Mike L. Grant
The Royal Horticultural Society, RHS Garden, Wisley, Woking, Surrey GU23 6QB, England

Nicola H. Toomey and Alastair Culham
Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS, England

ADDITIONAL INDEX WORDS. chloroplast DNA, nuclear DNA, ITS, trnL-F, phylogeny, Ericaceae, molecular marker, DNA sequence, ‘Everlasting’, ‘Nosuchianum’, ‘Brilliant Abbe’

ABSTRACT. Two putative hybrids between *Kalmia* and *Rhododendron*, their suspected progenitor species and related taxa were submitted to DNA sequencing of cpDNA trnL-F and nrDNA ITS regions in order to test whether there was DNA sequence evidence both for hybridization per se and for the direction of the cross should one be evident. Comparison of eight DNA sequences from these putative hybrids with *Rhododendron* and *Kalmia* species showed clear evidence of origin within *Rhododendron*. No evidence of *Kalmia* DNA was detected. These putative intergeneric hybrids appear to be mutants of *Rhododendron* and not of hybrid origin.

The hybrid of *Kalmia* and *Rhododendron* is the most genetically distant cross recorded in the *Ericaceae*. Three selections are attributed to this intergeneric hybrid. To date there have been no investigations into the status of these hybrids although the plants persist in cultivation.

Of several claimed intergeneric hybrids in the *Ericaceae*, the only ones that stand up to rigorous inspection are within tribe *Phyllodoceae Drude*, Engl. & Prantl. These are × *Kalmiothamnus*, × *Phylliopsis* and × *Phyllothamnus* and they represent crosses between *Kalmiopsis*, *Phyllodoce* and *Rhodothamnus*. This interfertility reflects the close relationship between these three genera. The only cross in this group that has not yet been performed successfully is that between *Kalmiopsis* and *Phylloco* (Starling, 1982).

Intergeneric crosses in other sections of the *Ericaceae* have all proved to be less resilient to taxonomic re-alignments. × *Gaulnettya* resides in *Gaultheria* now that *Pernettya* is sunk, × *Ledodendron* resides in *Rhododendron* now that *Luedum* is sunk and *Bruckenthalia* × *Erica* resides in *Erica* now that *Bruckenthalia* is sunk. × *Erieculluna* merely proved to be an abnormal *Erica*, not a hybrid with *Calluna*. This leaves us with one outstanding putative hybrid, that between *Kalmia* and *Rhododendron*. The former belongs to tribe *Phyllodoceae* and the latter to tribe *Rhodoreae* DC. ex Duby. Kron et al. (2002) show that these two tribes are quite distantly related. For example, they are no more related to each other than either is to *Empetreae* D. Don (which includes *Empetrum*). However, a hybrid between the two genera has been reported on two occasions with different *Rhododendron* parents.

The first reputed cross between *Kalmia* and *Rhododendron* was made in the 1950s by Halfdan Lem (1885-1969) in the USA, allegedly between *K. latifolia* and *R. williamsianum* (Pierce, 1974). The hybrid was reported as having “pinkish-white, cup-like flowers of all kalmias, but with a larger leaf resembling the male parent, *R. williamsianum*.” (Pierce, 1974). This established both the diagnostic characters of the hybrid and the direction of the cross. The one plant resulting from the hybridization was named ‘No Suchianum’ (sometimes styled as ‘Nosuchianum’) in jest by Warren Berg in 1973. Unfortunately, when the cultivar name was brought to the attention of International Cultivar Registration Authority for *Rhododendron* in 1996 it was noted that it fell foul of Article 17.9 of the *International Code of Nomenclature for Cultivated Plants* (Trehane et al., 1995) because it is styled in Latin. Therefore a new name, ‘Everlasting’, was coined by Pierce (Murray, 1996 in litt.). It is quite widely cultivated by enthusiasts in north-west USA (Halligan, 1994) and is favored for its long flowering season, perhaps caused by its apparent sterility, and its seemingly curious origin. ‘Everlasting’ is widely regarded as

Table 1. Accession data for plant material used in DNA sequencing.

