Serendipity in anticancer drug discovery

Emily Hargrave-Thomas, Bo Yu, Jóhannes Reynisson

Emily Hargrave-Thomas, Auckland Bioengineering Institute, The University of Auckland, Auckland 1142, New Zealand
Bo Yu, Jóhannes Reynisson, School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand

Author contributions: Hargrave-Thomas E collected and analysed the data and wrote the manuscript; Yu B analysed the data; and Reynisson J provided scientific supervision.

Correspondence to: Dr. Jóhannes Reynisson, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. j.reynisson@auckland.ac.nz
Telephone: +64-9-3737599 Fax: +64-9-3737422
Received: September 22, 2011 Revised: December 19, 2011 Accepted: January 7, 2012 Published online: January 10, 2012

Abstract

It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon.

In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind.

INTRODUCTION

It is well know that serendipity has played a pivotal role in the discovery of many drugs used today[1-3]. Indeed two major classes of anticancer drugs were discovered with the aid of serendipity, i.e., Barnett Rosenberg’s discovery of cisplatin and the breakthrough observation by Lieutenant Colonel Stewart F Alexander that the chemical warfare agent, nitrogen mustard, depleted white blood cell numbers; aiding in the development of alklation agents[1-2]. The question therefore emerges of how important serendipity really is in drug discovery and development? The aim of this investigation is to identify all marketed drugs and their derivatives used in the clinic today in which discovery was in some way based on or aided by a serendipitous event. The numbers obtained will be compared to the total number of marketed drugs resulting in a quantitative measure of the impact of serendipity in the discovery of pharmaceuticals, and anticancer drugs in particular.

METHODOLOGY

Three books were analysed: Laughing Gas, Viagra, and Lipitor: The Human Stories Behind the Drugs We Use[1], Happy Accidents: Serendipity in Modern Medical Breakthroughs[2] and Drug Discovery, a History[3]. Furthermore, one scientific paper was identified with a list of drugs discovered by the aid of serendipity[4]. The books and the paper are shown in Table 1. These resources were studied and the stories containing serendipitous events were tabulated.
events were recorded. The nature of the serendipitous findings were categorised as laboratory based or clinical. The drugs identified were reviewed in DrugBank\cite{5-7} and only those that were approved, were small molecules, and in clinical use were included. Furthermore, drugs with similar chemical structures and with the same notation (i.e., used to treat the same condition) as the parent drug were considered to be their derivatives as identified by substructure and Tanimoto similarity searching in DrugBank\cite{5-7}. A full list of the drugs found is given in Tables 2 and 3.

SERENDIPITY IN DRUG DISCOVERY

Serendipity refers to chance discoveries that have been exploited with sagacity\cite{3}. This requires both a chance event and the mental ability to understand the occurrence and realise its potential. In this work, only stories that fit both requirements for serendipity were recorded. The serendipitous events were divided into two categories; laboratory based and clinical. A classic example of the former is Barnett Rosenberg’s discovery of cisplatin, and for the latter dimenhydrinate (Dramamine), which was developed as an antihistamine but is now sold as a travel sickness medication due to a chance observation/realisation by one of the participants in the clinical trials. The division of the drugs into these two categories is not always obvious, but we believe that it helps in the analysis of the results. In his book, Serendipity, Roberts\cite{8} coined the term pseudoserendipity to describe accidental discoveries of ways to achieve an end sought for in contrast to the meaning of true serendipity, which describes accidental discoveries of things not sought for. Certainly all of the drugs discovered in the clinic can be described as pseudoserendipitous according to this definition and many of the drugs found in the laboratory.

