Research Article

Optimal Homotopy Asymptotic Method-Least Square for Solving Nonlinear Fractional-Order Gradient-Based Dynamic System from an Optimization Problem

Oluwaseun Olumide Okundalaye, Wan Ainun Mior Othman, and Nallasamy Kumaresan

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Wan Ainun Mior Othman; wanainun@um.edu.my

Received 4 March 2020; Revised 6 June 2020; Accepted 10 June 2020; Published 26 July 2020

Academic Editor: Remi Léandre

Copyright © 2020 Oluwaseun Olumide Okundalaye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider an approximate analytical method of optimal homotopy asymptotic method-least square (OHAM-LS) to obtain a solution of nonlinear fractional-order gradient-based dynamic system (FOGBDS) generated from nonlinear programming (NLP) optimization problems. The problem is formulated in a class of nonlinear fractional differential equations, (FDEs) and the solutions of the equations, modelled with a conformable fractional derivative (CFD) of the steepest descent approach, are considered to find the minimizing point of the problem. The formulation extends the integer solution of optimization problems to an arbitrary-order solution. We exhibit that OHAM-LS enables us to determine the convergence domain of the series solution obtained by initiating convergence-control parameter C_j’s. Three illustrative examples were included to show the effectiveness and importance of the proposed techniques.

1. Introduction

Consider a nonlinear programming-constrained optimization problems (NLPCOPs) of the form

$$\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } g_k(x) \leq 0 \text{ and } h_k(x) = 0 \forall k \in I = \{1, 2 \ldots m\},$$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$, $h_k : \mathbb{R}^n \rightarrow \mathbb{R}$, and $g_k : \mathbb{R}^n \rightarrow \mathbb{R}$, k, are C^2 functions. Let $X_0 = \{x \in \mathbb{R}^n \mid h_k = 0, g_k \leq 0, i \in I\}$ be the feasible set of Equation (1), and we assume that X_0 is not empty. The general idea of obtaining an approximate analytical solution to Equation (1) is to transform to an unconstrained nonlinear programming problem by any suitable technique such as augmented Lagrange method, barrier method, and penalty method [1, 2]; it can then be solved by any unconstrained optimization numerical method like the steepest descent method, conjugate gradient method, and Newton method. In optimization, the penalty method is the most efficient method to transform a constrained optimization problem into an unconstrained optimization problem [3–5]. An efficient penalty function for equality and inequality problem Equation (1) is given below

$$P_{\text{penalty}}(h_k(x)) = \mu \frac{1}{\sigma} \sum_{i=1}^{p} (h_k(x))^\sigma,$$ \hspace{1cm} (2)

$$P_{\text{penalty}}(g_k(x)) = \mu \frac{1}{\sigma} \sum_{i=1}^{p} (\max \{0, g_k(x)\})^\sigma,$$ \hspace{1cm} (3)

where $\sigma = 2$. It can be seen that under some conditions, the solutions to Equation (1) are solutions of the unconstrained below [6],

[Reference to Hindawi Advances in Mathematical Physics, Volume 2020, Article ID 8049397, https://doi.org/10.1155/2020/8049397]
\[
\begin{aligned}
\min & \quad F(x, \mu) = f(x) + \mu \left(\frac{1}{\sigma} \sum_{k=1}^{p} (h_k(x))^\sigma + \sum_{i=1}^{p} \left(\max \{0, g_i(x)\} \right)^\sigma \right), \\
\text{subject to} & \quad x \in \Re^n,
\end{aligned}
\]
constant. Recently, Khalil et al. [34] have characterized a new fractional derivative operator, which is an extension of the usual conformable fractional derivative, to overcome these deficiencies. Besides these advantages, the conformable fractional derivative does not show the memory effect, which is inherent for the other classical fractional derivatives.

Definition 1. Let $f : [0, \infty) \rightarrow \mathbb{R}$ be a given function. The αth order CFD of f given by

$$T^\alpha (f)(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon x^{1-\alpha}) - f(x)}{\varepsilon}, \quad \forall x > 0 \text{ and } \alpha \in (0, 1]$$

This new definition preserves many properties of the classical derivatives refer to [34, 35]. Some features that we will adopt as are follows:

Theorem 2. Let $0 < \alpha \leq 1$ and (f, g) be α-differentiable at a point $x > 0$; if f is a differentiable function, then $(d^\alpha f)/(dx^\alpha) = x^{\alpha-\alpha} (df/dx)$.

Definition 3. $P^\alpha_n (f)(x) = P^\alpha_n (x^{\alpha-1}f) = \int_a^x ((f(t))/(t^{1-\alpha})) dt$, where the integral is the regular Riemann improper integral, and $\alpha \in (0, 1]$.

Theorem 4. Let f be any continuous function in the domain of P^α, then $T^\alpha P^\alpha_n (f)(x) = f(x)$ as $\varepsilon \to x > a$.

Theorem 5. Let $f : (a, b) \to \mathbb{R}$ be differentiable and $0 < \alpha \leq 1$. Then, for all $a < x < a$, we have $P^\alpha_n T^\alpha_n (f)(x) = f(x) - f(a)$.

2.2. The Elementary Concepts of OHAM-LS. We start from the fundamental principle of OHAM as described in [36–38]. Consider the IVPs

$$L_i(z_i(t)) + N_i(z_i(t)) + g_i(t) = 0 \quad t \in \varphi i = 1, 2, \ldots, m,$$

with initial conditions

$$z_i(b) = a_i,$$

where L_i is a linear operator, N_i is a nonlinear operator, t is an independent variable, $z_i(t)$ is an unknown function, φ is the problem domain, and $g_i(t)$ is a known function. According to OHAM, one can construct an homotopy map $H_i(\phi_i(t, p)) : \varphi \times [0, 1] \to \varphi$ which satisfies

$$\begin{align*}
(1 - p)[L_i(\phi_i(t, p)) + g_i(t)] \\
= H_i(p)[L_i(\phi_i(t, p)) + N_i(\phi_i(t, p)) + g_i(t)],
\end{align*}$$

where $p \in [0, 1]$ is an embedding parameter, $H_i(p)$ is a nonzero auxiliary function for $p \neq 0$, $H(0) = 0$, and $\phi_i(t, p)$ is an unknown function. Obviously, when $p = 0$ and $p = 1$, it holds that $\phi_i(t, 0) = z_i(t)$ and $\phi_i(t, 1) = z_i(t)$, respectively. Thus, as p varies from 0 to 1, the solution $\phi_i(t, p)$ approaches from $z_i(t)$ to $z_i(t)$ where $z_i(t)$ is the initial guess that satisfies the linear operator which is obtained from Equation (8) for $p = 0$ as

$$L_i(z_{i,0}(t)) + g_i(t) = 0, \quad z_{i,0}(b) = 0.$$ \hspace{1cm} (9)

$H_i(p)$ is chosen in the form

$$H_i(p) = pC_1 + p^2C_2 + p^3C_3 + \ldots \quad j = 1, 2, \ldots, n,$$

where C_j would be determined in the last part of this work. We consider Equation (8) in the form

$$\phi_i(t, p, C_j) = z_{i,0}(t) + \sum_{k=1}^{\infty} z_{i,k}(t, C_j)p^k \quad j = 1, 2, \ldots, n.$$ \hspace{1cm} (10)

