ON THE STRUCTURE OF GRADIENT YAMABE SOLITONS

HUAI-DONG CAO, XIAOFENG SUN AND YINGYING ZHANG

Abstract. We show that every complete nontrivial gradient Yamabe soliton admits a special global warped product structure with a one-dimensional base. Based on this, we prove a general classification theorem for complete nontrivial locally conformally flat gradient Yamabe solitons.

1. The results

Self-similar solutions and translating solutions, often called soliton solutions, have emerged in recent years as important objects in geometric flows since they appear as possible singularity models. Much progress has been made recently in the study of soliton solutions of the Ricci flow (i.e. Ricci solitons) and the mean curvature flow. In this paper we are interested in geometric structures of Yamabe solitons, which are soliton solutions to the Yamabe flow. Note that the Yamabe flow has been studied extensively in recent years, see, e.g., the very recent survey by Brendle [2] and the references therein.

A complete Riemannian metric $g = g_{ij}dx^i dx^j$ on a smooth manifold M^n is called a gradient Yamabe soliton if there exists a smooth function f such that its Hessian satisfies the equation

$$\nabla_i \nabla_j f = (R - \rho) g_{ij}, \quad (1.1)$$

where R is the scalar curvature of g and ρ is a constant. For $\rho = 0$ the Yamabe soliton is steady, for $\rho > 0$ it is shrinking and for $\rho < 0$ expanding. The function f is called a potential function of the gradient Yamabe soliton. When f is constant, we call it a trivial Yamabe soliton. It has been known (see [8, 11, 10, 16]) that every compact Yamabe soliton is of constant scalar curvature, hence trivial since f is harmonic and thus is constant.

Recently, motivated by the classification of locally conformally flat Ricci solitons and especially [8], Daskalopoulos and Sesum [10] initiated the investigation of conformally flat Yamabe solitons and proved the following very nice classification result:

Theorem 1.1. (Daskalopoulos-Sesum [10]) All complete locally conformally flat gradient Yamabe solitons with positive sectional curvature $K > 0$ are rotationally symmetric.

Moreover, they constructed examples of rotationally symmetric gradient Yamabe solitons on \mathbb{R}^n with positive sectional curvature $K > 0$.

In this paper, inspired by the above Theorem 1.1 and the recent works of the first author and his collaborators [4, 5] on Ricci solitons, we investigate geometric structures of gradient Yamabe solitons not necessarily locally conformally flat.
turns out that, by exploring the special nature of the Yamabe soliton equation (1.1), every complete nontrivial gradient Yamabe soliton \((M^n, g, f)\) admits a special global warped product structure with a 1-dimensional base and the warping function provided by \(|\nabla f|\) (see Theorem 1.2). Based on this special warped product structure, we are able to prove a classification theorem for locally conformally flat gradient Yamabe solitons without any further assumption on the curvature (see Corollary 1.5). In particular, Theorem 1.1 above is a special case of both Corollary 1.3 and Corollary 1.6(a). Our main result is:

Theorem 1.2. Let \((M^n, g, f)\) be a nontrivial complete gradient Yamabe soliton satisfying equation (1.1). Then \(|\nabla f|^2\) is constant on regular level surfaces of \(f\), and either

(i) \(f\) has a unique critical point at some point \(x_0 \in M^n\), and \((M^n, g, f)\) is rotationally symmetric and equal to the warped product
\[
([0, \infty), dr^2) \times |\nabla f| (S^{n-1}, \bar{g}_{can}),
\]
where \(\bar{g}_{can}\) is the round metric on \(S^{n-1}\), or

(ii) \(f\) has no critical point and \((M^n, g, f)\) is the warped product
\[
(\mathbb{R}, dr^2) \times |\nabla f| (N^{n-1}, \bar{g}),
\]
where \((N^{n-1}, \bar{g})\) is a Riemannian manifold of constant scalar curvature, say \(\bar{R}\). Moreover, if \((M^n, g, f)\) has nonnegative Ricci curvature \(Rc \geq 0\) then \((M^n, g)\) is isometric to the Riemannian product \((\mathbb{R}, dr^2) \times (N^{n-1}, \bar{g})\); if the scalar curvature \(R \geq 0\) on \(M^n\), then either \(\bar{R} > 0\), or \(R = \bar{R} = 0\) and \((M^n, g)\) is isometric to the Riemannian product \((\mathbb{R}, dr^2) \times (N^{n-1}, \bar{g})\).

