Analysis of the complete genome sequences of *Clostridium perfringens* strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids

Kengo Ueda¹, Kazuki Kawahara¹, Narumi Kimoto¹, Yusuke Yamaguchi¹, Kazuhiro Yamada², Hiroya Oki³, Takuya Yoshida¹, Shigeaki Matsuda⁴, Yuki Matsumoto³, Daisuke Motooka³, Kentaro Kawatsu⁵, Tetsuya Iida⁴,⁶, Shota Nakamura⁴,⁶, Tadayasu Ohkubo¹* and Shinya Yonogi⁴,⁵*

Abstract

Background: BEC-producing *Clostridium perfringens* is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high *in vitro* conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harboring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harboring *C. perfringens* strains.

Results: In this study, we determined the complete genome sequences of five bec-harboring *C. perfringens* strains isolated from 2009 to 2019. Each isolate contains a ~3.36 Mbp chromosome and 1–3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled *C. perfringens* genomes in GenBank showed that although these bec-harboring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer.

Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various *C. perfringens* clades. Although these plasmids possess a conserved Pcp locus, their ‘accessory regions’ can accommodate a wide variety of genes, including virulence-associated genes, such...
Introduction

Clostridium perfringens is a gram-positive, spore-forming bacterium that causes a variety of diseases in humans and animals. The pathogenicity of *C. perfringens* is mainly attributed to the toxins produced by the bacterium, and more than 20 types of toxins have been reported [1–6]. Each *C. perfringens* strain produces a distinct but limited number of these toxins, and strains were historically classified into five toxotypes according to their ability to express four types of toxins: α-toxin (phospholipase C; PLC; plc), β-toxin (CPB; cpb), ε-toxin (ETX; etx), and τ-toxin (ITX; iap/ibp) [1]. This typing scheme was recently updated by adding two more toxins, *C. perfringens* enterotoxin (CPE; cpe) and necrotic enteritis toxin B (NetB; netB), which cause human gastrointestinal (GI) disease and necrotic enteritis in poultry, respectively, resulting in a new classification with seven toxotypes (types A–G) [7–10].

Two of the six typing toxin genes are located on the chromosome; plc, which is carried by all *C. perfringens* strains, is always located on the chromosome, while cpe is both on the chromosome (chromosomal cpe) and on a plasmid (plasmid-borne cpe). The other toxin genes, cpb, etx, iap/ibp, and netB, are located on plasmids [11, 12]. In addition to these plasmid-encoded toxins, it was recently shown that *C. perfringens* strains causing GI diseases harbour virulence plasmids encoding novel toxin genes. For example, recently identified *C. perfringens* toxin genes, such as tpeL (encoding the large cytotoxin TpeL) reported in 2007; netB reported in 2008; and three toxin genes, netE, netF, and netG, reported in 2015 were all found to reside on conjugative plasmids [13–15]. This suggests that conjugative plasmids play an important role in disseminating virulence genes in this bacterium via horizontal gene transfer (HGT), which further increases the toxin repertoire of *C. perfringens* [16]. In 2014, we also reported a novel plasmid-encoded enterotoxin, binary enterotoxin of *C. perfringens* (BEC/CPILE), in strains that caused food poisoning in two outbreaks in Osaka and Tochigi Prefectures in Japan in 2009 and 2010, respectively [17–19]. BEC consists of an enzymatic component (BECa; becA) and a cell-binding component (BECb; becB) and is homologous to the binary ADP-ribosylating toxin, τ-toxin, which causes gasoenteritis in cattle and rabbits and is encoded by a conjugative plasmid present in type E strains. In contrast, the two isolates, strain OS1 from the Osaka cases and TS1 from the Tochigi cases, that caused these outbreaks were classified as type A strains [17]. Since most reported type A strains do not possess any toxin-encoding plasmids, they were not known to cause GI diseases in humans until bec-harbouring strains were reported [16]. This suggests that these toxin genes may be acquired via HGT.

Two conjugative plasmid families of *C. perfringens*, pCW3 and pCP13, have been reported. The archetypical plasmid of the pCW3 family, pCW3, has a conjugation region that is designated as the ‘transfer of clostridial plasmid’ (tcp) locus [20]. This plasmid is also a carrier of clinically relevant toxins and antimicrobial resistance genes. These genes are encoded in the accessory or variable region, which integrates multiple foreign genes [20, 21]. The archetypical plasmid of the pCP13 family, pCP13, was initially suspected to be non-conjugative because of the absence of any conjugation loci [22]. Although the dissemination of this plasmid family in natural environments is unknown, it has been reported that pCP13 is conjugative, with an extremely high transfer frequency of ~10^{-4} transconjugants/donor cells, which is comparable to that of a pCW3-like family plasmid [22]. In this study, a locus encoding conjugation machinery that is homologous to the type 4 secretion system (T4SS) and was named the ‘pCP13 *C. perfringens*’ (Pcp) locus was newly defined [22]. Unlike pCW3-like family plasmids, no toxin or antimicrobial resistance genes have been identified in the accessory region of pCP13-like family plasmids, except for a consensus variant of the β-toxin2 gene (CPB2; cpb2) that is associated with intestinal diseases in horses and piglets [23]. Therefore, it is noteworthy that the recent sequencing of plasmids in OS1 and TS1 strains revealed that becA/becB genes, which have been associated with human GI diseases, are located in the accessory regions of ~54 kbp plasmids containing almost identical *Pcp* loci (98% identity) to that of pCP13 [17, 22].

