Geographic variation in maternal investment and trade-offs between egg size and clutch size in an endemic toad of the Qinghai-Tibet Plateau

Tong Lei Yu & Yao Hui Deng

Life history theory predicts that animals often produce fewer offspring of larger size and indicate a stronger trade-off between the number and size of offspring to cope with increasing environmental stress. In order to evaluate this prediction, we tested the life history characteristics of *Bufo minshanicus* at eight different altitudes on the eastern Tibetan Plateau, China. Our results revealed a positive correlation between female SVL and clutch size or egg size, revealing that larger females produce more and larger eggs. However, high-altitude toads seem to favor more offspring and smaller egg sizes when removing the effect of female SVL, which is counter to theoretical predictions. In addition, there was an overall significantly negative relationship between egg size and clutch size, indicative of a trade-off between egg size and fecundity. Therefore, we suggest that higher fecundity, rather than larger egg size, is a more effective reproductive strategy for this species of anuran living at high-altitude environments.

Life-history theory suggests that females should be able to optimize their allocation of resources between current breeding efforts and future survival. Higher altitudes can be stressful environments because temperatures are colder, seasonality is greater, and food availability can fluctuate greatly. For example, there are negative correlations between temperature and altitude, with rainfall and altitude found to be positively correlated. High-altitude females are expected to select for producing larger eggs because larger eggs can lead to larger initial sizes, faster rates of growth, faster developmental rates, or both. Yet, a significant increase in egg size may prolong the duration of the embryonic period, which results in increasing total mortality. In addition, individuals that metamorphose at larger size may be more easily discovered by predators, thus Rollinson and Hutchings (2010) suggest that bigger is not always better. However, egg or hatching size may not affect mass at metamorphosis and survival because other ecological factors, such as temperature, density and competition, food level and quality, predation, or a combination of these, can alter the growth and developmental rate of each life stage of amphibians.

At higher altitudes, many species have relatively short breeding seasons and active cycles, resulting in slower growth and usually larger size than the same species from warmer areas. To date, however, we have a very poor understanding of how maternal investment varies geographically in a high altitude species in response to...
selective pressure. Thus, we investigated altitudinal variations in *Bufo minshanicus* life history traits, focusing on a trade-off between egg size and clutch size. So far, the taxonomic status of *B. minshanicus* has been controversial for over half a century. Fu et al. (2005) suggested *B. minshanicus* and *Bufo andrewsi* were treated as a single species, *Bufo gargarizans*, without subspecies division. However, Fei and Ye (2000) treated *B. minshanicus* as a subspecies of *B. gargarizans*. In this study, we defined *B. minshanicus* as a valid species. *Bufo minshanicus* is a species endemic to high altitude regions of the eastern Tibetan Plateau in China. They are widely distributed in forests, fields, and open alpine marshes from 2500 to 3700 meters (m) altitude and one of the few amphibian species to live at such high altitudes globally (Fei and Ye 2001). Geographically widespread species that occupy many thermal environments provide testable models for understanding the evolution of life-history responses to altitude. As a typical explosive breeder, *Bufo minshanicus* exhibits a short breeding season (5–18 days). Females are larger than males and clutch size increases with increasing female SVL. Low latitude populations in the eastern Qinghai province select deep swamps as hibernation site, while high latitude populations in the southern Gansu province prefer rabbit or otter holes as hibernating sites. Studies across altitudes provide a good approach to understand life-history evolution in stressful environments. Here, we predict that altitude would be (1) negatively correlated with clutch size, (2) positively associated with egg size, and (3) positively correlated with female SVL. We also tested the prediction that (4) there is a trade-off between egg size and clutch size.

Materials and methods

Data collection.

We collected *Bufo minshanicus* individuals from eight populations (all collected individuals from the same pond during the breeding period were defined as a population, at elevations ranging from 2506 to 3478 m) along the eastern Tibetan Plateau, China. At these sites, annual mean air temperatures decrease with increasing altitude or decreasing latitude, whereas annual total precipitation increases with increasing altitude or decreasing latitude (Table 1). The Gahai-Zecha National Nature Reserve Management Bureau approved this project (approval number GHZCRCMB/03-212014), and gave permission for fieldwork. All animals were collected under the guidelines for animal care in China. Handling and processing of toads followed approved protocols from the Animal Scientific Procedures Act 1988 by the State Department of China. A total of 683 amplexed pairs were collected during the peak period of breeding activity from 2009 to 2015 (Table 1; Dataset 1). We transported them to our field lab located close to breeding sites. Each amplexed pair was put into a plastic container (2-liter) to avoid predation. To avoid predation, we used log-transformed raw data on body size, clutch size, egg size and clutch volume. Meanwhile, we removed one population (3211 m) because only 3 female toads were collected.

