Measurement of B_s^0 mixing parameters from the flavor-tagged decay $B_s^0 \rightarrow J/\psi\phi$
Y. Peters, P. Pétroff, M. Petteni, R. Piegaia, J. Piper, M.-A. Pleier, P.L.M. Podesta-Lerma, V.M. Podstavkov, Y. Pogorelov, M.-E. Pol, P. Polozov, B.G. Pope, A.V. Popov, C. Potter, W.L. Prado da Silva, H.B. Prosper, S. Protopenescu, J. Qian, A. Quadri, B. Quinn, A. Rakitine, M.S. Rangel, K. Ranjan, P.N. Ratoff, P. Renkel, S. Reucroft, P. Rich, J. Rieger, M. Rijssenbeek, I. Ripp-Baudot, F. Rizatdinova, S. Robinson, R.F. Rodrigues, M. Rominsky, C. Royon, P. Rubinov, R. Ruchti, G. Safro nov, G. Sajot, A. Sánchez-Hernández, M.P. Sanders, A. Santoro, G. Savage, L. Sawyer, T. Scanlon, D. Schaile, R.D. Schamberger, Y. Sche golov, H. Schellman, T. Schiepake, C. Schwannenberger, A. Schwartzman, R. Schwienhorst, J. Sekaric, H. Severini, E. Shabalin, M. Shamim, V. Shary, A.A. Shchukin, R.K. Shivpuri, P. Sinnamon, G.R. Snow, J. Snow, S. Snyder, S. Söldner-Rembold, L. Sonnenschein, A. Sopczak, M. Sosebee, K. Soustruznik, B. Spurlock, J. Stark, J. Steele, V. Stolin, D.A. Stoyanova, J. Strandberg, S. Strandberg, M.A. Strang, E. Strauss, M. Strauss, R. Ströhmer, D. Strom, L. Stutte, S. Sumowidagdo, P. Svoisky, A. Szajder, P. Tamborello, A. Tanasijczuk, W. Taylor, J. Temple, B. Tiller, F. Tissandier, M. Titov, V.V. Tokmenin, T. Toole, I. Torchiani, T. Trefzger, D. Tsbychev, B. Tuchming, C. Tully, P.M. Tuts, R. Unalan, L. Uvarov, S. Uvarov, U. Uzunyan, B. Vachon, P.J. van den Berg, R. Van Kooten, W.M. van Leeuwen, N. Varelas, E.W. Varnes, I.A. Vasilyev, M. Vaupel, P. Verdier, L.S. Vertogradov, M. Verzocchi, F. Villeneuve-Seguier, P. Vint, P. Vokac, E. Von Toerne, M. Voutila, R. Wagner, H.D. Wahl, L. Wang, M.H.S. Wang, J. Warchol, G. Watts, M. Wayne, G. Weber, M. Weber, L. Welty-Rieger, A. Wenger, N. Werneres, M. Wetstein, A. White, D. Wicke, G.W. Wilson, S.J. Wimpenny, M. Wobisch, D.R. Wood, T.R. Wyatt, Y. Xi, S. Yacoob, R. Yamada, M. Yun, T. Yasuda, Y.A. Yatsunenko, K. Yip, H.D. Yoo, S.W. Youn, J. Yu, A. Zatserklyaniy, C. Zeitnitz, T. Zhao, B. Zhou, J. Zhu, M. Zielinski, D. Zieminski, A. Zieminski, L. Zivkovic, V. Zutshi, and E.G. Zverev

