Supporting Information

MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting

Xiang Wang 1,2, Linlin Yang 1,2, Congcong Xing 1, Xu Han 3, Ruifeng Du 1,2, Ren He 1,2, Pablo Guardia 1, Jordi Arbiol 3,4 and Andreu Cabot 1,4,*

1 Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain; wxiang@irec.cat (X.W.); lyang@irec.cat (L.Y.); congcongxing@irec.cat (C.X.); ruifengdu@irec.cat (R.D.); renhe@irec.cat (R.H.); pguardia@irec.cat (P.G.)
2 Departament d’Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
3 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; xu.han@icn2.cat (X.H.); arbiol@icrea.cat (J.A.)
4 ICREA, Pg. Lluís Companys, 08010 Barcelona, Catalonia, Spain
* Correspondence: acabot@irec.cat

Supplementary Materials:

Figure S1. SEM images of CoMoP.
Figure S2. (a) SEM image of Co–Mo MOFs. (b–c) SEM images and (d) EDX spectrum of CoMoP.

Figure S3. (a) SEM image of Na₂MoO₄-ZIF-67. (b–c) SEM images and (d) EDX spectrum Mo–CoP.
Figure S4. (a) SEM image of ZIF-67. (b–c) SEM images and (d) EDX spectrum CoP.

Figure S5. (a–d) TEM image of CoMoP.
Figure S6. (a–d) HAADF-STEM micrographs of CoMoP.

Figure S7. EELS chemical composition maps obtained from the red squared area of the STEM micrograph. Individual Co L$_{2,3}$-edges at 779 eV (red), Mo M$_{4,5}$-edges at 230 eV (green), P L$_{2,3}$-edges at 132 eV (blue), N K-edge at 401 eV (pink) and C K-edge at 284 eV (orange).
Figure S8. (a) OER and (b) HER polarization curves of CoMoP with different Mo content in 1.0 M KOH.

Figure S9. Cyclic voltammograms for (a) CoMoP; (b) Mo–CoP; (c) CoP and (d) RuO$_2$ in the non-faradaic region of 1.12–1.22 V vs. RHE at various scan rates.
Figure S10. (a–c) SEM image and d) EDX spectrum of CoMoP after long term OER stability testing.

Figure S11. (a–c) SEM image and d) EDX spectrum of CoMoP after long term HER stability testing.
Table S1. Comparison of OER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution.

Catalysts	Electrolyte	Overpotentials (mV)	Tafel Slope (mV/dec)	Reference
CoMoP	1.0 M KOH	273	55	This work
O-CoP nanosheets	1.0 M KOH	310	83	[1]
CoP/NCNHP	1.0 M KOH	310	70	[2]
Mo-CoOOH	1.0 M KOH	302	56	[3]
CoP/CoCrO₂	1.0 M KOH	290	52	[4]
CoP PNWs	1.0 M KOH	326	80	[5]
CoP/CNFs	1.0 M KOH	325	29	[6]

Table S2. Comparison of HER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution.

Catalysts	Electrolyte	Overpotentials (mV)	Tafel Slope (mV/dec)	Reference
CoMoP	1.0 M KOH	89	70	This work
NiFeP@N-CS	1.0 M KOH	186	112	[7]
NiCo-P	1.0 M KOH	169	68	[8]
Nio₈Se/RGO	1.0 M KOH	169	65	[9]
NCTi@CoP@MoS₂	1.0 M KOH	195	74	[10]
Ce₁–CoP	1.0 M KOH	144	70	[11]
V-doped CoP	1.0 M KOH	235	91	[12]

Table S3. Comparison of OWS performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution.

Catalysts	Electrolyte	Potentials (V)	Reference
CoMoP	1.0 M KOH	1.56	This work
FeCoP UNSAs	1.0 M KOH	1.60	[13]
Cr-Co/P	1.0 M KOH	1.59	[14]
V-CoP@a-CeO₂	1.0 M KOH	1.56	[15]
NiCoP	1.0 M KOH	1.58	[16]
CoP–N/Co foam	1.0 M KOH	1.61	[17]
CoP@NPMG	1.0 M KOH	1.58	[18]
CoP/CoP	1.0 M KOH	1.57	[19]

