Finsler metrics with positive constant flag curvature

CHANG-WAN KIM AND KYUNGHA MIN

Dedicated to Professor Karsten Grove on the occasion of his 60th birthday

Abstract. We showed that any reversible Finsler metric with positive constant flag curvature must be Riemannian.

Mathematics Subject Classification (2000). 53C60, 53B40.

Keywords. Reversible Finsler metrics, positive constant flag curvature.

Introduction. One of the fundamental problems in Finsler geometry is to describe the Finsler metrics of positive constant flag curvature. In this case, Shen [13] asserts that the Finsler manifold must be a diffeomorphic sphere, provided that it is simply connected. Bryant [5] has constructed a family of non-reversible Finsler metrics of positive constant flag curvature on spheres which are projectively flat. Bejancu and Farran [4] have proved that a Finsler manifold is of positive constant flag curvature one if and only if the unit horizontal Reeb vector field is a Killing vector field on the unit tangent bundle. However, the geometric structure of such metric still remains mysterious (see [8, 9]).

Kim and Yim [10] showed that if reversible Finsler metrics with positive constant flag curvature have vanishing mean tangent curvature, then it is Riemannian. Likewise, it has been recently remarked by Bryant [6] that the fundamental and deeper result of LeBrun and Mason, in [11], implies a reversible Finsler metric on the two-dimensional sphere with positive constant flag curvature is Riemannian. Our main theorem below improves the previous result into manifolds with dimension greater than two.

Theorem. Any reversible Finsler metric with positive constant flag curvature must be Riemannian.
Bao and Shen [3] also constructed a family of Randers metrics with positive constant flag curvature which are not Riemannian. These Finsler metrics are non-reversible, and hence they do not contradict the main theorem.

The first author is indebted to professors Robert Bryant, Patrick Foulon and Zhongmin Shen for many valuable discussions and comments in the preparation of this paper while visiting Centre International de Rencontres Mathématiques in November of 2005. The second author executed this research as a part of the research project “Level-set Methods on Triangulated Surfaces and Their Applications” (2007.9 ∼ 2010.8) funded by KOSEF.

1. Preliminaries. In this section, we shall recall some well-known facts about Finsler geometry. See [2], for more details. Let M be an n-dimensional smooth manifold and TM denote its tangent bundle. A Finsler structure on a manifold M is a map $F : TM \to [0, \infty)$ which has the following properties

(a) F is smooth on $\tilde{TM} := TM \setminus \{0\};$
(b) $F(ty) = tF(y)$, for all $t > 0$, $y \in T_xM;$
(c) F^2 is strongly convex, i.e.,
$$g_{ij}(x,y) := \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}(x,y)$$
is positive definite for all $(x,y) \in \tilde{TM}$.

A manifold M endowed with a Finsler structure will be called a Finsler manifold. Note that we never require smoothness at the zero section. Requiring that $F(x, \cdot)$ is smooth on all of T_xM implies that $F(x, \cdot)$ is a Hilbert norm (see [14]). If condition (b) holds for all t we will say that the Finsler structure F is reversible. A Minkowski space is a finite dimensional real vector space that has a Finsler metric independent of x, $F(x, y) = F(y)$. Let F_x denote the restriction of F onto T_xM. When F is Riemannian, (T_xM, F_x) are all isometric to the Euclidean space \mathbb{R}^n. For a general Finsler metric F, however, the Minkowski space (T_xM, F_x) may not be isometric to each other.