(The DØ Collaboration)
From an analysis of the flavor-tagged decay \(B^0_s \to J/\psi \phi \) we obtain the width difference between the \(B^0_s \) light and heavy mass eigenstates, \(\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H = 0.19 \pm 0.07 \text{(stat)} \pm 0.02 \text{(syst)} \text{ ps}^{-1} \), and the \(CP \)-violating phase, \(\phi_s = -0.57 \pm 0.24 \text{(stat)} \pm 0.07 \text{(syst)} \). The allowed 90\% C.L. intervals of \(\Delta \Gamma_s \) and \(\phi_s \) are \(0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1} \) and \(-1.20 < \phi_s < 0.06 \), respectively. The data sample corresponds to an integrated luminosity of 2.8 fb\(^{-1}\) accumulated with the D0 detector at the Fermilab Tevatron collider.
In the standard model (SM), the light (L) and heavy (H) mass eigenstates of the mixed B^0_s system are expected to have sizeable mass and decay width differences: $\Delta M_s \equiv M_H - M_L$ and $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$. The two mass eigenstates are expected to be almost pure CP eigenstates. The CP-violating mixing phase that appears in $b \to c\bar{s}s$ decays is predicted \cite{1} to be $\phi_s = -2\beta_s = 2 \arg[-V_{ts}V_{cs}^*/V_{ub}V_{cb}^*] = -0.04 \pm 0.01$, where V_{ij} are elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix \cite{2}. New phenomena may alter the phase to $\phi_s \equiv -2\beta_s + \phi_s^{\Delta}$.

In Ref. \cite{3}, we presented an analysis of the decay chain $B^0_s \to J/\psi \phi$, $J/\psi \to \mu^+\mu^-$, $\phi \to K^+K^-$ based on 1.1 fb$^{-1}$ of data collected with the D0 detector \cite{4} at the Fermilab Tevatron collider. In that analysis we measured $\Delta \Gamma_s$ and the average lifetime of the B^0_s system, $\tau_s = 1/\Gamma_s$, where $\Gamma_s \equiv (\Gamma_H + \Gamma_L)/2$. The CP-violating phase ϕ_s was also extracted for the first time. The measurement correlated two solutions for ϕ_s with two corresponding solutions for $\Delta \Gamma_s$. Improved precision was obtained by refitting the results using additional experimental constraints \cite{3}. Here we present new D0 results of an analysis that includes information on the B^0_s flavor at production time. Adding this information resolves the sign ambiguity on ϕ_s for a given $\Delta \Gamma_s$ and improves the precision of the measurement. The analysis is based on an increased data set, collected between October 2002 and June 2007, and corresponding to an integrated luminosity of 2.8 fb$^{-1}$.

We reconstruct the decay chain $B^0_s \to J/\psi \phi$, $J/\psi \to \mu^+\mu^-$, $\phi \to K^+K^-$ from candidate $(J/\psi, \phi)$ pairs consistent with coming from a common vertex and having an invariant mass in the range 5.0 - 5.8 GeV. The event selection follows that in Ref. \cite{3}. The invariant mass distribution of the 48047 candidates is shown in Fig. 1. The curves are projections of the maximum likelihood fit, described below. The fit assigns 1967±65 (stat) events to the B^0_s decay. The flavor of the initial state of the B^0_s candidate is determined by exploiting the properties of particles produced by the other b hadron (“opposite-side tagging”) and the properties of particles accompanying the B^0_s meson (“same-side tagging”). The variables used to construct the opposite-side tagging are described in Ref. \cite{3}. The only difference to the description in Ref. \cite{3} is that the events that do not contain either the opposite lepton or the secondary vertex, and that were not used for the flavor tagging before, are now tagged with the event-charge variable defined in Ref. \cite{3}.

Same-side tagging is based on the sign of an associated charged kaon formed in the hadronization process. A B^0_s (bs) meson is expected to be accompanied by a strange meson, e.g. K^+ (us) meson that can be used for flavor tagging. Such a configuration is formed when the initial b antiquark picks up an s quark from a virtual ss pair and the \bar{s} antiquark becomes a constituent of an accompanying K^+ meson. Candidates for the associated kaon are all charged tracks with transverse momentum $p_T > 500$ MeV that are not used in the B^0_s reconstruction. We define the quantity $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi$ ($\Delta \eta$) is the distance in the azimuthal angle (pseudorapidity) between the given track and the B_s meson, and select the track with the minimum value of ΔR. The corresponding discriminating variable for the flavor tagging is defined as the product of the particle charge and ΔR. Another discriminating variable is Q_{jet}, the p_T-weighted average of all track charges q_i within the cone $\cos(\angle(p_i, \vec{p}_B)) > 0.8$ around the B meson: $Q_{\text{jet}} = \sum_i q_i (p_{Ti}/p_B)^{0.6}$.

