A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities

N. Hauke, S. Lichtmannecker, T. Zabel, F. P. Laussy, A. Laucht, M. Kaniber, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa

1 Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, D-85748 Garching, Germany
2 Institut für Physik, Universität Regensburg, D-93040 Regensburg, Germany
3 Institute for Advanced Study, TU München, D-85748 Garching, Germany
4 Institute of Industrial Science, Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Dated: January 15, 2013)

We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated for cavity modes of L3 and Hexapole cavities with different cavity quality factors. For each of these cavities many nominally identical samples are probed to obtain reliable statistics. As the quality factor increases we observe a clear decrease in the average mode emission intensity recorded under comparable optical pumping conditions. This clear experimentally observed trend is compared with simulations based on a dissipative master equation approach that describes a cavity weakly coupled to an ensemble of emitters. We obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed trend. In combination with the observation of cavity linewidth broadening in power dependent measurements, we conclude that free carrier absorption is the limiting effect for the cavity mediated light enhancement under conditions of strong pumping.

PACS numbers: 42.60.Da 42.70.Qs 78.55.-m 42.50.Ct

I. INTRODUCTION

The development of an efficient silicon (Si) based light source is of great interest in the information technology industry since it would pave the way towards optical interconnects with CMOS compatibility. If achieved, this major goal would dramatically enhance the signal processing speeds currently achievable in Si-based technologies. However, detailed investigations of the nature of the light matter coupling have not been performed, either theoretically or experimentally. Therefore, little is known about the emissive properties of Ge-islands in nanocavities. Furthermore, PhC nanocavities might provide a route to enhance optical activity to a level where optical properties of single Ge-islands can be investigated.

In this article we report on the investigation of the cavity enhanced emission from self-assembled Ge-islands, which are grown by molecular beam epitaxy (MBE) and are embedded in PhC nanocavities. We begin by comparing the PL intensities from L3 and Hexapole PhC cavity modes under comparable conditions of optical pumping as a function of their quality (Q)-factors. Averaged over a large number of different and nominally comparable cavities, a very general finding of our work is that an increase of the average mode PL-intensity is observed as the mode Q-factor becomes smaller. The average emission intensity saturates for Q-factors less than ≈ 600. In order to understand this very clear experimental observation we introduce a cavity quantum electrodynamics (QED) model based on a dissipative master equation for an ensemble of emitters, where each emitter is in a highly excited state to account for the strong optical pumping and weakly coupled to the cavity mode to account for the low oscillator strength. The model exhibits various regimes with strongly different dependencies between mode intensity and Q-factor, depending on the spectral emitter ensemble distribution and the emitter-cavity detuning. By comparing this model with the experimentally observed trend we obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed Q-factor dependence of the intensity - an effect that ultimately limits the radiative efficiency. By fitting the predictions of our model to our data we extract a photon reabsorption time of $\tau_{\text{abs}} = 2.3 \pm 0.4$ ps.
in very good agreement with the photon reabsorption time $\tau_{abs}^* = 1.9 \pm 0.3$ ps extracted from power dependent measurements of the cavity mode linewidth. This suggests that free carrier absorption (FCA) takes place under the conditions of strong optical pumping in the cavities. Hence, cavity modes with high Q-factors and, thus, long photon lifetimes exhibit a reduced internal radiative efficiency under conditions of strong pumping compared to cavity modes with low Q-factors.

