Study on Aerodynamic Performance and Lightweight Multiobjective Optimization Design of Wheel With Entropy Weighted Grey Relational Analysis Methods

SHUAI ZHANG¹, (Member, IEEE), KUI LIU¹, SUTIE ZHANG²,³, AND LIYOU XU¹, (Member, IEEE)
¹College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471003, China
²General Research and Development Institute, China First Automobile Group Corporation Ltd., Changchun 130062, China
³State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
Corresponding author: Liyou Xu (xlyou@haust.edu.cn)

This work was supported in part by the Major Science and Technology Project of Henan Province under Grant 221100240400, in part by the Key Scientific Research Project of Colleges and Universities in Henan Province under Grant 20A460013, in part by the National Key Research and Development Program of China under Grant 2017YFD070020402, and in part by the Young Talent Support Project in Henan Province under Grant 2020HYTP016.

ABSTRACT In order to improve the aerodynamic performance and optimization efficiency while wheel lightweight designing, a multi-objective optimization design method of wheel lightweight based on entropy weighted grey relational analysis (EGRA) was proposed in this article. The aerodynamic analysis finite element model of the assembled wheel was established, and the simulation accuracy was verified by experiments. Study the distribution law of performance parameters such as pressure and turbulent kinetic energy in flow field of the car, analyze the variation law of flow field velocity and turbulent intensity in front and rear wheel cavities of the assembled wheel, and analyze the cloud diagram distribution of temperature and surface convective heat transfer coefficient of the brake disc (h_c). Research on the influence of wheels with different disc structures on the aerodynamic drag coefficient of the car (C_d) and the h_c. Combined with grey relational analysis (GRA) and EGRA, the objective evaluation of the comprehensive aerodynamic performance of wheels with different disc structures was given. With the design of experiments (DOEs), 12 important design variables were screened out by contribution analysis method. Using the approximate model method, combined with the RBF surrogate model, a hybrid method combining EGRA and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) was proposed to lightweight and multi-objective optimize the assembled wheel. Comparing and analyzing the optimization platform recommending scheme, the technique for ordering preferences by similarity to ideal solution (TOPSIS) method preferring scheme and the EGRA method optimum scheme, it was found that the optimal compromise scheme was obtained by the EGRA method, the reduction of the C_d was more obvious, and the improvement rates of performance were also more balanced. After multi-objective optimization, the mass of the assembled wheel was reduced by 10.83%, the C_d was reduced by 5.02%, and the average convective heat transfer coefficient of brake disc (h_c) was reduced by 8.02%. The optimized assembled wheel has a weight reduction of 32.74% compared with the same type of cast aluminum alloy wheel, which has a remarkable lightweight effect and significant reduction on the C_d.

INDEX TERMS Aerodynamic drag coefficient, assembled wheel, convective heat transfer coefficient, entropy weighted grey relational analysis, lightweight and multi-objective optimization.

I. INTRODUCTION
The aerodynamic drag of the wheel accounts for 25%~30% of the car and its aerodynamic performance and lightweight...
design have a significant effect on vehicle energy saving and emission reduction. A reasonable wheel structure design can effectively improve the aerodynamic performance and lightweight level of the car [1], [2], [3]. As the space for reduction of the aerodynamic drag coefficient of the car (C_d) becomes smaller and the aerodynamics analysis of the car develops toward refinement, the importance of wheels for reducing the C_d is increasing.

In addition, the wheel also affects the flow field near the brake disc, which affects the convective heat transfer coefficient of the brake disc (h_c), thereby affecting the heat dissipation performance of the disc. The heat dissipation performance of the brake disc directly affects driving safety, and more than 85% of the heat dissipation of the brake disc is carried out by convection heat transfer [4], [5], [6]. Therefore, in the wheel design, it's necessary to consider the influence of the change of wheel structure on the h_c.

Ilea and Iozsa [7] analyzed the effect of body shape in the wheel region on aerodynamic performance by progressively closing the rear wheel opening and used computational fluid dynamics (CFD) methods to obtain the results. The results show that closing the rear wheels has important aerodynamic advantages without affecting other functions of the car. Abandoning the aesthetic problem and designing the wheel area only from the aerodynamic point of view can greatly reduce the aerodynamic drag of the wheel and improve the drag coefficient of the car. Xia et al. [8] used RANS based on SST k-omega turbulence model to study the effect of gap spacing on train aerodynamics and verified by wind tunnel test data. The results show that the gap spacing significantly affects the airflow structure around the compartment gap and the aerodynamic drag of the train model. For the 1/8 scale high-speed train model, the gap spacing results in a significant reduction in the aerodynamic drag of the leading car and an increase in the aerodynamic drag of the trailing vehicle. Huang et al. [9] took the centerline of the two wheels of the symmetrical cross-section of the left wheel as the roll axis, established a simplified roll motion model by using the overlapping grid method, and studied the aerodynamic mechanism of the periodic roll motion of the body. The results show that the roll motion is closely related to the aerodynamic characteristics of the car, and the aerodynamic phase on the car is shifted due to the hysteresis effect, and the most dangerous position of the car can be obtained. This study provides engineering reference for vehicle design and safety evaluation. Yun [10] conducted a detailed analysis of the aerodynamic drag of the KTX-Sancheon and carried out the nose shape optimization using the Broyden-Fletcher-Goldfarb-Shanno optimization method. The results show that the aerodynamic drag of optimized train set is reduced by 15.0% compared with the aerodynamic drag of KTX-Sancheon.

Kothalawala and Gatto [11] studied the influence of applied yaw angle on the aerodynamics of rotating wheels in free air, using unsteady Reynolds-averaged Navier-Stokes simulations to characterize the complexity of the configuration surface and Near Wake Field Physics. The results show that the flow field around the wheel is mainly vortex in nature, and the number and strength of developed vortex structures is strongly dependent on the applied yaw angle level. Su et al. [12] discussed the influence of the spoke characteristics on the C_d, studied the improved MIRA model on Fluent, researched the relationship between the C_d under different spoke offset distances and curvatures, and analyzed the reasons for aerodynamic drag changes in different situations. The results show that a smaller spoke offset distance is beneficial to the reduction of drag coefficient. When the wheel spoke offset distance is 10 mm, the minimum value of C_d is 0.2514. Malizia and Blocken [13] accurately modeled two bicycle wheels, investigated the effect of the presence of the ground and type of wheel/ground contact on the wheel’s aerodynamic drag, and provided flow field visualizations to elucidate around spokes wheels in crosswind conditions flow behavior. The results show that the gap between wheel and ground should be a maximum of 10 mm, lower than without crosswind, and the step height should be less than 10 mm. Jia et al. [14] used the stable Reynolds-averaged Navier-Stokes calculation in the simulation, combined with a wind tunnel experiment, to study local flow, surface pressure coefficient, aerodynamic drag coefficient and lift coefficient of wheel under different conditions. The results show that the rotating wheel has a significant effect on the flow around the isolated wheel, and rotation reduces the differential pressure, drag coefficient and lift coefficient, thereby improving aerodynamic performance. Martins et al. [15] studied the aerodynamic interaction of three-element wing and wheels in ground effect by performing a 3D computational fluid dynamics analysis on a simplified quarter model of a Formula One racing car using a detached-eddy simulation approach. The results show that the wheel wake is influenced by flap configuration, and different flap configurations produce different up wash flow fields, resulting in a change in the separation point at the top of the tire. As the separation point moves back, the downwash generated in the central region of the wheel wake gradually increases, resulting in a shorter and longer combined wake.

Wang et al. [16] conducted an experimental study on a 2/5 scale vehicle equipped with 2/5 scale rotating wheels. The results show that the near wake of the wheel has a more local effect on the aerodynamic lift and drag of the car and the low-pressure region of the underbody has an effect on aerodynamic pressure. The rear wheel wake interacts with the car wake, exerting pressure conditions on the bottom of the body and affecting the drag of car. Zhang et al. [17] analyzed the influence of the tire profile on the aerodynamic characteristics of the vehicle, established a parametric model based on the tire size parameters, optimized the design parameters of the tire profile, and reduced the aerodynamic resistance. Zhou et al. [18] analyzed the influence of tire profile and tread pattern structure on tire aerodynamic performance, studied the load characteristics of different tire pattern structures, and revealed the difference between the flow characteristics and the flow field around the tire.
II. METHODOLOGY

A. CONTRIBUTION ANALYSIS METHOD

The contribution analysis method mainly uses the regression of DOEs to calculate the contribution, which is used for ranking the contribution of design variables to the performance target and screening the design variables in high dispersion or high nonlinearity analysis to reduce the computational cost and improve the efficiency of optimal design, and its analytical calculation steps are as follows.