As an immediate consequence of Theorem 1.2, we have

Corollary 1.3. Let \((M^n, g, f)\) be a nontrivial complete gradient Yamabe soliton with positive Ricci curvature \(Rc > 0\), then \(f\) has exactly one critical point and \((M^n, g, f)\) is rotationally symmetric.

Remark 1.1. Shortly after the first version of our paper appeared in the arXiv, G. Catino, C. Mantegazza and L. Mazzieri posted a paper on the global structure of conformal gradient solitons with nonnegative Ricci tensor in which they also proved Theorem 1.2 under the assumption of nonnegative Ricci curvature (see Theorem 3.2 in [6]). We also remark that, as pointed out in [10], steady and shrinking Yamabe solitons have nonnegative scalar curvatures.

In the special case when \((M^n, g, f)\) is locally conformally flat, we can say more about the manifold \((N^{n-1}, \bar{g})\) in case (ii) of Theorem 1.2.

Theorem 1.4. Let \((M^n, g, f)\) be a nontrivial complete gradient Yamabe soliton satisfying equation (1.1). Suppose \(f\) has no critical point and is locally conformally flat, then \((M^n, g, f)\) is the warped product
\[
(\mathbb{R}, dr^2) \times |\nabla f| (N^{n-1}, \bar{g}_N),
\]
where \((N^{n-1}, \bar{g}_N)\) is a space form (i.e., of constant sectional curvature).

It is clear that Theorem 1.2 and Theorem 1.4 together implies the following classification of locally conformally flat Yamabe solitons:
Corollary 1.5. Let \((M^n, g, f)\) be a nontrivial complete locally conformally flat gradient Yamabe soliton. Then, \((M^n, g, f)\) is either

(a) defined on \(\mathbb{R}^n\), rotationally symmetric, and equal to the warped product
\[([0, \infty), dt^2) \times |\nabla f| (S^{n-1}, \bar{g}_{can}), \]
or

(b) the warped product
\[(\mathbb{R}, dr^2) \times |\nabla f| (N^{n-1}, \bar{g}_N), \]
where \((N^{n-1}, \bar{g}_N)\) is a space form.

In particular, we have

Corollary 1.6. Let \((M^n, g, f)\) be a nontrivial, non-flat, complete, and locally conformally flat gradient Yamabe soliton.

(a) If \((M^n, g, f)\) has nonnegative Ricci curvature \(Rc \geq 0\), then \((M^n, g, f)\) is defined on \(\mathbb{R}^n\) and rotationally symmetric.

(b) If \((M^n, g, f)\) has nonnegative scalar curvature \(R \geq 0\) (as in the steady and shrinking cases), then \((M^n, g, f)\) either is defined on \(\mathbb{R}^n\) and rotationally symmetric, or is the warped product cylinder
\[(\mathbb{R}, dr^2) \times |\nabla f| (S^{n-1}, \bar{g}_{can})/\Gamma \]
for some finite group \(\Gamma \subset SO(n)\).

Remark 1.2. Note that Theorem 1.1 also follows from Corollary 1.6(b), since by a well-known theorem of Gromoll and Meyer, \(K > 0\) implies \(M^n\) is diffeomorphic to \(\mathbb{R}^n\), hence the latter case in Corollary 1.6(b) cannot happen.

Remark 1.3. As we mentioned before, examples of rotationally symmetric gradient Yamabe solitons on \(\mathbb{R}^n\) with positive sectional curvature \(K > 0\) have been constructed by Daskalopoulos and Sesum [10]. On the other hand, in a forthcoming paper, C. He has shown that any complete gradient steady Yamabe soliton on \(M^n = \mathbb{R} \times \varphi N^{n-1}\) is necessarily isometric to the Riemannian product with constant \(\varphi\) and \(N\) being of zero scalar curvature. Moreover, he showed the existence of complete gradient Yamabe shrinking soliton metrics on \(M^n = \mathbb{R} \times \varphi N^{n-1}\) with \(\rho = 1, \bar{R} > 0\) and non-constant warping function \(\varphi > 0\).

