GLOBULAR REALIZATION AND CUBICAL UNDERLYING HOMOTOPY TYPE OF TIME FLOW OF PROCESS ALGEBRA

PHILIPPE GAUCHER

Abstract. We construct a small realization as flow of every precubical set (modeling for example a process algebra). The realization is small in the sense that the construction does not make use of any cofibrant replacement functor and of any transfinite construction. In particular, if the precubical set is finite, then the corresponding flow has a finite globular decomposition. Two applications are given. The first one presents a realization functor from precubical sets to globular complexes which is characterized up to a natural S-homotopy. The second one proves that, for such flows, the underlying homotopy type is naturally isomorphic to the homotopy type of the standard cubical complex associated with the precubical set.

Contents

1. Introduction 1
2. About cocubical objects in a simplicial model category 4
3. The weak S-homotopy model category of flows is simplicial 10
4. Comparing realization functors from precubical sets to flows 16
5. Realizing a precubical set as a small globular complex 22
6. Globular and cubical underlying homotopy type 26
References 30

1. Introduction

1.1. Presentation of the results. Various topological models of concurrency [Gou03] have been introduced so far. Local pospaces [FGR98] are topological spaces equipped with a local partial ordering representing a time flow. D-spaces [Gra03] are topological spaces equipped with a family of continuous paths playing the role of execution paths. A d-space is not necessarily locally partially ordered but their category is complete and cocomplete. This is an advantage of this model on the one of local pospaces. A close framework is the full subcategory of d-spaces which are colimit-generated by a small full subcategory of cubes [FR07]. The interest of the latter category is that it is locally presentable, and that it is therefore possible to construct directed coverings using strict factorization system techniques. Streams [Kri07] are locally preordered topological spaces. The category of streams is also complete and cocomplete. Every d-space and every local pospace can be viewed as a stream. Finally, the globular complexes [GG03] [Gau05a] are topological spaces equipped with a globular decomposition which is the directed analogue of the cellular decomposition of a CW-complex. The globular complexes can be viewed as a subcategory of the categories of local po-spaces, of

1991 Mathematics Subject Classification. 55U35, 18G55, 68Q85.
Key words and phrases. model category, Reedy category, homotopy colimit, precubical set, concurrency.

1
d-spaces, of d-spaces colimit-generated by cubes, and of streams. Nevertheless, the category of globular complexes is big enough to contain all examples coming from concurrency \cite{GG03}. All these models start from a topological space representing the underlying state space of the concurrent system. And an additional structure on this topological space models time irreversibility.

In the setting of flows introduced in \cite{Gau03}, the non-constant execution paths are viewed as objects themselves, not as paths of an underlying topological space. The topology of the path space models concurrency and non-constant execution paths can be composed. So a flow is, by definition, a small category without identity maps enriched over compactly generated topological spaces. The main motivation for introducing this category is the study of the branching and merging homology theories \cite{Gau05b}. Indeed, they impose the functoriality of the mapping associating an object with its set of non-constant execution paths\footnote{See \cite{Gau03} Section 20 for further explanations.} and also the possibility of composing cubes\footnote{See the introduction and especially Figure 3 of \cite{Gau01} for further explanations.}. None of the other topological models of concurrent systems introduced so far (d-space, local pospace, stream, d-space colimit-generated by cubes) has the first feature since the associated categories contain too many morphisms. More precisely, they contain morphisms contracting non-constant execution paths. Of course, it is possible to remove the “contracting morphisms” from the categories of d-spaces, local pospaces, streams and d-spaces colimit-generated by cubes. But these models then lose all their interesting properties. These homology theories are expected to be important in the study of higher dimensional bisimulation between concurrent processes by algebraic invariants. Indeed, all these notions are related to the structure of the branching and merging areas of execution paths of a time flow.

It is possible to realize every process algebra \cite{WN95} as a precubical set, and as a flow using a realization functor $|-|_{\text{flow}}$. This realization functor is complicated to handle since its construction requires the use of the cofibrant replacement functor of the category of flows which is a transfinite construction of length 2^{\aleph_0} (\cite{Gau03} Proposition 11.5). The main result of the paper is

Theorem. \textit{(Theorem 4.2.4 and Corollary 4.2.5)} There exists a small realization functor $gl(-)$ from precubical sets to flows which is colimit-preserving. Small means that for every $n \geq 0$, there exists a pushout diagram of flows

$$
\begin{array}{ccc}
\text{Glob}(\mathbf{S}^{n-1}) & \rightarrow & \text{gl}(\partial [n+1]) \\
\downarrow & & \downarrow \\
\text{Glob}(\mathbf{D}^n) & \rightarrow & \text{gl}([n+1])
\end{array}
$$

where $\partial [n+1]$ is the $(n+1)$-dimensional cube and where $\partial [n+1]$ is its boundary. It is a realization functor in the sense that there exists a natural transformation $\mu : gl(-) \rightarrow |-|_{\text{flow}}$ inducing for every precubical set K a natural S-homotopy equivalence $\mu_K : gl(K) \simeq |K|_{\text{flow}}$ and a natural transformation $\nu : |-|_{\text{flow}} \rightarrow gl(-)$ inducing for every precubical set K a natural S-homotopy equivalence $\nu_K : |K|_{\text{flow}} \simeq gl(K)$ which is an inverse up to S-homotopy of μ_K.

Two applications of this result are given in this paper. Other applications will be given in future papers.
The lack of a real underlying topological space in the setting of flows makes some situations very difficult to treat. The first application is:

Theorem. (Theorem 5.4.3) The realization functor $|\cdot|_{\text{flow}}: \square^{op}\text{Set} \to \text{Flow}$ from the category of precubical sets to that of flows defined in [Gau07b] factors up to a natural S-homotopy equivalence as a composite

$$\square^{op}\text{Set} \xrightarrow{gl\text{Top}} \text{glTop} \xrightarrow{\text{cat}} \text{Flow}$$

where glTop is the category of globular complexes and where $\text{cat}: \text{glTop} \to \text{Flow}$ is the realization functor from globular complexes to flows defined in [Gau05a]. The functor glTop is unique up to a natural S-homotopy equivalence of globular complexes.

A notion of underlying homotopy type of flow does exist anyway. The underlying state space of a flow exists, and is unique up to homotopy, not up to homeomorphism [Gau05a]. The fundamental tool to carry out the construction is also the notion of globular complex. This definition enabled us to prove the invariance of the underlying homotopy type of a flow by refinement of observation in [Gau06b]. As a second application of the main result of the paper, or rather, as an application of the first application, the following theorem proposes a simplification of the construction of the underlying homotopy type functor:

Theorem. (Theorem 6.2.1) Let K be a precubical set. The underlying homotopy type of the flow $|K|_{\text{flow}}$ associated with the precubical set K is naturally isomorphic to the homotopy type of the standard cubical complex $|K|_{\text{space}}$ associated with K: i.e. the functor $|\cdot|_{\text{space}}$ is the unique colimit-preserving functor from precubical sets to topological spaces associating the n-cube with the topological n-cube $[0,1]^n$ for all $n \geq 0$.

This paper can be read as a sequel of the papers [Gau05a] and [Gau06b] which study the underlying homotopy type of flows. Indeed, several results of [Gau05a] and [Gau06b] are used in this work. It can also be read as a continuation of [Gau07b] which initializes the study of flows modeling process algebras. This work is in fact a preparatory work for the study of process algebras up to homotopy.

1.2. Outline of the paper. Section 2 is devoted to the preparatory proofs of some facts about cocubical objects in a simplicial model category. The main Theorem 2.3.3 and Theorem 2.3.4 are used in the proofs of Theorem 4.2.4, of Corollary 4.2.5 and of Theorem 6.2.4. Section 3 constructs the simplicial structure of the model category of flows. This structure is necessary for the application of Theorem 2.3.3 and Theorem 2.3.4 in the proofs of Theorem 4.2.4 and Corollary 4.2.5. This result was not yet available in a published work. Section 4 constructs the small realization functor from precubical sets to flows. Section 5 describes the first application, and Section 6 the second application of the main result of the paper.

1.3. Prerequisites and notations. It is required some familiarity with model category techniques [Hov99], with category theory [ML98], [Bor94] and with simplicial techniques [GJ99]. The notation \simeq means weak equivalence or equivalence of categories, the notation \cong means isomorphism, the notation \rightarrowtail means cofibration and the notation \rightarrow means fibration. Let C be a cocomplete category. The class of morphisms of C that are transfinite compositions of pushouts of elements of a set of morphisms K is denoted by $\text{cell}(K)$. An element of $\text{cell}(K)$ is called a relative K-cell complex. The category of sets is denoted by Set. The cofibrant replacement functor is denoted by $(-)^{cof}$. The function complex of a simplicial model category is denoted by $\text{Map}(-,-)$. The initial object is denoted by \emptyset. The terminal
object is denoted by 1. In general, the category of functors from a category B to a category M is denoted by M^B. Note that the category M^B is locally small if and only if the category B is essentially small [FS95]. The category of simplicial sets is denoted by Δ^{op} Set. Δ is the standard category of simplices. $\Delta([n]) = \Delta(-, [n])$ is the standard n-simplex.

2. About cocubical objects in a simplicial model category

2.1. Precubical set. A precubical set K consists in a family of sets $(K_n)_{n \geq 0}$ and of set maps $\partial_i^\alpha : K_n \to K_{n-1}$ with $n \geq 1$, $1 \leq i \leq n$ and $\alpha \in \{0,1\}$ satisfying the cubical relations $\partial_i^\alpha \partial_j^\beta = \partial_j^{\beta-1} \partial_i^\alpha$ for any $\alpha, \beta \in \{0,1\}$ and for $i < j$ [BHS81]. An element of K_n is called a n-cube.

A good reference for presheaves is [MLM94]. A precubical set can be viewed as a presheaf over a small category denoted by \square with set of objects $\{[n], n \in \mathbb{N}\}$, generated by the morphisms $\delta_i^\alpha : [n - 1] \to [n]$ for $1 \leq i \leq n$ and $\alpha \in \{0,1\}$ and satisfying the cocubical relations $\delta_j^\beta \circ \delta_i^\alpha = \delta_i^\alpha \circ \delta_j^{\beta-1}$ for $i < j$ and for all $(\alpha, \beta) \in \{0,1\}^2$. With the conventions $[0] = \{0\}$, $[n] = \{0,1\}^n$ for $n \geq 1$ and $\{0,1\}^0 = \{0\}$, the small category \square is the subcategory of the category of sets generated by the set maps $\delta_i^\alpha : [n - 1] \to [n]$ for $1 \leq i \leq n$ and $\alpha \in \{0,1\}$.

All the facts about the small category \square recalled here are used later in the paper.
\[\alpha \in \{0, 1\} \text{ defined by} \]
\[\delta_\alpha^i(\varepsilon_1, \ldots, \varepsilon_{n-1}) = (\varepsilon_1, \ldots, \varepsilon_{i-1}, \alpha, \varepsilon_i, \ldots, \varepsilon_{n-1}). \]

The corresponding category is denoted by \(\Box^{\text{op}}\text{Set} \).

Let \(\Box[n] := \Box(-, [n]) \). This defines a functor, also denoted by \(\Box \), from \(\Box \) to \(\Box^{\text{op}}\text{Set} \). By Yoneda’s lemma, one has the natural bijection of sets
\[\Box^{\text{op}}\text{Set}(\Box[n], K) \cong K_n \]
for every precubical set \(K \). The boundary of \(\Box[n] \) is the precubical set denoted by \(\partial\Box[n] \) defined by removing the interior of \(\Box[n] \): \((\partial\Box[n])_k := (\Box[n])_k \) for \(k < n \) and \((\partial\Box[n])_k = \emptyset \) for \(k \geq n \). In particular, one has \(\partial\Box[0] = \emptyset \).

Let \(K \) be a precubical set. Let \(K \leq n \) denote the precubical set obtained from \(K \) by keeping the \(p \)-dimensional cubes of \(K \) only for \(p \leq n \). In particular, \(K \leq 0 = K_0 \). Let \(\Box_n \subset \Box \) be the full subcategory of \(\Box \) whose set of objects is \(\{[k], k \leq n\} \). A presheaf over \(\Box_n \) is called a \(n \)-dimensional precubical set. The category \(\Box_n^{\text{op}}\text{Set} \) will be identified with the full subcategory of \(\Box^{\text{op}}\text{Set} \) of precubical sets \(K \) such that the inclusion \(K \leq n \subset K \) is an isomorphism of \(\Box^{\text{op}}\text{Set} \).

Let \(K \) be a precubical set. The category \(\Box|K \) of cubes of \(K \) is the small category defined by the pullback of categories

\[\begin{array}{ccc}
\Box|K & \longrightarrow & \Box^{\text{op}}\text{Set}|K \\
\downarrow & & \downarrow \\
\Box & \longrightarrow & \Box^{\text{op}}\text{Set}.
\end{array} \]

In other terms, an object of \(\Box|K \) is a morphism \(\Box[m] \to K \) and a morphism of \(\Box|K \) is a commutative diagram

\[\begin{array}{ccc}
\Box[m] & \longrightarrow & \Box[n] \\
\downarrow & & \downarrow \\
& \longrightarrow & K.
\end{array} \]

2.2. The category of all small diagrams over a cocomplete category.

Let \(\mathcal{DM} \) be the category of all small diagrams of objects of a cocomplete category \(\mathcal{M} \). The objects are the functors \(D : \mathcal{B} \to \mathcal{M} \) where \(\mathcal{B} \) is a small category. A morphism from a diagram \(D : \mathcal{B} \to \mathcal{M} \) to a diagram \(E : \mathcal{C} \to \mathcal{M} \) is a functor \(\phi : \mathcal{B} \to \mathcal{C} \) together with a natural transformation \(\mu : D \to E \circ \phi \).

2.2.1. Proposition.

Let \(\mathcal{M} \) be a cocomplete category. The colimit construction \(D \mapsto \lim D \) induces a functor from \(\mathcal{DM} \) to \(\mathcal{M} \).

