Poisson modules and generalized geometry

Nigel Hitchin

May 20, 2009

Dedicated to Shing-Tung Yau on the occasion of his 60th birthday

1 Introduction

Generalized complex structures were introduced as a common format for discussing both symplectic and complex manifolds, but the most interesting examples are hybrid objects – part symplectic and part complex. One such class of examples consists of holomorphic Poisson surfaces, but in [5], [6] Cavalcanti and Gualtieri also construct generalized complex 4-manifolds with similar features which are globally neither complex nor symplectic.

In Gualtieri’s development of the subject [9], [10] he introduced generalized analogues of a number of familiar concepts in complex geometry, and notably the idea of a generalized holomorphic bundle. In the symplectic case this is simply a flat connection, but in the Poisson case it is more interesting and coincides with the notion of Poisson module: a locally free sheaf with a Poisson action of the sheaf of functions on it. These play a significant role in Poisson geometry, and can be thought of as semiclassical limits of noncommutative bimodules.

A Poisson structure on a complex surface is a section σ of the anticanonical bundle. It vanishes in general on an elliptic curve. We begin this paper by using algebraic geometric methods to construct rank two Poisson modules on such a surface. The data for this particular construction is located on the elliptic curve: a line bundle together with a pair of sections with no common zero.

Now if we consider the surface as a generalized complex manifold, then where $\sigma \neq 0$, $\sigma^{-1} = B + i\omega$ and we regard the generalized complex structure as being defined by the symplectic form ω transformed by a B-field B. Where $\sigma = 0$ it is the transform
of a complex structure. The nonholomorphic examples in [5], [6] also have a 2-torus on which the generalized complex structure changes type from symplectic to complex. Moreover the torus acquires the structure of an elliptic curve. This provokes the natural question of whether a holomorphic line bundle on this curve with a pair of sections can generate a generalized holomorphic bundle in analogy with the holomorphic Poisson case. This we answer in the rest of the paper, and in fact conclude from the general result that a line bundle with a single section is sufficient. The proof entails replacing the algebraic geometry of the Serre construction by a differential geometric version, and using this as a model in the generalized case.

As an application, we adapt a construction of Polishchuk in [12] to define generalized complex structures on \mathbb{P}^1-bundles over the examples of Cavalcanti and Gualtieri.

2 Poisson modules

2.1 Definitions

Let M be a holomorphic Poisson manifold, defined by a section σ of $\Lambda^2 T$, then the Poisson bracket of two locally defined holomorphic functions f, g is $\{f, g\} = \sigma(df, dg)$. Algebraically, a Poisson module is a locally free sheaf $\mathcal{O}(V)$ with an action $s \mapsto \{f, s\}$ of the structure sheaf with the properties

- $\{f, gs\} = \{f, g\} s + g \{f, s\}$
- $\{(f, g), s\} = \{f, \{g, s\}\} - \{g, \{f, s\}\}$.

The first equation defines a first order linear differential operator

$$D : \mathcal{O}(V) \to \mathcal{O}(V \otimes T)$$

where $\{f, s\} = \langle Ds, df \rangle$. This is simply a holomorphic differential operator whose symbol is $1 \otimes \sigma : V \otimes T^* \to V \otimes T$.

The second equation is a zero curvature condition. Relative to a local basis s_i of V, D is defined by a “connection matrix” A of vector fields:

$$Ds_i = \sum_j s_j \otimes A_{ji}$$

and the condition becomes $\mathcal{L}_A \sigma = A^2 \in \text{End}(V \otimes \Lambda^2 T)$. When σ is non-degenerate and identifies T with T^* then this is a flat connection.
Example: If $X = \sigma(df)$ is the Hamiltonian vector field of f then the Lie derivative \mathcal{L}_X acts on tensors but the action in general involves the second derivative of f. However for the canonical line bundle $K = \Lambda^nT^*$ we have

$$\mathcal{L}_X(dz_1 \wedge \ldots \wedge dz_n) = \sum_i \frac{\partial X_i}{\partial z_i}(dz_1 \wedge \ldots \wedge dz_n)$$

and

$$\sum_i \frac{\partial X_i}{\partial z_i} = \sum_{i,j} \frac{\partial}{\partial z_i} (\sigma^{ij} \frac{\partial f}{\partial z_j}) = \sum_{i,j} \frac{\partial \sigma^{ij}}{\partial z_i} \frac{\partial f}{\partial z_j}$$

which involves only the first derivative of f. Thus

$$\{f, s\} = \mathcal{L}_X s = \langle Ds, df \rangle$$

defines a first order operator. The second condition follows from the integrability of the Poisson structure: since $\sigma(df) = X, \sigma(dg) = Y$ implies $\sigma(d\{f, g\}) = [X, Y]$, it follows that

$$\{\{f, g\}, s\} = \mathcal{L}_{[X,Y]} s = [\mathcal{L}_X, \mathcal{L}_Y]s = \{f, \{g, s\}\} - \{g, \{f, s\}\}.$$

This clearly holds for any power K^m.