The Minkowski metric F_x induces a Riemannian metric \hat{g}_x on $T_xM \setminus \{0\}$ by
$$\hat{g}_x(u, v) := g(x, y)(u, v), u, v \in T_yT_xM = T_xM.$$ Let $\{y^i\}_{i=1}^n$ be a global coordinate system in T_xM associated with a basis $\{b_i\}_{i=1}^n$. The Riemannian volume form of \hat{g}_x is given by
$$d\hat{g}_x = \sqrt{\det (g_{ij}(x,y))} \, dy^1 \wedge \cdots \wedge dy^n$$
$$= \sqrt{\det (g_{ij}(x,y))} \, dy,$$
where $g_{ij}(x,y) = g(x,y)(b_i, b_j)$. For $x \in M$, let $S_xM := \{y \in T_xM : F(x, y) = 1\}$ denote the unit tangent sphere at x, and $D_xM := \{y \in T_xM : F(x, y) \leq 1\}$ the unit tangent disk at x. Let \hat{g}_x denote the induced Riemannian metric on S_xM.
Denote by $\text{vol}_{\hat{g}_x}(D_x M)$ and $\text{vol}_{\hat{g}_x}(S_x M)$ the Riemannian volume of $(D_x M, \hat{g}_x)$ and $(S_x M, \hat{g}_x)$, respectively. By Gauss’ Lemma, we have $d\hat{g}_x(ty) = t^{n-1}d\hat{g}_x(y)$ and hence

$$\text{vol}_{\hat{g}_x}(D_x M) := \int_{D_x M} 1 \, d\hat{g}_x = \frac{1}{n} \int_0^{t^{n-1}} \left\{ \int_{S_x M} 1 \, d\hat{g}_x \right\} \, dt = \frac{1}{n} \text{vol}_{\hat{g}_x}(S_x M).$$

Lemma 1.1. Let (M, F) be an n-dimensional reversible Finsler manifold. Then for all $x \in M$,

$$\text{vol}_{\hat{g}_x}(D_x M) \leq \beta(n), \quad \text{vol}_{\hat{g}_x}(S_x M) \leq \alpha(n-1),$$

where $\beta(n)$ is the volume of the unit n-ball B^n in Euclidean space \mathbb{R}^n and $\alpha(n-1)$ is that of the unit $(n-1)$-sphere S^{n-1} in \mathbb{R}^n, and equality holds if and only if $(T_x M, F_x)$ is Euclidean.

If F is not a reversible Finsler metric, then the volume $\text{vol}_{\hat{g}_x}(S_x M)$ may be greater than $\alpha(n-1)$ (see [3]).

Proof. Recall that given a convex set $D_x M$ in a vector space $T_x M$, the dual set $D^*_x M$ in the dual tangent space $T^*_x M$ is defined by

$$D^*_x M := \{ \xi \in T^*_x M : \xi(y) \leq 1 \text{ for all } y \in D_x M \}.$$

By Blaschke-Santaló’s inequality [12] which requires the symmetry of $D_x M$ and $D^*_x M$, we have $\text{vol}(D_x M) \cdot \text{vol}(D^*_x M) \leq \beta(n)^2$, and equality holds if and only if $D_x M$ is an ellipsoid.

Note that the map

$$y^j \mapsto \sum_{j=1}^n g_{ij}(x, y)y^j$$

is a diffeomorphism between $D_x M$ and $D^*_x M$ with Jacobian $\det (g_{ij}(x, y))$. Therefore

$$\int_{D_x M} \det (g_{ij}(x, y)) \, dy = \int_{D^*_x M} 1 \, d\xi = \text{vol}(D^*_x M).$$

Then we have that
\[
\text{vol}_{\hat{g}}(D_x M) := \int_{D_x M} 1 \, d\hat{g}_{x} = \int_{D_x M} \sqrt{\det (g_{ij}(x, y))} \, dy \\
\leq \left\{ \int_{D_x M} \det (g_{ij}(x, y)) \, dy \right\}^{1/2} \cdot \left\{ \int_{D_x M} 1 \, dy \right\}^{1/2} \\
= \{ \text{vol}(D^*_x M) \cdot \text{vol}(D_x M) \}^{1/2} \\
\leq \beta(n),
\]
and equality holds if and only if \(\det(g_{ij}(x, y)) \) is constant for \(y \) and \(D_x M \) is an ellipsoid. □

The idea of the proof is borrowed from [7], where Duran established a sharp upper bound on the volume of the Sasaki metric on the unit tangent sphere bundle. Here we are only concerned with the volume of the induced Riemannian metric on the unit tangent sphere.

