A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8

Dimitrije Stanković, Ann-Katrin Claudius, Thomas Schertel, Tina Bresser, Mirka Uhlirova

Fig. S1. Expression patterns of Gal4 drivers used in the study.

(A) *phm-Gal4* driver is active in the *Drosophila* prothoracic gland as depicted by GFP expressed from the UAS-based transgene. (B) *ey-Gal4* is active in the eye primordium of the larval EAD in cells both anterior and posterior to the morphogenetic furrow (arrowhead) as depicted by RFP expression. (C) The late acting *GMR-Gal4* driver expresses in cells posterior to the morphogenetic furrow (arrowhead) of larval EAD as indicated by the RFP signal. (A-C) Micrographs show projections of multiple confocal sections of respective tissues dissected from third instar larvae 7 days AEL. Scale bars: 50 µm (A) and 100 µm (B, C).
Fig. S2. Prp8 antibody detects endogenous as well as transgenic *Drosophila* Prp8 proteins. (A-B) *eyFLP*-mediated mitotic recombination was used to generate clones (GFP) in EADs of the indicated genotypes. Immunostaining of EADs with the self-made antibody directed against the CTD of the *Drosophila* Prp8 protein revealed reduction of Prp8 levels in clones where *prp8* transcript was knocked down by RNAi relative to non-clonal tissue (A’). In contrast, Prp8 levels were increased in cells overexpressing Prp8\(^{wt}\) (B’). Note the cytoplasmic localization of the endogenous and transgenic Prp8 proteins (B’). Discs were counterstained with DAPI. Micrographs are single confocal slices of EADs 7 days after egg laying. Scale bars: 10 \(\mu\)m.
Figure S3

GMR-Gal4					
A	**B**	**C**	**D**	**E**	**F**
control	Prp8^{WT}	Prp8^S-^E	Prp8^R-^G	Prp8^R-^K	Prp8^F-^L
G	**H**	**I**	**J**	**K**	**L**
Prp8^V-^N	Prp8^R-^P	Prp8^H-^R	Prp8^R-^S	Prp8^R-^T	prp8^{RNAi}

Fig. S3. Expression of RP-Prp8 variants under the **GMR-Gal4** driver is asymptomatic.

(A-L) Overexpression of wild-type Prp8 (B) or any of the nine different RP-Prp8 mutant variants (C-K) or RNAi-mediated knockdown (**prp8**^{RNAi}) (L) using the late-acting **GMR-Gal4** driver did not have any detrimental effect on the development of the adult eye and were comparable to control (A).
Fig. S4. Differential impact of early induction of RP-Prp8 mutations on the adult eye development.

(A-K) Expression of Prp8^{S>F} (C) and Prp8^{H>R} (I) in the EADs using the early acting ey-Gal4 driver resulted in rough and irregularly shaped adult eyes compared to control (A) and those expressing Prp8^{wt} (B) or other RP-Prp8 variants (D-H, J, K).
Fig. S5. Prp8 loss is incompatible with cell survival and halving the prp8 gene dose enhances RP-Prp8-induced phenotypes.

(A-D) eyFLP-mediated mitotic recombination was used to generate homozygous clones (GFP) in EADs of the indicated genotypes. In contrast to control (A), cells homozygous for the prp8del14 deletion allele (B) or the prp8KG03188 insertion allele (C) do not survive and do not contribute to the total volume of the EAD tissue (D). (E-L) RP-Prp8 mutant variants were expressed in prp8KG03188/+ heterozygous
background using the ey-Gal4 driver. In contrast to controls (w^{1118}+/+, E; prp8KG03188+/+, F) and asymptomatic overexpression of Prp8\textsubscript{wt} (G) and Prp8\textsubscript{F>L} (H), Prp8\textsubscript{S>F} disrupts morphology and reduces size of the adult eyes (I, L) mimicking phenotypes observed when overexpressed in prp8\textsubscript{del14}+/+ heterozygotes (J, L). (D, L) Data represent means ± s.d., n=6-9 (D), n=22-59 (L). Statistical significance was determined using ordinary one-way ANOVA with Tukey’s multiple comparisons test; **P<0.01, ****P<0.0001, n.s. = non-significant. The exact number of biological replicates per genotype (n) and P-values are specified in Supplementary Dataset 2.
Fig. S6. Blocking apoptosis does not suppress Prp8^{S>F}-mediated GstD1 induction.

(A-D) Eye-specific expression of Prp8^{S>F} in the <i>prp8^{del14}</i>/+ heterozygous background using the ey-Gal4 driver induces apoptosis (A') and activity of the GstD1-GFP reporter (A''). While co-expression of p35 effectively suppresses Prp8^{S>F}-induced apoptosis (B') it does not block upregulation of the GstD1-GFP reporter (B''). Expression of the mock Flag tripeptide alone does not induce cell death or the GstD1-GFP reporter (C). Flag co-expression does not remedy the phenotypic consequences of Prp8^{S>F} (D).
Table S1. List of *Drosophila* lines.

