Enlarged epitrochlear lymph nodes: an old physical sign revisited

ABSTRACT—Few doctors routinely examine the epitrochlear glands as part of their physical examination of a patient. No palpable epitrochlear nodes were detected in 140 healthy subjects, but palpable epitrochlear nodes were present in 27% of 184 patients with diseases in which lymphadenopathy occurs. Whilst epitrochlear nodes are commonly enlarged in specific acute, subacute, and chronic infections, they are not enlarged in the mild, transient, non-specific febrile illnesses with cervical lymphadenopathy of children and young adults. Enlarged epitrochlear glands provide a useful discriminatory sign in the diagnosis of glandular fever. Enlargement of these nodes is common in most of the lymphoproliferative disorders except Hodgkin’s disease. In rheumatoid arthritis their palpability indicates activity of hand joints. The examination of epitrochlear nodes should form part of the routine physical assessment of any ill patient.

The epitrochlear, or supratrochlear, nodes are the main peripheral glands in the upper limbs. In healthy individuals they are no more than a few millimetres in diameter, but when enlarged they may be palpable 2–3 cm proximal to the medial epicondyle anterior to the supracondylar ridge (Fig. 1). The epitrochlear glands are rarely palpable in health and their examination is a much neglected skill. Detecting enlargement of these glands is a good deal more useful diagnostically than the ‘sailor’s handshake’, said to be used for discovering the swollen glands of secondary syphilis, and a search for epitrochlear glands should always be made in any patient with suspected lymphadenopathy.

To our knowledge, this is the first clinical study of the prevalence of enlarged epitrochlear nodes, and we present here our findings in 324 subjects.

Methods

We examined the epitrochlear nodes in 140 normal subjects and 184 consecutive outpatients with conditions known to be associated with lymphadenopathy. Patients with leukaemia, other than chronic lymphatic leukaemia (CLL), were excluded, as were patients with primary haematological malignancies such as myelomatosis. We included 22 younger patients sent to hospital for evaluation of mild transient cervical lymphadenopathy for which no specific cause was subsequently found. Our patients also included 43 with seropositive rheumatoid arthritis of the hands and five patients with chronic skin conditions of the arms and hands. All 324 subjects were carefully examined for evidence of lymphadenopathy elsewhere and for hepatosplenomegaly. The patients with Hodgkin’s and non-Hodgkin’s lymphoma (NHL) were all with stage III or IV disease. For the purposes of this survey no distinction was made between high, intermediate and low grade NHL.

C. D. SELBY, MRCP(UK), Lecturer, Department of Respiratory Medicine, University of Edinburgh
H. S. MARCUS, MRCP(UK), Registrar, Department of Neurology, Middlesex Hospital, London
P. J. TOGHILL, MD, FRCP, Consultant Physician, Department of Medicine, University Hospital, Nottingham

Fig. 1. The position of the epitrochlear node(s) in man
Results

The prevalence of palpable epitrochlear nodes in 140 control subjects and 184 patients is shown in Tables 1 and 2.

No palpable nodes were detected in the healthy controls.

Twenty-seven per cent of patients with diseases associated with lymphadenopathy had palpable epitrochlear glands.

One-third of the 45 patients with NHL had unilateral or bilateral epitrochlear node enlargement but only three of the patients with Hodgkin’s disease had palpable epitrochlear nodes.

Most of our patients with an infective cause for their lymphadenopathy had glandular fever, and nearly half of them (45%) had enlarged epitrochlear nodes when seen, which was usually at the height of their illness. None of the patients with non-specific cervical lymphadenopathy, for which subsequently no cause could be identified, was found to have enlarged epitrochlear nodes.

A surprisingly large proportion (29%) of patients with seropositive rheumatoid arthritis associated with active synovitis of the wrist and hand had enlarged nodes.

