Effect of Premium-Butanol Blends on Fuel Consumption and Emissions on Gasoline Engine with Cold EGR System

Firman Lukman Sanjaya 1*, Syaiful 1 dan Nazarudin Sinaga 1
1 Departement of Mechanical Engineering, Diponegoro University, Semarang, JL. Prof. Soedarto, Tembalang, Semarang, Indonesia
*Email: sanjaya.firman51@gmail.com

Abstract. Butanol is renewable fuel that can be used as a solution for the increasing fuel consumption and emissions. This is because of the high octane number in butanol increase the effectiveness of the combustion. In addition, high oxygen content in butanol can reduce CO and HC emissions. The purpose of this study is to determine the optimal mixture of premium and butanol on fuel consumption and exhaust emissions on gasoline engines. This study uses a Toyota 7K engine equipped with an Cold EGR system. The percentage of addition butanol in gasoline fuels is 5%, 10%, and 15%. The experiment was carried out at a variation of 2500 rpm to 4000 rpm engine speed. The experimental results show that the addition of butanol in gasoline reduces fuel consumption by 1.9%. The use of the Cold EGR system results in fuel consumption of 0.31 kG.kW/hours in the P85B15 mixture. This value is 16.8% lower than without using the Cold EGR system. Addition of butanol to fuel also increases the EGT. However, the EGT value decreases with the use of the Cold EGR System. The use of a mixture of gasoline and butanol reduced carbon monoxide (CO) and hydrocarbons (HC) by 74.2% and 46.3%. The percentage of CO2 also showed an increase of 58.6 %. However, the use of the Cold EGR system increases the value of HC and CO. The use of the Cold EGR system also increases the value of CO2 emissions by 19.04% compared without using the Cold EGR system.

1. Introduction
The growth of motorized vehicles has a serious impact on increasing fuel consumption and exhaust emissions. In addition, poor fuel characteristics such as low heating values lead to increased fuel consumption and exhaust emissions. Therefore, to meet fuel requirements due to an increase in vehicle volume there need to be alternative fuels [1]. Butanol has almost the same characteristics as gasoline. Butanol is usually used as a fuel mixture for gasoline engine vehicles. This is to meet fuel requirements and reduce knocking on the engine so that it makes combustion more efficient. In addition, the relatively high combustion temperature value of butanol helps reduce fuel consumption. Further, higher heat of evaporation in butanol causes better combustion and reduces fuel consumption [2,3]. The high oxygen content in butanol supports the combustion oxidation process. This increases the thermal efficiency of the engine and reduces exhaust emissions [4,5].

Exhaust Gas Recirculation (EGR) is a technology used to reduce NOx and reduce the temperature of the combustion chamber [6,7]. EGR recirculates as exhaust gas has been cooled to the combustion chamber. The EGR brings the unburnt fuel particles back to the cylinder. The exhaust gas contributes to the next combustion cycle so that the engine's performance is better [8]. The EGR system also reduces fuel consumption [9].
2. Methods

In this study, the fuel used is premium and butanol. Premium fuel is obtained from PT. Pertamina Tbk. and is used without further purification. The variation of fuel mixture is premium 100% (P100), premium 95% butanol 5% (P95B5), premium 90% butanol 10% (P90B10) and premium 85% butanol 15% (P85B15). Mixed fuel is prepared before the start of the experiment to ensure that the mixture is homogeneous. A stirrer was used when mixing the fuel.

No	Properties	Premium	Butanol
1	Octane Number	88	98.3
2	Density 15°C (kg/m³)	744	815
3	Calorific Value MJ/kg	42.7	33.3
4	Water content (%V)	0.003	>5
5	Viscosity (mm²/s)	0.22	2.63
6	Oxygen content (%)	2.7	21.69

The test is carried out with a Toyota 7K gasoline engine. A mixture of premium and butanol, fuel has set the percentage before the experiment begins. Mixer (1) is used to obtain a homogeneous fuel mixture. The location of the mixer is placed higher than the engine so that the fuel mixture flows to the fuel injector (4) based on the principle of gravity and is assisted by a fuel pump (3) installed on the engine. Burette (2) is used to measure fuel consumption, where each volume of fuel is calculated as 90 ml in time. After that, the fuel is sprayed into the combustion chamber using fuel injection.

