Simulation of Wheat Growth and Yield under Ambiance Change Impacts on Crop in Eastern India

Shatruhan Jaiswal*, Anuj Kumar and Uma Shanker Gupta

Agriculture Engineering, Faculty of Agriculture, Abhilashi University Chailchowk Chachiyot, Distt- Mandi- (H.P), 175028, India

*Corresponding author

ABSTRACT

In India, wheat is grown in an area of about 29.06 million hectares with a production of 86.87 million ton (FAO, 2011). The yield of wheat increased after sixties and early seventies bringing the green revolution in India. In recent years, production of wheat crop in response to the increasing application rates of the input resources is experiencing a declining trend. India is second most populous country after China which houses 15% of global population (census 2011) within 2.42% of geographical land area of world. The ever growing population and improving economic condition pressurize to produce and supply higher quantity of food grains. However, the country’s agriculture production is not increasing but somewhere stagnated, this increasing demand for food grain production. Agriculture sector therefore needs much attention to decrease this gap between increasing demand and production. It concluded that the wheat sowing period around 30 November was simulated to be the best for increased production under the current and future climate scenario at Kharagpur, eastern India, A marginal increase in yield was simulated by shifting the sowing time from 30 Nov to 15 December under future climate scenarios. and The N fertilizer application rate in the range 120 to 180 kg/ha was recommended for the yield maximization.

Keywords: Wheat, Wheather, CO2, CERES model and simulation

Accepted: 26 June 2018
Available Online: 10 July 2018

Introduction

The ever growing population and improving economic condition pressurize to produce and supply higher quantity of food grains. However, the country’s agriculture production is not increasing but somewhere stagnated, this increasing demand for food grain production. Agriculture sector therefore needs much attention to decrease this gap between increasing demand and production. Wheat, the staple cereal crop in world, is grown in 220.38 million hectare contributing 27.21% of total cereal grain production. In India, wheat is grown in an area of about 29.06 million hectares with a production of 86.87 million ton (FAO, 2011). The yield of wheat increased after sixties and early seventies bringing the green revolution in India. In recent years, production of wheat crop in response to the increasing application rates of the input resources is experiencing a declining trend. Srivastava et al., (2010) studied the impacts of climate change on the sorghum production system in India using InfoCrop-SORGHUM simulation model. Climate change impacts on
winter crop are projected to reduce yields up to 7% by 2020, up to 11% by 2050 and up to 32% by 2080. The study indicated that more low-cost adaptation strategies should be explored to further reduce the net vulnerability of sorghum production system in India. Xiao et al., (2010) evaluate the effects of temperature on winter wheat (Triticum aestivum L.) at the Tongwei County, Gansu, in the semiarid northwest of China from 2006 to 2008. Crop yields at both high and low altitudes will likely increase, although this increase in yields will be greater at higher elevations. Indeed, it is expected that by 2050 the increased temperature will have induced 2.6% increase in wheat yields at low altitudes and 6.0% increase in yields at high altitudes in the study area. The results of this study indicated that 0.6–2.2 °C increase in temperature will improve the water use efficiency of winter wheat plants at the two altitudes evaluated here.

Langensiepen et al., (2008) validated the CERES-Wheat model under North German environmental condition using nine years of field observation data. They observation that magnitudes of most genetic coefficients were affected by seasonal weather fluctuation. Their modeling results showed a RMSE of 2.2 t/ha and 3.2 t/ha for predicted yield and biomass respectively. Dettori et al., (2011) used the CERES-Wheat model to test the predictive performance of model, implemented in DSSAT software system, under Mediterranean climate condition and soil types of Southern Sardinia, Italy. CERES-Wheat model was calibrated for three durum wheat Italian varieties (Creso, Duilio, and Simeto) using a 30 years data set (1974-2004). The results of their study, based on long-term data sets, supported their conclusion that further model testing and testing and improvements are required for application on durum wheat and the need of proper calibration and validation in the environment of interest.

