Complex phase evolution of Brushite-based calcium phosphate CaHPO4·2H2O using in situ high temperature X-ray diffraction and thermal analysis

Mouatamid El Hazzat
Universite Mohammed V de Rabat Faculte des Sciences

Adnane El Hamidi
Universite Mohammed V de Rabat Faculte des Sciences

Mohammed Halim
Universite Mohammed V de Rabat Faculte des Sciences

said ARSALANE (✉ Pr.Saidarsalane@gmail.com)
Universite Mohammed V de Rabat Faculte des Sciences

Keywords: dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, in situ high temperature X-ray diffraction, thermal dehydration

DOI: https://doi.org/10.21203/rs.3.rs-44209/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

This study focused on a detailed examination of the thermal behavior of Brushite-based calcium phosphate (CaHPO$_4$·2H$_2$O, DCPD) to identify and characterize the intermediate phases which have been the subject of previous several controversies. For that, in situ high-temperature X-ray diffraction supported by infrared spectroscopy, thermal analysis, and scanning electron microscopy analysis were used and the results showed that the progressive thermal stress of DCPD in air resulted in a heterogeneous formulation consisting of dibasic calcium phosphate anhydrous (CaHPO$_4$, DCPA) and an amorphous phase, which appears at low temperatures (~160 °C) and persists up to 375 °C. The deep examination of the amorphous phase by infrared spectroscopy revealed that its chemical composition is similar to that of disordered calcium pyrophosphate (Ca$_2$P$_2$O$_7$, CPP) with the appearance of a characteristic band δ(P-O-P), located at 740 cm$^{-1}$. This IR band is shifted to low frequencies (725 cm$^{-1}$) as the temperature is increased, indicating the crystallization of the amorphous phase into γ-CPP. The high temperature treatment (\geq 375 °C) leads to b-CPP polymorph. According to the present characterization results, obtaining pure DCPA from the thermal dehydration of DCPD is not effective and leads to biphasic materials including an amorphous phase.

1. Introduction

The calcium-phosphate system constitutes an attractive class of materials in many fields of science and technology due to its diversity of compositions and structures, depending on the molar ratio Ca/P which can vary from 0.5 to 2 [1-3]. Several two and three-dimensional structures have been isolated and different synthesis strategies have been proposed. Among them, Dibasic Calcium Phosphate Anhydrous (DCPA) (CaHPO$_4$, Monetite) and Dibasic Calcium Phosphate Dihydrate (DCPD) (CaHPO$_4$·2H$_2$O, Brushite) with molar ratio Ca/P=1 have gained much attention owing to their wide applications such as potential precursors for the synthesis of biomaterials useful for the orthopedic engineering and dental implants [4,5], selective adsorbents of pesticides, organic pollutants and containment matrices of radioactive elements in environmental science [6,7] and supports of active phases in numerous heterogeneous catalytic reactions, among others vapour-gas conversion of alcohols [8], oxidative dehydrogenation of alkanes [9] and hydroxylation of aromatic compounds [10].

Brushite DCPD remains one of the most studied calcium phosphate materials because it has several other technological applications as additives in food or dietary supplement [11] and in the pharmaceutical industry as tablet excipient and toothpaste [12,13]. For these purposes, the thermal degradation of DCPD has been extensively studied for several years using different experimental techniques but controversial results still remain, especially on the intermediate phases that may be formed during the dehydration process to give crystalline Calcium Pyrophosphate (Ca$_2$P$_2$O$_7$, CPP) [14-17]. As a result, the mechanism of the dehydration process of DCPD is not yet clear.

Several authors stated that the dehydration of DCPD proceeds through two steps with DCPA and crystalline CPP, respectively as only products formed [18-22]. While others showed that the dehydration
process of DCPD is more complicated and involves the formation of intermediates with indefinite structures [23-26]. For instance, Lin et al. [18] have examined the dehydration of DCPD by thermogravimetry and conventional X-ray diffraction analysis. According to their results when DCPD was heated up to 300 °C, two water molecules were released with the formation of DCPA, which then converted to crystalline CPP at 500 °C. Similarly, Rabatin et al. [19] pointed out that in humid air the loss of hydrates water proceeds rapidly and DCPD decompose to DCPA and CPP at 135 and 430 °C, respectively. Landin et al. [20], studied the dehydration process of DCPD up to 240 °C by means of X-ray diffraction equipped with a high temperature camera and Fourier transform Raman spectroscopy. They found that the process led to the formation of DCPA without the occurrence of intermediate phases. Analogous conclusions were also proposed by Mulley [21] and Joshi [22]. However, Dosen and Giese [23] and Myazaki et al. [24] later suggested that an amorphous intermediate phase was formed concomitantly with DCPA during dehydration of DCPD. Likewise, Gisla et al. [25] reported that in dried air, the dehydration process of DCPD takes place in three steps with the formation of amorphous phases of composition CaHPO$_4$·1.5H$_2$O and CaHPO$_4$·1H$_2$O, as intermediates between 85 and 240 °C. Rabatin et al. [19] proposed a complex dehydration pathway when the reaction is conducted in the presence of dry air than in humid air. These authors concluded that prolonged heating of the DCPD to 135 °C could lead to a lower hydrate of formula CaHPO$_4$·xH$_2$O, with x ranges from 0.9 to 1.2, and which is then converted to amorphous DCPA at 195 °C. The dehydration behavior of DCPD was also examined by Duff [26] who found that two molecules of DCPD combine and eliminate one water molecule at 105 °C and formed an intermediate phase of composition Ca$_2$(HPO$_4$)$_2$·3H$_2$O which turns into DCPA at 165 °C. Based on this brief literature report, it seems that the thermal dehydration process of DCPD is not yet clearly established especially with regard to the number of stages as well as the intermediate phases which can be occurred during heating. Several suggestions have been found doubtful, in the absence of in situ investigations by appropriate analytical techniques.

