Taguchi Optimization and Flame Hardening Experimental Investigation on Eglin Steel

S Marichamy1*, V Dhinakaran2, B Stalin3, M Ravichandran4, M Balasubramanian5, C Anand Chairman4

1 Department of Mechanical Engineering, Sri Indu College of Engineering and Technology, Hyderabad-501 510, Telangana, India.
2 Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
3 Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-626 019, Tamil Nadu, India.
4 Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
5 Department of Mechanical Engineering, University College of Engineering, Ramanathapuram Campus, Anna University, Ramanathapuram-623 513, Tamil Nadu, India.

* Corresponding author: smari2k5@gmail.com

Abstract. Flame hardening was one of the surfaces hardening methods to improve the substance behaviors. It was a rapid and economical method to harden the selected surface of the material. It is suitable for all types of steels, particularly wear resistant steel. The hardening of the material was achieved through heating the material and then followed by quenching process. Eglin steel was one of the wear resistant steel which was considered for the experimental work. After the surface of flame hardening of it, Brinell hardness was found through the input factors such as surface temperature, standoff distance (SOD) and quenching time. The Taguchi optimization was used to analyze the effect of flame hardening factors and it has provided the optimal solutions. The involvement factor was studied through the variance test.

1. Introduction
The flame hardening was operated at high temperature of flame of oxy-acetylene gas. Sometimes, propane gas was also used. The wear behavior was gradually increased. It was used in hardening the blades, rollers, gears, cam and automotive parts. It was one of the best methods to achieve high hardness with low cost. The knife quality of the steel was decide by forging and flame hardening processes [1]. The laser hardening of EN25 steel and its micro structure was studied [2]. The hardening of 1060 steel was discussed and its micro hardness has been improved [3]. The role of temperature and cooling rate was investigated in blaze hardening of chromium steel [4]. The mechanical behaviors were improved after quenching of steel in grinding process [5]. The hardening parameters have been optimized and its effects were reported in chromium steel [6-7]. The fast cooling rate was affecting the hardness of the material. The residual stresses of low carbon steel and its surface hardening factors were optimized [8]. The developed mathematical model and optimization was used...
to predict the hardness [9]. The austenite transformation, microstructure and hardness were reported on heat treated steel [10]. Many investigates based on the Taguchi technique, response surface methodology, and the variance analysis to predict the optimum performance of mechanical, wear, corrosion behaviour of composites and mechanical / structural analysis of parts of the system in the automobile industry [11-41].

The present experimental idea was discussed about the flame hardening of eglin steel and its factors were optimized with the aid of Taguchi technique.

2. Experimental methods

The experimental setup for flame hardening process was exposed in Fig.1. The flame torch, oxy acetylene cylinders, pressure regulators and temperature indicator were the main components of flame hardening method. The neutral flame which was contains equal amount of oxygen and acetylene. The thermocouple was used to determine the surface temperature of the work piece. The standoff distance between the work piece and nozzle was maintained. The high temperature of the flame was focused on the surface of the work piece. The work piece was immediately quenched when it has reaches the austenizing temperature. The eglin steel was contains different alloying elements such as carbon (0.3%), silicon (0.7%), manganese (1.6%), phosphorous (0.02%) and sulfur (0.01%). The experimental arrangement was revealed in Fig.1.

![Figure 1. Flame hardening set up](image)

3. Experimental outcomes and detailed discussion

The hardening was depends on intensity of flame, amount of heat applied, surface temperature and composition of materials. The Brinell with tungsten carbide ball indenter was used to measure the hardness after flame hardening process. The size of the plate specimen was 100 x 80 x 40 mm.

Exp.No.	Temperature(°)	SOD (mm)	Quenching time (sec)	Hardness (HBW)
1	800	20	40	440
2	800	30	50	448
3	800	40	60	445
4	900	20	50	460
4. Taguchi method
The experimental design was carried out with respect to the orthogonal array (L9). The purpose of the experiment was to increase the hardness. Due to its condition, the larger the better criterion was used to determine the signal to noise ratio. The estimated SN ratio and mean was listed in Table 2 and 3.

Table 2. SN ratios for flame hardening

Levels	Water pressure (bar)	Traverse speed (mm/min)	Abrasive flow rate (gm/mm)
1	3000	30	75
2	3500	60	150
3	4000	90	225

Table 3. SN ratios for flame hardening

Level	Temperature	SOD	Quenching time
1	444.3	463.3	477.3
2	470.7	477.3	476.0
3	507.3	481.7	469.0
Delta	63.0	18.3	8.3
Rank	1	2	3

The Fig.2 was shown that the effects of SN ratio to the response such as hardness. The surface temperature, standoff distance and cooling time was the important factors for flame hardening. The experiment aim was to achieve the maximum hardness. It was gained at surface temperature of 1000ºC, standoff distance of 40mm and cooling time of 40 seconds. The hardness was increased due to the high temperature of oxy acetylene flame.
Figure 2. SN ratio graph for flame hardening
The role of flame hardening factor was determined through variance analysis and it was exposed in Table 4. It was clearly shown that the developed model was within accepted limit (P-Value is less than 0.05). From the table individual factor effect and combined factor effects were also determined. The surface temperature has the maximum value of F (60.96). Hence, the surface temperature was provided the highest role on Brinell hardness. It was validated through Pareto chart and it was shown in Fig. 3. From the chart, the combined parametric effects were also mentioned. The standoff distance was the second highest role factor on the response.

