Voltage-gated calcium channel $\alpha_2\delta$ subunits: an assessment of proposed novel roles [version 1; peer review: 2 approved]

Annette C. Dolphin

Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK

Abstract
Voltage-gated calcium (Ca$_V$) channels are associated with β and $\alpha_2\delta$ auxiliary subunits. This review will concentrate on the function of the $\alpha_2\delta$ protein family, which has four members. The canonical role for $\alpha_2\delta$ subunits is to convey a variety of properties on the Ca$_V$1 and Ca$_V$2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for $\alpha_2\delta$ proteins has been proposed, some of which involve competition with calcium channels for $\alpha_2\delta$ or increase $\alpha_2\delta$ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for $\alpha_2\delta$ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.

Keywords
calcium channel, alpha2delta, interaction
Introduction
Voltage-gated calcium (Ca$_v$) channels are ubiquitously present in excitable cells and are essential for their function. They can be divided into three classes (Ca$_v$1–3). All except the Ca$_v$3 (T type) channels are associated with several auxiliary subunits—termed α,δ and β—together with an additional γ subunit in skeletal muscle.2 (Figure 1). One of these subunits, α,δ, conveys a variety of properties on the channels but recently has also been reported to have distinct effects on both other ion channels and other biological processes. These novel aspects of α,δ function are the subject of this review. This topic is important, as α,δ-1 is the therapeutic target of the α,δ ligand (gabapentinoid) class of drugs13, which are widely prescribed for several indications, including many types of neuropathic pain.

The α,δ subunits have a well-established canonical role to influence the trafficking and function of the Ca$_v$1 and Ca$_v$2 channels, increasing the density of these channels on the plasma membrane.5 They also direct trafficking of the channels to specific subcellular sites, including neuronal processes.5,6 In addition, the α,δ subunits increase Ca$_v$1 function by influencing the biophysical properties of the calcium currents5–8, over and above their effect on trafficking.6

More recently, α,δ-1 proteins have been proposed to have non-classic functions of two types: (a) additional functions related to calcium channels, either to link the calcium channel complexes to other proteins or to influence calcium channel function, and (b) roles not associated with calcium channel function.

For (a), I will discuss several topics, including the association of α,δ proteins with α-neurexins to influence synaptic transmission.14,15 The α,δ-1 protein has also been found to interact potentially with large conductance (big) potassium (BK) channels15, a process which it has been suggested influences calcium channel function by sequestering the α,δ subunits. For (b), I will discuss novel roles associated with the association of α,δ with thrombospondins (TSPs), an interaction which has been found to influence synaptogenesis in some systems.16 I will also discuss the proposed association of α,δ with N-methyl-D-aspartate (NMDA) receptors17 (Figure 2). It is possible that the gabapentinoid drugs also act by influencing these various novel targets.

Topography, domain structure, and biochemical properties of α,δ proteins
The α,δ subunit was first identified as two proteins—α and δ—co-purifying as integral constituents of the calcium channel complex present in skeletal muscle T-tubules.$^{16–18}$ It was found that α,δ is encoded by a single gene and is subsequently processed into α and δ17,18. Four mammalian α,δ genes have been cloned (CACNA2D1–4) 18–21. All the α,δ proteins have highly related topologies22,23, with an N-terminal signal sequence, indicating that the N-terminus is extracellular (Figure 3). The hydrophobic C-terminus of α,δ, and its behavior as an integral membrane protein, led to its being categorized as a transmembrane protein17,18. However, it was subsequently identified to have a strongly predicted glycosyl-phosphatidylinositol (GPI)-anchor ω-site24. Indeed, multiple pieces of experimental evidence indicate that α,δ-1, α,δ-2, and α,δ-3 (and probably α,δ-4 by prediction) are GPI-anchored$^{24–26}$.

The α,δ subunit genes encode a single precursor protein, which is post-translationally proteolytically processed into two polypeptides. The folding of α,δ in the endoplasmic reticulum involves the formation of multiple disulfide bonds both within and between the α and δ moieties, so that, despite their cleavage, the α$_2$ and δ polypeptides remain disulfide-bonded.

![Figure 1. The subunit structure of voltage-gated calcium channels of the Ca$_{v1}$ and Ca$_{v2}$ family. The Ca$_{v1}$ α$_1$ subunit with 24 transmembrane segments and the intracellular β and the extracellular α$_2$δ subunits are shown. The γ subunit (γ1) is associated with Ca$_{v1.1}$ only and is not depicted.](image-url)
Figure 2. Summary of $\alpha_2\delta$ interactions with other proteins. The various ion channels and other proteins with which $\alpha_2\delta$ subunits have been found to interact are shown. BK, large conductance (big) potassium; LRP1, low-density lipoprotein receptor-related protein 1; NMDA, N-methyl-D-aspartate; TSP, thrombospondin.

Figure 3. The post-translational processing of $\alpha_2\delta$ subunits. The hydrophobic N-terminal signal sequence is a signal for the polypeptide to co-translationally pass through the membrane of the endoplasmic reticulum (ER). This signal sequence is cleaved off. The glycosylphosphatidylinositol (GPI) anchor is added in the ER by an endopeptidase transamidase, which cleaves the C-terminal signal peptide at the ω-site and adds a pre-formed GPI lipid anchor. Multiple disulfide bonds are formed as the protein folds in the ER, and N-glycosylation occurs at multiple sites. Mature glycosylation is then completed in the Golgi complex, and it is likely that proteolytic cleavage of $\alpha_2\delta$ also occurs here. The GPI anchor can also be modified during trafficking.
The role for the proteolytic cleavage between α and δ has been shown to be key to the mature function of these proteins17,18. Conversely, co-expression studies (which inevitably lack many components of the native environment) are reinforced by parallel experiments in more intact systems, including using tissues from $\alpha_2\delta$ knockout mice33,37,42 and small interfering RNA (siRNA) knockdown of $\alpha_2\delta$-1 in skeletal muscle cells41 or cardiac myocytes41.

