Data Compression of Quantum Code

K.Y. Szeto

School of Natural Science
Institute for Advanced Study,
Olden Lane, Princeton, NJ08540, USA

and

Dept. of Physics,
The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.
Email: PHSZETO@USTHK.UST.HK

Abstract

1996 PACS numbers: 03.65.Bz, 05.30.-d, 89.70.+c

I. INTRODUCTION

The generalization of the Shannon’s noiseless coding theorem \[1\] to the case of quantum code has been performed recently by Schumacher \[2\]. For a quantum source \(Q\) emitting states \(|a_i\rangle\) at probability \(p_i\), Schumacher associates with \(Q\) the von Neumann entropy, \(S(\rho) = -Tr(\rho \log \rho)\) where \(\rho = \sum_i p_i |a_i\rangle \langle a_i|\) is the density matrix. This von Neumann entropy \[3\] plays the role of Shannon entropy. Soon after this work, Josza and Schumacher \[4\] propose a simpler proof of the quantum noiseless theorem and provide a specific algorithm of data compression for quantum signals. The general fidelity limit for quantum channels is recently given by Barnum et al \[5\]. In all these works, the focus is on independent
identically distributed quantum signals which comes from an irreducible Hilbert space. The transmission of pure quantum states $|a_i\rangle$ of the system Q with probability p_i is encoded by some state W_i of the channel C and delivered to a receiver who decodes the signal and obtain a state w_i of Q. The key results of these works concern the fidelity \bar{F} of the received signal w_i with respect to the signal source,

$$\bar{F} = \sum_i p_i Tr(|a_i\rangle\langle a_i| w_i).$$

(1)

The quantum noiseless theorem states that for given $\epsilon, \delta > 0$, and a given channel with $S(\rho) + \delta$ qubits available per input state, then for all sufficiently large N, there exists a coding and a decoding scheme which transmits blocks of N states with average fidelity $\bar{F} > 1 - \epsilon$. They also prove the converse of the theorem which states that for given $\epsilon, \delta > 0$, and a given channel with $S(\rho) - \delta$ qubits available per input state, then for all sufficiently large N, for any coding and decoding scheme for blocks of N states, the average fidelity satisfies $\bar{F} < \epsilon$.

The Josza-Schumacher scheme of data compression provides a convenient way of forming block codes with N states for a given source Q which Hilbert space has a dimension d. Here I make two simple observations: (1) what happens if the Hilbert space of Q can be decomposed into two or more mutually orthogonal subspaces, and that the signals state $|a_i\rangle$ belongs to only one of these subspaces? Can we do something simpler and easier than the Josza-Schumacher scheme? (2) Given an irreducible Hilbert space of dimension d, a quantum coding device that use q-ary quantum code unit, (analogous to the q-ary alphabet in classical coding), and certain limit on the size N of the block code, is there a simple relation on (d, q, N) that allows data compression with the least amount of wasteful resource? I show that for (1) there is an alternative way of coding and decoding that achieves the same quality of data compression, but employs classical data compression together with block quantum code. This will allow a more familiar method of tackling the quantum signals and use less resource, assuming that classical data compression is easier and cheaper than its quantum counterpart. As for (2), I have derived a simple rule of thumb for resource allocation in the
Josza-Schumacher scheme. Some numerical solutions which do not waste any resource are tabulated.

II. BLOCK CODE FOR DECOMPOSABLE HILBERT SPACE

Imagine a quantum source which emits signals according to certain known selection rules. Hence one can separate the total Hilbert space of the signals into two or more orthogonal subspaces. An example is the Bell basis where the quantum signals are generated by linear combination of the following states: \((\Psi^-, \Psi^+, \phi^+, \phi^-)\),

\[
\Psi^\pm = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle \right),
\]

and

\[
\phi^\pm = \frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle \pm |\downarrow\downarrow\rangle \right).
\]

