The abundance of primordial black holes depends on the shape of the inflationary power spectrum

Cristiano Germani1,2 and Ilia Musco2,3

1Departement de Física Quàntica i Astrofísica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
2Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
3LUTH, UMR 8102 CNRS, Observatoire de Paris, PSL Research University, Université Paris Diderot, 92190 Meudon, France

In this letter, combining peak theory and the numerical analysis of gravitational collapse in the radiation dominated era, we show that the abundance of primordial black holes, generated by an enhancement in the inflationary power spectrum, is extremely dependent on the shape of the peak. Given the amplitude of the power spectrum, we show that the density of primordial black holes generated from a narrow peak, is exponentially smaller than in the case of a broad peak. Specifically, for a top-hat profile of the power spectrum in Fourier space, we find that for having primordial black holes comprising all of the dark matter, one would only need a power spectrum amplitude an order of magnitude smaller than suggested previously whereas in the case of a narrow peak, one would instead need a much larger power spectrum amplitude, which in many cases would invalidate the perturbative analysis of cosmological perturbations. Finally, we show that, although critical collapse gives a broad mass spectrum, the density of primordial black holes formed is dominated by masses roughly equal to the cosmological horizon mass measured at horizon crossing.

I. INTRODUCTION

Combination of direct and indirect constraints (for the latest results see [1,2]), indicated that primordial black holes (PBHs) could account for all of the dark matter (DM) in the approximate range $[10^{-16}, 10^{-14}] \cup [10^{-13}, 10^{-11}] M_\odot$.

The observational absence of isocurvature perturbations and non-Gaussianities in the latest cosmic microwave background data (the CMB spectrum) favors single field models of inflation [4]. In this context it has been proposed by [5] (see also [6,7]) that a flattening of the inflationary potential, after the generation of the observed CMB spectra, might greatly enhance the power spectrum at scales smaller than those associated with the CMB so as to generate a non-negligible abundance of PBHs.

While PBHs could form by the collapse of statistical fluctuations of curvature perturbations generated during inflation, the usual slow-roll approximation, which well describes CMB physics, fails in this case [7], so that a more careful analysis must be performed, as discussed recently in [8,9]. Additionally, the abundance of PBHs depends on the amplitude of the inflationary power spectrum and a threshold \mathcal{P}_c. This threshold is related to the minimum amplitude of initial curvature perturbations eventually collapsing to form black holes.

Recently there has been some confusion about the correct estimate of \mathcal{P}_c: for example, in [5] and [10] a rather small value of $\mathcal{P}_c \sim O(10^{-1})$ has been mistakenly equated to the analytical estimate of the critical value δ_c for the integrated density perturbations [12]. A larger value of $\mathcal{P}_c \sim O(1)$ was obtained by incorrectly converting the critical amplitude of the integrated density perturbations into \mathcal{P}_c, as in [10] (in the realm of effective field theories) and in [13] (within explicit string theory realizations).

In the present paper, we show using peak theory [14], that all previous estimates of \mathcal{P}_c are actually inconsistent with the numerical simulations of PBH formation [15-19], whether or not the PBHs comprise the whole of the DM. The key point is that the threshold \mathcal{P}_c is not universal but instead strongly depends on the shape of the inflationary power spectrum.

Peak theory was already used in [20] to calculate the abundance of PBHs, without considering the relation between the shape of the inflationary power spectrum and the threshold of the energy density peak. In the following we propose an improved procedure for calculating the PBH abundance taking into account also the effect of the shape of the power spectrum.

II. COSMOLOGICAL PERTURBATIONS AND PBH FORMATION

In the radiation dominated era, PBHs could be formed by sufficiently large cosmological perturbations collapsing after re-entering the cosmological horizon. Assuming spherical symmetry, such regions can be described by the following approximate form of the metric at super-horizon scales

$$ds^2 \simeq -dt^2 + a^2(t)e^{2R(r)}[dr^2 + r^2d\Omega^2]$$

where $a(t)$ is the scale factor while $R(r)$ is the comoving curvature perturbation. In this regime the curvature perturbation is non-linearly conserved [21] and, from the Einstein equations, in the gradient expansion approxima-
with energy density calculated at the center of the over-density, which is related to the range of critical values of the Hubble parameter and \(\rho_b(t) = 3M^2_pH^2(t)\) is the background energy density.

