Large family of two-dimensional ferroelectric metals discovered via machine learning

Xing-Yu Ma, Hou-Yi Lyu, Kuan-Rong Hao, Yi-Ming Zhao, Xiaofeng Qian, Qing-Bo Yan, Gang Su

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Materials Science and Engineering, College of Engineering and College of Science, Texas A&M University, College Station, TX 77843, USA
Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

1. Introduction

Since the successful exfoliation of graphene [1] in 2004, numerous two-dimensional (2D) materials with extraordinary properties and rich potential applications have been discovered [2–4]. Ferroelectricity is an intriguing character of materials with switchable spontaneous electric polarization, which was generally believed to decay and even disappear if the film thickness is below a critical value [5–8]. For instance, BaTiO3 thin films lose their ferroelectricity below a critical thickness of about six unit cells [9]. However, several 2D materials have recently been reported to be ferroelectrics, including Group IV monochalcogenides [10–12], 1 T monolayer MoS2 [13], buckled CrN and CrB2 [14], In2Se3 and other II-III-VI3 compounds [15,16], MXenes (Sc2CO2) [17], AgBiP2Se6, CuMnP2X6 (M = Cr; X = S, Se) and CulnP2Se6 [18–21], in contrast to the conventional notion that ferroelectricity would disappear in 2D limit [5–8], suggesting an underexplored exciting realm of 2D materials.

It is often thought that ferroelectricity and metallicity cannot coexist in a metal because conduction electrons would screen out static internal electric fields. In 1965, Anderson and Blount proposed the concept of “ferroelectric metal”, however, it is only until recently that very rare ferroelectric metals were reported. Here, by combining high-throughput ab initio calculations and data-driven machine learning method with new electronic orbital based descriptors, we systematically investigated a large family (2964) of two-dimensional (2D) bimetal phosphates, and discovered 60 stable ferroelectrics with out-of-plane polarization, including 16 ferroelectric metals and 44 ferroelectric semiconductors that contain seven multiferroics. The ferroelectricity origins from spontaneous symmetry breaking induced by the opposite displacements of bimetal atoms, and the full-d-orbital coinage metal elements cause larger displacements and polarization than other elements. For 2D ferroelectric metals, the odd electrons per unit cell without spin polarization may lead to a half-filled energy band around Fermi level and is responsible for the metallicity. It is revealed that the conducting electrons mainly move on a single-side surface of the 2D layer, while both the ionic and electric contributions to polarization come from the other side and are vertical to the above layer, thereby causing the coexistence of metallicity and ferroelectricity. Van der Waals heterostructures based on ferroelectric metals may enable the change of Schottky barrier height or the Schottky-Ohmic contact type and induce a dramatic change of their vertical transport properties. Our work greatly expands the family of 2D ferroelectric metals and will spur further exploration of 2D ferroelectric metals.

© 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
switched using an external electric field [23], which may be the first experimental evidence for the coexistence of ferroelectricity and metallicity in a 2D material. Very recently, ferroelectricity driven nonlinear anomalous Hall current switching was proposed and the time-reversal invariance was experimentally demonstrated in odd-layer WTe$_2$ [28–30]. Nevertheless, until now, the examples of ferrelectric metals are still extremely sparse.

By combining high-throughput ab initio calculations and a data-driven machine learning model with new electronic orbital-based descriptors, here we systematically investigated a large family (2964) of 2D bimetal phosphates, and discovered total 60 stable ferroelectrics, including 16 ferroelectric metals and 44 ferroelectric semiconductors among which seven multiferroics and seven ferroelectric water-splitting photocatalysts are screened out. The physical origin of ferroelectricity in these 16 2D ferroelectric metals is owing to the spontaneous symmetry breaking induced by the opposite vertical displacements of bimetal atoms. The ferroelectric-paraelectric transitions were simulated, revealing that the polarization could be reversed by a vertical external electric field. These ferrelectric metals possess odd electrons in a unit cell, in which conducting electrons mainly distribute on a single-side surface, while the ionic and electric contributions to polarization come from the other side, causing the coexistence of ferroelectricity and metallicity. The present work highly enriches the family of ferrelectric metals, suggesting that ferrelectric metals could be achievable in 2D materials. As ferroelectric metals could be constructed of van der Waals heterostructures that may have wide applications in areas of ferroelectric tunneling junction, nonvolatile ferroelectric memory, etc., our proposal would spur great interest in exploring 2D ferrelectric metals in physics, materials sciences and information technology.

2. Materials and methods

The density functional theory first-principles calculations are performed by projected augmented wave (PAW) [31] implemented Vienna ab initio simulation package (VASP) [32]. The exchange–correlation interactions are treated using Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) [33]. Cut-off energy of 450 eV was set for the plane-wave basis and Ernzerhof generalized gradient approximation (PBE-GGA) [33]. The residual forces on lattice geometries and atomic positions. All electronic structures are calculated using the PBE + U method. For the on-site Coulomb interaction U of the 3d, 4d and 5d transition metals, $U = 4, 2.5$, and 0.5 eV are used, respectively, which are usually reasonable for them [34,35]. The all magnetic configurations are considered on 2 × 2 × 1 unit cell. See the Supplementary materials for more details.