In this case, the state \(\Psi^-\) is the singlet and spans a Hilbert space \(H_1\) of dimension \(d_1 = 1\), and the states \((\Psi^+, \phi^+, \phi^-)\) form the triplet and span a Hilbert space \(H_2\) of dimension \(d_2 = 3\). This is an example where spin 1/2 signal states can be sent from the source \(Q\) in a coherent manner so that the signals are of two possible kinds, pair of signals can be taken from either \(H_1\) or \(H_2\), but not mixed. More generally, if the signal states can be written either in the form

\[
|a\rangle = \sum_i \alpha_i |e_i^1\rangle
\]

or

\[
|b\rangle = \sum_i \beta_i |e_i^2\rangle,
\]

with \(|e_i^1\rangle, i = 1, \ldots, d_k\) an orthonormal basis for \(H_k\) for \(k = 1\) or 2 and \(H_1\) is orthogonal to \(H_2\), then we can write the density matrix for the source \(Q\) as

\[
\rho = P_1\rho_1 + P_2\rho_2
\]
where \(P_1 \) is the probability that the signal comes from \(H_1 \) and \(P_2 = 1 - P_1 \) is the probability that it comes from \(H_2 \). We can represent \(\rho_1 = \sum_j q_1^j |a_j\rangle\langle a_j| \) and \(\rho_2 = \sum_j q_2^j |b_j\rangle\langle b_j| \), where \(\{q_k^j\} \) are the probabilities of the signal states given that they are from the Hilbert space \(H_k \). We also introduce the projection operator \(\Pi_1 = \sum_j |e_j^1\rangle\langle e_j^1| \) that will be useful later to construct the N-block classical code. For a sequence of N signal states \(\{|c_1\rangle, ..., |c_N\rangle\} \), the operation of \(\Pi_1 \) yields a binary string \(\vec{x} = (x_1, x_2, ..., x_N) \) of length N, with each \(x_i = 0 \) if \(|c_i\rangle \in H_1 \) and \(x_i = 1 \) if \(|c_i\rangle \in H_2 \). We now show that the von Neumann entropy for the full density matrix \(\rho \) can be decomposed into three terms,

\[
S(\rho) = H(X) + P_1 S(\rho_1) + P_2 S(\rho_2)
\]

where \(H(X) = -P_1 \log(P_1) - P_2 \log(P_2) \) is the Shannon entropy associated with the classical code \(X = \{\vec{x}\} \). (This result is the quantum version of the classical result \(H(X,Y) = H(X) + H(Y|X) \) \[6\].) Eq \[4\] can be easily obtained by noting that

\[
\text{Tr}(P_1 \rho_1 + P_2 \rho_2) \log(P_1 \rho_1 + P_2 \rho_2)) = \text{Tr}(P_1 \rho_1 \log(P_1 \rho_1) + P_2 \rho_2 \log(P_2 \rho_2))
\]

as \(\text{Tr}(\rho_1 \log(\rho_2)) = \text{Tr}(\rho_2 \log(\rho_1)) = 0 \), since \(H_1 \) is orthogonal complement of \(H_2 \). Eq \[4\] relates two methods for constructing block codes using the quantum noiseless coding theorem. The first method is the direct application of the Josza-Schumacher technique to the entire Hilbert space \(\mathcal{H} \) without taking advantage of the decomposition of \(\mathcal{H} \) into two orthogonal subspaces, and this will take up a channel resource of at least \(S(\rho) \) qubits. A second method is to make use of the right hand side of eq \[4\]. We first perform a classical block code using for example the Huffman coding technique \[7\] on the N-sequence \(\{\vec{x}\} \), and this will take up at least \(H(X) \) bit per input of classical channel resource, then one can perform respectively the quantum block coding for the \(N_1 \)-subsequence of the states from \(H_1 \) and use up at least \(S(\rho_1) \) qubits of quantum channel resource per \(H_1 \) input state, and similarly for the \(N_2 \)-subsequence of the states from \(H_2 \). The lower limit of total channel resource is the same as given by eq \[4\], but the advantage of the second method is that by making the most use of the information of the Hilbert space structure, one can perform classical block coding of \(X \) before one performs the
quantum block coding of $|Y\rangle = |a_1\rangle|a_2\rangle...|a_{N_1}\rangle$ and of $|Z\rangle = |b_1\rangle|b_2\rangle...|b_{N_2}\rangle$. This replaces part of the quantum resource by classical resource $H(X)$. Since classical coding is easier than quantum coding, one should first inquire if the Hilbert space of the signal states can be decomposed into several orthogonal subspaces before proceeding directly to use quantum code. One should note that it is necessary that the two subspaces H_1 and H_2 are orthogonal. In fact, one can show that block coding cannot separate two nonorthogonal subspaces.

