Sequence analysis

Data-dependent bucketing improves reference-free compression of sequencing reads

Rob Patro¹ and Carl Kingsford²,*

¹Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA and ²Department Computational Biology, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA

*To whom correspondence should be addressed.

Abstract

Motivation: The storage and transmission of high-throughput sequencing data consumes significant resources. As our capacity to produce such data continues to increase, this burden will only grow. One approach to reduce storage and transmission requirements is to compress this sequencing data.

Results: We present a novel technique to boost the compression of sequencing that is based on the concept of bucketing similar reads so that they appear nearby in the file. We demonstrate that, by adopting a data-dependent bucketing scheme and employing a number of encoding ideas, we can achieve substantially better compression ratios than existing de novo sequence compression tools, including other bucketing and reordering schemes. Our method, Mince, achieves up to a 45% reduction in file sizes (28% on average) compared with existing state-of-the-art de novo compression schemes.

Availability and implementation: Mince is written in C++11, is open source and has been made available under the GPLv3 license. It is available at http://www.cs.cmu.edu/~ckingsf/software/mince.

Contact: carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The tremendous quantity of data generated by high-throughput sequencing experiments poses many challenges to data storage and transmission. The most common approach to reduce these space requirements is to use an ‘off-the-shelf’ compression program such as gzip (by Gailly and Adler, http://www.gnu.org/software/gzip/) or bzip2 (by Seward, http://www.bzip.org) to compress the raw read files. This approach can result in substantial savings during storage and transmission. These programs are general purpose, well-tested, and highly scalable. However, research over the past few years has demonstrated that approaches specifically tailored to compressing genomic data can achieve significantly better compression rates than general-purpose tools.

We introduce Mince, a compression method specifically designed for the compression of high-throughput sequencing reads, that achieves state-of-the-art compression ratios by encoding the read sequences in a manner that vastly increases the effectiveness of ‘off-the-shelf’ compressors. This approach, known as compression boosting, has been effectively applied in other contexts, and is responsible for the widely observed phenomenon that BAM files become smaller when alignments are ordered by genomic location. This places more similar alignments nearby in the file and results in more effective compression being possible. Mince is able to produce files that are 28% smaller than those of existing compression methods in a comparable amount of time.

Existing work on compressing sequencing reads falls into two main categories: reference-based and de novo compression. Reference-based methods most often, but not always (Bonfield and Mahoney, 2013; Kingsford and Patro, 2015; Rozov et al., 2014), attempt to compress aligned reads (e.g. BAM format files) rather than
Data-dependent bucketing improves compression

raw, unaligned sequences. They assume that the reference sequence used for alignment is available at both the sender and receiver. Most reference-based approaches attempt to take advantage of shared information between reads aligned to genomics close regions, and to represent the aligned reads via relatively small ‘edits’ with respect to the reference sequence (Bonfield and Mahoney, 2013; Campagne et al., 2013; Fritz et al., 2011; Kozaakis et al., 2011; Li et al., 2013; Popitsch and von Haeseler, 2013). These methods can, in general, be very effective at compressing alignments, but this does not necessarily imply effective compression of the original read sequences (Kingford and Patro, 2015). Thus, if one is interested in the most efficient methods to compress the raw reads, reference-based methods can have drawbacks when compared with de novo approaches. They are generally slower, since they require that reads be mapped to a reference before being compressed. They assume that the sender and receiver have a copy of the reference (which, itself, would have to be transferred) and that the set of reads can be mapped with relatively high quality to this reference (such methods may perform poorly if there are many unmapped reads). Furthermore, since different types of analysis may require different types of alignments, recovering the original BAM file may not always be sufficient, in which case further processing, such as extracting the original sequences from the alignment file, may be required.

Conversely, de novo approaches compress the raw sequencing reads directly, and because they do not require aligning the reads to a reference, are often able to compress the reads much more quickly. De novo compression methods often work by trying to exploit redundancy within the set of reads themselves rather than between the reads and a particular reference (Adjeroa et al., 2002; Bhola et al., 2011; Bonfield and Mahoney, 2013; Brandon et al., 2009; Cox et al., 2012; Deorowicz and Grabowski, 2013; Hach et al., 2012; Jones et al., 2012; Tembe et al., 2010).

Although most approaches tend to fall into one or the other of these categories, some tools expose both reference-based and reference-free modes (Bonfield and Mahoney, 2013). Notably, Jones et al. (2012) introduced a novel approach for obtaining some of the benefits of reference-based compression, even when no reference is available, by constructing one ‘on-the-fly’.

Another similar area of research is the compression of collections of related genomes (Christley et al., 2009; Deorowicz and Grabowski, 2011; Pavlchín et al., 2013; Pinho et al., 2012; Rajarajeswari and Apparao, 2011; Wang and Zhang, 2011). These approaches are able to achieve a very high degree of compression, but generally rely on encoding a sparse and relatively small set of differences between otherwise identical sequences. Unfortunately, the reads of a sequencing experiment are much more numerous and diverse than a collection of related genomes, and hence, these methods do not apply to the compression of raw or aligned sequencing reads.

