CONTRIBUTION TO THE KNOWLEDGE OF MELLIFEROUS PLANTS: ETHNO-APICULTURAL SURVEY WITH BEEKEEPERS IN THE DISTRICT OF ZIGUINCHOR, KOLDA AND SEDHIOU (SENEGAL)

Kady Diatta*, William Diatta, Alioune Dior Fall, Serigne Ibra Mbacké Dieng, Amadou Ibrahima Mbaye, Emmanuel Bassène

Laboratory of Pharmacognosy and Botany, Cheikh Anta Diop University of Dakar, ZC 5005, FMPO, UCAD, Dakar, Fann, Senegal

ABSTRACT

An ethno-apicultural survey was carried out for the plant species pollinated by honey bees in the green district of Casamance (South Senegal). This survey followed a well-established questionnaire concerning beekeepers in these areas. The listed melliferous flora was made of 61 species either. It’s divided in 58 genus and 30 families though the most represented are in decreasing order Fabaceae with 12 species (19.67%) followed by Rutaceae and Malvaceae with 4 species (6.55% each), Arecales, Anacardiaceae, Combretaceae, Gramineae, Myrtaceae, with 3 species (4.91% each), then Chrysobalanaceae, Lamiaceae, Meliaceae and Rubiaceae with 2 species (3.27% each) and then Acanthaceae, Asteraceae, Canabaceae, Verbenaceae, Apocynaceae, Bignoniaceae, Amaranthaceae, Hymenocardia, Icacinaceae, Lauraceae, Moringaceae, Musaceae, Celastraceae, Rhizophoraceae, Sapindaceae, Sterculiaceae, Moraceae, Ochnaceae, with 1 species (1.63% each). Melliferous plants include 47.54% nectariferous plants followed by nectariferous polliniferous plants with 37.70% and finally polliniferous species with 14.75%. This study enabled us to identify eight (08) species with high melliferous value. To enhance the value of these plants, further studies on foraging activity and nectar production will be led to prove their real melliferous potential.

KEYWORDS: Melliferous flora, Ethno-apicultural survey, Casamance, South Senegal

INTRODUCTION

The melliferous plants are plant species on which the bee takes substances, including nectar, pollen and resin to feed and to develop its various products (honey, royal jelly...). It is well known that the products of the hive reflect in quantity and quality the nature of the pollinated plants (Lafleche, 1981). In addition, melliferous plants vary with climatic conditions (G de Layens, 1997). Indeed, Casamance includes three large districts with a very favorable climate for the development of plant species.

The area of classified forests is 607540 ha for 56 classified forests including 30 in Lower Casamance (116776 ha, Ziguinchor), 12 in Middle Casamance (84453 ha, Sedhiou) and 14 in Upper Casamance (396230 ha, Kolda). This potential allows the development of plant species, diversified and particularly honey. There are also mangroves that constitute specific plant formations. They enjoy the status of classified forests. This ecosystem is also home to many species of molluscs, fish, crustaceans, spiders, but especially bees (Geist, 2012). Yet, there is undoubtedly in these forests classified considerable beekeeping resource, which should be developed not only to provide local people a high quality food supplement, but also to promote the growth of bee colonies and to provide agriculture and all vegetation a sufficient number of pollinators. Similarly, it is also important to develop beekeeping in this district because it represents a diversification of cash income source for the beekeeper and often impoverished rural community and no other type of resources (Ahouandjinnou, 2016). The aim of this study is to determine the potentially honey plants to allow good conservation of these resources and a high quality beekeeping can solve the problem of malnutrition in indigenous peoples.

MATERIALS AND METHODS

Study Area

The survey was conducted in all three district. The Ziguinchor district has an area of 7339 km², lies at 12° 34′ 59” N Latitude...
and 16°16’18” W Longitude with a population of 549151 peoples. It has a sub-Guinean climate and a total annual rainfall of 1190.1 mm/year. Then the district of Kolda with an area of 13721 km², lies at 13°04’60” N Latitude and 14°49’60” W Longitude with a population of 847243 peoples. The climate is Guinean Sudano type with a total annual rainfall of 883 mm/year. Finally, the district of Sedhiou located at 12°42’29” N Latitude and 15°33’24” W Longitude has an area of 7330 km² and a population of 452994 peoples. Sedhiou has a Sudano Guinean climate and the average annual rainfall is about 1000 mm (National Agency of Statistics and Demography, 2013). Beekeepers were interviewed about the different types of melliferous plants in their areas. Below representative map of the survey area (Map 1).

