Fine mapping of \(qBlsr3d \), a quantitative trait locus conferring resistance to bacterial leaf streak in rice

Song Wang\(^1,3\) | Xiaofang Xie\(^1,2\) | Zhen Zhang\(^1,2\) | Huazhong Guan\(^1,2\) | Damei Mao\(^1,2\) | Weiren Wu\(^1,2\) | Zhiwei Chen\(^1,2\)

\(^1\)Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
\(^2\)Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
\(^3\)Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

Correspondence
Zhiwei Chen, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
Email: czw9216@fafu.edu.cn

Funding information
This work was supported in part by the National Key R&D Program of China (2017YFD0100100), Natural Science Foundation of Fujian, China (2017J01438) and Regional Development Project of Fujian, China (2018N3011).

Abbreviations: \(BLS \), bacterial leaf streak; \(CDS \), coding sequence; \(CSSL \), chromosome segment substitution line; \(InDel \), insertion–deletion; \(NIL \), near isogenic line; \(PCR \), polymerase chain reaction; \(QTL \), quantitative trait loci; \(SSR \), simple sequence repeat.

Received: 5 December 2019 | Accepted: 20 March 2020
DOI: 10.1002/csc2.20155

Abstract
Bacterial leaf streak (BLS) is a destructive bacterial disease in rice (\(Oryza sativa \) L.). To date, at least 13 quantitative trait loci (QTL) conferring resistance to BLS have been identified in rice, while only one QTL, \(qBlsr5a \), has been fine mapped and cloned. The present study focuses on fine mapping of \(qBlsr3d \), a minor QTL conferring resistance to BLS. To fine map this QTL, 24 overlapping chromosome segment substitution lines (CSSLs) were developed from the \(F_2 \) population derived from H359 × H359-BLSR3D. Combining genotyping of molecular markers with resistant performance, \(qBlsr3d \) was delimited to an 81-kb interval on chromosome 3, which included 12 annotated genes. Sequence alignment indicated that one of the candidate genes, \(LOC_{Os03g03570} \), has three nucleotide substitutions in the CDS region between H359 and H359-BLSR3D. In particular, \(LOC_{Os03g03570} \) encodes a leucine-rich repeat transmembrane protein, which has been reported to be associated with disease resistance, suggesting that \(LOC_{Os03g03570} \) may be the target gene. Our research also suggests that CSSLs are suitable for mapping of minor QTL conferring disease resistance. Furthermore, our finding has potential value in breeding rice varieties with resistance to BLS in rice.

1 | INTRODUCTION

Rice is one of the most important cereals in the world. To date, there have been dozens of diseases found in rice including viral diseases (e.g., yellow mottle virus, black stripe dwarf, grassy stunt virus, tungro bacilliform virus), fungal diseases (e.g., bakanae disease, blast, sheath blight disease, false smut),
and bacterial diseases (e.g., bacterial leaf blight, bacterial leaf streak, damping off) (Zhu, Tao, & Xu, 2017). Bacterial leaf streak, which is caused by the pathogen Xanthomonas campestris pv. Oryzicola, is one of the major bacterial diseases in rice (Tang, Wu, Li, Lu, & Worland, 2000). Bacterial leaf streak was first observed in rice in China and later in tropical and subtropical rice-producing areas of Asia, and it seriously affects the yield and quality of rice (Tang et al., 2000). The most cost-effective way to control BLS is to breed resistant varieties. Some resistant cultivars, such as ‘Dular’, ‘Acc8558’, and ‘Acc8518’, have been identified in earlier studies (Xia, Lin, & Chen, 1992; Zhang, Lu, & Zhu, 1996). Based on these studies, the generally accepted conclusion is that BLS resistance in rice is controlled by QTL (Tang et al., 2000; Chen, Zheng, Huang, Zhang, & Lin, 2006; Tang, Li, & Wu, 1998), and at least 13 QTL conferring BLS resistance have been reported (Chen et al., 2006; Tang et al., 2000; Zheng, Li, & Fang, 2005). Among them, 11 QTL were identified by Tang et al. (2000). In our previous studies, qBlsr5a, a QTL reported by Tang et al. (2000) with relatively major effects that can explain 12.84–15.93% of phenotypic variation, was fine mapped in a 30-kb interval using CSSLs (Xie et al., 2014). Subsequently, we confirmed that the target gene of qBlsr5a is LOC_Os05g01710 using CRISPR-Cas9 and real-time quantitative reverse transcription polymerase chain reaction (PCR) (unpublished data, 2016). Interestingly, the possible candidate gene LOC_Os05g01710, also named xa5, is a major recessive resistance gene for bacterial leaf blight. Yuan et al. (2016) verified that this gene is involved in both resistance to bacterial blight and resistance to bacterial leaf streak in rice. Feng et al. (2016) found that the OsPGIP4 gene, which may be a potential component of the qBlsr5a locus for BLS resistance, can positively regulate the defence response of rice to BLS through activated expression of the jasmonic acid pathway.