Statistical analyses.

Clutch size, egg size and clutch volume were analyzed using general linear mixed models (GLMMs) where population was treated as a random factor, and altitude and latitude as covariates. Egg size and clutch size were used as covariates of one another when testing for a trade-off between them. To investigate variation in body size of females, we used GLMMs where female SVL was the dependent variable, altitude and latitude as covariates, and population as a random factor.

In the clutch-by-female analyses, we treated clutch size, egg size and clutch volume as the dependent variable and female SVL, latitude and altitude as covariates. Finally, to investigate the trade-off between egg size and clutch size, we used egg size or clutch size as the dependent variable, the other as the independent variable, and then the other way around. Prior to analyses, we tested the prediction that (4) there is a trade-off between egg size and clutch size. Meanwhile, we removed one population (3211 m) because only 3 female toads were collected.

Table 1. Study site details, including altitude, latitude and sample sizes and clutch attributes for 8 high-altitude *Bufo minshanicus* populations in the Tibetan Plateau. Values represent mean ± SE (n) for each measure. n = number of individuals.

Altitude (m)	Latitude (degrees)	Precipitation (mm)	Temperature (°C)	Clutch size	Egg size (mm)	Clutch volume (mm³)	Mean body size (mm)	Collection years
2506	36.57	576	6.1	4465 ± 171 (62)	1.97 ± 0.02 (32)	19318.2 ± 895.0 (62)	85.1 ± 0.8 (52)	2014, 2015
2593	36.67	540	5.7	4024 ± 98 (155)	2.02 ± 0.01 (156)	17465.3 ± 442.0 (155)	83.9 ± 0.4 (155)	2012, 2014, 2015
3027	34.48	584	4.5	2354 ± 49 (210)	2.05 ± 0.01 (210)	10756.7 ± 289.0 (210)	73.0 ± 0.3 (209)	2013, 2014, 2015
3211	34.38	586	3.9	2578 ± 273 (3)	1.86 ± 0.04 (18)	6260.5 ± 1530.3 (3)	73.3 ± 1.5 (3)	2014
3230	34.10	600	4.1	2602 ± 109 (49)	2.05 ± 0.02 (49)	11767.6 ± 504.5 (49)	76.2 ± 1.3 (9)	2015
3443	34.30	590	3.4	3225 ± 84 (99)	1.93 ± 0.01 (99)	12346.5 ± 402.0 (99)	76.3 ± 0.5 (98)	2009, 2013
3477	34.20	591	3.3	3563 ± 115 (103)	1.90 ± 0.01 (115)	12653.3 ± 374.1 (103)	75.6 ± 0.4 (103)	2009, 2013, 2014
3478	34.23	595	3.3	4215 ± 167 (52)	1.82 ± 0.02 (52)	13429.5 ± 6281.5 (52)	82.0 ± 0.7 (52)	2015
Figure 2. When removing the effect of female size, egg size decreased significantly with increasing altitude (latitudes. Clutch size increased with increasing altitude and latitude (altitude, \(F_{1, 3.863} = 15.186, P = 0.035\); clutch size, \(b = 3.856, R_m = 0.30, R^2 = 0.41\), Tables 1, 2, Fig. 1). Clutch volume increased with increasing latitude (\(F_{1, 3.620} = 14.910, P = 0.022\)), but not altitude (\(F_{1, 3.620} = 3.636, P = 0.135, R^2_m = 0.26, R^2 = 0.29\). There was a negative association between clutch size and egg size, indicating a population-level trade-off variation in egg size, but not latitude (\(F_{1, 3.856} = 10.035, P = 0.037\), but not latitude (\(F_{1, 3.856} = 0.035, R^2_m = 0.26, R^2 = 0.29\). There was a negative association between clutch size and egg size, indicating a population-level trade-off variation in egg size, but not latitude (\(F_{1, 3.856} = 0.035, R^2_m = 0.26, R^2 = 0.29\). There was a negative association between clutch size and egg size, indicating a population-level trade-off variation in egg size, but not latitude (\(F_{1, 3.856} = 0.035, R^2_m = 0.26, R^2 = 0.29\). There was a negative association between clutch size and egg size, indicating a population-level trade-off variation in egg size, but not latitude (\(F_{1, 3.856} = 0.035, R^2_m = 0.26, R^2 = 0.29\)).

