Unprojection and deformations of tertiary Burniat surfaces

JORGE NEVES AND ROBERTO PIGNATELLI

Abstract. We construct a 4-dimensional family of surfaces of general type with $p_g = 0$ and $K^2 = 3$ and fundamental group $\mathbb{Z}/2 \times Q_8$, where $Q_8$ is the quaternion group. The family constructed contains the Burniat surfaces with $K^2 = 3$. Additionally, we construct the universal coverings of the surfaces in our family as complete intersections on $(\mathbb{P}^1)^4$ and we also give an action of $\mathbb{Z}/2 \times Q_8$ on $(\mathbb{P}^1)^4$ lifting the natural action on the surfaces.

The strategy is the following. We consider an étale $(\mathbb{Z}/2)^3$-cover $T$ of a surface with $p_g = 0$ and $K^2 = 3$ and assume that it may be embedded in a Fano 3-fold $V$. We construct $V$ by using the theory of parallel unprojection. Since $V$ is an Enriques–Fano 3-fold, considering its Fano cover yields the simple description of the above universal covers.

Mathematics Subject Classification (2010): 14J29 (primary).

1. Introduction

A Burniat surface is the minimal resolution of singularities of a bidouble cover, i.e., a finite flat Galois morphism with Galois group $(\mathbb{Z}/2)^2$, of the projective plane branched along the divisors

$$D_1 = A_1 + A_2 + A_3, \quad D_2 = B_1 + B_2 + B_3, \quad D_3 = C_1 + C_2 + C_3,$$

where $A_1, B_1, C_1$ form a triangle with vertices $x_1, x_2, x_3$, $A_1, A_2, A_3$ are lines through $x_1$, $B_1, B_2, B_3$ are lines through $x_2$ and $C_1, C_2, C_3$ are lines through $x_3$ (see Figure 1.1). Burniat surfaces were first constructed by Burniat [13], though a substantial part of the initial study of these surfaces was done about 10 years later by Peters [29]. They have an equivalent description known as the Inoue surfaces [17], given as the quotient of a divisor in the product of three elliptic curves by a finite group. See [3] for an excellent introduction to the subject of Burniat surfaces.

This work was partially supported by CMUC and FCT (Portugal) through the European program COMPETE/FEDER and through Projects PTDC/MAT/099275/2008 and PTDC/MAT/111332/2009.

Received July 26, 2011; accepted in revised form March 20, 2012.