Multi-Objective Optimization of ReRAM Crossbars for Robust DNN Inferencing under Stochastic Noise

Xiaoxuan Yang*, Syrine Belakaria†, Biresh Kumar Joardar*, Huanrui Yang*, Janardhan Rao Doppa†, Partha Pratim Pande†, Krishnendu Chakrabarty*, Hai (Helen) Li*

* Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA,
† School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA, USA

Abstract—Resistive random-access memory (ReRAM) is a promising technology for designing hardware accelerators for deep neural network (DNN) inferencing. However, stochastic noise in ReRAM crossbars can degrade the DNN inferencing accuracy. We propose the design and optimization of a high-performance, area- and energy-efficient ReRAM-based hardware accelerator to achieve robust DNN inferencing in the presence of stochastic noise. We make two key technical contributions. First, we propose a stochastic-noise-aware training method, referred to as ReSNA, to improve the accuracy of DNN inferencing on ReRAM crossbars. Second, we propose an information-theoretic algorithm, referred to as CF-MESMO, to identify the Pareto set of solutions to trade-off multiple objectives, including inferencing accuracy, area overhead, execution time, and energy consumption. The main challenge in this context is that the execution of the ReSNA method to evaluate each candidate ReRAM design is prohibitive. To address this challenge, we utilize the continuous-fidelity evaluation of ReRAM designs associated with prohibitive high computation cost by varying the number of training epochs to trade-off accuracy and cost. CF-MESMO iteratively selects the candidate ReRAM design and fidelity pair that maximizes the information gained per unit computation cost about the optimal Pareto front. Our experiments on benchmark DNNs show that the proposed algorithms efficiently uncover high-quality Pareto fronts. On average, ReSNA achieves 2.57% inferencing accuracy improvement for ResNet20 on the CIFAR-10 dataset with respect to the baseline configuration. Moreover, CF-MESMO algorithm achieves 90.91% reduction in computation cost compared to the popular multi-objective optimization algorithm NSGA-II to reach the best solution from NSGA-II.

Index Terms—ReRAM crossbar, stochastic noise, DNN inferencing, efficient hardware, multi-objective optimization.

I. INTRODUCTION

Resistive random access memory (ReRAM) has emerged as a promising nonvolatile memory technology due to its multi-level cell, small cell size, and low access time and energy consumption. Prior work has shown that the crossbar structure of ReRAM arrays can efficiently execute matrix-vector multiplication [1, 2], the predominant computational kernel associated with deep neural networks (DNNs). ReRAM-based accelerators for fast and efficient DNN training and inferencing have been extensively studied [3–8].

However, a key challenge in executing DNN inferencing [9–11] on ReRAM-based architecture arises due to nonidealities of ReRAM devices, which can degrade the accuracy of inferencing. Since DNN inferencing involves a sequence of forward computations over DNN layers, errors due to device nonidealities can propagate and accumulate, resulting in incorrect predictions. The nonidealities of ReRAM crossbars can be classified into two broad categories. The first category includes device defects (e.g., stuck-at-high or stuck-at-low resistance [12]) and device reliability issues (e.g., retention failure [13] and resistance drift [14]) that are mostly deterministic in nature and have been addressed in prior work [15–20]. The second category includes stochastic noise in ReRAM devices that includes thermal noise [21], shot noise [22], random telegraph noise (RTN) [23], and programming noise [24]. These nonidealities have not been studied for DNN inferencing in prior work.

This work was supported in part by the US National Science Foundation (NSF) under grants CNS-1955196, CNS-1955353, IIS-1845922, OAC-1910213, and by the USA Army Research Office grant W911NF-17-1-0485. Biresh Kumar Joardar was also supported in part by NSF Grant #2030859 to the Computing Research Association for the CIFellows Project.

This work was supported in part by the US National Science Foundation (NSF) under grants CNS-1955196, CNS-1955353, IIS-1845922, OAC-1910213, and by the USA Army Research Office grant W911NF-17-1-0485. Biresh Kumar Joardar was also supported in part by NSF Grant #2030859 to the Computing Research Association for the CIFellows Project.

The main contributions of this paper are as follows.

- Study of the impact of stochastic noise on DNN inferencing executed on ReRAM crossbars.
• A hardware-aware training method, referred to as ReSNA, to overcome stochastic noise and improve DNN inferencing accuracy.
• An efficient multi-objective optimization algorithm, referred to as CF-MESMO, to approximate optimal Pareto fronts in terms of inferencing accuracy and hardware efficiency.
• Experimental results on a diverse set of benchmark DNNs and datasets to demonstrate the effectiveness of ReSNA and CF-MESMO and their superiority over state-of-the-art methods.

The remainder of this paper is organized as follows. Section II discusses related prior work. Section III explains the problem setup, and Section IV highlights the impact of stochastic noise. Section V presents the ReSNA approach, and Section VI presents the CF-MESMO algorithm. Section VII presents the experimental results. Section VIII concludes this paper.

II. RELATED PRIOR WORK

We review related prior work on two key aspects of this paper—mitigating device stochastic noise for DNN inferencing and multi-objective optimization for hardware design.

There is limited prior work on mitigating the DNN inferencing accuracy loss due to stochastic noise. Yan et al. [30] proposed a closed-loop circuit that utilizes the inferencing results to stabilize the DNN weights, but the effectiveness of this method was demonstrated only on small DNNs. Long et al. [25] injected Gaussian noise during training to mimic programming noise, and Joshi et al. [29] incorporated device programming variation extracted from experiments during training. However, these methods only considered programming noise while neglecting the other types of noise. Importantly, all these prior methods overlooked the impact of hardware configurations, such as the crossbar size and the resolution of the digital-to-analog converter (DAC) and the analog-to-digital converter (ADC).

He et al. [27] investigated the integration of stochastic noise during the training process, but their method failed to reach the desired DNN inferencing accuracy. Consequently, they suggested lowering the operational frequency such that the noise amplitude is low. In contrast to prior work, we consider all the four types of stochastic noise and propose a ReRAM hardware-aware training method to increase the inferencing accuracy even under high operational frequencies.

