Hedonic appreciation and verbal description of pleasant and unpleasant odors in untrained, trainee cooks, flavorists, and perfumers

Caroline Sezille1 *, Arnaud Fournel1 , Catherine Rouby1 , Fanny Rinck2† and Moustafa Bensafi1† *

1 CNRS, UMR5292, INSERM1028, Lyon Neuroscience Research Center, University of Lyon, Lyon, France
2 Lüllien Laboratory, University of Grenoble, Grenoble, France

INTRODUCTION

Hedonic treatment is a crucial level of processing sensory information. The sense of smell is of particular interest in this regard: in humans, odors induce attractive or repulsive reactions and may influence cognition and behavior in various contexts (Alaoui-Ismali et al., 1997a,b; Yeshurun and Sobel, 2010; Croy et al., 2011). From a cognitive point of view, odor-grouping experiments showed that hedonics is the most salient dimension of olfaction (Harper, 1966; Berglund et al., 1973; Schiffman, 1977). In these studies, subjects were exposed to various pairs of olfactory stimuli and asked to judge their similarity. It was usually observed that two main clusters were formed: one grouping together pleasant and the other unpleasant odors (Schiffman, 1974; Godinot et al., 1995).

Whereas psychophysical investigations have shown that such hedonic processing of smells is influenced by psychochemical properties (Khan et al., 2007; Mandaïon et al., 2009; Poncet et al., 2010; Jousain et al., 2011), many other experiments, however, showed that odor pleasantness can be modulated by physiological (Fernandez et al., 2013; Joussain et al., 2013a,b) or cognitive factors (Herz, 2003; Rolls, 2004; de Araujo et al., 2005; Barchart et al., 2009; Rügk et al., 2011). For example, it has been shown that pleasantness judgments are enhanced when subjects are able to identify the odorant source (Ayabe-Kanamura et al., 1998). When verbal information about an odor is available, subjects shift their pleasantness judgment in line with the affective connotation of the label (Herz, 2003). Such top-down modulation by verbal association has been found even in children (Bensafi et al., 2007; Rinck et al., 2011). In summary, it would seem that both bottom-up (molecular feature coding) and top-down (training and language) processes contribute to build our hedonic responses to smells, which may be thus very variable across individuals.

Another factor that may explain olfactory individual differences is expertise. Training and verbal associations are crucial in professional situations in which odorants have to be associated systematically to label in order to ensure a common vocabulary to enhance perceptual agreement between individuals. Past and more recent studies showed that experts in olfaction used more consistent, rich, and precise language to describe smells (Bende and Nordin, 1997; Valentin and Chollet, 2000; Parr et al., 2002). Moreover, it has been shown that wine experts use more specific and relevant wine descriptors (Zaccaro et al., 2011). Although experts are known not only to acquire a systematic knowledge of the chemistry of odorants but also to learn to describe olfactory qualities of odorants and odor sources in a shared language, very little is known about the importance of hedonic processing in both the ways: (i) they describe but also (ii) they perceive smells. On a descriptive level, the literature in the field suggests that whereas pleasantness is a prominent attribute that drives odor verbalizations (Dubois and Rouby, 1997; Dubois, 2000), experts may be inclined to avoid any reference to odor hedonics. In conclusion, the present study suggests that as novices, experts are able to perceptually discriminate odors on the basis of their pleasantness. However, on a semantic level, they conceptualize odors differently, being inclined to avoid any reference to odor hedonics.

Keywords: olfaction, expertise, hedonic, emotion, perfumery

Olfaction is characterized by a salient hedonic dimension. Previous studies have shown that these affective responses to odors are modulated by psycho-physiological, physiological, and cognitive factors. The present study examined expertise influenced processing of pleasant and unpleasant odors on both perceptual and verbal levels. For this, performance on two olfactory tasks was compared between novices, trainee cooks, and experts (perfuners and flavorists): Members of all groups rated the intensity and pleasantness of pleasant and unpleasant odors (perceptual tasks). They were also asked to describe each of the 20 odorants as precisely as possible (verbal description task). On a perceptual level, results revealed that there were no group-related differences in hedonic ratings for unpleasant and pleasant odors. On a verbal level, descriptions of smells were richer (e.g., chemical, olfactory qualities, and olfactory sources terms) and did not refer to pleasantness in experts compared to untrained subjects who used terms referring to odor sources (e.g., candy) accompanied by terms referring to odor hedonics. In conclusion, the present study suggests that as novices, experts are able to perceptually discriminate odors on the basis of their pleasantness. However, on a semantic level, they conceptualize odors differently, being inclined to avoid any reference to odor hedonics.

