Halitosis: the multidisciplinary approach

Curd ML Bollen and Thomas Beikler

Halitosis, bad breath or oral malodour are all synonyms for the same pathology. Halitosis has a large social and economic impact. For the majority of patients suffering from bad breath, it causes embarrassment and affects their social communication and life. Moreover, halitosis can be indicative of underlying diseases. Only a limited number of scientific publications were presented in this field until 1995. Ever since, a large amount of research is published, often with lack of evidence. In general, intraoral conditions, like insufficient dental hygiene, periodontitis or tongue coating are considered to be the most important cause (85%) for halitosis. Therefore, dentists and periodontologists are the first-line professionals to be confronted with this problem. They should be well aware of the origin, the detection and especially of the treatment of this pathology. In addition, ear–nose–throat-associated (10%) or gastrointestinal/endocrinological (5%) disorders may contribute to the problem. In the case of halitophobia, psychical or psychological problems may be present. Bad breath needs a multidisciplinary team approach: dentists, periodontologists, specialists in family medicine, ear–nose–throat surgeons, internal medicine and psychiatry need to be updated in this field, which still is surrounded by a large taboo. Multidisciplinary bad breath clinics offer the best environment to examine and treat this pathology that affects around 25% of the whole population. This article describes the origin, detection and treatment of halitosis, regarded from the different etiological origins.

International Journal of Oral Science (2012) 4, 55–63; doi:10.1038/ijos.2012.39; published online 22 June 2012

Keywords: halitosis; microbiology; periodontology

EPIDEMIOLOGY

The amount of epidemiological research on bad breath is limited, since this topic is still a large but underestimated taboo. A public investigation in 2005 in The Netherlands showed that halitosis was one of the 100 biggest human overall exasperations (TNS-NIPO). There are several reasons for this lack of scientific data. First, there is the difference in cultural and racial appreciation of odours, as for patients as well as for investigators. Second, there is absence of uniformity in evaluation methods, as for organoleptical as for mechanical measurements.

A cross-sectional Brazilian study among university students and their families, showed a malodour incidence of 15%. Men suffered more from the problem than women, especially when they were over 20 years.2 Japanese researchers investigated 33,000 adults. Fifteen percent of them declared to suffer from bad breath, with a peak of more than 20% in the city of Tokyo.3 Moreover, 70% of the businessmen in Tokyo detected regularly a personal halitosis. In China, more than 25% of a population of 2,000 individuals seems to be suffering from halitosis.4 Al-Ansari et al.5 showed also in 2006 the same incidence in a Kuwaiti population of 1,500 people. In general, nearly of 25% of the population seems to suffer from bad breath on a regular basis.

Man and women seem to suffer in the same proportions, whereas women seem to seek faster for professional help than men.6 Miyazaki et al. found that there is a clear correlation between age and oral malodour: the older one gets, the more intense the odour will become.7 In the United States, Loesche et al.8 found that 43% of people over 60 had breath problems. Whereas in the same Group of Turkish individuals, the incidence seemed to be around 28%.9 Bornstein et al.10 found nearly the same incidence in Swiss city of Bern. These results suggest that this oral malodour is caused by tongue coating in the younger generation and by periodontitis with tongue coating in the older cohorts.

This large variety of data suggest that there are large shortcomings in the methodology of the overall research projects.11 A standardized evaluation protocol for halitosis studies is needed to compare epidemiological data. Therefore, a mechanical detection method should be used as golden standard for bad breath research.

ORIGIN

Microbial degradation in the oral cavity is the main cause of oral malodour. Due to this process, volatile sulphur compounds (VSCs) are formed. The most important VSCs involved in halitosis are hydrogen sulphide (H₂S), methyl mercaptan (CH₃SH) and dimethyl sulphide (CH₃)₂S. These VSCs are mainly produced by Gram-negative anaerobic oral bacteria.12 Other molecules involved in this bacterial degradation process are: diamines (indole and skatole) or polyamines (cadaverin and putrescine). They seem play a less important role in the expression of bad breath.

Most of these components are produced in the proteolytic degradation process of peptides. The most predominant substrates in this VSC production are cysteine, cystine and methionine.13 The main substrate for skatole and indole production is tryptophan, whereas lysine and ornithine are the basis for the putrescine/cadaverin production. The involved bacteria in these metabolic processes are shown in Table 1.

Table 1.

For the full article, please refer to the original publication in International Journal of Oral Science.
Table 1 Bacteria responsible for VSC production

Volatile sulphur compounds	Bacteria
H₂S from cysteine	Peptostreptococcus anaerobius
	Micros prevotii
	Eubacterium limosum
	Bacteroides spp.
	Centipedia periodontii
H₂S from serum	Prevotella intermedia
	Prevotella loescheii
	Porphyromonas gingivalis (BANA positive)
	Treponema denticola (BANA positive)
	Selenomonas artemidis
CH₃SH from methionine	Fusobacterium nucleatum
	Fusobacterium periodonticum
	Eubacterium spp.
	Bacteroides spp.
CH₃SH from serum	Treponema denticola (BANA positive)
	Porphyromonas gingivalis (BANA positive)
	Porphyromonas endodontalis
Other	Prevotella melaninigenica
	Tanerella forsythensis
	Eikenella corrodens
	Solobacterium moorei
	Treponema forsythensis
	Centipedia periodontii
	Atopobium parvulum

Adapted from Persson et al.²⁰

Most of the responsible microorganisms in halitosis are involved in periodontitis. So, there is a positive correlation between bad breath and periodontitis: the depth of the periodontal pockets is positively correlated to the height of the VSC concentrations in the mouth.¹⁴ When tongue coating is taken into account, the correlation is even more significant.¹⁵⁻¹⁶ Individuals with a healthy periodontium can show halitosis caused by the impaction of food, bacteria, leucocytes and desquamating epithelial cells on the dorsum of their tongue. This surface is large and has a high retention capacity due to the rough and papillary structure. The bacterial composition on the dorsum of the tongue seems to be identical to the subgingival plaque.¹⁷ Table 2 shows the main volatile molecules contributing to oral malodour.

