Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Poor Sleep quality and health-related quality of life impact in adolescents with and without chronic immunosuppressive conditions during COVID-19 quarantine

Alberto C. Helito, Livia Lindoso, Sofia M. Sieczkowska, Camilla Astley, Ligia B. Queiroz, Natalia Rose, Claudia Renata P. Santos, Thalis Bolzan, Rita Maria I.A. Peralta, Ruth R. Franco, Louise Cominato, Rosa Maria R. Pereira, Unis Tannuri, Lucia Maria A. Campos, Benito Lourenço, Ricardo K. Toma, Karina Medeiros, Andréia Watanabe, Patricia Moreno Grangeiro, Sylvia C. Farhat, Caio B. Casella, Guilherme V. Polanczyk, Bruno Gualano, Clovis A. Silva.* HC-FMUSP

Adolescent COVID-19 Study Group

Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR.

Helito AC, Lindoso L, Sieczkowska SM, Astley C, Queiroz LB, Rose N, et al. Poor Sleep quality and health-related quality of life impact in adolescents with and without chronic immunosuppressive conditions during COVID-19 quarantine. Clinics (São Paulo). 2021;76:e3501

*Corresponding author. E-mail: clovis.silva@hc.fm.usp.br

OBJECTIVE: To assess the possible factors that influence sleep quality in adolescents with and without chronic immunosuppressive conditions quarantined during the coronavirus disease 2019 (COVID-19) pandemic.

METHODS: This cross-sectional study included 305 adolescents with chronic immunocompromised conditions and 82 healthy adolescents. Online surveys were completed, which included questions on socio-demographic data and self-rated healthcare routine during COVID-19 quarantine and the following validated questionnaires: the Pittsburgh Sleep Quality Index (PSQI), Pediatric Quality of Life Inventory 4.0 (PedsQL4.0), and Pediatric Outcome Data Collection Instrument (PODCI).

RESULTS: The median current age (14 (10-18) vs. 15 (10-18) years, p=0.847) and frequency of female sex (62% vs. 58%, p=0.571) were similar in adolescents with chronic conditions compared with healthy adolescents. The frequency of poor sleep quality was similar in both groups (38% vs. 48%, p=0.118). Logistic regression analysis, including both healthy adolescents and adolescents with chronic conditions (n=387), demonstrated that self-reported increase in screen time (odds ratio [OR] 3.0, 95% confidence interval [CI] 1.3-6.8; p=0.008) and intrafamilial violence report (OR 2.1, 95% CI 1.2-3.5; p=0.008) were independently associated with poor sleep quality in these adolescents. However, the PODCI global function score was associated with a lower OR for poor sleep quality (OR 0.97; 95% CI 0.94-0.99; p=0.001). Further logistic regression, including only adolescents with chronic conditions (n=305), demonstrated that self-reported increase in screen time (OR 3.1; 95% CI 1.4-6.8; p=0.006) and intrafamilial violence report (OR 2.0, 95% CI 1.2-3.4; p=0.011) remained independently associated with poor quality of sleep, whereas a lower PODCI global function score was associated with a lower OR for sleep quality (OR 0.96; 95% CI 0.94-0.98; p<0.001).

CONCLUSION: Self-reported increases in screen time and intrafamilial violence report impacted sleep quality in both healthy adolescents and those with chronic conditions. Decreased health-related quality of life was observed in adolescents with poor sleep quality.

KEYWORDS: COVID-19; Sleep; Adolescent; Chronic Condition; Health-Related Quality of Life.

INTRODUCTION

The new coronavirus disease (COVID-19) emerged in China at the end of 2019 and precipitated a global health crisis (1,2). Moreover, the policies adopted by governments to reduce the spread of this disease, such as social distancing, face mask use, stay-at-home orders, and closure of schools and leisure activities, resulted in abrupt changes in daily routines and lifestyles (2,3).

These changes might affect sleep patterns and physical and mental health and wellbeing (4). Indeed, during this
pandemic, adolescents are experiencing more flexible awakening time, reduced exposure to sunlight, prolonged day nap times, increased exposure to “blue light,” and disruption of melatonin production (5). Recent studies have reported that an increase in screen time (6), mental health disorders (5), and intrafamilial violence (7) may contribute to poor sleep quality in pediatric and adult populations during the COVID-19 pandemic.

