Acute esophageal necrosis and low-flow state

Ahmad Burtally MD1, Philippe Gregoire MD FRCP2

Acute esophageal necrosis (AEN), also called black esophagus, is quite exceptional. Endoscopic findings show circumferential black discoloration of the esophagus with or without exudates. The etiology of AEN is presently unknown and is assumed to be multifactorial. Distal esophageal involvement with proximal extension ending sharply at the gastroesophageal junction is the most common presentation. The present case report describes the clinical and endoscopic evolution of black esophagus observed in a patient with significant peripheral vascular disease, who was presented to the intensive care unit at the Hopital Saint-Francois d’Assise (Quebec City, Quebec). Through an extensive review of the literature, we identify common underlying clinical conditions of patients diagnosed with AEN and comment on the pathogenesis and prognosis of this clinical entity.

Key Words: Acute esophageal necrosis; Black esophagus

A Burtally, P Gregoire. Acute esophageal necrosis and low-flow state. Can J Gastroenterol 2007;21(4):245-247.

Acute esophageal necrosis (AEN), also called black esophagus, is quite exceptional. Endoscopic findings show circumferential black discoloration of the esophagus with or without exudates. The etiology of AEN is presently unknown and is assumed to be multifactorial. Distal esophageal involvement with proximal extension ending sharply at the gastroesophageal junction is the most common presentation. The present case report describes the clinical and endoscopic evolution of black esophagus observed in a patient with significant peripheral vascular disease, who was presented to the intensive care unit at the Hopital Saint-Francois d’Assise (Quebec City, Quebec). Through an extensive review of the literature, we identify common underlying clinical conditions of patients diagnosed with AEN and comment on the pathogenesis and prognosis of this clinical entity.

CASE PRESENTATION

A 77-year-old man with peripheral vascular disease (right renal artery stenosis who underwent left aortofemoral bypass) was admitted to the Hopital Saint-Francois d’Assise (Quebec City, Quebec) with a diagnosis of acute right limb ischemia. He underwent surgical thrombectomy and fasciotomy. Due to myoglobinuria with acute renal failure (plasma creatinine levels rose from 90 μmol/L, observed two days before admission, to 164 μmol/L), he was admitted to the intensive care unit at the Hopital Saint-Francois d’Assise (Quebec City, Quebec). Through an extensive review of the literature, we identify common underlying clinical conditions of patients diagnosed with AEN and comment on the pathogenesis and prognosis of this clinical entity.

KEY WORDS: Acute esophageal necrosis; Black esophagus

©2007 Pulsus Group Inc. All rights reserved
material. A thoracic computed tomography scan without infusion revealed no air in the mediastinum.

IV pantoprazole perfusion was started and heparin was reversed with IV protamine. The patient received two units of packed red blood cells. Within 3 h, his neurological symptoms subsided and he regained normal mental status. A detailed questionnaire about recent gastrointestinal (GI) symptoms was negative.

Complete bowel rest with parenteral nutrition was initiated, and no melena or hematemesis recurred. Hemoglobin fell to low levels on two occasions – the same evening it dropped to 79 g/L and the next morning it was 80 g/L – but transfusion of one unit of packed red blood cells was sufficient each time. No other signs of active bleeding were noted. Because of underlying carotid stenosis, hemoglobin values greater than 85 g/L were aimed for, and nitroglycerine infusion was started to maintain a systolic blood pressure between 130 mmHg and 160 mmHg.

On day 10, five days after the diagnosis of AEN, repeat upper endoscopic examination was obtained. The esophageal mucosa showed marked improvement with a pink appearance and no signs of bleeding. A white exudate was still present (Figure 2). IV pantoprazole was switched to oral formulation, 40 mg administered twice a day. A liquid diet was started the next day and was well tolerated. No signs of upper GI bleeding were noted ever since.

A third upper digestive endoscopy was performed 27 days after the initial diagnosis of AEN, while the patient was still in the hospital on oral pantoprazole. He denied any digestive symptoms, had no dysphagia or odynophagia. This examination revealed a normal esophageal mucosa with superficial erosions at the distal one-third. There was no sign of stenosis.

