VitaminD3 Regulates T Cell Immune Responses in Allergen and Rhinovirus Induced Asthma

Susetta Finotto (susetta.finotto@uk-erlangen.de)
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Patricia Haag
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Darja Andreev
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Nina Li
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Alexander Kiefer
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Manfred Rauh
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Luisa Gleich
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Stefan Wirtz
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen

Nikolaos G. Papadopoulos
National and Kapodistrian University of Athens

Research Article

Keywords: Airway tolerance, 25(OH)Vitamin D3, Rhinovirus, CRP, T cells, T regulatory cells, ILC2, IL-10 and PD1

DOI: https://doi.org/10.21203/rs.3.rs-289750/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Serum 25(OH)-Vitamin D3 (VitD3) deficiency during infancy has been associated with asthma. The potential therapeutic role of VitD3 given in the airways and its interference with the allergen and Rhinovirus was the objective of this study.

Methods: In two cohorts of children with and without asthma, serum levels of the C-reactive protein (CRP) were correlated to Serum VitD3 and in peripheral blood T cell inhibitor marker Programmed cell death protein 1 (PD1) mRNA was analyzed. In a murine model, VitD3 was given intranasally in vivo and in vitro to lung cells with allergen and Rhinovirus.

Results: In the cohorts of pre-school age children without (control) asthma, CRP and VitD3 levels inversely correlated. In preschool asthmatic children that did not receive VitD3 supplementation as infant had more episode of asthma exacerbation associated with high CRP serum level. In peripheral blood cells from control but not asthmatic children with higher serum levels of VitD3 had lower PD1 mRNA levels. In murine model, OVA intranasal challenge induced Innate Lymphoid Cells type 2 (ILC2)-associated markers and Eosinophils in BALF and VitD3 inhibited lung inflammation and ILC2 markers. Furthermore, VitD3 given intranasally, induced CD4+T cells and reduced PD1, T regulatory cells in the lung. Similarly, VitD3 had a suppressive role on CD4+PD1+ T cells involved in T cell exhaustion in the airways in the absence of ST2 after Rhinovirus infection.

Conclusion: These data support an inhibitory role of VitD3 on T cell exhaustion after allergen and rhinovirus infection that is relevant for pediatric asthma.

Introduction

Allergic asthma is a chronic-inflammatory disease of the airways that affects millions of people worldwide especially children. Different pathological form of hyperreaction to allergen, like allergic asthma, atopic dermatitis and food allergy are associated to allergy-induced local inflammation driven by Th2 driven immune-reaction. By contrast, under homeostatic conditions, the airways are kept pathogen free by the function of cells of the innate immunity. Moreover, 1,25-Dihydroxyvitamin D3 (VitD3) has been suggested as a therapeutic compound for allergic asthma. In Germany, VitD3 is given to the infants as supplement to avoid immunological suppression especially in children which could not receive breastfeeding. Wheezing is associated with asthma in the first years of life. Moreover, RV is the factor that associated with wheezing in infants. In this study, we wanted to better understand the role of Vitamin D3 in pediatric asthma.

Most of the medication for asthma are given directly into the airways, we thus thought to investigate in murine model, the role of VitD3 given intranasally in vivo. Recent studies described the role Innate lymphoid cells (ILC2s) in the airways in models of allergic asthma. When the allergen enters the airways, it interacts with epithelial cells, first. This interaction results in epithelial release of alarmins like IL-33, which activate ILC2 via ST2. Once stimulated, ILC2s secrete IL-5, IL-9 and IL-13, classically known as Th2 cytokines.

Here we focused on the influence of VitD3 in blood cells from two pediatric cohorts with and without asthma. Moreover, we analysed the effect of VitD3 given intranasally, on allergen induced airway tolerance with focus on T regulatory cells and Innate Lymphoid Cell associated markers.

