ABSTRACT

Metric k-center clustering is a fundamental unsupervised learning primitive. Although widely used, this primitive is heavily affected by noise in the data, so that a more sensible variant seeks for the best solution that disregards a given number z of points of the dataset, called outliers. We provide efficient algorithms for this important variant in the streaming model under the sliding window setting, where, at each time step, the dataset to be clustered is the window W of the most recent data items. Our algorithms achieve $O(1)$ approximation and, remarkably, require a working memory linear in $k + z$ and only logarithmic in $|W|$. As a by-product, we show how to estimate the effective diameter of the window W, which is a measure of the spread of the window points, disregarding a given fraction of noisy distances. We also provide experimental evidence of the practical viability of our theoretical results.

Keywords k-center with outliers, effective diameter, big data, data stream model, sliding windows, coreset, doubling dimension, approximation algorithms

1 Introduction

In a number of modern scenarios (e.g., social network analysis, online finance, online transaction processing, etc.), data are produced as a continuous stream, and at such a high rate that on-the-fly processing can only afford to maintain a small portion of the data in memory, together with a limited amount of working space. This computational scenario is captured by the well-established *streaming model* [18]. The *sliding window setting* [11][3], introduces the additional, desirable constraint that the input for the problem of interest consists of the window W of the most recent data items, while older data are considered “stale” and disregarded by the computation.

The k-center clustering problem (k-center, for short) is a fundamental unsupervised learning primitive with ubiquitous applications [24][17][1]. Given a set W of points from a metric space, the k-center problem requires determining a subset $C \subseteq W$ of k centers which minimize the maximum distance of any point of W from its closest center. However, since the objective function involves a maximum, the solution is at risk of being severely influenced by a few “distant” points, called outliers. In fact, the presence of outliers is inherent in many large datasets, since these points are often artifacts of data collection, either representing noisy measurements or simply erroneous information. To cope with this limitation, k-center admits a heavily studied robust formulation that takes into account outliers [9][20][6]: when
computing the objective function for a set of \(k \) centers, the \(z \) largest distances from the centers are to be discarded, where \(z < |W| \) is an additional input parameter representing the tolerable level of noise. This formulation is known as the \(k \)-center problem with \(z \) outliers.

The decision versions of the \(k \)-center problem and its variant with \(z \) outliers are NP-complete \cite{14}, hence only approximate solutions may be returned within reasonable time bounds. In this paper, we present approximation algorithms for the \(k \)-center problem with \(z \) outliers in the sliding window setting. Moreover, as a by product, we also derive an algorithm to estimate the \(\alpha \)-effective diameter of the window, which is an interesting measure of the spread of a noisy dataset.

1.1 Related Work

In the sequential setting, the \(k \)-center problem (without outliers) admits simple 2-approximation algorithms \cite{14, 19}. Recently, a sequential, randomized, fully-dynamic (i.e., admitting arbitrary insertions and deletions of points) \((2 + \varepsilon)\)-approximation algorithm for the problem was presented in \cite{8}. This algorithm features update times linear in \(k \) and \(1/\varepsilon \), and polylogarithmic in the aspect ratio \(\Delta = d_{\text{max}}/d_{\text{min}} \) of the pointset, that is, the ratio between the maximum distance \(d_{\text{max}} \) and minimum distance \(d_{\text{min}} \) of any two points in the set. For the \(k \)-center problem with \(z \) outliers, a simple, fully combinatorial \(3 \)-approximation algorithm running in \(O(k|W|^2 \log(|W|)) \) time was devised in \cite{20}. In \cite{20, 6} an adaptation of this latter algorithm was proposed for weighted pointsets (where \(z \) represents the aggregate weight of the outliers). Recently, sequential 2-approximation algorithms were developed in \cite{16, 7}, which, however, are based on a more complex LP-based approach, less amenable to a practical implementation. A bi-criteria randomized algorithm, only suitable for (small) constant \(k \), which returns a 2-approximation as long as a slightly larger number of outliers is excluded from the objective function, was presented in \cite{13}.

For the classical streaming setting, which seeks, at any step, a solution for the full stream seen so far, a \((4 + \varepsilon)\)-approximation algorithm for the \(k \)-center problem with \(z \) outliers was given in \cite{21}. The approximation was later improved to \(3 + \varepsilon \) in \cite{6}. While the former algorithm requires \(O(kz/\varepsilon) \) working memory space, the latter requires space \(O((k + z)(c/\varepsilon)^D) \), where \(c \) is a constant and \(D \) is the doubling dimension of the input stream (a generalization of the notion of Euclidean dimension to arbitrary metrics, formally defined in Section 2.2).

For the stricter sliding window setting, in \cite{10} the authors devised an algorithm able to compute a \((6 + \varepsilon)\)-approximation to the \(k \)-center problem for the current window, while keeping \(O(k \log(\Delta)/\varepsilon) \) points stored in the working memory. Based on the same techniques, the authors also developed a \((3 + \varepsilon)\)-approximation algorithm for the diameter of the current window. In \cite{23}, we presented a \((2 + \varepsilon)\)-approximation algorithm for the \(k \)-center problem in the sliding window setting, where the improved approximation is obtained at the expense of a blow-up of a factor \(O((c/\varepsilon)^D) \) in the working memory, with \(c \) constant.

For what concerns the \(k \)-center problem with \(z \) outliers in the sliding window setting, the only known algorithm was devised very recently in \cite{12}. At every time step, the algorithm maintains an \(\varepsilon \)-coreset for the problem on the current window, namely, a subset of the window points, such that, if used as input of any \(\varepsilon \)-approximation sequential algorithm for \(k \)-center with \(z \) outliers, yields a \((c + \varepsilon)\)-approximate solution to the problem on the entire window. The algorithm requires the knowledge of the aspect ratio of the stream, and uses \(O(\log(\Delta)kz(1/\varepsilon)^D) \) working memory. Moreover, since it relies on the execution of a sequential algorithm for \(k \)-center with \(z \) outliers on the coreset every time a new point is added, it has an \(O(\log(\Delta)(kz(1/\varepsilon)^D)^3) \) update time per point, which makes it very impractical for streams with high arrival rates, and values of \(k \) and \(z \) not too small. In \cite{12}, the authors also prove that any sliding-window algorithm for \(k \)-center with \(z \) outliers, which features a \((1 + \varepsilon)\) approximation ratio, must use \(\Omega(\log(\Delta)kz/\varepsilon) \) working memory.

In \cite{4, 2}, sliding window algorithms have been proposed for the \(k \)-median and \(k \)-means clustering problems, whose objective is to minimize the average distance and squared distance of all window points from the closest centers, respectively. For distributed solutions to the \(k \)-center problem (with and without outliers) targeting volume rather than velocity of the data, see \cite{6, 11} and references therein.

The notion of \(\alpha \)-effective diameter was introduced in \cite{22} in the context of graph analytics to characterize the growth rate of the neighborhood function, but it naturally extends to general metrics, providing a robust substitute of the diameter in the presence of noise. For \(\alpha \in (0, 1) \), the \(\alpha \)-effective diameter of a metric dataset \(W \) is the minimum threshold such that the distances of at least \(\alpha|W|^2 \) pairs of window points fall below the threshold.
1.2 Our Contribution

We present approximation algorithms for k-center with z outliers in the sliding window setting, which feature constant approximation ratios and small working memory requirements and update times. As customary for clustering in the big data realm, our algorithms hinge on the maintenance of a coreset, that is, a small subset of representative points of the current window, from which an accurate solution can be extracted. Crucial to the effectiveness of our approach, is the introduction of weights for coreset points, where the weight of a point is (an estimate of) the number of window points it represents. To efficiently maintain the weights, we employ a succinct data structure inspired by the smooth histograms of [5], which enable considerable space savings if some slackness in the account of outliers is permitted.

As an interesting by-product, we also devise an algorithm that employs our coresets to approximate the α-histograms of [5], which enable considerable space savings if some slackness in the account of outliers is permitted.

We present approximation algorithms for k-center with z outliers in sliding windows and α-histograms of [5], which enable considerable space savings if some slackness in the account of outliers is permitted.

The analysis of our algorithms is carried out as a function of two design parameters δ and λ, which control, respectively, the level of accuracy and the slackness in the account of outliers, and as a function of a number of characteristics of the stream S, namely, the values d_{min} and d_{max}, representing the minimum and the maximum distance of two distinct points of S, and the doubling dimension D of S.

Our main results are listed below.

- A sliding window algorithm which, at any time, is able to return a set of centers covering all but at most $z(1 + \lambda)$ points of the current window W, within a radius which is an $O(1)$ factor larger than the optimal radius for z outliers. The algorithm requires a working memory of size $O \left(\log \left(\frac{d_{\text{max}}}{d_{\text{min}}} \right) \left(k + z \right) \log_{1+\lambda} \left(\left| W \right| \right) \right)$ and processes each point in time linear in the working memory size. By setting $\lambda = 1/(2z)$, the number of uncovered points becomes at most z.

- An improved algorithm with the same coverage guarantee as above, featuring a radius which is only a factor $(3 + O(\delta))$ larger than the optimal radius, at the expense of an extra $O((c/\delta)^D)$ factor in both the working memory size and update time, for a suitable constant c.

- A sliding-window algorithm that, starting from a (possibly crude) lower bound on the ratio between the α-effective and the full diameter of the window W, returns upper and lower upper bounds to the α-effective diameter of W. The algorithm features accuracy-space tradeoffs akin to those of the improved algorithm for 1-center with $z = 0$ outliers.

- Experimental evidence that our algorithms feature good performance and provide accurate solutions.

It is important to remark that our algorithms are fully oblivious to the metric parameters d_{min}, d_{max}, and D, in the sense that the actual values of these parameters only influence the analysis but are not needed for the algorithms to run. This is a very desirable feature, since, in practice, these values are difficult to estimate.

Compared to the algorithm of [12] for k-center with z outliers, our algorithms feature a considerably lower update time, which makes them practically viable. Moreover, in the case of noisy streams for which $z = \Omega \left(\log |W| \right)$, our algorithms require considerably less working memory, as long as some slackness in the number of outliers can be tolerated. Finally, while the algorithm of [12] requires the knowledge of d_{min} and d_{max}, our algorithms are oblivious to these values.

1.3 Organization of the Paper

The rest of the paper is structured as follows. Section 2 provides preliminary definitions. Sections 3 and 4 present, respectively, the algorithms for the k-center problem with z outliers and for the effective diameter. Section 5 reports on the experimental results. Section 6 concludes the paper with some final remarks and pointers to relevant open problems.

2 Preliminaries

Consider a (possibly unbounded) stream S of points from some metric space with distance function $\text{dist}(\cdot, \cdot)$. At any time t, let W denote the set of the last $N = |W|$ points arrived, for a fixed window length N. In the sliding window model, for a given computational problem, we aim at developing algorithms which, at any time t, are able to solve the instance represented by the current window W, using working memory considerably smaller than N (possibly, constant or logarithmic in N).
2.1 Definition of the Problems

For any point \(p \in W \) and any subset \(C \subseteq W \), we use the notation \(\text{dist}(p, C) = \min_{q \in C} \text{dist}(p, q) \), and define the radius of \(C \) with respect to \(W \) as

\[
 r_C(W) = \max_{p \in W} \text{dist}(p, C).
\]

For a positive integer \(k < |W| \), the \(k \)-center problem requires to find a subset \(C \subseteq W \) of \(k \) centers which minimizes \(r_C(W) \). For a given \(W \) and \(k \), we denote the radius of the optimal solution of this problem by \(r^*_k(W) \). Given any radius value \(r \), a subset \(C \subseteq W \) with \(r_C(W) \leq 2r \), can be incrementally built using the greedy strategy of [19]: starting from an arbitrary center, a new center, selected among the points of \(W \) at distance > \(2r \) from the current centers, is iteratively added to \(C \) until all points of \(W \) are at distance at most \(2r \) from \(C \). An easy argument shows that if \(r \geq r^*_k(W) \), the set \(C \) obtained in this fashion has size at most \(k \). By combining this strategy with a suitable guessing protocol, a 2-approximate solution to the \(k \)-center problem for \(W \) is obtained.