2.2 A construction

If a rank m vector bundle V is a Poisson module, then so is the line bundle Λ^mV. Now let M be a complex surface and V a rank 2 holomorphic vector bundle with $\Lambda^2V \cong K^*$ (a line bundle which, as noted above, is a Poisson module for any Poisson structure). Suppose V has two sections s_1, s_2 which are generically linearly independent. Then $s_1 \wedge s_2$ is a holomorphic section σ of $\Lambda^2V \cong K^*$ and so defines a Poisson structure. It vanishes on a curve C. Moreover, where $\sigma \neq 0$, s_1, s_2 are linearly independent and define a trivialization of V and hence a flat connection.

Proposition 1 The flat connection extends to a Poisson module structure on V.

Proof: Let (u_1, u_2) be a local holomorphic basis for V in a neighbourhood of a point of C, then

$$s_i = \sum_j P_{ji} u_j$$
and det $P = 0$ is the local equation for C. Now a connection matrix for D with $Ds_i = 0$ in the basis (u_1, u_2) is given by a matrix A of vector fields such that

$$0 = Ds_i = D\left(\sum_j P_{ji}u_j\right) = \sum_j \sigma(dP_{ji})u_j + \sum_{jk} P_{ji}A_{kj}u_k$$

which has solution

$$A = -\sigma(dP)P^{-1} = -\sigma(dP)\frac{\text{adj} P}{\text{det} P}.$$

This is smooth since det P divides σ.

Finding rank 2 bundles with two sections is a problem that has been considered before, most notably in the study of charge 2 instanton bundles on \mathbb{P}^3 [11]. Our case is similar but one dimension lower. The choice of two sections defines an extension of sheaves:

$$0 \to \mathcal{O} \oplus \mathcal{O} \to \mathcal{O}(V) \to \mathcal{O}_C(L^*K_M^*) \to 0$$

where L is the line bundle on the elliptic curve C where the two, now linearly dependent, sections take their value. Such an extension is classified by an element of global Ext$^1(\mathcal{O}_C(L^*K_M^*), \mathcal{O}) \otimes \mathbb{C}^2$ but local duality gives an isomorphism of sheaves Ext$^1(\mathcal{O}_C, K_M) \cong \mathcal{O}_C(K_C)$. Hence

$$\text{Ext}^1(\mathcal{O}_C(L^*K_M^*), \mathcal{O}) \otimes \mathbb{C}^2 \cong H^0(C, L) \otimes \mathbb{C}^2$$

and we are looking for a pair of sections of the line bundle L on C. To get a locally free sheaf we need the pair to have no common zeros.

To relate this data to the vector bundle, note that any one of the sections is non-vanishing outside C and so the number of zeros is the same as the number of zeros of a section of L. Counting multiplicities, this means that

$$c_1(L) = c_2(V).$$

Another way of recording the information is to consider the meromorphic function s_1/s_2 on C.

3 The Serre construction

3.1 The algebraic approach

To obtain an analogue of the construction above when M is generalized complex, we have to replace the sheaf theory by a more analytic method. To prepare for this we
consider next the Serre construction of rank 2 holomorphic vector bundles. This is the question of constructing a vector bundle with at least one section and not two as above. For surfaces, a good source is Griffiths and Harris [8]. We begin with a sheaf-theoretic approach.

The problem is this: given \(k \) points \(x_i \in M \), find a rank 2 vector bundle \(V \) with a section \(s \) which vanishes non-degenerately at the \(k \) points. We shall assume, as previously, that \(\Lambda^2 V \cong K^* \). The derivative of \(s \) at a zero \(x \) is a well defined element of \((V \otimes T^*)_x \) and we can take

\[
\det ds(x) \in (\Lambda^2 V \otimes \Lambda^2 T^*)_x
\]

which is canonically the complex numbers thanks to the isomorphism \(\Lambda^2 V \cong K^* \). It is non-zero since the zero is nondegenerate. So at each zero \(x_i \), \(s \) has a residue

\[
(\det ds(x_i))^{-1} = \lambda_i \neq 0.
\]

Then, as in [8] Chapter 5:

Proposition 2 Given \(k \) points \(X = \{x_1, \ldots, x_k\} \in M \), and \(\lambda_i \in \mathbb{C}^* \) such that \(\lambda_1 + \ldots + \lambda_k = 0 \), there exists a rank 2 vector bundle \(V \) with \(\Lambda^2 V = K^* \) and a section \(s \) such that \(s(x_i) = 0 \) and \(\det ds(x_i) = \lambda_i^{-1} \).

