RANK OF A CO-DOUBLY COMMUTING SUBMODULE IS 2

ARUP CHATTOPADHYAY, B. KRISHNA DAS, AND JAYDEB SARKAR

Dedicated to the memory of our friend and colleague Sudipta Dutta

Abstract. We prove that the rank of a non-trivial co-doubly commuting submodule is 2. More precisely, let \(\varphi, \psi \in H^\infty(D) \) be two inner functions. If \(Q_\varphi = H^2(D)/\varphi H^2(D) \) and \(Q_\psi = H^2(D)/\psi H^2(D) \), then

\[
\text{rank} (Q_\varphi \otimes Q_\psi)^\perp = 2.
\]

An immediate consequence is the following: Let \(S \) be a co-doubly commuting submodule of \(H^2(D^2) \). Then \(\text{rank} S = 1 \) if and only if \(S = \Phi H^2(D^2) \) for some one variable inner function \(\Phi \in H^\infty(D^2) \). This answers a question posed by R. G. Douglas and R. Yang [4].

1. Introduction

Let \(T = (T_1, \ldots, T_n) \) be an \(n \)-tuple of commuting bounded linear operators on a Hilbert space \(\mathcal{H} \). For a subset \(E \subseteq \mathcal{H} \) we denote \([E]_T \) by the close subspace \(\text{span}\{T_1^{k_1} \cdots T_n^{k_n} E : k_j \in \mathbb{N}, j = 1, \ldots, n\} \) of \(\mathcal{H} \). Then the rank of \(T \) [3] is the unique number

\[
\text{rank}(T) = \min \{ \#E : [E]_T = \mathcal{H}, E \subseteq \mathcal{H} \}.
\]

A closed subspace \(S \) of \(H^2(D^n) \), the Hardy space over the unit polydisc \(D^n \), is said to be shift invariant if \(M_z(S) \subseteq S \) for \(i = 1, 2, \ldots, n \), where \(M_z \) is the co-ordinate multiplication operator on \(H^2(D^n) \). The rank of a shift invariant subspace \(S \) of \(H^2(D^n) \) is the rank of the corresponding \(n \)-tuple of restricted co-ordinate shift operators, that is

\[
\text{rank} S = \text{rank} (M_{z_1}|S, \ldots, M_{z_n}|S).
\]

The rank of a bounded linear operator (or, of a commuting tuple of bounded linear operators) on a Hilbert space is an important numerical invariant. Very briefly, the rank of a bounded linear operator is the cardinality of a minimal generating set (see the definition below). One of the most intriguing and important problems in operator theory and function theory is the existence of a finite generating set for a commuting tuple of operators. Alternatively, one may ask when the rank of a commuting tuple of operators is finite.

Prototype examples of rank one operators are the co-ordinate multiplication operator tuple \((M_{z_1}, \ldots, M_{z_n}) \) on the Hardy space, the (weighted) Bergman space over the unit ball and the polydisc in \(\mathbb{C}^n \), \(n \geq 1 \), and the Drury-Arveson space over the unit ball in \(\mathbb{C}^n \). Moreover, a particular version of the celebrated invariant subspace theorem of Beurling says: A shift invariant (or, shift co-invariant) subspace of the one variable Hardy space is of rank one.

2010 Mathematics Subject Classification. 47A13, 47A15, 47A16, 46M05, 46C99, 32A70.

Key words and phrases. Hardy space over bidisc, rank, joint invariant subspaces, semi-invariant subspaces.
Computation of ranks of shift invariant as well as shift co-invariant subspaces beyond the case of the one variable Hardy space is an excruciatingly difficult problem, even if one considers only shift invariant (as well as co-invariant) subspaces of the Hardy space over the unit polydisc in \mathbb{C}^n, $n > 1$ (see however [2, 6, 7, 8, 14]).

The purpose of this paper is to compute the rank of a tractable class of shift invariant subspaces of the two variables Hardy space, $H^2(D^2)$, over the bidisc D^2 in \mathbb{C}^2. In order to state the precise contribution of this paper, we need to introduce first some definitions and notations.

