Neisseria meningitidis Serogroup C Causing Primary Arthritis in a Child

Case Report

Sergiu Straticiuc, MD, PhD, Ancuta Ignat, MD, PhD-student, Elena Hanganu, MD, PhD, Vasile Valeriu Lupu, MD, PhD, Alexandru Bogdan Ciubara, MD, PhD, and Roxana Cretu, MD

INTRODUCTION

Neisseria meningitidis is associated with severe invasive infections such as meningitis and fulminant septicemia. Septic arthritis due to *N. meningitidis* is rare and bone infections have been reported exceptionally. We report the case of a 1-year-old girl who presented with a painful, swollen right knee, accompanied by fever and agitation. Arthrocentesis of the right knee, while patient was under anesthesia, yielded grossly purulent fluid, so we made arthrotomy and drainage. The culture from synovial fluid revealed *N. meningitidis*, sensitive to Ceftriaxone. The patient received intravenous antibiotic therapy with Ceftriaxone. The status of the patient improved after surgical drainage and intravenous antibiotic therapy. She recovered completely after 1 month.

CASE REPORT

A Caucasian 1-year-old girl presented to the Emergency Department with a painful, swollen right knee accompanied by fever and agitation. She was unable to move it or bear weight on it. There was no history of close contact with other children, no history of respiratory or urinary tract infections. Our patient had never received meningococcal vaccination. Her body temperature was 38.6 °C. There was no skin rash. There was no neck rigidity or photophobia. The knee examination revealed an erythematous, warm, swollen right knee that was diffusely tender to palpation. Active and passive range of motion was severely limited secondary to pain. The peripheral blood white cells count was 22.74 × 10^9, Neutrophils = 75.0%, Lymphocytes = 16.9%, Monocytes = 7.8%, erythrocyte sedimentation rate (ESR) = 53 mm/1 hour, C-reactive protein (CRP) = 49.45 mg/L. Two sets of blood cultures were performed. Both blood cultures were negative for any bacteria after incubation for 5 days. X-ray of the right lower limb did not reveal any bone lesions (Figure 1). Arthrocentesis of the right knee, while the patient was under anesthesia, yielded grossly purulent fluid, so we made arthrotomy and drainage. We made also, puncture of the right hip to exclude the diagnosis of osteoarthritis. Microscopic examination of synovial fluid revealed numerous polymorphonuclear neutrophils with intra-cellular Gram-negative diplococci. The synovial fluid culture revealed *N. meningitidis* serogroup C, sensitive to Ceftriaxone. The patient received intravenous Ceftriaxone for 12 days (1 g/day) and continued to take oral Cefixime for another 2 weeks. The evolution of the patient was favorable, removing the drain on 5th day after surgery. She showed full recovery at later follow-up.

The patient responded well to the treatment over 12 days. The white blood cells, CRP, and ESR have fallen consistently (Figure 2).

We evaluated the patient in each month, for 6 months, with the monitoring of blood count, ESR, and CRP, which were maintained within normal limits.

DISCUSSION

PMA is an uncommon form of meningococcal disease. PMA is defined as acute septic arthritis without meningitis or classical syndrome of meningococcemia, defined as the combination fever, rash, and hemodynamic instability. *Staphylococcus aureus* is the most likely causative agent of septic arthritis, occurring in 44% of cases. *Escherichia coli* and *Pseudomonas* are much less common. These gram-negative bacteria affect newborns and patients with immunodeficiencies. It was reported that *N. gonorrhoea* is a frequent cause of septic
arthritis in young people. *N. meningitidis* is a less common cause of septic arthritis. Its predilection for causing oligoarticular infection makes it difficult to separate it from disseminated gonococcal infection.5–8

Our child presented with only 1 joint arthritis, associated with rash and a clinical differential diagnosis was difficile. The presentation of PMA can be very similar to other septic arthritis and it can be identical with arthritic disease induced by *Neisseria gonorrhoeae*. Both bacteria have an affinity to cause oligoarticular arthritis associated with rash. Direct bacterial invasion of the synovium via blood-borne infection is the proposed pathogenesis of PMA, with approximately 40% from patients having positive blood culture.9 Symptoms of an upper respiratory infection precede the arthritis up to 50% of cases; a maculopapular rash is another sign, observed in 30% of cases.5,9

In our case, the infant had no history of respiratory or urinary tract infections.

