Study of the Influence of the Number Normalization Scheme Used in Two Chaotic Pseudo Random Number Generators Used as the Source of Randomness in Differential Evolution

Lenka Skanderova* and Tomas Fabian

Department of Computer Science,
Faculty of Electrical Engineering and Computer Science,
VSB - Technical University of Ostrava,
17.listopadu 15/2172, 70800 Ostrava, Czech Republic
{lenka.skanderova,
tomas.fabian}@vsb.cz
http://www.cs.vsb.cz

Abstract. In many publications, authors showed that chaotic pseudo random number generators (PRNGs) may improve performance of the evolutionary algorithms. In this paper, we use two chaotic maps Gingerbread man and Tinkerbell as the chaotic PRNGs instead of the classical PRNG in the differential evolution. Numbers generated by this maps are normalized to the unit interval by three different methods – operation modulo, straightforward number normalization where we know minimal and maximal generated number and arctangent of the two variables \(x \) and \(y \), where numbers \(x \) and \(y \) are generated by the Gingerbread man map and Tinkerbell map. The first goal of this paper is to show whether the differential evolution convergence speed might be affected by the way how we normalize number generated by the chaotic map. The second goal is to find out the influence of the probability distribution function of the selected chaotic PRNGs. The results mentioned below showed that the selected normalization method may improve differential evolution convergence speed, especially in the case of arctangent and straightforward number normalization, where we know the minimal and maximal generated numbers.

Keywords: Differential evolution, pseudo random number generator, number normalization scheme, chaos, Gingerbread man, Tinkerbell

* The following grants are acknowledged for the financial support provided for this research: Grant Agency of the Czech Republic - GACR P103/13/08195S, is partially supported by Grant of SGS No. SP2014/42, VB - Technical University of Ostrava, Czech Republic, by the Development of human resources in research and development of latest soft computing methods and their application in practice project, reg. no. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competitiveness.
1 Introduction

Interconnection between chaos and randomness is known very long time. In 1940, J. von Neumann used logistic map as the chaotic pseudo random number generator (cPRNG). From this year, chaos as the PRNG has been used in various research areas: cryptography ([23], [9]); image encryption ([11], [4]); new PRNG research ([14], [26]); evolutionary algorithms (EAs). In the last mentioned area, chaos have been used successfully as the chaotic PRNG (cPRNG) for example in the bee colony algorithm ([1]), particle swarm optimization (PSO) ([17]), genetic algorithm ([27]) or in differential evolution (DE) ([10]). R. Caponetto et al. used logistic map as the cPRNG in all phases of EA, where the random number is needed ([3]). G. Zilong et al. described a novel immune EA, where logistic map is used to generate the chaos sequence ([28]). B. Liu et al. used logistic map to improve PSO ([15]).

The motivation of this paper is that in the most publications dealing with the chaos powered EA there is not made clear whether the improvement of the EAs convergence speed stems from the uniqueness of the sequence of the numbers generated by the cPRNGs or by the probability distribution function (PDF) of the selected cPRNGs. In the most publications, authors use only one way of the number normalization and we spared the comparison of the number normalization schemes.

In our work, we used two-dimensional maps – Gingerbread man and Tinkerbell as the cPRNGs in DE. Numbers generated by cPRNG are used in all cases where the randomness is needed in DE. As Gingerbread man and Tinkerbell maps might generate numbers outside of the unit interval, we have selected three schemes of number normalization. Operator modulo, normalization by bounds are traditional representatives of common normalization schemes. We have defined the third scheme in addition to overcome some peculiarities related with the preceding two schemes (eg. we need to know the bounds, modulo leads to over utilization of some sub-intervals of the generator). Normalized number is then used in DE and the convergence speed of DE to the global minimum is observed.

The rest of the paper is organized as follows: The differential evolution is described briefly in the Section 2. In the Section 3 the selected cPRNGs are introduced. The selected testing problems are mentioned in the Section 4. In the Section 5 we are presenting our methods of number normalization. The
methods of the analysis and setting of the DE are mentioned in the Section 6. In the Section 7 the results of the experiments are recorded and in the Section 8 the experiments results are discussed.

2 Differential evolution

DE belongs to the family of the evolutionary algorithms (EAs) working with the population of the individuals ([18][24][25]).

Here, let us describe the DE informally. The first population is generated randomly in the space of possible solutions. Then for each individual three random individuals (parents) are chosen. From these parents, we create a noise vector \(\mathbf{v} \) according to the following equation

\[
v_j = x_{G,3,j}^G + F(x_{G,1,j}^G - x_{G,2,j}^G), \tag{1}
\]

where \(v_j \) denotes \(j \)-th parameter of the noise vector, \(x_{G,3}^G \) is the third randomly selected parent, \(x_{G,1}^G \) is the first randomly selected parent and \(x_{G,2}^G \) is the second randomly selected parent. The superscript \(G \) means the actual generation, \(F \) denotes mutation constant.

Then random number \(r \) from the unit interval is generated for each parameter of the actual individual. If \(r < CR \), where \(CR \) is crossover probability, parameter from the noise vector is added to the trial individual, otherwise parameter from the actual individual is chosen. Now, the fitness value of the trial individual is computed. If it is better than fitness of the actual individual, the trial individual will be added to the new population, otherwise actual individual will be added. Process described above is repeated until some criterion of convergence is reached ([25]).

Beside the first variant of DE characterized by the Eq. (1) we have also included the variant DE/best/1/bin. The noise vector creation is described by the following equation

\[
v_j = x_{best,j}^G + F(x_{r2,j}^G - x_{r3,j}^G), \tag{2}
\]

where \(x_{best}^G \) denotes the individual with the best fitness value in the actual generation ([19]).

3 Chaotic maps

This section contains description of the selected chaotic maps used as the cPRNGs in DE. We have selected Gingerbread man and Tinkerbell which might generate numbers outside the unit interval. In addition, they give promising results from the view of DE convergence speed and they are easy to implement.
3.1 Gingerbread man map

The Gingerbread man map (see Fig. 1) is a chaotic two-dimensional map which was studied by R. Devaney ([6]) since 1984 and is given by the following equation

\[
\begin{align*}
x_{n+1} &= 1 - y_n + |x_n|, \\
y_{n+1} &= x_n.
\end{align*}
\]

(3)

In this paper, the initial values of \(x\) and \(y\) have been experimentally set to \(x_0 = 9.0\) and \(y_0 = 3.7\).

3.2 Tinkerbell map

Tinkerbell map (see the Fig. 2) is the strange attractor with a fractal basin boundary and it was proposed by H. E. Nusse and J. A. Yorke ([16]). It is given by the following equation

\[
\begin{align*}
x_{n+1} &= x_n^2 - y_n^2 + ax_n + by_n, \\
y_{n+1} &= 2x_n y_n + cx_n + dy_n.
\end{align*}
\]

(4)

In this paper the parameters have been set to \(a = 0.9\), \(b = -0.6013\), \(c = 2.0\), and \(d = 0.5\) as suggested in ([16]). The initial value of \(x\) and \(y\) have been experimentally set to \(x_0 = 0.1\) and \(y_0 = -0.1\).

![Fig. 1: Gingerbread man map](image1)

![Fig. 2: Tinkerbell map](image2)

4 Normalization of the number generated by the cPRNG

We have selected two discrete dynamical systems – Gingerbread man and Tinkerbell to be used as the cPRNGs in DE. Because these cPRNGs might generate numbers outside the unit interval it is necessary to normalize that number to the unit interval. In our work, we have chosen operation modulo (Modulo), straightforward number normalization where we know minimal and maximal generated number (Bounds) and two-argument variant of arctangent (Atan2) where the
real numbers x and y are generated by the Gingerbread man and Tinkerbell maps. Subsequently, we have modified the uniform PDF of Mersenne Twister (MT) to approximate the PDF of our cPRNGs. In the following paragraphs, we would like to clarify the reasons why we have chosen these three ways of number normalization.

As the first way, operation \textit{modulo} has been chosen. It is the easiest way how to normalize the numbers lying outside of the unit interval. Each number generated by the cPRNG is modified according to the following equation

$$z_i = |n_i| \mod 1,$$

where n_i is number generated by the selected cPRNG, \textit{mod} denotes operator modulo and z_i is the i-th normalized number. This way of number normalization has been successfully used for example by D. D. Davendra et al. (\cite{5}), where authors use Tinkerbell and others as the cPRNGs in a scatter search algorithm. The main problem of this scheme is its PDF, because different numbers generated by cPRNGs might be normalized to the same values. For example the sequence \{1.2, 2.2, 3.2, \ldots\} will be normalized to the single value 0.

The second way how to normalize the number generated by the cPRNG to the unit interval is the straightforward number normalization where we know minimum and maximum generated by the number generator (Bounds). This normalization scheme is given by the following equation

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)},$$

where $x = (x_1, \ldots, x_n)$ and z_i is the i-th normalized number. This scheme of normalization has been successfully used by L. dos Santos et al. (\cite{7,8}). The main problem of this way was that we do not know the minimal and maximal number generated by the Gingerbread man and Tinkerbell map. Due this bottleneck, for each chaotic map we had generated one billion numbers with accuracy to one hundred decimal places and minimal and maximal values were obtained.

The last scheme is the arctangent $\text{atan2}(y, x)$, which has been experimentally added. The main advantage is that there is no distortion of the PDF like in the case of \textit{modulo}. Function $\text{atan2}(y, x)$ computes the angle in the sampling plane corresponding to the phase angle of the point (x, y). The number generated by the chaotic map is then modified according to the following equation

$$z_i = \text{atan2}(y_i - \overline{y}, x_i - \overline{x}),$$

where z_i denotes the i-th normalized number, y_i is the y coordinate of the selected chaotic map, x_i is the x coordinate of the selected chaotic map and $(\overline{x}, \overline{y})$ denotes the coordinates of the attractor center equaling to the center computed as the average of the samples generated in the preceding step.
5 Selected testing problems

We have selected nine functions from the CEC2013 benchmark ([13]). For the specification of the selected function, please see ([13]). The reason of this choice is that CEC2013 benchmark provides 28 difficult functions and in the future we would like to extend our work to other functions from this benchmark and from the CEC2014 benchmark, see ([12]).

Category	Funct. Name	Global min.
Unimodal	f_1 Sphere	-1400
	f_2 Different Powers	-1000
	f_9 Rotated Weierstrass	-600
	f_{13} Non-Continuous Rotated Rastrigrin	-200
Basic multimodal	f_{15} Rotated Schwefel’s	100
	f_{16} Rotated Katsuura	200
	f_{17} Lunacek Bi Rastrigin	300
Composition	f_{22} Composition function 2	800
	f_{23} Composition function 3	900

6 Methods and experiment settings

In the first experiment, we have used Gingerbread man and Tinkerbell maps as the cPRNGs with the different number normalization schemes in DE/best/1/bin and DE/rand/1/bin. As the testing problems nine functions from CEC2013 have been chosen. For each function, three categories have been created according to the number normalization scheme described above and denoted as Atan2, Bounds and Modulo. Each experiment has been repeated fifty times. The results are reported in Tables 3 - 14. The results represents the relative number of winnings of the given normalization scheme used in the cPRNG from the view of DE convergence speed. When two number normalization schemes reach the best results in the same time, they are recorded both as the best.

Now we would like to make clear motivation of the following experiments. The first goal was to find out which normalization scheme is the most successful from the view of DE convergence speed and the second goal was to investigate the influence of the PDF of the selected chaotic PRNGs. The results of the experiments mentioned in the Tables 3 - 14 (odd columns) give us the relative number of winnings of the normalization scheme using in the selected cPRNG. In our opinion, the greatest mean of the results of the cPRNG corresponds to the most successful normalization scheme and the PDF of the cPRNG fundamentally influences DE convergence speed. We have selected the following statistical
methods to find out the greatest mean of the normalization schemes (columns of the mentioned Tables):

1. It was necessary to find out if the results mentioned in the Tables 3–14 are normally distributed. We have used Kolmogorov-Smirnov test for each column of these results.
2. When the normality is verified we have to find out if the variances of the columns of the mentioned tables can be considered as equal.
3. If the variances can be considered as equal, statistical test ANOVA will be used to find out if the means of columns can be considered as equal.
4. If the variances can not be considered as equal, we can use one-sided and two-sided T-tests with nonequivalent variances to find out which mean is the greatest.
5. When the means can not be considered as equal the statistical one-sided T-tests with equivalent variances can be applied to find out which mean is the greatest.

