THE SINFONI Mg II PROGRAM FOR LINE EMITTERS (SIMPLE): DISCOVERING STARBURSTS NEAR QSO SIGHT LINES

Nicolas Bouche, Michael T. Murphy, Céline Péroux, Richard Davies, Frank Eisenhauer, Natascha M. Förster Schreiber, and Linda Tacconi

Received 2007 April 28; accepted 2007 September 12; published 2007 October 11

ABSTRACT

Low-ionization transitions such as the Mg II λ2796/2803 doublet trace cold gas in the vicinity of galaxies. It is not clear whether this gas is part of the interstellar medium of large protodisks, part of dwarfs, or part of entrained material in supernova-driven outflows. Studies based on Mg II statistics, e.g., stacked images and clustering analysis, have invoked starburst-driven outflows where Mg II absorbers are tracing the denser and colder gas of the outflow. A consequence of the outflow scenario is that the strongest absorbers ought to be associated with starbursts. We use the near-IR integral field spectrograph SINFONI to test whether starbursts are found around z ~ 1 Mg II absorbers. For 67% (14 out of 21) of the absorbers with rest-frame equivalent width $W_{\lambda2796} > 2\AA$, we do detect Hα in emission within ±200 km s$^{-1}$ of the predicted wavelength based on the Mg II redshift, and with impact parameter ranging from 0.2" to 6.7" from the QSO. The star formation rate (SFR) inferred from Hα is 1–20 M$_\odot$ yr$^{-1}$, i.e., showing a level of star formation larger than in M82 by a factor of >4 on average. Our flux limit (3 σ) is $f_{\text{flux}} < 1.2 \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$, corresponding to a SFR of ~0.5 M$_\odot$ yr$^{-1}$, much below past ground-based Hα surveys of absorption-selected galaxies. We find evidence (at >95%) for a correlation between SFR and equivalent width, indicating a physical connection between starburst phenomena and gas seen in absorption. In the cases where we can extract the velocity field, the host galaxies of Mg II absorbers with $W_{\lambda2796} > 2\AA$ reside in halos with mean mass ($\log M_h(M_\odot) \sim 11.2$, in good agreement with clustering measurements.

Subject headings: cosmology; observations — galaxies: evolution — galaxies: halos — intergalactic medium — quasars: absorption lines

Online material: color figures

1. INTRODUCTION

In the era of large spectroscopic surveys such as SDSS (York et al. 2000), the Mg II λ2796/2803 doublet seen in background QSO spectra is particularly useful for selecting thousands of absorbing galaxies (e.g., York et al. 2006). Galaxies selected via their Mg II λ2796/2803 doublet have been used as proxies for studying H I–selected galaxies at z < 1.5 (e.g., Rao et al. 2006).

It is not clear whether this cold gas is part of the interstellar medium of large spirals (Wolfe et al. 1986), part of the halos of galaxies (Bahcall & Spitzer 1969), or part of dwarf galaxies (York et al. 1986) akin to the Magellanic Clouds. An alternative scenario for absorption-selected galaxies is that the gas seen in absorption is part of cold gas clumps in the host-galaxy halos entrained in outflows produced by supernovae (SNe) (Nulsen et al. 1998; Schaye 2001). Most likely all three scenarios play a role, but in what proportion for a given equivalent width or H i column density?

Using cross-correlation techniques, Bouche et al. (2006) statistically constrained the halo mass of ~2000 Mg II host galaxies, finding that the host halo mass (M_h) decreases with increasing Mg II rest equivalent width ($W_{\lambda2796}$). Given that the equivalent width must be correlated with the line-of-sight velocity width, Δv, as also verified observationally by Ellison (2006), these results imply that M_h and Δv are anticorrelated. This seems to show that the clouds responsible for the absorption are not virialized; otherwise, a M_h–Δv correlation would have been measured. A natural explanation for this is that the cold gas originates from SN-driven outflows, in which case the velocity width Δv may be related to the outflow kinematics or may be a measure of the mass outflow rate. In a few cases, evidence for superwinds is seen from the absorption profile (Bond et al. 2001; Ellison et al. 2003). Others, e.g., Prochter et al. (2006) and Martin (2006), arrived at the same conclusion that superwinds play a significant role in Mg II absorbers from very different perspectives.

The most important implication from the starburst scenario is that the selection of galaxies via the Mg II absorption signature may be equivalent to selecting starburst-producing superwinds. Equivalently, nondetections of the Hα signature of a starburst would enable one to rule out the starburst scenario, while the presence of Hα emission is no unambiguous proof of starburst-driven winds.