Table 2. Analyses of covariance of egg size, clutch size, and total reproductive output (clutch volume) in females from 7 high-altitude Bufo minshanicus populations. **P < 0.001, *P < 0.05.

Source of variation	Random	Fixed	df	F
	VAR	SE	Z	
Egg size	Residuals	0.0000894	0.000046	19.633**
	Population	0.000148	0.000113	1.508
	Latitude	3.846	5.357	
	Altitude	3.863	4.397*	
Clutch size	Residuals	0.017091	0.000899	19.013**
	Population	0.003014	0.002295	1.313
	Latitude	3.856	15.186*	
	Altitude	3.879	10.035*	
Clutch volume	Residuals	0.021734	0.001144	19.001**
	Population	0.001019	0.000906	1.125
	Latitude	3.620	14.910*	
	Altitude	3.702	3.636	

Results

Clutch data. Egg size decreased with increasing altitude (\(F_{1, 3.863} = 8.397, P = 0.046\), but not latitude (\(F_{1, 3.879} = 5.357, P = 0.084, R^2_m = 0.17, R^2 = 0.29\), Fig. 1), providing weak evidence for correlation between egg sizes and altitudes. Clutch size increased with increasing altitude and latitude (altitude, \(F_{1, 3.856} = 15.186, P = 0.035\); latitude, \(F_{1, 3.856} = 10.035, P = 0.035\); Tables 1, 2, Fig. 1). Clutch volume increased with increasing latitude (\(F_{1, 3.620} = 14.910, P = 0.022\)), but not altitude (\(F_{1, 3.702} = 3.636, P = 0.135, R^2_m = 0.26, R^2 = 0.29\). There was a negative association between clutch size and egg size, indicating a population-level trade-off between fecundity and egg size (and vice versa; clutch size, \(b = -0.0362 \pm 0.00816, F_{1, 723.428} = 14.070, P < 0.001, R^2_m = 0.22, R^2 = 0.28\); egg size, \(b = -0.61211 \pm 0.16551, F_{1, 725.937} = 13.678, P < 0.001, R^2_m = 0.32, R^2 = 0.41\).

Clutch-by-female data. Female body size tended to increase with increasing latitude and altitude, but the difference was not significant (latitude, \(b = 0.0375 \pm 0.01590, F_{1, 1.428} = 2.242, P = 0.19, R^2_m = 0.35, R^2 = 0.52\), Table 1, Fig. 1).

GLMMs revealed that egg size, clutch size, and clutch volume were associated with female body size (egg size, \(F_{1, 1.665.984} = 4.349, P = 0.037\); clutch size, \(F_{1, 316.444} = 284.267, P < 0.001\); clutch volume, \(F_{1, 597.455} = 254.250, P < 0.001\), Fig. 2). When removing the effect of female size, egg size decreased significantly with increasing altitude (\(F_{1, 3.913} = 9.586, P = 0.037\), but not latitude (\(F_{1, 4.138} = 4.618, P = 0.096, R^2_m = 0.20, R^2 = 0.30\). Clutch volume did not significantly vary with altitude (\(F_{1, 1.428} = 0.146, P = 0.752\)) or latitude (\(F_{1, 1.526} = 0.781, P = 0.494, R^2_m = 0.47, R^2 = 0.49\), but clutch size increased significantly with increasing altitude (\(F_{1, 3.258} = 12.753, P = 0.033\) and latitude (\(F_{1, 3.247} = 15.689, P = 0.025\). The interaction between altitude and latitude was significant (\(F_{1, 3.292} = 11.899, P = 0.035, R^2_m = 0.53, R^2 = 0.55\), Table 3, Fig. 2) suggesting that clutch size varied inversely with altitude at higher latitudes.

needed to provide the \(R^2\) marginal (\(R^2_m\)) as the amount of variation explained by fixed factors, and \(R^2\) conditional (\(R^2\)) as amount of variation explained by both fixed and random factors. All the analyses were done with IBM SPSS Statistics 20.0 (IBM Corp, Armonk, NY, USA).

