Article

Changes in Daily Life, Physical Activity, GAD, Depression, and Personal Hygiene of Adolescents in South Korea Due to the COVID-19

Eun-Yeob Kim 1,†, Chilhwan Oh 1,2,†, Hwa-Jung Sung 3,* and Jaeyoung Kim 1,4,*

1 Research Institute for Skin Image, Korea University College of Medicine, Seoul 08308, Korea
2 Department of Dermatology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan 54538, Korea
3 Department of Hematooncology, College of Medicine, Korea University, Seoul 02841, Korea
4 Core Research & Development Center, Korea University Ansan Hospital, Ansan 15355, Korea
* Correspondence: doctorsung@korea.ac.kr (H.-J.S.); jaykim830@gmail.com (J.K.); Tel.: +82-31-412-6549 (H.-J.S.); +82-31-412-6711 (J.K.)
† These authors contributed equally to this work.

Abstract: This study used raw data obtained from the Adolescents’ Health Behavior Survey by government-affiliated agency open data. A total of 109,796 students were sampled. A comparative analysis was performed based on the year 2020 and when the COVID-19 pandemic occurred, in which we analyzed changes in adolescents’ depression and panic anxiety perception and dietary habits, physical factors, physical activity, and handwashing habits. There was no weight control in the second year compared to the first year of the COVID-19 pandemic, and obesity also increased. The continuation of the non-contact situation caused by COVID-19 led to a worsening of subjective health awareness, and the experience of generalized anxiety disorder, depression, sadness and hopelessness, and suicidal thoughts and attempts increased. The frequency of washing hands with soap before meals and after using the toilet at school or at home was reduced. As a result of this analysis, we believe that there needs to be a system of support in place to address the academic gaps and deficiencies in learning caused by COVID-19, and that psychological and emotional support needs to be strengthened at this time, as well as the issues to be supported after the end of the non-contact situation.

Keywords: COVID-19; daily life; adolescent; personal hygiene

1. Introduction

In December 2019, the SARS-CoV-2 coronavirus disease 2019 (COVID-19) outbreak began in Wuhan, China, spreading worldwide. According to a report by state agencies in 2020, confirmed cases of COVID-19 were 37 million, deaths exceeded 1 million, and as of 28th January 2021, the spread of COVID-19 has continued to increase [1–3]. The World Health Organization (WHO) declared an ‘International Public Health Emergency (PHIC)’ for the novel COVID-19 virus on 31 January 2020, and a pandemic on 11 March 2020 [2,3]. Unlike existing infectious diseases, COVID-19 has caused great social, economic, and cultural changes as the pandemic has been prolonged worldwide [4,5]. Since the first confirmed case in South Korea on 23 January 2020, COVID-19 has become prevalent and has affected the daily life of people of all age groups. COVID-19 has had significant physical, emotional, and psychological impact [6] on the daily lives of adolescents whose identity had not yet been established [6,7]. Seong (2020) found that there was a difference in risk perception by age when asked, ‘If you are infected with COVID-19, how serious would it be to your health?’ [8]. As such, various risk perceptions and behaviors have emerged due to the unprecedented changes brought on by COVID-19 [8]. Honarvar et al. [9] used the Health Belief Model (HBM, Rosenstock, 1974) [10] to study knowledge, behavior, and
risk perception about COVID-19, and the knowledge and behavioral recognition intentions were low [11,12]; the lower the knowledge or education level on COVID-19, the lower the perceived severity of the risk [9,13–15]. As a result, COVID-19 knowledge impacts risk-prevention behavior [11,16]. Children and adolescents lack the ability to protect themselves compared to adults [17], making it difficult to actively respond to disasters such as COVID-19 [18]. Wang et al. found that COVID-19 had a negative impact on the mental health of children and adolescents [19]. Jung [6] also reported that the ratio of study time and excessive study time for children increased compared to that before COVID-19, and that children that showed excessive media use and less than the recommended exercise time showed higher anxiety about the future [20]. In addition, it is expected that there will be unencountered changes in the daily life and mental health of adolescents due to the COVID-19 pandemic.

Therefore, to overcome the limitations caused by COVID-19, this study statistically analyzes the changes in daily life and mental health of adolescents based on data from the Korea Centers for Disease Control and Prevention (KDCA) and preventive adolescent health behavior survey data. Our goal is to improve the collective understanding of adolescents’ psychological and behavioral responses. By analyzing the psychological, emotional, and physical changes of adolescents based on the situation in 2020 and 2021, it is necessary to identify the impact of new infectious diseases, such as COVID-19, on adolescents, and to seek appropriate support policies. In addition, this study can be used as basic data on the educational environment and policy decisions for future youth having to deal with new infectious diseases.

