Outcome Reporting in Cardiac Surgery Trials: Systematic Review and Critical Appraisal

Michael Goldfarb, MD; Laura Drudi, MD; Mohammad Almohammadi, MD, MPH; Yves Langlois, MD; Nicolas Noisieux, MD; Louis Perrault, MD; Nicolo Piazza, MD; Jonathan Afflalo, MD, MSc

Background—There is currently no accepted standard for reporting outcomes following cardiac surgery. The objective of this paper was to systematically review the literature to evaluate the current use and definition of perioperative outcomes reported in cardiac surgery trials.

Methods and Results—We reviewed 5 prominent medical and surgical journals on Medline from January 1, 2010, to June 30, 2014, for randomized controlled trials involving coronary artery bypass grafting and/or valve surgery. We identified 34 trials meeting inclusion criteria. Sample sizes ranged from 57 to 4752 participants (median 351). Composite end points were used as a primary outcome in 56% (n=19) of the randomized controlled trials and as a secondary outcome in 12% (n=4). There were 14 different composite end points. Mortality at any time (all-cause and/or cardiovascular) was reported as an individual end point or as part of a combined end point in 82% (n=28), myocardial infarction was reported in 68% (n=23), and bleeding was reported in 24% (n=8). Patient-centered outcomes, such as quality of life and functional classification, were reported in 29% (n=10). Definition of clinical events such as myocardial infarction, stroke, renal failure, and bleeding varied considerably among trials, particularly for postoperative myocardial infarction and bleeding, for which 8 different definitions were used for each.

Conclusions—Outcome reporting in the cardiac surgery literature is heterogeneous, and efforts should be made to standardize the outcomes reported and the definitions used to ascertain them. The development of standardizing outcome reporting is an essential step toward strengthening the process of evidence-based care in cardiac surgery. (J Am Heart Assoc. 2015;4:e002204 doi: 10.1161/JAHA.115.002204)

Key Words: cardiac surgery • outcomes • systematic review

Outcome measures vary between trials, particularly in the field of cardiac surgery, for which there is currently no widely accepted standard for reporting postoperative adverse events. The lack of uniformity has hindered the ability to compare and synthesize findings across different trials. Efforts to perform meta-analyses in cardiac surgery have often been impeded by the heterogeneity of pooled outcomes. Furthermore, generic composite outcomes traditionally used in cardiology such as major adverse cardiac events (MACE; death, myocardial infarction [MI] with or without revascularization) and major adverse cardiovascular and cerebrovascular events, or MACCE (death, MI, stroke), are neither designed nor adapted for cardiac surgery because they do not reflect other important postsurgical complications. The Society of Thoracic Surgeons (STS) has provided definitions of postsurgical complications and a surgery-specific composite outcome consisting of in-hospital death, stroke, prolonged ventilation, acute kidney injury, deep sternal wound infection, or reoperation; however, the extent to which this composite outcome has been adopted for use in clinical trials is unknown. The appropriateness of combining adverse events with differing clinical impacts (e.g., stroke and wound infection) has also been questioned.

There is a pressing need to improve and homogenize outcome reporting in cardiac surgery, similar to what was successfully achieved in other fields such as the RIFLE classification, the Bleeding Academic Research Consortium and the Transcatheter Valve Academic Research Consortium (VARC). The objective of this paper was to review the
selection and definition of individual and composite outcomes reported in the recent body of randomized controlled trials in cardiac surgery. With this knowledge, stakeholders would be better equipped to develop recommendations for standardized outcome reporting adapted to cardiac surgery.

**Methods**

**Search Strategy**

The PubMed search string “Cardiac Surgical Procedures” (MeSH) AND “Randomized Controlled Trial” (Publication Type) was used to identify cardiac surgery randomized controlled trials published between January 1, 2010, and June 30, 2014. Our search was limited to 5 high-impact journals in general medicine, cardiovascular medicine, and cardiothoracic surgery: New England Journal of Medicine, Circulation, Journal of the American College of Cardiology, Annals of Thoracic Surgery, and The Journal of Thoracic and Cardiovascular Surgery. Reference lists from retrieved manuscripts were hand searched to supplement the PubMed search.

**Selection Criteria**

Studies were included if the study design was randomized and the study population was undergoing coronary artery bypass grafting and/or heart valve repair or replacement surgery. Studies were excluded if the primary outcome was not a clinical event (eg, the primary outcome was a biomarker) or if the study population was pediatric or focused on congenital heart disease. Case reports, case series, editorials, reviews, and post hoc analyses of randomized controlled trial data were also excluded.

**Data Extraction**

For each article meeting inclusion criteria, the following variables were extracted: first author, journal, year of publication, trial name and registration, sample size, study population, intervention, control, primary outcomes, secondary outcomes, and duration of follow-up. In addition, the operational definitions used to ascertain MI, stroke, prolonged ventilation, acute renal injury, and bleeding were extracted. Patient-centered outcomes included postoperative pain, quality of life, mood, neurocognitive function, and New York Heart Association functional class. Health care resource utilization included hospital and intensive care unit length of stay and cost analyses.

**Analysis**

Studies were reviewed, and data were extracted in duplicate by 2 independent observers (M.G., L.D.); disagreements were resolved by consensus. The primary and secondary outcomes were represented in tabular format and summarized according to the number and proportion of randomized controlled trials reporting each outcome measure. The Stata 13 software package (StataCorp) was used to organize the extracted data and to prepare summary statistics.

