ESTIMATES FOR THE LARGEST CRITICAL VALUE OF $T_n^{(k)}$

NIKOLA NAIDENOV AND GENO NIKOLOV

Abstract. Here we study the quantity

$$\tau_{n,k} := \frac{|T_n^{(k)}(\omega_{n,k})|}{T_n^{(k)}(1)},$$

where T_n is the n-th Chebyshev polynomial of the first kind and $\omega_{n,k}$ is the largest zero of $T_n^{(k+1)}$. Since the absolute values of the local extrema of $T_n^{(k)}$ increase monotonically towards the end-points of $[-1, 1]$, the value $\tau_{n,k}$ shows how small is the largest critical value of $T_n^{(k)}$ relative to its global maximum $T_n^{(k)}(1)$. This is a continuation of the recent paper [6], where upper bounds and asymptotic formulae for $\tau_{n,k}$ have been obtained on the basis of Alexei Shadrin’s explicit form of the Schaeffer–Duffin pointwise majorant for polynomials with absolute value not exceeding 1 in $[-1, 1]$.

We exploit a result of Knut Petras [9] about the weights of the Gaussian quadrature formulae associated with the ultraspherical weight function $w_\lambda(x) = (1 - x^2)^{\lambda-1/2}$ to find an explicit (modulo $\omega_{n,k}$) formula for $\tau_{2n,k}$. This enables us to prove a lower bound and to refine the upper bounds for $\tau_{n,k}$ obtained in [6]. The explicit formula admits also a new derivation of the asymptotic formula in [6] approximating $\tau_{n,k}$ for $n \to \infty$. The new approach is simpler, without using deep results about the ordinates of the Bessel function, and allows to better analyze the sharpness of the estimates.

Key Words and Phrases: Derivatives of Chebyshev polynomials, ultraspherical polynomials, hypergeometric functions.

Mathematics Subject Classification 2020: 41A17

1. Introduction and statement of the results

We study the quantity

$$\tau_{n,k} := \frac{|T_n^{(k)}(\omega)|}{T_n^{(k)}(1)},$$

where T_n is the n-th Chebyshev polynomial of the first kind, and $\omega = \omega_{n,k}$ is the rightmost zero of $T_n^{(k+1)}$, $n \geq k + 2$. The value $\tau_{n,k}$ shows how small is the largest critical value of $T_n^{(k)}$ relative to its global maximum in $[-1, 1]$, $T_n^{(k)}(1)$. This quantity has found applications in studying some extremal problems such as Markov-type inequalities [4], [7], [11] and the Landau–Kolmogorov inequalities for intermediate derivatives [5], [12].

Some upper bounds for $\tau_{n,k}$ have been obtained in the recent paper [6]. The main ingredient for the results in [6] is the pointwise majorant $D_{n,k}(x)$ for polynomials of degree at most n with absolute value less than or equal to one in $[-1, 1]$. This majorant was used by Schaeffer and Duffin [13] to obtain another proof of V.

The authors are partially supported by the Sofia University Research Fund through Contract No. 80-10-20/22.03.2021.
Markov’s inequality. An explicit formula for $D_{n,k}^2(x)$, $k \geq 2$, was found by Shadrin (see [11]), it reads

$$D_{n,k}^2(x) = \frac{n^2(n^2 - 1^2) \cdots (n^2 - (k-1)^2)}{(1 - x^2)^k} S_{n,k}(x),$$

where

$$S_{n,k}(x) = 1 + \sum_{m=1}^{k-1} \frac{(2m-1)!}{(2m)!} \frac{(k-m)_{2m}}{(1-x^2)^m} \prod_{j=1}^{m} \frac{1}{n^2 - j^2}$$

and $(a)_j := a(a+1) \cdots (a+j-1)$, $j \in \mathbb{N}$, is the Pochhammer function. This leads to the inequality

$$\tau_{n,k}^2 \leq \frac{D_{n,k}^2(\omega)}{[T_n^{(k)}(1)]^2} = \frac{(2k-1)!}{(2k)!} \frac{n+k}{n} \frac{1}{\omega^{n+k}} S_{n,k}(\omega)$$

which was the starting point in [6] for the derivation of upper bounds for $\tau_{n,k}^2$ which are uniform in n and k.

Of course, one can obtain an explicit formula for $\tau_{n,k}$ from $T_n^{(k)} = 2^{k-1} k! n P_{n-k}^{(k)}$ and the representations of ultraspherical polynomials as hypergeometric functions, e.g., [14, eqn. 4.7.6] yields

$$\tau_{n,k} = -1 + \sum_{m=1}^{n-k} (-1)^{m+1} \left(\frac{n-k}{m} \right) \left(\frac{n+k}{n-k} \right) \omega^2 \left(\frac{1}{2} \right)^m.$$

However, this expression is difficult to estimate because of the sign changing summands. It turns out that an explicit formula for $\tau_{n,k}^2$ exists, which moreover admits easier estimation. We prove the following

Theorem 1.1. For all $n > k + 1$, the quantity $\tau_{n,k}^2$ admits the representation

$$\tau_{n,k}^2 = \frac{(2k-1)!}{(2k)!} \frac{n}{n-k} \frac{1}{\omega^{n-k}} \frac{1}{(1-\omega^2)^{n-k}} S_{n,k+1}(\omega),$$

where

$$S_{n,k+1}(x) = 1 + \sum_{m=1}^{k} \frac{(2m-1)!}{(2m)!} \frac{(k+1-m)_{2m}}{(1-x^2)^m} \prod_{j=1}^{m} \frac{1}{n^2 - j^2}.$$

We derive Theorem 1.1 from a result of Knut Petras [9], who has found explicit expressions for the coefficients of the Gaussian quadrature formulae associated with the ultraspherical weight function $w_{\lambda}(x) = (1 - x^2)^{\lambda-1/2}$ when λ is a non-negative integer.