When the greatest means are found we can compare the means of the columns of the cPRNGs with the columns of MT with the modified PDF according to these cPRNGs. If the normalization scheme fundamentally affects DE convergence speed, the results of the cPRNG and MT with the modified PDF according to this cPRNG will be comparable.

We have assumed that the results of the different number normalization schemes will be different. From this reason it was necessary to formulate the null and alternative hypothesis \(H_0 \) and \(H_A \) and the level of significance \(\alpha \):

- \(H_0 \): The means of results of the categories denoted as Atan2, Bounds and Modulo are different.
- \(H_A \): The means of results of the categories denoted as Atan2, Bounds and Modulo are the same.
- The significance level has been chosen to be \(\alpha = 0.1 \) (10%).

Firstly it was necessary to verify whether the results mentioned in Tables 3–14 (odd columns) are normally distributed. The Kolmogorov-Smirnov test has been applied and normal distribution has been confirmed. Then we have performed the tests of variance equality, where Atan2, Bounds and Modulo have been compared with each other. It was found that we can consider the variances of the categories as equal in the three of four cases. In the case of DE/rand/1/bin powered by cPRNG using Gingerbread man the variances of Atan2, Bounds and Modulo can not be considered as equal. To compare means of the remaining data sets statistical method ANOVA has been applied. The results are mentioned in the Table 15. We can see that in the case of DE/best/1/bin powered by cPRNG using Gingerbread man map means can be considered as equal. That means the success of all three normalization schemes is comparable.

Statistical one-sided (if it was necessary two-sided) T-test has been performed for data sets DE/best/1/bin powered by the cPRNG using Tinkerbell, and DE/rand/1/bin powered by the cPRNG using both chaotic maps.
For each case the null hypothesis has been formulated according to the results mentioned in the Tables 3, 4, 7, 8, 11 and 12 for DE/best/1/bin and 5, 9, 13 for DE/rand/1/bin. The significance level has been chosen to be \(\alpha = 0.1 \) (To save space DE/best/1/bin will be denoted as DE/best and DE/rand/1/bin as DE/rand):

- **DE/best, Tink.:** \(H_0 \): The mean \(\mu_A \) of Atan2 is greater than the mean \(\mu_B \) of Bounds and mean \(\mu_M \) of Modulo.
- **DE/best, Ging.:** \(H_0 \): The mean \(\mu_B \) of Bounds is greater than the mean \(\mu_A \) of Atan2 and mean \(\mu_M \) of Modulo.
- **DE/rand, Tink.:** \(H_0 \): The mean \(\mu_B \) of Bounds is greater than the mean \(\mu_A \) of Atan2 and mean \(\mu_M \) of Modulo.

The results of the T-tests for cPRNGs are mentioned in the Table 16. In the case where we have denied the null hypothesis that one tested normalization schemes has greater mean than the second one we have used the two-sided T-test to find out if the means can be considered as equal and in the column p-value we mention the value from the two-sided T-test (denoted by \(t_2 \)), else p-value from the one-sided T-test is mentioned. The last column denotes if the null hypothesis \(H_0 \) has been accepted (Acc.) or denied (Den.).

The goal of the second part of this paper was to find out if the fruitfulness of the cPRNG used in DE is affected just by its PDF or it also depends on the specific sequences of numbers generated by cPRNGs. From this reason we have modified the PDF of MT to generate numbers with the same distribution like our cPRNGs using given chaotic map and particular number normalization Atan2, Bounds, and Modulo. Results are mentioned in the Tables 3 - 14 (even columns). We have verified by Kolmogorov-Smirnov test that the results mentioned in the columns of the Tables 3 - 14 are normally distributed. ANOVA could not be used in DE/best/1/bin powered by MT with the modified PDF according to the cPRNG using Tinkerbell (tMT), DE/rand/1/bin powered by tMT and DE/rand/1/bin with the modified PDF according to the cPRNG using Gingerbread man (gMT) because variances of data sets could not be considered as equal. In the case of DE/best/1/bin powered by gMT the variances could be considered as equal and the test ANOVA has been applied, see Table 15. Subsequently, we have formulated null and alternative hypothesis and T-test (one-sided as well as two-sided denoted as \(t_2 \)) has been applied to the remaining data sets:

- **DE/best, tMT:** \(H_0 \): The mean \(\mu_A^{MT} \) is greater than the mean \(\mu_B^{MT} \) and mean \(\mu_M^{MT} \). \(H_A \): The mean \(\mu_A^{MT} \) is not greater than the mean \(\mu_B^{MT} \) and mean \(\mu_M^{MT} \). **Interpretation:** MT with modified PDF according to the cPRNG using Tinkerbell and normalization scheme Atan2 is the most successful from the view of DE/best convergence speed (in comparison with tMT using Bounds and Modulo).
- **DE/best, gMT:** In this case it was found out by the test ANOVA that the means can be considered as equal, see Table 15.
Title Suppressed Due to Excessive Length

- DE/rand, tMT: H_0: The mean μ_{A}^{tMT} is greater than the mean μ_{M}^{tMT} and the mean μ_{B}^{tMT}. H_A: The mean μ_{M}^{tMT} is not greater than the mean μ_{A}^{tMT} and the mean μ_{B}^{tMT}. **Interpretation:** MT with modified PDF according to the cPRNG using Tinkerbell and normalization scheme Modulo is the most successful from the view of DE/rand convergence speed (in comparison with tMT using Atan2 and Bounds).

- DE/rand, gMT: H_0: The mean μ_{A}^{gMT} is greater than the mean μ_{M}^{gMT} and the mean μ_{B}^{gMT}. H_A: The mean μ_{M}^{gMT} is not greater than the mean μ_{A}^{gMT} and the mean μ_{B}^{gMT}. **Interpretation:** MT with modified PDF according to the cPRNG using Tinkerbell and normalization scheme Bounds is the most successful from the view of DE/rand convergence speed (in comparison with tMT using Atan2 and Modulo).

The results are mentioned in the Table 17. In the last column we explicitly indicate whether the null hypothesis H_0 has been accepted (Acc.) or denied (Den.).

To find out whether the PDF of the cPRNG fundamentally affect DE convergence speed we have compared the results of cPRNGs (using number normalization Atan2, Bounds, Modulo) and MT with modified PDF mentioned in the Tables 3–14. We have compared the means of the best results if the cPRNG and modified MT reach the best results in the same category (Atan2, Bounds, Modulo). If all categories reach the comparable results we compare means of all categories (μ_A vs. μ_A^{MT}, μ_B vs. μ_B^{MT} . . .). If the number generators reach the best results in the different category, we compare these categories at the end of our work (in the case of DE/rand, Ging. vs gMT). It was found out by the F-test that the variances of the comparing results can be considered as equal. We have formulated hypothesis and T-test has been used. The significance level has been chosen to be $\alpha = 0.1$. The results are mentioned in the Table 18.

- DE/best, Tink vs. tMT, Atan2: H_0: The mean μ_A is equal to the mean μ_A^{tMT}. **Interpretation:** The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/best, Ging. vs. gMT, Atan2: H_0: The mean μ_A is equal to the mean μ_A^{gMT}. **Interpretation:** The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/best, Ging vs. gMT, Bounds: H_0: The mean μ_B is equal to the mean μ_B^{gMT}. **Interpretation:** The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/best, Ging vs. gMT, Bounds: H_0: The mean μ_M is equal to the mean μ_M^{gMT}. **Interpretation:** The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Tink. vs. gMT, Atan2: H_0: The mean μ_A is equal to the mean μ_A^{gMT}. **Interpretation:** The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Tink vs. gMT, Bounds: H_0: The mean μ_B is greater than the mean μ_B^{gMT}. **Interpretation:** We can not say that the sequence of the numbers
generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Tink vs. gMT, Bounds: H_0: The mean μ_M is smaller than the mean μ_M^{gMT}. Interpretation: We can not say that the sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Tink. vs gMT, Bounds vs. Modulo: The mean μ_B is equal to the mean μ_B^{gMT}. Interpretation: We can not say that the sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Ging. vs. gMT: H_0: The mean μ_A is equal to the mean μ_A^{gMT}. Interpretation: The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- DE/rand, Ging. vs. gMT: H_0: The mean μ_B is equal to the mean μ_B^{gMT}. Interpretation: The sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

Setting of DE (D denotes dimension, NP number of individuals, F mutation constant, and CR crossover probability):

- $D = 10$: $NP = 50$, $G = 200$
- $D = 20$: $NP = 100$, $G = 400$
- $D = 30$: $NP = 150$, $G = 600$
- For all experiments $F = 0.5$, $CR = 0.85$

7 Results

The results for DE/best/1/bin and DE/rand/1/bin with dimensions $D = 10$, $D = 20$, and $D = 30$ are mentioned in the Tables 3 – 14. The results describe the percentage of experiments, where the selected number normalization scheme applied to the number generated by the cPRNG has been the most successful. In other words in the tables mentioned above we can find the relative number of winnings of the normalization scheme using in the selected cPRNG (from the view of DE convergence speed). For the statistical analysis, please see [22]. The best results for DE using cPRNGs are marked in bold and the best results for DE using MT with the modified PDF are mentioned in the brackets. MT with the modified PDF according to the cPRNG using Gingerbread man map is denoted as gMT and Tinkerbell map as tMT.
8 Conclusion

In this paper, we have been dealing with the effect of the normalization of the number generated by the chaotic maps to the DE convergence speed. Two chaotic maps – Gingerbread man and Tinkerbell and two types of DE – DE/best/1/bin and DE/rand/1/bin have been used. As the number normalization methods operation modulo (Modulo), straightforward number normalization where we know minimal and maximal generated number (Bounds) and arctangent (Atan2) of the two variables x and y, where numbers x and y are outputs of the Gingerbread man map and Tinkerbell map have been chosen. Two first number normalization schemes have been successfully used in many publications mentioned above. The third scheme has been added to our work because there is no distortion of the PDF like in the case of operation modulo and we did not find the publication, where this scheme is used in this context. The goal of the first experiment was to find out if the normalization scheme used in the cPRNG which may generate numbers outside the unit interval can affect the DE convergence speed and which scheme is the most successful. In the second experiment, we have investigated the effect of the PDF of the cPRNG to the DE convergence speed. The main question was if the convergence speed of DE is influenced just by the PDF of the selected cPRNG or the numbers sequence plays a significant role in this process. From this reason we have modified MT to generate numbers with the same PDF like our cPRNGs using three schemes of the number normalization described above.

In the first experiments we have applied three schemes of number normalization to the numbers generated by Gingerbread man and Tinkerbell map. We have recorded how fast DE using these cPRNGs reaches the best results. If two schemes reach the best results in the same time, they are recorded as the best both. The results are mentioned in the Tables 3 – 14. In the second experiment we have modified MT to generate numbers with the same probability like our cPRNGs. The results are mentioned in the same tables like in the case of the first experiment.

As the most successful normalization scheme the scheme with the greatest mean is considered. Based on the results mentioned in the Tables 3 – 14 we have verified the normal distribution by Kolmogorov-Smirnov test. Then for each data sets – DE/best/1/bin using Tinkerbell, DE/best/1/bin using Gingerbread man etc. we have tested if the variances can be considered as equal. In three data sets where MT with modified PDF had been used (DE/best/1/bin tMT, DE/rand/1/bin tMT and DE/rand/1/bin gMT) the variances could not be considered as equal. In the rest of data sets the statistical test ANOVA has been applied to find out if the means of normalization schemes can be considered as equal. The results mentioned in the Table 15 showed the means of the categories (Atan2, Bounds and Modulo) of the DE/best/1/bin powered by Gingerbread man map and the means of the three categories (Atan2, Bounds and Modulo) of the DE/best/1/bin powered by gMT can be considered as equal.

For data sets where we have found out that the means of categories can not be considered as equal the statistical T-test has been used to find out which
normalization scheme has been the most successful. The results are mentioned in the Tables [16] and [17]. In the case of cPRNGs for DE/best/1/bin using Tinkerbell the normalization scheme Atan2 has been the most successful. In the case of DE/rand/1/bin using Tinkerbell and DE/rand/1/bin using Gingerbread man the normalization scheme Bounds has been the most successful. In the case of DE/best/1/bin powered by tMT the normalization scheme Atan2 has been the most successful. In the case of DE/rand/1/bin powered by gMT with the normalization schemes Atan2 and Bounds has been the most successful.

