Automata and Quantum Computing

Andris Ambainis1,* and Abuzer Yakaryılmaz2,†‡

1University of Latvia, Faculty of Computing, Raina bulv. 19, Riga, LV-1586, Latvia
email: ambainis@lu.lv

2National Laboratory for Scientific Computing, Petrópolis, RJ, 25651-075, Brazil
email: abuzer@lncc.br

July 9, 2015 0h 20

2010 Mathematics Subject Classification: 68Q10, 68Q12, 68Q15, 68Q19, 68Q45

Abstract. Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers.

Key words: quantum finite automata, probabilistic finite automata, nondeterminism, bounded error, unbounded error, succinctness, decidability and undecidability, computational complexity

Contents

1 Introduction
2 Mathematical background
3 Preliminaries
4 One-way QFAs
 4.1 Simulations
 4.2 Succinctness results
 4.3 Bounded-error language recognition in restricted models
 4.4 Unbounded-error, nondeterminism, and alternation
 4.5 Decidability and undecidability results
 4.5.1 Equivalence and minimization

*A. Ambainis was supported by ERC Advanced Grant MQC, and FP7 FET Proactive project QALGO.

†A. Yakaryılmaz was partially supported by TÜBİTAK with grant 108E142, CAPES with grant 88881.030338/2013-01, ERC Advanced Grant MQC, and FP7 FET projects QALGO and QCS

‡A. Yakaryılmaz worked on the chapter when he was in Boğaziçi University in Turkey, University of Latvia, and LNCC in Brazil.
1 Introduction

Quantum computing combines quantum physics and computer science, by studying computational models based on quantum physics (which is substantially different from conventional physics) and building quantum devices which implement those models. If a quantum computer is built, it will be able to solve certain computational problems much faster than conventional computers.

The best known examples of such problems are factoring and discrete logarithm. These two number theoretic problems are thought to be very difficult for conventional computers but can be solved efficiently (in polynomial time) on a quantum computer \[93\]. Since several widely used cryptosystems (such as RSA and Diffie-Hellman) are based on the difficulty of factoring or discrete logarithm, a quantum computer would be able to break those cryptosystems, shaking up the foundations of cryptography.

Another, equally surprising discovery was made in 1996, by Lov Grover \[50\] who designed a quantum algorithm that solves a general exhaustive search problem with \(N\) possible solutions in time \(O(\sqrt{N})\). This provides a quadratic speedup for a range of search problems, from problems that are solvable in polynomial time classically to NP-complete problems.

Many other quantum algorithms have been discovered since then. (More information about them can be found in surveys \[71, 13\] and the “Quantum Algorithm Zoo” website \[57\].)

Given that finite automata are one of the most basic models of computation, it is natural to study them in the quantum setting. Soon after the discovery of Shor’s factoring algorithm \[117\], the first models of quantum finite automata (QFAs) appeared \[61, 70\]. A number of different models and questions about the power of QFA and their properties have been studied since then.

In this chapter, we cover most of this work. We particularly focus on the results which
show advantages of QFAs over their classical counterparts because those results show how “quantumness” adds power to the computational models.

We note that some of early research on QFAs also claimed that, in some contexts, QFAs can be weaker than their classical counterparts. This was due to first definitions of QFAs being too restricted [99]. Quantum computation is a generalization of classical computation [98] and QFAs should be able to simulate classical finite automata, if we define QFAs in sufficiently general way. Therefore, we particularly emphasize the most general model of QFAs that fully reflect the power of quantum computation.

We begin with an introductory section (Sec. 2) on basics of quantum computation for readers who are not familiar with it. Then, we give the basic notation and conventions used throughout this chapter (Sec. 3). After that, Sec. 4 presents the main results on 1-way QFAs and Sec. 5 presents the main results on 2-way QFAs. Each of those sections covers different models of QFAs that have been proposed, the classes of languages that they recognize, the state complexity in comparison to the corresponding classical models, decidability and undecidability results and other topics. In section 6, we describe the results about QFAs in less conventional models or settings (for example, interactive proofs with a QFA verifier or QFAs augmented with extra resources beyond the usual quantum model). We conclude with a discussion of directions for future research in Sec. 7.

We also refer the reader to [89] for an introductory paper on quantum automata and to [81] for another recent survey on quantum automata, and to
http://publication.wikia.com/wiki/Quantum_automata
for a list of published papers on quantum automata (at least until 2014).

2 Mathematical background

In this section, we review the basics of quantum computation. We refer the reader to [75] for more information.

Quantum systems. The simplest way towards understanding the quantum model is by thinking of as a generalization of probabilistic systems. If we have a probabilistic system with \(m \) possible states \(1, 2, \ldots, m \), we can describe it by a probability distribution \(p_1, \ldots, p_m \) over those \(m \) possibilities. The probabilities \(p_i \) must be nonnegative real numbers and satisfy \(p_1 + \cdots + p_m = 1 \). In the quantum case, the probabilities \(p_1, \ldots, p_m \) are replaced by amplitudes \(\alpha_1, \ldots, \alpha_m \). The amplitudes can be complex numbers and must satisfy \(|\alpha_1|^2 + \cdots + |\alpha_m|^2 = 1 \).

More formally, let us consider a quantum systems with \(m \) basis states (for some finite \(m \)) which we denote by \(|q_1\rangle, |q_2\rangle, \ldots, |q_m\rangle \). A state of such a system is a linear combination of basis states with complex coefficients (called amplitudes)

\[
|\psi\rangle = \alpha_1 |q_1\rangle + \alpha_2 |q_2\rangle + \cdots + \alpha_m |q_m\rangle
\] (2.1)

that must satisfy \(|\alpha_1|^2 + \cdots + |\alpha_m|^2 = 1 \). We say that \(|\psi\rangle \) is a superposition of \(|q_1\rangle, \ldots, |q_m\rangle \). For example, if we have a system with 2 basis states \(|0\rangle \) and \(|1\rangle \), some of the

1In the context of quantum computing, “classical” means “non-quantum”. For finite automata, this usually means deterministic or probabilistic automaton.
possible superpositions are $\frac{1}{3}|0\rangle + \frac{2}{3}|1\rangle$, $\frac{2}{3}|0\rangle - \frac{1}{3}|1\rangle$, and $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$.

We can view a $|\psi\rangle$ as a vector consisting of amplitudes:

$$
|\psi\rangle = \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_m
\end{pmatrix}.
$$

Then, the basis states $|q_i\rangle$ are vectors with 1 in the i^{th} component and 0 everywhere else and $\{q_i\}$ can be interpreted as the addition of vectors. The length of the vector $|\psi\rangle$ is $\|\psi\| = \sqrt{\alpha_1^2 + \cdots + \alpha_m^2}$. Thus, in vector language, the requirement that $\alpha_1^2 + \cdots + \alpha_m^2 = 1$ is equivalent to just saying that $\|\psi\| = 1$. That is, a quantum state is a vector of length 1.

Unitary transformations. A transformation on a quantum state is specified by a transformation matrix U. If the state before the transformation is $|\psi\rangle$, the state after the transformation is $U|\psi\rangle$. A transformation is valid (allowed by the rules of quantum physics) if and only if $\|\psi\| = 1$ implies $\|U|\psi\| = 1$. Transformation matrices which satisfy this constraint are called *unitary*.

A transformation U can be also specified by describing $U|q_1\rangle, \ldots, U|q_m\rangle$. Then, for any $|\psi\rangle = \alpha_1|q_1\rangle + \alpha_2|q_2\rangle + \cdots + \alpha_m|q_m\rangle$, we have

$$
U|\psi\rangle = \alpha_1 U|q_1\rangle + \alpha_2 U|q_2\rangle + \cdots + \alpha_m U|q_m\rangle.
$$

For example, if we have a system with 2 basis states $|0\rangle$ and $|1\rangle$, we can specify a transformation H by saying that H maps

$$
|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \quad \text{and} \quad |1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle. \quad (2.2)
$$

This determines how H acts on superpositions of $|0\rangle$ and $|1\rangle$. For example, (2.2) implies that H maps $\frac{1}{3}|0\rangle - \frac{2}{3}|1\rangle$ to

$$
\frac{4}{5} \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \right) - \frac{3}{5} \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \right) = \frac{7}{5\sqrt{2}}|0\rangle + \frac{1}{5\sqrt{2}}|1\rangle.
$$

Measurements. To obtain information about a quantum state, we have to measure it. The simplest measurement is observing $|\psi\rangle = \alpha_1|q_1\rangle + \alpha_2|q_2\rangle + \cdots + \alpha_m|q_m\rangle$ with respect to $|q_1\rangle, \ldots, |q_m\rangle$. It gives $|q_j\rangle$ with probability $|\alpha_j|^2$. (Assuming $\|\psi\| = 1$ guarantees that probabilities of different outcomes sum to 1.) After the measurement, the state of the system changes to $|q_j\rangle$ and repeating the measurement gives the same state $|q_j\rangle$. For example, observing $\frac{1}{3}|0\rangle + \frac{2}{3}|1\rangle$ gives 0 with probability $(\frac{1}{3})^2 = \frac{1}{9}$ and 1 with probability $(\frac{2}{3})^2 = \frac{4}{9}$.

Partial measurement. In the context of QFAs, it may be the case that we only need to know whether the state q_i is an accepting state or not. In this case, we can perform a partial measurement. Let Q_1, \ldots, Q_k be a partition of $\{q_1, q_2, \ldots, q_m\}$ into disjoint subsets. Then, measuring a state $|\psi\rangle = \alpha_1|q_1\rangle + \alpha_2|q_2\rangle + \cdots + \alpha_m|q_m\rangle$ w.r.t. this partition gives result Q_l with probability $p_l = \sum_{q_j \in Q_l} |\alpha_j|^2$ and the state after the measurement
is
\[\sum_{q_j \in Q_i} \frac{\alpha_j}{\sqrt{p_i}} |q_j\rangle. \]
For example, if the quantum state is \(\frac{1}{\sqrt{2}} |1\rangle + \frac{1}{\sqrt{2}} |2\rangle + \frac{1}{\sqrt{2}} |3\rangle + \frac{1}{\sqrt{2}} |4\rangle \) and the partition is \(Q_1 = \{1, 2\}, Q_2 = \{3, 4\} \), a partial measurement would give the result \(Q_1 \) with probability \((\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 = \frac{1}{2} \) and that state after the measurement is
\[\frac{1}{\sqrt{2}} |1\rangle + \frac{1}{\sqrt{2}} |2\rangle. \]
Such a measurement tells whether a QFA accepts a word and, at the same time, preserves the part of the quantum state which consists of accepting states (or the part of the quantum state which consists of nonaccepting states).

Dirac notation. As already mentioned above, we can view a quantum state \(|\psi\rangle \) as a vector consisting of amplitudes. \(\langle \psi | \) denotes the conjugate transpose of this vector:
\[\langle \psi | = \begin{pmatrix} \alpha_1^* & \alpha_2^* & \cdots & \alpha_m^* \end{pmatrix}, \]
where \(\alpha_i^* \) denotes the conjugate transpose of the complex number \(\alpha_i \). (If \(\alpha_i \) is real, then \(\alpha_i^* = \alpha_i \).) If we multiply \(|\psi\rangle \) with \(\langle \psi | \) (according to the usual rules for matrix multiplication), we get a \(m \times m \) matrix:
\[|\psi\rangle \langle \psi| = \begin{pmatrix} \alpha_1 \alpha_1^* & \alpha_1 \alpha_2^* & \cdots & \alpha_1 \alpha_m^* \\ \alpha_2 \alpha_1^* & \alpha_2 \alpha_2^* & \cdots & \alpha_2 \alpha_m^* \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_m \alpha_1^* & \alpha_m \alpha_2^* & \cdots & \alpha_m \alpha_m^* \end{pmatrix}. \]
This is the density matrix of the state \(\psi \).

