Review Article (Meta-analysis)

Systematic Review of Lumbar Elastic Tape on Trunk Mobility: A Debatable Issue

Robbert N. van Amstel, MSc a,b, Karl Noten, BSc a, Lara N. van den Boomen, MSc a, Tom Brandon, MD c, Sven A.F. Tulner, PhD d, Richard T. Jaspers, PhD b, Annelies L. Pool-Goudzwaard, PhD b

a Fysio Science Department, Fysio Physics Fysiotherapie, IJsselstein
b Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam
c Department of Sports Medicine, Isala Medical Hospital, Zwolle
d Department Orthopedic Surgery, OrthoDirect Medical Clinic, Amsterdam, The Netherlands

Abstract Objectives: To systematically review the literature to analyze the effect of lumbar elastic tape application on trunk mobility, surpassing the minimal detectable change of the used outcome measurement tool, and to analyze the additional effect of applied tension and direction of elastic tape application in low back pain and participants without low back pain.

Data Sources: Four databases were used: PubMed, Web of Science, Physiotherapy Evidence Database (PEDro), and Google Scholar.

Study Selection: The inclusion criteria were randomized and clinical controlled trials evaluating the effectiveness of lumbar elastic tape application in low back pain and participants without low back pain.

Data Extraction: Two researchers executed the search and a third author was consulted to resolve disagreements. The methodological quality was scored using the PEDro scale, with studies scoring ≤5 being excluded.

Data Synthesis: Eight out of 6799 studies were included; 5 studied individuals with low back pain, and 3 studied participants without low back pain. Two studies scored low on the PEDro scale and were excluded. None of the reported significant changes in trunk mobility due to elastic tape application exceeded the indicated minimal detectable change. No conclusions can be drawn from the direction and applied tension of elastic tape application.

List of abbreviations: CCT, controlled clinical trial; ETA, elastic tape application; FFD, Finger Floor Distance test; FROM, flexion range of motion; LBP, low back pain; MDC, minimal detectable change; PEDro, Physiotherapy Evidence Database; RCT, randomized controlled trial; ROM, range of motion; TRM, trunk mobility.

Disclosures: none.

Cite this article as: Arch Rehabil Res Clin Transl. 2021;xx:100131

https://doi.org/10.1016/j.arrct.2021.100131

2590-1095 © 2021 The Authors. Published by Elsevier Inc. on behalf of American Congress of Rehabilitation Medicine. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
In patients with low back pain (LBP), staying active is indicated as the most important advice in rehabilitation. However, back pain reduces the ability to move freely. This adaptation is caused by altered trunk neuromuscular response in reducing the risk of noxious lumbar tissue stresses. These adaptations eventually lead to painful muscle contractions and loss in trunk mobility and are primary targets of physiotherapeutic interventions.

Physical therapists regularly use elastic tape application (ETA) in treating and preventing musculoskeletal disorders. ETA is the application of therapeutic tape developed by Kenzo Kase in the early 1970s and has gained popularity in recent years. ETA is the gluing of an elastic cotton strip to the skin with an acrylic adhesive while the skin is stretched.

The superficial fascia within the skin is adjunct with the deep fascia and muscles owing to different types of connective tissues. The kinematic behavior of skin and fascia are unique per layer. Fascial kinematic studies showed that the skin, superficial fascia, and deep fascia will move in the cranial direction during trunk flexion and that the perimuscular fascia and muscle will move in the caudal direction during trunk flexion; the opposite occurs for trunk extension.

Previous studies investigating possible working mechanisms and the effect of ETA have confirmed that ETA causes heterogeneous deformations of the dermis, hypodermis, and deep fascia underneath the ETA, increasing the blood and lymph flow underneath the ETA and peripheral areas, enhancing proprioceptive sensation, decreasing subjective pain, increasing joint range of motion, and enhancing muscle activity. Moreover, it is suggested that the direction of ETA on the skin, over the muscle of interest, has specific effects on muscle activity. Based on these effects, using ETA as a basis for their clinical intervention, physical therapists often use ETA to improve mobility, enhance sport and functional performance, and treat musculoskeletal complaints, including patients with LBP.

A meta-analysis studying the effectiveness of ETA on pain and disability in a large variety of musculoskeletal complaints demonstrated moderate evidence that ETA reduces pain and very low evidence for an improvement of disability. Recently, another meta-analysis on the effectiveness of ETA in musculoskeletal disorders on pain and disability, which only included studies comparing ETA with a sham condition, showed that pain does not immediately change post-treatment. However, pain does reduce during follow-up (range, 4–12 wk).

Although it seems logical in patients with LBP to study the effect of ETA on pain and disability, we expected the largest effect to occur in the gain in trunk mobility (TRM) based on the above-described working mechanisms. Some studies have published the TRM outcome; however, this outcome was not included in the meta-analyses studies. Furthermore, in the studies published demonstrating a positive effect, the minimal detectable change (MDC) of the measurement tool used to measure mobility was not considered. The purpose of this study was to systematically review the literature to analyze the effect of ETA on TRM surpassing the MDC of the outcome measurement tool, and if effective, to analyze the additional effect of applied tension and direction of ETA in patients with LBP with respect to participants without LBP.

Methods

Protocol and registration

This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was prospectively registered in the Open Science Framework (https://osf.io/2jhzg). The analyses were based on cumulative data from previously published studies, so no ethical approval was required.

Search strategy, inclusion, and exclusion of studies

A systematic literature research was performed independently by 2 reviewers (R.A. and L.B.). In the case of disagreement, a third independent reviewer was consulted. Publications were identified by searching multiple literature databases, including PubMed, Web of Science, Physiotherapy Evidence Database (PEDro), and Google Scholar. To exclude gray literature, we decided that only the first 400 Google Scholar results would be screened. A sensitive search string was used (Table 1). The search was performed between September and December 2019 on “all fields”; the filter “humans” was applied if possible.

