Pharmacological Characterization of a Novel 5-Hydroxybenzothiazolone-Derived β₂-Adrenoceptor Agonist with Functional Selectivity for Anabolic Effects on Skeletal Muscle Resulting in a Wider Cardiovascular Safety Window in Preclinical Studies

Magdalena Koziczak-Holbro, Dean F. Rigel, Bérénigère Dumotier, David A. Sykes, Jeffrey Tsao, Ngoc-Hong Nguyen, Julian Bösch, Marie Jourdain, Ludvine Flotte, Yuichiro Adachi, Michael Kiffe, Moïse Azria, Robin A. Fairhurst, Steven J. Charlton, Brian P. Richardson, Estelle Lach-Trifilieff, David J. Glass, Thomas Ullrich, and Shinji Hatakeyama

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland (M.K.-H., B.D., N.-H.N., J.B., M.J., L.F., M.K., M.A., R.A.F., B.P.R., E.L.-T., T.U., S.H.); Novartis Institutes for BioMedical Research, Novartis Pharma AG, East Hanover, New Jersey (D.F.R.); Novartis Institutes for BioMedical Research, Novartis Pharma AG, Horsham, United Kingdom (D.A.S., S.J.C.); and Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts (J.T., Y.A., D.J.G.)

Received November 26, 2018; accepted February 12, 2019

ABSTRACT

The anabolic effects of β₂-adrenoceptor (β₂-AR) agonists on skeletal muscle have been demonstrated in various species. However, the clinical use of β₂-AR agonists for skeletal muscle wasting conditions has been limited by their undesired cardiovascular effects. Here, we describe the preclinical pharmacological profile of a novel 5-hydroxybenzothiazolone (5-HOB) derived β₂-AR agonist in comparison with formoterol as a representative β₂-AR agonist that have been well characterized. In vitro, 5-HOB has nanomolar affinity for the human β₂-AR and selectivity over the β₁-AR and β₃-AR. 5-HOB also shows potent agonistic activity at the β₂-AR in primary skeletal muscle myotubes and induces hypertrophy of skeletal muscle myotubes. Compared with formoterol, 5-HOB demonstrates comparable full-agonist activity on cAMP production in skeletal muscle cells and skeletal muscle tissue–derived membranes. In contrast, a greatly reduced intrinsic activity was determined in cardiomyocytes and cell membranes prepared from the rat heart. In addition, 5-HOB shows weak effects on chronotropy, inotropy, and vascular relaxation compared with formoterol. In vivo, 5-HOB significantly increases hind limb muscle weight in rats with attenuated effects on heart weight and ejection fraction, unlike formoterol. Furthermore, changes in cardiovascular parameters after bolus subcutaneous treatment in rats and rhesus monkeys are significantly lower with 5-HOB compared with formoterol. In conclusion, the pharmacological profile of 5-HOB indicates superior tissue selectivity compared with the conventional β₂-AR agonist formoterol in preclinical studies and supports the notion that such tissue-selective agonists should be investigated for the safe treatment of muscle-wasting conditions without cardiovascular limiting effects.

Introduction

Skeletal muscle atrophy is a common debilitating comorbidity currently without any approved treatment options. In humans, skeletal muscle atrophy occurs under various physiologic and disease conditions, such as: following an injury resulting in immobilization, critical illness, burns, cancer, congestive heart failure, liver disease, chronic obstructive pulmonary disease, chronic kidney disease, acquired immune deficiency syndrome, and diabetes. The reduction
in strength and endurance associated with the involuntary loss of muscle mass results in functional limitations, loss of independence, a reduced quality of life, increased disability, and increased mortality (Dudgeon et al., 2006; Lynch et al., 2007; Thomas, 2007).

β-Adrenoceptors (ARs) are a subfamily of G protein-coupled receptors that are activated by the endogenous catecholamines, adrenaline and noradrenaline. They regulate diverse physiological functions, from heart pacemaker activity, myocardial contractility, and vascular and bronchial smooth muscle tone, to glucose and lipid metabolism (Zheng et al., 2005). β-ARs can be classified into three distinct subtypes, β₁, β₂, and β₃, which share 65%–70% homology between these subgroups. β₁-ARs are the main subtype in the heart whereas β₂-ARs are prominently found in smooth and skeletal muscles and β₃-ARs, in white and brown adipose tissues, gallbladder, and urinary bladder (Kim et al., 1991; Sarsero and Molenaar, 1995; Ursino et al., 2009). Synthetic β₂-AR agonists were initially developed to facilitate bronchodilation to relieve asthma and chronic obstructive pulmonary disease (Solis-Cohen, 1990). However, several studies have shown the efficacy of β₂-AR agonists in addressing skeletal muscle wasting conditions in animal models such as cancer cachexia and sarcopenia (Busquets et al., 2004; Ryall et al., 2007) and also in human clinical trials in orthopedic patients, cancer cachexia, and muscular dystrophy patients (Martineau et al., 1992; Maltin et al., 1993; Kissel et al., 2001; Fowler et al., 2004; Skura et al., 2008; Greig et al., 2014). In animals, β₂-AR agonists can prevent skeletal muscle atrophy (e.g., injury) and elicit hypertrophy, which is associated with improvements in strength in both fast- and slow-twitch muscles (Ryall et al., 2006, 2008; Burniston et al., 2007). The increase in muscle mass results from an increase in protein synthesis and a decrease in protein degradation, mediated via β₂-AR coupling to Gₛα, followed by adenylate cyclase induction, and a consequent increase in intracellular cAMP concentration. In addition, the Gₛγ subunits are thought to activate the PI3K-Akt pathway (Lynch and Ryall, 2008; Ryall et al., 2010).

Besides the induction of skeletal muscle hypertrophy and the inhibition of atrophy, β-AR stimulation also serves as a powerful way to increase cardiac output in response to stress or exercise. As a consequence, the clinical use of β₂-AR agonists has been limited by their cardiovascular effects, for example, tachycardia and palpitation (Inamizu et al., 1984; Löflahlf and Svedmyr, 1989). Moreover, sustained β-AR stimulation can promote pathologic cardiac remodeling such as cardiomyocyte hypertrophy and apoptosis, and ultimately contribute to heart failure. As shown in studies using heart-specific overexpression of β₁-AR- and β₂-AR subtype-knockout animal models, β₁-AR plays a predominant role in regulation of contractility and pathologic remodeling effects (Rohrer et al., 1996; Chrusciński et al., 1999; Engelhardt et al., 1999), β-AR-induced positive contractile responses in human heart are also predominantly mediated by β₁-AR stimulation, but β₂-AR causes a significant positive chronotropic and inotropic effect (Levine and Leenen, 1989; Brodde, 1991).

