HER2-targeted therapy prolongs survival in patients with HER2-positive breast cancer and intracranial metastatic disease: a systematic review and meta-analysis

Anders W. Erickson†, Farinaz Ghodrati†, Steven Habbous*, Katarzyna J. Jerzak*, Arjun Sahgal*, Manmeet S. Ahluwalia*, and Sunit Das*

Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.W.E., F.G., S.D.); Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada (S.H.); Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (K.J.J.); Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Ontario, Canada (A.S.); Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA (M.S.A.); Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada (S.D.)

†These authors contributed equally to the work.

Corresponding Author: Sunit Das, MD, PhD, Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada (sunit.das@utoronto.ca).

Abstract

Background. Intracranial metastatic disease (IMD) is a serious and known complication of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. The role of targeted therapy for patients with HER2-positive breast cancer and IMD remains unclear. In this study, we sought to evaluate the effect of HER2-targeted therapy on IMD from HER2-positive breast cancer.

Methods. We searched MEDLINE, EMBASE, CENTRAL, and gray literature sources for interventional and observational studies reporting survival, response, and safety outcomes for patients with IMD receiving HER2-targeted therapy. We pooled outcomes through meta-analysis and examined confounder effects through forest plot stratification and meta-regression. Evidence quality was evaluated using GRADE (PROSPERO CRD42020161209).

Results. A total of 97 studies (37 interventional and 60 observational) were included. HER2-targeted therapy was associated with prolonged overall survival (hazard ratio [HR] 0.47; 95% confidence interval [CI], 0.39–0.56) without significantly prolonged progression-free survival (HR 0.52; 95% CI, 0.27–1.02) versus non-targeted therapy; the intracranial objective response rate was 19% (95% CI, 12–27%), intracranial disease control rate 62% (95% CI, 55–69%), intracranial complete response rate 0% (95% CI, 0–0.01%), and grade 3+ adverse event rate 26% (95% CI, 11–45%). Risk of bias was high in 40% (39/97) of studies.

Conclusion. These findings support a potential role for systemic HER2-targeted therapy in the treatment of patients with IMD from HER2-positive metastatic breast cancer.

Key Points

- We performed a meta-analysis of survival, response, and safety outcomes for 7157 patients from 97 studies.
- HER2-targeted therapy was associated with prolonged overall survival for patients with IMD from HER2-positive breast cancer.
- Our results support a potential role for systemic HER2-targeted therapy for this patient population.

© The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Intracranial metastatic disease (IMD) is one of the most feared complications of breast cancer, the most common cancer in women and the second most frequent cause of IMD, accounting for 15–20% of all brain metastases. Expression of the human epidermal growth factor receptor 2 (HER2) is associated with an increased risk of IMD (odds ratio 2.7; 95% confidence interval [CI], 2–3.7) compared to other breast cancer subtypes. Up to 50% of women with HER2-positive breast cancer develop IMD over their lifetime. Furthermore, the incidence of IMD in women with HER2-positive breast cancer is increasing due to advances in detection and improved systemic disease control. Diagnosis with IMD has significant implications for prognosis: the median survival for patients with HER2-positive metastatic breast cancer is 26.3–30 months with IMD versus 42.5–47.9 months without brain involvement. Furthermore, diagnosis with IMD may result in reduced quality of life because of neurological deficit, as well as a “loss of hope and a fear of loss of self.”

Treatment for IMD in patients with HER2-positive breast cancer has historically been limited to surgical resection and radiotherapy; the role for chemotherapy has generally been disappointing. The intracranial efficacy of chemotherapy is thought to be limited by cell-intrinsic resistance and poor penetration of drugs across the blood–brain barrier. The finding of prolonged survival with HER2 inhibition in women with HER2-positive metastatic breast cancer and the increased permeability of novel HER2 inhibitors into the brain have led to an interest in HER2-targeted therapy as a treatment of IMD from HER2-positive metastatic breast cancer.

Although prior systemic reviews have been conducted, these studies do not speak to HER2 targeting agents developed since trastuzumab and lapatinib, and one is not restricted to patients with HER2-positive disease. Our understanding of outcomes among patients with HER2-positive breast cancer brain metastases who receive HER2-targeted therapy thus remains limited. To address this limitation, we conducted this systematic review and meta-analysis to update the literature on the effects of HER2-targeted therapy on survival, response, and safety outcomes in patients with HER2-positive breast cancer and IMD.

Methods

Eligibility Criteria

Included studies reported outcomes for patients with IMD from HER2-positive breast cancer who received post-IMD HER2-targeted therapy. Details are available in Supplementary Methods.

Search Strategy

On January 27, 2020, we searched multiple databases and gray literature sources. The full search strategy is available in Supplementary Methods and Supplementary Tables S1–S3.

Study Selection

Retrieved records underwent title-and-abstract review then full-text review. Independent reviewers (A.W.E. and F.G.) screened the studies in duplicate using the eligibility criteria (Supplementary Tables S4 and S5). Reasons for exclusion at full-text review were recorded. Disagreements were resolved by discussion. Cohen’s κ statistic was calculated for both steps.

Data Extraction

Two independent reviewers (A.W.E. and F.G.) extracted all study outcomes and characteristics in duplicate. Disagreements were resolved through discussion. Only data specific to patients with IMD from HER2-positive breast cancer were extracted.

Synthesis of Results

Principal summary measures were hazard ratios (HRs) for survival outcomes and proportions for response and safety outcomes. We estimated summary effect sizes through meta-analyses with random effects models using the inverse variance method. Tests for heterogeneity included I^2, τ^2, and Q statistics. Analysis was performed using the statistical programming language R (version 3.6.1, R Core Team, 2019) and the R packages robvis and meta.
Additional Analyses

We conducted subgroup and sensitivity analyses and meta-regression to estimate subgroup effect sizes, assess robustness, and investigate confounders (Supplementary Methods).

Risk of Bias

We assessed risk of bias in randomized controlled trials (RCTs) using the Cochrane Risk of Bias (RoB 2) tool,33 cohort studies using the Newcastle–Ottawa Scale,34 and the one non-randomized controlled trial (NRCT) using the ROBINS-I tool.35 Independent reviewers (A.W.E. and F.G.) assessed risk in duplicate and resolved discrepancies through discussion. We assessed evidence quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework,36 and publication bias through Egger’s test and funnel plot inspection.

Results

The literature search yielded 3449 records, from which we included 97 studies and 7157 patients (Figure 1).11,37–132 The 97 included studies were 4 RCTs, 1 NRCT, 32 single-arm interventional trials, 1 prospective cohort study, and 59 retrospective cohort studies. Thirty-six of the 41 comparative studies compared HER2-targeted therapy to a non-targeted therapy, and 5 compared different HER2-targeted therapies to one another. Median follow-up ranged from 6.25 to 26 months (Supplementary Table S6). Pharmaceutical industry funding was disclosed by 49% (48/97) of studies (Supplementary Table S6). Pharmaceutical industry funding was disclosed by 49% (48/97) of studies (Supplementary Table S6). Pharmaceutical industry funding was disclosed by 49% (48/97) of studies (Supplementary Table S6).

Overall Survival

A meta-analysis of the 21 studies reporting overall survival (OS) HR comparing HER2-targeted therapy to non-targeted therapy showed HER2-targeted therapy was associated with prolonged OS (HR 0.47; 95% CI, 0.39–0.56; n = 3059; Figure 2). Summary estimates for individual agents for OS and all other outcomes are presented in Supplementary Table S8. Seventy-two studies reported OS in formats ineligible for meta-analysis (Supplementary Table S9).

