Легчайший скалярный глобул

В.В. Анисович

Проведенные в последние годы исследования мезонных спектров дали возможность определить резонансную структуру волны $I^{PC}_{PQ} = 0^{++}, 10^{++}, 02^{++}, 12^{++}$ и $IJ^P = 1/2^+$ в области масс до 1900 МэВ и, тем самым, полностью восстановить мезонные мультплеты $1^P_{00}Q^0$ и $2^P_{00}Q^0$. Экспериментальные данные весьма определенно указывают на то, что в этой области масс находится пять скалярных-изоскалярных состояний: четыре из них являются $q\bar{q}$-состояниями — членами мультплетов $1^P_{00}Q^0$ и $2^P_{00}Q^0$, а пятто состояние, будучи лежащим с точки зрения кварковой систематики, обладает в то же время всеми свойствами легчайшего скалярного глобула. Анализ 00^{++}-волны, проведенный в дисперсионной технике, позволяет восстановить картину смешения шестого глобального состояния (глононума) с близлежащими скалярными $q\bar{q}$-состояниями, членами мультплетов $1^P_{00}Q^0$ и $2^P_{00}Q^0$ шаг скалярных мезона поделил между собой глононум — это два относительно узких резонанса $f_0(1300)$ и $f_0(1500)$ и очень широкий резонанс $f_0(1530^{+90})$. Широкий резонанс является потомком глононума, сохраняя около 40–50% его компоненты.

PACS numbers: 12.39.Mk, 12.38.-t, 14.40.-n

1. Введение: ретроспективный взгляд и современное состояние проблемы

2. K-матрица и дисперсионное N/D-представление амплитуд рассеяния

3. K-матричный анализ спектров и классификация $q\bar{q}$-состояний по новентам (491).

4. Матрица пропагаторов: анализ волны $I^{PC}_{PQ} = 0^{++}$ (496).

5. Заключение (501).

Памяти Юрия Дмитриевича Пракошнина посвящается

В.В. Анисович, Петербургский институт ядерной физики, 188350 Гатчина, Санкт-Петербург, Россия

Статья поступила 4 ноября 1997 г.

© В.В. Анисович 1998
Значения (1.1) не включают в себя систематические ошибки, которые составляют порядка 100 МэВ.

Группа IBM получила несколько другое значение массы легчайшего глобобла [4]:

\[m_G(0^{+\pi}) = 1740 \pm 71 \text{ МэВ} \]

(1.2)

Результат, полученный в [5], следующий:

\[m_G(0^{+\pi}) = 1630 \pm 60 \pm 80 \text{ МэВ} \]

\[m_G(2^{+\pi}) = 2400 \pm 10 \pm 120 \text{ МэВ} \]

(1.3)

Однако во всех этих решеточных вычислениях не учитываются точным образом квадратные степени свободы: существующие вычислительные возможности не позволяют это сделать. Квадратные степени свободы могут заметно сместить положения масс глобоблов. Дисперсионный анализ мезонных спектров, связанный с восстановлением матрицы пропагаторов [6, 7], показывает, что смещение с qq-состояниями приводит к сдвигу масс порядка 100 – 300 МэВ. Следует подчеркнуть, что согласно правилам 1/N-разложения [8] (\(N = N = N_c \), где \(N_c \) – число легких флейферов (ароматов), а \(N_c \) – число цветов), смещение глобобольных и qq-состояний не подправлены.

Экспериментальные поиски глобоблов были особенно интенсивны в последнее десятилетие. Есть несколько типов реакций, в которых можно было бы ожидать более высокую вероятность рождения глобоблов. Рождение адров в центральной области в адров-адровых столкновениях при высоких энергиях является примером такой реакции: частицы центральной области образуются в результате перехода померяны \(\rightarrow \text{адроны} \). Так как померя является доминантно глобонной системой, то можно было бы ожидать в пучке вторичных адров доминантного рождения глобоблов и подавленного рождения qq-мезонов. Экспериментальные данные по центральному рождению адров с высокой статистикой, позволяющей проведение достаточно надежного парциально-волнового анализа пучка адров, появились лишь в самое недавнее время. Более доступной для экспериментального изучения оказалась другая реакция, обусловленная переходом глобон \(\rightarrow \text{адроны} \): радиационный распад \(J/\psi \rightarrow q + \text{адроны} \). В этом распаде адроны формируются глобонами, образовавшимися в результате сэ-анинигации, поэтому в этой реакции также можно было бы ожидать доминантного рождения глобоблов. Экспериментальное изучение спектров адров в радиационном \(J/\psi \)-распаде в течение многих лет и продолжается до сих пор. Экспериментальная информация, накопленная на начало девяностых годов, оказалась весьма обескураживающей: в радиационном \(J/\psi \)-распаде довольно интенсивно рождаются qq-мезоны. Относительные вероятности рождения мезонов суммированы в компиляции [9]; большая группа резонансов рождается с примерно равной вероятностью, среди них заведомо доминантные qq-системы, такие как \(\eta, \eta', f_0(1270), f_0(1525) \) и т.д. Такая ситуация допускает двойную интерпретацию:

1) глобобольных состояний не существует; глобол является "непереработанным обесценированным КХД" [10];

2) глобобольные состояния интенсивно смешиваются с qq-мезонами; на опыте наблюдаются именно эти смешанные состояния.

Результаты анализа 00+-- волн [6, 7] определенно указывают, что реализуется именно вторая вариант. Экспериментальные данные по переходным форм-факторам \(\gamma^* (Q^2) \rightarrow q, \eta, \eta' \) [11] дают следующие ограничения на вероятности глобобольных компонент в \(\eta \) и \(\eta' \)-мезонах: \(W_{\eta} \leq 8 \% \), \(W_{\eta'} \leq 20 \% \) [12]. Это означает, что в qq-мезонах, наблюдаемых в радиационном \(J/\psi \)-распаде, следует ожидать глобобольных компонент на уровне 5–10%. Отсюда же следует, что в глобобле присутствует qq-компONENTY должна быть заметно больше, так как глобоб может смешиваться с несколькими qq-мезонами. Эта качественная оценка согласуется с оценкой, получаемой в рамках правил 1/N-разложения: согласно этим правилам, глобобольная компонента в каждом из qq-мезонов порядка \(1/N_c \), а qq-компогента в глоболе порядка \(N_c/N_c \) [13]. Конечно, при этом следует иметь в виду, что конкретные случаи могут заметно отличаться от этих общих качественных оценок, так как величина смешивания существенно зависит также от взаимной близости (или удаленности) смешивающихся состояний.

Пояс глобобла в случае реализации в природе варианта 2), т.е. если происходит интенсивное смешивание глобобольных и qq-компонент, предполагает крепотливую труду нераспознанной идентификации и статистизации мезонов. Не оправдались наивные ожидания, инициировавшие активные исследования на ранней стадии. Например, предполагалось, что в обогащенных глюонами реакциях, таких как фотон-фотоны, соударения, мы увидим рождение глобоблов, однако увидели рождение адров, \(\gamma^* \rightarrow q + \text{адроны} \), и не наблюдали рождение глобоблов.

Основной канал в радиационных распадах \(J/\psi \), как видно из рассмотрения экспериментальных данных, — это рождение широких адровых кластеров. Фактически рождение этих кластеров есть прямое указание на сильное смешивание глобобла с qq-мезонами. Дело в том, что при смешивании нескольких резонансов существует эффект аккумулирования одному из резонансов ширин других. Этот эффект наблюдался в [14] при анализе низкоэнергетической части спектров 00+- волн и был детально исследован в [6, 7]. А именно, в случае полного смешивания двух резонансов один из резонансов приобретает сольную ширину \(\Gamma_1 + \Gamma_2 \), а ширина второго резонанса стремится к нулю. В случае идеального смешивания трех резонансов ширина одного из резонансов равна сумме ширин начальных состояний, \(\Gamma_1 + \Gamma_2 + \Gamma_3 \), а ширины двух других состояний стремятся к нулю. В реальном случае смешивания скалярного глобобла с близлежащими qq-состояниями происходит качественно близкий эффект: глобол, появившийся в радио скалярных qq-состояний, смешивается с ними и аккумулирует значительную часть их ширины. С этой точки зрения, появление широкого резонанса – преемника чистого глобобла (глюонуна) – есть неизбежное следствие смешивания. Широкий резонанс должен сосуществовать с относительно узкими резонансами, которые являются преемниками чистых qq-состояний и содержат значительную прямь глюонуна. Анализ 00+-волны, выполненный на основе дисперсионных соотношений в области 1200 – 1800 МэВ [6, 7], воспроизвел именно эту картину смешивания легчайшего скалярного глобобла с qq-состояниями мультитиплетов 1P0 и 2P0. Можно полагать, что такая картина является общей для всех низкоуровеньных глобоблов.
Итак, сильное смещение $q\bar{q}$-состояний и глюон-нуима не позволяет легко идентифицировать глюоболы. Единственным разумным стратегией в этом случае — последовательная систематизация всех резонансов по $q\bar{q}$-мультплетам. Состояния, являющиеся линиями с точки зрения этой классификации, должны рассматриваться как кандидаты в глюоболы или в другие экзотические мезоны. Такая программа исследования была декларирована в [13], и одновременно были сделаны первые шаги в ее реализации: в [14] был проведен К-матричный анализ низкоэнергетической части волны $\Delta R^C = 0^{++}$.

Детальный анализ мезонных состояний в области 1000–2000 МэВ оказался возможным благодаря богатой экспериментальной информации, накопленной в последнее десятилетие коллаборациями Crystal Barrel и GAMS. Коллаборация Crystal Barrel имеет прецизионные данные по рождению трех нейтральных мesonов в $p\bar{p}$-аннигиляции в покое,

$$pp (в покое) \to \pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \pi^+\pi^-\pi^0 \eta, \ (1.4)$$

с числом событий 1500000 $(\pi^+\pi^-\pi^0)$, 280000 $(\pi^+\pi^-\eta)$ и 185000 $(\pi^+\pi^-\pi^0 \eta)$. Данные по реакции $pp (в покое) \to \pi^+\pi^-\pi^0$, хотя и с несколько меньшей статистикой, были опубликованы в 1991 г. [15]. Однако первоначальная обработка спектров, не учитывающая всех особенностей трехчастичного распада, не привела к корректной идентификации скалярных резонансов. Критический анализ ситуации дан в [16, 17], где было указано, что резонанс вблизи 1500 МэВ, ранее идентифицированный как тетронный АХ2(1520), в действительности является скалярным. Повторный анализ реакций (1.4), проведенный в [19] совместно с Crystal Barrel в рамках T-матричного формализма, зафиксировал существование новых скалярных резонансов $f_0(1500)$ [18] и $a_0(1450)$. Кроме того, в [16–18] указывалось на весьма заметное рождение резонанса $f_0(1360)$ с полушпришей 130 МэВ, однако в то время не было ясно, наблюдается ли рождение нового резонанса или же это есть проявление широкого резонанса $c(1300)$, достаточно интенсивно обсуждавшегося в течение последних десятилетий. Только после проведении K-матричного анализа более широкого круга экспериментальных данных стало ясно, что в этом районе существуют два резонанса: сравнительно узкий $f_0(1300)$ и очень широкий $f_0(1530_{-90}^{+80})$.

На первой стадии исследований фиттирование данных проводилось в рамках T-матричной техники: T-матричное представление амплитуда процесса для обработки данных, а преимущество К-матричного подхода проявляются только тогда, когда имеется экспериментальная информация о всех возможных каналах. В интервале 1000–1500 МэВ в волне 0^{++} существенны следующие каналы: $\pi\pi$, $K\bar{K}$, $\pi\eta$, и $\pi\eta\pi$, а выше 1500 МэВ заметную роль играет еще и канал $\eta\eta'$. Очевидно, что использованная и изооцированной К-матричной техники для фиттирования ограниченного числа каналов (1.4) привело бы к большим неоднозначностям.

Открытие резонанса $f_0(1500)$ сразу же породило гипотезы о его тесной связи с легчайшим скалярным глубоболом: возможность такой связи подчеркивалась уже в [17, 18]. В последовавших далее работах [13, 20–23] было предложено несколько схем смещения легчайшего скалярного глубобола с близлежащими $q\bar{q}$-состояниями. Однако во всех этих схемах не учитывалась специфика, обусловленная переходом резонансов в реальные мезоны, а именно эти переходы, как показал далее детальный K-матричный анализ, определяют структуру 0^{++}-волны вблизи 1500 МэВ.

На следующем этапе в анализ волну 0^{++} были включены данные GAMS по спектрам $\pi^0\eta$, η, и η', полученные в реакциях [24–26]

$$\pi^- p \to \pi^0\eta, \eta, \eta', \ (1.5)$$

наряду с данными группы CERN–München [27]:

$$\pi^- p \to \pi^0\pi^- \ (1.6)$$

и группы BNL [28]:

$$\pi^- \to K\bar{K}. \ (1.7)$$

Одновременный анализ всей совокупности данных (1.4)–(1.7) был проведен в цикле работ [14, 29, 30] в рамках K-матричной техники, при этом область исследуемых масс и число каналов, включенных в К-матричный файл 0^{++}-амплитуды, постепенно увеличивались.

Первое исследование этого цикла, [14], ограничиваюсь двумя каналами, $\pi\pi$ и $K\bar{K}$, и инвариантной энергией мезонов $\sqrt{s} \leq 1100$ МэВ. В этом анализе было сделано важное для дальнейшего наблюдение: переходы, ответственные за распад мезонных состояний, ответственны также и за активное смещение этих состояний. При этом массы смешанных состояний заметно отличаются от масс начальных состояний. Эти "начальные" мезоны были названы в [14] "голыми мезонами" в отличие от физических состояний, в формировании которых, как оказалось, существенную роль играет облако реальных частиц: $\pi\pi$ и $K\bar{K}$. Массы голых состояний задаются полосами K-матрицы. В [14] был также отмечен эффект, который обсуждался нами выше: аккумулирование ширин начальных состояний одним из резонансов, возникающих в результате смещения.

