Artin presentations, triangle groups, and 4-manifolds

Jack S. Calcut1 · Jun Li1

Received: 11 November 2020 / Accepted: 13 February 2022 / Published online: 12 March 2022
© Sociedad Matemática Mexicana 2022

Abstract
González-Acuña showed that Artin presentations characterize closed, orientable 3-manifold groups. Winkelnkemper later discovered that each Artin presentation determines a smooth, compact, simply connected 4-manifold. We utilize triangle groups to find all Artin presentations on two generators that present the trivial group. We then determine all smooth, closed, simply connected 4-manifolds with second betti number at most two that appear in Artin presentation theory.

Keywords Artin presentation · Pure braid · Fundamental group · 3-Manifold · 4-Manifold · triangle group · Mapping class group

Mathematics Subject Classification Primary 57M05 · Secondary 57K40 and 20F36

1 Introduction
An Artin presentation is a group presentation \(r = \langle x_1, x_2, \ldots, x_n \mid r_1, r_2, \ldots, r_n \rangle \) such that the following holds in the free group \(F_n = \langle x_1, x_2, \ldots, x_n \rangle \)

\[
x_1x_2 \cdots x_n = (r_1^{-1}x_1r_1)(r_2^{-1}x_2r_2) \cdots (r_n^{-1}x_nr_n)
\]

González-Acuña [1, Thm. 4] showed that every closed, orientable 3-manifold

1 Department of Mathematics, Oberlin College, Oberlin, OH 44074, USA
admits an open book decomposition with planar page. As a corollary, he obtained the following algebraic characterization of 3-manifold groups.

Theorem (González-Acuña [1, Thm. 6]) A group G is the fundamental group of a closed, orientable 3-manifold if and only if G admits an Artin presentation r for some n.

Winkelnkemper [2, p. 250] discovered that each Artin presentation r determines not only a closed, orientable 3-manifold $M^3(r)$ but also a smooth, compact, simply-connected 4-manifold $W^4(r)$ such that $\partial W^4(r) = M^3(r)$. All intersection forms are represented by some $W^4(r)$ [2, pp. 248–250]. If $M^3(r)$ is the 3-sphere, then we consider the smooth, closed, simply connected 4-manifold $X^4(r) = W^4(r) \cup \partial D^4$ obtained from $W^4(r)$ by closing up with a 4-handle.

While all closed, orientable 3-manifolds appear in Artin presentation theory, it is unknown which 4-manifolds appear as a $W^4(r)$ or an $X^4(r)$. The only contractible manifold $W^4(r)$ is D^4 (when $r = \{\}^n$ is the empty Artin presentation). Therefore, no Mazur manifold appears as a $W^4(r)$. Nevertheless, there are no known smooth, closed, simply connected 4-manifolds that do not appear as an $X^4(r)$; many interesting closed 4-manifolds are known to appear this way including all elliptic surfaces $E(n)$ where $E(2)$ is diffeomorphic to the Kummer surface $K3$ [3].

We determine all closed 4-manifolds $X^4(r)$ where r is an Artin presentation on two generators. (For $n = 0$ and $n = 1$, the problem is straightforward: only S^4, $\mathbb{C}P^2$, and $\mathbb{C}P^2$ appear.) Theorem 4.2 gives the complete list of these manifolds: $\mathbb{C}P^2 \# \mathbb{C}P^2$, $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$, $\overline{\mathbb{C}P^2} \# \overline{\mathbb{C}P^2}$, and $S^2 \times S^2$. Exotic simply-connected, closed 4-manifolds are currently not known to exist with second betti number ≤ 2. Theorem 4.2 shows that such manifolds, whether or not they exist in general, do not appear in Artin presentation theory. Exotic 4-manifolds do appear in Artin presentation theory with second betti number ≥ 10 [4]. We conjecture that closed, exotic 4-manifolds appear in Artin presentation theory with second betti number three, and that this relates to the Torelli subgroup in Artin presentation theory (see [2, p. 250] and [4]).

Our proof of Theorem 4.2 uses the classification of Artin presentations on two generators and properties of classical triangle groups to find all Artin presentations on two generators that present the trivial group. We then introduce a move on Artin presentations on two generators which preserves the 4-manifolds. Using this move and the Kirby calculus, we then identify the 4-manifolds. It would be interesting to find other such moves in Artin presentation theory. Armas-Sanabria has shown certain three generator Artin presentations present nontrivial groups [5].

For each nonnegative integer n, let \mathcal{R}_n denote the set of Artin presentations on n generators. We include a proof of the folklore theorem (see [2, p. 245] and [1, p. 10]) that \mathcal{R}_n is a group isomorphic to the product $P_n \times \mathbb{Z}^n$ of the pure braid group P_n with the rank n free abelian group.

Throughout, $X \approx Y$ means that X is orientation preserving diffeomorphic to Y. If X is an oriented manifold, then \overline{X} denotes the same manifold with the opposite orientation.
2 Artin presentations

In this section, we review fundamental properties of Artin presentations and fix notation. We begin by recalling how each Artin presentation arises naturally from a homeomorphism of a compact 2-disk with holes.

Let Ω_n denote the compact 2-disk with n holes as in Fig. 1. The boundary components $\partial_0, \partial_1, \ldots, \partial_n$ of Ω_n are parameterized counterclockwise and are based at p_0, p_1, \ldots, p_n, respectively. For each $1 \leq i \leq n$, let s_i be an oriented segment from p_0 to p_i as in Fig. 1. Given a path a, let a denote the reverse path and let a denote the path homotopy class of a. Concatenation of paths—performed left to right—and the induced operation on classes will be denoted by juxtaposition. For each $1 \leq i \leq n$, let $x_i = (s_i \partial_i \overline{x_i})$ as in Fig. 2.

Therefore, $p_1 \Omega_n; p_0 \langle x_1, x_2, \ldots, x_n \rangle$ is free of rank n.