3. Results and discussion

3.1. Structures of 2D bimetal phosphates

Fig. 1a illustrates the schematic structure of 2D bimetal phosphates (M$_M$M$_P$P$_X$)$_6$, M$_M$ and M$_P$ atoms are different metal elements, X is chalcogen atom, which contains a honeycomb lattice (indicated by dash lines) formed by staggering metal atoms M$_M$ (blue balls) and M$_P$ (red balls), and P-P pairs (yellow balls) are located vertically at the center of hexagons. Chalcogen atoms (green balls) bridge metal atoms and P-P pairs, and each metal or phosphorous atom is surrounded by six or three chalcogen atoms, respectively. As indicated in Fig. 1b, if M$_M$ and M$_P$ atoms located on the plane bisect perpendicularly the P-P pairs, the whole structure has a space group $\text{P}\overline{6}m2$ (No.187) or $\text{P}312$ (No. 149), $\text{P}221$ (No.16) for some materials, which corresponds to non-polar point groups $\text{P}3m2$ (or 32, 222) and is denoted as “high-symmetry phase”. Interestingly, among all 2D M$_M$M$_P$P$_X$ materials, we found two types of possible spontaneous geometric symmetry reduction: (i) Type-I in Fig. 1c, M_M and M_P atoms deviate from the bisect plane (indicated with grey color) in opposite directions with displacements d_1 and d_2, respectively, and the total relative vertical displacement between M_M and M_P atoms is $d = d_1 + d_2$. Meanwhile, the space groups reduce to $\text{P}31m$ (No. 156) or $\text{P}3$ (No. 143), $\text{P}1$ (No. 1), which corresponds to polar point group m (or 3, 1). (ii) Type-II in Fig. 1d, where the whole structure is distorted with P-P pairs inclining to three different directions, forming three symmetry-equivalent phases (α, β, and γ) with space groups Cm (No. 8) (or P1), which corresponds to polar point group m (or 1). Our calculations reveal that the high-symmetry phase, Type-I and Type-II low-symmetry phases are paraelectric, ferroelectric, and ferroelastic (with ferroelectric), respectively.

Based on the above 2D bimetal phosphate prototype, we generate different structures of M$_M$M$_P$P$_X$ by replacing M$_M$ and M$_P$ with 39 metal elements (Table S1 online) and replacing X by four chalcogen atoms (O, S, Se, and Te), respectively. The total number of such structures is 2964, in which stoichiometrically equivalent structures are excluded, i.e., M$_M$M$_P$P$_X$ and M$_M$M$_P$P$_X$ are treated as the same material. A thorough first-principles investigation on such a large amount of materials would be extremely time-consuming. Here we use data-driven machine learning method by introducing new descriptors and combine with high-throughput ab initio calculations to accelerate the discovery of ferrelectricity from 2964 structures of M$_M$M$_P$P$_X$ materials.

3.2. Machine learning model

The workflow is schematically illustrated in Fig. 2. Among 2964 M$_M$M$_P$P$_X$ structures, 605 of them are randomly selected as the initial training/test dataset for training a machine learning classification model. The structural optimization and corresponding properties were calculated by first-principles density functional theory (DFT) (the calculation details can be found in Materials and methods). Based on the results of these DFT calculations, 103 ferroelectrics (FE) were identified with a simplified criterion (Fig. S1 online). In the training of machine learning model, the materials in the dataset are described by 35 initial features (descriptors) (Table S2 online), including novel orbital-based descriptors designed by us, which were proved essential for a high-precision prediction (Table S3 online). Feature reduction was performed, and top 10 features were obtained to construct optimal feature space (Fig. S3 online). Five different machine learning algorithms such as the support vector classifier (SVC) [36], random forest classifier (RFC) [37], adaboost classifier [38], decision trees classifier (DTC) [39] and gradient boosting classifier (GBC) [40] were tested, all of which have been successfully applied to predict various materials [41,42]. The results of 5-fold cross-validation analysis and grid search for optimal hyper-parameters show that the GBC model outperforms the other four and gives the best performance (Fig. S2 online). Consequently, GBC was adopted in our model.

The precision of the initially obtained results was only 64%. To improve the performance, we introduced the data-driven methodology recently applied in materials and chemical sciences [43,44]. With the initial classification model, we obtained the prediction probability (Prob) of the remaining unexplored M$_M$M$_P$P$_X$ structures and then labeled them as a positive or negative class with the criteria Prob \geq 0.5 or Prob \leq 0.5, respectively. Those with the prediction probability near the dividing line, i.e., 0.45 \leq Prob \leq 0.55, were added to the training/test dataset. Based on the updated
dataset, a new machine learning model could be obtained with improved precision. The above process was repeated until the model precision converges, which occurs at the fourth iteration (Figs. S5a online). Subsequently, a total of 293 extra MIMIIP2X6 materials were added to the training/test dataset. In the end, we obtained an optimal machine learning model with high precision (77.2%) and high AUC (the area under the receiver operating characteristic curve) value (88.3%) (Fig. S5a and b online), showing that the data-driven methodology improved remarkably the performance of the machine-learning model. With this optimal classification model, 166 potential ferroelectrics are screened out from the remaining unexplored 2066 bimetal phosphates. Together with those 279 ferroelectrics identified in the updated training/test dataset, we obtained 445 potential ferroelectrics bimetal phosphates.

