RESEARCH

A Likelihood ratio test for the homogeneity of between–study variance in network meta–analysis

Dapeng Hu1, Chong Wang1,2* and Annette M. O’Connor2,3

1 Department of Statistics, Iowa State University, Ames, United States of America
2 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, United States of America
*Correspondence: chwang@iastate.edu

Full list of author information is available at the end of the article

Abstract

Background: Network meta-analysis (NMA) is a statistical method used to combine results from several clinical trials and simultaneously compare multiple treatments using direct and indirect evidence. Statistical heterogeneity is a characteristic describing the variability in the intervention effects being evaluated in the different studies in network meta-analysis. One approach to dealing with statistical heterogeneity is to perform a random effects network meta-analysis that incorporates a between-study variance into the statistical model. A common assumption in the random effects model for network meta-analysis is the homogeneity of between–study variance across all interventions. However, there are applications of NMA where the single between-study assumption is potentially incorrect and instead the model should incorporate more than one between–study variances.

Methods: In this paper, we develop an approach to testing the homogeneity of between-study variance assumption based on a likelihood ratio test. A simulation study was conducted to assess the type I error and power of the proposed test. This method is then applied to a network meta–analysis of antibiotic treatments for Bovine respiratory disease (BRD).

Results: The type I error rate was well controlled in the Monte Carlo simulation. The homogeneous between-study variance assumption is unrealistic both statistically and practically in the network meta-analysis BRD. The point estimate and confidence interval of relative effect sizes are strongly influenced by this assumption.

Conclusions: Since homogeneous between-study variance assumption is a strong assumption, it is crucial to test the validity of this assumption before conducting a network meta-analysis. Here we propose and validate a method for testing this single between-study variance assumption which is widely used for many NMA.

Keywords: heterogeneity; between-study variance; network meta-analysis; hypothesis testing

1 Background

Network meta-analysis (NMA) is an approach to combining evidence from multiple studies of multiple interventions and obtaining estimates of all possible intervention comparisons using indirect and direct evidence. Common approaches to network meta-analysis include a fixed effect model and a random effects model. The random effects model assumes that the true effect size can differ from study to study, because the effect size in each study is derived from a random distribution of effect sizes. Several assumptions about the data generating mechanism are made in network meta-analysis. Common to the fixed effect model and random effects model are the
consistency assumption and exchangeable assumption. The consistency assumption
implies that the relative effect of A to B, can be derived from the difference using
data from C compared to A and C compared to B. The exchangeable assumption
relates to the study populations and states that the randomized trials are similar
on average, in all important factors other than the intervention comparison being
made [1, 2]. A commonly used assumption unique to the random effects model is
a single between-study variation for all treatments [3]. Assuming that all effects
sizes across all treatments have the same between-study variation is a strong as-
sumption. However, there are applications of NMA where the single between-study
assumption is potentially incorrect and instead the model should incorporate more
than one between-study variance estimate. A few approaches have been proposed
to allow different between-study variation across treatment comparisons. [4] pro-
posed a Bayesian approach to modeling between-study variance structures under
the consistency assumption. [5] proposed a partially structured heterogeneity model
that allows for two between-study variances but did not have a practical reason for
doing so. Although these approaches have been proposed, the single between-study
variation assumption remains widely used. In practice, there is a lack of guidance for
when the homogeneous assumption should be challenged. The decision to assume
one or more between-study variance should be informed primarily by the reviewers
knowledge of the data generating mechanism. However, the results from statistical
testing, comparison of results of the NMA under both assumptions and the magni-
tude of variance estimates can also support any decisions made about the structure
of between-study variance.

Recently we conducted several network meta-analyses of interventions to pre-
vent bovine respiratory disease in feedlot cattle, where the assumption of a single
between-study variance was questionable based on our knowledge of the biology
of the disease and interventions included in the meta-analysis. Turner et al. [6]
found heterogeneity might be related to the type of comparison and models with
heterogeneity variances have been proposed with different informative priors under
the Bayesian framework [7]. However, this is not applicable in frequentist frame-
work. Additionally, limited work has been reported on testing the assumption of
a single between-study variance across all treatment comparisons. Therefore, the
objective of this project was not to model the between-study variance structure,
but to develop an approach to testing the homogeneity of between-study variance
in a network meta-analysis based on the likelihood method. For network meta-
analysis, several different methods of calculating the single between–study variance
have been proposed [8, 9, 10]. However, we were unable to identify any commonly
used approaches to testing this assumption compared to an alternative that two
between-study variances exist based on a characteristic of the underlying studies.