Let $h : \Omega_n \to \Omega_n$ be a homeomorphism that equals the identity (point-wise) on the boundary of Ω_n. Then, the induced homomorphism $h : \pi_1(\Omega_n, p_0) \to \pi_1(\Omega_n, p_0)$ is an automorphism. For each $1 \leq i \leq n$, define $r_i = s_i(h \circ \overline{x_i}) \in F_n$. Define the presentation $r = r(h) = \langle x_1, x_2, \ldots, x_n \mid r_1, r_2, \ldots, r_n \rangle$.

Claim 2.1 For each $1 \leq i \leq n$, we have $h(x_i) = r_i^{-1} x_i r_i$.

Proof Note that $h \circ \overline{x_i} = h \circ s_i$, $r_i^{-1} = [(h \circ s_i) \overline{x_i}]$, and $h \circ \partial_i = \partial_i$. Therefore,

$$h(x_i) = [h \circ (s_i \partial_i \overline{x_i})] = [h \circ s_i][h \circ \partial_i][h \circ \overline{x_i}]
= [h \circ s_i][\overline{x_i}][s_i][\overline{x_i}][s_i][h \circ \overline{x_i}]
= r_i^{-1} x_i r_i$$

\[\square\]

Claim 2.2 The presentation $r = r(h)$ determined by h is an Artin presentation.

Proof The following holds in F_n

$$x_1 x_2 \cdots x_n = [\overline{\partial_0}] = [h \circ \overline{\partial_0}]
= h(x_1) h(x_2) \cdots h(x_n)
= (r_1^{-1} x_1 r_1)(r_2^{-1} x_2 r_2) \cdots (r_n^{-1} x_n r_n)$$

where the last equality used Claim 2.1.

\[\square\]
Let \(\text{Homeo}(\Omega_n, \partial \Omega_n) \) denote the group of homeomorphisms of \(\Omega_n \) that equal the identity (point-wise) on \(\partial \Omega_n \). By Claim 2.2, we have a function \(\psi : \text{Homeo}(\Omega_n, \partial \Omega_n) \to \mathcal{R}_n \)
given by \(\psi(h) = r(h) \). If \(h \) and \(h' \) are isotopic relative to \(\partial \Omega_n \), then \(\psi(h) = \psi(h') \).

We will show that \(\psi \) is a surjective homomorphism of groups. First, we present a few examples. Given an Artin presentation \(r \in \mathcal{R}_n \), we define \(\pi(r) \) to be the group presented by \(r \) and \(A(r) \) to be the exponent sum matrix of \(r \) meaning \(A(r)_{ij} \) equals the exponent sum of \(x_i \) in \(r_j \). Note that \(A(r) \) is a \(n \times n \) integer matrix, the abelianization of \(\pi(r) \) is isomorphic to \(\mathbb{Z}/\text{Im}A \) where \(\text{Im}A \) denotes the image of \(A : \mathbb{Z}^n \to \mathbb{Z}^n \), and \(\pi(r) \) is perfect if and only if \(A(r) \) is unimodular (that is, \(\det A = \pm 1 \)).

Example 2.3

1. The empty presentation \(\varepsilon = \langle \rangle \) is the unique Artin presentation in \(\mathcal{R}_0 \). Here, \(\pi(\varepsilon) \) is trivial and \(A(r) = \varepsilon \) is empty.

2. The Artin presentations associated to \(T_c \) and \(T^{-1}_c \) in Fig. 3 are \(\langle x_1 \mid x_1 \rangle \) and \(\langle x_1 \mid x_1^{-1} \rangle \) respectively. Given a homeomorphism \(h \in \text{Homeo}(\Omega_n, \partial \Omega_n) \), one computes the associated Artin presentation \(r = \psi(h) \) as follows. Recall Figs. 1 and 2. The relation \(r_i \) is obtained by starting at \(p_i \), following \(h(p_i) \), and recording \(x_j \) (respectively, \(x_j^{-1} \)) each time \(g_j \) is crossed from left to right (respectively, right to left).

3. Each \(r \in \mathcal{R}_1 \) has the form \(r = \langle x_1 \mid x_1^a \rangle \) for some integer \(a \). Here, \(\pi(r) \cong \mathbb{Z}/|a|\mathbb{Z} \) and \(A(r) = [a] \).

4. Let \(a_1, a_2, \ldots, a_n \) be any integers. Then, \(r = \langle x_1, x_2, \ldots, x_n \mid x_1^{a_1}, x_2^{a_2}, \ldots, x_n^{a_n} \rangle \) is an Artin presentation in \(\mathcal{R}_n \) that presents the free product of cyclic groups \(\mathbb{Z}/|a_i|\mathbb{Z} \).
The Artin presentations associated to T_c and T_c^{-1} in Fig. 4 are $\langle x_1, x_2 \mid x_1 x_2 x_1 x_2 \rangle$ and $\langle x_1, x_2 \mid x_1^{-1} x_2^{-1} x_1^{-1} \rangle$ respectively.

Each $r = \langle x_1, x_2 \mid r_1, r_2 \rangle \in R_2$ has the form $r_1 = x_1^{a-c}(x_1 x_2)^c$ and $r_2 = x_2^{b-c}(x_1 x_2)^c$ for some integers a, b, and c (see [6, p. 360] and [2, p. 245]). We denote such an Artin presentation by $r(a, b, c)$, so

$$A(r(a, b, c)) = \begin{bmatrix} a & c \\ c & b \end{bmatrix}.$$ For instance, $r(-1, -3, 2)$ presents the binary icosahedral group $I(120)$. We mention that $\pi(r(a, b, c)) \cong \pi(r(-a, -b, -c))$ by the map $x_i \mapsto x_i$.

Remark 2.4 For each n, R_n has a natural binary operation. Namely, let $r, u \in R_n$. Define the composition $u \circ r$ to be the presentation $t = \langle x_1, x_2, \ldots, x_n \mid t_1, t_2, \ldots, t_n \rangle$ as follows: let R_i be obtained by substituting $u_j^{-1} x_j u_j$ for x_j in r_i and define $t_i = u_i R_i$.

