ON SMOOTHNESS OF THE ELEMENTS OF SOME INTEGRABLE TEICHMÜLLER SPACES

VINCENT ALBERGE AND MELKANA BRAKALOVA

Abstract. In this paper we focus on the integrable Teichmüller spaces T^p ($p > 0$) which are subspaces of the symmetric subspace of the universal Teichmüller space. We prove that any element of T^p for $0 < p \leq 1$, is a C^1-diffeomorphism.

1. Introduction

The universal Teichmüller space T is the space of quasisymmetric homeomorphisms of the unit circle S^1 fixing 1, i, and -1. A mapping $f : S^1 \to S^1$ is said to be quasisymmetric if there exists $M > 0$ such that

$$\forall \theta \in \mathbb{R}, \forall t > 0, \quad \frac{1}{M} \leq \frac{|f(e^{i(\theta+t)}) - f(e^{i\theta})|}{|f(e^{i\theta}) - f(e^{i(\theta-t)})|} \leq M.$$

Due to a well-known result by Ahlfors and Beurling [3] one can give an equivalent description of T. More precisely, the universal Teichmüller space can be defined as the set of Teichmüller equivalence classes of quasiconformal mappings of the unit disc D fixing 1, i, and -1 where two such mappings are Teichmüller equivalent if they coincide on S^1. A mapping $F : D \to F(D)$, where $D \subset \mathbb{C}$ is a domain, is called quasiconformal (or q.c. for short) if it is an orientation-preserving homeomorphism and if its distributional derivatives $\partial_x F$ and $\partial_y F$ can be represented by locally square integrable functions (also denoted by $\partial_x F$ and $\partial_y F$) on D such that

$$\left\| \frac{\partial_x F}{\partial_y F} \right\|_{\infty} = \sup_{z \in D} \left| \frac{\partial_x F(z)}{\partial_y F(z)} \right| < 1.$$

We also recall that for $z = x + iy$, $\partial_x = \frac{1}{2}(\partial_x + i\partial_y)$ and $\partial_z = \frac{1}{2}(\partial_x - i\partial_y)$. Furthermore, if F is a quasiconformal mapping, the function $\mu_F = \frac{\partial_x F}{\partial_y F}$, defined a.e., is called the Beltrami coefficient associated with F. By the measurable Riemann mapping theorem, if a measurable function μ on D is such that $\|\mu\|_{\infty} < 1$, then it is the Beltrami coefficient of some quasiconformal mapping, which we will denote here by F^μ.

Let us now introduce an important subspace of T, namely, the symmetric Teichmüller space denoted here by T_s. Following a terminology introduced by Gardiner and Sullivan [14], it is the space of symmetric homeomorphism of S^1 fixing 1, i, and -1. One recalls that $f : S^1 \to S^1$ is symmetric if it is an orientation-preserving

2010 Mathematics Subject Classification. 30C62, 30C99, 30F60.

Key words and phrases. Integrable Teichmüller spaces, module, reduced module, symmetric and quasisymmetric mappings.
homeomorphism of S^1 such that
\begin{equation}
\frac{f(e^{i(t+i)}) - f(e^{it})}{f(e^{it}) - f(e^{i(-t)})} \to 1,
\end{equation}
with respect to the uniform convergence on \mathbb{R}. As for the universal Teichmüller space one has an equivalent description of such a space that involves quasiconformal mappings. Indeed, Gardiner and Sullivan proved (see Theorem 2.1 in [14]) that T_1 corresponds to the space of Teichmüller equivalent classes of quasiconformal mappings of \mathbb{D} fixing $1, i$, and -1 admitting a representative which is \textit{asymptotically conformal} on S^1. Let us recall that a quasiconformal mapping $F : \mathbb{D} \to \mathbb{D}$ is said to be asymptotically conformal on S^1 if for every $\epsilon > 0$, there exists a compact subset K_ϵ of \mathbb{D} such that for any $z \in \mathbb{D} \setminus K_\epsilon$, $|\mu_F(z)| < \epsilon$.