We denote the open unit disc of \mathbb{C} by D, and the unit circle by T. The Hardy space over the unit disc D (bidisc D^2), denoted by $H^2(D)$ ($H^2(D^2)$), is the Hilbert space of all square summable holomorphic functions on D (on D^2). Also we will denote by M_z and M_w the multiplication operators on $H^2(D^2)$ by the coordinate functions z and w, respectively. It is easy to see that (M_z, M_w) is a pair of commuting isometries, that is,

$$M_z M_w = M_w M_z, \quad M_z^* M_z = M_w^* M_w = I_{H^2(D^2)}.$$

Identifying $H^2(D^2)$ with the 2-fold Hilbert space tensor product $H^2(D) \otimes H^2(D)$, one can represent (M_z, M_w) as $(M_z \otimes I_{H^2(D)}, I_{H^2(D)} \otimes M_w)$.

Let S and Q be closed subspaces of $H^2(D^2)$. Then S is said to be a submodule if $M_z(S) \subseteq S$ and $M_w(S) \subseteq S$. We say that Q is a quotient module if Q^\perp is a submodule.

A well-known result due to Beurling states that if S is a submodule of $H^2(D)$ (that is, S is a closed subspace of $H^2(D)$ and $M_z S \subseteq S$), then S can be represented as

$$S = S_\varphi := \varphi H^2(D),$$

where $\varphi \in H^\infty(D)$ is an inner function (that is, φ is a bounded holomorphic function on D and $|\varphi| = 1$ a.e. on T). Consequently, a quotient module Q (that is, Q is a closed subspace of $H^2(D)$ and $M_z Q \subseteq Q$) of $H^2(D)$ can be represented as

$$Q = Q_\varphi := (S_\varphi)^\perp = H^2(D)/\varphi H^2(D).$$

It readily follows that

$$\text{rank } (M_z|_{S_\varphi}) = \text{rank } (P_{Q_\varphi} M_z|_{Q_\varphi}) = 1.$$

Rudin [10], however, pointed out that there exists a submodule S of $H^2(D^2)$ such that the rank of S is not finite (see also [7, 12] and [13]).

A quotient module Q of $H^2(D^2)$ is doubly commuting if $C_z C_w^* = C_w^* C_z$, where $C_z = P_Q M_z|_Q$ and $C_w = P_Q M_w|_Q$. A submodule S of $H^2(D^2)$ is co-doubly commuting if the quotient module $S^\perp (\cong H^2(D^2)/S)$ is doubly commuting.

The following useful characterization of co-doubly commuting submodules is essential for our study (see [1, 14]): If Q is a quotient module of $H^2(D^2)$, then Q is a doubly commuting quotient module if and only if

$$Q = Q_1 \otimes Q_2,$$

for some quotient modules Q_1 and Q_2 of $H^2(D)$.

Let $S = (Q_1 \otimes Q_2)^\perp$ be a non-zero co-doubly commuting submodule. If $Q_j = H^2(D)$, for some $j = 1, 2$, then it is easy to see that

$$\text{rank } S = 1.$$
Now let both Q_1 and Q_2 be non-trivial quotient modules of $H^2(\mathbb{D})$, that is, $Q_j \neq \{0\}, H^2(\mathbb{D})$, $j = 1, 2$. Then there exist inner functions $\varphi, \psi \in H^\infty(\mathbb{D})$ such that $Q_1 = Q_\varphi$ and $Q_2 = Q_\psi$. The main purpose of the present paper is to prove that (see Theorem 2.1)

$$\text{rank } (Q_\varphi \otimes Q_\psi)^\perp = 2.$$

As a consequence of this, we give a complete and affirmative answer to a conjecture of Douglas and Yang (see page 220 [1]): If S is a rank one co-doubly commuting submodule, then $S = \Phi H^2(\mathbb{D}^2)$ for some one variable inner function $\Phi \in H^\infty(\mathbb{D})$.

2. Proof of the main result

We begin with a simple but crucial observation on the rank of a joint semi-invariant subspace of a commuting tuple of operators.