In this Letter, we report the first results of our “SINFONI Mg II Program for Line Emitters” (SIMPLE), which is aimed at detecting Hα from the starburst galaxy using the integral field unit (IFU) SINFONI (Eisenhauer et al. 2003) available at the Very Large Telescope (VLT). The advantages of IFUs include the possibility of detecting the Mg II host at impact parameters smaller than the seeing disk, and of measuring the two-dimensional kinematics of galaxies.

We present our sample selection in § 2 and results in § 3. Throughout, we use the $h = 0.7$, $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$ cosmology.

2. SAMPLE SELECTION

Our sample of Mg II–selected galaxies is selected from the SDSS/2QZ databases and from the catalog of absorption-line
systems of Ryabinkov et al. (2003) with the only physical criterion $W_{\text{max}} > 2$ Å. We then ensured that the corresponding Hα emission line would fall inside the SINFONI wavelength range and away from sky OH emission lines. The $W_{\text{max}} > 2$ Å criterion was used for the following two reasons. First, in the superwind scenario, the strongest absorbers (as measured by $W_{\text{max}} > 2$ Å) are expected to have the largest star formation rates, hence the largest Hα fluxes. Second, the $W_{\text{max}} > 2$ Å criterion is known to select the hosts with the smallest impact parameters, $\rho < 30 \ h^{-1} \ kpc$ (e.g., Steidel 1995; Bouché et al. 2006). At $z \sim 1$, this corresponds to $\sim 4''$, which means that the host galaxy will fall within the field of view of SINFONI (8'').

We have obtained SINFONI observations toward 21 Mg II absorbing galaxies all with absorption redshift $z_{\text{abs}} = 1$, i.e., corresponding to the J-band filter. We focused on $z \sim 1$ systems because (1) this redshift range is close to the range used in Bouché et al. (2006) and (2) our flux sensitivity is enhanced in the J band compared to that in the K band. The latter point is due to the gain in luminosity distance compared to the loss in raw instrument throughput. For each QSO field, we took 4 × 600 s exposures, placing the QSO in the four quadrants of the field of view. The total exposure time for the host galaxy thus varies between 10 and 40 minutes, depending on its location with respect to the QSO. The observations were all taken in seeing-limited mode with 0.125'' pixels, in moderate (optical) seeing conditions ($1'' - 1.5''$), yielding a point-spread function (PSF) of 0.8''-1.2'' in the J band.

The data reduction is based on pairwise subtraction of the frames as in Förster Schreiber et al. (2006) using the MPE SINFONI pipeline (SPRED; Abuter et al. 2006 and references therein) and the OH sky line removal scheme of Davies (2007). The wavelength solution is obtained using the Ar lamp frames, and the absolute wavelength is obtained directly from the OH sky emission lines. Flux calibration is performed using telluric standard stars.

3. Results

From the SINFONI data cubes, we detect an Hα emitter within $±200 \ km \ s^{-1}$ of the predicted location from the Mg II redshift in 14 of the 21 fields down to a flux limit of $4 \times 10^{-18} \ erg \ s^{-1} \ cm^{-2} (1'' \ s^{-1})$ (see Table 1). In other words, we have a 67% detection rate. The undetected hosts are either fainter than our flux limit or outside the field of view. Figure 1 shows the Hα flux maps for all of the detected host galaxies. In all frames, the QSO PSF (typically 0.8''-1.2'' FHWM) was subtracted from the Hα flux maps and is shown as contours. As seen from Figure 1, the impact parameters range from 0.2'' to 4'' (1 to 25 kpc), with one at 0.7'' (J0841+2339). The very strong absorber ($W_{\text{2796}} = 4.5$ Å) toward the QSO 2QZ J0226−28 is detected with an impact parameter of 0.2'', well within the seeing disk. We can rule out the possibility of this emission line being from the QSO. Indeed, the emission line at 1.327 μm corresponds to 4185 Å in the rest frame of the QSO and therefore does not correspond to any known atomic transition. Furthermore, the emission line is clearly spatially offset from the QSO centroid. This shows that it is possible to decouple the intervening galaxy and the QSO owing to the information contained in the IFU data cube.

It is extremely unlikely that all the 14 emission lines shown in Figure 1 be something else in relation to other intervening systems along the line of sight. For the strongest emitters (J0448, J0302, J0822, J0943), we do also detect [N II] λ6583 and [S II] λλ6717, 6731, therefore lifting any ambiguity. In the cases where only one line is detected, we can reject the other possibilities (O II, O III, Hβ) for the following reasons.