For that, we have undertaken in this work the thermal dehydration of commercial Brushite DCPD using in situ high temperature X-ray diffraction (HT-XRD) in order to identify and characterize the nature and composition of the possible intermediate phases encountered. Fourier transform infrared spectroscopy (FTIR), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and scanning electron microscopy (SEM-EDX) were also utilized to provide complementary information about products that may form during the dehydration process of DCPD material including the eventual presence of the amorphous phase.

2. Materials And Methods

2.1 Material

All the calcium phosphates used in this work are commercial products of analytical grade, Brushite DCPD (CaHPO$_4$·2H$_2$O) (Riedel-de Haën, > 98 wt.%) and Monetite DCPA (CaHPO$_4$) (Fluka, > 98.5 wt.%). Prior
experiments, the samples were first checked by thermogravimetry analysis to ensure the number of hydration molecules.

2.2 Methods

2.2.1 High temperature X-ray diffraction (HT-XRD)

An X-ray powder diffractometer (Shimadzu-6100) equipped with a variable temperature attachment (model HA-1001) was used. A sample of Brushite DCPD was filled in an alumina holder and exposed to CuKα (l_{CuKα} = 0.15419 nm) radiation (40 kV × 30 mA) in a continuous temperature step scan operation mode from 30 to 650 °C at a heating rate of 10 °C min⁻¹. During the experiment, the sample was maintained 30 min at the selected temperature prior to being analyzed over the angular range from 5 to 50 °(2θ) at scanning speed of 0.03 °s⁻¹. The resulting mineral phases were identified using Joint Committee on Powder Diffraction Standards (JCPDS) database.

In order to determine the composition of the different products including the amorphous phase which are formed during the in situ thermal treatment of the DCPD in air, HT-XRD analysis was carried out using Silicon 640 as internal standard reference. Prior the XRD scans, DCPD and Si powders with a mass ratio 80%:20% were intimately homogenized for 30 min in an agate mortar and then heated at selected temperatures. The HT-XRD patterns were treated using Rietveld method (FullProf program) combined with Quantitative Phase Analysis (QPA) as has been detailed elsewhere [27]. The Rietveld procedure scales all crystalline phases included in the refinement to a total of 100%, if any non-crystalline phase is present, the internal standard content would be overestimated by the Rietveld analysis. The amount of internal standard at each dehydration step must be corrected since the loss of water during heating leads to an increase in the Si content in the initial mixture. The corrected amount of silicon was calculated as follows:
2.2.2 Fourier transform infrared spectroscopy (FTIR-ATR)

The FTIR-ATR analysis was carried out at room temperature on the phases obtained after heating the DCPD in a tubular oven at the same temperatures as those used for the in situ HT-XRD experiments. Spectra were recorded on a Jasco FTIR 4600 spectrometer equipped with an attenuated total reflection (ATR) Pro-One module. The samples were scanned at ambient temperature, in the range from 4000-400 cm\(^{-1}\) using a resolution of 4 cm\(^{-1}\).

2.2.3 Thermal analysis (TG-DTA)

Simultaneous TG-DTA analysis of the DCPD sample was performed on a LabsysTM Evo (1F) Setaram apparatus under non-isothermal conditions from 30 to 700 °C at 10 °C min\(^{-1}\). Experiments were conducted on 10.0 ± 0.1 mg of samples, placed in an alumina pan under air atmosphere of 40 mL min\(^{-1}\). Thermal results were done in duplicate to ensure reproducibility of experiments.

