Red/ET recombineering enhances extracellular lipase production by *Burkholderia glumae*

CURRENT STATUS: UNDER REVIEW

Qiang Tu tuqiang1986@163.com
Shandong University
Corresponding Author
ORCID: 0000-0002-8552-9485

Zhilong Bian
Shandong University

Qian Fang
Hunan Normal University

Hanna Chen
Shandong University

Zhiling Xie
Hunan Normal University

Deng Pan
Shandong University

Beian You
Shandong University Qilu Hospital

Liqiu Xia
Hunan Normal University

Youming Zhang
Shandong University

Yaling Gong
Chinese Academy of Medical Sciences and Peking Union Medical College

DOI:
10.21203/rs.2.21644/v1

SUBJECT AREAS
Applied & Industrial Microbiology

KEYWORDS
Burkholderia glumae PG1, Red/ET recombination, lipAB genes, homologous
expression
Abstract

Background: Microbial lipases are utilized widely in industrial fields, and the LipA lipase produced by *Burkholderia glumae* PG1 has been used for the production of enantiopure pharmaceuticals. However, efficient lipase expression and secretion are still problematic. LipA is encoded in an operon that also contains the lipase-specific foldase gene *lipB*. The purpose of this study was to enhance the production of active lipase by overexpressing *lipAB* in *B. glumae* PG1 using a host-vector system.

Results: The *lipAB* operon, isolated from the genomic DNA of *B. glumae* PG1, was directly cloned into broad-host-range vectors, with pBBR1 or pRk2 backbones, using the Red/ET recombination system and then transformed into the original host strain. Lipase activity of the derivative strains, including PG1/Bl and PG1/Rl, were evaluated. When 1% olive oil was included in the growth medium, the maximum activities of the resultant strains were approximately 39.5- and 15.3-fold higher, respectively, than that of the wild-type PG1, indicating that increased lipase gene dosage resulted in high expression yields of lipase. To further enhance lipase expression, two recombinant strains, PG1/Ba and PG1/Ra, were generated with the plasmid-borne *lipAB* operon driven by the strong constitutive promoter P_{apra}. PG1/Ba and PG1/Ra displayed 15.0- and 4.3-fold improvements in lipase production in 0.5% glucose-containing medium compared to PG1/Bl and PG1/Rl, respectively. However, glucose repressed lipase gene expression in strain PG1 when the native *lipAB* promoter was used.

Conclusions: Homologous expression of lipase genes in *B. glumae* PG1 was achieved by the use of high-copy expression vectors, and the resulting presence of multiple copies of *lipAB* significantly improved extracellular lipase expression. Our results demonstrate that modification of *B. glumae* PG1 can improve this host system for lipase production.
Background

Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) belonging to the family of α/β hydrolases are widely produced by organisms from animals to bacteria. Microbial lipases are important biocatalysts in the synthesis of detergents, food ingredients, agrochemicals and pharmaceuticals [1–4]. Many biotechnologically relevant lipases are relatively stable in organic solvents, do not require a cofactor, show broad substrate specificity and are readily available at low production costs [5]. Since lipases can catalyze a variety of synthetic and hydrolytic reactions under non-aqueous reaction conditions, they have received increasing attention over the past few years for their multiple potential applications in industry [6, 7].

In recent years, the nucleotide and amino acid sequences of several microbial lipases have become available, and many bacterial lipases have been cloned and characterized, particularly those from the genera Pseudomonas and Burkholderia [8–12]. One of the most frequently used lipases, lipase A, is secreted by the Gram-negative bacterium Burkholderia glumae PG1 [5, 13]. The regulation of lipase expression and secretion in B. glumae is complex and requires effective cooperation of a variety of proteins. The Burkholderia lipase structural gene lipA is located in a single operon together with a secondary gene, lipB [13–15]. The LipA is synthesized as a precursor with an N-terminal signal peptide. This precursor is first transported across the inner membrane via the Sec secretion system and is then folded into an enzymatically active conformation by the lipase-specific foldase, encoded by lipB, in the periplasm [14, 16–18]. The mature lipase is then secreted into the extracellular medium via the type II secretion pathway [19].