Proof. A morphism of diagrams \((\phi, \mu) : D \to E\) gives rise to a morphism \(D \to E \circ \phi \) in \(\mathcal{M}^\text{C} \). For every object \(W \) of \(\mathcal{M} \), one has the natural set map (where \(\text{Diag}_\mathcal{B} \) is the constant diagram
functor over \mathcal{B} and where $\text{Diag}_\mathcal{C}$ is the constant diagram functor over \mathcal{C}):

$$\mathcal{M}(\lim_{\to} E, W) \cong \mathcal{M}(E, \text{Diag}_\mathcal{C}(W))$$

by adjunction

$$\to \mathcal{M}(E \circ \phi, \text{Diag}_\mathcal{C}(W) \circ \phi)$$

$$= \mathcal{M}(E \circ \phi, \text{Diag}_\mathcal{B}(W))$$

since $\text{Diag}_\mathcal{C}(W) \circ \phi = \text{Diag}_\mathcal{B}(W)$

$$\to \mathcal{M}(D, \text{Diag}_\mathcal{B}(W))$$

$$\cong \mathcal{M}(\lim_{\to} D, W)$$

by adjunction.

One obtains a map $\lim_{\to} D \to \lim_{\to} E$ by setting $W = \lim_{\to} E$. So the colimit construction induces a functor from $\mathcal{D}\mathcal{M}$ to \mathcal{M}. □

2.3. Cocubical objects in a simplicial model category. Let us consider a simplicial model category \mathcal{M}. A cocubical object (resp. of dimension $n \geq 0$) is a functor from \square (resp. \square_n) to \mathcal{M}.

Let X be a cocubical object of \mathcal{M}. Let \tilde{X}_K be the functor from the category of cubes $\square \downarrow K$ of a precubical set K to \mathcal{M} defined on objects by

$$\tilde{X}_K(\square[n] \to K) = X([n])$$

and on morphisms by

$$\tilde{X}_K\left(\begin{array}{ccc}
\square[m] & \square[n] \\
\downarrow & \downarrow \\
K & K
\end{array}\right) = X(\delta).$$

The mapping $X \mapsto \tilde{X}$ induces a functor from $\mathcal{M}\square$ to $\mathcal{D}\mathcal{M}\square^{op}\text{Set}$. Let $(-)$ be the composite functor

$$\mathcal{M}\square \xrightarrow{(-)} \mathcal{D}\mathcal{M}\square^{op}\text{Set} \xrightarrow{\lim_{\to}} \mathcal{M}\square^{op}\text{Set}$$

in which the right-hand functor is the functor of Proposition 2.2.1. So one has

$$\tilde{X}(K) = \lim_{\square[n] \to K} X([n]) = \lim_{\square K} \tilde{X}_K.$$

The category \square has a structure of a direct Reedy category with the degree function $d([n]) = n$ for all $n \geq 0$. Let us equip the category $\mathcal{M}\square$ of cocubical objects of \mathcal{M} with its Reedy model category structure ([Hir03] Theorem 15.3.4). The following proposition describes the Reedy cofibrations and the Reedy fibrations of cocubical objects.

2.3.1. Proposition. Let \mathcal{M} be a model category. Then:

1. The Reedy fibrations of cocubical objects are the objectwise fibrations.

2. A cocubical object X of \mathcal{M} is Reedy fibrant if and only if for every $n \geq 0$, $X([n])$ is fibrant.

3. A cocubical object X is Reedy cofibrant if and only if for any $n \geq 0$, the map $\tilde{X}(\partial\square[n] \subset \square[n])$ is a cofibration of \mathcal{M}.

Proof. A Reedy fibration of $\mathcal{M}\square$ is by definition a map of cocubical objects $X \to Y$ such that for every object $[n]$ of \square, the map

$$X([n]) \to M_{[n]}X \times M_{[n]}Y([n])$$

is a fibration in \mathcal{M}. □
is a fibration of \(\mathcal{M} \) where \(M_{[n]} X \) (resp. \(M_{[n]} Y \)) is the matching object of \(X \) (resp. of \(Y \)) at \([n] \). These matching objects are equal to the terminal object \(1 \) of \(\mathcal{M} \) since the Reedy category \(\Box \) is direct. So the Reedy fibrations are the objectwise fibrations. Hence the first assertion.

A cocubical object \(X \) is therefore Reedy fibrant if and only if for every object \([n] \) of \(\Box \), the map \(X([n]) \to 1 \) is a fibration. Hence the second assertion.

A Reedy cofibration of \(\mathcal{M}\Box \) is by definition a map of cocubical objects \(X \to Y \) such that for every object \([n] \) of \(\Box \), the map

\[
L_{[n]} Y \sqcup_{L_{[n]} X} X([n]) \to Y([n])
\]

is a cofibration of \(\mathcal{M} \) where \(L_{[n]} X \) (resp. \(L_{[n]} Y \)) is the matching object of \(X \) (resp. of \(Y \)) at \([n] \). The latching category at \(\alpha = \Box[n] \), usually denoted by \(\partial(\Box[n]) \), is by definition the full subcategory of the category \(\Box \downarrow \alpha \) of cubes of \(\Box[n] \) containing the maps \(\Box[m] \to \Box[n] \) different from the identity of \(\Box[n] \). And the latching object of \(X \) at \(\alpha \) is by definition

\[
L_{[n]} X \cong \lim_{\partial(\Box[n])} X(\Box[m]) \cong \tilde{X}(\partial(\Box[n])).
\]

Hence the third assertion. \(\square \)

2.3.2. Proposition. The composite functor

\[
\left(\right): \mathcal{M}\Box \leftarrow \mathcal{D}\mathcal{M}\Box^{\text{op}} \overset{\text{lim}}{\longrightarrow} \mathcal{M}\Box^{\text{op}} \text{Set}
\]

induces an equivalence of categories

\[
\mathcal{M}\Box \cong \mathcal{M}\Box^{\text{op}} \text{Set}^{\lim}
\]

where \(\mathcal{M}\Box^{\text{op}} \text{Set}^{\lim} \) is the category of colimit-preserving functors from \(\Box^{\text{op}} \text{Set} \) to \(\mathcal{M} \).

Proof. Consider the functor \(F: \mathcal{M}\Box^{\text{op}} \text{Set}^{\lim} \to \mathcal{M}\Box \) defined by \(F(Z) = Z \circ \Box \). Then for every cocubical object \(X \) of \(\mathcal{M} \), one has the natural isomorphisms of \(\mathcal{M} \)

\[
F(\tilde{X})([n]) \cong \tilde{X}(\Box[n]) \cong \lim_{\Box[m] \to \Box[n]} X([m]) \cong X([n])
\]

and, since \(Z \) is colimit-preserving,

\[
\widetilde{F(Z)}(K) \cong \lim_{\Box[n] \to K} Z([n]) \cong Z(K).
\]

\(\square \)

By [Hir03] Theorem 15.3.4 again, the Reedy model structure of \(\mathcal{M}\Box \) is simplicial with the tensor product and cotensor product of a cocubical object \(X \) by a simplicial set \(K \) defined by the composites \(X \otimes K := (- \otimes K) \circ X \) and \(X^K := (-)^K \circ X \).

2.3.3. Theorem. Let \(\mathcal{M} \) be a simplicial model category. Let \(I \), \(X \) and \(Y \) be three cocubical objects of \(\mathcal{M} \). Let \(p_X : X \to I \) and \(p_Y : Y \to I \) be two objectwise trivial fibrations of cocubical objects of \(\mathcal{M} \). Assume that for every \(n \geq 0 \), the maps \(\tilde{X}(\partial(\Box[n])) \to \tilde{X}(\Box[n]) \) and \(\tilde{Y}(\partial(\Box[n])) \to \tilde{Y}(\Box[n]) \) are cofibrations of \(\mathcal{M} \) and \(I([n]) \) is fibrant. Then:
• There exists a natural transformation from \hat{X} to \hat{Y} over \hat{I}, i.e. a map $\hat{X} \to \hat{Y}$ such that the following diagram commutes:

\[
\begin{array}{ccc}
\hat{X} & \longrightarrow & \hat{Y} \\
\downarrow^{\hat{p}_X} & & \downarrow^{\hat{p}_Y} \\
\hat{I} & \nearrow & \\
\end{array}
\]

• Take two natural transformations $\hat{\mu} : \hat{X} \to \hat{Y}$ and $\hat{\nu} : \hat{X} \to \hat{Y}$ over \hat{I}. Then there exists a simplicial homotopy between $\hat{\mu}(K)$ and $\hat{\nu}(K)$ which is natural with respect to K.

• For any natural transformation $\hat{\mu} : \hat{X} \to \hat{Y}$ over \hat{I} and any natural transformation $\hat{\nu} : \hat{Y} \to \hat{X}$ over \hat{I}, the map $\hat{\mu}(K) \circ \hat{\nu}(K)$ is naturally simplicially homotopy equivalent to $\text{Id}_{\hat{Y}(K)}$ and the map $\hat{\nu}(K) \circ \hat{\mu}(K)$ is naturally simplicially homotopy equivalent to $\text{Id}_{\hat{X}(K)}$, natural meaning natural with respect to K.

Proof. The cubical object X is Reedy cofibrant by Proposition 2.3.1. The map p_Y is a trivial Reedy fibration by Proposition 2.3.1 as well. Let $A \to B$ be a cofibration of simplicial sets. Consider a commutative diagram of simplicial sets:

\[
\begin{array}{ccc}
A & \longrightarrow & \text{Map}(X, Y) \\
\downarrow^{k} & & \downarrow^{\ast} \\
B & \longrightarrow & \text{Map}(X, I)
\end{array}
\]

where the map $(p_Y)_* : \text{Map}(X, Y) \to \text{Map}(X, I)$ is induced by the composition by p_Y. By adjunction, the lift k exists if and only if the lift k' exists in the commutative diagram of cubical objects of M

\[
\begin{array}{ccc}
X \otimes A & \longrightarrow & Y \\
\downarrow^{k'} & & \downarrow^{\ast} \\
X \otimes B & \longrightarrow & I.
\end{array}
\]

The map $X \otimes A \to X \otimes B$ is the pushout product of the Reedy cofibration $\varnothing \to X$ by the cofibration of simplicial sets $A \to B$, and therefore is a Reedy cofibration. Hence the existence of k' and k. So the simplicial map $(p_Y)_* : \text{Map}(X, Y) \to \text{Map}(X, I)$ is a trivial fibration of simplicial sets. Let F be the fibre over p_X of the simplicial map $(p_Y)_* : \text{Map}(X, Y) \to \text{Map}(X, I)$ defined by the pullback diagram of simplicial sets:

\[
\begin{array}{ccc}
F & \longrightarrow & \text{Map}(X, Y) \\
\downarrow^{\approx} & & \downarrow^{\approx} \\
\Delta[0] & \overset{p_X}{\longrightarrow} & \text{Map}(X, I).
\end{array}
\]
Since the pullback of a trivial fibration is a trivial fibration, the map \(F \to \Delta[0] \) is a trivial fibration. The lift \(\ell \) in the commutative diagram of simplicial sets

\[
\begin{array}{ccc}
\varnothing & \longrightarrow & F \\
\downarrow & & \downarrow \approx \\
\Delta[0] & \longrightarrow & \Delta[0]
\end{array}
\]

gives \(\ell(0) \in F_0 \subset \text{Map}(X,Y)_0 = \mathcal{M}^{\square}(X,Y) \). By definition, \(\ell(0) : X \to Y \) is a morphism of cocubical objects over \(I \). Hence a natural transformation \(\ell(0) : \hat{X} \to \hat{Y} \) over \(\hat{I} \) and the first assertion.

Take two natural transformations \(\hat{\mu} \) and \(\hat{\nu} \) from \(\hat{X} \to \hat{Y} \) over \(\hat{I} \). By Proposition \[2.3.2\] one can suppose that they come from two morphisms of cocubical objects \(\mu \) and \(\nu \) from \(X \) to \(Y \) over \(I \). One obtains the commutative diagram of simplicial sets:

\[
\begin{array}{ccc}
\Delta[0] \sqcup \Delta[0] & \overset{(\mu,\nu)}{\longrightarrow} & F \\
\downarrow & & \downarrow \approx \\
\Delta[1] & \longrightarrow & \Delta[0]
\end{array}
\]

Thus, there exists a simplicial path \(\Delta[1] \to F \subset \text{Map}(X,Y) \) between \(\mu \) and \(\nu \), i.e. by adjunction a morphism of cocubical objects \(H : X \otimes \Delta[1] \to Y \) such that the two natural transformations \(X \Rightarrow X \otimes \Delta[1] \to Y \) are \(\mu \) and \(\nu \), i.e. \(H \) is a simplicial homotopy between \(\mu \) and \(\nu \). One obtains a simplicial homotopy \(\hat{H}_K \in \text{Map}(\hat{X}_K,\hat{Y}_K)_1 \) between \(\hat{\mu}_K \) and \(\hat{\nu}_K \). Since there is an isomorphism

\[
\lim(\hat{X}_K \otimes \Delta[1]) \cong (\lim \hat{X}_K) \otimes \Delta[1]
\]

because the functor \(- \otimes \Delta[1] \) is colimit-preserving, one obtains a simplicial homotopy \(\hat{H}(K) \in \text{Map}(\hat{X}(K),\hat{Y}(K))_1 \) between \(\hat{\mu}(K) \) and \(\hat{\nu}(K) \) which is natural with respect to \(K \). Hence the second assertion.

The third assertion is a consequence of the second assertion by noticing that \(\text{Id}_{\hat{X}} \) is a natural transformation from \(\hat{X} \) to itself over \(\hat{I} \) and that \(\text{Id}_{\hat{Y}} \) is a natural transformation from \(\hat{Y} \) to itself over \(\hat{I} \).

\[\square\]

2.3.4. Theorem. Let \(\mathcal{M} \) be a simplicial model category. Let \(n \geq 0 \). Let \(I, X \) and \(Y \) be three cocubical objects of \(\mathcal{M} \) of dimension \(n \). Let \(p_X : \hat{X} \to I \) and \(p_Y : \hat{Y} \to I \) be two objectwise trivial fibrations of cocubical objects of \(\mathcal{M} \). Assume that for every \(0 \leq p \leq n \), the maps \(\hat{X}(\partial \square[p]) \to \hat{X}(\square[p]) \) and \(\hat{Y}(\partial \square[p]) \to \hat{Y}(\square[p]) \) are cofibrations of \(\mathcal{M} \) and \(I((p)) \) is fibrant. Then:

- There exists a natural transformation from \(\hat{X} \) to \(\hat{Y} \) over \(\hat{I} \).
- Take two natural transformations \(\hat{\mu} : \hat{X} \to \hat{Y} \) and \(\hat{\nu} : \hat{X} \to \hat{Y} \) over \(\hat{I} \). Then there exists a simplicial homotopy between \(\hat{\mu}(K) \) and \(\hat{\nu}(K) \) which is natural with respect to \(K \).
- For any natural transformation \(\hat{\mu} : \hat{X} \to \hat{Y} \) over \(\hat{I} \) and any natural transformation \(\hat{\nu} : \hat{Y} \to \hat{X} \) over \(\hat{I} \), the map \(\hat{\mu}(K) \circ \hat{\nu}(K) \) is naturally simplicially homotopy equivalent to \(\text{Id}_{\hat{Y}(K)} \) and the map \(\hat{\nu}(K) \circ \hat{\mu}(K) \) is naturally simplicially homotopy equivalent to \(\text{Id}_{\hat{X}(K)} \), natural meaning natural with respect to the precubical set \(K \) of dimension \(n \).
Proof. Use the Reedy structure of \square_n and the Reedy model structure of \mathcal{M}^{\square_n} in the proof of Theorem 2.3.3.