Study selection

In advance, narrative research was performed by 2 authors (R.A., K.N.) into the psychometric quality of various mobility measurement tools (Table 2) to only include studies using reliable and valid instruments to measure TRM in terms of trunk range of motion (ROM) and to register the minimal detectable difference per outcome measure. Based on the quality of the instruments, studies were excluded using a mobile inclinometer application not reaching sufficient psychometric quality. Smartphones have a great range in sensor and software quality, which influence the reliability and validity of the smartphone range of motion applications.

Inclusion criteria were randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on the effects of ETA on TRM in participants without LBP and patients with LBP. Only trials with a control group were considered eligible (eg, ETA vs placebo/sham ETA and ETA vs no-taping intervention or usual care). ETA had to be applied to the individual’s
back with no restriction to the manor, technique, direction, or applied tension. Studies were included if TRM was a (primary) outcome measure with methods used according to table 2. No restrictions were applied to the search strategy regarding the date of publication. Studies written in Dutch, English, or German were included.

Data extraction

The first (R.A.) and third (K.N.) authors performed a systematic literature search independent from each other. The titles, abstracts, and full texts (indicated) of all articles were screened for inclusion by the reviewers. Data were extracted independently by the first (R.A.) and second (L.B.) reviewers from full-text articles. Data extraction included details on the ETA protocol used (eg, taping method, tape application direction, amount of stretch applied to the tape) and the effect on the TRM.

Standard measurement error

All calculations for measurement error parameters were performed with MATLAB. Per instrument, the MDC was retrieved as an error parameter to analyze the meaningfulness of the significant improvements found in the systematically included study-results. If the MDC error parameter was absent, the SEMconsistency was calculated with use of the interobserver reliability (\(\sqrt{1-ICC}\)) or the Pearson correlation validity (\(\sqrt{1-r}\)). Subsequently, it was used to calculate the MDC to determine the magnitude of change that would exceed the threshold of measurement error at 95\% confidence interval (1.96 \(\times \) SEM \(\times \sqrt{2}\)) (see table 2).

Table 1: Databases and algorithms for the literature search

Database	Search Algorithm
PubMed (n=712)	(Range of motion[MeSH Terms]) AND Low back[MeSH Terms] OR Spine[MeSH Terms] OR Lumbar OR Trunk AND Elastic tape OR Elastic taping OR Kinesio tape OR Kinesio taping OR Kinesiotaping AND Humans
Web of Science (n=541)	Range of motion (TS) AND Low back (TI) AND Elastic tape OR Elastic taping (TI) OR Kinesio tape (TI) OR Kinesiotaping (TI)
Scholar (n= 5540)	(Range of motion) AND (Low back pain) AND (Elastic taping OR Kinesio Tape OR Kinesio taping OR Elastic tape) AND (Human)
PEDro (n=6)	Range of motion AND Low back OR Spine OR Lumbar AND Elastic tape OR Elastic taping OR Kinesio tape OR Kinesio taping OR Kinesiotaping

NOTE. Diverse combinations were made with the following keywords: Range of motion, Low back, Spine, Lumbar, Trunk, Elastic tape, Elastic taping, Kinesio tape, Kinesio taping, and Kinesiotaping.

Table 2: Error parameter

Measure Tool	Direction	ICCa	brxy	SEM	MDC	Studies
FFD test	Flexion	0.99	*	*	MDC95= 9.80a	Robinson and Mengshoel28 and Ekedahl et al29
Schober test	Flexion	0.95	*	*	MDC95=1.80a	Robinson and Mengshoel28 and Tousignant et al30
Inclinometer	Extension	0.76	*	0.93a	MDC95=2.60ac	Williams et al31
Inclinometer	Flexion	0.96	*	*	MDC95=7ac	Kolber et al32
Inclinometer	Extension	0.88	*	*	MDC95=6ac	
Inclinometer	Lateral flexion (right)	0.96	0.96	1.17a	MDC95=3.2ac	Ng et al33
Inclinometer	Lateral flexion (left)	0.92	0.94	1.68a	MDC95=4.7ac	
Inclinometer	Rotation (right)	0.96	0.96	1.79a	MDC95=5.0ac	
Inclinometer	Rotation (left)	0.95	0.94	1.99a	MDC95=5.5ac	
BBROM device flexion	Flexion	0.94-0.95	*	*	MDC95=2.16-2.83	Phattharasupharerk et al34 and Kachingwe et al35
Electrogoniometer	Extension	0.98	0.96-0.99	0.35-0.38	MDC95=1.64-2.30	Paquet et al36
Seat and reach test	Flexion	0.97	r=0.89-0.98	*	MDC95=4.0a	López-Miñarro et al37 and Hui et al38
Back-saver-sit-and-reach	Flexion (right leg)	0.97	r=0.89-0.98	*	MDC95=3.0a	
Back-saver-sit-and-reach	Flexion (left leg)	0.96	r=0.89-0.98	*	MDC95=4.0a	

NOTE. SEM=SD\(\sqrt{1-ICC}\) is based on reliability, SEM=SD\(\sqrt{1-r}\) is based on validity, MDC95= SEM \(\times \) 1.96 \(\times \sqrt{2}\), is error-parameter based on ac or bc. If it was necessary, the MDC95 was calculated using ICC or rxy. Abbreviations: ICC, intraclass correlation coefficient; rxy, Pearson. * No information known.
Quality assessment

The methodological quality of the included RCTs and CCTs was assessed using the 11-item PEDro scale. The RCTs and CCTs had to compare at least 2 interventions, and one intervention had to lay within the scope of this systematic review. The PEDro scale has been described as a valid and reliable tool for the investigation of the internal validity of RCTs and has shown sufficient reliability for use in systematic reviews. Full texts that met the eligibility criteria were independently assessed using the PEDro scale for methodological quality by the first and second reviewer (R.A., L.B.). In case of disagreement, a third independent reviewer was consulted for the final score. Studies scoring ≤5 on the PEDro scale were excluded owing to their low methodological quality that indicates they are less likely to yield meaningful results.