The similarity of formulae (1.2) and (1.3) is remarkable, as well as the opposite roles played by the quantities $S_{n,k}(\omega)$ and $S_{n,k+1}(\omega)$ therein. As (1.3) is the exact expression while in (1.2) we have a majorant for $\tau_{n,k}^2$, it is natural to expect that with (1.3) one could produce better upper bounds than the bounds obtained with (1.2). This however requires a lower estimate for $S_{n,k+1}(\omega)$, exactly as upper estimates for $S_{n,k}(\omega)$ are needed in (1.2). In fact, one can avoid estimation of $S_{n,k}(\omega)$ and $S_{n,k+1}(\omega)$ by simply combining (1.2) and (1.3) to obtain

$$\tau_{n,k}^2 \leq \sqrt{\frac{n+k}{n-k} \frac{(2k-1)!}{(2k)!} \frac{1}{\omega^{n-k}} \frac{1}{(1-\omega^2)^k} \frac{S_{n,k}(\omega)}{S_{n,k+1}(\omega)}},$$
and then use the inequality $S_{n,k}(\omega)/S_{n,k+1}(\omega) < 1$, which is easily verified by a termwise comparison. By elaborating further this idea, we prove the following sharper result.

Theorem 1.2. For all $n > k + 1$, there holds

$$
\tau_{n,k} \leq \frac{(2k - 1)!!}{(n + k - 1)(n + k - 3) \ldots (n - k + 1)} \frac{1}{(1 - \omega^2)^{\frac{k}{2}}}
$$

Since $1 - \omega^2 \geq \left(\frac{k + 2}{n}\right)^2$ (see, e.g., [7, Lemma 3.5] for an estimate for the largest zeros of ultraspherical polynomials), Theorem 1.2 implies:

Corollary 1.3. For all $n > k + 1$, there holds

$$
\tau_{n,k} \leq \frac{(2k - 1)!!}{(n + k - 1)(n + k - 3) \ldots (n - k + 1)} \left(\frac{n}{k + 2}\right)^k.
$$

We proved in [6, Theorem 1.1]) that the sequence $\{\tau_{n,k}\}_{n > k + 1}$ is monotonically decreasing, thus showing the existence of $\tau_k^* = \lim_{n \to \infty} \tau_{n,k}$. Corollary 1.3 implies immediately an upper bound for τ_k^*.

Corollary 1.4. For all $k \in \mathbb{N}$, the quantity τ_k^* satisfies the inequality

$$
\tau_k^* \leq \frac{(2k - 1)!!}{(k + 2)^k}.
$$

The following counterpart of the inequality $\tau_{n,k} \leq \tau_{n+1,k}$ holds true:

Theorem 1.5. For all $n > k + 1$,

$$
\frac{\tau_{n,k}}{\tau_{n+1,k}} \leq \frac{(n + k)(n + k - 2) \ldots (n - k + 2)}{(n + k - 1)(n + k - 3) \ldots (n - k + 1)}.
$$

By iterating (1.6) and using that $\tau_{k+2,k} = 1/(2k + 1)$ (see [6, Theorem 1.2]), we obtain that the right-hand side of (1.5) without the factor $(1 - \omega^2)^{-k/2}$ is a lower bound for $\tau_{n,k}$.

Corollary 1.6. For all $n > k + 1$, there holds

$$
\tau_{n,k} \geq \frac{(2k - 1)!!}{(n + k - 1)(n + k - 3) \ldots (n - k + 1)}.
$$

We observe that the bounds for $\tau_{n,k}$ given by Corollaries 1.3 and 1.6 present correctly the magnitude of $\tau_{n,k}$ whenever $\left(\frac{n}{k + 2}\right)^k$ remains bounded. This is the case, e.g., when $m = n - k$ is fixed.

Theorem 1.1 admits also a new derivation of the asymptotic formula for τ_k^*, obtained in [6, Theorem 1.8]. The new approach is simpler, without using deep results about the ordinates of the Bessel function, and allows to better analyze the sharpness of our estimates.

Theorem 1.7. The quantity τ_k^* admits the representation

$$
\tau_k^* = A \left(\frac{2}{e}\right)^{k+1/2} e^{-ak^{1/3} k^{-1/6}} \left(1 + O(k^{-1/6})\right),
$$

where $A = \left(\int_{1}^{\infty} e^{-\frac{x^3}{2} + 2ax} \frac{dx}{\sqrt{x}}\right)^{-1/2} \approx 1.3951$ and $a = 2^{-1/3}|i_1| \approx 1.8558$ with i_1 the first zero of the Airy function.
The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.1. Theorems 1.2 and 1.5 are proven in Section 3, and the proof of Theorem 1.7 is given in Section 4. Section 5 contains comments and concluding remarks.

2. PROOF OF THEOREM 1.1

The derivatives of T_n are expressed by ultraspherical polynomials, namely,

\begin{equation}
T_n^{(k)} = n 2^{k-1} (k-1)! P_{n-k}^{(k)}, \quad k = 1, \ldots, n.
\end{equation}

Here, $P_m^{(\lambda)}$ is the usual notation for the m-th ultraspherical polynomial, which is orthogonal in $[-1, 1]$ with respect to the weight function $w_\lambda(x) = (1 - x^2)^{\lambda-1/2}$, $\lambda > -1/2$. Well known properties of ultraspherical polynomials are

\begin{equation}
(1 - x^2)y'' - (2\lambda + 1)xy' + m(m + 2\lambda)y = 0, \quad y = P_m^{(\lambda)},
\end{equation}

\begin{equation}
\frac{d}{dx}\{P_m^{(\lambda)}(x)\} = 2\lambda P_{m-1}^{(\lambda + 1)}(x),
\end{equation}

\begin{equation}
P_m^{(\lambda)}(1) = \left(\frac{m + 2\lambda - 1}{m}\right).
\end{equation}

From (2.1) and (2.4) it follows that

\begin{equation}
\tau_{n,k}^2 = \frac{(P_{n-k}^{(\lambda)}(\omega))^2}{(P_{n-k}^{(\lambda)}(1))^2} = \frac{\Gamma^2(2k) \Gamma^2(n + 1 - k)}{\Gamma^2(n + k)} \frac{(P_{n-k}^{(\lambda)}(\omega))^2}{(P_{n-k}^{(\lambda)}(1))^2},
\end{equation}

where ω is the largest zero of $P_{n-k-1}^{(\lambda)}$.