We now show that $t \in R_n$ provided $r, u \in \text{Im} \psi$ (shortly, we will see that Im $\psi = R_n$, which means this operation is defined on all of R_n). Let $h, k \in \text{Homeo}(\Omega_n, \partial \Omega_n)$ such that $\psi(h) = r$ and $\psi(k) = u$. For each $1 \leq j \leq n$, Claim 2.1 implies that $h_j(x_j) = r_j^{-1} x_j r_j$ and $k_j(x_j) = u_j^{-1} x_j u_j$. Therefore, for each $1 \leq i \leq n$, we have

$$\begin{align*}
(k \circ h)_j(x_j) &= k_j(h_n(x_j)) = k_j(r_n^{-1} x_n r_n) \\
&= k_j(r_i) u_i^{-1} x_i u_i k_j(r_i) \\
&= (u_i k_j(r_i))^{-1} x_i (u_i k_j(r_i)) \\
&= (u_i R_i)^{-1} x_i (u_i R_i) \\
&= t_i^{-1} x_i t_i
\end{align*}$$

Thus,

$$x_1 x_2 \cdots x_n = (k \circ h)_n(x_1 x_2 \cdots x_n) = (t_1^{-1} x_1 t_1)(t_2^{-1} x_2 t_2) \cdots (t_n^{-1} x_n t_n)$$

and so $t = u \circ r \in R_n$. Summarizing, $\psi : \text{Homeo}(\Omega_n, \partial \Omega_n) \rightarrow \text{Im} \psi$ is surjective, the domain is a group, the codomain is a set with a binary operation, and ψ respects the operations—meaning $\psi(k \circ h) = \psi(k) \circ \psi(h)$. These facts imply that $\text{Im} \psi$ is a

Fig. 4 Simple closed curve c in Ω_2 (center), result of right Dehn twist T_c about c (right), and result of left Dehn twist T_c^{-1} about c (left)
group and ψ is a surjective homomorphism. Note that each Artin presentation in the examples above lies in $\text{Im} \, \psi$. The identity in $\text{Im} \, \psi$ is \(\langle x_1, x_2, \ldots, x_n \mid 1, 1, \ldots, 1 \rangle \).

Let D_n denote the compact 2-disk with $n \geq 0$ marked points q_1, q_2, \ldots, q_n in its interior as in Fig. 5.

We choose q_i to lie at the center of the simple closed curve ∂_i and let $Q = \{q_1, q_2, \ldots, q_n\}$. Let $D^2 - Q$ be the 2-disk with $n \geq 0$ punctures.

Claim 2.5 The function ψ is surjective. Hence, $\psi : \text{Homeo}(\Omega_n, \partial \Omega_n) \rightarrow \mathcal{R}_n$ is a surjective homomorphism of groups.

Proof Let $t \in \mathcal{R}_n$. It suffices to prove that $t \in \text{Im} \, \psi$ since then the second conclusion follows from Remark 2.4. Define the endomorphism $\beta : F_n \rightarrow F_n$ by $x_i \mapsto t_i^{-1}x_it_i$. By Artin\(^1\) \[9, \text{pp. 64–68}\], the map β is a pure braid group automorphism of F_n. Therefore, there exists a homeomorphism h' of $D^2 - Q$ that is a product of homeomorphisms corresponding to braid group generators such that: h' is the identity on ∂D^2, h' sends each puncture to itself (by purity of β), and $h'_w = \beta$. Furthermore, we can and do assume that the restriction h of h' to Ω_n equals the identity on $\partial \Omega_n$. Hence, $h \in \text{Homeo}(\Omega_n, \partial \Omega_n)$ and $h_w = \beta$. Let $r = \psi(h) \in \mathcal{R}_n$. For each $1 \leq i \leq n$, $h_w(x_i) = r_i^{-1}x_ir_i$ by Claim 2.1. So, $t_i^{-1}x_ir_i = r_i^{-1}x_ir_i$ and $x_i(t_i^{-1}r_i) = (t_i^{-1}r_i)x_i$. Commuting elements in F_n are powers of the same word \[10, \text{p. 42}\]. Thus, $t_i^{-1}r_i = x_i^a$ for some integer a_i, which implies $t_i = x_i^{-a_i}r_i$. Define $u = (x_1, x_2, \ldots, x_n \mid x_1^{a_1}, x_2^{a_2}, \ldots, x_n^{a_n}) \in \mathcal{R}_n$. By the examples above, there exists $k \in \text{Homeo}(\Omega_n, \partial \Omega_n)$ such that $\psi(k) = u$. As $u_j^{-1}x_ju_j = x_j$ for each $1 \leq j \leq n$, we have $t = u \circ r \in \text{Im} \, \psi$ as desired.

Remark 2.6 Let $\text{Mat}(n, \mathbb{Z})$ be the additive group of $n \times n$ integer matrices. The function $A : \mathcal{R}_n \rightarrow \text{Mat}(n, \mathbb{Z})$ is a homomorphism—meaning $A(u \circ r) = A(u) + A(r)$—to see this, note that $u \circ r \in \mathcal{R}_n$ by Claim 2.5. By definition, $[A(u \circ r)]_{ij}$ equals the exponent sum of x_i in u_jR_j where R_j is obtained from r_j by substituting $u_k^{-1}x_ku_k$ for x_k. Therefore, $[A(u \circ r)]_{ij} = [A(u)]_{ij} + [A(r)]_{ij}$ as desired.

Let $\text{Homeo}_0(\Omega_n, \partial \Omega_n)$ be the subgroup of $\text{Homeo}(\Omega_n, \partial \Omega_n)$ consisting of homeomorphisms (fixed point-wise on $\partial \Omega_n$) that are isotopic relative to $\partial \Omega_n$ to the identity.

