Lightning in the Arctic

Robert H. Holzworth1, James B. Brundell2, Michael P. McCarthy3, Abram R. Jacobson4, Craig J. Rodger2, and Todd S. Anderson1

1Earth and Space Sciences, University of Washington, Seattle, WA, USA, 2Department of Physics, University of Otago, Dunedin, New Zealand

Abstract World Wide Lightning Location Network (WWLLN) data on global lightning are used to investigate the increase of total lightning strokes at Arctic latitudes. We use the summertime data from June, July, and August (JJA) which average >200,000 strokes each year above 65°N for the years 2010–2020. We minimize the possible influence of WWLLN network detection efficiency increases by normalizing our results to the total global strokes during northern summer each year. The ratio of strokes occurring above a given latitude, compared to total global strokes, increases with time, indicating that the Arctic is becoming more influenced by lightning. We compare the increasing fraction of strokes with the NOAA global temperature anomaly, and find that the fraction of strokes above 65°N to total global strokes increases linearly with the temperature anomaly and grew by a factor of 3 as the anomaly increased from 0.65°C to 0.95°C.

Plain Language Summary Global Lightning location data from 2010 – 2020 are used to show that the number of strokes in the Arctic above 65°N is increasing. We show that the increase in the fraction of strokes in the Arctic compared to total global strokes is well correlated with the global temperature anomaly.

1. Introduction

In August 2019, it was widely reported that multiple lightning strokes had been detected within just a few hundred miles from the North Pole (cf. Freedman, 2019) Indeed, multiple reports in recent years show strong evidence that the Arctic is warming faster than expected (e.g., Carey, 2012), the sea ice is melting (e.g., Dirk & Stroeve, 2016) as is the permafrost (e.g., Farquharson et al., 2019). One might assume that with global warming we would see an increase in global lightning, but this is both a controversial prediction and difficult to prove with existing global lightning data. In 2004 Williams (Williams, 2004) discussed the expected and measured meteorology and climate variations on the frequency of lightning and concluded that the question was undecided about whether global lightning would increase or decrease as the planet warmed. Others have predicted an increase in lightning (Romps et al., 2014) or a decrease (Finney et al., 2018).

Another assumption one might have, now that we have global lightning monitoring in real time since 2004 (see http://wwlln.net), is that we should be able to simply count strokes and compare to the temperature rise. During the last decade, even the oldest global lightning location network has had such growth in its detection efficiency, that global inter-comparison between years is not simple. Because of the improving detection efficiency one might expect strong increases in lightning stroke counts even without any climate impacts.

In this study, we describe the global temperature increase and then look specifically at the lightning occurring at high northern latitudes over the last 11 years. Global lightning has a seasonal variation resulting in major lightning activity which is dominant in the summer hemisphere. Thus, the major regions of lightning strokes switch from the northern mid-latitudes (June/July/August) to the southern mid-latitudes (in December/January/February) every year, while lightning activity in the tropics has a smaller annual total stroke variation. Furthermore, we find few lightning strokes in the high Arctic outside of these summer months. Additionally, we note that the southern hemisphere at high southern latitudes has very little lightning at any time of the year. There are some summer strokes near the Palmer Peninsula, Antarctica, but almost no strokes poleward of 65°S, and certainly not enough for a comprehensive statistical analysis, even
though WWLLN has five stations in Antarctica. As such we consider only northern hemisphere summer data.

In this study, we discuss the temperature and lightning data sets to be used and motivate the work with a global look at both the Earth's temperature anomaly as well as northern latitude lightning distributions. We then present an analysis using latitudinal and annual lightning variations to investigate the increasing fraction of global lightning which occurs at high latitudes. These lightning data are then compared to the three-month global temperature anomaly for northern hemisphere summer to arrive at a linear relationship between the fraction of global lightning occurring above 65°N, with the temperature increase. If this trend continues and the Earth has another 0.5°C global temperature increase, then the lightning stroke rate in the Arctic could increase by 100% from the 2020 stroke level.

