Search for a Two-Photon Exchange Contribution to Inclusive Deep-Inelastic Scattering

A. Airapetian,12,15 N. Akopov,26 Z. Akopov,5 E.C. Aschenauer,6 W. Augustyniak,25 R. Avakian,26 A. Avetisian,26 E. Avetisyan,5 B. Ball,15 S. Belostotski,18 N. Bianchi,10 H.P. Blok,17,24 H. Böttcher,6 C. Bonomo,9 A. Borissov,5 J. Bowles,13 V. Bryzgalov,19 J. Burns,13 G.P. Capitani,10 E. Cisbani,21 G. Ciullo,9 M. Contalbrigo,9 P.F. Dalpiaz,9 W. Deconinck,5,15 L. De Nardo,15,5 E. De Sanctis,10 M. Diefenthaler,14,8 P. Di Nezza,10 M. Diëren,12 M. Ehrenfried,12 G. Elbakian,26 F. Ellinghaus,4 R. Fabbri,6 A. Fantoni,10 L. Felawka,22 S. Frullani,21 D. Gabbert,11,6 G. Gapienko,19 V. Gapienko,19 F. Garibaldi,21 V. Ghariyan,26 F. Giordano,5,9 S. Giske,22 C. Hadjidakis,10 M. Hartig,9 D. Hasch,10 G. Hill,13 A. Hillenbrand,9 M. Hoek,13 Y. Holler,5 I. Hristova,6 Y. Imaizu,23 A. Ivanov,19 H.E. Jackson,1 H.S. Jo,11 S. Joosten,14,11 R. Kaiser,13 G. Karyan,26 T. Keri,13,12 E. Kinney,4 A. Kisselev,18 V. Kozlov,19 V. Kovalenko,18 P. Kravchenko,18 L. Lagamba,2 R. Lamb,14 L. Lapikas,17 I. Lehmann,13 P. Lenisa,9 A. López Ruiz,11 W. Lorenzoni,15 X.-G. Lu,6 X.-R. Lu,23 B.-Q. Ma,3 D. Mahon,13 N.C.R. Maksins,14 L. Manfré,21 Y. Mao,3 B. Marianski,25 A. Martínez de la Ossa,4 H. Marukyan,26 C.A. Miller,22 Y. Miyachi,23 A. Movsisyan,26 V. Muccifora,10 M. Murray,13 A. Mussgiller,5,8 Y. Naryshkin,18 A. Nass,8 M. Negodaev,6 W.-D. Nowak,6 L.P.L. Pappalardo,9 R. Perez-Benito,12 M. Raithel,8 P.E. Reimer,1 A.R. Reolon,10 C. Rindl,6 K. Rith,8 G. Rosner,13 A. Rostomyan,5 J. Rubin,14 D. Ryckbosch,11 Y. Salomatín,19 F. Sanftl,20 A. Schäfer,20 G. Schnell,5,11 K.P. Schiller,5 B. Seitz,13 T.-A. Shibata,23 V. Shutoy,7 M. Stancari,9 M. Statera,5 E. Steffens,8 J.J.M. Steijger,14 H. Steunis,12 J. Stewart,6 F. Stinzing,5 S. Taroian,26 A. Terkelov,16 A. Trzciński,25 M. Tytgat,11 A. Vandenbroucke,11 P.B. van der Nat,17 Y. Van Haarlem,11 C. Van Hulse,11 M. Varanda,5 D. Veretennikov,18 V. Vikhrov,18 I. Vilardi,2 S. Wang,3 S. Yaschenko,6,8 H. Ye,3 Z. Ye,5 W. Yu,12 D. Zeiler,8 B. Zihlmann,5 and P. Zupraski25
(The HERMES Collaboration)