Here we focus on some interesting infinite dimensional subspaces of T, the p-\textit{integrable Teichmüller spaces}, which we define for each $p > 0$ as the set
\[
T^p = \{ f \in T \mid \exists F : \mathbb{D} \to \mathbb{D}, \text{q.c. such that } F_{|z^1} = f \text{ and } \mu_F \in L^p(\mathbb{D}, \sigma) \},
\]
where σ is the hyperbolic measure on \mathbb{D}, that is, for any $z = x + iy \in \mathbb{D}$, $d\sigma(z) = (1 - |z|^2)^{-2} dx dy$. It is elementary to observe from such a definition that if $q > p > 0$, then $T^p \subset T^q$. The spaces T^p, $p \geq 2$, were first introduced by Guo [15] through an equivalent description involving univalent functions. At about the same time, Cui [9] studied the case $p = 2$ and gave a few important characterizations of the elements of T^2. In particular, he proved that the Beltrami coefficient associated with the Douady–Earle extension (see [10]) of any element of T^2 belongs to $L^2(\mathbb{D}, \sigma)$. Later on, Takhtajan and Teo [22] introduced a Hilbert manifold structure on the universal Teichmüller space that makes the space T^2 the connected component of the identity mapping id_{S^1}. With respect to such a structure, they proved that the so-called \textit{Weil–Petersson metric} is a Riemannian metric on T. Following Takhtajan and Teo’s work, the space T^2 is now referred to as the \textit{Weil–Petersson Teichmüller space}. For further results on T^2 we refer to [20]. Let us point out that one can obtain $T^2 \subset T_1$ by combining [9] Theorem 2 and Lemma 2 and [12] Theorem 4, see [13] Section 3 for a more detailed explanation. One can also mention the paper [21] by Tang where in particular, Cui’s result concerning the Douady–Earle extension is extended to all spaces T^p with $p \geq 2$. Recently, the second author of this paper proved in [6] that $T^2 \subset T_1$ using an approach based on module techniques and the so-called \textit{Teichmüller’s Modulsatz} (see [24] §4), and later on using a different method she proved that for any $p > 0$, $T^p \subset T_1$ (see [5]).

In this paper we only deal with T^p for $0 < p \leq 1$ and we give a proof of the following result:

\textbf{Theorem 1.} \textit{Let $p \leq 1$. Then, any element of T^p is a C^1-diffeomorphism.}

The strategy of the proof takes advantage of an approach used by the second author of this paper and J. A. Jenkins [8], modified to the case of the unit disc. We first use the \textit{Teichmüller–Wittich–Bellinskii} to show that each element of T^1 has a non-vanishing derivative at each point of S^1. Then, we use properties of the reduced module of a simply-connected domain to show that the derivatives of the elements of T^1 are continuous. As mentioned earlier, since $T^p \subset T^1$ for $0 < p \leq 1$, it follows immediately that for $0 < p \leq 1$, any element in T^p is continuously differentiable with non-vanishing derivative.
2. Background

In this section we recall some classic notions from geometric function theory. Such notions are most notably and thoroughly investigated in Teichmüller’s Habilitationsschrift (Habilitation Thesis) [23].

2.1. Module of a doubly-connected domain. Let D be a (non-degenerate) doubly-connected domain of the extended complex plane, that is, the complement of D is an union of two disjoint simply-connected domains, each bounded by a Jordan curve. It is well known (see [17], [23]) that there exist a biholomorphic function that maps D onto an annulus of inner radius r_1 and outer radius r_2 for some $0 < r_2 < r_1 < \infty$. The module $\text{Mod}(D)$ of D is $\ln \left(\frac{r_2}{r_1} \right)$. It is a conformal invariant, namely, if $\Psi : D \to \Psi(D)$ is a biholomorphic function, then $\text{Mod}(D) = \text{Mod}(\Psi(D))$.

It is also well known (see [17], [23]) that the module is superadditive. More precisely, if D_1 and D_2 are two disjoint doubly-connected subdomains of a doubly-connected domain D_3, where each separates some $z_0 \in \mathbb{C}$ from ∞, then

$$\text{Mod}(D_1) + \text{Mod}(D_2) \leq \text{Mod}(D_3).$$

In saying that a doubly-connected domain separates z_0 from ∞, we mean that one component of its complement contains z_0 in its interior while the other component contains ∞.

