INVERSE-SYST.LIB
Singular library for computing
Macaulay’s inverse systems *

Juan Elias †
January 9, 2015

For J.L. Sánchez Palacios
who loved algebra with passion.

Abstract
In this note we review the Singular library INVERSE-SYST.LIB that implements
Macaulay’s correspondence and other related constructions for local rings.

1 Introduction
Let k be an arbitrary field. Let $R = k[[x_1, \ldots, x_n]]$ be the ring of the formal series with
maximal ideal $m = (x_1, \ldots, x_n)$ and let $S = k[x_1, \ldots, x_n]$ be a polynomial ring, we denote
by $m = (x_1, \ldots, x_n)$ the homogeneous maximal ideal of S.

In 1916 Macaulay stated a one-to-one correspondence between Artin Gorenstein ideals
of R and polynomials of S, [13]. This correspondence can be extended to Artin ideals of R
and finitely sub-R-modules of S. Recall that Macaulay’s correspondence is a particular case
of Matlis duality, see Theorem 2.3 and Proposition 2.4.

Classically Macaulay’s correspondence has been mainly used for studying homogenous
ideals, [11], [12]. Recently Macaulay’s correspondence has been applied to the classification
of local Artin Gorenstein algebras, see [6], [1], [7], [8]. Most of the examples appearing in
these papers have been computed by using Singular, [3].

In this note we review the main commands of the Singular library INVERSE-SYST.LIB
that we used for these computations, [5]. The main purpose of this library is to implement

\footnotesize *

2010 Mathematics Subject Classification. Primary 13H10; Secondary 13P99;
Key words and Phrases: Artinian rings, Gorenstein ideals, Hilbert functions.

† Partially supported by MTM2013-40775-P
Macaulay’s correspondence if the action of \(R \) in \(E_R(k) = S \) is defined by differentiation or contraction, Theorem[2,2] We also implement some useful operations of \(S \) as \(R \)-module. See Section[4] for a listing of all commands of INVERSE-SYST.LIB. In Section[5] we give a new proof of the classification of Artin Gorenstein local rings with Hilbert function \(\{1, 3, 3, 1\} \) by using INVERSE-SYST.LIB and the Weierstrass equation of an elliptic curve instead of Legendre equation as it was done in [6].

2 Macaulay’s correspondence

Let \(A = R/I \) be an Artin ring with maximal ideal \(n = m/I \). The Hilbert function of \(A \) is the numerical function \(HF_A : \mathbb{N} \rightarrow \mathbb{N} \) defined by \(HF_A(i) = \dim_k(n^i/n^{i+1}), i \geq 0. \) The socle degree of \(A \) is the last integer \(s \) such that \(HF_A(s) \neq 0. \) The socle of \(A \) is the \(k \)-vector subspace of \(\mathcal{A} soc(A) = (0 :_A n) \), and the Cohen-Macaulay type of \(A \) is \(\tau(A) = \dim_k(soc(A)). \)

Definition 2.1. An Artin ring \(A \) with socle degree \(s \) is level if \(soc(A) = n^s. \) In particular, \(A \) is Gorenstein iff \(\tau(A) = 1. \)

The function \texttt{isAG(I)} returns \(-2\) if the quotient \(A = R/I \) is not Artin, returns \(-1\) if \(A \) is Artin but not Gorenstein and returns the socle degree of \(A \) if the ring \(A \) is an Artin Gorenstein ring. A similar function is implemented for checking if \(A \) is level, see Section[4].

The functions \texttt{socle} and \texttt{cmType} compute the socle and the Cohen-Macaulay type of \(A. \)

```plaintext
// we define the ring r
>ring r=0,(x(1..3)),ds;
// loading the library
>LIB "inverse-syst-v.4.lib";
// the quotient r/i is not Artin:
>ideal i=x(1)^2+x(2)^3, x(2)^4;
>isAG(i);
-2
// the quotient r/i is Artin but Gorenstein:
>ideal i=x(1)^2+x(2)^3, x(2)^4+x(1)^2, x(3)^2+x(1)*x(2),
   x(1)*x(2)^2*x(3);
>isAG(i);
-1
// the quotient r/i is Artin Gorenstein and we get
// the socle degree
> ideal i=x(1)^2+x(2)^3, x(2)^4+x(1)^2, x(3)^2+x(1)*x(2);
>isAG(i);
4
// we define an Artin no Gorenstein ideal:
> ideal i=x(1)^2+x(2)^3, x(2)^4+x(1)^2, x(3)^2+x(1)*x(2),
   x(1)*x(2)^2*x(3);
>isAG(i);
-1
// we compute the socle ideal of r/i
```

