Article

One-Pot Synthesis of Alumina-Titanium Diboride Composite Powder at Low Temperature

Xueyin Liu 1, Ke Bao 2, Junfeng Chen 3, Quanli Jia 4 and Shaowei Zhang 2, *

1 College of Civil Engineering and Architecture, Quzhou University, Quzhou 324000, China; kb357@exeter.ac.uk
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK;
3 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; chenjunfeng@163.com
4 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450002, China; jiaquanli@zzu.edu.cn
* Correspondence: s.zhang@exeter.ac.uk

Abstract: Alumina-titanium diboride (Al2O3-TiB2) composite powders were synthesised via aluminothermic reduction of TiO2 and B2O3, mediated by a molten chloride salt (NaCl, KCl, or MgCl2). The effects of salt type, initial batch composition, and firing temperature/time on the phase formation and overall reaction extent were examined. Based on the results and equilibrium thermodynamic calculations, the mechanisms underpinning the reaction/synthesis processes were clarified. Given their evaporation losses at test temperatures, appropriately excessive amounts of Al and B2O3 are needed to complete the synthesis reaction. Following this, phase-pure Al2O3-TiB2 composite powders composed of 0.3–0.6 µm Al2O3 and 30–60 nm TiB2 particles were successfully fabricated in NaCl after 5 h at 1050 °C. By increasing the firing temperature to 1150 °C, the time required to complete the synthesis reaction could be reduced to 4 h, although the sizes of Al2O3 and TiB2 particles in the resultant phase pure composite powder increased slightly to 1–2 µm and 100–200 nm, respectively.

Keywords: alumina; titanium diboride; composite powder; molten salt synthesis; aluminothermic reduction; boron oxide; titania; thermodynamic calculation

1. Introduction

Alumina (Al2O3) is a representative high performance ceramic material possessing numerous superior properties. Apart from its high melting point, it exhibits high hardness and mechanical strength, excellent wear and chemical resistances, as well as good electrical/thermal insulation [1]. These, along with its ready availability, make Al2O3 an attractive ceramic material applicable to a wide range of structural and functional applications, in, e.g., wear-resistant components, high-speed cutting tools, refractories, and artificial hip joints [2–4]. Unfortunately, it suffers from low fracture toughness and poor thermal shock resistance [5,6], negatively affecting its service performance and life. One of the commonly adopted strategies for overcoming this is to make a composite [7] by combining it with another reinforcement phase, e.g., particles/platelets, or fibrous phases such as carbon fibres and carbon nanotubes. Titanium diboride (TiB2) stood out as one of the reinforcement phases, owing to its good structural and thermodynamic compatibility with Al2O3 [8,9] and its excellent properties such as high melting point, high hardness/elastic modulus, relatively low density, and good thermal/electrical conductivities [10]. Previous studies found that incorporation of TiB2 particles into Al2O3 conferred much improved hardness, strength, fracture toughness and electrical conductivity on the resultant Al2O3-TiB2 composite materials [11–16], making them suitable for a variety of demanding applications, e.g., in electrodes, cutting tools, wear parts, lightweight armors, high-temperature/glow-plug heaters, and heat exchangers [14,17,18].
To fabricate high performance Al$_2$O$_3$-TiB$_2$ composites, it is key to prepare and use high quality counterpart powders. Conventionally, such composite powders were prepared by directly mixing pre-synthesised TiB$_2$ and Al$_2$O$_3$ powders in a ball mill [11,12,14–17,19,20]. Unfortunately, the final bulk composites exhibited unsatisfactory service performance arising mainly from poor dispersion and distribution of TiB$_2$ in Al$_2$O$_3$. To overcome this, in-situ formation of the two constituent phases was suggested [21]. For example, a self-propagating high-temperature synthesis (SHS) method was attempted to form in-situ Al$_2$O$_3$ and TiB$_2$ from powder mixtures of Al, TiO$_2$/Ti, and B$_2$O$_3$/B/H$_3$BO$_3$ [18,22–32]. However, this method suffered from several weaknesses; in particular, difficulties to control the synthesis process and synthesise phase pure materials. Apart from SHS, mechanochemical synthesis [8,9,33–35], and milling assisted sol-gel process [36] were investigated. With these two techniques, a long processing time was required, and the resultant powders were often heavily agglomerated, and contaminated during prolonged milling.