2. Materials and Methods

2.1. Study Setting, Designs and Sampling

This study used raw data from the 16th (2020) and 17th (2021) “Youth Health Behavior Survey” conducted by the Ministry of Education, the Ministry of Health and Welfare, and the Korea Disease Control and Prevention Agency (KDCPA) (Approval No. 117058) [21–23]. The “Youth Health Behavior Survey” is a national representative data survey conducted on about 60,000 students every year by stratifying 800 schools (400 middle and high schools each) based on the table frame of the Ministry of Education’s basic statistics survey. A total of 109,796 people sampled 54,948 students in 2020 (28,961 middle school students, 25,984 high school students) and 54,848 students in 2021 (30,015 middle school students, 24,833 high school students). In this study, a comparative analysis was performed based on the 16th (August 2020) and 17th (August 2021) surveys in the midst of the COVID-19 pandemic. We analyzed changes in adolescents’ depression and panic anxiety perception and dietary habits, physical factors, physical activity, and handwashing habits through survey questions. The 16th (2020) and 17th (2021) survey data were collected from August to November 2020 and 2021 due to COVID-19.

2.2. Data Variables

In our study, the variables analysed were as follows: (1) general characteristics, namely kidney (m), weight (kg), obesity (BMI), age, gender, weight control effort and smartphone usage time; (2) subjective health/body type perception, stress perception, experience of sadness/despair over the past year, and suicidal thoughts and experience; (3) in the past 7 days, eating habits, including breakfast (bread, rice or wheat flour, oatmeal, cereal, etc.), fruit intake, sweet drink intake, ion drink intake (Gatorade, Pocari Sweat, etc.), juice drink intake (Coco Farm, Juicy Cool, etc.), coffee drink intake (coffee mix, Let’s Bee, etc.), fast food intake (pizza, hamburger, chicken, etc.), nutritional education, daily water intake (including bottled water, carbonated water, barley tea, etc.), physical activity (high-intensity physical activity that increases heart rate and leads to shortness of breath or sweating), strength exercise, and muscle-strengthening exercise; (4) handwashing habits, including washing hands before eating at school and at home, after school and after going to the bathroom,
and when returning home after going out; and (5) comparative analysis of perceptions pre-COVID-19 with physical activity, breakfast, drinking, smoking, and depression.

Obesity was defined as a body mass index (BMI) of 25, where BMI = weight (kg)/height (m)^2. An obesity level of 25 was based on the WHO Asia-Pacific region and the Korean Obesity Association. To determine the level of adolescent generalized anxiety disorder (GAD), the response results of the GAD 7 scale developed by Spizer et al., used in the Youth Health Behavior Survey, were used. This consists of seven questions in the form of a four-point Likert scale (0 = not at all to 3 = very much) related to anxiety or anxiety experienced in the last two weeks. The higher the combined score, the higher the pan-anxiety level. It can be judged that 0–4 points show normal behavior, 5–9 points show mild anxiety, 10–14 points show moderate anxiety, and 15 points or more indicate severe anxiety. The GAD 7 scale results, which are frequently used as a primary screening discrimination tool for GAD in medical institutions, were judged to be suitable for estimating the overall level of GAD in domestic adolescents.

2.3. Data Analysis

For statistical analysis, a database was secondarily processed with the creation of an analysis database, and the chi-square test or Mann–Whitney analysis was performed according to technical statistics, frequency analysis, and characteristics of variables. The analysis software used IBM SPSS Statistics for Windows, version 25.0 (IBM Corp., Armonk, NY, USA), and the statistical significance level was set at \(p < 0.05 \).

3. Results

3.1. Changes in General Characteristics in the First and Second Years of the COVID-19 Outbreak

Table 1 shows the results of changes in general characteristics in the first and second years of the COVID-19 outbreak. Obesity in the first year of the outbreak was 18.1%, but obesity increased in the second year to 19.3% (\(p < 0.001 \)). The percentage of those not trying to lose weight in the past month increased from 45.1% to 46.4%, and efforts to lose weight decreased from 35.1% to 33.9% (\(p < 0.001 \)). Smartphone use increased weekly during the COVID-19 outbreak, from 96.4% to 96.9% (\(p < 0.001 \)), and there was no change in weekend smartphone use (\(p = 0.983 \)) (Table 1).

Table 1. Changes in general characteristics in the first and second years of the COVID-19 outbreak.