We focus on the problem of de novo compression of raw sequencing reads, since it is the most generally applicable. Mince was inspired by the approach of Hach et al. (2012) of compression ‘boosting’. Mince only compresses the actual sequences, because the compression of quality scores and other metadata can be delegated to other approaches (Cánovas et al., 2014; Ochoa et al., 2013; Yu et al., 2015) that are specifically designed for compressing those types of data.

At the core of Mince is the idea of bucketing, or grouping together, reads that share similar sub-sequences. After reads are assigned to buckets, they are reordered within each bucket to further expose similarities between nearby reads and deterministically transformed in a manner that explicitly removes a shared ‘core’ substring, which is the label of the bucket to which they have been assigned. The information encoding this reordered collection of reads is then written to a number of different output streams, each of which is compressed with a general-purpose compressor. Depending on the type of read library being compressed, we also take advantage of the ability to reverse complement reads to gain better compression.

In the presence of a reference, placing reads in the order in which they appear when sorted by their position in the reference reveals their overlapping and shared sequences. Without a reference, we cannot directly know the reference order. The bucketing strategy described here attempts to recover an ordering that works as well as a reference-based order without the advantage of being able to examine the reference.

We demonstrate that the bucketing scheme originally introduced by Hach et al. (2012), though very effective, can be substantially improved (on average >15%) by grouping reads in a data-dependent manner and choosing a more effective encoding scheme. Choosing a better downstream compressor, lzip (by Diaz, http://www.nongnu.org/lzip/lzip.html) leads to a further reduction in size of 10%. Overall, Mince is able to obtain significantly better compression ratios than other de novo sequence compressors, yielding compressed sequences that are, on average, 28% smaller than those of SCALCE.

2 Algorithm

Mince’s general approach to compression is to group together similar sequences to make the underlying compression algorithm more effective. Thus, we want to re-order the set of reads so that those that share similar sub-sequences will appear close to each other in the file.

To achieve this goal Mince encodes a set of reads in a few phases, which are described later. The result of this processing is to place a transformed set of the original reads into a collection of buckets, each of which is designed to expose coherent sequence to the downstream compressor. The contents of these buckets, along with the information required to invert any transformations that have been applied, are written to a set of different output streams and compressed using a general-purpose compression tool.

Local bucketing. The first phase of Mince aggregates reads into buckets. A bucket b consists of a label l(b) and a collection of reads. The goal is to place within each bucket a collection of reads that are ‘similar’ to each other. In addition to being a difficult problem theoretically—bucketing is essentially clustering—the method we choose for bucket creation and assignment must be practically fast to handle the large number of reads we observe in most datasets. The approach we take to this problem is one of streaming bucket assignment based on a cost function that is designed to identify similar reads while simultaneously being quick to compute.

When a read, r, is processed, we look through all k-mers (15mers by default) in the read as well as its reverse complement rc(r) and check which k-mers, if any, correspond to the labels of existing buckets. Let buckets(r) be the set of existing buckets whose label matches some k-mer of r or rc(r). The set buckets(r) is a set of candidate buckets against which we will score the newly processed read r. We will then assign r to the bucket b∗ that satisfies

\[b^* = \arg \max_{b \in \text{buckets}(r)} |\ell\text{-mers}(r) \cap \ell\text{-mers}(b)| \]

(1)

where \(\ell\text{-mers}(r) \) denotes the set of all \(\ell \)-mers in the read \(r \) and, by slight abuse of notation, we denote the set of all \(\ell \)-mers in a bucket \(b \) by \(\ell\text{-mers}(b) \). By default \(\ell = 8 \). In Equation (1),
we are measuring the score of read \(r \) with respect to each bucket \(b \) in
which it can be placed. The score is simply the number of length-\(\ell \)
substrings (\(\ell \)-mers) that are shared between the read \(r \) and the set of
all reads currently in bucket \(b \).

If \(b' \) is labeled by a k-mer of \(r \), we place \(r \) in the bucket \(b' \), while
if \(b' \) is labeled by a k-mer of \(rc(r) \), we instead place \(rc(r) \) in the
bucket \(b' \). We also record whether \(r \) or its reverse complement is
being assigned to a bucket (see later). If no k-mer in this read is the
label for an existing bucket \([\text{buckets}(r) = \emptyset]\), a new bucket is
created. Initially, this new bucket will contain only this read, and its
label will be the \(\operatorname{minimizer} \) (Roberts et al., 2004) of this read—the
lexicographically smallest k-mer among those in \(r \) and \(rc(r) \). We
begin with no buckets.

Intuitively, we are trying to assign each read to the bucket whose
contents share the most substrings with the read, with the hope that
the compressor will be able to exploit the redundancy of these
shared substrings. The set of \(\ell \)-mers in a bucket acts as a lightweight
model of the bucket contents and allows us to quickly estimate the
relative benefit of each bucket assignment. Because we only consider
placing \(r \) in the buckets labeled with some k-mer of \(r \), we will only ever
have to compute the score of assigning \(r \) to a relatively small number of
buckets [never more than \(2(|r| - k + 1) \)]—the factor of 2 comes from considering both \(r \) and \(rc(r) \).