**Results**

Of 190 potentially relevant trials, 34 met the selection criteria and were included in our systematic review (Figure). Included trials were evenly distributed among the journals searched (Table 1). Sample sizes ranged from 57 to 4752 participants (median 351; quartiles 1 to 3: 198 to 699). Overall, 26 trials involved coronary artery bypass grafting only, 5 involved valve repair or replacement only, and 3 involved a combination. The maximum duration of follow-up for outcome surveillance ranged from 5 to 14 days (median 7.5 days) in 6 trials, from 30 days to 1 year (median 365 days) in 19 trials, and was >1 year (median 1825 days) in 9 trials.

Mortality (all-cause and/or cardiovascular) was reported as an individual end point or as part of a composite end point in 28 trials (82%), MI was reported in 23 trials (68%), need for repeat revascularization or reoperation was reported in 22 trials (65%), stroke or transient ischemic attack was reported in 18 trials (53%), acute kidney injury was reported in 11 trials (32%), and bleeding complications were reported in 8 trials (24%) (Table 2). Patient-centered outcomes were reported in 10 trials (29%). Health care resource utilization was reported in 12 trials (35%).

Composite end points were used as the primary outcome measure in 19 trials and as a secondary outcome measure in 4 trials. Overall, 14 different composite end points were used, of which 6 were variants of the MACCE composite, 3 were variants of the MACE composite, and none were based on the STS composite. Eight of 9 trials using the MACE or MACCE composite incorporated repeated revascularization procedures.

The operational definitions of individual end points were equally variable. MI was defined based on World Health Organization criteria in 2 studies, European Society of Cardiology and/or American Heart Association criteria in 4 studies, VARC criteria in 1 study, creatinine kinase elevation greater than the upper limit of normal in 2 studies, creatinine kinase or troponin elevation >3 times the upper limit of normal in 1 study, creatinine kinase or troponin elevation >5 times the upper limit of normal in 4 studies, and creatinine kinase or troponin rise to various levels depending on time after surgery in 3 studies. No diagnostic criteria for MI were provided in 5 trials.

Stroke was defined based on focal neurological deficit with imaging findings in 3 trials and on acute focal neurological deficit lasting ≥24 hours with or without confirmatory imaging in 11 trials; no diagnostic criteria were provided in 6 trials.
Acute kidney injury was defined based on need for renal replacement therapy in 5 trials, need for renal replacement therapy or prespecified elevation in creatinine (each with different thresholds, ranging from 221 mmol/L [2.5 mg/dL] to 309 mmol/L [3.5 mg/dL]) in 3 trials, and prespecified elevation of twice the preoperative creatinine level with or without oliguria in 2 trials; no diagnostic criteria were provided in 2 trials. Prolonged ventilation or intubation was defined as >24 hours in 2 trials and >48 hours in 1 trial. The definition of postoperative bleeding differed in each of the 8 trials in which it was reported.

Discussion

To our knowledge, this review of adult cardiac surgery trials is the first to examine the current state of outcome reporting. We found that mortality and MI were most frequently reported as individual or composite end points and, conversely, that the STS composite was not used as an outcome measure. One of the most striking findings was the heterogeneity of composite end point reporting. This was apparent at 3 different levels. First, the decision to use or not use a composite as the primary outcome measure was evenly split between trials. Second, the choice of events included in composites was highly variable. Third, the operational definitions of events were ill defined, particularly the thresholds used to dichotomize continuous metrics such as troponin rise for MI or ventilation duration. MACE and MACCE also had varied definitions in the trials, similar to prior reports in general cardiology.

Heterogeneity in cardiac surgery outcome reporting limits the ability to synthesize and meta-analyze results across trials to generate guidelines with the highest level of evidence. This is relevant, given the shift toward evidence-based practice derived from randomized controlled trials in cardiac surgery and other surgical subspecialties. In addition, nonstandardized outcome measures limit the ability to directly compare the effectiveness of various surgical techniques, perioperative interventions, and providers. As new
Table 1. Summary of Trials Meeting Inclusion Criteria