Let us now recall two inequalities that will be used in the proof of the main result. For $0 < r_2 < r_1$ and $\zeta \in \mathbb{C}$ we set $A_{\zeta, r_2, r_1} = \{ z \mid r_2 < |z - \zeta| < r_1 \}$. Let $F : A_{\zeta, r_2, r_1} \to F(A_{\zeta, r_2, r_1})$ be a quasiconformal mapping. Then setting $z = \zeta + re^{i\theta}$, $r_2 < r < r_1$ we have

$$\text{Mod}(F(A_{\zeta, r_2, r_1})) \leq \frac{1}{2\pi} \int_{A_{\zeta, r_2, r_1}} \frac{1 + \mu_F(z)}{1 - \mu_F(z)} \cdot \frac{dxdy}{|z - \zeta|^2} \leq \text{Mod}(F(A_{\zeta, r_2, r_1})).$$

These estimates could be obtained following Teichmüller’s approach based on the length-area method in [23] §6.3, where he arrived at weaker versions of (3) and (4).—Estimates equivalent to (3) and (4)—some proved under more general assumptions and different methods—can be found in [15], [16], [4] and others.

2.2. Reduced module of a simply-connected domain. Let Ω be a simply-connected domain of the complex plane different from \mathbb{C}. Let $\zeta \in \Omega$. For $r > 0$, let $D(\zeta, r)$ denote the disc of radius r centered at ζ and let $0 < r_2 < r_1$ be small enough so that $D(\zeta, r_1) \subset \Omega$. From [22] follows

$$\text{Mod}(\Omega \setminus D(\zeta, r_1)) + \ln \left(\frac{r_1}{r_2} \right) \leq \text{Mod}(\Omega \setminus D(\zeta, r_2)),$$

and therefore

$$\text{Mod}(\Omega \setminus D(\zeta, r_1)) + \ln (r_1) \leq \text{Mod}(\Omega \setminus D(\zeta, r_2)) + \ln (r_2).$$

One defines the reduced module $M^\text{red}(\Omega, \zeta)$ of Ω at ζ as $\lim_{r \to 0} \text{Mod}(\Omega \setminus D(\zeta, r)) + \ln (r)$. Using, for example, Koebe distortion theorem one can show that this limit is finite and $M^\text{red}(\Omega, \zeta) = \ln (|\Psi(0)|)$, where $\Psi : \mathbb{D} \to \Omega$ is a biholomorphic function.
mapping 0 onto \(\zeta \). A detailed proof can be found in [23, §1.6]. From here it follows directly that \(\zeta \mapsto M^\text{red}(\Omega, \zeta) \) is continuous.

Before concluding this subsection let us add one more property of the reduced module that we will use later.

If \(F : \mathbb{C} \to \mathbb{C} \) is a homeomorphism then, for any \(r > 0 \), the function \(\zeta \mapsto M^\text{red}(F(D(\zeta, r)), F(\zeta)) \) is continuous. Indeed, if \(\zeta_n \to \zeta \), then by applying a sequence of biholomorphic functions \(z \mapsto F(z + \zeta_n - \zeta) - F(\zeta_n) + F(\zeta), z \in D(\zeta, r) \), one obtains a sequence of domains \(D_n \), which are all images of \(D(\zeta, r) \). Since \(F(z) \) is a homeomorphism it follows that \(D_n \to F(D(\zeta, r)) \) (with respect to the topology induced by the Hausdorff distance on the set of subsets of \(\mathbb{C} \)). Consider the sequence of biholomorphic functions \(\Psi_n : \mathbb{D} \to D_n \) mapping 0 onto \(F(\zeta) \), normalized by \(\Psi'_n(0) > 0 \). Then for any \(n \), \(\ln (\Psi'_n(0)) = M^\text{red}(D_n, F(\zeta)) = M^\text{red}(F(D(\zeta_n, r)), F(\zeta_n)) \) since a translation does not change the reduced module. Furthermore, the sequence of functions \(\Psi_n \) forms a normal family and thus, up to a subsequence, \(\Psi_n \) converges uniformly (on any compact subset of \(\mathbb{D} \)) to a biholomorphic function \(\Psi_\infty : \mathbb{D} \to F(D(\zeta, r)) \) mapping 0 onto \(\zeta \). This implies