The sequence of the paper is as follows:

• Section 2: The motivating example
• Section 3: The model and proposed likelihood ratio test (LRT)
• Section 4: The evaluation of the LRT using two methods
• Section 5: Discussion of the evaluation and application.
2 Motivating example

The motivating example involved bovine respiratory disease, a multi-agent disease of cattle. Bovine respiratory disease (BRD) is the most economically important disease of feedlot cattle and therefore knowledge of the comparative efficacy of interventions to prevent, control and treat BRD is critically important. One common approach to preventing bovine respiratory disease is to administer antibiotics to all cattle at arrival at the feedlot. The aim of administering antibiotics at arrival is to preemptively treat animals with sub-clinical BRD and to prevent BRD in animals at risk. Trials conducted to assess how effective antibiotics are for this purpose, use the proportion of treated animals detected with BRD after a period of time, usually 28 days, as the outcome. The data available for assessing the comparative efficacy of antibiotics for this purpose included comparisons of antibiotic to antibiotic, and comparisons of an antibiotic to no-treatment. For BRD prevention, the assumption of a single between-study effect for both types of comparisons is biologically questionable. It is known that some antibiotics are highly effective at treating and preventing BRD because the mechanism of action is very broad spectrum. An example of such a group of antibiotics is the macrolide group. Antibiotics in this group have consistent high quality evidence of low BRD risk after 28 days when administered at arrival [11, 12]. This means that trials that compare a macrolide to a macrolide would be expected to have a comparative effect size near zero, if the effect size is measured as the log odds ratio (log OR). The between-study variation of macrolide to macrolide trials is therefore expected to be small. However, for trials that compare a broad spectrum antibiotic, such as a macrolide, to a non-treated control, the expected variation in the effect size is much larger, because the risk of BRD in the 1st 28 days in cattle is highly variable in non-treated cattle. The data suggests that some groups of untreated cattle have close to zero animals detected with BRD after 28 days while other groups have 50% or more animals with BRD. The result of this naturally expected variation in BRD risk in the 1st 28 days of feedlotting in non-treated animals is a wider variation in the comparative effect sizes when active drugs such as macrolides are compared to non-treated groups. For example, if the macrolide is highly effective, we expect that the number of animals treated for BRD after 28 days will be close to zero regardless of the underlying risk of BRD in the group. However, the non-treated group may have anywhere from zero to 100%. When these data are converted to a distribution of the comparative effect sizes (log OR), it is natural that more variation is expected between these active to no-treatment trials than the trials that are macrolide to macrolide. There are several other scenarios in BRD, where the assumption of a single between-study variance for all comparisons is questionable. For example, to prevent BRD in animals arriving at the feedlot, antibiotics or vaccines might be used. As with a no-treatment group, the response to vaccination is highly variable, yet the response to broad spectrum antibiotics like, macrolides is highly consistent. Therefore in a network of evidence that compared the efficacy of antibiotic and vaccines to prevent BRD, we would naturally expect the vaccine to vaccine comparisons to be more variable than broad spectrum antibiotic to broad spectrum antibiotic comparison. It is these examples, that motivated the work described below.
3 Methods

3.1 The likelihood for a random effects model of network meta-analysis under consistency assumption

This section provides the basic model form used for formulating the likelihood ratio test. In the following, we consider T treatments that are compared in I studies each with n_i arms. The set of treatments included in study i is given by T_i. Let y_i denote the estimates of relative effects for the i–th study, $y_i = (y_{i,1}, ..., y_{i,n_i-1})^T$ and $\mathbf{y} = (y_1, ..., y_T)$. The study specific treatment effects of study i are given by $\mathbf{\theta}_i$ where $\mathbf{\theta} = (\theta_1, ..., \theta_I)$. Then we have

$$y_i = \mathbf{\theta}_i + \epsilon_i,$$

where ϵ_i represents the vector of errors of study i. ϵ_i is assumed to be normally distributed and independent across studies and its covariance is $\text{cov}(\epsilon_i) = S_i$. S_i is a diagonal matrix of size $(n_i - 1) \times (n_i - 1)$ and is a scalar if study i only has two arms. The distribution of \mathbf{y} is