Singh et al., (2008) used the CERES-Wheat and CropSyst models for predicting growth and yield of wheat under different nitrogen and water management conditions. The models were evaluated for three irrigation and five nitrogen treatments. Both the models were calibrated using data obtained from the treatments receiving maximum nitrogen and irrigations, i.e., N150 and 14 treatments. It was observed that the model predicted grain yield satisfactorily with R2 =0.88 but underestimated the biomass. Nagarajan et al., (2010) studied the impact of diurnal temperature and radiation changes on yield and yield components of aromatic rice cultivars in field conditions and documented the effect of changing diurnal temperature and radiation on grain quality. The results showed that the optimum planting dates have been established in most of the rice-growing regions of the world and the option to alter them according to changing climate could result in a yield penalty and altered grain quality. Mutlu Ozdoğan (2011) investigated the impacts of elevated atmospheric CO2 concentrations and associated changes in climate on winter wheat yields in northwestern Turkey. They suggested prioritization of adaptation strategies in the region, including development of local cultivars of drought and heat-resistant crop varieties, earlier planting to avoid heat stress during summer, development and adoption of slower-maturing varieties to increase the grain filling period, and further investments to boost agricultural productivity with the objective of Simulation of wheat yield under climate change scenarios and Evaluation of agro-adaptation for wheat production under climate change scenario.

Materials and Methods

Growth and yield simulation

Crop growth is simulated by employing a carbon balance approach in a source-sink
system (Ritchie et al., 1998). Daily crop growth rate is calculated as:

\[PCARB = \frac{RUE \times PAR}{PLTPOP} \left(1 - e^{(-k \times LAI)} \right) \times CO_2 \]

Where,

PCARB = Potential growth rate, g/plant

RUE = Radiation use efficiency, (gm dry matter/MJ PAR)

PAR = Photosynthetically active radiation (MJ/m²)

PLTPOP = Plant population, plants/m²

K = Light extinction factor

LAI = Green leaf area index

CO₂ = Carbon dioxide concentration (ppm)

The stages of development are determined by the accumulation of thermal time (Growing degree days).

Thermal time is computed with the following equation:

\[GD_{day} = T_{avg} - T_{GD_{daybase}} \]

\[CGD_{day} = CGD_{day-1} + GD_{day} \]

\[T_{avg} = \begin{cases} T_{GD_{daybase}} & \text{if } T_{avg} < T_{GD_{daybase}} \\ T_{cutoff} & \text{if } T_{avg} > T_{cutoff} \\ (T_{max} + T_{min})/2 & \text{Otherwise} \end{cases} \]

Where,

GD_{day} (°C-days) is today's thermal time.

CGD_{day} (°C-days) is today's accumulated thermal time since planting.

TG_Daybase and Tcutoff are crop input parameters that define the range of temperatures for viable development.

Tmin (°C) is the daily minimum air temperature.

Tmax (°C) is the daily maximum air temperature.

Simulation of climate change impact

Wheat phenological development, biomass and grain yield where simulated for different climate change scenarios and also for past weather. Fixed climate change scenarios of rising CO₂ level and temperature above the current value and developed scenarios of HadCM3 for the year 2020 and 2050 generated from Global Climate Model were used for the simulation analysis. The fixed scenarios include the combination four levels elevated CO₂ (+0, +100, +200 and +300 ppm) and four level of rising temperature (+0, +1, +2, and +3 °C) above the ambient CO₂ (CO₂ ≃ 390 ppm). Future weather data of the study areas for the years 2020s and 2050s based on downscaling GCM (Global Climate Model) of HadCM3 were collected from Space Applications Center (SAC), Ahmedabad for the two climate scenarios ‘A2’ and ‘B2’ where A2 considers industrial development and B2 considers environmental sustainability on regional level. The future climate scenarios were used in the CERES model to simulate their effect on growth and yield of wheat crop.

Evaluation of agro-adaptation

Evaluation of adaptive management options is very crucial for successfully dealing with climate change impacts. The CERES-wheat model was used for simulation of different adaptation management. This adaptation management includes effect of change in planting date and in nitrogen application rate for minimizing the adverse impact of climate change in wheat yield.
Study site

The present study has been carried out in the research farm of Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur (22°19’N latitude and 87°19’E longitude) India. The climate of Kharagpur is classified as sub humid, sub tropical with hot and humid in summer (April and May), rainy during June to September, moderately hot and dry in autumn (October and November), cool and dry in winter (December and January) and moderate spring in February and March. The daily mean temperature of the study area ranges from a minimum of 12 °C in January to a maximum of 37 °C in April with average annual rainfall of 1400 mm. The variation in average daily maximum and minimum temperatures, solar radiation and rainfall for the study area during 1971 – 2012

CERES-Wheat model

The CERES-Wheat model simulates phenological development of the crop; growth of grains, leaves, stems, and roots; biomass accumulation based on light interception and environmental stresses; soil water balance; and soil N transformations and uptake by the crop. The phenology component also simulates the effect of water or N deficit on the rate of life cycle progress (Singh et al., 1999). The duration of growth stages in response to temperature and photoperiod varies between species and cultivars, and genetic coefficients are used as model inputs to describe these differences. The phenological stages simulated by the model are sowing, germination, emergence, juvenile phase, panicle initiation, heading, beginning of grain filling, end of grain filling, and physiological maturity. The model simulates total biomass of the crop as the product of the growth duration and average growth rate. The simulation of yields at the process level involves the prediction of these two important processes. The yield of the crop is the fraction of total biomass partitioned to grain.