In this case the bundle is given by an extension of sheaves:

\[
0 \to \mathcal{O} \to \mathcal{O}(V) \to \mathcal{I}_X \otimes K^* \to 0.
\]

To link things up with the previous section we ask when there is a second section. The exact cohomology sequence gives:

\[
0 \to H^0(M, \mathcal{O}) \to H^0(M, \mathcal{O}(V)) \to H^0(M, \mathcal{I}_X \otimes K^*) \to H^1(M, \mathcal{O}) \to
\]

Now if the points lie on the zero set of a Poisson structure \(\sigma \), then \(\sigma \) lies in the space \(H^0(M, \mathcal{I}_X \otimes K^*) \). If \(H^1(M, \mathcal{O}) = 0 \) then \(\sigma \) pulls back to a second section.

Remarks:

1. Our assumption that \(\sigma \) vanishes nondegenerately on a single elliptic curve actually implies that \(H^1(M, \mathcal{O}) = 0 \) when the surface is algebraic. This follows from the classification of [2].

2. In the previous section, the data for the construction of the bundle was a pair of sections \(s_1, s_2 \) on \(C \). One might ask where the \(\lambda_i \) come from if we choose just one of these, \(s_1 \). In fact \(d\sigma \) restricted to \(C \) gives an isomorphism between the normal bundle \(N \) and \(K^* \). But \(K^* \cong NK_C^* \), so we get a canonical non-vanishing vector field on \(C \) (the so-called modular vector field). Its inverse is a nonvanishing differential \(\alpha \) and then we can take \(\lambda_i \) to be the residue of the differential \((s_2/s_1)\alpha \) at \(x_i \in C \). The sum of the residues of a differential on a curve is of course zero.
3.2 The analytical approach

We now reformulate the Serre construction in Dolbeault terms (see also Chapter 10.2 in [7]). First consider the sequence of sheaves:

\[0 \to \mathcal{O} \to \mathcal{O}(V) \xrightarrow{\pi} \mathfrak{I}_X \otimes K^* \to 0. \]

This is an extension of line bundles outside the points \(x_i \), and the standard way to obtain a Dolbeault representative for this is to choose a Hermitian metric on \(V \), and form the orthogonal complement of the trivial subbundle. Restrict \(\bar{\partial} \) to this line bundle. Since the homomorphism \(\pi \) in the complex is holomorphic, we obtain a \(\bar{\partial} \)-closed \((0,1)\)-form with values in \(\text{Hom}(K^*, \mathcal{O}) \cong K \). In other words a \((2,1)\)-form.

In our case this will acquire singularities at the points \(x_i \), so let us consider the local model. Let \(x_i \) be given by the origin in coordinates \(z_1, z_2 \), then the two maps in the complex are represented by \(1 \mapsto (z_1, z_2) \) and \((u, v) \mapsto -z_2 u + z_1 v \). Using the trivial Hermitian structure we take the orthogonal complement of \((z_1, z_2) \) to give

\[\bar{\partial} \left(\frac{1}{r^2}(-\bar{z}_2, \bar{z}_1) \right) = \frac{1}{r^4}(\bar{z}_2 dz_1 - \bar{z}_1 d\bar{z}_2)(z_1, z_2) \]

and then

\[A_0 = \frac{1}{r^4} dz_1 \wedge dz_2 \wedge (\bar{z}_2 d\bar{z}_1 - \bar{z}_1 d\bar{z}_2) \quad (1) \]

is the required \((2,1)\) form.

Now, using the flat metric on \(\mathbb{C}^2 \), we calculate

\[*d \left(\frac{1}{r^2} \right)^{2,1} = \frac{1}{4r^4} dz_1 \wedge dz_2 \wedge (\bar{z}_2 d\bar{z}_1 - \bar{z}_1 d\bar{z}_2) \]

and in four dimensions \(1/r^2 \) is, up to a universal constant, the fundamental solution of the Laplacian. It follows that

\[\bar{\partial} \left(\frac{1}{r^4} dz_1 \wedge dz_2 \wedge (\bar{z}_2 d\bar{z}_1 - \bar{z}_1 d\bar{z}_2) \right) = c\delta(0). \]

Thus, a distributional \((2,1)\) form \(A \) which has the form \((1) \) at each point \(x_i \) and is smooth elsewhere, is an analytical way of defining the vector bundle \(V \) with a section.

Remark: Near \(x_i \) we have a non-holomorphic basis for \(V \) defined by \((z_1, z_2), (-\bar{z}_2, \bar{z}_1) \). This is obtained from a trivialization which extends to \(x_i \) by the gauge transformation on \(\mathbb{C}^2 \setminus \{0\} \)

\[\begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix}, \]
For example the flat trivialization of the spinor bundle on \mathbb{R}^4, the complement of a point in S^4, extends this way.

The proof of Proposition 2 now goes as follows. Consider the distributional form (or current) T defined by taking delta functions at the points x_i:

$$T = \sum_i \lambda_i \delta(x_i) \in \Omega^{2,2}.$$

This defines a class in $H^2(M, K)$. Since $H^2(M, K)$ is dual to $H^0(M, \mathcal{O}) \cong \mathbb{C}$, this class is determined by evaluating it on the function 1. But

$$\langle T, 1 \rangle = \sum_i \lambda_i$$

so if the λ_i sum to zero the class is zero.