Discussion

Historically, epitrochlear lymphadenopathy has always been associated with the generalised lymphadenopathy of secondary syphilis, though the original description of this physical sign has been lost. But it also occurs in other infective diseases, including lepromatous leprosy where it has been detected in more than 80% of cases [1], leishmaniasis, cytomegalovirus infection, rubella, and glandular fever. More recently, it has been recorded in 35% of patients with persistent generalised lymphadenopathy of human immunodeficiency virus (HIV) infection [2]. We saw only a limited range of patients with infections, but 55% of those with infective mononucleosis had palpable epitrochlear nodes. The absence of epitrochlear lymphadenopathy in children and young adults with non-specific cervical lymphadenopathy provides a useful discriminatory point in dealing with young people suspected of having infective mononucleosis. Of course, local infective lesions of the hand may well cause acute epibrochlear lymphadenitis [3], including such rarities as bubonic plague [4], cat scratch disease [5], and Lobo’s disease contracted from a bottle-nosed dolphin [6].

Superficial, often bilateral, generalised lymph node enlargement is a frequent manifestation of sarcoidosis [7]. European series of patients with sarcoidosis suggest a prevalence of lymphadenopathy of about 30%, but this is nearer 80% in American series [8, 9]. This is probably due to the more florid type of sarcoidosis seen in Afro-Americans. The most commonly palpable nodes are in the cervical chain, those in the anterior triangle being enlarged more often than those in the posterior triangle; next in frequency are the axillary, followed by the epitrochlear and then the inguinal glands. Sarcoidosis has long been recognised as a cause of epitrochlear lymphadenopathy. Indeed, one group went so far as to say that sarcoidosis, along with syphilis and trauma, was one of the few clinical entities responsible for epitrochlear lymphadenopathy [9].

Epitrochlear nodes are often involved in lymphoproliferative diseases. The literature suggests that these nodes are rarely involved in Hodgkin’s disease and then only when the disease is advanced. However, there are occasional reports of Hodgkin’s disease presenting with isolated unilateral epitrochlear lymphadenopathy [10,11]. In contrast, in NHL and CLL epitrochlear lymphadenopathy is much more common, with 14 cases in nearly 100 patients with

Table 1. Sample characteristics

Group	N	Sex ratio	Age range (yr)	Mean age (yr)	
Controls	140	75	65	14-83	62
Disease group	184	99	85	5-89	55
Lymphoma (all)	60	39	21	16-89	60
Hodgkin’s disease	15	12	3	16-87	41
NHL	45	27	18	17-89	44
CLL	15	10	5	50-81	70
Sarcoidosis	12	2	10	18-78	47
Rheumatoid arthritis	43	16	27	36-81	70
Infections	27	17	10	5-72	26
Non-specific cervical glands	22	11	11	12-52	28
Dermatopathic	5	4	1	17-76	37

Table 2. Incidence of epitrochlear nodes

Group	Palpable	Impalpable
Controls	0 (0%)	140 (100%)
Disease group	49 (27%)	135 (73%)
Lymphoma (all)	18 (30%)	42 (70%)
Hodgkin’s disease	3 (20%)	12 (80%)
NHL	15 (33%)	30 (67%)
CLL	4 (27%)	11 (73%)
Sarcoidosis	3 (25%)	9 (75%)
Rheumatoid arthritis	9 (21%)	34 (79%)
Seropositive	9 (29%)	22 (71%)
Seronegative	0 (0%)	12 (100%)
Inf. mononucleosis	12 (55%)	10 (45%)
Toxoplasma	0 (0%)	3 (100%)
HIV (PGL)	1 (50%)	1 (50%)
Non-specific cervical glands	0 (0%)	22 (100%)
Dermatopathic	2 (40%)	3 (60%)
Malignant lesions on the ulnar side of the hand or forearm such as melanomas, carcinomas or sarcomas [13-15] may result in reactive or metastatic swelling of epitrochlear glands, but because of the referral pattern of our clinic we did not see such cases.

We were particularly surprised by the high proportion (29%) of patients with active seropositive rheumatoid arthritis who had enlarged nodes. Generalised lymphadenopathy is relatively common in rheumatoid arthritis, especially Felty’s syndrome, but there are scant references to enlarged epitrochlear nodes in the standard texts or journals [16]. Obviously few doctors search for these nodes although their enlargement may give an indication of the activity of the disease.