3. The weak S-homotopy model category of flows is simplicial

The goal of this section is to prove that the weak S-homotopy model category of Flow is simplicial (Theorem 3.3.15).

3.1. Topological space. All topological spaces are compactly generated, i.e. weak Hausdorff k-spaces. Further details about these topological spaces are available in [Bro88, May99, the appendix of Lew78] and also the preliminaries of [Gau03]. All compact spaces are Hausdorff. The category of compactly generated topological spaces together with the continuous maps is denoted by Top. The category Top is equipped with the usual model structure having the weak homotopy equivalences as weak equivalences and having the Serre fibrations as fibrations. This model structure is simplicial and any topological space is fibrant. The homotopy category, i.e. the localization of Top by the weak homotopy equivalences, is denoted by $\text{Ho}(\text{Top})$. The functor $\gamma : \text{Top} \to \text{Ho}(\text{Top})$ is the canonical functor which is the identity on objects. The set of continuous maps $\text{Top}(X,Y)$ from X to Y equipped with the Kelleyfication of the compact-open topology is denoted by $\text{TOP}(X,Y)$. The latter topological space is the internal hom of the cartesian closed category Top. So one has the natural homeomorphism $\text{TOP}(X \times Y, Z) \cong \text{TOP}(X, \text{TOP}(Y,Z))$. Moreover the covariant functor $\text{TOP}(X,-) : \text{Top} \to \text{Top}$ and the contravariant functor $\text{TOP}(-,X) : \text{Top}^{op} \to \text{Top}$ preserve limits [Kel82].

3.2. Flow. A flow X is a small category without identity maps enriched over the category of compactly generated topological spaces. The set of objects is denoted by X^0. The space of morphisms from α to β is denoted by $\mathbb{P}_{\alpha,\beta}X$. A morphism of flows $f : X \to Y$ is a set map $f^0 : X^0 \to Y^0$ together with a continuous map $\mathbb{P}f : \mathbb{P}X \to \mathbb{P}Y$ preserving the structure. The corresponding category is denoted by Flow. If for all $\alpha \in X^0$, the space $\mathbb{P}_{\alpha,\alpha}X$ is empty, then X is called a loopless flow. The composition law of a flow is denoted by \ast.

Any poset P, and in particular any set, can be viewed as a loopless flow with a morphism from α to β if and only if $\alpha < \beta$. This yields a functor from the category of posets with strictly increasing maps to that of flows.

Let Z be a topological space. The flow $\text{Glob}(Z)$ is defined by

- $\text{Glob}(Z)^0 = \{\hat{0}, \hat{1}\}$,
- $\mathbb{P}\text{Glob}(Z) = \mathbb{P}_{\hat{0},\hat{1}}\text{Glob}(Z) = Z$,
- $s = \hat{0}$, $t = \hat{1}$ and a trivial composition law.

It is called the globe of the space Z.

The weak S-homotopy model structure of Flow is characterized as follows [Gau03]:

- The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms of flows $f : X \to Y$ such that $f^0 : X^0 \to Y^0$ is a bijection of sets and such that $\mathbb{P}f : \mathbb{P}X \to \mathbb{P}Y$ is a weak homotopy equivalence.
- The fibrations are the morphisms of flows $f : X \to Y$ such that $\mathbb{P}f : \mathbb{P}X \to \mathbb{P}Y$ is a Serre fibration.

Sometimes, an object of a flow is called a state and a morphism a (non-constant) execution path.
Note that any flow is fibrant. The homotopy category is denoted by \(\text{Ho}(\text{Flow}) \). This model structure is cofibrantly generated. The set of generating cofibrations is the set
\[
I^gl = I^f \cup \{ R : \{0, 1\} \to \{0\}, C : \emptyset \to \{0\} \}
\]
with \(I^gl = \{ \text{Glob}(\mathbb{S}^{n-1}) \subset \text{Glob}(\mathbb{D}^n), n \geq 0 \} \) where \(\mathbb{D}^n \) is the \(n \)-dimensional disk and \(\mathbb{S}^{n-1} \) the \((n-1)\)-dimensional sphere. By convention, the \((-1)\)-dimensional sphere is the empty space. The set of generating trivial cofibrations is
\[
J^gl = \{ \text{Glob}(\mathbb{D}^n \times \{0\}) \subset \text{Glob}(\mathbb{D}^n \times [0,1]), n \geq 0 \}.
\]

Let \(X \) and \(U \) be two flows. Let \(\text{FLOW}(X, U) \) be the set \(\text{Flow}(X, U) \) equipped with the Kelleyfication of the compact-open topology. Let \(f, g : X \Rightarrow U \) be two morphisms of flows. Then a \(S \)-\textit{homotopy} is a continuous map \(H : [0,1] \to \text{FLOW}(X, U) \) with \(H_0 = f \) and \(H_1 = g \). This situation is denoted by \(f \sim_S g \). The \(S \)-\textit{homotopy} relation defines a congruence on the category \(\text{Flow} \). If there exists a map \(f' : U \to X \) with \(f \circ f' \sim_S \text{Id}_U \) and \(f' \circ f \sim_S \text{Id}_X \), then \(f \) is called a \(S \)-\textit{homotopy equivalence}.

3.3. Simplicial structure of the model category of flows

Let \(K \) be a non-empty connected simplicial set. Let \(X \) be a flow. Then one has the isomorphism of topological spaces
\[
\text{TOP}(|K|, \mathbb{P}X) \cong \bigsqcup_{(\alpha, \beta) \in X^0 \times X^0} \text{TOP}(|K|, \mathbb{P}_{\alpha, \beta}X)
\]
where the topological space \(|K|\) is the geometric realization of the simplicial set \(K \). Note the latter isomorphism is false if \(K \) is empty or not connected. The associative composition law

\[
* : \mathbb{P}X \times_X \mathbb{P}X \to \mathbb{P}X
\]

then gives rise to a continuous map

\[
* : \text{TOP}(|K|, \mathbb{P}X) \times_X \text{TOP}(|K|, \mathbb{P}X) \cong \text{TOP}(|K|, \mathbb{P}X \times_X \mathbb{P}X) \to \text{TOP}(|K|, \mathbb{P}X).
\]

The homeomorphism \(\text{TOP}(|K|, \mathbb{P}X) \times_X \text{TOP}(|K|, \mathbb{P}X) \cong \text{TOP}(|K|, \mathbb{P}X \times_X \mathbb{P}X) \) holds since the functor \(\text{TOP}(|K|, -) \) is limit-preserving. Hence the following definition:

3.3.1. Definition

Let \(K \) be a non-empty connected simplicial set. Let \(X \) be an object of \(\text{Flow} \). Let \(X^K \) be the flow defined by

- \((X^K)^0 = X^0 \)
- \(\mathbb{P}_{\alpha, \beta}(X^K) = \text{TOP}(|K|, \mathbb{P}_{\alpha, \beta}X) \) for all \((\alpha, \beta) \in X^0 \times X^0 \)
- the above composition law.

Several theorems of \cite{Ga03} are going to be used. Therefore, it is helpful for the reader to give the following correspondence between the notations of this paper (left column) and of \cite{Ga03} (right column) for a flow \(X \) and a non-empty connected simplicial set \(K \):

Notations of this paper	Notations of \cite{Ga03}		
\(X \otimes K \)	\(K	\boxtimes X \)
\(X^K \)	\(\{K, X\}_S \)		

3.3.2. Proposition

Let \(K \) be a non-empty connected simplicial set. The mapping \(X \mapsto X^K \) gives rise to an undofunctor of \(\text{Flow} \). The functor \((-)^K \) is a right adjoint.

Proof. Consequence of \cite{Ga03} Theorem 7.8.

3.3.3. Notation

Let \(K \) be a non-empty connected simplicial set. Let us denote by \(- \otimes K \) the left adjoint of \((-)^K \).
3.3.4. **Definition.** Let K be a non-empty simplicial set. Let $(K_i)_{i \in I}$ be its set of non-empty connected components. Let
\[
\begin{align*}
X \otimes K &:= \bigsqcup_{i \in I} X \otimes K_i \\
X^K &:= \prod_{i \in I} X^{K_i}.
\end{align*}
\]
And let $X \otimes \emptyset = \emptyset$ and $X^\emptyset = 1$.

3.3.5. **Proposition.** Let K be a simplicial set. The pair of functors $(_ \otimes K) : \text{Flow} \leftrightarrow \text{Flow} : (-)^K$ is a categorical adjunction.

Proof. If $K = \emptyset$, then one has the isomorphisms
\[
\text{Flow}(X \otimes \emptyset, Y) \cong \text{Flow}(\emptyset, Y) \cong 1 \cong \text{Flow}(X, Y^\emptyset).
\]
Now let K be a non-empty simplicial set. Let $(K_i)_{i \in I}$ be its set of non-empty connected components. Then one has
\[
\text{Flow}(X \otimes K, Y) \\
\cong \text{Flow}\left(\bigsqcup_{i \in I} (X \otimes K_i), Y\right) \quad \text{by definition of } X \otimes K \\
\cong \prod_{i \in I} \text{Flow}(X \otimes K_i, Y) \\
\cong \prod_{i \in I} \text{Flow}(X, Y^{K_i}) \quad \text{by Proposition 3.3.2} \\
\cong \text{Flow}(X, \prod_{i \in I} Y^{K_i}) \\
\cong \text{Flow}(X, Y^K) \quad \text{by definition of } X^K.
\]
Hence the adjunction. \qed

3.3.6. **Definition.** Let X and Y be two objects of Flow. Let
\[
\text{Map}(X, Y) := \text{Flow}(X \otimes \Delta[\ast], Y).
\]
It is called the function complex from X to Y.

3.3.7. **Proposition.** Let X and Y be two flows. Then one has the natural isomorphism of simplicial sets
\[
\text{Map}(X, Y) \cong \text{Sing}(\text{FLOW}(X, Y))
\]
where Sing is the singular nerve functor.

Proof. Let $n \geq 0$. Since the topological space $|\Delta[n]|$ is non-empty and connected, one has
\[
\text{Sing}(\text{FLOW}(X, Y))_n = \text{Top}(|\Delta[n]|, \text{FLOW}(X, Y)) \cong \text{Flow}(X \otimes \Delta[n], Y) \text{ by [Gau03] Theorem 7.9}. \qed
\]

3.3.8. **Proposition.** Let \mathcal{B} be a small category. Let $X : \mathcal{B} \to \text{Flow}$ be a functor. Then one has the natural isomorphisms of simplicial sets
\[
\text{Map}(\lim X_b, Y) \cong \lim \text{Map}(X_b, Y) \\
\text{Map}(Y, \lim X_b) \cong \lim \text{Map}(Y, X_b)
\]
for any flow Y of Flow.
Limits and colimits are calculated pointwise in the category of simplicial sets. Since for every \(n \geq 0 \), the functor \(- \otimes \Delta[n]\) is a left adjoint by Proposition 3.3.5, one obtains the natural bijections
\[
\text{Map}(\lim_{\to} X_b, Y)_n \\
\cong \text{Flow}(\lim_{\to} X_b \otimes \Delta[n], Y) \quad \text{by definition of Map}
\]
\[
\cong \text{Flow}(\lim_{\to} (X_b \otimes \Delta[n]), Y) \quad \text{since } - \otimes \Delta[n] \text{ is a left adjoint}
\]
\[
\cong \lim_{\to} \text{Flow}(X_b \otimes \Delta[n], Y)
\]
\[
\cong \lim_{\to} \text{Map}(X_b, Y)_n \quad \text{by definition of Map.}
\]

and
\[
\text{Map}(Y, \lim_{\to} X_b)_n \\
\cong \text{Flow}(Y \otimes \Delta[n], \lim_{\to} X_b) \quad \text{by definition of Map}
\]
\[
\cong \lim_{\to} \text{Flow}(Y \otimes \Delta[n], X_b)
\]
\[
\cong \lim_{\to} \text{Map}(Y, X_b)_n \quad \text{by definition of Map.}
\]

3.3.9. Proposition. Let \(K \) and \(L \) be two simplicial sets. Then one has a natural isomorphism of flows \(X^{K \times L} = (X^K)^L \) for every flow \(X \) of \text{Flow}.