Now substituting Equation (11) in Equation (8) and equating the coefficient of like power of p, we obtain the governing equation of $z_{i,0}(t)$ in a linear form, given in Equation (9). The first- and second-order problems are given by

$$L_i(z_{i,1}(t)) + g_i(t) = C_0N_i(z_{i,0}(t)), \quad z_{i,1}(b) = 0,$$ \hspace{1cm} (12)

$$L_i(z_{i,2}(t)) - L_i(z_{i,1}(t)) = C_2N_i(z_{i,0}(t)) + C_1[L_i(z_{i,1}(t)) + N_i(z_{i,1}(t))], \quad z_{i,2}(b) = 0,$$ \hspace{1cm} (13)

and the general governing equations for $z_{i,k}(t)$ are given by

$$L_i(z_{i,k}(t)) - L_i(z_{i,k-1}(t)) = \frac{k-1}{(k-1)!}\sum_{m=1}^{k-1} C_{j,m}[L_i(z_{i,k-m}(t)) + N_i(z_{i,k-m}(t))],$$

$$z_{i,k}(b) = 0, \quad k = 2, 3, \ldots,$$

where $N_{i,m}(z_{i,0}(t), z_{i,1}(t), \ldots, z_{i,m}(t))$ is the coefficient of p^m, obtained by expanding $N_i(\phi_i(t, p, C_j))$ in series with respect to the embedding parameter p

$$N_i(\phi_i(t, p, C_j)) = z_{i,0}(t) + \sum_{m=1}^{\infty} N_{i,m}(z_{i,0}(t))p^m,$$

where $\phi_i(t, p, C_j)$ is obtained from Equation (11). It should noted that $z_{i,k}$ for $k \geq 0$ is governed by the linear equations (9), (12), and (14) with linear initial conditions that come from the original problem, which can be easily solved.

It has been shown that the convergence of the series Equation (16) depends upon the C_j. If it is convergent at $p = 1$, we have

$$z_i(t, C_j) = z_{i,0}(t) + \sum_{k=1}^{\infty} z_{i,k}(t, C_j),$$

The result of the mth-order approximation is given as

$$\tilde{z}_i(t, C_j) = z_{i,0}(t) + \sum_{k=1}^{m} z_{i,k}(t, C_j),$$

Advances in Mathematical Physics
where the value C_j values of convergence-control parameters. Several methods [39, 40] can be used to apply such a case does not arise for nonlinear problems. Solution Equations (20) and (21).

The correctness of the method by was first proposed by Evirgen and Özdemir [24].

Using the penalty function Equation (2) and (3) for Equation (24) with $\rho = 2$, the conformable FOGBDS model can be constructed as

$$T^\alpha x(t) = -\nabla_x F(x, \mu),$$

subject to the initial conditions

$$x_k(0) = x_{k0}, \quad k = 1 \cdots m.$$

where $\nabla_x F(x, \mu)$ is the gradient vector of Equation (25) with respect to $x_k \in \mathbb{R}^n$ and T^α is the CFD of $0 < \alpha \leq 1$.

Note that a point x_\ast is called an equilibrium point of Equation (25) if it satisfies the RHS of Equation (25). We reformulate fractional dynamic system Equation (25) as

$$T^\alpha x_k(t) = g_k(t, \mu, x_1, x_2 \cdots x_n), \quad k = 1, 2 \cdots, m.$$

We used OHAM-LS to obtain the solution of system Equation (27) by constructing the following homotopy

$$T^\alpha x_k(t) = p g_k(t, \mu, x_1, x_2 \cdots x_n),$$

where $k = 1, 2, \ldots, n$ and $p \in [0, 1]$. If $p = 0$, Equation (28) becomes

$$T^\alpha x_k(t) = 0,$$

and when $p = 1$, the homotopy Equation (28) becomes

$$T^\alpha x_k(t) = g_k(t, \mu, x_1, x_2 \cdots x_n), \quad k = 1, 2 \cdots, m, t \in [0, 1], 0 < \alpha \leq 1,$$
subject to the initial conditions,
\[x_k(b) = a_k, \quad k = 1, 2, \ldots, m. \] (31)

The correction functional for the system of conformable fractional nonlinear differential equation Equation (30), according to OHAM-LS, can be constructed as
\[
(1 - p)[T^a(\phi_k(t, p))] = H_k(p)[T^a(\phi_k(t, q)) + N\phi_k(t, q) + g_k(t, \mu, \phi_1(t, q), \phi_2(t, q), \ldots)\phi_k(t, q)],
\] (32)

Thus as p varies from 0 to 1, the solution \(\phi_k(t, p) \) approaches from \(x_{k,0}(t) \) to \(x_k(t) \) where \(x_{k,0}(t) \) is the initial guess that satisfies the linear operator which is obtained from Equation (32) for \(p = 0 \) as
\[
T^a(x_{k,0}(t)) = 0, \quad x_{k,0}(b) = 0.
\] (33)

\(H_k(p) \) is chosen in the form
\[
H_k(p) = pC_1 + p^2C_2 + p^3C_3 \cdots,
\] (34)

where \(C_j \) can be determined later. We get an approximate solution by expanding \(\phi_k(t, p, C_j) \) in Taylor’s series with respect to \(p \); we have
\[
\phi_k(t, p, C_j) = x_{k,0}(t) + \sum_{i=1}^m x_{k,i}(t, C_j)p^i, \quad j = 1, 2, \ldots, n.
\] (35)

Now using Equation (35) in Equation (32) and equating the coefficient of like power of \(p \), we obtain the governing equation of \(x_{k,0}(t) \) in a linear form, given in Equation (33). The 1st- and 2nd-order problems are given by
\[
T^a(x_{k,1}(t)) + g_k(t) = C_1N_0(x_{k,0}(t)), \quad x_{k,1}(b) = 0,
\] (36)

and the general governing equations for \(x_{k,i}(t) \) are given by
\[
T^a(x_{k,i}(t)) - T^a(x_{k,i-1}(t)) = C_jN_{k,0}(x_{k,0}(t)) + \sum_{m=1}^{i-1} C_{j,m}[T^a(x_{k,i-m}(t)) + N_{k,i-m}(x_{k,i-m}(t))], \quad x_{k,i}(b) = 0, \quad i = 2, 3, \ldots, m.
\] (37)

It has been shown that the convergence of the series Equation (38) depends upon the \(C_j \). If it is convergent at \(p = 1 \), one has
\[
x_k(t, C_j) = x_{k,0}(t) + \sum_{i=1}^m x_{k,i}(t, C_j).
\] (39)

The solution of Equation (30) is determined approximately in the form,
\[
\tilde{x}_k(t, C_j) = x_{k,0}(t) + \sum_{i=1}^m x_{k,i}(t, C_j), \quad j = 1, 2, \ldots, n.
\] (40)

Substituting Equation (40) in Equation (30), we get the following expression for the residual error
\[
R_k(t, C_j) = T^a(\tilde{x}_k(t, C_j)) + N(\tilde{x}_k(t, C_j)) + g_k(\tilde{x}_k(t, C_j)).
\] (41)

If \(R_k(t, C_j) = 0 \), then \(\tilde{x}_k(t, C_j) \) is the exact solution. Usually, such a case does not arise for nonlinear problems. Using the least square method as below minimizes the functional
\[
J_k(C_1, C_2, C_3, \ldots C_m) = \int_a^b R_k^2(t, C_1, C_2, C_3, \ldots C_m)dt,
\] (42)

where the value of \(a \) and \(b \) depends on the given problem.
\[
\psi_k = \frac{\partial J_k(C_k)}{\partial C_k} = 0, \quad k = 1, 2, \ldots, m.
\] (43)

With these known \(C_k \), the analytical approximate solution (of \(m \)th-order) is well determined.

