Recently, it has become accepted that the tiny microbial cells harbored by the human gut play a significant role in health and in certain disease states, including obesity, diabetes, and cardiovascular disease. Although many details remain unclear, new technologies have uncovered many of the physiological benefits the human microbiota provides the host. A healthy gut microbiota plays a role in health, but imbalances can become pathological, increasing inflammation and contributing to metabolic dysfunction. Diet plays a significant role in shaping the composition and function of the microbiota. Eating patterns high in fruits, vegetables, whole grains, and legumes promote the abundance of healthier bacteria that produce short-chain fatty acids and other health-promoting metabolites. This article reviews the functions of the microbiota, how it is formed, and nutritional strategies to improve gut health.

Functions of the Microbiota
The human body harbors >100 trillion organisms; these are mostly bacteria, but also include archaea, viruses, parasites, and fungi, which together make up the microbiota (1,2). In the human body, these tiny microbial cells outnumber human cells by 10 to 1 (2–5). The microbiome, which is the collective genome of the microbiota community living in our gut, outnumber the human genome by 100- to 200-fold (2–5).

New nonculture-dependent technologies have led to the identification of 1,000 species and >3 million microbial genes, providing evidence of the symbiotic relationship this “organ” has with the human host (1,2,4). Known functions of the microbiota include degradation of nondigestible polysaccharides, synthesis of vitamins, strengthening of the microvilli, and protection of the host from pathogens by maintaining healthy gut barrier integrity (3,5–7). The gut microbiota is instrumental in the normal development of innate and adaptive immunity (4).

Factors Shaping the Composition of the Microbiota
The composition of the human gut microbiota is highly individualized, with marked variations in the species present. The development of a healthy microbiota is highly influenced by several factors: how a baby is delivered at birth, diet and nutrition, genetics, antibiotic use, illness, and the environment (5).

Vaginally delivered babies are exposed to Lactobacillus, Prevotella, and Sneathia species, whereas cesarean section–delivered babies, bypassing the exposure of important foundational species present in the vaginal pathway, are dominated by bacteria present on the skin such as Staphylococcus, Corynebacterium, and Propionibacterium species (8). Breastfed infants have higher populations of the genus Bifidobacterium and healthy strains of Ruminococcus,
important foundational species, with lower counts of *Escherichia coli*, *Clostridium difficile*, *Bacteroides fragilis*, and *Lactobacillus* species compared to formula-fed infants (5). Galacto-oligosaccharides, known prebiotics, are a key component in breast milk that increases the proliferation of *Bifidobacterium adolescentis* and *Bifidobacterium catenulatum* (9).

Bacterial communities become more complex as solid food is introduced in young children and are as complex by the age of 2 or 3 years as they are in adults. The adult microbiota is relatively stable but can be temporarily altered by changes in diet, disease, and environment. As other organ systems age, so too does the microbiota, becoming more susceptible to dysbiosis (alteration or imbalance of the microbiota) in elderly people (5). Age-related changes may be related to dietary changes related to the loss of sensation to taste and smell, tooth loss, and chewing difficulties (10).

Antibiotics are thought to have made permanent changes in the human microbiome, reducing microbial diversity and healthy strains and thus decreasing resistance to pathogens associated with disease (2). Exposure to antibiotics during the first postnatal months has been associated with a higher BMI later in life (11). Similarly, long-term use of antibiotics is associated with weight gain in adults (12).

Some researchers have cautioned that unintentional exposure to antibiotics may have contributed to the rise in obesity. In the United States, >70% of antibiotics are used in livestock, primarily to produce quicker weight gain with less feed (13). About 75% of the antibiotics given to feedlot animals are excreted in manure, contaminating surface water and groundwater and making their way into the food supply (13).

Dysbiosis, Obesity, and Diabetes

Some studies indicate that obese individuals have a higher proportion of the phyla *Firmicutes* and *Actinobacteria* and a reduced abundance of *Bacteroidetes* than their lean counterparts (2). Low gene count, also reported in obese individuals, is associated with weight gain, insulin resistance, dyslipidemia, inflammation, and fatty liver (4,14). A reduction in the abundance of the genus *Prevotella* and a higher count of *Staphylococcus aureus* has been reported in obese woman (5). *S. aureus* has been reported to trigger inflammation related to obesity in children (5).

Dysbiosis related to type 2 diabetes has produced similar findings, with reductions in *Bifidobacterium* and *Faecalibacterium prausnitzii*, two bacteria known to have anti-inflammatory effects (6). Bacterial genes associated with oxidative stress are more abundant in type 2 diabetes, whereas butyrate-producing bacteria and those associated with vitamin synthesis are diminished (4). *Akkermansia muciniphila* abundance is inversely associated with obesity and diabetes and is known to control fat storage, adipose tissue inflammation, and glucose metabolism (4). Interestingly, metformin and prebiotics have been reported to increase the abundance of *A. muciniphila* (4).