Proof. If \(K \) or \(L \) is empty, then \(X^{K \times L} = (X^K)^L = 1 \) by definition. Suppose now that \(K \) and \(L \) are both non-empty and connected. The flows \(X^{K \times L} \) and \((X^K)^L \) have same set of states \(X^0 \). And \(P(X^{K \times L}) \cong \text{TOP}(|K \times L|, PX) \) and \(P((X^K)^L) = \text{TOP}(|L|, \text{TOP}(|K|, PX)) \). Hence the conclusion in this case since \text{Top} is cartesian closed and since there is a homeomorphism \(|K \times L| \cong |K| \times |L| \). We treat now the general case where \(K \) and \(L \) are both non-empty. Let \((K_i)_{i \in I} \) and \((L_j)_{j \in J} \) be the non-empty connected components of \(K \) and \(L \) respectively. Then \(K \times L = \coprod_{i \in I} \coprod_{j \in J} K_i \times L_j \) and:
\[
X^{K \times L} \\
\cong \coprod_{i \in I} \coprod_{j \in J} X^{K_i \times L_j} \quad \text{since the } K_i \times L_j \text{'s are non-empty and connected}
\]
\[
\cong \coprod_{i \in I} \coprod_{j \in J} (X^{K_i})^{L_j} \quad \text{since the functors } (-)^{L_j} \text{ are right adjoints}
\]
\[
\cong \coprod_{j \in J} \coprod_{i \in I} X^{K_i} \quad \text{by definition of } X^K
\]
\[
\cong (X^K)^L \quad \text{by definition of } (-)^L.
\]

3.3.10. Proposition. Let \(K \) and \(L \) be two simplicial sets. Let \(X \) be a flow. Then one has a natural isomorphism of flows \((X \otimes K) \otimes L \cong X \otimes (K \times L) \).
Proof. Let Y be another flow. Then one has

\[
\text{Flow}((X \otimes K) \otimes L, Y) \\
\cong \text{Flow}(X \otimes K, Y^L) \quad \text{by Proposition 3.3.5} \\
\cong \text{Flow}(X, (Y^L)^K) \quad \text{by Proposition 3.3.5} \\
\cong \text{Flow}(X, Y^{L \times K}) \quad \text{by Proposition 3.3.9} \\
\cong \text{Flow}(X \otimes (K \times L), Y) \quad \text{by Proposition 3.3.5}.
\]

Hence the result using Yoneda’s lemma. \hfill \square

3.3.11. Proposition. Let K be a simplicial set. Let X and Y be two flows. Then one has a natural isomorphism of simplicial sets

\[
\text{Map}(X \otimes K, Y) \cong \text{Map}(K, \text{Map}(X, Y)).
\]

Proof. If $K = \emptyset$, then one has to compare $\text{Map}(X \otimes \emptyset, Y) \cong \text{Map}(\emptyset, Y) \cong 1$ by Proposition 3.3.8 and $\text{Map}(\emptyset, \text{Map}(X, Y)) \cong 1$. So one can suppose the simplicial set K non-empty. By construction of the functor $- \otimes K$ and by Proposition 3.3.8, one can suppose that K is connected as well. Let $n \geq 0$. Thus,

\[
\text{Map}(X \otimes K, Y)_n \\
\cong \text{Flow}(X \otimes (K \times \Delta[n]), Y) \quad \text{by definition of Map and by Proposition 3.3.10} \\
\cong \text{Top}((K \times \Delta[n], \text{FLOW}(X, Y))) \quad \text{by \cite{Gau03} Theorem 7.9} \\
\cong \Delta^{op}\text{Set}(K \times \Delta[n], \text{Map}(X, Y)) \quad \text{by adjunction and by Proposition 3.3.7} \\
\cong \text{Map}(K, \text{Map}(X, Y))_n \quad \text{by definition of Map in $\Delta^{op}\text{Set}$}.
\]

3.3.12. Proposition. One has the natural isomorphism of simplicial sets

\[
\text{Map}(X \otimes K, Y) \cong \text{Map}(X, Y^K)
\]

for every simplicial set K and every flow X, Y of Flow.

Proof. One has for any $n \geq 0$

\[
\text{Map}(X \otimes K, Y)_n \\
\cong \text{Flow}(X \otimes K \otimes \Delta[n], Y) \quad \text{by definition of Map} \\
\cong \text{Flow}(X \otimes \Delta[n], Y^K) \quad \text{by Proposition 3.3.10 and Proposition 3.3.5} \\
\cong \text{Map}(X, Y^K)_n. \quad \text{by definition of Map}.
\]

3.3.13. Lemma. Let $f : X \rightarrow Y$ be a morphism of flows. Then the following conditions are equivalent:

1. f is a fibration of flows, that is the continuous map $\mathbb{P}f : \mathbb{P}X \rightarrow \mathbb{P}Y$ is a fibration of topological spaces.
2. for any $(\alpha, \beta) \in X^0 \times X^0$, the continuous map $\mathbb{P}f : \mathbb{P}_{\alpha, \beta}X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)}Y$ is a fibration of topological spaces.
3.3.14. Proposition. Let \(i : A \to B \) be a cofibration of flows. Let \(p : X \to Y \) be a fibration of flows. Then the morphism of simplicial sets

\[
Q(i, p) : \text{Map}(B, X) \to \text{Map}(A, X) \times_{\text{Map}(A, Y)} \text{Map}(B, Y)
\]

is a fibration of simplicial sets. Moreover if either \(i \) or \(p \) is trivial, then the fibration \(Q(i, p) \) is trivial as well.

\[\text{Proof.}\] By [GJ99] Proposition II.3.13 on [95], it suffices to prove that the morphism of flows

\[
X^{\Delta[0]} \to X^{\partial \Delta[0]} \times_{Y^{\partial \Delta[0]}} Y^{\Delta[0]}
\]

is a fibration (resp. trivial fibration) for any \(n \geq 0 \) as soon as \(X \to Y \) is a fibration (resp. trivial fibration) of flows. The case of a fibration is the only one treated since the other case is similar.

For \(n = 0 \), one has to check that

\[
X^{\Delta[0]} \longrightarrow 1 \times 1 \ Y^{\Delta[0]} \cong Y^{\Delta[0]}
\]

is a fibration. Since \(\Delta[0] \) is connected, \(X^{\Delta[0]} = X \) and \(Y^{\Delta[0]} = Y \). So there is nothing to check for \(n = 0 \).

For \(n = 1 \), one has to check that

\[
X^{\Delta[1]} \longrightarrow X^{\partial \Delta[1]} \times_{Y^{\partial \Delta[1]}} Y^{\Delta[1]}
\]

is a fibration. Since \(\partial \Delta[1] \) is the discrete two-point simplicial set, then \(X^{\partial \Delta[1]} = X \times X \). Since \(\Delta[1] \) is connected, one has to check that for any \((\alpha, \beta) \in X^0 \times X^0 \), the continuous map

\[
\text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} X) \longrightarrow (\mathbb{P}_{\alpha, \beta} X \times \mathbb{P}_{\alpha, \beta} X) \times (\mathbb{P}_{\alpha, \beta} Y \times \mathbb{P}_{\alpha, \beta} Y) \ \text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} Y)
\]

is a fibration of topological spaces. Using the homeomorphisms

\[
\mathbb{P}_{\alpha, \beta} X \times \mathbb{P}_{\alpha, \beta} X \cong \text{TOP}(-1, 1, \mathbb{P}_{\alpha, \beta} X)
\]

and

\[
\mathbb{P}_{\alpha, \beta} Y \times \mathbb{P}_{\alpha, \beta} Y \cong \text{TOP}(-1, 1, \mathbb{P}_{\alpha, \beta} Y),
\]

one has to check that the continuous map

\[
\text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} X) \longrightarrow \text{TOP}(-1, 1, \mathbb{P}_{\alpha, \beta} X) \times \text{TOP}(-1, 1, \mathbb{P}_{\alpha, \beta} Y) \ \text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} Y)
\]

is a fibration of topological spaces. So one has to prove that for any commutative square

\[
\begin{array}{ccc}
D^n \times \{0\} & \longrightarrow & \text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} X) \\
\downarrow & & \downarrow \\
D^n \times [0, 1] & \longrightarrow & \text{TOP}(\{1, 1\}, \mathbb{P}_{\alpha, \beta} X) \times \text{TOP}(-1, 1, \mathbb{P}_{\alpha, \beta} Y) \ \text{TOP}(\Delta[1], \mathbb{P}_{\alpha, \beta} Y),
\end{array}
\]

the lift \(k \) exists. By adjunction, it suffice to prove that the lift \(k' \) of the commutative square

\[
(D^n \times \Delta[1]) \cup (D^n \times [0, 1] \times \{1, 1\}) \longrightarrow \mathbb{P}_{\alpha, \beta} X
\]

\[
\downarrow \quad k'
\]

\[
D^n \times [0, 1] \times \Delta[1] \longrightarrow \mathbb{P}_{\alpha, \beta} Y
\]
exists. The inclusion \{-1, 1\} \subset |\Delta[1]| is a cofibration. So the left-hand map is the pushout product of a cofibration with a trivial cofibration. By Lemma \textbf{3.3.13} the continuous map \(\mathbb{P} \alpha, \beta X \to \mathbb{P} \alpha, \beta Y\) is a fibration of topological spaces. The case \(n = 1\) is therefore solved.

Consider now the case \(n \geq 2\). Then both \(\Delta[n]\) and \(\partial \Delta[n]\) are connected. Therefore one has to check that for any \((\alpha, \beta) \in X^0 \times X^0\), the continuous map

\[
\text{TOP}(|\Delta[n]|, \mathbb{P} \alpha, \beta X) \to \text{TOP}(|\partial \Delta[n]|, \mathbb{P} \alpha, \beta X); \text{TOP}(|\Delta[n]|, \mathbb{P} \alpha, \beta Y)
\]

is a fibration. This holds for the same reason as above because 1) the category of topological spaces is cartesian closed, 2) the inclusion \(|\partial \Delta[n]| \to |\Delta[n]|\) is a cofibration and 3) the mapping \(\mathbb{P} \alpha, \beta X \to \mathbb{P} \alpha, \beta Y\) is a fibration by Lemma \textbf{3.3.13}.

\textbf{3.3.15. Theorem.} The model category \textbf{Flow} together with the functors \(- \otimes K\), \((-)^K\) and \(\text{Map}(-, -)\) assembles to a simplicial model category.

\textit{Proof.} By definition, the set \(\text{Map}(X, Y)_b\) is the set \(\textbf{Flow}(X, Y)\) of morphisms from the flow \(X\) to the flow \(Y\). Thus, the identity of \(\text{Id}_X\) yields for every flow \(X\) a simplicial map \(\Delta[0] \to \text{Map}(X, X)\). The theorem is then a consequence of Proposition \textbf{3.3.11}, Proposition \textbf{3.3.12} and Proposition \textbf{3.3.14}.

Let us conclude this section by an important fact:

\textbf{3.3.16. Proposition.} Let \(X\) and \(Y\) be two flows. Let \(f, g : X \to Y\) be two morphisms of flows. There exists a simplicial homotopy \(H : X \otimes \Delta[1] \to Y\) between \(f\) and \(g\) if and only if there exists a \(S\)-homotopy \(\overline{T} : [0, 1] \to \text{FLOW}(X, Y)\) between \(f\) and \(g\).

\textit{Proof.} Since \(\Delta[1]\) is non-empty and connected, one has the equality \(X \otimes \Delta[1] = |\Delta[1]| \otimes X\) by definition of the tensor product. And one has the bijection \(\text{Flow}(|\Delta[1]| \otimes X, Y) \cong \text{Top}([0, 1], \text{FLOW}(X, Y))\) by \cite{Gau03} Theorem 7.9.

4. Comparing realization functors from precubical sets to flows

\textbf{4.1. Realizing a precubical set as a flow.} A state of the flow associated with the poset \(\{0 < 1\}^n\) (i.e. the product of \(n\) copies of \(\{0 < 1\}\)) is denoted by an \(n\)-uple of elements of \(\{0, 1\}\).

By convention, \(\{0 < 1\}^0 = \{0\}\). The unique morphism/execution path from \((x_1, \ldots, x_n)\) to \((y_1, \ldots, y_n)\) is denoted by a \(n\)-uple \((z_1, \ldots, z_n)\) of \(\{0, 1, *\}\) with \(z_i = x_i\) if \(x_i = y_i\) and \(z_i = *\) if \(x_i < y_i\). For example in the flow \(\{0 < 1\}^2\) (cf. Figure \textbf{1}), one has the algebraic relation \((*, *) = (0, *) * (*, 1) = (*, 0) * (1, *)\).
Let $\square \to \text{Flow}$ be the functor defined on objects by the mapping $[n] \mapsto ([\hat{0} \prec \hat{1}]^n)^{cof}$ and on morphisms by the mapping $\delta_i^n \mapsto ((\epsilon_1, \ldots, \epsilon_{n-1}) \mapsto (\epsilon_1, \ldots, \epsilon_{i-1}, \alpha, \epsilon_i, \ldots, \epsilon_{n-1}))^{cof}$ where the ϵ_i's are elements of $\{0, \hat{1}, *\}$.

The functor $| - |_{\text{flow}} : \square^{op}\text{Set} \to \text{Flow}$ is then defined by $|K|_{\text{flow}} := \lim_{\square[n] \to K} ([\hat{0} \prec \hat{1}]^n)^{cof}$. It is a left adjoint. So it commutes with all small colimits.

The functor $X \mapsto X^0$ from flows to sets is a left adjoint since there is a natural bijection $\text{Set}(X^0, S) \cong \text{Flow}(X, \hat{S})$ where \hat{S} is the flow defined by $\hat{S}^0 = S$ and $\hat{P}_{\alpha, \beta} \hat{S} = \{(\alpha, \beta)\}$ with the composition law $(\alpha, \beta) \ast (\beta, \gamma) = (\alpha, \gamma)$. So one obtains the natural bijections of sets

$$|K|_{\text{flow}} \cong \lim_{\square[n] \to K} ([\hat{0} \prec \hat{1}]^n)^{cof},$$

4.2. **Small realization of a precubical set as a flow.** The first two propositions will help the reader to understand the differences between the realization functor $| - |_{\text{flow}}$ and the new one $\text{gl}(-)$ which is going to be constructed in this section.

4.2.1. **Proposition.** (e.g., [Hov99] Lemma 5.2.6) Let \mathcal{M} be a model category. Consider a pushout diagram of \mathcal{M}

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
C & \longrightarrow & D
\end{array}$$

such that the objects A, B and C are cofibrant and such that the map $A \to C$ is a cofibration. Then D is cofibrant and is the homotopy colimit. In other terms, the commutative diagram above is also a homotopy pushout diagram.

4.2.2. **Proposition.** The functor $| - |_{\text{flow}} : \square^{op}\text{Set} \to \text{Flow}$ is a left adjoint (and therefore is colimit-preserving). Moreover, it satisfies the following properties:

- For every $n \geq 0$, there is a homotopy pushout diagram of flows

$$\begin{array}{ccc}
\text{Glob}(S^{n-1}) & \longrightarrow & [\partial \square[n + 1]]_{\text{flow}} \\
\downarrow & & \downarrow \\
\text{Glob}(D^n) & \longrightarrow & [\square[n + 1]]_{\text{flow}}.
\end{array}$$

- There exists an objectwise weak S-homotopy equivalence of cocubical flows

$$|\square[s]|_{\text{flow}} \longrightarrow \{\hat{0} \prec \hat{1}\}^*$$

(with always, by convention, $\{\hat{0} \prec \hat{1}\}^0 = \{0\}$).