2.2.4 Scanning electron microscopy (SEM-EDX)

SEM micrographs were recorded on a Jeol JSM-IT100 scanning electron microscope equipped with an Energy Dispersive X-ray (EDX) system in order to get information about the morphology of particles and microstructure of the products formed after different heating temperatures. Before examination, the powder sample was deposited on thin films of amorphous carbon and coated with gold (2 nm).
3. Results And Discussions

3.1 In situ high temperature X-ray diffraction (HT-XRD)

To get information on the possible phases formed during the thermal dehydration process of Brushite DCPD, the samples obtained at selected temperatures were subjected to in situ XRD analyzes as described in the method section. The HT-XRD patterns obtained at different thermal treatments are shown in Fig. 1a. At room temperature (30 °C), the XRD diagram shows a high crystalline phase and all observed peaks are matched with those of the standard DCPD (JCPDS card No. 9-77). According to the crystallographic data previously obtained by Neutron and X-ray diffractions [28,29], the DCPD crystallizes in the monoclinic unit cell with space group Ia. Its structural framework consists of a linear arrangement of corrugated CaHPO$_4$ sheets, normal to [010] axis. These sheets are interconnected through two types of water molecules, which are joined together by hydrogen bonds thus forming a tridimensional network.

By increasing the temperature up to 160 °C, the Bragg peak intensities of DCPD relatively decreased and concomitantly a new broad and weak peak emerged at 26.4 °(2q) which is attributed to a maximum XRD reflection of Monetite DCPA (CaHPO$_4$) with JCPDS card No. 9-80. At 160 °C, the DCPD starts to decompose into DCPA with partial loss of water molecules and no other crystalline phases were observed. Indeed, the DCPA crystallizes in the triclinic system (P) and its crystal structure can be described by infinite corrugated sheets of [HPO$_4$]$^{2-}_n$ linked by Ca-O polyhedra [28]. More than 210 °C, the dehydration process of the DCPD still persists and the reflection peaks of DCPA visibly appear. The broad reflections of DCPA observed at this temperature are probably linked to the difference in microstructure between the DCPD and DCPA materials, and to the crystallization kinetics of DCPA that is slower under the experimental analysis conditions. It should be noted that at 210 °C, the existence of an amorphous phase cannot be excluded since a broad hump between 23 and 35 °(2q) was observed in the XRD patterns (Fig. 1b). This amorphous phase is formed parallel to the DCPA even below 210 °C and kept up to 375 °C as previously reported in the literature [23]. The reaction scheme of the dehydration step at 210 °C can be written as follows:

$$ DCPD \rightarrow (1-x-y)DCPD + xDCPA + y(\text{Am}) + (2x+z)\text{H}_2\text{O} $$

Where Am indicates the amorphous phase and z is the corresponding number of water molecules losses.

As shown in Fig. 1a, the DCPA phase is stable in the range of temperature between 210 and 300 °C. The poorly crystalline DCPA observed is probably related to the concomitant presence of the amorphous phase that arises in wide temperature range (Fig. 1b) and to crystals form of DCPA particles issued from DCPD which are different from those of commercial DCPA. For comparison, Fig. 2 shows the XRD diagrams of DCPA obtained after in situ heating the DCPD at 300 °C (30 min), DCPD heated in an air oven at 300 °C (24 h) and commercial DCPA.
At 375 °C, the intensity of DCPA peaks significantly decreases and a new poorly crystalline phase is observed and attributed to low temperature calcium pyrophosphate (LT-CPP). At this temperature, the presence of the amorphous phase is also observed in XRD pattern. The composition of the phases estimated from the in situ HT-XRD data using the Rietveld method combined with the quantitative phase analysis for all explored dehydration temperatures (Table 1) shows that the percentage of the amorphous phase increases with the increase of DCPD dehydration temperature and reaches a maximum of about 21 wt. % in the temperature range between 300 and 375 °C and then it tends to disappear in favor of the crystallization of high temperature calcium pyrophosphate (HT-CPP) when the temperature exceeds 450 °C.

Table 1 Quantification of the phases from HT-XRD experiments

T (°C)	wt. % DCPD	wt. % DCPA	wt. % CPP	wt. % Am
30	100	0	0	0
160	83.9	16.1	0	0
210	11.3	69.8	0	18.9
300	0	78.9	0	21.1
375	0	59.3	20.1	20.6
450	0	0	95.2	4.8
650	0	0	100	0

The comparison of our results with those reported by Dosen and Giese [23] who evaluated amorphous calcium phosphate by using conventional XRD at ambient temperature shows great consistency. Indeed, these authors indicated that the maximum of the amorphous phase composition was observed of about 43 wt.% at 240 °C and when the dehydration process of the DCPD was conducted on a heating rate of 1 °C min\(^{-1}\). This excessive value (43 wt.%), by comparison with our results (21.1 wt.% at 300 °C), seems to be due to the kinetics of the amorphous phase formation and to the differences in the operating conditions used. On the other hands, the more heating rate increases, the more the formation temperature moves towards higher temperatures and the more the amorphous phase content decreases [30].