III. PARAMETERIZATION OF QUANTUM BLOCK CODE IN THE JOSZA-SCHUMACHER SCHEME

The Josza-Schumacher quantum block code provides a simple scheme of maximizing the fidelity while tolerating small errors in the signals reconstituted from the coded version. Of course, in any realistic calculation of fidelity, one has to take into account the details of the probabilities of the states from the signal source, therefore a general statement on the efficient use of block code of size N, given that the dimension of the Hilbert space is d, seems impractical. However, we can pose the problem of minimizing the resource allocation of quantum code for a particular scheme of coding, which parametrization of channel resource is of some utility. The scheme we discuss is a generalization of the Josza-Schumacher scheme, and the key idea lies in the observation that the quantum bits required to code the states in the typical N-sequence space of dimension D_Λ usually requires more resource than necessary, in that a block of q-ary code of length M in general has $q^M > D_\Lambda$.

Consider block code of length N. The idea is to construct a typical subspace \mathcal{L}^N of N-sequence of the Hilbert space \mathcal{H}^N of the N-sequence of signal states so that for any subspace with the same dimension as \mathcal{L}^N, the fidelity will be smaller. Let’s consider the signal states $\{|a_i\rangle, i = 1,...,d^*\}$ occurring with probability $\{p_i\}$. Without loss of generality, we assume that the signal states are linearly independent but not necessary orthogonal, so that the space \mathcal{H} spanned by them also has dimension d^* and we order $\{p_i\}$ so that $p_i \geq p_j$ for $i < j$. For simplicity, let’s assume that there is a state $|a_d\rangle$ which probabil-
ity \(p_d \) is different from all the other states. (This is not necessary for the argument that follows.) Let \(\mathcal{L} = \text{span}\{|a_1\rangle, |a_2\rangle, ..., |a_d\rangle\} \) be the subspace of \(\mathcal{H} \). After defining \(\mathcal{L} \), we can choose an orthonormal basis of \(\mathcal{L} \) to be \(\{|e_1\rangle, ..., |e_d\rangle\} \) with \(|e_1\rangle \equiv |a_1\rangle \). Also, we extend this basis by adding an orthonormal set consisting of \((d^* - d)\) vectors \(\{|e_{d+1}\rangle, .., |e_{d^*}\rangle\} \) to form the basis of \(\mathcal{H} \). Now consider product state \(|\lambda_1\lambda_2..\lambda_N\rangle \) for a given \(N \), and \(|\lambda_i\rangle \) is chosen from the basis \(\{|e_1\rangle, ..., |e_d\rangle\} \). We first observe that a similar product state \(|\mu_1\mu_2..\mu_N\rangle \) with \(|\mu_i\rangle \) chosen from the basis \(\{|e_1\rangle, ..., |e_d^*\rangle\} \) will generally has a smaller contribution to the fidelity calculation. (Indeed, one can verify easily that for given \(|\mu_1\mu_2..\mu_N\rangle \), we can replace those entries which do not belong to \(\mathcal{L} \) by some elements in \(\mathcal{L} \) and the new product state will give a higher contribution to the fidelity.) Let’s now compare the typical subspace \(\Lambda \) of \(\mathcal{H}^N \) formed by a set of \(D_\Lambda \) states of form \(|\lambda_1\lambda_2..\lambda_N\rangle \), and a similar subspace \(\Gamma \) of \(\mathcal{H}^N \) formed by a set of \(D_\Gamma \) states of form \(|\mu_1\mu_2..\mu_N\rangle \). If we insist that these two subspaces of typical \(N \)-sequence has the same dimension, \(D_\Lambda = D_\Gamma \), then we can show that the fidelity \(F_\lambda = \sum_{\{a...a\}} \text{Tr}(\pi W_\lambda) \) calculated using the projection \(W_\lambda \equiv \sum_{\{\lambda\}} |\lambda_1\lambda_2..\lambda_N\rangle\langle\lambda_N...\lambda_2\lambda_1| \) will be higher than the fidelity \(F_\mu = \sum_{\{a...a\}} \text{Tr}(\pi W_\mu) \) using \(W_\mu \equiv \sum_{\{\mu\}} |\mu_1\mu_2..\mu_N\rangle\langle\mu_N...\mu_2\mu_1| \). Here \(\pi \equiv \sum_a P(a)|a_{i_1}...a_{i_N}\rangle\langle a_{i_N}...a_{i_1}| \) with the sum over all possible \(N \)-sequence \(i_1,...i_N \). Thus, the \(N \)-sequence chosen from \(\lambda \) gives a control on the fidelity which is now determined by the integer parameters \(d \) and \(N \). One can now discuss some general results on the parametrization of the quantum block coding scheme using the product space \(\Lambda \equiv \mathcal{L}^N = \bigotimes_{i=1}^{N} \mathcal{L} \). It is a typical subspace of the Hilbert space \(\mathcal{H}^N = \bigotimes_{i=1}^{N} \mathcal{H} \) and it contains the likely \(N \)-sequence of signal state. In order to encode these likely \(N \)-sequence of signal state, we have to calculate the dimension \(D_\Lambda \) of \(\Lambda \) and use a \(q \)-ary quantum code to represent the states in \(\Lambda \).