Results

Description of studies

In total, 6799 titles were found in the initial search (fig 1). Only the first 400 Google Scholar results were included (5140 were excluded). Upon eliminating duplicates, the remaining 1613 titles and abstracts were reviewed, excluding another 1336 studies and determining eligibility for the remaining 277 articles. Of these 277 articles, 267 articles were omitted owing to a lack of relevant information (eg, no ROM outcome, no ETA research, and/or ETA in combination with another intervention), resulting in 10 studies that met the requirements for methodological evaluation. After the methodological evaluation, 2 studies did not meet our quality criteria of a score of ≤5 on the PEDro scale and had to be excluded, which resulted in 8 articles that met the criteria for inclusion.

Methodological quality

Nine of the included studies analyzed the ETA effect on the TRM by RCT, 2 studies analyzed this by CCT. The external validity was guaranteed in 7 studies while this was not guaranteed in 3 studies. The internal validity was

Fig 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart summarizing the yield of the search strategy and screen procedure.
scored “excellent” in 6 studies. \cite{44,46,48,50} Moreover, 2 studies were scored as “good,”\cite{45,51} 1 study was scored as “fair,”\cite{45} and 1 study was scored as “poor.”\cite{52} We excluded the last 2 studies from this review owing to their low quality because they might provide unmeaningful information concerning ETA effects on the TRM (table 3).

Differences in study design

All studies used the ETA in the experimental group and compared it with a control group (sham ETA intervention or non-intervention). However, there was a difference in study design. Some studies studied the effectiveness of ETA on the TRM in situ (condition 1), but others evaluated the effect after ETA was removed (condition 2). Two of the 8 studies evaluated condition 1,\cite{48,49} 3 of the 8 studies evaluated condition 2,\cite{44,51,56} and 3 studies evaluated the effect of both conditions.\cite{45,47,50} The characteristics of the 8 studies included in the systematic review are shown in table 4.

Flexion ROM

There is conflicting evidence with regard to the effectiveness of ETA on TRM. Regarding condition 1 with ETA in situ, none of the control groups showed a significant change in flexion ROM (FROM). Two included studies did not find a significant improvement in FROM in patients with LBP.\cite{48,50} In contrast, 3 studies found a significant improvement in FROM in patients with LBP.\cite{45,47,48} and 2 studies found a significant improvement in FROM in individuals without LBP.\cite{47,49} Regarding condition 1 ETA. Two of these studies concluded that ETA affected the FROM positively measured with the Finger Floor Distance test (FFD).\cite{47,48} Preece and White\cite{48} concluded that this FFD improved immediately in patients with LBP after the ETA was applied. In addition, Lemos et al\cite{47} concluded the same in individuals without LBP after the ETA was worn for 48 hours. Both studies did not exceed the threshold of FFD measurement error at a 95% confidence interval using the MDC95 of 9.8 cm.\cite{28} Based on the MDC95, the significant change reported in these studies did not surpass the MDC.\cite{57,48} One study reported a positive effect of ETA on the FROM with an inclinometer (fleximeter) after the ETA was worn for 1 week. In this study, a significant evolution was found between baseline and the 1-week follow-up.\cite{47} The inclinometer MDC90 indicated that the observed change in this study was made within the intraobserver error (MD=5.74±SD1.33>MDC95=2.83).\cite{34}

Also, conflicting evidence is present in condition 2. Regarding the evaluated effectiveness of ETA on FROM in condition 2, 3 studies failed to demonstrate significant FROM change in patients with LBP,\cite{50,51,56} and 1 study in individuals without LBP after ETA was removed.\cite{47} By contrast, 3 studies reported a significant change in condition 2 for patients with LBP\cite{44,45,51} and 1 in individuals without LBP.\cite{47} Two of these studies evaluated the effectiveness of ETA using the Schober flexion test. In both studies, the FROM increased positively from baseline to week 2.\cite{44,51} The demonstrated significant difference in both studies did not exceed the MDC95 measurement error of 1.8 cm.\cite{28} The third study reported a significant effect in patients with LBP on FROM measured with an inclinometer\cite{45} although the change was not beyond the MDC90 (MD=4.29±SD2<MDC90=7).\cite{33} Finally, the last study reporting a significant FROM change measured with the FFD after 2 types of ETA treatment sessions of 48 hours\cite{47} also did not surpass the MDC (MD=6.84±SD1.03<MDC95=9.8>MDC90=7).\cite{28}

Extension ROM

No study found a significant difference regarding the extension ROM.

Study	External Validity	Internal Validity: Present Criteria on PEDro Scale	Score	Quality	Strength, % (score)
Al-Shareef et al\cite{44}	Yes	+ + + + + + + + + +	9/10	Excellent	81 (9/11)
Castro-Sánchez et al\cite{45}	Yes	+ + + + + + + + + +	9/10	Excellent	81 (9/11)
Grzeskowiak et al\cite{46}	Yes	+ + + + + + + + + +	8/10	Excellent	72 (8/11)
Lemos et al\cite{47}	Yes	+ + + + + + + + + +	6/10	Good	54 (6/11)
Preece and White\cite{48}	Yes	+ + + + + + + + + +	8/10	Good	72 (8/11)
Shin and Heo\cite{49}	No	+ + + + + + + + + +	7/10	Good	63 (7/11)
Velasco-Roldán et al\cite{50}	Yes	+ + + + + + + + + +	9/10	Excellent	81 (9/11)
Norman et al\cite{51}	Yes	+ + + + + + + + + +	7/10	Good	63 (7/11)
Yoshida and Kahanov\cite{52}	No	- - - - - - - + + -	2/10	Poor	18 (2/11)
Navrot et al\cite{53}	No	- + + + - - - + + + +	5/10	Fair	45 (5/11)

