THE GEOMETRY OF THE MODULI SPACE OF ODD SPIN CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The set of odd theta-characteristics on a general curve C of genus g is in bijection with the set $\theta(C)$ of theta hyperplanes $H \in (P^{g-1})^\vee$ everywhere tangent to the canonically embedded curve $C \to P^{g-1}$. Even though the geometry and the intricate combinatorics of $\theta(C)$ have been studied classically, see [Dol], [DK] for a modern account, it was only recently proved in [CS] that one can reconstruct a general curve $[C] \in M_g$ from the hyperplane configuration $\theta(C)$.

Odd theta-characteristics form a moduli space $\pi : S_g^- \to M_g$ which is an étale cover of degree $2g - 1$. The normalization of M_g in the function field of S_g^- gives rise to a finite covering $\pi : S_g^- \to M_g$. Furthermore, S_g^- has a modular meaning being isomorphic to the coarse moduli space of the Deligne-Mumford stack of odd stable spin curves, cf. [C], [CCC], [AJ]. The map π is branched along the boundary of M_g and one expects $K_{S_g^-}$ to enjoy better positivity properties than K_{M_g}.

The aim of this paper is to describe the birational geometry of S_g^- for all g. Our goals are (1) to understand the transition from rationality to maximal Kodaira dimension for S_g^- as g increases, and (2) to use the existence of Mukai models of M_g in order to construct explicit unirational parameterizations of S_g^-. Remarkably, we end up having no gaps in the classification of S_g^-. First, we show that in the range where the general curve $[C] \in M_g$ lies on a $K3$ surface, the existence of special theta pencils on $K3$ surfaces, provides an explicit uniruled parameterization of $S_g^-:

Theorem 0.1. The odd spin moduli space S_g^- is uniruled for $g \leq 11$.

When $g \leq 9$ or $g = 11$, a general spin curve $[C, \eta] \in S_g^-$ appears as a hyperplane section of a $K3$ surface $X \subset P^g$, such that if $d := \text{supp}(\eta)$ is the support of the theta-characteristic, then the linear span $\langle d \rangle \subset P^g$ is a codimension 2 linear subspace. A rational curve $P \subset S_g^-$ is induced by the pencil of hyperplanes $PH^0(X, I_d/X(C))$ containing $\langle d \rangle$. We show in Section 3 that $P \subset S_g^-$ is a covering rational curve, satisfying $P \cdot K_{S_g^-} = 2g - 24 < 0.$

Thus $P \cdot K_{S_g^-} < 0$ precisely when $g \leq 11$, which highlights the fact that the nature of S_g^- is expected to change exactly when $g \geq 12$. This is something we shall achieve in the course of proving Theorem 0.3.

The previous argument no longer works for S_{10}, when the condition that a curve $[C] \in M_{10}$ lie on a $K3$ surface is divisorial [FP]. This case is in some sense a specialization of the genus 11 case. We use that a general 1-nodal irreducible curve $[C] \in \Delta_0 \subset \overline{M}_{11}$ of arithmetic genus 11, lies on a $K3$ surface $X \subset P^{11}$. By a degeneration argument,
we show that this construction can be also carried out in such a way, that if \(\nu : C' \to C \)
denotes the normalization of \(C \), then the points \(x, y \in C' \) with \(\nu(x) = \nu(y) \) (that is, mapping to the node of \(C \)), lie in the support of one of the odd-theta characteristics of \([C'] \in M_{10} \). Ultimately, this produces a rational curve \(P \subset S_{10}^− \) through a general point, which shows that \(S_{10}^− \) is uniruled as well.

In the range in which a Mukai model of \(\overline{M}_g \) exists, our results are more precise:

Theorem 0.2. \(S_g^− \) is unirational for \(g \leq 8 \).

The proof relies on the existence, in this range, of Mukai varieties \(V_g \subset \mathbb{P}^{n_g + g - 2} \), where \(n_g = \dim(V_g) \), which have the property that general 1-dimensional linear sections of \(V_g \) are canonical curves \([C] \in M_g \) with general moduli. We fix an integer \(1 \leq \delta \leq g - 1 \) and consider the correspondence

\[\mathcal{P}_{g,\delta}^o := \{(C, \Gamma, Z) : Z \subset C \cap \Gamma \subset V_g, |\text{sing}(\Gamma)| = \delta, \text{sing}(\Gamma) \subset Z, \} \]

where \(Z \subset V_g \) is a 0-dimensional subscheme of \(V_g \) of length \(2g - 2 \), supported at \(g - 1 \) points and such that \(\dim(Z) = g - 2 \) (see Section 4 for a precise definition), \(\Gamma \subset V_g \) is an irreducible \(\delta \)-nodal curve section of \(V_g \) whose nodes are among the points in the support of \(Z \), and \(C \subset V_g \) is an arbitrary curve linear section of \(V_g \) containing \(Z \) as a subscheme. Thus if \(C \) is smooth, then \(Z \subset C \) is a divisor of even degree at each point in its support, and \(\mathcal{O}_C(Z/2) \) can be viewed as a theta-characteristic. The variety \(\mathcal{P}_{g,\delta}^o \) comes equipped with two projections

\[S_g^− \leftarrow^\alpha \mathcal{P}_{g,\delta}^o \xrightarrow{\beta} B_g^−, \]

where \(B_g^− \subset S_g^− \) denotes the moduli space of irreducible \(\delta \)-nodal curves of arithmetic genus \(g \) together with an odd theta-characteristic on the normalization. It is easy to see that \(\mathcal{P}_{g,\delta}^o \) is birational to a projective bundle over the irreducible variety \(B_g^− \). Thus the unirationality of \(S_g^− \) follows once we prove that (i) \(\alpha \) is dominant, and (ii) \(B_g^− \), itself is unirational. We carry out this program when \(g \leq 8 \). In the process of proving Theorem 0.2 we establish some facts of independent interest concerning the Mukai models

\[\mathbb{M}_g := G(g, n_g + g - 1)^{ss} // \text{Aut}(V_g). \]

These are birational models of \(\overline{M}_g \) having \(\text{Pic}(\mathbb{M}_g) = \mathbb{Z} \) and appearing as GIT quotients of Grassmannians; they can be viewed as log-minimal models of \(\overline{M}_g \) emerging from the constructions carried out in [M1], [M2], [M3].

Theorem 0.1 is sharp and the remaining moduli spaces \(S_g^− \) are of general type:

Theorem 0.3. The space \(S_g^− \) is a variety of general type for \(g > 11 \).

The border case of \(S_{12}^− \) is particularly challenging and takes up the entire Section 6. We remark that in the range \(11 < g < 17 \), of the two moduli spaces \(S_g^− \) and \(\overline{M}_g \), one is of general type whereas the other has negative Kodaira dimension. More strikingly, Theorems 0.3 and 0.1 coupled with results from [FV], show that for \(9 \leq g \leq 11 \), the space \(S_g^− \) is uniruled while \(S_g^+ \) is of general type! Finally, we note that \(S_8^− \) is unirational whereas \(S_8^+ \) is of Calabi-Yau type [FV].
We describe the main steps in the proof of Theorem 0.4. First, we use that for all \(g \geq 4 \) and \(l \geq 0 \), if \(\epsilon : \hat{S}_g \to \hat{S}_g^+ \) denotes a resolution of singularities, then there is an induced isomorphism, see [Lud]

\[
\epsilon^* : H^0(\hat{S}_g^+,-K_{\hat{S}_g}^l) \simeq H^0(\hat{S}_g,-K_{\hat{S}_g}^l).
\]

Thus to conclude that \(\hat{S}_g^+ \) is of general type, it suffices to exhibit an effective divisor \(D \) on \(\hat{S}_g^+ \) such that for appropriately chosen rational constants \(\alpha, \beta > 0 \), a relation of the type \(K_{\hat{S}_g^+} \equiv \alpha \lambda + \beta D + E \in \text{Pic}(\hat{S}_g^+) \) holds, where \(\lambda \in \text{Pic}(\hat{S}_g^+) \) is the pull-back to \(\hat{S}_g^+ \) of the Hodge class, and \(E \) is an effective \(\mathbb{Q} \)-class which is typically a combination of boundary divisors. It is essential to pick \(D \) so that (1) its class can be explicitly computed, that is, points in \(D \) have good geometric characterization, and (2) \([D] \in \text{Pic}(\hat{S}_g^+) \) is in some way an extremal point of the effective cone of divisors so that the coefficients \(\alpha, \beta \) stand a chance of being positive. In the case of \(\hat{S}_g^+ \), the role of \(D \) is played by the divisor \(\mathcal{O}_\text{null} \) of vanishing theta-nulls, see [F3]. In the case of \(\hat{S}_g^+ \) we compute the class of degenerate theta-characteristics, that is, curves carrying a non-reduced odd theta-characteristic.

Theorem 0.4. We fix \(g \geq 3 \). The locus consisting of odd spin curves

\[\mathcal{Z}_g := \{ [C, \eta] \in \mathcal{S}_g^- : \eta = \mathcal{O}_C(2x_1 + x_2 + \cdots + x_{g-2}) \text{ where } x_i \in C \text{ for } i = 1, \ldots, g-2 \} \]

is a divisor on \(\mathcal{S}_g^- \). The class of its compactification inside \(\mathcal{S}_g^- \) equals

\[\bar{\mathcal{Z}}_g \equiv (g + 8) \lambda - \frac{g + 2}{4} \alpha_0 - 2 \beta_0 - \sum_{i=1}^{[g/2]} 2(g-i) \alpha_i - \sum_{i=1}^{[g/2]} 2i \beta_i \in \text{Pic}(\mathcal{S}_g^-), \]

where \(\lambda, \alpha_0, \beta_0, \ldots, \alpha_{[g/2]}, \beta_{[g/2]} \) are the standard generators of \(\text{Pic}(\mathcal{S}_g^-) \).

For low genus, \(\mathcal{Z}_g \) specializes to well-known geometric loci. For instance \(\bar{\mathcal{Z}}_3 \) is the divisor of hyperflexes on plane quartics. In particular, Theorem 0.4 yields the formula

\[\pi_*([\bar{\mathcal{Z}}_3]) = 308 \lambda - 32 \delta_0 - 76 \delta_1 \in \text{Pic}(\mathcal{M}_3), \]

for the class of quartic curves having a hyperflex. This matches [Cu] formula (5.5). Moreover, one has the following relation in \(\text{Pic}(\mathcal{M}_3) \)

\[\left\{ [C] \in \mathcal{M}_3 : \exists x \in C \text{ with } 4x \equiv K_C \right\} \equiv 8 \cdot \mathcal{M}_{3,2}^l + \pi_*([\bar{\mathcal{Z}}_3]), \]

where \(\mathcal{M}_{3,2}^l \equiv 9 \lambda - \delta_0 - 3 \delta_1 \) is the hyperelliptic class and the multiplicity 8 accounts for the number of hyperelliptic Weierstrass points.

We briefly explain how Theorem 0.4 implies that \(\hat{S}_g^+ \) is of general type for \(g \geq 11 \). We choose an effective divisor \(D \in \text{Eff}(\mathcal{M}_g) \) of small slope; for composite \(g + 1 \) one can take \(D = \mathcal{M}_{g,d}^r \) the closure of the Brill-Noether divisor of curves with a \(g_d^r \) where \(\rho(g, r, d) = -1 \); there exists a constant \(c_{g,d,r} > 0 \) such that [EH2],

\[\mathcal{M}_{g,d}^r \equiv c_{g,d,r} \left((g+3) \lambda - \frac{g+1}{6} \delta_0 - \sum_{i=1}^{[g/2]} i(g-i) \delta_i \right) \in \text{Pic}(\mathcal{M}_g). \]
We form the linear combination of divisors on \mathfrak{S}_g

$$\frac{2}{g-2} \mathcal{S}_g + \frac{3(3g-10)}{c_{g,d,r}(g-2)(g+1)} \pi^*(\mathcal{M}_{g,d}) = \frac{11g + 37}{g+1} \lambda - 2\alpha_0 - 3\beta_0 - \sum_{i=1}^{[g/2]} (a_i \cdot \alpha_i + b_i \cdot \beta_i),$$

where $a_i, b_i \geq 2$ for $i \neq 1$ and $a_1, b_1 > 3$ are explicitly known rational constants. The canonical class of \mathfrak{S}_g is given by the Riemann-Hurwitz formula

$$K_{\mathfrak{S}_g} \equiv \pi^*(K_{\mathcal{M}_g}) + \beta_0 \equiv 13\lambda - 2\alpha_0 - 3\beta_0 - 2\sum_{i=1}^{[g/2]} (\alpha_i + \beta_i) - (\alpha_1 + \beta_1),$$

and by comparison, it follows that for $g > 12$ one can find a constant $\mu_g \in \mathbb{Q}_{>0}$ such that

$$K_{\mathfrak{S}_g} - \mu_g \cdot \lambda \in \mathbb{Q}_{\geq 0}(12, \alpha_1, \beta_1, \ldots, \alpha_{g/2}, \beta_{g/2}),$$

which shows that $K_{\mathfrak{S}_g}$ is big and thus proves Theorem 0.3.

For $g = 12$, there is no Brill-Noether divisor, and the reasoning above shows that in order to conclude that \mathfrak{S}_{12} is of general type, one needs an effective divisor \mathfrak{D}_{12} of slope $s(\mathfrak{D}_{12}) = 6 + 12/13$, that is, a counterexample to the Slope Conjecture. We define

$$\mathfrak{D}_{12} := \{ [C] \in \mathcal{M}_{12} : \exists L \in W_{14}(C) \text{ with } \text{Sym}^2 H^0(C, L) \xrightarrow{\mu_0(L)} H^0(C, L^\otimes 2) \text{ not injective} \},$$

that is, points in \mathfrak{D}_{12} correspond to curves that admit an embedding $C \subset \mathbb{P}^4$ with $\deg(C) = 14$, such that $H^0(\mathbb{P}^4, \mathcal{I}_C/\mathcal{I}^4(2)) \neq 0$. The computation of the class of $\mathfrak{D}_{12} \subset \mathcal{M}_{12}$ is carried out in Section 6 and it turns out that $s(\mathfrak{D}_{12}) = \frac{445}{442} < 6 + \frac{12}{13}$. In particular \mathfrak{D}_{12} violates the Slope Conjecture on \mathcal{M}_{12}, and as such, it contains the locus $\mathcal{K}_{12} := \{ [C] \in \mathcal{M}_{12} : C \text{ lies on a K3 surface} \}$.

1. FAMILIES OF STABLE SPIN CURVES

We briefly review some relevant facts about the moduli space \mathfrak{S}_g that will be used throughout the paper, see also [C], [F3], [Lud] for details. As a matter of notation, we follow the convention set in [FL]; if \mathcal{M} is a Deligne-Mumford stack, then we denote by \mathcal{M} its associated coarse moduli space.

Following [C], a spin curve of genus g consists of a triple (X, η, β), where X is a genus g quasi-stable curve, $\eta \in \text{Pic}^{g-1}(X)$ is a line bundle of degree $g - 1$ such that $\eta_E = \mathcal{O}_E(1)$ for every exceptional component $E \subset X$, and $\beta : \eta^{\otimes 2} \to \omega_X$ is a sheaf homomorphism which is generically non-zero along each non-exceptional component of X.

It follows from the definition that if (X, η, β) is a spin curve with exceptional components E_1, \ldots, E_r and $\{ p_i, q_i \} = E_i \cap X - E_i$ for $i = 1, \ldots, r$, then $\beta_{| E_i } = 0$. Moreover, if $\tilde{X} := X - \bigcup_{i=1}^r E_i$ (viewed as a subcurve of X), then we have an isomorphism of sheaves $\eta_{\tilde{X}}^{\otimes 2} \simeq \omega_{\tilde{X}}$.

We denote by \mathfrak{S}_g the non-singular Deligne-Mumford stack of spin curves of genus g, which obviously splits into two connected components \mathfrak{S}_g^+ and \mathfrak{S}_g^- of relative degree $2g-1(2g+1)$ and $2g-1(2g-1)$ respectively. It is proved in [C] that the coarse moduli space of \mathfrak{S}_g is isomorphic to the normalization of \mathcal{M}_g in the function field of S_g. There
is a proper morphism $\pi : \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ given by $\pi([X, \eta, \beta]) := [\text{st}(X)]$, where $\text{st}(X)$ denotes the stable model of the nodal curve X.

1.1. Spin curves of compact type.
We recall the description of the pull-back divisors $\pi^* (\Delta_i)$. We choose a spin curve $[X, \eta, \beta] \in \pi^{-1} ([C \cup_y D])$ where $[C, y] \in \mathcal{M}_{g-1,1}$ and $[D, y] \in \mathcal{M}_{g-1,1}$. Then necessarily $X := C \cup_{y_1} E \cup_{y_2} D$, where E is an exceptional component such that $C \cap E = \{y_1\}$ and $D \cap E = \{y_2\}$. Moreover $\eta = (\eta_C, \eta_D, \eta_E = \mathcal{O}_E(1)) \in \text{Pic}^{g-1}(X)$, and since $\beta_E = 0$, it follows that $\eta_C^{\otimes 2} = K_C, \eta_D^{\otimes 2} = K_D$, that is, η_C and η_D are "honest" theta-characteristics on C and D respectively. The condition $h^0(X, \eta) \equiv 1 \text{ mod } 2$ implies that η_C and η_D must have opposite parities. We denote by $A_i \subset \overline{\mathcal{S}}_g$ the closure in $\overline{\mathcal{S}}_g$ of the locus corresponding to pairs $([C, \eta_C, y], [D, \eta_D, y]) \in S_{i,1}^{-} \times S_{g-i,1}^{+}$, and by $B_i \subset \overline{\mathcal{S}}_g$ the closure in $\overline{\mathcal{S}}_g$ of the locus corresponding to pairs $([C, \eta_C, y], [D, \eta_D, y]) \in S_{i,1}^{+} \times S_{g-i,1}^{-}$.

One has the relation $\pi^*(\Delta_i) = A_i + B_i$ and clearly $\deg(A_i/\Delta_i) = 2g-2(2^i - 1)(2^{g-i} + 1)$ and $\deg(B_i/\Delta_i) = 2^{g-2}(2^i + 1)(2^{g-i} - 1)$. One denotes $\alpha_i := [A_i], \beta_i := [B_i] \in \text{Pic}(\overline{\mathcal{S}}_g)$.