The last step of our work was to compare the results of the DE powered by cPRNGs using different number normalization and DE powered by MT with modified PDF according to these cPRNGs. When we look at the Table [18] we can make some conclusions:

- **DE/best/1/bin, Tink. vs. tMT, Atan2:** The means can be considered as equal. There is not significant difference between the cPRNG using Tinkerbell and number normalization Atan2 and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/best/1/bin, Ging. vs. gMT, Atan2:** The means can be considered as equal. There is not significant difference between the cPRNG using Gingerbread man and number normalization Atan2 and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/best/1/bin, Ging. vs. gMT, Bounds:** The means can be considered as equal. There is not significant difference between the cPRNG using Gingerbread man and number normalization Bounds and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/best/1/bin, Ging. vs. gMT, Modulo:** The means can be considered as equal. There is not significant difference between the cPRNG using Gingerbread man and number normalization Modulo and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Tink. vs. tMT, Atan2:** The means can be considered as equal. There is not significant difference between the cPRNG using Tinkerbell and number normalization Atan2 and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Tink. vs. tMT, Bounds:** The means can not be considered as equal. The cPRNG using Tinkerbell and number normalization Bounds would not significantly influence DE convergence speed.**
has reached better results (its mean is greater) than MT with the modified PDF according to this cPRNG. **Interpretation:** We can not say that the sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Tink. vs. tMT, Modulo:** The means can not be considered as equal. MT with the modified PDF according to the cPRNG using Tinkerbell and Modulo has reached better results (the mean is greater) than this cPRNG. **Interpretation:** We can not say that the sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Tink. vs. tMT, Bounds vs. Modulo:** In this case we have decided to compare two best number generators. We have compared cPRNG using Tinkerbell and number normalization Bounds and MT with the modified PDF according to the cPRNG using Tinkerbell and Modulo. The means are comparable. There is not significant difference between the cPRNG using Tinkerbell and number normalization Bounds and MT with the modified PDF according to the cPRNG using Tinkerbell and Modulo. **Interpretation:** We can not say that the sequence of the numbers generated by the cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Ging. vs. gMT, Atan2:** The means can be considered as equal. There is not significant difference between the cPRNG using Gingerbread man and number normalization Atan2 and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

- **DE/rand/1/bin, Ging. vs. gMT, Bounds:** The means can be considered as equal. There is not significant difference between the cPRNG using Gingerbread man and number normalization Bounds and PRNG MT with the modified PDF according to this cPRNG. **Interpretation:** The sequence of the numbers generated by this cPRNG does not significantly influence DE convergence speed.

From the results mentioned in the Section we can say that the number normalization scheme might influence DE convergence speed. In our experiments, number normalization denoted as Atan2 and Bounds reached the best results. In the second part of our work, we were interested in the influence of the PDF and number sequences of the cPRNG using in DE. From the results mentioned above we can see that in three cases from four we can consider the means of the best results of the cPRNG and MT with the modified PDF according to this cPRNG as the same. That means that there is not significant difference between results of the cPRNG using the certain scheme of number normalization and MT with the modified PDF according to this cPRNG.

In the case of DE/rand/1/bin cPRNG using Tinkerbell and Bounds reached the best results and MT with the modified PDF according to the cPRNG using Tinkerbell reached the best results with number normalization Modulo. On the other hand the results of the cPRNG using Tinkerbell and Bounds reached the
comparable results like MT with modified PDF according to the cPRNG using Tinkerbell and Modulo.

On the base of the results mentioned in the section we express our opinion that the main role of the success of the cPRNG using in DE plays its PDF and the sequence of the numbers generated by this cPRNG is of secondary importance.
References

1. Alatas, B. Chaotic bee colony algorithms for global numerical optimization. *Expert Systems with Applications* 37 (2010), 5682–5687.
2. Alatas, B., Akin, E., and Ozer, B. A. Chaos embedded particle swarm optimization algorithms. *Chaos, Solitons & Fractals* 40 (2009), 1715–1734.
3. Caponetto, R., Fortuna, L., Fazzino, S., and Xibilia, M. G. Chaotic sequences to improve the performance of evolutionary algorithms. *Evolutionary Computation, IEEE Transactions* 7 (2003), 289–304.
4. Chen, G., Maob, Y., and Chuic, C. A symmetric image encryption scheme based on 3d chaotic cat maps. *Chaos, Solitons & Fractals* 21 (2004), 749–761.
5. Davendra, D. D., Senkerik, R., Zelinka, I., and Pluhacek, M. Scatter search algorithm with chaos based stochasticity. In *2014 IEEE Congress on Evolutionary Computation (CEC)* (7 2014), IEEE, pp. 860–866.
6. Devaney, R. L. A piecewise linear model for the zones of instability of an area preserving map. *Physica D* 10 (1984), 387–393.
7. dos Santos Coelho, L., Klein, C. E., Luvizotto, L. G. J., and Mariani, V. C. Firefly approach optimized wavenets applied to multivariable identification of a thermal process. In *EUROCON 2013* (7 2013), IEEE, pp. 2066–2071.
8. dos Santos Coelho, L., and Mariani, V. C. Firefly algorithm approach based on chaotic tinkerbell map applied to multivariable pid controller tuning. *Computers & Mathematics with Applications* 64 (2012), 2371–2382.
9. Kocarev, L. Chaos-based cryptography: a brief overview. *Circuits and Systems Magazine* 1 (2001), 6–21.
10. Kromer, P., Zelinka, I., and Snasel, V. Can deterministic chaos improve differential evolution for the linear ordering problem? In *Evolutionary Computation (CEC)* (7 2014), IEEE, pp. 1443–1448.
11. Kwok, H. S., and Wallace, T. K.-S. A fast image encryption system based on chaotic maps with finite precision representation. *Chaos, Solitons & Fractals* 21 (2007), 1518–1529.
12. Liang, J. J., Qu, B. Y., and Suganthan, N. P. Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Tech. rep., Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2014.
13. Liang, J. J., Qu, B. Y., Suganthan, N. P., and Hernandez-Diaz, A. G. Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Tech. rep., Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013.
14. Lin, T., and Chua, L. O. A new class of pseudo-random number generator based on chaos in digital filters. *International Journal of Circuit Theory and Applications* 21 (1993), 473–480.
15. Liu, B., Wang, L., Jina, Y.-H., Tang, F., and Huang, D.-X. Improved particle swarm optimization combined with chaos. *Chaos, Solitons & Fractals* 28 (2005), 1262–1271.
16. Nusse, H. E., and Yorke, J. A. *Dynamics: Numerical Explorations*. Springer, 12 1997.
17. Pluhacek, M., Senkerik, R., Davendra, D. D., Oplatkova, Z. K., and Zelinka, I. On the behavior and performance of chaos driven pso algorithm with inertia weight. *Computer & Mathematics with Applications* 66 (2013), 122–134.
18. Price, K. Genetic annealing. *Dr. Dobb’s Journal* (1994), 127–132.
19. Qin, A. K., Vicky, L. H., and Ponnuthurai, N. S. Differential evolution algorithm with strategy adaptation for global numerical optimization. In *Evolutionary Computation* (9 2008), vol. 13, IEEE, pp. 398–417.
20. Senkerik, R., Oplatkova, Z., Zelinka, I., and Davendra, D. D. Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques. *Analytic programming, Mathematical and Computer Modelling* 57 (2013), 57–67.
21. Senkerik, R., Zelinka, I., Pluhacek, M., Davendra, D. D., and Kominkova, Z. O. Chaos enhanced differential evolution in the task of evolutionary control of selected set of discrete chaotic systems. *The Scientific World Journal 2014* (2014).
22. Skanderova, L., and Fabian, T. Complementary materials 1 and 2. 11 2014.
23. Stojanowski, T., and Kocarev, L. Chaos-based random number generators – part i: analysis [cryptography]. *Circuits and Systems I: Fundamental Theory and Applications* 48 (2001), 281–288.
24. Storn, R. On the usage of differential evolution for function optimization. In *Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS)* (6 1996), IEEE, pp. 519–523.
25. Storn, R., and Price, K. Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. In *ICSI* (3 1995), IEEE.
26. Wang, X. Y., and Qin, X. A new pseudo-random number generator based on cml and chaotic iteration. *Nonlinear Dynamics* 70 (2012), 1589–1592.
27. Yan, X. F., Cheng, D. Z., and Hu, S. X. Chaos-genetic algorithms for optimizing the operating conditions based on rbf-pls model. *Computers & Chemical Engineering* 27 (2003), 1393–1404.
28. Zilong, G., Sunan, W., and Jian, Z. A novel immune evolutionary algorithm incorporating chaos optimization. *Pattern Recognition Letters* 27 (2006), 2–8.
Fig. 3: Histogram of the 1e+6 samples generated by the cPRNG using Tinkerbell and Atan2 normalizer

Fig. 4: Histogram of the 1e+6 samples generated by the cPRNG using Gingerbread man and Atan2 normalizer

Fig. 5: Histogram of the 1e+6 samples generated by the cPRNG using Tinkerbell and Bounds normalizer

Fig. 6: Histogram of the 1e+6 samples generated by of the cPRNG using Gingerbread man and Bounds normalizer

Fig. 7: Histogram of the 1e+6 samples generated by the cPRNG using Tinkerbell and Modulo normalizer

Fig. 8: Histogram of the 1e+6 samples generated by the cPRNG using Gingerbread man and Modulo normalizer
Table 2: Table of the selected symbols using in the text

Symbol	Meaning
\(t_{MT} \)	MT with the modified PDF according to the cPRNG using Tinkerbell.
\(t_{MT}, \text{Atan2} \)	MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Atan2.
\(t_{MT}, \text{Bounds} \)	MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Bounds.
\(t_{MT}, \text{Modulo} \)	MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Modulo.
\(g_{MT} \)	MT with the modified PDF according to the cPRNG using Gingerbread man.
\(g_{MT}, \text{Atan2} \)	MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Atan2.
\(g_{MT}, \text{Bounds} \)	MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Bounds.
\(g_{MT}, \text{Modulo} \)	MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Modulo.
\(\mu_A \)	The mean of results of the DE using cPRNG using number normalization Atan2.
\(\mu_B \)	The mean of results of the DE using cPRNG using number normalization Bounds.
\(\mu_M \)	The mean of results of the DE using cPRNG using number normalization Modulo.
\(\mu_{t_{MT}}^A \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Atan2.
\(\mu_{t_{MT}}^B \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Bounds.
\(\mu_{t_{MT}}^M \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Tinkerbell and number normalization Modulo.
\(\mu_{g_{MT}}^A \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Atan2.
\(\mu_{g_{MT}}^B \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Bounds.
\(\mu_{g_{MT}}^M \)	The mean of results of the DE using MT with the modified PDF according to the cPRNG using Gingerbread man and number normalization Modulo.
Table 3: DE/best/1/bin, $D = 10$, Tinkerbell (T) vs. tMT.

Atan2	Bounds	Modulo	
	T tMT	T tMT	T tMT
f_1	74% (66%)	20% 34%	6% 0%
f_5	90% (88%)	4% 12%	6% 0%
f_6	0% 0%	82% 8%	22% (94%)
f_{13}	22% 28%	36% 38%	44% (40%)
f_{15}	30% 12%	40% (44%)	30% (44%)
f_{16}	2% 0%	68% 12%	40% (88%)
f_{17}	70% (46%)	14% (46%)	16% 8%
f_{22}	84% (66%)	14% 34%	2% 0%
f_{23}	72% (58%)	16% 42%	12% 0%

Table 4: DE/best/1/bin, $D = 10$, Gingerbread man (G) vs. gMT.

Atan2	Bounds	Modulo	
	T tMT	T tMT	T tMT
f_1	68% (50%)	0% 0%	32% (50%)
f_5	92% (100%)	0% 0%	8% 0%
f_6	0% 0%	100% (100%)	0% 0%
f_{13}	10% 14%	64% (50%)	28% 42%
f_{15}	6% 6%	70% (76%)	24% 18%
f_{16}	0% 0%	96% (94%)	4% 6%
f_{17}	58% (64%)	4% 14%	38% 22%
f_{22}	96% (60%)	0% 6%	4% 34%
f_{23}	92% (68%)	0% 4%	8% 28%

Table 5: DE/rand/1/bin, $D = 10$, Tinkerbell (T) vs. tMT.

