New antimicrobial alternatives in the treatment of pneumonia

Ceftaroline in severe community-acquired pneumonia

Catia Cilloniz¹
Juan M Pericàs²,³
Jorge Rojas⁴

¹Pulmonology Department, Hospital Clinic of Barcelona, Spain. Spanish Society of Pneumology and Thoracic Surgery (SEPAR)
²Liver Unit, Internal Medicine Department. Vall d’Hebron University Hospital. Vall d’Hebron Institute for Research, CIBER-He, Barcelona, Spain
³Infectious Diseases Service, Hospital Clinic of Barcelona, Spain
⁴Department of Pneumology, Hospital Regional Docente Clínico Quirúrgico Daniel Alcides Carrión, Huancayo, Perú

Revista Española de Quimioterapia
doi:10.37201/req/s01.06.2022

ABSTRACT

Severe community-acquired pneumonia (SCAP) is associated with high mortality. Factor such as early adequate antibiotic therapy, delay in intensive care unit (ICU) care and pneumonia caused by resistant pathogens are associated with worse outcomes in SCAP patients. Ceftaroline is a fifth-generation cephalosporin with bactericidal activity against Gram-positive pathogens (including methicillin-resistant Staphylococcus aureus [MRSA] and multidrug-resistant Streptococcus pneumoniae) and common Gram-negative organisms. The efficacy and safety for the treatment of pneumonia was evaluated in three randomized control trials were ceftaroline demonstrated superiority against ceftriaxone for the treatment of pneumonia in hospitalized patients with Pneumonia Severity Index (PSI) III – IV.

Keywords: severe community-acquired pneumonia; Streptococcus pneumoniae; Staphylococcus aureus; ceftaroline

INTRODUCTION

Severe CAP is associated with high morbidity and mortality [1]. The early detection of severe pneumonia and the timely, adequate antimicrobial therapy are critical in managing these cases that affect in great proportion to elderly adults and patients with chronic comorbidities [1]. Based on this observation, early, adequate antimicrobial therapy could reduce mortality in severe CAP.

Due to the growing microbial resistance and continued need for appropriate antimicrobial coverage, newer antibiotics have been investigated in CAP, with an ability to cover the most frequent pathogens in pneumonia and their resistances. Ceftaroline is one of this new generation cephalosporins, has broad-spectrum in vitro activity against Gram-positive pathogens [including methicillin-resistant Staphylococcus aureus [MRSA] and multidrug-resistant Streptococcus pneumoniae] and common Gram-negative pathogens. Ceftaroline is approved for their use in CAP in Europe and USA.

MICROBIOLOGICAL PROFILE

Ceftaroline exhibits a greater binding affinity for penicillin-binding proteins (PBPs) and thus preventing the biosynthesis of the bacterial cell wall. Ceftaroline has high binding affinities to PBP 1- 3 and PBP-2A that mediates methicillin resistance in MRSA; and for PBP-1A, PBP-2A/B and PBP-2X that target S. pneumoniae including multidrug resistant strains.

Table 1: Antibacterial activity

Gram-positive bacteria	Gram-negative bacteria
Streptococcus pneumoniae	Escherichia coli
Staphylococcus aureus	Klebsiella pneumoniae
Methicillin-resistant S. aureus (MRSA)	Haemophilus influenzae
Methicillin-susceptible S. aureus (MSSA)	Haemophilus parainfluenzae
Vancomycin-intermediate S. aureus (VISA)	Klebsiella oxytoca
Vancomycin-resistant S. aureus (VRSA)	Morganella morganii
Streptococcus pyogenes	Moraxella catarrhalis
Streptococcus agalactiae	
Streptococcus anginosus group	
S. anginosus	
S. intermedius	
S. constellatus	
Ceftaroline in severe community-acquired pneumonia

C. Cilloniz, et al.
Rev Esp Quimioter 2022; 35 (Suppl. 1): 28-30

1 gr of ceftriaxone was given, whereas in the Asian trial 2 gr of ceftriaxone was given. CAP cases caused by pathogens resistant to ceftriaxone were excluded (including MRSA).

The objective in all trials was determination of the non-inferiority of ceftaroline to ceftriaxone in terms of the clinical cure (defined as resolution of all signs and symptoms of pneumonia or improvement such that no further antimicrobial therapy was necessary) rate at the test of cure (TOC) visit in the modified intent-to-treat (MITTE) and clinically evaluable (CE) population.

Ceftaroline was well tolerated in all the trials and demonstrated non-inferiority to ceftriaxone in the MITTE and CE populations for the primary endpoint of clinical cure at the TOC visit (8–15 days after end of therapy).

In the integrated analysis, of the CE patients treated with ceftaroline, 84% achieved clinical cure, compared with 78% of ceftriaxone-treated patients. Clinical cure rates in the MITTE population were 83% versus 77% for ceftaroline and ceftriaxone. Ceftaroline and ceftriaxone were well tolerated; rates of adverse events, serious adverse events, deaths, and premature discontinuations caused by an adverse event were similar in both treatment groups [5].

