Characteristics of Preapproval and Postapproval Studies of Vaccines Granted Accelerated Approval by the US Food and Drug Administration

INTRODUCTION
The US Food and Drug Administration (FDA) has thus far granted Emergency Use Authorization (EUA) to three vaccines for the prevention of coronavirus disease 2019 (COVID-19), authorizing use—contingent upon further evaluation—based on less evidence than required for traditional licensure.1,2 While these were FDA’s first uses of EUA for novel vaccines, the “accelerated approval” pathway has for decades permitted FDA to approve vaccines based on limited preapproval evidence, specifically surrogate measures (e.g., antibody levels) reasonably likely to predict clinical benefit, while requiring completion of postapproval trials to verify clinical benefit. To inform future regulatory decisions, including the EUA or accelerated approval of vaccines for COVID-19 and other diseases, we evaluated all novel vaccines granted accelerated approval, characterizing the evidence from preapproval and postapproval trials, including how often postapproval studies confirmed clinical benefit.

METHODS
Using FDA approval letters, we identified all novel vaccines granted accelerated approval from the pathway’s inception in 1992 through 2017, allowing 3 years minimum for completion of postapproval trials. Following previously described approaches,3,4 we identified pivotal efficacy trials (i.e., those serving as the basis of FDA approval) and extracted trial characteristics from FDA’s clinical reviews, as well as the total number of studies supporting approval and the prelicensure safety population. Next, we identified postapproval trials FDA required for accelerated approval, including ClinicalTrials.gov registrations and corresponding publications on PubMed, and extracted trial characteristics and determined study status.

For each preapproval and postapproval trial, we determined use of randomization, blinding, number of treated patients (overall and intervention group), completion rate, trial duration, duration of follow-up for serious adverse events (SAEs), type of comparator (active, placebo, or none), and primary endpoint (clinical outcome or surrogate measure). Lastly, we determined vaccine efficacy and assessed whether clinical benefit was confirmed. Fisher exact and Mann-Whitney U tests were conducted in R, version 3.4.0 (R Foundation for Statistical Computing) (2-sided P<0.05).

RESULTS
Between 1992 and 2017, FDA granted accelerated approval for 8 novel vaccines for seasonal influenza (n=5; 62.5%), meningococcus (n=2; 25.0%), and Haemophilus influenzae (n=1; 12.5%) based on a median of 9 (IQR, 7–19) total studies, including 1.5 (IQR, 1–3) pivotal efficacy trials and a total safety population of 4711 (IQR, 3718–10,968) participants. Overall, FDA required 15 postapproval trials, a median of 2 (IQR, 1–2.3) per vaccine. Within 3 and 6 years after approval, 13 (86.7%) and 14 (93.3%) of the postapproval trials were completed, respectively, while 1 (6.7%) remains delayed.

Most of the completed pivotal efficacy (n=18) and postapproval (n=14) trials were randomized (16/18 [88.9%] vs 14/14 [100%]; P=0.49) (Table 1). Compared with pivotal trials, postapproval trials were larger (median enrollment, 976 [IQR, 162–1689] vs 4586 [IQR, 2207–7406]; P<0.001), but there was no statistically significant difference in follow-up duration for SAEs (median days, 52 [IQR, 30–183] vs 183 [IQR, 180–183]; P=0.08) or in use of double-blinding (11/18 [61.1%] vs 13/14 [92.9%]; P=0.05). Postapproval trials were more likely to use clinical outcomes as primary endpoints (0/18 [0%] vs 7/14 [50.0%]; P=0.001); among these, median vaccine efficacy was 46.3% (IQR, 32.2–63.1%) and 3 (42.9%) confirmed benefit (Table 2).