The role of T regulatory immunosuppressive cells has been extensively studied in airway tolerance, by contrast, the role of ILC2 in airway tolerance is less understood.

Here we found that VitD3 inhibited key ILC2/ST2 markers like IL-33, Amphiregulin (AREG) and Ror-alpha, and PD1 and induced CD4+ T cells, in vivo in the airways. Similarly, VitD3 had a suppressive role on CD4+PD1+ T cells involved in T cell exhaustion in the airways in the absence of ST2 after Rhinovirus infection.

Our findings suggest a protective role of VitD3 in antagonizing ILC2 markers in preschool children thus providing a rationale for exploring VitD3 in immunotherapy in pediatric asthma.

Materials And Methods

All methods used in this manuscript were performed in accordance with the relevant guidelines and regulations.

HUMAN STUDIES

The present study is part of the prospective study Predicta (Post-infectious immune reprogramming and its association with persistence and chronicity of respiratory allergic diseases). The working package 1 (WP1) relates to studies in pre-school children with and without asthma. The study WP1 in Erlangen was approved by the local Ethics Committee of the Universitätsklinikum Friedrich-Alexander Universität Erlangen-Nürnberg (Re-No 4435) and it is registered in German Clinical Trials Register (www.germanctr.de: DRKS00004914). Parents/ guardians of all participants gave their informed consent. Two cohorts of pre-school children (age 4-6 years) with and without asthma were analysed (control children n=22 and asthma children n=24). The recruitment of the subjects, inclusion and exclusion criteria as well as the timescale for clinical visits and data collection along with the clinical aspects and characteristics were previously described.

Serum 25(OH)-Vitamin-D3 measurements.
25(OH)-Vitamin-D3 (=25(OH)VitD3) was measured in serum from baseline visits at the Dept. of Paediatrics and Adolescent Medicine of the Friedrich-Alexander Universität Erlangen-Nürnberg (Erlangen, Germany). Thereby LC-MS/MS MassChrom Kit from Chromosystems was used according to the manufacturer's protocol.

Detection of C-reactive protein (CRP).

CRP values in serum samples of the children were analyzed on a Roche (Basel) Integra 800 Analyzer by turbidimetry as previously described 1 (CRPL2 reagent, interday CV 1.4% (8.1 mg/L), limit of detection 1.0mg/L).

Human RNA Isolation from Tempus Tubes and quantitative Real-Time PCR.

At Baseline visit whole blood was collected in Tempus® Blood RNA Tubes (Life Technologies™, Darmstadt, Germany) and RNA was extracted with the MagMax for Stabilized Blood Tubes RNA Isolation Kit. Synthesis of cDNA and consequently real time-PCR were performed as described for murine cells below with the following primers and sequences: hHPRT (5’-TGA CAC TGG CAA AAT GCA-3’, 5’-GGT CCT TTT CAC CAG CAA GCT-3’), PD-1 (fw: 5’-CAG TTC CAA ACC CTG GTG GT-3’; rev: 5’-GGC TCC TAT TGT CCC TCG TG-3’).

FEV1.

The Spirometry method for the lung function analysis was performed by using a Vyaire Bodyplethysmograph (Chicago, USA). ERS Criteria were followed during the study. The quality control was performed by an experienced technician and a physician and supported by the software. FEV1 (=Forced expiratory volume in 1 second) and FVC (=Forced vital capacity) were measured at Baseline visit (B0) by using spirometry. After a period of normal breathing the participant should inhale maximal, directly followed by maximal and fast exhalation. The volume exhaled in one second is FEV1. The total exhaled volume is FVC. The ratio FVC/FEV1 is stated as FEV1%.

MICE

This study was carried out in compliance with the ARRIVE guidelines.

All mice were maintained under specific pathogen free conditions. They had free access to food and water. The experiments were approved by the government of Mittelfranken, Bavaria (54-2532.1-2/10).

Balb/c Wt in vivo treatment with OVA / Vitamin D3.

