To sell public or private goods

Simon Loertscher · Leslie M. Marx

Received: 31 May 2021 / Accepted: 11 July 2022 / Published online: 4 August 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Traditional analysis takes the public or private nature of goods as given. However, technological advances, particularly related to digital goods such as non-fungible tokens, increasingly make rivalry a choice variable of the designer. This paper addresses the question of when a profit-maximizing seller prefers to provide an asset as a private good or as a public good. While the public good is subject to a free-rider problem, a profit-maximizing seller or designer faces a nontrivial quantity-exclusivity trade-off, and so profits from collecting small payments from multiple agents can exceed the large payment from a single agent. We provide conditions under which the profit from the public good exceeds that from a private good. If the cost of production is sufficiently, but not excessively, large, then production is profitable only for the public good. Moreover, if the lower bound of the support of the buyers’ value distribution is positive, then the profit from the public good is unbounded in the number of buyers, whereas the profit from selling the private good is never more than the upper bound of the support minus the cost. As the variance of the agents’ distribution becomes smaller, public goods eventually outperform private goods, reflecting intuition based on complete information models, in which public goods always outperform private goods in terms of revenue.

Keywords Revenue maximization · Public goods · Mechanism design · Non-fungible token (NFT) · Bilateral trade

We thank the editor and an anonymous referee for comments that have helped us to improve the paper. Financial support from the Samuel and June Hordern Endowment, University of Melbourne Faculty of Business & Economics Eminent Research Scholar Grant, and Australian Research Council Discovery Project Grant DP200103574 is gratefully acknowledged.

Leslie M. Marx
marx@duke.edu

Simon Loertscher
simonl@unimelb.edu.au

1 Department of Economics, University of Melbourne, Level 4, FBE Building, 111 Barry Street, Victoria 3010, Australia

2 The Fuqua School of Business, Duke University, 100 Fuqua Drive, Durham, NC 27708, USA
1 Introduction

As recognized by David Hume, public goods give rise to a free-rider problem, which, mildly put, means that their provision is problematic. Samuelson (1954) first formulated the free-riding problem in a public goods setting as an information elicitation problem, without recognizing that the basic problem also applies to trading problems between buyers and sellers (see Vickrey 1961; Hurwicz 1973; Myerson and Satterthwaite 1983). The subsequent mechanism design literature has established that, subject only to incentive compatibility, individual rationality, and no-deficit constraints, the provision of public goods is not possible.1 This literature has thus shown that the free-rider problem associated with public goods is inherent to these problems in that it does not depend on the specifics of particular institutions – that is, the games – in which real-world agents participate.

In contrast, private goods can be allocated efficiently as noted by Vickrey (1961) because the second-price auction permits a seller to allocate efficiently without running a deficit. This implies that when a seller faces the choice between allocating a good as a private or as a public good, the seller should choose the private good when the seller is constrained to allocate efficiently and not to run a deficit. This may easily be taken to suggest that the seller should use private goods when the objective is profit rather than social surplus.

In this paper, we show that this conclusion is not warranted. We compare profit from providing a good as public and as private, and we provide conditions on the distribution from which the agents draw their values and the cost of production such that public good provision is more profitable than private good provision. In a nutshell, while it is true that the public good is subject to a free-rider problem, a profit-maximizing seller or designer faces a nontrivial quantity-exclusivity tradeoff, and collecting small payments from a number of agents may well exceed the large payment from a single agent.

These comparisons shed new light on ongoing debates in the face of technological changes. For example, non-fungible tokens (NFTs) have essentially enabled sellers to choose between whether they sell private or public goods. While the spectacular prices garnered by some digital objects that were sold as NFTs make for great headline news, our analysis shows that there are conditions under which the seller would be better off selling these objects nonexclusively as a public good. Another example where a seller or designer has the option of offering a good as private or public is the provision of wireless broadband. A case in point is Mexico, where in 2013 a constitutional amendment mandated the creation of a wireless broadband wholesale network using the spectrum reclaimed from television broadcasting as a result of a move to digital television.2 “The plan calls for groups of private companies to bid for the right to

1 See footnote 11 below for a direct proof.
2 “Mexico eyes sweeteners to boost wholesale mobile network plan,” Reuters, May 26, 2015, http://www.reuters.com/article/mexico-telecommunications-idUSL1N0YH2DJ20150527.
build and run the network, which would rent capacity to companies offering mobile services.”³ “The new network would be run as an independent ‘carrier of carriers,’ and would be available to any interested mobile-service provider at regulated and nondiscriminatory costs.”⁴ Of course, digital goods provide ample alternative applications. For example, a newspaper can sell its product as a private good or make the product available over the Internet, where the ability to restrict access to the newspaper once it is available over the Internet is limited. Similarly, a musician can sell musical works as a private good in the form of a physical recording or make the music available in digital form, where music piracy may limit the artist’s ability to restrict access. Then again we can view the choice as being between allocation as a private good and allocation as a public good. Other examples involving intellectual property include the case of multi-use patents, so that end uses are nonrivalrous. If the patent is easily circumvented, it may only make sense to allocate the patent as a public good or not at all. If the identity of potential users is known, then it may be feasible to compel them to participate in the public good allocation mechanism.

We provide conditions on the number of agents, distribution from which they draw their values, and the cost of production such that the profit from the public good exceeds that from a private good. We assume throughout that the distribution has a finite support. If the cost of production is equal to the upper bound of the support, then production of the private good is never profitable, whereas production of the public good is profitable some of the time. Thus, there are costs such that production is profitable only for the public good. Likewise, if the lower bound of the support is positive, then the public good is more profitable than the private good for a sufficiently large number of agents.

The comparative statics results with respect to the distributions are more subtle. Without private information, public goods will dominate private goods in terms of profit or revenue simply because every agent can be charged its value. We build on this intuition for the case in which agents are privately informed about their values by showing, roughly, that as the variance of the agents’ distribution becomes smaller, public goods eventually outperform private goods even with private information.

As mentioned, the study of public goods problems has a long tradition in economics. Starting with Samuelson (1954), much of the focus of the literature has been on the efficient provision of public goods when the agents are privately informed about their values, subject to incentive compatibility and individual rationality constraints; see, for example, Clarke (1971), Green and Laffont (1977), Mailath and Postlewaite (1990), and Hellwig (2003), and the celebrated VCG mechanism due to Clarke and Vickrey (1961) and Groves (1973). The profit-maximizing provision of public goods was first analyzed by Güth and Hellwig (1986), who also established the impossibility of efficient public good provision with privately informed agents, subject to incentive compatibility, individual rationality, and no-deficit constraints, while Rob (1989) derived the optimal procurement mechanism for a buyer who needs the inputs of all

³ “Mexico eyes sweeteners to boost wholesale mobile network plan,” Reuters, May 26, 2015, http://www.reuters.com/article/mexico-telecommunications-idUSL1N0YH2DJ20150527.

⁴ “Mexico Plans Broadband Overhaul to Boost Wireless Competition: New $10 Billion Open Network Would Provide Alternative to Telcel, Owned by Carlos Slim,” Wall Street Journal, October 31, 2014, http://www.wsj.com/articles/mexico-plans-broadband-overhaul-1414794178.
sellers. To the best of our knowledge, our paper is the first to compare profit when the seller has the choice between selling a public good optimally, or selling the same good as a private good, using the optimal mechanism derived by Myerson (1981).5

The remainder of this paper is structured as follows. Section 2 describes the setup. In Sect. 3, we characterize the Bayesian optimal private and public good mechanisms. In Sect. 4, we illustrate the basic tensions between quantity and exclusivity that underlie the two selling options. Sect. 5 provides revenue comparison results, and Sect. 6 provides discussion and results for large economies. Sect. 7 concludes the paper.

2 Setup

We consider a setup in which a seller can decide whether to produce one unit of a good. Technologically, the seller can choose between producing the good as a private good, in which case consumption is rivalrous and the owner of the good can prevent others from consuming it, or as a pure public good, in which case consumption is nonrivalrous and exclusion is not possible, once the good is provided. In either case, the cost of production is $c \geq 0$, and the payoff from consuming the good is the same regardless of whether it is public or private. The payoff of not participating—and therefore the value of the outside option—is normalized to 0 for each agent.

We denote by \mathcal{N} the set of buyers and $n \geq 2$ the number of buyers. Each buyer i draws its value v_i independently from the distribution F, with support $[v, v]$ and positive density f. Given $\mathbf{v} = (v_1, \ldots, v_n)$, we define the joint density by $f(\mathbf{v}) \equiv f(v_1) \cdot \cdots \cdot f(v_n)$. We denote the buyers’ values ranked in descending order by $v(1) > \ldots > v(n)$, where we ignore the possibility of ties. Define $v(0) \equiv \infty$ and $v(n+1) \equiv -\infty$. We denote by \mathbf{v}_{-i} the vector $(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$.

A buyer’s payoff is zero if the buyer does not trade and is equal to its value minus the price that the buyer pays if it does trade. The seller’s payoff is equal to the sum of the payments received from buyers minus the cost of providing the good, which has to be borne if and only if the good is sold.

Denote the virtual value function for bidder i by

$$\Phi(v) \equiv v - \frac{1 - F(v)}{f(v)}.$$

We focus on the regular case in which Φ is an increasing function. As noted by Mussa and Rosen (1978), the virtual value can be interpreted as marginal revenue, treating the (change in the) probability of trade as the (marginal change in) quantity.6 Using integration by parts, it is easy to establish that $\Phi(v)$ has the property that for any

5 Put differently, we study a setup in which a seller has the power to choose the terms under which a product is sold to maximize its expected payoff. For an alternative approach in which the institutional arrangement that is itself the outcome of a simultaneous-move game in which two principals interact in choosing contracts, see Kerschbamer and Koray (2001).

6 To see this, consider the revenue of a seller who sells the quantity $q \in [0, 1]$ facing a buyer drawing its value from the distribution F. This gives rise to the inverse demand function $F^{-1}(1 - q)$ and hence the revenue $R(q) = q F^{-1}(1 - q)$. Taking the derivative, one obtains $R'(q) = F^{-1}(1 - q) - \frac{q}{f(F^{-1}(1 - q))} \big|_{v=F^{-1}(1-q)} = \Phi(v)$.

Springer
$p \in [v, \overline{v}], \mathbb{E}_v[\Phi(v) \mid v \geq p] = p$. This implies, in particular, that $\mathbb{E}_v[\Phi(v)] = \overline{v}$, which is a property we will come back to in Sect. 6.

For some of our results it will be useful to refer to a parameterized family of distributions, by which we mean that the distribution F is parameterized by some finite-dimensional vector of real numbers.

