Regularities of the Gurtin-Pipkin equation

S. A. Ivanov∗†

Abstract

We study regularity of the solution θ to the Gurtin-Pipkin integral-differential equation of the first order in time. In particular, we prove that the ‘perturbation’ part, namely, the difference of θ and the solution to the corresponding wave equation is smoother than θ.

1 Introduction

In several fields of physics such as heat transfer with finite propagation speed [2], systems with thermal memory [5], viscoelasticity problems [3], and acoustic waves in composite media [1], the integro-differential equations arise. We consider the equation of the first order in time

$$\theta_t(x, t) = \int_0^t k(t - s)\theta_{xx}(x, s)\, ds + f(x, t), \quad x \in (0, \pi), \quad t > 0,$$

(1)

with the Dirichlet boundary conditions and with the initial data $\theta(0, x) = \xi(x)$.

In the case $k(t) = \text{Const} = \alpha^2$ the equation (1) is, in a fact, an integrated wave equation. Indeed, differentiate (1) gives

$$\theta_{tt} = \alpha^2 \theta_{xx} + f_t(x, t), \quad \theta(x, 0) = \xi, \quad \theta_t(x, 0) = 0.$$

(2)

Thus, the wave equation is a special case of (1) and we will compare general regularity results with the regularity of the solutions to the wave equation.

∗St. Petersburg Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation. sergei.a.ivanov@mail.ru
†The work was supported by Russian Foundation for Basic Research, RFBR Project 11-01-00790a and RFBR Project 11-01-00667a.
2 Fourier method and the Laplace transform

First, apply the Fourier method: we set \(\varphi_n = \sqrt{\frac{2}{\pi}} \sin nx \) and expand the solution, the RHS, and the initial data in series in \(\varphi_n \)

\[
\theta(x, t) = \sum_{1}^{\infty} \theta_n(t) \varphi_n(x), \quad \xi(x) = \sum_{1}^{\infty} \xi_n \varphi_n(x), \quad f(x, t) = \sum_{1}^{\infty} f_n(t) \varphi_n(x).
\]

The components \(\theta_n \) satisfy ordinary integral-differential equations

\[
\dot{\theta}_n(t) = -n^2 \int_{0}^{t} k(t-s) \theta_n(s) ds + f_n(t), \quad t > 0, \quad \theta_n(0) = \xi_n. \quad (3)
\]

Note that the solutions to this integral-differential is unique and continuous, what we can see by \(t \)-integration of the equation from 0 to \(t \). Indeed, we obtain a Volterra integral equation: with \(\varphi = \int f(t) dt \), we have

\[
\theta_n(t) - \xi_n = -n^2 \int_{0}^{t} \int_{0}^{\tau} k(\tau-s) \theta_n(s) ds + \varphi(t).
\]

Change order of integrations

\[
\theta_n(t) = -n^2 \int_{0}^{t} ds \theta_n(s) \int_{s}^{t} d\tau k(\tau-s) + \varphi(t) + \xi_n = -n^2 \int_{0}^{t} q(t-s) \theta_n(s) ds + \varphi(t) + \xi_n
\]

with

\[
q(s) = \int_{0}^{s} k(y) dy.
\]

Introduce the scale \(\mathcal{H}_s \), \(s \) is real, of the Hilbert spaces \(\mathcal{H}_s = \text{Dom}(A^{s/2}) \), where the operator \(A \) is \(-d^2/dx^2\) with the Dirichlet boundary conditions at 0 and at \(\pi \). A space \(\mathcal{H}_s \) is a subspace of the Sobolev space \(H^s \) and may be described in terms of the Fourier coefficients. Let the space \(l_s \) be the space of sequences \(\{c_n\} \) such that

\[
\sum_{1}^{\infty} |c_n|^2 n^{2s} < \infty.
\]

Then

\[
\mathcal{H}_s = \left\{ u(x) = \sum_{1}^{\infty} u_n \varphi_n(x) \mid \{u_n\} \in l_s \right\}.
\]
Consider also the space $H_{s,\varepsilon}$ of functions $g(x,t) = \sum_{1}^{\infty} f_n(t) \varphi_n(x)$ with the norm
\[\| g \|_{H_{s,\varepsilon}}^2 = \sum_{1}^{\infty} \| e^{-2\varepsilon t} f_n \|_{L^2(0,\infty)}^2. \]

Definition 1 The function $\theta(x,t) = \sum_{1}^{\infty} \theta_n(t) \varphi_n(x)$ is a solution to (1) in $H_{s,\varepsilon}$ if the functions θ_n, satisfy the integral equation (4) and $\theta \in H_{s,\varepsilon}$ with $s \in \mathbb{R}$.