In the metric \(\tilde{\mathbf{g}}\), the areal radius is given by \(R(r,t) = a(t)r\tilde{e}(r)\) and the amplitude of a cosmological perturbation can then be measured by the mass excess within a spherical region of radius \(R\) as

\[
\frac{\delta M}{M_b} \simeq \delta(r,t) = \frac{1}{V_b} \int_0^R 4\pi \rho_b R^2 dR ,
\]

where \(M_b(r,t) = V_b(r,t)\rho_b(t)\) is the background mass within the spherical volume \(V_b(r,t) = 4\pi R^3(r,t)/3\).

As explained in \[19\], a PBH can be formed when the maximum of the compaction function \(C \equiv 2G\delta M(r,t)/R(r,t)\) is larger than a certain threshold value. This prevents the over-density bouncing back into the expanding Universe. At super-horizon scales, when the maximum of \(C\) is located well outside the cosmological horizon, this quantity is conserved and is related to the mass excess by

\[
\delta(r,t) \simeq \left(\frac{1}{aH}\right)^2 C(r) .
\]

The location of this maximum, called \(r_m\), is an important quantity measuring the characteristic scale of the density perturbation. Comparing different profiles in terms of \(r/r_m\) one has that similar shapes measured in these units have similar values of the mass excess threshold \(\delta_c \equiv \delta_c(t_m,r_m)\), where \(t_m\) is defined by \(a(t_m)H(t_m)r_m = 1\). This identifies the so-called “horizon crossing” measured in real space, but one should bear in mind that \(\delta_c\) is calculated using the approximation of \(\delta(r,t)\) at super-horizon scales.

Although the threshold \(\delta_c\) characterizes the mass excess needed to form PBHs, it is the critical value of the peak \(\delta\rho_c(0)/\rho_b\) that plays a crucial role for computing their cosmological abundance as we shall see in the next section.

By performing a detailed numerical study it has been found that, depending on the initial profile of the energy density, the threshold \(\delta_c\) is in the range \(0.41 \leq \delta_c \leq 2/3\), which is related to the range of critical values of the energy density calculated at the center of the over-density, with \(\delta\rho_c(0)/\rho_b \geq 2/3\) (see \[19\] for more details).

III. APPLICATIONS OF PEAK THEORY

A. The average density profile

In the previous section we have discussed the conditions for which a single perturbation is able to form a PBH. In this section we will apply this knowledge to the cosmological perturbations generated during inflation.

Cosmological perturbations are of quantum origin and therefore their shapes and amplitudes are statistically distributed. In particular \(\Delta \equiv \delta\rho/\rho_b\) is a statistical variable and since we assume that perturbation theory applies during inflation, the mean value of \(\Delta\) and thus the gradient of \(\mathcal{R}\) and its amplitude, are very small. As discussed earlier however, to form PBHs we do need “large”, i.e. non-linear, values of \(\Delta\). Therefore, we will need to search for large perturbations (peaks) away from the mean value. Assuming that both \(\Delta\) and \(\mathcal{R}\) are approximately gaussian variables \[14\] with the help of peak theory \[14\], those peaks will be described only by the variance of \(\Delta\), which is completely dominated by the two-point function of \(\mathcal{R}\) via the linearised relation

\[
\frac{\delta\rho}{\rho_b} \simeq -\frac{1}{a^2H^2} \frac{4}{9} \nabla^2 \mathcal{R} .
\]

