Dynamic behavior analysis of backup protection for HVDC transmission line

Kunlun Han*, Yu Dai and Haigen Song
School of Electrical Engineering, Guangxi University, Nanning, China

*Corresponding author e-mail:hkl1st@163.com

Abstract. The backup protection of HVDC transmission line consists of differential undervoltage protection and differential protection. In this paper, based on the actual parameters, the simulation model of differential undervoltage protection and differential protection for DC line is built. The response regularity of each criterion of the two protections under different fault conditions is studied. The basic functions of each criterion are defined, which provides an important basis for the setting calculation of DC line backup protection.

1. Introduction
DC line plays an important role in HVDC transmission system [1-4]. Differential undervoltage protection and differential protection are mainly used as backup protection for existing DC transmission lines, which cooperate with traveling wave protection (the main protection of DC line) to form a complete DC transmission line protection system, so as to further improve the reliability of DC line operation [5-7].

At present, the protection setting of traditional AC system has formed a relatively complete calculation method. Compared with it, it is difficult to study the dynamic transmission characteristics of DC line under fault condition by analytical method. Especially, as the backup protection of DC line, the change of electrical quantity is significantly affected by DC control, so the setting calculation of DC line backup protection has been lack of systematic and effective methods. The function of each criterion, the basis of parameter calculation and the factors affecting the performance of protection are not fully understood [8-11]. In order to ensure the reliability of DC line protection, it is necessary to analyze the dynamic behavior of DC line backup protection.

In this paper, PSCAD / EMTDC electromagnetic transient simulation model for differential undervoltage protection and differential protection of DC line is established. The dynamic behavior of each protection criterion in the two protections under different fault conditions is analyzed, and the function of each criterion is also studied. The research results of this paper not only help to understand the function of the two protections, but also provide the basis for the setting of the protection, which has important theoretical and practical value.

2. Protection range and related fault types of DC line backup protection
Differential undervoltage protection and differential protection are equipped on the rectifier side of the positive and the negative line in HVDC system, and the protection range is also the full length of the positive or the negative line.
Taking the DC line backup protection on the positive line as an example, and various faults and their distribution that need to be considered in the analysis of protection action behavior are shown in Figure 1:

![Figure 1. Fault distribution diagram](image)

Figure 1. Fault distribution diagram

See Table 1 for specific description of the fault:

Table 1. Fault type

Range	NO.	Fault description
Internal fault	d₁	Earth fault on the positive line
External fault	d₂	Earth fault on the negative line
External fault	d₃	Earth fault at the valve side of the smoothing reactor, rectifier side, positive line
External fault	d₄	Earth fault at the valve side of the smoothing reactor, inverter side, positive line
External fault	d₅	Three phase short circuit fault of AC bus at rectifier side
External fault	d₆	Three phase short circuit fault of AC bus at inverter side

The parameters of the actual HVDC system used in the study are as follows: the rated voltage is 500kV, the rated current is 1.8kA, the bipolar rated transmission power is 1800MW, and the length of the DC transmission line is 960km.

3. DC line backup protections and the dynamic behavior analysis

3.1. DC line differential undervoltage protection and its dynamic behavior analysis

3.1.1. Operation equation of differential undervoltage protection. The operation equation of DC line differential undervoltage protection is

\[
\begin{align*}
\left\{ \frac{du}{dt} &> k₁ \\
|μ_{al}| &< k₂
\end{align*}
\]

(1)

It can be seen from formula (1) that the protection mainly consists of two criteria: one is the voltage change rate du/dt, and the other is the low voltage criterion (the absolute value of the DC line voltage). The criterion du/dt is the same as that in the traveling wave protection, such as the principle, calculation method and setting value, etc., which can be seen in reference [12]. In addition, as a backup protection, the differential undervoltage protection also has protection delay.
After the differential undervoltage protection acts, DC line fault recovery sequence (DFRs) will be started. If the number of recovery exceeds the preset number, the pole will be locked [4].

3.1.2. Dynamic behavior of $\frac{du}{dt}$. In the differential undervoltage protection, the voltage change rate $\frac{du}{dt}$ is the same as that in traveling wave protection of DC line. Therefore, the analysis of its action behavior can refer to the published literature [12], and only the relevant conclusions are given in this paper: the response of $\frac{du}{dt}$ to the faults at d_1 and d_2 is significantly greater than that to the faults at d_3, d_4, d_5 and d_6.

3.1.3. Dynamic behavior of $|u_{dl}|$. The dynamic response of $|u_{dl}|$ under different types of fault conditions is shown in Figure 2:

![Figure 2(a)](image1.png)
(a) Dynamic behavior of $|u_{dl}|$ for positive and negative line fault

![Figure 2(b)](image2.png)
(b) Dynamic behavior of $|u_{dl}|$ for other external faults

Figure 2. Response of $|u_{dl}|$ with different faults

Figure 2(a) shows the response of $|u_{dl}|$ when there is a fault occurs at the positive line (d_1) and the negative line (d_2) respectively. When a fault occurs on the positive line, $|u_{dl}|$ of the positive line drops sharply and maintain at a very low voltage level. At the beginning of the fault, the voltage fluctuation is greater, but in the following period, the voltage fluctuation is smaller. When the negative line fails, $|u_{dl}|$ of the positive line also fluctuates, but compared with the drop of it when the positive line fails, it has a smaller drop, and the voltage can gradually return to the normal level under control system. Compare the two curves in Figure 2(a), the Change trend of $|u_{dl}|$ is quite different when fault occurs at d_1 and d_2.

3
Figure 2(b) shows the response of \(|\mu_{dl}| \) on the positive line when fault occurs at d3 to d6. Compared with Figure 2(a), the dynamic response of \(|\mu_{dl}| \) is very close to the dynamic response of it when fault occurs at d2.

