LncRNA ADAMTS9-AS2 in osteosarcoma inhibits cell proliferation and enhances paclitaxel sensitivity by suppressing microRNA-130a-5p

Xiaoqiang Ren,1 Jingwei Cai,2 Yongheng Wang,1 Xingren Zhu,1 Jun Qian,1 Cailing Han1 and Xiaohui Chen3©

Abstract
Introduction: Long noncoding RNA ADAMTS9-AS2 (lncRNA ADAMTS9-AS2) has critical function in tumor growth and drug resistance of various cancers. However, the role and mechanism of lncRNA ADAMTS9-AS2 in osteosarcoma (OS) is still unclear.

Methods: The expression of lncRNA ADAMTS9-AS2 and MicroRNAs-130a-5p (miR-130a-5p) was detected by real-time polymerase chain reaction (RT-qPCR) experiment. In addition, we used the plasmids transfection to construct the lncRNA ADAMTS9-AS2 overexpressed OS cell lines. Subsequently, the cell proliferation ability and the sensitivity to paclitaxel (PTX) in OS cells upon up-regulating lncRNA ADAMTS9-AS2 expression were analyzed via CCK-8 assay, while Western blotting experiment was performed to detect the regulatory mechanism.

Results: We found that lncRNA ADAMTS9-AS2 was down-regulated in OS tissues, and the OS patients with lncRNA ADAMTS9-AS2 downexpression were usually accompanied with a poor prognosis. Subsequently, we discovered that up-regulation of lncRNA ADAMTS9-AS2 inhibited cell proliferation and increased the sensitivity to PTX in OS cells. Interestingly, the Western blot results showed that overexpression of lncRNA ADAMTS9-AS2 could lead to PTEN expression increased, with PI3K and p-AKT expression decreased, indicating that lncRNA ADAMTS9-AS2 could increase the OS cell sensitivity to PTX via regulating PTEN-PI3K/AKT pathway. Furthermore, we identified MicroRNAs-130a-5p (miR-130a-5p) as the downstream target gene of lncRNA ADAMTS9-AS2, which was further confirmed by the luciferase reporter assay. More importantly, our data revealed that miR-130a-5p mimics could partly reverse the influence on cell proliferation and drug sensitivity induced by lncRNA ADAMTS9-AS2 overexpression.

Conclusion: LncRNA ADAMTS9-AS2 exerts its anti-carcinogenesis function by sponging miR-130a-5p, which might be a new therapeutic target for OS treatment.

Keywords
drug sensitivity, lncRNA ADAMTS9-AS2, miR-130a-5p, osteosarcoma, proliferation

Date received: 23 May 2019; accepted: 26 May 2020

Introduction
Osteosarcoma (OS) is a common malignant tumor in the world, with relatively high incidence and mortality among childhood and adolescents, remaining a big threat to human health.1,2 In recent year, major breakthrough had been made in the comprehensive treatment approaches for OS patients, with targeted therapy and immunization therapy emerging. However, due to the presence of...
constitutive and acquired drug resistances, the OS patients were more likely to have poor prognosis. Consequently, identify a novel bio-marker related to chemotherapy resistance is imperative, which would be a promising way to improve the prognosis of the patients with OS.

The long noncoding RNAs (lncRNAs) are a subcategory of noncoding RNA (ncRNAs). LncRNAs have received increasing attention, as numerous lncRNAs have been confirmed to participate in the progression of malignant tumor. For example, upregulated lncRNA ENST00000470447.1 could suppress cell metastasis ability in oral cancer. More importantly, recent researches show that lncRNAs are actively participated in the regulation of chemotherapy resistance. Therefore, lncRNAs would be a promising bio-marker for the treatment of OS. LncRNA ADAMTS9-AS2 was initially identified in breast cancer with a role of LncRNA. ADAMTS9-AS2 is an antisense transcript of protein coding gene ADAMTS9, which was initially identified in breast cancer and might be involved in reversing tamoxifen resistance. In addition, Yan et al. demonstrated that lncRNA ADAMTS9-AS2 was participated in regulating temozolomide resistance in glioblastoma. However, the mechanism and function of lncRNA ADAMTS9-AS2 in the progression of OS was not fully known.

