A Review on Augmentation in Thermal Performance of Solar Air Heater

Naveen Kumar Guptaa, Karmveera, Tabish Alam

Department of Mechanical Engineering, GLA University Mathura, Uttar Pradesh.

CSIR-CBRI Roorkee, Uttarakhand.

Corresponding author email address: naveen.gupta@glau.ac.in

Abstract. Low thermal efficiency is the remarkable drawback of solar air heaters. They have remarkable importance for low temperature applications. In a solar air heater due to formation of laminar sublayer between absorber plate and the flowing air convection coefficient of heat transfer is small. The laminar sublayer form on the absorber plate can be braked by applying the rib roughness of distinct shape and sizes due to which turbulence in the flowing air increases tremendously due to which friction factor increases between absorber plate and flowing air, resulting in increment in the convection coefficient of heat transfer and pressure drop. Design considerations of solar air heater, rib roughness geometries, fluid flow conditions and their effect on the turbulence, absorber plate temperature, convection coefficient of heat transfer and other thermo-hydraulic augmentation parameters have been minutely discussed. In this review, ongoing research and development on thermo-physical properties of solar air heater and effect of distinct roughness’s over absorber plate on heat transfer augmentation is summarized and to provide viewpoint for future research and development.

Keywords: Thermal properties, Solar air heater, Rib, Nusselt number, Absorber plate, Friction factor, Augmentation.

1. Introduction

Solar air heaters are widely used in space heating and ventilation, herbal medicines, timber seasoning, leather drying, crop drying, food packaging, clothing and in other industrial and household applications. The classification of solar air heater is shown in fig.1. The thermal performance of a solar air heater is
small due to formation of laminar sublayer between absorber plate and the flowing air the convection coefficient of heat transfer is small due to which heat losses to the surrounding environment is higher that finally leads to low thermal efficiency. The laminar sublayer form on the absorber plate can be braked by using the rib roughness of distinct shapes and sizes because of that the turbulence in the flowing air increases tremendously due to which friction factor between absorber plate and flowing air increases, resulting in increment in the convection coefficient of heat transfer and pressure drop. A conventional solar air heater is shown in fig. 2. They have remarkable importance for low temperature applications. The rate of heat transfer can be augmented by using roughness of distinct shapes and sizes on the absorber plate. The thermal performance of solar air heaters can be enhanced by increasing the convection coefficient of heat transfer in between the absorber plate and working fluid. [34-38] The performance can also be enhanced with the application of nanofluids.

Nomenclature

- e/D- Relative roughness height.
- P/e- Relative roughness pitch.
- r/e- Relative staggered rib size
- d/x- Relative gap position
2. Methodology and Experimental Investigations

The rib-roughened duct with distinct roughness along the direction of flow of working fluid has been suggested for augment the heat transfer in numerous engineering devices such as heat exchangers, nuclear reactors, combustors and electronic devices etc. [1, 4] studied that the heat transfer surface roughened by oblique ribs is the best augmented technique. The rate of heat transfer greatly augmented due to roughness on the absorber plate at same Reynolds number. [2] Experimentally and theoretically studied heat transfer and flow-friction performance of solar air heater by applying delta shaped roughness (fig.3) at an aspect ratio of 6:1 for Reynolds number ranges from 2100 to 30000.

Fig. 2. Conventional Solar air Heater [6, 7]

Fig. 3. Delta shape roughness over absorber plate [2].

