Functional tuning of Vascular L-type Ca2+ channels

Galina Yu Mironova*, Nadia Haghbin and Donald G. Welsh*

Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada

Vascular smooth muscle contraction is intimately tied to membrane potential and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+ channels. While voltage is often viewed as the single critical factor gating these channels, research is starting to reveal a more intricate scenario whereby their function is markedly tuned. This emerging concept will be the focus of this three-part review, the first part articulating the mechanistic foundation of contractile development in vascular smooth muscle. Part two will extend this foundational knowledge, introducing readers to functional coupling and how neighboring L-type Ca2+ channels work cooperatively through signaling protein complexes, to facilitate their open probability. The final aspect of this review will discuss the impact of L-type Ca2+ channel trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief manuscript provides new insight into how voltage, along with channel cooperativity and number, work in concert to tune Ca2+ responses and smooth muscle contraction.

KEYWORDS
vascular smooth muscle, cooperative gating, functional coupling, L-type Ca2+ channels, Ca2+ sensitization, channel trafficking

Introduction

Background: Foundational basis of smooth muscle contraction

Mechanical and chemical stimuli initiate vascular smooth muscle contraction through transduction pathways that enhance myosin light chain phosphorylation (Davis et al., 1999). This key biological event is set by the balance of two central enzymes, those being myosin light chain kinase and myosin light chain phosphatase (Takashima, 2009). Myosin light chain kinase is a serine/threonine-specific protein kinase responsible for phosphorylating Ser19 on the N-terminus of the regulatory light chain of the motor protein myosin-II (Figure 1). This enzyme's activity is intimately tied to intracellular Ca2+ ([Ca2+]\textsubscript{i}) and its binding to low-affinity sites of...
kinase-bound Calmodulin, a messenger protein that interferes with the autoinhibitory domain (Herring et al., 2006; Schaub, 2007; Walsh, 2011). In contrast, myosin light chain phosphatase is a holoenzyme composed of three subunits: a 38 kDa catalytic subunit of type 1 protein phosphatase (PP1c), a 110–130 kDa regulatory subunit (MYPT1), and a small 20 kDa subunit of unknown function (Ding et al., 2006). MYPT1 is a key regulator of activity as phosphorylation at Thr853 or Thr696 inhibits PP1c, pushing the kinase-phosphatase balance towards enhanced myosin light chain phosphorylation and smooth muscle contraction. The control of MYPT1 phosphorylation is, in turn, set by signal transduction pathways tied to G-protein receptors, two of note being Gq/11 and G12/13. The RhōA/Rho-kinase pathway is particularly important, and when inhibited pharmacologically (e.g., Y27632 or H11125), MYPT1 phosphorylation, myosin light chain phosphatase activity and smooth muscle contraction are diminished (Fu et al., 1998; Anneloes Martinsen et al., 2012). Downstream signaling proteins such as PKC also limit myosin light chain phosphatase activity by phosphorylating CPI-17, a direct inhibitor of the catalytic unit PP1c (Deng et al., 2002).

Ca2+ sensitization is a colloquial term used in vascular biology to describe how force development can be tuned relative to the rise in [Ca2+]i, the latter set by membrane depolarization. While this term is traditionally tied to phosphatase modulation, its mechanistic underpinnings have expanded to regulatory processes linked to actin–myosin interaction and the structures responsible for force transmission. As to the former, consider proteins such as Caldesmon, which, when bound to actin, stabilize it and impairs myosin ATPase activity (Clark et al., 1986). G-protein-linked signaling proteins like PKC diminish Caldesmon’s inhibitory effects by loosening its physical binding to the thin filaments (Clark et al., 1986). Calponin is another example of an actin–myosin binding protein inhibiting ATPase activity through an interaction with and phosphorylation by RhōA/Rho-kinase (Kaneko et al., 2000). With respect to the latter, consider current experimental interest in cytoskeletal remodeling, an event strongly, although not exclusively, tied to the state of actin polymerization. This dynamic process is regulated by several transduction pathways, one of note to G-protein coupled receptors and downstream Rhō/Rho-kinase signaling being LIM kinase regulation of Cofilin, a protein that guides actin depolymerization (Walsh et al., 2013).