Role for $\alpha_2\delta$-1 in calcium channel trafficking

The effect of $\alpha_2\delta$ subunits to increase calcium current density can be partially explained by an increase in the trafficking of the channels to augment the amount on the cell surface4. The exact mechanism whereby $\alpha_2\delta$ increases the density of α_2 channels in the plasma membrane is still unclear. There was no effect of $\alpha_2\delta$-1 to reduce the internalization of $\alpha_2\delta$-26, indicating that the effect is likely to be on forward trafficking. Furthermore, the trafficking of $\alpha_2\delta$ itself is blocked by a dominant-negative rab11 construct, suggesting the involvement of the recycling endosomes45.

The VWA domain within the α_2 moiety of $\alpha_2\delta$ is important for both trafficking of $\alpha_2\delta$ and its associated effect on α_2 channel trafficking and function12,30,47,48. Furthermore, the presence of alternatively spliced exon 37a in the proximal C-terminus of $\alpha_2\delta$-2, which is a minor splice variant expressed particularly in certain DRG neurons48, increases $\alpha_2\delta$ currents46 and also increases its cell surface density via binding to adaptor proteins50. We found that this increase was lost in the absence of $\alpha_2\delta$ subunits, suggesting that this auxiliary subunit promotes particular steps in the forward trafficking process49.

Proteomic study of $\alpha_2\delta$ calcium channels

A comprehensive study of the $\alpha_2\delta$ channel proteome was performed by using antibodies against $\alpha_2\delta$-1 or $\alpha_2\delta$-2, together with antibodies against β subunits, and cataloguing the associated proteins1,5. Many proteins were found to be part of this complex, although such studies do not indicate whether the interaction is direct or indirect. In contrast to initial purification studies of N-type channels52, and rather surprisingly to many in the field, the interaction of the channels with $\alpha_2\delta$ proteins was found to be much less than 1:1; indeed, it depended on the mildness of the detergent used to solubilize the membranes, resulting in more or less $\alpha_2\delta$ associated with the complex. Since we found that $\alpha_2\delta$ subunits are present in lipid raft fractions39 and subsequently identified that they are GPI-anchored4, this supports the possibility that there is a rather mobile interaction between the α_1 and $\alpha_2\delta$ subunits44,55 or that this interaction is more labile to disruption. Certainly, it also points to a pool of $\alpha_2\delta$ which is not associated with calcium channels, which has also been identified by studies of calcium channel membrane mobility44.

Importance of studies in knockout mouse models for elucidating potential novel roles for $\alpha_2\delta$ subunits

The genetic ablation of particular $\alpha_2\delta$ subunits has been found to affect neuronal and synaptic morphology in several systems20,27,53, pointing to roles for $\alpha_2\delta$ that may or may not involve calcium channels20,29. Knockout mice have been generated for $\alpha_2\delta$-149, $\alpha_2\delta$-220, $\alpha_2\delta$-349, and $\alpha_2\delta$-449. These have led to important findings regarding both calcium channel function in

...
specific tissues and potential roles for the α,δ proteins in neuronal and synaptic morphology and in physiological functions, especially in tissues such as cochlear hair cells, spiral ganglion neurons, retinal photoreceptor cells, and Purkinje neurons, where one subtype of α,δ predominates. However, complementary approaches are also required to elucidate the mechanisms of such effects.

Importance of α,δ in disease states

Neuropathic pain. Cacna2dl, encoding α,δ-1, is one of many genes whose expression is altered in experimental animals as a result of damage to sensory nerves, which may lead to chronic neuropathic pain. There is a consistent elevation of α,δ-1 mRNA and protein in every damaged DRG neuron. Furthermore, we have shown that, in α,δ-1 knockout mice, there is a marked reduction in baseline responses to mechanical and cold stimulation, and a very retarded hyperalgesic response to sciatic nerve injury, in comparison with wild-type littermate mice.

Other diseases. CACNA2D1 mutations in humans have been identified to cause cardiac dysfunction, including short QT syndrome and Brugada syndrome. Cacna2dl knockout also resulted in a cardioventricular phenotype in mice involving a reduction in basal ventricular cardiac contractility and lower calcium current in ventricular myocytes. CACNA2D2 mutations in both humans and mice result in a recessive phenotype including epilepsy and ataxia, as well as a hearing deficit, related to aberrant trans-synaptic channel organization. Furthermore, developmentally associated upregulation of α,δ-2 expression suppressed axon regeneration in adult spinal cord, although the mechanism remains unclear. Cacna2d3 knockout mice have a hearing deficit and a central pain phenotype. Finally, CACNA2D4 mutations in both humans and mice are associated with night blindness and retinal degeneration.

Mechanism of action of gabapentinoid drugs which bind to α,δ-1 and α,δ-2

The α,δ subunits are the target for gabapentinoid drugs, which bind to both α,δ-1 and α,δ-2 with similar affinity. However, from studies of mice with mutations in the gabapentin binding site within either α,δ-1 or α,δ-2, it was concluded that their therapeutic target both in alleviation of neuropathic pain and in epilepsy is α,δ-1. We have found, from in vitro experiments, that incubation with gabapentin lowers the amount of α,δ-1 and α,δ-2 on the cell surface by inhibiting their rab11-dependent recycling to the cell surface. In vivo, chronic administration of pregabalin to sensory nerve-injured rats reduced the elevation in the dorsal horn of pre-synaptic α,δ-1, interpreted as being due to inhibition of trafficking.