NOTE. 9-10 points indicates excellent quality, 6-8 points indicates good quality, 4-5 points indicates fair quality, and 0-3 points indicates poor quality.\cite{40} Each criterion equals 1 point for a possible total of 10 points. The criterion content are: (1) clear inclusion and clear exclusion criteria; (2) random allocation/concealed allocation; (3) baseline comparability; (4) blinded assessors; (5) blinded participants; (6) blinded therapist; (7) adequate follow-up; (8) variable measured in >85% of participants; (9) between group comparisons; and (10) points estimates and variability.
Table 4 Results and conclusions of studies of elastic tape application on the trunk ROM

Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/−	Conclusion
Preece and White⁴⁸	34 without LBP	Experimental set-up: The paravertebral muscles I-shaped ETA technique was used in the EGr. Two I-strips were used (5 cm wide and ~25 cm long) and were applied bilaterally with 10%-15% tension on the individual’s back. The ETA was applied from the PSIS to level T8. The anchor was placed at the height of the PSIS in a standing position and adhered in comfortable flexion.	One session ETA • ETA immediately posttested	MFFD test • Flexion ROM • Tested with ETA in situ	Description (mean±SD): • EGr: Baseline: 26.83±10.95 After: 24.08±11.05 • CGr: Baseline: 28.18±11.39 After: 26.60±9.94	With in time (mean difference±SD): EGr: Baseline-after MD: 2.75±2.59 95%CI: 1.54-3.96 P<.05 CGr: Baseline-after MD: 1.57±2.87 95%CI: -0.09 to 3.23 P=NS Between groups (baseline changed difference) • Baseline-after groups d: MD: 1.57±2.87 95% CI: -0.09 to 0.75 P=NS • EGr=CGr (Correction for age): P=NS EGr=CGr	Directly after ETA was tested in situ, there was a significant effect found in the EGr on the flexion ROM with ETA in situ. However, the results are not reliable regarding the MDC. Hence, ETA in CON1 does not influence flexion trunk mobility and is not better than paravertebral-sham tape.	
Shin and Heo⁴⁹	60 participants without LBP	Experimental set-up: In this study, the EGr received 2 types of ETA techniques at the same time. Tape 1: ligament ETA: 1 I-shaped ETA (5 cm wide and ~20 cm long) was used. The tape was applied on the participant’s back from the PSIS to the opposite PSIS in standing position. After the application of the Si joint ET, the second tape	One session ETA • ETA attached in situ for 30 minutes	BROM II: • Flexion ROM • Extension ROM • Tested with ETA in situ	Description (mean±SD): • EGr: Baseline flexion: 32.57±4.08 After flexion: 26.83±4.62 Baseline extension: 11.43±3.26 After extension: 11.20±3.29 Baseline r-latroflexion: 32.33±3.93 After r-latroflexion: 27.47±4.45 Baseline l-latroflexion: 33.10±3.63 After l-latroflexion: 28.17±3.39 Baseline r-rotation: 35.30±5.90			

(continued)
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/-	Conclusion
	44 LBP	Experimental set-up:	Twice a week treatment	Total of 4 sessions	Modified Schober’s test:	Description:	Twice a week treatment of a total of 4 sessions significantly influences the flexion ROM. However, based on the MDC, the evolution is not meaningful after 2 sessions, but it is after 4 sessions. Hence, ETA in CON1 does not influence trunk flexion trunk mobility after 2 ETA sessions and is not better than X-sham tape.	
		paravertebral muscles I-shaped ETA technique was used in the Experimental set-up. Two I-stripes were used (5 cm wide and ~20 cm long) and were applied bilaterally with 10%-15% tension on the patient’s back. The initial anchor point of tape (4-5 cm) was applied to the paravertebral muscles. ETA:				EGr: Flexion ROM: MD=5.74±1.33 SEP1.33	EGr: Flexion ROM: MD=5.46±1.82 SEP1.82	
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/—	Conclusion
----------------------	---------------------	--------------	-----------------------	-------------------	----------------------------------	--	--------	------------
Norman et al51	20 LBP	Experimental set-up: The paravertebral muscle technique. Two I-strips (5 cm wide and ~20 cm long). The ET was applied with ~15% tension on the participant's back. ETA was adhered to the skin above the paravertebral muscles from sacrum to the level T12. The tape was applied in a flexion position, and the participants were asked to bend forward during the application where the tape adhered along to the muscles.	• One session ETA	• ETA attached 7 days in situ	• Flexion ROM	• Tested without ETA in situ (after 4 weeks)	Within time: EGr: Baseline-W2: MD=−1.32±0.24; P<.05	-
		Control set-up:					EGr: Baseline-W4: MD=−1.85±0.23; P<.05	-
		The CGr did not receive any intervention.					CGr: Baseline-W2: MD=−0.61±0.20; P<.05	-
							CGr: Baseline-W4: MD=−1.11±0.23; P<.05	-
							Between groups: (Pair difference): Baseline-W2: Groups d: MD=−0.71; 95% CI=−0.85 to −0.56; P<.05	-
							EGr>CGr Baseline-W4: Groups d: MD=−0.73; 95% CI=−0.88 to −0.58; P<.05	-
							EGr>CGr	One session of ETA for 7 days in situ has a significant treatment effect on the flexion ROM, only in the first 2 weeks and not after 4 weeks. Based on the MDC parameters, the evolution after week 2 is not meaningful. Hence, ETA in CON2 does not have a significant treatment effect in terms of improved flexion trunk mobility and is not better than no treatment.

posterior superior iliac crest without tension up to T12. The tape was applied in the flexion position, and the participants were asked to bend forward during the application where the tape has adhered to the muscles along.

