Mortality risk in chronic Chagas cardiomyopathy: a systematic review and meta-analysis

Sindhu Chadalawada1,2, Anis Rassi Jr2, Omar Samara3, Anthony Monzon3, Deepika Gudapati4, Lilian Vargas Barahona11, Peter Hyson11, Stefan Sillau5, Luisa Mestroni6, Matthew Taylor6, Kristen DeSanto9, Nelson I. Agudelo Higueta10, Carlos Franco-Paredes11,12, and Andrés F. Henao-Martínez12*

1Department of Medicine, Alameda Health System—Highland Hospital, Oakland, CA, USA; 2Division of Cardiology, Anis Rassi Hospital, Goldávia, GO, Brazil; 3School of Medicine, University of Colorado Denver, Aurora, CO, USA; 4NRI Medical College, Gunurth, Andhra Pradesh, India; 5Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO, USA; 6Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver School of Medicine, Aurora, CO, USA; 7Facultad de Medicina, Universidad Federal de Minas Gerais, Belo Horizonte, Brazil; 8Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; 9Health Sciences Library, University of Colorado Denver, Aurora, CO, USA; 10University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; 11Hospital Infantil de México, Federico Gómez, México City, Mexico; 12Department of Medicine, Division of Infectious Diseases, University of Colorado Denver School of Medicine, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO 80045, USA

Abstract

Aims This study aimed to estimate the annual mortality risk and its determinants in chronic Chagas cardiomyopathy.

Methods and results We conducted a systematic search in MEDLINE, Web of Science Core Collection, Embase, Cochrane Library, and LILACS. Longitudinal studies published between 1 January 1946 and 24 October 2018 were included. A random-effects meta-analysis using the death rate over the mean follow-up period in years was used to obtain pooled estimated annual mortality rates. Main outcomes were defined as all-cause mortality, including cardiovascular, non-cardiovascular, heart failure, stroke, and sudden cardiac deaths. A total of 5005 studies were screened for eligibility. A total of 52 longitudinal studies for chronic Chagas cardiomyopathy including 9569 patients and 2250 deaths were selected. The meta-analysis revealed an annual all-cause mortality rate of 7.9% [95% confidence interval (CI): 6.3–10.1; \(I^2 = 97.74\% \); \(T^2 = 0.70 \)] among patients with chronic Chagas cardiomyopathy. The pooled estimated annual cardiovascular death rate was 6.3% (95% CI: 4.9–8.0; \(I^2 = 96.32\% \); \(T^2 = 0.52 \)). The annual mortality rates for heart failure, sudden death, and stroke were 3.5%, 2.6%, and 0.4%, respectively. Meta-regression showed that low left ventricular ejection fraction (coefficient = –0.04; 95% CI: –0.07, –0.02; \(P = 0.001 \)) was associated with an increased mortality risk. Subgroup analysis based on American Heart Association (AHA) classification revealed pooled estimate rates of 4.8%, 8.7%, 13.9%, and 22.4% (\(P < 0.001 \)) for B1/B2, B2/C, and C/D stages of cardiomyopathy, respectively.

Conclusions The annual mortality risk in chronic Chagas cardiomyopathy is substantial and primarily attributable to cardiovascular causes. This risk significantly increases in patients with low left ventricular ejection fraction and those classified as AHA stages C and C/D.

Keywords Chagas; Cardiomyopathy; Mortality

Introduction

Chagas disease, otherwise known as American Trypanosomiasis, is a protozoal infection caused by the haemoflagellate, Trypanosoma cruzi. The creation of four regional surveillance and control initiatives with support from the Pan American Health Organization/World Health Organization has had a major impact on the disease prevalence in Latin America by reducing the number of infected people from 30 million in the 1990s to approximately 6–8 million in recent years.1 Increasing migration of infected individuals from Chagas endemic regions to non-endemic countries has reshaped...
Chagas disease evolves through acute and chronic phases. Patients with acute or indeterminate infection progress to chronic Chagas cardiomyopathy (CCC) at a rate of 4.6% and 1.9% annually, respectively. Chronic cardiac disease is divisible into five stages per the last adapted American Heart Association (AHA) classification—A (indeterminate), B1 (structural changes with normal left ventricular ejection fraction [LVEF]), B2 (structural changes with abnormal LVEF), C (ventricular dysfunction with heart failure [HF] symptoms), and D (refractory HF). Categories B1–D have evidence of structural cardiac damage by standard clinical evaluation. Structural changes are usually detected by electrocardiography and echocardiography and include ventricular arrhythmias, sinus node dysfunction, atrioventricular and intraventricular blocks, segmental and global wall motion abnormalities, and ventricular aneurysms. Additional complications arising from CCC include congestive heart failure (CHF), thromboembolism (mainly stroke), and death. Patients with additional comorbidities such as hypertension, diabetes, and chronic kidney disease are at increased risk of these cardiovascular (CV) complications.

Appraisal of clinical outcomes and mortality risk in CCC has proven to be challenging due to the heterogeneity of studies with inclusion of patients at differing disease stages, variations in independent prognostic factors and risk calculators, studies with different follow-up periods, patient populations with various comorbidities, and studies lacking statistical power. A previous meta-analysis by Cucunubá et al. compared mortality rates between populations with and without Chagas disease. Patients with Chagas disease had a significantly higher annual mortality rate (AMR) (18% vs. 10%), which was preserved regardless of the stage of the disease: severe (43% vs. 29%), moderate (16% vs. 8%), and asymptomatic (2% vs. 1%). However, the authors included only studies with a control group for comparison, and causes of death and prognostic factors were not an issue. Our systematic review and meta-analysis is the first one to assess pooled estimated AMRs (all-cause and by specific modes) in the overall population and in distinct subgroups of patients with CCC, as well as the determinants of death.

Methods

Search strategy

Joanna Briggs Institute (JBI) methodology for systematic reviews and meta-analysis with a three-phase search strategy was utilized. This review considered longitudinal studies, prospective and retrospective cohorts, case series, and randomized clinical trials (RCTs). Studies exploring rates of progression, prognostic factors, and relevant clinical outcomes in CCC were included.

An initial comprehensive literature search of MEDLINE was conducted in October 2018 by a medical librarian. Relevant publications were identified by screening titles and abstracts and searching for a combination of indexing terms (when applicable, specific to each database) and keywords for Chagas disease and disease progression concepts. The following databases were searched: MEDLINE (via Ovid MEDLINE® and Pubmed Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions®, 1946 to present), MEDLINE (via PubMed, 1946 to present), Web of Science Core Collection (via Clarivate Analytics, including Science Citation Index Expanded 1974 to present, and Social Sciences Citation Index 1974 to present), Embase (via Elsevier, Embase.com, 1947 to present), Cochrane Library (via Wiley, including Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials), and LILACS (Latin American and Caribbean Health Sciences Literature, via BV Salud, 1982 to present).

The reference list of all studies selected for critical appraisal was screened for additional studies, and other important articles in the field were manually added. There were no restrictions or limits on the date of publication or age of subjects. The language was restricted to English, Spanish, or Portuguese. Articles written in Spanish or Portuguese were reviewed by the authors (A. H. M., C. F. P., A. R., and A. M.) who are fluent in both languages. Filters were used to limit results to human studies.

Study selection

After the search, all identified studies were uploaded and de-duplicated in EndNote VX8 (Clarivate Analytics, PA, USA). Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia) was used for screening and full-text review. See eMethods (Supporting Information) for a list of Ovid and PubMed MEDLINE search strategy. Through Covidence, a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was generated with the number of results found, number excluded during title/abstract screening, and number excluded during full-text assessments and methodological appraisals, along with reasons for exclusion. Other sources searched...
Inclusion criteria

Chronic Chagas cardiomyopathy is confirmed with two positive serological tests based on different antigens and/or techniques and structural cardiomyopathy, evidenced by typical electrocardiographic or echocardiographic changes with or without global ventricular dysfunction and HF symptoms. All ages, genders, and ethnicities with a longitudinal observation and established diagnosis of a chronic determinate form of the disease until the development of the outcome of interest were included. Studies were excluded if they did not state enough or pertinent outcome data or were determined not to have an acceptable quality methodologic assessment.

Data analysis

Study data were collected and managed using REDCap electronic data capture tools hosted at the University of Colorado Denver. Extracted data included type of study, country of origin, number of participants, length of follow-up, population demographics, stages of cardiomyopathy, study methods, interventions (diagnostic and therapeutic), and outcomes of significance. The following outcomes were extracted: (i) overall all-cause mortality and (ii) specific mortality for CV, HF, sudden cardiac death (SCD), stroke and noncardiac outcomes. CV mortality was a composite of SCD, HF, and stroke deaths.

