Mesalazine Has No Effect on Mucosal Immune Biomarkers in Patients with Diarrhea-Dominant Irritable Bowel Syndrome Referred to Shariati Hospital: A Randomized Double-Blind, Placebo-Controlled Trial

Mohammad Reza Ghadir 1, Mehri Poradineh 2, Masoud Sotodeh 3, Reza Ansari 4, Shadi Kolahdoozan 2, Ahmad Hormati 3, Mohammad Hosein Yousefi 6, Samaneh Mirzaei 2, Homayoon Vahedi 4*

ABSTRACT

BACKGROUND

Intestinal mast cells may cause gastrointestinal symptoms in patients with diarrhea-dominant irritable bowel syndrome (IBS). The objective of this study was to determine the effect of mesalazine on the number of lamina propria mast cells and clinical manifestations of patients with diarrhea-dominant IBS referred to Shariati Hospital affiliated to Tehran University of Medical Sciences.

METHODS

This was a randomized placebo-controlled double-blind trial conducted on 49 patients with diarrhea-dominant IBS. The patients were randomly assigned to one of the experiment or control groups. The patients in experiment group took 2400 mg mesalazine daily in three divided doses for 8 weeks and the patient in control group took placebo on the same basis. Our first targeted outcome was an assigned downturn of mast cells number to the safe colonic baseline and the next one was a marked palliation of disease symptoms. Data were analyzed conforming intention-to-treat method. We used MANCOVA test to compare our both assigned outcomes in the two groups. We also compared the data with baseline values in both groups. All statistical tests were performed at the significance level of 0.05.

RESULTS

There was no significant difference between Mesalazine and placebo groups regarding the number of mast cells (p value=0.396), abdominal pain (p value=0.054), bloating (p value=0.365), defecation urgency (p value=0.212), and defecation frequency (p value=0.702).

CONCLUSION

Mesalazine had no significant effect either on the number of mast cells or on the severity of disease symptoms. This finding seems to be inconsistent with the hypothesis indicating immune mechanisms as potential therapeutic targets in IBS. The possible difference in this effect of Mesalazine should be evaluated in further studies among populations varying in race, ethnic, and geographical characteristics.

KEYWORDS: Mesalazine, IBS-D, Symptoms, Intestinal Mucosa, Mast cells, Biomarkers

* Corresponding Author:
Homayoon Vahedi, MD
Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
Telefax: + 98 21 82415400
Email: vahedi@ams.ac.ir

Please cite this paper as:
Ghadir MR, Poradineh M, Sotodeh M, Ansari R, Kolahdoozan S, Hormati A, Yousefi MH, Mirzaei S, Vahedi H. Mesalazine Has No Effect on Mucosal Immune Biomarkers in Patients with Diarrhea-Dominant Irritable Bowel Syndrome Referred to Shariati Hospital: A Randomized Double-Blind, Placebo-Controlled Trial. Middle East J Dig Dis 2017;9:20-25. DOI: 10.15171/mejdd.2016.47

INTRODUCTION

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by recurrent abdominal pain, discomfort, and bloating along with annoy-
Mesalazine (5-aminosalicylic acid) is a known anti-inflammatory drug, which is commonly applied for the treatment of chronic inflammatory bowel diseases such as ulcerative colitis and Crohn’s disease. Mesalazine probably activate nuclear receptors such as the gamma form of proxisome proliferation activating receptors, which downregulate inflammatory process and decrease inflammatory cytokines release. Moreover, mesalazine that does not have antibiotic activity compared with sulfasalazine, may also act by downregulating mast cells function, a major feature in IBS immunopathology. This downregulation occurs in both human and rodents.

MATERIALS AND METHODS

It was a double blind randomized controlled trial with initial samples of 74 patients. During the 2-year period of the study, we screened 87 outpatients with IBS-D aged more than 18 years in accordance to clinical criteria of Rome III. We used sequential sampling method. The inclusion criteria were having IBS-D and age more than 18 years. Exclusion criteria were: pregnancy, breast feeding, improper use of contraceptives, substantial abdominal surgery, major allergic diseases such as asthma in patients or their first degree relatives, celiac disease, history of any organic or psychiatric disorders, and finally the use of anti-inflammatory drugs, antibiotics, and mast cell stabilizers.

Four patients did not meet our inclusion or exclusion criteria and excluded after initial screening. During the process of obtaining informed consents, nine patients denied signing papers and 74 patients remained in our study.

We assigned our cases equally and randomly to one of the experiment (800 mg Mesalazine three times a day after meal for 8 weeks) or control (placebo on the same basis) groups. We performed case allocation by block randomization method with block size of four. After creating experiment and placebo groups, 17 cases from the control group and 8 cases from the experiment group dropped out due to failure to return to the first follow-up session. Then we had to continue with 49 patients, 29 in experiment group, and 20 in control group.