In a natural environment, plants are constantly challenged by pathogens. For this reason, plants have developed a series of defense mechanisms against pathogens during their long evolutionary processes. According to the inheritance of plant disease resistance and the sensitivity of resistance to environmental conditions, plant disease resistance can be classified into two groups: qualitative resistance and quantitative resistance (Kou & Wang, 2010; Brun et al., 2010). Qualitative resistance, also known as vertical resistance or specific resistance, is a genetic trait that is controlled by single dominant R genes (Brun et al., 2010; Pink, 2002). Qualitative resistance genes can only resist certain physiological races of pathogens. Although qualitative resistance genes are strong, plants with such disease resistance usually exert a large selection pressure on the pathogen, thereby accelerating the development of various pathogenic factors in the pathogen population. As a result, the disease resistance in such plants may become unstable or may even be lost (Kiyosawa, 1982). In contrast, quantitative resistance, which is also called horizontal resistance, general resistance, or persistent resistance, is controlled by multiple minor genes and results in more persistent resistance to pathogens (Parlevliet & Zadoks, 1977; Liu, Niu, Deng, & Tan, 2007). To date, many of the R genes in rice have been cloned or identified, especially those for rice blast and bacterial leaf blight. In contrast, only a few QTL conferring quantitative resistance have been fine mapped, although a number of resistant QTL have been identified in rice, such as those for sheath blight (Channamallikarjuna et al., 2010; Wang, Pinson, Fjellstrom, & Tabien, 2012; Zuo et al., 2014; Zuo et al., 2013), bacterial blight (Chen et al., 2016; Zhang et al., 2015; Sujatha et al., 2011; Zhang, Yang, Jiang, Gao, & He, 2009), rice blast (Fukuoka & Okuno, 2001; Ashkani, Rafii, Rahim, & Latif, 2013; Sallaud et al., 2003), and bacterial leaf streak (Tang et al., 2000). Most of the disease-resistant genes currently used in rice production confer qualitative resistance. However, because of the evolution of pathogens, varieties containing a single qualitative resistance gene may show weakened or lost resistance after being planted for several years. Therefore, it is necessary to clone a group of resistant QTL to breed varieties with long-lasting resistance.

In our previous study, a minor QTL, qBlsr3d, was detected, and it conferred 6.39–9.78% of total variation based on a recombinant inbred population derived from Acc8558 × H359 (Tang et al., 2000). Subsequently, a near isogenic line (NIL), H359-BLSR3D, containing only the qBlsr3d region was developed by combining one crossing, three back-crossing, and two self-crossing with marker-assisted selection. qBlsr3d was initially mapped to a region of 1250 kb between simple sequence repeat (SSR) markers 3dSSR12 and 3dSSR12 on chromosome 3 (Cao, Chen, Lin, Wu, & Xie, 2014). In the present study, we fine mapped qBlsr3d using overlapping CSSLs and predicted the relevant candidate genes. The results lay a foundation for map-based cloning of the target genes.

2 | MATERIALS AND METHODS

2.1 | Plant materials and development of overlapping chromosome segment substitution lines

