Nf1 Regulates Hematopoietic Progenitor Cell Growth and Ras Signaling in Response to Multiple Cytokines

By You-Yan Zhang,*† Terry A. Vik,*† John W. Ryder,*† Edward F. Srour,*§ Tyler Jacks,¶ Kevin Shannon,** and D. Wade Clapp*‡

Summary

Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21
Ras proteins by accelerating the hydrolysis of active Ras guanosine triphosphate to inactive Ras guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1−/− hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1−/− progenitors. Nf1−/− fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the R as-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+Nf1−/− progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras as output.

Key words: neurofibromin • hematopoietic progenitor • cytokines • Ras • granulocyte/macrophage colony-stimulating factor

R as proteins regulate the growth and differentiation of many cell types by acting as molecular switches that transduce signals from the extracellular environment to the nucleus (1–9). The biochemical output of Ras proteins is tightly regulated by their ability to cycle between an active guanosine triphosphatase (GTP)-bound state (Ras-GTP) and an inactive guanosine diphosphatase (GDP)-bound state (Ras-GDP) (1–4). Ras activation is an essential component of proliferative responses induced after receptor binding by a variety of growth factors including IL-3, GM-CSF, CSF-1, and stem cell factor (SCF) (5–9). Stimulation by each of these cytokines induces an increase in the percentage of Ras-GTP in the target cell (5, 6, 8, 9). Ras-GTP recruits Raf-1 to the plasma membrane and Raf-1, in turn, acti-
vates a series of downstream effectors such as mitogen-activated protein (MAP) kinase (7, 10, 11). GTPase-activating proteins (GAPs) regulate R as output by stimulating the slow intrinsic R as GTPase (4, 12, 13). Because it is R as GTP that transduces signals, GAPs act (at least in part) as negative regulators of R as function (1–4, 12). Two GAPs, p120 GAP (also known as R as GAP) and neurofibromin (the protein encoded by the Nf1 gene) regulate R as output in mammalian cells (4, 12–15) by promoting the conversion of R as GTP to R as GDP (4).

Mutations of Nf1 cause neurofibromatosis type 1 (NF1), an autosomal dominant disorder with an incidence of 1 in 4,000 (14–18). Affected individuals are predisposed to the development of benign and malignant neoplasms that arise primarily in cells derived from the embryonic neural crest (14–19). In addition, children (but not adults) with Nf1 have a markedly increased risk of developing malignant myeloid disorders and comprise as many as 10% of de novo cases of preleukemia in the pediatric age group (19–24). Juvenile chronic myelogenous leukemia (JCML), a myeloproliferative syndrome characterized by leukocytosis, thrombocytopenia, and hepatosplenomegaly with infiltrates of myeloid cells, is the most common leukemia seen in children with Nf1 (20–25). Genetic and biochemical data from studies of human leukemias have shown that Nf1 functions as a tumor suppressor gene in hematopoietic cells by negatively regulating R as signaling (20, 22–25). Mice that are heterozygous for a targeted disruption of Nf1 are predisposed to a number of cancers including myeloid leukemia (26). Leukemic cells from these animals show loss of the normal Nf1 allele (26). Although mice homozygous for disruption of Nf1 die during embryonic development, Nf1−/− fetal liver cells efficiently reconstitute hematopoiesis and consistently induce a JCML-like myeloproliferative syndrome in irradiated recipients (27).

A hallmark of low density blood and bone marrow cells from children with JCML is an abnormal pattern of in vitro progenitor growth that is characterized by the appearance of factor-independent myeloid colonies in methylcellulose cultures (28, 29). A second consistent finding is that JCML cells form higher numbers of colonies derived from lineage-restricted colony-forming unit granulocyte-macrophage progenitors (CFU-GM) in the presence of low concentrations of GM-CSF (21, 28, 29). Hypersensitive growth has not been observed in cultures in which IL-3 or GM-CSF was added, and these results have led to the hypothesis that a specific defect within the GM-CSF signal transduction pathway plays a central role in the pathogenesis of JCML (28, 29). Nf1−/− fetal liver cells also demonstrate a similar pattern of selective GM-CSF hypersensitivity in myeloid progenitor assays (27, 30) and provide a model system to investigate both the role of neurofibromin in regulating R as signaling in hematopoietic cells and also the pathogenesis of JCML.

We have used Nf1 mice to address two questions related to the role of neurofibromin in regulating hematopoietic cell growth through the R as MAP kinase pathway. First, since the hematopoietic system is hierarchial and has multiple compartments, it is possible that neurofibromin is only required to regulate growth of specific subpopulations of cells in response to a restricted number of hematopoietic growth factors. Previous studies of human and murine cells examined only the responsiveness of relatively differentiated, lineage-restricted progenitors from mixed populations of hematopoietic cells, and in most instances cultures were established using single growth factors (21, 27, 29–33). We isolated highly pure hematopoietic progenitors and examined their growth in response to GM-CSF, IL-3, and stem cell factor (SCF) singly and in combination with other factors. SCF promotes the survival and proliferation of immature, multilineage hematopoietic progenitors (34–37) and acts synergistically with growth factors, such as GM-CSF, that primarily affect differentiated, lineage-restricted cells (38–41). Second, the selective hypersensitivity of Nf1−/− and JCML cells to GM-CSF in colony-forming assays is perplexing because GM-CSF and IL-3 both increase R as GTP levels in cell lines (8, 9) and the cell surface receptors for these ligands share a common β chain that transduces signals (for review see references 42–44). To address these questions, we measured constitutive and cytokine-stimulated MAP kinase activation in well-defined populations of primary Nf1−/− and Nf1+/+ hematopoietic cells and correlated these data with in vitro colony-forming assays that assessed the size and growth factor responsiveness of these populations. Our results implicate neurofibromin as regulating the size and growth factor responsiveness of both immature and lineage-restricted hematopoietic progenitor populations by modulating R as output in response to multiple cytokines.