The synopsis above briefly highlights how vascular smooth muscle, through multiple points of regulation, can tune contractile development to a voltage-dependent rise in [Ca2+]i. Decidedly absent from this discussion is whether L-type Ca2+ channels themselves can be functionally tuned. This idea was first raised by Fallon and colleagues who noted that these channel’s C-termini interact with one another (Fallon et al., 2009), facilitating a state whereby the opening of one channel fosters the opening of a companion. The result of said “functional coupling” would be enhanced Ca2+ influx and contraction at a defined voltage (Dixon et al., 2022). An alternative means of so called “tuning” would be to traffic additional L-type Ca2+ channels to the plasma membrane to enhance cluster formation and cooperative gating (Ghosh et al., 2018). Both aspects of regulatory control (i.e., Cooperative gating and Channel trafficking) will be discussed in the subsequent chapters by highlighting key literature and classic experiments.
Cooperative gating of L-type Ca2+ channels

Vascular L-type Ca2+ channels are comprised of a Cav1.2 α1 pore-forming subunit along with an auxiliary α2 (150 kDa), δ (17–25 kDa), β (50–78 kDa), and γ (32 kDa) subunit to ensure proper gating, regulation, and trafficking (Catterall et al., 2003; Feng et al., 2018). The Cav1.2 α1 subunit retains the transmembrane sequences that confer voltage-gating, and a C-terminus is notable for a diverse array of regulatory sites. L-type Ca2+ channels are the primary drivers of Ca2+ influx in vascular smooth muscle, and traditional physiology assumes their activity is nearly exclusively set by voltage, with each channel operating independently of one another. Observations collected over the past decade have begun to challenge this dogma by noting that subpopulations of closely situated L-type Ca2+ channels work cooperatively with one another to enhance their open probability. First described in 2005 by Navedo and others, L-type Ca2+ channels were rationalized to cluster on the plasma membrane in a configuration where the open probability of each individual channel was markedly higher (Navedo et al., 2005). The clustering of active channels creates regions on the plasma membrane of persistent Ca2+ influx, resulting from the generation of so-called Ca2+ sparklets (Figure 2A). Note, Ca2+ sparklets differ from Ca2+ sparks, events driven by ryanodine channels on the sarcoplasmic reticulum, as their duration is longer, their amplitude coupled to voltage, and their pharmacological profile distinct (Navedo et al., 2005). The latter is exemplified by the nifedipine block of Ca2+ sparklets, akin to that of L-type Ca2+ currents; in contrast, nifedipine has no effects on Ca2+ sparks. While data is limited, Amberg and others argued that ~50% of SMC Ca2+ current is sparklets-related (Amberg et al., 2007), the remaining current being assigned to non-coupled independent channels.

The regulatory elements driving Ca2+ sparklets activity have become a source of active experimental inquiry. Initial work argued that PKCs was an essential activator of Ca2+ sparklets, consistent with its impact on the whole cell L-type current (Wesselman et al., 2001; Korzick et al., 2004; Jarajapu et al., 2005; Amberg et al., 2007). Aligning with and building upon these findings, immunohistochemical and TIRF microscopy observations revealed close spatial membrane localization of Ca2+ sparklets, Cav1.2 clusters, and PKCα (Santana et al., 2008). The anchoring of PKCα in close proximity to Cav1.2 is achieved through A-kinase anchoring protein, AKAP5, also known as AKAP150 (mice) and AKAP79 (humans), being prominently expressed (Santana et al., 2009; Perino et al., 2012) and capable of binding to the C-terminus of the α1 subunit (Fallon et al., 2009; Dixon et al., 2015). PKCα release leads to displacement of Calmodulin from IQ domain which decreases Ca2+-induced inactivation of L-type Ca2+ channels (Faux and Scott, 1997; Santana et al., 2009). In light of AKAP5 bringing L-type Ca2+ channels in close apposition to PKCα (Coghlan et al., 1995; Oliveria et al., 2007), it follows that Ca2+ sparklets regulatory control is lost in AKAP150 deletion mice (Navedo et al., 2008). Subsequent studies have revealed that PKA and Calcineurin also bind AKAP5 in close apposition to L-type Ca2+ channels adding another regulatory layer to Ca2+ sparklets activity. PKA mobilization leads to phosphorylation of α1 subunit C-terminus at the Ser 1928, increasing the open probability of L-type Ca2+ channels (Nystoriak et al., 2017; Prada et al., 2019; Syed et al., 2019; Prada et al., 2020). In contrast, Calcineurin’s effects oppose PKCα, with its activation limiting Ca2+ sparklets activity (Navedo et al., 2006; Santana et al., 2009). This Yin-Yang relationship between PKA, Calcineurin, and PKCα can be functionally viewed as creating a flexible platform for Ca2+ sparklets regulation (Navedo et al., 2006; Santana et al., 2009).