Acknowledgments. We would like to thank Chenxu He for very helpful discussions. The first author also likes to thank C. Mantegazza and E. Garcia-Rio for bringing the papers [6] and [14] to his attention respectively.

2. Warped product structures of complete gradient Yamabe solitons

We shall follow the notations in [3] [10]. Let \((M^n, g_{ij}, f)\) be a complete non-trivial Yamabe soliton, satisfying the Yamabe soliton equation
\[(R - \rho)g_{ij} = \nabla_i \nabla_j f. \]
For any regular value \(c_0\) of the potential function \(f\), consider the level surface \(\Sigma_{c_0} = f^{-1}(c_0)\). Suppose \(I\) is an open interval containing \(c_0\) such that \(f\) has no
critical points in the open neighborhood $U_I = f^{-1}(I)$ of Σ_{c_0}. Then we can express the soliton metric g on U_I as

$$ds^2 = \frac{1}{|\nabla f|^2} df^2 + \bar{g}_{\Sigma_{c_0}},$$

where $\bar{g}_{\Sigma_{c_0}} = g_{ab}(f, \theta) d\theta^a d\theta^b$ is the induced metric and $\theta = (\theta^2, \ldots, \theta^n)$ is any local coordinates system on Σ_{c_0}.

On the other hand, as shown in [10], we have

$$\nabla(|\nabla f|^2) = 2 \nabla^2 f (\nabla f, \cdot) = 2(R - \rho) \nabla f.$$ (2.1)

Hence, $|\nabla f|^2$ is constant on any regular level surface $\Sigma_{c} = f^{-1}(c) \subset U_I$, which are all diffeomorphic to Σ_{c_0}. This allows us to make the change of variable by setting,

$$r(x) = \int \frac{df}{|\nabla f|},$$ (2.2)

so that we can further express the metric g on U_I as

$$ds^2 = dr^2 + g_{ab}(r, \theta) d\theta^a d\theta^b.$$ (2.3)

Let $\nabla r = \frac{\partial}{\partial r}$, then $|\nabla r| = 1$ and $\nabla f = f'(r) \frac{\partial}{\partial r}$ on U_I. Note that $f'(r)$ does not change sign on U_I because f has no critical points there. Thus, we may assume $I = (\alpha, \beta)$ with $f'(r) > 0$ for $r \in (\alpha, \beta)$. It is also easy to check that

$$\nabla \frac{\partial}{\partial r} = 0,$$ (2.4)

so integral curves to ∇r are normal geodesics.

Next, by (2.4) and equation (1.1), it follows that

$$R - \rho = \nabla^2 f (\frac{\partial}{\partial r}, \frac{\partial}{\partial r}) = f''(r).$$ (2.5)

Therefore, we conclude immediately that the scalar curvature R is also constant on $\Sigma_{c} \subset U_I$. Moreover, the second fundamental form of Σ_{c} is given by

$$h_{ab} = \frac{\nabla_a \nabla_b f}{|\nabla f|} = \frac{f''(r)}{f'(r)} g_{ab}.$$ (2.6)

In particular, Σ_{c} is umbilical and its mean curvature is given by

$$H = (n - 1) \frac{f''(r)}{f'(r)},$$ (2.7)

which is again constant along Σ_{c}.

Now, we fix a local coordinates system

$$(x^1, x^2, \ldots, x^n) = (r, \theta^2, \ldots, \theta^n)$$ (2.8)

in U_I, where $(\theta^2, \ldots, \theta^n)$ is any local coordinates system on the level surface Σ_{c_0}, and indices a, b, c, \ldots range from 2 to n. Then, computing in this local coordinates system we obtain that

$$h_{ab} = - < \partial_r, \nabla_a \partial_b > = - < \partial_r, \Gamma^1_{ab} \partial_r > = - \Gamma^1_{ab}.$$ But the Christoffel symbol Γ^1_{ab} is given by

$$\Gamma^1_{ab} = \frac{1}{2} g^{11} (- \frac{\partial g_{ab}}{\partial r}) = - \frac{1}{2} \frac{\partial g_{ab}}{\partial r}$$
Hence, we get
\[
\frac{\partial g_{ab}}{\partial r} = 2\frac{f''(r)}{f'(r)}g_{ab}.
\] (2.9)

Then, it follows easily from (2.9) that
\[
g_{ab}(r, \theta) = (f'(r))^2g_{ab}(r_0, \theta).
\] (2.10)

Here the level surface \(\{r = r_0\}\) corresponds to \(\Sigma_{r_0}\).

