Virus Detection in Multiplexed Nanowire Arrays using Hidden Semi-Markov models

Shalini Ghosh, Patrick Lincoln, Christian Petersen, Alfonso Valdes
Computer Sciences Laboratory, SRI International, CA.

Abstract—In this paper, we address the problem of real-time detection of viruses docking to nanowires, especially when multiple viruses dock to the same nanowire. The task becomes more complicated when there is an array of nanowires coated with different antibodies, where different viruses can dock to each coated nanowire at different binding strengths. We model the array response to a viral agent as a pattern of conductance change over nanowires with known modifier — this representation permits analysis of the output of such an array via belief network (Bayes) methods, as well as novel generative models like the Hidden Semi-Markov Model (HSMM).

I. INTRODUCTION

Real-time detection of viruses in the field of healthcare and biodefense has become a very important problem in recent times. In this work, we follow the methodology of real-time electrical detection of viruses with nanowire field-effect transistors described in Patolsky et al. [1]. In this method, nanowires are coated with antibodies of a particular kind of virus. The main idea is as follows: if that type of virus is present in the environment, then the virus molecules would dock with the antibody molecules on the nanowire and change the conductance of the nanowire. Signals of the nanowire conductance as a function of time are typically analyzed to figure out whether the virus has docked to the nanowire, thereby detecting the presence of the virus.

If only a single virus docks to the nanowire, then the problem is relatively simple: one just has to figure out whether or not there is a binding event of the virus to the nanowire. However, in practice, apart from the main virus which docks to the nanowire, multiple viruses from the same family can also exhibit weak binding to the coated nanowire. The problem then becomes more challenging, since now the task is not only to detect a binding event but also to identify which virus molecule has docked. The task becomes further complicated when there is an array of nanowires coated with different antibodies where different viruses can dock to each coated nanowire at different binding strengths.

Building on Patolsky et al. [1], we propose belief network and generative probabilistic models for detecting virus docking in large nanowire arrays. Patolsky et al. note in their paper that there are limitations in their method and other methods in the detection of rapidly mutating, engineered, and/or new viruses. One approach to overcome this limitation, they note, is through multiplexed nanowire arrays, including nanowires modified with general viral-cell surface detectors and antibody libraries (collectively, modifiers). Herein we propose concepts to enable this enhanced detection capability. We seek to develop approaches to address the following questions:

- Given the output of a multiplexed array with nanowires modified with a known set of modifiers, what is the content of the analyzed sample? Variants of this include: Is a given virus present, and what is the most likely mix of viruses? Stressing factors could include failures of similarly modified nanowires as well as contaminants in the sample.
- Given a desired list of viral agents of interest, what is an effective approach to selecting modifiers so as to detect and distinguish the agents of interest? Factors to consider include achieving adequate redundancy to tolerate nanowire failures as well as a selection of modifiers that covers the space of viral agents of interest.

Our approaches are based on the representation of the array response to a viral agent as a pattern of conductance change over nanowires with known modifiers. This representation permits analysis of the output of such an array via belief network (Bayes) methods, as well as generative models like the Hidden Semi-Markov Model (HSMM) [2]. Our development explicitly comprehends “noisy” output from the array, caused by faulty nanowires or contaminants.

This paper is organized as follows. We first discuss the expected response of single nanowires to viral particles, as presented in the reference, with schematics of idealized conductance traces as well as traces of actual data. We then present approaches to detecting an expected signal on a single nanowire, building from a simple threshold approach to matched filtering [3] on conditioned data, and finally presenting a histogram detrending technique to address detection in some of the more challenging traces from Patolsky et al. [1]. We then describe virus detection in a notional multiplexed nanowire array. In such an array the nanowires are divided into sets with all nanowires within a set modified with the same modifier (providing redundant detection capability of response to a specific modifier), and different sets of nanowires are modified with antibodies from an antibody library (providing coverage of a breadth of viral agents of interest). Subsequently, we propose a more advanced model of virus detection, the Hidden Semi-Markov Model, and show experimental results with the HSMM. Finally, we give an assessment of the cross-correlation in the nanowire array. Note that in this paper, we will occasionally refer to the method in Patolsky et al. [1] as the Patolsky method.
II. Nanowire Response to Viral Binding

