Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes

Viktoria Gusarova et al.

Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85–0.92, p = 6.3 × 10⁻¹⁰), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49–0.99, p = 0.04). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.
The lipoprotein lipase (LPL) pathway has emerged as an attractive therapeutic target for reducing lipid levels and cardiovascular risk. Angiopoietin-like 4 (ANGPTL4) is a widely expressed endogenous inhibitor of LPL that modulates free fatty acid delivery to adipose and oxidative tissues during fasting and fed states. Genetic variants in ANGPTL4 are robustly associated with triglyceride and high-density lipoprotein cholesterol (HDL-C) levels in humans, an observation which is supported by reduction in triglyceride and increase in HDL-C levels in response to antibody inhibition of ANGPTL4 in animal models.

Furthermore, inactivating variants in ANGPTL4 are associated with reduced risk of coronary artery disease in humans, suggesting that ANGPTL4 and related LPL modulators may be targets for modification of dyslipidemia-related atherosclerotic cardiovascular disease. Because modulation of LPL activity in oxidative tissues affects free fatty acid delivery, and thereby nutrient partitioning and insulin sensitivity, endogenous regulators of LPL activity may impact glucose homeostasis and risk for development of type 2 diabetes. Together, these observations suggest that genetic inhibition of ANGPTL4 function might have a favorable impact on glucose homeostasis in humans and reduce risk of type 2 diabetes. This hypothesis is supported by a recent report of reduced type 2 diabetes risk associated with the p.E40K variant that abolishes ANGPTL4 ability to inhibit LPL. It is not yet known whether p.E40K affects glucose homeostasis in non-diabetics, whether other variants that abolish ANGPTL4 function modify type 2 diabetes risk, or how loss of ANGPTL4 function modifies glucose homeostasis and type 2 diabetes risk.

There are conflicting published reports of the relationship between ANGPTL4 function and glucose homeostasis in animal models. ANGPTL4 overexpression in mice has been variously reported to have no effect on blood glucose levels, to decrease blood glucose and improve glucose tolerance, and to impair glucose tolerance. The discrepancies in these results may be related to the level and the site of ANGPTL4 overexpression. Metabolic investigations in whole body Angtlt4-deficient mice may inform on the glycemic effects of global ANGPTL4 inhibition.

In this study, we examine the association of genetic variants that abolish ANGPTL4 function with fasting glucose, oral glucose tolerance, and risk for type 2 diabetes in 58,124 individuals of European ancestry sampled from a large US health care population, and in 13 additional datasets comprising 82,766 type 2 diabetes cases and 498,761 controls. We also evaluate the functional consequences of rare and novel genetic variants identified by exome sequencing, as well as the effect of Angptl4 deletion on insulin sensitivity and glucose homeostasis.

We find that p.E40K in ANGPTL4 is associated with lower fasting glucose and greater insulin sensitivity in humans, as well as reduced risk of type 2 diabetes. Other rare predicted loss-of-function variants in ANGPTL4 are also associated with lower risk of type 2 diabetes, providing additional allelic evidence that genetic loss of ANGPTL4 function improves glucose homeostasis in humans. Angptl4-deficient mice manifest greater insulin sensitivity and improved glucose homeostasis, further supporting for the conclusion that genetic inactivation of ANGPTL4 improves glucose homeostasis and reduces risk of type 2 diabetes.

Results

Whole exome sequencing identifies rare variants in ANGPTL4.
Whole exome sequencing was performed in 58,124 adult participants of European ancestry in the DiscovEHR study. Demographics and clinical characteristics of the study population are shown in Supplementary Table 1. We identified 2235 heterozygotes and 26 homozygotes for p.E40K (minor allele frequency (MAF) 1.97%), which has been shown to abolish ANGPTL4 ability to inhibit LPL. Twenty-one additional rare predicted loss-of-function (pLoF) variants in ANGPTL4 were identified: 8 premature stop variants, 10 open reading frame shifting insertion/deletion variants, 2 splice acceptor variants, and 1 splice donor variant (Supplementary Table 2). In all, 125 individuals were heterozygous for these pLoF variants (cumulative allele frequency 0.11%). The most frequently observed pLoF variant was a single-nucleotide deletion at Glycine 313 (p. G313fs), which was observed in 69 DiscovEHR participants. We did not observe homozygotes or compound heterozygotes for these genetic variants in the DiscovEHR population.