Quality assessment

Two reviewers with expertise in Chagas disease (A. H. M. and A. R.) independently revised the selected studies for methodological quality, performing quality critical standard measures from JBI System for the Unified Management, Assessment and Review of Information (JBI SUMARI; Joanna Briggs Institute, Adelaide, Australia). A third reviewer was asked to reconcile disagreements between the two reviewers. Critical appraisals were performed utilizing the JBI Reviewer’s Manual checklists for longitudinal studies. All studies with greater than 60% of ‘yes’ answers to the critical appraisal questions were subject to data extraction and synthesis.

Statistical analysis

Event rates were extracted by calculating the total number of deaths over the number of cases divided by the mean follow-up in years. The extracted ratio was log-transformed, and standard errors were obtained from the cumulative percentage of deaths, the number of participants, and the duration of the study. Log transformation of the estimated rates reduced the skew of their distributions.

A random-effects meta-analysis was then performed to combine the estimated log rates from the different studies into a single estimated log rate, which was back-transformed for interpretation. Between-study heterogeneity was estimated using the I^2 statistic. New York Heart Association (NYHA) extraction was recorded as the percentage of I/II or III/IV classes of participants in each study. The studies were classified as AHA stages B1, B1/B2, B1/B2/C, B2/C, C, and C/D based on the analysis of the clinical characteristics of the majority of subjects included in each study. In addition, by analysing the titles of the manuscripts and the population characteristics in each study, we were able to group them into eight major categories: asymptomatic CCC or without left ventricular dysfunction, ambulatory cohorts of patients with CCC, arrhythmic CCC cohort without an implantable cardioverter-defibrillator (ICD), symptomatic CCC or with left ventricular dysfunction, CCC with an ICD, CCC with cardiac resynchronization therapy (CRT), CCC with stable HF, and CCC with CHF. Subgroup analyses were conducted to examine other determinants of mortality and sources of heterogeneity; these analyses included the AHA stages, NYHA class, population characteristics, and ejection fraction. Participant’s mean age, the percentages of men vs. women, ejection fraction, and percentage of NYHA class I/II were included in our meta-regression. Cumulative survival curves were estimated by applying the exponential survival method. Contour-enhanced funnel plots were constructed to assess publication bias. Statistical analyses were performed using STATA software, Version 16.0 (StataCorp, College Station, Texas, USA). We also performed a sensitivity analysis to investigate changes in the pooled effect after excluding one of each study from the analysis.

Role of the funding source

There was no funding source for this study. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit the manuscript for publication.
Results

An initial 10,761 studies were identified through database searches. Upon deduplication, 5,005 studies were screened for eligibility based on titles and abstracts. Of these, 298 full-text articles were assessed, and 178 studies were considered for inclusion in the quantitative synthesis (Figure 1). After manually adding 30 articles, 208 studies were reviewed. A hundred and eight studies passed the initial methodological appraisal. In the final round of exclusions, 24 studies were removed because they originated from identical cohorts, and 32 studies because they included patients with a diagnosis of acute or indeterminate Chagas disease. A total of 52 longitudinal observational studies composed of 9569 patients diagnosed with CCC at the onset of observation and 2250 deaths during follow-up were utilized for the meta-analysis.

Chronic Chagas cardiomyopathy

Fifty-two studies had longitudinal observation outcomes for patients with CCC. Most of these were prospective cohorts that originated in Brazil and enrolled patients between 1973 and 2015. Sample sizes varied from 15 to 2854 cases, with a mean of 184 participants per study. Gender distribution had a slight male predominance at 58% (50 studies). Mean ages ranged between 37.3 and 63.4 years, with an overall mean of 53.4 years (50 studies). Mean LVEFs ranged between 18.6% and 61.0% (41 studies), with an overall mean of 38.4%. A few studies had missing data for age and gender distribution, and 11 studies did not report the mean ejection fraction. The mean follow-up duration of patients was 4.9 years, with a range of 0.74 to 10.1 years (Table 1).

All-cause mortality

Fifty-two studies had observational outcomes for all-cause mortality among patients with CCC. The pooled estimated annual all-cause mortality rate was 7.9% [95% confidence interval (CI): 6.3–10.1; \(I^2 = 97.74\% \); \(T^2 = 0.70\)] (Figures 2 and 3(A)). The \(I^2 \) variable suggested significant heterogeneity among these studies, lower among studies reporting stroke deaths (\(I^2 = 97.74\% \) vs. 63.84%) (Figure 2, Supporting Information, Figure S5). Cumulative death probability was approximately 37% at 5 years, 59% at 10 years, and 75% at 15 years (Supporting Information, Figure S1).

Meta-regression analysis showed low LVEF (coefficient = −0.04; 95% CI: −0.07, −0.02; \(P = 0.001 \)) to be associated with an increase in mortality risk (Supporting Information, Table S1). Subgroup analysis indicated no statistical mortality difference among studies with less than 30% of patients staged as NYHA I/II compared with those with greater than 90% (17% vs. 7.4%, \(P = 0.069 \)) (Figure 3(B)).

Cardiovascular mortality

Thirty-eight studies had observational outcomes for CV-related deaths among patients with CCC. The pooled estimated annual CV mortality rate was 6.3% (95% CI: 4.9–8.0; \(I^2 = 96.32\% \); \(T^2 = 0.52 \)) (Figures 3(A) and 4). Further breakdown of CV deaths revealed that HF deaths held a 3.5% annual risk (95% CI: 2.4–5.1; \(I^2 = 94.10\% \); \(T^2 = 0.93 \) ; 30 studies), SCDs carried a 2.6% risk (95% CI: 1.9–3.5; \(I^2 = 89.72\% \); \(T^2 = 0.53 \) ; 28 studies), and stroke deaths constituted a 0.4% annual risk (95% CI: 0.3–0.8; \(I^2 = 63.84\% \); \(T^2 = 0.49 \) ; 12 studies) (Figure 3(A), Supporting Information, Figures S3–S5). The cumulative probability of CV mortality was approximately 32% at 5 years, 55% at 10 years, and 70% at 15 years (Supporting Information, Figure S6).

Meta-regression findings of CV deaths coincided with those of all-cause mortality and showed low LVEF (coefficient = −0.05; 95% CI: −0.08, −0.02; \(P < 0.001 \)) associated with an increase in mortality risk. Age appeared to also inversely correlate with CV mortality (coefficient = −0.03; 95% CI: −0.07, −0.002; \(P = 0.04 \)) indicating that younger patients exhibited more CV mortality when adjusted by gender, ejection fraction, and proportion of NYHA I/II class (Supporting Information, Table S1). Patients staged C/D had a considerably higher CV and HF mortality risk than those staged B1/B2 (17.2% vs. 4.4%; and 12.3% vs. 1.6%) (Figure 3(D), Supporting Information, Table S2). Studies with CCC and HF or CRT exhibited the highest annual CV and HF mortality rates (Supporting Information, Figure S2 and Table S2). Pooled estimated annual rates of 4.4%, 4.9%, 6.7%, 11.3%, and 17.2% (\(P < 0.01 \)) were noted for stages B1/B2, B1/B2/C, B2/C, C, and C/D, respectively (Supporting Information, Table S2). Patients with LVEF < 35% also had a greater risk than those with normal ejection fraction (>55%) (11.8% vs. 3.7%, \(P = 0.004 \)) (Figure 3(C), Supporting Information, Table S2).

CCC staged as C/D had a notably higher mortality risk than stage B1/B2 (22.4% vs. 4.8%, \(P = 0.0001 \)) (Figure 3(D)). Pooled estimated annual rates revealed an incremental progression of 1%, 4.8%, 6.5%, 8.7%, 13.9%, and 22.4% for AHA stages B1, B1/B2, B1/B2/C, B2/C, C, and C/D (Supporting Information, Table S2). These high mortality rates among severely ill patients with advanced disease progression were further supported by the observed increased mortality based on the global ventricular dysfunction by the ejection fraction < 35% vs. >55% (16.2% vs. 2.5%; \(P = 0.0001 \)) (Figure 3(C), Supporting Information, Table S2). Of note, studies of patients with CCC with either congestive or stable HF presented with significant all-cause AMRs (27.1% and 17.1%) compared with studies with an ambulatory pool of patients or asymptomatic cohorts/without left ventricular dysfunction (3.3% and 1.8%; \(P = 0.0001 \)) (Supporting Information, Figure S2 and Table S2).
Supporting Information, Table S2. The estimated annual CV death rate decreases as the ejection fraction increases (Bubble plot, Supporting Information, Figure S7). Regarding the mode of death (annual rate of SCD vs. the annual rate of HF death), the first was higher in asymptomatic CCC or without left ventricular dysfunction (0.6% vs. 0.4%), ambulatory cohorts of patients with CCC (2.0% vs. 0.6%), and arrhythmic CCC cohort without an ICD (5.3% vs. 4.7%). In comparison,
Table 1 Baseline characteristics and clinical outcome measures in patients with chronic Chagas cardiomyopathy

