Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism

Christian P Schaal¹,²,⁶, Manuel L Gonzalez-Garay³,⁶, Fan Xia¹,⁶, Lorraine Potocki¹, Karen W Gripp⁴, Baili Zhang¹, Brock A Peters⁵, Mark A McElwain⁵, Radoje Drmanac⁵, Arthur L Beaudet¹, C Thomas Caskey¹ & Yaping Yang¹

Prader-Willi syndrome (PWS) is caused by the absence of paternally expressed, maternally silenced genes at 15q11-q13. We report four individuals with truncating mutations on the paternal allele of MAGEL2, a gene within the PWS domain. The first subject was ascertained by whole-genome sequencing analysis for PWS features. Three additional subjects were identified by reviewing the results of exome sequencing of 1,248 cases in a clinical laboratory. All four subjects had autism spectrum disorder (ASD), intellectual disability and a varying degree of clinical and behavioral features of PWS. These findings suggest that MAGEL2 is a new gene causing complex ASD and that MAGEL2 loss of function can contribute to several aspects of the PWS phenotype.

PWS (MIM 176270) is characterized by infantile hypotonia with poor suck and failure to thrive, followed by overeating and rapid weight gain during childhood, developmental delay, intellectual disability, hypogonadism, short stature and a characteristic behavioral profile. Comprehensive diagnostic criteria have been established by Holm et al. The PWS can result from paternal deletion of 15q11-q13 (65–75% of cases), maternal uniparental disomy 15 (20–30%), an imprinting defect (1–3%) or possibly from rare deletions of the SNORD116@ snoRNA cluster manifested key characteristics of PWS. Paternal deletion of MKRN3, MAGEL2 and NDN alone occurred in one affected individual and was associated with obesity and intellectual disability but not with the typical PWS phenotype, leading the authors to conclude that deficiency of MKRN3, MAGEL2 and NDN did not result in a typical PWS phenotype. Whereas multiple PWS mouse models have been generated, including mice with targeted mutations of Ndn, Magel2, Mkrn3, Snurf-Snrpn and Snord116 (ref. 7), no single model recapitulates the early growth deficiency and hyperphagia leading to subsequent obesity observed in humans. Numerous publications from Weyrick and colleagues argue that Magel2-null mice have selected biological findings similar to PWS in humans, including neonatal growth retardation, excessive weight gain after weaning, impaired hypothalamic regulation and reduced fertility. In conjunction, human and mouse data suggest that several genes and snoRNAs in the PWS domain may contribute to the PWS clinical phenotype, but whether PWS truly represents a ‘contiguous gene syndrome’ remains elusive.

Here we report the first individuals with point mutations in a protein-coding gene within the PWS domain. Subject 1 was enrolled in a whole-genome sequencing research study, and subjects 2–4 were identified through clinical whole-exome sequencing. In both instances, samples were submitted without prescreening criteria. Participation was based on the referring provider’s determination that the affected individual likely had a genetic cause of disease.

Subject 1 was ascertained at age 13 years with a history of a PWS-like phenotype, ASD and mild intellectual disability. Using highly accurate whole-genome sequencing with 60x coverage (developed by Drmanac et al.), he was found to carry a heterozygous de novo c.1652delT (p.Val551fs) mutation in MAGEL2 (NM_019066.4), one of the protein-coding genes in the PWS domain, encoding a ubiquitin ligase enhancer, which is required for endosomal protein recycling. Given that MAGEL2 is only expressed from the paternal allele, we investigated whether the mutation was present on the paternal or maternal copy of chromosome 15. We performed long-fragment analysis (in part as previously reported by Peters et al.)³, which, in conjunction with parental SNP genotyping in proximity to the mutated locus, determined that the MAGEL2 mutation was on the paternal allele (Online Methods).

On the basis of the findings in subject 1, the Baylor College of Medicine Whole-Genome Laboratory clinical whole-exome...
A sequencing database was searched for probable pathogenic mutations in MAGEL2. Three additional subjects with nonsense or frameshift-indel mutations were ascertained. A total of 1,248 whole-exome sequencing cases were reviewed.

