Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I
Schwarzhans, Werner; Carnevale, Giorgio; Bannikov, Alexandre F.; Japundži, Sanja; Bradi, Katarina

Published in:
Swiss Journal of Palaeontology

DOI:
10.1007/s13358-015-0111-0

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Schwarzhans, W., Carnevale, G., Bannikov, A. F., Japundži, S., & Bradi, K. (2017). Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I: Atherina suchovi Switchenksa, 1973. Swiss Journal of Palaeontology, 136(1), 7-17. https://doi.org/10.1007/s13358-015-0111-0
Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I: *Atherina suchovi* Switchenska, 1973

Werner Schwarzhans1 · Giorgio Carnevale2 · Alexandre F. Bannikov3 · Sanja Japundžić4 · Katarina Bradić5

Received: 4 September 2015 / Accepted: 18 November 2015 / Published online: 18 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Several well-preserved otoliths were extracted from four slabs containing fish specimens of *Atherina suchovi*. *Atherina suchovi* is one of the five *Atherina* species recorded from the Middle Miocene of the Central and Eastern Paratethys established on articulated skeletal remains. This corresponds to two otolith-based species so far identified from the same time interval in the Paratethys—*Atherina austriaca* and *Atherina gidjakensis*. Our correlation of isolated otoliths and otolith in situ documents in this case that *A. suchovi* is not synonymous to any of the otolith-based species, although it appears to be closely related to *A. gidjakensis*. A list is presented and briefly discussed showing Sarmatian skeleton-based fish records from the Central and Eastern Paratethys with an overview of known and currently studied fishes with otoliths in situ.

Keywords Ichthyology · Teleost · Atherinidae · Paleontology · Moldavia

Introduction

About 60 fossil fish specimens with otoliths in situ have been studied from Sarmatian strata of the collections of the Croatian Natural History Museum, Zagreb (CNHM), Serbian Natural History Museum, Belgrad (NHMB), the Faculty of Mining and Geology of the University of Belgrade (IGOT) and the Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow (PIN) representing 20 nominal fish species and bringing the total number of Paratethyan fishes with otoliths in situ to 30 nominal species. These will be described in a sequence of research papers, of which this is the first one, and when finalized will represent the largest fossil fish assemblage with otoliths in situ known to date. This first part is dealing with *Atherina suchovi*. A certain part of the article is constructed to serve as an overall introduction for all following parts to set the scene and reduce unnecessary redundancy.

Several of the specimens studied represent holotypes, lectotypes, paratypes, paralectotypes or syntypes, but many others are not type-specimens of any kind and, therefore, their taxonomic allocation will be reviewed in the course of the study where appropriate. The specimens studied from the Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow were identified by Bannikov or Baykina; the material housed in the Croatian Natural History Museum mostly belongs to the collection “Sarmatian fishes of Croatia and Slavonia” described by Dragutin Gorjanović-Kramberger and includes either type-specimens of some kind or can be related to relevant type-specimens; the Andjelković collection in the Serbian Natural History Museum and the University of Belgrade is more problematic since they contain few type-specimens and many of the identifications are in need of revision.
Otoliths in situ in fossil fish are very important for paleoichthyological studies, because they provide a crucial evidence for potential parallel taxonomy (Bachmayer and Weinfurter 1965; Bedini et al. 1986; Fedotov 1971; Gaudant and Reichenbacher 2005; Schwarzhans 2014), as well as a remarkable opportunity in otolith research to calibrate fossil findings with coeval data derived from articulated skeletons, while otherwise systematic allocation of isolated fossil otoliths is restricted to comparison with extant otoliths only. Fossil fish skeletons of teleosts with otoliths in situ have traditionally been regarded to be rather rare. In 1985, Nolf listed not more than 45 species of fossil fishes recorded with otoliths in situ, and considered only 23 of them to have otoliths ‘well enough preserved or suitable oriented to show taxonomically useful features’. In Nolf (2013), the list was expanded to 96 fish species with otoliths recorded in situ, of which 45 were considered as taxonomically ‘useful’. The scarcity of fossil otoliths in situ, however, has never been exhaustively explained or challenged, even though it is evident that otoliths, which consist of aragonite are much easier dissolved during rock diagenesis or exposure compared with bones, scales and teeth. Our ongoing study, of which this is the first part, will demonstrate that fossil otoliths in situ may in fact be more common than commonly perceived and hopefully contribute to more research work in this field.

