Radhika Thanvi‡1, Thilina D Jayasinghe‡2, Sunayana Kapil†1, Babatunde Samuel Obadawo1, Donald R Ronning2*, and Steven J Sucheck1*

1Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
2Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
‡These authors contributed equally to these work
*Correspondence: don.ronning@unmc.edu; steve.sucheck@utoledo.edu
Table of Contents:

Table/Figure	Description
S2	Figure S1: 2D Ligand-receptor interaction diagram of GlgEI V279S with: a) **11**, b) **12**, c) **13**.
S3	Figure S2: The distance between Sco GlgEI V279S Glu 423 and compounds: a) **11**, b) **12**, c) **13**, in the Glide-docked models.
S4	Table S1: XP Docking score, XP Glide score and bond interactions of compounds **11**, **12** and **13** with the amino acid residues of GlgEI V279S.
S5	Table S2: Crystallographic Data Table of the Sco GlgE1-V279S/13 structure.

1H NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-([(benzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20)

13C NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-([(benzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20)

1H NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21)

13C NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21)

1H NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)

13C NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)

1H NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)

13C NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)

1H NMR 2-(3,5-difluorophenoxy)-6-(hydroxymethyl)-5-O-(2',3',4',6'-tetra-ol-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-3,4-diol (11)

13C NMR 2-(3,5-difluorophenoxy)-6-(hydroxymethyl)-5-O-(2',3',4',6'-tetra-ol-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-3,4-diol (11)

1H NMR 4-methylthiophenyl 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-β-D-glucopyranoside (15')

13C NMR 4-methylthiophenyl 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-β-D-glucopyranoside (15')
S22	1H NMR 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-α/β-D-glucopyranoside (16')
S23	13C NMR 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-α/β-D-glucopyranoside (16')
S24	1H NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enitol (17')
S25	13C NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enitol (17')
S26	1H NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enone (18')
S27	13C NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enone (18')
S28	1H NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluco-octa-1,7-dienitol (19A')
S29	13C NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluco-octa-1,7-dienitol (19A')
S30	1H NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-L-ido-octa-1,7-dienitol (19B')
S31	1H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (10')
S32	13C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (10')
S33	1H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20')
S34	13C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20')
S35	1H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21')
Compound	NMR Data
13C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol ($21'$)	S36
1H NMR 3,4-Di(4-bromobenzyloxy)-6-((4-bromobenzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-bromobenzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (23)	S37
13C NMR 3,4-Di(4-bromobenzyloxy)-6-((4-bromobenzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-bromobenzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (23)	S38
1H NMR 3,4-Di(4-(N-methyl, N-phenyl)benzyloxy)-6-((4-(N-methyl, N-phenyl)benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-(N-methyl, N-phenyl)benzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (25)	S39
13C NMR 3,4-Di(4-(N-methyl, N-phenyl)benzyloxy)-6-((4-(N-methyl, N-phenyl)benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-(N-methyl, N-phenyl)benzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (25)	S40
1H NMR 1-α-D-Glucopyranoside 4-(hydroxymethyl)-6- (4-(3,5 difluorophenoxy)) cyclohex-4-ene-2,3-triol (12)	S41
13C NMR 1-α-D-Glucopyranoside 4-(hydroxymethyl)-6- (4-(3,5 difluorophenoxy)) cyclohex-4-ene-2,3-triol (12)	S42
1H NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran ($26a$)	S43
13C NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran ($26a$)	S44
1H NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran ($26b$)	S45
13C NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran ($26b$)	S46
1H NMR (1S,4R,5S,6S)-5,6-bis(benzyloxy)-3-((benzyloxy)methyl)-N-cyclohexyl-4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-amine (27)	S47
Compound Description	NMR
---	----------------------
13C NMR (1S,4R,5S,6S)-5,6-bis(benzyloxy)-3-((benzyloxy)methyl)-N-cyclohexyl-4-	S48
(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-	
yl)oxy)cyclohex-2-en-1-amine (27)	
1H NMR (2S,3R,4S,5S,6R)-2-(((1R,4S,5S,6R)-4-(cyclohexylamino)-5,6-dihydroxy-2-	S49
(hydroxymethyl)cyclohex-2-en-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol	(13)
13C NMR (2S,3R,4S,5S,6R)-2-(((1R,4S,5S,6R)-4-(cyclohexylamino)-5,6-dihydroxy-2-	S50
(hydroxymethyl)cyclohex-2-en-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol	(13)

References S51
Figure S1: 2D Ligand-receptor interaction diagram of Sco G1gEI V279S with a) 11 b) 12 c) 13
Figure S2: The distance between Sco GlgEI V279S Glu 423 and compounds: a) 11, b) 12, c) 13, in the Glide-docked models.
Table S1: XP Docking score, XP Glide score and bond interactions of compounds 11, 12 and 13 with the amino acid residues of GlgEI V279S