Higher correlators will then be suppressed by higher powers of the power spectrum \(P(k)\) of \(\mathcal{R}\). In Fourier space we then have

\[
(2\pi)^3 P_{\Delta}(k,t)\delta(k,k') \equiv \langle \Delta(k,t)\Delta(k',t) \rangle \simeq \left(\frac{k}{aH}\right)^4 \frac{16}{81} \times
\]

\[
\times (2\pi)^3 \delta(k+k') \frac{2\pi^2 P(k)}{k^3} ,
\]

where we have used a standard definition of the curvature perturbation power spectrum \(P(k)\) \[20\]. Finally, we can then define the moments of \(P_{\Delta}(k,t)\) as

\[
\sigma_j^2(t) \equiv \int \frac{k^2 dk}{2\pi^2} P_{\Delta}(k,t)k^{2j} .
\]

The density of PBHs at the moment of formation must be much smaller than the density of the background radiation, otherwise they will dominate the present Universe when it becomes matter dominated. For this reason the peaks generating PBHs must be rare and, to a good approximation, can be considered spherical. Non-sphericity of the peaks would be obtained by the interaction of different adjacent over-densities \[14\].

The observed super-horizon density profile is constructed by using the multivariate Gaussian distribution of the (real space) random field \(\Delta(r,t)\). Following \[14\] the super-horizon averaged density profile is measured in terms of the relative amplitude of the peak defined as

\[\text{Because the formation of a PBH is a rare event, in principle the abundance of PBHs can be modified by non-Gaussian contributions to the statistics of the primordial curvature perturbations} \[24\] \[28\]. Whether or not these non-Gaussianities are important is a model dependent question which is still under debate (for more details see \[24\] \[27\] and will not be addressed in this paper.

\[1\] In a paper which appeared on the same day as ours \[29\], these corrections were evaluated finding that the variance of \(\Delta\) is slightly larger than the one found here.
\[\nu \equiv \frac{T(\nu)}{a} \gg 1, \] which implies that peaks are rare. Then the mean over-density profile per given central value is

\[F(r, t) \simeq \frac{\mathcal{F}(r)}{a^2 H^2} \tag{8} \]

with

\[\mathcal{F}(r) \equiv \mathcal{F}(0) \frac{\xi(r, t)}{\xi(0, t)}, \tag{9} \]

where \(\bar{\sigma}_0 \equiv \sigma_0(t) a^2 H^2 \) and \(\mathcal{F}(0) / (a H)^2 \) is the amplitude of the over-density at the center of the profile and

\[\xi(r, t) = \frac{1}{2\pi^2 (2\pi)^3} \int dk \frac{\sin(kr)}{kr} P_\Delta(k, t). \tag{10} \]

In this limit the number density of peaks corresponding to a given amplitude \(\mathcal{F}(0) \), in the comoving volume, is

\[N_c(\nu) = \frac{k_*^3}{4\pi^2} \nu^3 e^{-\gamma^2/2} \theta(\nu - \nu_c), \tag{11} \]

where \(k_* \equiv \frac{\bar{\sigma}_0}{\sqrt{3} \bar{a}_0} \) and, at super-horizon scales, \(\nu \) is time independent. The critical value \(\nu_c \) discriminates between perturbations forming black holes \((\nu > \nu_c) \) and perturbations dispersing into the expanding Universe \((\nu < \nu_c) \).

B. Abundance and mass spectrum of PBHs

The number of “sufficiently large ” peaks at super-horizon scales gives us the number of PBHs formed once the over-density crosses the horizon. Then the number density of PBHs in physical space, at the moment of formation, is given by

\[N_p(\nu) = \frac{N_c(\nu)}{a(t_f)^3}, \]

where \(t_f \) is the time when the PBHs are formed. Note that \(k_* / a \) is not dependent on the rescaling of the scale factor and so the same is also valid for \(N_p(\nu) \), as it should be. Finally, we are now able to define the density of PBHs of a given mass \(\rho_{PBH}(\nu) \) at formation to be

\[\rho_{PBH}(\nu) \simeq M_{PBH}(\nu) N_p(\nu). \tag{12} \]