Female Balb/c wild-type mice at the age of 8-9 weeks were treated at day 0 intranasally with 25 μl PBS, PBS + Vitamin D3 (=1a,25 DihydroxyvitaminD3 from Sigma Aldrich, 10 ng), Ovalbumin (500 μg) or OVA + Vitamin D3 (500μg and 10 ng respectively, with 20 min time delay in between) according to their group. After 48h the treatment was repeated. After additional 48 h whole lung cells were isolated as described previously and cultured with anti-CD3 (10 μg/ml) respectively anti-CD3(10 μg/ml) and anti-CD28 (1 μg/ml) antibodies.

Collection and analysis of the BAL

Bronchoalveolar lavage was performed 24h after the last allergen challenge, by intratracheally injecting and aspirating 0.8 ml saline twice. After its collection the BALF was centrifuged for 5 min at 1500 rpm.

The cell pellets were resuspended in 1 ml PBS and an aliquot was stained with trypan blue solution and cells were counted using a Neubauer chamber. Eosinophils and neutrophils were detected by fluorescence-activated cell sorting (FACS) analysis. The cell surface staining was performed with antibodies against CD3 (eBioscience, Frankfurt, Germany), GR-1 (BD Bioscience, Heidelberg, Germany), CD45R (eBioscience, Frankfurt, Germany) and CCR3 (BD Bioscience, Heidelberg, Germany) for 30 min at 4°C.

Histological analysis

Lung tissues were analyzed by using paraffin-embedded tissue slices for histology. After staining with Giemsa staining, peribronchial and perivascular inflammation was assessed by a pathologist blinded to the experimental group assignments of the individual lungs. Inflammation was graded by using a semi-quantitative scoring system with a range pending between 1 (mild) and 4 (severe) as described before 17.

Bl6/C57 WT, ST2-/- in vitro treatment with Rhinovirus, OVA / Vitamin D3.

We analyzed lung cells from Wild-type and ST2-/- mice at the age of 7-9 weeks. All mice were based on a Bl6/C57 genetic background. Whole lung cells were isolated from the mice on day 0 and partly incubated with Rhinovirus (250μl RV/106 cells) for 1 hour at room temperature on a horizontal shaker. Afterwards OVA (500 mg/ml) and/or Vitamin D3 (10nM) were added to the cells infected with RV as well as to those not infected. Without further stimulation, cells were then cultured for 24h at 37° and 5% CO2.

RNA isolation and quantitative real time-PCR

To extract RNA from murine lung cells we used PeqGold RNA Pure according to the manufacturer’s protocol (PeqLab, Erlangen, Germany). For reverse transcription of RNA (1μg), we used the first strand cDNA synthesis kit for RT-PCR (MBI Fermentas, Sat. Leon-Rot, Germany) followed by the amplification by quantitative real-time PCR (qPCR) using SoFast EvaGreen Supermix (Bio-Rad Laboratories, München, Germany). The qPCR itself was performed in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories) with a cycle of 2 min 98°C, 50 cycles at 5 s 95°C, 10 s 60°C, followed by 5 s 65°C and 5 s 95°C.
The primers and sequences used for mouse were: mHPRT (5'-GCC CAA AAA TGG TTA AGG TT'-3', 5'-TTG CGC TCA TCT TAG GCT TT'-3'), mICOS (5'-TG CAT TCG TCT TGG TAG TA-3', 5'-TCA GGA CTA GTC CAT GC -3'), mIL33 (5'-GCC CCC TCA GTA CAT ACA ATG ACC-3', 5'-GTA GTA GCA CCT GGT CTT GCT TT'-3'), mFoxp3 (5'-AGA GCC CTC ACA ACC AGC TA-3', 5'-CCA CAG GTT GTG GGT GAG TG-3'), mL10 (5'-CCA AGC CTT ATC GGA AAT GA-3', 5'-TTT TCA CAG GGG AGA AAT CG-3'), mRora (5'-TCT TCC CCC TCG GCT CTC GC AC-3', 5'-TCC ACA GAT CTT GCA TGG A-3'), mST2 (5'-GCC GAG ATG GGA ACC AAC TA-3', 5'-AGG CAA GCT GAA CAG GCA AT-3'), mAREGB (5'-AGC TGA GGA CAA TGG AGC GTA-3', 5'-AGT GAC AAC TGG GCATCT GG-3'), mPD1 (5'-TCA AGG CAT GGT CAT TGG TA-3', 5'-TAG GCC ACA CTA GGG ACA GG-3').