Claim 2.7 The kernel of ψ equals $\text{Homeo}_0(\Omega_n, \partial \Omega_n)$.

Before we prove Claim 2.7, we need a technical lemma. Incidentally, this lemma is the reason we may—and typically do—assume the individual relations r_i in each Artin presentation r are freely reduced (see also \[6, \text{pp. 363–365}\]).

Lemma 2.8 Let h be a diffeomorphism of Ω_n, fixed point-wise on $\partial \Omega_n$. Assume that the arcs $h(\pi_j)$ meet the segments g_j (see ?tic?Fig. 2) in general position. Suppose some $h(\pi_j)$ crosses some g_j ($j = i$ is possible) at the point a and then, without

\(^1\) Artin’s beautiful algebraic argument appeared originally in German and later in English \[7, \text{pp. 114–115}\]; Birman gave an exposition of Artin’s argument in her book \[8, \text{Thm. 1.9, p. 30}\].
crossing any other segment g_k, $h(\overline{s_i})$ crosses g_j in the opposite direction at the point b as in Fig. 6.

Then, there is an isotopy of h relative to $\partial \Omega_n$ that eliminates the crossings a and b. This isotopy introduces no new crossings between the arcs $h(\overline{s_i})$ and g_j, though it may eliminate other crossings (in case some $h(\overline{s_i})$ meets γ).

Proof of Lemma 2.8 Let γ and σ be the arcs between a and b in g_j and $h(\overline{s_i})$, respectively. Therefore, $C = \gamma \cup \sigma$ is a simple closed curve in $\text{Int} \Omega_n$. By the Schoenflies theorem, C bounds a 2-disk $\Delta \subseteq \text{Int} D^2$. We show Δ is disjoint from $\partial \Omega_n$. As $\Delta \subseteq \text{Int} D^2$, Δ is disjoint from ∂_0. Suppose, by way of contradiction, that Δ meets ∂_k for some $1 \leq k \leq n$. Then, $\partial_k \subseteq \text{Int} \Delta$ by connectedness. If $k \neq j$, then the segment g_k must meet C by the Jordan Curve Theorem JCT. Hence, g_k meets σ which contradicts the hypotheses on $h(\overline{s_i})$. Next, assume $k = j$. Observe that the segment g_j begins on ∂_j in $\text{Int} \Delta$. Also, an open segment of g_j ending at the lower point a or b (a in Fig. 6) does not lie in Δ. Therefore, g_j must meet σ at a point other than a or b by the JCT. Again, this contradicts the hypotheses on $h(\overline{s_i})$. Therefore, $\Delta \cap \partial \Omega_n = \emptyset$ and $\Delta \subseteq \text{Int} \Omega_n$. The isotopy is now obtained by pushing σ across Δ to a parallel copy of γ as in Fig. 6.

Proof of Claim 2.7 Let $h \in \ker \psi$, and let $r = \psi(h)$. By an isotopy of h relative to $\partial \Omega_n$, we can and do assume h is a diffeomorphism and the arcs $h(\overline{s_i})$ meet the segments g_j in general position. As $h \in \ker \psi$, each $r_i = 1$ which means r_i freely reduces to 1. Let $x_j^{\pm 1}x_j^{\mp 1}$ be adjacent letters in some r_i ($j = i$ is possible); this corresponds to $h(\overline{s_i})$ crossing some g_j and then, without crossing any other segment g_k, crossing g_j in the opposite direction. By Lemma 2.8, an isotopy of h relative to $\partial \Omega_n$ eliminates these crossings. Repeating this operation finitely many times, we may assume that the arcs $h(\overline{s_i})$ are disjoint from the segments g_j. By a small isotopy of h relative to $\partial \Omega_n$, we may assume height restricts to a Morse function on the arcs $h(s_i)$ with distinct critical values. The minimal local maximum of height on $h(s_1)$ may be ambiently canceled with an adjacent local minimum (see [11, pp. 1845–1852], especially Fig. 11). Repeating this operation finitely many times, the arc $h(s_1)$ has strictly increasing height. By integrating an appropriate horizontal vector field on Ω_n, we may assume $h(s_1) = s_1$. Integrating a vector field tangent to s_1, we may assume h also equals the identity on s_1. One may repeat this procedure on s_2—without disturbing s_1—and so forth. Thus, we have h is a diffeomorphism of Ω_n equal to the identity on $\partial \Omega_n$ and on the segments s_i for $1 \leq i \leq n$. Cutting Ω_n open along the arcs s_i, h becomes a homeomorphism of the 2-disk equal to the identity on

\[\begin{array}{c}
\text{D}_3 \\
\bullet q_1 \\
\bullet q_2 \\
\bullet q_3 \\
\bullet p_0 \\
\end{array}\]
boundary. By Alexander’s trick [12, 47–48], this homeomorphism is isotopic to the identity relative to boundary. This latter isotopy induces an isotopy relative to ∂X h to the identity.

The mapping class group of X n is

$$\text{Mod}(X) = \text{Homeo}(X, \partial X)/\text{Homeo}_0(X, \partial X)$$

For useful equivalent definitions of $\text{Mod}(X)$, see [12, pp. 44–45]. Claims 2.5 and 2.7 immediately imply the following.

Corollary 2.9 The function $\text{Mod}(X) \rightarrow \mathbb{R}^n$ given by $h \mapsto \psi(h)$ is an isomorphism.