II. SAMPLE STRUCTURE AND EXPERIMENT

The sample consists of a 2D PhC that is fabricated into a freely suspended Si slab, which contains a single layer of self-assembled MBE grown Ge-islands as illustrated in fig. 1 (a). The fabrication starts from a silicon-on-insulator (SOI) wafer provided by Soitec with a 220 nm thick crystalline Si layer on top of a 3 µm thick layer of buried SiO$_2$. Before growth, the crystalline silicon layer is thinned to 50 nm using isotropic wet chemical etching with a mixture of 60% nitric acid (HNO$_3$) and 0.04% hydrofluoric (HF) acid. After the transfer into the MBE the native oxide is thermally removed by heating to 760°C for several minutes. The crystal growth is then initialized with a 85 nm Si buffer layer grown at 520-560°C. Following this, six monolayers (ML) of Ge and a 135 nm thick Si capping layer are deposited at temperatures of 430°C and 410°C, respectively. For structural investigations an unpatterned layer of islands was grown on the sample surface with the same growth conditions used for the capped island layer. Fig. 1 (b) shows an atomic force microscope (AFM) image of the surface islands, revealing a bimodal island distribution with smaller “pyramids” and larger “domes”. The emission from the two types of nanostructures is spectrally distinct and, for the PhC cavities fabricated in this work, the cavity modes are tuned into resonance with the dome emission at 0.92 eV. Thus we focus on the interaction between the Ge-dome-islands, which we refer to in the following as “Ge-islands”, and the PhC nanocavity modes.

After growth, photonic crystal nanostructures were realized using electron beam lithography and subsequent SF$_6$/C$_4$F$_8$ reactive ion etching (RIE) to define hexagonal lattices of air holes with three different periods of $a_1 = 330$ nm, $a_2 = 360$ nm and $a_3 = 390$ nm. The scanning electron microscope (SEM) image in fig. 1 (c) shows a typical PhC with a lattice constant of $a_3 = 390$ nm containing a L3 PhC nanocavity. As a final processing step the underlying SiO$_2$ is selectively removed by HF acid to form a freestanding slab membrane.

Optical measurements were performed using a microphotoluminescence (μPL) spectroscopy setup. The sample was placed in a liquid helium flow-cryostat for low temperature investigations. To excite the sample we used a continuous-wave (cw) diode-pumped solid-state-laser emitting at $\lambda_{Laser} = 532$ nm, which is focussed by a 100x microscope objective (NA=0.5) to a spot size with a diameter of ≈ 0.8 µm. The resulting PL signal is collected through the same objective and dispersed by a 0.32 m imaging monochromator equipped with a 600 lines/mm grating and a liquid nitrogen-cooled InGaAs linear diode-array.

In Fig. 1 (d) we present a typical μPL spectrum of the Ge-islands emitting in the unpatterned region of the sample. The data, obtained at T = 25 K, can be fitted well by a Gaussian peak with a full width at half maximum (FWHM) of ≈ 50 meV as indicated by the red line. Due to carrier diffusion our excitation spot size of ≈ 0.8 µm leads to a region with a FWHM of ≈ 1.5 µm, that generates PL-signal, as obtained by performing μPL with spatially separated excitation and detection spots. By comparing this finding with AFM measurements performed
on ununcapped surface islands, as shown in fig. 1(b), we estimate that \(\approx 100 \) Ge-islands are optically excited by our laser. Hence, the observed spectrum represents the sum of the individual spectra of \(N \approx 100 \) single Ge-islands.

In the following, we will compare the emission intensity of cavity modes with various \(Q \)-factors to study the cavity-emitter coupling. For all experiments reported in this paper the nominal emission intensity was recorded using an optical excitation power density of 600 kW/cm\(^2\) in order to allow a comparative study. Furthermore, it is required that the modes couple spectrally to the same type of islands and, thus, are in a specific spectral window. To do this we tuned the lattice constant of our PhC structures during the fabrication process to coarsely adjust the cavity modes and varied the air hole diameter to fine tune the energy. In fig. 2(a) we plot \(\mu \)PL spectra recorded at \(T = 25 \) K from a series of L3 PhC nanocavities with a lattice period of \(a_2 = 360 \) nm and different air-hole radii, increasing from bottom to top. Six distinct emission lines from the L3 cavity can be observed, five of which are clearly observable in the figure (M1 is the fundamental cavity mode, M2-M5 are the higher energy modes). When increasing the air hole diameter the mode emission shifts systematically to higher energies. For our analysis we will only consider mode emission recorded from samples in the spectral region between 0.915 eV and 0.935 eV, highlighted by the yellow shaded region in fig. 2(a). As can be seen in the figure, we tune the emission of M2 to M5 into this spectral reference region via the fine tuning method alluded to above. For spectral coarse tuning of the mode emission we use the PhCs with lattice constants of \(a_1 = 330 \) nm and \(a_3 = 390 \) nm to bring M1 and M6 into the spectral region of interest, respectively.