3.3. Ferroelectrics

As shown in the right panel of Fig. 2, we then performed systematic DFT calculations for these 445 ferroelectric candidates to acquire the optimized geometric structures with magnetic ground states. Their dynamical stabilities were examined by using density functional perturbation theory (DFPT) calculations [45], which yields 60 dynamically stable ferroelectric bimetal phosphates out of 445 candidates. In addition, their thermodynamic stabilities have been verified with the heat of formation (see details in the}

Fig. 1. (Color online) Schematic structures of 2D bimetal phosphates (MIMIIP2X6, M1 and M2 atoms are different metal elements, X = O, S, Se, Te). The blue, red, green and orange balls represent M1 metal atoms, M2 metal atoms, chalcogen atoms, and phosphorus atoms, respectively. (a) Top view. The yellow parallelogram indicates the unit cell and dash lines denote a honeycomb lattice formed by metal atoms. P atoms sit at the center of the hexagons, and chalcogen atoms bridge metal atoms and P atoms. (b) Side view of the high-symmetry phase. (c) Side view of Type-I low-symmetry phases. d is the vertical displacement between M1 and M2 atoms. \(d_1\) and \(d_2\) are the displacements of M1 and M2 atoms related to the bisect plane (indicated with grey color) of P-P pairs. The blue arrows (up/down) indicate the directions of out-of-plane electric polarization (P). (d) Top view of Type-II low-symmetry phases. The distorted structure with P-P pairs inclining along different directions forms three symmetry-equivalent phases (\(\alpha\), \(\beta\) and \(\gamma\)), respectively.

Fig. 2. (Color online) The schematic procedure for discovering ferroelectric materials MIMIIP2X6. The left panel is the flowchart of the data-driven machine learning process, which generates an optimal machine learning model and obtains 445 potential ferroelectrics. In the right panel, 60 stable ferroelectric materials MIMIIP2X6 are obtained after dynamically stability screening, which are further classified into different types of ferroelectrics, and finally, 16 ferroelectric metals are figured out.
3.4. Ferroelectric metals

Table 1 lists the formula and properties of 16 ferroelectric metals MnMnP2X6, and Fig. S11 (online) presents their geometric structures. They are non-centrosymmetric with space group of P3 or P3m1, corresponding to the “low-symmetry phase” in Fig. 1c, and the corresponding electric polarizations point to the z-direction (out-of-plane). As aforementioned, we denoted the absolute values of displacements of M1 and M2 atoms with d1 and d2, where the displacements move toward opposite directions for all above ferroelectric metals, leading to the relative vertical displacement between M1 and M2 atoms is \(d = d_1 + d_2\), as indicated in Fig. 1c. Considering that MnMnP2X6 and MnMnP2X6 represent the same material, the order of M1 and M2 in the formulas in Table 1 is arranged to assure \(d_1 > d_2\), which means that M1 contributes primarily to the displacement and polarization for each MnMnP2X6. These 16 ferroelectric metals in Table 1 are sorted by polarization (pC/m) in ascending order. We have several interesting observations in order. (i) The ferroelectric metals with high polarization all contain coinage metal elements (Au, Ag, or Cu); (ii) the increasing trend of polarization with \(d_1\) has similarity more than with \(d_2\) (Fig. S7 online), implying that the displacements of M1 atoms dominate the polarization; (iii) besides Au, Ag, and Cu, M1 elements are In, Ga, Sn or Pb of IIIA or IVA metal elements. By carefully checking the values of \(d_1\) \((d_2)\) of each element, we can divide the metal elements in ferroelectric metal MnMnP2X6 into three groups: Group A includes coinage metal elements (Au, Ag, or Cu) with large displacements (>0.62 Å); Group B includes IIIA and IVA metal elements (In, Ga, Sn, and Pb) with moderate displacements (between 0.32 and 0.61 Å); and Group C includes other transition metal elements (Y, Zr, Hf) with small displacements (<0.28 Å). The coinage metal elements and IIIA/IVA metal elements lead to displacements larger than other transition metal elements. We can understand this behavior as follows. In the high-symmetry (paraelectric) phase of MnMnP2X6, the metal atoms locate in the bisector of P-P pair \((d_1 = d_2 = d = 0)\), implying that metal atoms should be bonded with both upper-three and lower-three chalcogen X atoms (Fig. 1a and b), i.e., metal atoms are octahedrally coordinated with six chalcogen atoms, just like that in 1 T-MoS2 and

