Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1

Alberto Herrera1, Mercedes Herrera1, Natalia Guerra-Perez2, Cristina Galindo-Pumariño3, María Jesús Larriba3, Vanesa García-Barberán1, Beatriz Gil1, Sara Giménez-Moyano3, Reyes Ferreiro-Monteagudo2, Pilar Véguillas6, Antonio Candía2, Raúl Peña8, Jesús Pinto9, María Laura García-Bermejo4, Alberto Muñoz3, Antonio García de Herreros8, Félix Bonilla10, Alfredo Carrato11 and Cristina Peña1,14

Abstract

Carcinomas, such as colon cancer, initiate their invasion by rescuing the innate plasticity of both epithelial cells and stromal cells. Although Snail is a transcriptional factor involved in the Epithelial-Mesenchymal Transition, in recent years, many studies have also identified the major role of Snail in the activation of Cancer-Associated Fibroblast (CAF) cells and the remodeling of the extracellular matrix. In CAFs, Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant. High expression of both SNAI1 and PDGF receptors is associated with poor prognosis in cancer patients, but the mechanism(s) that underlie these connections are not understood. In this study, we demonstrate that PDGF-activated fibroblasts stimulate extracellular matrix (ECM) fiber remodeling and deposition. Furthermore, we describe how SNAI1, through the FAK pathway, is a necessary factor for ECM fiber organization. The parallel-oriented fibers are used by endothelial cells as “tracks”, facilitating their activation and the creation of tubular structures mimicking in vivo capillary formation. Accordingly, Snail1 expression in fibroblasts was required for the co-adjuvant effect of these cells on matrix remodeling and neoangiogenesis when co-xenografted in nude mice. Finally, in tumor samples from colorectal cancer patients a direct association between stromal SNAI1 expression and the endothelial marker CD34 was observed. In summary, our results advance the understanding of PDGF/SNAI1-activated CAFs in matrix remodeling and angiogenesis stimulation.

Introduction

Emerging evidences indicate that human carcinomas often have significant stromal reactions, characterized by the existence of stromal cells and extracellular matrix proteins1. In solid tumors, including primary and metastatic colorectal cancer (CRC), fibroblasts are the main component of tumor stroma, receiving various names, such as Cancer-Associated Fibroblasts (CAFs)1. CAF populations are heterogeneous2,3 and directly promote tumor growth and progression throughout the induction of stem cell properties, tumor cell motility and implantation, but also enhance angiogenesis, inflammation and ECM remodeling4.

CAFs are characterized by the upregulation of proteins, such as α-SMA, fibroblast specific protein 1 (FSP1), fibroblast activation protein (FAP) and platelet-derived growth factor receptors (PDGFR)-α/β5,6. High stromal expression or activation of PDGFR-β is associated with poor prognosis in breast, prostate and gastrointestinal tumors7–10. The involvement of PDGF isoforms in both autocrine and paracrine stimulation of tumor growth has been extensively studied11,12. PDGF-BB expression, by
Fig. 1 (See legend on next page.)
tumor epithelial cells or by endothelial cells (ECs), enhances angiogenesis, by recruiting pericytes to neo-
vessels, and promotes an activated phenotype on fibro-
blasts.13–16

Snail1, a zinc finger transcriptional factor, is key in the
initiation of epithelial-mesenchymal transition (EMT)17.
Although adult fibroblasts normally do not express
Snail118, there are some situations in which Snail1 protein
is detected in these cells, such as wound healing or cancer
progression18–21.

As mentioned above, PDGF-BB induces an activated
state in fibroblasts13,22, but the molecular pathways are
poorly defined. We proposed Snail1 as a marker of acti-
vated fibroblasts23. Snail1-expressing fibroblasts promote
ECM deposition accompanied by ECM degradation, and
increase the stiffness and orientation of ECM fibers19,23–
25. In addition, ECM is a major regulator of vasculogenesis
and angiogenesis: it is a physical scaffold that controls
endothelial cell activity through chemical and mechanical
signals26. Here, we demonstrate that PDGF-BB stimulates
Snail1 expression in fibroblasts, in a FAK pathway-
dependent manner, resulting in matrix remodeling. 3D-
derived matrices from Snail1-expressing fibroblasts
induce tubulogenesis in endothelial cells. In animal
models, xenografted tumors composed by colon tumor
cells and Snail1 KO fibroblasts showed reduced ability for
neoangiogenesis with respect to Snail1 wild-type fibro-
blasts. Moreover, we observed a direct association
between Snail1 stromal expression and angiogenesis in
human colon cancer patients. These findings reveal a new
role for Snail1-expressing fibroblasts and the PDGF
pathway in tumor angiogenesis.

Results
PDGF stimulates growth and extracellular matrix
production of fibroblasts

To study the possible influence of PDGF ligand on ECM
characteristics, BJ-hTERT fibroblasts were incubated with
or without exogenous PDGF; the cells were supplemented
with ascorbic acid to enhance matrix production. After
PDGF treatment, fibroblasts displayed a more aligned
phenotype (Fig. 1a).