Edited by: Ilana Croy, University of Gothenburg, Sweden
Reviewed by: Johan N. Lundström, Karolinska Institute, Sweden, Andreas Keller, Rochester University, USA

*Correspondence: Caroline Sezille and Moustafa Bensafi, CNRS, UMR5292, INSERM1028, Lyon Neuroscience Research Center, University of Lyon, 50 Avenue Tony Garnier, 69366 Lyon, France. e-mail: csezille@olfac.univ-lyon1.fr, bensafi@olfac.univ-lyon1.fr
†Fanny Rinck and Moustafa Bensafi have contributed equally to this work.
and to further assess how expertise modulates hedonic perception of odors. To this end, experts and non-experts in olfaction were compared during two olfactory tasks: (i) a verbal description task whereby participants were asked to freely describe odors and (ii) a perceptual rating task whereby participants were asked to judge the pleasantness of odors. Practically, four groups of subjects, differing in their levels of expertise, were tested: (i) an untrained group, (ii) a group of apprentice cooks, who had no specific course on olfaction but were daily exposed to odors, (iii) a group of experts in aroma formulation, and (iv) a group of experts in perfume formulation.

Moreover, because there is evidence of the existence of two different systems dedicated to treating aversive and appetitive smells (unpleasant odors are processed faster than pleasant ones (Benjamin et al., 2011)): 3-hexanol (3HEX: 12178; 0.076), caproic acid (CAP: 8892; 3.634), 2′-3 butane-di-one (23BDE: 659; 0.003), benzaldehyde (BZ: 240; 0.154), guaiacol (GUA: 460; 2.087), isosamyl acetate (IAA: 31276; 0.032), diphenyl oxide (DPO: 7583; 13.352), allyl caproate (ACA: 31266; 0.553), benzyl acetate (BZA: 8785; 1.467), citronellol (CIT: 7794; 1.271), eugenol (EUG: 3314; 13.122), methyl anthranilate (MA: 8635; 12.653), linalool (LIN: 6549; 2.164), alpha-pinnen (aPIN: 6564; 0.099), t-carnone (CAR: 16724; 1.924), and beta-ionone (ION: 638014; 50.604). To further examine the hedonic assessment of each of these odors, a pilot experiment was conducted in healthy subjects (n = 19; mean age, 19.47 ± 0.207 years; 13 male) who rated the pleasantness of each stimulus on a scale from 1 (not at all pleasant) to 9 (very pleasant). Results revealed that the stimuli did indeed cover a wide range of affective evaluation, from the most unpleasant to the most pleasant (Figure 1A). Moreover, it was also ensured that the odors covered the entire physiochemical olfactory space by including molecules with a full range of molecular weight and structural complexity (Figure 1B). All odors were diluted in mineral oil so as to achieve an approximate gas-phase partial pressure of 1 Pa.

MATERIALS AND METHODS

SUBJECTS

Sixty-four subjects without neurological disease or olfactory disorder were tested. Participants were divided into four groups according to their level of expertise: (i) a group of untrained individuals (“novices”: n = 16; mean age, 23.5 ± 0.423 years; six male), composed of subjects who had no specific training on olfaction; (ii) a group of trainee cooks (“trainee cooks”: n = 16; mean age, 21.313 ± 0.285 years; nine male), composed of subjects in their second year of training in a cookery institute where they received no specific training in olfaction, but were daily exposed to odors; (iii) a group of flavorists (“flavorists”: n = 16; mean age, 31.063 ± 2.765 years; three male; with 9.065 ± 2.497 years expertise), who had previous knowledge of artificial and natural flavors through intensive learning in school and/or at work; and (iv) a group of perfumers (“perfumers”: n = 16; mean age, 34.063 ± 1.296 years; five male; with 9.933 ± 1.487 years expertise), who had previous knowledge of olfactory compounds for designing new fragrances through intensive learning in school and/or at work.