$$\mathbf{y} \sim \text{MVN}(\mathbf{\theta}, S),$$

where S is a block diagonal matrix with each block S_i, $i = 1, ..., I$. As the consistency assumption is made in the random effects model, all treatment effects are uniquely determined by $T - 1$ basic treatment comparisons with a common reference (usually a placebo). These basic parameters are denoted by the vector \mathbf{d}. The relative effect size of all other possible treatment comparisons in the network are called functional parameters which can be obtained from the basic parameters. For example, if $d_{1,2}$ and $d_{1,3}$ are basic parameters in the network, then $d_{2,3}$, a functional parameter, can be obtained by

$$d_{2,3} = d_{1,3} - d_{1,2}.$$

Let X denote the design matrix of size $I \times (T - 1)$. Each row of X corresponds to one study specific comparison and the columns represent the basic comparisons and . 1, 0, and -1 are the possible values in the design matrix. If one row of X only has one element of 1 and other elements are 0, then this study specific comparison is a basic comparison. If 1 and -1 occur in one row, then the relative effect parameter of the corresponding comparison is a functional parameter. For each study i, the design matrix is denoted by X_i. Then,

$$\mathbf{\theta}_i = X_i \mathbf{d} + \delta_i,$$

where δ_i is the vector of between–study heterogeneity of study i. The random effects model usually assume δ_i to be normally distributed. If study i only has two arms, then $\delta_i \sim N(0, \tau^2)$, otherwise, $\delta_i \sim \text{MVN}(0, V_i)$, where the values of the diagonal elements of V_i are τ^2 and off–diagonal values are $\tau^2/2$ [4, 13]. The values of the off–diagonal elements are determined by the assumption that every source of direct evidence has the same between-study variance. The distribution of $\mathbf{\theta}$ is

$$\mathbf{\theta} \sim \text{MVN}(Xd, V),$$
where V is a block diagonal matrix with each block V_i, $i = 1, \ldots, I$. The between-study heterogeneity is assumed to be independent of within-study errors. Hence, the marginal distribution of y is

$$y \sim \text{MVN}(Xd, S + V).$$

If we know τ^2, then the maximum likelihood estimate of d is

$$\hat{d} = (X^T(S + V)^{-1}X)^{-1}X^T(S + V)^{-1}y.$$

3.2 Likelihood ratio test for the between–study variance parameter

Here we discuss an approach to testing the assumption of a single τ^2. Based on our motivating example, the between–study variance parameter for non–active to active treatment comparisons and active to active treatment comparisons are denoted by τ_n^2 and τ_a^2 respectively. The hypotheses to be tested are

$$H_0: \tau_n^2 = \tau_a^2 = \tau^2, \quad H_a: \tau_n^2 \neq \tau_a^2.$$

The log–likelihood function under the null hypothesis is

$$\ln L(d, \tau^2) = -\frac{1}{2} \log |S + V| - \frac{1}{2} (y - Xd)'(S + V)^{-1}(y - Xd) - \frac{I}{2} \log(2\pi)$$

$$= -\frac{1}{2} \sum_{i=1}^{I} \log |(S_i + V_i)| - \frac{1}{2} (y - Xd)'(S + V)^{-1}(y - Xd) - \frac{I}{2} \log(2\pi).$$

Under the null hypothesis, the structure of V_i is discussed in section 3.1. There are two potential data forms for V_i under the alternative hypothesis. If study i only contains active treatments, then the values of diagonal elements of V_i are τ_a^2 and the off–diagonal values are $\tau_a^2/2$. If non–active controls are included in study i, then the diagonal values (variance) are τ_n^2 and the off–diagonal values (co–variance) are $\tau_n^2 - \tau_a^2/2$.