1.2. Spin curves with an irreducible stable model.
In order to describe $\pi^*(\Delta_0)$ we pick a point $[X, \eta, \beta]$ such that $\text{st}(X) = C_{yq} := C/y \sim q$, where $[C, y, q] \in \mathcal{M}_{g-1,2}$ is a general point of Δ_0. Unlike the case of curves of compact type, here there are two possibilities depending on whether X possesses an exceptional component or not. If $X = C_{yq}$ and $\eta_C := \nu^*(\eta)$ where $\nu : C \to X$ denotes the normalization map, then $\eta_C^{\otimes 2} = K_C(y + q)$. For each choice of $\eta_C \in \text{Pic}^{g-1}(C)$ as above, there is precisely one choice of gluing the fibres $\eta_C(y)$ and $\eta_C(q)$ such that $h^0(X, \eta) \equiv 1 \text{ mod } 2$. We denote by A_0 the closure in $\overline{\mathcal{S}}_g$ of the locus of those points $[C_{yq}, \eta_C \in \sqrt{K_C(y + q)}]$ with $\eta_C(y)$ and $\eta_C(q)$ glued as above. One has that $\deg(A_0/\Delta_0) = 2^{2g-2}$.

If $X = C \cup_{(y, q)} E$ where E is an exceptional component, then since $\beta|_E = 0$ it follows that $\beta_C \in H^0(C, \omega_X|_C \otimes \eta_C^{\otimes 2})$ must vanish at both y and q and then for degree reasons $\eta_C := \eta \otimes \mathcal{O}_C$ is a theta-characteristic on C. The condition $H^0(X, \omega) \cong H^0(C, \omega_C) \equiv 1 \text{ mod } 2$ implies that $[C, \eta_C] \in S_{g-1}^{-}$. In an étale neighborhood of a point $[X, \eta, \beta]$, the covering π is given by

$$(\tau_1, \tau_2, \ldots, \tau_{3g-3}) \mapsto (\tau_1^2, \tau_2, \ldots, \tau_{3g-3}),$$

where one identifies \mathbb{C}^{3g-3} with the versal deformation space of (X, η, β) and the hyperplane $(\tau_1 = 0) \subset \mathbb{C}^{3g-3}$ denotes the locus of spin curves where the exceptional component E persists. This discussion shows that π is simply branched over Δ_0 and we denote the ramification divisor by $B_0 \subset \overline{\mathcal{S}}_g$, that is, the closure of the locus of spin curves $[C \cup_{(y, q)} E, (C, \eta_C) \in S_{g-1}^{-}, \eta_E = \mathcal{O}_E(1)]$. If $\alpha_0 = [A_0] \in \text{Pic}(\overline{\mathcal{S}}_g)$ and $\beta_0 = [B_0] \in \text{Pic}(\overline{\mathcal{S}}_g)$, we then have the relation

$$\pi^*(\delta_0) = \alpha_0 + 2\beta_0. \quad (1)$$

We define several test curves in the boundary of $\overline{\mathcal{S}}_g$ which will be later used to compute divisor classes on the moduli space.
1.3. The family F_i. We fix $1 \leq i \leq [g/2]$ and construct a covering family for the boundary divisor A_i. We fix general curves $[C] \in \mathcal{M}_i$ and $[D, q] \in \mathcal{M}_{g-i,1}$ as well as an odd theta-characteristic η_C^+ on C and an even theta-characteristic η_D^+ on D. If $E \cong \mathbb{P}^1$ is a fixed exceptional component, we define the family of spin curves

$$F_i := \{ [C \cup_y E \cup_q D], \eta : \eta_C^+, \eta_E = \mathcal{O}_E(1), \eta_D^+ = \mathcal{O}_D, E \cap C = \{y\}, E \cap D = \{q\} \}_{y \in C}.$$

One has that $F_i \cdot \beta_i = 0$ and then $F_i \cdot \alpha_i = -2i + 2$; furthermore F_i has intersection number zero with the remaining generators of $\text{Pic}(\Sigma_g^+)$.

1.4. The family G_i. As above, we fix $1 \leq i \leq [g/2]$ and curves $[C] \in \mathcal{M}_i, [D, q] \in \mathcal{M}_{g-i,1}$. This time we choose an even theta-characteristic η_C^+ on C and an odd theta-characteristic η_D^+ on D. The following family covers the divisor B_i:

$$G_i := \{ [C \cup_y E \cup_q D], \eta : \eta_C^+, \eta_E = \mathcal{O}_E(1), \eta_D^+ = \mathcal{O}_D, E \cap C = \{y\}, E \cap D = \{q\} \}_{y \in C}.$$

Clearly $G_i \cdot \alpha_i = 0, G_i \cdot \beta_i = 2 - 2i$ and $G_i \cdot \lambda = G_i \cdot \alpha_j = G_i \cdot \beta_j = 0$ for $j \neq i$.

1.5. Two elliptic pencils. The boundary divisor $\Delta_1 \subset \overline{\mathcal{M}}_g$ is covered by a standard elliptic pencil R obtained by attaching to a fixed general pointed curve $[C, y] \in \mathcal{M}_{g-1,1}$ a pencil of plane cubic curves $\{E_\lambda = f^{-1}(\lambda)\}_{\lambda \in \mathbb{P}^1}$, where $f : \text{Bl}_0(\mathbb{P}^2) \rightarrow \mathbb{P}^1$. The points of attachment on the elliptic pencil are given by a section $\sigma : \mathbb{P}^1 \rightarrow \text{Bl}_0(\mathbb{P}^2)$ given by one of the base points of the pencil of cubics. We lift this pencil in two possible ways to the space Σ_g^+, depending on the parity of the theta-characteristic on the varying elliptic tail. We fix an even theta-characteristic $\eta_C^+ \in \text{Pic}^{g-2}(C)$ and $E \cong \mathbb{P}^1$ will again denote an exceptional component. We define the family

$$F_0 := \{ [C \cup_y E \cup \sigma(\lambda) f^{-1}(\lambda), \eta_C^+, \eta_E = \mathcal{O}_E(1), \eta_f^{-1}(\lambda) = \eta_f^{-1}(\lambda) : \lambda \in \mathbb{P}^1 \} \subset \Sigma_g^+.$$

Since $F_0 \cap B_1 = \emptyset$, we find that $F_0 \cdot \alpha_1 = \pi_s(F_0) \cdot \delta_1 = -1$. Similarly, $F_0 \cdot \lambda = \pi_s(F_0) \cdot \lambda = 1$ and obviously $F_0 \cdot \alpha_i = F_0 \cdot \beta_i = 0$ for $2 \leq i \leq [g/2]$. For each of the 12 points $\lambda_\infty \in \mathbb{P}^1$ corresponding to singular fibres of R, the associated $\eta_{\lambda_\infty} \in \text{Pic}^{g-1}(C \cup E \cup f^{-1}(\lambda_\infty))$ are actual line bundles on $C \cup E \cup f^{-1}(\lambda_\infty)$, that is, we do not have to blow-up the extra node. Thus we obtain that $F_0 \cdot \beta_0 = 0$ and then $F_0 \cdot \alpha_0 = \pi_s(F_0) \cdot \delta_0 = 12$.

A second lift of the elliptic pencil to Σ_g^+ is obtained by choosing an odd theta-characteristic $\eta_C^- \in \text{Pic}^{g-2}(C)$ whereas on E_λ one takes each of the 3 possible even theta-characteristics, that is,

$$G_0 := \{ [C \cup_y E \cup \sigma(\lambda) f^{-1}(\lambda), \eta_C^-, \eta_E = \mathcal{O}_E(1), \eta_f^{-1}(\lambda) = \eta_f^{-1}(\lambda) : \lambda \in \mathbb{P}^1 \} \subset \Sigma_g^+,$$

where $\gamma : \Sigma_{1,1}^+ \rightarrow \overline{\mathcal{M}}_{1,1}$ is the projection of degree 3. Since $\pi_s(G_0) = 3R \subset \Delta_1$, we obtain that $G_0 \cdot \lambda = 3$. Obviously $G_0 \cdot \alpha_1 = 0$, hence $G_0 \cdot \beta_1 = \pi_s(G_0) \cdot \delta_1 = -3$. The map $\gamma : \Sigma_{1,1}^+ \rightarrow \overline{\mathcal{M}}_{1,1}$ is simply ramified over the point corresponding to j-invariant ∞. Hence, $G_0 \cdot \alpha_0 = 12$ and $G_0 \cdot \beta_0 = 12$.

1.6. A covering family in B_0. We start with a general pointed spin curve $[C, q, \eta_C^-] \in \Sigma_{g-1,1}^-$ and as usual $E \cong \mathbb{P}^1$ denotes an exceptional component. We construct a family of spin curves $H_0 \subset B_0$ with general member

$$[C \cup_{\{y, q\}} E, \eta_C = \eta_C^-, \eta_E = \mathcal{O}_E(1)] \subset \overline{\Sigma}_g^-.$$
consider the spin curve t

Theorem 2.1. For a general theta-characteristic Θ of genus g, denote by $G. Scorza \text{[Sc]}$ to provide a birational isomorphism between M_{3g} and S_g^+ (see also [DK]), and recently in [TZ] where several conditional statements of Scorza’s have been rigourously established.

For a fixed theta-characteristic $[C, \eta] \in S_g^+ - \Theta_{null}$, we define the curve

$$T_\eta := \{(x, y) \in C \times C : H^0(C, \eta \otimes \mathcal{O}_C(x - y)) \neq 0\}.$$

By Riemann-Roch, it follows that T_η is a symmetric correspondence which misses the diagonal $\Delta \subset C \times C$. The curve T_η has a natural fixed point free involution and we denote by $f : T_\eta \rightarrow T_\eta$ the associated étale double covering. Under the assumption that T_η is a reduced curve, its class is computed in [DK] Proposition 7.1.5:

$$T_\eta \equiv (g - 1)F_1 + (g - 1)F_2 + \Delta.$$

Theorem 2.1. For a general theta-characteristic $[C, \eta] \in S_g^+$, the Scorza curve T_η is a smooth curve of genus $g(T_\eta) = 3g(g - 1) + 1$.

Proof. It is straightforward to show that a point $(x, y) \in T_\eta$ is singular if and only if

$$H^0(C, \eta \otimes \mathcal{O}_C(x - 2y)) \neq 0 \quad \text{and} \quad H^0(C, \eta \otimes \mathcal{O}_C(y - 2x)) \neq 0.$$

By induction on g, we show that for a general even spin curve such a pair (x, y) cannot exist. We assume the result holds for a general $[C, \eta_C] \in S_{g-1}^+$. We fix a general point $q \in C$, an elliptic curve D together with $\eta_D \in \text{Pic}^0(D) - \{O_D\}$ with $\eta_D^{\otimes 2} = O_D$ and consider the spin curve $t := [C \cup E \cup D, \eta_C = \eta_D, \eta_E = O_E(1), \eta_{\delta_0} = \eta_D] \in S_g^+$, obtained from $C \cup_q D$ by inserting an exceptional component E. Since the exceptional component plays no further role in the proof, we are going to suppress it.

We assume by contradiction that $t \in S_g^+$ lies in the closure of the locus of spin curves with singular Scorza curve. Then there exists a nodal curve $C \cup_q D'$ semistably equivalent to $C \cup_q D$ obtained by inserting a possibly empty chain on \mathbb{P}^1’s at the node q (therefore, $p_a(D') = 1$ and we may regard D as a subcurve of D'), as well as smooth points $x, y \in C \cup D'$ together with two limit linear series $\sigma = \{\sigma_C, \sigma_{D'}\}$ and $\tau = \{\tau_C, \tau_{D'}\}$ of type g^0_{g-2} on $C \cup D'$ such that the underlying line bundles corresponding to σ (resp. τ) are uniquely determined twists at the nodes of the line bundle $\eta \otimes \mathcal{O}_{C \cup D'}(x - 2y)$ (resp. $\eta \otimes \mathcal{O}_{C \cup D'}(y - 2x)$). The precise twists are determined by the limit linear series
condition that each aspect of a limit η_0 have degree $g - 2$. We distinguish three cases depending on which components of $C \cup D'$ the points x and y specialize.

(i) $x, y \in C$. Then $\sigma_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(x - 2y + q)), \tau_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(y - 2x + q))$, while $\sigma_D, \tau_D \in H^0(D, \eta_D \otimes \mathcal{O}_D((g - 2q)))$. Denoting by $\{|q'\} \in D \cap (C \cup D') - D$ the point where D meets the rest of the curve, one has the compatibility conditions

$\text{ord}_q(\sigma_C) + \text{ord}_q(\tau_D) \geq g - 2 \quad \text{and} \quad \text{ord}_q(\tau_C) + \text{ord}_q(\tau_D) \geq g - 2$,

which leads to $\text{ord}_q(\sigma_C) \geq 1$ and $\text{ord}_q(\tau_C) \geq 1$, that is, we have found two points $x, y \in C$ such that $H^0(C, \eta_C(x - 2y)) \neq 0$ and $H^0(C, \eta_C(y - 2x)) \neq 0$, which contradicts the inductive assumption on C.

(ii) $x, y \in D'$. This case does not appear if we choose η_C such that $H^0(C, \eta_C) = 0$. Indeed, for degree reason, both non-zero sections σ_C, τ_C must lie in the space $H^0(C, \eta_C)$.

(iii) $x \in C, y \in D'$. For simplicity, we assume first that $y \in D$. We find that

$\sigma_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(x - q)), \sigma_D \in H^0(D, \eta_D \otimes \mathcal{O}_D(g \cdot q' - 2y))$ and

$\tau_C \in H^0(C, \eta_C \otimes \mathcal{O}_C(2q - 2x)), \tau_D \in H^0(D, \eta_D \otimes \mathcal{O}_C(y + (g - 3) \cdot q'))$.

We claim that $\text{ord}_q(\sigma_C) = \text{ord}_q(\tau_C) = 0$ which can be achieved by a generic choice of $q \in C$. Then $\text{ord}_q(\sigma_D) \geq g - 2$, which implies that $\eta_D = \mathcal{O}_D(2y - 2q)$. Similarly, $\text{ord}_q(\tau_D) \geq g - 2$ which yields that $\eta_D = \mathcal{O}_D(q - y)$, that is, $\eta_D \otimes \mathcal{O}_D$. Since η_D was assumed to be a non-trivial point of order 2 this leads to a contradiction. Finally, the case $y \in D' - D$, that is, when y lies on an exceptional subcurve $E' \subset D'$ is dealt with similarly. Since $\text{ord}_q(\sigma_C) = \text{ord}_q(\tau_C) = 0$, by compatibility, after passing through the component E', one obtains that $\text{ord}_q(\sigma_D) \geq g - 2$. Since $\sigma_D \in H^0(D, \eta_D \otimes \mathcal{O}_D((g - 2q'))) and \eta_D \neq \mathcal{O}_D, we obtain a contradiction.

[\square]

3. Theta pencils on K3 surfaces.

In this section we prove Theorem 0.1. As usual, we denote by \mathcal{F}_g the moduli space of polarized $K3$ surfaces $[X, H]$, where X is a K3 surface and $H \in \text{Pic}(X)$ is a (primitive) polarization of degree $H^2 = 2g - 2$. For integers $0 \leq \delta \leq g$, we introduce the universal Severi variety of pairs

$V_{g, \delta} := \{([X, H], C) : [X, H] \in \mathcal{F}_g and C \in |\mathcal{O}_X(H)| is an integral $\delta - \text{nodal curve}\}.$

If $\sigma : V_{g, \delta} \to \mathcal{F}_g$ is the obvious projection, we set $V_{g, \delta}(|H|) := \sigma^{-1}([X, H])$. It is known that every irreducible component of $V_{g, \delta}$ has dimension $19 + g - \delta$ and maps dominantly onto \mathcal{F}_g. It is in general not known whether $V_{g, \delta}$ is irreducible, see [De] for interesting work in this direction.

For a point $[X, H] \in \mathcal{F}_g$, we consider a pencil of curves $P \subset |H|$, and denote by Z the base locus of P. We assume that a general member $C \in P$ is a nodal integral curve. It follows that $C - Z$ is smooth and that $S := \text{sing}(C)$ is a, possibly empty, subset of Z. Let $\iota : X' := \text{Bl}_S(X) \to X$ be the blow-up of X along the locus S of nodes, and denote by E the exceptional divisor of ι. Let

$P' \subset |\iota^*H \otimes \mathcal{O}_{X'}(-2E)|$

be the strict transform of P by ι, and Z' its base locus. Since a general member $C \in P$ is nodal precisely along S, a general curve $C' \in P'$ is smooth. We view $h' := Z' + E \cdot C'$ as a divisor on the smooth curve C'. By the adjunction formula, $h' \in |\omega_{C'}|$.

Theorem 3.4. We say that P is a theta pencil, if h' has even multiplicity at each of its points, that is, $\mathcal{O}_{C'}(\frac{1}{2}h')$ is an odd theta-characteristic for every smooth curve $C' \in P'$.

The definition implies that the intersection multiplicity of two curves in P is even at each point $p \in \text{supp}(Z)$. For every pair $[X, H] \in \mathcal{F}_g$ we have that:

Proposition 3.2. Every smooth curve $C \in |H|$ belongs to a theta pencil.

Proof. Let $d \in C_{g-1}$ be the support of a theta-characteristic on C such that $h^0(C, \mathcal{O}_C(d)) = 1$. Then $\mathbb{P}H^0(X, I_d/X(H))$ is a theta pencil.

We can reverse the construction of a theta pencil, starting instead with the normalization of a nodal section of a $K3$ surface. Suppose

$$t := [C', x_1, y_1, \ldots, x_\delta, y_\delta, \eta] \in \mathcal{M}_{g-\delta, 2\delta} \times \mathcal{M}_{g-\delta} \mathcal{S}_{g-\delta}^-$$

is a 2δ-pointed curve together with an isolated odd theta-characteristic η, such that:

(i) $h^0(C', \eta \otimes \mathcal{O}_C(-\sum_{i=1}^\delta (x_i + y_i))) \geq 1$; we write $\text{supp}(\eta) = \sum_{i=1}^\delta (x_i + y_i) + d$, where $d \in C_{g-3\delta-1}$ is the residual divisor.

