Measurements of Branching Fractions and Time-Dependent CP-Violating Asymmetries in $B \to \eta'K$ Decays

B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Couderc,1 Y. Karyotakis,1 J. P. Lees,1 V. Pireau,1 V. Tisserand,1 A. Zglicz,1 E. Grauges-Pous,2 A. Palano,3 A. Pompli,3 J. C. Chen,3 N. D. Qi,4 G. Garg,4 P. Wang,4 Y. S. Zhu,4 G. Eggen,5 I. Ofte,5 B. Stugu,5 G. S. Abrams,6 A. W. Borgland,6 A. B. Breon,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 C. T. Day,6 M. S. Gill,6 A. V. Gritsan,6 Y. Groysman,6 R. G. Jacobsen,6 R. W. Kadel,6 J. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orritomo,6 M. Pripstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 M. Barrett,7 K. E. Ford,7 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 E. S. Morgan,7 A. T. Watson,7 M. Fritsch,5 K. Goetz,5 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Peluza,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 N. chevalier,9 W. N. Cottingham,9 M. P. Kelly,9 T. E. Latham,9 F. F. Wilson,9 T. Cuhadar-Donszelmann,10 C. Hearty,10 J. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 D. Thiessen,10 A. Khan,11 P. Kyberd,11 L. Teodorescu,11 A. E. Blinov,12 V. E. Blinov,12 V. P. Druzhinin,12 V. B. Golubev,12 V. N. Ivanchenko,12 E. A. Kravchenko,12 A. P. Omichin,12 S. I. Serdyukov,12 Yu. I. Skovpen,12 E. P. Solodov,12 A. N. Yusikov,12 D. Best,13 M. Bruinsma,13 M. Chao,13 I. Eschar,13 D. Kirkby,13 A. J. Lankford,13 M. Mandelkern,13 R. K. Mommers,13 A. Roethel,13 D. P. Stoker,13 C. Buchanen,14 B. L. Hartfeld,14 A. J. R. Weinste,14 S. D. Foulkes,15 J. W. Gary,15 O. Long,15 B. C. Shen,15 K. Wang,15 D. del Re,16 H. K. Hadavand,16 E. J. Hill,16 D. B. MacFarlane,16 H. P. Paar,16 Sh. Rahat,16 V. Sharma,16 J. W. Berryhill,17 C. Campagnari,17 A. Cunha,17 B. Dahmes,17 A. T. M. Hong,17 A. Lu,17 M. A. Mazur,17 J. D. Richman,17 W. Verkerke,17 T. W. Beck,18 A. M. Eisner,18 C. J. Flacco,18 C. A. Heus,18 J. Kroseberg,18 W. S. Lockman,18 G. Nesom,18 T. Schalk,18 B. A. Schum,18 A. Seiden,18 P. Spradlin,18 D. C. Williams,18 G. W. Wilson,18 J. Albert,19 E. Chen,19 G. P. Dubois-Felsmann,19 A. Devoretzki,19 D. G. Hitlin,19 I. Narzyk,19 T. Piatenko,19 F. C. Porter,19 A. Ryd,19 A. Samuel,19 S. Yang,19 S. Jayatilleke,20 G. Manchinen,20 B. T. Meadows,20 D. M. Sokoloff,20 F. Blanc,20 P. Bloom,21 S. Chen,21 W. T. Ford,21 U. Nauenberg,21 A. Olivas,21 P. Rankin,21 W. O. Rudder,21 J. G. Smith,21 K. A. Ulmer,21 J. Zhang,21 L. Zhang,21 A. Chen,22 E. A. Eckhart,22 J. L. Harton,22 A. Soffer,22 W. H. Toki,22 R. J. Wilson,22 Q. Zeng,22 B. Spaan23 D. Altenburg,24 T. Brandt,24 J. Brose,24 M. Dickopp,24 E. Feltresi,24 A. Hauke,24 H. M. Lacker,24 E. Maly,24 R. Jogw,24 S. Otto,24 P. Petzold,24 G. Schott,24 J. Schubert,24 K. R. Schubert,24 R. Schwierz,24 J. E. Sundermann,24 D. Bernard,25 G. R. Boneaun,25 P. Grenier,25 S. Schrenk,25 Ch. Thiebaux,25 G. Vasileiadis,25 M. Verderi,25 D. J. Bard,26 P. J. Clark,26 F. Muheim,26 S. Playfer,26 Y. Xie,26 M. Andreotti,27 V. Azzolini,27 D. Bettoni,27 C. Bozzi,27 R. Calabrese,27 G. Cibinetto,27 E. Luppi,27 M. Negrini,27 L. Piemontese,27 A. Sarti,27 F. Anuli,28 R. Baldini-Ferroli,28 A. Calcaterra,28 R. de Sangro,28 G. Finocchiaro,28 P. Pattei,28 I. M. Peruzzi,28 M. Piccolo,28 A. Zallo,28 A. Buzzo,29 R. Capra,29 R. Contr,29 G. Crosetti,29 M. Lo Vetere,29 M. Macri,29 R. R. Monge,29 S. Passaggio,29 C. Patrignani,29 E. Robotti,29 A. Santroni,29 S. Tosi,29 M. Bailey,30 G. Brandenburg,30 K. S. Chaisanguan,30 M. Morii,30 E. Won,30 R. S. Dubitzki,31 U. Langenegger,31 J. Marks,31 U. Uwer,31 W. Bhimji,32 D. A. Bowerman,32 P. D. Dauncey,32 U. Egelse,32 J. R. Gaillard,32 G. W. Morton,32 J. A. Nash,32 M. B. Nikolich,32 G. P. Taylor,32 M. J. Charles,33 G. J. Grenier,33 U. Mallik,33 A. K. Mohapatra,33 J. Cochran,34 H. B. Crawley,34 J. Lams,34 W. T. Meyer,34 S. Prell,34 E. I. Rosenberg,34 A. E. Rubin,34 J. Yi,34 N. Arnaud,35 M. Davier,35 X. Giroux,35 G. Grosdidier,35 A. Höcker,35 F. Le Diberder,35 V. Lepeltier,35 A. M. Lutz,35 T. C. Petersen,35 M. Pierini,35 S. Piaszewy,35 M. H. Schune,35 G. Wormser,35 C. H. Cheng,36 D. J. Lane,36 M. C. Simani,36 D. M. Wright,36 A. J. Bevan,37 C. A. Chavez,37 J. P. Coleman,37 I. J. Forster,37 J. R. Fry,37 E. Gabathuler,37 R. Gamet,37 D. E. Hutchcroft,37 R. J. Parry,37 D. J. Payne,37 C. Touramanis,37 C. M. Cormack,38 F. Di Lodovico,38 C. L. Brown,39 G. Gordon,39 C. L. Flack,39 H. U. Flecher,39 M. G. Green,39 P. S. Jackson,39 T. R. McMahon,39 S. Ricciard,39 F. Salvato,39 M. A. Winter,39 D. Brown,40 C. L. Davis,40 J. Allison,41 N. R. Barlow,41 R. J. Barlow,41 M. C. Hodgkinson,41 G. D. Lafferty,41 M. T. Naishit,41 J. C. Williams,41 C. Chen,42 A. Farbin,42 W. D. Hulsbergen,42 A. Jawahery,42 D. Kovalskyi,42 C. K. Loe,42 V. Lillard,42 D. A. Roberts,42 G. Blaylock,43 C. Dallapiccola,43 S. S. Hertzbach,43 R. Koffler,43 V. B. Koptchev,43 T. B. Moore,43 S. Saremi,43 H. Staengle,43

