Inflation models, spectral index and observational constraints.

L. COVI
DESY Theory Group, Notkestrasse 85
22603 Hamburg, Germany

We have evaluated the observational constraints on the spectral index n, in the context of a ΛCDM model. For n scale-independent, as predicted by most models of inflation, present data require $n \simeq 1.0 \pm 0.1$ at the 2-σ level. We have also studied the two-parameter scale-dependent spectral index, predicted by running-mass inflation models. Present data allow significant variation of n in this case, within the theoretically preferred region of parameter space.

1 Introduction

It is generally supposed that structure in the Universe originates from a primordial gaussian curvature perturbation, generated by the quantum fluctuations of the inflaton field during slow-roll inflation. Then the spectrum of the curvature perturbation $\delta_H(k)$ is determined by the inflaton potential $V(\phi)$. In this paper we will consider the scale–dependence of the primordial spectrum, defined by the spectral index n:

$$n(k) - 1 = 2 \frac{\partial \ln \delta_H}{\partial \ln k} = 2M_{Pl}^2(V''/V) - 3M_{Pl}^2(V'/V)^2,$$

where the potential and its derivatives are evaluated at the epoch of horizon exit $k = aH$. The value of ϕ at this epoch is given by $\ln(k_{end}/k) = N(\phi) = M_{Pl}^{-2} \int_{\phi_{end}}^{\phi} (V/V')d\phi$, where k_{end} is the scale leaving the horizon at the end of slow roll inflation and $N(\phi)$ is the number of e-folds. In the majority of the inflation models, n is practically scale-independent so that $\delta_H^2 \propto k^{n-1}$, but we shall also discuss an interesting class of models giving significant scale dependence.

2 The observational constraints on the ΛCDM model

In the interest of simplicity and due to present observations\(^\dagger\), we adopt the ΛCDM model, with $\Omega_{tot} = 1$ and cold non-baryonic dark matter with negligible interaction. We shall constrain this model, including the spectral index, by performing a least-squares fit to the key observational quantities.

The parameters of the ΛCDM model are the primordial spectrum $\delta_H(k)$, the Hubble constant h (in units of $100 \text{ km s}^{-1} \text{ Mpc}^{-1}$), the total matter density Ω_0, the baryon density Ω_b, and the reionization redshift z_R (we consider complete and sudden reionization). z_R can be estimated in terms of the other parameters because it can be related to the density perturbation and the fraction of collapsed matter f at the epoch of reionization, so we exclude it from the least-squares fit. In the case of the constant n models we fix it at a reasonable value ($z_R = 20$), while in the case of the running mass models we compute it assuming that reionization occurs when a fixed fraction of the matter $f \simeq 1$ collapses. The spectrum is conveniently specified by its value at the COBE scale $k_{COBE} = 6.6H_0$, and the spectral index $n(k)$. Excluding z_R, the ΛCDM model is therefore specified by five parameters in the case of a constant spectral index, or by six parameters in the case of running mass inflation models.

\(^\dagger\) $M_{Pl} = 2.4 \times 10^{18} \text{ GeV}$ is the Planck mass, a is the scale factor and $H = \dot{a}/a$ is the Hubble parameter, and k/a is the wavenumber.
Table 1: Fit of the ΛCDM model to presently available data. The spectral index n is a parameter of the model, as are the next four quantities. Every quantity except n is a data point, with the value and uncertainty listed in the first two rows taken from the references in superscript. The result of the least-squares fit is in the lines three to five for $z_R = 20$. All uncertainties are at the nominal 1-σ level. The total χ^2 is 2.4 for 2 degrees of freedom.

	n	$\Omega_b h^2$	Ω_0	h	$10^2 \delta H$	Γ	σ_8	\sqrt{C}_{peak}
data	—	0.019	0.35	0.62	1.94	0.23	0.56	80 μK
error	—	0.002	0.075	0.075	0.075	0.035	0.055	10 μK
fit	1.01	0.019	0.36	0.63	1.95	0.19	0.58	72 μK
error	0.05	0.002	0.06	0.06	0.075	—	—	—
χ^2	—	4×10^{-5}	1×10^{-2}	0.1	5×10^{-3}	1.3	0.2	0.8

Taking as our starting point a study performed three years ago, we consider seven observational quantities: the cosmological quantities h, Ω_0, Ω_B, which we are also taking as free parameters, and moreover the shape parameter Γ, σ_8, the COBE normalization and the first peak height in the cmb anisotropy. The adopted values and errors are given in the second and third line of Table 1. For a discussion of the data, see. In common with earlier investigations, we assume the errors to be uncorrelated and random errors to dominate over systematic ones.

3 Results

We perform the least–squares fit with the CERN Minuit package; the quoted error bars use the parabolic approximation, while the exact errors computed by Minuit agree with the approximated ones to better than 10%.

In order to simplify the numerical procedure, we follow and parameterize the predicted value of \sqrt{C}_{peak} with the analytical formula

$$\sqrt{C}_{\text{peak}} = 77.5 \, \mu K \left(\frac{2h(k_{\text{COBE}})}{1.94 \times 10^{-3}} \right)^{\nu/2}$$

where

$$\nu = 0.88(n_{\text{COBE}} - 1) - 0.37 \ln(h/0.65) - 0.16 \ln(\Omega_0/0.35) + 5.4h^2(\Omega_b - 0.019) - 0.65g(\tau)\tau$$

and $\tau = 0.035 \frac{\Omega_b}{\Omega_0} h \left(\sqrt{\Omega_0(1 + z_R)^3} + 1 - \Omega_b - 1 \right)$. The formula is fitted to the CMBfast results and agrees within 10% for a 1-σ variation of the cosmological parameters, h, Ω_0 and Ω_b, and $n = 1.0 \pm 0.05$. With the function $g(\tau)$ set equal to 1, the formula contains the usual factor exp($-\tau$). By fitting the output of CMBfast, we introduce also $g(\tau) = 1 - 0.165\tau/(0.4 + \tau)$, so that our formula is accurate to a few percent over the interesting range of τ.