ANGPTL4 p.E40K reduces the risk of type 2 diabetes. We examined associations of ANGPTL4 p.E40K with type 2 diabetes defined by an Electronic Health Record (EHR) algorithm in the DiscovEHR study (Fig. 1). The allele frequency of p.E40K was lower in type 2 diabetes cases (1.82%: 461 heterozygotes and 5 homozygotes among 12,945 cases) than in non-diabetic controls (2.07%: 1457 heterozygotes and 19 homozygotes among 36,165 controls), corresponding to a reduction in odds of diabetes of 10% after adjusting for age, sex, and four principal components of ancestry. This association of p.E40K with type 2 diabetes persisted after adjusting for linear and quadratic effects of age. Adjustment for body mass index (BMI) did not meaningfully change the association with type 2 diabetes (OR 0.85, CI 0.76–0.96, p = 0.0076). We sought replication of this observation of reduced odds of type 2 diabetes among p. E40K variant carriers in 13 additional studies comprising 82,766 type 2 diabetes cases and 498,761 controls (Supplementary Table 4 and Fig. 1). Inverse variance weighted fixed-effects meta-analysis of the association of p.E40K with type 2 diabetes in these cohorts yielded an overall OR for type 2 diabetes of 0.88 (95% CI 0.85–0.92, p = 5.0 × 10−9). Inclusion of the DiscovEHR population in this meta-analysis yielded an OR of 0.89 for type 2 diabetes (95% CI 0.85–0.92, p = 6.3 × 10−10).

ANGPTL4 p.E40K improves glucose homeostasis. We also evaluated associations of p.E40K with fasting glucose in non-diabetic participants in the DiscovEHR study (n = 26,644 participants with fasting glucose measurements), an independent DiscovEHR replication cohort (n = 13,732), the UPenn study (n = 5782), the T2D-GENES, GoT2D, and DIAGRAM studies (n = 33,245), the Malmo Diet and Cancer Study (n = 4848), the HUNT study (n = 2714), and the deCODE study (n = 39,700); results are summarized in Supplementary Table 5. In five of these six studies, p.E40K was associated with lower fasting glucose, and nominally significant association with fasting glucose was observed in meta-analysis of these six studies (p = 0.0024, total n = 120,050). To further understand the association of p.E40K with glucose homeostasis in humans, we performed association analyses of the p.E40K variant with tolerance to a 75 g oral glucose challenge in up to 8081 non-diabetic participants in the NIDDM Botnia and Prevalence, Prediction, and Prevention of Diabetes-Botnia studies (Supplementary Table 6). In these studies, p. E40K was associated with nominally significantly lower insulin levels at 30 and 120 min after glucose administration, as well as lower insulinogenic index (β = −0.15 Z score units, standard
that genetic variants that abolish ANGPTL4 function are associated with improved insulin sensitivity and glucose homeostasis and reduced risk of type 2 diabetes in humans.

ANGPTL4 p.E40K primarily influences metabolic measures. Previous studies have noted a potential toxicity, abdominal lymphadenopathy, in ANGPTL4-deficient and ANGPTL4 antibody-treated animals on high-fat diets. In an effort to determine if this finding has clinical relevance in humans, we evaluated the general health effects of homozygosity for the p.E40K variant by reviewing complete electronic health records available for 17 living individuals homozygous for p.E40K, including diagnosis and procedure codes, imaging and laboratory data, medication data and clinic notes covering a median of 6 years of clinical care (range 1–20 years). Five of these individuals had incidental abdominal computed tomography imaging performed; four of the radiologist reports commented specifically on normal abdominal lymph nodes, and the fifth reported normal findings with no comment on abdominal lymph nodes. A full summary of clinical findings is presented in Supplementary Data 1. These findings suggest that abdominal lymphadenopathy and related conditions

Table 1 Associations of ANGPTL4 loss-of-function variants and type 2 diabetes

Study	ANGPTL4 LoF carriers	Total	Frequency			
	Cases	Controls	Cases	Controls	p	Odds ratio (95% CI)
DiscovEHR	22	85	12,969	36,217	0.0008	0.0012
DiscovEHR 30K replication	5	47	3,456	22,372	0.0007	0.0011
UPenn	3	13	734	4,066	0.0020	0.0016
Duke	2	10	1,630	4,903	0.0006	0.0010
TAIChI	0	3	4,392	4,699	0.0000	0.0003
DHS-EA	0	5	104	1,255	0.0000	0.0020
DHS-AA	0	1	357	2,028	0.0000	0.0002
T2D-Genes/GoT2D/DIAGRAM	14	19	8,373	8,466	0.0008	0.0011
Total	46	183	32,015	84,006	0.0007	0.0011

AA African American, CI confidence interval, Duke Duke CATHGEN cohort, EA European American, T2D-Genes/GoT2D/DIAGRAM combined analysis of T2D-GENES, GoT2D and DIAGRAM studies, pLoF predicted loss-of-function variant, Penn University of Pennsylvania Medicine Biobank, TAIChI Taiwan MetaboChIP consortium. The overall odds ratio for ANGPTL4 pLoFs and type 2 diabetes risk, using a two-sided exact conditional test, was 0.71 (95% CI 0.49–0.99, p = 0.04). The odds ratio of type 2 diabetes among carriers of pLoF variants (OR 0.71, 95% CI 0.49–0.99, p = 0.041).