An explicit representation of $[P_{n-k}^{(\lambda)}(\omega)]^2$ follows from a result of Knut Petras [9], where the author has found an asymptotic expansion for the coefficients of the Gaussian quadrature formulae associated with the ultraspherical weight function $w_\lambda(x) = (1 - x^2)^{\lambda-1/2}$. In the case $\lambda \in \mathbb{N}_0$ Petras has proved that the coefficients $a^{(\lambda)}_{\nu,n}$ of the n-point Gaussian quadrature formula $Q_n^{(\lambda)G}$,

\begin{equation}
Q_n^{(\lambda)G}[f] = \sum_{\nu=1}^{n} a^{(\lambda)}_{\nu,n} f(x^{(\lambda)}_{\nu,n}),
\end{equation}

where $x^{(\lambda)}_{\nu,n} = x^{(\lambda)}_{\nu,n}$ are the zeros of $P_n^{(\lambda)}$, admit the representation

\begin{equation}
a^{(\lambda)}_{\nu,n} = \frac{\pi}{n + \lambda} (1 - x^2)\lambda \left(1 + \sum_{m=1}^{\lambda-1} \frac{\alpha_{m}(\lambda)}{(1 - x^2)^m} \prod_{j=1}^{m} \frac{1}{(n + \lambda - j)^2 - j^2}\right),
\end{equation}

where

\begin{equation}
\alpha_m(\lambda) = \left(\frac{(2m)!}{2^{2m}m!}\right)^2 \left(\frac{m + \lambda - 1}{2m}\right).
\end{equation}

On the other hand, the weights $a^{(\lambda)}_{\nu,n}$ obey the representation (cf. [14, eqn. (15.3.2)])

\begin{equation}
a^{(\lambda)}_{\nu,n} = \frac{2^{2-2\lambda} \pi \Gamma(n + 2\lambda)}{\Gamma^2(\lambda) \Gamma(n + 1)} \frac{1}{(1 - x^2)_{\nu}^{(\lambda)'2}}
\end{equation},

where $x^2_{\nu} = x^{(\lambda)}_{\nu,n}$.
If $\lambda > 1$, then, by (2.3), $P_n^{(\lambda)}(x) = y''(x)/(2\lambda - 2)$, where $y = P_n^{(\lambda-1)}$. By (2.2), $(1-x^2)y''(x) = -(n+1)(n+2\lambda-1)y(x)$ at the zeros of $y' = 2(\lambda-1)P_n^{(\lambda)}$, therefore the above formula can be rewritten as

\begin{equation}
\alpha_{\nu,n}^{(\lambda)} = \frac{2^{2-2\lambda} \pi \Gamma(n+2\lambda-1)}{(n+1)(n+2\lambda-1) \Gamma^2(\lambda-1) \Gamma(n+2)} \frac{1-x^2_{\nu}}{[P_{n+1}^{(\lambda-1)}(x_{\nu})]^2}, \quad \lambda > 1.
\end{equation}

By equating the right-hand sides of (2.6) and (2.7) and then substituting (3.2) into (2.6), we obtain

\begin{equation}
\frac{\pi}{n}(1-x^2_{\nu})^{k+1} S_{n,k+1}(x_{\nu}) = \frac{2^{2-2k} \pi \Gamma(n+k)}{(n^2-k^2) \Gamma^2(k) \Gamma(n-k+1)} \frac{1-x^2_{\nu}}{[P_{n-k}^{(k)}(x_{\nu})]^2}.
\end{equation}

In particular, this last equality holds true when x_{ν} is the largest zero of $P_{n-k-1}^{(k)}(x)$, i.e., $x_{\nu} = \omega$. Therefore,

\[[P_{n-k}^{(k)}(\omega)]^2 = \frac{2^{2-2k} \pi \Gamma(n+k)}{(n^2-k^2) \Gamma^2(k) \Gamma(n-k+1)} \frac{1}{(1-\omega^2)^k S_{n,k+1}(\omega)}. \]

By putting this expression in (2.5) we obtain (1.3). \hfill \Box

3. Proof of Theorems 1.2 and 1.5

Recall that the $\mathbf{3F}_2$ hypergeometric function is defined by the series

\[\mathbf{3F}_2(a, b, c; d, e; x) = 1 + \sum_{m=1}^{\infty} \frac{(a)_m (b)_m (c)_m}{(d)_m (e)_m} \frac{x^m}{m!}. \]

Generally, it is assumed that d, e are not negative integers or zero, but exceptions are allowed when some of parameters a, b, c are a negative integer, in which case the series terminates. This is the situation with the finite sums $S_{m,k}(0)$ and $S_{m,k+1}(0)$, where $m \in \mathbb{N}$, $m > k + 1$, namely, we have

\[S_{m,k}(0) = \mathbf{3F}_2(k, 1-k, \frac{1}{2}; 1 + m, 1-m; 1), \]

\[S_{m,k+1}(0) = \mathbf{3F}_2(k + 1, -k, \frac{1}{2}; 1 + m, 1-m; 1). \]

A closed type formula for such $\mathbf{3F}_2$ expressions provides the Whipple identity (see [3, p. 189, eqn. (7)]).

\[\mathbf{3F}_2(a, 1-a, c; d, e; 1+c-a; 1) = \frac{2^{1-2c} \pi \Gamma(d) \Gamma(2c + 1 - d)}{\Gamma(\frac{a+d}{2}) \Gamma(\frac{a+1+2c-a}{2}) \Gamma(\frac{1-a+d}{2}) \Gamma(\frac{2+2c-a-d}{2})} \frac{1}{\Gamma(\frac{1}{2})}. \]