The relative density of PBHs that would still exist today, measured at formation with respect to the background energy-density, is

\[\beta_f \equiv \int_{\nu_{min}}^{\infty} \frac{\rho_{PBH}(\nu)}{\rho_b(t_f)} d\nu \tag{13} \]

where \(\rho_b(t_f) = 3M_p^2 H^2(t_f) \) and \(M_p \) is the Planck mass. The lower limit \(\nu_{min} \) corresponds to \(M_{min} \sim 10^{15} \) g which is the mass of PBHs that would already have evaporated by now. To match the abundance of PBHs with the observed DM, one should have \(\beta_f \approx 10^{-8} \sqrt{\frac{M_{PBH}}{M_{\odot}}} \), as can be seen for example in [13].

For given \(\nu \), the PBH mass is well approximated by the scaling law for critical collapse [15, 17]

\[M_{PBH} \simeq \mathcal{K} M_H(t_m) \left(\frac{\bar{\sigma}_0}{a^2 H^2} \right)^\gamma (\nu - \nu_c)^\gamma, \tag{14} \]

where for radiation \(\gamma \approx 0.36 \), \(\mathcal{K} \sim \mathcal{O}(1) \) is a numerical coefficient that depends on the specific density profile and \(M_H(t_m) \equiv 4\pi M_p^2 \) is the horizon mass measured at horizon crossing.

Finally we have

\[\beta_f \approx \frac{\mathcal{K}}{3\pi} \left(\frac{k_*}{a_m H_m} \right)^3 \left(\frac{\bar{\sigma}_0}{a^2 H^2_m} \right)^\gamma \nu_c^{3+\gamma} I(x_{min}), \tag{15} \]

where

\[I(x_{min}) \equiv \int_{x_{min}}^{\infty} \frac{a_f}{a_m} x^3 (x - 1)^{\gamma} e^{-\frac{x^2}{2 \nu_c}} dx, \]

and \(x \equiv \frac{\nu}{\nu_c} \). Numerical simulations show that \(a_f / a_m \approx 3 \), and therefore we take this factor out from \(I \).

Assuming that the horizon mass at formation is much larger than \(10^{15} \) g, since otherwise relevant PBH abundance would be generated⁴ in the large \(\nu_c \) limit, one can approximate the previous integral with its saddle point at \(\nu_s \approx \nu_c + \frac{\gamma}{\nu_c} \) as was done in [21], obtaining

\[\beta_f \approx \frac{\sqrt{2\pi}}{2} \mathcal{K} \left(\frac{k_*}{a_m H_m} \right)^3 \left(\frac{\bar{\sigma}_0}{a^2 H^2_m} \right)^\gamma \nu_c^{1+\gamma(1+1/2) e^{-\frac{1}{2}}} \tag{16} \]

The error from using this approximation grows slowly with \(\nu_c \) but always stays around 10\%, for \(\nu_c = \mathcal{O}(10) \).

If the linear approximation applies \((\nu_c \gg 1) \), the density of PBHs would be typically peaked at the saddle point of [15] which, inserting it into [14], gives

\[M_{PBH}(\nu_s) = 4\pi \mathcal{K} \left(\frac{M_p^2}{H_m} \right) \left(\frac{\bar{\sigma}_0}{a^2 H^2_m} \right)^\gamma \left(\frac{\nu_s}{\nu_c} \right) \tag{17} \]

Although \(M_{PBH}(\nu_s) \) still gives the right order of magnitude for the black hole masses dominating the DM density, the square root of the variance of (11) is numerically calculated to be about 1.2 \(M_{PBH}(\nu_s) \).

³ The spreading of the profiles can be estimated following section VII of [14]:

\[\sqrt{\langle (\Delta(r, t_m) - \mathcal{F}(r) r^2_m)^2 \rangle} \approx \frac{1}{\nu} \sqrt{1 - \psi(r)} \]

where \(\psi(r) \equiv \frac{\xi(r, t)}{\xi(0, t)} \). Since \(\nu \gg 1 \) our approximation of considering only the threshold value of the mean profile, instead of the mean threshold, is a good one around the peak. There would be some small effects related to the edge of the profile, but since they are small for the calculation of the threshold [19], we neglect them here (for more details we refer to [29] where these effects have been estimated).

