A heuristic based real time task assignment algorithm for heterogeneous multiprocessors

M Poongothai\(^a\), Dr A Rajeswari, and V Kanishkan
Department of ECE, Coimbatore Institute of Technology, Coimbatore 641014 India
\(a\) poongothai@cit.edu.in

Abstract: In this paper a Heuristic Based Improved Linearly Decreasing Weight Particle Swarm Optimization algorithm (ILDW-PSO) is proposed to solve real time task assignment in heterogeneous processors. To achieve better quality solution to the particles, existing LDW-PSO encompasses to ILDW-PSO, which includes Genetic algorithm mutation operator. The objective is to minimize the maximum utilization of the processors with energy aware load balance condition which reduces the energy consumption. Experimental results show that ILDW-PSO outperforms the existing PSO algorithms interns of maximum utilization and normalized energy consumption for both consistent utilization matrix and inconsistent utilization matrix.

Keywords: multiprocessors, task assignment, heterogeneous processors, particle swarm optimization, real time systems

Classification: Integrated circuits

References

[1] D. P. Bunde: J. Scheduling 12 (2009) 489.
[2] J. Kennedy and R. C. Eberhart: Proc. IEEE Int. Conf. Neural Networks (1995) 1942.
[3] R. Mall: Real-Time Systems Theory and Practice (Pearson Education, 2007).
[4] P. Visalakshi and S. N. Sivanandam: Int. J. Open Problems Compt. Math 2 (2009) 475.
[5] A. Omidi and A. M. Rahmani: Proc. Int. Conf. Computer Science and Information Technology (ICCSIT) (2009) 369.
[6] S. Barnaah:Proc. Int. Conf. Parallel Processing (ICPP) (2004) 467.
[7] T. Braun, et al.: J. Parallel . Distributed Computing 61 (2001) 810.
[8] M. B. Abdelhalim: Proc. Int. Conf. Computer and Electrical Engineering (2008) 23.
[9] H. Chen, A. M. K. Cheng and Y.W Kuo: J. Parallel. Distributed Computing 71 (2011) 132.
[10] Ms. M. Poongothai: Proc. Int. Conf. Process Automation, Control and Computing (ICPAC) (2011) 1.
[11] P.Y Yin, S.S Yu, P.P Wang and Y.T Wang: Computer Standards & Interfaces 28 (2006) 441.
[12] Y. Shi and R. C. Eberhart: Proc. Int. Conf. Evolutionary Computation
1 Introduction

Real-time scheduling plays an important role in design of real-time Embedded systems, because most of the scheduling algorithms are implemented in precarious applications. The heterogeneous multiprocessor platform meets the computational demands for various real-time applications. Real-time embedded systems become a more complicated architecture if it includes many heterogeneous components, because every application requires different execution times up on different processors. So choice of task scheduling algorithm is very important for the accurate functioning of the real-time systems. Assigning the real-time tasks to the heterogeneous computing environment is very difficult, because the complexity increases in such a way that every real time application is in need of different execution times up on heterogeneous processors [10, 1]. Hence, Task assignment in a heterogeneous multiprocessor is a combinatorial problem which is an NP hard problem [9]. It can be solved by heuristics algorithms which are used to get near optimal solution. In this paper, we have proposed Heuristic Based Improved Linearly Decreasing Weight Particle Swarm Optimization algorithm for assigning Real Time Tasks in the Heterogeneous Multiprocessors for finding a solution for task assignment to the heterogeneous processors without exceeding the processors computing capacity and fulfilling the dead line constraints.