Further heating the DCPD to 450 °C results in the total disappearance of DCPA and substantial formation of LT-CPP (\(\gamma\)-Ca\(_2\)P\(_2\)O\(_7\), \(\gamma\)-CPP) (JCPDS card No.17-499). Finally, the XRD pattern obtained at 650 °C showed the crystallization of HT-CPP polymorph (\(\beta\)-CPP) with JCPDS card No. 9-346. From the HT-XRD results, it is clear that dehydration of DCPD is complex and occurs in two distinct stages. The first one consists of the formation of DCPA and an amorphous calcium phosphate phase at temperature below
300 °C. The second stage, occurred at high temperature, leads to CPP materials by condensation process of DCPA and crystallization of the amorphous phase.

From the foregoing, it should be noted that obtaining pure DCPA from thermal dehydration of DCPD is not completely effective, contrary to what is suggested in some earlier studies [31,32]. However, pure DCPA can be directly prepared from stoichiometric mixture of soluble calcium reagents and phosphoric acid at 80 °C as reported in several reports [33,34].

3.2 FTIR-ATR spectroscopy

FTIR-ATR analysis allowed the identification of the possible phases obtained after heating the DCPD material, in particular the amorphous phase previously observed in the XRD experiments. The spectra obtained at different temperatures are presented in Fig. 3.

At ambient temperature, the IR spectrum shows a similar signature to that of the standard DCPD [35,36]. In the region 3700-3000 cm\(^{-1}\), two distinct doublets are visible, the first one with components located at 3531 and 3475 cm\(^{-1}\) and the other with components at 3263 and 3158 cm\(^{-1}\). These bands are assigned to the O-H stretching modes belonging to two kinds of crystallization water molecules, in agreement with the crystal structure data [37]. The water molecule also shows another band at about 1645 cm\(^{-1}\) due to O-H bending mode [38]. The main characteristics of internal modes of tetrahedral [PO\(_4\)] groups are observed between 1150-900 cm\(^{-1}\) and 650-520 cm\(^{-1}\) [39]. The bands at frequencies 1215, 875 and 780 cm\(^{-1}\) are due to vibration modes of P-O-H and P-OH of [HPO\(_4^{2-}\)] species, respectively [39,40]. For IR spectra of heated materials, there is a strong evidence for the dehydration process. Indeed, the crystallization band intensities of water molecules decrease gradually until their almost total disappearance at 210 °C and three new weaker vibrations give rise at 2923, 2851 and 2320 cm\(^{-1}\) which are inferred to different kinds of hydrogen bonds belonging to DCPA structure [28,37]. It should be noted that above 160 °C a weak flared band was shown around 740 cm\(^{-1}\) and becomes clearly visible with increasing temperature up to 375 °C (Fig. 3b). At T ≥ 375 °C, an additional IR band appeared at 725 cm\(^{-1}\). As the process temperature increases over 300 °C, the band located at 740 cm\(^{-1}\) gradually disappears while the intensity band at 725 cm\(^{-1}\) increases and becomes narrower. These two bands are assigned to δ(P-O-P) of pyrophosphate groups [P\(_2\)O\(_7^{4-}\)], as reported for many pyrophosphate materials [41,42]. The first was attributed to the amorphous CPP and the second to crystalline CPP. As can be seen, the possible pyrophosphate that is formed during the dehydration process of DCPD is the CPP compound and no other reported composition of calcium phosphates. This CPP phase was previously reported by Duff [26] as a result of the direct product of DCPD when heated over 270 °C. The same author suggested that the calcium pyrophosphate formed during heating could have a composition similar to that of γ-CPP but without giving any evidence. Alike, the calcium pyrophosphate (CPP) was also observed in the IR spectra obtained by Dosen and Giese [23], although its associated band was not signaled and nor discussed. According to our HT-XRD results (Fig. 1b), the large hump observed between 23 and 35 °(2θ) and which is previously assigned to disordered phase of calcium phosphate is responsible for the occurrence of the band at 740 cm\(^{-1}\) in the IR
spectra. As can be seen in Fig. 3b, the broad shape of this band and its relatively high frequency value confirm the presence of a disordered CPP material (Amorphous CPP). Further heating, the IR profiles change and a new phase appeared which is assigned to crystalline γ-CPP. Concomitantly, the band which observed at 740 cm\(^{-1}\) disappears at beyond 375 °C to the profit of single sharp one at 725 cm\(^{-1}\) indicating the total transformation of the amorphous CPP into an ordered LT-CPP with γ polymorph structure (Fig. 3b). At 650 °C, γ-CPP converts to HT-CPP polymorph (β-CPP) as previously reported in the literature [43].

