Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19: A new challenge for mental health and policymaking recommendations

Musaad A. Alshammari, Tahani K. Alshammari *

Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia

A R T I C L E   I N F O

Article history:
Received 15 November 2020
Received in revised form 24 May 2021
Accepted 31 May 2021

Keywords:
Coronavirus
COVID-19
2019-nCoV
Mental illness
Policymaking

A B S T R A C T

The coronavirus disease 2019 (COVID-19) infection has emerged lately, leading to a serious public health threat. The clinical features associated with COVID-19 are yet to be conclusively documented. Caution is needed when interpreting the severity of the symptoms as most of the diagnosed patients are those attending clinical assessments. Features of COVID-19 are far from understood. There is a suggested increased risk of COVID-19 infection among people with mental health disorders, which is primarily attributable to the challenges associated with limited resources. There are a variety of reasons why individuals with mental health disorders are more susceptible to infectious diseases. There is currently no specific recommended antiviral treatment. The interventions now used are supportive treatments to alleviate the symptoms and invasive mechanical ventilation. In this review, we discuss the adverse events associated with COVID-19 vaccinations. We further highlight the need to develop guidelines and recommendations for managing patients with mental health. It is evident from this review, there is a need to provide training programs with interprofessional, multidisciplinary communication channels.

© 2021 The Authors. Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In 2003, an increased human–animal interface facilitated greater distribution of the Severe acute respiratory syndrome-related coronavirus (SARS-CoV) in Guangdong Province, China [1]. In 2012 this facilitated the spread of the Middle East respiratory syndrome-related coronavirus (MERS-CoV) in Saudi Arabia and the Middle East. Both SARS-CoV and MERS-CoV can cause severe respiratory diseases [2–4]. In late December 2019, the Chinese Center for Disease Control and Prevention (China CDC) identified a novel coronavirus (19-nCoV) in the specimens of inpatients with pneumonia [5]. The virus is very similar to SARS-CoVs and was named SARS-CoV-2 [6]. Studies have shown that SARS–CoV-2 is a betacoronavirus that shares 79% of its sequence homology with SARS-CoV [3,7].

The challenge in reducing this new infection is that knowledge of how SARS-CoV-2 is spread, and its virulence is limited [8]. The virus
is believed to be transmitted primarily through droplets and contacts [9]. Transmission can also occur through aerosols, especially in places where people are in close proximity [9]. The identification of SARS-CoV-2 in stool samples also suggests that SARS-CoV-2 can spread through the gastrointestinal route [4,9]. There are cases where the virus cannot be identified in respiratory tract samples but is present in the stool specimen of carriers [9]. No evidence of transmission in newborns has been reported [9–11]. Furthermore, evidence regarding mother-to-child transmission suggests that the child cannot be infected through breast milk [4,9,12]. Another challenge with respect to containing the spread of the virus is that there is limited knowledge on how to effectively identify infected but asymptomatic persons. It is difficult to detect and isolate asymptomatic cases, especially those who exhibit fecal–oral transmission [4]. Undocumented infectious cases of COVID-19 pose the greatest danger in terms of disease transmission [8]. This danger has led to nations adopting travel restrictions and, in some areas, total lockdown and mandatory screening to identify and break the chain of SARS-CoV-2 transmission [8]. Transmission of the virus can also occur from discharged patients to a healthy population, as indicated by real-time reverse transcriptase-polymerase chain reaction outcomes [9].

The clinical features associated with COVID-19 are yet to be conclusively documented. Caution is needed when interpreting the severity of the symptoms as most of the diagnosed patients are those attending for clinical assessments. These patients are normally sicker, which increases the risk of detection bias and leads to over-representation of the severity of the illness [3]. There exist various undocumented infectious diseases whose epidemiological characteristics are unknown [8]. These undocumented cases include individuals who are infected but experience only mild or no symptoms; hence they are not identified and not hospitalized [4,8]. Although asymptomatic patients may not exhibit obvious signs of COVID-19, abnormal chest imaging may be observed, especially if a high-resolution chest computed tomography is used [4].

There is currently no specific recommended antiviral treatment [9]. The interventions currently used are supportive treatments to alleviate the symptoms and invasive mechanical ventilation, which is used in the management of respiratory distress [9]. In vitro studies have shown that Remdesivir and chloroquine are effective in controlling SARS-CoV-2, with chloroquine recommended as an effective antiviral therapy for COVID-19 patients. Moreover, because the disease is associated with bacterial comorbidities, antibiotics are also administered [9]. Systematic corticosteroids can also be used to address the rapid aggregation of the chest and acute respiratory distress syndrome. Additional interventions can also be adopted in accordance with the patient’s condition [9].