Subject 2 was an 8-year-old boy with classic PWS, meeting the 1993 diagnostic criteria. He carried a heterozygous c.1802delC (p.Pro601fs) mutation, which was not maternally inherited (father unavailable).

Subject 3 was a 5-year-old boy with a de novo heterozygous c.3181_3182delAT (p.Ile1061fs) mutation. Although he had a history of feeding difficulties as an infant, requiring tube feeding, and excessive weight gain during childhood, cryptorchidism, short stature, some of the typical behavioral phenotypes of PWS and intellectual disability, he did not meet full clinical criteria for the condition. The scenario was similar for subject 4, a 19-year-old boy, who met four of the major diagnostic criteria (five necessary): neonatal hypotonia and feeding difficulties requiring tube feeding, followed by hyperphagia and absence of satiety, and intellectual disability. He had a de novo c.3124C>T (p.Gln1024*) mutation. Clinical phenotypes are summarized in Table 1.

We then developed a test allowing the determination of the parental origin of the affected allele.

Table 1 Molecular and clinical phenotypes of four individuals with truncating MAGEL2 mutations

Subject	Sex	Age at time of diagnosis	Mutation	Inheritance	Affected allele	PWS major criteria	PWS minor criteria	Other symptoms (non-PWS criteria)
1	M	12 years	c.1652delT	De novo	Paternal	Neonatal hypotonia, poor suck	Infantile lethargy, weak cry	Autism spectrum disorder
2	M	8 years	c.1802delC	Not maternal	Paternal	Neonatal hypotonia, poor suck	Infantile lethargy, weak cry	Autism spectrum disorder
3	M	5 years	c.3181_3182del	De novo	Paternal	Feeding problems in infancy, with need for special feeding technique	Small hands	Contractures of the proximal and distal interphalangeal joints
4	M	19 years	c.3124C>T	De novo	Paternal	Excessive weight gain before age of 6 years	Narrow hands	Contractures of the proximal and distal interphalangeal joints

M, male; +, present; –, not present. Asterisk denotes nonsense substitution.

*According to criteria in Holm et al.1.

Figure 1 Truncating mutations on the paternal allele of MAGEL2.

(a) GC content of MAGEL2 and flanking sequence at 15q11.2 (according to the UCSC Genome Browser, hg19).

(b) Truncating MAGEL2 mutations reported in this manuscript are indicated relative to their positions in the coding sequence of this single-exon gene. For phasing of MAGEL2 mutations, genomic DNA was digested with the methylation-sensitive restriction endonuclease SmaI, which leaves only the methylated paternal MAGEL2 allele intact. Digestion is followed by long-range PCR.
de novo MAGEL2 mutations independent of SNP genotypes. MAGEL2 is a relatively GC-rich single-exon gene (Fig. 1a) with CpGs methylated on the maternal chromosome 15, and it is exclusively expressed from the unmethylated paternal allele. The MAGEL2 coding sequence contains four restriction sites (5'-CCCGGG-3') for the methylation-sensitive restriction endonuclease SmaI (Fig. 1b). The unmethylated allele is digested by SmaI, whereas the methylated allele remains intact. PCR amplification after SmaI digestion using oligonucleotide primers flanking one or more of the digestion sites followed by Sanger sequencing detects only the maternal allele (Online Methods). The detection of known MAGEL2 mutations following SmaI digestion suggests that they are located on the maternal (inactive) allele. In contrast, a mutation undetectable by Sanger sequencing following SmaI digestion is located on the paternal allele and is potentially pathogenic.

Using this approach, we showed that the MAGEL2 mutations in all four subjects were on the paternal allele (Table 2). Given the functional hemizygosity for this gene, a truncating mutation on the paternal allele leaves affected individuals without functional expressed MAGEL2, rendering the mutation potentially pathogenic.