2 Related work

Braun et al. [7] proposed a comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing system for solving the heterogeneous multiprocessor task partitioning problem and the objective is to minimize the make span. He has compared eleven static Heuristics for scheduling class of independent tasks onto heterogeneous distributed environment. In [6] Baruah proposed a polynomial time algorithm to determine a feasible mapping solution of a given set of tasks among the processors of multiprocessor platform such that the capacity of any individual processors is not exceeded. The aim in this paper is to determine feasible assignment solution only if the problem instance satisfies certain constraints. In [8] M. B. Abdelhalim proposed off line version of the task assignment problem using Re-Excited Particle Swarm Optimization for assigning and scheduling a set of periodic tasks onto a heterogeneous processors without violating its computing capacity constraint. Energy aware cost function has considered for solving load balance problem. The results were compared with GA, ACO, and PSO heuristics and proved that the Re-excited PSO performs better than the other heuristics. Chen, H., A. M. K. Cheng and Y. W. Kuo [9] proposed assigning real-time tasks to heterogeneous processors by applying ant colony optimization to improve task assignment solution. The results were also compared with GA and LP based approaches.
In this paper, the heterogeneous multiprocessor environment with \(m \) preemptive processors \(\{P_1, P_2, \ldots, P_m\} \) based on CMOS technology is considered. The system model described by Chen, H., A. M. K. Cheng and Y. W. Kuo [9] is considered in this paper. The processors in the heterogeneous environment are operated at different speeds and one instruction per cycle is limited to execute in each processor at variable speed. The execution time for each task on processor and speed of processor for a particular task can be expressed as [8, 9]:

\[
e_{i,j} = \frac{c_i}{s_{i,j}} \tag{1}
\]

where \(e_{i,j} \) is the execution time for a task \(T_i \) on processor \(P_j \); \(s_{i,j} \) is the speed of \(P_j \) for a task \(T_i \); \(c_i \) is the number of clock cycles to execute a task \(T_i \).

The power consumption of \(T_i \) on \(P_j \) per period is expressed as

\[
\text{Power}_{i,j} = \frac{C_{ct}}{k} \cdot s_{i,j}^3 \tag{2}
\]

The energy consumption is expressed as

\[
\text{Energy}_{i,j} = \text{Power}_{i,j} \cdot e_{i,j} = \left(\frac{C_{ct}}{k^2} \right) \cdot c_i \cdot s_{i,j}^2 \tag{3}
\]

where \(C_{ct} \) is the effective switch capacitance related to tasks and \(k \) is the constant [8, 9]. From the equation (3) it is understood that, energy consumption is directly proportional to the \(c_i \) \(s_{i,j}^2 \). This equation is significant, because the processors operate at different speeds.

A set of \(N \) periodic tasks \(T = \{\zeta_1, \zeta_2, \ldots, \zeta_N\} \) is considered. The tasks are assumed to be mutually independent and inter task communication is not considered [8, 9]. \(\zeta_i \) is defined as \(\zeta_i = [e_{i,j}, p_{i,j}] \) where \(e_{i,j} \) is its execution time and \(p_{i,j} \) is the period. The utilization matrix \(u_{i,j} \) is an \(nxm \) matrix in which \(m \) is the number of heterogeneous processors and \(n \) is the number of tasks. The row of utilization matrix represents the estimated utilization value for a specified task on each heterogeneous processor. Similarly, the column of utilization matrix represents the estimated utilization value of a specified processor for each task. The value of \(u_{i,j} \) is equivalent to \(e_{i,j} / p_i \). The utilization matrix \(U_{nm} \) holds the real numbers in \((0, 1)\) and infinity. If \(U_{ij} = \infty \) means, the particular task is not suitable to execute on a specified processor \(P_j \). For example the sample utilization matrix is shown in Table I for 5 tasks on 4 processors environment:

Table I. Utilization matrix with 5 tasks on 4 processors environment

Task_id	Task 1	Task 2	Task 3	Task 4
T1	U1,1	U1,2	U1,3	U1,4
T2	U2,1	U2,2	U2,3	U2,4
T3	U3,1	U3,2	U3,3	U3,4
T4	U4,1	U4,2	U4,3	U4,4
T5	U5,1	U5,2	U5,3	U5,4

