Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
technologies that include automated analysis and report generation, as our laboratory now utilizes. The most frequent cause of PGT-A error by the IVF laboratory is maternal cell contamination within the provided biopsy specimen. IMPACT STATEMENT: Discrepancies in PGT results can and will occur. A thorough investigation into discrepancies affords opportunities to improve IVF laboratory practices and develop PGT technologies to proactively identify potential sources of error, such as contamination present within biopsy specimens.

ORAL ABSTRACT SESSION: PUBLIC HEALTH AND REPRODUCTION

O-73 10:45 AM Monday, October 24, 2022

IMPACT OF THE COVID-19 PANDEMIC ON SOCIAL OOCYTE CRYOPRESERVATION TRENDS. Alex Raghunandan, BS,1 Nina Vyas, MD,2 Ashley Aluko,3 Steven D. Spandorfer, MD,4 Zev Rosenwaks, M.D.4 1Monroe Township, NJ; 2Weill Cornell Medicine, New York, NY; 3NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; 4The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY.

OBJECTIVE: We aimed (1) to quantify the impact of COVID-19 on the number of oocyte cryopreservation cycles performed, and (2) to characterize the demographics of fertility preservation patients both before and during the pandemic.

MATERIALS AND METHODS: We performed a retrospective analysis of patients who underwent social oocyte cryopreservation at a large university-affiliated REI practice. Cycles were divided into two 22-month study periods: pre-pandemic (May 2018–February 2020) and post-pandemic (March 2020–December 2021). Oocyte cryopreservation cycles for medical indications (e.g., cancer diagnosis) were excluded. A Student’s t-test was used to compare parametric variables between the two groups, while a Wilcoxon Rank-Sum was used for non-parametric variables. A Chi-squared test was used to compare the proportion of oocyte cryopreservation cycles to total ovarian stimulation cycles during each study period. A p-value of <0.05 was considered statistically significant.

RESULTS: During the pandemic, there was a decrease in total ovarian stimulation cycles (n=6,343) compared to the pre-pandemic period (n=6,653). In contrast, there was an 18.9% increase in the number of oocyte cryopreservation cycles seen in the post-pandemic group versus the pre-pandemic group (n=1,165 and n=980, respectively). Overall, there was a difference in the proportion of oocyte cryopreservation cycles performed at our institution pre-pandemic and post-pandemic (14.7 vs. 18.3%, p < 0.001). In addition, the age of post-pandemic oocyte cryopreservation patients decreased (36.2 vs. 35.7 yr, p = 0.004). There was no significant difference found in the BMI, AMH, and number of cryopreserved oocytes per cycle between the two patient groups.

CONCLUSIONS: Although total ovarian stimulation cases declined following the pandemic, the number of social oocyte cryopreservation cycles increased proportionally. This suggests a shift in patients who present to REI clinics for proactive reproductive planning versus infertility care. More studies are needed to elucidate if this is due to a trend toward delayed childbearing, increase in ART, and/or the pandemic.

IMPACT STATEMENT: Following the COVID-19 pandemic, there was a proportional increase in social oocyte cryopreservation cycles.

TABLE 1. Identified causes of discrepant PGT-A results from DNA fingerprinting analysis

Chromosome Involved in Claimed Discrepancy	MCC	Other Contamination	Different Embryo Transferred	Probable Mosaicism	Prenatal Test Error	Spontaneous Pregnancy	Inconclusive
Sex (22)	10	2	6	1	1	1	1
Autosomal (12)	0	0	0	8	0	0	4

PRE-PREGNANCY VACCINATION INTENTION AND RESPONSE RATE AMONG WOMEN CONSIDERING OR UNDERGOING FERTILITY TREATMENTS DURING THEOMICRON SURGE OF THE COVID-19 PANDEMIC. Luce A. Kassi, MD, Amelia Swanson, PhD, Angela K. Lawson, Ph.D., Shriya Shah, BA, Mary Ellen Pavone, MD Northwestern University, Chicago, IL.

TITLE: Vaccine and booster acceptance in women considering or undergoing fertility treatments during the omicron surge of the COVID-19 pandemic.

OBJECTIVE: To evaluate perceptions of COVID-19 vaccination and vaccine booster during the omicron surge in women considering or undergoing fertility treatment.

MATERIALS AND METHODS: IRB approval was obtained. Cross-sectional anonymous surveys of patients were collected from a single academic fertility center. Participants were randomized 1:1 to receive a one-page graphic of supplemental education, which provided basic facts regarding the association between infertility and COVID-19 vaccination and boosters based on the ASRM COVID-19 taskforce recommendations. Beliefs related to COVID-19 vaccination and boosters were assessed with dichotomous, Likert scale and multiple-choice questions. Assessment of trust in the medical system was conducted via the Medical Mistrust Index (MMI). Descriptive data and chi-square analysis were used to compare the intervention v. no intervention groups.

RESULTS: To date, a total of 422/2558 surveys have been received, response rate = 16.5%. The participants were 36.40 years old (SD = 4.28), married (89.3%), nulliparous (63.3%), White (82.5%), Asian (5.9%), Hispanic (4.0%), and Black (3.3%) and 47.7% had a history of at least one pregnancy loss. Among the participants who reported their vaccination status (n=408), 96.8% of the study population were fully vaccinated, 86.3% had received their booster dose, 4.5% were fully vaccinated but did not plan on receiving a booster, while only 2.4% did not plan on getting vaccinated. Of those able to be vaccinated during pregnancy, 23.5% were vaccinated during pregnancy. Patients with vaccine hesitancy had higher medical mistrust scores (r= .21, p<.001). Participants with higher MMI scores had higher PHQ-8 scores (p<.001) and GAD-7 scores (p<.001), were more likely to have a loved one diagnosed with COVID-19 (p=.002), were less likely to