The maximum mass of dark matter existing in compact stars based on the self-interacting fermionic model

X. D. Wang,¹ B. Qi,¹ N. B. Zhang,¹ and S. Y. Wang¹

¹Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, 264209, People’s Republic of China

(Dated: July 1, 2021)

Abstract

By assuming that only gravitation acts between dark matter (DM) and normal matter (NM), we studied DM admixed neutron stars (DANSs) using the two-fluid TOV equations. The NM and DM of compact stars are simulated by the relativistic mean field (RMF) theory and non-self-annihilating self-interacting fermionic model, respectively. The effects of the particle mass of fermionic DM m_f and the interaction strength parameter y on the properties of DANSs are investigated in detail. m_f and y are considered as the free parameters due to the lack of information about the particle nature of DM so far. For a DANS, we suggest a simple universal relationship $M_D^{\text{max}} \approx (0.267y + 0.627 - 3.21 \frac{M_N}{M_\odot})(1\text{GeV}/m_f)^2M_\odot$ for $y > 100$, where M_D^{max} is the maximum mass of DM existing in DANSs and M_N is the mass of the neutron star without DM. For free fermion DM model ($y=0$), the relationship becomes $M_D^{\text{max}} = (0.627 - 0.027 \frac{M_N}{M_\odot})(1\text{GeV}/m_f)^2M_\odot$. The radius of DM R_D shows a linear relationship with M_D^{max} in DANSs, namely $R_D = (7.02 \frac{M_D^{\text{max}}}{M_\odot} + 1.36)$ km. These conclusions are independent of the different NM EOSs from RMF theory. Such a kind of universal relationship connecting the nature of DM particle and mass of stars might shed light on the constraining the nature of the DM by indirect method.

PACS numbers: 95.35.+d, 97.60.Jd, 26.60.-c, 21.60.Jz

*e-mail: bq@sdu.edu.cn
I. INTRODUCTION

Nowadays, the existence of dark matter (DM) has been well accepted, and the observations expose that most of the mass of the Universe is in the form of DM\cite{1,3}. There are many suggested DM candidates, such as neutrinos, weakly interacting sub-eV particles (WISPs) and weakly interacting massive particles (WIMPs)\cite{4,7}. However, the nature of DM, including the mass of particle and interactions, is still the mystery. Thus, constraining the nature of DM through direct or indirect methods becomes a very hot topic in both astrophysics and particle physics \cite{7,8}. There are three main ways to detect DM particles: using particle accelerators to find the possible candidates for DM\cite{9,11}, detecting the signal of DM particle annihilation in the galactic halo\cite{12}, and the signals of DM-nucleus scatterings in terrestrial detectors\cite{13}. By now, the latest experimental results are not conclusive.

On the other hand, indirect method by studying the DM effects on compact stars such as neutron stars \cite{14} and quark stars\cite{15,16}, has obtained attention in recent years. The general effect induced by DM inside neutron star is complicated due to the lack of information about the particle nature of DM. Therefore, it is of great significance to study the potential effects of DM on the properties of neutron stars. Recent studies have been done to explore compact stars with non-self-annihilating fermionic dark matter to analyze the gravitational effects of DM on the stellar matter using the two-fluid TOV formalism (see, e.g., Refs. \cite{17–20}). Ref. \cite{17} suggested a new class of compact stars which consists of a small NM core embedded in a DM halo when considering DM particles of mass about 1 GeV. Ref. \cite{18} found that DM inside the star would soften the equation of state more strongly than that of hyperons, and reduce largely the maximum mass of the star. In Ref. \cite{19}, it is found that the mass-radius relationship of the DM admixed neutron stars (DANSs) depends sensitively on the mass of DM candidates, the amount of DM, and interactions among DM candidates. Ref. \cite{20} suggested the dark compact planets with Earth-like masses or Jupiter-like masses.