DISCUSSION

Clinical manifestation and definition

'Black esophagus' is a very rare condition in which the clinical manifestation varies from epigastric pain to upper GI bleeding with hemodynamic instability (2,4), with spontaneous resolution following supportive care. Mild clinical presentations such as epigastric pain or burning, dysphagia, odynophagia and abdominal pain can be easily confounded with reflux esophagitis. Several studies (5,6) claim that, as a result, AEN is often underdiagnosed and this may explain the low prevalence currently reported. Endoscopy remains the most essential tool for the diagnosis of AEN. Before the liberal use of endoscopy, the only cases reported were from autopsy studies (7). Moreto et al (4) identified three criteria for the diagnosis of AEN:

1. Acutely presenting clinical condition with an endoscopic picture consisting of a diffusely black esophagus, with or without black exudates;
2. Preferential impairment of the distal one-third, without esophageal ulcers, and ending sharply at the transitional line; and
3. Exclusion of caustic or other known esophageal injuring agents.

Differential diagnosis

A similar picture is also seen after ingestion of corrosive agents, which cause third-degree burns of the esophagus (in this case, proximal lesions are more important than distal involvement), whereas focal areas of esophageal mucosal necrosis are also described after ingestion of quinidine (8). Melanos (9) of the esophagus, pseudomelanosis (10) of the esophagus and acanthosis nigricans (11) are other conditions that should be considered in the differential diagnosis.

A vascular or peptic problem?

Cases currently cited in the medical literature are similar in the clinical history: patients are often elderly with metabolic disturbances due to diabetes (1), cirrhosis (12), cancer (6) or acute conditions, such as low-flow state secondary to cardiac failure (7), hypothermia (13), prolonged hypotension (14) or sepsis (5). The precise etiology of AEN is undefined, and the
debate over an ischemic origin versus gastroesophageal reflux diseases as the initial insult is still open.

Despite the extensive vascularization of the esophagus (15), most studies suggest an ischemic origin of AEN. The preferential location of the lesion is the distal segment of the esophagus, which has been shown to be less vascularized in anatomical studies and angiographic examinations (16,17). Moreto et al (4) reported 10 patients with AEN, all of whom had associated conditions to tissue hypoperfusion (diabetes, low arterial oxygen partial pressure and dehydration). One could speculate from these data that mucosal blood flow impairment as seen in shock, hypovolemia, hypoxemia, diabetes and vascular disease could work as an initial insult through ischemia and reperfusion, thus allowing a peptic aggression to disturb mucosal integrity, as in the case of stress ulcer elsewhere in the GI tract (18).

On the other hand, gastroesophageal reflux secondary to gastric outlet obstruction syndrome from gastric volvulus, duodenal ulcer, pylorus obstruction or abdominal surgery (10) is another possible primary insult (5). Lacy et al (5) reviewed 21 cases of AEN and 13 of those were found to have duodenal ulcers, severe duodenitis or an abnormal pylorus at endoscopy or autopsy. In this case, the authors suggest that exposure of the distal segment of the esophagus to large amounts of reflux material, such as hydrogen ions, bile salts and pepsin, leads to a decline in local esophageal blood flow (19).

The prognosis of AEN is variable. Mortality is 35% to 50% and closely related to the underlying clinical conditions (4,5). Treatment is mainly supportive and consists of maintaining hemodynamic stability through adequate volemic re-equilibration and minimizing acid exposure with IV proton pump inhibitors. The use of prophylactic antibiotics is not recommended (5). Patients who fully recovered did not describe any upper GI symptoms during follow-up visits (2). In one case, manometric studies (10) revealed normal esophageal peristalsis and lower esophageal sphincter pressure seven months after AEN. Esophageal stenosis (4), the main late complication, is seen in approximately 15% to 20% of patients and is reported to occur within the first seven to 14 days of the onset of the disease. Fortunately, this condition seems to respond well to repeated sessions of esophageal dilation by bougienage. Two cases of esophageal perforation have been described following full-thickness necrosis of the esophagus (4,20); one was fatal, while the other required surgery with colon interposition.