A nanowire modified with specific antibody receptors responds to viral bindings as follows. Viral particles sampling but not binding to a receptor site on the wire cause a transient change in conductance, which manifests as a spike of brief duration in a trace of conductance versus time. Transient spikes are also observed coincident with fluidic injections, and these spikes may correlate across nanowires in a multiplexed array so as to allow removal of noise features correlated across wires. Specific bindings appear as a “boxcar” change in conductance, either positive or negative, depending on solution pH and the charge of the modifier. For a given concentration, the duration of the boxcar in time is fairly consistent, as is the amplitude change. The observed response corresponds to single viral particle bindings, and the interval of conductance change corresponds to a particle attaching, remaining bound for some time interval, and then releasing, as confirmed by electron micrograph. Some cases of multiple bindings to the same wire have been observed by Patolsky et al.; these appear as superimposed boxcars in the trace. Figure 1 represents an idealized conductance trace for a single nanowire, showing a transient spike feature corresponding to a nonspecific contact, a boxcar corresponding to a specific binding, and a superimposed boxcar corresponding to a specific binding followed by a second specific binding before the first particle releases. Figure 2 shows an actual trace of data from the Patolsky method (this figure corresponds to Figure 4 in Patolsky et al. [1]). There are two nanowires, the first modified with anti-Influenza Type A antibody (NW1) and the second with anti-adenovirus group III (NW2). The figure shows expected specific bindings as the respective viral agents are introduced. The noise characteristics and boxcar shapes are typical of what we have observed, although these traces do not exhibit significant trends.

III. Matched Filter Approach to Single Wire Detection

Matched filtering describes a variety of techniques whereby a representation of a signal of interest is convolved with a series or image in which the signal may or may not be present. Regions that agree well with the matched filter will correspond to local maxima in the matched filter output. These local maxima are declared to be instances of the signal of interest if they are above some threshold. For reasons of computational efficiency, both signal and data are transformed, typically using a Fast Fourier Transform (FFT) [3]. Convolution corresponds to pointwise multiplication in transform space. Matched filtering is an optimal detection algorithm in the case of additive signal in white noise. Much of the efficacy in the approach depends on conditioning of the data so as to satisfy this assumption. Common noise sources include:

- Uncorrelated noise, which is often effectively removed by subtracting the data mean and dividing by the standard deviation.
- Frequency content (in time or space), removed by estimation of and then dividing out the power spectrum.
- Trends, which must be estimated and removed.
- Signal capture, in which the signal is sufficiently strong so as to significantly influence estimates of noise, frequency content, or trend. For example, in typical conductance traces in our case, the magnitude and duration of amplitude changes due to specific bindings are sufficient to affect sample statistics.

For simplicity, our initial matched filter analysis considered only uncorrelated noise. As such, the data normalization procedure is simply to subtract the grand mean and divide by the standard deviation. This simple procedure achieves a degree of data whitening. A matched filter is an idealization of the hypothesized signal one is trying to detect in the data. In this case, the matched filter is a manually constructed -20 nS boxcar of duration 20 seconds. For FFT indexing reasons, this is “unwrapped” to comprise 10 points of value -20 in the first 10 positions and 10 points of value -20 in the last 10 positions of an array 1024 long, which is otherwise zero. The matched filter is approximately whitened by dividing by the standard deviation of the conductance data. We focus on the interval from 500 to 1523 seconds, which provides 1024 points and is a convenient array size for Fourier analysis. This partial trace is shown in Figure 3.

![Fig. 1. Idealized conductance trace showing, respectively, nonspecific transient spike, specific binding, and superimposed specific bindings.](image1)

![Fig. 2. Traces for Influenza and Adenovirus (corresponds to data from Figure 4 of Patolsky et al. [1]).](image2)
Fig. 3. Subtrace of 1024 points from Patolsky et al.