The above heterogeneous multiprocessor system model is used to find feasible assignment of each task from periodic task set to the specific processor in the heterogeneous multiprocessor environment under the condition of utilization that each processor is less than or equal to 1.
In this paper, we have considered partitioned scheme for task assignment and Earliest Deadline First algorithm for scheduling the tasks on each processor [3]. The partitioning scheme reduces the multiprocessor scheduling problem to a set of uniprocessor ones, which helps to implement uniprocessor scheduling algorithm on each processor. The uniprocessor EDF scheduling algorithm [3] is applied to each processor for scheduling all tasks assigned to it. For a set of periodic real-time tasks \{T_1, T_2, \ldots, T_n\}, EDF schedulability criterion can be expressed as:

\[
\sum_{i=1}^{n} \frac{e_i}{p_i} = \sum_{i=1}^{n} u_i \leq 1
\]

(4)

where \(u_i\) is average utilization due to the task \(T_i\) and \(n\) is the total number of tasks in the task set. The necessary and sufficient condition for a set of tasks to be EDF schedulable is given by equation (4). This means that, if a set of tasks is not schedulable under EDF, then no other scheduling algorithm can feasibly schedule this task set. Hence, EDF has been proven to be an optimal uniprocessor scheduling algorithm.

4 Proposed Improved Linearly Decreasing Weight Particle Swarm Optimization algorithm (ILDW-PSO)

In this section, an Improved Linearly Decreasing Weight PSO algorithm (ILDW-PSO) to allocate tasks to specific processor in heterogeneous multiprocessor system is presented. The proposed ILDW-PSO task assignment algorithm focuses on minimize the maximum utilization that is, finding for a solution in which each of the tasks assigned to a specific processor under the condition when utilization \(\leq 1\) (without exceeding the processors capacity). But the problem in that is different solutions produce the same utilization but some of the solutions may not satisfy the load balance between the processors which will affects the energy consumption. Hence we considered energy aware load balance condition between the processors which reduces the energy consumption. In our proposed algorithm, the objective function is to minimize the maximum utilization under the constraints of utilization bound condition for the EDF algorithm and energy aware load balance condition for minimizing the cumulative energy consumption of all assigned tasks in a solution.

The quality of solution is evaluated by the fitness function \(F(s)\) and is given by

\[
F(s) = \min\{\max(U_i)\} + \text{penalty} \quad \text{For } i = 1, 2, 3, \ldots, m
\]

(5)

\[
\text{penalty} = \sum (U_i > 1) \quad \text{For } i = 1, 2, 3, \ldots, m
\]

(6)

The equation (5) describes the minimization of maximum utilization. If the particle solution exceeds the processing capacity of the processor, penalty is added to the \(F(s)\) which is given in equation (6). In our proposed algorithm, the fitness function evaluates the \(i^{th}\) particle and provides the solution based on equation (7) and (8) which are described as

\[
f_i(s_i) = F(s_i)
\]

(7)
\[f_{EC}(i) = \frac{1}{m} \sum_{i=1}^{m} \frac{U_i}{m} + \max(U_i) \]

(8)

In which \(m \) is the number of processors and \(U_i \) is equal to the \(i^{th} \) processor’s utilization.

In equation (7), \(f_0(i) \) is the value of the objective function to minimize the maximum utilization. In equation (8), \(f_{EC}(i) \) is the energy aware load balance condition which accounts for energy reduction. The purpose of \(f_{EC}(i) \) is that to obtain minimum utilization and at the same time load balance is satisfied. The first one is given precedence over the second one. In equation (8), the first term represents the energy cost while the second term represents the timing cost \([8]\). Our proposed ILDW-PSO algorithm minimizes both \(f_0 \) and \(f_{EC} \).

Linearly Decreasing Weight Particle Swarm Optimization (LDW-PSO) is introduced by Shi and Eberhart in which a linearly decreasing inertia weight factor \(w_{LDW} \) is included into the velocity of the updated equation in the PSO instead of \(w \) \([12]\). Compared to original LDW-PSO, the performance of the proposed ILDW-PSO is effectively improved because the global and local search capabilities of the particle are balanced and includes Genetic Algorithm Mutation Operator used to search better quality solutions. In ILDW-PSO, \(w_{LDW} \) is the inertia weight which linearly decreases from 0.9 to 0.1 through the search process \([11]\). The updated velocity and position value for ILDW-PSO can be calculated as follows:

\[V_{id} = w_{LDW} V_{id} + C_1 \text{Rand}() (pbest_{id} - X_{id}) + C_2 \text{Rand}() (gbest_{id} - X_{id}) \]