Table 2. Analyses of covariance of egg size, clutch size, and total reproductive output (clutch volume) in females from 7 high-altitude Bufo minshanicus populations. **P < 0.001, *P < 0.05.

Source of variation	Random	Fixed	df	F
	VAR	SE	Z	
Egg size	Residuals	0.0000894	0.000046	19.633**
	Population	0.000148	0.000113	1.508
	Latitude	3.846	5.357	
	Altitude	3.863	4.397*	
Clutch size	Residuals	0.017091	0.000899	19.013**
	Population	0.003014	0.002295	1.313
	Latitude	3.856	15.186*	
	Altitude	3.879	10.035*	
Clutch volume	Residuals	0.021734	0.001144	19.001**
	Population	0.001019	0.000906	1.125
	Latitude	3.620	14.910*	
	Altitude	3.702	3.636	
Clutch size was negatively correlated with egg size when accounting for female size within each population, but the correlations for only two populations were significant (both $r > -0.24$, $P < 0.003$, Table 1). The clutch-by-female data further showed an overall significant negative relationship between egg and clutch size (and vice versa; clutch size, $b \pm SE = -0.05014 \pm 0.00979$, $F_{1, 667.605} = 26.223$, $P < 0.001$, $R^2_m = 0.24$, $R^2_s = 0.32$; egg size, $b \pm SE = -0.75571 \pm 0.14644$, $F_{1, 659.540} = 26.633$, $P < 0.001$, $R^2_m = 0.56$, $R^2_s = 0.57$), indicative of a trade-off between egg size and clutch size. The slopes of egg size decreased with increasing altitude and latitude, but the difference was not significant (altitude \times egg size, $F_{1, 661.082} = 1.677$, $P = 0.196$; latitude \times egg size, $F_{1, 666.610} = 1.368$, $P = 0.243$).

Discussion

In order to maximize fitness, life history traits vary under different environmental pressures. In this study, our results showed that maternal investment strategies differ among altitudes. When the effect of body size is removed, the clutch data across seven *Bufo minshanicus* populations indicated that females are more fecund but produce smaller egg sizes at higher altitudes than at lower altitudes. The clutch-by-female size further showed a population-level trade-off between fecundity and egg size.

However, if the outlier population (at 3211 m) was not removed, the clutch data across eight *B. minshanicus* populations indicated that egg size and clutch volume tend to decrease or increase with increasing altitude ($F_{1, 4.409} = 4.19$, $P = 0.104$) or latitude ($F_{1, 0.926} = 8.47$, $P = 0.218$), while female SVL increased with increasing latitude.
When removing the effect of female body size, females at high altitudes produce relatively fewer clutches, but larger eggs than conspecifics from low altitudes. However, in this study, female SVL was not significantly positive correlated with latitude or altitude. This result was not consistent with previous evidence considering six populations. The shorter seasonal period of activity, weaker digestion and lower energy of prey may limit larger body size for appearing at high altitudes or latitudes. Moreover, females living in higher-altitudes must store enough energy during the short activity period in order to survive the harsh and extended winter, which may become more difficult for larger individuals. Therefore, Chen et al. (2013) suggested that larger females at high altitudes may be costly.

Life history theory suggests that organisms should allocate the limited energy between growth and development, thus creating a trade-off between growth and development. The clutch data across seven B. minshanicus populations revealed that clutch attributes (clutch size, egg size, and clutch volume) were positively correlated with female size, revealing that larger females produce more eggs, larger eggs and increase reproductive effort. In fact, most amphibians and reptiles, in general, exhibit this relationship between body size and reproductive output. Thus, it is attributed to positive fecundity selection, where female body size is larger for larger clutches.

Like most ectotherms with indeterminate growth, female B. minshanicus fit the von Bertalanffy’s model, which describes rapid somatic growth for earlier stages followed by slower growth thereafter. This implies that a larger fraction of energy would be devoted to reproduction as individuals become older, thus resulting in age-specific reproductive output.

