Maximum Likelihood and the Single Receptor

Robert G. Endres1,2,* and Ned S. Wingreen3,†

1Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
2Centre for Integrated Systems Biology at Imperial College, Imperial College London, London SW7 2AZ, United Kingdom
3Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014

(Dated: September 25, 2009)

Biological cells are able to accurately sense chemicals with receptors at their surfaces, allowing cells to move towards sources of attractant and away from sources of repellent. The accuracy of sensing chemical concentration is ultimately limited by the random arrival of particles at the receptors by diffusion. This fundamental physical limit is generally considered to be the Berg & Purcell limit [H.C. Berg and E.M. Purcell, Biophys. J. 20, 193 (1977)]. Here we derive a lower limit by applying maximum likelihood to the time series of receptor occupancy. The increased accuracy stems from solely considering the unoccupied time intervals - disregarding the occupied time intervals as these do not contain any information about the external particle concentration, and only decrease the accuracy of the concentration estimate. Receptors which minimize the bound time intervals achieve the highest possible accuracy. We discuss how a cell could implement such an optimal sensing strategy by absorbing or degrading bound particles.

PACS numbers: 87.10.Mn, 87.15.kp, 87.16.dj

Single cells can sense external chemical concentrations with extremely high accuracy. For instance, the chemotactic bacterium \textit{Escherichia coli} can detect 3.2 nM of the attractant aspartate [1], which corresponds to only about 3 attractant particles in the volume of the cell. Single eukaryotic cells such as \textit{Dictyostelium discoideum} [2] and \textit{Saccharomyces cerevisiae} [3] (budding yeast) are well known to measure and respond to extremely shallow gradients of chemical signals [4]. These observations raise the question how close do cells operate to the fundamental physical limit of sensing accuracy set by the random arrival of particles at the receptors by diffusion. This question was addressed in a seminal work by Berg & Purcell [5], and recently reinvigorated by Bialek and Setayeshgar [6, 7]. Today, it is generally accepted that the limit derived by Berg & Purcell is a fundamental physical limit which cannot be exceeded. In this Letter, we show for a single receptor how this limit can be improved (using maximum likelihood estimation), and discuss how cells could implement this improved sensing strategy in practice.

Berg & Purcell calculated the accuracy of concentration sensing by a single receptor which binds particles of concentration c_0 with rate $k_+ c_0$ and unbinds particles with rate k_- (see Fig. 1(a)). Specifically, they considered a binary time series of total length T composed of bound and unbound time intervals (see Fig. 1(b)). Berg & Purcell estimated concentration directly from the fraction of time T that a particle is bound. By considering the time correlations of particles bound to the receptor, they found the variance $(\delta c)^2$ in the estimated concentration to be [2]

$$\frac{(\delta c)^2}{c_0^2} = \frac{2\bar{\tau}_b}{T\bar{p}} - \frac{1}{2Dsc_0(1-\bar{p})T},$$

where D is the diffusion coefficient, $\bar{\tau}_b$ is the true average duration of bound intervals, s describes the receptor dimension, and \bar{p} is the true equilibrium probability for the receptor to be bound. The last equality in Eq. 1 is obtained using detailed balance, \textit{i.e.} at equilibrium the rate of unbinding transitions $\bar{p}/\bar{\tau}_b$ must equal the rate of binding transitions $(1-\bar{p})/\bar{\tau}_u$, where $\bar{\tau}_u$ is the average duration of unbound intervals. For diffusion-limited binding, $1/\bar{\tau}_u = 4Dsc_0$, yielding the RHS of Eq. 1. In the following we revisit the Berg & Purcell limit on the accuracy of concentration sensing from the perspective of maximum likelihood estimation.

