A New Approach to String Cosmology

Gary T. Horowitz
Physics Department, University of California, Santa Barbara, California 93106
Institute for Theoretical Physics, Santa Barbara, California 93106

Donald Marolf
Physics Department, Syracuse University, Syracuse, New York 13244
(May, 1998)

Abstract

We discuss quotients of Anti-de Sitter (AdS) spacetime by a discrete group in light of the AdS-CFT correspondence. Some quotients describe closed universes which expand from zero volume to a maximum size and then contract. Maldacena’s conjecture suggests that they should be represented in string theory by suitable quotients of the boundary conformal field theory. We discuss the required identifications, and construct the states associated with the linearized supergravity modes in the cosmological background.
I. INTRODUCTION

Recently, there has been considerable excitement about a conjecture due to Maldacena [1] (based on earlier work e.g. [2]) which relates string theory in Anti-de Sitter (AdS) spacetime to a conformal field theory (CFT) living on its boundary. The conjecture actually applies to all finite energy excitations about this background, and thus includes all spacetimes which asymptotically approach AdS. If correct, this would provide a nonperturbative definition of string theory for these boundary conditions. We wish to consider the effect of taking the quotient of AdS by a discrete subgroup of its isometry group. There are several motivations for doing so. In three dimensions these quotients include the BTZ black hole [3] and in higher dimensions there are analogous black hole solutions [4]. More importantly, some of these quotients describe simple cosmological models in which a compact space expands from a “big bang” and collapses in a “big crunch”. Since the curvature is locally constant, these points of zero spatial volume are not curvature singularities, but more like conical singularities. Since isometries of AdS are symmetries of the boundary conformal field theory, these models should be described in string theory by an appropriate quotient of the original boundary theory.

Applying Maldacena’s duality to cosmology will clearly require an extension of the form of the conjecture given in [5,6] in which the boundary at infinity played a crucial role. In particular, the string theory effective action evaluated on a solution with given asymptotic behavior is believed to be the generating function for correlation functions in the CFT. The appropriate generalization of this statement is not yet clear. For our purposes, it will suffice to work with the correspondence between states in the AdS background and states in the CFT first discussed in [7,6].

This offers a new way of investigating string cosmology. There is an extensive literature applying string theory to cosmology. (For a recent review and references see [8].) However most of these discussions are based on the low energy effective action of string theory, and must make assumptions about what happens when the curvature reaches the string scale. (A few notable exceptions are [9,10].) In principle, the approach described here would be nonperturbative.

In practice, to begin to construct the correspondence we must use a perturbative approach. The radius of curvature of the AdS spacetime depends on the product of the string coupling g and the Ramond-Ramond charge N. We will consider the usual limit where the product $gN \gg 1$ is held fixed and $N \to \infty$. Since $g \to 0$, Newton’s constant is turned off and supergravity modes do not modify the background cosmology. At nonzero g, the backreaction of these modes should cause the curvature to grow near the initial and final singularities, producing more realistic cosmological models.

It is far from clear whether this approach will succeed. Not only must we assume the validity of Maldacena’s conjecture, but the quotient field theory is highly unusual. In particular, the quotients we consider are different from the orbifolds discussed in [11] which did not act on the AdS space. Our quotients are more analogous to Lorentzian orbifolds [12].
obtained by identifying points of Minkowski spacetime under the action of a discrete boost. As shown in [11], the required quotient of the CFT is somewhat subtle, and is not just a gauging of the discrete group as in the string worldsheet treatment of orbifolds. In addition, Lorentzian orbifolds are much less well understood than their Euclidean counterparts, but there are some indications that the identifications we need will act rather simply. For example, the three dimensional black hole is just such a quotient of AdS_3, and we expect it to correspond to excited states of essentially the same CFT. In all cases, states in the original theory which are invariant under the group are included in the quotient theory, and that is all that we will use below.

It turns out that the quotients required to obtain the cosmology introduce further complications. For example, the identifications will break all of the supersymmetry. Further, we will see that the symmetry group has a dense set of fixed points on the boundary, so one cannot simply remove the fixed points and take the quotient of the resulting space. However, it may be possible to take the quotient of the quantum states and operators directly, without trying to realize them as a quantum field theory on a quotient space. Given the potential importance, it seems worthwhile to try to construct this theory. Here we take the first steps in this direction. We show how to construct the states associated with linearized supergravity modes on the cosmological background. Interactions and winding sectors will require further investigation.

Another motivation for constructing this cosmological solution is that it might help construct a background independent formulation of string theory. As emphasized by Banks [9], it is only in the context of a closed universe that all moduli can fluctuate, since it does not require infinite energy to excite them. This may thus be the appropriate starting point for trying to understand why the compact dimensions take the form that they do.

In the next section we review some of the spacetimes that can be constructed by taking quotients of AdS. For the AdS_3 case, we briefly describe the corresponding states in the CFT. In [13] it was argued that the BTZ black hole is naturally associated with a density matrix in the CFT. We will see that this is not the case for more general black holes. In section III we discuss the cosmological models and construct the states associated with linearized supergravity modes. Section IV contains a brief discussion.

II. QUOTIENTS OF ANTI DE SITTER SPACE

We begin by considering some of the spacetimes that can be constructed by taking quotients of AdS space. Since this space arises in string theory with constant dilaton and a Ramond-Ramond field proportional to the volume form, all quotients are also classical solutions of string theory. These include the BTZ black hole [3] and its higher dimensional generalizations [4], the ‘wormhole’ solutions of [14,15], and various cosmological solutions whose spatial sections are compact manifolds of constant negative curvature. The cosmological models will be discussed in more detail in section III.
As is well known, \(n + 1 \) dimensional AdS space can be obtained by taking the surface

\[
-T_1^2 + \sum_{i=1}^{n} X_i^2 - T_2^2 = -1
\]

(2.1)

in a flat spacetime of signature \((n, 2)\) and Cartesian coordinates \((X_i, T_1, T_2)\). A convenient parameterization for discussing quotients is to set \(T_2 = \sin \tau \), so that a constant \(\tau \) surface is a constant negative curvature hyperboloid of radius \(\cos \tau \). The resulting metric takes the Robertson-Walker form

\[
ds^2 = -d\tau^2 + \cos^2 \tau \, d\sigma_n^2
\]