Name	Source	Origin	Accession no.	ITS	trnL-F	EMBL ID no.
‘Everlasting’ a and b	RHS Garden, Wisley	Cult.	W20012690	AJ626912	AJ626918	
Hillier taxon a and b	Hillier Gardens & Arboretum	Cult.	H19841501	AJ626913	AJ626919	
K. latifolia a	RHS Garden, Wisley	Cult.	W951916	AJ626914	AJ626920	
K. latifolia b	RHS Garden, Wisley	Cult.	W960618	AJ626915	AJ626921	
R. williamsianum a	RHS Garden, Rosemoor	Cult.	R960393	AJ626905	AJ626916	
R. williamsianum b	RHS Garden, Rosemoor	Cult.	R888391	AJ626906	AJ626917	
R. williamsianum c	Glendoick Gardens	Wild	None	AJ626907	AJ626923	
R. maximum	Glendoick Gardens	Wild	None	AJ626910	AJ626924	

Received for publication 10 Dec. 2003. Accepted for publication 23 Feb. 2004. The authors would like to thank the following who have supplied either information, expertise or plant material: Patty Boardman, Allen Coombes, Sue Costa, Peter Cox, Janet Cubey, Gert Fortgens, Pamela Harling, Jonathan Hutchinson, Alan Leslie, Jay Murray, David Rae, Ashley Rambotham, Barry Starling, and Colin Tomlin. We would also like to thank two anonymous referees for their comments.
Table 2. EMBL accessions used in analysis of the cpDNA trnL-F region

Species	EMBL ID	Source
Bejaria aestuans	AF394264	Gao et al., 2003
Cassiope fastigiata	AF394265	Gao et al., 2003
Ledum palustre var. palustre	AF394252	Gao et al., 2003
Menziesia ciliacyx var. multiflora	AF452223	Gao et al., 2003
Menziesia pilosa	AF452224	Gao et al., 2003
Rhododendron albidiflorum	AF394266	Gao et al., 2003
Rhododendron albrechtii	AF452214	Gao et al., 2003
Rhododendron boninense	AB038835, AB038885	Ikenoue H.
Rhododendron brachycarpum	AB038847, AB038897	Ikenoue H.
Rhododendron camtschaticum	AF394258	Gao et al., 2003
Rhododendron championae var. ovatifolium	AF452189	Gao et al., 2003
Rhododendron chilanthumense	AB038825, AB038875	Ikenoue H.
Rhododendron decandrum	AB038809, AB038859	Ikenoue H.
Rhododendron degronianum	AB038845, AB038895	Ikenoue H.
Rhododendron dilatatum	AB038807, AB038857	Gao et al., 2003
Rhododendron duclouxii	AF452210	Gao et al., 2003
Rhododendron ellipticum	AF394262	Gao et al., 2003
Rhododendron ferrugineum	AF394254	Gao et al., 2003
Rhododendron fortunei	AF394247	Gao L.M.
Rhododendron hancockii	AF452192	Gao et al., 2003
Rhododendron henryi	AF452193	Gao et al., 2003
Rhododendron kiusianum	AF394263	Gao et al., 2003
Rhododendron latoucheae	AF394262	Gao L.M.
Rhododendron luteum	AF394263	Gao et al., 2003
Rhododendron mackenzianum	AF452196	Gao et al., 2003
Rhododendron mariesii	AB038800, AB038850	Ikenoue H.
Rhododendron mesochalum	AB038843, AB038893	Ikenoue H.
Rhododendron molle	AB038841, AB038891	Ikenoue H.
Rhododendron moupinense	AF452194	Gao et al., 2003
Rhododendron murinolatum	AB038894	Ikenoue H.
Rhododendron nertiforum	AF394248	Gao et al., 2003
Rhododendron nipponicum	AF452215	Gao et al., 2003
Rhododendron occidentale	AF396216, AF396215	Fritsch P.W., Morton C.M., Chen T., Meldrum C.
Rhododendron oldhamii	AB038832, AB038882	Ikenoue H., Kurashige Y., Ueda K.
Rhododendron ovatum	AF452204	Gao et al., 2003
Rhododendron pachypodum	AF394249	Gao L.M.
Rhododendron pentaphyllum	AB038840, AB038890	Ikenoue H., Kurashige Y., Ueda K.
Rhododendron ponticum	AF452222	Gao et al., 2003
Rhododendron primuliflorum	AF394255	Gao et al., 2003
Rhododendron quinquefolium	AB038838, AB038888	Ikenoue H.
Rhododendron racemosum	AF394250	Gao L.M.
Rhododendron redowskianum	AF394257	Gao et al., 2003
Rhododendron reticulatum	AB038824, AB038874	Ikenoue H., Kurashige Y., Ueda K.
Rhododendron rubripilosum	AB038830, AB038880	Ikenoue H., Kurashige Y., Ueda K.
Rhododendron sanum	AB038804, AB038853	Ikenoue H.
Rhododendron santapau	AF452207	Gao et al., 2003
Rhododendron schlippenbachii	AF452213	Gao et al., 2003
Rhododendron semibarbatum	AF452206	Gao et al., 2003
Rhododendron serpyllifolium	AB038834, AB038884	Ikenoue H., Kurashige Y., Ueda K.
Rhododendron simii	AF452216	Gao et al., 2003
Rhododendron spiciferum	AF452208	Gao et al., 2003
Rhododendron spinuliferum	AF452209	Gao et al., 2003
Rhododendron stamineum	AF394261	Gao L.M.
Rhododendron stamineum var. gauzihiense	AF452197	Gao et al., 2003
Rhododendron subestipitum	AF394290	Gao et al., 2003
Rhododendron trichocladum	AF394253	Gao et al., 2003
Rhododendron tsugisianense	AB038871, AB038821	Ikenoue H.
Rhododendron tsujiophyllum	AF452217	Gao et al., 2003
Rhododendron vialii	AF452205	Gao et al., 2003
Rhododendron wadanum	AF452218	Gao et al., 2003
Rhododendron weyrichi	AB038802, AB038852	Ikenoue H.
Rhododendron yakamontanum	AB038820, AB038870	Ikenoue H.
Table 3. EMBL accessions used in analysis of nrDNA ITS region

