Serum anti-Müllerian hormone as a predictive marker of polycystic ovarian syndrome

Sergio Parco¹
Caterina Novelli²
Fulvia Vascotto¹
Tanja Princi²

¹Institute for Maternal and child Health, IRCCS Burlo Garofolo, Trieste, Italy; ²Department of Life Sciences, University of Trieste, Garofolo, Trieste, Italy

Background: The anti-Müllerian hormone (AMH) is a dimeric protein secreted by the female ovaries and has two fundamental roles in follicle genesis. It delays the entrance of the primordial follicle into the pool of follicles in growth and diminishes the sensitivity of the ovarian follicle towards follicle-stimulating hormone (FSH). The purpose of this work was to study the AMH (nv 2.0–6.8 ng/mL) as a marker during assisted reproductive technology (ART), in order to identify cases of infertility due to polycystic ovarian syndrome (PCOS). This syndrome affects 10% of women with infertility problems, and a new biological marker could be useful to general practitioners of internal medicine to help generate the suspicion of PCOS so that they can refer the patient to the gynecologist for confirmation.

Methods: This study enrolled 236 patients aged 26–46 years undergoing assisted reproductive technology at the Institute for Maternal and Child Health, Trieste, Italy. On the third day of the ovarian cycle, the patients were given doses of AMH, FSH, and luteinizing hormone (LH, in cases of AMH ≥ 2.0–6.8 ng/mL). A control pelvic ultrasound was also carried out.

Results: We identified 57 patients who were starting in vitro fertilization or embryo transfer with AMH values within the normal range (3.64 ± 1.52 ng/mL), 77 with values below normal (1.38 ± 0.32 ng/mL), and 96 cases with undetectable values of AMH. Six patients had very high AMH levels (10.0 ± 2.28 ng/mL) and, of these, five were found to have PCOS on pelvic ultrasound examination (p < 0.05). We also found inverse correlations between AMH levels and age (r = −0.52) and between AMH and FSH levels (r = −0.32).

Conclusion: In clinical practice it is common to encounter patients who turn to medicine in search of a cure for female infertility. In our experience, AMH two or three times the normal amount (10 ± 2.28 ng/mL), is a good indication of PCOS and infertility.

Keywords: anti-Müllerian hormone, serum level, follicle development, polycystic ovarian syndrome, predictive marker

Introduction

Anti-Müllerian hormone (AMH), also known as Müller inhibiting factor or Müller inhibiting substance, is a glycoprotein formed from two identical subunits, each with a molecular weight of 72 kDa. The hormone is part of the growth factor family, which includes 35 different peptide structures, including inhibin, activin, growth differentiation factor, and bone morphogenic protein.¹ Up until a few years ago, AMH was known mainly for its role in the differentiation of male sexual characteristics.²,³

AMH is not secreted in the female embryo, allowing development of the female sexual organs, starting from the Müller ducts which do not regress, although they differ in the uterus, fallopian tube, and upper part of the vagina. Expression of the hormone
in women is different at various stages of life, and starts to
be detected at week 36 of gestation. Its concentration reaches
a maximum during puberty, begins to decrease in adulthood,
and disappears completely following the menopause. AMH,
produced from the granulosa cells of the primary follicles,
reaches maximum expression in the preantral follicles, with
lesser secretion by the greater antral follicles. At this point,
growth starts to become dependent on follicle-stimulating
hormone (FSH). The data suggest that AMH is a factor in
regulation during the initial recruitment and cyclical recruit-
ment phases leading to selection of the dominant follicle, and
that it has a potential autocrine and paracrine role in follicular
development in the female ovaries.