Step 1: Normalize processing

A DOEs approach was used to obtain a sample of experiments between design variables and response characteristics. The design variables have different design spaces, contribution values also change in the design space, and the sample data input needs to be normalized using formula (1):

\[x_i^* = \frac{x_i - \bar{x}}{\sigma} \]

where \(\bar{x} \) is the average value of the sample data; \(\sigma \) is the standard deviation; \(N \) is the total number of sample data; \(x_i \) is the original input and \(x_i^* \) is the normalized input.

Step 2: Contribution analysis

If there are \(k \) design variables \((x_1, x_2, \ldots, x_k)\), then any response characteristic can be expressed by a multiple regression model as:

\[P(x_1, x_2, \ldots, x_k) = \mu + \sum_{i=1}^{k} Q_i(x_i) + \ldots + \sum_{i=2}^{k} \sum_{j=1}^{k-1} R_{ij}(x_i, x_j) + \varepsilon \]

where \(P(x_1, x_2, \ldots, x_k) \) is any response characteristic; \(\sum_{i=1}^{k} Q_i(x_i) \) is the main effect of design variable; \(\sum_{i=2}^{k} \sum_{j=1}^{k-1} R_{ij}(x_i, x_j) \) is the crossover effect of any two design variables; \(\mu \) is a constant term and \(\varepsilon \) is the deviation.

The main effect of the design variable can be expressed by formula (3):

\[\sum_{i=1}^{k} Q_i(x_i) = \sum_{i=1}^{k} \hat{\beta}_i x_i \]

Therefore, the contribution of the design variables can be defined by formula (4):

\[N_{ij} = \frac{100\hat{\beta}_i}{\sum_{i=1}^{k} |\hat{\beta}_i|} \quad i = 1, 2, \ldots, k \]
where $\hat{\beta}$ is calculated coefficient of design variable x_i using the least squares estimation method and N_x is the corresponding contribution of design variable x_i.

B. GREY RELATIONAL ANALYSIS

GRA is a method that uses grey relational grade (GRG) to measure the degree of approximation between experimental sequence and ideal sequence. It is widely used in multi-objective and multi-decision optimization problems, and has comprehensive advantages in solving complex decision-making problems [25]. The specific steps of GRA are as follows:

Step 1: Data pre-processing

Due to the different orders of magnitude of experimental data, GRA may not be able to obtain reliable optimal solutions, so it is necessary to convert the experimental data into a set of dimensionless data between 0.00 and 1.00 for further quantitative analysis. According to the characteristics of response characteristics, different data pre-processing techniques can be used.

If the response characteristic has the characteristics of “bigger is better”, the normalization method can be expressed as:

$$
 x_i^*(k) = \frac{x_i(k) - \min_k x_i(k)}{\max_k x_i(k) - \min_k x_i(k)} \\
 \times (k = 1, 2, \cdots; i = 1, 2, \cdots m) \tag{5}
$$

If the response characteristic has the characteristic of “lower is better”, the normalization method can be expressed as:

$$
 x_i^*(k) = \frac{\max_k x_i(k) - x_i(k)}{\max_k x_i(k) - \min_k x_i(k)} \\
 \times (k = 1, 2, \cdots; i = 1, 2, \cdots m) \tag{6}
$$

If the response characteristic is ideal with respect to a specific value, the normalization method can be expressed as:

$$
 x_i^*(k) = 1 - \frac{|x_i(k) - T|}{\max |\max_k x_i(k) - T, T - \min_k x_i(k)|} \\
 \times (k = 1, 2, \cdots; i = 1, 2, \cdots m) \tag{7}
$$

where $x_i^*(k)$ is the k-th response characteristic value of the i-th experiment after normalization; $x_i(k)$ is the initial design value of response characteristic; $\min_k x_i(k)$ and $\max_k x_i(k)$ is the minimum and maximum value of all response characteristics $x_i(k), k = 1, 2, \ldots, n; i = 1, 2, \ldots, m; m$ is the number of experiments; n is the number of response characteristics and T is the specific value.

Step 2: Calculate the grey relational coefficient (GRC)

The GRC of the k-th response characteristic of the i-th experiment is expressed as:

$$
 \gamma (x_i^0(k), x_i^*(k)) = \frac{\Delta_{\text{min}} + \xi \Delta_{\text{max}}}{\Delta_{0i}(k) + \xi \Delta_{\text{max}}} \tag{8}
$$

where $x_i^0(k)$ is the reference experimental sequence; $x_i^*(k)$ is the initial experimental sequence; $\Delta_{0i}(k) = |x_i^0(k) - x_i^*(k)|$ is the absolute difference between $x_i^0(k)$ and $x_i^*(k)$; $\Delta_{\text{max}} = \max_i \max_k \Delta_{0i}(k)$ and $\Delta_{\text{min}} = \min_i \min_k \Delta_{0i}(k)$ are the maximum and minimum values of $\Delta_{0i}(k)$, respectively; ξ is the distinguishing coefficient, $\xi \in [0, 1]$, which is generally defined as 0.5.

Step 3: Calculate the GRG

The GRG is calculated by averaging the GRC and expressed as:

$$
 \Gamma (x_i^0, x_i^*) = \frac{1}{n} \sum_{k=1}^{n} \gamma (x_i^0(k), x_i^*(k)) \tag{9}
$$

where Γ is the GRG, and n is the number of response characteristic.

According to formula (9), the GRG of each design scheme can be obtained. According to the size of GRG, each design scheme can be sorted to obtain the optimal scheme with comprehensive performance. Through calculation, the design scheme with the highest GRG value represents the scheme with the best comprehensive performance.

C. ENTROPY WEIGHTED GREY RELATIONAL ANALYSIS (egra)

The entropy weight method is used to determine the weight of objective function. The higher entropy weight, the greater the weight of objective function in optimization process.

The mapping function $f_i: [0,1] \rightarrow [0,1]$ applied in the entropy must satisfy the following three conditions $f_i(0) = 0, f_i(x) = f_i(1-x)$, and $f_i(x)$ must be monotonically increasing in interval $x \in (0,0.5)$; Therefore, the function $w_e(x)$ is defined as the mapping function of the entropy weight method:

$$
 w_e(x) = xe^{1-x} + (1-x)e^x - 1 \tag{10}
$$

where $w_e(x)$ takes its maximum value at $x = 0.5$, that is, $w_e(0.5) = 0.6487$. At the same time, in order to ensure that the mapping function can take values within the range $[0,1]$, the following new entropy is defined:

$$
 W = \frac{1}{(e^{0.5} - 1)n} \sum_{i=1}^{n} w_e(x_i) \tag{11}
$$

According to the above definition and the GRC, the steps for determining the weight of each objective function are as follows:

1. In all design schemes, the sum of the GRC corresponding to the k-th response characteristic:

$$
 T_k = \sum_{i=1}^{m} \gamma (x_i^0(k), x_i^*(k)) \tag{12}
$$

2. Normalize the coefficients:

$$
 N_e = \frac{1}{(e^{0.5} - 1)m} = \frac{1}{0.6487m} \tag{13}
$$

3. The entropy of each response characteristic can be written as:

$$
 e_k = N_e \sum_{i=1}^{m} \left(\frac{\gamma (x_i^0(k), x_i^*(k))}{T_k} \right) \tag{14}
$$
(4) The sum entropy can be expressed as:

\[E = \sum_{k=1}^{n} e_k \]

(5) The relative weight can be calculated as:

\[\beta_k = \frac{1}{m - E} (1 - e_k) \]

(6) The weight of the \(k \)-th response characteristics can be written as:

\[\omega_k = \frac{\beta_k}{\sum_{i=1}^{n} \beta_i} \]

Since the relative significance of each response characteristic may be different, the simple averaging method of formula (9) may lead to inaccurate evaluation of the GRG. Therefore, according to formula (17), the weight of each response characteristic can be obtained, and different weights are assigned to the response characteristic to carry out EGRA:

\[\Gamma (x_0^*, x^*_k) = \sum_{k=1}^{n} \omega_k \gamma (x_0^*(k), x^*_k(k)) \]

where \(\omega_k \) is the weight of the \(k \)-th response characteristic.