Now choose a Hermitian metric on M, flat near the x_i. From harmonic theory there is a current $S \in \Omega^{2,2}$ such that $\bar{\partial} \bar{\partial}^* S = T$ and then we take

$$A = \bar{\partial}^* S$$

to be the distribution defining the extension. Near x_i,

$$\bar{\partial} \bar{\partial}^* (S - k \ast \frac{1}{r^2}) = 0$$

so by elliptic regularity the difference is smooth and A defines a holomorphic structure on the bundle obtained as in the Remark above.

Remark: The 't Hooft construction of $SU(2)$ instantons on $\mathbb{R}^4 = \mathbb{C}^2$ defines an anti-self-dual connection (and a fortiori a holomorphic structure) from a harmonic function of the form

$$\phi = \sum_i \frac{1}{|x - x_i|^2}.$$

Its twistor interpretation is the Serre construction for the lines in \mathbb{P}^3 corresponding to the points $x_i \in \mathbb{R}^4$ (see [1]). This is a model for the above reformulation.

3.3 The second section

We now look analytically for a second section of the vector bundle V. The bundle outside of X is a direct sum $1 \oplus K^*$ with $\bar{\partial}$-operator defined by

$$\bar{\partial}(u, v) = (\bar{\partial} u + Au, \bar{\partial} v).$$
In this description, the section coming from the Serre construction is \(s_1 = (1, 0) \), and we want a second one \(s_2 \) such that \(s_1 \wedge s_2 = \sigma \), so we write \(s_2 = (u, \sigma) \). For holomorphicity we need
\[
\bar{\partial}u + A\sigma = 0.
\]
Now
\[
T = \sum_i \lambda_i \delta(x_i) \in \Omega^{2, 2}
\]
so consider \(\sigma T \in \Omega^{0, 2} \). Evaluating \(\sigma T \) on a \((2, 0)\) form \(\alpha \) gives
\[
\sum_i \lambda_i \sigma(x_i) \alpha(x_i) = 0
\]
if the points \(x_i \) lie on the zero set of \(\sigma \). Thus \(\sigma T = 0 \).

We have \(\bar{\partial}A = T \) and \(\sigma \) is holomorphic so \(\bar{\partial}(A\sigma) = 0 \). But if \(H^1(M, \mathcal{O}) = 0 \) then this implies that \(A\sigma = -\bar{\partial}u \) for the required distributional section \(u \).

4 Generalized geometry

4.1 Basic features

Before we adapt this method to generalized complex manifolds, we review here the basic features. For more details see [9], [10], [4]. The key idea is to replace the tangent bundle \(T \) by \(T \oplus T^* \) with its natural indefinite inner product \((X + \xi, X + \xi) = i_X \xi \) and the Lie bracket by the Courant bracket
\[
[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2}d(i_X \eta - i_Y \xi).
\]
If \(B \) is a closed 2-form the action \(X + \xi \mapsto X + \xi + i_X B \) preserves both the inner product and the Courant bracket and is called a B-field transform.

A generalized complex structure is an orthogonal transformation \(J : T \oplus T^* \to T \oplus T^* \) with \(J^2 = -1 \) which satisfies an integrability condition which can be expressed in various ways, all analogous to the integrability condition for a complex structure but using the Courant bracket instead of the Lie bracket. The simplest is to take the isotropic subbundle \(E \) of the complexification \((T \oplus T^*)^c\) on which \(J = i \) and say that sections of \(E \) are closed under the Courant bracket. The standard examples are complex structures where \(E \) is spanned by \((0, 1)\) vector fields and \((1, 0)\)-forms, or symplectic structures where \(E \) consists of objects of the form \(X - i_X \omega \) where \(X \) is
a vector field and \(\omega \) the symplectic form. A holomorphic Poisson manifold defines a
generalized complex structure where \(E \) is spanned by \((0, 1)\) vector fields and objects
of the form \(\sigma(\alpha) + \alpha \) where \(\alpha \) is a \((1, 0)\)-form.

One of the key aspects of generalized geometry is that differential forms are interpreted
as spinors – the Clifford action of \(T \oplus T^* \) on the exterior algebra of forms \(\Lambda^* \) is
\((X + \xi) \cdot \varphi = \iota_X \varphi + \xi \wedge \varphi \). Then the action of a 2-form \(B \) is \(\varphi \mapsto e^{-B} \varphi \) using exterior
multiplication. There is an invariant pairing, the Mukai pairing, on forms with values
in the top degree defined by \(\langle \varphi, \psi \rangle = [\varphi \wedge s(\psi)]_n \) where \(s(\psi) = \psi_0 - \psi_1 + \psi_2 - \ldots \),
expanding by degree.

