A Quantum Fluid Description of the Free Electron Laser

R. Bonifacio¹, N. Piovella², G.R.M Robb³ & A. Serbeto⁴

¹I.N.F.N. Sezione di Milano, Via Celoria 16, Milano I-20133, Italy

²Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano

³Scottish Universities Physics Alliance (SUPA),
Department of Physics, University of Strathclyde,
107 Rottenrow, Glasgow, G4 0NG, United Kingdom

⁴Instituto de Física, Universidade Federal Fluminense, 24210-340 Rio de Janeiro, Brazil

(Dated: October 22, 2008)

Abstract

Using the Madelung transformation we show that in a quantum Free Electron Laser (QFEL) the beam obeys the equations of a quantum fluid in which the potential is the classical potential plus a quantum potential. The classical limit is shown explicitly.
INTRODUCTION

In the quantum FEL model, the electron beam is described as a macroscopic matter-wave [1, 2, 3, 4]. When slippage due to the difference between the light and electron velocities is neglected, the electron beam-wave interaction is described by the following equations for the dimensionless radiation amplitude \(A(\bar{z}) \) and the matter wave field \(\Psi(\theta, \bar{z}) \) [5]:

\[
\begin{align*}
 i \frac{\partial \Psi(\theta, \bar{z})}{\partial \bar{z}} &= -\frac{1}{2\rho} \frac{\partial^2}{\partial \theta^2} \Psi(\theta, \bar{z}) - i\bar{\rho} \left[A(\bar{z}) e^{i\theta} - \text{c.c.} \right] \Psi(\theta, \bar{z}) \\
 \frac{dA(\bar{z})}{d\bar{z}} &= \int_{0}^{2\pi} d\theta |\Psi(\theta, \bar{z})|^2 e^{-i\theta} + i\delta A(\bar{z}).
\end{align*}
\] (1)

The electron beam is therefore described by a Schrödinger equation for a matter-wave field \(\Psi \) in a self-consistent pendulum potential proportional to \(A \), where \(|A|^2 = |a|^2/(N\bar{\rho}) \), \(|a|^2 \) is the average number of photons in the interaction volume \(V \), and \(|\Psi|^2 \) is the space-time dependent electron density, normalized to unity. In Eqs. (1) and (2) we have adopted the universal scaling used in the classical FEL theory [6, 7, 8], i.e. \(\theta = (k + k_w)z - ckt \) is the electron phase, where \(k_w = 2\pi/\lambda_w \) and \(k = \omega/c = 2\pi/\lambda \) are the wiggler and radiation wavenumbers, \(\bar{z} = z/L_g \) is the dimensionless wiggler length, \(L_g = \lambda_w/4\pi\rho \) is the gain length, \(\rho = \gamma^{-1} a_w/(4ck_w)^{2/3}(e^2n/m_e\epsilon_0)^{1/3} \) is the classical FEL parameter, \(\gamma_r = \sqrt{(\lambda/2\lambda_w)(1 + a_w^2)} \) is the resonant energy in \(mc^2 \) units, \(a_w \) is the wiggler parameter and \(n \) is the electron density. Finally, \(\bar{\rho} = (\gamma - \gamma_0)/\rho\gamma_0 \) is the dimensionless electron momentum and \(\delta = (\gamma_0 - \gamma_r)/\rho\gamma_0 \) is the detuning parameter, where \(\gamma_0 \approx \gamma_r \) is the initial electron energy in \(mc^2 \) units.

Whereas the classical FEL equations in the above universal scaling do not contain any explicit parameter (see ref. [8]), the quantum FEL equations [1] and [2] depend on the quantum FEL parameter

\[
\bar{\rho} = \left(\frac{mc\gamma_r}{\hbar k} \right) \rho.
\] (3)