Table 1

Sight Line	z_{abs}	W_{2796} (Å)	logN_{H} (cm$^{-2}$)	PSF (arcsec)	b (arcsec)	ρ (kpc)	$f_{\text{Hα}}$ (erg s$^{-1}$ cm$^{-2}$)	SFR ($M_{\odot} \ yr^{-1}$)	
SDSS J014717.76+125808.8 ...	1.503	1.03906	4.025	1	0.9	1.9	15	$(1.7 \pm 0.4) \times 10^{-16}$	10
2QZ J022620.4−285751.2 ...	2.171	1.0208	4.515	...	0.7	0.25	2	$(1.5 \pm 0.3) \times 10^{-16}$	8
2QZ J024824.4−301944.0 ...	1.399	0.7906	2.455	...	0.7	3.0	24	$(4.7 \pm 1.1) \times 10^{-17}$	1.3
2QZ J030249.6−321600.0 ...	0.898	0.8217	2.27	...	0.9	3.5	27	$(1.6 \pm 0.3) \times 10^{-16}$	5.0
J042703.7−30253.5 ...	2.168	1.03450	2.005	1	0.7	2.6	20	$(4.4 \pm 1.0) \times 10^{-17}$	2.6
J044821.8+09501.7 ...	2.115	0.83920	3.169	1	0.8	1.8	14	$(3.8 \pm 0.8) \times 10^{-16}$	16
SDSS J082238.78+24318.9 ...	1.6200	0.81049	2.749	1	0.9	3.1	24	$(4.7 \pm 0.9) \times 10^{-16}$	15
SDSS J083932.99+111206.6 ...	2.696	0.78740	3.32	0	1.0	3.7	29	$(1.2 \pm 0.2) \times 10^{-16}$	3.5
SDSS J084119.83+233904.9 ...	1.5080	0.81193	1.974	1	0.8	6.7	54	$(1.0 \pm 0.9) \times 10^{-16}$	2.8
SDSS J094309.66+103400.6 ...	1.2390	0.99646	3.525	1	0.8	3.0	24	$(3.3 \pm 0.7) \times 10^{-16}$	17
SDSS J142253.31+00149.0 ...	1.0830	0.90969	3.185	1	0.8	1.5	12	$(1.2 \pm 0.3) \times 10^{-16}$	5.0
SDSS J144104.91+044348.4 ...	1.1120	1.03878	2.22	1	0.7	1.4	11	$(4.5 \pm 1.0) \times 10^{-17}$	2.6
SDSS J233551.10+151453.2 ...	0.8920	0.85568	3.308	1	1.0	2.1	17	$(6.5 \pm 1.4) \times 10^{-17}$	2.3

* A “1” indicates that the system meets the Rao et al. (2006) criteria for being a DLA.

* The 3σ upper limits for the nondetections are computed for an unresolved source spread over ~200 pixels, spread over 32 spatial pixels and spectral FHWM = 6 pixels = 9 Å (i.e., $R_{\text{rot}} = 0.4'' \sim 3 \ kpc$, and FHWM = 250 km s$^{-1}$). The same dust-correction was applied to the SFR limits.
[O III] λ5007 is a doublet easily identifiable at the SINFONI resolution $R \sim 2200$. [O III] λ3727 would not be resolved, but that would put the galaxy at a redshift higher than the QSO emission redshift. In most cases, the same argument applies for Hβ. When not, we have checked the QSO spectrum for possible corresponding absorbers (Mg ii, Fe ii) and found nothing in the QSO spectrum at the corresponding location.