3 Optimal mechanisms and expected revenue

3.1 Optimal mechanisms

We describe the Bayesian optimal mechanism for private and public goods, respectively.

3.1.1 Private good

Consider a direct mechanism and denote by $\hat{q}_i(v)$ the probability that the good is provided as a private good to buyer i when the vector of reports is v.

It is well known (see Myerson 1981) that for private goods, the Bayesian optimal mechanism, subject to incentive compatibility and individual rationality, allocates the good to the buyer with the highest virtual type as long as that virtual type is greater than or equal to the seller’s cost, and otherwise does not allocate the good to any buyer. If multiple buyers tie for the maximum virtual type, then the designer can randomly allocate the good to one of these buyers. In what follows, to reduce notation, we ignore the possibility of such ties, which occur with probability zero. In our setup in which each buyer draws its cost from the same distribution, the ranking of buyers’ virtual types is the same as the ranking of their actual types.

In the dominant-strategy implementation, a buyer allocated the good pays the worst type that it could have reported and still be allocated the good. That is, if buyer i is allocated the good, i.e., $v_i > \max_{j \in \mathcal{N} \setminus \{i\}} v_j$ and $\Phi(v_i) \geq c$, then buyer i pays

$$\max \left\{ \Phi^{-1}(c), \max_{j \in \mathcal{N} \setminus \{i\}} v_j \right\}$$

where for $c \in [0, \Phi(\overline{v}))$, we define $\Phi^{-1}(c) \equiv \overline{v}$, thereby extending the domain of Φ^{-1} to $[0, \overline{v}]$ and implying that $\Phi^{-1}(c)$ is well defined when $\Phi(v_i) > c$ for all $v_i \in [v, \overline{v}]$.

We summarize with the following proposition.

Proposition 1 In a Bayesian optimal private good mechanism, subject to incentive compatibility and individual rationality, the allocation rule is given by, for $i \in \mathcal{N}$,

$$\hat{q}_i(v) = \begin{cases} 1 & \text{if } \Phi(v_i) \geq c \text{ and } v_i > \max_{j \in \mathcal{N} \setminus \{i\}} v_j, \\ 0 & \text{otherwise.} \end{cases}$$

In the dominant-strategy implementation, if buyer i trades, then it pays the amount in (2).
3.1.2 Public good

We now describe the optimal mechanism for a public good, which was first derived by Güth and Hellwig (1986). Consider a direct mechanism and denote by \(q(v) \) the probability that the good is provided as a public good when the vector of reports is \(v \). Standard arguments (see, e.g., Krishna 2002) imply that in any incentive compatible, interim individually rational mechanism the designer’s expected profit is

\[
\Pi = \mathbb{E}_v \left[\sum_{i \in \mathcal{N}} \Phi(v_i)q(v) - cq(v) \right],
\]

minus a constant, which, however, can be set equal to 0 by making the individual rationality constraint bind for the smallest possible type.

We look for incentive compatible, interim individually rational mechanisms that maximize the designer’s expected profit \(\Pi \). Notice that \(q(v) = 0 \) for all \(v \) is always a possibility, in which case \(\Pi = 0 \). Thus, avoiding deficits (ex ante, at least) is never a binding constraint for a profit-maximizing mechanism.

In the tradition of Myerson, let us look at the term in brackets,

\[
\sum_{i \in \mathcal{N}} \Phi(v_i)q(v) - cq(v),
\]

to find out whether pointwise maximization will give us an incentive compatible mechanism. The allocation rule that maximizes \(\Pi \) pointwise has \(q(v) = 1 \) if

\[
\sum_{i \in \mathcal{N}} \Phi(v_i) - c \geq 0
\]

and \(q(v) = 0 \) otherwise. To see that this allocation rule is monotone (which is, as is well known, necessary and sufficient for being implementable in a Bayesian incentive compatible way), notice first that if the good is not provided, then reporting something higher only increases the probability of getting access. If the good is provided, then reporting something higher will still give an agent access with probability 1.

This leaves us with the question of what payments can be used to implement the optimal allocation rule. We say that buyer \(i \) is pivotal if

\[
\sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) + \Phi(v_i) - c < 0 \leq \sum_{j \in \mathcal{N}} \Phi(v_j) - c.
\]

(4)

Consider the dominant-strategy implementation and let \(p_i(v) \) be the price that \(i \) has to pay. By individual rationality, of course, \(p_i(v) = 0 \) if \(q(v) = 0 \). For \(v \) such that \(q(v) = 1 \), we have

\[
p_i(v) = \begin{cases}
\Phi^{-1}\left(c - \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) \right) & \text{if (4) holds,} \\
\text{otherwise.}
\end{cases}
\]

(5)
To see that \(p_i \) is well defined, notice that when trade occurs,

\[
\Phi(v) \leq c - \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) \leq \Phi(\overline{v}),
\]

where the first inequality is implied by (4) and the second inequality by the condition for trade, which implies that \(c - \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) \) is in the domain of \(\Phi^{-1} \).

The payment \(p_i(v) \) is the worst report that agent \(i \) could submit and still trade. To see this, suppose types are such that there is trade and that bidder \(i \) is pivotal. If bidder \(i \) reports a value \(r_i < p_i(v) \), then

\[
\sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) + \Phi(r_i) < \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) + \Phi(p_i(v)) = \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) + c - \sum_{j \in \mathcal{N} \setminus \{i\}} \Phi(v_j) = c,
\]

which implies that there is no trade. If bidder \(i \) is not pivotal, then \(p_i(v) \) is equal to the smallest possible type, so no lower report is feasible.

We summarize with the following proposition.

Proposition 2 In a Bayesian optimal public good mechanism, subject to incentive compatibility and individual rationality, the allocation rule is given by \(q(v) = 1 \) if \(\sum_{i \in \mathcal{N}} \Phi(v_i) \geq c \) and \(q(v) = 0 \) otherwise. In the dominant-strategy implementation, if the good is provided, then payments are given by (5).

For the public good, the expected revenue extracted from agent \(i \) is the expected value of \(p_i(v) \) over values of \(v \) such that trade occurs. The seller’s total expected revenue is the sum of the expected payments across all the buyers.

3.1.3 Geometry of the optimal public good mechanism

For a public good, it follows from Proposition 2 that we can write the optimal public good allocation rule as providing the good if and only if for all \(i \in \mathcal{N} \),

\[
v_i > g(v_{-i}),
\]

where \(g : [v, \overline{v}]^{n-1} \to [v, \overline{v}] \) is defined by

\[
g(x) \equiv \begin{cases}
v & \text{if } c - \sum_{i=1}^{n-1} \Phi(x_i) < \Phi(v), \\
\Phi^{-1}(c - \sum_{i=1}^{n-1} \Phi(x_i)) & \text{if } \Phi(v) \leq c - \sum_{i=1}^{n-1} \Phi(x_i) \leq \Phi(\overline{v}), \\
\overline{v} & \text{otherwise.} \end{cases}
\]
We refer to g as the public allocation rule. The function g is nonnegative and monotonically decreasing in each of its arguments. To see this last point, note that

$$
\frac{\partial g(x)}{\partial x_i} = -\Phi^{-1}(c - \sum_{i=1}^{n-1} \Phi(x_j))\Phi'(x_i),
$$

which is negative in the regular case in which Φ, and hence Φ^{-1}, are increasing. Given $v_{-i,j}$, and taking the inverse with respect to v_j, g is an involution, with $g^{-1}(v_j; v_{-i,j}) = g(v_j; v_{-i,j})$. When $n = 2$, we can write this simply as $g^{-1}(v) = g(v)$.

If $c > n\overline{v}$, then the public good is never allocated because $\sum_{i \in N} \Phi(v_i) \leq n\overline{v}$, and so (6) is never satisfied. However, for $c \in [0, n\overline{v}]$, the public allocation rule $g(\cdot)$ goes through the point $(\Phi^{-1}(\frac{c}{n}), \ldots, \Phi^{-1}(\frac{c}{n}))$. For example, when $c = 0$, the public allocation rule g goes through the point (r, \ldots, r), where $r \equiv \Phi^{-1}(c)$ is the optimal private good reserve price. Furthermore, when $n = 2$, then for $v < r$, $g(v) > v$, and for $v > r$, $g(v) < v$.

We summarize in the following lemma.

Lemma 1 The public allocation rule $g(\cdot)$ is nonnegative and decreasing in each of its arguments with $g^{-1}(v_j; v_{-i,j}) = g(v_j; v_{-i,j})$. For $c \in [0, n\overline{v}]$, $g(\Phi^{-1}(\frac{c}{n}), \ldots, \Phi^{-1}(\frac{c}{n})) = \Phi^{-1}(\frac{c}{n})$.

We illustrate a possible shape for the public allocation rule g for the case of $n = 2$ in Fig. 1. In the figure, the set of values for which there is trade corresponds to the shaded area in the figure.

Fig. 1 Illustration of the public allocation rule g and the region of trade for the public good when $n = 2$
3.2 Expected revenue

We focus on revenue generation and so it will be useful to have a characterization of expected revenue in the private and public goods cases. We define expected revenue in terms of the payments in the dominant-strategy implementation of the mechanism, whether private or public.

3.2.1 Private goods

Given the optimal private good reserve \(r \equiv \Phi^{-1}(c) \), it follows from Proposition 1 that the expected revenue for the private good in the optimal mechanism is

\[
R_{\text{private}} \equiv \mathbb{E}_v \left[\max \{ r, v(2) \} \mid v(1) \geq r \right] \Pr (v(1) \geq r).
\]

By standard arguments, we can write this as

\[
R_{\text{private}} = \mathbb{E}_v \left[\Phi(v(1)) \mid v(1) \geq r \right] \Pr (v(1) \geq r)
\]

\[
= \int_{r}^{\overline{v}} \Phi(v) n F^{n-1}(v) f(v) dv,
\]

where \(n F^{n-1}(v) f(v) \) is the density of the highest order statistic out of \(n \) independent draws from \(F \).

3.2.2 Properties of the optimal private good reserve price

We can characterize when the optimal private reserve is above or below the median buyer value.

Proposition 3 Letting \(m \) be the median of \(F \), then \(r < m \) if and only if \(\frac{1}{f(m)} < 2(m - c) \), and \(r = m \) if and only if \(\frac{1}{f(m)} = 2(m - c) \).

Proof See Appendix A.

Because any symmetric, unimodal distribution on \([0, 1]\) has \(f(1/2) > 1 \), we have the following corollary.