In order to quantitatively compare the intensity of the PL emission we have to take the mode volume of the nanocavity modes into account. This quantity influences the coupling strength between emitter and cavity and, thus, the cavity mode \(\mu \)PL intensity. In order to exclude this effect we consider only cavity modes with similar values of the mode volume in our analysis. Therefore, we performed numerical finite difference time domain (FDTD) simulations\(^{19}\) which show that M1, M2, M3 and M6 have comparable mode volumes of \(V_{\text{mode}} = 0.65 \pm 0.09 (\lambda/n)^3 \), whilst M4 and M5 exhibit significantly lower mode volumes of \(0.30 (\lambda/n)^3 \) and \(0.39 (\lambda/n)^3 \), respectively. Therefore, we excluded M4 and M5 from our analysis and consider only M1, M2, M3 and M6. In addition to the L3 cavities, we also fabricated hexapole cavities\(^{20}\) emitting in the spectral reference region and showing a mode volume of \(V_{\text{mode}} = 0.63 (\lambda/n)^3 \) for the fundamental dipole mode (M1 hex) of this structure. Hence, we include this mode in the evaluation presented below. In fig. 2(b) we plot representative mode emission spectra in the spectral region of interest from 0.915 eV to 0.935 eV for a number of different cavity modes: (i) the fundamental L3 cavity mode (M1), (ii) the first higher energy L3 mode (M2), (iii) the second higher energy L3 mode (M3), (iv) the fifth higher energy L3 mode (M6) and (v) fundamental dipole mode of a hexapole cavity (Hex M1). The PL intensity scale is the same for all graphs.

In addition, we need to take the far field emission profile of the different cavity modes into account, since the far field profile influences the collection efficiency \(\eta_{\text{coll}} \) of our optical detection system. As a result, the fraction of light emitted to one hemisphere that is collected by our microscope objective differs for different cavity mode profiles. We obtained the values of \(\eta_{\text{coll}} \) for the different cavity modes investigated using FDTD simulations. Table I summarizes the simulation results for the cavity modes we include in our analysis. Here, \(a \) is the lattice constant used for coarse shifting the mode emission, \(V_{\text{mode}} \), the mode volume and \(\eta_{\text{coll}} \) the photon collection efficiency.

Finally, we need to exclude measurement errors such as imprecise positioning of the excitation spot on the cavity or varying fabrication quality of different PhCs,
TABLE I. Overview of the simulated properties of the PhC cavity modes included in our mode intensity versus Q analysis.

Mode	a (nm)	$V_{mode}(\lambda/n)^3$	η_{coll}
M1	330	0.74	0.197
M2	300	0.73	0.108
M3	360	0.57	0.437
M6	390	0.63	0.468
M1 hex	330	0.63	0.466

(9 < 600) are similar. In contrast, for $\gamma_a < 1.5$ meV ($Q > 600$), we observe a progressive and systematic decrease in I_{mode} with decreasing cavity linewidth (increasing Q-factors). For the fundamental mode of the L3 cavity (M1), which is the mode with the smallest linewidth, I_{mode} is strongly reduced to approximately 1/5 of the intensity of Hex M1 and M3. In order to understand this very clear experimental observation, we introduce in the following section a cavity quantum electrodynamics (QED) model based on a dissipative master equation.

III. THEORY

In this section we develop a cavity-QED model that describes our system of an ensemble of Ge-islands coupled to a cavity mode. Ge-islands are expected to have a very weak transition dipole moment, due to the spatial separation between electrons captured at the Si-Ge interface and the holes localized in the Ge-islands (type II band alignment). Hence, the coupling parameter g that describes the interaction between emitter and cavity, is expected to be very small. In the following the parameters will be denoted as illustrated schematically in fig. 3(a), where N is the number of Ge-islands coupled to the cavity mode, γ_b is the FWHM of the emission of a single Ge-island, σ is the FWHM of the spectral island ensemble distribution, γ_a is the FWHM of the cavity emission and Δ is the effective spectral detuning between the center of the cavity and the center of the island ensemble. To capture the essential physics that determines the dynamics of such a system, i.e. N Ge-islands weakly coupled to a cavity mode, we turn to the simplest possible picture provided by a dissipative master equation $i\hbar \partial_t \rho = \mathcal{L} \rho$ for the density matrix ρ with $\mathcal{L} \rho = [H, \rho] + \mathcal{L}_P \rho + \mathcal{L}_P \rho$, where H is the Hamiltonian that describes the dynamics of the islands-nanocavity system:

$$H = H_{\text{free}} + \sum_{i=1}^{N} \hbar g_i^a (b_i^a \rho + b_i^a \rho^\dagger) + \sum_{i=1}^{N} \hbar V_i b_i^\dagger b_i^\dagger b_i b_i,$$

$$H_{\text{free}} = \hbar \omega_i a_i^\dagger a_i + \sum_{i=1}^{N} \hbar \omega_i b_i^\dagger b_i$$

being the free dynamics of the modes and

$$\mathcal{L}_{\gamma_i} \rho = \frac{\gamma_c}{2} (2c Pc^\dagger - c^\dagger c P - P c^\dagger c),$$

is the Lindblad operator for the cavity modes, where $c = a, b_i$ is the decay of the modes. Pumping is included in the same way, as an incoherent source of excitation with Lindblad term $\mathcal{L}_P \rho = \frac{\rho^\dagger}{\hbar^2} (2b_i^\dagger \rho b_i - b_i^\dagger \rho b_i - \rho b_i^\dagger - \rho^\dagger b_i).$ The nonlinear term $b_i^\dagger b_i^\dagger b_i b_i$ describes phase space filling, by approximating the real energy level structures of the island to be an equally spaced ladder of level, with spacing V_i for the ith dot. A mean field approximation $\langle b_i^\dagger b_i^\dagger b_i \rangle \approx \langle b_i^\dagger b_i \rangle \langle a_i b_i \rangle$ is performed that allows us to truncate the equations of motion self-consistently. The main effect of this term is to provide an effective detuning between the cavity mode and the spectral center of...
the emitter ensemble distribution, as well as an effective broadening of the emitter line. The steady state population in the cavity \(n_a = \lim_{t \to \infty} \text{Tr}(\rho(t)a^\dagger a) \) is then obtained, from which follows the number of photons emitted per unit time \(I_{\text{mode}} = \gamma_a n_a \). This is the main quantity of interest in our experiment. A closed form expression can be obtained for a distribution of islands (a Gaussian distribution is non-integrable) that shows the combined effect of detuning \(\Delta = \omega_a - \sum_{i=1}^N \omega_i \) between the cavity mode and the average position of the islands and their distribution \(\sigma \):

\[
I_{\text{mode}} = \frac{P_b}{\Gamma_b} \frac{\gamma_a}{\gamma_a + \Gamma_b + \sigma} \frac{4g_{\text{eff}}^2}{\gamma_a}.
\]

Here, we have retained the leading term only in the coupling strength \(g \), since it is very small in our systems, and have defined the effective coupling:

\[
g_{\text{eff}}^2 = \frac{Ng^2}{1 + \left(\frac{\Delta - \gamma_b}{\gamma_a + \Gamma_b + \sigma} \right)^2},
\]

where \(\Delta = \sqrt{\Delta^2 + \langle \hbar \sum_i b_i^\dagger b_i/N \rangle^2} \) is the effective detuning that includes the interactions, and \(\Gamma_b \) is the effective broadening of a single emitter that, following Bose statistics, reads \(\gamma_b = P_b \). These two new parameters are however to be considered the natural and independent ones that describe the system, rather than the microscopic ones from which they stem. \(\Delta \) and \(\gamma_b \) do not play a direct role anymore.

In terms of these effective parameters, eqn. 3 is closely related to that of a single emitter coupled to a cavity (and reduces to it when \(N = 1, V_i = 0 \) and \(\sigma = 0 \)).

The first term in eqn. 3, \(P_b/\Gamma_b \), is the effective population that builds up among the islands. The second term, \(\gamma_a/(\gamma_a + \Gamma_b + \sigma) \), is the fraction of these excitations which is available to excite the cavity. The third term, \(4g_{\text{eff}}^2/\gamma_a \), dominates the dynamics and governs the intensity-linewidth trend.