Considering both inferencing accuracy and hardware efficiency, we have a complex MOO problem for ReRAM-based hardware design. Candidate MOO algorithms for ReRAM design optimization can be classified into two broad categories. The first category of MOO algorithms has objective functions that are cheap to evaluate. AMOSA [31] and NSGA-II [28] are two popular evolutionary algorithms that belong to this category. NSGA-II evaluates the objective functions for various combinations of input variables and organizes the candidate inputs into a hierarchy of subgroups based on the ordering of Pareto dominance. This method takes advantage of the similarity between members of each subgroup and the Pareto dominance and moves towards the promising area of the input space. Unfortunately, NSGA-II requires the evaluation of a large number of candidate inputs and is not suitable for our problem setting, where objectives are expensive.

Second, for expensive objective functions, Bayesian optimization (BO) [32] is an effective framework. The key idea is to build a cheap statistical model from past function evaluations and use it to intelligently explore the input space for finding near-optimal solutions. Much of the prior work on BO is for single-objective optimization. There is limited work on multi-objective BO [33–35], and MESMO [29] is the state-of-the-art algorithm. In contrast to prior work, we exploit the continuous approximations of the objective functions (hardware-aware DNN training on ReRAM designs with varying the number of epochs) to minimize the computation cost to uncover high-quality Pareto front for hardware design.

III. BACKGROUND AND PROBLEM SETUP

In this section, we first explain how a trained DNN model is deployed on the ReRAM crossbars to perform inferencing. Subsequently, we describe the MOO problem to perform robust DNN inferencing using ReSNA.

A. DNN Inferencing on ReRAM Crossbars

Fig. 1 illustrates the overall flow of deploying a trained DNN model on ReRAM crossbars for inferencing. There are four main steps, as explained below. Table I summarizes the notation associated with the relevant parameters.

1. Software training. For a given DNN architecture and training dataset, we first perform the training in software. The quantization-aware training technique [36–38] can be used to quantize the activations and weights.
2. Deterministic mapping. The objective of this step is to map the weight matrix of DNN W and the set of activations A to the conductance of the ReRAM cells G_{quan} and crossbar input voltages V_{quan}, according to the resolutions of ReRAM devices and DACs, respectively. When the ReRAM cell resolution is less than the number of bits used in quantization, i.e., $Res_{cell} < Bit_{quan}$, $\frac{Bit_{quan}}{Res_{cell}}$ cells are used to represent one weight. A kernel in a convolutional (Conv) layer needs to be unrolled and mapped to a matrix. As kernels are reused many times during convolution, the kernel in a Conv layer is typically duplicated and deployed on multiple crossbars. Therefore, multiple inputs can be processed simultaneously, increasing parallelism and improving throughput.
3. Stochastic noise injection. This step mimics the influence of stochastic noise on the conductance values. The noise is modeled using probability distributions G_{noisy}.

Notation	Meaning
W	DNN weight matrix
A	Activations
Bit_{quan}	Bit number for quantization
R_{on},R_{off}	Low resistance and high resistance
Res_{cell}	ReRAM cell resolution
Res_{DAC},Res_{ADC}	DAC and ADC resolution
V_r	ReRAM read voltage
T	Temperature
$Freq$	Operational frequency
σ_{prog}	Programming noise standard deviation
$Xbar_{size}$	Crossbar size

Section VIII concludes this paper.
cell conductance in the presence of thermal noise, shot noise, RTN, and programming noise together. Section IV-A provides more details.

4 ReRAM-based computation. This process accumulates the results obtained from ReRAM crossbars and employs ADCs to generate outputs. Here Y_{noisy} denotes the final output of DNN inferencing. Note that the last three steps together emulate the deployment of DNN inferencing on ReRAM-based hardware. The deterministic mapping needs to be carried out only once. Typically, we need to perform the third and fourth steps multiple times (e.g., ten times) to mimic multiple independent ReRAM deployments on the same device. Based on the multiple runs, we obtain an estimate of DNN inferencing accuracy.

B. MOO problem for ReRAM-based Designs

Our goal is to find ReRAM-based designs with suitable DNN weights to optimize multiple objectives, including inferencing accuracy, hardware area, execution time, and energy consumption.

ReRAM design space. The ReRAM design configuration influences the output objectives. For example, the parameters Bit_{quan}, Res_{DAC}, Res_{ADC} listed in Table I influence the data precision and overall inferencing accuracy. For area overhead, $[\text{Bit}_{\text{quan}}/\text{Res}_{\text{DAC}}]$ is proportional to the number of cells used in the ReRAM-based design to represent the weights, and Bar_{size} determines the subarray unit size. For execution time, note that Freq is inversely proportional to the clock cycle. The read voltage V_r and the ReRAM cell resistance range $[R_{\text{on}}, R_{\text{off}}]$ affect the ReRAM crossbar energy consumption.

MOO formulation. We formulate the MOO problem for robust inferencing on hardware-efficient ReRAM crossbars with stochastic noise as follows. Our input space consists of two parts: the ReRAM design space and the DNN weights. Let $X \subseteq \mathbb{R}^d$ be the ReRAM design configuration space, which includes the design variables as explained above and also shown in Fig. 1. Each design variable can take values from a bounded candidate set. We need a candidate pair consisting of ReRAM design configuration $x \in X$ and DNN weights to be able to evaluate all the output objectives. Without loss of generality, we consider maximizing four objective functions: DNN inferencing accuracy, hardware area, execution time, and energy consumption denoted by $f_1(x), f_2(x), f_3(x), f_4(x)$, respectively. For each candidate ReRAM design, we execute ReSNA to obtain the DNN weights that give rise to maximum accuracy. Subsequently, we evaluate the objective functions $f_1(x), f_2(x), f_3(x), f_4(x)$.