Name	Genotype	Source	Identifier
ey>	*w*; *P*[*w*^m*=GAL4-ey.H]*3-8	Bloomington Drosophila Stock Center	RRID:BDSC_5534
UAS-mCD8.ChRFP	*w*; *P*[*w*^m*=UAS-mCD8.ChRFP]*2	Bloomington Drosophila Stock Center	RRID:BDSC_27391
ey>mCD8.ChRFP	*w*; *P*[*w*^m*=GAL4-ey.H]*3-8, UAS-mCD8.ChRFP/CyO	this study	N/A
GstD1-GFP, ey>mCD8.ChRFP	*w*; *P*[*w*^m*=GAL4-ey.H]*3-8, UAS-mCD8.ChRFP, GstD1-GFP/CyO	this study	N/A
GstD1-GFP	*w*; GstD1-GFP/CyO	Sykiotis and Bohmann (2008)	N/A
GstD1-GFP, ey>mCD8.ChRFP, p35	*w*; *P*[*w*^m*=GAL4-ey.H]*3-8, UAS-mCD8.ChRFP, pTFW, GstD1-GFP/CyO	this study	N/A
GstD1-GFP, ey>mCD8.ChRFP, Flag	*w*; *P*[*w*^m*=GAL4-ey.H]*3-8, UAS-mCD8.ChRFP, pTFW, GstD1-GFP/CyO	this study	N/A
dpp>	*y^7*; *w*^67c23, *P*[*w*^mc*=dpp-GAL4.PS]*6A/TM3, Ser^1	Bloomington Drosophila Stock Center	RRID:BDSC_7007
dpp>mCD8.ChRFP	*w*; ey-Gal4, UAS-mCD8.ChRFP/CyO	this study	N/A
phm>	*y^1*; *w*[^*]; *P*[*w*^mc*=phm-GAL4.O]*22	Ono et al. (2006)	RRID:BDSC_80577
phm>mCD8::GFP	*w*; phm-GAL4, UAS-mCD8::GFP.L/TM6B	Ono et al. (2006)	N/A
GMR>	*w*; *P*[*w*^mc*=GAL4-ninaE.GMR]*12	Bloomington Drosophila Stock Center	RRID:BDSC_1104
UAS-yr-mRFP	*w*[^118*, *P*[*w*^mc*=UAS-yr-mRFP]*1	Bloomington Drosophila Stock Center	RRID:BDSC_7118
GMR>yr-mRFP	*w*; GMR-Gal4, UAS-yr-mRFP/CyO	this study	N/A
ey MARCM>>FRT82B Green	eyFLP; act> ey>*Gal4, UAS-GFP; *P*[*ry*^17.2*=neoFRT]82B tub-Gal80	Pagliarini and Xu (2003)	N/A
ey MARCM>>FRT42D Green	eyFLP; *P*[*ry*^17.2*=neoFRT]42D tub-Gal80/T(2;3)B3, CyO:TM6 Tb^1/act> ey>*Gal4, UAS-GFP	this study	N/A
FRT42D	*P*[*ry*^17.2*=neoFRT]42D; *ry*[^205*]	Bloomington Drosophila Stock Center	RRID:BDSC_1802
Strain	Description	Source	RRID
--------	-------------	--------	------
FRT82B	$P(r^{y^{17.2}=neoFRT})82B\ ry^{60S}$	Bloomington Drosophila Stock Center	RRID:BDSC_2035
Act5C-cas9, Lig4[169]	$y^{1}, M(Act5C-Cas9)ZH-2A, w^{119}, Lig4^{169}$	Zhang et al. (2014)	RRID:BDSC_54590
sgRNA-Prp8	$v^{1};; pCFD4-U6:1-U6:3\ sgRNA-Prp8/\ TM6b$	this study	N/A
nos-phiC31int;;attP2	$y^{1}\ sc^{1}\ v^{1}\ P(y^{17.7}=nos-\ phiC31int.NLS)X;\ P(y^{17.7}=CaryP)\ attP2$	Bloomington Drosophila Stock Center	RRID:BDSC_25710
Prp8wt	$w;; pUAST-attB-Prp8^{wt}\ attP-9A/\ TM6B$	this study	N/A
Prp8H>R	$w;; pUAST-attB-prp8^{H2369R}\ attP-9A/\ TM6B$	this study	N/A
Prp8H>P	$w;; pUAST-attB-prp8^{H2369P}\ attP-9A/\ TM6B$	this study	N/A
Prp8Y>N	$w;; pUAST-attB-prp8^{Y2395N}\ attP-9A/\ TM6B$	this study	N/A
Prp8F>L	$w;; pUAST-attB-prp8^{F2374L}\ attP-9A/\ TM6B$	this study	N/A
Prp8R>G	$w;; pUAST-attB-prp8^{H2370G}\ attP-9A/\ TM6B$	this study	N/A
Flag::Prp8wt	$w;; pUAST-attB-Flag::Prp8^{wt}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8H>R	$w;; pUAST-attB-Flag::Prp8^{H2369R}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8H>P	$w;; pUAST-attB-Flag::Prp8^{H2369P}\ attP2/\ TM3$	this study	N/A
Flag::Prp8F>L	$w;; pUAST-attB-Flag::Prp8^{F2374L}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8R>G	$w;; pUAST-attB-Flag::Prp8^{H2370G}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8Y>N	$w;; pUAST-attB-Flag::Prp8^{Y2395N}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8F>L	$w;; pUAST-attB-Flag::Prp8^{F2374L}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8R>G	$w;; pUAST-attB-Flag::Prp8^{H2370G}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8Y>N	$w;; pUAST-attB-Flag::Prp8^{Y2395N}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8F>L	$w;; pUAST-attB-Flag::Prp8^{F2374L}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8R>G	$w;; pUAST-attB-Flag::Prp8^{H2370G}\ attP2/\ TM6B$	this study	N/A
Flag::Prp8Y>N	$w;; pUAST-attB-Flag::Prp8^{Y2395N}\ attP2/\ TM6B$	this study	N/A
Genotype	Stock Description	Notes	
----------	-------------------	-------	
FRT42D, prp8^{del14}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D}, prp8^{del14}/CyO, P[ActGFP]^{JMR1}	this study, N/A	
FRT42D, prp8^{del14}, Prp8^{S>F}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D}, prp8^{del14}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{S2178F}attP-9A	this study, N/A	
FRT42D, prp8^{del14}, Prp8^{wt}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D}, prp8^{del14}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{del14}attP-9A	this study, N/A	
FRT42D, prp8^{del14}, Prp8^{F>L}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D}, prp8^{del14}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{F2374L}attP-9A	this study, N/A	
prp8^{RNAi}	w; UAS-prp8^{RNAi}[GD18555]	Vienna Drosophila Resource Center, N/A	
prp8^{RNAi}, FRT82B	w; UAS-prp8^{RNAi}[GD18555];<i>P</i>[<i>ry</i>^{17.2}=neoFRT]^{82B}	this study, N/A	
FRT42D;Prp8^{wt}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D};<i>pUAST-attB-Prp8</i>^{del14}attP-9A/ TM6B	this study, N/A	
p35	w; UAS-p35	Bloomington Drosophila Stock Center, RRID: BDSC_5072	
FRT42D prp8^{KG03188}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D} P[y^{mDint2}BR.E.BR=SUPor-P]<i>Prp8</i>^{KG03188}/CyO, y⁺	Kyoto stock Center 111506	
prp8^{KG03188}	P[SUPor-P]<i>Prp8</i>^{Prp8}^{KG03188}/CyO, P[ActGFP]^{JMR1}	Bloomington Drosophila Stock Center, RRID:BDSC_13006	
FRT42D prp8^{KG03188}, Prp8^{F>L}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D} P[y^{mDint2}BR.E.BR=SUPor-P]<i>Prp8</i>^{KG03188}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{F2374L}attP-9A	Kyoto stock Center 111506	
FRT42D prp8^{KG03188}, Prp8^{wt}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D} P[y^{mDint2}BR.E.BR=SUPor-P]<i>Prp8</i>^{KG03188}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{wt}attP-9A	Bloomington Drosophila Stock Center, RRID:BDSC_13006	
FRT42D, prp8^{KG03188}, Prp8^{S>F}	w; P[<i>ry</i>^{17.2}=neoFRT]^{42D}, prp8^{del14}/<i>T</i>(2;3)B3, CyO:TM6^{Tb}/<i>pUAST-attB-Prp8</i>^{S2178F}attP-9A	this study, N/A	
Table S2. List of vectors and plasmids.