In recent years, our group has successfully synthesised several ultra-high temperature boride powders via magnesiothermic reduction of oxide precursors in a molten salt [37–39]. In this work, such a molten salt synthesis (MSS) technique was further developed to synthesise high-quality Al$_2$O$_3$-TiB$_2$ composite powders at relatively low temperatures. The effects of processing factors such as salt type, initial batch composition, and firing temperature/time on the synthesis process were examined, and the synthesis conditions optimised. Based on the results, and thermodynamic calculations, the mechanisms underpinning the reaction/synthesis process were proposed.

2. Materials and Methods

The TiO$_2$ (>99%, 100–300 nm), B$_2$O$_3$ (99.98%) and Al (99.5%, ~44 µm) powders were used as the main starting materials, along with KCl (>99%), NaCl (>99%) and anhydrous MgCl$_2$ (>98%). All of these materials except for Al (Alfa Aesar, Lancashire, UK) were from Sigma-Aldrich (Gillingham, UK). The three main starting materials were mixed in stoichiometric (indicated by the overall Reaction (1)) or nonstoichiometric proportions (with excess Al and B$_2$O$_3$), in a mortar and pestle, and further combined with 5 times (by weight) of each of the salts. The final powder mix was contained in an alumina crucible and heated in an argon protected tube furnace to a temperature between 850 and 1150 °C and held for 4–6 h. After cooling to room temperature, the reacted powder coexisting with the residual salt was subjected to repeated hot water washing. The remaining salt-free product powder was dried overnight at 80 °C before being subjected to detailed characterisations.

$$3\text{TiO}_2 + 3\text{B}_2\text{O}_3 + 10\text{Al} = 3\text{TiB}_2 + 5\text{Al}_2\text{O}_3 \quad (1)$$

Phase formation and reaction extent in samples were evaluated based on their X-ray diffraction (XRD) spectra recorded by an X-ray diffractometer (D8 Advance, Bruker, Germany) operated at 40 mA/40 kV (using CuKα radiation), and at a scan rate of 2° (2θ) min$^{-1}$, and the ICDD cards used are: TiB$_2$ (35-741), Al$_2$O$_3$ (corundum) (10-173), Ti$_2$O$_3$ (43-1033), Al$_4$Ti (37-1449), Al$_{18}$B$_4$O$_{33}$ (32-3), and MgAl$_2$O$_4$ (21-1152). Samples were also gold- or carbon-coated for further microstructural examinations using a scanning electron microscope (SEM, Nova 600, FEI, Hillsboro, OR, USA) and a transmission electron microscope (TEM, JEM 2100, JEOL, Tokyo, Japan), linked with energy-dispersive X-ray spectroscopy (EDS, Oxford Instrument, Oxford, UK).

To assist in clarification of the mechanisms underpinning the whole reaction/synthesis process, thermodynamic calculations were carried out using the commercial FactSage package [40]. The Gibbs energy values for each of the intermediate reactions and the overall reaction (Reaction (1)), as a function of temperature, were calculated.