Since the first report of BEC by us [17], three other groups have detected bec-harbouring *C. perfringens* strains, including strain W5052, isolated from the faeces of patients with gastroenteritis and food in Tokyo.
Perfringens virulence. C. perfringens new light on pCP13-like family plasmids to improve our understanding of C. perfringens foodborne illness in Osaka Prefecture (June 2013). The other two strains, A18–256 and A19–1, were individually isolated from the faeces of patients with foodborne gastroenteritis caused by bec-harboring C. perfringens in October 2018 and from oysters purchased at a local market in January 2019, respectively, both in Aichi Prefecture. Therefore, at least eight isolates with different geographical and temporal origins and variation in the symptomatology of the host have been identified (Table S1). As of 19 December 2020, a total of 211 assembled genomes of C. perfringens were deposited in the public database; however, only one (Q135.2) was a bec-harboring strain. Thus, to understand the genomic epidemiology of bec-harboring C. perfringens strains, high-throughput sequencing of other bec-harboring C. perfringens strains is required.

In this study, we sequenced the genomes of five bec-harboring strains, OS1, TS1, O13–19, A18–256, and A19–1, using a hybrid approach [17]. The obtained genomic information showed that the bec genes are encoded on the pCP13-like family plasmids, most of which could have been acquired via HGT events mediated by the Pcp conjugation locus. Comparative genomics of these newly determined five C. perfringens genomes along with the 211 assembled genomes in the public database showed that the pCP13-like family plasmids are unexpectedly widespread and are distributed across several C. perfringens phylogenetic clades. These findings not only illuminate the mechanisms underlying the dissemination of bec-harboring strains but also shed new light on pCP13-like family plasmids to improve our understanding of C. perfringens virulence.

Results and Discussion
Complete genome sequencing of bec-harboring C. perfringens strains
Five bec-harboring C. perfringens isolates, OS1, TS1, O13–19, A18–256, and A19–1, were sequenced using short- and long-read sequencing platforms. This hybrid sequencing approach enabled the raw reads to be assembled into a complete genome. The coverage of the short reads was >45× and that of the long reads was >140×, which is sufficient to obtain complete genome sequences with high accuracy (Tables 1 and S2–1-3). These genomes were confirmed to be C. perfringens at the species level based on the average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values of ≥97.1% and ≥74.1%, respectively (Table 1). These genomes had 28.30–28.43% GC content and contained an average of 3023 CDS, 96 tRNA genes, and 31 rRNA genes (Table 1).

Analysis of the complete genome sequences unambiguously showed that each strain had a chromosome with an average length of 3.36 Mbp and one to three plasmids with distinct sizes (range, 14,826–54,530 bp; Table 2). All five isolates harboured an ~54 kbp plasmid (pCP-OS1, pCP-TS1, pCP-O13–19–1, pCP-A18–256–1, or pCP-A19–1–1) containing becA/becB genes with identical nucleotide sequences (Fig. 1 and Table 2). In addition, each of these five bec-encoding plasmids possesses a highly conserved Pcp locus (>97% nt identity), which is characteristic of pCP13-like family conjugative plasmids and makes these five bec-encoding plasmids members of the pCP13-like family (Fig. 1 and Table S3).

Four of the isolates (except A19–1) had one or two other plasmids that were distinct from the bec-encoding plasmid (Table 2). The O13–19 and A18–256 isolates had ~47 kbp plasmids, which were designated as pCP-O13–19–2 and pCP-A18–256–2, respectively, of identical length and high sequence similarity (99.64% nt identity). These plasmids were also nearly identical (99.39 and 99.40 nt identity, respectively) and were designated as pCP-O13–19–2 and pCP-A18–256–2, respectively, to the conjugative plasmid pCW3, which is the archetypal tetracycline-resistant plasmid encoding the tetA(P) and tetB(P) genes (Fig. S1 and Table S3) [20]. Thus, we confirmed the coexistence of pCP13-like and pCW3-like family plasmids in a single C. perfringens strain. The remaining three plasmids, pCP-OS1–2 and pCP-OS1–3 in strain OS1 and pCP-TS1–2 in strain TS1

| Table 1 General features and statistics of the bec-harboring C. perfringens genomes |
|-----------------|----------|----------|----------|----------|----------|
| | OS1 | TS1 | O13–19 | A18–256 | A19–1 |
| Long read | PacBio | PacBio | MiniON | MiniON | MiniON |
| Short read | MiSeq | MiSeq | MiSeq | MiSeq | MiSeq |
| No. of sequences | 4 | 3 | 3 | 3 | 2 |
| Genome size (bp) | 3,367,796| 3,508,738| 3,459,661| 3,520,477| 3,405,579|
| GC (%) | 28.43 | 28.32 | 28.30 | 28.32 | 28.36 |
| CDS | 2956 | 3077 | 3013 | 3075 | 2997 |
| tRNAs | 96 | 97 | 95 | 96 | 94 |
| rRNAs | 33 | 30 | 30 | 30 | 30 |
| ANI (%) | 98.2 | 97.1 | 97.1 | 97.1 | 97.1 |
| dDDH (%) | 85.0 | 74.4 | 74.1 | 74.6 | 75.4 |
Table 2 Sizes of the chromosomes and plasmids in the \textit{bec}-harbouring \textit{C. perfringens} strains