Overall mental health status and COVID-19

Mental health challenges elevate the likelihood of COVID-19 infection as they present unique challenges in terms of adherence to disease prevention guidelines [13]. Individuals who have mental health challenges, such as cognitive impairments, have unique needs that sometimes make social isolation a challenge [13]. There are a variety of reasons why individuals with mental health disorders are more susceptible to infectious diseases. For instance, lifestyle factors and engagement in health risk activities are responsible for the elevated likelihood of pneumonia [14]. A key reason for the elevated vulnerability to infection among people with mental health issues is that they are likely to exhibit cognitive impairment, which means their comprehension of the risk of COVID-19 infection is reduced, and they are less likely to immediately engage in actions to avoid contracting the illness [14–17]. People with mental health disorders may also fail to observe hygiene and social distancing measures [18]. The risk of COVID-19 pneumonia is high among patients who frequently take food or liquids into their lungs [19]. Individuals with mental health disorders may also lack the ability to recognize health problems and seek help from or communicate with healthcare providers regarding these problems [14]. Isolated persons with mental illness, especially those in psychiatric hospitals, might be disinherited or insensitive to the news concerning COVID-19, which limits their understanding of the steps that need to be taken to prevent the spread of the infection [16]. For those psychiatric patients who are undergoing care, their confinement in psychiatric wards might increase the likelihood of infection due to close human contact [16]. Psychiatric hospitals are not designed to meet the necessary standards of isolation in the event of infectious disease outbreaks [16]. Furthermore, the novelty of the COVID-19 infection means that the steps that need to be taken to manage infection among psychiatric patients are currently not fully understood [16]. The limited availability of beds in the psychiatric system also presents challenges in terms of implementing the recommended preventive and management measures [18]. For instance, 101 psychiatric patients in South Korea contracted COVID-19 as a result of being confined to a single health facility. This highlights the increased risk of COVID-19 infection among people with mental health disorders, which is primarily attributable to the challenges associated with limited resources [18,20]. The atypical presentation of COVID-19 related symptoms among people with mental illness also increases their risk of infection [14].

Comorbidities associated with mental health disorders also make the treatment of COVID-19 infection potentially less effective. Infections such as human immunodeficiency virus and tuberculosis, which are more prevalent among persons with mental health disorders, increase the likelihood of severe outcomes [21]. Those with mental health disorders who need to visit healthcare facilities for regular outpatient care may also be impacted negatively as a result of nationwide regulations on travel and quarantine [15].

Patients with mental illnesses are also likely to suffer stress. The negative emotional effects of COVID-19, which can include fear and depression, can lead to relapse or the severe outcomes associated with an existing mental illness [15,18,21,22]. For example, persons with epilepsy may also experience an increase in seizures as the COVID-19 infection places physical and emotional stress on the body [19]. Recently, massive national and international COVID-vaccination programs have been launched [23].

COVID-19 vaccinations and mental health adverse events

Following covid-19 massive vaccination programs, some neurological complications have been reported [24]. Among side effects associated with the COVID-19 vaccine, anxiety was reported more frequently in recipients. The majority of these recipients were females [23]. Gender–bias is well acknowledged in psychiatric diseases, especially mood disorders such as depression and anxiety [25]. Also, some anxiety-related signs and symptoms were reported immediately after the administration of the vaccine. These signs and symptoms include syncope, dizziness, j–like events [23] Other mental-related events were reported. For instance, one case has reported Guillain–Barre syndrome. An adult male expressed neurological symptoms, including an acute and progressive back pain and muscle weakness, along with clinical features of magnetic resonance imaging and cerebrospinal fluid examinations, supporting Guillain–Barre syndrome’s autoimmune neurological characteristics [26]. In another clinical report, a female patient with a history of Bell’s Palsy reported the onset of Bell’s Palsy [27]. Previous studies linked facial palsy and influenza vaccination [28,29]. During clinical trials, a vaccine recipient demonstrated transverse myelitis [30]. In a multiple sclerosis female patient treated with
rituximab, acute relapse has been reported. Multiple sclerosis is an autoimmune neurological disorder [31]. On the other hand, an observational study examined 500 multiple sclerosis patients following vaccination, and it was reported that about 2% of the recipients showed relapse, indicating the lack of significant association between COVID-19 vaccination and multiple sclerosis relapse [32]. Also, cases of cerebral venous sinus thrombosis have been reported. Two male recipients were reported to exhibit clinical features following the chimpanzee adenovirus-vectored COVID-19 vaccine [33]. In another report, a patient was admitted with myelitis. At the same time, his magnetic resonance imaging indicated an ovoid T2-hyperintense spinal cord lesion in the ChAdOx1 COVID-19 vaccine recipient [34]. Table 1 describes the main neurological complications reported following the COVID-19 vaccination.