RESULTS AND DISCUSSION

A total of 61 plant species from 58 genera and 30 families were identified as melliferous plants. The families, botanical names, local names, nectariferous plants, nectariferous-polliniferous plants, polliniferous plants, biological type, domestication type, beekeeping interest, flowering class, flowering period and quote percentage and uses are given in Table 1. The distribution of melliferous plants according to the biological type (Table 1) shows that the trees are the most represented 34/61 (55.74%) followed by shrubs 19/61 (31.15%) and herbs which is 7/61 (11.5%) and finally lianas which represent 1/61 (1.66%) are less than represented (Figure 1).

These results are according with those of Iritié et al., (2008) found 62.25% ligneous against 31.88% herbaceous and 6.88% liana, and with results from Dongock et al., (2004) who showed a higher rate of ligneous (trees, shrubs and herbs) of 63.5% against 36.5% of herbaceous plants and with those of Nombré I., (2003) who found 52.8% of ligneous against 47.92% in Garanga and 57.37% of ligneous against 42.27% of herbaceous plants in Nazinga, Burkina Faso.

The melliferous flora is dominated by African and pan-tropical species which together account for nearly 86.88% of species (see Table 1). Indeed, African species represent more than half of the species (57.38%) while pantropical species have more than 1/3 of the species. It has African species (57.38%) pantropical species (29.51%), Afro-Indian species (6.56%), species from Africa and tropical America (3.28%), an Afro-Asian species (1.64%) and an Asian American species (1.64%) (Figure 2).

The dominance of the African species can be explained by the fact that African species are more adapted to the bioclimatic conditions of the environment than other species Noba et al., (2004). Several species are visited by bees according to beekeepers, of the herbaceous strata to the ligneous strata with fruit plant, cereal or agroforestry plants.
Table 1: Summary of plants to data cited as melliferous