For example, suppose study i is a three-arm trial that compares a non–active control (denoted by N) with two active treatments (denoted by A_1, A_2). The between–study variance–covariance matrix for study i is

$$\text{Var} \left(\begin{bmatrix} \theta_{i,N,A_1} \\ \theta_{i,N,A_2} \end{bmatrix} \right) = \begin{bmatrix} \tau_n^2 & \tau_n^2 - \frac{1}{2} \tau_a^2 \\ \tau_n^2 - \frac{1}{2} \tau_a^2 & \tau_a^2 \end{bmatrix}. $$

Since $\text{Var}(\theta_{i,N,A_2} - \theta_{i,N,A_1}) = \text{Var}(\theta_{i,N,A_2}) + \text{Var}(\theta_{i,N,A_1}) - 2\text{Cov}(\theta_{i,N,A_2}, \theta_{i,N,A_1})$, the covariance (off–diagonal) is given by

$$\text{Cov}(\theta_{i,N,A_2}, \theta_{i,N,A_1}) = (\text{Var}(\theta_{i,N,A_2}) + \text{Var}(\theta_{i,N,A_1}) - \text{Var}(\theta_{i,N,A_2} - \theta_{i,N,A_1})) / 2$$

$$= (\text{Var}(\theta_{i,N,A_2}) + \text{Var}(\theta_{i,N,A_1}) - \text{Var}(\theta_{i,A_1}A_2)) / 2$$

$$= (\tau_n^2 + \tau_n^2 - \tau_a^2) / 2$$

$$= \tau_n^2 - \frac{1}{2} \tau_a^2.$$
To make the variance-covariance matrix semi-positive definite, the covariance should follow the following inequality:

\[|\text{Cov}(\theta_{i,NA2}, \theta_{i,NA1})| \leq \sqrt{\text{Var}(\theta_{i,NA2}) \text{Var}(\theta_{i,NA1})}. \]

To meet this inequity the following contrasts are placed on the two \(\tau^2 \)s:

\[-\tau_c^2 \leq \tau_n^2 - \frac{1}{2} \tau_a^2 \leq \tau_n^2 \iff 0 \leq \tau_a^2 \leq 4 \tau_n^2. \]

The likelihood ratio test (LRT) statistics is therefore

\[-2(\ln L(\hat{\theta}^b, \hat{\tau}^2) - \ln L(\hat{\theta}^b, \hat{\tau}_n^2, \hat{\tau}_a^2)), \]

where the estimates of the parameters are the maximum likelihood estimates. The asymptotic distribution of this test statistic is \(\chi^2_1 \). Given \(\hat{\tau}^2 \), the maximum likelihood estimate of \(\hat{d} \) is

\[\hat{d} = (X^T (\hat{S} + \hat{V})^{-1} X)^{-1} X^T (\hat{S} + \hat{V})^{-1} y. \]

4 Real data implementation and simulation results

The data used are from a network meta–analysis of antibiotic treatments for BRD in feedlot cattle [14]. The evidence network consists of 204 trial arms from 98 studies. Eight of the 98 trials have three arms. There are 13 treatments in the network: non–active control (NAC), ceftiofur hydrochloride (CEFTH), ceftiofur bollus in pinna (CEFTP), ceftiofur sodium (CEFTS), danofloxacin (DANO), enrofloxacin (ENFO), florfenicol (FLOR), gamithromycin (GAMI), oxytetracycline (OXY) used at multiple doses, tildipirosin (TILD), tilmicosin (TILM), trimethoprim (TRIM), tulathromycin (TULA). The outcome is the log odds ratio of the proportion of treated animals detected with BRD. A negative log OR means treatment benefit for the numerator treatment compared to the referent. The within–study variance is obtained using delta method. For example, in a 2–arm study with reported number of events \(r_1 \) and \(r_2 \) and sample sizes \(N_1 \) and \(N_2 \), the within–study variance is calculated by

\[1/r_1 + 1/(N_1 - r_1) + 1/r_2 + 1/(N_2 - r_2). \]

The number of pairwise comparisons is 106 in total with 66 non-active control to active treatments (N2A) comparisons and 40 active to active treatments (A2A) comparisons. The network plot is shown in Figure 1. The size of the node is proportional to the number of arms and the thickness of the edges represents the total size of direct comparisons between each treatment pair. The number in the parentheses after a treatment abbreviation is the number of studies containing that treatment. The absence of a line means that there is no direct comparison in the evidence network.