In a study dealing with otoliths in situ of the gadid Palimphemus aniceps Kner 1862, Schwarzhans (2014) reminded about a publication by Schubert (1906), who mentioned 10 species from the Sarmatian of Dolje near Zagreb in which he had observed otoliths in situ. Tragically, the untimely death of Schubert, who perished during World War I, prevented him to work on that material. In 2010, Bannikov noted in passing that fishes from the Sarmatian of Russia and Moldavia, i.e., Eastern Paratethys almost always contain otoliths in situ, and in fact described himself a few such species—Morone ionkoi Bannikov 1993; Symphodus salvus Bannikov 1986; Clinitrichoides gratus (Bannikov 1989). The description of a sparid fish (Pshekharus yesinorum Bannikov and Kotlyar 2015) with otoliths in situ was in press by Bannikov and Kotlyar during the time of manuscript submission. Other otoliths in situ previously described from Badenian and Konkian-Sarmatian fishes of the Central and Eastern Paratethys were reported in Bregmaceros albyi (Sauvage, 1880) (in Bachmayer and Weinfurter 1965), Micromesistius sp. (Carnevale et al. 2006), Palimphemus aniceps Kner 1862 (in Schwarzhans 2014), Paratrisopterus avus Fedotov 1971 (in Fedotov 1976), Sparus insignis (Prochazka 1893) (in Brzobohaty 1979), Protonymus gontsharowae Synchevkaya and Prokofiev 2007 (in Synchevkaya and Prokofiev 2007) and Gobius elatus Steindachner 1860 (in Schultz 2013). We took up these valuable reports to systematically search for otoliths in situ of Sarmatian fishes primarily from the collection of “Sarmatian fishes of Croatia and Slavonia” described by Dragutin Gorjanović-Kramberger from Dolje near Zagreb housed in the Croatian Natural History Museum in Zagreb, the collection assembled by Jelena S. Andjelković from excavations at the Belgrad football stadium and housed in the Serbian Natural History Museum and the University, Belgrad, and from the collection of the Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow in large part collected by Alexandre F. Bannikov.

Table 1 summarizes the teleost species recorded from the Sarmatian (and Konkian) described from the Central Paratethys based on Andjelković (1989), Baciu et al. (2005) and Schultz (2013) and the Eastern Paratethys based on Carnevale et al. (2006), Bannikov (2010) and Baykina (2012, 2015). We consider the taxonomic status of the fishes from the Eastern Paratethys as modern and adequate, but the taxonomic status of the fishes from the Central Paratethys is in urgent need of review. For instance, one might readily conclude that the number of species in clupeids or gadids in the Central Paratethys could be exaggerated and that the occurrence of Mediterranean species in the isolated Middle Miocene Paratethys appears unlikely. However, it is not our target to perform a taxonomic review of the fishes concerned, except when otoliths and fishes with otoliths in situ provide for new insights. The purpose of our study is to adequately document the data, with focus on the otoliths in situ, and align skeletal and otolith-based identifications wherever possible to provide the basis for calibrating the fossil otolith record.

Materials and methods

Among the type series of A. suchovi (Switchenska 1973) housed in the PIN collection, there are 10 complete specimens with otoliths in situ. Subsequent recent excavations of A. F. B. at the type locality yielded numerous complete and incomplete skeletons of A. suchovi (PIN collection, uncatalogized), a number of which also have the otoliths in situ. Of them, the four fish skeletons of A. suchovi with otoliths in situ described here are now housed at the Geological Museum of the Natural History Museum of Denmark in Copenhagen (GMUH). Comparative otolith material studied: six specimens of Atherina gidjakensis from the Konkian of Mangyshlak, Kazakhstan, housed at the Natural History Museum of Ukraine in Kiev (NMNH) as published by Bratishko et al. (2015) and three specimens of Atherina austriaica from the Serravallian of the Karaman Basin, SE-Turkey, from the collection of Schwarzhans.

The otolith-bearing specimens of A. suchovi studied here are incomplete, but stem from the same location
Table 1 List of nominal skeleton-based teleost species in the Central and Eastern Paratethys during Sarmatian, Konkian and Karaganian and middle to late Badenian, respectively