Control set-up:
CGr received 2 shams “II” paravertebral elastic tape application. However, it does improve the flexion trunk mobility after 4 ETA sessions.

paravertebral-sham elastic tape application.
Study and Conditions	No. of Participants	Intervention Description	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/−	Conclusion
Grzeskowiak et al.²⁵	38 LBP	Experimental set-up:		Electrogoniometer:	• One session ETA			
		A thoracolumbar fascia ETA technique was used. Two I-stripes were used (5 cm wide and ~30 cm long), each extending from the posterior axillary fold of 1 side to the greater trochanter of the opposite side of the body, were applied to form X-shaped application with midpoint overlapped over the lumbosacral junction. The midpoint was attached with no tension, and the tails of stripes were applied directly to the skin with paper-off tension (~15%−25% of tapes stringing). The tails were oriented in the direction of fibers of the superficial lamina of the posterior layer of TLF (~40 degrees craniolateral-caudomedial).		• ETA attached in situ for 7 days	• Flexion ROM	Tested without ETA in situ (after 7 days)		
		Control set-up:						
		The CGr received 2 “I”-shaped rigid tape strips, which were applied using the same protocol as in the CGr.						

After 7 days of ETA in situ, there was no significant treatment effect found on the flexion ROM after the ETA was removed. In conclusion, ETA in CON2 has no treatment effect in terms of improved flexion and extension trunk mobility and is not better than rigid paravertebral tape application.
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC +/-	Conclusion	
Castro-Sánchez et al.	59 LBP	Experimental set-up:		Inclinometer (Fleximeter):	One session ETA ETA attached in situ for 7 days	Description (mean±SD):	Description (mean±SD):		One session of ETA for 7 days in CON1 and CON2 does not significantly affect the flexion ROM. Based on the MDC, evolution after weeks 1 and 5 are not meaningful. ETA in CON1 and CON2 does not influence trunk flexion and extension trunk mobility and is not better than sham elastic tape application.
		In the study, the star elastic tape application technique was used. The Star application comprises multiple use ligament ETA. Four I-strips were used (5 cm wide and ~25 cm long) and were adhered on the participant’s back with 25% tension. The 4 I-strips overlap in a star shape over the point of maximum lumbar pain. The anchors of the tape were applied without tension.		Flexion ROM ETA attached in situ					
		Control set-up:			Withing time (mean difference±SD):				
		The CGr received 1 horizontal I- Sham ETA (25% tension).							
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/−	Conclusion	
-------------------------	---------------------	--------------	-----------------------	---	-----------------------------------	--	--------	---	
Lemos et al47	39 without LBP	Experimental set-up: The paravertebral muscles I-shaped ETA technique was used as an experiment. Two types of ETA techniques were tested. Both ETA techniques used 2 I-strips (5 cm wide and ~30 cm long) which were applied on the participant’s back during maximal trunk flexion.	One session ETA ETA attached in situ for 48 hours	FFD test: Flexion ROM Tested with ETA in situ (48 hours later) Tested without ETA in situ (after 30 days) Schober’s test: Flexion ROM Tested with ETA in situ (24 hours later) Tested without ETA in situ (48 hours later)	Description (mean±SD):	Description (mean±SD):		There is conflicting evidence between 2 different	
	Female participants without LBP (BMI >29)								

ETA 0% tension:
In EGr1, the ETA was applied with 0% tension.

Fascia correction technique:
The ETA in EGr2 was applied using short and long oscillation load to the tape to add a varied amount of tension between 15% and 50%.

Control set-up:
The CGr did not receive any intervention.

FFD test

- **EGr1:**
 - Baseline: 22.37±2.63
 - After 48 hours: 13.88±1.66
- **EGr2:**
 - Baseline: 17.05±1.89
 - After 48 hours: 11.74±2.14
- **CGr:**
 - Baseline: 16.73±2.63
 - After 48 hours: 16.54±2.78

FFD test

- **EGr1:**
 - Follow-up 30 days: 15.53±1.99
- **EGr2 follow-up 30 days:**
 - 13.51±1.99
- **CGr:**
 - Follow-up 30 days: 15.85±2.79

Within:

- **EGr1:**
 - Baseline-after 48 hours: P<.05
- **EGr2:**
 - Baseline-after 48 hours: P<.05
- **Between groups:**
 - Not significant

Within time:

- **EGr1:**
 - Baseline-after 30 days: MD=6.84±SEP1.03; P<.05
- **EGr2:**
 - Baseline-after 30 days: MD=3.54±SEP1.03; P<.05

Between (ETA in situ and ETA effect):

EGr1:
 - After 45u–after 30 days: P=nS
EGr2:
 - After 45u–after 30 days: P=nS

Flexion ROM measure instruments on the ETA in CON 1 and CON2. However, the FFD did detect a significant ETA effect in CON1 as in CON2. However, concerning the MDC, the evolution after 48 hours and at follow-up at 30 days are not meaningful.

Hence, ETA in CON1 and CON2 does not significantly affect the flexion trunk mobility and is not better than no treatment.
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/-	Conclusion		
Velasco-Roldán et al (2015) RCT, nonspecific chronic LBP	75 LBP	Experimental set-up: In this study, 3 types of ETA methods were analyzed. All ETA interventions used the paravertebral I muscle technique. Two I-strips (5 cm wide and 30 cm long) were applied on the participant's back. The ET was applied as follows: the initial anchor point of tape was applied at the height of the sacrospinalis without tape tension. The participant was asked to perform gradual trunk flexion, while the rest of the tape was adhered on the paravertebral muscles.	One session, ETA attached in situ for 24 hours	FFD, Sit and reach test, Back saver sit and reach:	Schrober's test tape in situ:	Others:				
					Flexion ROM	P=NS	No significant changes found for:			
					Tested with ETA in situ	CGr	Schober's test: after 25 hours and 30 days			
					(10 minutes later)	EGr	Between EGr1, EGr2, and CGr			
					Tested with ETA in situ	Others:				
					(24 hours later)	Schrober's test: after 25 hours and 30 days				
					Tested without ETA in situ	CGr	Between EGr1, EGr2, and CGr			
					(after ~24 hours)	Conclusion:				
						Schrober's test tape in situ:				
						P=NS	No significant changes found for:			
						Tested with ETA in situ	CGr	Schober's test: after 25 hours and 30 days		
						(10 minutes later)	EGr	Between EGr1, EGr2, and CGr		
						Tested with ETA in situ	Others:			
						(24 hours later)	Schrober's test: after 25 hours and 30 days			
						Tested without ETA in situ	CGr	Between EGr1, EGr2, and CGr		
						(after ~24 hours)	Conclusion:			

