CASE REPORT

Successful endovascular recanalization of massive cerebral venous sinus thrombosis in a patient with tuberous sclerosis and protein S deficiency: a case report

Yasuhiro Nishiyama1,3,*, Masayuki Ueda1, Kanako Muraga1,3, Takahiro Ota2, Hiroshi Horikawa2 and Kazumi Kimura3

1Department of Neurology and Stroke Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan, 2Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan, 3Department of Neurology, Nippon Medical School, Tokyo 113-0022, Japan

*Correspondence address. Department of Neurology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan. Tel: +81-3-3822-2131; Fax: +81-3-3822-4865; E-mail: nomo16@nms.ac.jp

Abstract

Here, we report the case of a 27-year-old woman with tuberous sclerosis complex who underwent successful endovascular intervention for cerebral venous thrombosis at the superior sagittal sinus. She had protein S deficiency and a long-term history of anemia caused by menorrhagia from uterine fibroids, possibly leading to a hypercoagulable state. Cerebral venous sinus thrombosis accounts for ∼0.5–1% of all strokes. Several cases of venous thrombosis in patients with tuberous sclerosis complex and protein S or protein C deficiency have been reported, but further studies are needed to identify whether an association of this rare combination may be explained.

INTRODUCTION

Cerebral venous sinus thrombosis is a rare and often unrecognized type of stroke, which may account for up to 0.5–1% of all strokes [1] and primarily affects young women. Cerebral venous sinus thrombosis can cause death and dependency [2] and may be provoked by prothrombic factors associated with anemia and various other clinical conditions such as protein S deficiency [2]. Systemic anticoagulation is a widely used therapy for cerebral venous thrombosis, but not all patients recover fully with this treatment. Recently, endovascular intervention for cerebral venous thrombosis has been indicated for patients who show deterioration despite systemic anticoagulation therapy.

Tuberous sclerosis complex is a rare disorder, involving seizures, characteristic skin lesions and intellectual disability [3]. Only a few cases of tuberous sclerosis complex in combination with protein S protein C deficiency have been reported [4]. Here, we present the first report of a patient with tuberous sclerosis complex who underwent successful endovascular intervention for cerebral venous thrombosis.

CASE REPORT

A 27-year-old woman presented with a severe generalized seizure followed by unconsciousness. She had been diagnosed with tuberous sclerosis complex (no family history) based on...
uncontrolled epileptic seizure at age 7 along with hypomelanotic patches, cortical tuber and ungual fibroma. She had also suffered from a pulmonary thromboembolism at 26 years old due to protein S deficiency.

Laboratory examination revealed that the level of protein S was normal (104% of the reference value), but its activity was below normal (43% of the reference value). Protein C concentration and activity were both normal. Therefore, the patient was diagnosed with type II protein S deficiency.

An initial non-contrast head computed tomography demonstrated low attenuation within the left frontal cortex with increased attenuation of the cortical vein (Fig. 1). Magnetic resonance fluid-attenuated inversion-recovery (FLAIR) sequence showed bilateral frontal edema with mass effect, and magnetic resonance venography revealed an occlusion within the anterior middle portion of the superior sagittal sinus (Fig. 2). Anticoagulation therapy with intravenous heparin infusion was started immediately. Over the next 24 hours, however, the patient exhibited repeated seizure episodes. The decision was made to attempt endovascular venous mechanical thrombectomy. Initial angiography revealed near-complete occlusion of the anterior half of the superior sagittal sinus and cortical veins (Fig. 3). A 90-cm 8-Fr Fubuki catheter (Asahi Intecc, Aichi, Japan) was placed in the right jugular bulb via a right trans-femoral approach. In addition, a construct consisting of a SMAX ACE reperfusion catheter (Penumbra, Alameda, CA, USA) was navigated over a micro-catheter (Marksman; Medtronic, Irvine, CA, USA) over a 0.014" micro-guidewire (Chikai; Asahi Intecc, Aichi, Japan), which was used to reach the middle portion of the superior sagittal sinus. Then the micro-guidewire was removed, and a Solitaire FR revascularization device (4 × 20 mm) was deployed in the anterior portion of the thrombosed superior sagittal sinus. The Solitaire FR device was then pulled into the SMAX reperfusion catheter, which was connected to the Penumbra aspiration system. Using the same procedure, a total of three sequential passes from the distal to the proximal aspect of the superior sagittal sinus were performed, resulting in significantly improved flow and complete recanalization in the superior sagittal sinus.