Therefore we have arrived at the following

Proposition 2.1. Let \((M^n, g_{ij}, f)\) be a complete gradient Yamabe soliton, satisfying the soliton equation (1.1), and let \(\Sigma_c = f^{-1}(c)\) be a regular level surface. Then

1. \(|\nabla f|^2\) is constant on \(\Sigma_c\);
2. the scalar curvature \(R\) is constant on \(\Sigma_c\);
3. the second fundamental form of \(\Sigma_c\) is given by \(h_{ab} = \frac{R-\rho}{|\nabla f|^2}g_{ab}\);
4. the mean curvature \(H = (n-1)\frac{R-\rho}{|\nabla f|^2}\) is constant on \(\Sigma_c\);
5. in any open neighborhood \(U^\alpha\) of \(\Sigma_c\) in which \(f\) has no critical points, the soliton metric \(g\) can be expressed as
\[
ds^2 = dr^2 + (f'(r))^2\bar{g}_{r_0},
\] (2.11)

where \((\theta^2, \ldots, \theta^n)\) is any local coordinates system on \(\Sigma_c\) and \(\bar{g}_{r_0} = g_{ab}(r_0, \theta)d\theta^a d\theta^b\)

is the induced metric on \(\Sigma_c = r^{-1}(r_0)\).

Remark 2.1. Proposition 2.1(a) was observed first by Sesum and Daskalopoulos [10]; also Proposition 2.1(b)-(d) were proved in [10] under the additional assumption that \((M^n, g, f)\) is locally conformally flat.

Remark 2.2. Our proof of Proposition 2.1 was motivated by arguments in [3, 4, 5] for Ricci solitons. After the first version of our paper appeared in the arXiv, we learned that equations similar to Eq. (1.1) had been studied long time ago by various people, see, e.g., [15] and the references therein. There are also more recent works, e.g., [13] and [7]. In particular, Cheeger and Colding [7] presented beautifully a characterization of warped product structures on a Riemannian manifold \(M\) in terms of solutions to the more general equation
\[
\nabla_i \nabla_j f = h g_{ij},
\]

where \(h\) is some smooth function on \(M\).

Next let us investigate the geometry of the regular level surfaces \(\Sigma_c\). To do so, we first need the curvature tensor formula of a warped product manifold

\[
(M^n, g) = (I, dr^2) \times \varphi (N^{n-1}, \bar{g}),
\] (2.12)

where \(g = dr^2 + \varphi^2(r)\bar{g}\). Fix any local coordinates system \(\theta = (\theta^2, \ldots, \theta^n)\) on \(N^{n-1}\), and choose \((x^1, x^2, \ldots, x^n) = (r, \theta^2, \ldots, \theta^n)\), as in (2.8) for the local coordinates system on \(M\). From now on indices \(a, b, c, d\) range from 2 to \(n\). Also curvature tensors with bar are the curvature tensors of \((N, \bar{g})\). Now from either direct computations or [1, 13], the Riemann curvature tensor of \((M^n, g)\) is given by
\[
R_{1ab} = -\varphi \varphi'' \bar{g}_{ab}, \quad R_{1abc} = 0,
\] (2.13)
and
\[
R_{abcd} = \varphi^2 \bar{R}_{abcd} - (\varphi \varphi')^2 (\bar{g}_{ad} \bar{g}_{bd} - \bar{g}_{ad} \bar{g}_{bd}).
\] (2.14)
The Ricci tensor of \((M^n, g)\) is
\[
R_{11} = -(n-1)\frac{\varphi''}{\varphi}, \quad R_{ia} = 0 \quad (2 \leq a \leq n),
\] (2.15)
and
\[
R_{ab} = R_{ab} - [(n-2)(\varphi')^2 + \varphi\varphi'']\bar{g}_{ab} \quad (2 \leq a, b \leq n).
\] (2.16)
Finally the scalar curvatures of \((M^n, g)\) and \((N^{n-1}, \bar{g})\) are related by
\[
R = \varphi^{-2}R - (n-1)(n-2)\left(\frac{\varphi'}{\varphi}\right)^2 - 2(n-1)\frac{\varphi''}{\varphi}.
\] (2.17)
From (2.15) and (2.16), we easily see the following basic facts:

Lemma 2.1. (a) The “radial” Ricci curvature \(R_{11}\) depends only on \(r\), hence is constant on level surfaces \(\{r\} \times N\);

(b) \((N, \bar{g})\) is Einstein if and only if the eigenvalues of the Ricci tensor, when restricted to \(\{r\} \times N\), are the same and depend only on \(r\):
\[
R_{22}(r, \theta) = \cdots = R_{nn}(r, \theta) = \mu(r).
\] (2.18)

Remark 2.3. Note that \(M^n\) is Einstein, with \(\bar{R}c = \lambda g\), if and only if \(N^{n-1}\) is Einstein with \(\bar{R}c = \bar{\lambda} \bar{g}\) and the warping function \(\varphi\) solves the first order ODE
\[
\varphi'^2 + \frac{\lambda}{n-1}\varphi^2 = \frac{\bar{\lambda}}{n-2}.
\] (2.19)

More details can be found in [1, 9.110].

Now we are ready to finish the proof Theorem 1.2:

Proof of Theorem 1.2. Let \((M^n, g, f)\) be a complete nontrivial gradient Yamabe soliton. From Proposition 2.1, we know that \(|\nabla f|^2\) is a constant on regular level surfaces of \(f\).

Set \(N^{n-1} = f^{-1}(c_0)\) and \(\bar{g} = \bar{g}_{n_0}\) as in Proposition 2.1 for some regular value \(c_0\) of \(f\). Then, since the warping function is \(f'(r)\), the warped product formula (2.11) in Proposition 2.1 implies that the potential function \(f\) has at most two critical values. Thus, formula (2.11) extends to some maximal interval \(I_{\max}\), which is either a finite closed interval \([a_0, b_0]\) with \(f'(a_0) = f'(b_0) = 0\), or a half-line \([a_0, \infty)\) with \(f'(a_0) = 0\), or \((\infty, \infty)\). However, the first case cannot happen, for otherwise \(M^n\) would be compact, but compact Yamabe solitons are trivial as we mentioned in Section 1. Thus \(f\) has at most one critical point and, after a shift in \(r\) if necessary, either \(I_{\max} = [0, \infty)\), or \(I_{\max} = (-\infty, \infty)\).

To see that \((N^{n-1}, \bar{g})\) has constant scalar curvature, note that for our Yamabe soliton \((M^n, g, f)\), we have \(\bar{R} = \bar{f}''(r) + \rho\) and the warping function is \(\varphi(r) = f'(r)\). Thus, from (2.17) we get
\[
\bar{R} = (f')^2R + (n-1)[(n-2)(f'')^2 + 2f'f'']
\] (2.20)
which does not depend on \(\theta\). Therefore \(\bar{R}\) is a constant.

Also, when \(f\) has a unique critical point \(x_0\), \(r(x)\) is simply the distance function \(d(x_0, x)\) from \(x_0\). So level surfaces of \(f\) are geodesic spheres centered at \(x_0\) which are diffeomorphic to \((n-1)\)–sphere \(S^{n-1}\). In addition, by the smoothness of the metric \(g\) at \(x_0\) we can conclude that the induced metric \(\bar{g}\) on \(N\) is round (see, e.g., Lemma 9.114 in [1]).
Finally, assume we are in the case (ii). Then, \(\phi = f' > 0 \) on \((-\infty, \infty)\) and \(\phi' = f'' = R - \rho \). If \((M^n, g, f)\) has nonnegative Ricci curvature \(Rc \geq 0 \), then by (2.15) we know \(\phi'' \leq 0 \), so \(\phi \) is a positive and weakly concave function on \(\mathbb{R} \). Thus \(\phi \) must be a constant and hence \((M^n, g)\) is isomorphic to the Riemannian product \((\mathbb{R}, dr^2) \times (N, \bar{g})\). Now assume \(R \geq 0 \). Again we prove \(\bar{R} > 0 \) unless \(\bar{R} = 0 \) and \((M^n, g)\) is the Riemannian product \((\mathbb{R}, dr^2) \times (N^{n-1}, \bar{g})\). If \(\bar{R} \leq 0 \), by (2.20) we know that \(\phi'' \leq 0 \). So once again \(\phi \) is a positive weakly concave function on \(\mathbb{R} \) hence a constant function. Therefore, again by (2.20), we know that \(R = \bar{R} = 0 \) and \((M^n, g)\) is the Riemannian product \((\mathbb{R}, dr^2) \times (N^{n-1}, \bar{g})\). \(\square \)

3. Classification of locally conformally flat Yamabe solitons

Now let us discuss the classification of locally conformally flat gradient Yamabe solitons and prove Theorem 1.4.