The discriminating variables of both the same-side and opposite-side tagging are combined using the likelihood-ratio method described in Ref. \cite{3}. A tag is defined for 99.7% of events. The performance of the combined tagging is taken from a Monte Carlo (MC) simulation of the $B^0_s \to J/\psi \phi$ process and is verified with the $B^\pm \to J/\psi K^\pm$ process for which we find the simulated tagging to be in agreement with data. The effective tagging power, as defined in Ref \cite{3}, is $P = (4.68 \pm 0.54)\%$. It is a significant improvement over the performance of the opposite-side tagging alone, $P = (2.48 \pm 0.22)\%$ \cite{3}. The purity of the flavor tag as a function of an over-all flavor discriminant is determined and parametrized, and the related probability $P(B_s)$ of having a pure state B^0_s at $t = 0$ is used event-by-event in the fit described below.

We perform an unbinned maximum likelihood fit to the proper decay time, three decay angles characterizing the final state, and mass of the B^0_s candidate. The likelihood

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{The invariant mass distribution of the $(J/\psi, \phi)$ system for B^0_s candidates. The curves are projections of the maximum likelihood fit (see text).}
\end{figure}
function L is given by:

$$L = \prod_{i=1}^{N} (f_{\text{sig}} F_{\text{sig}}^{i} + (1 - f_{\text{sig}}) F_{\text{bg}}^{i}),$$

where N is the total number of events, and f_{sig} is the fraction of signal in the sample. The function F_{sig}^{i} describes the distribution of the signal in mass, proper decay time, and the decay angles. For the signal mass distribution, we use a Gaussian function with free mean and width. The proper decay time distribution of the L or H component of the signal is parametrized by an exponential convoluted with a Gaussian function. The width of the Gaussian is taken from the event-by-event estimate of the ct uncertainty $\sigma(ct)$, scaled by an overall calibration factor determined from the fit to the prompt component of the background. F_{bg}^{i} is the product of the background mass, proper decay time, and angular probability density functions. Background is divided into two categories. “Prompt” background is due to directly produced J/ψ mesons accompanied by random tracks arising from hadronization. This background is distinguished from “non-prompt” background, where the J/ψ meson is a product of a B-hadron decay while the tracks forming the ϕ candidate emanate from a multibody decay of a B hadron or from hadronization.

The decay amplitude of the B_s^{0} and B^0 mesons is decomposed into three independent components corresponding to linear polarization states of the vector mesons J/ψ and ϕ, which are either longitudinal (0) or transverse to their direction of motion, and parallel (\parallel) or perpendicular (\perp) to each other. The time evolution of the angular distribution of the decay products, expressed in terms of the magnitudes $|A_{0}|, |A_{\parallel}|$, and $|A_{\perp}|$, and two relative strong phases $\delta_{1} = -\delta_{||} + \delta_{\parallel}$ and $\delta_{2} = -\delta_{0} + \delta_{\perp}$ of the amplitudes, is given in Ref. [3]:

$$d^{4}\Gamma / dt d\theta d\varphi d\psi \propto$$

$$2 \cos^{2} \psi (1 - \sin^{2} \theta \cos^{2} \varphi) |A_{0}(t)|^{2}$$
$$+ \sin^{2} \psi (1 - \sin^{2} \theta \cos^{2} \varphi) |A_{\parallel}(t)|^{2}$$
$$+ \sin^{2} \theta |A_{\perp}(t)|^{2}$$
$$(1/\sqrt{2}) \sin 2\psi \sin^{2} \theta \sin 2\varphi \text{Re}(A_{0}^{*}(t)A_{\parallel}(t))$$
$$+ (1/\sqrt{2}) \sin 2\psi \sin 2\theta \cos \varphi \text{Im}(A_{0}^{*}(t)A_{\perp}(t))$$
$$- \sin^{2} \psi \sin 2\theta \sin \varphi \text{Im}(A_{0}^{*}(t)A_{\parallel}(t)).$$