After a period of optimal fertility at age 18–30 years,
oocyte quality diminishes in parallel with a progressive loss
of follicles. In women with normal ovulation, serum levels
of AMH slowly increase, reaching a peak during puberty
and then progressively diminishing with the passage of
time. Their lessening is detected by markers of ovarian age.
Moreover, recent studies have shown that AMH is correlated
with the number of small antral follicles. This observation
supports the hypothesis that serum levels of AMH can reflect
the state of the ovarian follicles better (given its relative sta-
bility during the entire cycle) than the more usual hormonal
markers (FSH, luteinizing hormone [LH], estradiol, and
inhibin B), and demonstrates how AMH can be a favorable
candidate as a marker of the ovarian reservoir.4–6

Infertility and polycystic ovary syndrome. Meaning
of anti-Müllerian hormone
Reproductive behavior has changed dramatically in the last
century, and it is important to be able to identify loss of
fertility in a woman as early as possible. More and more
women are now delaying pregnancy to a more advanced age,
when the quality and amount of ovarian follicles begins to
decrease. The first sign of aging is increased levels of FSH
at the age of 35–40 years, when the menstrual periods tend
to shorten. Therefore, determining ovarian age is important
for patients in whom treatment with in vitro fertilization is
proposed, keeping in mind that the probability of pregnancy
and subsequent birth of a child gradually diminishes from
the age of 37–38 years onwards.

From this point of view, AMH has been identified and
proposed for evaluation of responses in patients undergoing
assisted reproductive technology. It is now a potential
candidate for inclusion in the clinical report, in order to be
able to construct a strategy which is targeted and personalized
to the characteristics of the patient, and able to increase the
benefits of treatment from the physiological, psychological,
and economic points of view.7–9

Numerous studies have advocated the use of AMH in
assisted reproductive technology as a noninvasive test in
order to estimate the antral follicle count.10,11

AMH is now proposed as a hormonal test in the study
of feminine infertility and in the diagnosis of PCOS. The
diagnosis depends on two of the following criteria: clinical
and/or biochemical evidence of hyperandrogenism (with
exclusion of other causes of excess androgen), oligo or
anovulation, and polycystic ovaries (European Society of
Human Reproduction and American Society for Reproductive
Medicine, Consensus Conference, Rotterdam, 2003).12,13 Such
data lead us to conclude that inclusion of serum AMH levels
in routine tests for patients undergoing assisted reproductive
technology is useful, both quantitatively and qualitatively,
not only in the study of patient responses to clinical treatment
for infertility, but also in clinical assessment.14–20

Use of anti-Müllerian hormone
Numerous tests and markers are used in order to identify
pathologies involving the ovaries. Amongst these are
exclusion serum markers of other endocrinopathies (prolactin,
thyroid stimulating hormone, 17-hydroxyprogesterone),
confirmation of serum markers of ovarian pathology
(FSH, LH, estradiol, inhibin B), invasive scan markers
(transvaginal or laparoscopic ultrasound for antral follicle
count) and, over the last few years, AMH levels. There
are also other confirmation and monitoring serum tests for
PCOS (androstenedione, testosterone, free testosterone,
dehydroepiandrosterone). This diagnosis will not only
render possible a targeted and personalized therapy in order
to achieve a greater probability of a positive outcome of
treatment, but will also avoid potential harmful effects
of treatment, that could eventually preclude assisted
reproduction altogether.

Aim
In this study, we evaluated the value of serum analysis of
AMH as a diagnostic test in patients undergoing assisted
fertility, in order to diagnose PCOS prior to treatment.
The purpose was to identify a cost-effective, noninvasive
clinical method for assessing ovarian pathology, which
would also reduce psychological stress for the patient. AMH
can be measured on any day of the cycle, because there are
no fluctuations and it has low cyclical interindividual or
intraindividual variability.
Materials and methods

The study was carried out on 236 serum samples taken from women aged 26–46 years and scheduled for exogenous gonadotrophin treatment for infertility at the Institute for Maternal and Child Health, Burlo Garofolo, Trieste, between September 2010 and June 2011. All patients signed an informed consent form before entering the study, which was approved by the ethics committee at our institution.

The serum samples were centrifuged to separate the cellular component. The sample centrifugation for 5’, as described in the manufacturer’s instructions, was done to remove residual fibrin and cellular matter, prior to storage. Lipemic or hemolyzed samples have been eliminated. The serum was stored at 2°C–8°C for up to 24 hours and was then frozen at −20°C. The confidence limits for AMH controls were printed on the control vial labels and intra- and inter-test precision was within two standard deviations (±2 SD).

