REVIEW

Magnetic systems for cancer immunotherapy

Nicole B. Day, William C. Wixson, C. Wyatt Shields IV*

Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA

Received 30 November 2020; received in revised form 5 February 2021; accepted 25 February 2021

Abstract

Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetrically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.

Abbreviations: BW, body weight; CpG, cytosine-phosphate-guanine; DAMP, damage associated molecular pattern; EPR, enhanced permeability and retention; FFR, field free region; HSP, heat shock protein; HS-TEX, heat-stressed tumor cell exosomes; ICD, immunogenic cell death; IVIS, in vivo imaging system; MICA, MHC class I-related chain A; MPI, magnetic particle imaging; ODNs, oligodeoxynucleotides; PARP, poly(adenosine diphosphate-ribose) polymerase; PDMS, polydimethylsiloxane; PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic acid); PNIPAM, poly(N-isopropylacrylamide); PVA, poly(vinyl alcohol); SDF, stromal cell derived-factor; SID, small implantable device; SLP, specific loss power.

*Corresponding author. Tel.: +1 303 735 4763.
E-mail address: Charles.Shields@colorado.edu (C. Wyatt Shields).

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

© 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Immunotherapy is a promising strategy for guiding immune activation against tumor growth and metastasis by mobilizing native immune cells of the body. The two primary methods of regulating tumor activity with immunotherapy are educating or enhancing immune cell activation, such as with cancer vaccines, or correcting dysfunctional immune pathways within the tumor microenvironment, such as through checkpoint inhibition. Research into immunotherapy has grown in recent years due to its advantages over traditional treatment options, such as higher efficiency and specificity for interaction with magnetically susceptible cells, as well as the challenges and potential of magnetic immunomodulatory systems for use in clinical settings.

Magnetic systems

Magnetic particles are generally composed of single or multiple crystals of an inorganic magnetic material. The first clinical use of magnetic particles was as a negative contrast agent for magnetic resonance imaging (MRI) in 1996, and since then, the US Food and Drugs Administration (FDA) has approved certain maghemite (γ-Fe₂O₃) and magnetite (Fe₃O₄) superparamagnetic iron oxide nanoparticles (SPIONs) for diagnostic and therapeutic use. However, despite the benefits of superparamagnetism and the biocompatibility of iron oxide nanoparticles, which generally accumulate in the liver or spleen after intravenous injection and break down into iron suitable for storage, only a handful of SPION products are used clinically. Other types of magnetic materials of biological relevance include paramagnetic and ferromagnetic materials, although they currently lack instances of clinical translation to the best of our knowledge.

Researchers from materials science and nanotechnology have sought to fulfill the exigent need for improved delivery of, and control over, immunotherapies. Remotely controlled systems have been explored at length, employing stimuli such as magnets, light, pH, heat, or acoustics to cause chemical or physical changes that activate a therapeutic mechanism. Magnetic systems offer several advantages over other methods of remotely controlled immunotherapies, including biocompatibility of some magnetic materials like iron oxide and titanium, large field penetration depths, multifunctionality of magnetic materials, and high specificity for interaction with magnetically susceptible species over native tissue, all of which enable a wide variety of mechanisms to regulate immune interactions with high spatiotemporal control. While magnetic systems also have use in applications beyond immunotherapy, such as for delivering other cancer agents like chemotherapies or manipulating cellular targets for regenerative medicine, the specificity of cellular activation timelines, spatial dependence, and precise patient dosing necessary for efficacious immunotherapy makes the use of magnetics particularly promising. In this review, we discuss different methods of immunotherapeutic drug delivery and immunomodulation via magnetic materials, their uses in cancer treatment, and systems that have promise for future adaptation to immunotherapies (Fig. 1). Additionally, we discuss the recent advances in coupled diagnostics and therapy (termed theranostics) via magnetic materials as well as the challenges and potential of magnetic immunomodulatory systems for use in clinical settings.

![Figure 1](https://example.com/figure1.png)

Figure 1 Different approaches that exploit magnetic materials for immunotherapy. Created with BioRender.
magnetic field. Furthermore, despite the importance of particle properties in the performance of magnetic systems, we will not discuss their synthesis, characterization, or optimization in this review, as they are well described elsewhere.

2.1. Magnetic hyperthermia

Magnetic hyperthermia (MH, or magnetic fluid hyperthermia) is a phenomenon in which magnetic energy is transformed into thermal energy through the rapid oscillations of magnetic nanoparticles due to an alternating magnetic field (AMF). Localized magnetic induction heating of cancerous tissues has garnered significant attention as a therapeutic tool since its initial proposal in 1957. Modern manifestations leverage single-domain magnetic nanoparticles under an AMF to heat tissues in a highly specific manner. Nanometer-scale thermal measurements reveal that heat generated from nanoparticles in AMFs dissipates on subcellular scales, which makes it an attractive system for drug targeting to microscopic zones. The most common material to induce MH is surface-coated SPIONs because of their biocompatibility, colloidal stability, and magnetic behavior. Optimal particles are under 200 nm to cross the endothelial barrier in capillaries and reach tumor sites. SPIONs of 10–30 nm with a high heating power per unit mass are among the preferred size range for MH and have the additional benefit of escaping phagocytes for a longer circulating half-life than particles greater than 30 nm. However, despite the breadth of academic work on MH in biological systems, its use in clinical settings still lags, with regulatory approval primarily limited to specific cancer centers in Europe.

Heating by MH is attributed to the heat losses inherent in the generation of eddy currents, hysteresis losses, and relaxation losses. Relaxation heating is described by two mechanisms, Brownian and Néel relaxation. Brownian relaxation results from the magnetic effects on the random (Brownian) rotation of particles in suspension, while Néel relaxation originates from particles with a single paramagnetic domain (superparamagnetism). Relaxation of this single magnetic domain generates loss of magnetic potential to heat. An AMF induces a cycle of magnetization and relaxation through the varied amplitude, creating a heat source described by the specific loss power (SLP, the amount of released heat) as Eq. (1):

$$\text{SLP} = \alpha \times \frac{4\mu_0 M_s H_{\text{max}}}{\rho} \times f$$

where μ_0 is fluid viscosity, M_s is the saturation magnetization, H_{max} is the magnetic field amplitude, ρ is the mass density of nanoparticles, f is the magnetic field frequency, and α is a dimensionless parameter dependent on nanoparticle degree of alignment, anisotropy, and interparticle interactions. This method of heating has been shown to raise local temperatures to 40–43°C, which is sufficiently elevated above typical body temperatures to impact immune cell activity and stimulate thermosensitive materials for therapeutic applications. While higher temperatures can be reached with magnetic stimulation of SPIONs, they can result in damage to healthy cells and tissue ablation. This section will cover the application of MH to cancer treatment and motivate its emerging use in immunotherapy.

Table 1: Properties of magnetic materials

Magnetic material	Description	Schematic illustration
Diamagnetic	Forms a weak response against an applied magnetic field.	![Image]
Paramagnetic	Aligns with an applied magnetic field. Magnetic moment is not retained when the field is removed.	![Image]
Superparamagnetic	Develops a mean magnetic moment only in an applied magnetic field. Nonmagnetic when the applied magnetic field is removed.	![Image]
Ferromagnetic	Highly susceptible to an applied magnetic field. Retains a dipole, producing a magnetic field after the applied field is removed.	![Image]
2.1.1. Local magnetic hyperthermia as immunotherapy

There are multiple mechanisms of action for immunotherapy within tumors using local MH, some of which have been previously reviewed in detail. An advantage to further developing these methods is the ability to achieve potent immunomodulation without the addition of drugs, which often elicit adverse reactions; however, hyperthermia is still most commonly applied as an adjunct to chemotherapy or radiotherapy rather than as a primary treatment. This may be due in part to the lack of understanding of optimal treatment parameters for clinical use across tumor types, which makes repeatable therapy difficult.

Historically, methods to induce local heating of tumor cells included submerging the tumor site in a hot water bath or inserting a metallic probe to deliver microwaves across the tumor. Similar to tumor excision, the goal of hyperthermia is to eliminate tumor cells and a margin of healthy cells around the tumor site, but with heat-induced cell death instead of physical extraction. This method results in cell debris that is cleared by macrophages and other phagocytes and replaced by healthy tissue. In contrast to an insertable probe or hot water bath, which are imprecise with respect to both location and temperature, magnetic nanoparticles have the potential to penetrate solid tumors noninvasively and produce precise and uniform heating over a wider temperature range. Precise heating with magnetic nanoparticles can induce immunogenic cell death (ICD) or elicit other sustained antitumoral immune responses through a variety of mechanisms, illustrated in Fig. 3. ICD is a distinct apoptotic pathway caused by cellular stresses such as heat, which result in the release of damage-associated molecular patterns (DAMPs). DAMPs are immunostimulatory and act as danger signals, enabling processing of tumor-associated antigens released during cell death. This promotes long-term immunological memory against tumors and

Figure 3 Mechanisms of immune modulation by magnetic hyperthermia. (A) Cellular release of heat shock proteins (green) due to heat stress results in natural killer cell activation and proliferation, cytotoxic CD8+ T cell education, and proinflammatory cytokine response. (B) Dendritic cells, T cells, and macrophages have enhanced anticancer activity in response to local heating. (C) MCH I and MICA are upregulated on tumor cells. (D) Increased exosome release enhances cytotoxic T cell education by dendritic cells. (E) Tumor vasculature responds to temperature increase by allowing increased immune cell permeation. Created with BioRender. Adapted with permission from Ref. 56. Copyright © 2014 Taylor & Francis.
has even been examined as an alternative cancer vaccine. Photothermal therapy (PTT), radiotherapy, and certain chemotherapies are common inducers of ICD for treatment of various types of cancer. Additionally, thermotherapy has been shown to elicit the endoplasmic reticulum stress response and generate reactive oxygen species much like ICD; however, ICD has only been observed at temperatures above the traditional range of MH (>43 °C). A high SLP and heat potential of SPIONs are necessary for causing cell death, and it is known that higher temperatures lead to greater cytotoxicity. However, there is evidence that even higher temperatures (e.g., above 45 °C) can result in necrotic cell death that does not correlate with prolonged immunity, indicating that MH-mediated ICD and thermal ablation must be studied further before use as a therapeutic method.

The heat shock response (Fig. 3A) is the best understood mechanism by which MH induces anti-tumor immunity. Stress induced by increased intracellular temperature upregulates transcription of highly conserved heat shock proteins (HSPs), which protect cells from heat-induced apoptosis. When tumors are heated with MH, some HSPs act in a protumoral manner by preventing thermal ablation of the cancer cells, while others act to protect nearby cells through forming an immune response against the heated cancer cells. Of the latter type, HSP70, a 70 kDa protein, has been shown to cause a potent proinflammatory response via several pathways. In addition to their role in cryoprotection, HSPs are molecular chaperones. HSP70 can bind to and transport tumor-associated proteins to antigen presenting cells (APCs), which subsequently present their tumor antigens on MHC I for education of cytotoxic CD8+ T cells to mount an antigen-specific attack against tumors. HSP70 also binds to toll-like receptor (TLR2) and TLR4 on APCs, activating the NF-κB signaling pathway, resulting in increased secretion of proinflammatory cytokines like tumor necrosis factor alpha (TNFα). In addition to activation from exposure to proinflammatory cytokines released due to HSP70, natural killer cells (NKs) recognize HSP70, resulting in enhanced proliferation and cytolytic activity. Similarly, Tanaka et al. demonstrated activation of dendritic cells (DCs) by HSP70 released from magnetite cationic liposomes via MH, resulting in regression of melanos in C57BL/6 mice. However, the HSP subgroup produced in response to MH varies between tumor types and heating conditions, with the resultant immune response being a sum of the protumoral and antitumoral HSP behaviors. Moreover, due to the cryoprotective function of HSPs, use of MH must be carefully timed to prevent thermotolerance from HSP overexpression resulting from overly frequent treatments.