Pseudomonas lipases have been studied extensively, but Pseudomonas is an opportunistic human pathogen and so is less suitable for bulk lipase production [2]. To enhance the production of extracellular lipase, many biotechnologically interesting lipases have been
cloned and expressed in Escherichia coli [20–23]. Unfortunately, the efficient production of active lipases in heterologous hosts and secretion into the culture medium under normal laboratory growth conditions can be difficult. Less than 3% of an expressed lipase may be active, with the remainder of the protein misfolding and accumulating as insoluble inclusion bodies in the E. coli cell [24]. In order to overcome the problem of insoluble protein arising with a heterologous host, we set out to use B. glumae as a homologous expression host. Compared with heterogeneous expression, homologous expression can take full advantage of the transcription and translation systems of the original host without any pretreatment and make the enzyme isolation and purification easier [25]. The lipase produced by B. glumae was found to perform well in several industrial applications, and several classical mutagenesis techniques have been applied to B. glumae PG1 to construct lipase-overproducing strains [2, 5, 9]. The aim of this study was to construct a host-vector system that would generate higher levels of active lipase production, in which PG1 was used as the host with multicopy expression vectors containing lipAB genes. The complete lipAB operon from PG1 was directly cloned into the expression vector p15A using homologous recombination (HR) in E. coli. We also utilized the full-length Rac prophage proteins RecE and RecT, which can mediate highly efficient HR between two linear DNA segments carrying homology arms at both ends [26–28]. HR mediated by Redαβ from lambda phage between a linear and circular DNA molecule in E. coli was used for retrofitting the expression vector with a broad-host-range replication origin and a strong constitutive promoter [29–31]. The final constructs were transformed into the PG1 wild-type strain for homologous expression of lipase. Our findings indicate that the secretion of active lipase can be enhanced via overexpression of lipAB genes on a multicopy vector in B. glumae PG1.

Results And Discussion
Vector construction for plasmid-borne lipase gene expression in B. glumae PG1

Nucleotide sequencing revealed that the lipAB genes are organized as an operon of 2139 bp in the B. glumae PG1 chromosome (GenBank accession number: CP002581), with an internal promoter upstream of lipA and a transcription terminator downstream of lipB [15]. Analysis of the sequence indicates that lipA encode a protein of 358 amino acid residues and LipB is a 353 amino acid protein. In previous studies, lipase genes were inserted into vectors, resulting in high-level expression of active lipase in the heterologous hosts [32-34]. However, there are few examples of lipase genes being cloned and overexpressed in B. glumae PG1. To achieve higher levels of lipase secretion, the full lipAB operon was cloned from purified PG1 genomic DNA directly into multicopy plasmids. The methods for the direct cloning and engineering of the lipAB gene constructs are illustrated in Fig. 1.

Following digestion with appropriate restriction enzymes, genomic DNA from B. glumae PG1 was co-electroporated with the linear cloning vector p15A-cm, flanked by 80-nucleotide (nt) homology arms (ha), into arabinose-induced, RecET-expressing GB05-dir cells for direct cloning of the lipAB operon. The final construct was modified using the Redαβ recombination system. Since p15A origin is not capable of replication in B. glumae PG1, we subcloned the lipAB operon into broad-host-range vectors to establish plasmids pBI and pRI, which contain a pBRR1 and pRk2 replication origin, respectively, and the gene cluster encoding LipA and LipB regulated under the native promoter P_{lipAB}. As promoter exchange can be an important strategy for achieving high expression yields of lipase, the vectors pBa and pRa were generated by exchanging the P_{lipAB} promoter with the strong constitutive promoter P_{apra}. DNA analyses of the constructs are shown in Supplementary Fig S1. The final constructs were transferred into the homologous host B.
glumae PG1, and the four resulting recombinant strains, PG1/Bl, PG1/Rl, PG1/Ba and PG1/Ra, were used to examine lipase expression.