Flow cytometric analysis and intracellular staining

For intracellular staining total lung cells from Balb/c wild-type mice were incubated overnight with anti-CD3 anti-CD28 antibodies and then stimulated for 4h with PMA/ Ionomycin and a protein transport inhibitor according to the manufacturer’s protocol. Cells were harvested, washed and stained with anti-CD4, anti-CD8 and anti-CD25 antibodies for 30 min at 4°C and then stained with anti-Foxp3, anti IFN-gamma and anti-IL10 antibodies in staining buffer (BD Biosciences, Heidelberg) for 35 min at 4°C. Afterwards cells were washed again and resuspended in staining buffer. The following anti-mouse antibodies were used: CD4 FITC (BD Biosciences), CD4 PerCP (BD), CD25 PerCP (BD), Foxp3 APC (Miltenyi Biotec, Bergisch Gladbach, Germany).

Lung cell culture

WT B6/C57 and ST2-/- total lung cells were incubated in the presence of Vitamin D3, OVA and with or without RV infection at 37°C. After 24h cells were harvested, washed and stained with anti-CD4 and anti PD-1 antibodies in staining buffer (BD Biosciences, Heidelberg) for 30 min at 4°C. Marked cells were acquired by using FACS-Calibur (BD Biosciences, Heidelberg) and analyzed with FlowJo.

Enzyme linked immunosorbent assay (ELISA).

Murine IL-5, IL10 and IL13 were detected in cell culture supernatants by DuoSet Elisa kit from R&D (Hamburg, Germany), according to the manufacturer protocol.

Statistical analysis

Differences were evaluated for significance (* p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001) by using the non-parametric one-tailed Mann-Whitney-test (Prism version 7 for Windows; GraphPad, La Jolla, CA, USA) and a two tailed Student t-test was used (Prism version 7 for Windows; GraphPad, La Jolla, CA, USA). Data are shown as mean values ± s.e.m. For correlation of two parameters GraphPad Prism software (version 7 for Windows) was used.

Results

Clinical outcome of the cohorts of children analyzed in this study

The clinical data of these cohorts of children are reported in Table 1. Further, clinical details of the cohort were recently described. In Germany, Vitamin D3 is given to the infants as supplement to avoid immunological suppression especially in children which could not receive breastfeeding. Wheezing is associated with asthma in the first years of life moreover, RV is the factor that associated with wheezing in infants. In this study, we wanted to better understand the role of Vitamin D3 in pediatric asthma.

Serum-C-reactive protein (CRP) and 25(OH)-VitD3 levels inversely correlated in control but not in asthmatic pre-school children

C-reactive protein (CRP) is a plasma protein, whose levels rise in response to inflammation and infections. It is an hepatic acute-phase protein that increases following interleukin-6 secretion by macrophages and T cells. Its physiological role is to bind to lysophosphatidylcholine expressed on the surface of dead or dying cells (and some types of bacteria) promoting phagocytosis by macrophages, which clears necrotic and apoptotic cells and bacteria. In healthy adults, the normal concentrations of CRP varies between 0.8 mg/L to 3.0 mg/L. However, some healthy adults show elevated CRP at 10 mg/L. The plasma half-life of CRP is 19 hours. Next we asked if serum CRP level at recruitment in our cohort of children correlated with their serum level of 25(OH) VitD3.