According to formula (18), EGRA sorting can be performed to obtain optimal solution for comprehensive performance. The design with the highest EGRA value represents the best overall performance.

III. CALCULATION MODELS AND MESHING

A. WHEEL MODEL

The separate design and processing of rim and disc can break through the limitations of traditional wheel manufacturing in terms of structural optimization design, mixed material application and advanced manufacturing technology, and improve the mechanical properties, manufacturing process and production efficiency of the wheel. Moreover, in the author’s previous research, due to the separate design and processing of the disc, the design space of the disc shape becomes larger, and the aerodynamic drag of the car can be reduced through the optimization of the disc shape design. This article takes the 16 × 6/2J assembled wheel as the research object, which is connected by bolts, as shown in Figure 1.

B. DRIVER STANDARD CAR MODEL

The car models based on aerodynamics research are mainly divided into two categories: one is simplified car models, such as SAE standard car models and Ahmed blunt-body car models, the other is mass-produced car models. The application scope of simplified model research results is limited and there is a certain gap with real car. However, due to the limited production cycle, high research cost, and difficulty in obtaining research and test data by the public, mass-produced cars also limit the use of researchers.

The Institute of Aerodynamics and Fluid Mechanics, which is affiliated to the Technical University of Munich, has launched a new car model, the DrivAer model, for the study of the outer flow field of car. Common modular standard components are provided for researchers to choose, which can be freely combined to form different configuration models according to needs: the chassis are divided into Detailed (D) and Smooth (S); the rearview mirror are divided into with Mirrors (wM) and without Mirrors (woM); wheels are divided into with Wheels (wW) and without Wheels (woW); ground conditions are divided into Ground Simulation (with GS) and without Ground Simulation (woGS). And all of them provide corresponding wind tunnel test data for researchers to use in CFD numerical simulation for validation.

In order to achieve the accuracy of CFD simulation analysis, it is necessary to adjust the calculation scheme of numerical simulation based on wind tunnel test data to determine the appropriate meshing strategy, boundary condition parameters and solution method [26], [27]. Thus, this article uses the DrivAer model and its wind tunnel test data to verify the correctness of the simulation model. Considering the research focus of wheel aerodynamic performance, the combination configuration of a smooth chassis, removing the rear-view mirror, keeping the wheels and mobile ground were selected [28]. As shown in Figure 2.

C. WIND TUNNEL MODEL

Theoretically, the scope of the virtual wind tunnel of the flow field outside the car should be infinite, but it is
unexpected in practical engineering, as long as the boundary of the virtual wind tunnel does not interfere with the flow field, and the incoming flow is approximated as no interference.

Create a rectangular computational domain, make 3 times the car length from the entrance of the computational domain, 7 times the car length from the computational domain exit, 5 times the car width from the left and right borders of the computational domain, and 5 times the height of the car from the top boundary of the computational domain. Then the blockage ratio of the virtual wind tunnel is 1.6%, and the computational domain basically eliminates the influence of the blockage effect of wind tunnel.

D. MESHING STRATEGY

Computational grids are the basis for spatial discretization of control equations, and the type and size of grids affect computational accuracy and computation time. According to the relationship among grid points, it can be divided into unstructured grids, structured grids and composite grids. The composite grid scheme is an ideal compromise scheme at present, which can give full play to the advantages of unstructured grids and structured grids, while avoiding the shortcomings of each. In this article, the composite mesh scheme of triangular prism mesh, tetrahedral mesh and hexahedral mesh is used.

1) **BOUNDARY LAYER MESHING**

The wall function is used to represent the distribution of physical quantities such as velocity, temperature, and turbulent energy in the boundary layer to solve the influence of the wall on the flow, and its wall equation can be a good correction of the turbulence model for the region affected by viscous forces. The wall function method needs to determine the height of the first layer grid node of the boundary layer [29], as shown in formula (19):

\[
y = \frac{y^+ \mu}{\sqrt{0.037 \rho^2 U_\infty^2 \left(\frac{\mu}{\rho U_\infty} \right)^{0.2}}}
\]

(19)

where \(y^+\) is the wall distance, \(\mu\) is the dynamic viscosity of air, \(\rho\) is the air density, \(U_\infty\) is the inflow velocity, \(u\) is the characteristic velocity of flow, \(L\) is the characteristic length of car.

When the test condition is set to 20 °C, \(\rho = 1.205 \text{ kg/m}^3\), \(\mu = 1.81 \times 10^{-5} \text{ kg/(m-s)}\), \(u = 30 \text{ m/s}\), \(L = 4.612 \text{ m}\), \(U_\infty = 30 \text{ m/s}\), \(y^+ = 35\). According to formula (19), \(y = 0.45 \text{ mm}\).

The triangular prism meshes parallel to the body and wheels were stretched to meet the wall function and accurately simulate the boundary layer flow on the car surface. Part of the boundary layer meshes of the body and wheel parts are shown in Figure 3, which has 3 layers of the grids and the growth rate is 1.2 [30].

2) **COMPUTATIONAL DOMAIN MESHING**

In the sensitive area of the car, the gradient of the flow field parameters is large, and mesh refinement is required. Therefore, the grid near the boundary of the computational domain can be divided sparsely, and the grid near the car needs to be refined, and three gradually encrypted density boxes were set up. The research focus of this article is the aerodynamic performance of wheel, so it is necessary to refine the meshes around the front, rear and wheels, and the mesh refinement strategy is shown in Figure 4. The flow field near the boundary of computational domain is divided by a hexahedral structured mesh, and the flow field near car outside the boundary layer is divided by a tetrahedral unstructured mesh by the center interpolation method [31]. The half-car model flow field has a total of 5.324 million calculation grids, as shown in Figure 5.

IV. BOUNDARY CONDITIONS AND EXPERIMENTAL VERIFICATION

A. TURBULENCE MODEL

The Reynolds-Averaged Navier-Stokes (RANS) method based on the time-averaged velocity field is the basic method used in turbulence calculation. The Standard \(k-\varepsilon\) model, RNG \(k-\varepsilon\) model and Realizable \(k-\varepsilon\) model are most widely used, especially for the aerodynamics analysis of
car which the turbulent Reynolds number region is large enough. In this article, the Realizable $k-\varepsilon$ model is selected, which effectively avoid distortion when simulating strong swirl or flow with curved walls, the convergence is greatly improved [32], [33].

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho ku_i)}{\partial x_i} = \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k - \rho \varepsilon$$ \hspace{1cm} (20)

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho u_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + \rho C_1 \varepsilon - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{\varepsilon}}$$ \hspace{1cm} (21)

where k is turbulent kinetic energy, ρ is air density, ε is dissipation rate, μ_t is turbulent viscosity coefficient, G_k is generation term of turbulent kinetic energy caused by the mean velocity gradient, σ_k and σ_ε are the Prandtl function, C_1 and C_2 are constants.

B. NUMERICAL SOLUTION METHOD

Assuming that the air flow is incompressible, steady-state numerical calculations are performed using a pressure-based solution using an uncoupled implicit method. The Realizable $k-\varepsilon$ model is used for the turbulent region, and the standard wall function method is used for the wall region. The numerical solution method settings are shown in Table 1.

C. BOUNDARY CONDITIONS

Numerical calculation needs to give boundary conditions on the boundary of a finite area, which not only satisfies the solution of mathematical equations, but also has clear physical meaning. When setting the ambient temperature $T = 293$ K, the boundary condition parameters of the computational domain are shown in Table 2.

In Table 2, I is the turbulence intensity; D is the hydraulic diameter; u is the inlet wind speed and the speed of the car; ω is the wheel rotation angular velocity; and p is the outlet pressure of the computational domain.

The roughness height and the roughness constant settings of each boundary are shown in Table 3.

D. SIMULATION AND EXPERIMENTAL VERIFICATION

1) **VERIFICATION OF C_D**

The test data of DrivAer in different combinations were provided by the Technical University of Munich. Figure 6 shows the C_d in the wind tunnel test of DrivAer under different configurations.