To evaluate the performance of the proposed LRT, two methods have been used. The first method is based on the asymptotic distribution \((\chi^2) \) of the LRT statistic and the second method is established on the Monte Carlo simulation. Maximum likelihood estimation is applied to obtain the basic effect size parameters and \(\tau^2 \) under the null and alternative hypothesis. We simulated 1,000 data sets under the null hypothesis being true (a single between–study variance for all treatment
comparisons) to assess the type I error rate and another 1,000 data sets where the alternative hypothesis was true (two between-study variance, one for N2A and one for A2A) to evaluate the power given the significance level of 0.05. Under the null hypothesis, the simulated data y_{H_0} is generated from the real data y by

$$y_{H_0} = \text{MVN}(\hat{d}_{H_0}, \hat{S} + \hat{V}_{H_0}),$$

where \hat{d}_{H_0} is the maximum likelihood estimate given $\hat{\tau}^2$. Since the LRT statistic under the null hypothesis follows a chi square distribution when the sample size goes to infinity, we also assessed the type I and power for the scenario where the number of studies is five times the original to determine if the type I error can be well controlled when the sample size per comparison is larger. This increased-size dataset has the same network structure as the real data. For example, in the original network, there is no study comparing treatment TRIM with NAC, and this is also the case in the simulated network. Only one study compares TRIM with TILM as shown in Figure 1, whereas for the increased-size data set there are five studies simulated for this comparison.

4.1 Assessing type I error rate and power of the test based on the chi square distribution

For each simulated dataset where the null hypothesis was true (a single between-study variance for all treatment comparisons), the maximum likelihood estimates was obtained and the LRT statistic calculated. The proportion of these 1,000 LRTs that are beyond the 95% quantile of the χ^2 distribution is the estimated type I error rate. The power can be obtained by applying the same procedure on each simulated dataset where the the alternative hypothesis is true (two between-study variance, one for N2A and one for A2A).

4.2 Assessing type I error and power of the likelihood test based on the Monte Carlo simulation

An alternative approach to the chi-square approach is a simulation based approach to testing. This procedure is as follows:

1. For each simulated dataset where the null hypothesis is true, the maximum likelihood estimates are obtained under both hypotheses and LRT is calculated, denoted by LRT_b ($b \in \{1, ..., 1000\}$).

2. 1,000 data sets are generated given the estimates in this simulated dataset under the null hypothesis. We used the MLE to obtain parameter estimates under both hypotheses and calculate LRT statistics, denoted by $\text{LRT}_{b,m}$ $m \in \{1, ..., 1000\}$.

3. The p-value of the LRT_b is $\frac{1}{1000} \sum_{m=1}^{1000} \text{LRT}_{b,m} > \text{LRT}_b$, denoted by p_b.

4. The proportion of rejection is the type I error which is obtained by $\frac{1}{1000} \sum_{b=1}^{1000} I_{p_b < 0.05}$, where I is the identity function.

For estimating power, the only change is to use each simulated dataset under the alternative hypothesis being true in the step 1.
4.3 Results

The values of τ^2 observed in the original BRD dataset are shown in Table 1. The p-value of the likelihood ratio test based on the asymptotic distribution of the test statistic is 0.028 indicating a significant difference between the two heterogeneity parameters but the type I error rate inflates in this case. The simulation-based p-value is very close to 0.05. Hence, making decision only relies on the cut-off of 0.05 for the p-value of the LRT is not convincing. Regardless of the p-values, the heterogeneity parameters values estimated under two models are meaningfully different. The estimated between-study variance for the non-active control to active treatments comparison is four times larger than that for active to active treatments. This difference would have an impact on the confidence intervals of the relative effects of the comparisons in the network, especially for comparisons with fewer studies. Then the Wald 95% confidence interval of $\hat{\tau}_n^2 - \hat{\tau}_a^2$ is calculated and given by (0.0282, 0.8469) which indicates a significant difference from 0.

The effect of models with different heterogeneity parameters on the point estimates and confidence intervals of the relative effect sizes, are presented in Figure 2. Figure 2 shows the 95% confidence intervals of the log odds ratios of the treatment pairs presented in the network plot under the models with one and two between-study variance parameters. Treatment comparisons that involve only one study which has small study size tends to have wider confidence interval because of the large within-study variance. It can be seen in Figure 2 that some confidence intervals change markedly in width under the different models. Some of the point estimates of the relative effect sizes shift because of the change of estimates in between-study variances which would vary the weight of direct and indirect comparisons. The estimate of τ^2 of N2A comparison in two τ^2s model is greater than that in one τ^2 model and the τ^2 of A2A comparison is opposite. Therefore, the width of confidence intervals tends to be narrower for A2A comparisons in the two τ^2 model than in the one τ^2 model. Also, most of the point estimates of the effect sizes of N2A comparisons shift to the right under the two τ^2 model. It is not easy to predict the direction of the change of the point estimate of effect size or the width of the confidence interval in the two τ^2 model for each comparison since it is a mixed weight change of direct and indirect comparisons.

