Percolation in a kinetic opinion exchange model

Anjan Kumar Chandra

Theoretical Condensed Matter Physics Division,
Saha Institute of Nuclear Physics,
1/AF Bidhannagar, Kolkata-700064, India.

We study the percolation transition of the geometrical clusters in the square lattice LCCC model (a kinetic opinion exchange model introduced by Lallouache et al. in Phys. Rev. E 82 056112 (2010)) with the change in conviction and influencing parameter. The cluster comprises of the adjacent sites having an opinion value greater than or equal to a prefixed threshold value of opinion (Ω). The transition point is different from that obtained for the transition of the order parameter (average opinion value) found by Lallouache et al. Although the transition point varies with the change in the threshold value of the opinion, the critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size, cluster size distribution and Binder cumulant remain same. The exponents are also independent of the values of conviction and influencing parameters indicating the robustness of this transition. The exponents do not match with that of any other known percolation exponents (e.g. the static Ising, dynamic Ising, standard percolation) and thus characterizes the LCCC model to belong to a separate universality class.

PACS numbers: 64.60.ah, 05.50.+q, 05.70.Fh

I. INTRODUCTION

Geometrical percolation transition has been a long studied subject [1, 2]. It is characterised by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents only depend on the type of percolation model and on the spatial dimension. The occupancy of the sites or bonds of a percolating system is controlled by a parameter and at a critical value of that parameter the cluster sizes (defined by the number of adjacent sites possessing a pre-defined common feature) goes to infinity which we call percolation transition. This phenomenon has been extensively studied for the thermal excitation of the two dimensional Ising model and in this case the system undergoes percolation transition at the same critical temperature as the magnetization [3, 4]. In case of Ising model, the geometrical cluster is defined by the adjacent sites consisting of parallel spins. The transition point differs in case of higher dimensions [5, 6]. The percolation exponents of the geometrical clusters are identical for the models belonging to the same universality class (Ising and Z(3) symmetric models [10, 11]). Recently the dynamical percolation transition has been studied for 2d Ising model by applying pulsed magnetic field [12]. The critical exponents were different from that of the static percolation transition associated with the thermal transition of the Ising model indicating a different universality class. The distinct crossing point of the Binder cumulant of the order parameter for different system sizes at the transition point also characterizes the being of the dynamical percolation transition in a different universality class.

Study of social dynamics has been very popular in recent times and to capture the basic idea of consensus formation concepts of statistical physics has been applied largely [13, 14]. A large number of models has been studied (voter model [15, 16], Sznajd model [17] etc) so far. In some models opinions have been considered as a continuous variable [18–23]. The spreading of an opinion through the society may be compared with the percolation problem in physics and has been studied for non-consensus opinion model earlier [24] and was found to belong to the same universality class as the invasion percolation. In this paper we have studied the percolation transition of geometrical clusters in a recently proposed opinion model called the LCCC model [22, 25] in which individuals exchange opinions controlled by an influencing parameter and a conviction parameter, the values of which are equal. The opinion of an individual is taken uniformly between −1 and +1 which changes by binary interactions, where an individual stays with his own opinion up to a certain fraction (detailed discussion has been given in the next section). By Monte Carlo simulation it was found that below a critical value (λc ≈ 2/3) of the conviction parameter the average opinion value remains zero, whereas above the critical value the average opinion value becomes non-zero. Some critical exponents characterising the transition in LCCC model and some variants of the LCCC model were studied numerically [26]. A generalised version of this model was introduced by Sen [27] in which the influencing parameter and the conviction parameter were different. A discrete version of the LCCC model has also been studied [28].

In this paper we have investigated the percolation transition of the geometrical clusters of the LCCC model assuming individuals are located on the sites of a square lattice. We have defined clusters as a group of adja-
cent sites with opinion value equal to or above a preasigned threshold value (Ω). The cluster sizes are controlled by the influencing parameter λ and for a fixed Ω, at a critical value of the influencing parameter $\lambda\tilde{\epsilon}$, the percolation transition occurs. We determine the critical exponents by finite size scaling analysis of the maximum cluster size. The value of the critical point decreases with decrease of Ω and coincides with that for the transition point of $\lambda_c = 2/3$ (at which the average opinion diverges) as $\Omega \rightarrow 0.0$. But the critical exponents remain unaltered with change in Ω and also differ with the exponents known for the previously known models indicating the square lattice LCCC to belong to a separate universality class. We have also investigated this percolation transition in case of generalised LCCC model [27], where the conviction parameter (λ) is different from the influencing parameter (μ) and once again found that although the critical point shifts depending on the values of Ω, λ and μ, the critical exponents remain same.