Maximum likelihood estimation is a statistical method used for fitting a mathematical model to data [8]. For a fixed set of data and an underlying parameterized model, maximum likelihood picks the values of the model parameters that make the data “more likely” than they would be for any other values of the parameters. Here, the cell’s best estimate of concentration can be obtained from maximum likelihood applied to the time series $\{t_+, t_-\}$ of duration T with particle binding events at times $t_{+, i}$ and unbinding events at times $t_{-, i}$ (see Fig. 1(b)). Following

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Schematic of particle-receptor binding. (a) An unoccupied receptor can bind a particle with rate $k_+ c_0$, and an occupied receptor can unbind a bound particle with rate k_-. (b) Binary time series of receptor occupancy.}
\end{figure}
In Eq. 2, the probability of binding at time \(t \) approximately equal for
\(\tau (\) which can differ by at most 1 and are therefore approx-
total bound (unbound) time interval with
\(t \) the unbound time intervals, we obtain
from
and the probability for a receptor to remain unbound
\(T \) and concentration
An upper limit of the variance is given by the inverse of
inverse of the average duration of unbound intervals
\(\tau \) from the
Hence, the best estimate of the concentration comes only
fast to remove recently unbound particles from the vicin-
y of the receptor (but, following [6, 7], we address the
more general case in the appendix).

The probability for a time series to occur given a particle
concentration \(c \) is
\[
P(t_+, t_-; c) = \prod_i p_b(t_+, t_-) p_u(t_-) p_u(t_+, t_+; c) \tag{2}
\]
where the probability for a particle to remain bound from
\(t_+ \) to \(t_- \) is
\[
p_b(t_+, t_-) = p_b(t_+ - t_-) = e^{-k_- (t_+ - t_-)} \tag{3}
\]
and the probability for a receptor to remain unbound from
\(t_- \) to \(t_+ \) is
\[
p_u(t_-) = p_u(t_-) = e^{-k_+ (t_+ - t_-)} \tag{4}
\]
In Eq. 2 the probability of binding at time \(t_+ \) is
\(p(x, t) \propto k_+ c \) and the probability of unbinding at time
\(t_- \) is \(p_-(x, t) \propto k_- \). Combining all the bound and all
the unbound time intervals, we obtain
\[
P(t_+, t_-; c) \propto e^{-k_- \tau_b} \cdot e^{-k_+ c T_u} \cdot k^n \cdot (k_+ c)^n \tag{5}
\]
where \(n \) is the number of binding or unbinding events
(which can differ by at most 1 and are therefore approx-
imately equal for \(n \gg 1 \)), and \(T_b = \sum \tau_b \) is the
the total bound (unbound) time interval with \(\tau_b = t_+ - t_- \).

We maximize \(P(t_+, t_-; c) \) over \(c \) via
\[
\frac{dP}{dc} = -k_+ T_u P + \frac{n}{c} P = 0, \tag{6}
\]
and obtain for the maximum likelihood estimate of the
particle concentration
\[
\frac{1}{k_+ c_{\text{ML}}} = \frac{T_u}{n} \quad \text{or} \quad c_{\text{ML}} = \frac{n}{k_+ T_u} \tag{7}
\]

Hence, the best estimate of the concentration comes only
from the unbound intervals. Specifically, \(k_+ c_{\text{ML}} \) is the
inverse of the average duration of unbound intervals
\(\tau_u = T_u / n \). That is, \(k_+ c_{\text{ML}} \) is just the average binding rate
estimated from the data.

How accurate is the concentration estimate \(c_{\text{ML}} \)? To obtain the uncertainty of the maximum likelihood esti-
mate we require the variance \((\delta c_{\text{ML}})^2 \). For a given du-
tration \(T \) the last interval, possibly an unbound interval,
gets interrupted. To avoid this complication, we consider a
fixed number of intervals \(n \) (and consequently a vari-
able duration \(T \)) in Eq. 4. We proceed by using a general
relation for the variance of the model parameter (here lig-
and concentration \(c \)) in maximum likelihood estimation.
An upper limit of the variance is given by the inverse of
the Fisher information (Cramér-Rao bound) [8, 10]. In
our case, the Fisher information can be calculated as a
simple second derivative of the probability \(P \) of the data
with respect to \(c \), averaged over the probability distribu-
tion of the time series at \(c_0 \). Furthermore, in the limit
of a long time series, the Cramér-Rao bound becomes an
equality, and we obtain for the normalized variance
\[
\frac{(\delta c_{\text{ML}})^2}{c_0^2} = -\frac{1}{c_0^2} \left(\frac{d^2 \ln P}{dc^2} \right)_{c_0} = \frac{1}{n}, \tag{8}
\]
where we used \(P \) from Eq. 3 [8, 11]. Hence, the normalized
variance of the maximum likelihood estimate of the true
concentration \(c_0 \) is exactly the inverse of the number of
unbound intervals.