Source	Study design	Country	Stage	Cases	Males %	Age	EF (%)	NYHA III (%)	NYHA IV (%)
Morillo et al. (2015)	RCT	Multicentre	B1/B2	2854	49	55.3	54.5	97.5	2.5
Costa et al. (2019)	Prospective	Brazil	B1/B2	75	61	48.4	41	92	8
Pedrosa et al. (2011)	Prospective	Brazil	B1/B2	130	41	50.7	NA	NA	NA
Santos et al. (2012)	RCT	Brazil	C/D	183	69	52.4	26.1	NA	NA
Nadruz et al. (2018)	Prospective	Brazil	C	159	61	55.8	31.8	NA	NA
Guajardo et al. (1984)	Prospective	Chile	C	54	43	NA	NA	NA	NA
Duarte et al. (2011)	Prospective	Brazil	B2/C	56	50	56	30	8	7
Sarabanda et al. (2011)	Prospective	Brazil	B2/C	56	55	55	42	98.2	1.8
Pett et al. (2009)	Prospective	Argentina	B1/B2	95	61	54.7	44	NA	NA
Peixoto et al. (2018)	Prospective	Brazil	B1/B2	396	36	62.5	49	94.9	5.1
Theodoropoulos et al. (2008)	Prospective	Brazil	B1/B2	127	69	54	33	NA	NA
DiToro et al. (2011)	Prospective	Multicentre	B2/C	148	73	60.1	40.1	88.2	11.8
Silva et al. (2000)	RCT	Brazil	B1/B2	78	58	46.4	47	84.6	15.4
Ayub-Ferreira et al. (2013)	Prospective	Brazil	C/D	55	56	49	34	56.5	43.5
Garcia et al. (2008)	Prospective	Brazil	B1/B2	612	45	48	56	NA	NA
Muratore et al. (2009)	Prospective	Multicentre	B1/B2/C	89	88	59	40	71.9	28.1
Dietrich et al. (2013)	Prospective	Brazil	B2/C	34	68	52.5	34.5	88.2	11.8
Pereira et al. (2014)	Prospective	Brazil	B2/C	65	68	56	NA	58.5	41.5
Pavao et al. (2018)	Prospective	Brazil	B2/C	111	68	60.4	41	81.4	18.6
Pimenta et al. (1999)	Prospective	Brazil	B1	55	60	45.8	NA	NA	NA
Acquatella et al. (1987)	Prospective	Brazil	B2/C	158	NA	56.3	NA	NA	NA
Gali et al. (2014)	Prospective	Brazil	B2/C	104	64	55.5	40	94.2	5.8
Nunes et al. (2012)	Prospective	Brazil	B2/C	232	62	48	35.7	74.6	25.4
Rassi et al. (2006)	Prospective	Brazil	B1/B2	424	58	47	NA	89.6	10.4
Barbosa et al. (2011)	Prospective	Brazil	C/D	246	65	55	35.2	68.3	31.7
Martinelli Filho et al. (2018)	Prospective	Brazil	C/D	115	65	56.7	25.5	15.7	84.3
Leite et al. (2003)	Prospective	Brazil	B2/C	115	60	52.3	49	83.5	16.5
Hagar et al. (1991)	Prospective	USA	B1/B2/C	25	28	53	NA	NA	NA
Araujo et al. (2014)	Prospective	Brazil	C	72	NA	63.4	29	18	82
Menezes Jr. et al. (2018)	Prospective	Brazil	B2/C	36	28	50.7	NA	NA	NA
Benchimol-Barbosa (2007)	RCT	Multicentre	C	38	68	60	27.5	78.9	21.1
Bocchi et al. (2018)	RCT	Multicentre	C	38	68	60	27.5	78.9	21.1
Cardinalli-Neto et al. (2011)	Prospective	Brazil	B1/B2/C	90	68	59	47	NA	NA
Cardinalli-Neto et al. (2011)	Prospective	Brazil	B2/C	19	63	57	18.6	100	0
Cardoso et al. (2010)	Prospective	Brazil	C/D	33	55	52.9	20.8	0	100
Carrasco et al. (1994)	Prospective	Venezuela	B2/C	289	60	56.5	NA	NA	NA
Da Fonseca et al. (2006)	Prospective	Brazil	Unknown	18	33	37.3	NA	NA	NA
De Souza et al. (2015)	Prospective	Brazil	B1/B2	373	44	47	61	NA	NA
Flores-Ocampo et al. (2009)	Prospective	Mexico	B2/C	21	62	61	30	66.7	33.3
Garillo et al. (2004)	Prospective	Multicentre	B2/C	230	58	63.4	37.4	81.2	18.8
Heringer-Walther et al. (2006)	Prospective	Brazil	C	32	41	50.7	31.3	56.3	43.7
Mady et al. (1994)	Prospective	Venezuela	B1/B2	104	100	40.3	37.4	29.8	70.2
Mendoza et al. (1986)	Prospective	Venezuela	B1/B2	15	67	47.9	56	93.3	6.7
Nunes et al. (2008)	Prospective	Brazil	B2/C	158	63	48.5	36.9	79.1	20.9
Senra et al. (2018)	Prospective	Brazil	B1/B2/C	130	46	53.6	43.3	89.2	10.8
Table 1 (continued)

Source	Study design	Country	Stagea	Cases	Males %	Age	EF (%)	NYHA I/II (%)	NYHA III/IV (%)
Shen et al. (2017)54	Prospective	Multicentre	C	195	66	59.6	28.5	93.3	6.7
Silva et al. (2015)55	Prospective	Brazil	B1	165	38	44.8	NA	NA	NA
De Melo et al. (2019)56	Retrospective	Brazil	B2/C	52	62	59.2	34.1	75	25
Viotti et al. (2004)57	Prospective	Argentina	B1	344	NA	48.6	60	NA	NA
Femenia et al. (2012)58	Retrospective	Argentina	B2/C	72	63	53.3	41.1	70.9	29.1
Martinelli Filho et al. (2012)59	Retrospective	Brazil	B2/C	116	63	54	42.4	82.8	17.2
Barbosa et al. (2013)60	Retrospective	Brazil	B2/C	65	70	59	37	76.9	23.1

AA, antiarrhythmics; ATMOSPHERE, Alikiren Trial to Minimize Outcomes in Patients with Heart Failure; BBB, bundle branch block; CCC, chronic Chagas cardiomyopathy; CHF, congestive heart failure; CI, confidence interval; CMR, cardiac magnetic resonance; EF, ejection fraction; EPS, electrophysiologic study; ET, exercise testing; HF, heart failure; ICD, implantable cardioverter-defibrillator; LV, left ventricle; NA, not available; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; PARADIGM-HF, Prospective Comparison of ARNI [Angiotensin Receptor–Neprilysin Inhibitor] with ACEI [Angiotensin-Converting–Enzyme Inhibitor] to Determine Impact on Global Mortality and Morbidity in Heart Failure; RCT, randomized controlled trial; SVT, sustained ventricular tachycardia; VT, ventricular tachycardia.

aPredominant or exclusive stage based on severity of involvement according to American Heart Association and American College of Cardiology guidelines.5

1bEstimated rate calculated by percentage of all-cause mortality divided by the study duration.

2cDual arm study: (i) Benznidazole (1431 patients)—726 males, 246 all-cause mortality, and 194 cardiac deaths; (ii) placebo (1423 patients)—682 males, 257 all-cause mortality, and 203 cardiac deaths.

3dCentres included El Salvador, Argentina, Bolivia, Brazil, and Colombia.

4eCentres included Mexico, South America, Puerto Rico, and Caribbean.

5fCentres included South America, Caribbean, Mexico, and Puerto Rico.

6gDual arm study: (i) ICD (76 patients)—48 males, 33 months of follow-up, 10 all-cause mortality, 1 sudden death, 5 heart failure deaths, and 3 noncardiac deaths (2 pneumonias and 1 abdominal sepsis); (ii) controls (28 patients)—18 males, 35 months of follow-up, 9 all-cause mortality, 7 sudden death, and 2 heart failure deaths.

7hDual arm study: (i) Los Andes class II (24 patients)—5 males and 1 all-cause mortality; (ii) Los Andes class III (12 patients)—5 males and 8 all-cause mortality.

8iDual arm study: (i) Ivabradine (20 patients)—13 males, 7 all-cause mortality, 4 heart failure deaths, 2 sudden deaths, and 1 noncardiac death; (ii) placebo (18 patients)—13 males, 9 all-cause mortality, 5 heart failure deaths, 1 sudden death, 2 other cardiac deaths, and 1 noncardiac death.

9jCentres included Argentina, Brazil, and Chile.

10kDual arm study: (i) Los Andes class II (185 patients)—105 males, 77 months of follow-up, 36 all-cause mortality, 12 sudden deaths, 12 stroke deaths, 6 heart failure deaths, 3 pulmonary thromboembolism deaths, and 3 noncardiac deaths; (ii) Los Andes class III (104 patients)—67 males, 28 months of follow-up, 68 all-cause mortality, 52 heart failure deaths, 14 sudden deaths, 1 stroke death, and 1 noncardiac death.