| First Author          | Trial Name or Identifier | Journal and Year | N  | Intervention | Control | Primary Outcomes                                                                 |
|-----------------------|--------------------------|------------------|----|--------------|---------|----------------------------------------------------------------------------------|
| Adams et al 2014      | NCT01240902              | NEJM 2014        | 795| TAVR         | SAVR    | Mortality (1 year)                                                               |
| Morice et al 2013     | SYNTAX                   | Circ 2014        | 1800| CABG         | PCI     | Composite: mortality, MI, CVA, revasc. (5 years)                                  |
| Chocron et al 2013    | MOTIV CABG               | ATS 2013         | 361| Escitalopram after CABG | Placebo after CABG | Composite: mortality, MI, low CO syndrome, ventilation >24 hours, reintubation, brain injury, delirium, AKI, pneumonia, sepsis, DSWI, heart failure, hospitalization, reoperation (1 year) |
| Diegeler et al 2013   | GOPCABE                  | NEJM 2013        | 2539| Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA, AKI requiring dialysis, revasc. (30 days, 1 year) |
| Kamalesh et al 2013   | VA CARDS                 | JACC 2013        | 198| PCI          | CABG    | Composite: mortality, MI (2 years)                                               |
| Karkouti et al 2013   | NCT00914589              | JTCS 2013        | 409| Recombinant factor XIII after cardiac surgery | Placebo after cardiac surgery | Blood transfusions (7 days)                                                      |
| Lamy et al 2013       | CORONARY                 | NEJM 2013        | 4752| Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA, AKI requiring dialysis (30 days); Composite with revasc. (5 years) |
| Sezai et al 2013      | UMIN000004537            | ATS 2013         | 367| Carperitide after CABG | Placebo after CABG | Composite: mortality, MI, CVA, revasc., heart failure, hospitalization (1 year) |
| Shi et al 2013        | NCT01596738              | ATS 2013         | 120| Tranexamic acid after CABG | Placebo after CABG | Blood transfusions (perioperative)                                               |
| Bokesch et al 2012    | CONSERV-2                | JTCS 2012        | 218| Tranexamic acid after CABG | Ecallantide after CABG | Composite: MI, blood transfusions, chest tube drainage, creatinine change (30 days) |
| Deja et al 2012       | —                        | JTCS 2012        | 390| Aspirin before CABG | Placebo before CABG | Blood loss and chest tube drainage (12 hours)                                   |
| Desai et al 2012      | —                        | JTCS 2012        | 189| Strict glucose control after CABG | Liberal glucose control after CABG | Composite: mortality, AKI, DSWI, ventilation >24 hours, pneumonia, length of stay, AF, time to target glucose range (30 days) |
| Farkouh et al 2012    | FREEDOM                  | NEJM 2012        | 1900| PCI          | CABG    | Composite: mortality, MI, CVA (30 days, 1 year)                                  |
| Houllind et al 2012   | DOORS                    | Circ 2012        | 900| Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA (30 days)                                          |
| Kang et al 2012       | EASE                     | NEJM 2012        | 57 | Early surgery for endocarditis (<48 hours) | Usual care for endocarditis | Composite: mortality, clinical embolic event (6 weeks)                           |
| Lemma et al 2012      | On-Off                   | JTCS 2012        | 411| Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA, AKI, ARDS, reoperation for bleeding (30 days)      |
| Mannacio et al 2012   | —                        | ATS 2012         | 230| IABP for 12 hours before CABG | IABP for 2 hours before CABG | Mortality (in hospital)                                                          |
| Sezai et al 2012      | UMIN000002489            | JTCS 2012        | 105| Landiolol IV with or without oral bisoprolol after CABG | No beta blocker after CABG | AF (1 week)                                                                      |
| Torina et al 2012     | —                        | JTCS 2012        | 60 | Modified ultrafiltration after CABG | Usual care after CABG | Blood transfusions, chest tube drainage, hospital and critical care length of stay (48 hours) |

Continued
competing techniques and technologies emerge, it is increasingly important that surgical outcome reporting be comparable among trials. Due to the lack of consensus outcome measures in cardiac surgery, investigators often default to using mortality as the end point of choice, despite being grossly underpowered to do so (as was apparent in the many of the trials reviewed and in an even greater proportion of observational studies). Similarly, with the exception of the STS models, most risk scores use mortality as the sole end point, neglecting the importance of other complications and patient-centered outcomes.

The use of composite end points in cardiac surgery may be beneficial for several reasons. Composite end points avoid the arbitrary choice of a single outcome when several may be of clinical importance for the cardiac surgery patient and allow for estimation of the net clinical benefit of the intervention.

**Table 1. Continued**

| First Author | Trial Name or Identifier | Journal and Year | N | Intervention | Control | Primary Outcomes |
|--------------|--------------------------|------------------|---|--------------|---------|------------------|
| Bonow et al 2011 | STITCH | NEJM 2011 | 601 | CABG | Medical therapy | Mortality (1 year) |
| Feldman et al 2011 | EVEREST II | NEJM 2011 | 279 | Percutaneous MV repair | Surgical MV repair or replacement | Composite: mortality, MI, CVA, AKI, DSWI, ventilation >48 hours, reoperation GI complication, AF, sepsis, transfusion ≥2 units (30 days) |
| Kourliouros et al 2011 | ISRCTN41309956 | JTCS 2011 | 104 | Atorvastatin high dose after CABG or SAVR | Atorvastatin low-dose after CABG or SAVR | AF (in hospital) |
| Mehta et al 2011 | PREVENT-IV | Circ 2011 | 1034 | Edifoligide before treatment to venous grafts | Placebo before treatment to venous grafts | Composite: mortality, MI, revasc. (5 years) Venous graft failure (1 year) |
| Sezai et al 2011 | NU-HIT for CRF | JACC 2011 | 303 | Carperitide during CABG | Placebo during CABG | AKI (1 year) |
| Smith et al 2011 | PARTNER | NEJM 2011 | 699 | TAVR | SAVR | Mortality (1 year) |
| Wimmer-Greinecker et al 2011 | NCT00985634 | ATS 2011 | 110 | CABG with thermosensitive polymer | CABG with conventional vessel loops | Composite: mortality, MI, graft occlusion, low CO syndrome (30 days) |
| Grossi et al 2010 | RESTOR-MV | JACC 2010 | 165 | CABG with ventricular reshaping | CABG with or without MV repair | Composite: mortality, MI, CVA, reoperation, device failure (2 years) |
| Hueb et al 2010 | MASSII | Circ 2010 | 611 | CABG or PCI | Medical therapy | Composite: mortality, MI, revasc. (10 years); individual end points |
| Hueb et al 2010 | MASSIII | Circ 2010 | 308 | Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA, revasc. (5 years) |
| Kapur et al 2010 | CARDia | JACC 2010 | 510 | PCI | CABG | Composite: mortality, MI, CVA (1 year) |
| Moller et al 2010 | Best Bypass Surgery | Circ 2010 | 341 | Off-pump CABG | On-pump CABG | Composite: mortality, MI, CVA, cardiac arrest, low CO syndrome, revasc. (30 days) |
| Omran et al 2010 | — | JTCS 2010 | 220 | CABG with ventral cardiac denervation | CABG | AF (in hospital) |
| Veeger et al 2010 | CABADAS | ATS 2010 | 726 | Aspirin/dipyridamole or warfarin after CABG | Aspirin after CABG | Composite: mortality CV, MI, revasc. (14 years) |
| Welteert et al 2010 | — | JTCS 2010 | 320 | Erythropoietin before CABG | Usual care | Blood transfusions (in hospital) |