To calculate the proportion of drugs with a serendipitous background, the total number of small molecule drugs on the market (FDA approved) is taken to be 1437 and for the latter dimenhydrinate (Dramamine), which was developed as an antihistamine but is now sold as a travel sickness medication due to a chance observation/realisation by one of the participants in the clinical trials. The division of the drugs into these two categories is not always obvious, but we believe that it helps in the analysis of the results. In his book, Serendipity, Roberts\cite{8} coined the term pseudoserendipity to describe accidental discoveries of ways to achieve an end sought for in contrast to the meaning of true serendipity, which describes accidental discoveries of things not sought for. Certainly all of the drugs discovered in the clinic can be described as pseudoserendipitous according to this definition and many of the drugs found in the laboratory.

To calculate the proportion of drugs with a serendipitous background, the total number of small molecule drugs on the market (FDA approved) is taken to be 1437 according to DrugBank\cite{5-7}. Overington \textit{et al}\cite{9} reported 1204 small molecule drugs in clinical use, which is a somewhat smaller number.

In this analysis, 84 drugs were identified to have serendipitous events aiding their discovery, which is 5.8% of all drugs currently in use. Thirty-one drugs (2.2%) were identified in the laboratory and 116 derivatives (8.1%) of
Table 3 List of drugs discovered to be beneficial for conditions other than for which they were developed (clinical)

Off-label drugs	Derivatives	No. of derivatives
Aminoglutethimide	NA	0
Alprostadil	Dinoprostone, carboprost, tromethamine, dinoprost, tromethamine, misoprostol	4
Amphetamine	Phentermine, methamphetamine, dextroamphetamine, alverine, selegiline, mephentermine, tranylcypromine, phenelzine, benzphetamine, diethylpropion	10
Aspirin	NA	0
Auranoquin	NA	0
Carbamazepine	Oxcarbazepine	1
Celecoxib	NA	0
Chloroxazepoxide	Diazepam, temazepam, oxazepam, fludiazepam, clorazepate, halazepam, prazeepam, flurazepam, lorazepam, clonazepam, nitrazepam, bromazepam, fumazepam, quazepam, cloazepam, alprazolam, estazolam, adinazolam, midazolam	20
Chlorothiazide	Benzthiazide, diazoxide, hydrochlorothiazide, hydroflumethiazide, bendroflumethiazide, cyclophthiazide, polythiazide, trichlormethiazide, methylthiazide, furosemide, bumetanide	11
Clofibrate	Fenofibrate	1
Dactinomycin	NA	0
Diisopropylfluorophosphate	NA	0
Diltiazem	NA	0
Dimenhydrinate	NA	0
Diphenhydramine	Bromodiphenhydramine, diphenylpyraline	2
Diphenoxylate	Loperamide	1
Dipyridamole	NA	0
Disulfiram	NA	0
Doxorubicin	Epirubicin, daunorubicin, idarubicin, valrubicin, plicamycin	5
Etoxinate	NA	0
Finasteride	Dutasteride	1
Guanethidine	Debrisoquin, guanidine	2
Haloperidol	Droperidol	1
Imatinib	NA	0
Imipramine	Trimiopramine, desipramine, clomipramine, protriptyline, amitriptyline, nortripyline, cyclobenzaprine, maprotline, doxepin, amosapine	10
Iproniazid	Isoniazid	1
Linezolid	NA	0
Lysergic acid diethylamide	Cabergoline, lisuride, bromocriptide, nicergoline, pergolide	5
Meprobamate	Carisoprodol	1
Mercaptopurine	Thioguanine, azathioprine	2
Metronidazole	Tinazide	1
Mifepristone	NA	0
Minoxidil	NA	0
Mycophenolic acid	Mycophenolatolomofetil	1
Naloxone	Naltrexone	1
Norethindrone	Levonorogestrel, norgestrel, ethinogestrel, gestodene,desogestrel, medroxyprogesterone, megestrol, progestrone, drosiprene, norelgestromin, ethinodylometate	11
Pethidine	Amileridine	1
Phenoxybital	Methylphenobarbital, secobarbital, methobarbital, aprobarbital, primidone, methsuximide	6
Penrodione	Medrysone, methylprednisolone, prednisolone, rimesolone, fluocortolone, desoximetasone	6
Probenecid	NA	0
Procarbazine	NA	0
Promethazine	Acetzopramine, acetzopromazine, acetbenzamine, arphenazine, chlorpromazine, ethopropazine, fluphenazine, mesoridazine, methotrimperazine, perphenazine, pipotiazine, prochloperazine, promazine, propriacaizne, propiamazine, thioamperazine, thioridazine, trifluoperazine, trifluopromazine	20
Quinacrine	Chloroguanine, primaquaine, hydroxychloroquine, amodiaquine	4
Reboxetine	Deserpdrine, rescinnamine	2
Salicylic acid	Salsalate, olsalazine, diflunisal, mesalazine	4
Sildenafil	Tadalafil, vardenafil	2
Sirolimus	Everolimus	1
Tamoxifen	Toremifene	1
Terfenadine	Fexofenadine	1
Thalidomide	Lenalidomide	1
Tolazoline	NA	0
Trimethadione	Paramethadione	1
Zidovudine	Trifluridine, telbuvudine, idoxuridine, zalcitabine, stavudine	5