Recall from Fig. 5 above that D_n is the compact 2-disk with n marked points in its interior. The mapping class group of D_n is

$$\text{Mod}(D_n) = \text{Homeo}(D_n, \partial D_n)/\text{Homeo}_0(D_n, \partial D_n)$$

where homeomorphisms and isotopies fix $\partial D_n = S^1$ point-wise and the marked points may be permuted [12, p. 45]. The pure mapping class group $\text{PMod}(D_n)$ is the subgroup of $\text{Mod}(D_n)$ that fixes each marked point individually [12, pp. 90]. Let B_n denote the classical n strand braid group and P_n denote the n strand pure braid group. There are canonical isomorphisms $B_n \cong \text{Mod}(D_n)$ and $P_n \cong \text{PMod}(D_n)$ [12, pp. 243–249]. Recall that $D^2 - Q$ is the 2-disk with n punctures. One may regard marked points as punctures (see [12, p. 45]) in the sense that there are canonical isomorphisms $\text{Mod}(D_n) \cong \text{Mod}(D^2 - Q)$ and $\text{PMod}(D_n) \cong \text{PMod}(D^2 - Q)$.

Claim 2.10 There is a canonical isomorphism $\text{Mod}(X) \cong P_n \times \mathbb{Z}^n$.

Proof We will define the homomorphisms in the sequence

$$1 \rightarrow \mathbb{Z}^n \xrightarrow{\delta} \text{Mod}(X) \xrightarrow{\eta} \text{PMod}(D_n) \rightarrow 1$$

and show the sequence is exact and left split. For each $1 \leq i \leq n$, let T_i denote a right Dehn twist about a simple closed curve in X parallel to ∂_i as in Fig. 3. If $a = (a_1, a_2, \ldots, a_n) \in \mathbb{Z}^n$, then define $\delta(a) = [T_1^{a_1} T_2^{a_2} \cdots T_n^{a_n}]$. As these Dehn twists commute, δ is a homomorphism. The map μ is defined to be the composition: first, the isomorphism in Corollary 2.9, second, the homomorphism A (see Remark 2.6 above), and third, return the diagonal. As each of these three maps is a
homomorphism, μ is a homomorphism. Observe that $\mu \circ \delta = \text{id}$ on \mathbb{Z}^n. So, δ is injective and (2.1) is exact on the left.

There is a canonical homomorphism $\eta : \text{Mod}(\Omega_n) \to \text{Mod}(D_n)$ induced by the inclusion $\Omega_n \subseteq D_n$ [12, pp. 82–84]. By [12, Thm. 3.18, p. 84] (or [12, Prop. 3.19, p. 85] for $n = 1$), $\ker \eta = \langle [T_1], [T_2], \ldots, [T_n] \rangle_{FA} \cong \mathbb{Z}^n$ where FA indicates free abelian group. By the definition of $\text{Mod}(\Omega_n)$, $\text{Im} \eta \subseteq \text{PMod}(D_n)$ and we have the restriction homomorphism $\eta| : \text{Mod}(\Omega_n) \to \text{PMod}(D_n)$. As $\ker \eta = \ker \eta|$, the sequence (2.1) is exact in the middle. Let $[h] \in \text{PMod}(D_n)$. By an isotopy relative to ∂D_n and Q, we may assume h also equals the identity on and inside each ∂_i for $1 \leq i \leq n$. If h' is the restriction of h to Ω_n, then $\eta([h']) = [h]$. So, $\eta|$ is surjective and (2.1) is exact on the right.

Therefore, (2.1) is short exact and left split. By [13, Prop. 26, p. 385], there is an induced isomorphism $\text{Mod}(\Omega_n) \cong \text{PMod}(D_n) \cong \mathbb{Z}^n$.

Corollary 2.9 and Claim 2.10 prove the following folklore theorem.

Theorem 2.11
For each $n \geq 0$, there are canonical isomorphisms

$$ \mathcal{R}_n \cong \text{Mod}(\Omega_n) \cong P_n \times \mathbb{Z}^n $$

Example 2.12
Figure 7 depicts five framed pure braids corresponding (from left to right) to: the Dehn twists T_c^{-1} and T_c from Fig. 3, the Dehn twists T_c^{-1} and T_c from Fig. 4, and the Artin presentation $r(a, b, c)$.

We now shift our attention to 3- and 4-manifolds in Artin presentation theory. Each Artin presentation $r \in \mathcal{R}_n$ determines the following.

- $\pi(r)$ the group presented by r
- $A(r)$ the exponent sum matrix of r
- $h(r)$ a self-diffeomorphism of Ω_n
- $M^3(r)$ a closed, oriented 3-manifold
- $W^4(r)$ a smooth, compact, simply-connected, oriented 4-manifold

By Corollary 2.9, r determines a self-diffeomorphism $h = h(r)$ of Ω_n equal to the identity on $\partial \Omega_n$ and unique up to isotopy relative to $\partial \Omega_n$. The 3-manifold $M^3(r)$ is defined by Winkelnkemper’s open book construction with planar page Ω_n (see González-Acuña [1] and Winkelnkemper [2]). Namely, consider the mapping torus

![Fig. 7 Framed pure braids](image)

\[\text{Birkhäuser}\]
\(\Omega(h)\) of \(h\) which is obtained from \(\Omega_n \times [0, 1]\) by identifying \((x, 1)\) with \((h(x), 0)\) for each \(x \in \Omega_n\). The boundary of \(\Omega(h)\) equals \(\partial\Omega(h) = \partial\Omega_n \times S^1\), and \(M^3(r)\) is obtained from \(\Omega(h)\) by gluing on \((\partial\Omega_n) \times D^2\) using the identity function on \(\partial\Omega_n \times S^1\). The fundamental group of \(M^3(r)\) is isomorphic to \(\pi(r)\) (see [1, p. 10] or [2, p. 247]). In particular, \(M^3(r)\) is an integer homology 3-sphere if and only if \(A(r)\) is unimodular. Using the symplectic property of closed surface homeomorphisms, Winkelnkemper observed that \(A(r)\) is always symmetric for an Artin presentation \(r\) (see [2, p. 250], or see [6] for an algebraic proof of this fact). This led Winkelnkemper to discover that \(r\) determines a 4-manifold using a sort of relative open book construction as follows. Embed \(\Omega_n\) in \(S^2\), and let \(C\) be the closure in \(S^2\) of the complement of \(\Omega_n\) (so, \(C\) is a disjoint union of \(n + 1\) smooth 2-disks). Extend \(h\) to \(S^2\) then to \(D^3\), and let \(H\) be the resulting self-diffeomorphism of \(D^3\). The mapping torus \(W(H)\) of \(H\) contains \(C \times S^1\) in its boundary. Then, \(W^4(r)\) is obtained from \(W(H)\) by gluing on \(C \times D^2\) in the canonical way. In particular, \(\partial W^4(r) = M^3(r)\) and the intersection form of \(W^4(r)\) is given by \(A(r)\). If \(\partial M^3(r)\) is the 3-sphere, then we define \(X^4(r) = W^4(r) \cup_\partial D^4\) a smooth, closed, simply connected, oriented 4-manifold (that is, we close up with a 4-handle). By Cerf’s theorem [14], a 4-handle may be added in an essentially unique way, and so \(X^4(r)\) is well-defined.