Corollary 1 Letting \(m \) be the median of \(F \), when \(c = 0 \), \(r < (\approx)m \) if and only if \(f(m) > (\approx)\frac{1}{2m} \). Further, if \(F \) is symmetric on \([0, \overline{v}]\) with unique mode, then \(r < \frac{\overline{v}}{2} \).

3.2.3 Public goods

It follows from Proposition 2 that in the dominant-strategy implementation, when there is trade, buyer \(i \) pays \(g(v-i) \). Thus, expected revenue for the public good case with \(n \) symmetric buyers is

\[
R_{\text{public}} \equiv n \mathbb{E}_v \left[g(v-i) \mid v_i \geq g(v-i) \text{ for all } i \in \mathcal{N} \right] \cdot \Pr (v_i \geq g(v-i) \text{ for all } i \in \mathcal{N})
\]
\[
= n \int_{v|v_n \geq g(v_{-n})} g(v_{-n}) f(v_1) \cdots f(v_n) dv_1 \cdots dv_n.
\]

Using Proposition 2 and Lemma 1, when trade occurs in the public good mechanism, each buyer pays at least \(g(\bar{v}, \ldots, \bar{v}) \), so the sum of the buyers’ payments is at least \(ng(\bar{v}, \ldots, \bar{v}) \).

Corollary 2 In the optimal public good mechanism, when trade occurs, the seller’s revenue is at least

\[
ng(\bar{v}, \ldots, \bar{v}) = \begin{cases}
n \Phi^{-1}(k - (n - 1)\bar{v}) & \text{if } k - (n - 1)\bar{v} \in [\Phi(0), \bar{v}], \\
0 & \text{if } k - (n - 1)\bar{v} < \Phi(0),
\end{cases}
\]

with \(\lim_{n \to \infty} ng(\bar{v}, \ldots, \bar{v}) = 0 \).

3.2.4 Relation between the public allocation rule \(g \) and the virtual value function \(\Phi \)

As these results show, the curvature of the public allocation rule \(g \) is critical to the determination of the trading set and to revenue. The curvature of \(g \) can be related to the curvature of the virtual value function \(\Phi \). When one is concave, the other is convex. In addition, as shown in the proposition below, we can characterize the curvature of \(g \) using the Arrow-Pratt coefficient of absolute risk aversion for \(\Phi \) (see Pratt 1964; Arrow 1965). (Although we use the coefficient of absolute risk aversion for \(\Phi \) for this characterization, it remains the case that our agents are risk neutral.)

Proposition 4 If \(\Phi \) is convex, then \(g(\cdot; v_{-i,j}) \) is concave, and if \(\Phi \) is concave, then \(g(\cdot; v_{-i,j}) \) is convex. In addition, for \(c \in [0, n\bar{v}] \) and \(\hat{r} \equiv \Phi^{-1}(\xi) \in [\Phi^{-1}(0), \bar{v}] \),

\[
g'(\hat{r}; \hat{r}, \ldots, \hat{r}) = -1 \quad \text{and} \quad g''(\hat{r}; \hat{r}, \ldots, \hat{r}) = -2 \frac{\Phi''(\hat{r})}{\Phi'(\hat{r})}.
\]

Proof See Appendix A.

We can now consider the effects of \(\Phi \) becoming more concave in the sense of undergoing a concave transformation.\(^7\) It follows from Proposition 4 that as \(\Phi \) becomes more concave at \(\hat{r} \), then \(g \) becomes less concave at the point \((\hat{r}, \ldots, \hat{r}) \) where it intersects the diagonal.

Corollary 3 As \(\Phi \) becomes more concave at \(\hat{r} \equiv \Phi^{-1}(\xi) \), \(g \) becomes less concave at the point \((\hat{r}, \ldots, \hat{r}) \).

These results highlight how, given the distribution of types, \(\Phi \) determines optimal private good revenue and \(g \) determines optimal public good revenue:

\[
R_{\text{Private}} = \mathbb{E}_\mathcal{V} \left[I_{\max_{i \in \mathcal{N}} v_i > r} \Phi \left(\max_{i \in \mathcal{N}} v_i \right) \right] and
\]

\(^7\) Given twice differentiable, increasing functions \(u \) and \(\hat{u} \), we say that \(u \) is more concave than \(\hat{u} \) (and \(\hat{u} \) is less concave than \(u \)) if \(u \) is a concave transformation of \(\hat{u} \), i.e., there exists increasing, strictly concave \(h \) such that \(u(x) = h(\hat{u}(x)) \). Function \(u \) is a concave transformation of \(\hat{u} \) if and only if \(-u''/u' > -\hat{u}''/\hat{u}' \) (Mas-Collel et al. 1995, p. 191).
To sell public or private goods

$$R^{\text{public}} = \mathbb{E}_v \left[1_{v_n \geq g(v_{-n})} \sum_{i \in \mathcal{N}} g(v_{-i}) \right].$$

As is well known, the virtual value function uniquely determines \(F \).

Lemma 2 Given virtual value function \(\Phi \) defined on \([\underline{v}, \bar{v}]\), the associated distribution is uniquely defined by

$$F(x) = 1 - \exp \left(\int_{\underline{v}}^x \frac{1}{\Phi(t) - t} dt \right)$$

for \(x \in [\underline{v}, \bar{v}] \).

Proof See Appendix A. \(\square \)

Furthermore, given any continuous function \(\Phi \) defined on \([\underline{v}, \bar{v}]\) with \(\Phi(\bar{v}) = \bar{v} \) and such that for all \(x \in [\underline{v}, \bar{v}] \), \(\Phi(x) < x \), then the continuous function defined by

$$F(x) = 1 - \exp \left(\int_{\underline{v}}^x \frac{1}{\Phi(t) - t} dt \right)$$

satisfies \(F(\underline{v}) = 0 \), \(F(\bar{v}) = 1 \), and \(F'(x) > 0 \) for all \(x \in [\underline{v}, \bar{v}] \). However, the public allocation rule \(g \) does not uniquely determine \(\Phi \). For example, \(g = 1 - x \) follows from a family of symmetric \(\Phi \) that have \(\Phi(1/2) = 0 \).

The following lemma shows that any \(g \) has associated with it a family of virtual value functions and hence a family of distributions.

Lemma 3 Given any virtual value function \(\Phi \) defined on \([0, \bar{v}]\) and associated \(g \) and \(r \) (i.e., \(g(x) \equiv \Phi^{-1}(-\Phi(x)) \) and \(r \equiv \Phi^{-1}(c) \)), and given any \(h(x) \) such that \(h(r) = 0 \), \(h(\bar{v}) = 0 \), and \(h(x) + \Phi(x) \) is increasing on \(x \in (r, \bar{v}) \) with \(h(x) + \Phi(x) < x \), define

$$\hat{h}(x) \equiv \begin{cases} h(x) & \text{if } x \geq r, \\ -h(g^{-1}(x)) & \text{if } x < r, \end{cases} \tag{7}$$

and

$$\hat{\Phi}(x) = \Phi(x) + \hat{h}(x).$$

Then \(\hat{\Phi} \) is increasing with \(\hat{\Phi}(\bar{v}) = \bar{v} \) and \(\hat{\Phi}(g(x)) = -\hat{\Phi}(x) \). Thus, \(\hat{\Phi} \) is a virtual value function associated with some distribution on \([0, \bar{v}]\) and \(g \) defines the public allocation rule for both \(\Phi \) and \(\hat{\Phi} \).

Proof See Appendix A. \(\square \)

4 Illustrative examples

In this section, we illustrate the tensions present in our model using the example of a seller with cost \(c = 0 \) facing two buyers who draw their values from the uniform distribution on \([0, 1]\). In this case, the virtual value function is \(\Phi(x) = 2x - 1 \), with inverse \(\Phi^{-1}(x) = \frac{x + 1}{2} \), and the optimal reserve is \(r = 1/2 \). The public allocation rule is defined by \(g(x) = \Phi^{-1}(-\Phi(x)) = 1 - x \).
As shown in Fig. 2, the regions of the type space where the private and public good are allocated are overlapping but different. The private good is allocated to the highest valuing buyer in the shaded region in Fig. 2(a), whereas the public good is allocated to both buyers in the shaded region in Fig. 2(b).

The payments also differ, as illustrated in Fig. 3. Under private allocation, when the highest valuing buyer has value greater than 1/2, that buyer pays the maximum of the other buyer’s value and the reserve. Thus, the private payment when trade occurs is \(\max\{\min\{v_1, v_2\}, r\} \). This payment is increasing in the value of the second-highest valuing buyer and is highest when both buyers’ types are at the upper support of the distribution, as shown in Fig. 3(a).

In contrast, under public allocation, when the good is allocated, both buyers make payments with each buyer’s payment equal to the public allocation rule evaluated at the other buyer’s value. Thus, when the good is allocated, buyer 1 pays \(g(v_2) \) and buyer 2 pays \(g(v_1) \). Because \(g \) is a decreasing function, it follows that under public allocation, expected revenue is decreasing in the value of the second-highest valuing buyer. In fact, conditional on allocation, it is also decreasing in the value of the highest valuing buyer. Thus, revenue is highest when buyers’ types are at the boundary of the public good trading region, as shown in Fig. 3(b).

If we now integrate to find expected revenues, we see that expected revenue under private allocation,

\[
2 \int_r^1 \int_0^{v_1} \max\{v_2, r\} \, dv_2 \, dv_1 = \frac{5}{12},
\]

is greater than expected revenue under public allocation,

\[
\int_0^1 \int_{g(v_1)}^{1} (g(v_1) + g(v_2)) \, dv_2 \, dv_1 = \frac{1}{3}.
\]
To sell public or private goods

(a) Private revenue

(b) Public revenue

Fig. 3 Revenue by type vector realization for $n = 2$, $c = 0$, and uniformly distributed values on $[0, 1]$. The dashed lines are contour lines, with the arrow indicating the direction of increasing revenue.

Thus, expected revenue is greater under private allocation than public allocation. The public good is allocated less often than the private good and although both buyers make payments when there is trade, the level of payments under public allocation is insufficient to match expected revenue under private allocation.

This analysis begs the question whether public allocation might ever generate higher expected revenue. It also provides some clues to the answer. As shown in Fig. 3, payments under private allocation achieve their maximum when both buyers have the highest possible values, but payments under public allocation achieve their maximum when both buyers have values equal to the reserve (or when one buyer has a low value and the other a high value so that $v_2 = g(v_1)$). This suggests that the hope for public allocation generating higher expected revenue lies in cases in which both buyers are likely to have relatively moderate values, i.e., when the distribution of types has relatively low variance with probability weight centered around values that are slightly above the private reserve.