(2.2)

where \(d\sigma_n^2 \) is the metric on the (unit) hyperboloid. Worldlines which remain at a fixed point on the hyperboloid are timelike geodesics. In this form of the metric, spatial symmetries of the hyperboloid are spacetime isometries. (This is not the case for e.g. the globally static form of the metric which also has spacelike surfaces with constant negative curvature.) Such symmetries form an \(SO(n, 1) \) subgroup of the full \(SO(n, 2) \) symmetry group of AdS which acts within surfaces of constant \(\tau \). For the case \(n = 2 \), this subgroup acts diagonally with respect to the local decomposition \(SO(2, 2) \sim SO(2, 1) \otimes SO(2, 1) \). Note that the action of such an isometry on the entire spacetime (covered by our coordinate system) follows from its action on the spatial slice at \(\tau = 0 \). The representation \((2.2)\) is convenient for the construction of spacetimes with a moment of time symmetry, to which we will confine ourselves in this paper. However, we expect that the ‘spinning’ cases of \([3, 15]\) can be treated in much the same way.

The coordinates used in \((2.2)\) do not cover all of AdS space, but only the domain of dependence of the \(\tau = 0 \) surface. Let us denote this region by \(R \). If we choose a conformal compactification of (the covering space of) AdS space so that its boundary is a timelike cylinder, then \(R \) is the interior of the cone shown below. The entire null cone corresponds to the coordinate singularities at \(\tau = \pm \pi/2 \).

![Fig. 1. The region R covered by (2.2) and the conformal compactification of AdS.](image)

\(^1\)For simplicity, we will consider the case of unit radius here.
It will be useful to introduce on the boundary a time coordinate t and angular coordinates for the $n-1$ sphere. We choose our conformal compactification so that the boundary metric is

$$ds^2 = -dt^2 + d\theta^2 + \sin^2 \theta \, d\Omega_{n-2}^2$$

(2.3)

where $d\Omega_{n-2}^2$ is the metric on the unit $n-2$ sphere. We take the intersection of our cone with the boundary to be the surface $t = 0$. To describe the symmetries of the hyperboloid, it will be convenient to think of it as embedded in an auxiliary Minkowski spacetime via (2.1) with $T_2 = 0$. In terms of this embedding, the $t = 0$ sphere can be thought of as the sphere of null directions which naturally forms the boundary of the hyperboloid. In this way, we may choose angular coordinates on the boundary that are adapted to our choice of coordinates T_1, X_i. In particular, we will take the polar angle θ to have its singularities (the north and south poles) on the X_1 axis.

Since the metric (2.2) is invariant under the full $SO(n, 1)$ group, we may take quotients of this spacetime under discrete subgroups Γ of $SO(n, 1)$ so long as no conical singularities are produced (or perhaps, as in [14,15], so long as such singularities are hidden behind horizons). Often, the resulting quotient space can be extended beyond the region R shown in Fig 1. This happens whenever the quotient operations produce no singularities on a region of AdS space that is larger than R. However, we can still use (2.2) to study such compactifications since the extensions are essentially unique. The point is that, if we impose asymptotically AdS boundary conditions at infinity when appropriate, the surface $\tau = 0$ provides initial data for the entire covering space of AdS. Thus, the action of a Killing field near this surface defines its action everywhere.

Perhaps the simplest example is when Γ is the cyclic group generated by a single boost. We will take the boost which generates Γ to be in the T_1, X_1 plane of (2.1). This boost has no fixed points in the interior of the $\tau = 0$ slice so the interior spacetime is straightforward to construct. It is just the BTZ black hole or one of its higher dimensional generalizations. We are, however, more interested in what happens to the boundary under this boost. Note that any symmetry of the interior will induce a conformal symmetry on the boundary. By appropriately choosing the conformal factor of the boundary metric, we may in fact take this to be a Killing symmetry of the boundary. Thus, we may also use Γ to obtain the boundary of the new spacetime directly as a quotient of the original AdS boundary. This will allow us to see how states in the relevant CFT’s are related.

Note that our boost has two fixed points on the boundary of the $\tau = 0$ slice, corresponding to the two null vectors in the T_1, X_1 plane. One is attractive and the other is repulsive. These are at the poles of our angular coordinate $\theta \in [0, \pi]$. If the boost has boost parameter λ, then the action of the boost on the boundary is $\theta \to \tilde{\theta}$ where

$$\cos \tilde{\theta} = \frac{\sinh \lambda + \cosh \lambda \, \cos \theta}{\cosh \lambda + \sinh \lambda \, \cos \theta}$$

(2.4)
and none of the other angles are altered\[4\].

Let us excise the fixed points from the \(t = 0 \) sphere at infinity and consider the domain of dependence \(D \) in the boundary of the resulting set (topologically, \(D \) is \(\mathbb{R} \times S^{n-2} \times \mathbb{R} \)). The boost has no fixed points in this domain, so the quotient of this domain by \(\Gamma \) is well defined and is topologically \(S^1 \times S^{n-2} \times \mathbb{R} \). To determine the conformal structure on this space, let us introduce null coordinates \(u \) and \(v \) (which take values in \((-\pi/2, \pi/2)\)) in the domain \(D \) through \(u = t - \theta + \pi/2 \) and \(v = t + \theta - \pi/2 \). We will also rescale the boundary metric (which we are always free to do) by \(\sin^{-2}\theta \). This will yield a metric well adapted to use with \(\Gamma \). The metric on \(D \) is then

\[
\text{ds}^2 = -\frac{dudv}{\cos^2 \left(\frac{v-u}{2}\right)} + d\Omega_{n-2}. \tag{2.5}
\]

The action of the identifications on both \(u \) and \(v \) can be read off from (2.4), since the \(t = 0 \) circle is given by \(-u = v = \theta - \pi/2\). This can be simplified by realizing that (2.4) is generated by the vector field \(-\sin\theta \partial/\partial \theta\) and thus that the action on \(u, v \) is generated by \(\cos u \partial/\partial u - \cos v \partial/\partial v \).