Progression-Free Survival

A meta-analysis of 4 studies showed that HER2-targeted therapy was not associated with prolonged progression-free survival (PFS; HR 0.52; 95% CI, 0.27–1.02; n = 475; Supplementary Figure S1). Twenty-nine studies reported PFS in formats ineligible for meta-analysis (Supplementary Table S10). Additional outcomes related to disease progression were reported in formats ineligible for meta-analysis: intracranial progression-free survival (iPFS), intracranial time to progression (iTTP), time to progression (TTP), and intracranial duration of response (iDoR) (Supplementary Tables S11–S14). Benefit with HER2-targeted therapy was seen in both studies reporting comparative iPFS (Supplementary Table S11) and in 3 of 4 studies reporting comparative iTTP (Supplementary Table S12). Comparative estimates for TTP and iDoR were not reported (Supplementary Tables S13 and S14).

Intracranial Objective Response Rate

We performed a meta-analysis for intracranial objective response rate (iORR) proportions from 36 studies. These were 28 single-arm interventional trials and 8 retrospective cohort studies. The summary estimate for iORR as a proportion was 19% (95% CI, 12–27%; n = 3059; Supplementary Figure S2). Stratification by HER2-targeted agent and by publication before versus after 2018 produced distinct subgroup estimates and resolved some heterogeneity (Supplementary Figures S3 and S4).

Intracranial Disease Control Rate

We performed a meta-analysis for intracranial disease control rate (iDCR) proportions from 33 studies. These were 1 NRCT, 25 single-arm interventional trials, and 7 retrospective cohort studies. The summary estimate for iDCR as a proportion was 62% (95% CI, 54–69%; n = 922; Supplementary Figure S2). Stratification by HER2-targeted therapy showed HER2-targeted therapy was associated with prolonged OS (HR 0.47; 95% CI, 0.39–0.56; n = 3059; Figure 2). Summary estimate for grade 3+ adverse events from studies reporting patient numbers was 26% (95% CI, 11–45%; Figure 4). Stratification by drug structure (monoclonal antibody vs small-molecule inhibitor) produced distinct subgroup estimates and resolved some heterogeneity (Supplementary Figure S6). Only one study reported a central nervous system (CNS)-specific serious adverse event rate, which was 8% (30/399) in patients receiving TDM1.120

Intracranial Complete Response Rate

We then performed a meta-analysis on intracranial complete response rate (iCRR) proportions from 30 studies. These were 25 single-arm interventional trials and 5 retrospective cohort studies. The summary estimate for iCRR as a proportion was 0% (95% CI, 0–1%; n = 891; Supplementary Figure S5).

Safety

Studies reported CTCAE grade 3+ adverse events as either a number of total events (15 studies; Supplementary Table S15) or as a number of patients who experienced events (10 studies; Figure 4). Summary estimate for grade 3+ adverse event rate from studies reporting patient numbers was 26% (95% CI, 11–45%; Figure 4). Stratification by drug structure (monoclonal antibody vs small-molecule inhibitor) produced distinct subgroup estimates and resolved some heterogeneity (Supplementary Figure S6). Only one study reported a central nervous system (CNS)-specific serious adverse event rate, which was 8% (30/399) in patients receiving TDM1.120

Additional Analyses

Sensitivity analyses

Sensitivity analyses did not produce significantly different summary estimates (Figures 2–4, Supplementary Figures S1, S2, and S5). Of note, omission of one study37 produced a significant summary estimate for PFS (HR 0.41; 95% CI, 0.30–0.56; n = 374).
Meta-regression

Meta-regression for OS, iORR, iDCR, and iCRR did not show association between selected characteristics and summary estimates (Supplementary Table S16). Two coefficients in the model for grade 3+ adverse event rate were significant: drug structure (small-molecule inhibitor vs monoclonal antibody, $\beta = 0.33$, $P = .02$) and study design (retrospective cohort study vs RCT, $\beta = −0.47$, $P = .01$).

Risk of Bias

Risk of bias varied among the included studies (Supplementary Figures S7–S11). Egger’s test and visual inspection of funnel plots suggested asymmetry due to publication bias in the summary estimates for iDCR ($P = .01$, Supplementary Figure S12) and iCRR ($P = .02$, Supplementary Figure S13) and were undetected for other summary estimates (Supplementary Figures S14–S17).