By using Whipple’s identity and familiar properties of the Gamma function (considering separately the cases of even and odd $m-k$), we find that, under the assumption $m > k + 1$,

\begin{align}
S_{m,k}(0) &= m \frac{(m + k - 2)(m + k - 4) \cdots (m - k + 2)}{(m + k - 1)(m + k - 3) \cdots (m - k + 1)}, \\
S_{m,k+1}(0) &= m \frac{(m + k - 1)(m + k - 3) \cdots (m - k + 1)}{(m + k)(m + k - 2) \cdots (m - k)}.
\end{align}

For the proof of Theorems 1.2 and 1.5 we need the following simple lemma.
Lemma 3.1. Let the polynomials $P(x) = \sum_{m=0}^{k} a_m x^m$ and $Q(x) = \sum_{m=0}^{k} b_m x^m$ have positive coefficients (with a_k allowed to be zero). If the sequence $\{a_m\}_{m=0}^{k}$ is monotonically increasing (resp. decreasing), then $R(z) = \frac{P(z)}{Q(z)}$ is strictly monotonically increasing (resp. decreasing) in $[0, \infty)$.

Proof. A straightforward calculation shows that $R'(x) = r(x)/Q^2(x)$, where
\[
 r(x) = \sum_{s=1}^{k} \left(\left\lfloor \frac{s}{2} \right\rfloor \sum_{m=0}^{k} (s-2m)(a_{s-m} b_m - a_m b_{s-m}) \right) x^{s-1}
 + \sum_{s=k+1}^{2k} \left(\left\lfloor \frac{s}{2} \right\rfloor \sum_{m=s-k}^{k} (s-2m)(a_{s-m} b_m - a_m b_{s-m}) \right) x^{s-1}.
\]
(Here, $\lfloor \cdot \rfloor$ stands for the integer part function.) We observe that if the sequence a_m/b_m, $(m = 0, 1, \ldots, k)$, is monotonically increasing (decreasing), then all the coefficients of the polynomial $r(x)$ are positive (negative), and hence $R'(x)$ is positive (negative) on $[0, \infty)$. \qed

Proof of Theorem 1.2. In the introduction we deduced inequality (1.4) by combining (1.2) and Theorem 1.1. Now we refine the trivial estimate $S_{n,k}(\omega)/S_{n,k+1}(\omega) < 1$. Let us set
\[
 (3.3) \quad z = \frac{1}{1-x^2}, \quad z \in [1, \infty)
\]
Consider the polynomials $P(z) = S_{n,k}(x)$ and $Q(z) = S_{n,k+1}(x)$, where $x \in [0, 1)$. The coefficients $\{a_m\}$ and $\{b_m\}$ of $P(z)$ and $Q(z)$, respectively, are
\[
 a_m = \frac{(2m-1)!!}{(2m)!!} (k-m)_{2m} \prod_{j=1}^{m} \frac{1}{n^2 - j^2},
 b_m = \frac{(2m-1)!!}{(2m)!!} (k+1-m)_{2m} \prod_{j=1}^{m} \frac{1}{n^2 - j^2},
\]
The sequence
\[
 \frac{a_m}{b_m} = \frac{k-m}{k+m}, \quad m = 0, 1, \ldots, k,
\]
is monotonically decreasing. By Lemma 3.1, $P(z)/Q(z)$ is monotonically decreasing in the interval $[0, \infty)$ and therefore in $[1, \infty)$. It follows from (3.3) and the definition of P and Q that $S_{n,k}(x)/S_{n,k+1}(x)$ is a monotonically decreasing function of x in the interval $[0, 1)$, hence
\[
 \frac{S_{n,k}(\omega)}{S_{n,k+1}(\omega)} \leq \frac{S_{n,k}(0)}{S_{n,k+1}(0)}.
\]
By using (3.1) and (3.2) we find
\[
 \sqrt{n^2-k^2} (n+k-2)(n+k-4) \cdots (n-k+2)\quad (n+k-1)(n+k-3) \cdots (n-k+1).
\]
and putting the last expression in the right-hand side of (1.4), after some simplification we arrive at inequality (1.5). \qed
Proof of Theorem 1.5. From Theorem 1.1 we have

\[\frac{r_{n,k}^2}{\tau_{n+1,k}} = \frac{n(n+1+k)}{(n+1)(n-k)} \frac{(1-\tilde{\omega})^k S_{n+1,k+1}(\tilde{\omega})}{(1-\omega^2)^k S_{n,k+1}(\omega)}, \]

where \(\tilde{\omega} \) is the largest zero of \(T_{n+1}^{(k+1)} \). Since \((1-\tilde{\omega})^k S_{n+1,k+1}(\tilde{\omega}) \) is a polynomial in \(1-\omega^2 \) with positive coefficients and \(0 < 1-\tilde{\omega}^2 < 1-\omega^2 \), it follows that

\[\frac{r_{n,k}^2}{\tau_{n+1,k}} \leq \frac{n(n+1+k)}{(n+1)(n-k)} \frac{(1-\omega^2)^k S_{n+1,k+1}(\omega)}{(1-\omega^2)^k S_{n+1,k+1}(\omega)}. \]

Let us consider the polynomials in \(z = 1-\omega^2 \), \(z \in (0,1) \),

\[P(z) = z^k + \sum_{m=0}^{k-1} a_m z^m = (1-\omega^2)^k S_{n+1,k+1}(\omega), \]

\[Q(z) = z^k + \sum_{m=0}^{k-1} b_m z^m = (1-\omega^2)^k S_{n,k+1}(\omega). \]