\[
M^\text{red}(F(D(\zeta, r)), F(\zeta)) = \lim_{n \to \infty} \ln (\Psi'_n(0)) = \lim_{n \to \infty} M^\text{red}(F(D(\zeta_n, r)), F(\zeta_n)) ,
\]

and thus we have continuity.

2.3. **Teichmüller–Wittich–Bellinskiǐ theorem.** First, let us recall that a mapping \(F : \mathbb{C} \to \mathbb{C} \) is said to be *conformal* at \(z_0 \) if \(\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} \) exists and is different from 0. Following [17, Chapter V, Theorem 6.1] the well-known Teichmüller–Wittich–Bellinskiǐ theorem can be stated as follows:

Theorem 2. Let \(D \) be a domain of the complex plane and let \(z_0 \in D \). Let \(F : D \to F(D) \) be a quasiconformal mapping. If there exists a neighborhood \(U \) of \(z_0 \) contained in \(D \) such that

\[
\iint_U \frac{|\mu_F(z)|}{|z - z_0|^2} \, dx \, dy < \infty;
\]

then \(F \) is conformal at \(z = z_0 \).

The history of this theorem and its extensions is rather long and we may refer the curious reader to some of the following papers [2, 13, 11, 7, 16, 4, 19] and to [1].

3. **Proof of the main result**

Let \(f \in T^1 \). By definition, there exists a quasiconformal extension \(F \) of \(f \) to the closed unit disc such that

\[
\iint_D |\mu_F(z)| \, d\sigma(z) < \infty. \tag{5}
\]

Let \(\tilde{\mu} \) be a function defined on the extended complex plane which coincides with \(\mu \) on \(\mathbb{D} \) and which is identically 0 outside the disc. Let \(F^{\tilde{\mu}} \) be the unique quasiconformal mapping of the complex plane with Beltrami coefficient \(\tilde{\mu} \) that fixes 1, \(i \), and \(-i \). Therefore, we have \(F^{\tilde{\mu}}|_\mathbb{D} = F \) and \(F^{\tilde{\mu}}|_{\mathbb{S}} = f \).
Claim 1. The quasiconformal mapping $F\tilde{\mu}$ is conformal at any point of S^1. Therefore, f is a diffeomorphism of S^1.

We apply Theorem 2 to derive the conformality of $F\tilde{\mu}$.

Proof of Claim 1. Let $\zeta_0 \in S^1$. Because of (5), one can find a compact subset K of D such that

$$\int\int_{D \setminus K} |\mu_F(z)| \, d\sigma(z) < 1.$$

Let $r > 0$ be such that $D \setminus D(\zeta_0, r) \subset D \setminus K$. One first observes that

$$\forall z \in D(\zeta_0, r) \cap D, \left(1 - |z|^2\right) \leq (1 - |z|^2)^2 \cdot (1 + |z|^2)^2$$

$$\leq |\zeta_0 - z|^2 \cdot (1 + |z|^2)^2$$

$$< 4 \cdot |\zeta_0 - z|^2,$$

and therefore

$$\forall z \in D(\zeta_0, r) \cap D, \frac{1}{|z - \zeta_0|^2} < 4 \cdot \frac{1}{(1 - |z|^2)^2}.$$

It follows

$$\int\int_{D(\zeta_0, r) \setminus D(\zeta_0, r) \cap D} |\mu_F(z)| \, d\sigma(z) < 4 \cdot \int\int_{D(\zeta_0, r) \cap D} |\mu_F(z)| \, d\sigma(z)$$

$$< 4.$$

We deduce, by Theorem 2, that $F\tilde{\mu}$ is conformal at $z = \zeta_0$ which proves that f is differentiable at ζ_0 and $|f'(\zeta_0)| > 0$. Since this is true for any $\zeta_0 \in S^1$, we deduce that f is a diffeomorphism of S^1.