DISCUSSION
Since 1992, FDA has granted 8 novel vaccines accelerated approval based on evidence from a median of 9 clinical studies, including 1–2 pivotal efficacy trials, while requiring 2 postapproval trials. Nearly 90% of FDA-required postapproval trials were completed within 3 years after approval, a higher rate than observed for drug approvals.5
Table 1 Preapproval and Postapproval Study Characteristics of Vaccines Receiving Accelerated Approval, 1992–2017

Study characteristics	Pivotal efficacy trials (n=18)	Postapproval trials (n=14)	P value
Overall enrollment, median (IQR)	976 (162–1689)	4586 (2207–7406)	<0.001
Intervention group enrollment, median (IQR)	741 (162–1219)	2828 (1310–3756)	0.002
Overall completion rate, median (IQR)	97.4 (90.5–99.2)	95.7* (90.5–97.9)	0.51
Duration of follow-up for SAEs, median (IQR), days	52 (30–183)	183 (180–183)	0.08
Randomized (%)	16† (88.9)	14 (100)	0.49
Double-blinded (%)	11 (61.1)	13 (92.9)	0.05
Comparator (%)	0.02		
Active	5 (27.8)	5 (35.7)	
Placebo	6 (33.3)	9 (64.3)	
None	7 (38.9)	0	
Primary endpoint (%)	0.001		
Clinical outcome	7 (50.0)	7 (50.0)	
Surrogate measure	14 (77.8)	7 (50.0)	
Safety	2 (11.1)	0	
Lot consistency	2 (11.1)	0	

IQR, interquartile range; SAE, serious adverse event
*Includes data from only 13 postapproval studies. The number of patients completing one of Flulaval’s postapproval studies could not be identified
†Includes 5 trials in which the vaccine was randomized to different doses, formulations, lots, or schedules

Table 2 Characteristics and Findings of 14 Completed Postapproval Trials of Vaccines Receiving Accelerated Approval, 1992–2017

Vaccine* (approval year; indication)	Design	Comparators	Overall enrollment, no. (intervention group)	Primary endpoint	Vaccine efficacy†	Confirmed clinical benefit† (FDA status‡)
Fluarix (2005; seasonal influenza)	Randomized, double-blind active-controlled trial	Group 1: Fluarix 1845 (923)	Antibody titer	–	–	(fulfilled)
	Randomized, double-blind placebo-controlled trial	Group 2: Fluzone 6203 (4137)	Culture-confirmed influenza	22.3% (95% CI: −49.1 to 58.5%)	No	(fulfilled)
	Randomized, double-blind placebo-controlled trial	Group 1: Fluarix 7652 (5103)	Culture-confirmed influenza	66.9% (95% CI: 51.9 to 77.4%)	Yes	(fulfilled)
	Randomized, double-blind active-controlled trial	Group 2: Fluarix 1225 (610)	Antibody titer	–	–	(fulfilled)
Flulaval (2006; seasonal influenza)	Randomized, double-blind placebo-controlled trial	Group 1: Flulaval 7611 (3783)	Culture-confirmed influenza	46.3% (97.5% CI: lower limit, 9.8%)	No	(fulfilled)
	Randomized, double-blind placebo-controlled trial	Group 2: placebo 5168 (2584)	Real-time-PCR confirmed influenza	59.3% (95% CI: 45.2 to 69.7%)	Yes	(fulfilled)
Afluria (2007; seasonal influenza)	Randomized, double-blind placebo-controlled trial	Group 1: Afluria 15,044 (10,033)	Laboratory-confirmed influenza	42.0% (95% CI: 22.9 to 52.0%)	No	(fulfilled)
	Randomized, single-blind active-controlled trial	Group 1: Afluria 1286 (631)	Antibody titer	–	–	(fulfilled)
Agriflu (2009; seasonal influenza)	Randomized, double-blind placebo-controlled trial	Group 1: Agriflu 11,404 (3676)	Culture-confirmed influenza	78.4% (97.5% CI: lower limit, 52.1%)	Yes	(fulfilled)
Hiberix (2009; Haemophilus influenzae)	Randomized, double-blind active-controlled trial	Group 1: Hiberix# 4003 (2963)	Antibody titer	–	–	(fulfilled)
Trumenba (2014; meningococcus)	Randomized, double-blind placebo-controlled trial	Group 1: Trumenba# 3590 (2693)	Complement mediated	–	–	(fulfilled)

(continued on next page)
However, only 3 of the 8 vaccines had benefit confirmed by a postapproval trial using clinical outcomes. Our study was limited to FDA-required postapproval trials; other studies may have confirmed vaccine benefit.