Adolescents with chronic immunosuppressive conditions have complex diseases, requiring coordination of multiple specialties, humanized care, and different treatment approaches (8). The impact on physical health, sleep quality, and health-related quality of life (HRQL) parameters may affect these adolescents during this emergent crisis (9). However, to the best of our knowledge, the concomitant analysis of validated tools of sleep quality and HRQL was not systematically assessed in this vulnerable group quarantined during the COVID-19 pandemic.

Therefore, this study aimed to assess sleep quality parameters in adolescents with chronic immunosuppressive conditions and healthy adolescents during the COVID-19 quarantine period. We also evaluated the possible association of poor-quality sleep with demographic data, information about COVID-19 and HRQL parameters in adolescents with chronic immunosuppressive conditions.

MATERIALS AND METHODS

From July to October 2020, a cross-sectional study using an online survey was performed with 704 adolescents aged 10-18 years during the COVID-19 pandemic in Brazil. Of these, 555 adolescents had chronic immunocompromised conditions and were followed at our tertiary and referral hospital (10,11); 250 adolescents were excluded because they did not answer the online survey (n=152) or because of incomplete survey data (n=98). Thus, 305 adolescents with chronic immunocompromised conditions comprised the study group.

The following chronic immunocompromised conditions were included in this study: rheumatic conditions (juvenile idiopathic arthritis, juvenile systemic lupus erythematosus, and juvenile dermatomyositis), kidney conditions (glomerulonephropathies, chronic kidney disease stages 4 and 5, and kidney transplant), and gastrointestinal and liver conditions (eosinophilic esophagitis, inflammatory bowel disease, celiac disease, autoimmune hepatitis, and liver transplant). The diagnosis of each disease was established according to specific classification criteria (12-20).

After approval of parents/legal guardians, 149 healthy adolescents were recruited by advertisement on radio, television, daily newspapers, Facebook, and Instagram. Of these healthy adolescents, 67 were excluded because of refusal to participate in the present study (n=23) and because of incomplete survey data (n=44). Therefore, 82 healthy adolescents were included in the control group. None of them reported a previous diagnosis of mental health disorders before the COVID-19 pandemic or other acute or chronic conditions.

The first contact with all participants was made by phone calls for a brief conversation. Psychological and psychiatric support was offered to adolescents with chronic immunosuppressed diseases and healthy adolescents, particularly those who reported any signs or symptoms of mental health issues.

To create and to distribute the survey, we used the Research Electronic Data Capture (REDCap®) application. The online survey was answered using cellphones, computers, or tablets. At least six emails or WhatsApp messages were forwarded to increase the response frequency. This study was approved by the Brazilian National Committee for Research Ethics (CONEP number: 4.081.961). All parents/legal guardians and adolescents provided informed consent and assent at the beginning of the online survey.

The online survey comprised four parts, predominantly based on information from the previous month. The estimated time for responses was approximately 45 min. The first part of the survey contained questions about sociodemographic data, school, healthcare routine, general information about COVID-19, impact of quarantine, and physical health during the COVID-19 pandemic (Appendix) for which the response formats were multiple choice, dichotomous (yes and no), or ordinal based on the visual analogue scale (VAS) (ranging from 0-10). Previous diagnoses of mental disorders before the COVID-19 pandemic were also systematically recorded.

The second part of the survey was composed of the Pittsburgh Sleep Quality Index (PSQI) (21), which comprises 19 questions regarding sleep quality and disorders. This instrument evaluates seven sleep categories: sleep latency, sleep duration, sleep efficiency, sleep disturbance, sleep medication use, overall sleep quality, and daytime dysfunction because of sleepiness. Each score varied from 0 to 3 for each element, and the PSQI total score ranged from 0 to 21. A total score >5 points was defined as poor sleep quality and ≤5 points as good sleep quality (18).

The third part of the survey was a self-report generic version of the Pediatric Quality of Life Inventory 4.0 (PedsQL) (22), which measured HRQL in four multidimensional scales: physical, emotional, social, and school functioning. The survey contains 23 items that are scored on a five-point scale. The sum of the two summary scores (physical health summary score and psychosocial health summary score) generates the total PedsQL score. The answers are given on a five-point scale ranging from 0 (“almost always”) to 100 (“never”), with higher scores indicating better HRQL.

The fourth part of the survey was a self-report version of the Pediatric Outcome Data Collection Instrument (PODCI) (23), a generic questionnaire with 83 questions developed to evaluate HRQL. It is divided into five subscales (upper extremity and physical functioning, transfer and basic mobility, sports and physical functioning, pain/comfort, and happiness) and a PODCI global function score, each ranging from 0 to 100. Lower scores indicated a lower HRQL.