Table 1	Properties of 16 ferroelectric metals.						
Formula	**Space group**	**d (Å)**	**d1 (Å)**	**d2 (Å)**	**Polarization (pC/m) / (eÅ/unit cell)**	**Barrier (eV/unit cell)**	**Nc / unit cell**
InPbP2Te6	P3	1.16	0.61	0.55	0.570 (0.017)	0.360	53
SnP2Te6	P3	0.67	0.42	0.25	0.840 (0.025)	0.169	53
GaSnP2Te6	P3	0.88	0.47	0.41	1.009 (0.028)	0.249	53
GaZnP2Te6	P3	0.66	0.42	0.24	1.191 (0.034)	0.145	53
GaHfP2Te6	P3	0.58	0.40	0.18	1.353 (0.038)	0.148	53
InSnP2Te6	P3	1.08	0.61	0.47	1.610 (0.046)	0.420	53
InZnP2Te6	P3	0.80	0.52	0.28	1.822 (0.053)	0.195	53
InHFP2Te6	P3	0.71	0.49	0.22	1.916 (0.056)	0.187	53
PbZnP2Te6	P3	0.72	0.47	0.25	2.131 (0.064)	0.175	53
AuHfP2O6	P3/m	0.67	0.62	0.05	2.888 (0.045)	0.044	61
AuZnP2O6	P3/m	0.74	0.69	0.05	3.009 (0.047)	0.063	61
AgZnP2S6	P3	0.94	0.78	0.16	3.010 (0.064)	0.096	61
CuHFP2S6	P3	1.47	1.36	0.11	5.463 (0.123)	0.146	61
CuZnP2S6	P3	1.54	1.33	0.15	5.884 (0.121)	0.182	61
AuZnP2S6	P3	1.83	1.63	0.20	9.740 (0.206)	0.573	61
AuSnP2Te6	P3	2.09	1.77	0.32	9.828 (0.269)	0.365	61
Bilayer WTe2	Pm	–	–	–	0.423 (0.0058)	0.0006	–

Note: \(d\) is the vertical relative-displacement between M1 and M2 metal atoms along z-direction as indicated in Fig. 1c. \(d_1\) and \(d_2\) are the absolute values of displacements of M1 and M2 atoms when taking the bisecting plane of P-P pair as a reference, and \(d_1 + d_2 = d\). The polarizations are listed in two different units. The ferroelectric-paraelectric transition barriers and number of total valence electrons \(N_c\) are also listed. The properties of bilayer WTe2 are listed for comparison, which are obtained with the same method.
other transition metal dichalcogenides (TMDCs) [50]. However, coinage metal elements and IIIA/IVA metal elements have full d-orbitals and do not tend to form the octahedrally coordinated bonding. In contrast, they tend to bond only with either upper-three or lower-three chalcogen X atoms, which manifests that the metal atoms will deviate from their original high-symmetric positions, resulting in the spontaneous symmetry breaking and the emergence of the out-of-plane polar axis. Thus, the coinage metal elements and IIIA/IVA metal elements (Group B) with full d-orbital, in particular Au, Ag, and Cu, can lead to large displacement and high polarization. It also explains why electronic orbital-based descriptors are essential for high-precision prediction in our machine learning model (Fig. S5c online).

Since the metal atoms in above three groups can have distinct displacements, various combinations of M, and MII metals may lead to diverse physical properties. Here we focus on AuZrP2S6 and InZrP2Te6 as typical examples of Group A + C and Group B + C combinations, respectively. As d1 of AuZrP2S6 (1.63 Å) is about three times of InZrP2Te6 (0.52 Å), the polarization of AuZrP2S6 (9.740 pC/m) is about five times of InZrP2Te6 (1.822 pC/m). Fig. 3a and b show the energy bands of InZrP2Te6 and AuZrP2S6, respectively. The energy bands are almost unaltered when the spin–orbit coupling (SOC) is considered (Figs. S14 and S17 online). For each of InZrP2Te6 and AuZrP2S6, there is a single energy band crossing the Fermi level, indicating a metallic character. This energy band separated from other bands by distinct gaps is exactly half-filling, showing that the number of total valence electrons per unit cell should be odd, as indeed shown in Table 1 for InZrP2Te6 and AuZrP2S6. Other ferroelectric metals exhibit similar characters in energy bands (Figs. S14–S17 online) and electron parity.
implying that they share similar electronic properties and the same metallic mechanism. Thus, in all 16 ferroelectric metals we find that a unit cell contains an odd number of electrons, which may lead to a half-filled energy band across the Fermi level, and gives rise to the metallicity. The odd valence electrons in a unit cell appear to be a necessary (but not a sufficient) condition for a ferroelectric metal in MIMIIP2X6 materials. There are exceptions when the system is spin-polarized however. For instance, InHgPO6 (Fig. S19a online) has odd valence electrons and its energy band around Fermi level splits into a fulfilled spin-up band and an empty spin-down band with a gap, thus, it is a non-metallic multiferroic with ferroelectric and ferromagnetic orderings. For non-magnetic ferroelectric semiconductors, the number of total valence electrons in a unit cell is even (Tables S8 and S9 online), because the even number of electrons in a unit cell would have no unaired electrons for this family of materials, usually leading to semiconductors.