(2)

Polarization amplitudes for B_s^{0} (upper sign) and B_{s}^{0} (lower sign) are given by the following equations:

$$|A_{0,\parallel}(t)|^{2} = |A_{0,\parallel}(0)|^{2} \left[T_{+} \pm e^{-T} \sin \phi_{s} \sin(\Delta M_{s}t) \right],$$

$$|A_{\perp}(t)|^{2} = |A_{\perp}(0)|^{2} \left[T_{-} \mp e^{-T} \sin \phi_{s} \sin(\Delta M_{s}t) \right],$$

$$\text{Re}(A_{0}^{*}(t)A_{\parallel}(t)) = |A_{0}(0)||A_{\parallel}(0)| \cos(\delta_{2} - \delta_{1})$$
$$\times \left[T_{+} \pm e^{-T} \sin \phi_{s} \sin(\Delta M_{s}t) \right],$$

$$\text{Im}(A_{0}^{*}(t)A_{\parallel}(t)) = |A_{0}(0)||A_{\parallel}(0)|$$
$$\times \left[e^{-T} (\pm \sin \delta_{2} \sin(\Delta M_{s}t) \mp \cos \delta_{2} \sin(\Delta M_{s}t) \cos \phi_{s}) - (1/2)(e^{-T} e^{-T} - e^{-T} T) \sin \phi_{s} \cos \delta_{2} \right],$$

$$\text{Im}(A_{0}^{*}(t)A_{\perp}(t)) = |A_{\perp}(0)||A_{\perp}(0)|$$
$$\times \left[e^{-T} (\pm \sin \delta_{1} \cos(\Delta M_{s}t) \mp \cos \delta_{1} \cos(\Delta M_{s}t) \cos \phi_{s}) - (1/2)(e^{-T} e^{-T} - e^{-T} T) \sin \phi_{s} \cos \delta_{1} \right],$$

where $T_{\pm} = (1/2) [(1 \mp \cos \phi_{s})e^{-T} + (1 \mp \cos \phi_{s})e^{-T}]$. For a given event, the decay rate is the sum of the B_{d}^{0} and B_{s}^{0} rates weighted by $P(B_{s})$ and $1 - P(B_{s})$, respectively, and by the detector acceptance.

In the coordinate system of the J/ψ rest frame (where the ϕ meson moves in the z direction, the z axis is perpendicular to the decay plane of $\phi \to K^{+}K^{-}$, and $p_{\phi}(K^{+}) \geq 0$), the transversity polar and azimuthal angles (θ, φ) describe the direction of the μ^{+}, and ψ is the angle between $\vec{p}(K^{+})$ and $-\vec{p}(J/\psi)$ in the ϕ rest frame.

We model the acceptance and resolution of the three angles by fits using polynomial functions, with parameters determined using MC simulations. Events generated uniformly in the three-angle space were processed through the standard GEANT-based [3] simulation of the D0 detector, and reconstructed and selected as real data. Simulated events were reweighted to match the kinematic distributions observed in the data.

The proper decay time distribution shape of the background is described as a sum of a prompt component, modeled as a Gaussian function centered at zero, and a non-prompt component. The non-prompt component is modeled as a superposition of one exponential for $t < 0$ and two exponentials for $t > 0$, with free slopes and normalizations. The distributions of the backgrounds in mass, $\cos \theta, \varphi$, and $\cos \psi$ are parametrized by low-order polynomials. We also allow for a background term analogous to the interference term of the A_{0} and A_{\parallel} waves, with one free coefficient. For each of the above background functions we use two separate sets of parameters for the prompt and non-prompt components.