ODORANTS

Twenty odors covering a wide range of hedonic valence were used. (Odor code: compound ID; v/v concentration in mineral oil, as used by Kermen et al. (2011): 3-hexanol (OHEX: 12178; 0.076), heptanol (HEP: 8129; 0.911), butyric acid (BUA: 6590; 0.098), caproic acid (CAP: 8892; 3.634), 2′-3 butane-di-one (23BDE: 659; 0.003), benzaldehyde (BZ: 240; 0.154), guaiacol (GUA: 460; 2.087), isosamyl acetate (IAA: 31276; 0.032), diphenyl oxide (DPO: 7583; 13.352), allyl caproate (ACA: 31266; 0.553), benzyl acetate (BZA: 8785; 1.467), citronellol (CIT: 7794; 1.271), eugenol (EUG: 3314; 13.122), methyl anthranilate (MA: 8635; 12.653), linalool (LIN: 6549; 2.164), alpha-pinnen (aPIN: 6564; 0.099), t-carnone (CAR: 16724; 1.924), and beta-ionone (ION: 638014; 50.604). To further examine the hedonic assessment of each of these odors, a pilot experiment was conducted in healthy subjects (n = 19; mean age, 19.47 ± 0.207 years; 13 male) who rated the pleasantness of each stimulus on a scale from 1 (not at all pleasant) to 9 (very pleasant). Results revealed that the stimuli did indeed cover a wide range of affective evaluation, from the most unpleasant to the most pleasant (Figure 1A). Moreover, it was also ensured that the odors covered the entire physiochemical olfactory space by including molecules with a full range of molecular weight and structural complexity (Figure 1B). All odors were diluted in mineral oil so as to achieve an approximate gas-phase partial pressure of 1 Pa.

EXPERIMENTAL PROCEDURE

The experimental procedure was explained in great detail to the subjects, who provided written consent prior to participation. The study was conducted according to the Declaration of Helsinki and was approved by the local ethics committee of Lyon.

After providing written informed consent, subjects started the experiment. Odorants were presented in 15-ml flasks (opening diameter, 1.7 cm; height, 5.8 cm; filled with 5 ml), absorbed on a scentless polypropylene fabric (3 × 7 cm; 3M, Valley, NE, USA) to optimize evaporation and air/oil partitioning.

The experimenter presented the odorant vial 1 cm below the subject’s nose and subjects were instructed to sniff at each presentation of a vial then rate odor intensity and pleasantness on a scale from 1 (not at all intense/pleasant) to 9 (very intense/pleasant). Although the two ratings were performed in the same perceptual task, participants were asked to first complete the intensity judgment that refers more to the stimulus itself (i.e., concentration). Once odor ratings were completed, participants were asked to verbalize on each odor by describing it as precisely as possible. The instructions given to the subjects were as follows: “You are going to smell several odors one after the other. Your task will be to sniff each vial and then to rate how intense and pleasant the smell was. To give your estimates, you will rate each odorant on a scale from 1 (not at all intense/pleasant) to 9 (very intense/pleasant). Then, after rating each odor, you will have to describe the smell as precisely as possible.” Odorants were presented every 45 s. In order to habituate the subjects to the experimental setting, a training session was carried out with a sequence of 1–3 empty flasks.

DATA ANALYSIS

Partitioning the odorant data set into two groups of pleasant and unpleasant odors was performed by using k-means partitioning. A cluster analysis (using k-means partitioning) was used to separate the odorant sample into two groups of pleasant and unpleasant odors.
unpleasant odors. Here, all pleasantness ratings data from all odorants and all subjects (from the four groups) were considered. This analysis revealed that the ten most unpleasant were CAP, BUA, HEPa, DPO, 23BD, HEP, MA, GUA, EUG, and ETB and the ten most pleasant odors were CITa, 3HEX, ION, aPIN, ACA, CAR, IAA, BZ, BZA, and LIN. It is noteworthy that the pleasantness scores of the 20 odorants in the main study correlated positively with those obtained in the pilot study ($r = 0.92$, $p < 0.0001$).

Verbal description of pleasant and unpleasant odors

To illustrate the verbal descriptions provided by the four groups, we considered the descriptions of each individual (in a given group) by counting the number of times a word was used. Thus, for each group, a table including all words and their occurrences was set. These four tables were then expressed graphically (https://github.com/amueller/word_cloud; Figure 2A). Afterward, to analyze each subject’s olfactory description, the 20 verbalizations produced by each subject (for the 20 odorants) were processed by exploratory lexical analysis, first counting references to pleasantness (e.g., “pleasant,” “unpleasant”). Here, a mark of “−1” was attributed for unpleasant labels, and a mark “+1” was used for pleasant labels. Second, three types of references were considered: (1) references to an odor source (e.g., “flower”), (2) references to an olfactory quality [e.g., “woody,” Chastrette et al. (1988) being used to determine whether a term was an olfactory quality], and (3) references to chemical terminology (e.g., “beta ionone”).

