Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats

Yong Meng, Mei Zhang, Jun Xu, Xue-Min Liu, Qing-Yong Ma

Yong Meng, Mei Zhang, Jun Xu, Xue-Min Liu, Qing-Yong Ma. Department of Hepatobiliary surgery, First Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China

Supported by the National Natural Science Foundation of China, No. 30371398

Correspondence to: Dr. Yong Meng, Department of Hepatobiliary Surgery, First Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China. my176@sohu.com

Telephone: +86-29-5324009

Received: 2004-04-23 Accepted: 2004-04-29

Abstract

AIM: To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP).

METHODS: Twenty-four rats were divided into 3 groups (SAP, sham and resveratrol groups) randomly. SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing pancreatic ducts. Sham (control) group (8 rats) was established by turning over the duodenum. Resveratrol was given at 0.1 mg/kg b.m. intraperitoneally. Rats were sacrificed 9 h after SAP was induced. Blood samples were obtained for hemorrheological examination. Lung tissues were used for pathological observation, and examination of microvascular permeability, dry/wet ratio and myeloperoxidase (MPO) activity. Gene expression of intercellular adhesion molecule-1 (ICAM-1) was detected by RT-PCR.

RESULTS: Compared with SAP group, resveratrol relieved the edema and infiltration of leukocytes in the lungs. Resveratrol improved markers of hemorrheology: high VTB (5.77±1.18 mPas vs 9.49±1.34 mPas), low VTB (16.12±3.20 mPas vs 30.91±7.28 mPas), FV (4.69±1.68 mPas vs 8.00±1.34 mPas), BSR (1.25±0.42 mm/h vs 0.03±0.03 mm/h), VPC (54.67±3.08 % vs 62.17±3.39 %), fibrinogen (203.2±87.8 g/ L vs 51.3±19.1 g/L), original hemolysis (0.45±0.02 vs 0.49±0.02), and complete hemolysis (0.43±0.02 vs 0.43±0.02) (P<0.05). Resveratrol decreased the OD ratio of ICAM-1 gene (0.800±0.03 vs 1.188±0.10), dry/wet ratio (0.74±0.02 vs 0.77±0.03), microvascular permeability (0.0794±0.006 vs 0.112±0.004) and MPO activity (4.42±0.32 vs 5.03±0.51) significantly (P<0.05).

CONCLUSION: Resveratrol can improve the microcirculation disorder of the lung by decreasing leukocyte-endothelial interaction, reducing blood viscosity, improving the decrease of blood flow, and stabilizing erythrocytes in SAP rats. It may be a potential candidate to treat SAP and its severe complications (ALI).

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Severe acute pancreatitis; Resveratrol; Lung injury; Microcirculation disorder

Meng Y, Zhang M, Xu J, Liu XM, Ma QY. Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats. World J Gastroenterol 2005; 11 (3): 433-435

http://www.wjgnet.com/1007-9327/11/433.asp

INTRODUCTION

Many factors are contributive to the progression of pancreatic microcirculatory disturbance. Whether the disturbance of pancreatic microcirculation is an initiating factor or a consequence of progressive pancreatitis is still debatable.

Microcirculatory disorders in severe acute pancreatitis (SAP) are not confined to the pancreas but can also be found in the colon, liver, and lungs, and they not only affect capillary blood flow but also involve prolonged changes of capillary permeability and leukocyte-endothelial interaction. Hypoperfusion has a major role in the pathogenesis of multiple organ failure, which is the main cause of death in SAP. Prevention and treatment of microcirculatory disorders can actively improve the outcome of patients with SAP. ICAM-1 is correlated with capillary permeability, blood flow and leukocyte rolling. Inhibiting ICAM-1 is a target to improve microcirculation[1].

Lung injury, a severe complication of SAP, has a high case-fatality rate. Lung injury manifested clinically as adult respiratory distress syndrome (ARDS) is a common cause of morbidity and mortality following acute pancreatitis (AP)[2-3]. Systemic inflammatory response (SIRS) is an important factor that has a strong influence on the incidence of acute lung injury (ALI), and ALI is an important determinant of prognosis and severity of patients with AP[4-5]. Further progression of SIRS can be prevented and the incidence of MODS as well as hospital mortality decreased[6].

Resveratrol (Res) is an effective component of some Chinese traditional medicines and has various pharmacological effects including antiinflammatory properties, modulation of lipid metabolism and prevention of cancer[7-9]. Its antiinflammatory effect is related to inhibiting oxidation, leukocyte priming and expression of inflammatory mediators. Recently it has been found to prevent and cure cardiovascular diseases and improve significantly microcirculatory disorders by protecting the blood vessel endothelium and inhibiting platelet aggregation[10-12]. Therefore we speculate that Res might exhibit the beneficial effect on SAP complicated by ALI. Up till now, most studies have been in vitro and the present experiment was to investigate its in vivo role in SAP complicated by ALI.