Input parameters

Input requirements for CERES-Wheat include site characteristics weather and soil conditions, plant characteristics, and crop management (Hunt et al., 2001).

Site

Latitude, longitude, elevation, slope, water table depth.

Weather

Daily solar radiation, maximum and minimum air temperature, and precipitation. Solar radiation can be approximated from other observations, such as the number of sunshine hours, which is sometimes more readily available.

Soil

Physical properties: Depths of layers, percentages of sand, silt, and clay, and bulk density at various depths, moisture content at lower limit (LL, 15 bars), drained upper limit (DUL, 1/3 bar), and at saturation (SAT) for various depths (if they are not available, they could be estimated from percentages of sand, silt, and clay and bulk density).

Chemical properties: pH, organic carbon, total nitrogen, Cation Exchange Capacity.

Crop management: Plant population, planting depth, and date of planting, irrigation and fertilizer scheduling, tillage operations and residue management etc.

Genetic coefficients: Coefficients related to photoperiod sensitivity, duration of grain filling, conversion of mass to grain number,
Results and Discussion

Simulation of climate change impacts

Past weather

The model was applied to simulate the grain yield of wheat crop, using the historical weather data (Figure 1). The simulated grain yield over past years is decreasing trend with progress of year. The influence of different sowing dates (15 October, 30 October, 15 November, 30 November, 15 December, 30 December and 15 January) and N fertilizer doses (0, 60, 120, 180 and 240 kg/ha) was simulated on yield of wheat crop (Table 1). The minimum grain yield of 2729 kg/ha was simulated on 15 October sowing and maximum grain yield of 3737 kg/ha on 30 November sowing. Among the different sowing dates, sowing on 30 November was taken as reference date since maximum yield was simulated on this date. Percentage change in the yield for the dates earlier to 30 November i.e. 15 November, 30 October and 15 November were -6, -20 and -27, respectively.

Similarly the percentage change in simulated grain yield for the sowing later to 30 November i.e. 15 December, 30 December and 15 January were -1, -5 and -21, respectively, as shown in Figure 2. Increase N fertilizer level up to 120 and 180 kg/ha simulated on yield improvement 30 and 36% as compared to control (no N application rate). Further N application did not simulated any significant yield improvement.

The tops weight and water use efficiency were found maximum sowing on 30 November (Table 2 and Table 3). Appearance of anthesis and maturity were 66 and 103 days after sowing for 30 November sowing date. Sowing earlier or later to 30 November reduced the maturity duration 8 and 17 days (Fig. 3).

Global climate model scenario

The CO₂ concentration for the current periods, 2020 and 2050 were 390 ppm, 420 ppm and 480 ppm, respectively in A2 as well as B2 scenarios. The change in daily average temperature and monthly rainfall for A2 and B2 scenarios for the periods 2020 and 2050 are shown in Figures 4 to 6. The average rise in daily air temperature was 0.96 °C and 2.50 °C for 2020 and 2050, respectively under A2 scenario. Similarly in B2 scenario, the rise on temperature was 1.06 °C and 2.04 °C for 2020 and 2050, respectively.

The change in monthly rainfall factor was 0.21 and 0.23, 2020 and 2050, respectively for A2 scenario, and for B2 scenario the corresponding the changes were 0.22 and 0.26.

The CERES-Wheat model was used for simulation of grain yield, tops weight, water use efficiency, anthesis and maturity days of wheat for the future climate scenarios. The simulated grain yield, tops weight and water use efficiency are given in Table 6. The percentage change in grain yield for A2 and B2 scenario was calculated on the basis of current grain yield. The simulated grain yield increased by 12% and 8% on 2020, but decreased by 4% and 3% in 2050 under A2 and B2 scenario, respectively as compared to present grain yield (Figure 7).