Statistical analyses

Perceptual ratings and verbal data were analyzed using a 4 × 2 ANOVA using “group” (novices, trainee cooks, flavorists, perfumers) as a between-subjects factor and “hedonic valence” (unpleasant, pleasant) as a within-subject factor. If significant effects of “group” or “hedonic valence” or a significant “group” × “hedonic valence” interaction were observed, the analysis was followed by Bonferroni tests to allow for multiple statistical comparisons.

RESULTS

PERCEPTUAL RATING TASK

Because the four groups had heterogeneous distributions in terms of age and gender, as a control analysis, we first explored whether age correlated with hedonic appreciation in each pleasantness category (independent of learning group). Results revealed no significant relationship between hedonic appreciation of (i) pleasant odors and age ($r = 0.007$, $p > 0.05$) and, (ii) unpleasant odors and age ($r = 0.056$, $p > 0.05$). Moreover, gender did not influence hedonic appreciation of pleasant odors ($F(1,62) = 0.049$, $p > 0.05$) and unpleasant odors ($F(1,62) = 0.175$, $p > 0.05$).

Statistical analysis of pleasantness ratings revealed a significant effect of hedonic valence ($F(1,60) = 267.171$, $p < 0.0001$); pleasant odors being rated as more pleasant than unpleasant odors; mean ± SEM: unpleasant odors, 3.86 ± 0.10; pleasant odors,
Sezille et al. Expert olfaction

FIGURE 2 | Verbal descriptions of odors in untrained subjects, trainee cooks, flavorists, and perfumers. (A) Whereas novice (untrained) subjects used more often sources and negative emotional terms to describe smells, experts used more technical terms when asked to verbalise about odors. (B) Novices used more emotional terms than trainee cooks, flavorists and perfumers and these terms are more often negatives. The number of chemical terms and olfactory qualities to describe odors is significantly higher in flavorists and perfumers than in novices and trainee cooks. Further, novices used less odor source references than trainee cooks, flavorists and perfumers and trainee cooks used less odor source references than flavorists and perfumers. *p < 0.05 (corrected for multiple comparisons).

5.54 ± 0.09]. In addition, a significant effect of groups was noted [F(3,60) = 3.416, p < 0.03], but paired comparisons revealed no significant difference between the four groups (p > 0.05 in all cases; Table 1).

Regarding intensity ratings, a significant effect of hedonic valence was observed [F(2,120) = 17.008, p < 0.0001; pleasant odors being rated as less intense than unpleasant odors; mean ± SEM: unpleasant odors, 6.59 ± 0.10; pleasant odors, 5.74 ± 0.10).

This effect was accompanied by a significant effect of groups [F(3,60) = 4.045, p < 0.02] and a significant groups*hedonic valence interaction [F(3,60) = 6.108, p < 0.002]. The effect of groups reflected that odors were rated as significantly more intense by perfumers than novices (p < 0.03) (Table 2). The significant group*hedonic valence interaction reflected that unpleasant odors were rated more intense than pleasant odors in novices (p < 0.006), trainee cooks (p < 0.001), flavorists (p < 0.005), and perfumers (p < 0.0001).

Table 1 | Pleasantness ratings of pleasant and unpleasant odors in novice (untrained) subjects, trainee cooks, flavorists, and perfumers.

Unpleasant odors	Mean	SEM	Pleasant odors	Mean	SEM
Novices	3.63	0.13	5.58	0.17	
Trainee cooks	3.66	0.18	5.41	0.19	
Flavorists	4.55	0.24	5.76	0.21	
Perfumers	3.62	0.19	5.45	0.22	

Table 2 | Intensity ratings of pleasant and unpleasant odors in novice (untrained) subjects, trainee cooks, flavorists, and perfumers.

Unpleasant odors	Mean	SEM	Pleasant odors	Mean	SEM
Novices	6.21	0.19	5.44	0.23	
Trainee cooks	6.19	0.23	5.64	0.22	
Flavorists	6.73	0.16	6.09	0.20	
Perfumers	7.25	0.13	5.83	0.18	

VERBAL DESCRIPTION TASK

A descriptive analysis performed on the verbal data revealed differences between groups regarding their odor description. Whereas novices seems to use specific sources (e.g., “feet,” “candy”) and “emotional” words (e.g., “unpleasant”), flavorists and perfumers describe smells using more technical terms (chemical terminology and references to olfactory qualities and sources; Figure 2A).

