What is the optimal rate of failed extubation?

James S Krinsley*, Praveen K Reddy and Abid Iqbal

Abstract
Failed extubation (FE), defined as reintubation 48 or 72 hours after planned extubation, occurs in a significant percentage of patients and is associated with a substantial burden of morbidity and mortality. This commentary reviews the literature describing FE rates and the clinical consequences of FE and proposes an ‘optimal’ rate of FE as well as avenues for future research.

Introduction
In patients presenting with right lower abdominal pain, fever, and leukocytosis, surgery is frequently performed for suspected appendicitis. However, in a large contemporaneous series, 6.4% of patients with suspected appendicitis had a normal appendix removed [1]. Surgeons with a significantly higher ‘negative appendix’ rate are likely operating too frequently, and those with rates approaching zero are almost certainly not operating on enough patients.

The decision regarding when to liberate patients from mechanical ventilation faces intensive care unit (ICU) clinicians regularly. While this decision is typically based on a variety of data, there is often considerable uncertainty about the success of extubation.

The decision of whether to operate on a suspected appendicitis has, as we shall see, some similariest with the decision of when to extubate. Failed extubation (FE), defined as the need for reintubation within 48 or 72 hours of planned extubation, occurring in 0% of patients would suggest that mechanical ventilation was continued for an unnecessarily long duration, and FE occurring in 50% would suggest that too many patients were liberated from mechanical ventilation prematurely.

What, then, is the optimal rate of FE? Moreover, does it matter? To help answer these questions, this commentary will review some of the literature on ventilator weaning trials to ascertain the reported range of FE as well as the more limited literature describing the clinical consequences of FE. Finally, we will attempt to answer the question posed by the title of this commentary and propose avenues for future investigation.

What is the reported rate of failed extubation in the literature?
Figure 1 displays the range of FE rates reported in interventional trials of weaning strategies and observational cohort studies. The mean (standard deviation) rates in interventional and observational studies are 15.7 (15.6) (n = 55) and 15.0 (14.0) (n = 96), respectively. (References are listed in the Supplemental file.) The rates vary widely in part because of differences in the diagnostic categories of the patients studied, the duration of mechanical ventilation prior to planned extubation, and the interventions that were assessed. An investigation by Esteban and colleagues [2] is perhaps the best known of the randomized trials. This multicenter study evaluated four methods of weaning patients from mechanical ventilation: intermittent mandatory ventilation, pressure support ventilation, intermittent spontaneous breathing trials throughout the day, and single spontaneous breathing trials. FE occurred in 13.8%, 18.9%, 15.2%, and 22.6% of the patients, respectively [2]. More recently, Bien and colleagues [3] evaluated the predictive power of three contemporary methods of weaning: T-piece, automatic tube compensation, and pressure support ventilation in 68 consecutive medical ICU patients. The rate of FE for the cohort was 33.8%.

Clinical consequences of failed extubation
A more limited literature describes the clinical consequences of FE. Thille and colleagues [4] prospectively evaluated all patients with planned extubation over the course of a year in a single medical ICU; FE occurred in 15.5%. Patients with FE were older, had a more significant underlying cardiac disease, and were ventilated longer before planned extubation than were patients with successful extubation. Patients with FE sustained far higher rates of pneumonia within 72 hours after extubation (27% versus 0%) and of death (50% versus 5%) than did those with successful extubation.
We recently completed a case control study of FE [5]. Over a 5-year period, 2,012 patients received mechanical ventilation in our 16-bed medical-surgical ICU; 1,294 had a planned extubation. Eighty-five (6.6%) sustained FE. The patients with FE were matched 1:3 with 255 control patients who were successfully extubated. Matching parameters included duration of ventilation before planned extubation, age, Acute Physiology Score, and admitting diagnosis to the ICU. Ventilator-associated pneumonia developed in 7.1% of the index patients with FE versus 0.8% of the controls with FE \((P = 0.0043)\). ICU length of stay was considerably longer in patients with FE: 11.8 (7.7 to 17.5) versus 3.8 (2.1 to 7.5) days \((P < 0.001)\). Mortality was more than twice as high: 23.5% versus 10.2% \((P = 0.0052)\); multivariate analysis determined that FE was independently associated with increased risk of mortality: odds ratio of 2.64 (95% confidence interval of 1.35 to 5.14) \((P = 0.0044)\). These data suggest that, far from being inconsequential, FE is associated with a substantial burden of morbidity and mortality.