Let H^2_{ε} denote the Hardy space in the right half plane $\mathbb{R}z > \varepsilon$. The Paley-Wiener theorem says that
\[\| F \|_{H^2_{\varepsilon}}^2 = \int_{0}^{\infty} e^{-2\varepsilon t} |f(t)|^2 dt. \]

Here and in what follows will denote the Laplace image by the capital characters. Applying the Laplace Transform to (3) we find
\[z \Theta_n(z) - \xi_n = -n^2 K(z) \Theta_n(z) + F_n(z) \]
or
\[\Theta_n(z) = \frac{\xi_n + F_n(z)}{z + n^2 K(z)}. \]

Denote the denominators in (5) by $G_n(z)$. The set Λ of all zeros of $G_n(z)$ is called the spectrum of the equation (1).

Regularity of the Gurtin-Pipkin type equation is studied in [4] for several spatial variables, where under assumption that $k(t)$ is twice continuously differentiable it was shown, in particular, that $\Theta(x,t) \in C([0,T]; L^2(0,T))$.

Regularity of strong solutions has been studied in several works of V. Vlasov with the coauthors, see, e.g., [8] and the Sec.5 below. The spectrum of the equation is studied in [9],[8].

Let us describe the regularity of the solutions to the wave equation (2). Let $Q_T = (0, \pi) \times (0, T)$.

Proposition 2 The solution to the (2) satisfy the following estimates: (i) Let $f = 0$. Then the Dalambert solution gives
\[\| \theta \|_{H_{s,\varepsilon}} \prec \| \xi \|_{H_s}, \quad \| \partial_t \theta \|_{H_{s,\varepsilon}} \prec \| \xi \|_{H_{s+1}}, \]
(ii) let $\xi = 0$. Then, see [10] the (generalized) solutions satisfy
\[\| \partial_t \theta \|_{L^2(Q_T)} + \| \partial_x \theta \|_{L^2(Q_T)} \prec \| \xi \|_{H_1} + \| f_t \|_{L^2(Q_T)}. \]
If \(k(t) = \alpha^2 e^{-bt} \) (and \(K(z) = \alpha^2/(z + b) \)), then differentiation gives a damped wave equation
\[
\theta_{tt} = \alpha^2 \theta_{xx} - b\theta_t.
\] (8)

By \(\theta^0 \) we denote the solution to this equation with the initial data
\[
\theta(\cdot, 0) = \xi, \quad \theta_t(\cdot, 0) = 0.
\] (9)

This will be an unperturbed equation, see the Sect. 4.

In application, see, e.g.,[1], the kernels \(k(t) \) is a series of exponentials
\[
k(t) = \sum_{k=1}^{\infty} a_k e^{-b_k t}, \quad a_k \geq 0, \quad 0 \leq b_1 < b_2 < \cdots < b_k < \cdots.
\]

We can consider the following smoothness conditions
\[
\sum_{k=1}^{\infty} \frac{a_k}{b_k} < \infty, \tag{10}
\]
\[
\alpha^2 = \sum_{k=1}^{\infty} a_k < \infty, \tag{11}
\]
or
\[
\beta = \sum_{k=1}^{\infty} a_k b_k < \infty, \tag{12}
\]
or
\[
\gamma = \sum_{k=1}^{\infty} a_k b_k^2 < \infty. \tag{13}
\]

Remark 3 These conditions maybe written as
\[
k \in L^1(0, \infty), \quad k \in C[0, \infty), \quad k, k' \in L^1(0, \infty),
k' \in C[0, \infty), \quad k, k', k'' \in L^1(0, \infty),
k'' \in C[0, \infty), \quad k, k', k'', k''' \in L^1(0, \infty).
\]

Write the asymptotic of \(K(z) \). The Laplace image of \(k(t) \) is
\[
K(z) = \sum_{k=1}^{\infty} \frac{a_k}{z + b_k}, \quad k(0) = \alpha = \sum_{k=1}^{\infty} a_k.
\]