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4813, USA
2Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
3School of Physics, Peking University, Beijing 100871, China
4Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA
5DESY, 22603 Hamburg, Germany
6DESY, 15738 Zeuthen, Germany
7Joint Institute for Nuclear Research, 141980 Dubna, Russia
8Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
9Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Università di Ferrara, 44100 Ferrara, Italy
10Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
11Department of Subatomic and Radiation Physics, University of Gent, 9000 Gent, Belgium
12Physikalisches Institut, Universität Gießen, 35392 Gießen, Germany
13Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
14Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA
15Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
16Lebedev Physical Institute, 117924 Moscow, Russia
17National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam, The Netherlands
18Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300, Russia
19Institute for High Energy Physics, Protvino, Moscow region 142281, Russia
20Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
21Istituto Nazionale di Fisica Nucleare, Sezione Roma 1, Gruppo Sanitá and Physics Laboratory, Istituto Superiore di Sanità, 00161 Roma, Italy
22TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
23Department of Physics, Tokyo Institute of Technology, Tokyo 152, Japan
24Department of Physics, VU University, 1081 HV Amsterdam, The Netherlands
25Andrzej Soltan Institute for Nuclear Studies, 00-689 Warsaw, Poland
26Yerevan Physics Institute, 375036 Yerevan, Armenia

(Dated: November 18, 2009)

The transverse-target single-spin asymmetry for inclusive deep-inelastic scattering with effectively unpolarized electron and positron beams off a transversely polarized hydrogen target was measured, with the goal of searching for a two-photon exchange signal in the kinematic range 0.007 < x_B < 0.9 and 0.25 GeV^2 < Q^2 < 20 GeV^2. In two separate regions Q^2 > 1 GeV^2 and Q^2 < 1 GeV^2, and for both electron and positron beams, the asymmetries are found to be consistent with zero within
In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In order to investigate contributions from two-photon exchange, it is necessary to find experimental observables that allow their isolation. Beam-charge and transverse-target single-spin asymmetries (SSAs) are two suitable candidates. In both elastic and inclusive inelastic lepton-nucleon scattering, these asymmetries arise from the interference of one-photon and two-photon exchange amplitudes. Specifically, beam-charge asymmetries in the unpolarized cross section arise from the real part of the two-photon exchange amplitude, while inclusive transverse SSA arising from the interference of one-photon and two-photon exchange amplitudes. The data are compiled in Ref. [6]. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.

In recent years, the contribution of two-photon exchange to the cross section for electron-nucleon scattering has received considerable attention. In elastic ep scattering, two-photon exchange effects are believed to be the best candidate to explain the discrepancy in the measurement of the ratio G_E/G_M of the electric and magnetic form factors of the proton obtained at large four-momentum transfer between the Rosenbluth method and the polarization transfer method. It has been shown that the interference between the one-photon and two-photon exchange amplitudes can affect the Rosenbluth extraction of the nucleon form factors at the level of a few percent. This is enough to explain most of the discrepancy between the results of the two methods, although none of the recent calculations can fully resolve the discrepancy at all momentum transfers. Two-photon exchange effects have also been shown to affect the measurement of parity violation in elastic scattering of longitudinally polarized electrons off unpolarized protons, with corrections of several percent to the parity-violating asymmetry.
positron or electron beam was scattered off the transversely polarized gaseous hydrogen target internal to the HERA storage ring at DESY. The open-ended target cell was fed by an atomic-beam source \[23\] based on Stern-Gerlach separation combined with radio-frequency transitions of hydrogen hyperfine states. The direction of the target spin vector was reversed at 1-3 minute time intervals to minimize systematic effects, while both the nuclear polarization and the atomic fraction of the target gas inside the storage cell were continuously measured \[27\]. Data were collected with the target polarized transversely to the beam direction, in both “upward” and “downward” directions in the laboratory frame. The beam was longitudinally polarized, but a helicity-balanced data sample was used to obtain an effectively unpolarized beam. Only the scattered leptons were considered in this analysis. Leptons were distinguished from hadrons by using a transition-radiation detector, a scintillator pre-shower counter, a dual-radiator ring-imaging Cherenkov detector, and an electromagnetic calorimeter. In order to exclude any contamination from a transverse hadron SSA in the lepton signal, hadrons were suppressed by very stringent particle identification requirements such that their contamination in the lepton sample is smaller than \(2 \times 10^{-4}\). This resulted in a lepton identification efficiency greater than 94\%. Events were selected in the kinematic region \(0.007 < x_B < 0.9, 0.1 < y < 0.85, 0.25 \text{ GeV}^2 < Q^2 < 20 \text{ GeV}^2\), and \(W^2 > 4 \text{ GeV}^2\). Here, \(x_B\) is the Bjorken scaling variable, and \(y\) is the fractional beam energy carried by the virtual photon in the laboratory frame, and \(W\) is the invariant mass of the photon-nucleon system.