Over this interval, NW1 exhibits spike features only, so we focus on NW2, which exhibits one spike and three boxcars. The whitened data and matched filter are processed through a Fast Fourier Transform (FFT). The convolution of the matched filter and the data is achieved in transform space as elementwise multiplication of the Fourier series. An inverse transform produces the matched filter output, which is then normalized by dividing by its own standard deviation (it is in theory zero mean – the mean we obtained here was 1.8e-11). Figure 4 shows the normalized data trace for wire 2 as well as the matched filter output. Peaks in the matched filter output correspond to regions of maximal match between the data and the filter. Although this is a somewhat simple case, we observe as expected three matched filter peaks corresponding to the bindings of interest, with no matched filter ringing at the transient spike or anywhere else along the trace.

Fig. 4. Normalized conductance trace with matched filter output.

IV. HISTOGRAM DETRENDING AND ADVANCED DETECTION

Figure 5 represents unpublished data from Patolsky et al., showing a nanowire modified for Influenza detection, in an experiment where first Influenza only and then a mixture of Influenza and Parmyoxovirus are introduced. The latter introduction is immediately before the break in the trend (at time 1300). The influenza/parmyoxovirus data shows a significant nonlinear trend and also contains signal transitions that deviate from the boxcar model (possibly the result of sequential virus binding/unbinding). Data such as this requires more sophisticated processing than presented above in order to estimate and remove the trend. Three detrending approaches were tried with this data. The first method is a conventional curve fitting method in which we fit a global function to the entire data set and subtract that function from the data (assuming that the fitted function represents the data trend). The global fitting approach turned out to be undesirable because the change in conductance at approximately 1300 seconds produces a persistent shift in the data mean and biases the trend locally. Another approach is to model the trend locally using a moving average. The trend and bias removal is better than for the previous fitted trend removal case. However, the moving average still shows some variation near binding events. Nonetheless, this result is much more appropriate for other modeling (e.g., auto-regression) and detection techniques (matched filtering). Finally, a more sophisticated approach is taken in which a histogram is utilized to obtain a more accurate representation of the local mean. In this approach, a histogram is computed in much the same way as the moving average. In this case, histograms are successively computed over a 200 second moving window. Each histogram represents a density function of the conductance values within the window. Since the data is largely characterized by slowly moving trends and boxcar or step functions, the histograms will typically exhibit one or two distinct populations, the latter in the case that the window contains significant points from the background and the signal. In Figure 6, the histogram data window overlaps a virus bind/unbind signature in the data. Since the width of the bind/unbind signature is roughly 10-15% of the window width (20-30 second pulse width in a 200 second window), the histogram population corresponding to the minimum in the signature is somewhat smaller than the population corresponding to the local data mean, resulting in two distinct histogram modes. Thus the local mean can be identified with little biasing from the signature. In Figures 7 and 8 an apparent sequential virus bind occurs, shifting the local mean. In this case the relative heights of the two populations in the histogram become comparable and then the maximum changes from one population to the other as the histogram window moves in time (that is, the modes corresponding to the binding and the background are reversed).

By using the maximum value of the largest population in the histogram, we can estimate the mean value of the local window in the data. Step changes in the data will be regarded as sudden changes in the mean as opposed to a bind or unbind signature unless additional measures are taken. We process the original data by choosing the value of conductance for the maximum count value of each histogram as the local mean at that point. Then we move the window and repeat the computation for each point in the original time series. The original time series data detrended by the model is shown in Figure 9.

With the histogram model, the bias and trend removal is more stable near binding events. From a qualitative point of
Fig. 5. Influenza + Parmxyovirus.

Fig. 6. Influenza + Parmyoxovirus histogram and data window containing virus bind/unbind signature.

Fig. 7. Influenza + Parmyoxovirus histogram and data window containing possible virus sequential bind signature – local mean at a conductance of roughly 675 nS.

Fig. 8. Influenza + Parmyoxovirus histogram and data window containing possible virus sequential bind signature – local mean now at a conductance of 645 nS.

