Role of axial-vector mesons near the chiral phase transition

Chihiro Sasakia, Masayasu Haradab and Wolfram Weisea

aPhysik-Department, Technische Universität München, D-85747 Garching, Germany
bDepartment of Physics, Nagoya University, Nagoya, 464-8602, Japan

Abstract

We present a systematic study of the vector–axial-vector mixing (V-A mixing) in the current correlation functions and its evolution with temperature within an effective field theory. The a_1-ρ-π coupling vanishes at the critical temperature T_c and thus the V-A mixing also vanishes. A remarkable observation is that even for finite m_π the ρ and a_1 meson masses are almost degenerate at T_c. The vanishing V-A mixing at T_c stays approximately intact.

Key words: Vector–axial-vector mixing in hot matter, Chiral symmetry restoration

PACS: 12.38.Aw, 12.39.Fe, 11.30.Rd

In the presence of hot matter the vector and axial-vector current correlators are mixed due to pions in the heat bath. At low temperatures this process is described in a model-independent way in terms of a low-energy theorem based on chiral symmetry and consequently the vector spectral function is modified by axial-vector mesons through the mixing theorem \cite{1}. The validity of the theorem is, however, limited to temperatures $T \ll 2f_\pi$, where f_π is the pion decay constant in vacuum. At higher temperatures one needs in-medium correlators systematically involving hadronic excitations other than pions. In this contribution we show the effects of the mixing (hereafter V-A mixing), and how the axial-vector mesons affect the vector spectral function near the chiral phase transition, within an effective field theory \cite{2}.

A model based on the generalized hidden local symmetry (GHLS) describes a system including the axial-vector meson explicitly, in addition to the pion and the vector meson, consistently with the chiral symmetry of QCD \cite{3}. We will use the GHLS Lagrangian as a reliable basis which describes the spectral function sum rules \cite{4}.

The critical temperature T_c for the restoration of chiral symmetry in its Wigner-Weyl realization is defined as the temperature at which the vector and axial-vector current correlators, G_V and G_A, coincide and their spectra become degenerate. Thus, chiral
symmetry restoration implies $\delta G = G_A - G_V = 0$ at T_c. Let us consider δG changing with temperature intrinsically. To achieve $\delta G = 0$ at the critical temperature, we assume non-dropping ρ mass at T_c and adopt the following ansatz of the temperature dependence of the bare axial-vector meson mass, $M_{a_1}^2(T) = M_{\rho}^2 + \delta M^2(T)$:

$$\delta M^2(T) = \delta M^2(T = 0)\Theta(T_f - T) + \delta M^2(T = 0)\Theta(T - T_f)\frac{T_c^2 - T^2}{T_c^2 - T_f^2},$$ \hspace{1cm} (1)$$

where we schematically introduce the “flash temperature” which controls how the mesons experience partial restoration of chiral symmetry. The values of T_c and T_f are taken in a reasonable range as indicated, for example, by the onset of the chiral crossover transition observed in lattice QCD \cite{5}: $T_c = 200$ MeV and $T_f = 140$ MeV.

Figure 1 (left) shows the vector spectral function in the chiral limit. Two cases are compared; one includes the V-A mixing and the other does not. The spectral function has a peak at M_{ρ} and a broad bump around M_{a_1} due to the mixing. The height of the spectrum at M_{ρ} is enhanced and a contribution above ~ 1 GeV is gone when one omits the a_1 in the calculation. A difference between the two curves becomes more significant above T_f where partial restoration of chiral symmetry sets in. For finite m_π the energy of the time-like virtual ρ meson splits into two branches corresponding to the processes, $\rho + \pi \rightarrow a_1$ and $\rho \rightarrow a_1 + \pi$, with thresholds $\sqrt{s} = M_{a_1} - m_\pi$ and $\sqrt{s} = M_{a_1} + m_\pi$. This results in the threshold effects seen as a shoulder at $\sqrt{s} = M_{a_1} - m_\pi$ and a bump above $\sqrt{s} = M_{a_1} + m_\pi$ in Fig. 1 (right). Note that the enhancement of the spectrum for $m_\pi \neq 0$ is due to the change of the phase space factor $(s - 4m_\pi^2)^{3/2}$.

Figure 2 (left) shows the temperature dependence of the vector spectral function in the chiral limit. One observes a systematic downward shift of the a_1 enhancement with increasing temperature, while the peak position corresponding to the ρ pole mass moves upward. At $T/T_c = 0.9$ the two bumps begin to overlap: the lower one corresponds to the ρ pole, and the upper one to the $a_1-\pi$ contribution. Finally at $T = T_c$, M_{a_1} becomes degenerate with M_{ρ} around $\sqrt{s} \simeq 1$ GeV and the two bumps are on top of each other. The V-A mixing eventually vanishes there. This feature is a direct consequence of vanishing coupling of a_1 to $\rho-\pi$. Figure 2 (right) shows the effect of finite pion mass in the vector spectrum. Below T_c one observes the previously mentioned threshold effects
moving downward with increasing temperature. It is remarkable that at T_c the spectrum shows almost no traces of a_1-ρ-π threshold effects. This indicates that at T_c the a_1 meson mass nearly equals the ρ meson mass and the a_1-ρ-π coupling almost vanishes even in the presence of explicit chiral symmetry breaking.

In summary, we have presented a detailed study of V-A mixing in the current correlation functions and its evolution with temperature. In the chiral limit the axial-vector meson contributes significantly to the vector spectral function; the presence of the a_1 reduces the vector spectrum around M_ρ and enhances it around M_{a_1}. For physical pion mass m_π, the a_1 contribution above $\sqrt{s} \sim M_{a_1}$ still survives although the bump is somewhat reduced. When assuming both dropping ρ and a_1 masses, the major change is a systematic downward shift of the vector spectrum [2].

Studying dilepton production in relativistic heavy-ion collisions is an interesting application. The present investigation may be of some relevance for the high temperature and low baryon density scenarios encountered at RHIC and LHC.

Acknowledgments

The work has been supported in part by BMBF and by the DFG cluster of excellence “Origin and Structure of the Universe”.

References

[1] M. Dey, V. L. Eletsky and B. L. Ioffe, Phys. Lett. B 252, 620 (1990), E. Marco, R. Hofmann and W. Weise, Phys. Lett. B 530, 88 (2002), M. Urban, M. Buballa and J. Wambach, Phys. Rev. Lett. 88, 042002 (2002).

[2] C. Sasaki, M. Harada and W. Weise, [arXiv:0805.4792] [hep-ph]; Phys. Rev. D 78, 114003 (2008).

[3] M. Bando, T. Kugo and K. Yamawaki, Nucl. Phys. B 259, 493 (1985); Phys. Rept. 164, 217 (1988), M. Bando, T. Fujisara and K. Yamawaki, Prog. Theor. Phys. 79, 1140 (1988), N. Kaiser and U. G. Meissner, Nucl. Phys. A 519, 671 (1990).

[4] M. Harada and C. Sasaki, Phys. Rev. D 73, 036001 (2006).

[5] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).