The performance of air duct affect strongly by the longitudinal pitch of roughness and the duct shows maximum performance at longitudinal pitch of 3/2. [3] Numerically investigated the effect of equilateral triangular sectioned rib roughness over the absorber plate for Reynolds number 3800 to 18000. They show that the performance of solar air heater strongly depends on the Reynolds number.
and roughness height and width. The Nusselt number is enhanced by 3.073 times at a Reynolds number of 15000 for

\[\text{Fig. 4. Increment in Nusselt number and friction factor [12].} \]

\(\frac{P}{e} \) and \(\frac{e}{D} \) of 7.14 and 0.042 respectively. The effect of roughness pith ratio and relative roughness height on the flow pattern is shown in fig.5 and fig.6 respectively. and [9, 10, 32, 33] The heat transfer coefficients increase definitely by increasing friction in the flow with the help of roughness. [11] The performance of collector has been increased by using roughness on every side of the absorbing plate and have maximum value at \(\frac{r}{e}=2.5 \). [12] Experimentally and theoretically studied the performance of three side roughened solar air heater and surface in double pass solar air heater. Nusselt number
Fig. 5. Flow pattern for different roughness pitch ratio (P/e) [8].

Fig. 6 Impact of relative roughness height effect on flow pattern [8].

and frictional losses both has better performance for Reynolds number between 5000 to 13000. The increment in heat transfer factor lies between 0.378 to 0.487. the variation in Nusselt number and friction factor with respect to Reynolds number is shown in fig.4. [13] They studied comparative analysis of heat transfer dispersal over absorber plate by applying computational method and liquid crystal thermography for circular rib turbulators. The flow pattern has excellent result at P/e = 10 for circular rib turbulators. The Nusselt number is excessive by a factor of 1.97 as comparison to smooth surface. [14] Experimentally studied the thermo-hydraulic performance of solar air heater by applying multiple arc type rib turbulators on underside of absorber plate. The Nusselt number increases by 49% for value of d/x ranges from 0.3 to 0.6 and decreases by 18% for value of d/x ranges from 0.6 to 0.9. [15] Theoretically investigate that the thermal performance of solar air heater is augmented by 8 to 10% by applying arc type of rib roughness. [16] Experimentally investigate the effect of novel type rib roughness in the form of reverse NACA 0040 profile rib for thermal performance of solar air heater. The increment in Nusselt number and friction factor ranges from 97.56% to 193.12% and 54.90% to 64.71% respectively. The maximum value of Nusselt number is at Reynolds number of
18000. Experimentally investigate the thermal performance of a solar air heater by applying winglet type of rib roughness which has small hole on the tip just above the absorber plate. The Nusselt number is augmented by 2.85 and friction factor by 2.84 times respectively with respect to smooth absorber plate.