Strain	Chromosome size (bp)	Plasmids	\textit{bec}-encoding Size (bp)	Other Size (bp)	Size (bp)
OS1	3,256,834	pCP-OS1	54,536	pCP-OS1–2	41,600
				pCP-OS1–3	14,826
TS1	3,418,761	pCP-TS1	54,478	pCP-TS1–2	35,499
O13–19	3,357,727	pCP-O13–19-1	54,536	pCP-O13–19-2	47,265
A18–256	3,418,734	pCP-A18–256-1	54,478	pCP-A18–256-2	47,265
A19–1	3,350,958	pCP-A19–1-1	54,536	–	–

Fig. 1 Sequence comparison map of the reference plasmid pCP13 and five \textit{bec}-encoding plasmids. The \textit{bec}-encoding plasmid of strain Q135.2 is labelled with its strain name. The \textit{becA} and \textit{becB} genes are shown as red arrows, and the other genes are shown as orange arrows. The region encoding the highly conserved Pcp locus is indicated as a light blue bar at the top of the figure.
did not have meaningful homology with any previously reported \textit{C. perfringens} plasmid.

Exploring the clostridial toxin and antimicrobial resistance genes, CRISPR regions, and prophage regions in the \textit{C. perfringens} strains

We explored the clostridial toxin genes, antimicrobial resistance genes, CRISPR regions, and prophage regions in the five complete genomes of the sequenced \textit{bec}-harbouring strains. Of the six typing genes, \textit{plc} was solely detected on the chromosome, and five strains were therefore classified as type A [27]. The non-typing toxin genes, collagenase gene \textit{(colA)}, perfringolysin \textit{O} gene \textit{(pfoA)}, alpha-clostripain gene \textit{(cloSI)}, five hyaluronidase genes \textit{(nagL, nagN, nagP, nagK, and nagL)}, and three sialidase genes \textit{(nanH, nanI, and nanJ)}, were shared by all five strains and were located on their chromosomes (Fig. 2 and Table S3). Four strains, excluding OS1, had an alveolysin \textit{(alv)} gene on their chromosome. This toxin, belonging to a family of thiol-activated cytolysins, is frequently found in \textit{Bacillus alvei} [28], but is less common in \textit{C. perfringens} strains [29]. It is interesting to note that no known virulence genes were found on either of the plasmids in the \textit{bec}-harbouring strains, except the \textit{becA/B} genes (Fig. 2 and Table S3).

Regarding antimicrobial resistance genes, all five isolates had a tetracycline resistance gene, \textit{tetM}, on their chromosomes. Strain OS1 also contained \textit{tetA(P)} and chloramphenicol resistance protein \textit{(cpl)} genes within a putative prophage region on the chromosome. Two strains, O13–19 and A18–256, expectedly possessed two tetracycline resistance genes, \textit{tetA(P)} and \textit{tetB(P)}, on their ~47 kbp pCW3-like plasmids (Fig. S1) [20].

Strains OS1, TS1, O13–19, and A18–256 carried one or two CRISPR regions on their chromosomes, but A19–1 did not (Table S3). All chromosomes and non-\textit{bec}-encoding plasmids, excluding the ~15 kbp plasmid of strain OS1, encoded one to three putative prophage sequences, including ‘incomplete’, ‘questionable’, and ‘intact’ sequences. In contrast, none of the \textit{bec}-encoding plasmids harboured any sequence associated with CRISPR or prophage (Table S3).

Phylogenetic analysis of \textit{C. perfringens}

To elucidate the phylogeny of the \textit{bec}-harbouring strains, we constructed a maximum likelihood phylogenetic tree based on the core genome of 216 \textit{C. perfringens} strains, including the five newly determined complete genomes and others extracted from GenBank (Fig. 2). The toxinotype and the presence or absence of typical \textit{C. perfringens} toxin genes in each strain are shown in Fig. 2. The phylogenetic tree suggests that \textit{C. perfringens} strains are divided into five major clades, as was reported previously by Feng et al. [31]. Clade 4 consists of a large number of strains that can be further divided into several clades based on hierarchical Bayesian clustering by RhierBAPS, as was also pointed out by Feng et al. [31, 32] (Fig. S2 and Table S4). In the present study, we combined these clades into one large clade to eliminate complexity (Fig. 2).

Of the six \textit{bec}-harbouring isolates, including strain Q135.2 from the UK [26], five (Q135.2, TS1, O13–19, A18–256, and A19–1) were clustered in clade 3 (Fig. 2). Clade 3 mainly consisted of a large collection of ‘IFP’ strains, which were isolated from a North American dog and in a study of horse \textit{C. perfringens} haemorrhagic enteritis [33]. These strains were categorised as either type F or G, and they possess plasmid-borne \textit{cpe} or \textit{netB} and \textit{plc}, respectively. Among the four currently known type E strains, three strains (cp508.17, cp515.17, and Q061.2) were also clustered in this clade. Given that the five \textit{bec}-harbouring strains were categorised as toxinotype A, the phylogenetic analysis showed that clade 3 contained strains, most of which possessed plasmid-borne toxin genes, with relatively diverse toxinotypes (A, E, F, and G; Fig. 2).