2
The polynomial ring S can be considered as R-module with two linear structures: by derivation and by contraction. If $\text{char}(k) = 0$, the R-module structure of S by derivation is defined by

$$ R \times S \rightarrow S $$

$$(x^\alpha, x^\beta) \mapsto x^\alpha \circ x^\beta = \begin{cases} \frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \beta \geq \alpha \\ 0, & \text{otherwise} \end{cases}$$

where for all $\alpha, \beta \in \mathbb{N}^n$, $\alpha! = \prod_{i=1}^n \alpha_i!$

If $\text{char}(k) \geq 0$, the R-module structure of S by contraction is defined by:

$$ R \times S \rightarrow S $$

$$(x^\alpha, x^\beta) \mapsto x^\alpha \circ x^\beta = \begin{cases} x^{\beta-\alpha} & \beta \geq \alpha \\ 0, & \text{otherwise} \end{cases}$$

In Singular we can use the above products as follows:

```plaintext
> ideal F=x(1)^2*x(3)^4+ x(2)^3*x(1)*x(3)+x(2)^5;
> diff(x(1)^2,F);  
_1[1]=2*x(3)^4 

> contract(x(1)^2,F); 
_1[1]=x(3)^4
```

It is easy to prove that for any field k there is a R-module homomorphism

$$ \sigma : (S, \text{der}) \rightarrow (S, \text{cont}) $$

$$ x^\alpha \mapsto \alpha! x^\alpha $$

If $\text{char}(k) = 0$ then σ is an isomorphism of R-modules. The R-module S is the injective hull $E_R(k)$ of the R-module k:

Theorem 2.2. ([10]) If k is of characteristic zero then

$$ E_R(k) \cong (S, \text{der}) \cong (S, \text{cont}). $$

If k is of positive characteristic then

$$ E_R(k) \cong (S, \text{cont}). $$
Given a commutative ring R we denote by $R\text{-mod}$, resp. $R\text{-mod.Noeth}$, $R\text{-mod.Artin}$, the category of R-modules, resp. category of Noetherian R-modules, Artinian R-modules. The Matlis dual of an R-module M is $M^\vee = \text{Hom}_R(M, E_R(k))$. We write $(-)^\vee = \text{Hom}_R(-, E_R(k))$, which is an additive contravariant exact functor from the category $R\text{-mod}$ into itself.

Theorem 2.3 (Matlis duality). The functor $(-)^\vee$ is contravariant, additive and exact, and defines anti-equivalence between $R\text{-mod.Noeth}$ and $R\text{-mod.Artin}$ (resp. between $R\text{-mod.Artin}$ and $R\text{-mod.Noeth}$). The composition $(-)^\vee \circ (−)^\vee$ is the identity functor of $R\text{-mod.Noeth}$ (resp. $R\text{-mod.Artin}$). Furthermore, if M is a R-module of finite length then $\ell_R(M^\vee) = \ell_R(M)$.

From the previous result we can recover the classical result of Macaulay, [13], for the power series ring, see [9], [12]. If $I \subset R$ is an ideal, then $(R/I)^\vee$ is the sub-R-module of S

$$I^\perp = \{ g \in S \mid I \circ g = 0 \},$$

this is the Macaulay’s inverse system of I. Given a sub-R-module M of S then dual M^\vee is an ideal of R

$$M^\perp = \{ f \in R \mid f \circ g = 0 \text{ for all } g \in M \}.$$

Proposition 2.4 (Macaulay’s duality). Let $R = k[x_1, \ldots, x_n]$ be the n-dimensional power series ring over a field k. There is a order-reversing bijection \perp between the set of finitely generated sub-R-submodules of $S = k[y_1, \ldots, y_n]$ and the set of m-primary ideals of R given by: if M is a submodule of S then $M^\perp = (0 : M)$, and $I^\perp = (0 : S I)$ for an ideal $I \subset R$.

Given a polynomial $H \in S$ of degree l we denote by $\text{top}(H)$ the degree l homogeneous form of H.