For the purpose of blinding, we ordered the same capsules of Mesalazine and placebo in same bottles and packages. True content of each bottle could only be determined by matching its serial number with the same...
numbers on our computer database that was not accessible by researchers and other people involved in assigning or following the patients until the end of data analysis. Collected data from the patients including age, sex, and IBS symptoms and their severity (before and after 8-week period) entered to their questionnaires. The data gathered from the first and second times colonoscopy (before and after 8-week period) along with microscopic data created by pathological examinations of large intestinal mucosal tissues obtained from two times biopsy performed during each session of colonoscopy entered to the questionnaires too. To define the severity of symptoms, we used visual

Table 1: Demographic details and baseline characteristics of the patients

Variables	Control (20)	Experiment (29)	p value
Age: Mean, (S.D*)	32.1 (7.9)	34.5 (8.8)	0.312
Male/female	13/7	21/8	0.591
Gastrointestinal symptoms: N (%)	17 (85.0%)	25 (86.2%)	0.902
Abdominal pain: N (%)	16 (80.0%)	20 (69.0%)	0.335
Incomplete defecation: N (%)	11 (55.0%)	20 (69.0%)	0.263
Abdominal urgency: N (%)	16 (80.0%)	23 (79.3%)	1.0
IHC count in ascending colon: Mean, (S.D)	104.6 (60)	81.4 (54.1)	0.245
IHC** count in descending colon: Mean (S.D)	107 (72.3)	87.1 (54.9)	0.329

IBS symptoms, Mean ± S.E.M*

Variables	Control (20)	Experiment (29)	p value
Abdominal pain severity	3.2 ± 0.6	4.7 ± 0.6	0.074
Abdominal bloating severity	4.2 ± 0.6	4.8 ± 0.6	0.466
Defecation urgency severity	3.1 ± 0.8	4.1 ± 0.7	0.352
Daily defecation frequency	3.0 ± 0.4	3.8 ± 0.6	0.298

* Standard Deviation, ** Immunohistochemistry, *** Standard Error of the Mean

Table 2: Response of gastrointestinal symptoms to Mesalazine among the studied patients

Variables	Control (20)	Experiment (29)	p value
Gastrointestinal symptoms: N (%)			
Abdominal pain	10 (50.0%)	18 (62.1%)	0.401
Incomplete defecation	13 (65.5%)	15 (51.7%)	0.378
Abdominal urgency	7 (35.0%)	15 (51.7%)	0.235
Abdominal bloating	15 (75.0%)	17 (58.6%)	0.187

IBS symptoms: Mean ± S.E.M

Variables	Control (20)	Experiment (29)	p value
Abdominal pain severity	1.0 ± 0.3	2.1 ± 0.4	0.054
Abdominal bloating severity	1.9 ± 0.5	2.5 ± 0.5	0.365
Defecation urgency severity	1.0 ± 0.4	1.8 ± 0.4	0.212
Defecation frequency per day	2.1 ± 0.3	1.9 ± 0.3	0.702

* Standard Error of the Mean

Table 3: Effect of Mesalazine treatment on mucosal immune cells

Variable	Placebo (20)	Mesalazine (29)	p value		
	Baseline	Final	Baseline	Final	
IHC* count in descending colon: Mean±S.E.M**	109.2 ± 16.8	81.6 ± 12.4	87.1 ± 10.2	89.2 ± 12.4	0.396

* Immunohistochemistry, ** Standard Error of the Mean
analogous scales (VAS) by asking the patients to define the severity of a specific symptom by a number ranging from zero (no symptom) to 100 (maximum severity of symptom). For microscopic examination of the mucosal tissues of colonic wall, we took two biopsy samples in both first and second sessions of colonoscopy. In the first time colonoscopy, we took two biopsy samples from the proximal and descending colon of each patient. During the second session, we took two biopsy samples from descending colon. We referred the biopsy samples for routine H&E staining histological examination as well as immunohistochemistry. We used polyclonal antibody directed against CD117 (mast cells marker) to characterize mucosal immune cells. We were able to count immune cells by a microscope, using either H&E staining method or immunohistochemically stained sections that can define even the subtypes of immune cells. The benefit of this method is to adapt a morphometric point counting procedure to determine the area covered by different types of cells in the lamina properia. Results show the number of mast cells per field. We believe this method can minimize the measuring bias and maximize counting accuracy.