Statistical analyses

The sample size of 387 adolescents provided a power of 80% to find differences greater than 31% of poor sleep quality among adolescents with chronic immunocompromised conditions and healthy controls (GraphPad StatMate 1.01, GraphPad Software, Inc., CA, USA). Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS) for Windows 24.0 (IBM Corp., Armonk, NY, USA). The results were described as numbers and frequencies for categorical variables and as median, minimum, and maximum values or means ± standard deviations for continuous variables. The scores that had a non-normal
distribution were compared using the Mann-Whitney test. Differences in categorical variables were evaluated using Fisher’s exact test or Pearson’s chi-square test, as indicated. Spearman rank correlation coefficient was used for analyzing the correlation between the total PSQI score and PedsQL, PODCI, and VAS (physical activity [PA] scale, disease activity/complication, fear of immunosuppressive use, and fear of COVID-19). Logistic regression analysis models (forward stepwise) were performed using poor sleep quality (fear of COVID-19). Logistic regression analysis models were similar in adolescents with chronic conditions compared with healthy adolescents (Table 1). Adolescents with the following diagnoses of chronic immunocompromising conditions were included: juvenile idiopathic arthritis, n=81 (27%); juvenile systemic lupus erythematosus, n=41 (13%); juvenile dermatomyositis, n=23 (7%); kidney conditions, n=26 (9%); eosinophilic esophagitis, n=21 (7%); inflammatory bowel disease, n=35 (12%); celiac disease, n=11 (4%); autoimmune hepatitis, n=23 (7%); and liver transplant, n=44 (14%).

Demographic data and the PSQI, PedsQL, and PODCI scores reported by adolescents with chronic immunosuppressive conditions versus those reported by healthy adolescents during the COVID-19 quarantine are shown in Table 1. The frequencies of poor sleep quality were similar in both groups (38% vs. 48%, p=0.118), whereas the means of sleep latency (1.11 ± 1.02 vs. 1.37 ± 1.05, p=0.043) and day dysfunction because of sleepiness (0.71 ± 0.78 vs. 1.01 ± 0.87, p=0.003) according to PSQI score were significantly lower in adolescents with chronic immunosuppressive conditions than in healthy controls. Adolescents with chronic conditions had a higher median happiness scale by the PODCI than healthy controls [85 (5-100) vs. 75 (0-100), p=0.025]. Additional evaluations of poor sleep quality, the PSQI total score, the PedsQL total scale score and its subscales, and the PODCI global function score and its subscales were similar in both groups (all p >0.05, Table 1).

Univariate analysis, including both adolescents with chronic conditions and healthy controls (n=387), showed that self-reported increases in screen time during the pandemic [odds ratio (OR) 2.6; 95% confidence interval (CI) 1.3-5.5; p=0.01], intrafamilial violence report (OR 2.0; 95% CI 1.2-3.3; p=0.01), and female sex (OR 1.7; 95% CI 1.1-2.5; p=0.02) increased odds of poor sleep quality in these adolescents. However, the PODCI global function score was associated with lower odds of poor sleep quality (OR, 0.96; 95% CI, 0.94-0.99; p=0.001).

Further comparisons between adolescents with chronic immunosuppressive conditions and poor sleep quality (total PSQI score ≥5) compared with those with good sleep quality (total PSQI score ≤5) during the COVID-19 quarantine showed that the frequency of adolescents in public school was significantly higher in the former group (79% vs. 68%, p=0.036). Moreover, adolescents with chronic

Table 1 - Demographic data and the Pittsburgh Sleep Quality Index (PSQI), Pediatric Quality of Life Inventory 4.0 (PedsQL), and Pediatric Outcome Data Collection Instrument (PODCI) scores reported by adolescents with preexisting chronic conditions versus those reported by healthy adolescents during the coronavirus disease 2019 (COVID-19) quarantine.