To illustrate, consider densities defined on $[0, 1]$ of the form

$$f_a(x) \propto x^a(1 - x)^a,$$

with $a \geq 0$ and associated cdf F_a. This is the family of symmetric Beta distributions. The uniform example discussed above corresponds to $a = 0$. As shown by Bagnoli and Bergstrom (2005), the Beta density is logconcave for $a \geq 0$, and An (1998) shows

More precisely, $f_a(x) = \frac{\Gamma(2(1+a))}{\Gamma(1+a)^2} x^a(1 - x)^a$, where $\Gamma(\cdot)$ is the Euler gamma function, $\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt$. For positive integer values of z, $\Gamma(z) = (z-1)!$, so for integer a, $f_a(x) = \frac{(2a+1)!}{(a+2)!} x^a(1 - x)^a$.

Bagnoli and Bergstrom (2005) show that a density proportional to $x^{a_1}(1 - x)^{a_2}$ is logconcave when $a_1 \geq 0$ and $a_2 \geq 0$ and that the second derivative of the log of the density is $\frac{-a_1}{x^2} + \frac{a_2}{(1 - x)^2}$.
that logconcavity of the density implies that \(f_a(x)/(1 - F_a(x)) \) is nondecreasing, which is sufficient for regularity. Thus, in this family of distributions, virtual value functions, \(\Phi_a(v) \equiv v - \frac{1 - F_a(v)}{f_a(v)} \), are increasing. Further, in this family of distributions, an increase in \(a \) corresponds to a second order stochastic dominance shift in \(F_a \) and a decrease in the variance of the distribution. In addition, in the limit as \(a \) goes to infinity, the distribution has all mass at \(1/2 \), giving us the following result.

Lemma 4 When types are drawn from \(F_a \) and \(c = 0 \), revenue for the private good is increasing in \(a \) and \(\lim_{a \to \infty} R_{\text{private}}^a = \frac{1}{2} \) and \(\lim_{a \to \infty} R_{\text{public}}^a = \frac{n}{2} \).

Proof See Appendix A.

Thus, for \(a \) sufficiently large, public allocation dominates private allocation in terms of expected revenue.

To be more concrete and to show that the revenue comparison in Lemma 4 does not hold only in the limit, consider \(a = 2 \). In this case, the optimal private reserve is \(r = 0.398 \), which is below the mean of the distribution, and the public allocation rule is convex, as shown in Fig. 4.

As in the case with a uniform distribution, under private allocation, expected revenue is highest when both buyers have high values, but under public allocation, expected revenue is highest when buyers’ values fall in narrow region. This is illustrated in Fig. 5.

Taking the expectation of revenue with respect to the distribution with \(a = 2 \), which has probability mass centered around \((1/2, 1/2)\), we find that expected revenue under private allocation is 0.419, while expected revenue under public allocation is 0.437, which says that public expected revenue is greater than private expected revenue. We generalize this intuition in the next section.
To sell public or private goods

5 Revenue comparison

In this section we generalize the intuition developed in Sect. 4.

As suggested in Sect. 4, one straightforward case in which one might expect public allocation to provide greater revenue than private allocation is when there is essentially no variance in the buyers’ values, so there is little private information. Suppose that buyers’ values are tightly distributed around \(m \). Then the optimal private mechanism delivers expected revenue of approximately \(m \), but a public mechanism delivers expected revenue of approximately \(n \) times \(m \), and so dominates.

As it turns out, this intuition is correct and can be formalized in a setup with a parameterized family of distributions with mean in \((v, \overline{v}) \). As shown below, if the variance of buyers’ value distribution goes to zero as the distributional parameter increases, then eventually the public good mechanism generates more revenue than the private good mechanism.

Proposition 5 For the family of distributions \(F_a \) on \([v, \overline{v}] \) parameterized by \(a \geq 0 \), where \(F_a \) has mean \(\mu_a \in (v, \overline{v}) \), if \(\lim_{a \to \infty} \text{Var}_{X|F_a}(X) = 0 \), then \(\lim_{a \to \infty} R_{a}^{\text{private}} \leq \lim_{a \to \infty} R_{a}^{\text{public}} \), with a strict inequality as long as \(c \leq n\mu_\infty \).

Proof See Appendix A. \(\square \)

Proposition 5 implies that when buyers values are sufficiently certain (at a level above the seller’s cost), the optimal public good mechanism provides greater revenue than the optimal private good mechanism. The intuition seems quite clear. As the variance goes to zero, private information vanishes. In either case, public or private, the seller essentially sells at the reserve, but with the public good, it gets the reserve for every buyer.
Although Proposition 5 points to the variance of buyers’ values going to zero as driving public expected revenue above private expected revenue, as we now show we can be more precise about what is driving the revenue comparison between public and private goods. Specifically, we can relate the revenue comparison between the private good and public good case to the curvature of the virtual value function.

To begin, we note that one can relate the variance of the distribution F to the concavity or convexity of the virtual value function $\Phi_1(v) = v - \frac{1 - F(v)}{f(v)}$. By Lemma 2, given a virtual value function Φ_1, the associated distribution is uniquely determined as

$$F(v) = 1 - \exp\left(\int_v^\infty \frac{1}{\Phi(t) - t} \, dt\right).$$

Differentiating,

$$f(v) = \exp\left(\int_v^\infty \frac{1}{\Phi(t) - t} \, dt\right) \frac{1}{v - \Phi(v)}$$

and

$$f'(v) = \exp\left(\int_v^\infty \frac{1}{\Phi(t) - t} \, dt\right) \left(\frac{1}{v - \Phi(v)}\right)^2$$

$$+ \exp\left(\int_v^\infty \frac{1}{\Phi(t) - t} \, dt\right) \left(\frac{1}{v - \Phi(v)}\right)^2 (\Phi'(v) - 1),$$

where the first term in the expression for $f'(v)$ is positive and the second term has sign equal to the sign of $\Phi'(v) - 1$. Consider an increasing virtual value function. If the virtual value function is concave, then $\Phi'(v)$ is decreasing in v. Thus, either $\Phi'(v) - 1$ has the same sign for all $v \in [\underline{v}, \overline{v}]$ or it is positive for low values of v and negative for high values of v. This implies that for increasing, concave Φ, the density f is either everywhere increasing, everywhere decreasing, or increasing for low values of v and decreasing for high values of v, i.e., single peaked.

In contrast, if the virtual value function is increasing and convex, then $\Phi'(v)$ is increasing in v, so either $\Phi'(v) - 1$ has the same sign for all $v \in [\underline{v}, \overline{v}]$ or it is negative for low values of v and positive for high values of v. This implies that the density f is either everywhere increasing, everywhere decreasing, or decreasing for low values of v and increasing for high values of v, i.e., u shaped.

We summarize in the following proposition.

Proposition 6 A single-peaked density implies a concave virtual value function and a u-shaped density implies a convex virtual value function.

To continue our analysis of how private versus public revenue relates to the curvature of the virtual value function, we focus on the family of distributions that generates piecewise linear virtual value functions with the kink at the reserve. Thus, the convexity or concavity of these virtual value functions reduces to the change in the slope at the reserve between two linear segments. In addition, this family of distributions has corresponding piecewise linear public allocation rules.
We refer to this family of distributions as “reserve kinked distributions.” The family of reserve kinked distributions is defined by positive parameters b_1 and b_2 as follows:

$$F(x; b_1, b_2) = \begin{cases}
0 & \text{if } x < 0, \\
1 - \left(1 - \frac{1+b_2}{1+b_1} x\right)^{b_1} & \text{if } 0 \leq x \leq r^*, \\
1 - \left(\frac{b_1}{1+b_1}\right)^{b_1} \left(\frac{1+b_2}{b_2} (1-x)\right)^{b_2} & \text{if } r^* < x \leq 1, \\
1 & \text{otherwise,}
\end{cases}$$

where $r^* \equiv \frac{1}{1+b_2}$ is the optimal private reserve. Thus, in this family of distributions, the concavity or convexity of the virtual value function can be changed while still holding fixed the optimal reserve by varying b_1 while holding b_2 constant. Furthermore, such changes to the concavity or convexity of the virtual value function do not cause the variance of the distribution to go to zero. For $b_1 < b_2$, the virtual value function is concave, and so the public allocation rule is convex, and for $b_1 > b_2$, the virtual value function is convex, and so the public allocation rule is concave.

Proposition 7 In the family of reserve kinked distributions with $c = 0$, holding constant the optimal reserve, as the virtual value function becomes more concave, public expected revenue dominates private expected revenue, and for $b_2 = 1$, as the virtual value function becomes more convex, private expected revenue dominates public expected revenue.

Proof See Appendix A. \(\square\)

As shown in Proposition 7, concavity of the virtual value function, which drives the convexity of the public allocation rule, causes public expected revenue to exceed private expected revenue. And, in this case, this occurs in an environment with private information even though the variance is not going to zero.

Further, Proposition 7 provides guidance on the characteristics of the demand function that make it more likely that public expected revenue dominates private expected revenue. For the family of reserve kinked distributions, the concavity or convexity of the virtual value function can be related to the concavity or convexity of the inverse demand function $P(q) \equiv F^{-1}(1 - q; b_1, b_2)$. As shown in Fig. 6(a), when $b_1 = 1/2$ and $b_2 = 1$, both the virtual value function and the inverse demand function are concave, while, as illustrated in Fig. 6(b), for $b_1 = 2$ and $b_2 = 1$, both the virtual value function and the inverse demand function are convex. Thus, using Proposition 7, a concave inverse demand function favors public provision and a convex inverse demand function favors private goods. Interpreting this, for a good where the majority of consumers have high or intermediate value for the good and only a small fractions of consumers have low values, thereby generating concave inverse demand, public provision is likely more profitable than private provision. In contrast, for goods where a small share of consumers have high values and there is a long tail of consumers with relatively low values, thereby generating convex inverse demand, private provision is likely more profitable than public provision.
Fig. 6 Virtual type functions and inverse demand $P(q) = F^{-1}(1 - q)$ for distributions in the family of reserve kinked distributions. Panel (a) shows the concave case with $b_1 = 1/2$ and $b_2 = 1$, where public provision dominates, and panel (b) shows the convex case with $b_1 = 2$ and $b_2 = 1$, where private provision dominates.

We conclude this section by considering the effect of changes in the cost c. So far, we have kept c and n fixed and varied the distribution F. The following is a simple comparative static result with respect to c, keeping n and F fixed:

Proposition 8 For any $n \geq 2$, and F with support $[v, \overline{v}]$, there exists costs c such that expected revenue for a public good exceeds expected revenue for a private good.