Is there an optimal rate of failed extubation?

The diversity of patient populations, study settings, and interventions evaluated precludes a clear-cut answer to this question on the basis of a review of the literature. Nevertheless, we believe that an FE rate of 14%, the median rate observed in the interventional and observational studies described above, is inappropriately high.

A singular focus on lung mechanics characterizes the literature reporting FE rates. Typically, patients are deemed ready for liberation from mechanical ventilation when they have successfully passed a test, such as a spontaneous breathing trial with a low rapid shallow breathing index (expressed as the ratio of respiratory rate to tidal volume, or RR/Vt) [6]. In fact, the original study describing the use of this index reported an FE rate of 22% [6].

Perhaps the systematic inclusion of parameters not related to lung mechanics would yield lower rates of FE. In particular, these might include factors associated with the patient’s general medical status, such as vital signs, neurologic status, nutritional status, and laboratory findings such as electrolyte abnormalities and anemia. In addition, greater attention to airway issues – secretion volume, purulence, viscosity, and the patient’s ability to both ‘clear’ and ‘protect’ the airway if extubated – may further reduce the FE rate [7].

In fact, a systematic awareness of all three ‘domains’ of readiness for liberation from mechanical ventilation – good ‘performance’ on the ventilator (positive end-expiratory pressure or continuous positive airway pressure of not more than 5), good lung mechanics during spontaneous breathing trials or low level of pressure support ventilation, and ability to tolerate a fraction of inspired oxygen \((\text{FiO}_2)\) of not more than 0.5), good overall medical status, and the perceived ability of the patient to clear and defend the airway after extubation – by a small group of intensivists practicing in a protocol-driven environment in our mixed medical-surgical ICU has led to the 6.6% rate of FE and relatively short duration of intensive care noted above [5]. This number is remarkably close to the 6.4% rate of ‘negative’ appendectomies cited at the beginning of this commentary. Accordingly, while differences in patient populations and clinical practices undoubtedly complicate the choice of a single number, we choose the range of 5% to 10% as our proposed ‘optimal’ rate of FE.

Conclusions

FE occurs in a significant percentage of patients after planned extubation and is associated with significant morbidity and mortality. Efforts to evaluate, in a more systematic manner, factors beyond those related to pulmonary mechanics may lead to lower rates of FE without unnecessarily increasing the duration of mechanical ventilation. Future research exploring the differences in the ‘three domains’ of readiness for liberation from mechanical ventilation that distinguish patients who sustain FE from those who are successfully extubated may yield models that will assist clinicians in improving the outcomes of mechanical ventilation.

Abbreviations

FE, failed extubation; ICU, intensive care unit.

Competing interests

The authors declare that they have no competing interests.

Published: 20 February 2012

![Figure 1. Rates of failed extubation in observational cohort studies and prospective randomized trials. FE, failed extubation; OBS, observational cohort study; RCT, randomized controlled trial.](http://ccforum.com/content/16/1/111)
ventilation in the care of dyspnea after cardiac surgery, Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2007, 19:542-545.

32. Bouza C, García E, Díaz M, Segovia E, Rodríguez I. Unplanned extubation in critically ill patients: a prospective cohort study. Heart Lung Circ 2003, 12:270-274.

33. Lee CH, Peng MJ, Wu CL. Dexmedetomidine to prevent postextubation airway obstruction in adults: a prospective, randomized, double-blind, placebo-controlled study. Crit Care 2007, 11:R72.

34. Parker M, Loeven M, Sullivan T, Ylatto E, Cerabona T, Savino JA, Kaul A. Predictors of outcome after obesity surgery in New York state from 1991 to 2003. Surg Endosc 2007, 21:1482-1486.

35. Tormo L, Díaz D, Majenc-Kogler V, Jurjević M, Mirković I, Mrtžljak Vucinić N. Chronic obstructive pulmonary disease and weaning of difficult-to-wean patients from mechanical ventilation: randomized prospective study. Croat Med J 2007, 48:51-58.

