NORM INEQUALITIES FOR DUNKL-TYPE FRACTIONAL INTEGRAL AND FRACTIONAL MAXIMAL OPERATORS IN THE DUNKL-FOFANA SPACES

POKOU NAGACY, JUSTIN FEUTO, AND BÉRENGER AKON KPATA†

Date of Receiving: 18. 10. 2021
Date of Acceptance: 13. 11. 2022

Abstract. We establish some new properties of the Dunkl-Wiener amalgam spaces defined on the real line. These results allow us to obtain the boundedness of Dunkl-type fractional integral and fractional maximal operators in the Dunkl-Foana spaces.

1. Introduction

Let us start with some notations that will be used throughout this paper. Let $k > -\frac{1}{2}$ be a fixed number and μ be the weighted Lebesgue measure on \mathbb{R}, given by

$$d\mu(x) = (2^{k+1}\Gamma(k+1))^{-1}|x|^{2k+1} dx.$$

For $1 \leq p \leq \infty$, we denote by $L^p(\mu)$ the Lebesgue space associated with the measure μ, while $L^{p, \infty}(\mu)$ is the weak $L^p(\mu)$-space. We denote by $L^0(\mu)$ the complex vector space of equivalence classes (modulo equality μ-almost everywhere) of complex-valued μ-measurable functions on \mathbb{R}. For $f \in L^p(\mu)$, $\|f\|_p$ stands for the classical norm of f. For any subset A of \mathbb{R}, χ_A denotes the characteristic function of A. For $x \in \mathbb{R}$ and for $r > 0$, we set

$$B(x, r) = \{y \in \mathbb{R} : \max\{0, |x| - r\} < |y| < |x| + r\}$$

if $x \neq 0$ and

$$B_r = B(0, r) = (-r, r).$$

The letter C will be used for non-negative constants not depending on the relevant variables, and this constant may change from one occurrence to another.

The study of the boundedness properties of certain integral type operators in the topological vector spaces where they act is an important problem in harmonic analysis. Many useful results concerning this topic, which were established in classical Fourier analysis, can be extended to the Dunkl setting.

2010 Mathematics Subject Classification. 42B25, 42B20, 42B35.

Key words and phrases. Dunkl-Foana spaces, Dunkl-Wiener amalgam spaces, Dunkl-type fractional integral operator, Dunkl-type fractional maximal operator.

Communicated by. Amir Sahami

†Corresponding author