The proof of Proposition 8 is straightforward. For any $c \in (v, n\overline{v})$, the profit-maximizing provision of the private good is not to provide it while the public good is provided with positive probability.

6 Public goods in large economies

While the focus of this paper is on the comparison of the profit-maximizing provision of a good as a private and as a public good, keeping the size of the population fixed, we now allow the number of agents n to vary. We first discuss the performance of the profit-maximizing public goods mechanisms as n becomes large in relation to the ex post efficient mechanism, and then compare the maximum profits for a public and a private good, as n increases.

6.1 Comparison to first-best in large economies

Public goods problems in large economies have received considerable attention in the literature; see Mailath and Postlewaite (1990), Hellwig (2003), and Norman (2004) for analyses of first-best allocation rules or allocations rules that are close to first-best (Norman 2004). Particularly closely related to the present paper is the analysis of Rob (1989) who studies the asymptotic properties profit-maximizing mechanism. As he establishes the rather dismal result that the probability that trade occurs under the profit-maximizing mechanism, conditional on trade being ex post efficient, goes to 0 as n becomes large, a brief discussion of Rob’s results, which notionally contrast with the more sanguine ones we present here, is useful.
While Rob (1989) analyzes a procurement setting, the arguments and insights translate directly to the sales problem we consider, which is the setup we use for our discussion here. As one varies \(n \), in line with Rob’s assumptions, we vary the cost of production of the public good so that with \(n \) agents, the cost is \(c \equiv nk \) for some \(k > 0 \). (Observe that this means a departure from the pure public good assumption since the production cost now varies with \(n \).) Two basic cases are usefully distinguished. In the first one, ex post efficiency is not possible without running a deficit whereas in the second one it is. This means that the first case corresponds to assuming that \(k \in (\bar{c}, \bar{v}) \), in which case trade should occur under ex post efficiency if and only if \(V = \sum_{i \in \mathcal{N}} v_i > c \), or equivalently, if and only if

\[
\frac{1}{n} \sum_{i \in \mathcal{N}} v_i > k. \tag{8}
\]

As is well known and readily shown, in this case ex post efficiency is not possible without running a deficit while respecting each agent’s incentive compatibility and individual rationality. In the profit-maximizing mechanism, trade occurs if and only if

\[
\frac{1}{n} \sum_{i \in \mathcal{A}} v_i < k.
\]

10 In the procurement problem, there would be \(n \) owners—say, downstream residents—and an upstream, profit-maximizing firm that needs all \(n \) downstream owners to sell their units to make a profit of \(nr \). Assuming \(c_i \) is independently drawn from a distribution \(F \) with density \(f \) and support \([c, \bar{c}] \) and increasing virtual cost \(\Gamma(c_i) = c_i + F(c_i)/f(c_i) \), the profit-maximizing mechanism induces trade if and only if \(\frac{1}{n} \sum_{i \in \mathcal{N}} \Gamma(c_i) < r \). The property of virtual cost functions that \(\bar{c} = \sup \{ \Gamma(c) \} = \bar{v} \) is then the key for the asymptotic results.

11 To see this, consider first the VCG mechanism assuming that \(\bar{v} = 0 \). In this mechanism, agent \(i \) pays nothing if no production occurs and \(p_i(v_i) = \max \{ 0, c - \sum_{j \in \mathcal{N} \setminus \{ i \}} v_j \} \) otherwise. Because this price is independent of \(v_i \) and less than \(v_i \) when \(i \) reports truthfully, the mechanism satisfies dominant strategy incentive compatibility and individual rationality ex post. Following Loertscher and Mezzetti (2019), let \(\mathcal{A} \) be the set of “active” agents \(i \), which are the agents who are pivotal in the sense that \(\sum_{j \in \mathcal{N} \setminus \{ i \}} v_j < c \). Note \(\mathcal{A} \) may be empty or identical to \(\mathcal{N} \) or any other subset of \(\mathcal{N} \). The revenue of the mechanism is thus

\[
R(v) = \sum_{i \in \mathcal{N}} p_i(v_i) = \sum_{i \in \mathcal{A}} p_i(v_i) = \sum_{i \in \mathcal{A}} (c - V + v_i).
\]

If \(\mathcal{A} = \emptyset \), then \(R(v) = 0 \), so the result follows for this case. If \(\mathcal{A} \neq \emptyset \), then \(R(v) < c \) is equivalent to

\[
|\mathcal{A}|(c - V) + \sum_{i \in \mathcal{A}} v_i - c < 0,
\]

where the left side is weakly less than

\[
(|\mathcal{A}| - 1)(c - V),
\]

and strictly less than this if \(\mathcal{A} \neq \mathcal{N} \) because then \(\sum_{i \in \mathcal{A}} v_i < V \). But since \((|\mathcal{A}| - 1)(c - V) \leq 0 \) with strict inequality if \(|\mathcal{A}| > 1 \), \(R(v) < c \) follows. Because the VCG mechanism satisfies ex post rationality with equality, that is, the lowest possible types have a payoff of 0, it follows from the payoff equivalence theorem that this mechanism maximizes revenue among all efficient, ex post individually rational, dominant strategy mechanisms. By the equivalence theorems between dominant strategy and Bayesian incentive compatibility and ex post and interim individual rationality (see e.g. Manelli and Vincent 2010), it follows that any interim individual rational and Bayesian incentive compatible mechanism that is ex post efficient runs a deficit. Finally, to account for the possibility that \(\bar{v} > 0 \), let \(\bar{v}_i \equiv v_i - \bar{v} \) and \(\bar{c} = n(k - \bar{v}) \), and then repeat the preceding arguments with \(\bar{v}_i \)’s and \(\bar{c} \) in lieu of \(v_i \)’s and \(c \) to reach the same conclusion.
if
\[
\frac{1}{n} \sum_{i \in N} \Phi(v_i) > k.
\] (9)

Because \(\Phi(v_i) < v_i \) for any \(v_i < \bar{v} \), it naturally follows that the profit-maximizing mechanism has a more restrictive allocation rule than the first-best. Moreover, as \(n \) goes to infinity, the left side of (9) converges by the law of large numbers, to the expected value of the random variable \(\Phi(v_i) \), which as noted earlier, is \(\bar{v} \). Because \(\bar{v} < k \), it follows that the profit-maximizing mechanism induces trade with probability 0 as \(n \) goes to infinity. This is particularly unfortunate in the case where \(\mu = \mathbb{E}_v[v] > k \) because in this case trade should occur with probability 1 as \(n \) goes to infinity because the left side (8) converges to \(\mu \), which is larger than \(k \) by assumption, for the same reasons as \(\frac{1}{n} \sum_{i \in N} \Phi(v_i) \) converges to \(\bar{v} \). Hence, the probability that production occurs under the profit-maximizing mechanism, conditional on production being ex post efficient, goes to 0 as \(n \) goes to infinity. However, and crucially, this conditioning event is itself somewhat questionable because we know that ex post efficiency itself is not possible without running a deficit.\(^{12}\)

Consider then the second case, in which ex post efficiency is possible without running a deficit. That is, assume \(\bar{v} \geq k \) and the make it more interesting \(k > \Phi(\bar{v}) \).

(Without the latter assumption, there would be no quantity distortion because of profit maximization because \(\frac{1}{n} \sum_{i \in N} \Phi(v_i) \geq k \) would hold for any realization of types.) In this case, ex post efficiency is possible without running a deficit since every bidder can simply be charged \(p_i(v_{-i}) = \bar{v} \) for any realization of types. In contrast, the profit-maximizing mechanism has a quantity distortion with positive probability because \(\frac{1}{n} \sum_{i \in N} \Phi(v_i) < k \) occurs with positive probability. Importantly, however, by the previously invoked law of large number arguments, the probability of no production under the profit-maximizing mechanism goes to 0 as \(n \) goes to infinity because the left side of (9) goes to \(\bar{v} \), which is larger than \(k \) by assumption.

In summary, we conclude that the perception that profit-maximizing mechanisms perform dismally in large economies may be due to a superficial reading. Indeed, as just argued, in the case in which ex post efficiency is possible without running a deficit, the social surplus created by the profit-maximizing mechanism converges to the social surplus under the ex post efficient mechanism.

6.2 Performance comparison as the number of agents increases

Let \(\Pi_{\text{public}}(n) \) be the expected profit under the incentive compatible, individually rational public good mechanism. Then one can show that \(\Pi_{\text{public}}(n) \) is increasing in

\(^{12}\) A perhaps more natural conditioning event would be that production occurs under the second-best mechanism, that is, the mechanism that maximizes ex ante expected social surplus, subject to incentive compatibility, individual rationality and no-deficit constraints. Second-best mechanisms have been extensively studied in two-sided private good problems (see e.g. Gresik and Satterthwaite 1989), in which case the performance of the second-best mechanism improves quickly as the number of buyers and sellers increases. Of course, for a pure public good with \(\bar{v} > 0 \), the first-best is possible as soon as \(c < nv \), so the most relevant and interesting case would be the case \(\bar{v} = 0 \). Proposition 3 in Hellwig (2003) implies that for a pure public good, the social surplus under the second-best mechanism converges to that under the first-best as \(n \) becomes large. Away from that case, things become substantially murkier.
To sell public or private goods

The proof follows by a revealed preference argument. In the economy with \(n + 1 \) agents, we can ignore the \(n + 1 \)-st agent and implement the same outcome as in the economy with only \(n \) agents, i.e., the additional agent cannot possibly reduce expected profit, proving that \(\Pi_{\text{public}}(n + 1) \geq \Pi_{\text{public}}(n) \). Because the optimal mechanism does not ignore the \(n + 1 \)-st agent, the inequality is strict.

Further, if \(\bar{v} > 0 \), then \(\Pi_{\text{public}}(n) \) is unbounded as \(n \) becomes large. To see this, note that a lower bound for \(\Pi_{\text{public}}(n) \) is \(n\bar{v} - c \), whose derivative with respect to \(n \) is \(\bar{v} \), which is positive under the assumption stated. Thus, the lower bound is unbounded, and therefore so is \(\Pi_{\text{public}}(n) \). Observe that for a private good, the upper bound on profit is \(\bar{v} - c \). Thus, for \(\bar{v} > 0 \), the comparative statics with respect to \(n \) provide a sharp contrast with a perceived wisdom that public goods perform poorly in terms of revenue in particular in large economics. We summarize with the following proposition:

\[\text{Proposition 9} \quad \frac{d\Pi_{\text{public}}(n)}{dn} > 0, \text{ and if } \bar{v} > 0, \text{ then } \lim_{n \to \infty} \Pi_{\text{public}}(n) = \infty. \]

It remains an open question under what conditions on \(F \) the limit result of Proposition 9 generalizes to the case of \(\bar{v} = 0 \). The subtle but important difference between the case of \(\bar{v} = 0 \) and \(\bar{v} > 0 \) also arises in Hellwig (2003), where results depend on whether first-best provision levels are unbounded as the number of agents grows large (see footnote 12).