Figure 1. PRISMA flow diagram. Search queries were conducted in PubMed, EMBASE, CENTRAL, and gray literature source from their inception to January 27, 2020 for studies reporting survival, response, and safety outcomes for patients with IMD from HER2-positive breast cancer who received HER2-targeted therapy. Cohen’s κ statistic for inter-rater reliability at title-and-abstract (0.71) and full-text screening stages (0.67) indicated substantial agreement between reviewers.
Author	Year	Publication Type	Study Design	Therapy	Therapy (n)	Comparator	Comparator (n)
Chan, A. et al.	2019	Abstr. RCT	AC-TH or TCH	64	AC-T	37	
Krop, I. et al.	2015	Art. RCT	T-DM1	45	Lapatinib + capecitabine	50	
Murthy, R. et al.	2019	Art. RCT	Tucatinib + trastuzumab + capecitabine	198	Placebo + trastuzumab + capecitabine	93	
Takano, T. et al.	2018	Art. RCT	Trastuzumab + capecitabine	6	Lapatinib + capecitabine	7	
Bian, L. et al.	2013	Art. NRCT	Trastuzumab + capecitabine	4	Lapatinib + capecitabine	12	
Brufsky, A. et al.	2011	Art. Pro. Coh.	Trastuzumab	258	No trastuzumab	119	
Bartsch, R. et al.	2011	Art. Ret. Coh.	Trastuzumab ± lapatinib	43	No HER2-targeted therapy	37	
Bartsch, R. et al.	2007	Art. Ret. Coh.	Trastuzumab	17	No trastuzumab	36	
Braccini, A. et al.	2013	Art. Ret. Coh.	Trastuzumab and/or lapatinib	89	No HER2-targeted therapy	20	
Chen, J. et al.	2014	Abstr. Ret. Coh.	HER2-targeted therapy	24	No HER2-targeted therapy	36	
Church, D. et al.	2008	Art. Ret. Coh.	Trastuzumab	18	No trastuzumab	8	
Gomes, D. et al.	2015	Abstr. Ret. Coh.	Trastuzumab and/or lapatinib	NR	No HER2-targeted therapy	NR	
Gori, S. et al.	2019	Art. Ret. Coh.	Trastuzumab and/or lapatinib	102	No HER2-targeted therapy	52	
Griguolo, G. et al.	2018	Art. Ret. Coh.	Pertuzumab, trastuzumab, T-DM1, and/or lapatinib	22	No HER2-targeted therapy	10	
Hayashi, N. et al.	2015	Art. Ret. Coh.	Trastuzumab and/or lapatinib	283	No HER2-targeted therapy	149	
Hulsbergen, A. et al.	2020	Art. Ret. Coh.	Trastuzumab and/or lapatinib	8	No HER2-targeted therapy	7	
Kaplan, M. et al.	2013	Art. Ret. Coh.	Lapatinib + capecitabine	46	Trastuzumab-based therapy	65	
Kaplan, M. et al.	2015	Art. Ret. Coh.	Trastuzumab ± lapatinib	20	No HER2-targeted therapy	30	
Karam, I. et al.	2011	Art. Ret. Coh.	Trastuzumab + RT	130	RT	46	
Kim, J. et al.	2019	Art. Ret. Coh.	Lapatinib + SRS	43	SRS	41	
Le Scodan, R. et al.	2011	Art. Ret. Coh.	Trastuzumab	32	No trastuzumab	20	
Metro, G. et al.	2011	Art. Ret. Coh.	Lapatinib + capecitabine	30	Trastuzumab-based therapy	23	
Metro, G. et al.	2007	Art. Ret. Coh.	Trastuzumab	10	No trastuzumab	10	
Miller, J. et al.	2017	Art. Ret. Coh.	Trastuzumab or lapatinib or pertuzumab or T-DM1	82	No HER2-targeted therapy	17	
Morikawa, A. et al.	2018	Art. Ret. Coh.	Trastuzumab and/or lapatinib	80	No HER2-targeted therapy	20	
Mounsey, L. et al.	2018	Art. Ret. Coh.	Trastuzumab, lapatinib, T-DM1, and/or pertuzumab	76	No HER2-targeted therapy	47	
Mueller, V. et al.	2016	Abstr. Ret. Coh.	Trastuzumab or lapatinib or T-DM1 or Trastuzumab + pertuzumab	155	No HER2-targeted therapy	317	
Niwinka, A. et al.	2013	Abstr. Ret. Coh.	Trastuzumab or lapatinib	NR	No HER2-targeted therapy	NR	
Niwinka, A. et al.	2010	Art. Ret. Coh.	Trastuzumab and/or lapatinib	105	No HER2-targeted therapy	118	
Author	Year	Publication Type	Study Design	Therapy	Therapy (n)	Comparator	Comparator (n)
-----------------	------	------------------	--------------	--	-------------	--	---------------
Okita, Y. et al.	2013	Art. Ret. Coh.	Trastuzumab	12	No trastuzumab	15	
Ou, D. et al.	2019	Art. Ret. Coh.	HER2-targeted therapy	22	No HER2-targeted therapy	17	
Park, I. et al.	2009	Art. Ret. Coh.	Trastuzumab	29	No trastuzumab	49	
Park, Y. et al.	2009	Art. Ret. Coh.	Trastuzumab	40	No trastuzumab	37	
Parsai, S. et al.	2019	Art. Ret. Coh.	Lapatinib + SRS	50	SRS	76	
Tarhan, M. et al.	2013	Art. Ret. Coh.	Trastuzumab and/or lapatinib	21	No HER2-targeted therapy	15	
Witzel, I. et al.	2011	Art. Ret. Coh.	Trastuzumab	NR	No trastuzumab	NR	
Yap, Y. et al.	2012	Art. Ret. Coh.	Trastuzumab and/or lapatinib	115	No HER2-targeted therapy	165	
Yomo, S. et al.	2013	Art. Ret. Coh.	Lapatinib + SRS	24	SRS	16	
Zhang, C. et al.	2016	Art. Ret. Coh.	Trastuzumab	33	No trastuzumab	35	
Zhang, Q. et al.	2016	Art. Ret. Coh.	Trastuzumab and/or lapatinib	24	No HER2-targeted therapy	36	
Zhukova, L. et al.	2018	Abstr. Ret. Coh.	Trastuzumab ± lapatinib	115	No HER2-targeted therapy	165	
Bhargava, P. et al.	2019	Abstr. Ret. Coh.	Lapatinib and/or trastuzumab or T-DM1 or trastuzumab (intrathecal)	102	—	NA	
Bartsch, R. et al.	2009	Art. Ret. Coh.	Trastuzumab	40	—	NA	
Bidard, F. et al.	2009	Art. Ret. Coh.	Trastuzumab ± lapatinib	6	—	NA	
Fabi, A. et al.	2018	Art. Ret. Coh.	T-DM1	87	—	NA	
Figura, N. et al.	2019	Art. Ret. Coh.	Trastuzumab (intrathecal)	18	—	NA	
Gamucci, T. et al.	2019	Art. Ret. Coh.	Pertuzumab + trastuzumab + taxanes	21	—	NA	
Gavila, J. et al.	2019	Art. Ret. Coh.	Trastuzumab + lapatinib	38	—	NA	
Gori, S. et al.	2012	Art. Ret. Coh.	Trastuzumab	16	—	NA	
Grell, P. et al.	2012	Abstr. Ret. Coh.	Lapatinib	31	—	NA	
Hardy-Werbin, M. et al.	2019	Art. Ret. Coh.	T-DM1	5	—	NA	
Huang, C. et al.	2010	Abstr. Ret. Coh.	Lapatinib and/or trastuzumab + capecitabine	32	—	NA	
Jackisch, S. et al.	2014	Art. Ret. Coh.	Trastuzumab	90	—	NA	
Jacot, W. et al.	2016	Art. Ret. Coh.	T-DM1	39	—	NA	
Maillez, A. et al.	2016	Abstr. Ret. Coh.	T-DM1	14	—	NA	
Martin Huertas, R. et al.	2019	Abstr. Ret. Coh.	T-DM1	8	—	NA	
McCabe Y. et al.	2016	Abstr. Ret. Coh.	T-DM1	23	—	NA	
Metro, G. et al.	2010	Abstr. Ret. Coh.	Trastuzumab + chemotherapy or ET	10	—	NA	
Michel, L. et al.	2015	Art. Ret. Coh.	T-DM1	6	—	NA	
Montagna, E. et al.	2009	Art. Ret. Coh.	Trastuzumab	36	—	NA	
Author	Year	Publication Type	Study Design	Therapy	Therapy (n)	Comparator	Comparator (n)
----------------------	------	------------------	--------------	---------	-------------	-----------	---------------
Okines, A. et al.	2018	Art.	Ret. Coh.	T-DM1	16	—	NA
Riahi, H. et al.	2010	Abstr.	Ret. Coh.	Trastuzumab + WBRT	31	—	NA
Rossi, M. et al.	2016	Art.	Ret. Coh.	Trastuzumab	40	—	NA
Vasiita, A. et al.	2019	Art.	Ret. Coh.	Trastuzumab	29	—	NA
Vici, P. et al.	2017	Art.	Ret. Coh.	T-DM1	61	—	NA
Bachelot, T. et al.	2011	Art.	Sing. Int.	Lapatinib + capecitabine	45	—	NA
Bartsch, R. et al.	2008	Art.	Sing. Int.	Trastuzumab + gemcitabine	5	—	NA
Bonneau, C. et al.	2018	Art.	Sing. Int.	Trastuzumab (intrathecal)	16	—	NA
Borges, V. et al.	2016	Art.	Sing. Int.	Tucatinib + T-DM1	30	—	NA
Christodoulou, C. et al.	2017	Art.	Sing. Int.	Lapatinib + WBRT	12	—	NA
de Azambuja, E. et al.	2013	Art.	Sing. Int.	Lapatinib + temozolomide	16	—	NA
Falchook, G. et al.	2013	Art.	Sing. Int.	Trastuzumab + lapatinib + bevacizumab	10	—	NA
Freedman, R. et al.	2019	Art.	Sing. Int.	Neratinib	40	—	NA
Giotta, F. et al.	2010	Art.	Sing. Int.	Lapatinib + capecitabine	14	—	NA
Gutierrez, M. et al.	2015	Abstr.	Sing. Int.	Trastuzumab (intrathecal)	19	—	NA
Hurvitz, S. et al.	2018	Art.	Sing. Int.	Lapatinib + everolimus + capecitabine	19	—	NA
Leone, J. et al.	2019	Art.	Sing. Int.	Trastuzumab + cabozantinib	21	—	NA
Lin, N. et al.	2009	Art.	Sing. Int.	Lapatinib	242	—	NA
Lin, N. et al.	2016	Abstr.	Sing. Int.	Pertuzumab + trastuzumab	40	—	NA
Lin, N. et al.	2008	Art.	Sing. Int.	Lapatinib	39	—	NA
Lin, N. et al.	2013	Art.	Sing. Int.	Lapatinib + WBRT + trastuzumab	35	—	NA
Lin, N. et al.	2011	Art.	Sing. Int.	Lapatinib + capecitabine or topotecan	22	—	NA
MacPherson, I. et al.	2019	Art.	Sing. Int.	Trastuzumab + pertinib or capecitabine	5	—	NA
Metzger, O. et al.	2017	Abstr.	Sing. Int.	Tucatinib + trastuzumab	41	—	NA
Montemurro, F. et al.	2017	Abstr.	Sing. Int.	T-DM1	399	—	NA
Monkawa, A. et al.	2019	Art.	Sing. Int.	Lapatinib + capecitabine	11	—	NA
Murthy, R. et al.	2018	Art.	Sing. Int.	Tucatinib ± capecitabine ± trastuzumab	29	—	NA
Naskhletashvili, D. et al.	2010	Abstr.	Sing. Int.	Trastuzumab + capecitabine	5	—	NA
Niwinska, A. et al.	2010	Art.	Sing. Int.	Trastuzumab + chemotherapy	52	—	NA
Pistilli, B. et al.	2018	Art.	Sing. Int.	Trastuzumab + buparlisib + capecitabine	9	—	NA
Ro, J. et al.	2012	Art.	Sing. Int.	Lapatinib + capecitabine	58	—	NA
Shawky, H. et al.	2014	Art.	Sing. Int.	Lapatinib + capecitabine	21	—	NA
GRADE

Evidence certainty level differed between outcomes and study designs (Table 2).