Table 3. Analyses of covariance of egg size, clutch size, and total reproductive output (clutch volume) in females from 7 high-altitude B. minshanicus populations in a model including female size. **P < 0.001, *P < 0.05.

Source of variation	Random	Fixed					
	VAR	SE	Z	b	SE	df	P
Egg size							
Residuals	0.000822	0.000045	18.320**				
Population	0.000106	0.000086	1.227				
Female size	0.088019	0.042208	665.984	4.349’			
Latitude	0.023973	0.011156	4.338	4.618			
Altitude	−0.000094	0.000030	3.913	9.586’			
Clutch size							
Residuals	0.012357	0.00677	18.264**				
Population	0.000013	0.00147	0.087				
Female size	2.663521	0.157977	336.444	284.267’			
Latitude	0.696571	0.175863	3.427	15.689’			
Altitude	0.008521	0.002386	3.258	12.753’			
Latitude × altitude	−0.000242	0.000070	3.292	11.899’			
Clutch volume							
Residuals	0.016005	0.00677	18.254**				
Population	0.000752	0.00736	1.022				
Female size	2.945306	0.184714	597.455	254.250**			
Latitude	0.021616	0.032701	3.586	0.437			
Altitude	0.000002	0.000088	3.344	0.001			
as an attribute that populations have evolved through time as an adaptation to their general environment and their ecological niche.

Life-history theory emphasizes that high-altitude females are expected to select for the production larger eggs because larger eggs or offspring will lead to larger initial sizes, faster growth speeds, higher developmental speeds, or both. However, our results showed egg size across seven Bufo minshanicus populations decreased with increasing altitude, which provide support for the notion that life-history strategies respond to environmental conditions. Similarly, in some instances smaller eggs are better or some studies report no significant difference between egg size and altitude. Other studies found that some species with small eggs will increase the number of offspring, especially in the uncertain larval environment. Additionally, small eggs have a relatively large surface-to-volume ratio and require relatively little oxygen during embryonic development. In this case, this animal may better be able to adapt to the anoxic environment of the Tibetan Plateau.

Although some studies suggest that trade-offs between clutch size and egg size in amphibians seldom occurs, some previous findings support the existence of a trade-off. In this study, although intra-population-level trade-off between fecundity and egg size was uncommon, there was a significant inter-population-level trade-off between fecundity and egg size, suggesting that females producing greater numbers will produce smaller eggs to compensate for the energy put into the greater numbers, which are consistent with the general principle of MacArthur and Wilson’s theory of r- versus K-selection in populations. Moreover, higher altitudes influenced investment in egg size, as suggested by the fact that there were stronger negative effects on egg size than on clutch size and reproductive output. Our data also showed that the strength of the trade-off between clutch size and egg size was not different among altitudes and latitudes. However, theoretical and empirical studies showed that harsh environments promote larger maternal investment in per-individual offspring to improve survival of individual offspring. For Bufo minshanicus, at higher altitudes, the advantage associated with producing smaller eggs because of increasing fecundity, which potentially maximizes the number of offspring surviving to reproduction. Therefore, different environmental pressures will lead to geographical variation in life history traits aimed at maximizing fitness. Bufo minshanicus have evolved a different life history strategy to adapt their environments, which may be inconsistent with our expectations. On the Tibetan Plateau, it appears as though more fecundity and smaller egg size are traits that enhance fitness for this animal.