To simplify notation, we will use \(|s\rangle \) to denote \(|e_1\rangle = |a_1\rangle \) and generically \(|r\rangle \) to denote any other state in \(\mathcal{L} \). The particular scheme of quantum coding is to form block code of \(N \) states composed of product of \(K \) \(|s\rangle \) states and \((N - K) \) \(|r\rangle \) states which are occuring less frequently. The set of such product states can be written in the general form...
These N product states have the unique feature that one can unambiguously conclude that the $|s\rangle$ state is the majority species in the product. If there are $K (\geq N/2)$ states are $|s\rangle$, then the remaining states in the product can be selected from any signal states $|r\rangle$ from \mathcal{L}. In order to enumerate all the states and count the dimension of Λ, we observe that there is only one $|ssss...s\rangle$ state consists of product of N $|s\rangle$ state. There are $((d-1) \star N)$ states of the form $|ss..srs...s\rangle$ since there are $(d-1)$ choices of different signal states to put into N different spots in the string. In general, if there are $K |s\rangle$ in the product $|\lambda_1\lambda_2.....\lambda_N\rangle$, the remaining $(N - K)$ signal states are chosen from $(d-1)$ choices of $|r\rangle$ states. The possible combination is $(d-1)^{N-K} C_{N-K}^N C_{N-K}^N$ with $C_{N-K}^N \equiv \frac{N!}{K!(N-K)!}$ being the number of ways of selecting K positions for the $|r\rangle$ states out of N slots. If $N (= 2L)$ is even and there are $L |s\rangle$ states in the product state already, then the remaining L slot cannot be all of the same state $|r\rangle$ in order to prevent ambiguity of the majority signal state, we then in this special case have only $(d-1)^{L-1}(d-2)C_L^N$ possible combination, as there are $(d-1)$ choices to choose the first $|r\rangle$ state, and $(d-2)$ choices for the second $|r\rangle$, since the second $|r\rangle$ state must be different from the first so that one knows that the majority in the product is $|s\rangle$. Summarizing this discussion, we arrive at the dimension D_Λ of the subspace Λ, for odd $N = 2L - 1$

$$D_\Lambda = 1 + (d-1)C_{N-1}^N + (d-1)^2C_{N-2}^N + .. + (d-1)^{L-1}C_{N-L+1}^N$$

and for even $N = 2L$,

$$D_\Lambda = 1 + (d-1)C_{N-1}^N + (d-1)^2C_{N-2}^N + .. + (d-1)^{L-1}C_{N-L+1}^N + (d-1)^{L-1}(d-2)C_L^N.$$

We note that in general $D_\Lambda \ll \dim(\mathcal{H}^N) = d^N$ and the states in Λ has a relatively high probability of occurrence among the states in \mathcal{H}^N. The exact calculation of the probability
of occurrence of the states in Λ requires a knowledge of probability of the occurrence of the single signal state from the quantum source. However, based on this general scheme of construction of Λ, we can say something about the optimal method of coding the states in Λ with quantum code.

Generally, quantum code makes use of qubits, equivalent to the minimal quantum space spanned by spin 1/2, which corresponds to the classical binary system with the number q of alphabets being 2. We can in general consider a spin J quantum system which has a Hilbert space of dimension $q = 2J + 1$, corresponding to the classical q-ary system with q alphabets. Assuming that a general spin J system is available for quantum coding of the N block signal, then the space Q of quantum codes consists of states $|q_1q_2..q_M\rangle$, and the dimension of Q is q^M. In order to ensure that the quantum codes can encode all the informations in Λ, it is necessary that $q^M \geq D_\Lambda$. The resource wasted in coding the N block signal is measured by the percentage $E \equiv \frac{q^M - D_\Lambda}{D_\Lambda}$. Since D_Λ is a function of only d and N, we can look for integer solution (d, N, q, M) for the equation $q^M = D_\Lambda$ for a physical range of values of d, N, q, M. We have found 9 solutions for the range $2 \leq d, q, M \leq 32$ and $3 \leq N \leq 32$. They are listed in Table.1 with dimension $D_\Lambda = q^M$.
Table.1 Exact solution of \(D_{\Lambda} = q^M \)