The steps for optimal homotopy asymptotic method-least square (OHAM-LS) are as follows:

Step 1. We transform the nonlinear constrained optimization problem to the unconstrained optimization problem by a penalty method.

Step 2. We find the gradient of the unconstrained optimization problem, with given initial conditions.

Step 3. We choose the linear and nonlinear operators for OHAM-LS.

Step 4. We construct homotopy for the conformable fractional nonlinear differential equation which includes embedding parameter, auxiliary function, and the unknown function.

Step 5. We substitute the series solution results into the governing equation and equate to zero for an exact solution. Usually, such case a does not arise in nonlinear problems.
Step 6. We find the optimal values for C_j by using the optimization method called least square method, for good analytical approximate solution.

3.1. Convergence Analysis of OHAM-LS with FOGBDS

Theorem 8. As long as the series $\tilde{x}_k(t, C_j) = x_{k,0}(t) + \sum_{i=1}^{m} x_{k,i}(t, C_j)$, $j = 1, 2, \ldots, n$ converges where $\tilde{x}_k(t, C_j)$ is governed by Equation (40) under the definitions Equations (37) and (38), it must be the solution of Equations (25) and (26).

Proof. If we assume $\sum_{m=1}^{\infty} \tilde{x}_{k,m}(t, C_j)$, $k = 1, 2 \ldots, n$, converges to $\tilde{x}_k(t, C_j)$, then

$$\lim_{m \to \infty} \tilde{x}_{k,m}(t, C_j) = 0 \forall k = 1, 2 \ldots n. \quad (44)$$

From Equation (37), we can write

$$\sum_{i=1}^{\infty} \left[C_i N_{k,0}(x_{k,0}(t)) + \sum_{m=1}^{i-1} C_{jm} T^a(x_{k,j-m}(t)) + N_{k,j-m}(x_{k,j-1}(t)) \right]$$

$$= \sum_{i=1}^{\infty} \left[T^a(x_{k,i}(t)) - T^a(x_{k,i-1}(t)) \right]$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} T^a(x_{k,i}(t)) - T^a(x_{k,i-1}(t))$$

$$= T^a x_{11}(t) + T^a x_{22}(t) - T^a x_{21}(t) + \ldots + \sum_{i=1}^{n} T^a x_{m_i}(t)$$

$$= T^a \lim_{n \to \infty} \sum_{m=1}^{n} x_{m}(t) = T^a \lim_{n \to \infty} x_{m}(t) = 0,$$

$$\sum_{i=1}^{\infty} \left[C_i N_{k,0}(x_{k,0}(t)) + \sum_{m=1}^{i-1} C_{jm} T^a(x_{k,j-m}(t)) \right] + N_{k,j-m}(x_{k,j-1}(t)) = 0. \quad (45)$$

So, using above gives

$$= \sum_{m=1}^{\infty} \left[T^a x_{k(m-1)} + N(x_{k(m-1)}) \right]$$

$$+ g_k \left(t, \mu, x_{1(m-1)}, x_{2(m-1)} \ldots x_{n(m-1)} \right), \quad (46)$$

$$= \sum_{m=1}^{\infty} T^a x_{k(m-1)} + \sum_{m=1}^{\infty} N(x_{k(m-1)})$$

$$+ \sum_{m=1}^{\infty} g_k \left(t, \mu, x_{k(m-1)} \right), \quad (47)$$

$$= T^a \tilde{x}_k(t, C_j) + N(\tilde{x}_k(t, C_j)) + g_k(\tilde{x}_k(t, C_j)). \quad (48)$$

From Equation (48), we have

$$T^a \tilde{x}_k(t, C_j) + N(\tilde{x}_k(t, C_j)) + g_k(\tilde{x}_k(t, C_j)) = 0 \forall k = 1, 2 \ldots m, \quad (49)$$

4. Numerical Examples and Results

In this section, three examples are presented to illustrate the efficiency of the new method for solving NLPCOP. The calculations are performed using maple software 2018, HP ENVY laptop 13 corei7 8th Gen 16GB.

Example 1. Consider the NLPCOP test problem from Schittkowski [54] (No. 216).

Minimize $$f(x) = 100(x_1^2 - x_2^2) + (x_1 - 1)^2,$$

subject to $$h(x) = x_1(x_1 - 4) - 2x_2 + 12 = 0,$$

whose exact solution is not known, but expected optimal solution is $x_1^* = 1.9993$, $x_2^* = 3.9998$. First, we transform the constraint problem to an unconstrained problem by quadratic penalty function for $\sigma = 2$; then, we have

$$f(x, \mu) = 100(x_1^2 - x_2^2) + (x_1 - 1)^2,$$

$$+ \frac{1}{\sigma}(x_1(x_1 - 4) - 2x_2 + 12)^2,$$

where $\mu \in \mathbb{R}^+$, and so that the nonlinear FOGBDS can be given as

$$T^a x_1(t) = -400(x_1^2 - 2x_2 - 2(x_1 - 1)$$

$$- \mu(2x_1 - 4)(x_1^2 - 4x_1 - 2x_2 + 12),$$

$$T^a x_2(t) = 200(x_1^2 - x_2) + 2\mu(x_1^2 - 4x_1 - 2x_2 + 12),$$

$$x_1(0) = 0, x_2(0) = 0,$$

where $0 < \alpha \leq 1$. By using OHAM-LS with auxiliary penalty variable $\mu = 200$, the terms of the OHAM-LS solutions for fractional order are acquired by using the concept of homotopy. According to Equation (6)), we choose the linear and nonlinear operators in the following forms:

$$L_1[\varphi_1(t, p)] = T^a \varphi_1(t, p),$$

$$L_2[\varphi_2(t, p)] = T^a \varphi_2(t, p),$$

$$N_1[\varphi_1(t, p)] = T^a \varphi_1(t, p) + 400(\varphi_1(t, p)^2 - \varphi_2(t, p))\varphi_1(t, p)$$

$$+ 2(\varphi_1(t, p)^2 - 1) + 200(2\varphi_1(t, p) - 4)\varphi_1(t, p)$$

$$+ (\varphi_1(t, p)^2 - 4\varphi_1(t, p) - 2\varphi_2(t, p) + 12),$$

$$N_2[\varphi_2(t, p)] = T^a \varphi_2(t, p) - 200(\varphi_1(t, p)^2 - \varphi_2(t, p))$$