3-D matrices derived from PDGF-stimulated fibroblasts
were decellularized and stained for Collagen I and
Fibronectin to study matrix composition and structural
changes. Collagen I and Fibronectin protein expression
increased in matrices derived from PDGF-stimulated
fibroblasts (Fig. 1b). Consequently, matrix thickness was
increased by PDGF-BB stimulation, as measured by
Confocal Microscopy (Fig. 1c). Moreover, Fibronectin and
Collagen I fibers revealed a parallel pattern, determined by
Directionality Histograms, in PDGF-stimulated fibro-
blasts, as shown in Fig. 1d. We previously described the
involvement of the p65 subunit of NF-κB in activating
fibronectin transcription25. Currently, our results showed
an increase of p65 phosphorylation in BJ-hTERT fibro-
blasts after PDGFBB stimulation (Sup. Fig. 1). The
observed high degree of organization of ECM fibers
induced by PDGF is not due to the number of BJ-hTERT
fibroblasts, since this number was not different at the end
of the experiment (Sup. Fig. 2).

A previous study of our group determined the gene
expression profile of control and PDGF-stimulated
BJhTERT fibroblasts (GEO Series accession number:
GSE40720). We re-analyzed these data focusing on the
protein related with the composition, organization and
remodeling of the ECM. Gene Set Enrichment Analysis
(GSEA) was done using the Molecular Signatures Data-
basis (MSigDB) which is a collection of annotated gene
sets for use with GSEA software. (http://software.
broadinstitute.org/gsea/msigdb/collections.jsp). Our ana-
lysis computed overlaps between our gene set and gene
sets in MSigDB (we included gene sets derived from the
KEGG and Reactome pathway databases and the hallmark
gene set database). The analysis shows important gene
sets involved, with FDR q-value below 0.05. Interestingly,
the Extracellular Matrix Organization and the Collagen
Formation is observed as one of the main biological
processes involved. Similarly, angiogenesis regulation is
also observed as a candidate hallmark to be affected by the
deregulated genes (Sup. Table 1).
Fig. 2 Fibroblast alignment, matrix remodeling and endothelial cell activation are dependent on Collagen I organization and FAK. a, b Collagen I organization (a) and deposition (b) were blocked by increased concentrations of LOX or FAK inhibitors. Directionality histograms, calculated with the Image J software, represent the frequency of distribution of protein fibers angles (centered on the 0° angle). c Full inhibition of endothelial tubulogenesis in matrices derived from LOX or FAK inhibitor-treated fibroblasts. *p value < 0.05; **p value < 0.01; ***p value < 0.001. All results are derived from 2-4 independent experiments, each performed in duplicate.
Derived Matrices from PDGF-stimulated fibroblasts enhance the activation and tubulogenesis of HUVECs

To study the role of the extracellular matrix on the endothelial cell functions, human endothelial HUVEC cells were seeded over decellularized matrices derived from PDGF-stimulated or non-stimulated BJ-hTERT fibroblasts. As shown in Sup. Fig. 3, HUVEC cells do not express PDGF-β receptor and do not tyrosine phosphorylate Akt following addition of exogenous PDGF. Interestingly, HUVECs seeded on matrices from PDGF-stimulated fibroblasts showed more defined networks of capillary-like structures and anastomosing cords in cells (commonly known as tube formations), than in HUVECs seeded on matrices from non-stimulated fibroblasts (Fig. 1e).

Angiogenesis-related markers (Fig. 1f), including phospho-ERK1/2 and MMP-9, increased in HUVECs from PDGF-derived matrices. MT1-MMP also increased slightly in these matrices, while VCAM-1 decreased and no changes in VE-Cadherin were detected. In addition, an increase expression of β1 and β3 integrins subunits, related with the attachment of the endothelial cells to the ECM for neoangiogenesis, was observed in HUVECs from PDGF-derived matrices (Fig. 1g).

Taken together, these data demonstrate that 3D-ECMs derived from PDGF-stimulated fibroblasts stimulate HUVEC activation and attachment to ECM.

Endothelial cell activation is blocked by the inhibition of Collagen I fiber organization in fibroblasts-derived matrices

To investigate whether fiber alignment was responsible for the tubulogenesis process on 3D-derived matrices, we proceed to inhibit Collagen fiber organization using a pharmacological approach. Fist we used a competitive inhibitor (beta-aminopropionitrile, BAPN) of the activity of the Collagen-crosslinker enzyme, lysyl oxidase (LOX)27. In line with previous data19, the effects of PDGF-derived matrices, MT1-MMP also increased slightly in these matrices, while VCAM-1 decreased and no changes in VE-Cadherin were detected. In addition, an increase expression of β1 and β3 integrins subunits, related with the attachment of the endothelial cells to the ECM for neoangiogenesis, was observed in HUVECs from PDGF-derived matrices (Fig. 1g).

Taken together, these data demonstrate that 3D-ECMs derived from PDGF-stimulated fibroblasts stimulate HUVEC activation and attachment to ECM.

Inhibited the PDGF-stimulated phosphorylation of its target (Sup. Fig. 5).

Collagen I deposition was completely reverted by the Akt inhibitor (LY294002) (Fig. 2b) whereas the FAK inhibitor (PF573228) showed a more prominent effect on both fibroblast organization and matrix fiber orientation (Sup. Fig. 6A and Fig. 2a, b). On the other hand, fibroblast growth and matrix fiber orientation were not affected by the ERK inhibitor (UO126), that only caused a slight reduction in Collagen I deposition (Sup. Fig. 6A, 6B and 6C). Accordingly, HUVEC tubulogenesis was completely inhibited in matrices derived from FAK inhibitor-treated fibroblasts (Fig. 2c).

Taken together, these experiments identify the FAK pathway as an important mediator of PDGF-dependent effects in matrix deposition and alignment by fibroblasts, consequently this pathway inhibition prevent endothelial cell activation.