Species	EMBL ID	Source
Gaultheria itoana	AF432430	Tsai C.C., Chen C.H., Chou C.H.
Gaultheria taiwaniana	AF432429	Tsai C.C., Chen C.H., Chou C.H.
Kalmia angustifolia	U48599	Kron K.A., King J.M.
Kalmia canadensis	U48603	Kron K.A., King J.M.
Kalmia hirsuta	U48601	Kron K.A., King J.M.
Kalmia latifolia	U48600	Kron K.A., King J.M.
Kalmia micropyllica	U48598	Kron K.A., King J.M.
Kalmia occidentalis	U48602	Kron K.A., King J.M.
Rhododendron alabamense	AF072478	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron albiflorum	RA28558S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron anthopogon	RA5828SR	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron arborescens	AF072477	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron argyrophyllum	RA5828S	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron atlanticum	AF072479	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron breviperatum	AF285853	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron camtschaticum	RC5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron canadense	RCRRNAIT9	Volckaert G.
Rhododendron ellipticum	AF285841	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron ferrugineum	RF5828S1	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron flavum	AF072483	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron formosanum	AF297190	Shih B.-L., Yang Y.-P., Chaw S.-M.
Rhododendron hongkongense	RH5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron hyperythrum	AF297192	Shih B.-L., Yang Y.-P., Chaw S.-M.
Rhododendron javanicum	RJ5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron kaempferi	AB080082	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron kwakamii	AF432420	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron kiusianum	RRRNAIT3	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron lamprophyllum	AF285855	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron lastostylum	AF285845	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron leptanum	RL5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron luteum	AF072485	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron mariesii	AF285844	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron molle	RM5828SR	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron morii	AF297198	Shih B.-L., Yang Y.-P., Chaw S.-M.
Rhododendron moulmainense	RM5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron occidentale	AF072487	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron oldhamii	AF285843	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron ovatum	AF393424	Gao L.M., Li D.L., Yang J.B.
Rhododendron ponticum	RP5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron pseudochrysanum	AF297196	Shih B.-L., Yang Y.-P., Chaw S.-M.
Rhododendron reticulatum	RRRNAIT6	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron rubropilosum	AF285849	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron rubropunctatum	AF432442	Tsai C.C., Chen C.H., Chou C.H.
Rhododendron schlippenbachii	RSRRNAIT8	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron semibarbatum	AB080083	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron simii	AF285848	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron taiwanalpinum	AF352479	Tsai C.C., Chen C.H., Huang S.C.
Rhododendron tschonoskii	RRRNAIT4	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron tussilugum	RT5828S	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
Rhododendron vaseyi	AF072491	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron viscosum	AF072492	Scheiber S.M., Jarret R.L., Robacker C.D.
Rhododendron wadanum	RWRRNAIT5	Volckaert G.
Rhododendron yedoense	RYRRNAIT1	Aert R., Hyam R., Chamberlain D., Karp A., Volckaert G.
being an intergeneric hybrid on the basis of its claimed parentage, apparent sterility and the seemingly Kalmia-like characters of a shallow saucer-shaped corolla and widely spreading stamens. Despite the corolla and stamen characters there do not appear to be any other features of the flower that suggest an affinity with Kalmia. ‘Everlasting’ was reputedly crossed with R. arboreum subsp. delavayi resulting in a cultivar called ‘Brilliant Abbé’ (Anon, 1985). The latter reference erroneously lists one parent as ‘Brilliancy’ (Murray, 1996 in litt.).