The high degree of correlation between $\Delta M_{s}, \phi_{s}$, and the two CP-conserving strong phases δ_{1} and δ_{2} makes it difficult to obtain stable fits when all of them are allowed to vary freely. In the following, we fix ΔM_{s} to 17.77 ± 0.12 ps$^{-1}$, as measured in Ref. [10]. The phases analogous to δ_{1} have been measured for the decay $B_{d}^{0} \to J/\psi K^*$ at the B factories. We allow the phases δ_{s} to vary around the world-average values [10] for the $B_{d}^{0} \to J/\psi K^{*}$ decay, $\delta_{1} = -0.46$ and $\delta_{2} = 2.92$, under a Gaussian constraint. The width of the Gaussian, chosen to be $\pi/5$, allows for some degree of violation of the $SU(3)$ symmetry relating
the two decay processes, while still effectively constraining the signs of $\cos\delta_i$ to agree with those of Ref. [10]. The mirror solution with $\cos\delta_i < 0$ is disfavored by a likelihood ratio of 1:29. Without the constraints on δ_i, ϕ_s shifts by only 0.02 for the $\Delta\Gamma_s > 0$ solution. Confidence level contours in the $\phi_s - \Delta\Gamma_s$ plane, and likelihood profiles as a function of ϕ_s and as a function of $\Delta\Gamma_s$ are shown in Fig. 2. Studies using pseudo-experiments with similar statistical sensitivity indicate no significant biases and show that the magnitudes of the statistical uncertainties are consistent with expectations. The mean value of the statistical uncertainty in ϕ_s from an ensemble generated with the same parameters as obtained in this analysis is 0.33. The test finds allowed ranges at the 90% C.L. of $-1.20 < \phi_s < 0.06$ and $0.06 < \Delta\Gamma_s < 0.30$ ps$^{-1}$. To quantify the level of agreement with the SM, we use pseudo-experiments with the “true” value of the parameter ϕ_s set to 0.04. We find the probability of 6.6% to obtain a fitted value of ϕ_s lower than -0.57.

Setting $\phi_s = -2\beta_s = -0.04$, as predicted by the SM, we obtain $\Delta\Gamma_s = 0.14 \pm 0.07$ ps$^{-1}$. This is consistent with the theoretical prediction of 0.088 ± 0.017 ps$^{-1}$ [1]. The results for this fit are shown in the second column in Table I.

In summary, from a fit to the time-dependent angular distribution of the flavor-tagged decays $B_s^0 \rightarrow J/\psi \phi$, we have measured the average lifetime of the $(B_s^0, T_{\chi_s}^0)$ system, $\tau(B_s^0) = 1.52 \pm 0.05 \pm 0.01$ ps, the width difference between the light and heavy B_s^0 eigenstates, $\Delta\Gamma_s = 0.19 \pm 0.07$ (stat) $+0.02_{-0.01}$ (syst) ps$^{-1}$, and the CP-violating phase, $\phi_s = -0.57 \pm 0.24$ (stat) $+0.07_{-0.02}$ (syst). We also measure the magnitude of the decay amplitudes. In the fits, we set the oscillation frequency to $\Delta M_s = 17.77$ ps$^{-1}$, as measured in Ref. [9], and we impose a Gaussian

Results of the fit are presented in Table I. The fit yields a likelihood maximum at $\phi_s = -0.57^{+0.24}_{-0.30}$ and $\Delta\Gamma_s = 0.19 \pm 0.07$ ps$^{-1}$, where the errors are statistical only. As a result of the constraints on the phases δ_i, the second maximum, at $\phi_s = 2.92^{+0.30}_{-0.24}$, $\Delta\Gamma_s = -0.19 \pm 0.07$ ps$^{-1}$, is disfavored by a likelihood ratio of 1:29. Without the constraints on δ_i, ϕ_s shifts by only 0.02 for the $\Delta\Gamma_s > 0$ solution. Confidence level contours in the $\phi_s - \Delta\Gamma_s$ plane, and likelihood profiles as a function of ϕ_s, and as a function of $\Delta\Gamma_s$ are shown in Fig. 2. Studies using pseudo-experiments with similar statistical sensitivity indicate no significant biases and show that the magnitudes of the statistical uncertainties are consistent with expectations. The mean value of the statistical uncertainty in ϕ_s from an ensemble generated with the same parameters as obtained in this analysis is 0.33. The test finds allowed ranges at the 90% C.L. of $-1.20 < \phi_s < 0.06$ and $0.06 < \Delta\Gamma_s < 0.30$ ps$^{-1}$. To quantify the level of agreement with the SM, we use pseudo-experiments with the “true” value of the parameter ϕ_s set to 0.04. We find the probability of 6.6% to obtain a fitted value of ϕ_s lower than -0.57.