Mixed states. A mixed state (or mixture) \((p_j, |\psi_j\rangle)\) is a probabilistic combination of several quantum states \(|\psi_j\rangle\), with probabilities \(p_j\) (where \(p_j \geq 0\) for all \(j\) and \(\sum_j p_j = 1\)).
For such a state, its density matrix is just the sum of density matrices of \(|\psi_j\rangle\), weighted by their respective probabilities:
\[\rho = \sum_j p_j |\psi_j\rangle \langle \psi_j|. \]
If we measure a mixed state \((p_j, |\psi_j\rangle)\), the probabilities of different measurement outcomes can be calculated from the density matrix \(\rho\). Thus, \(\rho\) provides a complete description of a mixed state: there may be multiple decompositions \((p_j, |\psi_j\rangle)\) that give the same matrix \(\rho\) but they are all equivalent w.r.t. any measurement that we may perform.

Superoperators. In general, we can perform a sequence of unitary transformations and measurements on a quantum state, with each transformation possibly depending on the results of the previous measurements. Such sequence is called a completely positive superoperator or CPSO.
Alternatively, a completely positive superoperator can be described by a sequence of \(m \times m\) matrices \(E = \{E_1, \ldots, E_k\}\) (called Kraus operators) such that \(\sum_{i=1}^k E_i^\dagger E_i = I\).
Such a CPSO maps a mixed state with the density matrix \(\rho\) to a mixed state with the density matrix \(\rho' = E(\rho) = \sum_{i=1}^k E_i \rho E_i^\dagger\).
The two definitions are equivalent: for any sequence of unitary transformations and measurements, there is a set of Kraus operators \(E_1, \ldots, E_k\) which produces the same result and the other way around. A bistochastic quantum operation, say \(E = \{E_1, \ldots, E_m\}\),
is a special kind of superoperator satisfying both $\sum_{i=1}^{k} E_i^\dagger E_i = I$ and $\sum_{i=1}^{k} E_i E_i^\dagger = I$.

3 Preliminaries

Basic notations: Throughout the chapter,

- Σ is the input alphabet not containing the end markers ε and $\$ and $\tilde{\Sigma} = \Sigma \cup \{\varepsilon, \$\}$.
- For a given string w, $|w|$ is the length of w, w_i is the i^{th} symbol of w, and \tilde{w} represents the string $\varepsilon w\$.
- Q is the set of internal states, where q_1 is the initial state. $Q_a \subseteq Q$ is the set of accepting states.
- $f_M(w)$ is the accepting probability (or the accepting value) of M on the word w.
- For a given vector (row or column) v, $v[i]$ is the i^{th} entry of v.
- For a given matrix A, $A[i,j]$ is the $(i,j)^{th}$ entry of A.

Language recognition: Let M be a machine and $\lambda \in \mathbb{R}$. The language $L \subseteq \Sigma^*$ recognized by M with (strict) cutpoint or nonstrict cutpoint λ is defined as

$L = \{w \in \Sigma^* \mid f_M(w) > \lambda\}$ or $L = \{w \in \Sigma^* \mid f_M(w) \geq \lambda\}$, respectively.

The language $L \subseteq \Sigma^*$ is said to be recognized by M with unbounded error if there exists a cutpoint λ such that L is recognized by M with strict or nonstrict cutpoint λ.

In the followings, we assume that $f_M(w) \in [0, 1] \forall w \in \Sigma^*$. The language $L \subseteq \Sigma^*$ recognized by M with positive or negative one-sided unbounded error is defined as

$L = \{w \in \Sigma^* \mid f_M(w) > 0\}$ or $L = \{w \in \Sigma^* \mid f_M(w) = 1\}$, respectively.

The language $L \subseteq \Sigma^*$ is said to be recognized by M with error bound $\epsilon (0 \leq \epsilon < \frac{1}{2})$ if (i) $f_M(w) \geq 1 - \epsilon$ when $w \in L$ and (ii) $f_M(w) \leq \epsilon$ when $w \notin L$. This notion is also known as recognition with bounded error. Moreover, in the case of $f_M(w) = 0$ when $w \notin L$ and in the case of negative one-sided bounded error, $f_M(w) = 1$ when $w \in L$.

Transition amplitudes and probabilities: In both probabilistic and quantum finite automata [83, 78, 61], the transition values (probabilities or amplitudes) are traditionally allowed to be in \mathbb{R} and in \mathbb{C}, respectively. On the other hand, the transition values of Turing machines (TMs) [43, 15, 97] are often selected from the restricted subsets of \mathbb{R} or \mathbb{C}. For example, for probabilistic Turing machines, it is often assumed that, at each step, there are two possible choices and the machine chooses each of them with probability 1/2.

In this chapter, we assume the most general model possible. That is, unless specified otherwise, the transition values of probabilistic (or quantum) machines are supposed to be in \mathbb{R} (or \mathbb{C}). We use $\widetilde{\mathbb{R}}$ and $\widetilde{\mathbb{C}}$ to denote the computable real numbers and efficiently computable complex numbers, respectively [15].

Classical finite automata: We will compare quantum automata to following models of classical automata:

- deterministic finite automaton (DFA);
• nondeterministic finite automaton (NFA)
• probabilistic finite automaton (PFA);
• generalized finite automaton (GFA) of Turakainen [94].

The first three models are quite widely known. Each of them can be studied both in 1-way version (where the head of the automaton moves from the left to the right) and in 2-way version (where the automaton is allowed to move in both direction). We refer to 1-way models as 1DFA, 1NFA and 1PFA and to 2-way models as 2DFA, 2NFA, and 2PFA.

GFAs are a generalization of probabilistic automata to the case when the transition probabilities are allowed to be arbitrary real numbers (possibly, negative ones).

A 1-way probabilistic finite automaton (1PFA) [83] can be described by a 5-tuple
\[P = (Q, \Sigma, \{ A_\sigma | \sigma \in \tilde{\Sigma} \}, q_1, Q_a) \]
where \(A_\sigma \) is the transition matrix, i.e. \(A_\sigma[j,i] \) is the probability of the transition from state \(q_i \) to state \(q_j \) when reading symbol \(\sigma \). We require that all \(A_\sigma \) are stochastic: \(A_\sigma[j,i] \geq 0 \) and, for any \(i \), \(\sum_j A_\sigma[j,i] = 1 \).

The computation of a 1PFA can be traced by a probability vector \(v \) in which \(v[i] \) is the probability of being in state \(q_i \). For a given input string \(w \in \Sigma^* \), \(\tilde{w} = \epsilon w \$ \) is read symbol by symbol, \(v_i = A_{\tilde{w}}i v_{i-1} \), where \(1 \leq i \leq |\tilde{w}| \) and \(v_0 \) is the initial state vector whose first entry is equal to 1. The acceptance probability of \(P \) on string \(w \) is defined as
\[f_P(w) = \sum_{q_i \in Q_a} v_{|\tilde{w}|}[i]. \]

If we allow the transition matrices \(A_{\sigma} \) to be arbitrary matrices consisting of arbitrary real numbers, we obtain a generalized finite automaton (GFA) [94]. Then, the range of \(f_G(\cdot) \) is real numbers and it is called accepting value instead of accepting probability.

1DFAs, 1NFAs, 2DFAs, 2NFAs, and 1PFAs with bounded error all recognize the same class of languages: regular languages \(\text{REG} \). On the other hand, 2PFAs can recognize some nonregular languages [41] with bounded error, such as \(\text{EQ} = \{ a^n b^n | n > 0 \} \), but need exponential expected runtime [39].

The languages recognized by 1PFAs with cutpoint (nonstrict cutpoint) form the class of stochastic languages (co-stochastic languages), denoted as \(\text{S (coS)} \). \(\text{S} \cup \text{coS} \) forms the class of unbounded-error stochastic languages (uS). 1GFAs are equivalent to 1PFAs: the classes of languages recognized by 1GFAs with cutpoint and nonstrict cutpoint are also \(\text{S (coS)} \). This equivalence makes 1GFAs useful for proving facts about 1PFA. Moreover, any language \(L \), defined as \(L = \{ w | f_P(w) \neq \frac{1}{2} \} \) for a 1PFA \(P \), is called exclusive stochastic language and \(\text{S}^\# \) denotes the class of all such languages. The complement of \(\text{S}^\# \) is denoted \(\text{S}^\text{\#} \). The class \(\text{S}^\text{\#}_Q \) is a subset of \(\text{S}^\text{\#} \) for 1PFAs that are restricted to have only rational transition probabilities. The class \(\text{S}^\text{\#}_Q \) is defined similarly.

4 One-way QFAs

A number of different definitions of one-way QFAs (1QFAs) have been proposed over the years. They can all be described in a similar framework, by specifying a 5-tuple
\[(\Sigma, Q, \{ T_\sigma | \sigma \in \hat{\Sigma} \}, q_1, R), \]
with the following specifications:

- Q is a finite set of (classical) states. The (quantum) state of a 1QFA can be any superposition of basis states $\{|q\rangle \mid q \in Q\}$: $|\psi\rangle = \sum_{q \in Q} a_q |q\rangle$. In mixed state models, the 1QFA can also be in a mixture $(p_i, |\psi_i\rangle)$ of such states.
- $|\psi_0\rangle = |q_1\rangle$ is the initial state of the 1QFA.
- For each letter $\sigma \in \hat{\Sigma}$, we have a corresponding transformation T_σ on 1QFA's current state. In simpler models, T_σ is a unitary transformation, denoted U_σ. In more general models, T_σ can be a sequence of unitary transformations and measurements, with the next operations in the sequence depending on the previous ones.
- R is a rule for determining whether the 1QFA accepts the strings. Typically, R is specified by a set of accepting states ($Q_a \subseteq Q$) and measuring the final state of the QFA in the standard basis. If an accepting state $q \in Q_a$ is obtained, the automaton accepts. Otherwise the automaton rejects.

The models differ in the set of transitions T_σ and acceptance rules R that are allowed.

Example. Let p be an odd number. Consider the following 1QFA M in one letter alphabet $\Sigma = \{a\}$. The set of states is $Q = \{q_1, q_2\}$ and the initial state is $|\psi_0\rangle = |q_1\rangle$. The transformations on the end-markers are identities and the transformation U_a that corresponds to reading a is defined by

$$
U_a|q_1\rangle = \cos \phi |q_1\rangle + \sin \phi |q_2\rangle, \text{ where } \phi = \frac{2\pi}{p}.
$$

The acceptance rule R is as follows: At the end of computation, we measure the state. If the result is q_1, we accept. Otherwise, we reject. (In other words, we have $Q_a = \{q_1\}$.)

The initial state is $|q_1\rangle$. After reading the first letter a, it becomes $|\psi_1\rangle = \cos \phi |q_1\rangle + \sin \phi |q_2\rangle$. After reading the second letter a, the state becomes

$$
U_a|\psi_1\rangle = \cos \phi U_a|q_1\rangle + \sin \phi U_a|q_2\rangle \\
= \cos \phi (\cos \phi |q_1\rangle + \sin \phi |q_2\rangle) + \sin \phi (\sin \phi |q_1\rangle - \cos \phi |q_2\rangle) \\
= \cos 2\phi |q_1\rangle + \sin 2\phi |q_2\rangle.
$$

We can show that each next application of U_a also rotates the state in the plane formed by $|q_1\rangle, |q_2\rangle$ by an angle of $\phi = \frac{2\pi}{p}$, as shown in Figure 1. Thus, we have

![Figure 1. 2 state 1QFA M](image-url)
Lemma 4.1. \(\forall\) After reading \(a^j\), the state of \(M\) is \(\cos\left(\frac{2\pi j}{p}\right) |q_1\rangle + \sin\left(\frac{2\pi j}{p}\right) |q_2\rangle\).

Therefore, \(M\) accepts \(a^j\) with probability \(\cos^2\left(\frac{2\pi j}{p}\right)\). If \(p\) divides \(j\), \(\cos^2\left(\frac{2\pi j}{p}\right) = \cos^2 0 = 1\). Otherwise, \(\cos^2\left(\frac{2\pi j}{p}\right) < 1\). So, for any odd \(p > 2\), \(M\) recognizes

\[
\text{MOD}_p = \{a^i| p \text{ divides } i\}
\]

with negative one-sided error bound \(\cos^2\left(\frac{\pi}{p}\right)\).

