Metal-insulator transition and local-moment collapse in FeO under pressure

I. Leonov

Theoretical Physics III, Center for Electronic Correlations and Magnetism,
Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

(Dated: May 22, 2015)

We employ a combination of the \textit{ab initio} band structure methods and dynamical mean-field theory to determine the electronic structure and phase stability of paramagnetic FeO at high pressure and temperature. Our results reveal a high-spin to low-spin transition within the B1 crystal structure of FeO upon compression of the lattice volume above 73 GPa. The spin-state transition is accompanied by an orbital-selective Mott metal-insulator transition (MIT). The lattice volume is found to collapse by about 8.5 % at the MIT, implying a complex interplay between electronic and lattice degrees of freedom. Our results for the electronic structure and lattice properties are in overall good agreement with experimental data.

PACS numbers: 71.10.-w, 71.27.+a, 71.30.+h

I. INTRODUCTION

Iron monoxide, wüstite (FeO), is a basic oxide component of the Earth’s interior. Its electronic state and phase stability is of fundamental importance for understanding the properties and evolution of the Earth’s lower mantle and outer core.1 Nevertheless, in spite of long-term intensive research, the phase diagram of FeO at high pressures and temperatures, as well as several key properties, such as electronic structure and magnetic properties, are still poorly understood.

FeO has a relatively complex pressure-temperature phase diagram with at least five allotrops.2 Under ambient conditions, it is a paramagnetic Mott insulator with a rock-salt B1 crystal structure. Upon compression above \(\sim 16\) GPa, B1-type FeO undergoes a structural transition to the rhombohedral \(R3\) phase (rB1),3 which further transforms to the NiAs (B8) structure above 90 GPa.4 Under ambient pressure, FeO is antiferromagnetic below the Néel temperature \(T_N \sim 198\) K.5 The high-pressure properties of FeO have attracted much recent interest both from a theoretical and experimental point of view.6–15 Shock-wave compression and electrical conductivity experiments reported a possible existence of a high-pressure metallic phase of FeO above \(\sim 70\) GPa.16 On the basis of high-pressure Mössbauer spectroscopy measurements,17 the metallic state was assigned to a high-spin (HS) to low-spin (LS) transition, which has been proposed by first-principles calculations to occur above \(\sim 100\)-200 GPa18. In contrast to that, x-ray emission spectroscopy indicates that the Fe high-spin state is preserved at least up to \(\sim 140\) GPa (at room temperature)19 while collapsing to the LS state upon further heating.20 On the basis of these measurements, the insulator-to-metal HS-LS transition has long been considered to be due to a structural transformation from the B1 to B8 lattice. Nevertheless, recent experiments have shown that the B1-type FeO undergoes a high-temperature insulator-to-metal transition at about 70 GPa, retaining the same lattice structure.21–23 The observed metallic phase was proposed to relate to a spin-state crossover. Moreover, it has been shown that the B1-type structure remains stable at high pressure and temperature, being the stable phase along the geotherm through the Earth’s mantle and outer core.1,20

These recent experiments have lead us to reinvestigate the electronic structure and local magnetic state of Fe in FeO at high pressure and temperature by employing a combination of the \textit{ab initio} electronic structure methods and dynamical mean-field theory of strongly correlated electrons (LDA+DMFT)21,22 (LDA stands here for the local density approximation). Applications of LDA+DMFT have shown to capture all generic aspects of a Mott metal-insulator transition, such as a coherent quasiparticle behavior, formation of the lower- and upper-Hubbard bands, and strong renormalization of the effective electron mass, providing a good quantitative description of the electronic and lattice properties. In particular, we employ an important advance of the LDA+DMFT approach which is able to determine the electronic structure and phase stability of correlated materials.23–38 We use this advanced theory to investigate the electronic structure and phase stability of paramagnetic FeO at high pressure and temperature, which remained unexplored up to now. We find that magnetic collapse occurs in the B1 crystal structure of paramagnetic FeO upon compression to \(\sim 73\) GPa, in agreement with experiment. The HS-LS transition is intimately linked with an orbital-selective Mott metal-insulator transition, which is accompanied with a collapse of the lattice volume by about 8.5 % at the MIT. Our results for the electronic structure and lattice properties are in overall good agreement with experimental data.