Effect of copy number of the lipAB gene on lipase production

One of the common strategies to increase the expression level of a specific gene is to increase the copy number of the expression cassette [32]. B. glumae PG1 wild-type and two derivative strains, PG1/Bl and PG1/Rl, were cultivated in PG medium in the presence of 1% olive oil as a carbon source at 30 °C [8]. Culture supernatant and the whole-cell extract of each B. glumae strain were obtained after 72 h of cultivation and subjected to SDS-PAGE to investigate lipase expression. The mature lipase of PG1 has a calculated molecular mass of 33.1 kDa [9], and a protein of that size was visible in the extracts of all three strains and in the supernatants of PG1/Bl and PG1/Rl (Fig. 2A, arrow). The secreted lipase was produced almost as a single band on SDS-PAGE, but the amount of it in the culture supernatant of wild-type B. glumae PG1 was markedly lower than in the supernatants from the recombinant strains, consistent with the fact that the wild-type strain harbors just one chromosomal copy of the lipAB operon. Additionally, PG1 harboring pBl (lane 5) secreted much more lipase than the host harboring pRl did (lane 3), which can be attributed to the lower copy number of pRK2 than of pBBR1. Real-time qPCR assays were performed to precisely quantify the transcription levels of lipA after 24 h of cultivation. As seen in Fig. 2B, the expression levels of lipA in the strains PG1/Rl and PG1/Bl were 12.9 times higher and 6.4 times higher than that of the PG1 wild-type strain, respectively.

The pBBR1 origin (about 30-40 copies per cell in E. coli) is functional in a wide range of Gram-negative bacterial genera, such as Burkholderia, Escherichia, Pseudomonas and Agrobacterium [35–37]. The copy number of the RK2 replicon is estimated to be 5 to 7 per cell in E. coli, and the origin delivers stable replication in more than 30 species of Gram-
negative bacteria [38, 39]. However, to the best of our knowledge, this is the first report of the use of the RK2 origin in B. glumae. The recombinant strains produced more lipase than did the wild-type strain, and no lipase was observed in the PG1 wild-type culture supernatant, which indicates that the increased dosage of the lipase gene enabled B. glumae PG1 to secrete much more lipase. Therefore, overexpression of a lipase gene from a multicopy plasmid is a feasible strategy for enhancing lipase production, which is in accordance with a previous report [32].

Comparison of lipase activity and cell growth

B. glumae PG1 variants secreted a considerable amount of lipase, but the lipase production and activity might have been influenced not only by the high-level expression of lipAB, but also by bacterial cell growth and density. Fang et al. demonstrated that cell density largely correlates with the yield of secreted protein and that optimized cultivation conditions are essential to obtain maximum cell growth and lipase activity [32]. The extracellular lipase activities of B. glumae PG1 and its variants were monitored during different growth stages in PG medium containing 1% olive oil as a carbon source at 30 °C (Fig. 3A, B). We did not observe any growth defects in the strains harboring the plasmids with the lipAB operon when compared to the wild-type strain (Fig. 3B). However, there were marked strain differences in lipase activity as well as growth-associated changes in activity, with significantly increased lipase activity detected during the log phase (Fig. 3A). The lipase activities reached a maximum at the end of the stationary phase and then decreased, but did not disappear completely as the cells entered the cell death phase. After 54 hours (h) of induction, the lipase activities in the culture supernatants of PG1/Bl and PG1/Rl were 3.63 U/ml and 1.41 U/ml, corresponding to 39.5 and 15.3 times the level in the wild-type PG1 strain (0.092 U/ml), respectively.

Effect of the lipAB gene promoter on lipase production and activity
Next, to analyze the influence of the lipAB promoter on lipase production and activity, the native promoter P_{lipAB} in the vectors was replaced with the strong constitutive promoter P_{apra}, generating the two transformants PG1/Ba and PG1/Ra. Previous work has indicated that promoter optimization is an effective strategy for improving the expression levels of intracellular and secreted proteins by increasing transcription levels [40]. Wang et al. confirmed that the P_{apra} promoter remarkably enhanced yields of target products in Burkholderia [41].

B. glumae PG1 strains carrying the four plasmids constructed in this study were grown in PG medium containing 1% olive oil as a carbon source at 30 °C. Secreted lipase was detected by the lipase activity assay (Fig. 4A) and SDS-PAGE in culture supernatants (Fig. 4B) after 24 h of growth. Interestingly, the results revealed that strains PG1/Bl and PG1/Rl secreted much more lipase when compared to the two variants with the P_{apra} promoter. In our test system, olive oil likely functions as an inducer when the lipase operon is under the control of the native promoter, consistent with the findings of Boekema et al. [2].