In summary, this is the first report, to our knowledge, of point mutations in the imprinted MAGEL2 gene in the 15q11-q13 domain causing classic PWS (subject 2) and PWS-like phenotypes (subjects 1, 3 and 4). This finding is particularly interesting, given previous reports3–5 of three individuals with small deletions of the SNORD116 snoRNA cluster, two of which met full diagnostic criteria for PWS. There could be genetic heterogeneity underlying PWS or the phenotypic overlap between cases with SNORD116@ deletion and those with MAGEL2 mutation might be caused by changes in higher order chromatin structure at the 15q11-q13 locus14. Many speculations are possible, but the answer is unknown at present. At this time, there does not seem to be a genotype-phenotype correlation (Supplementary Table 1).

All four subjects reported here had a diagnosis of ASD on the basis of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th edition) criteria and clinical evaluation by an expert. This shared feature suggests that MAGEL2 is an additional gene in the ever-growing list of autism susceptibility genes. In a previous study investigating the comorbidity of PWS with ASD, 19% of individuals with PWS met diagnostic criteria for ASD15. Even compared to PWS generally, ASD is over-represented in our cohort of individuals with truncating MAGEL2 mutations (four of four subjects affected), but additional individuals need to be ascertained before drawing conclusions. Nonsense or frameshifting mutations in MAGEL2 have not been reported in exome sequencing studies of individuals with autism16–23. The GC richness of the gene may impair exon capture, as well as subsequent sequencing.

The phenotypes associated with MAGEL2 loss-of-function mutations reported herein appear consistent with data from Magel2-null mice, which predominantly manifest poor suckling, neonatal growth retardation, excessive weight gain after weaning, impaired hypothalamic regulation and delayed onset of puberty as well as reduced fertility24. Learning and memory were found to be normal in the Magel2-null mice, which led to the interpretation that other genes had to be responsible for these features. To our knowledge, there are no reports of Magel2-null mice being tested for autism-like behaviors. The latter should probably be considered, given the high prevalence of ASD among humans with MAGEL2 loss of function, at least in this first report.

On the basis of our data, we recommend considering MAGEL2 sequencing or exome sequencing in complex autism, especially in individuals with a history of neonatal hypotonia, feeding difficulties or hypogonadism.

The identification of neurological disorders caused by loss-of-function mutations in imprinted genes is particularly important, as novel therapeutic approaches might be envisioned. In another neurodevelopmental disorder, Angelman syndrome, which is caused by deletion or mutation of the paternally imprinted gene UBE3A, topoisomerase inhibitors could be used to unsilence the dormant Ube3a allele in mouse neurons25. Also, antisense RNA could potentially activate the inactive, methylated allele of imprinted genes26. We hope that our report will generate new research efforts to investigate the function and clinical importance of this gene with the aim of ultimately benefiting individuals with its associated disorders.

METHODS
Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We are indebted to the patients and their families for their willingness to participate in our research study. We thank P. Zimmerman and E. Austin for clinical assistance. C.P.S. is generously supported by the Joan and Stanford Alexander family. C.P.S. is a recipient of a Clinical Scientist Development Award from the Doris Duke Charitable Foundation. M.L.G.-G. and C.T.C. are generously supported by the Cullen Foundation for Higher Education and the Houston Foundation. A.L.B. is supported by US National Institutes of Health grant HD037283.