Fibroblast alignment, matrix remodeling and enhanced tubulogenesis by PDGF are dependent on Snail1-fibroblast expression

We recently described Snail1 as a potential marker of activated fibroblasts with paracrine-derived pro-tumorigenic effects on colon cancer cells21. We checked the effect of the ERK1/2, PI3K/Akt and FAK inhibitors on Snail1 protein expression in PDGF-stimulated fibroblasts. Snail1 was induced at serum-free levels in PDGF-treated fibroblasts, with maximum expression at 24 h, together with increased α-SMA expression, the actin isoform involved in ECM contraction and remodeling (Sup. Fig. 7A and 7B). Moreover, Snail1 nuclear translocation was also observed in PDGF-treated fibroblasts (Sup. Fig. 7C). α-SMA was remarkably down-regulated by Akt and FAK inhibitors (Sup. Fig. 7d); in contrast Snail1 expression was only sensitive to the FAK inhibitor (Sup. Fig. 7C and D). Therefore, the induction in Snail1 expression in fibroblasts treated with PDGF is dependent on the FAK pathway.

Furthermore, Snail1 has previously been described as modifying the expression of some ECM proteins, including fibronectin and Collagen122,28–31. In this way, 1. BR3G human fibroblasts with ectopic SNAI1 overexpression were incubated with PDGF and the expression of different ECM proteins were analyzed by the Array Human Extracellular Matrix and Adhesion Molecules. Interestingly, as it is shown in Sup. Table 2, a synergic effect of SNAI1 overexpression and PDGF stimulation is observed regarding the regulation of several ECM related proteins, including structural proteins as different types of Collagen, Fibronectin, Laminins; ECM adherents proteins as Integrins subunits; Secreted proteins as Metalloproteinases, TGFβ, TIMP2.
Fig. 3 (See legend on next page.)
To deeply study the possible effects of Snail1 expression on ECM, 3-D matrices were generated from Mouse Embryonic Fibroblasts (MEFs) either wild-type (wt) or KO for SNAI1 under PDGF stimulation. A greater alignment of cells was shown in wt MEFs on PDGF stimulation (Fig. 3a), as was previously observed in BJ-hTERT cells. In contrast, alignment of fibroblast cells was not observed when Snail1 was depleted in fibroblasts, independently of PDGF stimulation (Fig. 3a).

Decellularized 3D-ECMs generated by KO MEFs showed fewer Fibronectin and specifically Collagen I than matrices produced by wt MEFs (Fig. 3b). In parallel, a decrease of p65 phosphorilation was observed in KO MEFs regarding wt MEFs (Sup. Fig. 8). Moreover, wt MEFs upon PDGF stimulation produced more Collagen I, whereas no changes in the Collagen I amount were observed in KO MEFs. Directionality histograms showed that wt MEFs treated with PDGF exhibited a high degree of both Fibronectin and Collagen I fiber organization (Fig. 3c). In contrast, PDGF failed to reorganize ECM fibers in KO MEF-derived matrices (Fig. 3c).

After fibroblast removal, HUVECs were seeded on 3-D derived matrices to study the angiogenic switch and tubulogenesis. Enhanced tubulogenesis was observed in matrices derived from wt MEFs treated with PDGF, while these capillary-like structures were not observed in those matrices derived from non-stimulated wt. Addition of PDGF to Snail1 KO MEFs did not increase HUVEC tubulogenesis effects found in HUVECs seeded on Sna11 KO MEF-derived matrices, regardless of PDGF stimulation (Fig. 3d).

In accordance to this data, matrices derived from PDGF-stimulated fibroblasts significantly modify angiogenic and ECM attachment markers of endothelial cells in a Sna11-dependent manner. Thus, a decrease in endothelial cell activation markers (pERK1/2, VE-Cadherin, MMP-9) and slightly higher levels of VCAM1 were observed in HUVEC cells seeded on Sna11 KO MEF-derived matrices (Fig. 3e). The increase expression of β3 integrins subunits was also observed in HUVEC cells seeded on wt MEF-derived matrices with PDGF treatment. In contrast, a down-regulation of β3 integrins was observed when Sna11 was depleted in fibroblasts, and PDGF stimulation only produced a vaguely increase of them (Fig. 3f).

Taken together, these analyses demonstrated that depletion of Sna11 from fibroblasts blocked their ability to enhance endothelial tubulogenesis in a PDGF/FAK-dependent manner.

Snail1 expressing fibroblasts enhances invasion and proliferation of HUVECs

Angiogenesis requires ECM remodeling to allow the migration and invasion of endothelial cells into surrounding stroma. To investigate further the effect of Snail-expressing fibroblasts on the invasion of endothelial cells, we developed an organotypic co-culture system in which control or Snail1 KO MEFs were embedded in type I Collagen gel plus PDGF stimulation, and HUVECs were seeded at the top of the gel.

Collagen gels including Sna11 wt MEFs showed abundant invasive endothelial cells, with individual (arrows) and collective cohort invasion (arrowheads) (Fig. 4a, b). In contrast, when Sna11 KO MEFs were included only a few individual invading cells or small cell groups were observed (Fig. 4a, b).

Furthermore, PDGF addition to gels with wt MEFs induced a higher HUVEC invasion as collective cohort (Fig. 4a, b). No PDGF effects were observed on HUVEC invasion seeded on matrices with Sna11 KO fibroblasts (Fig. 4a, b).