Molecules	XP Docking Score	XP Glide Score	Amino acid residues	Bond interaction
11	-11.908	-11.908	GLN 324, LYS 534, TYR 535, LYS 264, ASP 359, SER 279, ASH 394, ASP 480, LYS 355	Hydrogen bond, Salt bridge
12	-11.375	-11.375	LYS 264, SER 279, ASP 359, TYR 535, LYS 534, ASH 394, ASP 480, LYS 355	Hydrogen bond, Hydrogen bond, Hydrogen bond, Hydrogen bond, Hydrogen bond, Hydrogen bond, Salt bridge
13	-12.363	-12.377	SER 279, ASP 359, LYS 264, LYS 534, TYR 535, ARG 392, ASP 480, GLN 324, GLU 423	Hydrogen bond, Salt bridge

Compound 13 showed H-bond interaction from the hydroxyl groups to Ser 279, Asp 359, Lys 264, Lys 534, Tyr 535, Arg 392, Asp 480, Gln 324 amino acid residues. Despite these interactions, the cyclohexyl ring itself did not show any interaction to the protein in the Glide-Docked model. However, modification of the cyclohexylamine moiety is expected for additional interactions with the protein. In a previous work published by our group, Glu 423 was seen to interact with the nitrogen at the anomeric position (Si et al., 2021). In this docking study, Compound 11 (4.49 Å) and 12 (4.45 Å) did not record any Glu 423 interaction with the pseudoanomeric oxygen. Compound 13 pseudoanomeric nitrogen was found to interact with Glu 423 at a distance of 3.17 Å among other bond interaction at the anomeric position (Figure S2). Owing to the crucial role of Glu 423 in the catalytic steps and stabilization of the complex, interaction of Glu 423 at the anomeric position could also help in the search for GlgE inhibitor with better activity.
Table S2: Crystallographic Data Table of the Sco GlgE1-V279S/13 structure

Data collection	
Wavelength (Å)	0.98
Space group	P 4 1 2 1 2
Unit cell dimensions	
a (Å)	112.438
b (Å)	112.438
c (Å)	310.411
α	90°
β	90°
γ	90°
Resolution (Å)	49.4 - 2.64
\(R_{\text{pim}} \)	0.112 (0.856)
\(R_{\text{merge}} \)	0.316 (2.483)
\(\text{CC}_{1/2} \)	0.997 (0.791)
\(I/I_{\sigma} \)	6.1 (0.69)
Completeness (%)	96.28 (99.91)

Refinement	
Total no. of reflections	5272398
No. of unique reflections	51907 (5263)
\(R_{\text{work}}/R_{\text{free}} \)	0.1926/0.2578
No. of atoms	
Protein	10348
Ligand/ion	72
Water	253
B-factors (Å²)	
Protein	57.79
Ligand/ion	70.03
Water	52.08
R.m.s deviations	
Bond length (Å)	0.009
Bond angels (°)	1.16
Ramachandran	
Favored (%)	97.45
Outliers (%)	0.00
1H NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-benzyl-\(\alpha\)-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20)
13C NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20)
1H NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzylxoy)methyl]-3-O-(2',3',4',6'-tetra-O-benzyl-\(\alpha\)-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21)
13C NMR (1,3,4/2)-1,2-Di-O-benzyl-4-C-[(benzylxoy)methyl]-3-O-(2',3',4',6'-tetra-O-benzyl-\(\alpha\)-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21)
1H NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)
13C NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-ol (22)
1H NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-(3,5-difluorophenoxy) (24)
\[^{13}\text{C}\] NMR 3,4-Di(benzyloxy)-6-((benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-benzyl-\(\alpha\)-D-glucopyranosyl)bicyclo[4.1.0]heptane-2-(3,5-difluorophenoxy) (24)
1H NMR 2-(3,5-difluorophenoxy)-6-(hydroxymethyl)-5-O-(2',3',4',6'-tetra-ol-\(\alpha\)-D-glucopyranosyl) bicyclo[4.1.0]heptane-3,4-diol (11)
13C NMR 2-(3,5-difluorophenoxy)-6-(hydroxymethyl)-5-O-(2',3',4',6'-tetra-ol-α-D-glucopyranosyl) bicyclo[4.1.0]heptane-3,4-diol (11)
\(^1\text{H NMR}\) 4-methylthiophenyl 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-
bromobenzyl)-\(\alpha\)-D-glucopyranosyl)-\(\beta\)-D-glucopyranoside (15')

15': \(R = \text{PBB}\)
13C NMR of 4-methylthiophenyl 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-β-D-glucopyranoside (15')

15': $R = \text{PBB}$
1H NMR 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-α/β-D-glucopyranoside (16')

16': $R = \text{PBB}$
13C NMR 2,3,6-Tri-O-(4-bromobenzyl)-4-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-α/β-D-glucopyranoside (16')

16' : $R = PBB$
1H NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-glucose-1-enitol (17')

