding transcripts are indicated by blue and orange bars, respectively. (C) Categories of identified IncRNAs. (D) Number of IncRNAs identified on each tomato chromosome. Chromosomal distribution of the identified IncRNAs except those derived from intergenic regions. (E) Four different plot types including the rectangles, scatter, line, and area were used to visualize chromosomal positions of identified IncRNAs by a circos diagram.
Figure 3. Expression profiles of identified lncRNAs and their functional classification.

(A) Box plot showing the overall distribution of lncRNAs expression (log_{10} converted FPKM values) in eight samples. (B) PCA analysis of eight conditions based on the expression of lncRNAs. FPKM values of lncRNAs in eight conditions were subjected to PCA analysis using ClustVis program (https://biit.cs.ut.ee/clustvis/). (C) Volcano plot illustrating the distribution of p-values and fold changes for expression of lncRNAs in response to TYLCV infection compared to mock samples. Blue colored dots indicate differentially expressed genes (DEGs). (D) The expression levels of differentially expressed lncRNAs in response to lncRNAs visualized by a heat map. Enriched GO terms of the identified lncRNAs based on biological process (E), cellular component (F), and molecular function (G).

Figure 4. Identification of target mRNAs for the identified lncRNAs by sequence similarity.

(A) Number of target mRNAs for individual lncRNA revealed by a BLASTN search. The possible interactions of mRNAs with two selected lncRNAs, TCONS_00000794 (B) and TCONS_00003273 (C). Some lncRNAs showed sequence similarity to two regions of a mRNA indicated by 1 and 2.

Supplementary data

Table S1. Detailed information of the 1,563 identified lncRNAs.

For each identified lncRNA, detailed information including identity number, chromosome, RNA strand, position on chromosome, length, and FPKM value in each sample are provided.

Table S2. Expression profile of identified lncRNAs in response to TYLCV infection.
Expression profile of the identified lncRNAs in response to TYLCV infection was obtained. Green and red colors indicate down-regulated and up-regulated lncRNAs, respectively, which were selected by a p-value less than 0.05 and a log2(fold change) more than 1.

Table S3. List of tomato lncRNAs associated with mRNAs and their respective functions.

Table S4. Highly enriched gene ontology (GO) terms for tomato mRNAs associated with lncRNAs. Identification of GO enrichment information of identified lncRNAs.

Table S5. List of target mRNAs for identified lncRNAs.

Target mRNAs for each identified lncRNA are listed with blast results.
Table 1 (on next page)

Sample descriptions for identification of lncRNA from eight different tomato mutants in response to TYLCV infection.
Table 1 Sample descriptions for identification of IncRNA from eight different tomato mutants in response to TYLCV infection.

Sample	Seed condition	Neutron irradiation time	TYLCV infection	Protocol 1	Protocol 2	Protocol 3	Data
30D1	Dry	30 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019475
30D2	Dry	30 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019476
30S1	Soaked	30 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019477
30S2	Soaked	30 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019478
90D1	Dry	90 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019479
90D2	Dry	90 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019480
90S1	Soaked	90 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019481
90S2	Soaked	90 min	TYLCV infected	Leaf tissues	RNA extraction	Library preparation and RNA-Seq	SRR6019482
Table 2 (on next page)

Summary of sequence alignment for eight libraries from the tomato genome.
Table 2 Summary of sequence alignment for eight libraries from the tomato genome.

Library name	No. of raw sequence reads	No. of unmapped reads	No. of mapped reads
30D1	15,363,905	1,200,998 (7.8%)	14,162,907 (92.2%)
30D2	16,660,349	1,446,788 (8.7%)	15,213,561 (91.3%)
30S1	16,851,416	2,027,109 (12.0%)	14,824,307 (88.0%)
30S2	16,342,941	1,432,998 (8.8%)	14,909,943 (91.2%)
90D1	14,248,247	1,079,660 (7.6%)	13,168,587 (92.4%)
90D2	17,578,965	1,305,116 (7.4%)	16,273,849 (92.6%)
90S1	15,600,291	1,586,768 (10.2%)	14,013,523 (89.8%)
90S2	16,239,706	1,264,170 (7.8%)	14,975,536 (92.2%)
Total	128,885,820	11,343,607 (8.8%)	117,542,213 (92.2%)
Figure 1 (on next page)

Schematic workflow to identify tomato lncRNAs.