Families/botanical name	LN	BT	DT	BGT	AI	FP	FC	QP	
Adansonia digitata L. (MALVACEAE)	buy (W)	tree	spontaneous	Af	N	July- September	III	13.7%	
Aftzelia africana Sm. & Pers (FABACEAE)	Buqaw (d)	tree	spontaneous	Af	N	April	I	94.10%	
Anacardium occidentale L. (ANACARDIACEAE)	bu kayu (d)	tree	cultivated	Pan	N	January - March	III	100%	
Arachis hypogea L. Sp. (FABACEAE)	é tihé (d)	herb	cultivated	Pan	N	August- September	II	29.4%	
Avicennia germirians Jacq. (ACANTHACEAE)	bu bèg (d)	shrub	spontaneous	Pan	N	May -July	III	94.1%	
Bombax costatum Pellegr. et Vuill. (MALVACEAE)	bu dimb (d)	tree	spontaneous	Af	NP	November- December	II	62.7%	
Borassus akeass	si gumboudj (d)	tree	spontaneous	Af	P	April	I	64.7%	
Carapa procera DC. (MELIACEAE)	buhounoum	tree	cultivated	Pan	N	March-May	III	17.6%	
Cassia sieberiana DC. (FABACEAE)	bu saët (d)	shrubs	spontaneous	Af	P	February- May	III	76.5%	
Ceiba pentandra L. Gaertn. (MALVACEAE)	bu sana (d)	tree	spontaneous	Pan	NP	December- January	II	100%	
Celtis integrifolia Lam. (CANNABACEAE)	busingil (d)	tree	spontaneous	Af	NP	April-June	III	7.80%	
Citrus aurantium L. (RUTACEAE)	bu sorande (d)	shrubs	cultivated	Pan	N	August-September	II	76.5%	
Citrus grandis L. (RUTACEAE)	pamplemousse (f)	shrubs	cultivated	Pan	N	February-March	II	78.4%	
Citrus limon L. (RUTACEAE)	lemouna (d)	shrubs	cultivated	Pan	N	August-October	III	70.6%	
Cocos nucifera L. (ARECACEAE)	coco (w), tree	cultivated	Pan	P	October-November	II	66.6%		
Cola cordifolia (Cav.) R. Br. (STERCULIACEAE)	bu bëg (d)	tree	spontaneous	Af	N	February	I	33.3%	
Combretum micranthum G. Don (COMBRETACEAE)	butik (d), shrubs	cultivated	Af	NP	June-August	II	21.6%		
Daniellia oliveri (R.) Hutch. et Dalz. (FABACEAE)	bu sentigndao (d)	tree	spontaneous	Af	N	January- March	III	100%	
Delonix regia Boj. Raf. (FABACEAE)	flamboyant (f)	tree	cultivated	Pan	N	May-June	II	31.4%	
Detarium senegalense J. Gmelin. (MALVACEAE)	bu bunkud (d)	tree	spontaneous	Af	N	July-September	III	43.1%	
Dialium guineensis Willd. (FABACEAE)	bu faïah (d)	tree	spontaneous	Af	N	October-January	III	100%	
Elaëis guineensis Jacq. (ARJENACEAE)	slit (d)	tree	cultivated	Pan	P	All the year	III	100%	
Eucalyptus sp. (MYRTACEAE)	hot bitel (w)	tree	cultivated	Pan	NP	July-August	II	60.8%	
Faidherbia albida Del. Chev. (FABACEAE)	Boutafoul (d)	tree	spontaneous	Af	NP	January	I	59.9%	
Ficus senegalensis Miq. (MORACEAE)	bu gango sotto (d)	tree	spontaneous	Af	NP	February	I	5.9%	
Grewia bicolor Juss. (MALVACEAE)	Kel (w)	shrubs	cultivated	Af	NP	June-July	II	9.8%	
Guiera senegalensis j.f.qmel. (COMBRETACEAE)	bu funuk (d)	shrubs	cultivated	Af	NP	April-June	II	7.8%	
Hymenocardia acida Tul. (HYMENOCARDIACEAE)	bo sont (d)	tree	spontaneous	Af	NP	April-June	III	41.2%	
Hypitis suaveolens Poit. (LAMIACEAE)	baïla sanké (d)	herb	spontaneous	Af	NP	August-October	III	62.7%	
Icacina senegalensis A. Jussieu (ICACINACEAE)	furabang (d)	shrub	spontaneous	Af	NP	January-May	III	58.8%	
Khaya senegalensis A. Jussieu (MELIACEAE)	bu kay (d)	tree	cultivated	Af	N	April-May	II	90.1%	
Lantana camara L. (VERBENACEAE)	faux thé de	shrubs	spontaneous	Af	NP	February- April	III	17.6%	
Lepisanthes senegalensis (Juss. ex Poir.) Leenh (SAPINDACEAE)	gambie (f)	tree	spontaneous	Af	N	April-may	II	13.70%	
Lophira lanceolata Van Tiegh. ex Keay (UCHNACEAE)	é noun (d)	shrubs	spontaneous	Af	N	October-November	II	19.6%	
Mangifera indica L. (ANACARDIACEAE)	bu mágou (d)	tree	cultivated	Pan	N	January-March	III	23.5%	
Moringa oleifera Lam. (MORINGACEAE)	nebeday (w)	shrubs	cultivated	Af	N	January- May	III	45.1%	
Musa sapientum L. (MUSACEAE)	gu nanar (d)	herb	cultivated	Pan	N	August- October	III	25.5%	
Parinari excelsa Sabine (CHRYSOBALANACEAE)	nini (d)	tree	spontaneous	Af	N	March-April	II	39.20%	
Parinari macrophylla Sabine (CHRYSOBALANACEAE)	bïlé (d)	tree	spontaneous	Af	N	March-May	III	45.1%	
Newbouldia laevis (BIGNONIACEAE)	fugompó (d)	shrubs	spontaneous	Af	N	June	I	31.4%	
Oriza sativa L. (GRAMINEAE)	Mano (d)	herb	cultivated	Af	A	P	September	II	43.1%
Parkia biglobosa Jacq.Benth (FABACEAE)	bu dilay (d); oul (w)	tree	spontaneous	Af	NP	February-may	III	94.1%	
Persea americana Mill. (LAURACEAE)	avocatier (f)	shrubs	spontaneous	Af	AAT	September-October	II	3.9%	
Psidium guajava L. (MYRTACEAE)	bi gbiar (d), goyavier (f)	shrubs	cultivated	Pan	N	All the year	III	13.7%	
Pterocarpus erinaceus Poir. (FABACEAE)	bu kon (d)	tree	spontaneous	Af	N	January-September	III	96%	
Rhizophora racemosa G.F.W Mey. (RHizophORACEAE)	boum ah (d)	tree	cultivated	Pan	N	All the year	III	76.5%	
Saba senegalensis DC. (APOCYNACEAE)	sidibasu (d)	Liana	spontaneous	Af	NP	All the year	III	3.90%	
Salacia senegalensis (Lam.) DC. (CELASTRACEAE)	bu fumb (d)	tree	cultivated	Af	NP	March-April	II	11.70%	
Sarcophus latifolius (Sm.) E.A.Bruce (RUBIACEAE)	Birilo (d)	tree	spontaneous	Af	NP	February-March	II	27.40%	
Senna alata L. (FABACEAE)	fu gagabou (d)	shrubs	cultivated	Af	NP	July-August	II	23.5%	
Sorghum bicolor L.	baroute (d)	herb	cultivated	Af	P	October	I	25.50%	
Spermatoce verticillata L. (RUBIACEAE)	é ribum (d)	herb	cultivated	Af	NP	October-November	II	43.14%	