Proposition 2.5 (Proposition 3.7 and Corollary 3.8 [11], [2]). Let $A = R/I$ be an Artin ring of socle degree s and Cohen-Macaulay t. The following conditions are equivalent:

(i) A is level,

(ii) I^\perp is generated by t polynomials $H_1, \ldots, H_t \in S$ such that $\deg(H_i) = s$, for $i = 1, \ldots, t$, and the homogeneous forms $\text{top}(H_1), \ldots, \text{top}(H_t)$ are k–linear independent.

In particular, $A = R/I$ is Gorenstein of socle degree s if and only if I^\perp is a cyclic R-module generated by a polynomial of degree s.

Given a collection of polynomials $H_1, \ldots, H_t \in S$ we denote by $\langle H_1, \ldots, H_t \rangle$ the sub-R-module of S generated by H_1, \ldots, H_t. Notice that $\langle H_1, \ldots, H_t \rangle$ is not an ideal of S, is the k-vector space generated by the collection H_1, \ldots, H_t and their derivatives of any order. Notice that in Singular ideals are handled by the list of a given system of generators. In
the library \textsc{inverse-syst.lib} the sub-R-modules of S are handled by using the Singular's structure of ideal, i.e. by the list of a given system of generators.

We denote by $S_{\leq i}$ (resp. $S_{< i}$, resp. S_i), $i \in \mathbb{N}$, the k-vector space of polynomials of S of degree less or equal (resp. less, resp. equal to) to i, and we consider the following k-vector space

$$(I^\perp)_i := \frac{I^\perp \cap S_{\leq i} + S_{< i}}{S_{< i}}.$$

\textbf{Proposition 2.6.} \((\mathbb{P})\) For all $i \geq 0$ it holds

$$\text{HF}_A(i) = \dim_k (I^\perp)_i.$$

In the library \textsc{inverse-syst.lib} Macaulay’s correspondence has been programmed with respect the two R-module structures of S. i.e. with respect to the differentiation and with respect to the contraction. Here we will show how works Macaulay’s correspondence with respect the differentiation. Recall that for technical reasons the sub-R-modules of S are handled in \textsc{inverse-syst.lib} by using the Singular’s structure of ideal.

The command \texttt{invSyst} computes the inverse system $I^\perp \subset S$ of an ideal I of R, the command \texttt{idealAnn} computes the annihilator $M^\perp \subset R$ of a finitely sub-R-module M of S.

In the next example we will show that the composition \texttt{idealAnn} \circ \texttt{invSyst} is the identity map on the set of Artin ideals as Proposition 2.4 predicts.

```plaintext
> ring r=0,(x(1..3)),ds;
> LIB "inverse-syst-v.4.lib";
// we define an ideal i of r, notice that the first generator is
// a random polynomial with monomials of degree between 2 and 3
// and random coefficients between -2 and 2. The second generator
// is a random homogenous form of degree 3 and coefficients
// between -1 and 1.
> ideal i=genPole(2,3,2), genPole(3,3,1), x(2)^3+x(1)*x(3)^4,
  x(1)^2+x(2)^2*x(3);
> i;
```

```plaintext
i[1]=2*x(1)^2+2*x(2)^2-2*x(1)*x(3)+2*x(2)*x(3)-x(3)^2-2*x(1)^3
   +x(1)^2*x(2)+2*x(1)*x(2)^2-2*x(2)^3-2*x(1)^2*x(3)
   +2*x(1)*x(2)*x(3)+2*x(2)^2*x(3)-2*x(2)*x(3)^3
i[2]=-x(1)^2*x(2)^2-2*x(2)^3+3*x(1)*x(2)*x(3)+x(2)^2*x(3)+x(1)*x(3)^2
   +x(3)^3
i[3]=x(2)^3+x(1)*x(3)^4
i[4]=x(1)^2+x(2)^2*x(3)
```