Lemma 2.1. Let $T = (T_1, \ldots, T_n)$ be an n-tuple of commuting operators on a Hilbert space \mathcal{H}. Let S_1 and S_2 be two joint T-invariant subspaces of \mathcal{H} and $S_2 \subseteq S_1$. If $S = S_1 \ominus S_2$, then

$$\text{rank } (P_S T_1|_S, \ldots, P_S T_n|_S) \leq \text{rank } (T_1|_{S_1}, \ldots, T_n|_{S_1}).$$

Proof. Let $m \in \mathbb{N}$ be the right side of the above inequality. Let $\{f_j\}_{j=1}^m \subseteq S_1$ be a generating set for $(T_1|_{S_1}, \ldots, T_n|_{S_1})$. Clearly, $P_S T_j P_S = P_S T_j|_{S_1}$ for all $j = 1, \ldots, n$. This yields

$$\text{rank } (P_S T_i|_S)(P_S T_j P_S) = P_S (T_i T_j)|_{S_1} \quad (i, j = 1, \ldots, n).$$

It hence follows that $\{P_S f_j\}_{j=1}^m$ is a generating set for $(P_S T_1|_S, \ldots, P_S T_n|_S)$. This completes the proof. \hfill \square

We now prove the main result of this paper.

Theorem 2.1. Let $\varphi, \psi \in H^\infty(\mathbb{D})$ be two inner functions. If

$$S = (Q_\varphi \otimes Q_\psi)^\perp,$$

then $\text{rank } S = 2$.

Proof. Let $X = I_{H^2(\mathbb{D}^2)} - (I_{H^2(\mathbb{D}^2)} - M_\varphi M_\varphi^* \otimes I_{H^2(\mathbb{D}^2)})(I_{H^2(\mathbb{D}^2)} - I_{H^2(\mathbb{D})} \otimes M_\psi M_\psi^*)$. Since $S = \text{ran } X$,

and

$$X = ((M_\varphi M_\varphi^*) \otimes (I_{H^2(\mathbb{D}^2)} - M_\psi M_\psi^*)) \oplus (I_{H^2(\mathbb{D})} \otimes M_\psi M_\psi^*),$$

it follows that

$$S = (S_\varphi \otimes Q_\psi) \oplus (H^2(\mathbb{D}) \otimes S_\psi).$$

Since by Theorem 6.2 of [1], $\text{rank } S \leq 2$, we only need to show that $\text{rank } S \geq 2$. Set

$$E = S \ominus (S_\varphi \otimes S_\psi).$$

It follows that

$$E = (S_\varphi \otimes Q_\psi) \oplus (Q_\varphi \otimes S_\psi).$$

Since $S_\varphi \otimes S_\psi \subseteq S$ is a submodule of $H^2(\mathbb{D}^2)$, by Lemma 2.1 it follows that

(2.1) \hfill \text{rank}(P_E M_z|_E, P_E M_w|_E) \leq \text{rank}(M_z|_S, M_w|_S) = \text{rank}(S).
Note that

$$P_\mathcal{E} = (P_{S_\varphi} \otimes P_{Q_\psi}) \oplus (P_{Q_\varphi} \otimes P_{S_\psi}).$$

and hence, an easy calculation yields

$$P_\mathcal{E} M_z|_\mathcal{E} = (M_z|_{S_\varphi} \otimes P_{Q_\psi}) \oplus (P_{Q_\varphi} M_z|_{S_\psi} \otimes P_{S_\psi}),$$

and

$$P_\mathcal{E} M_w|_\mathcal{E} = (P_{S_\varphi} \otimes P_{Q_\psi} M_w|_{Q_\psi}) \oplus (P_{Q_\varphi} \otimes M_w|_{S_\psi}).$$