According to HT-XRD and FTIR-ATR experiments, the amorphous CPP results from the partial dehydration of DCPD and reaches a maximum between 300-375 °C. The crystalline CPP phase firstly appears at T ≥ 375 °C and essentially comes from DCPA material. When the temperature increases further, all the resulting products (amorphous CPP and DCPA) convert to LT-CPP (γ-CPP) and then to HT-CPP (β-CPP). Fig. 4 shows the distribution of the crystalline and amorphous CPP during thermal treatment of the DCPD.

3.3 Simultaneous TG-DTA analysis

A study of the thermal dehydration of DCPD was also carried out using the TG-DTA technique, in order to confirm our previous interpretations made in the HT-XRD and FTIR analyzes. Fig. 5 shows the thermal profiles of DCPD performed at 10 °C min\(^{-1}\) under air flow (40 mL min\(^{-1}\)) from ambient temperature up to 700 °C. The thermograms obtained are similar to those reported by several authors [44,45] and show a complex thermal behavior characterized by a progressive dehydration of the DCPD. Five mass loss steps (Pi) accompanied with endothermic effects can be distinguished in thermal curves. Table 2 shows the thermal characteristics of DCPD observed as a function of temperature. All degradation steps correspond to elimination of water molecules at different degrees, in similarity with results previously obtained by Frost et al. [17] when studying the thermal degradation of mineral Brushite (DCPD) using TG combined with MS spectroscopy.

Steps	P1	P2	P3	P4	P5	Total mass loss	
Temperature (°C)	90-170	170-210	210-300	300-375	375-450	Experimental	Theoretical
Mass loss (%)	4.11	15.89	2.10	1.02	2.99	26.11	26.17
Mass loss (mol)	0.393	1.519	0.201	0.098	0.286	2.497	2.50
Based on the results obtained by HT-XRD and FTIR analyzes, the possible phases corresponding to each thermal degradation step are presented in Table 3 and the comparison of the weight percentage of CPP from HT-XRD and Thermal analysis are illustrated in Table 4.

Table 3 Correlation of TG-DTA data with HT-XRD and FTIR analyzes

Steps	T (°C)	XRD and IR identification	TG-DTA analysis
P1	90-170	DCPD, DCPA	0.804DCPD, 0.196DCPA
P2	170-210	DCPD, DCPA, Amorphous CPP	0.094DCPD, 0.706DCPA, 0.1CPP
P3	210-300	DCPA, Amorphous CPP	0.774DCPA, 0.113CPP
P4	300-375	DCPA, Amorphous and crystalline CPP	0.578DCPA, 0.213CPP
P5	375-450	LT-CPP (γ-form)	0.5CPP

Table 4 Comparison of CPP content obtained from HT-XRD and TG analysis

Steps	T (°C)	wt.% CPP (HT-XRD)	wt.% CPP (TG analysis)
		crystalline CPP	Amorphous CPP
P1	90-170	0	0
P2	170-210	0	18.5
P3	210-300	0	21.4
P4	300-375	20.1	40.8
P5	375-450	95.2	100

Thermal results of the DCPD show a great concordance with those obtained by HT-XRD and FTIR analyzes (Table 3). Indeed, the disordered phase which has been controversial in the literature was therefore identified in this study as amorphous calcium pyrophosphate (Am-CPP). This amorphous phase appears increasingly dependent on heating and is transformed into crystalline γ-CPP when the temperature increases (Table 4). Further heating up to 650 °C, an exothermic effect in DTA curve was observed at 535 °C without mass loss and attributed to the transformation of γ-CPP (LT-CPP) into high temperature allotropic form β-CPP (HT-CPP). From the above results, the combination of both techniques HT-XRD and TG-DTA allowed to remove completely the ambiguity of the phases produced during the
thermal dehydration of DCPD, in particular the amorphous phase object of controversies in the literature. This combination of the techniques also revealed that obtaining pure DCPA from the thermal dehydration of DCPD is not entirely effective because of the presence of the amorphous phase which occurs at low temperature (T< 210 °C) and which then directly transforms into LT-CPP (Fig. 6). The maximum of the DCPA obtaining from commercial DCPD is observed at 300 °C with mole percentage of 87.3 %, as shown in Fig. 6.

3.4 SEM-EDX analysis

The phases obtained after in situ HT-XRD analysis of the DCPD at different temperatures were further subject to SEM-EDX examination to explore the microstructure and texture of the resulted products. Fig. 7 displays the micrographs of SEM analysis. As can be seen from Fig. 7a, the morphology of commercial DCPD particles is dominated by plate-shaped crystals superimposed showing the sheet structure of DCPD as reported for other sources of DCPD [46,47]. This microstructure persists even for DCPA crystals (Fig. 7b), when DCPD is heated up to 210 °C. At 375 °C (Fig. 7c), the flat plate morphology of DCPD disappears completely in favor of large particles of different sizes asserting the presence of CPP phase, as shown generally in CPP materials [48,49]. The texture of the particles becomes well organized when the heating temperature reaches 450 °C indicating the appearance of the LT-CPP phase (γ-CPP) (Fig. 7d). By heating up to 650 °C (Fig. 7e), the γ-CPP microstructure changes and appears to be dominated by small particles of the HT-CPP allotropic form (β-CPP). The SEM results are found in good agreement with those obtained by HT-XRD, FTIR spectroscopy and thermal analyzes.