⁴ We are envisaging here that these PBHs would account for all the DM, or for a significant part of it.
Finally gives a mass of magnitude estimate, we can crudely approximate the spectrum, and the opposite case of a broadspectrum, simplifying inflation, we will consider the case of a narrow power spectrum. In the following, as benchmarks of power spectra generated during inflation, we will consider the case of a narrow power spectrum, and the opposite case of a broadspectrum, simplified as a top-hat distribution.

C. Threshold of the primordial power spectrum

We have so far discussed how to relate the abundance of PBHs to the primordial power spectrum in the case of rare peaks, $\nu_c \gg 1$. We will see that generically $\nu_c^2 \propto P^{-1}$, and so the approximation of rare peaks, implying spherical symmetry, is intimately related to the linearity of the mean primordial perturbations. In the following, as benchmarks of power spectra generated during inflation, we will consider the case of a narrow power spectrum, and the opposite case of a broadspectrum, simplified as a top-hat distribution.

1. Narrow power spectrum

The first power spectrum which we consider is

$$P = P_0 e^{-\frac{(k-k_p)^2}{\sigma_p^2}}, \quad (18)$$

in the limit of $k_p^2 \gg \sigma_p^2$. In this case one obtains the critical density profile plotted with a solid line in the left panel of figure 1. The parameters related to this profile are: $k_p \simeq \sqrt{3}k_p, r_m \simeq \frac{2}{k_p}$ and $\sigma_0 \simeq 0.7 \sqrt{P_0 \sigma P k_p^3}$. Numerical simulations give the following critical values: $\delta_c \simeq 0.51, \delta \rho_c/\rho_b \simeq 1.2, F_c(0) \simeq 1.2/r_m \simeq 0.16k_p^2$ which finally gives $\nu_c \simeq 0.22 \sqrt{\frac{k_p^2}{\sigma P k_p^3}}$.

To compare with previous literature and give an order of magnitude estimate, we can crudely approximate $\beta_f \sim e^{-\nu_c^2/2}$. For all of the dark matter being in PBHs of mass $10^{-16} M_\odot$, we would need $\beta_f \sim 10^{-16}$ and therefore $P_0 \sim 7 \times 10^{-4} \frac{k_p}{\sigma_p^2} \gg 10^{-3}$ (this does not change significantly even up to $M_{PBH} \sim 100 M_\odot$). Since for producing the seeds of PBHs from inflation one requires $P_0 \ll 1$, there is only a small margin for this kind of spectrum to work.

Finally, using (17), the PBHs formed by this spectrum are peaked at $M_{PBH} \sim 0.8 M_H(t_m)$.

2. Broad power spectrum

The second power spectrum considered is a top-hat with amplitude P_0, extended between $[k_{min}$ and $k_{max}]$, with $k_{max} \gg k_{min}$. In this case, one obtains the critical density profile plotted with a dashed line in the left panel of figure 1 with $k_p \simeq \sqrt{2}k_{max}, r_m \simeq 3.5/k_{max}$ and $\sigma_0 \simeq 0.2 \sqrt{P_0 k_{max}^3}$.

As one can see, the two profiles in units of r/r_m are almost the same within a sphere of radius r_m. Therefore, numerical simulations give basically the same values of $\delta_c, \delta \rho_c/\rho_b$ as in the previous case (19). In terms of k_{max} one then obtains $F_c(0) \simeq 0.10k_{max}^2$ which finally gives $\nu_c \simeq 0.46(P_0)^{-1/2}$. For $\beta_f \sim 10^{-16}$ we get $P_0 \sim 3 \times 10^{-3}$, one order of magnitude smaller than the value $\sim 2 \times 10^{-2}$ previously quoted in the literature, e.g. [8, 10, 13]. Therefore, for inflationary models generating

5 Note that modes entering the cosmological horizon much later than the formation of the apparent horizon, which typically happens at the time $t_c \sim 10 t_m$ [9], will not participate in the black hole formation.
this spectrum, it is found that PBHs are more likely to be produced than had been previously suggested in the literature.

