Regional Outlook 2021 - Country notes

Slovenia

Progress in the net zero transition
Emissions targets included in the Net Zero Tracker database from ECIU before January 25, 2021 are considered.

Figure notes: Figures 1, 2, 3 and the OECD average show OECD calculations based on estimated greenhouse gas emissions data from the European Commission’s Joint Research Centre (ECJRC). The Emissions Database for Global Atmospheric Research of the ECJRC allocates national greenhouse gas emissions to locations according to about 300 proxies. See Box 3.7 in the 2021 OECD Regional Outlook for more details.

Large regions (TL2)

Figure 1. Estimated regional greenhouse gas emissions per capita
Tons CO₂ equivalent (tCO₂e), large regions (TL2), 2018

Greenhouse gas (GHG) emissions per capita generated in Western Slovenia are below 10 tCO₂e per capita. Eastern Slovenia has higher emissions per capita than the OECD average of 11.5 tCO₂e.

Small regions (TL3)

Figure 2. Contribution to estimated GHG emissions
By type of small region, 2018

Figure 3. Estimated GHG emissions per capita
By type of small region, 2018

Across the OECD, metropolitan regions emit more greenhouse gases than rural regions. In Slovenia, the same pattern can be observed. Emissions per capita in Slovenian remote rural regions are comparable to those in metropolitan regions. In contrast, for the average OECD country, remote rural regions have much higher emissions per capita than metropolitan regions.

Target notes: Emissions targets included in the Net Zero Tracker database from ECIU before January 25, 2021 are considered.

Figure notes: Figures 1, 2, 3 and the OECD average show OECD calculations based on estimated greenhouse gas emissions data from the European Commission’s Joint Research Centre (ECJRC). The Emissions Database for Global Atmospheric Research of the ECJRC allocates national greenhouse gas emissions to locations according to about 300 proxies. See Box 3.7 in the 2021 OECD Regional Outlook for more details.
Slovenian electricity mix

Figure 4. National electricity generation by energy source in 2019

Share of coal-fired electricity generation

2019 OECD average: 23%	2019 Slovenian average: 28%	2030 well below 2°C benchmark for the EU: <2%
		2030 1.5°C benchmark for OECD countries: 0%

Figure 5. Regional coal-fired electricity generation estimates
Per cent of total electricity generation, large regions (TL2), 2017

Slovenia still uses coal for 28% of its electricity generation. Eastern Slovenia is most dependent on coal with almost double the share Western Slovenia has. No new capacity is planned or being built.
Benchmark notes: The well-below 2 degrees benchmarks show IEA Sustainable Development Scenario (SDS) numbers. The SDS models how the global energy system can evolve in alignment with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. According to the Powering Past Coal Alliance (PPCA), a phase-out of unabated coal by 2030 for OECD countries is cost-effective to limit global warming to 1.5°C.

Figure notes: Figure 4 shows data from the IEA (2020). Figure 5 shows OECD calculations based on the Power Plants Database from the WRI. The database captures electricity generation from the power plants connected to the national power grid. As a result, small electricity generation facilities disconnected from the national power grid might not be captured. See here for more details. Figures 6 and 7 show the power potential of solar and wind. Mean wind power density (WPD) is a measure of wind power available, expressed in Watt per square meter (W/m²). Global horizontal irradiation (GHI) is the sum of direct and diffuse irradiation received by a horizontal surface, measured in kilowatt hours per square metre (kWh/m²).

Wind power

| 2019 OECD average: 8% | 2019 Slovenian average: 0.04% | 2030 well below 2°C benchmark for the EU: >29% |

Figure 6. Wind power potential

Mean wind power density (W/m²)

Source: Map produced by The Global Wind Atlas

Solar power

| 2019 OECD average: 3% | 2019 Slovenian average: 2% | 2030 well below 2°C benchmark for the EU: >14% |

Figure 7. Solar power potential

Global horizontal irradiation (kWh/m²)

Source: Map produced by The Global Solar Atlas

Wind power density is highest offshore, solar power potential is higher in the south-west.
There will be both employment gains and losses due to the transition to net zero greenhouse gas emissions. They may not be distributed in the same way across regions. Employment in sectors that may be subject to some job loss by 2040 as a result of policies to reduce emissions in line with the climate objectives in the Paris Agreement amounts to less than 3% in all Slovenian regions. Slovenian regions have more employment in these sectors than the OECD average. Eastern Slovenia has the highest share, largely driven by chemicals. The selection of sectors is broad and based on employment effects simulated across OECD countries (See Box 3.9 of the 2021 OECD Regional Outlook). It does not take specific local characteristics into account.
Benchmark notes: In the IEA’s Sustainable Development Scenario, OECD countries (such as the European Union, Japan and the United States) as well as China fully phase out conventional car sales by 2040. This scenario is aligned with the Paris Agreement’s objective to keep the global average temperature increase well below 2°C above pre-industrial levels. The UK Committee on Climate Change finds that all new cars and vans should be electric (or use a low carbon alternative such as hydrogen) by 2035 at the latest to reach net zero GHG emission targets by 2050. A more cost-effective date from the point of view of users is 2030.

Figure notes: Figure 9 is based on data from ITF and OECD Statistics. See Box 3.10 in the 2021 OECD Regional Outlook for more details. GDP per capita is expressed in USD per head, PPP, constant prices from 2015.

Modal shift

Ljubljana has an average public transport performance. For comparison, London (UK) has among the highest public transport performance scores. Inhabitants of the metropolitan area of London can on average reach 95% of the population living within 8 km in 30 minutes by public transport.

Figure 9. Public transport performance in 2018
Policies towards net-zero greenhouse gas emissions can bring many benefits beyond halting climate change. They include reduced air and noise pollution, reduced traffic congestion, healthier diets, enhanced health due to increased active mobility, health benefits through thermal insulation, and improved water, soil and biodiversity protection. Some are hard to quantify.

In all regions 100% of the population is exposed to small particulate matter air pollution above the WHO threshold. Small particulate matter (PM2.5) is the biggest cause of human mortality induced by air pollution. Major disease effects include stroke, cardiovascular and respiratory disease. Air pollution amplifies respiratory infectious disease such as Covid-19. It affects children the most. It reduces their educational outcomes as well as worker productivity.

Figure notes: Figure 10 is based on data from OECD Statistics.