Import the finite element model into ANSYS/FLUENT 14.0 for solution (Hardware: PowerEdge R7525; AMD 7763 2.45 GHz 64 C; 1.92TB NVME; NVIDIA Ampere A40 48GB GPU), and the simulated value of the C_d is compared with the experimental value, as shown in Table 4.

The error between the simulation value and the test value is 0.40%, which shows that the set calculation scheme is correct and feasible.

2) **VERIFICATION OF SURFACE PRESSURE COEFFICIENT OF DrivAer MODEL**

In order to further verify the correctness of the CFD calculation scheme, the pressure coefficient c_p distribution on...
the surface of DrivAer model is selected for simulation and experimental comparison verification. The c_p distribution on the surface of the $z = 150$ mm plane, as shown in Figure 7(a) and 7(b). The c_p distribution on the surface at top and bottom of the symmetry plane, as shown in Figure 7(c) and (d).

![FIGURE 7. Distribution of the c_p on DrivAer.](image)

In this article, the pressure coefficients of two DrivAer configuration models (FSwMwW with GS and FSwMwW with GS) are calculated. The results show that the presence or absence of rear-view mirrors has little effect on the pressure coefficients of the $z = 150$ mm plane, symmetry plane and wheel of the car model, in figure 7(b)-(d). The comparison with the experimental value shows that the simulated value of the surface pressure coefficient distribution of the DrivAer model is in good agreement with the experimental value, the numerical simulation result is accurate.

V. AERODYNAMIC ANALYSIS OF WHEEL

A. BRAKE DISC MODEL AND BOUNDARY CONDITIONS

In order to study the influence of wheel structure on the h_t, it is necessary to add a brake disc to the DrivAer model. The gray cast iron (HT250) ventilated brake disc was selected, and other accessories such as brake calipers were omitted. The 3D model and main structural parameters are shown in Figure 8 and Table 5, respectively.

![FIGURE 8. 3D model of ventilated brake disc.](image)

The heat flux density of the brake disc is under the condition of constant speed braking on a long downhill [34].

TABLE 5. Parameters of disc model.

Parameter name	Parameter value
Total surface area /mm2	239800
Outer diameter /mm	275
Inner diameter /mm	170
Thickness /mm	26
Number of Fins /	45

The boundary conditions of the brake disc are set as shown in Table 6.

TABLE 6. Boundary settings of brake disc.

Property	Value	Property	Value
Density ρ(kg/m3)	7280	Spin speed ω(rad/s)	92
Specific heat c_p/(J/(kg·K))	480	area heat flux q/(W/m2)	2.5×10^4
Thermal conductivity λ(W/(m·K))	45	Roughness height K/mm	0.5
Temperature T(K)	293	Roughness constant C_t	0.5

B. FEM FOR ASSEMBLED WHEEL AERODYNAMIC ANALYSIS

In the DrivAer model, the original wheel was replaced with the assembled wheel, and the above ventilated brake disc model was added, the 3D model of DrivAer after reconfiguration is shown in Figure 9(a). The FEM is shown in Figure 9(b).

![FIGURE 9. Reconfigured DrivAer model.](image)

The same meshing strategy as in Section III is used to divide the reconfigured DrivAer model and flow field, half-car flow field calculation grids is 5.669 million. The refined part and the finite element model of the flow field are shown in Figure 10 and Figure 11, respectively. The finite element model is set up using the same boundary conditions and solution method as in Section IV. Since heat transfer needs to be calculated, the energy equation is opened and the calculation is performed in ANSYS/FLUENT.

C. y^+ VALIDATION OF THE FIRST LAYER GRID

The y^+ value of the first layer grid in the near-wall region of body satisfies $30 < y^+ < 300$, in order to indicate that the numerical calculation can obtain good simulation results. Figure 12 shows the y^+ value distribution cloud map of reconfigured DrivAer boundary layer grid when the car speed is 30 m/s.

The y^+ value of the boundary layer grid on the surface of the car is distributed around 34.50, and this article estimates...
y^+ = 35.0 in formula (19). The numerical calculation of the flow field truly reflects the flow characteristics of wall boundary layer.

D. FLOW FIELD CHARACTERISTICS ANALYSIS FOR CAR

Replacing wheels and adding brake discs increases the C_d of the DrivAer model, which is 0.2332. The distribution of each performance parameter of the car flow field is shown in Figure 13.

As shown in Figure 13(a), the airflow forms a positive pressure region at the front of the body and the front windshield, which constitutes the main C_d, and the positive pressure at the front of the body reaches 102.25 kPa.

The vortex system in the wheel cavity is most distributed, especially in the front wheel, which has a great influence on the car, which in turn affects the C_d and the h_c. Meanwhile, the formation of negative pressure areas at the bottom and rear of the body consumes lots of energy, resulting in increased C_d.

As shown in Figure 13(b), the turbulent kinetic energy is large when the airflow passes through the front of the body, the windshield, the front of the bottom of the front wheels and the rear wheels, resulting in a lot of energy consumption. When the airflow passes through the front of the body, due to the pressure difference, the airflow enters the wheel cavity, resulting in turbulent kinetic energy increase and energy consumption.

E. FLOW FIELD CHARACTERISTICS IN WHEEL CAVITY

Due to the rotation of the wheel and the negative pressure, the airflow flowing into the wheel cavity will form strong turbulence or vortex core inside the wheel, which will affect the flow field near the car, dissipate energy and increase aerodynamic drag. The velocity vector of the flow field and the distribution of turbulence intensity at the wheel cavity are shown in Figure 14.

As shown in Figures 14(a) and (b), the airflow hits the front of the lower part of the wheel to form positive pressure and wheel cavity vortex, which increases the C_d. The airflow velocity at the front wheel is the largest, and it also has the greatest impact on the C_d and the h_c.

As shown in Figures 14(c) and (d), the airflow forms a vortex core at front and rear wheels off the ground, and the vortex core expands into a vortex, which is separated in the direction of the car leaving. The maximum turbulence intensity at the front wheel is 23.62%, and the rear is 17.83%.

Because the front wheel is directly impacted by the incoming flow, the turbulent flow intensity is greater; while the turbulent flow intensity of the rear wheel is smaller, but it has a great impact on the flow field at the rear of the body; the tail of the body forms two wake vortices that revolve around its own vortex core, and a back flow phenomenon occurs. Therefore, the flow field near the wheel cavity can be changed by optimizing the design of the disc structure to reduce the C_d.

F. TEMPERATURE AND H_C ANALYSIS FOR BRAKE DISC

The high-speed rotating wheel causes the change of the flow field near the wheel cavity, and the change of the flow field determines the h_c. The cloud map of temperature and h_c of front and rear brake discs are shown in Figure 15; the average temperature and average surface convective heat transfer coefficient of brake disc (h_a) are shown in Table 7.
As shown in Figure 15, the h_c at the bottom and the surface near the wheel is better than other parts, which is related to the turbulence intensity of the flow field near the disc.

As shown in Table 7, the average temperature of the front disc is 20.82% lower than that of the rear disc, and the h_a of the front disc is 23.18% higher than that of the rear disc.

The above analysis shows that the greater the airflow velocity and turbulence intensity of the flow field in the wheel cavity, the better the h_c, but it will cause the increase of the C_d.

To sum up, the reduction of the C_d and the improvement of the h_c are in conflict. By optimizing the wheel structure, especially the disc structure, the impact of the airflow on the side of the body on the rotating disc can be reduced, thereby reducing the C_d, but it will cause the reduction of the h_c. Therefore, it is necessary to study the aerodynamic performance of wheels with different disc structures to explore the influence rules and compromise points of these two performances.

TABLE 7. Average temperature and h_c comparison of brake discs.

	T/K	h_c(W/(m2K))
Front brake disc	658.22	76.80
Rear brake disc	831.26	62.35

G. AERODYNAMIC PERFORMANCE ANALYSIS FOR WHEELS WITH DIFFERENT DISC

To further study the influence law of wheel structure on the C_d and the h_c, different disc structures were designed and analyzed to study the aerodynamic performance of the wheel.