Thus, gabapentin is likely to influence the function of the other proteins to which these α,δ proteins have now been found to bind.

For the relevant Ca, channels, we have also extensively examined the effects of gabapentin. They were initially found to have only small effects on calcium currents when applied acutely. We found that longer-term incubation of cultured cells with gabapentin produced a clear reduction of calcium currents, both in transfected cells, when α,δ-1 or α,δ-2 was co-expressed, and in DRG neurons. We also observed a corresponding reduction in the expression of Ca,2.1 α1 subunits on the cell surface.

Other interaction partners for α,δ proteins related to their function as calcium channel subunits

Several studies in recent years have provided evidence for novel interactions of proteins with α,δ subunits; such interactions then impinge on the function of the calcium channel complex. These interactions may be involved positively in the trafficking of α,δ proteins (for example, low-density lipoprotein (LDL) receptor-related protein 1, LRP1). By contrast, in several studies, the binding partners have been found to sequester α,δ proteins, limiting their access to the Ca, channels, thus reducing both the function and the plasma membrane localization of calcium channels. This mechanism has been proposed for α-neurexins and for BK channels as well as pathologically for a mutant form of prion protein (PrP). These will all be considered in turn.

 Trafficking of α,δ-1 by the multifunctional transport protein LRP1

The LRP family represents a large group of ligand-binding and trafficking proteins, including the LDL receptor and LRP1–6. They are multifunctional, multi-domain receptors, interacting with many protein ligands via their ligand-binding domains, mediating both forward trafficking and endocytosis of these ligands. They are also involved as co-receptors, affecting intracellular cell signaling processes.

LRP1 is a ubiquitous membrane protein with four ligand-binding domains and is implicated in several LRP5/6 are also involved as LRP1 ligand-binding domains and LRP1 is also involved in clathrin-dependent endocytosis. It is present in synapses and is implicated in neurite outgrowth. Whether different LRP proteins bind to overlapping sets of protein ligands is unclear, but LRP5/6 are also involved in Wnt signaling.

We recently showed that LRP1 binds to α,δ-1 and the same is true for α,δ-2 and α,δ-3 (Ivan Kadurin and Annette Dolphin, preliminary results). For α,δ-1, we showed this interaction is direct, involving the VWA domain of α,δ-1 and LRP1 ligand-binding domains II and IV. The association is modulated by the LRP chaperone, receptor-associated protein (RAP), which is required for the correct folding of all LRP and for their trafficking out of the endoplasmic reticulum. We found that the LRP1/RAP combination increases mature glycosylation, proteolytic processing, and cell-surface expression of α,δ-1 and also increases plasma membrane expression and function of Ca,2.2 when co-expressed with α,δ-1. Since LRP1 is able to bind more than one ligand at different sites, it is possible that it forms a bridge between α,δ-1 and other proteins, such as TSPs.

Sequestration of α,δ-3 by interaction with α-neurexins

There are three vertebrate neurexin genes, and each can form α- and β-neurexins from different promoters. The α-neurexins have been found to be important for coupling calcium channels
to synaptic transmission44. Whereas in mammalian synapses the neurexins are pre-synaptic and bind to post-synaptic neuroligins, in \textit{Caenorhabditis elegans} this polarity is reversed at many synapses. It has been found in the worm that post-synaptic neurexin 1\textalpha at the neuromuscular junction binds, via its laminin-like globular 1 (LG1) domain, to pre-synaptic unc-36 (similar to \(\alpha_2\delta-3\)), thus decreasing its availability to bind to the pre-synaptic unc-2 (a Ca\textsuperscript{V2-like channel) that mediates neurotransmitter release11. This was found to reduce synaptic transmission, an effect which required a proteolytically cleaved fragment of neurexin, shed from the post-synaptic plasma membrane (Figure 4b). In transfected cells, mouse neurexin 1\textalpha was found to bind \(\alpha_2\delta-3\) and to decrease Ca2+ currents, whereas there was no effect on Ca2+ currents in the presence of \(\alpha_2\delta-1\) or \(\alpha_2\delta-2\)11. An attractive suggestion is that this type of pre- to post-synaptic interaction may contribute to trans-synaptic nanoscale organization101. However, in view of recent results described below, it will be important in the future to identify the site of selective interaction on the \(\alpha_2\delta-3\) protein of the LG1 domain (and LG5 in the mouse)11 of neurexin 1\textalpha.

In contrast, a more recent article has identified positive effects of neurexin 1\textalpha in the presence of \(\alpha_2\delta-1\) (but not \(\alpha_2\delta-3\)) on pre-synaptic Ca2+ transients in hippocampal neurons and in parallel on CaV2.1 calcium currents12. Importantly, very carefully done experiments, designed to detect an interaction of neurexin 1\textalpha with \(\alpha_2\delta-1\) or \(\alpha_2\delta-3\), failed to find a specific association between the two proteins, as every protein tested (\(\alpha\)-neurexin, neuroligin, and two forms of cadherin) was pulled down with \(\alpha_2\delta-1\) (and also \(\alpha_2\delta-3\) co-immunoprecipitated with neurexin 1\textalpha). The authors concluded that neurexin 1\textalpha does not form stable complexes with \(\alpha_2\delta\) subunits but nevertheless influences their function. Their results also provide a warning that \(\alpha_2\delta\) proteins may be rather prone to co-immunoprecipitation artefacts.