In this paper, we focus on exploring a simple formula connecting the microcosmic nature of DM particle and its macrocosmic mass existing in DM admixed neutron stars (DANSs). Ref. \cite{4} had ever demonstrated that for a pure fermionic DM star, there is a simple universal relationship \(M_{D}^{\text{max}} = (0.269y + 0.627)(\frac{1\text{GeV}}{m_f})^2 M_{\odot} \), where \(M_{D}^{\text{max}} \) is the maximum mass of compact star, \(m_f \) is particle mass of fermionic DM, \(y \) is interaction strength parameter between DM particles. Following their work, based on the non-self-annihilating self-interacting
fermionic DM model, we explore the possible relationship between the maximum mass of DM existing in DANSs and the properties of DM. Searching for such a universal relationship might shed light on the constraining the nature of the DM by indirect method.

The paper is organized as follows: In Sec. II, we briefly discuss the main theory used in this paper, include the self-interacting fermionic DM model, relativistic mean field (RMF) theory and the two-fluid TOV equations. In Sec. III, the effects of particle mass of fermionic DM m_f and the interaction strength parameter y on the properties of DANSs are investigated in detail. The relationship between the maximum mass of DM existing in DANSs and the properties of DM are studied. Finally we summarize our work in Sec. IV.

II. FORMALISM

In this paper, we use the non-self-annihilating self-interacting fermionic model to simulate DM in DANSs, where the detailed formulism can be seen in Ref. [16]. We only show the energy density and pressure here:

\[
\varepsilon = \frac{1}{\pi^2} \int_0^{k_F} k^2 \sqrt{m_f^2 + k^2} \, dk + \left[\frac{1}{3\pi^2} \right]^2 y^2 z^6 \]
\[
= \frac{m_f^4}{8\pi^2} \left[(2z^3 + z)\sqrt{z + z^2} - \sinh^{-1}(z) \right] + \left[\frac{1}{3\pi^2} \right]^2 y^2 z^6 , \quad (1)
\]

\[
p = \frac{1}{3\pi^2} \int_0^{k_F} \frac{k^4}{\sqrt{m_f^2 + k^2}} \, dk + \left[\frac{1}{3\pi^2} \right]^2 y^2 z^6 \]
\[
= \frac{m_f^4}{24\pi^2} \left[(2z^3 - 3z)\sqrt{z + z^2} + 3\sinh^{-1}(z) \right] + \left[\frac{1}{3\pi^2} \right]^2 y^2 z^6 , \quad (2)
\]

where m_f is the particle mass of fermionic DM, k is the momentum, $z = k_F/m_f$ is the dimensionless Fermi momentum and y is the dimensionless interaction strength parameter, which is defined as $y = m_f/m_I$ (the interaction mass scale m_I) [4,16]. For weak interaction, the typical scale is $m_I \sim 300$ GeV, as the expected masses of W or Z bosons. For strongly interacting DM particles, m_I is assumed to be ~ 100 MeV, according to the gauge theory of the strong interactions [4,16].

For the NM in DANSs, we adopt the RMF theory, which has achieved great success in the description of nuclear matter and finite nuclei in the past several decades [21,22].
Meanwhile, the RMF theory has been used to study the neutron stars and obtained a lot of valuable results \[23\,24\]. The start of the RMF theory is an effective Lagrangian density. In the present work, we use the density dependent RMF theory where the effective Lagrangian density for nuclear matter is written as:

$$
\mathcal{L} = \sum_B \bar{\psi}_B [i\gamma^\mu \partial_\mu - m_B - g_{\sigma B} \sigma - g_{\omega B} \gamma^\mu \omega_\mu - g_{\rho B} \gamma^\mu \tau_B \cdot \rho_\mu
\quad - \epsilon \gamma^\mu A_\mu \left(\frac{1}{2} - \frac{\tau_{3B}}{2} \right)] \psi_B + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2
\quad - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - \frac{1}{4} \rho_\mu \rho_\mu^\mu + \frac{1}{2} m_\rho^2 \rho_\mu \rho^\mu - \frac{1}{4} A_{\mu\nu} A^{\mu\nu}. \tag{3}
$$