The projected electronic density of states (PDOS) of AuZrP2S6 and InZrP2Te6 are presented in Fig. 3c and d. For InZrP2Te6, the electronic states at the Fermi level are mainly contributed by the p electrons of Te atoms. Similar electronic structures are also observed in other Group B + C materials (such as PbYP2Te6, and InHPP2Te6, see Figs. S16 and S17 online). In contrast, the electronic states at the Fermi level in AuZrP2S6 are mainly contributed by d electrons of Zr atoms and p electrons of S atoms. Similar electronic structures are also observed in other Group A + C materials (such as AgZrP2S6, CuHPP2S6, and CuZrP2S6, see Figs. S14 and S15 online). AuSnP2Te6 is a typical Group A + B material, hence there is also a single energy band crossing the Fermi level, but it is mainly contributed by p electrons of Te atoms and s electrons of Sn atoms (Fig. S16 online). Therefore, in Group B + C materials, the p electrons of chalcogen atoms have a dominant contribution to the conducting states; in Group A + C materials, both transition-metal d-orbitals and chalcogen p-orbitals dominate the conducting states; while in Group A + B materials, the chalcogen p-orbitals and s-orbitals of IIIA/IVA metal atoms contribute mainly to the conducting states. In all types of above ferroelectric metals, the chalcogen p-orbitals play a crucial role in the conduction.

Now we visualize the partial electronic densities of InZrP2Te6 and AuZrP2S6 within energy range \(|E - E_f| < 0.05\) eV, which are usually considered as the conducting electron density \(\rho_e(\mathbf{r})\) (details can be found in the Supplementary materials). As shown in Fig. 3e, \(\rho_e(\mathbf{r})\) of InZrP2Te6 exhibits a p-orbital character around Te atoms; in contrast, \(\rho_e(\mathbf{r})\) of AuZrP2S6 shows a p-d hybridization character around Zr and S atoms as indicated in Fig. 3f, both being consistent with the observations from PDOS. The conducting electrons of InZrP2Te6 and AuZrP2S6 constitute a C3-symmetry connecting network with a few low-density hollows, which may provide conducting channels in real space. The left panels of Fig. 3g and h show the side views of an isosurface of \(\rho_e(\mathbf{r})\). It is surprising to observe that \(\rho_e(\mathbf{r})\) of InZrP2Te6 and AuZrP2S6 are mainly distributed on the upper surface of the 2D layer and are weakly relevant to In and Au atoms (indicated with blue color) of the lower surface. Note that In and Au are MII atoms, which have large displacements and are major contributors for the electric polarization. We define a “reduced” conducting electron density by integrating \(\rho_e(\mathbf{r})\) over the x-y plane, say, \(\rho_{PE}(z) = \int \rho_e(\mathbf{r}) dxdy\), where \(\rho_e(\mathbf{r})\) is the conducting electron density. The results are shown in the right panels of Fig. 3g and h, which indicate clearly that the conducting electrons mainly move on the upper surface. When MII atoms move to the lower surface, the coordinate number for chalcogen atoms on the upper surface could be reduced and excessive electrons emerge, which may partially fill the energy band around Fermi level and contribute to the conduction.

To describe the spatial distribution of electrons that contribute to the electric polarization, we introduce a “reduced” difference charge density defined as \(\rho_{PE}(\mathbf{r}) = \int \left[\rho_{PE}(\mathbf{r}) - \rho_{PE}(\mathbf{r})\right] dxdy\), where \(\rho_{PE}(\mathbf{r})\) and \(\rho_{PE}(\mathbf{r})\) are the total electron densities of a ferroelectric material in ferroelectric and paraelectric phases, respectively. Since the paraelectric phase has a high symmetric structure and zero polarization, \(\rho_{PE}(\mathbf{r})\) has no contribution to polarization.

The difference between \(\rho_{PE}(\mathbf{r})\) and \(\rho_{PE}(\mathbf{r})\) can reflect the electronic contribution to the polarization, and we term \(\rho_{PE}(\mathbf{r})\) as the reduced “FE-PE electron density difference”. As shown in the right panels of Fig. 3g and h, \(\rho_{PE}(\mathbf{r})\) exhibits an oscillating behavior and reveals the spatial distribution of charge polarization. \(\rho_{PE}(\mathbf{r})\) of AuZrP2S6 is closer to the lower surface than that of InZrP2Te6, which is consistent with the fact that the displacement of Au atoms is larger than that of In atoms, and Au atoms are also closer to the lower surface of the 2D layer. For both materials \(\rho_{PE}(\mathbf{r})\) deviates obviously from that of \(\rho_{PE}(\mathbf{r})\), i.e., the conducting electrons and “FE-PE electrons density difference” are spatially separated, providing clues on the underlying mechanism of ferroelectric metallic in these 2D MIMIIP2X6 metals.