The following two additional results will be needed in the proof of the continuity of f' on S^1.

Claim 2. Let $\epsilon > 0$. Then, there exists $r_\epsilon > 0$ such that

$$\forall \zeta \in S^1, \forall 0 < \rho_2 < \rho_1 \leq r_\epsilon, \left| \text{Mod} \left(F\tilde{\mu} (A_{\zeta, \rho_2, \rho_1}) \right) - \ln \left(\frac{\rho_1}{\rho_2} \right) \right| < \epsilon.$$

Claim 3. Let $\zeta \in S^1$ and $r > 0$. Then,

$$\lim_{\rho \to 0} \text{Mod} \left(F\tilde{\mu} (A_{\zeta, \rho, r}) \right) + \ln (|f'(\zeta)|) \rho = \text{Mod} \left(F\tilde{\mu} (D(\zeta, r)), f(\zeta) \right).$$

Proof of Claim 3. Let $\zeta \in S^1$ and $0 < \rho_2 < \rho_1$. One the one hand, by applying (3) one gets

$$\text{Mod} \left(F\tilde{\mu} (A_{\zeta, \rho_2, \rho_1}) \right) - \ln \left(\frac{\rho_1}{\rho_2} \right) \leq \frac{1}{2\pi} \int\int_{A_{\zeta, \rho_2, \rho_1}} \frac{1 + |\mu(z)|}{1 - |\mu(z)|} \cdot \frac{dxdy}{|z - \zeta|^2} - \ln \left(\frac{\rho_1}{\rho_2} \right)$$

$$= \frac{1}{2\pi} \int\int_{A_{\zeta, \rho_2, \rho_1}} \left(\frac{1 + |\mu(z)|}{1 - |\mu(z)|} - 1 \right) \cdot \frac{dxdy}{|z - \zeta|^2}$$

$$\leq \frac{1}{\pi (1 - ||\mu_F||_\infty)} \int\int_{A_{\zeta, \rho_2, \rho_1}} |\mu_F(z)| \cdot \frac{dxdy}{|z - \zeta|^2}.$$

□
On the other hand since
\[\int_0^{2\pi} \frac{1 + |\bar{\mu}(z)|}{1 - |\bar{\mu}(z)|} d\theta \geq 2\pi, \]
by means of (4) one obtains
\[\text{Mod} \left(F^{\tilde{\nu}}(A_{\zeta, r_2, r_1}) \right) - \ln \left(\frac{\rho_1}{\rho_2} \right) \geq 2\pi \int_{\rho_2}^{\rho_1} \frac{1}{2\pi} \frac{1}{\frac{1 + |\bar{\mu}(z)|}{1 - |\bar{\mu}(z)|}} \cdot \frac{dr}{r} - \ln \left(\frac{\rho_1}{\rho_2} \right) \]
\[= \int_{\rho_2}^{\rho_1} 2\pi - \frac{2\pi - 2\pi}{\frac{1 + |\bar{\mu}(z)|}{1 - |\bar{\mu}(z)|}} \cdot \frac{dr}{r} \]
\[= \int_{\rho_2}^{\rho_1} \frac{2\pi - 2\pi}{\frac{1 + |\bar{\mu}(z)|}{1 - |\bar{\mu}(z)|}} \cdot \frac{dr}{r} \]
\[\geq -\frac{1}{\pi} \iint_{A_{\zeta, r_2, r_1} \cap \mathbb{D}} \frac{1}{\mu_F(z)} \cdot \frac{dxdy}{|z - \zeta|^2} \]
\[\geq -\frac{1}{\pi (1 - \|\mu_F\|_\infty)} \iint_{A_{\zeta, r_2, r_1} \cap \mathbb{D}} |\mu_F(z)| \cdot \frac{dxdy}{|z - \zeta|^2}. \]
(9)