The design of the study is reported in Fig 1a and the levels of CRP of the cohorts are reported in Table 1. We noticed that both control and asthmatic children group had one child with low 25(OH) VitD3 (less than 20 ng/ml) and very high CRP. We next correlated 25(OH) VitD3 and serum CRP levels without this very high CRP value in both cohorts (Fig 1b,c and d,e) and next in asthma we analyzed only data with CRP data lower than 2.5 mg/ml, to be in the CRP range of controls (Fig 1f) and looked at the correlation with serum VitD3 (Table 2). Here we found that, control but not asthmatic children had an inverse correlation between their serum CRP value and serum 25(OH) VitD3 levels (Fig 1c). Considering the CRP value in asthma, we noticed they were higher as compared to control children, indicating an ongoing infection, inflammation in these asthmatic children (Fig 1e).

VitD3 supplementation in infancy is associated with reduced asthma exacerbations

To analyze the role of VitD3 supplementation during infancy on asthma exacerbations, we then analyzed the number of asthma exacerbations and asked if VitD3 supplementation during infancy would associate with less disease exacerbations. Here we found that asthmatic children without VitD3 supplementation had more episodes of asthma exacerbations (Fig 2a) that were associated with induced CRP (Fig 2b), a factor associated with increased airway hyperresponsiveness (Fig 2c). In conclusion, increased asthma exacerbations associated with CRP in the absence of VitD3 supplementation, indicating a possible protective role of VitD3 during asthma exacerbations.

PD1 is decreased in blood cells of control children with higher serum levels of 1,25 (OH) Vitamin D3
We next wanted to analyze the role of 25(OH) VitD3 on Programmed cell death protein 1 (PD-1) in the cohort of preschool children. PD-1 is a protein on the surface of immune competent T cells that down-regulates T cell inflammatory activity. Considering VitD3 serum levels lower than 20 ng/ml as low, we found that high VitD3 associated with decreased PD1 mRNA levels in blood cells of control but not asthmatic children (Fig 2d, e). We also saw a trend towards PD1 mRNA induction in asthmatic children with higher serum VitD3 levels.

VitD3 given intranasally reduced lung inflammation

We next wanted to analyze the effect of intranasal treatment of Vitamin D3 in the airways in a murine model of airway tolerance (Fig 3a). To this aim, we treated mice intranasally with VitD3 and looked at airways inflammation (Fig 3b). Here we found that allergen challenge, without allergen sensitization, was accompanied by induction of local inflammation (Fig 3a,b). By contrast, intranasal VitD3 treatment, reduced lung inflammation (Fig 3b). We then asked if Eosinophils in bronchoalveolar lavage fluid were involved in regulating airway tolerance after allergen challenges. Here we found that allergen challenge, without allergen sensitization, was accompanied by induction of local inflammation and induced eosinophils in BALF (Fig 3c). By contrast, intranasal VitD3 treatment, reduced lung inflammation (Fig 3c). Altogether these data indicate an anti-inflammatory effect of VitD3 given intranasally in a model of airway tolerance.

1,25(OH)D3 Inhibited IL33 and Ror-alpha in the airways

We next wanted to analyze the role of 25(OH) VitD3 on Programmed cell death protein 1 (PD-1) in the cohort of preschool children. PD-1 is a protein on the surface of immune competent T cells that down-regulates T cell inflammatory activity. Considering VitD3 serum levels lower than 20 ng/ml as low, we found that high VitD3 associated with decreased PD1 mRNA levels in blood cells of control but not asthmatic children (Fig 2d, e). We also saw a trend towards PD1 mRNA induction in asthmatic children with higher serum VitD3 levels.