arXiv:hep-ex/0502017v1 8 Feb 2005
University of California at Riverside, Riverside, California 92521, USA
University of California at San Diego, La Jolla, California 92093, USA
University of California at Santa Barbara, Santa Barbara, California 93106, USA
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
California Institute of Technology, Pasadena, California 91125, USA
University of Cincinnati, Cincinnati, Ohio 45221, USA
University of Colorado, Boulder, Colorado 80309, USA
Colorado State University, Fort Collins, Colorado 80523, USA
Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
Harvard University, Cambridge, Massachusetts 02138, USA
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
Imperial College London, London, SW7 2AZ, United Kingdom
University of Iowa, Iowa City, Iowa 52242, USA
Iowa State University, Ames, Iowa 50011-3160, USA
Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
University of Liverpool, Liverpool L69 7E, United Kingdom
Queen Mary, University of London, E1 4NS, United Kingdom
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
University of Louisville, Louisville, Kentucky 40292, USA
University of Manchester, Manchester M13 9PL, United Kingdom
University of Maryland, College Park, Maryland 20742, USA
University of Massachusetts, Amherst, Massachusetts 01003, USA
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
McGill University, Montréal, Quebec, Canada H3A 2T8
Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
University of Mississippi, University, Mississippi 38677, USA
Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
University of Notre Dame, Notre Dame, Indiana 46556, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Oregon, Eugene, Oregon 97403, USA
Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
Prairie View A&M University, Prairie View, Texas 77446, USA
Princeton University, Princeton, New Jersey 08544, USA
Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
Universität Rostock, D-18051 Rostock, Germany
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
University of South Carolina, Columbia, South Carolina 29208, USA
Stanford Linear Accelerator Center, Stanford, California 94309, USA
Stanford University, Stanford, California 94305-4060, USA
State University of New York, Albany, New York 12222, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
We present measurements of the $B \to \eta' K$ branching fractions; for $B^+ \to \eta' K^+$ we measure also the time-integrated charge asymmetry $A_{\beta\theta}$, and for $B^0 \to \eta' K^0_S$ the time dependent CP-violation parameters S and C. The data sample corresponds to 232 million $B\bar{B}$ pairs produced by $e^+ e^-$ annihilation at the $\Upsilon(4S)$. The results are $B(B^+ \to \eta' K^+) = (68.9 \pm 2.0 \pm 3.2) \times 10^{-6}$, $B(B^0 \to \eta' K^0_S) = (67.4 \pm 3.3 \pm 3.2) \times 10^{-6}$, $A_{\beta\theta} = 0.033 \pm 0.028 \pm 0.005$, $S = 0.30 \pm 0.14 \pm 0.02$, and $C = -0.21 \pm 0.10 \pm 0.02$, where the first error quoted is statistical and the second systematic.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Measurements of time-dependent CP asymmetries in B^0 meson decays through a Cabibbo-Kobayashi-Maskawa (CKM) favored $b \to c\bar{c}s$ amplitude [1] have provided a crucial test of the mechanism of CP violation in the Standard Model (SM) [2,3]. Such bounds have been improved [4, 5, 6, 7, 8].