Rare pLoFs in ANGPTL4 reduce the risk of type 2 diabetes. To understand whether ANGPTL4 pLoF variants were also associated with type 2 diabetes, we evaluated the prevalence of pLoFs in ANGPTL4 in exome sequence data from 32,015 type 2 diabetes cases and 84,006 controls in six population case–control studies (Supplementary Table 7). In five of the six studies, ANGPTL4 pLoF variants were less frequent among cases than controls (Table 1). We used a two-sided exact conditional test to combine the counts across studies given the low number of type 2 diabetes cases co-occurring with ANGPTL4 pLoFs, finding 29% lower odds of type 2 diabetes among carriers of pLoF variants (OR 0.71, 95% CI 0.49–0.99, p = 0.041). Collectively, these findings indicate that genetic variants that abolish ANGPTL4 function are associated with improved insulin sensitivity and glucose homeostasis and reduced risk of type 2 diabetes in humans.

error (SE) 0.047, p = 0.002) and higher insulin sensitivity index (β = 0.13 Z score units, SE 0.043, p = 0.0026). These findings suggest that p.E40K influences glucose homeostasis in nondiabetics via increased insulin sensitivity, and provide mechanistic insight into the association of p.E40K with reduced risk of type 2 diabetes.
are not common findings in humans homozygous for the K40 allele that abolishes ANGPTL4 ability to inhibit LPL.

To more comprehensively examine the clinical consequences of the p.E40K variant, we performed phenome-wide studies of association of p.E40K in 86,319 total individuals from the DiscovEHR discovery and replication cohorts. Using a Bonferroni significance threshold of 2.90 × 10^{-5} for associations with 1465 disease diagnoses and 261 clinical measurements from EHRs (Supplementary Data 2 and 3), we identified statistically significant associations with hyperglyceridemia, triglyceride, HDL-C, and non-HDL cholesterol levels, as well as leucocyte counts. These findings suggest that the clinical effects of the p.E40K variant may be specific to lipid levels and glucose homeostasis.

ANGPTL4 p.E40K and pLOFs abolish ANGPTL4 function. To understand whether the p.E40K variant and the most abundant pLoF, p.G313fs, were associated with changes in circulating levels of ANGPTL4 protein in humans, we measured ANGPTL4 protein levels in available fasting serum samples from 86 p.E40K variant carriers, 42 p.G313fs variant carriers, and 55 non-carriers. Consistent with previous data23, the concentrations of ANGPTL4 protein in p.E40K variant carriers (203 ± 12 ng/ml) and in matched controls (188 ± 16 ng/ml) were not statistically different (Fig. 2). ANGPTL4 protein levels were reduced by 45% in heterozygous p.G313fs variant carriers (103.4 ± 9.5 ng/ml) compared to non-carriers. These findings are consistent with the expectation that heterozygous LoF genotype corresponds to complete loss of expression of one ANGPTL4 allele.

To further understand the functional consequences of the p.E40K variant and the p.G313fs variant, we performed overexpression studies using hydrodynamic delivery of human ANGPTL4 constructs to livers of chow-fed C57Bl/6 mice. These experiments revealed similarly increased plasma levels of E40 and K40 ANGPTL4. However, only E40 ANGPTL4 elicited an increase in plasma triglyceride levels, consistent with the observation that the p.E40K mutation prevents oligomerization of ANGPTL4, a step required for LPL inhibition15. Overexpression of ANGPTL4 with the Gly313fs variant did not increase plasma ANGPTL4 or triglyceride levels, suggesting this frame shift variant precludes ANGPTL4 presence in the circulation (Fig. 3). Collectively, these results suggest that p.E40K and p.G313fs both result in loss of ANGPTL4 expression and/or function.

Angptl4-deficient mice have improved glucose homeostasis. To investigate the effects of genetic loss of ANGPTL4 function on glucose homeostasis in mice, we created Angptl4-deficient (Angptl4−/−) mice. Deletion of Angptl4 led to significant reduction in circulating triglycerides as reported previously4 (Supplementary Fig. 1a and b). When placed on high-fat diet, Angptl4−/− mice not only had reduced circulating triglycerides and cholesterol levels (Fig. 4a, b), but also had 31% lower non-fasted blood glucose (Angptl4+/++; 318 ± 17 mg/dl, n = 11; Angptl4−/--; 221 ± 26 mg/dl, n = 9) and improved glucose tolerance and insulin sensitivity (Fig. 4c–e). On chow diets, glucose levels and glucose tolerance were not significantly different between Angptl4−/− and Angptl4+/+ littermates (Supplementary Fig. 1c–e).

The improvement in glucose homeostasis in high-fat fed Angptl4−/− mice was not associated with changes in body weight or body composition when compared to their wildtype littermates (Fig. 5a–c, Supplementary Fig. 1f–h). Absolute liver weights and hepatic triglyceride accumulation were reduced in Angptl4−/− mice after high-fat feeding (Fig. 5d, f), demonstrating that Angptl4 deletion protects from fatty liver development. These findings were also supported by reduction of neutral lipids accumulation in the livers of Angptl4−/− mice based on Oil Red O staining (Fig. 5g). Meanwhile, the epididymal fat pad weights showed no difference between the genotypes (Fig. 5e), suggesting normal peripheral fat storage.