Materials and Methods

Isolation of Fetal Hematopoietic Cells. Heterozygous Nf1+/− mice were mated to produce Nf1−/− embryos. Pregnant Nf1−/− females were killed by cervical dislocation on day 13.5 of gestation and the embryos were removed through an anterior abdominal incision. After individual embryos were isolated, each fetal liver was removed and transferred to a 10 × 35 mm dish in IMDM supplemented with 20% FCS. A single cell suspension was prepared by pushing the hepatic tissues thorough progressively smaller needles (16–27 gauge). This procedure yielded 1–1.5 × 107 mononuclear cells.

Genotyping Fetal Tissues. Once the liver was removed, the remainder of the embryonic tissues were used for genotype analysis. Genomic DNA from fetal tissues were isolated as previously described (30). An assay based on the PCR was used to perform genotype analysis. The targeting vector used to disrupt the murine Nf1 gene truncates exon 31 and inserts a neomycin resistance gene (neo). The 3′ (reverse) primer is complementary to a sequence in the 3′ region of exon 31 that is present in both wild-type and targeted Nf1 genes. Two 5′ primers were designed to distinguish disrupted and wild-type genes. The first is complimentary to neo and the second is complimentary to a wild-type exon 31 sequence. Amplification with the neo and 3′ Nf1 primer pair yields a 350-bp product, whereas amplification with the 5′ Nf1 and 3′ Nf1 primer pair gives a 230-bp fragment. The sequences for
the PCR primers used in these studies are: 5′ Nf1 exon 31:
CACCCTTTTGGTTTGAATAAT, 3′ Nf1 exon 31: TTTCAATACC
CTGGCCAAGG, and neo: ATTCGCCAAATGACAGAC.

Transplantation into irradiation-conditioned congenic Mice. Unfracti-
nated fetal liver cells (1–2 × 10^6) from Nf1−/− or Nf1+/+ litter-
mates were transplanted into C57Bl/6j recipient mice conditioned with 1,100 rads of gamma irradiation from a Cs source (Gamma cell 40 Extractor; MDS Nordion Kanata, Ontario, Canada) with 700 rads given in the first dose and 400 rads given 4 h later. Recipients of Nf1−/− cells consistently develop myeloprolif-
erative hematopoiesis with large numbers of mature neutrophils and monocytes in the peripheral blood and prominentlyplenome-
agly (27). Bone marrow and splenic cells were obtained from recipients 18–30 wk after transplantation. Hematopoietic cells were evaluated at death by PCR to confirm the detection of only do-
nor-derived cells.

Purification of Hematopoietic Progenitors. Low density cells were in-
cubated with a PE-conjugated c-kit monoclonal antibody or a PE-conjugated Sca1− monoclones antibody whose corresponding Ly6A/E antigen is highly expressed on all primitive hematopo-
ietic progenitors and cells in the stem cell compartment in C57Bl6 stra (45). Cells were incubated with 1 μg of c-kit or Sca1 anti-ody/10^6 cells, (Pharmingen, San Diego, CA), and the cells were then incu-
bated on ice for 20 min, pelleted, washed, repelleted, and then sus-
pended in FACS buffer. Cells were also simultaneously stained with antibodies to the following lineage markers including: anti-B220, anti-CD3e, anti-Gr-1, and anti-Mac 1 all conju-
gated to FITC (Pharmingen). They were then separated by FACS using a dual laser FACS Star PLUS® equipped with an argon and a krypton laser (Becton Dickinson, Mountain View, CA).

Hematopoietic Progenitor Colony Growth. R recombinant GM-CSF, IL-3, and SCF were obtained from Peprotech (Rocky Hill, NJ); recombinant mIL-1α, IL-3, and SCF were obtained from R&D Research Laboratories (Minneapolis, MN). Purified hematopo-
etic cells were placed into culture in triplicate 35-mm plates at a density of 2 × 10^5 cells/ml in IMDM supplemented with 20% FCS. Cells were cultured in 100 ng/ml rmSCF and 50 U/ml rmIL-3, which is the maximum stimulating activity of each respective cytokine.

Results

Previous studies in JCML bone marrow samples have implicated cytokine production by accessory cells as contrib-
ting to the hypersensitive pattern of myeloid progeni-
growth (31, 32). We therefore isolated highly pure (95–99%) Sca1−/dim cells derived from day 13.5 fetal livers by flow cytometric cell sorting and assayed the growth of CFU-GM in methylcellulose medium supplemented with varying concentrations of either GM-CSF or IL-3. A re-
presentative FACS analysis of cells before and after cell sorting is shown in Fig. 1. The results of four independent experiments indicate that CFU-GM derived from Nf1−/− fetal liver Sca1−/dim cells retain a hypersensitive pattern of colony formation in response to GM-CSF but not IL-3.