The specific meanings of each parameter will not be introduced in detail here and can be found in Ref. \[23\]. The Lagrangian density for the neutron stars is different from the one for nuclear matter as the coulomb field is neglected and an additional term for leptons is needed. By solving the equations of motion, the corresponding energy density and pressure for the NM are \[23\]

$$
\varepsilon = \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{2} m_\omega^2 \omega_0^2 + \frac{1}{2} m_\rho_{0,3}^2 + \frac{1}{\pi^2} \sum_B \int_0^{k_B} k^2 dk \sqrt{k^2 + (m_B + g_{\sigma B} \sigma)^2}
\quad + \frac{1}{\pi^2} \sum_{\lambda = \epsilon^-, \mu^-} \int_0^{k_\lambda} k^2 dk \sqrt{k^2 + (m_\lambda + g_{\sigma B} \sigma)^2}, \tag{4}
$$

$$
p = -\frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{2} m_\omega^2 \omega_0^2 + \frac{1}{2} m_\rho_{0,3}^2 + \frac{1}{3\pi^2} \sum_B \int_0^{k_B} \frac{k^4}{\sqrt{k^2 + (m_B + g_{\sigma B} \sigma)^2}} dk
\quad + \sum_B \rho_B \Sigma^R_{0B} + \frac{1}{3\pi^2} \sum_{\lambda = \epsilon^-, \mu^-} \int_0^{k_\lambda} \frac{k^4}{\sqrt{k^2 + m_\lambda^2}}, \tag{5}
$$

where \(\sum^R_{0B} \) is the time component of the “rearrangement” term.

The compact stars which made of DM and NM are inherently two-fluid system. If NM and DM couple essentially only through gravity, DANSs can be studied by the TOV equations for two-fluid separately \[14\,16\,17\,20\]:

$$
\frac{dp_1}{dr} = -\frac{GM(r) \varepsilon_1(r)}{r^2} \left(1 + \frac{p_1(r)}{\varepsilon_1(r)} \right) \times \left(1 + 4\pi r^3 \frac{p_1(r) + p_2(r)}{M(r)} \right) \left(1 - 2G \frac{M(r)}{r} \right)^{-1},
$$

$$
\frac{dp_2}{dr} = -\frac{GM(r) \varepsilon_2(r)}{r^2} \left(1 + \frac{p_2(r)}{\varepsilon_2(r)} \right) \times \left(1 + 4\pi r^3 \frac{p_1(r) + p_2(r)}{M(r)} \right) \left(1 - 2G \frac{M(r)}{r} \right)^{-1},
$$

$$
\frac{dM_1}{dr} = 4\pi r^2 \varepsilon_1(r),
$$

$$
\frac{dM_2}{dr} = 4\pi r^2 \varepsilon_2(r),
$$

$$
M(r) = M_1(r) + M_2(r), \tag{6}
$$
where $M(r)$ represents the total mass at the radius r. p_1, p_2, ε_1, ε_2 represent the pressure and energy density of DM and NM.

III. DISCUSSION

To discuss the effects of fermionic DM on the properties of DANSs, we consider the particle mass of fermionic DM m_f and the strength parameter y as the free parameters due to the lack of information about the particle nature of DM so far. Here we calculate all the results with $m_f = 1.0, 1.1, 1.3, 1.5, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100$ GeV and $y = 0, 1, 2, 3, 4, 5, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000$. For describing NM in DANSs, different parameter sets DDLN, DDME1, DDME2, PKDD from RMF [21] are adopted.