Specifically, regarding emotional terms, a significant effect of hedonic valence was observed reflecting that unpleasant odors were described using more negative emotional words than pleasant odors [mean ± SEM: unpleasant odors, −0.033 ± 0.011; pleasant odors, 0.006 ± 0.009; F(3,60) = 5.958, p < 0.002]. Moreover, a significant effect of group was observed [F(3,60) = 5.306, p < 0.03], reflecting that novices used more negative emotional words to describe odors than trainee cooks (p < 0.03) and perfumers (p < 0.02; Figure 2B). It is worth noting that the difference between novices and flavorists was significant (p = 0.0187) but did not survive multiple comparisons.
For chemical terms, a significant effect of group was observed [F(2,60) = 36.353, p < 0.0001], reflecting the fact that perfumers and flavorists used more chemical terms than novices and trainee cooks (p < 0.0001). No significant differences were observed between perfumers and flavorists (p > 0.05) or between novices and trainee cooks (p > 0.05; Figure 2B).

With regard to olfactory qualities, a significant effect of group was likewise observed [F(2,60) = 48.818, p < 0.0001]: perfumers and flavorists used more olfactory quality terms than novices and trainee cooks (p < 0.005). No significant differences were observed between perfumers and flavorists (p > 0.05) or between novices and trainee cooks (p > 0.05; Figure 2B). In addition, a significant effect of hedonic valence was observed [mean ± SEM: unpleasant odors, 1.30 ± 0.11; pleasant odors, 1.41 ± 0.13; F(1,60) = 5.877, p < 0.02] reflecting that pleasant odors were described using more olfactory qualities than unpleasant odors.

Finally, regarding references to odor sources, a significant effect of group was also observed [F(2,60) = 34.622, p < 0.0001]: (i) novices used fewer odor source references than trainee cooks, flavorists and perfumers (p < 0.05); and (ii) trainee cooks used fewer odor source references than flavorists and perfumers. No significant differences were observed between perfumers and flavorists (p > 0.05; Figure 2B). Apart from main effect of group, a significant effect of hedonic valence was observed reflecting the fact that pleasant odors were described using more odor source references than unpleasant odors [mean ± SEM: unpleasant odors, 1.84 ± 0.11; pleasant odors, 2.1 ± 0.13; F(1,60) = 20.610, p < 0.0001]. This latter finding corroborates previous results in the field showing a negative correlation between the number of olfactory qualities and odor unpleasantness: odorants that evoked few sources and qualities were also perceived as more unpleasant (Kermen et al., 2011).

DISCUSSION

The main question addressed by the present investigation concerned the effect of expertise on verbal descriptions and perceptual assessments of pleasant and unpleasant odors. It was assumed that flavorists and perfumers should rate pleasant odors as less pleasant, and unpleasant odors as less unpleasant than non-experts. Moreover, on a descriptive level, whereas flavorists and perfumers were expected to use chemical and odor terminology without referring to odor hedonics, novices were expected to accompany their odor descriptions by references to pleasantness.

An important finding of the present study is that, in contrast to our expectations, hedonic perceptual ratings of unpleasant and pleasant odors was not affected by expertise: novices, trainee cooks, flavorists and perfumers rated similarly unpleasant odors on the one hand and pleasant odors on the other hand. As was shown in wine tasting (Valentin and Chollet, 2000) where experts and naïve subjects do not significantly differ in perceptual similarity judgment, the present study suggests that experts in olfaction are able to discriminate and/or categorize odors on the basis of their hedonic valence. However, although this is true at an evaluative or perceptual level (pleasantness ratings), verbal data suggest that experts describe and conceptualize odors with few references to pleasantness: a result of interest of our study was the low number of references to pleasantness in the verbal descriptions of experts, whereas novices used hedonic terms to describe odors (especially words with negative connotation). These results are in line with the literature in the field suggesting that experts in olfaction avoid references to odor hedonic valence (Yoshida, 1964; Ehrlachman and Bastone, 1992; Holley, 2002).