The differential yield for a given target spin direction (\(\uparrow\) upwards or \(\downarrow\) downwards) can be expressed as

\[
\frac{d^3N^{(1)}}{dx_B \, dQ^2 \, d\phi_S} = \frac{L^{(1)} \, d^3\sigma_{UU} + (-) L^{(1)}_P \, d^3\sigma_{UT}}{\int_{0}^{\pi} d\phi_S \, d^3\sigma_{UU}} \left[\Omega(x_B, Q^2, \phi_S) \right] \equiv A_{U T}^{\sin \phi_S} (x_B, Q^2) \sin \phi_S \Omega(x_B, Q^2, \phi_S). \tag{2}
\]

Here, \(\phi_S\) is the azimuthal angle about the beam direction between the lepton scattering plane and the “upwards” target spin direction, \(\sigma_{UU}\) is the unpolarized cross section. Also, \(L^{(1)}\) is the total luminosity in the \(\uparrow\) (\(\downarrow\)) polarization state, \(L^{(1)}_P = \int P(t) \, dt\) is the integrated luminosity weighted by the magnitude \(P\) of the target polarization, and \(\Omega\) is the detector acceptance efficiency. The \(\sin \phi_S\) azimuthal dependence follows directly from the form \(\vec{S} \cdot (\vec{k} \times \vec{k}^\prime)\) of the spin-dependent part of the cross section; \(A_{U T}^{\sin \phi_S}\) refers to its amplitude.

year	beam	\(\langle P^1 \rangle\)	\(\langle P^1 \rangle\)	Events
2002	\(e^+\)	0.783±0.041	0.783±0.041	0.9 M
2004	\(e^+\)	0.745±0.054	0.742±0.054	2.0 M
2005	\(e^-\)	0.705±0.065	0.705±0.065	4.8 M

TABLE I: Average target polarizations and total number of inclusive events for the three data sets used in this analysis.

The asymmetry was calculated as

\[
A_{U T}(x_B, Q^2, \phi_S) = \frac{N^\uparrow - N^\downarrow}{N^\uparrow + N^\downarrow}, \tag{3}
\]

where \(N^{(1)}\) are the number of events measured in bins of \(x_B, Q^2\), and \(\phi_S\). With the use of Eq. \((2)\), it can be approximated, for small differences of the two average target polarizations \(\langle P^{(1)} \rangle = L^{(1)}_P / L^{(1)}\), as

\[
A_{U T}(x_B, Q^2, \phi_S) \simeq A_{U T}^{\sin \phi_S} \sin \phi_S + \frac{1}{2} \frac{\langle P^1 \rangle - \langle P^1 \rangle}{\langle P^1 \rangle}. \tag{4}
\]

As shown in Table 1 \(\langle P^1 \rangle\) and \(\langle P^1 \rangle\) are the same to a good approximation for all data-taking periods.

The advantage of using the fully-differential asymmetry \(A_{U T}(x_B, Q^2, \phi_S)\) in Eq. \((3)\) instead of the more common left-right asymmetry \(A_N(x_B, Q^2)\) is that the acceptance function \(\Omega\) cancels in each \((x_B, Q^2, \phi_S)\) kinematic bin, if the bin size or the asymmetry is small. Assuming the \(\phi_S\) dependence of \(\sigma_{UT}\) in Eq. \((1)\) and Eq. \((2)\), it can be easily shown that the \(\sin \phi_S\) amplitude \(A_{U T}^{\sin \phi_S}\) and the left-right normal asymmetry \(A_N\) are related by

\[
A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{\int_{0}^{\pi} d\phi_S d^3\sigma_{UU} A_{U T}^{\sin \phi_S} \sin \phi_S}{\int_{0}^{\pi} d\phi_S d^3\sigma_{UU}} = \frac{2}{\pi} A_{U T}^{\sin \phi_S}, \tag{5}
\]

where \(\sigma_L (\sigma_R)\) refers to the integrated cross section within the angular range \(0 \leq \phi_S < \pi (\pi \leq \phi_S < 2\pi)\).