Table 4. Variance test for flame hardening

Basis	DF	Adj. SS	Adj. MS	F-Value	P-Value
Model	6	6635.90	1105.98	24.86	0.039
Linear	3	3043.20	1014.40	22.80	0.042
Temperature	1	2712.05	2712.05	60.96	0.016
SOD	1	190.72	190.72	4.29	0.174
Quenching time	1	7.29	7.29	0.16	0.725
2-Way Interactions	3	74.07	24.69	0.55	0.694
Temperature*SOD	1	29.17	29.17	0.66	0.503
Temperature*Quenching time	1	1.93	1.93	0.04	0.854
SOD*Quenching time	2	1.93	1.93	0.04	0.854
Error	2	88.98	44.49	---	---
Total	8	6724.89	---	---	---

Figure 3. Parametric effects for flame hardening

5. Conclusions
The following conclusions are drawn from the above experimental study:

- The Flame hardening experimental investigation was conducted on eglin steel with the aid of high temperature flame of oxygen acetylene flames.
- The optimal solution of flame hardening was achieved through Taguchi technique.
• The maximum hardness was gained at surface temperature of 1000ºC, standoff distance of 40mm and cooling time of 40 seconds.

• The developed model was validated through variance analysis.

• From variance test and Pareto chart, the surface temperature was the essential role played on hardness.

6. References
[1] Balkhaya, Anhar MP, Suwarno and Sani M S M 2019 IOP Conf. Ser. Mater. Sci. Eng. 506,120-126.
[2] Dinesh Babu P, Buvanashekaran, G Naidu, Balasubramanian K R 2012 Trans. Can. Soc. Mech. Eng. 36(3) 241 https://doi.org/10.1139/tcsme-2012-0018
[3] Liu Judong, Yuan Wei, Huang Songwei, Xu Zhilong 2012 Energy Procedia, 16 103 https://doi.org/10.1016/j.egypro.2012.01.019
[4] Lee MK, Kim GH, Kim KH, Kim WW 2006 J. Mater. Process. 176(1–3)140 https://doi.org/10.1016/j.jmatprotec.2006.03.119
[5] Zarudi I, Zhang LC 2002 J. Mater. Sci. 37 (18) 3935 https://doi.org/10.1023/A:1020652519141
[6] Metage SP and Sidhu JS 2017 J. Mech. Eng. Res. 7(2) 83 https://doi.org/10.5897/JMER2017.0487.
[7] Amit Kohli and Hari Singh 2011 Sadhana 36(2)141 https://doi.org/10.1007/s12046-011-0020-x.
[8] Lee MK, Kim GH, Kim KH, Kim WW 2004 Surf. Coat. Technol. 184(2–3) 239
[9] Muhammad Samiuddin, Muhammad Muzamil 2016 J. Eng. Res. 5(3)174
[10] Mikhail V, Maisuradze and lexandra A. Kuklina 2019 Mater. Sci. Forum 946 346 DOI: 10.4028/www.scientific.net/MSF.946.346
[11] Sudha G T, Stalin B and Ravichandran M 2019 Mater. Res. Express 6 096520 https://doi.org/10.1088/2053-1591/ab2cef
[12] Stalin B, Ravichandran M, Mohanavel V, Praveen Raj L 2020 J. Min. Metall. Sect. B. 56(1) 99 https://doi.org/10.2298/JMMB190315047S
[13] Vairamuthu J, Senthil Kumar A, Stalin B and Ravichandran M 2020 Optimization of powder metallurgy parameters of TiC and B₄C reinforced aluminium composites by Taguchi method Trans. Can. Soc. Mech. Eng. https://doi.org/10.1139/tcsme-2020-0091
[14] Stalin B, Vidhya V S, Ravichandran M, Naresh Kumar A and Sudha G T 2020 Metallofiz. Noveishie Tekhnol. 42(4) 497 https://doi.org/10.15407/mftint.42.04.0497
[15] Arravind R, Sankar V, Marichamy S and Stalin B 2020 Abrasive water jet experimentation on zirconium boride and boron carbide reinforced molybdenum metal matrix Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.667
[16] Malini T, Sudha R, Anantha Christu Raj P and Stalin B 2020 The role of RTD and liquid sensors in electric arc furnace for melting of aluminium Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.08.371
[17] Rajaparthiban J, Saravanavel S, Ravichandran M, Vijayakumar K and Stalin B 2020 Mater. Today:. Proc. 24 1282 https://doi.org/10.1016/j.matpr.2020.04.443
[18] Stalin B, Sudha G T and Ravichandran M 2020 Mater. Today:. Proc. 22 2622 https://doi.org/10.1016/j.matpr.2020.03.393
[19] Alagarsamy S V, Ravichandran M, Raveendran P and Stalin B 2019 J. Balk. Tribol. Assoc. 25(3) 730
[20] Stalin B, Ramesh Kumar P, Ravichandran M, Siva Kumar M and Meignanamooorthy M 2019 Mater. Res. Express 6 106590 https://doi.org/10.1088/2053-1591/ab3d90
[21] Athijayamani A, Stalin B, Sidhardhann S and Boopathi C 2016 J. Compos. Mater. 50(4) 481 https://doi.org/10.1177/0021998315576555
[22] Stalin B, Ravichandran M, Vadivel K and Vairamuthu J 2020 Mater. Today:. Proc. 21 237
[23] Saravanan S, Ravichandran M, Stalin B, Saravanavel S, Sukumar S, Optimization of Process Parameters of Electrochemical Machining of TiC-Reinforced AA6063 Composites, In: S. Hiremath, N. Shanmugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.281-287.
https://doi.org/10.1007/978-981-13-6374-0_33