Without loss of generality we can set \(\alpha = 1 \) if \(\alpha \) is finite.
Proposition 4 Let for a $\delta > 0$

$$|\arg z| < \pi - \delta,$$

Then for large z

(i) under (10)

$$K(z) = o(1),$$

(ii) under (11)

$$K(z) = \frac{1}{z} + o\left(\frac{1}{z}\right),$$

(iii) under (12)

$$K(z) = \frac{1}{z} - \frac{\beta}{z^2} + o\left(\frac{1}{z^2}\right),$$

(iv) under (13)

$$K(z) = \frac{1}{z} - \frac{\beta}{z^2} + \frac{\gamma}{z^3} + o\left(\frac{1}{z^3}\right).$$

The statement of this proposition follows from known results about Cauchy transform of a measure.

3 Regularity of the solution in the spatial variable

Here we prove the results about the regularity with respect to the x-variable, i.e., in terms of H_s spaces.

Theorem 5 Let (11) be true, $\{\xi_n\} \in \ell_s$ and $f \in L^2(0, \infty; H_s)$. Then for any $\varepsilon > 0$ the solution θ to (1) satisfy

$$\|\theta\|^2_{H_{s,\varepsilon}} \prec \|\xi\|^2_s + \|f\|^2_{H_{s,\varepsilon}}.$$ (15)

Proof:

Lemma 6 The following estimates are fulfilled

$$|z/G_n(z)| \prec 1, \quad \Re z > \varepsilon$$

(16)

$$\|1/G_n\|_{L^2(\varepsilon-i\infty, \varepsilon+i\infty)} \prec 1.$$ (17)

The lemma implies by (5)

$$\int_0^\infty |e^{-et}\theta_n(t)|^2 \prec |\xi_n|^2 + \|e^{-et}f_n\|^2_{L^2(0,\infty)}$$

and then (15).
Proof of the lemma. Set for the simplicity $\varepsilon = 1$ Then for $z = 1 + iy$ and $\gamma_k = 1 + b_k$ we obtain

$$G_n(z) = (1 + iy) + n^2 \sum_{k=1}^{\infty} \frac{a_k \gamma_k}{\gamma_k^2 + y^2} - iyn^2 \sum_{k=1}^{\infty} \frac{a_k}{\gamma_k^2 + y^2}$$

Therefore

$$|G_n(z)|^2 \geq \left(1 + n^2 \frac{a_1 \gamma_1}{\gamma_1^2 + y^2}\right)^2 + y^2 \left(1 - n^2 \sum_{k=1}^{\infty} \frac{a_k}{\gamma_k^2 + y^2}\right)^2$$

Setting

$$s(y) = \sum_{k=1}^{\infty} \frac{a_k}{\gamma_k^2 + y^2},$$

we have

$$|G_n(z)|^2 \geq \left(1 + n^2 \frac{1}{1 + y^2}\right)^2 + y^2 \left(1 - n^2 s(y)\right)^2.$$

This gives (16).

Divide $[0, \infty)$ into three intervals

$$I_1 = [0, n/2], I_2 = [n/2, 3n/2], I_3 = [3n/2, /iy].$$

Write

$$\|1/G_n\|_{L^2([\varepsilon - i\infty, \varepsilon + i\infty])}^2 = \int_{-\infty}^{\infty} \frac{dy}{|G_n(y)|^2} = 2 \left[\int_{0}^{n/2} + \int_{n/2}^{2n} + \int_{2n}^{\infty} \frac{dy}{|G_n(y)|^2}\right] = 2(J_1 + J_2 + J_3).$$

1. Estimates on $I_1 = [0, n/2]$.

Evidently, $s(y)$ decreases and then on $[0, n/2]$ we have $s(n/2) < s(y) < s(0)$. Further, the series

$$n^2 s(y) = \sum_{k=1}^{\infty} \frac{a_k n^2}{\gamma_k^2 + n^2/4}$$

has the majorant $4 \sum_{k=1}^{\infty} a_k = 4 \alpha = 4$ and the terms of this series approaches to $4a_k$. Then

$$n^2 s(n/2) \to 4.$$

Take $n > n_0$ such that $n^2 s(n/2) \geq 2$ for $n/2 \geq n_0$. We obtain $n^2 s(y) > n^2 s(n/2) \geq 2$ and

$$\left(n^2 s(n/2) - 1\right)^2 \geq 1.$$

This gives

$$|G_n(z)|^2 \geq 1 + y^2 \left(n^2 s(n/2) - 1\right)^2 \geq 1 + y^2.$$
Estimate J_1.