The parental lines used included the indica cultivars Acc8558 (highly resistant to BLS) and H359 (highly susceptible to BLS). Using Acc8558 as the donor parent and H359 as the recurrent parent, a NIL, H359R, containing three QTL (qBlsr3d, qBlsr5a, and qBlsr5b) was developed in our previous work (Chen, Wu, Jing, & Zhou, 2005). Based on this work, an NIL, H359-BLSR3d, was developed from H359R by one crossing, three back-crossings, and two self-crossings combined with marker-assisted selection (Cao et al., 2014).
It only contains the resistant allele of qBlsr3d but no other BLS-resistance QTL from Acc8558. The CSSLs were developed using a method similar to that described by Xie et al. (2014). An F2 population with 2663 individuals derived from H359 × H359-BLSR3d was used to screen for the recombinant plant. The F2 population was planted in the field, and the molecular markers 3dSSR3 and 3dSSR12 were used to screen for the recombinant seedlings, revealing a homozygous genotype (i.e., either of the two parental genotypes) at one marker and a heterozygous genotype at the other marker. The seeds of target plants were harvested separately from individual plants. In the following season, F2:3 seeds were sown in the field. One hundred twenty seeds were sown per line. The SSR markers 3dSSR3 and 3dSSR12 were used to screen for the F2:3 seedlings that showed the genotype of one parent (H359) at one marker and of the other parent (H359-BLSR3d) at the other marker. The homozygous recombinant seedlings from the same line constituted a CSSL, and these seedlings were transplanted to the field for the evaluation of their resistance to BLS.

2.2 Development of simple sequence repeat and insertion–deletion markers

The sequences of SSR markers were downloaded from Gramene (http://www.gramene.org/). To develop insertion–deletion (InDel) markers, the rice genome sequences of the indica cultivar 93-11 and the japonica cultivar Nipponbare were compared with identify InDel markers using the online program Blast2 (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and then primers for amplifying the InDel sequences were designed using the software Primer 5 according to Xie et al. (2014) (Supplemental Table S1). Polymorphisms of the molecular markers between the parents were tested by PCR. The PCR products were run on 9% polyacrylamide denaturing gels, and the bands were visualized using the silver staining method (Xie et al., 2014).

2.3 Identification of phenotype and genotype

The bacterial strain used in this work was Xanthomonas oryzae pv. Oryzicola. The bacterial strain RP was provided by professor Guoying Chen at Huazhong Agricultural University. Inoculation was performed using needles at the active tillering stage of the plants. The concentration was 9×10^8 bacteria ml$^{-1}$. Inoculation was performed with plants in the field. The inoculation needle was dipped into the bacterial solution and used to prick the leaves. In order to reduce errors, leaves of the the latest five leaves on every plant were selected for inoculation. After 20 d, the lesion length of the inoculated leaves was measured, and 20 plants were measured for each CSSL to evaluate its resistant performance.

3 RESULTS

3.1 Assessment of the resistance of the parents

To identify the resistance of the two parents, lesion lengths were observed in the resistant parent H359-BLSR3D and the susceptible parent H359. The mean lesion lengths of H359-BLSR3D and H359 were 5.69 and 7.23 cm, respectively, as shown in Table 1. There was a highly significant difference

Variety or line	Lesion length ± SDa	Evaluation of resistanceb
H359-BLSR3D	5.69 ± 0.83**	R
H359	7.23 ± 1.04	S

aAt least five leaves were measured per plant, and 30 plants were measured for each of the two parents.
bR, resistant to bacterial leaf streak; S susceptible to bacterial leaf streak.
**Significant at the .01 probability level.
TABLE 2 Genotype and resistance level of selected recombinant chromosome segment substitution lines

Line	Mean lesion length ± SD (cm)	Resistance evaluation (P < .05)	F₂ recombinant plant 3dSSR3	3dSSR12	F₃ homozygous line 3dSSR3	3dSSR12
A1	3.21 ± 0.27 S	S	3	2	1	2
A2	3.31 ± 0.30 S	S	3	2	1	2
A3	3.27 ± 0.26 S	S	3	2	1	2
A10	3.04 ± 0.25 S	S	2	3	2	1
A15	2.14 ± 0.16 R	R	2	3	2	1
A16	2.44 ± 0.36 R	R	3	1	2	1
A21	3.53 ± 0.30 S	S	1	3	1	2
A23	3.41 ± 0.34 S	S	3	2	1	2
A24	3.92 ± 0.33 S	S	3	2	1	2
A27	3.20 ± 0.37 S	S	3	2	1	2
A28	3.40 ± 0.28 S	S	3	2	1	2
A29	3.82 ± 0.31 S	S	3	2	1	2
B1	3.34 ± 0.15 S	S	1	3	1	2
B5	2.37 ± 0.26 R	R	3	2	1	2
B6	2.01 ± 0.17 R	R	1	3	1	2
B7	2.01 ± 0.19 R	R	1	3	1	2
B11	1.85 ± 0.19 R	R	2	3	2	1
B12	2.26 ± 0.33 R	R	3	1	2	1
B14	1.38 ± 0.13 R	R	1	3	1	2
B15	1.08 ± 0.28 R	R	2	3	2	1
B16	2.44 ± 0.36 R	R	1	3	1	2
B18	2.54 ± 0.21 R	R	2	3	2	1
B19	2.54 ± 0.31 R	R	2	3	2	1
B20	2.01 ± 0.23 R	R	1	3	1	2
H359	3.54 ± 0.32 S	S	1	1	1	1
H359-BLSR3D	1.86 ± 0.16 R	R	2	2	2	2

Note. The band-type of H359 was recorded as 1, the band-type of H359-BLSR3D was recorded as 2, and the heterozygous band-type was recorded as 3.