6.3 Club goods

Of course, club goods—goods that are nonrivalrous in consumption but permit exclusion—dominate both public goods and private goods as they incorporate either as a special case (see e.g. Cornelli 1996; Loertscher and Marx 2017). So in the presence of the availability of club goods, any comparison of public versus private goods becomes a comparison of suboptimal alternatives, perhaps begging the question as to the relevance of that exercise. Suppose, as seems sensible in many applications, that club goods require the same technology to produce as public goods, while private goods use a different technology. For artwork, for example, this may be the choice of whether the work is electronic or physical. Consequently, if the technology must be chosen before production, there may be public pressure to convert a club good, once produced, into a public good. The salience of these concerns is apparent in concurrent debates about lifting patent protection for COVID-19 vaccines.\(^ {13} \) In sharp contrast, there could be no such pressure for private goods because in that case the production technology provides the seller with commitment not to convert. Consequently, in the absence of a commitment device to sell club goods in an exclusive fashion, the relevant question is the one we raised and, at least partially answered, in this paper: When to sell private and when to sell public goods.

\(^{13}\) See, e.g., “Covid: US backs waiver on vaccine patents to boost supply,” BBC News, 6 May 2021, https://www.bbc.com/news/world-us-canada-57004302. In another example, public pressure led to the Global Satellite Positioning system being made available to the public (“Celebrating 10 years of GPS for the masses,” CNET, 1 May 2010, https://www.cnet.com/news/celebrating-10-years-of-gps-for-the-masses/).
6.4 Discussion

Our analysis thus far has focused on the profit comparisons for a given fixed cost of production when the seller can choose whether to produce a public good or a single unit of a private good. In order to understand the profit properties of the two formats, this is the right thought experiment even though it may appear abstract at first glance. With that in mind, we now provide a short discussion of how this analysis informs the comparison of private and public goods when one allows for richer, perhaps more realistic cost structures, for the possibility of congestion cost for the public good, and for the possibility of producing multiple units of the private good.

6.4.1 More general cost structures

Staying within the setup with a single unit, one can allow the cost under public provision to \(n \) agents, denoted by \(C \), to differ from the cost of private provision to one agent, which we continue to denote by \(c \). The condition for provision of the public good is then same as in Proposition 2, but with \(c \) replaced by \(C \). Having \(C \) larger than \(c \) will, of course, skew provision towards private rather than public provision.

6.4.2 Multiple units

To allow multiple units, one could continue to assume that buyers have single-unit demand, but assume that the seller can produce multiple units up to some capacity at constant marginal cost \(c \). Then the public provision problem does not change—a designer allocating publicly would still only allocate either one or zero units. But the private mechanism changes because the designer might allocate more than one unit privately to different buyers. The optimal private mechanisms with multiple units involves allocating a unit to each agent with a virtual type that is larger than \(c \), up to the number of available units. This change, obviously, skews provision towards private provision because the public provision problem is the same and private provision is made weakly more profitable (continuing to allocate a single unit remains an option).

It is straightforward to extend this to allow increasing marginal costs, with the cost for the \(j \)-th unit being \(\lambda_j c \), where \(1 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \). The revenue-maximizing private provision then allocates the good to \(q \) buyers, where \(q \) is the largest number in \(\{0, 1, \ldots, n\} \) such that \(\Phi(v(q)) \geq \lambda_q c \), where \(\lambda_0 = 0 \). Then, provided that \(\sum_{i \in N} \lambda_i c \leq C \), provision shifts weakly towards private goods relative to the baseline model in the paper.

6.4.3 Values that depend on whether the good is private or public

We can also allow the value of the good to an agent to depend on whether the good is provided as a private or as a public good. For example, one can allow the value for a public good for agent \(i \) to be \(\eta v_i \) for some commonly known \(\eta \). Thus, a value of \(\eta \) that is less than 1 captures congestion effects, and a value of \(\eta \) that is greater than 1 captures synergies in consumption.
To sell public or private goods

407

A buyer with type \(v \) has a willingness to pay for the public good of \(\eta v \), which has distribution \(\hat{F}(x) \equiv F(x/\eta) \) on \([\eta v, \eta v]\), with associated density \(\hat{f}(x) \equiv \frac{1}{\eta} f(x/\eta) \).

Thus, the buyer’s virtual type function is \(\hat{\Phi}(x) \equiv x - \frac{1}{\eta} \hat{F}(x) \). Thus, the virtual type of a buyer with type \(v \) and willingness to pay of \(\eta v \) is \(\eta \hat{\Phi}(v) \). Because \(\eta \) “factors out” of the virtual value function, Proposition 2 continues to hold with the adjustment that \(c \) is replaced by \(c/\eta \). It then follows that for \(\eta > 1 \), provision shifts towards public goods, and for \(\eta < 1 \), it shifts towards private goods.

6.5 Revisiting the bilateral trade problem

In this extension, we take inspiration from the bilateral trade problem of Myerson and Satterthwaite (1983, section 5) in which the exchange is organized by a profit-maximizing intermediary. In the optimal mechanism, the good changes hands if and only if the buyer’s virtual value exceeds the seller’s virtual cost. For example, if the buyer’s value \(v \) and the seller’s opportunity cost of selling, \(y \), are both independently drawn from the uniform distribution on \([0, 1]\), then trade occurs if and only if \(2v - 1 \geq 2y \), yielding an expected profit of \(1/24 \) for the intermediary.

Suppose now that the intermediary can, at cost \(k > 0 \), transform the good into a public good. We assume that the good is owned by the seller; that is, there is no production, so \(y \) merely represents the seller’s own use value of the good. The intermediary commits to, conditional on reports from the buyer and seller, to either transform the good, at which point it is available to both the buyer and the seller, or to not transform the good and have no trade. The optimal mechanism in this case calls for the transformation of the good and trade if and only if \(\Phi(v) \geq k \), in which case the buyer pays \(\Phi^{-1}(k) \) to the intermediary while the seller, who can continue to consume the good, receives nothing. The intermediary’s expected profit is

\[
(\Phi^{-1}(k) - k) \Pr(\Phi(v) \geq k) = (\Phi^{-1}(k) - k)(1 - F(\Phi^{-1}(k))).
\]

If \(F(v) \) is the uniform distribution on \([0, 1]\), this is equal to \(\frac{(1-k)^2}{4} \). Thus, in the case where both the buyer’s value and the seller’s cost are uniformly distributed on \([0, 1]\), a profit-maximizing designer commits to the transformation of the good whenever

\[
\frac{1}{24} \leq \frac{(1-k)^2}{4},
\]

which holds for \(k \leq 1 - \frac{1}{\sqrt{6}} \approx 0.59 \).

In contrast, continuing to focus on the case with uniformly distributed types, a designer whose objective is the maximization of social surplus subject to not running a deficit (i.e., the “second-best problem”) generates expected social surplus from private provision of \(9/64 + 1/2 \).\(^{14} \) The social-surplus maximizing designer is constrained to finance the cost of transforming the good into a public from the agents and, because the seller is guaranteed to consume the good, this means that this revenue must come from the

\[^{14} \text{As shown in Myerson and Satterthwaite (1983), the first-best outcome is not possible without running a deficit. For the case of uniformly distributed types on } [0, 1], \text{ the constrained mechanism that maximizes social surplus subject to no deficit has trade if and only if } v \geq c + \frac{1}{4}, \text{ which generates expected revenue of zero and expected gains from trade of } \frac{9}{64}. \text{ Expected social surplus under the second-best mechanism is thus } 9/64 + 1/2. \]

\(\odot \) Springer
The buyer. If the designer commits to the transformation into a public good, conditional on transformation being worthwhile, the optimal mechanism involves the transformation of the good if and only if $v \geq k$, in which case the buyer pays k to the designer while the seller receives no payment. The designer’s profit is zero, and expected social surplus is

$$\mathbb{E}_v[v - k \mid v \geq k] \Pr(v \geq k) + \mathbb{E}_v[c] = \frac{(1 - k)^2}{2} + \frac{1}{2}.$$

To see this, notice that whether or not the public good is provided, the seller consumes it, adding the expected value of $\mathbb{E}_v[c] = 1/2$ to social surplus. The buyer, who has to finance the provision of the public good transformation, pays the price k if and only if $v \geq k$, generating and expected social surplus, conditional on $v \geq k$, of $\mathbb{E}_v[v - k \mid v \geq k] = (1 - k)/2$. Because the probability of $v \geq k$ is $1 - k$, the expression follows. Thus, the designer commits to the public good technology if and only if $(1 - k)^2 > 9/64$, which is equivalent to $k < 1 - \sqrt{9/32} \approx 0.47$.

Interestingly, compared to a profit-maximizing intermediary, a social-surplus maximizing designer is less inclined to transform the good into a public good. That is, there is excessive public good transformation by a profit-maximizing intermediary insofar as for $k \in (0.47, 0.59)$, the transformation at cost k only occurs under profit maximization. The intuition for this result is the familiar one based on business-stealing incentives in the literature on excessive entry in Industrial Organization: under the profit-maximizing mechanism with a private good, the seller obtains a positive surplus from trade—it is paid the virtual cost, which is larger than its cost, whenever trade occurs—while it gains nothing if the public good is provided. While the social-surplus maximizing intermediary has an incentive to “steal” these rents, which makes it more inclined to transform the good into a public good than is a benevolent social planner.

Going beyond the bilateral trade setting of Myerson and Satterthwaite (1983), we can allow for multiple buyers. Further, to state things with greater generality, assume that the seller’s type is drawn from distribution H with the same support as the buyers’ distribution F, which for our purposes here, we take to be $[0, 1]$, and let h be the associated density, which is assumed to be positive on the interior of the support. The seller’s virtual type function is the virtual cost function $\Gamma(y) \equiv y + H(y)/H(y)$, which we assume is increasing.

In this setup, standard mechanism results (see, e.g., Krishna 2002) tell us that the designer’s maximized expected profit from private provision can be written in terms of the virtual type functions as follows:

$$\tilde{\pi}_{\text{private}} \equiv \mathbb{E}_{v, y} \left[(\Phi(v(1)) - \Gamma(y)) \mid \Phi(v(1)) \geq \Gamma(y) \right] \cdot \Pr\left(\Phi(v(1)) \geq \Gamma(y) \right).$$

In this setup, both the buyer and the seller obtain information rents.