Table 2 Volatile molecules contributing to oral malodour

Categories	Compounds
Volatile sulphur compounds	Methyl mercaptan: CH₃SH
	Hydrogen sulphide: H₂S
	Dimethyl sulphide: (CH₃)₂S
Diamines	Putrescine: NH₂(CH₂)₄NH₂
	Cadaverine: NH₂(CH₂)₃NH₂
	Butyric acid: CH₃CH₂CH₂COOH
	Propionic acid: CH₃CH₂COOH
	Valeric acid: C₅H₁₀O₂
Phenyl compounds	Indole: C₅H₅N
	Skatole: C₅H₅N
	Pyridine: C₅H₅N
Alcohols	1-propanoyl-2-propanol
Alkalines	2-methyl-propane
Nitrogen-containing compounds	Urea: (NH₂)₂CO
	Ammonia: NH₃
Ketones	

Adapted from Goldberg et al.,¹³ Greenman et al.,¹⁷ and Claus et al.¹²¹

Oral pathology, microbiology and xerostomia

In nearly 85% of all halitosis cases, the origin is found in the oral cavity. A clinical evaluation of malodour on 2 000 patients in Belgium, showed that 76% of these patients had oral causes: tongue coating (43%), gingivitis/periodontitis (11%) or a combination of the two (18%).¹⁸

Tongue coating. This phenomenon is the most common cause of bad breath.¹⁹ The dorsum of the tongue, which is irregular and has a surface of 25 cm² is an ideal niche for oral bacteria.²⁰ Since desquamating epithelial cells and food remnants are available, putrefaction occurs. Hence, the tongue surface seems to be an important reservoir in the recolonisation of tooth surfaces.²¹ Tongue coating is not easy to remove. Daily scraping or brushing of the tongue can help to reduce the substrata for putrefaction, rather than to reduce the bacterial load. Moreover, tongue cleaning improves taste sensation.²²

Morning breath. Due to the reduced saliva production during night, anaerobic putrefaction will increase, causing the typical morning breath. This is a non-pathological form of halitosis. The problem will disappear as soon as oral hygiene measures are taken. Snel et al.²³ concluded that gender seems to play an unknown role in this phenomenon: women manifest higher VSC levels than men in the morning. This phenomenon needs to be further investigated to understand its impact.

Odontogenic halitosis. Poor oral hygiene, dental plaque, dental caries, accumulation and putrefaction of food remnants and unclear acrylic dentures (worn at night or not regularly cleaned or with rough surfaces) contribute to bad breath. The latter was recently concluded in a systematic review, stating that, although isolated reports, chemicals and brushing appear to be more effective than placebo in the reduction of plaque coverage and microbial counts of anaerobes and aerobes on complete denture bases.²⁴

Gingivitis and periodontitis are the main causes of the problem.²⁵ A positive correlation between the depth of the pockets and the concentration of the sulphur components has been shown.¹³ Necrotizing gingivitis or periodontitis cause extreme soiled odours. This disease is caused by opportunistic bacterial infections occurring in individuals with stress, malnutrition, insufficient oral hygiene, smoking or systemic diseases.²⁶

Xerostomia. Patients with a dry mouth (0.15 mL·min⁻¹ instead of 0.25–0.50 mL·min⁻¹) often show an increased volume of plaque on teeth and tongue.²⁷ The lack of salivary flow, leads to the disappearance of the antimicrobial activity of the saliva and the transition from Gram-positive bacteria to Gram-negative species.²⁸ Hyposialia can be caused by diabetes, Sjögren syndrome, stress, depression, medication, mouth breathing and alcohol abuse. Almost 25% of the elderly suffer from a dry mouth.²⁹ Research groups of Kleinberg and Koshimune described properly the correlation between the dry mouth and the increase of halitosis.³⁰–³¹

Moreover, other salivary factors can influence the development of malodour: an increase of the salivary pH by the intake of amino acids, and a change in the oxygen depletion (a reduction stimulates the metabolism of Gram-negative bacteria, responsible for higher VSC production).³²–³³

A recent study in elderly found the accumulation of bacterial plaque on the tongue, oral dryness, burning mouth, overnight denture
wear, and lower educational levels to be significantly related to oral malodour.34

Although xerostomia is associated with aging, studies have demonstrated that salivary gland function is well preserved in the healthy geriatric population. Therefore, dry mouth is probably a condition of systemic or extrinsic origin. Saliva seems to undergo chemical changes with aging. As the amount of ptyalin decreases and mucin increases, saliva becomes thick and viscous and presents problems for the elderly. One of the most prevalent causes of xerostomia is medication (anticolinergics, antihistamines and diuretics dry the mucosa). Chronic mouth breathing, radiation therapy, dehydration and autoimmune diseases (as Sjögren’s) can also diminish salivation, as can systemic illness such as diabetes mellitus, nephritis and thyroid dysfunction.

Xerostomia can lead to dysgeusia, glossodynia, saladenitis, cracking and fissuring of the oral mucosa, and halitosis. Dry mouth symptom can be treated with hydration and dialogues or with artificial saliva substitutes. In patients with Sjögren’s syndrome and in those who have undergone radiation therapy, pilocarpine has been used with good results.35

Other oral causes. Stomatitis, intra-oral neoplasia, exposed tooth pulps (with necrotic content), extraction wounds (with blood clot or purulent discharges), or crowding of teeth (favouring food entrapment) can also be involved.36 Moreover, peri-implantitis, peri-coronitis, recurrent oral ulcerations and herpetic gingivitis, are described as origin for bad breath.37

ENT and pulmonary pathology

Maximally 10% of the oral malodour cases originate from the ears, nose and throat (ENT) region, from which 3% finds its origin at the tonsils.38 Very seldom the larynx is involved. Therefore, when a clinical investigation is performed, attention should first be paid to the tonsils: size, structure (invaginations, coating and hyperaemia) and presence of tonsilloliths.39

Oral causes. Acute tonsillitis is the most important ENT origin. Mostly, infections with streptococci play a role, but also viral infections (e.g. mononucleosis infectiosa) are possible. When acute tonsillitis takes place more than three times a year, a tonsillectomy can be considered.40 A Plaut-Vincent angina (caused by Fusobacterium Plaut-Vincenti and Borrelia Vincenti) is another ENT cause for halitosis.41

The presence of tonsilloliths represents a 10-fold increased risk of abnormal VSC levels.42 Anaerobic bacteria detected in tonsilloliths belonged to the species of Eubacterium, Fusobacterium, Porphyromonas, Prevotella, Selenomonas and Tannarella, all of which appear to be associated with the production of VSCs.43 Tonsilloliths are asymptomatic phenomena and are therefore never a reason for tonsillectomy.