R, resistant to bacterial leaf streak; S susceptible to bacterial leaf streak.

between the two parents (P < .01). The lesion lengths of H359 were longer than those of H359-BLSR3D (Table 1).

3.2 Construction and resistance assessment of the chromosome segment substitution lines

Twenty-four recombinant plants were picked out from among 2,663 F₂ seedlings after genotyping with the two molecular markers: 3dSSR3 and 3dSSR12. Then, the 24 recombinant plants were harvested, and 24 homozygous CSSLs (F₃) were developed in F₂:F₃, including eight CSSLs that exhibited the genotype of H359-BLSR3D and 16 CSSLs that exhibited the genotype H359 at marker 3dSSR3 (Table 2). In addition, the 24 CSSLs could be classified into two groups based on the lesion length: 11 CSSLs were susceptible and 13 CSSLs were resistant to BLS (Table 2).

3.3 Fine mapping qBlSr3d

In our previous work, qBlSr3d was preliminarily mapped to a 1250-kb region on chromosome 3 (Cao et al., 2014). To further narrow down this interval, we first chose one SSR marker (3DSSR4) located at approximately the halfway point between 3DSSR3 and 3DSSR12 to analyse the 24 CSSLs. Based on the genotypes at three markers (3DSSR3, -4, and -12) and resistance phenotypes to BLS, we found that the genotypes of A15, A16, B11, B12, B15, and B18 in the interval between 3DSSR4 and 3DSSR12 contradicted their phenotypes (Supplemental Table S2; Supplemental Figure S1). Therefore, this interval could be excluded, and it could be speculated that qBlSr3d is located between markers 3DSSR3 and 3DSSR4 (spanning ~580 kb).

Next, we developed 12 SSR and nine InDel polymorphic markers between 3DSSR3 and 3DSSR4 (Supplemental
Table S1). We found that the genotypes of lines A1, A23, and A24 in the interval between ID22 and 3DSSR4 and those of B5, B6, B14, B16, B19, and B20 in the interval between RM523 and 3DSSR15 contradicted their phenotypes (Figure 1; Supplemental Table S2). Finally, we narrowed the location of $qBlsr3d$ down to the 81-kb region between RM22 and 3DSSR51.

3.4 | The candidate gene of $qBlsr3d$

There are 12 annotated genes in this 81-kb region according to the Rice Genome Annotation Project database (Table 3). Based on the Bioinformatics analysis of those candidate genes, the predicted product of LOC_Os3g03570 is leucine-rich repeat transmembrane protein kinase, which is reported to be associated with plant immunity. So the CDSs of LOC_Os3g03570 in the two parents were sequenced and aligned. The results indicate that there are three base substitutions between the two parents. Specifically, the coding region of LOC_Os3g03570 has single base substitutions at positions 1039, 2101, and 2113, respectively, between the two parents (Figure 2a). These three base substitutions result in changes in the protein sequence, especially at positions 701 and 705, and the amino acids changed from G to R and R to G between H359 and H359-BLSR3D (Figure 2b).

4 | DISCUSSION

Generally, populations used for QTL mapping can be divided into two categories: the primary population and the secondary population. The primary population mainly includes the F_2, backcross (BC_1), double haploid, and recombinant inbred lines, which were commonly used in early QTL mapping (Jiang & Zeng, 1995; Lander & Botstein, 1989; Zeng, 1993). Although the construction of the primary population is relatively simple, it may still be affected by interference from the genetic background, so it is difficult to accurately identify the effect of a QTL and its location on the chromosome. Moreover, for certain QTL with minor genetic effects, the mapping results often deviate greatly from the actual results. Secondary populations are developed by cross- and multigeneration backcross screenings, which generally exclude most of the interference from the genetic background and improve the accuracy and precision of QTL mapping (Ando et al., 2008; Shabanimofrad et al., 2017; Zhu et al., 2008; Zhao et al., 2009; Zhou et al., 2017; Zhao et al., 2007). The most
TABLE 3 The candidate genes of qBlsr3d