Proof. One only has to prove the existence of the homotopy pushout diagram. Equation (1) implies $[\partial \square[n + 1]]_{\text{flow}}^0 = \{\hat{0}, \hat{1}\}^{n+1}$. By [Gau07b] Theorem 7.8, there is a homotopy equivalence $S^{n-1} \simeq \hat{P}_{0 \ldots \hat{0} \ldots \hat{1} \ldots} [\partial \square[n + 1]]_{\text{flow}}$. This yields a morphism of flows

$$t_n : \text{Glob}(S^{n-1}) \to [\partial \square[n + 1]]_{\text{flow}}$$
defined by \(t_n(0) = \hat{0} \ldots \hat{0}, t_n(1) = \hat{1} \ldots \hat{1} \) and
\[
P_{\hat{0}\ldots\hat{0}}^\circ t_n : P_{\hat{0}\ldots\hat{0}} \Glob(S^{n-1}) = S^{n-1} \rightarrow P_{\hat{0}\ldots\hat{0}\ldots\hat{1}} \gl(\partial \Box [n + 1])
\]
is a homotopy equivalence. Then consider the pushout diagram of flows:
\[
\begin{array}{ccc}
\Glob(S^{n-1}) & \xrightarrow{t_n} & |\partial \Box [n + 1]|_{\text{flow}} \\
\downarrow & & \downarrow \\
\Glob(D^n) & \xrightarrow{\circ t_n} & \{\hat{0} < \hat{1}\} Z_{n+1}.
\end{array}
\]
By construction, one has the equality \(P_{\alpha,\beta} |\partial \Box [n + 1]|_{\text{flow}} = P_{\hat{0} \ldots \hat{0}, \hat{1}} |\partial \Box [n + 1]|_{\text{flow}} \) for every \((\alpha, \beta) \neq (\hat{0} \ldots \hat{0}, \hat{1} \ldots \hat{1})\) and there is a pushout diagram of topological spaces
\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{\circ t_n} & P_{\hat{0} \ldots \hat{0}, \hat{1} \ldots \hat{1}} |\partial \Box [n + 1]|_{\text{flow}} \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{\circ t_n} & P_{\hat{0} \ldots \hat{0}, \hat{1} \ldots \hat{1}} Z_{n+1}.
\end{array}
\]
Since the model category \(\text{Top} \) is left proper, the map \(D^n \rightarrow P_{\hat{0} \ldots \hat{0}, \hat{1} \ldots \hat{1}} Z_{n+1} \) is a weak homotopy equivalence. So the flow \(Z_{n+1} \) and \(|\partial \Box [n + 1]|_{\text{flow}} \) are both cofibrant and fibrant, there is a S-homotopy equivalence \(Z_{n+1} \simeq |\partial \Box [n + 1]|_{\text{flow}} \). The pushout diagram defining \(Z_{n+1} \) is also a homotopy pushout diagram by Proposition 4.2.1. Hence the result. \(\square \)

4.2.3. Proposition. Loopless flows satisfy the following two facts:

1. If a flow \(X \) is loopless, then the reflexive and transitive closure of the set
\[
\{(\alpha, \beta) \in X^0 \times X^0 \text{ such that } P_{\alpha,\beta} X \neq \emptyset\}
\]
induces a partial ordering on \(X^0 \).

2. The functor \(X \mapsto X^0 \) from flows to sets induces a functor from the full subcategory of loopless flows to that of partially ordered sets with strictly increasing maps.

Proof. The first assertion is [Gauch06a] Lemma 4.2. The second assertion is then clear. \(\square \)

4.2.4. Theorem. There exists a colimit-preserving functor \(\gl : \square^{\text{op}} \text{Set} \rightarrow \text{Flow} \) satisfying the following properties:

- For every \(n \geq 0 \), there is a pushout diagram of flows
\[
\begin{array}{ccc}
\Glob(S^{n-1}) & \xrightarrow{\gl(\partial \Box [n + 1])} & \gl(\partial \Box [n + 1]) \\
\downarrow & & \downarrow \\
\Glob(D^n) & \xrightarrow{\gl(\Box [n + 1])} & \gl(\Box [n + 1]).
\end{array}
\]

- There exists an objectwise weak S-homotopy equivalence of cocubical flows
\[
\gl(\Box [\ast]) \rightarrow \{\hat{0} < \hat{1}\}^* \quad (\text{with always, by convention, } \{\hat{0} < \hat{1}\}^0 = \{0\}). \text{ In particular with } n = 0, \gl(\Box [0]) = \{0\}. \]
Note that by Proposition 4.2.1, the pushout diagram above is also a homotopy pushout diagram.

Proof. Let us construct the restriction of the functor gl(−) to the category of n-dimensional precubical sets \(\square_n^{op} \text{Set} \) by induction on \(n \geq 0 \). The functor \(\text{gl}(−) \) will satisfy the natural isomorphism

\[
\text{gl}(K_{\leq n}) \cong \lim_{\square[p] \to K_{\leq n}} \text{gl}(\square[p])
\]

for every precubical set \(K \). One will also prove by induction on \(n \geq 0 \) that:

- For any morphism \(\delta \) of \(\square_n \), the map \(\text{gl}(\square[\delta]) \) is a relative \(I^{gl} \)-cell complex.
- There exists a morphism of cocubical flows of dimension \(n \) from \(\text{gl}([\ast]) \) to \(\{0 < \hat{1}\}^* \) which is an objectwise weak S-homotopy equivalence.
- For all \(0 \leq p \leq n \), the map \(\text{gl}(\partial \square[p] \subset \square[p]) \) is a cofibration.

For \(n = 0 \), let \(\text{gl}(\square[0]) = \{0\} \). Note that this defines a functor from \(\square_0^{op} \text{Set} \) to \(\text{Flow} \) and that for any morphism \(\delta \) of \(\square_0 \), one has \(\text{gl}(\square[\delta]) \in \text{cell}(I^{gl}) \) since \(\delta \) is an objectwise weak S-homotopy equivalence.

Now suppose the construction done for \(n \geq 0 \). Consider the three cocubical flows of dimension \(n \) defined by \(X([\ast]) = \text{gl}(\square[\ast]), Y([\ast]) = [\square[\ast]]_{\text{flow}} \) and \(I([\ast]) = \{0 < \hat{1}\}^* \) for all \(0 \leq \ast \leq n \). By induction hypothesis, there exists a morphism of cocubical flows of dimension \(n \) from \(X \) to \(I \) which is an objectwise weak S-homotopy equivalence. And Proposition 4.2.2 provides a morphism of cocubical flows of dimension \(n \) from \(Y \) to \(I \) which is an objectwise weak S-homotopy equivalence. Any map from any cocubical flow to \(I \) is an objectwise fibration since for any \(n \geq 0 \), the path space \(\mathbb{P}I([n]) \) is discrete. Finally, by induction hypothesis, each map \(\text{gl}(\partial \square[p] \subset \square[p]) \) for \(0 \leq p \leq n \) is a cofibration. And each map \([\partial \square[p] \subset \square[p]]_{\text{flow}} \) for \(0 \leq p \leq n \) is a cofibration by [Gau07b] Proposition 7.6. Theorem 2.3.4 and Proposition 3.3.16 yield a natural S-homotopy equivalence \(\mu_{K_{\leq n}} : \text{gl}(K_{\leq n}) \to [K_{\leq n}]_{\text{flow}} \). The precubical set \(\partial \square[n+1] \) is of dimension \(n \). So by induction hypothesis, there exists a S-homotopy equivalence

\[
\mu_{\partial \square[n+1]} : \text{gl}(\partial \square[n+1]) \xrightarrow{\sim} [\partial \square[n+1]]_{\text{flow}}.
\]

There is also

\[
\text{gl}(\partial \square[n+1])^0 \cong [\partial \square[n+1]]_{\text{flow}}^0 \cong \{0, \hat{1}\}^{n+1}
\]

by Equation (11). The continuous map

\[
\mathbb{P}_{0, \ldots, \hat{1}, \ldots, \hat{1}} \mu_{\partial \square[n+1]} : \mathbb{P}_{0, \ldots, \hat{1}, \ldots, \hat{1}} \text{gl}(\partial \square[n+1]) \xrightarrow{\sim} \mathbb{P}_{0, \ldots, \hat{1}, \ldots, \hat{1}} [\partial \square[n+1]]_{\text{flow}}
\]

is a homotopy equivalence by [Gau03] Corollary 19.8. Using [Gau07b] Theorem 7.8, one deduces that the topological spaces \(\mathbb{P}_{0, \ldots, \hat{1}, \ldots, \hat{1}} \text{gl}(\partial \square[n+1]) \) and \(S^{n-1} \) are homotopy equivalent. This yields a morphism of flows

\[
s_n : \text{Glob}(S^{n-1}) \to \text{gl}(\partial \square[n+1])
\]

defined by

- \(s_n(\hat{0}) = \hat{0} \ldots \hat{0} \) with the identifications \(\text{gl}(\partial \square[n+1])^0 = \partial \square[n+1]_0 = \{0, \hat{1}\}^{n+1} \)
- \(s_n(\hat{1}) = \hat{1} \ldots \hat{1} \) with the identifications \(\text{gl}(\partial \square[n+1])^0 = \partial \square[n+1]_0 = \{0, \hat{1}\}^{n+1} \)
- \(\mathbb{P}_{0, \hat{1}} s_n : \mathbb{P}_{0, \hat{1}} \text{Glob}(S^{n-1}) = S^{n-1} \to \mathbb{P}_{0, \ldots, \hat{1}} \text{gl}(\partial \square[n+1]) \) is a homotopy equivalence.
The flow $\text{gl}(\square[n+1])$ is then defined by the pushout diagram:

$$
\begin{array}{ccc}
\text{Glob}(S^{n-1}) & \xrightarrow{\delta_n} & \text{gl}(\partial \square[n+1]) \\
\downarrow & & \downarrow \\
\text{Glob}(D^n) & \xrightarrow{\text{gl}(\square[n+1])} & \text{gl}(\square[n+1]).
\end{array}
$$

Note that by construction, the map $\text{gl}(\partial \square[n+1] \subset \square[n+1])$ is a cofibration. The $2(n+1)$ inclusions $\square[n] \subset \partial \square[n+1]$ yield the definition of the $\text{gl}(\delta^\circ_i)$’s for all $\delta^\circ_i : [n] \to [n+1]$ with $1 \leq i \leq n+1$ and $\alpha \in \{0,1\}$ as the composites

$$
\text{gl}(\delta^\circ_1) : \text{gl}(\square[n]) \subset \text{gl}(\partial \square[n+1]) \longrightarrow \text{gl}(\square[n+1]).
$$

Since the category \square_{n+1} is the quotient of the free category generated by the $\delta^\circ_i : [p-1] \to [p]$ for $1 \leq p \leq n+1$ with $1 \leq i \leq p$ and $\alpha \in \{0,1\}$, by the cocubical relations, one has to check the cocubical relation $\text{gl}(\delta^\circ_i) \circ \text{gl}(\delta^\circ_j) = \text{gl}(\delta^\circ_i) \circ \text{gl}(\delta^\circ_{j-1})$ for $i < j$ for every map $\delta^\circ_i : [n-1] \to [n+1]$ and $\delta^\circ_i \circ \delta^\circ_{j-1} : [n-1] \to [n+1]$. By induction, each morphism of flows $\text{gl}(\delta^\circ_i)$ is an inclusion of I^β-cell subcomplexes. The equality $\delta^\circ_j \circ \delta^\circ_i = \delta^\circ_i \circ \delta^\circ_{j-1}$ implies that the sources of $\text{gl}(\delta^\circ_j) \circ \text{gl}(\delta^\circ_i)$ and $\text{gl}(\delta^\circ_i) \circ \text{gl}(\delta^\circ_{j-1})$ are the same I^β-cell subcomplex of $\text{gl}(\square[n+1])$. Hence the equality. So the functor from \square_n to Flow defined by $[p] \mapsto \text{gl}(\square[p])$ for $p \leq n$ is extended to a functor from \square_{n+1} to Flow defined by $[p] \mapsto \text{gl}(\square[p])$ for $p \leq n+1$. Let

$$
\text{gl}(K_{[n+1]}) = \lim_{\square[p] \to K_{[n+1]}} \text{gl}(\square[p])
$$

for all precubical sets K. This construction extends the functor $\text{gl} : \square^\circ_{n+1}\text{Set} \to \text{Flow}$ to a functor $\text{gl} : \square^\circ_{n+1}\text{Set} \to \text{Flow}$.

It remains to prove that one has an objectwise weak S-homotopy equivalence of cocubical flows of dimension $n+1$ from $\text{gl}(\square[*])$ to $\{0 < \hat{1}\}^*$ to complete the induction and the proof. The map

$$
\text{gl}(\delta^\circ_i) : \text{gl}(\square[n]) \subset \text{gl}(\partial \square[n+1]) \longrightarrow \text{gl}(\square[n+1])
$$

induces a set map

$$
\text{gl}(\delta^\circ_i)^0 : \text{gl}(\square[n])^0 \subset \text{gl}(\partial \square[n+1])^0 \longrightarrow \text{gl}(\square[n+1])^0.
$$

By Equation (11) and Proposition 1.2.3 one obtains a strictly increasing set map

$$
\text{gl}(\delta^\circ_1)^0 : \{0 < \hat{1}\}^n \to \{0 < \hat{1}\}^{n+1}.
$$

This yields a morphism of cocubical flows of dimension $n+1$ from $\text{gl}(\square[*])$ to $\{0 < \hat{1}\}^*$. It remains to prove that $\text{gl}(\square[n+1])$ is weakly S-homotopy equivalent to $\{0 < \hat{1}\}^{n+1}$. By construction of $\text{gl}(\square[n+1])$, one has the equality $\mathbb{P}_{\alpha,\beta} \text{gl}(\square[n+1]) = \mathbb{P}_{\alpha,\beta} \text{gl}(\partial \square[n+1])$ for $\alpha, \beta \in \{0,1\}$.

5 This argument is possible since every element of $\text{cell}(I^\beta)$ is an (effective) monomorphism of flows by [Gau03] Theorem 10.6. Indeed, a subcomplex of a relative I^β-cell complex is then entirely determined by its set of cells by [Hir03] Proposition 10.6.10 and Proposition 10.6.11.
every \((\alpha, \beta) \neq (\hbar \ldots, \hbar)\) and there is a pushout diagram of topological spaces

\[
\begin{array}{c}
S^{n-1} \\
\downarrow^{P_{\hbar \ldots, \hbar} s_n} \\
D^n \\
\downarrow^{P_{\hbar \ldots, \hbar} \bar{\hbar} \ldots} \\
\bar{P}_{\hbar \ldots, \hbar} \bar{\hbar} \ldots g\left([\partial \square | n + 1]\right)
\end{array}
\]

Since the map \(P_{\hbar \ldots, \hbar} s_n\) is a weak homotopy equivalence, and since the model category \(\text{Top}\) is left proper, the map \(D^n \to \bar{P}_{\hbar \ldots, \hbar} \bar{\hbar} \ldots g([\square | n + 1])\) is a weak homotopy equivalence.