The second reputed cross between Kalmia and Rhododendron is represented by a plant (hereafter referred to as the Hillier taxon) in the collection at the Sir Harold Hillier Gardens and Arboretum in England. It was thought to represent a hybrid between K. latifolia and R. maximum originating in America (Hillier and Sons, 1981) but subsequent editions (e.g., Hillier and Coombes, 2002) have been more cautious and listed it under R. maximum. Likewise, Jaynes (1997) has questioned its intergeneric status. The Hillier taxon is also grown at Arboretum Trompenburg in the Netherlands where it is listed as an intergeneric hybrid (van Hoey Smith, 2001) and at the US National Arboretum (Jaynes, 1997). The reported evidence for hybridity is on the basis of the tendency of its flower buds to abort (Coombes, pers. comm.; Fortgens, pers. comm.) and its long petiole relative to length of leaf lamina, the latter character is reminiscent of K. latifolia. It has been suggested that its reluctance to flower is because Rhododendron flower buds develop on shoots of the previous season whereas those of Kalmia develop on shoots of the current season.

Claims for intergeneric status of various hybrids are made on a fairly regular basis by horticulturists. Such pronouncements are usually worth investigating, not least because of what they may tell us about the relatedness of the genera in question. These two cases demand investigation because, if their parental status could be proved, they would represent the most distant intergeneric hybrids in Ericaceae and this would have important taxonomic implications. Additionally, as Kalmia and Rhododendron are widely grown and appreciated in ornamental horticulture, there would be interesting potential breeding consequences between these two attractive woody genera. As International Cultivar Registration Authority for the genus Rhododendron, the Royal Horticultural Society has an interest in putative hybrids between Rhododendron and other genera. We therefore decided to submit material of the two available cultivars and related species to DNA sequencing of the trnL-F region and ITS regions in order to test whether there was DNA sequence evidence both for hybridization per se and for the direction of the cross should one be evident.

Materials and Methods

Plant material was obtained from the Royal Horticultural Society’s gardens at Wisley and Rosemoor (England), the Sir Harold Hillier Gardens and Arboretum (England) and Glendoick Gardens (Scotland) (Table 1). Leaves were collected on to silica gel and stored at room temperature.

DNA was extracted using the CTAB technique (Doyle and Doyle, 1987) and stored in TE buffer at 5 °C while in use. PCR amplification of the nrDNA ITS regions followed Compton et al. (1998a) and cpDNA trnL-F followed Compton et al. (1998b). DNA sequencing, sequence editing and DNA sequence alignment was performed following Compton et al. (1998b).

Additional DNA sequences were available for both ITS and trnL-F regions from the EMBL/Genbank/DDBJ database of nucleotide sequences. The analysis of these sequences, in addition to our own new sequences, was necessary in order to answer the question of relationships in the absence of a published phylogeny. Species and identification numbers are given in Tables 2 and 3.

Alignments were saved as Nexus files and analyzed in PAUP*4.0b10 (Swofford, 2002) under Parsimony. The trnL-F region of the 1440 most parsimonious trees resulting from analysis of the cpDNA trnL-F sequence data. Heavy lines indicate bootstrap support >50%
analysis consisted of 79 taxa including 2 outgroups (Cassiope fastigiata and Bejaria aestuans) and 930 characters. The ITS analysis consisted of 64 taxa including two outgroups (Gaultheria itoana and G. taiwaniana) and 709 characters. Analyses were conducted separately because the relationship of hybrid material would differ with the pattern of inheritance of the DNA region and conflict would result in artifactually low resolution of the cladogram. Heuristic searches were performed using 100 sequence addition replicates and TBR. Most parsimonious trees were stored and a strict consensus established. Clade support was established using 1000 Bootstrap replicates using the fast swapping option.