// we compute the inverse system of i:
```plaintext
> ideal iv=invSyst(i);
> iv;
```

```plaintext
iv[1]=3*x(1)^2+69*x(2)^2-42*x(1)*x(2)*x(3)-3*x(2)^2*x(3)
   -42*x(1)*x(3)^2+15*x(2)*x(3)^2+22*x(3)^3
iv[2]=24*x(1)*x(3)+3*x(1)*x(2)^2+6*x(1)*x(3)^2-2*x(3)^3
```

```
```
// Notice that iv is not cyclic so i is not Gorenstein
// we compute the annihilator of iv. Should be the ideal i.
> ideal j=idealAnn(iv);
> j;
j[1]=7*x(1)^2+x(1)*x(2)*x(3)
j[2]=14*x(2)^2-7*x(1)*x(3)+14*x(2)*x(3)-7*x(3)^2+28*x(1)*x(2)^2-52*x(1)*x(2)*x(3)+196*x(2)^2*x(3)^2-98*x(2)*x(3)^2
nj[3]=343*x(1)*x(2)*x(3)-686*x(2)^2*x(3)+343*x(2)*x(3)^2
nj[4]=5*x(1)*x(3)^2-8*x(2)*x(3)^2+5*x(3)^3
nj[5]=x(2)*x(3)^3
nj[6]=x(3)^4
// we check that i and j are the same ideal:
> eqIdeal(i,j);
1

In the next example we will show that the composition \text{invSyst} \circ \text{idealAnn} is the identity map on the set of finitely sub-R-modules of S as Proposition 2.4 predicts.

// We start with a random polynomial
> ideal q=genPol(2,3,2);
> q;
q[1]=2*x(1)^2-2*x(1)*x(2)+2*x(2)^2+2*x(1)*x(3)-2*x(2)*x(3)
-x(3)^2+x(1)^2+2*x(2)+2*x(1)*x(2)^2-2*x(2)^3
-2*x(1)*x(2)*x(3)+x(3)^2
// we compute the annihilator qa of q.
// The ideal qa is a Gorenstein ideal.
> ideal qa=idealAnn(q);
> qa;
qa[1]=4*x(1)^2-17*x(1)*x(2)-5*x(2)^2+12*x(2)*x(3)+x(1)^3
qa[2]=2*x(1)*x(2)+2*x(2)^2-8*x(1)*x(3)-3*x(1)^2+2*x(2)
qa[3]=x(1)*x(3)-x(3)^2+2*x(1)*x(2)*x(3)
qa[4]=x(2)^2+6*x(1)*x(2)*x(3)
qa[5]=x(2)^2+2*x(2)*x(3)^2
qa[6]=x(3)^3
// We get that qa is a Gorenstein ideal and the socle degree
// of r/i is three that coincides with the degree of q:
> isAG(qa);
3
// we compute the inverse system of qa
> ideal q2=invSyst(qa);
> q2;
q2[1]=6*x(1)*x(2)-24*x(1)*x(3)+22*x(3)^2+17*x(1)^3
+34*x(1)^2-34*x(1)*x(2)^2+34*x(2)^3
+34*x(1)*x(2)*x(3)+34*x(2)*x(3)^2+17*x(2)*x(3)^2
// from Macaulay’s correspondence q and q2 should coincide:
> eqModIH(q,q2);
1
3 A case study: Artin Gorenstein rings with Hilbert function \{1, 3, 3, 1\}

As a corollary of the main result of [6] we got the classification of Artin Gorenstein local rings with Hilbert function \(\{1, 3, 3, 1\}\) by using the Legendre equation of an elliptic curve. In this section we recover this classification by using the Weierstrass equation of an elliptic curve and the library \textsc{Inverse-syst.lib}.

Theorem 3.1 ([6]). The classification of Artin Gorenstein local \(k\)-algebras with Hilbert function \(HF_A = \{1, n, n, 1\}\) is equivalent to the projective classification of the hypersurfaces \(V(F) \subset \mathbb{P}^{n-1}_k\) where \(F\) is a degree three non degenerate form in \(n\) variables.

See [6] for the classification of Artin Gorenstein local \(k\)-algebras with Hilbert function \(HF_A = \{1, n, n, 1\}\) for \(n = 1, 2\). Assume \(n = 3\). Any plane elliptic cubic curve \(C \subset \mathbb{P}^2_k\) is defined, in a suitable system of coordinates, by a Weierstrass’ equation, \cite{[14]} proof of Proposition 1.4,

\[
W(a, b) = x_2^2x_3 - x_1^3 + ax_1x_3^2 + bx_3^3
\]

with \(a, b \in k\) such that \(4a^3 + 27b^2 \neq 0\). The \(j\) invariant of \(C\) is

\[
j(a, b) = 1728 \frac{4a^3}{4a^3 + 27b^2}
\]

It is well known that two plane elliptic cubic curves \(C_i = V(W_{a_i, b_i}) \subset \mathbb{P}^2_k, i = 1, 2\), are projectively isomorphic if and only if \(j(a_1, b_1) = j(a_2, b_2)\).