$$- 400(\varphi_1(t, p)^2 - 4\varphi_1(t, p) - 2\varphi_2(t, p) + 12).$$

(53)
We can construct the following homotopy

\[
(1 - p)T^n \varphi_1(t, p) = H(p)\left[T^n \varphi_1(t, p) + 400(\varphi_0(t, p))^2 - \varphi_2(t, p)\varphi_1(t, p) + 2(\varphi_1(t, p) - 1) + 200(2\varphi_1(t, p) - 4)(\varphi_1(t, p)^2 - 4\varphi_1(t, p) - 2\varphi_2(t, p) + 12)\right],
\]

where

\[
\varphi_1(t, p) = x_{1,0}(t) + \sum_{j=1}^N x_{1,j}(t)p^j,
\]

\[
\varphi_2(t, p) = x_{2,0}(t) + \sum_{j=1}^N x_{2,j}(t)p^j,
\]

\[
H_k(p) = pC_1 + p^2C_2 + p^3 + C_3 + \cdots, \quad k = 1, 2 \cdots m.
\]

Substituting Equations (56)-(58) into Equations (54) and (55) and equating the coefficient of the same power of \(p \) result to the following set of linear FDEs.

\[
p^0 : T^n x_{1,0}(t) = 0,
\]

\[
p^0 : T^n x_{2,0}(t) = 0,
\]

\[
p^1 : T^n x_{1,1}(t) = 2000x_{1,0}^3C_1 + T^n x_{1,1}C_1 - 3600x_{2,0}x_{1,0}C_1 - 9600x_{2,0}^2C_1 - T^n x_{1,0} + 6400x_{2,0}C_1 + 3200x_{1,0}C_1 - 3840C_1 = 0,
\]

\[
p^1 : T^n x_{2,1}(t) = T^n x_{2,0}C_1 - 1800x_{2,0}C_1 - T^n x_{2,0}C_1 + 6400x_{1,0}C_1 + 3400x_{2,0}C_1 - 19200C_1 = 0,
\]

\[
p^2 : T^n x_{1,2}(t) = 2000x_{1,0}^2C_2 + 6000x_{1,0}^2x_{1,1}C_1 + T^n x_{1,1}C_2 + T^n x_{1,1}C_2 - 3600x_{2,0}x_{1,0}C_2 - 6000x_{2,0}^2C_2 - 9600x_{2,0}^2C_2 - 19200x_{1,0}x_{1,1}C_1 - 3600x_{1,0}x_{2,0}C_2 - T^n x_{1,0}C_2 + 6400x_{2,0}C_2 + 3200x_{1,0}C_2 + 3200x_{1,0}C_1 + 6400x_{2,1}C_1 - 3840C_2 = 0,
\]

\[
p^2 : T^n x_{2,2}(t) = T^n x_{2,0}C_2 + T^n x_{2,1}C_2 - 1800x_{2,0}^2C_2 - 3600x_{1,0}x_{1,1}C_2 - T^n x_{2,1}C_2 + 6400x_{1,0}C_2 + 6400x_{1,0}C_1 + 3400x_{2,0}C_2 + 3400x_{2,1}C_1 - 19200C_2 = 0.
\]

Applying the operator \(I^\alpha \) to both sides of Equations (59)-(64) with initial conditions given in Equation (5.6), we obtain

\[
x_{1,0}(t) = 0,
\]

\[
x_{2,0}(t) = 0,
\]

\[
x_{1,1}(t, C_1) = 384020t^{\frac{1}{10}}C_1,
\]

\[
x_{2,1}(t, C_1) = 192000t^{\frac{1}{10}}C_1,
\]

\[
x_{1,2}(t, C_1, C_2) = -6.759104020 \times 10^{-10}t^{\frac{11}{10}}C_1^2
\]

\[
- 384020t^{\frac{1}{10}} + 384020t^{\frac{11}{10}}C_1
\]

\[
+ 384020C_2t^{\frac{1}{10}},
\]

\[
x_{2,2}(t, C_1, C_2) = -1.555264000 \times 10^{-10}t^{\frac{11}{10}}C_1^2
\]

\[
- 192000t^{\frac{1}{10}}C_1^2 + 192000t^{\frac{11}{10}}C_1
\]

\[
+ 192000C_2t^{\frac{1}{10}}.
\]

Adding up the solution components Equations (65)-(70), the 2nd-order approximate solution obtained by OHAM-LS at \(\alpha = 0.9 \), for \(p = 1 \), are

\[
x_1(t, C_1, C_2) = (768040C_1 - 384020C_1^2 + 384020C_2)t^{\frac{1}{10}}
\]

\[
- 6.759104020 \times 10^{-10}t^{\frac{11}{10}}C_1,
\]

\[
x_2(t, C_1, C_2) = (384000C_1 - 192000C_1^2 + 192000C_2)t^{\frac{1}{10}}
\]

\[
- 1.555264000 \times 10^{-10}t^{\frac{11}{10}}C_1.
\]

For the calculations of \(C_1 \) and \(C_2 \) in \(x_1(t) \) and \(x_2(t) \) given in Equations (71) and (72), we apply the procedure mentioned in Equations (19)-(21); we obtain, for \(x_1(t) \),

\[
c[1] = 1.800506683 \times 10^{-6},
\]

\[
c[2] = 6.594892833 \times 10^{-6},
\]

and for \(x_2(t) \),

\[
c[1] = 0.111906918 \times 10^{-4},
\]

\[
c[2] = 0.2190543167 \times 10^{-4}.
\]

Substituting these optimal values into Equations (71) and (72) becomes

\[
x_1(t) = 4.196444315t^{\frac{1}{10}} - 1.084631569t^{\frac{11}{10}},
\]

\[
x_2(t) = 7.546421106t^{\frac{1}{10}} - 0.7996784175t^{\frac{11}{10}}.
\]

Table 1 shows the \(C_k \) at different values of \(\alpha \) for Example 1. Table 2 shows the comparisons and the absolute error between OHAM-LS and RK4 at different values of \(\alpha = 1 \). Figure 1 shows the analytical approximate solutions obtained by OHAM-LS for \(\alpha = 1, 0.9, 0.8 \), and 0.7 with RK4 at \(\alpha = 1 \).
using the concept of homotopy. According to Equation (6),

\[\text{Consider the NLPCOPs test problem from Schittkowski [54] [No 320].} \]

First, the quadratic penalty function is used to subject to \(h(x) = \frac{x_1^2}{100} + \frac{x_2^2}{4} - 1 = 0. \)