The capability to contract Collagen gels is a typical trait of activated fibroblast. We evaluated collagen contraction in gels containing WT or Sna11 KO MEFs. After 6 days co-culture, the gel diameter was measured before the air-liquid co-culture phase and invasion of HUVECs. Collagen I gels were contracted to their maximum level, reaching 4.40 ± 0.70 mm diameter in PDGF-treated gels with control fibroblasts vs. 6.80 ± 1.32 mm diameter in non-treated gels with control fibroblasts. However, no clear changes in gel contraction were found in gels from non-treated (10.88 ± 0.64 mm) or PDGF-treated Sna11 KO MEFs (12.60 ± 0.55) (Fig. 4c).

Another essential step in angiogenesis is the proliferation of endothelial cells. Therefore, we next studied whether 3D-derived matrices from PDGF-stimulated fibroblasts enhance endothelial cell proliferation in a Sna11-dependent way. Green fluorescent-labeled HUVECs cultured on decellularized 3D-ECMs generated...
Invasion and proliferation of HUVECs are dependent on SNAI1-expressing fibroblasts.

A Snail1 KO MEFs gels had fewer invading endothelial cells as both individual invasion (arrows) and collective cohorts (arrowheads) for Snail1 wt MEFs. Moreover, PDGF treatment enhances collective cohort invasion in HUVEC cells seeded on gels derived from Snail1 wt MEFs, but not in those derived from Snail1 ko MEFs. **B** Quantification of collective cohorts of invading HUVEC cells. **C** Deletion of Snail1 in ko MEFs avoided Collagen I gel contraction even under PDGF treatment. **D** Snail1 deletion blocked the increase of endothelial cell proliferation in cells seeded on ECM derived from PDGF-stimulated fibroblasts. *p* value < 0.05; **p** value < 0.01; ***p*** value < 0.001. All results are derived from 2–4 independent experiments, each performed in duplicate.
by PDGF-treated Snail wt MEFs showed a higher proliferation rate than non-treated control MEFs or Snail1 KO MEFs, regardless of the growth factor stimulation (Fig. 4d).

These results reveal the role of Snail1-activated fibroblasts in endothelial cell angiogenesis, through mechanisms involving activation, invasion and proliferation.

PDGF and SNAI1 also control matrix remodeling in CAFs

To verify the previous results about PDGF-fibroblast activation and matrix remodeling, we took advantage of our primary fibroblast isolation method as an *ex vivo* approach. We first compared ECM alignment in normal fibroblasts (NFs) and CAFs from 3 colorectal patients. The images revealed an increase in ECM organization in CAFs, as seen after the analysis of Collagen I and Fibronectin fibers by immunofluorescence (Sup. Fig. 9). PDGF treatment of CAFs from 3 colorectal patients showed that CAFs generated 3D-ECMs with a higher degree of fiber orientation than non-treated CAFs did (Fig. 5a). When we checked SNAI1 expression and PDGFR-β phosphorylation, different levels of response to the ligand were observed in CAFs. Interestingly, basal levels of SNAI1 (without PDGF stimulation) were associated with organization of ECM fibers and the PDGFR-β phosphorylation levels correlated directly with Snail1 expression levels. In addition, CAFs with higher levels of Snail1 showed an anisotropic organization of ECM fibers (Fig. 5b).

Snail1-expressing fibroblasts stimulate angiogenesis in the colon tumor xenograft model

To study the Snail1-expressing effects of fibroblasts on tumor angiogenesis in an *in vivo* tumor model, a xenograft colon cancer model was generated. HT29-M6 human colon tumor cells were subcutaneously co-injected with MEFs, either wild type or Snail1 KO. HT-29 M6 were also injected alone.

A remarkable decrease in vascular irrigation was macroscopically observed when we compared tumors generated by co-injection of tumor cells and Snail1 KO MEFs vs. wt MEFs (Fig. 6a). Staining of vascular vessels with PECAM-1 antibody supported the macroscopically observed data (Fig. 6b, c). Moreover, Masson staining was performed to analyze Collagen I organization in the tumor mice models. Although no differences were observed in the total Collagen I, the organization of this protein depended on Snail1 expression in MEFs. Thus, those tumors derived from epithelial cells and Snail1 KO MEFs exhibited a...
Fig. 6 SNAI1 expression stimulates angiogenesis in xenograft tumor models and is associated with angiogenesis markers in human tumor samples.

a, b Macroscopic and microscopic decrease of vascular irrigation in tumors derived from colon cells and Snail1 ko MEFs.

PCAM-1 and Masson staining measurement in xenograft tumors.

c Illustration of Masson staining in Snail1 wt or ko MEFs + tumor colon cell-derived xenograft tumors.

E Representative images of a patient with SNAI1 expression and high degree of vasculature.

f Direct association between SNAI1 expression and the degree of vasculature in human colon tumor samples.

Herrera et al. Oncogenesis (2018) 7:76
lower organization than tumors derived formed by HT-29M6 plus SNAI1 wt MEFs (Fig. 6c, d).

Tumors formed by HT29-M6 human colon tumor cells without co-injection of fibroblasts, showed vascular vessel and Collagen I organization between those observed in tumor with co-injection of Snail1 KO or wt MEFs (Fig. 6c), suggesting that Snail1 KO MEFs prevents activation of resident fibroblasts.

Thus, this analysis demonstrated that the Snail1 status of co-injected fibroblasts determined angiogenesis behavior and ECM Collagen I organization of endogenous endothelial cells in xenograft colon cancer models.