TIGR gene ID	Gene product name	Biological process
LOC_Os03g03480	DUF623 domain containing protein, expressed	Molecular function, cellular component, biological process
LOC_Os03g03490	Expressed protein	Not found
LOC_Os3g03500	Heavy metal-associated domain containing protein, expressed	Cellular component, binding, transport
LOC_Os3g03510	CAMK_KIN1/SNF1/Nim1_like.15 -CAMK includes calcium/calmodulin dependent protein kinases, expressed	Response to stress, response to abiotic stimulus, metabolic process etc.
LOC_Os3g03520	Expressed protein	Not found
LOC_Os3g03530	Expressed protein	Molecular function, cellular component, biological process
LOC_Os3g03540	No apical meristem protein, putative, expressed	Biosynthetic process, sequence-specific DNA binding transcription factor activity, nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
LOC_Os3g03550	Bzip family transcription factor, putative, expressed	DNA binding, biosynthetic process, cytosol, sequence-specific DNA binding transcription factor activity, etc.
LOC_Os3g03560	FHA domain containing protein, putative, expressed	Plastid
LOC_Os3g03570	Leucine-rich repeat transmembrane protein kinase, putative, expressed	Signal transduction, kinase activity, nucleotide binding, protein modification process, plasma membrane
LOC_Os3g03590	Transporter, monovalent cation: proton antiporter-2 family, putative, expressed	Transport, cellular process, transporter activity
LOC_Os3g03600	Fasciclin-like arabinogalactan protein, putative, expressed	Plasma membrane, membrane

FIGURE 2 Sequences comparison of the gene LOC_Os03g03570 between two parents. (a) Comparison of the part coding sequences. (b) The structural domain of LOC_Os03g03570. Red arrows indicate the base substituted or amino acid changed
commonly used secondary population is the CSSL, which is a series of NILs developed by backcrossing and molecular marker-assisted selection. With the exception of the partially replaced fragments from the donor parent, the CSSL is identical to the recipient’s parent, thus eliminating the interference of the genetic background.

Bacterial leaf streak is a destructive bacterial disease in rice. Previous studies have indicated that rice resistance to BLS is controlled by QTL, especially multiple minor-effect QTL (Chen, Zheng, Huang, Zhang, & Lin, 2006; Tang et al., 2000), although a few studies have reported that some genes can increase rice resistance to BLS (Guo et al., 2012; Ju et al., 2017; Li et al., 2019). In the study by Tang et al. (2000), 11 QTL were identified, most of which were minor QTL. At present, the fine mapping of QTL is generally performed in such a way as to minimize the interference of the genetic background by constructing a secondary mapping population such as CSSLs. In our previous work, the QTL with the greatest effect, qBlsr5a, was fine mapped to a 30-kb interval using CSSLs (Xie et al., 2014). The successful mapping of qBlsr5a provides us with a reference, which demonstrates the feasibility of using CSSLs to fine map minor QTL. Based on these works, we fine mapped the QTL qBlsr3d, which confers BLS resistance in rice using CSSLs. Firstly, we developed H359-BLSR3D, a NIL that contains only the resistant allele of qBlsr3d but none of the other BLS resistance QTL from Acc8558. In phenotype assays, it was determined that the lesion length of H359-BLSR3D was significantly shorter than that of the susceptible parent, H359. Based on the genotype and resistance of H359-BLSR3D, we can conclude that H359-BLSR3D does contain the QTL qBlsr3d. Secondly, we developed 24 CSSLs using a series of molecular markers combined with field phenotypes to fine map qBlsr3d. Finally, qBlsr3d was delimited to an 81-kb interval. In this study, we used a strategy similar to the mapping of qBlsr5a, but considering that the effect value of qBlsr3d is smaller than that of qBlsr5a, we identified more homozygous individuals in F2.3 lines for the identification of resistance. The purpose of this step was to reduce the error caused by the environment. In addition, we also performed field experiments over multiple seasons to reduce the phenotypic error caused by the environment. In addition to the 24 substitution CSSLs used in this study, some CSSLs were not clearly distinguishable as resistant or susceptible to BLS in repeat experiments and were finally eliminated. Therefore, for the fine mapping of the minor resistance QTL, it is necessary to expand the mapping populations. Although a minor QTL usually exhibits a quantitative effect in primary mapping population, the phenotype can be distinguished between the CSSLs or NILs and the recurrent parent. In our study, H359-BLSR3D and 13 CSSLs showed a significant difference in resistance compared with the recurrent parent H359. The results also indicated that qBlsr3d had the potential for breeding varieties with resistance to BLS and can be used in backcrossing breeding.

