GC-MS Analysis of Papaya Leaf Extract (Carica Papaya L.)

Hussein Lafta Al-Seadi¹, Manal Zibari Sabti² and Dhia Ahmad Taain²

¹Department of Field Crops, College of Agriculture and Marshes, University of Thi-Qar, Iraq.
²Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah, Iraq.

¹Email: husseinalseadi@utq.edu.iq

Abstract

The current study aimed to determine the phytochemicals present in the leaf extract of two papaya varieties grown in southern Iraq. The phytochemicals present in the ethanolic extract of papaya leaves were identified using the GC-MS detection system. The results showed the presence of more than thirty phytochemicals in the ethanolic extract of papaya leaves. The main phytochemicals present in papaya leaf extract in terms of their relative abundance are Oleic Acid, Tocopherol, Sitosterol, Neophytadiene, Butyl 9,12,15-octadecatrienoate, n-Hexadecanoic acid, Phytol, Tetramethyl-2-hexadecen, Dasycarpidan-1-methanol, acetate (ester), Campesterol, Squalene, Octadecenoic acid, Stigmasterol and D-Limonene. The present study revealed that the papaya leaf extract was composed of a variety of metabolites and therapeutic active substances, in addition to novel substances. These substances can be isolated and evaluated experimentally to confirm their biological and medicinal activities as well as verify their mechanism of action.

Keywords: Papaya, Phytochemicals, GC-MS analysis, Plant extract, Red lady.

1. Introduction

Papaya (Carica papaya L.) belongs to family Caricaceae. It is one of the fastest growing tropical or subtropical fruit plants. The original home of this plant is the tropics of America, possibly southern Mexico, Costa Rica or Central America, and spread around the sixteenth century to the tropics, Papaya is an evergreen dicotyledonous plant [1]. Papaya is rich in nutrients and antioxidants and has a high medicinal value, it is the source of many powerful and effective medicines [2]. All parts of the plant, leaves, fruits and seeds have been used traditionally to treat many different diseases including malaria, blood pressure, dengue fever, jaundice, sinus and eczema, anti-inflammatory, indigestion, anti-hypertensive activities, and tumors. These medicinal and nutritional properties are due to the presence of many phytochemicals such as vitamins, glycosides, alkaloids, steroids, flavonoids and phenols [1,3]. Papaya leaves have many uses, juice of the leaves helps to increase white blood cells and platelets. It is also used as a treatment for diseases of Urogenital diseases [4]. Dried leaves are best as a tonic and blood purifier [5]. Papaya leaf extract in an unrevealed composition is shown to possess anticancer activity and inhibition of cell proliferation in a variety of cancer cell lines, which has been patented [6]. The analgesic activity of Carica papaya leaves (CPL) extract was investigated in mice model using acetic acid induced pain (Siegmund method), Ethanol extract showed the best analgetic activity that was comparable to aspirin [7]. The therapeutic efficacy and nutritional properties of this plant depend on the contents and number of these bioactive compounds, which vary according to the environment. Due to the lack studies in Iraq, the current study aimed to cultivate this plant in southern Iraq and determine bioactive compounds of the papaya leaf extract which will help to explore potential use of this plant in food and pharmaceutical industries.

2. Materials and Methods

2.1. Plant cultivation and Collection of plant specimen

Planting two varieties of papaya (Local, Red lady) in the province of Basra, southern Iraq, During the growing season 2020 as an experiment to cultivate this plant in southern Iraq successfully. The leaves of the cultivated papaya plants of both varieties were collected after five months of planting. After that, the leaves were washed under a continuous stream of tap water for 5 minutes and then dried aerobically, The dried samples were ground into a powder using a grinding machine and then sieved. Samples were stored at 4°C in airtight glass containers until extraction.
2.2. Preparation of the Extracts

Dry papaya leaves 25 grams used and it dissolved in 250 ml of ethanol and left for 24 hours. The suspension was filtered with filter paper through a Whatman No. 41, The filtrate was concentrated in a rotary evaporator at 45°C under reduced pressure.

2.3. GC-MS system

GC-MS analysis was carried out at the Basra oil company laboratory, by using an Agilent Technologies, 7890B GC system coupled to an Agilent Technologies 5977A MSD with EI Signal detector, using HP-5ms 5% phenyl, 95% methyl siloxane (30m*250um*0.25) , the oven temperature was set at 40 C hold for 5 min then raised to 10 C/min to 300 C for 20 min, Helium carrier gas flow rate was 1ml /min and purge flow of 3 ml/min . The injection mode was pulsed Splitless with injection temperature 290 C and the injection sample volume was 1 micro letter. The mass spectrometer used Ion Source Temperature 230 C , With scan speed 1562 (N2) , and the mass range 44-750 m/z . Data was run through the NIST 2014 ,and Wiley 9 Library data base as an additional tool to confirm identity of compounds.