Atan2	Bounds	Modulo	
	T tMT	T tMT	T tMT
f_1	32% 32%	44% (64%)	24% 14%
f_5	16% 20%	44% (54%)	46% 36%
f_6	0% 2%	70% 20%	32% (78%)
f_{13}	36% 26%	40% 26%	26% (50%)
f_{15}	2% 12%	38% 22%	60% (66%)
f_{16}	4% 8%	64% 8%	34% (84%)
f_{17}	40% (50%)	30% 30%	30% 20%
f_{22}	26% 32%	56% (64%)	18% 4%
f_{23}	64% 42%	24% (56%)	12% 2%
Table 6: DE/rand/1/bin, $D = 10$, Gingerbread man (G) vs. gMT.

Atan2	Bounds T	tMT		
f_1	68% (64%)	14%	30%	22%
f_5	14%	10%	**72%** (74%)	22%
f_9	0%	0%	**88%** (96%)	14%
f_{13}	24%	30%	**48%** (44%)	28%
f_{15}	4%	8%	**92%** (84%)	4%
f_{16}	4%	2%	**94%** (88%)	2%
f_{17}	60% (76%)	16%	4%	24%
f_{22}	92% (94%)	0%	2%	8%
f_{23}	96% (96%)	2%	2%	2%

Table 7: DE/best/1/bin, $D = 20$, Tinkerbell (T) vs. tMT.

Atan2	Bounds T	tMT	Modulo T	tMT		
f_1	100% (90%)	0%	10%	0%	0%	
f_5	98% (90%)	2%	10%	0%	0%	
f_9	0%	0%	**74%** (90%)	2%	28% (100%)	
f_{13}	18%	32%	38%	34%	**46%** (36%)	
f_{15}	6%	2%	**50%** (50%)	26%	48%	(72%)
f_{16}	2%	2%	**72%** (90%)	8%	28%	
f_{17}	88% (70%)	12%	30%	0%	0%	
f_{22}	78% (50%)	18%	48%	4%	2%	
f_{23}	88% (54%)	12%	46%	0%	0%	

Table 8: DE/best/1/bin, $D = 20$, Gingerbread man (G) vs. gMT.

Atan2	Bounds T	tMT	Modulo T	tMT	
f_1	62% (100%)	0%	0%	38%	0%
f_5	88% (100%)	0%	0%	12%	0%
f_9	0%	0%	**98%** (100%)	2%	0%
f_{13}	22%	18%	**52%** (54%)	26%	30%
f_{15}	0%	2%	**80%** (82%)	26%	16%
f_{16}	4%	4%	**86%** (94%)	10%	2%
f_{17}	68%	32%	0%	4%	32% (64%)
f_{22}	62%	20%	6%	6%	32% (74%)
f_{23}	88%	10%	6%	0%	38% (90%)
Table 9: DE/rand/1/bin, $D = 20$, Tinkerbell (T) vs. tMT.

f	Atan2	Bounds	Modulo		
	T	tMT	T	tMT	
f_1	0%	0%	*60%*	8%	42% (92%)
f_5	0%	0%	*66%*	2%	38% (98%)
f_9	0%	0%	6%	0%	*94%* (100%)
f_{13}	32% (40%)	32%	22%	38%	38%
f_{15}	4%	10%	*60%*	14%	38% (76%)
f_{16}	6%	10%	*66%*	16%	28% (74%)
f_{17}	30%	34%	*38%* (36%)	32%	30%
f_{18}	48%	42%	40% (50%)	12%	8%
f_{20}	36%	30%	*54%* (70%)	10%	0%

Table 10: DE/rand/1/bin, $D = 20$, Gingerbread man (G) vs. gMT.

f	Atan2	Bounds	Modulo			
	T	tMT	T	tMT		
f_1	*76%* (52%)	24%	48%	0%	2%	
f_5	8%	2%	*92%* (100%)	0%	0%	
f_9	0%	0%	*94%* (98%)	6%	2%	
f_{13}	28%	24%	36%	36%	36% (40%)	
f_{15}	6%	10%	*74%* (72%)	20%	18%	
f_{16}	2%	8%	*84%* (80%)	14%	12%	
f_{17}	68%	82%	8%	8%	24%	10%
f_{20}	66% (90%)	2%	2%	32%	8%	
f_{22}	*68%* (100%)	6%	0%	26%	0%	

Table 11: DE/best/1/bin, $D = 30$, Tinkerbell (T) vs. tMT.

f	Atan2	Bounds	Modulo			
	T	tMT	T	tMT		
f_1	*98%* (96%)	2%	0%	0%	0%	
f_5	*98%* (96%)	2%	0%	0%	0%	
f_9	0%	0%	*54%*	0%	46% (100%)	
f_{13}	32%	24%	42%	32%	28% (46%)	
f_{15}	6%	2%	42%	12%	*54%* (90%)	
f_{16}	4%	0%	*66%*	6%	32%	96%
f_{17}	96% (88%)	4%	12%	*100%*	0%	
f_{20}	100% (68%)	0%	32%	48%	0%	
f_{23}	*98%* (64%)	2%	36%	0%	0%	
Table 12: DE/best/1/bin, $D = 30$, Gingerbread man (G) vs. gMT.

f_i	Atan2	Bounds	Modulo			
	T	t_{MT}	T	t_{MT}	T	t_{MT}
f_1	26% (100%)	0%	0%	74%	0%	
f_5	84% (100%)	0%	0%	16%	0%	
f_9	0%	0%	100% (100%)	0%	0%	
f_{13}	22%	14%	48% (54%)	32%	36%	
f_{15}	0%	4%	94% (88%)	6%	8%	
f_{16}	2%	6%	94% (92%)	4%	2%	
f_{17}	0%	26%	0%	2%	100% (72%)	
f_{22}	50%	12%	2%	2%	48% (86%)	
f_{23}	98%	18%	4%	4%	58% (78%)	

Table 13: DE/rand/1/bin, $D = 30$, Tinkerbell (T) vs. tMT.

f_i	Atan2	Bounds	Modulo			
	T	t_{MT}	T	t_{MT}	T	t_{MT}
f_1	0%	0%	52%	0%	48% (100%)	
f_5	0%	0%	68%	0%	32% (100%)	
f_9	0%	0%	74%	0%	28% (100%)	
f_{13}	22%	18%	46%	32%	34% (50%)	
f_{15}	12%	18%	64%	24%	24% (58%)	
f_{16}	16%	8%	54%	28%	30% (64%)	
f_{17}	6%	34%	48%	28%	46% (38%)	
f_{22}	54% (92%)	0%	2%	46%	6%	
f_{23}	44% (92%)	2%	2%	54%	6%	

Table 14: DE/rand/1/bin, $D = 30$, Gingerbread man (G) gMT.

f_i	Atan2	Bounds	Modulo			
	T	t_{MT}	T	t_{MT}	T	t_{MT}
f_1	0%	0%	100% (100%)	0%	0%	
f_5	0%	0%	100% (100%)	0%	0%	
f_9	0%	0%	100% (100%)	0%	0%	
f_{13}	38%	30%	38% (38%)	26%	32%	
f_{15}	14%	10%	84% (70%)	2%	20%	
f_{16}	16%	18%	74% (64%)	10%	18%	
f_{17}	20% (76%)	12%	18%	68%	6%	
f_{22}	54% (92%)	0%	2%	46%	6%	
f_{23}	44% (92%)	2%	2%	54%	6%	
Table 15: Results of the test ANOVA. The significance level has been chosen to be $\alpha = 0.1$. The highlighted values mean that in these cases the means can be considered as equal.

Algorithm	cPRNG	p-value	F crit.
DE/best/1/bin	Tink.	0.002	2.372
	Ging.	0.293	2.372
DE/rand/1/bin	Tink.	0.000	2.372
DE/best/1/bin	gMT	0.610	2.372

Table 16: Results of the T-tests for cPRNGs. The significance level has been chosen to be $\alpha = 0.1$. If the p-value is smaller than the significance level value, the null hypothesis is accepted in the case of one-sided T-test. In the case of the two-sided T-test the null hypothesis is accepted if the p-value is greater than the significance level value.

Algorithm	cPRNG	μ_A vs. μ_B (p-val.)	μ_A vs. μ_M (p-val.)	μ_B vs. μ_M (p-val.)	Resume
DE/best	Tink.	$\mu_A > \mu_B$ (0.006)	$\mu_A > \mu_M$ (0.001)	$\mu_B = \mu_M$ (0.440)	Acc.
DE/rand	Tink.	$\mu_A < \mu_B$ (0.000)	$\mu_A > \mu_M$ (0.005)	$\mu_B > \mu_M$ (0.000)	Acc.
DE/rand	Ging.	$\mu_A < \mu_B$ (0.035)	$\mu_A > \mu_M$ (0.025)	$\mu_B > \mu_M$ (0.000)	Acc.

Table 17: Results of the T-tests for MT with modified PDF. The significance level has been chosen to be $\alpha = 0.1$. If the p-value is smaller than the significance level value, the null hypothesis is accepted in the case of one-sided T-test. In the case of the two-sided T-test the null hypothesis is accepted if the p-value is greater than the significance level value.

Algorithm	cPRNG	μ_A vs. μ_B (p-val.)	μ_A vs. μ_M (p-val.)	μ_B vs. μ_M (p-val.)	Resume
DE/best	tMT	$\mu_A^{MT} > \mu_B^{MT}$ (0.003)	$\mu_A^{MT} > \mu_M^{MT}$ (0.158)	$\mu_B^{MT} = \mu_M^{MT}$ (0.209)	Acc.
DE/rand	tMT	$\mu_A^{MT} < \mu_B^{MT}$ (0.056)	$\mu_A^{MT} < \mu_M^{MT}$ (0.000)	$\mu_B^{MT} < \mu_M^{MT}$ (0.005)	Acc.
DE/rand	gMT	$\mu_A^{MT} = \mu_B^{MT}$ (0.304)	$\mu_A^{MT} > \mu_M^{MT}$ (0.001)	$\mu_B^{MT} > \mu_M^{MT}$ (0.000)	Acc.
Table 18: The comparison of the best results of the cPRNGs and MT with the modified PDF. The significance level has been chosen to be $\alpha = 0.1$. F crit. value equals to 1.675 in the one-sided test and 1.298 in the two-sided test (t_2). If the p-value is smaller than the significance level value, the null hypothesis is accepted in the case of one-sided T-test. In the case of the two-sided T-test the null hypothesis is accepted if the p-value is greater than the significance level value.

Algorithm	Comparison (norm. scheme)	Null hyp.	p-val.	Resume
DE/best	Tink. vs. tMT (Atan2)	$\mu_A = \mu_{MT}^A$	0.361 (t_2)	Acc.
DE/best	Ging. vs. gMT (Atan2)	$\mu_A = \mu_{gMT}^A$	0.544 (t_2)	Acc.
	Ging. vs. gMT (Bounds)	$\mu_B = \mu_{gMT}^B$	0.944 (t_2)	Acc.
	Ging. vs. gMT (Modulo)	$\mu_M = \mu_{gMT}^M$	0.776 (t_2)	Acc.
DE/rand	Tink. vs. tMT (Atan2)	$\mu_A = \mu_{MT}^A$	0.530 (t_2)	Acc.
	Tink. vs. tMT (Bounds)	$\mu_B > \mu_{MT}^B$	0.000	Acc.
	Tink. vs. tMT (Modulo)	$\mu_M < \mu_{MT}^M$	0.010	Acc.
	Tink. vs. tMT (Bounds/Modulo)	$\mu_B = \mu_{MT}^B$	0.809 (t_2)	Acc.
DE/rand	Ging. vs gMT (Atan2)	$\mu_A = \mu_{gMT}^A$	0.455 (t_2)	Acc.
DE/rand	Ging. vs gMT (Bounds)	$\mu_B = \mu_{gMT}^B$	0.983 (t_2)	Acc.
Abstract. In many publications, authors showed that chaotic pseudo random numbers generators (PRNGs) may improve performance of the evolutionary algorithms. In this paper, we use two chaotic maps Gingerbread man and Tinkerbell as the chaotic PRNGs instead of the classical PRNG in the algorithm differential evolution. Numbers generated by this maps are normalized to the interval [0,1] by three different methods – operation modulo, classical normalization and function atan2. The goal is to show that number normalization may affect the differential evolution convergence speed. In the second part of this paper, we have modified well known PRNG Mersenne Twister to generate numbers with the same probability distribution function like the chaotic maps using different schemes of number normalization, where we have tested if the PRNG with the same probability distribution function will reach the same results. The results mentioned below showed that the selected normalization method may improve differential evolution convergence speed, especially in the case of function atan2 and classical normalization. Modified Mersenne Twister reached very different results than chaotic PRNGs with the different number normalization. That means the distribution of the selected (chaotic) PRNG with the number normalization scheme alone does not suffice to improve differential evolution convergence speed and play the key role in this process.
Keywords: Pseudo random number generator, evolutionary algorithms, differential evolution, particle swarm, chaos, Gingerbread man, Tinkerbell

1 Introduction

In this materials, we have mentioned statistic analysis for paper Differential Evolution Powered by Chaos Using Three Types of Number Normalization. Materials have been divided into two parts. In this part, statistic analysis of differential evolution (DE) using chaotic pseudo random number generators (cPRNGs) – Gingerbread man map and Tinkerbell map with three types of number normalization are described. In the tables below we are comparing results of the used number normalization schemes: Atan2, classical normalization denoted as Bounds and operator Modulo. The tables are divided into sections according to the dimension. Experiments for dimensions $D = 10$, $D = 20$ and $D = 30$ have been executed. Each experiment has been repeated fifty times.