Sequestration of \(\alpha_2\delta-1\) by interaction with BK channels

A recent study has identified that BK \(\alpha\) subunits bind to \(\alpha_2\delta-1\) subunits via the BK N-terminus13, and the authors suggest that this interaction sequesters \(\alpha_2\delta-1\) from Ca\textsubscript{2+} channels. BK channels are important mediators of cell excitability, as they respond to both

Figure 4. Protein domains involved in novel \(\alpha_2\delta\) interactions. (a) Interaction of \(\alpha_2\delta-1\) (and \(\alpha_2\delta-2/3\)) with the ligand-binding repeats II and IV of low-density lipoprotein receptor-related protein 1 (LRP1) (red). Other domains in LRP1 are epithelial growth factor (EGF)-like repeats (orange) and \(\beta\)-propeller domains (cyan)27. i/c, intracellular; TM, transmembrane. (b) Interaction of neurexin 1\textalpha with \(\alpha_2\delta-3\), via its laminin-like globular (LG) repeats (L, green) 1 and 5. E, EGF-like repeat (orange). Neurexin 1\textalpha is cleaved by a disintegrin and metalloprotease 10 (ADAM 10) (arrow) to have the observed effects on synaptic transmission, but it is not clear whether this is required for the interaction with \(\alpha_2\delta-3\)11. (c) Interaction of the extracellular N-terminus of large conductance (big) potassium (BK) \(\alpha\) subunits with \(\alpha_2\delta-1\). The three blue arrows indicate the three alternative N-terminal translation initiation sites, the third being the most commonly used13. SO is the additional transmembrane domain (red). (d) Interaction of \(\alpha_2\delta-1\) von Willebrand factor A (VWA) domain with the EGF-like domains (black bars) of both pentameric (left) and trimeric (right) thrombospondins (TSPs)14. (e) Interaction of a C-terminal region of \(\alpha_2\delta-1\) beyond its GPI-anchor site (dashed orange/white region) with the N-methyl-D-aspartate (NMDA) receptor GluN1, GluN2A, and GluN2B subunits15.
voltage and intracellular Ca\(^{2+}\) (for recent reviews, see \(^{102,103}\)). They consist of a tetrameric pore-forming \(\alpha\) subunit, which is unusual compared with other voltage-gated \(K\) channels in that it has an additional transmembrane domain (S0), such that the N-terminus is extracellular. Furthermore, the N-terminus of BK \(\alpha\) subunits contains an unusual sequence with three translation initiation methionines (M1, 25, and 66 in the human sequence below):

\[
\text{M}^\text{AN}^\text{G}^\text{GGG}^\text{GG}^\text{GG}^\text{GG}^\text{GG}^\text{GSSLRM}^\text{EK}^\text{SSNIHAN HLS LDASSSSSSSSSSSSSSSSSSSSSSSVHEPKM}^\text{GDLIPY TMENVPCDSRRGQM}^\text{W}^\text{W}^\text{AFLASSMTFFGGLFIIL LWRTLKYLWTVCCGKTK}.
\]

The third start methionine (M\(^{49}\)DAL) has generally been thought to be the main translation initiation site\(^{104}\), and the underlined sequence was identified as a novel transmembrane segment S0. There is very good evidence that the existence of this additional transmembrane domain results in an extracellular N-terminus\(^{105}\), although the exact mechanism driving this is unknown, as no signal peptide has been identified. In native rat brain, some although the exact mechanism driving this is unknown, as no BK signal peptide has been identified. In native rat brain, some sequence was identified as a novel transmembrane segment S0.

LWRTLKYLWTVCCGKTK....

In the study by Zhang et al.\(^{11}\), \(\alpha_2\delta\)-1 was found to associate with BK \(\alpha\) subunits via their N-terminus (Figure \(4c\)). This association was found to compete with both Ca\(_2\) and Ca\(_3\) channels for \(\alpha_2\delta\)-1 and therefore reduce the Ca\(_2\) channel function. Interestingly, the region of BK channels identified by pull-down experiments to interact with \(\alpha_2\delta\)-1 is within the N-terminal residues 1–86, which contain two unusual repetitive polyglycine and polyserine stretches (see above). If the sequence encoded from the first start methionine (residues 1–24) was truncated or if the asparagine (N) at position 3 was mutated to D, no effect of the BK channel on Ca\(_{\alpha}\) and \(\beta\) subunits was observed. This result suggests that the effect of BK channels on Ca\(_{\alpha}\) channel function would occur only for the full-length BK isoform, starting with MAN. It is also of interest that N3 in the BK channel potenti-ally undergoes rapid amidation in vivo which would abolish its interaction with \(\alpha_2\delta\)-1 in a time-dependent manner\(^{11}\), meaning that only a small subset of BK channels might be involved in this interaction with \(\alpha_2\delta\)-1. Moreover, in this study, no BK \(\beta\) or \(\gamma\) subunits were expressed and therefore it would be important to determine whether their interaction with the N-terminus or elsewhere would compete with \(\alpha_2\delta\) for interaction, which would represent an interesting means of reciprocal cross-talk between these channels.

Because the authors examine the potential role for this BK–\(\alpha_2\delta\)-1 interaction for neuropathic pain, in which \(\alpha_2\delta\)-1 is upregulated, it would also be of great interest to identify the relative expression from the different translation initiation sites used for the BK \(\alpha\) protein in DRG neurons in control and neuropathic states. Furthermore, it should be noted that, in contrast to \(\alpha_2\delta\)-1 which is upregulated, BK channel mRNA is downregulated in DRGs following neuropathic nerve injury\(^{111}\).