Accumulating studies demonstrated that lncRNAs could serve as a tumor activator or suppressor in different type cancer via sponging miRNA. LncRNA SNHG1, for example, had been reported to act as a tumor promotor in non-small cell lung cancer through miR-145-5p/MTDH axis. According to the results of bio-information, we supposed that microRNAs-130a-5p (miR-130a-5p) might serve as the downstream target of LncRNA ADAMTS9-AS2. Previous studies indicated that miR-130a-5p was closely associated with malignant biological effects of glioma, gastric cancer and so on. However, there is still unclear whether miR-130a-5p is involved in tumor regulation of OS.

In this study, we aimed to identify whether lncRNA ADAMTS9-AS2 functioned as a suppressor in the development of OS. Herein, we first evaluated the expression level of lncRNA ADAMTS9-AS2 in both of OS tissue samples and cell lines. Subsequently, we performed in vitro experiments to estimate the precise role of lncRNA ADAMTS9-AS2 in tumor growth and drug resistance, and confirmed that miR-130a-5p would be the downstream target gene of lncRNA ADAMTS9-AS2 via luciferase experiments. Consequently, we hypothesized that lncRNA ADAMTS9-AS2 could overcome the drug resistance of OS via regulating miR-130a-5p, then further explore its potential mechanism.

Methods

Tissue samples

The OS tissue and adjacent normal tissue samples were obtained from 65 patients who had not been treated with radio- or chemical therapy in our center. And all of the samples were confirmed by veteran pathologists. The medical ethics committee of our center approved this study. This study is a single-center retrospective study, and all patients involved in this research were signed the informed consent voluntarily.

Cell culture

OS cells were obtained from American Type Culture Collection (ATCC, USA). In addition, all of cells were incubated in 10% fetal bovine serum (FBS; Gibco, Gran Island, NY) contained Dulbecco’s modified Eagle’s medium (DMEM, Hyclone, Logan, UT, USA) in a humid atmosphere with 5% CO₂ at 37°C.

Cell transfection

The lncRNA ADAMTS9-AS2 plasmids (called pcDNA-ADAMTS9-AS2) and empty vectors were directly bought from GenePharma Company (Shanghai, China). LncRNA ADAMTS9-AS2 plasmids were transfected into U2-os and MG-63 cells to upregulate the expression of lncRNA ADAMTS9-AS2, while empty vectors were used as negative control (NC). MiR-130a-5p specific mimics and NC (GenePharma) were used for miR-130a-5p upregulation. All the transfection was achieved using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA).

RNA extraction and quantitative real-time polymerase chain reaction

In brief, total RNA was obtained from cell lines and tissue samples with Trizol reagent (Takara, Dalian, China), then reverse-transcribed into
complementary DNA (cDNA) with the PrimeScript RT Master Mix (TaKaRa). Real-time polymerase chain reaction (RT-qPCR) was performed with the standard SYBR-Green PCR kit (Roche, America), and $2^{-\Delta\Delta C_{t}}$ method was used to analyze the relative expression of target genes.

Primers used in this study were as follows: GAPDH, F: 5′-CAC CCA CTC CTC CAC CTT TG-3′, R: 5′-CCA CCC TGT TGC TGT AG-3′, LncRNA ADAMTS9-AS2, F: 5′-TCT GTT GCC CAT TTC CTA CC-3′, R: 5′-CCC TTC CAT CCT GTC TAC TCT A-3′; MiR-130a-5p, F: 5′-ACA CTC CAG CTG GGT TCA GCT CCT ATA TGA T-3′, R: 5′-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GGC AT-3′.

Cell Counting Kit-8 assay

The transfected cells were planted in 96-well plates. After incubation for 0, 24, 48, 72 and 96 h, Cell Counting Kit-8 (CCK-8, Dojindo) solution was added to each well. A microplate reader (Molecular Devices, Sunnyvale, CA, USA) was applied to detect the absorbance at 450 nm for each well. To date, to assay the drug sensitivity to paclitaxel (PTX), OS cells were also pretreated with different concentration of PTX, then detected the cell viability using CCK-8 assays.