The coexistence of ferroelectricity and metallicity in 2D MIMIIP2X6 materials can be rationalized as follows. First, the chemical nature of coinage metal elements and IIIA/IVA metal elements (MII site) make them deviate from high-symmetric positions and move to the lower surface (Fig. 3g and h), which have large displacements and make the major ionic contribution to electric polarization. In contrast, the displacements of MII atoms are tiny, resulting in a rather weak effect. Along with atomic displacements, the “FE-PE electron density difference” distributes mainly in the lower part of the 2D layer. Thus, the total polarization including ionic and electronic contributions is related to the lower part of 2D MIMIIP2X6 materials. Second, when the total number of valence electrons in a unit cell is odd, and the system is not spin-polarized, the energy band around Fermi level should be half-filled, leading to a metallic property. MII atoms move to the lower surface and leave unsaturated chalcogen atoms and excessive electrons on the upper surface, which contribute to the conduction. Third, the conducting electron density dominantly distributes around the chalcogen atoms and MII atoms in the upper surface, which cannot completely screen the vertical polarization that mainly comes from the lower part of the 2D layer. In addition, the low-density hollows are observed in conducting electron density (Fig. 3e and f), which implies that the conducting electrons may not completely exclude the external electric fields. Our analyses reveal that the coexistence of ferroelectricity and metallicity here is the consequence of a dimensionality effect. These findings suggest that ferroelectric metals could be highly achievable in 2D materials.

3.5. Ferroelectric-paraelectric phase transition and polarization reversal

The phase transition between ferroelectric and paraelectric phases is an essential character of ferroelectric materials and crucial for possible applications. We simulated the polarization reversal paths of these 16 ferroelectric metals MIMIIP2X6 by using the climbing image nudged elastic band (CI-NEB) method [51]. The ferroelectric-paraelectric transition barriers are obtained, as listed in Table 1, which range from 0.04 to 0.57 eV/unit cell. The barriers generally increase with the increase of displacement of MII atoms.
may be easily experimentally detected than in bilayer WTe2. Thus, the robustness of metallic ferroelectricity in MIMIIP2X6 is stronger than that in bilayer WTe2, implying the coexistence of ferroelectricity and metallicity in MIMIIP2X6 may be easily experimentally detected than in bilayer WTe2.

Generally, the polarization of a ferroelectric material can be switched by applying a proper electric field, which was successfully demonstrated in bilayer WTe2 [23]. We further calculated the energy versus polarization profiles under different vertical electric fields for AuHfP2O6 and AuZrP2O6. As shown in Fig. 4c and d, one may see that with increasing the electric field, the energies increase for P+ polarization and decrease for P− polarization, which makes the energy barrier from P− to P+ polarization decrease dramatically. It turns out that an electric field of 1.0 V/Å gives rise to small energy barriers of 10 and 26 meV/unit cell for AuHfP2O6 and AuZrP2O6, respectively, which suggests that 1.0 V/Å may be the critical electric field for reversing polarization at room temperature. Note that the structures cannot be destroyed until the electric field is higher than 2.8 V/Å. This critical electric field (1.0 V/Å) is nearly the same order of magnitude as that of 2D ferroelectric In2Se3 (0.66 V/Å) [15]. As the electric polarization of the latter can be switched by gate voltage experimentally [54], the polarization of AuHfP2O6 and AuZrP2O6 could likewise be switched by a proper external electric field.

3.6. Van der Waals heterostructures based on ferroelectric metal

The coexistence of ferroelectricity and metallicity in MIMIIP2X6 may bring various potential applications. The most intriguing property of 2D ferroelectric metal MIMIIP2X6 is the fact that conducting electrons distribute mainly on single side of 2D layer with finite thickness, which is associated with the polarization direction. If we flip the direction of polarization up or down, major conducting electrons of MIMIIP2X6 will move to the lower or upper interface of the 2D layer, which may lead to novel physical effects. The van der Waals contact between 2D ferroelectric metal and other 2D materials would be appropriate to demonstrate how the switching of polarization direction modulates the surface or interface properties of the contact. By considering lattice matching, we constructed two types of van der Waals heterostructures as examples, i.e., AuSnP2Te6/graphene and AuZrP2S6/MoS2. Fig. 5a and b show the energy bands of AuSnP2Te6/graphene heterostructure with the polarization of AuSnP2Te6 along z direction (P+) and opposite direction (P−), respectively. The energy bands from gra-