Figure 1. Isolation of Sca1−/dim hematopoietic progenitors from fe-
tal liver cells. Pooled day 13.5 gestation fetal liver cells from each respec-
tive genotype were prepared for culture by isolation of low density cells using a Ficoll-Hypaque gradient. Low density cells were simultaneously stained with isotype controls or antibodies to Sca1 (PE) and lineage mark-
ers including anti-B220 (pan–B lymphocytes), anti–Gr-1 (granulocytes), and anti–Mac 1 (monocyte-macrophages) all conju-
gated to FITC. Sca1−/dim cells were identified relative to isotype con-
trol antibodies in the upper left corner of the dual parameter dot plot in A. These cells were isolated by fluorescence-activated cell sorting and a sam-
pel of sorted cells was reanalyzed to confirm the purity of isolated cells (B).
Regulates Hematopoietic Progenitor Cell Growth

These data suggest that the alteration of growth responsiveness to GM-CSF seen in Nf1^{−/−} cells is intrinsic to the progenitor compartment.

We next examined the effects of adding a low concentration of murine SCF (10 ng/ml) in combination with either GM-CSF or IL-3 on Sca1¹lin^{2/dim} cells on colony formation. CFU-GM colony growth under these conditions is shown in Fig. 2, c and d, and the absolute numbers of progenitor colonies enumerated at maximal concentrations of GM-CSF or IL-3 singly and in combination with SCF are shown in Table 1. As with GM-CSF alone, the dose-response curve for CFU-GM colony formation from Nf1^{−/−} cells was significantly left-shifted relative to Nf1^{+/+} cells in cultures stimulated with GM-CSF and SCF (Fig. 2 e). The hypersensitive pattern of growth seen in Nf1^{−/−} cells was more pronounced in parallel cultures stimulated with GM-CSF and SCF than in plates containing GM-CSF alone, and there was an increase in the absolute number of progenitors enumerated (Table 1). Surprisingly, the addition of SCF to cultures stimulated with IL-3 induced a hypersensitive pattern of growth in Nf1^{−/−} cells that was not seen with IL-3 alone (Fig. 2 b). Although SCF is relatively inefficient at inducing colony formation in the absence of other growth factors (Table 1), we also detected a significant left shift in the dose-response curve of Nf1^{−/−} versus Nf1^{+/+} cells cultured in the presence of SCF alone (Fig. 2 e).

Taken together, these data suggest that loss of Nf1 deregulates the growth of hematopoietic progenitors in response to SCF, which acts on more immature populations of progenitors than do IL-3 or GM-CSF, and demonstrate that SCF can synergize with either factor to induce a hypersensitive pattern of in vitro growth in Nf1^{−/−} progenitors.

One potential explanation for the hypersensitive growth seen in response to SCF alone or in combination with IL-3 is that SCF stimulation induces autocrine production of GM-CSF by Nf1^{−/−} progenitor cells. To test this hypothesis, an anti-GM-CSF neutralizing antibody was added to the methylcellulose cultures stimulated with a combination of IL-3 and SCF. In pilot experiments, a concentration of anti-GM-CSF antibody that completely blocked CFU-GM colony formation in response to 10 U/ml of GM-CSF (maximum stimulating activity) was established and used

Table 1. Maximal CFU-GM/5 × 10² Sca1^{+/−}lin^{−/−} in Response to Cytokine Stimulation

Cytokine	Genotype	Nf1^{−/−}	Nf1^{+/−}	Nf1^{+/+}
GM-CSF (10 ng/ml)	71 ± 8.5	70 ± 11.2	68 ± 7.5	
IL-3 (50 U/ml)	73 ± 15.6	68 ± 14.4	80 ± 14.3	
GM-CSF (10 ng/ml) + SCF (10 ng/ml)	119 ± 23.0	89 ± 15.6	96 ± 12.3	
IL-3 (50 U/ml) + SCF (10 ng/ml)	117 ± 20.8	110 ± 12.7	105 ± 15.6	
SCF (100 ng/ml)	57 ± 16.1	47 ± 6.5	46 ± 8.3	

The colonies enumerated from each respective genotype after stimulation with cytokines that yielded! maximum colony activity. (See Fig. 2). Results are expressed as mean ± SE. All data represent analysis from four independent experiments.
in subsequent experiments (data not shown). Fig. 3 summarizes the results of three independent experiments examining the number of CFU-GM colonies seen when either anti–GM-CSF or an isotype control antibody was added to cultures containing IL-3 + SCF. These data indicate that the abnormal pattern of CFU-GM colony formation observed in Nfl1−/− Sca1−/−dim cells is maintained in the presence of anti–GM-CSF antibody, and therefore we conclude that hypersensitive growth in the presence of IL-3 + SCF is not due to autocrine GM-CSF production by Nfl1−/− cells.

The experiments described above assayed the growth of colonies derived from CFU-GM, a relatively differentiated, lineage-restricted population of myeloid progenitors. However, data from cultures stimulated with SCF suggested that neurofibromin might also regulate the growth of more primitive hematopoietic compartments. To investigate this possibility, two-layer agar cultures were established to assay the growth of primitive progenitors with significant replating potential indicative of a primitive stem/progenitor cell (46) and referred to as HPP-CFC. Fetal liver cells from Nfl1−/−, Nfl1+/−, and Nfl1+/+ embryos were cultured in two different combinations of four growth factors at saturating activities to enumerate HPP-CFC. The frequency of HPP-CFC observed in cultures was then multiplied by the number of low density cells per organ to calculate the absolute number of HPP-CFC per fetal liver. The results shown in Fig. 4 demonstrate that significantly higher numbers of HPP-CFC are present from the Nfl1−/− fetal liver cells. The data suggest that the loss of Nfl1 results in an expansion of HPP-CFC in vivo in the fetal liver and that neurofibromin is important in modulating the growth of primitive myeloid progenitor compartments as well as CFU-GM progenitors.