II. METHOD

In this work, we investigate the electronic structure and phase stability of paramagnetic FeO under pressure using the GGA+DMFT computational approach (GGA: generalized gradient approximation). To this end,
we calculate the total energy and local moments of the B1 cubic crystal structure of FeO as a function of lattice volume. Below we denote the compressed phase by the relative volume w.r.t. the calculated equilibrium volume. We employ a fully charge self-consistent GGA+DMFT approach39 implemented with plane-wave pseudopotentials40. For the partially filled Fe 3d and O 2p orbitals we construct a basis set of atomic-centered symmetry-constrained Wannier functions41,42. To solve the realistic many-body problem, we employ the continuous-time hybridization-expansion quantum Monte-Carlo algorithm43,44. The calculations are performed in the paramagnetic state at temperature $T = 1160$ K. We use the average Coulomb interaction $U = 7$ eV and Hund’s exchange $J = 0.89$ eV for the Fe 3d shell, in accordance with previous estimates7,10,13,14. The Coulomb interaction is treated in the density-density approximation. The spin-orbit coupling is neglected in these calculations. The U and J values are assumed to remain constant upon variation of the lattice volume. In addition, we check how our results depend on a possible reduction of the U value under pressure. For this purpose, we perform calculations with a substantially smaller value, $U = 5$ eV. We employ the fully-localized double-counting correction, evaluated from the self-consistently determined local occupancies, to account for the electronic interactions already described by GGA. The spectral functions were computed using the maximum entropy method. The angle resolved spectra were evaluated from analytic continuation of the self-energy using Padé approximants.

III. RESULTS AND DISCUSSION

We first compute the electronic structure of FeO within non-spin-polarized GGA using the plane-wave pseudopotential approach39. Overall, our results agree well with previous band-structure calculations. In particular, the calculated equilibrium lattice constant is found to be $a = 7.74$ a.u. The calculated bulk modulus is $B = 232$ GPa. We note however that GGA calculations give a metallic solution, in qualitative disagreement with experiment. The calculated equilibrium lattice constant is remarkably smaller, by $\sim 6-7\%$, than the experimental one. We also note a strong overestimation of the bulk modulus, which is more than $\sim 25\%$ off the experimental value. Clearly, standard band-structure techniques cannot explain the properties of paramagnetic FeO, since they do not treat electronic correlations adequately.

To resolve this obstacle, we now compute the electronic structure and phase stability of FeO using the fully charge self-consistent GGA+DMFT method. In Fig. 1 (top) we show the evolution of the total energy and local magnetic moment $\sqrt{\langle m_z^2 \rangle}$ of paramagnetic FeO as a function of lattice volume. We fit the calculated total energy using the third-order Birch-Murnaghan equation of state45 separately for the low- and high-volume regions. Overall, our results for the electronic structure and lattice properties of FeO, which now include the effect of electronic correlations, agree well with experimental data. In particular, our calculations at ambient pressure give a Mott insulating solution with an energy gap of ~ 0.8 eV. The energy gap lies between the top of the valence band originating from the mixed Fe 3d and O 2p states and empty Fe 4s states. Our result for the Mott d-d energy gap is about 2 eV, in good agreement with optical and photoemission experiments46. We find the equilibrium lattice constant $a = 8.36$ a.u., which is less than 1-2 % off the experimental value. The calculated bulk modulus is $B = 140$ GPa, the local magnetic moment $\sqrt{\langle m_z^2 \rangle} \sim 3.7 \mu_B$. Fe t_{2g} and e_g orbital occupancies are 0.68 and 0.55, respectively. These findings clearly indicate that at ambient pressure Fe$^{2+}$ ion is in a high-spin state ($S = 2$). In fact, in a cubic crystal field, the Fe$^{2+}$ ions (i.e., Fe 3d6 configuration with four electrons in the t_{2g} and two in the e_g orbitals) have a local moment of 4 μ_B.