Measurement of AMH levels was carried out on the third day of the ovarian cycle using an enzyme-linked immunosorbent assay (Beckman Coulter, Immunotech, DSL Diagnostic System Laboratories, Marseille, France). This quantitative, specific, and sensitive technique allows measurement of small amounts of molecules present in biological samples. Moreover, it is possible to analyze a high number of samples in a short space of time, as a result of being able to use microplates. It is based on a colorimetric system, with the intensity of color being directly proportional to the concentration of the antigen, which is measured by spectrophotometry.

The field of measurement comprises concentration of the analyte sensitivity to the concentration of the highest calibrator standard, from 0.14 ng/mL to 21 ng/mL. The precision is given by an intratest and an intertest, with respective variation coefficients of 12.3% and 14.2%, respectively. The instrument used for analysis in the enzyme-linked immunosorbent assay was a semiautomatic spectrophotometer (Pantech, New York, NY). The enzyme-linked immunosorbent assay used was a typical sandwich test, the peculiarity of which concerns a second biotinylated monoclonal antibody directed against the antigen and conjugated with the enzyme streptavidin and horseradish peroxidase. Streptavidin is a purified tetrameric protein of bacterial origin (*Streptomyces avidinii*).

To estimate the AMH concentration in the study samples, a calibration curve for interpolation was constructed, using standard AMH samples with

AMH nv	Normal responders	Poor responders	No responders	PCOS
2.0–6.8 ng/mL	meana	meanb	meanc	dend
Values ng/mL	3.64	1.38	0.4	10.0
Years	35	36.9	37.5	31
Patient number	57	77	96	6
Pelvic ultrasound	Normal	Normal	Normal	Pathological

Notes: *Normal responders: patients with ovarian reserve and possibilities of pregnancy by ART; poor responders: patients with reduction of ovary reserve and difficult therapeutic response; no response: patients to send to IVF or FIVET; patients with PCOS.*

Abbreviations: ART, assisted reproductive technology; IVF, in vitro fertilization; FIVET, in vitro embryo transfer; nv, normal value; PCOS, polycystic ovary syndrome.

Table 2 IRCCS Burlo Garofolo normal values vs others AA

Authors	Manufacturers	Normal values (ng/mL)	Patient age (years)	N	PCOS values (ng/mL)	Patient age (years)	N
de Vet[^1]	IC	1.3	32 ± 4	41	–	–	–
Pigny[^2]	BC	2.91	27	45	6.59	28	59
Franchin[^3]	BC	1.39	34	75	–	–	–
Eldar-Geva[^4]	IC	1.6	30.7	23	4.2	29.8	29
La Marca[^5]	BC	3.8 ± 1.2	21	12	–	–	–
Tsepelidis[^6]	DSL	2.4	26.5	20	–	–	–
Wachs[^7]	DSL	2.13 ± 0.4	26.5	11	7.22 ± 0.5	26.5	16
Das[^8]	DSL	1.13	32	8	8.5	28	11
Nardo[^9]	DSL	2.4 ± 1.7	<40	128	5.9 ± 2.3	<40	37
Dorgan[^10]	DSL	3.5 ± 4.08	36.5	20	–	–	–
Arabzadeh[^11]	IC	3.2	33	42	14.2	29	26
Falbo[^12]	BC	1.56 ± 1.02	28.17	10	3.92 ± 1.62	27.83	20
Parco[^13]	BC	1.22	36.4	86	10.0	31.05	5

Abbreviations: BC, Beckman Coulter; IC, Immunotech Coulter; DSL, Diagnostic System Laboratory.
diverse absorbance concentrations (Pasquinelli and Porta, 1994), according to instructions supplied in the analysis kit. FSH levels for all the patients was measured, as well as LH (only in six patients with very elevated AMH levels) using an automated colorimetric method (Modular P, Elecsys). All patients underwent a baseline pelvic ultrasound.