After more than two decades, only < 100 absorption-selected galaxies have been identified in emission, and mostly at $z \approx 1$ (e.g., Kulkarni et al. 2006 and references therein) using broad-galaxies have been identified in emission, and mostly at $z \leq 1$. Some absorbers have been identified more easily (Bergeron & Boissé 1991; Steidel et al. 1994; Le Brun et al. 1997) than low-redshift ($z < 1$) Mg ii absorbers have been identified more easily (Le Brun et al. 1997) than low-z and high-z damped Lyα absorbers (DLAs), which are all also Mg ii absorbers (Rao et al. 2006). Our 67% detection rate of the host Hα emission is thus in contrast to most previous Hα studies of absorption-selected galaxies since our sample of strong Mg ii absorbers ($W_{\lambda 2796} > 2$ \AA) is dominated by DLA “candidates” meeting the criterion of Rao et al. (2006) (see Table 1) and is due to several factors. If our careful avoidance of OH sky emission lines plays a significant role, it is the SINFONI throughput that enabled us to reach flux limits unavailable previously from the ground, reaching 1.2×10^{-17} erg s$^{-1}$ cm$^{-2}$ or a SFR of $\sim 0.5 M_\odot$ yr$^{-1}$ at $z = 1$ in less than 1 hr. For comparison, previous Hα surveys for $z < 2$ DLAs include the ground-based surveys of, e.g., Mannucci et al. (1998), unveiling several candidates down to 1.4×10^{-16} erg s$^{-1}$ cm$^{-2}$ (3 σ); van der Werf et al. (2000), unveiling several candidates down to 1.7×10^{-16} erg s$^{-1}$ cm$^{-2}$ (3 σ); Bunker et al. (1999), showing no detection down to $(7-16) \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$ (3 σ); the HST NICMOS survey of a $z = 0.656$ DLA ($W_{\lambda 2796} = 1.5 \AA$) by Bouché et al. (2001), showing no detections down to 3.7×10^{-17} erg s$^{-1}$ cm$^{-2}$ (3 σ); and the NICMOS survey of a $z = 1.89$ DLA by Kulkarni et al. (2001), showing no detection down to 1.4×10^{-17} erg s$^{-1}$ cm$^{-2}$ (3 σ).

The large number of Hα detections in this survey shows the relatively high star formation rates of the host galaxy given our shallow exposures. The averaged integrated Hα luminosity for our sample is $L_{\rm H\alpha} \approx 6.4 \times 10^{41}$ erg s$^{-1}$ (median 4.2×10^{41} erg s$^{-1}$), uncorrected for extinction. This is about ~ 4 times that of the starburst M82 whose raw $L_{\rm H\alpha}$ is 1.5×10^{41} erg s$^{-1}$ (Lehnert et al. 1999). If we adopt a statistical correction of $A_\nu = 0.8$ mag as derived for local star-forming and starburst galaxies of similar Hα luminosities (Kennicutt 1998; Buat et al. 2002), we infer an average (median) SFR of $\sim 12 (7) M_\odot$ yr$^{-1}$ using the Kennicutt (1998) flux conversion for a Salpeter IMF, and $\sim 4 (3) M_\odot$ yr$^{-1}$ using the Chabrier (2003) IMF (both from 0.1 to 100 M_\odot). Table 1 lists the derived properties of our sample.

Figure 2 shows the SFR as a function of $W_{\lambda 2796}$. It appears that there is a correlation between the SFR and $W_{\lambda 2796}$, which is significant at more than 2 σ: the Pearson correlation coefficient is $r = 0.59$ with a P-value $= 0.024 < 0.05$, and a Spearman rank test gives $r = 0.53$ and $P = 0.048$. The correlation is very consistent with the analysis of Zibetti et al. (2007), who found that the hosts of the strongest Mg ii absorbers are bluer. If stronger starbursts produce larger outflows (whose signature is more clouds over a larger Δr), such a correlation would naturally arise in the outflow scenario. We will attempt to model this in more detail in N. Bouché et al. (in preparation).

The inferred SFRs are moderate, but whether or not the Hα emitters seen in Figure 1 are producing winds depends on the SFR per unit area, Σ, not on the integrated SFR. For instance,
and we view this result as supporting the outflow scenario, but consistent with the prediction of the starburst-outflow scenario, a relatively high average SFR (compared to M82) is in fact very high. We have ruled out the outflow scenario. The high detection fraction has already, the majority of our sample meet this criteria. Higher spatial resolution data and better size constraints will enable us to test whether strong Mg ii selected galaxies always meet the outflow threshold and, in the cases where it does, to probe the outflow physical properties.

As stated in §1, Mg ii ought to be present and detected in the starburst-outflow scenario. Had we not detected Mg ii, this would have ruled out the outflow scenario. The high detection fraction thus prevents us from ruling out the outflow scenario. The relatively high average SFR (compared to M82) is in fact very consistent with the prediction of the starburst-outflow scenario, and we view this result as supporting the outflow scenario, but other interpretations are possible. Note that our conclusion only applies for galaxies selected with the strongest Mg ii absorption equivalent widths ($W_{5796} > 2 \AA$). Mg ii absorption systems with $W_{5796} < 2 \AA$ are much more numerous and may select a more diverse class of galaxies (e.g., Bergeron & Boissé 1991; Steidel et al. 1994).