To increase the production of lipase, we attempted to optimize the culture conditions. Previous studies on the synthesis of natural products had emphasized that most constitutive promoters were active in a glucose-containing medium [42]. Therefore, 0.5% glucose was used as a carbon source in the growth medium in subsequent experiments. The results revealed that the addition of 0.5% glucose in the PG medium stimulated the expression of the lipAB operon under the control of the P_{apra} promoter. Lipase activity (Fig. 4C) and SDS-PAGE (Fig. 4D) analyses of culture supernatants were performed after 24 h of growth. The lipase activities of PG1/Ba (0.629 U/ml) and PG1/Ra (0.060 U/ml) were increased by 15.0- and 4.3-fold in comparison with those of PG1/Bl (0.148 U/ml) and
PG1/Rl (0.004 U/ml), respectively. These results indicate that the P\textsubscript{apra} promoter is more active than the native promoter in a glucose-containing medium.

In summary, the lipAB operon under the P\textsubscript{apra} promoter was effective in enhancing active lipase production when 0.5% glucose was used as a carbon source, and the production of lipase using the P\textsubscript{lipAB} promoter was optimal when 1% olive oil was added. Olive oil exerted a negative effect on the expression levels of lipAB under the control of P\textsubscript{apra}, most probably by repressing transcriptional efficiency. The transcription levels of lipA were notably higher in strains PG1/Rl and PG1/Bl compared to PG1/Ra and PG1/Ba in the PG medium containing 1% olive oil (Fig S2). The effect of different carbon sources on promoters still need more exploration.

Conclusions

To enhance active lipase production, the lipase gene lipA and its chaperone gene, lipB, were cloned from the genomic DNA of B. glumae PG1 into high-copy vectors using the Red/ET systems followed by overexpressing in the homologous host. When the plasmid-borne lipase gene was expressed under native promoter control, the derivative strains, PG1/Bl and PG1/Rl, yielded 39- and 15-fold higher production of the active lipase, respectively, in comparison with the PG1 wild-type strain in the presence of 1% olive oil. This finding indicates that use of a multicopy expression vector had a positive effect on the expression level of lipase. To achieve higher lipase production, the lipase operon was expressed under the control of a strong constitutive promoter, yielding two transformants PG1/Ba and PG1/Ra. The lipase activities of PG1/Ba and PG1/Ra were 15- and 4-fold higher in the presence of 0.5% glucose as a carbon source, respectively, than that of PG1/Bl and PG1/Rl. Overall, the lipase produced by PG1/Ba in the medium containing glucose was less than that of the PG1/Bl in the medium using olive oil as substrate, but lipase gene
expression driven by a native promoter in PG1 was repressed by glucose.

Materials And Methods

Strains, plasmids and reagents

E. coli GB05-dir was derived from strain GB2005 (DH10B, fhuA::IS2, ΔybcC, ΔrecET) by integrating an arabinose-inducible ETyA operon (full-length recE, recT, redγ and recA) at the ybcC locus [26, 31]. GB08-red was derived from GB2005 by integrating an arabinose-inducible γβαA operon (redα, redβ, redγ and recA) at the ybcC locus [43]. GB05-dir and GB08-red were used for direct cloning and recombineering experiments and grown in LB medium (10 g tryptone, 5 g yeast extract, 5 g NaCl per liter, pH 7.0) at 37 °C or 30 °C. B. glumae PG1 wild-type was cultivated in LB medium at 30 °C and used as a host for homologous expression of the lipAB genes. For production of lipase, B. glumae strains were cultivated in PG medium [2], which contains 6 g (NH₄)₂SO₄, 3.5 g KH₂PO₄, 3.5 g K₂HPO₄, 0.02 g CaCl₂, 1 g MgSO₄.7H₂O, 2 g yeast extract per liter (pH 6.5) with 1% (vol/vol) olive oil or 0.5% (wt/vol) glucose as a carbon source.

Plasmid p15A-cm-tetO-tetR-hyg-ccdB contains a p15A origin, a hyg-ccdB cassette, a tetracycline-inducible promoter Pₜₚ₀, and conveys chloramphenicol resistance [36].

Plasmid pRk2-km-apra carries the broad-host-range Rk2 origin and conveys kanamycin and apramycin resistance. Plasmid pBBR1-km has the broad-host-range pBBR1 origin and conveys kanamycin resistance. Appropriate antibiotics were added when necessary at the following concentrations: for E. coli strains, kanamycin, chloramphenicol and apramycin were each used at 15 µg/ml; for B. glumae strains, kanamycin and apramycin were each used at 30 µg/ml. The concentration of L-arabinose used for induction was 1.4 mg/ml.