In terms of the usual Virasoro generators this corresponds to \(L_1 + L_{-1} \). If we introduce new null coordinates \(\alpha = \int_0^u \frac{du}{\cos u}, \quad \beta = \int_0^v \frac{dv}{\cos v} \), then this vector field may be written \(\partial/\partial \alpha - \partial/\partial \beta \). Thus, the identifications are just \((\alpha, \beta) \rightarrow (\alpha + \lambda, \beta - \lambda)\) and the appropriate conformal structure on \(S^1 \times S^{n-2} \times \mathbb{R} \) is

\[
\text{ds}^2 = -\frac{\cos u \cos v}{\cos^2 \left(\frac{v-u}{2}\right)} \, d\alpha d\beta + d\Omega_{n-2}. \tag{2.6}
\]

One can show that \(\left(\partial/\partial \alpha - \partial/\partial \beta\right) \left[\cos u \cos v \cos^{-2} \left(\frac{v-u}{2}\right) \right] = 0 \) so the identifications yield a smooth metric for any value of \(\lambda \).

We now consider the case \(n = 2 \) corresponding to \(AdS_3 \). The above identifications yield the BTZ black hole with a nonzero mass (which depends on the actual period chosen). Since \(S^{n-2} = S^0 \) consists of two points, the boundary at infinity is two copies of the cylinder \(S^1 \times \mathbb{R} \), corresponding to the asymptotic regions on both sides of the black hole. The identification in the interior can be made explicit by writing \(d\sigma_2^2 = dz^2 + \cosh^2 z \, dw^2 \). The boost corresponds to translations of \(w \). The form of the metric (2.2) for the BTZ black hole is perhaps unfamiliar, since the coordinates are adapted to timelike geodesics as opposed to the time translation symmetry.

\[
3\text{Since \(\cos \theta \) is the \(X_1 \) component of the velocity (that is, \(dX_1/dT_1 \)) of the null rays associated with that value of \(\theta \) in our auxiliary Minkowski space, the form of this transformation follows readily from the usual action of a boost on velocities in flat spacetime.}

\[
3\text{The zero mass black hole requires a different identification which corresponds to making \(y \) periodic in the metric \(d\sigma_2^2 = x^{-2}(dx^2 + dy^2) \). This symmetry has only a single fixed point at infinity, and so the boundary is a single copy of \(S^1 \times \mathbb{R} \).}

\[
6
\]
Suppose that Maldacena’s conjecture is correct and that string theory on AdS_3 (times a compact space) is described by a boundary conformal field theory. Then, since the above spacetime can be obtained from AdS_3 by taking a quotient with respect to Γ, it seems reasonable to expect that the quotient theory on the boundary includes the same conformal field theory defined on the quotient space (although it may include twisted sectors as well).

If we were to start directly with the field theory on $S^1 \times S^0 \times \mathbb{R}$, it would be natural to use the null vector fields $\frac{\partial}{\partial \alpha}$ and $\frac{\partial}{\partial \beta}$ (which are conformal Killing fields of (2.6) when $n = 2$) to pick out preferred sets of positive frequency modes and ask them to annihilate the vacuum state. This would give the usual vacuum on $S^1 \times S^0 \times \mathbb{R}$. However, we have constructed the conformal field theory by taking a quotient of the boundary spacetime manifold under the group Γ. Recall that the vacuum $\left| 0 \right>$ of the original conformal field theory is in fact invariant under the entire AdS group, and so is, in particular, invariant under the group Γ. Since $\left| 0 \right>$ represents AdS before the identification, it is natural to assume [13] that it describes the BTZ black hole in the quotient. However, the vacuum $\left| 0 \right>$ will contain correlations between the two halves of the original $t = 0$ boundary circle in exactly the same way that the Minkowski vacuum contains correlations between the left and right Rindler vacua. As a result, the image of the vacuum $\left| 0 \right>$ under the quotient operation cannot be the usual vacuum of the conformal field theory on $S^1 \times S^0 \times \mathbb{R}$ (which does not contain such correlations). Instead, it must be a state that, from the perspective of one asymptotic region, is a mixed state and has correlations with the other asymptotic region. In fact, this state would appear thermal, since the timelike vector field $\frac{\partial}{\partial \alpha} + \frac{\partial}{\partial \beta}$, when restricted to one Rindler wedge, acts like a Rindler time translation in the covering spacetime. This is very similar to the observation in [13] that the black hole corresponds to a thermal state in the CFT. The relation between our description and theirs is simply that [13] viewed infinity as a copy of two dimensional Minkowski spacetime, whereas the above discussion uses the conformal compactification of Minkowski spacetime in which space is a circle. The domain \mathcal{D} is just the left and right Rindler wedges.

Although it may seem appealing that the black hole is described by a thermal state in the CFT, this does not always seem to be the case. The density matrix was a result of the fact that the boundary of the quotient spacetime is disconnected and that the state was studied from only a single asymptotic region. In higher dimensions, this space remains a connected manifold. The quotient spacetime has only a single asymptotic region, though the topology of this new region is now different from that of the original infinity. The original vacuum state is still conformally invariant, so it should be defined in the quotient theory. But now it will be a pure state. The structure of the vacuum state in these cases is worthy of further investigation, however this is complicated by the fact that the boundary no longer has a time translation symmetry.

One can also construct examples in $2 + 1$ dimensions of black holes with a single asymptotic region. These are the wormhole spacetimes of [14]. For such cases, the spatial sections have the topology of a punctured Riemann surface. The simplest versions are formed by taking the quotient under a subgroup Γ generated by two boosts. The group Γ can best be
described by displaying a fundamental domain for the $\tau = 0$ hyperboloid:

![Diagram]

Fig. 2. A fundamental domain and identifications for a simple wormhole spacetime.