11lCentres included Mexico, Argentina, Brazil, Uruguay, Venezuela, Chile, and Cuba.

12mCentres included Argentina, Brazil, and Colombia.

13nDual arm study: (i) Kuschnir class 1 (257 patients)—10.7 years of follow-up, 4 all-cause mortality; (ii) Kuschnir class 2 (87 patients)—9.4 years of follow-up, 12 all-cause mortality.
Source	Population characteristics	Study duration (years)	All-cause mortality (%)	Cardiac deaths (%)	Heart failure deaths (%)	Stroke deaths (%)	Sudden deaths (%)	Rate estimate (%)	95% CI	% Weight	
Morillo et al. (2015) 9	Benznidazole vs. placebo	5.4	503 (17.6)	397 (13.9)	NA	NA	NA	3.3	3.0–3.5	2.07	
Costa et al. (2019) 1	Ability to perform ET	3.4	12 (16.0)	NA	NA	NA	NA	4.7	2.8–7.9	1.89	
Pedrosa et al. (2011) 11	Submitted to a cardiopulmonary ET	9.9	38 (29.2)	33 (25.4)	NA	NA	NA	2.9	2.3–3.9	2.02	
Santos et al. (2012) 12	Steam cell therapy vs. placebo	1	35 (19.1)	NA	NA	NA	NA	19.1	14.2–25.8	2.01	
Nadruz et al. (2018) 13	HF patients with EF ≤ 50%	2	55 (34.6)	NA	NA	NA	NA	17.3	14.0–21.4	2.04	
Guajardo et al. (1984) 14	Symptomatic ambulatory CCC cohort	3	14 (25.9)	11 (20.4)	7 (13.0)	1 (1.9)	3 (5.6)	8.6	5.5–13.6	1.93	
Duarte et al. (2011) 15	CCC with EF < 45%	1.8	11 (19.6)	NA	NA	NA	NA	10.9	6.4–18.5	1.88	
Sarabanda et al. (2011) 16	NSVT and VT not on ICD	16 (28.6)	16 (28.6)	5 (8.9)	0	11 (19.6)	8.9	5.9–13.5	1.95		
Pett et al. (2008) 17	Asymptomatic LV dysfunction	5.3	13 (13.7)	NA	NA	NA	NA	2.6	1.6–4.3	1.9	
Peixoto et al. (2018) 18	Pacemaker	1.9	65 (16.4)	46 (11.6)	21 (5.3)	2 (0.5)	22 (5.6)	8.6	6.9–10.8	2.04	
Theodoropoulos et al. (2008) 19	CHF	2.1	63 (49.6)	NA	NA	NA	NA	23.6	19.8–28.1	2.05	
DiToro et al. (2011) 20	ICD placement	1	15 (10.1)	10 (6.8)	3 (2.0)	3 (2.0)	4 (2.7)	10.1	6.3–16.4	1.91	
Silva et al. (2000) 21	NSVT + EPS	4.6	22 (28.2)	20 (25.6)	NA	1 (1.3)	16 (20.5)	6.1	4.3–8.7	1.98	
Ayub-Ferreira et al. (2013) 22	Chronic HF	3.5	31 (56.4)	26 (47.3)	15 (27.3)	2 (3.6)	8 (14.5)	16.1	12.8–20.3	2.04	
Garcia et al. (2008) 23	Ambulatory CCC cohort	5.6	91 (14.9)	76 (12.4)	21 (3.4)	5 (0.8)	50 (8.2)	2.7	2.2–3.2	2.05	
Muratore et al. (2009) 24	ICD placement	1	6 (6.7)	4 (4.5)	3 (3.4)	NA	1 (1.1)	6.7	3.1–14.6	1.7	
Dietrich et al. (2013) 25	Refractory SVT and catheter ablation	1	3 (8.8)	3 (8.8)	3 (8.8)	0	0	8.8	3.0–26	1.45	
Pereira et al. (2014) 26	ICD placement	3.3	13 (20.6)	10 (15.9)	7 (11.1)	NA	0	6.2	3.7–9.9	1.91	
Pavao et al. (2018) 27	Asymptomatic BBB + EPS	10.1	20 (36.4)	17 (30.9)	6 (10.9)	1 (1.8)	10 (18.2)	3.6	2.5–5.1	1.99	
Acquatella et al. (1987) 28	Symptomatic	2.3	45 (28.3)	NA	NA	NA	NA	12.3	9.6–15.8	2.03	
Gali et al. (2014) 29–30	CCC cohort	2.8	19 (18.3)	15 (14.4)	7 (6.7)	0	8 (7.7)	6.5	4.3–9.8	1.96	
Nunes et al. (2012) 31	SVT treated with ICD or amiodarone	3.4	96 (41.4)	96 (41.4)	NA	NA	NA	12.2	10.4–14.2	2.06	
Rassi et al. (2006) 32	Chronic HF	7.9	130 (30.7)	113 (26.7)	20 (4.7)	12 (2.8)	81 (19.1)	3.9	3.4–4.5	2.06	
Barbosa et al. (2011) 33	Ambulatory CCC cohort	2.3	119 (48.4)	NA	NA	NA	NA	21.0	18.5–23.9	2.06	
Martinelli Filho et al. (2018) 34	Chronic HF	2.4	70 (60.9)	59 (51.3)	51 (44.3)	NA	2 (1.7)	25.4	21.9–29.4	2.06	
Leite et al. (2003) 35	CHF + CRT	4.3	45 (39.1)	38 (33.0)	NA	NA	NA	27 (23.5)	9.1	7.2–11.4	2.04
Hagar et al. (1991) 36	CCC cohort in the USA	4.4	8 (32.0)	10 (38.0)	2 (8.0)	2 (8.0)	6 (24.0)	7.3	4.1–12.9	1.85	
Araujo et al. (2014) 37	CHF + CRT	3.9	35 (34.7)	19 (26.4)	15 (20.8)	1 (1.4)	2 (2.8)	8.9	6.5–12.2	2.0	
Menezes Jr. et al. (2018) 38	CHF + CRT	5.1	25 (50.0)	18 (36.0)	NA	NA	NA	9.8	7.4–12.9	2.02	
Benchimol-Barbosa (2007) 39	CCC + LV dysfunction	7	9 (25.0)	NA	NA	NA	NA	3.6	2.0–6.3	1.86	
Bocchi et al. (2018) 40	Chronic stable HF: ivabradine vs. placebo	1.1	16 (42.1)	14 (36.8)	9 (23.7)	3 (7.9)	38.3	26.4–55.6	1.98		
Cardinali-Neto et al. (2007) 41	ICD placement	2.1	31 (34.4)	31 (34.4)	24 (26.7)	NA	2 (2.2)	16.4	12.3–21.8	2.02	
Cardinalli-Neto et al. (2011) 42	ICD placement + CHF	0.8	2 (10.5)	NA	NA	NA	NA	13.1	3.5–48.8	1.27	
Cardoso et al. (2010) 43	Decompensated	2.1	22 (66.7)	NA	NA	NA	NA	31.8	24.9–40.4	2.03	
HF - NYHA IV	4.4	104 (36.0)	97 (33.6)	58 (20.1)	13 (4.5)	26 (9.0)	8.2	7.0–9.5	2.06		
Study duration (years)	Cardiac deaths (%)	Heart failure deaths (%)	Stroke deaths (%)	Sudden death deaths (%)	Rate estimatea 95% CI % Weight						
------------------------	---------------------	--------------------------	-------------------	------------------------	-----------------------------						
Da Fonseca et al. (2006)	3.3	4 (22.2)	3 (16.7)	0	6.7	2.8-16					
De Souza et al. (2009)	5.5	72 (16.7)	61 (14.6)	0	1.4	0.8-2.1					
Flores-Ocampo et al. (2009)	2.4	5 (23.8)	3 (14.3)	0	4.6	3.3-6.6					
Garillo et al. (2004)	2.5	43 (18.7)	29 (12.6)	0	7.5	5.7					
Heringer-Walther et al. (2006)	2.6	8 (25.0)	8 (25.0)	8 (25.0)	0	9.6	5.3-17.5				
Mady et al. (1994)	2.5	50 (48.1)	50 (48.1)	18 (17.3)	0	19.2					
Mendoza et al. (1986)	1.8	3 (20.0)	3 (20.0)	NA	2 (13.3)	11.1					
Nunes et al. (2008)	2.8	44 (22.8)	43 (22.3)	24 (12.1)	0	16.1					
Senra et al. (2018)	5.4	45 (34.6)	45 (34.6)	23 (17.7)	0	6.4					
Shen et al. (2015)	8.2	7 (4.2)	11 (21.2)	0	12.1	10.7					
Viotti et al. (2004)	4.2	4 (26.3)	16 (47.1)	NA	0	1.3					
Martinelli Filho et al. (2013)	3.4	21 (62.9)	28 (82.4)	23 (71.1)	0	2.5					
Femenia et al. (2012)	4.2	4 (5.6)	16 (47.1)	NA	0	1.3					
Martinelli Filho et al. (2015)	3.8	31 (26.7)	14 (12.1)	14 (12.1)	0	7.0					
Martinelli Filho et al. (2012)	3.8	31 (26.7)	14 (12.1)	14 (12.1)	0	7.0					
Viotti et al. (2004)	4.2	4 (26.3)	16 (47.1)	NA	0	1.3					
Senra et al. (2018)	2.8	44 (22.8)	43 (22.3)	24 (12.1)	0	16.1					
Shen et al. (2015)	8.2	7 (4.2)	11 (21.2)	0	12.1	10.7					
Femenia et al. (2012)	4.2	4 (5.6)	16 (47.1)	NA	0	1.3					
Martinelli Filho et al. (2015)	3.8	31 (26.7)	14 (12.1)	14 (12.1)	0	7.0					
Martinelli Filho et al. (2012)	3.8	31 (26.7)	14 (12.1)	14 (12.1)	0	7.0					
Viotti et al. (2004)	4.2	4 (5.6)	16 (47.1)	NA	0	1.3					
Senra et al. (2018)	2.8	44 (22.8)	43 (22.3)	24 (12.1)	0	16.1					
Shen et al. (2015)	8.2	7 (4.2)	11 (21.2)	0	12.1	10.7					