Surprisingly, in proteomic studies of native rat brain BK channels, \(\alpha_2\delta\) was not identified as co-purifying with these channels, although several Ca\(_{\alpha}\) channel \(\alpha\) subunits were well represented\(^{106}\). Ca\(_{2,1}\), Ca\(_{2,1}\), and Ca\(_{2,2}\) as well as the Ca\(_{\beta}\) subunits \(\beta\) were all found in this study\(^{106}\). Indeed, Ca\(_{2,1}\) was the most abundantly represented protein that co-purified with BK channels, suggesting the possibility of a direct interaction. This finding would seem to contradict the model of Zhang et al.\(^{11}\), in which BK competes for \(\alpha_2\delta\) with the Ca\(_{\alpha}\)\(\alpha\) subunit.

Sequestration of \(\alpha_2\delta\)-1 by interaction with a disease-associated mutant PrP

In an intriguing study, PrP was found to interact with \(\alpha_2\delta\) proteins, and a Creutzfeldt–Jakob disease-causing mutant form of PrP resulted in intracellular retention of \(\alpha_2\delta\)-1 and disrupted synaptic transmission\(^{46}\). It is of relevance in this regard that both PrP and \(\alpha_2\delta\)-1 are GPI-anchored and therefore would be likely to be in similar membrane domains. One confounding issue is that in overexpression studies, \(\alpha_2\delta\)-1 and PrP interfere with each other’s trafficking, at least partly because of competition for the limiting supply of GPI anchor\(^{65}\). In this study\(^{21}\), PrP disrupted the ability of \(\alpha_2\delta\)-1 to increase calcium currents, but a C-terminally truncated GPI-anchorless PrP did not\(^{46}\). Thus, it remains unclear to what extent the \(\alpha_2\delta\)-1 interaction with cellular PrP has a physiological or pathophysiological role\(^{112}\).

Other interaction partners for \(\alpha_2\delta\) proteins, unrelated to calcium channel function

In several studies, new roles independent of calcium channels have been proposed for specific \(\alpha_2\delta\) proteins (for example, interaction with TSPs\(^{14}\) and as a subunit of NMDA receptors\(^{18}\)). These will now be considered here.

\(\alpha_2\delta\)-1 as a mediator of synaptogenesis via binding to TSPs

TSPs are extracellular matrix proteins which bind to a very large number of proteins, 83 being so far identified for TSP-1\(^{111}\), consequently, they have many functions\(^{114-116}\). In the brain, they are produced by astrocytes and promote neurite outgrowth\(^{117}\), including the formation of silent excitatory synapses, lacking post-synaptic receptors\(^{118}\). It was then hypothesized that post-synaptic \(\alpha_2\delta\)-1 could be the sought-after post-synaptic binding partner of TSPs to mediate synaptogenesis, independent of any effects on calcium channels. This was first tested using co-immunoprecipitation to determine whether TSPs or individual domains of TSPs interacted with C-terminally tagged \(\alpha_2\delta\)-1\(^{14}\). An interaction which involved a key synap-togenic epithelial growth factor (EGF)-like domain was found (Figure \(4d\)). As a note of caution, C-terminal tagging may interfere with trafficking of \(\alpha_2\delta\)-1 by disrupting the GPI anchor\(^{119,120}\). Nevertheless, gabapentin was found to inhibit the interaction between \(\alpha_2\delta\)-1 and the EGF-like domain of TSP-2 and
to disrupt synaptogenesis. Furthermore, in vivo, gabapentin was found to disrupt whisker barrel plasticity following whisker removal in some of the mice examined\(^1\).

TSP-4 is upregulated in rodent models of neuropathic pain\(^{15}\). Since \(\alpha_2\delta-1\) is also upregulated in DRGs following peripheral sensory nerve injury, several studies have investigated whether an interaction between these two proteins is important in neuropathic pain or the effect of gabapentin. Interestingly, in a recent article, it was suggested that pre-synaptic, rather than post-synaptic, \(\alpha_\delta-1\) may be a synaptogenic binding partner for TSP-4 in the spinal cord\(^{20}\).

We found (using overexpressed proteins) that TSP-4 modestly reduced the affinity for \(^3\text{H}\)-gabapentin binding to \(\alpha_\delta-1\), although the effect on \(^3\text{H}\)-gabapentin binding was not reproduced with the TSP-4 synaptogenic EGF-like domain. Furthermore, we found only very weak and unreliable co-immunoprecipitation of the two proteins, which again could not be reproduced with the synaptogenic EGF-like domain of TSP-4\(^{21}\). We also could not demonstrate any interaction between \(\alpha_\delta-1\) and TSP-4 on the cell surface of transfected cells, suggesting that the association between these two proteins to disrupt 3H-gabapentin binding is occurring intracellularly following co-transfection, when the two proteins are juxtaposed at high concentration\(^{21}\).

Nevertheless, there is evidence from other studies that \(\alpha_\delta\) subunits are important for synaptic morphology in several different systems\(^{27,28,122,123}\). Whether the role for \(\alpha_\delta\) in calcium channel localization and function is responsible for these morphological changes has not always been investigated. However, \(\alpha_\delta\) was shown to increase pre-synaptic localization of the relevant \(\alpha_1\) subunit in Drosophila neuromuscular junction synapses\(^{28}\) as well as in retinal\(^{29}\) and hippocampal\(^{30}\) synapses.