(9)

\[X_{id} = X_{id} + V_{id} \]

(10)

Linearly decreasing weight inertia equation is written as:

\[w_{LDW} = w_{start} + (w_{start} - w_{end}) \alpha \]

(11)

\[\beta = \frac{1}{1 + \frac{itr \alpha}{\text{Total itr}}} \]

(12)

itr = current iteration; Total itr = maximum iteration

c1,c2 : The balance factors between the effect of self-knowledge and social knowledge in moving the particle towards the target. Usually, the value 2 is suggested for both factors in the (literature) \([4, 11]\)

Rand() : A random number between 0 and 1, and different at each iteration

\(w_{LDW} \) : Linear Decreasing Inertia weight

pbest_{id} : The personal best position of the particle

gbest_{id} : The best position within the swarm

\(V_{id} \) : The current velocity of the particle

\(X_{id} \) : The current position of the particle
Pseudo Code for the ILDW-PSO algorithm:

```
Initialize the population randomly.
Initialize the velocity for each particle as NULL.
DO
   / For each particle
   Evaluate fitness of particle swarm.
The average of the fitness value is calculated and swap mutation is applied to the particles whose fitness is greater than the average fitness value.
   Compare the fitness value and find best particle swarm.
   Find pbest and gbest
   Update particle velocity:
   \[ V_{id} = w_{LDW} \cdot V_{id} + c_1 \cdot \text{Rand}() \cdot (p_{best, id} - X_{id}) + c_2 \cdot \text{Rand}() \cdot (g_{best, id} - X_{id}) \]
   Update particle position:
   \[ X_{id} = X_{id} + V_{id} \]
   Choose the particle with the best fitness value of all particles as the gbest.
   Until termination criterion is met.
```

5 Experimental results and discussion

5.1 The problem environment

To test our proposed algorithm ILDW-PSO, experiments are performed on an AMD A4-3330MX APU processor running at 2.20 GHZ with 2 GB RAM. The operating system is MS Windows 7, 64 bit running the MATLAB R2012a environment. The performance of ILDW-PSO algorithm is compared with the existing methods, PSO-Fixed and Re-excited PSO, in terms of system utilization, and normalized energy. In Re-excited PSO \(w \) starts at 1 and decreases linearly until reaching 0. This algorithm depends on re-exciting new randomized particle velocities at the beginning of each round, while keeping the particle positions obtained so far, it allows another round of domain exploration [8]. We have tested the proposed ILDW-PSO algorithm on a variety of randomly generated problem sets. A problem set is characterized by the utilization matrix \(U_{nm} \). It holds the real numbers in (0, 1). The optimal solution for task assignment problem and increase in the convergence rate has been achieved in our experiment at the following parameters. Population size = 100; Maximum iteration=100; \(c_1=c_2=1.5 \); inertia weight \(w \) for PSO-Fixed = 0.7; \(w_{LDW} \) for ILDW-PSO is dynamically calculated as given in equations (11) and (12) and \(\alpha = 4 \), \(w_{start} = 0.9 \), \(w_{end}=0.1 \), mutation rate \(\mu_m=0.02 \). The particle’s velocity on each dimension is restricted by a maximum velocity \(v_{max} \), which controls the maximum travel distance during each iteration to avoid the particle flying past good solutions. For initialization of particle velocity, velocity vector \(v_i \) is set to the random number from \(v_{min} \) to \(v_{max} \). During a algorithm run, velocity vector is limited to the range \([v_{min}, v_{max}] \). So \(v_{min} \) is set to -5, and \(v_{max} \) is set to 5.
5.2 Performance evaluation of the ILDW-PSO algorithm based on task heterogeneity, processor heterogeneity and consistency:

The existing Re-excited PSO algorithm [8] has not considered task heterogeneity, processor heterogeneity, and consistency. In this experiment, the utilization matrix is generated for considering real-time heterogeneous environment situations based on task heterogeneity, processor heterogeneity, and consistency for evaluating the performance of the proposed and existing algorithms. The utilization matrix is generated as in [9]. The steps are given below:

1. An \(nx1 \) clock cycle matrix \(C \) is generated, the number of cycles to execute task \(Ti \) is a random number between \([100, 1000]\).