For \(m = 1, \ldots, k \) we have

\[a_{k-m} = \frac{(2m-1)!!}{(2m)!!} (k-m+1)_{2m} \prod_{j=1}^{m} \frac{1}{(n+1)^2 - j^2}, \]

\[b_{k-m} = \frac{(2m-1)!!}{(2m)!!} (k-m+1)_{2m} \prod_{j=1}^{m} \frac{1}{n^2 - j^2}, \]

therefore

\[\frac{a_{k-m}}{b_{k-m}} = n^2 - m^2 \frac{a_{k+1-m}}{b_{k+1-m}} < \frac{a_{k+1-m}}{b_{k+1-m}}, \quad m = 1, \ldots, k. \]

Hence, the sequence \(\{a_m/b_m\} \), \(m = 0, 1, \ldots, k \), is monotonically increasing, and Lemma 3.1 implies that \(\frac{P(z)}{Q(z)} \) increases monotonically in \((0, \infty)\), in particular,

\[\frac{(1-\omega^2)^k S_{n+1,k+1}(\omega)}{(1-\omega^2)^k S_{n,k+1}(\omega)} = \frac{P(z)}{Q(z)} \leq \frac{P(1)}{Q(1)} = \frac{S_{n+1,k+1}(0)}{S_{n,k+1}(0)}. \]

From (3.2) we find

\[\frac{S_{n+1,k+1}(0)}{S_{n,k+1}(0)} = \frac{(n+1)(n-k)}{n(n+k+1)} \frac{(n+k+2)^2(n+k-2)}{(n+k+1)^2(n+k-3)^2 \cdots (n-k+2)^2}. \]

The claim of Theorem 1.5 now follows from (3.4), (3.5) and (3.6). \(\square \)

4. Proof of Theorem 1.7

In view of (1.3) we have \((\tau_k^*)^2 = L_1/L_2 \), where

\[L_1 = \lim_{n \to \infty} \frac{n(n-k-1)(2k-1)!!}{(n+k)!(1-\omega^2)^k} \quad \text{and} \quad L_2 = \lim_{n \to \infty} S_{n,k+1}(\omega). \]

We will use the following result from [14], (see §8.9 or Theorem 8.21.12).

Let \(\alpha > -1 \) and \(\beta \) be an arbitrary real number. Then, for the \(r \)-th zero of \(P_\alpha^{(\alpha,\beta)}(\cos \theta) \), where \(P_\alpha^{(\alpha,\beta)}(x) \) is the Jacobi polynomial, it holds the limit relation

\[\theta_r = n^{-1}(j_{\alpha,r} + \epsilon_n), \quad \epsilon_n \to 0 \text{ for } n \to \infty, \]

where \(j_{\alpha,r} \) is the \(r \)-th positive zero of the Bessel function \(J_\alpha(x) \).
Since \(\omega \) is the largest zero of \(T_n^{(k+1)}(x) = C_n,k P_n^{(\nu,\nu)}_{n-k-1}(x) \) with \(\nu = k + 1/2 \), then
\[
\omega = \cos \theta_1 = \cos \frac{j_{\nu,1} + \epsilon_n - k - 1}{n - k - 1} = 1 - j_{\nu,1}^2 \frac{1 + \epsilon_n}{2n^2},
\]
where \(\epsilon_n = \epsilon'(n, k) \) tends to 0 as \(n \to \infty \) and \(k \) is fixed. Equivalently, we have
\[
1 - \omega^2 = \left(\frac{j_{\nu,1}}{n} \right)^2 (1 + \delta_n), \quad \delta_n \to 0 \quad \text{as} \quad n \to \infty.
\]
For \(L_1 \) we obtain
\[
L_1 = \lim_{n \to \infty} \frac{(2k - 1)!!^2}{(n^2 - 1^2)(n^2 - 2^2)(n^2 - k^2)(1 - \omega^2)^k} = \lim_{n \to \infty} \frac{(2k - 1)!!^2}{(1 - 1^2/n^2)(1 - 2^2/n^2)(1 - k^2/n^2)j_{\nu,1}^2(1 + \delta_n)^k},
\]
and hence
\[
L_1 = \frac{(2k - 1)!!^2}{j_{\nu,1}^{2k}}.
\]
For \(L_2 = \lim_{n \to \infty} S_{n,k}(\omega), \ k = k + 1 \), we have
\[
L_2 = \lim_{n \to \infty} \sum_{m=0}^{k} \frac{(2m - 1)!!}{(2m)!!} \frac{k}{\kappa + m} \left[\frac{(k^2 - 1^2)(k^2 - 2^2) \cdots (k^2 - m^2)}{(n^2 - 1^2)(n^2 - 2^2) \cdots (n^2 - m^2)} \right]^{-m} \left(1 - \omega^2 \right)^{-m} = \lim_{n \to \infty} \sum_{m=0}^{k} \frac{(2m - 1)!!}{(2m)!!} \frac{k}{\kappa + m} \left(\prod_{\ell=1}^{m} \frac{1 - \ell^2/k^2}{1 - \ell^2/n^2} \right) j_{\nu,1}^{2m}(1 + \delta_n)^{-m}
\]
therefore
\[
L_2 = \sum_{m=0}^{k} \frac{(2m - 1)!!}{(2m)!!} \frac{k}{\kappa + m} \left(\prod_{\ell=1}^{m} \frac{1 - \ell^2/k^2}{1 - \ell^2/n^2} \right) \left(\frac{j_{\nu,1}}{\kappa} \right)^{-2m},
\]
and hence
\[
L_2 = \sum_{m=0}^{k} a_m q^{2m} = S_{k+1}^*.
\]
Combining (4.2) and (4.3) we obtain
\[
\tau_k^* = \frac{(2k - 1)!!}{j_{\nu,1}^1 \sqrt{S_{k+1}^*}}, \quad \nu = k + 1/2.
\]
Notice that \(J_{k+\frac{1}{2}}(z) = \sqrt{\frac{2}{\pi}} z^{k+\frac{1}{2}} \left(1 - \frac{d}{z} \right)^k \sin z \), therefore \(j_{\nu,1} \) is a zero of an elementary function.

