Large $1/f$ noise of unipolar resistance switching and its percolating nature

S. B. Lee,¹ S. Park,² J. S. Lee,³ S. C. Chae,¹ S. H. Chang,¹ M. H. Jung,² Y. Jo,² B. Kahng,³ B. S. Kang,⁴ M.-J. Lee,⁴ and T. W. Noh¹,a)

¹ReCOE, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea

²Quantum Materials Research Team, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea

³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea

⁴Samsung Advanced Institute of Technology, Suwon 440-600, Republic of Korea

¹Electronic mail: twnoh@snu.ac.kr
We investigated the $1/f$ noise of Pt/NiO/Pt capacitors that show unipolar resistance switching. When they were switched from the low to high resistance states, the power spectral density of the voltage fluctuation was increased by approximately five orders of magnitude. At 100 K, the relative resistance fluctuation, S_R/R^2, in the low resistance state displayed a power law dependence on the resistance R: i.e., $S_R/R^2 \propto R^w$, where $w = 1.6 \pm 0.2$. This behavior can be explained by percolation theory; however, at higher temperatures or near the switching voltage, S_R/R^2 becomes enhanced further. This large $1/f$ noise can be therefore an important problem in the development of resistance random access memory devices.
Recently, unipolar resistance switching (RS) phenomena has attracted much attention, due to potential applications in resistance random access memory (RRAM).1–4 From an application viewpoint, the signal-to-noise ratio of RRAM should be as large as possible. Additionally, measurements of noise can provide valuable information on the electronic transport and the microscopic switching mechanisms that cannot be acquired by other measurements.5–7 Despite its scientific and technological importance, there has been little investigation of the noise behavior of unipolar RS.

Here, we report on $1/f$ noise of unipolar RS by using Pt/NiO/Pt capacitors. When we applied a bias, V, to our samples, we observed that the power spectral density, S_V, of the low frequency voltage fluctuation was inversely proportional to frequency, f. We found that the $1/f$ noise in the low resistance state (LRS) increased significantly as the corresponding resistance increased. Detailed behavior of the $1/f$ noise will be discussed within the framework of the percolation theory. We will also present some experimental data that cannot be understood by such classical theory.

We deposited polycrystalline NiO thin films on Pt-coated Si substrates, using DC magnetron reactive sputtering. To measure the electrical properties and noise, we fabricated Pt/NiO/Pt capacitors by depositing Pt top electrodes with an area of 50×50 μm2 onto the NiO layer. Figure 1(a) shows current–voltage (I–V) curves of a
Pt/NiO/Pt capacitor, which exhibits unipolar RS. The NiO capacitor was highly insulating in the pristine state (PS), marked by the black circles. Immediately after the forming process at V_F, it enters the LRS. When V was increased above V_R, it switched from the LRS to the high resistance state (HRS). This switching behavior was termed a reset process. As we increased V further, reaching V_S, the capacitor switched back into the LRS. This was termed a set process. To prevent permanent damage (i.e., complete dielectric breakdown) during both forming and set processes, we used a compliance current I_{comp} of 1 mA.

We applied a bias to the Pt/NiO/Pt capacitor using a source-meter unit (Keithley 2601) and measured the noise intensity, S_V, using a spectrum analyzer (Agilent E4448A). To amplify the S_V signal, two kinds of low-noise differential amplifiers were used (NF SA-400F3 for LRS, and ITHACA 1201 for HRS and PS). We also used a Wheatstone bridge, in which one of the resistors was replaced with our Pt/NiO/Pt capacitor, to measure the small noise signal with a high sensitivity. As shown in Fig. 1(c), we observed that the S_V signals in all of the resistance states had $1/f^\alpha$ dependence under an external bias. Since $\alpha \approx 1$, we will refer to the S_V signal as “$1/f$ noise” from now on.