A tonsillectomy is only performed when oral hygiene measures do not result in improvement of the breath.

Nasal causes. Postnasal drip (caused by mucus of the paranasal sinuses) contacting the dorsum of the tongue is largely involved.44 Foreign bodies in the nasal cavity can produce a foul odour as well. Also a cleft palate can be the origin of bad breath.45 Atrophic rhinitis with bacterial surinfection causes malodour too. This can be caused by tumor recissions, radiotherapy or overuse of decongestives or cocaine.

Sinusitis. Bacterial sinusitis develops mostly out of acute viral sinusitis. Streptococcus pneumonia and Haemophilus influenzae are the main responsible bacteria. On radiological or computed tomography (CT) images, fading is perceived. When purulent mucus is produced, a typical odour appears. In 10% of the sinusitis cases, a tooth or several teeth are involved. In these cases, the spotted bacteria are: Peptostreptococcus spp., Fusobacterium spp., Prevotella spp. and Porphyromonas spp. Since those bacteria are able to produce VSCs, a clear association to halitosis is available. The treatment of dentogenic problems (eventual with the additional use of antibiotics) decreases the anaerobic pathogens, even as the odour problem. In the case of chronic sinusitis, 50%–70% of the patients complain about oral malodour.46

Pulmonary pathology. bronchiectasis, lung abscesses and other endobronchial chronic disorders, i.e. necrotizing pulmonic neoplasias may cause an unpleasant odour.47

Gastro-intestinal pathology

The gastro-intestinal tract can only indirectly (haematogenic) influence bad breath. A majority of patients and physicians still abusively believes that halitosis originates from the stomach. The latter is only correct in <0.5% of the cases.

Oesophagus. Only in specific cases, this is the origin of malodour. When a Zenker’s diverticulum is present, a chronic unpleasant odour appears.48 The incidence of this phenomenon is less than 0.1% and it is only diagnosed in patients over 65 years of age. Also bleeding of the oesophagus can cause a musty odour. When severe regurgitation is determined, halitosis will be present.49 Symptomatically, coughing, postnasal drip, pyrosis, irritations and ulcerations of the oesophagus and halitosis will be detected. pH monitoring is used for diagnosis. When the diagnosis is missed, carcinomatic deterioration can occur.

Stomach. Infections with Helicobacter pylori can cause peptic ulcers. There is no 100% clear correlation found between these ulcers and halitosis.50–51 In vitro studies show significant VSC production by H. pylori.52 More recent research by Lee et al.53 confirmed this statement. Moreover, it is suggested that H. pylori was detected in subjects with periodontitis, suggesting that progression of periodontal pocket and inflammation may favour colonization by this species and that H. pylori infection may be indirectly associated with oral pathological halitosis following periodontitis.54 Kimberg et al.55 showed that halitosis has often been reported among the symptoms related to H. pylori infection and gastrooesophageal reflux disease. When gastrointestinal pathology was treated, most of the halitosis complaints disappeared. The latter suggests that halitosis can have a gastro-intestinal origin. In a recent comparative study among children in Turkey, it was concluded that there was a difference between the rate of H. pylori infections among those with and without halitosis. Eradiation treatment was found beneficial in the treatment of children with halitosis and positive H. pylori stool antigen test. The results, however, were not statistical significant.56

In general, it can be concluded that more research has to be done to clarify a clear correlation between stomach problems by H. pylori infections and halitosis.

Intestines. In cases of intestinal obstruction, a faecal mouth odour may be detectable, as found in two siblings with extrinsic duodenal obstruction caused by congenital peritoneal bands.57 Attention was drawn to the unusual physical sign of halitosis as a presenting feature. It was suggested that this physical sign may be an indication for barium studies.
Fetor hepaticus is an expression of hepatic encephalopathy. Liver ‘fetor hepticus’: a sweet, excremental odour (the breath of death). Hepathology and endocrinology requires medical investigation and support in therapy.

If this condition is pre-sent, the extra-oral origin should be determined, because the latter patients, metabolic anomalies are responsible. If this condition is pre-sent, the extra-oral origin should be determined, because the latter metabolic insufficiencies can cause oral bad odours as found by Feller and Bignault in 2005.

Diabetic ketoacidosis leads to a typical breath odour. Diabetes type 2 demonstrates a typical sweet and fruity odour. Due to gas chromatography–mass spectrometry, it seems possible to detect different extra-oral causes of halitosis such as diabetes.

Several metabolic disorders in the bowels, like trimethylaminuria cause a specific fishy odour. According to Whittle et al., this genetic disease is the largest cause of undiagnosed body odour. Trimethylaminuria is a disorder in which the volatile, fish-smelling compound, trimethylamine accumulates and is excreted in the urine, but it is also found in the sweat and breath. Because many patients have associated body odours or halitosis, trimethylaminuria sufferers can meet serious difficulties in their social context, leading to isolation and even depression. Trimethylamine is formed by bacteria in the mammalian gut from reduction of compounds such as trimethylamine-N-oxide and choline. Primary trimethylaminuria sufferers have an inherited enzyme deficiency where trimethylamine is not efficiently converted to the non-odorous trimethylamine-N-oxide in the liver. Diagnosis of trimethylaminuria requires the measurement of trimethylamine and trimethylamine-N-oxide in urine, which should be collected after a high substrate meal in milder or intermittent cases, a marine-fish meal. The symptoms of trimethylaminuria can be improved by changes in the diet to avoid precursors, in particular trimethylamine-N-oxide which is found in high concentrations in marine fish. Treatment with antibiotics to control bacteria in the gut, or activated charcoal to sequester trimethylamine, may also be beneficial.