For this analysis the \(Q^2\) range was divided into a “DIS region” with \(Q^2 > 1 \text{ GeV}^2\) and a “low-\(Q^2\) region” with \(Q^2 < 1 \text{ GeV}^2\). To test for a possible enhancement of the transverse-target SSA due to the factor \(M/Q^2\) appearing in Eq. \((1)\) the data at low \(Q^2\) are also presented, though, strictly speaking, Eq. \((1)\) may not be applicable to this range.

The \(A_{U T}^{\sin \phi_S}\) amplitudes were extracted with a binned \(\chi^2\) fit of the functional form \(p_1 \sin \phi_S + p_2\) to the measured asymmetry. Leaving \(p_2\) as a free parameter or fixing it to the values given by Eq. \((1)\) and Table \(\|\) had no impact on the extracted \(\sin \phi_S\) amplitude \(p_1 \equiv A_{U T}^{\sin \phi_S}\).

The final results for the measured \(\sin \phi_S\) amplitudes \(A_{U T}^{\sin \phi_S}\) are shown in Fig. \(\|\) as a function of \(x_B\) separately.
FIG. 1: The x_B dependence of the $\sin \phi_S$ amplitudes $A_{UT}^{\sin \phi_S}$ measured with an electron beam (top) and a positron beam (center). The open (closed) circles identify the data with $Q^2 < 1$ GeV2 ($Q^2 > 1$ GeV2). The error bars show the statistical uncertainties, while the error boxes show the systematic uncertainties. The asymmetries integrated over x_B are shown on the left. Bottom panel: average Q^2 vs. x_B from data (squares), and the fraction of elastic background events to the total event sample from a Monte Carlo simulation (triangles).

for electrons and positrons. In both cases the asymmetries are consistent with zero within their uncertainties. Due to the kinematics of the experiment, the quantities x_B and $\langle Q^2 \rangle$ are strongly correlated, as shown in the bottom panel of Fig. 1. The resulting amplitudes were not corrected for kinematic migration of inelastic events due to detector smearing and higher order QED effects or contamination by the radiative tail from elastic scattering. The latter correction requires knowledge of the presently unknown elastic two-photon asymmetry. Instead, the contribution of the elastic radiative tail to the total event sample was estimated from a Monte Carlo simulation based on the LEPTO generator [28] together with the RADCAL [29] determination of QED radiative effects and with a GEANT [30] based simulation of the detector. The elastic fraction is shown in the lower panel of Fig. 1. It reaches values as high as about 35% in the lowest x_B bin, where y is large ($\langle y \rangle \approx 0.80$) and hence radiative corrections are largest [31]. The elastic fraction rapidly decreases towards high x_B, becoming less than 3% for $x_B > 0.1$.

The systematic uncertainties, shown in the fourth column of Table II and as error boxes in Fig. 1 include contributions due to corrections for misalignment of the detector, beam position and slope at the interaction point and bending of the beam and the scattered lepton in the transverse holding field of the target magnet. They were determined from a high statistics Monte Carlo sample obtained from a simulation containing a full description of the detector, where an artificial spin-dependent azimuthal asymmetry was implemented. Input asymmetries being zero or as small as 10^{-3} were well reproduced within the statistical uncertainty of the Monte Carlo sample, which was about five times smaller than the statistical uncertainty of the data. For each measured point the systematic uncertainty was obtained as the maximum value of either the statistical uncertainty of the Monte Carlo sample or the difference between the input asymmetry and the extracted one. Systematic uncertainties from other sources like particle identification or trigger efficiencies were found to be negligible.

The transverse single-spin asymmetry amplitudes $A_{UT}^{\sin \phi_S}$ for electron and positron beams integrated over x_B are given separately for the “low-Q^2 region” and the “DIS region” in Table II along with their statistical and systematic uncertainties. All asymmetry amplitudes are consistent with zero within their uncertainties, which in the DIS region are of order 10^{-3}. The only exception is the low-Q^2 electron sample, where the asymmetry is 1.9 standard deviations different from zero. No hint of a sign change between electron and positron asymmetries is observed within uncertainties.

In conclusion, single-spin asymmetries were measured in inclusive deep-inelastic scattering at HERMES with unpolarized electron and positron beams and a transversely polarized hydrogen target with the goal of searching for a signal of two-photon exchange. No signal was found within the uncertainties, which are of order 10^{-3}.