4. Conclusions

Calcium phosphate dihydrate (CaHPO₄·2H₂O, DCPD) is an important material used in medical industry and modern technologies. The thermal dehydration of DCPD was subject of numerous previous studies due to the complexity of its mechanism process especially, the intermediate phases that can occur during heating. However, some controversies still remain about the nature and composition of the amorphous phase encountered during the thermal process. In this report, we have undertaken the thermal dehydration of DCPD using in situ HT-XRD experiments. The XRD results showed the presence of an amorphous intermediate product, which appeared at low dehydration temperature (T< 210 °C) and becomes clearly visible at the temperature of 375 °C. The characterization of the resulted products at different dehydration steps by FTIR spectroscopy indicated that the amorphous phase exhibited a vibration band at 740 cm⁻¹ which attributed to δ(P-O-P) of pyrophosphate species. This IR band disappeared at the temperature more than 375 °C and a new vibration band emerged at 725 cm⁻¹ due to the formation of crystalline calcium pyrophosphate, in good agreement with XRD results. The thermal process of DCPD using TG-DTA showed the complex nature of the degradation reaction. Indeed, five processes are involved and all are attributed to elimination of water molecules at different degrees. The thermal reaction equations corresponding to each degradation step were proposed according to the results of HT-XRD, FTIR, TG-DTA.
analyzes and SEM-EDX observations. An exothermic effect appeared at 535 °C was assigned to γ-CPP-\(\rightarrow\)β-CPP allotropic forms. The results obtained in the present work made it possible to remove the ambiguity regarding the identification of the amorphous phase formed during thermal degradation of DCPD and showed that the pure DCPA could not be obtained from DCPD material.

Acknowledgements

This research was supported financially by the Mohammed V University, Morocco and by the Hassan II Academy of Science and Technology, Morocco. The authors thank the technical staff of the analysis and characterization platform, FSR Rabat, for their assistance in the experimentation.

References

[1] Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. *Materials* 2017, **10**: 334.
https://doi.org/10.3390/ma10040334

[2] Feng C, Zhang K, He R, Ding G, Xia M, Jin X, Xie C. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. *J Adv Ceram* 2020, **9**: 360-373.
https://doi.org/10.1007/s40145-020-0375-8

[3] Witek L, Shi Y, Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study. *J Adv Ceram* 2017, **6**: 157-164.
https://doi.org/10.1007/s40145-017-0228-2

[4] Touny AH, Saleh MM. Fabrication of biphasic calcium phosphates nano whiskers by reflux approach. *Ceram Int* 2018, **44**: 16543-16547.
https://doi.org/10.1016/j.ceramint.2018.06.075

[5] Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO\(_4\)) bioceramics and their biomedical applications. *Ceram Int* 2016, **42**: 6529-6554.
https://doi.org/10.1016/j.ceramint.2016.01.062

[6] Mirković MM, Pašti TL, Došen AM, Čebela MZ, Rosić AA, Matović BZ, Babić BM. Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. *RSC Adv* 2016, **6**: 12219-12225.
https://doi.org/10.1039/c5ra27554g
[7] El-Din AFT, Elshehy EA, El-Magied MOA, Atia AA, El-Khouly ME. Decontamination of radioactive cesium ions using ordered mesoporous monetite. *RSC Adv* 2018, **8**: 19041-19050. https://doi.org/10.1039/c8ra02707b

[8] Benzekri Z, Mejdoubi KE, Boukhris S, Sallek B, Lakhrissi B, Souizi A. Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation. *Synth Commun* 2016, **46**: 442-451. https://doi.org/10.1080/00397911.2016.1142565

[9] Boucetta C, Kacimi M, Ensuque A, Piquemal JY, Bozon-Verduraz F, Ziyad M. Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite. *Appl Catal A Gen* 2009, **356**: 201-210. https://doi.org/10.1016/j.apcata.2009.01.005

[10] Bahidsky M, Hronec M. Direct hydroxylation of aromatics over copper-calcium-phosphates in the gas phase. *Catal Today* 2005, **99**: 187-192. https://doi.org/10.1016/j.cattod.2004.09.039

[11] Sánchez-Paniagua López M, López-Ruiz B. A sensitive glucose biosensor based on brushite, a biocompatible cement. *Electroanal* 2011, **23**: 280-286. https://doi.org/10.1002/elan.201000489