The clinical spectrum of meningococcal infections ranges from asymptomatic carriage to fulminant sepsis, with meningitis and septicemia. However, the ability of the organism to cause focal disease is often overlooked.10 Effort was made to classify the various presentations according to the clinical types and pathogenic mechanisms. Schaad postulated that 4 different mechanisms may be involved:

1. direct bacterial invasion of the synovium-septic arthritis.
2. hypersensitivity reaction-allergic arthritis.
3. intra-articular hemorrhage – hemorrhrosis.
4. iatrogenic causes9

Although arthritis has been observed in approximately 7% of meningococcal infections, PMA is uncommon. A review of the literature found 46 reported patients – children and adults – with meningococcal joint infections without meningeal symptoms. Of the 46 patients, 19 involved isolated joints. Of these, the knee was the most common – 11 patients, followed by the ankle. Approximately 50% of patients were children younger than 4 years old.11,12 In this review, we can add our 1-year old girl with meningococcal infection in only 1 joint.

In our case, the synovial fluid culture revealed *N. meningitidis* serogroup C, but in our country there were no epidemics with this organism, and the PMA serogroup C is the only case reported in a 1-year old child.

Searching PubMed database about *Neisseria meningitidis* serogroup C causing primary arthritis, we found a few results (Table 1).

The polymerase chain reaction (PCR) technique is sometimes used to identify various strains of meningococci from the blood, cerebrospinal fluid, or other normally sterile sites with validity comparable to that of culture-based diagnosis. It provides a complementary tool of classic culture and often enhances confirmatory results. The distinction between gonococcal arthritis (*N. gonorrhoeae*) and meningococcal arthritis (*N. meningitidis*) may be difficult. On microscopic examination of knee aspirate *N. meningitidis* and *N. gonorrhoeae* are morphologically indistinguishable and cultures may be negative, especially if antimicrobial agents have been given.20 PCR can provide a specific diagnosis in such cases. Also, PCR does not require organisms to be viable.21 In our case, the result of the

TABLE 1. Reported Cases of Primary Arthritis With *Neisseria meningitidis* Serogroup C

First Author Name	Year of Publication	Age	Gender	Joint Involved	Treatment Received	Outcome
Joice et al13	1995	19	Female	Hip	IV Penicillin G	Healed
Christiansen14	2001	19	Female	Knee	IV Ceftriaxone, IV Amoxicillin, PO Ofloxacin	Healed
Cartolano et al15	2002	16	Female	Knee	IV Penicillin G	Healed
Giamarellos-Bourboulis et al16	2003	19	Female	Knee	IV Benzylpenicillin	Healed
Joyce et al17	2008	29	Female	Knee	IV Ceftriaxone	Healed
Harwood et al18	2011	76	Female	Shoulder	IV Ceftriaxone	Healed
Garner et al19	2015	19	Female	Knee	IV Ceftriaxone	Healed
culture was positive, so it was not necessary to perform the PCR technique.

Vaccination remains the best control strategy to prevent invasive meningococcal disease, but our infant did not receive meningococcal vaccination. He had no risk factors in history and in our country this vaccine is optional and it is not covered by the national health system.

Septic arthritis is a medical emergency that needs prompt recognition and treatment to prevent local disruption of the joint and peripheral circulation of infection. Initial diagnosis of septic arthritis is obvious. The patient presents with fever and a warm, swollen, and tenderness joint. The knee is the most frequent involved. Further evaluation of septic arthritis includes arthrocentesis of affected joint, complete blood cell count, and peripheral blood cultures. The synovial fluid should be cultured, gram-stained, and analyzed for cell count to help with initial management. The synovium is positive for meningococcus in 90% of PMA cases, the blood cultures are positive only in 40% of PMA cases.

CONCLUSIONS

Our case confirms the data from the literature that N. meningitidis does not appear to be aggressive toward hyaline cartilage. Complete recovery does usually occur, provided appropriate intravenous antibiotic therapy, joint aspiration, and/or washout are performed early.

This observation illustrates an unusual presentation of invasive meningococcal infection and the early identification of the bacteria, combined with the correct treatment, prevented the complications and even death.