This is a practical problem, and the exact solution is not known, but the expected optimal solution is \(x_1^* = 9.395, x_2^* = -0.6846. \) First, the quadratic penalty function is used to get the unconstrained optimization problem as follows:

\[
F(x, \mu) = (x_1 - 20)^2 + (x_2 + 20)^2 + \frac{1}{2} \mu \left(\frac{x_1^2}{100} + \frac{x_2^2}{4} - 1 \right)^2,
\]

where \(\mu \in \mathbb{R}^+ \) and so that the nonlinear FOGBDS be given as

\[
T_\alpha x_1(t) = 2x_1 - 40 + \mu \left(\frac{1}{50} x_1^3 + \frac{1}{20} x_1 x_2^2 - \frac{1}{50} x_1 \right),
\]

\[
T_\alpha x_2(t) = 2x_2 + 40 + \mu \left(\frac{1}{200} x_1^2 x_2^2 + \frac{1}{8} x_2^3 - \frac{1}{2} x_2 \right),
\]

\[0 < \alpha \leq 1, x_1(0) = 0, x_2(0) = 0. \]

By using OHAM-LS with \(\mu = 10^6, \) the terms of the OHAM-LS solutions for fractional order are acquired by using the concept of homotopy. According to Equation (6), we choose the linear and nonlinear operators in the following forms:

\[L_1[\varphi_1(t, p)] = T_\alpha \varphi_1(t, p), \]

\[N_1[\varphi_1(t, p)] = T_\alpha \varphi_1(t, p) - 2 \left(\varphi_1(t, p) + 40 \right) - 10^6 \left(\frac{1}{5000} \varphi_1(t, p)^3 + \frac{1}{200} \varphi_1(t, p) \varphi_2(t, p)^2 - \frac{1}{50} \varphi_1(t, p) \right), \]

\[N_2[\varphi_2(t, p)] = T_\alpha \varphi_2(t, p) - 2 \varphi_2(t, p) - 40 - 10^6 \left(\frac{1}{200} \varphi_2(t, p) \varphi_1(t, p)^2 - \frac{1}{8} \varphi_2(t, p)^3 + \frac{1}{2} \varphi_2(t, p) \right), \]

\[(1 - p)T_\alpha \varphi_1(t, p) = H(p) \left[T_\alpha \varphi_1(t, p) - 2 \left(\varphi_1(t, p) + 40 \right) - 10^6 \left(\frac{1}{5000} \varphi_1(t, p)^3 + \frac{1}{200} \varphi_1(t, p) \right) \times \varphi_2(t, p)^2 - \frac{1}{50} \varphi_1(t, p) \right], \]

\[(1 - p)T_\alpha \varphi_2(t, p) = H(p) \left[T_\alpha \varphi_2(t, p) - 2 \varphi_2(t, p) - 40 \right. \left. - 10^6 \left(\frac{1}{200} \varphi_2(t, p) \varphi_1(t, p)^2 \right. \left. - \frac{1}{8} \varphi_2(t, p)^3 + \frac{1}{2} \varphi_2(t, p) \right) \right], \]

\[\text{Table 1: Control-convergence parameters } C_k \text{ at different values of } \alpha. \]

Variable	\(x_1(t) \)	\(x_1(t) \)	\(x_2(t) \)	\(x_2(t) \)
\(\alpha \)	\(C_1 \)	\(C_2 \)	\(C_1 \)	\(C_2 \)
1	1.912514527 \times 10^{-6}	7.294797236 \times 10^{-6}	0.011369873 \times 10^{-4}	0.229361274 \times 10^{-4}
0.9	1.800506863 \times 10^{-6}	6.594892833 \times 10^{-6}	0.111906918 \times 10^{-4}	0.2190543167 \times 10^{-4}
0.8	1.714313871 \times 10^{-6}	5.524430129 \times 10^{-6}	0.10992623 \times 10^{-4}	0.201017632 \times 10^{-4}
0.7	1.593611093 \times 10^{-6}	5.294592861 \times 10^{-6}	0.107191284 \times 10^{-4}	0.197911283 \times 10^{-4}

\[\text{Table 2: Comparisons and absolute error between OHAM-LS and RK4, } \alpha = 1. \]

\(t_k \)	OHAM-LS \(x_1(t) \)	OHAM-LS \(x_1(t) \)	RK4 \(x_1(t) \)	RK4 \(x_2(t) \)	Error \(x_1(t) \)	Error \(x_2(t) \)
0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.0005	1.970211	3.871721	1.970899	3.871887	0.000688	0.000166
0.0010	1.977134	3.907823	1.978274	3.907993	0.001136	0.00017
0.0013	1.981102	3.922403	1.981384	3.922554	0.000282	0.000151
0.0015	1.982211	3.930534	1.983132	3.930578	0.000921	4.4E-05
0.0020	1.983214	3.935653	1.984252	3.935654	0.001038	1E-06

Example 2. Consider the NLPCOPs test problem from Schittkowski [54] [No 320].

Minimize \(f(x) = (x_1 - 20)^2 + (x_2 + 20)^2, \)

subject to \(h(x) = \frac{x_1^2}{100} + \frac{x_2^2}{4} - 1 = 0. \)

\[(76) \]

\[(77) \]
where
\[
\varphi_1(t, p) = x_{1,0}(t) + \sum_{j=1}^{1} x_{1,j}(t) p^j,
\]
\[
\varphi_2(t, p) = x_{2,0}(t) + \sum_{j=1}^{1} x_{2,j}(t) p^j,
\]
\[
H_k(p) = p C_1 + p^2 C_2 + p^3 + C_3 + \cdots, \quad k = 1, 2.
\]

Substituting Equations (85)-(87) into Equations (83) and (84) and equating the coefficient of the same powers of \(p \) yields the following set of linear FDEs:

\[
\rho^0 : T^a x_{1,0}(t) = 0, \tag{88}
\]
\[
\rho^1 : T^a x_{1,1}(t) = -200x_{1,0}^1 C_1 - 5000x_{1,0}^2 C_1 + T^a x_{1,0} C_1 - T^a x_{1,0} + 19998 x_{1,0} C_1 + 40 C_1, \tag{90}
\]
\[
\rho^1 : T^a x_{2,1}(t) = -125000x_{2,0}^3 C_1 - 5000x_{2,0}^2 C_1 - T^a x_{2,0} C_1 - 2x_{2,0} C_1 - T^a x_{2,0} + 50000x_{1,0} C_1 - 40 C_1 = 0, \tag{91}
\]

Figure 1: (a) Different values of \(\alpha \) (OHAM-LS; \(\alpha = 1 \), dot; \(\alpha = 0.9 \), dash; \(\alpha = 0.8 \), dash dot; and \(\alpha = 0.7 \), long dash) and RK4 (\(\alpha = 1 \), solid) at \(x_1 \).

