A specific mutation in TBL1XR1 causes Pierpont syndrome

Heinen, Charlotte A.; Jongejan, Aldo; Watson, Peter J.; Redeker, Bert; Boelen, Anita; Boudzovitch-Surovtseva, Olga; Forzano, Francesca; Hordijk, Roel; Kelley, Richard; Olney, Ann H.

Published in:
JOURNAL OF MEDICAL GENETICS

DOI:
10.1136/jmedgenet-2015-103233

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Heinen, C. A., Jongejan, A., Watson, P. J., Redeker, B., Boelen, A., Boudzovitch-Surovtseva, O., Forzano, F., Hordijk, R., Kelley, R., Olney, A. H., Pierpont, M. E., Schaefer, G. B., Stewart, F., van Trotsenburg, A. S. P., Fliers, E., Schwabe, J. W. R., & Hennekam, R. C. (2016). A specific mutation in TBL1XR1 causes Pierpont syndrome. JOURNAL OF MEDICAL GENETICS, 53(5), 330-337. https://doi.org/10.1136/jmedgenet-2015-103233

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
ORIGINAL ARTICLE
A specific mutation in TBL1XR1 causes Pierpont syndrome

Charlotte A Heinen,1,2 Aldo Jongejan,3 Peter J Watson,4 Bert Redeker,5 Anita Boelen,1 Olga Boudzovitch-Surovtseva,1 Francesca Forzano,6 Roel Hordijk,7 Richard Kelley,8 Ann H Olney,9 Mary Ella Pierpont,10 G Bradley Schaef er,11 Fiona Stewart,12 A S Paul van Trotsenburg,2 Eric Fliers,1 John W R Schwabe,4 Raoul C Hennekam13

ABSTRACT
Background The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome.

Methods We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function.

Results We identified a single heterozygous missense variant, c.1337A>C (p.Tyr446Cys), in transducin β-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. Expression in the lymphocytes of patients compared with the controls was additionally examined. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function.

Conclusions This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 may cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.

INTRODUCTION
In 1998 Pierpont and coworkers described two unrelated boys with remarkably similar faces (high forehead, underdeveloped mid-face, narrow palpebral fissures and anteverted nares), short stature, hearing loss, developmental delay and distinctive palmar and plantar fat pads. Two similar patients were subsequently reported, including one with a choroid plexus papilloma, whereupon the condition was named Pierpont syndrome. While several patients resembling Pierpont syndrome have been reported, clinical re-evaluation and molecular analyses have shown that they had either Coffin–Siris or Wiedemann–Steiner syndrome. Initially this caused uncertainty about the phenotype defining Pierpont syndrome, but the characteristics of both Wiedemann–Steiner syndrome and Coffin–Siris syndrome are better known nowadays and allow easy differentiation from the phenotype in the reported patients with Pierpont syndrome. Until now, the cause of Pierpont syndrome has remained unknown. However, de novo autosomal-dominant mutations were suspected to be the most likely cause.

For the present study, we collected DNA from two newly identified and four earlier-reported patients with Pierpont syndrome. We performed whole-exome sequencing in four patients and in the parents of one of them, and identified identical de novo missense mutations in the transducin β-like 1 X-linked receptor 1 (TBL1XR1) gene in all four patients. Sanger sequencing of the two newly diagnosed patients revealed the same mutation. TBL1XR1 is part of the nuclear receptor corepressor (NCOR) complex that plays an essential role in gene transcription.

METHODS
Study cohort
The study cohort consisted of six unrelated patients with Pierpont syndrome (table 1). The clinical diagnosis was based on the combination of the facial characteristics, palmar and plantar fat pads, and global developmental delay (figure 1). The description of patients 1–4 has been published.

Blood samples were obtained from all patients and their (unaffected) parents. Informed consent for the study was obtained from the parents of all patients. The Medical Ethics Committee of the Academic Medical Centre in Amsterdam (NL45117.018.13) approved the study.