Furthermore, the total-energy and local-moment calculation results exhibit a remarkable anomaly upon compression of the lattice volume down to $\nu \sim 0.72$. Indeed, the local moment is seen to retain its high-spin value down to about $\nu \sim 0.8$. Upon further compression, a broad high-spin (HS) to low-spin (LS) crossover takes place, with a collapse of the local moment to a

![FIG. 1: Top: Total energy and local moment $\sqrt{\langle m_z^2 \rangle}$ of paramagnetic FeO calculated by GGA+DMFT as a function of lattice volume. The lattice collapse associated with the HS-LS state transition is depicted by a vertical black dashed line. Bottom: Fe 3d and partial t_{2g}/e_g occupations as a function of volume.](image-url)
FeO is a Mott insulator with a relatively large \(d-d \) gap \(\sim 2 \) eV. Interestingly, the energy gap lies between the Fe \(t_{2g} \) states, while the \(t_{2g}-e_g \) gap is somewhat larger, \(\sim 2.5 \) eV. The top of the valence band has a mixed Fe 3d and O 2p character, with a resonant peak in the filled \(t_{2g} \) band located at about -0.9 eV. The latter can be ascribed to the formation of a Zhang-Rice bound state. We find the \(d-d \) energy gap being gradually decreased upon compression, resulting in an orbital-selective Mott metal-insulator transition (MIT). In fact, the onset of the local moment collapse at \(\nu \sim 0.75 \) is associated with closing of the gap for the \(t_{2g} \) orbitals, while the \(e_g \) states remain to be gaped down to \(\nu \sim 0.7 \). We note that the HS-LS transition takes place upon compression of the lattice volume by \(\nu \sim 0.72 \), at critical pressure of \(p \sim 73 \) GPa, in agreement with experiment. Our calculations clearly show that the HS-LS state transition in the B1 structure of paramagnetic FeO is associated with an orbital-selective Mott-Hubbard MIT. Moreover, the MIT is accompanied by a collapse of the lattice volume by about 8.5 %.

In addition, we check how the electronic structure of FeO depend on a (possible) reduction of the Coulomb interaction \(U \) with pressure. For this purpose, we perform calculations with a substantially smaller value \(U = 5 \) eV and the same Hund’s coupling value \(J = 0.89 \) eV. Our new results are in overall qualitative agreement with those presented above. We notice that the HS-LS crossover is accompanied by an orbital-selective MIT which is found to occur at somewhat smaller compression \(\nu \sim 0.77 \), at critical pressure 55 GPa. We also note a substantial reduction of the Mott \(d-d \) band gap to about 1.1 eV, whereas the charge-transfer gap between the Fe 3d-O 2p and empty Fe 4s states remains unchanged, about 0.8 eV. These findings clearly indicate that our results for the spin-state crossover and associated with it the orbital-selective MIT are robust. The HS to LS transition takes place even at a substantially reduced (possibly due to the applied pressure) value of \(U \).

We also calculated the momentum-resolved spectral function of paramagnetic FeO. In Fig. we present our results obtained for the B1 structure of paramagnetic FeO across the MIT. Our calculations at ambient pressure show a Mott insulator with an energy gap value of \(\sim 0.8 \) eV [see Fig. (bottom)]. The energy gap lies between the occupied states with a mixed Fe 3d-O 2p character and empty Fe 4s state (the latter is clearly seen as a broad parabolic-like band at the \(\Gamma \)-point just above the Fermi energy), in agreement with photoemission and optical experiments. In fact, the optical spectroscopy measurements observe a weak absorption between 0.5 and 2.0 eV, assigned to the Fe 3d-O 2p to Fe 4s transitions. The strong absorption edge associated with the \(d-d \) transitions is found to appear in optical spectroscopy at about 2.4 eV. Our result for the \(d-d \) gap at ambient pressure is about 2 and 2.5 eV for the \(t_{2g}-t_{2g} \) and \(t_{2g}-e_g \) transitions, respectively. The O 2p states are about...
results for the LS phase with lattice volume computed within GGA+DMFT for different volumes. Top:

namely, we obtain a strongly correlated metal with almost completely occupied FeO in the LS phase calculations show an entire reconstruction of the electronic structure of paramagnetic FeO in the LS phase in agreement with previous studies. Furthermore, our contribution around the Fermi level. We therefore calculate the local (dynamical) spin-spin correlation function \(\chi(\tau) = \langle \hat{m}_z(\tau) \hat{m}_z(0) \rangle \) of paramagnetic FeO for different volumes, where \(\tau \) is the imaginary time. In Fig. 4 we display our results for the corresponding intra-orbital \(t_{2g} \) and \(e_g \) contributions. We note that the \(t_{2g} \) contributions are seen to be almost independent of \(\tau \), even in the LS state, implying that the \(t_{2g} \) moment remains localized across the HS-LS transition. On the other hand, the \(e_g \) states clearly exhibit a crossover from localized to itinerant magnetic behavior under pressure, suggesting that the HS-LS metal-insulator transition in paramagnetic FeO is of the orbital-selective type. In addition, we notice that at high pressures the screened local moment defined as \(\alpha = \frac{1}{t_0} \int \frac{d\tau}{\beta} \chi(\tau) \) differs from the corresponding instantaneous \(\langle m_z^2 \rangle \) value (mostly because of the contribution originating from the \(e_g \) band), which suggests an itinerant-moment behavior of the LS state.

Finally, we calculate the quasiparticle weight employing a polynomial fit of the imaginary part of the self-energy \(\Sigma(\omega_n) \) at the lowest Matsubara frequencies \(\omega_n \). It is evaluated as \(Z = \frac{1}{t_0} \int \frac{d\tau}{\beta} \chi(\tau) \) from the slope of the polynomial fit at \(\omega = 0 \). In Fig. 5 we present our results for the partial \(t_{2g} \) and \(e_g \) contributions computed for different volumes. In the LS phase, the \(t_{2g} \) and \(e_g \) quasiparticle weights are finite and found to decrease monotonously upon expansion of the lattice. Upon further expansion of the lattice, the \(t_{2g} \) and \(e_g \) contributions are seen to collapse to zero at different volumes. This result...
again suggests that the HS-LS transition is accompanied by an orbital-selective MIT. The electronic effective mass diverges at the MIT, in accordance with a Brinkman-Rice picture of the MIT. We note that this divergence coincides with the drop of the spectral weight for the t_{2g} and e_g orbitals at the Fermi level shown in Fig. 3.

IV. CONCLUSION

We determined the electronic structure and phase stability of the B1 crystal structure of paramagnetic FeO at high pressure and temperature. Our results clearly establish a high-spin to low-spin transition which is found to appear upon compression of the lattice by $V/V_0 \sim 0.72$, at pressure 73 GPa, in agreement with experiment. The spin-state transition is intimately linked with an orbital-selective Mott-Hubbard metal-insulator transition. The MIT is accompanied by a collapse of the lattice volume by $\sim 8.5\%$, implying a complex interplay between electronic and lattice degrees of freedom. Upon compression, the Fe e_g states exhibit a crossover from a localized to itinerant-moment behavior, while the t_{2g} moment remains localized across the HS-LS transition. Our results are consistent with the picture of an electronically driven spin-state transition and volume collapse in the B1 crystal structure of paramagnetic FeO.

Acknowledgments

We thank V. I. Anisimov, and D. Vollhardt for valuable discussions. Support by the Deutsche Forschungsgemeinschaft through Transregio TRR 80 is gratefully acknowledged.

1. H. Mao, J. Shu, Y. Fei, J. Hu, and R. J. Hemley, Phys. Earth Planet. Inter. 96, 135 (1996); R. A. Fischer, A. J. Campbell, O. T. Lord, G. A. Shofner, P. Dera, and V. B. Prakapenka, Geophys. Res. Lett. 38, L24301 (2011); R. A. Fischer, A. J. Cambell, G. A. Shofner, O. T. Lord, P. Dera, V. P. Prakapenka, Earth Planet. Sci. Lett. 304, 496 (2011); K. Ohta, K. Fujino, Y. Kuwayama, T. Konko, K. Shimizu, and Y. Ohishi, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2014JB01.0972.

2. C. A. McCammon, J. Magn. Magn. Mater. 104, 137 (1992); A. P. Kantor, S. D. Jacobsen, I. Yu. Kantor, L. S. Dubrovinsky, C. A. McCammon, H. J. Reichmann, and I. N. Goncharenko, Phys. Rev. Lett. 93, 215502 (2004).

3. B. T. M. Willis and H. P. Rooksby, Acta Crystallogr. 6, 827 (1953); C. A. McCammon and L. Liu, Phys. Chem. Miner. 10, 106 (1984); T. Yagi, T. Suzuki, and S. Akimoto, J. Geophys. Res. 90, 8784 (1985). S. Ono, Y. Ohishi, and T. Kikegawa, J. Phys. Condens. Matter 19, 036205 (2007).