This ensures that each read can be assigned to a bucket in time independent of the
number of buckets or reads. When read \(r \) is assigned to a bucket, the set of
\(\ell \)-mers of this bucket is updated to include any new \(\ell \)-mers present
in \(r \) that did not previously exist in the bucket.

Reassigning singletons. The choice of the bucket into which a
read \(r \) is placed is greedy, as the bucket contents themselves depend
on the set of reads that have already been processed and the order in
which they were observed. Thus, it is quite possible that, at the point
\(r \) is observed, it will be bucketed using k-mer \(s_0 \), but subsequently
some other string \(s_i \) contained within the read will actually corre-
respond to a better bucket as determined by Equation (1). In the most
extreme case, the bucket \(s_i \) may contain only \(r \). We call these reads
that are alone in a bucket singleton reads and their buckets singleton
buckets. These buckets are likely to be poorly compressed.

In an attempt to mitigate this effect, we perform a ‘rescue’ step
after the initial bucketing in which we attempt to re-assign singleton
reads to some other non-empty bucket. Specifically, let the set of
singleton reads be denoted \(S \). We attempt to re-bucket each singleton
read in light of the buckets containing all other observed reads. We
remove all the singleton buckets and then re-process the reads in \(S \),
assigning each to the remaining bucket that satisfies Equation (1).
Because we now have a larger set of buckets than we did when ini-
tially processing the singleton reads, a number of these singletons
can often be placed into non-empty buckets. This allows us to ex-
plain shared sequence that occurs after the singleton read in the input
file. If, during this rescue step, we are unable to place a read into
any existing bucket, we place it into a special singleton bucket,
which is labeled by the empty string. These remaining singletons
will simply be 2-bit encoded and written at the beginning of the
compressed file.

Read transformation. When a read \(r \) is placed in a bucket, it is
encoded using a transformation \(\text{enc}(r) \), illustrated in Figure 1 that
was initially described in Hach (2013). This transformation parti-
tions the read \(r \), conceptually, into three regions such that
\(r = x \cdot \ell(r) \cdot y \), where \(x \cdot \) represents string concatenation and \(\ell(r) \)
region of \(\ell(r) \) into which this read is being placed. Given this
partition, \(\text{enc}(r) = (y \cdot x, o) \) where \(o \) is the offset into the original
read where the first occurrence of \(\ell(r) \) appears. We call this the split-
swap read transformation, since it splits the read at a particular
offset and swaps the second and first substrings produced by this
split. Given \(\ell(r) \) and \(\text{enc}(r) \), it is possible to reconstruct \(r \). The
purpose of this transformation is twofold. First, it removes explicit re-
dundancy [i.e. \(\ell(r) \)] that exists among the reads that have been
bucketed together. Second, it moves to the front of each read in the
bucket the region of the read that directly follows the shared sub-
string. Prefixes of these regions are more likely to share similar se-
quence, and placing them at the front of every read may improve the
ability of the downstream compressor to discover and exploit these
shared substrings. Within each bucket, the reads are sorted by the
offset of the first occurrence of the label string within the read, with
ties being broken lexicographically.

Sub-bucketing and bucket ordering. Once each read has been as-
signed to a final bucket, the buckets are encoded and written to file.
Because most buckets are small, we avoid using a relatively large 4
or 8 byte integer to record the size of each bucket. Rather, large
buckets are broken up into sub-buckets, each with a maximum size
of 256 reads. The sub-buckets belonging to a single bucket are writ-
ten to file sequentially, and the order of the reads in the concaten-
ation of these sub-buckets is the same as the order of the reads
within the original bucket.

As it leads to improved compression, we choose to record the
transformed read sequences, concatenated together, using 2-bit
encoding. The raw bitstream contains sequences of bits encoding the
read sequences, separated by segments of control information
encoding the label string for a bucket, its length and the number of
elements in the sub-bucket to follow.

Because the reads in each bucket are sorted according to the off-
set of the bucket label, these offsets will then be a non-decreasing list
of positive integers. This allows us to encode them using delta
encoding, which we find leads to improved compression. The lexi-
ographic tie-breaking is performed with respect to the reads after they
have been encoded, as described earlier.

2.1 Mince file format

The bucket information output by Mince consists of two required
files and two optional files. The required files are \(f_{\text{seq}} \) and \(f_{\text{offset}} \). \(f_{\text{seq}} \)
consists of the read sequence and ‘control’ information. This stream
begins by recording the necessary meta-data about the entire set of
reads such as the read length and the read library type, which signi-
ﬁes which types of read transformations may be performed lossily
(Section 2.2). This information is then followed by the count of
singletons (encoded as a 32-bit unsigned integer) and a bitstream
containing all singleton reads, sorted reverse lexicographically and
2-bit encoded. The singleton reads are then followed by a collection
of sub-buckets that constitute the remainder of the file.