Stimulation with a variety of growth factors including SCF, GM-CSF, or IL-3 activates the Ras-Raf-MAP kinase cascade in cultured cell lines (5–9). We hypothesized that if neurofibromin is critical to regulate Ras as signaling in response to these cytokines in primary hematopoietic progenitors, then loss of Nfl1 function might result in an augmented MAP kinase activity after stimulation. To test this possibility, c-kit+ cells were isolated from the bone marrows of mice previously irradiated and then reconstituted with fetal liver cells from day 13.5 gestation Nfl1−/− and Nfl1+/− littermates. In pilot experiments, we determined that the c-kit+ cells isolated from transplant recipients had a similar hyperresponsiveness to GM-CSF in clonogenic assays as did Nfl1−/− fetal liver cells (data not shown). After isolation using fluorescence-activated cell sorting, c-kit+ cells were maintained in liquid cultures overnight without exogenous growth factors. The cells were then stimulated with either SCF, IL-3, or GM-CSF alone or with a combination of SCF + IL-3. MAP kinase activity was measured in unstimulated cells as well as at 5 and 60 min after the addition of growth factor(s). Three independent experiments yielded similar results; data from one of these is shown in Fig. 5. A threefold elevation in MAP kinase activity was
observed in unstimulated c-kit⁺ cells isolated from the Nf1^{−/−} recipients. Kinase activity increased significantly in Nf1^{−/−} cells after exposure to IL-3, SCF, or SCF + IL-3, and persisted above baseline at 60 min. There was also an increase in MAP kinase activity at 60 min after stimulation with GM-CSF that approached statistical significance. In contrast, c-kit⁺ cells from the Nf1^{+/−} recipients had a much less pronounced increase in MAP kinase activity at 5 min after stimulation, and the kinase returned to baseline by 60 min. We conclude that absence of neurofibromin in c-kit⁺ hematopoietic progenitors results in a constitutive activation of R as MAP kinase signaling that can be further stimulated in response to SCF, IL-3, and GM-CSF.

To confirm an association between the clonogenic and biochemical data presented above, c-kit⁺ cells were again isolated from transplant recipients. MAP kinase activity was determined on aliquots of Nf1^{−/−} cells after exposure to IL-3, SCF, or SCF + IL-3, and persisted above baseline at 60 min. There was also an increase in MAP kinase activity at 60 min after stimulation with GM-CSF that approached statistical significance. In contrast, c-kit⁺ cells from the Nf1^{+/−} recipients had a much less pronounced increase in MAP kinase activity at 5 min after stimulation, and the kinase returned to baseline by 60 min. We conclude that absence of neurofibromin in c-kit⁺ hematopoietic progenitors results in a constitutive activation of R as MAP kinase signaling that can be further stimulated in response to SCF, IL-3, and GM-CSF.

Figure 6. Inhibition of MAP kinase activity in Nf1^{−/−} c-kit⁺ cells exposed to MEK inhibitor before stimulation with cytokines. c-kit[−] bone marrow cells from mice reconstituted with Nf1^{−/−} fetal liver cells (left) or Nf1^{+/−} (right) were exposed to a MEK inhibitor or vehicle control before stimulation with a maximum stimulating capacity of IL-3 and SCF. Cells were lysed 5 min after stimulation with cytokines. The autoradiographs and activities of one of three independent experiments is shown. The cytokine and MEK inhibitor treatment of cells is indicated by + or −.

Figure 7. Effect of preincubation with an MEK inhibitor on progenitor colony formation from Nf1^{−/−} cells. c-kit[−] bone marrow cells (4 × 10⁴) were cultured with SCF and IL-3 for 48 h in the presence of the MEK inhibitor (MEKI) or the vehicle control (DMSO). After liquid culture, progenitor assays for growth of HPP-CFC and LPP-CFC were established. The total number of nucleated cells (A), LPP-CFC (B), and HPP-CFC (C) after culture for each genotype and condition are indicated. Based on cultures established in agar before treatment with the MEK inhibitor, 1,850 LPP-CFCs ± 10 SEM and 260 HPP-CFC ± 40 SEM per well were present in the input Nf1^{−/−} cells, and 825 LPP-CFC ± 205 SEM and 100 HPP-CFC ± 40 SEM were present in input Nf1^{+/−} cells.

Discussion
Ras signaling plays a central role in normal myelopoiesis and is deregulated by at least three distinct genetic mechanisms in myeloid leukemia (for review see references 20, 53, 54). Ligand-induced activation of many hematopoietic growth factor receptors transiently increases the Ras-GTP levels, which in turn influences the survival, proliferation, and differentiation of myeloid-lineage cells. In leukemic cells, acquired mutations of NRAS or KRAS, formation of a chimeric protein as a result of BCR-ABL translocations, and inactivation of NF1 all deregulate Ras signaling. Lines of knockout mice provide novel model systems for ascertaining how loss of function of specific genes influences complex biologic processes such as hematopoiesis and leukemogenesis. Although inactivation of the murine homologues of many human tumor suppressor genes results in a spectrum of neoplasms that differs significantly from the respective human cancers, Nf1 mice spontaneously develop a type of leukemia that closely resembles JCML and Nf1^{−/−} cells display a similar pattern of GM-CSF hypersensitivity in myeloid colony-forming assays.

A distinct advantage of this murine model is the ability
to reconstitute irradiated mice only lacking Nf1 and isolate highly purified populations of phenotypically defined cells to characterize their in vitro colony growth and intracellular signaling.