Here, we describe the preclinical pharmacological profile of a novel 5-hydroxybenzothiazolzone (5-HOB) β₂-AR agonist, (R)-7-(2-(1-(4-butoxyphenyl)-2-methylpropan-2-ylamino)-1-hydroxyethyl)-5-hydroxybenzo[θ]thiazol-(2H)-one (5-HOB; Fig. 1A) was synthesized at Novartis Pharma AG (Basel, Switzerland) according to the synthetic method described in WO 2014132205. Formoterol hemifumarate was purchased from Tocris Bioscience (cat. no. 1448; Bristol, UK) and AK Scientific (cat. no. 67361; Mountain View, CA). Doses of formoterol were quoted as the nonsalt (molecular weight ratio 1:1.169). 2-Hydroxypropyl β-cyclodextrin was purchased from Sigma-Aldrich (cat. no. 332593; St. Louis, MO).

Materials and Methods

Compounds

(R)-7-(2-(1-(4-butoxyphenyl)-2-methylpropan-2-ylamino)-1-hydroxyethyl)-5-hydroxybenzo[d]thiazol-2(3H)-one, which is both β-AR subtype and tissue selective. Our data demonstrate that 5-HOB has strong anabolic and functional skeletal muscle effects at doses associated with reduced cardiovascular effects in animal models, indicating a substantially improved safety margin compared with the β₂-AR agonist formoterol when administered systemically. To understand the unique efficacy profile of 5-HOB, a series of in vitro studies was carried out, including binding affinity measurements and β₂-AR kinetics, receptor selectivity and cellular activity, as well as functional studies with isolated organs, and in vivo studies.

Cell Culture Techniques

Chinese hamster ovary (CHO) cells stably expressing recombinant human β₁- and β₂-AR with matched expression levels were made.

Fig. 1. (A) Chemical structure of 5-HOB: (R)-7-(2-(1-(4-butoxyphenyl)-2-methylpropan-2-ylamino)-1-hydroxyethyl)-5-hydroxybenzo[d]thiazol-2(3H)-one. (B) Effect of formoterol and 5-HOB on cAMP production in membranes isolated from Wistar rat gastrocnemius muscle and from the heart. Percentages of cAMP response were determined relative to the E₉₀ of formoterol in skeletal muscle membranes. Data shown are means ± S.E.M. of three independent experiments. *P < 0.05; **P < 0.01 on efficacy of 5-HOB vs. formoterol in heart membranes and *P < 0.05; **P < 0.01 in skeletal muscle membrane (T-test, unpaired).
in-house and maintained as described before (Battram et al., 2006). Human embryonic kidney 293 (HEK293) cells expressing human β3-AR were maintained at Eurofins Panlabs Taiwan Ltd. according to standard conditions. β3-AR expression levels in HEK293 were comparable to the β2-AR and β3-AR receptors levels in the CHO cells (Bmax values 0.55, 0.334, 0.356 pmol/mg protein, respectively).

Skeletal muscle cells. Human primary fetal skeletal muscle cells (skMC, cat. no. CC-2561 female; Lonza, Basel, Switzerland) were maintained and differentiated for 5 days as described previously (Lach-Trifiliev et al., 2014). To enhance differentiation the medium was supplemented with 1 μM SB431542 (Sigma-Aldrich). Primary myoblasts were isolated from the quadriceps of Wistar Han rats at the age of 2-3 days, mixed gender (neonatal); from the gastrocnemius of adult male beagle dogs; and from the gastrocnemius of adult female rhesus monkeys. Briefly, for differentiation, muscle pieces were incubated in a dissociation medium (Dulbecco’s modified Eagle’s medium [DMEM]/F12; 6 mM NaHCO3; 1× insulin-transferrin-selenium [ITSX]; 1% phosphatidylserine [PS]) containing collagenase IA (600 IU/ml; Sigma-Aldrich) and hyaluronidase I-S (600 IU/ml; Sigma-Aldrich) for 10 minutes at 37°C. Supernatants were discarded and tissue pieces were incubated and agitated in the dissociation medium containing dispase II (2.5 mg/ml; Roche, Mannheim, Germany) for a further 15 minutes at 37°C. The supernatant was collected and strained through a 100 μm filter into a 1 ml centrifuge tube. The supernatant was centrifuged at 13000 rpm for 5 minutes. Cells were resuspended in the same medium and preplated to separate fibroblasts from muscle cells. After 1 hour the supernatant containing myoblast cells was collected and centrifuged at 130g at 4°C for 5 minutes. Cells were resuspended in the same medium and plated to separate fibroblasts from muscle cells. After 1 hour the supernatant containing muscle cells was collected and centrifuged at 130g at 4°C for 5 minutes. Cells were resuspended in the stop medium and plated in 384-well plates coated with Matrigel (Falcon, Bedford, MA) or collagen (Sigma-Aldrich). On the following day this medium was exchanged for one containing reduced serum content [4% fetal bovine serum (FBS)] at 37°C for 45 minutes by collagenase II (300 IU/ml in HBSS; Worthington, Lakewood, NJ) was added and further digestion was performed at 37°C for 45 minutes by collagenase II (300 IU/ml in HBSS; Worthington). The isolated cells were centrifuged at 80g, room temperature for 5 minutes. The cell pellet was resuspended in preloading medium containing DMEM/F12, 4.5 mM NaHCO3, 1× Primocin, 5% fetal calf serum (FCS), and 5% HS and preplated for 1 hour to reduce the contribution of nonmyocardial cells. For the cAMP assay, cardiomyocytes from the supernatant were transferred into 384-well plates coated with collagen in medium containing DMEM/F12; 4.5 mM NaHCO3; 1× Primocin; 2% FCS; 2% HS; 1% ITSX; 10 μM BrdU. After 24 hours cells were transferred to a starvation medium without FCS and HS, and the cAMP assay was performed on the following day.