(ii) There exists a polarized $K3$ surface $[X, H] \in \mathcal{F}_g$ and a map $f : C' \to X$, such that $f(x_i) = f(y_i) = p_i$ for all $i = 1, \ldots, \delta$, $f_*(C') \in |H|$, and moreover $f : C' \to C$ is the normalization map of the δ-nodal curve $C := f(C')$.

If $\varepsilon: X' \to X$ is the blow-up of X at the points p_1, \ldots, p_δ and $E := \sum_{i=1}^\delta E_{p_i} \subset X'$ denotes the exceptional divisor, we may view $C' \subset X$, where $C' \equiv \varepsilon^*H - 2E$. Then

$$|I_d/X'(C')| = |I_{2d}/X'(C')| = |I_{2d+\sum_{i=1}^\delta (x_i+y_i)/X'}(C')|$$

is a theta pencil of δ-nodal curves on X.

If $\mathcal{K}_{g-\delta, \delta}^- \subset \mathcal{M}_{g-\delta, 2\delta} \times \mathcal{M}_{g-\delta} \mathcal{S}_{g-\delta}^-$ is the locus of elements $[C, (x_i, y_i)_{i=1,\ldots,\delta}, \eta]$ satisfying conditions (i) and (ii), the previous discussion proves the following:

Proposition 3.3. Every irreducible component of $\mathcal{K}_{g-\delta, \delta}^-$ is uniruled.

This implies the following consequence of Proposition 4.4 to be established in the next section:

Theorem 3.4. We set $g \leq 9$ and $0 \leq \delta \leq (g + 1)/3$. Then the variety $\mathcal{K}_{g-\delta, \delta}^-$ is non-empty, uniruled and dominates the spin moduli space $\mathcal{S}_{g-\delta}^-$.

Definition 3.5. We say that a theta pencil P is δ-nodal if $|S| = \delta$. We say that P is regular if $\text{supp}(Z)$ consists of $g - 1$ distinct points.

If P is a δ-nodal theta pencil, we have an induced map

$$m' : P' \cong \mathbb{P}^1 \to \overline{\mathcal{S}}_{g-\delta}^-,$$

obtained by sending a general $C' \in P'$ to the moduli point $[C', \mathcal{O}_{C'}(\frac{1}{2}h')] \in \overline{\mathcal{S}}_{g-\delta}^-$. We note in passing that a theta pencil also induces a map $m : P' \to \overline{\mathcal{S}}_g$ defined as follows. Consider the pencil $E + P'$ having fixed component E. The general member is a quasi-stable curve $D \in (E + P')$ of arithmetic genus g, with exceptional components $\{E_i\}_{i=1,\ldots,\delta}$ corresponding to the exceptional divisors of the blow-up $\varepsilon : X' \to X$. Then

$$m(C) := [C \cup \bigcup_{i=1}^\delta E_i, \eta_{E_i} = \mathcal{O}_{E_i}(1), \eta_{C'} = \mathcal{O}_{C'}(\frac{1}{2}h')] \in \overline{\mathcal{S}}_g.$$
These pencils will be used extensively in the proof of Theorem \ref{thm:main}.

Assume that \([X, H] \in F_g\) is a general point, in particular \(\text{Pic}(X) = \mathbb{Z} \cdot H\). Then every smooth curve \(C \in |H|\) is Brill-Noether general, \([La]\), which implies that \(h^0(C, \eta) = 1\), for every odd theta-characteristic \(\eta\) on \(C\). Theta pencils with smooth general member define a locally closed subset in the Grassmannian \(G(2, H^0(S, O_S(H)))\) of lines in \(|H|\). Let \(\Theta^-(X, H)\) be its Zariski closure in \(G(2, H^0(S, O_S(H)))\).

Proposition 3.6. \(\Theta^-(X, H)\) is pure of dimension \(g - 1\).

Proof. Let \(f : P^-(X, H) \to |H|\) be the projection map from the projectivized universal bundle over \(\Theta^-(X, H)\), and \(V_{g,0}(|H|) \subset |H|\) be the open locus of smooth curves. Under our assumptions \(f\) has finite fibres over \(V_{g,0}(|H|)\). Thus \(P^-(X, H)\) has pure dimension \(g\), and \(\Theta^-(X, H)\) has pure dimension \(g - 1\). \(\square\)

For a general (thus necessarily regular) theta pencil \(P \in \Theta^-(X, H)\), we study in more detail the map \(m : P' \to \overline{S}_g\). Let \(\Delta(X, H) \subset |H|\) be the discriminant locus. Since \([X, H] \in F_g\) is general, \(\Delta(X, H)\) is an integral hypersurface parameterizing the singular elements of \(|H|\). It is well-known that \(\text{deg} \Delta(X, H) = 6g + 18\).

Proposition 3.7. Let \(P \in \Theta^-(X, H)\) be a general theta pencil with base locus \(Z\). Then every singular curve \(C \subset P\) is nodal. Furthermore,

\[
P \cdot \Delta(X, H) = 2(a_1 + \cdots + a_{g-1}) + b_1 + \cdots + b_{4g+20},
\]

where \(a_i\) is the parameter point of a curve \(A_i \subset P\) having a point of \(Z\) as its only singularity, and \(b_j\) is the parameter point of a curve \(B_j \subset P\) such that \(\text{sing}(B_j) \subset X - Z\). Accordingly,

\[
P \cdot \alpha_0 = 4g + 20 \quad \text{and} \quad P \cdot \beta_0 = g - 1.
\]

Proof. We set \(\text{supp}(Z) = \{p_1, \ldots, p_{g-1}\}\). Since \(P\) is regular, for \(i = 1, \ldots, g - 1\), there exists a unique curve \(A_i \subset P\) singular at \(p_i\). Moreover, for degree reasons, \(p_i\) is the unique double point of \(A_i\). Each pencil \(T \subset |H|\) having \(p_i\) in its base locus is a tangent line to \(\Delta(X, H)\) at \(A_i\). Hence the intersection multiplicity \((P \cdot \Delta(X, H))_{A_i}\) is at least 2. It follows that the assertion to prove is open on any family of pairs \((P, [X, H])\) such that \(P \in \Theta^-(X, H)\). Since \(F_g\) is irreducible, it suffices to produce one polarized K3 surface \((X, H)\) satisfying this condition.

For this purpose, we use hyperelliptic polarized K3 surfaces \((X, H)\). Consider a rational normal scroll \(\mathbb{F} := \mathbb{F}_a \subset \mathbb{P}^g\), where \(a \in \{0, 1\}\) and \(g = 2n + 1 - a\). A general section \(R \in |O_{\mathbb{F}}(1)|\) is a rational normal curve of degree \(g - 1\). From the exact sequence

\[
0 \to O_{\mathbb{F}}(-2K_{\mathbb{F}} - R) \to O_{\mathbb{F}}(-2K_{\mathbb{F}}) \to O_R(-2K_{\mathbb{F}}) \to 0,
\]

one finds that there exist a smooth curve \(B \subset | - 2K_{\mathbb{F}}|\) and distinct points \(o_1, \ldots, o_{g-1} \in B\) such that the pencil \(Q \subset |O_{\mathbb{F}}(R)|\) of hyperplane sections through \(o_1, \ldots, o_{g-1}\) cuts out a pencil with simple ramification on \(B\).

Let \(\rho : X \to \mathbb{F}\) be the double covering of \(\mathbb{F}\) branched along \(B\). Then \(X\) is a K3 surface and \(|H| := |O_X(\rho^*R)|\) is a hyperelliptic linear system on \(X\) of genus \(g\). Then \(\rho^*(Q)\) is a regular theta pencil on \(X\) with the required properties. \(\square\)

Since theta pencils cover \(\overline{S}_g\) when \(g \leq 11\) and \(g \neq 10\), the following consequence of Proposition \ref{prop:main} is very suggestive concerning the variation of \(\kappa(\overline{S}_g)\) as \(g\) increases, in particular, in highlighting the significance of the case \(g = 12\).
Corollary 3.8. With the same notation as above, we have that $P \cdot K_{S^g} = 2g - 24$. In particular general theta pencils of genus $g < 12$ are K_{S^g}-negative.

Proof. Use that $(P \cdot \lambda)_{S^g} = (\pi_*(P) \cdot \lambda)_{\mathcal{M}_g} = g + 1$, $P \cdot \alpha_0 = 4g + 20$ and $P \cdot \beta_0 = g - 1$. \hfill \square

Proposition 3.9. The locally closed set of nodal theta pencils in $\Theta^-(X, H)$ is non empty. If P is a general nodal theta pencil, then a general curve $C \in P$ has one node as its only singularity.

Proof. We keep the notation from the previous proof and construct a smooth curve $C \in |−2K_F|$ and choose general points $o, o_1, \ldots, o_{g−3} \in B$, such that the pencil $Q \subset |O_F(R)|$ of the hyperplane sections through $o_1 + \cdots + o_{g−3} + 2o$ cuts out a pencil with simple ramification on B. Then $\rho^*(Q)$ is a nodal theta pencil with the required properties. \hfill \square

Theorem 3.10. $S_g^−$ is uniruled for $g \leq 11$.

Proof. By [M1-4], a general curve $|C| \in \mathcal{M}_g$ is embedded in a K3 surface X precisely when $g \leq 9$ or $g = 11$. By Proposition 3.7 C belongs to a theta pencil $P \subset |O_X(C)|$ (which moreover, is $K_{\mathcal{M}_g}$-negative). Thus the statement follows for $g \leq 9$ and $g = 11$.

To settle the case of S^g_{10}, we show that $K_{10,1}$ is non-empty and irreducible. Indeed, then by Proposition 3.3 it follows that $K_{10,1}$ is uniruled, and since the projection map $K_{10,1} \to S^g_{10}$ is finite, $K_{10,1}$ dominates S^g_{10}. This implies that S^g_{10} is uniruled.

The variety $K_{10,1}$ is an open subvariety of the irreducible locus

$$U := \{([C, x, y], \eta) \in \mathcal{M}_{10,2} \times \mathcal{M}_{10} S^g_{10} : h^0(C, \eta \otimes O_C(−x − y)) \geq 1\},$$

hence it is irreducible as well. To establish its non-emptiness, it suffices to produce an example of an element $([C, x, y], \eta) \in U$, such that the curve C_{xy} can be embedded in a K3 surface. We specialize to the case when C is hyperelliptic and $x, y, \in C$ are distinct Weierstrass points, in which case one can choose $\eta = O_C(x + y + w_1 + \cdots + w_7)$, where w_i are distinct Weierstrass points in $C − \{x, y\}$. Again we let $\rho : X \to \mathbb{P} \subset \mathbb{P}^{11}$ be a hyperelliptic K3 surface branched along $B \subset |−2K_F|$, with polarization $H := \rho^*O_F(1)$, so that $[X, H] \in \mathcal{F}_{11}$. We set $C := \rho^*(R)$, where $R \subset |O_F(1)|$ is a rational normal curve of degree 10. We need to ensure that C is 1-nodal, with its node $p \in C$ such that if $f : C' \to C$ denotes the normalization map, then both points in $f^{-1}(p)$ are Weierstrass points. This is satisfied once we choose R in such a way that $B \cdot R \geq 2\rho(p)$. \hfill \square

4. UNIRATIONALITY OF $S_{g}^−$ FOR $g \leq 8$

To prove the claimed unirationality results, we use that a general curve $[C] \in \mathcal{M}_g$ has a sextic plane model when $g \leq 6$, or is a linear section of a Mukai variety, when $7 \leq g \leq 9$. We start with the easy case of small genus, before moving on to the more substantial study of Mukai models.

Theorem 4.1. $S_{g}^−$ is unirational for $g \leq 6$.

Proof. A general odd spin curve $[C, \eta] \in S_{g}^−$ of genus $3 \leq g \leq 6$, is birational to a pair (Γ, η), where $\Gamma \subset \mathbb{P}^2$ is an integral nodal sextic. One can assume that $d := \text{supp}(\eta)$ is a reduced divisor contained in Γ_{reg}. Note that there exists a unique plane cubic E such that $E \cdot \Gamma = 2e$, where e is an effective divisor of degree 9 on E, supported on
sing(Γ) ∪ d. We denote by \(U \subset (\mathbb{P}^2)^9 \) the open set parameterizing general 9-tuples \((\bar{x}, \bar{y}) := (x_1, \ldots, x_\delta, y_1, \ldots, y_{g-1})\), where \(g = 10 - \delta \). Over \(U \) lies a projective bundle \(\mathcal{P} \) whose fibre at \((\bar{x}, \bar{y})\) is the linear system of plane sextics \(\Gamma \) which are singular along \(\bar{x} \) and totally tangent to \(E_{\bar{x}, \bar{y}} \) along \(\bar{y} \). Here \(E_{\bar{x}, \bar{y}} \in |\mathcal{O}_{\mathbb{P}^2}(3)| \) denotes the unique plane cubic through the points \(x_1, \ldots, x_\delta, y_1, \ldots, y_{g-1} \). Then \(\mathcal{P} \) is a rational variety, and by the previous remark, it dominates \(\overline{S}_g \). Thus \(\overline{S}_g \) is unirational. \(\square \)

We assume now that \(7 \leq g \leq 10 \) and denote by \(V_g \subset \mathbb{P}^{N_g} \) the rational homogeneous space \(V_g \) defined as follows [M1], [M2], [M3]:

- \(V_{10} \): the 5-dimensional variety \(G_2/P \subset \mathbb{P}^{17} \) corresponding to the Lie group \(G_2 \),
- \(V_9 \): the Plücker embedding of the symplectic Grassmannian \(\text{SG}(3, 6) \subset \mathbb{P}^{13} \),
- \(V_8 \): the Plücker embedding of the Grassmannian \(G(2, 6) \subset \mathbb{P}^{14} \),
- \(V_7 \): the Plücker embedding of the orthogonal Grassmannian \(\text{OG}(5, 10) \subset \mathbb{P}^{15} \).

Note that \(N_g = g + \dim(V_g) - 2 \). Inside the Hilbert scheme \(\text{Hilb}(V_g) \) of curvilinear sections of \(V_g \), we consider the open set \(U_g \) classifying curves \(C \subset V_g \) such that

- \(C \) is a nodal integral section of \(V_g \) by a linear space of dimension \(g - 1 \),
- the residue map \(\rho : H^0(C, \omega_C) \to H^0(C, \omega_C \otimes \text{O}_{\text{sing}(C)}) \) is surjective.

A general point \([C \hookrightarrow \mathbb{P}^{g-1}] \in U_g \) is a smooth, canonical curve of genus \(g \). Moreover \(C \) has general moduli if \(g \leq 9 \). For each \(0 \leq \delta \leq g - 1 \), we define the locally closed sets of \(\delta \)-nodal curvilinear sections of \(V_g \)

\[
U_{g, \delta} := \{ [C \hookrightarrow \mathbb{P}^{g-1}] \in U_g : |\text{sing}(C)| = \delta \}.
\]

Proposition 4.2. \(U_{g, \delta} \) is smooth of pure codimension \(\delta \) in \(U_g \).

Proof. A general 2-dimensional linear section of \(V_g \) is a polarized K3 surface \((S, H) \in \mathcal{F}_g \) with general moduli. It is known [13], that \(\delta \)-nodal hyperplane sections of \(S \) form a pure \((g - \delta)\)-dimensional family \(V_g, \delta(H) \subset [H] \). In particular \(U_{g, \delta} \neq \emptyset \) and \(\text{codim}(U_{g, \delta}, U_g) \leq \delta \). We fix a curve \([C] \in U_{g, \delta} \), then consider the normal bundle \(N_C \) of \(C \) in \(V_g \) and the map \(r : H^0(C, N_C) \to \text{O}_{\text{sing}(C)} \) induced by the exact sequence

\[
0 \to T_C \to T_{V_g} \otimes \text{O}_C \to N_C \xrightarrow{r} T_C^1 \to 0,
\]

where \(T_C^1 = \text{O}_{\text{sing}(C)} \) is the Lichtenbaum-Schlessinger sheaf of \(C \). Using the identification \(T_{[C]}(U_g) = H^0(C, N_C) \), it is known that \(\text{Ker}(r) \) is isomorphic to \(T_{[C]}(U_{g, \delta}) \). We have that \(N_C \cong \omega_C^{\oplus (N_9-g+1)} \) and \(r = \rho^{\oplus (N_9-g+1)} \), where \(\rho : H^0(C, \omega_C) \to H^0(C, \text{O}_{\text{sing}(C)}) \) is the map given by the residues at the nodes. Since \(\rho \) is surjective, \(\text{Ker}(r) \) has codimension \(\delta \) inside \(T_{[C]}(U_g) \) and the statement follows. \(\square \)

The automorphism group \(\text{Aut}(V_g) \) acts in the natural way on \(\text{Hilb}(V_g) \). Since the locus of singular curvilinear sections \([C] \in U_g \) is an \(\text{Aut}(V_g) \)-invariant divisor which misses a general point of \(U_g \), it follows that \(U_{g, \delta}^{\text{ss}} := U_g \cap \text{Hilb}(V_g)^{\text{ss}} \neq \emptyset \). Note that since \(\rho(V_g) = 1 \), the notion of stability is independent of the polarization. The (quasi-projective) GIT-quotient

\[
\mathcal{M}_g := U_{g, \delta}^{\text{ss}} \sslash \text{Aut}(V_g)
\]
is said to be the Mukai model of \(\overline{M}_g \). We have the following commutative diagram

\[
\begin{array}{ccc}
\mathcal{U}_g^{ss} & \longrightarrow & \mathcal{U}_g \\
\downarrow u_g & & \downarrow m_g \\
\mathfrak{M}_g & \longrightarrow & \overline{\mathfrak{M}}_g
\end{array}
\]

where \(u_g : \mathcal{U}_g^{ss} \to \mathfrak{M}_g \) is the quotient map and \(m_g : \mathcal{U}_g \to \overline{\mathfrak{M}}_g \) is the moduli map. The general fibre of \(m_g \) is an \(\text{Aut}(V_g) \)-orbit. Summarizing results from [M1], [M2], [M3], we state the following:

Theorem 4.3. For \(7 \leq g \leq 9 \), the map \(\phi_g : \mathfrak{M}_g \to \overline{\mathfrak{M}}_g \) is a birational isomorphism. The inverse map \(\phi_g^{-1} \) contracts the (unique) Brill-Noether divisor \(\overline{M}_{g,d} \subset \overline{M}_g \) of curves with a \(g_r^\nu \) as well as the boundary divisors \(\Delta_i \), with \(1 \leq i \leq [g/2] \).