For the decay $B^0 \to \eta' K^0$, these additional contributions are expected to be small, so the time-dependent asymmetry measurement for this decay provides an approximate measurement of sin2β. Theoretical bounds for the small deviation ΔS between the time-dependent CP-violating parameter measured in this decay and in the charmonium K^0 decays have been calculated with an SU(3) analysis [4,11]. Such bounds have been improved by measurements of B^0 decays to a pair of neutral light pseudoscalar mesons [4, 11]. From these and other measurements, improved model-independent bounds have been derived [4,11], with the conclusion that ΔS is expected to be less than 0.10 (with a theoretical uncertainty less than ~ 0.03). Specific model calculations conclude that ΔS is even smaller [9]. A significantly larger ΔS could arise from non-SM amplitudes [9].

The time-dependent CP-violating asymmetry in the decay $B^0 \to \eta' K^0$ has been measured previously by the BABAR [11] and Belle [12] experiments. In this Letter we update our previous measurements with an improved analysis and a data sample four times larger. We also measure the $B^0 \to \eta' K^0$ and $B^+ \to \eta' K^+$ branching fractions [13,14], and for $B^+ \to \eta' K^+$ the time-integrated charge asymmetry $A_{\beta\theta} = (\Gamma^- - \Gamma^+)/(\Gamma^- + \Gamma^+)$ where $\Gamma^ \pm = \Gamma(B^\pm \to \eta' K^\pm)$. In the SM $A_{\beta\theta}$ is expected to be small; a non-zero value would signal direct CP violation in this channel.