Plasmids used in this work are listed in Table S1.

Direct cloning of the lipAB operon
The p15A-cm vector was amplified from p15A-cm-tetO-tetR-hyg-ccdB with PCR using the PAGE-purified oligonucleotides PG1-lipAB-A and PG1-lipAB-S, which contain 80 nt homology arms to the target DNA sequence, and 20 nt standard PCR primers at the 3’ end. DNA oligonucleotides are listed in Table S2. The template plasmid and PCR products were purified with the Qiagen plasmid mini kit and eluted from the column with autoclaved ddH$_2$O. The genomic DNA of B. glumae PG1 was prepared from the lysate by phenol-chloroform-isooamyl alcohol extraction (25:24:1, pH 8.0) and ethanol precipitation, and digested with EcoRV and EcoRI to expose the terminal homology arms [36]. Ten micrograms of digested genomic DNA and 200 ng of p15A-cm linear vectors were co-electroporated into arabinose-induced, RecET-expressing GB05-dir cells for direct cloning of the lipAB operon, which was expressed under the control of its native promoter, P_{lipAB}. Transformants were selected after growth on LB agar plates containing chloramphenicol at 37 °C overnight, and correct recombinants were identified by restriction analysis. The final construct, p15A-cm-P_{lipAB}-lipAB, was electroporated into GB08-red cells for further engineering.

Subcloning the lipAB operon into a broad-host-range vector

Subcloning vectors pBBR1-km and pRk2-km were prepared by PCR amplification from plasmids pBBR1-km and pRk2-km-apra with the pRlmer pairs RK2-lipAB-A/S and BBR1-lipAB-A/S, respectively. PCR products were purified using the Qiagen plasmid mini kit. The pBBR1-km and pRk2-km cassettes, flanked by the 80 nt homology arms, contain a broad-host-range origin and a kanamycin-selection marker and were electroporated into arabinose-induced, redαβ-expressing GB08-red cells harboring p15A-cm-P_{lipAB}-lipAB to subclone the lipAB genes. Transformants were selected with kanamycin, and correct recombinants were identified by restriction digestion. The plasmid-borne lipase was
expressed under an native promoter. The final constructs, pBl and pRl, were
electroporated into B. glumae PG1 for further studies.

Promoter exchange of the lipAB genes

The promoter of the lipAB was exchanged with the constitutive promoter P_{apra} via Red$\alpha\beta$
recombineering. P_{apra} segments, flanked by homology arms, were amplified with PCR from
the template plasmid pRK2-km-apra using the 100 nt primers P_{apra}-A and P_{apra}-S. Purified
PCR products were recombined with plasmids pBl or pRl in arabinose-induced, Red$\alpha\beta$-
expressing GB08-red cells to exchange the P_{lipAB} promoter. Following confirmation by
restriction analysis, the final constructs, pBa and pRa, were electroporated into B. glumae
PG1 to examine lipase activity.

Electroporation of the expression plasmid into B. glumae PG1

For B. glumae PG1, overnight cultures were diluted into 1.3 ml fresh LB medium without
any antibiotics ($OD_{600} = 0.1$) and incubated at 30 °C, 950 rpm, until the OD_{600} was around
0.6. Cells were pelleted by centrifugation at 9500 rpm for 1 min at room temperature,
washed, and then 10 µg of resuspended plasmid was added to the electrocompetent cells.
Electroporation was conducted using an Eppendorf 2510 electroporator at 1250 V with a
1 mm electroporation cuvette. The cells were resuspended in 1 ml LB medium and
transferred into a 1.5 ml punctured micro-centrifuge tube. The culture was incubated at
30 °C, 950 rpm, for 2 h before plating on LB plates containing kanamycin (30 µg/ml)
followed by incubation at 30 °C for 48 h. LB agar plates contained 1.2% (wt/vol) of agar.
Recombineering in E. coli was performed as previously described [41].