A design configuration x is determined to Pareto dominate another design x' if $f_j(x) \geq f_j(x') \forall i$ and there exists some $j \in \{1, 2, 3, 4\}$ such that $f_j(x) > f_j(x')$. An optimal solution of a MOO problem is a set of designs X^* such that no design $x' \in X \setminus X^*$ pareto-dominates a design $x \in X^*$. The solution set X^* is called the Pareto set, and the corresponding set of objective function values is called the Pareto front. Our goal is to achieve a high-quality Pareto front for hardware design while minimizing the total computation cost of function evaluations.

IV. UNDERSTANDING THE IMPACT OF STOCHASTIC NOISE

In this section, we first discuss the modeling of ReRAM stochastic noise. Next, we demonstrate the impact of stochastic noise on DNN inferencing for specific ReRAM design configurations. Finally, we show that the naïve approach of adding random Gaussian noise cannot improve the robustness of DNN inferencing in the presence of stochastic noise.
could be an option, as suggested in previous work [27]. However, such an approach will seriously constrain the use and potential of ReRAM-based hardware due to the exclusion of high operational frequency and short execution time for DNN inferencing. Utilizing high-resolution cells is another challenge. For example, increasing the cell resolution from 2 to 8 bits can reduce the number of crossbar arrays by 75% (assuming all other settings are the same), leading to a smaller area and lower latency. However, the noise margin drops by 64× as the cell noise margin is inversely proportional to the number of conductance levels (i.e., $2^{\text{Res}-\text{cell}}$).

C. Performance of Existing Training Approaches

We next evaluate the DNN inferencing accuracy of several previously proposed ReRAM hardware-aware training methods with ResNet20 and VGG13 and show the results in Fig. 3. Weights and activations are quantized to 8 bits. We consider two different ReRAM cell resolutions, 2 bits and 8 bits. Models are tested by including stochastic noise, as shown in Fig. 2(a). The noise standard deviation is related to the maximum absolute weight value, more specifically, $\Delta G_{\text{ROG}} = \mathcal{N}(0, 0.01 \cdot \max(G))$. PROG considers only the programming noise ΔG_{prog} with $\sigma_{\text{prog}} = 0.0658$ [40] for training.

We make the following observations from the results shown in Fig. 3. 1) The baseline system suffers from stochastic noise, resulting in poor inferencing accuracy. 2) Previous training methods, such as RGN and PROG, cannot guarantee the mitigation of DNN inferencing accuracy degradation due to stochastic noise. This result is mainly due to the mismatch between Gaussian noise and the actual device stochastic noise, as shown in Fig. 2(a). 3) Increasing the cell resolution from 2 to 8 bits exacerbates the degradation in DNN inferencing accuracy due to the reduced noise margin of the ReRAM devices.

V. ReSNA: HARDWARE-AWARE TRAINING APPROACH

In this section, we describe the proposed ReRAM-based stochastic-noise-aware (ReSNA) training method that incorporates stochastic noise to improve DNN inferencing accuracy.

We start with a pre-trained model to initialize noise-aware training. Batch normalization layers are included after each Conv layer [42]. The computation during the training process considers the hardware configurations. In each iteration, a new set of emulated device noise is applied in the stochastic noise injection step. Thus, the loss calculated at the end of the forward pass reflects the influence of stochastic noise. During the backpropagation, gradients of trainable DNN weights are calculated with respect to the loss. We keep a copy of the noise-free weight values and perform the gradient updates on this copy.

The quality of training degrades due to the distortion of the loss function induced by the variation of weight parameters [44]. When the variation is large enough, the gradient update during the backpropagation step can be derived from the expected convergence path. The error due to stochastic noise can propagate and accumulate through the forward path, and similarly, the error in the gradient can propagate and accumulate through the backward path. Thus, the convergence of the loss function may be affected by the accumulation of the gradient error.

Moreover, our experiments show that Conv layers are less sensitive to device stochastic noise than FC layers. Let δ_i denote the ReRAM cell’s stochastic noise. We assume that one cell is used to represent one weight for simplicity. During the ReRAM-based FC layer computation involving one weight for a total of n times, the accumulation of the cell’s stochastic noise can be approximated as $n^2\delta_i$. (assuming a Gaussian distribution). As mentioned above, Conv kernels are typically duplicated to improve the throughput of the ReRAM-based hardware. These copies have identical weights, but the noise can be approximated to have independent statistical distributions. As the computation involving one weight for n times will be distributed to multiple copies, the accumulation of these cells’ stochastic noise can be reduced to $n^2\delta_i/k$. The value of k is related to the number of duplicate copies as well as the correlations between the stochastic noise of these devices. Thus, the device stochastic noise affects FC layers more significantly than Conv layers due to the duplication of Conv kernels. To overcome this challenge, we propose two techniques to improve the stability of DNN inferencing accuracy.

Applying smaller noise to FC layers. Since computing the loss function is critical for the backpropagation step and FC layers are more sensitive to the stochastic noise, we propose to lower the noise level on FC layers for improving the stability of inferencing. Table II compares the performance of ReSNA under different noise configurations. We consider the ResNet20 model with an 8-bit weight and activation quantization, along with a crossbar size of 128×128 in this experiment. The temperature is set to 350 K, and the operational frequency is set to 500 MHz.

Table II shows that without including any noise in training (Conv$\text{ideal} + \text{FC}_\text{ideal}$), the DNN inferencing accuracy on this ReRAM design in the presence of stochastic noise is only 69.61%. Including a high-amplitude noise to the entire network (Conv$500\text{MHz, 350K} + \text{FC}_\text{500MHz, 350K}$) makes the training unstable. Applying the device stochastic noise to Conv layers while appropriately reducing the noise level on FC layers (e.g., Conv$500\text{MHz, 350K} + \text{FC}_\text{100MHz, 350K}$) helps in maintaining the stability of training and improving the DNN inferencing accuracy.