By changing the wheel disc structure, 18 different wheel models were designed and divided into 3 groups for research. The first group of wheel models has the same disc opening area, but different number of spokes: keep the disc opening area of 29927 mm2 unchanged, and design 5-spokes, 6-spokes, 7-spokes, 8-spokes, 9-spokes and 10-spokes wheels. The second group of wheel models has the same disc opening area, but different spoke styles: keep the disc opening area of 29927 mm2 unchanged, and design common 6 different spoke style wheels. The third group of wheel models has the same number of spokes, but different disc opening area: the number of spokes is designed to be 5, and the spoke widths are 100 mm, 85 mm, 70 mm, 55 mm, 40 mm and 25 mm wheels. Three groups of wheel models with different disc structures are shown in Figure 16.

Keep the brake disc unchanged in the reconfigured Dri/vAer model, replace wheels with different spoke structures, adopt the same CFD analysis preprocessing method and calculation scheme as in Section III and Section IV. Using ANSYS/FLUENT for numerical calculation, the C_d and the h_a are obtained (the average value of front and rear brake discs is taken). Combined with GRA and EGRA in Section II, the aerodynamic performance of wheels with different disc structures is ranked, as shown in Table 8.

As shown in the first group of wheel models in Table 8, the 6-spokes wheel has the smallest C_d, and the 5-spokes wheel has the largest h_a. The opening area of disc of each wheel is the same, the air flow entering the wheel cavity, vortex formation and turbulence intensity are basically close, so the C_d does not change significantly due to the change of the number of spokes. However, wheels with fewer spokes have larger holes between individual spokes, which is conducive to the concentration of airflow into the wheel cavity and enhances the heat convection effect of brake disc. As the number of spokes increases, the h_a decreases.

Based on the GRA ranking, the 5-spokes wheel has the highest comprehensive performance index of 0.8571; based on the EGRA ranking, the 5-spokes wheel has the highest comprehensive performance index of 0.8795. Both methods
can give an optimal solution with a high comprehensive performance index based on the conflicting the C_d and the h_a.

After sorting and comparing the two methods, it is pointed out that the 5-spokes wheel has high comprehensive performance, which avoids the blindness of subjective selection. The results show that when the opening area of disc is the same, reducing the number of spoke is beneficial to reduction of the C_d and the improvement of the comprehensive aerodynamic performance of wheel.

As shown in the second group of wheel models in Table 8, the wheel with the f-style disc has smallest C_d, and the wheel with the a-style disc has the largest h_a. The opening area of disc of each wheel is the same, and the wheel with a large closed area at the top of spoke connected to the rim is not conducive to the airflow into the wheel cavity, the formation of the vortex system and the increase of the turbulent intensity, so the C_d is small, but it also leads to the increase of the h_a.

Based on the GRA ranking, the comprehensive performance index of wheel with the f-style disc is the highest of 0.6796; based on the EGRA ranking, the comprehensive performance index of wheel with the f-style disc is the highest of 0.7483. Both methods give an optimal solution with a high comprehensive performance index, after sorting and comparison, both methods point out that the wheel with f-style disc has higher comprehensive performance, which avoids the blindness of subjective selection. The results show that when the opening area of the spokes is the same, increasing the closed area of the top of the spokes connected to the rim is beneficial to the reduction of the C_d, but is not conducive to the improvement of the h_a.

Table 8. Aerodynamic performance parameters of wheels with different disc structures.

First group	5-spokes	6-spokes	7-spokes	8-spokes	9-spokes	10-spokes
C_d	0.24251	0.24250	0.24253	0.24252	0.24254	0.24255
$h_a/(W/(m^2\cdot K))$	73.67	71.29	72.08	69.52	69.03	68.51
(GRG)	0.8571	0.7601	0.5366	0.4695	0.3710	0.3333
(EGRA)	0.8795	0.7225	0.5495	0.4560	0.3688	0.3333
Second group						
C_d	0.2425	0.2391	0.2433	0.2421	0.2385	0.2331
$h_a/(W/(m^2\cdot K))$	76.86	73.12	74.65	67.35	73.82	68.38
(GRG)	0.6759	0.5096	0.5080	0.3475	0.5479	0.6796
(EGRA)	0.6064	0.4989	0.4706	0.3506	0.5345	0.7483
Third group						
C_d	0.2298	0.2305	0.2335	0.24253	0.2405	0.2319
$h_a/(W/(m^2\cdot K))$	62.68	69.21	71.26	75.58	77.82	78.24
(GRG)	0.6667	0.682	0.5797	0.5393	0.6609	0.8760
(EGRA)	0.7062	0.7078	0.5860	0.5150	0.6268	0.8613
As shown in the third group of wheel models in Table 8, the 5-spokes wheel with a 100 mm spoke width has the smallest \(C_d \), and the 5-spokes wheel with a 25 mm spoke width has the largest \(h_a \). Under the premise that the 5-spokes remain unchanged, as the width of the spoke is smaller, the opening area of spoke is larger, and the airflow entering the wheel cavity, the vortex system formed and the turbulence intensity increase, which increases the \(C_d \) and the \(h_a \).

Based on the GRA ranking, the comprehensive performance index of the 5-spoke wheel with a 25 mm spoke width is the highest of 0.8760; based on the EGRA ranking, the comprehensive performance index of the 5-spoke wheel with a 25 mm spoke width is the highest at 0.8613. Both methods give an optimal solution with a high comprehensive performance index, after sorting and comparison, both methods point out that a 5-spokes wheel with a 25 mm spoke width has a high comprehensive performance, which avoiding the blindness of subjective selection. The results show that with the same number of spoke, increasing the spoke width is beneficial to the reduction of the \(C_d \), reducing the spoke width is beneficial to the increase of the \(h_a \), and the improvement of the comprehensive aerodynamic performance of wheel depends on the compromise between the two performances.

To sum up, reducing the \(C_d \) and improving the \(h_a \) are not in conflict in all cases. Under certain conditions, the optimization of the two performances can be sought. To a certain extent, the GRA and EGRA methods used in this article can select the optimal solution combining the two performances, which provides a method basis for the wheel optimization design and scheme selection in the following.

VI. MULTI-OBJECTIVE OPTIMIZATION MODEL FOR ASSEMBLED WHEEL

A. OPTIMIZE THE DESIGN PROCESS

In order to comprehensively consider and meet the requirements of various performance index of the wheel, and optimize the most important objectives as much as possible, based on the previous aerodynamic performance research of the wheel, the parametric modeling technology and the approximation model method are used, and combined with the multi-objective optimization method, the lightweight multi-objective optimization of the wheel is carried out [35]. Under the condition of meeting the requirements of each performance index of wheel, the optimal lightweight and aerodynamic performance of the wheel is achieved. The flowchart of wheel lightweight multi-objective optimization is shown in Figure 17.

B. PARAMETRIC MODELING

In order to improve the deformation ability and design space of the wheel and increase the sampling space of the experimental design, the wheel model needs to be parametrically designed. Based on the advanced mesh deformation technology, the parameterization of wheel structure is realized by the translation and scaling of the finite element model control nodes, so as to construct the parameterized variables of the wheel model. The assembled wheel parametric model in this article defines 21 design variables, denoted as DV1, DV2,…, DV21, as shown in Figure 18. Table 9 gives the description, initial value and range of each design variable.

C. EXPERIMENT DESIGN AND CONTRIBUTION ANALYSIS

Due to the complex structure of the wheel and the large number of initial design variables, in order to improve the efficiency of multi-objective optimization of the assembled wheel, the initial design variables should be screened in combination with the contribution analysis. Based on the initial value and range of design variables in Table 9, the optimal Latin hypercube design (OLHD) was adopted, and 100 samples were selected to analyze the contribution of 21 initial design variables of the assembled wheel. Figure 19 shows the contribution values of 21 design variables to the performance of the wheel. In the contribution analysis graph, a positive bar value indicates a positive correlation, and a negative bar value indicates a negative correlation.

According to the ranking of contribution results, 12 initial design variables with greater influence are retained, namely DV1, DV2, DV3, DV4, DV5, DV6, DV7, DV8, DV16, DV17, DV18, DV21, and the 12 variables are represented as \(x_1 \sim x_{12} \) in sequence. The description, initial value and range of each design variable are shown in Table 9.