Generalized complex structures are defined by maximal isotropic subbundles \(E \subset (T \oplus T^*)^c \) and the annihilator under Clifford multiplication of any spinor is isotropic.
If a complex form \(\rho \) is closed and its annihilator is maximal isotropic (i.e. it is a pure
spinor) with \(E \cap \bar{E} = 0 \) (equivalently \(\langle \rho, \bar{\rho} \rangle \neq 0 \)) then \(\rho \) defines a generalized complex
structure. An example is a symplectic structure where \(\rho = e^{i\omega} \). The more general
condition is that \(E \) is integrable if
\[
d\rho = (X + \xi) \cdot \rho
\]
for some local section \(X + \xi \) of \((T \oplus T^*)^c\).

4.2 Generalized Dolbeault operators

If \(f \) is a function on a generalized complex manifold \((M, J)\) we have
\[
df \in T^* \in (T \oplus T^*)^c = E \oplus \bar{E}
\]
and we define \(\bar{\partial}_J f \) to be the \(\bar{E} \) component. For a complex structure this is the usual
\(\bar{\partial} f \) and for a symplectic structure \(\omega \), \(\bar{\partial}_J f = (iX + df)/2 \) where \(X \) is the Hamiltonian
vector field of \(f \). For a holomorphic Poisson structure \(\sigma \) we obtain (where in the
formula we use the standard meaning of \(\bar{\partial} f \) and \(\partial f \)):
\[
\bar{\partial}_J f = \bar{\partial} f - \sigma(\partial f) + \bar{\sigma}(\bar{\partial} f)
\]
(2)

The \(\bar{\partial}_J \) operator can be extended to a generalized Dolbeault complex
\[
\cdots \to C^\infty(\Lambda^p \bar{E}) \xrightarrow{\bar{\partial}} C^\infty(\Lambda^{p+1} \bar{E}) \to \cdots
\]
(where for simplicity we suppress the subscript). This is purely analogous to the usual
Dolbeault operator and it is well-defined because sections of the bundle \(E \) are closed
under Courant bracket and E is isotropic. It forms a complex for the same reason: the term $([A, B], C) + ([B, C], A) + ([C, A], B)$, whose derivative obstructs the Jacobi identity, vanishes.

This motivates the definition of a \textit{generalized holomorphic structure} on a vector bundle V over a generalized complex manifold. This consists of a differential operator

$$\bar{\partial}_V : \mathcal{C}^\infty(V) \to \mathcal{C}^\infty(V \otimes E)$$

with the properties

- $\bar{\partial}_V(fs) = \bar{\partial}fs + f\bar{\partial}_V s$
- $\bar{\partial}^2_V = 0$

where the last condition involves the bundle-valued extension of the generalized Dolbeault operator. If in a local basis the operator is defined by a matrix valued section A of \bar{E}, then this condition is $\bar{\partial}A + A \cdot A = 0$. (Note that since \bar{E} is isotropic, for $e, e' \in \bar{E}$, $e \cdot e' = -e' \cdot e$ so that this is essentially an exterior product $\bar{\partial}A + A \wedge A = 0$.)

The Dolbeault complex is also related to the decomposition of forms on a generalized complex manifold. The endomorphism J of $T \oplus T^*$ is skew adjoint and we can consider its Lie algebra action on spinors (which of course are differential forms). If the manifold has (real) dimension $2m$, then the forms are decomposed into eigenbundles with eigenvalues ik ($-m \leq k \leq m$).

$$U_{-m}, U_{-m+1}, \ldots, U_0, U_1, \ldots, U_m.$$

\textbf{Example:} For a complex structure

$$U_k = \bigoplus_{p-q=k} \Lambda^{p,q}.$$

The integrability of the generalized complex structure means that the exterior derivative d maps sections of U_k to $U_{k-1} \oplus U_{k+1}$. The two parts are closely related to the $\bar{\partial}$ operators above, but we need to consider in more detail one of these eigenbundles first, namely U_m.

\textbf{4.3 The canonical bundle}

The maximal isotropic subbundle $E \subset (T \oplus T^*)^c$ is the annihilator of a spinor, but a spinor only defined up to a scalar multiple so this defines a distinguished line bundle in Λ^* called the \textit{canonical bundle} K.

\textbf{10}
Example: On a complex \(m \)-dimensional manifold, \(dz_1 \wedge dz_2 \wedge \ldots \wedge dz_m \) is annihilated by interior product with a \((0, 1)\) vector and exterior product with a \((1, 0)\) form, so \(K \) is the usual canonical bundle of a complex manifold. For a symplectic manifold, \(e^{i\omega} \) trivializes the canonical bundle.

In the eigenspace decomposition, \(K \) is the subbundle of forms \(U_m \). Moreover,

\[
U_{m-k} \cong K \otimes \Lambda^k \bar{E},
\]

essentially generated by the Clifford products of \(k \) elements of \(\bar{E} \) acting on \(K \). Now, as remarked above, \(d \) maps sections of \(U_k \) to \(U_{k-1} \oplus U_{k+1} \), and so takes sections of \(U_m = K \) to \(U_{m-1} = K \otimes \bar{E} \) since \(U_{m+1} = 0 \). This defines a generalized holomorphic structure on \(K \).