The final 81-kb interval includes 12 annotated genes. One gene, LOC_Os3g03570 has three base substitutions between the two parents (Figure 2). In addition, two substitutions (2101 and 2113) occur in a conserved domain of LOC_Os3g03570 (Figure 2b). LOC_Os3g03570 is predicted to contain a leucine-rich repeat transmembrane domain that is related to plant immunity (Halter et al., 2014; Ma, Gan, & Wang, 2005; Song, Li, Song, & Zheng, 2008). It shows that LOC_Os3g03570 is more likely to be the target gene of qBlsr3d. However, this prediction is only a preliminary speculation, and further functional verification of the target gene is underway. In conclusion, based on the fact that the target gene qBlsr3d can increase resistance to BLS, the two molecular markers, RM22 and 3DSSR51, and potential SNPs developed based on polymorphisms of the candidate gene can be used in marker-assisted breeding to improve the resistance of bacterial leaf streak.

AUTHOR CONTRIBUTIONS

Z.C. designed the project and modified the manuscript. S.W. performed the experiments, analysed the data, and wrote the manuscript. X.X., Z.Z., H.G., D.M., and W.W. participated in the work. All authors interpreted the results and contributed to the writing.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

ORCID

Song Wang https://orcid.org/0000-0003-1074-4436

REFERENCES

Ando, T., Yamamoto, T., Shimizu, T., Ma, X. F., Shomura, A., Takeuchi, Y., … Yano, M. (2008). Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. *Theoretical and Applied Genetics*, 116, 881–890. http://doi.org/10.1007/s00122-008-0722-6

Ashkani, S., Rafii, M. Y., Rahim, H. A., & Latif, M. A. (2013). Mapping of the quantitative trait locus (QTL) conferring partial resistance to rice leaf blast disease. *Biotechnology Letters*, 35, 799–810. http://doi.org/10.1007/s10529-012-1130-1

Brun, H., Chevre, A-M., Fitt, B. D. L., Powers, S., Besnard, A - L., Ermel, M., … Andrivon, D. (2010). Quantitative resistance increases the durability of qualitative resistance to *Leptosphaeria maculans* in *Brassica napus*. *New Phytologist*, 185, 285–299. http://doi.org/10.1111/j.1469-8137.2009.03049.x

Cao, J. L., Chen, Z. W., Lin, D. G., Wu, W. R., & Xie, X. F. (2014). Verification of QTL qBlsr3d Conferring resistance to bacterial leaf streak in rice by constructing SSSL. *Molecular Plant Breeding*, 12, 416–420.

Channamallikarjuna, V., Sonah, H., Prasad, M., Rao, G. J. N., Chand, S., Uperti, H. C., … Sharma, T. R. (2010). Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice.
WANG Genetical Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 34, 743–746.

Feng, C. S., Zhang, X., Wu, T., Yuan, B., Ding, X. H., Yao, F. Y., & Chen, C. H. (2006). The polygalacturonase-inhibiting protein 4 (OsPGIP4), a potential component of the qBlsr5a locus, confers resistance to bacterial leaf streak in rice. *Planta*, 243, 1297–1308. http://doi.org/10.1007/s00425-016-2480-z

Fukuoka, S., & Okuno, K. (2001). QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. *Theoretical and Applied Genetics*, 103, 185–190. http://doi.org/10.1007/s001220100611

Guo, L. J., Li, M., Wang, W. J., Wang, L., Hao, G. L., Guo, C. M., & Chen, L. (2012). Over-expression in the nucleotide-binding site-leucine rich repeat gene *DEPG1* increases susceptibility to bacterial leaf streak disease in transgenic rice plants. *Molecular Biology Reports*, 39, 3491–3504. http://doi.org/10.1007/s11033-011-1122-6

Halter, T., Imkampe, J., Mazzotta, S., Wierzba, M., Postel, S., Bücherl, C., ... Kemmerling, B. (2014). The leucine-rich repeat receptor kinase *BIR2* is a negative regulator of *BAK1* in plant immunity. *Current Biology*, 24, 134–143. http://doi.org/10.1016/j.cub.2013.11.047

Jiang, C. J., & Zeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. *Genetics*, 140, 1111–1127.

