On the Existence of a Self-Similar Coarse Graining of a Self-Similar Space

Akihiko Kitada, Tomoyuki Yamamoto, Tsuyoshi Yoshioka and Shousuke Ohmori
Laboratory of mathematical design for materials, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555

Abstract
A topological space homeomorphic to a self-similar space is demonstrated to be self-similar. There exists a self-similar space S whose coarse graining is homeomorphic to S. The coarse graining of S is, therefore, self-similar again. In the same way, the coarse graining of the self-similar coarse graining of S is, furthermore, self-similar. These situations succeed endlessly. Such a self-similar S is generated actually from an intense quadratic dynamics.

Keywords: self-similar set, fractals, dynamical system, Cantor set, coarse graining

1 Introduction

In the fractal sciences, the fine structure of the self-similar space is characterized by the property that every details looks similar with the whole. In the present report, we are oppositely concerned with the coarse structures of a self-similar space, that is, with the problem "what self-similar space can have a coarse graining of it with a self-similarity again?". According to A. Fernández [1], the procedure of the coarse graining or the block construction [2] of a space in the statistical physics corresponds mathematically to that of the construction of a quotient space which is defined by a classification of all points in the space through the identification of the different points based on an equivalence relation.

At first, a sufficient condition for a given topological space to be metrizable and self-similar with respect to the metric is investigated, and, second, the existence of a decomposition space [3] as a coarse graining of a self-similar space S whose self-similarity is defined by a system of weak contractions which is topologically closely related to that defining the self-similarity of S
is discussed in a quite elementary way. As a consequence, we are convinced that there exists a sequence of self-similar coarse graining of a self-similar space even for the quadratic dynamics known to be one of the simplest dynamical system. Finally, it is noted that each step of the sequence can equally generate a topological space characteristic of condensed matter such as dendrite [4].

2 A condition for a topological space to be self-similar

An answer of the problem “for what topological space, can we find a system of weak contractions which makes the space self-similar?” is simply stated as follows.

Proposition. The existence of a self-similar space which is homeomorphic to \((Y, \tau)\) is sufficient for a topological space \((Y, \tau)\) to be a metrizable space and self-similar with respect to the metric.

Proof. Let \((X, \tau_d)\) be self-similar based on a system of weak contractions \(p_j : (X, \tau_d) \to (X, \tau_d), d(p_j(x), p_j(x')) \leq \alpha_j(\eta)d(x, x')\) for \(d(x, x') < \eta, 0 \leq \alpha_j(\eta) < 1, j = 1, \ldots, m\) (\(2 \leq m < \infty\)). That is, \(\bigcup_{j=1}^{m} p_j(X) = X\). Using a homeomorphism \(h : (X, \tau_d) \simeq (Y, \tau)\), we can define a metric \(\rho\) on \(Y\) as

\[\rho(y, y') = d(h^{-1}(y), h^{-1}(y')), \quad y, y' \in Y.\]

The metric topology \(\tau_\rho\) is identical with the initial topology \(\tau\). From the relations 1) and 2) below, the metric space \((Y, \tau_\rho)\) is confirmed to be self-similar by a system of weak contractions \(q_j : (Y, \tau_\rho) \to (Y, \tau_\rho), j = 1, \ldots, m\) where \(q_j\) is topologically conjugate to \(p_j\) with the above homeomorphism \(h\), that is, \(q_j = h \circ p_j \circ h^{-1}\).

1) \[\rho(q_j(y), q_j(y')) = d(h^{-1}(q_j(y)), h^{-1}(q_j(y'))) = d(p_j(h^{-1}(y)), p_j(h^{-1}(y'))) \leq \alpha_j(\eta)d(h^{-1}(y), h^{-1}(y')) = \alpha_j(\eta)\rho(y, y') \quad \text{for} \quad \rho(y, y') < \eta.\]

2) \[\bigcup_{j=1}^{m} q_j(Y) = \bigcup_{j=1}^{m} q_j(h(X)) = h(\bigcup_{j=1}^{m} p_j(X)) = h(X) = Y. \quad \square\]
3 Existence of a self-similar decomposition space

As an application of Proposition, we will show the existence of a self-similar decomposition space of a self-similar space.