$$J_1 \leq \frac{1}{\int_{0}^{\infty} \frac{1}{1+y^2}} < 1. \quad (18)$$

2. Estimate J_2.

For $n/2 \leq y \leq 2n$ we have

$$|G_n(z)| \geq 1 + n^2(1 - n^2s(y)).$$

Consider the increasing variable $\xi = 1 - n^2s(y)$. Then

$$\xi' = -n^2s' = n^2 \sum_{1}^{\infty} \frac{2aky}{(\gamma_k^2 + y^2)^2} \geq n^2 \sum_{1}^{\infty} \frac{akn}{(\gamma_k^2 + n^2)^2}$$

$$\geq \frac{1}{n} \sum_{1}^{\infty} \frac{ak}{(\gamma_k^2/n^2 + 1)^2} \geq \frac{1}{n}.$$

Indeed,

$$\frac{a_1}{(\gamma_1^2/n^2 + 1)^2} \leq \sum_{1}^{\infty} \frac{ak}{(\gamma_k^2/n^2 + 1)^2} \leq \sum_{1}^{\infty} ak.$$

Now for J_2 we have "$nd\xi \approx dy$" and

$$J_2 \geq \int_{n/2}^{2n} \frac{dy}{1 + n^2(1 - n^2s(y))^2} = \int_{\xi(n/2)}^{\xi(2n)} \frac{nd\xi}{1 + n^2\xi^2} < \infty.$$

3. Estimate J_3.

For $y \geq 2n$ we have

$$n^2s(y) \leq n^2s(2n) = \sum_{1}^{\infty} \frac{a_kn^2}{\gamma_k^2 + 4n^2} \leq \frac{1}{4} \sum_{1}^{\infty} a_k = \frac{1}{4}.$$

Now

$$|G_m(z)| \geq 1 + y^2(1 - n^2s(y))^2 \geq 1 + y^2 \frac{9}{16},$$

and

$$J_3 \geq \int_{2n}^{\infty} \frac{dy}{1 + y^2} < 1.$$

The theorem is proved.

Remark 7 For the case $k(t) = 1$, and $f = 0$, i.e., for the wave equation we have

$$\Theta_n(z) = \frac{\xi_n}{z + n^2/z}, \quad \theta_n(t) = \xi_n \cos nt.$$

We see that $\theta_n \notin L^2(0, \infty)$ and $e^{-\epsilon t}\theta_n \in L^2(0, \infty)$. In this sense Theorem 7 is sharp.
Theorem 8 Let (11) is true, \(\{ \xi_n \} \in \ell_s \) and \(f \in L^2(0, \infty; H_s) \). Then \(\theta(x, t) \) is an \(H_s \) valued continuous function:
\[
\| \theta(t) - \theta(t + t_0) \|_{H_s, \varepsilon} \to 0,
\]
as \(t_0 \to t_0 \).

Proof. The solutions \(\theta_n \) are continuous and the series in \(\theta_n \) has a majorant.

4 GP as a perturbation to the wave equation

Let us find regularity of the ‘perturbation’ \(\theta - \theta^0 \) of the solution to the wave equation. Recall that \(\theta^0 \) is the solution to the problem (8), (9). Let \(f(x, t) = 0 \) for simplicity and set
\[
K_0(z) = \frac{1}{z + \beta}, \quad G_0^0(z) = z + n^2 K_0(z), \quad D_n(z) = \frac{1}{G_n(z)} - \frac{1}{G_n^0(z)}.
\]
The solution to (11) has the form
\[
\Theta_n(z) = \frac{1}{G_n^0(z)} \xi_n + D_n(z)\xi_n = \Theta_n^0(z) + D_n(z)\xi_n.
\]

Theorem 9 Let (13) is true and \(f = 0 \). Then for \(s < 9/2 \)
\[
\| z^s D_n \|_{L^2(i\mathbb{R})} \prec n^{s-1} |\xi_n|.
\]

Proof:
If \(\beta = 0 \) the theorem is trivial: \(D_n = 0 \). Thus, we can assume \(\beta \neq 0 \) and then integrate the functions on the imaginary axis.