This study addressed two questions: (a) what is the role of neurofibromin in modulating the cytokine responsiveness and growth of both primitive myeloid progenitors with multilineage and replating potential, and of more differentiated lineage-restricted myeloid progenitors, and (b) how does inactivation of Nf1 affect constitutive and cytokine-stimulated intracellular signaling through the Ras-Raf-MAP kinase pathway in these primary hematopoietic cells? We used antibodies to purify immature hematopoietic cells and focused on the SCF/c-kit signaling pathway because the binding of SCF to c-kit increases Ras-GTP levels and activates Raf-1 and MAP kinase activity in myeloid cell lines (7). In addition, the presence of multiple hematopoietic defects in lines of mice with mutations affecting either c-kit (dominant white spotting, W) or SCF (Steel) (34–37, 39, 55, 56), as well as numerous in vitro studies showing a synergistic effect between SCF and other cytokines in promoting the survival and proliferation of primitive hematopoietic progenitor cells, indicate that the SCF/c-kit signaling plays an important role in early hematopoiesis (38–41).

An intriguing finding demonstrated here was that SCF alone or in combination with IL-3 induced a hypersensitive pattern of CFU-GM colony growth in Nf1-/-/- cells. Though some reports using JCM L cells have observed hypersensitive colony growth in response to only GM-CSF, others have inferred the involvement of other cytokines in the pathogenesis of the myeloproliferative disease (31–34, 57). Our results address an interesting paradox: since the GM-CSF and IL-3 receptors share a common β signaling chain that has been implicated in Ras activation, it has been perplexing why cultured Nf1-/-/- cells are hypersensitive to GM-CSF but not IL-3 in progenitor colony-forming assays. One explanation that has been suggested previously is that p120 GAP, which is abundant and active in GM-CSF but not IL-3 in progenitor colony-forming assays (27, 30), is able to downregulate Ras-GTP when it associates in a complex with the IL-3 receptor and other proteins, but not when Ras associates with the GM-CSF receptor (27, 30). Biochemical evidence that MAP kinase is hyperactivated in c-kit+/Nf1-/-/- cells in response to IL-3, or SCF (Fig. 5), and cell culture data showing that SCF alone and in combination with IL-3 or GM-CSF induce a hypersensitive pattern of in vitro growth in Nf1-/-/- cells (Fig. 2), suggest that aberrant intracellular signaling occurs in response to IL-3, GM-CSF, and SCF. However, the biochemical abnormality is not translated to hypersensitive colony formation in response to IL-3 only. It is possible that SCF and GM-CSF activate downstream signaling molecules important for terminal differentiation that are not induced by IL-3. For example, focal adhesion kinase is a recently identified kinase involved in the terminal differentiation of myeloid cells that is activated in response to GM-CSF (58) and SCF (59) but not IL-3. Nf1-/-/- deficient hematopoietic cells and cell lines should prove useful for further characterizing signaling pathways that are differentially activated and regulated in response to GM-CSF and IL-3. Our studies of purified Scal+lin-/dim cells suggest that the hypersensitive pattern of colony formation is intrinsic to the progenitors and is not dependent on accessory cells as suggested by some (31–33), but not all (21), previous studies in JCM L cells.

Cultures established from primary d13.5 Nf1-/-/- fetal liver cells also demonstrated an increase in the numbers of primitive progenitor (HPP-CFC) cells in the fetal liver. In fact the expansion in this compartment was greater than was noted for more differentiated progenitors (LPP-CFC) scored in simultaneous experiments (our unpublished results). As the HPP-CFC and LPP-CFC assays were performed in the presence of saturating concentrations of hematopoietic growth factors, our data indicate that inactivation of Nf1 is not only associated with a leftward shift in the dose–response curves for colony formation in response to exogenous growth factors but also with an absolute increase in the numbers of clonogenic progenitors in vivo. Preliminary data indicate that this increase in progenitors is associated with a relative resistance of Nf1-/-/- cells to apoptosis upon withdrawal of hematopoietic growth factors (Zhang, Y.-Y., and D.W. Clapp, unpublished results).

Biochemical data from c-kit positive hematopoietic cells demonstrating constitutive activation of MAP kinase signaling and a prolonged hyperactivation of MAP kinase activity in response to stimulation with cytokines suggests that deregulation of the Ras-MAP kinase pathway accounts for the perturbations of in vitro colony growth. Indeed, reducing the MAP kinase activity with an inhibitor of MEK associated with a profound, specific reduction in colony formation from Nf1-/-/- c-kit+ cells. The elevated and sustained levels of MAP kinase that we measured in response to SCF, IL-3, or GM-CSF in highly progenitor-enriched primary cells are consistent with the previous observation of a sustained elevation of Ras-GTP levels after GM-CSF stimulation in Myb immortalized Nf1-/-/- fetal hematopoietic cell lines (27). Similarly, primary bone marrow cells from children with Nf1 and leukemia showed an elevated percentage of Ras-GTP (30). Although the biochemical data presented here, the predilection to myeloid leukemia seen in children with Nf1 and in Nf1-/-/- mice, and the myeloid disorder that invariably develops in the recipients of Nf1-/-/- fetal liver cells provide compelling evidence that neurofibromin is essential to regulate Ras as output in myeloid lineage cells, future studies are indicated to further delineate how neurofibromin modulates Ras as in response to cytokines such as SCF. In particular, p120 GAP accounts for most of the in vivo and in vitro GTPase activating protein activity in bone marrow cells (30, 60, 61). It is possible that p120 GAP is sequestered away from growth factor receptor-Ras as complexes in activated myeloid cells or is inactivated by a more direct mechanism. In this respect, the recent cloning of the gene encoding p62Dok (Dok) is of interest as this protein is phosphorylated in leukemic cells that carry the BCR-ABL translocation and phosphorylated...
Dok selectively associates with p120 GAP through Src homology 2 (SH2) domains. Dok is rapidly phosphorylated in hematopoietic cells in response to SCF (62). If the binding of phosphorylated p62Dok inhibits the function of p120 GAP, cells that have been stimulated with SCF may require neurofibromin to properly regulate Ras as-GTP (neurofibromin does not contain SH2 domains [for review see references 4, 63, 64], and is unlikely to interact with Dok). Additional biochemical data are required to examine if SCF-induced phosphorylation of p62Dok affects the function of p120 GAP in normal and Nf1-deficient myeloid lineage cells.