The Chern connection on a Finsler manifold \(M \) is defined by the unique set of local 1-forms \(\{ \omega^i_j \}_{1 \leq i, j \leq n} \) on \(TM \) such that
\[
d\omega^i_j = \sum_{k=1}^{n} \omega^j_k \wedge \omega^i_k, \\
dg_{ij} = \sum_{k=1}^{n} (g_{kj} \omega^i_k + g_{ik} \omega^j_k + 2A_{ijk} \omega^k_n),
\]
where \(A_{ijk} = \frac{\partial g_{i,j}}{\partial y^k} \).

Define the set of local curvature forms \(\Theta^i_j \) by
\[
\Theta^i_j := \sum_{k=1}^{n} \left(d\omega^i_k - \omega^j_k \wedge \omega^i_k \right).
\]
Then we can write
\[
\Theta^i_j = \sum_{k,l=1}^{n} \left(\frac{1}{2} R^i_{jkl} \omega^k \wedge \omega^l + P^i_{jkl} \omega^k \wedge \omega^{n+l} \right).
\]

Define the curvature tensor \(R \) by
\[
R(U, V)W = \sum_{i,j,k,l=1}^{n} u^i v^j w^k R^i_{jkl} E_i,
\]
where \(U = \sum_{i=1}^{n} u^i E_i, \ V = \sum_{i=1}^{n} v^i E_i \) and \(W = \sum_{i=1}^{n} w^i E_i \) are vectors in the pull-back bundle \(\pi^*TM \) of \(TM \) by \(\pi : TM \to M \). For a fixed \(v \in T_x M \), let \(\gamma_v \) be the geodesic from \(\gamma_v(0) = x \) with \(\dot{\gamma}_v(0) = v \). Along \(\gamma_v \), we have the osculating Riemannian metrics
\[
g_{\gamma_v(t)} := g(\gamma_v(t), \dot{\gamma}_v(t))
\]
in \(T_{\gamma(t)}M \). Define the flag curvature \(R_{\dot{\gamma}}(u(t)) : T_{\gamma(t)}M \to T_{\gamma(t)}M \) by

\[
R_{\dot{\gamma}}(u(t)) := R(U(t),V(t))V(t),
\]

where \(U(t) = (\dot{\gamma}_v(t); u(t)), V(t) = (\dot{\gamma}_v(t); \gamma_v(t)) \in \pi^*TM \). The flag curvature is independent of connections, that is, this term appears in the second variation formula of arc length, thus is of particular interest to us. We remark that if \(F \) is Riemannian, then the flag curvature coincides with the sectional curvature.

Define a map \(\psi_x : (0, \infty) \times S_x^*M \to M \) by \(\psi_x(t,v) = \gamma_v(t) \). The following proposition proved by Shen [13, Theorem 0.1] will play a crucial role in this paper.

Proposition 1.2. Let \((M,F)\) be a simply connected reversible Finsler manifold with constant flag curvature one. Then for every \(x \in M \), there is a unique point \(x^* \in M \) with \(\text{dist}(x, x^*) = \pi \), and every geodesic issuing from \(x \) is closed with length \(2\pi \), passing through \(x^* \). The map \(\psi_x \) restricted to \((0, \pi) \times S_xM \) is a diffeomorphism to \(M \setminus \{x, x^*\} \). Furthermore, the osculating Riemannian metric \(\hat{g}^\nu(t) \) has the form

\[
(\psi_x)^* \left(g^\nu(t) \right) = dt^2 \oplus \sin^2 t \hat{g}_x.
\]

Remark 1.3. In this case, the osculating Riemannian metric \(g^\nu(t) \) on \(M \setminus \{x, x^*\} \) is independent of the direction \(v \in S_x^*M \) and dependent of the induced Riemannian metric \(\hat{g}_x \) on \(S_xM \) and the distance from \(x \). Hence the volume density

\[
dg^\nu(t) = \sqrt{\det \left(\hat{g}_{ij}^\nu(t) \right)} \, dx
\]

is expressed by

\[
(\psi_x)^* \left(dg^\nu(t) \right) = \sqrt{\det \left((\psi_x)^* \hat{g}_ij^\nu(t) \right)} \, dt \, d\hat{g}_x = \sin^{n-1} t \, dt \, d\hat{g}_x,
\]

and does not dependent of the direction \(v \).

By using Lemma 1.1 and Proposition 1.2, we obtain the following lemma.