Note that any subset \(C \subseteq W \) induces a partition of \(W \) into \(|C| \) clusters, by assigning each point to its closest center (with ties broken arbitrarily).

In this paper, we focus on the following important extension to the \(k \)-center problem. For positive \(k, z < |W| \), the \(k \)-center problem with \(z \) outliers requires to find a subset \(C \subseteq W \) of size \(k \) minimizing \(r_C(W - Z_C) \), where \(Z_C \) is the set of \(z \) points in \(W \) with the largest distances from \(C \), which are regarded as outliers to be discarded from the clustering. We denote the radius of the optimal solution of this problem by \(r^*_{k,z}(W) \). Observe that the \(k \)-center problem with \(z \) outliers reduces to the \(k \)-center problem for \(z = 0 \). Also, it is straightforward to argue that the optimal solution of the \(k \)-center problem (without outliers) with \(k + z \) centers has a radius not larger than the optimal solution of the problem with \(k \) centers and \(z \) outliers, that is,

\[
 r^*_{k+z}(W) \leq r^*_{k,z}(W).
\]

In a more general formulation of the \(k \)-center problem with \(z \) outliers, each point \(p \in W \) carries a positive integer weight \(w(p) \), and the desired set \(C \) of \(k \) centers must minimize \(r_C(W - Z_C) \), where \(Z_C \) is the set of points with the largest distances from \(C \), of maximum cardinality and aggregate weight at most \(z \). We will refer to this weighted formulation as weighted \(k \)-center with \(z \) outliers.

The algorithms presented in this paper for \(k \)-center with \(z \) outliers crucially rely on the extraction of a succinct coreset \(T \) from the (possibly large) input \(W \), so that a solution to the problem can be efficiently computed by running a sequential algorithm on \(T \) rather than on \(W \). The quality of a coreset \(T \) is captured by the following definition.

Definition 1. Given a pointset \(W \) and a value \(\varepsilon > 0 \), a subset \(T \subseteq W \) is an \(\varepsilon \)-coreset for \(W \) w.r.t. the \(k \)-center problem with \(z \) outliers if \(\max_{p \in W} \text{dist}(p, T) \leq \varepsilon r^*_{k,z}(W) \).

An \(\varepsilon \)-coreset \(T \) of \(W \) ensures that each point in \(W \) is “represented” by a close enough point in \(T \), where closeness is defined w.r.t. \(\varepsilon \) and \(r^*_{k,z}(W) \). In fact, our algorithms will make use of weighted coresets, where, additionally, each coreset point \(p \in T \) features a weight which is (an approximation of) the number of points of \(W \) represented by \(p \).

An important characteristic of a pointset \(W \) is its diameter, defined as \(\Delta_W = \max_{p,q \in W} \text{dist}(p, q) \), which can be computed exactly in quadratic time. The diameter is very sensitive to noise in the dataset and, in the presence of outliers, its value might turn out to be scarcely representative of most pairwise distances in \(W \). Thus, the more robust notion of effective diameter has been introduced in [22]. Let \(d_{1,W}, d_{2,W}, \ldots \) be an enumeration of the \(|W|^2 \) distances between all pairs of points of \(W \), in non-decreasing order. For a given parameter \(\alpha \in (0,1) \), the \(\alpha \)-effective diameter of \(W \) is defined as \(\Delta_W^\alpha = d_{\alpha|W|^2, W} \), namely, the smallest value such that at least \(\alpha |W|^2 \) pairs of points in \(W \) are within distance \(\Delta_W^\alpha \).

2.2 Doubling Dimension

The analysis of our algorithms will be carried out as a function of a number of relevant parameters, including the dimensionality of the data. To deal with arbitrary metric spaces, we resort to the following, well-established general notion of dimensionality. For any \(x \in W \) and \(r > 0 \), the ball of radius \(r \) centered at \(x \), denoted as \(B(x, r) \), is the subset of all points of \(W \) at distance at most \(r \) from \(x \). The doubling dimension of \(W \) is the minimum value \(D \) such that, for all \(x \in W \), any ball \(B(x, r) \) is contained in the union of at most \(2^D \) balls of radius \(r/2 \) centered at points of \(W \). The notion of doubling dimension has been used extensively in previous works (see [15, 23] and references therein).
3 k-Center with z Outliers

Let S be a (possibly unbounded) stream of points from some metric space, and let N be the selected window length. For any point $p \in S$, its Time-To-Live TTL(p) is N when p arrives, and it decreases by 1 at each subsequent step. We say that p is active when TTL$(p) > 0$, and that it expires when TTL(p) becomes 0. For convenience, the analysis will also consider expired points with negative TTL’s. At any time t, the current window W consists of all arrived points with positive TTL, hence $|W| = N$.

In this section, we present coreset-based algorithms which, at any time t, are able to return accurate approximate solutions to the k-center problem with z outliers for W. The section is structured as follows. Subsection 3.1 describes and analyzes the weighted coreset construction. Subsection 3.2 discusses how to extract the final solution from the weighted coreset whose radius is at most a constant factor away from $r^*_{k+z}(W)$, as long as a slightly larger number of outliers is tolerated. Subsection 3.3 shows how to remove an assumption made to simplify the presentation. Finally, Subsection 3.4 shows that for spaces of bounded doubling dimension, the approximation factor can be lowered to a mere $3 + \varepsilon$, for any fixed ε, at the expense of larger working memory requirements.

3.1 Weighted Coreset Construction

3.1.1 Algorithm

The proposed coreset construction hinges upon the approach by [10] for k-center without outliers, with major extensions introduced to maintain weights. Let d_{min} and d_{max} denote, respectively, the minimum and maximum distances between any two distinct points of the stream. For a user-defined constant $\beta \in (0, 1]$, let

$$\Gamma = \{(1 + \beta)^i : [\log_{1+\beta} d_{\text{min}}] \leq i \leq [\log_{1+\beta} d_{\text{max}}]\}.$$

The values in Γ will be used as guesses of the optimal radius $r^*_{k+z}(W)$ of a $(k+z)$-center clustering without outliers of the current window (recall that $r^*_{k+z}(W)$ is a lower bound to the optimal radius $r_{k,z}(W)$ for the problem with z outliers), and the algorithm will maintain suitable data structures capable of identifying the right guess. For ease of presentation, we assume for now that d_{min} and d_{max} are known to the algorithm. In Subsection 3.3 we will show how the assumption can be removed by maintaining estimates of the two values. For each guess γ, the algorithm maintains three sets of active points, namely A_{γ}, R_{γ}, and O_{γ}, and the coreset is extracted from these sets. A_{γ} is a small set of active points, called attraction points, such that, for any two distinct $a_1, a_2 \in A_{\gamma}$, dist$(a_1, a_2) > 2\gamma$.

At every time t, the arrival of a new point p is handled as follows, for every guess γ. If there exist attraction points a such that dist$(p, a) \leq 2\gamma$, we define $a_\gamma(p)$ as the one with minimum TTL, and say that p is attracted by $a_\gamma(p)$. Otherwise, p becomes a new attraction point in A_{γ}, and we let $a_\gamma(p) = p$ (i.e., p is attracted by itself). Set R_{γ} maintains, for each $a \in A_{\gamma}$, one representative $r_\gamma(a)$, defined as the most recent point attracted by a. Note that while $a_\gamma(p)$ is fixed at p’s arrival, the representative $r_\gamma(a)$ may change with time. When an attraction point a expires, its representative $r_\gamma(a)$ becomes an orphan and is moved to the set O_{γ}.

Since the pairwise distance between points of A_{γ} is $> 2\gamma$, if $|A_{\gamma}| \geq k + z + 1$, we clearly have that $\gamma < r^*_{k+z}(W)$, and, as it will be seen below, the points in $A_{\gamma} \cup R_{\gamma} \cup O_{\gamma}$ will not be used to extract the coreset. Therefore, to save memory, we set $k + z + 1$ as a threshold for $|A_{\gamma}|$: when $|A_{\gamma}| = k + z + 1$ and the newly arrived point qualifies to be an attraction point, the algorithm discards the point $a \in A_{\gamma}$ with minimum TTL, and moves its representative $r_\gamma(a)$ to O_{γ}. As a further space saving, all points in O_{γ} older than a are discarded, since throughout their residual lifespan $|A_{\gamma}| \geq k + z + 1$, hence they cannot contribute to a valid coreset.

At any time t, the coreset for the k-center problem with z outliers, w.r.t. the current window W, is obtained as $T = R_{\gamma} \cup O_{\gamma}$, where γ is the smallest guess such that: (i) $|A_{\gamma}| \leq k + z$; and (ii) by running the simple greedy strategy of [19], reviewed in Section 2.1 a set C of $k + z$ points can be selected from $A_{\gamma} \cup R_{\gamma} \cup O_{\gamma}$, such that any other point in this set is at distance at most 2γ from a selected point. To ensure that an accurate solution to the k-center problem with z outliers can be extracted from the coreset T, we need to weigh each point $p \in T$ with (a suitable accurate estimate of) the number of window points for which p can act as a proxy. This requires to maintain additional information with the points of the various sets R_{γ} and O_{γ}, as explained below.

For each guess γ and each active point $p \in W$, we define its proxy $\pi_\gamma(p) \in R_{\gamma} \cup O_{\gamma}$ as the most recent active point r such that both p and r are attracted by $a_\gamma(p)$. (Note that r may be an orphan if $a_\gamma(p)$ was discarded from A_{γ}.) Thus, $\pi_\gamma(p) = r_\gamma(a_\gamma(p))$. Therefore, at any time t, the proxy function $\pi_\gamma(\cdot)$ defines a mapping between active points and points of $O_{\gamma} \cup R_{\gamma}$, and, for every $r \in O_{\gamma} \cup R_{\gamma}$, we define its weight $w_\gamma(r) = |\{p \in W : \pi_\gamma(p) = r\}|$. For each $r \in R_{\gamma} \cup O_{\gamma}$, our algorithm maintains a histogram $L_{r, \gamma} = \{(t_{r,1}, c_{r,1}), (t_{r,2}, c_{r,2}), \ldots\}$, which is a list of pairs (timestamp, weight) such that there are $c_{r,j}$ points p assigned to r (i.e., for which $\pi_\gamma(p) = r$) that arrived at or after
time $t_{r,j}$. When a point p arrives at time t, the histograms are updated as follows: If p becomes a new attraction point (hence, $p = a_{r}(p) = r_{\gamma}(p)$), a new histogram $L_{p} = \{(t,1)\}$ is created and is assigned to p. If instead p is attracted by some $a \in A_{\gamma}$, then p becomes the representative $r_{\gamma}(a)$ and inherits the histogram from the previous representative, modified by increasing all weights by 1 and adding the new pair $(t, 1)$. Also, all histogram entries with timestamp $t - |W|$ are discarded, since they refer to the point which expired at time t. The pairs in each histogram are naturally sorted by increasing order of timestamps and decreasing order of weight. Observe that when a representative r becomes an orphan, hence it is moved from R_{r} to O_{γ}, its histogram L_{r} does not acquire new entries until r expires.

At any time t, for a histogram L_{r}, we denote by $c_{L_{r}}$ the weight of the pair in L_{r} with the smallest timestamp (which is greater than or equal to $t - |W| + 1$ by virtue of the elimination of the old entries described above). It is easy to see that $c_{L_{r}} = w(r)$, that is, the number of points p for which r is the proxy. Unfortunately, keeping the full histogram L_{r} for each $r \in R_{\gamma} \cup O_{\gamma}$ requires a working memory of size $\Theta(|W|)$, which is far beyond the space bound targeted by sliding window algorithms. Therefore, taking inspiration from the smooth histograms of [5], we maintain in L_{r} only a trimmed version of the full list, which however ensures that $c_{L_{r}}$ is an estimate of $w(r)$ with a controlled level of accuracy. Specifically, let $\lambda > 0$ be a user-defined accuracy parameter. Every time a histogram L_{r} is updated, a scan of the pairs is performed which implements the following trimming:

- The first pair (t, c) is kept in the histogram.
- If a pair (t, c) is kept in the histogram, all subsequent pairs (t', c') with $t' > t$ and $c \leq (1 + \lambda)c'$ are deleted, except for the last such pair, if any.