В [29] K-матричный анализ был продлен до 1500 МэВ с включением дополнительных каналов η и $\eta\pi$. Канал $\pi\eta\pi$ весьма важен для корректного описания спектров в интервале 1300–1600 МэВ. $\sigma(\pi\pi \to \pi\pi\pi)/\sigma(\pi\pi \to \pi\pi)$ порядка 0.5 при 1300 МэВ и около 1.5 при 1500 МэВ [31]. Использование в [29] данных по двуходачным каналам $\pi\pi$, $K\bar{K}$ и η дало возможность провести $q\bar{q}$-классификацию голых 0^{++}-состояний, f_{0bar}, при массах меньше 1600 МэВ. Дело в том, что распад $q\bar{q}$-резонанса происходит путем рождения глюонами новой $q\bar{q}$-пары. Согласно правилам $1/N$-разложения, основной вклад в константу распада дают планарные диаграммы. При распаде изоскального $q\bar{q}$-резонанса на два псевдоскалярных мезона P_1P_2, а именно,

$$\pi\pi, \ K\bar{K}, \ \eta\eta, \ \eta\eta', \ (1.8)$$

контакта связи определяется, с точностью до общего множителя, квакровым составом $q\bar{q}$-резонансов,

$$q\bar{q} = n\bar{n}\cos \phi + s\sin \phi. \ (1.9)$$

где $n = (u + d)/\sqrt{2}$, а также параметром λ, который характеризует относительную вероятность рождения глюонами странных и нестранных квакров в мяхких
процессах:
\[\lambda : d\delta : s = 1 : 1 : \lambda.\] (1.10)

Экспериментальные данные дают следующие значения этого параметра: \(\lambda \approx 0.5\) [32] для рождения адронов в центральной области адрон-адронных столкновений при высоких энергиях, \(\lambda = 0.8 \pm 0.2\) [33] для распадов тетрануклонных мезонов и \(\lambda = 0.6 \pm 0.1\) [34, 35] для отношения выходов \(\eta\) и \(\eta'\) мезонов в распадах \(J/\psi \rightarrow \gamma \eta/\eta'\).

Константы связи распада \(q\bar{q} \rightarrow P_1P_2\) в каналах (1.8), определяемые планиметрическими диаграммами, которые являются лидирующими в I/N-разложении, могут быть записаны как

\[g(q\bar{q} \rightarrow P_1P_2) = C_P\rho(\phi, \lambda)g^L.\] (1.11)

где \(C_P\rho(\phi, \lambda)\) — полностью вычисляемый коэффициент, зависящий от угла смешивания \(\phi\) и параметра \(\lambda\), и \(g^L\) — общий множитель, характеризующий неизвестную нам динамику процесса. Поэтому экспериментальное изучение распадов резоансов в каналах (1.8) позволяет восстановить квартковский состав состояния (т.е. угол смешивания \(\phi\)) и провести тем самым квартковую систематизацию мезонов.

Однако, основываясь только на анализе распадных констант, невозможно однозначно определить, из как мезонов с \(q\bar{q}\)-мезоном или же с глоболом. Причиной в том, что распад глобола — двухэтапный процесс с последовательным рождением двух \(q\bar{q}\)-пар. После рождения первой \(q\bar{q}\)-пары мы имеем в промежуточном состоянии следующую \(qq\)-систему:

\[n\cos\phi_G + s\sin\phi_G, \quad \tan\phi_G = \sqrt{2}.\] (1.12)

При \(\lambda = 0.45-0.80\) угол смешивания равен \(\phi_G = 25°-32°\). Уже на втором этапе промежуточная система \(q\bar{q}\) трансформируется в мезоны \(P_1P_2\): это означает, что константы распада глобола удовлетворяют тем же соотношениям, что и в случае распада \(qq\)-мезона с \(\phi = \phi_G\).

Анализ спектров \(\pi\), \(K\) и \(\eta\), проведенный в [29], показал, что при массах меньше 1600 МэВ имеется четыре скалярных-изоскалярных состояния, причем только одно из них является доминантным \(ss\)-состоянием. Так как каждый из \(3P_qqq\)-мультинуклонов содержит два \(I = 0\) состояния, которые соответствуют двум фейнмановым комбинациям, \(n\) и \(s\), то в результате проведенного анализа возникла следующая диаграмма:

1) либо в области 1000—1800 МэВ находятся три \(3P_qqq\)-резонанс: один базисный \(1P_{0q\bar{q}}\) и два радиально-возбужденных, \(2P_{0q\bar{q}}\) и \(3P_{0q\bar{q}}\) (в этом случае в интервале 1600—1800 МэВ должны существовать два \(ss\)-доминантных скалярных мезона);

2) либо в области 1600—1800 МэВ имеется только одно \(ss\)-доминантное состояние (тогда один из этих трех мезонов в районе 1200—1600 МэВ является лишенным с точки зрения \(qq\)-систематики и должен рассматриваться как кандидат в экзотический мезон: соотношения между константами связи с каналами (1.8), найденные в [29], давали основания предполагать, что это легчайший скалярный глобол).

Итак, после выполнения анализа [29] первоочередной задачей явилось распространение \(K\)-матричного анализа волн 00+ на область масс 1600—1900 МэВ. Продвижение анализа в область \(\sqrt{s} > 1600\) МэВ предполагало включение канала \(\eta\) в процедуру фита. Это было сделано в [30], где \(K\)-матричный анализ был проведен для масс 500—1900 МэВ с рассмотрением пяти каналов: \(\pi\), \(\eta\), \(\pi\eta\), \(\eta\eta\). Оказалось, что в интервале 1600—1900 МэВ находится только один \(b_0\)-мезон, при этом, действительно, с доминантной \(ss\)-компонентой, т.е. анализ работы [30] показал, что осуществляется случай 2). При этом было обнаружено, что существует два варианта выбора скалярного глобола.

Решение I. Два гоночные состояния \(b_{0q\bar{q}}(720 \pm 100)\) и \(b_{0q\bar{q}}(1260 \pm 30)\) являются членами мультинуклея \(3P_{0q\bar{q}}\), причем \(b_{0q\bar{q}}(720)\) представляет собой состояние, обогащенное \(ss\)-компонентой, \(b_{0q\bar{q}}(1260)\) — FLASH-состояние, \(b_{0q\bar{q}}(1600 \pm 50)\) и \(b_{0q\bar{q}}(1810 \pm 30)\) являются членами попугая \(2P_{0q\bar{q}}\), причем \(b_{0q\bar{q}}(1600)\) доминирует \(\pi\pi\)-компонента, \(b_{0q\bar{q}}(1810)\) — \(\pi\eta\)-компонента, \(b_{0q\bar{q}}(1560 \pm 30)\) является линией с точки зрения \(qq\)-классификации; его константы связи удовлетворяют соотношениям, характерным для глобола, так что это состояние может быть рассматриваем в качестве кандидата на легчайший скалярный глобол.

Решение II. Базисный скалярный мезон — тот же, что и в первом решении. Члены следующего попугая \(2P_{0q\bar{q}}\) такие: \(b_{1q\bar{q}}(1235 \pm 50)\) и \(b_{1q\bar{q}}(1810 \pm 30)\). Оба эти состояния содержат значительные примеси \(ss\)-компоненты: \(b_{1q\bar{q}}(1235) = 42° \pm 10°\) и \(b_{1q\bar{q}}(1810) = -53° \pm 10°\). Состояние \(b_{1q\bar{q}}(1560 \pm 30)\) является линией с точки зрения \(qq\)-систематики и может рассматриваться как хороший кандидат в глоболе.

Существование двух вариантов обусловлено тем, что основываясь только на информации о распадах в каналах (1.8), невозможно получить однозначный ответ на вопрос, имеем ли мы дело с глоболом или же с \(q\bar{q}\)-мезоном с углом смешивания \(\phi = 25°-32°\), о чем говорилось выше.

Оба \(K\)-матричных решения, I и II, приводят практически к идентичным положениям полос амплитуды в комплексной плоскости масс. Амплитуда имеет пять полос, приведенных ниже.

Резонанс: \(K_0\)

Положение полос (МэВ):

- \(b_{0(980)}\)
- \(b_{1(1300)}\)
- \(b_{0(1500)}\)
- \(b_{0(1750)}\)
- \(b_{0(1530)}\)

Широкий резонанс \(b_{0(1530)}\) не является совершенно новым объектом в мезонной физике: это как раз тот резонанс, который долгое время назывался \(\eta(1300)\). Большая ширина \(b_{0(1530)}\) обусловлена эффектом аккумуляции ширины при смешивании резонансов.

Базисом для надежной и однозначной идентификации скалярного глобола является полное воссоздание мультинуклонов \(1P_{0q\bar{q}}\) и \(2P_{0q\bar{q}}\). Каждый из этих попугаев состоит из двух скалярных-изоскалярных, \(b_{0}\) одного изоекторы-скаляр, \(a_{0}\), и скалярного каона, \(K_0\). Как говорилось выше, ионетную классификацию высоковозбужденных \(q\bar{q}\)-состояний разумно осуществлять в терминах гольных состояний, которые не включают компоненты с
состояниями реальных мезонов. Обсуждавшийся выше анализ [30] определил четыре f_0-мезона, необходимых для построения двух нонетов; два лёгчайших изотриплетных резонанса также известны — это $a_0(980)$ и $a_0(1450)$ [9]. Полный K-матричный анализ волны 10^{+} [36] дал следующие значения масс резонансов:

$$a_0(980) \to (988 \pm 6) - i(46 \pm 16) \text{ МэВ},$$

$$a_0(1450) \to (1565 \pm 30) - i(146 \pm 20) \text{ МэВ}.$$ (1.14)

Следует подчеркнуть, что масса второго резонанса занижена в [9] примерно на 100 МэВ. Соответствующие голье состояния следующие:

$$a_0^{\text{bare}}(964 \pm 16), \quad a_0^{\text{bare}}(1670 \pm 70).$$ (1.15)

Идентификация скалярных резонансов как членов мультиплетов 1^3P_0q и 2^3P_0q всегда вызывала проблемы: согласно [9, 37] массы двух лёгчайших каонов соответственно равны $1429 \pm 4 \pm 5$ МэВ и $1495 \pm 10 \pm 20$ МэВ, что заметно выше средних положений масс других мезонов, являющихся кандидатами в члены скалярных нонетов. Именно высокое расположение на шкале масс скалярного каона $K_0(1430)$ в нейальной степени инициировало появление моделей, в которых базисный 1^3P_0q-мультипlett фиксируется в интервале 1350–1500 МэВ, а резонансы $f_0(980)$ и $a_0(980)$ рассматриваются как экзотические состояния — адронные молекулы [38], многокварковые мешки [39] или миньоны [40, 41].

В [42] был проведен повторный K-матричный анализ S-волного $K\pi$-спектра, необходимый для воссоздания K_0^{bare}. Другая причина повторного анализа обусловлена тем, что в [37] рассмотрение $K\pi$-спектров проводилось отдельно для двух областей масс, 820–1580 МэВ и 1780–2180 МэВ, а область масс 1580–1780 МэВ не была включена в анализ $K\pi$-амплид. Опыт фитирования $0^+\pi$-волны [30] подсказывает, что при независимом рассмотрении отдельных массивовых областей теряется часть информации: для полного ее извлечения необходимо одновременный фит, тем более, что в интервале 1580–1780 МэВ наблюдаются значительные изменения амплитуды. Согласно K-матричному фиту $(f^P = 1^+\pi)$-волны [42], для удовлетворительного описания $K\pi$-спектра в интервале 800–2000 МэВ необходимо, как минимум, два K_0-состояния. Соответственно, 40-амплитуда этого минимального решения имеет вклад физической области полосы на II листе (под $K\pi$-разрезом) и на III листе (под $K\pi$- и $K\eta$-разрезами) при следующих комплексных массах:

$$(1415 \pm 30) - i(165 \pm 25) \text{ МэВ},$$

$$(1820 \pm 40) - i(125 \pm 35) \text{ МэВ}.$$ (1.16)

$K\eta$-полоса, находясь в окрестности резонанса (при 1458 МэВ), оказывает сильное воздействие на $1^+\pi$-амплитуду, так что низшему K_0-состоянию и второй полюсе, расположенной за $K\eta$-разрезом при $M = (1525 \pm 125) - i(420 \pm 80)$ МэВ: ситуация здесь аналогична той, которая наблюдается в $f_0(980)$-мезоне, которому также соответствует двухполюсная структура амплитуды, обусловленная КК-порогом. Канал $K\eta$ слабо влияет на $1^+\pi$ $K\pi$-амплитуду: на это указывают как экспериментальные данные [37], так и квартковые комбинаторные соотношения.

Минимальное решение содержит два K_0^{bare}-состояния:

$$K_0^{\text{bare}}(1200^{+60/-110}), \quad K_0^{\text{bare}}(1820^{+40/-75}).$$ (1.17)

В минимальном решении лёгчайший голый скалярный каон оказался на 200 МэВ ниже полюса амплитуды: это обстоятельство облегчает построение базического скалярного нонета с массами в рамках 900–1200 МэВ.

Следует заметить, что $K\pi$-спектры допускают решения с тремя полосами, которые имеют заметно лучший χ^2, однако и в этих решениях лёгчайшее каонное состояние K_0^{bare} не покидает область 900–1200 МэВ. В трехполюсном решении имеем

$$K_0^{\text{bare}}(1090 \pm 40), \quad K_0^{\text{bare}}(1375^{+125/-160}), \quad K_0^{\text{bare}}(1950^{+70/-150}).$$ (1.18)

и $K\pi$-амплитуда имеет полосы:

II лист — $M = 998 \pm 15 - i(80 \pm 15)$ МэВ;
II лист — $M = 1426 \pm 15 - i(182 \pm 15)$ МэВ;
III лист — $M = 1468 \pm 30 - i(309 \pm 15)$ МэВ;
III лист — $M = 1815 \pm 25 - i(130 \pm 25)$ МэВ. (1.19)

Состояние $K_0^{\text{bare}}(1375^{+125/-160})$, находясь около $K\eta$-порога, приводит к удвоению полосы амплитуды вблизи 1400 МэВ. Подчеркнем, что массы лёгчайших гольных каонных состояний в двухполюсном и трехполюсном решениях совпадают в пределах ошибок.