Molecular analysis
Targeted enrichment and massive parallel sequencing were performed on genomic DNA extracted from circulating leukocytes of four patients and the
parents of one of them. Enrichment of the whole exome was performed using the Nimblegen SeqCap EZ Library v3.0 (Roche). Each captured library was then loaded on a SOLiD5500xl platform (Applied Biosystems) (patient 20120174 and unaffected parents 20112227 and 20112228, and patients 20112226, 20121069 and 20121072). Paired-end and single-end sequence reads were aligned to hg19 using the Lifescope aligner (V.2.5.1) (Applied Biosystems). Presumed PCR duplicates were discarded using Picard Tools (http://picard.sourceforge.net) followed by base-quality-score recalibration and local realignment for reads mapping to the human genome reference, mean quality and depth, the position of the alternate allele in the target region coverage for 20112226 and the trio was 94.5%, with average sequencing depth on target of 92× and for 20121069 and 20121072, respectively, 90.5% and 92×. Calls of SNPs and small insertions and deletions (INDELs) were based on 18 unrelated exomes using the GATK Unified Genotyper algorithm, and categorised based on their matching abilities of being disease causing. Only variants passing all applied GATK filters, predicted to be a de novo mutation within the trio and disease-causing by KGGSeq were retained.

Protein characterisation

The structure of the WD40 domain of TBL1XR1 was obtained from the Protein Data Bank (PDB accession code 4LG9). For expression in mammalian cells, constructs of TBL1XR1, HDAC3 and GPS2-SMRT chimaera were cloned into the pcDNA3 vector. Transient transfections and protein purifications were performed as described elsewhere. For the TBL1XR1/HDAC3/GPS2-SMRT chimaera complex, the GPS2-SMRT chimaera contained an N-terminal 10×His-3×Flag tag and a tobacco etch virus (TEV) protease cleavage site. HEK293F cells (Invitrogen) were cotransfected with mixtures of both tagged and untagged constructs using polyethylenimine (PEI) (Sigma). To transfect 60 mL of cells, 60 mg DNA total was diluted in 6 mL of phosphate-buffered saline (PBS) (Sigma) and vortexed briefly; 240 μL of 0.5 mg/mL PEI was added, then vortexed briefly, and incubated for 20 min at room temperature, then added to 60 mL cells (final density 1×10⁶ cells/mL). Cells were harvested 48 h after transfection. For the interaction studies the cells were lysed by sonication in 50 mM Tris/Cl pH 7.5, 100 mM potassium acetate, 5% v/v glycerol, 0.3% v/v

Table 1 Main clinical features of presently described individuals with Pierpont syndrome, including updates of the published patients 1 and 2,1,3 and 43

Patient	1	2	3	4	5	6	Total
Age (years)	28	20	12	5.7	10	19	4M/2F
Gender	M	M	M	M	F	F	
Growth parameters at birth*							
Length (cm)	45.7 (<P3)	X	50.0 (P50)	48.5 (P10)	43.0 (<P3)	51 (P75)	
Weight (kg)	3.0 (P25)	3.62 (P50)	2.64 (P10)	2.95 (P25)	2.43 (P3)	2.95 (P25)	
OFC (cm)	35.5 (P75)	X	33.8 (P25)	32.0 (P5)	28.0 (<P3)	33 (P25)	
Growth parameters at age (years)	27	18	12	5.7	10	18	
Height (cm)	147 (<P3)	147 (<P3)	128 (<P3)	100 (<P3)	109 (<P3)	144 (<P3)	
Weight (kg)	36 (<P3)	58 (P10)	30 (P5)	18 (P25)	22 (<P3)	40 (<P3)	
OFC (cm)	53.5 (P10)	44 (<P3)	54 (P50)	45.7 (<P3)	43 (<P3)	56 (P97)	
Intellectual disability†	++	+	++	++	+	+	6/6
Hypotonia	+	+	++	++	+	+	6/6
Brain imaging	−	−	A	EV, CP	A, EV	A	
High anterior hairline	+	+	+	+	+	+	6/6
Narrow palpebral fissures	+	+	+	−	+	+	6/6
Microcornea‡	−	+	−	−	+	+	3/6
Flat malae	+	+	+	+	+	+	6/6
Broad nasal ridge and tip	+	+	+	+	+	+	6/6
Smooth philtrum/thin vermilion	+	+	+	+	+	+	6/6
Teeth	WS, AE	WS	WS	WS, AE	WS, AE	WS, AS	6/6
Large ears	+	+	+	+	+	+	6/6
Hearing loss§	+	+	+	−	++	+	5/6
Scoliosis	+	+	+	+	+	+	6/6
Short fingers/toes	+	+	+	+	+	+	6/6
Palmar/plantar grooves, pillowing	+	+	+	+	+	+	6/6
Marked foetal finger/toe pads	+	+	+	+	+	+	6/6
Subcalcaneal fat pads	+	+	+	+	+	+	6/6