2 Results
Table 1: DE/best/1/bin, $D = 10$, Gingerbread man as the cPRNG.

Fun. Type of norm.	Min.	Max.	Mean	Med.	Std. dev.	
f_1 Atan2	-1400.000	-1341.777	-1398.587	-1400.000	8.170	
	Bounds	-1116.067	5993.978	1496.679	1116.439	1559.007
	Modulo	-1400.000	-1297.048	-1394.534	-1399.9	17.829
f_5 Atan2	-599.997	-599.796	-599.915	-599.914	0.053	
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-599.986	-843.512	-974.057	-995.850	40.033
f_9 Atan2	-200.000	-199.995	-200.000	-200.000	0.001	
	Bounds	-200.000	-199.999	-200.000	-200.000	0.000
	Modulo	-200.000	-199.999	-200.000	-200.000	0.000
f_{13} Atan2	304.742	352.964	325.632	325.031	8.609	
	Bounds	319.947	410.029	354.933	349.04	23.031
	Modulo	314.153	343.286	327.063	325.756	7.343
f_{16} Atan2	901.469	1272.474	1022.004	1027.407	98.91	
	Bounds	1096.909	2555.113	1747.235	1719.500	337.116
	Modulo	929.746	1652.331	1261.346	1253.039	160.744
Table 2: DE/best/1/bin, $D = 10$, Tinkerbell as the cPRNG.

Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Atan2	-1400.000	-841.201	-1359.348	-1398.399	98.545
	Bounds	-1399.944	-529.141	-1282.48	-1343.21	162.301
	Modulo	-1389.095	1943.356	-667.012	-984.147	829.98
f_5	Atan2	-999.933	-610.199	-979.291	-994.797	55.478
	Bounds	-999.179	256.076	-730.748	-822.204	245.909
	Modulo	-976.834	1712.885	-570.704	-843.251	558.92
f_9	Atan2	-600.000	-600.000	-600.000	-600.000	0.000
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000
f_{13}	Atan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-199.998	-200.000	-200.000	0.000
	Modulo	-200.000	-199.988	-200.000	-200.000	0.002
f_{15}	Atan2	100.000	100.625	100.038	100.000	0.148
	Bounds	-477.635	556.689	126.572	100.000	235.498
	Modulo	100.000	133.525	100.883	100.000	4.672
f_{16}	Atan2	200.000	200.000	200.000	200.000	0.000
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Atan2	308.447	363.751	329.199	324.753	11.754
	Bounds	323.863	378.764	346.671	343.952	13.160
	Modulo	315.439	480.962	373.148	368.189	38.656
f_{22}	Atan2	837.185	1854.352	1264.432	1272.591	221.900
	Bounds	998.865	2214.721	1618.634	1589.480	275.603
	Modulo	1214.059	2301.915	1779.788	1762.625	216.925
f_{23}	Atan2	923.015	1799.224	1340.532	1330.394	198.328
	Bounds	1101.238	2290.375	1647.917	1620.352	251.598
	Modulo	1238.201	2539.776	1840.882	1796.526	303.993
Table 3: DE/rand1/bin, $D = 10$, Gingerbread man as the cPRNG.

Fun. Type of norm.	Min.	Max.	Mean	Med. Std. dev.		
f_1	Atan2	-1400.000	-1400.000	-1400.000	0.000	
	Bounds	-1400.000	-1400.000	-1400.000	0.000	
	Modulo	-1400.000	-1400.000	-1400.000	0.000	
f_5	Atan2	-1000.000	-999.999	-999.999	0.000	
	Bounds	-1000.000	-999.958	-999.999	0.006	
	Modulo	-1000.000	-999.999	-1000.000	0.000	
f_9	Atan2	-599.99	-599.709	-599.998	0.062	
	Bounds	-600.000	-599.963	-600.000	0.006	
	Modulo	-600.000	-599.953	-599.988	0.013	
f_{13}	Atan2	-200.000	-199.988	-199.999	0.002	
	Bounds	-200.000	-199.997	-200.000	0.001	
	Modulo	-200.000	-199.997	-200.000	0.001	
f_{15}	Atan2	101.521	100.210	100.008	1.191	
	Bounds	100.000	100.000	100.000	0.000	
	Modulo	100.000	100.000	100.000	0.000	
f_{16}	Atan2	200.000	200.037	200.000	0.000	
	Bounds	200.000	200.000	200.000	0.000	
	Modulo	200.000	200.000	200.000	0.000	
f_{17}	Atan2	325.563	348.265	337.237	5.163	
	Bounds	328.465	350.193	346.032	6.573	
	Modulo	327.267	351.456	341.335	5.663	
f_{22}	Atan2	1426.673	2136.490	1820.351	1819.956	162.442
	Bounds	1931.084	2821.204	2476.900	2525.028	192.040
	Modulo	1650.227	2504.549	2173.053	2220.269	200.025
f_{23}	Atan2	1436.007	2249.422	1902.986	1871.902	184.527
	Bounds	2036.26	2863.141	2558.708	2599.453	188.074
	Modulo	2001.839	2590.124	2313.22	2315.500	137.794
Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
------	--------------	--------------	--------------	----------------	----------------	-----------
f_1	Atan2	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Bounds	-1400.000	-1399.998	-1400.000	-1400.000	0.000
	Modulo	-1400.000	-1400.000	-1400.000	-1400.000	0.000
f_5	Atan2	-1000.000	-999.999	**-1000.000**	-1000.000	**0.000**
	Bounds	-1000.000	-999.980	-999.999	-1000.000	0.003
	Modulo	-1000.000	-999.990	**-1000.000**	-1000.000	**0.002**
f_9	Atan2	-599.997	-599.832	-599.966	-599.963	0.035
	Bounds	-600.000	-599.999	-600.000	**-600.000**	**0.000**
	Modulo	-600.000	-599.982	-599.999	-600.000	0.003
f_{13}	Atan2	-200.000	-199.997	-200.000	-200.000	0.001
	Bounds	-200.000	-199.999	-200.000	-200.000	**0.000**
	Modulo	-200.000	-199.999	-200.000	-200.000	**0.000**
f_{15}	Atan2	100.000	100.002	100.000	100.000	**0.000**
	Bounds	100.046	100.000	100.619	100.000	35.666
	Modulo	100.000	100.625	100.012	100.000	0.088
f_{16}	Atan2	200.000	200.003	200.000	200.000	0.001
	Bounds	200.000	200.000	200.000	200.000	**0.000**
	Modulo	200.000	200.000	200.000	200.000	**0.000**
f_{17}	Atan2	332.735	355.335	345.564	345.569	5.097
	Bounds	329.598	357.027	346.826	347.534	5.890
	Modulo	334.358	357.335	346.535	**346.862**	4.903
f_{22}	Atan2	1904.675	2773.616	2397.492	2399.587	180.575
	Bounds	1899.416	2653.072	2347.224	**2382.455**	173.750
	Modulo	2235.293	2981.175	2560.031	2547.184	184.711
f_{23}	Atan2	1999.500	2747.983	2465.606	**2488.092**	161.808
	Bounds	2111.503	2801.723	2555.803	2575.176	164.352
	Modulo	2339.204	3019.777	2743.248	2779.833	174.702
Fun. Type of norm.	Min.	Max.	Mean	Med.	Std. dev.	
-------------------	-----------	-----------	-----------	-----------	-----------	
f_1 Atan2	-1387.604	-1100.093	-1316.103	-1342.547	67.366	
	Bounds	1902.179	10639.775	7386.17	6686.369	3103.2
	Modulo	-1387.33	-578.033	-1255.855	-1329.492	157.17
f_3 Atan2	-996.984	-595.301	-955.837	-978.760	70.783	
	Bounds	396.226	26807.775	9708.291	7687.590	6089.540
	Modulo	-988.63	-638.202	-868.668	-913.376	85.447
f_9 Atan2	-599.997	-599.822	-599.954	-599.961	0.031	
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-599.997	-599.999	-599.999	-599.999	0.000
f_{13} Atan2	-200.000	-199.999	-200.000	-200.000	0.000	
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15} Atan2	100.000	100.012	100.001	100.000	0.003	
	Bounds	100.000	100.625	100.112	100.000	0.240
	Modulo	100.000	100.000	100.000	100.000	0.000
f_{16} Atan2	200.000	200.007	200.002	200.001	0.002	
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17} Atan2	341.949	460.559	371.627	366.605	20.907	
	Bounds	421.263	627.999	517.351	516.540	45.591
	Modulo	346.566	432.123	382.210	380.366	21.349
f_{22} Atan2	1037.318	4322.624	2657.094	1424.061	1010.075	
	Bounds	1953.134	3966.631	2963.150	2925.088	389.365
	Modulo	1140.189	4663.335	2118.285	1812.806	819.974
f_{23} Atan2	1100.186	4343.556	2063.710	1529.934	956.181	
	Bounds	1997.346	4010.445	3080.884	3120.196	454.936
	Modulo	1281.007	4860.38	2250.993	1995.202	757.254
Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
------	---------------	-----------	-----------	----------	----------	-----------
f_1	Atan2	-1332.931	463.874	-929.445	-1066.077	397.890
	Bounds	-155.174	8600.879	3948.886	3865.264	1980.206
	Modulo	722.882	21308.813	7738.186	7603.403	4155.355
f_5	Atan2	-947.914	-201.343	-719.583	-762.926	157.353
	Bounds	-589.16	2915.649	202.711	52.830	704.195
	Modulo	302.481	10984.309	2686.347	2167.904	2314.304
f_9	Atan2	-600.000	-599.994	-599.999	-600.000	0.000
	Bounds	-600.000	-600.000	-600.000	0.000	
	Modulo	-600.000	-600.000	-600.000	0.000	
f_{13}	Atan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	0.000	
	Modulo	-200.000	-200.000	-200.000	0.000	
f_{15}	Atan2	100.000	100.000	100.000	100.000	0.000
	Bounds	100.000	100.625	100.050	100.000	0.170
	Modulo	100.000	100.625	100.038	100.000	0.148
f_{16}	Atan2	200.000	200.000	200.000	200.000	0.001
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Atan2	356.858	468.409	404.542	405.501	28.43
	Bounds	392.308	617.557	497.612	496.311	51.246
	Modulo	473.335	802.701	624.941	630.126	79.226
f_{22}	Atan2	1104.518	2916.903	2202.173	2174.775	419.821
	Bounds	1834.879	4090.583	2832.729	2839.605	502.152
	Modulo	2605.661	4889.415	3579.584	3478.275	524.926
f_{23}	Atan2	1465.539	3550.791	2294.342	2214.173	420.123
	Bounds	2107.927	3864.456	2985.016	2876.596	431.398
	Modulo	2879.702	4476.526	3688.043	3635.495	411.111
Table 7: DE/rand/1/bin, $D = 20$, Gingerbread man as the cPRNG.