References

1. Zhou, G.; Li, M.; Li, Y.L.; Dong, H.; Sun, D.; Liu, X.; Xu, L.; Tian, Z.; Tang, Y. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. *Adv. Funct. Mater.* 2019, 30, 1905252.
2. Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.-C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; et al. Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. *J. Am. Chem. Soc.* 2018, 140, 2610–2618, https://doi.org/10.1021/jacs.7b12420.
3. Guan, C.; Xiao, W.; Wu, H.; Liu, X.; Zhang, W.; Zhang, H.; Ding, J.; Feng, Y.P.; Pennycook, S.J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. *Nano Energy* 2018, 48, 73–80, https://doi.org/10.1016/j.nanoen.2018.03.034.
4. Saad, A.; Shen, H.; Cheng, Z.; Ju, Q.; Guo, H.; Munir, M.; Turak, A.; Wang, J.; Yang, M. Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. *ACS Appl. Energy Mater.* 2020, 3, 1684–1693, https://doi.org/10.1021/acsaeam.9b02155.
5. Zhang, M.; Ci, S.; Li, H.; Cai, P.; Xu, H.; Wen, Z. Highly defective porous CoP nanowire as electrocatalyst for full water splitting. *Int. J. Hydrogen Energy* 2017, 42, 29080–29090, https://doi.org/10.1016/j.ijhydene.2017.09.171.
6. Xie, X.-Q.; Liu, J.; Gu, C.; Li, J.; Zhao, Y.; Liu, C.-S. Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional electrocatalyst for high-efficient overall water splitting. *J. Energy Chem.* 2021, 64, 503–510, https://doi.org/10.1016/j.jenergychem.2021.05.020.
7. J.C. Hei, G.C. Xu, Wei, L. Zhang, H. Ding, D.J. Liu. NiFeP nanosheets on N-doped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting. *Appl. Surf. Sci.* 2021, 549, 149297.
8. C. Shuai, Z.L. Mo, X.H. Niu, P. Zhao, Q.B. Dong, Y. Chen, N.J. Liu, R.B. Guo Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. *J. Alloys Compd.* **2020**, *847*, 156514.

9. Liu, G.; Shuai, C.; Mo, Z.; Guo, R.; Liu, N.; Niu, X.; Dong, Q.; Wang, J.; Gao, Q.; Chen, Y.; et al. The one-pot synthesis of porous Ni0.85Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting. *New J. Chem.* **2020**, *44*, 17313–17322, https://doi.org/10.1039/d0nj04197a.

10. Zhang, C.-L.; Xie, Y.; Liu, J.-T.; Cao, F.-H.; Cong, H.-P.; Li, H. 1D Core–Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. *Chem. Eng. J.* **2021**, *419*, 129977, https://doi.org/10.1016/j.cej.2021.129977.

11. Li, J.; Zou, S.; Liu, X.; Lu, Y.; Dong, D. Electronic Modulation of CoP by Ce Doping as Highly Efficient Electro catalysts for Water Splitting. *ACS Sustain. Chem. Eng.* **2020**, *8*, https://doi.org/10.1021/acssuschemeng.0c01193.

12. Qin, J.-F.; Lin, J.-H.; Chen, T.-S.; Liu, D.-P.; Xie, J.-Y.; Guo, B.-Y.; Wang, L.; Chai, Y.-M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. *J. Energy Chem.* **2019**, *39*, 182–187, https://doi.org/10.1016/j.jechem.2019.01.022.

13. Zhou, L.; Shao, M.; Li, J.; Jiang, S.; Wei, M.; Duan, X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. *Nano Energy* **2017**, *41*, 583–590, https://doi.org/10.1016/j.nanoen.2017.10.009.

14. Li, W.; Jiang, Y.; Li, Y.; Gao, Q.; Shen, W.; Jiang, Y.; He, R.; Li, M. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. *Chem. Eng. J.* **2021**, *425*, 130651, https://doi.org/10.1016/j.cej.2021.130651.

15. L. Yang, R.M. Liu, L.F. Jiao. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. *Adv. Funct. Mater.* **2020**, *30*, 1909618.

16. Liang, H.; Gandi, A.N.; Anjum, D.H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H.N. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. *Nano Lett.* **2016**, *16*, 7718–7725, https://doi.org/10.1021/acs.nanolett.6b03803.

17. Liu, Z.; Yu, X.; Xue, H.; Feng, L. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. *J. Mater. Chem. A* **2019**, *7*, 13242–13248, https://doi.org/10.1039/c9ta03201k.

18. Liu, Y.; Zhu, Y.; Shen, J.; Huang, J.; Yang, X.; Li, C. CoP nanoparticles anchored on N,P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media. *Nanoscale* **2018**, *10*, 2603–2612, https://doi.org/10.1039/c7nr07274k.

19. Hua, Y.; Xu, Q.; Hu, Y.; Jiang, H.; Li, C. Interface-strengthened CoP nanosheet array with CoP nanoparticles as efficient electrocatalysts for overall water splitting. *J. Energy Chem.* **2018**, *37*, 1–6, https://doi.org/10.1016/j.jechem.2018.11.010.