In summary, we have shown that the loss of Nf1 results in constitutive activation of Ras as signaling in primitive and lineage-restricted hematopoietic progenitors. This is associated with hyperresponsiveness to multiple growth factors in biochemical and progenitor colony-forming assays, as well as in expansion of myeloid compartments in Nf1−/−embryos and in adult recipients reconstituted with Nf1−/−fetal liver cells. Taken together, these data strongly suggest that the size and growth factor sensitivity of cells within these multiple hematopoietic compartments are regulated by neurofibromin through its ability to effect the activation state of the Ras-MAP kinase cascade. These data have implications for the use of GM-CSF antagonists to treat JCML. On the one hand, our data showing that inactivation of Nf1 results in aberrant signaling in response to other growth factors provide evidence that GM-CSF-specific inhibitors might not show efficacy. However, mice that overexpress GM-CSF develop a JCML-like disorder (65), and in one recent study xenograft mice transplanted with JCML cells and treated with antagonists to GM-CSF had a significant reduction in JCML cells as compared with control mice treated with an isotype nonspecific antibody (66). Thus, it may be that the loss of Nf1 results in aberrant Ras activation in multiple myeloid compartments, the importance of GM-CSF on terminal differentiation may be pivotal to acquisition of the clinical disease, and it remains possible that the clinical disorder will be abrogated by blocking the GM-CSF receptor. Nf1 mice provide a valuable model system to test basic aspects of myeloid growth control and to evaluate novel therapeutics directed against hyperactive Ras.

We thank Patricia Fox for secretarial support.

This work was supported by Public Health Service grant P50DK49218 R 29 CA-74177-01 (to D.W. Clapp) and American Cancer Society grant 1874SC (to D.W. Clapp and K. Shannon). Tyler Jacks is an investigator of the Howard Hughes Medical Institute.

Address correspondence to Wade Clapp, Riley Hospital for Children, Cancer Research Institute, 1044 West Walnut, R m. 402, Indianapolis, IN 46202-5254. Phone: 317-274-4719; Fax: 317-274-8679.

Received for publication 4 February 1998 and in revised form 19 March 1998.

References

1. Bourne, H.R., D.A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 348:125–132.
2. Bourne, H.R., D.A. Sanders, and F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 349:117–127.
3. Hall, A. 1990. The cellular functions of small GTP-binding proteins. Science. 249:635–640.
4. Hall, A. 1992. Signal transduction through small GTPases—a tale of two GAPs. Cell. 69:389–391.
5. Hill, C.S., and R. Treisman. 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 80:199–211.
6. Marshall, C.J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 80:179–185.
7. Miyazawa, K., P.C. Hendrie, C. Mantel, K. Wood, L.K. Ashman, and H.E. Broxmeyer. 1991. Comparative analysis of signaling pathways between mast cell growth factor (c-kit ligand) and granulocyte-macrophage colony-stimulating factor in a human factor-dependent myeloid cell line involves phosphorylation of Raf-1, GTPase-activating protein and mitogen-activated protein kinase. Exp. Hematol. 19:1110–1123.
8. Satoh, T., M. Nakafuku, A. Miyajima, and Y. Kaziro. 1991. Involvement of ras protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc. Natl. Acad. Sci. USA. 88:3314–3318.
9. Satoh, T., Y. Uehara, and Y. Kaziro. 1992. Inhibition of interleukin 3 and GM-CSF stimulated increase in Ras-GTP by herbaycin A, a specific inhibitor of tyrosine kinases. J. Biol. Chem. 267:2537–2541.
10. Leevers, S., H. Peterson, and C. Marshall. 1994. Requirement for Ras as in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 369:411–414.
11. Stokoe, D., S. MacDonald, K. Cadhwallader, M. Symons, and J. Hancock. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science. 264:1463–1467.
12. Boguski, M., and F. McCormick. 1993. Proteins regulating Ras as and its relatives. Nature. 366:643–654.
13. Clark, G.J., J.K. Drugan, R.S. Terrel, C. Bradham, J.D. Channing, R.M. Bell, and S. Campbell. 1996. Peptides containing a consensus R binding sequence from R as-1 and the

1900 Nf1 regulates hematopoietic Progenitor Cell Growth
14. DeClue, J.E., A.G. Papageorge, J.A. Fletcher, S.R. Diehl, N. R atner, W.C. Vass, and D.R. Lowry. 1992. Abnormal regulation of mammalian p21C contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. C. eel. 69:265–273.

15. Xu, G., P. O’Connell, D. Viskochil, R. Cawthon, M. Rob ertson, M. Culver, D. Dunn, J. Stevens, R. Gesteland, R. White, and R. Weiss. 1990. The neurofibromatosis type 1 gene encodes a protein related to GTP-C. eel. 62:599–608.

16. Legius, E., D.A. Marchuk, F.S. Collins, and T.W. Glover. 1993. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumor suppressor gene hypothesis. N. at. G. enet. 3:122–126.