In fig. 4(b) we plot eqn. 3 for various limiting cases of the cavity QED light-matter coupling: (i) Cavity at resonance (\(\Delta = 0 \)) and (ii) at finite detuning (\(\Delta = 1.5 \text{ meV} \)) to a spectrally narrow emitter ensemble with an effective ensemble linewidth of \(\Gamma_b + \sigma = 0.01 \text{ meV} \). In curve (iii) we plot eqn. 3 for a cavity at large detuning (\(\Delta = 30 \text{ meV} \)) to a broad emitter ensemble distribution with \(\Gamma_b + \sigma = 50 \text{ meV} \). These parameters correspond closely to the expected reality for our system cf. fig. 1(d)]. For very weak coupling (\(g \to 0 \)), the intensity of the emitted light increases with the quality of the cavity (\(\gamma_a \to 0 \)) if the cavity mode is placed at resonance to a spectrally narrow emitter ensemble (\(\Delta = 0 \)). This can clearly be seen by curve (i) in fig. 4(b). At non-zero detuning with finite spectral mismatch \(\Delta \) the effective coupling becomes larger with decreasing \(Q \) (increasing \(\gamma_a \) due to an increasing overlap between the detuned cavity mode and the collective set of islands, with effective linewidth \(\Gamma_b + \sigma \). Hence, making the cavity \(Q \) worse gives rise to an increase of the mode emission intensity. For very low \(Qs \) (large \(\gamma_a \)) the intensity decreases since the coupling between the emitter ensemble and the cavity gets weak. This is shown representatively by curve (ii) in fig. 4(b). The trends shown in curves (i) and (ii) can be observed only when the effective ensemble linewidth \(\Gamma_b + \sigma \) of the island-ensemble is comparable to the linewidth \(\gamma_a \) of the cavity mode. In strong contrast, our system has an ensemble linewidth of \(\approx 50 \text{ meV} \), which is more than an order of magnitude larger than the cavity linewidth. For this case our model predicts that the emitted intensity should exhibit a plateau for the regime of cavity mode linewidths we observe in our experiment (0.3 meV < \(\gamma_a \) < 3 meV), quite independently of detuning. This is shown by curve (iii) in fig. 4(b). Clearly, experimentally we do not observe the theoretically predicted plateau for the high-\(Q \) region, but rather
a decrease in emission intensity as presented in fig. 2(a). So far, our cavity-QED model takes only photon emission from the islands into the cavity mode into account, while in the real experiment we have additional effects, such as photon reabsorption, annihilating the photon before it escapes the cavity. With increasing cavity Q the time the photon remains inside the cavity increases and, hence, absorption effects are expected to play an increasingly important role for high Q cavities. This is supported by the fact that M1 is expected to have a high Q-factor of $Q_{\text{sim}} \approx 70,000$ according to our FDTD simulations, but we observe a significantly smaller Q-factor in our experiment of $Q_{\text{exp}} \approx 2,800$.

Due to the spatial separation between electron- and hole-wavefunction and the indirect optical transition in k-space we expect the resonant absorption of the Ge-islands to be too weak to explain the Q-factor saturation in our experiment. This expectation is supported by the observation that the Q-factor of the nanocavity emission is independent of the spectral position relative to the Ge-island ensemble. If reabsorption of photons by Ge-islands would play a dominant role, we would expect to observe an increase of Q-factors for cavity modes emitting at the low energy side of the ensemble, since the probability of photon reabsorption decreases there. However, free carrier absorption (FCA) can cause photon reabsorption since we generate a large density of charge carriers in the vicinity of the nanocavity, as we optically excite with a high power density of 600 kW/cm². Such a high optical pumping intensity is required to observe a strong PL signal. We take reabsorption of photons into account as a competing process between the escape of a photon out of a cavity with a photon escape time τ_{esc}, given by the intrinsic Q-factor of the cavity, and the photon reabsorption time τ_{abs}. The total photon loss time τ_a, given by $1/\tau_a = 1/\tau_{\text{esc}} + 1/\tau_{\text{abs}}$, determines the experimentally observed Q-factor and, therefore, the cavity linewidth γ_a measured in PL. Hence, the emitted mode intensity I_{mode} in the presence of photon reabsorption can be expressed as:

$$I_{\text{mode}}(\gamma_a) = I_{\text{mode}}(\gamma_{\text{esc}}) \cdot \frac{1/\tau_{\text{esc}}}{1/\tau_{\text{esc}} + 1/\tau_{\text{abs}}} = I_{\text{mode}}(\gamma_a - \gamma_{\text{abs}}) \cdot \left(1 - \frac{\gamma_{\text{abs}}}{\gamma_a}\right).$$ \hfill (5)

$I_{\text{mode}}(\gamma_a)$ denotes the emitted PL intensity of a cavity with a linewidth of γ_a when including absorption, $I_{\text{mode}}(\gamma_{\text{esc}})$ denotes the emitted PL intensity of the same cavity without absorption and, hence, a smaller cavity linewidth γ_{esc} which is solely determined by $1/\tau_{\text{esc}}$. The last term describes the competing process between the escape of a photon out of the cavity and photon reabsorption, where γ_{abs} is the cavity linewidth given by the absorption.

IV. DISCUSSION

In fig. (a) we present the theoretically predicted trend of the mode emission intensity as a function of cavity linewidth γ_a for our system in the absence of photon reabsorption [dotted line, cf. fig. (b)]. Furthermore, we plot a fit (full line) of the model to the experimental datapoints (grey, points) from fig. 3 using the same parameters and now including reabsorption of photons as described by eqn. [3]. There, we used γ_{abs} and the normalization of I_{mode} as fitting parameters. The theoretically predicted trend follows our experimental data by showing a decrease of emission intensity with decreasing γ_a (increasing Q-factors). Obviously, we do not expect to observe mode emission for linewidths γ_a smaller than γ_{abs}, as highlighted by the red area. From the fit we extract $\gamma_{\text{abs}} = 0.27 \pm 0.05$ meV, which corresponds to a photon reabsorption time of $\tau_{\text{abs}} = 2.3 \pm 0.4$ ps. The presence of FCA is supported by the fact that we observe, with increasing optical pumping power, a broadening of the cavity modes. This is an effect, which El Kurdi et al. have observed at similar excitation power densities for Si photonic crystal nanocavities with embedded Ge-islands. An example of such pump power dependence investigations for M2 is shown in fig. (b), where we plot the mode linewidth of M2, γ_a, as a function of optical excitation power density. In our system, at low optical excitation power densities, the linewidth of M2 stays constant at $\gamma_a \approx 0.74 \pm 0.02$ meV (marked by the horizontal dotted line), as it is solely determined by the intrinsic photon escape time τ_{esc} of the cavity mode. When increasing the excitation power density above 250 kW/cm², we observe a strong increase in linewidth. At 600 kW/cm² (marked by the green vertical line), which corresponds to the optical excitation power density we used in our comparative experiment, $\gamma_a = 0.97 \pm 0.02$ meV. When further increasing the optical excitation power, the absorption coefficient is increased due to heating caused by the excitation laser. This leads to a strong increase of optically generated charge carriers inside the cavity and, as a result, γ_a increases strongly. Since we can extract the intrinsic linewidth of M2 from the measurements at low power, we can extract the reabsorption γ_{abs}, using $\gamma_{\text{abs}} = \gamma_a - \gamma_{\text{esc}}$. In fig. (c) we plot γ_{abs} as a function of optical excitation power density. At 600 kW/cm² (marked by the green vertical line), which corresponds to the optical excitation power density we used in our comparative experiment, we obtain $\gamma_{\text{abs}} = 0.23 \pm 0.04$ meV, corresponding to a photon reabsorption time of $\tau_{\text{abs}} = 1.9 \pm 0.3$ ps. This is in remarkable agreement with $\gamma_{\text{esc}} = 2.3 \pm 0.4$ ps, as extracted from the fit in fig. (a). Thus, these observations lend strong support to the argument that FCA limits the emission enhancement. A major conclusion of our work is that the overall emitted intensity from optically pumped PhC nanocavities with embedded Ge-islands is mainly limited by FCA, caused by the high charge carrier density from strong optical excitation. Concerning the external quan-
FIG. 5. (Color online) (a) Mode emission intensity as a function of cavity linewidth γ_a: (dotted line) Theoretically predicted trend for our system with an emitter ensemble distribution $\Gamma_b + \sigma = 50 \text{ meV}$ and an ensemble cavity detuning of $\tilde{\Delta} = 30 \text{ meV}$, in the absence of photon reabsorption and (solid line) including reabsorption of photons with an absorption of $\gamma_{\text{abs}} = 0.27 \pm 0.05 \text{ meV}$ together with the experimental datapoints from fig. 3. (b) Cavity mode linewidth of M_2, γ_{M2}, as a function of optical excitation power density. The vertical line marks the intrinsic linewidth γ_{esc} of M_2. (c) γ_{abs}, extracted from γ_{M2}, as a function of optical excitation power density. The vertical line marks the optical excitation power density we used in our comparative study (600 kW/cm2). The horizontal dotted line marks the extracted absorption linewidth of $\gamma_{\text{abs}} = 0.23 \pm 0.04 \text{ meV}$ at this power.