At any time t, the weighted coreset that will be used to solve the k-center problem with z outliers for the current window W consists of the set $T = R_{\gamma} \cup O_{\gamma}$, where the guess $\hat{\gamma}$ is computed as described above, and each $r \in T$ is assigned weight $\hat{w}(r) = c_{L_{r}}$. As it will be shown in the next subsection, the $\hat{w}(r)$’s are good approximations of the true weights $w(r)$’s, and this will provide good bi-criteria approximation quality for the returned solution.

The pseudocode detailing the algorithm is provided below. The arrival of a new point p at time t is handled by the main Procedure UPDATE(p, t) (Algorithm 1), which, for every guess γ, invokes in turn Procedure INSERTATTRACTION(p, γ) (Algorithm 2), when p must be added to A_{γ}, or Procedure UPDATEHISTOGRAMS($L_{p,\gamma}$) (Algorithm 3), when p becomes a new representative of some existing point of A_{γ}. To extract the weighted coreset, Procedure EXTRACTCORESET(γ) (Algorithm 4) is executed.

Algorithm 1: UPDATE(p, t)

1. foreach $\gamma \in \Gamma$ do
2. foreach expired $p \in A_{\gamma}$ do
3. $A_{\gamma} = A_{\gamma} \setminus \{p\}$
4. Move $r_{\gamma}(p)$ from R_{γ} to O_{γ}
5. foreach $r \in O_{\gamma}$ do
6. if r is expired then
7. Remove r (and its histogram) from O_{γ}
8. Remove from $L_{r,\gamma}$ the entry (if any) with timestamp $t - |W|$
9. $x = \arg\min_{q \in A_{\gamma}} \text{dist}(p,q) \leq 2\gamma$ TTL(q)
10. if x == null then
11. INSERTATTRACTION(p, γ)
12. $L_{p,\gamma} = \{(t, 1)\}$
13. else
14. Move the content of $L_{r_{\gamma}(x),\gamma}$ to $L_{p,\gamma}$
15. UPDATEHISTOGRAM($L_{p,\gamma}$)
16. Set $r_{\gamma}(x) = p$ in R_{γ}

3.1.2 Analysis

The following two technical lemmas state important properties of the sets A_{γ}, O_{γ} and R_{γ} and of the histograms maintained by the algorithm.

Lemma 1. At any time t, the following properties hold for every $\gamma \in \Gamma$:

1. If $|A_{\gamma}| \leq k + z$, then $\max_{q \in W} \text{dist}(q, \pi_{\gamma}(q)) \leq 4\gamma$.

1For the sake of readability, from now on we drop the subscript γ from histograms and weights, when clear from the context.
As for Property 2, consider two adjacent pairs \((r, i)\) and \((r, i + 1)\) such that \((r, i)\) is first created (Line 12 of UPDATE) and becomes the new attraction point. Property 1 holds since weights are updated only as long as \(a, r, i\) is active, hence \(|\gamma| \leq k + z + 1\). We have:

Algorithm 2: INSERTATTRACTION

```text
Algorithm 2: INSERTATTRACTION(p, \(\gamma\))
1. \(A_\gamma = A_\gamma \cup \{p\}\)
2. \(r_\gamma(p) = p\)
3. \(R_\gamma = R_\gamma \cup \{r_\gamma(p)\}\)
4. if \(|A_\gamma| > k + z + 1\) then
   5. \(v_{\text{old}} = \arg\min_{v \in A_\gamma} \text{TTL}(v)\)
   6. \(A_\gamma = A_\gamma \setminus \{v_{\text{old}}\}\)
   7. Move \(r_\gamma(v_{\text{old}})\) from \(R_\gamma\) to \(O_\gamma\)
5. if \(|A_\gamma| > k + z + 1\) then
   8. \(t_{\text{min}} = \min_{v \in A_\gamma} \text{TTL}(v)\)
   9. Remove from \(O_\gamma\) all \(q\) with \(\text{TTL}(q) < t_{\text{min}}\) (and their histograms)
```

Algorithm 3: UPDATEHISTOGRAM

```text
Algorithm 3: UPDATEHISTOGRAM(L)
1. Let \(L[i] = (L[i], t, L[i], c)\) denote the \(i\)th pair in \(L\), for \(i = 1, 2, \ldots |L|\)
2. for \(i = 1\) to \(|L|\) do
   3. Append \((t, 1)\) to \(L\)
4. Create a new histogram \(M = \{L[1]\}\)
5. last = 1
6. for \(i = 2\) to \(|L| - 1\) do
7. if \(L[last], c > (1 + \lambda) \cdot L[i + 1], c\) then
   8. Append \(L[i]\) to \(M\)
9. last = \(i\)
10. Append \(L[|L|]\) to \(M\)
11. \(L = M\)
```

2. \(|A_\gamma|, |R_\gamma|, |O_\gamma| \leq k + z + 1\).

Proof. In order to prove the lemma, it suffices to show that if the properties hold after the processing of the \((t - 1)\)th point, they are inductively maintained after the invocation of UPDATE\((p, t)\). The proof makes use of essentially the same arguments employed in [10] Lemmas 7, 8, straightforwardly adapted to account for the fact that, in our algorithm, each new point which does not become an attraction point is made representative of a single attraction point, whereas in [10] it would be made representative of all attraction points at distance at most 2\(\gamma\).

Recall that at any time \(t\) and for any guess \(\gamma\), the histogram \(L_\gamma\) associated with each point \(r \in R_\gamma \cup O_\gamma\) is a list of pairs \((t, r, i, c_{r, i})\) indicating that there are currently \(c_{r, i}\) points arrived after time \(t\), whose proxy is \(r\), for \(i = 1, 2, \ldots \). We have:

Lemma 2. For any time \(t\), guess \(\gamma\), and \(r \in R_\gamma \cup O_\gamma\), the following properties hold for \(L_\gamma\):

1. For every \(1 \leq i \leq |L_\gamma|, c_{r, i} \leq |W|\).
2. For every \(1 \leq i \leq |L_\gamma| - 1\), \(c_{r, i} \leq (1 + \lambda)c_{r, i + 1}\) or \(c_{r, i} + 1 > (1 + \lambda)c_{r, i + 1}\).
3. For every \(1 \leq i \leq |L_\gamma| - 2\), \(c_{r, i} > (1 + \lambda)c_{r, i + 2}\).
4. \(|L_\gamma| \in O(\log_{1+\lambda}|W|)\).

Proof. First, observe that Property 4 is an immediate consequence of Properties 1 and 3. Hence, we are left with proving Properties 1, 2 and 3. The properties clearly hold when the histogram \(L_\gamma\) is first created (Line 4 of UPDATE), thus we only need to show that if they hold prior to an invocation of UPDATEHISTOGRAM\((L_\gamma)\), they continue to hold for the histogram \(M\) created by UPDATEHISTOGRAM\((L_\gamma)\), which becomes the new \(L_\gamma\) at the end of the procedure. Property 1 holds since weights are updated only as long as \(a, (r)\) is active, hence \(|\gamma| \leq k + z + 1\). We have:
Algorithm 4: EXTRACTCORESET()

1. for increasing $\gamma \in \Gamma$ such that $|A_\gamma| \leq k + z$ do
2. $C = \emptyset$
3. for $p \in A_\gamma \cup O_\gamma \cup R_\gamma$ do
4. if $\text{dist}(p, C) > 2\gamma$ then $C = C \cup \{p\}$
5. if $|C| \leq k + z$ then
6. $\hat{\gamma} = \gamma$
7. break;
8. $T = R_\gamma \cup O_\gamma$
9. foreach $r \in T$ do $\tilde{w}(r) = c_{L_r}$
10. return T together with the approximate weights.

two pairs with the same timestamps and weights must exist in L'_r, and we can argue that these two pairs must be adjacent in L'_r, hence their weights must differ by 1, since Property 2 holds for L'_r. Indeed, if the two pairs were not adjacent in L'_r, then at least one pair with timestamp between $t_{r,i}$ and $t_{r,i+1}$ must have been removed in the loop of UPDATEHISTOGRAM(L_r). However, this not possible because, by the way the loop operates, this would ensure that $c_{r,i} \leq (1 + \lambda)c_{r,i+1}$. Finally, Property 3 is enforced by the for loop of UPDATEHISTOGRAM(L_r).

The following theorem states the main properties of the weighted coreset T computed by our algorithm.

Theorem 1. At any time t, the weighted coreset T returned by EXTRACTCORESET() is a $4(1 + \beta)$-coreset of size $O(k + z)$ for the current window W w.r.t. the k-center problem with z outliers. Moreover, for each point $r \in T$, we have $w(r)/(1 + \lambda) \leq \tilde{w}(r) \leq w(r)$.

Proof. Recall that $T = R_\gamma \cup O_\gamma$, where $\hat{\gamma}$ is the minimum guess for which the following two conditions are verified: $|A_\gamma| \leq k + z$, and the greedy selection strategy of $[19]$ applied to $A_\gamma \cup R_\gamma \cup O_\gamma$ returns a set C of $k + z$ points such that $\text{dist}(p, C) \leq 2\hat{\gamma}$, for every $p \in A_\gamma \cup R_\gamma \cup O_\gamma$. It is easy to see that these two conditions are surely verified for any $\gamma \geq r^*_k + z(W)$. Therefore, considering the density of the guesses in Γ, we must have $\gamma \leq (1 + \beta)r^*_k + z(W)$.

By Lemma 1 we have that $|T| = O(k + z)$ and $\max_{p \in W} \text{dist}(p, T) \leq 4\gamma$, which implies $\max_{p \in W} \text{dist}(p, T) \leq 4(1 + \beta)r^*_k + z(W) \leq 4(1 + \beta)r^*_k + z(W)$.

We now show the relation concerning the approximate weights $\tilde{w}(r)$. Recall that for each $r \in T$, the value $\tilde{w}(r)$ is set equal to c_{L_r}, which is the weight component of the pair in L_r with smallest timestamp $t - |W| + 1$. Let $(t_{r,i}, c_{r,i})$ be the pair of L_r such that $c_{r,i} = c_{L_r}$. If $i > 1$, then the relation $c_{r,i} \leq w(r) \leq c_{r,i-1}$ must hold, and Property 2 of Lemma 2 ensures that $c_{r,i-1} \leq c_{r,i}(1 + \lambda)$ or $c_{r,i-1} = c_{r,i} + 1$. In the former case, we have $w(r)/(1 + \lambda) \leq c_{r,i} \leq c_{L_r} \leq w(r)$, while in the latter case it is easy to see that $c_{L_r} = w(r)$. If instead $i = 1$ it is easy to see that $c_{L_r} = w(r)$, since the first pair of the histogram is always relative to the arrival of the attraction point $a_1(r)$, hence the weight of such pair accounts for all points assigned to it.

The following theorem analyzes the space and time performance of our coreset construction strategy.

Theorem 2. The data structures used by our coreset construction strategy require a working memory of size $O(\log_{1+\beta}(d_{\text{max}}/d_{\text{min}}) \cdot (k + z) \cdot \log_{1+\lambda}(|W|))$. Moreover, Procedure UPDATE can be implemented to run in time $O(\log_{1+\beta}(d_{\text{max}}/d_{\text{min}}) \cdot ((k + z) + \log_{1+\lambda}(|W|)))$,

while Procedure EXTRACTCORESET can be implemented to run in time $O(\log_{1+\beta}(d_{\text{max}}/d_{\text{min}}) \cdot (k + z)^2)$.