Received: 25 July 2019; Accepted: 31 March 2020; Published online: 22 April 2020

References

1. Roff, D. A. Life-history evolution. Sunderland, Sinauer Associates (2002).
2. McGinley, M. A., Temme, D. H. & Geber, M. A. Parental investment in offspring in variable environments: theoretical and empirical considerations. Am. Nat. 130, 370–398 (1987).
3. Einum, S. & Fleming, I. A. Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. P. Roy. Soc. B. Biol. Sci. 266, 2095–2100 (1999).
4. Chen, W., Zeng, Y. S., Zhang, X. G., Wang, Y. & Pike, D. A. Maternal investment increases with altitude in a frog on the Tibetan Plateau. J. Evol. Biol. 26, 2710–2715 (2013).
5. Liao, W. B., Lu, X. & Jehle, R. Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew’s toad. J. Zool. 293, 84–91 (2014).
6. Liao, W. B. & Lu, X. A comparison of reproductive output of the Omei Treefrog (Rana omeimontis) between high and low elevations. Anim. Biol. 61, 263–276 (2011).
7. Kuramoto, M. Correlations of quantitative parameters of fecundity in amphibians. Evolution 32, 287–296 (1978).
8. Crump, M. L. Intraclutch egg size variability in Hyla crucifer (Amure Hylidae). Copeia 1984, 302–308 (1984).
9. Roff, D. A. The evolution of life histories. Chapman and Hall, New York, New York, USA (1992).
10. Stearns, S. C. The evolution of life histories. Oxford University Press, Oxford, UK (1992).
11. Kaplan, R. H. & King, E. G. Egg size is a developmentally plastic trait: evidence from long term studies in the frog Bombina orientalis. Herpetologica 53, 149–165 (1997).
12. Einum, S. & Fleming, I. A. Highly fecund mothers sacrifice offspring survival to maximise fitness. Nature 405, 565–567 (2000).
13. Nussbaum, R. A. Parental care and egg size in salamanders: an examination of the safe harbor hypothesis. Res. Popul. Ecol. 29, 27–44 (1987).
14. Rollinson, N. & Hutchings, J. A. Why does egg size increase with maternal size? Effects of egg size and egg density on offspring phenotypes in Atlantic salmon (Salmo salar). Evol. Ecol. Res. 12, 949–960 (2010).
15. Kaplan, R. H. The implications of ovum size variability for offspring fitness and clutch size within several populations of salamanders (Ambystoma). Evolution 34, 51–64 (1980).
16. Berven, K. A. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36, 962–983 (1982).
17. Licht, I. E. Comparative life history features of the western spotted frog, Rana pretiosa, from low- and high- elevation populations. Can. J. Zool. 53, 1254–1258 (1975).
18. Berven, K. A. & Chadra, B. G. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica). Oecologia 75, 67–72 (1988).
19. Lardies, M. A., Carter, M. J. & Bozinovic, F. Dietary effects on life history traits in a terrestrial isopod: the importance of evaluating maternal effects and trade-offs. Oecologia 138, 387–395 (2004).
20. Kaplan, R. H. & Phillips, P. C. Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution 60, 142–156 (2006).
21. Räsänen, K., Söderman, F., Laurila, A. & Merila, J. Geographic variation in maternal investment: acidity affects egg size and fecundity in Rana arvalis. Ecology 89, 2553–2562 (2008).
22. Pettus, D. B. & Angleton, G. M. Comparative reproductive biology of montane and piedmont chorus frogs. Evolution 21, 500–507 (1967).
23. Kozlowska, M. Differences in the reproductive biology of mountain and lowland common frogs Rana temporaria L. Acta Biol. Cracov. Zool. 14, 17–32 (1971).
24. Fu, J. et al. Phylogeographic analysis of the Bufo gargarizans species complex: a revisit. Mol. Phylogenet. Evol. 37, 202–213 (2005).
25. Frost, D. R. Amphibian Species of the World: an Online Reference. Version 6.0 (accessed on June 8, 2015). Electronic Database accessible at, http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA (2015).
26. Fei, L. & Ye, C. The Colour Handbook of the Amphibians of Sichuan. Chinese Forestry Press, Beijing (in Chinese) (2000).
27. Wells, K. D. The Ecology and Behavior of Amphibians. University of Chicago Press (2007).
28. Yu, T. L., Wang, D. L., Busam, M. & Yao, H. D. Altitudinal variation in body size in Bufo minshuicus supports Bergmann's rule. Evol. Ecol. 33, 449–460 (2019).