Models. We now describe some important 1QFA models in the order from the most restrictive to the most general. Let \(w\) be the input string.

(1) **Moore-Crutchfield quantum finite automaton** (MCQFA) \([5]\) is the most restricted of known QFA models. In this model, the transformations \(T_\sigma\) have to be unitary \((U_\sigma)\). The acceptance rule \(R\) is of the form described above. We measure the state of the QFA after reading \(\tilde{w}\) and accept if the measurement gives \(q \in Q_a\).

(2) **Kondacs-Watrous quantum finite automaton** (KWQFA) \([5]\) is a model in which \(T_\sigma\) still have to be unitary \((U_\sigma)\) but the acceptance rule \(R\) involves measurements after every step. The state set \(Q\) is partitioned into the set of accepting states \(Q_a\), the set of rejecting states \(Q_r\), and the set of non-halting states \(Q_n\), i.e. \(Q = Q_a \cup Q_r \cup Q_n\). After reading each letter \(\tilde{w}_i\), we perform a partial measurement whether the state is in \(Q_a\), \(Q_r\), or \(Q_n\). If \(Q_a (Q_r)\) is obtained, the computation is terminated and the input word is accepted (rejected). If \(Q_n\) is obtained, the computation is continued by reading the next letter \(\tilde{w}_{i+1}\) when \(i < |\tilde{w}|\), and the computation is terminated and the input word is rejected when \(i = |\tilde{w}|\).

(3) **Latvian quantum finite automaton** (LaQFA) \([1]\) is a model in which each \(T_\sigma\) can be a sequence \(U_1, M_1, \ldots, U_m, M_m\) consisting of unitary transformations \(U_1, \ldots, U_m\) and measurements \(M_1, \ldots, M_m\). It is required that the transformations in the sequence are independent of the outcomes of measurements \(M_i\) \((1 \leq i \leq m)\). The acceptance is by measuring the state of the QFA after reading \(\tilde{w}\) and accepting if the measurement gives \(q \in Q_a\).

(4) **Nayak quantum finite automaton** (NaQFA) \([7]\) combines KWQFA and LaQFA. The transformations \(T_\sigma\)’s of NaQFA as for LaQFA, the acceptance rule \(R\) is as for KWQFA. **Bistochastic quantum finite automaton** (BiQFA) \([15]\) is a generalization of NaQFA such that the transformations \(T_\sigma\)’s can be bistochastic quantum operations and the acceptance rule \(R\) is as for KWQFA.

(5) **General one-way quantum finite automaton** (1QFA) \([5,9]\) allow each \(T_\sigma\) to be a sequence \(U_1, M_1, \ldots, U_m, M_m\) of unitary transformations and measurements. Moreover, each transformation \(U_i\) or measurement \(M_i\) can depend on the outcomes of previous measurements \(M_{i-1}\). This is the most general model. It has been discovered several times in different but equivalent forms: quantum finite automaton with ancilla qubits (QFA-A) \([7]\), fully quantum finite automaton (CiQFA) \([52]\), quantum finite automaton with control language (QFA-CL) \([27]\), and one-way finite automaton with quantum and classical states (1QCFA) \([11]\).

Why do we have so many models? Initially, researchers did not recognize the power that comes from performing sequences of unitary transformations and measurements. For this reason, the first models of QFAs were defined in an unnecessarily restrictive form.
Which is the right model? Physically, we can perform any sequence of measurements and unitary transformations. Hence, 1QFAs should be the main model. Among the more restricted models, MCQFA and LaQFA can be motivated by the fact that measuring the quantum state during each transformation T_a may be difficult. Because of that, it may be interesting to consider models in which measurements are restricted. One natural restriction is to allow only one measurement at the end of the computation, as in MCQFA. The other possibility is to allow intermediate measurements after each T_a, as long as the rest of computation does not depend on their outcomes. Such measurements are easier to realize than general measurements (for example, this is the case in liquid state NMR quantum computing [74]). This leads to LaQFA.

There is no compelling physical motivation behind KWQFAs and NaQFAs. These models allow to stop the computation depending on the result of an intermediate measurement. If we are able to do that, it is natural that we also allow the next transformations to depend on the measurement outcome - which leads to the most general model of 1QFAs.

4.1 Simulations

In this section, we present some basic simulation results that relate the power of 1QFA to the power of their classical counterparts. First, any probabilistic automaton can be transformed into an equivalent QFA, as long as the model of QFAs is sufficiently general.

Theorem 4.2. For a given n-state 1PFA \mathcal{P}, there exists a n-state 1QFA \mathcal{M} such that $f_{\mathcal{P}}(w) = f_{\mathcal{M}}(w)$ for any $w \in \Sigma^*$.

This result easily follows from the fact that stochastic operators (transformation A_σ in a 1PFA) are a special case of superoperators (which are used in 1QFAs). The proof of the theorem can be found in [54, 109, 89] but it has been known as a folklore result in the quantum computing community long before that. The same result is also valid in many other settings, for example, for probabilistic and quantum Turing machines [97].

The second simulation shows how to convert a 1QFA to a GFA with a quadratic increase in the number of internal states.

Theorem 4.3. [3, 63, 109] For a given n-state 1QFA \mathcal{M}, there exists a n^2-state GFA \mathcal{G} such that $f_{\mathcal{M}}(w) = f_{\mathcal{G}}(w)$ for any $w \in \Sigma^*$.

Proof. If we apply a superoperator, say E, to a quantum system in a state ρ, the new state is $\rho' = E(\rho) = \sum_{i=1}^k E_i \rho E_i^\dagger$. From this expression, one can see that the entries of the density matrix ρ' are linear combinations of the entries of ρ.

We can linearize the computation of a given 1QFA (with a quadratic increase in the size of the set of states [109]) in the following way. We transform the density matrix into a real-valued vector, replacing each complex entry of the density matrix with two real-valued elements of the vector. We choose the transition matrices A_σ of the 1GFA so that they transform this vector in the same way as the superoperators T_σ of the 1QFA transform the density matrix.

Due to the equivalence between 1GFAs and 1PFAs, this simulation result is very useful. For example, it is used to show the equivalence of 1PFAs and 1QFAs in the unbounded
error case (Section 4.4) and various decidability and undecidability results (Section 4.5).

In the bounded-error case, 1QFAs can recognize only regular languages (similarly to 1PFAs). The pure state version of this result was first shown for KWQFA in [61], with the bounds on the number of states shown in [7].

Theorem 4.4. [15][61][7] If a language \(L \) is recognized by an \(n \)-state 1QFA with pure states (e.g. MCQFAs and 1KWQFAs) with bounded error, then it can be recognized by a 1DFA with \(2^{O(n)} \) states.

Proof. Let \(M \) be the minimal 1DFA that recognizes \(L \) and let \(N \) be the number of states in \(M \). Let \(q_1, q_2 \) be two states in \(M \). Then, there is a word \(w \) such that reading \(w \) in one of states \(q_1, q_2 \) leads to an accepting state and reading it in the other state leads to a rejecting state.

Let \(Q \) be a 1QFA that recognizes \(L \). Let \(w_1, w_2 \) be words after reading which \(M \) is in states \(q_1, q_2 \) and \(|\psi_1\rangle, |\psi_2\rangle \) be the states of \(Q \) after reading \(w_1, w_2 \). Let \(T \) be the sequence of transformations that corresponds to reading \(w \) (including the final measurement that produces the answer that says whether \(Q \) accepts or rejects the input word \(w \)). If \(Q \) correctly recognizes \(L \), then applying \(T \) to one of \(|\psi_1\rangle, |\psi_2\rangle \) leads to a “yes” answer with probability at least 2/3 and applying \(T \) to the other state leads to a “no” answer with probability at least 2/3. The next lemma provides a necessary condition for that.

Lemma 4.5. [13][65] Let

\[
|\psi_1\rangle = \sum_{i=1}^{n} \alpha_i |i\rangle, \quad |\psi_2\rangle = \sum_{i=1}^{n} \beta_i |i\rangle.
\]

Then, for any \(T \), the probabilities of \(T \) producing “yes” answer on \(|\psi_1\rangle, |\psi_2\rangle \) differ by at most \(\|\psi_1 - \psi_2\| \) where

\[
\|\psi_1 - \psi_2\| = \sqrt{\sum_{i=1}^{n} |\alpha_i - \beta_i|^2}.
\]

Hence, if a 1-way pure state QFA \(M \) with \(d \)-dimensional state space recognizes \(L \), there must be \(N \) pure states \(|\psi_1\rangle, \ldots, |\psi_N\rangle \) in \(n \) dimensions such that \(\|\psi_i - \psi_j\| \geq 1/3 \) for all \(i, j : i \neq j \). Such sets of states are known as quantum fingerprints and quite tight bounds for the maximum number of quantum fingerprints in \(n \) dimensions are known [13]. In particular, we know that \(N = 2^{O(n)} \).

We now sketch the proof of a similar result for the general case. Simulations of general 1QFAs by DFAs can be found in several papers (for example, [65]) but we also provide an upper bound on the number of states.

Theorem 4.6. If a language is recognized by an \(n \)-state 1QFA with mixed states (e.g. 1QFA) with bounded error, then it can be recognized by a 1DFA with \(2^{O(n^2)} \) states.

Proof. The proof is similar to the previous theorem but now we have to answer the question: how many mixed states \(\rho_i \) can one construct so that, for any \(i \neq j \), there is a
sequence of transformations T that produces different outcomes (“yes” in one case and “no” in the other case) with probability at least $2/3$?

The answer is that the number of such ρ_i in n dimensions is at most $2^{O(n^2)}$. This follows from the fact that a mixed state in n dimensions can be expressed as a mixture $(p_i, |\psi_i\rangle)$ of at most n pure states. We can then approximate each of $|\psi_i\rangle$ by a state $|\psi'_i\rangle$ from an ϵ-net for the unit sphere in n dimensions. (An ϵ-net is a set of states S such that, for any $|\psi\rangle$, there exists $|\psi'\rangle \in S : \|\psi - \psi'\| \leq \epsilon$.) Since one can construct an ϵ-net with $2^{O(n)}$ states, there will be $(2^{O(n)})^n = 2^{O(n^2)}$ choices for the set of states $(|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle)$. We also need to use another ϵ-net for (p_1, \ldots, p_n) but the size of this ϵ-net is $2^{O(n)} = 2^{o(n^2)}$.

\[\square \]

4.2 Succinctness results

In \cite{FNS}, it was shown that 1QFAs can indeed be exponentially more succinct than 1PFAs. Let p be a prime and consider the language PRIME_p defined by (eq:language:MOD-p).

Theorem 4.7. \cite{FNS} (i) If p is a prime, any 1PFA recognizing MOD_p has at least p states.

(ii) For any $\epsilon > 0$, there is a MCQFA with $O(\log(p))$ states recognizing MOD_p with error bound ϵ.

We now describe the construction of \cite{FNS} (in a simplified form due to \cite{Yakaryilmaz}). Let M_k, for $k \in \{1, \ldots, p-1\}$, be the two state MCQFA given in Lemma 4.1 for $\phi = \frac{2\pi k}{p}$. Thus, M_k accepts a^j with probability $\cos^2(\frac{2\pi k}{p} j)$. If p divides j, then $\cos^2(\frac{2\pi k}{p} j) = \cos^2 0 = 1$. For j that are not divisible by p, about half of them are accepted with probability less than $\frac{1}{2}$. (This happens if $\frac{2\pi k}{p} j$ belongs to one of the intervals $\left[2\pi m + \frac{\pi}{4}, 2\pi m + \frac{3\pi}{4}\right)$ or $\left[2\pi m + \frac{\pi}{4}, 2\pi m + \frac{3\pi}{4}\right)$.) That is, each of the MCQFAs M_k distinguishes $a^j \in L_p$ from many (but not all) $a^j \notin L_p$. We now combine $O(\log n)$ of the M_k's into one MCQFA M which distinguishes $a^j \in L_p$ from all $a^j \notin L_p$.