2. An \(nx1 \) task frequency matrix \(TB \) is generated, the task frequency of \(Ti \) is a random number between \([1, \Phi_T]\), here \(\Phi_T \) is task heterogeneity. It may be High Task heterogeneity \((HT[\Phi_T=100])\) or Low Task heterogeneity \((LT[\Phi_T=5])\).

3. A \(1xm \) speed vector is generated for each \(TB(i) \), the speed to execute task \(Ti \) on \(Pj \) that is \(S_j(j) \) to a random number between \([\Phi_p, \Phi_T, \Phi_p]\), here \(\Phi_p \) is processor heterogeneity; it may be High Processor heterogeneity \((HP)\) or Low Processor heterogeneity \((LP)\). For High processor \(\Phi_p=20 \) and for Low Processor \(\Phi_p=5 \).

4. An \(nxm \) utilization matrix \(U_{i,j} \) is generated by \(TB(i)/S_j(j) \) and \(U_{i,j} \in [1/(\Phi_T, \Phi_p),1] \)

5. The utilization matrix is said to be consistent if the each speed vector values are sorted by descending. But the inconsistent matrix holds unsorted speed vector values.

The maximum utilization of PSO-Fixed, Re-excited PSO is higher than the proposed ILDW-PSO algorithm for different problem instances. The results show that the maximum utilization of ILDW-PSO is minimized for both consistent and inconsistent matrix compared to the existing approaches. The results of the comparison are shown in Table II.

Problem set	Size	PSO-Fixed	Re-excited PSO	ILDW-PSO
IC_LT_HP	U4*100	0.9320	0.9822	0.9209
IC_LT_LP	U8*60	0.8393	0.8472	0.8333
IC_HT_LP	U8*60	0.8298	0.8230	0.7818
IC_HT_HP	U5*150	0.7990	0.7854	0.7471
C_LT_LP	U8*50	0.8917	0.9111	0.8611
C_LT_HP	U4*80	0.9011	0.9429	0.8848
C_HT_HP	U4*100	0.8891	0.9829	0.8585
C_HT_LP	U8*60	0.8636	0.9524	0.8333

The test results from our experiments for normalized energy consumption for the three algorithms of consistent and inconsistent matrix are shown in Table III. As it can be seen that the ILDW-PSO performs better
for all problem instances in terms of energy consumption. But, the execution of the proposed ILDW-PSO algorithm takes slightly more time to solve each problem instance compared to PSO-Fixed and Re-excited PSO. The results of the comparison are shown in Table IV. The reason is that the proposed algorithm required more number of computations to obtain optimal solution. However this paper is considered as the off line version of task assignment problem, so the increase in CPU execution time can be tolerable.

6 Conclusion

In this paper, we have proposed Heuristic Based Improved Linearly Decreasing Weight Particle Swarm Optimization algorithm (ILDW-PSO) for solving task assignment problem in heterogeneous multiprocessor platform and its performance is compared with PSO-Fixed and Re-excited PSO algorithms. Our proposed algorithm is proven feasible task assignment with the objective of minimizing the maximum utilization and distribute the tasks to the processor equally, at the same time energy minimization is also improved. The experimental results show that the proposed ILDW-PSO outperforms PSO-Fixed and Re-excited PSO algorithms in terms of maximum utilization and normalized energy. The reason
is that ILDW-PSO includes Genetic algorithm mutation operator for finding better quality solutions to the particles, and the global and local search capabilities of the particle are balanced by inertia weight w_{LDW}. But the execution time of proposed ILDW-PSO algorithm is slightly increased for solving each problem instances compared to PSO-Fixed and Re-excited PSO.

In our future work, we will work on reducing execution time and we will investigate the possibility of ILDW-PSO for heterogeneous multiprocessor platform, explore task precedence, and inter-task communication on the task sets and explore other heuristic algorithms to achieve better results.