*Centiles between brackets.
†IQ 50–60 ++ + + + + + + 6/6
‡Cornea diameter<10.0 mm.
§Hearing loss was evaluated by audiometry.
+ abnormality present; − abnormality not present; A, central atrophy; AE, abnormal dental eruption; CP, choroid plexus papilloma; EV, enlarged ventricles; OFC, occipital frontal circumference; WS, widely spaced; X, no data available.

Heinen CA, et al. J Med Genet 2016;53:330–337. doi:10.1136/jmedgenet-2015-103233
Triton X-100 and Roche complete protease inhibitor (buffer A); insoluble material was removed by centrifugation. The complex was bound to Flag resin (Sigma), washed three times with buffer A, three times with buffer B (50 mM Tris/Cl pH 7.5, 300 mM potassium acetate, 5% v/v glycerol) and three times with buffer C (50 mM Tris/Cl pH 7.5, 50 mM potassium acetate, 5% v/v glycerol, 0.5 mM tris (carboxyethyl) phosphine (TCEP)). The complex was eluted from the resin by overnight cleavage at 4°C with TEV protease in buffer C.

mRNA expression
We analysed TBL1XR1 mRNA expression in brain tissue (hypothalamus; pituitary gland), in white and brown adipose tissue, in muscle tissue and in liver tissue. In addition we analysed TBL1XR1 RNA expression in lymphocytes of two patients (aged 13 and 20 years, respectively) and four controls (age between 25 and 30 years).

Tissues
Three hypothalami and pituitaries were obtained from the Netherlands Brain Bank in accordance with permission for brain autopsy and the use of human brain material and clinical information for research purposes. Three unfixed, frozen (−80°C) hypothalamus–pituitary specimens were used for mRNA expression. The paraventricular nucleus (PVN) region was cut in serial, coronal 50 μm sections from unfixed frozen hypothalami on a
cryostat and the PVN area macroscopically dissected, collected, and stored at −80°C until processing, as previously reported. RNA was extracted from the PVN and from homogenised pituitaries using TriReagent (Sigma) per manufacturer’s instructions, followed by DNase treatment (Qiagen GmbH, Germany). cDNA was synthesised with an Applied Biosystem Kit. White adipose tissue cDNA was kindly provided by Drs M Serlie and M Kilicarslan (Department of Endocrinology, AMC, Amsterdam) and synthesised from RNA isolated from subcutaneous, periumbilical adipose tissue biopsies from healthy lean men under local anaesthesia (approved by the Medical Ethics Committee of the Academic Medical Centre in Amsterdam). Liver tissue cDNA was kindly provided by Drs M Serlie and P Gilijamse (Department of Endocrinology, AMC, Amsterdam) and synthesised from RNA isolated from liver tissue biopsies obtained during gastric bypass surgery (approved by the Medical Ethics Committee of the University Medical Centre Maastricht). RNA from whole blood of four healthy controls and two patients was isolated using the High Pure RNA Isolation Kit (Roche Molecular Biochemicals, Mannheim, Germany) according to the manufacturer’s protocol. cDNA synthesis was performed using the Transcripter cDNA Synthesis Kit for RT-PCR with oligo d(T) primers (Roche Molecular Biochemicals, Mannheim, Germany). Muscle cDNA was purchased from Clontech, Takara (Mountain View, California, USA). RNA was isolated from liver tissue biopsies obtained during gastric bypass surgery (approved by the Medical Ethics Committee of the University Medical Centre Maastricht) and the samples were kindly provided by Drs E Nascimento, E Broeders, N Bouvy, P Schrauwen and W van Marken Lichtenbelt (Maastricht University). RNA was isolated on the Magna Pure (Roche Molecular Biochemicals, Mannheim, Germany) using the Magna Pure LC mRNA tissue kit. The protocol and buffers supplied with the corresponding kit were applied. cDNA synthesis was performed using the Transcripter cDNA Synthesis Kit for RT-PCR with oligo d(T) primers (Roche Molecular Biochemicals, Mannheim, Germany). Muscle cDNA was commercially available and obtained from Clontech, Takara (Mountain View, California, USA). RNA from whole blood of four healthy controls and two patients was isolated using the High Pure RNA Isolation Kit (Roche Molecular Biochemicals, Mannheim, Germany) according to the manufacturer’s protocol. cDNA synthesis was performed using the Transcripter cDNA Synthesis Kit for RT-PCR with oligo d(T) primers (Roche Molecular Biochemicals, Mannheim, Germany). From every sample a −RT reaction was performed in order to check for genomic DNA contamination.