Table 1: Summary of different investigations

S.No	Investigators	Type of method	Geometry of roughness	Reynolds number	P/ε	Summary of investigation
1	Bekele et al. [2]	Experimental	Delta shaped	21000-30000	1.5-5.5	Performance of air duct affect strongly by the longitudinal pitch of roughness
2	Tanda [1]	Experimental	Angled ribs, transverse, V shaped ribs	9000-13000	-	Heat transfer from the heated surface greatly augmented due to roughness
3	Ravi and Saini [11]	Experimental	Multi V shaped	2000-20000	10	Thermal performance have maximum value at r/e=2.5.
4	Kumar and Layek [13]	Experimental	circular	8551-11149	10	Nusselt number is higher by a factor of 1.97 as comparison to smooth surface
	Authors [Ref]	Methodology	Geometry	Reynolds Number	Nusselt Number Increase	Observations
---	--------------	-------------	----------	----------------	------------------------	--------------
6	Behura et al. [12]	Experimental	-	4000-20000	10-30	Nusselt number and frictional losses has better performance for Reynolds number between 5000 to 13000
7	Kumar et al. [14]	Experimental	Arc shaped	11000-19000	-	Increment in Nusselt number by 49% for value of d/x ranges from 0.3 to 0.6 and decrement by 18% for value of d/x ranges from 0.6 to 0.9
8	Layek et al. [28]	Experimental	Chamfer rib	3000-21000	10	As the relative roughness height increases entropy generation decreases.
9	Saini and Saini [29]	Experimental	Arc shape rib	2000-17000	10	Nusselt number increased by 3.80 times.
10	Saini and Verma [30]	Experimental	Dimple-shape rib	2000-12000	10	Nusselt number have higher value for e/D = 0.0379
	Authors [Ref]	Type	Description	Range	Magnitude	
---	--------------	----------------	--------------------------------	--------	-----------	
11	Jaurker et al. [31]	Experimental	Rib groove	3000-21000	4.5-10	Rid-grove type of roughness arrangement has excellent thermal performance.
12	Layek et al. [17]	Experimental	Winglet type	3000-22000	5-12	Nusselt number augmented by 2.85 as compared to smoother absorber plate.
13	Prasad and Saini [20]	Experimental	Transverse rib	5000-50000	10	Due to increment in relative roughness height the heat transfer rate decreases.
14	Aharwal et al. [21]	Experimental	Inclined continuous ribs with gap	3000-18000	10	Nusselt number increased by 2.59 times as comparison to smooth absorber plate.
15	Sukhmeet et al. [22]	Experimental	Discrete V shape rib	3000-15000	8	Thermal performance is highest for $\alpha = 60^\circ$.
16	Patil et al. [23]	Experimental	Broken V-rib	3000-17000	10	Thermal performance is best for relative roughness gap position 0.6.
The Nusselt number increases with the increase in Reynold’s number and friction factor decreases as Reynolds number increases. [18] The thermo-hydraulic performance of a solar air heater studies by using cylindrical fins with the help of theoretical and computational method. The staggered arrangement of cylindrical fins has high heat transfer rate as comparison to linear arrangement.[19] Thermo-hydraulic performance of solar air heater has been studies numerically and experimentally by changing the baffle position for Reynolds number varies from 2370 to 8340. The net value of the Nusselt number and friction factor at Reynolds number 8340 are 40 and 0.005 respectively. [39-43] the performance can also be enhanced by using phase change materials.

Conclusion

This paper shows recent development in the field of thermo-physical performances of solar air heater. On the basis of literature review the following conclusions are summarized below:

1. The Nusselt number increases with the increase in Reynold’s number and friction factor decreases as Reynolds number increases.[12]
2. The staggered arrangement of roughness turbulators has high heat transfer rate as comparison to linear arrangement.
3. Delta winglet type of roughness increases heat transfer without to much increase in the friction factor.
4. The gap produced between the ribs show higher heat transfer coefficient as comparison to continuous rib.
5. Perforated rib roughness has greater thermal performance as comparison to solid roughness elements.
6. The performance can also be enhanced by using nano-embedded phase change materials. [44-47]