4.2.5. Corollary

There exist a natural transformation \(\mu : g\left([-]_{\text{flow}}\right) \to g\left([\|\text{flow}\]\right)\) inducing for every precubical set \(K\) a natural S-homotopy equivalence \(\mu_K : g\left(K\right) \simeq g\left(K\right)_{\text{flow}}\) and a natural transformation \(\nu : g\left([\|\text{flow}\]\right) \to g\left([-]_{\text{flow}}\right)\) inducing for every precubical set \(K\) a natural S-homotopy equivalence \(\nu_K : g\left(K\right)_{\text{flow}} \simeq g\left(K\right)\) which is an inverse up to S-homotopy of \(\mu_K\).

Proof. Consider the three cocubical flows \(X([\square]) = g\left([\square | \square]\right), Y([\square]) = g\left([\square | \square]\right)_{\text{flow}}\) and \(I([\square]) = \{0 < \hbar\}^*\) for all \(\hbar \geq 0\). Theorem [4.2.4][2] and Proposition [4.2.2][3] yield objectwise weak S-homotopy equivalences \(X \to I\) and \(Y \to I\). Since the path space \(P I([\square | n])\) is discrete for all \(\hbar \geq 0\), the two maps \(X \to I\) and \(Y \to I\) are objectwise trivial fibrations of cocubical flows. Then let us apply Theorem [2.3.3][4] and let us notice that a simplicial homotopy gives rise to a S-homotopy by Proposition [3.3.6][5].

The following theorem characterizes realization functors:

4.2.6. Theorem

Let \(X \to \{0 < \hbar\}^*\) be an objectwise weak S-homotopy equivalence of cocubical flows. Assume that for every \(\hbar \geq 0\), the map \(\hat{X}([\partial \square | n]) \to \hat{X}([\partial \square | n + 1])\) is a cofibration. Then there exist natural transformations \(\mu : g\left([-]_{\text{flow}}\right) \to \hat{X}\) and \(\nu : \hat{X} \to g\left([\square | \square]\right)\) inducing natural S-homotopy equivalences which are inverse to each other up to S-homotopy. In particular, for all \(\hbar \geq 0\), there is a homotopy pushout diagram of flows

\[
\begin{array}{c}
\text{Glob}(S^{n-1}) \\
\downarrow \\
\text{Glob}(D^n)
\end{array} \longrightarrow \begin{array}{c}
\hat{X}([\partial \square | n + 1]) \\
\downarrow \\
\hat{X}([\partial \square | n + 1])
\end{array}
\]

where the left-hand vertical map is the inclusion of flows \(\text{Glob}(S^{n-1} \subset D^n)\) and the right-hand vertical map \(\hat{X}([\partial \square | n + 1] \subset [\square | n + 1])\).

Proof. Since the path space \(P \{0 < \hbar\}^n\) of the flow \(\{0 < \hbar\}^n\) is discrete for all \(\hbar \geq 0\), the map \(X \to \{0 < \hbar\}^*\) is an objectwise trivial fibration of flows. Then apply Theorem [2.3.3][4] and Theorem [4.2.4][3] to obtain the natural transformations \(\mu\) and \(\nu\). One obtains the commutative diagram of flows

\[
\begin{array}{c}
\text{Glob}(S^{n-1}) \\
\downarrow \\
\text{Glob}(D^n)
\end{array} \longrightarrow \begin{array}{c}
g([\partial \square | n + 1]) \\
\downarrow \\
g([\square | n + 1])
\end{array} \longrightarrow \begin{array}{c}
\hat{X}([\partial \square | n + 1]) \\
\downarrow \\
\hat{X}([\square | n + 1])
\end{array}
\]

\(\mu_{[n+1]}\) and \(\mu_{[n+1]}\) correspond.
and therefore the commutative diagram of flows

\[
\begin{array}{ccc}
\text{Glob}(S^{n-1}) & \xrightarrow{\text{gl}(\partial \square[n+1])} & \text{Glob}(D^n) \\
\downarrow & & \downarrow \\
\text{gl}(\partial \square[n+1]) & \xrightarrow{\mu_{\partial \square[n+1]}} & \tilde{X}(\partial \square[n+1]) \\
\phi_n & \xrightarrow{T_n} & \psi_n \\
& & \xrightarrow{\tilde{X}(\square[n+1])} \\
\end{array}
\]

The map \(\phi_n\) is a weak S-homotopy equivalence since \textbf{Flow} is left proper by \cite{Gau07a} Theorem 7.4. So by the two-out-of-three property, the map \(\psi_n\) is a weak S-homotopy equivalence as well. Hence the homotopy pushout of flows.

\[\square\]

5. Realizing a precubical set as a small globular complex

5.1. Globular complex. A globular complex is, like a \(d\)-space, a local pospace and a stream, a topological space with an additional structure modeling time irreversibility. We refer to \cite{Gau15a} for further explanations about the following list of definitions. The original definition of a globular complex can be found in \cite{GG03} but this old definition is slightly different and less tractable than the one of \cite{Gau05a}. So it will not be used.

A \textbf{multiplied topological space} \((X, X^0)\) is a pair of topological spaces such that \(X^0\) is a discrete subspace of \(X\). A morphism of multiplied topological spaces \(f : (X, X^0) \rightarrow (Y, Y^0)\) is a continuous map \(f : X \rightarrow Y\) such that \(f(X^0) \subset Y^0\). The corresponding category is denoted by \(\textbf{MTop}\). The category of multiplied spaces is cocomplete. Let \(Z\) be a topological space. Then the (topological) \textbf{globe} of \(Z\), which is denoted by \(\text{Glob}^\text{top}(Z)\), is the multiplied space \([\text{Glob}^\text{top}(Z)], \{\hat{0}, \hat{1}\}\) where the topological space \(|\text{Glob}^\text{top}(Z)|\) is the quotient of \(\{\hat{0}, \hat{1}\} \sqcup (Z \times [0, 1])\) by the relations \((z, 0) = (z', 0) = \hat{0}\) and \((z, 1) = (z', 1) = \hat{1}\) for any \(z, z' \in Z\) (cf. Figure 2). In particular, \(\text{Glob}^\text{top}(\hat{0})\) is the multiplied space \(\{(\hat{0}, \hat{1}), (\hat{0}, \hat{1})\}\). If \(Z\) is a singleton, then the globe of \(Z\) is denoted by \(\tilde{T}^\text{top}\). Let

\[I^\text{gl, top} = \{\text{Glob}^\text{top}(S^{n-1}) \rightarrow \text{Glob}^\text{top}(D^n), n \geq 0\}.\]

A \textbf{globular precomplex} is a \(\lambda\)-sequence for some ordinal \(\lambda\) of multiplied topological spaces \(X : \lambda \rightarrow \text{MTop}\) such that \(X \in \text{cell}(I^\text{gl, top})\) and such that \(X_0 = (X^0, X^0)\) with \(X^0\) a discrete space. This \(\lambda\)-sequence is characterized by a presentation ordinal \(\lambda\), and for any \(\beta < \lambda\) by an integer \(n_\beta \geq 0\) and an attaching map \(\phi_\beta : \text{Glob}^\text{top}(S^{n_\beta-1}) \rightarrow X_\beta\). The family \((n_\beta, \phi_\beta)_{\beta < \lambda}\) is called the \textbf{globular decomposition} of \(X\). A morphism of globular precomplexes \(f : X \rightarrow Y\) is a morphism of multiplied spaces still denoted by \(f\) from \(\lim X\) to \(\lim Y\). If \(X\) is a globular precomplex, then the \textbf{underlying topological space} of the multiplied space \(\lim X\) is denoted by \(|X|\). Let \(X\) be a globular precomplex. A morphism of globular precomplexes \(\tau : \tilde{T}^\text{top} \rightarrow X\) is \textbf{non-decreasing} if there exist \(t_0 = 0 < t_1 < \cdots < t_n = 1\) such that:

\begin{enumerate}
\item \(\tau(t_i) \in X^0\) for all \(0 \leq i \leq n\),
\item \(\tau([t_i, t_{i+1}]) \subset \text{Glob}^\text{top}(D^{n_\beta_i} \setminus S^{n_\beta_i-1})\) for some \((n_\beta_i, \phi_\beta_i)\) of the globular decomposition of \(X\),
\item for \(0 \leq i < n\), there exists \(z^i_\tau \in D^{n_\beta_i} \setminus S^{n_\beta_i-1}\) and a strictly increasing continuous map \(\psi^i_\tau : [t_i, t_{i+1}] \rightarrow [0, 1]\) such that \(\psi^i_\tau(t_i) = 0\) and \(\psi^i_\tau(t_{i+1}) = \hat{1}\) and for any \(t \in [t_i, t_{i+1}]\), \(\tau(t) = (z^i_\tau, \psi^i_\tau(t))\).
\end{enumerate}
In particular, the restriction \(\tau \mid_{t_i, t_{i+1}} \) of \(\tau \) to \([t_i, t_{i+1}] \) is one-to-one. The set of non-decreasing morphisms from \(\mathcal{T}^{\text{top}} \) to \(X \) is denoted by \(\mathcal{P}^{\text{top}}(X) \). A morphism of globular precomplexes \(f : X \rightarrow Y \) is non-decreasing if the canonical set map \(\text{Top}([0, 1], |X|) \rightarrow \text{Top}([0, 1], |Y|) \) induced by composition by \(f \) yields a set map \(\mathcal{P}^{\text{top}}(X) \rightarrow \mathcal{P}^{\text{top}}(Y) \). In other terms, one has the commutative diagram of sets

\[
\begin{array}{ccc}
\mathcal{P}^{\text{top}}(X) & \longrightarrow & \mathcal{P}^{\text{top}}(Y) \\
\downarrow & \downarrow & \\
\text{Top}([0, 1], |X|) & \longrightarrow & \text{Top}([0, 1], |Y|).
\end{array}
\]

A globular complex \(X \) is a globular precomplex such that the attaching maps \(\phi_\beta \) are non-decreasing. A morphism of globular complexes is a morphism of globular precomplexes which is non-decreasing. The category of globular complexes together with the morphisms of globular complexes as defined above is denoted by \(\text{glTop} \).

5.2. \textbf{S-homotopy equivalence of globular complex.} Let \(X \) and \(U \) be two globular complexes. Let \(\text{glTOP}(X, U) \) be the set \(\text{glTop}(X, U) \) equipped with the Kelleyfication of the compact-open topology. Let \(f, g : X \Rightarrow U \) be two morphisms of globular complexes. Then a \textit{S-homotopy} is a continuous map \(H : [0, 1] \rightarrow \text{glTOP}(X, U) \) with \(H_0 = f \) and \(H_1 = g \). This situation is denoted by \(f \sim_S g \). The S-homotopy relation defines a congruence on the category \(\text{glTop} \). If there exists a map \(f' : U \rightarrow X \) with \(f \circ f' \sim_S \text{Id}_U \) and \(f' \circ f \sim_S \text{Id}_X \), then \(f \) is called a \textit{S-homotopy equivalence}. The class of S-homotopy equivalences of globular complexes is denoted by \(\text{SH} \).

Since the S-homotopy relation of globular complexes is associated with a cylinder functor \(\text{Gau05a} \) Corollary II.4.9), there is an isomorphism of categories

\[
\text{glTop}[S\mathcal{H}^{-1}] \cong \text{glTop}/\sim_S
\]

between the localization of the category of globular complexes by the S-homotopy equivalences and the quotient of the category of globular complexes by S-homotopy (see the proof of \text{Gau05a} Theorem V.4.1 and also \text{Gau03} Theorem 4.7).

5.3. \textbf{Realizing a globular complex as a flow.} By \text{Gau05a} Theorem III.3.1, there exists a unique functor \(\text{cat} : \text{glTop} \rightarrow \text{cell}(I^0_{++}) \subset \text{Flow} \) such that

(1) if \(X = X^0 \) is a discrete globular complex, then \(\text{cat}(X) \) is the flow \(X^0 \)
(2) if \(Z = S^n \) or \(Z = D^n \) for some integer \(n \geq 0 \), then \(\text{cat}(\text{Glob}^{\text{top}}(Z)) = \text{Glob}(Z) \),

(3) for any globular complex \(X \) with globular decomposition \((n_\beta, \phi_\beta)_{\beta < \lambda}\), for any limit ordinal \(\beta \leq \lambda \), the canonical morphism of flows

\[
\lim_{\alpha < \beta} \text{cat}(X_\alpha) \to \text{cat}(X_\beta)
\]

is an isomorphism of flows,

(4) for any globular complex \(X \) with globular decomposition \((n_\beta, \phi_\beta)_{\beta < \lambda}\), for any \(\beta < \lambda \), one has the pushout of flows

\[
\begin{array}{ccc}
\text{Glob}(S^{n_\beta - 1}) & \xrightarrow{\text{cat}(\phi_\beta)} & \text{cat}(X_\beta) \\
\downarrow & & \downarrow \\
\text{Glob}(D^{n_\beta}) & \xrightarrow{\text{cat}(X_{\beta + 1})} & \\
\end{array}
\]

The properties of the functor \(\text{cat} \) used in this paper are summarized in the statement below:

5.3.1. **Theorem.** One has:

- The functor \(\text{cat} \) induces for each pair \((X, U)\) of globular complexes a surjective set map \(\text{gl} \text{Top}(X, U) \to \text{Flow}(\text{cat}(X), \text{cat}(U)) \) ([Gau05a] Corollary IV.3.15).
- For each flow \(X \in \text{cell}(I^k) \), there exists a globular complex \(X^{\text{top}} \) with \(\text{cat}(X^{\text{top}}) = X \) ([Gau05a] Theorem V.4.1 and [Gau06b] Theorem 6.1).
- The functor \(\text{cat} : \text{gl} \text{Top} \to \text{Flow} \) induces a category equivalence

\[
\text{gl} \text{Top}[\text{SH}^{-1}] \simeq \text{Ho}(\text{Flow})
\]

between the localization of \(\text{gl} \text{Top} \) by the \(S \)-homotopy equivalences and the homotopy category of flows ([Gau05a] Theorem V.4.2).
- There exists a unique functor \(| - | : \text{gl} \text{Top}[\text{SH}^{-1}] \to \text{Ho}(\text{Top}) \) such that the following diagram of categories is commutative:

\[
\begin{array}{ccc}
\text{gl} \text{Top} & \xrightarrow{| - |} & \text{Top} \\
\gamma_{\text{gl} \text{Top}} \downarrow & & \downarrow \gamma_{\text{Top}} \\
\text{gl} \text{Top}[\text{SH}^{-1}] & \xrightarrow{| - |} & \text{Ho}(\text{Top})
\end{array}
\]

where \(\gamma_{\text{gl} \text{Top}} : \text{gl} \text{Top} \to \text{gl} \text{Top}[\text{SH}^{-1}] \) is the canonical functor from the category of globular complexes to its localization by the \(S \)-homotopy equivalences ([Gau05a] Corollary VII.2.3).