4. Y. Fei and H.-K. Mao, Science 266, 1678 (1994); K. Ohta, K. Hirose, K. Shimizu, and Y. Ohishi, Phys. Rev. B 82, 174120 (2010); H. Ozawa, K. Hirose, S. Tateno, N. Sata, and Y. Ohishi, Phys. Earth Planet. Inter. 179, 157 (2010).

5. H. Ozawa, K. Hirose, K. Ohta, H. Ishii, N. Hiraoka, Y. Ohishi, and Y. Seto, Phys. Rev. B 84, 134417 (2011).

6. D. G. Isaak, R. E. Cohen, M. J. Mehl, and D. J. Singh, Phys. Rev. B 47, 7720 (1993). R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science 275, 654 (1997).

7. I. I. Mazin and V. I. Anisimov, Phys. Rev. B 55, 12822 (1997).

8. I. I. Mazin, Y. Fei, R. Downs, and R. Cohen, Amer. Mineral. 83, 451 (1998).

9. Z. Fang, K. Terakura, H. Sawada, T. Miyazaki, and I. Solovyev, Phys. Rev. Lett. 81, 1027 (1998); Z. Fang, I. V. Solovyev, H. Sawada, and K. Terakura, Phys. Rev. B 59, 762 (1999).

10. S. A. Gramsch, R. E. Cohen, and S. Yu. Savrasov, Amer. Mineral. 88, 257 (2003).

11. F. Tran, P. Blaha, K. Schwarz, and P. Novak, Phys. Rev. B 74, 155108 (2006).

12. J. Kohorenc and L. Mitas, Phys. Rev. Lett. 101, 185502 (2008).

13. A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys. Rev. B 82, 195101 (2010).

14. K. Ohta, R. E. Cohen, K. Hirose, K. Haule, K. Shimizu, and Y. Ohishi, Phys. Rev. Lett. 108, 026403 (2012).

15. E. Holmström and L. Stixrude, Phys. Rev. Lett. 114, 117202 (2015).

16. E. Knittle, R. Jeanloz, A. C. Mitchell, and W. J. Nellis, Solid State Commun. 59, 513 (1986).

17. M. P. Pasternak, R. D. Taylor, R. Jeanloz, X. Li, J. H. Nguyen, and C. A. McCammon, Phys. Rev. Lett. 79, 5046 (1997).

18. J. Badro, V. V. Struzhkin, J. Shu, R. J. Hemley, H.-k. Mao, C.-C. Kao, J.-P. Rueff, and G. Shen, Phys. Rev. Lett. 83, 4101 (1999).

19. A. Mattila, J.-P. Rueff, J. Badro, G. Vankó, and A. Shukla, Phys. Rev. Lett. 98, 196404 (2007).

20. R. A. Fischer and A. J. Campbell, Am. Mineral. 95, 1473 (2010).

21. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996); G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).

22. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998); G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

23. S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature 410, 793 (2001); X. Dai, S. Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, and E. Abrahams, Science 9, 953, (2003).

24. K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov, Phys. Rev. Lett. 86, 5345 (2001); G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. I. Anisimov, Phys. Rev. B 70, 205116 (2004).