PCR Primers were designed to amplify TBL1XR1 transcript (NM_024665.4, F: 5'-CCATGCGCAGTCCACATACAG-3', R: 5'-TCCAGCAGTTGGTGAACAGA-3'), product size 126 bp, and annealing temperature 65°C. Real-time PCR was performed using the Lightcycler480 and Lightcycler480SyrbrGreen I Master mix (Roche Molecular Biochemicals, Mannheim). Melting curve analysis was performed and product size was determined by DNA gel analysis. All samples contain mRNA as checked by HPRT expression (hypoxanthine phosphoribosyl transferase, a housekeeping gene). Expression levels in whole blood were quantified using the LinReg software. The mean efficiency was calculated for each assay and samples that had a deviation of more than 5% were excluded. Calculated values were normalised by HPRT expression.
Developmental defects

Figure 3 (A) Transducin β-like 1 X-linked receptor 1 (TBL1XR1) mRNA expression in human pituitary and hypothalamic PVN. (B) TBL1XR1 mRNA expression in human white and brown adipose tissue, liver and muscle tissue. TBL1XR1 transcript PCR product on 2% agarose gel. The expected product is 126 bp. BAT, brown adipose tissue; PIT, pituitary; PVN, paraventricular nucleus; WAT, white adipose tissue.

RESULTS
Study cohort
Patient 5 was the term, first-born child of healthy, non-consanguineous parents. She had intrauterine growth retardation, was hypotonic at birth, and had bilateral hip dislocations. She experienced feeding difficulties with gastrostomy placement in infancy, and followed a markedly delayed motor and cognitive development. She was able to walk with assistance, and had no speech. Formal cognitive testing at age 7 years showed her IQ to be 45. Hearing loss was detected in the first year of life. She gradually developed a progressive thoracolumbar scoliosis requiring rod placement at age 10 years. Her postnatal growth in height and of skull circumference was decreased. Onset of menses was at the age of 11 years. Both her unusual face and the abnormal creases of palms and soles were evident at birth. She has always had mild fat pads anteromedial to both heels.

Patient 6 was the first-born child of healthy, non-consanguineous parents. She was remarkably hypotonic at birth. At that time it was noticed that she had unusual facial morphology, broad thumbs, deep pillowing of palms and soles, and bilateral talipes. Her development was markedly delayed from early on: she never developed any speech and had no sphincter control. Formal cognitive testing was not possible, but her IQ was estimated to be below 35 at age 18 years. She had increasingly decreased growth in height, a relatively large head, low body weight and little subcutaneous fat tissue. She gradually developed pectus excavatum and thoracic scoliosis, but otherwise had no significant health problems.

Molecular analysis
Whole-exome sequencing yielded a single missense mutation c.1337A>C in TBL1XR1 located at 3q26.32, resulting in the amino acid substitution p.Tyr446Cys (Y446C) in all four patients studied, but not in the parents of one of them (see online supplementary table S1). No other potentially pathogenic variant in the same gene was present in nearly all TBL1XR1 proteins, although the equivalent residue is a phenylalanine in the homologous Sif2 protein from Saccharomyces cerevisiae. The structure of the WD40 domain from Sif2 has also been reported. Despite relatively low sequence identity between TBL1XR1 and Sif2, the structures of their WD40 rings itself are similar. Furthermore, the yeast residue equivalent to Y446, f446, adopts a very similar conformation (figure 2B) suggesting a conserved function for this largely non-polar amino acid. To confirm that the Y446C mutation does not grossly perturb the fold and behaviour of TBL1XR1 we examined the ability of the TBL1XR1 to assemble correctly with the GPS2:SMRT:HDAC3 complex. As predicted, the mutant protein was readily expressed and purified and assembled correctly into the TBL1XR1:GPS2:SMRT:HDAC3 complex (figure 2C and D), suggesting that the molecular pathology of the Y446C mutation is an impaired protein–protein interaction with an as yet unidentified molecular partner rather than a failure to fold correctly.

mRNA expression
TBL1XR1 mRNA expression was well visible in the pituitary and the PVN area of the hypothalamus, as well as in liver and muscle tissue and both white and brown adipose tissue, fitting the clinical symptomatology of Pierpont syndrome (figure 3A, B).