The boosts identify the sides of the fundamental region as indicated by the arrows, and each boost has a set of two fixed points (shown above, lightly shaded for one boost and heavily shaded for the other) as before. As discussed in [4,15] the entire group has an infinite number of fixed points. Nevertheless, these fixed points are not dense and a fundamental domain on the boundary can be identified. Thus, the fixed points may be excised and the quotient is readily constructed. The resulting spacetime is again a black hole with a single asymptotically AdS region. As before, one might expect that string theory in this background is described (at least in part) by the original CFT on the quotient of the boundary. The unexcited wormhole should correspond to the image of the original vacuum $|0\rangle$. As mentioned above, since there is only one asymptotic region, the image of the original vacuum $|0\rangle$ should now be a pure state and not a mixed state. However, this state contains correlations between regions that were close to the excised points before taking the quotient. Thus, we expect the wormhole spacetime to correspond to some state with these extra correlations. The relation between the BTZ and wormhole boundary states should be similar to the relation between the Hartle-Hawking vacuum on the Kruskal spacetime and the vacuum studied in [16] on the \mathbb{RP}^3 geon [17] with a component of the boundary in the present case playing the role of an entire exterior Schwarzschild region in [16]. It is an interesting question if the wormhole state has finite energy with respect to the natural vacuum on $S^1 \times \mathbb{R}$ or if it lies in a different superselected sector of the field theory. The answer is likely to shed light on the description of topology change in terms of the conformal field theory. Higher dimensional versions of this spacetime may also be of interest.

III. COSMOLOGICAL MODELS

A. Spatially compact quotients

From our point of view, the most interesting spacetimes that can be constructed as quotients of anti-de Sitter space are spatially compact. These follow by compactifying the $\tau = 0$ hyperboloid using an appropriate discrete group Γ. By choosing Γ properly, we can obtain cosmological models with any constant negative curvature space as its spatial section. For definiteness, we will concentrate on the case of AdS_3, where this is just the
construction of the $g \geq 2$ Riemann surfaces by taking quotients of the two dimensional hyperboloid. We refer the reader to [14, 15, 18] for details, but give a brief summary below.

The genus g surface is the quotient of the hyperboloid under a group Γ which is generated by $2g$ generators \(\{\gamma_1, \ldots, \gamma_{2g}\} \). The first of these (γ_1) is a boost in, say, the T_1, X_1 plane and the others are just conjugations of γ_1 by $\pi/2g$ rotations about the T_1-axis. Thus, a fundamental region for Γ is an equilateral $4g$-gon centered at $X_i = 0$. This is shown below for the case $g = 2$.

![Fig. 3. The fundamental domain R_0 and the identifications for $g = 2$.](image)

Copies of the fundamental region tessellate the hyperboloid and are in one-to-one correspondence with the elements of Γ. It will be convenient to refer to the fundamental region at the origin as R_0 and the image of this region under γ as R_γ.

The magnitude of the boosts (they are all the same) is uniquely determined by the requirement that the quotient possesses no conical singularities or, equivalently, that the generators satisfy the relation:

\[
\gamma_4 \cdots \gamma_3^{-1} \gamma_2 \gamma_1^{-1} \gamma_2^{-1} \cdots \gamma_3 \gamma_2^{-1} \gamma_1 = \mathbb{1}. \tag{3.1}
\]

See [18] for a discussion of how this construction is related to the more familiar homotopy generators satisfying $a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} = \mathbb{1}$. For the case $g = 2$, the associated boost parameter is $\lambda = \ln(\sqrt{2} + 1 + (2\sqrt{2} + 2)^{1/2})$.

What is the action of this group on the boundary at infinity? The action of the generators on the S^1 at $t = 0$ follows directly from (2.4). A generic element of Γ is, however, a bit more complicated. From [18], we know that any such element is again a boost, but in general it will be associated with a plane in the auxiliary Minkowski space (eq. 2.7 with $T_2 = 0$) that does not contain the T_1-axis. If we regard the $\tau = 0$ hyperboloid as the Poincaré disk, then these boosts act as rather general hyperbolic Möbius transformations. Such transformations still have exactly two fixed points on the boundary, one attractive and one repulsive, though these fixed points can now be arbitrarily close together. In fact, it follows from the ergodicity results of [18] (see appendix [A]) that the set S of points on S^1 which remain fixed under some element of Γ is dense in S^1. Thus, we can no longer excise them and identify a nice fundamental region with which to work. Another property of the action of Γ that is perhaps even more unpleasant is that, since any fixed point of $\gamma \in \Gamma$ on S^1 is in fact an attractive
fixed point either for the cyclic semigroup generated by \(\gamma \) or the one generated by \(\gamma^{-1} \), the
set of such attractive fixed points in \(\Gamma \) is also dense in \(S^1 \). As a result, given any open set \(U \) and any point \(x \) in \(S^1 \), there is some element of \(\Gamma \) that maps \(x \) into \(U \).

The action of \(\Gamma \) on the boundary away from the \(t = 0 \) circle is only slightly better. To
see this, note that we can deduce the action of \(\Gamma \) on the entire boundary directly from (2.4)
by introducing null coordinates \(u = t - \theta \) and \(v = t + \theta \) on the boundary. Both of these are
periodic with period \(2\pi \) in the sense that \(u \) and \(u + 2\pi \) label the same null ray, and similarly
for \(v \). The circle \(t = 0 \) is just the circle \(v = -u = \theta \). Since each element of \(\Gamma \) is a symmetry
of AdS space, it acts as a conformal transformation on the boundary, mapping rightmoving
null rays to rightmoving null rays. In other words, any element of \(\Gamma \) will act on the boundary
in the form \((u, v) \rightarrow (f(u), g(v))\). Thus, we can read off the functions \(f, g \) from (2.4) and
we see that they are identical (up to signs). This means that the set of points that are fixed
by some element of \(\Gamma \) is still dense in the boundary, but (since \(f(\theta) = -g(-\theta) \) as functions
from \(S^1 \) to \(S^1 \)) that all of the attractive fixed points of cyclic semigroups lie in the \(t = 0 \) circle \(v = -u \). Thus, it is again impossible to identify a fundamental region and construct a
quotient manifold. It would be of interest to characterize the topological space that results
from removing the fixed points and then performing the quotient. It may well be Hausdorff,
but it is certainly not a smooth manifold.

B. Constructing the States

It is clear from the above discussion that, for the cosmological models, one cannot take
the quotient of the space in which the original boundary conformal field theory lives. What
we would like to do instead is to take the quotient of the original conformal field theory (that
is, the collection of states and operators) directly, constructing a ‘quotient state space’ and
a ‘quotient operator algebra’ without worrying about whether or not this quotient theory
can be thought of as a quantum field theory on some spacetime manifold.