Figure 3 shows an example of the two-dimensional velocity field for one of our Mg ii host galaxies. The QSO continuum is shown as gray contours. The kinematics reveal that the kinematic major axis is perpendicular to the QSO–galaxy vector, i.e., the QSO is located along the minor axis, which is further evidence that the gas traced by Mg ii is part of the halo gas and not the disk. The maximum rotation velocity is $V_{\text{max}} \sim 80 \text{ km s}^{-1}$ for this galaxy and is typical for our sample. Using V_{max} as a proxy for the circular velocity, the inferred mean halo mass is $\log M_{\text{h}}(M_{\odot}) \sim 11.2$ for the sample. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Comparison between the Hα emission map (left) and the two-dimensional velocity field (right) for one of our Mg ii host galaxies. The QSO continuum is shown as gray contours. The kinematics reveal that the kinematic major axis is perpendicular to the QSO–galaxy vector, i.e., the QSO is located along the minor axis, which is further evidence that the gas traced by Mg ii is part of the halo gas and not the disk. The maximum rotation velocity is $V_{\text{max}} \sim 80 \text{ km s}^{-1}$ for this galaxy and is typical for our sample. Using V_{max} as a proxy for the circular velocity, the inferred mean halo mass is $\log M_{\text{h}}(M_{\odot}) \sim 11.2$ for the sample. [See the electronic edition of the Journal for a color version of this figure.]

We thank the ESO Paranal staff for their continuous support and the referee for his/her detailed report that led to an improved manuscript.

REFERENCES

Abuter, R., et al. 2006, NewA Rev., 50, 398
Bahcall, J., & Spitzer, L. J. 1969, ApJ, 156, L63
Bergeron, J., & Boissé, P. 1991, A&A, 243, 344
Bond, N. A., Churchill, C. W., Charlton, J. C., & Vogt, S. S. 2001, ApJ, 557, 761
Bouché, N., Murphy, M. T., & Péroux, C. 2004, MNRAS, 354, 25L
Bouché, N., et al. 2001, ApJ, 550, 585
Bouche´, N., et al. 2004, MNRAS, 354, 25L
Bouche´, N., Murphy, M. T., & Pe´roux, C. 2004, MNRAS, 354, 25L
Buat, V., Boselli, A., Gavazzi, G., & Bonfanti, C. 2002, A&A, 383, 801
Bunker, A., et al. 1999, MNRAS, 309, 875
Chabrier, G. 2003, PASP, 115, 763
Chen, H., & Lanzetta, K. M. 2003, ApJ, 597, 706
Davies, R. 2007, MNRAS, 375, 1099
Eisenhauer, F., et al. 2003, Proc. SPIE, 4841, 1548
Ellison, S. L. 2006, MNRAS, 368, 335
Ellison, S. L., Malłén-Ornelas, G., & Sawicki, M. 2003, ApJ, 589, 709
Forster Schreiber, N. M., et al. 2006, ApJ, 645, 1062
Heckman, T. 2003, Rev. Mex. AA Ser. Conf., 17, 47
Kennicutt, R. C. 1998, ARA&A, 36, 189
Kulkarni, V. P., et al. 2001, ApJ, 551, 37
Kulkarni, V. P., et al. 2006, ApJ, 636, 30
Le Brun, V., Bergeron, J., Boissé, P., & Deharveng, J. M. 1997, A&A, 321, 733
Lehnert, M. D., Heckman, T. M., & Weaver, K. A. 1999, ApJ, 523, 575
Mannucci, F., et al. 1998, ApJ, 501, L11
Martin, C. L. 2006, ApJ, 647, 222
Martin, C. L., Kobulnicky, H. A., & Heckman, T. M. 2002, ApJ, 574, 663
Nulsen, P. E. J., Barcons, X., & Fabian, A. C. 1998, MNRAS, 301, 168
Prochter, G. E., Prochaska, J. X., & Burles, S. 2006, ApJ, 639, 766
Rao, S. M., Turnshek, D. A., & Nestor, D. B. 2006, ApJ, 636, 610
Rybářík, A. I., Kaminker, A. D., & Varshalovich, D. A. 2003, A&A, 412, 707
Schaye, J. 2001, ApJ, 559, L1
Steidel, C. C. 1995, in QSO Absorption Lines, ed. G. Meylan (Berlin: Springer), 139
Steidel, C. C., Dickinson, M., & Persson, S. E. 1994, ApJ, 437, L75
van der Werf, P. P., Moorwood, A. F. M., & Bremer, M. N. 2000, A&A, 362, 509
Wolfe, A. M., et al. 1986, ApJS, 61, 249
York, D. G., York, D. G., & Gibney, T. B. 1986, AJ, 91, 354
York, D. G., et al. 2000, AJ, 120, 1579
—. 2006, MNRAS, 367, 945
Zibetti, S., et al. 2007, ApJ, 658, 161