Name	Source	Catalog Number	Identifier
pDest17	Thermo Scientific		N/A
pDest17 Prp8-CTD	this study		N/A
pCFD4-U6:1_U6:3tandemgRNAs	Port et al. (2014), Addgene		N/A
CFD4-U6:1-U6:3 Prp8 sgRNA	this study		N/A
pAW-GAL4	Y. Hiromi		N/A
pIE-EGFP			N/A
pUAST-attB	Drosophila Genomics Resource Center		N/A
pTFW	Drosophila Genomics Resource Center		N/A
pUAST-attB-Prp8[H2369R]	this study		N/A
pUAST-attB-Prp8[H2369P]	this study		N/A
pUAST-attB-Prp8[Y2395N]	this study		N/A
pUAST-attB-Prp8[F2374L]	this study		N/A
pUAST-attB-Prp8[H2370G]	this study		N/A
pUAST-attB-Prp8[wt]	this study		N/A
pUAST-attB-Prp8[S2178F]	this study		N/A
pUAST-attB-Prp8[R2370K]	this study		N/A
pUAST-attB-Prp8[R2370S]	this study		N/A
pUAST-attB-Prp8[P2361T]	this study		N/A
pUAST-attB-Flag::Prp8[H2369R]	this study		N/A
pUAST-attB-Flag::Prp8[H2369P]	this study		N/A
pUAST-attB Flag::Prp8[wt]	this study		N/A
pUAST-attB-Flag::Prp8[R2370K]	this study		N/A
pUAST-attB-Flag::Prp8[P2361T]	this study		N/A
pUAST-attB-Flag::Prp8[S2178F]	this study		N/A
pUAST-attB-Flag::Prp8[R2370S]	this study		N/A
pENTR4-Prp8[H2369R]	this study		N/A
pENTR4-Prp8[R2370K]	this study		N/A
pENTR4-Prp8[R2370S]	this study		N/A
pENTR4-Prp8[F2374L]	this study		N/A