To investigate the metabolic consequences of Angptl4 deletion, high-fat fed Angptl4−/− mice and their wildtype littermates were placed into metabolic cages. The analysis revealed no differences in O2 consumption, CO2 production (Supplementary Fig. 2a and b) respiratory quotient, activity, food intake, or energy expenditure between the genotypes (Fig. 5h–k). At the end of the study (9 weeks on high-fat diet), the Angptl4−/− mice were in good health, as judged by comparable weight gain, activity, energy expenditure, and food intake to control mice (Fig. 2). Furthermore, no signs of intestinal abnormalities or lethality were observed. Collectively, these findings show that genetic deficiency of Angptl4 improves glucose homeostasis and insulin sensitivity without associated changes in body weight, composition or metabolism.

Discussion

In summary, by sequencing the exons of ANGPTL4 in 58,124 participants in the DiscovEHR study population, we identified 2235 heterozygotes and 26 homozygotes for the p.E40K variant that has been shown to have decreased ability to inhibit LPL function13. We identified 21 additional variants that were predicted to inactivate one allele of ANGPTL4. Linking genetic variants to EHR-derived phenotypes, we found that p.E40K and other pLoF variants in ANGPTL4 were associated with reduced risk of type 2 diabetes, with p.E40K reaching genome-wide significance in analysis of 95,711 type 2 diabetes cases and 534,926 controls, and pLoFs reaching nominal significance in analyses of exome data from 32,015 type 2 diabetes cases and 84,006 controls. These findings confirm and extend findings from a recent report of reduced type 2 diabetes risk associated with p.E40K14. Further, the p.E40K variant was nominally associated with lower fasting glucose in non-diabetic humans and improved insulin sensitivity in oral glucose tolerance tests. A gain-of-function genetic variant in LPL has been reported to be associated with lower fasting insulin and type 2 diabetes risk24, indicating that genetic modulation of lipoprotein lipase activity affects insulin sensitivity and diabetes risk in humans. Whether the association of genetic
variants that inactivate ANGPTL4 with reduced type 2 diabetes risk is mediated exclusively via modulation of lipoprotein lipase activity or involves other mechanisms remains to be clarified.

Furthermore, we found that deletion of Angplt4 in mice fed a high-fat diet improved insulin sensitivity and glucose homeostasis in fasting and post-prandial states. Although the mechanism linking loss of ANGPTL4 function to improved insulin sensitivity and glucose homeostasis is not completely understood, our animal studies revealed that improved glucose homeostasis with Angptl4 deletion occurs without changes in body weight, body fat content or energy metabolism. We also observed a reduction in triglyceride accumulation in the livers of the Angptl4−/− mice when placed on a high-fat diet. These findings are consistent with recent findings in adipose-specific Angptl4 knockout mice. The authors reported increased plasma fatty acids uptake by adipose tissue, along with increased triglyceride lipolysis and oxidation leading to reduction in ectopic lipids accumulation in liver and...
skeletal muscle, and concomitant improvement in glucose tolerance and insulin sensitivity.

Our data, in combination with findings of favorable lipid profiles and reduced risk of coronary artery disease5,6,8, provide human genetics support for ANGPTL4 inhibition as a therapeutic strategy for prevention and possibly treatment of metabolic disease. The observation of an association between protein-truncating genetic variants in \textit{SLC30A8} and reduced risk of type 2 diabetes has illuminated a new therapeutic target opportunity for type 2 diabetes26. A genetic variant in \textit{GLP1R} that mimics the glycemic effects of the Food and Drug Administration (FDA)-approved antidiabetic glucagon-like peptide-1 receptor agonists27 has also been shown to reduce coronary heart disease risk28. We describe ANGPTL4 as a gene in which loss-of-function variants confer protection from both coronary atherosclerosis and type 2 diabetes. Concerns remain about therapeutic modulation

\textbf{Fig. 5} \textit{Angptl4}−/− mice have reduced liver fat. \textbf{a} Body weight, \textbf{b} lean and \textbf{c} fat mass in \textit{Angptl4}−/− and littermate control mice on a high-fat diet. \textbf{d} Liver and \textbf{e} epididymal white fat weights were evaluated in mice described in (a-c) at the time of killing. \textbf{f} Hepatic triglyceride levels and \textbf{g} neutral lipid staining in the livers described in (d), scale bar = 200 µm. \textbf{h} Respiratory exchange ratio (RER), \textbf{i} locomotor activity, \textbf{j} food intake, and \textbf{k} energy expenditure were measured during dark and light cycles in \textit{Angptl4}−/− and littermate control mice on a high-fat diet. All values are mean ± SEM. Statistical analysis was conducted by Welch’s t-test; *p < 0.05, **p < 0.01. The study was conducted in two different cohorts of mice, with qualitatively similar results in each replicate.
of ANGPTL4 related to observations of abdominal lymphadenopathy in *Angptl4*-deficient and ANGPTL4 antibody-treated animals7,22. In a small number of human patients homozygous for K40, abdominal imaging did not demonstrate lymphadenopathy, raising the question of whether this concern is relevant in humans. It is not yet clear whether a larger sampling of individuals deficient in ANGPTL4 activity would reveal abdominal lymphadenopathy, or whether therapeutic antagonism of ANGPTL4 late in life will have similar effects in humans.