Experiments were carried out at engine speed of 2500 rpm to 4000 rpm with variations in the percentage of mixed fuels. The dynamometer (19) is applied to measure the brake torque produced by a gasoline engine. Constant engine load is fixed at 25% of maximum engine capability. Engine load is achieved by changing the flow rate of water flowing on the dynamometer. Water flowing from the water tank is pumped by a water pump (10) to the dynamometer. The amount of torque generated on the dynamometer will display a load screen (16).

EGR (13) re-circulates some of the exhaust gas in the intake manifold (5). Type K thermocouples are used to measure temperature. Thermocouples are installed in the exhaust manifold, EGR Inlet, EGR Outlet, intake manifold and engine cylinder. The measurement results are displayed on the
thermocouple screen (16). An orifice plate is a tool that can be used to measure EGR air mass flow rates. An orifice plate is applied to the manometer (16) and mounted on the intake manifold and EGR flow. A gas analyzer (12) is used to measure exhaust emissions.

3. Result and Discussion

Figure 2 shown the Specific Fuel Consumption Brake (BSFC) decreases with increasing engine speed (rpm). The highest BSFC value occurs in the P85B15 fuel mixture. Premium produces BSFC 0.291 kG.kW/hour at 4000 rpm. The BSFC value produced by the mixture of P85B15 is 0.296 kG.kW/hour at 4000 rpm. This value increased by 1.9% compared to using premium. Butanol has a low calorific value which decreases the temperature of the combustion chamber. This causes an increase in fuel consumption [3,10,11]. The use of EGR can reduce BSFC. BSFC experienced the largest decrease in the P90B10 mixture of 14.03%. The EGR system reduces fuel consumption and NOx emissions [9].

![Figure 2](image-url-for-Figure-2)

Figure 2. Fuel consumption on gasoline engines uses premium and butanol blend with the Cold EGR system and without the EGR system.

![Figure 3](image-url-for-Figure-3)

Figure 3. Exhaust Gas Temperature on a gasoline engine uses premium and butanol blend with the Cold EGR system and without the EGR system.
Figure 3 shows the increase in Exhaust Gas Temperature along with the increase in engine speed. The highest EGT occurs in the P85B15 fuel mixture. The premium EGT produced is 592 °C at 2500 rpm. The P85B15 fuel mixture produces EGT of 630 °C at 2500 rpm. EGT has increased by 6.4% compared to premium. Butanol has a higher flame speed than premium. High oxygen content in butanol makes combustion better; this increases the pressure and temperature of the cylinder [12]. Butanol has a high latent heat which increases the compression temperature and exhaust gas temperature [13]. The Cold EGR system decreases the EGT value of 3.2% compared without EGR. The decrease is due to the amount of oxygen circulated into the lower combustion chamber [14].

Figure 4. Exhaust emissions of (a) CO and (b) HC on a gasoline engine uses premium and butanol blend with the Cold EGR system and without the EGR system.

Figure 4.(a) show a decrease in CO along with the increase in engine speed. The highest decrease occurred in the P85B15 fuel mixture. The value of CO emissions is 2.83% when the engine uses premium fuel at 2500 rpm. The P85B15 fuel mixture produces CO emissions of 0.73% at 2500 rpm.
This value decreased by 74.2% compared to premium. Butanol has a high oxygen content which causes an increase in leaning effects and more complete combustion. This results in a decrease in CO emissions [15,16]. The use of EGR increases the concentration of CO emissions. Low oxygen concentration produces a rich air-fuel mixture in various locations in the combustion chamber. This heterogeneous mixture does not burn completely and produces higher carbon monoxide [17]. The highest CO emission value occurs in the P90B10 fuel mixture using the Cold EGR system. The value of CO emissions is 0.47% without Cold EGR and 1.47% in the Cold EGR system at 4000 rpm.

Figure 4.(b) also show a decrease in HC along with the increase in engine speed. HC emissions are the highest decreases in the P85B15 mixture. HC emission value uses premium fuel of 149% at a speed of 3500 rpm. The P85B15 fuel mixture has 80% HC emissions at a speed of 3500 rpm. HC emissions decreased by 46.3% compared to premium. The Higher oxygen content of butanol increases combustion efficiency and decreases the concentration of HC emissions. In addition, higher flame speeds in butanol result in more complete combustion and reduced HC emissions [16]. The use of EGR increases the concentration of CO emissions. Low oxygen concentration produces a rich air-fuel mixture in various locations in the combustion chamber. This heterogeneous mixture does not burn completely and produces higher HC [17]. The highest HC emission value occurs in the P85B15 fuel mixture using the Cold EGR system. The value of HC emissions is 47% without Cold EGR and 90% in the Cold EGR system at 4000 rpm.