Characteristics	COVID-19	\(\chi^2/z \)	\(p \)-Value			
	2020	2021				
Height (m)	M	SD	M	SD	-1.308	0.191
Weight (kg)	166.09	8.41	166.16	8.36		
Body Mass Index	21.53	3.66	21.62	3.83	-1.611	0.107
Age	15.10	1.75	15.09	1.74	-0.712	0.476
Obesity	Normal	41,164	81.9	40,624	80.7	
	Obesity	9093	18.1	9738	19.3	
Sex	Man	28,353	51.6	28,401	51.8	
	Woman	26,595	48.4	26,447	48.2	
Weight loss efforts in the past month	No effort	24,774	45.1	25,436	46.4	
	Tried to lose weight	19,272	35.1	18,590	33.9	
	Tried to gain weight	4220	7.7	3962	7.2	
	Maintained weight	6682	12.2	6860	12.5	
Table 1. Cont.

Characteristics	COVID-19	X²/z	p-Value			
	2020	2021				
	M	SD	M	SD		
Smartphone use during the week³						
Did not use	1970	3.6	1725	3.1	16.352	0.000
Used	52,978	96.4	53,123	96.9	0.000	0.983
Weekend smartphone use³						
Did not use	1800	3.3	1798	3.3	0.000	0.983
Used	53,148	96.7	53,050	96.7	0.000	0.983

Average (M), Standard deviation (SD),³ chi-square test (X²) (<i>n</i> = sample),⁴ Mann–Whitney test (z),⁵ <i>p</i>-value < 0.05.

3.2. Emotional and Cognitive Changes in the First and Second Years of the COVID-19 Outbreak

The results of emotional and cognitive changes in the first and second years of the COVID-19 outbreak are as follows. Subjective health perception deteriorated from 3.89 ± 0.90 in the first year of the outbreak to 3.77 ± 0.91 in the second year (<i>p</i> < 0.001). Usual stress was 3.27 ± 0.96 in the second year compared to 3.17 ± 0.94 in the first year of the outbreak (<i>p</i> < 0.001). GAD experiences increased to 11.13 ± 4.50 in the second year from 10.91 ± 4.37 in the first year of the outbreak (<i>p</i> < 0.001). In the past year, experiences of sadness and despair increased from 25.2% during the first year of the outbreak to 26.8% in the second year (<i>p</i> < 0.001), suicidal thoughts increased from 10.9% to 12.7% (<i>p</i> < 0.001), suicide plans increased from 3.6% to 4.0%, and suicide attempts increased from 2.0% to 2.3% (<i>p</i> < 0.001) (Table 2).

Table 2. Emotional and cognitive changes in the first and second years of the COVID-19 outbreak.

Variable	COVID-19	Z³	p-Value				
	2020	2021					
	M¹	SD²	M	SD			
Health perception	3.89	0.90	3.77	0.91	−23.036	0.000	
Subjective body shape perception	3.18	0.97	3.17	0.98	−2.910	0.004	
Stress perception	3.17	0.94	3.27	0.96	−18.228	0.000	
Degree of fatigue recovery from sleep⁴	2.94	1.14	2.72	1.10	−32.860	0.000	
Feeling agitated, anxious, or irritable⁵	1.56	0.77	1.61	0.79	−10.778	0.000	
Inability to stop worrying⁵	1.60	0.82	1.64	0.85	−7.299	0.000	
Worrying too much about various things⁵	1.97	0.95	2.00	0.97	−4.966	0.000	
General unease⁵	1.46	0.76	1.49	0.79	−7.553	0.000	
Restlessness⁵	1.27	0.62	1.30	0.65	−4.871	0.000	
Easily irritable⁵	1.70	0.87	1.73	0.88	−5.492	0.000	
Feeling afraid that something terrible is about to happen⁵	1.36	0.71	1.37	0.73	−3.171	0.002	
GAD⁵	10.91	4.37	11.13	4.50	−8.789	0.000	
Sadness and despair⁶	No	41,108	74.8	40,156	73.2	36.503	0.000
	Yes	13,840	25.2	14,692	26.8	0.000	
Suicidal thoughts⁶	No	48,969	89.1	47,892	87.3	85.678	0.000
	Yes	5979	10.9	6956	12.7	0.000	
Suicide plan⁶	No	52,995	96.4	52,642	96.0	16.479	0.000
	Yes	1953	3.6	2206	4.0	0.000	
Table 2. Cont.

Variable	COVID-19			Z 3	p-Value	
Suicide attempt 6						
No	53,827	98.0	53,603	97.7	6.875	0.009
Yes	1121	2.0	1245	2.3		

1 M; average, 2 SD; standard deviation, 3 z; Mann–Whitney test, 4 in the 1st week, 5 in the past 2 weeks, 6 in the last year, p-value < 0.05.