\(\alpha_2\delta-1\) as an NMDA receptor trafficking protein

It was recently shown that overexpression of \(\alpha_2\delta-1\) administered intrathecally into the spinal cord potentiates pre-synaptic and post-synaptic NMDA receptor activity, and it was further shown that \(\alpha_2\delta-1\)-interacted with NMDA receptors, both in spinal cord and in overexpression studies\(^{15}\). The interaction was apparently specific for \(\alpha_2\delta-1\), as it did not occur with \(\alpha_2\delta-2\) or \(\alpha_2\delta-3\). The authors identified the site of interaction as the C-terminus of \(\alpha_2\delta-1\), surprisingly after the C-terminal GPI-anchor cleavage site (Figure 4e). This was determined using chimeras assembled from the different isoforms, swapping isoforms either between \(\alpha_2\) and \(\delta\) or with the C-terminus of \(\delta\). However, it is important to note that such chimeras may have disrupted the primary sequences involved in proteolytic cleavage between \(\alpha_2\) and \(\delta\), a process which is important for function\(^{28}\), or it might have affected the sequences involved in GPI anchoring\(^{24}\). Nevertheless, this result suggests either that a transmembrane version of \(\alpha_2\delta-1\) may be interacting with NMDA receptors, initially in the endoplasmic reticulum, or that the NMDA receptor interacts with the C-terminal peptide of \(\alpha_2\delta-1\) that is cleaved off during GPI-anchor attachment\(^{25}\).

The GluN1, GluN2A, and GluN2B subunits of NMDA receptors were found to interact with \(\alpha_2\delta-1\), presumably via the transmembrane or intracellular domains of these subunits, since the identified interaction is with the C-terminus of \(\alpha_2\delta-1\)\(^{11}\). The C-termini of these NMDA receptors are rather different in both sequence and function\(^{28,123}\), and determining the interaction site will be a key next step. It is of interest that \(\alpha_2\delta-1\) has not been previously detected in proteomic studies of post-synaptic densities\(^{29}\). In contrast, other calcium channel subunits (\(\alpha_1\), \(\delta_1\), \(\alpha_2\), \(\delta_2\), 3, and a \(\beta\)) were identified. Another recent study also did not detect \(\alpha_2\delta-1\) when purifying NMDA receptors from mouse brain\(^{28}\), although \(\alpha_2\delta-1\) is widely expressed in most brain regions\(^{129,131}\). Therefore, it would be important to determine whether this interaction is for some reason observed only in the spinal cord. One possible reason is that it might be indirect (for example, via a scaffolding protein expressed in the spinal cord, interacting with both \(\alpha_2\delta-1\) and NMDA receptors).

Conclusions and future directions

The \(\alpha_\delta\) subunits are important auxiliary subunits of the \(\alpha_1\), and \(\alpha_2\) voltage-gated calcium channels. They play key roles in trafficking of these channels, both to the plasma membrane and to specific subcellular domains, and they have marked effects on the activation and other biophysical properties of these channels, indicating their importance as subunits of the channel complex rather than purely as chaperones. However, recent evidence suggests that they may bind to other proteins, and one role for such additional interactions could be to sequester particular \(\alpha_\delta\) subunits at specific sites away from the calcium channels in a dynamic manner and thus reduce calcium channel function. Evidence also suggests that \(\alpha_\delta\) proteins may independently influence other channels and also affect other functions of neurons. All of these novel functions will need to be critically explored in the future to evaluate further their physiological, pathological, and pharmacological relevance. Furthermore, the roles for novel \(\alpha_\delta\)-like protein, Cachd1, which enhances both T-type channels\(^{11}\) and N-type channels\(^{11}\) as well as competes with \(\alpha_\delta-1\)\(^{11}\), will be explored further in the future.

Abbreviations

BK, large conductance (big) potassium; EGF, epithelial growth factor; GPI, glycosylphosphatidylinositol; LDL, low-density lipoprotein; LG, laminin-like globular; LRP, low-density lipoprotein receptor-related protein; MIDAS, metal ion-dependent adhesion site; NMDA, N-methyl-D-aspartate; PrP, prion protein; RAP, receptor-associated protein; TSP, thrombospondin; VWA, von Willebrand factor A.

Grant information

My own work referenced in this study has been funded by Wellcome Trust and MRC.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

I would like to thank Mike Shipston, Mark Farrant, and Seth Grant for sharing their invaluable expertise with me as well as members of my group (particularly Lauren Ferron and Ivan Kadurin) for discussions.
57. Pirone A, Kurt S, Zuccotti A, Davies A, Douglas L, Hendrich J, Macabuag N, Dolphin AC:
53. Davies A, Douglas L, Hendrich J, Van Minh AT, Heblich F, et al.: A novel gabapentin binding protein in brain.

58. Wang Y, Fehlhaber KE, Sarria I, et al.: The auxiliary Calcium Channel Subunit alpha2delta2 is Required for Axonal Elaboration, Synaptic Transmission, and Wiring of Rod Photoreceptors. Neuron. 2017; 93(6): 1309–1374.e6.

59. Bell F, Eckstein S, Blum K, et al.: alpha2 Controls the Function and Trans-Synaptic Coupling of Ca2+ Channels in Mouse Inner Hair Cells and Is Essential for Normal Hearing. J Neurosci. 2016; 36(3): 11024–36.

60. Tupe P, Kem G, Obermair GJ, et al.: Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha1-delta-1 subunit in cardiac excitation-contraction coupling. J Biol Chem. 2005; 280(3): 2229–37.

61. Tran-Van Minh A, Dolphin AC. The alpha2-delta ligand gabapentin inhibits the Ral1-dependent recycling of the calcium channel subunit alpha2-delta-2. J Neurosci. 2010; 30(26): 12856-67.

62. Bournon B, Brot J, Tétreault MP, et al.: Negatively charged residues in the first extracellular loop of the L-type Ca2+ channel anchor the interaction with the Ca2+ alpha2 auxiliary subunit. J Biol Chem. 2003; 278(24): 21726-39.