Luciferase reporter assay

In order to further elucidate the potential target microRNA of lncRNA ADAMTS9-AS2, publicly available bioinformatic algorithms (StarBase 2.0) was utilized to predict the binding sites between target miRNA and lncRNA ADAMTS9-AS2. The 293-T cells were plated in 24-well plates at the concentration of 5×10^4 cells/well. Subsequently, cells were transfected with the wild-type lncRNA ADAMTS9-AS2 reporter (lncRNA ADAMTS9-AS2-Wt) or the mutant-type lncRNA ADAMTS9-AS2 reporter (lncRNA ADAMTS9-AS2-Mut). miR-130a-5p mimics or miR-NC were co-transfected into 293-T cells. After 48 h, Dual-Luciferase Reporter Assay (Promega, Madison, WI, USA) was used to evaluate the relative luciferase activity.

RNA-immunoprecipitation

The Magna RIPTM RNA kit (Millipore, Bedford, MA, USA) was used for RNA-immunoprecipitation (RIP) assay. In brief, the treated cells were lysed with RIPA solution supplement with protease inhibitor and RNA enzyme inhibitor. Cell extraction was incubated with IgG and MS2 antibodies. Protein samples were digested, and immuno-precipitated RNA was harvested. The expression level of purified RNA was detected by RT-qPCR.

Western blot analysis

The RIPA lysis buffer (Beyotime Biotechnology, China) with protease inhibitor (Roche, China) was applied for the extraction of total proteins. After that, equal amounts of proteins were separated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and then transferred into polyvinylidene difluoride (PVDF) membrane. Blocking was performed with 5% BSA, and then the membrane was incubated with primary antibodies and secondary antibodies. The blot signals were visualized by chemiluminescent detection system.

Statistical analysis

Data were shown as the mean ± standard deviation (SD). The SPSS 20.0 software (Chicago, IL, USA) was used for statistical analyses. Differences among groups were measured by the student’s t-test and the one-way analysis of variance. $P<0.05$ was considered statistically significant. All the experiments were conducted three times.

Results

Down-regulation of lncRNA ADAMTS9-AS2 was related to poor prognosis in OS

First of all, to determine the regulatory role of lncRNA ADAMTS9-AS2 in OS, RT-qPCR was performed. Our data displayed that lower-expression of lncRNA ADAMTS9-AS2 accounted for 74% (37/50) of OS specimens (Figure 1(a)). Compared with that in the adjacent non-tumor tissues, the expression of lncRNA ADAMTS9-AS2 was significantly down-regulated in OS tissues (Figure 1(b)). Besides, cumulative survival results exhibited that patients with lower-expression of lncRNA ADAMTS9-AS2 might have shorter survival time (Figure 1(c)). Furthermore, OS patients with low expression level of lncRNA ADAMTS9-AS2 were more likely to have poor histological differentiation (Figure 1(d)), advanced
enneking (Figure 1(e)) and distant metastasis (Figure 1(f)).

In order to detect the relationship between the clinicopathological characteristics and the expression level of lncRNA ADAMTS9-AS2 in OS, we divided the tissue samples into two groups based on the median of the relative lncRNA ADAMTS9-AS2 expression. In this study, we discovered that the expression of lncRNA ADAMTS9-AS2 was closely associated with larger tumor size ($P = 0.037$), poor histological differentiation ($P = 0.030$), distant metastasis ($P = 0.017$), and the advanced enneking stage ($P = 0.036$; Table 1). Taken together, these results consistently indicated that lncRNA ADAMTS9-AS2 might serve as a biomarker of poor prognosis.

Overexpression of lncRNA ADAMTS9-AS2 suppresses cell proliferation and increases sensitivity to PTX in OS

Since lncRNA ADAMTS9-AS2 was proven to be down-regulated in OS and capable of predicting poor prognosis, we subsequently speculated that lncRNA ADAMTS9-AS2 could act as a suppressor in OS progression. To further investigate its potential biological function, the expression of lncRNA ADAMTS9-AS2 in OS cells was determined by RT-qPCR assay. Then, the results showed that the expression of lncRNA ADAMTS9-AS2 in OS cell lines was all down-regulated relative to the normal Hfo1b.19 cell line, with U2-OS and MG-63 cell lines showing the lowest expression (Figure 2(a)). The lncRNA ADAMTS9-AS2 overexpressed U2-OS and MG-63 cell lines via plasmids transfection. Subsequently, our data proved that compared with the blank group (OS cells without treatment), the expression of lncRNA ADAMTS9-AS2 was not changed in the NC group (OE-vector), but the OE-lncRNA ADAMTS9-AS2 group with dramatical overexpression levels of lncRNA ADAMTS9-AS2, implying that the lncRNA ADAMTS9-AS2 overexpressed cell lines had been successfully constructed (Figure 2(b) and (c)).