An alternative definition of \(W^4(r)\) is as follows (see also [3,2]). Let \(r \in \mathcal{R}_n\) be an Artin presentation. By Theorem 2.11, \(r\) determines an integer framed pure braid. The framing of the \(i\)th strand is \([A(r)]_{i\mu}\). Let \(L(r)\) be the framed pure link in \(S^3 = \partial D^4\) obtained as the closure of this framed pure braid. Define \(W^4(r)\) to be \(D^4\) union \(n\) 2-handles attached along \(L(r)\). Therefore, \(L(r)\) is a Kirby diagram for \(W^4(r)\) (see [15, p. 115] for an introduction to Kirby diagrams). Figure 8 gives Kirby diagrams for \(W^4(r)\) where \(r \in \mathcal{R}_1\) and \(r \in \mathcal{R}_2\).

For example, \(X^4(\langle x \mid x^2 \rangle) \approx \mathbb{CP}^2\) and \(X^4(\langle x \mid x^{-1} \rangle) \approx \overline{\mathbb{CP}^2}\).

Remark 2.13 Three basic diffeomorphisms between the 4-manifolds \(W^4(r(a, b, c))\) are as follows where \(a\), \(b\), and \(c\) are any integers.

\[
W^4(r(a, b, c)) \approx W^4(r(b, a, c)) \tag{2.2}
\]

\[
W^4(r(a, b, 1)) \approx W^4(r(a, b, -1)) \tag{2.3}
\]

\[
W^4(r(-a, -b, -c)) \approx W^4(r(a, b, c)) \tag{2.4}
\]

The first two diffeomorphisms are given by simple isotopies of the Kirby diagrams:

Fig. 8 Kirby diagrams for \(W^4(r)\) where \(r = \langle x \mid x^2 \rangle \in \mathcal{R}_1\) (left) and \(r = r(a, b, c) \in \mathcal{R}_2\) (right).
for (2.2) interchange, the two link components, and for (2.3) flip one component to switch the sign of the single twist. Regarding (2.3), we mention that while the links are not equivalent as oriented links, the resulting 4-manifolds are independent of the orientations of the link components. The third diffeomorphism is a special case of the fact that given a Kirby diagram for a 2-handlebody Y, one obtains a Kirby diagram for \bar{Y} by switching all crossings (that is, take a mirror of the link) and multiplying each framing coefficient by -1. If $M^3(r)$ is S^3, then all three diffeomorphisms also hold with X^4 in place of W^4.

3 Triangle groups and Artin presentations

We recall basic facts about triangle groups (for details, see Magnus [16, Ch. II] and Ratcliffe [17§7.2]). Let l, m, and n be integers greater than or equal to 2. Let $\Delta = \Delta(l, m, n)$ be a triangle with angles π/l, π/m, and π/n. Define

$$\delta = \frac{1}{l} + \frac{1}{m} + \frac{1}{n}$$

The triangle Δ is: spherical and lies in $X = S^2$ if $\delta > 1$, Euclidean and lies in $X = \mathbb{R}^2$ if $\delta = 1$, and hyperbolic and lies in $X = \mathbb{H}^2$ if $\delta < 1$. The triangle reflection group $T^*(l, m, n)$ is the group generated by the reflections of X in the lines containing the sides of Δ. The triangle group $T(l, m, n)$ (sometimes called a von Dyck group) is the index 2 subgroup of $T^*(l, m, n)$ consisting of orientation preserving isometries of X. Geometrically, $T(l, m, n)$ is generated by the rotations of X about the vertices of Δ by $2\pi/l$, $2\pi/m$, and $2\pi/n$, respectively. The triangle group $T(l, m, n)$ is presented by $\langle x, y \mid x^l, y^m, (xy)^n \rangle$. Notice that $T(l, m, n)$ is independent up to isomorphism of the order in which the integers l, m, and n are listed. The triangle group $T(l, m, n)$ is: spherical and finite (but nontrivial) if $\delta > 1$, Euclidean and infinite if $\delta = 1$, and hyperbolic and infinite if $\delta < 1$. For example, $T(2, 3, 5)$ is the icosahedral group isomorphic to the order 60 alternating group A_5 on five letters. The infinite groups $T(3, 3, 3)$ and $T(3, 3, 4)$ correspond, respectively, to triangular tilings of the Euclidean and hyperbolic planes.

Lemma 3.1 Let $r = r(a, b, c) \in \mathcal{R}_2$. If $|a - c|$, $|b - c|$, and $|c|$ are all greater than or equal to 2, then $\pi(r)$ is nontrivial. If in addition $1/|a - c| + 1/|b - c| + 1/|c| \leq 1$, then $\pi(r)$ is infinite.