Majority vote in the classification layer. Alternatively, FC layers can be duplicated and deployed on different crossbar arrays. The stochastic noise of a single weight parameter across these copies is not independent but is less correlated than the variations due to accessing the same device multiple times. We can feed the same input to these duplication layers and take the majority vote (Voting) to determine the predicted output to compensate for the FC layers’ impact on the DNN inferencing accuracy. To minimize the area overhead, we apply Voting to only the classification layer (i.e., the last FC layer) with a small number of copies (e.g., 3). The results

![Figure 3: Results for DNN inferencing on ReRAM crossbars with stochastic noise under different training methods: Baseline, RGN, PROG, and ReSNA training. $Freq = 500$ MHz, $T = 350$ K, 128×128 crossbars. (a) ResNet20, (b) VGG13.](image-url)

Training Configuration	Inferencing Accuracy
w/o Voting	69.61%
w/ Voting	74.69%
Conv$\text{ideal} + \text{FC}_\text{ideal}$	79.95%
Conv$\text{500MHz, 350K} + \text{FC}_\text{ideal}$	84.05%
Conv$\text{500MHz, 350K} + \text{FC}_\text{100MHz, 350K}$	81.65%
Conv$\text{500MHz, 350K} + \text{FC}_\text{500MHz, 350K}$	10%

TABLE II: DNN inferencing accuracy comparison under various training configurations with ReSNA for the following setting: ResNet20, $Freq = 500$ MHz, $T = 350$ K, 8-bit cell resolution, 128×128 crossbars.
in Table [11] demonstrate that this technique can further improve DNN inference accuracy, even under the combination of high-amplitude noise and high-resolution cells.

In summary, ReSNA incorporates stochastic noise and enhances the stability, leading to better inference accuracy than the baseline and previous work, as shown in Fig. [3].

VI. CF-MESMO: EFFICIENT MOO ALGORITHM

Evaluating DNN inference accuracy and hardware efficiency requires execution of the ReSNA training for each ReRAM design configuration; this step is, however, computationally expensive (e.g., taking over seven hours to execute 100 training epochs for one ReRAM design configuration for ResNet20 with CIFAR10 data). To address this challenge, we propose an efficient information-theoretic MOO algorithm referred to as Continuous-Fidelity Max-value Entropy Search for Multi-objective Optimization (CF-MESMO). Two key innovations here are: first, we formulate continuous-fidelity evaluation of objective functions by varying the number of training epochs of ReSNA. Second, we propose a principled approach to intelligently select the ReRAM configurations and fidelity of ReSNA for evaluation guided by learned statistical models.

A. MOO Formulation with Continuous-Fidelity Evaluations

For each candidate ReRAM design \(x \in \mathcal{X} \), we need to execute the ReSNA method to obtain the DNN weights. Subsequently, we evaluate the objective functions \(f_j(x) \) (inference accuracy), \(f_k(x) \) (hardware area), \(f_3(x) \) (execution time), \(f_4(x) \) (energy consumption). The cost of evaluation of each ReRAM design configuration can be reduced by making an approximation of the objective function(s). We propose to vary the number of training epochs in ReSNA to trade-off computation cost and accuracy of objective function evaluations (i.e., continuous-fidelity evaluation): small training epochs correspond to lower-fidelity evaluation and vice versa. Therefore, we formulate this problem as a continuous-fidelity MOO problem where we have access to an alternative function \(g_j(x, z) \) for all \(j \in \{1, 2, 3, 4\} \). Function \(g_j(x, z) \) can make cheaper approximations of \(f_j(x) \) by varying the fidelity variable \(z_j \in \mathbb{Z} \).

Without loss of generality, let \(\mathbb{Z} = [0, 1] \) be the fidelity space. Fidelities for each function vary in the amount of computational resources consumed and the accuracy of evaluation, where \(z_j = 0 \) and \(z_j = 1 \) refer to the lowest and highest fidelity, respectively. At the highest fidelity \(z_j^* \), \(g_j(x, z_j^*) = f_j(x) \). Let \(C_j(x, z_j) \) be the cost of evaluating \(g_j(x, z_j) \), i.e., runtime to perform training using ReSNA for the selected number of training epochs. Evaluation of each ReRAM design configuration \(\mathbf{x} \in \mathcal{X} \) with fidelity vector \(\mathbf{z} = [z_1, z_2, z_3, z_4] \) generates the evaluation vector \(y \equiv [y_1, y_2, y_3, y_4] \), where \(y_j = g_j(x, z_j) \), and the normalized cost of evaluation is \(C(x, z) = \sum_{j=1}^{4} \left(C_j(x, z_j)/C_j(x, z_j^*) \right) \). Our goal is to approximate the Pareto set \(\mathcal{X}^* \) by minimizing the overall cost of evaluating candidate ReRAM designs.

B. Overview of CF-MESMO

CF-MESMO learns a surrogate model using data obtained from past ReRAM design evaluations and then intelligently selects the next candidate ReRAM design and the fidelity of ReSNA pair for evaluation by trading-off exploration with exploitation to quickly direct the search towards Pareto-optimal solutions. We perform the following steps in each iteration of CF-MESMO as shown in Algorithm 1:

1) Select the ReRAM design and fidelity of ReSNA for evaluation that maximizes the information gain per unit cost about the optimal Pareto front based on the current surrogate model.

2) Execute the hardware-aware training approach ReSNA to evaluate objective functions with the selected ReRAM design and fidelity pair.

3) Employ the new training example in the form of ReRAM design configurations (i.e., input) and four objective function evaluations (i.e., output) to update the surrogate model. After convergence is achieved (i.e., Pareto front solution doesn’t change in several consecutive iterations), we compute the Pareto front from the aggregate set of objective evaluations and obtain the ReRAM design configurations and DNN weights corresponding to the Pareto front as the resulting solution.