NA: Not available.
these drugs were identified as shown in Table 4. Fifty-three pharmaceuticals (3.7%) were discovered in clinical settings and 147 derivatives (10.2%) of these were identified (Table 4). Therefore, in total there are 347 drugs currently on the market, in which discovery was aided by a serendipitous event, representing a staggering 24.1% of all drugs currently on the market. A graphical representation of these results is shown in Figure 1.

SERENDIPITY IN ANTICANCER DRUG DISCOVERY AND DEVELOPMENT

According to DrugBank\[5-7\] there are 88 anticancer drugs in clinical use today. Of the drugs identified with serendipitous origin, 13 are used to treat cancer and 18 are their chemical derivatives. This means that 35.2% of all anticancer drugs in clinical use involved serendipity of some kind. The statistical distribution is shown in Figure 2. This represents a larger portion of serendipitous effects than for pharmaceuticals in general.

Of the primary serendipitous events, anticancer drugs represent 15.5% (13/84), i.e., a sizeable portion. However, relatively few derivatives were found for anticancer drugs (6.8% of the derivatives). This highlights the difficulty in developing effective anticancer drugs.

When the primary serendipitous events are investigated, it is clear that antibiotic, anticancer, cardiovascular and central nervous system (CNS) drugs are the most common notations with about 10 events for each (Tables 5). Other therapeutic fields such as antiprotozoal and antifungal are also reported. Less common treatments for conditions such as gout and alcoholism are reported. A high frequency of CNS discoveries is seen in the clinical settings in Table 5, i.e., 17 out of a total of 53. This reflects the difficulty in developing drugs that need to pass the Blood-Brain-Barrier (e.g., reference\[10\] and references therein), and the dearth of biochemical assays modelling the diseases of the mind and pain.

KNOWN DRUG SPACE

Recently a new concept of Known Drug Space (KDS) has been developed to help drug designers to navigate chemical space based on the analysis of drugs in clinical use\[11-13\]. It is known that 10% of KDS are unaltered natural products and 29% are their derivatives (semi-synthetics)\[14\]. With this fact and the results presented in this paper it can be stated that KDS is, to a large extent, populated by chance rather than design. Therefore, the analysis of the physicochemical properties of known drugs gives a region of property space that really works
Table 5 List of drugs found to be beneficial for conditions other than for which they were developed (clinical), the number of identified derivatives and their therapeutic notation