In contrast to our result Eq. 15 [6], Berg & Purcell found
\(\bar{n} \) (Eq. 4)
\[
\frac{(\delta c_{\text{BF}})^2}{c_0^2} = \frac{2 \bar{n}}{T_p} = \frac{2 \bar{\bar{\bar{n}}}}{T_b} = \frac{2}{\bar{n}_b}, \tag{9}
\]
where \(\bar{n}_b \) is the average number of bound intervals in
the observation time \(T \). Over a long measurement time, the
average number of bound and unbound intervals must be
the same, so the Berg & Purcell result has exactly twice
the variance of the maximum likelihood result.

Why is the maximum likelihood estimate more accu-
rate than the Berg & Purcell estimate? Berg & Purcell
assumed that concentration is inferred from the average
bound time, e.g. as obtained by time averaging the
occupancy of a single receptor or by spatial averaging
over many receptors. However, as evident from our max-
imum likelihood estimate, only the durations of unbound
intervals contain information about the concentration.
In contrast, the average bound time (or equivalently
the average unbound time) excludes the durations of the
bound intervals, which add to the uncertainty in
estimating the concentration.

Our result, Eq. 15 [6] for the variance in the esti-
mate of the concentration \(c_0 \) also predicts optimal
binding parameters \(k_+ \) and \(k_- \). Clearly, the more
binding/unbinding events, the lower the variance:

(1) For a given duration \(T \) the number of binding/
unbinding events is maximized for diffusion-limited
binding \(k_+^{\text{max}} = 4D \) (obtained from the diffusive flux
\(J_\text{max} = 4D c_0 \) to an absorbing circular patch of radius \(s \)).

(2) Similarly, to maximize the number of binding/
unbinding events, the unbinding rate \(k_- \) should be
maximized. This implies (albeit unrealistically) that
\(k_- \to \infty \).

Under assumptions (1) and (2), the maximum number
of intervals in an observation time \(T \) is given by
\[
\bar{n}_b^{\text{max}} = \frac{T}{\tau_u} = k_+^{\text{max}} c_0 T = 4 D s c_0 T, \tag{10}
\]
leading to a variance

$$\frac{(\delta c_{\text{ML}})^2}{c_0^2} = \frac{1}{\bar{n}} = \frac{1}{4 D s_c 0 T}. \quad (11)$$

This result can be generalized to the more realistic case of finite \(k_+\),

$$\frac{(\delta c_{\text{ML}})^2}{c_0^2} = \frac{1}{\bar{n}} = \frac{1}{4 D s_c 0 (1 - \bar{p}) T}, \quad (12)$$

where \(\bar{p} = 1/(1 + k_-/4 D s_c 0)\) is the equilibrium probability for the receptor to be bound. Eq. (12) can readily be compared with the original Berg & Purcell result (Eq. 4), showing again that the maximum likelihood estimate is better by a factor 2.

The result for a single receptor, Eq. (13), can easily be extended to \(M\) independent receptors, \((\delta c_{\text{ML}})^2/c_0^2 = 1/(M \bar{n})\), i.e., the variance in the estimated concentration is the inverse of the total number of unbound intervals for all \(M\) receptors. However, the concentration estimate cannot become arbitrarily precise with increasing receptor number, since the binding of particles is ultimately limited by the arrival of particles by diffusion. For an absorbing circular patch of radius \(s'\), particles arrive by diffusion at a rate \(4 D s' c_0\). If individual receptors of effective radius \(s\) bind particles at the diffusion-limited rate \(4 D s_c 0\), then the number of receptors sufficient to bind all particles incident on the patch is \(M \approx s'/s\). Hence \((\delta c_{\text{ML}})^2/c_0^2 \approx 1/[((s'/s) \bar{n})]\), implying that the variance in the concentration estimate decreases at most linearly with the dimension of the detecting surface [5].