[12] Lausier JM, Chiang CW, Zompa HA, Rhodes CT. Aging of tablets made with dibasic calcium phosphate dihydrate as matrix. *J Pharm Sci* 1977, **66**: 1636-1637. https://doi.org/10.1002/jps.2600661137

[13] Medvecky L, Stulajterova R, Giretova M, Mincik J, Vojtko M, Balko J, Briancin J. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro. *Dent Mater* 2018, **34**: 442-451. https://doi.org/10.1016/j.dental.2017.11.022

[14] Kaushal AM, Vangala VR, Suryanarayanan R. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate. *J Pharm Sci* 2011, **100**: 1456-1466. https://doi.org/10.1002/jps.22372

[15] Ball MC, Casson MJ. Dehydration of calcium hydrogen phosphate dihydrate. *J Chem Soc Dalton Trans* 1973, **1**: 34-37. https://doi.org/10.1039/dt9730000034

[16] Dumitraş DG, Marinea Ş, Fransolet AM. Brushite in the bat guano deposit from the "dry" Cioclovina cave (Sureanu Mountains, Romania). *Rev Mineral Geochem* 2004, **180**: 45-64. https://doi.org/10.1127/0077-7757/2004/0180-0045

[17] Frost RL, Palmer SJ. Thermal stability of the ‘cave’ mineral brushite CaHPO₄·2H₂O - Mechanism of formation and decomposition. *Thermochim Acta* 2011, **521**: 14-17.
[18] Lin LK, Lee JS, Hsu CK, Huang P, Lin HT. A Study on the Thermal Properties of dibasic calcium hydrogen phosphate and monobasic calcium phosphate. *Anal Sci* 1997, **13**: 413-418. https://doi.org/10.2116/analsci.13.Supplement_413

[19] Rabatin JG, Gale RH, Newkirk AE. The mechanism and kinetics of the dehydration of calcium hydrogen phosphate dihydrate. *J Phys Chem* 1960, **64**: 491-493. https://doi.org/10.1021/j100833a030

[20] Landín M, Rowe RC, York P. Structural changes during the dehydration of dicalcium phosphate dihydrate. *Eur J Pharm Sci* 1994, **2**: 245-252. https://doi.org/10.1016/0928-0987(94)90029-9

[21] Mulley VJ, Cavendish CD. A thermogravimetric method for the analysis of mixtures of brushite and monetite. *Analyst* 1970, **95**: 304-307. https://doi.org/10.1039/AN9709500304

[22] Joshi VS, Joshi MJ. FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals. *Cryst Res Technol* 2003, **38**: 817-821. https://doi.org/10.1002/crat.200310100

[23] Dosen A, Giese RF. Thermal decomposition of brushite, CaHPO$_4$·2H$_2$O to monetite CaHPO$_4$ and the formation of an amorphous phase. *Am Mineral* 2011, **96**: 368-373. https://doi.org/10.2138/am.2011.3544

[24] Miyazaki T, Sivaprakasam K, Tantry J, Suryanarayanan R. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. *J Pharm Sci* 2009, **98**: 905-916. https://doi.org/10.1002/jps.21443

[25] Berend G, Hegedüs AJ. Thermoanalytische untersuchung von sekundäremcalcium-phosphatdihydrat. *Thermochim Acta* 1975, **11**: 367-379. https://doi.org/10.1016/0040-6031(75)80004-9

[26] Duff EJ. Orthophosphates. XIII. Thermal decomposition of secondary calcium orthophosphate (CaHPO$_4$) and secondary calcium orthophosphate dihydrate (CaHPO$_4$·2H$_2$O). *J Appl Chem Biotechnol* 1971, **21**: 233-235. https://doi.org/10.1002/jctb.5020210804

[27] Madsen IC, Scarlet NVY. Quantitative phase analysis. In R.E. Dinnebier and S.J.I. Billinge, Eds., Powder Diffraction: theory and practice, 2008: 298-331.
[28] Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. *J Chem Soc A* 1971: 3725-3729.

https://doi.org/10.1039/j19710003725

[29] Beevers CA. The crystal structure of dicalcium phosphate dihydrate CaHPO$_4$$\cdot$2H$_2$O. *Acta Crystallogr* 1958, 11: 273-277. https://doi.org/10.1107/S0365110x58000670.