Recently, an article by Scully and Greenman reviewed the aetiopathogenesis of halitosis. They stated that only in a few patients, metabolic anomalies are responsible. If this condition is present, the extra-oral origin should be determined, because the latter requires medical investigation and support in therapy.

Table 3 Odours in the case of metabolic or endocrinological problems

Odours	Metabolic or endocrinological problems
Fruity odour	Type-1 diabetes in children
	Type-2 diabetes in adults
	Alcoholic ketoacidosis
Faecal odour	Intestinal obstruction
Ammonia of fishy odour	Kidney-insufficiency
Mouse odour	Phenylketonuria
Cooked cabbage odour	Methionine adenosyl transferase deficiency
Sweating feet odour	Isovalerian acidity
Burned sugar odour	Maple syrup urine disease
Sweet musty odour	Homocystinuria
Rotten eggs odour	Disease of Ligniac

Adapted from van Steenberge.

Medication

Next to medication resulting in a dry mouth (see above); recently the use of bisphosphonates can contribute to oral malodour. Bisphosphonate-induced osteonecrosis is since 2003 a common problem. The product is used systemically in cases of malignant bone tumours and their metastases. Often this results in jawbone necrosis, a clear origin for a filthy odour. The necrotic sequesters should be removed and it is tried to cover up the necrotic area with a steaded flap.

DETECTION

The gold standard is the organoleptic scoring, i.e., smelling the odour of the patient. A more objective method is the analysis of breath samples by gas chromatography or by means of portable VSC analysers.

Organoleptic scoring

In expired air, more than 150 different components have been detected. The perception of these molecules is dependent of the olfactory response, the threshold concentration, the strength of the odour and the volatility of the molecules. When organoleptic scoring is performed, a well-trained clinician determines if the odour samples smells bad or not, giving a score to the intensity. Theses scores go from 0 up to 5 (Table 4).

From every patient, different samples are analysed:

- mouth odour (smelled at 10 cm form the oral cavity: while the patient normally breaths and while the patient counts loudly to 10);
- saliva odour (measured by the wrist-lick test: the patient licks at the wrist, and after 10 s of drying, a score is given to this sample);
- tongue coating (a score is given to debris, scraped from the dorsum of the tongue with a periodontal probe);

0: No detectable odour	1: Just detectable odour	2: Light odour	3: Moderate odour	4: Strong odour	5: Extremely strong odour

Adapted from Rosenberg and McCulloch.
• interdental ‘floss’ (after flossing with dental tape, the odour of the floss is scored);
• nasal odour (while the patient is breathing through the nose (mouth closed), a score is given to the exhaled air);
• prosthesis odour (if the patient wears a partial or full removable denture, scoring of the odour of this prosthesis is noted).

To gather optimal test results several precautions should be taken before the examinations: the patient should refrain from spicy foods, garlic or onions the day before the examination. At least 12 h before the consultation, teeth should not be cleaned or rinsed, perfumes should be avoided and at least 6 h before the examination, the intake of food or liquids should be avoided. Smoking should be stopped at least 24 h before any examination.73

The advantages of organoleptical scoring are: inexpensive, no equipment needed and a wide range of odours can be detected. As disadvantages, the extreme subjectivity of the test, the lack of quantification, the saturation of the nose and the reproducibility can be mentioned.74 Still, organoleptical scoring is considered as the gold standard in the detection of oral bad breath.

Portable gas analysis
The Halimeter (Interscan corporation, Chatsworth, CA, USA) and OralChroma (Abimedical corporation, Miyamae-ku Kawasaki-shi, Kanagawa, Japan) are electronic devices available to detect some of the volatile sulphur components in expired air. The OralChroma is a portable gas chromatograph offering lower cost, higher performance and more user-friendly operations than conventional gas chromatographs by limiting the target gases to three types: H₂S, CH₃SH and (CH₃)₂S. Also, an interpretation of the results can be shown to the patients.

The Halimeter can only give an idea of the total amount of VSCs, present in a sample. In the Halimeter, the total amount ppb (parts per billion) of VSCs in the sample is marked. In normal situations this value is less than 100 ppb. When 300–400 ppb are detected in the mouth air, a persistent oral odour can be concluded.15,75

These portable machines have a lot of advantages: easy to handle, fast results, portable and reproducible. Furthermore, they are rather inexpensive and can be controlled by untrained staff. As disadvantages, the limited diversity in the explored gasses should be stated. Recently, it was shown that the OralChroma may produce a more comprehensive assessment of VSC production by oral microflora than the Halimeter.76 It would desirable to select one machine as gold standard to make different studies comparable in the future.

Gas chromatography
In halitosis research, the gas chromatography (GC) analysis can be performed on breath, saliva and tongue debris. Almost all different air components can be detected. In expired air, almost 500 different substances can be demonstrated.77 GC in malodour research is still in an experimental stage, although used since the late 1960s.78 VSCs can be well detected, but the challenge will be to analyse the other contributing components of oral malodour. Also the associations of different odours with specific systemic disease can and should be investigated.

GC has several advantages: an analysis of almost all components with high sensitivity and specificity. The method is non-invasive, but expensive and a well-trained staff is needed. The progression of the method takes much more time and the machine cannot be used in daily practice.79

Recently, trailblazing research was performed by van der Sleen et al.83 demonstrated that tongue brushing or tongue scraping have the potential to successfully reduce breath odour and tongue coating. Due to tongue cleaning, the taste seems to improve again.84 Interdental cleaning and toothbrushing are also necessary to control plaque and oral microorganisms.