3.3. Changes in Diet and Daily Life in the First and Second Years of the COVID-19 Outbreak

Changes in diet and daily life over the past week in the first and second years of the COVID-19 outbreak were as follows. The frequency of breakfast consumption increased in the second year when compared to that in the first year of the outbreak, while the number of meals eaten five times a week in the second year did not change, and the response to all other answers decreased (p < 0.001). The frequency of fruit intake decreased in the “not eating” category in the first year to the “more than three times a day” category in the second year, while there was no change in eating twice a day, and the response of other answers increased (p < 0.001). The carbonated drink answer “no drink,” increased, while “drink 1 or 2 times a day” answers were unchanged, and the other answers decreased (p < 0.001). The sweet drink intake answers “no drink and 1–2 times a week” decreased (p < 0.001). Fast food intake decreased in the “not to eat” category in the second year compared to that in the first year, while the frequency of intake increased 1–2/3–4/5–6 times a week (p < 0.001). All the respondents who drank more than 1 cup of water every day increased their intake in the second year compared to that in the first year (p = 0.005). Compared to heart rate in the first year, in the second year, heart rate increased for more than 60 min a day, mild physical activity increased from 1 to 6 d a week (p < 0.001), the response to high-intensity physical activity (20 min or more) increased from 1 d to 5 d per week (p < 0.001), and the other answers decreased by 2 weeks (Table 3).

Table 3. Changes in diet and daily life in the first and second years of the COVID-19 outbreak.

Variable	COVID-19			X2	p-Value
Breakfast (bread, sun food or wheat flour, oatmeal, cereal, etc.) 4				39.341	0.000
0th time	11,441	20.8	11,904	21.7	
1st time	4234	7.7	4031	7.3	
2nd time	5010	9.1	4875	8.9	
3rd time	4698	8.5	4527	8.3	
4th time	3901	7.1	3825	7.0	
5th time	6069	11.0	6494	11.8	
6th time	3857	7.0	3853	7.0	
7th time	15,738	28.6	15,339	28.0	
Table 3. Cont.

Variable	COVID-19			
	2020	2021	x^2	p-Value
	N ¹	% ²	N	%
Fruit (fruit juice excluded) ⁴			56.939	0.000
0th time	7130	13.0	6544	11.9
1~2nd time/1 week	17,643	32.1	17,639	32.2
3~4th time/1 week	14,613	26.6	15,293	27.9
5~6th time/1 week	5561	10.1	5586	10.2
1st time/everyday	5762	10.5	5800	10.6
2nd time/everyday	2583	4.7	2553	4.7
3rd time over/everyday	1656	3.0	1433	2.6
Carbonated drinks ⁴			61.798	0.000
0th time	12,251	22.3	13,169	24.0
1~2nd time/1 week	23,139	42.1	22,596	41.2
3~4th time/1 week	12,133	22.1	11,973	21.8
5~6th time/1 week	3677	6.7	3440	6.3
1st time/everyday	1958	3.6	1986	3.6
2nd time/everyday	861	1.6	900	1.6
3rd time over/everyday	929	1.7	784	1.4
Sweet drinks (ion drinks, juice drinks, and coffee drinks excluded) ⁴			68.234	0.000
0th time	9205	16.8	8476	15.5
1~2nd time/1 week	20,476	37.3	19,949	36.4
3~4th time/1 week	14,048	25.6	14,782	27.0
5~6th time/1 week	5498	10.0	5671	10.3
1st time/everyday	3430	6.2	3622	6.6
2nd time/everyday	1285	2.3	1386	2.5
3rd time over/everyday	1006	1.8	962	1.8
Fast food (pizza, hamburger, chicken, etc.) ⁴			43.112	0.000
0th time	10,037	18.3	9319	17.0
1~2nd time/1 week	31,255	56.9	31,284	57.0
3~4th time/1 week	10,861	19.8	11,294	20.6
5~6th time/1 week	1803	3.3	1975	3.6
1st time/everyday	656	1.2	639	1.2
2nd time/everyday	155	0.3	158	0.3
3rd time over/everyday	181	0.3	179	0.3
Nutritional and eating habit education ⁵			313.477	0.000
No	28,653	52.1	31,518	57.5
Yes	26,295	47.9	23,330	42.5
Daily water (including bottled water, carbonated water, barley tea, etc.)			15.034	0.005
1 cup below per day	1966	3.6	1963	3.6
2 cups per day	9583	17.4	9764	17.8
3 cups per day	11,910	21.7	12,222	22.3
4 cups per day	9790	17.8	9831	17.9
5 cups or more per day	21,699	39.5	21,068	38.4
3.4. Changes in Personal Hygiene Habits Due to the COVID-19 Outbreak