Even when $V = 0$ V, there should be f-independent voltage fluctuations S_V^{th} (i.e.,
Johnson noise\(^{5,7}\)). According to the fluctuation-dissipation theorem, the corresponding \(S_{v}^{th}\) should be proportional to the resistance, \(R\), and temperature, \(T\). The theoretical values of \(S_{v}^{th}\) for the PS and HRS are shown by the dashed lines in Fig. 1(c). Our experimental \(S_{v}^{th}\) for the PS and HRS are in good agreement with the theoretical predictions. The theoretical \(S_{v}^{th}\) for the LRS should be smaller, by five orders of magnitude, than that for the HRS; however, this was below the experimental sensitivity.

We also investigated the \(V\)-dependence of \(S_{v}\) in the LRS. In the Ohmic conduction region for most metals, \(S_{v}\) should follow Hooge’s equation (i.e., \(S_{v} \propto V^2\)).\(^{5-7}\) As shown by the blue line in Fig. 1(b), \(S_{v} \propto V^2\) in the LRS with \(V < 0.15\) V, where Ohmic conduction occurs. These confirmations indicate that our \(1/f\) noise measurements were highly reliable.

Figure 1(b) shows the \(S_{v}\)-values of a Pt/NiO/Pt capacitor, measured at room temperature with \(f = 100\) Hz. For any resistance state, as \(V\) increases, \(S_{v}\) increases slowly when \(V\) is small, but experiences a rapid increase near the corresponding switching voltage. We can readily convert \(S_{v}\) to the power spectral density of the resistance fluctuation, \(S_{R}\), using \(S_{R} = S_{v}/I^2\) (Ref. 7). While \(R_{HRS}^{HRS}\) was larger than \(R_{LRS}^{LRS}\) by five orders of magnitude, \(S_{R}^{HRS}\) was found to be larger than \(S_{R}^{LRS}\) by 15 orders of magnitude at 0.2 V.
Why does the $1/f$ noise become so large in the HRS? It is widely accepted that unipolar RS can occur due to the formation and rupture of conducting filaments under an applied electric field.1-4,9-13 The LRS is characterized by the conducting filaments making percolating channels across the sample. When the channels become broken, by Joule heating, the HRS applies. $1/f$ noises in percolating material systems have been treated by classical percolation theories.7,8,14 It is known that S_R probes the fourth moments of current distributions in the percolating network.7,14 More explicitly, S_R/R^2 can be written as

$$
\frac{S_R}{R^2} = \frac{\sum \rho_b^4 i_b^4}{(\sum \rho_b^2 i_b^2)^2}, \quad (1)
$$

where i_b is the current flowing through each filament b, whose resistance value is $r_b + \delta r_b$, and $\rho_b^2 = \langle \delta r_b \delta r_b \rangle$ is determined by the mechanism of fluctuations in the filament, which typically varies as the $1/f$ type. As the fraction, p, of conducting filaments approaches to the percolation threshold, p_c, S_R should diverge as $S_R \propto (p - p_c)^{-\kappa}$, where κ is the noise exponent.7,8 This divergence near p_c might explain the drastic increase of S_R in the HRS.

We performed quantitative studies on the relative noise S_R/R^2. According to percolation theory,7,8,14
\[\frac{S_R}{R^2} \propto R^w \text{ at } p > p_c. \] \hspace{1cm} (2)

To measure S_R for numerous resistance values in the LRS near p_c, we generated some multilevel LRS by carefully increasing V near V_R (Fig. 2(a))15. Similarly, several multilevel HRS were also generated (Fig. 2(b)). At each multilevel state, we measured S_V at room temperature with $V = 0.1$ V, and plotted the corresponding S_R/R^2-value in Fig. 2(c). In the LRS, S_R/R^2 has the power law dependence with $w = 1.8 \pm 0.3$. In the HRS, S_R/R^2 becomes very large and scattered around 10^{-8} Hz-1.