Let k_1, \ldots, k_d be a sequence of d numbers, for an appropriately chosen $d = O(\log p)$. The set of states of M consists of $2d$ states $q_{1,1}$, $q_{1,2}$, $q_{2,1}$, $q_{2,2}$, \ldots, $q_{d,1}$, $q_{d,2}$. The transformation for a is defined by

$U_a(q_{i,1}) = \cos \frac{2k_i \pi}{p} q_{i,1} + \sin \frac{2k_i \pi}{p} q_{i,2}$,

$U_a(q_{i,2}) = -\sin \frac{2k_i \pi}{p} q_{i,1} + \cos \frac{2k_i \pi}{p} q_{i,2}$.

That is, on states $q_{i,1}$, $q_{i,2}$, M acts in the same way as M_{k_i}.

The starting state is $q_{1,1}$. The transformation U_ϕ can be any unitary transformation that satisfies $U_\phi q_{1,1} = |\psi_0\rangle$ where $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|q_{1,1}\rangle + |q_{2,1}\rangle + \cdots + |q_{d,1}\rangle)$ and U_ϕ can be any unitary transformation that satisfies $U_\phi |\psi_0\rangle = |q_{1,1}\rangle$. The set of accepting states Q_a consists of one state $q_{1,1}$.

If p divides j, then, by lemma 4.1, the transformation $(U_\phi)^j$ maps $q_{1,1}$ to itself. Since this happens for every i, the state $|\psi_0\rangle$ is also left unchanged by $(U_\phi)^j$. Thus, U_ϕ maps $|\psi_0\rangle$ to $|q_{1,1}\rangle$, the only accepting state.
If \(j \) is not divisible by \(p \), we have the following result:

Theorem 4.8. \([4]\) There is a choice of \(d = 2 \log \frac{2p}{3+3c} \) values \(k_1, \ldots, k_d \in \{1, \ldots, p-1\} \) such that the MCQFA \(M \) described above rejects all \(a^j \notin L_p \) with probability at least \(1 - \epsilon \).

The proof of this theorem is nonconstructive: It was shown in \([4]\) that a random choice \(k_1, \ldots, k_d \) works with a high probability. An explicit construction of \(k_1, \ldots, k_d \) for a slightly larger \(d = O(\log p) \) also given in \([4]\). Constructing an explicit set \(k_1, \ldots, k_d \) such that \(d = O(\log \log p) \) and \(M \) recognizes \(\text{MOD}_p \) is still an open problem, which is linked to estimating exponential sums in number theory \([29]\).

Currently, it is also open what is the biggest possible advantage of general 1QFAs over 1PFAs or 1DFAs. By Theorem 4.6, 1QFAs with \(n \) states can be simulated by 1DFAs with \(2^{O(n^2)} \) states. On the other hand, \([14, 12]\) gives a 1QFA with \(n \) states for a language in an \(2^{\Omega(n \log n)} \) letter alphabet that requires \(2^{\Omega(n \log n)} \) states on 1DFAs and 1PFAs. (The paper \([12]\) also claims a similar result for a language in a 4-letter alphabet but the proof of that appears to be either incomplete or incorrect.)

There has been a substantial amount of further work on the state complexity of 1QFAs. We highlight some results:

1. \([59]\) Any periodic language with period \(n \) in a unary alphabet can be recognized by a \((2\sqrt{n/6})\)-state MCQFA with bounded error.
2. \([20]\) There exists a language with period \(n \) in a one-letter alphabet that requires \(\Omega(\sqrt{n \log n}) \) states to be recognized by MCQFAs.
3. \([22]\) If the \(l_1 \) norm of the Fourier transform of the characteristic function of \(L \) (for a periodic \(L \) in one-letter alphabet) is small, a 1QFA with a smaller number of states is possible.

There are also some negative results for restricted models. For example, there is a language that is recognizable with a \(M \) state 1DFA but requires \(2^{O(M)} \) states for NaQFAs \([10]\). Due to Theorem 4.4 no such result is possible in the more general models.

4.3 Bounded-error language recognition in restricted models

For language recognition with bounded error, we can put the models of QFAs in the order from the weakest to the strongest:

\[
\begin{align*}
1\text{QFA} & \\
\text{QFA-CL} & \\
\text{MCQFA} & \subseteq \text{LaQFA} \subseteq \text{KWQFA} \subseteq \text{NaQFA} \subseteq \text{BiQFA} \subseteq \text{QFA-A} \equiv \text{1DFA}. \quad (4.2)
\end{align*}
\]

It is open whether the inclusions 1KWQFA \(\subseteq \) NaQFA and NaQFA \(\subseteq \) BiQFA are strict.

The class of languages recognized by MCQFAs with bounded error (RMO) is exactly the class of group languages \([18, 4, 70]\). (See \([70]\) for the definition and the details about group languages.) Belovs et al. \([4]\) have shown that the power of MCQFAs can
be increased by reading multiple letters at a time. However, even in this case, they cannot recognize all regular languages [14].

Similar to MCQFAs, a complete characterization of the class of languages recognized by LaQFAs (BLaQAL) was obtained by algebraic techniques [82]. Namely, BLaQAL is equal to the class whose syntactic monoid is in BG, i.e. block groups. Therefore, BMO \(\subset\) BLaQAL. On the other hand, BLaQAL is a proper subset of the class of languages recognized by KWQFAs with bounded error BMM because BMM contains \(\{a \{a, b\}^*\}\) which is not in BLaQAL.

The classes of languages recognizable by other models of 1QFAs have not been characterized so well (and it is not clear whether they even have simple characterizations). While 1KWQFAs recognize more languages than MCQFAs and LaQFAs, they cannot recognize some regular languages [61], for example, \(\{a, b\}^*a\) \(\notin\) BMM.

Researchers [7, 30, 49] have also shown that if a minimal 1DFA has some certain properties, called forbidden constructions, then its language cannot be recognized by KWQFAs for any or for some error bounds. Using forbidden constructions, it was also shown that BMM is not closed under intersection or union [3]. Moreover, KWQFAs can recognize more languages if the error bound gets closer to \(\frac{1}{2}\) [6].

NaQFAs and BiQFA share many of the properties of 1KWQFAs in the bounded error setting [68, 49]. In [49], it was shown that any language recognized by a BiQFA with bounded error is in the language class ER which is a proper subset of REG.

The relative power of various models has also been studied for subclasses of regular languages. For unary regular languages, LaQFAs (and all models that are more powerful than LaQFAs) recognize all unary regular languages since all unary regular languages are in BG language variety [48]. MCQFAs cannot recognize all unary regular languages because they cannot recognize any finite language.

If we restrict ourselves to \(R_1\) languages, another proper subclass of regular languages, the computational powers of 1KWQFA, NaQFA and BiQFA become equivalent [49].

4.4 Unbounded-error, nondeterminism, and alternation

In the unbounded error setting, the language recognition power of 1PFAs and 1QFAs (and GFAs) are equivalent. This result is followed by combining Theorems 4.2 and 4.3 and the simulation of a given GFA by a 1PFA given in [94]. That is, due to Theorem 12.2, any language recognized by a 1PFA with cutpoint is also recognized by a 1QFA with cutpoint; due to Theorem 4.3, any language recognized by a 1QFA is also recognized by a GFA; and it was shown in [104] that any language recognized by a GFA with cutpoint is stochastic. Therefore, the class of languages recognized by 1QFAs with unbounded error is \(uS = S \cup \text{coS}\) [109]. Note that it is still an open problem whether \(S\) is closed under complementation (page 158 of [73]).

Unlike in the bounded error case, KWQFAs are sufficient to achieve equivalence with 1PFAs in the unbounded error setting [105]. For weaker models of QFAs, MCQFAs can recognize a proper subset of \(uS\) with unbounded error [74, 7] and the class of languages recognized by MCQFAs with cutpoint is not closed under complement. Moreover, if a language is recognized by a MCQFA and the isolation gap is \(\frac{1}{p(n)}\) for some polynomial \(p\), then it is a regular language [7]. For LaQFAs, it is still an open problem whether they
can recognize every stochastic language with a cutpoint.

Nondeterministic version of quantum models are obtained by setting the error type to positive one-sided unbounded error [3]. That is, if $x \in L$, a nondeterministic quantum automaton M must accept x with a non-zero probability and, if $x \notin L$, the probability of M accepting x must be 0. (To see the similarity with classical nondeterminism, remember that a classical nondeterministic automaton accepts x whenever there is at least one path on which x gets accepted - this corresponds to x getting accepted with a non-zero probability.)

$1NQFAs$ are the nondeterministic version of $1QFAs$. $NQAL$ denotes the class of languages recognized by $1NQFAs$ [106]. The first result on the power of $1NQFAs$ was that $1NQFAs$ can recognize some nonregular languages such as $NEQ = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b \}$ [17, 30]. A complete characterization of $NQAL$ was given in [106]: $NQAL = \mathcal{S}^\#$.

Similarly to the unbounded-error case, the most restricted $1NQFA$ model recognizing all languages in $\mathcal{S}^\#$ is nondeterministic $KWQFAs$. Moreover, since any unary language in $\mathcal{S}^\#$ is regular (Page 89 of [86]), $1NQFAs$ and $1NFAs$ have the same computational power for unary languages.

Setting error type to negative one-sided unbounded error (M must accept all $x \in L$ with probability 1 and reject every $x \notin L$ with a non-zero probability), we obtain one-way universal $QFAs$ ($1UQFAs$). A language L is recognized by a $1UQFA$ if and only if its complement is recognizable by a $1NQFA$.

Recently, alternating quantum models were introduced as a generalization of nondeterministic quantum model [102] and it was shown that one-way alternating $QFAs$ with ε-moves [2] can recognize any recursively enumerable language. Their one-way variants are also powerful: they can recognize NP-complete problem SUMSETSUM and some nonregular and nonstochastic unary languages like $\{a^{n^2} \mid n \geq 0\}$ only with two alternations [102, 36].

4.5 Decidability and undecidability results

In this section, we consider decidability and complexity of various problems involving one-way $QFAs$ whose transitions are defined using computable numbers or a subset of computable numbers (e.g. rational or algebraic numbers).

4.5.1 Equivalence and minimization.

Two automata A_1 and A_2 are said to be equivalent if $f_{A_1}(x) = f_{A_2}(x)$ for all input words $x \in \Sigma^*$ and they are said to be l-equivalent if $f_{A_1}(x) = f_{A_2}(x)$ for all input words $x \in \Sigma^*$ of length at most l. It is known that any two $GFAs$ G_1 and G_2 with n_1 and n_2 states are equivalent if and only if they are $(n_1 + n_2 - 1)$-equivalent [2]. Due to Theorem 4.3, any n-state $1QFA$ can be converted to an equivalent n^3-state GFA. Therefore, it follows that two $1QFAs$ M_1 and M_2 with n_1 and n_2 states are equivalent, if and only if they are $(n_1^2 + n_2^2 - 1)$-equivalent (see also [11, 32, 43]). Since there is a polynomial time algorithm for checking the equivalence of

2The automaton can spend more than one step on each symbol.

3The method presented in [22] was given for $1PFAs$ but it can be easily applied to any linearized one-way computational model (see also bilinear machine given in [33]).
two GFAs with rational amplitudes [24], this implies that the equivalence of two 1QFAs with rational amplitudes can be checked in polynomial time, as well.

The minimization of a given 1QFA with algebraic numbers is decidable: there is an algorithm that takes a 1QFA as an input and then outputs a minimal size 1QFA that is equivalent to A. Moreover, the algorithm runs in exponential space if the transitions of 1QFAs are rational numbers [26, 30]. In [23], the problem of finding the minimum MCQFA for a unary periodic language (given by a vector that describes which words belong to the language) was studied and it was shown that the minimum MCQFA can be constructed in exponential time.

4.5.2 Emptiness problems and problems regarding isolated cutpoint. We continue with five emptiness problems and two problems regarding isolated cutpoints. Let A be an automaton and λ be a cutpoint.