Finally, using \(\beta = \beta_0 \equiv \beta(\nu_0) \) and \(\beta_0 \equiv \beta(\nu_0) \). For the broad spectrum the abundance is not fixed, while for the peaked one the ratio \(k_p/\sigma_p \) has been fixed by considering \(M_{PBH} \sim 10^{-16} M_\odot \).

In the left frame of figure 2 we plot the ratio between \(\nu_c \) for the narrow and broad peak of the power spectrum calculated here with peak theory, and \(\nu_0 \) given by \(\beta_0 \equiv \beta(\nu_0) \). This difference comes from the discordant definitions of \(\nu_c \): the PBH abundance was incorrectly related to the critical value of \(\delta \) calculated at the edge of the over-density \(r_0 \) ignoring the profile dependence of the over-density. In particular, \(\delta_0 \simeq 0.45 \) corresponding to a Mexican-hat profile \(\beta \) was used earlier giving
\[
\nu_0 \simeq \frac{9}{4} \frac{\delta_0}{\sqrt{P_0}} \simeq 1.01 P_0^{-1/2}.
\]

In figure 1 we plot the two energy density profiles, corresponding to the narrow and broad peaks of the power spectrum, as a function of \(\nu_0 \). The two shapes are not significantly different because the profiles of the peak of the power spectrum for \(k > k_p \) or \(k > k_{max} \), which corresponds in real space to the region \(r \lesssim r_m \), are very similar. Note that the Mexican-hat profile is very similar to the profiles drawn in Fig. 1 and so the value of \(\delta_0 \simeq 0.45 \) is the relevant one for the profiles studied in this paper.

In the right panel shows instead the corresponding comparison between \(\nu_0 \) calculated here with peak theory, and \(\nu_0 \) calculated previously by the Press-Schechter approach, previously used in the literature (see for example [31]). The main numerical difference comes from the discordant definitions of \(\nu_c \): the PBH abundance was incorrectly related to the critical value of \(\delta \) calculated at the edge of the over-density \(r_0 \) ignoring the profile dependence of the over-density. In particular, \(\delta_0 \simeq 0.45 \) corresponding to a Mexican-hat profile \(\beta \) was used earlier giving
\[
\nu_0 \simeq \frac{9}{4} \frac{\delta_0}{\sqrt{P_0}} \simeq 1.01 P_0^{-1/2}.
\]

Finally, let us stress that the cosmological horizon mass defined in our paper is defined at the horizon crossing time \(a(t_m)H(t_m)r_m = 1 \). This mass generically differs from the one used in the literature which is calculated at the horizon crossing \(a(t_k)H(t_k)/k = 1 \) of a characteristic mode \(k \) (typically the one associated with the peak of the power spectrum). For example in the narrow spectrum \(k = k_p \) and the mass calculated at \(r_m \) is about 10 times...
larger than the one calculated at $1/k_p$, as was also noted in [20].

IV. SUMMARY

In the present letter we have re-analyzed the physics of PBH formation by combining peak theory [14] with the numerical analysis of gravitational collapse in the expanding universe [19]. We have computed the abundance of PBHs generated by a large peak in the primordial power spectrum of curvature perturbations. Characterizing the peak by its scale, amplitude and width, we have shown that the abundance of PBHs is extremely dependent on the shape of the peak. The reason is that the threshold of the energy density peak for PBH formation depends strongly on the distribution of the real space over-density, which can be obtained, assuming Gaussian statistics, from the two-point correlation function of curvature perturbations. This crucial aspect had been overlooked in previous literature.