To obtain further insight, we measured S_R in the LRS by varying T and V. As shown in Fig. 3(a), with a decrease of T from 300 K to 100 K, and with $V = 0.1$ V, w decreased, from 1.8 to 1.6. However, as shown in Fig. 3(c), with $V = 0.3$ V, w decreased drastically, from 5.1 to 1.6. It should be noted that all of the values of w at 100 K were nearly the same, i.e., $w = 1.6 \pm 0.2$, regardless of V.

Note that percolation theory deals with the enhancement of S_R/R^2 due to the current distribution in the percolating network7,8,14. Specifically, it deals with a purely geometrical effect, assuming that the resistance fluctuation in the conducting filament networks should be the same. So, the observation that $w = 1.6 \pm 0.2$ at low T may be related to a geometric effect. According to classical lattice percolation theory7,8, $0.82 < w < 1.05$. For two-dimensional (2D) semicontinuous metal films,7,8 it has been
reported that $1.2 < w < 2.0$. To explain the unipolar RS phenomena, we recently
developed a new type of percolation model, termed ‘the random circuit breaker (RCB)
network model,’ where fuse and antifuse actions occur, depending on the voltage
applied to a filament.11 We performed 2D numerical simulations using the RCB
network model and found $w = 1.5 \pm 0.3$. This value agrees quite well with our observed
w at 100 K, suggesting that the low temperature S_{R}/R^2 should be related to the current
distribution in the percolating network.

The drastic increase of S_{R}/R^2 in the LRS near the reset voltage V_{RS} (especially at
high T) should be due to additional effects. The first possibility may be Joule heating
effects, especially near the weakest bond, where most of the current will flow.1,3,4,9,13,15
To investigate this, we included Joule heating and associated thermal dissipation
processes in the RCB network model.11,13,16 However, we still obtained $w = 1.5 \pm 0.3$.
Another possibility is motion of ions near the resistance switching, which are currently
discussed by many workers.1,3,4 Further systematic investigations are needed to
investigate this phenomenon.

A further important point related to the noises in the unipolar RS is that at
$V = V_{S}$, $S_v^{\text{HRS}} \approx 10^{-4}$ V2/Hz (Fig. 1(b)). This is much larger than the S_t-value of phase-
change random access memory17 (where $S_v \approx 10^{-10}$ V2/Hz), and that of magnetic
random access memory18 (where $S_\nu \approx 10^{-15}$ V^2/Hz). For RRAM applications, the large noise issue should be carefully addressed.

In summary, we performed systematic investigations into the $1/f$ noise of unipolar resistance switching. Our experimental $1/f$ noise data at 100 K and low applied bias confirms our view that unipolar resistance switching should occur by the percolation process of conducting filaments. However, at higher temperature, or near the switching voltages, $1/f$ noise became further enhanced, indicating the existence of additional noise sources. Our work indicates that $1/f$ noise of unipolar resistance switching is an important issue and should be investigated further for RRAM device applications.

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant, funded by the Korea government (MEST) (No. 2009-0080567). B.K. and J.S.L. were supported by the KOSEF grant funded by the MOST (Grant No. R17-2007-073-01001-0).
1R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

2G. I. Meijer, Science 319, 1625 (2008).

3M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Nano Lett. 9, 1476 (2009).

4R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. (Weinheim, Ger.) 21, 2632 (2009).

5P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).

6M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).

7Sh. Kogan, Electronic noise and fluctuations in solids (Cambridge University Press, Cambridge, 1996).

8Y. Song, S.-I. Lee, and J. R. Gaines, Phys. Rev. B 46, 14 (1992).

9B. J. Choi, S. Choi, K. M. Kim, Y. C. Shin, C. S. Hwang, S.-Y. Hwang, S.-S. Cho, S. Park, and S.-K. Hong, Appl. Phys. Lett. 89, 012906 (2006).

10S. B. Lee, S. C. Chae, S. H. Chang, C. Liu, C. U. Jung, and D.-W. Kim, J. Korean Phys. Soc. 51, S96 (2007).
11 S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, Adv. Mater. (Weinheim, Ger.) 20, 1154 (2008).