AF indicates atrial fibrillation; AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; ATS, Annals of Thoracic Surgery; CABG, coronary artery bypass grafting; Circ, Circulation; CO, cardiac output; CVA, cerebrovascular accident; DSWI, deep sternal wound infection; GI, gastrointestinal; IABP, intra-aortic balloon pump; IV, intravenous; JACC, Journal of American College of Cardiology; JTCS, Journal of Thoracic and Cardiovascular Surgery; MI, myocardial infarction; MR, mitral regurgitation; MV, mitral valve; NEJM, New England Journal of Medicine; PCI, percutaneous coronary intervention; revasc., repeat revascularization; SAVR, surgical aortic valve replacement; TAVR, transcatheter aortic valve replacement.
Table 2. Graphical Representation of Primary and Secondary Outcomes in Included Trials With Overview of Commonly Used Combined Endpoints in Cardiovascular Research

| Author/Year        | MI | Mortality | Reop/Revasc | CVA/TIA | AKI | Bleed/Transfusion | Other | Primary Endpoint Follow-up Duration Resource Utilization* |
|--------------------|----|-----------|-------------|--------|-----|-------------------|-------|----------------------------------------------------------|
| Adams et al 2014   | ○  | ●         | ○           | ○      |     |                   |       | Prosthesis gradients 1 year                                |
| Morice et al 2013  | ●  | ●         | ●           | ●      |     |                   |       | 1 year                                                   |
| Chocron et al 2013 | ●  | ●         | ●           | ●      | ●   |                   |       | QOL, depression 1 year                                    |
| Diegeler et al 2013| ●  | ●         | ○           | ●      | ●   |                   |       | 1 year Hosp ICU LOS                                       |
| Kamalesh et al 2013| ●  | ○         | ○           | ○      |     |                   |       | 2 years                                                  |
| Karkouti et al 2013| ●  | ●         | ●           | ●      |     |                   |       | QOL, Neurocognitive 1 year                                |
| Lamy et al 2013    | ○  | ●         | ●           | ●      |     |                   |       | Heart failure 2 year Hosp LOS                             |
| Chocron et al 2013 | ●  | ●         | ●           | ●      |     |                   |       | 1 year                                                    |
| Shi et al 2013     | ●  | ●         | ●           | ●      |     |                   |       | Hospitalization Hosp ICU LOS                             |
| Bokesch et al 2012 | ○  | ●         | ●           | ●      | ○   |                   |       | Neuro dysfunction 12 hours                                |
| Deja et al 2012    | ○  | ●         | ○           | ○      |     |                   |       | Chest tube drainage 12 hours                              |
| Desai et al 2012   | ●  | ●         | ○           | ●      |     |                   |       | Atrial fibrillation, DSW 30 days ICU LOS                  |
| Farkouh et al 2012 | ●  | ●         | ○           | ●      |     |                   |       | 30 days                                                  |
| Houlind et al 2012 | ●  | ●         | ●           | ○      |     |                   |       | QOL 30 days Hosp ICU LOS                                  |
| Kang et al 2012    | ●  | ●         | ●           | ●      |     |                   |       | Embolism,repeat hosp 6 months                             |
| Lemma et al 2012   | ●  | ●         | ●           | ●      |     |                   |       | ARDS 30 days Hosp ICU LOS                                 |
| Mannacio et al 2012| ●  | ○         | ○           | ○      |     |                   |       | Hospitalization Hosp ICU LOS                             |
| Sezai et al 2012   | ○  | ●         | ○           | ●      | ○   |                   |       | Atrial fibrillation 1 year                                |
| Torina et al 2012  | ●  | ●         | ●           | ●      |     |                   |       | 48 hours Hosp ICU LOS                                     |
| Bonow et al 2011   | ●  | ●         | ●           | ●      |     |                   |       | Repeat hosp 1 year                                         |
| Feldman et al 2011 | ●  | ●         | ●           | ●      |     |                   |       | GQL, NYHA class 1 year                                    |
| Kourliouros et al 2011| ●  | ●         | ●           | ●      |     |                   |       | Atrial fibrillation Hospitalization                        |
| Mehta et al 2011   | ●  | ●         | ●           | ●      |     |                   |       | Graft closure 5 years                                      |
| Sezai et al 2013   | ○  | ●         | ○           | ●      | ○   |                   |       | Biomarkers 1 year                                          |
| Smith et al 2011   | ○  | ●         | ○           | ○      | ○   |                   |       | NYHA class 1 year Hosp ICU LOS                             |
| Gross et al 2010   | ●  | ●         | ●           | ●      |     |                   |       | Graft occlusion 30 days                                   |
| Huib et al 2010    | ●  | ●         | ●           | ○      |     |                   |       | NYHA class 2 years                                         |
| Huib et al 2010    | ●  | ●         | ●           | ●      |     |                   |       | Angina 10 years                                            |
| Kapur et al 2010   | ●  | ●         | ●           | ●      |     |                   |       | NYHA class 1 years                                         |
| Moller et al 2010  | ●  | ●         | ●           | ●      |     |                   |       | 30 days Hosp ICU LOS                                       |
| Omran et al 2010   | ●  | ●         | ●           | ●      |     |                   |       | Atrial fibrillation 30 days Hosp ICU LOS                  |
| Veeger et al 2010  | ●  | ●         | ●           | ●      |     |                   |       | 14 years Hosp ICU LOS                                     |
| Weltert et al 2010 | ●  | ●         | ●           | ●      |     |                   |       | Hospitalization Hosp ICU LOS                              |