3. Results and Discussion

The phytochemicals present in papaya leaf extract with their corresponding retention time, molecular formula and molecular weight as well as their relative abundance, which was expressed in terms of peak area % are presented in tables 1,2 and depicted in figures 1,2.

Table 1 and figure 1 showed the presence of forty plant components in the ethanolic papaya leaf extract. Through comparative examination, the main components present in the papaya leaf extract of the local variety in terms of their relative abundance were Oleic acid, Tocopherol, Sitosterol, n-Hexadecanoic acid, Dasyacarpidan-1-methanol, acetate (ester), Campesterol, Neophytadiene, Squalene, Octadecenoic acid, Stigmasterol, Linolenic acid, Phytol and D-Limonene (22.5 , 12.4 , 12.2 , 5.2 , 3.8 , 3.4 , 3.2 , 3.0 , 2.9 , 2.6 , 2.6 , 2.1 , 0.5)% relative abundance respectively.

Table 2 and figure 2 showed the presence of at least thirty phytochemicals in the papaya leaf extract of the hybrid variety, the main components found in the papaya leaf extract of the hybrid variety in terms of their relative abundance were Octadecatrienoic acid, Tocopherol, Neophytadiene, Sitosterol, Butyl 9,12,15-octadecatrienoate, Phytol, Tetramethyl-2-hexadecen, n-Hexadecanoic acid, Campesterol, Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, Octadecenoic acid, Stigmasterol, Octadecadienoate, Squalene, Hexadecene, 6-Hydroxy-4,4,7 a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one which corresponded to (18.6 , 11.5 , 9.6 , 9.6 , 5.6 , 4.8 , 4.2 , 4.2 , 2.8 , 2.5 , 1.7 , 1.6 , 1.4 , 1.2 , 1.0 , 0.53) % relative abundance respectively. Findings from previous studies on the papaya leaves contain active compounds like carpaine, sitosterol, choline, carposide, vitamin C and E which have health benefits. leaf of the papaya possess carotenoids, vitamins, anthraquinones, glycosides and hence possess medicinal properties like anti-inflammatory, antioxidant, hepatoprotective, wound healing, recently its antihypertensive and antitumor activities [3, 8].

The results of the current study revealed the presence of many effective and important compounds in papaya leaf extract, these compounds differed in terms of their presence and availability according to the variety. The papaya leaf extract of the local variety was distinguished by its high content of Tocopherol, Sitosterol and Dasyacarpidan-1-methanol, acetate (ester). Whereas, the papaya leaf extract of the hybrid variety recorded the highest content of Neophytadiene, Butyl 9,12,15-octadecatrienoate and Phytol compared with the local variety. The current study showed that Tocopherol and hexadecanoic acid were major plant components present in papaya leaf extract. Which is known for its antioxidant, antimicrobial and anticancer activity [3,9]. That n-hexadecanoic acid and Phytol which were present in appreciable amounts in papaya leaf extract, were likely antimicrobial and antioxidant, hypcholesterolemic and antihypertensive agents [3]. Results of the study indicate the presence of Phytosterols in papaya leaves extract. Compounds identified were Sitosterol, Stigmasterol and Campesterol. It is an initial principles of hormones, these compounds increase the production of the hormone estrogen. Usually used for heart disease, high cholesterol, immune system modulation, cancer prevention, anti-inflammatory activities and induction of apoptosis in cancer cells [10, 11], found that several biologically active compounds, including Sitosterol, in the Moringa oleifera are responsible for the anti-cancer properties. The presence of high content of Sitosterol (12.2%) in papaya leaf extract is an encouraging result. The results of Table 2, showed that papaya leaf extracts contain neophytadiene (9.6%), which may be responsible for the antibacterial activity. Antimicrobial activity of plant essential oil containing neophytadiene [12]. Neophytadiene is also reported to possess antibacterial activity as well as helping in treatment of headaches, rheumatism and some skin disease [13]. It is noteworthy that some of the plant components present in papaya leaf extract are novel substances in that their therapeutic properties and biological activities have not been previously reported.
Table 1. Phytochemicals identified in ethanolic leaf extract of C. papaya (Local variety) by GC-MS.