Fig. 9. Influenza + Parmyoxovirus conductance data with histogram model trend removed.

Fig. 10. Patolsky et al. has proposed multiplexed arrays for more reliable detection of viral agents (reliability achieved through redundant nanowires similarly modified) as well as detection of diverse agents with a single array. As reported in the paper, the team had built arrays with fewer than 10 wires and limited redundancy, with the eventual objective of scaling to arrays of hundreds or thousands of nanowires. Figure 10 shows traces obtained by Patolsky et al. from a multiplexed array. Here, wires 1 and 2 are modified with the Cholera Toxin antibody (CT), while wire 3 is modified with the PSA antibody. Wires

view, the signal to noise ratio seems slightly greater with the histogram model. One disadvantage with this method is that the single step in the data at 1300 seconds appears as a spike rather than as a boxcar function – additional analysis might be necessary to detect these transitions if that were desirable. Another disadvantage of this method is that it is computationally much more expensive than the others. However, this method can be applied incrementally as data is gathered, so the cost may not be significant.

V. DETECTION IN NOTIONAL MULTIPLEXED NANOWIRE ARRAYS

Patolsky et al. has proposed multiplexed arrays for more reliable detection of viral agents (reliability achieved through redundant nanowires similarly modified) as well as detection of diverse agents with a single array. As reported in the paper, the team had built arrays with fewer than 10 wires and limited redundancy, with the eventual objective of scaling to arrays of hundreds or thousands of nanowires. Figure 10 shows traces obtained by Patolsky et al. from a multiplexed array. Here, wires 1 and 2 are modified with the Cholera Toxin antibody (CT), while wire 3 is modified with the PSA antibody. Wires
4 and 5 are modified with ethanolamine only and serve as controls.

Fig. 10. 5-wire multiplex array modified for CT and PSA.

Multiplexed arrays will consist of multiple nanowires modified with the same antibody, drawn from an antibody library. Ideally, an antibody is specific to a viral agent. In practice, we expect to see some weak bindings (lower amplitude conductance change and/or shorter duration of binding) in the case of an antibody specific to a virus variant from the same family as the viral agent being analyzed in a given run. For example, an adenovirus variant is expected to exhibit strong bindings to wires modified with antibodies specific to the variant, and weaker binding to some wires modified with antibodies specific to other adenovirus variants. Bindings to wires modified for other viral families (for example, adenovirus bindings to wires modified with influenza antibodies) are expected to be rare. A simple detection approach that might prove robust for some types of nanowire data is simple threshold testing. In testing for substantial viral or chemical concentrations (as opposed to single virus or particle detection), one can expect binding-event signals such as in Figure 10 lasting tens to hundreds of seconds as compared to noise events (≈ 1 second). In such a case, low-pass filtering can remove a large percentage of electrical noise and spiky “sampling” events on the nanowires. The resulting signal can be tested against a threshold to detect the presence of a binding event. As an example, we use the CT antibody nanowires NW1 and NW2 from the above data set. Applying a low-pass filter to the NW1 and NW2 data results in the signatures shown in Figure 11. Applying a threshold on the negative-going waveform produces detections of the binding events. The result from NW2 demonstrates that care must be taken in setting the threshold. One trades detection sensitivity against the likelihood of false alarms in noisy data. If the threshold is set too close to the origin, the algorithm will interpret excursions in the noise as detections. A threshold too far away from the origin will miss lower amplitude conductance changes due to lower concentration samples.

The appropriate filtering and threshold value will depend on the requirements for the particular application. A separate threshold would most likely be necessary for each wire in an array - awkward for very large arrays. However, the threshold could be adaptively set depending on the background noise. A one-time calibration phase where the instrument is run on a neutral sample (to determine noise levels) or subjected to actual samples would allow calibration of the algorithm. It would also be possible to dynamically adjust thresholds (and thus false alarm rate or sensitivity) while the instrument runs by maintaining some instantaneous measure of background noise for each nanowire. At the very least, individual thresholds would be necessary to accommodate junction variations from the fabrication process. An advantage of the threshold technique is that it is simple and very well understood. It is also very easy to pass event width and height information along for more processing – for instance, determining the concentration of a virus as well as its presence or combining the signature of several similarly treated nanowires. A disadvantage to the threshold approach is susceptibility to noise. The matched filter or correlation filter techniques are much more resistant to non-Gaussian noise because they would depend on the overall “boxcar” shape of the signature. However, the width and height of binding signatures can change depending on solution concentration and pH. The matched filter approach would require a bank of matched filters for various “boxcar” dimensions or some normalization calculation to map the signatures to a standard width or height.