Proof We construct a surjective group homomorphism $\pi(r) \twoheadrightarrow T(|a - c|, |b - c|, |c|)$. Add the relation $(x_1x_2)^c$ to r to obtain

$$\pi(r) \twoheadrightarrow \langle x_1, x_2 \mid x_1^{a-c}, x_2^{b-c}, (x_1x_2)^c \rangle$$

$$\cong \langle x_1, x_2 \mid x_1^{a-c}, x_2^{b-c}, (x_1x_2)^c \rangle$$

$$\cong \langle x_1, x_2 \mid x_1^{a-c}, x_2^{b-c}, (x_1x_2)^{|c|} \rangle$$

$$= T(|a - c|, |b - c|, |c|)$$

Now, apply properties of triangle groups recalled above. \qed
Example 3.2 Consider the groups $\pi(r(-1, -3, 2))$ and $\pi(r(10, 1, 3))$. Both groups are perfect since their exponent sum matrices are unimodular. Lemma 3.1 implies that $\pi(r(-1, -3, 2))$ is nontrivial and $\pi(r(10, 1, 3))$ is infinite. The proof of Lemma 3.1 shows that $\pi(r(-1, -3, 2))$ surjects onto $T(3, 5, 2) \cong A_5$.

Theorem 3.3 Let $r = r(a, b, c) \in \mathcal{R}_2$. If $\pi(r)$ is trivial, then the 3-tuple (a, b, c) lies in the following list where $- (a, b, c) = (-a, -b, -c)$.

(3.1) $(\pm 1, \pm 1, 0)$ (four 3-tuples)
(3.2) $\pm (2, 1, \pm 1)$ and $\pm (1, 2, \pm 1)$ (eight 3-tuples)
(3.3) $\pm (1, 5, 2), \pm (5, 1, 2), \pm (2, 5, 3), \pm (5, 2, 3)$ (eight 3-tuples)
(3.4) $(a, 0, \pm 1)$ and $(0, b, \pm 1)$ where $a, b \in \mathbb{Z}$
(3.5) $(c \pm 1, c \mp 1, c)$ where $c \in \mathbb{Z}$

Proof As $\pi(r)$ is trivial, $A(r)$ must be unimodular which means $ab - c^2 = \pm 1$. Now, the basic idea is that either $|c| \leq 1$ is small and $ab = c^2 \pm 1$ determines a and b, or $|c| > 1$ is larger and Lemma 3.1 forces a or b to be close to c. We have $ab = c^2 \pm 1$ and, by Lemma 3.1, $|a - c| \leq 1$, $|b - c| \leq 1$, or $|c| \leq 1$. Notice that (a, b, c) appears in the given list if and only if $-(a, b, c)$ appears. Indeed, as $\pi(r(a, b, c)) \cong \pi(r(-a, -b, -c))$ (see Examples 2.3 (6)), our list must have this property. Therefore, it suffices to assume $c \geq 0$ for the rest of the proof. If $c = 0$, then $ab = \pm 1$, which gives the tuples 3.1. If $c = 1$, then $ab = 0$ or $ab = 2$. The former gives the tuples 3.4, and the latter gives the tuples 3.2.

Assume now that $c > 1$. Then, $|a - c| \leq 1$ or $|b - c| \leq 1$, and so a or b equals $c - 1$, c, or $c + 1$. If $a = c$, then $cb = c^2 \pm 1$ implies that $c| \pm 1$, a contradiction. Similarly, $b \neq c$. Thus, $a = c + 1$ or $b = c + 1$.

Case 1: $ab = c^2 + 1$. Suppose $a = c \pm 1$. Then, $ab = c^2 + 1$ implies $a|c^2 + 1$, and $a = c \pm 1$ implies $a|c^2 - 1$. Therefore, $al2$ and, as $a = c \pm 1$ and $c > 1$, we have $a = 1$ or $a = 2$. This gives the tuples $(1, 5, 2)$ and $(2, 5, 3)$. Similarly, $b = c \pm 1$ gives the tuples $(5, 1, 2)$ and $(5, 2, 3)$.

Case 2: $ab = c^2 - 1$. Then, $a = c \pm 1$ if and only if $b = c \mp 1$. This gives the tuples 3.5.

Remark 3.4 It is not difficult to verify the converse of Theorem 3.3 directly using Tietze transformations. This converse also follows from the Kirby calculus arguments in the next section. Hence, Theorem 3.3 lists exactly the Artin presentations on two generators that present the trivial group.

4 4-Manifolds

In this section, we show that $M^3(r)$ is S^3 for each r listed in Theorem 3.3, and we identify the corresponding closed 4-manifolds $X^4(r) = W^4(r) \cup \emptyset D^4$. First, we present a useful operation.

Lemma 4.1 Let $r = r(a, b, c) \in \mathcal{R}_2$. There are diffeomorphisms
\[W^4(r(a, b, c)) \approx W^4(r(a + b - 2c, b, b - c)) \]
\[W^4(r(a, b, c)) \approx W^4(r(a, a + b - 2c, a - c)) \]

In particular, the corresponding 3-manifolds \(M^3(r) \) are diffeomorphic, and the corresponding groups \(\pi(r) \) are isomorphic.

Proof For the first diffeomorphism, proceed as shown in Fig. 9.

In the second diagram in Fig. 9, the middle circle is parallel to the \(b \)-framed circle and has linking number \(b \) with it. If the \(a \)- and \(b \)-framed circles are oriented clockwise, then the indicated 2-handle slide is a handle subtraction; the framing of the \(a \)-framed circle changes to \(a + b - 2c \) (see [15, p. 141]).