3. Results and Preliminary Discussion

3.1. Influence of Salt Type on Al$_2$O$_3$-TiB$_2$ Formation

Figure 1 shows XRD patterns of stoichiometric samples after 4 h firing in different salts at 850 °C. After firing in KCl, α-Al$_2$O$_3$ and TiB$_2$ were identified as the primary phases
in the sample (Figure 1a). Some intermediate Al$_{18}$B$_4$O$_{33}$ and Al$_3$Ti were also detected, along with a trace of Ti$_2$O$_3$, indicating the low extents of Reaction (1) and Al$_2$O$_3$-TiB$_2$ formation. Replacing KCl with NaCl (Figure 1b) led to an evident increase in the relative peak heights of both Al$_2$O$_3$ and TiB$_2$, and a decrease in those of Al$_3$Ti, while those of intermediate Al$_{18}$B$_4$O$_{33}$ and Ti$_2$O$_3$ changed little, demonstrating the enhanced extents of Al$_2$O$_3$-TiB$_2$ formation, and the better effect of NaCl than KCl on accelerating the overall reaction. As discussed previously [37–39], several processing parameters—in particular, the solubility and mobility of reaction species in the molten salt—play crucial roles in MSS. Unfortunately, these key processing parameters are not available, so it is difficult to figure out the reasons behind the better accelerating effect of NaCl in the present case. When NaCl was replaced with MgCl$_2$, the peak heights of Al$_2$O$_3$ and TiB$_2$ further increased (Figure 1c), and no Al$_{18}$B$_4$O$_{33}$, Al$_3$Ti or Ti$_2$O$_3$ was detected, suggesting much enhanced extents of Reaction (1). Nevertheless, an undesirable by-product phase, magnesium aluminate spinel (MgAl$_2$O$_4$), was formed in this case, due to likely the reaction between the formed Al$_2$O$_3$ and the MgCl$_2$ (Reaction (2) [41]. In the three cases, except for α-Al$_2$O$_3$, no other transition aluminas were detected at such a low firing temperature. The reason for this was not clear, but it could be due to the locally enhanced salt bath temperature arising from the exothermic reactions, as suggested by the thermodynamic calculations presented later (see Section 4 below). Given the better accelerating effect of NaCl than KCl, and the formation of undesired by-product MgAl$_2$O$_4$ in the case of using MgCl$_2$, NaCl was chosen specifically to form a liquid reaction medium for the following MSS investigations.

\[4\text{Al}_2\text{O}_3 + 3\text{MgCl}_2 = 3\text{MgAl}_2\text{O}_4 + 2\text{AlCl}_3 \]

(2)

![Figure 1](image)

Figure 1. XRD patterns of stoichiometric samples after 4 h firing at 850 °C in: (a) KCl, (b) NaCl, and (c) MgCl$_2$.

3.2. Influence of Firing Temperature on Al$_2$O$_3$-TiB$_2$ Formation

Figure 2 presents XRD patterns of stoichiometric samples after 4 h firing in NaCl at different temperatures. At 850 °C, as already described above, Al$_2$O$_3$ and TiB$_2$ were formed as the primary phases, but some intermediate Al$_{18}$B$_4$O$_{33}$, Al$_3$Ti and Ti$_2$O$_3$ were detected (Figure 2a/Figure 1b). Upon increasing the temperature to 950 °C (Figure 2b) and 1050 °C (Figure 2c), the relative peak heights of Al$_2$O$_3$ and TiB$_2$ increased significantly. Meanwhile, Al$_3$Ti disappeared, and Ti$_2$O$_3$ changed little, but the peak heights of Al$_{18}$B$_4$O$_{33}$ increased. These results implied that increasing the firing temperature favoured not
only the Al$_2$O$_3$-TiB$_2$ formation but also the Al$_{18}$B$_4$O$_{33}$ formation. Further increasing the temperature to 1150 °C led to a further increase in the peak heights of Al$_{18}$B$_4$O$_{33}$ and Ti$_2$O$_3$ but decrease in those of Al$_2$O$_3$ and TiB$_2$ (Figure 2d), indicating the adverse effect of such further temperature increase on the Al$_2$O$_3$-TiB$_2$ formation. This, according to our previous studies on MSS of transition metal borides [37–39], was due to probably evaporation loss of Al at relatively high reaction temperatures [42]. To confirm this, the influence of using excess Al on the Al$_2$O$_3$-TiB$_2$ formation was further investigated, as described and discussed next.

Figure 2. XRD patterns of stoichiometric samples after 4 h firing in NaCl at: (a) 850, (b) 950, (c) 1050, and (d) 1150 °C.