To estimate the factor \(\frac{(2k - 1)!!}{j_{\nu,1}^1} \) in (4.4) we use the Stirling approximation
\[
N! = \sqrt{2\pi N} \left(\frac{N}{e} \right)^N \left(1 + O(N^{-1}) \right)
\]
and (see, e.g., [10])
\[
j_{\nu,1} = \nu + a\nu^{1/3} + \frac{3a^2}{10}\nu^{-1/3} + O(\nu^{-1}), \quad \nu > 0.
\]
Then,
\[
\frac{(2k - 1)!!}{j^k_{\nu,1}} = \frac{(2k)!}{(2k)!!} \nu^{-k} \left[1 + a \nu^{-2/3} + O(\nu^{-4/3}) \right]^{-k}
\]
\[
= 2^{-k} \frac{(2k)!}{k!} (k + \frac{1}{2})^{-k} \exp \left\{ -k \log \left[1 + ak^{-2/3} + O(k^{-4/3}) \right] \right\}
\]
\[
= 2^{-k} \sqrt{\frac{(2k/e)^{2k}}{(k/e)^k}} (1 + O(k^{-1})) k^{-k} \left(1 + \frac{1}{2k} \right)^{-k} \exp \left\{ -ak^{1/3} + O(k^{-1/3}) \right\}
\]
\[
= \sqrt{2}(2/e)^k e^{-k/2} \left(1 + O(k^{-1}) \right) e^{-ak^{1/3}} \left(1 + O(k^{-1/3}) \right),
\]

hence
\[
(4.5) \quad \frac{(2k - 1)!!}{j^k_{\nu,1}} = \left(\frac{2}{e} \right)^{k+1/2} e^{-ak^{1/3}} \left(1 + O(k^{-1/3}) \right).
\]

The approximation of \(S^*_{k+1} \) in the denominator needs more care. We start with the coefficients \(a_m \) in (4.3). We shall use Stirling’s formula in the form
\[
\log(N - 1)! = \left(N - \frac{1}{2} \right) \log N - N + \frac{1}{2} \log 2\pi + O(N^{-1}).
\]

With \(\kappa = k + 1 \), we have
\[
\frac{(2m)!! a_m}{(2m-1)!!} = \kappa^{-2m} \exp \left\{ \left[\left(\kappa + m - \frac{1}{2} \right) \log(\kappa+m) - \kappa + m + \frac{1}{2} \log 2\pi + O\left(\frac{1}{\kappa+m} \right) \right] - \left[\left(\kappa - m - \frac{1}{2} \right) \log(\kappa-m) - \kappa - m + \frac{1}{2} \log 2\pi + O\left(\frac{1}{\kappa-m} \right) \right] \right\}
\]
\[
= \kappa^{-2m} \exp \left\{ \log \kappa \left[\left(\kappa + m - \frac{1}{2} \right) - \left(\kappa - m - \frac{1}{2} \right) \right] + \left(\kappa + m - \frac{1}{2} \right) \log \left(1 + \frac{m}{\kappa} \right)
\]
\[
- \left(\kappa - m - \frac{1}{2} \right) \log \left(1 - \frac{m}{\kappa} \right) - 2m + O\left(\frac{1}{\kappa-m} \right) \right\}
\]
\[
= \exp \left\{ \left(\kappa + m - \frac{1}{2} \right) \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} \frac{m^j}{\kappa^j} + \left(\kappa - m - \frac{1}{2} \right) \sum_{j=1}^{\infty} \frac{1}{j} \frac{m^j}{\kappa^j} - 2m + O\left(\frac{1}{\kappa-m} \right) \right\}
\]
\[
= \exp \left\{ \sum_{\text{odd } j > 0} \frac{(2k-1)}{j} \frac{(m)}{\kappa^j} - \sum_{\text{even } j > 0} \frac{(2m)}{j} \frac{(m)}{\kappa^j} - 2m + O\left(\frac{1}{\kappa-m} \right) \right\}
\]
\[
= \sqrt{\frac{k-m}{k+m}} \exp \left\{ -2m \sum_{\text{even } j > 0} \frac{1}{j} \frac{1}{j+1} \frac{(m)}{\kappa^j} + O\left(\frac{1}{\kappa-m} \right) \right\}
\]
\[
= \sqrt{\frac{k-m}{k+m}} \exp \left\{ -\frac{m^3}{3k^2} + O\left(\frac{m^5}{k^4} \right) + O\left(\frac{1}{\kappa-m} \right) \right\}.
\]

It is important that the remainder denoted by \(-O\left(\frac{m^5}{k^4} \right) \) is negative. The same holds true for the other "O" term, but we will not use this fact.
Next, for the ratio \(q \) in (4.3) we have

\[
q = \left(\frac{\bar{b}_v}{\kappa} \right)^{-1} = \left(\frac{\nu + a \nu^{1/3} + O(\nu^{-1/3})}{\nu + 1/2} \right)^{-1} = \left(1 + \frac{1}{2\nu} \right)^{-1} \left(1 + a \nu^{-2/3} + O(\nu^{-4/3}) \right)^{-1} = 1 + \frac{1}{2\nu} - a \nu^{-2/3} + O(\nu^{-4/3})
\]

\[
= 1 - a \kappa^{-2/3} + O(\kappa^{-1}), \quad \nu \geq 1/2.
\]

From this it is clear that for sufficiently large \(k \) (respectively \(\kappa \) and \(\nu \)) we have \(q \in (0, 1) \). Moreover, the same holds for \(\nu \geq 1/2 \), as can be seen from the results in [10].

Now, we split the sum \(S^*_{k+1} = \sum_{m=0}^{k} a_m q^{2m} \) into three parts

\[
S^*_{k+1} = \sum_{m=0}^{m_1} (\cdot) + \sum_{m=m_1'}^{m_2} (\cdot) + \sum_{m=m_2'}^{k} (\cdot) =: S^{(1)}_\kappa + S^{(2)}_\kappa + S^{(3)}_\kappa,
\]

where \(m_1 = \lfloor \kappa^{1/3} \rfloor \), \(m_2 = \lfloor A_k \kappa^{2/3} \rfloor \) with \(A_k = \log \kappa \) and \(m_1' = m_1 + 1 \).