Constant spectral index. For the case of a constant spectral index our result is given in Table 1 for $z_R = 20$. In the case of no reionization ($z_R = 0$) we obtain a slightly smaller spectral index, $n = 0.98 \pm .05$, and cosmological parameters within the observational error bar, in agreement with previous analysis. This result is not enough yet to exclude completely proposed inflationary models, but a better determination of the peak height could strengthen the bound sufficiently to discriminate between them, especially in the case of new inflation models, which give low values of n.

Running mass models. We have also considered the scale-dependent spectral index, predicted in inflation models with a running inflaton mass. In these models, one–loop corrections to the potential are taken into account by evaluating the scale dependent inflaton mass $m^2(Q)$ at $Q \approx \phi$. Then the spectral index can be parameterized by just two quantities:

$$\frac{n(k) - 1}{2} = \sigma e^{-cN(\phi)} - c$$

(3)
where σ is an integration constant and c is related to the inflaton coupling responsible of the mass running. The different signs of σ and c give raise to four different models of inflation. In general, without fine tuning, we expect

$$|c| \lesssim |\sigma| \lesssim 1 \quad |c| \simeq g^2 \tilde{m}^2 M_{Pl} / V_0$$

with g denoting the gauge or Yukawa coupling of the inflaton, \tilde{m}^2 the soft supersymmetry breaking mass of the particles in the loop and V_0 the value of the potential energy during inflation. With gravity-mediated susy breaking, typical values of the masses are $\tilde{m}^2 \sim V_0 / M_{Pl}^2$, which makes c of order of the coupling strength. For a gauge coupling, or an unsuppressed Yukawa coupling, we expect $|c| \sim 10^{-1}$ to 10^{-2}.

Extremizing with respect to all other parameters, we have computed the χ^2 in the σ vs. c plane and obtained contour levels for χ^2 corresponding to the 70\% and 95\% confidence level in two variables. The results are shown in Figure 1.

In the case of Models (ii) and (iv), the allowed region corresponds to $|c|$ and $|\sigma|$ both small, giving a practically scale-independent spectral index, with a red and blue spectrum respectively.

In contrast, the allowed region for Models (i) and (iii) allows strong scale-dependence. In
Model (i), a large departure from a constant spectral index is allowed for large σ; for the theoretically favored value $\sigma \sim 1$ the variation between k_{COBE} and $8^{-1}h\text{Mpc}^{-1}$ can be as large as 0.05, while the maximal change allowed by the data is 0.2. For Model (iii), a much larger departure from a constant spectral index is allowed, but in the theoretically favored regime $|\sigma| \geq c$ one again finds a variation of at most 0.05.

4 Conclusion

We have evaluated the observational constraints on the spectral index n, using a range of data, and we find, for constant n at 2-σ level, $0.88 \leq n \leq 1.11$ for $0 \leq z_R \leq 20$.

We have also investigated the running mass models, parameterized by c and σ. For c and σ with the same sign, we have found that indeed n can vary by about 0.05 between the COBE scale and $8h^{-1}\text{Mpc}$. Moreover, if c is positive as it would be for a gauge coupling, $n - 1$ can change sign between the COBE and $8h^{-1}\text{Mpc}$ scales. It will be very interesting to see how the present situation changes with the advent of better data.

Acknowledgments

It is a pleasure to thank D. H. Lyth with whom this work has been done. I would also like to thank the organizers of Moriond 2000 and the European Union for the financial support.

References

1. M. S. Turner, astro-ph/9904051; W. L. Freedman, astro-ph/9905222; N. A. Bahcall, J. P. Ostriker, S. Perlmutter and P. J. Steinhardt, astro-ph/9906463.
2. A. R. Liddle, D. H. Lyth, P. T. P. Viana and M. White, MNRAS 282, 281 (1996).
3. D. H. Lyth and L. Covi, astro-ph/0002397.
4. K. A. Olive, G. Steigman and T. P. Walker, astro-ph/9905320.
5. E. F. Bunn and M. White, Astrophys. J. 480, 6 (1997).
6. W. Sutherland et. al., astro-ph/9901189.
7. P. T. P. Viana and A. R. Liddle, astro-ph/9902245.
8. http://imogen.princeton.edu/~page/where_is_peak.html
9. M. White, Phys.Rev. D 53 3011 (1996).
10. http://www.sns.ias.edu/~matiasz/CMBfast/CMBfast.html
11. J. R. Bond and A. H. Jaffe, astro-ph/9809043; B. Novosyadlyj et. al., astro-ph/9912511.
12. E. D. Stewart Phys. Lett. 391B, 34 (1997); Phys. Rev. D56, 2019 (1997); L. Covi, D. H. Lyth and L. Roszkowski Phys. Rev. D60, 023509 (1999); L. Covi and D. H. Lyth Phys. Rev. D59, 063515 (1999); L. Covi Phys. Rev. D60, 023513 (1999); G. German, G. Ross and S. Sarkar, Phys. Lett. B469, 46 (1999).