AUTHOR CONTRIBUTIONS
M.L.G.-G. and M.A.M. performed whole-genome sequencing and phase determination on subject 1. M.L.G.-G., M.A.M., B.A.P., R.D. and C.T.C. designed and analyzed the experiments for subject 1. F.X. and Y.Y. performed whole-exome sequencing and phase determination on subjects 2–4. C.P.S., F.X., Y.Y., B.Z., A.L.B. and Y.Y. designed and analyzed the experiments for subjects 2–4. I.P. and K.W.G. contributed subjects and provided detailed physical examinations. C.P.S. conceived the overall study, coordinated enrollment, supervised the experiments, wrote the manuscript and generated the figures and tables. All authors participated in the discussion and interpretation of data and results, and all participated in editing and revising the manuscript.
COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Holm, V.A. et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91, 398–402 (1993).
2. Cassidy, S.B., Schwartz, S., Miller, J.L. & Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 14, 10–26 (2012).
3. Sahoo, T. et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721 (2008).
4. de Smith, A.J. et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 18, 3257–3265 (2009).
5. Duker, A.L. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18, 1196–1201 (2010).
6. Kanber, D. et al. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur. J. Hum. Genet. 17, 582–590 (2009).
7. Resnick, J.L., Nicholls, R.D. & Wervick, R. Recommendations for the investigation of animal models of Prader-Willi syndrome. Mamm. Genome 24, 165–178 (2013).
8. Tennese, A.A. & Wervick, R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 152, 967–978 (2011).
9. Mercer, R.E. & Wervick, R. Loss of Magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS ONE 4, e4291 (2009).
10. Bischof, J.M., Stewart, C.L. & Wervick, R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum. Mol. Genet. 16, 2713–2719 (2007).
11. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).
12. Doyle, J.M., Gao, J., Wang, J., Yang, M. & Potts, P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 39, 963–974 (2010).
13. Peters, B.A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).
14. Leung, K.N., Valler, R.O., DuBose, A.J., Resnick, J.L. & LaSalvia, J.M. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum. Mol. Genet. 18, 4227–4238 (2009).
15. Descheemaeker, M.J., Govers, V., Vermeulen, P. & Fryns, J.P. Pervasive developmental disorders in Prader-Willi syndrome: the Leuven experience in 59 subjects and controls. Am. J. Med. Genet. A 140, 1136–1142 (2006).
16. O’Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).
17. Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).
18. O’Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).
19. Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).
20. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).
21. O’Roak, B.J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).
22. Michaelson, J.J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012).
23. Xu, T.W. et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 77, 259–273 (2013).
24. Bervini, S. & Herzog, H. Mouse models of Prader-Willi Syndrome: a systematic review. Front. Neuroendocrinol. 34, 107–119 (2013).
25. Huang, H.S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–189 (2012).
26. Bertaux, N. et al. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol. Cell. Biol. 28, 6731–6745 (2008).
ONLINE METHODS

Human subjects. Subject 1 and his parents were enrolled in a whole-genome sequencing study, approved by the Institutional Review Board of Baylor College of Medicine. Enrollment in this study is not based on a particular phenotype but rather on the referring physician’s determination that the enrolled subject likely has a genetic change that has led to genetic disease. Subjects 2–4 were referred to the Medical Genetics Laboratories at the Baylor College of Medicine for whole-exome sequencing. Whole-exome sequencing has been offered as a clinical test at the Baylor College of Medicine Whole-Genome Laboratory since October 2011. These are consecutive, unrelated samples without prescreening criteria. The clinical whole-exome sequencing test is not a designed study. Among the cases referred for clinical whole-exome sequencing, 91.2% were pediatric, 8.1% were adult and 0.7% were prenatal. Of the referred subjects, 78% had a history of developmental delay and/or intellectual disability, and 12.2% had a history of ASD.

After the identification of truncating MAGEL2 mutations, subjects 2–4 and their respective parents were enrolled in a research study investigating variants of unknown significance, approved by the Institutional Review Board of Baylor College of Medicine. Informed consent for all study participants was obtained. For individuals 1–3, for whom clinical photographs are shown in the Supplementary Note, consent was obtained specifically stating the agreement to publish these photographs in medical publications, even if the individual displayed in the picture can be recognized.

