Відомо, що за останні роки ультразвукове сканування внутрішніх органів стало приоритетним серед інших навколишніх методів самоконтролю людини [1]. Однак, інтерпретація ультразвукової томографії печінки ніколи не має топографічної анатомічної основи та часто має непорядкований опис. Решту з цього полягає в використанні загального системи координат [2, 3].

Цілі нашої дослідницької роботи - здійснення анатомічного і ультразвукового перерізів печінки і надання анатомічної обґрунтування додаткових підходів до ультразвукового сканування печінки.

Матеріали i методи. Матеріалом дослідження були 57 тіл людей старшого віку, смерть яких не була пов'язана з патологією гепатобіліарної системи. Використовували: топометрію печінки, вибіркову ангиографію портального систем печінки і ультразвукове сканування печінки по топографічно анатомічним меридіанам.

Для розв'язання цієї проблеми на поверхні печінки, вилученої з тіла, нанесено карту топографічних анатомічних меридіанів (нагласо) і потім введення забарвленого в жовтіні в портальне структурою печінки, а потім проведено ультразвукове сканування печінки по сагітальному плоскості відповідно до меридіанів на її поверхні. Ультразвукова томографія підтвердила відповідність анатомічних срезів, які були зроблені в сагітальній площині, із меридіанами та отриманих ангиографій.

Результати та обговорення. При скануванні печінки на правому меридіані (M9) в сагітальному полі вони були відобразлені на правому і лівому портальних структур печінки одночасно (рис. 1). На топографічно анатомічному розрізі печінки, відповідно до меридіану (рис. 2), крім правого і лівого портальних структур печінки, були відображено контрастні відбитки серединних та правих печінкових вен, розташованих на правому і лінійному межах печінки, а також правий параметроча серединний і правий латеральний сектори печінки, а також лівий лоб органу.
third segments. Apart from these, on the topographic anatomical section unfilled by the contrast solution the left hepatic vein is determined, located along the left portal fissure.

On ultrasound scans on the right anterior medial meridian (M8) a large of vascular structure with cross-section and a number of small vascular elements in the upper and lower parts of the scanning area are determined. When comparing the scans with the appropriate topographic anatomical section it is possible to determine that a large cross-section vascular structure is the right hepatic vein. On the topographic anatomical section it is not filled by contrast fluid and is located along the right portal fissure. Thus, small vascular formations are vascular secretory elements of the right paramedian and right lateral sectors of the liver.

Conclusions. The right lobe of the liver is located in the coordinates from the right posterior medial to the right anterior medial meridian (M2 - M11). The left lobe of the liver is determined in coordinates from the right anterior to the left anterior medial meridian (M11 - M1). Anterior middle meridian (M0) projects to the middle of the left lobe of the liver; ultrasound examination in the sagittal plane along this meridian visualizes vascular secretory elements of the second and the third segments (C2 and C3). Right anterior medial meridian (M11) projects to the place, where the falciform ligament fixes to the diaphragmatic surface of the liver, scanning along this meridian visualizes the left portal fissure. Right anterior lateral meridian (M10) projects on 1 cm to the right of the gallbladder bed; scanning along this meridian visualizes the gallbladder, right portal fissure and vascular secretory elements of the fifth and the sixth segments (C5 and C6). Right posterior lateral meridian (M6) projects to the middle of the right posterior corner of the liver, scanning along this meridian visualizes vascular secretory elements of the right lateral and right paramedian sectors.

Thus, topographic anatomical meridians can be widely used in clinical practice as an additional ultrasound accesses to the liver. They greatly simplify the visualization of structure-function relationships of sectors and segments of the liver.

References
1. Митьков В.В. Клиническое руководство по ультразвуковой диагностике / В.В. Митьков. – М. «Ви- зар», 1996. – Том 1. – С. 27-94. 2. Бур М.П. Система топографических координат тела человека / М.П. Бурых. - Харьков. – 1991 – 36 с. 3. Геотопографический подход к изучению тела человека. Ультразвуковая морфометрия печени и печеня / М.П. Бур, В.Д. Зинченко, М.А. Михалин, Г.В. Горяинова // Материалы международной научной конференции, посвященной 80-летию со дня рождения проф. Т.В. Золотаревой. – Полтава, 1994. – С. 37-38.

СРАВНЕНИЕ АНАТОМИЧЕСКИХ И УЛЬТРАЗВУКОВЫХ СЕЧЕНИЙ ЧЕЛОВЕЧЕСКОЙ ПЕЧЕНИ
Резюме. Данная работа посвящена сравнительному анализу анатомических и ультразвуковых сечений печени человека, производимых в сагиттальной плоскости, в целях повышения визуальные возможности ультразвукового сканирования печени.
Ключевые слова: печені, УЗІ, топографическая анатомическая раздела, меридиан

COMPARISON OF ANATOMICAL AND ULTRASOUND SECTIONS OF THE HUMAN LIVER
Abstract. This work deals with the comparative analysis of anatomical and ultrasound sections of the human liver, made in the sagittal plane, in order to enhance the visual capabilities of ultrasound scanning of the liver.
Key words: liver, ultrasound scan, topographic anatomical section, meridian

SE "Lugansk State Medical University" (Rubizhne)

Надійшла 18.01.2016 р.
Рецензент – проф. Хмара Т.В. (Чернівці)