Measurement of the Depth of Maximum of Extensive Air Showers above \(10^{18}\) eV

(The Pierre Auger Collaboration)

J. Abraham, P. Abreu, M. Aglietta, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Alvarez-Muñiz, M. Ambrosio, L. Anchordoqui, H. Andringa, T. Antić, A. Anzalone, C. Aramo, E. Arganda, A. Arisaka, F. Arqueros, H. Asoey, P. Assis, J. Aublin, M. Ave, G. Avila, T. Bäcker, D. Badagnani, M. Balzer, K.B. Barber, A.F. Barbosa, S.L.C. Barroso, B. Baquhan, P. Bauleo, J.J. Beatty, B.R. Becker, K.H. Becker, A. Bellétoile, J.A. Bellido, S. BenZvi, C. Berat, T. Bergmann, X. Bertou, P.L. Biermann, P. Billoon, O. Blanch-Bigas, F. Blanco, M. Blanco, C. Bleve, H. Blümer, M. Boháčová, D. Boncioli, C. Bonifazi, R. Bonino, N. Borodai, J. Brack, P. Brogueira, W.C. Brown, R. Brujin, P. Buchholz, A. Bueno, R.E. Burton, N.G. Busca, K.S. Caballero-Mora, L. Caratelli, M. Caruso, A. Castellina, O. Catalano, D. Cataldi, L. Cazon, R. Cester, J. Chauvin, A. Chiavassa, J.A. Chimellato, A. Chou, J. Chudoba, R.W. Clay, E. Colombo, M.R. Coluccia, R. Conceição, F. Contreras, H. Cook, M.J. Cooper, J. Coppins, A. Cordier, U. Cotti, S. Coutu, C.E. Covault, A. Creusot, A. Criss, J. Cronin, A. Curutiu, S. Dagoret-Campagne, R. Dallier, K. Daumiller, B.R. Dawson, R.M. de Almeida, M. De Donato, S.J. de Jong, G. De La Vega, W.J.M. de Mello Junior, J.R.T. de Mello Neto, I. De Mitri, V. de Souza, K.D. de Vries, G. Deckerprit, L. del Perlal, O. Deligny, A. Delta, C. Delle Fratte, H. Dembinski, D. Di Giulo, J.C. Díaz, M.L. Díaz Castro, P.N. Diep, C. Dobrigkeit, J.C. D’Olivo, P.N. Dong, A. Dorofeev, J.C. dos Anjos, M.T. Dova, D. D’Urso, I. Dutan, M.A. DuVernois, J. Ebr, R. Engel, M. Erdmann, C.O. Escobar, A. Etchegoyen, P. Facal San Luis, H. Falcke, G. Farrar, A.C. Fauth, N. Fazzini, A. Ferrero, B. Fick, A. Filevich, A. Filipčič, S. Filiescher, C.E. Fracchioni, E.D. Fraenkel, P. Fröhlich, V. Fulgione, R.F. Gamarra, S. Gambetta, B. Garcia, D. Garcia-Gómez, D. Garcia-Pinto, X. Garrido, G. Gelmini, H. Gemmeke, P.L. Ghia, U. Giaccari, M. Giller, H. Glass, L.M. Goggin, M.S. Gold, G. Golup, F. Gomez Albarracin, M. Gómez Berisso, P. Gonzáles, D. Gonzalez, J.G. Gonzalez, D. Góra, A. Gorgi, P. Gouffon, S.R. Gozzini, E. Grashorn, S. Grebe, M. Grigat, A.F. Grillo, Y. Guardincerri, F. Guarino, G.P. Guedes, J.D. Hague, V. Halenka, P. Hansen, D. Harari, S. Harmsma, J.L. Harton, A. Haungs, T. Hebbeker, D. Heck, A.E. Herve, C. Hojvat, V.C. Holmes, P. Homola, J.R. Hörandel, A. Horneffer, M. Hrabovsky, T. Huege, M. Hussain, M. Iarlori, A. Insolia, F. Ioniță, A. Italiano, S. Jiraskova, K. Kadija, M. Kaducak, K.H. Kampert, T. Karova, P. Kasper, B. Kégl, B. Keilhauer, A. Keivani, J. Kelley, E. Kump, R.M. Kieckhafer, H.O. Klages, M. Kleifges, J. Kleinfellner, R. Knapik, J. Knapp, D.