No.	Name	Formula	RT	Area%
1	17-Octadecyenoic acid	C18H32O2	4.248	0.12303
2	N-Ethyl-2-phenethylamine	C10H15N	5.778	0.08342
3	I-Alanine, N-methoxy carbonyl-, heptyl ester	C12H23NO4	6.95	0.07762
4	p-Xylene	C8H10	8.641	0.20978
5	1-(3,3,3-Trifluoro-2-hydroxypropyl)piperidine	C8H14F3NO	9.915	0.07818
6	2-Azido-2,4,4,6,6-pentamethylheptane	C12H25N3	11.321	0.07487
7	D-Limonene	C10H16	11.819	0.51814
8	.beta.-D-Glucopyranose, 1-thio-,1-[N-hydroxy-5-(methylthio)pentanimidate]	C12H23NO6S2	12.09	0.19512
9	9-Decenoic acid	C10H18O2	13.261	0.15835
10	Benzenepropanoic acid., .alpha.- (hydroxyiminio)-	C9H9NO3	13.752	0.64493
11	Melezitose	C18H32O16	14.469	1.29557
12	4-Mercaptophenol	C6H6OS	15.311	0.28951
13	Cyclohexanone, 2-(2-butynyl)-	C10H14O	16.402	0.28996
14	2,4-Difluorobenzene, 1-benzoxyl-	C13H10F2O	17.135	0.41063
15	2,4-Di-tet-butylphenol	C14H22O	18.958	0.39649
16	1-Dodecanol, 3,7,11-trimethyl-	C15H32O	19.829	0.43682
17	Tetradecanoic acid	C14H28O2	21.777	0.89685
18	Cyclopentadecane, 2-hydroxy-	C15H28O2	22.077	0.69591
19	Neophytopadiene	C20H38	22.589	3.21657
20	Phytol, acetate	C22H42O2	23.029	1.14473
21	n-Hexadecanoic acid	C16H32O2	23.864	5.24537
22	Hexadecanoic acid, ethyl ester	C18H36O2	24.12	1.26373
23	1-Heptatriacetanotol	C37H76O	24.332	0.15036
24	Phytol	C20H40O	25.299	2.19468
25	Oleic Acid	C18H34O2	25.635	2.5856
26	1-Heptatriacetanotol	C37H76O	26.785	0.30511
27	2H-Benzof[loxiren][2,3-E]benzofuran-8(9H)-one, 9-[[2-	C19H32N2O3	28.293	0.27626
28	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C19H38O4	28.681	1.39327
29	9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C21H38O4	30.08	1.13393
30	Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)-	C21H36O4	30.146	2.65095
31	Squalene	C30H50	31.024	3.04685
32	dl.-alpha.-Tocopherol	C29H50O2	33.851	12.4316
33	Campesterol	C28H48O	35.073	3.46363
34	Stigmasterol	C29H48O	35.469	2.6458
35	.gamma.-Sitosterol	C29H50O	36.311	12.2495
36	Cholest-5-en-3-ol, 24-propyli dine, (3.beta.)-	C30H50O	36.501	1.4471
37	13,27-Cyclourasan-3-one	C30H48O	37.197	2.67255
38	9,19-Cyclolanost-24-en-3-ol, acetate, (3.beta.)-	C32H52O2	37.438	2.1492
39	9-Octadecenoic acid, 1,2,3-propanetriyl ester, (E,E,E)-	C57H104O6	38.91	2.9504
40	Dasyrcarpidan-1-methanol, acetate (ester)	C20H26N2O2	40.418	3.85696
41	9-Octadecenoic acid, 1,2,3-propanetriyl ester, (E,E,E)-	C57H104O6	41.165	0.98926
Figure 1. The GC-MS analysis of C. papaya (Local variety).

Table 2. Phytochemicals identified in ethanolic leaf extract of C. papaya (Red lady) by GC-MS.