Let \(\epsilon > 0 \). Still because of (3) there exists a compact set \(K_\epsilon \) of \(\mathbb{D} \) such that
\[\int_{\mathbb{D} \setminus K_\epsilon} |\mu_F(z)| d\sigma(z) < \frac{\pi (1 - \|\mu_F\|_\infty)}{4} \epsilon. \]
(10)

Let \(r_\epsilon > 0 \) be the distance between \(\mathbb{S}^1 \) and \(K_\epsilon \). Thus, for any \(0 < \rho_2 < \rho_1 \leq r_\epsilon \) one obtains by combining (3), (9), (7) and (10)
\[\forall \zeta \in \mathbb{S}^1, \quad -\epsilon < \text{Mod} \left(F^{\tilde{\nu}}(A_{\zeta, r_2, r_1}) \right) - \ln \left(\frac{\rho_1}{\rho_2} \right) < \epsilon, \]
and therefore Claim 2 follows. \(\square \)

Proof of Claim 3. Let \(\zeta \in \mathbb{S}^1 \) and let \(r > 0 \). For any \(0 < \rho < r \), let
\[m(\rho) = \min_{|z - \zeta| = \rho} |F^{\tilde{\nu}}(z) - f(\zeta)| \quad \text{and} \quad M(\rho) = \max_{|z - \zeta| = \rho} |F^{\tilde{\nu}}(z) - f(\zeta)|. \]

Since \(F^{\tilde{\nu}} \) is conformal at \(\zeta \) one has
\[\lim_{\rho \to 0} \frac{|f'(\zeta)| \rho}{M(\rho)} = \lim_{\rho \to 0} \frac{|f'(\zeta)| \rho}{m(\rho)} = 1. \]
(11)

Furthermore, it is evident that
\[\text{Mod} \left(F^{\tilde{\nu}}(D(f(\zeta), r)) \setminus D(\zeta, M(\rho)) \right) \leq \text{Mod} \left(F^{\tilde{\nu}}(A_{\zeta, r, r}) \right) \]
\[\leq \text{Mod} \left(F^{\tilde{\nu}}(D(\zeta, r)) \setminus D(f(\zeta), m(\rho)) \right). \]

Therefore, by adding \(\ln (|f'(\zeta)| \rho) \), using (11), and letting \(\rho \to 0 \) it follows that
\[\lim_{\rho \to 0} \text{Mod} \left(F^{\tilde{\nu}}(A_{\zeta, r, r}) \right) + \ln (|f'(\zeta)| \rho) = M^{\text{red}} \left(F^{\tilde{\nu}}(D(\zeta, r)), f(\zeta) \right), \]
which proves Claim 3. \(\square \)
We have now all the ingredients necessary to complete the proof of our main
Theorem 1.

Let \(\zeta_0 \in S^1 \). Let \(\epsilon > 0 \). Let \(r_\xi > 0 \) be as in Claim 2. By the continuity of the
reduced module discussed earlier one can find a \(\delta_\xi > 0 \) such that if \(\zeta \in S^1 \) and
\(|\zeta - \zeta_0| < \delta_\xi \), then

\[
|M(\xi)_{r_\xi} - M_{r_\xi}| < \frac{\epsilon}{3}.
\]

Let \(\zeta \in S^1 \) be such that \(|\zeta - \zeta_0| < \delta_\xi \). By Claim 2, there exist \(r_{\zeta_0,1}, r_{\zeta,1} < r_\xi \),
such that for any \(\rho \leq r_{\zeta_0,1} \)
\[
\left| \text{Mod} \left(\nu \left(A_{\zeta_0,1} \right) \right) + \ln \left(|f'(\zeta)| \right) - M(\xi)_{r_\xi} \right| < \frac{\epsilon}{3},
\]
and for any \(\rho \leq r_{\zeta,1} \)
\[
\left| \text{Mod} \left(\nu \left(A_{\zeta,1} \right) \right) + \ln \left(|f'(\zeta)| \right) - M(\xi)_{r_\xi} \right| < \frac{\epsilon}{3}.
\]