d	N	M	\(D_{\Lambda} \)
2	3	2	4
2	5	2	16
2	9	2	256
2	17	2	65536
2	5	4	16
2	9	4	256
2	17	4	65536
2	11	2	1024
2	21	2	1048576
4	4	2	49
6	3	2	16
6	3	4	16
17	3	2	49
22	3	2	64
22	3	4	64
22	3	8	64

IV. DISCUSSION

We have demonstrated that the data compression for quantum signals can be simplified in the case where the Hilbert space of the signals states can be decomposed into two or more mutually orthogonal subspaces, as one can first perform data compression on the classical code encoding the particular subspace to which the signal state belongs before performing quantum block coding. The problem of performing the projection into particular subspace without destroying the signals depend on the quantum source, but in principle this can be done. (For the separation of horizontally polarized photons from vertically polarized ones, a
calcite crystal can be used as the projection operator \(\mathcal{S} \). The classical signals \(X \) carrying the information for the subspace can be block coded to achieve optimal data compression, and the set of quantum signals which forms block of length \(N_1 = P_1 N \) and \(N_2 = N - N_1 \) can be coded, using for example the Josza-Schumacher scheme. Since a particular sequence of \(N \) quantum signals need not have exactly \(P_1 N \) signals from \(H_1 \), one should use some extra dimension to encode the signals from \(H_1 \). This will be a disadvantage compared to the straightforward coding of the \(N \) signals using the entire Hilbert space \(\mathcal{H} \). In general, the ease of classical data compression, such as the use of Huffmann code, outweights the small extra dimensions needed to encode the string of \(N_k \) quantum signals from \(H_k \). One can consider instantaneous code, or more generally uniquely decipherable code for quantum signals in the context of the present discussion. The fact that \(P_1 N \) signals from \(H_1 \) in general has some fluctuation suggests that one can form hierarchical block of the quantum code \(|h_1 h_2 ... h_{M_1}\rangle \) with \(h_i \in \{0, 1, \ldots, q_1 - 1\} \) where \(q_1^{M_1} \geq D_{\Lambda_1} \) with \(\Lambda_1 \) being the typical subspace of \(N_1 \) sequence of the Hilbert space \(H_1^N \).

Finally, the possibility of decomposing signals belonging to \(\mathcal{H} \) into signals belonging to different orthogonal subspaces \(H_k \) depends on the quantum source. As the example of the Bell basis demonstrates, one may anticipate quantum source emitting signals with certain selection rule, or with certain quantum correlation which renders the Hilbert space \(\mathcal{H} \) decomposable. This naturally leads to the question of quantum source emitting correlated quantum signals and poses an interesting problem for future research. For now, if the signals are mostly from either one or the other orthogonal subspace, and only a tiny fraction of the signals form linear combination of states from two different subspaces, one can still employ the technique discussed in this paper in focusing on the typical sequence, after discarding the signals that are mixtures of two subspaces, but at the price of a compromised fidelity.
V. ACKNOWLEDGEMENT

I acknowledge many helpful discussion with Hoi-Kwong Lo and the hospitality of the School of Natural Sciences at the Institute for Advanced Study. Part of this research is funded by the Hong Kong Telecom Institute of Information Technology.
REFERENCES

[1] C.E. Shannon, Bell System Technical Journal 27, 379(1948).

[2] B. Schumacher, Phys. Rev. A 51, 2738-2747(1995).

[3] J. von Neumann, *Mathematical Foundations of Quantum Mechanics* (English translation by R.T. Beyer), Princeton University Press (1955).

[4] R. Jozsa and B. Schumacher, J. Mod. Optics 41, 2343-2349(1994).

[5] H. Barnum, C.A. Fuchs, R. Jozsa, and B. Schumacher, preprint, quant-ph/9603014, 8 Mar 96

[6] R.B. Ash; *Information Theory*, Dover, (1965).

[7] D.A. Huffmann, Proc.IRE, 40, No.10, 1098-1101(1952).

[8] C.H. Bennett, G. Brassard, and A.K. Ekert; Scientific American, 50, Oct. (1992)