While most of the \textit{bec}-harbouring strains belonged to clade 3, strain OS1 was classified into clade 4 along with strain 13 carrying pCP13 [22], which encodes a conjugative \textit{Pcp} locus and has a 38 kbp region with sequence similarity to \textit{bec}-encoding plasmids [17, 22]. Considering that the \textit{bec}-encoding plasmids carry a conjugative \textit{Pcp} locus, we hypothesised that the distribution of \textit{bec} genes across different \textit{C. perfringens} clades was caused by an inter-clade HGT event.

Detection of HGT events among six \textit{bec}-harbouring strains based on analysis of InDels and SNPs

We compared six \textit{bec}-encoding plasmids, including the plasmids sequenced in this study and one (pIQ3b) from strain Q135.2 [26] (Fig. 1), which showed that the sequence similarity among these six \textit{bec}-encoding plasmids was exceptionally high (>99.81%). The plasmid sequences were then aligned using \textit{parA} as a starting point, and slight differences in SNPs and InDels were confirmed (Tables 3 and 4). These differences consequently divided these plasmids into two groups with distinct sequence lengths: group A (54,478 bp; TS1 and A18–256) and group B (54,536 bp; OS1, O13–19, A19–1, and Q135.2). The group A and B plasmids had insertions of 12 nucleotides at position 49,752–49,763 and four insertions of 19, 24, 15, and 12 nucleotides at positions 12,922–12,940, 49,639–49,662, 50,103–50,117, and 53,236–53,247, respectively (Table 3). In each group, several minor differences in SNPs were detected, at position 45,011 in group A and at positions 12,297, 28,267, 46,299, and 50,695 in group B, which may reflect their slightly
different genetic traits. These differences were detected in all plasmids except for two, pCP-O13–19–1 and pCP-A19–1–1 (Table 4), as the sequences of these two plasmids were completely identical, indicating that strains O13–19 and A19–1 acquired their plasmids via recent HGT events or vertical inheritance from a common ancestor, although these strains were isolated from temporally and geographically different locations (June 2013 in Osaka and January 2019 in Aichi Prefecture, Japan, respectively) and from different sources, that is, a patient with gastroenteritis and oysters (Table S1).

To further determine whether the *bec*-encoding plasmids were acquired by vertical or horizontal gene transfer, we compared the accumulation of SNPs among all possible pairs of *bec*-encoding plasmids and cognate chromosomes of the *bec*-harbouring *C. perfringens*.
perfringens strains (Tables 5, 6 and S5). In contrast to draft or whole genomes, complete genome information allows us to calculate the numbers and accumulation rates of SNPs for the plasmids and chromosomes separately, even if a strain contains more than one type of plasmid.

The chromosomal pair-wise comparisons of SNPs showed the largest number between strain OS1 and the other strains (64,905–66,800 per 2,710,984 bp, accounting for 2.39–2.46% of the aligned sequences) among all examined pairs (Tables 5 and S5–1), which is consistent with the phylogenetic tree, in which strain OS1 was

Table 3	Summary of the InDel regions in the bec-encoding plasmids					
Region	Group A	Group B				
	TS1	A18–256	A19–1	O13–19	Q135.2	OS1
12,922–12,940	–	–	+	+	+	+
49,639–49,662	–	–	+	+	+	+
49,752–49,763	+	+	–	–	–	–
50,103–50,117	–	–	+	+	+	+
53,236–53,247	–	–	+	+	+	+

Table 4	Summary of the SNPs in the bec-encoding plasmids					
Position	Group A	Group B				
	TS1	A18–256	A19–1	O13–19	Q135.2	OS1
582	A	A	G	G	G	G
6503	A	A	G	G	G	G
11,473	T	T	C	C	C	C
12,297	C	C	C	C	C	T
22,191	T	T	G	G	G	G
25,350	A	A	C	C	C	C
25,785	A	A	G	G	G	G
28,267	A	A	A	A	G	A
37,420	A	A	G	G	G	G
37,720	G	G	A	A	A	A
40,721	A	A	G	G	G	G
45,011	A	C	C	C	C	C
46,299	C	C	C	C	C	T
46,478	T	T	C	C	C	C
48,030	T	T	C	C	C	C
48,848	A	A	G	G	G	G
50,035	G	G	T	T	T	T
50,695	C	C	C	C	C	A
50,966	T	T	C	C	C	C
53,229	A	A	G	G	G	G