3.3. Influence of Excess Al on Al$_2$O$_3$-TiB$_2$ Formation

Figure 3 illustrates the influence of excess Al on phase evolution in samples after 4 h firing in NaCl at 1150 °C. The use of 20 wt% more Al resulted in considerable increase in the peak heights of Al$_2$O$_3$ and TiB$_2$ and decrease in those of Al$_{18}$B$_4$O$_{33}$ and Ti$_2$O$_3$ (Figure 3a,b). By further increasing excess Al to 25 wt%, the peak heights of Al$_2$O$_3$ and TiB$_2$ were further increased. Meanwhile, Ti$_2$O$_3$ was completely eliminated, and only minor Al$_{18}$B$_4$O$_{33}$ remained (Figure 3c), illustrating positive effects from the Al compensation. Nevertheless, the formation of phase-pure Al$_2$O$_3$-TiB$_2$ was still not achieved.

To eliminate Al$_{18}$B$_4$O$_{33}$, the excess Al was further increased to 30 wt%. Unfortunately, some Al$_3$Ti was formed instead (Figure 3d), implying that there was no sufficient supply of B in the system, due to probably evaporation loss of B$_2$O$_3$ at such a relatively high temperature [43,44].
3.4. Influence of Excess B$_2$O$_3$ on Al$_2$O$_3$-TiB$_2$ Formation

To confirm and address the issue with B$_2$O$_3$ evaporation loss, the influence of using excess B$_2$O$_3$ (along with 30 wt% excess Al) on the Al$_2$O$_3$-B$_2$O$_3$ formation in the sample fired at 1150 °C for 4 h was further investigated as an example. When 10 wt% excess B$_2$O$_3$ was used, the peak heights of both Al$_2$O$_3$ and TiB$_2$ increased, whereas those of Al$_3$Ti decreased considerably (Figure 4b), compared with in the case of stoichiometric sample (Figure 4a). Further increasing the excess B$_2$O$_3$ to 20 wt% led to complete elimination of Al$_3$Ti, and the formation of phase pure Al$_2$O$_3$-TiB$_2$ (Figure 4c).

Figure 3. XRD patterns of samples using (a) 0, (b) 20, (c) 25, and (d) 30 wt% excess Al, after 4 h firing in NaCl at 1150 °C.

Figure 4. Influence of excess B$_2$O$_3$ on phase formation in samples using 30 wt% excess Al, after 4 h firing in NaCl at 1150 °C: (a) 0 (stoichiometric), (b) 10, and (c) 20 wt% excess B$_2$O$_3$.
3.5. Influence of Firing Time on Al$_2$O$_3$-TiB$_2$ Formation and Further Optimisation of Synthesis Condition

To reveal the influence of firing time on the Al$_2$O$_3$-TiB$_2$ formation and further optimise the synthesis condition, samples containing 30 wt% excess Al and 20 wt% excess B$_2$O$_3$ were fired in NaCl at 1050 °C for different time periods, and then analysed by XRD (Figure 5). As shown in Figure 5a,b, with increasing the time at 1050 °C from 4 to 5 h, Al$_{18}$B$_4$O$_{33}$ disappeared, whereas the peak heights of Al$_3$Ti increased. Further extending the time to 6 h resulted in little change in the XRD pattern (Figure 5c), and Al$_3$Ti was still detected. This, as mentioned above (Section 3.4), indicated that 20 wt% excess B$_2$O$_3$ might not be sufficient to compensate for the evaporation loss of B$_2$O$_3$ under this condition, in other words, more excess B$_2$O$_3$ had to be used. As verified by Figure 6, increasing excess B$_2$O$_3$ from 20 wt% to 25 wt% led to significant decrease in the peak heights of Al$_3$Ti, and further increasing the excess amount to 30 wt%, all the intermediate phases including Al$_3$Ti disappeared, and phase pure Al$_2$O$_3$-TiB$_2$ powder was finally obtained.

![Figure 5](image5.png)

Figure 5. XRD patterns of samples using 30 wt% excess Al and 20 wt% excess B$_2$O$_3$ after firing in NaCl at 1050 °C for: (a) 4, (b) 5, and (c) 6 h.