VitD3 rescued CD4+ T cells after RV infection in vitro in the absence of ST2 in lung cells

Murine IL-C2 in the lung were described in a model of influenza, where they promote a pathologic effect on airway hyperresponsiveness as well as a protective role in epithelial repair. To understand the effect of ILC2 in RV infection present during allergen challenge and the protective effect of VitD3 on this axis, we challenged in vitro lung cells from wt and ST2-/- mice with OVA and infected them with RV and challenged them with VitD3 (Fig. 6a). Here we found that, Vit D3 induced the number of CD4+ T cells in RV infected lung cells in the absence of ST2 (Fig 6b). These experiments further support a CD4+ T cells inducing role of VitD3 in the airways during allergen challenge only in the absence of IL-33/ST2. Thus, IL33/ST2 axis is involved in T cell death induced by rhinovirus.

Vit D3 reduced lung CD4+PD1+ CD4+ T lymphocytes independently from ST2 deficient cells

We next asked if, in this in vitro system VitD3 would rescue T cells from cell death by inhibiting PD1 a marker of T cell exhaustion. In addition, we wanted to better understand the role of ST2 in T cell survival. Here we found that, in the same experimental conditions depicted in Fig 7, CD4+PD1+ T cells were inhibited by VitD3 in the presence of allergen challenge dependently from ST2 (Fig 6c). In summary, VitD3, has a suppressive role on CD4+PD1+ T cells involved in T cell death induced by rhinovirus.
Furthermore, some ILC2 inducing markers like IL-33 were reduced by Vitamin D3 combined with allergen, indicating a homeostatic function in the airways of treated mice. It would be very interesting to know if Vitamin D3 could show a direct prophylactic effect.

Our data show a protective homeostatic effect of VitD3 in vivo and in vitro. Further, considering its limiting effect on lung ILC2, a cell type persistent in the lung of asthmatics, VitD3 given intranasally represent a new avenue for the treatment of asthma especially in asthmatic children.

Here we further found that, Vit D3 induced the number of CD4+ T cells in RV infected lungs cells in the absence of ST2. These experiments further support a CD4+ T cells inducing role of VitD3 in the airways during allergen challenge only in the absence of IL-33/ST2. Thus, IL33/ST2 axis is involved in T cell death induced by rhinovirus.

In addition we found that VitD3, has a suppressive role on CD4+PD1+ T cells involved in T cell exhaustion in the airways in the absence of ST2. These data support an interactive role of ViD3 and ILC2 in the lung that can be used for the treatment of allergic diseases and rhinovirus exacerbations seen in pediatric asthma.

Declarations

Author Contributions.

PH. generated the results for Figure1, 2, 6 and analysed all the data present in this manuscript. D.A. generated data for figures 3-5. K.A. is the paediatricians responsible of this study in Erlangen, M.R. measured the VitD3 and CRP levels in the serum of the children, N.L. further analyzed the results for Figure 1. L.G. helped with Figures 3-5. S.W. helped with ST2 ko mice. N.G.P is the coordinator of Predicta. S.F. supervised the whole work and wrote the manuscript with PH. All authors reviewed the manuscript.

Acknowledgments.

The authors thank all children and their parents/guardians who took part in our Europe-wide study PreDicta. Moreover, the authors are grateful to A.Geiger, S. Mittler, E Nendel, S.Trump at the Division of Molecular Pneumology and to E. Muschiol, I. Jawa, at the Paediatric Pneumology-Allergology, Department of Paediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen Children's Hospital in Erlangen for their support on this study. Moreover, the authors thank Drs. M. Wölfel, C. Reinhardt, A. Neubert and Prof. Drs T. Zimmermann and W. Rascher from the Department of Paediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen for their assistance in the PreDicta UKER WP-1 study.

Data availability statement.

All datasets [GENERATED/ANALYZED] for this study are included in the manuscript.

Disclosure of potential conflict of interest.

The authors declare no conflict of interest on the matter described in this manuscript.

Financial Support.