36. Gowdarmian JR, Huntington D, Whiting J. The effect of extubation failure on outcome in a multidisciplinary Australian intensive care unit. Crit Care Resusc 2006, 8:328-333.

37. Yap CH, Zimmert A, Mohajen M, Yi M. Effect of obesity on early morbidity and mortality following cardiac surgery, Heart Lung Circ 2007, 16:31-36.

38. Bamgboade OA, Rutter TW, Nañu OO, Dorje P. Postoperative complications in obese and nonobese patients. World J Surg 2007, 31:556-560; discussion 561.

39. Letolleau F, Mancebo J, Lalliot P, Roessler J, Schortgen F, Dagit M, Cabell B, Bouadma L, Miquel P, Maggioni P, Reymond M, Mermassen S, Brochard L. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 2006, 174:894-900.

40. El-Solh AA, Aquilina A, Pineda L, Dhanvantri V, Grant B, Bouquin P. The effect of extubation failure on care for esophageal resection: do high-volume hospitals have fewer complications? Ann Thorac Surg 2003, 75:337-341.

41. Phoa LL, Nee PY, Syap W, Johan A. Unplanned extubation: a local experience. Singapore Med J 2002, 43:504-508.

42. Luo H, Cheng P, Zhou R. Sequential BiPAP following invasive mechanical ventilation in COPD patients with hypercapnic respiratory failure. Hunan Yi Ke Da Xue Xue Bao 2001, 26:563-565.

43. Dimick JB, Pronovost PJ, Cowan JA, Littpett PA. Surgical volume and quality of care for esophageal resection: do high-volume hospitals have fewer complications? Arch Surg 2003, 138:41-46.

44. Chen C, Chu YC, Lee CH, Chen CW, Chang HY, Hsu TE. Factors predicting reintubation after unplanned extubation. J Formos Med Assoc 2002, 101:542-546.

45. Fagevik Olssén M, Wennberg E, Johnsson E, Josefson K, Lonnroth H, Lundell L. Randomized clinical study of the prevention of pulmonary complications after thoracoscopic lobectomy by two different breathing techniques. Br J Surg 2002, 89:1228-1234.

46. Cohen JD, Shapiro M, Grazierowski E, Singer P. Automatic tube compensation-assisted respiratory rate to tidal volume ratio improves the prediction of weaning outcome. Chest 2002, 122:980-984.

47. Cohen JD, Shapiro M, Grazierowski E, Singer P. Automatic tube compensation-assisted respiratory rate to tidal volume ratio improves the prediction of weaning outcome. Chest 2002, 122:980-984.

48. Keenan SP, Powers C, McCormick DG, Block G. Noninvasive positive-pressure ventilation for postextubation respiratory distress: a randomized controlled trial. JAMA 2002, 287:3238-3244.

49. Dupont H, Le Port Y, Paugam-Burtz C, Mantz J, Desmonts M. Reintubation after planned extubation in surgical ICU patients: a case-control study. Intensive Care Med 2001, 27:1875-1880.

50. Chan PK, Fischer S, Stewart TS, Hallert DC, Hynes-Gay Lapinsky SE, MacDonald R, Mehta S. Practising evidence-based medicine: the design and implementation of a multidisciplinary team-driven extubation protocol. Crit Care Med 2001, 29:349-354.

51. Dimick JB, Swoboda SM, Pronovost PJ, Littpett PA. Effect of nurse-to-patient ratio in the intensive care unit on pulmonary complications and resource use after heptectomy. Am J Crit Care 2001, 10:376-382.

52. Filare M, Mom T, Laurent S, Harouya Y, Naemeer A, Villet L, Normand B, Escande G. Vocal cord dysfunction after left lung resection for cancer. Eur J Cardiothorac Surg 2001, 20:705-711.

53. Krinsley JS, Barone JE. The drive to survive: unplanned extubation in the ICU. Chest 2005, 128:560-566.

54. Burkeongkol C, U-ammarorn C, Suwansukon C, Deesomchok A, Theerakittikul T, Pathitar C. Efficacy of weaning protocol in medical intensive care unit of tertiary care center. J Med Assoc Thai 2005, 88:52-57.