[24] Stalin B, Sudha G T and Ravichandran M 2018 Silicon 10 (6) 2663
https://doi.org/10.1016/j.matpr.2019.04.226

[25] Marichamy S, Stalin B, Ravichandran M and Sudha G T 2020 Mater. Today.: Proc. 24 1400
https://doi.org/10.1016/j.matpr.2020.04.458

[26] Stalin B and Athijayamani A 2016 Int. J. Mater. Eng. Innov. 7(1) 15
https://doi.org/10.1504/IJMEI.2016.077312

[27] Pritima D, Vairamuthu J, Gopi Krishnan P, Marichamy S, Stalin B and Sheeba Rani S 2020 Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.672

[28] Stalin B, Ramesh Kumar P, Ravichandran M and Saravanan S 2018 Mater. Res. Express 5(10) 106502 https://doi.org/10.1088/2053-1591/aad99c

[29] Marichamy S, Saravanan M, Ravichandran M and Stalin B 2017 Int. J. Mech. Mech. Eng. 21(1) 57

[30] Stalin B, Sudha G T, Kailasananthan C and Ravichandran M 2020 Mater. Today Commun. 25 101655 https://doi.org/10.1016/j.mtcomm.2020.101655

[31] Balasubramanian M, Stalin B, Marichamy S, Anandan K and Ram Subbiah 2020 Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.315

[32] Dhinakaran V, Stalin B, Swapna Sai M, Vairamuthu J, Marichamy S 2020 Recent developments of graphene composites for energy storage devices Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[33] Martin Sahayaraj J, Arravind R, Subramanian P, Marichamy S, Stalin B 2020 Artificial neural network based prediction of responses on eglin steel using electrical discharge machining process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.664

[34] Bagavathy S, Ramesh Kumar P, Anantha Christu Raj P, Stalin B 2020 Frequency measurement through electric network analyzer for ultrasonic machining of steel Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.629

[35] Anix Joel Singh J, Vishnu Vardhan T, Vairamuthu J, Stalin B, Ram Subbiah 2020 Analyses of particle size and abrasive water jet drilling of synthesized chromel metal matrix Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.441

[36] Pritima D., Stalin B., Ravichandran J., Mallesham P., Srinivasa Rao M., Marichamy S. (2021) Analysis of Parameters on Bend Force in Nickel-Coated Mild Steel Sheets Through Contour Plot. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp. 647-652. https://doi.org/10.1007/978-981-15-4739-3_55

[37] Stalin B., Dhinakaran V., Ravichandran M., Sathiya Moorthi K., Vairamuthu J. (2021) Buckling Analysis of C-Stringer and Hat Stringer on the Load Carrying Vehicle. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp. 177-183. https://doi.org/10.1007/978-981-15-4739-3_15

[38] J.Vairamuthu, B.Stalin, G.D.Sivakumar, B.Mohmed Fazil, R.Balaji, V.Ananda Natarajan (2020), The effect of process parameters for synthesized copper metal matrix using stir casting process, Mater. Today.: Proc., https://doi.org/10.1016/j.matpr.2020.09.262

[39] R.Senthil Kumar, V.ELango, K.Giridharan, V.M.Jothiprakash, B.Stalin (2020), Optimization and enhancement of friction stir welding strength on high yield strength deformed steel, Mater. Today.: Proc., https://doi.org/10.1016/j.matpr.2020.09.149
[40] Vishnu Vardhan T., Marichamy S., Stalin B., Vairamuthu J., Dhinakaran V. (2021) Tribological Behaviour and Electric Discharge Drilling of Duplex Silicon Metal Matrix. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp. 553-562. https://doi.org/10.1007/978-981-15-4739-3_48

[41] Marichamy S, Ravichandran M, Stalin B and Sridhar Babu B 2019 *FME Trans*. 47 116

Acknowledgments

The authors thank the Department of Mechanical Engineering and his working colleges for their continuous encouragement to carry out this research work.