![Fig. 1. When a read \(r \) is placed into a bucket, it is encoded by splitting it at the first occurrence of the label string in \(r \), removing this substring and placing the proceeding substring at the front of the encoded read](image-url)
Each sub-bucket contains the following control information: the size of the bucket label, the sequence of the bucket label (2-bit encoded), the number of elements, \(m \), in the sub-bucket minus one (this is encoded with an 8-bit unsigned integer and thus has a maximum value of 255), and a sequence of \(m \) encoded reads. Each read is written as the 2-bit encoding of split-swap(\(r, o \)). If a sub-bucket has the same core string as the preceding sub-bucket, we record a length of 0 for the bucket label, and we do not re-record this string for the current sub-bucket.

The file \(f_{\text{offset}} \) simply consists of a list of positions of the bucket labels within each read, where the read order is the same as in \(f_{\text{seq}} \). These offsets are delta-encoded within each sub-bucket. Because the reads within each sub-bucket are sorted by the bucket label offset, this often exposes long runs of 0s in the offset stream that are encoded particularly well.

The two optional files are the reverse complement file \(f_{\text{rc}} \) and the file \(f_{\text{s}} \) containing the location of \(N \)s in the original reads. \(f_{\text{rc}} \) consists of a simple binary stream of 0s and 1s for each read in \(f_{\text{seq}} \), whether we encoded the original read (in which case we record a 0) or the reverse-complement of the read (in which case we record a 1). Because it may not be necessary to recover the original strand of the raw reads, which is often arbitrary, this stream can sometimes be discarded, though it is often of a negligible size. For example, when dealing with single-end reads that do not originate from a known strand of DNA or RNA, a given read \(r \) and its reverse complement \(rc(r) \) are often equivalent for the purpose of most analyses—the same is also true of non-strand-specific paired-end reads, though the relative orientation of these reads should be preserved (Section 2.2).

Finally, \(f_{\text{s}} \) consists of the positions of all of the nucleotides that were recorded as \(N \) in the original sequencing reads. This file is necessary because we rely, in \(f_{\text{seq}} \), on a 2-bit encoding of the sequences. To allow this, we transform all \(N \)s into a 2-bit representable character (we chose \(\$ \)) when encoding the reads. \(f_{\text{s}} \) is written in a binary format where each entry consists of the index of the next read containing encoded \(N \)s, the number of \(N \)s in this read and then the positions, within this read, where the \(N \)s occur. The \(f_{\text{s}} \) file is often optional because, if we are encoding a FASTQ file and maintain the quality values, they can be used to recover the positions in each read where \(N \)s have been called (Hach et al., 2012).

All of these output files—\(f_{\text{seq}}, f_{\text{offset}} \) and optionally \(f_{\text{rc}} \) and \(f_{\text{s}} \)—are subsequently compressed independently using the lzjip compressor as part of the Mince program.

2.2 Handling paired-end reads

There is significant diversity in the type of information that may be represented by a set of read sequences. For example, reads can be paired-end or single-ended; they can have a prescribed strandedness, or originate from either strand. Paired-end read libraries, additionally, are prepared in a way that results in the mate pairs having a prescribed relative orientation—that is, they may face in the same direction, away from each other or toward each other.

Mince handles paired-end reads by first concatenating the left and right ends of the pair together in accordance with a user-provided library type. The library type specifies the relative orientation of the two reads as well as whether or not one of the reads is prescribed to originate from a particular strand (e.g. as in a stranded library preparation protocol). Specifically, Mince reverse complements one of the ends of the paired-end read, if necessary, to ensure that both pairs are oriented with respect to the same strand. For example, if the reads are sequenced according to the standard paired-end Illumina protocol, they will face toward each other and come from complementary strands of the molecule being sequenced. In this case, reverse complementing the second read of the pair will reverse its orientation and strand to be consistent with that of the first read in the pair. The library type is encoded as a 1-byte number and placed at the beginning of the \(f_{\text{seq}} \) file. This allows the relative orientation of paired-end reads to be properly recovered during decoding. After this transformation, the resulting sequences are then encoded simply as if they were single-end reads. By encoding the lengths of the left and right mates, the reads can then be separated into two streams during or after decoding to recover the original mated reads. Because Mince, like SCALCE (Hach et al., 2012), records the reads, if the mates were encoded separately, it would have to either re-order one end according to the order induced by the other, or record, explicitly, the permutation between the two encoded files. The first of these strategies usually results in a larger encoded size, while the latter limits the ability to perform streaming decompression, since the positions of the mates of a pair may be arbitrarily different in their respective encoded files. These considerations led us to choose the strategy of concatenating the mate pairs to handle paired-end reads.