If the designer transforms the good into a public good, then the designer need not compensate the seller because the seller incurs no opportunity cost associated with selling the good because the seller can continue to consume the good. The question facing the designer is then only how much can be extracted from the buyers, and this is
To sell public or private goods

(a) Intermediary profits

(b) Maximum transformation costs

Fig. 7 Intermediary profits and maximum transformation costs in the setup with two-sided private information. Panel (a): intermediary profits under private provision and under public provision when transformation costs are zero. Panel (b): maximum transformation cost \(\tilde{k} \) that a profit-maximizing intermediary would be willing to incur and the range of transformation costs (shaded region) that a profit-maximizing designer would be willing to incur to transform the good from private to public. Assumes that the seller’s and buyers’ types are uniformly distributed on \([0, 1]\).

given by Proposition 2 if we take \(c \) to be equal to \(k \). Alternatively, as shown above, we can write the revenue from public provision, not including the cost \(k \) of transforming the good into a public good, which has to be borne whenever trade occurs, as

\[
\tilde{R}_{\text{public}}(k) \equiv n \mathbb{E}_v \left[g_k(v_{-i}) \mid v_i \geq g_k(v_{-i}) \forall i \in \mathcal{N} \right] \cdot \Pr \left(v_i \geq g_k(v_{-i}) \forall i \in \mathcal{N} \right),
\]

where \(g_k(x) \) is defined to be equal to \(g(x) \), as defined above, but with \(c = k \). This generates expected profit to the designer from a public good of

\[
\tilde{\Pi}_{\text{public}}(k) \equiv \tilde{R}_{\text{public}}(k) - k \Pr \left(\sum_{i \in \mathcal{N}} \Phi(v_i) \geq k \right).
\]

The designer’s maximum willingness to pay to transform the good into a public good is then \(\tilde{k} \) such that

\[
\tilde{\Pi}_{\text{public}}(\tilde{k}) = \tilde{\Pi}_{\text{private}}.
\]

In Fig. 7, we illustrate how \(\tilde{\Pi}_{\text{public}}(0) \) and \(\tilde{\Pi}_{\text{private}} \) vary with the number of buyers and the range of transformation costs such that a profit-maximizing designer would be willing to transform the good for the case of uniformly distributed types.

As illustrated by Fig. 7(a), the profits to the intermediary from both private and public provision are increasing in the number of buyers, but at a greater rate for the case of public provision as the number of buyers increases. Thus, as shown in Fig. 7(b), as the number of buyers increases, the intermediary is willing to commit to public provision for greater levels of the transformation cost.
7 Conclusions

Traditional analysis has taken the nature of the good that a designer can sell—public or private—as given. Technological advances increasingly make this a choice variable for the designer, thereby raising the question as to what is better for the designer, to sell the good as a private or as a public good.15 In this paper, we address and provide answers to this question.

We show that for sufficiently, but not excessively high costs, only the public good can profitably be produced, keeping the number of agents and their type distribution fixed. Moreover, if the lower bound of the type distribution is positive, then the profit from selling the public good is unbounded in the number of agents, which contrasts sharply with the profit from selling the private good, which is no more than the upper bound of the support minus the cost of production. As the variance of the agents’ distribution becomes smaller, public goods eventually outperform private goods. Revisiting the classic bilateral trade problem, and assuming that the designer can, at a fixed cost, transform the private good owned by the seller into a public good, we show that a profit-maximizing designer can have excessive incentives for transformation into a public good.

One avenue for future research would be to investigate how the designer would like to affect the agents’ type distribution as a function of the nature of the good for sale. While for private goods, by a simple revealed preference argument, first-order stochastic dominance improvements increase the designer’s revenue, the same need not be true for a public good. Another open question pertains to the conditions, if any, under which the profit from the public good is unbounded in the number of agents even if the lower bound of the support is zero.

A Proofs

\textbf{Proof of Proposition 3.} By the definition of Φ,

$$
\Phi(v) = v - \frac{F(m) - F(v)}{f(v)} - \frac{1 - F(m)}{f(v)}.
$$

Thus,

$$
\Phi(m) = m - \frac{1 - F(m)}{f(m)} = m - \frac{1}{2f(m)},
$$

and $\Phi(m) > c$ if and only if $\frac{1}{f(m)} < 2(m - c)$, in which case $\Phi(v) > c$ for all $v \geq m$ and, thus, $r < m$ because Φ is assumed increasing. Similarly, if $\frac{1}{f(m)} = 2(m - c)$, then $\Phi(m) = c$ and so $r = m$. \hfill \Box

\footnote{Although perhaps less pertinent, the question also arises in a brick-and-mortar world. Consider, for example, the problem of providing services to cross a waterway. Building a bridge would be the provision of a public good, while choosing to use a ferry would be to provide the same services with a good that naturally permits exclusion. Of course, in principle, the bridge could also levy a toll, but as we discussed, public pressure may mount to render the ex post inefficient levy unsustainable.}
Proof of Lemma 4. Using the definition of g, when g is positive and finite, $g(v_j; v_{-i,j}) = \Phi^{-1}(c - \sum_{\ell \neq i} \Phi(v_{\ell}))$ and so

$$g'(v_j; v_{-i,j}) = \frac{-\Phi'(v_j)}{\Phi'(\Phi^{-1}(c - \sum_{\ell \neq i} \Phi(v_{\ell})))} = \frac{-\Phi'(v_j)}{\Phi'(g(v_j; v_{-i,j}))} < 0.$$

Thus,

$$g''(v_j; v_{-i,j}) = \frac{-\Phi''(v_j)\Phi'(g(v_j; v_{-i,j})) + \Phi'(v_j)\Phi''(g(v_j; v_{-i,j}))g'(v_j; v_{-i,j})}{(\Phi'(g(v_j; v_{-i,j})))^2} = \frac{-\Phi''(v_j)\Phi'(g(v_j; v_{-i,j}))}{(\Phi'(g(v_j; v_{-i,j})))^2}.$$

Thus, $g''(v_j; v_{-i,j})$ has sign opposite of $\Phi''(g(v_j; v_{-i,j}))$. By Lemma 1, $g(\hat{\tau}; \hat{\tau}, \ldots, \hat{\tau}) = \hat{\tau}$, and so $g'(\hat{\tau}; \hat{\tau}, \ldots, \hat{\tau}) = \frac{-\Phi'(\hat{\tau})}{\Phi'(g(\hat{\tau}; \hat{\tau}, \ldots, \hat{\tau}))} = -1$ and

$$g''(\hat{\tau}; \hat{\tau}, \ldots, \hat{\tau}) = -\frac{\Phi''(\hat{\tau})}{\Phi'(g(\hat{\tau}; \hat{\tau}, \ldots, \hat{\tau}))} = -2\frac{\Phi''(\hat{\tau})}{\Phi'(\hat{\tau})}.$$

\[\square \]

Proof of Lemma 2. Note that $\frac{d}{dx} \ln(1 - F(x)) = -\frac{f(x)}{1 - F(x)}$ and $\Phi(x) - x = \frac{1 - F(x)}{f(x)}$, so

$$\frac{1}{\Phi(x) - x} = \frac{-f(x)}{1 - F(x)} = \frac{d}{dx} \ln(1 - F(x)).$$

Thus,

$$1 - \exp\left(\int_x^1 \frac{1}{\Phi(t) - t} dt\right) = 1 - \exp\left(\int_x^1 \frac{d \ln(1 - F(t))}{dt} dt\right) = 1 - \exp(\ln(1 - F(x)) - \ln(1)) = F(x).$$

\[\square \]

Proof of Lemma 3. Recall that g is decreasing and $g(r) = r$, so for $x > r$, $g(x) < r$. Recall also that g is its own inverse: $g(x) = g^{-1}(x)$. By assumption Note that for $x \in (0, r)$,

$$\hat{\Phi}(x) = \Phi(x) - h(g^{-1}(x))$$
\[= -\Phi(g(x)) - h(g(x))\]
\[= -\hat{\Phi}(g(x)).\]

Thus, for \(x \in (0, r)\) (assuming differentiability),
\[\hat{\Phi}'(x) = -\hat{\Phi}'(g(x))g'(x),\]
which is positive by our assumption that \(\hat{\Phi}\) is increasing on \((r, \overline{v})\) and the result that \(g\) is decreasing everywhere. Furthermore,
\[\hat{\Phi}(g(x)) = \Phi(g(x)) + \hat{h}(g(x))\]
\[= -\Phi(x) + \begin{cases} h(g(x)) & \text{if } g(x) \geq r, \\ -h(x) & \text{if } g(x) < r \end{cases}\]
\[= -\Phi(x) + \begin{cases} h(g(x)) & \text{if } x \leq r, \\ -h(x) & \text{if } x > r \end{cases}\]
\[= -\Phi(x) + \begin{cases} h(g^{-1}(x)) & \text{if } x \leq r, \\ -h(x) & \text{if } x > r \end{cases}\]
\[= -\Phi(x) - \hat{h}(x).\]

\[\square\]

Proof of Lemma 4. For all \(a \geq 0\), \(r_a \leq \frac{1}{2}\) by Proposition 3. Let \(a' > a\). Given \(r \leq \frac{1}{2}\), expected revenue for the private good is greater under distribution \(F_{a'}\) than \(F_a\) because \(F_{a'}\) second-order stochastically dominates \(F_a\). Thus, optimal expected revenue for the private good is increasing in \(a\). \[\square\]

Proof of Proposition 5. In the setup with parameterized distributions, we have a family of distributions \(F_a\) parameterized by \(a \geq 0\), where \(F_a\) has mean \(\mu_a \in (0, \overline{v})\). Assume that \(\lim_{a \to \infty} Var_X|F_a(X) = 0\). In the limit, all buyers have value \(\mu_\infty\), so in the limit expected revenue in the private good case is bounded above by \(\mu_\infty\) and in the public good case by \(n\mu_\infty\). Let \(\varepsilon \in (0, \mu_\infty)\). Consider the private good mechanism with suboptimal reserve in which the highest-valuing agent pays \(\max\{v(2), \mu_\infty - \varepsilon\}\) whenever its value exceeds \(\mu_\infty - \varepsilon\). In the limit as \(a \to \infty\), the probability with which \(v(1)\) exceeds \(\mu_\infty - \varepsilon\), in which case revenue is at least \(\mu_\infty - \varepsilon\), goes to one (using Markov’s Theorem and the assumption that the variance of the distribution goes to zero as \(a\) goes to \(\infty\)). Letting \(\varepsilon\) go to zero gives the result that expected revenue for the private good in the optimal private good mechanism converges to \(\mu_\infty\) as long as \(c \leq \mu_\infty\) and to zero otherwise.