Table 5	Chromosomal pair-wise SNPs rates (%) among bec-harbouring strains				
OS1	TS1	O13–19	A18–256	A19–1	Q135.2
OS1	2.43				
TS1	2.46	1.16			
OS1	2.43	0.00192	1.16		
A19–1	1.40	1.16	1.08	1.16	
A19–1	2.39	1.22	1.07	1.22	1.14
classified into a distinct clade (clade 4, Fig. 2). These accumulation rates were much higher than those of the plasmid pair-wise SNPs (0.00551–0.0349%; Tables 6 and S5), which supported an inter-clade HGT event between strain OS1 and the other \textit{bec}-harbouring strains. The number of chromosomal pair-wise SNPs detected in the comparisons among the other five strains (except between strains TS1 and A18–256), which were classified into clade 3, were approximately half (28,922–33,047, accounting for 1.07–1.22% of the aligned sequence) of the numbers for strain OS1 (Tables 5 and S5–1). These accumulation rates were also much higher than those of the plasmid pair-wise SNPs (0–0.0312%; Tables 6 and S5). The number of chromosomal pair-wise SNPs between strains TS1 and A18–256 was remarkably small (52, accounting for 0.00192% of the aligned sequence; Tables 5 and S5–1), which strongly suggested that these two strains, isolated from two distinct outbreaks, originated from nearly clonal strains.

The accumulation rates of SNPs were statistically analysed. The rate of plasmid pair-wise SNPs between strains TS1 and A18–256 was not notably different from that of the chromosomal SNPs ($p = 1$, $z = -0.04$), which indicates that the \textit{bec}-encoding plasmid was vertically inherited between these two strains. In contrast, the accumulation rates of the other plasmid pair-wise SNPs were much lower than those of the chromosomal SNPs ($p < 2.2e-16$, $-37.01 \leq z \leq -24.19$; Table S6). Consequently, these statistical results further supported the conclusion that the \textit{bec}-encoding plasmids were inherited not only via inter-clade but also via intra-clade HGT.

Distribution of pCP13-like family plasmids

Our comparative analysis of complete genome information demonstrated that \textit{bec}-encoding plasmids carry a conjugative Pcp locus, which is characteristic of pCP13-like family plasmids. The PCW3-like family is another family of conjugative \textit{C. perfringens} plasmids that carry the \textit{tcp} locus, and these plasmids are known to be disseminated among \textit{C. perfringens} clades [20, 34]. In contrast, the distribution of pCP13-like family plasmids has not been investigated, and only a limited number of pCP13-like family member plasmids, including pCP13 from strain 13, pCPNY83906550–1 from strain NY83906550, pCPT1 from strain T1, and p1 from strain JXJA17 (Table S7) have been previously known [22, 24, 27, 35].

Thus, we examined the 216 assembled \textit{C. perfringens} genomes, including our five \textit{bec}-harbouring strains, to explore the distribution of pCP13-like family plasmids and found 58 strains (26.85%) likely had a Pcp locus (Fig. 2). Fifty-seven of the strains (the exception being strain NCTC8797, which lacks several parts of the Pcp locus) were confirmed to have both \textit{pcpB4} and \textit{pcpD4} genes, which encode a conjugation-specific VirB4-like ATPase and a VirD4-like coupling protein, respectively, which are crucial for conjugative transfer [22, 36]. The plasmids are distributed broadly across several \textit{C. perfringens} clades (clades 3, 4 and 5), suggesting that a wide variety of \textit{C. perfringens} strains can acquire pCP13-like family plasmids via HGT events.

Comparative genomics of pCP13-like family plasmids

To compare the gene structure and organisation of the Pcp locus and accessory regions of the pCP13-like family plasmids, we selected 11 plasmids as representatives from various \textit{C. perfringens} clades that contain Pcp locus-harbouring strains based on their sequence alignment (Fig. S3). The results showed that the 11 plasmids shared a highly conserved sequence in the Pcp locus (>92% nt identity) (Fig. 3). Although the conjugation of pCP13-like family plasmids has recently been experimentally shown between two strain 13 derivatives, in future studies, it might be interesting to perform additional conjugation experiments using the strains described above to examine inter-clade transfer of pCP13-like family plasmids.

In the accessory regions, which encode several recombinase genes, the sequence lengths and numbers of encoded genes varied depending on the plasmid (Fig. 3 and Table 7), indicating that this region can incorporate a wide variety of foreign genes, as is also the case for the \textit{becA/becB} and \textit{cpb2} genes. Importantly, numerous genes encoded in these regions are still functionally uncharacterized and are currently annotated as ‘hypothetical’

	OS1	TS1	O13–19	A18–256	A19–1	Q135.2
OS1						
TS1	0.0349					
O13–19	0.00551	0.0294				
A18–256	0.0330	0.00184	0.0275			
A19–1	0.00551	0.0294	0	0.0275		
Q135.2	0.00734	0.0312	0.00184	0.0294	0.00184	

Table 6 Plasmid pair-wise SNPs rates (%) among the \textit{bec}-harbouring strains
(Table 7). Therefore, further characterisation and monitoring of the genes in this plasmid family are required.