K-матричный фит $1^+\pi$ $K\pi$-волны позволяет завершить построение двух низших скалярных нонетов в терминах гольных состояний. В соответствии с тем, что анализ $0^+\pi$-волны [30] дал два решения, отличающихся значением массы "лишнего" состояния (кандидата в глобольбы), мы имеем также два варианта нонетной классификации скалярных мезонов. Базисный 1^3P_0q-мультипlett выглядит одинаково в обоих вариантах:

$$a_0^{\text{bare}}(960 \pm 30), \quad a_0^{\text{bare}}(720 \pm 100),$$

$$f_0^{\text{bare}}(1260^{+100/-30}), \quad K_0^{\text{bare}}(1200^{+90/-150}).$$ (1.20)

Следует специально подчеркнуть: волновая функция $f_0^{\text{bare}}(720)$ в пространстве флейверов близка к октетной, а именно, $\phi(720) = -69^\circ \pm 12^\circ$, тогда как $\phi_{\text{октет}} = -54.7^\circ$. Соответственно, состояние $f_0^{\text{bare}}(1260)$ близко к флейверному синглету. Подобная ситуация наблюдается в псевдоскалярном секторе, где флейверы волновые функции η и η' близки к октетной и синглетной. Аналогия усиливается, если учесть, что расщепления масс изоскалярных состояний в обоих секторах совпадают, а массы скайларов не намного больше соответствующих масс псевдоскаляров, $m_\pi - m_\eta \approx (200 \pm 100)$ МэВ. Такие совпадения явно указывают на выражение по четности сил взаимодействия в изоскалярном канале.

Итак, можно заключить: базисный нонет скалярных мезонов однозначно фиксируется K-матричным фитом мезонных спектров. Он расположен низко на массовой шкале, в районе 750–1250 МэВ. В этом диапазоне, при массах меньше 1200 МэВ, не остаётся места для экзотических состояний.
Ноны 2P_0q̄q содержит следующие состояния в решении I:

\[a_0^\text{bare}(1640 \pm 40), \quad e_0^\text{bare}(1600 \pm 50), \quad f_0^\text{bare}(1810_{-100}^{+30}). \]

\[K_0^\text{bare}(1375_{-125}^{+125}) \quad \text{или} \quad K_0^\text{bare}(1820_{-40}^{+40}). \quad (1.21) \]

"Лицним" состоянием, с точки зрения ноноидной классификации, является \(f_0^\text{bare}(1235_{-30}^{+150}) \).

В решении II ноны 2P_0q̄q выглядят следующим образом:

\[a_0^\text{bare}(1640 \pm 40), \quad f_0^\text{bare}(1235_{-30}^{+150}), \quad g_0^\text{bare}(1810_{-100}^{+30}). \]

\[K_0^\text{bare}(1375_{-125}^{+125}) \quad \text{или} \quad K_0^\text{bare}(1820_{-40}^{+40}). \quad (1.22) \]

"Лицними" состояниям о том решении является \(f_0^\text{bare}(1600 \pm 50) \); еще раз подчеркнем — массы этого состояния оказалась как раз в том районе, который дает резонансные вычисления для масс легчайшего скларного глюониум, а константы связи с мезонными каналами удовлетворяют кварковым комбинаторным соотношениям для распада глюониума.

Сразу же после получения К-матричного решения в области до 1900 МэВ возникла проблема записи амплитуды 00^+-волны в виде дисперсионного представления. Дисперсионное N/D-представление восстанавливает корректным образом аналитические свойства парциальной амплитуды во всей комплексной s-плоскости. Кроме того, это и является главным, в рамках дисперсионного представления возможно последовательно построить матрицу пропагаторов и оценить эффекты смешивания q-q состояний и глюбоба, а тем самым и корректно восстановить массу глюониума. Дисперсионное N/D-описание волны 00^+ было проведено в [6, 7]; в [6] была рассмотрена область 1200 — 1700 МэВ, где расположены три скларных — изоскалярных состояния, а затем в [7] исследованная область масса была расширена до 1900 МэВ с включением в рассмотрение четвертого состояния \(f_0(1780) \).

Результаты N/D-представления волны 00^+ дали возможность воссоздать картину смешивания низшего скларного глюониума: он смешался с двумя близлежащими q-q-состояниями, членами мультиплетов 1P_0 и 2P_0, причем резонанс — преемник чистого глюбоба — аккумулировал значительную часть ширины резонансов — соседей, превратившись в очень широкий резонанс \(f_0(1530_{-250}^{+300}) \).

Обратим внимание, что состояние \(r_0^\text{bare} \) не описывает буквально глюондинамический глюбоб: состояние \(r_0^\text{bare} \) содержит незлоноидные степени свободы, обусловленные реальными частями петлевых диаграмм (минорные части этих диаграмм ответственные за распад состояния). Дисперсионный N/D-метод, восстанавливает реальные и минорные части петлевых диаграмм, воссоздает тем самым полную картину смешивания состояний, т.е. восстанавливает также и массу глюониума. Она равна в решении I:

\[m_{\text{глюонium}} = 1225 \text{ МэВ}, \quad (1.23) \]

и в решении II:

\[m_{\text{глюонium}} = 1633 \text{ МэВ}. \quad (1.24) \]

Масса (1.24) хорошо согласуется со значениями массы легчайшего скларного глюбоба, полученными в решеточных вычислениях.

Весьма примечательно, что оба дисперсионных решения приводят к практически одинаковому ответу для структуры 00^+-волны и кварк-глюонного состава физических резонансов: в обоих решениях широкий резонанс \(f_0(1530_{-250}^{+300}) \) является преемником глюониума, сохраняя 40 — 50% от его компонента, тогда как остальная часть глюониума поделена примерно поровну между резонансами \(f_0(1300) \) и \(f_0(1500) \). С этой точки зрения, структура резонансов в районе 1300 — 1600 МэВ определена однозначно.

Наблюдаемые в 00^+-волне эффект образования широкого состояния ставит проблему существования подобных широких резонансов и в других волнах: разумно полагать, что экзотические мезоны (глюоблы, гибридры) с другими квантами числами также вызывают эффект аккумулирования ширин. Поэтому поиск других экзотических мезонов должен быть неразрывно связан с исследованиями широких резонансов.

Возникает и другая, не менее интригующая проблема: широкий резонанс, аккумулировавший ширину своих резонансов — соседей, играет роль "запирающего состояния", так как он препятствует распаду соседних состояний с аналогичными квантовыми числами. Это означает, что широкий резонанс играет роль динамического барьеря для соседних состояний. Как соотносится этот динамический барьер с барьером конфайнмента? Ответ на этот вопрос смогут дать только детальное исследование роли широких резонансов в различных волнах.

2. K-матрица и дисперсионное N/D-представление амплитуды рассеяния

Дан краткий обзор техники, используемой при анализе мезонных спектров: обсуждаются аналитические свойства амплитуды и демонстрируется связь дисперсионного N/D-представления с К-матричной записью. Обсуждается также роль малых и больших расстояний в формировании наблюдаемых мезонных спектров, в связи с чем вводится понятие "голого состояния". Рассматриваются кварковые комбинаторные соотношения между константами распада глюбоба в различные мезонные каналы, а также аналогичные соотношения для q-q-состояний: эти соотношения являются основой для понятой систематизации мезонов.

2.1. Амплитуда рассеяния, T-матрица и K-матрица

Поясним на простом примере терминологию и обозначения, используемые при анализе мезонных спектров.

В терминах волновой функции относительного движения двух бесконечных частиц процесс рассеяния описывается на больших расстояниях подающей плоской волной и расходящейся сферической,
\[r^{-1}f(\theta)\exp(ikr), \]
коэффициент перед которой характеризуется парциальными амплитудами рассеяния

\[f(\theta) = \frac{1}{2ik} \sum_{k \in 0} (2l + 1) P_l(\cos \theta) \left\{ \exp \left[2i\delta(k) \right] - 1 \right\}. \quad (2.1) \]
Т-матрицы определяются фазой рассеяния \(\delta_i \):
\[
T_i = \frac{1}{2} \left[\exp(2i\delta_i) - 1 \right] = \exp(i\delta_i) \sin \delta_i. \tag{2.2}
\]
При рассмотрении аналитических свойств удобно использовать амплитуду с другой нормировкой:
\[
A_j = \frac{1}{2i\rho(k)} \left[\exp(2i\delta_j) - 1 \right], \tag{2.3}
\]
где \(\rho(k) \) — инвариантный двухчастичный фазовый объем:
\[
\rho(k) = \int d\Phi \left(P; k_1, k_2 \right),
\]
\[
\rho(P; k_1, k_2) = \frac{1}{2} \left(\frac{d^3 k_1}{(2\pi)^2 k_{10}} \frac{d^3 k_2}{(2\pi)^2 k_{20}} \right) \left(P - k_1 - k_2 \right).
\tag{2.4}
\]
Инвариантный фазовый объем определяется четырехмерными импульсами: полным импульсом сталкивающихся частиц \(P \), причем \(P^2 = s \), и импульсами частиц 1 и 2, \(k_1 \) и \(k_2 \). Когда массы частиц 1 и 2 одинаковы, имеем
\[
\rho(k) = \frac{k}{8\pi \sqrt{s}}, \quad k = \sqrt{s - m^2}. \tag{2.5}
\]
К-матричное представление амплитуды связано с записью \(A_i \) в форме:
\[
A_i = \frac{K_i(k^2)}{1 - i\rho_i K_i(k^2)}.
\tag{2.6}
\]
Функция \(K_i \) действительна в физической области: минимум часть амплитуды записана в явном виде в (2.6). Кроме того, \(K_i \), рассматриваемая как функция квадрата инвариантной энергии \(s \), аналитична вблизи пороговой сигнатурности амплитуды \(s = 4m^2 \); сигнатурный член также выделен в явном виде, он содержится в двухчастичном фазовом объеме \(\rho \).

Рассечение с поглощением описывается введением коэффициента поглощения \(\eta_i \) в парциальном разложении (2.1):
\[
\left[\exp(2i\delta_i) - 1 \right] \rightarrow \left[\eta_i \exp(2i\delta_i) - 1 \right] \tag{2.7}
\]
с \(0 \leq \eta_i \leq 1 \); случай \(\eta_i = 0 \) соответствует полному поглощению.

Энергетическую зависимость амплитуды \(T_i \) удобно представить на диаграмме Ардена (Argand plot), которая является полезным инструментом для поиска резонансов. Элемент \(T \)-матрицы при фиксированном \(k \) (или \(s \)) изображается точкой в плоскости \(\text{Re} \{T_i \}, \text{Im} \{T_i \} \). С изменением \(k \)-матричный элемент дает набор точек на единичном круге радиуса 1/2 с центром в точке (0, i/2); с появлением неупругости траектория \(T_i \) уходит внутрь круга.

\(K \)-матричное представление амплитуды при возникновении поглощения требует фиксации неупругих каналов. Обозначим два канала индексами 1 и 2 и рассмотрим случай, когда неупругость обусловлена вторым двухчастичным каналом. Тогда амплитуда упругого рассеяния \(1 \rightarrow 1 \rightarrow 1' \) и амплитуда \(1 \rightarrow 1' \rightarrow 1 \), которую мы обозначим как \(A_{11} \) (индекс парциальной волны \(l \) опущен), может быть по-прежнему записана в форме (2.6):
\[
A_{11} = \frac{K(k^2)}{1 - i\rho_1 K(k^2)}, \tag{2.8}
\]
но блок \(K(k^2) \) является комплексной величиной выше порога второго канала:
\[
K(k^2) = K_{11} + i K_{12} \rho_2 K_{21} \frac{1}{1 - i\rho_2 K_{22}}. \tag{2.9}
\]
Здесь \(\rho_2 \) — фазовый объем второго канала \(2 \rightarrow 2' \), а матричные элементы \(K_{11} \), \(K_{12} \) и \(K_{22} \) являются действительными функциями \(k^2 \) в физической области. Пороговые сигнатурности каналов 1 и 2, которые находятся при \(s = (m_1 + m_1')^2 \) (порог канала 1) и при \(s = (m_2 + m_2')^2 \) (порог канала 2), выделены в (2.8) и (2.9) явным образом — они содержатся в фазовых объемах \(\rho_1 \) и \(\rho_2 \), соответственно. Ниже порога второго канала при \((m_1 + m_1')^2 < s < (m_2 + m_2')^2 \) функция \(K(k^2) \) действительна, так как в этой области \(\rho_2 = i|\rho_2| \).

2.2. Дисперсионный \(N/D \)-метод и \(K \)-матричное представление амплитуды

Дисперсионный \(N/D \)-метод [43] дублон тем, что он корректно задает аналитические свойства амплитуды во всей комплексной плоскости \(s \). Мы изложим здесь, следуя [44, 45], элементы этого метода, необходимые далее для анализа мезонных спектров.

Парциальная амплитуда \(A(s) \) (как и выше, индекс \(l \) опускается для краткости) представляется как отношение
\[
A(s) = \frac{N(s)}{D(s)}, \tag{2.10}
\]
\(N(s) \), рассматриваемая как функция комплексной переменной \(s \), содержит только "левые" сигнатурности парциальной амплитуды, обусловленные силами взаимодействия, т.е. диаграммами с обменом мезонами в перекрестных каналах (рис. 1). Эти особенности находятся слева от пороговых сигнатурностей при \(s = (m_1 + m_1')^2 - m_2^2 \) (через). \(D \)-функция содержит только правые сигнатурности, обусловленные перерасщениями частиц в \(s \)-канале: на рис. 1 показаны соответствующие им процессы перерасщения.

Рис. 1. Комплексная плоскость \(s \) и положения сигнатурностей парциальной амплитуды: правые сигнатурности при \(s \geq (m_1 + m_1')^2 \) обусловлены упругими и неупругими перерасщениями, левые сигнатурности — силами взаимодействия, т.е. обменами частиц в перекрестных каналах.
Рассмотрим сначала одноканальную задачу. Тогда D-функция может быть записана в следующем виде (для простоты считаем массы частиц одинаковыми $m_1 = m_0$):

$$D(s) = 1 - B(s), \quad B(s) = \int_{4m_0}^{\infty} \frac{ds'}{\pi} \frac{N(s')\rho(s')}{s' - s - i0}. \quad (2.11)$$

Здесь опущен индекс 1, т.е. $m_1 \to m, \rho_1 \to \rho$. Запись (2.11) предполагает, что $D(s) \to 1$ при $s \to \infty$ (более обобщенно, $D(s) \to \text{cosp}$ при $s \to \infty$, так как этот случай сведется к (2.11) при определении $N(s)$). Кроме того, в (2.11) предположено, что D-функция не содержит полюсов Кастильо–Далла–Дайона (более подробное изложение N/D-метода можно найти в [43, 44]).