The maximum likelihood concentration estimate Eq. (7) is obtained solely from the duration of unbound intervals, thus avoiding the additional uncertainty from the bound intervals. What about the alternative scheme of estimating the concentration from the number of binding events during a time \(T\), similar to photon counting by photoreceptors? As shown below, this estimation scheme approaches the maximum likelihood limit as the bound intervals become short.

The average number of binding events (or equivalently bound or unbound intervals) during a time \(T\) is given by

$$\bar{n} = \frac{T}{\bar{t}_u + \bar{t}_b} = \frac{T}{\frac{1}{k_+ c_0} + \frac{1}{k_-}}, \quad (13)$$

which provides a concentration estimate \(c_{\text{est}}\) for \(c_0\) in terms of the observed \(n\),

$$\frac{1}{k_+ c_{\text{est}}} = \frac{T}{n} - \frac{1}{k_-} \quad \text{or} \quad c_{\text{est}} = \frac{1}{k_+} \cdot \frac{1}{\bar{n}} = \frac{1}{k_-} \cdot \frac{1}{T} - \frac{1}{k_-}. \quad (14)$$

From the standard deviation of \(n\), we obtain the standard deviation of \(c_{\text{est}}\) via

$$\delta c_{\text{est}} = \frac{dc_{\text{est}}}{dn} \delta n. \quad (15)$$

According to Eq. (3), the derivative \(dc_{\text{est}}/dn\) is given by

$$\frac{dc_{\text{est}}}{dn} = \frac{k_+ T}{n^2} c_{\text{est}} \approx \frac{k_+ T}{n^2} c_0^2. \quad (16)$$

To obtain \(\delta n\) for a fixed duration \(T\), we note that this is proportional to the standard deviation \(\delta T\) for fixed \(n\) via \(\delta n = (dn/dT)\delta T\). Using \(T = n (\bar{t}_u + \bar{t}_b)\), yields \(\delta T/dn = \bar{t}_u + \bar{t}_b\), leading to \(dn/dT = 1/(\bar{t}_u + \bar{t}_b)\). Based on the variance of unbound (bound) intervals \((\bar{t}_u(b) - \bar{t}_u(b))^2 = \bar{t}_u(b)^2\) calculated from \(\bar{t}_u(b) = (\bar{t}_u(b))\) and \((\bar{t}_u(b))^2 = (1/\bar{t}_u(b)) \int_0^\infty dt t^2 \exp(-t/\bar{t}_u(b)) = 2\bar{t}_u(b)^2\), we obtain for

$$\delta T^2 = n(\bar{t}_u^2 + \bar{t}_b^2) \quad \text{or} \quad \delta T = \sqrt{n(\bar{t}_u^2 + \bar{t}_b^2)}. \quad (17)$$

Finally, using these results in Eq. (15) leads to

$$\frac{(\delta c_{\text{est}})^2}{c_0^2} = \frac{1 + (\bar{t}_u/\bar{t}_b)}{n}. \quad (18)$$

This variance interpolates between the maximum likelihood and the Berg & Purcell results for \(\bar{t}_b < \bar{t}_u\) and exceeds the Berg & Purcell limit for \(\bar{t}_b > \bar{t}_u\). To provide some intuition for this result, we consider two limits:

1. \(\bar{t}_b \ll \bar{t}_u\): In this regime, the brief bound intervals do not contribute appreciably to \(T\). As a result, counting the number of binding events in a time \(T\) is the same as estimating the mean unbound time interval \(\bar{t}_u\). This is exactly the maximum likelihood estimator (Eq. 7).

2. \(\bar{t}_b \gg \bar{t}_u\): In this regime, the bulk of the time \(T\) is accounted for by the bound intervals. Therefore, the number of binding events measures the duration of the bound intervals, not the duration of the unbound intervals, which contain all the information about the concentration. (The Berg & Purcell estimate is more accurate in this regime because the fraction of time spent bound effectively measures the ratio of the bound to unbound time, and therefore captures information about the duration of unbound intervals.)