29. Yu, T. L. & Lu, X. Lack of male mate choice in the Minshan's toad (Bufo gargarizans minshuicus). North-West. J. Zool. 9, 1211–126 (2013).
30. Yu, T. L., Dang, Q. K. & Chen, J. B. Bufo gargarizans minshuicus males exhibit size-dependent mate choice but lack sex recognition: an experimental approach. Herpetol. J. 24, 197–199 (2014).
31. Lüdddecke, H. Variation and trade-off in reproductive output of the Andean frog Hyla labialis. Oecologia 130, 403–410 (2002).
32. Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: a review. J. Anim. Ecol. 72, 270–279 (2003).
33. Pincheira-Donoso, D., & Hunt, J. Fecundity selection theory: concepts and evidence. Biol. Rev. 92, 341–356 (2017).
34. Jørgensen, C. B. Growth and reproduction, in Environmental physiology of the amphibians: 439–467. Feder, M. E. & Burggren, W. W. Eds). Chicago: University Chicago Press (1992).
35. Czarnoleski, M. & Kozlowski, J. Do Bertalanffy's growth curves result from optimal resource allocation. Ecol. Lett. 1, 5–7 (1998).
36. Cummins, P. Temporal and spatial variation in egg size and fecundity in Rana temporaria. J. Anim. Ecol. 55, 303–316 (1986).
37. Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).
38. Liao, W. B., Luo, Y., Lou, S. L., Lu, D. & Jehle, R. Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew's toad (Bufo andrewsi). Front. Zool. 13, 6 (2016).
39. Hughes, D. F., Mesnaka, W. E. Jr, Lieb, C. S. & Peckmann, J. H. Latitudinal variation in life history reveals a reproductive advantage in the Texas Horned Lizard (Phrynosoma cornutum). Copeia 107, 736–747 (2019).
40. Heatwole, H. & Taylor, J. Ecology of Reptiles. Surrey Beatty and Sons Pty Ltd, Chipping Norton (1987).
41. Wang, Y.J., Ji, W.H., Zhao, W., Yu, N.N. & Liu, N.F. Geographic variation in clutch and egg size for the lizard Phrynocephalus gramineus. J. Zool. 269, 2325–2330 (2002).
42. Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).
43. Dobzhansky, T. Evolution in the tropics. Evolution 14(7), 546–553 (1960).
44. Fitch, H. S. Variation in clutch and litter sizes in New World reptiles. University of Kansas Museum of Natural History Miscellaneous Publications 61, 1–68 (1974).
45. Ritch, S. H. Variation in clutch and litter sizes in New World reptiles. University of Kansas Museum of Natural History Miscellaneous Publications 7, 61–70 (1985).
46. Parichy, D. M. & Kaplan, R. H. Maternal investment and developmental plasticity: functional consequences for locomotor performance on hatching frog larvae. Funct. Ecol. 9, 606–617 (1995).
47. Ryser, J. Comparative life histories of a low- and a high-elevation population of the common frog Rana temporaria. Amphibia–Reptilia 17, 183–195 (1996).
48. Morrison, C. & Hero, J. M. Geographic variation in life history characteristics of amphibians in mid-eastern Australia: reproductive traits. Proceedings of the Frogs in the Community Symposium (ed. A. Natras), pp. 52–61. Environment Australia, Canberra (2002).
49. Kuramoto, M. Embryonic temperature adaptation in development rate of frogs. Physiol. Zool. 48, 360–366 (1975).
50. Elinum, S., Hendry, A. P. & Fleming, I. A. Egg-size evolution in aquatic environments: does oxygen availability constrain size? P. Roy. Soc. London B 269, 2325–2330 (2002).
51. Tejado, M. Absence of the trade-off between the size and number of offspring in the natterjack toad (Bufo calamita). Oecologia 90, 294–296 (1992).
52. Laugan, A., Laurila, A. & Merila, J. Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biol. J. Linn. Soc. 76, 61–70 (2002).
53. Castellano, S., Cucco, M. & Giacoma, C. Reproductive investment of female green toads (Bufo viridis). Copeia 2000, 659–664 (2004).
54. Dziminski, M. A. & Alford, R. A. Patterns and fitness consequences of intra clutch variation in egg provisioning into tropical Australian frogs. Oecologia 146, 98–109 (2005).
55. Lloyd, D. G. Selection of offspring size at independence and other size-versus-number strategies. Am. Nat. 129, 800–817 (1987).
56. Råaså, K., Laurila, A. & Merila, J. Maternal investment in egg size: environment- and population-specific effects on offspring performance. Oecologia 142, 546–553 (2005).
57. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ (1967).
58. Pianka, E. R. On r- and K-Selection.