Clinical drugs	Ref.	Derivatives	Notation
Aminoglutethimide	[3,4]	0	Cancer
Alprostadil	[3]	4	Cardiovascular
Amphetamine	[1,3,4]	10	CNS
Aspirin	[1-3]	0	Cardiovascular/Cancer
Auranozin	[2,3]	0	Antirheumatic
Carbamazepine	[3]	1	CNS
Celecoxib	[2]	0	Cancer
Chloramphenicol	[1-4]	20	CNS
Chlorothiazide	[1,3,4]	11	Diuretic
Clofibrate	[3]	1	Cardiovascular
Dactinomycin	[3]	0	Cancer
Dibutylpropyfluorophosphate	[3]	0	Ocular
Dilantien	[3]	0	Cardiovascular
Dibromhydrinate	[2-4]	0	CNS
Diphenhydramine	[3]	2	CNS
Diphenoxylate	[3,4]	1	Antidiarrheal
Dipyriramol	[3]	0	Cardiovascular
Disulfiram	[1,2,4]	0	Alcoholism treatment
Doxorubicin	[3]	5	Cancer
Etoposide	[3,4]	0	CNS
Finasteride	[2]	1	Baldness
Guanethidine	[3,4]	2	Cardiovascular
Haloperidol	[1,3,4]	1	CNS
Imatinib	[1]	0	Cancer
Imipramine	[1-4]	10	CNS
Iproniazid	[1-4]	1	CNS
Linezolid	[1]	0	Antibiotic
LSD	[1-4]	5	CNS
Meprobamate	[2,4]	1	CNS
Mercaptopurine	[1,3]	2	Immunosuppressive
Metronidazole	[3]	1	Antiprotozoal
Mifepristone	[3,4]	0	Hormonal
Minoxidil	[2]	0	Cardiovascular
Mycophenolic acid	[3]	1	Immunosuppressive
Naltrexone	[3]	1	CNS
Norrethindrone	[1,3,4]	11	Hormonal
Pethidine	[3,4]	1	CNS
Phenobarbital	[3]	6	CNS
Prednisone	[3,4]	6	Anti-inflammatory
Probenecid	[2]	0	Gout
Procarbazaine	[3]	0	CNS
Promethazine	[1-3]	20	Antithistamine
Quinacrine	[3]	4	Antiprotozoal
Reserpine	[3]	2	CNS
Salicylic acid	[3]	4	Antirheumatic
Sildenafil	[1-3]	2	Erectile dysfunction
Sirolimus	[3]	1	Immunosuppressive
Tamoxifen	[1-4]	1	Cancer
Terfenadine	[3]	1	Antithistamine
Thalidomide	[1,2]	1	Cancer
Tolazoline	[3]	0	Cardiovascular
Trimethadione	[3]	1	CNS
Zidovudine	[1,2,4]	5	Antiviral

CNS: Central nervous system; LSD: Lysergische säure diäthylamid (lysergic acid diethylamide).

DISCUSSION

Serendipity in drug discovery has not been investigated to a great extent, however, some papers were found in the literature and the opinions expressed vary greatly, which is not surprising due to the ambiguous nature of this phenomenon. For instance, Jeste et al\(^\text{[10]}\) downplay the importance of serendipity arguing that few if any discoveries in their field of psychiatry were truly serendipitous. Conversely, Lombardino and Lowe state that “the role of serendipity, chemical intuition and creativity in thoughtfully selecting a chemical target to synthesize in order to discover the best-quality drug has not diminished” irrespective of the introduction of new technologies\(^\text{[16]}\). Furthermore, Klein strongly believes that a loss of chance observations and unexpected clinical benefits are due to recent changes in the process of drug discovery\(^\text{[7]}\). He criticises cost-control measures which remove a creative environment in hospitals that fosters serendipity\(^\text{[16]}\). Finally, Kubinyi\(^\text{[11]}\) suggests that researchers should not be manipulated by short-term business cycles; drug discoveries require good science, enlightened management, and freedom for researchers to act, challenge dogma and take risks.

This investigation provides a limited scope of serendipitous drug discovery since only four sources were analysed. It is certain that not all serendipitous events are recorded; researchers may choose not to report them in favour of standard scientific methods of inquiry. It can therefore be argued that the impact of serendipity is even larger than found in this investigation.