$^{17'}: R = PBB$
13C NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-glucose-1-enitol (17')

17' : R = PBB
1H NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enone (18')

18' : R = PBB
13C NMR 3,4,7-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluchept-1-enone (18')

18’ : R = PBB
1H NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-gucopyranosyl)-D-gluco-octa-1,7-dienitol (19A')

19A': $R = \text{PBB}$
13C NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-D-gluco-octa-1,7-dienitol (19A')

19A': R = PBB
1H NMR 3,4,9-Tri-O-(4-bromobenzyl)-5-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)-L-ido-octa-1,7-dienitol (19B’)

![Diagram of the molecule](image)

19B’ : R = PBB
\(^1\)H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyl)oxy]methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-\(\alpha\)-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (10')

10': \(R = \text{PBB}\)
13C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl) cyclohex-5-ene-1,2,3,4-tetrol (10')

10' : $R = \text{PBB}$
1H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20')

20' : R = PBB
\(^{13}\)C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyloxy)methyl]-4-O-acetyl-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-\(\alpha\)-D-glucopyranosyl)cyclohex-5-ene-1,2,3,4-tetrol (20')

20' : R = PBB
1H NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzylxyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21')

![Structural formula of 21']

21': R = PBB
13C NMR (1,3,4/2)-1,2-Di-O-(4-bromobenzyl)-4-C-[(4-bromobenzyloxy)methyl]-3-O-(2',3',4',6'-tetra-O-(4-bromobenzyl)-α-D-glucopyranosyl)cyclohex-4-ene-1,2,3,6-tetrol (21')
^{1}H NMR 3,4-Di(4-bromobenzyloxy)-6-((4-bromobenzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-bromobenzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (23)
13C NMR 3,4-Di(4-bromobenzyloxy)-6-((4-bromobenzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-bromobenzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (23)
1H NMR 3,4-Di(4-(N-methyl, N-phenyl)benzyl-oxy)-6-((4-(N-methyl, N-phenyl)benzyl-oxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-(N-methyl,N-phenyl)benzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (25)

25 : R_1 = (4-N-methyl, N-phenylamino) benzyl, R_2 = 3,5-difluorophenyl
13C NMR
3,4-Di(4-(N-methyl, N-phenyl)benzyloxy)-6-((4-(N-methyl, N-phenyl)benzyloxy)methyl)-5-O-(2',3',4',6'-tetra-O-4-(N-methyl, N-phenyl)benzyl-α-D-glucopyranosyl)- 2-(3,5-difluorophenoxy) (25)

$\mathbf{25}: R_1 = (4-N\text{-methyl, } N\text{-phenylamino})$
$R_2 = 3,5\text{-difluorophenyl}$
1H NMR 1-α-D-Glucopyranoside 4-(hydroxymethyl)-6- (4-(3,5 difluorophenoxy)) cyclohex-4-ene-2,3-triol (12)
13C NMR 1-α-D-Glucopyranoside 4-(hydroxymethyl)-6- (4-(3,5 difluorophenoxy))
cyclohex-4-ene-2,3-triol (12)
1H NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran (26a)
13C NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran (26a)
1H NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran (26b)
13C NMR (2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((1R,5R,6S)-5,6-bis(benzyloxy)-2-((benzyloxy)methyl)-4-bromocyclohex-2-en-1-yl)oxy)tetrahydro-2H-pyran (26b)
\[^{1}\text{H}\text{ NMR}\] (1S,4R,5S,6S)-5,6-bis(benzyloxy)-3-((benzyloxy)methyl)-N-cyclohexyl-4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-amine (27)
\[^{13}C \text{NMR} \quad (1S,4R,5S,6S)-5,6-\text{bis(benzyloxy)}-3-((\text{benzyloxy})\text{methyl})-N-\text{cyclohexyl-}
\]
\[4-(((2S,3R,4S,5R,6R)-3,4,5-\text{tris(benzyloxy)}-6-((\text{benzyloxy})\text{methyl})\text{tetrahydro-2H-pyran-2-}
\]
\[\text{yl} \text{oxy})\text{cyclohex-2-en-1-amine (27)} \]
1H NMR
(2S,3R,4S,5S,6R)-2-(((1R,4S,5S,6R)-4-(cyclohexylamino)-5,6-dihydroxy-2-(hydroxymethyl)cyclohex-2-en-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (13)
13C NMR (2S,3R,4S,5S,6R)-2-(((1R,4S,5S,6R)-4-(cyclohexylamino)-5,6-dihydroxy-2-(hydroxymethyl)cyclohex-2-en-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (13)
References
Si, A., Jayasinghe, T.D., Thanvi, R., Ronning, D.R., and Sucheck, S.J. (2021). Stereoselective synthesis of a 4-α-glucoside of valienamine and its X-ray structure in complex with Streptomyces coelicolor GlgE1-V279S. *Sci Rep* e13413.