25. K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett. 87, 276404 (2001); A. K. McMahan, K. Held, and R. T. Scalettar, Phys. Rev. B 67, 075108 (2003).
26 S. Y. Savrasov, K. Haule, and G. Kotliar, Phys. Rev. Lett. 96, 036404 (2006).
27 B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan, Phys. Rev. Lett. 96, 066402 (2006); N. Lanatá, Y.-X. Yao, C.-Z. Wang, K.-M. Ho, J. Schmalian, K. Haule, and G. Kotliar, Phys. Rev. Lett. 111, 196801 (2013); J. Bieder and B. Amadon, Phys. Rev. B 89, 195132 (2014); B. Chakrabarti, M. E. Pezzoli, G. Sordi, K. Haule, and G. Kotliar, Phys. Rev. B 89, 125113 (2014).
28 J. Kunes, V. I. Anisimov, A. V. Lukoyanov, and D. Vollhardt, Phys. Rev. B 75, 165115 (2007); J. Kunes, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt, Phys. Rev. Lett. 99, 156404 (2007).
29 I. Leonov, N. Binggeli, D. Korotin, V. I. Anisimov, N. Stojic, and D. Vollhardt, Phys. Rev. Lett. 101, 096405 (2008); I. Leonov, Dm. Korotin, N. Binggeli, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 81, 075109 (2010); J. Kunes, I. Leonov, M. Kollar, K. Byczuk, V. I. Anisimov, D. Vollhardt, Eur. Phys. J. Spec. Top. 180, 5 (2010).
30 J. Kunes, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198 (2008); J. Kunes, Dm. M. Korotin, M. A. Korotin, V. I. Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).
31 I. Di Marco, J. Minár, S. Chadow, M. I. Katsnelson, H. Ebert, and A. I. Lichtenstein, Phys. Rev. B 79, 151111 (2009).
32 I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011); I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 85, 020401(R) (2012); I. Leonov, A. I. Poteryaev, Yu. N. Gornostyrev, A. I. Lichtenstein, M. I. Katsnelson, V. I. Anisimov, D. Vollhardt, Sci. Rep. 4, 5585 (2014).
33 M. Aichhorn, L. Pouroukovskii, and A. Georges, Phys. Rev. B 84, 054529 (2011).
34 L. Huang, Y. Wang, and X. Dai, Phys. Rev. B 85, 245110 (2012); A. A. Dyachenko, A. O. Shorikov, A. V. Lukoyanov, and V. I. Anisimov, JETP Lett. 96, 56 (2012).
35 D. Grieger, C. Pieflke, O. E. Peil, and F. Lechermann, Phys. Rev. B 86, 155121 (2012); D. Grieger and F. Lechermann, ibid. 90, 115115 (2014); I. Leonov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 91, 195115 (2015).
36 H. Park, A. J. Millis, C. A. Marianetti, Phys. Rev. B 89, 245133 (2014).
37 K. Glazyrin, L. V. Pourouvkii, L. Dubrovinsky, O. Narygina, C. McCammon, B. Hewener, V. Schinemann, J. Wolny, K. Muffler, A. I. Chumakov, W. Crichton, M. Haflend, V. B. Prakapenka, F. Tasnadi, M. Ekholm, M. Aichhorn, V. Vildosola, A. V. Ruban, M. I. Katsnelson, and I. A. Abrikosov, Phys. Rev. Lett. 110, 117206 (2013); L. V. Pourouvkii, J. Mravlje, M. Ferrero, O. Parcollet, and I. A. Abrikosov, Phys. Rev. B 90, 155120 (2014).
38 I. Leonov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 112, 146401 (2014).
39 For a review, see, e.g., L. V. Pourouvkii, B. Amadon, S. Biermann, and A. Georges, Phys. Rev. B 76, 235101 (2007); K. Haule, ibid. 75, 155113 (2007); B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling, and A. I. Lichtenstein, ibid. 77, 205112 (2008); M. Aichhorn, L. Pourouvkii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, ibid. 80, 085101 (2009); B. Amadon, J. Phys. Condens. Matt. 24, 075604 (2012); H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 90, 235103 (2014).
40 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001); P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., J. Phys. Condens. Matter 21, 395502 (2009).
41 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997); N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).
42 V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005); G. Trimarchi, I. Leonov, N. Binggeli, Dm. Korotin, and V. I. Anisimov, J. Phys. Condens. Matter 20, 135227 (2008); Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov and G. Trimarchi, Eur. Phys. J. B 65, 91 (2008).
43 P. Werner, A. Comanac, L. de’Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006); E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubstov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
44 P. S. Bagus, C. R. Brundle, T. J. Chuang, and K. Wandelt Phys. Rev. Lett. 39, 1229 (1977); I. Balberg and H. L. Pinch, J. Magn. Magn. Mater. 7, 12 (1978).
45 F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944); F. Birch, Phys. Rev. 71, 809 (1947).
46 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759(R) (1988); J. Bala, A. M. Oleś, and J. Zaanen, Phys. Rev. Lett. 72, 2600 (1994); Q. Yin, A. Gordienko, X. Wan, and S. Y. Savrasov, ibid. 100, 066406 (2008).
47 W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).