12 S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee, S. Seo, B. Kahng, and T. W. Noh, Appl. Phys. Lett. 93, 212105 (2008).

13 S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D.-W. Kim, and T. W. Noh, Phys. Rev. Lett. 102, 026801 (2009).

14 R. Rammal and A.-M. S. Tremblay, Phys. Rev. Lett. 58, 415 (1987).

15 S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee, S. Park, Y. Jo, S. Seo, B. Kahng, and T. W. Noh, Appl. Phys. Lett. 93, 252102 (2008).

16 D. Lubin, I. Goldhirsch, and Y. Gefen, Phys. Rev. B 38, 5899 (1988).

17 P. Fantini, A. Pirovano, D. Ventrice, and A. Redaelli, Appl. Phys. Lett. 88, 263506 (2006).

18 W. K. Park, J. S. Moodera, J. Taylor, M. Tondra, J. M. Daughton, A. Thomas, and H. Brückl, J. Appl. Phys. 93, 7020 (2003).
FIG. 1. (Color online) (a) I–V characteristics of a Pt/NiO/Pt capacitor. The LRS shows Ohmic behavior ($I \propto V$, blue line) below $V_o = 0.15$ V. (b) V-dependence of S_V. At the Ohmic region, S_V^{LRS} follows Hooge’s equation, i.e., $S_V \propto V^2$. As V approaches V_R, V_S, and V_F, respectively, S_V starts to increase rapidly. (c) f-dependence of S_V. With $V = 0$ V, S_V^{th} of each resistance state (open symbols) follows theoretical values of Johnson noise (the dashed lines). With $V > 0$ V, each state shows $1/f^{\alpha}$ noise (solid symbols), with α close to unity. Note that $S_V^{\text{PS}} > S_V^{\text{HRS}} > S_V^{\text{LRS}}$ under $V = 0$ V and $S_V^{\text{HRS}} > S_V^{\text{PS}} > S_V^{\text{LRS}}$ under $V > 0$ V.

FIG. 2. (Color online) Obtaining multilevels of (a) the LRS and (b) the HRS by carefully controlling V. (c) The R-dependence of S_R/R^2 in the LRS and HRS. While S_R/R^2-values of the LRS are proportional to R^w with $w = 1.8 \pm 0.3$, the HRS shows very large S_R/R^2, scattered around 10^{-8} Hz$^{-1}$.

FIG. 3. (Color online) The R-dependence of S_R/R^2 in the LRS for $V = (a)$ 0.1 V, (b) 0.2 V, and (c) 0.3 V. The red, black, and blue triangles show S_R/R^2 at 100 K, 200 K, and 300 K, respectively. Note that w increases with increasing V and T.
Figure 1

- Figure (a) shows the current I (A) as a function of voltage V (V) for different states: LRS, HRS, and PS. The voltage V ranges from 10^{-3} to 10^1. The current I ranges from 10^{-1} to 10^1.

- Figure (b) illustrates the spectral density of voltage noise $S_V (V^2/Hz)$ at a frequency $f = 100$ Hz. The voltage V ranges from 10^{-18} to 10^{-6}, and the spectral density S_V ranges from 10^{-15} to 10^{-9}.

- Figure (c) presents the spectral density of voltage noise $S_V (V^2/Hz)$ at a fixed voltage $V = 0.2$ V and temperature $T = 300$ K. The frequency f ranges from 10^1 to 10^2, and the spectral density S_V ranges from 10^{-16} to 10^{-8}.
Figure 2

(a) LRS → HRS

(b) HRS → LRS

(c) $V = 0.1 \text{ V}, f = 100 \text{ Hz}$
$T = 300 \text{ K}$
Figure 3

(a) $V = 0.1\, V, f = 100\, \text{Hz}$

(b) $V = 0.2\, V$

(c) $V = 0.3\, V$