Discussion

In our meta-analysis, HER2-targeted therapy was associated with prolonged OS (HR 0.47; 95% CI, 0.39–0.56) in patients with HER2-positive breast cancer and IMD, with an iORR of 22% (95% CI, 14–30%), an iDCR of 62% (95% CI, 55–69%), an iCRR of 0% (95% CI, 0–0.01%), and a grade 3+ adverse event rate of 26% (95% CI, 11–45%). HER2-targeted therapy did not have a statistically significant effect on PFS (HR 0.52; 95% CI, 0.27–1.02).

The lack of prolonged PFS with HER2-targeted therapy may be an artifact of multiple data limitations. First, only 4 of 29 eligible studies included PFS data amenable to pooling. Second, the RECIST 1.1 criteria used to evaluate PFS do not distinguish between systemic and intracranial progression. Hence, a patient experiencing CNS benefit may be taken off therapy due to systemic progression. Third, this estimate was produced through pooling studies with different designs and treatments; this variety may both account for this result and reduce its credibility. Prolonged iPFS and iTTP were reported with HER2-targeted therapy versus non-targeted therapy by 2 and 3 studies, respectively (Supplementary Tables S11 and S12).

Subgroup analysis suggested that estimates for individual HER2-targeted agents were similar (Supplementary Table S8). Stratification of grade 3+ adverse event rate by drug structure suggested that antibody-based therapies were associated with lower rates of grade 3+ adverse events compared to small-molecule inhibitors (Supplementary Figure S6). This could be the result of greater pharmacokinetic distribution of small-molecule inhibitors compared to antibodies.133,134 An inherent difference in toxicity between classes or a spurious product of multiple comparisons.

Sensitivity analyses showed that our results were robust. Meta-regression revealed significant coefficients for study design and drug structure in modeling grade 3+ adverse event rate, although this analysis was underpowered due to the small ratio between the number of studies (k = 11) and model variables (n = 3).

Risk of bias varied in our study. Seventy-five percent (24/32) of single-arm interventional studies did not report central or blinded outcome measurement. Fifty-six percent (20/36) of comparative cohort studies either did not control or did not report control of confounders between study arms (Supplementary Figure S7). Most cohort studies did not report adequate follow-up (62%, 37/60) or follow-up completeness (82%, 49/60); Supplementary Figure S9).

Our results were consistent with previous reviews of trastuzumab and lapatinib for IMD from HER2-positive breast cancer.28,29 Reviews of other HER2-targeted therapies are lacking.

Since the execution of our literature search, the HER2CLIMB, CLEOPATRA, EMILIA, and KAMILLA trials have reported intracranial antitumor activity with the addition of
tucatinib to trastuzumab and capecitabine, pertuzumab to trastuzumab plus docetaxel, T-DM1 versus lapatinib plus capecitabine, and TDM1, respectively.38,135–137

Progress in the field of breast cancer brain metastases is still limited by infrequent evaluation of CNS-specific endpoints. This is reflected in the paucity of comparative intracranial results in our study: Of 36 studies comparing HER2-targeted therapy to a non-targeted comparator, none reported iORR, iDoR, iTTR, and iBCLS for both experimental and control arms, while only 1 trial reported iCRR, 2 reported iDCR and iPFS, and 4 evaluated iTTP. To obtain high-quality data regarding the efficacy of systemic therapy for the treatment of breast cancer patients with IMD, intracranial outcomes need to be collected prospectively in relevant RCTs. More liberal inclusion of patients with IMD should also be considered in the design of future clinical trials.138–140

Limitations

Our study had several limitations. First, patients with IMD from HER2-positive breast cancer were a subgroup in many of the included studies and therefore, outcomes for these patients were often few and secondary. Second,
Erickson et al. HER2-targeted therapy and intracranial metastatic disease

Third, many outcomes were reported in formats that precluded meta-analysis. PFS, for example, was reported as an HR comparing HER2-targeted therapy to non-targeted therapy by only 4 of 29 studies reporting PFS. A more accurate approximation of effects could be achieved with increased reporting of meta-analyzable endpoints.

heterogeneity was substantial or considerable in most of our summary estimates. This was expected as our study employed broad inclusion criteria. To resolve heterogeneity, our subgroup analyses and meta-regression identified important factors for several outcomes, although these may be false positives from multiple comparisons.

Figure 3. Intracranial objective response rate in patients who received HER2-targeted therapy. Proportions for iORR were extracted from eligible studies and pooled in a meta-analysis. Studies here are stratified by study design. The size of each box represents the weight of each study in the meta-analysis. The vertical dashed and dotted lines represent the points of summary for fixed and random effects models, respectively, and the diamonds represent 95% CI. Analyses were performed with the R programming language and the R package meta.

- **Retrospective cohort study**
 - Le Scodan, R. et al. 2011
 - Okines, A. et al. 2018
 - Fabi, A. et al. 2018
 - Mailliez, A. et al. 2016
 - Metro, G. et al. 2011
 - Huang, C. et al. 2010
 - Mc, Cabe Y. et al. 2016
 - Riahi, H. et al. 2010
 - Lin, N. et al. 2011
 - Toi, M. et al. 2009
 - Sutherland, S. et al. 2010
 - Ro, J. et al. 2012
 - Falchook, G. et al. 2013
 - Morikawa, A. et al. 2019
 - Lin, N. et al. 2009
 - Leone, J. et al. 2019
 - Freedman, R. et al. 2019
 - Metzger, O. et al. 2017
 - Giotta, F. et al. 2010
 - Lin, N. et al. 2016
 - Morikawa, A. et al. 2019
 - Falchook, G. et al. 2013
 - Ro, J. et al. 2012
 - Sutherland, S. et al. 2010
 - Toi, M. et al. 2009
 - Lin, N. et al. 2011
 - MacPherson, I. et al. 2019
 - Bartsch, R. et al. 2008
 - Hurvitz, S. et al. 2018
 - Pistilli, B. et al. 2018
 - Shawky, H. et al. 2014
 - Borges, V. et al. 2018
 - Naskhlatashvili, D. et al. 2010
 - Murthy, R. et al. 2018
 - Bachiolot, T. et al. 2011
 - Christodoulou, C. et al. 2017
 - Lin, N. et al. 2013
 - Fixed model
 - 784 0.13 [0.10; 0.15] 76.8% 100.0%
 - Fixed effects model
 - 976 0.15 [0.13; 0.18] 100.0%
 - Random effects model
 - 0.19 [0.12; 0.27] 100.0%
 - Residual heterogeneity: $I^2 = 85\%$, $p < 0.01$

- **Single-arm interventional trial**
 - de Azambuja, E. et al. 2013
 - Bonneau, C. et al. 2018
 - Lin, N. et al. 2008
 - Yardley, D. et al. 2018
 - Van Swearingen, A. et al. 2018
 - Lin, N. et al. 2009
 - Lin, N. et al. 2011
 - Lin, N. et al. 2016
 - Lin, N. et al. 2012
 - Falchook, G. et al. 2013
 - Ro, J. et al. 2012
 - Sutherland, S. et al. 2010
 - Toi, M. et al. 2009
 - Lin, N. et al. 2011
 - MacPherson, I. et al. 2019
 - Bartsch, R. et al. 2008
 - Hurvitz, S. et al. 2018
 - Pistilli, B. et al. 2018
 - Shawky, H. et al. 2014
 - Borges, V. et al. 2018
 - Naskhlatashvili, D. et al. 2010
 - Murthy, R. et al. 2018
 - Bachiolot, T. et al. 2011
 - Christodoulou, C. et al. 2017
 - Lin, N. et al. 2013
 - Fixed effect model
 - 784 0.13 [0.10; 0.15] 76.8% 100.0%
 - Random effects model
 - 0.19 [0.12; 0.27] 100.0%
 - Residual heterogeneity: $I^2 = 85\%$, $p < 0.01$

- **Random effects model**
 - 0.25 [0.09; 0.46] 23.2%
Fourth, several outcomes key to clarifying the role of HER2-targeted therapy in the management of IMD were under-reported, such as comparative intracranial response and safety outcomes, and CNS-specific clinical features and mortality.