Lemma 10 For \(z = iy, y \to \infty \) and \(\beta \neq 0 \) we have
\[
|G_n(z)|^2 \asymp |G_n^0(z)|^2 \asymp \frac{1}{y^4} \left(y^2 (y^2 - n^2) \right)^2 + n^4 =: Q(y).
\]

Proof of the lemma. (14) implies
\[
G_n(iy) = iy + n^2 \left(\frac{1}{iy} - \frac{\beta}{y^2} + o \left(\frac{1}{y^2} \right) \right)
= \frac{i}{y^2} [y^3 - n^2 y + o(1)n^2] - \frac{n^2}{y^2} [\beta + o(1)].
\]
And the same is true for \(G_n^0 \). From here
\[
|G_n(y)|^2 = \frac{1}{y^4} \left[y^3 - n^2 y + o(1)n^2 \right]^2 + \frac{n^4}{y^2} [\beta + o(1)]^2 \asymp \frac{1}{y^4} \left(y(y^2 - n^2) + o(1)n^2 \right)^2 + \frac{n^4}{y^2}.
\]
Now
\[
\frac{|G_n(y)|^2}{Q(y)} = \frac{y(y^2 - n^2) + o(1)n^2}{(y^2(y^2 - n^2)) + n^4}
\]

Use the elementary inequalities
\[(a + qb)^2 + b^2 \simeq a^2 + b^2\]
with, say, \(q < 1/2\). Setting
\[a = y(y^2 - n^2), \ b = n^2\]
we complete the proof of the lemma.

Return to the proof of the theorem.

\[\|z^s D_n\|_{L^2(\mathbb{R})}^2 = \int_{-\infty}^{\infty} n^4 \frac{y^{2s}|K(iy) - K_0(iy)|^2}{|iy + n^2 K(iy)|^2 |iy + n^2 K_0(iy)|^2} dy.\]

Use Lemma 10 to estimate the denominator and the condition (13) to estimate the numerator. By (14) we have
\[K(iy) - K_0(iy) = O(1/n^3)\] and obtain
\[\|z^s D_n\|_{L^2(\mathbb{R})}^2 < n^4 \int_0^{\infty} \frac{y^{2s+2}}{[y^2(y^2 - n^2)^2 + n^4]^2} dy.\] (19)

For \(s < 9/2\) this integral converges. The main contribution gives the interval of the length \(O(n)\) centered at \(y = n\). Estimate it. Set
\[J = \int_{n/2}^{3n/2} \frac{y^{2s+2}}{[y^2(y^2 - n^2)^2 + n^4]^2} dy.\]

(this integral enters (19) with the factor \(n^4\)).

\[J \asymp n^{2s-2} \int_{n/2}^{3n/2} \frac{dy}{[(y^2 - n^2)^2 + n^2]^2} \asymp n^{2s-2} \int_{n/2}^{3n/2} \frac{dy}{[n^2(y - n)^2 + n^2]^2} \]
\[\asymp n^{2s-6} \int_{n/2}^{3n/2} \frac{dy}{[(y-n)^2 + 1]^2} \leq n^{2s-6} \int_{n/2}^{3n/2} \frac{dy}{[t^2 + 1]^2} = Cn^{2s-6}.\]

Thus, the interval of \((n/2, 3n/2)\) gives the contribution \(n^{2s-2}\). The theorem is proved.

This theorem give, of course, information about regularity of \(\theta - \theta^0\), for example

Corollary 11

\[e^{-\varepsilon t} [\theta(x, t) - \theta_0(x, t)] \in L^2(0, \infty; \mathcal{H}_{s+1}) \cap W^1_2(0, \infty; \mathcal{H}_s)\]
5 Estimate of the derivative with respect to time

Before now we have considered a weak solution. Here we present results about a strong solutions, as, e.g., in [8]. By the definition of the strong solution the equation (11) can be considered as an equality of elements of L^2 spaces.

Proposition 12

Let (12) is fulfilled, $f_t \in \mathcal{H}_{1,\gamma}$, $f(x,0) = 0$, and $\xi \in \mathcal{H}_2$. Then for any $\varepsilon > \gamma$

$$
\|e^{-\varepsilon t} \partial_t \theta\|^2_{L^2(0,\infty;L^2(0,\pi))} + \|e^{-\varepsilon t} \theta\|_{L^2((0,\infty);\mathcal{H}_2)} \prec \|e^{-\varepsilon t} \partial_t f\|_{L^2((0,\infty),\mathcal{H}_1)} + \|\xi\|_{\mathcal{H}_2}.
$$

In the right hand side we see, roughly speaking, the L^2 norm of $\partial_t \partial_x f$.