Since pCP13-like family plasmids have long been unrecognised, to the best of our knowledge, no detection methods that efficiently identify such family plasmids have been developed. In this study, our comparative genomics revealed extremely high sequence conservation of the Pcp locus among many pCP13-like family plasmids. This result may afford the design of an efficient, cost-effective PCR-based detection system that is helpful for monitoring and determining the virulence potential of pCP13-like family plasmids distributed worldwide.
Table 7 Annotation of the CDSs in pCP-OS1

No. of CDS	Position (nt)	Size (bp) (strand)	Identical ORFs of pCP13	Gene name	Annotation/putative function
1	1–753	753(+)	PCP01	parA	Type I partitioning system ATPase
2	812–2092	1281(+)	PCP02	parB	Type I partitioning system centromere binding protein
3	2208–2570	363(+)	PCP03	–	Hypothetical
4	2730–3308	573(−)	PCP12	–	Hypothetical with SMC_N superfamily domain
5*	3620–4033	414(+)	–	–	Hypothetical
6*	4091–5125	1035(+)	–	–	ABC transporter permease
7*	5151–6326	1176(+)	–	–	ABC transporter permease (FtsX)
8*	6323–7006	684(+)	–	–	ABC transporter ATP-binding protein
9	7270–7842	573(+)	PCP15	resP	Serine recombinase/resolvase (ResP)
10*	8213–8971	759(+)	–	–	Hypothetical
11*	8986–9861	876(+)	–	–	Hypothetical
12	9926–10,570	645(−)	PCP18	–	Hypothetical
13	10,582–10,896	315(−)	PCP19	–	PadR family transcriptional regulator
14	11,456–11,659	204(+)	PCP24	–	Hypothetical
15	11,733–12,122	390(+)	PCP25	–	Hypothetical
16*	12,618–12,737	120(−)	–	–	Hypothetical
17*	13,223–15,622	2400(−)	becB	–	Binary enterotoxin component b
18*	15,641–16,900	1260(−)	becA	–	Binary enterotoxin component a
19*	17,193–17,786	594(+)	–	–	Sigma-70 family RNA polymerase sigma factor
20*	17,779–17,913	135(−)	–	–	Hypothetical
21*	18,188–18,376	189(+)	–	–	Hypothetical
22*	18,381–18,599	219(+)	–	–	Hypothetical
23*	18,777–18,884	108(−)	–	–	Hypothetical
24*	19,292–19,894	603(+)	–	–	Recombinase family protein
25*	20,361–20,663	303(+)	–	–	Hypothetical
26	20,920–21,417	498(−)	PCP34	pcpT	Hypothetical
27	21,473–24,283	2811(−)	PCP35/36	pcpS/R	PcpS: Hypothetical, PcpR: ImmA/IrrE family metallo-endopeptidase
28*	24,416–25,345	930(−)	–	–	Restriction enzyme
29*	25,365–26,855	1491(−)	–	–	Eco571 restriction-modification methylase domain-containing protein
30	27,021–27,239	219(+)	PCP38	pcpP	Hypothetical
31	27,257–28,390	1134(−)	PCP39	pcpD2	Putative relaxase
32	28,393–28,800	408(−)	PCP40	pcpO	N-terminal CopG-like ribbon-helix-helix protein (35% coverage of aa sequence)
33	28,804–29,073	270(−)	PCP41	pcpN	Hypothetical
34	29,402–30,265	864(−)	PCP43	pcpL	Hypothetical
35	30,443–31,558	1116(−)	PCP44	pcpB1	Putative peptidoglycan hydrolase
36	31,691–32,383	693(−)	PCP45	pcpK	Hypothetical C-terminal Ntf-like transpeptidase domain protein (6% coverage of aa sequence)
37	32,388–34,286	1899(−)	PCP46	pcpB4	VirB4-like ATPase
38	34,304–36,415	2112(−)	PCP47	topA	Topoisomerase III
39	36,460–37,104	645(−)	PCP48	pcpJ	Hypothetical
40	37,220–37,501	282(−)	PCP49	pcpI	Hypothetical
41	37,504–39,633	2130(−)	PCP50	pcpO6	VirB6-like
42	39,630–42,371	2742(−)	PCP51	pcpD4	VirD4-like coupling protein
43	42,358–42,570	213(−)	PCP52	pcpH	Hypothetical
44	42,637–42,873	237(−)	PCP53	pcpG	Hypothetical
45	42,937–43,131	195(−)	PCP54	pcpF	Hypothetical
46	43,124–43,576	453(−)	PCP55	pcpE	Sep0A-homologue
47	43,695–44,291	597(−)	PCP56	pcpD	Sortase
Conclusion
In the present study, we reported five complete genomes of bec-harbouring C. perfringens strains isolated in 2009–2019. Analysis of the genomes showed that all the bec-encoding plasmids were pCP13-like plasmids and were disseminated among C. perfringens strains via HGT events, except for strains TS1 and A18–256, which appeared to be clonal. A previous study demonstrated the high transfer efficiency of the conjugative pCP13 plasmid in vitro [22], and our comparative genomics and data mining approach suggested that pCP13 and other plasmids in this family encoding conjugative Pcp loci were widely disseminated among C. perfringens strains (58/216 strains) in the natural environment. Additionally, the accessory regions of this plasmid family were potentially capable of integrating a wide variety of foreign genes, including virulence genes, such as the bec gene. These results demonstrate that care must be taken to monitor this newly characterised virulence plasmid in the surveillance of pathogenic C. perfringens.