Lemma 1.4. For \(M \) and \(g^\nu(t) \) defined above, we have that the volume \(\text{vol}_{g^\nu(t)}(M) \) of \(M \) with respect to the osculating Riemannian metric \(g^\nu(t) \) on \(M \setminus \{x, x^*\} \) less than equality to \(\alpha(n) \) and equality holds if and only if \((T_xM, F_x)\) is Euclidean.
Proof. By Proposition 1.2, we obtain
\[
\text{vol}_{g_\gamma(t)}(M) := \int_{M \setminus \{x, x^*\}} 1 \, dg_\gamma(t)
= \int_{(0, \pi) \times S_x M} \sqrt{\det \left((\psi_x)^* (g_{ij}^\gamma(t)) \right)} \, dt \, d\tilde{g}_x
= \text{vol}_{\tilde{g}_x}(S_x M) \cdot \int_0^\pi \sin^{n-1} t \, dt
\leq \alpha(n - 1) \cdot \int_0^\pi \sin^{n-1} t \, dt = \alpha(n).
\]
We note that the last line is obtained from Lemma 1.1 and equality holds if and only if \((T_x M, F_x)\) is Euclidean. \(\square\)

2. Symplectic volumes. In this section we prove our main theorem.

Let \(\{\frac{\partial}{\partial y}^i\}_{i=1}^n\) be a local basis for \(TM\) and \(\{dx^i\}_{i=1}^n\) be its dual basis for \(T^*M\).

By the Chern connection, we obtain the decomposition
\[
T^*(\tilde{T}M) = \text{span}\{dx^i\} \oplus \text{span}\{\delta y^i\},
\]
where \(\delta y^i\) is the vertical component \(dy^i\) and is given by
\[
\delta y^i = dy^i + \sum_{j=1}^n N_{ij}^j dx^j
\]
for some \(N_{ij}^j\) determined by the Chern connection. Then there is a naturally induced Sasaki-Riemannian metric \(h\) on \(\tilde{T}M\) defined by
\[
h((x, y)) := \sum_{i,j=1}^n (g_{ij}(x, y) \, dx^i \otimes dx^j + g_{ij}(x, y) \, \delta y^i \otimes \delta y^j),
\]
and the volume form \(dV\) of \(h\) on \(\tilde{T}M\) is given by
\[
dV((x, y)) := \sqrt{\det (g_{ij}(x, y))} \, dx^1 \wedge \cdots \wedge dx^n \cdot \sqrt{\det (g_{ij}(x, y))} \, \delta y^1 \wedge \cdots \wedge \delta y^n
= \sqrt{\det (g_{ij}(x, y))} \, dx^1 \wedge \cdots \wedge dx^n \cdot \sqrt{\det (g_{ij}(x, y))} \, dy^1 \wedge \cdots \wedge dy^n
= dg^y \wedge d\tilde{g}_x.
\]

Let \(\omega = \sum_{i=1}^n \frac{\partial F}{\partial y^i} dx^i\) be the Hilbert 1-form on \(\tilde{T}M\). In local coordinates, we have the volume form
\[
dV = \frac{1}{n!} d\omega \wedge \cdots \wedge d\omega_{\text{n-times}}
\]
on \(\tilde{T}M\).
There is another interpretation of this volume on tangent space. Let SM be the unit tangent bundle on M and \(i : SM \to TM \) the natural embedding. Let \(X_\omega \) be the Reeb field of the Hilbert 1-form \(\omega \). It is uniquely determined by the conditions
\[
\omega (X_\omega) = 1, i_{X_\omega} (d\omega) = 0.
\]
In particular we have \(L_{X_\omega} \omega = 0 \) and the geodesic flow of Finsler metric, i.e., the flow with infinitesimal generator \(X_\omega \), consists of contact diffeomorphisms and the volume form \(i^* (dV) \) on \(SM \) is
\[
dV = \frac{1}{(n-1)!} \omega \wedge (\omega \wedge \cdot \cdot \cdot \wedge \omega)_{(n-1)-times} = d\dot{g}_x \wedge dg_x^y.
\]
Since \(L_{X_\omega} \omega = 0 \), the volume form is invariant under the geodesic flow of Finsler metric. We shall use the same notation \(dV \) for the volume forms of \(TM \) and \(SM \), if no confusion is caused.