### Policymaking and recommendations

Various steps can be taken to protect people with mental illness from infectious diseases such as COVID-19. These include putting in place measures that promote safe social behaviors, adopting preventive and management steps by caregivers and health care providers, and taking important considerations into account when using antipsychotics. For instance, rigid monitoring procedures are needed when prescribing medication for individuals with mental illness, mainly if they are elderly [35]. The potential side effects of atypical antipsychotics that are known to reduce immunity [36], should be carefully considered by health care practitioners. They must also assess the extent to which patients can tolerate the side effects of specific antipsychotic drugs. In cases where patients are also prescribed other drugs, the potential interaction between these drugs and the subsequent side effects needs to be determined [35]. Rigid adherence to the recommended dosage is, therefore, essential [37]. The severity of the side effects associated with antipsychotics means they should be prescribed only when needed [37]. Nursing homes administering inappropriately high levels of antipsychotics also registered a high incidence of pneumonia [38].

It is thus essential to educate health care practitioners who care for people with mental illnesses in nursing homes of the need to adhere to the recommended dose of antipsychotics [35]. Ongoing education should highlight the severe side effects patients are exposed to following high doses of antipsychotics [37]. It is also essential to educate health care personnel on the increased risk of infectious diseases among persons with mental illness as a result of the excessive prescription of antipsychotics. Besides, COVID-19 has been reported to be associated with multiple neurological symptoms, such as altered olfaction, delirium, and encephalitis [39]. The limited available resources highlighted the need to prioritize studies involving mental health, expand our research, and training programs to overcome these challenges.

In mental illness, both pharmacological and non-pharmacological interventions are implemented. With the pandemic wave and social distancing, most of the non-pharmacological inter-

### Conclusion

This epidemic experience has highlighted multiple needs. Firstly, the need to fill treatment gaps and establish a treatment delivery system that ensures continuous care rather than episodic. Secondly, the need to establish a service-led health care module rather than a needs-led module. Third, the need to provide the provision of appropriate mental health care in the short timescale [45].

As is evident from this review, particular emphasis is needed on training, continuing education, and interprofessional communication. Providing these training opportunities extends knowledge to reach and communicate existing ones to new practitioners and heading toward new strategies, approaches, and development in the field. Such training programs require interprofessional, multi-disciplinary communication channels.

### Author contributions

MAA and TKA Contributed equally to this work.
Funding

No funding sources.

Competing interests

None declared.

Ethical approval

Not required.

Acknowledgment

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSURP-36).