Disease Models & Mechanisms: doi:10.1242/dmm.043174: Supplementary information
Construct	Source	Reference
pENTR4-Prp8[S2178F]	this study	N/A
pENTR4-Prp8[F2374L]	this study	N/A
pENTR4-Prp8[Y2395N]	this study	N/A
pENTR4-Prp8[H2370G]	this study	N/A
pENTR-Prp8[H2369P]	this study	N/A
pENTR4-Prp8[P2361T]	this study	N/A
pENTR4-Prp8[wt]	this study	N/A
PTFW-Prp8[wt]	Claudius et al. (2014)	N/A
Table S3. List of oligonucleotides.

Name	Sequence	Purpose
sgRNA_pCFD4_Prp 8_Intron_12_For	TATATAGAAAGATATCCGGTGAACTGTACTAGTACATATGCTAAGTGTTTTAGAGCTAGAAATAGCAAG	cloning
sgRNA_pCFD4_Prp 8_3'UTR_1_Rev	ATTTTAACTTGCTATTTCTAGCTCTAAAAACTAAGACTCCATA	cloning
Spok iQ For	GCTCTTTTGCGGTGATCGAAACAA	qPCR
Spok iQ Rev	CGCCGAGCTAAATTTCTCCGCTTT	qPCR
Spok iQ For intron	GCCATCCTCTTTAAGGAGTGTGGTCAT	qPCR
Spok iQ Rev intron	TGCGCACCGACGTTAAATTGAAAATAGGTC	qPCR
Rpl49 For	TCCTACCAGCTTCAAGTGAC	qPCR
Rpl49 Rev	CACGTTGTCGCCAGGACT	qPCR
Prp8_H2369R_For	ATTCACGAGTTGCGTCACCGGCGAAGCCCA	mutagenesis
Prp8_H2369R_Rev	TGGCAGGTCGACCGCAACTCGTGAT	mutagenesis
Prp8_H2309P_For	ATTCACGAGTTGCGTCACCGGCGAAGCCCA	mutagenesis
Prp8_H2309P_Rev	GAGGTGCGAGGCAACTCGTGAT	mutagenesis
Prp8_Y2334N_for	CGGGAGGATGTGAACGCGTAAGCGC	mutagenesis
Prp8_Y2334N_rev	GCGCTTACGCGTTCACATCCTCCC	mutagenesis
Prp8_F2374L_For	ACCTCGCATTTTACTGCTCTTCTCG	mutagenesis
Prp8_F2374L_Rev	AATGCGAGGTCTTATGCAACTCGT	mutagenesis
Prp8_R2310G_For	ACGATGTCATCTTCTTCGGCG	mutagenesis
Prp8_R2310G_Rev	AATGCGAGGTCTTATGCAACTCGT	mutagenesis
PRP8 cDNA Bcl1 Forward	AAATGATCACGATGTCCATTCCGCCGTACATG	cloning
PRP8 cDNA Not1 Rev	AAAGCGGGCGGCGCTTACGCGTACACATCCTCCC	cloning
PRP8 CTD EcoRI For	AAGAATTTTCATGCGACACAGGGAAGGCAACAA	cloning
ets21c iQ For	ATTAATGCGCATCGACAGGTGATGGCC	qPCR
ets21c iQ Rev	GGGAGGCGGTACGTCTCCTCCC	qPCR
GstE6 iQ For	CCAAGGACGCGATACGAGCCCA	qPCR
GstE6 iQ Rev	CCACGAAAGGCGTCAAGGGAG	qPCR
Supplementary Dataset 1

Click here to download Supplementary Dataset 1

Supplementary Dataset 2

Click here to download Supplementary Dataset 2