After that, we collected the OE-lncRNA ADAMTS9-AS2 cells for CCK-8 assay and detected that upregulation of lncRNA ADAMTS9-AS2 significantly inhibited proliferation of U2-OS and MG-63 cells (Figure 2(d) and (e)). Furthermore, to detect the influence of lncRNA ADAMTS9-AS2 on drug sensitivity, we also detected the cell viabilities of OE-lncRNA ADAMTS9-AS2 OS cells in the
presence of PTX, with concentration ranged from 0–40 μg/mL. Compared to OE-vector group, OS cells showed increased sensitivity to PTX in OE-lncRNA ADAMTS9-AS2 group, as the concentration of IC50 was lower (Figure 2(f) and (g)). These findings consistently elucidated the role of lncRNA ADAMTS9-AS2 in OS progression.

LncRNA ADAMTS9-AS2 could inhibit the PETN/PI3K/AKT signaling pathway

We subsequently detected the expression of PETN/PI3K/AKT signaling pathway, which was highly related to cell proliferation and drug resistance. As shown in Figure 3, the expression of PTEN protein was dramatically increased, while PI3K and p-AKT proteins were reduced, after the overexpression of lncRNA ADAMTS9-AS2.

MicroRNAs-130a-5p (miR-130a-5p) expression showed negative relationship with lncRNA ADAMTS9-AS2 in OS patients

To identify the way through which lncRNA ADAMTS9-AS2 developed its carcinogenic function, we further predicted that miR-103a-5p might be the potential target of lncRNA ADAMTS9-AS2 via StarBase website. In addition, our data indicated that miR-103a-5p was overexpressed in 76% (38/50) of OS tissues (Figure 4(a)). Similarly, compared with the adjacent normal tissues, the miR-103a-5p expression in OS tumors was remarkably up-regulated (Figure 4(b), \(P < 0.0001 \)). Moreover, The correlation analysis showed that the lncRNA ADAMTS9-AS2 expression was negatively correlated with the miR-103a-5p (Figure 4(c), \(r = -0.6123, P < 0.001 \)).

Table 1. Correlation of lncRNA ADAMTS-9-AS2 expression with clinicopathological factors in osteosarcoma.

Clinicopathological features	Number of cases	lncRNA ADAMTS-9-AS2 expression	\(P^* \)
		Low (n=25)	High (n=25)
Age (years)			
<18	28	13	15
≥18	23	12	10
Gender			
Male	31	17	14
Female	19	8	11
Tumor size (cm)			
>5	17	12	5
≤5	33	13	20
Anatomic site			
Humerus/scapula/rib	15	8	7
Femur/fibula/tibia	35	17	18
Histological differentiation			
Well	20	6	14
Moderate	17	9	8
Poor	13	10	3
Enneking stage			
I	16	4	12
II	23	13	10
III	11	8	3
Distant metastasis			
Yes	11	9	2
No	39	16	23
LDH (U/L)			
<500	30	16	14
≥500	20	9	11
ALP (U/L)			
<500	34	14	20
≥500	16	11	5

*\(P < 0.05 \) indicated statistically significant.
MicroRNAs-130a-5p is the downstream target of lncRNA ADAMTS9-AS2 in OS

As lncRNAs have been acknowledged to regulate expression of certain miRNAs by sponging them at specific binding sites. The binding sites between lncRNA ADAMTS9-AS2 and the miR-130a-5p were also illustrated (Figure 5(a)). More importantly, the results of luciferase reporter assay confirmed that miR-130a-5p was predicted to be the potential downstream target of lncRNA ADAMTS9-AS2 (Figure 5(b)). In addition, RIP assay showed a significantly higher abundance of microRNA-130a-5p in the ADAMTS9-AS2 group, while no evident change was observed after the binding sites in ADAMTS9-AS2 were mutated (Figure 5(c)). To further explore the association between lncRNA ADAMTS9-AS2 and miR-130a-5p, a luciferase reporter assay was performed. The results showed that the luciferase activity increased significantly when the binding sites were mutated, indicating that miR-130a-5p was the downstream target of lncRNA ADAMTS9-AS2.