Changes in personal hygiene habits due to the COVID-19 outbreak was observed. “Hand washing with soap before eating at school, in the past week” decreased from 88.3% to 84.6% ($p < 0.001$). Handwashing using soap after using the toilet at school decreased from 97.0% to 96.5% ($p < 0.001$) in the past week. Handwashing using soap before eating at home decreased from 93.3% to 91.5% in the past week ($p < 0.001$). Handwashing with soap after using the toilet at home decreased from 97.3% to 96.8% in the past week ($p < 0.001$). Handwashing using soap after returning home decreased in the past week from 97.6% to 97.1% ($p < 0.001$) (Table 4).
Table 4. Changes in personal hygiene habits due to the COVID-19 outbreak.

Variable	COVID-19	2020	2021	X²	p-Value	
		N	%	N	%	
Washing hands using soap before eating at school						
Always	17,759	32.3	14,342	26.1	766.537	0.000
Often	16,071	29.2	15,436	28.1	766.537	0.000
Sometimes	14,700	26.8	16,660	30.4	766.537	0.000
Not at all	6418	11.7	8410	15.3	766.537	0.000
Hand washing using soap after using the toilet at school						
Always	37,007	67.3	36,467	66.5	46.631	0.000
Often	11,839	21.5	11,617	21.2	46.631	0.000
Sometimes	4482	8.2	4831	8.8	46.631	0.000
Not at all	1620	2.9	1933	3.5	46.631	0.000
Hand washing using soap before eating at home						
Always	21,931	39.9	20,789	37.9	156.279	0.000
Often	16,903	30.8	16,370	29.8	156.279	0.000
Sometimes	12,400	22.6	13,061	23.8	156.279	0.000
Not at all	3714	6.8	4628	8.4	156.279	0.000
Hand washing using soap after using the toilet at home						
Always	37,551	68.3	37,118	67.7	43.082	0.000
Often	11,024	20.1	10,752	19.6	43.082	0.000
Sometimes	4891	8.9	5192	9.5	43.082	0.000
Not at all	1482	2.7	1786	3.3	43.082	0.000
Returning home and hand washing using soap						
Always	39,115	71.2	38,993	71.1	44.276	0.000
Often	9694	17.6	9260	16.9	44.276	0.000
Sometimes	4842	8.8	4994	9.1	44.276	0.000
Not at all	1297	2.4	1601	2.9	44.276	0.000

Sample (N), percentage (%), chi-square test (X²), in the past week (*), p-value < 0.05.

3.5. Changes in Daily Life Due to the COVID-19 Outbreak

The results in changes in daily life due to the COVID-19 outbreak can be seen in Table 5. Physical activity decreased compared to that before the COVID-19 outbreak (47.4%), not eating breakfast (72.6%), drinking (81.8%) and smoking (83.6%) remained unchanged, whereas depression (36.0%) increased.

Table 5. Changes in daily life due to the COVID-19 outbreak.

Variable	Sample N	Percentage
Physical activity		
Large increase	3442	6.3
Increase	7652	14.0
No change	17,740	32.4
Decrease	17,722	32.3
Large decrease	8279	15.1
Not eating breakfast		
Large increase	2354	4.3
Increase	5558	10.1
No change	39,791	72.6
Decrease	4133	7.5
Large decrease	2999	5.5
4. Discussion

The results of comparing the first year (2020) and the second year (2021) of the COVID-19 outbreak among adolescents are as follows. Between the first and second years of the outbreak, obesity increased by 1.2%, the number of adolescents making no weight control efforts increased by 1.3%, and efforts to lose weight decreased by 1.2%. Weekday smartphone usage time also increased by 0.5%. Subjective health conditions deteriorated in the second year compared to that in the first year of the outbreak. Stress and general anxiety disorder (GAD) were 0.10 and 0.22% higher in the second year when compared to that in the first year, respectively. “Experience of sadness and despair of the past year” increased by 1.6% from the first year, “suicide thoughts” by 1.8%, “suicide plans” by 0.4%, and “suicide attempt” by 0.3%.