Therefore it follows from the above equalities that $(S_{\varphi^2} \otimes Q_\psi) \oplus (Q_\varphi \otimes S_{\psi^2})$ is a joint $(P_\mathcal{E} M_z|_\mathcal{E}, P_\mathcal{E} M_w|_\mathcal{E})$ invariant subspace of \mathcal{E}. Set

$$\tilde{\mathcal{E}} = \mathcal{E} \oplus ((S_{\varphi^2} \otimes Q_\psi) \oplus (Q_\varphi \otimes S_{\psi^2})).$$

Notice that for any inner function $\theta \in H^\infty(\mathbb{D})$, we have

$$S_\theta \ominus S_{\theta^2} = \theta Q_\theta.$$

From this and the representation of $\mathcal{E} = (S_\varphi \otimes Q_\psi) \oplus (Q_\varphi \otimes S_\psi)$ it follows that

$$\tilde{\mathcal{E}} = ((S_\varphi \otimes Q_\psi) \oplus (Q_\varphi \otimes S_\psi)) \oplus ((S_{\varphi^2} \otimes Q_\psi) \oplus (Q_\varphi \otimes S_{\psi^2}))$$

$$= (\varphi Q_\varphi \otimes Q_\psi) \oplus (Q_\varphi \otimes \psi Q_\psi).$$

Then Lemma 2.1 and 2.1 implies that

$$\text{rank}(P_\mathcal{E} M_z|_\mathcal{E}, P_\mathcal{E} M_w|_\mathcal{E}) \leq \text{rank}(P_\mathcal{E} M_z|_\mathcal{E}, P_\mathcal{E} M_w|_\mathcal{E}) \leq \text{rank}(\mathcal{S}) \leq 2.$$

To finish the proof of the theorem it is now enough to prove the following:

$$\text{rank}(P_\mathcal{E} M_z|_\mathcal{E}, P_\mathcal{E} M_w|_\mathcal{E}) > 1.$$

Equivalently, it is enough to prove that the set $\{\xi\}$, for any $\xi \in \tilde{\mathcal{E}}$, is not a generating set corresponding to $(P_\mathcal{E} M_z|_\mathcal{E}, P_\mathcal{E} M_w|_\mathcal{E})$. Equivalently, given $\xi \in \tilde{\mathcal{E}}$, we show that there exists $\eta_\xi(\neq 0) \in \tilde{\mathcal{E}}$ such that

$$\langle (z^p \otimes w^q)\xi, \eta_\xi \rangle = 0 \quad (p, q \in \mathbb{N}).$$

To this end, let $\{f_i\}$ and $\{g_j\}$ be orthonormal bases of Q_φ and Q_ψ, respectively, and let $\xi \in \tilde{\mathcal{E}}$ where

$$\xi = (\sum_{k,l} a_{kl} \varphi f_k \otimes g_l) \oplus (\sum_{k,l} b_{kl} f_k \otimes \psi g_l),$$

$\{a_{kl}\}, \{b_{kl}\} \subseteq \mathbb{C}$, and

$$\sum_{k,l} |a_{kl}|^2, \sum_{k,l} |b_{kl}|^2 < \infty.$$

Again we observe that for any inner function $\theta \in H^\infty(\mathbb{D})$ and $f = \sum_{m \geq 0} c_m z^m \in Q_\theta$ we have

$$M_\varphi^*(\theta \bar{f}) \in Q_\theta,$$

where $\bar{f} = \sum_{m \geq 0} \bar{c}_m e^{-imt} \in L^2(\mathbb{T})$. This follows from the fact that θ is a bounded holomorphic function on \mathbb{D} and $M_\varphi^*(\theta \bar{f}) \perp z^m$ for all $m < 0$ (which gives that $M_\varphi^*(\theta \bar{f}) \in H^2(\mathbb{D})$), and then $M_\varphi^*(\theta \bar{f}) \perp z^m$ in $L^2(\mathbb{T})$ for all $m \geq 0$ (which gives that $M_\varphi^*(\theta \bar{f}) \in Q_\theta$). It should be noted that $M_\varphi^*(\theta \bar{f}) = \theta z^n \bar{f} = C_\theta(f)$, where the conjugation map $C_\theta : Q_\theta \rightarrow Q_\theta$, $f \mapsto M_\varphi^*(\theta \bar{f})$, is
RANK OF A CO-DOUBLY COMMUTING SUBMODULE IS 2

called a C-symmetry and it is used extensively in the study of Toeplitz operators on model spaces (for more details see [5]).