Other effects of hyperthermia acting directly on immune cells have been studied. An early example of this came from Duff and Durum, who showed that T lymphocyte proliferation in response to interleukin (IL)-1 and IL-2 was enhanced with 39 °C heat treatment, a temperature similar to fewer conditions. Successive fever-range (<41 °C) heat treatment studies have shown similar results in other immune cells: 39.5 °C heating of cytotoxic CD8+ T cells increased interferon (IFNγ) production and tumor cytotoxicity; DCs matured in response to 39.5–41 °C heating independently of the heat shock response; and macrophages upregulated inducible nitric oxide (NO) synthase (iNOS, a proinflammatory enzyme) after 39.5 °C heat treatment. However, Kalber et al. demonstrated that mesenchymal stem cells loaded with SPIONs, injected into tumors, and heated +4.3 °C did not have an effect on tumor size or growth characteristics, indicating that conditions for different tumor types require accurate tuning of MH conditions for effective immune responses. Regardless, the activation of immune cells by MH could be a promising adjuvant technique for immunotherapies such as cancer vaccination due to the ability for MH to mimic local fever conditions. Time, duration, and temperature of MH must be considered carefully due to the specificity of immune cell activation timelines and responses.

Several other immune responses to local heating have been identified with a direct effect on tumor cells (Fig. 3C). Ito et al. demonstrated that MHC I is upregulated on tumor cells in response to 43 °C MH, resulting in enhanced recognition by CD8+ T cells and subsequent cytotoxic action. MHC I is amply expressed on nascent tumors, but it is often depleted as tumors progress, making their recovery an effective strategy for immunotherapies. Heating can also elicit antitumor responses from NKs, as shown by Ostberg et al.; distinct clustering of the NKG2D receptor occurred on NKs in response to a local temperature of 39.5 °C, identical to their response to the proinflammatory cytokine IL-2. The NKG2D receptor recognizes the MHC class I-related chain A (MICα) ligand, which was also upregulated on the surface of tumor cells in the same heated environment. This NK activity induced by MH is a promising method of highly specific therapy.

Tumor cells have been shown to release higher levels of exosomes when under stress, such as from hypoxia, inflammation, and heat (Fig. 3D). Exosomes are nanovesicles that contain different compositions of RNA and proteins, which can act as either immunosuppressive signaling factors for tumor growth or as antigens for programing antitumoral immune responses. In MH, enhanced proinflammatory signaling from macrophages and T cells as well as from elevated temperatures can cause this cellular stress response and increase paracrine signaling from tumor exosomes. The natural tumor microenvironment is hypoxic, which generates exosomes that promote tumor progression, angiogenesis, and metastasis. However, Dai et al. showed that heat-stressed tumor cells released exosomes containing cancerembryonic antigen, HSP70, and MCH I, which instead result in activation of DCs and immunogenecity. The release of HSP70 in HS-TEX has been shown by other groups as well. Some HS-TEX have also been shown to contain cytokines responsible for chemoattraction and activation of DCs and T cells. Additionally, protumoral regulatory T cells differentiated into potent antitumor T helper 17 (Th17) cells via enhanced DC secretion of IL-6 caused by HS-TEX. As such, heat-stressed tumor exosomes have been proposed as components for cancer nanovaccines. However, as with many of these therapeutic methods, MH conditions must be carefully tuned to facilitate the release of HS-TEX with enhanced tumor immunogenicity while avoiding the generation of immunosuppressive exosomes. The final mechanism of MH as a standalone immunotherapy relies on physical changes caused by local temperature increases that enhance immune cell recruitment and increase drug penetration into tumors. Hypoxia and immunosuppression of the tumor microenvironment are caused in part by reduced blood vessel density and blood flow to the tumor. However, increased permeability of the tumor vasculature, arteriole diameter, and oxygenation have all been demonstrated to occur in response to 40–43 °C temperatures, which allow for improved transport of DCs and T cells into tumor sites from the draining lymph nodes.
nodes. Furthermore, MH within tumors has been shown to enhance the recruitment of immune cells by expressing vascular adhesion molecules such as ICAM-1 at higher levels due to increased secretion of IL-6. Iron oxide nanocubes have also been shown to destroy the structure of the extracellular matrix within tumors via MH, resulting in improved drug and nanoparticle penetration.

Due to the interconnectedness of the immune system, these mechanisms have substantial overlap and can work synergistically to form a potent and sustained therapeutic response. Local MH can generate these effects as a standalone therapy or work in conjunction with other immunotherapies, as discussed in Section 2.1.3. Careful tuning of, or improvements upon, the conditions used in many of these studies (e.g., nanoparticle size, field frequency, field strength, and treatment duration) may improve immune responses. However, some of the constraints of MH therapy are due to intrinsic limitations of an AMF as the stimulus. In particular, whole body AMF exposure can result in adverse heating effects due to the accumulation of SPIONs in off-target locations, while regional AMF exposure can be ineffective for deep tissue penetration. Therefore, emphasis must be placed on improving the transport of SPIONs to target tissues or the precision of magnetic field stimulation to increase the specificity of MH to support clinical translation.

2.1.2. Heat-triggered drug release

To improve safety and efficacy of immunotherapies, controlled drug delivery has emerged as an important area of study. Two fundamental goals of this field are the protection of therapeutic cargo and the use of noninvasive stimuli to control the biodistribution of drugs. Thermosensitive nanocarriers are therefore promising systems for spatiotemporal control of drug release. Kumar and Mohammad propose two distinct mechanisms for drug release mediated by MH: (i) heat-triggered crevice formation within a larger polymeric matrix, releasing drugs through expanded pores, and (ii) engineering thermosensitive linkers between the drug and the magnetic nanoparticle. Yatvin et al. demonstrated the first iteration of the former mechanism by developing a hyperthermia-triggered drug release system employing liposomes with a phase transition temperature of 42°C to release protein synthesis inhibitors in Escherichia coli. This early example provided a basis for later research to study different materials, more advanced heating mechanisms, and a variety of drugs in application to cancer therapy.

Many drug delivery systems with heat-triggered release have focused on chemotherapeutic drugs, consistent with the ubiquity of chemotherapy in clinical settings. Doxorubicin (DOX) is a common chemotherapeutic drug used for studying new release systems due to its well-characterized canicidal effects. Early iterations of heat-triggered release were achieved by means other than MH. One such system incorporated ammonium bicarbonate and DOX into a liposome, causing temperature-controlled cavitation through the decomposition of ammonium bicarbonate to CO₂ and other products at hyperthermic temperatures. Another system employed more complex chemistries and a model fluorophore instead of therapeutic drug, using MH and a reversible click and Diels–Alder reaction to controllably link and unlink the fluorophore from poly (ethylene oxide) and maleimide-modified iron oxide nanoparticles, respectively. As shown in Fig. 4, the use of thermosensitive bonds enabled control over fluorophore release and system tunability to allow conjugation of a variety of therapeutic agents.

This study and another using citric acid-modified magnetic nanoparticles incorporated into DOX-containing liposomes showed feasibility of using external magnetic fields to spatiotemporally control drug release, building off of the earlier work that used non-MH induction sources. Additional drug carriers have since been developed to improve uptake by tumor cells, release other chemotherapeutic drugs, or use differing heat-triggered release mechanisms.

Only in recent years have researchers examined MH-mediated drug release in the context of immunotherapy. Checkpoint inhibitors such as anti-programmed cell death (PD1), anti-PD ligand (PD-L1), and anti-cytotoxic T-lymphocyte-associated protein (CTLA)4 are promising agents to treat metastatic cancers, prompting research into combining these drugs with MH. Even though checkpoint inhibitors are generally less toxic than most chemotherapies, they can produce proinflammatory cytokine storms that lead to dose-limiting toxic effects. These constraints have necessitated further research into techniques that remotely control the release of immunomodulatory drugs. The broad range of drugs used in MH suggests the possibility of expanding this technique beyond chemotherapy, such as to checkpoint inhibitors, cytokines, antigens, and other vaccine components.

Future work in heat-triggered drug release systems must optimize MH platforms to improve spatial resolution of drug delivery and to further prevent toxicity or overactivation of immune responses. Encapsulation of SPIONs in hydrogels, such as in microparticle gels made of the highly thermoresponsive polymer N-isopropylacrylamide, is a popular method of controlling drug release. However, SPIONs have been shown to experience physical hindrance of Brownian relaxation when encapsulated within hydrogels of mesh sizes on the scale of hydrodynamic particle size; inhibited relaxation of magnetic nanoparticles was shown to prevent efficient local heating and may affect drug release in temperature-dependent systems, necessitating careful tuning of optimal properties for polymeric platforms. Additionally, guiding the drug delivery platform to the tumor site is important to prevent off-target immune responses or cell ablation, which is discussed in Section 2.2. Moreover, most research has examined the effects of immediate cell death caused by release of drugs using MH, not the long-term effects of immune modulation in conjunction with MH. Further optimization of clinical concentrations, particle coatings, and iron oxide structure is needed to verify toxicity levels, especially over multiple rounds of treatment. Given the positive results seen in controlled release of checkpoint inhibitors using MH, greater work in remote release systems of immunotherapies such as anti-PD1 and anti-CTLA4 is warranted. However, a barrier to application of some immunotherapies to MH-triggered release systems is heat sensitivity; temperature-sensitive payloads such as cytokines may denature in response to the temperatures used for drug release.

2.1.3. Combination therapy

We define combination therapy as strategies that use MH in conjunction with more conventional therapies, including chemotherapy or other immunotherapies, to achieve synergistic effects with respect to both the primary tumor and metastases. Frequently, combination therapy aims to induce the abscopal effect, a phenomenon that refers to an adaptive immune response that can attack distant metastatic colonies. While there is insufficient data to show that the abscopal effect can occur by MH alone, recent evidence suggests that it can be induced by combining MH with immunotherapy. Early evidence of synergy between MH and...
immune stimulation was provided by a series of papers that showed greater tumor cell clearance when MH was combined with TNFα gene therapy121, IFNs122, granulocyte-macrophage colony-stimulating factor (GM-CSF)86, and DCs123 than any of the treatments independently. As the field of immunotherapy has advanced, so too has the understanding of combination therapy. Hyperthermia used in combination with chemotherapy has been known to generate synergistic effects on drug potency, even before sophisticated \textit{in vivo} thermal control techniques such as MH and PTT were established124. With the advent of MH, this combination could be achieved while avoiding whole body or even regional hyperthermia. Using SPIONs functionalized with cisplatin (a chemotherapeutic drug) in an AMF, Babincová et al.125 quantitatively demonstrated synergism through reduced rat sarcoma cell viability \textit{in vitro}. They further proposed using a gradient magnetic field for guiding the drug to the target site, underlining the multifunctional nature of magnetic systems. One proposed mechanism for the observed synergism is hyperthermia-induced upregulation of HSPs, inciting an immune response, as discussed previously126. Further demonstrating the enhanced therapeutic efficacy of combining chemotherapy and MH, magnetic mesoporous silica nanoparticles were shown to enable the coregulation of temperature and pH for drug release. This allowed the prevention of undesirable toxic effects due to early drug release at physiological pH outside of cells, while gaining the benefits of the combination therapy after release inside of cells128. FDA approval of anti-CTLA4 and anti-PD1 checkpoint inhibitors caused a renewed interest in combination therapy over the last decade116. Researchers continue to find synergistic effects when localized heating—which by MH, PTT, or other methods—is combined with checkpoint inhibitors. Similarly to MH, PTT can impart local heating through laser stimulation of iron oxide nanoparticles129. Wang et al.130 used PTT instead of MH and proposed a mechanism by which thermal ablation of tumor cells caused antigen release for uptake by APCs, triggering a potent immune response. When a checkpoint inhibitor was co-administered, the immunosuppressive activity of regulatory T cells was inhibited in secondary tumors, allowing T\textsubscript{H} cells to respond to distal metastases. Clarity on the exact synergistic mechanisms still lag, indicating a need for additional work to fully optimize this approach131. Recent work has demonstrated a similar synergy by using MH, which has the advantage of deeper penetration over PTT. Polyethylene glycol (PEG)-coated (or PEGylated) iron nanoparticles administered in combination with anti-CTLA4 drugs demonstrated

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Orthogonal click reaction for release of a model fluorophore, rhodamine (Rd), using magnetic hyperthermia. (A) Scheme for attachment of iron oxide nanoparticles (IONPs) to a polymeric carrier and a drug. (B) Rd release profiles at two different concentrations over 30 min. Reproduced with permission from Ref. 108. Copyright © 2013 John Wiley and Sons.}
\end{figure}
superior shrinkage of secondary tumors compared to MH or a CTLA4 blockade alone, as shown in Fig. 5. Further, the combination showed greater long-term immune memory than through anti-CTLA4 alone127. To improve the relatively low energy efficiency of MH versus photon-based systems such as PTT, another study used nanoparticles with magnetically hard cobalt iron oxide cores and magnetically soft manganese iron oxide shells with greater MH performance due to the interface between magnetically hard and soft materials. These particles, combined with an AMF and anti-PD-L1 treatment, initiated a cascade of immune responses involving DCs, CD8\(^+\) T cells, and proinflammatory cytokines that promoted the abscopal effect and secondary tumor elimination132. However, use of a cobalt core may reduce translational potential due to toxicity issues.