CONCLUSION

In the present case report, transient low-flow state due to antihypertensive medications may have initiated the ischemic insult in the possibly diseased esophageal vasculature. Prolonged acid exposure at the distal esophagus, through prolonged bedrest, may have further disrupted the mucosal integrity. High-dose IV proton pump inhibitor therapy could have helped to increase intraluminal pH levels, thus protecting esophageal mucosa, and favouring progressive re-epithelialization and healing. The acute fall in systolic pressures and hemoglobin levels due to lower esophageal bleeding explained the acute ischemic attack presented by the patient.

As mentioned in many studies (1,5), AEN will soon become a more familiar entity with more routine use of endoscopy in the critical care setting. While it is rarely the main cause of death in the critically ill patient, its proper identification and management could reduce morbidity, improve survival outcomes and reduce length of hospital stays.

REFERENCES

1. Carneiro M, Lescano M, Romanello L, et al. Acute esophageal necrosis. Dig Endosc 2005;17:89-92.
2. Soussan EB, Suvoy G, Hochain P et al. Acute esophageal necrosis: A 1-year prospective study. Gastrointest Endosc 2002;56:213-7.
3. Goldenberg SP, Wain SL, Marignani P. Acute necrotizing esophagitis. Gastroenterology 1990;98:493-6.
4. Moreto M, Ojembarrena E, Zaballa M, Tanago JG, Ibanez S. Idiopathic acute esophageal necrosis: Not necessarily a terminal event. Endoscopy 1993;25:534-8.
5. Lacy BE, Toor A, Bensen SP, Rothstein RI, Maheshwari Y. Acute esophageal necrosis: Report of two cases and a review of the literature. Gastrointest Endosc 1999;49:327-32.
6. Jacobsen NO, Christiansen J, Kruse A. Incidence of oesophageal necrosis in an autopsy material. APMIS 2003;111:591-4.
7. Etienne JP, Roje J, Delavriere P, Vysser P. Necroses de l’oesophage d’origine vasculaire. Sem Hop Paris 1969;45:599-606.
8. Mason SJ, O’Meara TE. Drug-induced esophagitis. J Clin Gastroenterol 1981;3:115-20.
9. Archer HA, Owen WJ. Primary malignant melanoma of the esophagus. Dis Esophagus 2000;13:320-3.
10. Reichart M, Busch OR, Bruno MJ, Van Lunschet JJ. Black esophagus: A view in the dark. Dis Esophagus 2002;13:311-3.
11. Kelowski LM, Ngia TP. Esophageal acanthosis nigricans in association with adenocarcinoma from an unknown primary site. J Am Acad Dermatol 1992;26:348-51.
12. Khan AH, Hundal R, Ramaswamy V, Korsten M, Dhuper S. Acute esophageal necrosis and liver pathology, a rare combination. World J Gastroenterol 2004;10:2457-8.
13. Cadot P, Duverger V, Imperato M, Laprand M, Vergos M. Esophage noir associé à une hypothermie. Ann Chir 2001;126:903-5.
14. Hayiv YS, Reinus C, Zimmerman J. “Black esophagus”: A rare complication of shock. Am J Gastroenterol 1996;91:2432-4.
15. Lieberman-Meffert DM, Luescher U, Neff U, Ruedi TP, Allgower M. Esophagectomy without thoracotomy: Is there a risk of intramedial sternal bleeding? A study on blood supply of the esophagus. Ann Surg 1987;206:184-92.
16. Aharinejad S, Lametschwandtner A, Franz P, Fibras W. The vascularization of digestive tract studied by scanning electron microscopy with emphasis on the teeth, esophagus, stomach, small and large intestine, pancreas, and liver. Scanning Microsc 1991;5:811-49. (Erratum in 1992;6:i).
17. Shapiro AL, Robillard OL. The esophageal arteries their configurational anatomy and variations in relation to surgery. Ann Surg 1990;213:171-85.
18. Fennerty MB. Pathophysiology of the upper gastrointestinal tract in the critically ill patient: Rationale for the therapeutic benefits of acid suppression. Crit Care Med 2002;30:8351-5.
19. Bass BL, Schweitzer EJ, Harmon JW, Kramner J. H+ back diffusion interferes with intrinsic reactive regulation of esophageal mucosal blood flow. Surgery 1984;96:404-13.
20. Cappell SM. Esophageal necrosis and perforation associated with the antiphospholipid antibody syndrome. Am J Gastroenterol 1994;89:1241-5.