VI. INTEGRATING THE RESPONSE ON A MULTIPLEX ARRAY

A future multiplexed detector will likely consist of an array of nanowires, treated to respond to different agents or families of agents, with the array containing similarly treated wires (replicates) for robustness. We may represent the response of an array to a particular virus as a pattern over the multiplexed array. The expected response patterns can be represented in tabular form as idealized patterns.

Table 1 represents idealized response patterns for different agents injected into a hypothetical array. Each row of the table represents one or a set of identically modified nanowires. The columns give the notional response of the array (1.0 being the maximal strength response) to respective viral agents. This
response could be, for example, the normalized output of the matched filter or histogram detector described previously, integrated over multiple wires in the array.

We consider two families, the first with three variants, the second with two. The shorthand “A1” denotes the first variant of virus family A, “A2” the second variant of the same family, and so on. The shorthand “Anti-A1-1” denotes the first member of the antibody library specific for A1. Note that for some viruses (for example, A3) we have only one specific antibody in the library. Expected (specific) bindings have table entries close to unity; bindings within the correct family have intermediate values, and bindings outside the family have values near zero.

The last row in the table represents modification of nanowires with a viral cell surface receptor. All viruses are expected to have a strong binding to this modifier. In addition to columns corresponding to specific viral agents, we include a column for a virus from the “A” family for which we have no specific antibody (Other-A) as well as a new virus from an unknown family. The former would have a weak response to the “A” family antibodies, near zero response to the “B” family antibodies, and a strong response to the cell surface detector. The latter would have a near zero response to all but the cell surface detector. The buffer would have a near zero response to all wires in the array.

This representation enables various computational approaches to infer the presence of one or more viruses given a noisy nanowire array output (which will be in the form of a column vector of responses to the various modifiers). We describe a Bayes approach, in which we treat the above responses as probabilities, even if they are not so in the strict sense, and outline an applicable Bayes formalism.

VII. Naive Bayes Formalism

Expressing the response on a 0 to 1 scale allows us to manipulate responses as probabilities. Specifically, we may computationally treat the response in a particular table cell as the conditional probability of a binding to the row variable given the presence of the viral agent corresponding to the column. As a specific example, we consider that the conditional probability of a response for Anti-A1-1 given that A1 is present is 0.98. This is written as $P(\text{Anti-A1-1} = \text{Yes}|\text{A1} = \text{present}) = 0.98$.

The Bayes formalism makes inference about hypotheses at a “parent” node based on evidence observed at “leaf” nodes or inferred at intermediate nodes. The inference engine uses the conditional probability table (CPT), which expresses the algebraic relationship of observable evidence to underlying hypotheses. There is a CPT corresponding to each arc in the belief network. It is assumed that the hypothesis space is exhaustive and exclusive; that is, all possible viral agents are enumerated, and there is no overlap. This is part of the motivation for including the “New” and “Buffer” hypotheses.

A Bayes net segment, in this case a subtree, consists of a parent node enumerating the hypotheses A1, A2, A3, Other-A, B1, B2, New, Buffer and leaf nodes for each antibody, with a CPT on each arc. An alternate structure encodes the hypotheses Virus, Buffer at the root. An intermediate node encodes hypotheses Family-A, Family-B, New, and Buffer.

We simulated the response of an array to mixtures consisting of a known viral agent, a mix of known viral agents, an unknown viral agent from a known family, and an unknown viral agent.