Setting $\phi_s = -2\beta_s = -0.04$, as predicted by the SM, we obtain $\Delta\Gamma_s = 0.14 \pm 0.07$ ps$^{-1}$. This is consistent with the theoretical prediction of 0.088 ± 0.017 ps$^{-1}$ [1]. The results for this fit are shown in the second column in Table I. The non-zero mixing phase is expected to reduce $\Delta\Gamma_s$ by the factor of $|\cos(\phi_s)|$ compared to its SM value $\Delta\Gamma_s^{SM}$ [2]. In the third column of Table I, we show results of a fit with $\Delta\Gamma_s$ constrained by this expected behavior.

The measurement uncertainties are dominated by the limited statistics. Uncertainty in the acceptance as a function of the transversity angles is small, the largest effect is on $|A_0(0)|^2$ and $|A_1(0)|^2$. Effects of the imperfect knowledge of the flavor-tagging purity are estimated by varying the flavor purity parametrization within uncertainties. The “interference” term in the background model accounts for the collective effect of various physics processes. However, its presence may be partially due to detector acceptance effects. Therefore, we interpret the difference between fits with and without this term as a contribution to the systematic uncertainty associated with the background model. The main contributions to systematic uncertainties for the case of free ϕ_s are listed in Table II.
constraint with a width of \(\pi/5 \) to the deviation of the strong phases from the values \(\delta_1 = -0.46 \) and \(\delta_2 = 2.92 \) of Ref. [10]. The allowed 90% C.L. intervals of \(\Delta \Gamma_s \) and of \(\phi_s \) are \(0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1} \) and \(-1.20 < \phi_s < 0.06 \). The SM hypothesis for \(\phi_s \) has a \(P \)-value of 6.6%.

The results supersede our previous measurements [3] that were based on the untagged decay \(B_s^0 \to J/\psi \phi \) and a smaller data sample. They are consistent with the recently submitted CDF results [12].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDEnesp (Brazil); DAE and DST (India); Con-ciencias (Colombia); Conacyt (Mexico); KRF and KOSEF (Korea); Conicet and UBACyT (Argentina); FOM (the Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Ger-
man); SFI (Ireland); The Swedish Research Council (Swedia); Research Corporation; Alexander von Hum-
boldt Foundation; and the Marie Curie Program.

This Letter is dedicated to the memory of Andrzej Zieminski.

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from H. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
[g] Deceased.

1. A. Lenz, and U. Nierste, J. High Energy Physics 0706, 072 (2007) [arXiv:hep-ph/0612167].
2. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
3. D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 98, 121801 (2007).
4. D0 Collaboration, V. M. Abazov et al., Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).
5. D0 Collaboration, V. M. Abazov et al., Phys. Rev. D 76, 057101 (2007).
6. D0 Collaboration, V. M. Abazov et al., Phys. Rev. D 74, 112002 (2006).
7. I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63, 114015 (2001).
8. R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
9. CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. 97, 242003 (2006).
10. E. Barberio et al., Heavy Flavor Averaging Group, [arXiv:0704.3575 [hep-ex]], page 153.
11. M. Suzuki, Phys. Rev. D 64, 117503 (2001).
12. BaBar Collaboration, B. Aubert et al., [arXiv:0704.0522 [hep-ex]].
13. CDF Collaboration, A. Abulencia et al., [arXiv:0712.2397 [hep-ex]].