ETA in situ and after it was removed does not significantly affect the flexion ROM after it was worn for 24 hours. There was a significant difference found for the different ETA tensions. However, concerning the MDC, the difference between the ETA tension was not meaningful. Hence, ETA in CON1 and CON2 with different ETA tensions does not improve.
Study and Conditions	No. of Participants	Intervention	Intervention Duration	Assessment Method	Results: Condition 1 (ETA in situ)	Results: Condition 2 (ETA Treatment Effect)	MDC+/–	Conclusion
EGr1:					Within time:	Baseline-after 25 hours:		
					NS	P=NS		
EGr2:					Between:			
					NS			
Control set-up					Others:			
EGr3:					Others:			
					No significant changes found			
					for ETA in situ:			
					Finger-to-floor test			
					Sit and reach test			
Moreover, there is no superior ETA to prescribe.								

EGr1: The tape was applied with 15%-20% tension until the T12 level was reached. This was repeated for the other side.

EGr2: The tape was applied with 40% extra tension until the T12 level was reached. This was repeated for the other side.

Control set-up
EGr3: The tape was reduced to 0% before it was adhered to the skin over the muscles.

Others: No significant changes found for ETA in situ:
Finger-to-floor test
Sit and reach test

Abbreviations: BMI, body mass index; CGr, control group; CI, confidence interval; CON1, ETA tested with ETA in situ; CON2, ETA removed before the tests are run; EGr, experimental group; MD, mean difference; MFFD, Modified Finger Floor Distance; NS, not significant; PSIS posterior-superior iliac spine; SEP, pooled Satterhwaite of deviation; SI, sacroiliac; W2, week 2; W4, week 4.

* Not significant
Lateral flexion and rotation ROM

One study measured the lateral-flexion and rotation ROM in individuals without LBP. Both were evaluated with an inclinometer. Both lateral-flexion ROM and rotation ROM directions significantly changed in condition 1 when the ETA was worn for 30 minutes. However, the baseline-to-post difference in the left rotation ROM was not beyond the MDC95 and cannot be taken as a meaningful evolution (MD=5.46±SD1.82>MDC95=5.5).

Tape direction and applied tension

Six out of 8 studies evaluated the caudal to cranial para-spinal placement of the ETA effect and no other placement. The ETA tension varied between approximately 0%-50%. The effects of differences in tensions on TRM effect was evaluated in 4 studies. The ETA tension difference did not exceed the MDC95 and was deemed irrelevant.

Discussion

This systematic review demonstrates that ETA does not affect TRM in individuals with and without LBP. Those studies that reported a significant positive effect of ETA on TRM did not consider the MDC of the outcome instrument. None of the studies included in this systematic review surpassed the MDC in their results, and none of the measurement tools were precise and accurate.

The quality of the included RCTs, assessed by PEDro score, was generally high, despite the small sample size in all studies. However, the methodological quality scored by PEDro is based on the design and does not account for the psychometric quality of the mobility measurement instruments used. Hence, in this systematic review, we used the MDC to correct for this.

No conclusion can be drawn regarding the effects of ETA direction because none of the included studies investigated the effect of the ETA direction on TRM. This is surprising because the opposite direction of ETA application has been described to have an effect. However, most (6 of 8) of the studies applied the ETA from caudal to cranial over the lumbar paravertebral muscles and did not compare the effect of this direction with that of the opposite (cranial to caudal) ETA direction. Moreover, the resistance in elastic tape is determined by the Young’s modulus of the tape and tension that is applied to the tape. The studies that were included in this review used variable types of tape brands and, subsequently, the applied tension differed between studies. According to a biomechanical engineering study, each brand of elastic tape creates a different level of tension at equivalent strain conditions and as such, the ETA tension could be interindividual depending on body characteristics and skin flexibility. Hence, the variability in tension may be an explanation for the lack of a meaningful effect.

In general, the elastic tape applications used in the studies are not similar to those applied in clinical practice since longitudinal paravertebral, diagonal thoracolumbar fascia, and horizontal elastic tape applications are used. Moreover, different ETA directions are tested before ETA in choosing the best ETA direction.

Study limitations

The strength of this study is that narrative research was done in advance into the psychometric quality of various mobility measurement instruments to analyze the effectiveness of ETA. The validity, reliability, and MDC were retrieved from these studies. If the MDC was absent, the SEM and MDC95 were calculated. Subsequently, the strictest MDC error-parameter was used to evaluate the meaningfulness of the reported significant changes in TRM influenced by ETA. We excluded studies in which a mobile phone inclinometer application was used to evaluate the effect because of the insufficient reliability and the various downloadable applications. Among RCTs and CCTs, only trials with a control group were considered eligible. However, we excluded RCTs and CCTs that used ETA in a multimodal interventional setting because of the possibility that the ETA could interact with the other interventions used.

There are also limitations in this systematic review. In general, the included studies are not homogeneous concerning the study population. Moreover, different evaluation time points were used to evaluate the TRM effect and there are unstandardized or unknown standard measurement procedures, failed sham elastic tape methods, unstandardized elastic tape application methods, and inconsistencies between studies concerning the elastic tape sessions and the duration of the elastic tape in situ. Limitations to consider on the part of the authors responsible for the synthesis of this systematic review were the inclusion of moderate impact strength articles, the methodological quality assessment tool used with the posed limitations, the search methods, and keywords used.

Conclusions

Based on the results of this systematic review, there is no evidence supporting the effect of ETA. There is no evidence that ETA improves TRM. There is no evidence regarding application tension or direction of ETA influencing TRM. It is necessary to conduct further high-quality methodological research on the effect of ETA application on TRM to ascertain whether an effect on mobility is present. This indicates the use of more valid and reliable TRM measure instruments within a standardized measure protocol. When evaluating lumbar ETA effects on TRM and considering the psychometric quality, we cannot confirm its effects on TRM. Based on this systematic review, current lumbar ETA interventions should be questioned.