tum efficiency, high-Q cavities are actually performing worse than low-Q cavities due to the increased probability of reabsorption of photons emitted into the cavity.

V. CONCLUSION

We reported a comparative study of PL emission from PhC nanocavities with embedded Ge-islands by low temperature μPL spectroscopy. First we investigated a number of different L3 and Hexapole PhC cavity modes with various Q-factors. For a valid comparison we considered only mode emission in a well defined spectral region, corrected for the mode volume related change of emitters pumping the cavity mode and the far field radiation pattern. With increasing Q-factors we observed a decrease of the PL-intensity emitted by the cavity mode. We then introduced a cavity-QED model based on a dissipative master equation to understand the dynamics of an ensemble of emitters, which are in highly excited states due to strong optical pumping and in very weak-coupling with the cavity mode. With this model we could identify various regimes of PL intensity versus Q-factor trends, depending on the emitter ensemble distribution and the spectral emitter cavity detuning. By comparing the theoretically predicted trend of our system with the experimental data, we concluded that reabsorption of photons emitted into the cavity limits the emission enhancement via the cavity mode. We extracted a photon reabsorption time of $\tau_{\text{abs}} = 2.3 \pm 0.4 \text{ ps}$ and concluded, by comparing this value to the photon reabsorption time $\tau_{\text{abs}}^* = 1.9 \pm 0.3 \text{ ps}$ extracted from power dependent measurements, that the absorption is caused by free carriers. Therefore, cavity modes with high Q-factors and, hence, long photon lifetimes exhibit a reduced radiative quantum efficiency compared to cavity modes with low Q-factors.

VI. ACKNOWLEDGEMENTS

We would like to thank E. del Valle (University of Southampton, Southampton, United Kingdom) and P. Senellart (Laboratoire de Photonique et Nanostructures, Marcoussis, France) for fruitful discussions. We acknowledge financial support from the German Excellence Initiative via the Nanosystems Initiative Munich (NIM), IEF project ‘SQOD’ and the TUM International Graduate School of Science and Engineering (IGSSE).

* hanke@wsi.tum.de

1 B. Jalali, Nature Photonics 1, 193 (2007).
B. Jalali and S. Fathpour, J. Lightw. Technol. 24, 4600 (2006).

3 R. Soref, IEEE J. Sel. Topics Quantum El. 12, 1678 (2006).

4 N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, IEEE J. Sel. Topics Quantum El. 12, 1688 (2006).

5 L. Kimerling, Appl. Surf. Sci. 159, 8 (2000).

6 L. Pavesi, Silicon Photonics (Springer, Berlin, 2004).

7 N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, IEEE J. Sel. Topics Quantum El. 12, 1688 (2006).

8 S. Iwamoto, Y. Arakawa, and A. Gomyo, Appl. Phys. Lett. 91, 211104 (2007).

9 M. Fujita, Y. Tanaka, and S. Noda, IEEE J. Sel. Topics Quantum El. 14, 1090 (2008).

10 Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).

11 www.soitec.com.