AA, antisympathetic; ATMOSPHERE, All Inhibitor Therapy in CHF with Reduced Ejection Fraction and Established CV Disease Study; BBB, bundle branch block; CCC, chronic Chagas cardiomyopathy; CHF, congestive heart failure; CI, confidence interval; CMR, cardiac magnetic resonance; EF, ejection fraction; EPS, electrophysiologic study; ET, exercise testing; HF, heart failure; ICD, implantable cardioverter-defibrillator; LV, left ventricular; NA, not available; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; PARADIGM-HF, Prospective Comparison of Angiotensin Neprilysin Inhibitor with Angiotensin-Converting-Enzyme Inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure; RCT, randomized controlled trial; SVT, sustained ventricular tachycardia; VT, ventricular tachycardia.

Note:
- Dual arm study: (i) Bendroflumethiazide (26 patients)—24 all-cause mortality, and 194 cardiac deaths; (ii) placebo (42 patients)—682 all-cause mortality, 257 cardiac deaths.
- Predominant or exclusive stage based on severity of involvement according to American Heart Association and American College of Cardiology guidelines.
- Estimated rate calculated by per cent mortality divided by the study duration.
- ESC Heart Failure 2021; 8.

References:
- ESC Heart Failure 2021; 8.
Figure 2 Forest plot of all-cause mortality in patients with chronic Chagas cardiomyopathy.

- Costa et al (2018) 3.4 12/75 -3.06 [-3.57, -2.54] 1.89
- Peirao et al (2011) 9.9 38/130 -3.52 [-3.79, -3.26] 2.02
- Nadruz et al (2018) 2 55/159 -1.75 [-1.97, -1.54] 2.04
- Guajardo et al (1984) 3 14/54 -2.45 [-2.90, -2.00] 1.93
- Duarte et al (2011) 1.8 11/56 -2.22 [-2.74, -1.69] 1.88
- Sarabandoa et al (2011) 3.2 16/56 -2.42 [-2.83, -2.00] 1.95
- Peti et al (2008) 5.3 13/95 -3.06 [-3.48, -2.64] 1.90
- Peixoto et al (2018) 1.9 65/396 -2.45 [-2.67, -2.23] 2.04
- Theophilopoulos et al (2008) 2.1 63/127 -1.44 [-1.62, -1.27] 2.05
- DiToro et al (2011) 1 15/148 -2.29 [-2.77, -1.81] 1.91
- Silva et al (2000) 4.6 22/78 -2.79 [-3.15, -2.44] 1.98
- Ayub-Ferreira et al (2013) 3.5 31/55 -1.83 [-2.06, -1.59] 2.04
- Garcia et al (2008) 5.6 91/612 -3.63 [-3.82, -3.44] 2.05
- Muratore et al (2009) 1 6/89 -2.70 [-3.47, -1.92] 1.70
- Dietrich et al (2013) 1 3/34 -2.43 [-3.51, -1.35] 1.45
- Pereira et al (2014) 3.3 13/65 -2.80 [-3.29, -2.32] 1.91
- Pavao et al (2018) 5.3 50/111 -2.47 [-2.67, -2.26] 2.05
- Pinnenta et al (1999) 10.1 20/55 -3.52 [-3.87, -2.97] 1.99
- Acquatella et al (1987) 2.3 45/159 -2.10 [-2.34, -1.85] 2.03
- Nunes et al (2012) 3.4 96/232 -2.11 [-2.26, -1.95] 2.06
- Rassi et al (2006) 7.9 130/424 -3.25 [-3.39, -3.11] 2.06
- Barbosa et al (2011) 2.3 119/246 -1.56 [-1.69, -1.43] 2.06
- Martiniello Filho et al (2018) 2.4 70/115 -1.37 [-1.52, -1.23] 2.06
- Lelé et al (2003) 4.3 45/115 -2.40 [-2.62, -2.17] 2.04
- Hagar et al (1991) 4.4 8/26 -2.62 [-3.19, -2.05] 1.85
- Arsuao et al (2014) 3.9 25/72 -2.42 [-2.74, -2.10] 2.00
- Menezes Jr et al (2018) 5.1 25/50 -2.32 [-2.60, -2.05] 2.02
- Cardinalli-Neto et al (2007) 2.1 31/90 -1.81 [-2.09, -1.52] 2.02
- Cardinalli-Neto et al (2011) 8 2/19 -2.03 [-3.34, -0.72] 1.27
- Cardoso et al (2010) 2.1 22/33 -1.15 [-1.39, -0.91] 2.03
- Da Fonseca et al (2006) 3.3 4/18 -2.70 [-3.56, -1.83] 1.63
- De Souza et al (2015) 5.5 72/373 -3.35 [-3.56, -3.14] 2.04
- Flores-Ocampo et al (2009) 2.4 5/21 -2.31 [-3.08, -1.55] 1.71
- Garillo et al (2004) 2.5 43/230 -2.59 [-2.86, -2.32] 2.02
- Heiring-Walther et al (2006) 2.6 8/32 -2.34 [-2.84, -1.74] 1.83
- Mady et al (1994) 2.5 50/104 -1.65 [-1.85, -1.45] 2.05
- Mendoza et al (1996) 1.8 3/15 -2.20 [-3.21, -1.19] 1.50
- Nunes et al (2006) 2.8 44/158 -2.31 [-2.56, -2.06] 2.03
- Senera et al (2018) 5.4 45/130 -2.75 [-2.86, -2.51] 2.04
- Shen et al (2017) 2.2 57/195 -2.02 [-2.24, -1.80] 2.04
- Silva et al (2015) 8.2 7/165 -5.26 [-5.90, -4.54] 1.74
- De Meio et al (2013) 1.3 11/52 -1.62 [-2.34, -1.29] 1.88
- Morillo et al (2015) 5.4 503/2864 -3.42 [-3.50, -3.34] 2.07
- Qa et al (2014) 2.8 19/104 -2.73 [-3.14, -2.32] 1.96
- Bocchi et al (2015) 1.1 16/98 -0.96 [-1.33, -0.59] 1.98
- Cerrato et al (1994) 4.4 104/289 -2.50 [-2.66, -2.35] 2.06
- Violli et al (2004) 10 18/344 -5.37 [-5.85, -4.89] 1.91
- Berchicco-Barbosa (2007) 7 9/36 -3.33 [-3.90, -2.77] 1.88
- Santos et al (2012) 1 35/183 -1.65 [-1.85, -1.36] 2.01
- Ferreira et al (2012) 4.2 4/72 -4.33 [-5.28, -3.37] 1.55
- Martiniello Filho et al (2018) 3.8 31/116 -2.65 [-2.96, -2.35] 2.01
- Barbosa et al (2013) 7.4 8/65 -1.79 [-2.44, -1.14] 1.80

- Overall -2.53 [-2.77, -2.30]

Heterogeneity: $I^2 = 0.70$, $H^2 = 97.74$%; $Q = 44.33$

Favor death

Random-effects REML model

ESC Heart Failure 2021; 8: 5466–5481
DOI: 10.1002/ehf2.13648
there was a higher annual rate of HF deaths in symptomatic CCC or with left ventricular dysfunction (4.3% vs. 1.9%), CCC with an ICD (4.4% vs. 2.0%), CCC with a CRT (10.1% vs. 0.7%), and CCC with stable HF (8.2% vs. 6.0%) (Supporting Information, Figure S2 and Table S2).

Noncardiac mortality

Nineteen studies had observational outcomes for noncardiac mortality among patients with CCC. The pooled estimated annual noncardiac mortality rate was 1.3% (95% CI: 0.9–1.9; \(I^2 = 75.06\% \); \(T^2 = 0.45 \)) [Figure 3(A), Supporting Information, Figure S8].