17. Menon, A.G., K.M. Anderson, V.M. Riccardi, R.Y. Chung, J.M. Whaley, D.W. Y andell, G.E. Farmer, R.N. Freiman, J.K. Lee, F.P. Li, et al. 1990. Chromosome 17 deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc. Nat. A cad. Sc. USA. 87:5435–5439.

18. Skuse, G.R., B.A. Koscielak, and P.T. Rowley. 1989. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes C. eel. 1:36–41.

19. Johnson, M.R., A.T. Look, J.E. DeClue, M.B. Valentine, and D.R. Lowry. 1993. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP-Ras. Proc. Natl. A cad. Sc. USA. 90:5539–5543.

20. Brodeur, G.M. 1994. The NF1 gene in myeloproliferation and childhood myelodysplastic syndromes. N. Eng. J. Med. 330:637–639.

21. Emanuel, P.D., L.J. Bates, S.W. Zhu, R.P. Castleberry, R.J. Gualtieri, and K.S. Zuckerman. 1991. The role of monocyte-derived hematopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp. H ematol. 19:1017–1024.

22. Side, L., B. Taylor, M. Cayouette, E. Conner, P. Thompson, M. Luce, and K. Shannon. 1997. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Eng. J. Med. 336:1713–1720.

23. N eubauer, A., K.M. Shannon, and E. Liu. 1991. Mutations of the ras proto-oncogenes in childhood monosomy 7. Blood. 77:594–598.

24. Shannon, K.M., J. W attersson, P. Johnson, P. O’Connell, B. Lange, N. Shah, P. Steinherz, Y.W. Kan, and J.R. Priest. 1992. Monosomy 7 myeloproliferative disease in children with neurofibromatosis type 1 and malignant myeloid disorders. N. Eng. J. Med. 330:597–601.

25. Jacks, T., S. Shih, E.M. Schmitt, R.T. Bronson, A. Bernards, and R.A. W einberg. 1994. Tumor predisposition in mice heterozygous for a targeted mutation in NF1. N. at. G enet. 7:353–361.

26. Largaepeada, D.A., C.I. Brannan, N.A. Jenkins, and N.G. Copeland. 1996. NF1 deficiency causes R-as-mediated granulo cyte/macrophage colony stimulating factor hypersensitiv ity and chronic myeloid leukaemia. N. at. G enet. 12:137–143.

27. Emanuel, P.D., L.J. Bates, R.P. Castleberry, R.J. Gualtieri, and K.S. Zuckerman. 1991. Selective hypersensitivity to granulocyte-macrophage colony stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood. 77:925–929.

28. Gualtieri, R.J., P.D. Emanuel, K.S. Zuckerman, G. Martin, S.C. Clark, R.K. Shadduck, R.A. Draker, J. Akabutu, R. Nitschke, M.L. Etherington, et al. 1989. Granulocyte-macrophage colony-stimulating factor is an endogenous regulator of cell proliferation in juvenile chronic myelogenous leukemia. Blood. 74:2360–2367.

29. Boilag, G., D.W. Clapp, S. Shih, F. Adler, Y.Y. Zhang, P. Thompson, B.J. Lange, M.H. Freedman, F. McCornick, T. Jacks, and K. Shannon. 1996. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. N. at. G enet. 12:144–148.

30. Bagby, G.C.J., C.A. Dinarleio, R.C. N eerhout, D. R idgway, and E. McCal. 1988. Interleukin 1-dependent paracrine granulopoiesis in chronic granulocytic leukemia of the juvenile type. J. Clin. Invest. 82:1430–1436.

31. Freedman, M.H., A. Cohen, T. Grunberger, N. Bunin, R.E. Luddy, E.F. Saunders, N. Shahidi, A. Lau, and Z. Estrov. 1992. Central role of tumor necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukemia. Br. J. H ematol. 80:40–48.

32. Schiro, R., D. Longoni, V. Rosi, O. Maglia, A. Doni, M. Arsura, G. Carrara, G. Maera, E. Vannier, C.A. Dinarleio, et al. 1994. Suppression of juvenile chronic myelogenous leukemia colony growth by interleukin-1 receptor antagonist. Blood. 83:460–465.

33. Martin, F., S. Suggs, K. Langley, H. Lu, J. Ting, K. O kino, C. M orris, I. M CNie, F. Jacobsen, E. Mendiaz, et al. 1990. Primary structure and functional expression of rat and human stem cell factor DNA. C. eel. 63:203–211.

34. N ocka, K., J. Buck, E. Levi, and P. Besmer. 1990. Candidate ligand for the c-kit transmembrane dinae receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythrocytoid progenitors. EMBO (Eur. M ol. B iol. O rgan.) J. 9:3287–3294.

35. R ottapel, R., M. Reduk, D. Williams, S. Lyman, D. A nderson, T. P awson, and A. Bernstein. 1991. The Steel W transcription pathway: kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the steel factor. M ol. C eull. B iol. 11:3043–3051.

36. Z ebo, K., D. Williams, E. Geissier, V. Broudy, F. Martín, H. Atkins, R.-Y. Hasu, N. Birkett, K. O kino, D. M urdock, et al. 1990. Stem cell factor is encoded at the SE locus of the mouse and is the ligand for the c-kit transmembrane tyrosine kinase receptor. C eull. 63:213–224.

37. Brandt, J., K. Bhalia, and R. Hoffmann. 1994. Effects of interleukin-3 and c-kit ligand on the survival of various classes of human hematopoietic progenitor cells. Blood. 83:1507–1514.

38. Lowry, P., K. Zebo, D. Deacon, C. Eichman, and P. Que senberry. 1991. Effects of rSF C on multiple cytokine responsive H P P-CFC generated from SCA-Lim- murine hematopoietic progenitors. Exp. H ematol. 19:994–996.