Note that without loss of generality we may assume that \(k \) is sufficiently large so that the three sums above are non-empty. For small \(k \) the assertion of the theorem is fulfilled on account of the choice of the constant in "O".

We estimate \(S^{(1)}_\kappa \) from above by using \(\frac{(2m-1)!!}{(2m)!!} = \frac{1}{\sqrt{m}} \left(1 + O(m^{-1}) \right) \).

\[
S^{(1)}_\kappa < \sum_{m=0}^{m_1} a_{m,k} < 1 + \sum_{m=1}^{m_1} \frac{(2m-1)!!}{(2m)!!} \exp \left\{ O\left(\frac{1}{\kappa - m} \right) \right\} = 1 + \sum_{m=1}^{m_1} O\left(\frac{1}{\sqrt{m}} \right) \left(1 + O\left(\frac{1}{\kappa} \right) \right) = O\left(\frac{1}{m^1} \right) = O(k^{1/6}).
\]

The third sum is also relatively small. Indeed,

\[
S^{(3)}_\kappa < \sum_{m=m_2'}^{k} a_{m,k} < \sum_{m=m_2'}^{k} \frac{(2m-1)!!}{(2m)!!} \exp \left\{ - \frac{m^3}{3\kappa^2} + O(1) \right\} < \sum_{m=m_2'}^{k} \frac{C}{\sqrt{m}} \exp \left\{ - \frac{m^3}{3\kappa^2} \right\},
\]

where \(C \) is an absolute constant independent of \(m \) and \(k \). Hence,

\[
S^{(3)}_\kappa < k \frac{C}{\sqrt{m_2}} e^{-m_2^2/(3\kappa^2)} < k \frac{C}{\sqrt{A_k \kappa^{1/3}}} e^{-A_k^1/3} < \frac{C k}{\kappa^{1/3}} e^{-2A_k/3} = C k / \kappa,
\]

provided \(A_k^2 > 2 \), i.e. for \(k \geq 4 \). As a consequence, \(S^{(3)}_\kappa = O(1) \) for \(k \in \mathbb{N} \).
For the main part of S^*_κ, we have
\[S^{(2)}_\kappa = \sum_{m=m'\kappa}^{m\kappa} a_m q^{2m} = \sum_{m=m'\kappa}^{m\kappa} \frac{1+O(m^{-1})}{\sqrt{\pi m}} \left(1+O\left(\frac{m}{\kappa} \right) \right) \times \exp \left\{ -\frac{m^3}{3\kappa^2} - O\left(\frac{m^5}{\kappa^4} \right) + O\left(\frac{1}{\kappa} \right) \right\} \left(1 - a(\kappa)^{-2/3} + O(\kappa^{-1}) \right)^{2m} \]
\[= \sum_{m=m'\kappa}^{m\kappa} \frac{1}{\sqrt{\pi m}} \left(1 + O\left(\frac{A_k}{\kappa^{1/3}} \right) \right) \exp \left\{ -\frac{1}{3} \left(\frac{m}{\kappa^{2/3}} \right)^3 - 2a \left(\frac{m}{\kappa^{2/3}} \right) \right\} \]
\[= \left(1 + O\left(\frac{A_k}{\kappa^{1/3}} \right) \right) \frac{1}{\sqrt{\pi h}} \sum_{m=m'\kappa}^{m\kappa} \frac{h}{\sqrt{m h}} \exp \left\{ -\frac{(m h)^3}{3} - 2a (m h) \right\} \]
\[= \frac{\kappa^{1/3}}{\sqrt{\pi}} \left(1 + O\left(\frac{A_k}{\kappa^{1/3}} \right) \right) \bar{I}_k, \]
where $h = \kappa^{-2/3}$ and \bar{I}_k is an integral sum of $I_k = \int_{m_1 h}^{m_2 h} e^{-x^3/3 - 2ax} \frac{dx}{\sqrt{x}}$.

Since the distance between an integral sum of a monotone function $f(x)$ on $[a, b]$ with uniform mesh $x_i = a + i h$ to the integral is less than $h|f(b) - f(a)|$, we have $|I_k - \bar{I}_k| < \frac{h}{\sqrt{m_1 h}} \sim \frac{1}{\kappa^{1/3}}$.

On the other hand,
\[\left| I_k - \int_0^\infty e^{-x^3/3 - 2ax} \frac{dx}{\sqrt{x}} \right| < \int_0^{m_1 h} \frac{dx}{\sqrt{x}} + \int_{m_2 h}^\infty e^{-x^3/3} \frac{dx}{\sqrt{x}} \]
\[= O(\sqrt{m_1 h} + e^{-(m_2 h)^3/3}) = O(k^{-1/6}), \]
which implies that $\bar{I}_k = \left(1 + O(k^{-1/6}) \right) \int_0^\infty e^{-x^3/3 - 2ax} \frac{dx}{\sqrt{x}}$, and hence
\[S^{(2)}_\kappa = (A^*)^{-2} \kappa^{1/3} \left(1 + O(k^{-1/6}) \right), \]
Adding to this the estimates of $S^{(1)}_\kappa$ and $S^{(3)}_\kappa$, we conclude that the same magnitude has the whole sum S^*_κ, which finishes the proof of the theorem in view of (4.4) and (4.5).

\[\square \]