The change in anthesis and maturity days is shown in Figure 8. The water use efficiency was found to be decreasing from A2 2020 to A2 2050 and similar trend was obtained for B2 scenarios. The crop maturity duration was reduced by 2 days in 2020 and 10 days in 2050 (Table 1–10 and Fig. 9-14).
Table 1 Effect of different sowing dates and nitrogen fertilizer application rate on wheat grain yield (kg/ha)

Sowing dates	N fertilizer (kg/ha)	Mean
15-Oct	0	2189
	60	2567
	120	2832
	180	2987
	240	3069
30-Oct	0	2486
	60	2883
	120	3099
	180	3236
	240	3329
15-Nov	0	2849
	60	3373
	120	3649
	180	3787
	240	3863
30-Nov	0	3036
	60	3588
	120	3886
	180	4042
	240	4132
15-Dec	0	2996
	60	3575
	120	3873
	180	4028
	240	4117
30-Dec	0	2791
	60	3391
	120	3717
	180	3893
	240	3989
15-Jan	0	2223
	60	2803
	120	3128
	180	3284
	240	3369
Mean		2653

Table 2 Effect of different sowing dates of nitrogen fertilizer application rate on wheat tops weight (kg/ha)

Sowing dates	N fertilizer levels (kg/ha)	Mean
15-Oct	0	6635
	60	7902
	120	8585
	180	8963
	240	9159
30-Oct	0	7098
	60	8875
	120	9448
	180	9759
	240	9959
15-Nov	0	7405
	60	9743
	120	10638
	180	10940
	240	11083
30-Nov	0	7514
	60	9862
	120	10863
	180	11251
	240	11422
15-Dec	0	7452
	60	9489
	120	10381
	180	10723
	240	10888
30-Dec	0	6512
	60	8319
	120	9123
	180	9486
	240	9668
15-Jan	0	5325
	60	6761
	120	7468
	180	7779
	240	7936
Mean		6849

Table 3 Effect of different sowing dates and nitrogen fertilizer application rate on wheat water use efficiency (kg/ha-cm) of wheat crop

Sowing dates	N fertilizer levels (kg/ha)	Mean
15-Oct	0	92
	60	105
	120	113
	180	118
	240	121
30-Oct	0	95
	60	107
	120	114
	180	118
	240	121
15-Nov	0	103
	60	116
	120	123
	180	127
	240	130
30-Nov	0	102
	60	117
	120	124
	180	128
	240	132
15-Dec	0	95
	60	109
	120	116
	180	120
	240	123
30-Dec	0	87
	60	101
	120	109
	180	114
	240	116
15-Jan	0	68
	60	83
	120	91
	180	95
	240	97
Mean		92

3493
Table 5 Effect of different sowing dates and nitrogen fertilizer application rate on grain yield (kg/ha) under CO$_2$ elevation of +200 ppm and rise in temperature +2 °C above current value

Sowing dates	N Fertilizer (kg/ha)	Mean			
	0	60	120	180	240
15-Oct	2171	2547	2812	2966	3048
30-Oct	2384	2784	3010	3149	3243
15-Nov	2608	3111	3394	3533	3612
30-Nov	2785	3303	3617	3776	3866
15-Dec	2751	3297	3604	3760	3852
30-Dec	2458	2989	3299	3471	3559
15-Jan	1931	2416	2672	2787	2850
Mean	2441	2921	3201	3349	3433

Table 6 Effect of different sowing dates and nitrogen fertilizer application water use efficiency (kg/ha-cm) under CO$_2$ elevation of +200 ppm and rise in temperature +2 °C above current value

Sowing dates	N Fertilizer (kg/ha)	Mean			
	0	60	120	180	240
15-Oct	96	109	118	123	126
30-Oct	96	109	116	121	124
15-Nov	98	112	121	125	127
30-Nov	100	114	122	127	129
15-Dec	94	108	117	121	123
30-Dec	80	94	103	107	109
15-Jan	60	73	79	82	84
Mean	89	103	111	115	117

Table 10 Simulated wheat grain yield (kg/ha) for the year 2050 under A2 climate scenarios of HadCM3 for different sowing dates

Sowing date	N Fertilizer (kg/ha)	Mean			
	0	60	120	180	240
15-Oct	1346	1502	1604	1649	1666
30-Oct	2072	2422	2600	2714	2789
15-Nov	2809	3276	3482	3599	3676
30-Nov	3106	3595	3796	3909	3980
15-Dec	3161	3623	3809	3920	3988
30-Dec	2870	3330	3533	3659	3739
15-Jan	2226	2641	2861	2989	3068
Mean	2513	2913	3098	3206	3272
Table 7 Simulated water use efficiency (kg/ha-cm) for the year 2050 under A2 climate scenarios of HadCM3 for different sowing dates