From the definition of \(A \), it follows that \(\bar{\rho}|A|^2 = |a|^2/N \) is the average number of photons emitted per electron. Hence, since in the classical steady-state high-gain FEL \(A \) reaches a maximum value of the order of unity, \(\bar{\rho} \) represents the maximum number of photons emitted per electron, and the classical regime occurs for \(\bar{\rho} \gg 1 \). Note also that in Eq. (1) \(\bar{\rho} \) appears as a “mass” term, so one expects a classical limit when the mass is large. As we shall see, when \(\bar{\rho} < 1 \) the dynamical behavior of the system changes substantially from a classical to a quantum regime.
QUANTUM FLUID DESCRIPTION

We now perform a Madelung-like transformation [9], writing the wavefunction as

$$\Psi = R \exp (i\bar{\rho}S)$$

which allows us to rewrite the Maxwell-Schrodinger equations, eq. (1) and (2), as a system of quantum fluid equations

$$\frac{\partial R}{\partial \bar{z}} = -\frac{\partial R}{\partial \theta} \frac{\partial S}{\partial \theta} - \frac{R}{2} \frac{\partial^2 S}{\partial \theta^2}$$ \hspace{1cm} (4)

$$\frac{\partial S}{\partial \bar{z}} = -\frac{1}{2} \left(\frac{\partial S}{\partial \theta} \right)^2 - V(\theta, \bar{z})$$ \hspace{1cm} (5)

$$\frac{dA}{d\bar{z}} = \int_{0}^{2\pi} R^2 e^{-i\theta} d\theta + i\delta A$$ \hspace{1cm} (6)

where the potential, V in eq. (5) is defined as the sum of a classical term and a quantum term i.e.

$$V(\theta, \bar{z}) = V_C + V_Q$$

where

$$V_C = -i \left(Ae^{i\theta} - c.c. \right)$$ \hspace{1cm} (7)

is the classical component of the potential and

$$V_Q = -\frac{1}{2\bar{\rho}^2 R} \frac{\partial^2 R}{\partial \theta^2}$$ \hspace{1cm} (8)

is the quantum component of the potential, which becomes negligible as $\bar{\rho} \to \infty$.

Defining fluid density and velocity variables

$$n = R^2 = |\Psi|^2, \quad u = \frac{\partial S}{\partial \theta}$$

we can also rewrite Eq. (4)-(6) in an alternative fluid form as

$$\frac{\partial n}{\partial \bar{z}} + u \frac{\partial n}{\partial \theta} (nu) = 0$$ \hspace{1cm} (9)

$$\frac{\partial u}{\partial \bar{z}} + u \frac{\partial u}{\partial \theta} = -\frac{\partial V}{\partial \theta}$$ \hspace{1cm} (10)

$$\frac{dA}{d\bar{z}} = \int_{0}^{2\pi} n e^{-i\theta} d\theta + i\delta A.$$ \hspace{1cm} (11)

It can be seen that Eq. (9) is a continuity equation and Eq. (10) is a Newton-like equation for a fluid. Note that integrating Eq. (9) with respect to θ, then the normalization condition becomes

$$\int_{0}^{2\pi} n(\theta, \bar{z})d\theta = 1,$$
which is satisfied if \(n \) and \(u \) are periodic functions of \(\theta \) between 0 and \(2\pi \).

A straightforward calculation shows that Eq.(9)-(11) admit two constants of motion,

\[
\langle \bar{p} \rangle + |A|^2 = C_1
\]

and

\[
\frac{\langle \bar{p}^2 \rangle}{2} - i(Ab^* - \text{c.c.}) - \delta |A|^2 = C_2
\]

where \(\langle \bar{p} \rangle = \langle u \rangle = \int_0^{2\pi} d\theta nu \) is the average momentum, \(\langle \bar{p}^2 \rangle = \langle u^2 + 2V_Q \rangle = \int_0^{2\pi} d\theta n(u^2 + 2V_Q) \) is the momentum variance and

\[
b = \int_0^{2\pi} ne^{-i\theta} d\theta
\]

is the bunching. These constants of motion are well-known in the classical FEL model [8] and describe energy conservation and a gain-spread relation. Notice the quantum contribution to the momentum variance proportional to the average quantum potential.