Magnetic combination therapies are rapidly evolving, with great promise for improving patient outcomes. Proposed systems for combinatorial treatment continue to incorporate innovative ideas from nanotechnology with proven immunomodulatory drugs into a single system133–135. Further elucidation of the mechanisms underlying the synergism of local heating and therapeutic drugs will enable rational design of combination therapy systems that may make their way toward clinical use.

2.2. Magnetically guided drug targeting

Drug carriers containing immunomodulatory drugs can take many forms136,137. Some carriers rely on high dosage administered systemically to passively reach the desired site, however, this often results in off-target and adverse effects138,139. In the context of cancer therapy, inclusion of active targeting functionalities can result in increased drug accumulation within tumors, tumor cells, or immune cells and allows for reduced dosages due to increased specificity2. While some drug delivery systems take advantage of the accumulation of nanoparticles that can occur in certain tumor types with leaky vasculatures and impaired lymphatic drainage, known as the enhanced permeability and retention (EPR) effect, this process is passive140. A recent meta-analysis showed that the fraction of non-magnetically guided particles that reach the tumor was 0.7% of the injected dose141, demonstrating a critical need for improved targeting systems. A common mechanism of active tumor targeting is ligand-receptor binding, such as hyaluronic acid to CD44, which is highly expressed on some cancer cells, while the other primary method is using an external field as a driver137,142.

Figure 5 MH plus CTLA4 blockade on an orthotopic 4T1 breast tumor model. (A) Mechanism of immunotherapy through combination of MH from iron oxide nanoparticles (FeNPs), poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating imiquimod (R837) (PR), and anti-CTLA4 antibodies (α-CTLA4). T cells are educated for metastatic tumor cell clearance. (B) Schematic timeline of MH and CTLA4 blockade treatments to inhibit tumor metastases. The primary tumor was surgically removed 16 days after inoculation for monitoring of metastatic tumors. (C) Survival of mice with various treatments over 90 days. Combined MH, PR, and α-CTLA4 therapy resulted in 80% survival (n = 10 per group). (D) In vivo bioluminescence images tracking firefly luciferase-expressing 4T1 breast cancer cells after surgery alone, MH treatment, MH and α-CTLA4 treatment, MH and PR treatment, or MH, α-CTLA4, and PR treatment. Reproduced with permission from Ref. 127. Copyright © 2019 American Chemical Society.
Table 2 summarizes some of the key characteristics of targeted drug delivery systems. Magnetically guided drug targeting involves carriers that contain a magnetic moiety and encapsulate or display the therapeutic drug. These parameters can have an impact on the rates of (i) delivery to the target site, (ii) drug release, and (iii) clearance or degradation. Certain immunotherapies have drawbacks that limit their therapeutic potential, including rapid degradation or clearance, poor cellular uptake, lack of cellular or tumor specificity, and inability to penetrate tumor tissue; however, improved targeting techniques may increase drug stability or reduce clearance by enabling specific delivery and uptake. Additionally, conjugation of drugs to magnetic nanoparticles has been shown to improve properties like drug circulation time and solubility. Magnetically guided drug targeting has been used in chemotherapy and photodynamic therapy. Due to the importance of spatial control, targeted delivery, and drug stabilization, magnetically guided systems are actively being studied for immunotherapy as well.

The most common magnetic moieties in targeted drug delivery systems are core-shell particles and SPIONs that are either coated with drugs or dispersed within a polymer matrix. Magnetic core-shell particles are most often composed of magnetic cores with a shell constituent that contains drugs. As such, they have the advantage of easily controlling drug release via the alteration of shell properties to enable diffusion, erosion, or swelling. SPIONs are also highly versatile, and they have structural properties that can enable efficient drug targeting and the ability to conjugate a variety of therapeutic moieties from glycopeptides for vaccines to small molecules. While these drug carriers most often take the form of spherical particles, active or self-propelling microscale robotic particles, or so-called “microbots”, are an alternative that generally have more conformational variety to enable distinct patterns of movement. Microbots fabricated from or containing magnetic materials enable highly specific targeting and can be controlled either in bulk or individually. While microbots that involve magnetic actuation for cargo release will be discussed in Section 2.3.2, microbots that can undergo magnetic locomotion often have enhanced speed, specific navigational capabilities, and high levels of targeting precision due to their structural and material properties. As the field of microscale robotics is rapidly growing, there are many promising locomotive systems that have not yet been applied to drug delivery or have only tested release of cargo for other applications such as chemotherapy or tissue regeneration.

To direct the targeting of active drug carriers, applied magnetic fields are used both external and internal to the body. External magnetic fields are the primary choice of stimulus due to their ease of use, low invasiveness, and control over the applied field conditions. A high-gradient field, which is static, but rapidly decreases in strength with distance from the source, can be used to overcome the hydrodynamic force of blood flow acting on drug carriers and is thus highly dependent on particle properties such as size and magnetic susceptibility. Other important considerations for influencing the drug carrier trajectory include particle magnetization as well as drag and buoyancy forces. While tumors deep within the body can be difficult to reach with external magnets, optimization of magnetic field conditions have been studied to improve targeting. This includes the use of oppositely polarized magnets to increase field penetration depth or a combination of external magnets that are placed to target remote locations in the body. However, there are still limitations to using external magnetic fields for targeting. As a gradient field is required to direct particles, external fields have the potential to cause stronger attraction to the surface of the body than the target location. Some have proposed overcoming this issue by using implanted magnets. Permanent magnetic implants often take the form of ferromagnetic stents, wires, or spherical seeds and can improve upon the targeting of drugs at sites deeper in the body by external fields. However, the downside is the increased invasiveness required for implantation. Optimal implants have a long-range, low gradient field that can form a local, high gradient field when magnetized. Therefore, the magnetic particles used for targeting should be designed to only aggregate at the site of interest in response to a high gradient field. Both internal and external magnetic stimuli have been shown to significantly increase accumulation of magnetic drug carriers in tumors, tumor cells, and immune cells, resulting in amplified antitumoral effects.

2.2.1. Magnetically guided accumulation of drugs in tumors

Drugs are incorporated into magnetic carriers with SPIONs primarily by encapsulation, surface coating, and conjugation. Chiang et al. demonstrated encapsulation by fabricating multifunctional fucoidan-dextran particles containing SPIONs and conjugating the checkpoint inhibitor anti-PD-L1 and T cell agonists anti-CD3 with anti-CD28. While combining checkpoint inhibitors with other immune modulators can have significant therapeutic effects, the risk for toxicity often increases; however, this magnetically targeted drug carrier resulted in improved median survival of tumor-burdened mice compared to soluble anti-PD-L1 and reduced adverse events due to a significant increase in tumor accumulation compared to the non-targeted formulation. A high-gradient field can be used to overcome the hydrodynamic force of blood flow acting on drug carriers and is thus highly dependent on particle properties such as size and magnetic susceptibility. Other important considerations for influencing the drug carrier trajectory include particle magnetization as well as drag and buoyancy forces. While tumors deep within the body can be difficult to reach with external magnets, optimization of magnetic field conditions have been studied to improve targeting. This includes the use of oppositely polarized magnets to increase field penetration depth or a combination of external magnets that are placed to target remote locations in the body. However, there are still limitations to using external magnetic fields for targeting. As a gradient field is required to direct particles, external fields have the potential to cause stronger attraction to the surface of the body than the target location. Some have proposed overcoming this issue by using implanted magnets. Permanent magnetic implants often take the form of ferromagnetic stents, wires, or spherical seeds and can improve upon the targeting of drugs at sites deeper in the body by external fields. However, the downside is the increased invasiveness required for implantation. Optimal implants have a long-range, low gradient field that can form a local, high gradient field when magnetized. Therefore, the magnetic particles used for targeting should be designed to only aggregate at the site of interest in response to a high gradient field. Both internal and external magnetic stimuli have been shown to significantly increase accumulation of magnetic drug carriers in tumors, tumor cells, and immune cells, resulting in amplified antitumoral effects.

Features	Effect on drug delivery system
Efficiency of carrier delivery to the targeted sites	● An adequate amount of a drug should be delivered to the desired sites
Rate of carrier elimination from the targeted sites	● Drug should remain in the desired area for a sufficient time
Duration between drug release and drug removal in the targeted sites	● Elimination process of carrier drug conjugate should not be faster than the delivery process
Rate of drug release at non-targeted sites	● Drug should retain a specific concentration in the targeted tissues for sufficient time to act on it
Effect on drug delivery system	● Releasing the drug at non-targeting tissue will reduce the amount of drug delivered to the intended areas
Systemic toxicity	● Systemic toxicity will increase

Table 2 Fundamental characteristics of a targeted drug delivery system. Adapted with permission from Ref. 150. Copyright © 2019 Dove Medical Press Limited.
the tumor). Instead of encapsulation, another system used SPIONs coated in dimercaptosuccinic acid to direct the surface adsorption of IFN-γ. When exposed to an external magnetic field, SPIONs accumulated in the tumors of C57BL/6 mice and locally released the proinflammatory cytokine, resulting in reduced tumor size and increased macrophage and T cell infiltration, as shown in Fig. 6. Grifantini et al. further demonstrated the versatility of SPIONs with two SPION platforms for accumulation within a tumor. The monoclonal antibody mAb 198.3 (a drug that binds to FAT1, a cadherin that is broadly expressed in colorectal cancers) was embedded in erythro-magneto-hemagglutinin virosomes (erythrocytes entrapping SPIONs) or bound to SPIONs directly. Each of these platforms were directed to the tumor using an external magnet and caused reduced tumor mass, while not exhibiting any immunological or cytotoxic reactions.

PTT and photodynamic therapy are often used in conjunction with other therapeutic platforms that contain SPIONs. Recently, Zhang et al. described such a system using SPIONs for targeting of a tumor and use in PTT. While the SPIONs also functioned as MRI guides, theranostics will be discussed in Section 3. PEG polyphenols with SPION cores were loaded with an immuno-stimulant, R837 hydrochloride, and tumors were targeted via an external magnetic field, resulting in a median iron accumulation at least 3x greater than the untargeted equivalent. Photothermal ablation caused release of tumor-associated antigens, initiating a potent immune response enhanced by the release of R837 within the tumor. A core–shell helical microbot with surface-bound SPIONs was also designed for multiple uses of SPION functionality. Inspired by flagellar propulsion, the microbots efficiently locomoted to tumors under a rotating magnetic field for laser irradiation, causing both cargo release and PTT treatment. While DOX was the drug tested in this system, the combination of PTT and immunomodulatory drug release to tumors has been shown to enhance therapeutic potency in other systems and could therefore be applied to this drug carrier for efficacious use.

Another innovative system for the delivery of DOX used magnetics for both directing and releasing drugs via a two-component millirobot. The drug carrier, containing a permanent magnet, was directed through the body using an external magnetic field to a site near the tumor; due to its relatively large size compared to many traditional microbots, the device was constrained to large body canals such as the urethra, spine, and pancreatic duct. After reaching the target site, the second millirobot component—a piston also embedded with a permanent magnet—was directed to the same location by the same means. Once a critical distance between the carrier and piston were reached, attraction between the two components dominated the external field forces and the piston compressed a drug-loaded hydrogel within the carrier to initiate drug release. While DOX and an external field was used for validation of the system, the authors propose use of this millirobot for targeted delivery of a variety of therapeutic agents and clinical flexibility through the use of a coil system, an MRI scanner, or a permanent magnet for navigation. Another microbot locomotive system was presented by Steager et al. U-shaped microbots composed of SPIONs embedded within SU-8 photoresist exhibited a stick-slip motion in response to an external rocking field. These microbots demonstrated manipulation and transportation of cells and capture and transportation of chemically loaded poly (lactic-co-glycolic acid) (PLGA) microbeads, which could be used for containment and delivery of immunomodulatory drugs. A similar system of swimming helical microbots also demonstrated transport of microbeads. While no drug release was demonstrated for either of these systems, their application to immunotherapy would enable efficient targeting of tumor sites with sustained delivery from drug-loaded particles through the well-characterized diffusive or degradation-mediated release of cargo from PLGA.
precision of their motion, leaving the question of their potential improvement over traditional drug delivery systems unanswered. Similarly, particle-based targeting drug delivery systems often use treatment efficacy (e.g., shrinking tumor volume) as an indication of targeting success. Quantitative evaluations of accumulation and delivery efficiency compared to non-targeted delivery systems must be studied more thoroughly in future work.