Figure 2. Overexpression of lncRNA ADAMTS9-AS2 suppresses cell growth and increases sensitivity to PTX in OS cells: (a) the expression level of lncRNA ADAMTS9-AS2 in OS cell lines (143B, Saos-2, MG-63, HOS, os-732 and U2-OS cells) and normal Hfob1.19 cell line, detected by RT-qPCR assay, ((b) and (c)) the upregulation efficiency of lncRNA ADAMTS9-AS2 by specific-plasmids interference in OS cell lines, ((d) and (e)) the effect of lncRNA ADAMTS9-AS2 on proliferation of OS cells in vitro using CCK-8 assay, and ((f) and (g)) the effect of lncRNA ADAMTS9-AS2 on PTX sensitivity of OS cells using CCK-8 assay. All experiments were repeated at least three times.

***P<0.001.

Figure 3. LncRNA ADAMTS9-AS2 could regulate the PTEN/PI3K/AKT signaling pathway: the expression of drug resistance–related PTEN, PI3K, AKT, and p-AKT proteins via Western blotting.
Ren et al.

and miR-130a-5p, we increase the expression of miR-130a-5p in OE-lncRNA ADAMTS9-AS2 MG-63 cells, using miR-130a-5p mimics (Figure 5(d)). From the results of CCK-8 assay, miR-130a-5p could partly rescue the influence on cell proliferation and drug sensitivity induced by lncRNA ADAMTS9-AS2 overexpression (Figure 5(e) and (f)). Taken together, these findings suggest that miR-130a-5p might be a downstream gene of lncRNA ADAMTS9-AS2 in OS.

Discussion

OS, a common type of malignant cancer, is one of the deadly diseases for mankind. To date, PTX is a widely used chemotherapy drug in treatment of various cancers, including OS. However, the presence of primary or acquired PTX resistance contributed more to the high death rate of OS. In recent year, the biological technologies and researches had made a significant progress, but the underlying mechanisms related to PTX resistance was still unclear.

Identifying the differentiate expressed genes would be a promising way to clarify the precise molecular mechanism of PTX resistance. Emerging studies confirmed that IncRNAs have critical function in the chemotherapy resistance of various cancer, including gastric cancer, esophageal cancer, and hepatocellular cancer.
Recently, numerous studies identified lncRNA ADAMTS9-AS2 as a tumor suppressor gene, including gastric cancer\(^\text{25}\) and colorectal cancer.\(^\text{26}\) For example, Pan et al.\(^\text{26}\) revealed that the ADAMTS9-AS2/miR-32/PHLPP2 regulatory axis might act as an important therapeutic target for the treatment of colorectal cancer. Similarly, in this study, the results of RT-qPCR assay indicated that the expression level of lncRNA ADAMTS9-AS2 was lower than that in the adjacent normal tissues. After statistical analysis, we further discovered that the OS patients with ADAMTS9-AS2 down-regulation were more likely to have larger tumor size, poor histological differentiation, the advanced Enneking stage, distant metastasis, and shorter survival time. Taken together, lncRNA ADAMTS9-AS2 might function as a tumor suppressor in OS progression.

To further conform the biological function of lncRNA ADAMTS9-AS2 in OS development, we constructed the lncRNA ADAMTS9-AS2-overexpressed OS cells via plasmids transfection. The results of CCK-8 assay indicated that overexpression of lncRNA ADAMTS9-AS2 could markedly inhibit cell proliferation ability of OS. Moreover, we discovered that up-regulation of lncRNA ADAMTS9-AS2 significantly increased cellular susceptibility to PTX in both Saos-2 cells and MG-63 cells. Taken together, these results consistently exhibited that lncRNA ADAMTS9-AS2 was closely associated with the tumor growth and drug resistance of OS, but its potential regulated mechanisms remained unclear.

Phosphatase and tensin homolog (PTEN) is closely related to tumor proliferation inhibition and apoptosis induction, which is a negative regulator of PI3K/AKT signaling pathway.\(^\text{27,28}\) More importantly, increasing studies identified that the PI3K/AKT signaling pathway could activate the NF-κB signaling pathway, which was involved in up-regulating the expression level of drug resistance related P-gp protein.\(^\text{29}\) For instance, miR-19b-3p had been proved to inhibit the PI3K/AKT signaling pathway contributed to the reversal of drug resistance.
saracatinib-resistance in breast cancer. Therefore, in this study, the Western blotting assay was applied to determine whether PTEN-P38K/Akt pathway was involved in lncRNA ADAMTS9-AS2-induced PTX resistance of OS cells. And our data revealed that overexpression of lncRNA ADAMTS9-AS2 could lead to PTEN up-regulated, while P38K and p-AKT proteins were significantly down-regulated, indicating that lncRNA ADAMTS9-AS2 might inhibit cell proliferation and enhance PTX sensitivity via suppressing PTEN-P38K/AKT pathway.