The paper has been organised in the following manner: In Sec II we give a brief description of both the LCCC model and the generalised LCCC model. In Sec III we present the description of clusters and measure the critical exponents for the square lattice LCCC model. In Section IV we measure the exponents for the generalised LCCC model and finally in Sec V we have some discussions regarding this transition and some conclusions.

II. A BRIEF DESCRIPTION OF THE LCCC AND GENERALISED LCCC MODEL

The origin of this model is a multi-agent statistical model of closed economy [29] where N agents exchange a fixed wealth through pair-wise interaction controlled by a “saving” parameter. Lallouache et al. [22, 25] proposed a similar multiagent model to describe the dynamics of opinion formation. The basic difference in this model is that there is no constraint regarding the conservation of opinion. Let there are N agents and each agent i begins with an individual opinion $o_i \in [-1, +1]$. They exchange opinions between each other by binary interactions as follows:

$$o_i(t + 1) = \lambda o_i(t) + \epsilon\tilde{o}_j(t)$$

$$o_j(t + 1) = \lambda o_j(t) + \epsilon'\tilde{o}_i(t)$$

where ϵ, ϵ' are drawn randomly from uniform distributions in $[0,1]$. In this model the opinions are bounded i.e., $-1 \leq o_i \leq +1$ for all i. Here the parameter λ is interpreted as “conviction” i.e., the power to retain someone’s own opinion. The second term signifies the extent to which somebody get influenced by another. Here both the conviction parameter and the influencing parameters are same and moreover they are identical for every individual. The opinion exchange for the generalised LCCC model was as follows [27]:

$$o_i(t + 1) = \lambda o_i(t) + \epsilon\mu o_j(t)$$

$$o_j(t + 1) = \lambda o_j(t) + \epsilon'\mu o_i(t)$$

where λ is the conviction parameter and μ is the influencing parameter with $o_i \in [-1, +1]$. The special case of $\lambda = \mu$ is the LCCC model. The order parameter is the average opinion $O = \frac{1}{N}\sum_i o_i$ of the system. Numerical simulations show that the system stabilises into two possible phases: for any $\lambda \leq \lambda_c$, $o_i = 0 \forall i$, while for $\lambda > \lambda_c$, $O > 0$ and $O \rightarrow 1$ as $\lambda \rightarrow 1$. In LCCC model $\lambda_c \approx 2/3$ is the critical point. In case of the generalised model λ_c, depends on the value of μ and the mean field phase boundary is given by $\lambda = 1 - \mu/2$. If we study these models on a square lattice, then also the critical points do not change. Some critical exponents characterising the transition in LCCC model and some variants of the LCCC model were also studied numerically [26].

III. PERCOLATION ON SQUARE LATTICE LCCC MODEL

In this section we will discuss about the percolation behaviour of the geometrical clusters formed on a square lattice LCCC model. Here we assume that the agents are placed on the sites of a square lattice and follow the LCCC dynamics. We define a geometrical cluster as consisting of the adjacent sites having opinion value more than or equal to a prefixed threshold opinion value (Ω). The critical point increases with λ and at some λ_c^2 the

![Image](image.png)

FIG. 1: (Color online) Maximum cluster size as a function of the conviction parameter for four different system sizes ($L = 60, 80, 100$ and 200) for the LCCC model i.e. $\mu = \lambda$ and threshold opinion value $\Omega = 1.0$.
system undergoes a percolation transition (Fig. 1). The value of \(\lambda^c_p \) decreases with decrease in \(\Omega \), approaching the value \(\lambda_c \) as \(\Omega \rightarrow 0 \) (Figs. 2 and 3). Moreover it is also evident from Fig. 2 that the finite size effect diminishes with decrease in \(\Omega \).