39. M CNie, I., K. Langley, and K. Zebo. 1991. Recombinant human stem cell factor synergises with G M-CSF, G -CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. H ematol. 19:226–231.

40. Molineaux, G., A. Mikeška, M. Szmitkowski, K. Zebo, and T. Dexter. 1991. The effects on hematopoiesis of recom-
binant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood. 78:961–966.

42. Kitamura, T., N. Sato, K. Arai, and A. Miyajima. 1991. Expression cloning of the human IL-3 receptor cDNA reveals a shared β subunit for the human IL-3 and GM-CSF receptors. Cell. 66:1165–1174.

43. Muñ, A.L., and A. Miyajima. 1994. Interleukin-3 and granulocyte-macrophage colony-stimulating factor receptor signal transduction. Proc. Soc. Exp. Biol. Med. 206:284–288.

44. Sakamoto, K.M., R.C. Mignacca, and J.C. Gasson. 1994. Signal transduction by granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors. Receptors C hannels. 2:175–181.

45. Spangrude, G.J., and D.W. Brooks. 1993. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A by bone marrow cells. Blood. 82:3327–3332.

46. Bradley, T.R., and G.S. Hodgeon. 1979. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood. 54:1446–1450.

47. Clapp, D.W., B. Freie, E. Srour, M.C. Yoder, K. Fortney, and J.C. Gasson. 1994. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A by bone marrow cells. Blood. 82:3327–3332.

48. Ahn, N.G., R. Seger, R.L. Bratlien, C.D. Diltz, N.K. Tonks, and E.G. Krebs. 1991. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J. Biol. Chem. 266:4220–4227.

49. Calvo, V., B.E. Bierer, and T.A. Vik. 1991. T cell receptor activation of a myelin basic protein/microtubule-associated protein 2 kinase. J. Biol. Chem. 266:4220–4227.

50. Sturgill, T.W., L.B. Ray, N.G. Anderson, and A.K. Erickson. 1991. Purification of mitogen-activated protein kinase from epidermal growth factor-treated 3T3-L1 fibroblasts. Methods Enzymol. 200:342–351.

51. Vik, T.A., J.L. Sweet, and R.L. Erikson. 1990. Coinfection of insect cells with recombinant baculovirus expressing pp60^src results in the activation of a serine-specific protein kinase pp90^raf. Proc. Natl. Acad. Sci. USA. 87:2685–2689.

52. Dudley, D.T., L. Pang, S.J. Decker, A.J. Bridges, and A.R. Saltiel. 1995. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA. 92:7686–7689.

53. Bos, J.L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.

54. Rodenhuis, S. 1992. ras and human tumors. Semin. Cancer Biol. 3:241–247.

55. Copeland, N., D. Gilbert, B. Cho, P. Donovan, N. Jenkins, D. Cosman, D. Anderson, S. Lyman, and D. Williams. 1990. M ast cell growth factor is mapped near the steel locus on mouse chromosome 10 and is expressed in a number of cell alleles. Cell. 63:175–183.

56. Paulson, R.F., S. Vesely, K.A. Siminovitch, A. Bernstein. 1996. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp 1. Nat. Genet. 13:309–315.

57. Sawai, N., K. Koike, S. Ito, N. Osumura, T. Kamijo, M. Shihohara, Y. Amano, K. Tsuji, T. Nakahata, M. Oda, et al. 1996. Aberrant growth of granulocyte-macrophage progenitors in juvenile chronic myelogenous leukemia in serum-free culture. Exp. Hematol. 24:116–122.

58. Kume, A., H. Nishiura, J. Suda, and T. Suda. 1997. Focal adhesion kinase upregulated by granulocyte-macrophage colony-stimulating factor but not by interleukin-3 in differentiating myeloid cells. Blood. 89:3434–3442.

59. Takahira, H., A. Gotoh, A. Ritchie, and H.E. Broxmeyer. 1997. Steel factor enhances integrin-mediated tyrosine phosphorylation of focal adhesion kinase (pp 125FAK) and paxillin. Blood. 89:1574–1584.

60. Bollag, G., and F. McCormick. 1991. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature. 351:576–579.

61. Bollag, G., and F. McCormick. 1992. NF is enough of GAP. Nature. 351:663–664.

62. Carpino, N., D. Wisniewski, A. Strife, D. Marshak, R. Kobayashi, B. Stillman, and B. Clarkson. 1997. p62^ras, a constitutively activated rasGAP. Cancer Res. 57:1446–1450.

63. Koch, C.A., D. Anderson, M.F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 252:668–674.

64. Marchuk, D.A., A.M. Saulino, R. Tatavakkol, M. Swaroop, M.R. Wallace, L.B. Andersen, A.L. Mitchell, D.H. Gutmann, M. Boguski, and F.S. Collins. 1991. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics. 11:931–940.

65. Lang, R., D. Metcalf, R.A. Cuthbertson, I. Lyons, E. Stanley, A. Kelo, G. Kannourakis, D.J. Williamson, G.K. Klintworth, T.J. Gonda, and A.R. Dunn. 1987. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and fatal syndromes of tissue damage. Cell. 51:675–686.

66. Iversen, P.O., I.D. Lewis, S. Turczynowicz, H. Hasle, C. Niel, K. Schmiegelow, S. Bastiars, A. Biondi, T.P. Hughes, and A.F. Lopez. 1997. Inhibition of granulocyte-macrophage colony-stimulating factor prevents dissemination and induces remission of juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood. 90:4910–4917.