2.2.2. Magnetically enhanced cellular uptake
While improved tumor accumulation is the most common goal of magnetic drug targeting systems for cancer therapy, external fields and implanted magnets can be used to improve immunotherapy by other methods. Several groups have demonstrated innovative uses of magnetic targeting moieties to increase the uptake of drugs or particles by immune cells, either in combination with passive ligand-receptor interactions or to impart magnetic targeting abilities to the cells. Single-cell targeting requires more precision and magnetic control than tumor targeting, for which microbots are well-suited; however, few of such systems have been developed for the purpose of releasing drugs for immunotherapy. One example by Mhanna et al.184 demonstrated micrometer precision of liposome-functionalized corkscrew microswimmers for delivery of calcine—a model water-soluble drug—to single cells via an external rotating field. However, more work should be performed in this area to fully utilize the benefits of microbots for precise single-cell drug targeting (e.g., the targeted delivery of RNA and CRISPR-Cas9 components to diseased cells).

Another system using magnetic particles without microscale robotic locomotion used 3-aminopropyltriethoxysilane-modified SPIONs to target delivery of synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), a TLR9 agonist185. CpG ODN internalization by inflammatory cells results in a significant increase in the production of chemokines and cytokines and the upregulation of costimulatory molecules on T cells186,187. However, CpG ODN treatment can elicit nonspecific inflammation, and it has a propensity for rapid enzymatic degradation, which may contribute to its weak clinical response184,185. While intratumoral injection of CpG ODNs addresses these issues to some extent, their retention within tumors remains low188. Therefore, a combination of magnetic targeting and receptor-ligand binding was developed to improve cellular uptake of CpG ODNs into DCs located within solid tumors via TLR9, which resulted in decreased tumor volume and weight in multiple tumor models as compared to free CpG ODNs, shown in Fig. 7185. Another group also used CpG ODNs as an immunomodulator, creating PEG-modified amine magnetic mesoporous silica nanoparticles with bound CpG ODNs for enhanced uptake by macrophages in vivo compared to free CpG ODNs184.

Targeting with SPIONs has also been employed to increase RNA transfection in DCs for cancer vaccines. Grippin et al.1,189 showed that SPIONs contained within RNA-loaded liposomes enabled a threefold higher transfection efficiency than electroporation when an external magnetic field was applied in vitro prior to vaccination. Efficiency increased with SPION concentration within the liposome, and this method also caused DC activation. Since a significant barrier to clinical translation of cancer vaccines is the lack of ability to predict patient responses to treatment, the authors also used MRI to track DC migration and found that increased trafficking to lymph nodes was a strong predictor of a potent antitumor response from the cancer vaccine. While combination diagnostic and therapeutic platforms are discussed in Section 3, SPIONs used in systems such as these are often successfully employed for tracking in addition to targeting.

2.3. Magnetically deformable biomaterials
In addition to guiding the transport of drug carriers, magnetic particles can be incorporated into biomaterials to facilitate drug release by magnetically induced structural changes. Polymer deformation and microbot actuation activated by magnetic stimuli are commonly used to enable temporal control over the release of encapsulated drugs in well-defined locations. However, the majority of these systems have been applied to release chemotherapeutic drugs. Despite being perhaps the least explored application of magnetic systems within immunotherapy, magnetically deformable biomaterials are a promising platform for immunotherapy due to their ability to minimize off-target effects and align the kinetics of drug release with the timescales of cellular activation.

2.3.1. Magnetically responsive drug carriers
The primary forms of magnetically deformable drug carriers are core—shell particles and ferrogels. The former has been described for targeted delivery. The latter, ferrogels, are magnetically functionalized polymers that have also been used extensively as delivery vehicles for a range of therapeutic cargo. Ferrogels are produced through dispersion of magnetic particles as a powder or fluid within a polymer matrix, most often formed into spherical particles for in vivo testing after validation in bulk form190. Methods for synthesizing ferrogel drug carriers and bulk ferrogels have been described elsewhere191–193. While ferrogels may also enable magnetic targeting, their primary use is for temporal control over drug release due to their ability to deform in response to a magnetic stimulus. Many of these magnetically responsive systems were developed over a decade ago; however, there have been surprisingly few attempts to apply these systems to immunotherapies, despite the critical need for improved control over the release of immunomodulatory drugs. Therefore, we will describe core—shell particle and ferrogel carriers as platforms that may be adapted to deliver immunomodulatory drugs in future work.

Gelatin-SPION sponge-like ferrogels are early examples of systems which could enable magnetic control over drug release. However, while stimuli-responsive polymers are often designed to activate drug release, Hu et al.192 demonstrated the retardation of release kinetics from their ferrosponges when a magnetic field was turned on. Interparticle attraction due to dipole formation in response to a magnetic field caused contraction of the polymer network and shrinkage of the diffusive pathways for their model drug, cobalamin. A similar study created poly (vinyl alcohol) (PVA) ferrogels by mixing various sizes of iron oxide particles into the polymer network, with the aim of pausing drug release with magnetic stimulation and resuming release when the field was removed. When a magnetic field was turned on, diffusion of the model drug—also cobalamin—through the pores was halted and replaced by drug accumulation at the interface. After removal of the field, the PVA ferrogel pores reopened and there was a burst release of the drug due to the prior accumulation. Strength of drug burst could be tuned through magnetic particle size as well as field conditions and duration, demonstrating promise for more applications in immunotherapy195.

A potentially more translational ferrogel was developed by Zhao et al.196, which used the same mechanism of magnetic particle attraction within an elastic matrix, but to initiate cargo
release instead of interrupting it (Fig. 8A–G). The group demonstrated release of mitoxantrone (a chemotherapeutic drug), plasmid DNA, stromal cell derived-factor (SDF)-1α (a chemo-kine), and fibroblasts from an alginate-SPION ferrogel. The ferrogel was synthesized with millimeter to centimeter macropores to enable repeatable contraction and relaxation in response to a cyclic magnetic field, allowing cargo to escape in a pulsatile manner due to local convection within the pores. This was an early example of remote, controlled release of immunomodulatory agents via magnetic deformation: SDF-1α as an immunomodulator and plasmid DNA as a cancer vaccine component. It may be possible for immune cells, such as DCs—which are similar in size to fibroblasts—to also be released from this system. Similar systems have since been developed, such as a scaled down macroporous ferrogel for implantation in mice using biphasic SPION incorporation, ferrogel microbeads with macropores for release of the protein ovalbumin, fluorescein isothiocyanate (FITC)-labeled dextran, and mitoxantrone (Fig. 8H–K), and a ferrogel for sequential release of two different payloads.

Another common mechanism of on-demand drug release from ferrogels is by increased polymer permeability for quicker drug diffusion through physical disruption of the gel matrix by magnetic particles. As has been shown in many systems, the magnetic field conditions have a significant impact on the magnetic particle response. As such, a high-frequency AMF was used to stimulate SPIONs bound to a chitosan matrix, resulting in bursts of variable magnitude of the model drug cobalamin. Another group used ferromagnetic gold-coated cobalt nanoparticles embedded within poly (sodium styrene sulfonate)/poly (allylamine hydrochloride) microcapsules, which rotated in response to an AMF to cause distortion of the polymer chains and allow higher permeability of model macromolecules.

Structural disruption is also a cause of drug release in magnetic core–shell particles. For example, Liu et al. prepared nanoparticles with SPION cores and a shell layer of thermosensitive Phoronic F127. The SPIONs heated when exposed to a high-frequency AMF, causing the polymer shell to experience a rapid volume decrease and expel encapsulated DOX. While this system may have potential to encase and deliver immunomodulatory drugs, the resting temperature of 15 °C necessary to stabilize this polymer is significantly below body temperature, and the release temperature of 35 °C would cause a state of permanent particle collapse in vivo; therefore, further optimization using a different polymer type with higher contraction temperature must be used for translation of this system, which could release drugs in response to MH or local increases in temperature within the tumor microenvironment. This has since been demonstrated with a magnetic particle coated with thermosensitive poly (N-isopropylacrylamide) (PNIPAM) for triggered drug release by MH.

Hu et al. also presented a core–shell particle with an atypical structure of a silica core with a single-crystalline iron oxide shell. This configuration of magnetic moiety and polymer created an impenetrable casing to prevent premature drug release from the core. Short (60 s) exposure to a high-frequency AMF...
induced vibration of the iron oxide shell and created nanoscale cracks, allowing triggered release of fluorophore as a model drug that was reversible by removing the AMF. Longer (5 min) exposure created more significant cracking for faster drug release, but this cracking was irreversible. This method in particular may be advantageous for immunotherapies due to the lack of heat generation that could denature certain payloads. While none of these systems for remotely controlled drug release have yet been applied to immunotherapies, a recent example using near-infrared PTT as the stimulus released immunomodulators via phase change of a polymer. Therefore, there is an opportunity to combine well-characterized magnetic core–shell particles with immunomodulatory drugs.

2.3.2. Magnetic actuation

New types of microactuators are being rapidly developed for drug delivery. Distinct from propulsive microbots described in Section 2.2, actuation in this section refers to a motion or shape-change caused by an external magnetic field or MRI scan. There are numerous examples of fundamental work being done to improve magnetically responsive soft robots and microactuators, which may lead to increased research in the area of drug release in the coming years. Additionally, actuation depends on mechanical changes in the system rather than temperature fluctuations to modulate polymer phases for drug release—a potential limitation for the application of thermally unstable drugs—and therefore, actuating materials have substantial versatility in the drug payload they deliver. However, despite significant interest in this area, there are few examples of magnetically responsive actuators that can release drugs on demand without the use of MH or ferrogel permeability.

Actuators can be used in high concentrations as a “swarm”, generally of nano- or microdevices, or used singularly as relatively large (millimeter-scale) devices. One such device was fabricated by Lee et al.; the model chemotherapeutic drug 5-fluorouracil (5-FU) was released in multiple doses over several weeks using a magnetically actuated small implantable device (SID), shown in Fig. 9. The SID held the drug in solution within a barrel component, containing inlet ports to a plunger and outlet ports to the body. Magnetic attraction between the plunger and barrel prevented drug release in a resting state, but could repeatedly be opened or closed, pulling drug solution out of the barrel and expelling it from the SID, to release multiple doses of drug in a highly controlled manner with the application and removal of an

Figure 8 Macroporous alginate-SPION ferrogels enable controlled release of payloads in response to a magnetic field. (A) Nano- and macroporous ferrogel compression data. (B) A nanoporous ferrogel cylinder compresses ~5% in response to a vertical ~38 A/m² magnetic field gradient. (C) A macroporous ferrogel cylinder compresses ~70% in response to the same magnetic field. (D) SEM images of a lyophilized macroporous gel in an undeformed and a deformed state (scale bar = 500 µm). (E) Cumulative mitoxantrone release from the macroporous ferrogel, subject to no magnetic stimulation (control) or to 2 min of magnetic stimulation every 30 min (experimental). (F) Cumulative plasmid DNA release from the macroporous ferrogel, subject to no magnetic stimulation (control) or to 2 min of magnetic stimulation every 2 h (experimental). (G) Cumulative SDF-1α release from macroporous ferrogel, subject to the same conditions described in F. Data show mean ± SD (n = 3–5). (A)–(G) Reproduced with permission from Ref. 196. Copyright © 2011 National Academy of Science of the United State of America. (H) Non-macroporous microbeads show negligible volume change when exposed to a 500 mT magnetic field. (I) Macroporous microbeads undergo significant collective volume change due to pore collapse when exposed to the same magnetic field. (J) Cumulative dextran release from the macroporous ferrogel microbeads, subject to no magnetic stimulation (control) or to 1 min of magnetic stimulation every 10 min (experimental). (K) Viability of 4T1 tumor cells after 15 min of incubation with empty microparticles (control) or particles containing mitoxantrone without magnetic stimulation (no actuation) or with magnetic stimulation (magnetic actuation). Data show mean ± SD, *P < 0.05. (H)–(K) Reproduced with permission from Ref. 201. Copyright © 2017 American Chemical Society.
external magnet. Dosage could be altered through the number of outlet ports, number of sequential actuations, and concentration of drug in solution. Pirmoradi et al. created another relatively large actuating device containing drug in solution in a cylindrical microreservoir (diameter = 6 mm, depth = 550 μm), sealed on top with a SPION-polydimethylsiloxane (PDMS) ferrogel membrane over a single microaperture. Magnetic actuation of the SPIONs within the ferrogel initiated membrane deformation, creating a force of up to 1.3 mN within the reservoir under a 200 mT magnetic field, and pushing drug solution out of the aperture. This method resulted in a 10-fold increase in model drug methylene blue release compared to a resting state.