Central Paratethys	Eastern Paratethys
Clupeidae	
Alosa crassa Sauvage 1873*	*Clupea humilis* H.v.Meyer 1851*
Alosa elongata Agassiz 1842*	
Alosa aff. nordmani Antipa 1906*	
Alosa pinarhisarensis Rücker-Ülkümen 1965*	
Alosa sculptata Weiler 1928	
Clupea arcuata Kner 1863	
Clupea elongata Steindachner 1860	
Clupea gorjensis Huica and Gheorghiu 1962	
Clupea heterocerca Kramberger 1883	
Clupea humilis H.v.Meyer 1851*	
Clupea inflata Vukotinovic 1870	
Clupea intermedia Kramberger 1885	
Clupea lanceolata H.v.Meyer 1852*	
Clupea maceki Kramberger 1883	
Clupea melettaeformis Steindachner 1860	
Clupea sarmatica Böhm 1929	
Clupea sphaerocephala Vukotinovic 1870	
Clupea spinosa Rücker-Ülkümen 1965*	
Clupea voinovi Pauca 1929	
Etrumeus boulei Arambourg 1927*	
Sardina tarletskovi Baykina 2015	
Sardinella beogradiensis Andjelkovic 1967	
Sardinella sardinites (Heckel 1850)*	
Sarmatella doljeana (Kramberger 1883)	
Sarmatella vulkotinovici (Kramberger 1883)	
Stolephorus lemoinei (Arambourg 1927)*	
Myctophidae	
Myctophum columnae (Sauvage 1873)*	
Salmonidae	
Salmo ? immigratus Kramberger 1891	
Belonidae	
Belone tenuis Kramberger 1898	
Bregmacerotidae	
Bregmaceros albyi (Sauvage 1880)*	
Gadidae	
Brosnius elongatus Kramberger 1883	
Brosnius fuchsianus Kramberger 1883	
Brosnius murdjadjensis Arambourg 1927*	
Brosnius longipinnatus (Kramberger 1880)	
Brosnius strossmayeri Kramberger 1883	
Brosnius susedanus Kner 1863	
Gadus aeglefinoides (Kner and Steindachner 1863)	
Gadus extendus (Kramberger 1891)	
Central Paratethys	Eastern Paratethys
-------------------	--------------------
Gadus lanceolatus (Kramerger 1883)	
Gadus macropterygius (Kramerger 1883)	*Gadus macropterygius* (Kramerger 1883)
Gadus minimus (Kramerger 1885)	
Gadus szagadatensis (Steindachner 1863)	
Micromesistius sp. b	
Palimphemus anceps Kner 1862c	
Syngnathidae	
Syngnathus affinis Kramberger 1891	
Syngnathus albyi Sauvage 1817*	
Syngnathus helmsii Steindachner 1860	
Syngnathid indet	
Holocentridae	
Holocentroides moldavicus Pauca 1931	
Mugilidae	
Mugil acer Switchenska 1959	
Mugil finitimus Switchenska, 1973	
Mugil karaganicus Switchenska 1973	
Mugil minax Bogatshov 1933	
Atherinidae	
Atherina impropria Switchenska 1973	
Atherina prima Switchenska 1959	
Atherina sarmatica Kramberger 1891	
Atherina schelkovnikovi Bogatshov 1936	
Atherina suchovi Switchenska 1973*	
Atherina sumgaitica Switchenska 1973	
Sphyraenidae	
Parasphyraena apsheronica Switchenska 1968	
Scorpaenidae	
Properca sabbai Pauca 1929*	
Serranus altus Kramberger 1882	
Serranus dubius Kramberger 1882	
Moronidae	
Morone intermedia Kramberger 1882	
Morone ionkoi Bannikov 1993*	
Morone neumayri (Kramberger 1882)	
Latidae	
Lates croaticus Kramberger 1902	
Lates gregarius Bannikov 1992	

W. Schwarzhans et al.
Table 1 continued	Central Paratethys	Eastern Paratethys
Priacanthidae		Naslavcea fundata (Bannikov 1990)
Priacanthus croaticus (Kramberger 1885)		
Carangidae		
Caranx haueri Kramberger 1882		
Caranx longipinnatus Kramberger 1882		
Seriola gracilis Böhm 1942		
Centracanthidae		
Sparidae		
Boops roulei Arambourg 1927*		Pshekharus yesinorum Bannikov and Kotlyar 2015*
Sparus brusinai (Kramberger 1882)		Sparus brevis (Lednev 1914)
Sparus insignis (Prochazka 1893)*		Sparus brusinai (Kramberger 1882)
Sparus intermedias (Kramberger 1902)		
Sciaenidae		
Sciaena? multipinnata (Kramberger 1882)		Sciaena knyrkoi Daniltshenko 1980
Pomacentridae		
Chromis savornini Arambourg 1927*		Sciaena pimenovae Bogatshov 1955
Polynemidae		
Labridae		
Symphodus woodwardi (Kramberger 1891)		Symphodus salvinus Bannikov 1986*
Scombridae		
Auxis croaticus Kramberger 1882		
Auxis minor Kramberger 1882		
Auxis thynnoides Kramberger 1882		
Auxis vracbicensis Kramberger 1882		
Scomber priscus Kramberger 1882		Scomber caucasicus (Bogatshov 1933)
Scomber sarmaticus Kramberger 1882		
Scomber steindachneri Kramberger 1882		
Callionymidae		
Callionymus macrocephalus Kramberger 1882		Callionymus macrocephalus Kramberger 1882
Trachinidae		
Trachinoides dracunculus Heckel 1849		
Blenniidae		
Blennius fossilis Kramberger 1891		
Clinidae		
Gobiidae		
Gobius brivesi Arambourg 1927*		
Gobius elatus Steindachner 1860		