We can slightly strengthen this estimate with the L^2 norm of $\partial_t f$ in the right hand side. It is a sharp result in the sense that it close to the estimate (7).

Theorem 13

Let (11) is fulfilled, $f_t \in \mathcal{H}_{0,\gamma}$, $f(x,0) = 0$, and $\xi \in \mathcal{H}_s$. Then

$$
\|e^{-\varepsilon t} \partial_t \theta\|^2_{L^2(0,\infty;L^2(0,\pi))} + \|e^{-\varepsilon t} \theta\|_{L^2((0,\infty);\mathcal{H}_2)} \prec \|e^{-\varepsilon t} \partial_t f\|_{L^2((0,\infty),\mathcal{H}_0)} + \|\xi\|_{\mathcal{H}_2}.
$$

Proof:
(i) Let $F = 0$. Then

$$
\mathcal{L}[\theta'_n] = z\mathcal{L}[\theta_n] - \theta_n(0) = \left(\frac{z}{z + n^2 K(z)} - 1\right) \xi_n = -\frac{n^2 K(z)}{z + n^2 K(z)} \xi_n.
$$

$K(z)$ decreases in infinity,

$$
|K(1 + iy)| \prec \frac{1}{1 + |y|},
$$

Therefore we can use

$$
|\mathcal{L}[\theta'_n]| \prec n \left|\frac{K}{G_n}\right| |\xi_n| \prec n |\xi_n|,
$$

what gives by (17) the estimate

$$
\|e^{-\varepsilon t} \theta_t\| \prec \|\xi\|_{\mathcal{H}_{s+2}}. \tag{20}
$$

(ii). Let $\xi = 0$. Then, taking into account $f(x,0) = 0$, we obtain

$$
\mathcal{L}(\theta'_n) = \frac{z F_n(z)}{z + n^2 K(z)}.
$$
By (10) we have
\[\| L(\theta'_{n}) \| \prec \| zF_{n}(z) \|. \]
Then
\[\| e^{-\gamma t} \theta'_{n} \| \prec \| e^{-\gamma t} f'_{n} \|_{L^{2}(0,\infty)}. \]
and
\[\| e^{-\gamma t} \theta_{t} \| \prec \| e^{-\gamma t} f' \|_{L^{2}(0,\infty;\mathcal{H})}. \] (21)
The theorem is proved.

Acknowledgements
The author grateful to Prof. V. V. Vlasov for the fruitful discussions.

References

[1] A. A. Gavrikov, S.A. Ivanov, D.Yu. Knyazkov, V.A. Samarain, A.S. Shamaev, V. V. Vlasov, Spectral properties of composite media, Contemporary Problems of Mathematic and Mechanic, v.1, 2009, 142-159 (Russian).

[2] M. E. Gurtin, A. C. Pipkin A general theory of heat conduction with finite wave speeds. Archive for Rational Mechanics and Analysis 1968; 32:113-126.

[3] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[4] L. Pandolfi, The controllability of the Gurtin-Pipkin equation: a cosine operator approach. Appl. Math. Optim. 52 (2005), no. 2, 143–165.

[5] F.M. Vegni. Dissipativity of a condensed phase field systems with memory, Discrete and continuous dynamical systems, Volume 9, Number 4, July 2003.

[6] V. V. Vlasov, J. Wu, Solvability and Spectral Analysis of Abstract Hyperbolic Equations with Delay. Funct. Differ. Equ. 16 (2009), no. 4, 751-768.

[7] Ivanov S.A., 'Wave type’ spectrum of the Gurtin-Pipkin equation of the second order, arXiv; arxiv.org/abs/1002.2831, 8 p.

[8] Vlasov V.V., Rautian N.A., Shamaev A.S., Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics, Journal of Mathematical Sciences April 2013, Volume 190, Issue 1, pp 34-65.

[9] Ivanov S.A., EremenkoA., Spectra of the Gurtin-Pipkin type equations, SIAM J. Math. Anal. 43, pp. 2296-2306.
[10] V. Mikhailov, *Partial Differential Equations* Mir Publishers, Moscow, Russia, 1978.