D. APPROXIMATE MODEL AND ACCURACY VERIFICATION

The relationship between design variables and performance index can be obtained using approximate model. The optimization based on the approximate model method, combined with the multi-objective optimization algorithm, can realize multi-objective optimization. Kriging and RBF surrogate
FIGURE 18. Schematic diagram of the design variables of the assembled wheel.

TABLE 9. Initial value and range of design variables.

Design variable	Variable description	Initial value	Lower bound	Upper bound
DV1/mm	Width of bottom spokes	68.0	61.0	75.0
DV2/mm	Width of top spokes	65.0	60.0	70.0
DV3/mm	Thickness of bottom spokes	18.5	13.5	23.5
DV4/mm	Arc radius of front spokes	150.0	135.0	165.0
DV5/mm	Arc radius of rear spokes	156.3	140.7	171.9
DV6/mm	Thickness of top spokes	11.5	8.5	14.5
DV7/mm	Width of spoke slots	12.0	0.0	17.0
DV8/mm	Length of spoke slots	44.0	40.0	48.0
DV9/mm	Height of spoke slots boss flat	3.5	3.5	3.5
DV10/mm	Width of root spoke grooves	45.0	35.0	50.0
DV11/mm	Width of top spoke grooves	45.0	35.0	50.0
DV12/mm	Length of spoke grooves	70.0	65.0	75.0
DV13/mm	Depth of spoke grooves	3.5	0.0	7.0
DV14/°	Angle of hub grooves	30.0	25.0	40.0
DV15/mm	Depth of hub grooves	29.0	23.0	35.0
DV16/mm	Thickness of hub	48.0	36.0	52.0
DV17/mm	Thickness of disc ring	8.0	6.0	10.0
DV18/mm	Thickness of rim ring	8.0	6.0	10.0
DV19/mm	Inside thickness of rim	6.0	5.0	7.0
DV20/mm	Outside thickness of rim	5.5	4.5	5.5
DV21/mm	Middle thickness of rim	4.5	3.5	5.5

FIGURE 19. Contribution analysis of design variables.

FIGURE 20. Approximate model accuracy for each performance index.

models are easy to obtain ideal fitting results when solving nonlinear problems, and have stronger predictive ability than single-parameter models, and are widely used in engineering.

Based on the DOE method, the OLHD is used to sample in the design variable space, and a total of 200 sample points are selected to fit the Kriging and RBF surrogate models of each performance index. Within the range of the design variables, another 20 sample points were selected by central composite design, and the cross-validation method was used to verify the accuracy of the Kriging and RBF surrogate models [36], [37]. The approximate model accuracy verification results of the performance index are shown in Figure 20.

Use the coefficient of determination (R^2), root mean square error (RMSE) and Mean Absolute Percentage Error (MAPE) to evaluate the accuracy of the approximate model. If the R^2 value is closer to 1 and the RMSE value is closer to 0, it indicates that the overall prediction accuracy of approximate model is higher, and when the MAPE value is smaller, it indicates that the local prediction accuracy of approximate model is higher. Table 10 shows the specific index values of the accuracy test results of each approximate model.
TABLE 10. Accuracy verification results of each approximate model.

Performance response	Kriging surrogate model	RBF surrogate model				
	R^2	RMSE	MAPE	R^2	RMSE	MAPE
M/kg	0.98114	0.04139	9.412%	0.9802	0.04736	9.361%
C_d	0.99181	0.02144	8.131%	0.9972	0.01305	2.393%
h_a/($W/(m^2*K)$)	0.99066	0.0239	5.787%	0.9909	0.02232	8.223%

By comparing the Kriging surrogate model and the RBF surrogate model, the prediction accuracy of the Kriging surrogate model is higher than that of the RBF surrogate model in terms of wheel mass, the RBF surrogate model has higher accuracy in terms of nonlinear responses such as the C_d and the h_a. And the RBF surrogate model has smaller RMSE and MAPE, which better balances the global prediction and local prediction ability of the approximate model. Therefore, after comprehensive consideration, the RBF surrogate model is selected as the approximate model of multi-objective optimization in this article.

E. OPTIMIZING MATHEMATICAL MODEL

The reduction of the C_d is the most important evaluation index in the analysis of aerodynamic performance of wheel, so the C_d is selected as the objective function; The h_a can quantitatively reflect the relationship between the aerodynamic performance of wheel and the h_a. Therefore, the h_a is selected as the objective function; The lightweight of wheel has a great influence on the driving performance of car, so the mass of assembled wheel is selected as the objective function. The design variables and range in Table 9 are selected as constraints, and the range of design variables ensure that the wheel can pass tests of structural strength, stiffness, fatigue and impact performance. The mathematical model of the lightweight multi-objective optimization of the assembled wheel can be expressed as:

$$
\begin{align*}
\min & \quad (M(x), C_d(x), -h_a(x)) \\
\text{s.t.} & \quad x \in (x_L, x_U)
\end{align*}
$$

where $M(x)$ is the wheel mass in multi-objective optimization, kg; $C_d(x)$ is the aerodynamic drag coefficient of car; $h_a(x)$ is the average surface heat transfer coefficient of brake disc; x is the design variable, x_L and x_U are the lower and upper limits of design variable, respectively.

VII. OPTIMIZATION RESULTS AND VALIDATION

A. MULTI-OBJECTIVE OPTIMIZATION RESULTS

In the multi-objective optimization platform Isight, based on the constructed RBF surrogate model, the NSGA-II optimization algorithm is used to carry out the lightweight multi-objective optimization design of the assembled wheel. The optimization platform is shown in Figure 21.

The group size of the NSGA-II optimization algorithm is set to 40, the generation is 100, and the crossover probability is 0.90. After 4000 iterations, the Pareto frontier consisting of 269 non-dominated optimal solutions is obtained, as shown in Figure 22.

B. SORTING OF PARETO FRONTIER

It can be seen from Pareto that the performance of M, C_d, and h_a is difficult to achieve optimal at the same time, so different compromise solutions need to be selected according to different optimization requirements. The objective function data corresponding to the 269 non-dominated optimal solutions in Pareto front are normalized, and then the GRC of each non-dominated optimal solution are calculated. Using the entropy weight method, the weights of three objective functions of M, C_d, and h_a can be obtained as 0.2077, 0.5121 and 0.2803, respectively. According to the weight of each objective function and the GRC of each non-dominated optimal solution, EGRA sorting can be performed.

Figure 23 shows the Pareto frontier GRG obtained by using EGRA, and the non-dominated optimal solution with the largest GRG is selected as scheme A. Therefore, the 232nd non-dominated optimal solution with the largest GRG
of 0.7181 is considered as the design solution with the best comprehensive performance.

![FIGURE 23. GRG of pareto frontier based on EGRA.](image)

In order to verify the effectiveness and feasibility of EGRA in the process of selecting the optimal compromise optimization scheme, this article also uses TOPSIS method [38] to select the set of solutions with the largest correlation degree from 269 non-dominated optimal solutions as scheme B, and the non-dominated optimal solution with the smallest lightweight coefficient obtained within the Isight platform as scheme C. Among them, when using the TOPSIS method to rank the Pareto fronts, in order to ensure the consistency of each condition, each objective function still adopts the weight obtained by the entropy weight method.

![FIGURE 24. Pareto frontier correlation obtained by TOPSIS method.](image)

Figure 24 shows the Pareto frontier correlation degree obtained by the TOPSIS method, in which the 183rd non-dominated optimal solution has the largest correlation degree of 0.6851, so scheme B is the 183rd non-dominated optimal solution obtained by the TOPSIS method.

Table 11 shows the performance comparison among optimization schemes A, B, and C and all three schemes can satisfy the performance requirements of the wheel. The optimization scheme A has a great improvement on the C_d, and the improvement rate is 5.02%; the wheel weight is improved by 10.83%, second only to the scheme C; and the h_a decreases the most, which is 8.02%. Although the optimization schemes B and C are better than the scheme A in terms of the h_a, but they are obviously insufficient in the improvement of the C_d. Therefore, the optimization scheme A has better comprehensive performance, and the improvement rate among its performances is relatively balanced. Compared with the TOPSIS method, the EGRA is simple and flexible in operation, and can provide guidance in the process of selecting the optimal compromise solution.

Table 12 shows the comparison between the optimization results of design variables of scheme A and the initial values before optimization.