According to the results presented here, approximately 24% of all drugs currently on the market were discovered with the aid of serendipity and thus, may never have been discovered without the curiosity, observation, and sagacity of the researchers. This serves to highlight the unpredictability in drug research and the necessity to allow for and encourage freedom in research directions and promote the intellectual freedom of the scientists involved. Also, a sound education in science is indispensable and the promotion of critical thinking of our students is vital (for further discussion see Lenox\(^\text{[18]}\)).

The term “drug repositioning” is sometimes used when a new notation is found for a drug molecule. A good example is the reintroduction of the infamous thalidomide in clinical use. This is obviously a very positive development since new drugs do not have to be developed from scratch with a large price tag. As shown in this work, serendipitous events in the clinic are important and have facilitated drug repositioning emphasising the need to educate clinicians about this phenomenon.

Understanding the serendipity phenomenon is crucial so we can start to manipulate it to our advantage and we believe that quantifying the impact of serendipity facilitates our understanding of it. Finally, Pasteur’s comment on serendipity certainly still holds true: “Dans les champs de l’observation, le hasard ne favorise que les champs de l’opinion.” (“In the field of observation, chance favours only the prepared mind.”)

CONCLUSION

It was found that 35.2% of all the anticancer drugs now

![WJCO logo] www.wjgnet.com

January 10, 2012 | Volume 3 | Issue 1
in clinical use were discovered by serendipity. In general, 24% of all pharmaceuticals currently on the market were affected in a positive way during their development by this phenomenon with CNS active drugs being the most prominent. This leads to the conclusion that drug discovery is based on good science and where intuition, critical thinking, sagacity and open-mindedness play crucial roles.

REFERENCES
1. Li JJ. Laughing Gas, Viagra and Lipitor: The human Stories Behind the Drugs We Use. Oxford: Oxford University Press, 2006
2. Meyers MA. Happy Accidents: Serendipity in Modern Medical Breakthroughs. New York: Arcade Publishing, 2007
3. Sneader W. Drug Discovery: a History. Chichester: John Wiley and Sons Ltd., 2005
4. Kubinyi H. Chance favors the prepared mind— from serendipity to rational drug design. J Recept Signal Transduct Res 1999; 19: 15-39
5. Wishart DS, Knox C, Guo AC, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledge-base for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36: D901-D906
6. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stoithard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-D672
7. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39: D1035-D1041
8. Roberts RM. Serendipity: Accidental Discoveries in Science. New York: Wiley Science Editions, 1989
9. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5: 993-996
10. King A. Breaking through the barrier. Chemistry World 2011: 36-39
11. Ioakimidis L, Thoukytidis L, Naeem S, Mirza A, Reynisson J. Benchmarking the Reliability of QikProp: Correlation between Experimental and Predicted Values. QSAR Comb Sci 2008; 27: 445-456
12. Axerio-Cilies P, Castañana IP, Mirza A, Reynisson J. Investigation of the incidence of “undesirable” molecular moieties for high-throughput screening compound libraries in marketed drug compounds. Eur J Med Chem 2009; 44: 1128-1134
13. Mirza A, Desai R, Reynisson J. Known drug space as a metric in exploring the boundaries of drug-like chemical space. Eur J Med Chem 2009; 44: 5006-5011
14. Bade R, Chan HF, Reynisson J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. Eur J Med Chem 2010; 45: 5646-5652
15. Jeste DV, Gillin JC, Wyatt RJ. Serendipity in biological psychiatry--a myth? Arch Gen Psychiatry 1979; 36: 1173-1178
16. Lombardino JG, Lowe JA. The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 2004; 3: 853-862
17. Klein DF. The loss of serendipity in psychopharmacology. JAMA 2008; 299: 1063-1065
18. Lenox RS. Educating for the Serendipitous Discovery. J Chem Educ 1985; 62: 282-285