For elliptic curves the inverse moduli problem can be done as follows. We denote by \(W(j)\) the following elliptic curves with \(j\) as moduli: \(W(0) = x_2^2x_3 + x_2x_3^2 - x_1^3\), \(W(1728) = x_2^2x_3 - x_1x_3^2 - x_1^3\), and for \(j \neq 0, 1728\)

\[
W(j) = (j - 1728)(x_2^2x_3 + x_2x_3^2 - x_1^3) + 36x_1x_3^2 + x_3^3.
\]

We will show by using the library \textsc{Inverse-syst.lib} that:

Proposition 3.2. Let \(A\) be an Artin Gorenstein local \(k\)-algebra with Hilbert function \(HF_A = \{1, 3, 3, 1\}\). Then \(A\) is isomorphic to one and only one of the following quotients of \(R = k[[x_1, x_2, x_3]]\):

Model for \(A = R/I\)	Inverse system \(F\)	Geometry of \(C = V(F) \subset \mathbb{P}^2_k\)
\((x_1^2, x_2^2, x_3^2)\)	\(x_1x_2x_3\)	Three independent lines
\((x_1^2, x_1x_3, x_1x_2^2, x_2^2, x_3^2 + x_1x_2)\)	\(x_2(x_1x_2 - x_3^2)\)	Conic and a tangent line
\((x_1^2, x_2^2 + 6x_1x_2)\)	\(x_3(x_1x_2 - x_3^2)\)	Conic and a non-tangent line
\((x_1^2, x_1x_2, x_1x_3, x_2^2, x_3^2 + 3x_1x_3)\)	\(x_2^2x_3 - x_1^3(x_1 + x_3)\)	Irreducible nodal cubic
\((x_1^2, x_1x_2 + 3x_2^2x_3, x_1x_3 + x_2^2 - x_2x_3 + x_3^2, x_1x_2)\)	\(x_2^2x_3 - x_1^3\)	Irreducible cuspidal cubic
\((x_1^2, x_1^2 + 3x_2^2x_3, x_1x_3 + x_2^2 - x_2x_3 + x_3^2, x_1x_2)\)	\(W(0)\)	Elliptic curve \(j = 0\)
\((x_1^2 + x_1x_3, x_1x_2, x_1^2 - 3x_2^2)\)	\(W(1728)\)	Elliptic curve \(j = 1728\)
\(I(j) = (x_2(x_2 - 2x_1), H_j, G_j)\)	\(W(j)\)	Elliptic curve with \(j \neq 0, 1728\)
with:

\[H_j = 6j x_1 x_2 - 144(j - 1728)x_1 x_3 + 72(j - 1728)x_2 x_3 - (j - 1728)^2 x_3^2, \]
\[G_j = j x_1^2 - 12(j - 1728)x_1 x_3 + 6(j - 1728)x_2 x_3 + 144(j - 1728)x_3^2; \]
\[I(j_1) \cong I(j_2) \text{ if and only if } j_1 = j_2. \]

The first 7 models can be obtained from the corresponding inverse system \(F \) by using the command \texttt{idealAnn}. Assume that \(j \neq 0, 1728 \). Let \(J(j) \) be the ideal \(\langle W(j) \rangle \); a simple computation shows that \(HF_{R/J(j)} = \{1, 3, 3, 1\}, \) Proposition 2.6.

// we define a ring of characteristic zero, three variables and ground field
// a field of functions with indeterminate c(1)
> def r=workringc(0,1,3);
> setring r;
> r;
// characteristic : 0
// 1 parameter : c(1)
// minpoly : 0
// number of vars : 3
// block 1 : ordering ds
// : names x(1) x(2) x(3)
// block 2 : ordering C
// the ideal p defines a elliptic curve with j=c(1)
> ideal p=weierstrassp();
> p;
p[1]=(-c(1)+1728)*x(1)^3+(c(1)-1728)*x(1)*x(2)*x(3)+
 (c(1)-1728)*x(2)^2*x(3)+36*x(1)*x(3)^2+x(3)^3
// we define the ideal q. We will prove that the inverse system of q
// is p.
> ideal q=idealwp();
> q;
q[1]=(6*c(1))*x(1)*x(2)+(-144*c(1)+248832)*x(1)*x(2)*x(3)+
 (72*c(1)-124416)*x(2)*x(3)+(-c(1)^2+3456*c(1)-2985984)*x(3)^2
q[2]=(c(1))*x(1)^2+(-12*c(1)+20736)*x(1)*x(3)+(6*c(1)-10368)*x(2)*x(3)+
 (144*c(1)-248832)*x(3)^2
q[3]=-2*x(1)*x(2)+x(2)^2
// we check that q is contained in p^\perp
> diff(q,p);
_\[1,1\]=0
_\[1,2\]=0
_\[1,3\]=0
// If we perform de division of the \$4\$-th power of the maximal ideal
// by q we get three matrices Q, R, U such that (see Singular’s manual)
// generators(maxideal(4))*U=generators(q)*Q + R
// U is the 15x15 identity matrix, R is the 15x1 zero matrix
// and Q is a 6x15 matrix with coefficients in the ground field (see below
// for more details). The command is:
> division(maxideal(4),q);