Algorithm 1 CF-MESMO Algorithm

Input: ReRAM design space \(\mathcal{X} \); DNN \(\pi \); four objective functions \(f_j \) and their continuous approximations \(g_j \) using ReSNA training; total cost budget \(C_{total} \)

1: Initialize GP models \(\mathcal{GP}_1, \ldots, \mathcal{GP}_4 \) via ReRAM design evaluations \(D \)
2: While \(C_t \leq C_{total} \) and not converged do
3: for each sample \(s \in 1, \ldots, S \) do
4: Sample highest-fidelity functions \(f_j \sim \mathcal{GP}(\cdot, z_j^*) \)
5: \(F^*_s \leftarrow \text{Solve cheap MOO over } (f_1, \ldots, f_4) \)
6: Select ReRAM design and fidelity pair: \((x_s, z_s) = \arg \max_{x, z} \alpha_t(x, z, F^*_s) \)
7: Perform ReSNA training of DNN \(\pi \) with ReRAM design and fidelity pair \((x_s, z_s)\)
8: Evaluate objectives \(f_1, f_2, f_3, f_4 \) for trained DNN on ReRAM design \(x_s \)
9: Update total cost: \(C_t \leftarrow C_t + C(x_s, z_s) \)
10: Aggregate training data: \(D \leftarrow D \cup [(x_s, y_s, \{1, \ldots, S\}) \]
11: Update surrogate statistical models \(\mathcal{GP}_1, \ldots, \mathcal{GP}_4 \)
12: \(t \leftarrow t + 1 \)
13: end
14: return Pareto set and Pareto front of objective functions \(f_1, \ldots, f_4(x) \)

C. Selecting ReRAM Design to Evaluate via Information Gain

The effectiveness of CF-MESMO critically depends on the reasoning mechanism to select the candidate ReRAM design and fidelity of ReSNA pair for evaluation in each iteration. Therefore, we propose an information-theoretic approach to perform this selection. The key idea is to find the ReRAM design and fidelity pair \((x_t, z_t)\) that maximizes the information gain \((1) \) per unit cost about the Pareto front of the highest fidelities (denoted by \(F^*\)), where \((x_t, z_t)\) represents a candidate ReRAM design configuration \(x_t \) evaluated at fidelities \(z_t \) at iteration \(t \). CF-MESMO performs the joint search over the input space \(\mathcal{X} \) and the fidelity space \(\mathbb{Z} \):

\[
(x_t, z_t) \leftarrow \arg \max_{x, z} \alpha_t(x, z),
\]

where \(\alpha_t(x, z) = I(x, y, z) / C(x, z) \) (2)

In this joint search, the computation cost \(C(x, z) \) is considered in Equation (2). The information gain in Equation (2) is the expected reduction in entropy \(H(\cdot) \) of the posterior distribution \(P(F^*/D) \) due to the evaluation of the ReRAM design \(x \) at fidelity vector \(z \).
According to the symmetric property, the information gain can be rewritten as follows:

\[I((x, y; z), F^*)|D) = H(y|D, x, z) - E_{F^*}[H(y|D, x, z, F^*)]. \]

(3)

The first term in Equation (3) is the entropy of a four-dimensional Gaussian distribution that can be computed as follows:

\[H(y|D, x, z) = \sum_{j=1}^{4} \ln(\sqrt{2\pi e} \sigma_{y_j}(x, z_1)). \]

(4)

The second term in Equation (3) is an expectation over \(F^* \) and can be approximated using Monte-Carlo sampling:

\[E_{F^*}[H(y|D, x, z, F^*)] \approx \frac{1}{S} \sum_{j=1}^{S} [H(y|D, x, z, F^*_j)], \]

(5)

where \(S \) denotes the number of samples, and \(F^*_j \) denotes a sample Pareto front achieved over the highest fidelity functions sampled from the surrogate models. To solve Equation (5), we provide solutions to construct Pareto front samples \(F^*_j \) and to compute the entropy of a given Pareto front sample \(F^*_j \).

Computation of Pareto front samples: We sample the highest fidelity functions \(f_1, \ldots, f_4 \) from the posterior CF-GP models. Then, we solve a cheap MOO problem over the sampled functions with the NSGA-II algorithm [28] and compute the sample Pareto front \(F^*_j \).

Entropy computation for a given Pareto front sample: Let \(F^*_j = \{v^1, \ldots, v^4\} \) be the sample Pareto front, where \(l \) denotes the size of the Pareto front and each element \(v^i = \{v_1^i, \ldots, v_{l^i}^i\} \) is evaluated at the sampled highest-fidelity function. The following inequality holds for each component \(y_j \) of \(y \) in the entropy term \(H(y|D, x, z, F^*_j) \):

\[y_j \leq f_{j}^* \text{ for } j \in \{1, \ldots, 4\}, \]

(6)

where \(f_{j}^* = \max\{v_1^j, \ldots, v_{l^j}^j\} \). Essentially, this inequality means that the \(j \)th component of \(y \) is upper-bounded by the maximum of \(j \)th components of sample Pareto front \(F^*_j \).

The proof of Equation (6) falls in two cases:
(a) If \(y_j \) is evaluated at the highest fidelity (i.e., \(z_j = z_j^* \) and \(y_j = f_j \)), we prove by contradiction. Suppose there exists some component \(f_i \) of \(f \) such that \(f_j > f_{j}^* \). However, by definition, since no point dominates \(f \) in the \(j \)th dimension, \(f \) is a non-dominated point. This results in \(f \in F^*_j \), which is a contradiction. Thus, Equation (6) holds.
(b) If \(y_j \) is evaluated at one of the lower fidelities (i.e., \(z_j \neq z_j^* \)), we refer to the assumption that the value of an objective evaluated at lower fidelity is smaller than that evaluated at higher fidelity, i.e., \(y_j \leq f_j \leq f_{j}^* \). This assumption is true in our problem setting, where the DNN inferencing accuracy improves with more training epochs of ReSNA.