Otoliths were first identified on the skeleton-bearing slabs by visual inspection. When considered well enough preserved they were carefully cleaned trying to keep any damage to fish or otolith at a minimum. Since otoliths are often fragile and rather soft we commonly left them in the rock after having cleaned the surface of its inner face as much as possible. By this, fracturing of the otoliths or severance was kept to a minimum. As a consequence of this procedure, no lateral views of otoliths of *A. suchovi* are produced. In addition, the otolith specimen is maintained associated with the skeleton to reduce the risk of potential future loss or damage or any uncertainty about the corre-

Central Paratethys	Eastern Paratethys
Gobius oblongus Steindachner 1860	“Gobius” sp.
Gobius pullus Kramberger 1882	*Pomatoschistus* sp."
Gobius viennensis Steindachner 1860	

Caproidae

Proantigonia octacantha Kramberger 1882

Proantigonia radobojana Kramberger 1882

Bothidae

Rhombus bassanianus Kramberger 1883

Rhombus parvulus Kramberger 1883

Rhombus serbicus Andjelkovic 1966

Rhombus stamatini Pauca 1931

Pleuronectidae

Soleidae

Achirus mediterraneus Arambourg 1927*

Microchirus abropteryx (Sauvage 1870)*

Central Paratethys based on Andjelkovic (1989), Baciu et al. (2005) and Schultz (2013); Eastern Paratethys based on Carnevale et al. (2006), Bannikov (2010), Bannikov and Kotlyar (2015) and Baykina (2012, 2015). The systematic follows Nelson (2006).

Skeletons with otoliths in situ are shown in bold.

* Originally described from outside Paratethys and identity of referred fishes in the Paratethys questionable.

** Isolated otolith attributed to skeleton-based species based on taxonomic evidence.

Superscript alphabets refer to published otoliths in situ: * Bachmayer and Weinfurter (1965) from the lower Badenian of Austria; " Carnevale et al. (2006) from the Sarmatian of Russia; " Schwarzans (2014) from the middle Badenian of Poland; " Fedotov (1971) from the Sarmatian of Moldavia; " this paper; " Bannikov (1993, 2009) from the Sarmatian of Moldavia; " Bannikov and Kotlyar (2015) from the Sarmatian of Russia; " Brzobohaty (1979) from the late Badenian of Slovakia (species identified on basis of the otolith in situ); " Bannikov (1986) from the Sarmatian of Moldavia; " Sytchevskaya and Prokofiev (2007) from the Konoen of Russia; " Bannikov (1989) from the Sarmatian of Moldavia; " according to Schultz (2013) from the Saratani of Austria.

mentioned above and containing only a single atherinid species (Bannikov 2009). Moreover, the studied otoliths are identical to those of the complete specimens, including those of the type series.
Otoliths in situ from Sarmatian fishes. Part I: Atherina suchovi

ulation between otolith and articulated skeleton. The morphological terminology of otoliths was established by Koken (1891) with amendments by Weiler (1942) and Schwarzhans (1978). The morphometric measurements of otoliths follow Schwarzhans (2013). Documentation of otoliths is provided by photographs. All otoliths are shown from the right side. Left otoliths are mirror imaged and annotated accordingly (‘reversed’).

Abbreviations used are: general: institution acronyms see above, vs versus, skeletons: SL standard length, TL total length, HL head length, D dorsal-fin rays (including D1, D2 and D3 as the case may be), A anal fin rays (including A1 and A2 as the case may be), P pectoral fin rays, V pelvic fin rays, C principal caudal fin rays; Roman numerals denote spiny fin rays, Arabic numerals denote branched fin rays; otoliths: OL otolith length, OH otolith height, OT otolith thickness, SuL sulcus length, OsL ostium length, OsH ostium height, CaL cauda length, CaH cauda height.