The percolation transition is characterised by power-law variation of different quantities. The order parameter which means the relative size (\(P_{\text{max}} \)) of the largest cluster varies as

\[
P_{\text{max}} \sim (\lambda^c_p - \lambda)^\beta.
\]

and the correlation length diverges near the percolation transition point as

\[
\xi \sim (\lambda^c_p - \lambda)^{-\nu},
\]

where, \(\lambda^c_p \) is the critical conviction parameter. The values of the critical exponents \(\beta \) and \(\nu \) specify the universality class of the transition.

However, the exponents are not determined from these definitions due to finite size effects. The critical exponents are determined from the finite size scaling relations \([12, 30]\). For example, the order parameter is expected to follow the scaling form

\[
P_{\text{max}} = L^{-\beta/\nu} F \left[L^{1/\nu} (\lambda^c_p - \lambda) \right],
\]

where \(F \) is a suitable scaling function. If we plot \(P_{\text{max}} L^{\beta/\nu} \) against \(\lambda \) for different system sizes but fixed \(\Omega \), then by tuning \(\beta/\nu \), all the curves can be made to cross at a single point. The value of \(\lambda \) for which this happens is the critical conviction parameter (\(\lambda^c_p \)). To estimate \(\nu \), \(P_{\text{max}} L^{\beta/\nu} \) is to be plotted against \((\lambda^c_p - \lambda)L^{1/\nu} \) and by tuning \(1/\nu \), the curves are made to collapse, giving an accurate estimate of the exponent \(\nu \). The other exponents can be obtained from scaling relations \([1]\).

For \(\Omega = 1.0 \), we plot \(P_{\text{max}} L^{\beta/\nu} \) against \(\lambda \) (Fig. 4). The curves for different system sizes (\(L = 60, 100, 200, 400, 500 \) and 700) cross at \(\lambda^c_p = 0.760 \pm 0.001 \) for \(\beta/\nu = 0.130 \pm 0.005 \). In the inset the data collapse for \(P_{\text{max}} \) with \((\lambda^c_p - \lambda) \) has been shown for \(\Omega = 1.0 \) giving \(1/\nu = 0.80 \pm 0.01 \) and \(\beta/\nu = 0.130 \pm 0.005 \).

For \(\Omega = 0.80 \), we plot \(P_{\text{max}} L^{\beta/\nu} \) against \(\lambda \) (Fig. 5). The curves for different system sizes (\(L = 60, 100, 200, 400, 500 \) and 700) cross at a point when \(\beta/\nu = 0.130 \pm 0.005 \) and the crossing point \((\lambda^c_p = 0.760 \pm 0.001) \) gives the critical conviction parameter. Now to determine \(\nu \), we plot \(P_{\text{max}} L^{\beta/\nu} \) against \((\lambda^c_p - \lambda)L^{1/\nu} \) and by tuning the value of \(1/\nu \) all the three plots are made to collapse on a single curve (inset of Fig. 4) giving an estimate of \(1/\nu = 0.80 \pm 0.01 \). Although with decrease of \(\Omega \), the critical point for percolation approaches \(\lambda_c \), the exponents remain same. We have shown the same plots for \(\Omega = 0.80 \) in Fig. 5. The corresponding critical point is \(\lambda^c_p = 0.6955 \pm 0.0005 \), but \(\beta/\nu = 0.130 \pm 0.005 \) and \(1/\nu = 0.80 \pm 0.01 \). The values of \(\beta/\nu \) and \(1/\nu \) are different from that obtained for the percolation transition in case of static Ising \((\beta_s/\nu_s = 0.052 \pm 0.002, 1/\nu_s = 0.996 \pm 0.009) \) \([10]\), dynamic Ising \((\beta_d/\nu_d = \)

FIG. 2: (Color online) Comparative plots for the largest cluster size with conviction parameter for three different system sizes and at three various values of the opinion threshold (\(\Omega = 1.0, 0.80 \) and 0.60).

FIG. 3: (Color online) Plot of the critical conviction parameter (\(\lambda^c_p \)) with the threshold opinion value (\(\Omega \)).

FIG. 4: (Color online) \(P_{\text{max}} L^{\beta/\nu} \) plotted against the conviction parameter \(\lambda \) for \(\Omega = 1.0 \) and \(\mu = \lambda \). The curves for different system sizes (\(L = 60, 100, 200, 400, 500 \) and 700) cross at \(\lambda^c_p = 0.760 \pm 0.001 \) for \(\beta/\nu = 0.130 \pm 0.005 \). In the inset the data collapse for \(P_{\text{max}} \) with \((\lambda^c_p - \lambda) \) has been shown for \(\Omega = 1.0 \) giving \(1/\nu = 0.80 \pm 0.01 \) and \(\beta/\nu = 0.130 \pm 0.005 \).