![Figure 1](image_url)

FIG. 1: (color online). The EOSs for DM, namely the pressure as a function of energy density for the different particle mass of fermionic DM ($m_f=1$, 10, 100 GeV) and strength parameters ($y=0$, 50, 500, 1000). The EOS of NM from RMF with parameter set DDME2 is shown for comparison. The squares on each line denote the central energy density where the mass of pure DM star takes the maximum values.

In Fig. 1 we show the equation of states for DM, namely the pressure as a function of energy density, for different m_f (1, 10, 100 GeV) and y (0, 50, 500, 1000). The EOS of
NM from RMF with parameter set DDME2 is shown for comparison. The squares on each line denote the central energy density where the mass of pure DM star takes the maximum values. As shown in Fig. 1, when y is fixed, the pressure is larger at the same energy density of DM for the smaller m_f. However, when m_f is fixed, the pressure is smaller at the same energy density for the smaller y.

![FIG. 2: (color online). The result for the pure DM stars. Panel (a): The maximum mass of pure DM stars M_D^{max} as a function of m_f^{-2} for different y values. The fitted values of $k = M_D^{\text{max}} \cdot m_f^2$ are listed in the figure. Panel (b): The relationship between the k values and y. The points represent the present calculated results, and the line is the suggested relationship $k = (0.269y + 0.627)\text{GeV}^2\text{M}_\odot$ given in Ref. [4].](image_url)

For the completion of discussion, we first calculate the properties of pure DM stars. The detailed discussions for the pure DM stars can be seen in Ref. [4]. The calculated maximum mass of pure DM stars M_D^{max} for different m_f and y are shown in Fig. 2a. It is found that there is a linear relationship between M_D^{max} and m_f^{-2}. The values of $k = M_D^{\text{max}} \cdot m_f^2$ are almost constant for fixed strength parameters, i.e., $k=0.627, 13.5, 134, 267 \text{GeV}^2\text{M}_\odot$ for $y=0, 50, 500, 1000$, respectively. In Fig. 2b, we list more results of k values for different y, which are denoted by the squares. These values are in consistent with the suggested relationship

$$M_D^{\text{max}} = (0.269y + 0.627)(\frac{1\text{GeV}}{m_f})^2\text{M}_\odot,$$

(7) given in Eq.(47) of Ref. [4], which is plotted by the line in Fig. 2b. Such a simple relationship inspires us to search for the similar formula in DM admixed neutron stars (DANSs), which are shown in the following Figs. 3-7.
FIG. 3: (color online). For DM admixed neutron stars, the mass of DM M_D, the mass of NM M_N and the total mass of compact star M_{star} versus the central energy density of DM ε_D. The EOS of NM is from RMF with DDME2 parameter set, and the central energy density ε_N is fixed as 1000MeV/fm3. The results for $m_f = 1, 10$ GeV and $y = 0, 50$ of DM are shown.

For a DANS, we give the mass of the DM M_D, the mass of NM M_N and the total mass of compact star M_{star} in Fig. 3, where the central energy density of NM ε_N is fixed as 1000MeV/fm3 and the central energy density of DM ε_D varies. The NM is calculated based on the DDME2 EOS. As the examples, the results for $m_f = 1, 10$ GeV and $y = 0, 50$ of DM are shown. The mass of neutron star without DM is 2.39M$_\odot$ for DDME2 EOS when ε_N is fixed as 1000MeV/fm3. As shown in Fig. 3, M_N decreases while M_D increases with increasing of ε_D. Such trend is more obvious when the m_f is smaller and y is bigger. For the case of $m_f = 1$ GeV and $y = 0$ as shown in the Fig. 3a, M_D is close to 0, and M_N, M_{star} change little when $\varepsilon_D < 1000\text{MeV/fm}^3$; then M_D gradually increases to 0.4M$_\odot$ and M_N decrease to 0 when $\varepsilon_D > 1000\text{MeV/fm}^3$. For the case of $m_f = 1$ GeV and $y = 50$ as
shown in the Fig. 3c, the M_D increases obviously when $\varepsilon_D > 100 \text{MeV/fm}^3$, and M_D could increase to 9.0 M_\odot, while the M_{star} increases up to $9.5 M_\odot$. If the particle mass of DM m_f takes values of 10 GeV, the change of M_{star} and M_N is no longer obvious. It is found that the mass of DANSs usually decreases compared with the mass of neutron star without DM, but it could be tens or hundreds times of solar mass for small m_f and large y.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig4.png}
\caption{(color online). The maximum mass of DM M_D^{max} existing in DANSs as a function of m_f^{-2} for different y values. The EOS of NM is from RMF with DDME2 parameter set, and the central energy density ε_N is fixed as 100, 500 and 1000 MeV/fm3, respectively.}
\end{figure}