3.1.4. Function analysis of differential undervoltage protection. The voltage change rate \(\frac{du}{dt} \) can distinguish the faults at d1 and d2 from those at d3 to d6 reliably. Therefore, the main function of the voltage change rate \(\frac{du}{dt} \) is to determine whether the fault occurs on the transmission line [12].

The low voltage criterion \(\mu_{dl} \) can distinguish the fault at d1 from that at d2. Therefore, the main function of the low voltage criterion \(\mu_{dl} \) is to determine whether the fault occurs on the positive line or the negative line, that is, it has the function of fault line selection.

3.2. DC line differential protection and its dynamic behavior analysis

The DC line differential protection is mainly used to detect the high resistance ground fault. The operation equation of the DC line differential protection is

\[
|\int_{i_{dl}} - i_{dl_{os}}| > k
\]

(2)

Where \(i_{dl} \) and \(i_{dl_{os}} \) are the current measured at the rectifier side and the converter side respectively. At the same time, as the backup protection of DC line traveling wave protection and differential undervoltage protection, the DC line differential protection has protection delay to cooperate with other protections.

The dynamic response of \(|\int_{i_{dl}} - i_{dl_{os}}| \) when high resistance ground fault occurs at different position is shown in Figure 3:

![Graph showing the dynamic response of \(|\int_{i_{dl}} - i_{dl_{os}}| \) for positive and negative line fault](attachment:graph1.png)

(a) Dynamic behavior of \(|\int_{i_{dl}} - i_{dl_{os}}| \) for positive and negative line fault

![Graph showing the dynamic response of \(|\int_{i_{dl}} - i_{dl_{os}}| \) for other external faults](attachment:graph2.png)

(b) Dynamic behavior of \(|\int_{i_{dl}} - i_{dl_{os}}| \) for other external faults

Figure 3. Response of \(|\int_{i_{dl}} - i_{dl_{os}}| \) with different faults
It can be seen from Figure 3(a) that when the positive line has a ground fault, \(\left| \frac{d}{dt} i_{di} - i_{di,os} \right| \) maintains at a certain level after a period of fluctuation, while when the negative line has a fault, the value of it is always small.

Figure 3(b) shows the dynamic response of \(\left| \frac{d}{dt} i_{di} - i_{di,os} \right| \) when fault occurs at d3 to d6. And it can be seen that the dynamic response of \(\left| \frac{d}{dt} i_{di} - i_{di,os} \right| \) is very close to that when fault occurs at d2.

Therefore, criterion \(\left| \frac{d}{dt} i_{di} - i_{di,os} \right| \) can directly distinguish whether the fault occurs on the positive line or the negative line.

4. Conclusions
In the DC line differential undervoltage protection, the main function of the voltage change rate \(\frac{du}{dt} \) is to determine whether the fault occurs on the transmission line.

The main function of the low voltage criterion \(|u_{dl}| \) in the DC line differential undervoltage protection is to determine whether the fault occurs on the positive line or the negative line.

In the DC line differential protection, the criterion \(\left| \frac{d}{dt} i_{di} - i_{di,os} \right| \) can not only distinguish whether the fault occurs on the line, but also distinguish whether the fault occurs on the positive or the negative line.

5. Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (NO.51567003).

References
[1] Zhao Ding, Weiqiang Han. Summary of bipolar operation situation of Tian-Guang DC power transmission system [J]. Power System Technology, 2003, 27(9): 49-54.
[2] Naidoo D, Ijumba N M. HVDC line protection for the proposed future HVDC systems [C]/2004 International Conference on Power System Technology. Singapore: IEEE, 2004: 1327-1332.
[3] Dayong Ren. Analysis of bipole block events over the years of Tian-Guang HVDC project[J]. High Voltage Engineering, 2006, 32(9): 173-176.
[4] Haijun Wang, Pengfei Li, Nanchao Zeng, et al. Research on DC line fault recovery sequence of Guizhou-Guangdong HVDC project [J]. Power System Technology, 2006, 30(23): 32-35.
[5] Aimin Li, Cai Zexiang, Li Xiaohua, et al. Analysis of influence factors and improvement of traveling wave protections for HVDC line [J]. Automation of Electric Power Systems, 2010, 34(10): 76-80.
[6] Taoxi Zhu, Wu Peng. Research on high impedance earth fault of Tian-Guang HVDC transmission project [J]. Power System Protection and Control, 2009, 37(23): 137-140.
[7] Qing Tian. Analysis on the fault trip of bipolar DC line protection in Tianshengqiao-Guangzhou HVDC system [J]. Southern Power System Technology, 2011, 5(5): 26-29.
[8] Dengfeng Liu, Yinhong Li, Dongyuan Shi, et al. Study on setting preparative parameter of HVDC system protection [J]. Automation of Electric Power Systems, 2011, 35(5): 47-51.
[9] Qing Tian. Analysis on the fault trip of bipolar DC line protection in Tianshengqiao-Guangzhou HVDC system [J]. Southern Power System Technology, 2011, 5(5): 26-29.
[10] Xiangsheng Zhou, Rui Lin. Analysis of Relay Protection Action for HVDC Line and Testing Method [J]. High Voltage Engineering, 2006, 32(9): 33-37.
[11] Taoxi Zhu, Kaijian Ou. High-impedance Ground Faults of HVDC Transmission System [J]. Electric Power Construction, 2010, 31(4): 21-24
[12] Kunlun HAN, Zexiang CAI, Min XU, et al. Dynamic Characteristics of Characteristic Parameters of Traveling Wave Protection for HVDC Transmission Line and Their Setting [J]. Power System Technology, 2013, 37(1): 255-260.