VIII. Simulation Results: Single Viral Agent

We simulated the introduction of viral agent A1. Figure 12 gives the output of the Bayes approach (in this case, a Bayes posterior probability with the assumption of uniform prior probabilities, for simplicity). As expected, the response is strongest for A1, with a much weaker response for a nonspecific agent from the “A” family.

![Fig. 12. Bayes response to viral agent A1.](Image)

IX. Simulation Results: Mix of Viral Agents

We simulated the introduction of A2 and B1. The simulated output from the array exhibited variability due to noise in the response. Two representative outputs are shown in Figure 13. On the left, we observe an output in which A2 and B1 dominate all other outputs and are comparable to each other. This would be the nominal response in the absence of simulation noise. On the right, we have an output where B1 greatly dominates, with the response to A2 much lower and the response to a nonspecific agent from the “A” family lower still.

X. Simulation Results: Unknown Viral Agent from Family A

We next simulated the introduction of an unknown viral agent from family “A”. There is no specific antibody for this agent, but we expect a weak response to other antibodies from the same family. This response will be significantly weaker than the near-unity response expected from a specific binding, but higher than the near-zero response expected to antibodies for agents outside the family. Moreover, we expect a strong response to the cell surface detector. The result on the left in Figure 14 agrees with intuition, with the agent “Other-A” most likely, but some responses for other agents in the “A” family.
family as well as a response for “New”. However, as with the mixture case, other realizations yield different results. Just one alternative is shown in the right panel, where the dominant hypothesis is a new viral agent not from family “A”.

Fig. 14. Array response to unknown viral agent from family “A”.

XI. SIMULATION RESULTS: NEW VIRAL AGENT

The next result simulates the introduction of a new viral agent, from neither family “A” nor “B”. The expectation is a strong binding to the cell surface detector. Figure 15 reflects the expected result. This particular result is stable for different simulation trials.

XII. SUMMARY OF BAYES APPROACH

The preceding results mostly agree with intuition, but with some exceptions. The noise models underlying the situation are ad hoc, but we observe ambiguity in the case of competing bindings (the mixture of known viral agents in Figure 13) or nonspecific bindings (Figure 14).

It is essential to characterize the noise in the response from multiplexed arrays. This noise will be reduced as similarly modified nanowires are replicated in greater numbers. However, we should not assume the noise reduction that would be obtained from independent replicates because the wires may respond similarly for some underlying common mode effect (e.g., a process artifact for a batch of wires similarly modified).

We also require more experimental data to obtain better estimates of the strength of nonspecific bindings within a particular virus family. It may be that these are weaker than what we have assumed here on our zero-to-one scale. In that case, it may prove difficult to distinguish a new viral agent from a family for which we have some antibodies from a viral agent from a new family altogether.

XIII. HIDDEN SEMI-MARKOV MODEL

In an alternative approach, we create an underlying generative model of the virus detection process, modeling both the strength and duration of docking in the normalized detrended data. The probabilistic model that we have considered is the hidden semi-Markov model (HSMM) [4]. In the HSMM that we have used there are two latent states: one state corresponds to the virus docking to the nanowire, whereas the other state corresponds to the virus not docking to the wire. There is a probability of going from each hidden state to the other, and also a probability distribution for the length of staying at a particular hidden state. Figure 16 shows the graphical model and state-transition diagram of an HSMM.

The main difference between an HSMM [2] and a standard hidden Markov model (HMM) [5] is in the length distribution of staying at a particular hidden state. In an HMM this distribution is geometric and hence falls off exponentially with time. This may not be an appropriate model for virus docking, because typically viruses would dock to a nanowire for a particular length of time depending on the underlying biological process, and the observed binding time would be distributed probabilistically (due to noise factors) around this mean length of time. In an HSMM, an arbitrary probability distribution can be used for modeling the length for which the model stays at a particular hidden state. So, using an HSMM, we can have a more realistic probabilistic model corresponding to the time period for which a virus docks to a nanowire.

