Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3)

Aristeidis Kallimanis1, Kurt M. LaButti2, Alla Lapidus2, Alicia Clum2, Athanasios Lykidis2, Kostantinos Mavromatis2, Ioanna Pagani2, Konstantinos Liolios2, Natalia Ivanova2, Lynne Goodwin2, Sam Pitluck2, Amy Chen4, Krishna Palaniappan3, Victor Markowitz4, Jim Bristow2, Athanasios D. Velentzas5, Angelos Perisynakis1, Christos C Ouzounis6, Nikos C. Kyprides2, Anna I. Koukkou1*, and Constantín Drainas1

1 Sector of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
2 DOE Joint Genome Institute, Walnut Creek, California, USA
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
6 Centre for Bioinformatics - Department of Informatics - School of Natural & Mathematical Sciences, King's College London (KCL) - London, UK
7 Present address: Computational Genomics Unit, Institute of Agrobiotechnology - Centre for Research & Technology Hellas - Thessaloniki - Greece

*Corresponding author: Anna I. Koukkou, email: akukku@cc.uoi.gr

Arthrobacter phenanthrenivorans is the type species of the genus, and is able to metabolize phenanthrene as a sole source of carbon and energy. A. phenanthrenivorans is an aerobic, non-motile, and Gram-positive bacterium, exhibiting a rod-coccus growth cycle which was originally isolated from a creosote polluted site in Epirus, Greece. Here we describe the features of this organism, together with the complete genome sequence, and annotation.

Keywords: Arthrobacter, dioxygenases, PAH biodegradation, phenanthrene degradation.

Introduction
Strain Sphe3T (=DSM 18606T = LMG 23796T) is the type strain of Arthrobacter phenanthrenivorans [1]. It was isolated from Perileptos, a creosote polluted site in Epirus, Greece (12 Km North of the city of Ioannina), where a wood preserving industry was operating for over 30 years [2]. Strain Sphe3T is of particular interest because it is able to metabolize phenanthrene at concentrations of up to 400 mg/L as a sole source of carbon and energy, at rates faster than those reported for other Arthrobacter species [3-5]. It appears to internalize phenanthrene with two mechanisms: a passive diffusion when cells are grown on glucose, and an inducible active transport system, when cells are grown on phenanthrene as a sole carbon source [2]. Here we present a summary classification and a set of features for A. phenanthrenivorans strain Sphe3T, together with the description of the complete genome sequencing and annotation.

Classification and features
Figure 1 shows the phylogenetic neighborhood of A. phenanthrenivorans strain Sphe3T in a 16S rRNA based tree. Strain Sphe3T is a Gram-positive, aerobic, non-motile bacterium exhibiting a rod-coccus cycle (Figure 2), with a cell size of approximately 1.0-1.5 x 2.5-4.0 μm. Colonies were slightly yellowish on Luria agar. The temperature range was 40-37°C with optimum growth at 30-37°C. The pH range was 6.5-8.5 with optimal growth at pH 7.0-7.5 (Table 1). Strain Sphe3T was found to be sensitive to various antibiotics, the minimal inhibitory concentrations of which were estimated as follows: ampicillin 20 mgL⁻¹, chloramphenicol 10 mgL⁻¹, erythromycin 10 mgL⁻¹, neomycin 20 mgL⁻¹, rifampicin 10 mgL⁻¹ and tetracycline 10 mgL⁻¹.
Amylase, catalase and nitrate reductase tests were positive, whereas arginine dihydrolase, gelatinase, lipase, lysine and ornithine decarboxylase, oxidase, urease, citrate assimilation and H₂S production tests were negative. No acid was produced in the presence of glucose, lactose and sucrose.

Figure 1. Phylogenetic tree highlighting the position of *A. phenanthrenivorans* strain Sphe3ᵀ relative to the other type strains within the family. Numbers above branches are support values from 100 bootstrap replicates.

Figure 2. Scanning electron micrograph of *A. phenanthrenivorans* strain Sphe3ᵀ
Chemotaxonomy

Menaquinones are the sole respiratory lipoquinones of *A. phenanthrenivorans* strain Sphe3T. Both MK-8 and MK-9(H₂) are present in a ratio of 3.6:1, respectively. Major fatty acids are anteiso-C₁₅:0 (36.2%), iso-C₁₆:0 (15.7%), iso-C₁₅:0 (14.3%), anteiso-C₁₇:0 (12.0%), C₁₆:0 (8.3%), iso-C₁₇:0 (4.0%), C₁₆:1ω7c (2.5%) and C₁₄:0 (1.4%). The major phospholipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), (63.8, 27.5 and 4.0% respectively).