-H. Koang, A. Krieger, O. Krömer, D. Krupke-Hansen, F. Kuehn, D. Kuempel, K. Kulartz, N. Kunfa, A. Kusenko, G. La Rosa, L. Lachaud, B.L. Lago, P. Lantritou, M.S.A.B. Leão, D. Lebrun, P. Lebrun, J. Lee, M.A. Leigui de Oliveira, A. Lemiere, A. Letessier-Selvon, I. Lhenry-Yvon, R. López, S. Lopez Agüera, K. Louedec, J. Lozano Bahilo, A. Lucero, M. Ludwig, H. Lyberis, M.C. Maccaroni, C. Macolin, S. Maldera, D. Mandat, P. Manusch, A.G. Mariarò, V. Marín, I.C. Maris, H.R. Marqués Falcon, G. Marsella, D. Martello, O. Martínez Bravo, H.J. Mathes, J. Matthews, J.A.J. Matthews, G. Matthiae, D. Mauricio, P.O. Mazur, M. McEwen, G. Medina-Tanco, M. Melissas, D. Meolo, E. Menichetti, A. Menshikov, C. Meuret, S. Mičanović, M.I. Mieletti, W. Miller, S. Miramonti, M. Mollerach, M. Monasor, D. Monnier Ragaïgne, F. Montanet, B. Morales, C. Morello, E. Moreno, C.J. Moreno, C. Morris, M. Mostafaí, S. Mueller, M.A. Muller, R. Musa, G. Navarra, J.L. Navarro, S. Navas, P. Necesal, L. Nellen, P.T. Nhung, N. Nierensthoefner, D. Nitz, D. Nosek, N. Nožka, M. Nyklícek, J. Oehlschlager, A. Olinto, P. Oliva, V.M. Olmos-Gilbaja, M. Ortiz, N. Pacheco, D. Pakk Selmi-Dei, M. Palatka, J. Pallotta, N. Palmieri, G. Parente, E. Parizot, S. Parlati, A. Parra, J. Parrisius, R.D. Parsons, S. Pastor, T. Paul, V. Pavlidis, K. Payet, M. Pech, J. Pékała, R. Pelayo, I.M. Pepe, L. Perrone, R. Pesce, E. Petermann, S. Petruha, P. Petrinca, A. Petrosyan, V. Petrov, J. Petrovic, A. Pfendler, R. Piegaa, T. Pierog, M. Pimenta, V. Pirronello, M. Platino, V.H. Ponce, M. Pontz, P. Privitera, M. Prouza, E.J. Quel, J. Rautenberg, O. Ravel, D. Ravignani, A. Redondo, B. Revenu, F.A.S. Rezende, J. Ridky, S. Riggi, M. Risse, P. Ristori, C. Rivière, V. Rizi, C. Robledo, G. Rodriguez, J. Rodriguez.
Martinó, Rodriguez Rojo, I. Rodriguez-Cabo, M.D. Rodríguez-Frías, G. Ros, J. Rosado, T. Rossler, M. Roth, B. Rouillé-d’Orfeuil, E. Roulet, A.C. Rovero, F. Salamida, H. Salazar, G. Salina, F. Sánchez, M. Santander, C.E. Santo, E. Santos, E.M. Santos, F. Sarazin, S. Sarkar, R. Sato, N. Scharf, V. Scherini, H. Schieler, P. Schiffer, A. Schmidt, F. Schütte, T. Schmidt, O. Scholten, H. Schoorlemmer, J. Schovancova, P. Schovánek, F. Schroeder, S. Schulte, F. Schüssler, O. Scholten, E. Schlafke, E. Scholz, M. Schmiede, R. Schön, P. Sommers, R.C. Shellard, D. Tcherniakhovski, Martino, A. Stutz, F. Suarez, T. Winchen, J. Sorokin, A. Tamashiro, L. Villaseñor, Z. Szadkowski, A. Tamás, A.D. Supanitsky, G. Wieczorek, E. Roulet, E. Santos, P. Schöffl, E. Santovito, M. Santander, R. Schnee, J. Schönherr, T. Schmitt, D. Tegolo, M. Santander, B. Rouillé-d’Orfeuil, D. Thomas, B. Rouillé-d’Orfeuil, J.R. Vázquez, M. Roth, C.J. Todero Peixoto, D. Tegolo, M.T. Thao, D. Thomas, J. Tiffenberg, C. Timmermans, W. Tkaczyk, C.J. Todero Peixoto, B. Tonó, A. Tonachini, P. Travniec, D.B. Tridakpalli, G. Tristram, E. Trovato, M. Tueros, R. Ulrich, M. Urban, J.F. Valdés Galicia, I. Valiño, L. Valore, A.M. van den Berg, J.R. Vázquez, R.A. Vázquez, D. Veberič, T. Venters, V. Verzi, M. Videla, L. Villaseñor, S. Vorobiov, L. Voyvodic, H. Wahlberg, O. Wainberg, D. Warner, A.A. Watson, B.J. Whelan, G. Wieczorek, L. Wiencke, A. Sikora, M. Sikora, B. Wilczyńska, H. Wilczyński, C. Williams, T. Winchen, M.G. Wimnack, B. Wundheiler, T. Yamamoto, P. Younkin, G. Yuan, A. Yushkov, E. Zas, D. Zavrtanik, M. Zavrtanik, I. Zaw, A. Zeppola, M. Ziolkowski.
38 Colorado State University, Pueblo, CO, USA
39 School of Physics and Astronomy, University of Leeds, United Kingdom
40 Universidad de Granada & C.A.F.P.E., Granada, Spain