Хорошим предположением является запись N-функции в виде суммы сепаратных вершинных функций [44]. Такая техника удобна для описания амплитуд нуклон-нуклонного рассеяния [45]; более того, разработана методика представления γ-канальных обменных диаграмм в виде суммы сепаратных вершинных функций [46]. В простейшем случае, который обсуждается далее, $N(s) = g^2(s)$. Тогда

$$A(s) = \frac{g^2(s)}{1 - B(s)}, \quad B(s) = \int_{4m_0}^{\infty} \frac{ds'}{\pi} \frac{g(s')\rho(s')}{s' - s - i0}. \quad (2.12)$$

Раскладывая (2.12) в ряд по $B(s)$, мы имеем представление амплитуды $A(s)$ в виде суммы диаграмм, показанных на рис. 2а–е и т.д.; $B(s)$ в (2.12) есть петлевая диаграмма, записанная в виде дисперсионного интеграла. При $s > 4m_0$ петлевая диаграмма компактна:

$$\text{Im} B(s) = g^2(s)\rho(s), \quad \text{Re} B(s) = P \int_{4m_0}^{\infty} \frac{d(s')}{\pi} \frac{g^2(s')\rho(s')}{s' - s - i0}. \quad (2.13)$$

Амплитуда (2.12) соответствует случаю, когда парциальная волна не содержит затратных частиц; связанные состояния, если они существуют, обусловлены взаимодействием, формируемым N-функцией. Включение затратных частиц эквивалентно предположению о росте $D(s)$ при $s \to \infty$. Если $D(s)$ растет линейно с s, то функция $D(s)$ может быть записана как

$$D(s) = m_0^2 - s - B(s), \quad B(s) = \int_{4m_0}^{\infty} \frac{d(s')}{\pi} \frac{g^2(s')\rho(s')}{s' - s - i0}. \quad (2.14)$$

Амплитуда

$$A(s) = \frac{g^2(s)}{m_0^2 - s - B(s)} \quad (2.15)$$

представляет собой бесконечную сумму диаграмм, показанных на рис. 2а–е и т.д.; $B(s)$ по-прежнему петлевая

\[\text{Diagram 2. Diagrams representing } \gamma \text{-channel scattering.}\]

\[\text{Diagram \ 2. \ Diagrams \ representing \ } \gamma \text{-channel \ scattering.}\]

для диаграммы, и $(m_0^2 - s)^{-1}$ есть пропагатор затратной частицы.

K-матричное представление амплитуды $A(s)$ связано с выделением в явном виде минимой части петлевой диаграммы:

$$A(s) = \frac{g^2(s)}{m_0^2 - s - \text{Re} B(s) - i\rho(s)g^2(s)} = \frac{K(s)}{1 - i\rho(s)K(s)}. \quad (2.16)$$

$K(s) = \frac{g^2(s)}{m_0^2 - s - \text{Re} B(s)}.$

В двухчастичной петлевой диаграмме функция $\Re B(s)$ аналитична в точке $s = 4m_0^2$. Это означает, что особенностями $K(s)$ в физической области могут быть только полюсы. Однако в левой полуплоскости s $K(s)$ содержит сингулярности, обусловленные γ-канальными обменами.

Полюс амплитуды $A(s)$, определяемый равенством

$$m_0^2 - s - B(s) = 0, \quad (2.17)$$

соответствует существованию частицы с квантовыми числами рассматриваемой парциальной волны. Если полюс находится выше порогового значения $s = 4m_0^2$, то мы имеем дело с резонансом: далее рассматривается именно такой случай. Пусть условие (2.17) выполняется в точке

$$s = M^2 \equiv \mu^2 - i\Gamma \mu. \quad (2.18)$$

Разложим действительную часть знаменателя (2.15) вблизи $s = \mu^2$:

$$m_0^2 - s - \text{Re} B(s) \approx [1 + \text{Re} B'(\mu^2)](\mu^2 - s) - ig^2(s)\rho(s). \quad (2.19)$$

Стандартная аппроксимация Брейта–Вигнера возникает при фиксации $\Im B(s)$ в точке $s = \mu^2$. Если полюс находится недалеко от пороговой сингулярности $s = 4m_0^2$, то необходимо сохранить s-зависимость фазового объема. Тогда используют модифицированную формулу Брейта–Вигнера:

$$A(s) = \frac{\gamma}{\mu^2 - s - i\gamma\rho(s)} = \frac{g^2(\mu^2)}{1 + \text{Re} B'(\mu^2)}. \quad (2.20)$$

Аналогичная резонансная аппроксимация может быть проведена и при K-матричной записи амплитуды. Она соответствует разложению функции $K(s)$, записанной в форме (2.16), в ряд вблизи точки $s = \mu^2$:

$$K(s) = \frac{g^2(K)}{\mu^2 - s} + f. \quad (2.21)$$

Здесь

$$g^2(K) = \frac{g^2(\mu^2)}{1 + \text{Re} B'(\mu^2)}; \quad f = \frac{g^2(\mu^2)}{2[1 + \text{Re} B'(\mu^2)]}. \quad (2.22)$$

2.3. Многоканальное рассеяние

Резонансная амплитуда (2.15) может быть обобщена на многоканальный случай. Пусть имеется n каналов, тогда
амплитуда перехода $b \rightarrow a$ равна:

$$A_{ab}(s) = \frac{g_a(s)g_b(s)}{m_q^2 - s - B(s)}, \quad B(s) = \sum_{c=1}^{n} B_{cc}(s),$$ \hspace{1cm} (2.23)

где B_{cc} определяется стандартным выражением (см. (2.14)) с соответствующей фиксацией фазового объема, вершинной функции и области интегрирования:

$$g^2(s')p(s') \rightarrow g^2(s')p_c(s'), \quad 4m^2 \rightarrow 4m_r^2.$$ \hspace{1cm} (2.24)

Амплитуды перехода A_{ab} образуют матрицу \hat{A}. К-матричая запись амплитуды гласит:

$$\hat{A} = \hat{K} \frac{I}{I - ipK},$$ \hspace{1cm} (2.25)

где \hat{K} есть матрица размерности $n \times n$, причем $K_{ab}(s) = K_{ba}(s)$, I — диагональная единичная $n \times n$ матрица, $I = \text{diag}(1, 1, \ldots, 1)$, и p — диагональная матрица фазовых объемов:

$$p = \text{diag}(p_1(s), p_2(s), \ldots, p_n(s)).$$ \hspace{1cm} (2.26)

Резонансная амплитуда (2.23) может быть представлена в K-матричной форме (2.25); элементы K-матрицы равны:

$$K_{ab}(s) = \frac{g_a(s)g_b(s)}{m_q^2 - s - \text{Re} B(s)}.$$ \hspace{1cm} (2.27)

Вблизи резонанса элементы K-матрицы могут быть разложены в ряд; в этом случае мы имеем представление K-матричных элементов, аналогичное (2.21).

2.4. qq-мезоны: проблема малых и больших расстояний

Задача классификации qq-состояний в области масс 1000–2000 МэВ ставится с проблемой кварк-адронной дуальности и тесно связанной с ней проблемой вклада больших и малых расстояний в формирование мезонного спектра.

Обсудим эти проблемы, используя язык стандарной кварковой модели. В этой модели qq-уровни определяются потенциалом, который бесконечно возрастает при больших r: $V(r) \propto 1/r$ (рис. 3а). Бесконечно растущий потенциал порождает бесконечный ряд стабильных qq-уровней. Однако понятно, что это упражненная картина, так как только низшие qq-уровни стабильны по отношению к адронным распадам. Вышележащие состояния распадаются по адронным каналам: возбужденное (qq)$_0$-состояние рождает новую qq-пару, и затем кварки (qq)$_n + (qq)$ рекомбинируют в мезоны, которые покидают "дозвуковой" конфайнмента, образуя тем самым непрерывный мезонный спектр. Условно эта структура спектра показана на рис. 3б, где взаимодействие, связанное с конфайнментом, присутствует как некий потенциальный барьер: взаимодействие при $r < R_{\text{confined}}$ формирует дискретный спектр qq-уровней, тогда как переход в область $r > R_{\text{confined}}$ формирует непрерывный мезонный спектр. Именно этот мезонный спектр наблюдается в эксперименте, и задача восстановления qq-уровней, сформированных при $r < R_{\text{confined}}$, прямо связана с задачей определения влияния распадных мезонных спектров на сдвиг уровней; при qq-классификации уровней необходимо исключить влияние распадной мезонной компоненты.

Приближенно эта задача решается в рамках K-матричного описания мезонных спектров, когда в K-матричной амплитуде "ликируются" вклады, обусловленные переходами в реальне мезонные состояния; формально это эквивалентно переходу в (2.25) к пределу $\rho_0 \rightarrow 0$. При учете только ликирующих полюсных сигнурейостей амплитуда перехода $b \rightarrow a$ имеет вид

$$A_{ab}^{\text{bare}}(s) = K_{ab}(s) = \frac{g_a(K)g_b(K)}{s^2} + f_{ab}.$$ \hspace{1cm} (2.28)

Таким образом, полюс K-матрицы отвечает состоянию, у которого ликируена "шкуба" реальных мезонов. Это далеко основание назвать соответствующие состояния "голыми мезонами" [29, 30]. Следует, однако, отличать это определение от определения полных частей в теории поля, где "шкуба" включает и виртуальные состояния вне массовой поверхности.

В случае, когда qq-спектр содержит ряд состояний с одинаковыми квантовыми числами, амплитуда $A_{ab}^{\text{bare}}(s)$ определяется суммой соответствующих полюсов:

$$A_{ab}^{\text{bare}}(s) = \sum_{a} \frac{g_a^{(a)}(K)g_b^{(a)}(K)}{s^2} + f_{ab}.$$ \hspace{1cm} (2.29)

Апроксимация амплитуды при $r < R_{\text{confined}}$ в виде ряда полюсов не нова: она широко используется в дуальных моделях и при рассмотрении вкладов, ликирующих в $1/N_c$-разложения. С точки зрения таких моделей, не зависящее от с сглаженное f_{ab} представляет собой суммарный вклад полюсов, удаленных от области рассмотрения.

Константы связи головного состояния, $g_a^{(a)}(K)$, являются источником информации о кварк-глюонном составе этого состояния.

2.5. Константы связи глюонума и qq-состояний с мезонными каналами: правила 1/N-разложения и кварковые комбинаторные соотношения

Кварк-глюонный состав состояний, соответствующих K-матричным полюсам (голым состояниям), проявляется в
соотношениях между константами связи этих полос с мезонными каналами, $g_{ij}^{(3)}$.

Оценим прежде всего эти константы в рамках правил 1/N-разложения: оценку проведем как для перехода глобол → два мезона, так и для перехода qq-состояние → два мезона. С этой целью рассмотрим глюонную петлевую диаграмму, соответствующую двухглюонной собственномассоинерционной части: глобол → два мезона (рис. 4а). Эта петлевая диаграмма порождает единицу, если глобол является двухглюонной составной системой: $B(G → gg → G) ≃ g_{gg}N_c^2 ≃ 1$, где g_{gg} — константа связи глобола с двумя глюонами.

Таким образом, $g_{gg} ≃ \frac{1}{N_c}$. \hspace{1cm} (2.30)

Константа перехода g_{gq} определяется диаграммами типа представленной на рис. 4б. Аналогичная оценка дает $g_{gq} ≃ g_{gg}^2 g_{QCD}N_c ≃ \frac{1}{N_c}$. \hspace{1cm} (2.31)

Здесь g_{QCD} — кварк-глюонная константа связи, которая порождает 1/\sqrt{N_c} [8]. Константа связи перехода глобол → два мезона в членах, ликурирующих в 1/N_c-разложении, задает диаграммами типа показанной на рис. 4в: $g_{G_{mm}}^L ≃ g_{gq}^2 g_{QCD}^2 N_c ≃ \frac{1}{N_c}$. \hspace{1cm} (2.32)

Здесь учтено, что $g_{gq} ≃ \sqrt{N_c}$. для обусловленно тем, что петлевая диаграмма мезонного пропагатора (рис. 4г) порождает единицу, а именно, $B(m → q → m) ≃ g_{gq}^2N_c ≃ 1$. Диаграмма на рис. 4д определяет константу перехода глобол → два мезона в членах следующего порядка в 1/N_c-разложении: $g_{G_{mm}}^{NL} ≃ g_{gq}^2 g_{QCD}^2 g_{QCD}^2 N_c ≃ \frac{1}{N_c}$. \hspace{1cm} (2.33)

Как говорилось выше, глобол может распадаться в каналы (1.8). При этом процесс рождения глюонами легких кварков происходит с нарушением фейверевой симметрии, ui : dd : ss = 1 : 1 : λ. В рамках такого предположения константы связи для перехода глобол → два псевдооскальных мезона вычисляются с помощью кварковой комбинаторики. Правила кварковой комбинаторики успешно использовались для расчета выходов вторичных частиц в адрон-адронных столкновениях при высоких энергиях [47] и в распадах J/ψ → адроны [48]. Расчет констант связи в распадах глобол → мезоны проводился в [20, 34, 49].

Константы распада глобола в каналах (1.8) приведены в табл. 1 для вкладов, ликурирующих в 1/N_c-разложении, $g_{G_{mm}}^L$ и следующих за ликурирующим, $g_{G_{mm}}^{NL}$. Незвестная нам динамика распада скрыта в параметрах G_L и G_{NL}. Константа распада в определенный канал n равна сумме обоих вкладов:

$g_{G_{mm}}^L(n) + g_{G_{mm}}^{NL}(n)$. \hspace{1cm} (2.34)

Второе слагаемое поделено по сравнению с первым в N_c раз, и опыт расчета кварковых диаграмм показывает, что величина этого подвождения порядка 1/10.

Сумма квадратов констант связи удовлетворяет правилам сумм:

\begin{align*}
\sum_n [g_{G_{mm}}^L(n)]^2 & = \frac{1}{2} G_L^2(2 + \lambda)^2, \\
\sum_n [g_{G_{mm}}^{NL}(n)]^2 & = \frac{1}{2} G_{NL}^2(2 + \lambda)^2, \hspace{1cm} (2.35)
\end{align*}

где $I(n)$ есть фактор идентичности рожденных частиц (см. табл. 1). Эти правила сумм являются следствием кварк-адронной дуальности: сумма квадратов констант связи по полному набору фейверевых состояний эквивалентна сумме разрезанных диаграмм с кварковыми петлями (диаграммы на рис. 4е для ликурирующих вкладов и на рис. 4ж для следующих за ликурирующими). Каждая кварковая петля содержит фактор $(2 + \lambda)$, связанный с суммированием по легким фейверям (см. (1.10)).