Table 1. Classification and general features of *A. phenanthrenivorans* strain Sphe3T according to the MIGS recommendations [6]

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [7]
	Phylum	Actinobacteria	TAS [8]
	Class	Actinobacteria	TAS [9]
Current classification	Subclass Actinobacteriae		TAS [9,10]
	Order	Actinomycetales	TAS [9-12]
	Family	Micrococcaceae	TAS [9-11,13]
	Genus	Arthrobacter	TAS [1,11,14-17]
	Species	Arthrobacter phenanthrenivorans	TAS [1]
	Type strain Sphe3		TAS [1]
	Gram stain	positive	TAS [1]
	Cell shape	irregular rods, coccoid	TAS [1]
	Motility	Non motile	TAS [1]
	Sporulation	nonsporulating	NAS
	Temperature range	mesophile	TAS [1]
	Optimum temperature	30°C	TAS [1]
	Salinity	normal	TAS [1]
	MIGS-22 Oxygen requirement	aerobic	TAS [1]
	Carbon source	Phenanthrene, glucose, yeast extract	TAS [1,2]
	Energy source	Phenanthrene, glucose, yeast extract	TAS [1,2]
MIGS-6	Habitat	Soil	TAS [1,2]
MIGS-15	Biotic relationship	Free-living	NAS
MIGS-14	Pathogenicity	none	NAS
	Biosafety level	1	NAS
	Isolation	Creosote contaminated soil	TAS [1,2]
	MIGS-4 Geographic location	Perivleptos, Epirus, Greece	TAS [1,2]
MIGS-5	Sample collection time	April 2000	TAS [1,2]
MIGS-4.1	Latitude	39.789	NAS
MIGS-4.2	Longitude	20.781	NAS
MIGS-4.3	Depth	10-20 cm	TAS [1,2]
MIGS-4.4	Altitude	500 meters	TAS [1,2]

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

http://standardsingenomics.org
Arthrobacter phenanthrenivorans type strain (Sphe3)

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its biodegradation capabilities, i.e. metabolizes phenanthrene as a sole source of carbon and energy. The genome project is deposited in the Genome OnLine Database [18] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Table 2. Genome sequencing project information
MIGS ID
MIGS-31
MIGS-28
MIGS-29
MIGS-31.2
MIGS-30
MIGS-32
INSDC ID
Genbank Date of Release
GOLD ID
NCBI project ID
Database: IMG-GEBA
MIGS-13
Project relevance

Growth conditions and DNA isolation

Arthrobacter phenanthrenivorans Sphe3T, DSM 18606T was grown aerobically at 30°C on MM M9 containing 0.02% (w/v) phenanthrene. DNA was isolated according to the standard JGI (CA, USA) protocol for Bacterial genomic DNA isolation using CTAB.

Genome sequencing and assembly

The genome of *Arthrobacter phenanthrenivorans* type strain (Sphe3) was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [19]. Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 4,967 overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and to adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the Arachne assembler [20]. Possible mis-assemblies were corrected and gaps between contigs were closed by by editing in Consed, by custom primer walks from sub-clones or PCR products. A total of 822 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 26.78× coverage of the genome. The final assembly contains 44,113 Sanger reads and 599,557 pyrosequencing reads.