FOURIER EXPANSION AND LINEAR ANALYSIS

If \(R \) and \(S \) are periodic functions of \(\theta \), they can be expanded in a Fourier series:

\[
R(\theta, \bar{z}) = \sum_m r_m(\bar{z}) e^{im\theta},
\]

\[
S(\theta, \bar{z}) = \sum_n s_n(\bar{z}) e^{in\theta}
\]

with \(r_m = s^*_m \) and \(s_m = r^*_m \), since \(R \) and \(S \) are real variables. Multiplying Eq.(5) by \(R \) and using (14) and (15) in Eqs.(4)-(6), we obtain:

\[
\sum_m r_{k-m} \frac{ds_m}{d\bar{z}} = -\frac{1}{2} \sum_{m,n} n(n - m) r_{k-m} s_n s_{n-m}^* + i(\bar{A}r_{k-1} - A^*r_{k+1}) - \frac{k^2}{2\rho^2}r_k
\]

\[
\frac{dr_k}{d\bar{z}} = \frac{1}{2} \sum_m (k^2 - m^2) r_m s^*_{m-k}
\]

\[
\frac{dA}{d\bar{z}} = \sum_m r_m r^*_{m-1} + i\delta A
\]

Eqs.(16)-(18) are our working equations which can be numerically solved as it will be shown elsewhere.

Eqs.(16)-(18) admit an equilibrium solution with no field \((A = 0) \) and unbunched electron beam \((n = 1/2\pi, \text{i.e. } r_n = \delta_{n0} \text{ and } s_n = 0) \). Linearizing Eqs.(16)-(18) around this
equilibrium in the first order of the variables A, r_1 and s_1, we obtain:

$$\frac{dA}{dz} = 2r_1 + i\delta A \quad (19)$$

$$\frac{dr_1}{dz} = \frac{s_1}{2} \quad (20)$$

$$\frac{ds_1}{dz} = iA - \frac{1}{2\bar{\rho}^2}r_1 \quad (21)$$

Looking for solutions proportional to $\exp(i\lambda z)$, we obtain the well-known cubic equation of the quantum FEL [1]

$$(\lambda - \delta) \left(\lambda^2 - \frac{1}{4\bar{\rho}^2} \right) + 1 = 0. \quad (22)$$

which reduces to the classical dispersion relation in the limit $\bar{\rho} >> 1$.

CONCLUSIONS

It has been shown that the quantum FEL model can be rewritten in a form where the electron beam is described a quantum fluid coupled to the electromagnetic field. The evolution of the quantum fluid is determined by a self-consistent potential which consists of a classical and quantum contribution. In the limit where $\bar{\rho} \gg 1$ the quantum contribution to the potential becomes negligible and the force equation reduces to that of a Newtonian fluid. Using a Fourier expansion, linear stability analysis of these quantum fluid equations produced a dispersion relation identical to that derived from the Schrodinger equation. These results show that there are interesting connections between the quantum FEL and quantum plasma instabilities.

[1] R. Bonifacio, M.M. Cola, N. Piovella, and G.R.M. Robb, Europhys. Lett. **69**, 55 (2005).

[2] R. Bonifacio, N. Piovella, G.R.M. Robb, Nucl. Instrum. and Meth. in Phys. Res. A **543**, 645 (2005).

[3] R. Bonifacio, N. Piovella, G.R.M. Robb, and A. Schiavi, Phys. Rev. ST Accel. Beams **9**, 090701 (2006).

[4] A. Serbeto, J. T. Mendonça, K. H Tsui, R. Bonifacio, Physics of Plasmas **15**, 013110 (2008).

[5] G. Preparata, Phys. Rev.A **38**, 233 (1988).

[6] R. Bonifacio, C. Pellegrini and L. Narducci, Opt. Commun. **50**, 373 (1984).
[7] R. Bonifacio, L. De Salvo, P. Pierini, N. Piovella, and C. Pellegrini, Phys. Rev. Lett. 73, 70 (1994).

[8] R. Bonifacio, F. Casagrande, G. Cerchioni, L. De Salvo Souza, P. Pierini and N. Piovella, Rivista del Nuovo Cimento 13, No. 9 (1990).

[9] A. Messiah, Quantum Mechanics, Wiley (1966).