Supplier

a. MATLAB; The Mathworks, Inc.
References

1. Buchbinder R, van Tulder M, Öberg B, et al. Low back pain: a call for action. Lancet 2018;391:2384-8.
2. van Dieën JH, Flor H, Hodges PW. Low-back pain patients learn to adapt motor behavior with adverse secondary consequences. Exerc Sport Sci Rev 2017;45:223-9.
3. van Dieën JH, Selen LPJ, Cholewicki J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol 2003;13:333-51.
4. Travell J, Rinzler S, Herman M. Pain and disability of the shoulder and arm: treatment by intramuscular infiltration with procaine hydrochloride. JAMA 1942;120:417-22.
5. Oliveira CB, Maher CG, Pinto RZ, et al. Clinical practice guide lines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J 2018;27:2791-803.
6. Hörmann J, Vach W, Jakob M, Saghers S, Saxer F. Kinesiotaping for postoperative edema—what is the evidence? A systematic review. BMC Sports Sci Med Rehabil 2020;12:14.
7. Frušek K, Billis E, Matzaroglou K, et al. Elastic bandaging for orthopedic- and sports-injury prevention and rehabilitation: a systematic review. J Sport Rehabil 2017;26:69-78.
8. Adstrum S, Hedley G, Schleip R, Stecco C, Yucesoy CA. Does kinesio tape alter thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 2011;12:203.
9. Th. Sjø, Wolerdge RC, Morrissey D. ‘Kinesio tape’ alter thoracolumbar fascia movement during lumbar flexion? An observational laboratory study. J Bodyw Mov Ther 2016;20:898-905.
10. Pamuk U, Yucesoy CA. MRI analyses show that kinesio taping affects much more than just the targeted superficial tissues and causes heterogeneous deformations within the whole limb. J Biomech 2015;48:4262-70.
11. Wang CK, Fang YHD, Lin LC, et al. Magnetic resonance elastography in the assessment of acute effects of kinesio taping on lumbar paraspinal muscles. J Magn Reson Imaging 2019;49:1039-45.
12. Lipinska A, Sliwiński Z, Klezbak W, Senderek T, Kirenko J. The influence of kinesiotaping applications on lymphoedema of an upper limb in women after mastectomy. Fizjoterapia Polska 2007;7:258-69.
13. Lin JJ, Hung CJ, Yang PL. The effects of scapular taping on electromyographic muscle activity and proprioception feedback in healthy shoulders. J Orthop Res 2011;29:53-7.
14. Taylor RL, O'Brien L, Brown T. A scoping view of the use of elastic therapeutic tape for neck or upper extremity conditions. J Hand Ther 2014;27:235-46.
15. Yoosofinjed A, Motealleh A, Abbasalipour S, Shoahre M, Sobhani S. Can inhibitory and facilitatory kinesiotaping techniques affect motor neuron excitability? A randomized cross-over trial. J Bodyw Mov Ther 2017;21:234-9.
16. Yeung SS, Yeung EW. Acute effects of kinesio taping on knee extensor peak torque and stretch reflex in healthy adults. Medicine 2016;95:e6215.
17. Kuo YL, Huang YC. Effects of the application direction of kinesio taping on isometric muscle strength of the wrist and fingers of healthy adults - a pilot study. J Phys Ther Sci 2013;25:287-91.
18. Vered E, Oved L, Zilberg D, Kalichman L. Influence of kinesio tape application direction on peak force of biceps brachii muscle: a repeated measurement study. J Bodyw Mov Ther 2016;20:203-7.
19. Knapman HJ, Fallon T, O’Connor M, et al. The effect of elastic therapeutic taping on lumbar extensor isokinetic performance. Phys Ther Sport 2017;25:9-14.
20. Álvarez-Alvarez S, San José FGM, Rodríguez-Fernández AL, Gueita-Rodríguez J, Wailer BJ. Effects of Kinesio(R) tape in low back muscle fatigue: randomized, controlled, double-blinded clinical trial on healthy subjects. J Back Musculoskeletal Rehabil 2014;27:203-12.
21. Added MAN, Costa LOP, Fukuda TY, et al. Efficacy of adding the kinesio taping method to guideline-endorsed conventional physiotherapy in patients with chronic nonspecific low back pain: a randomised controlled trial. BMC Musculoskeletal Disord 2013;14:301.
22. Lim EC, Tay MG. Kinesio taping in musculoskeletal pain and disability that lasts for more than 4 weeks: is it time to peel off the tape and throw it out with the sweat? A systematic review with meta-analysis focused on pain and also methods of tape application. Br J Sports Med 2015;49:1558-66.
23. Ramírez-Vélez R, Hormazábal-Agyayo I, Izquierdo M, et al. Effects of kinesio taping alone versus sham taping in individuals with musculoskeletal conditions after intervention for at least one week: a systematic review and meta-analysis. Physiotherap y 2019;105:412-20.
24. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100.
25. Haddaway NR, Collins AM, Couplin D, Kirk S. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS One 2015;10:e0138237.
26. Robinson HS, Mengshoel AM. Assessments of lumbar flexion range of motion: intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine 2014;39:E270-5.
27. Ekedahl H, Jonsson B, Frobell RB. Fingertip-to-floor test and straight leg raising test: validity, responsiveness, and predictive value in patients with acute/subacute low back pain. Arch Phys Med Rehabil 2012;93:2210-5.
28. Toussignant M, Poulin L, Marchand S, Viau A, Place C. The Modified—Modified Schober Test for range of motion assessment of lumbar flexion in patients with low back pain: a study of criterion validity, intra-and inter-rater reliability and minimum metrically detectable change. Disabil Rehabil 2005;27:553-9.