Genes annotation

Genes were identified using Prodigal [21] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [22]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation were performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [23].
Genome properties
The genome consists of a 4,250,414 bp long chromosome with a GC content of 66% and two plasmids both with 62% GC content, the larger being 190,450 bp long and the smaller 94,456 bp (Figure 3, Figure 4, and Table 3). Of the 4,288 genes predicted, 4,212 were protein-coding genes, and 76 RNAs; 77 pseudogenes were also identified. The majority of the protein-coding genes (73.8%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Figure 3. Graphical circular map of the chromosome, not drawn to scale with plasmids. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 4. The two plasmids, not drawn to scale with chromosome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	4,535,320	100.00%
DNA Coding region (bp)	4,033,112	88.93%
DNA G+C content (bp)	2,964,596	65.37%
Number of replicons	1	
Extrachromosomal elements	2	
Total genes	4,288	100.00%
RNA genes	76	1.77%
rRNA operons	4	
Protein-coding genes	4,212	98.23%
Pseudo genes	77	1.80%
Genes with function prediction	3,167	73.86%
Genes in paralog clusters	930	21.69%
Genes assigned to COGs	3,075	71.71%
Genes assigned Pfam domains	3,277	76.42%
Genes with signal peptides	978	22.81%
Genes with transmembrane helices	999	23.30%
CRISPR repeats	0	
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	153	4.5	Translation, ribosomal structure and biogenesis
A	1	0.0	RNA processing and modification
K	308	9.0	Transcription
L	239	7.0	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	29	0.8	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	45	1.3	Defense mechanisms
T	135	3.9	Signal transduction mechanisms
M	142	4.1	Cell wall/membrane/envelope biogenesis
N	2	0.0	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	45	1.3	Intracellular trafficking and secretion, and vesicular transport
O	100	2.9	Posttranslational modification, protein turnover, chaperones
C	205	6.0	Energy production and conversion
G	396	11.6	Carbohydrate transport and metabolism
E	329	9.6	Amino acid transport and metabolism
F	87	2.5	Nucleotide transport and metabolism
H	141	4.2	Coenzyme transport and metabolism
I	134	3.9	Lipid transport and metabolism
P	167	4.9	Inorganic ion transport and metabolism
Q	95	2.8	Secondary metabolites biosynthesis, transport and catabolism
R	430	12.6	General function prediction only
S	238	6.9	Function unknown
-	1,213	28.3	Not in COGs

Acknowledgements

This work was supported by the program “Pythagoras II” of EPEAEK with 25% National Funds and 75% European Social Funds (ESF). NCK is supported by the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

References

1. Kallimanis A, Kavakiotis K, Perisynakis A, Sproer C, Pukall R, Drains C, Koukkou Al. Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int J Syst Evol Microbiol 2009; 59:275-279. PubMed doi:10.1099/ijs.0.000984-0

2. Kallimanis A, Frillingos S, Drains C, Koukkou Al. Taxonomic identification, phenanthrene uptake activity and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 2007; 76:709-717. PubMed doi:10.1007/s00253-007-1036-3

3. Grifoll M, Casellas M, Bayona JM, Solanas AM. Isolation and Characterization of a Fluorene-Degrading Bacterium: Identification of Ring Oxidation and Ring Fission Products. Appl Environ Microbiol 1992; 58:2910-2917. PubMed

4. Samanta SK, Chakraborti AK, Jain RK. Degradation of phenanthrene by different bacteria: evo-
Arthrobacter phenanthrenivorans type strain (Sphe3)

dence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 1999; 53:98-107. PubMed doi:10.1007/s002530051621.

5. Seo JS, Keum YS, Hu Y, Lee SE, Li QX. Phenanthrene degradation in Arthrobacter sp. Pl-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 2006; 65:2388-2394. PubMed doi:10.1016/j.chemosphere.2006.04.067.

6. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360.

7. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576.

8. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

9. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchical classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. doi:10.1099/ijs.0.0207713-47-2-479.

10. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589-608. PubMed doi:10.1099/ijsem.0.05780-0.

11. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. doi:10.1099/00207713-30-1-225.

12. Buchanan RE. Studies in the nomenclature and classification of bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 1917; 2:155-164. PubMed.

13. Pribram E. A contribution to the classification of microorganisms. J Bacteriol 1929; 18:361-394. PubMed.

14. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291-303.

15. Keddie RM. Genus II. Arthrobacter Conn and Dimmick 1947, 300. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 618-625.

16. Koch C, Schumann P, Stackebrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 1995; 45:837-839. PubMed doi:10.1099/00207713-45-4-837.

17. Judicial Commission. Opinion 24. Rejection of the Generic Name Arthrobacter Fischer 1895 and Conservation of the Generic Name Arthrobacter Conn and Dimmick 1947. Int Bull Bacteriol Nomencl Taxon 1958; 8:171-172. doi:10.1099/0096266X-8-3-4-171.

18. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2009; 38:D346-D354. PubMed doi:10.1093/nar/gkp848.

19. JGI website. http://www.jgi.doe.gov.

20. The Arachne assembler. http://www.broadinstitute.org/crd/wiki/index.php/Arachne_Main_Page.

21. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119.

22. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457.

23. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393.