The results of the study the likelihood ratio test performance in Table 2 shows the type I error rate and the power analysis results. The simulation based on the original data is labeled (60,40) to indicated the number of studies. While the increased size data is labeled (330, 200). The increased-size data set have the same network structure as the real data. For the asymptotic distribution of the test statistics, the type I error is above 5% i.e. 8.3%. Increasing the number of studies reduced the type I error drop to 5% i.e 4.4%. While in the Monte Carlo simulation-based evaluation, the type I errors are controlled in both settings. The power was suitable for all methods and datasets. By combining the results in Table 2 with those in Table 1, we can say there is a significant difference between the heterogeneity parameter of non-active control to active treatments comparisons and of active to active treatments comparisons. In practice, if the p-value of the LRT statistic is very close to the cut-off (i.e. 0.05 in this paper) like in this example, depending on p-value only to make decision is not conclusive. Visual inspection of the results from the two models and how these results differ is helpful in reaching a conclusion.
5 Conclusions

We have proposed a likelihood ratio test for testing the homogeneity of the between-study variance parameter for the random effect network meta-analysis model. We illustrate this method with an example for testing the homogeneity between the non-active control to active treatments comparisons and of active to active treatments comparisons. Our example applied this likelihood ratio test in a network meta-analyses which contained a non-active control (or placebo or no-treatment) and our understanding of the biology of this example, raised concerns about the single between-study variance estimate. There are many other situations that this method can be applied, for example, the between-study heterogeneity for a pharmacological treatment vs surgery comparison might be different from that of a comparison of two pharmacological treatments. We also developed the variance-covariance matrix structure of the model with two heterogeneity variance parameters. In the motivating example, we applied the test and found the significant difference of the between-study variance of two types of comparisons. The estimation method for the basic parameters and between-study variance is MLE. There are many literature comparing different methods of estimating the between-study variance parameter\[15, 16, 17, 18\]. Different estimators may have different distributions and our method is based on the MLE. That is not to say MLE is the best estimator but we just propose a possibility that the between-study variance may not be the same across all comparisons and we use MLE and likelihood ratio test to show the single heterogeneity parameter assumption may not hold in some cases. Tests for this assumption using other estimators are possible extensions. We have shown that the significance of the log OR of A2A comparisons with inconsistency loops are different under two models. The relationship between inconsistency and the change in significance under two models is an interesting topic that we leave as a possible future work.

List of abbreviations

NMA: Network Meta-Analysis
BRD: Bovine Respiratory Disease
LRT: Likelihood Ratio Test
OR: Odds Ratio
A2A: Active to Active
N2A: Non-Active to Active
NAC: Non-Active Control
CEFTH: Ceftiofur Hydrochloride
CEFTP: Ceftiofur Bollus in Pinna
CEFTS): Ceftiofur Sodium
DANO: Danofloxacin
ENFO: Enrofloxacin
FLOR: Florfenicol
GAMI: Gamithromycin
OXY: Oxytetracycline
TILD: Tildipirosin
TILM: Tilmicosin
TRIM: Trimethoprim
TULA: Tulathromycin

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
We provide the R code and data we used in this paper in https://github.com/dapengh/test_the_heterogeneity_of_the_between-study_variance.

Competing interests
The authors declare that they have no competing interests.

Funding
None reported.

Authors’ contributions
DH proposed the method, wrote the code used to conduct the data analysis. CW coordinated the project team, assisted with the data analysis, and interpreted the procedure and results of the analysis. AOC provided the data, assisted with the data analysis. The manuscript was primarily prepared by DH, with secondary input from all other authors.

Acknowledgements
We thank Dr. Chaohui Yuan for cleaning and providing the data as the example.

Authors’ information

Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
DH & CW
Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
CW & AOC
Professor of Epidemiology, Chairperson of the Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
AOC

Authors details
1 Department of Statistics, Iowa State University, Ames, United States of America. 2 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, United States of America. 3 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, United States of America.