References

[1] Zhong NS, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003;362(9339):1533–8.
[2] Zaki AM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814–20.
[3] Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med 2020;20(2):124–7.
[4] Lin W, Wen J, Chen G. Clinical and pathological characteristics of 2019 novel coronavirus disease (COVID-19): a systematic review. medRxiv 2020:1–14.
[5] Zhu N, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33.
[6] Cascella M, et al. Features, evaluation and treatment coronavirus (COVID-19), in StatPearls Publishing StatPearls Publishing LLC. 2020.
[7] Zhang JJ, et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy 2020;00:01–12.
[8] Li R, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020. p. eabb3221.
[9] Yuan H, et al. A current emerging respiratory infection: epidemiological and clinical characteristics, diagnosis and treatments of COVID-19; 2020.
[10] Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr 2020;na(a/n).
[11] Chen Y, et al. Infants born to mothers with a new coronavirus (COVID-19). Front Pediatr 2020;8(104).
[12] Panahi L, Amiri M, Pouy S. Risks of novel coronavirus disease (COVID-19) in pregnancy: a narrative review. Arch Acad Emerg Med 2020;8(1):e34.
[13] Michael LM, et al. COVID-19 in older adults: key points for emergency department providers. J Geriatr Emerg Med 2020;1(4):1–6.
[14] Seminog Olga, Goldacre Mj. Risk of pneumonia and pneumococcal disease in people with severe mental illness: English record linkage studies. Thorax 2012;68(2):171–6.
[15] Yao H, Chen JY, X.YF. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry 2020;7(4):e21.
[16] Zhu Y, et al. The risk and prevention of novel coronavirus pneumonia infections among inpatients in psychiatric hospitals. Neurosci Bull 2020;36(3):299–302.
[17] Holmes EA, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry 2020;7(6):PS47–50.
[18] Miller D. Available from: Coronavirus on the inpatient unit: a new challenge for psychiatry; 2020 https://www.medscape.com/viewarticle/9268344#vp_2.
[19] Shafer PO, Gretch J. Available from: Concerns about COVID-19 (Coronavirus) and epilepsy; 2020 https://www.epilepsy.com/article/2020/3/concerns-about-covid-19-coronavirus-and-epilepsy.
[20] Kim MJ. How a South Korean psychiatric ward became a ‘medical disaster’ when patients tested positive for COVID-19. Coronavirus Int. Washington Post; 2020.
[21] Moukaddam Nidal, Shah A, 3rd April 2020 [cited 37]: Available from: Psychiatrists beware! The impact of COVID-19 and pandemics on mental health: page 2 of 2; 2020 https://www.psychiatriststimes.com/psychiatrists-beware-impact-coronavirus-pandemics-mental-health/page/0/1.
[22] SN. Comorbidity of mental and physical diseases: a main challenge for medicine of the 21st century. Shanghai Arch Psychiatry 2013;25(2):68–9.
[23] Hause AM, et al. Anxiety-related adverse event clusters after Janssen COVID-19 vaccination — five U.S. Mass vaccination sites; 2021. April 2021. 70.
[24] Goss AL, et al. ANA investigates: neurological complications of COVID-19 vaccines. Ann Neurol 2021;89(5):856–7.
[25] Alshammari TK. Sexual dimorphism in pre-clinical studies of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021;105:110120.
[26] Patel SU, et al. Guillain-Barre syndrome following the first dose of the chimpanzee adenovirus-vectored COVID-19 vaccine, ChAdOx1. BMJ Case Rep 2021;14(4).
[27] Repajic M, et al. Bell’s Palsy after second dose of Pfizer COVID-19 vaccination in a patient with history of recurrent Bell’s palsy. Brain Behav Immun Health 2021;13:100217.
[28] Kamath A, Maity N, Nayak MA. Facial paralysis following influenza vaccination: a disproportionality analysis using the vaccine adverse event reporting system database. Clin Drug Invest 2020;40(9):883–9.
[29] Renoud L, et al. Association of facial paralysis and mRNA COVID-19 vaccines: a disproportionality analysis using the World Health Organization pharmacovigilance database. JAMA Intern Med 2021, http://dx.doi.org/10.1001/jamainternmed.2021.2219.
[30] J. D. Oxford University resumes COVID-19 vaccine trials; 2020. Sept 12, [cited Nov 19, 2020].
[31] Etemadifar M, et al. Acute relapse and poor immunization following COVID-19 vaccination in a rituximab-treated multiple sclerosis patient. Hum Vaccin Immunother 2021;1–3.
[32] Achiron A, et al. COVID-19 vaccination in patients with multiple sclerosis: what we have learnt by February 2021. Mult Scler 2021;27(6):864–70.
[33] Mehta PR, et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination — a report of two UK cases. Brain Behav Immun Health 2021;95:514–7.
[34] Singh Malhotra H, et al. COVID-19 vaccination-associated myelitis. QJM 2021;114(9):8069.
[35] Rauscher A, 3rd April 2020: Available from: Study shows antipsychotics given to elderly impacts immune system & health; 2020 https://menafn.com/1099869307/Study-Shows-Antipsychotics-Given-to-Elderly-Imacts-Immune-System-Health.
[36] Al-Amin MM, Nasir Uddin MM, Mahmud Reza H. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 2013;11(3):144–51.
[37] May M, et al. The antipsychotic medication, risperidone, causes global immune-suppression in healthy mice. PLoS One 2019;14(6):e0218937.
[38] Chekani F, et al. Risk of pneumonia associated with atypical antipsychotic use in nursing home residents with Parkinson’s disease. J Psychiatr Res 2019;117:116–21.
[39] Favas TT, et al. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci 2020;41(12):3437–70.
[40] Moreno C, et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 2020;7(9):813–24.
[41] Simon FAJ, et al. The collateral damage of the COVID-19 outbreak on mental health and psychiatry. Int J Environ Res Public Health 2021;18(9).
[42] Centre, N.O.H.B.R, Oxford Precision Psychiatry Lab, Available from: Welcome to the oxford precision psychiatry lab (OxPPL); 2021 https://oxfordhealthbr. nhr.ac.uk/our-work/oxppl/.
[43] Centre, N.O.H.B.R, Oxford Precision Psychiatry Lab, Available from: OxPPL Team; 2021 https://oxfordhealthbr.nhr.ac.uk/our-work/oxppl/team/.
[44] Smith K, Ostinelli E, Cipriani A. Covid-19 and mental health: a transformational opportunity to apply an evidence-based approach to clinical practice and research. Evid Based Mental Health 2020;23(2):42.
[45] Bhugra D, et al. The WPA-Lancet Psychiatry Commission on the future of psychiatry. Lancet Psychiatry 2017;4(10):775–818.