Func.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Atan2	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Bounds	-1400.000	-1399.999	-1400.000	-1400.000	0.000
	Modulo	-1399.999	-1399.996	-1399.998	-1399.998	0.001
f_5	Atan2	-999.998	-999.991	-999.996	-999.996	0.002
	Bounds	-999.999	-999.996	-999.998	-999.999	0.001
	Modulo	-999.997	-999.977	-999.987	-999.990	0.003
f_9	Atan2	-599.999	-599.667	-599.917	-599.920	0.058
	Bounds	-600.000	-599.999	-600.000	-600.000	0.000
	Modulo	-600.000	-599.933	-599.987	-599.996	0.018
f_{13}	Atan2	-200.000	-199.999	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-199.999	-200.000	-200.000	0.000
f_{15}	Atan2	100.000	100.000	100.000	100.000	0.005
	Bounds	100.000	100.000	100.000	100.000	0.000
	Modulo	100.000	100.000	100.000	100.000	0.000
f_{16}	Atan2	200.000	200.000	200.000	200.000	0.000
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Atan2	413.537	452.665	434.284	435.89	8.986
	Bounds	415.569	424.996	423.655	7.271	
	Modulo	439.744	453.117	453.117	453.117	9.998
f_{22}	Atan2	4149.028	5181.361	4712.121	4682.958	275.639
	Bounds	5305.086	5365.198	5365.198	5365.198	306.362
	Modulo	5181.361	4712.121	4682.958	4682.958	233.926
f_{23}	Atan2	4047.685	5003.567	4648.810	4629.876	233.926
	Bounds	5775.777	5370.133	5427.54	5427.54	218.292
	Modulo	5259.613	4858.645	4834.817	4834.817	220.416
Table 8: DE/rand/1/bin, $D = 20$, Tinkerbell as the cPRNG.

Fun.	Type of norm	Min.	Max.	Mean	Med.	Std. dev.	
f_1	Atan2	-1400.000	-1399.995	-1399.998	-1399.999	0.001	
	Bounds	-1400.000	-1399.999	-1400.000	-1400.000	0.000	
	Modulo	-1400.000	-1399.998	-1400.000	-1400.000	0.000	
f_5	Atan2	-999.997	-999.978	-999.993	-999.993	0.004	
	Bounds	-1000.000	-999.996	-999.999	-999.999	0.001	
	Modulo	-1000.000	-999.983	-999.998	-999.998	0.002	
f_9	Atan2	-599.999	-599.924	-599.923	-599.923	0.041	
	Bounds	-600.000	-599.976	-599.998	-600.000	0.004	
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000	
f_{13}	Atan2	-200.000	-199.999	-200.000	-200.000	0.000	
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000	
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000	
f_{15}	Atan2	100.000	100.000	100.000	100.000	0.001	
	Bounds	100.000	100.000	100.000	100.000	0.000	
	Modulo	100.000	100.000	100.000	100.000	0.000	
f_{16}	Atan2	200.000	200.014	200.002	200.001	0.002	
	Bounds	200.000	200.000	200.000	200.000	0.000	
	Modulo	200.000	200.000	200.000	200.000	0.000	
f_{17}	Atan2	414.185	450.125	434.119	434.324	7.794	
	Bounds	412.750	452.961	432.212	431.821	8.486	
	Modulo	410.002	448.263	432.205	432.986	9.736	
f_{22}	Atan2	4320.667	5572.205	5149.487	5182.842	5182.842	256.646
	Bounds	4796.348	5578.235	5265.008	5291.438	179.715	
	Modulo	4579.861	5068.813	5529.692	5574.073	269.622	
f_{23}	Atan2	4906.254	5684.771	5291.404	5307.882	188.15	
	Bounds	4475.200	5698.890	5262.358	5280.326	253.094	
	Modulo	4954.935	6136.736	5636.929	5628.762	240.277	
Fun.	Type of norm	Min.	Max.	Mean	Med.	Std. dev.	
------	--------------	----------------	----------------	--------------	--------------	------------	
f_1	Atan2	-1160.086	12716.339	3013.109	1545.624	3658.674	
	Bounds	20203.914	34264.46	27833.000	27788.314	3594.681	
	Modulo	-949.447	2001.225	104.444	-49.506	728.074	
f_5	Atan2	-961.867	-314.609	-793.431	-845.34	149.438	
	Bounds	5266.778	22238.48	10808.168	10527.986	3397.012	
	Modulo	-931.488	1014.898	-486.132	-614.622	339.51	
f_9	Atan2	-599.999	-599.868	-599.956	-599.966	0.035	
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000	
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000	
f_{13}	Atan2	-200.000	-200.000	-200.000	-200.000	0.000	
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000	
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000	
f_{15}	Atan2	100.000	100.003	100.000	100.000	0.001	
	Bounds	100.000	100.625	100.025	100.000	0.122	
	Modulo	100.000	100.000	100.000	100.000	0.000	
f_{16}	Atan2	200.000	200.004	200.001	200.001	0.001	
	Bounds	200.000	200.000	200.000	200.000	0.000	
	Modulo	200.000	200.000	200.000	200.000	0.000	
f_{17}	Atan2	577.644	1334.903	881.800	898.120	185.557	
	Bounds	587.407	957.434	801.326	806.712	79.864	
	Modulo	401.269	585.257	483.763	485.419	45.209	
f_{22}	Atan2	1717.652	6795.64	3245.242	2424.778	1515.202	
	Bounds	3298.243	6544.876	4896.187	4892.618	684.950	
	Modulo	1540.765	7130.642	3637.302	2571.576	1909.083	
f_{23}	Atan2	1837.021	7430.865	3766.299	3156.175	1491.175	
	Bounds	3364.503	6424.378	4841.783	4882.867	593.313	
	Modulo	1567.382	7316.444	3628.83	2763.922	1792.710	
Table 10: DE/best/1/bin, $D = 30$, Tinkerbell as the cPRNG.

Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Atan2	-840.274	1872.388	10333.05	3371.281	
	Bounds	3972.713	16770.832	10829.256	5425.529	
	Modulo	5183.542	30649.726	15816.771	15680.372	
f_5	Atan2	-756.497	94.531	107.402	682.553	
	Bounds	230.041	15681.528	5011.468	2984.968	
	Modulo	1526.782	16071.356	5735.504	3642.97	
f_9	Atan2	-600.000	-599.988	-599.988	0.011	
	Bounds	-600.000	-600.000	-600.000	0.000	
	Modulo	-600.000	-600.000	-600.000	0.000	
f_{13}	Atan2	-200.000	-200.000	-200.000	0.000	
	Bounds	-200.000	-200.000	-200.000	0.000	
	Modulo	-200.000	-200.000	-200.000	0.000	
f_{15}	Atan2	100.000	100.000	100.000	0.000	
	Bounds	100.000	100.000	100.000	0.088	
	Modulo	100.000	100.000	100.000	0.122	
f_{16}	Atan2	200.000	200.000	200.000	0.001	
	Bounds	200.000	200.000	200.000	0.000	
	Modulo	200.000	200.000	200.000	0.000	
f_{17}	Atan2	421.242	532.944	523.608	53.718	
	Bounds	541.762	684.508	678.06	76.899	
	Modulo	725.434	978.312	959.139	161.001	
f_{22}	Atan2	2465.905	3529.185	3459.975	495.186	
	Bounds	3657.473	4830.445	4838.858	501.624	
	Modulo	4003.421	5323.996	5124.838	609.699	
f_{23}	Atan2	2462.798	3518.939	3449.835	585.721	
	Bounds	3752.254	4900.956	4899.206	508.689	
	Modulo	3848.027	5385.929	5319.222	551.583	
Table 11: DE/rand/1/bin, $D = 30$, Gingerbread man as the cPRNG.

Func.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Bound	-1399.997 to -1399.994	-1399.997 to -1399.994	0.001		
	Atan2	-999.999 to -999.996	-999.997 to -999.997	0.006		
	Modulo	-999.893 to -999.612	-999.784 to -999.799	0.063		
f_5	Bound	-999.996 to -999.994	-999.997 to -999.997	0.006		
	Atan2	-996.31 to -994.081	-991.418 to -991.418	2.811		
	Modulo	-999.996 to -999.994	-999.997 to -999.997	0.006		
f_9	Bound	-600.000 to -600.000	-600.000 to -600.000	0.000		
	Atan2	-599.993 to -599.860	-599.939 to -599.942	0.037		
	Modulo	-599.999 to -599.946	-599.992 to -599.996	0.009		
f_{13}	Bound	-200.000 to -200.000	-200.000 to -200.000	0.000		
	Atan2	-200.000 to -200.000	-200.000 to -200.000	0.000		
	Modulo	-200.000 to -200.000	-200.000 to -200.000	0.000		
f_{15}	Bound	100.000 to 100.001	100.000 to 100.001	0.002		
	Atan2	100.000 to 100.001	100.000 to 100.001	0.000		
	Modulo	100.000 to 100.001	100.000 to 100.001	0.000		
f_{16}	Bound	200.000 to 200.004	200.000 to 200.001	0.001		
	Atan2	200.000 to 200.004	200.000 to 200.001	0.001		
	Modulo	200.000 to 200.004	200.000 to 200.001	0.001		
f_{17}	Bound	502.647 to 502.711	502.747 to 503.421	10.599		
	Atan2	503.214 to 503.203	534.078 to 534.078	13.063		
	Modulo	502.216 to 504.349	521.323 to 522.178	10.818		
f_{22}	Bound	7870.873 to 8290.195	8319.742 to 8319.742	261.850		
	Atan2	7670.873 to 7812.904	7360.456 to 7421.433	303.05		
	Modulo	6480.763 to 7407.955	7450.165 to 7421.433	311.339		
f_{23}	Bound	7207.221 to 8830.549	8388.011 to 8388.011	298.475		
	Atan2	6759.360 to 7908.918	7524.860 to 7531.540	214.846		
	Modulo	6693.331 to 8072.473	7463.749 to 7488.474	312.722		
Fun. Type of norm.	Min.	Max.	Mean	Med.	Std. dev.	
-------------------	------------	------------	-----------	------------	-----------	
\(f_1 \)	Atan2	-1399.984	-1399.929	-1399.963	-1399.964	0.013
	Bounds	-1399.999	-1399.995	\textbf{-1399.998}	-1399.998	0.001
	Modulo	-1399.999	-1399.993	-1399.997	-1399.998	0.001
\(f_5 \)	Atan2	-999.959	-999.747	-999.895	-999.899	0.035
	Bounds	-999.997	-999.972	-999.991	\textbf{-999.993}	0.005
	Modulo	-999.995	-999.97	-999.989	-999.990	0.005
\(f_9 \)	Atan2	-599.996	-599.862	-599.955	-599.968	0.036
	Bounds	-600.000	-600.000	-600.000	\textbf{-600.000}	0.000
	Modulo	-600.000	-600.000	-600.000	\textbf{-600.000}	0.000
\(f_{13} \)	Atan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
\(f_{17} \)	Atan2	100.000	100.013	100.001	100.001	0.002
	Bounds	100.000	100.000	100.000	\textbf{100.000}	0.000
	Modulo	100.000	100.000	100.000	\textbf{100.000}	0.000
\(f_{19} \)	Atan2	200.000	200.003	200.001	200.001	0.001
	Bounds	200.000	200.000	200.000	\textbf{200.000}	0.000
	Modulo	200.000	200.000	200.000	\textbf{200.000}	0.000
\(f_{21} \)	Atan2	521.051	553.329	537.329	536.29	6.938
	Bounds	505.289	556.041	529.966	530.000	11.116
	Modulo	501.734	551.515	527.512	\textbf{527.562}	12.554
\(f_{22} \)	Atan2	7410.675	8699.496	8142.026	\textbf{8146.476}	275.253
	Bounds	7317.685	8616.992	8159.274	8188.075	257.534
	Modulo	7681.315	9005.522	8532.965	8551.819	315.234
\(f_{23} \)	Atan2	7114.605	8734.946	8237.983	\textbf{8206.852}	320.252
	Bounds	\textbf{6973.415}	8688.827	8247.023	8282.936	319.869
	Modulo	7826.880	9210.351	8671.689	8701.908	316.752
Differential Evolution Powered by Chaos Using Three Types of Number Normalization – Complementary Materials Part II

Lenka Skanderová, Tomas Fabian, and Ivan Zelinka

Department of Computer Science,
Faculty of Electrical Engineering and Computer Science,
VSB - Technical University of Ostrava,
17.listopadu 15/2172, 70800 Ostrava, Czech Republic
{lenka.skanderova, tomas.fabian, ivan.zelinka}@vsb.cz
http://www.cs.vsb.cz

Abstract. In many publications, authors showed that chaotic pseudo random numbers generators (PRNGs) may improve performance of the evolutionary algorithms. In this paper, we use two chaotic maps Gingerbread man and Tinkerbell as the chaotic PRNGs instead of the classical PRNG in the algorithm differential evolution. Numbers generated by this maps are normalized to the interval [0,1] by three different methods – operation modulo, classical normalization and function atan2. The goal is to show that number normalization may affect the differential evolution convergence speed. In the second part of this paper, we have modified well known PRNG Mersenne Twister to generate numbers with the same probability distribution function like the chaotic maps using different schemes of number normalization, where we have tested if the PRNG with the same probability distribution function will reach the same results. The results mentioned below showed that the selected normalization method may improve differential evolution convergence speed, especially in the case of function atan2 and classical normalization. Modified Mersenne Twister reached very different results than chaotic PRNGs with the different number normalization. That means the distribution of the selected (chaotic) PRNG with the number normalization scheme alone does not suffice to improve differential evolution convergence speed and play the key role in this process.