There is significant opportunity for more work on magnetically actuating materials to release immunomodulatory drugs, which has enormous potential for safer, more efficacious administration of immunotherapies. A more fundamental understanding of the interactions between actuators and the immune system must be examined as well, as very little work has yet been done in this area. Further, the long-term fate and biocompatibility of non-biodegradable actuators must be examined before clinical translation. Yasa et al. found that structural locomotion parameters of magnetic helical microswimmers affected their immunogenicity; therefore, further studies should be conducted to understand the properties of other magnetic actuating and locomoting drug carriers that may elicit undesirable immune responses. Typically, biomaterials are designed to avoid recognition by immune cells, which may require tuning of structural and behavioral properties, in addition to material or surface coating. However, exploiting a proinflammatory response to actuating materials may also be a potential route of immunomodulation for cancer therapy as a type of material-based adjuvant.

2.4. Cellular activation and manipulation

Hyperthermia and drug targeting are the most commonly used strategies for magnetic immunotherapy, but there are other unique and innovative methods of modulating cancer immunity with magnetic fields that do not involve heat induction, magnetic targeting, or triggered drug release. Activation and manipulation of immune cells through binding or internalization of functionalized magnetic particles enables a distinct way to combat the immunosuppressive tumor microenvironment.

2.4.1. Surface binding of magnetic particles

Antitumoral immune responses can be induced through many different signaling pathways. For example, T cells recognize antigens presented by MHCs on the surfaces of APCs via binding to their T cell receptors (TCRs). Surface co-receptors CD4 or CD8 must also experience antigen-specific binding of an MHC domain, and nonspecific CD28 receptors must be bound by APC B7 costimulatory molecules to cause intracellular signaling for differentiation into either CD4T helper T cells or CD8T cytotoxic T cells and subsequent cell death.

Figure 9 Small implantable device (SID) with magnetic actuation for controlled drug release. SID with an 18 mm diameter and a 13 mm height, with a total volume of ~3.3 mL. (A) Schematic illustration of SID operation. External magnet is applied, moving the plunger upward, and sucking the drug solution into the barrel. Magnet is removed, releasing the plunger, and pushing the drug solution out of the outlet port. The port and barrel are oppositely polarized for tight attachment and prevention of drug release without an external magnet. (B) Cumulative release of model drug, 5-fluorouracil (5-FU) in PBS in vitro over 30 actuations of the SID with 1, 2, or 3 outlet ports (port diameter = 700 μm). (C) Long-term cumulative release of 5-FU from SID3, with either 1 or 3 actuations at each time point. (D) 5-FU concentration in blood after SID3 implantation in a subcutaneous pocket in the dorsal area of rats with several short-term actuations. Error bars = mean ± SD. Reproduced with permission from Ref. 215. Copyright © 2018 Elsevier.
clonal expansion. In addition to their important role in combating tumor growth, activated CD8+ T cells release cytokines for both autocrine and paracrine signaling to amplify the developing immune response218. While the immune system is extremely complex, there are also many potential routes for artificial modulation within these complex pathways; as such, functionalized magnetic particles have been used to imitate ligand binding to receptors for initiation of cellular signaling for increased stimulation of immune cells to better infiltrate and destroy immunosuppressive tumors.

Complex magnetic manipulations are often required for control of single-cell interactions such as artificial ligand binding229. However, Lee et al.219 demonstrated the use of Janus particles for T cell stimulation with single-cell precision that required only handheld magnets. A thin film of nickel coating one hemisphere of the particles enabled decoupled rotation and locomotion, while anti-CD3 antibody ligands bound to the other hemisphere imparted specific TCR complex binding and subsequent activation in vitro. Therefore, the Janus particles could turn on cytotoxic CD8+ T cells with high precision for enhanced tumor cell recognition and attack230. Furthermore, the ability to selectively target single cells with simplified magnetic stimuli may expedite clinical translation due to the lack of complex magnetic systems.

Two other studies examined immune cell activation for anti-tumor action through induced mast cell receptor and TCR clustering, which are in the same family of multi-chain immune recognition receptors221. Mast cell receptor clustering is caused naturally by IgE antibody–receptor complexes on the cell surface interacting with multivalent antigens, causing oligomerization and subsequent release of vesicle granules and histamines for the initiation of an antitumor proinflammatory signaling cascade222,223. Mannix et al.223 exploited this mechanism by first coating SPIONs with dinitrophenyl-lysine antigen ligands for binding to IgE-receptor complexes in pretreated mast cells. Superparamagnetism of the bound nanoparticles resulted in magnetic attraction via dipole formation when exposed to a magnetic field, causing particle aggregation and clustering of their attached receptors for induction of an proinflammatory response. While mast cell degranulation in response to allergen antigens is a significant contributor to anaphylaxis224, and other cell types may be better suited targets, this mechanism of induced receptor clustering is adaptable to many other cell types and receptor pathways225. Perica et al.225 illustrated this through the use of functionalized SPIONs for TCR clustering. Chimeric MHC-Ig dimers (for antigen presentation signaling) and anti-CD28 antibodies (for costimulatory molecule signaling), both of which are necessary to mount a T cell response, were bound to the SPIONs. Particle aggregation via magnetic field exposure and subsequent TCR clustering caused increased T cell expansion both in vitro and in vivo and resulted in reduced tumor growth in vivo226. More work can be done to cause manipulations of cellular processes via magnetic particle binding to receptors, as this mechanism has also been demonstrated in a wide range of biomedical applications such as tissue engineering and regenerative medicine227.

2.4.2. Internalization of magnetic particles

The interaction between unstimulated SPIONs and macrophages has been studied, indicating that SPION internalization may have a proinflammatory/anticancer effect; however, this response relies on nanoparticle material properties228,229. Despite cellular effects, the internalization of SPIONs can enable locomotion of immune cells using a magnetic field and is of rising interest for immunotherapy229,230. To this aim, Wu et al.231 developed polydopamine-coated SPIONs for internalization by NKs. It has been demonstrated that improved NK infiltration into tumors results in improved outcomes; however, NKs cannot passively infiltrate the tumor microenvironment through the EPR effect. Therefore, NKs were guided to tumors via targeting of the internalized magnetic particles for improved tumor infiltration to inhibit tumor growth without affecting NK viability. Another example of internalized magnetic particles are those aimed to target and retain T lymphocytes in secondary lymphoid organs for improving adoptive T cell therapies, which often have a low proportion of administered cells reach the site of interest. Since T cells are not as phagocytic as NKs, 3-aminopropyl-triethoxysilane-coated SPIONs often associated with T cell membranes instead of undergoing internalization. However, in vivo targeting to, and retention within, murine lymph nodes was successful for both internalized and surface-bound SPIONs using an external magnet232. This method could be expanded to deliver T cells to tumors as well. While this method of immune cell targeting may be applicable to a broad range of cell types, eventual lysosomal degradation of SPIONs in macrophages has been demonstrated and may be a limiting factor for other types of cells233.

Enhancing immune cell trafficking to target locations within the body can improve cellular activation or education. Furthermore, some groups have integrated a therapeutic agent to the system, using immune cells as drug carriers in addition to enhancing their cellular transport. Numerous examples of this strategy exist across immune cell types, such as internalization of magnetic nanoparticles loaded with antigen peptide by DCs for increased migration to the lymph nodes as a cancer vaccine234 and magnetically labeled macrophages carrying an oncolytic virus for infiltrating tumors to reduce tumor growth and metastasis235. Low toxicity and few reported effects on natural cell functioning make internalization of magnetic particles for cellular trafficking an exciting area of continued study236.

3. Theranostics

Theranostics describes technologies armed with both diagnostic and therapeutic capabilities. Magnetic particles are increasingly used for theranostics of cancer, as treatment often depends heavily on disease progression as well as tumor location, size, metastasis, and overall immune status237. While other reviews characterize theranostics with more detail238,239, the field cannot be overlooked in a discussion of magnetic innovations for drug delivery and cancer treatment. Magnetic particle imaging (MPI) and MRI are the primary methods used for imaging magnetic nanoparticles, and both have been used for tracking the biodistribution of immunomodulatory drugs. For instance, injected magnetic particles or drug carriers loaded with magnetic particles can be taken up by phagocytes and monitored as they traffic to tumors, lymph nodes, or other inflammatory sites240,241. These innovations are crucial for developing a deeper understanding of immunotherapies and increasing their clinical use; however, they are not the focus of theranostics. Most often, cancer theranostics takes the form of monitoring tumor progression during the course of targeted drug or MH treatment.

3.1. Magnetic resonance imaging

MRI is a noninvasive anatomical imaging technique that has been used clinically to study tissue for many years. In response to a
uniform magnetic field, MRI detects relaxation of endogenous cell nuclei magnetic moments. This method is commonly enhanced in clinical settings through intravenous injection of paramagnetic contrast agents, the most common of which is gadolinium-based. Protons from water molecules near the studied tissue undergo relaxation in response to magnetic field stimulation of the contrast agent, resulting in a stronger signal for detection. MRI agents move passively in the blood and are retained within tumors longer than healthy tissue due to the characteristic hypervascularity and perfusion of solid tumors. Therefore, for cancer diagnosis, substantial knowledge can be gleaned from scanning or actively monitoring the accumulation and clearance of contrast agents within tumors. While several SPION agents such as ferumoxyl, ferumoxide, and ferucarbotran have been approved for clinical trials, none are used clinically as MRI contrast agents; however, imparting more control over contrast agents, such as through active targeting, has been a recent area of interest. For this, SPIONs have been studied heavily, with the additional advantage of the ability to perform therapy in combination with MRI. Furthermore, patients with chronic kidney disease cannot safely excrete gadolinium, demonstrating the need for a larger pool of MRI contrast agents.

Several of the therapeutic mechanisms described so far are compatible with MRI, the most common of which is MH. Since MRI and MH are well-characterized, many recent studies have focused on the design of particle systems that are optimally functional for each, such as dual-ligand and magnetic tumor-targeting SPIONs, which were shown to increase tumor penetration and accumulation. Tetramethylammonium hydroxide-coated nickel ferrite particles with highly efficient heating and imaging contrast were demonstrated by Jung et al., with the ability to accurately quantify cell number in vivo. Beyond these initial examples, few other studies have demonstrated the use of MRI in theranostics. One such study by Jung et al. developed a unique system of exosomes isolated from human breast cancer cells and loaded with SPIONs and a poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor. Exosomes were preferentially taken up by hypoxic cells, which arise in tumors through outgrowing the vascular oxygen supply, which is often an indicator of poor prognosis. In response to the engineered exosomes, tumor growth was inhibited, and MRI was successfully demonstrated in vivo. Other studies include the binding of a ligand to magnetic—gold core—shell particles for active targeting and MPI and magnetic drug carriers for MPI loaded with DOX, both of which have potential for application to immunotherapies. Overall, MPI is an extremely promising area of theranostics with significant room for continued growth in MH and other immunotherapies, resolving many of the issues with off-target effects often associated with systemic immunotherapy. While preclinical MPI scanners for small animals are in use, continued work developing larger scanners for human use are necessary for future clinical adaptation.