According to Scheme A in Table 11, the mass of the assembled wheel after multi-objective optimization is 5.524 kg, which is 10.83% lower than the initial value; the C_d is 0.2215, which is 5.02% lower than the initial value; the h_a is 64.00, which is 8.02% lower than the initial value. The mass of a 16 × 61.2 J cast aluminum alloy wheel on the market is 8.213 kg. Compared with this wheel, the weight of the assembled wheel after multi-objective optimization is reduced by 2.689 kg, which is 32.74%.

As shown in Table 12, the optimized value of width of spoke grooves (x_7) is 4.54, which basically does not interfere with air flow due to its smaller width, which can reduce the C_d, but also weakens the h_a. The width and thickness of the bottom spokes and the thickness of hub are reduced, while the optimized assembled wheels use magnesium alloy rims, which contribute significantly to the reduction of wheel mass. Ultimately, the material and structural changes resulted in a multi-objective optimized assembled wheel with improved overall performance.

![FIGURE 25. Turbulence intensity cloud map of the assembled wheel cavity after optimization.](image)

C. PERFORMANCE VERIFICATION BEFORE AND AFTER OPTIMIZATION

The change of the disc structure of assembled wheel after optimization affects the flow field of wheel cavity and car, and then affects the C_d and the h_a. Therefore, it is necessary to compare and analyze the aerodynamic performance of the optimized front and rear assembled wheels. In the reconfigured DrivAer model in Section V.B, the pre-optimized assembled wheel is replaced with an optimized assembled wheel, and the same calculation scheme as in Section V is used for simulation analysis.

As shown in Figure 25, the maximum turbulent intensities of the X-direction section of front and rear wheel cavity of optimized assembled wheel are 20.65% and 15.81%; Before optimization, they were 23.62% and 17.83% respectively,
which were both lower than those before optimization. As shown in Figure 26 and Table 13, after optimization, the local and average temperatures of front and rear brake discs both increased, and the h_c decreased significantly.

After optimization, the width and thickness of the bottom spokes of assembled wheel was decreased, which reduces the impact of the rotating disc on the airflow and the interference of the outer flow field of car; at the same time, the spoke slot becomes smaller, which increases the closed area of the disc, especially the closed area close to the rim, reduces the air flow entering the wheel cavity, and weakens the interference of multiple airflows, the generation of vortices and the intensity of turbulence. These structural changes reduce aerodynamic drag, but also result in a reduction in the convective heat transfer performance of brake disc.

VIII. CONCLUSION

This article proposes a multi-objective optimization design method for wheel lightweight based on EGRA. The aerodynamic analysis finite element model of the assembled wheel was established, and the simulation accuracy was verified by experiments. The distribution law of performance parameters such as pressure and turbulent kinetic energy of car flow field is studied, and the variation law of the flow field velocity and turbulent flow intensity at front and rear wheel cavity of assembled wheel was analyzed. The influence of wheels with different disc structures on the C_d and the h_c was researched, and an objective evaluation of the comprehensive aerodynamic performance of wheels with different disc structures was given. Using the approximate model method, the lightweight multi-objective optimization based on the aerodynamic performance of assembled wheel was carried out, and the lightweight effect and the C_d are significantly reduced.

1. Based on the computational fluid dynamics method, the finite element model of the aerodynamic analysis of assembled wheel was established. Using the DrivAer standard model of the Technical University of Munich and its wind tunnel test data, the meshing strategy, boundary conditions and solution method of CFD simulation analysis were determined, and the simulation accuracy of the model was verified by experiments. The results show that the simulation values are in good agreement with the experimental values, the numerical simulation results are accurate, and the virtual wind tunnel can accurately simulate the flow field of DrivAer model.

2. Analyzed the distribution changes of performance parameters such as pressure and turbulent kinetic energy of
car flow field, discussed the change law of the flow field velocity and turbulent intensity of front and rear wheel cavities of assembled wheel, and demonstrated the temperature and h_c cloud map distribution of front and rear brake discs. The results show that the greater the pressure difference and turbulent kinetic energy of the car flow field, the airflow velocity and turbulence intensity of the flow field in the wheel cavity, the better the h_g and the greater the C_d.

3. The wheels with different number of spokes, different spoke styles and different spoke widths are designed for CFD simulation calculation, and the influence mechanism of wheel disc structure on the C_d and the h_c was studied. Combined with GRA and EGRA, the objective evaluation of the comprehensive aerodynamic performance of wheels with different disc structures was given. It is concluded that the 5-spokes wheel, the f-spoke style and the 5-spokes wheel with a spoke width of 25mm have better comprehensive performance. The results show that reducing the C_d and increasing the h_c can find the optimal solution that combines the two performance, which provides a method basis for wheel optimization design and scheme selection.

4. Combined with experimental design, 12 important design variables were screened out by contribution analysis method. The approximate model method is used to fit the Kriging surrogate model and the RBF surrogate model. It is found that the RBF surrogate model has higher accuracy in terms of nonlinear responses such as C_d and h_c, and better balance the global and local prediction ability of the approximate model. A hybrid method combining EGRA and NSGA-II is proposed for lightweight multi-objective optimization of assembled wheels. Comparing and analyzing the optimization platform recommending scheme, the TOPSIS method preferring scheme and the EGRA method optimum scheme, it was found that the optimal compromise scheme was obtained by the EGRA method, the reduction of the C_d was more obvious, which is 5.02%, and the improvement rates of performance were also more balanced. The feasibility of the sorting method was verified, the blindness of the optimal solution selection was avoided, and the objective evaluation method of the multi-objective optimization design results was established.

5. The mass of the assembled wheel after multi-objective optimization was reduced by 10.83%; the C_d was reduced by 5.02%, and h_g was reduced by 8.02%. Compared with a $16 \times 6^{1/2}$ J type cast aluminum alloy wheel on the market, the wheel has been optimized by multiple objectives to reduce the weight by 32.74%. The maximum turbulence intensity of front and rear wheel cavity of the assembled wheel after optimization is lower than that before optimization, the local and average temperature of front and rear brake discs are both increased, and the h_g is significantly reduced.

6. Further research should focus on the synergistic multidisciplinary multi-objective optimal design of wheel structural strength design and aerodynamic performance, which will result in more conflicting optimization solutions, which makes the EGRA introduced in this article more important in decision making. We can expect the joint improvement of wheel lightweight design and aerodynamic performance from future papers.