It is not entirely understood how dysbiosis causes metabolic dysfunction. It is hypothesized that alterations in the microbiota interfere with intestinal permeability, allowing lipopolysaccharide (LPS), a component of gram-negative bacteria cell walls, to enter the host and thus contributing to inflammation and subsequent insulin resistance and type 2 diabetes (2,3,5,6). A high fat intake has been associated with elevated LPS and inflammation in humans (3,6). Weight gain can also initiate an inflammatory response, causing an increase in pro-inflammatory factors in the adipose tissue and also affecting metabolism in the liver and muscle tissues (3,5). It has also been proposed that the microbiota controls fatty acid metabolism, which has not been confirmed in humans (2). Incretin hormones that regulate appetite and insulin sensitivity tend to be lower in people with type 2 diabetes and may be controlled by metabolites produced by the microbiota (2,3,5).

Nutrition and the Microbiota

Modulation of host microbiota with diet, prebiotics, or probiotics may offer potential therapies for improvements in body weight and glycemic control for the prevention and treatment of type 2 diabetes.

Eating Patterns and Food Groups

Dietary habits play a significant role in shaping the microbiota, providing substrates that determine the assortment of metabolites produced. Many researchers have suggested that a Western eating pattern may have altered the genetic composition and metabolic activity of the human microbiome, significantly contributing to modern diseases (15). Eating patterns higher in whole grains, fruits, vegetables, and legumes have been found to induce a more diverse microbial population, increasing the abundance of protective species while reducing the abundance of pathobionts and the production of inflammatory factors (16). High-fat, animal-based diets are associated with a low gene count and a higher abundance of bile-tolerant bacteria because fat causes more bile acids to be secreted (15).

Microbial metabolism of fat and protein in the colon can result in the formation of toxic metabolites such as ammonia, phenolic and indole compounds, amines, and sulfides (9,17). Carnitine and choline found in red meat and eggs are metabolized by gut microbes to produce trimethylamine, which is absorbed and further metabolized in the liver to trimethylamine-N-oxide (TMAO), a metabolite linked to the formation of atherosclerotic lesions (16). A recent study found that TMAO production after an L-carnitine challenge was dependent on microbiota
composition. Comparing participants following a vegan, vegetarian, or omnivore dietary pattern, both vegan and vegetarians had significantly lower plasma TMAO levels compared to omnivores (16).

Significant differences in terms of microbial composition and health have been demonstrated between plant-based or agrarian eating patterns and Western eating patterns. De Filippo et al. (18) compared the fecal microbiota of 14 young children (ages 1–6 years) living in rural Africa and consuming a high-fiber, low-fat diet to that of 15 children of matched age from Europe and consuming a Western eating pattern. The African children’s diet was high in animal protein, sugar, starch, and fat and had almost half the amount of dietary fiber found in the African children’s diet. The African children’s microbiota was significantly higher in Bacteroidetes and lower in Firmicutes compared to the European children. A higher ratio of Firmicutes to Bacteroidetes is associated with obesity and diabetes. The African children also had an abundance of the genera Prevotella and Xylanibacter, both having significant anti-inflammatory effects, which were completely lacking in the European children. The European children’s microbiota had an abundance of the genus Bacteroides, consistent with a high-fat, high-meat diet. The African children’s microbiome was more genetically diverse and contained a lower prevalence of the pathobiont Enterobacteriaceae and a higher amount of short-chain fatty acid (SCFA) production compared to the European children.

An analysis of 153 subjects, self-declared as vegan, vegetarian, or omnivore and all following a Mediterranean diet revealed marked variations in the microbial content and metabolites produced from each eating pattern (17). The vegan group scored highest in the adherence to the Mediterranean diet, evaluated by the Healthy Food Diversity (HFD) score, indicating a higher intake of fruits, legumes, and vegetables. Higher HFD scores were associated with beneficial microbial profiles, with a greater abundance of Roseburia, Lachnospira, and Prevotella and a significantly higher production of SCFAs. There are significantly higher levels of L-Ruminococcus, a genus assigned to the Lachnospiraceaee family, as well as higher levels of urinary TMAO in the group consuming the most protein-rich animal foods and dietary fat.

The two studies discussed above provide evidence that long-term adherence to a high-fiber, plant-based eating pattern can provide benefits to the composition of the microbiota.