Remark: For a symplectic manifold, \(e^{i\omega} \) trivializes \(K \) and is closed and hence holomorphic in this generalized sense – hence the appropriate terminology *generalized Calabi-Yau manifold* for such a manifold.

When the canonical bundle is an even form there is a tautological section \(\tau \) of its dual bundle \(K^* \). This is just the projection from \(\Lambda^* \) to \(\Lambda^0 = \mathbb{C} \), restricted to \(K \). It is holomorphic in the generalized sense. The section \(\tau \) may be identically zero, but it is non-zero clearly at points where the generalized complex structure is the B-field transform of a symplectic structure, for

\[
e^B e^{i\omega} = 1 + (B + i\omega) + \ldots
\]

Example: For a holomorphic Poisson structure \(\sigma \) on a surface, where \(\sigma \neq 0 \) the generalized complex structure is the B-field transform of a symplectic structure \((\sigma^{-1} = B + i\omega)\). The tautological section vanishes on the elliptic curve \(C \).

Returning to \(d : C^\infty(U_k) \to C^\infty(U_{k-1} \oplus U_{k+1}) \) we write the projection to \(U_{k-1} \) as \(\bar{\partial} \) and to \(U_{k+1} \) as \(\partial \). The notation is consistent with the previous one in the sense that \(U_{m-1} = K \otimes \bar{E} \) and the operator is the \(\bar{\partial}_K \) operator for the tautological generalized holomorphic structure on \(K \).

We have then a natural elliptic complex which we can write as either

\[
\cdots \to C^\infty(K \otimes \Lambda^p \bar{E}) \overset{\bar{\partial}}{\to} C^\infty(K \otimes \Lambda^{p+1} \bar{E}) \to \cdots
\]

or

\[
\cdots \to C^\infty(U_{m-p}) \overset{\bar{\partial}}{\to} C^\infty(U_{m-p-1}) \to \cdots
\]
5 A generalized construction

5.1 The problem

Suppose now that M is a 4-manifold with a generalized complex structure such that the tautological section τ of the canonical bundle has a connected nondegenerate zero-set. As shown in [5] this is a 2-torus with a complex structure, hence an elliptic curve C. We shall construct a rank 2 bundle on M with a generalized holomorphic structure, given a set of points on C.

We imitate the analytical approach to the Serre construction and take the bundle $1 \oplus K^*$ where K is the canonical bundle and find a distributional section A of $K \otimes \bar{E}$ to define a generalized holomorphic structure by

$$\bar{\partial}(u, v) = (\bar{\partial}u + Av, \bar{\partial}v).$$

We are in the case $m = 2$, so $K \otimes \bar{E} \cong U_{2-1} = U_1$. We start with a set of points x_i and look at the distributional form

$$T = \sum_i \lambda_i \delta(x_i).$$

If we are to solve $\bar{\partial}A = T$ then T must take values in U_0. There are then two questions that need to be answered:

1. When does T lie in U_0?
2. When is $T = \bar{\partial}A$ for A in U_1?

The first question needs a little more generalized geometry.

5.2 Generalized complex submanifolds

Given a submanifold $Y \subset M$, there is a distinguished subbundle

$$TY \oplus N^* \subset (T \oplus T^*)|_Y$$

where N^* is the conormal bundle. A submanifold is called generalized complex if $TY \oplus N^*$ is preserved by J.
Example: For a complex manifold, this gives the usual notion of complex submanifold, for a symplectic manifold a Lagrangian submanifold. Applying a B-field to a symplectic structure can give new types of generalized complex submanifold but a point is never a generalized complex submanifold. Indeed a point x is complex if the cotangent space $T^*_x \subset (T \oplus T^*)_x$ is preserved by J. But that means there are complex cotangent vectors in E. However, E is spanned by terms $X + i_X(B + i\omega)$ and so X is never zero.

Now a compact oriented submanifold Y^k defines a current Δ_Y in Ω^{n-k} by

$$\langle \Delta_Y, \alpha \rangle = \int_Y \alpha.$$

We then have

Proposition 3 Δ_Y lies in U_0 if and only if Y is a generalized complex submanifold.

Proof: Consider the top exterior power $\Lambda^{2m-k}N^*$. Since $N^* \subset T$ is the annihilator of TY, if $\nu \in \Lambda^{2m-k}N^*$ is a generator, then $i_X\nu = 0$ if and only if $X \in TY$. Similarly $\xi \wedge \nu = 0$ if and only if $\xi \in N^*$. Thus $TY \oplus N^*$ is the annihilator under Clifford multiplication of ν.

If Y is a generalized complex submanifold, then this annihilator is J-invariant, which means that the real form ν is in the zero eigenspace of the Lie algebra action of J, i.e. $\nu \in U_0$. Conversely if $\nu \in U_0$, Y is complex.