Next, let \(\Delta_g^\delta \subset \Delta_0 \subset \overline{\mathfrak{M}}_d \) be the locus of integral stable curves of arithmetic genus \(g \) with \(\delta \) nodes. Then \(\Delta_g^\delta \) is irreducible of codimension \(\delta \) in \(\overline{\mathfrak{M}}_g \).

Lemma 4.4. Set \(g \leq 9 \) and let \(D \) be any irreducible component of \(\mathcal{U}_g,\delta \). Then the restriction morphism \(m_{g|D} : D \to \Delta_g^\delta \) is dominant. In particular, a general \(\delta \)-nodal curve \([C] \in \Delta_g^\delta \) lies on a smooth \(K3 \) surface.

Proof. Since \(\mathcal{U}_g,\delta \) is smooth, \(D \) is a connected component of \(\mathcal{U}_g,\delta \), that is, for \([C] \in D \), the tangent spaces to \(D \) and to \(\mathcal{U}_g,\delta \) coincide. We consider again the sequence (3):

\[
0 \to T_C \to T_{V_g} \otimes \mathcal{O}_C \to N_C^\nu \to 0,
\]

where \(N_C^\nu := \text{Im} \{ T_{V_g} \otimes \mathcal{O}_C \to N_C \} \) is the equisingular sheaf of \(C \). We have that \(H^0(C, N_C^\nu) = \text{Ker}(r) \). As remarked in the proof of Proposition 4.2, \(H^0(C, N_C^\nu) \) is the tangent space \(T_{[C]}(\mathcal{U}_g,\delta) \) and its codimension in \(H^0(C, N_C) \) equals \(\delta \). Consider the coboundary map \(\partial : H^0(C, N_C^\nu) \to H^1(C, T_C) \). Since \(H^1(C, T_C) \) classifies topologically trivial deformations of the nodal curve \(C \), the image \(\text{Im}(\partial) \) is isomorphic to the image of the tangent map \(dm_{g|D,\delta} \) at \([C] \). On the other hand \(H^0(C, T_{V_g} \otimes \mathcal{O}_C) \) is the tangent space to the orbit of \(C \) under the action of \(\text{Aut}(V_g) \). This is reduced and the stabilizer of \(C \), being a subgroup of \(\text{Aut}(C) \), is finite, hence we obtain:

\[
\dim \text{Im}(\partial) = h^0(C, N_C) - \delta - \dim \text{Aut}(V_g) = 3g - 3 - \delta.
\]

Since \(\Delta_g^\delta \) has codimension \(\delta \) in \(\overline{\mathfrak{M}}_g \), it follows that \(m_{g|D} \) is dominant. \(\square \)

Proposition 4.5. Fix \(0 \leq \delta \leq g - 1 \) and \(D \) an irreducible component of \(\mathcal{U}_g,\delta \). Then \(D^{ss} \neq \emptyset \).

Proof. It suffices to construct an \(\text{Aut}(V_g) \)-invariant divisor which does not contain \(D \). We carry out the construction when \(g = 8 \), the remaining cases being largely similar.

We fix a complex vector space \(V \cong \mathbb{C}^6 \), and then \(V_8 := G(2, V) \subset \mathbb{P}(\wedge^2 V) \) and \(\mathcal{U}_8 \subset G(8, \wedge^2 V) \). For a projective 7-plane \(\Lambda \in G(8, \wedge^2 V) \), we denote the set of containing hyperplanes \(F_\Lambda := \{ H \in \mathbb{P}(\wedge^2 V)^\vee : H \supset \Lambda \} \), and define the \(\text{Aut}(V_8) \)-invariant divisor

\[
Z := \{ \Lambda \in \mathcal{U}_8 : F_\Lambda \cap G(2, V)^\vee \subset \mathbb{P}(\wedge^2 V)^\vee \text{ is not a transverse intersection} \}.
\]

We claim that \(D \not\subseteq Z \). Indeed, let us fix a general point \([C \hookrightarrow \Lambda] \in D \), where \(\Lambda = \langle C \rangle \), corresponding to a general curve \([C] \in \Delta_g^\delta \). In particular, we may assume that \(C \) lies outside the closure in \(\overline{\mathfrak{M}}_g \) of curves violating the Petri theorem. Thus \(C \) possesses no
It is clear that for every $A \in \overline{W}_5^1(C)$, the intersection $F_A = \Phi \left(\ker \left(\Lambda^2 H^0(C, E) \rightarrow H^0(C, \omega_C) \right) \right)$. Moreover, $F_A = \mathbf{P} \{ \ker \left(\Lambda^2 H^0(C, E) \rightarrow H^0(C, \omega_C) \right) \}$. In particular, the intersection $F_A \cap G(2, H^0(C, E))$ corresponds to the pencils $A \in \overline{W}_5^1(C)$.

Since C is Petri general, $\overline{W}_5^1(C)$ is a smooth scheme, thus $|C \hookrightarrow \Lambda| \notin Z$. □

We consider the quotient $\mathcal{M}_{g, \delta} := \mathcal{U}_{g, \delta}^{ss} / \text{Aut}(V_g)$ and the induced map $\phi_{g, \delta} : \mathcal{M}_{g, \delta} \to \Delta^\delta_g$.

Theorem 4.6. The variety $\mathcal{M}_{g, \delta}$ is irreducible and $\phi_{g, \delta}$ is a birational isomorphism.

Proof. By Lemma 4.4, any irreducible component Y of $\mathcal{M}_{g, \delta}$ dominates Δ^δ_g. On the other hand, $\phi_g : \mathcal{M}_g \to \overline{M}_g$ is a birational morphism and $\phi_{g, \delta} = \phi_g |_{\mathcal{M}_{g, \delta}}$. Since \overline{M}_g is normal, each fibre of ϕ_g is connected, thus $\mathcal{M}_{g, \delta}$ is irreducible and $\text{deg}(\phi_{g, \delta}) = 1$. □

We lift our construction to the space of odd spin curves. Keeping $g \leq 9$, we consider the Hilbert scheme $\text{Hilb}_{2g-2}(V_g)$ of 0-dimensional subschemes of V_g having length $2g-2$.

Definition 4.7. Let $Z_{g-1} \subset \text{Hilb}_{2g-2}(V_g)$ be the parameter space of those 0-dimensional schemes $Z \subset V_g$ such that:

1. Z is a hyperplane section of a smooth curve section $[C] \in \mathcal{U}_g$.
2. Z has multiplicity two at each point of its support.
3. $\text{supp}(Z)$ consists of $g-1$ linearly independent points.

One thinks of Z_{g-1} as classifying length $g-1$ clusters on V_g. A general point of Z_{g-1} corresponds to a 0-cycle $x_1 + \cdots + x_{g-1} \in \text{Sym}^{g-1}(V_g)$ satisfying

$$\dim \langle x_1, \ldots, x_{g-1} \rangle \cap \mathbb{T}_{x_i}(V_g) \geq 1, \text{ for } i = 1, \ldots, g-1.$$

Clearly $\dim(Z_{g-1}) = (g-1)(N_g - g+1)$. Then we consider the incidence correspondence $\mathcal{U}_g^- := \{(C, Z) \in \mathcal{U}_g \times Z_{g-1} : Z \subset C \}$. The first projection map $\pi_1 : \mathcal{U}_g^- \to \mathcal{U}_g$ is finite of degree $2^{g-1}(2^g - 1)$; its fibre at a general point $[C] \in \mathcal{U}_g$ is in bijective correspondence with the set of odd theta-characteristics of C. In particular, both \mathcal{U}_g^- and Z_{g-1} are irreducible varieties. The spin moduli map

$$m_g^- : \mathcal{U}_g^- \dashrightarrow \overline{\mathcal{S}}_g$$

is defined by $m_g^-(C, Z) := [C, \mathcal{O}_C(Z/2)]$, for each point $(C, Z) \in \mathcal{U}_g^-$ corresponding to a smooth curve C. Later we shall extend the rational map m_g^- to a regular map over \mathcal{U}_g^-.

It is clear that m_g^- induces a map $\phi_g^- : Q_g^- \dashrightarrow \overline{\mathcal{S}}_g$ from the quotient

$$Q_g^- := \pi_1^{-1}(\mathcal{U}_g^{ss}) / \text{Aut}(V_g).$$
We may think of Q_g^- as being the Mukai model of \mathcal{S}_g^-. If $\pi^- : Q_g^- \to \mathcal{M}_g$ is the map induced by π at the level of Mukai models, we have a commutative diagram:

$$
\begin{array}{ccc}
Q_g^- & \xrightarrow{\phi_g^-} & \mathcal{S}_g^- \\
\pi^- & \downarrow & \pi \\
\mathcal{M}_g & \xrightarrow{\phi_g} & \mathcal{M}_g
\end{array}
$$

Proposition 4.8. The spin Mukai model Q_g^- is irreducible and $\phi_g^- : Q_g^- \to \mathcal{S}_g^-$ is a birational isomorphism.

One extends the rational map m_g^- (therefore ϕ_g^- as well) to a regular morphism as follows. Let $(C, Z) \in U_g^-$ be an arbitrary point, and set $\text{supp}(Z) := \{p_1, \ldots, p_{g-1}\}$. Assume that $\text{sing}(C) \cap \text{supp}(Z) = \{p_1, \ldots, p_b\}$, where $b \leq g-1$. Consider the partial normalization $\nu : N \to C$ at the points p_1, \ldots, p_b. In particular, there exists an effective Cartier divisor e on C of degree $g - b - 1$, such that $2e = Z \cap (C - \text{sing}(C))$, and set $\epsilon := O_N(\nu^*e)$. Then $m_g^-(C, Z)$ is the spin curve $[X, \eta] \in \mathcal{S}_g^-$ defined as follows:

Definition 4.9.

1. $X := N \cup E_1 \cup \cdots \cup E_b$, where $E_i = \mathbb{P}^1$ for $i = 1, \ldots, b$.
2. $\eta \cap N = \nu^{-1}(p_1)$, for every node $p_i \in \text{sing}(C) \cap \text{supp}(Z)$.
3. $\eta \otimes O_{E_i} \cong \epsilon$ and $\eta \otimes O_E \cong O_{\mathbb{P}^1}(1)$.

We note that N is smooth of genus $g - b$, precisely when $\text{sing}(C) \subset \text{supp}(Z)$. In this case $\epsilon \in \text{Pic}^{g-1-b}(N)$ is a theta characteristic and $h^0(N, \epsilon) = 1$. Since we are specially interested in this case, for $1 \leq b \leq g-1$ we introduce the locally closed sets

$$
U_{g, b}^- := \{(C, Z) \in U_g^- : \text{sing}(C) \subset \text{supp}(Z), |\text{sing}(C)| = b\}.
$$

We denote by $B_{g, b}^-$ the closure of $m_g^-(U_{g, b}^-)$ inside \mathcal{S}_g^-; this is the closure in \mathcal{S}_g^- of the locus of b-nodal spin curves having b exceptional components. Clearly $B_{g, b}^-$ is an irreducible component of $\pi^{-1}(\Delta_b^-)$. We set

$$
Q_{g, b}^- := U_{g, b}^- \cap \pi^{-1}(U_g^{ss})/\text{Aut}(V_g),
$$

and let $u_g^- : U_{g, b}^- \dasharrow Q_{g, b}^-$ denote the quotient map. Keeping all previous notation, we have a further commutative diagram

$$
\begin{array}{ccc}
U_{g, b}^- & \xrightarrow{u_g^-} & Q_{g, b}^- \\
\downarrow & & \pi^- \downarrow \\
U_{g, b}^- & \xrightarrow{u_g} & \mathcal{M}_{g, b} \\
\downarrow & & \phi_g^- \downarrow \\
U_{g, b}^- & \xrightarrow{u_g} & \mathcal{M}_{g, b} \xrightarrow{\phi_g} \Delta_g
\end{array}
$$

where ϕ_g^- is the morphism induced on $Q_{g, b}^-$ by m_g^-.

Theorem 4.10. We fix $7 \leq g \leq 9$ and $1 \leq b \leq g - 1$. Then $\phi_g^- : Q_{g, b}^- \to B_{g, b}^-$ is a birational isomorphism.

Proof. It suffices to note that ϕ_g^- is birational, and the vertical arrows of the diagram are finite morphisms of the same degree, namely the number of odd theta-characteristics on a curve of genus $g - b$.

\[\square\]
We construct a projective bundle over $B_{g, \delta}$, then show that for certain values $\delta \leq g - 1$, the locus $B_{g, \delta}$ itself is unirational, whereas the above mentioned bundle dominates S_{g}^-. Let $C_{g, \delta} \subset \mathcal{U}_{g, \delta}^{-} \times V_g$ be the universal curve, endowed with its two projection maps

$$\mathcal{U}_{g, \delta}^{-} \xleftarrow{p} C_{g, \delta} \xrightarrow{q} V_g.$$

We fix an arbitrary point $(\Gamma, Z) \in \mathcal{U}_{g, \delta}^{-}$ and let $\nu : N \to \Gamma$ be the normalization map. Recall that $\text{sing}(\Gamma)$ consists of δ linearly independent points and that $h^0(N, \mathcal{O}_N(\nu^*e)) = 1$, where e is the effective divisor on Γ characterized by $Z|_{\Gamma_{	ext{reg}}} = 2e$. Thus the restriction map $H^0(\Gamma, \omega_\Gamma) \to H^0(\omega_T \otimes \mathcal{O}_Z)$ has 1-dimensional kernel. In particular the relative cotangent sheaf ω_p admits a global section s inducing an exact sequence

$$0 \to \mathcal{O}_{\mathcal{U}_{g, \delta}} \to \omega_p \to \mathcal{O}_W \otimes \omega_p \to 0,$$

which defines a subscheme $W \subset C_{g, \delta}$, whose fibre at the point $(\Gamma, Z) \in \mathcal{U}_{g, \delta}$ is Z itself. We set

$$A := p_* \left(\mathcal{I}_{W/C_{g, \delta}} \otimes q^* \mathcal{O}_V(1) \right),$$

which is a vector bundle on $\mathcal{U}_{g, \delta}^-$ of rank $N_g - g + 2$. The fibre of $A(\Gamma, Z)$ is identified with $H^0(V_g, \mathcal{I}_{Z/V_g}(1))$. One has a natural identification

$$\text{P}H^0(\mathcal{I}_{Z/V_g}(1))^\vee = \{1\text{-dimensional linear sections of } V_g \text{ containing } Z\}.$$

Definition 4.11. $\mathcal{P}_{g, \delta}$ is the projectivized dual of A.

From the definitions and the previous remark it follows:

Proposition 4.12. $\mathcal{P}_{g, \delta}$ is the Zariski closure of the incidence correspondence

$$\mathcal{P}_{g, \delta}^0 := \{(C, (\Gamma, Z)) \in \mathcal{U}_g \times \mathcal{U}_{g, \delta}^- : Z \subset C\}.$$

Consider the projection maps

$$\mathcal{U}_g \xleftarrow{\alpha} \mathcal{P}_{g, \delta}^0 \xrightarrow{\beta} \mathcal{U}_{g, \delta}^-.$$

We wish to know when α is a dominant map. For $1 \leq \delta < g \leq 9$, we have the following:

Proposition 4.13. The map α is dominant if and only if $\delta \leq N_g + 1 - g = \dim(V_g) - 1$.

Proof. By definition, the morphism β is surjective. Let $(\Gamma, Z) \in \mathcal{U}_{g, \delta}^-$ be an arbitrary point, and set $\text{sing}(\Gamma) := \{p_1, \ldots, p_\delta\} \subset Z$. We define P_Z to be the locus of 1-dimensional linear sections of V_g containing Z. Inside P_Z we consider the space

$$P_{\Gamma,Z} = \{\Gamma' \in P_Z : \text{sing}(\Gamma') \cap Z \supseteq \text{sing}(\Gamma) \cap Z\},$$

First note that for $p \in \text{sing}(\Gamma)$, the locus $H_p := \{\Gamma' \in P_Z : p \in \text{sing}(\Gamma')\}$ is a hyperplane in P_Z. Indeed, we identify P_Z with the family of linear spaces $L \subset G(g, N_g + 1)$ such that $\langle Z \rangle \subset L$. By the definition of the cluster Z, it follows that $l := \mathbb{T}_p(V_g) \cap \langle Z \rangle$ is a line. For $L \in P_Z$, the intersection $L \cap V_g$ is singular at p if and only if $\dim(L \cap \mathbb{T}_p(V_g)) \geq 2$. This is obviously a codimension 1 condition in P_Z. Therefore, if for $1 \leq i \leq \delta$ we define the hyperplane $H_i := \{L = \langle \Gamma' \rangle \in P_Z : \dim(L \cap \mathbb{T}_{p_i}(V_g)) \geq 2\}$, then

$$P_{\Gamma,Z} = H_1 \cap \cdots \cap H_\delta.$$

This shows that the general point in $\beta^{-1}(C, Z)$ corresponds to a smooth curve $C \supseteq Z$. We now fix a general point $(\Gamma, Z) \in \mathcal{U}_{g, \delta}$, corresponding to a general cluster $Z \in S_{g-1}$.
Claim: $P_{g, \delta}$ has codimension δ in P_g; its general element is a nodal curve with δ nodes.

Proof of claim: Indeed P_g is a general fibre of the projective bundle $\mathcal{U}_g^- \to \mathfrak{Z}_{g-1}$. The claim follows since $\text{codim}(\mathcal{U}_g^-, \mathcal{U}_g^-) = \delta$.

The fibre $\alpha^{-1}((C, Z))$ over a general point $(C, Z) \in \mathcal{U}_g^-$, is the union of $(g-1)$ linear spaces $H_1 \cap \cdots \cap H_\delta \subset P_Z$ as above. By the claim above, when $Z \in \mathfrak{Z}_{g-1}$ is a general cluster, this is a union of linear spaces $P_{g, \delta}$ as before, having codimension δ in P_Z. Hence $\alpha^{-1}((C, Z))$ is not empty if and only if $\delta \leq \dim P_Z$, that is, $\delta \leq N_g - g + 1$. \qed

Let us fix the following notation:

Definition 4.14.