Ju, Y. H., Tian, H. J., Zhang, R. H., Zuo, L. P., Jin, G. X., Xu, Q., ... Chu, Z. H. (2017). Overexpression of OsHSP18.0-CI Enhances Resistance to Bacterial Leaf Streak in Rice. *Rice*, 10, 12. http://doi.org/10.1186/s12284-017-0153-6

Kiyosawa, S. (1982). Genetics and epidemiological modeling of breakdown of plant disease resistance. *Annual Review of Phytopathology*, 20, 93–117. http://doi.org/10.1146/annurev.pv.20.090182.000521

Kou, Y. J., & Wang, S. P. (2010). Broad-spectrum and durability: Understanding of quantitative disease resistance. *Current Opinion in Plant Biology*, 13, 181–185. http://doi.org/10.1016/j.pbi.2009.12.010

Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. *Genetics*, 136, 185–199.

Li, B. B., Liu, Y. G., Wu, T., Wang, J. P., Xie, G. R., Chu, Z. H., & Ding, X. H. (2019). *OsBGLU19* and *OsBGLU23* regulate disease resistance to bacterial leaf streak in rice. *Journal of Integrative Agriculture*, 18, 1199–1210. http://doi.org/10.1016/S2095-3119(18)62117-3

Liu, F. H., Niu, Y. C., Deng, H., & Tan, G. J. (2007). Genomics. mapping of a major stripe rust resistance gene in Chinese native wheat variety chike using microsatellite markers. *Journal of Genetics and Genomics*, 34, 1123–1130. http://doi.org/10.1016/S1673-8527(07)60128-3

Ma, Y. Y., Gan, R., & Wang, N. N. (2005). Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. (In Chinese with English abstract) *Journal of Plant Physiology Molecular Biology*, 31, 331–339.

Parlevliet, J. E., & Zadoks, J. C. (1977). The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. *Euphytica*, 26, 5–21. http://doi.org/10.1007/BF00032062

Pink, D. A. C. (2002). Strategies using genes for non-durable disease resistance. *Euphytica*, 124, 227–236. http://doi.org/10.1023/A:1015638718242

Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Sves-tasrani, P., ... Netteghem, J. (2003). Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. *Theoretical and Applied Genetics*, 106, 794–803. http://doi.org/10.1007/s00122-002-1088-9

Shabani, M., Alavi, M., Ashkani, S., Hanafi, M. M., Adam, N. A., Harun, A. R., ... Azizi, P. (2017). Mapping of QTLs conferring resistance in rice to brown planthopper, *Nilaparvata lugens*. *Entomologia Experimentalis et Applicata*, 162, 60–68. http://doi.org/10.1007/s11032-011-12520

Song, D. H., Li, G. J., Song, F. M., & Zheng, Z. (2008). Molecular character-ization and expression analysis of *OsBISERK1*, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. *Molecular Biology Reports*, 35, 275–283. http://doi.org/10.1007/s11033-007-9080-8

Sujatha, K., Natarajkumar, P., Laha, G. S., Mishra B, B., Rao, K. S., Virakmatath, B. C., ... Rajendrakumar, P. (2011). Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance. *Genetical Research*, 91, 397–408. http://doi.org/10.1017/S0016672310005773

Tang, D. Z., Li, W. M., & Wu, W. R. (1998). Inheritance of the resistance to bacterial leaf blast streak. *Journal of Fujian Agriculture and Forestry University (Natural Science Edition)*, 27, 133–137.

Tang, D. Z., Wu, W. R., Li, W. M., Lu, H., & Worland, A. J. (2000). Mapping of QTLs conferring resistance to bacterial leaf streak in rice. *Theoretical and Applied Genetics*, 101, 286–291. http://doi.org/10.1007/s001220051481

Wang, Y., Pinson, S. R. M., Fjellstrom, R. G., & Tabien, R. E. (2012). Phenotypic gain from introgression of two QTL, *qSB9-2* and *qSB12-I*, for rice sheath blight resistance. *Molecular Breeding*, 30, 293–303. http://doi.org/10.1007/s11032-011-9619-1

Xia, Y. H., Lin, W. Y., & Chen, O. Y. (1992). Resistance-identification and resistant-source screening for rice varieties against bacteria leaf streak. *Journal of Fujian Agriculture and Forestry University (Natural Science Edition)*, 21, 32–36.