41 Case Western Reserve University, Cleveland, OH, USA
42 Università di Catania and Sezione INFN, Catania, Italy
43 Università di Torino and Sezione INFN, Torino, Italy
44 Universidad Estadual de Campinas, IFGW, Campinas, SP, Brazil
45 Centro Atómico Constituyentes (Comisión Nacional de Energía Atómica/CONICET/UTN-FRBA), Buenos Aires, Argentina
46 Pierre Auger Southern Observatory, Malargüe, Argentina
47 IMAPP, Radboud University, Nijmegen, Netherlands
48 NIKHEF, Amsterdam, Netherlands
49 Laboratoire de l’Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, Orsay, France
50 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
51 Pennsylvania State University, University Park, PA, USA
52 Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
53 SUBATECH, CNRS-IN2P3, Nantes, France
54 Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
55 Università di Milano and Sezione INFN, Milan, Italy
56 Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
57 Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
58 Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
59 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
60 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
61 Michigan Technological University, Houghton, MI, USA
62 Pontificia Universidade Católica, Rio de Janeiro, RJ, Brazil
63 Institute for Nuclear Science and Technology (INST), Hanoi, Vietnam
64 University of Hawaii, Honolulu, HI, USA
65 ASTRON, Dwingeloo, Netherlands
66 J. Stefan Institute, Ljubljana, Slovenia
67 Dipartimento di Fisica dell’Università and INFN, Genova, Italy
68 University of Łódź, Łódź, Poland
69 Louisiana State University, Baton Rouge, LA, USA
70 Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
71 INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
72 Departamento de Física, FCEyN, Universidad de Buenos Aires and CONICET, Argentina
73 Universidade Estadual de Feira de Santana, Brazil
74 Palacký University, Olomouc, Czech Republic
75 Università dell’Aquila and INFN, L’Aquila, Italy
76 Universität Hamburg, Hamburg, Germany
77 Universidade Federal do ABC, Santo André, SP, Brazil
78 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
79 Dipartimento di Ingegneria dell’Innovazione dell’Università del Salento and Sezione INFN, Leccio, Italy
80 Southern University, Baton Rouge, LA, USA
81 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
82 Centro de Investigaciones en Láseres y Aplicaciones, CITEFA and CONICET, Argentina
83 Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
84 Northeastern University, Boston, MA, USA
85 Caltech, Pasadena, USA
86 Universidade Federal da Bahia, Salvador, BA, Brazil
87 University of Nebraska, Lincoln, NE, USA
88 Gran Sasso Center for Astroparticle Physics, Italy
89 Instituto de Astronomía y Física del Espacio (CONICET), Buenos Aires, Argentina
90 Instituto Nacional de Astrofísica, Optica y Electrónica, Puebla, Mexico
91 Colorado School of Mines, Golden, CO, USA
92 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
93 Argonne National Laboratory, Argonne, IL, USA
94 Università di Palermo and Sezione INFN, Catania, Italy
95 Konan University, Kobe, Japan
96 Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México, D.F., Mexico