Таблица 1. Константы распада глобола на два псевдооскальных мезона в главном и в следующем за главным порядках 1/N_c-разложения; θ — угол смешивания η_π — мезонов: $\eta_\pi = n_\pi \cos \theta + s_\pi \sin \theta$ и $\eta_\pi' = n_\pi' \sin \theta + s_\pi' \cos \theta$

Канал	Константы распада глобола в главном порядке по 1/N_c-разложению	Константы распада глобола в следующем за главным порядке по 1/N_c-разложению	Фактор тождественности частиц
\(\pi^0\pi^0\)	\(G_L\)	0	1/2
\(\pi^+\pi^-\)	\(G_L\)	0	1
\(K^+K^-\)	\(\sqrt{2}G_L\)	0	1
\(K^0\bar{K}^0\)	\(\sqrt{2}G_L\)	0	1
\(\eta_\eta\)	\(G_L(\cos^2 \theta + \sin^2 \theta)\)	\(2G_{NL} \left(\cos \theta - \frac{\sqrt{2}}{2} \sin \theta \right)^2\)	1/2
\(\eta_\eta'\)	\(G_L(1 - \lambda) \sin \theta \cos \theta\)	\(2G_{NL} \left(\cos \theta - \frac{\sqrt{2}}{2} \sin \theta \right) \times \left(\sin \theta + \frac{\sqrt{2}}{2} \cos \theta \right)\)	1
\(\eta_\eta'\)	\(G_L(\sin^2 \theta + \lambda \cos^2 \theta)\)	\(2G_{NL} \left(\sin \theta + \frac{\sqrt{2}}{2} \cos \theta \right)\)	1/2

Рис. 4. Диаграммы, определяющие распад глобола в два мезона.
Рис. 5. Диаграммы, определяющие распад (q̅q)₂-состояния в двумезонном.

Квартоковые комбинаторные правила могут быть применены и для расчета констант связи (q̅q)₂-мезонов с псевдоскалярными каналами (1.8). Имеются два типа переходов (q̅q)₂-состояния → двумезон: они показаны на рис. 5а, б. Процесс на рис. 5а является лидирующим согласно правилам 1/N-разложения; его константа связи порядка

\[g_{m(a)\rightarrow mm}^L \sim \frac{\sin^2 \theta_e}{\sqrt{N_c}} \sim \frac{1}{\sqrt{N_c}}. \] (2.36)

Константа распада в процессе на рис. 5б порядка

\[g_{m(a)\rightarrow mm}^{NL} \sim \frac{\sin^2 \theta_e}{\sqrt{N_c}} \sim \frac{1}{N_c \sqrt{N_c}}. \] (2.37)

Константы связи распадов (q̅q)₂ → ππ, KK, ηη', ηη'

приведены в табл. 2 как для лидирующих вкладов, так и для вкладов, следующих за лидирующими; g⁺ и g⁺⁺ являются параметрами, в которых скрыта не известная нам динамика мягкого процесса распада. Как и для распада глубоблока, константа распада (q̅q)₂-мезона в канал n есть сумма обоих слагаемых:

\[g_{m(a)\rightarrow mm}^{L} (n) + g_{m(a)\rightarrow mm}^{NL} (n). \] (2.38)

Оба слагаемых в (2.38) определяют константу распада (q̅q)₂-мезона в общем случае: различные варианты выбора соотношений между константами связи обусловлены выбором тех или иных соотношений между g⁺⁺ и g⁺++. Примеры различных фиксаций g⁺⁺/g⁺ можно найти в [40, 49].

Подчеркнем еще раз, что соотношения между константами связи для (q̅q)₂-состояния (см. табл. 2) становятся идентичными соотношениям для констант распада глубоблока, когда \(\phi = \arctan \sqrt{\frac{3}{2}} \); это относится к лидирующим вкладам, так и к вкладам, следующим за лидирующими. Это означает, что, базируясь только на соотношениях между константами связи с адронными каналами распадов, невозможно однозначно определить, имеем мы дело с глубоблом или же с 1 = 0 (q̅q)₂-мезоном, имеющим угол смешивания фи близкий к 30°.

3. К-матричный анализ спектров и классификация q̅q-состояний по нонетам

В этом разделе излагаются результаты анализа волн 0⁺, 1⁺, 2⁺, 3⁺ и 4⁺, выполненного в [30, 36, 42]. На основе этого анализа проведена классификация q̅q-состояний по нонетам.

3.1. К-матричный фит 000⁺-волн: спектры ππ, KK, ηη и ηη'

Для описания 000⁺-амплитуд в [30] используется стандартное К-матричное представление, причем K_ab есть матрица 5×5 (a = 1, 2, 3), следующая обозначениям каналов 1 = ππ, 2 = KK, 3 = ηη, 4 = ηη', 5 = (ππππ+ другие многоомезонные состояния).

Матричные элементы K_ab параметризованы в форме, близкой к (2.28):

\[K_{ab} = \frac{\sum \sigma(a) g_{ba} \Gamma_B^2 + s_0}{\sum \sigma(a) M^2 - s} + f_{1b} \frac{1}{s + s_0}, \] (3.1)

причем введено ограничение s₀ ≥ 1 Γ_B².

Следующие формулы описывают спектры ππ, ηη и ηη', полученные группой GAMS в реакциях с t-канальным обменом пионом:

\[A_{πNN} = g(\psi_N^T \psi_N) (D(t) K_{1a}(t)(1 - i\mathbf{p} K_{1a})^{-1}, \] (3.2)

\[K_{1a}(t) = \left(\sum \delta_{a} g_{ba} \right) \frac{M^2 - s}{s + s_0} + f_{1b} \frac{1}{s + s_0}, \] (3.3)

Здесь D(t) — пионный пропагатор, F_{πN}(t) — нуклонный формфактор в вершине πNN, а g_{1a}(t) и f_{1b}(t) — формфакторы пионного блока.

Та часть амплитуд в реакциях pp (в покое) → π⁺π⁻e⁺e⁻, π⁺ηη, которая описывает рождение двух мезонов в состоянии 00⁺, записывается как

\[A_{pp} - mesons = A_{1}(s_{23}) + A_{2}(s_{13}) + A_{3}(s_{12}). \] (3.4)

Амплитуда A_{k}(s_{ij}) определяет вклад, где частицы ij осуществляют "последнюю" парное взаимодействие, а частица k остается спектратором.
Амплитуда $A_1(s_23)$ для спектров $\pi \pi$ и $\eta \eta$ имеет следующую форму ($b = \pi \pi, \eta \eta$):

$$A_1(s_23) = K_{\text{прив},a}(s_23)(1 - i\rho K_{ab}^{-1})$$

$$K_{\text{прив},a}(s_23) = \left(\sum_{g} \frac{A^g_{\text{прив},a}(s_23)}{M^2_g - s_23} \frac{1}{\Gamma\text{д}^2 + s_23} \right).$$

В реакции pp (в покое) $\rightarrow n^0\bar{p}n^0$ амплитуда симметрична при перестановке индексов пионов: $A_1(s_23) = A_1(s_23)$. Взаимодействие $n^0\bar{p}n^0$ в реакции pp (в покое) $\rightarrow n^0\bar{p}n^0$ определяется слагаемым ($b = \pi \pi$):

$$A_1(s_23) = K_{\text{прив},a}(s_23)(1 - i\rho K_{ab}^{-1})$$

$$K_{\text{прив},a}(s_23) = \left(\sum_{g} \frac{A^g_{\text{прив},a}(s_23)}{M^2_g - s_23} \frac{1}{\Gamma\text{д}^2 + s_23} \right).$$

Параметры $A^g_{\text{прив}}, \phi_{\text{прив}}, \lambda^g_{\text{прив}}$ могут быть комплексными величинами с различными фазами из-за трехчастичного взаимодействия — более подробное обсуждение структуры амплитуды $pp \rightarrow \pi \pi$ мезона можно найти в [50].

3.2. Результаты K-матричного фита волны 00^{++} при массах ниже 1900 МэВ

Одновременный K-матричный анализ 00^{++}-волновых спектров в диапазоне масс 550–1900 МэВ, проведенный в [30], указал на существование пяти голог состояний f_{0}^{bare}. Только два из этих состояний, $f_{0}^{\text{bare}}(720)$ и $f_{0}^{\text{bare}}(1810)$, содержат большую s-компоненту. Это означает, что только два $P_{0}0q\bar{q}$-понета могут быть построены в районе масс ниже 1900 МэВ.

Следующие требования лежат в основе ионетной классификации голог состояний:

1. Партеры по ионету ортогональны в пространстве фейльверов, т.е. они должны иметь разность углов смешивания (см. (1.9)) равную 90°: $\phi_1 - \phi_2 = 90°$ (для этой величины был разрешен коридор 90° ± 5°).

2. Канонты связи g^L и G^L (см. табл. 2) примерно равны для партнеров по ионету: $g^L_1 \approx g^L_2$ и $G^L_1 \approx G^L_2$.

Стандартная кварковая модель требует равенства констант связи, но s-зависимость вершинных функций и петлевых диаграмм нарушает это равенство из-за разности масс партнеров по ионету. Кроме того, K-матричные канонты связи содержат дополнительный s-зависимый фактор $[1 + B^L(s)]^{-1}$ (см. (2.22)); этот фактор особенно заметно влияет на район больших масс (область базисного понета $^{2}P_0$), где более существены пороги и легче сингулярности парциальной амплитуды.
Ак – КК, Ак – η и Ак – η’, как функции энергии. В самом деле, видно, что резонансы f₀(980), f₀(1300), f₀(1500) и f₀(1780) соответствуют достаточно хорошо обозначенные петли. Проявление резонансов f₀(980) и f₀(1300) в виде петель особенно хорошо видно в ампли- тудах Aₘ(ξ) → x при больших |ξ| (см. рис. 11).

3.4. Резонанс f₀(980): КК-молекула или поток легчающих скалярных qq-состояний?

Это принципиальный вопрос для qq-систматики, и он при проведении К-матричного анализа 00++-волны исследовался в первую очередь [14]. Следуя этой работе, приведем аргументы, указывающие на то, что f₀(980) является потоком легчающих qq-состояний.

Резонансу f₀(980) соответствуют два полюса ампли- туды при следующих комплексных массах: М ≈ 1015 – 146 МэВ — второй лист (вдоль ππ-разрезом) и М ≈ 936 – 1238 МэВ — третий лист (вдоль ππ и КК-разрезами). Второй полюс при 936 – 1238 МэВ появился благодаря хорошо известному раздвоению полос, обусловленному близостью КК-порога (см., например, [51, 52]). Первый полюс при 1015 – 146 МэВ оказывает доминирующее влияние на спектр ππ-системы, приводя к резкому провалу в ππ → ππ спектре или к нулю в спектре ππ(ι) → ππ при больших |ι| [24]. Последним динамику поведения этого полюса при включении и выключении распадных каналов, т.е. переходов в каналы 1 = ππ, 2 = КК. Для этой цели примем следующую замену в K-матричной амплитуде:

\[g₁(720) → \xi₁g₁(720), \quad g₂(720) → \xi₂g₂(720), \]

где параметры \(\xi₁ \) меняются в интервале 0 ≤ \(\xi₁ \) ≤ 1. При \(\xi₁ → 0 \) и \(\xi₂ → 0 \) распадные каналы легчающего 00++.
т.е. область КК-порога. Поэтому КК-компонента является квазимолекулярной: относительный импульс КМ-мезонов мал, а значит, среднее расстояние между КМ-мезонами достаточно велико. Однако можно убедиться, что влияние КК-компоненты на формирование конечного состояния мало. Действительно, выключим КК-состояние из игры, т.е. положим в амплитуде \(\xi_1 = 1 \) и \(\xi_2 = 0 \). Тогда полоса оказывается в точке

\[M(\text{без КК}) = 979 - i 53 \text{ МэВ}. \] (3.11)

Мы видим, что массовый сдвиг

\[M(\text{реальное положение}) - M(\text{без КК}) = 36 + i 7 \text{ МэВ} \] (3.12)

сравнительно невелик, а это значит, что роль КК-компоненты в формировании реального состояния \(f_0(980) \) действительно невелика.

Итак, K-матричный анализ 00\(+^+\)-волн восстанавливает следующую картину формирования \(f_0(980) \). До смешения имелось легчайшее скайлярное-изоскалярное \(qq \)-состояние \(f_0^{\text{bare}}(720 \pm 100) \) с флейверной волновой функцией, близкой к отчетной:

\[\psi_{\text{baryon}}(720) = \cos \theta \psi_2 - \sin \theta \psi_1, \quad \theta = 14^\circ \pm 12^\circ, \] (3.13)
\[\psi_1 = \frac{1}{\sqrt{3}}(u + d + s), \quad \psi_2 = \frac{1}{\sqrt{6}}(u + d - \sqrt{2} s). \] (3.14)

Смешивание с другими состояниями, осуществляемое переходом \(f_0^{\text{bare}}(720) \rightarrow \pi \), приводит к возникновению резонанса с характеристиками весьма близкими к значениям, наблюдаемым на опыте (см. (3.11)). Включение КК-компоненты \(f_0^{\text{bare}}(720) \rightarrow \text{КК} \) приводит к значительному сдвигу массы и ширины (см. (3.12)).

Отметим, что прямые измерения также указывают на то, что \(f_0(980) \) имеет значительные компоненты, сформированные на малых расстояниях: рождение \(f_0(980) \) не подавлено в реакции \(\pi^+ p \rightarrow f_0(980)p \) при больших переданных импульсах [24, 53] и в радиационном \(J/\psi \)-распаде [54].

Необходимо обратить внимание на то, что легчайшее изоскалярно-псевдоскалярное состояние, \(\eta \)-мезон, также имеет флейверную волновую функцию, близкую к отчетной: \(\eta = \cos \theta \psi_2 - \sin \theta \psi_1 \) с \(\theta = -16.7^\circ \pm 2.8^\circ \) [12].