Lipase activity assay

Lipase activity in culture supernatants was assayed with para-nitrophenylpalrnitate (pNPP)
as the substrate [44]. First, 100 µl acetonitrile containing 0.9 mg pNPP was mixed with
900 µl of 50 mM Tris-HCl buffer (pH 8.0). After 5 min of prewarming at 37 °C, freshly prepared substrate solution was mixed with 50 µl of 5000-fold dilutions of supernatant, and then incubated at 37 °C for 5 min. Next, 200 µl of the complex was taken to measure the OD₄₁₀ against an enzyme-free control using a spectrophotometer. Relative lipase activity was calculated as units/ml. One unit (U) was defined as the amount of lipase that liberates 1 mmol of para-nitrophenol per minute.

SDS-PAGE

Lipase proteins in whole-cell extracts and supernatants were analyzed with SDS-PAGE [20]. Culture supernatants obtained by centrifugation (4 °C, 8000 rpm, 1 min) were mixed with SDS sample buffer (5x), and then 20 µl was subjected to SDS-PAGE. Cell pellets were resuspended by sonication, and 20 µl cell suspension was mixed with SDS sample buffer for analysis. SDS-PAGE was carried out using 12% polyacrylamide gels, and proteins were stained with Coomassie brilliant blue R-250.

Quantitative real-time PCR

The analysis of transcriptional levels of lipA was performed with real-time qPCR in an ABI PRISM 7500 System (Applied Biosystems, USA) using SYBR green. Primers used for qPCR are listed in Table S2. The constitutively expressed gene rpoD was used as the internal reference. The amount of PCR product was calculated using the ΔΔCT-method, as previously described [45].

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication
Not applicable

Availability of data and materials

(1) The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

(2) All data generated or analyzed during this study are included in this published article.

Competing interests

A Chinese patent application (ZL 201810571727.3) has been filed and granted for the technology/invention disclosed in the present work.

Funding

This research was supported by the funding from National Key R&D Program of China (Grant No. 2019YFA0904000), the Recruitment Program of Global Experts (1000 Plan), Shandong Key Research and Development Program (2019QYTPY002, 2019JZZY010724); the Project of Taishan Industry Leading Talent in Shandong province (LJNY201603) and the Program of Introducing Talents of Discipline to Universities (B16030).

Authors' contributions

Z.B., Q.F. and H.C. planned and performed cloning experiments. Z.B., Q.F. and B. Y. performed genetic transfers, cultivation experiments and data analysis. Z.X., D.P. and L.X. performed lipase activity experiment and data analysis. Y.Z., Y.G. and Q.T. designed the study and wrote the paper. All authors discussed the results and commented on the manuscript.

Acknowledgements

We would like to thank Nannan Dong from the State Key Laboratory of Microbial Technology of Shandong University for help and guidance in fermentation.

References

1. Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T: **Active lactonizing lipase (LipL)** efficiently overproduced by *Pseudomonas* strains as heterologous expression hosts.
2. Boekema BK, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J:
 Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by
 different mechanisms. *Appl Environ Microbiol* 2007, **73**:3838-3844.

3. Gupta R, Gupta N, Rathi P: **Bacterial lipases: an overview of production, purification and**
 biochemical properties. *Appl Microbiol Biotechnol* 2004, **64**:763-781.

4. Casas-Godoy L, Gasteazoro F, Duquesne S, Bordes F, Marty A, Sandoval G: **Lipases: An**
 Overview. Methods Mol Biol 2018, **1835**:3-38.

5. Knapp A, Voget S, Gao R, Zaburannyi N, Krysciak D, Breuer M, Hauer B, Streit WR, Muller R,
 Daniel R, Jaeger KE: **Mutations improving production and secretion of extracellular**
 lipase by Burkholderia glumae PG1. *Appl Microbiol Biotechnol* 2016 Feb;100(3):1265-1273.

6. Sharma S, Kanwar SS: **Organic solvent tolerant lipases and applications.**
 ScientificWorldJournal 2014, **2014**:625258.

7. Jaeger KE, Reetz MT: **Microbial lipases form versatile tools for biotechnology.** *Trends**
 Biotechnol 1998, **16**:396-403.

8. Jaeger KE, Dijkstra BW, Reetz MT: **Bacterial biocatalysts: molecular biology, three-**
 dimensional structures, and biotechnological applications of lipases. *Annu Rev Microbiol*
 1999, **53**:315-351.

9. Frenken LG, Egmond MR, Batenburg AM, Bos JW, Visser C, Verrips CT: **Cloning of the**
 Pseudomonas glumae lipase gene and determination of the active site residues. *Appl**
 Environ Microbiol 1992, **58**:3787-3791.