[30] Williams PT, Besler S, Taylor DT. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. *Fuel* 1990, 69: 1474-1482. https://doi.org/10.1016/0016-2361(90)90193-T

[31] Rubini K, Boanini E, Bigi A. Role of aspartic and polyaspartic acid on the synthesis and hydrolysis of brushite. *J Funct Biomater* 2019, 10: 11.

https://doi.org/10.3390/jfb10010011

[32] Drouet C, Largeot C, Raimbeaux G, Estournès C, Dechambre C, Combes C, Rey C. Bioceramics: spark plasma sintering (SPS) of calcium phosphates. *Adv Sci Tech* 2006, 49: 45-50. https://doi.org/10.4028/www.scientific.net/ast.49.45

[33] Mulongo-Masamba R, El Kassri T, Khachani M, Arsalane S, Halim M, El Hamidi A. Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO$_4$. *J Therm Anal Calorim* 2016, 124: 171-180.

https://doi.org/10.1007/s10973-015-5130-y

[34] Švecová M, Bartůněk V. Facile synthesis of monetite nanoparticles from basic raw materials. *Ceram Int* 2018, 44: 16079-16082.

https://doi.org/10.1016/j.ceramint.2018.05.187

[35] Hirsch A, Azuri I, Addadi L, Weiner S, Yang K, Curtarolo S, Kronik L. Infrared absorption spectrum of brushite from first principles. *Chem Mater* 2014, 26: 2934-2942. https://doi.org/10.1021/cm500650t

[36] Tortet L, Gavarri JR, Nihoul G, Dianoux AJ. Study of protonic mobility in CaHPO$_4$$\cdot$2H$_2$O (brushite) and CaHPO$_4$ (monetite) by infrared spectroscopy and neutron scattering. *J Solid State Chem* 1997, 132: 6-16. https://doi.org/10.1006/jssc.1997.7383

[37] Petrov I, Šoptrajanov B, Fuson N, Lawson JR. Infra-red investigation of dicalcium phosphates. *Spectroc Acta A* 1997, 23: 2637-2646.
[38] Jayasree R, Kumar TS, Venkateswari R, Nankar RP, Doble M. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential. *J Mater Sci Mater Med* 2019, **30**: 113.

[39] Berry EE, Baddiel CB. The infra-red spectrum of dicalcium phosphate dihydrate (brushite). *Spectrochim Acta A* 1997, **23**: 2089-2097.

[40] Casciani F, Condrate Sr RA. The vibrational spectra of Brushite CaHPO₄·2H₂O. *Spectrosc Lett* 1979, **12**: 699-713. https://doi.org/10.1080/00387017908069196

[41] Kohale RL, Dhoble SJ. Optical performance of Ca₃P₂O₇·Ce³⁺ pyrophosphate phosphor synthesized via modified solid-state diffusion. *J Mol Struct* 2018, **1170**: 18-23.

[42] Zyman Z, Epple M, Goncharenko A, Rokhmistrov D, Prymak O, Loza K. Peculiarities in thermal evolution of precipitated amorphous calcium phosphates with an initial Ca/P ratio of 1:1. *J Mater Sci Mater Med* 2017, **28**: 52.

[43] Anastasiou AD, Nerantzaki M, Brown AP. Drug loading capacity of microporous β-pyrophosphate crystals. *Mater Des* 2019, **168**: 107661.

[44] Chen Y, Shen C, Rashid S, Li S, Ali BA, Liu J. Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. *J Colloid Interface Sci* 2017, **491**: 207-215. https://doi.org/10.1016/j.jcis.2016.12.032

[45] Schlack H, Bauer-Brandl A, Schubert R, Becker D. Properties of Fujicalin, A new modified anhydrous dibasic calcium phosphate for direct compression: Comparison with dicalcium phosphate dihydrate. *Drug Dev Ind Pharm* 2001, **27**: 789-801.

[46] Nosrati H, Quang Svend Le D, Zolfaghari Emameh R, Bunger CE. Characterization of the precipitated dicalcium phosphate dihydrate on the graphene oxide surface as a bone cement reinforcement. *J Tissues Mater* 2019, **2**: 33-46.
[47] Şahin E, Çiftçioğlu M. Monetite promoting effect of citric acid on brushite cement setting kinetics. *Mater Res Innov* 2014, **18**: 138-145.

[48] Maity JP, Lin TJ, Cheng HPH, Chen CY, Reddy AS, Atla SB, Chen CC. Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin. *Int J Mol Sci* 2011, **12**: 3821-3830.

[49] Zyman ZZ, Goncharenko AV, Rokhmistrov DV. Phase evolution during heat treatment of amorphous calcium phosphate derived from fast nitrate synthesis. *Process Appl Ceram* 2017, **11**: 147-153.

Figures
Figure 1

In situ HT-XRD diagrams of Brushite
Figure 2

XRD patterns of DCPD heated at 300 °C for 30 min (a), for 24 h (b) and commercial DCPA (c)

Figure 3

FTIR-ATR profiles of DCPD and its thermal dehydration products
Figure 4

Distribution of crystalline and amorphous CPP phases during the thermal dehydration of the DCPD
Figure 5

Thermal dehydration profiles of DCPD material
Figure 6

Mole percentage of products formed from commercial DCPD versus temperature
Figure 7

SEM-EDX analysis of the DCPD samples heated up to different temperatures