ANTI-DPPX ENCEPHALITIS: PROMINENT NYSTAGMUS REFLECTED BY EXTRAOCULAR MUSCLE FDG-PET AVIDITY

A 43-year-old Caucasian man developed persistent nystagmus after 10 months of weight loss, diarrhea, insomnia, and 5 months of agitation, memory impairment, and vision changes consisting of nystagmus and double vision. Ocular motor examination demonstrated left-beating nystagmus (LBN), upbeat nystagmus (UBN), and torsional (toward the left ear) nystagmus components (video at Neurology.org/nn), as well as a left hypertropia from a skew deviation. There was also gaze-evoked nystagmus (GEN) horizontally. General neurologic examination revealed postural tremor in his arms, brisk reflexes, mild dysmetria with finger to nose, and wide-based gait. Detailed neurocognitive testing demonstrated deficits in recall and attention. He had previously been healthy, and his family history was notable only for multiple sclerosis in his brother. Brain MRI showed no abnormalities, and CSF studies showed elevated protein. A broad screen for infections, toxins, and systemic autoimmune disorders was negative. Peripher blood cell counts were normal. Whole-body 18-fluoro-deoxyglucose PET (18FDG-PET-CT) did not reveal a malignancy, but showed asymmetric avidity of the extraocular muscles (figure). Testing for neuronal autoantibodies revealed a serum dipeptidyl-peptidase-like protein-6 (DPPX) antibody IgG titer of 1:15,360 (Neuroimmunology Laboratory, Mayo Clinic), providing evidence for immune-mediated encephalitis. DPPX antibody from CSF was not tested because of inadequate sample quantity before the initiation of treatment.

He was treated with IV methylprednisolone, plasma exchange, and rituximab, with improvement in hyperreflexia, gait, memory, sleep, mood, and appetite. His nystagmus and skew deviation also improved markedly (video). The UB-torsional nystagmus (which had an LBN component) seen at presentation was believed to result mainly from either semicircular canal (SCC) pathway imbalance at the level of the medulla or, in light of the skew deviation, disruption of the utricle-ocular motor pathways. In support of the latter, in follow-up months later, spontaneous downbeat nystagmus (DBN) was seen, and it was noted that changes in head orientation relative to gravity (head tilt and supine position) transitioned his DBN to UBN, a feature that can be seen with utricle pathway damage. Overall, in our patient’s case, ocular motor signs would be best explained by involvement of the perihypoglossal nuclei (UBN and GEN), paramedian tract cell groups, or their connections with the vestibulocerebellum (DBN), and vestibular nuclei (causing SCC and utricle imbalance, right more than left-sided dysfunction given skew deviation with left hypertropia and LBN).

DPPX, a recently recognized neuronal surface autoantigen, is a regulatory subunit of the voltage-gated Kv4.2 potassium channel complex expressed on neuronal dendrites and soma, dysfunction of which may result in neuronal hyperexcitability. Kv4.2 channels and DPPX proteins are distributed throughout the nervous and enteric systems, including the cortex, cerebellum, brainstem, and myenteric and submucous plexus. The widespread expression of DPPX is believed to underlie the broad manifestations of anti-DPPX-associated disease, including neurocognitive deficits, sleep disturbance, central hyperexcitability, and diarrhea. The majority of patients described have gastrointestinal symptoms, including diarrhea, constipation, and weight loss, and these symptoms as well as neurologic symptoms may present insidiously, thus making diagnosis challenging. Eye movement disturbances are common. Of 20 seropositive anti-DPPX patients, diplopia, oscillopsia, or blurred vision was reported in 8 patients, with one case of upbeat-torsional nystagmus. Additional described visual disturbances include saccadic pursuit gaze movements in all directions; spontaneous downbeat and gaze-evoked nystagmus, broken pursuit, and incomplete suppression of vestibulo-ocular reflex on fixation; and broken pursuit and GEN with diplopia on lateral gaze. Cerebellar and pontine targets by autoantibodies resulting in CNS hyperexcitability may underlie these ocular manifestations.

Although FDG-PET is often used to assess malignancy in patients with autoimmune encephalitis, may demonstrate abnormalities in brain metabolism, and has been reported to reflect muscle hyperactivity in...
other autoimmune neurologic conditions, little is known of PET findings in anti-DPPX encephalitis. The FDG-PET in our case did not show evidence of malignancy, but did demonstrate asymmetric metabolism in extraocular muscles correlating with the slow (pathologic) phases of nystagmus. In particular, FDG-PET showed increased FDG activity in the left medial rectus, right lateral rectus, and bilateral inferior recti, correlating with the slow phases of his horizontal (LB) and vertical (UB) nystagmus, respectively. Although FDG-PET correlates of nystagmus have not been previously characterized, increased avidity of bilateral medial recti has been reported in a case of convergence spasm due to brain tumor.

Overall, our case highlights the prominent eye movement abnormalities that can occur in the setting of anti-DPPX encephalitis, points to specific pontine and medullary nuclei that may be impacted, and highlights that FDG-PET can demonstrate correlates of nystagmus in this disease.

From the Department of Neurology (L.D., D.G., J.P., A.V.), Departments of Ophthalmology, Otolaryngology, and Neurosurgery (D.G.), Russell H. Morgan Department of Radiology and Radiological Sciences (L.S.), and Johns Hopkins Encephalitis Center (J.P., A.V.), Johns Hopkins University School of Medicine, Baltimore, MD. Author contributions: Leana Doherty: drafting and revising of the manuscript and selecting initial images. Daniel Gold: filming and video acquisition, editing of the manuscript, and video legend. Lilja Solnes: selecting and editing of images. John Probasco: editing of the manuscript. Arun Venkatesan: critical editing of the manuscript. Study funding: No targeted funding reported. Disclosure: L. Doherty reports no disclosures. D. Gold is on the editorial board for Current Treatment Options in Neurology; co-section editor for Neuro-ophthalmology and Otology; and consulted for WellPoint Insurance. L. Solnes reports no disclosures. J. Probasco served on the editorial board and is associate editor for The Neurohospitalist and is Editor-in-Chief for NEJM Journal Watch Neurology. A. Venkatesan served on the scientific advisory board for MedImmune; served as a medical expert for the U.S. Government Vaccine Injury Compensation Program; received research support from NIH; and served as a medical expert for Carnival Cruise Lines. Go to Neurology.org for full disclosure forms. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Received March 13, 2017. Accepted in final form April 4, 2017.

Correspondence to Dr. Venkatesan: avenkat2@jhmi.edu

1. Suzuki Y, Matsuda T, Washio N, Ohtsuka K. Transition from upbeat to downbeat nystagmus observed in a patient with Wernicke’s encephalopathy. Jpn J Ophthalmol 2005;49:220–222.
2. Boronat A, Gelfand JM, Gresa-Arribas N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120–128.
3. Tobin WO, Lennon VA, Komorowski L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:1797–1803.
4. Piepgras J, Holtje M, Michel K, et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology 2015;85:890–897.
5. Clark BD, Kwon E, Maffie J, et al. DPP6 Localization in brain supports function as a Kv4 channel associated protein. Front Mol Neurosci 2008;1:8.
6. Stoeck K, Carstens PO, Jarius S, et al. Prednisolone and azathioprine are effective in DPPX antibody-positive autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2015;2:e66. doi: 10.1212/NXI.0000000000000086.
7. Jeong SH, Oh YM, Kim CY, Kim JS. Bimedial rectus hypermetabolism in convergence spasm as observed on positron emission tomography. J Neuroophthalmol 2008;28:217–218.