Our study has important limitations. We focused on type 2 diabetes risk in individuals with a known reduced-function allele (p.E40K) and among carriers of splice-disrupting, frame shifting, premature stop, and start or stop loss variants. Other coding or regulatory non-coding variants might yield additional insight into the effects, in humans, of ANGPTL4 antagonism. Our study was performed in individuals of primarily European ancestry; it is not known whether our observations will generalize to individuals from other ancestries. Finally, the metabolic and diabetes associations were primarily driven by phenotypic observations in heterozygous carriers of loss-of-function variants. Whether such observations will accurately reflect the phenotypic effects of more complete therapeutic blockade is not clear.

In conclusion, we found that loss-of-function variants in ANGPTL4 were associated with increased insulin sensitivity and reduced risk of type 2 diabetes, mirroring the beneficial effects on glucose homeostasis of deletion of *Angptl4* in mice. ANGPTL4 may be a promising target for therapeutic inhibition for reduction of metabolic disease risk in humans.

Methods

Study oversight of human genetics studies

We conducted human genetics studies using DNA samples and data from 13 study cohorts. The DiscovEHR study was performed by the Regenon Genetiks Center and the Geisinger Health System, and the Regenon Genetics Center funded study sample collection, sequence data generation, and clinical and sequence data analysis for DiscovEHR. All human subject research was approved by the relevant institutional review boards, and all participants gave informed written consent.

Sequencing of ANGPTL4 at the Regenon Genetics Center

Sequence data for ANGPTL4 were extracted from exome sequences generated at the Regenon Genetics Center with the use of protocols as described29. Briefly, genomic DNA was sheared to an average fragment length of 150 bp base pairs and prepared for exome capture with NimbleGen probes (SeqCap VC/Rome) or xGen Exome Research Panel v1.0 (Integrated DNA Technologies). Captured DNA was amplified, quantified, and subsequently sequenced on an Illumina v4 HiSeq 2500 instrument (to approximately 80x mean haploid read depth of targeted bases). Sequence reads were aligned to the human reference build GRCh38, and single-nucleotide variants (SNVs) and insertions/deletions (indel) variant sequences were identified using the Genome Analysis Toolkit30, and annotated using SnpEff31. Variants in ANGPTL4 were identified via positional intersection with Ensembl transcript ENST00000301455 (RefSeq mRNA sequence NM_139314). The following variants were defined as predicted loss-of-function (pLoF) variants: SNVs leading to loss of a start codon, or loss of a stop codon, or to a premature stop codon; open reading frame shifting indels leading to the formation of a premature stop codon; and SNVs or indels disrupting canonical splice acceptor or donor dinucleotides. Carriers of the missense mutation p.E40K (rs116843064), which has been previously characterized functionally as a reduced-function variant3, were also identified using the SnpEff annotations. Sanger sequencing of pLoF variant locations was performed as described for select variants, focusing on indel variants.

Association of p.E40K with type 2 diabetes and glucose

Thirteen study populations were used to evaluate associations of p.E40K with type 2 diabetes. Six of these study populations (DiscovEHR study, DiscovEHR replication cohort, UPenn study, the T2D-GENES, GoT2D, and DIAGRAM studies, the Malmo Diet and Cancer Study, and the HUNT study) were used to evaluate associations of rs116843064 with fasting glucose in non-diabetic individuals. A summary of studies, including definitions for type 2 diabetes case status, is provided in Supplementary Table 4.

The DiscovEHR human genetics study population for this analysis included: (1) 58,124 consented enrollees of European ancestry from the ongoing MyCode Community Health Initiative in the Geisinger Health System ("DiscovEHR study") that were used for primary association discovery; and (2) an additional 28,915 exome-sequenced DiscovEHR study participants of European ancestry ("DiscovEHR replication cohort"). Participants were recruited from outpatient primary care and specialty clinics, the cardiac catheterization laboratory, and from patient populations referred for bariatric and abdominal vascular surgery between 2007 and 2016. Clinical laboratory measurements, International Classification of Diseases, Ninth Revision (ICD-9) disease diagnosis codes, medications, and procedural codes were extracted from the EHR recording a median of 15 years of clinical care.

Type 2 diabetes was defined using a modified version of the Electronic Medical Records and Genomics (eMERGE) Network type 2 diabetes electronic phenotyping algorithm32. In brief, patients were considered to have type 2 diabetes if they had at least two out of (1) a diagnosis of type 2 diabetes in the electronic health record, (2) antidiabetic medication use, or (3) fasting glucose greater than 100 mg/dl or hemoglobin A1c greater than 6.5%. Patients who met criteria (2) and (3) and who had a type 1 diabetes diagnosis only were excluded. Type 2 diabetes controls were patients who had met none of the three inclusion criteria.