1. $\overline{\mathcal{P}}_{g, \delta} := (\mathcal{P}_{g, \delta}^\circ)_{// \text{Aut}(V)}$.
2. $\overline{\beta} : \overline{\mathcal{P}}_{g, \delta} \to \overline{\mathcal{S}}_g$ is the morphism induced by β at the level of quotients.

Note that $\beta : \mathcal{P}_{g, \delta} \to \mathcal{U}_g^-$ is a projective bundle and $\text{Aut}(V)$ acts linearly on its fibres, therefore β descends to a projective bundle on $B_{g, \delta}$. Then it follows from the previous remark that $\mathcal{P}_{g, \delta}$ is birationally isomorphic to $\mathbb{P}^{N_g - g + 1} \times B_{g, \delta}$.

To finish the proof of the unirationality of \mathcal{S}_g^-, we proceed as follows:

Theorem 4.15. Let $7 \leq g \leq 9$ and assume that (1) $B_{g, \delta}^- \text{ is unirational}$ and (ii) $\delta \leq N_g - g + 1$. Then \mathcal{S}_g^- is unirational.

Proof. By assumption (ii), $\beta : \mathcal{P}_{g, \delta}^\circ \to \mathcal{U}_g^-$ is dominant, Hence the same is true for the induced morphism $\overline{\beta} : \overline{\mathcal{P}}_{g, \delta} \to \overline{\mathcal{S}}_g$. By (i) and the above remark, $\overline{\mathcal{P}}_{g, \delta}$ is unirational. Therefore $\overline{\mathcal{S}}_g^-$ is unirational as well. \qed

Theorem 4.15 has some straightforward applications. The case $\delta = g - 1$ is particularly convenient, since $B_{g, g-1}$ is isomorphic to the moduli space of integral curves of geometric genus 1 with $g - 1$ nodes. For $\delta = g - 1$, the assumptions of Theorem 4.15 hold when $g \leq 8$. In this range, the unirationality of \mathcal{S}_g^- follows from that of $B_{g, g-1}$.

Theorem 4.16. $B_{g, g-1}^- \text{ is unirational for } g \leq 10$.

Proof. Let $I \subset \mathbb{P}^2 \times (\mathbb{P}^2)^\vee$ be the natural incidence correspondence consisting of pairs (x, l) such that x is a point on the line l. For $\delta \leq 9$, we define

$$\Pi_\delta := \{(x_1, l_1, \ldots, x_\delta, l_\delta, E) \in I^\delta \times \mathbb{P} H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(3)) : x_1, \ldots, x_\delta \in E\}.$$

Then there exists a rational map $f_\delta : \Pi_\delta \dashrightarrow B_{\delta+1, \delta}^-$ sending $(x_1, l_1, \ldots, x_\delta, l_\delta, E)$ to the moduli point of the δ-nodal, integral curve C obtained from the elliptic curve E, by identifying the pairs of points in $E \cap l_i - \{x_i\}$ for $1 \leq i \leq \delta$. It is easy to see that Π_δ is rational if $\delta \leq 9$. Clearly f_δ is dominant, just because every elliptic curve can be realized as a plane cubic. It follows that $B_{\delta+1, \delta}^-$ is unirational when $\delta \leq 9$. \qed

Unfortunately one cannot apply Theorem 4.16 to the case $g = 9$, since the assumptions of Theorem 4.15 are satisfied only if $\delta \leq 5$.
5. The stack of degenerate odd theta-characteristics

In this section we define a Deligne-Mumford stack $X_g \rightarrow \overline{S}_g$ parameterizing limit linear series g^0_{g-1} which appear as limits of degenerate theta-characteristics on smooth curves. The push-forward of $[X_g]$ is going to be precisely our divisor \overline{Z}_g. Having a good description of X_g over the boundary will enable us to determine all the coefficients in the expression of $[\overline{Z}_g]$ in $\text{Pic}(\overline{S}_g)$.

We first define a partial compactification $\tilde{M}_g := M_g \cup \Delta_0 \cup \ldots \cup \Delta_{[g/2]}$ of M_g, obtaining by adding to M_g the open sub-stack $\Delta_0 \subset \Delta_0$ of one-nodal irreducible curves $[C_{yq} := C/y \sim q]$, where $[C, y, q] \in M_{g-1,2}$ is a Brill-Noether general curve together with their degenerations $[C \cup D_{\infty}]$ where D_{∞} is an elliptic curve with $j(D_{\infty}) = \infty$, as well as the open substacks $\Delta_j \subset \Delta_j$ for $1 \leq j \leq [g/2]$ classifying curves $[C \cup D]$ where $[C] \in M_j$ and $[D] \in M_{g-j}$ are Brill-Noether general curves in the respective moduli spaces. Let $p : \tilde{M}_{g,1} = \tilde{M}_g$ be the universal curve. We denote $\tilde{S}_g := \pi^*(-M_g) \subset S_g$ and note that for all $0 \leq j \leq [g/2]$ the boundary divisors $A_j := A_j \cap \tilde{S}_g$, $B_j := B_j \cap \tilde{S}_g$ are mutually disjoint inside \tilde{S}_g. Finally, we consider $Z := \tilde{S}_g \times_{\tilde{M}_g} \tilde{M}_{g,1}$ and denote by $p_1 : Z \rightarrow \tilde{S}_g$ the projection.

Following the local description of the projection $S_g \rightarrow M_g$ carried out in [C], in order to obtain the universal spin curve over \tilde{S}_g, one has to blow-up the codimension 2 locus $V \subset Z$ corresponding to points

$$v = \left([C \cup_{(y,q)} E], \eta_C^{\otimes 2} = K_C, \eta_C^0(\eta_C) \equiv 1 \text{ mod } 2, \eta_E = O_E(1), \nu(y) = \nu(q) \right) \in B_0 \times \tilde{M}_g \tilde{M}_{g,1}$$

(recall that $\nu : C \rightarrow C_{yq}$ denotes the normalization map, so v corresponds to the marked point specializing to the node of the curve C_{yq}). Suppose that $(\tau_0, \ldots, \tau_{3g-3})$ are local coordinates in an étale neighbourhood of $[C \cup_{(y,q)} E, \eta_C, \eta_E] \in \tilde{S}_g$ such that the local equation of the divisor B_0 is $(\tau_0 = 0)$. Then Z around v admits local coordinates $(x, y, \tau_1, \ldots, \tau_{3g-3})$ verifying the equation $xy = \tau_1^2$, in particular, Z is singular along V. Next, for $1 \leq j \leq [g/2]$ one blows-up the codimension 2 loci $V_j \subset Z$ consisting of points

$$\left([C \cup D, \eta_C, \eta_D], q \in C \cap D \right) \in (A_j \cup B_j) \times \tilde{M}_g \tilde{M}_{g,1}.$$

This corresponds to inserting an exceptional component in each spin curve in $\pi^*(\Delta_j)$. We denote by

$$\mathcal{C} := \text{Bl}_{V \cup V_1 \cup \ldots \cup V_{[g/2]}}(Z)$$

and by $f : C \rightarrow \tilde{S}_g$ the induced family of spin curves. Then for every $[X, \eta, \beta] \in \tilde{S}_g$ we have an isomorphism between $f^{-1}([X, \eta, \beta])$ and the quasi-stable curve X.

There exists a spin line bundle $P \in \text{Pic}(\mathcal{C})$ of relative degree $g-1$ as well as a morphism of \mathcal{O}_C-modules $B : P^{\otimes 2} \rightarrow \omega_f$ having the property that $P_{f^{-1}([X, \eta, \beta])} = \eta$ and $B_{f^{-1}([X, \eta, \beta])} = \beta : \eta^{\otimes 2} \rightarrow \omega_X$, for all spin curves $[X, \eta, \beta] \in \tilde{S}_g$. We note that for the even moduli space \tilde{S}_g^+ one has an analogous construction of the universal spin curve.

Next we define the stack $\tau : X_g \rightarrow \tilde{S}_g$ classifying limit g^0_{g-1} which are twists of degenerate odd-spin curves. For a tree-like curve X we denote by $\overline{G}_{d}(X)$ the scheme of limit linear series g^0_{d}. The fibres of the morphism τ have the following description:
• $\tau^{-1}(S^{-}_g)$ parameterizes triples $([C, \eta], \sigma, x)$, where $[C, \eta] \in S^{-}_g$, $x \in C$ is a point and $\sigma \in \text{Pic}^0(C, \eta)$ is a section such that $\text{div}(\sigma) \geq 2x$.

• For $1 \leq j \leq \lfloor g/2 \rfloor$ the inverse image $\tau^{-1}(B'_{j})$ parameterizes elements of the form

$$(X, \sigma \in \mathcal{G}_{g-1}(X), x \in \mathcal{X}_{\text{reg}}),$$

where (X, x) is a 1-pointed quasi-stable curve semistably equivalent to the underlying curve of a spin curve $[C \cup q E \cup q' D, \eta_C, \eta_E, \eta_D] \in A'_j \cup B'_j$, with E denoting the exceptional component, $g(C) = j$, $g(D) = g - j$, $\{q\} = C \cap E$, $\{q'\} = E \cap D$ and $\sigma_C \in \text{Pic}^0(C, \eta_C \otimes \mathcal{O}_C((g-j)q))$, $\sigma_D \in \text{Pic}^0(D, \eta_D \otimes \mathcal{O}_D(jq'))$, $\sigma_E \in \text{Pic}^0(E, \mathcal{O}_E(g-1))$ are aspects of the limit linear series σ on X. Moreover, we require that $\text{ord}_x(\sigma) \geq 2$.

• $\tau^{-1}(B'_{0})$ parameterizes elements $(X, \eta \in \text{Pic}^{g-1}(X), \sigma \in \text{Pic}^0(X, \eta), x \in \mathcal{X}_{\text{reg}})$, where (X, x) is a 1-pointed quasi-stable curve equivalent to the curve underlying a point $[C \cup (yq) E, \eta_C, \eta_E] \in B'_{0}$, the line bundle η on X satisfies $\eta|_C = \eta_C$ and $\eta|_E = \eta_E$ and $\eta|_Z = \mathcal{O}_Z$ for the remaining components of X. Finally, we require $\text{ord}_x(\sigma) \geq 2$.

• $\tau^{-1}(A'_{0})$ corresponds to points $(X, \eta \in \text{Pic}^{g-1}(X), \sigma \in \text{Pic}^0(X, \eta), x \in \mathcal{X}_{\text{reg}})$, where (X, x) is a 1-pointed quasi-stable curve equivalent to the curve underlying a point $[C_{yq}, \eta_{C_{yq}}] \in A'_{0}$, and if $\mu : X \to C_{yq}$ is the map contracting all exceptional components, then $\mu^*(\eta_{C_{yq}}) = \eta$ (in particular η is trivial along exceptional components), and finally $\text{ord}_x(\sigma) \geq 2$.

Using general constructions of stacks of limit linear series cf. [EH1], [F2], it is clear that X_g is a Deligne-Mumford stack. There exists a proper morphism

$$\tau : X_g \to \mathcal{S}^{-}_g$$

that factors through the universal curve and we denote by $\chi : X_g \to \mathcal{C}$ the induced morphism, hence $\tau = f \circ \chi$. The push-forward of the coarse moduli space $\tau_*([X_g])$ equals scheme-theoretically $\mathcal{Z}_g \cap \mathcal{S}^{-}_g$. It appears possible to extend X_g over the entire \mathcal{S}^{-}_g but this is not necessary in order to prove Theorem [13] and we skip the details.

We are now in a position to calculate the class of the divisor \mathcal{Z}_g and we expand its class in the Picard group of \mathcal{S}^{-}_g

$$(4) \quad \mathcal{Z}_g \equiv \lambda \cdot \lambda - \alpha_0 \cdot \alpha_0 - \beta_0 \cdot \beta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} \alpha_i \cdot \alpha_i - \sum_{i=1}^{\lfloor g/2 \rfloor} \beta_i \cdot \beta_i \in \text{Pic}(\mathcal{S}^{-}_g),$$

where $\lambda, \alpha_i, \beta_i \in \mathbb{Q}$ for $i = 0, \ldots, \lfloor g/2 \rfloor$. We start by determining the coefficients of the divisors α_i and β_i for $1 \leq i \leq \lfloor g/2 \rfloor$.

Proposition 5.1. For $1 \leq i \leq \lfloor g/2 \rfloor$ we have that $F_i \cdot \mathcal{Z}_g = 4(g - i)(i - 1)$ and the intersection is everywhere transverse. It follows that $\alpha_i = 2(g - i)$.

Proof. We recall from the definition of F_i that we have fixed theta-characteristics of opposite parity $\eta^{-}_C \in \text{Pic}^{i-1}(C)$ and $\eta^{-}_D \in \text{Pic}^{g-i-1}(D)$. We choose a point $t = (X, \eta, \sigma, x) \in \tau^{-1}(F_i)$. It is a simple exercise to show that the "double" point x of $\sigma \in \mathcal{G}_{g-1}(X)$ cannot specialize to the exceptional component, therefore one has only two cases to consider depending on whether x lies on C or on D. Assume first that $x \in C$ and then $\sigma_C \in \text{Pic}^0(C, \eta^{-}_C \otimes \mathcal{O}_C((g-i)q))$ and $\sigma_D \in \text{Pic}^0(D, \eta^+_D \otimes \mathcal{O}_D(iq))$, where $\{q\} = C \cap D$ is a point which moves on C but is fixed on D. Then $\text{ord}_q(\sigma_D) \leq i - 1$, therefore
ord_q(σ_C) ≥ g − i and then σ_C(−(g − i)q) ∈ PH^0(C, η_C^−). In particular, if we choose [C, η_C] ∈ S_i − Z_i, then the section σ_C(−(g − i)q) has only simple zeros, which shows that x cannot lie on C, so this case does not occur.

We are left with the possibility x ∈ D − {q}. One quickly concludes that the only possibility is ord_q(σ_C) = g − i + 1 and ord_q(σ_D) = i − 2. In particular, q ∈ supp(η_C^−) which gives i − 1 choices for the moving point q ∈ C. Furthermore σ_D(−(i − 2)q) ∈ H^0(D, η_D^+ ⊗ O_D(2q − 2x)), that is, x specializes to one of the ramification points of the pencil η_D^+ ⊗ O_D(2q) ∈ W_{q,i−1}^+(D). We note that because of the generality of [D, η_D^+] ∈ S_{g−i}^+ as well as that of q ∈ D, the pencil is base point free and complete. From the Hurwitz-Zeuthen formula one finds 4(g − i) ramification points of ∣η_D^+ ⊗ O_D(2q)∣, which leads to the formula F_i · Z_q = 4(g − i)(i − 1). The fact that τ_s(X_q) is transverse to F_i follows because the formation of X_q commutes with restriction to B'_0 and then one can easily show in a way similar to [EH2] Lemma 3.4 or by direct calculation that X_q × S− B'_0 is smooth at any of the points in τ^{-1}(F_i).

\[\square\]

Proposition 5.2. For 1 ≤ i ≤ [g/2] we have that G_i · Z_q = 4i(i − 1) and the intersection is transversal. In particular β̃_i = 2i.

Proof. This time we fix general points [C, η_C] ∈ S_i^+ and [D, η_D] ∈ S_{g−i}^− and q ∈ C ∩ D which is a fixed general point on D but an arbitrary point on C. Again, it is easy to see that if t = (X, σ, x) ∈ τ_−1(G_i) then x must lie either on C or on D. Assume first that x ∈ C − {q}. Then the aspects of σ are described as follows

\[σ_C ∈ PH^0(C, η_C^+ ⊗ O_C((g − i)q)), \quad σ_D ∈ PH^0(D, η_D^− ⊗ O_D(iq))\]

and moreover ord_x(σ_C) ≥ 2. The point q ∈ D can be chosen so that it does not lie in supp(η_D^−), hence ord_q(σ_D) ≤ i and then ord_q(σ_C) ≥ g − i − 1. This leads to the conclusion H^0(C, η_C^+ ⊗ O_C(y − 2x)) ≠ 0, or equivalently (x, y) ∈ C × C is a ramification point of the degree i covering p_1 : T_{η_C}^+ → C from the associated Scorza curve. We have shown that T_{η_C}^+ is smooth of genus 1 + 3i(i − 1) (cf. Theorem 2.1) and moreover all the ramification points of p_1 are ordinary, therefore we find

\[\deg \text{Ram}(p_1) = 2g(T_{η_C}^+) − 2 − \deg(p_1)(2i − 2) = 4i(i − 1)\]

choices when x ∈ C. Next possibility is x ∈ D − {q}. The same reasoning as above shows that ord_q(σ_C) ≤ g − i − 1, therefore ord_q(σ_D) ≥ i as well as ord_x(σ_D) ≥ 2. Since σ_D(−iq) ∈ PH^0(D, η_D), this case does not occur if [D, η_D] ∈ S_{g−i}^− − Z_{g−i}.

\[\square\]

Next we prove that Z_q is disjoint from both elliptic pencils F_0 and G_0:

Proposition 5.3. We have that F_0 · Z_q = 0 and G_0 · Z_q = 0. The equalities α̃ − 12α̃_0 + α̃_1 = 0 and 3β̃ − 12β̃_0 − 12β̃_1 + 3β̃_1 = 0 follow.