We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung; the German Bundesministerium für Bildung und Forschung (BMBF); the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the U. K. Engineering and Physical Sciences Research
TABLE II: The integrated transverse single-spin asymmetry amplitude $A_{UT}^{\sin \phi S}$ with its statistical and systematic uncertainties and the average values for x_B and Q^2 measured separately for electron and positron beams in the two Q^2 ranges $Q^2 < 1 \text{ GeV}^2$ (upper rows) and $Q^2 > 1 \text{ GeV}^2$ (lower rows). The systematic uncertainties contain the effects of detector misalignment and beam position and slope at the target, as estimated by a Monte Carlo simulation, but not the scale uncertainties from the target polarization which amounts to 9.3% (6.6%) for the electron (positron) sample. Also, the results are not corrected for smearing, radiative effects and elastic background events.

Beam	$A_{UT}^{\sin \phi S}$ (10^{-3})	$\delta A_{UT}^{\sin \phi S}$ (stat.) (10^{-3})	$\delta A_{UT}^{\sin \phi S}$ (syst.) (10^{-3})	$\langle x_B \rangle$	$\langle Q^2 \rangle$ (GeV^2)
e^+	-0.61	3.97	0.63	0.02	0.68
e^-	-6.55	3.40	0.63		
e^+	-0.60	1.70	0.29	0.14	2.40
e^-	-0.85	1.50	0.29		

[1] C. E. Hyde and K. de Jager, Ann. Rev. Nucl. Part. Sci. 54, 217 (2004).
[2] P. A. M. Guichon and M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003).
[3] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. Lett. 91, 142304 (2003).
[4] J. Arrington, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C76, 035205 (2007).
[5] A. V. Afanasev and C. E. Carlson, Phys. Rev. Lett. 94, 212301 (2005).
[6] J. Mar et al., Phys. Rev. Lett. 21, 482 (1968).
[7] A. Metz, M. Schiegel, and K. Goewe, Phys. Lett. B643, 319 (2006).
[8] J. Arrington, Phys. Rev. C 69, 032201 (2004).
[9] S. P. Wells et al. (SAMPLE Collaboration), Phys. Rev. C63, 064001 (2001).
[10] F. E. Maas et al. (A4 Collaboration), Phys. Rev. Lett. 94, 082001 (2005).
[11] D. S. Armstrong et al. (G0 Collaboration), Phys. Rev. Lett. 99, 092301 (2007).
[12] H. Jostlein et al., Phys. Lett. B52, 485 (1974).
[13] S. Hartwig et al., Lett. Nuovo Cim. 15, 429 (1976).
[14] D. L. Fancher et al., Phys. Rev. Lett. 37, 1323 (1976).
[15] L. S. Rochester et al., Phys. Rev. Lett. 36, 1284 (1976).
[16] S. Hartwig et al., Phys. Lett. B82, 297 (1979).
[17] J. J. Aubert et al. (EMC), Nucl. Phys. B272, 158 (1986).
[18] A. Argento et al. (BCDM Collaboration), Phys. Lett. B140, 142 (1984).
[19] J. A. Appel et al., Phys. Rev. D1, 1285 (1970).
[20] J. R. Chen et al., Phys. Rev. Lett. 21, 1279 (1968).
[21] S. Rock et al., Phys. Rev. Lett. 24, 748 (1970).
[22] N. Christ and T. D. Lee, Phys. Rev. 143, 1310 (1966).
[23] A. Afanasev, M. Strikman, and C. Weiss, Phys. Rev. D77, 014028 (2008).
[24] X. Jiang et al., Jefferson Lab Hall A Experiment E-07-013 (2007).
[25] K. Ackerstaff et al. (HERMES Collaboration), Nucl. Instrum. Meth. A417, 230 (1998).
[26] A. Nass et al., Nucl. Instrum. Meth. A505, 633 (2003).
[27] A. Airapetian et al. (HERMES Collaboration), Nucl. Instrum. Meth. A540, 68 (2005).
[28] G. Ingelman, A. Edin, and J. Rathsman, Comp. Phys. Commun. 101, 108 (1997).
[29] I. Akushevich, H. Boettcher, and D. Ryckbosch (1999), hep-ph/9906408.
[30] R. Brun, R. Hagelberg, M. Hansroul, and J. Lassalle, CERN Report CERN-DD-78-2-REV (1978).
[31] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).