Similarly, consider the suboptimal public good mechanism in which all \(n\) agents pay \(\mu_\infty - \varepsilon\) whenever all agents’ values exceed \(\mu_\infty - \varepsilon\). In the limit as \(a \to \infty\), the probability with which all agents’ values exceed \(\mu_\infty - \varepsilon\) goes to one, which generates revenue \(n(\mu_\infty - \varepsilon)\). Letting \(\varepsilon\) go to zero gives the result that expected revenue in the optimal public good mechanism converges to \(n\mu_\infty\) as long as \(c \leq n\mu_\infty\) and to zero otherwise. \[\square\]

Proof of Proposition 7. We begin by stating and proving two lemmas: \[\square\]
Lemma A.1 For $c = 0$ and $b_2 > 0$,

$$
\lim_{b_1 \to 0} F(x; b_1, b_2) = \begin{cases}
1 - \left(\frac{1 + b_2}{b_2} (1 - x)\right)^{\frac{b_2}{1 + b_2}} & \text{if } \frac{1}{1 + b_2} \leq x \leq 1, \\
0 & \text{otherwise,}
\end{cases}
$$

and

$$
\lim_{b_1 \to 0} f(x; b_1, b_2) = \begin{cases}
(1 + b_2) \left(\frac{1 + b_2}{b_2} (1 - x)\right)^{\frac{b_2-1}{1 + b_2}} & \text{if } \frac{1}{1 + b_2} \leq x \leq 1, \\
0 & \text{otherwise},
\end{cases}
$$

and

$$
\lim_{b_1 \to 0} \Phi(x; b_1, b_2) = \begin{cases}
-\frac{1}{b_2} + \frac{1 + b_2}{b_2} x & \text{if } \frac{1}{1 + b_2} \leq x \leq 1, \\
-\infty & \text{otherwise,}
\end{cases}
$$

and

$$
\lim_{b_1 \to 0} \Phi^{-1}(x; b_1, b_2) = \begin{cases}
\frac{1}{1 + b_2} + \frac{b_2}{1 + b_2} x & \text{if } 0 \leq x \leq 1,
\end{cases}
$$

and

$$
\lim_{b_1 \to 0} g(x; b_1, b_2) = \begin{cases}
\frac{1}{1 + b_2} & \text{if } \frac{1}{1 + b_2} \leq x \leq 1, \\
\infty & \text{otherwise.}
\end{cases}
$$

Proof Derivations of the limits for F, f, and Φ are straightforward. For g, note that $g(x; b_1, b_2) = \Phi^{-1}(\max\{0, -\Phi(x)\})$. In the limit as b_1 goes to zero, for $x > \frac{1}{1 + b_2}$, this is

$$
\Phi^{-1}(\max\{0, \frac{1}{b_2} - \frac{1 + b_2}{b_2} x\}) = \Phi^{-1}(0) = \frac{1}{1 + b_2}.
$$

The limit distributions for $b_2 = 1$, which implies a reserve of $1/2$ are as described in the following lemma:

Lemma A.2 For $c = 0$ and $b_2 = 1$,

$$
\lim_{b_1 \to \infty} F(x; b_1, b_2) = \begin{cases}
1 - e^{-2x} & \text{if } 0 \leq x < 1/2, \\
1 + \frac{2}{e} (x - 1) & \text{if } 1/2 \leq x \leq 1,
\end{cases}
$$

and

$$
\lim_{b_1 \to \infty} f(x; b_1, b_2) = \begin{cases}
2e^{-2x} & \text{if } 0 \leq x < 1/2, \\
\frac{2}{e} & \text{if } 1/2 \leq x \leq 1,
\end{cases}
$$

and

$$
\lim_{b_1 \to \infty} \Phi(x; b_1, b_2) = \begin{cases}
x - \frac{1}{2} & \text{if } 0 \leq x < 1/2, \\
x - 1 & \text{if } 1/2 \leq x \leq 1,
\end{cases}
$$

and

$$
\lim_{b_1 \to \infty} \Phi^{-1}(x; b_1, b_2) = \begin{cases}
x + \frac{1}{2} & \text{if } -\frac{1}{2} \leq x \leq 0, \\
x + \frac{1}{2} & \text{if } 0 < x \leq 1,
\end{cases}
$$

and

$$
\lim_{b_1 \to \infty} g(x; b_1, b_2) = \begin{cases}
3/4 - x/2 & \text{if } 0 \leq x < 1/2, \\
3/2 - 2x & \text{if } 1/2 \leq x \leq 3/4, \\
0 & \text{if } 3/4 < x \leq 1.
\end{cases}
$$
Proof Derivations of the limits are straightforward noting that \(\lim_{y \to \infty} \left(\frac{x - ax}{y} \right)^y = e^{-ax} \).

Continuation of the proof of Proposition 7. Within the family of reserve kinked distributions, concavity increases holding constant the optimal reserve when \(b_1 \) goes to zero. This corresponds to an increase in the slope of the segment of the virtual value function to the left of the reserve. Referring to the limits shown in Lemma A.1, for \(c = 0 \) and \(b_2 > 0 \), in the limit as \(b_1 \) goes to zero, public expected revenue approaches \(\frac{n}{1+b_2} \) and private expected revenue approaches the expected value of the second highest draw from \(G(x) = 1 - \left(\frac{1+b_2}{b_2} (1-x) \right)^{b_2} \) defined on \([\frac{1}{1+b_2}, 1] \):

\[
\int_{\frac{1}{1+b_2}}^{1} xn(n-1)G^{n-2}(x)(1-G(x))g(x)dx,
\] (10)

which is less than \(\frac{n}{1+b_2} \) for all \(n \geq 2 \) and \(b_2 > 0 \).

For \(n = 2 \), (10) is equal to \(\frac{b_2(2+3b_2)}{(1+b_2)^2(1+2b_2)} \), which is less than \(\frac{2}{1+b_2} \) for all \(b_2 > 0 \). Clearly, \(\frac{n}{1+b_2} \) exceeds (10) if \(n > 1 + b_2 \) because (10) is less than one. Thus, it remains to show that \(\frac{n}{1+b_2} \) exceeds (10) when \(n \geq 3 \) and \(b_2 > n - 1 \). This follows from straightforward numerical calculations. One can show that (10) is decreasing in \(b_2 \) for \(b_2 \geq 1 \) and at a faster rate than \(\frac{n}{1+b_2} \) and that (10) is less than \(\frac{n}{1+b_2} \) at \(b_2 = 1 \) for all \(n \).

Within the family of reserve kinked distributions, convexity increases holding constant the optimal reserve when \(b_1 \) goes to infinity. This corresponds to a decrease in the slope of the segment of the virtual value function to the left of the reserve. Relying on Lemma A.2, and fixing the optimal reserve at \(1/2 \) (i.e., \(b_2 = 1 \)), for \(n = 2 \), \(c = 0 \), and \(b_2 = 1 \), in the limit as \(b_1 \) goes to infinity, public expected revenue is \(\frac{5e-6}{4e^2} \approx 0.26 \) and private expected revenue is \(\frac{1}{e} - \frac{1}{3e^2} \approx 0.32 \).

References

An MY (1998) Logconcavity versus Logconvexity: A Complete Characterization. Journal of Economic Theory 80:350–369
Arrow KJ (1965) Aspects of the Theory of Risk Bearing, The Academic Bookstore
Bagnoli M, Bergstrom T (2005) Log-concave Probability and Its Applications. Econ Theor 26:445–469
Clarke E (1971) Multipart Pricing of Public Goods. Public Choice 11:17–33
Cornelli F (1996) Optimal Selling Procedures with Fixed Costs. Journal of Economic Theory 71:1–30
Green J, Laffont J-J (1977) Characterization of Satisfactory Mechanisms for the Revelation of Preferences for Public Goods. Econometrica 45:427–438
Gresik T, Satterthwaite M (1989) The Rate at which a Simple Market Converges to Efficiency as the Number of Traders Increases: An Asymptotic Result for Optimal Trading Mechanisms. Journal of Economic Theory 48:304–332
Groves T (1973) Incentives in Teams. Econometrica 41:617–631
Güth W, Hellwig M (1986) The Private Supply of a Public Good. J Econ 5:121–159
Hellwig MF (2003) Public-Good Provision with Many Participants. Rev Econ Stud 70:589–614
Hume D (1978) A Treatise of Human Nature, Edited by Selby-Bigge LA, Revised by Nidditch P, First published 1739, Clarendon Press, second ed

\(\copyright \) Springer
Hurwicz L (1973) The Design of Mechanisms for Resource Allocation. American Economic Review 63:1–30
Kerschbamer R, Koray S (2001) Multiprincipals Multiagents Incentive Design. Rev Econ Design 6:5–40
Krishna V (2002) Auction Theory. Elsevier Science, Academic Press
Loertscher S, Marx LM (2017) Club Good Intermediaries. Int J Ind Organ 50:430–459
Loertscher S, Mezzetti C (2019) The Deficit on Each Trade in a Vickrey Double Auction Is at Least as Large as the Walrasian Price Gap. J Math Econ 84:101–106
Mailath GJ, Postlewaite A (1990) Asymmetric Information Bargaining Problems with Many Agents. Rev Econ Stud 57:351–367
Manelli AM, Vincent DR (2010) Bayesian and Dominant-Strategy Implementation in the Independent Private-Values Model. Econometrica 78:1905–1938
Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic Theory. Oxford University Press, Oxford, UK
Mussa M, Rosen S (1978) Monopoly and Product Quality. Journal of Economic Theory 18:301–317
Myerson R, Satterthwaite M (1983) Efficient Mechanisms for Bilateral Trading. Journal of Economic Theory 29:265–281
Myerson RB (1981) Optimal Auction Design. Math Oper Res 6:58–73
Norman P (2004) Efficient Mechanisms for Public Goods with Use Exclusions. Rev Econ Stud 71:1163–1188
Pratt JW (1964) Risk Aversion in the Small and in the Large. Econometrica 32:122–136
Rob R (1989) Pollution Claim Settlements under Private Information. Journal of Economic Theory 47:307–333
Samuelson PA (1954) The Pure Theory of Public Expenditure. Rev Econ Stat 36:387–389
Vickrey W (1961) Counterspeculation, Auction, and Competitive Sealed Tenders. Journal of Finance 16:8–37

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.