The data were collected with the BABAR detector [14] at the PEP-II asymmetric $e^+ e^-$ collider [15]. An integrated luminosity of 211 fb$^{-1}$, corresponding to 232 million $B\bar{B}$ pairs, was recorded at the $\Upsilon(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV). Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker (SVT), consisting of five layers of double-sided detectors, and a 40-layer central drift chamber, both operating in the 1.5 T magnetic field of a solenoid. Charged-particle identification (PID) is provided by the average energy loss in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region. Photons and electrons are detected by a CsI(Tl) electromagnetic calorimeter.

From a candidate $B\bar{B}$ pair we reconstruct a B^0 decaying into the flavor eigenstate $f = \eta' K^0_S$ (B_{CP}). We also reconstruct the vertex of the other B meson (B_{tag}) and identify its flavor. The difference $\Delta t \equiv t_{CP} - t_{tag}$ of the proper decay times t_{CP} and t_{tag} of the CP and tag B mesons, respectively, is obtained from the measured distance between the B_{CP} and B_{tag} decay vertices and from the boost ($\beta\gamma = 0.56$) of the $e^+ e^-$ system. The Δt distribution is given by:

$$F(\Delta t) = \frac{1}{4\tau} [1 \mp \Delta w \pm (1 - 2w) (S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t))].$$

The upper (lower) sign denotes a decay accompanied by a B^0 (\bar{B}^0) tag, τ is the mean B^0 lifetime, Δm_d is the mixing frequency, and the mistag parameters w and Δw are the average and difference, respectively, of the probabilities that a true B^0 is incorrectly tagged as a \bar{B}^0 or vice versa. The tagging algorithm [16] has seven mutually exclusive tagging categories of differing response purities (including one for untagged events that we retain for yield determinations). The measured analyzing power, defined as efficiency times $(1 - 2w)^2$ summed over all categories, is $(30.5 \pm 0.6)\%$, as determined from a large sample of B-decays to fully reconstructed flavor eigenstates (B_{nav}). The parameter C measures direct CP violation. If $C = 0$, then $S = \sin 2\beta + \Delta S$.

Monte Carlo (MC) simulations [17] of the signal decay modes, $B\bar{B}$ backgrounds, and detector response are used to tailor the event selection criteria. We reconstruct B meson candidates by combining a K^+ or a K^0_S with an η' meson. We reconstruct η' mesons through the decays $\eta' \to \rho^0 \gamma$ ($\eta'_{\rho\gamma}$) and $\eta' \to \eta \pi^+ \pi^-$ with $\eta \to \gamma \gamma$ ($\eta'_{\eta(\gamma\gamma)\pi\pi}$) or $\eta \to \pi^+ \pi^- \pi^0$ ($\eta'_{\eta(3\pi)\pi\pi}$). For the K^+ track we require
an associated DIRC Cherenkov angle between −5 and +2 standard deviations (σ) from the expected value for a kaon. We select \(K^0 \rightarrow π^+π^- \) decays by requiring the \(π^+π^- \) invariant mass to be within 12 MeV of the nominal \(K^0 \) mass and by requiring a flight length with significance >3σ. We select \(K_S^0 \rightarrow π^0π^0 \) decays by requiring that the \(π^0π^0 \) invariant mass be within 30 MeV of the nominal \(K^0 \) mass. Daughter pions from \(\eta' \) decays are required to have PID information inconsistent with proton, electron and kaon hypotheses. The photon energy \(E_γ \) must be greater than 30 MeV for \(π^0 \) candidates, 50 (100) MeV for \(η \) candidates for the \(η'_{(γγ)ππ}^0K^0 \) \((η'_{(γγ)ππ}^0K^0) \) samples, and greater than 100 MeV for \(η'_{πν} \) candidates. We make the following requirements on the invariant mass (in MeV): 490 < \(m_{γγ} < 600 \) for \(η \rightarrow γγ \), 120 < \(m_{γγ} < 150 \) for \(π^0 \) (100 < \(m_{γγ} < 155 \) in \(K^0 \rightarrow π^0π^0 \)), 510 < \(m_{ππ} < 1000 \) for \(ρ^0 \), 520 < \(m_{ππ} < 570 \) for \(η \rightarrow π^+π^-π^0 \), 945 < \(m_{η'} < 970 \) for \(η'_{(γγ)ππ} \), and 930 < \(m_{η'} < 980 \) for \(η'_{ρ}\).