3.5. Волна \(J^{PC} = 1^{++} \)

Два изовекторных-скалярных резонанса хорошо видны в реакциях (1.4) [18, 19]. Легчайший из них есть хорошо известный \(a_0(980) \), тогда как следующий резонанс — это недавно открытый \(a_0(1450) \): согласно ком поненты [9], он имеет массу 1450 \pm 40 МэВ и ширину \(\Gamma = 270 \pm 40 \text{ МэВ} \). Отметим, что в результате фитирования последних высокостатистических данных [30, 36, 54] масса этого резонанса оказалась несколько выше — 1520 \pm 40 \text{ МэВ}.

Для описания изовекторной (скалярной) амплитуды в [36] использована двухполосная \(4 \times 4 \) \(K \)-матрица с каналами 1 = \(\pi \eta \) 2 = \(\pi K \), 3 = \(\eta \pi \), 4 = мноегомонолине состояния. Константы связи с двухмезонными каналами определяются квадратными комбинаторными соот-

Рис. 10. Диаграмма Арguna для унитарной S-волновой амплитуды в реакциях \(\pi \pi \rightarrow \pi \pi \rightarrow \pi \pi \rightarrow \eta \eta \) и \(\pi \pi \rightarrow \eta \eta \) [30].

Рис. 11. Диаграмма Арguna для S-волновой амплитуды \(\pi \pi(t) \rightarrow \pi \pi \) рассеяния [30] при различных значениях квадрата энергии виртуального пиона \(t \).
ношениями (см. табл. 3); напомним, что константы g^1 одинаковы для всех членов мультиплета. На первом этапе фита константы связи легчайшего резонанса Δ варьировались в интервале, ограниченном константами $g^1[f_{10}^0(720)]$ и $g^1[f_{01}^0(1260)]$. Во всех вариантах фита константы связи с двумя π-мезонами, $g^1[a^0_{\text{phys}}(\text{легчайшее состояние})]$, оказалась очень близкой к $g^1[f_{10}^0(1260)]$; в окончательном фите эти константы положены равными друг другу. Константы связи следующего изовекторно-скаларного резонанса с двумя π-мезонами также фиксированы: они равны для всех состояний мультиплета 2^3P_0

Таблица 3. Костыкты переходов $K_{\Lambda^0}^0 \rightarrow$ два мезона и $a^0 \rightarrow$ два мезона с учетом лицензирующих и следующих за лицензирующими членами разложения по $1/N$

Канал	Константы связи для лицензирующих членов	Члены, следующие за лицензирующими
$K^+\pi^-$	g_1^L	0
$K^0\pi^0$	g_1^L	0
$K^0\eta$	$(\cos \theta - \sqrt{3} \sin \theta) g_1^L$	$(\sqrt{2} \cos \theta - \sqrt{3} \sin \theta)g_{NL}^{KL}$
$K^0\eta'$	$(\sin \theta + \sqrt{3} \cos \theta) g_1^L$	$(\sqrt{2} \cos \theta - \sqrt{3} \sin \theta)g_{NL}^{KL}$
$K^-\pi^+$	g_1^L	0
$\pi^-\eta$	g_1^L	0
$\pi^-\eta'$	g_1^L	0

Фит позволил найти два решения для волн 1014, которые практически совпадают в членах, относящихся к резонанскому сектору, и отличаются в фоновых членах. Положения полюсов амплитуды и соответствующие им гольные состояния приведены в (1.14) и (1.15).

В [41] обсуждалась гипотеза, что резонансы $a_{01}(980)$ и $f_0(980)$ относятся к специальному классу состояний (множь), которые слабо связаны с адекватными канапами: малые ширины этих резонансов служили аргументом в пользу такой природы $a_{01}(980)$ и $f_0(980)$. Характеристики резонанса $a_{01}(980)$ предоставляют хорошую возможность для проверки этой гипотезы, так как адекватные компоненты, обусловленные распадом $a_{01}(980)$ на $\pi \eta$ и $K \bar{K}$, слабо влияют на это состояние (см. (1.14) и (1.15)). K-матричный фит данных [36] показал, что $g^1[f_{10}^0(964)]$ не мало, а имеет стандартную для адронных распадов величину; малая величина ширины $a_{01}(980)$ связана не с малой вероятностью распада, как это было бы при мнонных природе $a_{01}(980)$, а с пороговым эффектом; подчеркнем, что этот результат виден и при проведении T-матричного анализа данных [19, 56].

3.6. K-матричный анализ K_{Λ} S-волны

Параполюсо-волновой анализ $K^+\pi^-$-системы для реакции $K^+p \rightarrow K^-\pi^+$ при 11 ГэВ с$^{-1}$ был выполнен в [37], где найдены два альтернативных решения для S-волны (решения A и B), различающиеся только в области масс выше 1800 МэВ. В этой же работе проведен T-матричный фит K_{Λ} S-волны, однако отдельно для областей 850–1600 МэВ и 1800–2100 МэВ. В первой области масс был найден резонанс $K_{\Lambda}^0(1430)$:

$$M_R = 1429 \pm 9 \text{ МэВ}, \quad \Gamma = 287 \pm 31 \text{ МэВ}.$$

Во второй области масс решения A и B дают следующие параметры для резонанса $K^0_{\Lambda}(1930)$:

- решение A: $M_R = 1934 \pm 28 \text{ МэВ}, \quad \Gamma = 174 \pm 98 \text{ МэВ};$
- решение B: $M_R = 1955 \pm 18 \text{ МэВ}, \quad \Gamma = 228 \pm 56 \text{ МэВ}.$$

Очевидна необходимость усовершенствовать этот анализ. Прежде всего необходимо включить в рассмотрение область масс 1600–1800 МэВ, где амплитуда меняется очень быстро. Как подчеркивалось выше, известно, что благодаря сильной интерференции, резонанс может проявляться не только как пик в спектре, но так же и как провал или пикло: подобным образом ведут себя резонансы в волне 0^- и $-$. Далее, интерференционные эффекты также приводят к неоднозначности. Напомним, что неоднозначности в волне 0^- были успешно устранены в [30, 36] только благодаря одновременному фиту различных мезонных спектров. В случае $1/2^+$-волны мы не имеем такого количества данных и поэтому можно ожидать, что решение, найденное в [37], не единственно.

K-матричный повторный анализ K_{Λ}-волны выполнен в [42]. Его целью являлось:

1) восстановление масс и констант связи гольных состояний в волне $1/2^+$ для проведения q^2-килассификации;
2) нахождение возможных альтернативных K-матричных решений для K_{Λ}-волны в области масс до 2000 МэВ.

С-волная K_{Λ}-амплитуда рассматривается, выделяемая из реакции $K^-p \rightarrow K^-\pi^+$ при малых переданных импульсах есть сумма двух компонент с изоинсами 1/2 и 3/2:

$$A_S = A_S^{1/2} + A_S^{3/2} = |A_S| \exp(i\phi_S),$$

где $|A_S|$ и ϕ_S суть измеримые величины S-воловой амплитуды [37]. Компонента S-воловой амплитуды с изоинсом $I = 3/2$ имеет нерезонансное поведение при рассматриваемых энергиях и поэтому может быть параметризован как:

$$A_S^{3/2}(s) = \frac{\rho_{K\Lambda}(s)a_{3/2}(s)}{1 - ip_{K\Lambda}(s)a_{3/2}(s)} ,$$

где $a_{3/2}(s) = $ гладкая функция, а $\rho_{K\Lambda}(s) = $ фазовый объем K_{Λ}; для описания $A_S^{1/2}$ амплитуды в [42] была использована K-матрица размерности 3 × 3 с каналами 1 = $K\eta$, 2 = $K\eta'$, 3 = $K\eta\pi +$ многомезонные состояния. Учет канала $K\eta$ не влияет на оценку данных, так как переход $K\eta \rightarrow K\eta$ подавлен [37] (это также согласуется с результатами квартковой комбинации, см. табл. 3). Фит волны $1/2^+$ проведен в [42] в рамках стандартной параметризации K_{Λ}, данной в (3.1). Анализируемые данные выделены из реакции $K^-p \rightarrow K^-\pi^+$ при малых переданных импульсах, ($|t| < 0.2 \text{ ГэВ}^2$), поэтому в качестве первого шага эти данные фитировались унитарной амплитудой (3.1). На следующем шаге учили t-зависимость в K-матричной амплитуде. Амплитуда $K_{\Lambda}(t) \rightarrow K_{\Lambda}(\pi(t))$ обозначает виртуальный пион равна
$A^{1/2}_S = K_{1w}(t) (I - i p K)^{-1}_{1a}$; параметризация матрицы $K_{1w}(t)$ приведена в (3.3).

Коэффициенты связи определены правилами кварковой комбинаторики, они представлены в табл. 3. В [42] учитывались только лидирующие по $1/N$ члены разложения: в этом случае коэффициенты связи фиксированы фитом 00++- и 10++-волн, так как g^2 является обшим параметром для всех членов одного ионета.

Описание $1/0^+$-волн выполнено в рамках двух предположений — о двухполюсной и трёхполюсной структуре волны в области масс ниже 2000 МэВ.

В [37] получено два решения, A и B, для $1/0^+$-волн, которые отличаются только при $M_{K^+} > 1800$ МэВ. Соответственно, в [42] найдено два двухполюсных K-матричных решений, (A-1) и (B-1). Положение полюсов амплитуды в этих решениях практически совпадают: они приведены в (1.16). Данные показаны на рис. 12. Массы первого резонанса в (1.16) не сильно отличаются от массы, полученной в [37] (см. (3.15)), однако ширина резонанса в K-матричном решении уменьшилась почти в два раза. Это связано с тем, что K-матричная амплитуда корректно учитывает $K\eta'$ порог и обусловленное им увление полюсов. Масса второго резонанса уменьшилась в K-матричном решении по сравнению с результатом [37] более чем на 100 МэВ.

Рис. 12. Описание данных [37] в фираках с двухполюсной K-матрицей: решения (A-1) и (B-1). Сплошные линии соответствуют решению с упругим выталкиванием для амплитуды рассеяния, пунктирная — фиту с t-зависимостью $K\eta$-матрицы; ϕ_2 в градусах.

Массы гольных скалярных каонов, соответствующие двухполюсному решению, приведены в (1.17). Масса легчайшего состояния равна 1200\,MэВ, т. е. этот скалярный каон находится в том же районе масс, что и другие скалярные состояния, являющиеся кандидатами в члены базисного ионета $1P_0$.

Описание данных в трехполюсных K-матричных фитах показано на рис. 13. В решениях (A-2) и (B-2) область высоких масс $M_{K^+} > 1700$ МэВ описывается двумя полюсами. Однако введение двухполюсной структуры практически не привело к изменению характеристик первых двух резонансов: они такие же, как и в решениях (A-2) и (B-2). В решении (B-3) область $M_{K^+} < 1600$ МэВ описывается двумя полюсами. Положение гольных состояний в решении (B-3) дано в (1.18), соответствующее положение полюсов амплитуды — в (1.19).

Сплошные кривые на рис. 12 и рис. 13 соответствуют описанию $K\pi$-волн, задаваемой упругим выталкиванием, а пунктирные линии показывают фиты, где учтена t-зависимость $K\pi$-амплитуды. Как видно, t-зависимость позволяет лучше описать физи в районе 1700 МэВ. Отметим, что в этом районе, как и в области масс выше 2000 МэВ для решения A, представленные данные нарушают упругий предел. Маловероятно, что достаточно сильное нарушение упругого предела есть следствие t-зависимости амплитуды; скорее всего это связано со значительной систематической ошибкой в циркулярно-волновом анализе [37] в этих областях. Включение t-зависимости в фит не влияет серьезным образом на массы гольных состояний и на положение полюсов амплитуды. Как правило, массы гольных состояний, получаемые в t-зависимом фите, на 20–30 МэВ меньше масс, получаемых в фитах без t-зависимости.

4. Матрица пропагаторов: анализы $L^D_{PC} = 00^{++}$

Здесь суммированы результаты анализа 00^{++}-волны, проведенных в [6, 7] в терминах матрицы пропагаторов (D-матрицы). Техника D-матрицы, основанная на дисперсионном N/D-методе, позволяет реконструировать амплитуду, аналитическую во всей комплексной s-плоскости. Рассматриваются эффекты, обусловленные перекрытием и смешиванием резонансов: массовые свдвиги,
Смещение двух нестабильных состояний

В случае двух резонансов функция распределения состояния 1 определяется диаграммами, приведенными на рис. 14а. С учетом всех этих процессов пропагатор состояния 1 равен

\[D_{11}(s) = \left(m_1^2 - s - B_{11}(s) - \frac{B_{12}(s)B_{21}(s)}{m_1^2 - s - B_{22}(s)} \right)^{-1}. \] (4.1)

Здесь \(m_1 \) и \(m_2 \) — массы затравочных состояний 1 и 2, а петлевые диаграммы \(B_{ij}(s) \) задаются выражением (2.21) с заменой \(g^2(s) \rightarrow g(s)g(s) \). Полено ввести матрицу пропагаторов \(D_{ij} \), где ненулевые члены \(D_{22} = D_{21} \) описываются переходами 1 — 2 и 2 — 1 (рис. 14б). Матрица может быть записана в виде:

\[D^* = \begin{vmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{vmatrix} = \frac{1}{(m_1^2 - s)(m_2^2 - s) - B_{12}B_{21}} \begin{vmatrix} M_1^2 - s & B_{12} \\ B_{21} & M_2^2 - s \end{vmatrix}. \] (4.2)

Здесь введено обозначение:

\[M_i^2 = m_i^2 - B_{0i}(s), \quad i = 1, 2. \] (4.3)

Нули знаменателя в (4.2) определяют комплексные массы резонансов после смещения:

\[\Pi(s) = (m_1^2 - s)(m_2^2 - s) - B_{12}B_{21} = 0. \] (4.4)

Обозначим комплексные массы смешанных состояний через \(M_A \) и \(M_B \):

\[
\begin{align*}
\text{а} & \quad m_1 + m_2 B_{11} + m_1 B_{11} m_2 B_{12} + \ldots & & \text{б} & \quad m_1 B_{12} + m_2 B_{11} m_1 B_{12} + m_2 m_1 B_{22} + \ldots
\end{align*}
\]

Рис. 14. Диаграммы, отвечающие функциям распределения \(D_{11} \) (а) и \(D_{12} \) (б) в случае взаимодействия двух гольф состояний.