An interpretation of the discrepancy between an expert’s ability to use less references to unpleasantness than controls vs. his actual perceptual hedonic appreciation of unpleasant (and pleasant) odors which remains the same, could be that on a perceptual level, hedonic valence and especially its negative side, represents the basic level of odor categorization for any perceiver, independent of his/her expertise. This affective perception would then occur quickly and unwittingly. In accordance with the above, autonomic responses to unpleasant odors occur implicitly when subjects are not given any particular instruction (Bensafi et al., 2002b), and response times are significantly shorter for unpleasant than for pleasant odors (Bensafi et al., 2003b). These results seem to indicate a “quick and dirty” pathway, fast-tracking decision for bad odors. Brain imaging studies also show that pleasant and unpleasant odors activate different neural networks (Zald and Pardo, 1997; Gottfried et al., 2002a; Anderson et al., 2003; Rolls et al., 2003; Royet et al., 2003; de Araujo et al., 2005; Bensafi et al., 2008). Taken together, these results support the hypothesis that only a rudimentary level of processing is necessary to hedonically pre-process odors, and that this pre-processing takes place when perceivers do not attend to any other specific feature of the odorant stimulus, whatever the expertise level.

However, when experts are engaged in a verbal task requiring subtle discrimination and description, they process the same odors more deeply on a lexicosemantic level, with few hedonic references. On a lexical level, verbal descriptions in relation to smells were significantly longer in experts than untrained subjects, confirming expectations regarding experts’ explicit knowledge. Previous studies described the language of experts (perfumers and flavorists) as richer, more proficient, precise, expressive and/or consistent (Bende and Nordin, 1997; Parr et al., 2002). In line with this, the linguistic-based criteria used here showed that experts’ verbal skills were characterized by the use of chemical names and terms referring to odor qualities and sources. Moreover, trainee cooks used more odor source references than novices, suggesting that daily exposure to odor sources (food sources in this case, without explicit olfactory associative learning) can increase the verbal ability to describe smells.

Lack of verbal resources in odor processing is a characteristic of untrained subjects. Indeed, it is a common experience to like (or dislike) a specific odor, and to be quite sure of recognizing it even if no name can be put on it: this so-called ‘tip of the nose phenomenon’ highlights implicit knowledge of odors, despite failure to name them. This interaction between language and olfaction can be seen in the development of olfactory function: whereas a 3-year-old child learns to name colors, odor naming is mostly developed through autonomous learning (Rouby and Sicard, 1997) and expressed in terms of idiosyncratic experience (Engen, 1987). On the contrary, expert verbal
skills in our study were characterized by the use of domain-specific terminology, with very few references to pleasantness. These differences between experts and novices reflect the effect of learning for flavorists and perfumers since their olfactory education includes learning of chemical names and olfactory qualities with adjectives (see the “field of odors,” Joubert et al., 1987; Jaubert, 1995). For example, in perfumers and flavorists particularly, the creation of fragrances and flavors involves recognizing hundreds of odors and memorizing the effects of their combinations. Reports indicate that perfumers are better able to identify odors (Gilbert et al., 1998; see also Rinck et al., 2009) and can routinely group odors in classes, from 18 (Rimmel, 1895) to 88 (Acthardt, 1969; Chastrrette et al., 1988). For perfumers, these classes usually contain further sub-classes (Royalistska, 1991; Ellena, 2007). Moreover, notions such as “notes,” “faces,” and “sub-tones” are used in perfumery to represent odors (Ellena, 2007). Experts, through such continuous repetitive olfactory training, can communicate their perception using verbal supports which is of utmost importance in their professional practice.

Although the present study provides evidence for an influence of expertise on odor verbalization, some of the findings warrant discussion. Indeed, another particular feature of the present findings was the increased perceived intensity in perfumers. One potential explanation may be that perfumers have lower odor threshold leading to higher perceived intensity due to their past training. Unfortunately, very little information is available to confirm this hypothesis and one of the few studies that compared experts and novices on a sensory level was that of Delhomme et al. (1997) who showed no expertise effect on olfactory detection, rendering less likely this possibility. Another explanation may be that perceived intensity is higher for identified odors (Distel and Hudson, 2001). In this psychophysical study, the authors tested human participants with a large set of everyday odors, and asked their subjects to rate odor pleasantness, familiarity and intensity. Results showed that all these ratings (including odor intensity) were enhanced when participants either were given the name by the experimenter or could identify the odorant source themselves. In the same line, the increase in odor intensity seen in experts of our study may be related to their better ability to describe, name and identify the odors used.

