Mitogen-activated protein (MAP) kinases play a central role in regulating cellular homeostasis in microbial eukaryotes in response to environmental changes (3, 4, 7, 9–12, 15–18, 20). We have been studying the role of the MAP kinase SakA in Aspergillus fumigatus, an opportunistic human pathogen. We were interested in SakA because in other fungi homologues of this protein kinase have been shown to play a role in stress responses and pathogenesis (1, 2, 6, 8, 10, 13–15, 19, 21, 22). It is therefore possible that SakA plays a role in pathogenesis and response to the nitrogen source and is activated upon starvation for either carbon or nitrogen during vegetative growth.

We next examined the growth response of actively growing germlings and conidia to increased osmolarity. We found that germlings of the \(\Delta sakA \) strain undergo growth arrest in response to increased osmolarity, whereas conidia germinated in YG. This demonstrates that the transcriptional response to osmotic stress is conserved in A. fumigatus. Similarly, we found levels of sakA transcripts increased in response to hydrogen peroxide, a response also seen in some fungi (data not shown) (3, 9, 12).

We assessed the conservation of the SakA MAP kinase signaling pathway in A. fumigatus using Northern blotting to measure changes in the abundances of transcripts for the genes \(msnA \), \(ptpA \), \(pbsA \), and, as a control, \(actin \). We looked at these genes because the mRNAs for \(msnA \), \(ptpA \), and \(pbsA \) are known to increase in response to osmotic stress in other fungi (3, 9, 12). We found that the abundances of transcripts for \(msnA \), \(ptpA \), and \(pbsA \) all increased in response to increasing osmotic stress in the wild-type control strain but not in the \(sakA \) deletion (\(\Delta sakA \)) strain (Fig. 1C). This demonstrates that the transcriptional response to osmotic stress is conserved in A. fumigatus. Similarly, we found levels of sakA transcripts increased in response to hydrogen peroxide, a response also seen in some fungi (data not shown) (3, 9, 12).

We next examined the growth response of actively growing germlings and conidia to increased osmolarity. We found that germlings of the \(\Delta sakA \) strain undergo growth arrest in response to increased osmolarity, whereas conidia germinated in YG.

TABLE 1. Oligonucleotides used during this study

Oligonucleotide	Sequence	Product size (kb)
sakA-1	GTTTTGACATCTCCTACTCTGTGCG	2.2
sakA-2	GTACGAAATTCAGATGATCGCTCCTG	2.2
sakA5'	TCTACCGCCCGAGTAAAGGC	2.7
sakA5'2	GATCTCAAACTAGGTAGGGATGGTACAG	2.7
sakA3'	CCTTTATCGTTGGAAAAAGCTAAATCAC	2.3
sakA3'2	CCTCTCGTGACCCATGTATGCC	2.3
ptsp-3'	CATAGGCATTGTAACGCAATAAGGCG	0.84
msn-3'	GAAGGAAAGCTTGAGTACAGTCG	0.54
msn-3	AGCAAGGCTTGTGCAGCGAGAG	1.3
pbs-3'	ACGAAGCAGTATTTGCCGAGTACGGCG	1.3
actin5'	GAAGAGGTTCGTCCTCTGCTAGTTCG	1.7
actin3'	GCACTTGGCGGTCAGATCGAAG	1.7
FIG. 1. Deletion of the *sakA* gene. (A) Strategy used to delete *sakA*. The *hph*-selective marker was flanked by DNA sequences from around *sakA*. Integration of the linear molecule by homologous recombination replaces *sakA* with *hph* in the chromosome. (B) Southern blot showing the wild-type and Δ*sakA* patterns of hybridization. One representative is shown for each. (C) Northern blots of RNA from the Δ*sakA* strain and AF293, the wild-type strain, exposed to increasing concentrations of NaCl. The first lane in each set had CM; lanes 2 to 6 had in addition 0.25, 0.5, 0.75, 1, and 1.5 M NaCl, respectively. The probes used for hybridization of each set of lanes are indicated on the left.

FIG. 2. Photomicrographs of the wild-type parental strain AF293 and a Δ*sakA* strain grown continuously (continuous) in CM with 1 M NaCl or shifted to CM with 1 M NaCl after 5 h of germination in CM (germinated). Fields of germlings were also photographed after 11 and 13 h of growth. Scale bar, 20 μm.
high-osmolarity medium were able to grow hyphae but did so more slowly than the parental control, suggesting that signaling through this MAP kinase pathway in conidia is different from that in growing germlings (Fig. 2). We also observed that ΔsakA strains failed to produce a pigment secreted into the medium of plates by control strains (data not shown).