(Contd..)
Diatta, et al.

The distribution of species according to the type of domestication showed the importance of spontaneous plants as melliferous plants in the study area. In fact, the large majority (70.5%) of melliferous plants cited by beekeepers are spontaneous plants. These results are according to those found by Dongock et al., (2011) who found 57.9% spontaneous plants versus 42.1% cultivated, but did not according to those of Iritie et al. (2014) who found that cultivated plants were larger with 58% of the species recorded, and Dongock et al., (2004) and Pinta et al., (2001) showed respectively that 67.5% and 64% of the species identified in the field were cultivated.

Among the cultivated fruits, the most important are 38.9% corroborated by the results of Dongock et al., (2004) who found 28.5% of fruit on the 32.5% of cultivated species. Mangifera indica, Eucalyptus sp, Arachis hypogaea that were cited by beekeepers for over 90% of these species and 5 are cited according to the citation percentage 16.39% of species are most important. The distribution of species according to the type of domestication, the results found by Sawadogo et al., (2001) the other periods of the year which many other species grow correspond to honeydew of secondary importance. The evolution of the number of herbaceous species in flower over the months is similar to the results of Ramirez (2000) and Yodomonhan et al., (2009) for which the herbaceous plants begin their flowering as soon as the rains begin.

According to the flowering classes, species that have more than 2 months of flowering are more numerous with 30 species (49.18%). By mixing the duration of flowering and beekeeping interest 30 species are intensely pollinated by bees and available for them for at least 2 months in course. Of these, 16 (53.33%) are nectariferous, 11 (36.67%) are nectariferous and polliniferous and 3 (10%) are polliniferous. Taking into account the duration of flowering, three classes of melliferous species are obtained. Class I species with a flowering time of one month, class II of 2 months and class III of taxa with a flowering period of more than two months, come first with 30 species of flowering class III, (49.18%), then class II flowering species with 22 species, (30.06%) of the flora mentioned, and finally, class I which comprises 9 species, (14.75%). Class III species are superior to those found by Yodomonhan et al., (2009) which is 34.5%, but these Class II and I species are higher than the species found 34.5% and 31% against 30.06% and 14.75% respectively. The flowering of these plants, which is as well in the rainy season as in the dry season and therefore throughout the year, offers a good opportunity for the promotion of beekeeping activities in this area.

According to the citation percentage 16.39% of species are most cited by beekeepers for over 90% of these species and 5 are cited by all beekeepers as melliferous, these are: Elaeis guineensis, Ceiba pentandra, Anacardium occidentale, Daniellia oliveri, Dialium guineensis.
In this species list cited as melliferous 6 were been already identified by Yodomonhan et al., (2009): Daniellia oliveri, Vernonia colorata, Hymenocardia acida, Syzygium guineensis, Grewia sp and Tamarindus indica. Sawadogo et al., (2001) had listed 4: Eucalyptus sp, Sorghum bicolor, Ceiba pentandra, Parkia biglobosa.

CONCLUSION

A total of 61 species were registered as melliferous plants. The information collected from this survey indicates that they are aware about of the presence of melliferous plants in their areas. This knowledge was inherited from their ancestors, but gradually disappears with the new generations who have abandoned the preservations of these forest resources. Most of the plant were wild and herbs, so their conservation is necessary for utilization of generations to come. This can be done by encouraging local people for the cultivation of these plants. Furthermore, this preliminary study may be act as a baseline for the discovery of new plant-based medicines but also for the implantation of apiaries for the production of honey. These melliferous species can be studied to know the compounds and these various activities.