By using Remark 1.3 and Lemma 1.4, we obtain the following theorem.

Theorem 2.1. Let \((M, F) \) be an \(n \)-dimensional simply connected reversible Finsler manifold with constant flag curvature one. Then we have
\[
V(SM) \leq \alpha (n-1) \cdot \alpha (n),
\]
and equality holds if and only if \((M, F) \) is a Riemannian manifold.

Proof. By Proposition 1.2, for all \(x \in M \), the map \(\psi_x : (0, \pi) \times S_x M \to M \setminus \{ x, x^* \} \), \(\psi_x (t, v) \mapsto \gamma_v (t) \) is a diffeomorphism and we have that
\[
V(SM) = \int_{\bigcup_{\gamma_v (t) \in M \setminus \{ x, x^* \}} S_{\gamma_v (t)} M} 1 \, d\dot{\gamma}_v (t) \wedge dg_{\gamma_v (t)}
= \int_{M \setminus \{ x, x^* \}} \left\{ \int_{S_{\gamma_v (t)} M} 1 \, d\dot{\gamma}_v (t) \right\} dg_{\gamma_v (t)}
\leq \alpha (n-1) \cdot \alpha (n).
\]
We note that the third line is obtained from Remark 1.3 and the last line is obtained from Lemmas 1.1 and 1.4 and equality holds if and only if \((M, F) \) is a Riemannian manifold.

The notion of symplectic structure came up in Weinstein’s work on the Blaschke conjecture in [15]. He proved that for an \(n \)-dimensional Riemannian manifold \(M \) all of whose geodesics are closed and of the same length \(2\pi \), the ratio \(\text{vol}(M) / ((2\pi)^n) \).
\(\alpha(n) \) is an integer. The symplectic structure of Weinstein’s proof implies that they can be extended to Finsler manifolds with little modification. Since the Riemannian relation the volume \(V(SM) \) of \(SM \) with respect to the volume form \(dV \), \(V(SM) = \alpha(n - 1) \cdot \text{vol}(M) \) breaks down in the Finsler case, we rewrite Weinstein’s result as follows.

Theorem 2.2. Let \((M, F)\) be an \(n \)-dimensional Finsler manifold all of whose geodesics are closed and of the same length \(2\pi \). Then the ratio

\[
i(M) = \frac{V(SM)}{V(S\mathbb{S}^n)}\]

is an integer.

Proof. Since the orbits of the geodesic spray are all periodic with \(2\pi \), the geodesic flow on the \(SM \) defines a fixed point free \(\mathbb{S}^1 = \mathbb{R}/\mathbb{Z} \)-action, whose orbits are identified with closed geodesics of length \(2\pi \). Therefore, the orbit space \(SM/\mathbb{S}^1 \) may be considered as a \(2(n-1) \)-dimensional manifold \(CM \) of all closed geodesics of \(M \). Let \(p : SM \rightarrow CM \) be the canonical projection which sends a given unit vector to the geodesic which has this vector as initial condition. Hence the projection \(p : SM \rightarrow CM \) is a principle bundle with structure group \(\mathbb{S}^1 \), and \(\dot{A}lvarez Paiva [1] \) proved that if \(dw \) is the standard symplectic form on \(TM \), then there is a unique symplectic form \(\Omega \) on \(CM \) which satisfies the equation

\[
p^*\Omega = i^*\left(\frac{d\omega}{2\pi} \right) = \frac{1}{2\pi} \cdot d\omega.
\]

From the Fubini theorem for fibrations we get

\[
V(SM) = \int_{SM} \frac{1}{(n-1)!} \omega \wedge (d\omega)^{n-1} = \frac{1}{(n-1)!} \int_{SM} \omega \wedge p^*(2\pi\Omega)^{n-1} = \frac{(2\pi)^{n-1}}{(n-1)!} \int_{x \in CM} \left(\int_{p^{-1}(x)} \omega \right) \Omega^{n-1}.
\]

Now we set

\[
j(M) := \int_{CM} \Omega^{n-1}.
\]