63. Castiglioni AJ, Raining J, Lipscombe D: Alternative splicing in the C-terminus of Cav2.2 controls expression and gating of N-type calcium channels. J Physiol. 2006; 576(Pt 1): 119-34.

64. Aller C, Dale CS, Kislevsky AE, et al.: Differential role of N-type calcium channel splice isoforms in pain. J Neurosci. 2007; 27(24): 6363–73.

65. Macauba N, Dolphin AC. Alternative Splicing in Ca2,2 Regulates Neuronal Trafficking and Dopamine Receptor Complex-1 Adaptor Protein Motifs. J Neurosci. 2015; 35(43): 14636-52.

66. Müller CS, Haupt A, Bittl W, et al.: Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci U S A. 2010; 107(14): 14950–7.

67. Wittich DI, De Waard M, Sakamoto J, et al.: Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science. 1993; 261(5120): 486-9.

68. Davies A, Douglas L, Hendrich J. et al.: The calcium channel alpha, delta-2 subunit partitions with Ca2,1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci. 2006; 26(34): 8748-57.

69. Voigt A, Freund R, Heck J, et al.: Dynamic association of calcium channel subunits at the cellular membrane. Neurophotonics. 2016; 3(4): 041809.

70. Obermair GJ, Tupe P, Flucher BE: Auxiliary Ca2+ channel subunits: lessons learned from muscle. Curr Opin Pharmacol. 2008; 8(3): 311–8.

71. Brotbeck J, Davies A, Courtney JM, et al.: The ducky mutation in Cacna2d2 causes altered Purkinje cell activity and altered gene expression. J Neurosci. 2006; 26(48): 12576-86.

72. Pippucci T, Parmeggiani A, Palombo F, et al.: Mice lacking the cardiac L-type calcium channel delta-ligand pregabalin. J Biol Chem. 2007; 282(10): 8333–42.

73. Deeds ED, Nakamura KE, Mombach K, et al.: Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res. 2001; 95(1-2): 1–8.

74. Bauer CS, Nieto-Rostro M, Rahman W, et al.: Increased trafficking of the calcium channel subunit alpha,delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha, delta ligand pregabalin. J Neurosci. 2009; 29(13): 4076–88.

75. Wang H, Sun H, Della Penna K, et al.: Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience. 2002; 114(3): 529-46.

76. Xiao HS, Huang QH, Zhang FX, et al.: Identification of gene expression profiles of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A. 2002; 99(12): 8360–5.

77. Perkins JR, Antunes-Martins A, Calvo M, et al.: A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the LS spinal nerve transection model of neuropathic pain in the rat. Mol Pain. 2014; 10: 7.
calcium channel trafficking by the alpha delta ligand gabapentin. Proc Natl Acad Sci U S A. 2008; 105(9): 3628–33.

82. Marin DJ, McCalear D, Hend MG, et al.: Gabapentin-mediated inhibition of voltage-activated Ca²⁺ channels in cultured sensory neurons is dependent on culture conditions and channel subunit expression. Neurropharmacology. 2002; 42(3): 353–66.

83. Heibach F, Van Minn A, Hendrix J, et al.: Time course and specificity of the pharmacological disruption of the trafficking of voltage-gated calcium channels by gabapentin. Channels (Austin). 2008; 2(1): 4–9.

84. Jensen JK, Dolmer K, Schar C, et al.: Glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCCs. J Neurosci. 2012; 32(5): 350–13.

85. Tarailo-Girse E, Cherkesov K: F1000 Recommendation

86. Lillis AP, Van Duyan LB, Murphy-Ulrich JE, et al.: LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. J Cell Sci. 2006; 119(Pt 4): 875–81.

87. Orr AW, Pedraza CE, Paliero MA, et al.: Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol. 2005; 169(8): 1715–9.

88. Senatore A, Colleoni S, Verderio C, et al.: Mutant PrP suppresses glial fibrillary acidic protein expression and induces astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2007; 131(1): 67–86.

89. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

90. Chen S, Bubeck D, MacDonald BT, et al.: The biological function of the cellular prion protein: an update. Int Rev Neurobiol. 2015; 128: 1–29.

91. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

92. Berkelfeld H, Sailer CA, Bickel W, et al.: Ca²⁺ channel subunits determine its modulation by β-subunits. PLoS One. 2017; 12(7): e0182068.

93. Chen SR, Cai YQ, Pan H: Plasticity and emerging role of BK channels in nociceptive control in neuropathic pain. J Neurochem. 2009; 110(1): 352–62.

94. Wulf MA, Senatore A, Aguzzi A: The functional biology of the cellular prion protein: an update. BMC Biol. 2015; 13(1): 1083–94.

95. Parkyn CJ, Vermeylen EG, Moostosamy RC, et al.: LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J Cell Sci. 2008; 121(Pt 6): 773–83.

96. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

97. Nakajima C, Kikuk A, Frotscher M, et al.: Low density lipoprotein receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular repair and NMDA-induced regulation of postsynaptic protein complexes. J Biol Chem. 2013; 288(30): 21909–23.

98. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

99. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

100. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. J Biol Chem. 2015; 290(1): 1034–45.

101. Yoon C, Van Nielker EA, Henry K, et al.: Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration. J Biol Chem. 2013; 288(37): 26557–68.

102. Jensen JK, Dolmer K, Schar C, et al.: Receptor-associated protein (RAP) has two high-affinity binding sites for the low density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP. Biochem J. 2000; 342(2): 273–82.

103. Lee D, Walsh JD, Migliorini M, et al.: The structure of receptor-associated protein (RAP). Protein Sci. 2007; 16(6): 1628–40.