ACKNOWLEDGMENTS

We thank all the beekeeping districts of Ziguinchor, Kolda and Sedhiou. In particular the Association of Planters of Diouloulou District (APAD) of the Rural Agricultural Promotion Center (CEPRA) and PADEC.

REFERENCES

Ahouandjinou STB, Yédomonhan H, Adomou AC, Tossou MG et Akoègninou A. Caractéristiques techniques et importance socio-économique de l’apiculture au Nord-Ouest du Bénin: cas de la commune de Cobly. Int. J. Biol. Chem. Sci., 10 (3)(2016) 1350 - 1369. doi: http://dx.doi.org/10.4314/fjcs.v10i3.35

Amakpé, Félicien GS, Akouehou, Dirk C, De Graaf, Brice Sinsin. Determination of the silvo-melliferous regions of Benin: a nationwide categorization of the land based on melliferous plants suitable for timber production. Journal of Agriculture and Rural Development in the Tropics and Subtropics, vol 116 N°2,(2015), 143-156.

ANSD. Situation Economique et Sociale régionale (Ziguinchor, Sedhiou et Kolda) 2013.

Bakenga M, Bahati M And Balagzi K. Inventaire des plantes mellifères de Bukavi et ses environs (Sud-Kivi, Est de la RDC), Tropicultura, 2000, 18, 89-93.

Dongock ND, Tchoumboue J, Youmbi E, Zapfack L, Mapongmentsem P & Tchuenguem FFN. Inventaire et identification des plantes mellifères de la zone soudano-guinéenne d’altitude de l’ouest Cameroun. Tropicultura, 2004, 22 (3), 139–145.

Dongock ND, Tchoumboue J, Youmbi E, Zapfack L, Mapongmentsem P & Tchuenguem FFN. Predominant melliferous plants of the western Sudan Guinean zone of Cameroun. African Journal of Environmental Science and Technology, 2011, 5 (6), 443–447.

Geist SJ, Nordhaus I, Hinrichs - Estuarine Science and Shelf Science. Occurrence of species-rich crab fauna in a human-impacted mangrove forest questions the application of community analysis as an environmental assessment tool Estuarine, Coastal and Shelf Science, 96, 69-80.

G. De Layens et G. Bonnier, “Cours complet d’apiculture et conduite d’un rucher isolé”, Editions Berlin, (1997).

Iritie BM, Eboua N, Wandan AA, Fantodji A, Abrogoua N, Gbomene LL. Identification des plantes mellifères de la zone agroforestière de la côte d’ivoire. European scientific journal october 2014 edition vol.10, no.30 issn: 1857 – 7881 (print) e - issn 1857- 7431.

Lafleche B. Les abeilles. Guide pratique de l’apiculture amateur. Solar Nature, Paris, 1981, France, 76 p.

Noba K, Bâ AT, Caussanel JP, Mbaye MS, Barralis G. Flore adventice des cultures vivrières dans le sud du Bassin arachidier (Sénégal). Webbia, 2004, 59(2): 293-308.

Nombre I. Etudes des potentialités mellifères de deux zones du Burkina Faso: Garango (province du Bougou) et Nazinga (province du Nahouri). Thèse de Doctorat d’Université, 2003, Université d’Ouagadougou, 156p.

Pinta JY, Tchoumboue J, Dongock N, Zango P & Sitcheu G. Some characteristics of melliferous plants of the western High Lands of Cameroon. Proceedings of the IX th annuel Conference of Bioscience, 2001, Yaoundé, Cameroon, 66 p.

Ramirez N. Reproductive phenology, life-forms, and habitats of the Venezuela Central Plain. American Journal of Botany, 2002, 89(2): 836-842.

Sawadogo M et Guinko S. Détermination des périodes de disponibilité et de pénurie alimentaires pour l’abeille Apis mellifica adansonii lat. dans la région ouest du Burkina Faso, 2001, J. Sci 1(2): 1-8.

Yedomonhan H, Tossou MG, Akoègninou A, Demenou BB et Traoré D. Diversité des plantes mellifères de la zone soudano-guinéenne: cas de l’arrondissement de Manigri (Centre-Ouest du Bénin), 2009, Int. J. Biol. Chem. Sci. 3(2): 355-366.