Stability of mutated complexes
TBL1XR1 is a highly conserved protein found in all eukaryotes (see online supplementary figure S1). It contains two structured domains: an amino-terminal domain that mediates tetramerisation of the protein and a carboxy-terminal WD40 domain. The TBL1XR1 tyrosine-to-cysteine mutation identified here is located in the WD40 domain on one side of the inner surface of the WD40 ring (figure 2A). Y446 is largely exposed to solvent, and mutation to cysteine would not be expected to significantly perturb the structure of the domain. A tyrosine in this position is found in nearly all TBL1XR1 proteins, although the equivalent residue is a phenylalanine in the homologous Sif2 protein from Saccharomyces cerevisiae. The structure of the WD40 domain from Sif2 was also been reported. Despite relatively low sequence identity between TBL1XR1 and Sif2, the structures of their WD40 rings itself are similar. Furthermore, the yeast residue equivalent to Y446, f446, adopts a very similar conformation (figure 2B) suggesting a conserved function for this largely non-polar amino acid. To confirm that the Y446C mutation does not grossly perturb the fold and behaviour of TBL1XR1 we examined the ability of the TBL1XR1 to assemble correctly with the GPS2:SMRT:HDAC3 complex. As predicted, the mutant protein was readily expressed and purified and assembled correctly into the TBL1XR1:GPS2:SMRT:HDAC3 complex (figure 2C and D), suggesting that the molecular pathology of the Y446C mutation is an impaired protein–protein interaction with an as yet unidentified molecular partner rather than a failure to fold correctly.

Figure 4 Relative expression of transducin β-like 1 X-linked receptor 1 (TBL1XR1) mRNA to hypoxanthine phosphoribosyl transferase (used as reference gene) in leucocytes of patients (closed circles) and controls (open circles). Individual values are depicted and mean values ±SD is represented by a solid line.
TBL1XR1 mRNA expression in whole blood was lower in patients compared with controls (figure 4). The small number of patients available for analysis precludes statistical analysis to determine whether this difference is significant.

DISCUSSION

In this study, we found a single TBL1XR1 missense mutation in six patients with Pierpont syndrome that was absent in their unaffected parents.

TBL1XR1, a member of the WD40 repeat-containing protein family, is composed of 18 exons. The product of TBL1XR1, TBL1XR1 (or TBLR1; 55 595 Da; 514 amino acids), contains a carboxy-terminal WD40 domain containing eight WD40 repeats and an amino-terminal LisH domain that mediates tetramerisation of the protein and its interactions with NCoR/SMRT and GPS2. TBL1XR1 is an essential component of the NCoR/SMRT corepressor complex (figure 2C), which interacts with nuclear hormone receptors, a family of ligand-dependent transcription factors involved in regulation of gene transcription (figure 5). When bound to unliganded nuclear hormone receptors, corepressors mediate silencing of gene transcription by recruiting chromatin-modifying enzymes. When a nuclear hormone receptor is liganded, corepressors dissociate to relieve repression of transcription. In negatively regulated target genes, corepressors are essential for activation of transcription. The WD40 repeats in TBL1XR1 are thought to be involved in the interaction of the corepressor complex with histones stabilising the association of the complex with the chromatin. TBL1XR1 also may play a regulatory role in the NF-κB pathway and Wnt-mediated transcription. NF-κB transcription requires IKKα to phosphorylate SMRT on chromatin, which recruits TBL1XR1 to the gene promoter. During depletion of TBL1XR1, NF-κB transcription and cell survival are compromised. TBL1XR1 also recruits β-catenin to the Wnt target-gene promoter. In the presence of TBL1XR1, β-catenin is able to remove corepressors from the promoter of Wnt target genes by competitive binding, thereby activating transcription.