Handwashing before eating at school decreased by 3.7%, handwashing after using the bathroom at school by 0.5%, handwashing before eating at home by 1.8%, handwashing after using the bathroom at home by 0.5%, and handwashing after returning home by 0.5%. Compared to before the outbreak, physical activity decreased by 79.8%. A total of 72.6% participants said they did not eat breakfast. Depression increased by 36.0%. Jung et al. [6] found that adolescents’ stress levels decreased slightly to 0.11 on average in 2020, and that the proportion of experiences of sadness/despair and suicidal thoughts experienced by adolescents decreased compared to that in 2019 [20]. However, in this study, adolescents in 2021 showed a 0.10 stress level, and experiences of sadness/desperation and suicidal thoughts increased. In addition, it was found that adolescents from poor families had a higher experience of sadness/despair than those from non-poor families, and that they had higher sadness/despair in 2021, the second year of the outbreak, than in 2020, the first year of the outbreak [20,24].

Kang et al. reported that obesity increased before the pandemic, and this result also showed that obesity was higher in 2021 than in 2020 [25]. Kang et al. reported that the frequency of eating breakfast, fast food intake, fruit intake, and carbonated drinks increased in the obese group before the COVID-19 outbreak [25], while the frequency of eating fruit, sweet drinks, and fast foods increased in 2021 when compared to that in 2020. It cannot be concluded that an increased frequency of intake has a negative effect on the body, such as obesity, and it is necessary to consider the amount and calories consumed. In the medical guidance, it was said that protecting ourselves from infection means washing our hands [26].

Table 5. Cont.

Variable	Sample N	Percentage %
Drinking		
Large increase	306	0.6
Increase	1212	2.2
No change	44,659	81.8
Decrease	808	1.5
Large decrease	7617	14.0
Smoking		
Large increase	254	0.5
Increase	273	0.5
No change	45,078	83.6
Decrease	466	0.9
Large decrease	7864	14.6
Depression		
Large increase	3758	6.9
Increase	15,972	29.1
No change	29,562	53.9
Decrease	1937	3.5
Large decrease	3606	6.6
and that personal hygiene is the best way to protect ourselves from infectious diseases. However, in this study, when comparing the first year to the second year, the personal hygiene of handwashing was not well-actioned. Of course, if a new infectious disease such as Middle-Eastern Respiratory Syndrome (MERS) appears, it may be useless [26], but handwashing in daily life is a very good way to defend oneself from germs and viruses. Kim et al. also stated that handwashing promotion activities had a significant effect on reducing the incidence of hospital infections [27], but that we should now practice handwashing in our daily life in order to defend against bacteria and viruses. Handwashing is the easiest form of personal hygiene to carry out in everyday life, but as an important preventive habit [27], daily handwashing habits should be made a part of daily life to prevent new infectious diseases such as COVID-19. This study also showed a tendency to decline in handwashing over time, supplementing education and promotion programs to ensure that a culture of proper hand hygiene practice is established.

Due to COVID-19, face-to-face classes such as schools, online remote classes, and outside activities have increased the time spent at home, and adolescents need to engage in regular physical activities, proper eating habits, and personal hygiene habits, but COVID-19 has had a negative impact on many of these areas [24,26]. Cho et al. found that the increase in online learning time after COVID-19 has led to an increase in smartphone use time and, as a result, the problem of smartphone overdependence [28], and in addition, for some groups of adolescents (such as multicultural family youth, and other family youth), the COVID-19 situation may reduce their experiences of sadness/despair, suicidal thoughts, and violence, while for others (such as adolescents from impoverished families and youth living in military areas), the COVID-19 situation may lead to higher experiences of sadness/despair or violence. Because the COVID-19 pandemic has increased the frequency of online classes and staying at home, it tends to cause obesity, adaptation disorders, depression, increased cognitive impulsivity, lack of behavioral control, and increased smartphone dependence [25], showing the same results as previous studies. As such, a new epidemic like COVID-19 has its own disease-causing impact, but because the links are intertwined in so many areas, new alternatives are needed to address the factors that pose a risk to adolescents while addressing the prevention of infectious diseases. The COVID-19 pandemic was an unprecedentedly difficult time for everyone around the world, but also caused difficulties for adolescents studying in school, academia, etc., and caused their daily life to be restricted, marked by confusion and difficulties. Society and the nation should aim to reduce the anxiety and discomfort caused by diseases such as COVID-19 to enable proper study.

5. Conclusions

The outbreak of COVID-19 increased the time that adolescents spent at home, and the frequency of breakfast, soda, sweet drinks, and water intake increased within their dietary habits. In addition, the frequency of muscle strengthening exercises and middle- and high-intensity physical activities increased. On the other hand, handwashing habits showed a trend of decreasing overall at school and home. Overall, compared to before the COVID-19 outbreak, the amount of physical activity decreased, and depression showed an increasing trend.