Given the ongoing pandemic, FDA’s consideration of EUA or accelerated approval for COVID-19 vaccines is clearly justified. Moreover, Pfizer-BioNTech’s, Janssen’s, and Moderna’s pivotal efficacy trials each enrolled over 30,000 participants, used a clinical outcome as a primary efficacy endpoint, and demonstrated efficacy of 95%, 66%, and 94% in preventing COVID-19, respectively. These trials provide substantially more robust evidence than the studies used to support accelerated approval of vaccines by FDA, which had far smaller sample sizes and used surrogate measures. Going forward, FDA should acknowledge areas of evidentiary uncertainty associated with accelerated approval of vaccines and require completion of large, rigorously designed, and timely postapproval trials to assess long-term safety and clinical benefit.

Alexander Egilman, BA
Joshua D. Wallach, MS, PhD
Jeremy Puthumana, MD, MS
Audrey D. Zhang, MD
Jason L. Schwartz, PhD
Joseph S. Ross, MD, MHS

1Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
2Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
3Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
4Department of Medicine, Duke University School of Medicine, Durham, NC, USA
5Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA

Corresponding Author: Joseph S. Ross, MD, MHS; Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA (e-mail: joseph.ross@yale.edu).

Author Contribution All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. ACE and JSR contributed to study concept and design; ACE abstracted the data; JDW validated the data and conducted the statistical analyses; all authors contributed to the analysis and interpretation of the data; ACE drafted the manuscript; all authors contributed to the critical revision of the manuscript; and JSR provided study supervision.

Funding This project was not supported by any external grants or funds. Dr. Wallach is supported by the National Institute on Alcohol
Abuse and Alcoholism of the National Institutes of Health under the award K01AA028258.

Data Availability The datasets generated during the current study are available from the corresponding author on reasonable request.

Declarations:

Conflict of Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare the following: In the past 36 months, Mr. Egilman and Drs. Ross, Wallach, and Zhang received research support through Yale University from the Laura and John Arnold Foundation for the Collaboration for Research Integrity and Transparency (CRIT) at Yale; Mr. Egilman and Drs. Ross and Wallach currently receive and Dr. Zhang has received support from the Food and Drug Administration for the Yale-Mayo Clinic Center for Excellence in Regulatory Science and Innovation (CERSI) program (U01FD005938); Dr. Ross received research support through Yale University from Medtronic, Inc. and the Food and Drug Administration (FDA) to develop methods for postmarket surveillance of medical devices (U01FD004585) and from the Centers of Medicare and Medicaid Services (CMS) to develop and maintain performance measures that are used for public reporting (HHSM-500-2013-130188); Dr. Ross currently receives research support through Yale University from Johnson and Johnson to develop methods of clinical trial data sharing, from the Medical Device Innovation Consortium as part of the National Evaluation System for Health Technology (NEST), from the Agency for Healthcare Research and Quality (R01HS022882), from the National Heart, Lung and Blood Institute of the National Institutes of Health (NIH) (R01HL144644), and from the Laura and John Arnold Foundation to establish the Good Pharma Scorecard at Bioethics International. Drs. Puthumana and Schwartz have no competing interests to disclose.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

1. FDA Center for Biologics Evaluation and Research. Emergency Use Authorization for Vaccines to Prevent COVID-19: Guidance for Industry. October 2020. Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/emergency-use-authorization-vaccines-prevent-covid-19. Accessed May 4, 2021.

2. Lynch HF, Bateman-House A, Joffe S. Emergency approvals for COVID-19: evolving impact on obligations to patients in clinical care and research. Ann Intern Med. 2020;174(2):256-7.

3. Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. JAMA. 2014;311(4):368–77.

4. Puthumana J, Egilman AC, Zhang AD, Schwartz JL, Ross JS. Speed, evidence, and safety characteristics of vaccine approvals by the US Food and Drug Administration. JAMA Intern Med. 2021;181(4):559.

5. Naci H, Smalley KR, Kesselheim AS. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the US Food and Drug Administration. JAMA. 2017;318(7):626-36.

6. Dal-Ré R, Cuplan AL, Gluud C, Porcher R. Ethical and scientific considerations regarding the early approval and deployment of a COVID-19 vaccine. Ann Intern Med. 2020;174(2):258-60.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.