(1) Given A and $\lambda \in [0, 1]$, is there any $w \in \Sigma^*$, $f_A(w) \geq \lambda$?
(2) Given A and $\lambda \in [0, 1]$, is there any $w \in \Sigma^*$, $f_A(w) \leq \lambda$?
(3) Given A and $\lambda \in [0, 1]$, is there any $w \in \Sigma^*$, $f_A(w) = \lambda$?
(4) Given A and $\lambda \in [0, 1]$, is there any $w \in \Sigma^*$, $f_A(w) > \lambda$?
(5) Given A and $\lambda \in [0, 1]$, is there any $w \in \Sigma^*$, $f_A(w) < \lambda$?
(6) Given A and $\lambda \in (0, 1]$, is there a cutpoint λ' which is isolated?
(7) Given A, is there a cutpoint λ' which is isolated?

All of these problems are known to be undecidable for 1PFAs with rational transitions and rational cutpoints [7, 16, 19, 26]. Since 1PFAs are a restricted form of 1QFAs, it follows that Problems 1-6 are undecidable for general 1QFAs with rational transitions and rational cutpoints, and Problem 7 is undecidable for general 1QFAs with rational transitions.

On the other hand, the situation is not straightforward for the restricted one-way QFAs ([27, 37]): Problems 1-3 are undecidable for MCQFAs with rational transitions and rational cutpoints. However, Problems 4-6 are decidable for MCQFAs with algebraic transitions and algebraic cutpoints, and Problem 7 is decidable for MCQFAs with algebraic transitions.

Furthermore, Problems 1-3 remain undecidable for 13-state MCQFAs with rational transitions and an input alphabet of size 7 [57] and for 25-state MCQFAs with rational transitions and binary alphabet [58]. If algebraic transitions are allowed, the number of states in undecidability results for MCQFAs can be decreased by 6.

For KWQFAs, Problems 4 and 5 are undecidable (for algebraic transitions and rational cutpoints) because [55, 103, 109, 38], given a fixed rational cutpoint $\lambda \in [0, 1]$, a 1PFAs P with algebraic transitions can be transformed into a 1KWQFA M with algebraic transitions so that for any word x, if $f_P(x) < \lambda$, $f_P(x) = \lambda$, or $f_P(x) > \lambda$, then $f_M(x) < \lambda$, $f_M(x) = \lambda$, or $f_M(x) > \lambda$, respectively. Therefore, undecidability results for 1PFAs imply similar undecidability results for Problems 4 and 5 for 1KWQFAs [55, 60].

Currently, we do not know whether Problems 4 and 5 are decidable for LaQFAs and whether Problems 6 and 7 are decidable for the models between MCQFAs and general 1QFAs.

In [54], a promise version of the emptiness problem for 1PFAs was considered, with a promise that either the automaton accepts at least one input $w \in \Sigma^*$ with probability at

\footnote{In this section, we use "rational/algebraic transitions" as a shortcut for "rational/algebraic transition probabilities or amplitudes".}
least $1 - \epsilon$ for some $\epsilon < \frac{1}{2}$ or the accepting probability is at most ϵ for all $w \in \Sigma^*$. It was shown that this problem is undecidable for 1PFAs with rational transition probabilities. This implies that the same problem is also undecidable for 1QFAs.

Recently, the emptiness problem for alternating QFAs, i.e. whether the given automaton defines an empty set or not, was examined in [36], with the following results: (i) the problem is decidable for NQFAs with algebraic transitions on general alphabet and UQFAs with computable transitions on unary alphabets, but, (ii) it is undecidable for UQFAs on general alphabets and alternating 1QFAs on unary alphabets, where both of them are defined with rational numbers.

4.5.3 Other problems. In [78] (Theorem 6.17 on Page 190), the problem of deciding whether the stochastic language recognized by a 1PFA \mathcal{P} with cutpoint λ is regular (or context-free) was shown to be undecidable, for 1PFAs with rational transitions and a rational $\lambda \in [0, 1)$. By the discussion above, the same problem is undecidable for 1QFAs with rational transitions and rational cutpoints and 1KWQFAs with algebraic transitions and rational cutpoints.

A k-QFA classifier [23] is a system of k QFAs (M_1, \ldots, M_k) on an alphabet Σ such that each M_i accepts at least one word with probability bigger than $\frac{1}{2}$ and there is no word which is accepted by both M_i and M_j (for some $i, j : i \neq j$) with probability bigger than $\frac{1}{2}$. A complete k-QFA classifier is a k-QFA classifier such that each word is accepted by exactly one QFA with probability bigger than $\frac{1}{2}$. It was shown that [23] for any $k \geq 2$, it is decidable whether (M_1, \ldots, M_k) is a k-QFA classifier. On the other hand, it is undecidable whether (M_1, \ldots, M_k) is a complete k-QFA classifier.

In [25], two polynomial-time algorithms were given for KWQFAs on a unary alphabet $\Sigma = \{a\}$ with rational transitions. A KWQFA \mathcal{M} on a unary alphabet can be viewed as a quantum Markov chains. Then, its non halting subspace decomposes into the ergodic and the transient subspaces (see [7, 25] for the details). The first algorithm of [25] computes the dimensions of these subspaces. The second algorithm decides whether $f_\mathcal{M}$ has a period of $d \geq 0$ such that $\forall k \in \mathbb{N} \ (f_\mathcal{M}(a^k) = f_\mathcal{M}(a^{k+d}))$.

5 Two-way QFAs

Two-way models have a read-only input tape on which the given input, say w, is written between \langle (the left end-marker) and \rangle (the right end-marker) symbols. The tape square on which \tilde{w}_i is written is indexed by i, where $1 \leq i \leq |\tilde{w}|$.

A two-way QFA can be defined either as a fully quantum machine or a classical machine augmented with a finite-size quantum register (memory). The former one is known as two-way QFAs with quantum head (2QFAs), and the latter one is known as two-way QFAs with classical head (2QCFAs).
5.1 2-way QFAs with classical head

A 2-way QFA with classical head (2QCFA), also known as two-way finite automaton with quantum and classical states \[11\], is a 2-way automaton whose state space consists of two parts: classical and quantum. The computation of a 2QCFA \(M \) is governed by its classical part. The classical part determines the movement of \(M \) on the input tape. The operators applied to the quantum register is also determined by the classical configuration of \(M \). Moreover, outcomes of measurements on the quantum part of \(M \) are also processed by the classical part of \(M \).

More formally, we define a 2QCFA as an 8-tuple \(M = (S, Q, \Sigma, \delta, q_1, s_1, s_a, s_r) \), where

- \(S \) is the set of states for the classical part of the state space and \(Q \) is the set of basis states for the quantum part;
- \(\Sigma \) is the input alphabet;
- \(\delta \) is a transition function (consisting of \(\delta_c \) and \(\delta_q \) that governs the classical part and the quantum part of the machine, described in more detail below);
- \(s_1 \in S \) and \(q_1 \in Q \) are the initial states for the classical and the quantum part, respectively;
- \(s_a \in S \) and \(s_r \in S \) \((s_a \neq s_r)\) are the accepting and the rejecting states, respectively.

Each step of \(M \) has two stages: a quantum transition \((\delta_q) \) and then a classical transition \((\delta_c) \):

- The classical state \(s \in S \setminus \{s_a, s_r\} \) and the input letter \(\sigma \in \tilde{\Sigma} \) determine an action \(\delta_q(s, \sigma) \) that is performed on the quantum register. This action can be a unitary transformation or a projective measurement.
- Then, the computation is continued classically. If \(\delta_q(s, \sigma) \) was a unitary transformation, then the classical transition \(\delta_c(s, \sigma) \) is an element of \(S \times \{-1, 0, +1\} \) specifying a new classical state and a movement of the tape head (left, stay, or right, respectively). If \(\delta_q(s, \sigma) \) is a measurement, the classical transition \(\delta_c(s, \sigma, \tau) \) is also an element of \(S \times \{-1, 0, +1\} \) but is defined by a triple \((c, \sigma, \tau)\) which includes the outcome \(\tau \) of the measurement on the quantum part.

At the beginning of the computation, the head is on the left end-marker, the classical state is \(s_1 \), and the quantum state is \(q_1 \). The computation is terminated and the input is accepted (rejected) when \(M \) enters the state \(s_a \) \((s_r)\). It is obvious that any 2PFA can be simulated by a 2QCFA.

An particular case of a 2QCFA is a 1QFA with restart: it reads the input from the left to the right in one-way mode, and if the computation does not halt (does not enter an accepting or rejecting state), the computation is restarted after reading the right end-marker \[107\]. Its probabilistic counterpart is 1PFA with restart.

5.1.1 Bounded-error language recognition. Unlike one-way models, 2QCFAs are more powerful than their classical counterpart (2PFAs) \[11\]:

- the language \(\text{EQ} = \{w \in a, b^* \mid |w|_a = |w|_b\} \) can be recognized by 2QCFAs in polynomial expected time \[1\] but can be only recognized in exponential time by 2-PFAs \[41, 39\].
the language $\text{PAL} = \{ w \in \{a,b\}^* \mid w = w^r \}$ can be recognized by 2QCFAs in exponential expected time but cannot be recognized by 2PFAs (and more generally, by Turing machines with working tape of size $o(\log n)$) at all.

We now describe 2QCFAs for these languages. Both of them execute an infinite loop with two parts. The first part is quantum and the second part is classical.

2QCFAs for EQ The 2QCFAs M_1 has two quantum states $\{q_1, q_2\}$.
- In the quantum part, M_1 starts in state $|q_1\rangle$ in its quantum register and reads w from left to right. Each time when M_1 reads a, it applies a rotation by an angle $\sqrt{2\pi}$ in the real $|q_1\rangle$-$|q_2\rangle$ plane in a counterclockwise direction. When M_1 reads a, it applies a rotation by $\sqrt{2\pi}$ in the clockwise direction. When M_1 arrives at the right end-marker, the quantum register is measured in computational basis and the input is rejected if $|q_2\rangle$ is observed.

If $w \in \text{EQ}$, the rotations in both directions cancel out and the final quantum state is exactly $|q_1\rangle$. Therefore, w is never rejected. If $w \notin \text{EQ}$, then the final quantum state is always away from $|q_1\rangle$-axis and the resulting rejecting probability can be bounded from below by $\frac{1}{2^{|w|^2}}$ (using a nice property of rotation angle $\sqrt{2\pi}$). See Figure 2 for some details of the quantum phase.

- In the classical part, M_1 performs a classical procedure that results in accepting w with probability $\frac{1}{2^{|w|^2}}$ for some $k > 1$, using expected time $O(|w|^2)$. (This can be obtained by performing two consecutive random walks on the word w. For more details, see [89].)

If $w \in \text{EQ}$, w is accepted with probability 1 in $O(|w|^4)$ expected time, through the classical part of the loop. If $w \notin \text{EQ}$, the probability of rejection in the quantum part of the loop is larger than the probability of accepting in the classical part. Namely, we can show that w is rejected with a probability at least $\frac{2^k}{2^{|w|^2} + 2} > \frac{1}{2}$ in $O(|w|^2)$ expected time.

2QCFAs for PAL The 2QCFAs M_2 has three quantum states $\{q_1, q_2, q_3\}$.
- It starts the quantum phase in state $|q_1\rangle$ and reads the input from left to right twice. In the first read, it applies

$$U_a = \frac{1}{5} \begin{pmatrix} 4 & 3 & 0 \\ -3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \quad \text{and} \quad U_b = \frac{1}{5} \begin{pmatrix} 4 & 0 & 3 \\ 0 & 5 & 0 \\ -3 & 0 & 4 \end{pmatrix}$$
for each a and b, respectively. In the second reading, it applies inverses of the matrices respectively. Then, the quantum register is fully measured with respect $|q_1\rangle, |q_2\rangle, |q_3\rangle$ and the input is rejected if the result is not $|q_1\rangle$. So, if w is palindrome, the state ends in $|q_1\rangle$, i.e.

$$|q_1\rangle = U_{w|w|}^{-1} U_{w|w|-1}^{-1} \cdots U_{|w|}^{-1} U_{|w|-1}^{-1} \cdots U_{w2} U_{w1} |q_1\rangle,$$

and so w is not rejected. Otherwise, the computation does not return to the initial quantum state exactly, which is indeed away from $|q_1\rangle$ by a value exponential small in the length of input such that the input is rejected with a probability at least $25^{-|w|}$ (this follows from properties of U_a and U_b, see \cite{11} for the detailed explanation).