If binary search is used to find the value $\hat{\gamma}$, the running time of EXTRACTCORESET decreases to $O(\log(\log_{1+\beta}(d_{\text{max}}/d_{\text{min}})) \cdot (k + z)^2)$.

Proof. The bound on the working memory is an immediate consequence of Lemmas 1 and 2, and of the fact that $|\Gamma| = O(\log_{1+\beta}(d_{\text{max}}/d_{\text{min}}))$. Procedure UPDATE is easily implemented through a constant number of linear scans of A_γ, R_γ, and O_γ, for every $\gamma \in \Gamma$, and a linear scan of at most one histogram. For what concerns Procedure EXTRACTCORESET, for each $\gamma \in \Gamma$, the computation of C requires time quadratic in $|A_\gamma| + |R_\gamma| + |O_\gamma|$, and the number of guesses $\gamma \in \Gamma$ to be checked are at most $|\Gamma|$, if a linear search is used, and $O(\log(|\Gamma|))$, if binary search is used. Also, time $O(|T|)$ is needed to compute $\tilde{w}(r)$ for all $r \in T$. Based on these considerations, the complexity bounds follow again from Lemmas 1 and 2 and the size of $|\Gamma|$.
3.2 Computation of the Solution from the Coreset

At any time t, to compute a solution to the k-center problem with z outliers on the window W, we first determine a weighted coreset T, as explained in the previous subsection, and then, on T, we run a sequential strategy for the weighted variant of the problem. To this purpose, we make use of the algorithm developed in [20][4], which generalizes the sequential algorithm of [9] to the weighted case. Given in input a weighted set T, a value k, a precision parameter ε and a radius ρ, the algorithm computes a set X of k centers incrementally in at most k iterations. Initially, all points are considered uncovered. At each iteration, the next center is selected as the point which maximizes the aggregate weight of the yet uncovered points within distance $(1 + 2\varepsilon)\rho$, and such a center covers all points in T within the larger distance $(3 + 4\varepsilon)\rho$. The algorithm terminates when either $|X| = k$ or no uncovered points remain, returning X and the subset T' of uncovered points. This algorithm is implemented by procedure $\text{OUTLIERSCLUSTER}(T, k, \rho, \varepsilon)$. The next lemma states an important property related to the use of OUTLIERSCLUSTER in our context.

Algorithm 5: $\text{OUTLIERSCLUSTER}(T, k, \rho, \varepsilon)$

Line	Description		
1	$T' = T$		
2	$X = \emptyset$		
3	While $	X	< k$ and $T' \neq \emptyset$ do
4	for $r \in T'$ do		
5	$B_r = \{v : v \in T' \text{ and } \text{dist}(v, r) \leq (1 + 2\varepsilon)\rho\}$		
6	$x = \text{argmax}_{v \in T'} \sum_{v \in B_r} w(v)$		
7	$X = X \cup \{x\}$		
8	$E_x = \{v : v \in T' \text{ and } \text{dist}(v, x) \leq (3 + 4\varepsilon)\rho\}$		
9	$T' = T' \setminus E_x$		
10	return X, T'		

Lemma 3. For any time t, let $T = R_t \cup O_t$ be the weighted coreset returned by $\text{EXTRACTCORESET}()$. For any $\rho \geq r_{k,z}^*(W)$, the invocation $\text{OUTLIERSCLUSTER}(T, k, \rho, \varepsilon)$ with $\varepsilon = 4(1 + \beta)$ returns a set of centers X and a set of uncovered points $T' \subseteq T$, such that

- $\text{dist}(r, X) \leq (3 + 4\varepsilon)\rho \quad \forall r \in T \setminus T'$
- $\sum_{r \in T'} \tilde{w}(r) \leq z$.

Proof. The proof can be obtained as a simple technical adaptation of the one of [6] Lemma 5 to the case of approximate weights. For clarity, we detail the entire proof rather than highlighting the changes only. The bound on $\text{dist}(r, X)$ for every $r \in T \setminus T'$ is directly enforced by the algorithm. We are left to show that $\sum_{r \in T'} \tilde{w}(r) \leq z$. If $|X| < k$, then $T' = \emptyset$ and the claim holds vacuously. We now concentrate on the case $|X| = k$. Consider the i-th iteration of the while loop of $\text{OUTLIERSCLUSTER}(T, k, \rho, \varepsilon)$ and define x_i as the center of X selected in the iteration, and T_i' as the set T' of uncovered points at the beginning of the iteration. Recall that x_i is the point of T' which maximizes the cumulative approximate weight of the set B_{x_i} of uncovered points in T_i' at distance at most $(1 + 2\varepsilon)\rho$ from x_i, and that the set E_{x_i} of all uncovered points at distance at most $(3 + 4\varepsilon)\rho$ from x_i is removed from T_i' at the end of the iteration. Let

$$\sigma_T = \sum_{r \in T} \tilde{w}(r).$$

We now show that

$$\sum_{i=1}^{k} \sum_{r \in E_{x_i}} \tilde{w}(r) \geq \sigma_T - z,$$

which will immediately imply that $\sum_{r \in T'} \tilde{w}(r) \leq z$. To this purpose, let O be an optimal set of k centers for the current window W, and let Z be the set of at most z outliers at distance greater than $r_{k,z}^*(W)$ from O. Let also \tilde{W} be a subset of the current window which, for every $r \in T$, contains exactly $\tilde{w}(r)$ points q, including r, for which r is a proxy, that is, points $q \in W$ such that $\pi_\gamma(q) = r$. Note that \tilde{W} is well defined since, by Theorem 1, $\tilde{w}(r)$ is always less than or equal to the actual weight of r. For each $o \in O$, define $C_o \subseteq \tilde{W} \setminus Z$ as the set of nonoutlier points in \tilde{W} which are closer to o than to any other center of O, with ties broken arbitrarily. It is important to remark, that while there may be some optimal center $o \in O$ which is not in \tilde{W}, its proxy $\pi_\gamma(o)$ is in T, hence it is guaranteed to be in \tilde{W}. To prove Eq. (2), it is sufficient to exhibit an ordering o_1, o_2, \ldots, o_k of the centers in O so that, for every $1 \leq i \leq k$, it
holds
\[\sum_{j=1}^{i} \sum_{r \in B_{x_j}} \tilde{w}(r) \geq |C_{o_1} \cup \cdots \cup C_{o_i}|. \]

The proof uses an inductive charging argument to assign each point in \(\bigcup_{j=1}^{i} C_{o_j} \) to a point in \(\bigcup_{j=1}^{i} E_{x_j} \), where each \(r \) in the latter set will be in charge of at most \(\tilde{w}(r) \) points. We define two charging rules. A point can be either charged to its own proxy (Rule 1) or to another point of \(T \) (Rule 2).

Fix some arbitrary \(i \), with \(1 \leq i \leq k \), and assume, inductively, that the points in \(C_{o_i} \cup \cdots \cup C_{o_{i-1}} \) have been charged to points in \(\bigcup_{j=1}^{i-1} E_{x_j} \) for some choice of distinct optimal centers \(o_1, o_2, \ldots, o_{i-1} \). We have two cases.

Case 1. There exists an optimal center \(o \) still unchosen such that there is a point \(v \in C_{o} \) with \(\pi_{\hat{v}}(v) \in B_{x}, \) for some \(1 \leq j \leq i \). We choose \(o_i \) as one such center. Hence \(d(x_j, \pi_{\hat{v}}(v)) \leq (1 + 2\varepsilon) \cdot \rho \). By repeatedly applying the triangle inequality we have that for each \(u \in C_{o_i} \)
\[d(x_j, \pi_{\hat{v}}(u)) \leq d(x_j, \pi_{\hat{v}}(v)) + d(\pi_{\hat{v}}(v), v) + d(v, o_i) \]
\[+ d(o_i, u) + d(u, \pi_{\hat{v}}(u)) \leq (3 + 4\varepsilon) \cdot \rho \]
hence, \(\pi_{\hat{v}}(u) \in E_{x_i} \). Therefore we can charge each point \(u \in C_{o_i} \) to its proxy, by Rule 1.

Case 2. For each unchosen optimal center \(o \) and each \(v \in C_{o} \), \(\pi_{\hat{v}}(v) \notin \bigcup_{j=1}^{i-1} E_{x_j} \). We choose \(o_i \) to be the unchosen optimal center which maximizes the cardinality of \(\{ \pi_{\hat{v}}(u) : u \in C_{o_i} \} \cap T_{i}' \). We distinguish between points \(u \in C_{o_i} \) with \(\pi_{\hat{v}}(u) \notin T_i' \), hence \(\pi_{\hat{v}}(u) \in \bigcup_{j=1}^{i-1} E_{x_j} \), and those with \(\pi_{\hat{v}}(u) \in T_i' \). We charge each \(u \in C_{o_i} \) with \(\pi_{\hat{v}}(u) \notin T_i' \) to its own proxy by Rule 1. As for the other points, we now show that we can charge them to the points of \(B_{x_i} \). To this purpose, we first observe that \(B_{x_i(o_i)} \) contains \(\{ \pi_{\hat{v}}(u) : u \in C_{o_i} \} \cap T_{i}' \), since for each \(u \in C_{o_i} \)
\[d(\pi_{\hat{v}}(o_i), \pi_{\hat{v}}(u)) \leq d(\pi_{\hat{v}}(o_i), o_i) + d(o_i, u) + d(u, \pi_{\hat{v}}(u)) \]
\[\leq (1 + 2\varepsilon) \cdot r_{x-z}(W) \leq (1 + 2\varepsilon) \cdot \rho. \]
Therefore the aggregate approximate weight of \(B_{x_i(o_i)} \) is at least \(\{|u \in C_{o_i} : \pi_{\hat{v}}(u) \in T_{i}' \}| \). Since Iteration \(i \) selects \(x_i \) as the center such that \(B_{x_i} \) has maximum aggregate approximate weight, we have that
\[\sum_{r \in B_{x_i}} \tilde{w}(r) \geq \sum_{r \in B_{x_i(o_i)}} \tilde{w}(r) \geq \{|u \in C_{o_i} : \pi_{\hat{v}}(u) \in T_{i}' \}|, \]
hence, the points \(u \in C_{o_i} \) with \(\pi_{\hat{v}}(u) \in T_{i}' \) can be charged to the points in \(B_{x_i} \), since \(B_{x_i} \) has enough aggregate approximate weight.

Note that the points of \(B_{x_i} \) did not receive any charging by Rule 1 in previous iterations, since they are uncovered at the beginning of Iteration \(i \), and will not receive chargings by Rule 1 in subsequent iterations, since \(B_{x_i} \) does not intersect the set \(C_{o} \) of any optimal center \(o \) yet to be chosen. Also, no further charging to points of \(B_{x_i} \), by Rule 2, will happen in subsequent iterations, since Rule 2 will only target sets \(B_{x_i} \) with \(h > i \). These observations ensure that any point of \(T \) receives charges through either Rule 1 or Rule 2, but not both, and never in excess of its weight, and the proof follows. \(\square \)

At any time \(t \), to obtain the desired solution we invoke Procedure COMPUTESOLUTION, which works as follows (see Algorithm 1 for the pseudocode). The procedure first extracts the coreset \(T = R_{x} \cup O_{x} \) calling EXTRACTCORESET. Then, it sets \(\varepsilon = 4(1 + \beta) \) and runs OUTLIERSCLUSTER\((T, k, \rho, \varepsilon) \) for a geometric sequence of values of \(\rho \) between \(d_{\min} \) and \(d_{\max} \), with step \(1 + \beta \), stopping at the minimum value \(\rho_{\min} \) for which the pair \((X, T') \) returned by OUTLIERSCLUSTER\((T, k, \rho_{\min}, \varepsilon) \), is such that aggregate approximate weight of set \(T' \) is at most \(12 \cdot \log_{1+\beta}(k \cdot (100\varepsilon)^2) \).