Conclusions

Our study reviewed the literature and meta-analyzed outcomes for HER2-targeted therapy in patients with HER2-positive breast cancer and IMD. We find that HER2-targeted therapy is associated with prolonged OS, notable response proportions, and an adverse event rate that may depend on drug structure. Our findings support a role for HER2-targeted therapy in the treatment of IMD from HER2-positive metastatic breast cancer. Future trials for HER2-positive metastatic breast cancer should include patients with IMD to determine optimal treatment combinations and sequences, and further illuminate the role of novel therapies that may have efficacy in the CNS.

Supplementary Material

Supplementary material is available at *Neuro-Oncology Advances* online.

Keywords

brain metastases | breast cancer | HER2/neu | molecular targeted therapy

Acknowledgments

We thank Kaitlin Fuller, MLIS for consultation in creating the protocol and search strategies. We thank Alex Koziarz, MSc for reviewing our search strategy according to the PRESS checklist.21 Preliminary data from this study were presented in virtual poster format at the SNO Conference on Brain Metastases, Aug 14, 2020.

Table: HER2-targeted therapy in patients with HER2-positive breast cancer and IMD

Study Description	Cases	Total	Grade 3+ AE rate	95% CI	Grade 3+ AE rate	95% CI	Weight
Randomized controlled trial							
Krop, I. et al. 2015 (T-DM1 arm)	21	43	0.49	[0.33; 0.65]	0.57	[0.46; 0.67]	9.5%
Krop, I. et al. 2015 (Lapatinib arm)	31	49	0.63	[0.48; 0.77]			9.6%
Fixed effect model	92		0.57	[0.46; 0.67]			
Random effects model	0.56			[0.42; 0.70]			19.1%

Fixed effect model

Random effects model

Heterogeneity: $I^2 = 47\%$, $\tau^2 = 0.0048$, $p = 0.17$

Retrospective cohort study

Study Description	Cases	Total	Grade 3+ AE rate	95% CI	Weight	
Riahi, H. et al. 2010	0	31	0.00	[0.00; 0.11]	9.3%	
Jacot, W. et al. 2016	1	39	0.03	[0.00; 0.13]	9.5%	
Mailliez, A. et al. 2016	2	14	0.14	[0.02; 0.43]	8.5%	
Fixed effect model	84		0.02	[0.00; 0.07]		
Random effects model	0.03			[0.00; 0.12]	27.3%	

Fixed effect model

Random effects model

Heterogeneity: $I^2 = 54\%$, $\tau^2 = 0.0113$, $p = 0.12$

Single-arm interventional trial

Study Description	Cases	Total	Grade 3+ AE rate	95% CI	Weight	
Bonnaux, C. et al. 2018	0	13	0.00	[0.00; 0.25]	8.4%	
Pistilli, B. et al. 2018	1	9	0.11	[0.00; 0.48]	7.9%	
Montemurro, F. et al. 2017	112	399	0.28	[0.24; 0.33]	10.1%	
Bachelot, T. et al. 2011	22	45	0.49	[0.34; 0.64]	9.6%	
Yardley, D. et al. 2018	6	11	0.55	[0.23; 0.83]	8.2%	
Lin, N. et al. 2008	25	39	0.64	0.47; 0.79	9.5%	
Fixed effect model	516		0.31	[0.27; 0.35]		
Random effects model	0.32			[0.12; 0.56]	53.6%	

Fixed effect model

Random effects model

Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0.00713$, $p < 0.01$

Figure 4. Grade 3+ CTCAE adverse event rate in patients who received HER2-targeted therapy. Proportions for grade 3+ CTCAE adverse event rate were extracted from eligible studies and pooled in a meta-analysis. Studies here are stratified by study design. The size of each box represents the weight of each study in the meta-analysis. The vertical dashed and dotted lines represent the points of summary for fixed and random effects models, respectively, and the diamonds represent 95% CI. Analyses were performed with the R programming language and the R package meta.32
Table 2. GRADE Summary of Findings

HER2-Targeted Therapy Compared To Control For Patients With Intracranial Metastatic Disease From HER2-Positive Breast Cancer

Certainty Assessment	Summary of Findings										
Participants	**Risk of bias**	**Inconsistency**	**Indirectness**	**Imprecision**	**Publication bias or effect size**	**Overall certainty of evidence**	**Study event rates (%)**	**Relative effect (95% CI)**	**Anticipated absolute effects**		
(studies) follow-up	392 (2 RCTs), follow-up NR	Not serious^a	Not serious	Not serious	None	🌈🌈🌈🌈 HIGH	130 participants	262 participants	HR 0.63 (0.46–0.86) [OS]	All patients 50 per 100 15 fewer per 100 (from 23 fewer to 5 fewer)	
	2341 (19 observational studies), follow-up range 0.23–53 months	Serious^b	Not serious^c	Not serious	Strong association*	🌈🌈🌈 LOW	919 participants	1422 participants	HR 0.45 (0.37–0.54) [OS]	All patients 50 per 100 22 fewer per 100 (from 27 fewer to 19 fewer)	
	392 (2 RCTs), follow-up NR	Not serious	Serious^d	Not serious	Serious^e	None	🌈🌈🌈 LOW	130 participants	262 participants	HR 0.74 (0.29–1.90) [Progression-free survival]	All patients 50 per 100 10 fewer per 100 (from 32 fewer to 23 more)
	83 (2 observational studies), follow-up range 1–39 months	Serious^f	Not serious	Not serious	Strong association^g	🌈🌈🌈 LOW	42 participants	41 participants	HR 0.32 (0.19 to 0.55) [Progression-free survival]	All patients 50 per 100 30 fewer per 100 (from 38 fewer to 18 fewer)	

CI, confidence interval; HR, hazard ratio.

^aLow for both studies (RoB 2).
^bI-squared 0%, tau-squared 0.
^c68% (13/19) studies Agency for Health Research and Quality (AHRQ) “poor.”
^dI-squared 63%, tau-squared 0.104.
^eHr 0.45.
^fI-squared 89%, tau-squared 0.417.
^g5% CI, 0.29–1.90.
ⁱ50% (1/2) studies AHRQ “poor.”
^jHr 0.32.
Erickson et al. HER2-targeted therapy and intracranial metastatic disease

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest statement. K.J.J. is a consultant and/or speaker for Apobiologix, Amgen, Esai, Genomic Health Inc., Novartis, Purdue Pharma, Pfizer, Roche.

Authorship statement. Project design: A.W.E. and S.D.; literature search and screening: A.W.E. and F.G.; statistical analysis: A.W.E. and F.G.; manuscript draft and editing: A.W.E., F.G., S.H., K.J.J., A.S., M.A., and S.D.; project supervision: S.D.

References

1. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–2872.

2. Nussbaum ES, Djalilian HR, Cho KH, Hall WA. Brain metastases. Histology, multiplicity, surgery, and survival. Cancer. 1996;78(8):1781–1788.

3. Mayer M. A patient perspective on brain metastases in breast cancer. Clin Cancer Res. 2007;13(6):1623–1624.

4. Grassl O, Abdulkarim BS, Coutant C, et al. Nomogram to predict subsequent brain metastasis in patients with metastatic breast cancer. J Clin Oncol. 2010;28(12):2032–2037.

5. Martin AM, Cagney DN, Catalano PJ, et al. Brain metastases in newly diagnosed breast cancer: a population-based study. JAMA Oncol. 2017;3(8):1069–1077.