After the procedure, she remained on full-dose intravenous anticoagulation throughout her hospitalization, but she experienced worsening anemia caused by metrorrhagia and uterine fibroids and subsequently received 4 units of packed red blood cells and underwent surgical hysterectomy. Pathological examination of the uterus revealed both leiomyomas and adenomyosis. Eventually, her anemia improved, and treatment with edoxaban was started. Six weeks later, the patient was completely independent, with no significant cognitive dysfunction and minimal and improving right-hand weakness (modified Rankin scale 1).

DISCUSSION

To our knowledge, this case represents the first report of a patient with tuberous sclerosis complex who underwent mechanical treatment using Solitaire FR stents and a SMAX ACE reperfusion catheter for cerebral venous thrombosis of the superior sagittal sinus.
Successful endovascular recanalization of cerebral venous sinus thrombosis

Cerebral venous thrombosis is an uncommon cause of stroke with a multifactorial aetiology. It has been associated with uterine fibroids, metrorrhagia [5] and protein S and C deficiency [6]. Therefore, extensive investigations are often essential once the diagnosis is established.

Our patient demonstrated type II (qualitative) protein S deficiency. The reported prevalence of protein S deficiency is ∼2% overall (and specifically 1% for type II protein S deficiency) in a Japanese population [7] and 0.03–0.13% overall in Scotland [8].

Once the diagnosis of cerebral venous thrombosis is established, anticoagulation therapy should be started immediately, with heparin being the first-line treatment [9]. A recent systematic review suggested that patients presenting with very severe neurological deficits even after anticoagulation therapy may benefit from early and more aggressive therapies, such as mechanical treatment with or without intrasinus thrombolysis, and found that, overall, >80% of such patients had a good outcome [10].

No mechanism linking tuberous sclerosis complex and venous thrombosis has been established, although these clinical manifestations might be related. Further studies should be conducted to identify whether this is an association of this rare combination that can be explained.

CONFLICT OF INTEREST STATEMENT

None declared.

FUNDING

No funding was received for the work involved in this article.

CONSENT

Informed consent was obtained from the patient.

REFERENCES

1. Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, et al. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:1158–92.
2. Chiewvit P, Piypapatikanan S, Poungvarin N. Cerebral venous thrombosis: diagnosis dilemma. Neurol Int 2011;3:e13.
3. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 2008;372:657–68.
4. Beladi-Mousavi SS, Zeraati A, Sharifipour F, Naghibi M, Kalani F, Moussavinik S, et al. Tuberous sclerosis, deep vein thrombosis and lack of C and S proteins: a case report. J Renal Inj Prev 2012;1:33–6.
5. Barry S, Savage C, Layton KF. Combined endovascular thrombolysis and uterine fibroid embolization in a patient with dural venous sinus thrombosis and severe metrorrhagia. J Vasc Interv Radiol 2012;23:424–6.
6. Arai N, Tabuse M, Nakamura A, Miyazaki H. Malignant isolated cortical vein thrombosis with type II protein S deficiency: a case report. BMC Neurol 2016;16:69.
7. Nomura T, Suehisa E, Kawasaki T, Okada A. Frequency of protein S deficiency in general Japanese population. Thromb Res 2000;100:367–71.
8. Dykes AC, Walker ID, McMahon AD, Islam S, Tait RC. A study of protein S antigen levels in 3788 healthy volunteers: influence of age, sex and hormone use, and estimate for prevalence of inherited thrombophilia. Br J Hematol 2001;113:636–41.
9. Medel R, Monteith SJ, Crowley RW, Dumont AS. A review of therapeutic strategies for the management of cerebral venous sinus thrombosis. *Neurosurg Focus* 2009; 27:E6.

10. Siddiqui FM, Dandapat S, Banerjee C, Zuurbier SM, Johnson M, Stam J. Mechanical thrombectomy in cerebral venous thrombosis: systematic review of 185 cases. *Stroke* 2015; 46:1263–8.