Moving beyond cellular observations, the next logical question centers on the physiological and pathobiological effects on Ca2+ sparks. While data is limited, Amberg and others argued that ~50% of SMC Ca2+ current is sparklets-related (Amberg et al., 2007), the remaining current being assigned to non-coupled independent channels.

The regulatory elements driving Ca2+ sparklets activity have become a source of active experimental inquiry. Initial work argued that PKCs was an essential activator of Ca2+ sparklets, consistent with its impact on the whole cell L-type current (Wesselman et al., 2001; Korzick et al., 2004; Jarajapu et al., 2005; Amberg et al., 2007). Aligning with and building upon these findings, immunohistochemical and TIRF microscopy observations revealed close spatial membrane localization of Ca2+ sparklets, Cav1.2 clusters, and PKCα (Santana et al., 2008). The anchoring of PKCα in close proximity to Cav1.2 is achieved through A-kinase anchoring protein, AKAP5, also known as AKAP150 (mice) and AKAP79 (humans), being prominently expressed (Santana et al., 2009; Perino et al., 2012) and capable of binding to the C-terminus of the α1 subunit (Fallon et al., 2009; Dixon et al., 2015). PKCα release leads to displacement of Calmodulin from IQ domain which decreases Ca2+-induced inactivation of L-type Ca2+ channels (Faux and Scott, 1997; Santana et al., 2009). In light of AKAP5 bringing L-type Ca2+ channels in close apposition to PKCα (Coghlan et al., 1995; Oliveria et al., 2007), it follows that Ca2+ sparklets regulatory control is lost in AKAP150 deletion mice (Navedo et al., 2008). Subsequent studies have revealed that PKA and Calcineurin also bind AKAP5 in close apposition to L-type Ca2+ channels adding another regulatory layer to Ca2+ sparklets activity. PKA mobilization leads to phosphorylation of α1 subunit C-terminus at the Ser 1928, increasing the open probability of L-type Ca2+ channels (Nystoriak et al., 2017; Prada et al., 2019; Syed et al., 2019; Prada et al., 2020). In contrast, Calcineurin’s effects oppose PKCα, with its activation limiting Ca2+ sparklets activity (Navedo et al., 2006; Santana et al., 2009). This Yin-Yang relationship between PKA, Calcineurin, and PKCα can be functionally viewed as creating a flexible platform for Ca2+ sparklets regulation (Navedo et al., 2006; Santana et al., 2009).

Moving beyond cellular observations, the next logical question centers on the physiological and pathobiological
role of Ca2+ sparklets. As to the former, experiments performed on AKAP−/− and PKCa−/− have observed that limited Ca2+ sparklets activity coincides with a marked reduction in myogenic tone, suggestive of the former driving the latter (Navedo et al., 2008; Navedo et al., 2010a). Secondly, it has been argued that clustered L-type Ca2+ channels are loosely coupled with ryanodine receptors and SERCA pump, thus impacting the Ca2+ load/release of the sarcoplasmic reticulum (Navedo et al., 2010b). This idea aligns with: 1) structural data showing close apposition of Cav1.2 clusters with sarcoplasmic reticulum release/uptake proteins; and 2) functional data noting that regions of Cav1.2-Ca2+ sparklet activity overlap with areas notable for the transient Ca2+ release from ryanodine receptors. Moreover, experimental data demonstrates that reducing Ca2+ sparklets activity notably slows Ca2+ refilling of the sarcoplasmic reticulum (Essin et al., 2007; Takeda et al., 2011).