MATERIALS AND METHODS

Experimental animals and grouping

Healthy male SD rats weighing 250-300 g were provided by the Experimental Animal Center of Medical School of Xi'an Jiaotong University. All animals were randomly divided into 3 groups with 8 rats in each group, including SAP group, Res group and control (sham operation) group.

Preparation of animal models

Rats were starved but allowed free access to water for 12 h
before the experiments, then anesthetized by intraperitoneal injection of ketamine (80 mg/kg) and fixed. The bilipancreatic duct was cannulated through the duodenum and the hepatic duct was closed by means of a clip placed at the hilum of the liver. SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing pancreatic ducts. After the SAP model was successfully established in Res group (8 rats), Res was given at 0.1 mg/kg b.m. intraperitoneally. Control group (8 rats) was established by turning over the duodenum. Animals from all groups were injected subcutaneously with saline solution 5 mL in back. All rats were sacrificed 9 h after modeling. Venous blood was drawn for hemorrheologic examination. Tissue samples of lung were taken for pathological observation, examination of water content, capillary permeability, activity of MPO and intercellular adhesion molecule-1 (ICAM-1) RT-PCR.

Measurement of water content in lung tissue

Wet lung tissue was weighed, then heated for 72 h at 70 °C, the dried tissue was weighed. The water content = (wet weight - dry weight)/ wet weight.

Detection of lung capillary permeability

The change of lung capillary permeability was detected by injecting Evans blue into hind leg veins with a spectrophotometer at 260 nm. Synthetic oligonucleotide primers (LIFE TECHNOLOGIES), quantified based on the measured absorbance at 260 nm. Total RNA was extracted with Trizol reagents (PV). All indices in Res group had a significant decrease (P<0.05). Compared with SAP group all parameters of hemorrheology in ASP group and Res group was 287±0.03, 1.188±0.10 and 0.45±0.02 respectively. SAP group and Res group had a marked decrease compared with SAP group (P<0.05), and Res group had a marked decrease compared with SAP group (P<0.05).

Hemorrheological examination (mean±SD)

Table 1

Group	Control	SAP	Res
Water content	0.69±0.03	0.77±0.03	0.74±0.02
Capillary	0.048±0.005	0.112±0.004	0.079±0.006
permeability (mg/g)			
Activation of MPO (U/g)	1.02±0.03	5.03±0.51	4.42±0.32

RT-PCR examination of intercellular adhesion molecule-1 (ICMA-1)

Total RNA was extracted with from the lung Trizol reagents (LIFE TECHNOLOGIES), quantified based on the measured absorbance at 260 nm. Synthetic oligonucleotide primers (TaKaRa) based on the cDNA sequences of rat ICAM-1 and β-actin were prepared: ICAM-1, 5'-AAGCTGGCGTGAGTGGCTC TCTTG-3', 5'-AGGCCCTTTCAAAAATCTCTC-3'; β-actin, 5'-GATGCTGACCTGGGAGAGCA-3', 5'-CAGGGACTTCCCTCC ATCCACCT-3'. RT-PCR was performed as described by the RT-PCR kit (Promega). PCR conditions were as follows: at 42 °C for 15 min, at 99 °C for 5 min for 1 cycle, at 94 °C for 1 min, at 55 °C for 1 min and at 72 °C for 2 min for 35 cycles, and a final extension at 72 °C for 10 min. PCR products were electrophoresed on a 0.8% agarose gel containing ethidium bromide. The gel was scanned on a white/ultraviolet transilluminator UVP.

Statistical analysis

Data were expressed as mean±SD. ANOVA was used to analyze the data with the SPSS10.0 software. P<0.05 was considered statistically significant.

RESULTS

Pathological observation of lung tissue

Alveolar septal thickening, interstitial edema, infiltration of numerous leukocytes and thrombus formation in microvessels were observed in the lungs of SAP group. But in the Res group, histological changes, such as interstitial edema and infiltration of inflammatory cells, were significantly reduced.

Water content, capillary permeability and activation of MPO in lungs (Table 1)

Compared with the control group, water content and capillary permeability in lung tissues of both SAP group and Res group were obviously increased (P<0.01). Compared with SAP group all indices in Res group had a significant decrease (P<0.05).