**FIG. 5: (Color online) \(P_{\text{max}} L^{\beta/\nu} \) plotted against the conviction parameter \(\lambda \) for \(\Omega = 0.80 \) and \(\mu = \lambda \). The curves for different system sizes (\(L = 60, 100, 200, 400, 500 \) and 700) cross at a point when \(\beta/\nu = 0.130 \pm 0.005 \) and the crossing point \((\lambda^c_p = 0.760 \pm 0.001) \) gives the critical conviction parameter. Now to determine \(\nu \), we plot \(P_{\text{max}} L^{\beta/\nu} \) against \((\lambda^c_p - \lambda)L^{1/\nu} \) and by tuning the value of \(1/\nu \) all the three plots are made to collapse on a single curve (inset of Fig. 4) giving an estimate of \(1/\nu = 0.80 \pm 0.01 \). Although with decrease of \(\Omega \), the critical point for percolation approaches \(\lambda_c \), the exponents remain same. We have shown the same plots for \(\Omega = 0.80 \) in Fig. 5. The corresponding critical point is \(\lambda^c_p = 0.6955 \pm 0.0005 \), but \(\beta/\nu = 0.130 \pm 0.005 \) and \(1/\nu = 0.80 \pm 0.01 \). The values of \(\beta/\nu \) and \(1/\nu \) are different from that obtained for the percolation transition in case of static Ising \((\beta_s/\nu_s = 0.052 \pm 0.002, 1/\nu_s = 0.996 \pm 0.009) \) \([10]\), dynamic Ising \((\beta_d/\nu_d = \)
with point (i.e. λ) for other values of Ω (at corresponding critical values of L)
for different system sizes ($L = 60, 100, 200, 400, 500$ and 700) cross at $\lambda_c^p = 0.6955 \pm 0.0005$ for $\beta/\nu = 0.130 \pm 0.005$. In the inset the data collapse for P_{max} with $\lambda_c^p - \lambda$ has been shown for $\Omega = 0.80$ giving $1/\nu = 0.80 \pm 0.01$ and $\beta/\nu = 0.130 \pm 0.005$.

FIG. 5: (Color online) $P_{max} L^{\beta/\nu}$ plotted against the conviction parameter λ where $\Omega = 0.80$ and $\mu = \lambda$. The curves for different system sizes ($L = 60, 100, 200, 400, 500$ and 700) cross at $\lambda_c^p = 0.6955 \pm 0.0005$ for $\beta/\nu = 0.130 \pm 0.005$. In the inset the data collapse for P_{max} with $\lambda_c^p - \lambda$ has been shown for $\Omega = 0.80$ giving $1/\nu = 0.80 \pm 0.01$ and $\beta/\nu = 0.130 \pm 0.005$.

0.20 ± 0.05, $1/\nu_d = 0.85 \pm 0.05$) and standard percolation ($\beta/\nu = 5/48, 1/\nu = 3/4$) for two dimensional system.

We have also studied the cluster size distribution for a fixed value of Ω and for three different system sizes ($L = 200, 400$ and 500). For $\Omega = 1.0$, at the critical point (i.e. $\lambda = 0.760$) all the curves decay algebraically as $P(S) \sim S^{-\tau}$ (where S denotes the sizes of the cluster) with $\tau = 1.82 \pm 0.01$ (Fig. 6). The value of τ remains same for other values of Ω (at corresponding critical values of λ).

For further verification of the critical point and the universality class, we have studied the reduced fourth-order Binder cumulant of the order parameter, defined as

$$U = 1 - \frac{\langle P_{max}^4 \rangle}{3\langle P_{max}^2 \rangle^2},$$

where P_{max} is the percolation order parameter (as defined before) and the angular brackets denote ensemble average. $U \to \frac{4}{3}$ deep inside the ordered phase and $U \to 0$ in the disordered phase when the fluctuation is Gaussian. The crossing point of the different curves ($U - \lambda$) for different system sizes gives the critical point ($\lambda_c^p = 0.760 \pm 0.001$) for $\Omega = 1.0$, which is in good agreement with the previous estimation from finite size scaling.