*Resource Utilization includes ICU length of stay, hospital length of stay, testing and costs.

- Solid circle indicates primary outcomes. ○ Open circle indicates secondary outcomes. Composite outcomes are categorized based on their individual components. VARC-2 also incorporates vascular complications, arrhythmias and other outcome measures. STS composite morbidity score also incorporates prolonged ventilation greater than 24 hours and deep sternal wound infection. MACE and MACCE have variable definitions (see Kip et al JACC 2008). AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; CVA, cerebrovascular accident; DSW, deep sternal wound infection; Hosp, hospital; LOS, length of stay; ICU, intensive care unit; MACCE, major adverse cardiovascular and cerebrovascular events; MACE, major adverse cardiovascular events; MI, myocardial infarction; NYHA, New York Heart Association; Reop, reoperation; Revasc, revascularization; TIA, transient ischemic attack; QOL, quality of life; STS, Society of Thoracic Surgeons; VARC-2, Valve Academic Research Consortium.

DOI: 10.1161/JAHA.115.002204

Journal of the American Heart Association
when risks and benefits are both considered. Composite end points encompass postoperative complications, which are important determinants of functional recovery and quality of life. Patient recruitment in cardiac surgery trials has historically been difficult and continues to be challenging despite the emergence of collaborative research networks.

Composite end points yield an increased number of events and a smaller required sample size, resulting in improved statistical efficiency and precision. This is especially true if event rates are low and efforts to analyze individual outcomes or to perform meta-analyses lead to false-negative and false-positive conclusions. Presenting a clear sample size calculation matched to the primary outcome of interest, as was done in most reviewed trials, is critical in this regard.

Choosing the proper events to include in a cardiac surgery-specific composite end point is of vital importance. The breadth of adverse events encountered after cardiac surgery is not captured by generic composite outcome measures traditionally used in cardiology, such as MACE or MACCE. Acute kidney injury and deep sternal wound infections, for example, are postoperative events that are associated with considerable morbidity. MI, the usual driver of MACE-type end points in cardiology trials, has different connotations and prognostic impact in the postoperative setting and concerns pertaining to measurement errors if ascertaining MI soon after surgery. The use of composites may be justified only if each component is of similar importance to the patient, whereas it may be questionable if components are empirically different in impact (eg, deep sternal wound infection and stroke). Assigning weights to the components may circumvent this caveat and help increase the validity of conclusions.

Quality of life, physical performance, cognitive function, and dependency for activities of daily living have been broadly categorized as patient-centered outcomes because they reflect domains that are crucial to the patient but are extrinsic to traditional domains of mortality and pathophysiology that are emphasized by physicians and researchers. There is increasing awareness in the cardiovascular community that these data should be collected and reported, particularly when studying elderly populations in which the priority of care may have shifted from longevity to quality of life. Postoperative length of stay, stroke, and readmission have been identified as important indicators of quality of care, strengthening the rationale for also reporting these end points.

For a criterion to be a useful part of a composite end point, it should be clinically important and reliably ascertainable. In the cardiology literature, consensus efforts have been made to standardize adjudication of MI, renal injury, and bleeding. These consensus documents are not necessarily portable to the specific context of cardiac surgery, for which the mechanism, magnitude, and clinical implication of certain events are fundamentally different. Consider the difference between medical versus surgical bleeding and ambulatory versus perioperative troponin rise. The STS composite does not include perioperative MI, which is in part due to its low ascertainment reliability. Recommended definitions of perioperative MI vary considerably, from a highly restrictive approach requiring evidence of an acute coronary embolus to a multifaceted approach incorporating clinical and biomarker criteria. Other potentially important cardiac surgery outcomes, such as prolonged postoperative mechanical ventilation, have not been uniformly defined or adopted for use.

VARC is a context-specific consensus document focused on transcatheter aortic valve replacement; it provides standardized end points with clearly defined criteria for reporting. A meta-analysis showed that the VARC end points were frequently being implemented to report clinical outcomes. Although there has been an initial attempt to develop a similar document focused on pediatric cardiac surgery, there has yet to be an attempt in adult cardiac surgery.

Limitations

Because our search was limited to 5 scientific journals (for feasibility purposes), we did not capture trials published in other journals. The selected journals represent the highest ranked impact factors in their respective subspecialties of cardiothoracic surgery, cardiology, and general medicine, and we expect that the heterogeneity of outcome reporting could have been more pronounced if we had included smaller lower ranked studies. Conversely, the selected trials encompassed a wide variety of interventions and comparators (surgery versus surgery, surgery versus transcatheter procedure, surgery plus adjunctive medical therapy versus surgery alone), such that the heterogeneity of outcome reporting could have been less pronounced if we restricted our selection criteria to one of these types of trials. We excluded trials that did not report a clinically driven primary outcome, and this also led to underrepresentation of smaller studies that were underpowered to assess clinical events. We chose to focus on clinical events because these will likely form the basis of future efforts to develop standardized guidelines for reporting outcomes.