Our analysis has neglected additional noise in the concentration estimate due to ligand rebinding (6), also see Appendix A). However, cells have mechanisms for eliminating ligands which could suppress this noise. Examples include ligand-receptor internalization,

the transferrin receptor (TFR) and the low-density lipoprotein receptor (LDLR) are internalized, respectively, 6.7 and 4.9 times faster than their specific ligands can unbind [13].

With or without ligand rebinding, to what extent can real cells exploit any of the above maximum likelihood schemes to improve the accuracy of concentration estimation?
sensing? It is not clear mechanistically how cells could sense and respond exclusively to the durations of unbound intervals (Eq. 14). The potentially more practical scheme in Eq. 14 of counting the number of binding events in a time T can approach the maximum likelihood limit for $\tau_b \ll \tilde{\tau}_u$ (though too short a bound interval τ_b might imply low ligand specificity and potential signaling crosstalk). Effective counting can be achieved by receptor adaptation or desensitization following ligand binding. An intriguing alternative is that receptors could bind ligand once and then be internalized before ligand is released. While it is an open question whether cells actually implement this “optimal” strategy, we hope the perspective provided by maximum likelihood will prove useful in interpreting some of the complexities of cellular signaling systems.

We thank Pankaj Mehta for valuable suggestions. R.G.E. acknowledges funding from the Biotechnology and Biological Sciences Research Council grant BB/G000131/1 and the Centre for Integrated Systems Biology at Imperial College (CISBIC). N.S.W. acknowledges funding from the Human Frontier Science Program (HFSP) and the National Science Foundation grant PHY-0650617.

APPENDIX A: MAXIMUM LIKELIHOOD ESTIMATE WITH REBINDING

Following Berg & Purcell, our derivation neglected the re-binding of already measured particles. Such re-binding increases the uncertainty in estimating the concentration δc_i. As re-binding noise can be avoided by ligand-receptor internalization or ligand degradation on cell surfaces, it does not contribute to the fundamental physical limit. However, in practice many receptors do release and potentially re-bind their ligands.

The effect of local particle diffusion and hence possible re-binding is to make the instantaneous rate of binding a functional of the previous binding and unbinding events (see Ref. 6 for details). The binding rate can thus be written as $k_+ c(t, \{t_+, t_-\})$. The rate of un-binding remains k_-, so the maximum likelihood estimate of concentration still comes entirely from the durations of the unbound intervals.

What is the maximum likelihood estimate c_{ML}? The probability for a time series is still given by Eq. 2 with the change due to diffusion and re-binding occurring in $p_+ \propto k_+ e^{(c + \Delta c_i)}$ and p_u:

$$p_u(t_{-i}, t_{+i+1}) = e^{-k_- c(t_{+i+1} - t_{-i}) - k_i \Delta c(t') dt'}, \quad (A1)$$

Setting the above derivative to zero yields an implicit equation for the maximum likelihood estimate c_{ML},

$$\sum_i \frac{1}{c_{\text{ML}} + \Delta c_i} = k_+ T_u, \quad (A5)$$

where the sum is over all binding events, but each Δc_i depends deterministically on all previous binding and unbinding events. Using again that the variance of a maximum likelihood estimator is given by the inverse of the Fisher information δc_i^2, we obtain

$$\frac{(\delta c_i^2)}{c_i^2} = \frac{1}{\sum_i (1 + \Delta c_i/c_o)^{-2}}. \quad (A6)$$

APPENDIX B: ALTERNATIVE DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATE WITHOUT PARTICLE REBINDING

Here we obtain the uncertainty of the maximum likelihood estimate c_{ML} of the single receptor without particle re-binding by directly calculating the variance (δc_{ML}^2) explicitly (not using the inverse of the Fisher information). As in the main text, we consider a fixed number of intervals n (and consequently a variable duration T).