As a result of this analysis, we believe there needs to be a system of support to address the academic gaps and deficiencies in learning caused by COVID-19. Psychological and emotional support needs to be strengthened at this time, as well as in the issues to be supported after the end of a non-contact situation. In addition to creating psychological and emotional support policies to help disadvantaged youth during the COVID-19 pandemic, we need to consider what form of psychological and emotional support policy will be introduced for disadvantaged youth after the COVID-19 non-contact situation.

Since this is a cross-sectional study, there is a limitation in clearly grasping temporal pre-post relationships. However, we think that the online youth health behavior survey
is meaningful because it is a representative survey of approximately 60,000 teenagers nationwide every year.

Author Contributions: Conceptualization, H.-J.S. and J.K.; data curation, E.-Y.K., H.-J.S. and J.K.; formal analysis, E.-Y.K. and J.K.; funding acquisition, J.K.; investigation, E.-Y.K., H.-J.S. and J.K.; methodology, C.O. and J.K.; project administration, J.K.; software, E.-Y.K. and J.K.; supervision, J.K.; validation, C.O. and J.K.; visualization, E.-Y.K. and J.K.; writing—original draft, E.-Y.K. and J.K.; writing—review and editing, C.O., H.-J.S. and J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by a Korea University Grant, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2022R1I1A1A01071220).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The study data were processed and used as raw data for the 16th (2020) and 17th (2021) editions of the “Youth Health Behavior Survey” conducted by the Ministry of Education, the Ministry of Health and Welfare, and the KDCA (Approval No. 117058).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Novel Corona Virus. nCoV Situation Report. 2019, Volume 1, p. 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4 (accessed on 5 July 2022).

2. Korea Disease Control and Prevention Agency. Coronavirus Infectious Disease-19 Information. Available online: http://ncov.mohw.go.kr/baroView.do?brdId=4&brdGubun=41 (accessed on 5 July 2022).

3. Korea Disease Control and Prevention Agency [Press Release]. Korea Disease Control and Prevention Agency, 2022. Available online: https://www.kdca.go.kr/board/board.es?mid=a20501000000&bid=0015&list_no=719275&act=view (accessed on 5 July 2022).

4. Lee, H.; Lee, H. COVID-19 stress: Is the level of COVID-19 stress same for everybody. *Korea Logist. Rev.* 2020, 30, 75–87. [CrossRef]

5. Ministry of Education Central Disaster Management Headquarters and Central Disease Control Headquarters. *Primary, Secondary, and Special Schools COVID-19 Infection Prevention Management Guide*, 6–1st ed.; Ministry of Education Central Disaster Management Headquarters and Central Disease Control Headquarters: Sejong, Korea, 2021; pp. 3–5.

6. Jung, I.J. Overseas Responses to Child Care Issues Caused by COVID-19 and Its Implications. *Int. Soc. Sec. Rev.* 2020, 13, 47–59.

7. Kim, T.W. Impact of COVID-19 and Social Policy Countermeasures. *Health Welf. Issue Focus* 2020, 385, 1–8.

8. Kim, J.W.; Myung, S.J.; Yoon, H.B.; Moon, S.H.; Ryu, H.; Yim, J.-J. How medical education survives and evolves during COVID-19: Our experience and future direction. *PLoS ONE* 2020, 15, e0243958. [CrossRef] [PubMed]

9. Honarvar, B.; Lankarani, K.B.; Kharmandar, A.; Shaygani, F.; Zahedroozgar, M.; Haghhighi, M.R.R.; Ghahramani, S.; Honarvar, H.; Daryabadi, M.M.; Salavati, Z.; et al. Knowledge, attitudes, risk perceptions, and practices of adults toward COVID-19: A population and field-based study from Iran. *Int. J. Public Health* 2020, 65, 731–739. [CrossRef] [PubMed]

10. Rosenstock, I.M. Historical Origins of the Health Belief Model. *Health Educ. Monogr.* 1974, 2, 328–335. [CrossRef]

11. Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk Perceptions of COVID-19 Around the World. *J. Risk Res.* 2020, 23, 994–1006. [CrossRef]

12. Gerhold, L. COVID-19: Risk Perception and Coping Strategies. Results Form a Survey in Germany. Interdisciplinary Security Research Group Institute of Computer Science Freie University Berlin. 2020, pp. 1–11. Available online: https://psyarxiv.com/xmpk4 (accessed on 7 July 2022).