Considering the preceding physiological observations, it follows that pathobiological processes impinging on Ca2+ sparklet activity will be destined to impact the contractile state of vascular smooth muscle. For example, the marked upregulation/AKAP binding of PKCa (hypertension) and PKA (hyperglycemia and diabetes type II) is notable for enhancing arterial tone (Navedo et al., 2008; Navedo et al., 2010a; Navedo et al., 2010b). The latter observation highlights the importance of localized PKA signaling as global activation will relax vascular smooth muscle through hyperpolarization (Navedo et al., 2010a; Morotti et al., 2017; Nystoriak et al., 2017; Prada et al., 2019). Genetic mutations to the Cav1.2 C-terminus, mimicking those observed with Timothy Syndrome, also impact functional coupling and vessel contractility (Navedo et al., 2010b; Napolitano et al., 2014; Priori et al., 2018; Han et al., 2019). So albeit in physiology or pathobiology, the dynamic balancing of PKCa, PKA, and Calcineurin activity is critical to the functional tuning of L-type Ca2+ channels as they respond to defined voltage stimuli. The recent review by Dixon and colleagues provides a more detailed examination of this phenomenon. (Dixon et al., 2022).

Ca2+ channel trafficking and its implication on smooth muscle contraction

An alternative means to enhance the Ca2+ influx response to depolarization is to increase the number of L-type Ca2+ channels embedded in the plasma membrane. Protein trafficking is key, and work in expression systems provides foundational knowledge of how CaV1.2 subunits are chaperoned to and inserted into the plasma membrane (Figure 2B). Following synthesis in the sarcoplasmic reticulum, CaV1.2 subunits are packaged into vesicle structures which are then guided to the membrane along structural filaments, including actin fibers and microtubules (Simms et al., 2012). This movement is enabled by the key motor proteins, kinesin and dynein, and interestingly these vesicles can switch from actin to microtubules and visa versa, making the trafficking flexible and sensitive to changes in cytoskeletal reorganization (Ross et al., 2008; Smyth et al., 2010). Observing trafficking behavior in tsA-201 cells, Ghosh and others intriguingly noted that a resident pool of CaV1.2 containing vesicles displays a distinct pattern of movement and interaction with the plasma membrane (Ghosh et al., 2018). This included vesicular structures undergoing a dynamic fusion and fission on a second-time scale, with fusion processes displaying “kiss and stay” and “kiss and run” behavior. This study also noted that recently incorporated vesicles displayed Ca2+ sparklets activity, consistent with channel clustering, and this process was dependent on the cytoskeleton (Ghosh et al., 2018). While observations are limited in vascular smooth muscle cells, evidence points to caveolae being a site of convergence for L-type Ca2+ channels in resistance arteries (Martinsen et al., 2014; Suzuki et al., 2013). Little is known of the stimuli that foster L-type Ca2+ channel trafficking, but their targeted transport to caveolae suggests a potential regulatory role for mechanical forces like pressure. This perspective aligns with findings from acute hypertension models, where increased β and α\textsubscript{δ} subunit expression (Herlitze et al., 2003; Klugbauer et al., 2003) is associated with enhanced surface expression of Cav1.2 subunits and vasoconstrictor drive (Bannister et al., 2012).

Conclusion and future directions

This mini-review summarizes current thinking on how the functional tuning of L-type Ca2+ channels could be tuned in vascular smooth muscle to impact Ca2+ influx and tissue contractility. Mechanisms of note include; 1) cooperative gating among neighboring L-type Ca2+ channels; and 2) stimulus-induced protein trafficking. Experimental research now defines how each mechanism is regulated by protein kinases, anchoring proteins, cytoskeletal structures, and initiating stimuli. Translating this knowledge into relevant biological settings is the next Frontier and one destined to intrigue the next generation of vascular biologists. Are, for example, the number and size of L-type Ca2+ channel clusters truly tuned in temporally concert with the changing physiological environment? Likewise, how do L-type Ca2+ channel clusters change in pathobiological settings like sepsis, where the proinflammatory environment progressively leads to circulatory collapse? This deeper understanding of L-type Ca2+ channels and its linkage to
vascular tone is expected to reveal new conceptual avenues for therapeutic development.

Author contributions

GM: writing original draft, Figure 2, editing. NH: writing original draft, Figure 1. DW: editing, supervision.