В случае, когда ширины начальных резонансов 1 и 2 малы (а значит, и мнимая часть переходной диаграммы \(B_{12} \)) уравнение (4.5) фактически представляет собой стандартную квантовомеханическую формулу для рассеяния смещающихся уровней, которые в результате смещения отталкиваются. Тогда

\[\cos^2 \theta = \frac{1}{2} \left(1 + \frac{1}{\Pi(M_A^2)} \left(\frac{1}{4}(M_1^2 - M_2^2)^2 + B_{12}B_{21} \right) \right). \] (4.6)

Состояния \(|A \rangle \) и \(|B \rangle \) являются суперпозицией начальных состояний \(|1 \rangle \) и \(|2 \rangle \):

\[|A \rangle = \cos \theta |1 \rangle - \sin \theta |2 \rangle, \quad |B \rangle = \sin \theta |1 \rangle + \cos \theta |2 \rangle. \] (4.7)

Процедура представления состояний \(|A \rangle \) и \(|B \rangle \) в виде суперпозиций начальных состояний сохраняется в общем случае, когда \(s \)-зависимость функции \(B_0(s) \) нельзя пренебречь и их мнимые части не малы. Рассмотрим матрицу пропагаторов вблизи \(s = M_A^2 \):

\[
\begin{align*}
\cos^2 \theta & = \frac{1}{2} \left(1 + \frac{1}{\Pi(M_A^2)} \left(\frac{1}{4}(M_1^2 - M_2^2)^2 + B_{12}B_{21} \right) \right). \\
\cos^2 \theta & = \frac{1}{2} \left(1 + \frac{1}{\Pi(M_A^2)} \left(\frac{1}{4}(M_1^2 - M_2^2)^2 + B_{12}B_{21} \right) \right).
\end{align*}
\] (4.8)

В правой части (4.8) оставлены только сингулярные (полюсные) слагаемые. Детерминант матрицы в правой части (4.8) равен нулю:

\[
\left[M_2^2(M_A^2) - M_A^2 \right] \left[M_1^2(M_A^2) - M_A^2 \right] - B_{12}(M_A^2)B_{21}(M_A^2) = 0. \] (4.9)

Это равенство является следствием уравнения (4.4) и говорит о том, что \(\Pi(M_A^2) = 0 \). Равенство (4.9) позволяет ввести комплексный угол смещения:

\[|A \rangle = \cos \theta_A |1 \rangle - \sin \theta_A |2 \rangle. \] (4.10)

Правая часть (4.8) переписывается с использованием угла \(\theta_A \) как

\[\cos^2 \theta_A = \frac{1}{2} \left(1 + \frac{1}{\Pi(M_A^2)} \left(\frac{1}{4}(M_1^2 - M_2^2)^2 + B_{12}B_{21} \right) \right). \] (4.11)

где

\[N_A = \frac{1}{\Pi(M_A^2)} \left[2M_1^2 - M_2^2 \right]. \]

\[\cos^2 \theta_A = \frac{N_A^2 - M_A^2}{2M_A^2 - M_1^2 - M_2^2}. \]

(4.12)
Напомним, что в формуле (4.12) функции $M_1^2(s)$, $M_2^2(s)$ и $B_{12}(s)$ фиксированны в точке $s = M_0^2$. В рассматриваемом случае, когда угол θ_A является комплексным, величины $\cos^2 \theta_A$ и $\sin^2 \theta_A$ не определяют вероятности состояний $|1\rangle$ и $|2\rangle$ в $|A\rangle$: величины $\sqrt{N_A} \cos \theta_A$ и $-\sqrt{N_A} \sin \theta_A$ являются амплитудами перехода $|A\rangle \rightarrow |1\rangle$ и $|A\rangle \rightarrow |2\rangle$. Поэтому соответствующие вероятности равны $|\cos \theta_A|^2$ и $|\sin \theta_A|^2$.

Для анализа состава состояния $|B\rangle$ аналогичное разложение матрицы пропагаторов необходимо произвести вблизи $s = M_0^2$. Введем

$$|B\rangle = \sin \theta_B |1\rangle + \cos \theta_B |2\rangle,$$

имеем следующее представление для \tilde{D} в окрестности второго полюса $s = M_0^2$:

$$[\tilde{D}]_{s\sim M_0^2} = \frac{N_B}{M_0^2 - s} \begin{pmatrix} \sin^2 \theta_B & \cos \theta_B \sin \theta_B \\ \sin \theta_B \cos \theta_B & \cos^2 \theta_B \end{pmatrix},$$

где

$$N_B = \frac{1}{\Pi'(M_0^2)} \left[\frac{2M_0^2 - M_1^2 - M_2^2}{2M_0^2 - M_1^2 - M_2^2}\right] ,$$

$$\cos^2 \theta_B = \frac{2M_0^2 - M_1^2 - M_2^2}{2M_0^2 - M_1^2 - M_2^2} ,$$

$$\sin^2 \theta_B = \frac{2M_0^2 - M_1^2 - M_2^2}{2M_0^2 - M_1^2 - M_2^2} .$$

В (4.15) функции $M_1^2(s)$, $M_2^2(s)$ и $B_{12}(s)$ фиксированы в точке $s = M_0^2$.

В случае, когда B_{12} слабо зависит от s и этой зависимостью можно пренебречь, углы θ_A и θ_B совпадают. Но в общем случае они различны. В этом формуле матрицы пропагаторов отличаются от стандартного квантовомеханического рассмотрения. Еще одно отличие связано с характером сдвига уровней в результате смешивания: в квантовой механике уровень "отталкиваются" от среднего значения 1/2($E_1 + E_2$) (см. также уравнение (4.5)). В общем случае формула (4.4) может дать как "отталкивание" квадратов масс от среднего значения 1/2($M_1^2 + M_2^2$), так и их "притяжение".

Амплитуда рассеяния в одноканальном случае определяется следующим выражением:

$$A(s) = g_1(s)D_0(s)g_2(s) .$$

В многоканальном случае $B_0(s)$ есть сумма петлевых диаграмм:

$$B_0(s) = \sum_n B_0^{(n)}(s) ,$$

где $B_0^{(n)}$ — петлевая диаграмма в канале n с вершинными функциями $g_1^{(n)}$, $g_2^{(n)}$ и фазовым объемом ρ_n. Парциальная амплитуда рассеяния в канале n равна:

$$A_n(s) = g_1^{(n)}(s)D_0(s)g_2^{(n)}(s) .$$

4.2. Случай перекрытия большого числа резонанов: построение матрицы пропагаторов

Рассмотрим метод построения матрицы пропагаторов \tilde{D} в случае произвольного числа резонансов. Элементы этой матрицы D_{ij} описывают переход из состояния i (пропагатор $(m_i^2 - s)^{-1}$) в состояние j. Они подчиняются следующей системе линейных уравнений:

$$D_{ij} = D_{0A}B_{ij}(s)(m_j^2 - s)^{-1} + \delta_{ij}(m_i^2 - s)^{-1} ,$$

где $B_{ij}(s)$ функции, отвечающие однопетлевым диаграммам и рассмотренные в предыдущем разделе, а δ_{ij} — символ Кронекера. Введем диагональную матрицу пропагаторов затрудненных состояний d:

$$d = \text{diag}((m_1^2 - s)^{-1}, (m_2^2 - s)^{-1}, (m_3^2 - s)^{-1}, \ldots) .$$

Тогда система линейных уравнений (4.21) переписывается в следующей матричной форме:

$$\tilde{D} = Dd + d .$$

Получаем

$$\tilde{D} = \frac{I}{(d^{-1} - B)} .$$

Матрица d^{-1} является диагональной, следовательно, матрица $\tilde{D}^{-1} = (d^{-1} - B)$ имеет вид

$$\tilde{D}^{-1} = \begin{pmatrix} M_1^2 - s & -B_{12}(s) & -B_{13}(s) \\ -B_{21}(s) & M_2^2 - s & -B_{23}(s) \\ -B_{31}(s) & -B_{32}(s) & M_3^2 - s \end{pmatrix} .$$

где M_i^2 определено соотношением (4.3). Обращая эту матрицу, имеем полный набор элементов $D_{ij}(s)$:

$$D_{ij}(s) = \frac{(-1)^{i+j} \Pi^{(N-1)}(s)}{\Pi^{(N)}(s)} .$$

Здесь $\Pi^{(N)}(s)$ есть детерминант матрицы \tilde{D}^{-1}, а $\Pi^{(N-1)}(s)$ — матричное дополнение к элементу $[\tilde{D}^{-1}]_{ij}$, т.е. детерминант матрицы \tilde{D}^{-1} с исключенными i-й строкой и i-м столбцем.

Нули $\Pi^{(N)}(s)$ определяют полюса матрицы пропагаторов, которые соответствуют физическим резонансам, образовавшимся в результате смешивания. Обозначим комплексные массы этих резонансов как

$$s = M_A^2, M_B^2, M_C^2, \ldots .$$

Вблизи точки $s = M_A^2$ в матрице пропагаторов может быть оставлен только лидирующий полюсной член. Это означает, что свободным членом в уравнении (4.21) можно пренебречь, и мы получаем систему однородных уравнений:

$$D_{0A}(s)(d^{-1} - B)_{ij} = 0 .$$

Решение такой системы определено с точностью до нормирующего множителя и не зависит от начального индекса i. Тогда элементы матрицы пропагаторов можно записать в следующем факторизованном виде:

$$[D^{(N)}]_{i\sim M_A^2} = \frac{N_A}{M_A^2 - s} \begin{pmatrix} z_1^2, z_1z_2, z_1z_3, \ldots \\ z_2, z_2z_1, z_2z_3, \ldots \\ z_3, z_3z_1, z_3z_2, \ldots \end{pmatrix} .$$
где \(N_\lambda \) — нормирующий множитель, а комплексные константы связи нормированы условием:
\[
x_1^2 + x_2^2 + x_3^2 + \ldots + x_N^2 = 1.
\]
(4.28)

Константы \(x_i \) являются нормированными амплитудами перехода резонанса \(A \to \) состояния \(i \). Вероятность обнаружить состояние \(i \) в физическом резонансе \(A \) равна
\[
w_i = |x_i|^2.
\]
(4.29)

Аналогичные разложения матрицы пропагаторов можно производить и в окрестности других полюсов:
\[
D^{(N)}(s \sim M_R^2) = N_B \frac{\beta_i \beta_j}{M_R^2 - s},
\]
(4.30)

Константы связи удовлетворяют нормирующему усло-вию, подобным (4.28):
\[
\beta_1^2 + \beta_2^2 + \ldots + \beta_N^2 = 1, \quad \gamma_1^2 + \gamma_2^2 + \ldots + \gamma_N^2 = 1, \ldots
\]
(4.31)

Однако в общем случае нет условия полноты в обратном разложении:
\[
x_1^2 + x_2^2 + x_3^2 + \ldots \neq 1.
\]
(4.32)

Для двух резонансов это означает, что \(\cos^2 \Theta_A + \sin^2 \Theta_B \neq 1 \). Напомним, однако, что равенство единице левой части (4.32) имеет место в формулах (4.5)–(4.7), описывающих модель с петлевыми диаграммами \(B_{ji} \), в которых зависимостью от \(s \) можно пренебречь.

4.3. Полное перекрытие резонансов: эффект аккумулирования одним из резонансов ширин резонансов—соседей

Рассмотрим два примера, описывающих идеализированную ситуацию полного перекрытия двух и трех резонансов. В этих примерах виден в невозмущенном виде эффект аккумулирования одним из резонансов ширин резонансов—соседей.

а. Полное перекрытие двух резонансов.

Для простоты рассмотрим случай слабой зависимости \(B_{ji} \) от \(s \), т.е. используем формулу (4.5). Пусть
\[
M_1^2 = M_R^2 - i M_R \Gamma_1, \quad M_2^2 = M_R^2 - i M_R \Gamma_2,
\]
(4.33)

а также
\[
\text{Re} B_{12}(M_R^2) = P \int_{(\mu^+, \mu^-)} ds' \frac{g_1(s')g_2(s')\rho(s')}{s' - M_R^2} \to 0.
\]
(4.34)

Обращение в нуль \(\text{Re} B_{12}(M_R^2) \) возможно при положительных \(g_1 \) и \(g_2 \), если \(M_R \) является нулевым по области \(s' < M_R^2 \). В этом случае
\[
B_{12}(M_R^2) \to ig_1(M_R^2)g_2(M_R^2)\rho(M_R^2) = i M_R \sqrt{\Gamma_1 \Gamma_2}.
\]
(4.35)

Подставляя (4.33)–(4.35) в (4.5), имеем
\[
M_1^2 \to M_R^2 - i M_R (\Gamma_1 + \Gamma_2), \quad M_2^2 \to M_R^2.
\]
(4.36)

Таким образом, после смешивания одно из состояний аккумулирует ширины начальных резонансов, \(\Gamma_1 \to \Gamma_1 + \Gamma_2 \), а другое состояние становится почти стабильной частицей, \(\Gamma_2 \to 0 \).

б. Полное перекрытие трех резонансов.

Рассмотрим уравнение
\[
\Pi^{(3)}(s) = 0
\]
(4.37)

в том же приближении, что и в предыдущем примере. Соответственно, мы полагаем
\[
\text{Re} B_{34}(M_R^2) = 0 \quad (a \neq b);
\]
\[
M_1^2 = M_R^2 - s - i M_R \Gamma_i = x - i y_i.
\]
(4.38)

Здесь введена новая переменная \(x = M_R^2 - s \) и обозначено \(M_4 \Gamma_4 = y_4 \). С учетом \(B_3 B_4 = -\gamma_2 \gamma_5 \) и \(B_2 B_3 B_5 = -i \gamma_1 \gamma_2 \gamma_3 \), уравнение (4.37) переписывается как
\[
x^3 + x^2 (i y_1 + i y_2 + i y_3) = 0.
\]
(4.39)

Таким образом, при полном перекрытии резонансов
\[
M_1^2 \to M_R^2 - i M_R (\Gamma_1 + \Gamma_2 + \Gamma_3),
\]
\[
M_2^2 \to M_R^2, \quad M_3^2 \to M_R^2.
\]
(4.40)

Резонансы \(A \) аккумулировали ширины всех трех начальных резонансов, а состояния В и С оказались почти стабильными и выражены.