3 Results

3.1 Mince produces smaller files than other de novo compressors

We compared Mince against fastqz (in reference-free mode) and SCALCE, both of which were among the top de novo compression tools in a recent survey (Bonfield and Mahoney, 2013). We also experimented with the fqzcomp (Bonfield and Mahoney, 2013) program, but it performed worse than fastqz in all of our tests, and so the results are not reported here. We used SCALCE version 2.7, and encoded the read sets with the default options. Paired-end reads were encoded by SCALCE using the \(-x \) option. We used fastqz version 1.5, and compressed reads using the \(c \) command. Fastqz does not handle paired-end reads in a special way, so we provided fastqz with a single file of the concatenated paired reads, prepared as described in Section 2.2. Finally, we used Mince version 0.6 and encoded reads with the default options (except for the \(\text{’no rc’} \) sizes which were generated using the \(\text{’-n rc’} \) flag) and the default k-mer size of \(k = 15 \).

For a fair comparison, we extracted the sizes of the various encodings that represent the sequence only, ignoring sections of encoded files corresponding to quality values and names. This is straightforward since the top de novo compressors against which we compared write different parts of the encoded data (i.e. sequences, qualities and names) to different files, because data of a similar type tend to share orders the reads, if the mates were encoded separately, it would handle paired-end reads in a special way, so we provided fastqz with a single file of the concatenated paired reads, prepared as described in Section 2.2. Finally, we used Mince version 0.6 and encoded reads with the default options (except for the \(\text{’no rc’} \) sizes which were generated using the \(\text{’-n rc’} \) flag) and the default k-mer size of \(k = 15 \).

We measured compression performance on the diverse array of sequence files listed in Table 1. This collection of data represents sequences from a mix of different organisms and types of experiments. Further, there is substantial technical diversity among this set of files; the sequences vary significantly in read length and paired-endness. We selected this set of data to explore the relative performance of these different de novo compression techniques on data of varying type, quality and redundancy.
The resulting compressed file sizes are recorded in Table 2. Over the nine different test files, Mince always produces the smallest encoding. This result holds regardless of the read-length, single/paired-endedness of the file or the organism from which the reads were sequenced. In most cases, the Mince-encoded files are substantially smaller than those produced by competing methods, in some cases achieving up to a 66% reduction in file size of fastqz and a 45% reduction in file size over SCALCE, which is generally the next best method.

3.2 Exploiting reverse complementation leads to improved compression

If the reverse complement of reads is not considered during bucketing, Mince produces larger files (Fig. 2) than when reverse complement sequences are considered. In fact, for each read set we use here, the sum of the sizes of the Mince encoded file and f_{rc}, the file which encodes whether or not each read was reverse complemented, is smaller—usually by a substantial amount—than the encoding size that we would be able to achieve if we did not allow reverse complementing of the reads in the first place. This is due to the fact that the f_{rc} file is very small—typically only a few megabytes (Table 2, f_{rc} columns). Further, if we do not need to recover the original orientation of the reads, the f_{rc} file can be discarded completely. These results suggest that, even if a transformation cannot be performed lossily, such as reordering the reads, it may still prove beneficial to perform the lossy transformation and additionally encode the sideband information necessary to recover the original data completely.

3.3 Mince is better able to exploit k-mer redundancy

The number of duplicated k-mers (identical k-mers that appear multiple times) in a file is a strong indicator of the benefit of Mince over other methods. This indicates that Mince is better able to identify and exploit sequence similarity between the reads than other approaches. The lower the number of distinct k-mers per byte, the greater was Mince’s compression ratio relative to SCALCE (Fig. 3). Files with highly diverse sequences contain little redundancy and are thus more difficult to compress in a de novo setting (although Mince is still able to compress them more effectively than other methods).

Table 1. Different read sets used in the experiments. ‘PE’ indicates paired-end reads while ‘SE’ indicates single-end reads

Dataset	Read length (bp)	Read type	Description	No. reads
SRR034940	100 × 2	PE	Whole genome (H. sapiens)	18 037 535
ERR233214	92 × 2	PE	Whole genome P. falciparum	7 578 837
SRR037452	35	SE	RNA-seq H. sapiens brain tissue	11 712 885
SRR445718	100	SE	RNA-seq H. sapiens oocyte	32 943 665
SRR490961	100	SE	RNA-seq H. sapiens ES cell	49 127 668
SRR635193	108	PE	RNA-seq H. sapiens pooled placental amnion	27 265 881
SRR1294122	101	SE	RNA-seq H. sapiens ES cell line UCLA6	39 666 314
SRR689233	90 × 2	PE	RNA-seq M. musculus	16 407 945
SRR519063	51 × 2	PE	RNA-seq P. aeruginosa	26 905 342

Table 2. Sizes (in bytes) of the compressed sequences from a number of different sequencing experiments, using both lzip and gzip compression as the downstream compressor