Coming back to our context, this immediately yields that

\[M^*_z(\varphi f_k) \otimes M^*_w(\psi g_l) \in \mathcal{Q}_\varphi \otimes \mathcal{Q}_\psi \quad (k, l \geq 0), \]

and hence \(s_0 \otimes s_1, t_0 \otimes t_1 \in \mathcal{Q}_\varphi \otimes \mathcal{Q}_\psi \), where

\[s_0 \otimes s_1 := - \sum_{k,l} a_{kl} M^*_z(\varphi f_k) \otimes M^*_w(\psi g_l) = -(M^*_z \otimes M^*_w)(\varphi \otimes \psi)(\sum_{k,l} a_{kl} f_k \otimes g_l) \]

and

\[t_0 \otimes t_1 := \sum_{k,l} b_{kl} M^*_z(\varphi f_k) \otimes M^*_w(\psi g_l) = (M^*_z \otimes M^*_w)(\varphi \otimes \psi)(\sum_{k,l} b_{kl} f_k \otimes g_l). \]

Set

\[\eta_\xi = (\varphi t_0 \otimes t_1) \oplus (s_0 \otimes \psi s_1) \in \mathcal{E}. \]

Then \(\eta_\xi \neq 0 \) and for every \(p, q \in \mathbb{N} \) we have

\[
\langle (z^p \otimes w^q)\xi, \eta_\xi \rangle = \langle (z^p \otimes w^q)(\sum_{k,l} a_{kl} \varphi f_k \otimes g_l) \oplus (\sum_{k,l} b_{kl} f_k \otimes \psi g_l), (\varphi t_0 \otimes t_1) \oplus (s_0 \otimes \psi s_1) \rangle \\
= \langle (z^p \otimes w^q)(\sum_{k,l} a_{kl} \varphi f_k \otimes g_l), \varphi t_0 \otimes t_1 \rangle \\
+ \langle (z^p \otimes w^q)(\sum_{k,l} b_{kl} f_k \otimes \psi g_l), s_0 \otimes \psi s_1 \rangle \\
= \langle (z^p \otimes w^q)(\sum_{k,l} a_{kl} f_k \otimes g_l), t_0 \otimes t_1 \rangle + \langle (z^p \otimes w^q)(\sum_{k,l} b_{kl} f_k \otimes g_l), s_0 \otimes s_1 \rangle \\
= \langle (z^{p+1} \otimes w^{q+1})(\sum_{k,l} a_{kl} f_k \otimes g_l), (\varphi \otimes \psi)(\sum_{k,l=1}^\infty b_{kl} f_k \otimes g_l) \rangle \\
- \langle (z^{p+1} \otimes w^{q+1})(\sum_{k,l} b_{kl} f_k \otimes g_l), (\varphi \otimes \psi)(\sum_{k,l} a_{kl} f_k \otimes g_l) \rangle \\
= 0.
\]

We have thus shown that \(\{\xi\} \) is not a minimal generating subset of \(\mathcal{E} \) with respect to \((P_\xi M_z|_\xi, P_\xi M_w|_\xi) \) as desired. \(\square \)

As a consequence of the above theorem we have the following corollary which provides an affirmative answer of the question raised by Douglas and Yang [4].

Corollary 2.2. Let \(\mathcal{S} \) be a co-doubly commuting submodule of \(H^2(\mathbb{D}^2) \). Then \(\text{rank} \ (\mathcal{S}) = 1 \) if and only if \(\mathcal{S} = \Theta H^2(\mathbb{D}^2) \) for some one variable inner function \(\Theta \in H^\infty(\mathbb{D}) \).