Let S be a self-similar, perfect \(\mathbb{[6]}\), zero-dimensional (0-dim) \(\mathbb{[7]}\), compact metric space, and \((X, \tau_d)\) be any compact metric space which is self-similar. Then, there exists a continuous map f from S onto X \(\mathbb{[8]}\), and X is homeomorphic to the decomposition space \((D_f, \tau(D_f))\) of S with a homeomorphism $h : (X, \tau_d) \simeq (D_f, \tau(D_f))$, $x \mapsto f^{-1}(x)$ \(\mathbb{[9]}\). Here, $D_f = \{f^{-1}(x) \subset S; \ x \in X\}$ and $\tau(D_f) = \{U \subset D_f; \ \bigcup_{D \in U} \bigcup_{D \in \{D_f\}} \text{is an open set of} \ S\}$. The decomposition topology $\tau(D_f)$ is identical with a metric topology τ_{ρ} with a metric $\rho(y, y') = d(h^{-1}(y), h^{-1}(y'))$, $y, y' \in D_f$ \(\mathbb{[10]}\). Since the metric space (X, τ_d) is assumed to be self-similar, from Proposition, the decomposition space (D_f, τ_{ρ}) must be self-similar based on a system of weak contractions each of which is topologically conjugate to each weak contraction which defines the self-similarity of X. According to the self-similarity of the selected space X, the decomposition space D_f of S can have various types of self-similarity.

Now, let us consider a special case where the system of contructions defining the self-similarity of the decomposition space D_f of S is topologically related to that defining the self-similarity of S. Let \(\{S_1, \cdots, S_n\}\) be a partition of S \(\mathbb{[3]}\) such that each S_i is a clopen (closed and open) set of S. (Concerning the existence of such partition of S, see Appendix.) Since the metric space S_1 is perfect, 0-dim, compact, it is homeomorphic to the Cantor’s Middle Third Set (abbreviated to CMTS) \(\mathbb{[11]}\) as well as the space S. Therefore, S_1 and S are homeomorphic. Let $f : S \rightarrow S_1$ be a not one to one, continuous, onto map. For example, the map $f : S \rightarrow S_1$ defined as $f(x) = x$ for $x \in S_1$, $f(x) \equiv q_2 \in S_1$ for $x \in S_2$, \ldots, $f(x) \equiv q_n \in S_1$ for $x \in S_n$ is a continuous, onto map. It must be noted that D_f is not trivial decomposition space \(\{\{x\} \subset S; x \in S\}\) because the map f is not one to one \(\mathbb{[12]}\). Since the decomposition space D_f of S is homeomorphic to S_1 \(\mathbb{[3]}\), S must be homeomorphic to D_f. Therefore, from Proposition, D_f is self-similar based on a system of weak contractions each of which is topologically conjugate to each weak contraction which defines the self-similarity of S.

Since the metric space D_f is perfect, 0-dim and compact, the same situation as for the initial space S can take place for the decomposition space
Therefore, continuing this process endlessly, we obtain an infinite sequence of self-similar decomposition spaces or self-similar coarse graining starting from the self-similar space S, namely, a hierarchic structure of self-similar spaces as shown in Fig. 1. In Fig. 1, the above mentioned decomposition space \mathcal{D}_f of S is denoted by \mathcal{D}_1. \mathcal{D}_1 is self-similar due to a system of weak contractions $\{f_j^1 = h^1 \circ f_j \circ (h^1)^{-1} : \mathcal{D}_1 \to \mathcal{D}_1; j = 1, \ldots, m\}$. Here, $\{f_j : S \to S; j = 1, \ldots, m\}$ is a system of weak contractions which defines the self-similarity of S, and h^1 is a homeomorphism from S to \mathcal{D}_1. The decomposition space \mathcal{D}_2 of \mathcal{D}_1 is self-similar based on a system of weak contractions $\{f_j^2 = h^2 \circ f_j^1 \circ (h^2)^{-1} : \mathcal{D}_2 \to \mathcal{D}_2; j = 1, \ldots, m\}$ where h^2 is a homeomorphism from \mathcal{D}_1 to \mathcal{D}_2. We can continue the procedure in this manner.

Statement. \[14, 15, 16\] Let (Z, τ_d) be a compact metric space. If the system $\{f_j : (Z, \tau_d) \to (Z, \tau_d), j = 1, \ldots, m\}$ of weak contractions $d(f_j(z), f_j(z')) \leq \alpha_j(\eta)d(z, z')$ for $d(z, z') < \eta$, $0 < \alpha_j(\eta) < 1$, $\inf_{\eta > 0} \alpha_j(\eta) > 0$, $j = 1, \ldots, m$ satisfies three conditions

i) Each f_j is one to one,

ii) The set $\bigcup_{j=1}^{m} \{z \in Z; f_j(z) = z\}$ is not a singleton,

iii) $\sum_{j=1}^{m} \inf_{\eta > 0} \alpha_j(\eta) < 1$,

then, there exists a perfect, 0-dim, compact $S (\subset Z)$ such that $\bigcup_{j=1}^{m} f_j(S) = S$.