Binding Kinetics

CHO cells expressing the human β2-AR were used for cell membrane preparation for radioligand binding studies. Cell membranes were prepared and competition binding assays were performed as described previously (Sykes and Charlton, 2012). To obtain affinity estimates for unlabeled 5-HOB, [3H]-DHA competition binding experiments were performed. [3H]-DHA (Perkin Elmer, Waltham, MA) was used at a concentration of approx. 0.6 nM such that the calculated total binding never exceeded more than 10% of total ligand concentration added, therefore avoiding ligand depletion. [3H]-DHA was incubated in the presence of the indicated concentration of unlabeled 5-HOB and CHO-cell membranes expressing the β2-AR at 37°C in assay binding buffer in 96-deep well plates with gentle agitation for 2.5 hours to ensure equilibrium was reached. The kinetic parameters of unlabeled 5-HOB were assessed using the methodology of Sykes et al. 2010. All experiments were analyzed by nonlinear regression using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). Competition displacement binding data were fitted to sigmoidal (variable slope) curves using a four parameter logistic equation. IC50 values obtained from the inhibition curves were converted to Kd values using the method of Cheng and Prusoff (1973). [3H]-DHA association data were fitted as follows to a global fitting model using GraphPad Prism 5.0 to simultaneously calculate ktra and koff. Association and dissociation rates for unlabeled antagonists were calculated using the equations described by Motulsky and Mahan (1984). The percentage occupancy was calculated by estimating the concentration of each compound producing a cAMP response equivalent to 40% of the isoprenaline control in the cAMP assay [percentage of control (EC40)], i.e., identical system response levels), koff curves were then simulated using the kinetic parameters ktra and koff at the concentration of compound producing a response equivalent to the percentage of control (EC40). From this type of analysis it was possible to estimate the percentage of receptors occupied by each agonist (Sykes and Charlton, 2012).

In Vitro Cell-Based Assays

cAMP Assay. Increases in cAMP levels were determined using HTRF technology (cAMP dynamic 2 bulk HTRF-Assay; Cisbio, Codolet, France) in 384-well plate format according to the manufacturer’s protocol. Cells were stimulated with β2-agonists for 30 minutes in presence of 3-isobutyl-1-methylxanthine (Sigma-Aldrich) and then lysed by using Cisbio reagents. The measurement was performed with the Molecular Devices SpectraMax Paradigm (Molecular Devices LLC, Sunnyvale, CA). Results were calculated from the 665/620 nm ratio, and data were expressed in percentage of the DMSO-stimulated control. The functional β2-AR assay was performed at Eurofins Panlabs Taiwan Ltd.

Myotube Hypertrophy Assay. Human skMC were differentiated to myotubes in 12-well plates coated with Matrigel and stimulated with compounds for 48 hours. Immunostaining with anti-myosin heavy chain antibody (cat. no. 05-833; Upstate Biotechnology, Lake Placid, NY) was performed and myotube diameters were determined as described previously (Trendelenburg AU et al., 2009). Images shown were taken with Cellomics CellInsight HCS Reader with 10× objective (ThermoFisher Scientific, Paisley, France).

Animals

Male Wistar Han or Sprague Dawley rats were purchased from Charles River Laboratories (Sulzfeld, Germany or USA), acclimatized to the facility for 7 days, housed in groups of two to three animals at 25°C with a 12:12-hour light-dark cycle, and fed a standard laboratory diet. Food and water were provided ad libitum. Female rhesus monkeys were housed in a colony at Novartis Pharma AG. Besides following the Guide for the Care and Use of Laboratory Animals, the experiments described here were performed according to the regulations effective in the Canton of Basel-City, Switzerland, as well as East Hanover (NJ) and Cambridge (MA).

In Vitro Tissue Membrane Assays

Procedures for the preparation of cell membrane fragments for assessment of β-AR activity have been described previously (MacEwan et al., 1996; Beitzel et al., 2007). The gastrocnemius...
CisBio reagents were added, followed by measurement and analysis. IBMX, 200 μM Rolipram) were mixed with a ratio of 1:1 and incubated for 15 minutes, and the supernatant containing cell membrane fragments was prepared by repeated ultracentrifugation at 100,000g for 30 minutes to isolate the sarcolemma membrane. Enrichment in membrane fraction was validated by WB (Supplemental Fig. 1). After this step, the cell membrane pellets were resuspended in a buffer containing 10 mM HEPES, 0.1 mM EDTA pH 7.4, and a protease inhibitor cocktail. The cell membrane suspensions and compounds (diluted in a buffer containing 30 mM HEPES pH 7.4, 20 mM phosphocreatine, 20 IU/ml creatine phosphokinase, 20 μM GTP, 400 μM ATP, 10 mM MgCl₂, 300 μM IBMX, 200 μM Rolipram) were mixed with a ratio of 1:1 and incubated at room temperature for 30 minutes. Sequentially, HTRF cAMP CisBio reagents were added, followed by measurement and analysis (performed as described above).

In Vitro Isolated Organ Assays

Chronotropy in rabbit sinoatrial node: The right atrium was separated from the rest of the heart (collected from New Zealand white female rabbits from Charles River Laboratories). The preparations were mounted in a tissue bath and kept at 37°C for at least 1 hour of stabilization. The stabilization phase lasted at least 60 minutes during the period that the sinoatrial (SA) pacemaker activity remained stable for at least 20 minutes. Action potentials were intracellularly recorded with a standard glass microelectrode filled with 3 M KC1, connected to a high-input impedance-neutralizing microelectrode amplifier VF-180 (Bio-Logic Science Instruments, Seyssinet-Pariset, France). The action potentials were displayed on a digital oscilloscope HM-407 (Rohe & Schwarzs HAMEG Instruments, Munich, Germany), analyzed by means of high-resolution data acquisition system Notocord-hem software 4.2 (Notocord Systems, Le Pecq, France). Inotropy assay in guinea pig left atria: The assay was conducted at Eurofins Panlabs (Taipei, Taiwan). Left atria were isolated from Dunkin Hartley–derived male or female guinea pigs with body weights of 600 g, and the inotropy response as measured by isometric changes in grams was evaluated according to the method described elsewhere (Grodzinska and Gryglewski, 1971). Vascular relaxation in rat aortic ring: The thoracic aortas were isolated from Sprague Dawley rats, and cut into rings 2- to 3-mm long. The rings were mounted on stainless steel hooks and suspended in organ glass chambers (Radnoti, Covina, CA). Tension development was measured by isometric force transducers 159901A (Radnoti) connected to a data acquisition system, PowerLab (ADInstruments, Oxford, UK). Cumulative dose-response curves to formoterol and 5-HOB were obtained. Absolute tension of all points was analyzed, and the relaxant response to each concentration of compound was expressed as the percentage decrease from precontraction induced by 100 μM phenylephrine.

Effects on Hind Limb Muscle and Heart in Wistar Rats

Compound Administration. Formoterol and 5-HOB were administered subcutaneously to rats once daily for 4 weeks and then the treatment was discontinued for 5 weeks. Formoterol was dissolved in 0.9% NaCl, and 5-HOB was dissolved in 50% PEG200 in distilled water.