Systematic paleontology

Class Osteichthyes Huxley 1880
Division Teleostei Müller 1846
Order Atheriniformes Rosen 1964
Family Atherinidae Risso 1827
Genus Atherina Linnaeus 1758
Atherina suchovi Switchenska 1973

(Figure 1a–d)
1954 Atherina sarmatica Gorjanovic-Kramberger 1891—Ionko: pl. 1, Fig. 4.
1973 Atherina suchovi Switchenska—Switchenska: pl. 5, Figs. 5, 6, pl. 6, Figs. 1–5, pl. 7, Figs. 1–3.
1980 Atherina suchovi Switchenska 1973—Switchenska: pl. 15, Figs. 4–5.
2009 Atherina suchovi Switchenska 1973—Bannikov: pl. 11, Fig. 1
2010 Atherina suchovi Switchenska 1973—Bannikov: pl. 2, Fig. 3

Remark

The spelling of ‘Switchenska’ follows the transliteration from the Polish root of the name.

Material

4 partially complete articulated skeletons with 5 otoliths in situ from Naslavcea, northern Moldavia, Middle Miocene, Serravallian, Early Sarmatian (Volhynian), collected, identified and donated by A. Bannikov, now housed at GMUH VP-9505-9508.

Short description of fish

Maximum body depth 17–21 % SL; head length 25–30 % SL. Orbit diameter 32–42 % HL. Premaxillary length exceeds orbit diameter. Ascending premaxillary process longer than alveolar ramus. First dorsal-fin origin placed above the 13 or 14th vertebra; interdorsal (D1–D2) space equals 5–6 vertebrae. Anal fin inserts in advance of the second dorsal-fin origin by about 2 rays. Preanal length 62–68 % SL. Vertebrae 39–40 (18–19 + 20–22). D1 = VI–VII, D2 = I + 10–11; A = I + 12–14.

Description of otoliths in situ (3 specimens measured)

Moderately elongate otoliths to slightly larger sizes than 1.5 mm length. OL:OH = 1.4–1.5. Outline: regularly oval without prominent angles and short, but mostly pointed rostrum. Dorsal rim irregularly undulating or crenulated; ventral rim slightly shallower than dorsal rim and very regularly curved, smooth. Posterior rim rounded or blunt, usually pronounced ventral of caudal tip. Excisura and antirostrum weak. Inner face slightly convex with narrow, slightly supramedian and moderately deep sulcus. Cauda moderately narrow, nearly straight, just very slightly bent at termination, which is at moderate distance from posterior tip of otolith. Ostium slightly wider than cauda and short; CaL:OsL = 1.85–2.0. Dorsal depression long, ventrally marked by well-developed crista superior, dorsal margin indistinct; ventral furrow indistinct. Outer face nearly flat, rather smooth.

Comparison

Bratishko et al. (2015) listed three fossil otolith-based species of Atherina. One of these, A. austriaca Schubert 1906, ranges from the uppermost Burdigalian (Karpatian) to Serravallian of the Central Paratethys (e.g., Brzobohaty and Stancu 1974; Brzobohaty 1994; Brzobohaty et al. 2003) and the Mediterranean (Schwarzhans 2014), A. gidjakensis (Pobedina 1956) (with A. kalinoraensis Rückert-Ülkümen and Kaya 1993 representing a junior synonym) ranges from the Karaganian to Pannonian of the Eastern Paratethys and is also mentioned from the Pontian of the Vienna Basin (Brzobohaty 1992), and A. mutila Rückert-Ülkümen 1996 is known from the Sarmatian to Pontian of the Thrace Basin. Otoliths of A. mutila (not figured herein) can be easily distinguished by their elongate shape (OL:OH = 1.8–1.9) and very long cauda reaching close to the posterior tip of the otolith. This species may belong to a different atherinid genus.