Fig. 4. (Color online) Energy versus polarization of two ferroelectric metals (AuHfP2O6 and AuZrP2O6) and the effects of external electric field. (a, b) Energy versus polarization of two ferroelectric metals. The barrier between ferroelectric and paraelectric phases is presented. Blue points are the DFT-calculated total energies. The red lines are fitted curves with Landau-Ginzburg model. The directions of polarization (P+) in ferroelectric phases are marked by blue arrows. (c, d) Energy versus polarization of two ferroelectric metals under different vertical external electric fields. Points are the DFT-calculated total energies, and the lines are fitted curves.
heterostructure of graphene and AuSnP2Te6 in which both are conducting, doping in semiconductor MoS2 can induce an impurity level which can be modulated through the reversal of electric polarization. In addition, the polarization direction of AuZrP2S6, the Fermi level is not obviously shifted from the half-filled band, however, the energy bands from MoS2 shift remarkably when the direction of polarization is switched from P1 to P1. The conduction band minima (CBM) of MoS2 is 0.708 eV above Fermi level in AuZrP2S6 (P1)/MoS2 and 0.375 eV above Fermi level in AuZrP2S6 (P1)/MoS2 (Fig. 5c and d), which can be viewed as the Schottky barrier (\(\Phi_d\)) between AuZrP2S6 and MoS2 layers, the contact between AuZrP2S6 and intrinsic MoS2 is of Schottky type, where the Schottky barrier can be modulated through the reversal of electric polarization. Therefore, an electric field or a magnetic field, etc., can be used to make them possible potential candidates for novel devices such as ferroelectric tunneling junction with giant electroresistance, field-effect transistor, nonvolatile ferroelectric memory, etc. Besides, considering the coupling between the direction of polarization and single-side surface conducting electrons, ferroelectric metals M1M2P2X6 may be good materials for the use in electrical-writing/optical-reading memory and ferroelectric printing devices.

Fig. 5. (Color online) Band structures of heterostructures. (a, b) AuSnP2Te6/Graphene. (c, d) AuZrP2S6/MoS2. The directions of polarization (P) in ferroelectric metals are marked by black thin arrows. The blue and red colors indicate the contributions from different 2D materials.

4. Conclusion

We employed high-throughput ab initio calculations and data-driven machine learning schemes with a set of new electronic orbital-based descriptors to discover novel 60 stable ferroelectric materials out of 2964 structures of 2D bimetal phosphates M1M2P2X6, including 16 ferroelectric metals with out-of-plane electric polarization and 44 ferroelectric semiconductors. Among the 44 semiconducting ones, seven multiferroics with two or three types of ferroic orderings and seven ferroelectric water-splitting photocatalysts were screened out. For this family of 2D ferroelectric metals, the physical origin of ferroelectricity is owing to the spontaneous symmetry breaking induced by the opposite vertical displacements of two metal atoms M\textsubscript{1} and M\textsubscript{2}, the out-of-plane polarization (P) and relative vertical displacement (d) are unveiled to comply a quadratic relationship, revealing that these 16 2D ferroelectric metals belong to displacive-type ferroelectrics. The coinage metal elements with full d-orbitals, i.e., Au, Ag, and Cu, can lead to large displacements and large polarization due to the nature of their chemical bonding. We also found that odd number of valence electrons in a unit cell lead to a half-filled energy band around Fermi level and is responsible for metalliclicity, and chalcogen p-orbitals play an important role in the conduction in all 16 ferroelectric metals. The charge density analysis shows that the
coexistence of ferroelectricity and metallicity in MAMnP2X6 is a consequence of dimensionality effect, in which the conducting electrons distribute mainly on the upper surface of the 2D layer, whereas the out-of-plane electric polarization induced from both ionic and electronic motion is primarily related to the lower part of the 2D layer. It shows if conducting electrons move on a 2D plane, while the electric polarization happens along the third dimension, ferroelectricity and metallicity could coexist in the same material. With this scenario, ferroelectric metals could be achievable in 2D materials. Our work presents a large family of novel 2D ferroelectric metals with intriguing properties, which could be applied to construct heterostructures through van der Waals contact that may have possible applications in areas of ferroelectric tunneling junction, nonvolatile ferroelectric memory, etc. As ferroelectric metals are still extremely sparse now, it would spur great interest in exploring 2D ferroelectric metals in near future.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported in part by the National Key R&D Program of China (2018YFA0305800), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000), the National Natural Science Foundation of China (11834014), Beijing Municipal Science and Technology Commission (Z191100007219013), and University of Chinese Academy of Sciences. The calculations were performed on Era at the Supercomputing Center of the Chinese Academy of Sciences and Tianhe-2 at the National Supercomputing Center in Guangzhou.

Author contributions

Qing-Bo Yan and Gang Su conceived the project and supervised the research. Xing-Yu Ma performed the calculations. Xing-Yu Ma, Qing-Bo Yan, and Gang Su developed the codes for calculating out-of-plane polarization and machine learning model, analyzed the results, and wrote the manuscript. Xiaofeng Qian participated in data analysis and manuscript writing. Hou-Wei Lyu, Kuan-Rong Hao, and Yi-Ming Zhao participated in the discussion.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2020.09.010.