Results

The cpDNA trnL-F analysis resulted in 1440 most parsimonious trees of 329 steps (C.I. 0.805, R.I. 0.908) differing in the placement of a small number of species within groups that showed very little sequence divergence. The first most parsimonious tree is shown here (Fig. 1) with bootstrap support marked on appropriate branches. Rhododendron is a paraphyletic group that contains three species (R. camtschaticum, R. redowskianum, R. albrechtii) distantly related to the main generic diversification (clade A). Within this clade species of Ledum and Menziesia are nested. Clade A contains two main groups one of which includes both putative intergeneric hybrids. ‘Everlasting’ is identical in sequence to R. brachycarpum and the Hillier taxon is identical in sequence to R. maximum.

The nrDNA ITS analysis resulted in 231655 most parsimonious trees of 532 steps (C.I. 0.742, R.I. 0.847) differing in the placement of a small number of species within groups that showed very little sequence divergence. The first most parsimonious tree is shown here (Fig. 2) with bootstrap support marked on appropriate branches. Rhododendron forms a monophyletic group in which R. camtschaticum is a sister lineage to the rest of the genus. The same two major groups can be identified within Rhododendron even though the species sampling is somewhat different. Again, both putative hybrids occur in the same clade. ‘Everlasting’ has no exact match (note R. brachycarpum was not available for this analysis) but groups with R. williamsianum and its close relatives. The ITS analysis lacked R. brachycarpum as material was not available. The combination of both chloroplast and nuclear DNA

Discussion

‘Everlasting’, Pierce (1974) records Kalinia latifolia as the seed parent of ‘Everlasting’, although he is not the originator of this cultivar. Evidence from cpDNA trnL-F sequence data indicates a seed parent in Rhododendron and an exact match with R. brachycarpum for one replicate of ‘Everlasting’. The inference is that at least the seed parent was either R. brachycarpum, a close relative, or hybrid, of it. This indicates that the record of the direction of the hybrid by Pierce can not be correct without unusual inheritance of the cpDNA from the male parent. The evidence from nrDNA ITS again shows very close affinity with Rhododendron species, particularly the R. williamsianum group. The ITS analysis lacked R. brachycarpum as material was not available. The combination of both chloroplast and nuclear DNA
evidence indicates that *Kalmia* has not contributed to the genetic makeup of ‘Everlasting’ but that the cultivar is derived from within a group of closely related *Rhododendron* species.

Hillier taxon. The Hillier taxon is of putative *R. maximum* × *K. latifolia* origin (Hillier and Sons, 1981). Both samples of this material group with *R. maximum* in the cpDNA trnL−F analysis and have identical sequence to it. This would allow *R. maximum* as the putative seed parent. The evidence from nrDNA ITS again shows very close affinity with *Rhododendron* species and again an exact match of one sample (Hillier taxon a) with *R. maximum.* The ITS data show no evidence of hybridization with *Kalmia* and indicate strongly that this taxon is not of hybrid origin. Like ‘Everlasting’ only *Rhododendron* shows evidence of genetic contribution to this taxon.

Hybrid status. Evidence of female parentage for each of the two putative hybrids was established using cpDNA trnL−F sequencing based on the usual female-only mode of inheritance of this DNA (Palmer, 1985) and a neutral pattern of nucleotide substitution (Bakker et al., 2000). It is evident that the putative hybrids both are nested well within the genus *Rhododendron* and consequently are inferred to have had a *Rhododendron* seed parent. The sequence divergence among closely related species is very low and sometimes zero. The consequence is that we can be sure of the female *Rhododendron* origin of each putative hybrid but can confirm the identity only to species group with confidence. The nrDNA ITS sequences can be expected to show inheritance from both parents, particularly as these plants are the F1 generation and there has been no chance of segregation. *Kalmia* and *Rhododendron* show considerable divergence in ITS sequence and recombination of these differing ITS types would be easily detected. In the Hillier taxon and ‘Everlasting’ the nrDNA ITS sequences show a close match with species in *Rhododendron.* Again, the levels of sequence divergence allow identification of the parents to species group only.