Median values for serially measured laboratory and anthropometric traits, including BMI and fasting glucose were calculated for all individuals with two or more measurements in the EHR following removal of likely spurious values that were greater than three standard deviations from the intra-individual median value. BMI values obtained during pregnancy were excluded.

We performed association analysis using the Mixed Model Analysis for Pedigrees (MMA) (https://mmapp.github.io/) software, which accounts for the relatedness of study subjects by conditioning the genotype–phenotype correlations on the phenotypic correlations among relative pairs. For both the discovery and replication cohorts, genetic relatedness matrices (GRMs) and principal components (PCs) were calculated using autosomal SNVs with MAF ≥5% and in approximately linkage equilibrium performed using the --r2--indep-pairwise command with window size of 50 variants, step size of 5 variants, and r2 threshold of 0.5), excluding variants in the major histocompatibility complex and other high complexity regions of the genome.
A total of 107,834 individuals from the Copenhagen City Heart Study, Copenhagen General Population Study, and Copenhagen Ischemic Heart Disease Study were included in the analysis. Participants were directly genotyped for rs116843064 with the TaqMan® ABI PRISM® Sequencing Detection System (Applied Biosystems) and TaqMan-based assays or with the use of an allele-specific PCR (KASPar, LGC Genomics). Association analysis with type 2 diabetes was performed using logistic regression adjusted for age, sex, and PCs 1–4. A total of 107,834 individuals aged between 40 and 79 years and living in the Norfolk county in East Anglia (United Kingdom) at recruitment 41. EPIC-Norfolk is a constituent cohort of the European Prospective Investigation of Cancer and Nutrition (EPIC) cohort 41. EPIC-InterAct includes 12,403 incident T2D cases and a subcohort of 16,154 individuals that includes 778 randomly selected incident T2D cases. rs116843064 was either directly genotyped on the Illumina HumanCoreExome chip, or imputed from genotype data of the 1,000 Genomes Project (info = 0.807). Imputed data from the EPIC-Norfolk study were removed from analyses in EPIC-InterAct to avoid double-counting. Association analysis with type 2 diabetes was performed using logistic regression adjusted for age, sex, and PCs 1–4. EPIC-Norfolk is a prospective cohort study of 25,639 individuals aged between 50 and 74 years and living in the Flanders region (Belgium) at recruitment 41. The EPIC-InterAct case-cohort study 41 is nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts. Participants were genotyped on the Affymetrix UKBiobank chip, on which the p.E40K variant was directly genotyped. Association analysis with type 2 diabetes was performed using logistic regression adjusted for age, sex, and PCs 1–4.
References
1. Yoshida, K., Shimizugawa, T., Ono, M. & Furukawa, H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J. Lipid Res. 43, 1770–1772 (2002).
2. Yau, M. H. et al. A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J. Biol. Chem. 284, 11942–11952 (2009).
3. Sukonina, V., Lookene, A., Olivecrona, T. & Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. USA 103, 17450–17455 (2006).
4. Koster, A. et al. Transgenic angiopoietin-like (angpl)4 overexpression and targeted disruption of angpl4 and angpl5: regulation of triglyceride metabolism. Endocrinology 146, 4943–4950 (2005).
5. Romeo, S. et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat. Genet. 39, 513–516 (2007).
6. Romeo, S. et al. Rare loss-of-function mutations in ANGPTL4 family members contribute to plasma triglyceride levels in humans. Clin. Invest. 119, 70–79 (2009).
7. Desai, U. et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc. Natl. Acad. Sci. USA 104, 11766–11771 (2007).
8. Dewey, F. E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1132 (2016).
9. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N. Engl. J. Med. 374, 1134–1144 (2016).
10. Wang, Y. et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl. Acad. Sci. USA 112, 11630–11635 (2015).
11. Zhang, R. The ANGPTL3-4-8 model: a molecular mechanism for triglyceride trafficking. Open Biol. 6, 150272 (2016).
12. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2015).
13. Dijk, W. & Kersten, S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr. Opin. Lipidol. 27, 249–256 (2016).
14. Liu, D. J. et al. Exome-wide association study of plasma lipids in 300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).
15. Yin, W. et al. Genetic variation in ANGPTL4 provides insights into protein function and association with glucose homeostasis. J. Biol. Chem. 284, 13213–13222 (2009).
16. Okamoto, H. et al. Angpl4 does not control hyperglucagonemia or alpha-cell hyperplasia following glucagon receptor inhibition. Proc. Natl. Acad. Sci. USA 114, 2747–2752 (2017).
17. Xu, A. et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc. Natl. Acad. Sci. USA 102, 6086–6091 (2005).
18. Wang, Y. et al. Angiopoietin-like protein 4 increases glucose tolerance and insulin resistance but induces liver steatosis in high-fat-diet mice. Mol. Med. Rep. 14, 3293–3300 (2016).
19. Mandard, S. et al. The fasting-induced adipose inducer angiopoietin-like-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281, 934–941 (2006).
20. Groop, L. et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 45, 1585–1593 (1996).
21. Isomaa, B. et al. A family history of diabetes is associated with reduced physical fitness in the Proactive, Prevention and Prevention of Diabetes (PPP)-Botnia study. Diabetologia 53, 1709–1713 (2010).
22. Lichtenstein, L. et al. Angpl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 12, 580–592 (2010).
23. Smart-Halajko, M. C. et al. The relationship between plasma angiopoietin-like protein 4 levels, angiopoietin-like protein 4 genotype, and coronary heart disease risk. Arterioscler. Thromb. Vasc. Biol. 30, 2277–2282 (2010).
24. Scott, R. A. et al. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci. Transl. Med. 8, 341ra76 (2016).
25. Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354, pii: aaf814 (2016).
26. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
27. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnPeF: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
28. Khoe, A. N. et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J. Am. Med. Inform. Assoc. 19, 212–218 (2012).
29. Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 21, 2409–2419 (2002).
30. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
31. Berglund, G., Elmstahl, S., Janzon, L. & Larsson, S. A. The Malmo Diet and Cancer Study. Design and feasibility. J. Intern. Med. 233, 45–51 (1993).
32. Enhorning, S., Hedblad, B., Nilsson, P. M., Engstrom, G. & Melander, O. Copeptin is an independent predictor of diabetic heart disease and death. Am. Heart J. 169, 549–561 e1 (2015).
33. Allen, N. E., Sudlow, C., Peckman, T., Collins, R. & Biobank, U. K. UK biobank data: come and get it. Sci. Transl. Med. 6, 224ed4 (2014).
34. Krokstad, S. et al. Cohort Profile: the HUNT Study, Norway. Int J. Epidemiol. 42, 968–977 (2013).
35. InterAct, C. et al. Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC study. Diabetologia 54, 2272–2282 (2011).
36. Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).
37. Day, N. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 80(Suppl 1), 95–103 (1999).