A Cochrane review from 2006, compared randomized controlled trials for different methods of tongue cleaning to reduce mouth odour in adults with halitosis.85 Only two trials were included, involving 40 participants. Due to the clinical heterogeneity between these two studies, only a descriptive summary could be made. It is concluded that there is a weak and unreliable evidence to show that there is a small but statistically significant difference in reduction of VSC levels when scrapers or cleaners rather than toothbrushes are used to reduce halitosis in adults. More coherent studies are required to come to clear conclusions.

Since periodontitis is one of the main causes of oral malodour, a professional periodontal therapy should be performed. A one-stage full-mouth disinfection, as described by Bollen et al.,90 combining scaling and rootplaning in combination with chlorhexidine, has a significant microbiological improvement up to 2 months and reduces the organoleptical scores, in particular for saliva samples, who seems to be representative for organoleptical scoring.87

When patients’ response to treatments at a multidisciplinary breath odour clinic was considered, it was concluded that education of the public and dental professionals in a more consequent general oral hygiene might elevate the level of compliance and could cause thereby an amelioration of the problem.88

Chemical reduction. Rinsing is a common practice in the approach of oral malodour. The most used rinsing components are:
• chlorhexidine (CHX): CHX is the most efficient molecule against plaque. Rosenberg showed that rinsing with 0.2% CHX causes a reduction of 43% in VSCs and of 50% in the organoleptical scores on a day-long basis.89
• essential oils: these products give only a short-term and restricted effect (25% reduction) for 3 h. Also, the reduction in odour-producing bacteria is limited.90

differential diagnosis of halitosis, with the possibility to detect extra-oral causes, which often remain undetected unless characterized by a specific smell.

THERAPY

Oral causes
Since the oral causes are related to microorganisms, the therapy can consist of: (i) mechanical reduction of the intra-oral nutrients and micro-organisms; (ii) chemical reduction of microorganisms; (iii) converting volatile fragrant gasses into non-volatile components or (iv) masking of the malodour.80

Mechanical reduction. Tongue coating is the most prominent factor and therefore, extensive tongue cleaning is of utmost importance. The scraping of the dorsum of the tongue reduces the available nutrients even as the available microorganisms, leading to an improvement of the odour.84 Home tongue cleaning can be performed with a regular toothbrush, but a specific tongue scraper is advised. A brush is less aggressive on the soft tissues.82 Since the largest amount of coating is found on the dorsal part of the tongue surface, a cleaning as posterior as possible is advised. To prevent from vomiting, it is counselled to pull out the tongue when scraping.

A systemic review by van der Sleen et al.83 demonstrated that tongue brushing or tongue scraping have the potential to successfully reduce breath odour and tongue coating. Due to tongue cleaning, the taste seems to improve again.84 Interdental cleaning and toothbrushing are also necessary to control plaque and oral microorganisms.

A Cochrane review from 2006, compared randomized controlled trials for different methods of tongue cleaning to reduce mouth odour in adults with halitosis.85 Only two trials were included, involving 40 participants. Due to the clinical heterogeneity between these two studies, only a descriptive summary could be made. It is concluded that there is a weak and unreliable evidence to show that there is a small but statistically significant difference in reduction of VSC levels when scrapers or cleaners rather than toothbrushes are used to reduce halitosis in adults. More coherent studies are required to come to clear conclusions.

Since periodontitis is one of the main causes of oral malodour, a professional periodontal therapy should be performed. A one-stage full-mouth disinfection, as described by Bollen et al.,90 combining scaling and rootplaning in combination with chlorhexidine, has a significant microbiological improvement up to 2 months and reduces the organoleptical scores, in particular for saliva samples, who seems to be representative for organoleptical scoring.87

When patients’ response to treatments at a multidisciplinary breath odour clinic was considered, it was concluded that education of the public and dental professionals in a more consequent general oral hygiene might elevate the level of compliance and could cause thereby an amelioration of the problem.88
• chlordioxide: chlordioxide is a strong oxidizing product that can reduce oral malodour by the oxidation of \(\text{H}_2\text{S}, \text{CH}_3\text{SH} \), cysteine and methionine. A reduction of 29% in odour after 4 h was reported.91

• triclosan: triclosan is effective against the majority of oral bacteria. An 84% reduction of VSCs after 3 h is proved.92

• aminefluoride/tinfluoride: the combination of AmF/SnF\(_2\) can cause an 83% reduction in the morning halitosis.\(^{44}\)

• \(\text{H}_2\text{O}_2 \): a concentration of 3% of this product can result in a 90% VSC reduction after 8 h.\(^{93}\)

Toothpastes, containing stannous fluoride, zinc or triclosan, seem to have proved their beneficial effect in reducing the oral malodour for a limited period of time.\(^{94}–^{96}\)

In a recent Cochrane review by Fedorowicz, only five randomized controlled trials could be found, involving 293 participants.97 In view of the clinical heterogeneity between the trials, pooling of the results and a meta-analysis of the extracted data was not feasible. Compared to placebo, 0.05% chlorhexidine + 0.05% cetlypyridinium chloride + 0.14% zinc lactate mouthrinse significantly reduced the organoleptic scores, but showed significantly more tongue and tooth staining. It is concluded that this mouthrinse plays an important role in reducing the levels of halitosis producing bacteria on the tongue and can be effective in neutralization of odoriferous sulphur compounds. But well-designed, randomized controlled trials with larger sample size, a longer intervention and follow-up period are still needed to confirm these results.

Transformation of volatile sulphur components. Metal ions with affinity for sulphur, pick up sulphur-containing gasses. Zinc, mercury and copper are the most important metals.98 A commercial rinse for sulphur, pick up sulphur-containing gasses. Zinc, mercury are mostly responsible. The infection can be confirmed by bacterial culturing or by antigen tests. Treatment with penicillin is imperative to prevent rheumatic fever. The problem will be treated by medications containing vasoconstrictors associated or not with \(\text{H}_1 \) antihistaminic, rinsing of the sinuses or even surgical removal of the inflamed mucosa and polyps.102

In the case of chronic tonsillitis, the elimination of the deep crypts, which harbour exfoliated cells, debris and bacteria, is important. Prescribing antibiotics like metronidazole has only a short-term effect. Cryptolysis by means of \(\text{CO}_2 \) laser is another option.103 Ozena seems to respond well to a prolonged treatment of fluoroquiolone, which are highly effective against Gram-negative bacteria including \textit{Haemophilus influenza}. Prolonged treatment can produce however some side effects as photosensibilisation or tendinitis.104

In the case of tonsilloliths, a proper hygiene can be instructed by squeezing out the debris out of the cryptic tonsils. This handling requires exercising.