55. Bengo H, Cingota F, Balkan A, Kils C, Brochard L. The effect of oral prednisolone with chronic obstructive pulmonary disease undergoing coronary artery bypass surgery. J Cardiovasc Surg 2005, 46:252-256.
75. Namen AM, Ely EW, Tatter SB, Case LD, Lucia MA, Landry S, Wilson JA, Glazier SS, Branch CL, Kelly DL, Bowton DL, Haponik EF: Predictors of successful extubation in neurosurgical patients. *Am J Respir Crit Care Med* 2001, 163 (3 Pt 1):658-664.

76. Koh Y, Kim CW, Lee SD, Kim WS, Kim DS, Kim WD: Effect of an additional 1-hour T-piece trial on weaning outcome at minimal pressure support. *J Crit Care* 2000, 15:41-45.

77. Engoren M, Buderer NF, Habib RH: Variables predicting reintubation after cardiac surgical procedures. *Ann Thorac Surg* 1999, 67:661-665.

78. Vallverdú I, Calaf N, Subirana M, Net A, Benito S, Mancebo J: Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. *Am J Respir Crit Care Med* 1998, 158:1855-1862.

79. Almassi GH, Schowalter T, Nicolosi AC, Aggarwal A, Moritz TE, Henderson WG, Tarazi R, Shroyer AL, Sethi GK, Grover FL, Hammermeister KE: Atrial fibrillation after cardiac surgery: a major morbid event? *Ann Surg* 1997, 226:501-511; discussion 511-513.

80. Epstein SK, Ciubotaru RL: Influence of gender and endotracheal tube size on preextubation breathing pattern. *Chest* 1997, 112:186-192.

81. Kollef MH, Shapiro SD, Silver P, St. John RE, Prentice D, Sauer S, Aheens TS, Shannon W; Baker-Clinkscale D: A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. *Crit Care Med* 1997, 25:567-574.

82. Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, Johnson MM, Browder RW, Bowton DL, Haponik EF: Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. *N Engl J Med* 1996, 335:1864-1869.

83. Torres A, Gatell JM, Aznar E, el-Ebiary M, Puig de la Bellacasa J, Gonzalez J, Ferrer M, Rodriguez-Rossin R: Re-intubation increases the risk of nosocomial pneumonia in patients needing mechanical ventilation. *Am J Respir Crit Care Med* 1995, 152:137-141.

84. Saura P, Blanch L, Mestre J, Vallés J, Artigas A, Fernández R: Clinical consequences of the implementation of a weaning protocol. *Intensive Care Med* 1996, 22:1052-1056.

85. Leitch EA, Moran JL, Grealy B: Weaning and extubation in the intensive care unit. Clinical or index-driven approach? *Intensive Care Med* 1996, 22:752-759.

86. DeHaven CB, Kirton OC, Morgan JP, Hart AM, Shatz DV, Cicetta JM: Breathing measurement reduces false-negative classification of tachypneic preextubation trial failures. *Crit Care Med* 1996, 24:976-980.

87. Redmond JM, Greene PS, Goldsborough MA, Cameron DE, Stuart RS, Sussman MS, Watkins L Jr., Laschinger JC, McKhann GM, Johnston MV, Baumgartner WA: Neurologic injury in cardiac surgical patients with a history of stroke. *Ann Thorac Surg* 1996, 61:44-47.

88. Kirton OC, DeHaven CB, Morgan JP, Windsor J, Cicetta JM: Elevated imposed work of breathing masquerading as ventilator weaning intolerance. *Chest* 1995, 108:1021-1025.

89. Epstein SK: Etiology of extubation failure and the predictive value of the rapid shallow breathing index. *Am J Respir Crit Care Med* 1995, 152:545-549.

90. Torres A, Gatell JM, Aznar E, el-Ebiary M, Puig de la Bellacasa J, Gonzalez J, Ferrer M, Rodriguez-Rossin R: Re-intubation increases the risk of nosocomial pneumonia in patients needing mechanical ventilation. *Am J Respir Crit Care Med* 1995, 152:137-141.

91. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, Gasparetto A, Lemaire F: Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. *Am J Respir Crit Care Med* 1994, 150:896-903.

86. Leitch EA, Moran JL, Grealy B: Weaning and extubation in the intensive care unit. Clinical or index-driven approach? *Intensive Care Med* 1996, 22:752-759.