Concludingly, we are convinced of the existence of a sequence as shown in Fig. 1 of self-similar coarse graining of a self-similar space based on the above quadratic dynamics $F_\mu(x)$ with a sufficiently large rate constant $\mu > 0$.

4 Generation of dendrites from each step of the sequence $S, \mathcal{D}_1, \mathcal{D}_2, \cdots$

Since all of the metric spaces $S, \mathcal{D}_1, \mathcal{D}_2, \cdots$ in Fig. 1 are perfect, 0-dim and compact, there exist continuous maps \[8\], k from S onto the dendrite δ as a compact metric space, k^1 from \mathcal{D}_1 onto δ, k^2 from \mathcal{D}_2 onto δ, \ldots, respectively \[17\]. The decomposition spaces $\delta_S = \{k^{-1}(x) \subset S; x \in \delta\}$

4
of S due to f, $\delta_{D^1} = \{(k^1)^{-1}(x) \subset D^1; x \in \delta\}$ of D^1 due to k^1, $\delta_{D^2} = \{(k^2)^{-1}(x) \subset D^2; x \in \delta\}$ of D^2 due to k^2, \cdots are homeomorphic to the dendrite δ, and therefore, $\delta_S, \delta_{D^1}, \delta_{D^2}, \cdots$ must have the dendritic structure in common (Fig. 3). For example, the self-similar space S generated from a quadratic dynamics $F_\mu(x) = \mu x(1 - x)$ with a sufficiently large $\mu > 0$ is mathematically demonstrated to be able to form a dendrite through the coalescence or the rearrangement of constituents of S.

Appendix

Let S be a perfect, 0-dim T_0-space. Then, for any n, there exist n non-empty clopen (closed and open) sets S_1, \cdots, S_n of S such that $S_i \cap S_{i'} = \emptyset$ for $i \neq i'$ and $\bigcup_{i=1}^n S_i = S$. For any n, there exist n non-empty clopen sets S_{i_1}, \cdots, S_{i_n} of S such that $S_{i_j} \cap S_{i_{j'}} = \emptyset$ for $j \neq j'$ and $\bigcup_{j=1}^n S_{i_j} = S_i$. We can continue in this manner endlessly.

proof) To use the mathematical induction, let the statement hold for $n - 1$. Since S is perfect, the open set S_{n-1} has at least two distinct points a and b. Since S is a T_0-space, there exists an open set u containing a such that $b \notin u$ without loss of generality. Since S is 0-dim, there exists a clopen set v which contains the point a and is contained in the open set $u \cap S_{n-1}$. Since $b \in S_{n-1} - v$, the clopen set $S_{n-1} - v$ is not empty. Thus, we obtain a desired n-partition $\{S_1, \cdots, S_{n-2}, v, S_{n-1} - v\}$ of S. Concerning the subspace S_i, it suffices to remember that any non-empty open set in a perfect space is perfect again. □

Acknowledgment

The authors are grateful to Professor H. Fukaishi of Kagawa University for useful discussions.

References

[1] A. Fernández: J. Phys. A 21 (1988) L295.

[2] S.K. Ma: *Modern theory of critical phenomena* (Benjamin, 1976) p.246.

[3] Let (A, τ) be a topological space. A partition \mathcal{D} of A is a set $\{\emptyset \neq D \subset A\}$ of nonempty subsets of A such that $D \cap D' = \emptyset$ for $D \neq D'$, $D, D' \in \mathcal{D}$.
and \(\bigcup \mathcal{D}(= \bigcup_{D \in \mathcal{D}} D) = A \). A decomposition space \((\mathcal{D}, \tau(\mathcal{D})) \) of \((A, \tau) \) is a topological space whose topology \(\tau(\mathcal{D}) \) on a partition \(\mathcal{D} \) of \(A \) is defined by

\[
\tau(\mathcal{D}) = \{ U \subset \mathcal{D} : \bigcup_{D \in U} D \in \tau \}.
\]

The space \((\mathcal{D}, \tau(\mathcal{D})) \) is a kind of quotient space of \((A, \tau) \). See, for the detailed discussions, S.B. Nadler Jr., *Continuum theory* (Marcel Dekker, 1992) p.36.

[4] A dendrite is a metric space which is locally connected, connected and compact. The reference in [3], p.165.