Received: 27 February 2018 Accepted: 10 May 2018
Published online: 13 June 2018
42. Jorgensen, A. B. et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur. Heart J. 34, 1826–1833 (2013).
43. Varbo, A. et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 61, 427–436 (2013).
44. Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat. Genet. 46, 294–298 (2014).
45. Bulik-Sullivan, B. K. et al. LD Score regression confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
46. Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 48, 634–639 (2016).
47. Kraus, W. E. et al. A Guide for a Cardiovascular Genomics Biorepository: the CATHGEN Experience. J. Cardiovasc. Transl. Res. 8, 449–457 (2015).
48. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
49. Kuo, J. Z. et al. Trans-ethnic fine mapping identifies a novel independent locus at the 3’ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population. Diabetesologia 56, 2619–2628 (2013).
50. Sheu, W. H. et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum. Mol. Genet. 22, 3165–3173 (2013).
51. Chang, Y. C. et al. Replication of genome-wide association signals of type 2 diabetes in Han Chinese in a prospective cohort. Clin. Endocrinol. (Oxf.) 76, 365–372 (2012).
52. Victor, R. G. et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol. 93, 1473–1480 (2004).
53. Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).
54. Denny, J. C. et al. PhEWS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).
55. Valenzuela, D. M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).
56. Gusarova, V. et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159, 691–696 (2014).
57. Gusarova, V. et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56, 1308–1317 (2015).
58. Gusarova, V. et al. ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice. Endocrinology 158, 1252–1259 (2017).

Acknowledgements

Thank you to Helen H. Hobbs, Jonathan C. Cohen, and Julia Kozlitina for contribution of sequence and type 2 diabetes phenotype data from the Dallas Heart Study. We also thank Joseph Lee, Myrianne Dure, and Lisa Shihanian for technical assistance with mouse experiments. Additional study-specific acknowledgments are in Supplementary Note 1.