(Dated: February 3, 2010)
We describe the measurement of the depth of maximum, \(X_{\text{max}} \), of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above \(10^{18} \) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of \((106^{\pm35}_{-21}) \) g/cm\(^2\)/decade below \(10^{16.24^{\pm0.05}} \) eV and \((24^{\pm3})\) g/cm\(^2\)/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm\(^2\). The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

PACS numbers: 96.50.sd,13.85.Tp,98.70.Sa

Introduction – The energy dependence of the mass composition of cosmic rays is, along with the flux and arrival direction distribution, an important parameter for the understanding of the sources and propagation of cosmic rays at very high energy. There are several models that describe the observed flux of cosmic rays very well, but each of these models has different assumptions about the cosmic ray sources and correspondingly predicts a different mass composition at Earth. For example, the hardening of the cosmic ray energy spectrum at energies between \(10^{18} \) eV and \(10^{19} \) eV, known as the ‘ankle’, is presumed to be either a signature of the transition from galactic to extragalactic cosmic rays or a distortion of a proton-dominated extragalactic spectrum due to energy losses \(3 \). Moreover, composition information may eventually help to decide whether the flux suppression observed above \(4 \times 10^{19} \) eV \(2 \) is due mainly to the interaction of cosmic rays with the microwave background or a signature of the maximum injection energy of the sources \(3 \).

Due to the low flux at these energies, the composition of cosmic rays cannot be measured directly, but has to be inferred from observations of extensive air showers. The atmospheric depth, \(X_{\text{max}} \), at which the longitudinal development of a shower reaches its maximum in terms of the number of secondary particles is correlated with the mass of the incident cosmic ray particle. With the generalization of Heitler’s model of electron-photon cascades to hadron-induced showers and the superposition assumption for nuclear primaries of mass \(A \), the average depth of the shower maximum, \(\langle X_{\text{max}} \rangle \), at a given energy \(E \) is expected to follow \(\text{[1]} \)

\[
\langle X_{\text{max}} \rangle = \alpha (\ln E - \langle \ln A \rangle) + \beta, \tag{1}
\]

where \(\langle \ln A \rangle \) is the average of the logarithm of the primary masses. The coefficients \(\alpha \) and \(\beta \) depend on the nature of hadronic interactions, most notably on the multiplicity, elasticity and cross-section in ultra-high energy collisions of hadrons with air, see e.g. \(\text{[3]} \). Although Eq. \(\text{[1]} \) is based on a simplified description of air showers, it gives a good description of air shower simulations with energy-independent parameters \(\alpha \) and \(\beta \) in the energy range considered here, see \(\text{[6]} \). Only physics processes not accounted for in currently available interaction models could lead to a significant energy dependence of these parameters.

The change of \(\langle X_{\text{max}} \rangle \) per decade of energy is called elongation rate \(\text{[7]} \),

\[
D_{10} = \frac{d\langle X_{\text{max}} \rangle}{d \ln E} \approx \alpha \left(1 - \frac{d\ln A}{d \ln E} \right) \ln(10), \tag{2}
\]

and it is sensitive to changes in composition with energy. A complementary composition-dependent observable is the magnitude of the shower-to-shower fluctuations of the depth of maximum, \(\text{RMS}(X_{\text{max}}) \), which is expected to decrease with the number of primary nucleons \(A \) (though not as fast as \(1/\sqrt{A} \) \(\text{[8]} \)) and to increase with the interaction length of the primary particle.

At ultra high energies, the shower maximum can be observed directly with fluorescence detectors. Previously published \(X_{\text{max}} \) measurements \(\text{[9, 10]} \) focused mainly on \(\langle X_{\text{max}} \rangle \) as a function of energy and had only limited statistics above \(10^{19} \) eV.