Before explaining how this can be (partially) achieved, let us quickly review the correspondence
that has been established between states in the uncompactified AdS and the CFT. We will focus on the case where the background spacetime is \(AdS_3 \times S^3 \times T^4 \). The boundary field theory is a two dimensional, \(\mathcal{N} = (4, 4) \), superconformal field theory. Since the isometry group of \(AdS_3 \) is \(SL(2, R) \times SL(2, R) \), one can define isometries \(L_1, L_0, L_{-1} \)
and \(\bar{L}_1, \bar{L}_0, \bar{L}_{-1} \) with the commutation relations of the Virasoro algebra (see [13,19] for
the explicit expressions and further discussion of the modes). The function \(\phi_0 \) satisfying
\(L_1 \phi_0 = \bar{L}_1 \phi_0 = 0, L_0 \phi_0 = \phi_0 = \bar{L}_0 \phi_0 \) and which vanishes at infinity is a positive frequency
solution to the massless wave equation \(\nabla^2 \phi = 0 \) on \(AdS_3 \) and can be viewed as a primary state. There is a corresponding chiral primary state \(|h\rangle \) in the CFT. All other one particle states of this field in \(AdS_3 \) are of the form \(L^n_{-1} \bar{L}^n_{-1} |\phi_0 \rangle \), and the corresponding CFT states are of the form \(L^n_{-1} \bar{L}^n_{-1} |h\rangle \). In the CFT these are all essentially BPS in that their mass does not receive quantum corrections. Similar statements apply to all the supergravity modes including the massive Kaluza-Klein states resulting from the compactification on \(S^3 \times T^4 \).
Roughly speaking, to obtain the state associated with a linearized supergravity mode in the cosmological background, we would like to proceed as follows. Given a supergravity mode in the cosmology, lift it up to the original uncompactified AdS spacetime. The result is a periodic function. For each domain \(R_\gamma \), consider a new function which is zero outside \(R_\gamma \) but agrees with the original function inside. This new function is now square integrable and corresponds to a state in the CFT. The cosmological mode is then associated with the sum (over all domains \(R_\gamma \)) of these states. The problem, of course, is that this sum does not converge to a normalizable state in the Hilbert space. Below we explain how this problem can be resolved.

Our problem is similar to difficulties that have arisen in other contexts \([21–25]\) where one wished to take a quotient of a quantum theory with respect to a noncompact group, and we will borrow the techniques used there. Such techniques (which we refer to as “induction,” though the names in the literature vary) are in turn based on the rigged Hilbert space methods of \([26]\) used in constructing generalized eigenstates of operators with continuous spectra. We will not review the details here, but merely apply such methods below\(^4\). We encourage the reader to consult the above references (especially section II of ref. \([24]\) and ref. \([25]\)) for further details and a discussion of the general approach.

Let \(C \) denote the original conformal field theory, and let \(Q \) denote the quotient that we wish to construct. The method involves finding ‘distributional states’ of \(C \) which are invariant under \(\Gamma \). This is the same idea as saying that certain (non-normalizable) Fourier modes on the real line are invariant under discrete translations. It turns out that, because of the complicated action of \(\Gamma \) on the spacetime on which \(C \) lives, it is difficult to control such a space of distributions by working with \(C \) alone. Instead, as outlined above, we will first show that the linearized supergravity states on the cosmology can be thought of as distributional states in the theory on \(AdS_3 \times S^3 \times T^4 \) and that the induction techniques define the proper Hilbert space structure on these distributions. We can then use the correspondence of \([13,20]\) to carry this over to the CFT and thus define certain states in \(Q \) as distributional states in \(C \). These will be the states in \(Q \) that correspond to the linearized supergravity states on the cosmology.

Recall that the space of one particle states of linearized supergravity on \(AdS_3 \times S^3 \times T^4 \) can be associated with an \(L^2 \) space on the \(\tau = 0 \) hyperboloid \((\times S^3 \times T^4)\), defined using the volume element \(dv \). These states are analogues of the Newton-Wigner states in flat spacetime. That is, a given function \(f \in L^2 \) does not represent the state created by the quantum field smeared directly with the test field \(f \), but instead this correspondence involves the action of \(\sqrt{\nabla^2_0} \), where \(\nabla^2_0 \) is the Laplacian on the \(\tau = 0 \) surface.

In order to define what is meant by “distributional states,” induction requires the choice

\(^4\)We will, however, insert and remove various complex conjugations relative to \([24,25]\) to make the connection between the various theories more explicit.
of a dense subspace Φ of the state space. To introduce our choice of Φ, consider polar coordinates (r, θ) on the hyperboloid such that the metric becomes

$$d\sigma^2 = dr^2 + \sinh^2 r \, d\theta^2. \quad (3.2)$$

Let Φ be the space of one particle states associated as above with smooth L^2 functions which $A)$ vanish at infinity at least as rapidly as $e^{-r/r^1+\epsilon}$ and $B)$ have vanishing integral over the $\tau = 0$ surface. Note that a topology on Φ is provided by its inclusion in the original Hilbert space.

To each state $\phi \in \Phi$, we will associate a function $\eta(\phi)$ on the $\tau = 0$ surface that is invariant under the action of Γ. To do so, recall that the elements γ of Γ are in one-to-one correspondence with the images R_γ of the fundamental region that tessellate the hyperboloid. Since all such images have the same area, the number of images located near the coordinate value r is roughly e^r for large r. It follows that the sum

$$[\eta(\phi)](x) \equiv \sum_{\gamma \in \Gamma} \phi(\gamma(x)) \quad (3.3)$$

converges absolutely at each point to define a function that is invariant under the action of Γ.

In fact, given any two functions $\phi_1, \phi_2 \in \Phi$, the integral

$$\int d\nu [\eta(\phi_1)](x)\phi_2(x) \quad (3.4)$$

converges absolutely. Thus, we see that η defines a map from Φ to its topological dual Φ' where the action of $\eta(\phi_1)$ on ϕ_2 is given by (3.4).