Following Equation (3) and the independence of CF-GP models, we further decompose the entropy of a set of independent variables according to the entropy measure property [47]:

\[H(y|D, x, z, F^*_j) \approx \sum_{j=1}^{4} H(y_j|D, x, z, f_{j}^*). \]

(7)

Equation (7) requires the entropy computation of \(p(y_j|D, x, z, f_{j}^*) \). This conditional distribution can be expressed as \(H(y_j|D, x, z, f_{j}^*) = H(y_j|D, x, z, f_{j}^*) \). As Equation (6) states that \(y_j \leq f_{j}^* \) holds under all fidelities, the entropy of \(p(y_j|D, x, z, f_{j}^*) \) can be approximated by the entropy of a truncated Gaussian distribution as:

\[H(y_j|D, x, z, f_{j}^*) = \ln(\sqrt{2\pi e} \sigma_{y_j}) + \ln \Phi(\gamma_{y_j}) + \frac{\gamma_{y_j}}{2\Phi(\gamma_{y_j})}. \]

(8)

where \(\gamma_{y_j} = \frac{f_{j}^* - y_j}{\sigma_{y_j}} \). Functions \(\phi \) and \(\Phi \) are the probability density and cumulative distribution function of the standard normal distribution, respectively. From Equations (4), (5), and (8), we get the expression as shown below:

\[\alpha_{1}(x, z, F^*) = \frac{1}{C(x, z)} \sum_{j=1}^{4} \sum_{s=1}^{S} \frac{\gamma_{y_j}}{2\Phi(\gamma_{y_j})} - \ln(\Phi(\gamma_{y_j})). \]

(9)

Therefore, in Algorithm [1] we select the next ReRAM design and the fidelity of ReSNA pair that maximizes the information gain per unit cost about the optimal Pareto front based on Equation (9).

VII. EXPERIMENTS AND RESULTS

In this section, we first explain the details of the experimental setup. Next, we evaluate the effectiveness of ReSNA in improving the inferencing accuracy. Finally, we show that CF-MESMO can achieve high-quality Pareto fronts for DNN inferencing on ReRAM crossbars and analyze the Pareto sets for different DNN models.

A. Experimental Setup

We evaluate ReSNA with five different DNNs—ResNet20, ResNet32, ResNet44 [49], VGG11, and VGG13 [49] on the CIFAR-10 dataset [50]. The CIFAR-10 dataset contains 50,000 training images and 10,000 testing images, which belong to 10 classes. Furthermore, to validate the scalability of our method, we also evaluate the performance of ResNet18 [48] using the CIFAR-100 dataset [50]. The number of training and testing images in CIFAR-100 is the same as in CIFAR-10, but these images belong to 100 classes. The image size is \(28 \times 28 \times 3 \), and the training and testing batch size is 64. Table III(a) summarizes deep neural network configurations, including the numbers of channels in Conv layers, the inferencing accuracy with unquantized weights and activations, and the inferencing accuracy for 8-bit weights and activations. Note that testing on diverse DNNs is more important to test the effectiveness of our approach. Hence, due to space constraints, we provide results on limited datasets noting that our methodology and findings are general.

TABLE III: Experiments setup details.

Network	# of channels in Conv layers	Unquantized Accuracy	Quantized Accuracy
ResNet20	[16, [16], [32, 32], [32, 64], [64, 64]]	91.65%	89.61%
ResNet32	[16, [16], [5, 32, 32], [5, 64], [5, 64]]	92.81%	90.06%
ResNet44	[16, [16], 7, [32, 32], [7, 64], [7, 64]]	93.24%	91.54%
VGG11	[64, 128, 256, 512, 512, 512]	92.18%	88.07%
VGG13	[64, 128, 128, 256, 512, 512]	93.64%	91.14%
ResNet18	[64, [64], [2, [128, 128], [128, 256], [256, 256], [512, 512], [512, 512]]	74.57%	71.92%

(b) ReRAM parameters in ReSNA.

Parameter	Value
Bitwidth	8 bit
\(R_{on}, R_{off} \)	3.03 kΩ, 3.03 MΩ
\(R_{D, A C}, R_{A D C} \)	8 bits, 8 bits
\(V_{t} \)	1.65 V
\(\sigma_{preq} \)	0.0658

(c) Design space configurations.

Parameter	Candidate values
\(R_{S, cell} \)	5/4/3/2/1-bit
\(F_{req} \)	10 MHz-1000 MHz
\(T \)	300 K-400 K
\(Xbar size \)	32 x 32, 64 x 64, 128 x 128
We implement the ReSNA method on ReRAM crossbars with stochastic noise using the PytorX simulator [27]. ReSNA uses stochastic gradient descent with a learning rate of 0.001 and a momentum of 0.9. The maximum number of training epochs is 100. For ResNet18, we decay the learning rate by 0.2 for every 20 epochs. Each inferencing test consists of 10 independent runs with stochastic noise, and we report the average inferencing accuracy. All the training and inferencing are conducted on NVIDIA Titan RTX GPU with a memory of 24 GB and a memory bandwidth of 672 GB/s.

Table III(b) summarizes the ReRAM device parameters. The cell resolution, operational frequency, temperature, and crossbar size are inputs to the MOO framework. Table III(c) shows the allowable input configurations. We use NeruoSim [51] along with the 32 nm technology node parameters to evaluate the hardware area, execution time, and energy consumption. The ReRAM crossbar and peripheral configurations are adopted from [42]. For ReSNA with Voting, we duplicate the kernels of the classification layer. For the MOO problem, we run CF-MESMO for a maximum of 100 iterations with 10 available fidelity selections. The baselines for evaluating the efficiency of CF-MESMO are the random search and NSGA-II. We utilize the NSGA-II implementation from Platypus python library.