![Figure 6](image6.png)

Figure 6. XRD patterns of samples after firing in NaCl at 1050 °C for 5 h using 30 wt% excess Al, and (a) 20, (b) 25, and (c) 30 wt% excess B$_2$O$_3$.
3.6. Microstructure of Al$_2$O$_3$-TiB$_2$ Product Powder

As demonstrated in Figures 4c and 6c and discussed above, phase pure Al$_2$O$_3$-TiB$_2$ powder could be formed in NaCl after 5 h firing at 1050 °C (using 30 wt% excess Al and 30 wt% excess B$_2$O$_3$), or 4 h firing at 1150 °C (using 30 wt% excess Al and 20 wt% excess B$_2$O$_3$), which was further confirmed by microstructural characterisation. Figure 7, as an example, gives TEM images of the product powder prepared under the former condition, along with the corresponding EDS, showing the coexistence of submicron-sized Al$_2$O$_3$ particles (0.3–0.6 µm) and nanosized TiB$_2$ particles (30–60 nm). Except these two phases, no other impurity phases were seen, as already revealed by XRD (Figure 6c). Figure 8 further displays SEM images of the product powder formed under the latter condition mentioned above. The formation of phase pure Al$_2$O$_3$-TiB$_2$ in this case was also confirmed by EDS, along with XRD (Figure 4c). However, due to the higher synthesis temperature, Al$_2$O$_3$ and TiB$_2$ particles in the composite powder became slightly bigger (1–2 µm Al$_2$O$_3$ and 100–200 nm TiB$_2$).

Figure 7. TEM images (a,b) and corresponding EDS (c,d) of the Al$_2$O$_3$-TiB$_2$ composite powder resultant from 5 h firing in NaCl at 1050 °C (the small C and Cu peaks arose from the carbon coating and the Cu grid).
4. Further Discussion and Reaction/Synthesis Mechanism

Based on the results presented in Figures 1–8 and the preliminary discussion above, as well as on the thermodynamic calculations (Figure 9), the reaction/synthesis mechanisms (taking the case of using NaCl as an example) could be proposed; they are discussed as follows.

Figure 8. SEM images (a, b) and corresponding EDS (c, d) of the Al$_2$O$_3$-TiB$_2$ composite powder resultant from 4 h firing in NaCl at 1150 °C.

Figure 9. The standard Gibbs energy values corresponding to Reactions (1) and (3)-(10), as a function of temperature.
The firing temperatures (850–1150 °C) were above the melting points of NaCl, B$_2$O$_3$ and Al. So, at these temperatures, they all melted, forming a liquid NaCl pool, and B$_2$O$_3$ and Al liquid droplets. Then, the latter two would start to react with each other in the molten NaCl medium, forming B and Al$_2$O$_3$, according to Reaction (3).

On the other hand, as discussed in our previous work on MSS of TiB$_2$ [39], TiO$_2$ also would be reduced by the Al droplets in the molten NaCl medium, forming Ti and Al$_2$O$_3$ (Reaction (4)). The Al$_2$O$_3$ formed from Reactions (3) and (4) would partially react with the unreduced B$_2$O$_3$, in the NaCl medium, forming the intermediate Al$_{18}$B$_4$O$_{33}$ (Reaction (5)), as detected by XRD (Figures 1–3 and Figure 5).

\[
\begin{align*}
B_2O_3 + 2Al &= 2B + Al_2O_3 \\
3TiO_2 + 4Al &= 3Ti + 2Al_2O_3 \\
9Al_2O_3 + 2B_2O_3 &= Al_{18}B_4O_{33}
\end{align*}
\]

With the optimisation of synthesis condition, the intermediate Al$_{18}$B$_4$O$_{33}$ could be further reduced by Al in the molten NaCl, forming additional B and Al$_2$O$_3$ according to Reaction (6), as verified by XRD (Figures 3 and 5).