Results and discussion
In this study, we analyzed 236 serum samples from patients aged 26–46 years who had been referred to our institution for medically assisted fertility in September 2010 to June 2011. We identified 57 patients who were starting in vitro fertilization or embryo transfer with AMH values within the normal range (3.64 ± 1.51 ng/mL), 77 with values below normal (1.38 ± 0.32 ng/mL), and 96 cases with undetectable values of AMH. Six patients had very high AMH levels (10.0 ± 2.28 ng/mL) and, of these, five were found to have PCOS on pelvic ultrasound examination (*P*, 0.05; Table 1).

We also compared our values with those reported in the literature. The published studies have reported the average values for patients who were part of control groups or had PCOS. Comparing the values that we obtained with those of other laboratories, it can be seen that the average values of controls are lower than those in patients with PCOS, confirming the validity of the test as an indicator of this syndrome (Table 2).

Moreover, numerous studies have identified an inverse correlation between AMH levels, FSH levels, and patient age. Therefore, we attempted to confirm these correlations in our group of patients and FSH levels were also measured in serum samples, showing an average value of 8.53 mIU/mL (follicular phase normal range 3.5–12.5 mIU/mL) (Figures 1–3).

The cost-effective dosage of AMH is similar to that of other hormones, such as FSH and LH.

Conclusion
Many studies published in recent years have demonstrated that the concentration of AMH is 3–4 times higher in patients affected by PCOS than in patients without the disease. There are two hypotheses to explain this finding. One is that the follicles are transformed into cysts when they are at the preantral or antral stage, and remain at this stage and continue to secrete the hormone, and the other is that granulosa cells secrete a greater concentration of AMH, detectable at the follicular level.

In our case histories, the changes in reproductive state and AMH levels are confirmed by levels of FSH and LH. This inverse correlation has been found in many studies in the literature, and is confirmed by the present study.21–25 Our data emphasize that AMH can be used to identify PCOS and is a reliable marker of infertility associated with patient age and other hormonal tests, such as FSH, because it is influenced by the menstrual cycle, or identification by means of invasive tests such as transvaginal or laparoscopic ultrasound for follicular count and residual ovarian capacity.

In conclusion, AMH is confirmed as a useful test to study folliculogenesis and ovarian potential in various situations of infertility and for identification of PCOS, to avoid the possibility of subjecting patients at risk to ineffective assisted reproductive technology, and using in vitro fertilization or in vitro embryo transfer only after careful clinical assessment.26–35

Disclosure
The authors report no conflicts of interest in this work.
References

1. Knight PG, Glistér C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206.

2. Durlinger A, Gruijters M, Kramer P, et al. Anti-müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–1084.

3. Molina P. Endocrine Physiology. 3rd edition. McGraw-Hill Medical Companies: New York; 2010:215–253.

4. Broekmans FJ, Visser JA, Laven JS, Broer SL, Themmen AP, Fauser BC. Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol Metab. 2008;19:340–347.

5. Winkler N, Bakulmez O, Hardy DB, Carr BR. Gonadotropin releasing hormone antagonists suppress aromatase and anti-Müllerian hormone expression in human granulosa cells. Fertil Steril. 2010;94:1832–1839.

6. La Marca A, Volpe A. Anti-müllerian hormone (AMH) in female reproduction: is measurement of circulating AMH a useful tool? Clin Endocrinol (Oxf). 2006;64:603–610.

7. La Marca A, Sighinolfi G, Radi D, et al. Anti-Müllerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update. 2010;16:113–130.

8. La Marca A, Giuliani S, Tirelli A, et al. Anti-müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum Reprod. 2007;22:766–771.

9. Broer SL, Mol BW, Hendriks D, Broekmans FJ. The role of antimüllerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91:705–714.

10. Teixeira J, Maheswaran S, Donahoe PK. Müllerian inhibiting substance: a new predictor of in vitro fertilization cycles. Fertil Steril. 2008;91:1553–1555.

11. Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol Metab. 2008;19:340–347.

12. Arabzadeh S, Hossein G, Rashidi BH, Hosseini MA, Zeraati H. Comparing serum basal and follicular fluid levels of anti-Müllerian hormone as a predictor of in vitro fertilization outcomes in patients with and without polycystic ovary syndrome. Ann Saudi Med. 2010;30:442–447.