A \(B \) meson candidate is characterized kinematically by the energy-substituted mass \(m_{ES} \equiv \sqrt{(1/2 + p_0 \cdot B)^2/E_0^2 - p_B^2} \) and the energy difference \(ΔE \equiv E_B - 1/2\sqrt{s} \), where \((E_0, p_0)\) and \((E_B, p_B)\) are four-momenta of the \(Y(4S) \) and the \(B \) candidate, respectively, and the asterisk denotes the \(T(4S) \) rest frame. We require \(|ΔE| \leq 0.2 \text{ GeV} \) and \(5.25 \leq m_{ES} \leq 5.29 \text{ GeV} \).

To reject the dominant background from continuum \(e^+e^- \rightarrow q\bar{q} \) events (\(q = u, d, s, c \)), we use the angle \(θ_γ \) between the thrust axis of the \(B \) candidate and that of the rest of the tracks and neutral clusters in the event, calculated in the \(T(4S) \) rest frame. The distribution of \(cosθ_γ \) is sharply peaked near ±1 for combinations drawn from jet-like \(q\bar{q} \) pairs and is nearly uniform for the isotropic \(B \) decays; we require \(|cosθ_γ| < 0.9 \). From Monte Carlo simulations of \(B^0 \bar{B}^0 \) and \(B^+B^- \) events, we find evidence for a small (−1–2%) \(B\bar{B} \) background contribution for the channels with \(η' \rightarrow ργ \), so we have added a \(B\bar{B} \) component to the fit described below for those channels.

We use an unbinned, multivariate maximum-likelihood fit to extract signal yields and \(CP \)-violation parameters. We indicate with \(j \) the species of event: signal, \(q\bar{q} \) combinatorial background, or \(B\bar{B} \) background. We use four discriminating variables: \(m_{ES}, ΔE, Δt, \) and a Fisher discriminant \(F \). The Fisher discriminant combines four variables: the angles with respect to the beam axis of the \(B \) momentum and \(B \) thrust axis in the \(Y(4S) \) rest frame, and the zeroth and second angular moments of the energy flow, excluding the \(B \) candidate, about the \(B \) thrust axis.

For each species \(j \) and tagging category \(c \), we define a total probability density function (PDF) for event \(i \) as

\[
\mathcal{P}_{j,c} = \mathcal{P}_j (m_{ES}) \cdot \mathcal{P}_j (ΔE) \cdot \mathcal{P}_j (F) \cdot \mathcal{P}_j (Δt, σ_{Δt}; c),
\]

where \(σ_{Δt} \) is the error on \(Δt \) for event \(i \). With \(n_j \) defined to be the number of events of the species \(j \) and \(f_{j,c} \) the fraction of events of species \(j \) for each category \(c \), we write the extended likelihood function for all events belonging to category \(c \) as

\[
\mathcal{L}_c = \exp \left(-\sum_j n_{j,c} \right) \prod_i \left(n_{sig,i} f_{sig,c} \mathcal{P}_{i,sig,c} \right) + n_{q\bar{q}} f_{q\bar{q},c} \mathcal{P}_{q\bar{q}} + n_{BB} f_{BB,c} \mathcal{P}_{BB}.
\]

where \(n_{j,c} \) is the yield of events of species \(j \) found by the fitter in category \(c \) and \(n_c \) the number of events of category \(c \) in the sample. We fix both \(f_{sig,c} \) and \(f_{BB,c} \) to the values measured with the large \(B_{tag} \) sample. The total likelihood function \(L_d \) for decay mode \(d \) is given as the product over the seven tagging categories. Finally, when combining decay modes we form the grand likelihood \(L = \prod L_d \).