[5] Topological spaces \((E, \tau) \) and \((F, \tau') \) are said to be homeomorphic provided that there exists a continuous, one to one, open (or closed) map from \(E \) onto \(F \). If \(E \) and \(F \) are homeomorphic, all of the topological properties in \(E(F) \) are preserved in \(F(E) \). See, for example, A. Kitada: *Isoukuukan to sono ouyou* (Akakura Shoten, 2007) p.24 [in Japanese].

[6] A topological space \((A, \tau) \) is said to be perfect provided that any set \(\{x\} \) composed of single point \(x \in A \) is not an open set, that is, \(\{x\} \notin \tau \).

[7] A topological space \((A, \tau) \) is said to be 0-dim provided that at any point \(x \in A \), and for any open set \(U \) containing \(x \), there exists a closed and open set (so-called a clopen set) \(u \) containing \(x \) such that \(u \subset U \). See, for the detailed discussions, W. Hurewicz and H. Wallman, *Dimension Theory* (Princeton University Press, Princeton, 1941) p.10.

[8] The reference in [3], p.106 and p.109.

[9] The reference in [3], p.44. The decomposition space \(\mathcal{D}_f \) of \(S \) can have various types of topological structure. For example, if \(X \) is a dendrite (the reference in [3], p.165), also \(\mathcal{D}_f \) must be dendrite.

[10] To topologize the set \(\mathcal{D}_f \), we use the metric \(\rho \) defined by means of the homeomorphism \(h \) rather than the Vietoris topology (see, for example, A. Illanes and S.B. Nadler Jr., *Hyperspaces* (Marcel Dekker, 1999) p.9) which has been customarily employed for the topological discussions of the phenomena in the Chaos-Fractal sciences (see, for example, J. Banks: Chaos, Solitons & Fractals 25 (2005) 681). Since \(X \) and \(\mathcal{D}_f \) are homeomorphic, the employment of the metric topology \(\tau_\rho \) which is identical with the decomposition topology \(\tau(\mathcal{D}_f) \) seems to be quite natural.
[11] The reference in [3], p.109.

[12] One of the simplest example of such decomposition \mathcal{D}_f is as follows.
Let the self-similar, perfect, 0-dim, compact metric space S be CMTS itself and let the partition \{S_1, S_2\} of S be the set \{CMTS \cap[0, 1/3], CMTS \cap[2/3, 1]\}. Then, the set \{${f^{-1}(x)} \subset$ CMTS $\ , x \in S_1$\} where $f^{-1}(x) = \{x\} \subset X$ for $x \in S_1 - \{q\}$ and $f^{-1}(q) = \{q\} \cup S_2$, is a decomposition \mathcal{D}_f of CMTS.

[13] R.L. Devaney: *An introduction to chaotic dynamical systems* (Westview Press, 2003) 2nd ed., p.35.

[14] A. Kitada and Y. Ogasawara: Chaos, Solitons & Fractals 24 (2005) 785; A. Kitada and Y. Ogasawara: Chaos, Solitons & Fractals 25 (2005) 1273.

[15] A. Kitada, T. Konishi and T. Watanabe: Chaos, Solitons & Fractals 13 (2002) 363.

[16] S. Nakamura, T. Konishi and A. Kitada, J. Phys. Soc. Jpn. 64 (1995) 731.

[17] It is noted that continuous maps k, k^1, k^2, \cdots must not be one to one. In fact, if they are one to one, they must be homeomorphisms between 0-dim (i.e., totally disconnected) spaces $S, \mathcal{D}^1, \mathcal{D}^2, \cdots$ and a connected space δ. It is impossible.
Figure 1: A hierarchic structure of self-similar spaces. \(h^i, i = 1, 2, \cdots \) are homeomorphisms. \(f_j, f_j^1, f_j^2, \cdots \) are weak contractions such that \(\bigcup_{j=1}^{m} f_j(S) = S \), \(\bigcup_{j=1}^{m} f_j^1(D^1) = D^1 \), \(\bigcup_{j=1}^{m} f_j^2(D^2) = D^2 \), \cdots \), respectively.
Figure 2: a) $F_\mu(x) = \mu x(1 - x), \quad \mu > 4, \quad x \in [0, 1]$. b) The quadratic dynamics $F_\mu(x)$ defines a system of contractions $\{f_j : [0, 1] \to [0, 1], j = 1, 2\}$ which satisfies three conditions i), ii), iii) in Statement in the text. In fact, $\bigcup_{j=1,2} \{x \in [0, 1]; f_j(x) = x\} = \{0, a\}$.
Figure 3: Generation of dendrites from each step of the sequence S, D^1, D^2, \ldots. $\delta, \delta_S, \delta_{D^1}, \delta_{D^2}, \ldots$ are dendrites.