TBL1XR1 mutations have been implicated in several phenotypes. Recurrent TBL1XR1 mutations have been described in DNA of lymphatic malignancies, including primary central nervous system lymphomas, acute lymphoblastic leukaemia and Sézary syndrome. The precise mechanisms by which TBL1XR1 mutations contribute to tumourigenesis remain unclear, but it has been hypothesised that loss of TBL1XR1 could compromise the ability of corepressor complexes to inhibit receptor activity, leading to increased activation of receptor target genes. In addition, it has been suggested that TBL1XR1 might act as a tumour-suppressor gene in the lymphatic system, and upregulates VEGF-C inducing lymphangiogenesis in oesophageal squamous cell carcinoma. Contrarily, TBL1XR1 has been nominated as a novel breast cancer onco-gene, indicating that any role of TBL1XR1 in tumourigenesis is tissue-specific.

Whole-exome sequencing of 209 children with autism spectrum disorder (ASD) and their parents showed a de novo p.Leu282Pro mutation in TBL1XR1 in one child, who also had intellectual disability. Subsequently, evaluation of 44 candidate genes in 2494 ASD cases identified two de novo TBL1XR1 mutations (p.Leu282Pro, p.Ile397SerfsX19). Apart from intellectual disability, however, these patients had no features in common with Pierpont syndrome (B O’Roak and E Eichler, personal communication 2013). Similarly, a non-dysmorphic patient with intellectual disability, autism and West syndrome was found to have a de novo p.Gly70Asp mutation in TBL1XR1. Three patients, including a mother and child, have been described with a deletion involving only TBL1XR1 in patients who had mild to moderate intellectual disability without autistic behaviour or manifestations of Pierpont syndrome. In addition, three cases with small deletions involving TBL1XR1 and other genes are included in the Decipher database (http://decipher.sanger.ac.uk/). All had intellectual disability, ASD or ASD-like behaviour but lacked physical signs of...
Pierpont syndrome (Z Stark, M Decamp, B Dallapiccola, personal communications, 2014). In one additional published patient the phenotype was attributed to a 2.2 Mb deletion at 3q26.3 involving TBL1XR1, but an updated annotation showed that the deletion did not encompass TBL1XR1. This suggests that the phenotype of individuals with a microdeletion 3q26.3 is caused by a loss of function of TBL1XR1, and consists of intellectual disability and frequently ASD, and a phenotype that shows no resemblance to Pierpont syndrome. It remains at present uncertain whether the abundant hypothalamic and pituitary mRNA expression of wild-type TBL1XR1 reported here is related to the intellectual disability in individuals with deletions.

The differences in phenotype in subjects with the Y446C mutation compared with subjects with whole-gene deletions or other TBL1XR1 mutations suggest different pathogenic mechanisms. The Y446C mutation could act in a dominant negative way, in agreement with our finding that the mutant TBL1XR1 Y446C protein is able to assemble into the HDAC3 corepressor complex. Since TBL1XR1 Y446C can form heterotetramers with wild-type TBL1XR1, TBL1XR1 Y446C will likely be present in most HDAC3 corepressor complexes, and the impaired or inappropriate protein–protein interactions with an as yet unidentified molecular partner will likely be present ubiquitously.

In conclusion, one specific TBL1XR1 missense mutation is responsible for the phenotype in individuals with Pierpont syndrome. The difference in phenotype between non-ASD Pierpont patients with the Y446C mutation in TBL1XR1 and individuals with a complete deletion or other mutation of TBL1XR1 suggests mutation-specific mechanisms of pathogenesis for ASD. Further studies of the pathogenesis in individuals with deletions and mutations in TBL1XR1 could yield useful insights into the pathogenesis of ASD.