Thus, from the triangle inequality, Claim 2, and Inequalities (12), (13), and (14), we obtain
\[
\ln \left(|f'(\zeta)| \right) - \ln \left(|f'(\zeta_0)| \right) = \ln \left(|f'(\zeta)| \right) - \ln \left(|r_{\zeta,1}| \right) - \ln \left(|r_{\zeta_0,1}| \right) + \ln \left(|r_{\zeta_0,1}| \right)
\leq \ln \left(|f'(\zeta)| \right) + \text{Mod} \left(\nu \left(A_{\zeta,1} \right) \right) - M(\xi)_{r_\xi}
+ \ln \left(|f'(\zeta_0)| \right) + \text{Mod} \left(\nu \left(A_{\zeta_0,1} \right) \right) - M(\xi)_{r_\xi}
+ M(\xi)_{r_\xi} - M(\xi)_{r_\xi}
+ \text{Mod} \left(\nu \left(A_{\zeta,1} \right) \right) - \ln \left(|r_{\zeta,1}| \right) + \text{Mod} \left(\nu \left(A_{\zeta_0,1} \right) \right) + \ln \left(|r_{\zeta_0,1}| \right)
\leq \frac{\epsilon}{3} + \text{Mod} \left(\nu \left(A_{\zeta,1} \right) \right) + \ln \left(|r_{\zeta,1}| \right)
+ \text{Mod} \left(\nu \left(A_{\zeta_0,1} \right) \right) - \ln \left(|r_{\zeta_0,1}| \right)
\leq \epsilon.
\]

This shows the continuity of \(|f'| \) at any \(\zeta_0 \in S^1 \), thus \(f' \) is continuously differen-
tiable on \(S^1 \) and since the derivative is never 0, any element \(f \in T^1 \) is a
\(C^1 \)-diffeomorphism on \(S^1 \). Since \(T^p \subset T^1 \) (\(p \leq 1 \)) we have shown that Theorem 1 holds.

Since every differentiable quasisymmetric function \(f \) on \(S^1 \) is symmetric in the
sense of (1), the following already known property follows from Theorem 1.

Corollary 3. Let \(0 < p \leq 1 \). Then, \(T^p \subset T_s \).

Let us point out that although \(T^1 \subset T_s \), the quasiconformal extension \(F \) of
\(f \) we were working with may not necessarily be asymptotically conformal on \(S^1 \) and Claim 2 is not obvious. However, for \(p \geq 2 \), if one specifically employs the
Douady–Earle extension, then Claim 2 holds. It seems natural to ask:

Question 1. Let \(f \in T^p \) (with \(0 < p \leq 2 \)). Is there a quasiconformal asympto-
tically conformal extension \(F \) of \(f \) to the closed unit disc for which \(\mu_F \in L^p(D, \sigma) \)?

ON A SMOOTHNESS RESULT
Furthermore, since we obtain smoothness properties for the elements of T^p (for $p \leq 1$), we suggest that one can show higher and higher order of smoothness for $p < 1$, as p gets smaller and smaller. If this is the case we would like to find sharp results on how the order of smoothness depends on p, a question that seems to be similar to finding a characterization of T^p using Sobolev spaces for $p \geq 2$. In addition, we pose the following question:

Question 2. What is $\bigcap_{p>0} T^p$?

References

[1] V. Alberge, M. Brakalova, and A. Papadopoulos, A Commentary on Teichmüller’s paper *Untersuchungen über konforme und quasikonforme Abbildungen*. In *Handbook of Teichmüller theory* (A. Papadopoulos, ed.), Volume VII, EMS Publishing House, Zürich, 2020, 711–741.

[2] P. P. Belinski, Behavior of a quasiconformal mapping at an isolated point (in Russian). Doklady Akad. Nauk USSR (N.S.) 91 (1953), 709–710.

[3] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings. *Acta. Math*. 96 (1956), 125–142.

[4] M. A. Sufficient and Necessary conditions for conformity. Part II. Analytic View- point. *Ann. Acad. Sci. Fenn. Math*. 35 (2010), 235–254.