At this point, the set of centers \(X \) is returned as solution to the \(k \)-center problem with \(z \) outliers on the current window \(W \).

The following theorem highlights the tradeoff between accuracy (in terms of both radius and excess number of outliers) and performance exhibited by COMPUTESOLUTION.

Theorem 3. At any time \(t \), COMPUTESOLUTION returns a set \(X \subseteq \bigcup_{i=1}^{k} W \) of at most \(k \) centers such that at least \(|W| - (1 + \lambda)z \) points of \(W \) are at distance at most \((23 + 5\lambda)r_{x-z}(W) \) from \(X \). The procedure requires a working memory of size \(O((k + z) \log_{1+\beta}(d_{\max}/d_{\min}) \log_{1+\lambda}(|W|)) \) and runs in time
\[O(\log_{1+\beta}(d_{\max}/d_{\min}) \cdot k(k + z)^2). \]

\(^2\text{Note that the parameter } \beta \text{ in the definitions of } \varepsilon \text{ and of the step used in the geometric search for } \rho_{\min} \text{ is the same one that appears in the definition of } \Gamma, \text{ hence } \beta \in (0, 1]. \)
If the while loop is substituted by a binary search for ρ_{\min}, the running time decreases to
\[O \left(\log(\log_1(1+\beta)(d_{\max}/d_{\min})) \cdot k(k+z)^2 \right). \]

Proof. Let ρ_{\min} be such that $\textsc{outliersCluster}(T, k, \rho_{\min}, \varepsilon)$ yields (X, T'), where X is the returned solution, and let W' be the set of points of W whose proxies are in T'. By Lemma 3 and the choice of the step of the geometric search for ρ_{\min}, we have that $\rho_{\min} \leq (1+\beta)r^*_{k,z}(W)$, hence for each $p \in W - W'$, $\text{dist}(\pi_\gamma(p), X) \leq (3+4\varepsilon)\rho_{\min} \leq (3+4\varepsilon)(1+\beta)r^*_{k,z}(W)$. Since T is an ε-coreset (Theorem 1) and $\beta \in (0, 1)$, we conclude that for every $p \in W - W'$:
\[
\text{dist}(p, X) \leq \text{dist}(p, \pi_\gamma(p)) + \text{dist}(\pi_\gamma(p), X) \\
\leq \varepsilon r^*_{k,z}(W) + (3+4\varepsilon)(1+\beta)r^*_{k,z}(W) \\
< (23+55\beta)r^*_{k,z}(W)
\]
Moreover, by Theorem 1, we also have that $|W'| \leq (1+\lambda)\sum_{r \in T'} \tilde{w}(r) \leq (1+\lambda)z$. The working memory bound is an immediate consequence of Theorem 2 since the working memory is dominated by the data structures from which the coreset is extracted. For what concerns the running time, observe that $\textsc{outliersCluster}$ can be easily implemented in $O(k \cdot |T|^2)$, which is $O(k \cdot (k+z)^2)$, since $|T| = O(k + z)$ by Theorem 1. Therefore, the bound on the running time follows since $\textsc{extractCoreSet}$ requires time $O\left(\log(\log_1(1+\beta)(d_{\max}/d_{\min})) \cdot (k+z)^2 \right)$ (by Theorem 2), and the while loop performs at most $O\left(\log_1(1+\beta)(d_{\max}/d_{\min}) \right)$ executions of $\textsc{outliersCluster}$, which can be lowered to $O\left(\log_1(1+\beta)(d_{\max}/d_{\min}) \right)$ using binary search.

The above result shows that allowing for a slight excess in the number of outliers (governed by parameter λ) reduces the running time. Theorem 2 implies that, for any ρ_{\min}, $\textsc{computeSolution}$ runs in $O\left(\log_1(1+\beta)(d_{\max}/d_{\min}) \cdot k(k+z)^2 \right)$ time.

Corollary 1. Let $\lambda = 1/(2\varepsilon)$. At any time t, $\textsc{computeSolution}$ returns a set $X \subseteq W$ of at most k centers such that at least $|W| - z$ points of W are at distance $(23+55\beta)r^*_{k,z}(W)$ from X. The procedure requires a working memory of size $O\left(z(k+z)\log_1(1+\beta)(d_{\max}/d_{\min})\log(|W|) \right)$ and runs in time
\[O \left(\log_1(1+\beta)(d_{\max}/d_{\min}) \cdot k(k+z)^2 \right). \]
If the while loop is substituted by a binary search for ρ_{\min}, the running time decreases to
\[O \left(\log_1(1+\beta)(d_{\max}/d_{\min}) \cdot k(k+z)^2 \right). \]

3.3 Obliviousness to d_{\min} and d_{\max}

The algorithm described in Subsections 3.1 and 3.2 requires the knowledge of the values d_{\min} and d_{\max}. In this subsection, we show how to remove this requirement by employing the techniques developed in [23], suitably extended to cope with histograms, which were not used in that work.

Let p_1, p_2, \ldots be an enumeration of all points of the stream S, based on their arrival times. For $t > k+z$, let d_t be the minimum pairwise distance between the last $k+z+1$ points of the stream $(p_{t-k-z}, \ldots, p_{t-1}, p_t)$. Let also D_t be the maximum distance between p_1 and any p_i with $i \leq t$, and note that, by the triangle inequality, the maximum pairwise
distance among the first t points of S is upper bounded by $2D_1$. It is easy to argue that $d_t/2 \leq r^*_{k+z}(W) \leq r^*_{k}(W) \leq 2D_0$. By storing p_t and the last $k+z+1$ points of the stream, the values d_t and D_t can be straightforwardly maintained by the algorithm with $O((k+z)^2)$ operations per step. We define

$$
\Gamma_t = \{(1+\beta)^i : \lfloor \log_{1+\beta} d_t/2 \rfloor \leq i \leq \lfloor \log_{1+\beta} 2D_t \rfloor \}.
$$

Suppose that at any time t the algorithm maintains the sets A_t, R_t and O_t, and the histograms for the points in $R_t \cup O_t$, only for $\gamma \in \Gamma_t$, and assume that the properties stated in Lemmas 1 and 2 hold for every $\gamma \in \Gamma_t$ and $r \in R_t \cup O_t$. Then, by running procedure EXTRACTCORESET, limiting the search for γ to the set Γ_t, we still obtain a $(1+\beta)$-coreset for the current window. To see this, we first note that, based on the previous observation, Γ_t includes for sure a value γ with $r^*_{k+z}(W) \leq \gamma \leq (1+\beta)r^*_{k+z}(W)$. By repeating the same argument used in the proof of Theorem 1 we can show that for such a value of γ we have that $|A_\gamma| \leq k+z$, and that the inner for loop of EXTRACTCORESET computes a set C of at most $k+z$ points. This immediately implies that EXTRACTCORESET determines a guess $\gamma \leq (1+\beta)r^*_{k+z}(W)$ and that the returned coreset $T = R_\gamma \cup O_\gamma$ is a $(1+\beta)$-coreset.

We now show how to modify the algorithm described in the previous subsections (referred to as full algorithm in what follows) to maintain, without the knowledge of d_{\min} and d_{\max}, the sets A_t, R_t and O_t and the required histograms, for every guess $\gamma \in \Gamma_t$. Suppose that this is the case up to some time $t-1 > k+z$, and consider the arrival of p_t. Before invoking UPDATE(p_t, t), the algorithm executes the operations described below.

First, the new values d_t and D_t are computed, and all sets relative to values of $\gamma \in \Gamma_{t-1} - \Gamma_t$ are removed. If $d_t < d_{t-1}$, then for each $\gamma \in \Gamma_t$ with $\gamma < \min\{|\gamma'| \in \Gamma_{t-1}\} \leq d_{t-1}/2$, the algorithm sets $A_t = \{p_t-k-z, \ldots, p_t-1\} = R_t$ and $O_t = \emptyset$. Moreover, for each $p_t \in R_t$, it sets $L_{p_t} = \{(\tau, 1)\}$, as each point represents itself only. Since any two points in A_t are at distance at least $d_{t-1} > 2\gamma$, it is easy to see that these newly created sets coincide with the ones that the full algorithm would store at time $t-1$ (for the same γ’s) if the stream started at time $t-(k+z+1)$, hence they satisfy the properties of Lemmas 1 and 2.

If $D_t > D_{t-1}$, then for each $\gamma \in \Gamma_t$ with $\gamma > \max\{|\gamma'| \in \Gamma_{t-1}\}$, the algorithm sets $A_t = \{p_t-|W|\}$, $R_t = \{p_t-1\}$ and $O_t = \emptyset$. It is easy to see that these newly created sets coincide with the ones that the full algorithm would store at time $t-1$ (for the same γ’s) if the stream started at time $t-|W|$, hence they satisfy the properties of Lemma 1.

It has to be remarked that, although point $p_t-|W|$ is not available at time $t-1$, this is not a problem since the point immediately expires at time t and is removed from the data structures without even being used in the processing of p_t. Hence, in this context, $p_t-|W|$ acts as a mere placeholder. For what concerns the histogram $L_{p_{t-1}}$ to associate with p_{t-1} (for every $\gamma > \max\{|\gamma'| \in \Gamma_{t-1}\}$), its exact version represents the entire active window, hence it would be the list $\{(t-|W|, |W|), \ldots, (t-2, 2), (t-1, 1)\}$. In order to satisfy the properties of Lemma 2, $L_{p_{t-1}}$ can be trimmed as follows. Let $f(x) = \left\lceil \log\frac{x}{1+x} \right\rceil$. Then, $L_{p_{t-1}}$ contains the set of pairs $(t-c_i,c_i)$, with $i \geq 0$, where the c_i’s form a decreasing sequence of values ≥ 1 such that $c_0 = |W|$ and, for each $i \leq 0$ with $c_i > 1$, $c_{i+1} = \min\{c_i - 1, f(c_i)\}$.

Lemma 4. The list $L_{p_{t-1}}$ defined above satisfies the properties stated in Lemma 2.

Proof. Property 1 clearly holds. As for Property 2 consider two consecutive pairs $(t-c_i,c_i)$ and $(t-c_{i+1},c_{i+1})$. If $c_{i+1} = f(c_i)$, then for sure $c_i \leq (1+\lambda)c_{i+1}$. Hence, when $c_i > (1+\lambda)c_{i+1}$ we must have $c_{i+1} = c_i - 1$, and the property follows. Property 3 holds since, for $1 \leq i \leq |W| - 2$, $c_{i+2} \leq c_{i+1} - 1 < (c_i/(1+\lambda) + 1) - 1$, hence $(1+\lambda)c_{i+2} \leq c_i$. Finally, the bound stated by Property 4 follows as a direct consequence of the first three properties.

Once the correct configurations of the data structures for all guesses $\gamma \in \Gamma_t$ are obtained, Procedure UPDATE(p_t, t) is invoked to complete step t, thus enforcing the properties of Lemmas 1 and 2 for all of these data structures.

3.4 Improved Approximation under Bounded Doubling Dimension

Consider a stream S of doubling dimension D. We now outline an improved coreset construction that is able to provide a δ-coreset T for the k-center problem with z outliers, for any $\delta > 0$, at the expense of a blow-up in the working memory size which is analyzed as a function of D and is tolerable for small (e.g., constant) D. This improved construction allows us to obtain a much tighter approximation for the k-center problem with z outliers in the sliding window setting.

Fix any given $\delta > 0$. In [23], a refinement of the k-center strategy of [10] is presented which, for every guess γ, maintains two families of attraction, representative and orphan points. The first family, referred to as validation points, features three $O(k)$-size sets of attraction, representative and orphan points, equivalent to those described in Subection 3.4. Validation points are employed to identify a constant approximation $\hat{\gamma}$ to the optimal radius $r^*_k(W)$. The second
family, referred to as coreset points, contains, for any guess γ, three “expanded” sets of attraction, representative and orphan points, which refine the coverage provided by the corresponding sets of validation points, in the sense that the coreset points relative to the guess $\hat{\gamma}$ yield a coreset T such that $\max_{p \in W} d(p, T) \leq \delta r^*_k(W)$. For each γ, these larger sets contain $O(k(c/\delta)^D)$ points, for a suitable constant c.