5.4. **Realizing a precubical set as a small globular complex.**

5.4.1. **Proposition.** (Unknown reference) Let \(C \) be a cocomplete category. Consider a commutative diagram of \(C \):

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
D & \xrightarrow{g} & E
\end{array}
\]

such the square \(ABDE \) is a pushout diagram. Then the square \(ACDF \) is a pushout diagram if and only if the square \(BCEF \) is a pushout diagram.
Proof. Well-known: 1) if $BCEF$ is a pushout diagram, from a cone $(D \leftarrow A \rightarrow C) \to Z$, one deduces a cone $(E \leftarrow B \rightarrow C) \to Z$ and a map $F \to Z$; 2) if $ACDF$ is a pushout diagram, from a cone $(E \leftarrow B \rightarrow C) \to Z$, one deduces a cone $(D \leftarrow A \rightarrow C) \to Z$, and a map $F \to Z$; the composite $E \to F \to Z$ is equal to the map $E \to Z$ of the cone $(E \leftarrow B \rightarrow C) \to Z$ since the two maps satisfy the universal property relative to the pushout square $ABDE$; so $F \to Z$ is a universal solution for the cone $(E \leftarrow B \rightarrow C) \to Z$. \hfill \square

5.4.2. Theorem. There exists a functor $gl^{\top} : \square_0^{\top} \Set \to \glTop$ such that for every precubical set K, there is a natural isomorphism of flows $\cat(gl^{\top}(K)) \cong gl(K)$.

The functor $gl^{\top}(-)$ which is going to be constructed essentially coincides with the functor from precubical sets to globular complexes constructed in [GG03]. Essentially means not exactly. Indeed, the old definition of globular complex given in [GG03] and the new one given in [Gau05a] are not exactly the same. For example, with the new definition, an execution path is locally strictly increasing: see the remark in [Gau05a] between Definition II.2.14 and Definition II.2.15. Another difference: Hausdorff spaces are used in [GG03]. Weak Hausdorff spaces are used here and in [Gau05a]. Moreover, the construction given in the following proof is more tractable than the construction given in [GG03] thanks to the use of the cocomplete category of multipointed topological spaces. Note that the functor \cat is not colimit-preserving. It only preserves globular decompositions of globular complexes. So the proof is a little bit more complicated than expected. Intuitively, the construction of $gl^{\top}(K)$ consists of replacing each globe $\text{Glob}(D^n)$ of $gl(K)$ by a topological globe $\text{Glob}^{\top}(D^n)$.

Proof of Theorem 5.4.2. First of all, let us construct the restriction of the functor $gl^{\top}(-)$ to $\square_0^{\top} \Set$ and let us prove the existence of a natural isomorphism $\cat(gl^{\top}(K_{\leq n})) \cong gl(K_{\leq n})$ by induction on $n \geq 0$. The functor $gl^{\top}(-)$ will satisfy the natural isomorphism

$$gl^{\top}(K_{\leq n}) \cong \lim_{\square[p] \to K_{\leq n}} gl^{\top}(\square[p])$$

for every precubical set K, where the colimit is taken in the category of multipointed topological spaces \mathcal{MTop}. So viewed as a functor from $\square_0^{\top} \Set$ to \mathcal{MTop}, the functor $gl^{\top}(-)$ is a left adjoint. We will also prove by induction on n that for any morphism δ of \square_n, the morphism of globular complexes $gl^{\top}(\square[\delta])$ is an element of $\text{cell}(I^{gl^{\top}})$.

For $n = 0$, let $gl^{\top}(K_{\leq 0}) = K_0$. We have done since $\cat(gl^{\top}(K_{\leq 0})) = K_0$. Note this defines a functor from $\square_0^{\top} \Set$ to \glTop which is colimit-preserving. Note also that for any morphism δ of \square_0, one has $gl^{\top}(\square[\delta]) \in \text{cell}(I^{gl^{\top}})$, $\delta = \text{Id}_{\square}$ being the only possibility.

Now suppose the construction done for $n \geq 0$. The precubical set $\partial \square[n + 1]$ is of dimension n. So the globular complex $gl^{\top}(\partial \square[n + 1])$ is already defined by induction hypothesis and one has the isomorphism of flows $\cat(gl^{\top}(\partial \square[n + 1])) \cong gl(\partial \square[n + 1])$. Since the set map

$$\glTop(\text{Glob}^{\top}(S^{n-1}), gl^{\top}(\partial \square[n + 1])) \to \text{Flow}(\text{Glob}(S^{n-1}), gl(\partial \square[n + 1]))$$

is onto by Theorem 5.3.1 there exists a morphism of globular complexes

$$s_n^{\top} : \text{Glob}^{\top}(S^{n-1}) \to gl^{\top}(\partial \square[n + 1])$$

with $\cat(s_n^{\top}) = s_n$, s_n being the map defined in the proof of Theorem 4.2.3. Let $gl^{\top}(\square[n + 1])$ be the multipointed topological space defined by the pushout diagram of multipointed
topological spaces

\[
\text{Glob}^{\text{top}}(S^{n-1}) \xrightarrow{s_n^{\text{top}}} \text{Glob}^{\text{top}}(\partial[n+1]) \\
\text{Glob}^{\text{top}}(D^n) \xrightarrow{\text{gl}^{\text{top}}(\square[n+1])}.
\]

The globular decomposition of the multipointed space \(\text{gl}^{\text{top}}(\square[n+1])\) is obtained by considering the globular decomposition of the globular complex \(\text{gl}^{\text{top}}(\partial[n+1])\) and by adding the globular cell \(\text{Glob}^{\text{top}}(S^{n-1}) \subset \text{Glob}^{\text{top}}(D^n)\) with the attaching map \(s_n^{\text{top}}\). So the multipointed space \(\text{gl}^{\text{top}}(\square[n+1])\) is a globular complex.

The \(2(n+1)\) inclusions \(\square[n] \subset \partial[n+1]\) yield the definition of the \(\text{gl}^{\text{top}}(\delta_i^n)\)'s for all \(\alpha \in \{0,1\}\) as the composites:

\[
\text{gl}^{\text{top}}(\delta_i^n) : \text{gl}^{\text{top}}(\square[n]) \subset \text{gl}^{\text{top}}(\partial[n+1]) \longrightarrow \text{gl}^{\text{top}}(\square[n+1]).
\]

Since the category \(\square_{n+1}\) is the quotient of the free category generated by the \(\delta_i^n : [p-1] \rightarrow [p]\) for \(1 \leq p \leq n+1\) with \(1 \leq i \leq p\) and \(\alpha \in \{0,1\}\), by the co-cubical relations, one has to check the cubical relation

\[
\text{gl}^{\text{top}}(\delta_j^n \circ \delta_i^n) = \text{gl}^{\text{top}}(\delta_i^n) \circ \text{gl}^{\text{top}}(\delta_j^n)
\]

for \(i < j\) for every map \(\delta_i^n : [n-1] \rightarrow [n+1]\) and \(\delta_j^n : [n-1] \rightarrow [n+1]\). By induction, each morphism of globular complexes \(\text{gl}^{\text{top}}(\delta_i^n)\) is an inclusion of \(I^\text{gl, top}_\bullet\text{cell subcomplexes. The equality}\)

\[
\delta_j^n \circ \delta_i^n = \delta_i^n \circ \delta_j^n
\]

implies that the sources of \(\text{gl}^{\text{top}}(\delta_i^n) \circ \text{gl}^{\text{top}}(\delta_j^n)\) and \(\text{gl}^{\text{top}}(\delta_i^n) \circ \text{gl}^{\text{top}}(\delta_j^n)\) are the same \(I^\text{gl, top}_\bullet\text{cell subcomplex of } \text{gl}^{\text{top}}(\square[n+1])\). Hence the equality.

So the functor from \(\square_n\) to \(\text{gI}^{\text{Top}}\) defined by \([p] \mapsto \text{gl}^{\text{top}}(\square[p])\) for \(p \leq n\) is extended to a functor from \(\square_{n+1}\) to \(\text{MTop}\) defined by \([p] \mapsto \text{gl}^{\text{top}}(\square[p])\) for \(p \leq n+1\). Let

\[
\text{gl}^{\text{top}}(K_{\leq n+1}) = \lim_{\square[p] \rightarrow K_{\leq n+1}} \text{gl}^{\text{top}}(\square[p])
\]

for all precubical sets \(K\). This construction extends the functor \(\text{gl}^{\text{top}} : \Box_{n+1}^{\text{Set}} \rightarrow \text{gI}^{\text{Top}}\) to a functor \(\text{gl}^{\text{top}} : \Box_{n+1}^{\text{op Set}} \rightarrow \text{MTop}\) which is still colimit-preserving since it is still a left adjoint. So one obtains the commutative diagram of multipointed spaces

\[
\begin{array}{ccc}
\bigcup_{x \in K_{n+1}} \text{Glob}^{\text{top}}(S^{n-1}) & \xrightarrow{s_n^{\text{top}}} & \bigcup_{x \in K_{n+1}} \text{Glob}^{\text{top}}(\partial[n+1]) \\
\downarrow & & \downarrow \\
\bigcup_{x \in K_{n+1}} \text{Glob}^{\text{top}}(D^n) & \xrightarrow{\text{gl}^{\text{top}}(\square[n+1])} & \text{gl}^{\text{top}}(K_{\leq n}).
\end{array}
\]

The left-hand square is a pushout by definition of \(\text{gl}^{\text{top}}(\square[n+1])\). The right-hand square is a pushout since \(\text{gl}^{\text{top}} : \Box_{\text{op Sets}} \rightarrow \text{MTop}\) is colimit-preserving and since for every precubical

\[\text{This argument is possible since every element of } \text{cell}(I^{\text{gl, top}}) \text{ is an (effective) monomorphism of multipointed topological spaces by Gau06b Theorem 8.2. Indeed, since } \text{MTop} \text{ is cocomplete, a subcomplex of a relative } I^{\text{gl, top}}\text{-cell complex is then entirely determined by its set of cells by Hir03 Proposition 10.6.10 and Proposition 10.6.11.}\]
set K, there is a pushout diagram of sets

\[\bigsqcup_{x \in K_{n+1}} \partial \square[n+1] \longrightarrow K_{\leq n} \]

\[\downarrow \]

\[\bigsqcup_{x \in K_{n+1}} \square[n+1] \longrightarrow K_{\leq n+1} \]

where the sum is over $x \in K_{n+1} = \square_{op}^{n+1} \mathbb{Set}(\square[n+1], K)$ and where the corresponding map $\partial \square[n+1] \to K_{\leq n}$ is the composite $\partial \square[n+1] \subset \square[n+1] \to K_{\leq n}$. Since pushout diagrams compose by Proposition \ref{5.4.1}, one obtains the pushout diagram of multipointed spaces

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}^{top}(S^{n-1}) \longrightarrow \text{gl}^{top}(K_{\leq n}) \]

\[\downarrow \]

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}^{top}(D^n) \longrightarrow \text{gl}^{top}(K_{\leq n+1}), \]

an then, by construction of the functor $\text{cat} : \text{gl}^{Top} \to \text{Flow}$, the pushout diagram of flows

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}(S^{n-1}) \longrightarrow \text{cat}(\text{gl}^{top}(K_{\leq n})) \]

\[\downarrow \]

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}(D^n) \longrightarrow \text{cat}(\text{gl}^{top}(K_{\leq n+1})). \]

Diagram (4) yields a globular decomposition for the multipointed space $\text{gl}^{top}(K_{\leq n+1})$, proving that the functor $\text{gl}^{top}(\cdot)$ is actually a functor from $\square_{op}^{n+1} \mathbb{Set}$ to gl^{Top}. By construction of the functor $\text{cat} : \text{gl}^{Top} \to \text{Flow}$, there is a pushout diagram of flows

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}(S^{n-1}) \bigsqcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{top}(\partial \square[n+1])) \]

\[\downarrow \]

\[\bigsqcup_{x \in K_{n+1}} \text{Glob}(D^n) \bigsqcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{top}(\square[n+1])). \]

So by Proposition \ref{5.4.1} one obtains the pushout diagram of flows\footnote{Let us repeat that the functor cat is not colimit-preserving. So the use of Proposition \ref{5.4.1} seems to be necessary to obtain Diagram (5).}

\[\bigsqcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{top}(\partial \square[n+1])) \longrightarrow \text{cat}(\text{gl}^{top}(K_{\leq n})) \]

\[\downarrow \]

\[\bigsqcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{top}(\square[n+1])) \longrightarrow \text{cat}(\text{gl}^{top}(K_{\leq n+1})). \]

The diagram of solid arrows of Figure 3 is commutative for the following reasons:

\begin{itemize}
 \item The back face is commutative and is a pushout diagram of flows by Diagram (5).
 \item The front face is commutative and is a pushout diagram of flows since the functor $\text{gl} : \square_{op} \mathbb{Set} \to \text{Flow}$ is colimit-preserving.
\end{itemize}
Figure 3. Isomorphism $\text{cat}(\text{gl}^{\text{top}}(K_{\leq n+1})) \cong \text{gl}(K_{\leq n+1})$.

- Apply the functor cat to Diagram (3). One obtains the pushout diagram of flows

\[
\begin{array}{ccc}
\bigcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{\text{top}}(\partial \square[n+1])) & \rightarrow & \text{cat}(\text{gl}^{\text{top}}(K_{\leq n})) \\
\downarrow & & \downarrow \\
\bigcup_{x \in K_{n+1}} \text{gl}(\partial \square[n+1]) & \rightarrow & \text{gl}(K_{\leq n}) \\
\bigcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{\text{top}}(\square[n+1])) & \rightarrow & \text{cat}(\text{gl}^{\text{top}}(K_{\leq n+1})) \\
\downarrow & & \downarrow \\
\bigcup_{x \in K_{n+1}} \text{gl}(\square[n+1]) & \rightarrow & \text{gl}(K_{\leq n+1}).
\end{array}
\]

Diagram (2) and the equality $\text{cat}(s_{n+1}^{\text{top}}) = s_n$ imply the commutativity of the left-hand face.