In a meta-analysis of three trials including 1916 CAP patients, ceftaroline (600 mg/8h) was superior to ceftriaxone (1–2 g/24 h) for 5–7 days in the MITT population (OR: 1.66; 95% CI 1.34, 2.06; P < 0.001) and in the CE (OR: 1.65; 95% CI 1.26, 2.16; P < 0.001) populations [6].

A subsequent analysis quantified the time to a clinical response, a proxy for the time to discharge readiness, among CAP patients including in the FOCUS 1 and FOCUS 2 trials. The results of the study showed that patients who received Ceftaroline were found to have shorter overall times to a clinical response and clinical stability relative to patients who received ceftriaxone [7].
The current ATS/IDA guidelines [8] and the update of the SEPAR guidelines [9] for the management of CAP patients incorporate ceftaroline as one of the β-lactams recommended for the treatment of hospitalized patients with CAP.

Recently, our group published a case-control study were ceftaroline was mainly prescribed in cases with severe pneumonia (67% vs. 56%, p=0.215) with high suspicion of *S. aureus* infection (9% vs. 0%, p=0.026). Patients who received ceftaroline had a longer length of hospital stay (13 days vs. 10 days, p=0.007), while an increased risk of in-hospital mortality was observed in the patients who received ceftriaxone compared to the patients in the ceftaroline group (13% vs. 21%, HR 0.41; 95% CI 0.18 to 0.62, p=0.003). This study reported that the use of ceftaroline in hospitalized patients with severe CAP was associated with a decreased risk of in-hospital mortality [10].

The great bactericidal activity of ceftaroline against *S. pneumoniae* and *S. aureus*, makes it an excellent therapeutic option in the treatment of cases of severe CAP.

CONFLICTS OF INTEREST

Authors declare no conflicts of interest

REFERENCES

1. Torres A, Cilloniz C, Niederman MS, Menéndez R, Chalmers JD, Wunderink RG, van der Poll T. Pneumonia. Nat Rev Dis Primers 2021;7:25.

2. File TM, Low DE, Eckburg PB, Talbot GH, Friedland HD, Lee J, Llorens L, Critchley IA, Thye DA, FOCUS 1 investigators. FOCUS 1: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother 2011;66 Suppl 3:iii19-32.

3. Low DE, File TM, Eckburg PB, Talbot GH, David Friedland H, Lee J, Llorens L, Critchley IA, Thye DA, FOCUS 2 investigators. FOCUS 2: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother 2011;66 Suppl 3:iii33-44.

4. Zhong NS, Sun T, Zhuo C, D’Souza G, Lee SH, Lan NH, Chiang C-H, Wilson D, Sun F, Iaconis J, Melnick D. Ceftaroline fosamil versus ceftriaxone for the treatment of community-acquired pneumonia: a randomised, controlled, double-blind, phase 3, non-inferiority with nested superiority trial. Lancet Infect Dis 2015;15:161–171.

5. File TM, Low DE, Eckburg PB, Talbot GH, Friedland HD, Lee J, Llorens L, Critchley I, Thye D. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis 2010;51:1395–1405.

6. Taboada M, Melnick D, Iaconis JP, Sun F, Zhong NS, File TM, Llorens L, Friedland HD, Wilson D. Ceftaroline fosamil versus ceftriaxone for the treatment of community-acquired pneumonia: individual patient data meta-analysis of randomized controlled trials. J Antimicrob Chemother 2016;71:1748–1749.

7. Lodise TP, Anzueto AR, Weber DJ, Shorr AF, Yang M, Smith A, Zhao Q, Huang X, File TM. Assessment of Time to Clinical Response, a Proxy for Discharge Readiness, among Hospitalized Patients with Community-Acquired Pneumonia Who Received either Ceftaroline Fosamil or Ceftriaxone in Two Phase III FOCUS Trials. Antimicrob Agents Chemother 2015;59:1119–1126.

8. Metlay JP, Waterer GW, Long AC, Anzueto A, Brothes K, Cooley LA, Dean NC, Fine MJ, Flanders SA, Griffin MR, Metersky ML, Misher DM, Restrepo MI, Whitney CG. Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019;200:e45–e67.

9. Menéndez R, Cilloniz C, España PP, Almirall J, Uranga A, Méndez R, Rigau D, Torres A. Community-Acquired Pneumonia. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) Guidelines. 2020 Update. Arch Bronconeumol 2020;56 Suppl 1:1-10.

10. Cilloniz C, Mendez R, Peroni H, Garcia-Vidal C, Rico V, Gabarrus A, Menéndez R, Torres A, Soriano A. Impact on in-hospital mortality of ceftaroline versus standard of care in community-acquired pneumonia: a propensity-matched analysis. Eur J Clin Microbiol Infect Dis 2021;doi:10.1007/s10096-021-04378-0.