4.4. Резонансы \(b_0(1300), b_0(1500), b_0(1530, 2200) \) и \(f_0(1780) \)

Результаты \(K \)-матричного анализа являются основой для исследования явления смешивания в скалярном секторе. Проведение анализа в рамках техники матрицы пропагаторов позволяет правильно учесть вклад реальных частей петлевых диаграмм, \(B_{ji} \), и тем самым корректно определить вклад начальных состояний в формирование физических резонансов.

Задача о смешивании резонансов в области 1200—1600 МэВ сводится к двухканальной: кварк-адронная двуначальность указывает, что можно проводить анализ, используя кварковые каналы \(n \pi \) и \(s \pi \). Соответственно,
\[
b_0(s) = \cos \varphi \cos \varphi b_1^{(n)}(s) + \sin \varphi \sin \varphi b_2^{(s)}(s),
\]
(4.41)

где \(i, j \) пробегают значения 1, 2, 3, 4 со следующим обозначением состояний: \(1 = 1^1P_0(n \text{ rich}), 2 = 2^1P_0(n \text{ rich}), 3 = \text{глюон}, 4 = 2^3P_0(s \text{ rich}) \). Квартковые состояния удобно описывать в переменных светового конуса. В этих переменных
\[
b_{ij}^{(n)}(s) = \frac{1}{(2\pi)^3} \int_0^1 ds' \int_0^{2\pi} d\varphi \int_0^\infty d^2 k \frac{g_i(s')g_j(s')}{s' - s} 2(s' - 4m_n^2).
\]
(4.42)

Здесь \(s' = (m^2 + \vec{k}_1^2)(1 - x) \) и \(m \) — масса нестранным кварка. Фактор \(2(s' - 4m_n^2) \) возник из-за учета спиновых переменных кварков:
\[
\text{Tr} [(\hat{k} + m)(-\hat{p} + \hat{k} + m)] = 2(s' - 4m_n^2).
\]
Аналогичное выражение с заменой \(m \to m \) определяет \(b_{ij}^{(s)}(s) \).
Используется простейшая параметризация вершинной функции перехода состояния в кварке:

\[g_s(x) = \gamma_i \sqrt{x} \left[\frac{k^2 + \sigma_i}{k^2 + \sigma_i - d_i} \right] \] \hspace{1cm} (4.43)

Здесь \(k^2 = s/4 - m^2 \) и \(k^2_0 = m_b^2/4 - m^2 \), где \(m \) — масса константного кварка, равная 350 МэВ для нестранных и 500 МэВ для странновых кварков, а \(m_b \) — масса затравочного состояния.

Для верхнего состояния, \(1^P_0 (n\text{ rich}) \), и для глюононунула положено \(d_i = d_i = 0 \). Второе состояние является радиальным возбуждением, \(2^P_0 \), и его волновая функция ортогональна основному состоянию. Это означает, что реальная часть функции \(B_{12}(s) \) должна обращаться в нуль при \(x \), близком к массам резонансов. Такая ортогонализация проводилась в точке \(\sqrt{s} = 1,5 \) ГэВ, определяя тем самым значение коэффициента \(d_2 \). Вершинные функции для членов одного изотопа равны: \(g_2(s) = g_2(s) \).

Параметры \(m_{\alpha} \), \(\gamma \), \(h \) и \(\sigma_\alpha \) определяются массами и ширинами физических резонансов. Однако массы \(m_{\alpha} \) приблизительно фиксируются массами \(K \)-матричных полюсов: \(m_2^\alpha \approx m_2^\alpha - \Re B_{ab}(m^2) \). Подчеркнем, что \(m_{\alpha} \) есть масса чистого глюононума, который является объектом изучения решеточной КХД.

Положение полюсов амплитуды и массы затравочных состояний, полученные в \(7 \) при фитировании \(0^+ \)-волн, приведены в табл. 4. Относительный вес начального состояния в физическом резонансе \(A \) определяется согласно (4.29); вероятности \(W_\alpha \) для рассматриваемых резонансов также приведены в табл. 4.

Как подчеркивалось ранее, для сравнения с результатами расчетов КХД необходимо провести разделение вкладов от взаимодействий на больших и малых расстояниях: учесть короткодействующую компоненту взаимодействия, \(r < r_0 \sim R_{\text{conf,ref.}} \), и удалять вклад от взаимодействия при больших \(r \). Таким образом, при вычислениях масс, которые можно сравнивать с результатами КХД-моделированных моделей, мы должны сделать следующую замену в амплитуде \(0^+ \)-волн: \(B_{ab}(s) \rightarrow \Re B_{ab}(s, k_0^2) \).

Полоса переопределения таким образом амплитуды дают массы, которые обусловлены взаимодействием при \(r < 1/k_0 \). С результатами кварковой модели следует сравнивать массы, полученные при обрезании порядка \(k_0^2 \sim 0,125 \) (ГэВ \(c^{-2})^2 \); такое обрезание соответствует учету кваркового взаимодействия при \(r \leq 1 fm \sim R_{\text{conf,ref.}} \).

Для решения I мы получаем (величины приведены в ГэВ):

\[1^P_0 (n\text{ rich}) \quad 1^P_0 (n\text{ rich}) \quad 2^P_0 (n\text{ rich}) \quad 2^P_0 (s\text{ rich}) \]

В решении II:

\[1^P_0 (s\text{ rich}) \quad 1^P_0 (n\text{ rich}) \quad 2^P_0 (n\text{ rich}) \quad 2^P_0 (s\text{ rich}) \]

Легчайшее глюнонум \(1_0^P \) (720), не было включено в процедуру суперимпульса в [6, 7]. Для результатов (4.45) и (4.46) массовая поправка \(k_0^2 \) по формуле: \(m_{\alpha}(k_0^2) \approx m_{\alpha}^2 - \Re B_{ab}(m_{\alpha}^2, k_0^2) \). Эти приблизительные равенства возникают из-за сравнительной малости вкладов недиагональных неткрытых диаграмм.

Результаты (4.45) и (4.46) демонстрируют нам, что значение \(m_2 \) \(k_0^2 = 0,125 \) ГэВ \(c^{-2} \) слабо отличаются от \(m_{\text{bare}}^2 \) тогда как отношение от затравочных масс \(m_2 \) может быть значительной. Это означает, что \(K \)-матричный анализ дает для мезонов приблизительно правильные значения характеристики, которые можно сравнить с результатами кварковых моделей. Напротив, в данных расчетах решеточной КХД следует сравнивать значения затравочных масс \(m_{\alpha} \), которые могут заметно отличаться как от масс гольных состояний \(p_{\alpha}^2 \), так и от масс реальных резонансов.

4.5. Динамика смещивания глюобла с q−q−состояниями

Чтобы проследить динамику смещивания глюобла с q−q−состояниями, произведем замену в петлевых диаграммах матрицы пропагаторов:

\[g_s(s) \rightarrow \xi g_s(s) \] \hspace{1cm} (4.47)

с фактором \(\xi \), меняющимся в интервале \(0 \leq \xi \leq 1 \); \(\xi = 0 \) соответствуют отсутствию смещивания. В этом случае все состояния стабильны, а амплитуда имеет полюса при \(s = m^2 \). Рисунок 15 показывает положения полюсов при различных \(\xi \) для решений I и II. С увеличением \(\xi \) полюса сдвигается с действительной оси в нижнюю часть.
комплексной плоскости. Обсудим более детально динамику движения полюсов, например, в решении II.

При \(\xi = 0.1 \sim 0.5 \) глубокое состояние решения II смещается в основном с состоянием \(2^1P_{02} \), тогда как при \(\xi = 0.8 \sim 1.0 \) становится существенным смещение с состоянием \(1^3P_{01} \) rich. В результате состояние – поток глубокого подобен достаточно глубоко в комплексную плоскость, имея массу \(M = 1450 \sim 1540 \) МэВ, а глобальная компонента этого широкого резонанса составляет 47 %. Похожая ситуация имеет место и в решении I: широкий резонанс и в этом случае является потомком глюонума.

Гипотеза о том, что глюонуму сильно смещается с q\(\bar{q} \)-состояниями выдвигалась и ранее, однако попытки восстановить количественную картину смещения, предпринимавшиеся в рамках стандартной квантовой механики, оказывались неудачными, так как при этом не учитывались два явления:

1. Смещение q\(\bar{q} \)-глюобол, описываемое D-матрицей, может приводить не только к отталкиванию уровней (результат стандартного кванттовомеханического приближения), но и к их притяжению. Последний эффект возникает из-за комплексности петлевых диаграмм \(B_{\delta} \); при этом существенно, что Im \(B_{\delta} \) не малы в районе 1500 МэВ.

2. Перекрытие резонансов приводит к отталкиванию положений полюсов амплитуды вдоль мнимой оси масс, причем один из резонансов аккумулирует ширину остальных.

Такое смещение как раз и произошло в районе 1500 МэВ, и большая ширина одного из резонансов является неизбежным его результатом. Естественно также, что именно широкий резонанс является потомком глюонума, так как глюонум без заметного подавления смещается с близлежащими q\(\bar{q} \)-состояниями, оба которых являются доминантно-нестранными.

5. Заключение

Деконфайнмент кварков, находящихся на возбужденных q\(\bar{q} \)-уровнях, происходит в два этапа:

1) неизбежное рождение q\(\bar{q} \)-пар, которое приводит к рождению двух или более ближних состояний (адронов);
2) разлет рожденных адронов, их взаимодействие и, как результат, смещение соседних q\(\bar{q} \)-уровней, приводящее к образованию очень широкого запирающего состояния, которое выполняет роль динамического барье для соседних уровней.

Именно расшифровка второй стадии деконфайнмента производят K-матричный анализ или анализ в рамках дисперсионного \(N/D \)-метода. Анализ 00\(^+\) - волн, проведенный как в K-матричной технике, так и с помощью матрицы пропагаторов, показал, что легчайший скалярный глюонум, оказывающийся в ряду состояний \(1^3P_{02} \) и \(2^1P_{02} \), превратился в результате смещения в очень широкое состояние с \(G / f \sim 2.5 \) МэВ. Это широкое состояние \(f_0(1530) \) кроме наложенного состояние из скалярного глюонума, тогда как другие составляющие — это состояния \(1^3P_{02} \) и \(2^1P_{02} \).

Есть все основания полагать, что такая же ситуация имеет место и в волнах 00\(^+\) и 02\(^+\) [57]. Это позволяет заключить, что будущее физики высоковозбужденных состояний должно быть неразрывно связано с изучением широких состояний как при поиске экзотических адронов, так и в изучении конфайнмента.

Благодарности. Автор признан Л.Г. Дахио и В.А. Никонову за помощь. Данное исследование поддержано грантом РФФИ № 96-02-17934 и грантом INTAS-RFFBR N 95-0267.

Список литературы

1. Fritzsche H, Gell-Mann M. in Proc. of the XVI Int. Conf. on High Energy Physics, Batavia 2 135 (1972); Fritzsche H, Minkowski P Nuovo Cimento A 30 393 (1975); Freund P G O, Nambu Y Phys. Rev. Lett. 34 1645 (1975)
2. Jaffe R L, Johnson K Phys. Lett. B 60 201 (1976)
3. Bali G S et al. Phys. Lett. B 309 378 (1993)
4. Sexton J, Vaccarino A, Weingarten D Phys. Rev. Lett. 75 4563 (1995)
5. Morningstar C J, Peardon M "Efficient glueball simulations on anisotropic lattice", hep-lat/9704011 (1997) 1
6. Anisovich A V, Anisovich V V, Prokoshkin Yu D, Sarantsev A V, Z. Phys. A 357 123 (1997)
7. Anisovich A V, Anisovich V V, Sarantsev A V Phys. Lett. B 395 123 (1997); Z. Phys. A 359 173 (1997)
8. t'Hooft G Nucl. Phys. B 72 261 (1974); Veneziano G Nucl. Phys. B 117 519 (1976)
9. Particle Data Group: Barnett R M et al. Phys. Rev. D 54 1 (1996)
10. Heusch C A "Gluonium — an unfulfilled promise of QCD?", in QCD-20 Years Later (Eds P M Zerwas, H A Kastrup) (Singapore: World Scientific, 1993)
11. Savinov V (CLEO Collaboration) "A measurement of the form factors of light pseudoscalar mesons at large momentum transfered", hep-ex/9507005 (1995); Behrend H J et al. (CELLO Collaboration) Z. Phys. C 49 401 (1991); Aihara H et al. (TCP/2\(\gamma \) Collaboration) Phys. Rev. Lett. 64 172 (1990)
12. Anisovich V V, Melikhov D I, Nikolov V A Phys. Rev. D 55 2918 (1997); Anisovich V V et al. Phys. Lett. B 404 166 (1997)
13. Anisovich V B Phys. Rev. D 55 1225 (1995)
14. Anisovich V V et al. Phys. Lett. B 355 363 (1995).

1 См., например, http://xxx.lanl.gov.
The lightest scalar glueball

V.V. Anisovich

St. Petersburg Nuclear Physics Institute
188350 Gatchina, St. Petersburg, Russia
Fax (7-812) 713-19-63
E-mail: anisovich@thd.pnpi.spb.ru

Recent studies of meson spectra have enabled the resonance structure of the \(\ell^\text{PC} = 0^+, 1^+, 2^+, 3^+ \), and \(\ell^\text{P} = 4^+ \) waves to be found for masses ranging up to 1900 MeV, thus fully reconstructing the 1^Pqq and 2^Pqq meson multiplets. There is firm experimental evidence for the existence of five scalar (isoscalar) states in this mass range, four of which are qq states and members of the 1^Pqq and 2^Pqq nonets, whereas the fifth falls out of the quark picture and displays all the properties of the lightest possible scalar glueball. A dispersion analysis of the 0^++ wave elucidates how the mixture of the pure glueball state (or gluonium) with neighbouring scalar qq states forms: three scalar mesons, namely two relatively narrow \(f_0(1300) \) and \(f_0(1500) \) resonances and a very broad \(f_0(1530) \) resonance, share the gluonium, the broad resonance being the gluonium’s descendant and accounting for about 40 to 50% of its component.

PACS numbers: 12.39.Mk, 12.38.-t, 14.40.-n

Bibliography — 57 references

Received 4 November 1997