29. Williams R, Binkley J, Bloch R, Goldsmith CH, Minuk T. Reliability of the modified-modified Schober and double inclinometer methods for measuring lumbar flexion and extension. Phys Ther 1993;73:26-37.
30. Kolber MJ, Pizzini M, Robinson A, Yanez S, Hanney WJ. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iphone® application and gravity based inclinometry. Int J Sports Phys Ther 2013;8:129-37.
31. Ng JK, Kippers V, Richardson CA, Parnianpour M. Range of motion and lordosis of the lumbar spine: reliability of measurement and normative values. Spine 2001;26:53-60.
32. Phattharasupharererk S, Purepong N, Siriphorn A. Inter-and intra-rater reliability of the back range of motion instrument (BR0M II) for measuring lumbar mobility in persons with sedentary lifestyle. In: Yoopat P, Ourairat A, Tamajai A, Pantaratorn N, Ourairat A, editors. Proceedings of RSU International Research Conference; 2017 April 28; Pathum Thani, Thailand. Pathum Thani, Thailand: Rangsit University; 2017. p. 35–4.
33. Kachingwe AF, Phillips BJ. Inter-and intrarater reliability of a back range of motion instrument. Arch Phys Med Rehabil 2005;86:2347-53.
36. Paquet N, Malouin F, Richards CL, Dionne JP, Comeau F. Validity and reliability of a new electrogoniometer for the measurement of sagittal dorsolumbar movements. Spine 1991;16:516–9.
37. López-Miñarro PA, de Baranda Andújar PS, Rodríguez-García PL. A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. J Sports Sci Med 2009;8:116–22.
38. Hui SS, Tuen PY. Validity of the modified back-saver sit-and-reach test: a comparison with other protocols. Med Sci Sports Exerc 2000;32:1655–9.
39. Sjønneberg MS, Bustra H, Ekes M, et al. Concurrent validity and interrater reliability of a new smartphone application to assess 3D active cervical range of motion in patients with neck pain. Musculoskelet Sci Pract 2018;34:59–65.
40. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003;83:713–21.
41. Sjønneberg MS, Bustra H, Ekes M, et al. Concurrent validity and interrater reliability of a new smartphone application to assess 3D active cervical range of motion in patients with neck pain. Musculoskelet Sci Pract 2018;34:59–65.
42. Bhogal SK, Teasell RW, Foley NC, Speechley MR. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad scale in stroke rehabilitation literature. J Clin Epidemiol 2005;58:668–73.
43. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 2009;55:129–33.
44. Al-Shareef AT, Omar MT, Ibrahim AH. Effect of kinesio taping on pain and functional disability in chronic nonspecific low back pain: a randomized clinical trial. Spine (Phila Pa 1976) 2016;41:E821–8.
45. Castro-Sánchez AM, Lara-Palomino IC, Matarán-Penarrocha GA, et al. Kinesio taping reduces disability and pain slightly in chronic non-specific low back pain: a randomised trial. J Physiother 2012;58:89–95.
46. Grzeskowiak M, Krawiecki Z, Labędz W, et al. Short-term effects of kinesio taping on electromyographic characteristics of paraspinal muscles, pain, and disability in patients with lumbar disk herniation. J Sport Rehabil 2019;28:402–12.
47. Lemos TV, Albino AC, Matheus JP, de Melo Barbosa A. The effect of kinesio taping in forward bending of the lumbar spine. J Phys Ther Sci 2014;26:1371–5.
48. Prece E, White P. Does kinesiology tape increase trunk forward flexion? J Bodyw Mov Ther 2017;21:618–25.
49. Shin DY, Heo JY. The effects of kinesiotaping applied onto erect-or spiniae and sacroiliac joint on lumbar flexibility. J Korean Phys Ther 2017;29:307–15.
50. Velasco-Roldán O, Riquelme I, Ferragut-Garcías A, et al. Immediate and short-term effects of kinesio tape tightening in mechanical low back pain: a randomized controlled trial. PM R 2018;10:28–35.
51. Wan Norman WMN, Mat Nuar MA, Sariman MH, Razak FAA. The effects of Kinesio tape on chronic low back pain among young male adults in Ampang. In: Yacob N, Mohd Noor N, Mohd Yunus N, Lob Yussof R, Zakaria S, eds. Regional Conference on Science, Technology and Social Sciences (RCSSTSS 2016); 2016 Dec 4-6; Pekan, Pahang, Malaysia. Singapore: Springer; 2018. p. 993–1000.
52. Yoshida A, Kahanov L. The effect of kinesio taping on lower trunk range of motions. Res Sports Med 2007;15:103–12.
53. Nawrot R, Witkorn J, Gádžák T. Kinsio taping value in treatment of spine pain syndromes. J Orthop Trauma Surg 2012;3:50–63.
54. Landsis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977;33:363–74.
55. Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 1973;33:613–9.
56. Grzeskowiak M, Szułc P, Szwedziak M, Lewandowski J. The effect of the kinesio taping method on spinal motion and physiological spinal curvatures. Literature review. Ortop Traumatol Rehabil 2014;16:221–6.
57. Bravi R, Cohen EJ, Quarta E, Martinelli A, Minciacci D. Effect of direction and tension of kinesio taping application on sensorimotor coordination. Int J Sports Med 2016;37:909–14.
58. Golab A, Kulesa-Mrowiecka M, Golab M. Comparative studies of physical properties of kinesiotapes. Biomed Mater Eng 2017;28:457–62.
59. Selva F, Pardo A, Aguado X, Montava I, Gil-Santos L, Barrios C. A study of reproducibility of kinesiology tape applications: review, reliability and validity. BMC Musculoskelet Disord 2019;20:153.
60. Sijmonsma J. Medical taping concept. Oldenzaal, the Netherlands: Verhaar Drukkerij BV; 2014.
61. Noten K, Schuurmans-Stekhoven M. Chapter 6: easy testing in physical therapy. KNGF Accreditatie ID 9673. Ijsselstein: Fysio Physics; 2012.