References
1. Song, F., Altman, D.G., Glenny, A.-M., Deeks, J.J.: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. Brmj 326(7387), 472 (2003)
2. Glenny, A., Altman, D., Song, F., Sakarovitch, C., Deeks, J., D’Amico, R., Bradburn, M., Eastwood, A., et al.: Indirect comparisons of competing interventions (2005)
3. Dias, S., Welton, N.J., Sutton, A.J., Ades, A.: Nice dsu technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials (2011)
4. Lu, G., Ades, A.: Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 10(4), 792–805 (2009)
5. White, I.R., Barrett, J.K., Jackson, D., Higgins, J.P.: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research synthesis methods 3(2), 111–125 (2012)
6. Turner, R.M., Davey, J., Clarke, M.J., Thompson, S.G., Higgins, J.P.: Predicting the extent of heterogeneity in meta-analysis, using empirical data from the cochrane database of systematic reviews. International journal of epidemiology 41(3), 818–827 (2012)
7. Turner, R.M., Dominguez-Islas, C.P., Jackson, D., Rhodes, K.M., White, I.R.: Incorporating external evidence on between-trial heterogeneity in network meta-analysis. Statistics in medicine 38(8), 1321–1335 (2019)
8. DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Controlled clinical trials 7(3), 177–188 (1986)
9. Kontopantelis, E., Springate, D.A., Reeves, D.: A re-analysis of the cochrane library data: the dangers of unobserved heterogeneity in meta-analyses. PloS one 8(7), 69930 (2013)
10. Hunter, J.E., Schmidt, F.L.: Methods of Meta-analysis: Correcting Error and Bias in Research Findings. Sage, ??? (2004)
11. O’Connor, A.M., Hu, D., Totton, S.C., Scott, N., Winder, C.B., Wang, B., Wang, C., Glanville, J., Wood, H., White, B., et al.: A systematic review and network meta-analysis of injectable antibiotic options for the control of bovine respiratory disease in the first 45 days post arrival at the feedlot. Animal health research reviews 20(2), 163–181 (2019)
12. Abell, K.M., Theurer, M.E., Larson, R.L., White, B.J., Apley, M.: A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle. Journal of animal science 95(2), 626–635 (2017)

13. Salanti, G., Higgins, J.P., Arai, A., Ioannidis, J.P.: Evaluation of networks of randomized trials. Statistical methods in medical research 17(3), 279–301 (2008)

14. O’Connor, A., Yuan, C., Cullen, J., Coetzee, J., Du Silva, N., Wang, C.: A mixed treatment meta-analysis of antibiotic treatment options for bovine respiratory disease—an update. Preventive veterinary medicine 132, 130–139 (2016)

15. Jackson, D., Veroniki, A.A., Law, M., Tricco, A.C., Baker, R.: Paule-mandel estimators for network meta-analysis with random inconsistency effects. Research synthesis methods 8(4), 416–434 (2017)

16. van Aert, R.C., Jackson, D.: Multistep estimators of the between-study variance: The relationship with the paule-mandel estimator. Statistics in medicine 37(17), 2616–2629 (2018)

17. Langan, D., Higgins, J.P., Simmonds, M.: Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Research synthesis methods 8(2), 181–198 (2017)

18. Langan, D., Higgins, J.P., Jackson, D., Bowden, J., Veroniki, A.A., Kontopantelis, E., Viechtbauer, W., Simmonds, M.: A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Research synthesis methods 10(1), 83–98 (2019)

Table 1 Estimates of \(\tau^2 \) from the analysis of the a meta-analysis network for bovine respiratory disease treatments using maximum likelihood estimation

Number of Studies (N2A, A2A)	P-value under \(\chi^2 \)	Monte Carlo P-value	\(\tau^2 \) under \(H_0 \)	\(\tau^2 \) under \(H_a (\tau^2_n, \tau^2_a) \)
(66, 40)	0.028	0.052	0.3096	(0.5659, 0.1283)

Table 2 Results of assessment of type I error and power for two approaches to testing the homogeneity of between-study variance. The values in the parentheses are the number of comparisons of N2A and A2A type, respectively.

Number of Studies (N2A, A2A)	Evaluation Method	Type I Error	Power
(66, 40)	Monte Carlo simulation	4.8%	88.9%
(66, 40)	\(\chi^2 \)	8.3%	93.5%
(330, 200)	Monte Carlo simulation	4.4%	100%
(330, 200)	\(\chi^2 \)	5%	100%