Table 2 Hemorrheological examination (mean±SD)

Group	High VTB	Low VTB	PV	BSR (mm/h)	VPC (%)	Fibrinogen (g/L)	Original hemolysis	Complete hemolysis
Control	5.65±1.04	4.57±1.04	3.13±0.61	9.17±0.98	44.92±2.73	452.3±29.9	0.44±0.00	0.36±0.00
SAP	9.49±1.34	8.91±1.28	8.00±1.34	0.03±0.03	62.17±3.39	51.3±19.1	0.49±0.02	0.43±0.02
Res	5.77±1.18	16.12±3.20	4.69±1.68	1.25±0.42	54.67±3.08	203.2±87.8	0.45±0.02	0.41±0.02

VTB: viscosity of total blood; PV: plasma viscosity; BSR: blood sedimentation rate. VPC: volume packed cells. *P<0.05 vs control group and SAP group.

DISCUSSION

Polyphenolic phytoalexin resveratrol has been found in more than 70 plant species as a natural potent compound, which can chelate copper ion, inhibit lipid peroxidation and platelet aggregation, and show a range of biological effects. Resveratrol was observed in the levels of both the control group and SAP group.

Statistical analysis

Data were expressed as mean±SD. ANOVA was used to analyze the data with the SPSS10.0 software. P<0.05 was considered statistically significant.

RESULTS

Pathological observation of lung tissue

Alveolar septal thickening, interstitial edema, infiltration of numerous leukocytes and thrombus formation in microvessels were observed in the lungs of SAP group. But in the Res group, histological changes, such as interstitial edema and infiltration of inflammatory cells, were significantly reduced.

Water content, capillary permeability and activation of MPO in lungs (Table 1)

Compared with the control group, water content and capillary permeability in lung tissues of both SAP group and Res group were obviously increased (P<0.01). Compared with SAP group all indices in Res group had a significant decrease (P<0.05).

Table 2 Hemorrheological examination (mean±SD)

Group	High VTB	Low VTB	PV	BSR (mm/h)	VPC (%)	Fibrinogen (g/L)	Original hemolysis	Complete hemolysis
Control	5.65±1.04	4.57±1.04	3.13±0.61	9.17±0.98	44.92±2.73	452.3±29.9	0.44±0.00	0.36±0.00
SAP	9.49±1.34	8.91±1.28	8.00±1.34	0.03±0.03	62.17±3.39	51.3±19.1	0.49±0.02	0.43±0.02
Res	5.77±1.18	16.12±3.20	4.69±1.68	1.25±0.42	54.67±3.08	203.2±87.8	0.45±0.02	0.41±0.02

VTB: viscosity of total blood; PV: plasma viscosity; BSR: blood sedimentation rate. VPC: volume packed cells. *P<0.05 vs control group and SAP group.
aggregation and scavenge free radicals. Recently it has been shown to have extensive effects including protection against cardiovascular diseases and cancer. Some researches have also demonstrated that Res could exert its beneficial effects on ischemia-reperfusion injury, shock and MODS by inhibiting inflammation, leukocyte priming and expression of inflammatory mediators as well as by protecting microcirculation[11,12-17]. Although its pharmacological role has been comprehensively investigated, there are no reports about the effect of Res on SAP complicated by ALI.

As a factor in initiation, promotion, progression of different diseases, microcirculatory disorder has been paid more and more attention. After observing microcirculation changes in different organs including the lung in rat SAP model, Foitzik et al [18] found that the injury of microcirculation was present in almost all the organs, which involved prolonged pathological changes such as leukocyte rolling, capillary permeability and leukocyte-endothelial interaction. So enhancing microcirculation may be a potential treatment of SAP and its severe complication ALI.

The mechanism of Res underlying microcirculatory disorder is to protect the microvessel endothelium, dilate blood vessels and inhibit platelet aggregation. Studies have indicated that in pathological conditions such as inflammation and shock, Res can suppress leukocyte adhesion to endothelium and subsequently reduce infiltration of leukocytes into inflammatory sites as well as influence the kinetic behaviors of calcium channels to dilate vessels and improve microcirculatory disorders[12,19,20]. The results of in vitro studies have also shown that Res can significantly reduce the capillary permeability as an inhibitor of adhesion molecule expression. Res was found to suppress thromboxane formation and adenosine diphosphate, collagen or thrombin-induced platelet aggregation by inhibiting the activity of calcium channels to block rapidly calcium ion influx into the activated platelets[21].