It is from the image of η in Φ' that we will construct states of the quotient theory. In fact, we let any $\eta(\phi)$ belong to our quotient Hilbert space. Using \ast to denote complex conjugation, we introduce an inner product on this space as follows: If $\bar{\phi}_1 = \eta(\phi_1)$ and $\bar{\phi}_2 = \eta(\phi_2)$, we set

$$\langle \bar{\phi}_1, \bar{\phi}_2 \rangle = \bar{\phi}_2(\phi_1^*) = \int d\nu \bar{\phi}_2(x)\phi_1^*(x) = \int d\nu \phi_2(x)\bar{\phi}_1(x). \quad (3.5)$$

In general [24,25], this construction has the property that any operator on the original Hilbert space which preserves the space Φ will induce a corresponding operator in the quotient theory and that, with the inner product (3.5) the \ast-algebra of all such operators will be preserved. The product is appropriately symmetric and bilinear and it is positive definite on the image of η, so that it does indeed define a Hilbert space. The kernel of η is not a problem here. Although a given distribution $\bar{\phi}_1$ in the image of η will not be associated with a unique element ϕ_1 of Φ, we see that (3.5) is independent of which ϕ_1 is chosen. All states in the kernel of η are mapped to the zero distribution in Φ' and thus to the zero vector in the resulting Hilbert space.

As stated above, the functions $\eta(\phi)$ are invariant under Γ. We would therefore like to think of them as representing the linearized supergravity states on the cosmology. However,
for this to work it is important that (3.5) agree with the inner product in this sector of the cosmological string theory. Since we may write (3.5) as

\[\langle \phi_1, \phi_2 \rangle = \sum_{\gamma} \int_{R_0} dv \, \phi_2 \sum_{\gamma} (\gamma \phi_1^*) = \int_{R_0} dv \, \phi_2 (\phi_1)^*, \] (3.6)

we see that this is the case.

Finally, we note that this construction in fact yields all one particle linearized supergravity states (and no extra states) on the cosmology. This is equivalent to the statement that the image of \(\eta \) consists exactly of those smooth functions which are invariant under \(\Gamma \) and which are orthogonal to the constant function in the \(L^2 \) inner product on the compactified space. To see that this is so, consider any smooth real function \(\rho_0 \geq 0 \) of compact support that does not vanish anywhere on \(R_0 \). Now, define

\[\rho = \frac{\rho_0}{\sum_{\gamma \in \Gamma} \rho_0}. \] (3.7)

If we would extend the definition of \(\eta \) to functions whose integral over the hyperboloid did not vanish, we would have \(\eta(\rho) = 1 \). It follows that, given any function \(f \) on the hyperboloid which is \(A \) invariant under \(\Gamma \) and \(B \) orthogonal to the constant function in the inner product on the compactified space (so that, in particular, its integral over \(R_0 \) vanishes), the function \((f \rho)(x) = f(x) \rho(x) \) lies in \(\Phi \) and satisfies \(\eta(f \rho) = f \). The fact that \(f \rho \) has zero total integral follows from (3.6) above with \(\phi_1 = (f \rho)^* \) and \(\phi_2 = 1 \). It is also clear that any \(\phi \in \Phi \) satisfies \(\int_{R_0} \phi = 0 \) so that we have not defined any “extra” states. Thus, the image of \(\eta \) is exactly the Hilbert space of one particle linearized supergravity states on the cosmology.

In this way, we have written a certain subspace of the cosmological string theory Hilbert space in terms of a subspace of the uncompactified string theory. It is now straightforward to use the correspondence of \[13,20\] to carry this construction over to the conformal field theory \(C \). Thus, we have an associated space of states \(\Phi_C \) and an associated map \(\eta_C : \Phi_C \rightarrow \Phi'_C \). Induction then produces a small Hilbert space \(Q_0 \) in terms of the distributional states in the image of \(\eta_C \) and we can see that such states correspond to the linearized supergravity states on the cosmological background. If Maldacena’s conjecture is correct, we expect this small Hilbert space to be part of a larger theory \(Q \) which is equivalent to the entire cosmological string theory.

A final comment is in order concerning the sum (3.3). Recall that the correspondence between states in the linearized supergravity theory and the conformal field theory states holds, for a particular state, only in the limit \(g \rightarrow 0 \). The reader may therefore wonder about our infinite sum (3.3) and the fact that our argument implicitly involves interchanging the \(g \rightarrow 0 \) limit with this sum. This may to some extent be justified by noting that, for finite \(g \), given any anti de Sitter invariant measure of the accuracy to which the correspondence

\[^5 \text{Since the cosmology is time dependent, particle number is not conserved. The states we have constructed can be viewed as one particle states at time } \tau = 0. \]
in [3, 20] holds for a given mode f, this correspondence must hold to the same accuracy for each of the images γf of this mode. This observation provides a certain uniformity of the $g \to 0$ limit with respect to our series (3.3).

IV. DISCUSSION

We have seen that one can take the quotient of anti de Sitter spacetime and obtain a simple cosmological model, with compact spatial sections that expand from zero volume to a maximum size and then contract back to zero volume. Using the AdS-CFT correspondence we have shown how to construct a Hilbert space out of distributional states in the CFT which are invariant under the discrete group and hence live in the quotient. These states should describe linearized supergravity modes in the cosmological background. Although we have focused on the three dimensional case, a similar construction will be valid in higher dimensions as well.

This is clearly only the first small step toward constructing a quantum theory Q which might provide a nonperturbative definition of string theory for cosmology. We have not treated operators in Q that would correspond to the zero modes of the supergravity theory on the compact space, discussed interactions, or possible winding sectors. With regard to the latter, one might argue that near the moment of maximum expansion, all winding modes will be rather heavy, with masses of order the radius of curvature of AdS. However, near the singularities, one would expect the winding modes to be very important.

We suspect that the final theory will be quite unusual: from our discussion of the action of Γ on the spacetime associated with the original conformal field theory C, we do not expect the theory Q to be a quantum field theory on any smooth spacetime manifold. The hope is that, by relating it to the theory C through, for example (3.3), the theory Q can nonetheless be sufficiently well controlled.