Gastro-intestinology

In the case of regurgitation esophagitis, the treatment mostly consist of weight reduction, prohibition of coffee and tobacco, avoidance of extensive meals in the evening, placing the head of the bed in a slightly higher position. \(\text{H}_2 \) anagostins can be prescribed.105 When \textit{H. pylori} infections are noticed, the therapy consists of the intake of omeprazol, amoxicillin en clarithromycin.106

A Zenker diverticle must be surgically removed. For a stomach hernia, generally a surgical intervention will be necessary.

Hepatology and endocrinology

In severe hepatologic problems, a liver transplantation can be necessary. In less life-threatening situations, a liver dialysis can be sufficient to treat the problems. In more simple pathology, cortisone therapy and a stringent diet can be enough.107

In the endocrinological range of problems, the underlying diseases should be treated. The detailed approach of these therapies falls outside the scope of this article.

Probiotics

Recently several studies were performed to replace bacteria responsible for halitosis with probiotics as \textit{Streptococcus salivarius} (K12), \textit{Lactobacillus salivarius} or \textit{Weissella cibaria}. The objective is to prevent re-establishment of non-desirable bacteria and thereby limit the re-ocurrence of oral malodour over a prolonged period. Several studies conclude that probiotic bacterial strains, originally sourced from the indigenous oral microbities of healthy humans, may have potential application as adjuncts for the prevention and treatment of halitosis.108

The oral administration of the probiotic \textit{lactobacilli} not only seemed to improve the physiologic halitosis, but also showed beneficial effects on bleeding on probing from the periodontal pockets.109

Moreover, \textit{Weisella cibaria} isolates possess the ability to inhibit VSC production under both \textit{in vitro} and \textit{in vivo} conditions, demonstrating that they bear the potential for development into novel probiotics for use in the oral cavity.110 Gut-caused halitosis, although rarely occurring, can be successfully treated with a suspension of living non-pathogenic \textit{Escherichia coli} bacteria.111 Scully and Greenman\(^{46}\) showed that emergent halitosis treatments include probiotics and vaccines targeted against causal microorganisms or their products.

PSYCHOLOGICAL ASPECTS

In general, humans cannot detect their own bad breath. Therefore, it is unusual that patients can detect their halitosis, although there is nothing wrong. This kind of patients often frequents a halitosis clinic.
Halitophobia
This is the fear of having bad breath that other people find offensive. Moreover, 0.5%–1% of the adult population is affected by this problem in their social life. These patients consider having bad breath, do not have it, but get not convinced during diagnosis and therapy. Non-real halitosis or halitophobia is understood by the compulsive idea to suffer from bad breath and to irritate others by this.

Nagel mentions that consultation hours for halitosis should be prepared for patients with non-real halitosis and build up corresponding interdisciplinary contacts. The 'treatment' of these patients is impossible, since they are not into the arguments stated by a physician. Mostly, these patients hop from clinic/specialist to clinic/specialist to find an argument for their self-esteem problem. Imagined halitosis is poorly documented in the psychiatric literature. Many of the cases with imagined halitosis described in the literature resemble the psychiatric syndrome of social phobia.

Olfactory reference syndrome
Olfactory reference syndrome (ORS) is defined as the psychiatric condition characterized by persistent preoccupation about body odour accompanied by shame, embarrassment, significant distress, avoidance behaviour and social isolation. ORS has, however, not been included in the Diagnostic and Statistical Manual of Mental Disorders and, given that it is primary symptoms may be found in various other disorders, differential diagnosis can be problematic. ORS seems to represent a unique cluster of symptoms that can be delineated as a separate diagnostic entity, and ORS falls on a spectrum of social anxiety disorders that includes social anxiety disorder, tajjin kyofusho and body dysmorphic disorder.

Pseudo-halitosis
These are patients who consider to have bad breath, but who does not have it, and finally get convinced during diagnosis and therapy. Seemann describes data collected from a multidisciplinary breath consultation in Germany. According to this research, 28% of these patients complaining of bad breath did not show signs of bad breath—meaning that their concern of halitosis was exaggerated. Within this group, 76% received prior treatments for bad breath, 36% received gastroscopies and 14% underwent an ENT operation—all without having detectable signs of bad breath. Only 9% of these patients went through an organoleptic evaluation before they underwent these medical procedures. Patients with pseudo-halitosis show more often symptoms of depression.

Therapy
Selective Serotonin Reuptake Inhibitor, which increases the concentration of serotonin in the brain, can help to treat this phenomenon. When tricyclic antidepressant medication is used, xerostomia can appear, leading to an increase of halitosis awareness. Patients with symptoms of halitophobia or ORS, should not be treated by dental practitioners or by ENT specialists, but should be referred to psychologists or even to psychiatrists.

CONCLUDING REMARKS
Halitosis is a common condition, affecting around 25% of the general population. The origin of the problem largely arises from intra-oral causes, whereas only a limited number of cases are the result of extra oral or systemic problems. Nevertheless, proper investigation and management of these extra oral causes is important for the total understanding of this phenomenon. Halitosis from an extra-oral origin can be the sign of an underlying systemic disease. Therefore, it is substantiated to organize halitosis consultations in a multidisciplinary setting, assembling periodontologists, ENT specialists, specialists in internal medicine and psychologists or even psychiatrists.

Although oral malodour is mostly associated with poor oral hygiene and the presence of gingivitis or even periodontitis, evidence suggests that anaerobic microorganisms present in the tongue coating, are the overwhelming cause of this condition. A limited number of successful treatment regimens have been described, but more research on the long-term outcomes of these therapies will be required. Also new and more long lasting in-office treatments should be developed and tested.
32 Iwanicka-Grzegorek K, Lipkowska E, Kepa J et al.