Domains	Adolescents with preexisting chronic conditions (n=305)	Healthy Adolescents (n=82)	p
Demographic data			
Current age	14 (10-18)	15 (10-18)	0.847
Female sex	189 (62)	48 (58)	0.571
PSQI score	5.16 ± 3.34	5.87 ± 3.49	0.092
Poor sleep quality, total score > 5	116 (38)	39 (48)	0.118
Sleep latency (0-3)	1.11 ± 1.02	1.37 ± 1.05	0.043
Sleep duration (0-3)	0.17 ± 0.60	0.27 ± 0.60	0.202
Sleep efficiency (0-3)	0.52 ± 0.94	0.68 ± 0.92	0.155
Sleep disturbances (0-3)	1.08 ± 0.50	1.15 ± 0.57	0.272
Sleep medication use (0-3)	0.70 ± 1.20	0.46 ± 1.00	0.102
Overall sleep quality (0-3)	0.87 ± 0.80	0.93 ± 0.81	0.582
Day dysfunction because of sleepiness (0-3)	0.71 ± 0.78	1.01 ± 0.87	0.003
PedsQL score			
Total scale score (0-100)	73 (21-100)	70 (41-100)	0.415
Physical health summary score (0-100)	78 (6-100)	81 (38-100)	0.385
Psychosocial health summary (0-100)	70 (13-100)	70 (25-100)	0.786
Emotional functioning (0-100)	60 (0-100)	60 (10-100)	0.411
Social functioning (0-100)	85 (10-100)	85 (20-100)	0.894
School functioning (0-100)	65 (10-100)	65 (0-100)	0.157
PODCI score			
Global function score (0-100)	93 (32-100)	94 (64-100)	0.627
Upper extremity and physical functioning (0-100)	100 (46-100)	100 (75-100)	0.627
Transfer and basic mobility (0-100)	100 (5-100)	100 (50-100)	0.499
Sports and physical functioning (0-100)	88 (3-100)	88 (33-100)	0.115
Pain/comfort (0-100)	93 (8-100)	92.5 (44-100)	0.621
Happiness (0-100)	85 (5-100)	75 (0-100)	0.025

Results are presented as medians (minimum-maximum values), means ± standard deviations, and n (%).
immunosuppressive conditions and poor sleep quality reported higher frequencies of increase in screen time (92% vs. 83%, \(p=0.023\)), intrafamilial violence (28% vs. 15%, \(p=0.009\)), and higher median fear of immunosuppressive medication use (5.0 (0-10) vs. 3.8 (0-10), \(p=0.034\)) during the COVID-19 pandemic (Table 2).

The median PedsQL, PODCI, and their subscales were significantly lower in adolescents with chronic immunosuppressive conditions and poor sleep quality than in those with good sleep quality during the COVID-19 quarantine (\(p<0.05\)), except for transfer and basic mobility of the PODCI scores (\(p=0.055\), Table 3).

Further univariate analysis, including only adolescents with chronic immunosuppressive conditions (\(n=305\)), revealed that self-reported increases in screen time during the pandemic [OR 2.4; 95% CI 1.1-5.3; \(p=0.03\)], intrafamilial violence (OR 2.1; 95% CI 1.2-3.7; \(p=0.01\)), public school attendance (OR 1.8; 95% CI 1.1-3.1; \(p=0.04\)), and fear of immunosuppression use (OR 1.0; 95% CI 1.01-1.15; \(p=0.02\)) had increased odds of poor sleep quality in these adolescents.
DISCUSSION

Our study was the first to evaluate adolescents with chronic immunosuppressive conditions during the COVID-19 pandemic and the temporal relationship between various dimensions of sleep quality using PSQI and HRQL instruments.

One strength of this study was the use of self-report validated instruments with high reliability to measure sleep quality and HRQL. In addition, the current report evaluated a vulnerable and high-risk subgroup of adolescents who had more severe restrictions during the COVID-19 quarantine because of their chronic immunosuppressed conditions. Furthermore, the inclusion of a healthy control group adjusted for age and sex allowed a more precise analysis of the influence of chronic immunosuppressive conditions on sleep quality, as demographic features may impact sleep problems differently (5,6).

According to the PSQI results, approximately 40% of adolescents with chronic immunocompromised conditions and healthy adolescents had poor sleep quality during the COVID-19 pandemic. Healthy adolescents demonstrated higher sleep latency and daytime sleepiness than chronic immunosuppressed patients.

The COVID-19 pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to numerous health problems and decreased HRQL parameters among the general public worldwide (5,6,24,25). Our study demonstrated that the COVID-19 pandemic equally impacted HRQL in adolescents with chronic conditions and healthy adolescents. However, adolescents with chronic immunosuppressive conditions reported higher happiness scores by the PODCI than their healthy peers. Adolescents with chronic illnesses may have more coping mechanisms, since they learn how to deal with suffering and pain from a young age.
Sleep and HRQL in quarantined adolescents
Helito AC et al.