Now consider a form α. To evaluate Δ_Y on this we take the degree k component and integrate over Y. Now $\Lambda^{2m}T^*$ is canonically $\Lambda^kT^*Y \otimes \Lambda^{2m-k}N^*$. The Mukai pairing takes values in $\Lambda^{2m}T^*$, so $\nu \mapsto \langle \alpha, \nu \rangle$ defines a homomorphism from $\Lambda^{2m-k}N^*$ to $\Lambda^kT^*Y \otimes \Lambda^{2m-k}N^*$, or equivalently an element of Λ^kT^*Y. It is straightforward to see that, up to a sign, this is the degree k component of α restricted to Y.

If $J\alpha = ik\alpha$, then

$$ik\langle \alpha, \nu \rangle = \langle J\alpha, \nu \rangle = -\langle \alpha, J\nu \rangle = 0$$

Hence Δ_Y evaluated on U_k for $k \neq 0$ is zero, and hence Δ_Y lies in U_0. \qed

Example: The current defined by a complex submanifold of a complex manifold is of type (p, p).

Returning to our question we see that T lies in U_0 if and only if each point x_i is a generalized complex submanifold. Outside the elliptic curve C the generalized
complex structure is the B-field transform of a symplectic one, and as we have seen, points here are not complex. In four dimensions, if $\tau = 0$, the generalized complex structure is the stabilizer of a spinor of the form $e^B \alpha_1 \wedge \alpha_2$. This is the B-field transform of an ordinary complex structure. Since T^* is preserved by J for an ordinary complex structure, and the B-field acts trivially on T^* we see that any point on C is a generalized complex submanifold. So we have an answer to the first question:

Proposition 4 T lies in U_0 if and only if the points x_i lie on the elliptic curve C.

5.3 The construction

We now address the second question: suppose T lies in U_0, when is it of the form $\bar{\partial}A$ for A in U_1? In the standard case we used Serre duality to say that the Dolbeault cohomology class of T is trivial if we evaluate on the generator 1 of $H^0(M, \mathcal{O})$. For the generalized $\bar{\partial}$ operator Serre duality consists of the non-degeneracy of the natural Mukai pairing of U_k and U_{-k} at the level of cohomology. A proof can be found in [4].

In our case, it means that T in U_0 is cohomologically trivial if evaluation on all $\bar{\partial}$-closed forms in U_0 is zero. So suppose α is a section of U_0 with $\bar{\partial}\alpha = 0$. The distribution T is a sum of delta functions of points x_i, which lie on the curve C, so we need to know U_0 here. But the generalized complex structure on C is, as we have seen, the B-field transform of a complex structure. Now for a complex structure,

$$U_0 = \bigoplus_p \Lambda^{p,p}$$

so $U_0|_C = e^B(\Lambda^{0,0} \oplus \Lambda^{1,1} \oplus \Lambda^{2,2})$, where B is possibly locally defined. Hence we can locally write

$$\alpha = e^B(a_0, a_1, a_2).$$

However, B leaves the degree zero part invariant, so in this local expression a_0 is the restriction of a globally defined function on C.

Now, as shown in [6], a normal form (up to diffeomorphism and B-field transform) for a neighbourhood of a nondegenerate complex locus in four dimensions is provided by the holomorphic Poisson structure

$$\sigma = z_1 \frac{\partial}{\partial z_1} \wedge \frac{\partial}{\partial z_2}.$$

From this and [2] one can see that $\bar{\partial}\alpha = 0$ implies that the degree zero term a_0 is holomorphic on the compact elliptic curve C, and hence constant.
Now T evaluates at points $x_i \in C$ and involves just the degree zero component of α. It follows that the condition on T to be cohomologically trivial is

$$\langle T, \alpha \rangle = \text{const.} \sum_i \lambda_i = 0$$

as before.

We conclude:

Theorem 5 Let M be a 4-manifold with a generalized complex structure such that the tautological section τ of the canonical bundle has a connected nondegenerate zero-set C. A set of k distinct points $x_i \in C$ and $\lambda_i \in \mathbb{C}^*$ with $\lambda_1 + \ldots + \lambda_k = 0$ defines a rank 2 generalized holomorphic bundle V with a generalized holomorphic section vanishing at the points x_i.

Remark: Note that here we have no condition for a second section, but neither have we attempted to find bundles with two generalized holomorphic sections: the construction in Section 2.2 was a simple way to get Poisson modules, but they are more special than they need to be. So Theorem 5 tells us that the Serre construction where the points are taken on a smooth anticanonical divisor gives us a Poisson module – we don’t need two sections of the line bundle on the elliptic curve. What happens is that the flat connection on $M \setminus C$ has upper-triangular rather than trivial holonomy.

6 An application

It is observed in [12] that if V is a rank 2 Poisson module on a complex Poisson manifold, then the projective bundle $P(V)$ acquires a naturally induced Poisson structure. Here we prove a generalized version:

Proposition 6 Let V be a rank two generalized holomorphic bundle over a generalized complex manifold M. Then $P(V)$ has a natural generalized complex structure.