References

[1] Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666–9.
[2] Mak RF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805.
[3] Li L, Chen Z, Hu Y, et al. Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 2013;135:1213–6.
[4] Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014;8:4033–41.
[5] Ahn CH, Rabe KM, Triscone JM. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 2004;303:489–91.
[6] Dawber M, Rabe KM, Scott JF. Physics of thin-film ferroelectric oxides. Rev Mod Phys 2005;77:1083–130.
[7] Fong DD, Stephenson GB, Streffler SK, et al. Ferroelectricity in ultrathin ferroelectric films. Nature 2004;434:150–5.
[8] Lee D, Li H, Gu Y, et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 2015;349:1314–7.
[9] Junquera J, Ghosez P. Critical thickness for Ferroelectricity in perovskite ultrathin films. Nature 2003;422:506–9.
[10] Wu M, Zeng XC. Intrinsic ferroelectricity and/or multiferroicity in two-dimensional phosphonene and phosphonene analogues. Nano Lett 2016;16:3236–41.
[11] Chang K, Liu J, Li H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016;353:274–8.
[12] Wang H, Qian X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater 2017;4:015004.
[13] Shabanov SN, Waghmare UV. Emergence of ferroelectricity at a metal–semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett 2014;112:157601.
[14] Luo W, Xu K, Xiang H. Two-dimensional hyperferroelectric metals: a different route to ferromagnetic-ferroelectric multiferroics. Phys Rev B 2017;96:235415.
[15] Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectricities in In2X3 and other III–VI,–IV van der Waals materials. Nat Commun 2017;8:14056.
[16] Wang X, Xiao C, Yang C, et al. Ferroelectric control of single-molecule magnetism in 2D limit. Sci Bull 2020;65:1252–9.
[17] Chandrasekaran A, Mishra A, Singh AK. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nat Nanotech 2017;12:3920–6.
[18] Xu B, Xiang H, Yang X, et al. Monolayer AgBiP2Se6: an atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale 2017;9:8427–34.
[19] Qj J, Wang H, Chen X, et al. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl Phys Lett 2017;113:043102.
[20] Lai X, Song Z, Wan Y, et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCpP2S6. Nanoscale 2019;11:5163–70.
[21] Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuPcP2S6 ultrathin flakes. Nat Commun 2016;7:12357.
[22] Sharma P, Xiang PX, Shao DF, et al. A room-temperature ferroelectric semimetal. Sci Adv 2019;5:eaax5080.
[23] Fei Z, Zhao W, Palomaki TA, et al. Ferroelectric switching of a two-dimensional metal. Nature 2018;560:336–9.
[24] Anderson PW, Blount EI. Symmetry considerations on martensitic transformations: ‘ferroelectric’? Phys Rev Lett 1965;14:217–9.
[25] Shi Y, Guo Y, Wang X, et al. A ferroelectric-like transition in a metal. Nat Mater 2013;12:1034–7.
[26] Sakai H, Ilieva K, Balazsny M, et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci Adv 2016;2:e1601378.
[27] Filippetti A, Fiorentini V, Ricci F, et al. Prediction of a native ferroelectric metal. Nat Commun 2016;7:11311.
[28] Wang H, Qian X. Ferroelectric-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials. Sci Adv 2019;5:eaax0741.
[29] Wang H, Qian X. Ferroelectric nonlinear anomalous hall effect in few-layer WTe2. npj Comp Mater 2019;5:119.
[30] Xiao J, Wang Y, Wang H, et al. Berry curvature memory through electrically driven stacking transitions. Nat Phys 2020. https://doi.org/10.1038/s41567-020-0947-z.
[31] Bekele PE. Projector augmented-wave method. Phys Rev B 1994;50:17953–79.
[32] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86.
[33] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.
[34] Dong XJ, You JY, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl 2019;12:014020.
[35] You JY, Zhang Z, Gu B, et al. Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous hall effect. Phys Rev Appl 2019;12:024063.
[36] Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9:293–300.
[37] Liaw A, Wiener M. Classification and regression by random forest. R News 2002;2:18–22.
[38] Freund Y, Shapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119–39.
[39] Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 1991;21:660–74.
[40] Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189–232.
[41] Ma XY, Lewis JP, Yan QB, et al. Accelerated discovery of two-dimensional optoelectronic octahedral oxysalides with high-throughput ab initio calculations and machine learning. J Phys Chem Lett 2019;10:6734–40.
[42] Lu S, Zhou Q, Guo Y, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metallics. Adv Mater 2020;32:2002658.
[43] Schnorr KA, Attia PH. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 2019;4:383–91.
[44] Granda JM, Donina L, Dragone V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018;559:377–81.
[45] Gong X, Lee C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density functional perturbation theory. Phys Rev B 1997;55:10355–68.
[46] Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater 2018;5:042002.
Xing-Yu Ma received his Bachelor's degree at the College of Physics, Southeast University in 2017. He is currently a Ph.D. candidate at the College of Physical Sciences, University of Chinese Academy of Sciences (UCAS). His research interest mainly focuses on the design and physical properties of novel two-dimensional functional materials based on first-principles calculations and machine learning.

Qing-Bo Yan is an associate professor of UCAS. He obtained his Ph.D. degree in the College of Physical Sciences at UCAS in 2009. His research interest is mainly on the physical properties of two-dimensional functional materials and materials prediction through first-principles calculations and other atomistic simulation methods combined with machine learning.

Gang Su is a distinguished Professor of UCAS. He received Ph.D. degree in 1991. During 1993–1999, he worked as a CEEC research fellow at the State University of New York at Stony Brook, USA, an Alexander von Humboldt research fellow at Köln University, Germany, and a JSPS research fellow at Tokyo University of Science, Japan. Currently, his research interest includes theoretical condensed matter physics, statistical physics, and computational materials physics.