FIG. 6: (Color online) The cluster size distribution for LCCC model for three different system sizes at $\Omega = 1.0$ and corresponding critical conviction parameter $\lambda_c^p = 0.760$. All the curves decay algebraically with an exponent 1.82 ± 0.01.

FIG. 7: (Color online) Fourth-order reduced Binder cumulant of percolation order parameter (P_{max}) for six different system sizes ($L = 60, 100, 200, 400, 500$ and 700) at $\Omega = 1.0$ and $\mu = \lambda$; the crossing point determines the critical point ($\lambda_c^p = 0.760 \pm 0.001$). The critical Binder cumulant value is $U^* = 0.62 \pm 0.01$. Inset shows the data collapse for the same value of $1/\nu$ as obtained for the data collapse of P_{max}.

FIG. 8: (Color online) Fourth-order reduced Binder cumulant of percolation order parameter (P_{max}) for different system sizes ($L = 60, 100, 200, 400, 500$ and 700) at $\Omega = 0.80$ and $\mu = \lambda$; the crossing point determines the critical point ($\lambda_c^p = 0.6955 \pm 0.0005$). The critical Binder cumulant value is $U^* = 0.62 \pm 0.01$. Inset shows the data collapse for the same value of $1/\nu$ as obtained for the data collapse of P_{max}.
of the corresponding Ω (Fig. 7). The value of U at the critical point for any value of Ω is $U^* = 0.624 \pm 0.002$ (see Fig. 7). The Binder cumulant also follows the scaling form

$$U = U(L^\beta - \lambda)^{1/\nu},$$

where U is a suitable scaling function. The data collapse for $\Omega = 1.0$ has been shown in the inset of Fig. 9 and the value of $1/\nu$ is 0.80 ± 0.01 which is in good agreement with the value of $1/\nu$ obtained from the finite size scaling of the largest cluster size. The same plot has been shown in Fig. 8 for $\Omega = 0.80$, which also gives the same value of $1/\nu$, which indicates that the critical exponents are independent of Ω.

IV. PERCOLATION IN GENERALISED LCCC MODEL

We have also investigated the percolation transition in case of generalised LCCC model in which the conviction parameter (λ) and the influencing parameter (μ) are different. We have studied the percolation transition for two sets of parameters: $\Omega = 1.0, \mu = 0.50$ and $\Omega = 1.0, \mu = 1.0$. In both of the cases the plots of $P_{\text{max}} L^{\beta/\nu}$ with λ for different system sizes ($L = 60, 100, 200, 400, 500$ and 700) cross at a single point for $\beta/\nu = 0.130 \pm 0.005$ (Figs. 9 and 10) which is same as obtained for the LCCC model. The critical points are different ($\lambda^C_p = 0.842 \pm 0.001$ for $\mu = 0.50$ and $\lambda^C_p = 0.687 \pm 0.001$ for $\mu = 1.0$). The value of $1/\nu$ is obtained from the finite size scaling of the largest cluster size (inset of Fig. 9 and 10) and the estimated values of $\beta/\nu = 0.130 \pm 0.005$ and $1/\nu = 0.80 \pm 0.01$ are the same as that obtained for the LCCC model and are independent of the value of μ, which is in contrary with the results obtained for the transition of the average opinion value, where the critical exponents change with μ. This implies that the percolation transition is much more robust than the average opinion transition. The plots for the Binder cumulant also satisfy the crossing point and the critical exponents as obtained previously (Figs. 11 and 12). The cluster size distribution also decays algebraically with an exponent 1.82 ± 0.01 for $\mu = 0.50$ which is the same as that obtained for the LCCC model.
V. DISCUSSION

We have investigated the geometrical percolation transition of square lattice LCCC model and have found the critical points and the critical exponents ($\beta/\nu = 0.130 \pm 0.005$, $1/\nu = 0.80 \pm 0.01$, $\tau = 1.82 \pm 0.01$) characterising the transition. Although the system does not show any finite size effect in case of the transition of the average opinion, the percolation transition shows prominent finite size effect for a given threshold opinion value (Ω). The finite-size effect diminishes gradually as we decrease the value of Ω. The transition point also decreases with Ω but the change is continuous. The critical exponents are independent of the value of the threshold opinion value as well as the value of the conviction and influencing parameter which shows the robustness of this percolation transition in this system. The critical exponents are significantly different from those obtained in case of static and dynamic Ising system and standard percolation. These exponents suggest that this LCCC model belongs to a separate universality class from the viewpoint of percolation transition.