Physical activity is crucial to healthy behaviors and can influence sleep quality. A study by Bueno et al. demonstrated that a decrease in health-related physical activity per week using the VAS. Similarly, López-Bueno et al. showed that an increase in screen time during the pandemic was associated with a decline in sleep quality in children (6). Additionally, a study from Chile reported that an increase in screen time was associated with a decline in sleep quality in children (6). Moreover, Nagata et al. showed that an increase in screen time may decrease physical activity in adolescents with obesity (28).

Of note, to the best of our knowledge, our study is the first to find an association between poor sleep quality and self-reported increase in screen time in adolescents with various chronic immunosuppressive conditions. This result may be related to the fact that more time expended in front of screens could lead adolescents to have less time to sleep (29). In addition, adolescents with chronic conditions and poor sleep quality attended predominantly public schools, and the absence of school activities during this cross-sectional study may have contributed to insomnia and sleep issues in this population.

During the COVID-19 pandemic period, studies have shown that increased sedentary behavior can influence sleep patterns in pediatric populations. Our study found an inverted association between the PSQI total score and increased physical activity per week using the VAS. Similarly, López-Bueno et al. demonstrated that a decrease in health-related behaviors leads to a reduction in weekly minutes of physical activity (30). Moreover, a study conducted in Verona revealed that physical activity was reduced by 2.5h per week during quarantine (31). Physical activity is crucial to healthy living and noticeably decreases the risk of systemic inflammation (32). Consequently, physical activity has a potential role in immune functions that are helpful in reducing the risk of infectious diseases from the perspective of the COVID-19 outbreak. Therefore, it is important to implement policies that encourage the practice of indoor exercise.

The COVID-19 pandemic has collateral effects ranging beyond those of viral infections. Importantly, intrafamilial violence reported by healthy adolescents and those with chronic immunosuppressive conditions impacted their quality of sleep. In fact, violence against adolescents is a serious public health, human rights, and social issue, with numerous traumatic consequences. However, it has rarely been reported in adolescents with multiple complex conditions. A recent systematic review studied the most important negative effects of school closings and social distancing during the COVID-19 pandemic, and suspected domestic violence was observed with an increase in domestic accidents and head trauma (33). Further qualitative studies, including ethical considerations for adolescents with private structured interviews, will be performed for this vulnerable population to clarify these findings and to assess the spectrum of violence, including physical/emotional aggression, negligence, and sexual abuse. If it is necessary for their own protection, adolescents experiencing violence will be promptly referred to the responsible legal sectors, such as the Protective Council and Child and Youth Court.

This study has some limitations. Our data came from only one tertiary center, which could have led to a selection bias. The cross-sectional design limited our ability to ascertain the causal relationship between the COVID-19 pandemic and changes in HRQL and sleep quality. During the COVID-19 pandemic, adolescents were overloaded with online activity, which could have affected the ratio of responses to the questionnaires. We only have data from one period of the COVID-19 pandemic, making it impossible to objectively compare with previous baseline situations. We did not assess generic or specific mental health tools, especially validated instruments concerning anxiety, depression, and coping/resilience. The online survey is another limitation of this study, because of the self-report nature of the questionnaires, at only a single instance. There is a risk of recall bias. We also analyzed only one question regarding self-reported increase in screen time during the pandemic and did not assess the

Table 5	Final models of logistic regression analyses to evaluate independent variables associated with poor sleep quality.			
Independent variables	Both adolescents with preexisting chronic conditions and healthy controls	Odds ratio	95% CI	p
Self-reported increase in screen time during the pandemic	3.0	1.3-6.8	0.008	
Intrafamilial violence report during the pandemic	2.1	1.2-3.5	0.008	
PODCI global function score	0.97	0.94-0.99	0.001	
Independent variables	Solely adolescents with preexisting chronic conditions	Odds ratio	95% CI	p
Self-reported increase in screen time during the pandemic	3.1	1.4-6.8	0.006	
Intrafamilial violence report during the pandemic	2.0	1.2-3.4	0.011	
PODCI global function score	0.96	0.94-0.98	<0.001	

CI: confidence interval.
All of the authors approved the final draft of the manuscript, approved its submission to the journal, and can take responsibility for it in its entirety. All authors contributed substantially to the conception and design of the study and in the analysis and interpretation of data. All authors reviewed the report critically and approved the final version of the manuscript.