Whole-genome sequencing analysis. Family 1 comprises two healthy parents and an affected son. Their DNA was sent to Complete Genomics, Inc., for whole-genome sequence analysis. Genomics data were analyzed under a de novo model where we identified two high-quality private missense mutations in the affected individual, which were homozygous reference genotypes in both parents (data obtained from the masterVar file from each genomic data set; see URLs); both mutations were absent in the 1000 Genomes Project, dbSNP and the ESP6500 project. The first de novo mutation in gene MYO1H alters amino acid 83 in the protein (NP_001094891.3) from an alanine to a valine; however, there are no known human disorders associated with amino acid changes encoded in MYO1H (according to Online Mendelian Inheritance in Man, OMIM). The second de novo mutation, in gene MAGEL2, generates a single-base frameshift in the protein (NP_061939.3, 1,249 amino acids) starting at amino acid 551 and continuing until the new frame reaches a termination codon at amino acid 701. The MAGEL2 mutation was validated by Sanger sequencing using PCR with primers Val1_Fw and Val1_Re (Supplementary Table 2). Given the fact that MAGEL2 is located in a maternally imprinted region, 15q11.2, we proceeded to determine the phase of the mutation.

Phasing the de novo mutation in MAGEL2. Purified DNA from subject 1 was aliquoted at ~0.1 genome equivalents per well across a 384-well plate and subjected to the multiple-displacement amplification (MDA) method of whole-genome amplification as previously described13. At this concentration, there is a 4% probability that any two linked loci from separate DNA molecules will be aliquoted to the same well. Furthermore, there is a 2% probability that two linked loci of different parental origin will be aliquoted to the same well. The MDA reaction was incubated at 37 °C for 19 h.

After heat inactivation of the MDA reaction, each well was diluted 13.4-fold with water. An aliquot of each well was diluted a further fivefold with water. An aliquot of this 67-fold-diluted DNA (1 µl) was used as template for quantitative PCR to identify wells containing SNP regions linked to the de novo deletion—one paternally inherited SNP located 12,785 bp upstream of the deletion and three maternally inherited SNPs located 506 bp upstream, 422 bp upstream and 8,032 bp downstream of the deletion. Primers used were pSNP-12785qPCRseqFw, pSNP-12785qPCRseqRe, mSNP-506-422qPCRseqFw, mSNP-506-422qPCRseqRe, mSNP+8032qPCRseqFw and mSNP+8032qPCRseqRe (Supplementary Table 2). Fast SYBR Green Master Mix (Applied Biosystems) was used for quantitative PCR. Quantitative PCR products of flanking SNPs were used as template for PCR with PfuTurbo Cx polymerase (Agilent Technologies) because the presence of UTP and uracil-N-glycosylase in the SYBR Green Master Mix makes the quantitative PCR products unstable.

Wells in which SNP regions were amplified by quantitative PCR were assumed to contain DNA fragments spanning the amplified SNP and the de novo deletion. A subset of these wells were chosen for PCR with primers magel1F and magel1R (Supplementary Table 2) using KAPA HiFi HotStart ReadyMix (Kapa Biosystems) according to the manufacturer’s instructions and the cycling conditions described above to amplify the de novo deletion region. MDA product (~40 ng) was used as template for KAPA PCR.

KAPA HiFi and Pfu PCR products were gel purified (GeneJET Gel Extraction kit, Fermentas) and submitted to Elim Biopharmaceuticals for Sanger sequencing. Further details on phasing of the de novo mutation are provided in Supplementary Figure 2.

Copy number variation and methylation. We verified the absence of any copy number variation in the PWS region (15q11.2-q13) through analysis of the copy number variant calls generated by Complete Genomics in the copy number variation report files (see URLs) for subject 1 and by clinical chromosome microarray analysis for all four subjects27.

Methylation-sensitive digestion of MAGEL2 followed by Sanger sequencing. DNA from subjects was digested with restriction endonuclease SmaI (New England Biosystems) and amplified by long-range PCR with DNA primers LR_magel2_for and LR_magel2_rev (Supplementary Table 2). Specific mutation loci were amplified by nested PCR and further analyzed by capillary electrophoresis sequencing. The following pairs of DNA primers were used for nested PCR: Nested_PCR1_for, Nested_PCR1_rev, Nested_PCR2_for, Nested_PCR2_rev (Supplementary Table 2).

27. Boone, P.M. et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum. Mutat. 31, 1326–1342 (2010).