In the next step, we explore the relationship between M_D^{max} (the maximum mass of DM in the DANSs) and the properties of fermionic DM, namely m_f and y. In Fig. 4, M_D^{max} as a function of m_f^{-2} for different strength parameters y is given. The horizontal line represents the observed maximum mass $\sim 2.0 M_\odot$ of neutron star [30, 31]. The central energy density of NM ε_N is fixed as 100, 500 and 1000 MeV/fm3, respectively. The star mass of the neutron star without DM will be 0.188, 1.957, and 2.390 M_\odot for $\varepsilon_N=100, 500, 1000 \text{MeV/fm}^3$, respectively. It is interesting to find that M_D^{max} has a liner relationship with m_f^{-2} for DANSs, i.e., $M_D^{\text{max}} = k \cdot m_f^{-2}$ for fixed y. It is amazing to find that the coefficient
k is approximately independent of ε_N of NM.

FIG. 5: (color online). Panel (a): $k = M_D^{\text{max}} \cdot m_f^2$ as a function of y, where M_D^{max} is the maximum mass of DM in DANSs. The EOS of NM is from RMF with DDME2 parameter set, and the central energy density ε_N is fixed as 100, 500 and 1000 MeV/fm3. The insert panel shows the relationship of $y < 100$. The lines denote fitted values $k = 0.267 y + b$. The intercepts b are shown for each line. Panel (b): The relationship of intercepts b and M_N (the mass of compact star without DM) for different RMF EOSs with DDLN, DDME1, DDME2, PKDD parameter sets. The lines denote fitted values $b = 0.627 - 3.21 M_N$.

To express k in detail, the relationship between the parameter k and the strength parameter y with different ε_N is fitted in the Fig. 5. It is found that the fitted relationship of $k = 0.267 \cdot y + b$ is in good agreement with the calculated k values for $y > 100$. For different ε_N, the values of b are different, e.g., $0.313(\varepsilon_N=100\text{MeV/fm}^3)$, $-5.621(\varepsilon_N=500\text{MeV/fm}^3)$ and $-8.191(\varepsilon_N=1000\text{MeV/fm}^3)$. In further, we found it is a linear relationship between b and and M_N (the mass of neutron star without DM), namely $b = 0.627 - 3.21 M_N$. The relationship $k = 0.267 y + 0.627 - 3.21 M_N$ is independent of the different RMF EOSs with DDLN, DDME1, DDME2, PKDD parameter sets adopted in the calculations.

In a word, the relationship between M_D^{max} (the maximum mass of DM in the DANSs) and the properties of fermionic DM can be suggested as

$$M_D^{\text{max}} = \left(0.267 y + 0.627 - 3.21 \frac{M_N}{M_\odot}\right)\left(\frac{1\text{GeV}}{m_f}\right)^2 M_\odot.$$

When $M_N = 0$, the relationship is in consist with above mentioned formula as suggested for pure DM star in Ref. [4]. In Ref. [4], it is pointed that the relationship of pure DM star is
non-linear for $y < 1$, here the relationship for DANSs is non-linear for $y < 100$, as shown in the insert plot of Fig. 5b.