5. Concluding remarks

(1) To obtain lower bounds for $\tau_{n,k}$ from Theorem 1.1, sharper than the one in Corollary 1.6, one needs upper estimates for $S_{n,k+1}(\omega)$ and $1 - \omega^2$. Regarding the first quantity, we point out that from considerations in [6, §4] it follows that
\[S_{n,k}(x) \leq \frac{(2k)!!}{(2k - 1)!!} = \frac{\sqrt{\pi}}{2} \sqrt{k}, \quad x^2 \in [0, 1 - k^2/n^2]. \]
By a result of Driver and Jordaan [2] (see [8] for some improvements), the largest zero of $P_n^{(\lambda)}(x, n, n(\lambda))$, satisfies
\[1 - x_{n, n}(\lambda)^2 \leq \frac{(2\lambda + 1)(2\lambda + 3)}{n(n + 2\lambda) + 2(\lambda + 1)(2\lambda + 1)}. \]

This yields the following counterpart to the estimate $1 - \omega^2 \geq \left(\frac{k+2}{n}\right)^2$:
\[1 - \omega^2 \leq \frac{(2k + 3)(2k + 5)}{n^2 + 3k^2 + 12k + 11} \leq \left(\frac{k + 2}{n}\right)^2 \frac{4}{1 + 3\left(\frac{k + 2}{n}\right)^2}. \]

We observe that if k is small relative to n, then the ratio of the upper and the lower bounds for $1 - \omega^2$ is nearly 4.

(2) From the proof of Theorem 1.7 it is clear that the second exponential term in the approximation of τ^*_k, which is significant, but is missing in the estimate (1.11) in [6], comes from the upper estimate for ω chosen there. Actually, the method from [6] can cover this term and potentially it can overestimate $\tau_{n,k}$ only by a factor $ck^{5/12}$ (in the area $n > O(k^{3/2})$). Therefore, the upper estimate (1.5), obtained by combining the main result of [6] and the exact formula (1.3), overestimates $\tau_{n,k}$ by a factor $c k^{5/24}$ in the worst case ($n >> k$).

On the contrary, in the area $k \approx n$ both the estimates in [6] and those obtained here are sharp with respect to the order of k.

(3) Using the results in [1, §5], we get the asymptotic formula for the largest zero of $P_m^{(p, p)}(x)$, which holds uniformly according to the parameters in the domain $0 < p < Cm$:
\[x_1 = \sqrt{1 - \tilde{p}^2} - \frac{a \tilde{p}^2}{\sqrt{1 - \tilde{p}^2}^{1/3} p^{-2/3} + O(p^{-4/3})}, \]
where $\tilde{p} = \frac{p}{m + p + 1/2}$ and a is the same constant as in Theorem 1.7. Then, applying this to ω, in the same manner as in the proof of Theorem 1.7 one can obtain the formula
\[\tau_{n,k} = A \rho^{n/2}_\lambda e^{-a(1-\lambda^2)^{1/3}k^{1/3}} \left(\frac{1}{k^2} - \frac{1}{n^2} \right)^{1/2} \left(1 + O(k^{-1/6}) \right), \]
where $\lambda = \tilde{p} = \frac{k + 1/2}{n}$ and $\rho_\lambda = \left(\frac{2}{1 + \lambda} \right)^{1 + \lambda} \left(\frac{1 - \lambda}{2} \right)^{1 - \lambda} < 1$ (cf. [6]). The constant for “O”-term in (5.1) does not depend on n and k, provided $\lambda < 1 - \delta$, i.e. when k is not close to n.

(4) As mentioned in the introduction, our interest in $\tau_{n,k}$ is motivated by the role it plays in certain inequalities of Markov- and Landau-type. However, Petras’ result yields an explicit representation for the local maxima of $[P_n^{(\lambda)}]_2^2$, $\lambda \in \mathbb{N}$, and therefore is applicable to the estimation of the largest critical values of the ultraspherical polynomials $P_n^{(\lambda)}$, $\lambda \in \mathbb{N}$.
References

[1] T. M. Dunster, Uniform asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions, Meth. Appl. Analysis 6 (1999), 281–316.
[2] K. Driver, K. Jordaan, Bounds for extreme zeros of some classical orthogonal polynomials, J. Approx. Theory 164, 2012, 1200–1204.
[3] A. Erdélyi, Higher Transcedental Functions, Vol. 1, A. Erdélyi, ed., McGraw-Hill, 1953.
[4] P. Erdős and G. Szegő, On a problem of I. Schur, Ann. Math. 43 (1942), no. 2, 451–470.
[5] B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval, J. Approx. Theory 94 (1998), no. 3, 420–454.
[6] N. Naidenov, G. Nikolov, A. Shadrin, On the largest critical value of $T_n^{(k)}$, SIAM J. Math. Anal. 50 (3), 2018, 2389–2408.
[7] G. Nikolov, Inequalities of Duffin–Schaeffer type II. East J. Approx. 11, 2005, 147–168.
[8] G. Nikolov, New bounds for the extreme zeros of Jacobi polynomials, Proc. Amer. Math. Soc. 147 (4), 2019, 1541–1550.
[9] K. Petras, An asymptotic expansion for the weights of Gaussian quadrature formulae, Acta Math. Hungar. 70 (1–2), 1996, 89–100.
[10] C. K. Qu and R. Wong, "Best possible" upper and lower bounds for the zeros of the Bessel function $J_\nu(x)$, Trans. Amer. Math. Soc. 351 (1999), 2833–2859.
[11] A. Shadrin, Twelve proofs of the Markov inequality. In: Approximation Theory: A volume dedicated to Borislav Bojanov (D. K. Dimitrov, G. Nikolov, and R. Uluchev, Eds.), Professor Marin Drinov Academic Publishing House, Sofia, 2004, pp. 233–298.
[12] A. Shadrin, The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 1183–1210.
[13] A. C. Schaeffer and R. J. Duffin, On some inequalities of S. Bernstein and W. Markoff for derivatives of polynomials, Bull. Amer. Math. Soc. 44 (1938), no. 4, 289–297.
[14] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Coll. Publ., Vol. 23, Providence, RI, 1975.

Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
Email address: nikola@fmi.uni-sofia.bg

Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
Email address: geno@fmi.uni-sofia.bg