Apart from Al$_{18}$B$_4$O$_{33}$, another main intermediate phase, Al$_3$Ti, was formed from the reaction between the Ti formed from Reaction (4), and Al (Reaction (7)), as detected by XRD (Figures 1–6).

As discussed, and confirmed in our previous studies [37–39], the formed B and Ti (Reactions (3), (4) and (6)) were slightly dissoluble in the molten chloride salts. So, the dissolved B and Ti would diffuse through the molten salt medium and reacted with each other, forming the other desirable phase of TiB$_2$ (Reaction (8)).

\[
\begin{align*}
Al_{18}B_4O_{33} + 4Al &= 4B + 11Al_2O_3 \\
3Ti + 3Al &= Al_3Ti \\
Ti + 2B &= TiB_2
\end{align*}
\]

B dissolved in the molten salt would also diffuse through the salt medium and react respectively with the Al$_3$Ti produced from Reaction (7), and the unreacted raw material TiO$_2$, forming additional TiB$_2$ (Reactions (9) and (10)). Reaction (9) was mainly responsible for the complete elimination of this intermediate phase under the optimal conditions (Figures 4 and 6).

\[
\begin{align*}
Al_3Ti + 2B &= TiB_2 + 3Al \\
10B + 3TiO_2 &= 3TiB_2 + 2B_2O_3
\end{align*}
\]

As shown in Figure 9, the Gibbs energy values corresponding to Reactions (3)–(9) and the overall Reaction (1) are also negative, at test temperatures (and even at lower temperatures), suggesting that all of these exothermic Reactions are thermodynamically favourable, which further supports the plausibility of the reaction/synthesis mechanisms proposed above.

5. Conclusions

Low temperature synthesis of Al$_2$O$_3$-TiB$_2$ composite powders via aluminothermic reduction of TiO$_2$ and B$_2$O$_3$ in a molten chloride salt (KCl, NaCl or MgCl$_2$) was investigated. Processing parameters including salt type, initial batch composition, and firing temperature/time played important roles in the synthesis process. Phase pure Al$_2$O$_3$-TiB$_2$ nanocomposite powder could be prepared in NaCl after 5 h firing at 1050 °C, when 30 wt% excess Al and 30 wt% excess B$_2$O$_3$ were used. The particle sizes of Al$_2$O$_3$ and TiB$_2$ coexisting in the as-prepared composite powder were estimated to be 0.3–0.6 µm and 30–60 nm, respectively. By increasing the temperature to 1150 °C and using 30 wt% excess Al and 20 wt% excess B$_2$O$_3$, phase pure Al$_2$O$_3$-TiB$_2$ composite powder also could be prepared in
NaCl after only 4 h, although sizes of Al$_2$O$_3$ and TiB$_2$ particles coexisting in the resultant composite power increased slightly to 1–2 µm and 100–200 nm, respectively.