[5] M. A. Brakalova, Symmetric properties of p-integrable Teichmüller spaces. *Anal. Math. Phys*. 8 (2018), 541–549.

[6] M. A. Brakalova, Properties of quasisymmetric homeomorphisms in the Weil–Petersson class. In *Teichmüller theory and its impact* (editors ???), Advanced Lectures in Mathematics (ALM) book series, International Press and Higher Education Press of China, based on the Workshop on Grothendieck–Teichmüller Theories, Chern Institute, to appear.

[7] M. A. Brakalova and J. A. Jenkins, On the local behavior of certain homeomorphisms. *Kodai Math. J*. 17 (1994), 201–213.

[8] M. A. Brakalova and J. A. Jenkins, On a paper by Carleson. *Ann. Acad. Sci. Fenn. Math*. 27 (2002), 485–490.

[9] G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. *Sci. China Ser. A*. 43 (2000), 267–279.

[10] A. Douady and C. Earle, Conformally natural extension of homeomorphisms of the circle. *Acta Math*. 157 (1986), 23–48.

[11] D. Drasin, On the Teichmüller–Wittich–Belinski theorem. *Results in Math*. 10 (1986), 54–65.

[12] C. J. Earle, V. Markovic, and D. Sari, Barycentric extension and the Bers embedding for asymptotic Teichmüller space. In *Complex manifolds and hyperbolic geometry* (C. J. Earle, W. J. Harvey, and S. Recillas-Pishmish, eds.), Contemporary Mathematics 311, American Mathematical Society, Providence, 2002, 87–105.

[13] J. Fan and J. Hu, A gluing theorem and applications in subspaces of the universal Teichmüller space. *Cont. In In the Tradition of Ahlfors–Bers, VII* (A. Basnajian, Y. Minsky, and A. Reid, eds.), Contemporary Mathematics 696, American Mathematical Society, Providence, 2017, 87–99.

[14] F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve. *Amer. J. Math*. 114 (1992), 683–736.

[15] H. Guo, Integrable Teichmüller spaces. *Sci. China Ser. A*. 43 (2000), 47–58.

[16] V. Gutlyanskii and O. Martio, Conformality of a quasiconformal mapping at a point. *J. Anal. Math*. 91 (2003), 179–191.

[17] O. Lehto and K. I. Virtanen, *Quasiconformal mappings in the plane*. Springer-Verlag, Berlin 1973.

[18] E. Reich and H. Walczyk, On the behavior of quasiconformal mappings at a point. *Trans. Amer. Math. Soc*. 117 (1965), 338–351.

[19] M. Shishikura, Conformality of quasiconformal mappings at a point, revisited. *Ann. Acad. Sci. Fenn. Math*. 43 (2018), 981–990.

[20] Y. Shen, Weil–Petersson Teichmüller space. *Amer. J. Math*. 140 (2018), 1041–1074.

[21] S. Tang, Some Characterizations of the integrable Teichmüller space. *Sci. China Math*. 56 (2013), 541–551.
[22] L. A. Takhtajan and L.-P. Teo,

Weil–Petersson metric on the universal Teichmüller space.

Memoirs of the American Mathematical Society, Volume 183, Number 861, American Mathematical Society, Providence, 2006.

[23] O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbildung. *Deutsche Math.* 3 (1938), 621–678. In *Gesammelte Abhandlungen* (L. V. Ahlfors and F. W. Gehring, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1982, 205–262. English translation by M. Brakalova and M. Weiss, Investigations on conformal and quasiconformal mappings. In *Handbook of Teichmüller theory* (A. Papadopoulos, ed.), Volume VII, EMS Publishing House, Zürich, 2020, 587–669.

VINCENT ALBERGE, FORDHAM UNIVERSITY, DEPARTMENT OF MATHEMATICS,
441 EAST FORDHAM ROAD, BRONX, NY 10458, USA

E-mail address: valberge@fordham.edu

MELKANA BRKALOVA, FORDHAM UNIVERSITY, DEPARTMENT OF MATHEMATICS, 441 EAST FORDHAM ROAD, BRONX, NY 10458, USA

E-mail address: brkalova@fordham.edu