This work was supported by the European Grant PreDicta (Post-infectious immune-reprogramming and its association with persistence and chronicity of respiratory allergic diseases), in Erlangen and in the other European Center in Athens and by the department of Molecular Pneumology in Erlangen.

Ethical Statement.

All human and murine studies performed in this study received ethical approval from local institutions.

References

1. Saglani, S., Fleming, L., Sonnappa, S. & Bush, A. Advances in the aetiology, management, and prevention of acute asthma attacks in children. *Lancet Child Adolesc Health,* doi:10.1016/S2352-4642(19)30025-2 (2019).

2. Masoli, M., Fabian, D., Holt, S., Beasley, R. & Global Initiative for Asthma, P. The global burden of asthma: executive summary of the GINA Dissemination Committee report. *Allergy* **59**, 469-478, doi:10.1111/j.1398-9995.2004.00526.x (2004).

3. Robinson, D. S. The role of the T cell in asthma. *J Allergy Clin Immunol* **126**, 1081-1091; quiz 1092-1083, doi:10.1016/j.jaci.2010.06.025 (2010).

4. Neurath, M. F., Finotto, S. & Glimcher, L. H. The role of Th1/Th2 polarization in mucosal immunity. *Nat Med* **8**, 567-573, doi:10.1038/nm0602-567 (2002).

5. Huffnagle, G. B., Dickson, R. P. & Lukacs, N. W. The respiratory tract microbiome and lung inflammation: a two-way street. *Mucosal Immunol* **10**, 299-306, doi:10.1038/mi.2016.108 (2017).

6. Haag, P. et al. Soluble ST2 regulation by rhinovirus and 25(OH)-vitamin D3 in the blood of asthmatic children. *Clin Exp Immunol* **193**, 207-220, doi:10.1111/cei.13135 (2018).

7. Gordon, B. R. Should vitamin D supplementation be a regular part of asthma care? *Otolaryngol Clin North Am* **47**, 97-108, doi:10.1016/j otc.2013.08.013 (2014).

8. Van Overtvelt, L. et al. IL-10-inducing adjuvants enhance sublingual immunotherapy efficacy in a murine asthma model. *Int Arch Allergy Immunol* **145**, 152-162, doi:10.1159/000108140 (2008).
9. Wagner, C. L., Hulsey, T. C., Fanning, D., Ebeling, M. & Hollis, B. W. High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. *Breastfeeding Medicine* 1, 59-70 (2006).

10. Sigurs, N. *et al.* Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. *American journal of respiratory and critical care medicine* 171, 137-141 (2005).

11. Stehle, C., Saikali, P. & Romagnani, C. Putting the brakes on ILC2 cells. *Nat Immunol* 17, 43-44, doi:10.1038/ni.3353 (2016).

12. van Rijt, L., von Richthofen, H. & van Ree, R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. *Semin Immunopathol*, doi:10.1007/s00281-016-0556-2 (2016).

13. Neill, D. R. *et al.* Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. *Nature* 464, 1367-1370, doi:10.1038/nature08900 (2010).

14. Kouzaki, H., Tojima, I., Kita, H. & Shimizu, T. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. *Am J Respir Cell Mol Biol* 49, 741-750, doi:10.1165/rcmb.2012-0304OC (2013).

15. Jackson, D. J. *et al.* IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. *Am J Respir Crit Care Med* 190, 1373-1382, doi:10.1164/rccm.201406-1039OC (2014).