Methods
Bacterial strains and genomic DNA extraction
The five bec-harbouring C. perfringens strains (OS1, TS1, O13–19, A18–256, and A19–1) sequenced in this study were isolated in Japan. OS1, TS1 [17], and A18–256 were isolated from faecal specimens of patients during distinct C. perfringens foodborne outbreaks in 2009, 2010, and 2018, respectively; O13–19 was isolated from a faecal specimen of a patient during a non-C. perfringens foodborne outbreak in 2013; and A19–1 was isolated from an oyster in 2019.

All strains were anaerobically cultured in GAM broth (Nissui) at 37 °C, and then harvested by centrifugation at 3000 rpm for 20 min and subsequent collection of the cell pellet. Genomic DNA was extracted from the resuspended cells using the DNeasy PowerSoil Kit (QIAGEN).

Sequence determination of six bec-encoding plasmids
The sequences of the five assembled bec-encoding plasmids were polished using MiSeq reads and Pilon v1.23. The polished sequences were aligned using MAFFT v7.475 and manually checked, followed by Sanger sequencing of any sequences with putative errors.

The raw sequencing reads of Q135.2 were retrieved from the European Nucleotide Archive (ENA) (project PRJEB33762). The reads were quality trimmed and adapter removed using TrimGalore v0.6.4, with default options, followed by de novo assembly using Unicycler v0.4.8 [41].
Genome annotation and calculating the ANI and dDDH
All assembled sequences were annotated using Prokka v1.14.5 [42]. The sequence of pCP-OS1 was manually annotated using pCP13 as a reference. The sequences encoding the dnaA gene were set as the chromosomal sequences. For all assemblies, the average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) were calculated using fastANI v1.3 [43] and GGDC v2.1 [44], respectively, which confirmed that all ANI and dDDH values were >95 and >70%, respectively.

Phylogenetic analysis of the core genome
A total of 211 assembled genomes of C. perfringens were downloaded from GenBank. Phylogenetic trees of 216 genomes, including our five strains, were constructed using the maximum likelihood method using Parsnp v1.2, with each chromosome pair.

Exploring the genomes for virulence and antimicrobial resistance genes, CRISPR regions, and prophages
The toxin genes in the genome sequences of the 216 C. perfringens strains were identified using Abricate v1.0.1 and a custom toxin gene database with default settings (Table S8–1) [47]. For the newly determined genome sequences of the five bec-harbouring strains, antimicrobial resistance genes were identified using a custom antimicrobial resistance gene database (Table S8–2) along with nine other databases (NCBI AMRFinderPlus, CARD, Resfinder, ARG-ANNOT, MEGARES, EcOH, PlasmidFinder, VFDB, and Ecoli_VF) supported in the software [47]. CRISPR regions and prophages were identified using MinCED software (v0.4.2) and PHAge Search Tool Enhanced Release (PHASTER) [48, 49], respectively.

Comparing SNP accumulation between chromosomes and bec-encoding plasmids
The chromosomal sequences of the five newly sequenced strains, OS1, TS1, O13–19, A18–256, and A19–1, and the whole genome sequence of Q135.2 were aligned using Parsnp v1.2. Based on the generated VCF file, the lengths of the common sequences and the numbers of SNPs were determined. The six bec-encoding plasmids were also analysed in the same way as the chromosomes, that is, aligned using MAFFT software v7.475, followed by manual confirmation of SNPs and indels. The aligned common sequences were considered to be the core genomes of these plasmids.

The SNP accumulation rates were calculated as the number of SNPs divided by the length of the common sequences, that is, 2,710,984 bp for the chromosomes, and 54,466 bp for the bec-encoding plasmids. Binomial tests were conducted for pairwise accumulation of SNPs between chromosomes and plasmids using R version 4.2.0, based on the rates of each chromosome pair.

Exploring the pCP13-like plasmids in public NGS data
We explored the Pcp locus in the 211 assembled genomes from GenBank using BLASTn using the Pcp locus sequence of pCP13 as a query. Candidate contigs encoding pcpB4 and pcpD4 were examined. The strains possessing these genes were identified as probable pCP13-like family plasmid carriers.

Comparative genomics of the pCP13-like family plasmids
First, 47 pCP13-like plasmids were set using pcpT or pcpS genes. Then, the sequence of the Pcp locus in each plasmid was extracted. Next, the Pcp locus sequences were aligned using MAFFT v7.475, and a maximum-likelihood phylogenetic tree was constructed using RAxML v.8.2.12, followed by visualisation using FigTree v1.4.4. Based on these results, 11 representative pCP13-like plasmids encoding probable whole sequences were annotated using Prokka v1.14.6 [42] with the default setting and visualised using Easyfig v2.2.2 [50].

Abbreviations
nt: Nucleotide; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; SNP: Single Nucleotide Polymorphism; CDS: Coding Sequences; ORF: Open Reading Frame.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12864-022-08453-4.

Acknowledgements
We acknowledge members of the Division of Microbiology, Osaka Institute of Public Health and Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health for isolating the strains used in this study. We also acknowledge the members of the Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD) for their support in whole genome sequencing.