Magnetic Resonance Imaging Measurement and Data Analysis. Magnetic resonance imaging (MRI) measurement was performed in the rats under anesthesia with isoflurane at a concentration of 1%–1.3%, using a Bruker Avance 7 T/30-cm wide-bore instrument (Bruker BioSpin, Billerica, MA) equipped with a 12-cm inner diameter (i.d.) actively shielded gradient insert. Two electrocardiography (EKG) electrodes 3M Red Dots (3M; St. Paul, MN) were attached. Respiration, body temperature, and EKG were monitored throughout the experiment using the physiology monitoring system by SA Instruments, Inc. Cardiac images were acquired in the standard cardiac views which are aligned along the principle axes of the heart. The segmentation and length measurements were performed for both diastole and systole. Lower-ventricular volume was calculated by integrating the blood pool volume using a truncated cone model, and ejection fraction was also calculated. Muscle volume was measured using an imaging method that separated water and fat signals (Tsao and Jiang, 2013). The three-dimensional water-only image was reconstructed in Matlab (Mathworks). Lower leg muscle volume was calculated using in-house generated software.

Effects on Heart Rate and Mean Arterial Pressure in Wistar Rats

Surgical Procedure. Rats were surgically instrumented with a chronically indwelling femoral arterial catheter to allow direct measurement of arterial blood pressure and repeated blood sampling, and with a catheter terminating subcutaneously to allow subcutaneous administration of vehicle or compounds.

A femoral artery was isolated and a catheter inserted. The catheter was tunneled subcutaneously and exteriorized in the mid-dorsal abdominal region. The catheter exited through a subcutaneously anchored skin button/ tether/swivel system that allowed the animal to move unrestrained in a specialized Plexiglas wire-bottom cage.

For implanting the subcutaneous catheter, a narrow tunnel was created by inserting a Teflon catheter/needle subcutaneously from the skin button incision site to the midscapular region. The tip of the catheter/needle was pushed through the subcutaneous skin and the needle removed, leaving the Teflon catheter intact and still protruding through the skin. The hub of the Teflon catheter was cut off. The Tygon subcutaneous catheter was inserted into the Teflon catheter so that the tip of the s.c. catheter extended slightly beyond the tip of the Teflon catheter.
catheter. The Tygon catheter and tubing were clamped at the exit site from the skin. The Tygon catheter was anchored at the skin button incision site. The Tygon and Teflon tubings were unclamped and the Teflon catheter was removed through the skin puncture wound. The midscapular skin was then lifted to retract the tip of the Tygon catheter subcutaneously. The Tygon catheter was exteriorized through the spring tether along with the arterial catheter.

Compound Administration and Data Acquisition. Formoterol was dissolved in 0.9% NaCl, and 5-HOB was dissolved in 0.27% 2-hydroxypropyl β-cyclodextrin in saline. The compound or vehicle was administered subcutaneously via the implanted catheter over 40–45 seconds followed by an air flush over 15–15 seconds. The arterial catheter was attached to a precalibrated blood pressure transducer, Statham P23 (AMETEK Power Instruments, Rochester, NY) for continuous monitoring of arterial pressure. The pulsatile blood pressure signals were conditioned and amplified with Gould preamplifiers and further processed with a Modular Instruments, Inc. digital data acquisition system. For an individual rat, mean arterial pressure and heart rate were continuously derived from all beats over consecutive 15-second intervals.

Effects on Heart Rate in Rhesus Monkeys

Formoterol and 5-HOB were administered subcutaneously to rhesus monkeys at the age of 6–8 years old with a body weight around 5–7 kg. Formoterol was dissolved in 0.9% NaCl, and 5-HOB was dissolved in 2.5% Pluronic F-127 in 0.9% NaCl. The monkeys were restrained on a chair up to 4 hours after subcutaneous administration and then returned to their pens. Heart rate, potassium, and glucose were measured. Heart rate was measured by a Surgivet V3304 device (Smiths Medical, Adliswil, Switzerland). Blood samples were collected at 0.08, 0.25, 0.5, 1, 2, and 4 hours on the chair, and blood glucose was measured with a glucometer (Accu-Check Aviva Nano; Roche Diagnostics). Potassium concentration was measured by an automated blood biochemistry analyzer (NOVA CRTSA; Laboratory Systems Flukiger, Menziken, Switzerland).

Compound Concentration Monitoring

In some experiments, compound concentrations in plasma were measured to assess the relationship between concentration and response. Plasma protein was precipitated by mixing with acetoni-trile and removed by centrifugation. The remaining solvent in the supernatant was evaporated, dissolved, and injected into a liquid chromatography–tandem mass spectrometry system, AB SCIEX QTRAP 5500 (AB Scieix, Baden, Switzerland), for analysis.

Statistical Analysis

Statistical analysis was carried out using GraphPad Prism; comparison of two groups with unpaired t test, multiple comparisons with Bonferroni’s test or Dunnett's test following one-way analysis of variance (ANOVA), or Holm-Sidak test or Sidak test following two-way ANOVA as indicated in each figure or table legend. Differences were considered to be significant when the probability value was <0.05. Concentration-response data were evaluated by sigmoid curve fitting using XLfit (IDBS) yielding EC₅₀ values (concentrations causing half-maximal effects) and E₅₀ (maximal effects).

Results

Binding Affinity and Kinetic Characteristics. The affinity of 5-HOB and formoterol for the β₂-AR was assessed in a [³H]-DHA radioligand competition binding assay using membranes derived from CHO cells expressing the human β₂-AR (Table 1). Both agonists showed high binding affinity for the β₂-AR in the nanomolar range, with 5-HOB exhibiting an approximately 10-fold higher binding affinity than formoterol (Table 1). We also measured binding kinetic parameters of both agonists using the competition-association binding method first described by Motulsky and Mahan (1984). 5-HOB showed a longer residence time at the human β₂-AR, with a slower dissociation half-life compared with formoterol. The mean kinetic kₘₐₓ and kₜₐₘₜ values determined for 5-HOB were 7.43 ± 10⁻⁶ M⁻¹ min⁻¹ and 0.733 minutes⁻¹, respectively, producing a kinetically derived dissociation constant Kₐ (kₜₐₘₜ/kₘₐₓ) value of 1.08 ± 0.14 nM, which is in excellent agreement with the equilibrium Kᵢ value obtained from competition binding experiments. Displacement of [³H]-DHA from the β₂-AR by β₂ agonists was determined in the presence of 1 mM GTP to uncouple the receptor from downstream G proteins; therefore, these affinity measurements are reflective of a low-affinity form of the receptor (Kent et al., 1980). 5-HOB had higher binding affinity to the low-affinity form of the receptor compared with formoterol.