13. Alemzadeh R, Kansra AR. New adolescent polycystic ovary syndrome. Minerva Pediatr. 2011;63:35–47.

14. Nardo LG, Gelbaya TA, Wilkinson H, et al. Circulating basal anti-Müllerian hormone levels as predictor of ovarian response in women undergoing ovulation stimulation for in vitro fertilization. Fertil Steril. 2009;92:1586–1593.

15. Jee BC, Ku SY, Suh CS, Kim KC, Lee WD, Kim SH; the Seoul National University College of Medicine Assisted Reproductive Technology (SMART) Study Group. Serum Anti-Müllerian hormone and Inhibin B at ovulation triggering day can predict the number of immature oocytes retrieved in Vitro Fertilization Cycles. J Korean Med Sci. 2008;23:657–661.

16. Gleicher N, Weghofer A, Barad DH. Discordances between follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH) in female infertility. Reprod Biol Endocrinol. 2010;8:64.

17. Arbabzadeh S, Hossein G, Rashidi BH, Hosseini MA, Zeraati H. Comparing serum basal and follicular fluid levels of anti-Müllerian hormone as a predictor of in vitro fertilization outcomes in patients with and without polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:2122–2126.

18. Barad DH, Weghofer A, Gleicher N. Comparing anti-Müllerian hormone (AMH) and follicle-stimulating hormone (FSH) as predictors of ovarian function. Fertil Steril. 2009;91:1553–1555.

19. Nelson SM, Yate RW, Lyall H, et al. Anti-Müllerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum Reprod. 2009;24:867–875.

20. Shahya R, Chang RJ. Reproductive endocrinology of adolescent polycystic ovary syndrome. BJOG. 2010;117:150–155.

21. Van Rooij JA, Broekmans FJ, Scheffer GI, et al. Serum antimüllerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility. A longitudinal study. Fertil Steril. 2005;83:979–987.

22. Piggy P, Jonard S, Robert Y, Dewailly D. Serum anti-müllerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:941–945.

23. Eldar-Geva T, Margalioth E, Gal M, et al. Serum anti-müllerian hormone levels during controlled ovarian hyperstimulation in women with polycystic ovaries with and without hyperandrogenism. Hum Reprod. 2005;20:1814–1819.

24. Wachs DS, Coffler MS, Malcom PJ, Chang RJ. Serum anti-müllerian hormone concentrations are not altered by acute administration of follicle stimulating hormone in polycystic ovary syndrome and normal women. J Clin Endocrinol Metab. 2007;92:1871–1874.

25. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod. 2002;8:141–152.

26. Tehrani FR, Solaymani-Dodaran M, Hedayi M, Azizi F. Is polycystic ovary syndrome an exception for reproductive ageing? Hum Reprod. 2010;25:1775–1781.

27. Weenen C, Laven JS, Von Bergh AR, et al. Anti-müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

28. Visser JA, de Jong FH, Laven JS, Themmen AP, Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9.

29. van Deldendorp J, Faddy MJ, Themmen AP, et al. Relationship of serum antimüllerian hormone concentration to age at menopause. J Clin Endocrinol Metab. 2008;93:2122–2124.

30. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77:357–362.

31. Fanchin R, Schönäuer LM, Riglini C, Guibourdenche J, Frydman R, Taieb J. Serum anti-Müllerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod. 2003;18:323–327.

32. Das M, Gillott DJ, Saridogan E, Djanhankaikh O. Anti-Müllerian hormone is increased in follicular fluid from unstimulated ovaries in women with polycystic ovary syndrome. Hum Reprod. 2008;23:2122–2126.

33. Dorgan JF, Spittle CS, Egeston BL, Shaw CM, Kalhe LL, Brinton LA. Assay reproducibility and within-person variation of Müllerian inhibiting substance. Fertil Steril. 2010;94:301–304.

34. Falbo A, Rocca M, Russo T, et al. Serum and follicular anti-Müllerian hormone levels in women with polycystic ovary syndrome (PCOS) under metformin. J Ovarian Res. 2010;3:16.

35. Parco S, Novelli C, Princi T. Serum anti-Müllerian hormone and polycystic ovary syndrome. A matter of methods? Minerva Pediatr. 2011. In press.