ACKNOWLEDGMENTS

We are grateful to Ulisses Doria-Filho for helping to conduct the psychological assessment. Funding: This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 304984/2020-5 to CAS), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/03756-4 to CAS) and by Núcleo de Apoio à Pesquisa “Saúde da Criança e do Adolescente” da USP (NAP-GrupA) to CAS.

AUTHOR CONTRIBUTIONS

All of the authors approved the final draft of the manuscript, approved its submission to the journal, and can take responsibility for it in its entirety. All authors contributed substantially to the conception and design of the study and in the analysis and interpretation of data. All authors reviewed the report critically and approved the final version of the manuscript.

REFERENCES

1. Robillard R, Dion K, Pennestri MH, Solomova E, Lee E, Saad M, et al. Profiles of sleep changes during the COVID-19 pandemic: Demographic, behavioural and psychological factors. J Sleep Res. 2021;30(1):e13231. https://doi.org/10.1111/1365-2869.13231

2. McCracken LM, Badinlou F, Buhrman M, Brocki KC. Psychological impact of COVID-19 in the Swedish population: Depression, anxiety, and insomnia and their associations to risk and vulnerability factors. Eur Psychiatry. 2020;63(1):e681. https://doi.org/10.1016/j.eurpsy.2020.01.010

3. Stanton R, Torsney E, Kvalese S, William SL, Alley SJ, Thwaite TL, et al. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int J Environ Res Public Health. 2020;17(11):4055. https://doi.org/10.3390/ijerph17114055

4. Stern M, Wagner MH, Thompson LA. Current and COVID-19 Challenges With Childhood and Adolescent Sleep. JAMA Pediatr. 2020;174(11):1124. https://doi.org/10.1001/jamapediatrics.2020.2784

5. Zhou SJ, Wang LL, Yang R, Yang XJ, Zhang LG, Guo ZC, et al. Sleep problems among Chinese adolescents and young adults during the coronavirus-2019 pandemic. Sleep Med. 2020;74:39-47. https://doi.org/10.1016/j.sleep.2020.06.001

6. Aguilar-Farias N, Toledo-Vargas M, Miranda-Marquez S, Cortinez-O’Ryan A, Cristo-Montero C, Rodríguez-Rodríguez F, et al. Sociodemographic Predictors of Changes in Physical Activity, Screen Time, and Sleep among Toddlers and Preschoolers in Chile during the COVID-19 Pandemic. Int J Environ Res Public Health. 2020;18(1):176. https://doi.org/10.3390/ijerph18010176

7. Yadav SR, Kumar R, Kumar A, Ish P, Gupta N, Chakrabarti S. Sleepless in COVID-19: how not to lose sleep in lockdowns. Monaldi Arch Chest Dis. 2020;90(2). https://doi.org/10.4018/monaldi.2020.1364

8. Alveno RA, Miranda CV, Passone CG, Watego AR, Hojo ES, Farhat SC, et al. Pediatric chronic disease: an outpatient clinic: a study in a Latin American University Hospital. J Pediatr (Rio J). 2018;94(5):539-45. https://doi.org/10.1016/j.jped.2017.07.014

9. Lavorato SS, Helito AC, Barros VPMFR, Ruff DP, Saccani LP, Martiniano LF, et al. Assistance and health care provided to adolescents with chronic and immunosuppressive conditions in a tertiary university hospital during the COVID-19 pandemic. CLINICS (Sao Paulo). 2021;76:e2688. https://doi.org/10.6061/clinics/2021/e2688

10. Passone CGB, Grisi SJ, Farhat SC, Mannan TD, Pastorino AC, Alveno RA, et al. Complexity of pediatric chronic disease: cross-sectional study with 16,237 patients followed by multiple medical specialties. Rev Paul Pediatr. 2019;38:e2018101. https://doi.org/10.1590/1984-0462/2020/38/2018101

11. Ramos GF, Ribeiro VP, Mercadante MP, Ribeiro MP, Delgado AF, Farhat SC, et al. Mortality in adolescents and young adults with chronic diseases during 16 years: a study in a Latin American tertiary hospital. J Pediatr (Rio J). 2015;91(6):667-73. https://doi.org/10.1016/j.jped.2015.09.006

12. Levine A, Koletzkos S, Turner D, Escher JC, Cucchiara S, de Ridder L, et al. ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014;58(6):685-90. https://doi.org/10.1097/MPG.0000000000000297