The PDF \(\mathcal{P}_{sig}(Δt, σ_{Δt}; c) \) for each category \(c \), is the convolution of \(F(Δt; c) \) (Eq. 1) with the signal resolution function (sum of three Gaussians) determined from the \(B_{tag} \) sample. The other PDF forms are: the sum of two Gaussians for \(\mathcal{P}_{sig}(m_{ES}) \) and \(\mathcal{P}_{sig}(ΔE); \) the sum of three Gaussians for \(\mathcal{P}_{q\bar{q}}(Δt,c) \); a conjunction of two Gaussians with different widths below and above the peak for \(\mathcal{P}_j(F) \) (a small “tail” Gaussian is added for \(\mathcal{P}_{q\bar{q}}(F) \)); a linear dependence for \(\mathcal{P}_{q\bar{q}}(ΔE) \); and for \(\mathcal{P}_{q\bar{q}}(m_{ES}) \) the function \(x/\sqrt{1-x^2} \exp[-ξ(1-x^2)] \), with \(x = 2m_{ES}/\sqrt{s} \).

For the signal and \(B\bar{B} \) background components we determine the PDF parameters from simulation. For the \(q\bar{q} \) background we use \((m_{ES}, ΔE) \) sideband data to obtain initial values and ultimately leave them free to vary in the final fit.

We compute the branching fractions and charge asymmetry from fits made without \(Δt \) or flavor tagging, applied to candidates with \(η'_{(γγ)ππ} \) and \(η'_{ρ} \) combined with \(K^+ \) or \(K^0 \rightarrow π^+π^- \). The free parameters in the fit are: the signal and \(q\bar{q} \) background yields, the peak position and upper and lower width parameters of \(P_j(F) \) for signal and \(q\bar{q} \) background, the tail fraction for \(P_{q\bar{q}}(F) \), the slope of \(P_{q\bar{q}}(ΔE) \) and \(ξ \), the width of the core Gaussian of \(P_{sig}(ΔE) \), the mean of the core Gaussian of \(P_{sig}(m_{ES}) \), \(n_{BB} \) for \(B \rightarrow η'_{πν}K \), and for charged modes the signal and background \(A_{ch} \).

Table 1 lists the quantities used to determine the branching fraction. Equal production rates of \(B^+B^- \) and \(B^0\bar{B}^0 \) pairs have been assumed. To study biases from the likelihood fit, we apply the method to simulated samples constructed to contain the signal and background populations expected for data. The resulting yield biases, from unmodeled correlations in the signal PDF, are about 4% for the measurements with \(η' \rightarrow ργ \), and negligible for those with \(η'_{(γγ)ππ} \). The purity estimate in Table 1 is given by the ratio of the signal yield to the effective background plus signal, the latter being defined as the square of the error on the yield.

In Fig. 1 we show projections onto \(m_{ES} \) and \(ΔE \) for a
subset of the data for which the signal likelihood (computed without the variable plotted) exceeds a mode-dependent threshold that optimizes the sensitivity.

For the time-dependent analysis, we require $|\Delta t| < 20$ ps and $\sigma_{\Delta t} < 2.5$ ps. We improve the sample size by combining the five decay chains listed in Table I in a single fit with 98 free parameters: S, C, signal yields (5), $\eta' K^+$, $K^0 B \bar{B}$ background yields (2), continuum background yields (5) and fractions (30), background Δt, m_{ES}, ΔE, F PDF parameters (54). The parameters τ and Δm_d are fixed to world-average values [21].

Table I gives the yields, S and C, and Fig. 2 the Δt projections and asymmetry of the combined neutral modes for events selected as for Fig. 1.