The isotopy of the middle diagram in Fig. 9 is explained in Fig. 10. The result of Fig. 9 is a Kirby diagram for \(W^4(r(a + b - 2c, b, b - c)) \). For \(\dagger \), instead slide the \(b \)-framed circle over the \(a \)-framed circle in a similar manner. The remaining claims in the lemma follow from \(\dagger \) and \(\ddagger \) by taking boundaries. \(\square \)

Theorem 4.2 For each Artin presentation \(r \) listed in Theorem 3.3, \(M^3(r) \) is \(S^3 \). Furthermore, the corresponding closed 4-manifolds \(X^4(r) \) are as follows.

\[
\begin{align*}
(4.1) \quad X^4(r(1, 1, 0)) & \approx \mathbb{C}P^2 \# \mathbb{C}P^2 \text{ and } X^4(r(1, -1, 0)) \approx \mathbb{C}P^2 \# \overline{\mathbb{C}P^2} \\
(4.2) \quad X^4(r(2, 1, 1)) & \approx \mathbb{C}P^2 \# \mathbb{C}P^2 \\
(4.3) \quad X^4(r(5, 1, 2)) & \approx X^4(r(5, 2, 3)) \approx \mathbb{C}P^2 \# \mathbb{C}P^2 \\
(4.4) \quad X^4(r(a, 0, 1)) & \approx \begin{cases} S^2 \times S^2 & \text{if } a \text{ is even} \\
\mathbb{C}P^2 \# \overline{\mathbb{C}P^2} & \text{if } a \text{ is odd} \end{cases} \\
(4.5) \quad X^4(r(c + 1, c - 1, c)) & \approx \begin{cases} S^2 \times S^2 & \text{if } c \text{ is odd} \\
\mathbb{C}P^2 \# \overline{\mathbb{C}P^2} & \text{if } c \text{ is even} \end{cases}
\end{align*}
\]

The 4-manifolds for the remaining 3-tuples in Theorem 3.3 are determined immediately from those just listed and Remark 2.13.

Proof First, 4.1 is clear since the Kirby diagrams are two-component unlink with framings \(\pm 1 \). By \(\dagger \), \(W^4(r(2, 1, 1)) \approx W^4(r(1, 1, 0)) \), and 4.2 now follows from 4.1. Next, \(W^4(r(2, 1, -1)) \approx W^4(r(2, 1, 1)) \) by Remark 2.13, \(W^4(r(2, 1, -1)) \approx W^4(r(5, 1, 2)) \) by \(\dagger \), and \(W^4(r(5, 1, 2)) \approx W^4(r(5, 2, 3)) \) by \(\ddagger \). Therefore, 4.3 now follows from 4.2. The Kirby diagram for \(W^4(r(a, 0, 1)) \) is a Hopf link with framings

Fig. 9 From the left: Kirby diagram for \(W^4(r(a, b, c)) \), a 2-handle slide, and results of two isotopies
and 0; by [15, pp. 127, 130, & 144], the corresponding 4-manifold may be closed up with a 4-handle yielding $S^2 \times S^2$ if a is even and $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$ if a is odd. This proves 4.4. Lastly, $\frac{c}{2}$ gives $W^4(r(c + 1, c - 1, c)) \approx W^4(r(c + 1, 0, 1))$, and 4.5 now follows from 4.4.

Corollary 4.3 The closed 4-manifolds appearing as $X^4(r)$ for an Artin presentation r on n-generators for $n = 0, 1,$ and 2 are exactly: S^4 for $n = 0$, $\mathbb{C}P^2$ and $\overline{\mathbb{C}P^2}$ for $n = 1$, and $\mathbb{C}P^2 \# \mathbb{C}P^2$, $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$, $\overline{\mathbb{C}P^2} \# \overline{\mathbb{C}P^2}$, and $S^2 \times S^2$ for $n = 2$.

Remark 4.4 As noted by a referee, an alternative proof of Corollary 4.3 may be obtained using Corollary 1.4 from Meier and Zupan [18]. Their approach utilizes trisections of 4-manifolds and does not appear to provide alternative proofs of Theorems 3.3 and 4.2 herein.

Acknowledgements The authors thank both referees for their helpful comments.

References

1. González-Acuná, F.J.: Open Books, Lecture Notes, University of Iowa, p. 12 (1975). https://www2.oberlin.edu/faculty/jcalcut/ga.pdf.
2. Winkelnkemper, H.E.: Artin presentations. I. Gauge theory, 3 + 1 TQFT’s and the braid groups. J. Knot Theory Ramif. 11, 223–275 (2002)
3. Calcut, J.S., Winkelnkemper, H.E.: Artin presentations of complex surfaces. Bol. Soc. Mat. Mex. 10(3), 63–87 (2004). (Special Issue dedicated to F. González-Acuña)
4. Calcut, J.S.: Torelli actions and smooth structures on four manifolds. J. Knot Theory Ramif. 17, 171–190 (2008)
5. Armas-Sanabria, L.: Artin presentations and fundamental groups of 3-manifolds. Topol. Appl. 159, 990–998 (2012)
6. Calcut, J.S.: Artin presentations from an algebraic viewpoint. J. Algebra Appl. 6, 355–367 (2007)
7. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)
8. Birman, J.S.: Braids, Links, and Mapping Class Groups, based on lecture notes by James Cannon, Princeton University Press, Princeton. University of Tokyo Press, Toyo (1975)
9. Artin, E.: Theorie der Zöpfe. Abh. Math. Sem. Univ. Hambg. 4, 47–72 (1925)
10. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory, 2nd edn. Dover Publications Inc, New York (1976)
11. Calcut, J.S., King, H.C., Siebenmann, L.C.: Connected sum at infinity and Cantrell-Stallings hyperplane unknotting. Rocky Mt. J. Math. 42, 1803–1862 (2012)
12. Farb, B., Margalit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series 49. Princeton University Press, Princeton (2012)
13. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, Hoboken (2004) Accessed Sep 2020
14. Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0). Lecture Notes in Mathematics, vol. 53. Springer, Berlin (1968)
15. Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby calculus, Graduate Studies in Mathematics 20. American Mathematical Society, Providence (1999)
16. Magnus, W.: Noneuclidean tessellations and their groups. Academic Press, New York (1974)
17. Ratcliffe, J.G.: Foundations of hyperbolic manifolds, 2nd edn. Springer, New York (2006)
18. Meier, J., Zupan, A.: Genus-two trisections are standard. Geom. Topol. 21, 1583–1630 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.