Given the amplitude of the peak in the power spectrum at a particular scale, the abundance of PBHs generated by a narrow peak is exponentially smaller than the abundance generated by a broad one. In particular, to describe all of the dark matter with PBHs, using a top-hat profile of the peak in the power spectrum in Fourier space, the amplitude is an order of magnitude smaller than that previously calculated without taking into account the shape. Instead, for a narrow peak, as often assumed in the literature, one would need a much larger amplitude, which in many cases would invalidate the perturbative analysis of cosmological curvature perturbations.

Our analysis has been done assuming negligible non-gaussianities in the initial conditions of the overdensity field. However, in certain cases, non-gaussianities of the curvature perturbations [27] and/or non-gaussianities related to the non-linear relation between the curvature and over-density perturbations [28] might give interesting contributions in the calculation of abundances of PBHs, both in terms of new statistics and for non-spherical deformations of the primordial perturbations. We leave these interesting questions for future research.

ACKNOWLEDGMENTS

C.G. would like to thank Pierstefano Corasaniti and Licia Verde for discussions about peak theory and Vicente Atal for discussion about different inflationary models. IM would like to thank Misao Sasaki for discussions during the YITP long-term workshop “Gravity and Cosmology 2018”, YITP-T-17-02. The Authors would like to thank Jaume Garriga, Juan Garcia-Bellido and John Miller for feedback and comments on the previous version of this paper. CG is supported by the Ramon y Cajal program and partially supported by the Unidad de Excelencia María de Maeztu Grant No. MDM-2014-0369 and by the national FPA2013-46570-C2-2-P and by the national FPA2016-76005-C2-2-P grants. IM is supported by the Unidad de Excelencia María de Maeztu Grant No. MDM-2014-0369.

[1] A. Katz, J. Kopp, S. Sibiryakov and W. Xue, arXiv:1807.11495 [astro-ph.CO].
[2] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen and H. Veermäe, Phys. Rev. D 96 (2017) no.2, 023514 doi:10.1103/PhysRevD.96.023514 arXiv:1705.05567 [astro-ph.CO].
[3] M. Zumalacarregui and U. Seljak, arXiv:1712.02240 [astro-ph.CO].
[4] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO].
[5] J. García-Bellido and E. Ruiz Morales, Phys. Dark Univ. 18 (2017) 47 doi:10.1016/j.dark.2017.09.007 arXiv:1702.03901 [astro-ph.CO].
[6] I. Wolfson and R. Brustein, PLoS One 13 (2018) 1 doi:10.1371/journal.pone.0197735 arXiv:1607.03740 [astro-ph.CO].
[7] K. Kannike, L. Marzola, M. Raidal and H. Veermäe, JCAP 1709 (2017) no.09, 020 doi:10.1088/1475-7516/2017/09/020 arXiv:1705.06228 [astro-ph.CO].
[8] C. Germani and T. Prokopec, Phys. Dark Univ. 18 (2017) 6 doi:10.1016/j.dark.2017.09.001 arXiv:1706.04226 [astro-ph.CO].
[9] H. Motohashi and W. Hu, Phys. Rev. D 96 (2017) no.6, 063503 doi:10.1103/PhysRevD.96.063503 arXiv:1706.06784 [astro-ph.CO].
[10] G. Ballesteros and M. Taoso, Phys. Rev. D 97 (2018) no.2, 023501 doi:10.1103/PhysRevD.97.023501 arXiv:1709.05565 [hep-ph].
[11] J. M. Ezquiaga, J. Garcia-Bellido and E. Ruiz Morales, Phys. Lett. B 776 (2018) 345 doi:10.1016/j.physletb.2017.11.039 arXiv:1705.04861 [astro-ph.CO].
[12] T. Harada, C. M. Yoo and K. Kohri, Phys. Rev. D 88 (2013) no.8, 084051 Erratum: [Phys. Rev. D 89 (2014) no.2, 029903 doi:10.1103/PhysRevD.89.029903 arXiv:1309.4201 [astro-ph.CO]].
[13] M. Cicoli, V. A. Diaz and F. G. Pedro, arXiv:1803.02837 [hep-th]; O. zsoy, S. Parameswaran, G. Tasinato and I. Zavala, arXiv:1803.07626 [hep-th].
[14] J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, Astrophys. J. 304 (1986) 15. doi:10.1086/164143
[15] J. C. Niemeyer and K. Jedamzik, Phys. Rev. D 59 (1999) 124013 doi:10.1103/PhysRevD.59.124013 arXiv:1807.06784 [astro-ph.CO].
[16] M. Shibata and M. Sasaki, Phys. Rev. D 60 (1999) 084002 doi:10.1103/PhysRevD.60.084002 gr-qc/9905064.
[17] I. Musco, J. C. Miller and L. Rezzolla, Class. Quant. Grav. 22 (2005) 1405 doi:10.1088/0264-9381/22/7/013
A. G. Polnarev and I. Musco, Class. Quant. Grav. 24 (2007) 1405 doi:10.1088/0264-9381/24/6/003 I. Musco, J. C. Miller and A. G. Polnarev, Class. Quant. Grav. 26 (2009) 235001 doi:10.1088/0264-9381/26/23/235001
I. Musco and J. C. Miller, Class. Quant. Grav. 30 (2013) 145009 doi:10.1088/0264-9381/30/14/145009