In this study, Res decreased remarkably the capillary permeability and tissue water content. We also found that there was a dramatic decline in blood rheology of resveratrol-treated rats, including whole blood and plasma viscosity, hematocrit (HCT) and erythrocyte osmotic fragility compared to the SAP group. The results indicated that Res could reduce capillary permeability and whole blood and plasma viscosity (PV), leukocyte rolling, thus increasing the blood flow in different organs. The reduction of erythrocyte osmotic fragility showed that Res might stabilize erythrocytes to decrease thrombus formation by the erythrocyte fragments. We also detected the expression of ICAM-gene, which was significantly lower in the Res-treated group than in the SAP group. ICAM-1 could mediate leukocyte adhesion and migration; the expression of ICAM-1 preceded the fulminant leukocyte infiltration of the organs. Anti-inflammatory effect of Res was involved in the reduction of ICAM-1 expression. The assay of MPO showed that Res suppressed leukocyte adhesion to endothelium and reduced infiltration of leukocytes into inflammatory sites.

In summary, Res can inhibit the expression of inflammatory mediators of the lung and pancreas and enhance microcirculation in SAP. It may be a potential candidate to treat SAP and its severe complication (ALI), but its pharmacodynamics, pharmacokinetics, side-effect, administration route and dose need to be further studied.

REFERENCES

1. Uhmann D, Ludwig S, Geissler F, Tannapfel A, Hauss J, Witzigmann H. Importance of microcirculatory disturbances in the pathogenesis of pancreatitis. Zentralbl Chir 2001; 126: 873-878
2. Bhatia M, Brady M, Zagorski J, Christmas SE, Campbell F, Neoptolemos JP, Slavin J. Treatment with neutralising anti-body against cytokine induced neutrophil chemottractant (CINC) protects rats against acute pancreatitis associated lung injury. Gut 2000; 47: 838-844
3. Matthey MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Flores J, Gimbrone MA, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 2003; 167: 1027-1035
4. Bhatia M, Mochchhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 2004; 202: 145-156
5. Yu WK, Li WQ, Li N, Li JS. Impact factors and clinical significance of the lung injury complicating acute pancreatitis. Zhongguo Weisheng Bing Ji Jiu Yue 2004; 16: 100-102
6. Zhu AJ, Shi JS, Sun XJ. Organ failure associated with severe acute pancreatitis. World J Gastroenterol 2003; 9: 2570-2573
7. Cooray HC, Janvilsiri T, van Veen WH, Hladky SB, Barrand MA. Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun 2004; 317: 269-275
8. Martin AR, Villegas I, La Casa C, de la Lastra CA. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol 2004; 67: 1399-1410
9. Oppari AW, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 64: 696-703
10. Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophoretic injury. Eur J Pharmacol 2004; 489: 39-48
11. Hung LM, Su MJ, Chen JK. Resveratrol protects myocardial ischemia-reperfusion injury through both No-dependent and No-independent mechanisms. Free Radic Biol Med 2004; 36: 774-781
12. Sato M, Maulik N, Das DK. Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci 2002; 957: 122-135
13. Andreescu S, Sadik OA, McGee DW, Suye S. Autonomous multi-electrode system for monitoring the interactions of isoflavonoids with lung cancer cells. Biof Chem 2004; 1: 221-230
14. Kollar P, Hotolova H. Biological effects of resveratrol and other constituents of wine. Ceska Slov Farm 2003; 52: 272-281
15. Bianchini F, Vainio H. Wine and resveratrol: mechanisms of cancer prevention? Eur J Cancer Prev 2003; 12: 417-425
16. de Lorgeril M, Salen P, Guiraud A, Boucher F, de Leiris J. Resveratrol and non-ethanolic components of wine in experimental cardiology. Nutr Metab Cardiovasc Dis 2003; 13: 100-103
17. Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, Filippi C, Bertelli A. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 2001; 37: 262-270
18. Foitzik T, Eibl G, Hotz B, Hotz H, Kahrau S, Kasten C, Schneider P, Buhr HJ. Persistent multiple organ microcirculatory disorders in severe acute pancreatitis: experimental findings and clinical implications. Dig Dis Sci 2002; 47: 130-138
19. Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E, Orallo F. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidiant activity and down-regulation of inflammatory genes. J Leukoc Biol 2004; 75: 1156-1165
20. Shigematsu S, Ishida S, Hara M, Takahashi N, Yoshimatsu H, Sakata T, Korthuis RJ. Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic Biol Med 2003; 34: 810-818
21. Olas B, Wachowicz B, Stochmal A, Olekszak W. Anti-platelet effects of different phenolic compounds from Yucca schidigera Roezl. bark. Platelets 2002; 13: 167-173

Edited by Wang XL and Chen WW