Supplement of Biogeosciences, 17, 1113–1131, 2020
https://doi.org/10.5194/bg-17-1113-2020-supplement
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean

Jessica B. Volz et al.

Correspondence to: Jessica B. Volz (jessica.volz@awi.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1: Measured porosity (dots) and numerical approximation (solid line) for the BGR-RA (left) and IOM (right) sites. See Table S2 for fitting details.
Table S1: Electron-equivalent redox reactions used in the transient transport-reaction model for the 1-day-old EBS disturbance in the BGR-RA area and for the 20-year-old IOM-BIE disturbance in the IOM area.

Reaction name	Reaction	Redox reaction
Aerobic respiration	R₁	\((CH₂O)(NH₄⁺)_{16\over 106} + O₂ \rightarrow CO₂ + {16 \over 106}NH₄⁺ + H₂O\)
Heterotrophic denitrification	R₂	\(5(CH₂O)(NH₄⁺)_{16\over 106} + 4NO₃⁻ + 4H⁺ \rightarrow 2N₂ + 5CO₂ + 5{16 \over 106}NH₄⁺ + 7H₂O\)
Dissimilatory Mn(IV) reduction	R₃	\((CH₂O)(NH₄⁺)_{16\over 106} + 2MnO₂ + 4H⁺ \rightarrow 2Mn^{2+} + CO₂ + {16 \over 106}NH₄⁺ + 3H₂O\)
Mn²⁺ oxidation	R₄	\(2Mn^{2+} + O₂ + 2H₂O \rightarrow 2MnO₂ + 4H⁺\)
Nitrification	R₅	\(NH₄⁺ + 2O₂ \rightarrow NO₃⁻ + 2H⁺ + H₂O\)
Mn-anammox	R₆	\(3MnO₂ + 2NH₄⁺ + 4H⁺ \rightarrow 3Mn^{2+} + N₂ + 6H₂O\)
Table S2: Species, boundary conditions and fitted parameter values used in the transient transport-reaction models for the 1-day-old EBS disturbance in the BGR-RA area and the 20-year-old IOM-BIE disturbance in the IOM area.

Species and boundary conditions	Symbol	Unit	BGR	IOM
Porosity at SWI	ϕ_0		0.82	0.8
Porosity at compacted depth	ϕ_∞	cm	0.69	0.67
Sedimentation rate	ω_1	cm kyr$^{-1}$	0.65	1.15
Oxygen$_{bw}$	O_2	µM	120	150
Ammonium$_{bw}$	NH_4^+	µM	1	1
Nitrate$_{bw}$	NO_3^-	µM	50	38
Dissolved reduced manganese$_{bw}$	Mn^{2+}	µM	1	1

Fitted parameters				
Sediment thickness		m	10	10
Removed sediment thickness		cm	10	7
Labile C$_{org}$	TOC_1	mol m$^{-2}$ yr$^{-1}$	6.0E-02	4.5E-02
Metabolizable C$_{org}$	TOC_2	mol m$^{-2}$ yr$^{-1}$	1.2E-04	1.1E-03
Refractory C$_{org}$	TOC_3	mol m$^{-2}$ yr$^{-1}$	5.0E-04	7.8E-04
Oxygen$_{bas}$	O_2	µM	18	55
Ammonium$_{bas}$	NH_4^+	µM	1	1
Nitrate$_{bas}$	NO_3^-	µM	19	30
Dissolved reduced manganese$_{bas}$	Mn^{2+}	µM	1	1
1st order deg. coeff. TOC$_1$	σ_1	yr$^{-1}$	1.0E-03	1.0E-02
1st order deg. coeff. TOC$_2$	σ_2	yr$^{-1}$	1.0E-06	5.5E-06
1st order deg. coeff. TOC$_3$	σ_3	yr$^{-1}$	2.0E-09	2.5E-09
Bioturbation coefficient	B_0	cm2 yr$^{-1}$	0.5	0.2
Biomixing half depth	z_{mix}	cm	7.0	7.0
Biomixing attenuation	z_{att}	cm	0.1	0.1
Bioirrigation coefficient	α_0	yr$^{-1}$	0.65	2.0
O$_2$ inhibition concentration for R$_1$	h_1	µM	0.008	0.006
NO$_3^-$ inhibition concentration for R$_2$	h_2	µM	45	25
R$_4$ rate constant	k_4	µM$^{-1}$ yr$^{-1}$	0.1	0.1
R$_5$ rate constant	k_5	µM$^{-1}$ yr$^{-1}$	0.005	0.1
R$_6$ rate constant	k_6	µM$^{-1}$ yr$^{-1}$	0.001	0.001
Table S3: Electron-equivalent redox reactions and associated expressions used in the numerical diagenetic model.

Reaction name	Reaction	Rate expression
Aerobic respiration R₁		\((\sigma_1 C_{\text{TOC1}} + \sigma_2 C_{\text{TOC2}} + \sigma_3 C_{\text{TOC3}}) \frac{C_{O_2}}{C_{O_2} + h_1} \)
Heterotrophic denitrification R₂		\((\sigma_1 C_{\text{TOC1}} + \sigma_2 C_{\text{TOC2}} + \sigma_3 C_{\text{TOC3}}) \gamma \frac{C_{\text{NO}_3^-}}{C_{\text{NO}_3^-} + h_2} \)
Dissimilatory Mn(IV) reduction R₃		\((\sigma_1 C_{\text{TOC1}} + \sigma_2 C_{\text{TOC2}} + \sigma_3 C_{\text{TOC3}}) \gamma \frac{h_2}{C_{\text{NO}_3^-} + h_2} \)
Mn²⁺ oxidation R₄		\(k_4 C_{O_2} C_{\text{Mn}^{2+}} \)
Nitrification R₅		\(k_5 C_{O_2} C_{\text{NH}_4^+} \)
Mn-annamox R₆		\(k_6 C_{\text{NH}_4^+} C_{\text{Mn}^{2+}} \gamma \frac{h_2}{C_{\text{NO}_3^-} + h_2} \)

\(\gamma = \frac{h_1}{(h_1 + C_{O_2})} \)