Limits on Electron-Neutrino Oscillations from the GALLEX 51Cr Source Experiment

J.N. Bahcall, P.I. Krastev* and E. Lisi†

*Permanent address: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

†Dipartimento di Fisica and Sezione INFN di Bari, Bari, Italy

Institute for Advanced Study, Princeton, NJ 08540

Abstract

The recent result from the chromium source experiment carried out by the GALLEX collaboration implies interesting limits on the parameters Δm^2 and $\sin^2 2\theta$ describing neutrino oscillations. Values of $\Delta m^2 > 0.17$ eV2 for maximal mixing and of $\sin^2 2\theta > 0.38$ for $\Delta m^2 > 1$ eV2 are ruled out at 90% C.L. This result improves by more than an order of magnitude previous limits on Δm^2 derived from electron-neutrino oscillation experiments at accelerators.
The GALLEX collaboration has announced recently the first result of their experiment with an artificial neutrino source [1]. This is the first successful test of a solar neutrino experiment with an artificial radioactive source of electron neutrinos. In this note we use the fact that the 71Ge production rate reported by GALLEX is close to the expected rate to derive limits on the electron-neutrino oscillation parameters.

The GALLEX experiment is described in detail in [1,2]. The neutrinos emitted from the radioactive source, 51Cr, are monoenergetic with energies 0.746 (81%), 0.751 (9%), 0.426 (9%) and 0.431 (1%) MeV. The target solution, GaCl$_3$, fills a cylindrical container with radius 1.9 m to a height of 5 m. The source is located in a cavity, approximately 2.3 m below the surface of the GaCl$_3$.

The production rate, Q_{Ge}, of 71Ge atoms in the absence of oscillations is given by the following integral over the volume, V, of the detector:

$$Q_{Ge} = \int_V \sum_{i=1,4} \frac{\Phi_i(E_{\nu_i})}{4\pi r^2} N_{Ga} \sigma(E_{\nu_i}) dV,$$

where Φ_i is the rate of neutrino emission in each 51Cr decay mode, r is the distance the neutrinos travel between production and capture, N_{Ga} is the number density of 71Ga atoms, σ is the neutrino capture cross-section, and E_{ν_i} is the neutrino energy. We have computed Q_{Ge} taking into account the detailed geometry of the detector. Our result agrees with the estimate given in [1] with an accuracy of better than 1%.

The GALLEX collaboration reports a result of 1.04 ± 0.12 for the ratio, $R^{exp} = \frac{Q_{Ge}^{exp}}{Q_{Ge}}$, of the measured production rate of 71Ge atoms to the rate predicted using the cross-section calculated in [3]. Including the estimated theoretical error [3] of $\pm 3\%$ gives a total error of ± 0.13.

If the electron neutrino produced in a 51Cr decay oscillates [4] into another neutrino type, ν_μ, ν_τ or a sterile neutrino, ν_s, the 71Ge production rate, Q_{Ge}^{osc}, in the target solution will be reduced. To calculate Q_{Ge}^{osc} one must convolve the integrand in Eq. (1) with the well known
neutrino survival probability in vacuum. The estimated ratio $R^{\text{osc}} = Q^{\text{osc}}_{\text{Ge}}/Q_{\text{Ge}}$ depends on the parameters Δm^2 and $\sin^2 2\theta$ which determine the neutrino survival probability. The requirement that R^{osc} does not differ significantly from R^{exp} constrains the allowed region for these parameters. Since R^{exp} lies slightly above the physical region for $R^{\text{osc}} (0 \leq R^{\text{osc}} \leq 1)$, we renormalize the distribution of the total error using a Bayesian approach with a flat prior distribution, as described in \[5\].

The results of our analysis are shown in Fig. 1. Values above and to the right of the full curve are ruled out at 90% C.L. In particular, values of $\Delta m^2 > 0.17 \text{ eV}^2$ for $\sin^2 2\theta = 1$ and of $\sin^2 2\theta > 0.38$ for $\Delta m^2 > 1 \text{ eV}^2$ are excluded by this analysis. For a C.L. of 95% the unacceptable range is only slightly contracted to $\Delta m^2 > 0.19 \text{ eV}^2$ for $\sin^2 2\theta = 1$ and to $\sin^2 2\theta > 0.45$ for $\Delta m^2 > 1 \text{ eV}^2$.