Snail1 expression in fibroblasts is associated with endothelial cell markers in human colon tumor samples

Finally, the expression of Snail1, CD34 and CD31 as angiogenic marker, was analyzed by IHC in a series of 53 colon cancer patients. Snail1 expression in tumor stroma was categorized as presence or absence of expression, given the low number of expressing cells. However, the expression of CD34 and CD31 was measured at three levels, in which “Grade 1” corresponded to those samples with lower staining and “Grade 3” to those with highest expression.

As expected, CD34 and CD31 showed a statistical association (Sup. Fig. 10A). The analysis showed a direct association between SNAI1 presence and CD34 but not with CD31. Thus, SNAI1-positive tumors showed a 1.27 rate of vasculature markers expression, compared with negative SNAI1 samples. Moreover, the percentage of patients with “Grade 3” of CD34, and thus more vasculature, was higher among SNAI1-positive tumors; on the contrary, those tumors without SNAI1 expression presented the greatest percentage of patients with low angiogenesis or CD34 expression (patients with “Grade 1") (Fig. 6e, f and Sup. Fig. 10B).

Discussion

In this study, we established for the first time a role for ECM fiber alignment in tumor angiogenesis of colorectal cancer patients via the PDGFR/FAK/Snail1 pathway. Thus, 3D-ECMs derived from PDGF-stimulated fibroblasts showed increased fiber deposition and alignment organization. Endothelial cell activation and tubulogenesis were observed when these cell were seeded on 3D-ECMs. Interestingly, when we inhibited the FAK/Snail1 expression in fibroblasts, the activation of endothelial cells was blocked by a mechanism involving ECM fiber disorganization (Sup. Fig. 11). The in vivo significance of these findings was supported by results obtained from tumors generated by co-injection of fibroblasts and colon cancer cells; those with Snaill-deficient cells were less likely to induce neovessel formation. Finally, the clinical relevance of these results was proved by the association between Snail1 expression in the stromal compartment and angiogenesis markers in tumor samples from colorectal cancer patients.

Cancer-Associated Fibroblasts (CAFs) are a heterogeneous population of activated fibroblasts present in the tumor microenvironment that promote tumor growth and progression1–3. PDGF ligands stimulate tumor stroma recruitment of CAFs and are an important regulator of CAFs33. Thus, stromal PDGF signaling exerts prometastatic effects having a prognostic role in several tumor types33. PDGF stimulates the synthesis of ECM proteins, by fibroblasts, such as Hyaluronan34, Fibronectin ED-A and Collagen I35. ECM dynamics involve changes in the amount, composition or topography of the fibers, which may result in disorganization and deregulation of its essential properties and could lead to abnormal behavior of cells in tumor tissues39,36. In line with these data, we demonstrated that BJ-hTERT fibroblasts increase matrix deposition and alignment upon PDGF treatment, which results in an anisotropic organization of both Collagen I and Fibronectin ECM fibers. Supporting these data, and in line with previously described data in which p65 subunit of NF-κB participate in the activation of fibronectin transcription, an increase of p65 phosphorylation was observed in BJ-hTERT fibroblasts under PDGF stimulation. Moreover, data derived by gene expression profile of nonstimulated and PDGF-stimulated BJhTERT fibroblasts supports also these findings, since PDGF stimulation of fibroblasts was involve in the regulation of many genes related with ECM. These changes in ECM properties were also validated when using NFs and CAFs established from normal or tumor samples derived from colorectal cancer patients. As expected from their activated phenotype, CAFs resemble PDGF-treated fibroblast behavior, as they produced parallel fiber alignment and dense matrices unlike NFs. Furthermore, PDGF-treated CAFs showed greater organization of ECM fibers than non-treated CAFs do.

During tumor growth, new blood vessel formation is crucial to face the increasing demand for nutrient, oxygen and waste exchange37. The organization and composition of the ECM control endothelial cell activities, such as cell survival and proliferation, vessel lumen formation and tubulogenesis, and provide tracks to guide endothelial cell migration and branching37. Similarly β1 integrin subunits is involved with establishment and stiffness of collagen fibers to form ECM scaffold. Moreover, endothelial cell adhesion to collagen and fibronectin are mediated by β1 and β3 integrin subunits which play a pivotal role during tumor angiogenesis and are highly expressed on activated endothelial cells and new-born38,39. Despite the above-mentioned findings, the cross-talk mediated by CAFs and ECM fiber organization and its association with the angiogenesis process has not yet been fully studied. In this
As a consequence, scattered Snail1-expressing colon cancer patients, we recently proposed it as a marker in invasion. In addition, Snail1 plays an important role in the regulation of angiogenesis through changes in ECM properties. Currently, we showed that PDGF treatment increases Snail1 expression levels and nuclear translocation in fibroblasts and CAFs. Ectopic Snail expression in human fibroblasts increase in a synergic manner the PDGF regulation on the transcription of several ECM proteins. Moreover, Snail1 depletion in fibroblasts resulted in deregulation of fibroblasts and ECM organization together with a decrease in p65 subunit phosphorylation. Those CAFs in which ligand responses were more clearly observed generated a more aligned pattern of ECM fibers together with a higher increase in Snail1 expression. In addition, HUVECs seeded on 3D-ECMs derived from Snail1 KO fibroblasts did not form capillary-like structures and displayed lower levels of endothelial activation and attachment markers. In support of our data, some evidence has shown an association between Snail1 and angiogenesis in mouse models.