References

1. Kar HK, Mohanty HC, Mohanty GN, et al. Clinico-pathological study of lymph node involvement in leprosy. Leprosy in India 1985;55:725-8.
2. Abrams DJ, Lewis BJ, Beckstead JH, Casavant CA. Persistent diffuse lymphadenopathy in homosexual men. Ann Intern Med 1984;100:801-8.
3. Curarrino G. Acute epitrochlear lymphadenitis. Pediatr Radiol 1977;6:160-3.
4. Von Reyn CF, Barnes AM, Weber NS, Hodgkin UG. Baboon plague from exposure to a rabbit: a documented case and a review of rabbit-associated plague cases in the United States. Am J Epidemiol 1976;104:81-7.
5. Miller P, Bell WF. Cat-scratch disease with encephalopathy. Clin Pediatr (Phila) 1980;19:233-4.
6. Symmers WS. A possible case of Lobo’s disease acquired in Europe from a bottle-nosed dolphin (Tursiops truncatus). Bull Soc Pathol Exot Filiales 1983;76:777-84.
7. James DG, Piyasena KHG, Neville E, Walker AN, Hamlyn AN. Possible genetic influences in familial sarcoid. Postgrad Med J 1974;50:664-70.
8. Silzbach LA, James DG, Neville E, Turif J, Battisti JP, Sharma OP, et al. Course and prognosis of sarcoidosis around the world. Amer J Med 1974;57:847-52.
9. Johns CJ, Scott PP, Schonfield SA. Sarcoidosis. Ann Rev Med 1989;40:551-71.
10. Birkhead BM, Dobbs CE, Grimaldi M, Shaw JW. Epitrochlear presentation of Hodgkin’s disease. J Kentucky Med Ass 1981;79:717-8.
11. Yu A, Steinfeld AD. Hodgkin’s disease presenting in epitrochlear nodes. Med Pediatr Oncol 1984;12:244-6.
12. Saunders W, Glatstein E, Hoppe R, Kaplan H. Nodular lymphomas: involvement of epitrochlear nodes. Am J Radiat Oncol Biol Phys 1979;5:1003-6.
13. Boddie AW, Cangir A. Adjuvant and neoadjuvant chemotherapy with dacarbazine in high-risk childhood melanoma. Cancer 1987;60:1720-3.
14. Shin MJ, Chu F, Forner JG. Treatment of regionally advanced epidermoid carcinoma of the extremity and the trunk. Surg Gynecol Obstet 1980;150:558-62.
15. Okunieff P, Suit HD, Poppe KH. Extremity preservation by combined modality treatment of sarcomas of the hand and wrist. Int J Radiat Oncol Biol Phys 1986;12:1929-39.
16. Weston WJ. Enlarged supratrochlear lymphatic glands in rheumatoid arthritis. Australas Radiol (Australia) 1968;12:260-4.

Address for correspondence: Dr P. J. Toghill, Department of Medicine, University Hospital, Queen’s Medical Centre, Nottingham NG7 2UH

FELLOWSHIP OF POSTGRADUATE MEDICINE

International Congress

MEDICAL EDUCATION AND TRAINING IN EUROPE: THE FUTURE

To be held at the College on 1st/2nd October 1992

This major international congress will bring together the leaders of medical education and health care in Europe. The programme is designed to examine critically the political and educational implications for medical training in Europe following harmonisation in 1992.

Sessions will include:

- Directives for health professionals
- Harmonisation of hospital teaching programmes
- Monospecialty initiatives
- Training and quality of care initiatives
- Educational research and development (including primary care)
- Recommendations and implementation

Speakers will be invited from all European Community countries.

If you are interested in receiving further information on this meeting and on registration, communicate with: The Conference Office, Fellowship of Postgraduate Medicine, 6 St Andrews Place, London NW1 4LB