Proof of Theorem 1.4. Let \((M^n, g, f)\) be a nontrivial complete locally conformally flat gradient Yamabe soliton such that \(f \) has no critical point. By Theorem 1.2, \((M^n, g)\) is a warped product
\[(\mathbb{R}, dr^2) \times |\nabla f| (N^{n-1}, \bar{g}). \]
Clearly, it remains to prove the following

Claim 1: \((N^{n-1}, \bar{g})\) is a space form.

Indeed, Claim 1 was first proved by Daskalopoulos and Sesum [10] (see Proposition 2.2 and Lemma 2.4(iii) in [10]) where they used B. Chow’s Li-Yau type differential Harnack for locally conformally flat Yamabe flow [9] to show that property (2.18) holds and then deduced that \((N, \bar{g})\) is a space form. Here we present a simple and direct proof based on the warped product structure of \((M^n, g, f)\).

All we need is the explicit formula of the Weyl tensor \(W \) for an arbitrary warped product manifold (2.12) which can be easily deduced from (2.13)-(2.17):

\[W_{1a1b} = \frac{\bar{R}}{(n-1)(n-2)} \bar{g}_{ab} - \frac{1}{n-2} \bar{R}_{ab}, \quad (3.1) \]

\[W_{1abc} = 0, \quad (3.2) \]

and

\[W_{abcd} = \phi^2 \bar{W}_{abcd}. \quad (3.3) \]

Here \(\bar{W} \) denotes the Weyl tensor of \((N, \bar{g})\).

Now \((M^n, g, f)\) is a warped product, with \(\phi = f' \), and is locally conformally flat, thus \(W = 0 \). From (3.1) and (3.3), we see that \((N, \bar{g})\) is Einstein and \(\bar{W} = 0 \). Thus \(N \) is a space form.

This proves Claim 1 and completes the proof of Theorem 1.4. \(\square \)

Remark 3.1. By (3.1)-(3.3), it is clear that \((N, \bar{g})\) is a space form if and only if \((M, g)\) is locally conformally flat.
References

[1] A. Besse, A., Einstein Manifolds. Springer-Verlag, Berlin, 1987. MR0867684 (88f:53087)
[2] S. Brendle, Evolution equations in Riemannian geometry, arXiv:1104.4086.
[3] H.-D. Cao and Q. Chen, On locally conformally flat gradient steady solitons, to appear in Trans. Amer. Math. Soc. (arXiv: 0909.2833)
[4] H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking solitons, arXiv:1105.3163.
[5] H.-D. Cao, G. Catino, Q. Chen, C. Mantegazza, and L. Mazzieri, Bach-flat gradient steady Ricci solitons, arXiv:1107.4591.
[6] G. Catino, C. Mantegazza and L. Mazzieri, A note on the global structure of conformal gradient solitons with nonnegative Ricci tensor, arXiv:1109.0243.
[7] J. Cheeger and T. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189–237.
[8] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI; Science Press, New York, 2006.
[9] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math., 65 (1992), 1003–1014.
[10] P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, arXiv:1104.2212.
[11] L. Di Cerbo and M. Disconzi, Yamabe solitons, determinant of the Laplacian and the uniformization theorem for Riemannian manifolds, Lett. Math. Phys., 83 (2008), no. 1, 13–18.
[12] C. He, Gradient Yamabe solitons on warped products, arXiv:1109.2343.
[13] B. O’Neill, Semi-Riemannian Geometry, Academic Press, Inc., San Diego, 1983.
[14] B. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, Duke Math. J. 67 (1992), no. 1, 57–99.
[15] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc, 117 (1965), 251–275.
[16] S.-Y. Shu, A note on compact gradient Yamabe solitons, arXiv:1107.3769.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015
E-mail address: huc2@lehigh.edu ; xis205@lehigh.edu ; yiz308@lehigh.edu