4. Considerations for clinical translation

Nanomedicine is a steadily growing field with a range of products in development, in clinical trials, and in use commercially. However, despite the success of magnetic nanomaterials in vitro and in vivo, there remains a significant lag in their clinical translation. SPIONs are the most likely candidate for clinical adoption in immunotherapies, due to the FDA approval of several iron oxide nanoparticles for use in applications other than cancer treatment or imaging. MH is the most well-studied magnetic system in preclinical investigations, however, control over the biodistribution of administered drugs using magnetic targeting may be the most clinically relevant technology due to its ability to be used with approved drugs and applied to existing delivery systems for reduced off-target effects. However, the many improvements upon spatiotemporal control that systems such as active targeting and responsive biomaterials have made upon free drug delivery are not yet sufficient to eliminate concerns of magnetic particle toxicity due to functionalization, concentration, unintended bioactivity, or lack of efficacy due to cancerspecific and patient-specific responses.
While SPIONs are generally biocompatible102,271–274, toxicity and biodistribution of each new system must be evaluated prior to clinical testing due to their variable size, magnetic content, and surface coatings271,274. These parameters, which are often carefully tuned to elicit the desired magnetic response, make it difficult to establish universal toxicity limits. Common coating types include polymers, silicates, and biological or organic molecules, which can result in increased circulation time and the ability for controlled drug release176,178,272. SPIONs lacking surface coatings often experience aggregation, absorption of plasma proteins, and rapid clearance from the bloodstream273,275. Coated SPIONs, therefore, are generally preferred for \textit{in vivo} applications272. However, the use of coated SPIONs or magnetic moieties embedded within larger polymer vehicles (\textit{e.g.}, ferrogels) complicates the ability to analyze systemic toxicity. Additional obstacles for using coated or embedded SPIONs include toxicity from residual catalysts used for covalent drug binding272, reduced saturation magnetization by non-magnetic materials276, and the potential for coating or vehicle materials to break down less easily than SPIONs. Several studies have shown that SPIONs can safely degrade in the lysosomes of macrophages273 and that iron can be taken up by hemoglobin277,278 or excreted through the endogenous iron metabolic pathway279, depending on their surface coatings102; this is in contrast to the limited biodegradability and elimination of other common drug delivery systems such as liposomes or micelles272.

Despite the complications associated with evaluating the safety of magnetic materials on a universal basis, toxicity studies have been performed on several types of SPIONs. In hamsters, the median lethal dose ranged from 300 to 600 mg$_{Fe}$/kg body weight (BW) for uncoated SPIONs and 2000–6000 mg$_{Fe}$/kg BW for dextran-coated SPIONs280; however, the median lethal dose may no longer be the best measure of toxicity, which is discussed elsewhere281. Non-cytotoxicity has also been demonstrated for uncoated SPIONs at concentrations under 100 mg/mL282. While issues such as cell cycle arrest and autophagy-mediated cytotoxicity have been observed in response to SPION treatment at high concentrations274,283, there is a lack of toxicity at the quantities required for most therapeutic applications. Certain SPIONs in clinical trials for use as MRI agents have prompted dosage limits from 0.6 to 4.0 mg$_{Fe}$/kg BW, with half-life values from 0.5 to 30 h102, which varied greatly with size and coating type. Biodistribution studies have shown that untargeted SPIONs primarily accumulate in the liver and spleen after intravenous injection prior to organ clearance and degradation273,284. While the short-term toxicity of iron oxides and long-term degradation and clearance is well-studied, other long-term effects such as iron imbalance or cell cycle regulation warrant further investigation102,117.

Theranostics may serve as another route for magnetic materials to reach the clinic as imaging has played an increasingly important role in clinical oncology in recent years57. Gaining approval of SPIONs for MH and imaging that have been previously approved

![Figure 10](image-url)
for other uses, such as anemia treatment, may accelerate this process. Similarly, combination therapy of established drugs and MH may allow for integration of magnetic materials into clinical use. Application of existing clinical technologies in magnetic therapies, such as MRI scanners, may help to accelerate clinical adoption of magnetic materials due to ease of use. While the advancements of MPI for MH and imaging may be more clinically beneficial than MRI due to higher precision and reduced off-target effects, adoption of both the magnetic stimulus and material may be difficult due to the extent of testing necessary and the cost of implementation. While there is much work to be done to move magnetic technologies into broader clinical use for immunotherapy, the potential for improving patient outcomes is clear.

5. Conclusions and future perspectives

Immunotherapy has strikingly positive outcomes for a subset of patients, but many patients or cancer types have little responsiveness to certain treatments\(^8\). Combating immunosuppression by tumors and amplifying anti-tumor immunity while avoiding immune overstimulation or the generation of a cytokine storm are among the most critical challenges in immunotherapy\(^285\). As such, immunotherapy necessitates precise administration and spatiotemporal control to generate potent antitumoral responses without off-target effects. The intersection of magnetics and immunotherapy is uniquely positioned to fill this gap through the precision, versatility, and biocompatibility of magnetic materials. As the field of immunotherapy continues to come of age and our understanding of new clinical targets and treatment pathways increases, there is significant opportunity to apply existing magnetic systems to novel immunomodulatory drugs in place of chemotherapeutic drugs. Additionally, the use of SPIONs and other magnetic particles provides the opportunity for exploitation of multifunctionality through simultaneous spatial targeting, timed release, MH treatment, and imaging with MRI or MPI.

While the potential of magnetic systems to improve cancer immunotherapies is immense, there remain significant barriers both to fundamental advancements and clinical adoption of these techniques. In particular, poor stability of some immunomodulatory drugs may limit their incorporation into delivery vehicles due to the use of harsh solvents during fabrication or thermal instability. Furthermore, the toxicity and clearance of magnetic particles vary greatly with properties such as size, coating type, and magnetization, which prevents universal dosing standards and necessitates case-by-case decisions. Use of predicate technologies and methodologies (e.g., approved immunotherapies, biocompatible polymer coatings, commonly used magnetic stimuli) is the most promising approach for expediting the introduction of magnetic materials into the clinic.

While many studies involving magnetic systems use tumor burden as a standalone metric for success, increased attention should be given to considerations such as biodistribution and toxicity of magnetic materials, metabolism, immune response, as well as composition and phenotype of the tumor immune microenvironment. Greater understanding of these properties will provide metrics that are currently lacking for comparison against traditional techniques, such as radiotherapy and chemotherapy. In order to continue developing these systems for clinical applications, there must be compelling data that can report both their improvement upon currently used techniques and also demonstrate thorough characterization of the materials. Then, informed decisions on treatment can be made specifically for individual patient and tumor types. By addressing these gaps in knowledge over time, research in magnetic drug delivery systems hold promise for the advancement of cancer immunotherapy.

Author contributions

Nicole B. Day and C. Wyatt Shields IV conceived the manuscript. Nicole B. Day and William C. Wixson wrote the manuscript. Nicole B. Day, William C. Wixson, and C. Wyatt Shields IV revised the manuscript. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

1. Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. *OncoImmunology* 2017;6. e1290036.
2. Sui X, Jin T, Liu T, Wu S, Wu Y, Tang Z, et al. Tumor immune microenvironments (TIMES): responsive nanoplatforms for anti-tumor immunotherapy. *Front Chem* 2020;8.804.
3. Beck R, Rodriguez-Abreu D, Robinson AG, Hui R, Csőszí T, Fülöp A, et al. Pemtrizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. *N Engl J Med* 2016;375:1823–33.
4. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. *Nat Rev Immunol* 2020;20:651–68.
5. Sarfaty M, Hall PS, Chan KK, Virik K, Leshno M, Gordon N, et al. Cost-effectiveness of pemtrizumab in second-line advanced bladder cancer. *Eur Urol* 2018;74:57–62.
6. Verma V, Sprave T, Haque W, Simone II CB, Chang JY, Welsh JW, et al. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. *J Immunother Cancer* 2018;6.128.
7. Tartari F, Santoni M, Buratini L, Mazzanti P, Onofri A, Berardi R. Economic sustainability of anti-PD-1 agents nivolumab and pemtrizumab in cancer patients: recent insights and future challenges. *Cancer Treat Rev* 2016;48:20–4.
8. Sharma P, Allison JP. The future of immune checkpoint therapy. *Science* 2015;348:56–61.
9. Remon J, Besse B, Soria JC. Successes and failures: what did we learn from recent first-line treatment immunotherapy trials in nonsmall cell lung cancer?. *BMC Med* 2017;15:55.
10. Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. *Adv Healthc Mater* 2021;10:2000845.
11. El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. *ACS Nano* 2018;12:10636–64.
12. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med* 2010;363:711–23.
13. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. *N Engl J Med* 2012;366:2455–65.
14. Liu J, Zhang R, Xu ZP. Nanoparticle-based nanomedicines to promote cancer immunotherapy: recent advances and future directions. *Small* 2019;15:1900262.
15. Goldberg MS. Improving cancer immunotherapy through nanotechnology. *Nat Rev Cancer* 2019;19:587–602.
16. Gamboa L, Zamat AH, Kwong GA. Synthetic immunity by remote control. *Theranostics* 2020;10:3652–67.
17. Ouupicky D, Bišht HS, Manickam DS, Zhou QH. Stimulus-controlled delivery of drugs and genes. *Exp Opin Drug Deliv* 2005;2:653–65.
18. Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. *Adv Drug Deliv Rev* 2020;158:36–62.
19. Kim Y, Choi H, Shin JE, Bae G, Thangam R, Kang H. Remote active control of nanoengineered materials for dynamic nanobiomedical engineering. *View* 2020;1:20200029.
20. Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. *J Nanomater* 2012;2012:614094.
21. Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. *Nat Nanotechnol* 2008;3:139–43.
22. Kozisnik B, Bohorquez AC, Dobson J, Rinaldi C. Magnetic fluid hyperthermia: advances, challenges, and opportunity. *Int J Hyperthermia* 2013;29:706–14.
23. Marincek B. Diagnostic improvement in MRI of gynaecological neoplasms. *J Bev Rel 1996*;79:13–7.
24. El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH. Magnetic nanoparticle-based drug and gene delivery systems for the treatment of pulmonary diseases. *Nanomedicine* 2017;12:387–402.
25. El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. *Nanomedicine* 2018;13:953–71.
26. Siepenn G, Moros M, Pérez-Hernández M, Monge M, Gutiérrez L, Fratila RM, et al. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. *ACS Appl Mater Interfaces* 2018;10:4548–60.
27. Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, et al. Chitosan magnetic nanoparticles for drug delivery systems. *Crit Rev Biotechnol* 2017;37:492–509.
28. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, et al. The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. *Biomaterials* 2007;28:2946–58.
29. Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. *Nanomedicine* 2012;8 Suppl 1:S57–50.
30. Ding B, Zheng P, Ma P, Lin J. Manganese oxide nanomaterials: synthesis, properties, and therapeutic applications. *Adv Mater* 2020;32:1905823.
31. Dulinska-Liewka J, Lazarczuk A, Habubiec P, Szafranski O, Karnas K, Krawicz A. Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. *Materials* 2019;12:617.
32. Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. In: Petrosko SH, Day ES, editors. *Biomedical nanotechnology*. New York: Humana Press; 2017. p. 47–71.
33. Nikitin A, Khramtsov M, Garanina A, Mogilnikov P, Sviridenkova N, Shchetinin I, et al. Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. *J Magn Magn Mater* 2019;469:447–9.
34. Lemal P, Balog S, Geers C, Taladrez-Blanco P, Palumbo A, Hirt AM, et al. Heating behavior of magnetic iron oxide nanoparticles at clinically relevant concentration. *J Magn Magn Mater* 2019;474:637–42.
35. Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. *Nat Nanotechnol* 2011;6:675–82.
36. Viseoh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. *Adv Drug Deliv Rev* 2010;62:284–304.
37. Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. *Nanoscale Res Let* 2019;14:188.
Magnetic systems

59. Saed M, Ren W, Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci 2018;6:708–25.

60. Hildebrandt B, Wust P, Ahlers O, Dieing A, Kerner T, Felix R, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43:33–56.

61. Spirou SV, Basini M, Lascialfari A, Sangregorio C, Innocenti C. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials 2018;8:401.

62. Hurwitz MD. Hyperthermia and immunotherapy: clinical opportunities. Int J Hypertherm 2019;36:4–9.

63. Curley SA. Radiofrequency ablation of malignant liver tumors. Oncol 2001;6:14–23.

64. Brace C. Thermal tumor ablation in clinical use. IEEE Pulse 2011;2:28–38.

65. Dudek AM, Garg AD, Krysko DV, De Ruyscher D, Agostinis P. Curley SA. Radiofrequency ablation of malignant liver tumors. Int J Hyperthermia 2005;21:707–18.

66. Galluzzi L, Buquè A, Kepp O, Zitvogel L, Kroemer G. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013;24:319–33.

67. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, et al. Immunogenic cancer cell death. Curr Opin Immunol 2012;24:579–85.

68. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, et al. Heat shock proteins and therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci 2018;6:708–25.

69. Haron BV, Corder AM, Collins RJ, Gobe GC, Allen J, Allan DJ, et al. Cell death induced in a murine mastocytoma by 42°C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 1990;58:845–58.

70. Li Z, Deng J, Sun J, Ma Y. Hyperthermia targeting the tumor microenvironment facilitates immune checkpoint inhibitors. Front Immunol 2020;11:595207.

71. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Ann Rev Immunol 2002;20:395–425.

72. Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetic nanoparticles. Cancer Immunol Immunother 2003;52:80–8.

73. Suzue K, Zhou X, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A 1997;94:13146–51.

74. Aesa E, Rehli M, Kablingu E, Boch JA, Barc O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002;277:15028–34.

75. Valabas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 2002;277:15107–12.

76. Multhoff G, Botzler C, Jellen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 1997;22:4541–50.

77. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 2005;116:624–33.

78. Saeed M, Ren W, Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci 2018;6:708–25.

79. Subjeck JR, Sciandri JJ, Chao CF, Johnson RJ. Heat shock proteins and biological response to hyperthermia. Br J Cancer Suppl 1982:5:127–31.

80. Subjeck JR, Sciandri JJ, Johnson RJ. Heat shock proteins and thermodotolerance: a comparison of induction kinetics. Br J Radiol 1982;55:579–84.

81. Osberg JR, Repasky EA. Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function. Cancer Immunol Immunother 2006;55:292–8.

82. Mace TA, Zhou L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hypertherm 2012;28:9–18.

83. Zheng H, Benjamin JJ, Basu S, Li Z. Heat shock factor 1-dependent activation of dendritic cells by heat shock: implication for the uncoupling of heat-mediated immunoregulation from the heat shock response. Eur J Immunol 2003;33:1754–62.

84. Pritchard MT, Li Z, Repasky EA. Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J Leukoc Biol 2005;78:630–8.

85. Kalber T, Ordidge KL, Southern P, Loebinger MR, Kyrtatos PG, Pankhurst QA, et al. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomed 2016;11:1973–83.

86. Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 2003;94:308–13.

87. Cornel AM, Mismatch L, Nierkens S. MHC Class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers 2020;12:1760.

88. Osberg JR, Dayane BE, Yuan M, Ollazoglou E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol 2007;82:1322–31.

89. Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol 2011;186:2219–28.

90. Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen T, et al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-Specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res 2005;11:7554–63.

91. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012;1:18396.

92. Yang Y, Chen Y, Zhang F, Zhao Q, Zhong H. Increased anti-tumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hypertherm 2015;31:498–506.

93. King HW, Michael MZ, Gleable JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 2012;12:421.

94. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 2005;280:23349–55.

95. Guo D, Chen Y, Wang S, Yu L, Shen Y, Zhong H, et al. Exosomes from heat-stressed tumor cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 2018;154:132–43.

96. Zhong H, Yang Y, Ma S, Xiu F, Cai Z, Zhao H, et al. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hypertherm 2017;33:604–11.

97. Meyer RE, Braun RD, Rosner GL, Dewhirst MW. Local 42°C hyperthermia improves vascular conductance of the R3230Ac rat mammary adenocarcinoma during sodium nitroprusside infusion. Radiat Res 2000;154:196–201.

98. Song CW, Shakil A, Griffin RJ, Okajima K. Improvement of tumor oxygenation status by mild temperature hyperthermia alone or in combination with carbogen. Semin Oncol 1997;24:626–32.

99. Kung G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 2001;61:3027–32.
100. Toraya-Brown S, Sheen MR, Zhang P, Chen L, Baird JR, Demidenko E, et al. Local hyperthermia treatment of tumors induces CD8\(^+\) T cell-mediated resistance against distal and secondary tumors. *Nanomedicine* 2014;10:1273–85.

101. Kolosnjaji-Tabi J, Di Corato R, Larigue L, Marangoz I, Guardia P, Silva AK, et al. Heat-generating iron oxide nanocubes: subtle “destructorators” of the tumoral microenvironment. *ACS Nano* 2014; 8:4268–83.

102. Chung EJ, Leon L, Rinaldi C. Nanoparticles for biomedical applications. Amsterdam: Elsevier; 2019.

103. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. *Nat Rev Drug Discov* 2019;18:175–96.

104. Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. *Adv Drug Deliv Rev* 2011;63:789–808.

105. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of magnetic nanoparticles for hyperthermia and thermal therapy. *Science* 1978;202:1290–3.

106. Weiss RB. The anthracyclines: will we ever find a better doxorubicin?. *Semin Oncol* 1992;19:670–86.

107. Chen KJ, Chaung EY, Wey SP, Lin KJ, Cheng F, Lin CC, et al. Temperature controlled camptothecin release from biodegradable magnetic PLGA microspheres. *J Magn Magn Mater* 2019;474:355–64.

108. N’Guyen TTT, Duong HTT, Lu YJ, Chen HA, Hsu HL, Hung JT, Anilkumar TS, et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. *Angew Chem* 2013;125:14402–6.

109. Hordiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang CY, et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. *Angew Chem* 2013;125:14402–6.

110. Hordiansyah A, Yang MC, Liu TY, Kuo CY, Huang LY, Chan TY. Hydrophobic drug-loaded pegylated magnetic nanoparticles for drug-controlled release. *Nanoscale Res Lett* 2017;12:355.

111. Alawak M, Mahmoud G, Duyviyah AA, Dase L, Pinnapireddy SP, Engelhardt K, et al. Magnetic resonance activatable thermo-sensitive liposomes for controlled doxorubicin delivery. *Mater Sci Eng C* 2020;115:111116.

112. Zhang Y, Li N, Suh H, Irvine DJ. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. *Nat Commun* 2018;9:6.

113. Zhang QZ, Song SC. Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. *Biomaterals* 2017;132:16–27.

114. Moy AJ, Tunnell JW. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. *Adv Drug Deliv Rev* 2017;114:175–83.

115. Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). *Nano Rev* 2010;1:5358.

116. Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, et al. Magnetic properties of Zn-substituted MnFe\(_2\)O\(_4\) nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. *Chem Mater* 2010; 22:5420–9.

117. Bischof JC, He X. Thermal stability of proteins. *Ann N Y Acad Sci* 2005;1066:12–33.

118. Hoopes PJ, Mazur CM, Osterberg B, Song A, Gladstone DJ, Steinmetz NF, et al. Effect of intra-tumoral magnetic nanoparticle hyperthermia and viral nanoparticle immunogenicity on primary and metastatic cancer. In: *Proceedings of SPIE 10066, Energy-based treatment of tissue and assessment IX*. San Francisco: SPIE; 2017. 100660G.

119. Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-\(\alpha\) gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. *Cancer Gene Ther* 2001; 8:649–54.

120. Anjum A, Fleischmann Jr WR. Effect of hyperthermia on the anti-tumor actions of interferons. *J Biol Regul Homeost Agents* 1992;6:75–86.

121. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, et al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T lymphoma. *J Biosci Bioeng* 2005; 100:112–5.

122. Woot P, Hildebrandt B, Sreenivas R, Gau B, Gellermann J, Riess R, et al. Hyperthermia in combined treatment of cancer. *Lancet Oncol* 2002;3:487–97.

123. Babincová M, Altanerova V, Altaner C, Bergemann C, Babinec P. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. *IEEE Trans NanoBioscience* 2008;7:15–9.

124. Qu Y, Li J, Ren H, Leng J, Lin C, Shi D. Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. *Nanoscale* 2014;6:12408–13.

125. Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, et al. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic anti-tumor therapy. *Nano Lett* 2019;19:4287–96.

126. Tian Z, Yu X, Ruan Z, Zhu M, Zhu Y, Hanagata N. Magnetic mesoporous silica nanoparticles coated with thermo-responsive copolymers for potential chemotherapeutic and magnetic hyperthermia therapy. *Microporous Mesoporous Mater* 2018;256:1–9.

127. Estreich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. *Molecules* 2018;23:1567.

128. Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with Anti-CTLA-4 therapy to inhibit cancer metastasis. *Adv Mater* 2014;26:8154–62.

129. Almeida JP, Drezek RA, Foster AE. Controlling melanoma at local and systemic levels: is a combination of ablative therapy and immunotherapy the way forward?. *Immunother* 2014;6:109–11.

130. Penn J, Hu P, Guo Y, Hao J, Ni D, Xu Y, et al. Combined Magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. *ACS Nano* 2020;14:1033–44.

131. Wang Z, Zhang F, Shao D, Chang Z, Wang L, Hu H, et al. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. *Adv Sci* 2019;6:1901690.

132. Breto F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, et al. Hadron therapy, magnetic nanoparticles and hyperthermia: a promising combined tool for pancreatic cancer treatment. *Nanomaterials* 2020;10:1919.

133. Mai BT, Balakrishnan PB, Barthel MJ, Piccardi F, Niculaes D, et al. Thermoresponsive iron oxide nanocubes for an effective clinical translation of magnetic hyperthermia and heat-mediated chemotherapy. *ACS Appl Mater Interfaces* 2019;11:5727–39.

134. Shields IV, Wang LL, Evans MA, Mitragotri S. Materials for immunotherapy. *Adv Mater* 2020;32:1901633.

135. Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tucek J, Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. *Chem Rev* 2016;116:5338–431.

136. Owen J, Pankhurst Q, Stride E. Magnetic targeting and ultrasound mediated drug delivery: benefits, limitations and combination. *Int J Hypertherm* 2012;28:362–73.
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1:16071.

Vangjeljegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Exper Opin Drug Deliv 2019;16:69–78.

Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audej J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016;1:16014.

Bourguignon LY, Shiina M, Li JJ. Hyaluronan–CD44 interaction promotes oncogenic signaling, microrna functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv Cancer Res 2014;123:255–75.

Zhang H, Liu XL, Zhang YF, Gao F, Li GL, He Y, et al. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci 2018;61:400–14.

Zeng H, Wen S, Zhang Y, Sun Z. Organoisilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CpG immunotherapy in vitro and in vivo. PLoS One 2015;10: e0140265.

Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer 2006;6:583–92.

Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. JNCI J Natl Cancer Inst 2007;99:1441–54.

Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 2012;8:147–66.

Huang YS, Lu YJ, Chen JP. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. J Magn Magn Mater 2017;427:34–40.

Yang X, Wen Y, Wu A, Xu M, Amano T, Zheng L, et al. Polyglycerol mediated covalent construction of magnetic mesoporous silica nanohybrid with aqueous dispersibility for drug delivery. Mater Sci Eng C 2017;70:517–25.

Albiniali KE, Zagho MM, Deng Y, Elzataby AA. A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems. Int J Nanomed 2019;14:1707–23.

Giri S, Trewn BG, Stellmaker MP, Lin VS. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem 2005;117:5166–72.

Sunguwan S, Yin Z, Huang X. Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 2015;7:17535–44.

Diller E, Giltinan J, Sitti M. Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 2013;32:614–31.

Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M. Translational prospects of untethered medical microrobots. Prog Biomed Eng 2019;1:012002.

Mahoney AW, Sarrazin JC, Bamberg E, Abbott JJ. Velocity control with gravity compensation for magnetic helical microswimmers. Adv Robot 2011;25:1007–28.

Garcia-Gradilla V, Orozco J, Sattayamsititsath S, Soto F, Kuratal F, Pourazaray A, et al. Functionalized ultrasounds-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 2013;7:9232–40.

Dreyfus R, Baudry J, Roper ML, Fémigier M, Stone HA, Bibette J. Microscopic artificial swimmers. Nature 2005;437:862–5.

Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 2009;9:2243–5.

Gao W, Sattayamsititsath S, Maneesh KM, Wehrs D, Wang J. Magnetically powered flexible metal nanowire motors. J Am Chem Soc 2010;132:14403–5.

Liu E, Zhang M, Cui H, Gong JB, Huang YZ, Wang J, et al. Tat-functionalized Ag-F@O, nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B 2018;8:956–68.
183. Gasparini G, Holdich RG, Kosvintsev SR. PLGA particle production for water-soluble drug encapsulation: degradation and release behaviour. Colloids Surf B Biointerfaces 2010;75:557–64.

184. Mhanna R, Qiu F, Zhang L, Ding Y, Sugihara K, Zenobi-Wong M, et al. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 2014;10:1953–7.

185. Zhang X, Wu F, Men K, Huang R, Zhou B, Zhang R, et al. Modified Fe3O4 magnetic nanoparticle delivery of CpG inhibits tumor growth and spontaneous pulmonary metastases to enhance immunotherapy. Nanoscale Res Lett 2018;13:240.

186. Maurer T, Pourmarares C, Aguilar-Pimentel JA, Thalgott M, Horn T, Heck M, et al. Immunostimulatory CpG-DNA and PSA-peptide vaccination elicits profound cytotoxic T cell responses. Urol Oncol 2013;31:1395–401.