Figure 5. exhaust emissions CO$_2$ on a gasoline engine uses premium and butanol blend with the Cold EGR system and without the EGR system.

Figure 5 show an increase in CO$_2$ along with the increase in engine speed. The value of CO$_2$ emissions experienced the highest increase occurred in the P90B10 fuel mixture. CO$_2$ emissions of 7.2% when the engine uses premium fuel at 2500 rpm. The P90B10 fuel mixture produces CO$_2$ emissions of 9.15% at 2500 rpm. The value of CO$_2$ emissions increased by 58.6% compared to premium fuel. CO$_2$ emissions increase because oxygen in butanol contributes to increasing the combustion rate. Oxygen in combustion will produce more carbon which can be converted to carbon dioxide. More amount of CO$_2$ in exhaust emissions shows perfect fuel combustion [12,16]. The addition of the EGR system increases CO$_2$. The exhaust gas that is recirculated replaces fresh air. Exhaust gases that enter the combustion chamber include CO$_2$ and H$_2$O (carbon dioxide and water vapor) produced from the combustion residue [17]. This is what causes an increase of 19.04% CO$_2$ emissions by using the Cold EGR system on the engine.
4. Conclusion
Butanol renewable fuel complementary can be used as a solution to the need for increased fossil fuels and exhaust gas emissions. The use of premium and butanol mixed fuels lowers BSFC but the value is higher than pure premium. The use of the Cold EGR system is proven to reduce BSFC up to 14.04%. EGT has increased with the addition of butanol to fuel. However, the EGT value has decreased when using the Cold EGR system. The high oxygen content in butanol results in reduced CO and HC emissions. The use of the Cold EGR system increases CO and HC emission values. However, CO2 emissions in the use of premium and butanol mixtures have increased. Increasing CO2 values shows that combustion is more perfect.

Acknowledgment
The authors acknowledge the assistance from entire Thermofluid Laboratory team, which is one of the laboratories owned by Department Mechanical Engineering, Universitas Diponegoro. This laboratory examines the phenomena that occur in the existing machining process and machine performance testing, especially in the field of Energy Conversion.

Reference
[1] Anderson J E, DiCicco D M, Ginder J M, Kramer U, Leone T G, Raney-Pablo H E, and Wallington T J 2012 Fuel 97 585-594.
[2] Yu X, Guo Z, He L, Dong W, Sun P, Shi W, Du Y, He F 2018 Fuel 229 1-10.
[3] Feng D, Wei H, Pan M, Zhou L, Hua J 2018 Energy 160 573-581.
[4] Liu K, Li Y, Yang J, Deng B, Feng R, Huang Y 2018 Applied Energy 212 13–32.
[5] Chen Z, Zhang Y, Wei X, Zhang Q, Wu Z, Liu J 2017 Energy Conversion and Management 152 57–64.
[6] Edara G, Satyanarayana Murthy Y V V, Srinivas P, Nayar J and Ramesh M 2018 Case Studies in Thermal Engineering 12 188–202.
[7] Wei H, Zhu T, Shu G, Tan L, Wang Y 2012 Applied Energy 99 534–544.
[8] Verma S, Das L M, Kaushik S C, Bhatti S S 2019 Applied Thermal Engineering 150 1090-1103.
[9] Zhang Z, Zhang H, Wang T, Jia M 2014 Energy 65 18-24.
[10] Li Y, Ning Z, Lee C F, Yan J, Lee T H 2018 Energy 168 1157-1167.
[11] Feng H, Zhang H, Wei J, Li B, Wang D 2019 Fuel 240 339–348.
[12] Zaharin M S M, Abdullah N R, Masjuki H N, Ali O M, Najafi G, Yusaf T 2018 Applied Thermal Engineering 144 960–971.
[13] Dhamodaran G, Esakkimuthu G S, Pocheddy Y K, Sivasubramanian H 2017 Energy 125 726-735.
[14] Xie F, Hong W, Su Y, Zhang M, Jiang B 2017 Energy Conversion and Management 142 69–81.
[15] Yusoff M N A M, Zulkifli N W M, Masjuki H H, Harith M H, Syahir A Z, Kalam M A, Mansor M F, Azham A, Khuong L S 2017 Transportation Research Part D 57 23–38.
[16] Sharudin H, Abdullah N R, Najafi G, Mamat R, Masjuki H H 2107 Applied Thermal Engineering 114 593–600.
[17] Agarwal D, Singh S K, Agarwal A K 2011 Applied Energy 88 2900–2907.