B. ReSNA Results

Inferencing accuracy. We show representative results for ReSNA inferencing accuracy with multiple temperature and frequency settings with respect to the baseline. Recall that the baseline configuration considers training with no noise and performing inferencing in the presence of stochastic noise. Fig. 5(a)-(c) show the inferencing accuracy for ResNet20 with 8-bit cell resolution and 64×64 crossbars. On average, ReSNA without Voting outperforms the baseline by 1.62% over all the test conditions. ReSNA with Voting increases the overall inferencing accuracy by 2.57%. Considering the extreme design configuration, i.e., at 1000 MHz and 400 K, ReSNA with Voting outperforms the baseline by 5.47%. Note that this extreme case assumes that in the future, ReRAM-based hardware will run at this high frequency. We also validate the performance of the ReSNA method with the ResNet18 on the CIFAR-100. With a frequency of 500 MHz and a temperature of 350 K, ReSNA achieves 70.80% inferencing accuracy compared with the baseline inferencing accuracy of 69.37%. With a frequency of 1000 MHz and a temperature of 350 K, ReSNA achieves 68.23% inferencing accuracy compared with the baseline inferencing accuracy of 64.45%.

In summary, ReSNA can achieve considerable inferencing accuracy improvement under stochastic noise with different ReRAM design configurations, DNNs, and datasets.

Design trade-offs considering different objectives. We further explore the design trade-offs considering the inferencing accuracy, hardware area, execution time, and energy consumption. As we have explored the effects of frequency and temperature on inferencing accuracy in the previous analysis, we focus on cell resolution and crossbar size in this discussion. Fig. 5(d) shows the impact of cell resolution and the crossbar size on ResNet20 at 500 MHz and 350 K. Fig. 5(e) also indicates that different objectives have different optimal design configurations, and a global optimal design configuration is not achievable. Note that the operational frequency and temperature considered above are discrete data points selected for initial performance evaluation. However, the temperature can take any value from 300 K to 400 K. Assuming the temperature resolution to be 0.1 K, we can get 1,000 data points. Similarly, by considering other inputs, we can estimate the number of all design configurations to be 1.485×10^7. While any MOO framework can search over this enormous space to achieve the Pareto front to establish the suitable design trade-offs, the computation cost associated with this search is prohibitively high (e.g., it takes nearly 30 GPU days to run the ReSNA training on the PytorX simulator [27] for 100 configurations). In contrast, the proposed CF-MESMO framework does not traverse through all the data points but can achieve a high-quality Pareto front with significantly reduced computation cost. We use the hypervolume, which measures the volume between the Pareto front and a reference point [53], to indicate the quality of the Pareto front.

CF-MESMO vs. NSGA-II and random search. Fig. 5(a) illustrates the hypervolume result of CF-MESMO compared with NSGA-II and random search under the same computation cost. The unit cost is defined as the runtime for executing 10 training epochs of the ReSNA method (e.g., 42.5 minutes based on our setting for ResNet20). We observe that 1) CF-MESMO can achieve a higher-quality Pareto optimal set for the same total computation cost for ReRAM design evaluation; 2) CF-MESMO can produce higher quality Pareto front using significantly lower cost compared to NSGA-II and random search; 3) CF-MESMO achieves 90.91% and 91.21% reduction in computation cost to reach the same quality Pareto front as NSGA-II and random search, respectively.
design evaluation using ReSNA with a small number of training
iterations. After that, a larger fidelity index is selected to approach
the Pareto front by identifying the promising areas of the ReRAM
structure. As ReSNA improves the inferencing accuracy, high ReRAM
cell resolution and high frequency become a preferred choice.

As the model size increases, a large-sized crossbar results in a low
efficiency of stochastic noise. The efficiency of this framework depends on
uncovering the Pareto-optimal ReRAM designs to establish a suitable
trade-off considering inferencing accuracy, area overhead, execution
time, and energy consumption. We have solved this challenging multi-
objective optimization (MOO) problem by introducing a Continuous-
Fidelity Max-value Entropy Search-based MOO framework, called
CF-MESMO. CF-MESMO is aided by a hardware-aware training
method to handle stochastic noise, called ReSNA. The CF-MESMO
framework provides a high-quality Pareto front for robust DNN
inferencing on hardware-efficient ReRAM crossbars with stochastic
noise. On average, ReSNA achieves 2.57% inferencing accuracy
improvement for ResNet20 on the CIFAR-10 dataset with respect
to the baseline configuration. Moreover, the CF-MESMO framework
achieves 90.91% reduction in computation cost compared with the
popular MOO framework NSGA-II to reach the same quality Pareto
front as NSGA-II.

VIII. Conclusions

We have presented a ReRAM-based accelerator design and optimization
framework to achieve robust DNN inferencing in the presence
of stochastic noise. The efficiency of this framework depends on
uncovering the Pareto-optimal ReRAM designs to establish a suitable
trade-off considering inferencing accuracy, area overhead, execution
time, and energy consumption. We have solved this challenging multi-
objective optimization (MOO) problem by introducing a Continuous-
Fidelity Max-value Entropy Search-based MOO framework, called
CF-MESMO. CF-MESMO is aided by a hardware-aware training
method to handle stochastic noise, called ReSNA. The CF-MESMO
framework provides a high-quality Pareto front for robust DNN
inferencing on hardware-efficient ReRAM crossbars with stochastic
noise. On average, ReSNA achieves 2.57% inferencing accuracy
improvement for ResNet20 on the CIFAR-10 dataset with respect
to the baseline configuration. Moreover, the CF-MESMO framework
achieves 90.91% reduction in computation cost compared with the
popular MOO framework NSGA-II to reach the same quality Pareto
front as NSGA-II.
REFERENCES

[1] M. Hu et al., “Hardware realization of BSB recall function using memristor crossbar arrays,” in Design Automation Conference, 2012.

[2] Y. Chen et al., “A survey of accelerator architectures for deep neural networks,” IEEE Transactions on Design Automation of Electronic Systems, 2020.

[3] P. Chi et al., “PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory,” in International Symposium on Computer Architecture, 2016.

[4] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars,” in International Symposium on Computer Architecture, 2016.

[5] L. Song et al., “PipeLayer: A pipelined ReRAM-based accelerator for deep learning,” in IEEE International Symposium on High-Performance Computer Architecture, 2017.