Funding

This work is supported by an operating grant to the Canadian Institute of Health Research (FRN159667). D.W. is the Laroback Chair in Vascular Biology and Molecular Neuroscience. The figures for the article were created with BioRender.com.

References

Amberg, G. C., Navedo, M. F., Nieves-Cintrón, M., Molkentin, J. D., and Santana, L. F. (2007). Calcium sparks regulate local and global calcium in murine arterial smooth muscle. J. Physiol. 579 (1), 187–201. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/17673505/, October 1. doi:10.1113/JPHYSiol.2007.138982

Fallon, J. L., Baker, M. R., Xiong, L., Loy, R. E., Yang, G., Dirksen, R. T., et al. (2009). Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+-calmodulins. Proc. Natl. Acad. Sci. U. S. A. 106 (13), 5135–5140. accessed September 18, 2022, from https://pubmed.ncbi.nlm.nih.gov/19279214/, March. doi:10.1073/pnas.0807487106

Faux, M. C., and Scott, J. D. (1997). Regulation of the AKAP79-protein kinase C interaction by Ca2+-calmodulin. J. Biol. Chem. 272 (27), 17038–17044. accessed September 21, 2022, from http://www.jbc.org/article/S0022-2523(97)92069-2/abstract?text=

Feng, T., Kalyanamorthy, S., and Barakat, K. (2018). L-type calcium channels. Structure and functions. Ion Channels Health Sickle. 77305. accessed June 22, 2022, from undefined/state.item.id. October 10. doi:10.5772/INTECHOPEN.77305

Herring, B. P., El-Mounayri, O., Gallagher, P. J., Yin, F., and Zhou, J. (2019). Highlight article: Dysfunctional Cav1.2 channel in Timothy Syndrome, from cell to bedside. Exp. Biol. Med. 244 (12), 960–971. accessed September 21, 2022, from https://journals.sagepub.com/doi/full/10.1177/1933702119863149, September 1, 2019. doi:10.1177/1933702119863149

Herlitze, S., Xie, M., Han, J., Hümmer, A., Melnik-Martínez, K. V., Moreno, R. L., et al. (2003) Targeting mechanisms of high voltage-activated Ca2+ channels. J. Bioenerg. Biomembr., vol. 35, no. 6, pp. 621–637. accessed September 22, 2022, from https://pubmed.ncbi.nlm.nih.gov/15000523/, December 2003. doi:10.1007/s00216-002-0138-0

Herrin, B. P., El-Mounayri, O., Gallagher, P. J., Yin, F., and Zhou, J. (2006). Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am. J. Physiol. Cell Physiol. 291 (5), C817–C827. accessed September 18, 2022, from https://pubmed.ncbi.nlm.nih.gov/16774899/, 2006. doi:10.1152/ajpcell.00198.2006

Jarajapu, Y. P. R., and Knot, H. J. (2005). Relative contribution of Rho kinase and protein kinase C to myogenic calcium sparks in rat cerebral arteries in hypertension. Am. J. Physiol. Heart Circ. Physiol. 289 (5), H1917–H1922. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/15988039/, November. doi:10.1152/ajpheart.01012.2004

Kaneko, T., Amano, M., Maeda, A., Goto, H., Takahashi, K., Ito, M., et al. (2000). Identification of calponin as a novel substrate of rho-kinase. Biochem. Biophys. Res.
Mironova et al. 10.3389/fphys.2022.1058744

Commun. 273 (1), 110–116. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/10873572/, June 24. doi:10.1016/BBRC.2000.2901

Klahnauer, N., Marais, E., and Hofmann, F. (2003). Calcium channel Alpha2delta subunit: Differential expression, function, and drug binding. J. Bioenerg. Biomembr. 35 (6), 639–647. accessed September 22, 2022, from https://pubmed.ncbi.nlm.nih.gov/15005242/, December. doi:10.1007/BF0008028-41056.58

Korzick, D. H., Laughlin, M. H., and Bowles, D. K. (2004). Alterations in PKC signaling underlie enhanced myogenic tone in exercise-trained porcine coronary resistance arteries. J. Appl. Physiol. vol. 96, no. 4. pp. 1425–1432. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/14672961/, April 2004. doi:10.1152/JAPPLPHYSIOL.01072003