Proof: First consider the generalized complex structure which is the product of the standard complex structure on \mathbb{P}^1 and the given generalized complex structure on M. If ρ is a local non-zero section of the canonical bundle of M then, using an affine coordinate z on \mathbb{P}^1, $dz \wedge \rho$ is a section of the canonical bundle for the structure on the product.
Now over an open set $U \subseteq M$ apply the diffeomorphism of $\mathbb{P}^1 \times U$ defined by a map a from U to $SL(2, \mathbb{C})$:

$$\tilde{z} = \frac{a_{11} z + a_{12}}{a_{21} z + a_{22}}.$$

Then

$$(a_{21} z + a_{22})^2 d\tilde{z} = dz + A_{12} + (A_{11} - A_{22})z - A_{21}z^2 = dz + \theta$$

where $A = a^{-1} da$. Using $dA + A^2 = 0$, we have

$$d(dz + \theta) = (dz + \theta) \wedge (2zA_{21} - (A_{11} - A_{22})) = (dz + \theta) \wedge \alpha.$$ \hspace{1cm} (3)

Consider $(dz + \theta) \wedge \rho$, or equivalently the Clifford product $(dz + \theta) \cdot \rho$, since $dz + \theta$ is a one-form. Now ρ is annihilated by $E \subset (T \oplus T^*)^c$, so it is only the \bar{E} component of θ (denote it θ^{01}) which contributes. This defines an integrable generalized complex structure trivially since we simply transformed the product by a diffeomorphism, but a direct check of integrability goes as follows: we need to show that locally

$$d((dz + \theta^{01}) \cdot \rho) = \beta \cdot (dz + \theta^{01}) \cdot \rho$$

for some section β of $(T \oplus T^*)^c$. But from (3)

$$d((dz + \theta^{01}) \wedge \rho) = -\alpha \wedge (dz + \theta^{01}) \wedge \rho - \theta^{01} \wedge \gamma \cdot \rho = -\alpha \cdot (dz + \theta^{01}) \cdot \rho - (dz + \theta^{01}) \cdot \gamma \cdot \rho$$

using the integrability $d\rho = \gamma \cdot \rho$ of the structure on M, where again we can take γ to be in \bar{E}. Now since \bar{E} is isotropic, two sections anticommute under the Clifford product, so

$$d((dz + \theta^{01}) \wedge \rho) = (\gamma - \alpha) \cdot (dz + \theta^{01}) \wedge \rho$$

which is the required integrability.

Now suppose V is a rank 2 bundle with a generalized holomorphic structure, and in a local trivialization $\bar{\partial}_V$ is defined by a “connection matrix” A with values in \bar{E}. Then define an almost generalized complex structure by

$$(dz + A_{12} + (A_{11} - A_{22})z - A_{21}z^2) \cdot \rho.$$

In the argument for integrability above, we only needed the vanishing of the $\Lambda^2 \bar{E}$ component of $dA + A^2 = 0$ and from the definition of a generalized holomorphic structure, we have $\bar{\partial}A + A \cdot A = 0$, so this provides the ingredient to prove integrability for the generalized holomorphic structure. \hfill \Box

As a consequence, if we use our construction to generate rank 2 vector bundles with generalized holomorphic structure on the Cavalcanti-Gualtieri 4-manifolds, we can find six-dimensional generalized complex examples on their projective bundles. These have a structure which is complex in the fibre directions. In [3] it is shown that a symplectic bundle over a generalized complex base has a generalized complex structure which is symplectic along the fibres.
References

[1] M.F. Atiyah & R.S. Ward, Instantons and algebraic geometry, *Commun. Math. Phys.* 55 (1977) 117–124.

[2] C. Bartocci & E. Macrì, Classification of Poisson surfaces, *Commun. Contemp. Math.* 7 (2005) 8995.

[3] G. Cavalcanti, New aspects of the dd^c-lemma, *arXiv*: math/0501406.

[4] G. Cavalcanti, The decomposition of forms and cohomology of generalized complex manifolds, *J. Geom. Phys.* 57 (2006) 121–132.

[5] G. Cavalcanti & M. Gualtieri, A surgery for generalized complex structures on 4-manifolds, *J. Differential Geometry* 76 (2007) 35–43.

[6] G. Cavalcanti, & M. Gualtieri, Blow-up of generalized complex 4-manifolds, *arXiv*: 0806.0872.

[7] S.K. Donaldson & P.B. Kronheimer, “The geometry of four-manifolds”, Oxford University Press, New York, 1990.

[8] P. Griffiths & J. Harris, “Principles of algebraic geometry”, John Wiley & Sons New York, 1978.

[9] M. Gualtieri, Generalized complex geometry, *arXiv*: math/0401221.

[10] M. Gualtieri, Generalized complex geometry, *arXiv*: 0703298v2.

[11] R. Hartshorne, Stable vector bundles of rank 2 on P^3, *Math. Ann.* 238 (1978) 229–280.

[12] A. Polishchuk, Algebraic geometry of Poisson brackets, *J. Math. Sci* 84 (1997) 1413-1444.

Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
hitchin@maths.ox.ac.uk