Read set	Using gzip	Using lzip					
	fastqz	SCALCE	Mince	f_{rc}	Mince no RC	Mince	f_{rc}
SRR034940	761 004 012	773 713 270	742 714 887	2 206 070	763 594 066	714 253 615	2 224 625
ERR233214	110 774 782	108 400 240	96 358 342	934 495	114 197 621	85 981 514	946 677
SRR037452	85 510 908	66 629 150	58 819 463	1 323 208	62 823 740	53 087 524	1 304 612
SRR445718	325 231 326	252 989 630	191 556 289	3 665 690	213 776 989	159 655 281	3 659 251
SRR490961	444 636 843	300 176 804	211 414 052	5 536 382	241 571 742	169 544 398	5 531 911
SRR635193	355 334 940	294 524 184	261 228 305	3 137 672	297 836 270	237 200 862	3 162 639
SRR1294122	441 798 609	299 329 596	230 388 405	4 284 749	260 421 919	201 020 800	4 208 551
SRR689233	247 811 387	233 812 318	199 160 825	1 945 419	225 423 423	175 824 235	1 944 118
SRR519063	162 308 902	100 399 410	66 749 829	3 347 952	78 336 214	55 514 875	3 386 879

The numbers that appear in the f_{rc} columns are the sizes of the file that encodes which reads were reverse-complemented during encoding, which is required if the original strand of the read needs to be preserved.
Data-dependent bucketing improves compression

3.4 Effect of bucket label size

The single user-tunable parameter to Mince is the size of the k-mer used to label the buckets into which reads are placed. Reads are only considered for placement in a bucket if they contain the k-mer that labels that bucket. Thus, using shorter bucket labels will, in general, increase the number of buckets we examine when trying to assign a read, potentially leading to a better match between the read and bucket. Conversely, because all of the reads belonging to a bucket have the bucket label explicitly removed when they are encoded and written to file, using longer labels may result in better compression because more redundancy is explicitly removed from the reads.

We use a default bucket label size of 15 in Mince and find that it works well over a wide range of different files. We investigated the effect of this parameter to ensure that the results we observe are robust to its setting. We encoded the same set of files from Table 2 using a smaller bucket label size of 12. This size was chosen to match the length of the ‘core’ strings used to label buckets in SCALCE. We find that, though length 15 bucket labels generally result in better compression than length 12 labels, the difference is fairly minor. In fact, files encoded using length 12 bucket labels are, on average, only 1.5% larger than those encoded using length 15 bucket labels. The single largest relative difference occurred with the read set SRR490961, where the Mince encoding using length 15 bucket labels was 5.8% smaller than the encoding using length 12 bucket labels. We also observed that the file SRR037452 actually compressed better using length 12 bucket labels and was 2.6% smaller than its counterpart encoded with the default bucket label size. This indicates Mince’s advantage over SCALCE is not due to simply choosing larger ‘core’ strings. It is likely that small changes in the size of the label string will have only a small effect on the set of reads which appear close together in the final ordering, and despite, the fact that a small change in the label length will change the number of buckets, we expect that it will have a substantially smaller change on the distance in the final order among sets of similar reads.

3.5 Effect of read order on compression size

Because the bucketing schemes used by Mince and SCALCE are both heuristic in nature, they are, in theory, affected by the order in which the reads are observed. We expect that in most files, the order of the reads will be random. However, a particularly beneficial or adversarial read order might result in significantly different compression ratios.

To explore the effect of read order on the ability of Mince and SCALCE to compress reads, we performed two different tests. First, we tested the ability of Mince and SCALCE to compress a given file (SRR1294122) under 10 random permutations of the read order within the file. We find that, across 10 trials, neither Mince nor SCALCE appears sensitive to the order of reads in the file. For Mince, the maximum difference in the compressed file size between the largest and smallest files over the 10 trials was 43, 410 bytes or 0.02% of the average compressed file size. For SCALCE, the maximum difference was 30,579 bytes, or 0.01% of the average compressed file size.

To demonstrate that Mince and SCALCE both have relatively effective bucketing heuristics that result in compression rates which are robust to the order in which reads are observed in the input, we attempted to create a particularly beneficial read order. Using the same file, SRR1294122, we aligned the reads against the Ensembl human transcriptome (Flicek et al., 2013) using the STAR aligner (Dobin et al., 2013). The resulting BAM file was then sorted by alignment location and converted back into a FASTQ file, which was then encoded with Mince, SCALCE and lzip.

Similar to the randomization tests described earlier, presenting the reads to Mince and SCALCE in this favorable order has little effect on the size of the resulting compressed files. Specifically, compared with the size of the file compressed in the given order (Table 2), the size of the compressed file produced by Mince when the reads were given in alignment-sorted order was only 0.2% smaller, while the SCALCE file was only 3.2% smaller.

However, if we simply extract the sequences from the original FASTQ and compress them using lzip, the size difference between the random and alignment-ordered files is very large. Specifically, the size of the randomly ordered sequences when compressed by lzip is 826,708,745 bytes while the size of the alignment-sorted sequences when compressed by lzip is only 309,463,739. Thus, reordering the reads before compressing them with lzip reduces the size of the file by 63% percent. In this case, the re-ordered reads, simply compressed with lzip approaches the size of the original file as compressed with SCALCE; it is only ~9.6Mb or 3.4% larger. However, this file is still ~106.3Mb or 36.3% larger than the Mince compressed file. This indicates that Mince is better able to recover an ordering as good as the ‘reference-based’ ordering.