(b) Different values of \(\alpha \) (OHAM-LS; \(\alpha = 1 \), dot; \(\alpha = 0.9 \), dash; \(\alpha = 0.8 \), dash dot; and \(\beta = 0.7 \), long dash) and RK4 (\(\alpha = 1 \), solid) at \(x_2 \).
\(\text{Table 3: Control-convergence parameters } C_k \text{ at different values of } \alpha. \)

Variable	\(x_1(t) \)	\(x_1(t) \)	\(x_1(t) \)	\(x_2(t) \)
\(\alpha \)	\(C_1 \)	\(C_2 \)	\(C_1 \)	\(C_2 \)
1	\(-0.1198434251 \times 10^{-3}\)	\(-0.02645325610\)	\(-1.3256727843 \times 10^{-5}\)	\(-2.527402984 \times 10^{-3}\)
0.9	\(-0.1208162856 \times 10^{-3}\)	\(-0.02826592550\)	\(-1.343994006 \times 10^{-5}\)	\(-2.536649902 \times 10^{-3}\)
0.8	\(-0.148762674 \times 10^{-3}\)	\(-0.02983123651\)	\(-1.3619012564 \times 10^{-5}\)	\(-2.550122356 \times 10^{-3}\)
0.7	\(-0.1598723560 \times 10^{-3}\)	\(-0.03154109428\)	\(-1.3801234527 \times 10^{-5}\)	\(-2.573641295 \times 10^{-3}\)

\(E \) is obtained with initial conditions given in Equation (4.38), we obtain

\[x_1(t) = \frac{1}{\alpha} \left(-400 C_1 - 9.999000 \times 10^6 t^{1/5} C_1^2 + 200 C_1^2 - 200 C_2^2 \right), \tag{100} \]

\[x_2(t) = t^{1/5} \left(400 C_1 - 2.50001000 \times 10^8 t^{1/5} C_1^2 - 200 C_1^2 + 200 C_2^2 \right). \tag{101} \]

For the calculations of \(C_1 \) and \(C_2 \) in \(x_1(t) \) and \(x_2(t) \) given in Equations (100) and (101), we apply the procedure mentioned in Equations (19)-(21), we obtain for \(x_1(t) \),

\[c[1] = -0.1208162856 \times 10^{-3}, \tag{102} \]

\[c[2] = -0.02826592550. \tag{103} \]

And for \(x_2(t) \),

\[c[1] = -1.343994006 \times 10^{-5}, \tag{103} \]

\[c[2] = -2.536649902 \times 10^{-3}. \tag{103} \]

Adding up the solution components Equations (94)-(99),

\[x_1(t) = \frac{1}{\alpha} \left(-400 C_1 - 9.999000 \times 10^6 t^{1/5} C_1^2 + 200 C_1^2 - 200 C_2^2 \right), \tag{100} \]

\[x_2(t) = t^{1/5} \left(400 C_1 - 2.50001000 \times 10^8 t^{1/5} C_1^2 - 200 C_1^2 + 200 C_2^2 \right). \tag{101} \]

For the calculations of \(C_1 \) and \(C_2 \) in \(x_1(t) \) and \(x_2(t) \) given in Equations (100) and (101), we apply the procedure mentioned in Equations (19)-(21), we obtain for \(x_1(t) \),

\[c[1] = -0.1208162856 \times 10^{-3}, \tag{102} \]

\[c[2] = -0.02826592550. \tag{103} \]

And for \(x_2(t) \),

\[c[1] = -1.343994006 \times 10^{-5}, \tag{103} \]

\[c[2] = -2.536649902 \times 10^{-3}. \tag{103} \]

Substituting these optimal values into Equations (100) and (101), we have

\[x_1(t) = \left(5.701514534 + 0.1459511521 t^{1/5} \right) t^{1/5}, \tag{104} \]

\[x_2(t) = \left(-0.5167059926 + 0.04515817783 t^{1/5} \right) t^{1/5}. \tag{104} \]

Table 3 shows the \(C_k \) at different values of \(\alpha \) for example 2. Table 4 show the comparisons and the absolute error between OHAM-LS and RK4 at different values of \(\alpha = 1. \).
Figure 2 show the analytical approximate solutions obtained by OHAM-LS for \(\alpha = 1, 0.9, 0.8, \) and 0.7 with RK4 at \(\alpha = 1 \).

Example 3. Consider the NLPCOP test problem from Schittkowski [54] (No. 300).

Minimize \(f(x) = x_1^2 + x_2^2 + 2x_3^2 + x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4, \)
subject to \(8 - x_1^2 - x_2^2 - x_3^2 - x_4^2 + x_2 - x_3 + x_4 \leq 0, \)
\(10 - x_1^2 - 2x_2^2 - x_3^2 + x_1 + x_4 \leq 0, \)
\(5 - 2x_1^2 - x_2^2 - x_3^2 - 2x_1 + x_2 + x_4 \leq 0. \)

This is a practical problem, and the exact solution is not known, but the expected optimal solution is \(x_1^* = 0, x_2^* = 1, x_3^* = 2, \) and \(x_4^* = -1. \) From the above procedure, the second-order approximate solution obtained by OHAM-LS at \(\alpha = 0.9, \) for \(p = 1, \) is

\[
x_1^2(t) = (16100C_1 - 8050C_2^2 + 8050C_2) t^{1/10} + 1.54569500 \times 10^{3} t^{1/5} C_1^2,
\]
(106)

\[
x_2^2(t) = (-25900C_1 + 12950C_2^2 - 12950C_2) t^{1/10} - 3.75020500 \times 10^{3} t^{1/5} C_1^2,
\]
(107)
Table 5: Control-convergence parameters C_k at different values of α.

Variable α	$x_3(t)$	$x_2(t)$	$x_3(t)$
	C_1	C_2	C_1
1	$-4.470470112 \times 10^{-13}$	$-0.1542801253 \times 10^{-3}$	$-1.0784243190 \times 10^{-4}$
0.9	$-4.494712729 \times 10^{-13}$	$-0.1618198317 \times 10^{-3}$	$-1.096696787 \times 10^{-4}$
0.8	$-4.5167327196 \times 10^{-13}$	$-0.1832920121 \times 10^{-3}$	$-1.1079094521 \times 10^{-4}$
0.7	$-4.5371220162 \times 10^{-13}$	$-0.2087212810 \times 10^{-3}$	$-1.1261409123 \times 10^{-4}$

Table 6: Control-convergence parameters C_k at different values of α.

Variable α	$x_3(t)$	$x_4(t)$	$x_3(t)$
	C_1	C_2	C_1
1	$-0.5711237191 \times 10^{-3}$	$-5.921274832 \times 10^{-12}$	$0.8973526178 \times 10^{-4}$
0.9	$0.599293243 \times 10^{-3}$	$-5.935109529 \times 10^{-12}$	$0.8773054262 \times 10^{-4}$
0.8	$-0.6190253261 \times 10^{-3}$	$-5.935158452 \times 10^{-12}$	$0.8696526178 \times 10^{-4}$
0.7	$-0.6213153411 \times 10^{-3}$	$-5.975232801 \times 10^{-12}$	$0.8572034710 \times 10^{-4}$

Table 7: Comparisons and absolute error between OHAM-LS and RK4, $\alpha = 1$.

t_k	OHAM-LS$x_3(t)$	OHAM-LS$x_4(t)$	OHAM-LS$x_5(t)$	RK4$x_3(t)$
0.000	0.000000	0.000000	0.000000	0.000000
0.001	0.834165	-0.805509	0.834260	0.834165
0.002	0.894101	-0.859211	0.894137	0.894101
0.003	0.931112	-0.963765	0.931137	0.931112
0.004	0.958211	-0.978625	0.958313	0.958211
0.005	0.979623	-0.991899	0.979937	0.979623