• Similarly to M_1, we set up the classical phase so that the input is accepted with a sufficiently small probability. In this case, this probability is $2^{-4k|w|}$ for some $k > 1$.

Thus, M_2 accepts w with probability 1 if $w \in EQ$ and rejects w with a probability at least $\frac{1}{16k^2} > \frac{1}{2}$ otherwise.

We note that M_2 only uses rational amplitudes. On the other hand, allowing arbitrary real numbers does not help 2PFAs for recognizing PAL \cite{40}.

These results have been generalized in \cite{107}, by showing that all languages in $S_Q^\equiv \cup S_Q^\neq$, can be recognized by 1KWQFAs with restart (and so by 2QCFAs) with bounded error. S_Q^\equiv contains many well-known languages: $EQ, PAL, TWIN = \{wcw \mid w \in \{a, b\}^*\}$, $SQUARE = \{a^n b^{n^2} \mid n > 0\}$, $POWER = \{a^n b^{2n} \mid n > 0\}$, the word problem of finitely generated free groups, all polynomial languages defined in \cite{95}, and MULT = $\{x\#y\#z \mid x, y, z$ are natural numbers in binary notation and $x \times y = z\}$. Note that 1KWQFA with restart is the most restricted of known two-way QFA models that is more powerful than its classical counterpart (1PFA with restart).

\subsection{Succinctness results.}

2QFAs can also be more succinct than their one-way versions and their classical counterparts \cite{107, 112}. The main result is that for any $m > 0$, MOD_m (the complement of language MOD_m defined in \cite{4.1}) can be recognized by a 1QFA with restart (and so by a 2QCFA) with a constant number of states for any one-sided error bound. On the other hand, the number of states required by bounded-error 2PFAs increases when m gets bigger. This also implies a similar gap between 2QCFAs and 1QFA, because, by Theorem \cite{1.4}, a 1QFA with a constant number of states can be simulated by a 1DFA (and, hence, 2PFA) with a constant number of states (where the constant may be exponentially larger).

\subsection{Other results.}

In \cite{84}, the simulation of a restricted bounded-error 2QCF by weighted automata was presented. No other “non-trivial” upper bound is known for bounded-error 2QCFAs. On the other hand, it was recently shown that, if we allow arbitrary transition amplitudes (including non-computable ones), bounded-error 2QCFAs can recognize uncountably many languages in polynomial time \cite{88}. This is an evidence that 2QFAs can be very sensitive to the type of numbers that we can use as transition amplitudes.
5.2 2-way QFAs with quantum head

The definition of 2QFAs with quantum head is technically more difficult than that of 2QCFAs. Because of that, we only provide an informal definition and an example of a 2QFA and refer the reader to [109] for the remaining details.

Let M be an n-state 2-way automaton with the set of states $\{q_1, \ldots, q_n\}$ and let w be an input string. Then, the possible configurations of M on the input w can be described by pairs (q_i, j) consisting of automaton’s internal state $i : 1 \leq i \leq n$ and the location $j : 1 \leq j \leq |\overline{w}|$ in the input word which the automaton is currently reading. A probabilistic automaton (2PFA) can be in a probability distribution of the classical configurations during its computation. A 2QFA can be in a quantum state with the basis states $|q_i, j\rangle$. The evolution of a 2QFA governed by quantum operators (measurements, unitary operators, superoperators, etc.).

M evolves according to a transition rule which depends on the current state q_i and the symbol $w[j]$ at the current location. For example, if M evolves unitarily, we have local transitions of the form

$$|q, d\rangle \rightarrow \sum_{q' \in \{q_1, \ldots, q_n\}, c \in \{-1, 0, 1\}} \alpha_{q', c}^{(q, w[d])} |q', d + c\rangle$$

(5.1)

where $c \in \{-1, 0, 1\}$ corresponds to moving left, staying in place and moving right and the transition amplitudes $\alpha_{q', c}^{(q, w[d])}$ depend on the state q before the transition and the symbol $w[d]$ that the automaton reads. By combining those transitions for all q and d, we get an operator $U_M(w)$ that describes the evolution of the whole state space of M. This operator $U_M(w)$ must be unitary for any $w \in \Sigma^*$. This implies a finite list of constraints on the amplitudes $\alpha_{q', c}^{(q, w[d])}$ in the local transition rules (5.1), known as the well-formedness conditions [103, 109, 100].

To stop the computation, we perform a partial measurement on QFA’s quantum state after each application of $U_M(w)$, with respect to the partition of basis states into the set of accepting states Q_a, the set of rejecting states Q_r and the set of non-halting states Q_n. If the result is Q_a (or Q_r), the computation is terminated and the input is accepted (rejected). Otherwise, the computation is continued.

The model above is the first 2QFA model, called two-way KWQFA [11]. Although some interesting results obtained based on this model, it is still open if 2KWQFAs can simulate 2PFAs. The Hilbert space can also be evolved by superoperators [109], and then 2QFAs can simulate both 2QCFAs and 2PFAs exactly.

If the head of a 2QFA is not allowed to move to left, then we obtain a 1.5-way QFA (1.5QFA). Here “1.5” emphases that the head is quantum and so it can be in more than one position during the computation.

5.2.1 Bounded-error language recognition. As described above, 2QFAs and 1.5QFAs can be in a superposition over different locations of the input tape instead of only being in a superposition of states. This enables them to use the length of input as a counter. We now give an 1.5-way KWQFA for the language EQ uses this idea, which runs in linear time.

1.5-way KWQFA for EQ: Our automaton M has 5 states $\{q_1, q_2, q_w, q_a, q_r\}$, with q_1 as the starting state. To determine whether the input should be accepted, we use the
following measurement: if the computation is in a configuration containing q_a (q_r), then the input is accepted (rejected). Otherwise, the computation goes on.

The transitions are defined as follows:

- On the left end-marker, the starting state $|q_1\rangle$ is mapped to $\frac{1}{\sqrt{2}}|q_1\rangle + \frac{1}{\sqrt{2}}|q_2\rangle$ and the head of \mathcal{M} moves one square right;
- On letter a, \mathcal{M} performs the mapping: $|q_1\rangle \rightarrow |q_w\rangle$, $|q_w\rangle \rightarrow |q_1\rangle$, $|q_2\rangle \rightarrow |q_2\rangle$, staying in place if the state after the transformation is $|q_w\rangle$ and moving to the right otherwise;
- On letter b, \mathcal{M} performs the mapping: $|q_2\rangle \rightarrow |q_w\rangle$, $|q_w\rangle \rightarrow |q_1\rangle$, $|q_1\rangle \rightarrow |q_1\rangle$, staying in place if the state after the transformation is $|q_w\rangle$ and moving to the right otherwise;
- On the right end-marker, \mathcal{M} maps $|q_1\rangle \rightarrow \frac{1}{\sqrt{2}}|q_a\rangle + \frac{1}{\sqrt{2}}|q_r\rangle$ and $|q_2\rangle \rightarrow \frac{1}{\sqrt{2}}|q_a\rangle - \frac{1}{\sqrt{2}}|q_r\rangle$.

An example run of the machine is given in Figure 3, in which each arrow represents a single step and it is clear that after the second step the head places on the different squares of the tape until the end of the computation where they meet again and so they affect each other.

![Figure 3. An example run of \mathcal{M}](image)

To analyze how \mathcal{M} works, we observe that, on the left end-marker, it enters the state $\frac{1}{\sqrt{2}}|q_1\rangle + \frac{1}{\sqrt{2}}|q_2\rangle$. Every a symbol results in the q_1 component moving to the right in 2 steps and the q_2 component moving to the right in 1 step. Every b results in q_1 moving to the right in 1 step and q_2 moving to the right in 2 steps. If $|w|_a = |w|_b$, the automaton reaches the right end-marker at the same time in q_1 and q_2. If $|w|_a \neq |w|_b$, one of components reaches the end-marker earlier than the other.

In the first case, applying the transformation at the right end-marker gives the configuration

$$\left(\frac{1}{2}|q_a, \tilde{w}\rangle + \frac{1}{2}|q_r, \tilde{w}\rangle\right) + \left(\frac{1}{2}|q_a, \tilde{w}\rangle - \frac{1}{2}|q_r, \tilde{w}\rangle\right) = |q_a, \tilde{w}\rangle$$

So, the input is accepted with probability 1. In the second case, we have $|q_1\rangle \rightarrow \frac{1}{\sqrt{2}}|q_a\rangle + \frac{1}{\sqrt{2}}|q_r\rangle$ and $|q_2\rangle \rightarrow \frac{1}{\sqrt{2}}|q_a\rangle - \frac{1}{\sqrt{2}}|q_r\rangle$ applied at the right end-marker at different times and,\footnote{All transitions that are omitted below are not significant and so they can be arbitrary by guaranteeing that the related operator is unitary.}
in each case, q_a and q_r are obtained with equal probability. Thus, the input is accepted with probability $1/2$.

The probability of accepting $x \notin \text{EQ}$ can be decreased from $1/2$ to $1/k$, for arbitrary k \cite{61,104}, with the number of states in the automaton increasing to $O(k^2)$ using the construction of \cite{51} and to $O(\log^c k)$ using the construction of \cite{104}.

Currently we do not know any language separating 2QCFAs and 2QFA or any language requiring exponential expected time by two-way QFAs. Also, even though 1.5KWQFAs can recognize non-regular languages (such as \text{EQ}), it is not known whether they can recognize all regular languages with bounded error. It is also open whether 2QFAs can recognize a nonstochastic language with bounded error.

5.2.2 Unbounded-error language recognition. The superiority of 2QFAs also holds in the unbounded error case. Let

$$\mathcal{NH} = \{a^x b a^{y_1} b a^{y_2} b \cdots a^{y_t} b \mid x, y_1, \ldots, y_t \in \mathbb{Z}^+ \text{ and } \exists k (1 \leq k \leq t), x = \sum_{i=1}^{k} y_i \}.$$

\(\mathcal{NH} \) is nonstochastic \cite{72} but is recognizable by 1.5-way KWQFAs \cite{105,109} (by a generalization of the technique used by 1.5-way KWQFAs for \text{EQ} in the previous section). This shows a superiority over probabilistic automata because 2PFAs cannot recognize any nonstochastic language \cite{59}. In fact, 1.5-way KWQFAs can recognize most of the nonstochastic languages defined in literature \cite{58,58} and currently we do not know any nonstochastic language recognized by 2QFAs but not by any 1.5QFAs. We note that the best known upper bound (in terms of complexity classes) for unbounded-error 2QFAs (with algebraic transitions) is $\mathcal{P} \cap \mathcal{L}^2$ \cite{97}.

5.2.3 Undecidability of emptiness problem. 1.5KWQFAs have the capability of checking successive equalities, e.g. $a^n b a^n b a^n b \cdots$ (see \cite{101}). This leads to the following result: The emptiness problem for one-way KWQFAs (with algebraic transitions) is undecidable \cite{4}. This is shown by a reduction from the halting problem for one-register machines, which is known to be undecidable.

6 Other models and results

Interactive proof systems. An interactive proof system consists of two parties: the prover with an unlimited computational power and the verifier who is computationally limited. Both parties are given an input x and can send messages to one another. We say that a language L has an interactive proof system if there is a strategy for the verifier with the following two properties:

(a) If $x \in L$, there exists a strategy for the prover such that, given a prover who acts according to this strategy, the verifier accepts with probability at least $2/3$;

(b) If $x \notin L$, then, for any prover’s strategy, the verifier accepts with probability at most $1/3$.