13. Husby S, Koletzko S, Korponay-Szabó I, Kupper K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosis and Management of Coeliac Disease in Children and Adults. J Pediatr Gastroenterol Nutr. 2020;70(3):141-56. https://doi.org/10.1097/MPG.0000000000002497

14. Lucendo AJ, Molina-Infiante J, Arias Á, van Aarnm U, Bredenoord AJ, Bussum C, et al. Guidelines on eosinophilic esophagitis: evidence-based statements and recommendations for diagnosis and management in children and adults. United European Gastroenterol J. 2017;5(3):335-58. https://doi.org/10.1002/ueg.56892

15. Mieli-Vergani G, Vergani D, Baumann U, Czubkowski P, Debray D, Descof et al. Diagnosis and Management of Pediatric Autoimmune Liver Disease: ESPGHAN Hepatology Committee Position Statement. J Pediatr Gastroenterol Nutr. 2018;66(2):345-60. https://doi.org/10.1097/MPG.0000000000002180

16. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. https://doi.org/10.1002/1529-0131(199709)40:9<1725::AID-ANR2>3.0.CO;2-A

17. Bohan A, Peter J. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344-7. https://doi.org/10.1056/NEJM197502112920706

18. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390-2.

19. Sethi S, Haas M, Markowitz GS, D’Agati VD, Remnke HG, Jennette JC, et al. Mayo Clinic/Renal Pathology Society Consensus Report on Pathologic Classification, Diagnosis, and Reporting of GN. J Am Soc Nephrol. 2016;27(5):1278-87. https://doi.org/10.1681/ASN.2015060612

20. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Kidney International Supplements. 2013;3(1):1-150.

21. Bertolazi AN, Fagondes SC, Hoff LS, Dartora EG, Miozzo IC, de Barba ME, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 2011;12(1):76-5. https://doi.org/10.1016/j.sleep.2010.04.020

22. Klatchoian DA, Len CA, Terrier MT, Silva M, Itamoto C, Ciconelli RM, et al. Quality of life of children and adolescents from São Paulo: reliability and validity of the Brazilian version of the Pediatric Quality of Life Inventory version 4.0 Generic Core Scales. J Pediatr (Rio J). 2008;84(4):308-15. https://doi.org/10.1590/S0046-36172008000400005

23. de Monte FA, Ferreira MN, Petrusha KC, Almeida NC, Gomes JB, Mariano MH, et al. Validation of the Brazilian version of the Pediatric Outcomes Data Collection Instrument: a cross-sectional evaluation in children and adolescents with juvenile idiopathic arthritis. BMC Med. 2013;11:177. https://doi.org/10.1186/1741-7015-11-177

24. Zhang Y, Ma ZF. Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. J Int Environ Res Public Health. 2020;17(7):2381. https://doi.org/10.3390/ijerph17072381

25. Milejowich HM, Lukowski AF. Sleep and Mental Health in Undergraduate Students with Generally Healthy Sleep Habits. PLoS One. 2016;11(6): e0156372. https://doi.org/10.1371/journal.pone.0156372

26. Conquy MR, Desrin AP, Rodrigué EM. Coping with chronic illness in childhood and adolescence. Annu Rev Clin Psychol. 2012;8:455-80. https://doi.org/10.1146/annurev-clinpsy-032511-143108

Sleep and HRQL in quarantined adolescents

Helito AC et al.
27. Ravens-Sieberer U, Kaman A, Erhart M, Devine J, Schlack R, Otto C. Impact of the COVID-19 pandemic on quality of life and mental health in children and adolescents in Germany. Eur Child Adolesc Psychiatry. 2021;1-11.

28. Nagata JM, Abdel Magid HS, Pettee Gabriel K. Screen Time for Children and Adolescents During the Coronavirus Disease 2019 Pandemic. Obesity (Silver Spring). 2020;28(9):1582-3. https://doi.org/10.1002/oby.22917

29. Hale L, Guan S. Screen time and sleep among school-aged children and adolescents: a systematic literature review. Sleep Med Rev. 2015;21:50-8. https://doi.org/10.1016/j.smrv.2014.07.007

30. López-Bueno R, López-Sánchez GF, Casajús JA, Calatayud J, Gil-Salmerón A, Grabovac I, et al. Health-Related Behaviors Among School-Aged Children and Adolescents During the Spanish Covid-19 Confinement. Front Pediatr. 2020;8:573. https://doi.org/10.3389/fped.2020.00573