Proof. If \(\mathcal{S} = \Theta H^2(\mathbb{D}^2) \) for some one variable inner function \(\Theta \in H^\infty(\mathbb{D}) \), then \(\mathcal{S} \cong H^2(\mathbb{D}^2) \) and hence \(\text{rank} \ \mathcal{S} = 1 \). To prove the the sufficient part let \(\mathcal{S} \) be a rank one co-doubly
commuting submodule of $H^2(D^2)$. Then there exist quotient modules Q_1 and Q_2 of $H^2(D^2)$ such that (see [9, 11])

$$S = (Q_1 \otimes Q_2)\perp.$$

Since rank $(S) = 1$, it follows from Theorem 2.4 that $Q_j = H^2(D)$, for some $j = 1, 2$. This shows that

$$S = S_\varphi \otimes H^2(D), \quad \text{or} \quad S = H^2(D) \otimes S_\psi,$$

for some inner functions $\varphi, \psi \in H^\infty(D)$. This concludes the proof of the corollary. □

There is now the following interesting and natural question: Let $m \geq 2$ and let $\{\varphi_j\}_{j=1}^m \subseteq H^\infty(D)$ be inner functions. Is then

$$\text{rank} \left(Q_{\varphi_1} \otimes \ldots \otimes Q_{\varphi_m} \right) \perp = m?$$

Our present approach does not seem to work for $m > 2$ case.

Acknowledgement: The first named author acknowledge Fulbright-Nehru Postdoctoral Research Fellowship (Award No. 2164/FNPDR/2016) and University of New Mexico for warm hospitality. The second author’s research work is supported by DST-INSPIRE Faculty Fellowship No. DST/INSPIRE/04/2015/001094. The research of the third author is supported in part by NBHM (National Board of Higher Mathematics, India) Research Grant NBHM/R.P.64/2014.

References

[1] A. Chattopadhyay, B.K. Das and J. Sarkar, Tensor product of quotient Hilbert modules, J. Math. Anal. Appl. 424 (2015), 727-747.
[2] A. Chattopadhyay, B.K. Das and J. Sarkar, Star-generating vectors of Rudin’s quotient modules, J. Funct. Anal. 267 (2014), 4341-4360.
[3] R. Douglas and V. Paulsen, Hilbert Modules over Function Algebras, Research Notes in Mathematics Series, 47, Longman, Harlow, 1989.
[4] R. Douglas and R. Yang, Operator theory in the Hardy space over the bidisk (I), Integral Equations Operator Theory 38 (2000), no. 2, 207-221.
[5] S. R. Garcia, Conjugation and Clark operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67-111.
[6] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Blaschke products and the rank of backward shift invariant subspaces over the bidisk, J. Funct. Anal. 261 (2011), no. 6, 1457-1468.
[7] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Ranks of invariant subspaces of the Hardy space over the bidisk, J. Reine Angew. Math. 659 (2011) 101-139.
[8] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Ranks of backward shift invariant subspaces of the Hardy space over the bidisk, Math. Z. 274 (2013), 885-903.
[9] K. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisc II, J. Oper. Theory 51 (2004), 361-376.
[10] W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.
[11] J. Sarkar, Jordan blocks of $H^2(D^n)$, J. Operator theory 72 (2014), 371-385.
[12] M. Seto, Infinite sequences of inner functions and submodules in $H^2(D^2)$, J. Operator Theory 61 (2009), no. 1, 75-86.
[13] M. Seto and R. Yang, Inner sequence based invariant subspaces in $H^2(D^2)$, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2519-2526.
[14] R. Yang, Operator theory in the Hardy space over the bidisk. III, J. Funct. Anal. 186 (2001), 521-545.
(A. Chattopadhyay) Indian Institute of Technology Guwahati, Department of Mathematics, Amingaon Post, Guwahati, 781039, Assam, India
E-mail address: arupchatt@iitg.ernet.in, 2003arupchattopadhyay@gmail.com

(B. K. Das) Indian Institute of Technology Bombay, Department of Mathematics, Powai, Mumbai, 400076, India
E-mail address: dasb@math.iitb.ac.in, bata436@gmail.com

(J. Sarkar) Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India
E-mail address: jay@isibang.ac.in, jaydeb@gmail.com