![Graph showing $k_{y=0}$ as a function of $M_N(M_\odot)$](image)

FIG. 6: (color online). For free fermion DM model ($y=0$), the values of $k = M_D^{\text{max}} \cdot m_f^2$ as a function of M_N, where M_D^{max} is the maximum mass of DM in DANSs, M_N is the mass of compact star without DM. The results adopted different RMF EOSs with DDLN, DDME1, DDME2, PKDD parameter sets are shown. The line denotes the fitted relationship $k_{y=0} = 0.627 - 0.027M_N^2$.

As a specific case in the non-linear region, $y = 0$ corresponds to the free fermi DM model. For free fermi DM model, the values of $k_{y=0} = M_D^{\text{max}} \cdot m_f^2$ as a function of M_N are given in Fig. 6 where M_D^{max} is the maximum mass of DM in DANSs, M_N is the mass of neutron star without DM. The results with different RMF EOSs with DDLN, DDME1, DDME2, PKDD parameter sets are shown. We can see clearly that the relationship between $k_{y=0}$ and M_N for all the adopted RMF EOSs can be approximatively described by a parabola equation, which is fitted as $k_{y=0} = 0.627 - 0.027M_N^2$ and shown as the solid line in Fig. 6. This decreasing tendency indicates that the dependence between M_D^{max} and m_f^2 is suppressed with increasing M_N. If we set $M_N = 0$, then we go back to the pure DM stars with $y = 0$ and $k = 0.627$.

Similar to the mass, radius is also one of the most important observable quantity for
FIG. 7: (color online). The relation between radius of DM and the mass of DM in DANSs when the mass of DM in DANSs is maximal. The symbols denote the 10880 sets of results for different NM EOSs. The line denotes the fitted relationship $R_D = 7.02 M_D^\text{max} + 1.36$.

compact star and should be studied in detail. For pure DM stars, Ref. [4] has suggested a equation for radius where maximum mass is obtained based on y and m_f. The relationship between radius of DM and the mass of DM in DANS when the mass of DM is maximal is shown in Fig. 7. As mentioned above, we adopt 16 values for m_f and 17 values for y. In addition, the central energy density of nuclear matter ε_N takes values of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 MeV/fm3. The same calculations are performed for DDLN, DDME1, DDME2, PKDD EOSs and thus total 10880 points are obtained. A universal relationship is found to exist for all the points in the $R_D - M_D^\text{max}$ plane. The corresponding relationship can be precisely described by

$$R_D = \left(7.02 \cdot \frac{M_D^\text{max}}{M_\odot} + 1.36\right) \text{km}.$$ (9)
IV. CONCLUSION

By assuming that only gravitation acts between dark matter (DM) and normal matter (NM), we studied DM admixed neutron stars (DANSs) using the TOV equations for two-fluid separately. The NM and DM of compact stars are simulated by the relativistic mean field (RMF) theory and non-self-annihilating self-interacting fermionic model, respectively. The effects of the mass of DM fermion m_f and the interaction strength parameter y on the properties of DANSs are investigated in detail. Due to the lack of information about the particle nature of DM, we consider the particle mass of fermionic DM m_f and the strength parameter y as the free parameters. It is found that the mass of DANSs usually decreases compared with the mass of neutron star without DM, but it could be tens or hundreds times of solar mass for small m_f and large y. For a DANS, we suggest a universal relationship $M_{D}^{\text{max}} = (0.267y + 0.627 - 3.21 \frac{M_N}{M_\odot}) (1 \text{GeV} \frac{m_f}{M_\odot})^2 M_\odot$ for $y > 100$, where M_{D}^{max} is the maximum mass of DM in DANSs and M_N is the mass of the neutron star without DM. For free fermion DM model ($y=0$), the relationship becomes $M_{D}^{\text{max}} = (0.627 - 0.027 \frac{M_N}{M_\odot}) (1 \text{GeV} \frac{m_f}{M_\odot})^2 M_\odot$. The radius of DM R_D shows a linear relationship with M_{D}^{max} in DANSs, namely $R_D = (7.02 \frac{M_{D}^{\text{max}}}{M_\odot} + 1.36) \text{km}$. These conclusions are independent of the different NM EOSs from RMF theory. Such a simple universal relationship connecting the nature of DM particle and mass of stars might shed light on the constraining the nature of the DM by indirect method.