CONSENT

Written informed consent was obtained from the parents of the child for publication of this case report. A copy of the written consent is available for review by the Editor of this journal.

ACKNOWLEDGMENTS

The authors thank Dr. Anca Gabriela Savu, Intensive Care, Dr. Letitia Doina Duceac, Epidemiology, and Dr. Elena Petraru, Microbiology, from the “St. Mary” Children Emergency Hospital, Iasi, for their help in managing this patient.

REFERENCES

1. Schaad UB. Arthritis in disease due to Neisseria meningitidis. Rev Infect Dis. 1980;2:880–888.
2. Wells M, Gibbons RS. Primary meningococcal arthritis: case report and review of literature. Mil Med. 1997;162:769–772.
3. Giamarellos-Bourboulis EJ, Grecka P, Toktas A. Primary meningococcal arthritis: case report and clinical review. Clin Exp Rheumatol. 2002;20:553–554.
4. Ross JJ, Salzman CL, Carling P, et al. Pneumococcal septic arthritis – review of 190 cases. Clin Infect Dis. 2003;319–327.
5. Harwood MI, Womack J, Kapur R. Primary meningococcal arthritis. J Am Board Fam Med. 2008;21:66–69.
6. Kidd BL, Hart HH, Grigor RR. Clinical features of meningococcal arthritis: a report of four cases. Ann Rheum Dis. 1985:790–792.
7. Pinals RS, Ropes MW. Meningococcal arthritis. Arthritis Rheum. 1964:241–258.
8. Fernando NK, Gupta YK. Purulent meningococcal arthritis in an adult. J Med Soc NJ. 1980:590–591.
9. Schaad UB. Arthritis in disease due to N. meningitidis. Rev Infect Dis. 1980:880–888.
10. Dillon M, Nourse C, Dowling F, et al. Primary meningococcal arthritis. Pediatric Infect Dis J. 1997;16:331–332.
11. Weels M, Gibbons RB. Primary meningococcal arthritis. Case report and review of the literature. Mil Med. 1997;162:769–772.
12. Al Muderis M, Mo YK, Boyle S. Primary septic arthritis of the knee due to Neisseria meningitidis. Hong Kong J Orthop Surg. 2003;7:43–45.
13. Joice M, Laing A, Mullet H. Isolated septic arthritis: meningococcal infection. J R Soc Med. 2003:237–238.
14. Christiansen JC. Primary meningococcal arthritis caused by Neisseria meningitidis. One of the many manifestations of meningococcal disease. Ugeskr Laeger. 1995;157:3909–3910.
15. Cartolano GL, Le Lostec Z, Chéron M, et al. Primary meningococcal arthritis of the knee: contribution of synovial liquid culture in blood-culture vial. Rev Méd Interne. 2001;22:75–78.
16. Giamarellos-Bourboulis EJ, Grecka P, Petrikkos G, et al. Primary meningococcal arthritis: a case report and review. Clin Exp Rheumatol. 2002;20:553–554.
17. Joyce M, Laing A, Mullet H, et al. Isolated septic arthritis: meningococcal infection. J R Soc Med. 2003;96:237–238.
18. Harwood M, Womack J, Kapur R. Primary meningococcal arthritis. J Am Board Fam Med. 2008;21:66–69.
19. Garner A, Sundram F, Harris K. Group C Neisseria meningitidis as a cause of septic arthritis in a native shoulder joint: a case report. Case Rep Orthop. 2011;2011:862487.
20. Klatte TO, Lehmann W, Rueger JM. [Primary meningococcal infection of the knee. A rare cause of septic arthritis]. Unfallchirurg. 2015;118:885–889.
21. Edgeworth JD, Nicholl JE, Eykyn SJ. Diagnosis of primary meningococcal arthritis using the polymerase chain reaction. J Infection. 1998;37:199–202.
22. McCulloch M, Brooks H, Kalantarinia K. Isolated polyarticular septic arthritis: an atypical presentation of meningococcal infection. Am J Med Sci. 2008:323–326.
23. Karim I, Carvalho N. Infection and immune mediated meningococcal associated arthritis: combination features in the same patient. Rev Inst Med Sao Paulo. 2012;54:109–111.