1.1. Data Sets

Here we introduce the global temperature data set available from NOAA's National Centers for Environmental Information (NCEI) and the lightning data from WWLLN. NCEI tracks the Earth's temperature variations and has global temperature change data from 1880 to today (NOAA, 2020a). Figure 1 is a plot of the full globe, yearly temperature anomaly for JJA, showing the, now well known, steady increase of global temperature. Data used for these plots comes from over 1200 stations around the globe, and ocean data comes mostly from an extensive network of buoys (NCDC, 2020). The units are given in degrees C above the average temperature for the 20th century (0° line in Figure 1). We will concentrate on the yearly temperature anomaly changes corresponding to the 11 year time period of the WWLLN lightning data (2010–2020, toward the end of the plot in Figure 1) and use the global temperature data from the June-July-August (JJA) period each year corresponding to the summer time of the lightning data (NOAA, 2020b).

The World Wide Lightning Location Network (WWLLN) has been locating lightning strokes globally since 2004. The WWLLN uses the radio energy emitted by lightning (in the VLF, Very Low Frequency—range) and detected at receivers all over the world to locate lightning using the time of group arrival (Dowden et al., 2002; Hutchins et al., 2012; Rodger et al., 2006; Virts et al., 2013). Lightning produces a strong, narrow impulse during each return stroke which results in the emission of radio frequency energy which peaks in the range of 10–15 kHz (e.g., Dowden et al., 2002; Malan, 1963). This narrow impulse, which can be recognized as a transient even at AM or FM radio band frequencies, produces a wave packet which propagates around the world in the Earth Ionosphere Wave Guide. During propagation the wave packet spreads out in frequency by a process called dispersion, requiring a careful analysis of the wave packet to find the time of group arrival (TOGA) (Dowden et al., 2002). When the TOGA is measured with 100 ns absolute

![Figure 1. Global Temperature Anomaly for June, July, and August.](image)
accuracy by several widely spaced receivers, it is possible to locate lightning to within < 5 km and within a few microseconds. Currently WWLLN locates 600,000–800,000 strokes globally every day, while in the past the detection efficiency was about 10% of what it is today. Here we use data from 2010 to 2020 to analyze the increase in high latitude lightning and concentrate on the northern summer months of JJA.

Figure 2, for reference, shows the total, global strokes, each detected by six or more WWLLN stations, during JJA each year. Additionally, Figure 2 shows the average number of WWLLN stations operating during those months (red line). We can see an increase in global strokes located with six or more WWLLN stations during these months, from 3.21×10^7 strokes in the northern summer in 2010 to about twice that beginning in 2014, and more or less steady after that. The red curve counts the average stations operating each year during the 92 days of the JJA months. Comparing the red to the blue curves one can see that the increase in strokes (blue) is closely associated with an increasing detection efficiency due to the increasing number of stations (red). However, after 2014 the total global stroke count in Figure 2 varies by less than 10%, as does the station count. There is little or no lightning in the Arctic outside of northern summer time, hence we focus here on just those three months each year.

The distribution of high latitude lightning found during these 11 years is shown in Figure 3, which is a plot of just the strokes poleward of 75°N latitude. In Figure 3 we can see that the stroke distribution is dominated by lightning in the eastern hemisphere from about 70°E to 170°E, with relatively little lightning north of Canada/Alaska by comparison. This is probably due to the fact that mainland Canada is mostly south of 70°N, while mainland Russia reaches up to over 77°N, with substantial mainland Russia north of 70°N latitude.
Geophysical Research Letters

Figure 3 also shows some lightning activity extending up to very near the North Pole. In fact, these WWLLN data include 28 strokes, well vetted in location and time, which are within about 100 km of the North Pole which all occurred on August 13, 2019 (see Table S1 for the actual strokes, and Figure S1 to see the WWLLN stations which located these strokes). This paper does not address the meteorology associated with this northern intrusion close to the pole, but it is clear that it is associated with an energetic, well organized event which lasted for hours and will be examined in a future study.