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China (Grant Nos. 11675094, 11622540), and Young Scholars Program of Shandong University, Weihai (Grant No. 2015WHWLJH01).

[1] Zwicky F 1937 *ApJ* **86** 217
[2] Betoule M et al 2014 *Astron. Astrophys.* **568** A22
[3] Ade P A R et al 2014 *Astron. Astrophys.* **571** A16
[4] Narain G, Schaffner-Bielich J, Mishustin I N 2006 *Phys. Rev. D* **74** 063003
[5] Kouvaris C, Nielsen N G 2015 *Phys. Rev. D* **92** 063526
[6] Eby J, Kouvaris C, Nielsen N G, Wijewardhana L 2016 *J. High. Energy. Phys.* **2016** 28

[7] Klasen M, Pohl M, Sigl G 2015 *Prog. Part. Nucl. Phys.* **85** 1

[8] Feng J L 2010 *Annu. Rev. Astron. Astrophys.* **48** 495

[9] Carpenter L M, Nelson A, Shimmin C *et al* 2013 *Phys. Rev. D* **87** 074005

[10] The ATLAS collaboration, Aad G, Abajyan T *et al* 2013 *J. High Energ. Phys.* **2013** 75

[11] Chatrchyan S, Khachatryan V *et al* 2012 *J. High. Energy. Phys.* **2012** 94

[12] Feng J L 2012 *AIP Conf. Proc.* **1516** 170

[13] Cui X *et al* (PandaX-II) 2017 *Phys. Rev. Lett.* **119** 181302

[14] Sandin F, Ciarcelluti P 2009 *Astropart. Phys.* **32** 278

[15] Perez-Garcia M A, Silk J, Stone J R 2010 *Phys. Rev. Lett.* **105** 141101

[16] Mukhopadhhyay P, Schaffner-Bielich J 2016 *Phys. Rev. D* **93** 083009

[17] Leung S C, Chu M C, Lin L M 2011 *Phys. Rev. D* **84** 107301

[18] Li A, Huang F, Xu R X 2012 *Astropart. Phys.* **37** 70

[19] Xiang Q F, Jiang W Z, Zhang D R, Yang R Y 2014 *Phys. Rev. C* **89** 025803

[20] Tolos L, Schaffner-Bielich J 2015 *Phys. Rev. D* **92** 123002

[21] Meng J, Toki H, Zhou S G *et al* 2006 *Prog. Part. Nucl. Phys.* **57** 470

[22] Ring P 1996 *Prog. Part. Nucl. Phys.* **37** 193

[23] Ban S F, Li J, Zhang S Q 2004 *Phys. Rev. C* **69** 045805

[24] Wang S, Zhang H F, Dong J M 2014 *Phys. Rev. C* **90** 055801

[25] Sun B Y, Long W H *et al* 2008 *Phys. Rev. C* **78** 065805

[26] Glendenning N K, Schaffner-Bielich J 1998 *Phys. Rev. Lett.* **81** 4564

[27] Jiang W Z, Li B A, Chen L W 2012 *ApJ* **756** 56

[28] Qi B, Zhang N B, Sun B Y, Wang S Y, Gao J H 2016 *RAA* **16** 60

[29] Zhang N B, Wang S Y, Qi B, Gao J H, Sun B Y 2017 *Chin. Phys. C* **41** 075101

[30] Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 *Nature* **467** 1081

[31] Antoniadis J *et al* 2013 *Science* **340** 6131