6. Bendell JC, Domchek SM, Burstein HJ, et al. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer. 2003;97(12):2972–2977.

7. Leyland-Jones B. Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol. 2009;27(11):5278–5286.

8. Olson EM, Najita JS, Sohl J, et al. Clinical outcomes and treatment practice patterns of patients with HER2-positive metastatic breast cancer in the post-trastuzumab era. Breast. 2013;22(4):525–531.

9. Pestalozzi BC, Holmes E, de Azambuja E, et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective subsyudy of the HERO trial (BIG 1-01). Lancet Oncol. 2013;14(3):244–248.

10. Brosnan EM, Anders CK. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann Transl Med. 2018;6(9):163.

11. Brufsky AM, Mayer M, Rugo HS, et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res. 2011;17(14):4834–4843.

12. Gil-Gil MJ, Martinez-Garcia M, Sierra A, et al. Breast cancer brain metastases: a review of the literature and a current multidisciplinary management guideline. Clin Transl Oncol. 2014;16(5):436–446.

13. Gobbiini E, Ezzalfani M, Dieras V, et al. Time trends of overall survival among metastatic breast cancer patients in the real-life ESME cohort. Eur J Cancer. 2018;96:17–24.

14. Jung SY, Rosanzweg M, Sareika SM, Linkov F, Brufsky A, Weissfeld JL. Factors associated with mortality after breast cancer metastasis. Cancer Causes Control. 2012;23(1):103–112.

15. Hurvitz SA, O’Shaughnessy J, Mason G, et al. Central nervous system metastasis in patients with HER2-positive metastatic breast cancer: patient characteristics, treatment, and survival from SySTHer. Clin Cancer Res. 2019;25(8):2433–2441.

16. Achrol AS, Rennert RC, Anders C, et al. Brain metastases. Nat Rev Dis Primers. 2019;5(1):5.

17. Elder JB, Nahed BV, Linskey ME, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines on the role of emerging and investigational therapeutics for the treatment of adults with metastatic brain tumors. Neurosurgery. 2019;84(3):E201–E203.

18. Nabors LB, Portnow J, Ahiuawala M, et al. NCCN Clinical Practice Guidelines in Oncology – Central Nervous System Cancers. Version 2.2020, 2020. www.nccn.org. Accessed July 6, 2020.

19. Soffetti R, Abacioglu U, Baumbert B, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017;19(2):162–174.

20. Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases—translation to new therapies. Nat Rev Clin Oncol. 2011;8(8):344–356.

21. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792.

22. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–2743.

23. Awada A, Colomer R, Inoue K, et al. Neratinib plus paclitaxel versus trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NENERT-T randomized clinical trial. JAMA Oncol. 2016;2(12):1557–1564.

24. Verma S, Miles D, Gianni L, et al.; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–1791.

25. Swain SM, Miles D, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–530.

26. Duchnowska R, Loibl S, Jassm J. Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev. 2018;67:71–77.

27. Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases: a review of the literature and a current multidisciplinary management guideline. Nat Rev Dis Primers. 2020;17(5):279–299.

28. Larsen PB, Kübler I, Nielsen DL. A systematic review of trastuzumab and lapatinib in the treatment of women with brain metastases from HER2-positive breast cancer. Cancer Treat Rev. 2013;39(7):720–727.

29. Petrelli F, Ghidini M, Lonati V, et al. The efficacy of lapatinib and capecitabine in HER-2 positive breast cancer with brain metastases: a systematic review and pooled analysis. Eur J Cancer. 2017;84:141–148.