Then \(j(M) \) is a topological invariant of the fibration \(p : SM \rightarrow CM \). We adapt Weinstein’s argument (see [15]) to see that the integer \(j(M) \) is an even integer \(2 \cdot i(M) \). However we know \(\int_{p^{-1}(x)} \omega = 2\pi \) and

\[
V(SM) = \frac{(2\pi)^n}{(n-1)!} \int_{CM} \Omega^{n-1} = \frac{(2\pi)^n}{(n-1)!} 2 \cdot i(M).
\]
Since $2 \cdot (2\pi)^n/(n-1)! = \alpha(n-1) \cdot \alpha(n) = V(S^n)$, we obtain the equality as stated in the theorem. □

Under the assumption of Theorem 2.2, if M is homeomorphic to the sphere, Weinstein [15] and Yang [16] showed that the topological invariant $i(M)$ is equal to one.

Now we are ready to prove main theorem using Theorems 2.1 and 2.2.

Theorem 2.3. If (M,F) is an n-dimensional reversible Finsler manifold with constant flag curvature one, then F is a Riemannian metric.

Proof. We first recall that if the universal covering \overline{M} of M is an n-dimensional reversible Finsler manifold with constant flag curvature one, by Proposition 1.2 we know that every geodesic is closed with same length 2π and \overline{M} is a diffeomorphic to the n-dimensional standard sphere. Thus by Theorem 2.2 and the above remark, the symplectic volume of \overline{M}, $V(\overline{S^n})$ is equal to $\alpha(n-1) \cdot \alpha(n)$. Hence by Theorem 2.1, F is a Riemannian metric. □

References

[1] J. C. Álvarez Paiva, Symplectic geometry and Hilbert’s fourth problem, J. Differential Geometry 69, 353–378 (2005).
[2] D. Bao, S. S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics 200, Springer-Verlag, 2000.
[3] D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group \mathbb{S}^n, J. London Math. Soc. (2) 66, 453–467 (2002).
[4] A. Bejancu and H. R. Farran, A geometric characterization of Finsler manifolds of constant curvature $K = 1$, Int. J. Math. Math. Sci. 23, 399–407 (2000).
[5] R. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. (N.S.) 3, 161–203 (1997).
[6] R. Bryant, Geodesically reversible Finsler 2-spheres of constant curvature, Inspired by S. S. Chern, Nankai Tracts Math. 11, 95–111 (2006).
[7] C. E. Duran, A volume comparison theorem for Finsler manifolds, Proc. Amer. Math. Soc. 126, 3079–3082 (1998).
[8] P. Foulon, Curvature and global rigidity in Finsler manifolds, Houston J. Math. 28, 263–292 (2002).
[9] C.-W. Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. 88, 378–384 (2007).
[10] C.-W. Kim and J.-W. Yim, Finsler manifolds with positive constant flag curvature, Geom. Dedicata 94, 47–56 (2003).
[11] C. LeBrun and L. J. Mason, Zoll manifolds and complex surfaces, J. Differential Geometry 61, 453–535 (2002).
[12] M. MEYER AND A. PAJOR, On the Blaschke Santaló inequality, Arch. Math. 55, 82–93 (1990).
[13] Z. SHEN, Finsler manifolds of constant positive curvature, Cont. Math. 196, 83–93 (1995).
[14] F. W. WARNER, The conjugate locus of a Riemannian manifold, Amer. J. Math. 87, 575–604 (1965).
[15] A. WEINSTEIN, On the volume of manifolds all of whose geodesics are closed, J. Differential Geometry 9, 513–517 (1974).
[16] C. T. YANG, Odd-dimensional Wiedersehens manifolds are sphere, J. Differential Geometry 15, 91–96 (1980).

CHANG-WAN KIM, Korea Institute for Advanced Study, School of Mathematics, 207-43 CheongNyangNi 2-Dong, DongDaeMun-Gu, Seoul 130-722, Republic of Korea
e-mail: cwkimg@kias.re.kr

KYUNGHA MIN, SangMyung University, Division of Digital Media, 7 HongJi-Dong, JongRo-Gu, Seoul 110-743, Republic of Korea
e-mail: minkh@smu.ac.kr

Received: 18 August 2008