10. Jiang Z, Zheng Y, Luo Y, Wang G, Wang H, Ma Y, Wei D: **Cloning and expression of a novel**
 lipase gene from Pseudomonas fluorescens B52. *Mol Biotechnol* 2005, **31**:95-101.

11. Jia B, Yang JK, Liu WS, Li X, Yan YJ: **Homologous overexpression of a lipase from**
 Burkholderia cepacia using the lambda Red recombinase system. *Biotechnol Lett* 2010,
1. Zhang X, Xia L: **Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus.** *J Ind Microbiol Biotechnol* 2017, **44**, 377-385.

2. Frenken LG, de Groot A, Tommassen J, Verrips CT: **Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae.** *Mol Microbiol* 1993, **9**, 591-599.

3. Frenken LG, Bos JW, Visser C, Muller W, Tommassen J, Verrips CT: **An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase.** *Mol Microbiol* 1993, **9**, 579-589.

4. Voget S, Knapp A, Poehlein A, Vollstedt C, Streit W, Daniel R, Jaeger KE: **Complete genome sequence of the lipase producing strain Burkholderia glumae PG1.** *J Biotechnol* 2015, **204**, 3-4.

5. Rosenau F, Jaeger K: **Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion.** *Biochimie* 2000, **82**, 1023-1032.

6. El Khattabi M, Van Gelder P, Bitter W, Tommassen J: **Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.** *J Biol Chem* 2000, **275**, 26885-26891.

7. Ahn JH, Pan JG, Rhee JS: **Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp.** *Appl Environ Microbiol* 2001, **67**, 5506-5511.

8. Liu D, Schmid RD, Rusnak M: **Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm--a screening system for a frequently used biocatalyst.** *Appl...
Quyen DT, Schmidt-Dannert C, Schmid RD: High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. *Appl Environ Microbiol* 1999, **65**:787-794.

Valero F: Heterologous expression systems for lipases: a review. *Methods Mol Biol* 2012, **861**:161-178.

Baneyx F, Mujacic M: Recombinant protein folding and misfolding in *Escherichia coli*. *Nat Biotechnol* 2004, **22**:1399-1408.

Chen KC, Zheng MM, Pan J, Li CX, Xu JH: Protein Engineering and Homologous Expression of *Serratia marcescens* Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. *Appl Biochem Biotechnol* 2017, **183**:543-554.

Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y: Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. *Nat Biotechnol* 2012, **30**:440-446.

Muyrers JP, Zhang Y, Testa G, Stewart AF: Rapid modification of bacterial artificial chromosomes by ET-recombination. *Nucleic Acids Res* 1999, **27**:1555-1557.

Muyrers JP, Zhang Y, Benes V, Testa G, Ansorge W, Stewart AF: Point mutation of bacterial artificial chromosomes by ET recombination. *EMBO Rep* 2000, **1**:239-243.

Tu Q, Herrmann J, Hu S, Raju R, Bian X, Zhang Y, Muller R: Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. *Sci Rep* 2016, **6**:21066.

Zhang Y, Muyrers JP, Testa G, Stewart AF: DNA cloning by homologous recombination in *Escherichia coli*. *Nat Biotechnol* 2000, **18**:1314-1317.

Wang J, Sarov M, Rientjes J, Fu J, Hollak H, Kranz H, Xie W, Stewart AF, Zhang Y: An improved
recombineering approach by adding RecA to lambda Red recombination. *Mol Biotechnol* 2006, **32**:43-53.

2. Fang Z, Xu L, Pan D, Jiao L, Liu Z, Yan Y: Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. *J Ind Microbiol Biotechnol* 2014, **41**:1541-1551.

3. Wang JR, Li YY, Liu D: Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3. *J Microbiol Biotechnol* 2015, **25**:845-855.

4. Quyen TD, Vu CH, Le GT: Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. *Microb Cell Fact* 2012, **11**:29.

5. Lynch MD, Gill RT: Broad host range vectors for stable genomic library construction. *Biotechnol Bioeng* 2006, **94**:151-158.

6. Wang H, Li Z, Jia R, Hou Y, Yin J, Bian X, Li A, Muller R, Stewart AF, Fu J, Zhang Y: RecET direct cloning and Redalphabeta recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. *Nat Protoc* 2016, **11**:1175-1190.