Author Contributions: Experiment and initial draft, K.B. and X.L.; conception, experiment design and thermodynamic calculation, K.B., X.L., J.C. and Q.J.; review and editing, X.L., Q.J. and S.Z.; supervision, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 51902180), and the EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials (EP/L015331/1) at the University of Exeter.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Munro, M. Evaluated Material Properties for a Sintered alpha-Alumina. *J. Am. Ceram. Soc.* **2005**, *80*, 1919–1928. [CrossRef]
2. Basu, B.; Balani, K. (Eds.) Bonding, Structure, and Physical Properties. In *Advanced Structural Ceramics*; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 28–29.
3. Williams, D. *Contemporary and Future Biomaterials*; Cambridge University Press (CUP): Cambridge, UK, 2018; pp. 475–589.
4. Yazdani, B.; Xia, Y.; Ahmad, I.; Zhu, Y. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. *Scr. Mater.* **2000**, *42*, 555–560. [CrossRef]
5. Sharifi, E.M.; Karimzadeh, F.; Enayati, M.H. Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al-TiO$_2$-B$_2$O$_3$. *J. Alloys Compd.* **2010**, *502*, 508–512. [CrossRef]
6. Liu, J.; Owney, P.D. Enhanced mechanical properties of alumina by dispersed titanium diboride particulate inclusions. *J. Am. Ceram. Soc.* **1991**, *74*, 241–243. [CrossRef]
7. Ranganath, S.; Subrahmanyan, J. Impact response of Al$_2$O$_3$ and Al$_2$O$_3$-TiB$_2$ ceramic composites. *J. Mater. Sci. Lett.* **1991**, *10*, 1297–1298. [CrossRef]
8. Bellosi, A.; De Portu, G.; Guicciardi, S. Preparation and properties of electroconductive Al$_2$O$_3$-based composites. *J. Eur. Ceram. Soc.* **1992**, *10*, 307–315. [CrossRef]
9. Jianxin, D.; Tongkun, C.; Lili, L. Self-lubricating behaviors of Al$_2$O$_3$/TiB$_2$ ceramic tools in dry high-speed machining of hardened steel. *J. Eur. Ceram. Soc.* **2005**, *25*, 1073–1079. [CrossRef]
10. Tampieri, A.; Bellosi, A. Oxidation of monolithic TiB$_2$ and of Al$_2$O$_3$-TiB$_2$ composite. *J. Mater. Sci.* **1993**, *28*, 649–653. [CrossRef]
11. Logan, K.V. Shaped Refractory Products and Method of Making Same. United States Patent No. 4, 891, 337, 2 January 1990. [CrossRef]
12. Ray, S.P. Boride-alumina composites: Synthesis and Fabrication. *Metall. Trans. A* **1992**, *23*, 2381–2385. [CrossRef]
13. Keckes, L.J.; Niiler, A.; Kottke, T.; Logan, K.V.; Villalobos, G.R. Dynamic consolidation of combustion-synthesized alumina-titanium diboride composite ceramics. *J. Am. Ceram. Soc.* **2005**, *79*, 2687–2695. [CrossRef]
14. Kecskes, L.J.; Niiler, A.; Kottke, T.; Logan, K.V.; Villalobos, G.R. Dynamic consolidation of combustion-synthesized alumina-titanium diboride composite ceramics. *J. Am. Ceram. Soc.* **2005**, *79*, 2687–2695. [CrossRef]
25. Ma, Z.Y.; Tjong, S.C. In Situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO$_2$-Al(B$_2$O$_3$) systems. Met. Mater. Trans. A 1997, 28, 1931–1942. [CrossRef]
26. Xia, T.D.; Liu, T.Z.; Zhao, W.J.; Munir, Z.A.; Wang, T.M. Photo- and cathodoluminescence of the combustion-synthesized Al$_2$O$_3$-TiB$_2$ composites. J. Mater. Res. 2000, 15, 1662–1629. [CrossRef]
27. Meyers, M.; Olevsky, E.; Ma, J.; Jamet, M. Combustion synthesis/densification of an Al$_2$O$_3$-TiB$_2$ composite. Mater. Sci. Eng. A 2001, 311, 83–99. [CrossRef]