REFERENCES

[1] T. Hobeika and S. Sebben, “CFD investigation on wheel rotation modeling,” J. Wind Eng. Ind. Aerodyn., vol. 174, pp. 241–251, Mar. 2018.
[2] T. Dong, X. Liang, S. Krajnovic, X. Xiong, and W. Zhou, “Effects of simplifying train bogies on surrounding flow and aerodynamic forces,” J. Wind Eng. Ind. Aerodyn., vol. 191, pp. 170–182, Aug. 2019.
[3] X. Yu, Q. Ha, and Z. Yang, “Comprehensive study of the aerodynamic influence of ground and wheel states on the notchback DrivAx,” Energies, vol. 15, no. 3, p. 1124, Feb. 2022.
[4] K. Stevens and M. Tirovic, “Heat dissipation from a stationary brake disc, part 1: Analytical modelling and experimental investigations,” Proc. Inst. Mech. Eng., C, J. Mech. Eng. Sci., vol. 232, no. 9, pp. 1707–1733, no. 15, vol. 32, pp. 1049–1053, Feb. 2022.
[5] C. R. Raghavendra, S. Basavarajappa, and I. Sogalad, “Analysis of temperature field in dry sliding wear test on pin-on-disc,” Heat Mass Transf., vol. 55, no. 5, pp. 1545–1552, May 2019.
[6] L. Teodosio, G. Afferoi, A. Genovese, F. Farroni, B. Mele, F. Timpone, and A. Sakhnevych, “A numerical methodology for thermo-fluid dynamic modelling of tyre inner chamber: Towards real time applications,” Meccanica, vol. 56, no. 3, pp. 559–567, Feb. 2021.
[7] L. Ilea and D. Iozsa, “Wheels aerodynamics and impact on passenger vehicles drag coefficient,” IOP Conf. Ser., Mater. Sci. Eng., vol. 444, Nov. 2018, Art. no. 072005.
[8] Y. Xia, T. Liu, H. Gu, Z. Guo, Z. Chen, W. Li, and L. Li, “Aerodynamic effects of the gap spacing between adjacent vehicles on wind tunnel train models,” Eng. Appl. Comput. Fluid Mech., vol. 14, no. 1, pp. 835–852, Jun. 2020.
[9] T. Huang, Y. Yuan, H. Pan, W. Wang, Y. Meng, and C. Guan, “Research on the effect of car’s roll motion on the aerodynamic characteristics of high-speed car,” Proc. Inst. Mech. Eng., D, J. Automobile Eng., vol. 236, no. 8, pp. 1700–1715, Oct. 2021.
[10] S.-H. Yun, M.-H. Kwak, and C.-S. Park, “Study of shape optimization for aerodynamic drag reduction of high-speed train,” J. Korean Soc. Railway, vol. 19, no. 6, pp. 709–716, Dec. 2016.
[11] T. D. Kothialwala and A. Gatto, “Computational investigation into the influence of yaw on the aerodynamics of a rotating wheel in free air,” Int. J. Comput. Sci. Eng., vol. 14, no. 4, pp. 370–385, Nov. 2016.
[12] C. Su, Y. Han, and Y.-C. Zhang, “Influence performance with wheel spoke design parameters of vehicle aerodynamcis,” J. Jilin Univ., vol. 51, no. 1, pp. 107–113, Jan. 2021.
[13] F. Malizia and B. Blocken, “CFD simulations of an isolated cycling speeded wheel: The impact of wheel/gound contact modeling in crosswind conditions,” Eur. J. Mech.-B/Fluids, vol. 84, pp. 487–495, Nov. 2020.
[14] Q. Jia, T. Li, and Z.-G. Yang, “Influence of rotating wheels on isolated wheel aerodynamics,” J. Tongji Univ., vol. 42, no. 2, pp. 287–291, Feb. 2022.
[15] D. Martins, J. Correia, and A. Silva, “The influence of front wing pressure distribution on wheel wake aerodynamics of a F1 car,” Energies, vol. 14, no. 5, pp. 4421, Jul. 2021.
[16] Y. Wang, C. Sicot, J. Borée, and M. Grandemange, “Experimental study of wheel-vehicle aerodynamic interactions,” J. Wind Eng. Ind. Aerodyn., vol. 198, Mar. 2020, Art. no. 104062.
[17] L. Zhang, H. Zhou, G. Wang, H. Li, and Q. Wang, “Investigation of effects of tire contour on aerodynamic characteristics and its optimization,” Proc. Inst. Mech. Eng., D, J. Automobile Eng., vol. 236, no. 12, pp. 2756–2772, Nov. 2021.
[18] H. Zhou, Z. Jiang, G. Wang, and S. Zhang, “Aerodynamic characteristics of isolated loaded tires with different tread patterns: Experiment and simulation,” Chin. J. Mech. Eng., vol. 43, no. 1, pp. 1–16, Jan. 2021.
[19] H. Li, Y. Xu, C. Si, and Y. Yang, “A research on aerodynamic characteristics of non-pneumatic tire,” Mech. Ind., vol. 22, p. 27, May 2021.
[20] A. Belhocine and W. Z. W. Omar, “CFD analysis of the brake disc and the wheel house through air flow: Predictions of surface heat transfer coefficients (STHC) during braking operation,” J. Mech. Sci. Technol., vol. 32, no. 1, pp. 481–490, Jan. 2018.
A. Belhocine and O. I. Abdullah, “A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact,” *J. Thermal Stresses*, vol. 43, no. 3, pp. 305–320, Mar. 2020.

Y. Zhang, X. Jin, M. He, L. Wang, Q. Wang, L. Wang, and Y. Wu, “The convective heat transfer characteristics on outside surface of vehicle brake disc,” *Int. J. Thermal Sci.*, vol. 120, pp. 366–376, Oct. 2017.

R. A. García-León, G. Guerrero-Gómez, and N. Afanador-García, “Experimental analysis of the heat transfer generated during the operation of an automotive disc brake,” *Austral. J. Mech. Eng.*, vol. 2021, pp. 1–12, Oct. 2021, doi: 10.1080/14484846.2021.1974660.

D. Wang and C. Xie, “Contribution analysis of the cab-in-white for lightweight optimization employing a hybrid multi-criteria decision-making method under static and dynamic performance,” *Eng. Optim.*, vol. 52, no. 11, pp. 1903–1922, Dec. 2019.

K. Cai and D. Wang, “Optimizing the design of automotive S-rail using grey relational analysis coupled with grey entropy measurement to improve crashworthiness,” *Struct. Multidisciplinary Optim.*, vol. 56, no. 6, pp. 1539–1553, Jun. 2017.

N. Ashton, A. West, S. Lardeau, and A. Revell, “Assessment of RANS and DES methods for realistic automotive models,” *Comput. Fluids*, vol. 128, pp. 1–15, Apr. 2016.

J. Suad, K. Lukas, H. Daniel, B. Branislav, and T. Cameron, “Eddy-resolving simulations of the notchback ‘DrivAer’ model: Influence of underbody geometry and wheels rotation on aerodynamic behaviour,” Detroit, MI, USA, SAE Paper 2016-01-1602, 2016.

H. Schretzenmayr, “Technical report: The aluminum body of the Audi A8,” *Int. J. Veh. Des.*, vol. 21, pp. 303–312, Oct. 2004.

K. Tare, U. Mukherjee, and R. J. Vaidya, “Design optimization of automotive radiator cooling module fan of passenger vehicle for effective noise management using CFD technique,” Pune, India, SAE Paper 2017-26-0183, 2017.

P. M. Palaskar, V. Kumar, and R. Vaidya, “Methodology development to accurately predict aerodynamic drag and lift for passenger vehicles using CFD,” Detroit, MI, USA. SAE Paper 2016-01-1600, 2016.

T. Carrigan, M. Landon, and C. Pita, “Meshing considerations for automotive shape design optimization,” Detroit, MI, USA, SAE Paper 2016-01-1389, 2016.

T. Noda, N. Ueki, and H. Komatsu, “Development of aluminum disc wheel for truck and bus,” SAE Paper, 1983, pp. 117–133.

M. Camozzi, “Cast aluminum alloy wheels for heavy duty trucks,” Detroit, MI, USA, SAE Paper 1999-01-0347, 1999.

W. F. Veloso, M. R. M. Garcia, and S. G. Firmino, “Experimental and numerical thermal analysis of brake disks of a formula SAE vehicle,” Sao Paulo, Brazil, SAE Paper 2016-36-0457, 2016.

L. Leifsson, E. Hermansson, and S. Koziel, “Optimal shape design of multi-element trawl-doors using local surrogate models,” *J. Comput. Sci.*, vol. 10, pp. 55–62, Sep. 2015.

A. Golzari, M. H. Sefat, and S. Jamshidi, “Development of an adaptive surrogate model for production optimization,” *J. Petroleum Sci. Eng.*, vol. 133, pp. 677–688, Sep. 2015.

M. Camozzi, “Cast aluminum alloy wheels for heavy duty trucks,” Detroit, MI, USA, SAE Paper 1999-01-0347, 1999.

W. F. Veloso, M. R. M. Garcia, and S. G. Firmino, “Experimental and numerical thermal analysis of brake disks of a formula SAE vehicle,” Sao Paulo, Brazil, SAE Paper 2016-36-0457, 2016.

L. Leifsson, E. Hermansson, and S. Koziel, “Optimal shape design of multi-element trawl-doors using local surrogate models,” *J. Comput. Sci.*, vol. 10, pp. 55–62, Sep. 2015.

A. Golzari, M. H. Sefat, and S. Jamshidi, “Development of an adaptive surrogate model for production optimization,” *J. Petroleum Sci. Eng.*, vol. 133, pp. 677–688, Sep. 2015.

I. Pan and S. Das, “Kriging based surrogate modeling for fractional order control of microgrids,” *IEEE Trans. Smart Grid*, vol. 6, no. 1, pp. 36–44, Jan. 2015.

D. Wang, R. Jiang, and Y. Wu, “A hybrid method of modified NSGA-II and TOPSIS for lightweight design of parameterized passenger car sub-frame,” *J. Mech. Sci. Technol.*, vol. 30, no. 11, pp. 4909–4917, Nov. 2016.