Automata and Quantum Computing
QIP(M) denotes the class of all languages which have a quantum interactive proof system with a verifier in M. Obviously, if L is recognizable in M, it has a trivial interactive proof system in which the verifier runs the algorithm for recognizing M and disregards the prover. However, QIP(M) can be much larger than M.

For finite automata, BMM is smaller than REG but QIP(KWQFA) = REG. For 2-way automata, we have the upper bound $\text{QIP}_C(\text{poly-time two-way KWQFA}) \subseteq \text{NP}$ [70].

In the multiprover version of this model (denoted $\text{QMIP}(\cdot)$), the verifier can ask question to multiple provers and he is guaranteed that the provers do not interact one with another. Then, we know [111]:

- $\text{CFL} \subseteq \text{QMIP}_C(\text{KWQFA}) \subseteq \text{NE}$,
- $\text{QMIP}_C(\text{poly-time two-way KWQFA}) = \text{NEXP}$, and
- every recursively enumerable language is in $\text{QMIP}_C(\text{two-way KWQFA})$,

where CFL and NE are the classes of context-free languages and languages recognizable in time $2^{O(n)}$.

It is interesting to compare this with the classical case where NEXP is equal to the class of all languages that have interactive proofs with a polynomial time Turing machine as the verifier (which is a much stronger model that a two-way KWQFA).

An Arthur-Merlin (AM) proof system is an interactive proof system in which all of the verifier’s probabilistic choices are visible to the prover. Thus, the prover has a complete information about the computational state of the verifier. In the quantum version, the verifier has a quantum register and is allowed to use superoperators on the quantum register, but the register has to be fully measured after every step and the measurement outcome is transmitted to the prover (so that the prover still has a complete information about the state of the verifier).

If the verifier is a 2QCFA and all the transitions are restricted with rational numbers, we have the following results [103]:

- $\text{AM}_Q(\text{2QCFA})$ contains $\text{ASPACE}(n) \cup \text{PSPACE}$ and some NEXP-complete languages and,
- every recursively enumerable language is in weak-$\text{AM}_Q(\text{2QCFA})$ where the prefix “weak-” denotes the class of languages having a proof system where the non-members do not need to be rejected with high probability.

The first result should be contrasted with the fact that weak-$\text{AM}(2\text{PFA})$ is a proper subset of P [40] and the second result should be compared with the fact that every recursively enumerable language is in weak-$\text{IP}(2\text{PFA})$ [34] (which is a similar result but uses a stronger computational model: IP instead of AM).

If we allow computable real numbers as amplitudes, $\text{AM}_X(\text{2QCFA})$ becomes equivalent to the class of all recursive languages [88].

Debate systems. A debate system is a generalization of IP system where the verifier interacts with a prover (who tries to convince the verifier that $x \in L$) and a refuter (who tries to prove that $x \notin L$). If $x \in L$, there should be a strategy for the prover such that, regardless of the refuter’s strategy, the verifier accepts with probability at least $2/3$. If $x \notin L$, the refuter should have a strategy such that, for any prover’s strategy, the verifier rejects with probability at least $2/3$.

6The proof of $\text{AM}_Q(\text{2QCFA})$ contains PSPACE will appear in an extended version of [103].
The debate version of AM(2QCFA) has been shown to contain all recursive languages [24]. In contrast, the debate version of AM(2PFA) is a subset of NP [13].

Postselection. Postselection is the ability to discard some outcomes at the end of the computation and to make the decision based on the surviving outcomes (even though these outcomes might be occurring with a very small probability). For example, if we have a QFA with 3 basis states \(|q_1\rangle, |q_2\rangle, |q_3\rangle\), we could discard the \(|q_3\rangle\) part of the final state of the QFA and make the accept/reject decision based on the part of the final state which consists of \(|q_1\rangle\) and \(|q_2\rangle\).

Postselection is not possible physically but is interesting as a thought experiment. It has been studied for both quantum circuits [1] and quantum automata [24, 108]. It has been shown that 1QFAs (1PFA) with postselection have the same computational power as 1QFAs (1PFAs) with restart.

Closed Timelike curves. Similar to postselection, closed timelike curves (CTC) are a model which is impossible physically but is interesting as a thought experiment. A CTC is a device which allows to send information back in time, to previous steps of the computation, as long as this does not result in inconsistencies in the computation.

[91, 87] have studied 1QFAs and 1PFAs with a capability of sending one bit from the end of the computation to the beginning of the computation through a CTC. Surprisingly, it was shown that such 1QFAs can simulate 1QFAs with postselection, and vice versa, when their transitions are restricted to rational numbers. The same result can be obtained for 1PFAs even for arbitrary transition probabilities.

Promise problems. Promise problems are computational tasks where the goal is to separate two languages \(L_1, L_2 : L_1 \cap L_2 = \emptyset\) (the automaton must accept all \(x \in L_1\), reject all \(x \in L_2\) and is allowed to output any answer for \(x \notin L_1 \cup L_2\)). Promise problems allow to show separations between types of automata which are equivalent in the standard setting of recognizing a language \(L\).

For example, for the case of exact computation (no error allowed), 1QFAs cannot be more concise than 1PFAs [24]. On the other hand, for promise problems, the superiority of 1QFAs over 1PFAs can be unbounded [12]: There exists an infinite family of promise problems which can be solved exactly by tuning transition amplitudes of a two-state MC-QFA, while the size of the corresponding classical automata grows to infinity [55, 67]. Recently, this result was generalized in [55] and [67] and other succinctness results were given in [113, 34, 51, 112].

Several results about the computational power of QFAs on promise problems have been obtained in [55]. For example, there is a promise problem solvable by a Las Vegas 1QFA, but not by any bounded-error 1PFA. (For language recognition, both of those models recognize exactly REG and, thus, are of equal power.) Also, there is a promise problem solvable by an exact 2QCFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). No similar example is known for language recognition.

Advice. In computation with advice , the automaton is provided extra information called advice which depends on the length of the input \(x\) but not on the particular \(x\).

Advice is a well known notion in the complexity theory but has not been studied much in the setting of QFAs. The first model was introduced in [111] but was based on
As a result, there are some regular languages not recognized by this model, with advice of up to linear size. Recently, this framework was generalized in [62], which can be a good starting point for studying QFAs with advice.

Determining the bias of a coin. In [4], the state complexities of 1QFAs and 1PFAs were compared for the problem of determining the bias of a coin, if it is known that the coin lands “heads” with probability either \(p \) or \(p + \epsilon \) for some known \(p \) and \(\epsilon \). A 1QFA can distinguish between the two cases with a number of states that is independent of \(p \) and \(\epsilon \) while any bounded-error 1PFA must have \(\Omega\left(\frac{p(1-p)}{\epsilon^2}\right) \) states [4].

Learning theory. The problem of learning probability distributions produced by QFA sources, i.e. identifying an unknown QFA from examples of its behavior, was studied in [58]. Information-theoretically, QFAs can be learned from a polynomial number of examples, similarly to classical hidden Markov models. However, computationally, the problem is as hard as learning noisy parities, a very difficult problem in computational learning theory [28].

7 Concluding remarks

Quantum finite automata (QFAs) combine the theory of finite automata with quantum computing. Many different models and aspects of QFAs have been studied and this research topic will soon celebrate its 20 years.

There are some contexts in which quantum models are of the same power as classical models (for example, language recognition power of 1QFAs with bounded or unbounded error) or have similar properties as classical models (for example, undecidability of the emptiness problem for 1-way automata). On the other hand, there are many cases in which quantum models are superior to classical models (for example, succinctness results for almost all models, nondeterministic language recognition power, and language recognition power of 2QFAs with bounded or unbounded error). Also, there are still many research questions that are still open.

Among restricted one-way QFAs, LaQFAs deserve a special attention. Moreover, it would be interesting to find more examples where QFAs can be substantially smaller than DFAs and PFAs. So far, most examples are periodic languages over unary alphabet (e.g. [7, 69]) or their simple generalizations. This raises a question: for what non-unary languages do QFAs achieve a quantum advantage in a non-trivial way?

Compared to one-way models, two-way QFA models have not been widely examined and there are many open problems related to them. Furthermore, promise problems, interactive proof systems, and computation with advice are new hot topics having connections with computational complexity. Further research on them will likely provide new insights. Another promising direction is connections of QFAs with algebra and using algebraic methods to study the power of QFAs.

7 Also, note that the usage of advice defined in [110] is different than the usual definition for classical finite automata [35].
Acknowledgements

We are grateful to A. C. Cem Say and John Watrous for their helpful comments on the subject matter of this chapter. We would like to thank our anonymous referee for his/her helpful comments and Narad Nampersad for his suggestions to improve the language of the chapter. We also would like to thank Marats Golovkins, Paulo Mateus, Emmanuel Jeandel, Carlo Mereghetti, Farid Ablayev, Daowen Qiu, Jozef Gruska, and James P. Crutchfield for kindly answering our questions.

A. Yakaryılmaz would like to sincerely thank his PhD. supervisor A. C. Cem Say for introducing him to the field of quantum computation and for their collaborative work where he has learned a lot and gained a great deal of experience.

References

[1] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. *Proceedings of the Royal Society A*, 461(2063):3473–3482, 2005.

[2] S. Aaronson and A. Drucker. Advice coins for classical and quantum computation. In ICALP (1), volume 6755 of LNCS, pages 61–72, 2011. (arXiv:1101.5355).

[3] L. M. Adleman, J. DeMarrais, and M.-D. A. Huang. Quantum computability. *SIAM Journal on Computing*, 26(5):1524–1540, 1997.

[4] M. Amano and K. Iwama. Undecidability on quantum finite automata. In STOC, pages 368–375. ACM, 1999.

[5] A. Ambainis, M. Beaudry, M. Golovkins, A. Ķikusts, M. Mercer, and D. Thérien. Algebraic results on quantum automata. *Theory of Computing Systems*, 39(1):165–188, 2006.

[6] A. Ambainis, R. Bonner, R. Freivalds, and A. Ķikusts. Probabilities to accept languages by quantum finite automata. In COCOON, volume 1627 of LNCS, pages 174–183, 1999. (arXiv:quant-ph/9904066).

[7] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and generalizations. In FOCS, pages 332–341. IEEE, 1998. (arXiv:quant-ph/9802062).

[8] A. Ambainis, A. Ķikusts, and M. Valdats. On the class of languages recognizable by 1-way quantum finite automata. In STACS, volume 2010 of LNCS, pages 75–86, 2001.

[9] A. Ambainis and N. Nahimovs. Improved constructions of quantum automata. *Theoretical Computer Science*, 410(20):1916–1922, 2009.

[10] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum coding and quantum finite automata. *Journal of the ACM*, 49(4):496–511, 2002.

[11] A. Ambainis and J. Watrous. Two–way finite automata with quantum and classical states. *Theoretical Computer Science*, 287(1):299–311, 2002.

[12] A. Ambainis and A. Yakaryılmaz. Superiority of exact quantum automata for promise problems. *Information Processing Letters*, 112(7):289–291, 2012.

[13] D. Bacon and W. van Dam. Recent progress in quantum algorithms. *Communications of the ACM*, 53(2):84–93, 2010.
[14] A. Belovs, A. Rosmanis, and J. Smotrovs. Multi-letter reversible and quantum finite automata. In Developments in Language Theory, volume 4588 of LNCS, pages 60–71, 2007.

[15] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing, 26(5):1411–1473, 1997.

[16] A. Bertoni. The solution of problems relative to probabilistic automata in the frame of the formal languages theory. In GI-4. Jahrestagung, volume 26 of LNCS, pages 107–112, 1975.

[17] A. Bertoni and M. Carpentieri. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 262(1-2):69–81, 2001.

[18] A. Bertoni and M. Carpentieri. Regular languages accepted by quantum automata. Information and Computation, 165(2):174–182, 2001.

[19] A. Bertoni, G. Mauri, and M. Torelli. Some recursive unsolvable problems relating to isolated cutpoints in probabilistic automata. In ICALP, volume 52 of LNCS, pages 87–94, 1977.