28. Zhu, H.G.; Wang, H.Z.; Ge, L.Q.; Chen, S.; Wu, S.Q. Formation of composites fabricated by exothermic dispersion reaction in an Al-TiO$_2$-B$_2$O$_3$ system. Trans. Nonferrous Met. Soc. China 2007, 17, 590–594. [CrossRef]
29. Zhu, H.; Wang, H.; Ge, L. Wear properties of the composites fabricated by exothermic dispersion reaction synthesis in an Al-TiO$_2$-B$_2$O$_3$ system. Wear 2008, 264, 967–972. [CrossRef]
30. Yeh, C.; Li, R. Formation of TiB$_2$-Al$_2$O$_3$ and NbB$_2$-Al$_2$O$_3$ composites by combustion synthesis involving thermite reactions. Chem. Eng. J. 2009, 147, 405–411. [CrossRef]
31. Mousavian, R.T.; Sharafi, S.; Shariat, M.H. Microwave-assisted combustion synthesis in a mechanically activated Al-TiO$_2$-H$_3$BO$_3$ system. Int. J. Refract. Met. Hard Mater. 2011, 29, 281–288. [CrossRef]
32. Mishra, S.; Gokuul, V.; Paswan, S. Alumina-titanium diboride in situ composite by self-propagating high-temperature synthesis (SHS) dynamic compaction: Effect of compaction pressure during synthesis. Int. J. Refract. Met. Hard Mater. 2014, 43, 19–24. [CrossRef]
33. Khaghani-Dehaghani, M.A.; Ebrahimi-Kahrizsangi, R.; Setoudeh, N.; Nasiri-Tabrizi, B. Mechanochemical synthesis of Al$_2$O$_3$-TiB$_2$ nanocomposite powder from Al-TiO$_2$-H$_3$BO$_3$ mixture. Int. J. Refract. Met. Hard Mater. 2011, 29, 244–249. [CrossRef]
34. Abdellahi, M.; Heidari, J.; Sabouhi, R. Influence of B source materials on the synthesis of TiB$_2$-Al$_2$O$_3$ nanocomposite powders by mechanical alloying. Int. J. Miner. Met. Mater. 2013, 20, 1214–1220. [CrossRef]
35. Yang, W.; Dong, S.; Luo, P.; Yangli, A.; Liu, Q.; Xie, Z. Effect of Ni addition on the preparation of Al$_2$O$_3$-TiB$_2$ composites using high-energy ball milling. J. Asian Ceram. Soc. 2014, 2, 399–402. [CrossRef]
36. Rabieezadeh, A.; Hadian, A.; Ataie, A. Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol-gel method. Int. J. Refract. Met. Hard Mater. 2012, 31, 121–124. [CrossRef]
37. Zhang, S.; Khangkhamano, M.; Zhang, H.; Yeprem, H.A. Novel Synthesis of ZrB$_2$ powder via molten-salt-mediated magnesiothermic reduction. J. Am. Ceram. Soc. 2014, 97, 1686–1688. [CrossRef]
38. Bao, K.; Liu, C.; Yazdani, B.; Damavandi, Y.; Zhang, S. Low-Temperature preparation of lanthanum hexaboride fine powder via magnesiothermic reduction in molten salt. J. Ceram. Sci. Technol. 2016, 7, 403–408. [CrossRef]
39. Bao, K.; Wen, Y.; Khangkhamano, M.; Zhang, S. Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt. J. Am. Ceram. Soc. 2017, 51, 257–2272. [CrossRef]
40. Li, T.; Chen, J.; Xiao, J.; Wei, Y.; Li, G.; Zhang, S.; Li, N. Formation of liquid-phase isolation layer on the corroded interface of MgO/Al$_2$O$_3$-SiC-C refractory and molten steel: Role of SiC. J. Am. Ceram. Soc. 2021, 104, 2366–2377. [CrossRef]
41. Hashimoto, S.; Yamaguchi, A. Synthesis of MgAl$_2$O$_4$ (Spinel) Powder Using MgCl$_2$. J. Ceram. Soc. Jpn. 2001, 109, 894–896. [CrossRef]
42. Horlait, D.; Grasso, S.; Chronos, A.; Lee, W. Attempts to synthesise quaternary MAX phases (Zr$_x$M)$_2$AlC and Zr$_2$(Al,Al)C as a way to approach Zr$_2$AlC. Mater. Res. Lett. 2016, 4, 137–144. [CrossRef]
43. Mousavian, R.T.; Sharafi, S.; Roshan, M.R.; Shariat, M.H. Effect of mechanical activation of reagents’ mixture on the high-temperature synthesis of Al$_2$O$_3$-TiB$_2$ composite powder. J. Therm. Anal. Calorim. 2011, 104, 1063–1070. [CrossRef]
44. Jacobson, N.S.; Myers, D.L. High-temperature vaporization of B$_2$O$_3$(l) under reducing conditions. J. Phys. Chem. B 2011, 115, 13253–13260. [CrossRef]