References
[1] Giovanni Tanda. 2011 Performance of solar air heater ducts with different types of ribs on the absorber plate. *Energy* 36 6651-6660.
[2] Adisu Bekele, Mani sh Mishra, Sushanta Dutta. 2014 Performance characteristics of solar air heater with surface mounted obstacles. *Energy Conversion and Management* xxx xxx–xxx [3] Anil Singh Yadav, J.L. Bhagoria. 2014 A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. *International Journal of Heat and Mass Transfer* 70 1016–1039. [4] Anil Singh Yadav, Manish Kumar Thapak. 2014 Artificially roughened solar air heater: Experimental investigations. *Renewable and Sustainable Energy Reviews* 36 370–411. [5] V.V. Tyagi, N.L. Panwar, N.A. Rahima, Richa Kothari. 2012 Review on solar air heating system with and without thermal energy storage system. *Renewable and Sustainable Energy Reviews* 16 2289–2303.
[6] Garg H P, Prakash J. 2000 Solar energy fundamentals and applications. 1st ed. New Delhi: TataMcGraw-Hill.
[7] Duffie J A, Beckman W A. 1980 Solar engineering of thermal processes. 2nd ed. New York: Wiley.
[8] S K Verma, B N Prasad. 2000 Investigation for the optimal thermo-hydraulic performance of artificially roughened solar air heaters. *Renewable Energy* 20 19-36.
[9] SanjayK.Sharma, VilasR.Kalamkar. 2015 Thermo-hydraulic performance analysis of solar air heaters having artificial roughness— A review. *Renewable and Sustainable Energy Reviews* 41 413–435.
[10] A. M. Lanjewar, J. L. Bhagoria, M. K. Agrawal. 2015 Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness. *Renewable and Sustainable Energy Reviews* 43 1214–1223.
[11] Ravi Kant Ravi, R.P. Saini. 2016 Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi-V shaped and staggered ribs. *Energy* 116 507-516.
[12] Arun Kumar Behura, Sachindra Kumar Rout, Himanshu Pandya, Ashwini Kumar. 2017 Thermal analysis of three sides artificially roughened solar air heaters. *Energy Procedia* 109 279 – 285.
[13] Amit Kumar, Apurba Layek. 2019 Nusselt number and fluid flow analysis of solar air heater having transverse circular rib roughness on absorber plate using LCT and computational technique. *Thermal Science and Engineering Progress* 14 100398.
[14] Rajneesh Kumar, Varun Goel, Paramvir Singh, Abhishek Saxena, Abhishek Singh Kashyap, Amit Rai. 2020 Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. *Journal of Energy Storage* 26 100978.
[15] Kapil Dev Yadav and Radha Krishna Prasad. 2020 Performance analysis of parallel flow flat plate solar air heater having arc shaped wire roughened absorber plate. *Renewable Energy Focus*, Volume 32, Number 00.
[16] Yogesh M. Patel, Sanjay V. Jain, Vikas J. Lakhera. 2020 Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs. *Applied Thermal Engineering* 170 114940.
[17] Amit Kumar, Apurba Layek.2020 Nusselt number and friction factor correlation of solar air heater having winglet type vortex generator over absorber plate. *Solar Energy* 205 334–348. [18] R. Gopi, P. Ponnusamy, A. Fantin Arokiaraj, A. Raji. Performance comparison of flat plate collectors in solar air heater by theoretical and computational method. Materials Today: *Proceedings* xxx (xxxx) x
[19] Charaf-Eddine Bensaci, Abdelhafid Moumni, Francisco J. Sanchez de la Flor, Enrique A. Rodriguez Jara, Alejandro Rincon-Casado, Alvaro Ruiz-Pardo. 2020 Numerical and
experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions. *Renewable Energy* 155 1231-1244.

[20] Prasad BN, Saini JS. 1988 Effect of artificial roughness on heat transfer and friction factor in a solar air heater. *Solar Energy* 41:555-60.

[21] Aharwal KR, Gandhi BK, Saini JS. 2008 Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. *Renewable Energy* 33:585-96.

[22] Sukhmeet S, Chandar S, Saini JS. 2012 Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater. *Appl Energy* 97:907-12.

[23] Patil AK, Saini JS, Kumar K. 2011 Effect of gap position in broken V-rib roughness combined with staggered rib on thermohydraulic performance of solar air heater. *Green* 1:329-38.

[24] Kumar A, Saini RP, Saini JS. 2012 Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi V-shaped rib with gap roughness on the heated plate. *Solar Energy* 86:1733-49.

[25] Kumar A, Saini RP, Saini JS. 2012 Heat transfer and friction factor of solar air heater having duct roughened artificially with discrete multiple V-ribs. *J Renew Sustain Energy* 4:033103. [26] Wang L, Sunden B. 2004 An experimental investigation of heat transfer and fluid flow in a rectangular duct with broken V-shaped ribs. *Exp Heat Transfer* 17:243-59.

[27] Tanda G. 2007 Heat transfer in rectangular channels with transverse and V-shaped broken ribs. *Int J Heat Mass Transfer* 47:229-43.

[28] Layek A, Saini JS, Solanki SC. 2007 Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. *Renewable Energy* 32:1967-80. [29] Saini SK, Saini RP. 2008 Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. *Solar Energy* 82:1118-30.

[30] Saini RP, Verma J. 2008 Heat transfer and friction factor correlations for a duct having dimple shape artificial roughness for solar air heaters. *Energy* 33:1277-87.