A small intervention study using a strict vegetarian diet (72% carbohydrate, 16% protein, and 12% fat) for 1 month with six subjects with diabetes or hypertension demonstrated both clinical and microbial improvements (19). There were significant reductions in body weight, triglycerides, LDL cholesterol, and AIC and improvements in fasting and postprandial glucose levels. The composition and metabolites produced by the microbiota were also altered. The strict vegetarian diet resulted in a decrease in the ratio of the phyla Firmicutes to Bacteroidetes, a reduction in pathobionts, and specifically Enterobacteriaceae, a known pro-inflammatory species. Increases in commensal bacteria Bacteroides fragilis, Prevotella, Lachnospiraceaee (protects against C. difficile), and Ruminococaceae were noted, as well as reductions in inflammatory markers.

A longer-term intervention improved insulin sensitivity for 20 obese men with known coronary heart disease randomly assigned to either a Mediterranean diet or a low-fat, high-complex carbohydrate (LFHC) diet for 1 year. There was a reported increase in the abundance of Roseburia genus and F. prausnitzii for the Mediterranean diet and LFHC diet, respectively. The authors concluded that both eating patterns, which focus on an increase in fruits and vegetables, produced improvements in the microbiota, potentially reducing the risk of type 2 diabetes (20).

Epidemiological studies consistently demonstrate that dietary fiber, particularly whole-grain fiber, intake is inversely associated with type 2 diabetes and cardiovascular disease and has a beneficial impact on body weight and longevity (21–23). In a prospective, observational study, a high intake of cereal fiber was associated with a 33% lower risk of diabetes compared to a low intake. The authors proposed that whole grains may offer protection by increasing SCFA production and, in turn, their effect on increasing hepatic insulin sensitivity (22). A recent meta-analysis provided a quantitative estimation that consuming three servings of whole-grain foods per day would offer a 20% relative reduction in risk of type 2 diabetes compared to consuming a half serving (23). Other nutrients that contribute to health and are present in whole grains include minerals, vitamins, phytochemicals, phenolic compounds, lignans, and phytic acid (23). Human studies have demonstrated significant increases in the abundance of Bifidobacterium species and Lactobacillus/Enterococcus in participants consuming whole-grain wheat cereal (24). Other studies produced similar improvements with whole-grain barley flake and whole-grain brown rice flakes (24).

Other foods and beverages that have improved the microbiota in human studies include red berries (specifically blueberries) that are high in anthocyanins, almonds and pistachios, apples and bananas, and red wine (24). There has been negligible research on vegetables and legumes in
terms of modulating the microbiota (24).

Prebiotics
A prebiotic is defined as “a selectively fermented ingredient that allows specific changes, both in composition and/or activity, in the gut microbiota that confers health benefits upon host well-being and health” (3,9,25). Table 1 provides the criteria used to classify prebiotics. Prebiotics are carbohydrate compounds, mostly oligosaccharides, that resist digestion in the small intestine and are fermented in the colon, producing SCFAs and the growth of beneficial bacteria, specifically *Bifidobacterium*, *Lactobacillus* (25), *F. prausnitzii*, *A. muciniphila* (14), and *Ruminococcus bromii* (9).

Humans have been consuming prebiotics since prehistoric times. In fact, archaeological evidence of well-preserved coprolites has demonstrated that a typical adult male hunter-gatherer consumed 135 g inulin per day (25). The primary forms of dietary prebiotics include resistant starch, nonstarch polysaccharides, and nondigestible oligosaccharides (9,25,26). Fermentation of 100 g prebiotic can produce 20 g beneficial bacteria (25). Table 2 lists dietary source of prebiotics and their documented health outcomes.

Prebiotics improve satiety, decrease food intake, and are associated with reduced postprandial glucose levels (6,14). The mechanisms are not entirely understood, but these effects may be due to the production of SCFAs, which are ligands for G-protein–coupled receptors present on L-cells promoting the secretion of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) (3,6). Studies have demonstrated that prebiotic supplementation of 5–20 g prebiotic per day has produced changes in microbiota composition, increasing GLP-1 and PYY levels, reducing ghrelin, resulting in reduced hunger and energy intake and reduced postprandial glucose levels (3,12,27,28). Prebiotic supplementation with an inulin/oligofructose mix in obese women led to an increase in *Bifidobacterium* and *F. prausnitzii*, two bacteria reported to be reduced in type 2 diabetes (29). There was a marked reduction in serum LPS levels, reducing metabolic endotoxemia. SCFAs provide a direct energy source for colonocytes, resulting in increased thickness of the intestinal wall and reducing the risk of bacterial translocation (30). Other nutritional benefits of plant fermentation include the release of phytochemicals with anti-inflammatory and antioxidant properties and an enhanced bioavailability and uptake of minerals, including calcium, magnesium, zinc, and possibly iron (9,25,31). SCFA production reduces colonic pH, reducing the growth of pathogenic bacteria and their toxic metabolites (25). Table 3 lists the beneficial effects of SCFAs.