From the last computation we get that the denominators of the coefficients of the matrix Q
are constant polynomials or polynomials with roots in \(\{0, 1728\} \). Hence for all \(j = c(1) \neq \)
we get that $m^4 \subset q$, so q is an Artin ideal. Notice that for all $j = c(1) \in k$, $q = I(j)$ and $p = \langle W(j) \rangle$. Since $I(j)$ is generated by three homogeneous elements, $I(j)$ is a homogeneous complete intersection ideal. In particular $I(j)$ is a homogeneous Artin Gorenstein ideal, so $HF_{R/I(j)}$ is symmetric. Notice that the generators of $I(j)$ are three homogeneous forms of degree two, so the Hilbert function of $A = R/I(j)$ is $\{1, 3, 3, 1\}$. We know that $I(j)$ is contained $J(j) = \langle W(j) \rangle^\perp$. Since $HF_{R/I(j)} = HF_{R/J(j)} = \{1, 3, 3, 1\}$, we get that $I(j) = J(j) = \langle W(j) \rangle^\perp$, i.e. $I(j) = \langle W(j) \rangle^\perp$.

4 Commands

Next, we list the most important commands of INVERSE-SYST.LIB.

Ideal Theory

- **genPol(i,j,a)**: Returns a generic polynomial sum of forms of degrees between i and j, with integer coefficients in $[-a,a]$.
- **eqIdeal(J,I); I, J ideals.** Returns 1 if $I=J$, 0 otherwise.
- **socle(J); I ideal** Returns -1 if J is not Artin, returns the ideal of J if J is Artin.
- **cmType(J); J ideal.** Returns -1 if J is not Artin, returns the Cohen-Macaulay type of J otherwise.
- **isAG(I); I ideal.** Returns -2 if J is not Artin, returns -1 if J is Artin but not Gorenstein, and returns the socle degree if J is Artin Gorenstein.
- **isLevel(I); I ideal.** Returns -2 if J is not Artin, returns -1 if J is Artin but not Level, and returns the socle degree if J is Artin Level.

Macaulay Inverse System Correspondence with Coefficients

- **invSystG(ideal J)** returns the inverse system of J; J is Artin Gorenstein
- **invSyst(J)** returns the inverse system of J; J is Artin
- **idealAnnG(poly f)** returns the Artin Gorenstein ideal with inverse system f
- **idealAnn(I)** returns the Artin ideal with inverse system I

Structure of Injective Hull with Coefficients

- **memberIH(g,I); I=f1,... list of polynomials, g polynomial.** returns 1 if g belongs to the R-submodule of S generated by $f1,...fs$ in S,

returns 0, otherwise
subModIH(I,J); I=f1,... list of polynomials, J=g1,... list of polynomials.
 Returns 1 if I is a sub-R-submodule of J, both sub-R-modules of S;
 0 otherwise
eqModIH(I,J); I=f1,... list of polynomials, J=g1,... list of polynomials.
 Returns 1 if I=J, both sub-R-modules of S;
 0 otherwise
minGensIH(I); I=f1,...,fs list of polynomials.
 Returns a minimal system of generators of <f1,...,fs>, sub-R-module of S
colonInvSyst(f,g); f, g polynomials.
 Returns an element g of R such that Aof=g if exists,
 0 otherwise.

