Abstract

Child development is the sector that consists of scientific research of the patterns of growth, power and change that arise from conception through adolescence. One can apply this knowledge to realize the necessities of a child by viewing how and why individuals alternate and grow. Thus, pleasing them and allowing them to arrive at their maximum capacity. The intention of this study is to research the child growth based on the features consisting of age, height and weight. In order to understand how the physical growth of child switches with time, data is gathered from various sources such as Anganwadis, Primary Schools and Primary health Centres and a data mining method is implemented to expect the child growth. In this method, assessment of two data mining approaches ID3 Decision Tree and Naïve Bayes classifier is carried out on the basis of factors such as prediction accuracy, error rate and learning time.
1. Ambili K, Afsar P, “A Prediction Model for Child Development Analysis using Naïve Bayes and Decision Tree Fusion Technique – NB Tree" International Research Journal of Engineering and Technology (IRJET) July 2016 .
2. Sumathi M.R, Dr. B. Poorna, “Prediction of Mental Health Problems Among Children Using Machine Learning Techniques”(IJACSA) International Journal of Advanced Computer Science and Applications, 2016.
3. Taiwan ROC “A study of applying data mining to early intervention for developmentally-delayed children”.
4. Fadzli Syed Abdullah1, Nor SaidahAbd Manan1, Aryati Ahmad1, Sharifah Wajihah Wafa1, MohdRazif Shahril1, Nurzaime Zulaily1, RahmahMohd Amin1, and Amran Ahmed2 “Data Mining Techniques for Classification of Childhood Obesity among Year 6 School Children” University Sultan ZainalAbidin, 21300 Kuala Terengganu.
5. Anand Bahety “Extension and Evaluation of ID3 – Decision Tree Algorithm”.
6. Deepti Sisodia and Dilip Singh Sisodia, “Prediction of Diabetes using Classification Algorithms.”
7. “The Research and Development of Growth Curve for Children's Height and Weight on Android Platform.” 10th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI 2017).
8. “Automated Menu Planning Algorithm for Children: Food Recommendation by Dietary Management System using ID3 for Indian Food Database.”
9. Masud Karim and Rashedur M. Rahman , “Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing” Journal of Software Engineering and Applications, 2013, 6, 196-206.
10. Shaoyan Zhang, Christos Tjortjis, Xiaojun Zeng, Hong Qiao , Iain Buchan and John Keane “Comparing data mining methods with logistic regression in childhood obesity prediction” Published online: 24 February 2009 # Springer Science + Business Media, LLC 2009.
11. V.Geetha and Dr.S.Rajalakshmi “A detailed analysis and comparison of decision tree vs naïve bayes algorithm in cardio vascular datasets” International Journal of Pure and Applied Mathematics Volume 119 No. 15 2018, 437-444.
12. Saurabh Shastri, Paramji tKaur, Ankush Gupta, Shakshi ambyal, Arun Singh Bhadwal, Amardeep Sharma, Professor Vibhakar Mansotra, Dr. Anand Sharma “Development of a Data Mining for Classification of Child Immunization Data” International Journal of Computational Engineering Research(IJCER)
13. Ahmad Ansari, Iman Paryudi, A Min Tjao “Performance comparison between Naïve Bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool” International Journal of Advanced Computer Science and Applications(IJACSA)4,2013.
14. William A Altmeier III, Peter M Vietze, Kathryn B Sherrod, Howard M Sandler, Susan Falsey, Susan O'Connor “Prediction of child maltreatment during pregnancy” Journal of the American Academy of Child Psychiatry 18(2)
15. Muhamad Hariz B Muhamad Adnan, Wahidah Hussain, Faten Damanhoorii “A survey on utilization of data mining for childhood obesity prediction” 8th Asia-Pacific Symposium on Information and Telecommunication Technologies, 1-6
16. T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs “Machine Learning Techniques for Prediction of Early Childhood Obesity”
17. Leslie C Philipsen, Margaret R Burchinal, Carollee Howes, Debby Cryer “The prediction
of process quality from structural features of child care” Early childhood research quarterly 12(3)

18. Chung-Lang Chang “A study of applying data mining to early intervention for developmentally-delayed children” Expert Systems with Applications 33(2)

19. Zenebe Markos “Predicting Under nutrition status of under-five children using data mining techniques: The Case of 2011 Ethiopian Demographic and Health Survey”.

20. Las Johansen B. Caluza “Machine Learning Algorithm Application in Predicting Children Mortality: A Model Development" International Journal of Information Science and Application.

Index Terms

Computer Science
Data Mining

Keywords

Child Development, Data Mining, Prediction, Naïve Bayesian Classifier, ID3 Decision Tree, Machine Learning