Sowing dates	N Fertilizer (kg/ha)	Mean				
	0	60	120	180	240	
15-Oct	64	69	72	73	73	70
30-Oct	81	89	94	96	98	92
15-Nov	93	104	108	111	113	106
30-Nov	95	106	111	113	114	108
15-Dec	93	102	106	109	110	104
30-Dec	81	91	95	98	99	93
15-Jan	64	73	78	80	82	75
Mean	82	91	95	97	99	

Table 8 Simulated wheat grain yield (kg/ha) for the year 2050 under B2 climate scenarios of HadCM3 for different sowing dates

Sowing dates	N Fertilizer (kg/ha)	Mean				
	0	60	120	180	240	
15-Oct	1575	1774	1904	1970	1997	1844
30-Oct	2297	2680	2876	2997	3076	2785
15-Nov	3026	3521	3743	3851	3919	3612
30-Nov	3253	3752	3950	4071	4138	3833
15-Dec	3219	3719	3905	4022	4088	3791
30-Dec	2884	3336	3538	3661	3748	3433
15-Jan	2276	2654	2867	2995	3065	2771
Mean	2647	3062	3255	3367	3433	

Table 9 Simulated water use efficiency (kg/ha-cm) for the year 2050 under B2 climate scenarios of HadCM3 for different sowing dates

Sowing dates	N Fertilizer (kg/ha)	Mean				
	0	60	120	180	240	
15-Oct	72	78	81	83	84	80
30-Oct	87	97	102	105	106	99
15-Nov	99	110	115	118	120	113
30-Nov	99	110	115	117	118	112
15-Dec	94	104	108	110	112	106
30-Dec	82	91	95	98	100	93
15-Jan	66	74	79	82	83	77
Mean	86	95	99	102	103	
Table 4 Simulated wheat grain yield, tops weight and water use efficiency for the year 2020 and 2050 under A2 and B2 climate scenario of HadCM3

	A2		B2	
	2020	2050	2020	2050
Grain yield (kg/ha)	4355	3746	4345	3905
Tops weight (kg/ha)	11866	10344	11711	10583
Water use Efficiency (kg/ha-cm)	145	133	145	137

Figure 1a Simulated grain yields in past years (1975-2011) for wheat crop

Figure 1b Average daily temperature of past years at Medinipur during 1975-2012

Figure 2 Change in wheat grain yield (%) under different sowing dates and N fertilizer application rate as compared to the reference sowing date (30 November) and N fertilizer rate (120 kg/ha)
Figure 3 Effect of different sowing date on appearance of anthesis and maturity in days after sowing of wheat crop

Figure 4 Change in daily maximum temperature for the years 2020 and 2050 in A2 and B2 scenarios of HadCM3

Figure 5 Change in daily minimum temperature for the years 2020 and 2050 in A2 and B2 scenarios of HadCM3
Figure 6 Change in monthly rainfall factor for the years 2020 and 2050 in A2 and B2 scenarios of HadCM3

Figure 7 Change in grain yield (%) under A2 and B2 scenarios

Figure 8 Change in anthesis and maturity appearance for the year 2020 and 2050 under A2 and B2 climate scenario
Figure 9 Change in grain yield (%) under CO₂ elevation of 200 ppm and rise in temperature +2 °C above current value

Figure 10 Anthesis and maturity days under CO₂ elevation of +200 ppm and rise in temperature +2 °C above current value for different sowing date

Figure 11 Change in grain yield (%) under different sowing dates as compared to 30 November sowing and under different N fertilizer application rate as compared to 120 kg/ha for the year 2050 under A2 scenario
Figure 12 Effect of different sowing dates on appearance of anthesis and maturity in days after sowing of wheat crop for the year 2050 under A2 scenario

Figure 13 Change in grain yield (%) under different sowing dates as compared to 30 November sowing and under different N fertilizer application rate as compared to 120 kg/ha for the year 2050 under the B2 scenario

Figure 14 Effect of different sowing dates on appearance of anthesis and maturity in days after sowing of wheat crop for the year 2050 under B2 scenario
The summary and conclusions are as follows:

There was a good agreement between observed and simulated time series leaf area index, leaf weight, stem weight and tops weight of wheat crop with d-Stat value 0.87, 0.89, 0.98 and 0.98, respectively during calibration period (2010-2011). Similarly for validation period (2011-2012), the d-stat value between the observed and simulated time series leaf area index, leaf weight, stem weight and tops weight of wheat crop were 0.94, 0.88, 0.98 and 0.92, respectively. The variation between the observed and simulated value for grain yield was 6% and for tops weight was 14% during the validation period. The model was applied to simulate the grain yield of wheat crop, using the historical weather data. The simulated grain yield over past years was in decreasing trend with progress of year. The decrease in wheat yield over the past years could be due to increasing temperature over the years. The influence of different sowing dates and N fertilizer doses was simulated on change in yield of wheat crop. The minimum grain yield of 2729 kg/ha was simulated on 15 October sowing and maximum grain yield of 3737 kg/ha on 30 November sowing. Increase N fertilizer level up to 120 and 180 kg/ha simulated the yield improvement 30 and 36% as compared to control (no N application). Further increasing N application did not simulate any significant yield improvement. Appearance of anthesis and maturity days. To determine the optimum sowing dates, the potential outcomes of shifting the sowing dates 45 days before and 45 days after the current sowing date (30 November) with an interval of 15 days between successive sowing dates were investigated. Highest grain yield and water use efficiency were simulated under the normal sowing on 30 November. Differing sowing dates by 45 days from the normal (30 November) reduced the crop maturity duration by 5 days in early sowing, but 12 days in late sowing. With the developed A2 scenario, the grain yield increased by 0.6% by shifted the sowing date for 30 November to 15 December during the year 2050. However, in B2 scenario, the current sowing (30 November) continued to simulate the highest grain yield. In view of the research findings, the following conclusions are summarized. (a) The wheat sowing period around 30 November was simulated to be the best for increased production under the current and future climate scenario at Kharagpur, eastern India. (b) A marginal increase in yield was simulated by shifting the sowing time from 30 Nov to 15 December under future climate scenarios. (c) The N fertilizer application rate in the range 120 to 180 kg/ha was recommended for the yield maximization.

References

Dettori, M., Cesaraccio C., Motroni A., Spano D. and Duce P. (2011). Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Research, 120: 179-188.

Langensiepen, M., Hanus, H., Schoop, P. and Grasle, W. (2008). Validating CERES-wheat under North-German environmental conditions. Agricultural Systems, 97(1-2): 34-47.

Ma, H.L., Zhu, J.G., Liu, G., Xie, Z.B., Wang, Y.L., Yang, L.X. and Zeng, Q.
(2007). Availability of soil nitrogen and phosphorus in a typical rice–wheat rotation system under elevated atmospheric [CO₂]. Field Crops Research, 100: 44-51.

Nagarajan, S., Jagadish, S., Hariprasad, A. K., Anand, A., Pal, M. and Agarwal, P. K. (2010). Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agriculture, Ecosystems and Environment, 138: 274-281.

Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takac, J., Trnka, M., Bindi, M., Caldag, B., Ewert, F., Ferrise, R., Mirschel, W., Saylan, L., Siska, B. and Rotter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35: 103-114.

Reidsma, P., Ewert, F., Lansink, A. and Leemans, R. (2010). Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy, 32: 91-102.

Singh, A. K., Tripathy, R. and Chopra, U. K. (2008). Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural Water Management, 96(7): 776-786.

Singh, U., Wilkens, P.W., Chude, V. and Oikeh, S. (1999). Predicting the effect of nitrogen deficiency on crop growth duration and yield. In: Proceedings of the Fourth International Conference on Precision Agriculture, ASA-CSSA-SSSA, Madison, Wisconsin, USA, pp. 1379-1393.

Srivastava, A., Naresh, K. S. and Aggarwal, P.K. (2010). Assessment on vulnerability of sorghum to climate change in India. Agriculture, Ecosystems and Environment, 138: 160-169.

Timsina, J. and Humphreys, E. (2006). Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems. Agricultural Systems, 90: 5-31.

Xiao, G., Zhang, Q., Li, Y., Wang, R., Yao, Y., Zhao, H. and Bai, H. (2010). Impact of temperature increase on the yield of winter wheat at low and high altitudes in semiarid northwestern China. Agricultural Water Management, 97: 1360-1364.

You, L., Rosegrant, M. W., Wood, S. and Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149: 1009-1014.

Ziska, L.H. (2008). Three-year field evaluation of early and late 20th century spring wheat cultivars to projected increases in atmospheric carbon dioxide. Field Crops Research, 108: 54-59.