104. Willnow TE, Goldstein J, Orth K, et al.: Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1995; 270(26): 17282–93.

105. Misler M, Zhang W, Rohlmann A, et al.: Alpha-neurexins couple Ca²⁺ channels to synaptic vesicle exocytosis. Nature. 2003; 423(6943): 939–48.

106. Bederer T, Kaeser PS, Blanpied TA: Transcellular Nanoalignment of Synaptic Function. Neuron. 2017; 96(3): 680–96.

107. Berkelfeld H, Fakker B, Schulte U: Ca²⁺-activated K⁺ channels: from protein complexes to function. Physiol Rev. 2010; 90(4): 1437–59.

108. Shipston MJ, Tian L: Posttranscriptional and Posttranslational Regulation of BK Channels. Int Rev Neurobiol. 2016; 128: 81–126.

109. Meera P, Wallner M, Song M, et al.: Large conductance voltage- and calcium-dependent K⁺ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (50–56), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci U S A. 1997; 94(20): 10406–71.

110. Yan J, Olsen JV, Park KS, et al.: Profiling the phospho-status of the BK⁺ channel subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics. 2008; 7(11): 2186–98.

111. Berkelfeld H, Sailer CA, Bickel W, et al.: BK⁺ channel subunits mediate rapid and localized Ca²⁺-activated K⁺ signaling. Science. 2006; 314(5799): 615–20.

112. Wulf MA, Senatore A, Aguzzi A: The functional biology of the cellular prion protein: an update. BMC Biol. 2015; 13(1): 1083–94.

113. Adams JC, Lawler J: The thrombospondins. Cold Spring Harb Perspect Biol. 2011; 110(1): a009712.

114. Carlson GB, Lawler J, Mosher DF: Structures of thrombospondins. Cell Mol Life Sci. 2008; 65(5): 672–86.

115. Kuzerovian S, Yee KO, Lawler J: Thrombospondins in cancer. Cell Mol Life Sci. 2009; 66(3): 705–12.

116. Arber S, Caroni P: Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol. 1995; 128(3): 853–64.

117. Christopherson KS, Ullian EM, Stokes CC, et al.: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005; 120(3): 421–33.

118. Pan B, Yu H, Park J, et al.: Painful nerve injury upregulates thrombospondin-4 expression in dorsal root ganglia. J Neurosci. 2015; 35(3): 443–53.

119. Lu Q, Fan F, Kwait HR, et al.: Molecular basis for differential modulation of BK channels voltage-dependent gating by auxiliary β subunits. J Gen Physiol. 2015; 145(6): 543–54.

120. Chen SR, Cai YQ, Pan H: Plasticity and emerging role of BK channels in nociceptive control in neuropathic pain. J Neurochem. 2009; 110(1): 352–62.

121. Wulf MA, Senatore A, Aguzzi A: The biological function of the cellular prion protein: an update. BMC Biol. 2015; 13(1): 1083–94.

122. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. PLoS One. 2017; 12(7): e0182068.

123. Ly CV, Yao CK, Verstreken P, et al.: Thrombospondins are extracellular matrix proteins expressed in the developing and adult nervous system that promote neurite outgrowth. J Cell Biol. 2008; 181(1): 157–70.

124. Fischbach M, Hahn GP, Buechler C, et al.: LRP1 controls pre-synaptic Ca²⁺ channel voltage-dependent gating by auxiliary β3-subunit. PLoS One. 2017; 12(7): e0182068.
124. Dickman DK, Kurshan PT, Schwarz TL: Mutations in a Drosophila alpha delta voltage-gated calcium channel subunit reveal a crucial synaptic function. J Neurosci. 2008; 28(1): 31–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

125. Hooper NM: Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics. 2001; 1(6): 748–55. PubMed Abstract | Publisher Full Text

126. Ryan TJ, Kopanitsa MV, Indersmitten T, et al.: Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat Neurosci. 2013; 16(1): 25–32. PubMed Abstract | Publisher Full Text | Free Full Text

127. Frank RAW, Zhu F, Komiyama NH, et al.: Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017; 142(4): 504–11. PubMed Abstract | Publisher Full Text | Free Full Text

128. Frank RA, Komiyama NH, Ryan TJ, et al.: NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016; 7: 11264. PubMed Abstract | Publisher Full Text | Free Full Text

129. Peng J, Kim MJ, Cheng D, et al.: Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem. 2004; 279(20): 21003–11. PubMed Abstract | Publisher Full Text | Free Full Text

130. Nieto-Rostro M, Sandhu G, Bauer CS, et al.: Altered expression of the voltage-gated calcium channel subunit α-δ-1: a comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain. Neuroscience. 2014; 283: 124–37. PubMed Abstract | Publisher Full Text | Free Full Text

131. Schlick B, Fischer BE, Obermair GJ: Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience. 2010; 167(3): 786–98. PubMed Abstract | Publisher Full Text | Free Full Text

132. Cottrell GS, Soubrane CH, Hounshell JA, et al.: CACHD1 is an α2δ-Like Protein That Modulates CaV3 Voltage-Gated Calcium Channel Activity. J Neurosci. 2018; 38(43): 9186–9201. PubMed Abstract | Publisher Full Text | Free Full Text

133. Dahimene S, Page KM, Kadian L, et al.: The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1. Cell Rep. 2018; 25(6): 1610–21. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Jutta Engel
 Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
 Competing Interests: No competing interests were disclosed.

2. Emilio Carbone
 Department of Drug Science, Lab of Cellular Physiology and Molecular Neuroscience, Torino, Italy
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com