In addition, although both PI3K/Akt and FAK inhibition decreased the expression of the cytoskeletal protein α-SMA, only the FAK inhibitor decrease Snail1 protein. Thus, blocking FAK in fibroblasts revealed a similar pattern of ECM fibers and tubulogenesis in HUVECs as Snail1-depletion fibroblasts and BAPN-treated ECMS.

These data suggest that the PDGF, FAK and Snail1 regulate cell morphology, leading to aligned ECM fibers that serve as tracks for the tubulogenesis process. It has also been demonstrated that Snail1 activates FN1 promoter and also controls α-SMA and the formation of stress fibers. In a theoretical loop, the resulting aligned Fibronectin fibers work as a template for the assembly of other ECM molecules, such as Collagen, which are cross-linked by LOX. In turn, the DDR2 Collagen receptor is activated, leading to Snail1 stabilization.

During the angiogenic process, the activated cell, called the tip cell, invades the ECM. Adjacent cells, referred to as stack cells, proliferate and follow the tip cell, resulting in the formation of a sprout. This process has been associated with collective endothelial cell migration. In this study, we have shown that PDGF-treated Snail1-expressing fibroblasts generated organized 3D-ECMs, increasing proliferation and collective invasion as a cohort of HUVECs that indicated the activation of the sprout process in endothelial cell. However, despite the present study and previous ones, the molecular pathways and the spatiotemporal regulation of angiogenic morphogenesis remain largely unknown.

Xenografted tumors generated by co-injection of Snail1-deficient fibroblasts and colon cancer cells were less able to induce neovessel formation and to organize the Collagen I fibers in the ECM. These data strongly
supports the in vivo significance of the present study and suggest that these Snail-expressing fibroblast effects might be mediated by ECM remodeling and angiogenesis regulation. The data observed with HT29-M6 cells without co-injection are also in accordance since in these tumor the stroma was formed by resident fibroblasts of the mice. Our data, showing that tumors formed with HT29-M6 and KO MEFs displayed lower angiogenesis than tumors with only HT-29M6 (but less than with wt MEFs) suggest that KO MEFs are protecting resident fibroblast from activation. A similar results has been obtained in a model of breast tumor where MEFs KO protected from epithelial tumor metastasis48.

Finally, the analysis of human tumor samples showed an association between Snail1 expression in the stromal compartment and the angiogenesis marker CD34, but not with CD31. CD31 is expressed in vascular endothelial progenitors while CD31 is expressed in most of endothelial cells49. This suggests that Snail1, as CD34, would be a marker of neoangiogenesis, but not of regular vasculature, as CD31. Although these analyses need to be extended with larger patient series, the increase of angiogenesis in those tumors with the highest degrees of Snail1 expression supports evidence for the biological effects of Snail1-expressing fibroblasts on endothelial cell activation.

Experimental studies have brought some controversy about PDGFR-β function in endothelial cells. We did not observe PDGFR-β expression in cultured HUVECs upon PDGF treatment or under co-culture with fibroblasts. Our results are in line with the analysis in knockout mice that do not show evidences for PDGF signaling in endothelial cells50. Thus the expression of Snail protein as a mediator between PDGF and endothelial cell activation might be an explanation for the confusion of PDGF functions in endothelial cells.

thought the inhibition of the PDGF ligand was successful in therapeutic angiogenesis in diverse preclinical models, the expected results failed to occur in clinical trials26. According to our results this might be consequence of the different fibroblast infiltration in tumors and the expression of angiogenic mediators. Therefore, the analysis of Snail1 expression in tumor stromal fibroblasts might be used as a potential biomarker to identify sub-groups of patients who might respond better to therapy and thus to improve personal treatments.

Materials and methods

Reagents

Primary antibodies used in this work were β-actin (Abcam, ab8226), SNAI1 EC3 (ref20), PY99 (Santa Cruz, sc7020), PDGF-β (Cell Signaling, 3169), ERK1/2 (Cell Signaling, 9102), p-ERK1/2 (Cell Signaling, 9109), Akt (Cell Signaling, 4691), p-Akt (Cell Signaling, 4060), FAK (Cell Signaling, 3285), p-FAK (Cell Signaling, 3281), VE-Cadherin (Abcam, ab33168), VCAM-1 (Abcam, ab98954), MMP-9 (Abcam, ab38898), Snail (ref20), MT1-MMP (Abcam, ab51074), CD31/PCAM-1 (1:10, SC-506) Fibronectin (DAKO, A0245), Beta 1 integrin (Cell Signaling, 34971 S), Beta 3 integrin (Cell Signaling, 13166 S), NF-KB p65 (Cell Signaling, 8242 S), Phospho-NF-KBp65 (Cell signaling, 3033 S) and Collagen I (Abcam, ab34710), CD31/PCAM-1 (1:10, SC-506) Fibroblast marker of neoangiogenesis, but not of regular vasculature, but not of regular vasculature, CD34 is expressed in vascular endothelial progenitors while CD31 is expressed in most of endothelial cells49. This suggests that Snail1, as CD34, would be a marker of neoangiogenesis, but not of regular vasculature, as CD31. Although these analyses need to be extended with larger patient series, the increase of angiogenesis in those tumors with the highest degrees of Snail1 expression supports evidence for the biological effects of Snail1-expressing fibroblasts on endothelial cell activation.

Experimental studies have brought some controversy about PDGFR-β function in endothelial cells. We did not observe PDGFR-β expression in cultured HUVECs upon PDGF treatment or under co-culture with fibroblasts. Our results are in line with the analysis in knockout mice that do not show evidences for PDGF signaling in endothelial cells50. Thus the expression of Snail protein as a mediator between PDGF and endothelial cell activation might be an explanation for the confusion of PDGF functions in endothelial cells.