Author affiliations
1Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
2Department of Paediatric Endocrinology, Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
3Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
4Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester, UK
5Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
6Medical Genetics Unit, Ospedali Galliera, Genova, Italy
7Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
8Division of Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
9Monroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Centre, Omaha, Nebraska, USA
10Division of Genetics, Children’s Hospitals and Clinics of Minnesota, University of Minnesota, Minneapolis, Minnesota, USA
11Division of Genetics, Arkansas Children’s Hospital, Little Rock, Arkansas, USA
12Division of Medical Genetics, Belfast City Hospital, Belfast, Ireland
13Department of Paediatrics, Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands

Acknowledgements We thank the patients and their families who participated in the study. We are indebted to Drs B O’Roak, E Eichler, Z Stark, M Decamp and B Dallapiccola for their kind help in collecting phenotypic data from cases reported in the literature or in Decipher. We also thank Dr A H van der Spek for providing whole blood samples from healthy controls, Drs M Serlie, P Gijlmaarse and M Kilcian for providing cDNA of liver biopsies and white adipose tissue biopsies and Drs E Nascimento, E Broeders, N Brouy, P Schauew and W van Marken Lichtenbelt for providing biopsies of brown adipose tissue. We thank the help of the Galliera Genetic Bank, member of the Telethon Genetic Biobank Network (Project No. GB12001), funded by Telethon Italy.

Contributors CAH and RCH collected and analysed data, and wrote the manuscript. AJ, BR and RCH performed exome sequencing data validation and mutation analysis. PJW, AB, OB-S and JWRs performed functional studies. FF, RH, RK, AHO, MEP, GB5, FS, ASVP’ and EF collected patient samples and analysed data. RCH conceived the project and supervised the experiments. All authors revised the manuscript critically and approved the final version for publication.

Funding This work was financially supported by an AMC Foundation grant. JWRs is supported by a Senior Investigator Award WT100237 from the Wellcome Trust and a Biotechnology and Biological Sciences Research Council Project Grant BB/J009598/1. JWRs is a Royal Society Wolfson Research Merit Award Holder.

Patient consent Obtained.

Ethics approval Medical Ethics Committee of the Academic Medical Centre in Amsterdam.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES
1 Pierpont M, Stewart F, Gorlin R. Plantar lipomatosis, unusual facial phenotype and developmental delay: a new MCA/MR syndrome. Am J Med Genet 1996;75:18–21.
2 Oudeslujs GG, Jordijk R, Boon M, Sijens PE, Hennekam RC. Plantar lipomatosis, unusual facies, and developmental delay: confirmation of Pierpont syndrome. Am J Med Genet 2005;137A:77–80.
3 Vadiels S, Edelman M, Schneider SJ, Mittler MA. Chondi plexus pachymenina and Pierpont syndrome. J Neuromus Pediatr 2013;11:115–8.
4 Wright EM, Suri M, White SM, de Leeuw N, Vulto-van Silfhout AT, Stewart F, McKee S, Mansour S, Connell FC, Chopra M, Kirk EP, Devriendt K, Reardon W, Brunner H, Donnai D. Pierpont syndrome: a collaborative study. Am J Med Genet 2011;155A:2203–11.
5 Sim JC, White SM, Fitzpatrick E, Wilson GR, Gilijamse P, Mulder WG, van Beurden RC, Jhangiani SN, Muzny DM, Leventer RJ, Delatycki MB, Amor DJ, Lockhart PJ. Expanding the phenotypic spectrum of ARID1B-meditated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency. Orphanet J Rare Dis 2014;9:43.
6 McKenna A, Hanna M, Banks E, Svichavenko A, Cibulski K, Kernisky T, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–303.
7 DePristo MA, Banks E, Poplin R, Gailor K, Maguire JR, Halti C, Phlipakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernisky AM, Sivachenko AY, Cibulski K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:429–31.
8 Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res 2012;40:e53.
9 Watson PJ, Fairall L, Santos GM, Schwab JW. Structure of HDAC3 bound to co-repressor and insitol tetraphosphate. Nature 2012;481:335–40.
10 Bischoff PH, Dekker MJ, Osterhuin W, Kwokke J, Anink JJ, Boelen A, Unmehopa UA, Koper JW, Lamberts SW, Stewart PM, Swaab DF, Fliers E. Expression of 1-beta-hydroxysteroid dehydrogenase type 1 in the human hypothalamus. J Neuroendocrinol 2013;25:425–32.
11 Ramakers CG, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003;339:62–6.
12 Cerna D, Wilson DK. The structure of S12p, a WD repeat protein functioning in the SET3 co-repressor complex. J Biol Mol 2005;351:923–35.
13 Zhang XM, Chang Q, Zeng L, Gu J, Brown S, Basch RS. TBL1R regulates the expression of nuclear hormone receptor co-repressors. BMC Cell Biol 2006;7:31.
14 Oeberi O, Fairall L, Watson PJ, Yang JC, Crimmer Z, Kammann T, Gault BT, Greenwood JA, Gooot JC, Kallenberger BC, Nagy L, Neuhaus D, Schwab JW. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 2011;18:77–84.
15 Hu X, Lazar MA. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 2000;11:6–10.
16 Tagami T, Madison LD, Nagaya T, Jameson JL. Nuclear receptor coactivators activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol 1997;17:3642–8.
17 Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenberg MF. A co-repressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004;116:511–26.
18 Hoberg JE, Yeung E, Mayo MW. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-κappaB transcription and survival. *Mol Cell* 2004;16:245–55.