Here we present a measurement of both \(\langle X_{\text{max}} \rangle \) and \(\text{RMS}(X_{\text{max}}) \) using high quality and high statistics data collected with the southern site of the Pierre Auger Observatory \(\text{[11]} \). The Observatory is located in the province of Mendoza, Argentina and consists of two detectors. The surface detector (SD) array comprises 1600 water-Cherenkov detectors arranged on a triangular grid with 1500 m spacing that cover an area of over 3000 km\(^2\). The water-Cherenkov detectors are sensitive to the air shower components at ground level. The fluorescence detector (FD) consists of 24 optical telescopes overlooking the array, which can observe the longitudinal shower development by detecting the fluorescence and Cherenkov light produced by charged particles along the shower trajectory in the atmosphere.

Data Analysis. – This work is based on air shower data recorded between December 2004 and March 2009. Only events detected in hybrid mode \(\text{[12]} \) are considered, i.e. the shower development must have been measured by the FD, and at least one coincident SD station is required to provide a ground-level time. Using the time constraint from the SD, the shower geometry can be determined with an angular uncertainty of 0.6° \(\text{[13]} \). The longitudinal profile of the energy deposit is reconstructed \(\text{[14]} \) from the light recorded by the FD using the fluorescence and Cherenkov yields and lateral distributions from \(\text{[12]} \). With the help of data from atmospheric monitoring devices \(\text{[10]} \) the light collected by the telescopes is corrected for the attenuation between the shower and the detector.
and the longitudinal shower profile is reconstructed as a function of atmospheric depth. X_{max} is determined by fitting the reconstructed longitudinal profile with a Gaisser-Hillas function $\langle X \rangle$.

An unbiased set of high quality events is selected with the statistical uncertainty of the reconstructed X_{max} being comparable to the size of the fluctuations expected for nuclei as heavy as iron ($\approx 20 \text{ g/cm}^2$) and small systematic uncertainties as explained in the following.

The impact of varying atmospheric conditions on the X_{max} measurement is minimized by rejecting time periods with cloud coverage and by requiring reliable measurements of the vertical optical depth of aerosols. Profiles that are distorted by residual cloud contamination are rejected by a loose cut on the quality of the profile fit ($\chi^2/N_{\text{df}}<2.5$). We take into account events only with energies above 10^{18} eV where the probability for at least one triggered SD station is 100%, irrespective of the mass of the primary particle [18]. The geometrical reconstruction of showers with a large apparent angular speed of the image in the telescope is susceptible to uncertainties in the time synchronization between FD and SD. Therefore, events with a light emission angle towards the FD that is smaller than 20° are rejected. This cut also removes events with a large fraction of Cherenkov light. The energy and shower maximum can be reliably measured only if X_{max} is in the field of view (FOV) of the telescopes (covering 1.5° to 30° in elevation). Events for which only the rising or falling edge of the profile is detected are not used. Moreover, we calculate the expected statistical uncertainty of the reconstruction of X_{max} for each event, based on the shower geometry and atmospheric conditions, and require it to be better than 40 g/cm2.

The latter two selection criteria may cause a selection bias due to a systematic undersampling of the tails of the true X_{max} distribution, since showers developing very deep or shallow in the atmosphere might be rejected from the data sample. To avoid such a bias in the measured $\langle X_{\text{max}} \rangle$ and $\text{RMS}(X_{\text{max}})$ we apply fiducial volume cuts based on the shower geometry that ensure that the viewable X_{max} range for each shower is large enough to accommodate the full X_{max} distribution $\langle X \rangle$.

After all cuts, 3754 events are selected for the X_{max} analysis. The X_{max} resolution as a function of energy for these events is estimated using a detailed simulation of the FD and the atmosphere. As shown in the inset of Fig. 1 the resolution is at the 20 g/cm2 level above a few EeV. The difference between the reconstructed X_{max} values in events that had a sufficiently high energy to be detected independently by two or more FD stations is used to cross-check these findings. As can be seen in Fig. 1 the simulations reproduce the data well.