Author contributions

V.G., A.B., F.E.D. and J.G. designed the experiments. A.E.L., I.G.R., I.D.O. and L.H. performed whole exome sequencing and analysis in DiscovEHR. C.O.D., T.M.T., A. Mahajan, J.B.N., I.F., A.B.F., D.F.G., M.S., C.A.E., R.A.S., O.P.D., R.B.P., A. Markettta and M.O.-M. performed genetic association studies. P.N.B., T.M., O.G., M.F.M., J.B.L., C. D.S., H.L.K. and F.E.D. modeled and reviewed human clinical data in DiscovEHR. V.G. performed the mouse experiments. V.G. performed the in vitro experiments. J.I.R., L.A. L., C.J.W., O.L.H., D.H.L., O.G., L.H., S.H.S., W.E.K., D.I.R., Y.-D.I.C., K.H., N.I.W., S.K., O.M., K.S., B.G.N., A.T.-H., G.R.A., D.A., J.C.F., M.B., M.L.C., G.D.Y., D.J.C., A.R.S., A.B. and F.E.D. supervised the human genetic studies. A.M.J., G.D.Y. and J.G. supervised the mouse and in vitro experiments. V.G., T.M.T., F.E.D. and J.G. wrote the manuscript. O.G., J.B. N., C.A.E., A.B.W., W.-J.L., J.I.R., L.-M.C., A.V.K., P.N., I.L.H., D.J.R., K.H., S.K., O.M., B.G.N., A.T.-H., M.B., M.L.M., D.J.C., A.R.S. and A.B. performed the in vitro experiments. A.M.J., G.D.Y. and J.G. supervised the article and in vitro experiments. V.G., T.M.T., F.E.D. and J.G. wrote the manuscript. O.G., J.B. N., C.A.E., A.B.W., W.-J.L., J.I.R., L.-M.C., A.V.K., P.N., I.L.H., D.J.R., K.H., S.K., O.M., B.G.N., A.T.-H., M.B., M.L.M., D.J.C., A.R.S. and A.B. performed the in vitro experiments. A.M.J., G.D.Y. and J.G. supervised the article and in vitro experiments. V.G., T.M.T., F.E.D. and J.G. wrote the manuscript.

Competing interests:

V.G., C.O.D., T.M.T., O.G., C.Y.V.H., S.B., A.E.L., J.P., A. Marchetta, L.H., A.I.M., I.B.B., I.D.O., G.D.Y., A.R.S., A.B., F.E.D. and J.G. were employees and/or stockholders at Regeneron Pharmaceuticals while engaged in the study. A.B.W. received consultancy honoraria from Roche. D.F.G., H.H., V.S., P.S., U. T. and K.S. are employed by deCODE Genetics/Amgen Inc.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party materials in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018
Daniel J. Rader15,16, Yii-Der I. Chen24, Kristian Hveem33,34,35, Nicholas J. Wareham12, Sekar Kathiresan30, Olle Melander10, Kari Stefansson9, Børge G. Nordestgaard36,37,38,39, Anne Tybjærg-Hansen8,36,38,39, Goncalo R. Abecasis7, David Altshuler11,40,41,42, Jose C. Florez43,44,45, Michael Boehnke7, Mark I. McCarthy5,46,47, George D. Yancopoulos1, David J. Carey3, Alan R. Shuldiner2, Aris Baras2, Frederick E. Dewey2 & Jesper Gromada1

1Regeneron Pharmaceuticals, Tarrytown, 10591 NY, USA. 2Regeneron Genetics Center, Tarrytown, 10591 NY, USA. 3Geisinger, Danville, 17822 PA, USA. 4Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK. 5Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, University of Michigan, Ann Arbor, 48109 MI, USA. 6Department of Human Genetics, University of Michigan, University of Michigan, Ann Arbor, 48109 MI, USA. 7Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109 MI, USA. 8Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, 2100, Denmark. 9deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland. 10Department of Clinical Sciences, Malmö, Lund University, Malmö, 221, Sweden. 11Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142 MA, USA. 12MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK. 13Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan. 14Department of Social Work, Tunghai University, Taichung, 40704, Taiwan. 15Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA. 16Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA. 17Division of Cardiology, Department of Medicine; Molecular Physiology Institute, School of Medicine, Duke University, Durham, 27710 NC, USA. 18Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, 00170, Finland. 19Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, 221, Sweden. 20Instituto de Investigaciones Biomédicas, UNAM, Coyoacán, 04510 Mexico City, Mexico. 21Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico. 22Department of Biostatistics, University of Liverpor, Liverpool, L69 7ZX, UK. 23Estonian Genome Center, University of Tartu, Tartu, 50090, Estonia. 24Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LAbioMed at Harbor-UCLA Medical Center, Torrance, 90502 CA, USA. 25Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10617, Taiwan. 26Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, 10617, Taiwan. 27Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA. 28Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, 19104 PA, USA. 29Department of Anesthesiology, University of Michigan, Ann Arbor, 48109 MI, USA. 30Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 MA, USA. 31Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 MA, USA. 32Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109 MI, USA. 33HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, 7601, Norway. 34K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim, 7491, Norway. 35Department of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, 7601, Norway. 36The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark. 37Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University, Copenhagen, 2730, Denmark. 38The Copenhagen Heart Study, Frederiksborg Hospital, Copenhagen University Hospital, Copenhagen, 2400, Denmark. 39Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark. 40Department of Molecular Biology, Diabetes Unit, and Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02114 MA, USA. 41Departments of Genetics and Medicine, Harvard Medical School, Boston, 02115 MA, USA. 42Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA. 43Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02115 MA, USA. 44Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, 02142 MA, USA. 45Department of Medicine, Harvard Medical School, Boston, 02115 MA, USA. 46Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK. 47Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX4 2PG, UK. These authors contributed equally: Viktoria Gusaurova, Colm O’Dushlaine, Tanya M. Teslovich. These authors jointly supervised this work: Aris Baras, Frederick E. Dewey, Jesper Gromada.