For the calculations of C_1 and C_2 in $x_3(t)$, $x_2(t)$, $x_3(t)$, and $x_4(t)$ given in Equations (4.79)-(4.82), we apply the procedure mentioned in Equations (19)-(21); we obtain for $x_3(t)$,

$$c[1] = 0, c[2] = 0,$$

and for $x_2(t)$,

$$c[1] = -4.494712729 \times 10^{-13},$$
$$c[2] = -0.1618198317 \times 10^{-4},$$

and for $x_3(t)$,

$$c[1] = -1.096696787 \times 10^{-14},$$
$$c[2] = 0.599293243 \times 10^{-3},$$

and for $x_4(t)$,

$$c[1] = -5.935109529 \times 10^{-12},$$
$$c[2] = 0.8773054262 \times 10^{-4}.$$

Substituting these optimal values into Equations (106)-(109), we have

$$\bar{x}_3(t) = 0,$$
$$\bar{x}_4(t) = 0.095566833 \times t^{1/10} - 7.576330095 \times 10^{-17} t^{1/15},$$
$$\bar{x}_5(t) = 3.113922656 \times t^{1/10} + 1.954769053 \times t^{1/15},$$
$$\bar{x}_4(t) = -2.023943344 \times t^{1/10} - 4.389780283 \times 10^{-15} t^{1/15}.$$

Tables 5 and 6 show the C_k at different values of α for Example 3. Tables 7 and 8 show the comparisons and the absolute error between OHAM-LS and RK4 at $\alpha = 1$. Also, Figure 3 shows the comparisons of OHAM-LS at $\alpha = 1, 0.9, 0.8,$ and 0.7 with RK4 at $\alpha = 1$, which verifies the performance of the present method as an excellent tool for NLPCOPs. For $\alpha = 1$, it can be seen that the approximate analytical solution agrees with the ideal solution. Thus, as α approaches 1, the classical solution for the system is recovered.
Figure 3: (a) Different values of α (OHAM-LS; $\alpha = 1$ dot, $\alpha = 0.9$ dash, $\alpha = 0.8$ dash dot, and $\alpha = 0.7$ long dash) and RK4 ($\alpha = 1$, solid) at x_2. (b) Different values of α (OHAM-LS; $\alpha = 1$ dot, $\alpha = 0.9$ dash, $\alpha = 0.8$ dash dot, and $\alpha = 0.7$ long dash), and RK4 ($\alpha = 1$, solid) at x_3. (c) Different values of α (OHAM-LS; $\alpha = 1$ dot, $\alpha = 0.9$ dash, $\alpha = 0.8$ dash dot, and $\alpha = 0.7$ long dash), and RK4 ($\alpha = 1$, solid) at x_4.
5. Conclusions

In this paper, we implemented OHAM-LS for solving non-linear FOGBDS from the optimization problem. The fractional derivative is considered in a new conformable fractional derivative sense. The optimization minimization approach of the least square method helps to obtain optimal values of the C_j for accurate approximate analytical solutions. The comparisons between the fourth-order Runge-Kutta ($\alpha = 1$) and OHAM-LS show that our present method performs rapid convergence to the expected optimal solutions of the optimization problem. The results obtained are in close agreement with the exact solution, and those from the RK4 and OHAM-LS are reliable, dependable, and efficient for finding an approximate analytical solution for non-linear FOGBDS optimization problem.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Authors’ Contributions

All authors have equal contributions and they read and approved the final version of the paper.

References

[1] Y. Ren, F. Guo, and Y. Li, “Nonlinear lagrangians for nonlinear programming based on modified fischer-burmeister NCP Function,” Journal of Computational Mathematics, vol. 33, no. 4, pp. 396–414, 2015.
[2] F. Evirgen, “Solution of a class of optimization problems based on hyperbolic penalty dynamic framework,” Acta Physica Polonica A, vol. 132, no. 3-II, pp. 1062–1065, 2017.
[3] Z. Meng, Q. Hu, C. Dang, and X. Yang, “An objective penalty function method for nonlinear programming,” Applied Mathematics Letters, vol. 17, no. 6, pp. 683–689, 2004.
[4] S. Lian, S. Meng, and Y. Wang, “An objective penalty function-based method for inequality constrained minimization problem,” Mathematical Problems in Engineering, vol. 2018, Article ID 7484256, 7 pages, 2018.
[5] B. T. Nguyen, Y. Bai, X. Yan, and T. Yang, “Perturbed smoothing approach to the lower order exact penalty functions for nonlinear inequality constrained optimization,” Tamkang Journal of Mathematics, vol. 50, no. 1, pp. 37–60, 2019.
[6] F. Scott, R. Conejeros, and V. S. Vassiliadis, “Constrained NLP via gradient flow penalty continuation: Towards self-tuning robust penalty schemes,” Computers & Chemical Engineering, vol. 101, pp. 243–258, 2017.
[7] D. G. Luenberger, “Convergence rate of a penalty-function scheme,” Journal of Optimization Theory and Applications, vol. 7, no. 1, pp. 39–51, 1971.
[8] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009.
[9] Y. Sun, Y. Liu, G. Wang, and H. Zhang, “Deep learning for plant identification in natural environment,” Computational Intelligence and Neuroscience, vol. 2017, Article ID 7361042, 6 pages, 2017.
[10] H. Li, S. Liu, Y. C. Soh, and L. Xie, “Event-triggered communication and data rate constraint for distributed optimization of multiagent systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 11, pp. 1908–1919, 2018.
[11] J. Zeng and W. Yin, “On non-convex decentralized gradient descent,” IEEE Transactions on Signal Processing, vol. 66, no. 11, pp. 2834–2848, 2018.
[12] Y.-F. Pu, J.-L. Zhou, and X. Yuan, “Fractional differential mask: a fractional differential-based approach for multi-scale texture enhancement,” IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 491–511, 2010.
[13] P. Liu, Z. Zeng, and J. Wang, “Multiple Mittag–Leffler Stability of Fractional-Order Recurrent Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2279–2288, 2017.
[14] W. Yin, Y. Wei, T. Liu, and Y. Wang, “A novel orthogonalized fractional order filtered-x normalized least mean squares algorithm for feedforward vibration rejection,” Mechanical Systems and Signal Processing, vol. 119, pp. 138–154, 2019.
[15] K. J. Arrow and L. Hurwicz, “On the stability of the competitive Equilibrium,” I, Econometrica: Journal of the Econometric Society, vol. 26, no. 4, pp. 522–552, 1958.
[16] C. A. Botsaris, “Differential gradient methods,” Journal of Mathematical Analysis and Applications, vol. 63, no. 1, pp. 177–198, 1978.
[17] H. Yamashita, “A differential equation approach to nonlinear programming,” Mathematical Programming, vol. 18, no. 1, pp. 155–168, 1980.
[18] A. A. Brown and M. C. Bartholomew-Biggs, “Ode versus sqp methods for constrained optimization,” Journal of Optimization Theory and Applications, vol. 62, no. 3, pp. 371–386, 1989.
[19] G. Adomian, “Solution of physical problems by decomposition,” Computers Mathematics with Applications, vol. 27, no. 9-10, pp. 145–154, 1994.
[20] M. Baghni, M. Fattahi, and A. Amjadian, “Application of the variational iteration method for nonlinear free vibration of conservative oscillators,” Scientia Iranica, vol. 19, no. 3, pp. 513–518, 2012.
[21] A. Yildirim and Y. Güllkanat, “Analytical approach to fractional zahkorov-kuznetsov equations by he’s homotopy perturbation method,” Communications in Theoretical Physics, vol. 53, no. 6, pp. 1005–1010, 2010.
[22] S. Yang and A. Xiao, “An efficient numerical method for fractional differential equations with two Caputo derivatives,” Journal of Computational Mathematics, vol. 34, no. 2, pp. 113–134, 2016.
[23] N. Özdemir and M. Yavuz, “Numerical solution of fractional black-scholes equation by using the multivariate padé approximation,” Acta Physica Polonica A, vol. 132, no. 3-II, pp. 1050–1053, 2017.
[24] F. Evirgen and N. Özdemir, “Multistage adomian decomposition method for solving nlp problems over a nonlinear fractional dynamical system,” Journal of Computational and Nonlinear Dynamics, vol. 6, no. 2, 2011.
[25] F. Evirgen and N. Özdemir, “A fractional order dynamical trajectory approach for optimization problem with HPM,” Fractional Dynamics and Control, pp. 145–155, 2012.
[26] S. Abbasbandy and M. Jalili, “Determination of optimal convergence-control parameter value in homotopy analysis method,” Numerical Algorithms, vol. 64, no. 4, pp. 593–605, 2013.