31. Pietrobelli A, Pecoraro I, Ferruzzi A, Heo M, Faith M, Zoller T, et al. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity (Silver Spring). 2020;28(8):1382-5. https://doi.org/10.1002/oby.22861

32. Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Prog Cardiovasc Dis. 2021;64:102-4. https://doi.org/10.1016/j.pcad.2020.04.006

33. Saulle R, Minozzi S, Amato L, Davoli M. [Impact of social distancing for covid-19 on youths’ physical health: a systematic review of the literature]. Recenti Prog Med. 2021;112(5):347-59. https://doi.org/10.1701/3608.35872
APPENDIX

Semi-structured questionnaire

Hello, [name of patient]! We would like you to fill this questionnaire today. Please take note of any doubts while filling the questionnaire or concerning any of the answers. We’ll get in touch as soon as possible.

Age in years

Gender

Would you like to tell us more about your gender?

Sex

Describe any other

Skin color

Were you attending school this year, before the new coronavirus pandemic?

What is your school year?

Do you study at

Have you been followed-up by our team for any disease?

What disease(s) or condition(s) do you treat?

Do you use any routine medications?

Tell us what routine medications you use.

Before the coronavirus pandemic, how often did you go to the hospital for appointments or treatment?

How about after the pandemic started? How often are you going to the hospital?

In a whole week, how often do you forget to take your medications?
Question	Yes	No	I don’t know
Did you take the Flu vaccine?			
What are your sources of information about the coronavirus and social distancing?			
Do you believe having enough and reliable information about the new coronavirus and COVID-19?			
If not, tell us why:			
Write your doubts concerning the new coronavirus and COVID-19.			
Do you agree with the “STAY HOME” policy, made by health authorities and the government?			
Is or was there someone in your home who was infected by the coronavirus?			
How is quarantine being made in your home?			
The infected person/persons required hospital admission?			
Where were they admitted?			
Was it easy to find a hospital able to admit them?			
How did they evolve?			
Did your life routine change after physical distancing measures adopted by our country?			
About your daily routine, how much time are you dedicating for the following activities?

Remote school activities?
- I don’t have remote school activities
- Less than 3 hours a day
- More than 3 hours a day

Domestic tasks?
- I don’t do domestic tasks
- Less than 1 hours a day
- 2 or 3 hours a day
- More than 3 hours a day

Taking care of elders?
- I don’t take care of the elder
- Less than 1 hours a day
- Between 1 and 2 hours a day
- Between 2 and 3 hours a day
- More than 3 hours a day

How much physical activities do you do per week in a scale from 0 to 10 (0=without any physical activity to 10=vigorous physical activity daily)?

How is your sleep?
- Sleep more than 8 hours a day
- Sleep less than 8 hours a day

Do you usually sleep after midnight?
- No
- Yes

How is your sleep in a scale from 0 to 10 (0=no difficulties to 10=severe insomnia)?

Are you experiencing trouble to sleep?

Use of electronic devices and screen time for accessing social media, WhatsApp, music platforms, electronic games, watching series, movies and videos.

Do you think your screen time increased after social distancing?

Concerning the use of alcohol during physical distancing:
- I don’t drink alcohol
- I’m drinking more
- I’m drinking less
- I’m drinking the same amount

How many rooms are there in your home?

How many people live in your home?

Your family’s financial situation (money earning) after social distancing is:
- Worse
- Better
- The same

Is anyone who lives with you going out to work?
- No
- Yes

Is anyone who lives with you smoking?
- No
- Yes

Who is the smoker?
- Mother
- Father
- Other

Define:

Where is he/she smoking?

Are there factories or industry in the two blocks near your home, during quarantine?

Are there gas stations in the two blocks near your home, during quarantine?

Concerning the fear of getting infected by the coronavirus, how are you feeling now in a scale from 0 to 10 (0=no fear to 10=with extreme fear)?
How is your fear of getting worse of your disease or condition during the coronavirus pandemic in a scale from 0 to 10 (0=no fear to 10=with extreme fear)?

How is your fear related to immunosuppressive medications use during the coronavirus pandemic in a scale from 0 to 10 (0=no fear to 10=with extreme fear)?

Did you notice any increase in conflicts or violence in your home or neighborhood after the beginning of physical distancing?

Would you like to talk to someone about that?

Describe those conflicts and violence.

What do you miss the most during the distancing?

What changed about your friendships?

What changed about your dating/making out habits?

How is your family treating you in this moment?

Write freely to tell us about what you have been feeling during this period of social distancing.

How did you like this questionnaire?