Authors’ contributions
Conceptualisation, K. U., K. Kawahara, T. I., S. N., T. O., and S. Y.; Methodology, K. U., K. Kawahara, N. K., Y. Y., K. Y., H. O., T. Y., S. M., M. K., Kawatsu, T. I., S. N., T. O., and S. Y.; data curation, K. U. and S. Y.; writing-original draft preparation, K. U., K. Kawahara, N. K., Y. Y., K. Y., H. O., T. Y., S. M., M. K., Kawatsu, T. I., S. N., T. O., and S. Y. All authors read and approved the final manuscript.
Funding
This work was supported by JSPS KAKENHI Grant Numbers JP16K19283 and JP 19K16663.

Availability of data and materials
The sequence data supporting the conclusions of this article are available at DDBJ (accession numbers OS1: AP024969–AP024972; TS1: AP024973–AP024975; O13–19: AP024976–AP024978, A18–256: AP024979–AP024981, A19–1: AP024982 and AP024983).

 Declarations

 Ethics approval and consent to participate
Not applicable.

 Consent for publication
Not applicable.

 Competing interests

 The authors declare that they have no competing interests.

Author details
1 Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
2 Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujicho, Kita-ku, Nagoya, Aichi 462-8576, Japan.
3 Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
4 Department of Medical Zoology, Tottori University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
5 Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka 537-0025, Japan.
6 Center for Infectious Disease Education and Research (CIDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Received: 17 November 2021 Accepted: 8 March 2022

References
1. Petit L, Gibert M, Popoff MR. Clostridium perfringens: toxontype and genotype. Trends Microbiol. 1999;7:104–10.
2. Matches JR, Liston J, Curran D. Clostridium perfringens in the environment. Appl Microbiol. 1974;28:635–60.
3. Duncan CL, Strong DH. Clostridium perfringens type A food poisoning I. Response of the rabbit ileum as an indication of enteropathogenicity of strains of Clostridium perfringens in monkeys. Infect Immun. 1971;3:167–70.
4. Uzal FA, Freedman JC, Sheehan A, Theoret JR, Garcia J, Awad MM, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9:361–77. https://doi.org/10.2217/fmb.13.168.
5. Revitt-Mills SA, Watts TD, Uzal FA, Cornwell E, McCane B, Rastall S, et al. Prevalence and genetic diversity of toxin genes in clinical isolates of toxigenic Clostridium perfringens. J Med Microbiol. 2011;60:1030–7. https://doi.org/10.1099/jmm.0.03827-0.
6. Matsuda M, Uzal FA, Cornwell E, McCane B, Rastall S, et al. A new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. J Microbiol. 2011;49:1207–16. https://doi.org/10.1128/JCM.01983-10.
7. Sato T, Bannan TL, Itoh T, Doherty C, Liston J, Reid SD, et al. A new enterotoxin producing Clostridium perfringens strain isolated from food poisoning outbreaks. J Clin Microbiol. 2006;44:225–31. https://doi.org/10.1128/JCM.01983-10.
8. Uzal FA, Cornwell E, McCane B, Rastall S, et al. Prevalence and genetic diversity of toxin genes in clinical isolates of toxigenic Clostridium perfringens. J Med Microbiol. 2012;61:1030–7. https://doi.org/10.1128/JCM.01983-10.
9. Uzal FA, Cornwell E, McCane B, Rastall S, et al. Prevalence and genetic diversity of toxin genes in clinical isolates of toxigenic Clostridium perfringens. J Med Microbiol. 2012;61:1030–7. https://doi.org/10.1128/JCM.01983-10.
10. Revitt-Mills SA, Watts TD, Uzal FA, Cornwell E, McCane B, Rastall S, et al. Prevalence and genetic diversity of toxin genes in clinical isolates of toxigenic Clostridium perfringens. J Med Microbiol. 2012;61:1030–7. https://doi.org/10.1128/JCM.01983-10.
11. Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon. 2013;75:63–89.
32. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018;3:93.

33. Mehdizadeh Gohari I, Kropinski AM, Weese SJ, Whitehead AE, Parreira VR, Boerlin P, et al. NeF- producing Clostridium perfringens: clonality and plasmid pathogenicity loci analysis. Infect Genet Evol. 2017;49:32–8. https://doi.org/10.1016/j.meegid.2016.12.028.

34. Li J, Adams V, Bannam TL, Miayamoto K, Garcia JP, Uzal FA, et al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013;77:208–33. https://doi.org/10.1128/MMBR.00062-12.

35. Lacey JA, Johansen PA, Lyra D. In silico identification of novel toxin homologs and associated mobile genetic elements in Clostridium perfringens. Pathogens. 2019;8:16.

36. Liu Z, Binns AN. Functional subsets of the VibB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol. 2003;185:3259–69.

37. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C. Non-hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.

38. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.

39. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

40. Walker BJ, Abell T, Shea T, Priest M, Abouelliel A, Sakhikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. https://doi.org/10.1371/journal.pone.0112963.

41. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.

42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

43. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

44. Meier-Kolthoff JP, Auch AF, Klenk HP. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.

45. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524.

46. Guangchuang Y. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics. 2020;69:e96.

47. Seemann T. Mass Screening of Contigs for Antimicrobial and Virulence Genes. https://github.com/tseemann/abricate.

48. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21. https://doi.org/10.1093/nar/gkw387.

49. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39(Web Server Issue):W347–52. https://doi.org/10.1093/nar/gkr485.

50. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.