Sensitivity analysis of the overall and CV mortality, excluding each study, did not significantly change the overall annual rates. The recalculated overall mortality rate range was 7.7–8.4% and 6.0–6.5% for the CV rate. There was also no significant change in heterogeneity. Furthermore, overall and CV mortality mean effect sizes did not change after decreasing the variance to 0.25. A funnel plot for publication bias indicated missing studies in the bottom left-hand and right-hand side of the plot, suggesting asymmetry among smaller studies (Supporting Information, Figure S9).

Discussion

Cardiac morbidity and mortality due to Chagas disease remain substantial in Latin America. Compared with cardiomyopathy of other causes, this largely neglected tropical disease continues to account for a staggering record high AMR of 7.9%. We found a yearly CV mortality rate of 6.3% and a yearly non-CV mortality rate of 1.3%. We also found that the annual HF death rate was 3.5%, the SCD rate was 2.6%, and strokes carried a 0.4% yearly mortality risk. Although CV deaths are the principal cause of death in CCC, the predominant mode of death (HF or SCD) is still debated. Our review showed that the mode of death is conditioned by the characteristics of the studied populations. While the sudden annual death rates were higher than the HF rates in studies that included (i) ambulatory asymptomatic patients, (ii) patients without ventricular dysfunction, (iii) patients predominantly in NYHA class I/II, and (iv) patients with documented ventricular arrhythmias, not treated with an ICD, the contrary was observed in cohorts of patients (i) with symptomatic CCC, (ii) with left ventricular dysfunction or HF, and (iii) with an implanted ICD or CRT.

There was a proportional increase in mortality with increasing severity of the disease. The analysis revealed worse prognosis and higher mortality rates among studies with pa-
Figure 4 Forest plot of cardiovascular mortality in patients with chronic Chagas cardiomyopathy.

Study	Years	CV deaths/Total cases	Effect Size with 95% CI	Weight (%)
Pedrosa et al (2011)	9.9	33/130	-3.66 [-3.96, -3.37]	2.84
Guajardo et al (1984)	3	11/54	-2.69 [-3.22, -2.16]	2.60
Sarabanda et al (2011)	3.2	16/56	-2.42 [-2.83, -2.00]	2.73
Peixoto et al (2018)	1.9	46/396	-2.79 [-3.07, -2.52]	2.86
DiToro et al (2011)	1	10/148	-2.69 [-3.29, -2.10]	2.51
Silva et al (2000)	4.6	20/78	-2.89 [-3.26, -2.51]	2.76
Ayub-Ferreira et al (2013)	3.5	26/55	-2.00 [-2.28, -1.72]	2.85
Garcia et al (2008)	5.6	76/612	-3.81 [-4.02, -3.60]	2.90
Muratorte et al (2009)	1	4/89	-3.10 [-4.06, -2.14]	2.03
Dietrich et al (2013)	1	3/34	-2.43 [-3.51, -1.35]	1.87
Pereira et al (2014)	3.3	10/65	-3.07 [-3.64, -2.50]	2.55
Pavao et al (2018)	5.3	26/111	-3.12 [-3.46, -2.78]	2.60
Pimenta et al (1999)	10.1	17/55	-3.49 [-3.88, -3.09]	2.75
Nunes et al (2012)	3.4	96/232	-2.11 [-2.26, -1.95]	2.93
Rassi et al (2006)	7.9	113/424	-3.39 [-3.65, -3.23]	2.93
Martinelli Filho et al (2018)	2.4	59/115	-1.54 [-1.72, -1.36]	2.92
Leite et al (2003)	4.3	38/115	-2.57 [-2.83, -2.31]	2.87
Hagar et al (1991)	4.4	8/25	-2.62 [-3.19, -2.05]	2.54
Araujo et al (2014)	3.9	19/72	-2.69 [-3.08, -2.31]	2.76
Menezes Jr. et al (2018)	5.1	18/50	-2.65 [-3.02, -2.28]	2.77
Cardinalli-Noto et al (2007)	2.1	31/90	-1.81 [-2.09, -1.52]	2.85
Da Fonseca et al (2006)	3.3	3/18	-2.99 [-4.02, -1.96]	1.93
De Souza et al (2015)	5.5	61/373	-3.52 [-3.74, -3.29]	2.69
Flores-Ocampo et al (2009)	2.4	3/21	-2.82 [-3.87, -1.77]	1.91
Garrido et al (2004)	2.5	29/230	-2.99 [-3.33, -2.65]	2.80
Heringer-Walther et al (2006)	2.6	8/32	-2.34 [-2.94, -1.74]	2.51
Mady et al (1994)	2.5	50/104	-1.65 [-1.85, -1.45]	2.90
Mendoza et al (1986)	1.8	3/15	-2.20 [-3.21, -1.19]	1.96
Nunes et al (2008)	2.8	43/158	-2.33 [-2.59, -2.08]	2.87
Senera et al (2018)	5.4	28/130	-3.22 [-3.65, -2.89]	2.81
Shen et al (2017)	2.2	46/195	-2.23 [-2.49, -1.98]	2.87
Silva et al (2015)	8.2	4/165	-5.82 [-6.79, -4.86]	2.01
Morillo et al (2015)	5.4	397/2854	-3.66 [-3.75, -3.57]	2.95
Gali et al (2014)	2.8	15/104	-2.97 [-3.43, -2.50]	2.67
Bocchi et al (2018)	1.1	14/38	-1.09 [-1.51, -0.68]	2.73
Carrasco et al (1994)	4.4	97/289	-2.57 [-2.74, -2.41]	2.92
Martinelli Filho et al (2018)	3.8	14/116	-3.45 [-3.94, -2.96]	2.64
Barbosa et al (2013)	.74	4/65	-2.49 [-3.44, -1.54]	2.04

Overall

Heterogeneity: $I^2 = 52.52, t^2 = 96.32\%$, $I^2 = 27.17$

Test of $\theta = 0$: $Q(37) = 1208.25$, $p = 0.00$

Test of $\theta = 0$: $z = -22.36$, $p = 0.00$

Random-effects REML model
tients with advanced cardiomyopathy—staged as C/D and/or NYHA class III/IV—and patients with lower LVEF.

Assessing CCC clinical outcomes has been challenging due to the heterogeneity in studies related to study design, sample size, stage of the disease being studied, and characteristics of the population. We sought to alleviate some of the differences by adjusting mortality rates based on causality and staging. Our findings help explain the results of prior studies and reviews.

Several RCTs in the past decade, including the BENEFIT (2854 patients with CCC), a subanalysis of the PARADIGM/ATMOSPHERE, and SHIFT trials (very few patients with CCC), reported an all-cause AMR of 3.3%, 13.3%, and 38.3%, respectively.9,40,54 The pooled PARADIGM/ATMOSPHERE trial demonstrated a CV AMR of 10.7% compared with 2.6% in the BENEFIT trial. The lower rates seen may directly result from the patient’s disease severity. The BENEFIT trial classified three-quarters of patients as NYHA class I and had a mean LVEF ~ 54.5%. This meta-analysis consisted mainly of patients staged B2/C or higher, with an ICD, or stable HF with LVEF ≤ 45% (mean ~ 38%). In contrast, the high AMR demonstrated in the SHIFT trial may be accounted for by the small cohort comprised only of NYHA class II/III patients with severely depressed LVEF ~ 27.5%.

Despite the wide fluctuation of AMRs, cardiomyopathy in advanced stages and low LVEF are consistently associated with increased mortality. For example, cohorts described by Benchimol-Barbosa, Araujo et al., and Martinelli Filho et al. revealed a broad range of all-cause AMRs of 3.6%, 9.1%, and 25.4%, respectively.34,37,39 Similar to the RCTs, these studies had differences in NYHA functional classification and LVEF, accounting for variations in mortality rates.

The mortality attributable to Chagas cardiomyopathy surpasses that of other common forms of cardiomyopathy in South America. Shen et al. reported an annual all-cause and CV mortality rate of 10.3% and 8.1% among the ischaemic cardiomyopathy pool vs. 13.3% and 10.7% for patients with CCC.34 In another seminal study, Martinelli Filho et al. showed annual all-cause death rates of 10.4%, 11.3%, and 25.4% among dilated, ischaemic, and Chagas cardiomyopathy patient pools who underwent CRT.34 The biological basis for these differences in outcome remains poorly understood and potentially driven by repetitive cardiac insults from re-infections, cumulative effects of autonomic nervous system derangements and microvascular disturbances, as well as an increased frequency of ventricular arrhythmias, conduction abnormalities, right ventricular dysfunction, and thromboembolic events. In addition, patients with CCC face significant socio-economic barriers to care that limit early diagnosis and access to medical treatment and specialized cardiac interventions. Compared with other major drivers of worldwide mortality, CCC annual mortality is higher than those for AIDS and similar to leukaemia.61

We found higher annual rates of HF deaths among patients with more advanced cardiomyopathy. In contrast, the annual rates of SCD were non-statistically significant among some subgroups, that is, regardless of the AHA stage, LVEF, or NYHA class. Of note, there was a trend to higher SCD AMRs among patients with cardiomyopathy in the early stages. In some registries, ICDs have been shown to be an effective prevention tool against life-threatening ventricular arrhythmias in patients with CCC.24 The higher SCD mortality rate in this patient population may be related to the underappreciation of CCC in early stages as a highly arrhythmogenic condition or to limited access to specialized cardiac treatment interventions such as placement of an ICD. In our meta-analysis, the all-cause AMR for patients treated with an ICD was 8.7%, while for those treated with CRT was 13.2%. However, longitudinal studies are not the best tools to study the impact of treatments. Advanced therapies for CCC are usually associated with a worse prognosis because they are applied to patients with more severe diseases. The role of ICD and other therapies should be evaluated in an RCT.