We applied intention-to-treat (ITT) analysis. Hence, the data of all randomly assigned patients who had received at least one dose of Mesalazine or placebo were considered for analysis. We used the principle of last observation carried forward (LOCF) for estimating missing data. We assessed a baseline for evaluating the demographic and primary efficacy data homogeneity using t-test for continuous covariates such as age and total number of inflammatory mucosal cells. We also assessed the assumptions of normality and variance homogeneity for the efficacy variables at the end of treatment. We performed an analysis of covariance (ANCOVA), adjusted for the baseline values to compare the primary and secondary variables between the treatment groups at the end of the 8-week period. All the safety variables were analyzed on the safety population. We performed all statistical analysis at a significance level of 0.05 using SPSS software version 21.

The registration number of this study at the Iranian Registry of Clinical Trials is RCT2012072910230N2. We got ethical approval from the ethics committees of DDRI (Digestive Disease Research Institute) and Tehran University of Medical Sciences (TUMS) Immunological studies on mucosal biopsies. Committee of Digestive Diseases Research Institute of TUMS has approved the study too.

RESULTS

Demographic details and baseline characteristics of the studied patients are shown in table1.

Table2 displays the response of gastrointestinal symptoms to Mesalazine among the patients. As we displayed in this table, Mesalazine had no significant effect on abdominal pain ($p = 0.054$), bloating ($p = 0.365$), defecation urgency ($p = 0.212$), or defecation frequency ($p = 0.702$) in patients with IBS-D.

Table3 shows that there was no significant difference between Mesalazine and placebo on the total mucosal immune cell counts of the patients with IBS-D ($p = 0.396$).

DISCUSSION

During the 2-year period of our study, we screened 87 patients with IBS-D but only 49 patients remained in our study. Of the remaining patients, 29 patients (59%) entered to 2-month period of our intervention with Mesalazine and 20 patients (41%) took placebo for a similar period. As we showed, Mesalazine did not have any effect either on disease symptoms or on the mast cells aggregation in lamina propriain patients with IBS-D compared with placebo.

In a study in Italy in 2009, Corinaldesi concluded that Mesalazine decreased the number of mast cell (Variables=0.0014) and improved general wellbeing ($p = 0.038$). However, it did not have any significant effect on IBS symptoms. The difference between the results of these two studies could be due to different patients (all form of IBS instead of IBS-D only) and different geographical area. In some patients with IBS, a lowgrade inflammation that is rich in mucosal mast cells, can affect both small and large intestine. Moreover, serological markers of this lowgrade inflammation have drawn attention of researchers to ascribe IBS as an inflammatory disease.

The most recent theories suggest that mast cells can play a key role in the regulation of gastrointestinal visceral sensitivity and vascular permeability. There are several studies that reported elevated count of mast cells in the intestinal mucosa of patients with IBS. Besides; at least one study reported the increased numbers of mast cells in the terminal ileum, ascending colon, and
Mesalazine Effect on IBS-D

rectum of patients with IBS-D.11

Our study revealed that, Mesalazine had no significant
effect on abdominal pain (p =0.054), bloating (p =0.4),
and defecation urgency (p =0.2) in patients with IBS-D.
These finding are similar to the results of many previous
studies.12,18,20,22 However, our finding, which denies the
effect of Mesalazine on mucosal mast cells count in pa-
tients with IBS-D, is against the results of similar studies
among patients with all forms of IBS.

Role of colonic mast cell infiltration and mediator re-
lease in proximity to mucosal innervations in the percep-
tion of abdominal pain in patients with IBS cannot be
ignored.22 In a multicenter randomized controlled trial
with sample size of 108 patients, Leighton and his col-
leagues suggested that two grams oral Mesalazine twice
a day for 12 weeks could be beneficial for patients with
IBS-D especially in decreasing mast cells.23 However,
in our study there was not a statistically significant de-
crease in the number of mast cells in the treatment group
compared with the placebo group. Our small sample size
as well as potential different effect of Mesalazine in dif-
f erent populations could be the possible explanations for
those controversial findings.

Our small sample size was one of our limitations. Be-
cause of psychosocial disturbances in patients, it was not
possible for us to recruit more participants. Moreover,
it was not possible for us to ensure that our participants
consumed their drugs or did not. Indeed, we are not
aware from the compliance of our patients.

In conclusion, our data suggest that mesalazine is not
an efficient drug in pacifying symptoms in IBS-D. In our
study, neither intensity nor duration of pain was signifi-
cantly reduced by mesalazine. Further research in this
field with larger sample size is recommended.

ACKNOWLEDGMENT

We would like to express our sincere thanks to
Dr Mohamadreza Aghamirsalim and Dr Mani Beigi
whose constructive comments enabled us to per-
form this trial much better.

Source of funding:
Digestive Disease Research Institute, Shariati Hos-
pital, Tehran University of Medical Sciences, Teh-
ran, Iran (Registration ID in IRCT.IR: IRCT2015083117719N2)

CONFLICT OF INTEREST

The authors declare no conflict of interest related to
this work.