Moreover, to further research the downstream of lncRNA ADAMTS9-AS2 on regulating OS cells, we screened in the StarBase and identified miR-130a-5p as the downstream gene of lncRNA ADAMTS9-AS2. In fact, miR-130a-5p was initially deciphered with a role in promoting cell proliferation, migration, and invasion in various cancers, such as glioma and gastric cancer. Interestingly, Sun et al. discovers that miR-130a-5p could exert anti-tumor effects via binding to SOX4, while SOX4 is identified as an important regulatory factor of P38K/AKT signaling pathway. In addition, another study demonstrated that miR-130a exerted neuroprotective effects against ischemic stroke through activating PTEN/P38K/AKT pathway. Therefore, we hypothesized that lncRNA ADAMTS9-AS2 would increase the sensitivity to PTX in OS cells via regulating miR-130a-5p/P38K/AKT axis. In this study, we found that miR-130a-5p was up-regulated in OS tissues, and its expression level was negatively related to lncRNA ADAMTS9-AS2. In addition, we successfully validated miR-130a-5p as lncRNA ADAMTS9-AS2 target downstream gene via luciferase reporter assay. Furthermore, we discovered that supplement of miR-130a-5p mimics could partly rescue the influence on cell proliferation and drug sensitivity induced by lncRNA ADAMTS9-AS2 overexpression.

However, there are still some limitations in this research. First, the potential downstream of lncRNA ADAMTS9-AS2/miR-130a-5p axis was not fully clarified. Second, the in vivo experiments need further exploration to confirm the biological role of lncRNA ADAMTS9-AS2 in OS progression. Third, in this study, we only elucidated the association between the expression level of lncRNA ADAMTS9-AS2 and the clinicopathological features of OS patients, but without knowledge of sensitivity and specificity for lncRNA ADAMTS9-AS2 in prognosis prediction of OS patients. In total, these data consistently indicated that lncRNA ADAMTS9-AS2 could function as a critical regulator in overcoming PTX resistance of OS cells via regulating miR-130a-5p/P38K/AKT axis.

Conclusion

To sum up, this study confirmed that lncRNA ADAMTS9-AS2 sponged miR-130a-5p, then elicited its impact on cell proliferation and drug sensitivity in OS via regulating PTEN-P38K/Akt pathway, which presents a new clue to help figure out the potential cure for patients with OS in the future.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

Ethical approval for this study was obtained from the institutional ethical review board of Gansu Provincial People’s Hospital, Gansu Province, China.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed consent

Written informed consent was obtained from all subjects before the study.

ORCID iD

Xiaohui Chen https://orcid.org/0000-0002-5064-5224

References

1. Moore DD and Luu HH (2014) Osteosarcoma. *Cancer Treatment and Research* 162: 65–92.
2. Wycislo KL and Fan TM (2015) The immunotherapy of canine osteosarcoma: A historical and systematic review. *Journal of Veterinary Internal Medicine* 29(3): 759–769.
3. Zhou W, Hao M, Du X et al. (2014) Advances in targeted therapy for osteosarcoma. *Discovery Medicine* 17(96): 301–307.
4. He H, Ni J and Huang J (2014) Molecular mechanisms of chemoresistance in osteosarcoma (review). *Oncology Letters* 7(5): 1352–1362.
5. Yang Z, Li X, Yang Y et al. (2016) Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death & Disease 7(9): e2389.

6. Iyer MK, Niknafs YS, Malik R et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics 47(3): 199–208.

7. Chen F, Yan L, Wang J et al. (2019) Upregulated long noncoding RNA ENST00000470447.1 inhibits cell migration and invasion and predicts better disease-free survival of oral cancer. Head & Neck 41(9): 2883–2891.

8. Zhou B, Li L, Li Y et al. (2018) Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106: 850–857.

9. Hu Y, Yang Q, Wang L et al. (2018) Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Bioscience Reports 38(3): BSR20180375.