In conclusion, we showed here that expertise does not influence odor hedonic perception per se when the subject’s attention is focused on pleasantness: experts and novices appreciated similarly pleasant and unpleasant odors. On a verbal level, in contrast to their past training, can communicate their perception using verbal supports which is of upmost importance in their professional practice.

ACKNOWLEDGMENTS This study was supported a grant from the ANR to Moustafris Bensafi (EMCO program, ICIO Project) and by the Region Rhone-Alpes (CIBLE 2011 program).

REFERENCES
Alaoui-Ismaili, O., Robin, O., Rada, H., Dittmar, A., and Vernat-Maury, E. (1997a). Basic emotions evoked by odors: comparison between autonomic responses and self-evaluation. Physiol. Behav. 62, 713–721. doi: 10.1016/S0031-9384(97)00352-0
Alaoui-Ismaili, O., Vernat-Maury, E., Dittmar, A., Didholhome, G., and Chantel, J. (1997b). Odor hedonicity: connection with emotional response or self-rated emotional response? Physiol. Behav. 62, 235–248. doi: 10.1016/S0031-9384(97)00353-2
Anderson, A. K., Christoff, K., Stappaert, I., Painton, D., Ghisletta, D. G., Glöer, G., et al. (2005). Dissociated neural representations of intensity and valence in human olfaction. Nat. Neurosci. 8, 196–202. doi: 10.1038/nn1381
Arctander, S. (1969). Perfume and Flavor Chemicals (Aroma Chemicals). Montclair, NJ: Allured Publishing Corporation.
Ayabe-Kanamura, S., Schröter, L., Laska, M., Hudson, B., Distel, H., Kobejakova, T., et al. (1998). Differences in perception of everyday odors: a Japanese–German cross-cultural study. Chem. Senses 23, 31–38. doi: 10.1093/chemse/23.1.31
Barkat, S., Poncelet, J., Landes, B. N., Rouby, C., and Bensafi, M. (2008). Improved smell pleasantness after odor-taste associative learning in humans. Neurosci. Lett. 456, 108–112. doi: 10.1016/j.neulet.2008.01.037
Bende, M., and Nordin, S. (1997). Perceptual learning in olfaction: professional wine tasters versus controls. Physiol. Behav. 62, 1065–1070. doi: 10.1016/S0031-9384(97)00295-5
Benfod, M., Iannilli, E., Gerber, J., and Hummel, E. (2008). Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems. Neuroscience 154, 832–838. doi: 10.1016/j.neuroscience.2008.03.079
Benfodi, M., Iannilli, E., Poncelet, J., See, H. S., Gerber, J., Rouby, C., et al. (2012). Dissociated representations of pleasant and unpleasant olfactory–trigeminal mixtures: an fMRI study. PLoS ONE 7:e33558. doi: 10.1371/journal.pone.0033558
Benfodi, M., Ristic, E., Schaal, B., and Rouby, C. (2007). Oral cue modulates hedonic perception of odors in 5-year-old children as well as in adults. Chem. Senses 32, 895–882. doi: 10.1093/chemse/bjm058
Benfodi, M., Rouby, C., Forger, V., Bertrand, R., Vigouroux, M., and Holley, A. (2002a). Autonomic nervous system responses to odors: the role of pleasantness and arousal. Chem. Senses 27, 765–769. doi: 10.1093/chemse/27.8.765
Benfodi, M., Rouby, C., Forger, V., Bertrand, R., Vigouroux, M., and Holley, A. (2002b). Influence of affective and cognitive judgments on autonomic parameters during inhalation of pleasant and unpleasant odors in humans. Neurosci. Lett. 319, 162–166. doi: 10.1016/S0304-3940(01)02572-1
Benfodi, M., Rouby, C., Forger, V., Bertrand, R., Vigouroux, M., and Holley, A. (2003a). Psychophysiological correlates of affects in human olfaction. Neurophysiol. Clin. 33, 328–332. doi: 10.1016/S0987-7354(03)02359-8
Benfodi, M., Rouby, C., Forger, V., Vigouroux, M., and Holley, A. (2003b). Autonomic nervous system responses to odors: the role of pleasantness and arousal. Chem. Senses 27, 709–713. doi: 10.1093/chemse/27.8.707
Benfodi, M., Rouby, C., Forger, V., Bertrand, R., Vigouroux, M., and Holley, A. (2004). Autonomic nervous system responses to odors: the role of pleasantness and arousal. Chem. Senses 29, 31–38. doi: 10.1093/chemse/29.1.31
Benfodi, M., Porter, J., Poulet, S., Munkland, J., Johnson, B., Zdanis, C., et al. (2003a). Olfactomotor activity during imagery minus that during perception. Nat. Neurosci. 6, 142–148. doi: 10.1038/nn9145
Benfodi, M., Rouby, C., Forger, V., Bertrand, R., Vigouroux, M., and Holley, A. (2003b). Perceptual, affective, and cognitive judgments of odors: pleasantness and hedonality effects. Brain Cogns 51, 270–275. doi: 10.1016/S0278-2624(03)00019-8
Berglund, B., Berglund, U., Engen, T., and Ekman, G. (1975). Multidimensional analysis of twenty-one odors. Scand. J. Psychol. 14, 131–137. doi: 10.1111/j.1467-9485.1975.tb00114.x
Brauchi, F., Berg, P. B., Erazowska, F., and Zielon, H. (1995). Electrocortical and autonomic alternation by administration of a pleasant and an unpleasant odor. Chem. Senses 20, 505–515. doi: 10.1093/chemse/20.5.505
Chastrette, E., Elmasri, A., and Suregraum, P. (1998). A multidimensional statistical study of similarities between 74 notes used in perfumery. Chem. Senses 13, 295–303. doi: 10.1093/chemse/13.3.295
Crey, J., Olagn, S., and Janszczuk, P. (2011). Basic emotions elicited by odors and pictures. Emotion 11, 1351–1355. doi: 10.1037/a0024487
Joussain, P., Thevenet, M., Rouby, C., and Bensafi, M. (2013b). Effect of aging on subjects’ knowledge of the odor sources. Chem. Sens. 26, 267–271. doi: 10.1097/CHES.0b013e32835f2d47