We can augment the algorithm of [23] in the same fashion as we augmented the algorithm of [10], by endowing the representative and orphan coreset points with the histograms described in Subsection 3.1. Then, by running the resulting algorithm for $k + z$ (instead of k) centers, the result stated in the following lemma is immediately obtained, where parameter λ and functions $w(\cdot)$ and $\tilde{w}(\cdot)$ have the same meanings as before.

Lemma 5. Let $\delta, \lambda > 0$ be two design parameters. For a stream S of doubling dimension D, suitable data structures can be maintained from which, at any time t, a weighted δ-coreset T of size $O((c/\delta)^D(k + z))$, for a fixed constant c, can be extracted such that, for each $p \in W$, there exists a proxy $\pi(p) \in T$ with

$$\text{dist}(p, \pi(p)) \leq \delta r^*_{k,z}(W) \leq \delta r^*_{k,z}(W).$$

Moreover, for each $r \in T$, an approximate weight $\tilde{w}(r)$ can be computed, with $w(r)/(1 + \lambda) \leq \tilde{w}(r) \leq w(r)$, where $w(r) = \{p \in W : \pi(p) = r\}$. The data structures require a working memory of size $O((c/\delta)^D(k + z) \log(d_{max}/d_{min}) \log_{1+\lambda}(|W|))$.

The analysis in [23] implies that the constant c can be fixed arbitrarily close to 32. We remark that the construction described in Subsection 3.1 cannot return δ-coresets with $\delta \leq 4$, while the result of Lemma 5 yields δ-coresets for any $\delta > 0$.

To obtain the desired solution at any time t, we first compute a δ-coreset T satisfying the properties stated in the above lemma. Then, analogously to computeSolution, we run OUTLIERSCluster(T, k, ρ, δ) for a geometric sequence of values of ρ of step $1 + \beta$ between d_{min} and d_{max}, stopping at the minimum value ρ_{min} for which, if (X, T') is the output of OUTLIERSCluster$(T, k, \rho_{min}, \delta)$, then the aggregate approximate weight of set T' is at most z. The algorithm returns X as the final set of (at most) k centers. By choosing $\beta = \delta/(3 + 4\delta)$, we get the following result:

Theorem 4. Let $\delta, \lambda > 0$ be two design parameters and consider a stream of doubling dimension D. There exists a sliding window algorithm that, at any time t, returns a set of at most k centers $X \subseteq W$ such that at least $|W| - (1 + \lambda)z$ points of W are at distance at most $(3 + 6\delta)r^*_{k,z}(W)$ from X. For a suitable constant $c > 0$, the algorithm makes use of a working memory of size $O((c/\delta)^D(k + z) \log(d_{max}/d_{min}) \log_{1+\lambda}(|W|))$. Also, the algorithm requires time

$$O\left(\log_{1+\beta}(d_{max}/d_{min}) \cdot ((c/\delta)^D(k + z) + \log_{1+\lambda}(|W|))\right)$$

to update the data structures after each point arrival, and time

$$O\left(\log (\log_{1+\beta}(d_{max}/d_{min}) \cdot ((c/\delta)^D \cdot k(k + z)))\right)$$

to compute the final solution, with $\beta = \delta/(3 + 4\delta)$.

Proof. By reasoning as in the proof of Lemma 3, we can show that, by executing OUTLIERSCluster(T, k, ρ, δ), with any $\rho \geq r^*_{k,z}(W)$, the set of uncovered points at the end of the execution has aggregate approximate weight at most z. This immediately implies that $\rho_{min} \leq (1 + \beta)r^*_{k,z}(W)$. Let (X, T') be the output of OUTLIERSCluster$(T, k, \rho_{min}, \delta)$, and let W' be the set of points of W whose proxies are in T'. We have that for each $p \in W - W'$, $\text{dist}(\pi(p), X) \leq (3 + 4\delta)\rho_{min} \leq (3 + 4\delta)(1 + \beta)r^*_{k,z}(W)$. Since T is an δ-coreset we conclude that, for every $p \in W - W'$:

$$\text{dist}(p, X) \leq \text{dist}(p, \pi(p)) + \text{dist}(\pi(p), X) \leq \delta r^*_{k,z}(W) + (3 + 4\delta)(1 + \beta)r^*_{k,z}(W) \leq (3 + 6\delta)r^*_{k,z}(W),$$

where the last inequality uses the fact that $\beta = \delta/(3 + 4\delta)$. Moreover, we also have that $|W'| \leq (1 + \lambda)\sum_{r \in T'} \tilde{w}(r) \leq (1 + \lambda)z$. Finally, the bound on the working memory follows from Lemma 5 while the time bounds for updating the data structures and extracting the solution from the coreset are obtained by adapting the arguments used to prove Theorems 2 and 3.

The following corollary is the counterpart of Corollary 1 for the dimension-sensitive algorithm developed in this section.
Corollary 2. Let \(\lambda = 1/(2z) \). At any time \(t \), the algorithm is able to compute a set \(X \subseteq W \) of at most \(k \) centers such that at least \(|W| - z \) points of \(W \) are at distance at most \((3 + 6\delta)r_k(W)\) from \(X \). For a fixed constant \(c > 0 \), the algorithm requires the working memory of size \(O((c/\delta)^D z(k + z) \log(d_{\max}/d_{\min}) \log(|W|)) \) and runs in time
\[
O \left(\log \left(\log(1/\beta)(d_{\max}/d_{\min}) \right) (c/\delta)^D \cdot k (k + z)^2 \right),
\]
with \(\beta = \delta/(3 + 4\delta) \).

It is important to remark that the algorithm in \(\ref{lem:coreset} \), which we have built upon, is fully oblivious to \(D \), \(d_{\max} \) and \(d_{\min} \). Its augmentation discussed above inherits the obliviousness to \(D \) straightforwardly, while the obliviousness to \(d_{\max} \) and \(d_{\min} \) is inherited through the technique described in Section \(\ref{sec:coresets} \).

4 Effective Diameter Estimation

Consider a stream \(S \) of doubling dimension \(D \). Building on the improved coreset construction of Lemma 5, we now outline an algorithm that, at any time \(t \), is able to compute lower and upper estimates of the \(\alpha \)-effective diameter \(\Delta^\alpha_W \) of the current window \(W \). The algorithm requires the knowledge of a (possibly crude) lower bound \(\eta \in (0, 1) \) on the ratio between \(\Delta^\alpha_W \) and the diameter \(\Delta_W \) (i.e., \(\Delta^\alpha_W \geq \eta \Delta_W \)).

For a given \(\varepsilon > 0 \), let \(T \) be a weighted \(\delta \)-coreset for \(W \) computed with the properties stated in Lemma 5 with \(\delta = \varepsilon \eta/2 \), \(k = 1 \) and \(z = 0 \). Hence \(|T| = O((c'/\varepsilon \eta)^D) \), with \(c' = 2c \), where \(c \) is the same constant appearing in the statement of the lemma. Assume for now that for each \(r \in T \), the true weight \(w(r) = |\{ p \in W : \pi(p) = r \}| \) is known. (Later we will discuss the distortion introduced by using the approximate weights \(w(r) \).) An approximation to \(\Delta^\alpha_W \) can be computed on the coreset through the following quantity:

\[
\Delta^\alpha_{T,W} = \arg\min_d \left\{ \sum_{r_1, r_2 \in T : \dist(r_1, r_2) \leq d} w(r_1)w(r_2) \geq \alpha |W|^2 \right\}.
\]

Lemma 6. \((1 - \varepsilon) \Delta^\alpha_W \leq \Delta^\alpha_{T,W} \leq (1 + \varepsilon) \Delta^\alpha_W \).

Proof. Let \(\tilde{d} = \max\{\dist(p, \pi(p)) : p \in W\} \). Recall that the \(\delta \)-coreset \(T \) was computed with \(k = 1 \) and \(z = 0 \), hence, by the properties of \(T \) and the fact that \(\Delta^\alpha_W \geq \eta \Delta_W \), we have that

\[
\tilde{d} \leq \delta r_k(W) \leq (\varepsilon \eta/2) \Delta_W \leq (\varepsilon/2) \Delta^\alpha_W.
\]

By the triangle inequality, for any \(d \) and any pair \((p, q) \in W \times W \), we have that if \(\dist(\pi(p), \pi(q)) \leq d - 2\tilde{d} \) then \(\dist(p, q) \leq d \). Thus, when \(|\{ (p, q) \in W \times W : \dist(\pi(p), \pi(q)) \leq d - 2\tilde{d} \}| \geq \alpha |W|^2 \), we must also have \(|\{ (p, q) \in W \times W : \dist(p, q) \leq d \}| \geq \alpha |W|^2 \). Consequently,

\[
\Delta^\alpha_W = \arg\min_d \left\{ \left| \{ (p, q) \in W \times W : \dist(p, q) \leq d \} \right| \geq \alpha |W|^2 \right\}
\]

\[
\leq \arg\min_d \left\{ \left| \{ (p, q) \in W \times W : \dist(\pi(p), \pi(q)) \leq d - 2\tilde{d} \} \right| \geq \alpha |W|^2 \right\}
\]

\[
= \arg\min_d \left\{ \sum_{r_1, r_2 \in T : \dist(r_1, r_2) \leq d - 2\tilde{d}} w(r_1)w(r_2) \geq \alpha |W|^2 \right\} + 2\tilde{d}
\]

\[
= \Delta^\alpha_{T,W} + 2\tilde{d} \leq \Delta^\alpha_{T,W} + \varepsilon \Delta^\alpha_W,
\]

thus proving the first stated inequality. The proof of the other inequality is accomplished with a symmetrical argument.
Thus, when \(|\{(p, q) \in W \times W : \text{dist}(p, q) \leq d\}| \geq \alpha|W|^2|\) we must also have \(|\{(p, q) \in W \times W : \text{dist}(\pi(p), \pi(q)) \leq d + 2\hat{d}\}| \geq \alpha|W|^2|\). Consequently,

\[
\Delta_W^\alpha = \arg\min_d \left\{\left|\{(p, q) \in W \times W : \text{dist}(p, q) \leq d\}\right| \geq \alpha|W|^2\right\}
\]

\[
\geq \arg\min_d \left\{\left|\{(p, q) \in W \times W : \text{dist}(\pi(p), \pi(q)) \leq d + 2\hat{d}\}\right| \geq \alpha|W|^2\right\}
\]

\[
= \arg\min_d \left\{\sum_{r_1, r_2 \in T, \text{dist}(r_1, r_2) \leq d + 2\hat{d}} w(r_1)w(r_2) \geq \alpha|W|^2\right\}
\]

\[
= \arg\min_d \left\{\sum_{r_1, r_2 \in T, \text{dist}(r_1, r_2) \leq d} w(r_1)w(r_2) \geq \alpha|W|^2\right\} - 2\hat{d}
\]

\[
= \Delta_{T,W}^\alpha - 2\hat{d} \geq \Delta_{T,W}^\alpha - \epsilon\Delta_W^\alpha.
\]

\[
\square
\]

Recall now that for every coreset point \(r \in T\), only an approximation \(\tilde{w}(r)\) to the actual weight \(w(r)\) is available, with \(w(r)/(1 + \lambda) \leq \tilde{w}(r) \leq w(r)\). We define the approximate counterpart of \(\Delta_{T,W}^\alpha\) as

\[
\tilde{\Delta}_{T,W}^\alpha = \arg\min_d \sum_{r_1, r_2 \in T, \text{dist}(r_1, r_2) \leq d} \tilde{w}(r_1)\tilde{w}(r_2) \geq \alpha|W|^2.
\]

Our approximation algorithm returns \((1/(1 + \epsilon))\tilde{\Delta}_{T,W}^\alpha/(1 + \lambda)^2\) and \((1/(1 - \epsilon))\tilde{\Delta}_{T,W}^\alpha\) as lower and upper estimates, respectively, of the true effective diameter \(\Delta_W^\alpha\). The following theorem establishes the tightness of these estimates and the space and time performance of the algorithm.