In Vitro Functional Activity of 5-HOB in Cellular Systems and Membrane Extracts. The functional activity and receptor selectivity of 5-HOB were evaluated by the measurement of cAMP production in CHO or HEK293 cells stably expressing a comparable level of each of the three human β-AR subtypes: β₁, β₂, and β₃ (Table 2). 5-HOB showed a potent agonistic response at the human β₂-AR (EC₅₀ = 3.5 nM) and high selectivity over the other subtypes, β₁-AR and β₃-AR (EC₅₀ = 793 and 925 nM, respectively). In comparison with formoterol, 5-HOB showed a similar selectivity profile on all three human β-AR subtypes but with an overall 10-fold lower potency. Importantly, a clear difference in the maximum effect (E₅₀) was observed between the two agonists on the human β₁-AR, 40% ± 6.8% for 5-HOB compared with 84% ± 6.5% for formoterol (P < 0.0001 by t test), which is considered to be advantageous for 5-HOB in terms of cardiac safety, as the β₂-AR is the main subtype expressed in the heart.

On the basis of the above β₂-AR functional activity and binding data we performed a modeling simulation of receptor occupancy at the EC₅₀ of cAMP response. The simulation revealed that 5-HOB requires a much higher degree of β₂-AR receptor occupancy (70.4%), relative to formoterol (1.8%), to produce an equivalent effect (Table 2), indicating a lower intrinsic efficacy of 5-HOB.

In addition, functional cAMP assays were conducted using the relevant primary human, rat, dog, and monkey cells with endogenous expression of β₁- and β₂-ARs. 5-HOB was shown to be highly potent and efficacious at inducing cAMP production in skeletal muscle myotubes, in a manner similar to formoterol (Table 3). However, 5-HOB was less efficacious (appearing as a partial agonist) than formoterol at inducing cAMP production in iPS-derived human cardiomyocytes and rat cardiomyocytes compared with the effect on skeletal muscle.
Table 2

Functional activity and selectivity of 5-HOB and formoterol against the different human β-AR subtypes

cAMP Response	5-HOB	Formoterol		
	EC50	Emax	EC50	Emax
β1-AR	nM	%	nM	%
β2-AR	793 ± 92	40 ± 1.7	67 ± 3.8	92 ± 2.0
β3-AR	3.5 ± 0.3	93 ± 0.7	0.3 ± 0.3	97 ± 1.0
β2-AR occupancy at %	925 ± 11	97 ± 0.7	97 ± 1.4	113 ± 7

Table 3

Functional activity of 5-HOB and formoterol in primary cells with endogenous expression of β-ARs

cAMP Response	5-HOB	Formoterol		
	EC50	Emax	EC50	Emax
Rat Skeletal muscle myotubes	nM	%	nM	%
Skeletal muscle myotubes	1.9 ± 0.4	104 ± 0.8	0.1 ± 0.2	100 ± 0.0
Dog Cardiomyocytes	2.1 ± 0.2	89 ± 0.8	0.6 ± 0.3	100 ± 0.0
Monkey Cardiomyocytes	5.1 ± 0.8	90 ± 3.7	1.5 ± 0.37	100 ± 0.0
Human Cardiomyocytes	1.7 ± 0.1	96 ± 0.3	0.3 ± 0.01	100 ± 0.0
Rat Cardiomyocytes	4.6 ± 0.5	72 ± 0.3	1.6 ± 0.13	100 ± 0.0
Human iPS-derived Cardiomyocytes	3.4 ± 0.2	84 ± 2.5	0.5 ± 0.03	100 ± 0.0

In Vitro Effect on Skeletal Muscle Hypertrophy.

The functional activity of 5-HOB was additionally tested in an in vitro human primary skeletal muscle hypertrophy assay (Fig. 2). 5-HOB induced a significant increase in skeletal muscle diameter, an effect that was blocked by the β2-AR antagonist ICI-118,551 but not by the selective β1-AR antagonist CGP20712. These data indicate that skeletal muscle hypertrophy is specifically induced by agonistic activity of 5-HOB on the β2-AR.

In Vitro Functional Activity of 5-HOB in Isolated Organs.

To assess tissue selectivity, the effects of 5-HOB on the cardiovascular system have been evaluated in in vitro isolated-organ assays: rabbit sinoatrial node for measuring chronotropic effects (Fig. 3), guinea pig left atria for measuring inotropic effects (Table 5), and rat aortic ring for measuring vascular relaxation effects (Table 5). Formoterol was shown to be a potent inducer of sinoatrial node pacemaker activity (Fig. 3B; +11% at 5 nM and +45% at 150 nM), whereas 5-HOB showed a weak effect on chronotropy up to a concentration of 150 nM (Fig. 3C; +6.5% from baseline). No direct effects of 5-HOB were noted on inotropy at concentrations of up to 10 μM, while formoterol induced atrial contractility with an EC50 of 17 nM. In an atrial ring relaxation assay, formoterol showed a potent effect with an EC50 of 0.8 nM, but 5-HOB showed a weaker effect with an EC50 of 31 nM. Overall, the effect of 5-HOB on chronotropy, inotropy, and vascular relaxation were observed only at the highest concentrations and were negligible in the concentration range producing skeletal muscle changes described below.

In Vivo 5-HOB Effects on Skeletal Muscle and on Heart in Wistar Rats.

The effect of 5-HOB on skeletal muscle and heart weight was evaluated in Wistar rats with subcutaneously implanted osmotic minipumps, in comparison with the effect of formoterol. Formoterol significantly increased both skeletal muscle and heart weight to a similar extent: 13% and 15% at 0.003 mg/kg (both P < 0.05), 20% and 17% at 0.01 mg/kg (both P < 0.05), and 27% and 21% at 0.03 mg/kg (both P < 0.05), for the weight of pooled hind limb skeletal muscle and heart in comparison with the vehicle control, respectively (Fig. 4A; Supplemental Table 1). The delta in weight changes between skeletal muscle and heart were not statistically significant at all doses for formoterol (P > 0.05, Supplemental Table 1). In contrast, 5-HOB showed an increase selective for skeletal muscle weight over heart weight: 11% and 6.9% at 0.01 mg/kg (P < 0.05, P = 0.2324), 17% and 9.3% at 0.03 mg/kg (P < 0.05, P = 0.0993), and 26% and 12% at 0.1 mg/kg (both P < 0.05), for the weight of pooled hind limb skeletal muscle and heart in comparison with the vehicle control, respectively (Fig. 4B; Supplemental Table 1). It should be noted that the weight changes in the heart at the two lower doses were not statistically significant from the vehicle control (Fig. 4B). The delta in weight changes between skeletal muscle and heart were not statistically different at lower doses and became statistically significant at 0.1 mg/kg (Supplemental Table 1). A significant increase in evoked force was also observed in parallel to skeletal muscle hypertrophy for each formoterol and 5-HOB (tested at 0.01 mg/kg, Fig. 4C), and the increase in evoked force between formoterol and 5-HOB was not statistically significant (P = 0.8086 by t test). The doses of β2-AR agonists showed comparable increase in plasma exposure across the three doses (Supplemental Table 1). Therefore,
and 5-HOB was statistically significant at 2 weeks (Table 2). The change in ejection fraction between formoterol did not significantly reduce ejection fraction compared with the vehicle control. During the 4-week treatment period, formoterol showed a clear difference in ejection fraction between formoterol and 5-HOB. In contrast to the effect on muscle volume, there was no statistical significance at all doses, and the effect of 5-HOB was statistically significant only at 0.3 mg/kg (Supplemental Table 3). Unlike the changes in heart rate, formoterol dose dependently decreased mean arterial pressure by a maximum of approximately 30 mm Hg, whereas the effect of 5-HOB on mean arterial pressure was again apparent only at 0.3 mg/kg (Fig. 6D). The effect of formoterol was statistically significant above 0.01 mg/kg and the effect of 5-HOB was statistically significant only at 0.3 mg/kg (Supplemental Table 3).