Thought the inhibition of the PDGF ligand was successful in therapeutic angiogenesis in diverse preclinical models, the expected results failed to occur in clinical trials26. According to our results this might be consequence of the different fibroblast infiltration in tumors and the expression of angiogenic mediators. Therefore, the analysis of Snail1 expression in tumor stromal fibroblasts might be used as a potential biomarker to identify sub-groups of patients who might respond better to therapy and thus to improve personal treatments.

Materials and methods

Reagents

Primary antibodies used in this work were β-actin (Abcam, ab8226), SNAI1 EC3 (ref20), PY99 (Santa Cruz, sc7020), PDGF-β (Cell Signaling, 3169), ERK1/2 (Cell Signaling, 9102), p-ERK1/2 (Cell Signaling, 9109), Akt (Cell Signaling, 4691), p-Akt (Cell Signaling, 4060), FAK (Cell Signaling, 3285), p-FAK (Cell Signaling, 3281), VE-
Other methods, including “Culture cell lines2, “Stromal Fibroblast-Derived 3-D Matrix Production”, “Western Blotting and Immunofluorescence details”, “Generation of Snail1 modified cell lines and PCR array”, Proliferation assay”, “In vivo xenograft tumor model”, “Immunohistochemistry and Masson’s procedures” and “Statistical analysis” are described in the Supplementary Information.

Acknowledgements
This research is supported by PI12/02037, PI12/01655, PI15/02101, PI17/01847, RD12/0036/0041 and RD12/0036/0021, and PIE15/00008 from the Instituto de Salud Carlos III by Fondo Europeo de Desarrollo Regional (FEDER); by “CIBER de Cáncer”, CB16/12/00273, CB16/12/00301, and CB16/12/00446, from the Instituto de Salud Carlos III-FEDER; by the Fundación Científica AECC (a multifaceted approach to target pancreatic cancer); by SAF2010-20750 and SAF2016-76461-R from the Ministerio de Economía y Competitividad of Spain—FEDER, by S2010/BMD-2344 from the Comunidad de Madrid, and by the Fundación Banco Santander: AGdeH. Laboratory is supported by RD12/0036/0005 (from the Instituto de Salud Carlos III-FEDER) and SAF2013-48849-C2-1-R and SAF2016-76737-R (from the Ministerio de Economía y Competitividad of Spain—FEDER). C.P. is a recipient of a Miguel Servet Contract from the Instituto de Salud Carlos III. M. Eaude helped with the English text. We thank lab members for help and advice throughout this research.

Author details
1Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. 2Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCS), Madrid, Spain. 3Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain. 4Laboratorio de Oncología Trasacional y Nuevas Terapias, Instituto de Investigación i+12, Madrid, Spain. 5Biomarkers and Therapeutic Targets Lab, Pathology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCS), Madrid, Spain. 6Surgery Department, Hospital Universitario de Guadalajara, Guadalajara, Spain. 7Pathology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain. 8Programa de Recerca en Cancer, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain. 9Pathology Department, Virgen de la Concha Hospital, Zamora, Castilla y León, Spain. 10Centro de Estudios Biosanitarios, Madrid, Spain. 11Medical Oncology Department, Ramon y Cajal University Hospital, IRYCS, CIBERONC, Alcalá University, Madrid, Spain. 12Present address: Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden. 13Present address: Laboratory of Molecular Oncology, IIS Hospital Clínico San Carlos, CIBERONC, Madrid, Spain. 14Present address: Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCS), CIBERONC, Madrid, Spain

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information
accompanies this paper at https://doi.org/10.1038/s41389-018-0085-2.

Received: 21 August 2018 Accepted: 26 August 2018
Published online: 24 September 2018