Proof. We first show that F_0 ∩ Z_q = ∅ and we assume by contradiction that there exists t = (X, σ, x) ∈ τ_−1(F_0). Let us deal first with the case when st(X) = C ∩ E_λ, with E_λ being a smooth curve of genus 1. The key point is that the point of attachment q ∈ C ∩ E_λ being general, we can assume that (x, q) /∈ Ram{p_1 : T_{η_C}^− → C}, for all x ∈ C. This implies that H^0(C, η_C^+ ⊗ O_C(q − 2x)) = 0 for all x ∈ C, therefore a section σ_C ∈ PH^0(C, η_C^+ ⊗ O_C(q)) cannot vanish twice anywhere. Thus either x ∈ E_λ − {q}
or x lies on some exceptional component of X. In the former case, since $\text{ord}_q(\sigma_C) = 0$, it follows that $\text{ord}_q(\sigma_{E_0}) \geq g - 1$, that is, σ_{E_0} has no zeroes other than q (simple or otherwise). In the latter case, when $x \in E$, with E being an exceptional component, we denote by $q' \in E$ the point of intersection of E with the connected subcurve of X containing C as a subcomponent. Since as above, $\text{ord}_q(\sigma_C) = 0$, by compatibility it follows that $\text{ord}_{q'}(\sigma_E) = g - 1$. But $\sigma_E \in \text{PH}^0(E, O_E(g - 1))$, that is, σ_E does not vanish at x, a contradiction. The proof that $G_0 \cap \bar{Z}_g = \emptyset$ is similar and we omit the details. \hfill \square

The trickiest part in the calculation of $[\bar{Z}_f]$ is the computation of the following intersection number:

Proposition 5.4. If $H_0 \subset B_0$ is the covering family lying in the ramification divisor of S_g, then one has that $H_0 \cdot \bar{Z}_g = 2(g - 2)$ and the intersection consists of $g - 2$ points each counted with multiplicity 2. Therefore the relation $(g - 1)\beta_0 - \beta_1 = 2(g - 2)$ holds.

Proof. We first determine the set-theoretic intersection $\tau_* (\mathcal{X}_g) \cap H_0$. We recall that we have fixed $[C, q, \eta_C] \in S_{g-1,1}$ and start by choosing an arbitrary point $t = (X, \eta, \sigma, x) \in \tau^{-1}(H_0)$. Assume first that $X = C \cup \{ y, q \} E$, where $y \in C$, that is, x does not specialize to one of the nodes of $C \cup E$. Suppose first that $x \in C - \{ y, q \}$. From the Mayer-Vietoris sequence on X we write

$$0 \neq \sigma \in H^0(X, \eta \otimes O_X(-2x)) = \text{Ker}\{ H^0(C, \eta_C \otimes O_C(-2x)) \oplus H^0(E, O_E(1)) \xrightarrow{\text{ev}_{y, q}} C^2_{(y, q)} \},$$

we obtain that $H^0(C, \eta_C \otimes O_C(-2x)) \neq 0$. This case can be avoided by choosing $[C, \eta_C] \in S_{g-1} - \bar{Z}_{g-1}$.

Next we consider the possibility $x \in E - \{ y, q \}$. The same Mayer-Vietoris argument reads in this case $0 \neq \text{Ker}\{ H^0(C, \eta_C) \oplus H^0(E, O_E(-1)) \xrightarrow{\text{ev}_{y, q}} C^2_{(y, q)} \}$, that is, $y + q \in \text{supp}(\eta_C)$. This case can be avoided as well by starting with a general point $q \in C - \text{supp}(\eta_C)$. Thus the only possibility is that x specializes to one of the nodes y or q.

We deal first with the case when x and q coalesce and there is no loss of generality in assuming that $X = C \cup E \cup E'$, where both E and E' are copies of \mathbb{P}^1 and $C \cap E = \{ y \}$, $C \cap E' = \{ y \}$, $E \cap E' = \{ y' \}$ and moreover $x \in E' - \{ y', q \}$. The restrictions of the line bundle $\eta \in \text{Pic}^{g-1}(X)$ are such that $\eta_C = \eta_C, \eta_E = O_E(1)$ and $\eta_E' = O_{E'}$. We write

$$0 \neq \sigma = (\sigma_C, \sigma_E, \sigma_E) \in \text{Ker}\{ H^0(C, \eta_C) \oplus H^0(E, O_E(1)) \oplus H^0(E', O_{E'}(1)) \xrightarrow{\text{ev}_{y, y', q}} C_{y, y', q} \},$$

hence $\sigma_{E'} = 0$, and then by compatibility $\sigma_C(q) = 0$, that is, $q \in \text{supp}(\eta_{C})$ and again this case can be ruled out by a suitable choice of q. The last possible situation is when x and the moving point $y \in C$ coalesce, in which case $X = C \cup E \cup E'$, where this time $C \cap E = \{ q \}, C \cap E' = \{ q \}, E \cap E' = \{ y' \}$ and again $x \in E' - \{ y', q \}$. Writing one last time the Mayer-Vietoris sequence we find that $\sigma_{E'} = 0$ and then $\sigma_E(y') = 0$ and $\sigma_{C}(y) = 0$, that is, $y \in \text{supp}(\eta_{C})$ and then σ_{C} is uniquely determined up to a constant. Finally $\sigma_E \in H^0(E, O_E(1)(-y'))$ is also uniquely specified by the gluing condition $\sigma_{E}(q) = \sigma_C(q)$. All in all, $H_0 \cap \bar{Z}_g = \# \text{supp}(\eta_C) = g - 2$.

This discussion singles out an irreducible component $\Xi \subset \chi_{s}(\mathcal{X}_g) \subset \mathcal{C}$ of the intersection $\chi_{s}(\mathcal{X}_g) \cap f^{-1}(B'_0)$, namely

$$\Xi = \{ [(C \cup \{ y, q \} E, \eta_C, \eta_E), x] : y \in \text{supp}(\eta_{C}), x = y \in X_{\text{sing}} \},$$
where we recall that \(f : C \to \mathcal{S}_g^- \) is the universal spin curve. Since \(\Xi \subset \text{Sing}(\chi_*(\mathcal{X}_g)) \), it follows after a simple local analysis that each point in \(\tau^{-1}(H_0) \) should be counted with multiplicity 2.

Remark 5.5. An partial independent check of Theorem 0.4 is obtained by computing using the Porteous formula the coefficient \(\lambda \) in the expression of \([Z_g] \). By an abuse of notation we still denote by \(f : C \to \mathcal{S}_g^- \) the restriction of the universal spin curve to the locus of smooth curves and \(\eta \in \text{Pic}(C) \) the spin bundle of relative degree \(g - 1 \). Then \(Z_g \) is the push-forward via \(f : C \to \mathcal{S}_g^- \) of the degeneration locus of the sheaf morphism \(\phi : f_* (\eta) \to J_1 (\eta) \) (both these sheaves are locally free away a subset of codimension 3 in \(\mathcal{S}_g^- \) and throwing away this locus has no influence on divisor class calculations). Since \(\det (f_* \eta) = (f_* \eta)^{\otimes 2} \), it follows that \(c_1 (f_* (\eta)) = -\lambda / 4 \), whereas the Chern classes of the first jet bundle \(J_1 (\eta) \) are calculated using the standard exact sequence on \(C \)

\[
0 \to \eta \otimes \omega_f \to J_1 (\eta) \to \eta \to 0.
\]

Remembering Mumford’s formula \(f_* (c_1^2 (\omega_f)) = 12 \lambda \), one finally writes that

\[
[Z_g] = f_* c_2 \left(J_1 (\eta) - f_* (\eta) \right) = f_* \left(\frac{3}{4} c_1 (\omega_f)^2 - 2 c_1 (\omega_f) \cdot c_1 (f_* (\eta)) \right) = (g + 8) \lambda \in \text{Pic}(\mathcal{S}_g^-).
\]

6. A DIVISOR OF SMALL SLOPE ON \(\overline{M}_{12} \)

The aim of this section is to construct an effective divisor \(D \in \text{Eff}(\overline{M}_{12}) \) of slope \(s(D) < 6 + 12 / 13 \), that is, violating the Slope Conjecture. As pointed out in the proof of Theorem 0.3 this is precisely what is needed to show that \(\overline{S}_{12} \) is of general type.

Theorem 6.1. The following locus consisting of curves of genus 12

\(\mathcal{D}_{12} := \{ [C] \in \mathcal{M}_{12} : \exists L \in W_1^1 (C) \text{ with } \mu_0 (L) : \text{Sym}^2 H^0 (C, L) \to H^0 (C, L^{\otimes 2}) \text{ not injective} \} \)

is a divisor on \(\mathcal{M}_{12} \). The class of its compactification inside \(\overline{M}_{12} \) equals

\[
\overline{\mathcal{D}}_{12} \equiv 13245 \lambda - 1926 \delta_0 - 9867 \delta_1 - \sum_{j=2}^{6} b_j \delta_j \in \text{Pic}(\overline{M}_{12}),
\]

where \(b_j \geq b_1 \) for \(j \geq 2 \). In particular, \(s(\overline{\mathcal{D}}_{12}) = \frac{4415}{642} < 6 + \frac{12}{13} \).

This implies the following upper bound for the slope \(s(\overline{M}_{12}) \) of the moduli space:

Corollary 6.2.

\[
6 + \frac{10}{12} \leq s(\overline{M}_{12}) := \inf_{D \in \text{Eff}(\overline{M}_{12})} s(D) \leq \frac{4415}{642} \left(= 6 + \frac{10}{12} + \frac{14}{321} \right).
\]

Another immediate application, via [Log], [F1], concerns the birational type of \(\overline{M}_{g,n} \):

Theorem 6.3. The moduli space of \(n \)-pointed curves \(\overline{M}_{12,n} \) is of general type for \(n \geq 11 \).

The divisor \(\mathcal{D}_{12} \) is constructed as the push-forward of a codimension 3 cycle in the stack \(\mathcal{G}_{14} \to \mathcal{M}_{12} \) classifying linear series \(\mathcal{G}_{14} \). We describe the construction of this cycle, then extend this determinantal structure over a partial compactification of \(\mathcal{M}_{12} \). This will be essential to understand the intersection of \(\mathcal{D}_{12} \) with the boundary divisors \(\Delta_0 \) and \(\Delta_1 \) of \(\overline{M}_{12} \). We denote by \(\mathcal{M}_{12}^p \) the open substack of \(\mathcal{M}_{12} \) consisting of curves...
Let \(\pi: \mathcal{M}_{12,1} \to \mathcal{M}_{12} \) be the universal curve and then \(p_2: \mathcal{M}_{12,1}^{\circ} \times_{\mathcal{M}_{12}} \mathcal{G}_{14}^4 \to \mathcal{G}_{14}^4 \) denotes the natural projection. If \(L \) is a Poincaré bundle over \(\mathcal{M}_{12,1}^{\circ} \times_{\mathcal{M}_{12}} \mathcal{G}_{14}^4 \) (or over an étale cover), then by Grauert’s Theorem, both \(\mathcal{E} := (p_2)_*(\mathcal{L}) \) and \(\mathcal{F} := (p_2)_*(\mathcal{L}^\otimes 2) \) are vector bundles over \(\mathcal{G}_{14}^4 \), with \(\text{rank}(\mathcal{E}) = 5 \) and \(\text{rank}(\mathcal{F}) = h^0(C,L^\otimes 2) = 17 \) respectively. There is a natural vector bundle morphism over \(\mathcal{G}_{14}^4 \) given by multiplication of sections,

\[
\phi: \text{Sym}^2(\mathcal{E}) \to \mathcal{F},
\]

and we denote by \(\mathcal{U}_{12} \subset \mathcal{G}_{14}^4 \) its first degeneracy locus. We set \(\mathcal{D}_{12} := \sigma_*(\mathcal{U}_{12}) \). Since the degeneracy locus \(\mathcal{U}_{12} \) has expected codimension 3 inside \(\mathcal{G}_{14}^4 \), the locus \(\mathcal{D}_{12} \) is a virtual divisor on \(\mathcal{M}_{12}^{\circ} \).

We extend the vector bundles \(\mathcal{E} \) and \(\mathcal{F} \) over a partial compactification of \(\mathcal{G}_{14}^4 \) given by limit \(g_{14}^4 \). We denote by \(\Delta^p_C \subset \Delta_1 \subset \mathcal{M}_{12} \) the locus of curves \([C \cup y E] \), where \(E \) is an arbitrary elliptic curve, \([C] \in \mathcal{M}_{11} \) is a Brill-Noether general curve and \(y \in C \) is an arbitrary point. We then denote by \(\Delta^p_C \subset \Delta_0 \subset \mathcal{M}_{12} \) the locus consisting of curves \([C_{y\eta}] \in \Delta_0 \), where \([C,q] \in \mathcal{M}_{11,1} \) is Brill-Noether general and \(y \in C \) is arbitrary, as well as their degenerations \([C \cup q E_{\infty}] \) where \(E_{\infty} \) is a rational nodal curve. Once we set

\[
\mathcal{M}_{12}^p := \mathcal{M}_{12} \cup \Delta^p_0 \cup \Delta^p_C \subset \mathcal{M}_{12},
\]

can extend the morphism \(\sigma \) to a proper morphism

\[
\sigma: \mathcal{G}_{14}^4 \to \mathcal{M}_{12}^p,
\]

from the stack \(\mathcal{G}_{14}^4 \) of limit linear series \(g_{14}^4 \) over the partial compactification \(\mathcal{M}_{12}^p \) of \(\mathcal{M}_{12} \).

We extend the vector bundles \(\mathcal{E} \) and \(\mathcal{F} \) over the stack \(\mathcal{G}_{14}^4 \). The proof of the following result proceeds along the lines of the proof of Proposition 3.9 in [F1]:

Proposition 6.4. There exist two vector bundles \(\mathcal{E} \) and \(\mathcal{F} \) defined over \(\mathcal{G}_{14}^4 \) with \(\text{rank}(\mathcal{E}) = 5 \) and \(\text{rank}(\mathcal{F}) = 17 \), together with a vector bundle morphism \(\phi: \text{Sym}^2(\mathcal{E}) \to \mathcal{F} \), such that the following statements hold:

- For \([C,L] \in \mathcal{G}_{14}^4 \), with \([C] \in \mathcal{M}_{12}^p \), we have that

\[
\mathcal{E}(C,L) = H^0(C,L) \quad \text{and} \quad \mathcal{F}(C,L) = H^0(C,L^\otimes 2).
\]

- For \(t = (C \cup_y E, l_C, l_E) \in \sigma^{-1}(\Delta^p_C) \), where \(g(C) = 11, g(E) = 1 \) and \(l_C = |L_C| \) is such that \(L_C \in W^1_{14}(C) \) has a cusp at \(y \in C \), then \(\mathcal{E}(t) = H^0(C,L_C) \) and

\[
\mathcal{F}(t) = H^0(C,L_C^\otimes 2(-2y)) \oplus \mathbb{C} \cdot u^2,
\]

where \(u \in H^0(C,L_C) \) is any section such that \(\text{ord}_y(u) = 0 \). If \(L_C \) has a base point at \(y \), then \(\mathcal{E}(t) = H^0(C,L_C) = H^0(C,L_C \otimes \mathcal{O}_C(-y)) \) and the image of a natural map \(\mathcal{F}(t) \to H^0(C,L_C^\otimes 2) \) is the subspace \(H^0(C,L_C^\otimes 2 \otimes \mathcal{O}_C(-2y)) \).
• Fix \(t = [C_{yy} := C/y \sim q, L] \in \sigma^{-1}(\Delta_0^p) \), with \(q, y \in C \) and \(L \in \overline{W}_{14}(C_{yy}) \) such that \(h^0(C, \nu^*L \otimes \mathcal{O}_C(-y - q)) = 4 \), where \(\nu : C \to C_{yy} \) is the normalization map. In the case when \(L \) is locally free we have that \(\mathcal{E}(t) = H^0(C, \nu^*L) \) and \(\mathcal{F}(t) = H^0(C, \nu^*L \otimes \mathcal{O}_C(-y - q)) \oplus \mathcal{C} \cdot u^2 \), where \(u \in H^0(C, \nu^*L) \) is any section not vanishing at \(y \) and \(q \). In the case when \(L \) is not locally free, that is, \(L \in \overline{W}_{14}(C_{yy}) - W_{14}^A(C_{yy}) \), then \(L = \nu_*(A) \), where \(A \in W_{13}(C) \) and the image of the natural map \(\mathcal{F}(t) \to H^0(C, \nu^*L \otimes \mathcal{O}_C) \) is the subspace \(H^0(C, A^{\otimes 2}) \).

To determine the push-forward \(\overline{\mathcal{G}_{12}}^{\text{virt}} = \sigma_*(c_3(F - \text{Sym}^2(E)) \in A^4(M_{12}^\circ) \), we study the restriction of the morphism \(\mathcal{G}_4 \) along the pull-backs of two curves sitting in the boundary of \(\overline{M}_{12} \) and which are defined as follows: We fix a general pointed curve \([C, q] \in M_{11,1} \) and a general elliptic curve \([E, y] \in M_{11,1} \). Then we consider the families

\[C_0 := \{ C/y \sim q : y \in C \} \subset \Delta_0^p \subset \overline{M}_{12} \text{ and } C_1 := \{ C \cup_\pi E : y \in C \} \subset \Delta_1^p \subset \overline{M}_{12}. \]

These curves intersect the generators of \(\text{Pic}(\overline{M}_{12}) \) as follows:

\[C_0 \cdot \lambda = 0, \quad C_0 \cdot \delta_0 = \deg(\omega_{C_{yy}}) = 22, \quad C_0 \cdot \delta_1 = 1 \text{ and } C_0 \cdot \delta_j = 0 \text{ for } 2 \leq j \leq 6, \text{ and} \]
\[C_1 \cdot \lambda = 0, \quad C_1 \cdot \delta_0 = 0, \quad C_1 \cdot \delta_1 = -\deg(K_C) = -20 \text{ and } C_1 \cdot \delta_j = 0 \text{ for } 2 \leq j \leq 6. \]

Next, we fix a general pointed curve \([C, q] \in M_{11,1} \) and describe the geometry of the pull-back \(\sigma^*(C_0) \subset \mathcal{G}_{12}^4 \). We consider the determinantal 3-fold

\[Y := \{ (y, L) \in C \times W_{13}^A(C) : h^0(C, L \otimes \mathcal{O}_C(-y - q)) = 4 \} \]

together with the projection \(\pi_1 : Y \to C \). Inside \(Y \) we consider the following divisors

\[\Gamma_1 := \{ (y, A \otimes \mathcal{O}_C(y)) : y \in C, \ A \in W_{13}^A(C) \} \text{ and} \]
\[\Gamma_2 := \{ (y, A \otimes \mathcal{O}_C(q)) : y \in C, \ A \in W_{13}^A(C) \} \]

intersecting transversally along the curve \(\Gamma := \{ (q, A \otimes \mathcal{O}_C(q)) : A \in W_{13}^A(C) \} \cong W_{13}^A(C) \). We introduce the blow-up \(Y' \to Y \) of \(Y \) along \(\Gamma \) and denote by \(E_\Gamma \subset Y' \) the exceptional divisor and by \(\Gamma_1, \Gamma_2 \subset Y' \) the strict transforms of \(\Gamma_1 \) and \(\Gamma_2 \) respectively. We then define \(\tilde{Y} := Y'/\Gamma_1 \cong \Gamma_2 \), to be the variety obtained from \(Y' \) by identifying the divisors \(\Gamma_1 \) and \(\Gamma_2 \) over each \((y, A) \in C \times W_{13}^A(C) \). Let \(\epsilon : \tilde{Y} \to Y \) be the projection map.