The relationship between plasma concentration and skeletal muscle effects was similar for both formoterol and 5-HOB. To gain further insights into the effect of formoterol and 5-HOB on skeletal muscle mass and ejection fraction as a measure of cardiac function, longitudinal monitoring with MRI was conducted. Once daily subcutaneous treatment of 4 weeks followed by washout for 5 weeks allowed an assessment of duration of action and reversibility. The effect of 5-HOB on skeletal muscle mass was equivalent to the effect with formoterol at the same dose level (0.03 mg/kg QD), and this hypertrophy effect was maintained for 5 weeks after cessation of treatment, compared with the vehicle-treated groups (Fig. 5A). In the formoterol- and 5-HOB-treated groups, the increases in skeletal muscle mass compared with the vehicle control were statistically significant at 2, 4, 6, and 9 weeks (P < 0.05; Supplemental Table 2). There was no statistical difference on the increases in skeletal muscle mass between formoterol and 5-HOB (P > 0.05; Supplemental Table 2). In contrast to the effect on muscle volume, there was a clear difference in ejection fraction between formoterol and 5-HOB. During the 4-week treatment period, formoterol significantly reduced ejection fraction compared with the vehicle control (P < 0.05 at 2 and 4 weeks), whereas 5-HOB did not (P > 0.05 at all time points) (Fig. 5B; Supplemental Table 2). The change in ejection fraction between formoterol and 5-HOB was statistically significant at 2 weeks (P < 0.0001) and became not significantly different after 4 weeks (P > 0.05 at 4, 6 and 9 weeks) (Supplemental Table 2). During the washout period, the effect of formoterol on ejection fraction was found to be reversible, and returned close to baseline.

Cardiovascular Effects in Wistar Rats and Rhesus Monkeys. To evaluate if 5-HOB would show attenuated acute cardiovascular effects in vivo after a single subcutaneous treatment, as indicated by the cellular and isolated organ assays, we monitored heart rate in Wistar rats and rhesus monkeys. In the rat, formoterol induced a maximum heart rate increase of approximately 150 bpm at the three highest doses tested (0.01–0.1 mg/kg), and a nearly maximal effect at the lowest dose (0.003 mg/kg, Cmax = 2.2 nM) within 5 minutes of dosing, as shown in Fig. 6A. In contrast, compared with the vehicle control, the effect of 5-HOB on heart rate was apparent only at the highest tested dose (0.3 mg/kg, Cmax = 18 nM) with an increased heart rate of +58 bpm (a 14% increase from the baseline) and showed almost no effect at the lower doses (Fig. 6B). Thus, formoterol is more potent than 5-HOB in inducing a positive chronotropic effect, as reflected by the relative shift in the dose-response relationships (Fig. 6C). The effect of formoterol was statistically significant at all doses, and the effect of 5-HOB was statistically significant only at 0.3 mg/kg (Supplemental Table 3).

In rhesus monkeys, a single subcutaneous dose of formoterol increased heart rate by +60 bpm at 5 minutes postdosing (+32% from predose baseline) at 0.01 mg/kg with plasma concentration of 7.7 nM (Fig. 7A). In contrast, a single subcutaneous dose of 5-HOB showed a heart rate change of +17 bpm at 30 minutes postdosing (+9.2% from predose baseline), which is in the range of the variability observed in the control groups.

TABLE 4

Protein	EC50	Emax	EC50	Emax
5-HOB	17 ± 1	92 ± 1	6 ± 0.3	100 ± 0
Formoterol	361 ± 17	14 ± 2	62 ± 8	53 ± 4

Note: % cAMP responses was determined relative to the Emax of formoterol in skeletal muscle membranes. The EC50 and Emax values ± S.E.M. of experiments from three independent membrane preparations, each performed with seven concentrations of compounds (10-fold dilutions) in triplicates.
between Formoterol dosed at 0.01 mg/kg induced hyperglycemia mediated pharmacodynamic markers (Supplemental Fig. 3): compared with the predose baseline levels. There was no in the control groups after they were returned to their pens, by around 13%, which is in the range of variation observed whereas 5-HOB dosed at 0.03 mg/kg increased blood glucose changes.

Effects of formoterol and 5-HOB on the beating rate of rabbit sinoatrial node. (A) values are means ± S.E.M. (n = 5 to 6) and % changes from baseline values. (B) Superimposed SA action potentials exposed to formoterol (mean of n = 5). (C) Superimposed SA action potential exposed to 5-HOB (mean of n = 6).

Discussion

In the present study, we have investigated the preclinical pharmacological profile of 5-HOB, a novel β2-AR agonist with a potent anabolic effect on skeletal muscle but with markedly attenuated cardiovascular effects, which was investigated for the treatment of skeletal muscle wasting conditions in which cardiovascular effects associated with this class of drugs would be undesirable. To benchmark the profile, 5-HOB was compared with formoterol as a class representative and well characterized β2-AR agonist. Before this study was performed, it had not been previously demonstrated that one could achieve relative tissue selectivity with a β2-AR agonist.

In a radioligand binding assay, 5-HOB demonstrated high affinity for the human β2-AR. The β2-AR binding affinity translated into observed in vitro efficacy, exemplified by the rise in intracellular cAMP in which 5-HOB had high potency in the nanomolar range on the β2-AR and displayed selectivity over β1-AR and β3-AR. The receptor selectivity profile of 5-HOB against the β-AR subtypes is comparable to that of formoterol but with lower intrinsic efficacy on the β1-AR, which is advantageous for 5-HOB in terms of cardiac safety as the β1-AR is the main subtype expressed in the heart (Zheng et al., 2005) and implicated in pathologic remodeling effects (Engelhardt et al., 1999; Morisco et al., 2001). While the β2-AR also contributes to cardiovascu- lar effects (Molenaar et al., 2000), studies in β-AR-subtype knockout mice imply that the β1-AR plays a predominant role in catecholamine-mediated regulation of heart rate and myocardi- and cardiomyocytes, both 5-HOB and formoterol appeared.