Dobson, D. (2005). Categories as acts of meaning: the case of categories in olfaction. J. Ment. Imagery 29, 15–48.

Olfactory and visual mental imagery. J. Ment. Imagery 22, 127–146.

Godinlet, N., Scard, G., and Dobos, D. (1995). Categories, familiarity, and unpleasantness of odors. Odor FOC.J. 3, 201–208.

Gottfried, J. A., Decke, R., Watson, J., and Dolan, R. J. (2002a). Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J. Neurosci. 22, 10191–10198.

Gottfried, J. A., Kalb, B., Scard, G., and Wernig, S. (1997). Startle reflex modulation by pleasant and unpleasant odors in a between-subjects design. Psychophysiology 34, 726–729. doi: 10.1111/1442-909x.1997.tb01514

Illена, J. (2007). Le Vin, Paris: Sabine Wespieser Editeur.

Eugen, T. (1997). Remembering odors and their names. Am. Sci. 75, 497–505.

Fernandes, P., Bensafi, M., Rouby, C., and Giboussou, A. (2013). Does olfactory specificity take place in a natural setting? Appetite 65, 1–4. doi: 10.1016/j.appet.2012.10.006

Gilbert, A. N., Crouch, M., and Kemp, S. E. (1998). Olfactory and visual mental imagery. J. Ment. Imagery 22, 127–146.

Godinlet, N., Scard, G., and Dobos, D. (1995). Categories, familiarity, and unpleasantness of odors. Odor FOC.3, 201–208.

Gottfried, J. A., Decke, R., Watson, J., and Dolan, R. J. (2002a). Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J. Neurosci. 22, 10191–10198.

Harpet, R. (1996). Olfactory classification. Int. J. Food Technol. 1, 167–176. doi: 10.1111/j.1365-2621.1996.tb00104.x

Hers, S. R. (2003). The effect of verbal context on olfactory perception. J. Exp. Psychol. 132, 595–606. doi: 10.1037/0096-3445.132.3.595

Holley, A. (2002). “The art of perfume,” in Perfumers Art, Science and Technology, eds F. M. Müller and D. Lamparter (London: Elsevier), 3–48.

Reny, J. P., Hauly, J., Délom-Martin, C., Kereken, D. A., and Sapéreth, C. (2005). PHER: an odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Neurosci. Lett. 381, 167–170. doi: 10.1016/j.neulet.2005.07.028

Schiffman, S. S. (1974). An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Neurosci. Lett. 381, 167–170. doi: 10.1016/j.neulet.2005.07.028

Landy, P., and Sobel, N. (2010). An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Neurosci. Lett. 381, 167–170. doi: 10.1016/j.neulet.2005.07.028