Proposition 6.5. With notation as above, one has a birational morphism of 3-folds

\[f : \sigma^*(C_0) \to \tilde{Y}, \]

which is an isomorphism outside a curve contained in \(\epsilon^{-1}(\pi_1^{-1}(q)) \). The map \(f_{|\epsilon^{-1}(\pi_1^{-1}(q))} \) corresponds to forgetting the \(E_\infty \)-aspect of each limit linear series. Accordingly, the vector bundles \(\mathcal{E}_1^\sigma(C_0) \) and \(\mathcal{F}_1^\sigma(C_0) \) are pull-backs under \(\epsilon \circ f \) of vector bundles on \(Y \).

Proof. We fix a point \(y \in C - \{ q \} \) and denote by \(\nu : C \to C_{yy} \) the normalization map, with \(\nu(y) = \nu(q) \). We investigate the variety \(\overline{W}_{14}(C_{yy}) \subset \overline{\text{Pic}}^4(C_{yy}) \) of torsion-free sheaves \(L \) on \(C_{yy} \) with \(\deg(L) = 14 \) and \(h^0(C_{yy}, L) \geq 5 \). A locally free \(L \in \overline{W}_{14}(C_{yy}) \) is determined by \(\nu^*(L) \in W_{14}(C) \), which has the property \(h^0(C, \nu^*L \otimes \mathcal{O}_C(-y - q)) = 4 \) (use that since \(W_{12}^A(C) = \emptyset \), there exists a section of \(L \) that does not vanish simultaneously at both \(y \) and \(q \)). However, the line bundles of type \(A \otimes \mathcal{O}_C(y) \) or \(A \otimes \mathcal{O}_C(q) \) with \(A \in W_{13}^A(C) \), do not appear in this association, though \((y, A \otimes \mathcal{O}_C(y)), (y, A \otimes \mathcal{O}_C(q)) \in \)
Y. In fact, they correspond to the situation when $L \in \overline{W}_4^{14}(C_{yy})$ is not locally free, in which case necessarily $L = \nu_*(A)$ for some $A \in W^{14}_4(C)$. Thus, for a point $y \in C - \{q\}$, there is a birational morphism $\pi^{-1}_1(y) : \overline{W}_4^{14}(C_{yy})$ which is an isomorphism over the locus of locally free sheaves. More precisely, $\overline{W}_4^{14}(C_{yy})$ is obtained from $\pi^{-1}_1(y)$ by identifying the disjoint divisors $\Gamma_1 \cap \pi^{-1}_1(y)$ and $\Gamma_2 \cap \pi^{-1}_1(y)$.

A special analysis is required when $y = q$, when C_{yy} degenerates to $C \cup q E_\infty$, where E_∞ is a rational nodal cubic. If $\{l_C, l_{E_\infty}\} \in \sigma^{-1}([C \cup q E_\infty])$, then the corresponding Brill-Noether numbers with respect to q satisfy $\rho(l_C, q) \geq 0$ and $\rho(l_{E_\infty}, q) \leq 2$. The statement about the restrictions $\mathcal{E}|_{\sigma^*(C_0)}$ and $\mathcal{F}|_{\sigma^*(C_0)}$ follows, because both restrictions are defined by dropping the information coming from the elliptic tail.

To describe $\sigma^*(C_1) \subseteq \overline{\Theta}_4^{14}$, where $[C] \in M_{11}$, we define the determinantal 3-fold

$$X := \{(y, L) \in C \times W^{14}_4(C) : h^0(L \otimes \mathcal{O}_C(-2y)) = 4\}.$$

In what follows we use notation from [EH1], to denote vanishing sequences of limit linear series:

Proposition 6.6. With notation as above, the 3-fold X is an irreducible component of $\sigma^*(C_1)$. Moreover one has that $c_3((\mathcal{F} - \text{Sym}^2 \mathcal{E})|_{\sigma^*(C_1)}) = c_3((\mathcal{F} - \text{Sym}^2 \mathcal{E})|_{X})$.

Proof. By the additivity of the Brill-Noether number, if $\{l_C, l_E\} \in \sigma^{-1}([C \cup q E])$, we have that $2 = \rho(12, 4, 14) \geq \rho(l_C, y) + \rho(l_E, y)$. Since $\rho(l_C, y) \geq 0$, we obtain that $\rho(l_C, y) \leq 2$. If $\rho(l_E, y) = 0$, then $l_E = 9y + |\mathcal{O}_E(5y)|$, that is, l_E is uniquely determined, while the aspect $l_C \in G^{4}_{14}(C)$ is a complete g_{14}^1 with a cusp at the variable point $y \in C$. This gives rise to an element from X. The remaining components of $\sigma^*(C_1)$ are indexed by Schubert indices $\tilde{\alpha} := (0 \leq \alpha_0 \leq \cdots \leq \alpha_4 \leq 10)$ such that $\tilde{\alpha} > (0, 1, 1, 1, 1)$ and $5 \leq \sum_{j=0}^4 \alpha_j \leq 7$. For such $\tilde{\alpha}$, we set $\tilde{\alpha}^c := (10 - \alpha_4, \ldots, 10 - \alpha_0)$ to be the complementary Schubert index, then define

$$X_{\tilde{\alpha}} := \{(y, l_C) \in C \times G^{4}_{14}(C) : \rho_{l_C}(y) \geq \tilde{\alpha}\} \text{ and } Z_{\tilde{\alpha}} := \{l_E \in G^{4}_{14}(E) : \rho_{l_E}(y) \geq \tilde{\alpha}^c\}.$$

Then $\sigma^*(C_1) = X + \sum_{\tilde{\alpha}} X_{\tilde{\alpha}} \times Z_{\tilde{\alpha}}$. The last claim follows by dimension reasons. Since $\dim X_{\tilde{\alpha}} = 1 + \rho(11, 4, 14) - \sum_{j=0}^4 \alpha_j < 3$, for every $\tilde{\alpha} > (0, 1, 1, 1, 1)$ and the restrictions of both \mathcal{E} and \mathcal{F} are pulled-back from $X_{\tilde{\alpha}}$, one obtains that $c_3(\mathcal{F} - \text{Sym}^2 \mathcal{E})|_{X_{\tilde{\alpha}} \times Z_{\tilde{\alpha}}} = 0$. □

We also recall standard facts about intersection theory on Jacobians. For a Brill-Noether general curve $[C] \in \mathcal{M}_g$, we denote by \mathcal{P} a Poincaré bundle on $C \times \text{Pic}^d(C)$ and by $\pi_1 : C \times \text{Pic}^d(C) \to C$ and $\pi_2 : C \times \text{Pic}^d(C) \to \text{Pic}^d(C)$ the projections. We define the cohomology class $\eta = \pi_1^!([\text{point}]) \in H^2(C \times \text{Pic}^d(C))$, and if $\delta_1, \ldots, \delta_2g \in H^1(C, \mathbb{Z}) \cong H^1(\text{Pic}^d(C), \mathbb{Z})$ is a symplectic basis, then we set

$$\gamma := - \sum_{\alpha=1}^{2^g} \left(\pi_1^!(\delta_{\alpha}) \cdot \pi_2^!(\delta_{\eta + \alpha}) - \pi_1^!(\delta_{\eta + \alpha}) \cdot \pi_2^!(\delta_{\alpha})\right) \in H^2(C \times \text{Pic}^d(C)).$$

One has the formula $c_1(\mathcal{P}) = d\eta + \gamma$, corresponding to the Hodge decomposition of $c_1(\mathcal{P})$, as well as the relations $\gamma^2 = 0$, $\eta \gamma = 0$, $\eta^2 = 0$ and $\gamma^2 = -2\eta \pi_2^!(\theta)$. On $W^r_4(C)$ there is a tautological rank $r + 1$ vector bundle $\mathcal{M} := (\pi_2)_* (\mathcal{P}|_{C \times W^r_4(C)})$. To compute the Chern numbers of \mathcal{M} we employ the Harris-Tu formula [HT]. We write $\sum_{i=0}^r c_i(\mathcal{M}^i) =$
(1 + x_1) \cdots (1 + x_{r+1}), and then for every class \(\zeta \in H^*(\text{Pic}^d(C), \mathbb{Z}) \) one has the following formula:

\[
x^{i_1} \cdots x^{i_{r+1}} \zeta = \det \left(\frac{g_{g-r+i_j-j+t}}{(g + r - d + i_j - j + t)} \right)_{1 \leq j, t \leq r+1}.
\]

We compute the classes of the 3-folds that appear in Propositions 6.5 and 6.6.

Proposition 6.7. Let \([C, q] \in M_{11, 1}\) be a Brill-Noether general pointed curve. If \(\mathcal{M} \) denotes the tautological rank 5 vector bundle over \(W^4_{14}(C) \) and \(c_i := c_i(\mathcal{M}) \in H^{2i}(W^4_{14}(C), \mathbb{C}) \), then one has the following relations:

(i) \([X] = \pi_2^*(c_4) - 6\eta\theta \pi_2^*(c_2) + (48\eta + 2\gamma)\pi_2^*(c_3) \in H^{8}(C \times W^4_{14}(C), \mathbb{C}) \).

(ii) \([Y] = \pi_2^*(c_4) - 2\eta\theta \pi_2^*(c_2) + (13\eta + \gamma)\pi_2^*(c_3) \in H^{8}(C \times W^4_{14}(C), \mathbb{C}) \).

Proof. We start by noting that \(W^4_{14}(C) \) is a smooth 6-fold isomorphic to the symmetric product \(C_6 \). We realize \(X \) as the degeneracy locus of a vector bundle morphism defined over \(C \times W^4_{14}(C) \). For each pair \((y, L) \in C \times W^4_{14}(C)\), there is a natural map

\[H^0(C, L \otimes \mathcal{O}_2) \to H^0(C, L)^{\nu} \]

which globalizes to a vector bundle morphism \(\zeta : \mathcal{J}(\mathcal{P})^\nu \to \pi_2^*(\mathcal{M})^\nu \) over \(C \times W^4_{14}(C) \). Then we have the identification \(X = Z_1(\zeta) \) and the Thom-Porteous formula gives that \([X] = c_4(\pi_2^*(\mathcal{M}) - J_1(\mathcal{P}^\nu))\). From the usual exact sequence over \(C \times \text{Pic}^{14}(C) \)

\[0 \to \pi_1^*(K_C) \otimes \mathcal{P} \to J_1(\mathcal{P}) \to \mathcal{P} \to 0, \]

we can compute the total Chern class of the jet bundle

\[c_t(J_1(\mathcal{P})^\nu)^{-1} = \left(\sum_{j \geq 0} (d(L)\eta + \gamma)^j \right) \cdot \left(\sum_{j \geq 0} ((2g(C) - 2 + d(L))\eta + \gamma)^j \right) = 1 - 6\eta\theta + 48\eta + 2\gamma, \]

which quickly leads to the formula for \([X]\). To compute \([Y]\) we proceed in a similar way. We denote by \(\mu, \nu : C \times C \times \text{Pic}^{14}(C) \to C \times \text{Pic}^{14}(C) \) the two projections, by \(\Delta \subset C \times C \times \text{Pic}^{14}(C) \) the diagonal and we set \(\Gamma_q := \{ q \} \times \text{Pic}^{14}(C) \). We introduce the rank 2 vector bundle \(\mathcal{B} := (\mu)_*(\nu^*(\mathcal{P}) \otimes \mathcal{O}_{\Delta \times \nu^*(\mathcal{V}_q)}) \) defined over \(C \times W^4_{14}(C) \). We note that there is a bundle morphism \(\chi : \mathcal{B}^\nu \to (\pi_2)^*(\mathcal{M})^\nu \), such that \(Y = Z_1(\chi) \). Since we also have that

\[c_t(\mathcal{B}^\nu)^{-1} = (1 + (d(L)\eta + \gamma) + (d(L)\eta + \gamma)^2 + \cdots) (1 - \eta), \]

we immediately obtained the stated expression for \([Y]\). \(\square \)

Proposition 6.8. Let \([C] \in M_{11} \) and denote by \(\mu, \nu : C \times C \times \text{Pic}^{14}(C) \to C \times \text{Pic}^{14}(C) \) the natural projections. We define the vector bundles \(\mathcal{A}_2 \) and \(\mathcal{B}_2 \) on \(C \times \text{Pic}^{14}(C) \) having fibres

\[\mathcal{A}_2(y, L) = H^0(C, L^\otimes 2 \otimes \mathcal{O}_C(-2y)) \text{ and } \mathcal{B}_2(y, L) = H^0(C, L^\otimes 2 \otimes \mathcal{O}_C(-y - q)), \]

respectively. One has the following formulas:

\[c_1(\mathcal{A}_2) = -4\theta - 4\gamma - 76\eta, \quad c_1(\mathcal{B}_2) = -4\theta - 2\gamma - 27\eta, \]

\[c_2(\mathcal{A}_2) = 8\theta^2 + 280\eta\theta + 16\gamma\theta, \quad c_2(\mathcal{B}_2) = 8\theta^2 + 100\eta\theta + 8\theta\gamma, \]

\[c_3(\mathcal{A}_2) = -\frac{32}{3}\theta^3 - 512\eta\theta^2 - 32\theta^2\gamma \quad \text{and} \quad c_3(\mathcal{B}_2) = -\frac{32}{3}\theta^3 - 184\eta\theta^2 - 16\theta^2\gamma. \]

Proof. Immediate application of Grothendieck-Riemann-Roch with respect to \(\nu \). \(\square \)
Before our next result, we recall that if \mathcal{V} is a vector bundle of rank $r + 1$ on a variety X, we have the formulas:

(i) $c_1(\text{Sym}^2(\mathcal{V})) = (r + 2)c_1(\mathcal{V})$.
(ii) $c_2(\text{Sym}^2(\mathcal{V})) = \frac{r(r+3)}{6}c_1^2(\mathcal{V}) + (r+3)c_2(\mathcal{V})$.
(iii) $c_3(\text{Sym}^2(\mathcal{V})) = \frac{r(r+4)(r-1)}{6}c_1^3(\mathcal{V}) + (r+5)c_3(\mathcal{V}) + (r^2 + 4r - 1)c_1(\mathcal{V})c_2(\mathcal{V})$.

We expand $\sigma_*(c_3(\mathcal{F} - \text{Sym}^2\mathcal{E})) \equiv a\lambda - b_0\delta_0 - b_1\delta_1 \in A^1(\mathcal{M}_{12})$ and determine the coefficients a, b_0 and b_1. This will suffice in order to compute $s(\mathcal{D}_{12})$.

Theorem 6.9. Let $[C] \in \mathcal{M}_{11}$ be a Brill-Noether general curve and denote by $C_1 \subset \Delta_1 \subset \mathcal{M}_{12}$ the associated test curve. Then the coefficient of δ_1 in the expansion of \mathcal{D}_{22} is equal to

$$b_1 = \frac{1}{2g(C) - 2} \sigma^*(C_1) \cdot c_3(\mathcal{F} - \text{Sym}^2\mathcal{E}) = 9867.$$

Proof. We intersect the degeneracy locus of the map $\phi : \text{Sym}^2(\mathcal{E}) \to \mathcal{F}$ with the 3-fold $\sigma^*(C_1) = X + \sum_\alpha X_\alpha \times Z_\alpha$. As already explained in Proposition 6.6, it is enough to estimate the contribution coming from X and we can write

$$\sigma^*(C_1) \cdot c_3(\mathcal{F} - \text{Sym}^2\mathcal{E}) = c_3(\mathcal{F}|_X) - c_3(\text{Sym}^2\mathcal{E}|_X) - c_1(\mathcal{F}|_X)c_2(\text{Sym}^2\mathcal{E}|_X) + 2c_1(\text{Sym}^2\mathcal{E}|_X)c_2(\text{Sym}^2\mathcal{E}|_X) - c_1(\text{Sym}^2\mathcal{E}|_X)c_2(\mathcal{F}|_X) + c_1(\text{Sym}^2\mathcal{E}|_X)c_1(\mathcal{F}|_X) - c_3(\text{Sym}^2\mathcal{E}|_X).$$

We are going to compute each term in the right-hand-side of this expression.

Recall that we have constructed in Proposition 6.7 a vector bundle morphism $\zeta : J_1(\mathcal{P})^\vee \to \pi_5^*(\mathcal{M})^{\vee}$. We consider the kernel line bundle $\text{Ker}(\zeta)$. If U is the line bundle on X with fibre

$$U(y, L) = \frac{H^0(C, L)}{H^0(C, L \otimes \mathcal{O}_C(-2y))} \hookrightarrow H^0(C, L \otimes \mathcal{O}_{2y})$$

over a point $(y, L) \in X$, then one has an exact sequence over X

$$0 \to U \to J_1(\mathcal{P}) \to \text{Ker}(\zeta)^\vee \to 0.$$

In particular, $c_1(U) = 2\gamma + 48\eta - c_1(\text{Ker}(\zeta))$. The products of the Chern class of $\text{Ker}(\zeta)^\vee$ with other classes on $C \times W_{14}^4(C)$ can be computed from the Harris-Tu formula [HT]:

$$c_1(\text{Ker}(\zeta)^\vee) \cdot \xi|_X = -c_5(\pi_5^*(\mathcal{M})^{\vee} - J_1(\mathcal{P})^\vee) \cdot \xi|_X = -(\pi_5^*(c_5) - 6\eta \pi_5^*(c_3) + (48\eta + 2\gamma) \pi_5^*(c_4)) \cdot \xi|_X,$$

for any class $\xi \in H^2(C \times W_{14}^4(C), \mathcal{C})$.