Table 1: Criteria for Prebiotic Classification (26)

For a food or substrate to be considered a prebiotic, it must be able to:

1. Resist digestion in the small intestine
2. Be fermented by the microbiota in the large intestine
3. Stimulate the growth and metabolic activity of beneficial species to improve the health and well-being of the host

Table 2: Dietary Sources of Prebiotics and Their Documented Health Outcomes

Dietary Sources of Prebiotics (25,26)	Evidence-Based Health Outcomes from Prebiotic Intake (25,30)
Breast milk	Prebiotic intake:
Leeks	• Increases the abundance of beneficial microorganisms
Asparagus	• Suppresses the proliferation of pathogenic microorganisms
Chicory	• Provides treatment for diarrhea
Jerusalem artichokes	• Helps with inflammatory bowel disease
Garlic	• Prevents colon cancer
Onions	• Improves the absorption of minerals, including calcium,
Whole-grain wheat	magnesium, zinc, and possibly iron, thus improving bone
Oats	mineral density (via enhancement of SCFA production)
Soybeans	• Reduces cardiovascular disease risk
Bananas	• Promotes satiety and helps with weight loss
	• Lowers colonic pH

Table 3: Beneficial effects of SCFAs (25,26)

- SCFAs provide a direct energy source for colonocytes, resulting in increased thickness of the intestinal wall and reducing the risk of bacterial translocation (30).
- Other nutritional benefits of plant fermentation include the release of phytochemicals with anti-inflammatory and antioxidant properties and an enhanced bioavailability and uptake of minerals, including calcium, magnesium, zinc, and possibly iron (9,25,31).
- SCFA production reduces colonic pH, reducing the growth of pathogenic bacteria and their toxic metabolites (25).
TABLE 3. SCFAs (4,30)

SCFAs include butyrate, acetate, and propionate. They are produced by fermentable prebiotics and other soluble dietary fiber and provide the host with many health benefits. SCFAs:

- Serve as a main fuel source for colonocytes, which strengthen the epithelium, potentially decreasing the translocation of antigens and LPS, and reduce endotoxemia and insulin resistance (butyrate)
- Reduce colonic pH, which inhibits the growth of pathogenic bacteria (butyrate)
- Enhance mineral absorption
- Stimulate the release of PYY and GLP-1, which decreases appetite and improves insulin sensitivity (propionate, acetate, and butyrate)
- Are metabolized in the liver and may play a role in reducing serum cholesterol levels (propionate)
- May enhance fatty acid oxidation and thermogenesis (butyrate)
- May activate intestinal gluconeogenesis, contributing to weight loss and glucose control (butyrate, propionate)

TABLE 4. Criteria for Probiotic Classification (32)

For a probiotic to be effective, it must:
1. Resist gastric, bile, and pancreatic digestion
2. Adhere to the mucosal and epithelial surfaces
3. Once colonized, remain metabolically active
4. Provide the host with protection from pathogens by secreting antimicrobial substances or preventing their adhesion and colonization
5. Demonstrate bile salt hydrolase activity

Probiotics

Probiotics are “live microorganisms that, when administered in adequate amount, provide a health benefit on the host” (25,32). Popular probiotic strains belong to the genera *Bifidobacterium* and *Lactobacillus* and include yeasts such as *Saccharomyces boulardii* (7). Fermentation of foods has been used for centuries to increase the shelf life and enhance the nutrition quality and flavor of foods (32).

Although the research has not been consistent, some probiotics studies involving healthy volunteers have shown reductions in body fat and improvements in insulin sensitivity. There have been fewer well-controlled trials involving individuals with diabetes (14). A review that included six clinical studies on individuals with diabetes found a reduction in inflammatory responses and oxidative stress, improved insulin sensitivity, and reduced fasting glucose with various probiotic dosages (33). However, further investigations are warranted to determine whether probiotics could be used for the prevention and treatment of diabetes.

Specific strains and dosage recommendations (or serving sizes of fermented foods) for diabetes have not yet been determined and therefore are not recommended for clinical practice. Interestingly, probiotics account for the largest share of the rapidly expanding functional food market (32). Table 4 and Table 5 list the criteria for probiotic classification and dietary sources of probiotics, respectively.