27 Albuquerque DF, de Souza Tolentino E, Amado FM et al. Xerostomia: a prevalent condition in the elderly. Med Oral Patol Oral Cir Bucal 2010; 15(6): e850–e854.

28 Aminstahl A, Wikström M. Oral microflora in subjects with reduced salivary secretion. J Dent Res 1995; 74(12): 1410–1416.

29 Pajukoski H, Meurman JH, Halonen P et al. Subjective prevalence of dry mouth and burning mouth in hospitalized elderly patients and outpatients in relation to saliva, medication, and systemic diseases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92(6): 641–645.

30 Kleinberg I, Harbit KC, Ciocon JO. Xerostomia: a prevalent condition in the elderly. J Oral Dis 2002; 32(3): 34–38.

31 Koshimura S, Awan S, Gohara K et al. Low salivary flow and volatile sulphur compounds in mouth air. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 91(1): 38–41.

32 Iwanicka-Grzegorek K, Lipkowska E, Kepa J et al. Comparison of ninhydrin method of detecting amine compounds with other methods of halitosis detection. Oral Dis 2005; 11(Suppl 1): 32–37.

33 Traut M, Kleinberg I. Stoichiometry of oxygen consumption and sugar, organic acid and amino acid utilization in salivary sediment and pure cultures of oral bacteria. Arch Oral Biol 1996; 41(11): 965–978.

34 Nalcaci R, Baran I. Oral malodor and removable complete dentures in the elderly. Br Dent J 2010; 207(11): 627–635.

35 Astor FC, Harbit KC, Ciocon JO. Xerostomia: a halitosis-inducing factor. Br J Dent Med 2005; 198(5): 263–264.

36 Mulwaf W, Fagan JJ, Isaacs S. Adult tonsilllectomy—are long waiting lists putting patients at risk? S Afr Surg 2006; 44(2): 66–68.

37 Attia EL, Marshall KG. Halitosis. Can Med Assoc J 2002; 166(11): 1281–1285.

38 Fischer SM, Blair PA. Chronic halitosis from tonsillitis; a common aetiology. J Laryngol Otol 1988; 102(6): 79–81.

39 Tsunemish M, Yamamoto T, Kokeguchi S et al. Composition of the bacterial flora in tonsillitis. Microbes Infect 2006; 8(9/10): 2384–2389.

40 Leite T, Teakehara T. Tonsilloliths as a halitosis-inducing factor. Br J Oral Med 1999; 35(8): 627–635.

41 Pajukoski H, Meurman JH, Halonen P et al. Influence of gender and menstrual cycle on volatile sulphur compounds production in mouth air. J Periodontol 2002; 73(9): 1107–1112.

42 van Steenberghe D, Rodriguez de Cordoba FJM et al. A systematic clinical study with bisphophonate-associated osteonecrosis of the jaw: a case-controlled study with 12 months follow-up. Support Care Cancer 2010; 18(4): 449–460.

43 Seemann R. Organoleptische Beurteilung. In: Seemann R, editor. Halitosis-management in der Zahnhirntpraxis. Balingen: Spitta, 2006.

44 Tonitzsch J. Production and origin of oral malodour; a review of mechanisms and methods of analysis. J Periodontol 1977; 48(11): 1132–120.

45 Rosenberg M, McCulloch CA. Measurement of oral malodour: current methods and future prospects. J Periodontol 1992; 63(9): 776–782.

46 Cali I, Lima PO, Bernardes CF et al. Influence of gender and menstrual cycle on volatile sulphur compounds production. Arch Oral Biol 2008; 53(12): 1107–1112.

47 Tonzetich J. Production and origin of oral malodour; a review of mechanisms and methods of analysis. J Periodontol 1977; 48(11): 1132–120.

48 van den Broek AM, Feenstra L, de Basta C. A review of the current literature on aetiology and measurement methods of halitosis. J Dent 2007; 35(8): 627–635.

49 tonitzsch J. Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch Oral Biol 1971; 16(6): 587–597.

50 Larson BT, Widmark G. A gas chromatographic method for analysis of volatiles in saliva samples. Acta Pharm Suec 1969; 6(4): 479–488.

51 Tonitzsch J, Oll, M. Gas chromatographic method for trapping and detection of volatile organic compounds from human mouth air. J Clin Dent 1991; 23(3): 79–82.

52 Bradshaw DJ, Perring KD, Cawkill PM et al. Creation of oral care flavours to deliver breath-freshening benefits. Oral Dis 2005; 11(Suppl 1): 75–79.

53 Menon MV, Cokendall AL. Effect of tongue scraping. J Dent Res 1994; 73(9): 1492.

54 Outhouse TL. A platinum standard of effectiveness in oral health care interventions: the Cochane systematic review. Dent Gen Dent 2006; 54(4): 228–229.

55 Delangible G, Ghyselen J, Bolens C et al. An inventory of patients' response to treatment at a multidisciplinary breath odor clinic. Quint Int 1999; 70(3): 307–310.

56 Rosenberg M, Gelernter I, Barki M et al. Day-long reduction of oral malodour by a two-phase oil: water mouthrinse as compared to chlorhexidine and placebo rinses. J Periodontol 1992; 63(1): 39–43.

57 Potts G, Brodgon C, Hu L et al. Mechanism of action of an antisepsic, antiodor mouthwash. J Dent Res 1983; 62(6): 738–742.

58 Brasca G, Galetti G, Pernig KD et al. Efficacy of a combination of chlorhexidine and cinnamaldehyde in the prevention of oral malodour. J Periodontol 2000; 71(10): 1312–1317.

59 Menon MV, Hauser L, Hofer F et al. Creation of oral care flavours to deliver breath-freshening benefits. Oral Dis 2005; 11(Suppl 1): 75–79.

60 Delangible G, Ghyselen J, Bolens C et al. An inventory of patients' response to treatment at a multidisciplinary breath odor clinic. Quint Int 1999; 70(3): 307–310.