* The following grants are acknowledged for the financial support provided for this research: Grant Agency of the Czech Republic - GACR P103/13/08195S, is partially supported by Grant of SGS No. SP2014/42, VB - Technical University of Ostrava, Czech Republic, by the Development of human resources in research and development of latest soft computing methods and their application in practice project, reg. no. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competitiveness.
Keywords: Pseudo random number generator, evolutionary algorithms, differential evolution, particle swarm, chaos, Gingerbread man, Tinkerbell

1 Introduction

In this materials, we have mentioned statistic analysis for paper *Differential Evolution Powered by Chaos Using Three Types of Number Normalization*. Materials have been divided into two parts. In this part statistic analysis of differential evolution (DE) using Mersenne Twister (MT) modified to generate number with the same probability as the chaotic pseudo random number generators using different schemes of number normalization: Arctan2, classical normalization denoted as Bounds and operator Modulo. The tables are divided into sections according to the dimension. Experiments for dimensions $D = 10$, $D = 20$ and $D = 30$ have been executed. Each experiment has been repeated fifty times.

2 Results
Table 1: DE/best/1/bin, \(D = 10 \), gMT as the PRNG.

Fun.	Type of norm.	Min.	Max	Mean	Med.	Std. dev.
\(f_1 \)	Arctan2	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Bounds	1399.998	543.168	1260.622	1329.027	179.961
	Modulo	-1400.000	-1367.996	-1399.200	-1400.000	4.496
\(f_5 \)	Arctan2	-1000.000	-999.998	-1000.000	-1000.000	0.001
	Bounds	-999.666	-228.171	-899.000	-931.948	130.020
	Modulo	-999.999	965.944	-996.079	-999.742	7.650
\(f_9 \)	Arctan2	-599.999	-599.860	-599.957	-599.957	0.033
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000
\(f_{13} \)	Arctan2	-100.000	-199.997	-200.000	-200.000	0.001
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
\(f_{15} \)	Arctan2	100.014	110.015	100.999	100.000	6.960
	Bounds	100.000	100.625	100.100	100.000	0.229
	Modulo	100.000	100.625	100.250	100.000	0.122
\(f_{16} \)	Arctan2	200.000	200.015	200.004	200.002	0.004
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
\(f_{17} \)	Arctan2	309.892	338.606	323.754	322.978	5.190
	Bounds	316.358	367.412	339.247	339.643	12.210
	Modulo	313.711	357.876	331.997	330.887	10.127
\(f_{22} \)	Arctan2	800.847	1747.017	1076.103	974.204	245.46
	Bounds	1038.462	2246.641	1500.627	1442.897	290.017
	Modulo	837.852	2405.108	1163.750	1094.621	242.623
\(f_{23} \)	Arctan2	900.583	2126.449	1147.414	1081.682	278.586
	Bounds	1061.44	2060.152	1583.094	1571.790	270.48
	Modulo	904.552	2557.851	1238.541	1171.907	256.142
Fun. Type of norm.	Min.	Max.	Mean	Med.	Std. dev.	
-------------------	------	------	------	------	-----------	
f_1 Arctan2	-1400.000	-1298.078	-1394.962	-1399.930	16.301	
Bounds	-1400.000	-1093.382	-1381.411	-1398.631	48.345	
Modulo	-1386.506	3875.369	-445.359	-875.620	1073.647	
f_5 Arctan2	-999.987	-933.628	-992.378	-998.746	13.799	
Bounds	-999.974	-632.814	-945.143	-970.713	66.124	
Modulo	-989.827	7327.729	-239.565	-755.257	1274.47	
f_9 Arctan2	-600.000	-600.000	-600.000	-600.000	0.000	
Bounds	-600.000	-600.000	-600.000	-600.000	0.000	
Modulo	-600.000	-600.000	-600.000	-600.000	0.000	
f_{13} Arctan2	-200.000	-199.998	-200.000	-200.000	0.000	
Bounds	-200.000	-199.999	-200.000	-200.000	0.000	
Modulo	-200.000	-199.998	-200.000	-200.000	0.000	
f_{15} Arctan2	100.000	100.000	100.000	100.000	0.000	
Bounds	100.000	556.689	276.994	100.000	8.762	
Modulo	100.000	100.625	100.138	100.000	0.259	
f_{16} Arctan2	200.000	200.000	200.000	200.000	0.000	
Bounds	200.000	200.000	200.000	200.000	0.000	
Modulo	200.000	200.000	200.000	200.000	0.000	
f_{17} Arctan2	313.274	346.981	328.183	326.316	8.758	
Bounds	308.661	361.766	328.583	326.266	10.495	
Modulo	316.000	513.858	376.242	364.300	41.173	
f_{22} Arctan2	809.493	1534.713	1111.826	1082.406	184.123	
Bounds	825.09	1750.738	1220.160	1213.822	212.871	
Modulo	1411.634	2740.268	1912.244	1890.673	277.341	
f_{23} Arctan2	937.77	1916.279	1266.210	1252.041	189.639	
Bounds	934.528	1897.399	1305.578	1312.610	207.992	
Modulo	1306.41	2913.450	2037.080	2020.470	331.135	
Table 3: DE/rand/1/bin, $D = 10$, gMT as the PRNG.

Function	Type of norm	Min.	Max.	Mean	Med.	Std. dev.
f_1	Arctan2	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Bounds	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Modulo	-1400.000	-1400.000	-1400.000	-1400.000	0.000
f_5	Arctan2	-1000.000	-1000.000	-1000.000	-1000.000	0.000
	Bounds	-1000.000	-1000.000	-1000.000	-1000.000	0.000
	Modulo	-1000.000	-1000.000	-1000.000	-1000.000	0.000
f_9	Arctan2	-599.969	-599.969	-599.969	-599.969	0.057
	Bounds	-600.000	-599.977	-599.997	-599.999	0.006
	Modulo	-599.995	-599.857	-599.958	-599.962	0.028
f_{13}	Arctan2	-200.000	-199.995	-200.000	-200.000	0.001
	Bounds	-200.000	-199.997	-200.000	-200.000	0.000
	Modulo	-200.000	-199.997	-200.000	-200.000	0.000
f_{15}	Arctan2	100.475	100.421	100.125	100.005	41.797
	Bounds	100.000	100.000	100.000	100.000	0.000
	Modulo	100.492	100.001	100.470	100.000	24.709
f_{16}	Arctan2	200.000	200.021	200.000	200.003	0.006
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.004	200.000	200.000	0.001
f_{17}	Arctan2	325.492	342.398	334.830	334.929	4.447
	Bounds	333.656	357.437	345.634	346.046	5.539
	Modulo	327.895	353.500	342.188	341.58	5.551
f_{22}	Arctan2	1457.737	2230.297	1939.686	1953.902	152.124
	Bounds	1944.26	2769.098	2454.918	2502.788	211.347
	Modulo	1812.063	2519.411	2266.318	2296.410	145.249
f_{23}	Arctan2	1640.755	2330.858	2049.640	2060.050	146.806
	Bounds	1911.238	2869.264	2573.845	2586.203	176.245
	Modulo	1768.039	2690.639	2375.162	2401.844	179.392
Table 4: DE/rand/1/bin, $D = 10$, tMT as the PRNG.

Fun. Type of norm.	Min.	Max.	Mean	Med.	Std. dev.	
f_1	Arctan2	-1400.000	-1400.000	-1400.000	0.000	
	Bounds	-1400.000	-1400.000	-1400.000	0.000	
	Modulo	-1400.000	-1400.000	-1400.000	0.000	
f_5	Arctan2	-1000.000	-999.999	-1000.000	0.000	
	Bounds	-1000.000	-999.999	-1000.000	0.000	
	Modulo	-1000.000	-999.732	-999.989	0.042	
f_9	Arctan2	-600.000	-599.911	-599.971	0.023	
	Bounds	-600.000	-599.957	-599.994	0.008	
	Modulo	-600.000	-599.975	-599.999	0.004	
f_{13}	Arctan2	-200.000	-199.996	-200.000	0.001	
	Bounds	-200.000	-199.998	-200.000	0.000	
	Modulo	-200.000	-199.998	-200.000	0.000	
f_{15}	Arctan2	100.699	150.000	100.014	6.902	
	Bounds	100.000	200.000	188.599	79.804	
	Modulo	100.000	100.000	100.000	0.000	
f_{16}	Arctan2	200.000	200.001	200.000	0.000	
	Bounds	200.000	200.000	200.000	0.000	
	Modulo	200.000	200.000	200.000	0.000	
f_{17}	Arctan2	324.804	350.083	342.01	5.775	
	Bounds	327.191	357.315	344.436	5.512	
	Modulo	333.213	360.103	348.124	5.872	
f_{22}	Arctan2	2035.384	2582.546	2326.619	2339.946	126.429
	Bounds	1765.065	2571.528	2249.116	2267.661	174.433
	Modulo	2118.59	2876.088	2605.377	2633.97	175.759
f_{23}	Arctan2	1778.295	2712.099	2422.874	2410.294	188.646
	Bounds	1776.182	2694.803	2379.299	2414.698	181.428
	Modulo	2173.916	3077.228	2679.886	2648.368	174.391
Table 5: DE/best/1/bin, $D = 20$, gMT as the PRNG.

Func.	Type of norm.	Min.	Max	Mean	Med.	Std. dev.
f_1	Arctan2	-1400.000	-1400.000	-1400.000	-1400.000	0.000
	Bounds	-1282.692	2518.693	316.022	54.982	984.982
	Modulo	-1398.115	-1075.507	-1340.343	-1369.188	74.539
f_5	Arctan2	-1000.000	-997.652	-999.834	-999.974	0.392
	Bounds	-873.216	354.622	-352.774	-451.436	321.003
	Modulo	-995.515	-565.575	-903.114	-932.396	92.185
f_9	Arctan2	-599.997	-599.844	-599.95	-599.95	0.034
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-600.000	-599.995	-600.000	-600.000	0.001
f_{13}	Arctan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.023	100.002	100.000	0.004
	Bounds	100.000	100.625	100.075	100.000	0.203
	Modulo	100.000	100.000	100.000	100.000	0.000
f_{16}	Arctan2	200.000	200.000	200.000	200.000	0.000
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Arctan2	362.61	427.736	395.293	395.121	14.85
	Bounds	360.366	526.657	437.905	435.692	36.708
	Modulo	347.367	443.856	383.256	377.338	21.917
f_{22}	Arctan2	1011.458	4743.994	3168.57	3523.996	1072.429
	Bounds	2083.091	4002.271	2767.88	2631.312	425.664
	Modulo	1180.729	4237.154	1991.982	1849.752	590.778
f_{23}	Arctan2	931.870	4563.447	3412.177	3656.390	863.717
	Bounds	2227.591	4267.887	3060.492	3086.367	395.678
	Modulo	1096.715	3615.703	1941.779	1905.285	440.927
Table 6: DE/best/1/bin, $D = 20$, tMT as the PRNG.

Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Arctan2	-1398.036	-134.889	-1257.505	-1333.242	215.403
	Bounds	-1361.436	1143.671	-718.070	-834.218	521.281
	Modulo	35.935	16206.634	6759.4	5539.946	4145.321
f_5	Arctan2	-991.205	-483.793	-856.874	-884.517	105.592
	Bounds	-930.585	254.411	-607.085	-676.418	253.94
	Modulo	-384.271	14903.879	2441.680	1148.900	3054.176
f_9	Arctan2	-600.000	-600.000	-600.000	-600.000	0.000
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000
f_{13}	Arctan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.000	100.000	100.000	0.000
	Bounds	100.000	100.000	100.000	100.000	0.000
	Modulo	100.000	100.625	100.075	100.000	0.203
f_{16}	Arctan2	200.000	200.000	200.000	200.000	0.000
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Arctan2	352.976	449.425	386.082	381.857	21.929
	Bounds	354.668	510.854	406.358	396.254	35.598
	Modulo	481.185	800.614	617.112	595.871	76.102
f_{22}	Arctan2	1365.244	4555.627	2632.856	1879.404	578.011
	Bounds	1252.806	3128.430	2013.81	1958.396	408.931
	Modulo	2352.933	4634.598	3534.455	3485.709	455.567
f_{23}	Arctan2	1296.53	3592.456	2147.816	2076.486	427.087
	Bounds	1140.951	3020.355	2164.236	2103.236	433.595
	Modulo	2358.032	4470.144	3678.072	3666.906	399.344
Fun.	Type of norm	Min.	Max.	Mean	Med.	Std. dev.
------	--------------	------------	------------	------------	------------	-----------
f_1	Arctan2	-1400.000	-1399.999	-1399.999	-1400.000	0.000
	Bounds	-1400.000	-1399.998	-1400.000	-1400.000	0.001
	Modulo	-1400.000	-1399.994	-1399.998	-1399.998	0.001
f_5	Arctan2	-999.996	-999.981	-999.990	-999.991	0.003
	Bounds	-999.999	-999.995	-999.998	-999.998	0.001
	Modulo	-999.996	-999.974	-999.986	-999.987	0.005
f_9	Arctan2	-599.999	-599.976	-599.902	-599.906	0.055
	Bounds	-600.000	-599.963	-599.999	-600.000	0.005
	Modulo	-599.994	-599.82	-599.927	-599.948	0.046
f_{13}	Arctan2	-200.000	-199.999	-200.000	-200.000	0.000
	Bounds	-200.000	-199.999	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.019	100.002	100.001	0.003
	Bounds	100.000	100.000	100.000	100.000	0.000
	Modulo	100.000	100.004	100.001	100.001	0.001
f_{16}	Arctan2	200.000	200.008	200.002	200.001	0.002
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.006	200.001	200.001	0.001
f_{17}	Arctan2	397.737	436.526	413.181	412.688	7.593
	Bounds	397.481	451.090	432.064	434.148	11.293
	Modulo	384.993	443.110	426.852	428.611	11.003
f_{22}	Arctan2	3745.113	4985.662	4499.735	4549.454	266.575
	Bounds	4715.875	5684.208	5299.725	5302.649	230.247
	Modulo	4223.599	5532.44	5040.932	5075.166	291.684
f_{23}	Arctan2	3787.847	5027.684	4585.461	4629.588	240.793
	Bounds	4537.231	5930.823	5374.175	5387.103	266.183
	Modulo	4687.492	5454.943	5202.772	5223.374	162.017
Table 8: DE/rand/1/bin, $D = 20$, tMT as the PRNG.

Fun. Type of norm.	f_1	f_5	f_9	f_{13}	f_{15}	f_{16}	f_{17}	f_{22}	f_{23}
Arctan2	-1399.997	-999.997	-599.994	-200.000	200.000	200.000	406.470	447.299	4779.654
Bounds	-1399.999	-999.999	-599.999	-200.000	200.000	200.000	408.624	455.765	5063.634
Modulo	-1399.999	-999.999	-599.999	-200.000	200.000	200.000	408.624	455.765	5063.634

Min.	Max.	Mean	Med.	Std. dev.	
f_1	-1400.000	-1399.995	-1399.998	-1399.998	0.001
f_5	-999.997	-999.976	-999.990	-999.990	0.004
f_9	-599.994	-599.859	-599.949	-599.956	0.034
f_{13}	-200.000	-199.999	-200.000	-200.000	0.000
f_{15}	100.000	100.002	100.000	100.000	0.001
f_{16}	200.000	200.006	200.001	200.001	0.001
f_{17}	408.430	448.145	433.246	434.444	9.133
f_{22}	4430.296	5537.476	5088.883	5106.585	240.401
f_{23}	4390.155	5529.673	5081.831	5198.700	189.379

Bounds Min.	Bounds Max.	Bounds Mean	Bounds Med.	Bounds Std. dev.
f_{22}	5016.996	206.290	206.290	263.652
f_{23}	5025.076	245.398	245.398	230.616
Table 9: DE/best/1/bin, $D = 30$, gMT as the PRNG.

Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Arctan2	-1400.000	-1398.44	-1399.918	-1399.991	0.247
	Bounds	361.435	12408.217	4467.608	3708.208	2691.050
	Modulo	-1373.428	-201.012	-947.751	-988.584	242.055
f_5	Arctan2	-999.916	-965.972	-995.293	**-997.750**	6.126
	Bounds	-423.686	4044.466	1023.596	756.262	973.39
	Modulo	-910.586	411.154	-570.448	-658.427	267.369
f_9	Arctan2	-599.996	-599.757	-599.952	-599.965	0.039
	Bounds	-600.000	-600.000	-600.000	**-600.000**	0.000
	Modulo	-600.000	-599.963	-599.991	-599.996	0.009
f_{13}	Arctan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.000	100.000	100.000	0.001
	Bounds	100.000	100.000	100.000	100.000	0.122
	Modulo	100.000	100.000	100.000	**100.000**	0.000
f_{16}	Arctan2	200.000	200.000	200.000	200.000	0.001
	Bounds	200.000	200.000	200.000	**200.000**	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Arctan2	376.895	539.508	470.779	473.626	33.890
	Bounds	450.956	693.066	571.240	572.08	54.378
	Modulo	381.426	588.314	444.764	**438.941**	37.937
f_{22}	Arctan2	983.044	7226.554	5506.071	6141.600	1740.493
	Bounds	2722.759	6108.857	4567.795	4482.420	717.445
	Modulo	1419.154	6524.623	2666.791	**2622.364**	734.294
f_{23}	Arctan2	957.404	7510.061	5145.726	5837.85	1831.336
	Bounds	3323.494	5908.219	4437.72	4370.952	541.470
	Modulo	2356.316	8730.621	3465.04	**2916.074**	1546.457
Table 10: DE/best/1/bin, $D = 30$, tMT as the PRNG.

Func.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Arctan2	-1304.879	894.048	-632.994	-767.292	492.084
	Bounds	-598.333	10487.748	2695.652	2117.127	2086.825
	Modulo	-1373.428	-201.012	-947.751	-988.584	242.055
f_5	Arctan2	-842.382	1054.71	-439.667	-534.479	340.156
	Bounds	-639.259	4973.242	737.108	526.642	1010.894
	Modulo	-18.292	23427.223	4630.305	3928.422	3471.253
f_9	Arctan2	-600.000	-599.991	-600.000	-600.000	0.001
	Bounds	-600.000	-600.000	-600.000	-600.000	0.000
	Modulo	-600.000	-600.000	-600.000	-600.000	0.000
f_{13}	Arctan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.000	100.000	100.000	0.000
	Bounds	100.000	100.000	100.000	100.000	0.000
	Modulo	100.000	100.625	100.012	100.000	0.088
f_{16}	Arctan2	200.000	200.002	200.000	200.000	0.000
	Bounds	200.000	200.000	200.000	200.000	0.000
	Modulo	200.000	200.000	200.000	200.000	0.000
f_{17}	Arctan2	375.244	557.636	474.394	472.044	40.441
	Bounds	424.043	759.68	558.051	552.531	66.168
	Modulo	676.772	1310.041	927.930	901.213	139.013
f_{22}	Arctan2	1889.964	3967.645	2940.667	2814.460	511.266
	Bounds	1836.925	4165.468	3232.624	3254.654	533.029
	Modulo	4033.725	6424.017	5295.7	5264.139	534.114
f_{23}	Arctan2	1945.696	3878.718	2941.584	2855.538	524.918
	Bounds	2229.248	4292.345	3274.916	3234.942	470.076
	Modulo	4120.452	7163.279	5476.301	5403.171	579.628
Table 11: DE/rand/1/bin, $D = 30$, gMT as the PRNG.

Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
f_1	Arctan2	-1399.987	-1399.962	-1399.978	-1399.979	0.006
	Bounds	-1399.999	-1399.985	-1399.994	**-1399.995**	0.003
	Modulo	-1399.961	-1399.859	-1399.917	-1399.918	0.026
f_5	Arctan2	-999.857	-999.669	-999.777	-999.787	0.047
	Bounds	-999.993	-999.962	-999.982	**-999.983**	0.007
	Modulo	-999.838	-999.54	-999.729	-999.740	0.072
f_9	Arctan2	-599.996	-599.864	-599.954	-599.967	0.040
	Bounds	-600.000	-600.000	-600.000	**-600.000**	0.000
	Modulo	-599.995	-599.865	-599.956	-599.964	0.025
f_{13}	Arctan2	-200.000	-199.999	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	**-200.000**	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_{15}	Arctan2	100.000	100.017	100.002	100.001	0.063
	Bounds	100.000	100.000	100.000	**100.000**	0.000
	Modulo	100.000	100.007	100.001	100.001	0.001
f_{16}	Arctan2	200.000	200.003	200.001	200.001	0.001
	Bounds	200.000	200.000	200.000	**200.000**	0.000
	Modulo	200.000	200.003	200.001	200.001	0.001
f_{17}	Arctan2	492.595	539.348	516.238	**516.861**	9.171
	Bounds	493.27	554.728	528.649	528.595	12.284
	Modulo	495.018	553.231	534.874	534.031	10.433
f_{22}	Arctan2	6441.098	7749.512	7251.214	**7288.942**	306.046
	Bounds	7170.746	8860.316	8338.675	8387.549	310.100
	Modulo	7005.542	8348.339	7890.777	7895.641	250.596
f_{23}	Arctan2	6441.277	7789.372	7376.831	**7406.668**	259.184
	Bounds	7193.484	8819.801	8373.7	8387.953	307.687
	Modulo	7230.091	8473.481	7924.702	7926.095	238.693
Fun.	Type of norm.	Min.	Max.	Mean	Med.	Std. dev.
------	--------------	-------------	-------------	--------------	------	-----------
f_1	Arctan2	-1399.972	-1399.886	-1399.939	-1399.943	0.020
	Bounds	-1399.989	-1399.921	-1399.964	-1399.968	0.015
	Modulo	-1399.999	-1399.993	-1399.997	**-1399.998**	0.001
f_5	Arctan2	-999.896	-999.669	-999.821	-999.837	0.055
	Bounds	-999.942	-999.800	-999.889	-999.894	0.030
	Modulo	-999.996	-999.972	-999.99	**-999.991**	0.005
f_9	Arctan2	-599.992	-599.864	-599.944	-599.950	0.032
	Bounds	-600.000	-599.937	-599.976	-599.982	0.014
	Modulo	-600.000	-600.000	-600.000	**-600.000**	0.000
f_13	Arctan2	-200.000	-200.000	-200.000	-200.000	0.000
	Bounds	-200.000	-200.000	-200.000	-200.000	0.000
	Modulo	-200.000	-200.000	-200.000	-200.000	0.000
f_15	Arctan2	100.000	100.000	100.001	100.000	0.001
	Bounds	100.000	100.000	100.000	100.000	0.001
	Modulo	100.000	**100.000**	100.000	100.000	0.000
f_16	Arctan2	200.000	200.000	200.001	200.001	0.001
	Bounds	200.000	200.000	200.001	200.000	0.001
	Modulo	200.000	200.000	200.000	**200.000**	0.000
f_17	Arctan2	489.020	554.125	532.904	534.363	14.997
	Bounds	508.204	556.453	533.633	534.424	11.959
	Modulo	509.953	553.175	529.219	**526.658**	10.403
f_22	Arctan2	7174.275	8508.328	8005.072	7994.914	298.637
	Bounds	7297.807	8395.703	7887.643	**7841.618**	262.013
	Modulo	8064.983	9073.263	8629.574	8610.268	236.04
f_23	Arctan2	6609.158	8661.705	8051.059	**8081.034**	351.993
	Bounds	7591.526	8574.803	8082.367	8090.141	212.425
	Modulo	8068.656	9213.194	8734.231	8701.740	275.69