MACAULAY INVERSE SYSTEM CORRESPONDENCE WITH NO COEFFICIENTS

invSystGNC(ideal J)
 returns the inverse system of J; J is Artin Gorenstein
invSystNC(J)
 returns the inverse system of J; J is Artin
idealAnnGNC(poly f)
 returns the Artin Gorenstein ideal with inverse system f
idealAnnNC(I)
 returns the Artin ideal with inverse system I

STRUCTURE OF INJECTIVE HULL WITH NO COEFFICIENTS

memberIHNC(g,I); I=f1,... list of polynomials, g polynomial.
 Returns 1 if g belongs to the R-submodule of S generated by f1,...fs in S,
 returns 0 otherwise
subModIHNC(I,J); I=f1,... list of polynomials, J=g1,... list of polynomials.
 Returns 1 if I is a sub-R-submodule of J, both sub-R-modules of S;
 returns 0 otherwise
eqModIHNC(I,J); I=f1,... list of polynomials, J=g1,... list of polynomials.
 Returns 1 if I=J, both sub-R-modules of S;
 returns 0, otherwise
minGensIHNC(I); I=f1,...,fs list of polynomials.
 Returns a minimal system of generators of <f1,...,fs>, sub-R-module of S
colonInvSystNC(f,g); f, g polynomials.
 Returns an element g of R such that Aof=g if exists,
 returns 0 otherwise.

RINGS WITH PARAMETERS

workringc(p, t, n)
 returns the def of a ring r with
t coefficients c (1),...,c(t),
n vars x(1),...,x(n), char is p, and order ds

ELLIPTIC CURVES

weiertrassj(t)
returns the ideal generated by Weierstrass equation of the elliptic curve with j invariant

\text{idealwj}(t)

returns the ideal with inverse system \text{weierstrassj}(j)

\text{weierstrassp()}

returns the ideal generated by Weierstrass equation of the elliptic curve with moduli $j=c(1)$

\text{idealwp}(t)

returns the ideal with inverse system \text{weierstrassp()}

with moduli $j=c(1)$

References

[1] G. Casnati, J. Elias, R. Notari, and M. E. Rossi, \textit{Poincaré series and deformations of Gorenstein local algebras}, Comm. Algebra \textbf{41} (2013), no. 3, 1049–1059.

[2] A. De Stefani, \textit{Artinian level algebras of low socle degree}, Comm. Algebra \textbf{42} (2014), no. 2, 729–754.

[3] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, \textit{SINGULAR 4-0-1 –A computer algebra system for polynomial computations}, www.singular.uni-kl.de, 2014.

[4] J. Elias, \textit{Inverse systems of local rings}, Preprint. Notes of a course given at the Vietnam Institute for Advanced Study in Mathematics, Hanoi. (2014).

[5] ______, \textit{INVERSE-SYSTLIB–Singular library for computing Macaulay’s inverse systems}, \texttt{http://www.ub.edu/C3A/elias/inverse-syst-v.4.lib}, 2014.

[6] J. Elias and M. E. Rossi, \textit{Isomorphism classes of short Gorenstein local rings via Macaulay’s inverse system}, Trans. Am. Math. Soc., \textbf{364} (2012), no. 9, 4589–4604.

[7] ______, \textit{Analytic isomorphisms of compressed local algebras}, Proc. Amer. Math. Soc. \textbf{143} (2015), no. 9, 973–987.

[8] J. Elias and M. Silva Takatuji, \textit{On Teter’s rings}, Preprint (2014).

[9] J. Emsalem, \textit{Géométrie des points épais}, Bull. Soc. Math. France \textbf{106} (1978), no. 4, 399–416.

[10] P. Gabriel, \textit{Objects injectifs dans les catégories abéliennes}, Séminaire P. Dubriel 1958/59, 1959, pp. 17–01, 32.

[11] A. Iarrobino, \textit{Compressed algebras: Artin algebras having given socle degrees and maximal length}, Trans. Amer. Math. Soc. \textbf{285} (1984), no. 1, 337–378.

[12] ______, \textit{Associated graded algebra of a Gorenstein Artin algebra}, Mem. Amer. Math. Soc. \textbf{107} (1994), no. 514, viii+115.
[13] F. S. Macaulay, *The algebraic theory of modular systems*, Cambridge University, 1916.

[14] J. H. Silverman, *The arithmetic of elliptic curves*, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.

Juan Elias
Departament d’Àlgebra i Geometria
Universitat de Barcelona
Gran Via 585, 08007 Barcelona, Spain
e-mail: elias@ub.edu