13. Narayana, A.; Bhat, S.A.; Fathima, A.; Lokesh, S.V.; Surya, S.G.; Yelamagadd, C.V. Green and Low-Cost Synthesis of Zinc Oxide Nanoparticles and Their Application in Transistor-Based Carbon Monoxide Sensing. *RSC Adv.* 2020, 10, 13532–13542. [CrossRef] [PubMed]

14. Qiu, Y.; Xu, Y.P.; Wang, M.; Miao, M.; Zhou, H.; Xu, J.; Kong, J.; Zheng, D.; Li, R.T.; Zhang, R.R.; et al. Flavivirus Induces and Antagonizes Antiviral RNA interference in Both Mammals and Mosquitoes. *Sci. Adv.* 2020, 6, eaax7989. [CrossRef] [PubMed]

15. Shinya, A.; Nitsu, T.; Kobori, O.; Idemoto, K.; Hashimoto, T.; Sasaki, T.; Igarashi, Y.; Shimizu, E.; Nakazato, M.; Hashimoto, K.; et al. Relationship Between Perception and Anxiety About COVID-19 Infection and Risk Behaviors for Spreading Infection: A National Survey in Japan. *Brain Behav. Immun.-Health* 2020, 6, 10101. [CrossRef]
16. Lee, M.J.; You, M.S. Psychological and Behavioral Responses in South Korea During the Early Stages of Coronavirus Disease 2019 (COVID-19). *Int. J. Environ. Res. Public Health* **2020**, *17*, 2977. [CrossRef] [PubMed]

17. Sewell, K.H.; Gaines, S.K. A Developmental Approach to Childhood Safety Education. *Pediatr. Nurs.* **1993**, *19*, 464–466. [PubMed]

18. Kim, S.S.; Jo, S.Y.; Lee, J.H. What to Do to Protect Children’s Rights in the Post-corona Era Is It? *Child Rights* **2020**, *24*, 409–438. [CrossRef]

19. Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; et al. A Longitudinal Study on the Mental Health of General Population During the COVID-19 Epidemic in China. *Brain Behav. Immun.* **2020**, *87*, 40–48. [CrossRef] [PubMed]

20. Chung, I.J.; Lee, S.J.; Kang, H.H. Changes in Children’s Everyday Life and Emotional Conditions due to the COVID-19 Pandemic. *jkscw* **2020**, *69*, 59–90. [CrossRef]

21. Lee, G.Y.; Um, Y.J. Factors Affecting Obesity in Urban and Rural Adolescents: Demographic, Socioeconomic Characteristics, Health Behavior and Health Education. *Int. J. Environ. Res. Public Health* **2021**, *18*, 2405. [CrossRef] [PubMed]

22. Kim, Y.; Lee, H.; Lee, M.; Lee, H.; Kim, S.; Konlan, K.D. The Sequential Mediating Effects of Dietary Behavior and Perceived Stress on the Relationship between Subjective Socioeconomic Status and Multicultural Adolescent Health. *Int. J. Environ. Res. Public Health* **2021**, *18*, 3604. [CrossRef] [PubMed]

23. Chae, M.; Han, K. Differences in Health Behavior Profiles of Adolescents in Urban and Rural Areas in a Korean City. *Healthcare* **2021**, *9*, 282. [CrossRef] [PubMed]

24. Nam, D.J. In COVID-19 Situation, Middle School Student’s Dependence on Smartphones and A Study on the Relationship Between Health-Related Factors and Physical Activity. Master’s Thesis, The Graduate School of Education Chung-Ang University, Seoul, Korea, 2021. Available online: http://www.riss.kr/link?id=T15925309&outLink=K (accessed on 11 July 2022).

25. Kang, H.Y. Analysis of Factors Related to Obesity in Adolescents before and after the COVID-19 Pandemic. Master’s Thesis, Department of Public Health Graduate School of Public Health and Welfare Jeju National University, Jeju, Korea, 2021.

26. Park, G.S. ‘Washing hands’ to Protect Me from Infection. *Broadcast Rep.* **2015**, *25*, 80–81.

27. Kim, H.S. The effect of handwashing promotion activities on improving the performance rate of hand hygiene by medical personnel and reducing the incidence of hospital infections. In *Korean Association of Clinical Pathologists Green Book of the 53rd General Academic Conference*; Korean Association of Clinical Pathologists: Seoul, Korea, 2015; p. 91, UCI I. ECN-0102-2017-510-000482959.

28. Choi, J.; Park, Y.; Kim, H.E.; Song, J.; Lee, D.; Lee, E.; Kang, H.; Lee, J.; Park, J.; Lee, J.W.; et al. Daily Life Changes and Life Satisfaction among Korean School-Aged Children in the COVID-19 Pandemic. *Int. J. Environ. Res. Public Health* **2021**, *18*, 3324. [CrossRef] [PubMed]