Results and Discussion. – The measured $\langle X_{\text{max}} \rangle$ and $\text{RMS}(X_{\text{max}})$ values are shown in Figs. 2 and 3. We use bins of $\Delta \lg E = 0.1$ below 10 EeV and $\Delta \lg E = 0.2$ above that energy. The last bin starts at $10^{19.4} \text{ eV}$, integrating up to the highest energy event ($E = (59 \pm 8) \text{ EeV}$). The systematic uncertainty of the FD energy scale is 22% [18]. Uncertainties of the calibration, atmospheric conditions, reconstruction and event selection give rise to a systematic uncertainty of $\leq 13 \text{ g/cm}^2$ for $\langle X_{\text{max}} \rangle$ and $\leq 6 \text{ g/cm}^2$ for the RMS. The results were found to be independent of zenith angle, time periods and FD stations within the experimental uncertainties.

A fit of the measured $\langle X_{\text{max}} \rangle$ values with a constant elongation rate does not describe our data ($\chi^2/N_{\text{df}}=34.9/11$), but as can be seen in Fig. 2 using two slopes yields a satisfactory fit ($\chi^2/N_{\text{df}}=9.7/9$) with an elongation rate of $(100^{+35}_{-31}) \text{ g/cm}^2/\text{decade}$ below $10^{18.24\pm0.05} \text{ eV}$ and $(24\pm3) \text{ g/cm}^2/\text{decade}$ above this en-

![Figure 1](image1.png)

FIG. 1: Difference between X_{max} measured in showers simultaneously at two FD stations ($\langle \lg(E/\text{eV}) \rangle = 19.1$). The X_{max} resolution is displayed as a function of energy in the inset.

![Figure 2](image2.png)

FIG. 2: $\langle X_{\text{max}} \rangle$ as a function of energy. Lines denote a fit with a broken line in $\lg E$. The systematic uncertainties of $\langle X_{\text{max}} \rangle$ are indicated by a dashed line. The number of events in each energy bin is displayed below the data points. HiRes data [10] are shown for comparison.
ergy. If the properties of hadronic interactions do not change significantly over less than two orders of magnitude in primary energy (< factor 10 in center of mass energy), this change of $\Delta D_{10} = (82^{+35}_{-21}) \text{g/cm}^2/\text{decade}$ would imply a change in the energy dependence of the composition around the ankle, supporting the hypothesis of a transition from galactic to extragalactic cosmic rays in this region.

The (X_{max}) result of this analysis is compared to the HiRes data in Fig. 2. Both data-sets agree well within the quoted systematic uncertainties. The χ^2/Ndf of the HiRes data with respect to the broken-line fit described above is 20.5/14. This value reduces to 16.8/14 if a relative energy shift of 15% is applied, such as suggested by a comparison of the Auger and HiRes energy spectra.

The shower-to-shower fluctuations, RMS(X_{max}), are obtained by subtracting the detector resolution in quadrature from the width of the observed X_{max} distributions resulting in a correction of $\leq 6 \text{g/cm}^2$. As can be seen in the right panel of Fig. 3, we observe a decrease in the fluctuations with energy from about 55 to 26 g/cm2 as the energy increases. Assuming again that the hadronic interaction properties do not change much within the observed energy range, these decreasing fluctuations are an independent signature of an increasing average mass of the primary particles.

For the interpretation of the absolute values of (X_{max}) and RMS(X_{max}) a comparison to air shower simulations is needed. As can be seen in Fig. 3 there are considerable differences between the results of calculations using different hadronic interaction models. These differences are not necessarily exhaustive, since the hadronic interaction models do not cover the full range of possible extrapolations of low energy accelerator data. If, however, these models provide a realistic description of hadronic interactions at ultra high energies, the comparison of the data and simulations leads to the same conclusions as above, namely a gradual increase of the average mass of cosmic rays with energy up to 59 EeV.

Acknowledgments. – The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; AHCPR AV0Z1010502 and AV0Z1010522, GAIAV KJB300108081 and KJB100109004, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centro Nacional de la Investigación Científica (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de 1’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organ-

FIG. 3: (X_{max}) and RMS(X_{max}) compared with air shower simulations using different hadronic interaction models.
isatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30, N202 090 31/0623, and PAP/218/2006, Poland; Fundação para a Ciência e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejería de Educación de la Comunidad de Madrid La Mancha, FEDER funds, Ministerio de Ciencia e Innovación, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.