Table 5
Effects of 5-HOB and formoterol on inotropy and vascular relaxation
Left atrium was isolated from Dunkin Hartley guinea pigs and aortic ring was isolated from Sprague Dawley rats. The values are expressed as means of n = 2 for left atrium and n = 7 for aortic ring.
EC50 (nM)
Formoterol
Inotropy
Vascular relaxation

Note: Table 5 data are from Philipson, 2002; Yamaguchi, 2002. Our studies have also investigated β2-AR agonist–mediated stimulation in systems with an endogenous distribution of receptors: in primary cells and in cell membranes prepared from rat tissues. In a functional CAMP assay using primary skeletal muscle cells, 5-HOB was shown to be a highly efficacious agonist, but in cardiomyocytes 5-HOB behaved as a partial agonist with a reduced intrinsic efficacy versus formoterol. Consistent with the result obtained in skeletal muscle myotubes and cardiomyocytes, both 5-HOB and formoterol appeared.
to be equally efficacious agonists in skeletal muscles membranes, whereas 5-HOB was a less efficacious in heart membranes compared with formoterol. Like differences between the two agonists were also observed in the assays using isolated organs for evaluating the effect on the cardiovascular system. Thus, 5-HOB showed only a weak effect on pacemaker activity and on aortic ring relaxation, and no effect on atrial contractility. In contrast, formoterol exerted potent effects on chronotropy, inotropy, and vascular relaxation, as would be expected from a conventional β_2-AR agonist.

In our studies both β_2-AR agonists, 5-HOB and formoterol, displayed comparable anabolic action on skeletal muscle in vitro and in vivo. In addition, we demonstrated that the 5-HOB-induced skeletal muscle hypertrophy is β_2-AR mediated. In vitro, 5-HOB promoted significant hypertrophy in human skeletal muscle myotubes and this effect was blocked by the β_2-AR antagonist ICI-118,551, but not by the β_1-AR selective antagonist CGP20712. This is in line with what has previously been shown in vivo by others: the β_2-AR agonist (clenbuterol) mediated skeletal muscle hypertrophy can be blocked by selective β_2-AR antagonists, or by genetic deletion of the β_2-AR (Choo et al., 1992; Hinkle et al., 2002). Also in our in vitro assay formoterol- and clenbuterol-induced hypertrophy were blocked by ICI-118,551 (Supplemental Fig. 2). In line with our in vitro hypertrophy data, in rat studies both 5-HOB and formoterol were capable of inducing comparable strong skeletal muscle hypertrophy as well as increasing muscle function measured by evoked force.
at an equivalent plasma concentration. However, 5-HOB caused lower increase in heart weight compared with skeletal muscle weight while formoterol produced nearly equivalent increases in both heart and skeletal muscle weight. This selective action of 5-HOB on skeletal muscle could be further demonstrated by the lack of an effect on cardiac function, as measured by ejection fraction, in comparison with formoterol which significantly decreased ejection fraction during the treatment period. It seems clear that the increased heart rate was associated with the decreased cardiac function in the formoterol treatment group.

When acute cardiovascular effects were evaluated, formoterol at a dose of 0.003 mg/kg, with a C\textsubscript{max} of 2.2 nM, was sufficient to elicit almost the maximum heart rate increase of approximately 150 bpm (approx. 35%–40% increase) in the rat. In contrast, although the highest doses of 5-HOB achieved approximately 10-fold higher C\textsubscript{max} value (18 nM at 0.3 mg/kg), heart rate was increased by only 58 bpm. The effect of 5-HOB on mean arterial pressure was also less compared with formoterol. Overall, 5-HOB was about 1.5–2 orders of magnitude less potent than formoterol in eliciting cardiovascular responses. These differences in heart rate responses between formoterol and 5-HOB were also well reproduced in a similar plasma concentration range in the rhesus monkey. These in vivo findings clearly reflect the results obtained with isolated organs for inducing cardiovascular effects, implying that 5-HOB is indeed a partial agonist, not only in the cardiovascular system, but also in other organs such as the liver based upon the effect on glucose levels (Supplemental Fig. 3). The lack of effect on cardiac function as well as the
attenuated acute cardiovascular responses with 5-HOB provide a clear advantage over conventional β_2-AR agonists, such as formoterol, which apparently do not exhibit such tissue selectivity. What is particularly encouraging were the effects of 5-HOB on rhesus monkeys. In these animals, formoterol had a significant effect on heart rate even at the lowest dose, inducing a 60 bpm increase; in contrast, 5-HOB did not cause a statistically significant effect, even at therapeutic levels.

As discussed above, the attenuated effect of 5-HOB on heart rate could be partially explained by its receptor selectivity for the β_2-over the β_1-AR, detected in in vitro functional studies. However, other factors may contribute to the greater effect of 5-HOB on skeletal muscles compared with effects on the heart. The differential responses between tissues may also be related to differences in absolute β_2-AR numbers, as well as differences in β_2-AR/G protein/AC ratios between the different tissue types. A drug that is a partial agonist in one tissue could also be a full agonist in a different tissue wherein either receptor density or receptor-to-response coupling efficiency is relatively high. Supporting this notion, it has been shown for the partial agonist salmeterol that the maximal agonist-mediated stimulation of cAMP production can be increased through the elevation of total levels of β_2-AR (McDonnell et al., 1998). Additionally, other studies have demonstrated that enhanced expression of AC enables greater maximal cAMP generation following receptor activation (MacEwan et al., 1996). Our data clearly demonstrate that 5-HOB shows a greater receptor reserve in adipose tissue compared with other conventional β_2-AR agonists, such as formoterol, which apparently do not exhibit such tissue selectivity.

Chen, Fumin Fu, Michael Beil, Jing Liu, and Marie-Claude Del Grosso

Acknowledgments

We thank Ralf Endres, Daniel Lehmann for bioanalytics support, and Michael S. Hansen and Yun Jiang for imaging support, and Wei Chen, Fumin Fu, Michael Beil, Jing Liu, and Marie-Claude Del Grosso for cardiovascular profiling support, and Antonia Rosenstiel for CAMP assay support.

Authorship Contributions

Participated in research design: Koziczak-Holbro, Rigal, Dumotier, Sykes, Tsao, Adachi, Kiffe, Azria, Charlton, Richardson, Lach-Trifillieff, Glass, Hatakeyama.