1.2. Analysis of High Latitude Lightning

Figure 4, with JJA WWLLN strokes poleward of 65°N, shows stroke counts increasing over recent years (blue bars). The blue histogram data in his figure are not corrected for WWLLN detection efficiency, but report actual total strokes detected by six or more WWLLN stations during JJA from latitudes north of 65°N. Looking at Figure 2 as a rough guide to the gross variation in WWLLN detection efficiency, we can adjust the stroke number each year by the ratio of average number of stations after 2014 (59.9 stations) to the actual number each year (from about 40 to 60 stations, see red line in Figure 2). The red line in Figure 4 is the result of this adjustment due to the increasing number of WWLLN stations: with the primary effect being only a few tens of percent increases in the first few years. Here one can see that in Figure 4 the adjusted histogram (red line) still indicates a great increase in the number of WWLLN strokes north of 65° latitude over this 11 year period. So, there is no evidence from our growing station locations that the relative number of strokes detected in the Arctic would be favored in any way. In fact, one might have expected a reduced ratio in the Arctic, due to increasing total global WWLLN stations, which are all outside the Arctic.

We plot in Figure 5 (blue line) the fraction of total global strokes during JJA each year so that the increasing detection efficiency effect is minimized. In this Figure 5, the blue plot refers to the total well located strokes above 65°N normalized by the total number of WWLLN-observed global strokes in that summer time period. Comparing the blue line to the histogram or red line in Figure 4, one can see that the plot strongly reflects the increasing total strokes above 65°N, including the relative dips in 2015 and 2018. Thus, Figure 5 is evidence that the fraction of global lightning occurring north of 65°N has increased by over a factor of three during this time period (from 0.002 to over 0.006 or 0.2%–0.6%).

Another point to make is that the increase is evident even just looking at the 7 year period from 2014 to 2020 when the WWLLN detection efficiency did not vary by more than 10% (as discussed above).
looked at three 10° latitude bands starting at 45°N and found the same trend in each separate band as shown for all strokes north of 65°N in Figure 5 blue line (see Figure S2 for the latitude bands detail). Figure 5 also includes the three month (JJA) global temperature anomaly in degrees Celsius reported by NOAA (NOAA report 2020 and Table 1 below). These temperature anomaly data are from the same NOAA data set used in Figure 1. This Figure 5 demonstrates the strong similarity between the fraction of strokes above 65°N and the 3 month average global summer temperature anomaly for JJA for the 11 year period of the WWLLN stroke data.

There is obviously a correlation between the blue and red plots in Figure 5, which we quantify in Figure 6. At the very least, the two linear trends are consistent. In Figure 6 we see that the linear correlation coefficient is $R = 0.802$ and $R^2 = 0.644$. In this figure, we can clearly see the increase in the fraction of total strokes occurring at high latitudes has increased by a factor of three during the temperature increase of 0.3°C in the global 3-months average global temperature anomaly (from 0.65°C to 0.95°C). As discussed in the introduction, the evidence and modeling regarding any possible global lightning increase with global temperature is mixed at best. The global WWLLN data in Figure 2 may show a slight upward trend from 2014 to 2020 when there was no clear trend in WWLLN detection efficiency. So, it is possible that total global strokes may indeed increase, but not by much compared to the large increase of Arctic lightning from 2010 to 2020 (as seen in Figure 4).

To put this in raw terms we could say that if one thinks there are, say, 44 lightning strokes per second globally (e.g., Christian et al., 2003), which would be 0.35×10^9 strokes globally during three months of summer, then we can expect 0.006×350 million strokes $= 2.1$ million strokes to occur in the Arctic (all in the summer) or about 23,000 every day of JJA.

Table 1

Year	Ratio	Temp anomaly, °C
2010	0.002092	0.73
2011	0.001643	0.65
2012	0.002526	0.71
2013	0.002685	0.68
2014	0.004262	0.77
2015	0.002874	0.89
2016	0.004774	0.95
2017	0.005185	0.89
2018	0.003404	0.8
2019	0.004853	0.93
2020	0.006707	0.92

Note. Temp Anomaly source (see NOAA, 2020b).
We can ask what these numbers suggest for future Arctic lightning? We can use the regression line in Figure 6 to look out to a time in the future beginning from the current values in 2019–2020 (where the ratio is 0.0059) and the Temperature anomaly is 0.93°C. Then, when the global temperature anomaly has increased by just 0.5°C (to 1.45°C), the fraction of strokes in the Arctic (vertical axis Figure 6) would increase to 0.011 or about 100% of the current total global lightning. This assumes the total global stroke rate does not change, but if the total global stroke rate increases, while the fraction in the Arctic also increases, then the total net increase in the Arctic could be much more.