[20] A. Bertoni, C. Mereghetti, and B. Palano. Lower bounds on the size of quantum automata accepting unary languages. In ICTCS, volume 2841, pages 86–96, 2003.

[21] A. Bertoni, C. Mereghetti, and B. Palano. Quantum computing: 1-way quantum automata. In Developments in Language Theory, volume 2710 of LNCS, pages 1–20, 2003.

[22] A. Bertoni, C. Mereghetti, and B. Palano. Small size quantum automata recognizing some regular languages. Theoretical Computer Science, 340(2):394–407, 2005.

[23] A. Bertoni, C. Mereghetti, and B. Palano. Some formal tools for analyzing quantum automata. Theoretical Computer Science, 356(1):14–25, 2006.

[24] M. P. Bianchi, C. Mereghetti, and B. Palano. Complexity of promise problems on classical and quantum automata. In Graska Festschrift, volume 8808 of LNCS, pages 161–175. Springer International Publishing, 2014.

[25] M. P. Bianchi and B. Palano. Behaviours of unary quantum automata. Fundamenta Informaticae, 104(1–2):1–15, 2010.

[26] V. D. Blondel and V. Canterini. Undecidable problems for probabilistic automata of fixed dimension. Theory of Computing Systems, 36(3):231–245, 2003.

[27] V. D. Blondel, E. Jeandel, P. Koiran, and N. Portier. Decidable and undecidable problems about quantum automata. SIAM Journal on Computing, 34(6):1464–1473, 2005.

[28] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning problems. In CRYPTO, volume 773 of LNCS, pages 278–291, 1993.

[29] J. Bourgain. Estimates on exponential sums related to Diffie-Hellman distributions. Geometric and Functional Analysis, 15:1–34, 2005.

[30] A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. SIAM Journal on Computing, 31(5):1456–1478, 2002.

[31] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001.

[32] M. P. Ciamarra. Quantum reversibility and a new model of quantum automaton. In FCT, volume 2138 of LNCS, pages 376–379, 2001.

[33] A. Condon. Computational Models of Games. MIT Press, 1989.
[34] A. Condon and R. J. Lipton. On the complexity of space bounded interactive proofs (extended abstract). In FOCS’89: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages 462–467, 1989.

[35] C. Damm and M. Holzer. Automata that take advice. In MFCS’95: Proceedings of the 20th International Symposium on Mathematical Foundations of Computer Science, pages 149–158, 1995.

[36] H. G. Demirci, M. Hirvensalo, K. Reinhardt, A. C. C. Say, and A. Yakaryılmaz. Classical and quantum realtime alternating automata. In NCMA, volume 282 of books@ocg.at. Austrian Computer Society, 2014.

[37] H. Derksen, E. Jeandel, and P. Koiran. Quantum automata and algebraic groups. Journal of Symbolic Computation, 39(3–4):357–371, 2005.

[38] P. D. Diëu. Criteria of representability of languages in probabilistic automata. Cybernetics and Systems Analysis, 13(3):352–364, 1977.

[39] C. Dwork and L. Stockmeyer. A time complexity gap for two-way probabilistic finite-state automata. SIAM Journal on Computing, 19(6):1011–1123, 1990.

[40] C. Dwork and L. Stockmeyer. Finite state verifiers I: The power of interaction. Journal of the ACM, 39(4):800–828, 1992.

[41] R. Freivalds. Probabilistic two-way machines. In MFCS, volume 118 of LNCS, pages 33–45, 1981.

[42] R. Freivalds. Super-exponential size advantage of quantum finite automata with mixed states. In ISAAC, volume 5369 of LNCS, pages 931–942, 2008.

[43] R. Freivalds and M. Karpinski. Lower space bounds for randomized computation. In ICALP, volume 820 of LNCS, pages 580–592, 1994.

[44] R. Freivalds, M. Ozols, and L. Mančinska. Improved constructions of mixed state quantum automata. Theoretical Computer Science, 410(20):1923–1931, 2009.

[45] R. Freivalds, A. Yakaryılmaz, and A. C. C. Say. A new family of nonstochastic languages. Information Processing Letters, 110(10):410–413, 2010.

[46] A. Gainutdinova and A. Yakaryılmaz. Unary probabilistic and quantum automata on promise problems. In DLT, volume 9168 of LNCC, pages 252–263. Springer International Publishing, 2015.

[47] V. Geffert and A. Yakaryılmaz. Classical automata on promise problems. In DCFS, volume 8614 of LNCS, pages 126–137. Springer, 2014.

[48] M. Golovkins, private communication, September 2012.

[49] M. Golovkins, M. Kravtsev, and V. Kravcevs. Quantum finite automata and probabilistic reversible automata: R-trivial idempotent languages. In MFCS, volume 6907 of LNCS, pages 351–363, 2011.

[50] L. Grover. A fast quantum mechanical algorithm for database search. In STOC, pages 212–219. ACM, 1996.

[51] J. Gruska, D. Qiu, and S. Zheng. Generalizations of the distributed Deutsch-Jozsa promise problem. Technical report, 2014. arXiv:1402.7254.

[52] J. Gruska, D. Qiu, and S. Zheng. Potential of quantum finite automata with exact acceptance. Technical Report arXiv:1404.1689, 2014.

[53] M. Hirvensalo. Improved undecidability results on the emptiness problem of probabilistic and quantum cut-point languages. In SOFSEM, volume 4362 of LNCS, pages 309–319, 2007.
[75] M. A. Nielsen and I. L. Chuang. *Quantum Computation and Quantum Information*. Cambridge University Press, 2000.

[76] H. Nishimura and T. Yamakami. An application of quantum finite automata to interactive proof systems. *Journal of Computer and System Sciences*, 75(4):255–269, 2009.

[77] K. Paschen. Quantum finite automata using ancilla qubits. Technical report, University of Karlsruhe, 2000. (http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/756861).

[78] A. Paz. *Introduction to Probabilistic Automata*. Academic Press, New York, 1971.

[79] J.-E. Pin. On the language accepted by finite reversible automata. In *ICALP*, volume 267 of *LNCS*, pages 237–249, 1987.

[80] D. Qiu, private communication, October 2012.

[81] D. Qiu, L. Li, P. Mateus, and J. Gruska. *Handbook on Finite State based Models and Applications*, chapter Quantum finite automata. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2012.

[82] D. Qiu and S. Yu. Hierarchy and equivalence of multi-letter quantum finite automata. *Theoretical Computer Science*, 410(30-32):3006–3017, 2009.

[83] M. O. Rabin. Probabilistic automata. *Information and Control*, 6:230–243, 1963.

[84] M. V. P. Rao and V. Vinay. Quantum finite automata and weighted automata. Technical Report arXiv:quant-ph/0701144, 2007.

[85] J. Rashid and A. Yakaryilmaz. Implications of quantum automata for contextuality. In *CIAA*, volume 8587 of *LNCS*, pages 318–331. Springer, 2014.

[86] A. Salomaa and M. Soittola. *Automata-Theoretic Aspects of Formal Power Series*. Texts and monographs in computer science. Springer-Verlag (New York), 1978.

[87] A. C. C. Say and A. Yakaryılmaz. Computation with multiple CTCs of fixed length and width. *Natural Computing*, 11(4):579–594, 2012.

[88] A. C. C. Say and A. Yakaryılmaz. Magic coins are useful for small-space quantum machines. Technical Report ECCC:TR14-159, 2014.

[89] A. C. C. Say and A. Yakaryılmaz. Quantum finite automata: A modern introduction. In *Gruska Festschrift*, volume 8808 of *LNCS*, pages 208–222. Springer International Publishing, 2014.

[90] A. C. C. Say, A. Yakaryılmaz, and H. G. Demirci. Debates with small transparent quantum verifiers. In *DLT*, volume 8633 of *LNCS*, pages 327–338. Springer, 2014.

[91] A. C. C. Say and A. Yakaryılmaz. Computation with narrow CTCs. In *UC*, volume 6714 of *LNCS*, pages 201–211. Springer, 2011.

[92] O. Scegulnaja-Dubrovska, L. Lāce, and R. Freivalds. Postselection finite quantum automata. In *UC*, volume 6079 of *LNCS*, pages 115–126, 2010.

[93] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In *FOCS*, pages 124–134. IEEE, 1994.

[94] P. Turakainen. Generalized automata and stochastic languages. *Proceedings of the American Mathematical Society*, 21:303–309, 1969.

[95] P. Turakainen. Rational stochastic automata in formal language theory. In *Discrete Mathematics*, volume 7 of *Banach Center Publications*, pages 31–44. PWN, 1982.
[96] W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. *SIAM Journal on Computing*, 21(2):216–227, 1992.

[97] J. Watrous. On the complexity of simulating space-bounded quantum computations. *Computational Complexity*, 12(1-2):48–84, 2003.

[98] J. Watrous. *Encyclopedia of Complexity and System Science*, chapter Quantum computational complexity. Springer, 2009. Also available at arXiv:0804.3401.

[99] J. Watrous, private communication, May 2009.

[100] A. Yakaryılmaz. *Classical and Quantum Computation with Small Space Bounds*. PhD thesis, Boğaziçi University, 2011. (arXiv:1102.0378).

[101] A. Yakaryılmaz. Superiority of one-way and realtime quantum machines. *Theoretical Informatics and Applications*, 46(4):615–641, 2012.

[102] A. Yakaryılmaz. One-counter verifiers for decidable languages. In *CSR*, volume 7913 of *LNCS*, pages 366–377. Springer, 2013.

[103] A. Yakaryılmaz. Public qubits versus private coins. In *The Proceedings of Workshop on Quantum and Classical Complexity*, pages 45–60. University of Latvia Press, 2013. ECCC:TR12-130.

[104] A. Yakaryılmaz and A. C. C. Say. Efficient probability amplification in two-way quantum finite automata. *Theoretical Computer Science*, 410(20):1932–1941, 2009.

[105] A. Yakaryılmaz and A. C. C. Say. Languages recognized with unbounded error by quantum finite automata. In *CSR*, volume 5675 of *LNCS*, pages 356–367, 2009.

[106] A. Yakaryılmaz and A. C. C. Say. Languages recognized by nondeterministic quantum finite automata. *Quantum Information and Computation*, 10(9&10):747–770, 2010.

[107] A. Yakaryılmaz and A. C. C. Say. Succinctness of two-way probabilistic and quantum finite automata. *Discrete Mathematics and Theoretical Computer Science*, 12(4):19–40, 2010.

[108] A. Yakaryılmaz and A. C. C. Say. Probabilistic and quantum finite automata with postselection. Technical Report arXiv:1102.0666, 2011. (A preliminary version of this paper appeared in the Proceedings of Randomized and Quantum Computation (satellite workshop of MFCS and CSL 2010), pages 14-24, 2010.).

[109] A. Yakaryılmaz and A. C. C. Say. Unbounded-error quantum computation with small space bounds. *Information and Computation*, 279(6):873–892, 2011.

[110] T. Yamakami. One-way reversible and quantum finite automata with advice. In *LATA*, volume 7183 of *LNCS*, pages 526–537, 2012. (arXiv:1208.6092).

[111] T. Yamakami. Constant-space quantum interactive proofs against multiple provers. *Information Processing Letters*, 114(11):611–619, 2014.

[112] S. Zheng, J. Gruska, and D. Qiu. On the state complexity of semi-quantum finite automata. In *LATA*, volume 8370 of *LNCS*, pages 601–612, 2014.

[113] S. Zheng, D. Qiu, J. Gruska, L. Li, and P. Mateus. State succinctness of two-way finite automata with quantum and classical states. *Theoretical Computer Science*, 499:98–112, 2013.

[114] S. Zheng, D. Qiu, L. Li, and J. Gruska. One-way finite automata with quantum and classical states. In H. Bordihn, M. Kutrib, and B. Truthe, editors, *Languages Alive: Essays dedicated to Jürgen Dassow on the Occasion of His 65th Birthday*, volume 7300 of *LNCS Festschrift Series*, pages 273–290. 2012.