Conclusion

Outcome reporting in the cardiac surgery literature is heterogeneous, and efforts should be made to standardize the outcomes reported and the definitions used to ascertain them. Measures of functional status and resource utilization are currently underreported and should be integrated in standardized reporting schema. The development of standardizing outcome reporting is an essential step toward
strengthening the process of evidence-based care in cardiac surgery.

Sources of Funding
Dr Afifalo is supported by a Research Scholar award from the FRQ-S.

Disclosures
None.

References
1. Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP; Society of Thoracic Surgeons Quality Measurement Task F. The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88:S2–S22.

2. Freemantle N, Calvert M, Wood J, Eastaugh J, Griffiths P. CONSORT statement. BMJ. 2004;328:46–49.

3. Lopes JA, Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J. 2013;6:8–14.

4. Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, Kaul S, Wiviott SD, Menon V, Kaduthod K, van Mieghem NM, Steg PG, White H. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the bleeding academic research consortium. Circulation. 2011;123:2736–2747.

5. Kappetein AP, Head SJ, Genereux P, Piazza N, van Mieghem NM, Blackstone EH, Banning AP, de Leval MR, Filardo G, Ferrares VA, Haan CK, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP; Society of Thoracic Surgeons Quality Measurement Task F. The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88:S2–S22.

6. Citefactor. Impact factor list 2014. Available at: http://www.citefactor.org/impact-factor-list-2014_C.html. Accessed January 5, 2015.

7. Kip KE, Hollabaugh K, Marroquin OC, Williams DO. The problem with composite end points in cardiovascular studies: the story of major adverse cardiac events and percutaneous coronary intervention. J Am Coll Cardiol. 2008;51:701–707.

8. Pilcher JM, Young P, Weatherall M, Rahman I, Bonser RS, Beasley RW. A systematic review and meta-analysis of the cardioprotective effects of remote ischemic preconditioning in open cardiac surgery. J R Soc Med. 2012;105:436–445.

9. Farrokhfar Y, Karanicolas PJ, Thoma A, Simunovic M, Bhandari M, Devereaux PJ. Randomized controlled trials of surgical interventions. Ann Thorac Surg. 2010;90:1409–1416.

10. Guru V, Anderson GM, Frenses SE, O’Connor GT, Grover FL, Tu JV; Canadian CSQICP. The identification and development of Canadian coronary artery bypass graft surgery quality indicators. J Thorac Cardiovasc Surg. 2005;129:1257.

11. Adams DH, Popma J, Reardon MJ. Transcatheter aortic-valve replacement with percutaneous coronary intervention versus coronary bypass surgery in United States veterans with diabetes. J Am Coll Cardiol. 2013;61:808–816.

12. Karkouti K, von Heymann C, Jespersen CM, Korte W, Levy JH, Ranucci M, Sellke FW, Song HK. Efficacy and safety of recombinant factor XIII on reducing blood transfusion in cardiac surgery: a randomized, placebo-controlled, multicenter clinical trial. J Thorac Cardiovasc Surg. 2013;146:927–939.

13. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Palossi E, Straka Z, Piegsa LS, Akar AR, Jain AR, Noisex N, Padmanaban C, Bahamonde JC, Novick RJ, Vajjhalyan P, Reddy SK, Tao L, Olavegeosaocchea PA, Airan B, Sulling TA, Whitlow RP, Ou Y, Fogue J, Chroluvicais S, Yusuf S; Investigators C. Effects of off-pump and on-pump coronary-artery bypass grafting at 1 year. N Engl J Med. 2013;368:1179–1188.

14. Sezai A, Nakata K, Iida M, Yoshitake I, Waku S, Hata H, Shino M. Results of low-dose cardiopulmonary perfusion in high-risk patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2013;96:119–126.

15. Shi J, Wang G, Lv H, Yuan S, Wang Y, Ji H, Li L. Tranexamic acid in on-pump coronary artery bypass grafting in elderly patients: results from the Danish on-pump versus off-pump randomization study. Circulation. 2012;125:2431–2439.

16. Farkouh ME, Domanski M, Sleeper LA, Siambi FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai A, Gersh BJ, Magnuson EA, Lansky A, Boinou R, Weinberger J, Ramanathan K, Sousa JS, Rankin J, Bhargava B, Bus J, Hueb W, Smith CR, Muratov V, Bansilal S, King S III, Bertrand M, Fuster V; Investigators FT. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–2384.

17. Houlind K, Kjeldsen BJ, Madsen SN, Rasmussen BS, Holme SJ, Nielsen PH, Mortensen PE, Group DS. On-pump versus off-pump coronary artery bypass grafting in elderly patients: results from the Danish on-pump versus off-pump randomization study. Circulation. 2012;125:2431–2439.

18. Kang DH, Kim YJ, Kim SH, Jin S, Kim JD, Yoon SC, Song JM, Choo SJ, Chung CH, Song JK, Lee JW, Sohn DW. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366:2466–2473.

19. Lemma MG, Cossion E, Tritto FP, Centofanti P, Fonadecce A, Salica A, Rossi A, De Santo T, Di Benedetto G, Piazza L, Rinaldi M, Schinos A, De Paulis R, Centofanti A, Genoni M. On-pump versus off-pump coronary artery bypass surgery in high-risk patients: operative results of a prospective randomized trial (off-on study). J Thorac Cardiovasc Surg. 2013;145:625–631.