Let us, for the moment, suppose that this theory can be constructed. The payoff would be enormous. The resulting theory would then provide a nonperturbative description of string cosmology. In the happy event that the theory can be defined without reference to C, it would likely be background independent (since the asymptotic AdS boundary conditions which provided the main background dependence before have been eliminated). What is the range of states that could be described? At the very least, one would expect the answer to be “all states associated with a spacetime of the given topology.”

However, topological fluctuations might also be allowed. Indeed, any genus greater than two Riemann surface can be obtained as a quotient of the $\tau = 0$ hyperboloid. So, at the linearized supergravity level, the associated quotient theories Q all fit together inside the original conformal field theory C. If the interactions do not cleanly separate in the same way, but instead mix the sectors of C that we have associated with different spatially compact manifolds, then it appears natural to associate such behavior with a description of topology change. These are clearly interesting issues for future investigation.
Note Added: We have recently learned that the results derived in the appendix were previously published in [27].

ACKNOWLEDGMENTS

We thank I. Bengtsson, C. Rovelli, and the participants of the duality program at the Institute for Theoretical Physics, Santa Barbara for helpful discussions. This work was supported in part by NSF grants PHY94-07194, PHY95-07065, PHY-9722362, and funds provided by Syracuse University.

APPENDIX A: THE FIXED POINTS OF \(\Gamma \) ARE DENSE FOR ANY GENUS \(\geq 2 \) SURFACE.

As stated in section [IV], these results have appeared previously in [27].

We first prove a lemma concerning the group \(\Gamma \) that compactifies the hyperboloid to any \(g \geq 2 \) surface and a lemma concerning the associated action of \(\Gamma \) on \(S^1 \). The main theorem then follows.

Lemma 1: Let \(\lambda_\gamma \) be the boost parameter associated with the boost \(\gamma \in \Gamma \). The set \(\{ \lambda_\gamma : \gamma \in \Gamma \} \) is bounded below.

Proof: First note that, on our Riemann surface, there is some homotopically nontrivial closed curve of minimal length \(L \). Next, recall that any boost \(\gamma \in \Gamma \) preserves exactly one geodesic on the hyperboloid. When the hyperboloid is embedded in the auxiliary Minkowski space, this is just the geodesic in which the hyperboloid intersects the plane of the boost \(\gamma \). Let \(z \) be any point on this invariant geodesic for \(\gamma \). The boost \(\gamma \) maps \(z \) to another point \(\gamma z \) whose distance from \(z \) is just the boost parameter \(\lambda_\gamma \). But, when projected to the Riemann surface, the geodesic segment connecting \(z \) and \(\gamma z \) becomes a homotopically nontrivial closed curve of length \(\lambda_\gamma \). Thus, \(\lambda_\gamma \geq L \). QED

Lemma 2: There is a continuous function \(\delta : \mathbb{R}^+ \to \mathbb{R}^+ \) such that, given any hyperbolic Möbius transformation \(\gamma \) on \(S^1 \) with boost parameter greater than or equal to \(L \), if the distance between some point \(a \) and its image \(\gamma a \) is less than \(\epsilon \) then \(\gamma \) has a fixed point within a distance \(\delta(\epsilon) \) of \(a \). Furthermore, \(\lim_{\epsilon \to 0} \delta = 0 \).

Recall that the set of hyperbolic Möbius transformations on the circle, together with the set of parabolic Möbius transformations on the circle, can be identified with the closed set \(I^0 = \{ x : x^2 \geq 0 \} \) in 2+1 Minkowski space (i.e., those points spacelike and null separated from the origin). The transformations with boost parameter greater than or equal to \(L \) correspond to the points outside of some timelike hyperboloid. We may therefore choose an open set \(U \) in the Minkowski space such that 1) the closure of \(U \) is compact, 2) \(U \) contains the origin, and 3) any transformation \(\gamma \) with \(\lambda_\gamma \geq L \) is associated with a vector \(v_\gamma \) in the Minkowski space that is not in \(U \).
Let K be the intersection of the closure of U with I^0. We see that K is compact, and that any v_γ is proportional to some element k_γ in K (with coefficient greater than or equal to one). Note that our lemma will follow if we can prove the existence of the required function δ for all vectors in K, since if γ moves some point a a distance less than ϵ, so will k_γ. Thus, k_γ will have a fixed point within $\delta(\epsilon)$ of a, but any fixed point of k_γ is also a fixed point of γ.

Now, it is clear that, given any transformation α associated with a vector in K, there is a continuous function $\delta_\alpha : \mathbb{R}^+ \to \mathbb{R}^+$ with $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$ such that if the distance between some point a and its image αa is less than ϵ, then a is within $\delta_\alpha(\epsilon)$ of a fixed point of α. This is true regardless of whether α is parabolic or hyperbolic, and $\delta_\alpha(\epsilon)$ may be taken to depend continuously on $(\alpha, \epsilon) \in K \times (\mathbb{R}^+ \cup \{0\})$. We may thus use the compactness of K to define $\delta(\epsilon) = \max_{\alpha} \delta_\alpha(\epsilon)$, which will be continuous in ϵ on $\mathbb{R}^+ \cup \{0\}$, map \mathbb{R}^+ to \mathbb{R}^+, and satisfy $\delta(0) = 0$. QED

These two Lemmas will now allow us to prove the following theorem:

Theorem: Let Γ be the group that compactifies the hyperboloid to any $g \geq 2$ surface. Then the fixed points of the action of Γ on S^1 are dense.

To complete the proof, consider any geodesic through the origin of the hyperboloid. This geodesic intersects some collection of copies R_γ of the fundamental region R_0, with R_γ the image of R_0 under the boost γ in Γ. The action of this collection of boosts on the original geodesic gives a collection of geodesics G, the elements of which can be obtained by moving the segment of the original geodesic inside R_γ back to R_0 by means of the boost γ^{-1} and then extending the geodesic to infinity. The ergodicity results of [18] mean that the collection G is dense in the set of geodesics on the hyperboloid which pass through R_0. It follows that, given any two geodesics g_1, g_2 which pass through R_0, there are geodesics g_3 (close to g_1) and g_4 (close to g_2) that can be mapped onto each other using some boost $\gamma \in \Gamma$. In particular, this is true of the endpoints of g_3, g_4.