The stated origin of ‘Everlasting’ as *Kalmia latifolia* (female) and *Rhododendron williamsonianum* (male) (Pierce, 1974) is refuted by the DNA sequence evidence. Neither sequence shows origin in *Kalmia* and both show identity with at least one species of *Rhododendron* that was sampled. The Hillier taxon also shows no sign of *Kalmia* in either DNA sequence and a match to *Rhododendron* maximum in both sequences.

When treated as a *Rhododendron,* ‘Everlasting’ can be identified to subsection *Pontica* Sleumer in section *Ponticum* G. Don in the key to subgenus *Hymenanthes* (Blume) K. Koch (Chamberlain, 1982), except for the corolla lobe to tube ratio. The morphology of this plant fits the placement of the cultivar into subsection *Pontica* very well. Thus we see concordance of the molecular and morphological evidence. The open corolla tube is probably the result of a mutation in the genes controlling floral development. The Hillier taxon sometimes produces flower buds but these abort, therefore the lack of available flowers prevents this being keyed out. The evidence suggests that this, like ‘Everlasting,’ is a chance mutant of a *Rhododendron.*

The balance of evidence, both indirect and supports the recognition of these unusual plants as *Rhododendron* mutants. The desire to see new and novel hybrids between two genera of the spectacular shrubby *Ericaceae* may have influenced uncritical reports of hybridization. It is notable that in neither case has anyone directly claimed in print to have made the hybrid. The driving evidence to suggest hybridity has been minor changes in floral structure, leaf shape and lack of seed production.

Literature Cited

Anon. (1985) Additions to the International Rhododendron Register 1984/5. Rhododendrons 1985/86 with Magnolias and Camellias: p. 96–112.

Bakker, F.T., A. Culham, R. Gomez-Martinez, J. Carvalho, J.A. Compton, R. Dawtrey, and M. Gibby. 2000. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)—trn F (GAA) regions. Mol. Biol. Evol. 17(8):1146–1155.

Chamberlain, D.F. 1982, A revision of *Rhododendron.* II. Subgenus *Hymenanthes.* Notes Roy. Bot. Gard. Edinburgh 39(2):209–486.

Compton, J.A., A. Culham, J.G. Gibbings, and S.L. Jury. 1998a. Phylogeny of *Actaea* including *Cimicifuga (Ranunculaceae)* inferred from nrDNA ITS sequence variation. Biochem. Syst. Ecol. 26:185–197.

Compton, J.A., A. Culham, and S.L. Jury. 1998b. Reclassification of *Actaea* to include *Cimicifuga* and *Souloua* (*Ranunculaceae*) phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL−F sequence variation. Taxon 47:593–634.

Doyle, J.J., and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

Gao, L.M., D.Z. Li, and C.Q. Zhang. 2003. Phylogenetic relationships of *Rhododendron* section *Azaleastrum* (*Ericaceae*) based on ITS sequences. Acta Phytotax. Sin. 41(2):173–179.

Halligan, P. 1994. Northwesterners rate their rhodies. J. Amer. Rhododendron Soc. 48(4):182–185.

Hillier, J. and A. Coombes (eds.). 2002. The Hillier manual of trees and shrubs. David & Charles, Devon.

Hillier and Sons. 1981. Hillier’s manual of trees and shrubs. David & Charles, Devon.

Jaynes, R.A. 1997. *Kalmia—Mountain laurel and related species.* Timber Press, Corvallis, Ore.

Kron, K.S., W.S. Judd, P.F. Stevens, D.M. Crayn, A.A. Anderberg, P.A. Gadek, C.J. Quinn, and J.L. Luteyn. 2002. Phylogenetic classification of *Ericaceae:* Molecular and morphological evidence. Bot. Rev. (Lancaster) 68(3):335–423.

Palmer, J.D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19:325–354.

Pierce, L.J. 1974. An unusual intergeneric cross. Quart. Bull. Amer. Rhododendron Soc. 28(1):45.

Starling, B.N. 1982. Bigeneric hybrids within *Ericaceae.* The Plantsman 4(2):91–99.

Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Assoc., Sunderland, Mass.

Trehane, P., C.D. Brickell, B.R. Baum, W.L.A. Hetterscheid, A.C. Leslie, J. McNell, S.A. Spongberg, and F. Vruggman. 1995. International code of nomenclature for cultivated plants—1995. Quarterjack Publ., Wimbborne, Dorset, England.

van Hoey Smith, J.R.P. 2001. Arboretum Trompenburg. Strichting Bevordering, Holland.