(A) Experimental workflow for neutron irradiation, TYLCV infection, and RNA-Seq. The detailed experimental processes have been shown. First, tomato seeds were divided into two groups. The dry and soaked seeds were placed in distilled water for eight hours before being submitted to neutron irradiation for 30 and 90 minutes, respectively. Second, after irradiation, the seeds were cultivated in a green chamber and then infected by TYLCV using whitefly. Third, total RNAs were extracted from samples, followed by library preparation and RNA sequencing. (B) Bioinformatic procedures to identify lncRNAs using RNA-Seq data. Paired-end sequence data from eight libraries were subjected to transcript assembly using Tophat and Cufflinks. For each step, the number of excluded transcripts was provided. Full nucleotide sequences and detailed information for 1,563 lncRNAs can be found on the figshare website (https://doi.org/10.6084/m9.figshare.5914396.v1).
A

1. **Neutron irradiation**
 - Dry seeds
 - Presoaked seeds
 - Neutron irradiation
 - Tomato seeds
 - Cultivation in a growth chamber

2. **Plant growth and TYLCV infection**
 - Tomato seedlings infected by TYLCV via whitefly
 - Cultivation of infected tomato plants for seven weeks
 - Collection of leaf samples

B

Transcript assembly

1. Alignment of RNA-Seq data
2. Assembly of transcripts by cufflinks
3. Annotation of transcripts by cuffcompare
4. Prediction of coding capacity by CPC2

Identification of IncRNAs

1. BLASTX against tomato proteins
2. Selection of transcripts > 200 nt in length
3. Identification of conserved domain by PfamScan
4. BLASTN against miRNA precursors
5. BLASTN against known ncRNAs
6. BLASTN against known snoRNAs
7. BLATX against NR database
8. Calculation of FPKM values

- 39,067 transcripts
- Exclude 19,780 transcripts
- Exclude 17,029 transcripts
- Exclude 165 transcripts
- Exclude 3 transcripts
- Exclude 13 transcripts
- Exclude 89 transcripts
- Exclude 10 transcripts
- Exclude 553 transcripts
- 1,563 IncRNA candidates
Figure 2 (on next page)

Classification of identified tomato IncRNAs.

(A) Size distributions of identified IncRNAs and protein-coding transcripts in this study are visualized by green and red bars, respectively. (B) The proportions of exons associated with IncRNAs and protein-coding transcripts are indicated by blue and orange bars, respectively. (C) Categories of identified IncRNAs. (D) Number of IncRNAs identified on each tomato chromosome. Chromosomal distribution of the identified IncRNAs except those derived from intergenic regions. (E) Chromosomal positions of identified IncRNAs visualized by a circos diagram.
Expression profiles of identified IncRNAs and their functional classification.

(A) Box plot showing the overall distribution of IncRNAs expression (log10 converted FPKM values) in eight samples. (B) PCA analysis of eight conditions based on the expression of IncRNAs. FPKM values of IncRNAs in eight conditions were subjected to PCA analysis using ClustVis program (https://biit.cs.ut.ee/clustvis/). (C) Volcano plot illustrating the distribution of p-values and fold changes for expression of IncRNAs in response to TYLCV infection compared to mock samples. Blue colored dots indicate differentially expressed genes (DEGs). (D) The expression levels of differentially expressed IncRNAs in response to IncRNAs visualized by a heat map. Enriched GO terms of the identified IncRNAs based on biological process (E), cellular component (F), and molecular function (G).
Figure 4 (on next page)

Identification of target mRNAs for the identified IncRNAs by sequence similarity.

(A) Number of target mRNAs for individual IncRNA revealed by a BLASTN search. The possible interactions of mRNAs with two selected IncRNAs, TCONS_00000794 (B) and TCONS_00003273 (C). Some IncRNAs showed sequence similarity to two regions of a mRNA indicated by 1 and 2.