61 Hosh K, Yamano Y, Mitsuaga A et al. Gastrintestinal diseases and halitosis: association of gastric Helicobacter pylori infection. Int Dent J 2002; 52(3): 207–211.

62 Lee H, Kho HS, Chung JW et al. Volatile sulphur compounds produced by Helicobacter pylori. J Clin Gastroenterol 2006; 40(5): 421–426.

63 Suzuki N, Yoneda M, Naito T et al. Detection of Helicobacter pylori DNA in the saliva of patients complaining of halitosis. J Med Microbiol 2008; 57(Pt 12): 1953–1959.

64 Kinberg S, Stein M, Zinn N et al. The gastrointestinal aspects of halitosis. Can J Gastroenterol 2010; 24(9): 552–556.

65 Yilmaz AE, Bilici M, Tonbul A et al. Paediatric halitosis and Helicobacter pylori infection. J Coll Physicians Surg Pak 2012; 22(11): 27–30.

66 Stephenson BM, Reynolds BW. Intranasal duodenal obstruction and halitosis. Postgrad Med J 1995; 70(Suppl 1): 1–19.

67 Duet M, Glaziou P. Halitosis: a review. J South African Dent Assoc 2005; 60(1): 1–7.

68 Bollem CM, Rompen EH, Demaspe JP. Halitosis, a multidisciplinary problem. Rev Med Microbiol 2005; 16(1): 32–36. French.

69 van Steenberghe D. Endocrinological aspects. In: van Steenberghe D, editor. Ademeur. Houten: Preum Ultegevers, 2009. 107–115.
Halitosis: the multidisciplinary approach
CML Bollen and T Beikler

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0

International Journal of Oral Science

98 Young A, Jonski G, Rölla G et al. Effects of metal salts on the oral production of volatile sulphur containing compounds (VSC). J Clin Periodontol 2001; 28(8): 776–781.

99 Young A, Jonski G, Rölla G. Inhibition of orally produced volatile sulphur compounds by zinc, chlorhexidine or cetylpyridinium chloride—effect of concentration. Eur J Oral Sci 2003; 111(5): 400–404.

100 Sterer N, Rubinstein Y. Effect of various natural medicinals on salivary protein putrefaction and malodour production. Quint Int 2006; 37(8): 653–658.

101 Grandis JR, Johnson JT, Vickers RM et al. The efficacy of perioperative antibiotic therapy on recovery following tonsillectomy in adults: randomized double-blind placebo-controlled trial. Otalaryngol Head Neck Surg 1992; 106(2): 137–142.

102 Burzen DL, Campos A, Leão FS et al. Efficacy of functional endoscopic sinus surgery for symptoms in chronic rhinosinusitis with or without polyposis. Braz J Otorhinolaryngol 2006; 72(2): 242–246.

103 Dal Rio AC, Passos CA, Nicola JH et al. CO2 laser cryptolysis by coagulation for the treatment of halitosis. Photomed Laser Surg 2006; 24(5): 630–636.

104 Shortt P, Wilson R, Erskine I. Tendinitis: the Achilles heel of quinolones! Emerg Med J 2006; 23(12): e63.

105 Labenz J, Morgen-Mehlke A. An update on the available treatments for non-erosive reflux disease. Expert Opin Pharmacother 2006; 7(1): 47–56.

106 Bytzer P, Dahlerup JF, Eriksen JR et al. Diagnosis and treatment of Helicobacter pylori infection. Dan Med Bull 2011; 58(4): C4271.

107 Malaguernera M, Restuccia S, Motta M et al. Interferon, cortisol, and antivirals in the treatment of chronic viral hepatitis: a review of 30 years of therapy. Pharmacotherapy 1997; 17(6): 998–1005.

108 Burton JP, Chilcott CN, Moore CJ et al. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol 2006; 100(4): 754–764.

109 Iwamoto T, Suzuki N, Tanabe K et al. Effects of probiotic Lactobacillus salivarius WB41 on halitosis and oral health: an open-label pilot trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110(2): 201–208.

110 Kang MS, Kim BS, Chung J et al. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J Clin Periodontol 2006; 33(3): 226–232.

111 Henker J, Schuster F, Nissler K. Successful treatment of gut-caused halitosis with a suspension of living non-pathogenic Escherichia coli bacteria—a case report. Eur J Pediatr 2001; 160(10): 592–594.

112 Nagel D, Lutz C, Filippi A. Halitophobia—an under-recognized clinical picture. Schweiz Monatschr Zahnmed 2006; 116(1): 57–64.

113 Malasri TH, El-Hilu SM, Mirza IA et al. Olfactory delusional syndrome with various aetiologies. Br J Psychiatry 1990; 156: 256–260.

114 Bohn P. Imagined halitosis: a social phobia symptom? J Calif Dent Assoc 1997; 25(2): 161–164.

115 Eli I, Koriat H, Baht R et al. Self-perception of breath odor: role of body image and psychopathologic traits. Percept Mot Skills 2000; 91(3 Pt 2): 1993–2001.

116 Lachner C, Stein DJ. Olfactory reference syndrome: diagnostic criteria and differential diagnosis. J Postgrad Med 2003; 49(4): 328–331.

117 Suzuki N, Yokoda M, Naito T et al. Relationship between halitosis and psychologic status. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006 Oct; 106(4): 542–547.

118 Adams KH, Hansen ES, Pinborg LH et al. Patients with obsessive/compulsive disorder have increased 5-HT2A receptor binding in caudate nuclei. Int J Neuropsychopharmacol 2005; 8(3): 391–401.

119 Uher R, Farmer A, Henigsberg N et al. Adverse reactions to antidepressants. Br J Psychiatry 2009; 195(3): 202–210.

120 Persson S, Edlund MB, Claesson R et al. Where gastroenterology and periodontology meet: determination of oral volatile organic compounds using closed-loop trapping and high-resolution gas chromatography-ion trap detection. In: van Steenberge D, Rosenberg M, editors. Bad breath: a multidisciplinary approach. Leuven: Leuven University Press, 1996: 15–28.