16. Akbari, O. *et al.* Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. *Nature medicine* 8, 1024-1032 (2002).

17. Tables

Table 1. Clinical data of children at baseline visit
Control	Age	Gender	Skin Prick Test	FEV1%	VitD Supplement*						
208	6	m	/	77	No						
211	6	f	/	121	No						
214	5	m	/	110	No						
215	4	m	/	118	No						
218	4	f	/	111	Yes						
219	5	f	/	107	Yes						
220	5	f	-	84	No						
221	3	m	/		Yes						
222	6	m	/	105	Yes						
226	4	f	/	109	No						
227	6	m	-	87	No						
232	4	m	-	100	No						
233	5	f	/	112	No						
234	5	f	+	119	Yes						
235	4	m	/	113	No						
236	5	m	-	111	Yes						
237	4	m	-	109	Yes						
240	4	f	-	92	No						
241	5	m	-	123	No						
244	5	f	-	107	No						
245	4	m	-	121	Yes						
246	5	m	/	109	No						
Mean	4,73	f=41%, m=59%	neg=90%, pos=10%	106,9	Yes=36,4%; No=63,6%						
SEM	0,18			2,67							
Asthma	Age	Gender	Asthma* Severity	Phenotype**	Skin Prick Test	FEV1%	Treatment	VitD3*** Prophylaxis	Level of VitD3	Number of exacerbations in the last 3 month	Number of exacerbations in the last 12 month
--------	-----	--------	-----------------	-------------	----------------	-------	-----------	----------------------	-------------	--	--
201	6	m	I	V	+	126	Steroid	no	9,69	0	0
202	6	m	I	U	+	111	Steroid	no	6,72	3	12
203	5	f	II	U	+	95	Steroid	no	9,85	1	2
204	6	m	II	A	+	128	Steroid	no	6,72	0	0
205	5	m	I	U	/	102	Steroid	no	11,2	4	5
206	5	f	I	U	+	129	Steroid	no	16,8	1	2
207	5	m	I	V	+	143	Steroid	no	17,6	4	10
209	4	f	II	v,a	+	115	Steroid	yes	3-4	7-8	
210	6	f	I	V	+	98	Non-Steroid	no	11,3	3	10
212	5	m	I	e,v	-	96	Steroid	no	3	12	
213	4	m	III	e	-	115	Steroid	no	17,8	3	12
216	5	f	III	a,v	+	92	Steroid	no	19,9	15	20
217	6	f	I	a,e,v	+	111	Steroid	no	15,8	2	5
223	5	m	I	V	+	99	Steroid	no	37,8	0	4
224	4	f	I	V	-	135	Steroid	yes	24,3	4	5
225	4	m	I	V	/	99	Steroid	yes	33,5	4	10
228	5	m	I	V	+	88	Non-Steroid	yes	33,5	2	4
229	5	m	I	V	+	87	Non-Steroid	no	28,7	2	4
230	5	m	I	V	+	101	Non-Steroid	no	28,7	2	4
231	4	m	I	V	+	71	Steroid	no	11,8	3	8
238	4	m	I	V	+	77	Steroid	no	8,5	3	9
239	5	f	I	E	/	98	Non-Steroid	yes	13,1	1	~200
242	5	m	II	a,e,v	/	81	Steroid	no	19,2	3-5	12
243	5	f	II	V	+	69	Steroid	no	30,6	20	120

Mean 4,92 f=37,5%; m=62,5%; I=62,5%; II=29,2% v=50%; u=16,7% neg=15%; pos=85% 102,75 Non Steroid=20,9% Steroid 79,1% Yes 20,8 No=79,2

SEM 0,15 4,04

Table 2. Analysed data of children at baseline visit (B0)
Control	Virus Swab**	25(OH)VitD3***
208	-	/
211	RV ++	16,9
214	RV ++	13,4
215	-	26
218	RV +++	17,4
219	RV +	16,4
220	-	22,3
221	RV ++	25,5
222	-	34,1
226	-	20,3
227	-	16,5
232	RV +++	13,7
233	RV +, Other	25,9
234	RV +, Other	12,6
235	RV ++	14,2
236	-	/
237	Other	10,7
240	RV+, Other	18,3
241	RV ++	25,9
244	/	/
245	-	28,4
246	RV+	24,4
Mean	20,15	
SEM	1,46	

Figure

Figure 7 not available with this version.