30. R Core Team. R Foundation for Statistical Computing. R: A language and environment for statistical computing. 2019. https://github.com/mcguinlu/robvis. Accessed July 2, 2020.
32. Schwarzer G. meta: an R package for meta-analysis. *R News*. 2007;7(3):40–45.
33. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;368:k4898.
34. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. 2009. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed October 9, 2019.
35. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. 2016;355:i4919.
36. Guyatt GH, Oxman AD, Vist GE, et al.; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. 2008;336(7650):924–926.
37. Chan A, Spera G, Machado A, et al. Central nervous system as first site of relapse in patients with HER2 positive early breast cancer treated in the BCIRG-006 trial. *Cancer Res*. 2019; Conference:2018 San Antonio Breast Cancer Symposium. United States. 2079 (2014 Suppl 2011).
38. Krop IE, Lin NU, Blackwell K, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EPILIA. *Ann Oncol*. 2015;26(1):113–119.
39. Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. *N Engl J Med*. 2020;382(7):597–609.
40. Takano T, Tsurutani J, Takahashi M, et al. A randomized phase II trial of trastuzumab plus capecitabine versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer previously treated with trastuzumab and taxanes: WJ0661108/ELTOP. *Breast*. 2018;40:67–75.
41. Blian L, Wang T, Zhang S, Jiang Z. Trastuzumab plus capecitabine vs. lapatinib plus capecitabine in patients with trastuzumab resistance and taxane-pretreated metastatic breast cancer. *Tumour Biol*. 2013;34(5):3153–3158.
42. Bartsch R, Berghoff A, Pluschunig U, et al. Impact of systemic anti-HER2 treatment on overall survival in patients with breast metastases from HER2-overexpressing breast cancer. *Eur J Cancer*. 2011; European Multidisciplinary Cancer Congress. Stockholm, Sweden. Conference Publication: 47(Suppl. 1)(p S348).
43. Bartsch R, Rottenfusser A, Wenzel C, et al. Trastuzumab prolongs overall survival in patients with brain metastases from HER2 positive breast cancer. *J Neurooncol*. 2007;85(3):311–317.
44. Braccini AL, Azria D, Thezenas S, Romieu G, Ferrero JM, Jacot W. Prognostic factors of brain metastases from breast cancer: impact of targeted therapies. *Breast*. 2013;22(5):993–998.
45. Chen J, Zhang Q, Yu X, Zhang Z, Guo X. Outcome of brain metastases from HER2-2 positive breast cancer: Difference in survival benefit from anti-HER2 treatment after WBRT with regard to prior targeted therapy. *Int J Radiat Oncol Biol Phys*. 2014; Conference:56th Annual Meeting of the American Society for Radiation Oncology, ASTRO 2014. San Francisco, CA United States. Conference Publication; 90(1s):S247.
46. Church DN, Modgil R, Guglani S, et al. Extended survival in women with breast metastases from HER2 overexpressing breast cancer. *Am J Clin Oncol*. 2008;31(3):290–294.
47. Gomes DBD, Deeba RE, Suki D, et al. Impact of systemic therapy on the outcomes of patients with metastatic breast cancer to brain: MD Anderson Cancer Center (MDACC) experience 1999–2012. *J Clin Oncol*. 2015;33(Suppl. 15):1046.
48. Gori S, Puglisi F, Moroso S, et al. The HERBA study: a retrospective multi-institutional Italian study on patients with brain metastases from HER2-positive breast cancer. *Clin Breast Cancer*. 2019;19(4):e501–e510.
49. Grigolo G, Pouderoux S, Dieci MV, et al. Clinicopathological and treatment-associated prognostic factors in patients with breast cancer leptomeningeal metastases in relation to tumor biology. *Oncologist*. 2018;23(11):1289–1299.
50. Hayashi N, Niikura N, Masuda N, et al. Prognostic factors of HER2-positive breast cancer patients who develop brain metastasis: a multicenter retrospective analysis. *Breast Cancer Res Treat*. 2015;149(1):277–284.
51. Hulsbergen AFC, Cho LD, Mammi M, et al. Systemic therapy following craniotomy in patients with a solitary breast cancer brain metastasis. *Breast Cancer Res Treat*. 2020;180(1):147–155.
52. Kaplan MA, Isikdogan A, Koca D, et al. Clinical outcomes in patients who received lapatinib plus capecitabine combination therapy for HER2-positive breast cancer with brain metastasis and a comparison of survival with those who received trastuzumab-based therapy: a study by the Anatolian Society of Medical Oncology. *Breast Cancer*. 2014;21(6):677–683.
53. Kaplan MA, Ertugrul H, Firth U, et al. Brain metastases in HER2-positive metastatic breast cancer patients who received chemotherapy with or without trastuzumab. *Breast Cancer*. 2015;22(5):503–509.
54. Karam I, Nichol A, Woods R, Tyldesley S. Population-based outcomes after whole brain radiotherapy and re-irradiation in patients with metastatic breast cancer in the trastuzumab era. *Radiat Oncol*. 2011;6:181.
55. Kim JM, Miller JA, Kotecha R, et al. Stereotactic radiosurgery with concurrent HER2-directed therapy is associated with improved objective response for breast cancer brain metastasis. *Neuro Oncol*. 2019;21(5):659–668.
56. Le Scodan R, Jouanneau L, Massard C, et al. Brain metastases from breast cancer: prognostic significance of HER-2 overexpression, effect of trastuzumab and cause of death. *BMJ Cancer*. 2011;11:395.
57. Metro G, Foglietta J, Russilho M, et al. Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. *Ann Oncol*. 2011;22(3):625–630.
58. Metro G, Sperduti I, Russilho M, Mitella M, Cognetti F, Fabi A. Clinical utility of continuing trastuzumab beyond brain progression in HER-2 positive metastatic breast cancer. *Oncologist*. 2007;12(12):1467–1469; author reply 1469–1471.
59. Miller JA, Kotecha R, Alishwaila MS, et al. Overall survival and the response to radiotherapy among molecular subtypes of breast cancer brain metastases treated with targeted therapies. *Cancer*. 2017;123(12):2283–2293.
60. Morikawa A, Wang R, Patil S, et al. Characteristics and prognostic factors for patients with HER2-overexpressing breast cancer and brain metastases in the era of HER2-targeted therapy: an argument for earlier detection. *Clin Breast Cancer*. 2018;18(5):353–361.
61. Mounsey LA, Deal AM, Keith KC, et al. Changing natural history of HER2-positive breast cancer metastatic to the brain in the era of new targeted therapies. *Clin Breast Cancer*. 2018;18(1):29–37.
62. Mueller V, Loibl S, Laakmann E, et al. Brain Metastases in Breast Cancer Network Germany (BMBC, GBG 79): treatment patterns and clinical outcomes of more than 1000 patients with brain metastases from breast cancer. *J Clin Oncol*. 2016;34(Suppl. 15):2070.
63. Niwińska A, Murawska M, Pogoda K. Breast cancer subtypes and response to systemic treatment after whole-brain radiotherapy in patients with brain metastases. *Cancer*. 2010;116(18):4238–4247.
64. Okita Y, Narita Y, Suzuki T, et al. Extended trastuzumab therapy improves the survival of HER2-positive breast cancer patients...
following surgery and radiotherapy for brain metastases. Mol Clin Oncol. 2013;1(6):995–1001.
66. Ou D, Cao L, Xu C, Kirova Y, Chen JY. Upfront brain radiotherapy may improve survival for unfavorable prognostic breast cancer brain metastasis patients with Breast-GPA 0-2.0. Breast J. 2019;25(6):1134–1142.
67. Park IH, Ro J, Lee KS, Nam BH, Kwon Y, Shin KH. Trastuzumab treatment beyond brain progression in HER2-positive metastatic breast cancer. Ann Oncol. 2009;20(1):56–62.
68. Park YH, Park MJ, Ji SH, et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br J Cancer. 2009;100(6):894–900.
69. Parsai S, Miller JA, Juloori A, et al. Stereotactic radiosurgery with concurrent lapatinib is associated with improved local control for HER2-positive breast cancer brain metastases. J Neurosurg. 2019;132(2):503–511.
70. Tarhan MO, Demir L, Somali I, et al. The clinicopathological evaluation of the breast cancer patients with brain metastases: predictors of survival. Clin Exp Metastasis. 2013;30(2):201–213.
71. Wittekind C, Reliefhardt EJ, Milde-Langosch K, et al. Management of patients with brain metastases receiving trastuzumab treatment for metastatic breast cancer. Onkologie. 2011;34(6):304–308.
72. Yao YS, Cornelio GH, Devi BC, et al. Brain metastases in Asian HER2-positive breast cancer patients: anti-HER2 treatments and their impact on survival. Br J Cancer. 2012;107(1):1075–1082.
73. Yomo S, Hayashi M, Cho N. Impacts of HER2 overexpression and molecular targeting therapy on the efficacy of stereotactic radiosurgery for brain metastases from breast cancer. J Neurooncol. 2013;112(2):199–207.
74. Zhang C, Wang L, Wang L, Cui S. A retrospective study on the efficacy of trastuzumab in HER2-positive and tamoxifen-refractory breast cancer with brain metastasis. BioDrugs. 2016;30(1):33–40.
75. Zhang Q, Chen J, Yu X, et al. Survival benefit of anti-HER2 therapy after whole-brain radiotherapy in HER2-positive breast cancer patients with brain metastases. Breast Cancer. 2016;23(5):732–739.
76. Zhukova LG, Lubennikova E, Ganshina I, et al. Clinical outcome of Russian HER2-positive breast cancer patients with brain metastases: retrospective review. J Clin Oncol. 2018;36(Suppl. 15):e13025.
77. Bhargava PG, Shenoy R, Rathnasamy N, et al. Clinical profile and outcome of HER2 positive breast cancer patients with brain metastases treated with HER2 targeted therapy: real-world experience. Ann Oncol. 2019;30(Suppl. 5):127.
78. Bartsch R, De Vries C, Pluchoff U, et al. Predicting for activity of second-line trastuzumab-based therapy in HER2-positive advanced breast cancer. BMC Cancer. 2009;9:367.
79. Bidard FC, Gualhaume MN, Gauthier H, Cottu PH, Diéras V, Pierga JY. Meningeal carcinomatosis in HER2-overexpressing breast cancers. J Neurooncol. 2009;93(2):287–288.
80. Fabi A, Alesi D, Vallee E, et al. T-DM1 and brain metastases: clinical outcome in HER2-positive metastatic breast cancer. Breast. 2018;41:137–143.
81. Figura NB, Rick VT, Mohammadi H, et al. Clinical outcomes of breast leptomeningeal disease treated with intrathecal trastuzumab, intrathecal chemotherapy, or whole brain radiation therapy. Breast Cancer Res Treat. 2019;175(3):781–788.
82. Gamucci T, Pizzi L, Natoli C, et al. A multicenter REtrospective observational study of first-line treatment with PERtuzumab, trastuzumab and taxanes for advanced HER2 positive breast cancer patients. RePer Study. Cancer Biol Ther. 2019;20(2):192–200.
83. Gavila J, De La Haba J, Bermejo B, et al. A retrospective, multicenter study of the efficacy of lapatinib plus trastuzumab in HER2-positive metastatic breast cancer patients previously treated with trastuzumab, lapatinib, or both: the Trastystere study. Clin Transl Oncol. 2019;15:15.
HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. *Lancet Oncol.* 2013;14(1):64–71.

102. Bartsch R, Wenzel C, Gampenrieder SP, et al. Trastuzumab and gemcitabine as salvage therapy in heavily pretreated patients with metastatic breast cancer. *Cancer Chemother Pharmacol.* 2008;62(9):903–910.

103. Bonneau C, Pintaud G, Trédan O, et al. Phase I feasibility study for intrathecal administration of trastuzumab in patients with HER2 positive breast carcinomatous meningitis. *Eur J Cancer.* 2018;95:75–84.

104. Borgez VF, Ferrario C, Aucun N, et al. Tucatinib combined with ado-trastuzumab emtansine in advanced ERBB2/HER2-positive metastatic breast cancer: a phase 1b clinical trial. *JAMA Oncol.* 2018;4(9):1214–1220.