187. Soema PC, Rosendahl Haber SK, Willems GJ, Jiskoot W, Kersten GF, Amorij JP. Influenza T-cell epitope-loaded virosomes adjuvanted with CpG as a potential influenza vaccine. Pharm Res 2015;32:1505–15.

187. Lou Y, Liu C, Lizée G, Peng W, Xu C, Ye Y, et al. Antitumor activity mediated by CpG: the route of administration is critical. J Immunother 2011;34:279–88.

188. Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano 2019;13:13884–98.

189. Reséndiz-Hernández PJ, Rodríguez-Fernández OS, García-Cerda LA. Synthesis of poly(vinyl alcohol)-magnetite ferrogel obtained by freezing-thawing technique. J Magn Magn Mater 2008;320:673–6.

190. Liao J, Huang H. Review on magnetic natural polymer constructed hydrogels as vehicles for drug delivery. Biomacromolecules 2020;21:2574–94.

191. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 2013;23:660–72.

192. Ketebu O, Cumpson P, Yu E. The effect of temperature and agitation on polyethyleneimine adsorption on iron oxide magnetic nanoparticles in the synthesis of iron oxide-Au core–shell nanoparticles. Adv Sci Eng Med 2014;6:531–7.

193. Hu SH, Liu TY, Liu DM, Chen SY. Nano-ferrospomes for controlled drug release. J Control Release 2007;121:181–9.

194. Liu TY, Hu SH, Liu TY, Liu DM, Chen SY. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 2006;22:5974–8.

195. Zhao X, Kim J, Cezar CA, Huesbch N, Lee K, Bouhadir K, et al. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A 2011;108:67–72.

196. Dunussi-Joannopoulos K, Zuberek G, Runyon K, Hawley RG, Wong A, Erickson J, et al. Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 (SDF-1): local secretion of SDF-1 at the tumor site serves as T-cell chemotactrant and mediates T-cell-dependent antitumor responses. Blood 2002;100:1551–8.

197. Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccines Immunother 2014;10:3153–64.

198. Dumortier H, van Mierlo GJ, Egan D, van Ewijk W, Toes RE, Offerenga R, et al. Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion. Offringa R, et al. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Nat Nanotechnol 2018;13:335–41.

199. Dunussi-Joannopoulos K, Zuberek G, Runyon K, Hawley RG, Wong A, Erickson J, et al. Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 (SDF-1): local secretion of SDF-1 at the tumor site serves as T-cell chemotactrant and mediates T-cell-dependent antitumor responses. Blood 2002;100:1551–8.

200. Cezar CA, Kennedy SM, Mehta M, Weaver JC, Gu L, Vandenburgh H, et al. Biphase ferrogels for triggered drug and cell delivery. Adv Healthc Mater 2014;3:1869–76.

201. Shin BY, Cha BG, Jeong JH, Kim J. Injectable macroporous ferrogel microbeads with a high structural stability for magnetically actuated drug delivery. ACS Appl Mater Interfaces 2017;9:31372–80.

202. Kennedy S, Rocco C, Déleris A, Spoerri P, Cezar C, Weaver J, et al. Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials 2018;161:179–89.

203. Hu SH, Liu TY, Liu DM, Chen SY. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 2007;40:6786–8.

204. Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CS, Lvov YM. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 2005;21:2042–50.

205. Liu TY, Hu SH, Liu KH, Shaus RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanoparticles by a high-frequency magnetic field. Langmuir 2008;24:13306–11.

206. Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, et al. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 2009;9:3561–7.

207. Hu SH, Chen SY, Liu DM, Hsiao CS. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater 2008;20:2690–5.

208. Seth A, Gholami Derami H, Gupta P, Wang Z, Rathi P, Gupta R, et al. Polydopamine-mesoporous silica core–shell nanoparticles for combined photothermal immunotherapy. ACS Appl Mater Interfaces 2020;12:42499–510.

209. Tang J, Tong Z, Xia Y, Liu M, Lv Z, Gao Y, et al. Super tough magnetic hydrogels for remotely triggered shape morphing. J Mater Chem B 2018;6:2713–22.

210. Eqtami A, Felfoul O, Dupont PE. MRI-powered closed-loop control for multiple magnetic capsules. In: Proceedings of 2014 IEEE/RSJ international conference on intelligent robots and systems. Chicago: IEEE; 2014. p. 3536–42.

211. Yim S, Sitti M. Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE Trans Robot 2012;28:1198–202.

212. Golovin YI, Gribanovskiy SL, Golovin DY. Klyachko NL, Majouga AG, Master AM, et al. Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 2015;219:43–60.

213. Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanocomposites and nanocapsules for remote controlled therapies. J Control Release 2015;219:76–94.

214. Xu T, Yu J, Yan X, Choi H, Zhang L. Magnetic actuation based motion control for microrobots: an overview. Micromachines 2015;6:1346–64.

215. Lee SH, Kim BH, Park CG, Lee C, Lim BY, Choy YB. Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery. J Control Release 2018;286:224–30.

216. Pirmoradi FN, Jackson JK, Burt HM, Chiao M. A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing. Lab Chip 2011;11:3072–80.

217. Yasa IC, Ceylan H, Bozuyuk U, Wild AM, Sitti M. Elucidating the interaction dynamics between microswimmer body and immune system for targeted drug delivery. Lab Chip 2012;12:7384–9.

218. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. J Immunol 2008;180:4291–300.

219. Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nanotechnol 2008;18:276008.

220. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol 2017;140:335–48.

221. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Ann Rev Immunol 2009;27:591–619.

222. Perica K, Tu A, Richter B, Bieler JG, Eddin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles.
enhances T cell activation and stimulates antitumor activity. ACS Nano 2014;8:2252–60.

Reichel D, Tripathi M, Perez JM. Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nanotheranostics 2019;3:66–88.

Zanganah S, Hutter G, Spitzer R, Lenkov O, Mahnoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 2016;11:986–94.

Riegler J, Wells JA, Kyrtatos PG, Price AN, Pankhurst QA, Lythgoe MF. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials 2010;31:5366–71.

Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 2004;15:351–60.

Wu L, Zhang F, Wei Z, Li X, Zhao H, Lv H, et al. Magnetic delivery of Fe3O4/polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater Sci 2018;6:2714–25.

Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnol 2019;17:14.

Weissleder R, Stark DD, Engeland BL, Bacon BR, Compton CC, White DL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 1989;152:167–73.

Jin H, Qian Y, Dai Y, Qiao S, Huang C, Lu L, et al. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced cancer immunotherapy. Theranostics 2016;6:2000–14.

Muthana M, Kennerley AJ, Hughes R, Fagnano E, Richardson J, Paul M, et al. Directing cell therapy to anatomical target sites in vivo with magnetic resonance targeting. Nat Commun 2015;6:8009.

Jang ES, Shin JH, Ren G, Park MJ, Cheng K, Chen X, et al. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomater 2012;33:5584–92.

Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015;5:1249–63.

Elzoghby AO, Hemasa AL, Freag MS. Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release 2016;243:30–22.

Datta NR, Krishnan S, Speiser DE, Neufeld E, Kuster N, Bodis S, et al. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?. Cancer Treat Rev 2016;50:217–27.

Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, et al. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res 2016;104:1285–96.

Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 2017;12:73–87.

Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 2011;29:323–32.

Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 2014;19:471–81.

Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetic microrobots for imaging-guided therapy. Sci Robot 2017;2. eaqg1155.

Yang R, Sarkar S, Yong VW, Dunn JF. In vivo MR imaging of tumor-associated macrophages: the next frontier in cancer imaging. Magn Reson Insights 2018;11:1–8.

Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 Years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 2016;33:1–28.

Wahns J, Gule EM, Rodriguez-Rodriguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 2019;119:957–1057.

Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013;229:116–26.

Chen L, Wu Y, Wu H, Li J, Xie J, Zang F, et al. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoparticles to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomater 2019;86:491–504.

Um et al. Coşkun M, Pineder F, Berti D, Güngüney H. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. J Colloid Interface Sci 2019;550:199–209.

Esmaili E, Khalili M, Sohi AN, Hosseinizadeh S, Taheri B, Soleimani M. Dengrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J Cell Physiol 2019;234:12615–24.

Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett 2019;19:63618–26.

Guo Y, Ren Y, Wang Z, Cheng J, Cao Y, Yang C, et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/ MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials 2019;219:119370.

Kubovcikova M, Koneracka M, Srbak O, Molcan M, Zavisova V, Antal I, et al. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J Magn Mater 2019;475:316–26.

Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009;5:1862–8.

Das M, Mishra D, Dhak P, Gupta S, Maiti TK, Basak A, et al. Biofunctionalized, phosphate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 2009;5:2883–93.

Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics 2017;7:7689–704.

Kirsch B, Weizeneker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435:1214–7.

Hensley D, Tay ZW, Dhavalikar R, Zheng B, Goodwill P, Rinaldi C, et al. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol 2017;62:3483–500.

Chandrasedharan P, Tay ZW, Hensley D, Zhou XY, Fung BK, Colson C, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 2020;10:2965–81.

Hensley D, Tay ZW, Dhavalikar R, Goodwill P, Zheng B, Rinaldi C, et al. A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging. In: Proceedings of SPIE 10066, energy-based treatment of tissue and assessment IX. San Francisco: SPIE; 2017.

Wells J, Tawneys S, Sekar A, Ludwigs A, Paysen H, Kosch O, et al. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy. Nanoscale 2020;12:18342–55.

Murase K, Aoki M, Banura N, Nishimoto K, Mimura A, Kuboyabu T, et al. Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia. Open J Med Imag 2015;5:85–99.
264. Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhaivalikar R, Zhou YY, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. *ACS Nano* 2018;12:3699–713.

265. Bauer LM, Sinu SF, Griswold MA, Samia AC. High-performance iron oxide nanoparticles for magnetic particle imaging—guided hyperthermia (hMPI). *Nanoscale* 2016;8:12162–9.

266. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. *J Nucl Med* 2008;49(Suppl 2):129S–48S.

267. Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. *Biomaterials* 2018;177:139–48.

268. Tomitaka A, Ota S, Nishimoto K, Arami H, Takemura Y, Nair M. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core—shell nanoparticles. *Nanoscale* 2019;11:6489–96.

269. Fuller EG, Scheutz GM, Jimenez A, Lewis P, Savliwala S, Liu S, et al. Theranostic nanocarriers combining high drug loading and magnetic particle imaging. *Int J Pharm* 2019;572:118796.

270. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. *Pharm Res* 2016;33:2373–87.

271. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. *Mater Today* 2016;19:157–68.

272. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. *Expert Opin Drug Deliv* 2014;11:1449–70.

273. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. *Adv Drug Deliv Rev* 1995;16:321–34.

274. Mahmoudi M, Simchi A, Vali H, Imani M, Shokrgozar MA, Azadmanesh K, et al. Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts. *Adv Eng Mater* 2009;11:B243–50.

275. Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, et al. PEG-mediated synthesis of highly dispersible multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. *ACS Nano* 2010;4:2402–10.

276. Gómez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. *J Colloid Interface Sci* 2001;240:40–7.

277. Cook JD, Hersko C, Finch CA. Storage iron kinetics. 1. Measurement of the cellular distribution of 59 Fe in rat liver. *J Lab Clin Med* 1972;80:613–23.

278. Hersko C, Cook JD, Finch DA. Storage iron kinetics. 3. Study of desferrioxamine action by selective radioiron labels of RE and parenchymal cells. *J Lab Clin Med* 1973;81:876–86.

279. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nuremberg P, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. *Radiology* 2003;228:777–88.

280. Wada S, Yue L, Tazawa K, Furuta I, Nagae H, Takemori S, et al. New local hyperthermia using dextran magnetite complex (DM) for oral cavity: experimental study in normal hamster tongue. *Oral Dis* 2001;7:192–5.

281. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. *Chem Soc Rev* 2015;44:8576–607.

282. Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. *Chem Res Toxicol* 2008;21:1726–32.

283. Mahmoudi M, Simchi A, Imani M. Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. *J Phys Chem C* 2009;113:9573–80.

284. Yu Q, Xiong XQ, Zhao L, Xu TT, Bi H, Fu R, et al. Bio-distribution and toxicity assessment of superparamagnetic iron oxide nanoparticles in vitro and in vivo. *Curr Med Sci* 2018;38:1096–102.

285. Jiang Q, Wang K, Zhang X, Ouyang B, Liu H, Pang Z, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. *Small* 2020;16:2001704.