Data Availability Statement
These data are available at nominal cost from http://wwlln.net.

Acknowledgments
The WWLLN lightning stroke data used in this study were provided by the World Wide Lightning Location Network, a collaboration of more than 50 universities.

References
Carey, J. (2012). GLOBAL WARMING: Faster than expected?. Scientific American, 307, 50–55. https://doi.org/10.1038/scientificamerican1112-50
Christian, H. J., et al. (2003). Global frequency and distribution of lightning as observed from space by the optical transient detector. Journal of Geophysical Research, 108(D1), 4005. https://doi.org/10.1029/2002JD002347
Dirk, N., Streeve, J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354(6313), 747–750. https://doi.org/10.1126/science.aag2345
Dowden, R. L., Brundell, J. B., & Rodger, C. J. (2002). VLF lightning location by time of group arrival (TOGA) at multiple sites. Journal of Atmospheric and Solar-Terrestrial Physics, 64(7), 817–830.
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V., & Nicsolsky, D. (2019). Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters, 46, 6681–6689. https://doi.org/10.1029/2019GL082187
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., & Blyth, A. M. (2018). A projected decrease in lightning under climate change. Nature Climate Change, 8, 210–213. https://doi.org/10.1038/s41558-018-0072-4
Fredman, A. (2019). Washington Post “Lightning struck near the North Pole 48 times on Saturday, as rapid Arctic warming continues”. The Washington Post. Retrieved from https://washingtonpost.com/weather/2019/08/12/lightning-struck-within-miles-north-pole-saturday-rapid-arctic-warming-continues/
Holzworth, R. H., McCarthy, M. P., Brundell, J. B., Jacobson, A. R., & Rodger, C. J. (2019). Global distribution of superbolts. Journal of Geophysical Research: Atmosphere, 124, 9996–10005. https://doi.org/10.1029/2019JD030975
Hutchins, M. L., Holzworth, R. H., Brundell, J. B., & Rodger, C. J. (2012). Relative detection efficiency of the world wide lightning location network. Radio Science, 47(6), 2012RS005049. https://doi.org/10.1029/2012RS005049
Malan, D. J. (1963). Physics of lightning. The English Universities Press.
NCDC. (2020). National climate data center, monitoring global and U.S. Temperatures at NOAA’s National Centers for environmental information, NOAA (National Oceanic and Atmospheric Administration). Retrieved from https://www.ncdc.noaa.gov/monitoring-references/es/faq/temperature-monitoring.php, retrieved 12/20/2020
NOAA. (2020a). National Centers for environmental information, climate at a glance: Global time series. NOAA (National Oceanic and Atmospheric Administration). Retrieved from https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/3/8/1880-2020
NOAA. (2020b). NCEI global land and ocean June-August temperature anomaly. NOAA (National Oceanic and Atmospheric Administration). Retrieved from https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/3/8/2010-2020
Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R., Holzworth, R. H., & Dowden, R. L. (2006). Detection efficiency of the VLF world-wide lightning location network (WWLLN): Initial case study. Annals of Geophysics, 24, 3197–3214.
Romps, D. M., Jacob, T. Seeley, D. V., & J. Molinari, (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346(6211), 851–854. https://doi.org/10.1126/science.1259100
Virts, K. S., Wallace, J. M., Hutchins, M. L., & Holzworth, R. H. (2013). A new ground-based, hourly global lightning climatology. Bulletin of the American Meteorological Society (AMS), 94(9), 1831–1891.
Williams, E. R. (2004). Lightning and climate: A review. Atmospheric Research, 76(2005), 272–287.