105. Christodoulou C, Kalogera-Fountzila A, Karavasilis V, et al. Lapatinib with whole brain radiotherapy in patients with brain metastases from breast and non-small cell lung cancer: a phase II study of the Hellenic Cooperative Oncology Group (HeCOG). *J Neurooncol.* 2017;134(2):443–451.

106. de Azambuja E, Zardavas D, Lemort M, et al. Phase I trial combining temozolomide plus lapatinib for the treatment of brain metastases in patients with HER2-positive metastatic breast cancer: the LAPTEM trial. *Ann Oncol.* 2013;24(12):2985–2989.

107. Falchook GS, Moulder SL, Wheler JJ, Jiang Y, Bastida CC, Kurzrock R. Dual HER2 inhibition in combination with anti-VEGF treatment is active in heavily pretreated HER2-positive breast cancer. *Ann Oncol.* 2013;24(12):3004–3011.

108. Freedman RA, Gelman RS, Anders CK, et al.; Translational Breast Cancer Research Consortium. TBCRC 022: a phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. *J Clin Oncol.* 2019;37(13):1081–1089.

109. Giotta F, Latorre A, Oliva S, et al. Lapatinib as salvage therapy in metastatic breast cancer: results from an expanded access program. *Ann Oncol.* 2010;21(Suppl. 4):vi63–vi64.

110. Gutierrez M, Fourein EM, Le Rhun E, et al. Final results of the phase I “HIT” study: a multicenter phase I-II study evaluating trastuzumab administered by intrathecal injection for leptomeningeal meningitis of HER2+ metastatic breast cancer (MBC). *Cancer Res.* 2015;75(Suppl. 9):P5:19–17.

111. Hurvitz S, Singh R, Adams B, et al. Phase Ib/II single-arm trial evaluating the combination of everolimus, lapatinib and capecitabine for the treatment of HER2-positive breast cancer with brain metastases (TRIO-US B-O9). *Ther Adv Med Oncol.* 2018;10:175835918807339.

112. Leone JP, Duda DG, Hu J, et al. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. *Breast Cancer Res Treat.* 2019;20:20.

113. Lin NU, Diéras V, Paul D, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. *Clin Cancer Res.* 2009;15(4):1452–1459.

114. Lin NU, Kuntthekar P, Sahelbjarn S, et al. Pertuzumab (P) plus high-dose trastuzumab (H) for the treatment of central nervous system (CNS) progression after radiotherapy (RT) in patients (pts) with HER2-positive metastatic breast cancer (MBC). primary efficacy analysis from the phase II PATRICIA study. *Cancer Res.* 2020;80(Suppl. 4):P1-18-03.

115. Lin NU, Carey LA, Liu MC, et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. *J Clin Oncol.* 2008;26(12):1993–1999.

116. Lin NU, Freedman RA, Ramakrishna N, et al. A phase I study of lapatinib with whole brain radiotherapy in patients with Human Epidermal Growth Factor Receptor 2 (HER2)-positive breast cancer brain metastases. *Breast Cancer Res Treat.* 2013;142(2):405–414.

117. Lin NU, Eierman W, Greil R, et al. Randomized phase II study of lapatinib plus capecitabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. *J Neurooncol.* 2011;109(3):613–620.

118. Macpherson IR, Spiliopoulou P, Rajli S, et al. A phase I/I study of pertuzumab plus trastuzumab with or without chemotherapy in patients with HER2-positive metastatic breast cancer. *Breast Cancer Res.* 2019;22(1):1.

119. Metzger D, Barry W, Krop I, et al. Phase I dose-escalation trial of ONT-380 in combination with trastuzumab in patients (pts) with HER2 breast cancer brain metastases. *Cancer Res.* 2017;77(Suppl. 4):P1-12-04.

120. Montemurro F, Ellis P, Delaloge S, et al. Safety and efficacy of trastuzumab emtansine (T-DM1) in 399 patients with central nervous system metastases: Exploratory subgroup analysis from the KAMILLA study. *Cancer Res.* 2017;77(Suppl. 4):P1-12-04.

121. Morikawa A, de Stanchina E, Pentsova E, et al. Phase I study of intermittent high-dose lapatinib alternating with capecitabine for HER2-positive breast cancer patients with central nervous system metastases. *Clin Cancer Res.* 2019;25(13):3784–3792.

122. Murtthy R, Borges VF, Conlin A, et al. Tucatinib with capecitabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: a non-randomised, open-label, phase 1b study. *Lancet Oncol.* 2018;19(7):880–888.

123. Naskhletashvili DR, Gorbounova V, Bychkov MB, et al. Capecitabine-based therapy for patients with brain metastases from breast cancer. *Ann Oncol.* 2010;21(Suppl. 3):vi818–vi819.

124. Niwińska A, Tacikowska M, Murawaska M. The effect of early detection of occult brain metastases in HER2-positive breast cancer patients on survival and cause of death. *Int J Radiat Oncol Biol Phys.* 2010;77(4):1134–1139.

125. Pistilli B, Pluard T, Uruticochea A, et al. Phase II study of buparlisib (BKM120) and trastuzumab in patients with HER2+ locally advanced or metastatic breast cancer resistant to trastuzumab-based therapy. *Breast Cancer Res Treat.* 2018;168(2):357–364.

126. Ro J, Park S, Kim SB, et al. Clinical outcomes of HER2-positive metastatic breast cancer patients with brain metastasis treated with lapatinib and capecitabine: an open-label expanded access study in Korea. *BMC Cancer.* 2012;12.

127. Shawky H, Tawfik H. All-oral combination of lapatinib and capecitabine in patients with brain metastases from HER2-positive breast cancer—a phase II study. *J Egypt Natl Cancer Inst.* 2014;26(4):187–194.

128. Sutherland S, Ashley S, Miles D, et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases—the UK experience. *Br J Cancer.* 2010;102(6):995–1002.

129. Toi M, Iwata H, Fujiwara Y, et al. Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. *Br J Cancer.* 2009;101(10):1676–1682.

130. Van Swearingen AE, Siegel MB, Deal AM, et al. LCCC 1025: a phase II study of everolimus, trastuzumab, and vinorelbine to treat progression HER2-positive breast cancer brain metastases. *Breast Cancer Res Treat.* 2018;171(3):637–648.

131. Yardley DA, Krop IE, LoRusso PM, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer previously treated with chemotherapy and 2 or more HER2-targeted agents: results from the T-PAS expanded access study. *Cancer J.* 2015;21(5):357–364.

132. Yardley DA, Hart LL, Ward PJ, et al. Cabazitaxel plus Lapatinib as therapy for HER2+ metastatic breast cancer with intracranial metastases: results of a dose-finding study. *Clin Breast Cancer.* 2018;18(5):e781–e787.
133. Levêque D, Gigou L, Bergerat JP. Clinical pharmacology of trastuzumab. *Curr Clin Pharmacol.* 2008;3(1):51–55.

134. Medina PJ, Goodin S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. *Clin Ther.* 2008;30(8):1426–1447.

135. Lin NU, Borges V, Anders C, et al. Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial. *J Clin Oncol.* 2020;31(10):1350–1358.

136. Swain SM, Baselga J, Miles D, et al. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. *Ann Oncol.* 2014;25(6):1116–1121.

137. Montemurro F, Delaloge S, Barrios CH, et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial☆. *Ann Oncol.* 2020;31(10):1350–1358.

138. Lin NU, Prowell T, Tan AR, et al. Modernizing clinical trial eligibility criteria: recommendations of the American Society of Clinical Oncology-Friends of Cancer Research Brain Metastases Working Group. *J Clin Oncol.* 2017;35(33):3760–3773.

139. Camidge DR, Lee EQ, Lin NU, et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. *Lancet Oncol.* 2018;19(1):e20–e32.

140. US Department of Health and Human Services, Food and Drug Administration. Cancer Clinical Trial Eligibility Criteria: Brain Metastases Guidance for Industry. July 2020. <https://www.fda.gov/media/121317/download>. Accessed July 13, 2020.

141. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. *J Clin Epidemiol.* 2016;75:40–46.