No.	Name	Formula	RT	Area%
1	1-(1,4-cyclohexadienyl)-2-methylaminopropane	C10H17N	5.808	0.057167
2	Formamide, TMS derivative	C4H11NOSi	6.979	0.071481
3	p-Xylene	C8H10	8.663	0.350353
4	D-Limonene	C10H16	11.841	0.190945
5	Benzenepropanoic acid, alpha-(hydroxyimino)-	C9H9NO3	13.766	0.328324
6	Melezitose	C18H32O16	14.477	0.107359
7	Formamide, TMS derivative	C4H11NOSi	15.26	0.736578
8	Cyclohexanone, 2-(2-butynyl)-	C10H14O	16.417	0.295882
9	1-Tetradecyl acetate	C16H32O2	17.325	0.209124
10	Melezitose	C18H32O16	18.504	1.904339
11	2,4-Di-tert-butylphenol	C14H22O	18.965	0.522125
12	1-Dodecanol, 3,7,11-trimethyl-	C15H32O	19.836	0.305894
13	Tetradecanoic acid	C14H28O2	21.784	0.462411
14	Acetic acid, 3,7,11,15-tetramethyl-hexadecyl ester	C22H44O2	22.531	0.618028
15	Neophytadiene	C20H38	22.611	10.10803
16	2-Hexadecene, 3,7,11,15-tetramethyl	C20H40	22.663	11.05005
17	Phytol, acetate	C22H40O2	22.846	1.231821
18	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H40O3	23.043	4.420287
19	n-Hexadecanoic acid	C16H32O2	23.878	4.41944
20	Hexadecanoic acid, ethyl ester	C18H36O2	24.127	0.739618
21	Phytol	C20H40O	25.306	5.053318
22	9,12,15-Octadecatrienoic acid,	C18H30O2	25.665	18.64854
23	Ethyl 9.cis.,11.trans.-octadecadienoate	C20H36O2	25.738	1.468316
24	3-trns-(1,1-dimethylethyl)-4-trans-methoxycyclohexanol	C1H22O2	28.301	0.836893
25	Hexadecanoic acid, 2-hydroxy-1-ethyl ester	C19H38O4	28.696	2.683286
26	9,12-Octadecadienoic acid	C21H38O4	30.087	1.639524
27	Butyl 9,12,15-octadecatrienoate	C22H38O2	30.168	5.870105
28	Squalene	C30H50	31.024	1.296497
29	gamma.-Tocopherol	C28H48O2	32.965	2.906746
30	Octadecanoic acid, 4-hydroxy-, methyl ester	C19H38O3	33.17	0.814729
31	dl.-alpha.-Tocopherol	C29H50O2	33.829	11.81368
32	Campesterol	C28H48O	35.081	2.924318
33	Stigmasterol	C29H48O3	35.469	1.678376
34	gamma.-Sitosterol	C29H50O	36.318	9.93223
35	9-Octadecenoic acid, (E)-	C18H34O2	38.917	1.81382
36	9-Octadecenoic acid, 1,2,3-propanetriyl ester,	C57H104O6	40.411	1.46866
Figure 2. The GC-MS analysis of C. papaya (Red lady)

References

[1] Yogiraj, V., Goyal, P.K., Chauhan, C.S., Goyal, A. and Vyas, B. (2014). Carica papaya Linn: An Overview. International Journal of Herbal Medicine, 2: 01-08.

[2] Chawla, P., A. Yadav and V. Chawla. (2014). Clinical implications and treatment of dengue. Asian Pacific Journal of Tropical Medicines, 5(3): 169–78.

[3] Saran, P. L.; Solanki, I. S. and Choudhary (2016). Papaya Biology, cultivation Production and Uses. CRC Press, Taylor & Francis Group, New York, 266.

[4] Walter, L. (2008). Cancer remedies. Available at Health-science-sprite.com/cancer6-remedies.

[5] Nwofia, G. E., P. Oghmelukwe and C. Eji. (2012). Chemical composition of leaves, fruit pulp and seed in some morphotypes of C. papaya L. morphotypes. International Journal of Medicinal and Aromatic Plants, 2: 200–06.

[6] Morimoto, C., N. H. Dang and N. Y. S. Dang. (2008). Cancer prevention and treating composition for preventing, ameliorating, or treating solid cancers, e.g. lung, or blood cancers, e.g. lymphoma, comprises components extracted from brewing papaya. Patent number WO2006004226-A1; EP1778262-A1; JP2008505887-W; US2008069907-A1.

[7] Hasimun, P.; Suwendar, G. and Ernasari I. (2014). Analgetic Activity of Papaya (Carica papaya L.) Leaves Extract. Procedia Chemistry, 13: 147–149.

[8] Gorane A, Naik A, Nikam T, Tripathi T and Ade A. (2018). GCMS analysis of phytocomponents of C. papaya variety red lady. Journal of Pharmacognosy and Phytochemistry, 7(2): 553-555.

[9] Radhakrishnan, N.; Lam, K. W and Norhaizan, M. E. (2017). Molecular docking analysis of Carica papaya Linn constituents as antiviral agent. International Food Research Journal, 24(4): 1819-1825.

[10] Mohammed, M.A., Abdulridha, W.M., Abd, A.N., (2018), Thickness effect on some physical properties of the Ag thin films prepared by thermal evaporation technique, Journal of Global Pharma Technologythis , 10(3), pp. 613–619.

[11] Abdull Razis, A. F.; Ibrahim, M. D. and Kntayya, S. B. (2014). Health benefits of Moringa oleifera. Asian Pacific Journal of Cancer Prevention, 15(20): 8571–8576.

[12] Palic, R., G. Stojanovic, S. Alagic, M. Nikolic and Z. Lepojevic. (2002). Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep. Flavour Fragr. J., 17: 323-326.

[13] Suresh, L., R.M. Veerabah and S.R. Gnanasingh, (2010). GC-MS analysis of ethanolic extract of Zanthoxylum rhetsa (roxb.) dc spines. Journal Herbal Med. Toxiccol., 4: 191-192.