[27] Y. F. Pu, J. L. Zhou, Y. Zhang, N. Zhang, G. Huang, and P. Siarry, “Fractional extreme value adaptive training method: fractional steepest descent approach,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 653–662, 2015.

[28] F. Evirgen, “Analyze the optimal solutions of optimization problems by means of fractional gradient based system using vim,” An International Journal of Optimization and Control: Theories & Applications (IJOCTA), vol. 6, no. 2, pp. 75–83, 2016.

[29] J. Wang, Y. Wen, Y. Gou, Z. Ye, and H. Chen, “Fractional-order gradient descent learning of bp neural networks with Caputo derivative,” Neural Networks, vol. 89, pp. 19–30, 2017.

[30] Y. Chen, Q. Gao, Y. Wei, and Y. Wang, “Study on fractional order gradient methods,” Applied Mathematics and Computation, vol. 314, pp. 310–321, 2017.

[31] F. Evirgen, “Conformable fractional gradient based dynamic system for constrained optimization problem,” Acta Physica Polonica A, vol. 132, no. 3-II, pp. 1066–1069, 2017.

[32] V. Marinca and N. Herisanu, “Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer,” International Communications in Heat and Mass Transfer, vol. 35, no. 6, pp. 710–715, 2008.

[33] M. Azimi, A. Mozaffari, and F. Ommi, “Application of galerkin optimal homotopy asymptotic method to shock wave equation,” Journal of Advanced Physics, vol. 3, no. 1, pp. 35–38, 2014.

[34] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[35] T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, vol. 279, pp. 57–66, 2015.

[36] V. Marinca, N. Herisanu, C. Bota, and B. Marinca, “An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate,” Applied Mathematics Letters, vol. 22, no. 2, pp. 245–251, 2009.

[37] F. Ghanì, S. Islam, C. Ozel, L. Ali, M. M. Rashidi, and T. Hajari, “Application of modified optimal homotopy perturbation method to higher order boundary value problems in a finite domain,” Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 4, pp. 1049–1060, 2016.

[38] N. Herisanu, V. Marinca, G. Madescu, and F. Dragan, “Dynamic response of a permanent magnet synchronous generator to a wind gust,” Energies, vol. 12, no. 5, p. 915, 2019.

[39] V. Marinca and N. Herisanu, “On the flow of a Walters-type B viscoelastic fluid in a vertical channel with porous wall,” International Journal of Heat and Mass Transfer, vol. 79, pp. 146–165, 2014.

[40] N. Herisanu and V. Marinca, “Optimal homotopy asymptotic method to large post-buckling deformation of MEMS,” MATEC Web of Conferences, vol. 148, article 13003, 2018.

[41] M. Sajjid and T. Hayat, “Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations,” Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2296–2301, 2008.

[42] E. Babolian, J. Saeidian, and M. Paripour, “Application of the Homotopy analysis method for solving equal-width wave and modified equal-width wave equations,” Zeitschrift für Naturforschung A, vol. 64, no. 11, pp. 685–690, 2009.

[43] A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrodinger-KdV equation,” Journal of Applied Mathematics and Computing, vol. 31, no. 1-2, pp. 1–12, 2009.

[44] M. Kurulay, “Approximate analytic solutions of the modified Kawahara equation with homotopy analysis method,” Advances in Difference Equations, vol. 2012, no. 1, 2012.

[45] C. A. Botsaris and D. H. Jacobson, “A newton-type curvilinear search method for optimization,” Journal of Mathematical Analysis and Applications, vol. 54, no. 1, pp. 217–229, 1976.

[46] J. Liu and C. Ma, “A new nonmonotone trust region algorithm for solving unconstrained optimization problems,” Journal of Computational Mathematics, vol. 32, no. 4, pp. 476–490, 2014.

[47] D. G. Luengerber and Y. Ye, Basic descent Methods, vol. 228 of International Series in Operations Research Management Science, Springer, 2016.

[48] X. Fang and Q. Ni, “A frame-based conjugate gradients direct search method with radial basis function interpolation model,” Discrete Dynamics in Nature and Society, vol. 2017, Article ID 4082432, 9 pages, 2017.

[49] B. Baluch, Z. Salleh, and A. Alhawarat, “A new modified three-term hestenes-stiefel conjugate gradient method with sufficient descent property and its global convergence,” Journal of Optimization, vol. 2018, Article ID 5057096, 13 pages, 2018.

[50] C. Chen, Z. Wen, and Y. X. Yuan, “A general two-level subspace method for non-linear optimization,” Journal of Computational Mathematics, vol. 36, no. 6, 2018.

[51] E. T. Hamed, H. I. Ahmed, and A. Y. Al-Bayati, “A new hybrid algorithm for convex nonlinear unconstrained optimization,” Journal of Applied Mathematics, vol. 2019, Article ID 8728196, 6 pages, 2019.

[52] S. F. Mansouri and M. R. Maherì, “Constraint control method of optimization and its application to design of steel frames,” Scientia Iranica, vol. 26, no. 4, pp. 2241–2257, 2019.

[53] Z. Lužanin, I. Stojkovska, and M. Kresoja, “Descent direction stochastic approximation algorithm with adaptive step sizes,” Journal of Computational Mathematics, vol. 37, no. 1, pp. 76–94, 2019.

[54] K. Schittkowski, More test examples for nonlinear programming codes Springer-Verlag, vol. 282, Springer Science & Business Media, 2012.