19 Li J, Wang CY. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. *Nat Cell Biol* 2008;10:160–9.

20 Braggio E, McPhail ER, Macon W, Lopes MB, Schiff D, Law M, Fink S, Sprau D, Giannini C, Dogan A, Forseca R, O’Neill BP. Primary central nervous system lymphomas: a validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. *Clin Cancer Res* 2011;17:4245–53.

21 Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurengen A, Bruno A, Jovet A, Poliaka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghersquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Eichler EE. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. *Nature* 2012;485:246–50.

22 O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot S, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. *Science* 2012;338:1619–22.

23 Anderson E, Eldfors S, Edgren H, Ellonen P, Väkevä L, Ranki A, Mustjoki S. Novel TBL1XR1 mutations in a child with non-specific developmental delay supports its implication in intellectual disability. *Am J Med Genet* 2014;164A:2335–40.

24 Liu L, Lin C, Wang CY. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. *Nat Cell Biol* 2008;10:160–9.

25 Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Fukuoka J, Nishino I, Matsumoto N. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. *J Hum Genet* 2014;59:581–3.

26 Pons L, Cordier MP, Labalme A, Till M, Louvrier C, Schluth-Bolard C, Lesca G, Edery P, Sanlaville-D. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. *Am J Med Genet* 2014;164A:2335–40.

27 Millson A, Lagrave D, Willis MJ, Rowe IR, Lyon E, South ST. Chromosomal loss of 3q26.3–q26.32, involving a partial neurologin 1 deletion, identified by genomic microarray in a child with microcephaly, seizure disorder, and severe intellectual disability. *Am J Med Genet* 2012;158A:159–65.
A specific mutation in \textit{TBL1XR1} causes Pierpont syndrome

Charlotte A Heinen, Aldo Jongsma, Peter J Watson, Bert Redeker, Anita Boelen, Olga Boudzovitch-Surovtseva, Francesca Forzano, Roel Hordijk, Richard Kelley, Ann H Olney, Mary Ella Pierpont, G Bradley Schaefer, Fiona Stewart, A S Paul van Trotsenburg, Eric Fliers, John W R Schwabe and Raoul C Hennekam

\textit{J Med Genet} 2016 53: 330-337 originally published online January 14, 2016
doi: 10.1136/jmedgenet-2015-103233

Updated information and services can be found at:
http://jmg.bmj.com/content/53/5/330

These include:

\textbf{Supplementary Material}
Supplementary material can be found at:
http://jmg.bmj.com/content/suppl/2016/01/14/jmedgenet-2015-103233.DC1

\textbf{References}
This article cites 31 articles, 8 of which you can access for free at:
http://jmg.bmj.com/content/53/5/330#BIBL

\textbf{Open Access}
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

\textbf{Email alerting service}
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

\textbf{Errata}
An erratum has been published regarding this article. Please see next page or:
/content/53/6/430.full.pdf

\textbf{Topic Collections}
Articles on similar topics can be found in the following collections
Open access (183)
Genetic screening / counselling (886)

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Correction

Heinen C, Jongejan A, Watson PJ, et al. A specific mutation in TBL1XR1 causes Pierpont syndrome. *J Med Genet* 2016;53:330–7. doi:10.1136/jmedgenet-2015-103233. In the results section of the abstract and the molecular analysis of the results section the mutation in TBL1XR1 was reported as c.1337A>C. The correct notation is c.1337A>G.

J Med Genet 2016;53:430. doi:10.1136/jmedgenet-2015-103233corr1