[18] T. Harada, C. M. Yoo, T. Nakama and Y. Koga, Phys. Rev. D 91 (2015) no.8, 084057 doi:10.1103/PhysRevD.91.084057 arXiv:1503.03934 [gr-qc].

[19] I. Musco, arXiv:1809.02127 [gr-qc].

[20] A. M. Green, A. R. Liddle, K. A. Malik and M. Sasaki, Phys. Rev. D 70 (2004) 041502 doi:10.1103/PhysRevD.70.041502 astro-ph/0403181; S. Young, C. T. Byrnes and M. Sasaki, JCAP 1407 (2014) 045 doi:10.1088/1475-7516/2014/07/045 arXiv:1405.7023 [gr-qc].

[21] D. H. Lyth, K. A. Malik and M. Sasaki, JCAP 0505 (2005) 004

[22] D. S. Salopek and J. R. Bond, Phys. Rev. D 42 (1990) 3936; M. Shibata and M. Sasaki, Phys. Rev. D 60 (1999) 084002

[23] G. Franciolini, A. Kehagias, S. Matarrese and A. Riotto, JCAP 1803 (2018) no.03, 016 doi:10.1088/1475-7516/2018/03/016 arXiv:1801.09415 [astro-ph.CO].

[24] Y. F. Cai, X. Chen, M. H. Namjoo, M. Sasaki, D. G. Wang and Z. Wang, arXiv:1712.09908 [astro-ph.CO].

[25] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, JCAP 1710 (2017) no.10, 046 doi:10.1088/1475-7516/2017/10/046 arXiv:1707.00537 [hep-th]; J. M. Ezquiaga and J. Garca-Bellido, JCAP 1808 (2018) 018 doi:10.1088/1475-7516/2018/08/018 arXiv:1805.06731 [astro-ph.CO].

[26] D. Cruces, C. Germani and T. Prokopec, arXiv:1807.09057 [gr-qc].

[27] V. Atal and C. Germani, Phys. Dark Univ. 100275 doi:10.1016/j.dark.2019.100275 arXiv:1811.07857 [astro-ph.CO].

[28] A. Kehagias, I. Musco, and A. Riotto, in preparation.

[29] C. M. Yoo, T. Harada, J. Garriga and K. Kohri, arXiv:1805.03946 [astro-ph.CO].

[30] V. Mukhanov, “Physical Foundations of Cosmology”.

[31] B. Carr, F. Kuhnel and M. Sandstad, Phys. Rev. D 94 (2016) no.8, 083504 doi:10.1103/PhysRevD.94.083504 arXiv:1607.06077 [astro-ph.CO].

[32] A. Kalaja, N. Bellomo, I. Musco, A. Racanelli and L. Verde, in preparation.