With respect to the other two species the differences are subtle, but consistent: otoliths of A. austriaca (Fig. 1e, f)
Discussion

Carnevale et al. (2011) listed and compared the five known recent species of the genus, all from the Atlantic and Mediterranean and the eight skeleton-based fossil species of the genus. Of the fossil ones, all but one (Atherina cavalloti Gaudant 1979 from the Messinian of the Mediterranean) have been described from the Paratethys: two from the Karaganian of the Eastern Paratethys (Atherina prima Switchenska 1959 and A. sumgaิตica Switchenska 1973), two from the Sarmatian of the Eastern Paratethys (Atherina imprompta Switchenska 1973 and A. suchovi Switchenska 1973), one from the Sarmatian of the Central Paratethys (Atherina sarmatica Gorjanovic-Kramberger 1891), and two from the Maeotian and Pontian of the Caspian Basin s.l. (Atherina atropatensis Carnevale, Haghfarshi, Abbasi, Alimohammadian and Reichenbacher, 2011 and A. schelkovnikovi Bogatshov 1936). In addition, A. colchidica Gabelaia 1971 is known from the Lower Pliocene (?) of Abkhasia. Bannikov (2010) synonymized A. sumgaıtica with A. prima. It seems logical to expect that any of those three fossil otolith-based Atherina species would correlate with some of the respective skeleton-based species once otoliths in situ have been retrieved. In the case of A. suchovi, however, no such correlation presents itself.

Several other cases of atherinid otoliths in situ have been recorded from species of the fossil genus Hemitrichas Peters 1877 from brackish and freshwater rocks of the Upper Rhine Valley of Germany by Keller et al. (2002) and Gaudant and Reichenbacher (2005) (see also extensive discussion about Hemitrichias in Reichenbacher 2000). Their otoliths are readily distinguished from any of the Atherina otoliths discussed here by their very short rostrum and ostium, the strongly convex inner face and the deep cauda.

Acknowledgments We are very thankful to J. van der Voort (Venne near Osnabrück) and A. Janssen (Kawijk), who have made available comparative otolith material of A. australis and A. Bratislava (Slovakia), who supported with otoliths of A. gidjakensis. We further wish to thank R. Brzobohaty (Brno) and B. Reichenbacher (München) for their suggestions for improvement of an earlier version of the manuscript. The research of GC was supported by grants (ex-60 % 2013 and 2014) from the Università degli Studi di Torino. The research of AFB was supported by the Russian Foundation for Basic Research, Project Nos. 14-04-00005 and 13-04-01202.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Andjelković, J. (1989). Tertiary fishes of Yugoslavia. Stratigraphic-paleontologic-paleoecological study. Palaeontologia Yugoslavica, 38, 1–121.

Bachmayer, F., & Weinfurter, E. (1965). Bregmaceros-Skelette (Pisces) mit in situ erhaltenen Otolithen aus den tortonischen Ablagerungen von Walbersdorf, Österreich. Senckenbergiana lehiaea, 46a, 19–33.
Schubert, R. J. (1906). Die Fischotolithen des österr.-ungar. Tertiärs III. Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt, 56, 623–706.

Schultz, O. (2013). Catalogus Fossilium Austriae (Vol. 3). Pisces. Wien: Verlag der Österreichischen Akademie der Wissenschaften.

Schwarzhans, W. (1978). Otolith-morphology and its usage for higher systematical units, with special reference to the Myctophiformes s.l. Mededelingen Werkgroep Tertiaire en Kwartaire Geologie, 15, 167–185.

Schwarzhans, W. (2013). A comparative morphological study of the Recent otoliths of the genera Diaphus, Idiolychnus and Lobianchia (Myctophidae). Palaeo Ichthyologica, 13, 41–82.

Schwarzhans, W. (2014). Synonymisation of the skeleton-based Palimphemus anceps Kner, 1862 and the otolith-based Collilius sculptus (Koken, 1891) (Pisces, Teleostei, Gadidae). Cainozoic Research, 14, 9–16.

Switchenska, A. A. (1959). Iskopaemij predstavitelj semejstva Mullidae. Materialy k Osnovam paleontologii (in Russian), 3, 117–118.

Switchenska, A. A. (1973). Fossil mugiliforms of the USSR. Trudy Paleontologičeskogo Instituta Akademii Nauk SSSR (in Russian), 138, 1–64.

Switchenska, A.A. (1980). Otryad Mugiliformes. In: Novitskaya, L.I. (ed.): Iskopaemye kostistye ryby SSSR. Trudy Paleontologičeskogo Instituta Akademii Nauk SSSR (in Russian), 178C, 104–114.

Sytchevskaya, E. K., & Prokofiev, A. M. (2007). A dragonet (Perciformes: Callionymidae) from the Middle Miocene of southern Russia. Voprosy Ikhtiologii, 47, 750–756.

Weiler, W. (1942). Die Otolithen des rheinischen und nordwestdeutschen Tertiärs. Abhandlungen Reichsamt Bodenforschung, NF, 206, 1–140.