These experiments suggest that the order in which reads are observed by Mince and SCALCE has little effect on their ability to successfully compress a file. Overall, the difference in resulting file sizes when the underlying read order is permuted is very small.

3.6 The choice of downstream compressor can have a significant effect

Mince uses pzip, a parallel implementation of lzip, as its downstream compressor. This is different from SCALCE, which by default boosts gzip compression. Our choice was motivated by the fact that lzip generally produces smaller files than either gzip or bzip2. Though lzip tends to be somewhat slower than gzip in terms of compression speed, it is still reasonably fast and has comparable speed during decompression, which is the more important factor in our case, as reads will generally only be compressed once, but may be decompressed many times. The choice of lzip as the downstream compressor leads to an improvement in the compression ratio of
Mince over what might be obtained if we relied on the same downstream compressor, gzip, as SCALCE.

To test the overall effect of boosting lzip rather than gzip compression, we ran Mince on all of the files from Table 2, but compressed the resulting files with gzip instead. This resulted in the file sizes reported in Table 2 in the middle columns. On average, the lzip-compressed files are 13% smaller than their gzip-compressed counterparts. We note that the gzip-compressed Mince files are still much smaller than their SCALCE counterparts, providing evidence that Mince is generally a more effective compression booster regardless of downstream compressor.

In addition, Mince can be used to boost the compression of other read compression techniques. Supplementary Table S1 shows the improved compression achieved by fastqz when it is provided read files that have first been reordered using Mince. Although Mince combined with lzip provides the best compression, Mince combined with fastqz improves the fastqz compression by a significant amount. This further indicates the usefulness of the Mince reordering strategy and is evidence that the Mince reordering may be useful to boost the compression of other tools.

3.7 Computational resources required
Supplementary Tables S2 and S3 provide detailed timing and memory usage for both SCALCE and Mince for the compression and decompression phases. When encoding, Mince is slower than SCALCE when using four threads. It also uses more memory than SCALCE, although its memory usage is still within practical limits (3–16 Gb). This is the tradeoff needed to achieve the significantly better compression of Mince. (When run with 20 threads, Mince runs on the order of a few minutes (3–15 min/file), making multi-core compression significantly more practical; see Supplementary Table S4). When decompressing, however, Mince is often faster and uses less memory than SCALCE. This is a reasonable tradeoff (slower, better compression but faster decompression) since decompression is the more common task.

4 Discussion
We introduced Mince, a de novo approach to sequence read compression that outperforms existing de novo compression techniques and works by boosting the already impressive lzip general purpose compressor. Rather than rely on a set of pre-specified ‘core substrings’ like SCALCE (Hach et al., 2012), Mince takes a data-driven approach, by considering all k-mers of a read before deciding the bucket into which it should be placed. Further, Mince improves on the ‘heaviest bucket’ heuristic used by SCALCE, and instead defines a more representative model for the marginal benefit of particular bucket assignment. This model takes into account the \(\ell \)-mer composition of the read and how similar it is to the set of \(\ell \)-mers of reads that have already been placed in this bucket. Early on in the processing of a file, when little information exists about the relative abundance of different k-mers, ties between buckets are broken consistently by preferring to bucket a read based on its minimizer.

This approach allows the selection of core substrings that are among the most frequent k-mers in the provided set of reads, and the improved model for bucket assignment leads to more coherent buckets and better downstream compression. In the rare situations where a specific order is required for the reads, Mince is not the most appropriate compression approach. Further, in addition to reordering, Mince exploits other transformations of a read, such as reverse complementing, that may or may not be performed in a lossy fashion. Regardless of whether or not these transformations need to be reversed during decoding, they lead to improvements in compression that overcome the cost of storing the ‘sideband’ information necessary to reverse them.

Mince only compresses the sequence portion of FASTQ files, requires all reads to have the same length, and ignores the quality values. The challenges associated with compression of quality values are quite different than those associated with compressing sequence data, and other approaches (e.g. Yu et al., 2015) have been developed that can be used to compress quality values well. Furthermore, quality values are often not needed for many analyses—tools such as BWA (Li, 2013), STAR (Dobin et al., 2013) and Sailfish (Patro et al., 2014) routinely ignore them during all or some phases of their operation—while sequence data are, of course, the primary and central reason for the FASTQ file to exist to begin with. For these reasons, we have focused on developing better methods for sequence compression, leaving the problem of improving quality value compression to future work.

Additional future work includes speeding up the compression and decompression approaches presented here. Although the current speed of Mince (particularly when decoding) is practical for many applications, it is always desirable to minimize the time spent on data manipulation tasks such as compression and decompression. This is the reason, for example, that we have used a near-greedy heuristic for selecting buckets and assigning reads to them—this is fast and produces reasonable results (differing by < 0.02% over various random read orderings). However, interesting directions for future work include both speeding up the implementation of this near-greedy approach and designing faster, equally performant approaches for read bucketing. This will be especially important for larger files, such as produced by high-coverage whole-genome human sequencing, where the 2x–11x difference in Mince and SCALCE runtimes will become more significant.