The mortality risk substantially increases with worsening progression to more severe cardiomyopathy. The BENEFIT trial investigators also demonstrated that antiparasitic treatment did not halt cardiac progression, although the generalizability of the findings is controversial.9 The risk of cardiomyopathy development is 1.9% every year among patients with the chronic indeterminate form and 4.6% among those diagnosed with acute infection.4 Although antiparasitic treatment efficacy on Chagas cardiomyopathy progression has shown mixed results and lacks more validated RCT data, more recent observational studies showed benznidazole decreases the risk of progression.62 However, the effectiveness of antiparasitic treatment in CCC is not clear. Physicians must therefore remain cognizant of the potential consequences of deferring early treatment during the indeterminate chronic form or early cardiomyopathy. Public health policies should be redirected to the development and implementation of novel integrated preventive measures in endemic regions and increase awareness of this treatable condition in non-endemic regions.

Limitations

Potential limitations of this study may be attributed to the large number of longitudinal observational studies utilized. These studies varied in sample size, study design, epidemiologic settings, population characteristics, disease stages, and follow-up durations, translating to high heterogeneity. Not all studies consistently reported data on some important variables such as gender, mean age, mean LVEF, and NYHA functional class. Although information about total mortality was a prerequisite for inclusion in this meta-analysis, the studies grouped to estimate annual rates of the specific modes of
deaths were not the same due to missing information in some studies. Progression to mortality was also non-linear, as we assumed for this type of analysis. The classification of CCC into the predominant stages (B1, B2, C, and D, or a combination of them) was reported in only one study. In the others, we used the characteristics of the population to extrapolate this information, which might have introduced information bias into our results. The same was true for the eight clinical subgroups of patients with CCC we have chosen to meta-analyse studies of similar characteristics. Many of the studies were performed in Brazil and other Latin American countries where access to advanced care is not similar to those of the USA or Western Europe. However, this is the most complete review, including all manuscripts in English, Portuguese, and Spanish. The funnel plot for publication bias is often more liberal and gives more weightage to smaller studies. Some causes may be plausible contributors to low methodological quality among these studies resulting in asymmetry.63

Conclusions

The findings from this study highlight the insurmountable disease burden of many patients living with Chagas disease in the endemic regions. The management of established Chagas cardiomyopathy requires advanced medical tools and, for selected patients, cost-prohibitive interventions, procedures, and devices. As this neglected tropical disease affects the most disadvantaged populations, many potential life-saving interventions at later disease stages are out of reach. Public health policies and advocacy should centre on disease prevention, early diagnosis, and treatment.

Acknowledgements

No funding agencies had any role in the preparation, review, or approval of this manuscript.

Conflict of interests

The authors declare that there is no conflict of interest. Dr. Sillau reported receiving grants from the Alzheimer’s Associ-

References

1. PAHO. Strategy and Plan of Action for Chagas Disease Prevention, Control and Care. 2010. https://www.paho.org/en/documents/cd5016-strategy-and-plan-action-chagas-disease-prevention-control-and-care-2010

2. Manne-Goehler J, Umeh CA, Montgomery SP, Wirtz VJ. Estimating the burden of Chagas disease in the
12. Ribeiro Dos Santos R, Rassi S, Feitosa G, Sillau S, Archuleta S, Cornish E MZ. Joanna Briggs Institute Reviewer.

13. Nabudu W, Giolli-Pereira L, Bernardes-Pereira S, Marcondes-Braga FG, Fernandes-Silva MM, Silvestroni OM, Sposito AC, Ribeiro AL, Bacal F, Fernandes F, Krieger JE, Mansur AJ, Pereira AC. Temporal trends in the contribution of Chagas cardiomypathy to mortality among patients with heart failure. *Heart* 2018; 104:1522–1528.

14. Guajardo U, Beroiza AM, Saavedra C. Survival and clinical characteristics of Chagas’ cardiopathy. Follow-up of 54 cases. *Rev Med Chile* 1984; 112:1119–1123.

15. Duarte Jde O, Magalhaes LP, Santana OO, Silva LB, Simeo M, Axevedo DO, Barbosa Junior OA, Fagundes AA, Reis FJ, Correia LC. Prevalence and prognostic value of ventricular dysynchrony in Chagas cardiomypathy. *Arq Bras Cardiol* 2011; 96: 300–306.

16. Sarabanda AV, Marin-Neto JA. Predictors of mortality in patients with Chagas' cardiomypathy and ventricular tachycardia not treated with implantable cardioverter-defibrillators. *Pacing Clin Electrophysiol* 2011; 34: 54–62.

17. Pett MA, Viotti R, Armenti A, Bertocchi G, Lococho B, Alvarez MG, Viglino C. Predictors of heart failure in chronic chagasic cardiomypathy with asymptomatic left ventricular dysfunction. *Rev Esp Cardiol* 2008; 61: 116–122.

18. Peixoto GL, Martellini Filho M, Siqueira SF, Nishioka SAD, Pedrosa AAA, Teixeira RA, Costa K, Kall Filho R, Ramirez J.F. Predictors of death in chronic Chagas cardiomypathy patients with pacemaker. *Int J Cardiol* 2018; 250: 260–265.

19. Theodoropoulos TAD, Bestetti RB, Otaviano AP, Cordeiro JA, Rodrigues VC, Silva AC. Predictors of all-cause mortality in chronic Chagas’ heart disease in the current era of heart failure therapy. *Int J Cardiol* 2008; 126: 22–29.

20. di Toro A, Uzal-Brunetti M, Guinaga L, Battista L, Malan A, Greco O, Bencherit C, Duque M, Baranchuk A, Maloney J. Predictors of all-cause 1-year mortality in implantable cardioverter defibrillator patients with chronic Chagas cardiomyopathy. *Pacing Clin Electrophysiol* 2011; 34: 1063–1069.

21. Silva RM, Tavora MZ, Gondim FA, Mेठa N, Hara VM, Paola AA. Predictive value of clinical and electrophysiological variables in patients with chronic chagasic cardiomyopathy and nonsustained ventricular tachycardia. *Arq Bras Cardiol* 2000; 75: 33–47.

22. Ayub-Ferreira SM, Mangini S, Issa VS, Cruz FD, Bacal F, Guimarães GV, Chizzola PR, Concejito-Souza GE, Marcondes-Braga FG, Bocchi EA. Mode of death in Chagas heart disease: comparison with other etiologies. A subanalysis of the REMADHE prospective trial. *PLOS Neglected Tropical Dis [electronic resource]* 2013; 7: e2176.

23. Garcia MI, Sousa AS, Holanda MT, Haffner PMA, PEAAD B, Hasslocher-Moreno A, Xavier SS. O valor prognóstico da largura do QRS nos pacientes com cardiopatias chagásicas crónica. Rev SocER 2008; 21: 8–20.

24. Muratore CA, Batista Sa LA, Chiale PA, Eloy R, Tentori MC, Escudero J, Lima AM, Medina LE, Garillo R, Maloney J. Implantable cardioverter defibrillators and Chagas’ disease: results of the ICD Registry Latin America. *Eurosope* 2009; 11: 164–168.

25. Dietrich CO, Henz BD, Dalegrave C, Backes LM, Costa GDF, Cirenza C, Paola AAV. Mapeamento endocárdico e epicárdico para a ablação do substrato arritmogênico de pacientes com cardiomiopatia chagásica e taquicardia ventricular refratária ao tratamento farmacológico. RELAMPA, Rev Lat-Am Marcapasso Arritm 2013; 26: 82–88.

26. Pereira TF, Rocha EA, Monteiro Mde P, Neto AC, Daher Ede F, Sobrinho CR, Pires Neto RDJ. Long-term follow-up of patients with chronic Chagas disease and implantable cardioverter-defibrillator. *Pacing Clin Electrophysiol* 2014; 37: 751–756.