[6] Y. Long et al., “ReRAM-based processing-in-memory architecture for recurrent neural network acceleration,” IEEE Transactions on Very Large Scale Integration System, 2018.

[7] Z. Fan et al., “RED: A ReRAM-based deconvolution accelerator,” in Design, Automation, and Test in Europe, 2019.

[8] X. Yang et al., “ReTransformer: ReRAM-based processing-in-memory architecture for transformer acceleration,” in International Conference on Computer-Aided Design, 2020.

[9] N. K. Jayakodi et al., “Trading-off accuracy and energy of deep inference on embedded systems: A co-design approach,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[10] N. K. Jayakodi et al., “Design and optimization of energy-accuracy tradeoff networks for mobile platforms via pretrained deep models,” ACM Transactions on Embedded Computing Systems, 2020.

[11] T. Belkhouja et al., “Analyzing deep learning for time-series data through adversarial lens in mobile and IoT applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020.

[12] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based on march test and a novel squeeze-search scheme,” IEEE Transactions on Computers, 2014.

[13] S. Schechter et al., “Use ECC, not ECC, for hard failures in resistive memories,” in International Symposium on Computer Architecture, 2010.

[14] Y. Y. Chen et al., “Postcycling LRS retention analysis in HIO2/HfRRAM IT1R device,” IEEE Electron Device Letters, 2013.

[15] C. Xu et al., “Impact of cell failure on reliable cross-point resistive memory design,” ACM Transactions on Design Automation of Electronic Systems, 2015.

[16] C. Liu et al., “Rescuing memristor-based neuromorphic design with high defects,” in Design Automation Conference, 2017.

[17] L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017.

[18] L. Chen et al., “Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar,” in Design, Automation, and Test in Europe, 2017.

[19] B. Li et al., “Build reliable and efficient neuromorphic design with memristor technology,” in Asia and South Pacific Design Automation Conference, 2019.

[20] I. Chakraborty et al., “GENIEx: A generalized approach to emulating non-ideality in memristive xbars using neural networks,” in Design Automation Conference, 2020.

[21] D. Soudry et al., “Memristor-based multilayer neural networks with online gradient descent training,” IEEE Transactions on Neural Networks and Learning Systems, 2015.

[22] B. Feinberg et al., “Making memristive neural network accelerators reliable,” in IEEE International Symposium on High-Performance Computer Architecture, 2012.

[23] D. Ielmini et al., “Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories,” Applied Physics Letters, 2010.

[24] S. R. Lee et al., “Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory,” in Symposium on VLSI Technology, 2012.

[25] Y. Long et al., “Design of reliable DNN accelerator with un-reliable ReRAM,” in Design, Automation, and Test in Europe, 2019.

[26] V. Joshi et al., “Accurate deep neural network inference using computational phase-change memory,” Nature Communications, 2020.

[27] Z. He et al., “Noise injection adaption: End-to-end ReRAM crossbar non-ideal effect adaption for neural network mapping,” in Design Automation Conference, 2019.

[28] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, 2002.

[29] S. Belakaria et al., “Max-value entropy search for multi-objective Bayesian optimization,” in Conference on Neural Information Processing Systems, 2019.

[30] B. Yan et al., “A closed-loop design to enhance weight stability of memristor based neural network chips,” in International Conference on Computer-Aided Design, 2017.

[31] S. Bandyopadhyay et al., “A simulated annealing-based multiobjective optimization algorithm: AMOSA,” IEEE Transactions on Evolutionary Computation, 2008.

[32] B. Shahriari et al., “Taking the human out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE, 2016.

[33] S. Belakaria et al., “Uncertainty-aware search framework for multi-objective Bayesian optimization,” in AAAI Conference on Artificial Intelligence, 2020.

[34] Z. Zhou et al., “Design of multi-output switched-capacitor voltage regulator via machine learning,” in Design, Automation and Test in Europe, 2020.

[35] S. Belakaria et al., “Machine learning enabled fast multi-objective optimization for electrified aviation power system design,” in IEEE Energy Conversion Congress and Exposition, 2020.

[36] S. Han et al., “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[37] S. Zhou et al., “DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[38] H. Yang et al., “BSQ: Exploring bit-level sparsity for mixed-precision neural network quantization,” International Conference on Learning Representations, 2021.

[39] J. B. Johnson, “Thermal agitation of electricity in conductors,” Physical Review, 1928.

[40] Y.-H. Lin et al., “Performance impacts of analog ReRAM non-ideality on neuromorphic computing,” IEEE Transactions on Electron Devices, 2019.

[41] S. Seo and J. Kim, “Efficient weights quantization of convolutional neural networks using kernel density estimation based non-uniform quantizer,” Applied Science, 2019.

[42] B. K. Joadar et al., “AccuReD: High accuracy training of CNNs on ReRAM/GPU heterogeneous 3D architecture,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020.

[43] B. K. Joadar et al., “High-throughput training of deep CNNs on ReRAM-based heterogeneous architectures via optimized normalization layers,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[44] I. Chakraborty et al., “Technology aware training in memristive neuromorphic systems for nonideal synaptic crossbars,” IEEE Transactions on Emerging Topics in Computational Intelligence, 2018.

[45] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning. MIT Press, 2006.

[46] K. Kandasamy et al., “Multi-fidelity Bayesian optimisation with continuous approximations,” in International Conference on Machine Learning, 2017.

[47] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley and Sons, 2012.

[48] K. He et al., “Deep residual learning for image recognition,” in International Conference on Computer Vision, 2016.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[50] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” 2009.

[51] X. Peng et al., “DNN+ NeuroSim: An end-to-end benchmarking framework for compute-in-memory accelerators with versatile device technologies,” in IEEE International Electron Devices Meeting, 2019.

[52] X. Peng et al., “Optimizing weight mapping and data flow for convolutional neural networks on processing-in-memory architectures,” IEEE Transactions on Circuits and Systems I, 2019.

[53] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, 1999.