Xie, X. F., Chen, Z. W., Cao, J. L., Guan, H. Z., Lin, D. G., Li, C. L., ... Wu, W. R. (2014). Toward the positional cloning of *qBlsr5a*, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLS in rice. *PLoS ONE*, 9, e95751. http://doi.org/10.1371/journal.pone.0095751

Yuan, M., Ke, Y. G., Huang, R. Y., Ma, L., Yang, Z. Y., Chu, Z. H., ... Wang, S. P. (2016). A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. *eLife*, 5, 5–21. http://doi.org/10.7554/eLife.19605

Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. *Proceedings of the National Academy of Sciences*, 90, 10972–10976. http://doi.org/10.1073/pnas.90.23.10972
Zhang, F., Xie, X. W., Xu, M. R., Wang, W. S., Xu, J. L., Zhou, Y. L., & Li, Z. K. (2015). Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. *Plant Breeding, 134*, 286–292. http://doi.org/10.1111/pbr.12256

Zhao, L. N., Zhou, H. J., Lü, X., Liu, L., Li, X. H., Lin, Y. J., & Yu, S. B. (2009). Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. *Plant Cell Reports, 28*, 247–256. http://doi.org/10.1007/s00299-008-0641-7

Zhou, Y. L., Xie, Y. H., Cai, J., Liu, C. B., Zhu, H. T., Jiang, R., … Zeng, R. Z. (2017). Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. *Theoretical and Applied Genetics, 130*, 1191–1205. http://doi.org/10.1007/s00122-017-2881-9

Zuo, S. M., Yin, Y. J., Pan, C. L., Chen, Z. X., Zhang, Y. F., Gu, S. L., … Pan, X. B. (2013). Fine mapping of *qSB-11LE*, the QTL that confers partial resistance to rice sheath blight. *Theoretical and Applied Genetics, 126*, 1257–1272. http://doi.org/10.1007/s00122-013-2051-7

Zuo, S. M., Zhang, Y. F., Yin, Y. J., Li, G. Z., Zhang, G. W., Wang, H., … Pan, X. B. (2014). Fine-mapping of *qSB-9OG*, a gene conferring major quantitative resistance to rice sheath blight. *Molecular Breeding, 34*, 2191–2203. http://doi.org/10.1007/s11105-014-0173-5

Zhang, H. S., Lu, Z. Q., & Zhu, L. H. (1996). Inheritance of resistance to bacterial leaf streak (*Xanthomonas oryzae pv. oryzicola*) in four indica rice cultivars. (In Chinese with English abstract) *Chinese Journal of Rice Science, 10*, 193–196.

Zhang, J. X., Yang, Z. X., Jiang, G. H., Gao, G. J., & He, Y. Q. (2009). Mapping QTLs for bacterial blight resistance in a DH population. *Molecular Plant Breeding, 7*, 471–477.

Zhao, Z. G., Jiang, L., Zhang, W. W., Yu, C. Y., Zhu, S. S., Xie, K., … Wan, J. M. (2007). Fine mapping of *S31*, a gene responsible for hybrid embryo-sac abortion in rice (*Oryza sativa L*). *Planta, 226*, 1087–1096. http://doi.org/10.1007/s00425-007-0553-8

Zheng, J. S., Li, Y. Z., & Fang, X. J. (2005). Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2 (*O. sativa L. spp. indica*). (In Chinese with English abstract) *Chinese Agricultural Science, 38*, 1923–1925.

Zhu, K. M., Tao, H. M., & Xu, S. (2017). Research progress of disease resistance gene in rice. *Molecular Plant Breeding, 15*, 2604–2611.

Zhu, W. Y., Lin, J., Yang, D. W., Zhang, L. Z., Zhu, Y. D., Chen, Z. T., & Wang, C. T. (2008). Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, *Indica* recipient 93-11 and *Japanica* donor nipponbare. *Plant Molecular Biology Reporter, 27*, 126–131. http://doi.org/10.1007/s11105-008-0054-3

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Wang S, Xie X, Zhang Z, et al. Fine mapping of *qBlsr3d*, a quantitative trait locus conferring resistance to bacterial leaf streak in rice. *Crop Science*. 2020;1–9. https://doi.org/10.1002/csc2.20155