- Finally, the top face is commutative since there is a natural isomorphism $\text{cat}(\text{gl}^{\text{top}}(K)) \cong \text{gl}(K)$ for all precubical sets K of dimension n by hypothesis.

Hence the existence of an isomorphism of flows $\text{cat}(\text{gl}^{\text{top}}(K_{\leq n+1})) \cong \text{gl}(K_{\leq n+1})$ for every precubical set K. The isomorphism is natural for the following reasons:

- The map $\bigcup_{x \in K_{n+1}} \text{cat}(\text{gl}^{\text{top}}(\partial \square[n+1])) \rightarrow \text{cat}(\text{gl}^{\text{top}}(K_{\leq n}))$ is natural with respect to K since it is the image by the functor $\text{cat} \circ \text{gl}^{\text{top}}(-)$ of the natural map of precubical sets $i(K, n): \bigcup_{x \in K_{n+1}} \partial \square[n+1] \rightarrow K_{\leq n}$.

- The map $\bigcup_{x \in K_{n+1}} \text{gl}(\partial \square[n+1]) \rightarrow \text{gl}(K_{\leq n})$ is natural with respect to K since it is the image by the functor $\text{gl}(-)$ of the natural map of precubical sets $i(K, n)$.

- There is a natural isomorphism $\text{cat}(\text{gl}^{\text{top}}(L)) \cong \text{gl}(L)$ with respect to L for every n-dimensional precubical set L by induction hypothesis. Apply this fact for $L = K_{\leq n}$ and $L = \bigcup_{x \in K_{n+1}} \partial \square[n+1]$.

- Morphisms of precubical sets of the form $\bigcup_{x \in K_{n+1}} A \rightarrow \bigcup_{x \in K_{n+1}} B$ are natural with respect to K for every morphism of precubical sets $A \rightarrow B$.

The induction is now complete. One has $\text{cat}(\text{gl}^{\text{top}}(K)) \cong \lim\limits_{\rightarrow} \text{cat}(\text{gl}^{\text{top}}(K_{\leq n}))$ by definition of the functor cat. And one has $\text{gl}(K) \cong \lim\limits_{\rightarrow} \text{gl}(K_{\leq n})$ since the functor $\text{gl}(-)$ is colimit-preserving. Hence a natural isomorphism of flows $\text{cat}(\text{gl}^{\text{top}}(K)) \cong \text{gl}(K)$. \(\square\)
Note that the functor $\text{gl}^{\text{top}} : \square^\text{op} \text{Set} \to \text{glTop}$ is not unique. It is entirely characterized up to isomorphism of functors by the non-canonical choice of the maps $s_n : \text{Glob}(S^{n-1}) \to \text{gl}(\partial\square[n+1])$ and of the maps $s_n^{\text{top}} : \text{Glob}^{\text{top}}(S^{n-1}) \to \text{gl}^{\text{top}}(\partial\square[n+1])$ for all $n \geq 0$. Let $\gamma_{\text{Flow}} : \text{Flow} \to \text{Ho(Flow)}$ be the canonical functor from the category of flows to its homotopy category. Let us denote by

$$\text{cal} : \text{glTop}[\mathcal{SH}^{-1}] \simeq \text{Ho(Top)} : \text{cal}^{-1}$$

the equivalence of categories between the globular complexes up to S-homotopy and the homotopy category of flows (see Theorem 5.3.1).

5.4.3. Theorem. The functor $\gamma_{\text{Flow}} \circ |−|_{\text{flow}} : \square^\text{op} \text{Set} \to \text{Ho(Flow)}$ factors up to an isomorphism of functors as a composite

$$\square^\text{op} \text{Set} \overset{\text{hgl}^{\text{top}}}{\to} \text{glTop} / \sim_S \to \text{Ho(Flow)}.$$

The functor $\text{hgl}^{\text{top}} : \square^\text{op} \text{Set} \to \text{glTop} / \sim_S$ is unique up to isomorphism of functors.

In other terms, the functor $\text{gl}^{\text{top}}(−)$ constructed in Theorem 5.4.2 is unique up to a natural S-homotopy of globular complexes.

Proof. Since there is an isomorphism of categories $\text{glTop}[\mathcal{SH}^{-1}] \cong \text{glTop} / \sim_S$, let us identify the two categories. Let

$$\text{hgl}^{\text{top}} = \gamma_{\text{glTop}} \circ \text{gl}^{\text{top}}$$

Then one obtains the isomorphisms of functors $\text{cal} \circ \text{hgl}^{\text{top}} = \gamma_{\text{Flow}} \circ \text{cal} \circ \text{gl}^{\text{top}} \cong \gamma_{\text{Flow}} \circ |−|_{\text{flow}}$ by Theorem 5.4.2 and Theorem 4.2.4. Hence the existence. Take two functors $\text{hgl}^{\text{top}}_1 : \square^\text{op} \text{Set} \to \text{glTop} / \sim_S$ and $\text{hgl}^{\text{top}}_2 : \square^\text{op} \text{Set} \to \text{glTop} / \sim_S$ satisfying the condition of the theorem. Then $\text{cal} \circ \text{hgl}^{\text{top}}_1 = \text{cal} \circ \text{hgl}^{\text{top}}_2 = \gamma_{\text{Flow}} \circ |−|_{\text{flow}}$. So one has the isomorphisms of functors $\text{hgl}^{\text{top}}_1 \cong \text{cal}^{-1} \circ (\text{cal} \circ \text{hgl}^{\text{top}}_1) \cong \text{cal}^{-1} \circ (\text{cal} \circ \text{hgl}^{\text{top}}_2) \cong \text{hgl}^{\text{top}}_2$. □

6. Globular and cubical underlying homotopy type

6.1. Definition of the globular and cubical underlying homotopy type. Let $\square \to \text{Top}$ be the functor defined on objects by the mapping $[n] \mapsto [0,1]^n$ and on morphisms by the mapping $\delta^n_i \mapsto ((\epsilon_1, \ldots, \epsilon_{n-1}) \mapsto (\epsilon_1, \ldots, \epsilon_{i-1}, \alpha, \epsilon_i, \ldots, \epsilon_{n-1}))$. The functor $|−|_{\text{space}} : \square^\text{op} \text{Set} \to \text{Top}$ is then defined by

$$|K|_{\text{space}} := \lim_{\square[n] \to K} [0,1]^n.$$

It is a left adjoint. So it commutes with all small colimits. The purpose of this section is the comparison of this functor with the underlying homotopy type functor defined by the composite $[\text{Gau05a}]:$

$$\Omega : \text{Flow} \overset{\gamma_{\text{Flow}}}{\longrightarrow} \text{Ho(Flow)} \overset{\text{cal}^{-1}}{\longrightarrow} \text{glTop}[\mathcal{SH}^{-1}] \overset{|−|}{\longrightarrow} \text{Ho(Top)}.$$
6.2. Comparison of the two functors.

6.2.1. Theorem. For every precubical set K, there is a natural isomorphism of homotopy types $\gamma_{\text{Top}}([K]_{\text{space}}) \cong \Omega([K]_{\text{flow}})$.

Proof. Consider the three cocubical topological spaces
- $X([*]) = [0, 1]^*$ for all $* \geq 0$
- $Y([*]) = \text{gl}^{\text{top}}(\Box[*])$ for all $* \geq 0$
- $I([*]) = \{0\}$ for all $* \geq 0$.

There exist a unique map $X \to I$ and a unique map $Y \to I$ which are both objectwise weak homotopy equivalences and objectwise fibrations. The cocubical object X satisfies the hypotheses of Theorem 2.3.3 in an obvious way. The proof of Theorem 5.4.2 implies the pushout diagram of spaces

\[
\begin{array}{ccc}
\text{Glob}^{\text{top}}(S^{n-1}) & \xrightarrow{\text{top}} & \text{gl}^{\text{top}}(\partial \Box [n+1]) \\
\downarrow & & \downarrow \\
\text{Glob}^{\text{top}}(D^n) & \xrightarrow{\text{top}} & \text{gl}^{\text{top}}([n+1])
\end{array}
\]

for every $n \geq 0$. Since the continuous map $\text{Glob}^{\text{top}}(S^{n-1}) \to \text{Glob}^{\text{top}}(D^n)$ is a cofibration of topological spaces (see the proof of [Gau06b] Theorem 8.2), the map $\text{gl}^{\text{top}}(\partial \Box [n+1]) \to \text{gl}^{\text{top}}([n+1])$ is a cofibration as well. So the cocubical space Y satisfies the hypotheses of Theorem 2.3.3 as well. Hence there exists a natural homotopy equivalence $[K]_{\text{space}} \simeq \text{gl}^{\text{top}}(K)$ with respect to K. So there exists a natural isomorphism of homotopy types $\gamma_{\text{Top}}([K]_{\text{space}}) \cong \gamma_{\text{Top}}([\text{gl}^{\text{top}}(K)])$. The proof is complete after the following sequence of natural isomorphisms:

\[
\begin{align*}
\gamma_{\text{Top}}([K]_{\text{space}}) & \cong \gamma_{\text{Top}}([\text{gl}^{\text{top}}(K)]) \\
& \cong \gamma_{\text{gl}^{\text{top}}}(\text{gl}^{\text{top}}(K)) \\
& \cong \overline{\text{cat}}^{-1} \circ \text{cat} \circ \gamma_{\text{gl}^{\text{top}}}(\text{gl}^{\text{top}}(K)) \\
& \cong \overline{\text{cat}}^{-1} \circ \gamma_{\text{Flow}}(\text{cat}(\text{gl}^{\text{top}}(K))) \\
& \cong \overline{\text{cat}}^{-1} \circ \gamma_{\text{Flow}}([K]_{\text{flow}}) \\
& = \Omega([K]_{\text{flow}})
\end{align*}
\]

by the result above

by Theorem 5.3.1

since $\overline{\text{cat}}^{-1} \circ \text{cat} \cong \text{Id}_{\text{gl}^{\text{top}}(\mathcal{SH}^{-1})}$

by Theorem 5.3.1

by Theorem 5.3.2

by definition of Ω.

\[
\square
\]

References

[BH81] R. Brown and P. J. Higgins. On the algebra of cubes. J. Pure Appl. Algebra, 21(3):233–260, 1981.
[Bor94] F. Borceux. Handbook of categorical algebra. 1. Cambridge University Press, Cambridge, 1994. Basic category theory.
[Bro88] R. Brown. Topology. Ellis Horwood Ltd., Chichester, second edition, 1988. A geometric account of general topology, homotopy types and the fundamental groupoid.
[FGR98] L. Fajstrup, E. Goubault, and M. Raußen. Detecting deadlocks in concurrent systems. In CONCUR’98: concurrency theory (Nice), volume 1466 of Lecture Notes in Comput. Sci., pages 332–347. Springer, Berlin, 1998.
GLOBULAR REALIZATION AND CUBICAL UNDERLYING HOMOTOPY TYPE

[FR07] L. Fajstrup and J. Rosický. A convenient category for directed homotopy. preprint, 2007.

[FS95] P. Freyd and R. Street. On the size of categories. Theory Appl. Categ., 1:No. 9, 174–178 (electronic), 1995.

[Gau01] P. Gaucher. Combinatorics of branchings in higher dimensional automata. Theory Appl. Categ., 8:No. 12, 324–376 (electronic), 2001.

[Gau03] P. Gaucher. A model category for the homotopy theory of concurrency. Homology, Homotopy and Applications, 5(1):p.549–599, 2003.

[Gau05a] P. Gaucher. Comparing globular complex and flow. New York Journal of Mathematics, 11:p.97–150, 2005.

[Gau05b] P. Gaucher. Homological properties of non-deterministic branchings and mergings in higher dimensional automata. Homology, Homotopy and Applications, 7(1):p.51–76, 2005.

[Gau06a] P. Gaucher. T-homotopy and refinement of observation (III) : Invariance of the branching and merging homologies. New York J. Math., 12:319–348 (electronic), 2006.

[Gau06b] P. Gaucher. T-homotopy and refinement of observation (IV) : Invariance of the underlying homotopy type. New York J. Math., 12:63–95 (electronic), 2006.

[Gau07a] P. Gaucher. T-homotopy and refinement of observation, part II: Adding new T-homotopy equivalences. Internat. J. Math. Math. Sci., 2007:Article ID 87404, 20 pages, 2007. doi:10.1155/2007/87404.

[Gau07b] P. Gaucher. Towards an homotopy theory of process algebra. preprint ArXiv.math.AT, 2007.

[GG03] P. Gaucher and E. Goubault. Topological deformation of higher dimensional automata. Homology, Homotopy and Applications, 5(2):p.39–82, 2003.

[GJ99] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory. Birkhäuser Verlag, Basel, 1999.

[Gou03] E. Goubault. Some geometric perspectives in concurrency theory. Homology, Homotopy and Applications, 5(2):p.95–136, 2003.

[Gra03] M. Grandis. Directed homotopy theory. I. Cah. Topol. Géom. Différ. Catég., 44(4):281–316, 2003.

[Hir03] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

[Hov99] M. Hovey. Model categories. American Mathematical Society, Providence, RI, 1999.

[Kel82] G. M. Kelly. Basic concepts of enriched category theory, volume 64 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982.

[Kri07] S. Krishnan. A convenient category of locally preordered spaces. 2007.

[Lew78] L. G. Lewis. The stable category and generalized Thom spectra. PhD thesis, University of Chicago, 1978.

[May99] J. P. May. A concise course in algebraic topology. University of Chicago Press, Chicago, IL, 1999.

[ML98] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, New York, second edition, 1998.

[MLM94] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag, New York, 1994. A first introduction to topos theory, Corrected reprint of the 1992 edition.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of logic in computer science, Vol. 4, volume 4 of Handb. Log. Comput. Sci., pages 1–148. Oxford Univ. Press, New York, 1995.

Laboratoire PPS (CNRS UMR 7126), Université Paris 7–Denis Diderot, Case 7014, 75205 PARIS Cedex 13, FRANCE
E-mail address: gaucher@pps.jussieu.fr
URL: http://www.pps.jussieu.fr/~gaucher/