REFERENCES

1. Talley NJ, Zinsmeister AR, Van Dyke C, Melton LJ 3rd.
Epidemiology of colonic symptoms and the irritable
bowel syndrome. Gastroenterology 1991;101:927-34.
2. Drossman DA, Li Z, Andruzzi E, Temple RD, Talley NJ,
Thompson WG, et al. U.S. householder survey of func-
tional gastrointestinal disorders. Prevalence, sociodemo-
ography, and health impact. Dig Dis Sci 1993;38:1569-80.
doi:10.1007/BF01303162
3. American College of Gastroenterology Task Force on
Irritable Bowel Syndrome, Brandt LJ, Chey WD, Foxx-
Orenstein AE, Schiller LR, Schoenfeld PS, et al.An
evidence-based position statement on the manage-
ment of irritable bowel syndrome. Am J Gastroenterol
2009;104:Suppl 1:S1-35. doi: 10.1038/aig.2008.122.
4. Hahn BA, Saunders WB, Maier WC. Differences be-
tween individuals with self-reported irritable bowel
syndrome (IBS) and IBS-like symptoms. Dig Dis Sci
1997;42:2585-90. doi:10.1016/S0016-5085(03)82564-7
5. Saito YA, Locke GR, Talley NJ, Zinsmeister AR, Fett SL,
Melton LJ 3rd. A comparison of the Rome and Manning
criteria for case identification in epidemiological investi-
gations of irritable bowel syndrome. Am J Gastroenterol
2000;95:2816-24. doi:10.1016/S0016-5085(98)83380-5
6. Thompson WG, Irvine EJ, Pare P, Ferrari S, Rance L.
Functional gastrointestinal disorders in Canada: First
population-based survey using Rome II criteria with sug-
10.4321/bjgastro.2003.11.055
11. Park JH, Rhee PL, Kim HS, Lee JH, Kim YH, Kim JJ, et
al. Mucosal mast cell counts correlate with visceral hyper-
sensitivity in patients with diarrhea predominant irritable
12. Hamish Philpott, Peter Gibson, Frank Thien. Irritable bowel syndrome - An inflammatory disease involving mast cells. *Asia Pac Allergy* 2011;1:36-42. doi: 10.5415/apallergy.2011.1.1.36.

13. Andrews CN, Petcu R, Griffiths T, Bjarnason J, Chapman K, Cellars L, et al. Mesalazine alters colonic mucosal proteolytic activity and fecal bacterial profiles in diarrhea-predominant irritable bowel syndrome (IBS-D) *Gastroenterology* 2008;134:A548-A. doi:10.1016/S0016-5085(08)62558-5

14. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. *Lancet* 2007;369:1641-57. doi:10.1016/S0140-6736(07)60751-X

15. Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O, Auwerx J, et al. Intestinal anti-inflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. *J Exp Med* 2005;201:1205-15. doi: 10.1084/jem.20041948

16. Fox CC, Moore WC, Lichtenstein LM. Modulation of mediator release from human intestinal mast cells by sulfasalazine and 5-aminosalicylic acid. *Dig Dis Sci* 1991;36:179-84. doi:10.1007/BF01300753

17. Bissonnette EY, Enciso JA, Befus AD. Inhibitory effects of sulfasalazine and its metabolites on histamine release and TNF-alpha production by mast cells. *J Immunol* 1996;156:218-23. doi: 10.1111/j.1365-2249.1995.tb06639.x

18. David B. Ramsay, Sindu Stephen, Marie Borum, Lysandra Voltaggio, David B. Doman. Mast Cells in Gastrointestinal Disease. *Gastroenterol Hepatol (NY)* 2010;6:772-7.

19. Leighton MP, Lam C, Mehta S, Spiller RC. Efficacy and mode of action of Mesalazine in the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D): study protocol for a randomized controlled trial. *Trials* 2013 9:14. doi:10.1186/1745-6215-14-10

20. Mayer E.A. Clinical practice. Irritable bowel syndrome. *N Engl J Med* 2008;358:1692-9. doi: 10.1056/NEJMcp0801447

21. R. Corinaldesi, V. Stanghellini, C. cremoen, L. Gargano, R. F. Cogliandro, R. De Giorgio, et al: Effect of Mesalazine on mucosal immune biomarkers in irritable bowel syndrome: a randomized controlled proof-of-concept study. *Aliment Pharmacol Ther* 2009;30:245-52. doi:10.1111/j.1365-2036.2009.04041.x

22. Barbara G, De Giorgio R, StanghelliniV. Cremon C, Salvioli B, Corinaldesi R. New pathophysiological mechanisms in irritable bowel syndrome. *Aliment Pharmacol Ther* 2004;20:1-9. doi: 10.1111/j.1365-2036.2004.02036.x

23. Bengtsson M, Ohlsson B, Ulander K. Development and psychometric testing of the Visual Analogue Scale for Ir-