The major systematic uncertainties affecting the branching fraction measurements reflect the imperfect knowledge of the η' branching fractions (3.4%) [21], and of the reconstruction efficiency (0.8% per charged track, 1.5% per photon, and 2.1% per K^0) estimated from auxiliary studies. We take one-half of the measured yield bias (0–2%) as a systematic error. Bias and systematic uncertainties for A_{ch} have been estimated from the values obtained for the background component in the fit to the data. We apply a correction of +0.016 and assign a systematic error of 0.005.

For the time-dependent measurements, we find approximately equal (0.01) systematic uncertainties from several sources: variation of the signal PDF shape parameters within their errors, SVT alignment, position and size of the beam spot, $B \bar{B}$ background, modeling of the signal Δt distribution, and interference between the CKM-suppressed $b \rightarrow \bar{u}cd$ amplitude and the favored $b \rightarrow \bar{c}ud$ amplitude for some tag-side B decays [22]. The B_{flav} sample is used to determine the errors associated with the signal Δt resolutions, tagging efficiencies, and mistag rates, and published measurements [21] for τ_B and Δm_d. Summing all systematic errors in quadrature, we obtain 0.02 for S and C.

In conclusion, we have used samples of about 2000 $\eta' K^+$ and 800 $\eta' K^0_S$ events to measure the branching fractions, the time-integrated charge asymmetry and the time-dependent asymmetry parameters S and C. The measured branching fractions are $B(B^+ \rightarrow \eta' K^+) = (68.9 \pm 2.0 \pm 3.2) \times 10^{-6}$ and $B(B^0 \rightarrow \eta' K^0_S) = (67.4 \pm 3.3 \pm 3.2) \times 10^{-6}$, and the charge asymmetry is $A_{ch} = 0.033 \pm 0.028 \pm 0.005$. These precise branching fraction measurements challenge the theoretical understand-
ing of these decays23. The measured charge asymmetry is consistent with zero, with 90\% CL interval $[-0.012, 0.078]$, and constrains the amount of possible direct CP violation in $B^+ \to \eta K^+$ decays.

The measured time-dependent CP violation parameters in $B^0 \to \eta K^0_S$ are $S = 0.30 \pm 0.14 \pm 0.02$ and $C = -0.21 \pm 0.10 \pm 0.02$. Our result for S differs from that measured by BABAR in $B^0 \to J/\psi K^0_S$16 by 3.0 standard deviations; it also represents an improvement by a factor 2.4 (1.9) in precision over the published results of BABAR11 (Belle12). All these measurements supersede our previous published results11.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Universit\`a della Basilicata, Potenza, Italy
† Deceased

1. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002); Belle Collaboration, K. Abe et al., Phys. Rev. D 66, 071102(R) (2002).
2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
3. Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997).
4. Y. Grossman et al., Phys. Rev. D 68, 015004 (2003).
5. C.-W. Chiang, M. Gronau and J. L. Rosner, Phys. Rev. D 68, 074012 (2003).
6. M. Gronau, J. L. Rosner and J. Zupan, Phys. Lett. B 596, 107 (2004).
7. M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
8. D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
9. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 181806 (2004).
10. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 70, 032006 (2003).
11. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 161801 (2003).
12. Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 91, 261602 (2003).
13. Charge conjugate decay modes are implied unless explicitly stated.
14. BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
15. PEP-II Conceptual Design Report, SLAC-R-418 (1993).
16.BABAR Collaboration, B. Aubert et al., hep-ex/0408127, submitted to Phys. Rev. Lett. .
17. The BABAR detector Monte Carlo simulation is based on GEANT4: S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).
18. R. A. Fisher, Annals of Eugenics 7, 179 (1936).
19. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 92, 061801 (2004).
20. BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
21. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
22. O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
23. See, for example, E. Kou and A. I. Sanda, Phys. Lett. B 525, 240 (2002); C-W. Chiang and J. L. Rosner, Phys. Rev. D 65, 074035 (2002); and references therein; M-Z. Yang and Y-D. Yang, Nucl. Phys. B 669, 469 (2001); M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003); E. V. Shuryak and A. R. Zhitnitsky, Phys. Rev. D 57, 2001 (1998).