7. Antoine R, Locht C: Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. *Mol Microbiol* 1992, **6**:1785-1799.

8. Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S: Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. *Appl Environ Microbiol* 1997, **63**:370-379.

9. Aakvik T, Degnes KF, Dahlsrud R, Schmidt F, Dam R, Yu L, Volker U, Ellingsen TE, Valla S: A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. *FEMS Microbiol Lett* 2009,
He D, Luo W, Wang Z, Lv P, Yuan Z: Combined use of GAP and AOX1 promoters and optimization of culture conditions to enhance expression of Rhizomucor miehei lipase. *J Ind Microbiol Biotechnol* 2015, **42**:1175-1182.

1. Wang X, Zhou H, Chen H, Jing X, Zheng W, Li R, Sun T, Liu J, Fu J, Huo L, et al: Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in *Burkholderiales* species. *Proc Natl Acad Sci U S A* 2018, **115**:E4255-E4263.

2. Li J, Wang J, Wang S, Xing M, Yu S, Liu G: Achieving efficient protein expression in *Trichoderma reesei* by using strong constitutive promoters. *Microb Cell Fact* 2012, **11**:84.

3. Fu J, Teucher M, Anastassiadis K, Skarnes W, Stewart AF: A recombineering pipeline to make conditional targeting constructs. *Methods Enzymol* 2010, **477**:125-144.

4. Winkler UK, Stuckmann M: Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by *Serratia marcescens*. *J Bacteriol* 1979, **138**:663-670.

5. Knapp A, Voget S, Gao R, Zaburannyi N, Krysciak D, Breuer M, Hauer B, Streit WR, Muller R, Daniel R, Jaeger KE: Mutations improving production and secretion of extracellular lipase by *Burkholderia glumae* PG1. *Appl Microbiol Biotechnol* 2016, **100**:1265-1273.

Figures
Figure 1

Schematic diagram of the direct cloning and engineering of the lipAB operon for homologous expression. (A) Direct cloning of the lipAB operon using the RecET recombination system. Genomic DNA isolated from B. glumae PG1 was digested with restriction enzymes to release the target genes. The linear vector p15A-cm used for direct cloning and the target genomic
segment share matching sequences at both ends, named homology arms (ha). (B) Retrofitting the cloned genes with a broad-host-range vector. The broad-host-range pBBR1 and pRk2 origins flanked by homology arms, were used for retrofitting of the p15A vectors using the Redαβ recombination system, and then a strong constitutive promoter (Papra) was exchanged with the native promoter of lipAB to regulate expression of lipAB. A kanamycin resistance gene was used as a selectable marker.
Figure 2

Lipase production of wild-type B. glumae PG1 (PG1wt) and PG1 transformants in PG medium supplemented with 1% olive oil. (A) SDS-PAGE analysis of the culture supernatants and cell extracts after 72 h of cultivation. PG1/RI and PG1/Bl contain pRI and pBl, respectively. Lane M, molecular weight standards; lanes 1, 3 and 5, culture supernatants; lanes 2, 4 and 6, cell extracts. The position of the lipase protein is indicated by an arrow. (B) Comparison of the expression levels of lipA detected by qPCR after 24 h of cultivation. Error bars show standard deviations derived from three experimental replications.
Lipase activity and cell growth of B. glumae PG1 (PG1wt) and PG1 transformants. (A) Lipase activity in the supernatants at different growth phases. Activity was measured after cell removal. PG1/Rl and PG1/Bl contain pRl and pBl, respectively. (B) Cell growth curve. Wild-type B. glumae PG1, PG1/Rl and PG1/Bl were grown at 30°C in PG medium with 1% olive oil. Error bars indicate standard deviations from three experimental replications.
Figure 4

Lipase production of B. glumae PG1 transformants harboring different plasmids. (A, C)
Relative lipase activity and (B, D) SDS-PAGE analysis of the supernatants of cultures grown
with (A, B) 1% olive oil and (C, D) 0.5% glucose. Cells were grown for 24 h in PG medium at
30°C. PG1/Rl and PG1/B1 contain pRl and pBl, respectively, and PG1/Ra and PG1/Ba contain
pRa and pBa, respectively. Error bars show standard deviations derived from three
experimental replications.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.
LipAB Supplementary.docx