The ensemble average of Eq. 7 in the main text is simply given by

$$\langle \frac{1}{k + c_{\text{ML}}} \rangle = \frac{T_u}{n} = \tilde{\tau}_u = \frac{1}{k + c_0}. \quad (B1)$$

To obtain the variance (δc_{ML}^2), we proceed by calculating
By subtracting

tain the variance

where we used the definition \(\bar{\tau} = \langle \tau_u \rangle \) and the fact that the durations of the different unbound intervals are uncorrelated. Using \(\langle \tau_u^2 \rangle = (1/\bar{\tau_u}) \int_0^\infty dt \exp (-t/\bar{\tau_u}) = 2\bar{\tau_u}^2 \), we obtain for the variance of unbound intervals \(\langle (\tau_u - \bar{\tau_u})^2 \rangle = \bar{\tau_u}^2 \), which substituted into Eq. (B2) yields

\[
\left\langle \left(\frac{1}{k + c_{ML}} \right)^2 \right\rangle = \bar{\tau_u}^2 \left(1 + \frac{1}{n} \right).
\]

(B3)

By subtracting \((1/(k + c_{ML}))^2 = \bar{\tau_u}^2 \) from Eq. (B3) we obtain the variance

\[
\left\langle \left(\frac{1}{k + c_{ML}} \right)^2 \right\rangle - \left\langle \frac{1}{k + c_{ML}} \right\rangle^2 = \frac{\delta c_{ML}}{n}.
\]

(B4)

Then using

\[
\delta \left(\frac{1}{k + c_{ML}} \right) = -\frac{\delta c_{ML}}{k + c_{ML}} \approx \frac{\delta c_{ML}}{k + c_{ML}},
\]

(B5)

which is valid for small relative standard deviation \(\delta c_{ML}/c_0 \) in Eq. (B3).

We obtain the same result as Eq. 8 of the main text, i.e.

\[
\frac{(\delta c_{ML})^2}{c_0^2} = \frac{k + c_{ML}}{k + c_0^2} \left(\frac{1}{\bar{\tau_u}} \right)^2 \frac{\delta \bar{\tau_u}}{n} = \frac{1}{n}.
\]

(B6)

* r.endres@imperial.ac.uk
† wingreen@princeton.edu

[1] H. Mao, P.S. Cremer, and M.D. Manson, Proc. Natl. Acad. Sci. USA 100, 5449 (2003).
[2] R.A. Arkowitz, Trends. Cell Biol. 9, 20 (1999); J.M. Mato, A. Losada, V. Nanjundiah, T.M. Konijn, Proc. Natl. Acad. Sci. USA 72, 4901 (1975); P.J.M. van Haastert, M. Postma, Biophys. J. 93, 1787 (2007).
[3] J.E. Segall, Proc. Natl. Acad. Sci. USA 90, 8332 (1993).
[4] K. Wang et al. Phys. Rev. E 75, 061905 (2007); W.J. Rappel and H. Levine, Proc. Natl. Acad. Sci. USA 105, 19270 (2008); W.J. Rappel and H. Levine, Phys. Rev. Lett. 100, 228101 (2008).
[5] H.C. Berg and E.M. Purcell, Biophys. J. 20, 193 (1977).
[6] W. Bialek and S. Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005).
[7] W. Bialek and S. Setayeshgar, Phys. Rev. Lett. 100, 258101 (2008).
[8] J.W. Harris and H. Stocker, Handbook of Mathematics and Computational Science (Springer, New York, 1998).
[9] S.M. Kay, Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory (Prentice Hall PTR, 1993, Chapter 3).
[10] J. Shao, Mathematical Statistics (Springer, New York, 1998, Section 3.1.3.)
[11] See EPAPS Document No. for an alternative derivation of Eq. (B3). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[12] R.G. Endres and N.S. Wingreen, Proc. Natl. Acad. Sci. USA 105, 15749 (2008).
[13] R.G. Endres and N.S. Wingreen, Prog. Biophys. Mol. Biol., in press.
[14] S.S. Ferguson, Pharmacol. Rev. 53, 1 (2001).
[15] K.A. Schandel and D.D. Jenness, Mol. Cell Biol. 14, 7245 (1994).
[16] R. Sucgang et al., Dev. Biol. 192, 181 (1997).
[17] H. Shankaran, H. Resat, H.S. Wiley, PLoS Comput. Biol. 3, e101 (2007).
[18] O. Feinerman et al., Science 321, 1081 (2008).