In our HSMM, the output of each state follows a multinomial distribution while the probability of staying in a particular state follows a Coxian distribution [4]. The multinomial
distribution is generalization of the binomial distribution and follows the multinomial theorem – the multinomial distribution is used in the observation model since we discretize the nanowire conductance data as an initial simple noise-filtering step. The Coxian distribution is a powerful mixture model-based duration model. It is a mixture of the sum of exponential distributions – we use this distribution for the length model since Coxian is a multimodal distribution, which makes it general enough to model dockings of different lengths by different viruses to a nanowire. Figure 17 shows the generative model of an M-phase Coxian distribution, where the duration of phase k can be expressed as the time to absorption in a Markov chain of M states when starting from state k. The duration modeling is an important component of generative modeling of virus docking – staying in the docking state for a short duration represents a noisy spike, while staying for too long may represent an abnormality (e.g., a broken wire); staying for a particular time duration in the docking process typically represents a proper docking event.

Fig. 17. Markov model representation of multiphase Coxian distribution [4].

\[P(\tau | \lambda) = \sum_{k=1}^{M} \lambda_k \exp(-\lambda_k \tau) \]

XIV. SIMULATION EXPERIMENTS

Following previous methodology, we first do median detrending of the data followed by data whitening. This is followed by the thresholded box-matched filtering algorithm explained earlier. The thresholded output from the filtering algorithm is used to generate the training labels for the HSMM. Using the labeled training data (which can be potentially noisy if the thresholding is not perfect), the HSMM parameters are learned. Finally, the learned HSMM is used to predict whether or not there has been a virus detection in a given unlabeled signal.

We have performed two experiments by injecting two kinds of noise in the data. In the first experiment, noise is injected in the training labels so that only the prominent docking events are labeled. The results of these experiments are plotted in Figures 18 and 19. In the second experiment, only the weak docking events are used to generate docking labels. The results of the experiments are plotted in Figures 20 and 21. In both these experiments, the learned model could recover the correct labels of all the docking events even though the training data was provided for a subset of the labels, demonstrating that the HSMM can learn effectively from limited and potentially noisy data. In the figures for each dataset in each experiment, there are multiple plots – from top to bottom they are:

1) The discretized data, binned after detrending and whitening the raw input data, given as input to the HSMM.
2) The output labels predicted by the HSMM (high corresponds to docking, low implies nondocking). As can be seen from the plots, the learned model is able to identify all the dockings correctly.
3) The raw data after median detrending and whitening.
4) The training labels given as input to the HSMM. This labeled training data is used to learn the parameters of the HSMM. As explained earlier, we intentionally gave incomplete labels to test the robustness of the HSMM. As can be seen from the HSMM output in Figure 19, the HSMM was able to recover the docking regions for which no training labels were given.
5) Output of boxcar filtering. We implemented FFT-based boxcar filtering with a 20/20 width. The training labels in Figure 21 were created by thresholding this signal.

The HSMM method has the following advantages:
• The HSMM can learn with a small amount of labeled data. As we see from the figures, we have provided incomplete labels as training data but our model gives the correct prediction for all docking sites for both datasets.

• The generative model gives a natural underlying process model of protein docking. We used a 2-phase Coxian distribution to model the duration of the virus binding to the nanowires. If required, we can use more number of phases to better model the underlying biological process of the virus docking to the nanowire.

On these datasets, the generative HSMM has comparable performance to the filtering and thresholding algorithm. On datasets where choosing a single threshold after boxcar filtering is difficult (e.g., multiple viruses docking to a nanowire), rich generative models like HSMM have a clear benefit – the HSMM can easily handle multiple dockings by extending the HSMM output model to a mixture of multinomials, instead of having a single multinomial.

XV. ASSESSMENT OF CROSS-CORRELATION OF NOISE PROCESSES ACROSS NANOWIRE ARRAY

To explore the issue of correlated noise across nanowires, we consider the data of Figure 10, reproduced here for convenience as Figure 22. Wires 1 and 2 are modified with the Cholera Toxin (CT) antibody, wire 3 is modified with the PSA antibody, and wires 4 and 5 are modified with ethanolamine and serve as controls.