Martinsen, A., Desy, C., and Morell, N. (2014). Regulation of calcium channels in smooth muscle: New insights into the role of myosin light chain kinase. Channel 8 (3), 402–413. accessed September 21, 2022, from pmc/articles/PMC4944246, September. 1 doi:10.4161/19336590.2014.950537

Martinsen, A., Yerna, X., Rath, G., Gomez, E. L., Desy, C., and Morell, N. (2012). Different effect of Rho kinase inhibition on calcium signaling in rat isolated large and small arteries. J. Vasc. Res. 49 (6), 522–533. accessed September 21, 2022, from https://www.karger.com/Article/FullText/413230. October. doi:10.1159/000341230

Morotti, S., Nieves-Cintrón, M., Nystoriak, M. A., Navedo, M. F., and Grandi, E. (2017). Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels (Austin, Tex.) 11 (4), 340–346. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/28631947/, July 4. doi:10.1080/19336590.2017.1293220

Napolitano, C., Blosie, R., and Priori, S. G. (2014). Timothy Syndrome. Cardiace Electrophysiol. Cell Bedside 1, 953–957. Sixth edition. doi:10.1016/BS-BPJCP.2014.05.009-9

Navedo, M. F., and Amberg, G. C. (2013). Local regulation of L-type Ca2+ channel sparklets in arterial smooth muscle. Microcirculation 20 (4), 290–298. accessed September 21, 2022, from pmc/articles/PMC3577795/, May. doi:10.1111/MCC.12021

Navedo, M. F., Amberg, G. C., Nieves, M., Molkentin, J. D., and Santana, L. F., Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle, J. Gen. Physiol., vol. 127, no. 6, pp. 611–622. accessed July 4, 2022, from http://www.jgp.org/cgi/doi/10.1085/jgp.200609519, June 1, 2006. doi:10.1085/JGP.200609519

Navedo, M. F., Amberg, G. C., Votaw, V. S., and Santana, L. F. (2005). Constitutively active L-type Ca2+ channels. Proc. Natl. Acad. Sci. U.S.A. 102 (31), 11112–11117. accessed September 21, 2022, from https://www.pnas.org/doi/abs/10.1073/pnas.0505361102. August 2. doi:10.1073/PNAS.0505361102

Navedo, M. F., Cheng, E. P., Yuan, C., Votaw, S., Molkentin, J. D., Scott, J. D., et al. (2010a). Increased coupled gating of L-type Ca2+ channels during hypertension and Timothy Syndrome. Circ. Res. 106 (4), 748–756. accessed September 21, 2022, from https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.110.213363, March. doi:10.1161/CIRCRESAHA.110.213363

Navedo, M. F., Nieves-Cintrón, M., Amberg, G. C., Yuan, C., Votaw, S. V., Lederer, W. J., et al. (2008). AKAP150 is required for sturdier persistent Ca2+ sparklets and angiotensin II-induced hypertension. Circ. Res. 102 (2), e1–e11. accessed September 21, 2022, from https://pubmed.ncbi.nlm.nih.gov/18060919, June 1, 2006. doi:10.1016/BS-CIRJ.2009.07.008

Walsh, M. P., and Cole, W. C. (2013). The role of actin filament dynamics in the myogenic response of cerebral resistance arteries. J. Cereb. Blood Flow Metab. 33 (1), 1–12. accessed September 21, 2022, from pmc/articles/PMC3597360/, January. doi:10.1038/JCBFM.2012.144

Walsh, M. P. (2011). Vascular smooth muscle myosin light chain diprophosphorylation: Mechanism, function, and pathological implications. JUBMB Life 63 (11), 987–1000. accessed September 18, 2022, from https://pubmed.ncbi.nlm.nih.gov/21996256/, November. doi:10.1002/JUB.527

Wesselman, J. P., Spaan, J. A. E., van der Meulen, E. T., and van Bavel, E. (2001). Role of protein kinase C in myogenic calcium- contraction coupling of rat cannulated mesenteric small arteries. Clin. Exp. Pharmacol. Physiol. 28 (10), 848–855. accessed September 21, 2022, from https://onlinelibrary.wiley.com/doi/ full/10.1111/J.1440-1681.2001.03534.x. October. 30. doi:10.1111/J.1440-1681.2001.03534.X