20. Mannocci V, Di Tommaso D, De Amicis V, Stassano P, Musumeci F, Vosa C. Preoperative intraaortic balloon pump for off-pump coronary arterial revascularization. Ann Thorac Surg. 2012;93:804–809.

21. Sezai A, Nakai T, Hata M, Yoshitake I, Shino M, Kunitomo S, Hirayama A. Feasibility of landiolol and intravenous nitroglycerin with percutaneous coronary intervention in the prevention of atrial fibrillation after coronary artery bypass grafting: a pilot study. J Thorac Cardiovasc Surg. 2012;144:1241–1248.

22. Torina AG, Silveira-Filho LM, Vilarinho KA, Eghtespay S, Oliveira PP, Sposito AC, Petrucci O. Use of modified ultrafiltration in adults undergoing coronary artery bypass grafting is associated with inflammatory modulation and less postoperative blood loss: a randomized and controlled study. J Thorac Cardiovasc Surg. 2012;144:663–670.

23. Ronow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, Drozdz J, Farisky FS, Fedman AM, Doenst T, Michler RE, Berman DS, Nicolai JC, Pelliccia PA, Wrobel K, Aloti N, Asch FM, Favaloro LE, She L, Velazquez EJ, Jones RH, Panza JA; Investigators ST. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–1625.

24. Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, Fall PS, Smalling RW, Siegel R, Rose GA, Loghin C, Trento A, Skipper ER, Fudge T, Letsoo GV, Massaro JM, Mauri L; Investigators E. Percutaneous repair or surgery for atrial fibrillation: a randomized controlled trial. J Thorac Cardiovasc Surg. 2011;144:244–248.
Outcome Reporting in Cardiac Surgery Trials

33. Mehta RH, Ferguson TB, Lopes RD, Haffley GE, Mack MJ, Kouchoukos NT, Gillis AM, Harrington RA, Califf RM, Peterson ED, Alexander JH. Vein grafts with multiple versus single distal targets in patients undergoing coronary artery bypass surgery: one-year graft failure and five-year outcomes from the project of ex-vivo vein graft engineering via transfection (PREVENT) IV trial. Circulation. 2012;124:280–288.

34. Sezai A, Hata M, Niino T, Yoshide I, Unosawa S, Wakiu S, Kimura H, Shiono M, Takayama T, Hirayama A. Results of low-dose human atrial natriuretic peptide infusion in nondialysis patients with chronic kidney disease undergoing coronary artery bypass grafting: the NU-HIT (Nihon University Working group) study. N Engl J Med. 2011;364:2187–2198.

35. Wimmer-Greinecker G, Bouchot O, Verhoey JP, Perrault LP, Borgermann J, Dieler A, Van Garssue L, Rastan AJ. Randomized clinical trial comparing a thermosensitive polymer (LeGoo) with conventional vessel loops for temporary coronary artery occlusion during off-pump coronary artery bypass surgery. Ann Thorac Surg. 2011;92:2177–2183.

36. Grossi EA, Patel N, Woo YJ, Goldberg JD, Schwartz CF, Subramanian V, Feldman T, Bourge R, Baumgartner N, Genco C, Goldman S, Zenati M, Wolfe JA, Mutha YK, Trehan N, Mittal S, Shang M, Mortier TJ, Schweich CJ Jr. Outcomes of the RESTOR-MV trial (randomized evaluation of a surgical treatment for off-pump repair of the mitral valve). J Am Coll Cardiol. 2010;56:1984–1993.

37. Hueb W, Lopes N, Gersh BJ, Soares PR, Ribeiro EE, Pereira AC, Favaro T, Rocha AS, Hueb AC, Ramires JA. Ten-year follow-up of the survival, angioplasty, or surgery study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation. 2012;126:949–957.

38. Capur A, Hall RJ, Malik IS, Qureshi AC, Butts RJ, de Belder A, Oldroyd KG, Roughton M, Nihoyannopoulos P, Bagger JP, Morgan K, Beatt NJ. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol. 2010;55:432–440.

39. Moller CH, Perko MJ, Lund JT, Andersen LW, Kelkaeb H, Madsen JK, Winkel P, Gluud C, Steinbruchel DA. No major differences in 30-day outcomes in high-risk patients randomized to off-pump versus on-pump coronary bypass surgery: the Best Bypass Surgery Trial. Circulation. 2010;121:498–504.

40. Omran AS, Karimi A, Ahmad H, YazdaniFard P, Sheikh Fahtollahi M, Tazik M. Prophylactic ventral cardiac denervation: does it reduce incidence of atrial fibrillation after coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2010;140:1036–1039.

41. Veeger NJ, Zijlstra F, Hillege HL, van der Meer J. Fourteen-year follow-up from cabazos: vitamin K antagonists or dipyramolide not superior to aspirin. Ann Thorac Surg. 2010;90:1515–1521.

42. Weltert L, D’Alessandro S, Nardella S, Girola F, Bellisario A, Maselli D, De Paulis R. Preoperative very short-term, high-dose erythropoietin administration diminishes blood transfusion rate in off-pump coronary artery bypass: a randomized blind controlled study. J Thorac Cardiovasc Surg. 2010;139:621–626; discussion 626-627.

43. Lim E, Brown A, Helmy A, Mussa S, Altman DG. Composite outcomes in cardiovascular research: a survey of randomized trials. Ann Intern Med. 2008;149:612–617.