Conducted experiments: Koziczak-Holbro, Rigal, Dumotier, Sykes, Tsao, Nguyen, Bösch, Jourdain, Flotte, Adachi, Kiffe, Azria, Hatakeyama.

Contributed new reagents or analytic tools: Fairhurst, Ulrich.

Performed data analysis: Koziczak-Holbro, Rigal, Dumotier, Sykes, Tsao, Nguyen, Bösch, Jourdain, Flotte, Adachi, Kiffe, Azria, Hatakeyama.

Wrote or contributed to the writing of the manuscript: Koziczak-Holbro, Rigal, Dumotier, Sykes, Tsao, Adachi, Kiffe, Fairhurst, Charlton, Lach-Trifillieff, Glass, Ulrich, Hatakeyama.

References

Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, and Cerra MC (2008) β_2-adrenoceptors mediate modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. *Acta Physiol (Oxf)* 193:229–239.

Battram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, Fozard JR, Leighton-Davies J, Lewis CA, McEvoy L, et al. (2006) In vitro and in vivo pharmacological characterization of 5-hydroxy-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl)-5-hydroxy-2H-quinolin-2-one (indacaterol), a novel inhaled β_2-adrenoceptor agonist with a 24h duration of action. *J Pharmacol Exp Ther* 317:762–770.

Beutter A, Schellong MX, and Lynch GS (2007) β_2-Adrenoceptor signaling in regenerating skeletal muscle after β-agonist administration. *Am J Physiol Endocrinol Metab* 293:E932–E940.

Brodde OE (1991) β_2- and β_1-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. *Pharmacol Rev* 43:203–242.

Burniston JG, McLean L, Beynon RJ, and Goldpink DF (2007) Anabolic effects of a non-myotoxic dose of the β_2-adrenoceptor agonist clenbuterol on rat plantaris muscle. *Muscle Nerve* 35:217–243.

Busquets S, Figueiras MT, Fuster G, Almedo V, Moore-Carrasco R, Ametller E, Argèles JM, and López-Soriano FJ (2004) Anticachectic effects of formoterol: a drug for the combined treatment of muscle wasting. *Cancer Res* 64:6753–6761.

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of specific site (C): a new explanation of competitive inhibition. *Biochem Pharmacol* 22:2495–2506.

Chruscinski AJ, Rohrer DK, Schauble E, Dessai HK, Bernstein D, and Kohlika BK (1999) Targeted disruption of the β_2 adrenergic receptor gene. *J Biol Chem* 274:16694–16700.

Dodelson WD, Phillips KD, Carson JA, Brewer RB, Durstine JL, and Hand GA (2006) Counteracting muscle wasting in HIV-infected individuals. *HIV Med* 7:299–310.

Engelhardt S, Hein L, Wiesmann F, and Lohse MJ (1999) Progressive hypertrophy and heart failure in β_2-adrenergic receptor transgenic mice. *Proc Natl Acad Sci USA* 96:7059–7064.

Fatholahi M, Xiang Y, Wu Y, Li Y, Wu L, Dhalla AK, Belardinelli L, and Shryock JC (2007) Characterization of adenosine A1 receptor agonists. Low intrinsic efficacy adenosine A1 receptor agonists can reduce lipolysis at concentrations that do not cause effects on heart rate due to a greater receptor reserve in adipose tissue compared with cardiac tissue (Wu et al., 2001; Fatholahi et al., 2006).

In summary, the preclinical data reported in this study show that 5-HOB is a potent, selective β_2-AR agonist that is effective in promoting skeletal muscle growth. Furthermore, 5-HOB displays tissue selectivity and reduced cardiovascular effects, compared with the well-described representative β_2-AR agonist formoterol in preclinical studies. Hence, these data suggest that 5-HOB may provide a new valuable treatment option for muscle atrophy conditions. Clinical studies will determine whether 5-HOB has the potential for reduced cardiac side effects at therapeutic doses in humans compared with other conventional β_2-AR agonists, such as formoterol.
activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. *Mol Cell Biol* 34:606–618.

Levine RD and Leech PH (1988) Role of β1 receptors and vagal tone in cardiac inotropic and chronotropic responses to a β2 agonist in humans. *Circulation* 79:107–115.

Löffler OS and Svedmyr N (1989) Formoterol fumarate, a new β2-adrenoceptor agonist. Acute studies of selectivity and duration of effect after inhalated and oral administration. *Allergy* 44:264–271.

Lynch GS and Ryall JG (2008) Role of β-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. *Physiol Rev* 88:729–767.

Lynch GS, Schertzer JD, and Ryall JG (2007) Therapeutic approaches for muscle wasting disorders. *Pharmacol Ther* 113:461–487.

MacKean DJ, Kim GD, and Milligan G (1996) Agonist regulation of adenylate cyclase and the β2-receptor agonist, increases relative muscle strength in orthopaedic patients. *Clin Sci (Lond)* 84:651–654.

Martineau L, Horan MA, Rothwell NJ, and Little RA (1992) Salbutamol, a β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 83:615–621.

McDonnell J, Latif IL, Rees ES, Bevan NJ, and Hill SJ (1998) Influence of receptor number on the stimulation by salmeterol of gene transcription in CHO-K1 cells transfected with the human β2-adrenoceptor. *Br J Pharmacol* 125:717–726.

Molenaar P, Bartel S, Cochrane A, Vetter D, Jalali H, Pohlsch B, Purrell K, Karczewski P, Krause EG, and Kaumann A (2000) Both β2- and β1-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallet infants, consistent with selective coupling of β2- (gαs)-adenoreceptors to Gαs-protein. *Circulation* 102:1814–1821.

Morisco C, Zebrowski DC, Vatner DE, Vatner SF, and Sadoshima J (2001) 3-adrenoceptor. Evidence that adenylate cyclase is the limiting component for receptor-mediated stimulation of adenylate cyclase activity. *Biochem J* 318:1033–1039.

Mullin CA, Delday MI, Watson JS, Heys SD, Nevison IM, Ritchie IK, and Gibson PH (1993) Clinbuterol, a β-adrenoceptor agonist, increases relative muscle strength in rats at micromolar doses. *Br J Pharmacol* 114:175–179.

Nash D, Koziczak M, and Wyss J (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube formation. *J Cell Physiol* 219:309–318.

Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Switzerland. E-mail: magdalena.koziczak@novartis.com; or Shinji Hatakeyama, Address correspondence to:

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.

Rahmouni S, Kacser HH, Brown ML, Hazzard WR, and Braunwald E (1986) The β2-adrenoceptor agonist, increases skeletal muscle strength in young men. *Clin Sci (Lond)* 84:615–621.