References
1. Madar, S., Goldstein, I. & Rotter, V. ‘Cancer associated fibroblasts’ more than meets the eye. Trends Mol. Med. 19, 447–453 (2013).
2. Herrera, M. et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin. Cancer Res. 19, 5914–5926 (2013).
3. Augsten, M., Hägglof, C., Peña, C. & Ostman, A. A digest on the role of the tumor microenvironment in gastrointestinal cancers. Cancer Microenviron. 3, 167–176 (2010).
4. Han, Y., Zhang, Y., Jia, T. & Sun, Y. Molecular mechanism underlying the tumor-promoting functions of carcinoma-associated fibroblasts. Tumour Biol. 36, 1395–1394 (2015).
5. Fearon, D. T. The carcinoma-associated fibroblast expressing fibroblast actin protein and escape from immune surveillance. Cancer Immunol. Res. 2, 187–193 (2014).
6. Sugimoto, H., Mundell, T. M., Klein, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).
7. Frings, O. et al. Prognostic significance in breast cancer of a gene signature capturing stromal PDGF signaling. Am. J. Pathol. 182, 2037–2047 (2013).
8. Hägglof, C. et al. Stromal PDGFRbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS One 5, e10747 (2010).
9. Kodama, M. et al. Expression of platelet-derived growth factor (PDGF)-B and PDGF-beta receptor is associated with lymphatic metastasis in human gastric carcinoma. Cancer Sci. 101, 1984–1989 (2010).
10. Suzuki, S. et al. Clinopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-B phosphorylation, and microvesSEL density in gastric cancer. BMC Cancer 10, 659 (2010).
11. Petrakis, K., Sbollima, T., Rubin, K., Helden, C. H. & Ostman, A. PDGF receptors as cancer drug targets. Cancer Cell. 3, 439–443 (2003).
12. Board, R. & Jayson, G. C. Platelet-derived growth factor receptor (PDGFR), a target for anticancer therapeutics. Drug Resist Update 8, 75–83 (2005).
13. Gao, Z. et al. Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. J. Biol. Chem. 280, 9375–9389 (2005).
14. McCarthy, M. F. et al. Overexpression of PDGF-B decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J. Clin. Invest. 117, 2114–2122 (2007).
15. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 162, 1083–1093 (2003).
16. Lindblom, P. et al. Endothelial PDGFR-B retention is required for proper investment of pericytes in the microvesSEL wall. Genes Dev. 17, 1385–1840 (2003).
17. Nieto, M. A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011).
18. Franci, C. et al. Expression of Snail protein in tumor-stroma interface. Oncogene 25, 5134–5144 (2006).
19. Stanisavljevic, J. et al. Snail-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 75, 284–295 (2015).
20. Alba-Castellón, L. et al. Snail expression is required for sarcomagenesis. Neoplasia 16, 413–421 (2014).
21. Herrera, A. et al. Protumorigenic effects of Snail-expressing fibroblasts on colon cancer cells. Int. J. Cancer. 134, 2984–2990 (2014).
22. Dong, J. et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23, 2800–2810 (2004).
23. Lu, C. et al. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chondrocytotic-matrix. J. Cell Physiol. 228, 1827–1833 (2013).
24. Rowe, R. G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol. 184, 399–408 (2009).
25. Stanisavljevic, J., Porta-de-la-Riva, M., Battle, R., de Herreros, A. G. & Baulida, J. The p65 subunit of NF-kB and PARP1 assist Snail1 in activating membrane type 1 matrix metalloproteinase-dependent collagen investment of pericytes in the microvesSEL wall. Exp. Dermatol. 20, 605–613 (2011).
26. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).
27. Shields, M. A., Dangi-Garimella, S., Krantz, S. B., Bentrem, D. J. & Munsli, H. G. Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type I metalloproteinase-dependent collagen invasion. J. Biol. Chem. 286, 10495–10504 (2011).
28. Shields, M. A., Krantz, S. B., Bentrem, D. J., Dangi-Garimella, S. & Munsli, H. G. Interplay between β1-integrin and Rho signaling regulates differential interactions.
scattering and motility of pancreatic cancer cells by snail and Slug proteins. J. Biol. Chem. 287, 6218–6229 (2012).

30. Zhang, K. et al. The collagen receptor discodin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol. 15, 677–687 (2013).

31. Xie, B. et al. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J. Exp. Clin. Cancer Res. 34, 101 (2015).

32. Herrera, M. et al. Colon cancer-associated fibroblast establishment and culture growth. Bio-Protoc. 6, e1773 (2016).

33. Paulsson, J., Ehnman, M. & Östman, A. PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol. 10, 1695–1708 (2014).

34. Li, L., Asteriou, T., Bernert, B., Heldin, C. H., & Heldin, P. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem. J. 404, 327–336 (2007).

35. Rajkumar, V. S. et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Ann. J. Pathol. 169, 2254–2265 (2006).

36. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 4, 165–178 (2011).

37. Davis, G. E. & Serger, D. R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107 (2005).

38. Jones, C. & Ehrlich, H. P. Fibroblast expression of α-smooth muscle actin, α2β1 integrin and αvβ3 integrin: influence of surface rigidity. Exp. Mol. Pathol. 91, 394–399 (2011).

39. Nisato, R. E. et al. Dissecting the role of matrix metalloproteinases (MMP) and integrin αvβ3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and αvβ3 are critical. Cancer Res. 65, 9377–9387 (2005).

40. Heldin, C. H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun. Signal. 11, 97 (2013).

41. Hood, J. D., Frausto, R., Kiosses, W. B., Schwartz, M. A. & Cheresh, D. A. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell Biol. 162, 933–943 (2003).

42. Mattkowskij, K. A. et al. Expression of GRP and its receptor in well-differentiated colon cancer cells correlates with the presence of focal adhesion kinase phosphorylated at tyrosines 397 and 407. J. Histochem. Cytochem. 51, 1041–1048 (2003).

43. Herrera, A., Herrera, M. & Peña, C. The emerging role of Snail1 in the tumor stroma. Clin. Transl. Oncol. 18, 872–877 (2016).

44. Herrera, A., Herrera, M., Bonilla, F., García de Herreros, A. & Peña, C. Snail1-expressing fibroblasts as a source of paracrine signals in colon cancer tumors. Cancer Cell Micro. 1, e1417 (2014).

45. Lomeli, H., Starling, C. & Gridley, T. Epiblast-specific Snai1 deletion results in early embryonic lethality due to multiple vascular defects. BMC Res. Notes 2, 22 (2009).

46. Park, J. A., Kim, D. Y., Kim, Y. M., Lee, I. K. & Kwon, Y. G. Endothelial snail regulates capillary branching morphogenesis via vascular endothelial growth factor receptor 3 expression. PLoS Genet. 11, e1005324 (2015).

47. Arima, S. et al. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138, 4763–4776 (2011).

48. Alba-Castellón, L. et al. Snail1-dependent activation of cancer-associated fibroblast controls epithelial tumor cell invasion and metastasis. Cancer Res. 76, 6205–6217 (2016).

49. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S. & Hopkinson, A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32, 1380–1389 (2014).

50. Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312 (2008).