Theorem 5. Consider a stream \(S\) of doubling dimension \(D\), and a value \(\alpha \in (0, 1)\). Suppose that a value \(\eta < 1\) is known such that, for every window \(W\), \(\Delta_W^\alpha \geq \eta\Delta_W\). For any \(\epsilon, \lambda > 0\), there exists a sliding window algorithm that, at any time \(t\) is able to compute a weighted coreset \(T\) of size \(O((c'/((\epsilon\eta))D)\) such that

\[
\frac{1}{1 + \epsilon} \tilde{\Delta}_{T,W}^\alpha/(1 + \lambda)^2 \leq \Delta_W^\alpha \leq \frac{1}{1 - \epsilon} \tilde{\Delta}_{T,W}^\alpha,
\]

where \(W\) is the current window and \(c' > 0\) is a suitable constant. The algorithm makes use of a working memory of size \(O\left((c'/((\epsilon\eta))D \log(d_{\max}/d_{\min})\log_1+\lambda(|W|)\right). Also, the algorithm requires time

\[
O\left((\log_{1+\beta}(d_{\max}/d_{\min}) \cdot ((c'/((\epsilon\eta)) + \log_{1+\lambda}(|W|)))\right)
\]

to update the data structures after each point arrival, where \(\beta = \delta/(3 + 4\delta)\). The lower and upper estimates to \(\Delta_W^\alpha\) can be computed from \(T\) in time \(O\left(|T|^2\right) = O\left((c'/((\epsilon\eta)))^{2D}\right)\).

Proof. We first prove that

\[
\tilde{\Delta}_{T,W}^\alpha/(1 + \lambda)^2 \leq \Delta_{T,W}^\alpha \leq \tilde{\Delta}_{T,W}^\alpha.
\]

Then, the stated approximation interval will immediately follow by Lemma[6]. Let us first prove the leftmost inequality. From Lemma[5] we have that for every \(r \in T\), \(\tilde{w}(r) \geq w(r)/(1 + \lambda)\). Hence, for any \(d\) such that

\[
\sum_{r_1, r_2 \in T, \text{dist}(r_1, r_2) \leq d} w(r_1)w(r_2) \geq \alpha|W|^2,
\]

we have that

\[
\sum_{r_1, r_2 \in T, \text{dist}(r_1, r_2) \leq d} \tilde{w}(r_1)\tilde{w}(r_2) \geq \frac{\alpha}{(1 + \lambda)^2}|W|^2,
\]

15
which implies \(\tilde{\Delta}_{W,T}^{\alpha/(1+\lambda)^2} \leq \Delta_{W,T}^{\alpha} \). The rightmost inequality is proved in a simmetrical fashion. Again, from Lemma 5 we have that for every \(r \in T \), \(w(r) \geq \bar{w}(r) \). Hence, for any \(d \) such that

\[
\sum_{r_1,r_2 \in T, \text{dist}(r_1,r_2) \leq d} \bar{w}(r_1) \bar{w}(r_2) \geq \alpha |W|^2,
\]

we have that

\[
\sum_{r_1,r_2 \in T, \text{dist}(r_1,r_2) \leq d} w(r_1) w(r_2) \geq \alpha |W|^2,
\]

which implies \(\Delta_{W,T}^{\alpha} \leq \tilde{\Delta}_{W,T}^{\alpha} \). The bounds on the working memory and on the update time follow directly from Theorem 4 and from the choice of \(k \). Finally, the estimates \(\Delta_{W,T}^{\alpha/(1+\lambda)^2} \) and \(\Delta_{W,T}^{\alpha} \) can be computed from \(T \) in time \(O(|T|^2) = O((c'/c\eta)^{2D}) \), using a simple strategy based on binary search.

The theorem implies that by setting \(\varepsilon \) and \(\lambda \) sufficiently small, we can get tight estimates for \(\Delta_{W,T}^{\alpha} \), for all windows for which the value of the \(\alpha \)-effective diameter behaves smoothly in an interval to the left of \(\alpha \). Finally, we remark that the algorithm is fully oblivious to \(D \), \(d_{\min} \), and \(d_{\max} \). Moreover, while the theoretical space bound exhibits a dependency on \((1/\eta)^D\), in the next section we provide experimental evidence of a much lesser impact of \(\eta \) for datasets where outliers represent true noise, proving that the working space requirements exhibit a milder dependence on the crudeness of the lower bound \(\eta \).

5 Experiments

We implemented the algorithms for \(k \)-center with \(z \) outliers and for the estimation of the effective diameter presented in Sections 3 and 4. For what concerns \(k \)-center with \(z \) outliers, we implemented the dimensionality-sensitive algorithm of Subsection 3.3, which offers a wider spectrum of performance-accuracy tradeoffs. We ran proof-of-concept experiments aimed at testing the algorithms’ behavior against relevant competitors, in terms of approximation, memory usage, and running time for processing each point arrival (update time) and for computing a solution for the current window, whenever needed (query time). All tests were executed using Java 13 on a Windows machine running on an AMD FX8320 processor with 12GB of RAM, with the running times measured using System.nanoTime, and feeding the points to the algorithms through the file input stream.

5.1 \(k \)-center with outliers

Along with our algorithm (dubbed OUR-SLIDING) we implemented \(\text{SAMP-CHARIKAR} \) (dubbed CHARIKAR), to be run on the entire window \(W \), consisting of a search for the minimum \(\rho \) such that \(\text{OUTLIERSCLUSTER}(W, k, \rho, 0) \), run with unit weights, ends with at most \(z \) uncovered points. We chose this sequential benchmark over the existing LP-based 2-approximation algorithms, since these latter algorithms do not seem to admit practical implementations. Since CHARIKAR itself is plagued by a superquadratic complexity, which makes it unfeasible for larger windows, we also devised a sampled version (dubbed SAMP-CHARIKAR) where the center selection in each call to OUTLIERSCLUSTER examines only a fixed number of random candidates, rather than all window points. We deemed unnecessary to perform a comparison of our algorithm with the one \(\text{LUSTER} \), since, as mentioned in the introduction, this latter algorithm needs to run an instance of OUTLIERSCLUSTER for each update operation, and would thus prove to be a poor competitor of our strategy, where the execution of this expensive sequential procedure is confined only to the query operation.

Also, to asses the importance of using a specialized algorithm to handle outliers, we compared the quality of our solution against the one returned by the algorithm of \(\text{LUSTER} \) for \(k \)-center without outliers (dubbed GON), where the radius is computed excluding the \(z \) largest distances from the centers.

The algorithms were tested on the following datasets, often used in previous works \(\text{Higgs} \): the Higgs dataset \(\text{Higgs} \) which contains 11 million 7-dimensional points representing high-energy particle features generated through Monte-Carlo simulations; and the Cover dataset \(\text{Cover} \) which contains 581012 55-dimensional points from geological observations of

3The source code and the datasets used in our experiments are provided on GitHub at github.com/PaoloPellizzoni/OutliersSlidingWindows
4http://archive.ics.uci.edu/ml/datasets/HIGGS
5https://archive.ics.uci.edu/ml/datasets/covertype
Table 1: Comparison between clustering radii and between working memory requirements

Dataset	Algorithm	Obj. ratio (Window size)	Memory (× 10^9 floats)				
		10^3	10^5	10^6	10^3	10^5	10^6
HIGGS	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	0.13 ± 0.01	0.27 ± 0.02	0.42 ± 0.02
(z=10)	CHARIKAR	1.02 ± 0.05	0.99 ± 0.04	–	0.07 ± 0.07	0.7 ± 0	7 ± 0
	SAMP-CHARIKAR	1.07 ± 0.05	1.43 ± 0.23	2.74 ± 0.7	0.07 ± 0.07	0.7 ± 0	7 ± 0
	GON	1.18 ± 0.12	1.17 ± 0.08	1.05 ± 0.03	0.07 ± 0.07	0.7 ± 0	7 ± 0
HIGGS+	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	0.26 ± 0.01	0.65 ± 0.03	1.25 ± 0.02
(z=50)	CHARIKAR	1.02 ± 0.04	–	–	0.07 ± 0.07	0.7 ± 0	7 ± 0
	SAMP-CHARIKAR	1.04 ± 0.06	1.14 ± 0.08	1.59 ± 0.15	0.07 ± 0.07	0.7 ± 0	7 ± 0
	GON	1.54 ± 0.19	1.5 ± 0.15	1.19 ± 0.06	0.07 ± 0.07	0.7 ± 0	7 ± 0
COVER+	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	0.72 ± 0.18	2.06 ± 0.13	
(z=10)	CHARIKAR	0.97 ± 0.17	1.02 ± 0	–	0.55 ± 0.5	5 ± 0	
	SAMP-CHARIKAR	0.96 ± 0.17	0.98 ± 0.18	–	0.55 ± 0.5	5 ± 0	
	GON	1.1 ± 0.17	0.94 ± 0.15	–	0.55 ± 0.5	5 ± 0	
COVER+	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	1.83 ± 0.22	5.38 ± 0.22	
(z=50)	CHARIKAR	0.98 ± 0.09	–	–	0.55 ± 0.5	5 ± 0	
	SAMP-CHARIKAR	0.99 ± 0.1	1.04 ± 0.2	–	0.55 ± 0.5	5 ± 0	
	GON	1.13 ± 0.11	1.02 ± 0.17	–	0.55 ± 0.5	5 ± 0	
HIGGS+	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	0.12 ± 0.01	0.26 ± 0.02	0.43 ± 0.02
(z=10)	CHARIKAR	0.98 ± 0.18	0.97 ± 0.04	–	0.07 ± 0.07	0.7 ± 0	7 ± 0
	SAMP-CHARIKAR	1.09 ± 0.17	1.61 ± 0.2	3.03 ± 0.51	0.07 ± 0.07	0.7 ± 0	7 ± 0
	GON	1.63 ± 0.29	1.3 ± 0.16	1.4 ± 0.02	0.07 ± 0.07	0.7 ± 0	7 ± 0
COVER+	OUR-SLIDING	1 ± 0	1 ± 0	1 ± 0	0.65 ± 0.17	1.93 ± 0.21	
(z=10)	CHARIKAR	0.99 ± 0.15	1.02 ± 0	–	0.55 ± 0.5	5 ± 0	
	SAMP-CHARIKAR	0.97 ± 0.14	0.96 ± 0.15	–	0.55 ± 0.5	5 ± 0	
	GON	3.07 ± 2.02	1.44 ± 0.22	–	0.55 ± 0.5	5 ± 0	

US forest biomes, and was employed as a stress test for our dimensionality-sensitive algorithm. We also generated inflated versions of the original datasets, dubbed Higgs+ and Cover+, by artificially injecting a new true outlier point after each original point with probability p, where the new point has norm 100 times the diameter of the original dataset (e.g. as if produced by a malfunctioning sensor). The probability p was chosen to yield z/2 true outliers per window, in expectation. We performed tests for k = 10, z = 10, 50, and window sizes |W| = N ∈ {10^3, 10^5, 10^9}, using Euclidean distance.

For OUR-SLIDING, we set δ = 2/3, β = 0.5 and λ = 0.5; moreover, we set d_{min} = 0.01 and d_{max} = 10^4, which are conservative lower and upper estimates of the clustering radii for all windows and all datasets. The implementations of CHARIKAR and SAMP-CHARIKAR execute, for a window W, a search for a minimum ρ such that OUTLIERS_CLUSTER(W, k, ρ, 0) with unit weights, ends with ≤ z uncovered points. For SAMP-CHARIKAR, OUTLIERS_CLUSTER has been modified so that each new center is selected among a set of random window points of expected size 1000.