* Deceased

[1] A.M. Hillas, Phys. Lett. 24, 677; V.S. Berezinsky and S.I. Grigor’eva, Astron. Astrophys. 199 (1988), 1; D. Allard, E. Parizot and A. V. Olinto, Astropart. Phys. 27 (2007), 61; R. Aloisio, V. Berezinsky, P. Blasi and S. Ostapchenko, Phys. Rev. D 77 (2008), 025007.

[2] R. Abbasi et al. [HiRes Coll.], Phys. Rev. Lett. 100 (2008), 101101; J. Abraham et al. [Pierre Auger Coll.], Phys. Rev. Lett. 101 (2008), 061101.

[3] D. Allard et al., JCAP 0810 (2008), 033.

[4] W. Heitler, Oxford University Press, 1954; J. Matthews, Astropart. Phys. 22 (2005), 387.

[5] T. Wibig, Phys. Rev. D 79 (2009), 094008; R. Ulrich et al., Proc. 31st ICRC (2009), arXiv:0906.0418.

[6] T. Pierog, R. Engel and D. Heck, Czech. J. Phys. 56 (2006) A161; J. Bluemer, R. Engel and J. R. Hoerandel, Prog. Part. Nucl. Phys. 63, 293 (2009) arXiv:0904.0725.

[7] J. Linsley, Proc. 15th ICRC 12 (1977), 89; T.K. Gaisser, Proc. 16th ICRC 9 (1979), 258; J. Linsley and A.A. Watson, Phys. Rev. Lett. 46 (1981), 459.

[8] J. Engel et al., Phys. Rev. D46 (1992), 5013.

[9] D.J. Bird et al. [Fly’s Eye Coll.], Phys. Rev. Lett. 71 (1993), 3401.

[10] R. U. Abbasi et al. [HiRes Coll.], Astrophys. J. 622 (2005), 910.

[11] J. Abraham et al. [Pierre Auger Coll.], Nucl. Instrum. Meth. A523 (2004), 50; J. Abraham et al. [Pierre Auger Coll.], submitted to Nucl. Instr. Meth., arXiv:0907.4282.

[12] P. Sommers, Astropart. Phys. 3 (1995), 349; B.R. Dawson et al., Astropart. Phys. 5 (1996), 239.

[13] C. Bonifazi et al. [Pierre Auger Coll.], Nucl. Phys. Proc. Suppl. 190 (2009) 20, arXiv:0901.3138.

[14] M. Unger et al., Nucl. Instrum. Meth. A588 (2008) 433;

[15] M.D. Roberts, J. Phys. G 31 (2005), 1291; D. Gora et al., Astropart. Phys. 24 (2006), 484; F. Nerling et al., Astropart. Phys. 24 (2006), 421; B.R. Dawson, M.Giller and G. Wieczorek, Proc. 30th ICRC (2007); B. Keilhauer et al., Nucl. Instrum. Meth. A597 (2008), 99.

[16] J. Abraham et al. [Pierre Auger Coll.], Proc. 31st ICRC (2009), arXiv:0906.2358.

[17] T.K. Gaisser and A.M. Hillas, Proc. 15th ICRC, 8, 353 (1977).

[18] J. Abraham et al. [Pierre Auger Coll.], Proc. 31st ICRC (2009), arXiv:0906.2189.

[19] M. Unger [Pierre Auger Coll.], Nucl. Phys. Proc. Suppl. 190 (2009), 240 [arXiv:0902.3787]; J.A. Bellido [Pierre Auger Coll.], Proc. XXth Rencontres de Blois (2008) arXiv:0901.3389.

[20] T. Bergmann et al., Astropart. Phys. 26 (2007), 420.

[21] N.N. Kalmykov and S.S. Ostapchenko, Phys. Atom. Nucl. 56 (1993), 346; S.S. Ostapchenko, Nucl. Phys. Proc. Suppl. 151 (2006), 143; T. Pierog and K. Werner, Phys. Rev. Lett. 101 (2008), 171101; E.J. Ahn et al., Phys. Rev. D80 (2009), 094003.