10. Wang Y, Zhang L, Zheng X et al. (2016) Long noncoding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Letters 382(2): 137–146.

11. Shi YF, Lu H and Wang HB (2019) Downregulated lncRNA ADAMTS9-AS2 in breast cancer enhances tamoxifen resistance by activating microRNA-130a-5p. European Review for Medical and Pharmacological Sciences 23(4): 1563–1573.

12. Yan Y, Xu Z, Chen X et al. (2019) Novel function of lncRNA ADAMTS9-AS2 in promoting temozolomide resistance in glioblastoma via upregulating the FUS/MDM2 ubiquitination axis. Frontiers in Cell and Developmental Biology 7: 217.

13. Su P, Mu S and Wang Z (2019) Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA and Cell Biology 38(2): 170–175.

14. Peng W, Deng W, Zhang J et al. (2018) Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochemical and Biophysical Research Communications 503(2): 815–821.

15. Lu Q, Shan S, Li Y et al. (2018) Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 32(7): 3957–3967.

16. Xu CH, Xiao LM, Liu Y et al. (2019) The lncRNA HOXA11-AS promotes glioma cell growth and metastasis by targeting miR-130a-5p/FOXM1. European Review for Medical and Pharmacological Sciences 23(1): 241–252.

17. Xian X, Tang L, Wu C et al. (2018) miR-23b-3p and miR-130a-5p affect cell growth, migration and invasion by targeting CITED5 via the Wnt/beta-catenin signaling pathway in gastric carcinoma. Oncotargets and Therapy 11: 7503–7512.

18. Gianferante DM, Mirabello L and Savage SA (2017) Germline and somatic genetics of osteosarcoma—Connecting aetiology, biology and therapy. Nature Reviews Endocrinology 13(8): 480–491.

19. Yan GN, Lv YF and Guo QN (2016) Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Letters 370(2): 268–274.

20. De Furia MD (1997) Paclitaxel (Taxol(R)): A new natural product with major anticancer activity. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 4(3): 273–282.

21. Meng Z, Lv Q, Lu J et al. (2016) Prodrug strategies for paclitaxel. International Journal of Molecular Sciences 17(5): 796.

22. Zeng L, Liao Q, Zou Z et al. (2018) Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric cancer cells through the PI3K/AKT/mTOR signaling pathway. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 51(3): 1221–1236.

23. Kang M, Ren M, Li Y et al. (2018) Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. Journal of Experimental & Clinical Cancer Research 37(1): 171.

24. Hu H, Yang L, Li L et al. (2018) Long non-coding RNA KCNQ1OT1 modules oxaliplatin resistance in hepatocellular carcinoma through miR-7-5p/ABCC1 axis. Biochemical and Biophysical Research Communications 503(4): 2400–2406.

25. Pan H, Guo C, Pan J et al. (2019) Construction of a competitive endogenous RNA network and identification of potential regulatory axis in gastric cancer. Frontiers in Oncology 9: 912.

26. Pan H, Pan J, Song S et al. (2019) Identification and development of long non-coding RNA-associated regulatory network in colorectal cancer. Journal of Cellular and Molecular Medicine 23(8): 5200–5210.

27. Miao Y, Zheng W, Li N et al. (2017) MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Scientific Reports 7: 41942.

28. Hafsi S, Pezzino FM, Candido S et al. (2012) Gene alterations in the P3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). International Journal of Oncology 40(3): 639–644.

29. OzesON, Mayo LD, Gustin JA et al. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748): 82–85.
30. Jin J, Sun Z, Yang F et al. (2018) miR-19b-3p inhibits breast cancer cell proliferation and reverses saracatinib-resistance by regulating PI3K/Akt pathway. *Archives of Biochemistry and Biophysics* 645: 54–60.

31. Sun Z, Gao S, Xuan L et al. (2020) Long non-coding RNA FEZF1-AS1 induced progression of ovarian cancer via regulating miR-130a-5p/SOX4 axis. *Journal of Cellular and Molecular Medicine* 24(7): 4275–4285.

32. Mehta GA, Parker JS, Silva GO et al. (2017) Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer. *Breast Cancer Research and Treatment* 162(3): 439–450.

33. Zheng T, Shi Y, Zhang J et al. (2019) MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. *Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie* 117: 109117.