Nutrition Recommendations and Applications to Medical Nutrition Therapy

Whether alterations in gut microbial composition as a response to dietary change offer potential for the treatment of diabetes or diabetes risk reduction has not yet been determined. Human studies have demonstrated that a healthy microbiota profile is associated with diets high in fruits, vegetables, legumes, and whole grains and is accompanied by favorable health outcomes such as healthy body weight, reduced inflammatory markers, and lower insulin resistance. Dietary interventional trials have provided encouraging results. Further studies are needed to determine whether these changes are sustainable and provide long-term protection from metabolic dysfunction. Prebiotic food sources not only enhance the growth of beneficial bacteria, but also provide substrates for the production of biologically active metabolites. However, there is evidence that not all individuals respond in the same manner, further highlighting the complex nature of the microbiota and its coexistence with the human host (34).

Most Americans consume only 15 g fiber per day. Increasing intake to at least 25–38 g per day, including at least 5–20 g prebiotic sources, may enhance the production of SCFAs, improve gut barrier function, reduce body weight, and improve glycemic control (25). A gradual increase in fiber intake should be recommended to avoid undesirable gastrointestinal symptoms. It has been estimated that increasing fiber intake by just 14 g per day is associated with a 10% decrease in energy intake (25). In addition to weight control and reduced insulin resistance, fermentation of dietary fiber and the resulting production of SCFAs may play a role in improving fatty acid metabolism and reducing inflammatory responses (35). Diets high in plant-based food sources also increase microbial gene diversity, which has been seen in populations where diabetes and other metabolic diseases are scarce (17). Reducing dietary fat and animal protein may provide further benefits by reducing the abundance of bile-tolerant bacteria and the deleterious metabolites produced in the large intestine.
At present, there are no specific recommendations for probiotic use in clinical practice for diabetes. Over-the-counter products, although generally recognized as safe, may be expensive and are not regulated, so they may or may not contain the optimal strains for improving diabetes outcomes. Adding fermented foods to the diet is harmless and could potentially provide benefit to gut health. Further investigations are needed to provide more specific and individualized nutrition recommendations for modulating the microbiota to prevent diabetes or improve diabetes outcomes.

Duality of Interest

No potential conflicts of interest relevant to this article were reported.

References

1. Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the gut's microbiota. Gut Liver 2012;6:411–416
2. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients 2013;5:829–851
3. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012;3:279–288
4. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014;63:1513–1521
5. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Oruño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5:190
6. Everard A, Cani ED. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 2013;27:73–83
7. Bermudez-Brito M, Plaza-Diaz J, Muñoz-Quezeda S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metabol 2012;61:169–174
8. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971–11975
9. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res 2013;68:52–60
10. Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013;5:234–252
11. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 2013;37:16–23
12. Esteve E, Ricart W, Fernández-Real JM. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: did gut microbiota co-evolve with insulin resistance? Curr Opin Clin Nutr Metab Care 2011;14:483–490
13. Riley LW, Raphael E, Faerstein E. Obesity in the United States: dysbiosis from
exposure to low-dose antibiotics? Front Public Health 2013;1:69
14. Duart C, Alligier M, Salazar N, Neyrinck AM, Delzenne NM. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr 2014;5:624S–633S
15. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559–563
16. Glick-Bauer M, Yeh MC. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 2014;6:4822–4838.
17. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2015. Electronically published ahead of print (DOI: 10.1136/gutjnl-2015-309957)
18. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping the gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691–14696
19. Kim SM, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep 2013;5:765–775
20. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab 2016;101:233–242
21. InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct study and a meta-analysis of prospective studies. Diabetologia 2015;58:1394–1408
22. Chanson-Rolle A, Meynier A, Aubin F, et al. Systematic review and meta-analysis of human studies to support a quantitative recommendation of whole grain intake in relation to type 2 diabetes. PLoS One 2015;10:e0131377
23. Schulze MB, Schulze M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes. Arch Intern Med 2007;167:956–965
24. Graf D, Di Cagno R, Fåk F, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015. Electronically published ahead of print (DOI: 10.3402/mehd.v26.26164)
25. Slavin JL, Savarino V, Paredes-Diaz A, Fotopoulous G. A review of the role of soluble fiber in health with specific reference to wheat dextrin. J Int Med Res 2009;37:1–17
26. Krumbeck JA, Maldonado-Gomez MX, Ramer-Tait AE, Hutkins RW. Prebiotics and synbiotics: dietary strategies for improving gut health. Curr Opin Gastroenterol 2016;32:110–119
27. Chuang SC, Norat T, Murphy N, et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr 2012;96:164–174
28. Jardine MA. The role of the microbiota in obesity and diabetes. On the Cutting Edge 2015;35:10–14