44. Ferreira-Gonzalez I, Alonso-Coello P, Sola I, Pacheco-Huergo V, Domingo-Salvany A, Alonso J, Monori V, Pernamay-Miralda G. Composite endpoints in clinical trials. Rev Esp Cardiol. 2008;61:283–290.

45. Herman CR, Buth KJ, Legare JF, Levy AR, Baskett R. Development of a predictive model for major adverse cardiac events in a coronary artery bypass and valve population. J Cardiothorac Vasc Surg. 2013;8:177. 46. Gardner TJ, O’Gara PT. The cardiothoracic surgery network: randomized clinical trials in the operating room. J Thorac Cardiovasc Surg. 2010;139:830–834.

47. Diehm JL, Nierich AP, Rossseum PW, van der Maaten JM, Hofland J, Diephuis JC, Schepp RM, Boer C, Moongs KG, van Herwerden LA, Tijssen JG, Numan SC, Kalkman CJ, van Dijk J. Dexamethasone for Cardiac Surgery Study Group. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. 2012;308:1761–1767.

48. Novitzky D, Shroyer AL, Collins JF, McDonald GO, Lueck J, Hattler B, Kozera E, Bradham DB, Baltz J, Grover FJ; Group VAROBS. A study design to assess the safety and efficacy of on-pump versus off-pump coronary bypass grafting: the ROOBY trial. Clin Trials. 2007;4:81–91.

49. Guyatt G, Devereaux PJ, Yusuf S, Yang H, Alonso-Coello P, Ciapponi A, Pogue J, Salazar A, Tristan M, Urrutia G. Small sample size, composite endpoints, trials stopped early for benefit: threats to valid meta-analysis. Oral presentation at the 16th Cochrane Colloquium: evidence in the era of globalisation. J Evid Based Med. 2008;102(suppl VI):31.

50. Tong BC, Huber JC, Asseche DD, Puskas JD, Ferguson TB Jr, Blackstone EH, Smith PK. Weighting composite endpoints in clinical trials: essential evidence for the heart team. Ann Thorac Surg. 2012;94:1908–1913.

51. Liao YC, Lin YJ, Chang FP, Chang SL, Lo LW, Hu YF, Chao TF, Chung E, Tuan TC, Huang JL, Liao JN, Chen YY, Chen SA. Risk stratification of arrhythmogenic right ventricular cardiomyopathy based on signal averaged electrocardiograms. Int J Cardiol. 2014;174:628–633.

52. Ferreira-Gonzalez I, Pernamay-Miralda G, Busse JW, Devereaux PJ, Guyatt GH, Alonso-Coello P, Monori VM. Composite outcomes can distort the nature and magnitude of treatment benefits in clinical trials. Ann Intern Med. 2009;150:566–567.

53. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ AHA/World Heart Federation/Task Force Members. Thygesen K, Alpert JS, White HD; Biomarker S, Jaffe AS, Katus HA, Apple FS, Lindahl M, Morrow DA; Subcommittee ECG, Chaitman BR, Clemmensen PM, Johanson P, Hod H; Imaging S, Underwood R, Bax JJ, Bonov J, Pinto F, Gibbons RJ; Classification S, Fox KA, Attar D, Newby LK, Galvani M, Hamm CW; Intervention S, Uretsky BF, Sleg PG, Wijns W, Bassand JP, Menasche P, Ravkilde J; Trials, Registries S, Ohman EM, Antman EW, Mallant LC, Armstrong PW, Simoons ML; Trials, Registries S, Januzzi JL, Nienhuis MS, Gheorghiade M, Filipatos G; Trials, Registries S, Luepker RV, Fortmann SP, Rossomond WD, Levy D; Trials, Registries S, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendler M, Bove AA, Parchmenko AN, Vasilyev EA, Mendis S; Guidelines ESC/CBP, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fargad R, Fugc-Borentano F, Hasdai D, Hoes A, Kirchhof P, Knusti J, Kohl P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendler M, Torbicchi A, Vahanian A, Windecker S; Document R, Morais J, Takkenberg JJ, David TE, Adams DH, Shahian DM, Hagi S, Mayer JE, Serruys PW, Kappetein AP, Leon MB. Clinical outcomes after transcatheter aortic valve replacement: a report of the American Heart Association/Cardiology/American Heart Association task force on clinical data standards (writing committee to develop cardiovascular endpoints data standards). J Am Coll Cardiol. 2014;63:403–449.

54. Akins CW, Miller DG, Turina MI, Kouchoukos NT, Blackstone EH, Grunkemeier GL, Takkenberg JJ, David TE, Butchart EG, Adams DH, Shahan DM, Hagi S, Mayer JE, Lytle BW; STS, AATS, EACTS. Guidelines for reporting mortality and morbidity after cardiac valve interventions. Ann Thorac Surg. 2008;85:1490–1495.

55. Genereux P, Head SJ, Van Mieghem NM, Kodali S, Kirtane AJ, Xu K, Smith C, Serruys PW, Kappetein AP, Leon MB. Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: a weighted meta-analysis of 3,519 patients from 16 studies. J Am Coll Cardiol. 2012;59:2317–2326.

56. Butts RJ, Scheuerer MA, Zbylowski SE, Wahlquist AE, Nietert PJ, Bradley SM, Atz AM, Graham EM. A composite outcome for neonatal cardiac surgery research. J Thorac Cardiovasc Surg. 2014;147:442–443.