There appear to be correlated noise events between nanowires in the array. If the common noise process could be extracted, this noise process could be removed from all nanowire inputs and increase detection performance. To see how closely these processes are correlated, the data in each nanowire is detrended using a moving median filter. Each nanowire signal is then low-pass filtered to estimate the signal-only portion of the signal. Subtracting the estimated signal from the data yields an estimate of the noise-only signal or background noise. For example, the result of estimating and removing the binding signature from NW1 is shown in Figure 23. This signal-removal operation is performed for each nanowire signal.
Then cross-correlations between the noise-only signals for selected nanowires are shown in Figure 24. There is a high correlation between nanowire pairs that are similarly treated. There is a peak in correlation between NW1 and NW2, which were both treated with CT antibodies. There is also a large correlation peak between the two control wires NW4 and NW5.

The correlations between differently treated nanowires are much lower, but inspection shows that weak correlation peaks appear at lags that correspond to the relative positions of spiky noise peaks. For instance, the lags between noise spikes in NW1 as compared to NW4 and NW4 are about 10 seconds. There is also a weak peak in the NW1 / NW3 cross-correlation at a lag of 1 second. This agrees with casual spot check of noise spike locations.

The negative-going correlation exhibited between NW2 (CT) and NW3 (PSA) indicates the different polarity of NW3 as opposed to NW2. A few noise spikes correspond to the peak correlation at 5 seconds lag, but not all spikes occur at the same lag. The correlation distribution seems to be dominated by the low-level background noise in this case.

This may indicate that the background noise processes have two components – a random noise component and one related to outside events such as injections, changes in sample flow, electrical interference, and so on. Similarly treated nanowires have highly correlated backgrounds. Differently treated nanowires have largely uncorrelated noise backgrounds, but show some correlation that corresponds to the lags in spiky noise.

The correlation between similarly treated nanowires suggests that noise background from these nanowires could be extracted, ensembled, and subtracted from the corresponding nanowires. In a naive experiment, the noise-only estimates from NW1 and NW2 were averaged with the time series offset by the peak lag (1 second – the peak lag was between 1 and 2 seconds). Subtracting this simple noise estimate from the detrended NW1 yields a “noise-removed” signal estimate. The averaged noise estimate, detrended NW1 signature, and “noise-removed” estimate are compared in Figure 25.

The variance of the detrended NW1 signal (including the binding signature) is approximately 237. The variance of the NW1 signal after subtracting the noise estimate is 230. Since the variance is dominated by the binding signal, this shows a noticeable reduction in noise. In this simple example, there is some signal capture in the noise estimate due to the filtering scheme used to remove signal. Also, the raw noise estimate is used as opposed to determining an optimum frequency range for noise estimation. This approach could be optimized with more nanowires contributing to the estimate and with more experience with data.

XVI. Future Work

We have only encountered a limited range of response from these arrays, and some phenomena are still not well understood (e.g., the trend of the data in Figure 5). This indicates the need for further experimentation, exploring massively replicated arrays, the robustness of response in such arrays, etc. especially from the point of view of understanding the noise processes in these systems. There appear to be a variety of sources that we observed hints from in the data. Designing a proper approach to the data whitening step will require a better understanding of all the interference sources — this is especially true if there is a requirement for fast response as well as a very low false alarm rate in practical applications.
ACKNOWLEDGMENT

The authors thank Hung Bui for his code, and Patolsky et al. for providing the data.

REFERENCES

[1] F. Patolsky, G. Zhen, O. Hayden, M. Lakadamyalia, S. Zhuang, and C. Lieber, "Electrical detection of single viruses," Proceedings of the National Academy of Sciences, vol. 101, no. 39, pp. 14017-14022, September 2004.

[2] K. Murphy, "Hidden semi-Markov models (HSMMs)," Unpublished manuscript, November 2002.

[3] J. Blackledge, Digital Signal Processing. Horwood Publishing, 2006.

[4] T. Duong, H. Bui, D. Phung, and S. Venkatesh, "Activity recognition and abnormality detection with the switching hidden semi-Markov model," in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR-2005), 2005.

[5] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.