By capitalizing on an efficient, novel encoding of reads that leads to improved compression boosting, Mince is able to compress sets of read sequences more effectively than exiting de novo approaches. The compressed read sequences can be decompressed efficiently and in a streaming fashion. As the size and number of datasets that we analyze continues to grow, Mince will prove an effective tool for mitigating the ever-increasing cost of storage and transmission. Mince is written in C++/11, it is open source and has been made available under the GPLv3 license at http://www.cs.cmu.edu/~ckingsf/software/mince.

Acknowledgements
We would like to thank Geet Duggal, Darya Filippova, Emre Sefer, Brad Solomon and Hao Wang for useful discussions relating to this work and for comments on the initial manuscript. We would also like to thank the anonymous reviewers for their helpful feedback on the manuscript and testing of the software.

Funding
This work has been partially funded by the US National Science Foundation (CCF-1256087, CCF-1319998) and US National Institutes of Health (R21HG006913 and R01HG007104). C.K. received support as an Alfred P. Sloan Research Fellow. This work is also funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant GBMF4554 to Carl Kingsford.

Conflict of Interest: none declared.
References

Adjeroh,D. et al. (2002) DNA sequence compression using the Burrows-Wheeler Transform. In: Proceedings of the IEEE Computer Society on Bioinformatics Conference, 2002. IEEE Computer Society, Washington, DC, USA, pp. 303–313.

Bhola,V. et al. (2011) No-reference compression of genomic data stored in fastq format. In: Bioinformatics and Biomedicine (BIBM), 2011. IEEE, pp. 147–150.

Bonfield,J.K. and Mahoney,M.V. (2013) Compression of FASTQ and SAM format sequencing data. PLoS One, 8, e59190.

Brandon,M.C. et al. (2009) Data structures and compression algorithms for genomic sequence data. Bioinformatics, 25, 1731–1738.

Campagne,F. et al. (2013) compression of structured high-throughput sequencing data. PLoS One, 8, e79871.

Ca´novas,R. et al. (2014) Lossy compression of quality scores in genomic data. Bioinformatics, 30, 2130–2136.

Christley,S. et al. (2009) Human genomes as email attachments. Bioinformatics, 25, 274–275.

Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform. Bioinformatics, 28, 1413–1419.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of genomes with random access. Bioinformatics, 27, 2979–2986.

Deorowicz,S. and Grabowski,S. (2013) Data compression for sequencing data. Algorithms Mol. Biol., 8, 25.

Dobin,A. et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.

Flicek,P. et al. (2013) Ensembl 2014. Nucleic Acids Res., 42(Database issue), D749–D755.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA sequencing data using reference-based compression. Genome Res., 21, 734–740.

Hach,F. (2013) Scalable mapping and compression of high throughput genome sequencing data. Ph.D. Thesis, Simon Fraser University.

Hach,F. et al. (2012) SCALCE: boosting sequence compression algorithms using locally consistent encoding. Bioinformatics, 28, 3051–3057.

Jones,D.C. et al. (2012) compression of next-generation sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Res., 40, e171.

Kingsford,C. and Patro,R. (2015) Reference-based compression of short-read sequences using path encoding. Bioinformatics, 31, 1920–1928.

Kozanitis,C. et al. (2011) Compressing genomic sequence fragments using SimGene. J. Comput. Biol., 18, 401–413.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN].

Li,P. et al. (2013) HUGO: Hierarchical multi-reference Genome compression for aligned reads. J. Am. Med. Inform. Assoc., 21, 363–373.

Ochoa,I. et al. (2013) Qualcomp: a new lossy compressor for quality scores based on rate distortion theory. BMC Bioinformatics, 14, 187.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32, 462–464.

Pavlchin,D.S. et al. (2013) The human genome contracts again. Bioinformatics, 29, 2199–2202.

Pinho,A.J. et al. (2012) Green: a tool for efficient compression of genome resequencing data. Nucleic Acids Res., 40, e27.

Popitsch,N. and von Haeseler,A. (2013) NGC: lossless and lossy compression of aligned high-throughput sequencing data. Nucleic Acids Res., 41, e27.

Rajarajeswari,P. and Apparao,A. (2011) DNABIT compress–genome compression algorithm. Bioinformation, 5, 350.

Roberts,M. et al. (2004) Reducing storage requirements for biological sequence comparison. Bioinformatics, 20, 3363–3369.

Rozov,R. et al. (2014) Fast lossless compression via cascading bloom filters. BMC Bioinformatics, 15 (Suppl. 9), S7.

Tembe,W. et al. (2010) G-SQZ: compact encoding of genomic sequence and quality data. Bioinformatics, 26, 2192–2194.

Wang,C. and Zhang,D. (2011) A novel compression tool for efficient storage of genome resequencing data. Nucleic Acids Res., 39, e45.

Yu,Y.W. et al. (2015) Quality score compression improves genotyping accuracy. Nat. Biotechnol., 33, 240–243.