Suppose then that we wish to show the existence of an element γ of Γ which has a fixed point in some open interval (θ_0, θ_1) along the boundary circle at infinity. We choose any $\theta \in (\theta_0, \theta_1)$ and connect the corresponding point at infinity with the origin by a geodesic g_1 (whose other endpoint will be at $-\theta$). Furthermore, we can generate a second geodesic g_2 which passes through R_0 and has endpoints in $(\theta_0, \theta_1), (-\theta_1, -\theta_0)$ by acting on this geodesic with a small boost (which need not lie in Γ) whose fixed points on the circle at infinity are, say, θ_0 and $-\theta_1$. This pair of geodesics may be drawn as below, and the endpoints are labeled a_1, b_1 and a_2, b_2 as shown below.
Fig. 4. The geodesics \(g_1 \) and \(g_2 \) and their endpoints.

From our discussion above, we may find two other geodesics \(g_3 \) and \(g_4 \), arbitrarily close to \(g_1 \) and \(g_2 \) respectively, such that \(g_3 \) is mapped onto \(g_4 \) by some boost \(B \) in \(\Gamma \). Let us suppose that the endpoints of \(g_3 \) and \(g_4 \) are labeled \(a_3, b_3 \) and \(a_4, b_4 \) with \(a_3, a_4 \in (\theta_0, \theta_1) \) and \(b_3, b_4 \in (-\theta_1, -\theta_0) \). Note that we may in fact choose \(g_3, g_4, \) and \(B \) so that \(B \) maps \(a_3 \) to \(a_4 \) and maps \(b_3 \) to \(b_4 \). If our original choice of \(g_3, g_4 \) does not allow such a \(B \), then we need only choose some other geodesic \(g_5 \) between \(g_3 \) and \(g_4 \) and it will be related to either \(g_3 \) or \(g_4 \) in the required way.

Finally, note that there is in fact a choice of \(g_3 \) such that we may leave \(g_3 \) fixed and, by changing our choice of \(g_4 \), make the distance \(\epsilon \) between \(a_3 \) and \(a_4 \) as small as we like. Thus, we can arrange \(\delta(\epsilon) \) from Lemma 2 to be less than the distance between \(a_3 \) and either of \(\theta_0, \theta_1 \). Lemma 2 then shows that the associated boost must have a fixed point in the interval \((\theta_0, \theta_1)\). QED
REFERENCES

[1] J. Maldacena, `hep-th/9711200`.
[2] I. Klebanov, *Nucl. Phys. B496* (1997) 231, `hep-th/9702070`; S. Gubser and I. Klebanov, *Phys. Lett. B413* (1997) 41, `hep-th/9708005`; M. Douglas, J. Polchinski, and A. Strominger, *JHEP* 12 (1997) 3, `hep-th/9703031`.
[3] M. Banados, C. Teitelboim, E. Zanelli, *Phys. Rev. Lett.* 69 (1992) 1849; M. Banados, M. Henneaux, C. Teitelboim, E. Zanelli, *Phys. Rev. D 48* (1993) 1506.
[4] S. Åminneborg, I. Bengtsson, S. Holst, and P. Peldan, *Class. Quantum Grav.* 13 (1996) 2707; R. Mann, `gr-qc/9709039`; M. Banados *Phys. Rev. D57* (1998) 1068.
[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, `hep-th/9802109`.
[6] E. Witten, `hep-th/9802150`.
[7] G. Horowitz and H. Ooguri, *Phys. Rev. Lett.* 80 (1998) 4116, `hep-th/9802116`.
[8] R. Brustein, `hep-th/9801008`.
[9] T. Banks, `hep-th/9601151`.
[10] F. Larsen and F. Wilczek, *Phys. Rev. D55* (1997) 4591, `hep-th/9610252`.
[11] S. Kachru and E. S. Silverstein, `hep-th/9802183`; A. Lawrence, N. Nekrasov, and C. Vafa, `hep-th/9803013`.
[12] G. Horowitz and A. Steif, *Phys. Lett. B258* (1991) 91.
[13] J. Maldacena and A. Strominger, `hep-th/9804085`.
[14] S. Åminneborg, I. Bengtsson, D. Brill, S. Holst, and P. Peldan, `gr-qc/9707036`.
[15] S. Åminneborg, I. Bengtsson, and S. Holst, `gr-qc/9805028`.
[16] J. Louko and D. Marolf, to appear in *Phys. Rev. D*, `gr-qc/9802068`.
[17] J. L. Friedman, K. Schleich, and D. M. Witt, *Phys. Rev. Lett.* 71 (1993) 1486, Erratum - ibid 75 (1995) 1872, `gr-qc/9305017`.
[18] N. L. Balazs and A. Voros, *Phys. Rep.* 143 (1986) 109-240.
[19] V. Balasubramanian, P. Kraus, and A. Lawrence, `hep-th/9805171`.
[20] J. De Boer, Talk at ITP, May 7, 1998, see `http://www.itp.ucsb.edu/online/dual/boer1/`.
[21] A. Higuchi, *Class. Quant. Grav.* 8 (1991) 1983.
[22] N. Landsman, *J. Geom. Phys.* 15 (1995) 285-319, `hep-th/9305088`.
[23] D. Marolf, *Class. Quant. Grav.* 12 (1995) 1199, `gr-qc/9404053`.
[24] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, and T. Thiemann, *J. Math. Phys.* 36 6456 (1995), `gr-qc/9504018`.
[25] D. Marolf, in *Symplectic Singularities and Geometry of Gauge Fields*, (Banach Center Publications, Polish Academy of Sciences, Institute of Mathematics Warsaw, 1997), `gr-qc/9508013`.
[26] I.M. Gel’fand and N.Ya. Vilenkin, *Generalized Functions: vol. 4, Applications of Harmonic Analysis*, (Academic Press, New York, London, 1964).
[27] A. Ishibashi, T. KoiKe, M. Siino, and S. Kojima, *Phys. Rev. D54,* 7303 (1995) ,`gr-qc/9605041`.