During the course of these initial studies, we found that conidia of the ΔsakA strain and the parent germinated differently on MM and CM (Fig. 3A). On CM the parental and ΔsakA strains germinated equally well. In contrast, on MM the wild-type strain germinated more slowly than the ΔsakA strain. A major difference between MM and CM is the inclusion of yeast extract, peptone, and tryptone, all sources of reduced nitrogen. We therefore tested germination of the wild-type and ΔsakA strains on MM containing different nitrogen sources (Fig. 3B). Conidia of the wild-type strain germinated more slowly than those of the ΔsakA strain on MM containing the poor nitrogen source sodium nitrate or sodium nitrite, but both strains germinated equally well on MM with the reduced-nitrogen source ammonium chloride or proline. When phenylalanine was used as a nitrogen source, both strains germinated less well, suggesting that this amino acid is less suitable as a nitrogen source. Interestingly, we found no difference in germination on a variety of carbon sources, including glycerol, acetate, sorbitol, and lactose (data not shown). These results indicate that SakA functions to negatively regulate conidial germination in response to less-preferred nitrogen sources but not in response to the carbon sources.

Finally, because of the newly discovered role for SakA in sensing nitrogen in the medium, we investigated the effect of starvation for carbon and nitrogen on transcriptional activation of the genes in this pathway (Fig. 4). When hyphae are transferred from rich medium to MM lacking either a nitrogen or carbon source, we find a robust activation of transcription for sakA but not for msnA, ptpA, or pbsA and no changes in the ΔsakA strain are observed.

In summary, the osmotic stress response pathway in A. fumigatus is conserved. We have shown that this MAP kinase pathway negatively regulates conidial germination and is activated in response to starvation for nitrogen or carbon sources.

This research was supported by National Institutes of Health grant AI051144 (G.S.M.) and Cancer Center Support Grant CA16672.

We acknowledge that preliminary sequence data were obtained from The Institute for Genomic Research website at http://www.tigr.org. We also acknowledge the helpful discussions we had with Mike Gustin of Rice University and Dimitrios Kontoyiannis of MDACC during the course of these studies.

REFERENCES

1. Alonso-Monge, R., F. Navarro-Garcia, E. Roman, A. I. Negredo, B. Eisman, C. Nombela, and J. Pla. 2003. The hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:351–361.
2. Brachmann, A., J. Schirawski, P. Muller, and R. Kahmann. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:2199–2210.
3. Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and M. C. Gustin. 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
4. Buck, V., J. Quinn, T. Soto Pino, H. Martin, J. Saldanha, K. Makino, B. A. Morgan, and J. B. Millar. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12:407–419.
5. Carroll, A. M., J. A. Swigrad, and B. Valenta. 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet. News. 41:222.
6. Di Pietro, A., F. I. Garcia-MacEira, E. Megrez, and M. L. Roncero. 2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 39:1140–1152.
7. Gustin, M. C., J. Albertyn, M. Alexander, and K. Davenport. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264–1300.
8. Hamer, J. E., and N. J. Talbot. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1:693–697.
9. Han, K. H., and R. A. Prade. 2002. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87–95.
10. Jenczmionka, N. J., F. J. Maier, A. P. Losch, and W. Schafer. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87–95.
11. Kinane, J., and R. P. Oliver. 2003. Evidence that the appressorial development in barley powdery mildew is controlled by MAP kinase activity in conjunction with the cAMP pathway. Fungal Genet. Biol. 39:94–102.
12. Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D. Y. Thomas, and K. Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42:673–687.
15. Mayorga, M. E., and S. E. Gold. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34:485–497.
16. Millar, J. B. 1999. Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts. Biochem. Soc. Symp. 64:49–62.
17. Muller, P., C. Aichinger, M. Feldbrugge, and R. Kahmann. 1999. The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:1007–1017.
18. Navarro-Garcia, F., M. Sanchez, J. Pla, and C. Nombela. 1995. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol. 15:2197–2206.
19. Shim, W. B., and L. D. Dunkle. 2003. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol. Plant-Microbe Interact. 16:760–768.
20. Soto, T., F. F. Beltran, V. Paredes, M. Madrid, J. B. Millar, J. Vicente-Soler, J. Cansado, and M. Gacto. 2002. Cold induces stress-activated protein kinase-mediated response in the fission yeast Schizosaccharomyces pombe. Eur. J. Biochem. 269:5056–5065.
21. Takano, Y., T. Kikuchi, Y. Kubo, J. E. Hamer, K. Mise, and I. Furusawa. 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374–383.
22. Xu, J. R., and J. E. Hamer. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696–2706.