Our result improves by more than an order of magnitude previous limits on the maximum Δm^2 allowed by accelerator experiments. The best upper limit from electron-neutrino disappearance experiments [6,7] is $\Delta m^2 < 2.3 \text{ eV}^2$ for $\sin^2 2\theta = 1$. In the $\nu_e \rightarrow \nu_\tau$ appearance experiment [8] a weaker limit, $\Delta m^2 < 9 \text{ eV}^2$, has been obtained. The reason the GALLEX experiment implies a better limit on Δm^2, despite the small distance between source and target, is that the energy of the neutrinos from ^{51}Cr decay ($< 1 \text{ MeV}$) is much lower than the typical neutrino energy ($\sim 30 \text{ MeV}$ to $\sim 50 \text{ GeV}$) in accelerator experiments.

Our upper limit on the mixing angle for large Δm^2 is better than was obtained in [3] but does not improve the best existing limits from Refs. [6,8]. The most stringent limit from accelerator neutrino experiments is $\sin^2 2\theta < 7 \times 10^{-2}$ [7], which however is reached only for values of $\Delta m^2 > 100 \text{ eV}^2$.

We note in passing that the gallium solar neutrino experiments also place a strong limit on possible electron charge non-conserving interactions. Since ^{71}Ga is heavier than ^{71}Ge, the decay $^{71}\text{Ga} \rightarrow ^{71}\text{Ge}$ is only forbidden by charge conservation. From the observed rate in the gallium solar neutrino experiments [1], one can conclude that the ratio of charge non-
conserving coupling constant, ϵG_F, divided by the usual weak interaction coupling constant, G_F, is very small

$$\epsilon < 7 \times 10^{-14},$$

if the charge non-conserving interaction is also described by a four-fermion interaction (see the second of Refs. [3], p. 359).

In conclusion, the limits on neutrino oscillations implied by the recently announced GALLEX radioactive source experiment improve thirteen-year old limits obtained in electron-neutrino oscillation experiments at accelerators.

Acknowledgments. We are grateful to the GALLEX collaboration for sending us a preprint of their important paper, and especially to K. Rowley for a precise sketch of the experimental geometry. J.N.B. acknowledges support from NSF grant #PHY 92-45317. The work of P.I.K. was partially supported by Dyson Visiting Professor Funds from the Institute for Advanced Study and the work of E.L. was supported by a post-doctoral INFN fellowship.
REFERENCES

[1] GALLEX collaboration, P. Anselmann et al., First results from the ^{51}Cr neutrino source experiment with the GALLEX detector (submitted to Phys. Lett. B).

[2] M. Cribier et al., Nucl. Instr. and Meth. A265 (1988) 574; M. Cribier, GALLEX internal note GLX-46 (1994).

[3] J.N. Bahcall and R.K. Ulrich, Rev. Mod. Phys. 60 (1988) 297; J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989).

[4] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1958) 429]; S.M. Bilenky and B. Pontecorvo, Phys. Rep. 41 (1978) 225.

[5] Particle Data Group, Review of Particle Properties, Phys. Rev. D49 (1994), Vol. III, Part 1.

[6] P. Némethy et al., Phys. Rev. D23 (1981) 262; N.J. Baker et al., Phys. Rev. Lett. 47 (1981) 1576.

[7] O. Erriquez et al., Phys. Lett. B102 (1981) 73.

[8] N. Ushida et al., Phys. Rev. Lett. 57 (1986) 2897.

[9] GALLEX collaboration, P. Anselmann et al., Phys. Lett. B285 (1994) 377; SAGE collaboration, A.I. Abdurashitov et al., Phys. Lett. B328 (1994) 234.
Figure Captions

Fig. 1. Region of electron neutrino oscillation parameters ruled out at 90\% C.L. by the GALLEX 51Cr source experiment.
Fig. 1