Tables 1 and 2 detail the full results of the experiments on k-center clustering with z outliers. All quantities are provided as one-sigma confidence intervals, based on 10 windows sampled every 10^4 timesteps after the first N insertions. Starred results are based on a single sample due to the excessively high running time. Table 1 reports the average ratio between the clustering radius obtained by each tested algorithm and the one obtained by OUR-SLIDING, as well as the average number of floats maintained in memory by the algorithms. (All radii have been computed with respect to the entire window, excluding the z largest distances from the centers.) As shown in the table, OUR-SLIDING is always within a few percentage points from the radius of the solution of CHARIKAR (which did not finish in reasonable time for N = 10^9). On the other hand, the quality of the solution of SAMP-CHARIKAR degrades as the window size grows, since the fraction of center candidates decreases. Moreover, as expected, GON yields poorer performance especially in presence of true outliers, as these are mistakenly selected as centers instead of being disregarded. Hence, GON is not considered in the successive experiments. Figure 1 plots the memory usage (in floats) of the algorithms for Higgs+, confirming that the working memory required by OUR-SLIDING grows sublinearly with N, and it is much smaller than the one required by CHARIKAR and SAMP-CHARIKAR, which is linear in N.

Table 2 reports update times (in milliseconds) and query times (in seconds). For OUR-SLIDING, the update time is the time required to process any newly arrived point, while the query time includes the time to extract the coreset and compute the final solution on the coreset. For CHARIKAR and SAMP-CHARIKAR, the update time is null, while the query time is the time taken to extract the solution from the whole window. The running times reveal that, by virtue of the coreset-based approach, OUR-SLIDING features a query time much smaller than the one of CHARIKAR and
SAMP-CHARIKAR. Update times for OUR-SLIDING, although not negligible, are three orders of magnitude smaller than the query times. The experiments for $z = 50$ show that while the working memory requirements and running times increase with z, for reasonably large values of N, OUR-SLIDING still exhibits a much lower memory footprint than CHARIKAR and still returns solutions of comparable quality.

We also tested the sensitivity of our algorithm’s performance to the λ parameter, making it range in [0, 1]. The results for Higgs are shown in Figure 2 and in Tables 3 and 4. Specifically, Table 3 reports on the sensitivity of the clustering radius and of the memory requirements, while Table 4 reports on the sensitivity of the update and query times. The experiments were run on Higgs and Cover, with $k = z = 10$, setting, as before, $\delta = 2/3$, $\beta = 0.5$, $d_{\min} = 0.01$, $d_{\max} = 10^4$. For λ we used the values: 0, 0.1, 0.5, 1. As shown in Figure 2 setting $\lambda = 0$ (i.e., maintaining the full histograms) leads to an unbearable increase in memory usage, hence in execution times. With approximate histograms (i.e., $\lambda > 0$), the memory usage decreases as λ increases, with a significant drop already for $\lambda = 0.1$. While $\lambda = 0$ yields the solution with best approximation, in our tests we often obtained the same solution using $\lambda = 0.1$. Most importantly, the degradation of the clustering radius never exceeded 1%, even for $\lambda = 1$.

Overall, the experiments confirm that OUR-SLIDING is able to achieve precision comparable to the sequential algorithms at a fraction of their memory/time requirements.
true outlier (i.e., a random point whose norm is 100 times the diameter of the original dataset) is injected, on average, we expect that, in this controlled experiment, the \(\alpha \) we set \(\) the diameter of the non-outlier points in the window. For our algorithm we set \(\) the minimum value \(\) computed by \(\) and, to avoid storing all of them, only keeps track of how many distances lay in each interval \(\) for \(i \geq 0 \), by maintaining the appropriate counters. We set \(\rho = 0.01 \) so that the error due to this discretization is minimal. After all distances have been computed, the algorithm sweeps the counters and returns the minimum value \(d_{\text{min}} \cdot (1 + \rho)^i \) for which at least \(\alpha |W|^2 \) distances fall below that value. This same procedure, adapted to account for weights, is also used in EFF-SLIDING to compute the solution on the weighted coreset.

We experimented on the Higgs-eff dataset, which is another artificially inflated version of the Higgs dataset where a true outlier (i.e., a random point whose norm is 100 times the diameter of the original dataset) is injected, on average, every 1000 points. In the experiment, we set \(\alpha = 0.9 \). Since, for every tested window size \(N, \alpha N^2 \ll (N-N/1000)^2 \), we expect that, in this controlled experiment, the \(\alpha \)-effective diameter of each window of Higgs-eff to be close to the diameter of the non-outlier points in the window. For our algorithm we set \(\epsilon = 5/3 \) and \(\lambda = \beta = 0.5 \). Moreover, we set \(d_{\text{min}} = 0.01 \) and \(d_{\text{max}} = 10^4 \). Finally, we set \(\eta = 1/1000 \), which is a very conservative lower bound to the ratio between the effective diameter and the diameter of the dataset for any window \(W \).

The results of these experiments are reported in Tables 3 and 4. Table 3 reports the ratio between the effective diameter computed by EFF-SEQUENTIAL and the (conservative) upper estimate \(\Delta_{W}^2 \) computed by EFF-SLIDING, as well as the average number of floats maintained in memory by the algorithms. As shown in the table, the solution returned by EFF-SLIDING is almost indistinguishable from the one returned by EFF-SEQUENTIAL, for those window sizes for which EFF-SEQUENTIAL, whose complexity grows quadratically, could be executed within reasonable times. On the other hand, the memory usage of EFF-SLIDING grows very slowly with \(N \) and thus, for large enough window sizes, becomes lower than the one of EFF-SEQUENTIAL. Table 4 reports the update and query times for the two algorithms. Due to the reduced coreset size, the query times of EFF-SLIDING are orders of magnitude lower than those of EFF-SEQUENTIAL, and the updated times of EFF-SLIDING, although not negligible, are significantly smaller than query times.
Finally, we tested on tailor-made artificial datasets the impact of the parameter η, which is a (possibly crude) lower bound on the ratio between the effective diameter and the diameter. In fact, the theoretical bounds on the coreset size embody a factor proportional to $(1/\eta)^2$ which could lead to a severe deterioration of the performance indicators for low (i.e., conservative) values of η. In reality, for datasets where the discrepancy between diameter and effective diameter is caused by few distant outliers (noisy points), since the balls centered on coreset points have radius $O(\varepsilon \Delta_W) = O(\Delta_W)$ and since most of the points will be contained in a ball of radius $O(\Delta_W)$, with only a few outliers at distance $O(\Delta_W)$, the actual number of points maintained in the coreset should not really depend on η. To test this intuition we created artificial datasets, by generating random points in a ball of unit radius with a few outliers (one every 1000 points, on average) on the surface of a ball of radius R, for values of R in $\{10, 100, 1000\}$. We set $\alpha = 0.9$ as before, and ran our algorithm with $\varepsilon = 10/3$ and $\lambda = 0.5$. Moreover, we set $\eta = 1/(2R)$ as it lower bounds the ratio between the effective diameter and the diameter. We report the results for window size $N = 10^5$ since a similar pattern emerges for other values of N. Indeed, as Table 7 shows, the memory usage is in practice almost constant across all values of η.

6 Conclusions

In this paper, we have presented coreset-based streaming algorithms for the k-center problem with z outliers and for the estimation of the α-effective diameter under the sliding window setting. Our algorithms require working memory considerably smaller than the window size, and, with respect to the state-of-the-art sequential algorithms executed on the entire window, they are up to orders of magnitude faster, while achieving comparable accuracy. The effectiveness of our approach has been confirmed by a set of proof-of-concept experiments on both real-world and synthetic datasets.

Based on the theoretical analysis conducted in the paper, the space and time required by our algorithms to attain high accuracy seem to grow steeply (in fact, exponentially) with the doubling dimension of the stream. An interesting, yet
challenging, research avenue is to investigate whether this steep dependence can be ameliorated by means of alternative techniques (e.g., the use of randomization).

References

[1] M. Bateni, H. Esfandiar, M. Fischer, and V.S. Mirrokni. Extreme k-center clustering. In Proc. 35th AAAI, pages 3941–3949, 2021.
[2] M. Borassi, A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Sliding window algorithms for k-clustering problems. In Proc. 34th NeurIPS, 2020.
[3] V. Braverman. Sliding window algorithms. In M.Y. Cao, editor, Encyclopedia of Algorithms, pages 2006–2011. Springer, 2016.
[4] V. Braverman, H. Lang, K. Levin, and M. Monemizadeh. Clustering problems on sliding windows. In Proc. SODA, pages 1374–1390, 2016.
[5] V. Braverman and R. Ostrovsky. Smooth histograms for sliding windows. In 48th IEEE FOCS, pages 283–293, 2007.
[6] M. Ceccarello, A. Pietracaprina, and G. Pucci. Solving k-center clustering (with outliers) in mapreduce and streaming, almost as accurately as sequentially. PVLDB, 12(7):766–778, 2019.
[7] D. Chakraborty, P. Goyal, and R. Krishnaswamy. The non-uniform k-center problem. ACM Trans. on Algorithms, 16(4):46:1–46:19, 2020.
[8] T-H. H. Chan, A. Guerqin, and M. Sozio. Fully Dynamic k-Center Clustering. In Proc. TheWebConf 2018, pages 579–587, 2018.
[9] M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan. Algorithms for Facility Location Problems with Outliers. In Proc. 12th ACM-SIAM SODA, pages 642–651, 2001.
[10] V. Cohen-Addad, C. Schwegelshohn, and C. Sohler. Diameter and k-Center in Sliding Windows. In Proc. 43th ICALP, pages 19:1–19:12, 2016.
[11] M. Datar and R. Motwani. The sliding-window computation model and results. In Data Stream Management - Processing High-Speed Data Streams, pages 149–165. 2016.
[12] M. de Berg, M. Monemizadeh, and Y. Zhong. k-center clustering with outliers in the sliding-window model. In Proc. 29th ESA, pages 13:1–13:13, 2021.
[13] H. Ding, H. Yu, and Z. Wang. Greedy strategy works for k-center clustering with outliers and coreset construction. In Proc. ESA, pages 40:1–40:16, 2019.
[14] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293 – 306, 1985.
[15] L-A. Gottlieb, A. Kontorovich, and R. Krauthgamer. Efficient classification for metric data. IEEE Trans. Information Theory, 60(9):5750–5759, 2014.
[16] D.G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh. A lottery model for center-type problems with outliers. ACM Trans. on Algorithms, 15(3):36:1–36:25, 2019.
[17] C. Hennig, M. Meila, F. Murtagh, and R. Rocci. Handbook of cluster analysis. CRC Press, 2015.
[18] M.R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on Data Streams. In Proc. DIMACS Workshop on External Memory Algorithms, pages 107–118, 1998.
[19] D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2):180–184, 1985.
[20] G. Malkomes, M.J. Kusner, W. Chen, K.Q. Weinberger, and B. Moseley. Fast Distributed k-Center Clustering with Outliers on Massive Data. In Proc. NIPS, pages 1063–1071, 2015.
[21] R. McCutchen and S. Khuller. Streaming Algorithms for k-Center Clustering with Outliers and with Anonymity, pages 165–178, 2008.
[22] C.R. Palmer, P.B. Gibbons, and C. Faloutsos. ANF: a fast and scalable tool for data mining in massive graphs. In Proc. 8th ACM KDD, pages 81–90, 2002.
[23] P. Pellizzoni, A. Pietracaprina, and G. Pucci. Dimensionality-adaptive k-center in sliding windows. In Proc. 7th IEEE DSSA, pages 197–206, 2020.
[24] L.V. Snyder. Introduction to facility location. In Wiley Encyclopedia of Operations Research and Management Science. Wiley, 2011.