If A_3 denotes the rank 18 vector bundle on X having fibres $A_3(y, L) = H^0(C, L^{\otimes 2})$, then there is an injective morphism $U^{\otimes 2} \hookrightarrow A_3/A_2$, and we consider the quotient sheaf

$$\mathcal{G} := \frac{A_3/A_2}{U^{\otimes 2}}.$$

Since the morphism $U^{\otimes 2} \twoheadrightarrow A_3/A_2$ vanishes along the locus of pairs (y, L) where L has a base point, \mathcal{G} has torsion along $\Gamma \subset X$. A straightforward local analysis now shows that $\mathcal{F}|_X$ can be identified as a subsheaf of A_3 with the kernel of the map $A_3 \to \mathcal{G}$. Therefore, there is an exact sequence of vector bundles on X

$$0 \to A_2|_X \to \mathcal{F}|_X \to U^{\otimes 2} \to 0,$$

which over a general point of X corresponds to the decomposition

$$\mathcal{F}(y, L) = H^0(C, L^{\otimes 2} \otimes \mathcal{O}_C(-2y)) \oplus \mathcal{C} \cdot u^2,$$
where \(u \in H^0(C, L) \) is such that \(\text{ord}_y(u) = 1 \). The analysis above, shows that the sequence stays exact over the curve \(\Gamma \) as well. Hence
\[
\begin{align*}
c_1(F|_X) &= c_1(A_2|_X) + 2c_1(U), \quad c_2(F|_X) = c_2(A_2|_X) + 2c_1(A_2|_X)c_1(U) \quad \text{and} \\
c_3(F|_X) &= c_3(A_2) + 2c_2(A_2|_X)c_1(U).
\end{align*}
\]
Furthermore, since \(E|_X = \pi_2^*(M)|_X \), we obtain that:
\[
\begin{align*}
\sigma^*(C_1) \cdot c_3(F - \text{Sym}^2E) &= c_3(A_2|_X) + c_2(A_2|_X)c_1(U^\otimes 2) - c_3(\text{Sym}^2\pi_2^*M|_X) - \\
&\left(\frac{r(r + 3)}{2} c_1(\pi_2^*M|_X) + (r + 3)c_2(\pi_2^*M|_X) \right) \left(c_1(A_2|_X) + c_1(U^\otimes 2) - 2(r + 2)c_1(\pi_2^*M|_X) \right) - \\
&-(r + 2)c_1(\pi_2^*M|_X)c_2(A_2|_X) - (r + 2)c_1(\pi_2^*M|_X)c_1(A_2|_X)c_1(U^\otimes 2) + \\
&(r + 2)^2c_1(\pi_2^*M|_X)c_1(A_2|_X) + (r + 2)^2c_1^2(\pi_2^*M|_X)c_1(U^\otimes 2) - (r + 2)^3c_1^3(\pi_2^*M|_X).
\end{align*}
\]
As before, \(c_1(\pi_2^*M|_X) = \pi_2^*(c_1) \in H^2_1(X, \mathbb{C}) \). The coefficient of \(c_1(\text{Ker}(\zeta)) \) in the product \(\sigma^*(C_1) \cdot c_3(F - \text{Sym}^2E) \) is evaluated via \(\mathcal{L} \). The part of this product that does not contain \(c_1(\text{Ker}(\zeta)) \) equals
\[
\begin{align*}
28\pi_2^2(c_2)\theta - 88\pi_2^2(c_1^2)\theta + 440\eta\pi_2^2(c_1^2) - 53\pi_2^2(c_1c_2) - \frac{32}{3}\theta^3 + 128\eta\theta^2 - 432\eta\theta\pi_2^2(c_1) \\
+ 64\pi_2^2(c_1^3) - 140\eta\pi_2^2(c_2) + 48\theta^2\pi_2^2(c_1) + 9\pi_2^2(c_3) \in H^0_0(C \times W^3_{14}(C), \mathbb{C}).
\end{align*}
\]
Multiplying this quantity by the class \([X]\) obtained in Proposition \(\ref{Proposition6.7} \) and then adding to it the contribution coming from \(c_1(\text{Ker}(\zeta)) \), one obtains a homogeneous polynomial of degree 7 in \(\eta, \theta \) and \(\pi_2^2(\pi_1) \) for \(1 \leq i \leq 4 \). The only non-zero monomials are those containing \(\eta \). After retaining only these monomials, the resulting degree 6 polynomial in \(\theta, c_1 \in H^0_1(W_{14}^3(C), \mathbb{Z}) \) can be brought to a manageable form, by noting that, since \(h^1(C, L) = 1 \), the classes \(c_i \) are independent. Precisely, if one fixes a divisor \(D \in C_e \) of large degree, there is an exact sequence
\[
0 \to M \to (\pi_2)_*(\mathcal{P} \otimes \mathcal{O}(\pi^*D)) \to (\pi_2)_*(\mathcal{P} \otimes \mathcal{O}(\pi_1^*D)|\pi_1^*D) \to R^1\pi_{2*}(\mathcal{P}|_{C \times W^3_{14}(C)}) \to 0,
\]
from which, via the well-known fact \(c_i((\pi_2)_*(\mathcal{P} \otimes \mathcal{O}(\pi_1^*D))) = \theta^i \), it follows that
\[
c_i R^1\pi_{2*}(\mathcal{P}|_{C \times W^3_{14}(C)}) \cdot e^{-\theta} = \sum_{i=0}^{4}(-1)^i c_i.
\]
Hence \(c_{i+1} = \theta^i c_i / i! - i\theta^{i+1} / (i+1)! \), for all \(i \geq 2 \). After routine manipulations, one finds that \(b_1 = \sigma^*(C_1) \cdot c_3(F - \text{Sym}^2E) / 20 = 9867 \).

Theorem 6.10. Let \([C, q] \in M_{1,1,1}\) be a Brill-Noether general pointed curve and we denote by \(C_0 \subset \Delta_0 \subset \overline{M}_{12} \) the associated test curve. Then \(\sigma^*(C_0) \cdot c_3(F - \text{Sym}^2E) = 22b_0 - b_1 = 32505 \). It follows that \(b_0 = 1926 \).

Proof. As already noted in Proposition \(\ref{Proposition6.5} \) the vector bundles \(\mathcal{E}_{[\sigma^*(C_0)]} \) and \(\mathcal{F}_{[\sigma^*(C_0)]} \) are both pull-backs of vector bundles on \(Y \) and we denote these vector bundles \(\mathcal{E} \) and \(\mathcal{F} \) as well, that is, \(\mathcal{E}_{[\sigma^*(C_0)]} = (e \circ f)^*(\mathcal{E}_Y) \) and \(\mathcal{F}_{[\sigma^*(C_0)]} = (e \circ f)^*(\mathcal{F}_Y) \). Like in the proof of Theorem \(\ref{Theorem6.9} \) we evaluate each term appearing in \(\sigma^*(C_0) \cdot c_3(F - \text{Sym}^2E) \).

Let \(V \) be the line bundle on \(Y \) with fibre
\[
V(y, L) = \frac{H^0(C, L)}{H^0(C, L \otimes \mathcal{O}_C(-y - q))} \cong H^0(C, L \otimes \mathcal{O}_{y+q})
\]
over a point \((y, L) \in Y\). There is an exact sequence of vector bundles over \(Y\)
\[
0 \to V \to B \to \text{Ker}(\chi) \to 0,
\]
where \(\chi : B^\vee \to \pi_2^*(M)^\vee\) is the bundle morphism defined in the second part of Proposition 6.7. In particular, \(c_1(V) = 13\eta + \gamma - c_1(\text{Ker}(\chi))\). By using again [HT], we find the following formulas for the Chern numbers of \(\text{Ker}(\chi)\):
\[
c_1(\text{Ker}(\chi)) \cdot \xi_Y = -c_5(\pi_2^*(M)^\vee - B^\vee) \cdot \xi_Y = -\pi_2^2(c_5) + \pi_2^2(c_4)(13\eta + \gamma) - 2\pi_2^2(c_3)\eta\theta \cdot \xi_Y,
\]
for any class \(\xi \in H^2(C \times W_{14}^4(C), \mathbb{C})\). Recall that we introduced the vector bundle \(B_2\) over \(C \times W_{14}^4(C)\) with fibre \(B_2(y, L) = H^0(C, L^\otimes 2 \otimes O_C(-y - q))\). We claim that one has an exact sequence of bundles over \(Y\)
\[
0 \to B_{2|Y} \to \mathcal{F}_{|Y} \to V^\otimes 2 \to 0.
\]
If \(B_3\) is the vector bundle on \(Y\) with fibres \(B_3(y, L) = H^0(C, L^\otimes 2)\), we have an injective morphism of sheaves \(V^\otimes 2 \hookrightarrow B_3/B_2\) locally given by
\[
v^\otimes 2 \mapsto v^2 \mod H^0(C, L^\otimes 2 \otimes O_C(-y - q)),
\]
where \(v \in H^0(C, L)\) is any section not vanishing at \(q\) and \(y\). Then \(\mathcal{F}_{|Y}\) is canonically identified with the kernel of the projection morphism
\[
B_3 \to B_3/B_2 \overset{\otimes 2}{\to}
\]
and the exact sequence (7) now becomes clear. Therefore \(c_1(\mathcal{F}_{|Y}) = c_1(B_{2|Y}) + 2c_1(V)\), \(c_2(\mathcal{F}_{|Y}) = c_2(B_{2|Y}) + 2c_1(B_{2|Y})c_1(V)\) and \(c_3(\mathcal{F}_{|Y}) = c_3(B_{2|Y}) + 2c_2(B_{2|Y})c_1(V)\). The part of the total intersection number \(\sigma^*(C_0) \cdot c_3(\mathcal{F} - \text{Sym}^2\mathcal{E})\) that does not contain \(c_1(\text{Ker}(\chi))\) equals
\[
28\pi_2^2(c_2)\theta - 88\pi_2^2(c_1^2)\theta - 22\eta\pi_2^2(c_1^2) - 53\pi_2^2(c_1c_2) - \frac{32}{3}\theta^3 +
\]
\[-8\eta\theta^2 + 24\eta\theta \pi_2^2(c_1) + 64\pi_2^2(c_1^3) + 7\eta\pi_2^2(c_2) + 48\theta^2 \pi_2^2(c_1) + 9\pi_2^2(c_3) \in H^6(C \times W_{14}^4(C), \mathbb{C})\]
and this gets multiplied with the class \([Y]\) from Proposition 6.7. The coefficient of \(c_1(\text{Ker}(\chi))\) in \(\sigma^*(C_0) \cdot c_3(\mathcal{F} - \text{Sym}^2\mathcal{E})\) equals
\[
-2c_2(B_{2|Y}) - 2(r + 2)^2\pi_2^2(c_1^2) - 2(r + 2)c_1(B_{2|Y})\pi_2^2(c_1) + r(r + 3)\pi_2^2(c_1^2) + 2(r + 3)\pi_2^2(c_2).
\]
All in all, \(22b_0 - b_1 = \sigma^*(C_0) \cdot c_3(\mathcal{F} - \text{Sym}^2\mathcal{E})\) and we evaluate this using (6).

The following result follows from the definition of the vector bundles \(\mathcal{E}\) and \(\mathcal{F}\) given in Proposition 6.4.

Theorem 6.11. Let \([C, q] \in M_{11,1}\) be a Brill-Noether general pointed curve and \(R \subset \overline{M}_{12}\) the pencil obtained by attaching at the fixed point \(q \in C\) a pencil of plane cubics. Then
\[
a - 12b_0 + b_1 = \sigma_+ c_3(\mathcal{F} - \text{Sym}^2\mathcal{E}) \cdot R = 0.
\]

End of the proof of Theorem 6.7. The fact that the virtual divisor \(\mathcal{O}_{12}\) is a genuine divisor on \(M_{12}\) follows from [11]. Assuming by contradiction that for every curve \([C] \in M_{12}\), there exists \(L \in W_{14}^4(C)\) such that \(\mu_0(L)\) is not-injective, one can construct a stable vector bundle \(E\) of rank 2 sitting in an extension
\[
0 \to K_C \otimes L^\vee \to E \to L \to 0,
\]
such that \(h^0(C, E) = h^0(C, L) + h^1(C, L) = 7 \), and for which the Mukai-Petri map
\[\text{Sym}^2 H^0(C, E) \to H^0(C, \text{Sym}^2 E) \]
is not injective. This is a contradiction. To determine the slope of the divisor \(D_{12} \), we write \(D_{12} \equiv a\lambda - \sum_{j=0}^{6} b_j \delta_j \in \text{Pic}(\mathcal{M}_{12}) \). Since \(a/b_0 = 4415/642 \leq 71/10 \), we are in a position to apply Corollary 1.2 from \([FP]\), which gives the inequalities \(b_j \geq b_0 \) for \(1 \leq j \leq 6 \). Therefore \(s(D_{12}) = a/b_0 < 13/2 \).

\[\square \]

REFERENCES

[AJ] D. Abramovich and T. Jarvis, *Moduli of twisted spin curves*, Proceedings American Math. Society, 131 (2003), 685-699.

[CCC] L. Caporaso, C. Casagrande and M. Cornalba, *Moduli of roots of line bundles on curves*, Transactions American Mathematical Society 359 (2007), 3733-3768.

[C] M. Cornalba, *Moduli of curves and theta-characteristics*, in: Lectures on Riemann surfaces (Trieste, 1987), 560-589.

[Cu] F. Cukierman, *Families of Weierstrass points*, Duke Math. Journal 58 (1989), 317-346.

[CS] L. Caporaso and E. Sernesi, *Characterizing curves by their theta-characteristics*, J. reine angew. Mathematik 562 (2003), 101-135.

[De] T. Dedieu, *Severi varieties and self rational maps of K3 surfaces*, arXiv:0704.3163.

[Dol] I. Dolgachev, *Topics in classical algebraic geometry I*, book in preparation, available at http://www.math.lsa.umich.edu/~idolga/.

[DK] I. Dolgachev and V. Kanev, *Polar covariants of plane cubics and quartics*, Advances in Mathematics 98 (1993), 216-301.

[EH1] D. Eisenbud and J. Harris, *Limit linear series: Basic theory*, Inventiones Math. 85 (1986), 337-371.

[EH2] D. Eisenbud and J. Harris, *The Kodaira dimension of the moduli space of curves of genus 23*, Inventiones Math. 90 (1987), 359-387.

[EH3] D. Eisenbud and J. Harris, *Irreducibility of some families of linear series with Brill-Noether number –1, 1*, Annales Scientifiques École Normale Supérieure 22 (1989), 33-53.

[F1] G. Farkas, *Syzygies of curves and the effective cone of \(\overline{\mathcal{M}}_g \)*, Duke Math. Journal 135 (2006), 53-98.

[F2] G. Farkas, *Koszul divisors on moduli spaces of curves*, American Journal of Mathematics 131 (2009), 819-869.

[F3] G. Farkas, *The birational type of the moduli space of even spin curves*, Advances in Mathematics 223 (2010), 433-443.

[FV] G. Farkas and A. Verra, *The intermediate type of certain moduli spaces of curves*, arXiv:0910.3095.

[FL] G. Farkas and K. Ludwig, *The Kodaira dimension of the moduli space of Prym varieties*, arXiv:0804.461, Journal of the European Mathematical Society (2010), to appear.

[FP] G. Farkas and M. Popa, *Effective divisors on \(\overline{\mathcal{M}}_g \), curves on K3 surfaces and the Slope Conjecture*, Journal of Algebraic Geometry 14 (2005), 151-174.

[FKPS] F. Flamini, A. Knutsen, G. Pacienza and E. Sernesi, *Nodal curves with general moduli on K3 surfaces*, Comm. Algebra 36 (2008), 3955–3971.

[HM] J. Harris and D. Mumford, *On the Kodaira dimension of \(\overline{\mathcal{M}}_g \)*, Inventiones Math. 67 (1982), 23-88.

[HT] J. Harris and L. Tu, *Chern numbers of kernel and cokernel bundles*, Inventiones Math. 75 (1984), 467-475.

[La] R. Lazarsfeld, *Brill-Noether-Petri without degenerations*, Journal of Differential Geometry 23 (1986), 299-307.

[Log] A. Logan, *The Kodaira dimension of moduli spaces of curves with marked points*, American Journal of Math. 125 (2003), 105-138.

[Lud] K. Ludwig, *On the geometry of the moduli space of spin curves*, Journal of Algebraic Geometry 19 (2010), 133-171.

[M1] S. Mukai, *Curves and Grassmannians*, in: Algebraic Geometry and Related Topics (1992), eds. J.-H. Yang, Y. Namikawa, K. Ueno, 19-40.

[M2] S. Mukai, *Curves and symmetric spaces I*, American Journal of Mathematics 117 (1995), 1627-1644.

[M3] S. Mukai, *Curves and symmetric spaces II*, preprint.

[M4] S. Mukai, *Curves and K3 surfaces of genus eleven*, in: Moduli of vector bundles, Lecture Notes in Pure and Appl. Math. 179, Dekker (1996), 189-197.

[Sc] G. Scorza, *Sopra le curve canoniche di uno spazio lineaire quelunque e sopra certi loro covarianti quartici*, Atti Accad. Reale Sci. Torino 35 (1900), 765-773.
[T] M. Teixidor i Bigas, *Petri map for rank two bundles with canonical determinant*, Compositio Mathematica **144** (2008), 705-720.

[Ta] A. Tannenbaum, *Families of curves with nodes on K3 surfaces*, Math. Annalen **260** (1982), 239-253.

[TZ] H. Takagi and F. Zucconi, *Scorza quartics of trigonal spin curves and their varieties of power sums*, arXiv:0801.1760.

[V] A. Verra, *The unirationality of the moduli space of curves of genus 14 or lower*, Compositio Mathematica **141** (2005), 1425-1444.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, INSTITUT FÜR MATHEMATIK, UNTER DEN LINDEN 6
10099 BERLIN, GERMANY
E-mail address: farkas@math.hu-berlin.de

UNIVERSITÀ ROMA TRE, DIPARTIMENTI DI MATEMATICA, LARGO SAN LEONARDO MURIALDO
1-00146 ROMA, ITALY
E-mail address: verra@mat.unirom3.it