Acknowledgments

The author acknowledges many fruitful discussions and suggestions of Prof. Bikas K. Chakrabarti, Mr. Soumyajyoti Biswas and Dr. Arnab Chatterjee. The author acknowledges the financial support from DST (India) under the SERC Fast Track Scheme for Young Scientists Sanc. No. SR/FTP/PS-090/2010(G). The computational facilities of CAMCS of SINP were also used in producing the numerical results.

[1] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994).
[2] G. Grimmett, Percolation (Springer-Verlag, Berlin, 1999).
[3] H. Müller-Krumbhaar, Phys. Lett. A 48, 459 (1974)
[4] E. Stoll, K. Binder and T. Schneider, Phys. Rev. B 6, 2777 (1972).
[5] H. Müller-Krumbhaar and E. P. Stoll, J. Chem. Phys. 65, 4294 (1976).
[6] K. Binder and D. Stauffer, J. Stat. Phys. 6, 49 (1972).
[7] A. Coniglio, C. R. Nappi, F. Peruggi and L. Russo, Commun. Math. Phys. 51, 315 (1976).
[8] A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).
[9] D. W. Heermann and D. Stauffer, Z. Physik B 44, 339 (1981).
[10] S. Fortunato, Phys. Rev. B 66, 054107 (2002).
[11] S. Fortunato, Phys. Rev. B 67, 041402 (2003).
[12] S. Biswas, A. Kundu and A. K. Chandra, Phys. Rev. E 83, 021109 (2011).
[13] C. Castellano, S. Fortunato and V. Loreto, Rev. Mod. Phys. 81, 591 (2009).
[14] Econophysics and Sociophysics: Trends and Perspectives edited by B. K. Chakrabarti, A. Chakraborti and A. Chatterjee (Wiley-VCH, Berlin, 2006).
[15] R. A. Holley and T. M. Liggett, Ann. Probab. 3, 643 (1975).
[16] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer, Berlin, 1999); R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008).
[17] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000).
[18] R. Hegselmann and U. Krause, J. Artif. Soc. Soc. Simul. 5, 3(2002).
[19] G. Deffuant, D. Neau, D. Amblard and G. Weisbuch, Adv. Complex Syst. 3, 87 (2000).
[20] S. Fortunato, Int. J. Mod. Phys. C 16, 17 (2005).
[21] S. Biswas, A. Chatterjee and P. Sen, [arXiv:1102.0902v3]; to appear in Physica A.
[22] M. Lalouache, A. Chakraborti and B. K. Chakrabarti, Sci. Cult. 76 (9-10), 485 (2010).
[23] A. Chakraborti and B. K. Chakrabarti, in Econophysics of order-driven markets edited by F. Abergel, B. K. Chakrabarti, A. Chakraborti and M. Mitra (Springer-Verlag, Milan, 2011).
[24] J. Shao, S. Havlin and H. E. Stanley, Phys. Rev. Lett. 103, 018701 (2009).
[25] M. Lalouache, A. S. Chakrabarti, A. Chakraborti and B. K. Chakrabarti, Phys. Rev. E 82, 056112 (2010).
[26] S. Biswas, A. K. Chandra, A. Chatterjee and B. K. Chakrabarti, J. Phys. Conf. Ser. 297, 012004 (2011).
[27] P. Sen, Phys. Rev. E 83, 016108 (2011).
[28] S. Biswas, Phys. Rev. E 84, 056106 (2011).
[29] A. Chakraborti and B. K. Chakrabarti, Eur. Phys. J. B
17, 167 (2000); A. Chatterjee, B. K. Chakrabarti and S. S. Manna Physica A 335, 155 (2004); A. Chatterjee and B. K. Chakrabarti, Eur. Phys. J. B 60, 135 (2007)
[30] N. Tsakiris, M. Maragakis, K. Kosmidis, and P. Argyrakis, Phys. Rev. E 82, 041108 (2010)
[31] K. Binder and D. Heermann, *Monte Carlo Simulations in Statistical Physics* (Springer, Berlin, 1988).