27. Pavão MLRC, Arfelli E, Scorzoni-Filho A, Rassi A, Pazin-Filho A, Pavão RB, Marin-Neto JA, Schmidt A. Long-term follow-up of Chagas heart disease patients receiving an implantable cardioverter-defibrillator for secondary prevention. *PACE* - *Pacing Clin Electrophysiol* 2018; 41: 583–588.

28. Pimenta J, Valente N, Miranda M. Long-term follow up of asymptomatic chagasic individuals with intraventricular conduction disturbances, correlating with non-chagasic patients. *Rev Soc Bras Medicin Trope* 1999; 32: 621–631.

29. Acquatella H, Cataliotti F, Gomez-Mancebo JR, Davalos V, Villalobos L. Long-term control of Chagas disease in Venezuela: effects on serologic findings, electrocardiographic abnormalities, and clinical outcome. *Circulation* 1987; 76: 556–562.

30. Gali WI, Sarabanda AV, Baggio JM, Ferreira LG, Gomes GG, Marin-Neto JA, Junqueira LF. Implantable cardioverter-defibrillators for treatment of sustained ventricular arrhythmias in patients with Chagas’ heart disease: comparison with a control group treated with amiodarone alone. *Eurosope* 2014; 16: 674–680.

31. Nunes MF, Colosimo EA, Reis RC, Barbosa MM, da Silva JL, Barbosa F, Botoni FA, Ribeiro AL, Rocha MO. Different prognostic impact of the tissue Doppler-derived E/e’ ratio on mortality in Chagas cardiomyopathy patients with heart failure. *J Heart Lung Transplant* 2012; 31: 634–641.

32. Rassi AR, Rassi A, Little WC, Xavier SS, Rassi SG, Rassi AG, Hasslocher-Moreno A, Sousa AS, Scannavacca MI. Development and validation of a risk score for predicting
death in Chagas' heart disease. *N Engl J Med* 2006; 355: 799–808.

33. Barbosa AP, Cardinalli-Neto A, Otaviano AP, da Rocha BF, Bestetti RB. Comparison of outcome between Chagas cardiomyopathy and idiopathic dilated cardiomyopathy. *Arq Bras Cardiol* 2011; 97: 517–525.

34. Martinelli Filho M, de Lima PG, de Siqueira SF, Martins SAM, Nishioka SAD, Pedrosa AAA, Teixeira RA, Dos Santos JX, Costa R, Kalil Filho R, Ramires JAF. A cohort study of cardiac resynchronization therapy in patients with chronic Chagas cardiomyopathy. *Euroirace 2018; 20: 1813–1818.

35. Leite LR, Fenelon G, Simes A Jr, Silva GG, Friedman PA, de Paola AA. Clinical usefulness of electrophysiologic testing in patients with ventricular tachycardia and chronic Chagas cardiomyopathy treated with amiodarone or sotalol. *J Cardiovasc Electrophysiol* 2003; 14: 567–573.

36. Hagar JM, Rahimtoola SH. Chagas' heart disease in the United States. *N Engl J Med* 1991; 325: 763–768.

37. Araujo EF, Chamlian EG, Peroni AP, Pereira WL, Gandra SM, Rivetti LA. Cardiac resynchronization therapy in patients with chronic Chagas cardiomyopathy: long-term follow up. *Rev Bras Cir Cardiol* 2014; 29: 31–36.

38. Menezes Junior ADS, Lopes CC, Cavalcante PF, Martins E. Chronic Chagas cardiomyopathy patients and resynchronization therapy: a survival analysis. *Braz J Cardiovasc Surg* 2018; 33: 82–88.

39. Benchimol-Barbosa PR. Noninvasive prognostic markers for cardiac death and ventricular arrhythmia in long-term follow-up of subjects with chronic Chagas' disease. *Braz J Med Biol Res* 2007; 40: 167–178.

40. Bocchi EA, Rassi S, Guimarães GV, Argentino C, Brazil SI. Safety profile and efficacy of ivabradine in heart failure due to Chagas heart disease: a post hoc analysis of the SHIFT trial. *ESC Heart Failure* 2018; 5: 249–256.

41. Cardinalli-Neto A, Bestetti RB, Cordeiro JA, Rodrigues VC. Predictors of all-cause mortality for patients with chronic Chagas' heart disease receiving implantable cardioverter-defibrillator therapy. *J Cardiovasc Electrophysiol* 2007; 18: 1236–1240.

42. Cardinalli-Neto A, Nakazone MA, Grassi IV, Tavares BG, Bestetti RB. Implantable cardioverter-defibrillator therapy for primary prevention of sudden cardiac death in patients with severe Chagas cardiomyopathy. *Int J Cardiol* 2011; 150: 94–95.

43. Cardoso J, Novais M, Ochial M, Regina K, Morgado P, Munhoz R, Brancalhão E, Lima M, Barretto ACP. Chagas cardiomyopathy: prognosis in clinical and hemodynamic profile. *Arq Bras Cardiol* 2010; 95: 518–523.

44. Carrasco HA, Parada H, Guerrero L, Duque M, Durán D, Molina C. Prognostic implications of clinical, electrocardiographic and hemodynamic findings in chronic Chagas' disease. *Int J Cardiol* 1994; 43: 27–38.

45. da Fonseca SMS, Belo LG, Carvalho H, Araújo N, Munhoz C, Siqueira L, Maciel W, Andréa E, Até J. Clinical follow-up of patients with implantable cardioverter-defibrillator. *Arq Bras Cardiol* 2006; 88: 8–16.

46. de Souza ACJ, Salles G, Hasslocher-Moreno AM, de Sousa AS, Alvarenga Americano do Brasil PE, Saraiva RM, Xavier SS. Development of a risk score to predict sudden death in patients with Chagas' heart disease. *Int J Cardiol* 2015; 187: 700–704.

47. Flores-Ocampo J, Nava S, Márquez MF, Gómez-Flores J, Colín L, López A, Celaya G, Acquatella H, Casal H, Tortoledo F. Clinical predictors of ventricular arrhythmia storms in Chagas cardiomyopathy patients with implantable defibrillators. *Arch Med* 2009; 16: 263–267.

48. Garillo R, Greco OT, Oseroff O, Lucchese F, Fuganti C, Montenegro JL, Arocha AF, Medina JC, Sirena JN. Cardiodesfibrilador implantable como Prevenção Secundária na Enfermedad de Chagas. Los Resultados del Estudio Latinoamericano ICD-LA-BOR. *Rebmpla* 2004; 17: 169–177.

49. Heringer-Walther S, Moreira MCV, Wessel N, Wang Y, Ventura TM, Schultheiss H-P, Walther T. Does the C-type natriuretic peptide have prognostic value in Chagas disease and other dilated cardiomyopathies? *J Cardiovasc Pharmacol* 2006; 48: 293–298.

50. Mady C, Cardoso RH, Barretto AC, da Luz PL, Bellotti G, Pileggi F. Survival and predictors of survival in patients with congestive heart failure due to Chagas' cardiomyopathy. *Circulation* 1994; 90: 2052–2062.

51. Mendoza I, Camardo J, Moleiro F, Fuganti C, Montenegro JL, Arocha AF, da Silva GMS, Mediano CGS, Amaral CFS. Predictive factors for secondary prevention in heart failure patients. *J Cardiovasc Electrophysiol* 2019; 30: 2448–2452.

52. Viotti RJ, Vigliano C, Lauellosa S, Lococo B, Petti M, Bertocchi G, Ruiz Vera B, Armenti H. Value of echocardiography for diagnosis and prognosis of chronic Chagas disease cardiomyopathy without heart failure. *Heart* 2004; 90: 655–660.

53. Femenia F, Arce M, Arrieta M, McIntyre W, Baranchuk A. ICD implant without defibrillation threshold testing: patients with Chagas disease versus patients with ischemic cardiomyopathy. *J Innov Card Rhythm Manag* 2012; 3: 662–667.

54. Martinelli M, de Siqueira SF, Sterneck EB, Rassi A Jr, Costa R, Ramires JA, Kalil FR. Long-term follow-up of implantable cardioverter-defibrillator for secondary prevention in Chagas' heart disease. *Am J Cardiol* 2012; 110: 1040–1045.

55. Barbosa MP, da Costa Rocha MO, de Oliveira AB, Lombardi F, Ribeiro AL. Efficacy and safety of implantable cardioverter-defibrillators in patients with Chagas disease. *Europace* 2013; 15: 957–962.

56. Marion BJ. Clinical course and management of hypertrophic cardiomyopathy. *N Engl J Med* 2018; 379: 655–668.

57. Hasslocher-Moreno AM, Saraiva RM, Sangenis LHC, Xavier SS, de Sousa AS, Costa AR, de Holanda MT, Veloso HH, Mendes F, Costa FAC, Boia MN, Brasil P, Carneiro FM, da Silva GMS, Mediano MFF. Benzindazole decreases the risk of chronic Chagas disease progression and cardiovascular events: a long-term follow up study. *EClinicalMedicine* 2021; 31: 100694.

58. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Molder D, Higgins JP. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ* 2011; 343: d4002.