[31] Jaurker AR, Saini JS, Gandhi BK. 2006 Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. *Solar Energy* 80:895-907.

[32] Tabish Alam, R.P. Saini, J.S. Saini. 2014 Use of turbulators for heat transfer augmentation in an air duct - A review. *Renewable Energy* 62 689-715.

[33] Elumalai Vengadesan, Ramalingam Senthil. 2020 A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. *Renewable and Sustainable Energy Reviews* 134 110315.

[34] Gupta N.K., Tiwari A.K., Ghosh S.K. 2018 Experimental Investigation of Thermal Performance of Mesh Wick Heat Pipe, *Heat Transfer Research*, 49(18):1793–1811.

[35] Gupta N.K., Barua A, Tiwari A.K., Ghosh S.K. 2019 Numerical study of CeO2/H2O nanofluid application on thermal performance of heat pipe, *Materials Today Proceedings* 18, 1006-1016.

[36] Gupta N.K., Tiwari A.K., Ghosh S.K. 2018 Heat Transfer Mechanisms in Heat Pipes using Nanofluids-A review. *Experimental Thermal and Fluid Science*, 90 84–100.

[37] Gupta N.K., Mishra S. Tiwari A.K., Ghosh S.K. 2019 A review of thermo physical properties of nanofluids”, *Materials Today Proceedings* 18, 968-978.

[38] Gupta N.K., Tiwari A.K., Ghosh S.K. 2018 Experimental Study of Thermal Performance of Nanofluid-filled and Nanoparticles-coated Mesh Wick Heat Pipes. *Journal of Heat Transfer, (SCI), Transactions of ASME*, 140(10):102403-102403-7.

[39] Gupta N.K., Tiwari A.K., Verma S.K., Rathore P.K.S., Ghosh S.K. 2019 A ComparativevStudy of Thermal Performance of a Heat Pipe Heat Pipe Using Water and Nanofluid and Nanoparticles Coated Wick Heat Pipe Using Water”*. *Heat Transfer Research*, 50(18):1767–
[40] Gupta N.K., Sharma A, Rathore P.K.S., Verma S.K. 2020 Thermal performance optimization of Heat pipe using the nanofluid-Response surface methodology. *Journal of the Brazilian Society of Mechanical Sciences and Engineering* 42: 590-1-16.

[41] Gupta N.K., Verma S.K., Rathore P.K.S., Sharma A. 2020 Effects of CuO/H2O nanofluid application on thermal performance of mesh wick heat pip. *Heat Transfer Research* 51(9): 837–850.

[42] Rathore P.K.S, Shukla S.K., Gupta N.K. 2020 Yearly analysis of peak temperature, thermal amplitude, time lag and decrement factor of building envelope in tropical climate. *Journal of Building Engineering* 31 101459.

[43] Verma S. K., Gupta N. K., Rakshit D. 2020 A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion. *Solar Energy* 208 1114–1150.

[44] Rathore P.K.S, Shukla S.K., Gupta N.K. 2020 Potential of Microencapsulated PCM for Energy Savings in Buildings: A critical review” *Sustainable Cities and Society* 53 101884. [45] Parvej Alam, Naveen Kumar Gupta, Al Rabbul Nizam. 2020 Characterization of nanoparticles embedded phase change materials. *Materials Today Proceedings* xxxx-xxxx.

[46] Verma S K, Sharma K, Gupta N.K, Verma P, Upadhyay N. 2020 Performance Comparison of Innovative Spiral Shaped Solar Collector Design with Conventional Flat Plate Solar Collector. *Energy* 116853.

[47] Rathore P.K.S, Shukla S.K., Gupta N.K. 2020 Synthesis and characterization of the paraffin/expanded perlite loaded with graphene nanoparticles as a thermal energy storage material in buildings. *Journal of Solar Energy Engineering* 142 (4): 1-33.