Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials

Saadia Sarwar, Junaid Yaqoob, Muhammad Usman Khan,* Riaz Hussain, Sobia Zulfiqar, Abida Anwar, Mohammed A. Assiri, Muhammad Imran, Mohamed M. Ibrahim, Gaber A. M. Mersal, and Ashraf Y. Elnaggar

ABSTRACT: Nanoscale nonlinear optical (NLO) materials have received huge attention of the scientists in current decades because of their enormous applications in optics, electronics, and telecommunication. Different studies have been conducted to tune the nonlinear optical response of the nanomaterials. However, the role of alkali metal (Li, Na, K) doping on triggering the nonlinear optical response of nanomaterials by converting their centrosymmetric configuration into noncentrosymmetric configuration is rarely studied. Therefore, to find a novel way of making NLO materials, we have employed density functional theory (DFT) calculations, which helped us to explore the effect of alkali metal (Li, Na, K) doping on the nonlinear optical response of tetragonal graphene quantum dots (TGQDs). Ten new complexes of alkali metal doped TGQDs are designed theoretically. The binding energy calculations revealed the stability of alkali metal doped TGQDs. The NLO responses of newly designed complexes are evaluated by their polarizability, first hyperpolarizability (β), and frequency dependent hyperpolarizabilities. The Li@r8a exhibited the highest first hyperpolarizability (β_0) value of 5.19×10^5 au. All these complexes exhibited complete transparency in the UV region. The exceptionally high values of β_0 of Mg@TGQDs are accredited to the generation of diffuse excess electrons, as indicated by NBO analysis and PDOS. NCI analysis is accomplished to examine the nature of bonding interactions among alkali metal atoms and TGQDs. Our results suggest alkali metal doped TGQD complexes as potential candidates for nanoscale NLO materials with sufficient stability and enhanced NLO response. This study will open new doors for making giant NLO response materials for modern hi-tech applications.

1. INTRODUCTION

The fabrication of innovative materials with exceptionally high nonlinear optical (NLO) response has been an area of concentration for researchers over the previous decades. The widespread use of NLO materials in a variety of optical and optoelectronic devices has peaked researchers’ curiosity.1−3

Some of their applications include optical data processing, data storage, signal processing, and communication and also for producing second as well as higher order harmonic generations (HHG).4−11 The main focus of researchers is to discover the crucial factors that can cause a tremendous increase in first and higher order hyperpolarizabilities.12−16 Previous studies have proved that along with first-order hyperpolarizabilities, second- and the third-order hyperpolarizabilities are also equally important properties of the NLO materials.17−19

Several systems having high NLO response are reported in the literature.20−22 These systems include organic molecules with conjugated donor–π–acceptor system23−25 noncentrosymmetric crystals with NLO properties, π-conjugated chiral oligomers, etc.25 Furthermore, several π-conjugated molecules including polynes, polyphenylenes, their diphenyl derivatives, and heterocyclic π-conjugated molecules are also studied to examine the effect of π-conjugation on the nonlinear optical response.24,25

An important class among NLO materials is carbon-based nanoscale materials. These carbon-based materials have highly delocalized π-electrons, which are responsible for their NLO response.26−30 Nonlinear optical materials with exceptionally high values of hyperpolarizabilities have been developed by doping and structural modifications of graphene, which is a two-dimensional (2D), sp² hybridized allotrope of carbon.30 A graphene-based donor–nanoribbon–acceptor (D–NR–A)
(NH$_2$–graphene nanoribbon–NO$_2$) is studied for the NLO response. The NLO response of graphene quantum dots (GQDs) has also been investigated, and it has been found that changing the shape, size, and edge modifications with different atomic species causes a change in the NLO response.

In addition to hexagonal graphene, Enyashin et al. also reported two-dimensional (2D), nonhexagonal allotropes of carbon. Liu et al. investigated sp2 hybridized graphene with tetragonal geometry, namely, tetragonal graphene (T-graphene). The thermodynamic stability of planar T-graphene is found to be greater than that of graphene and graphdiyne. Current studies prove T-graphene as potential candidates to be used in many fields, including gas sensors, hydrogen storage devices, spin electronic (spintronic) devices, optonic devices, etc.

Li investigated the alkali metal adsorbed graphdiyne (AM$_x$@GDY) and tetrahedral Li$_x$NM adsorbed graphdiyne [Li$_x$NM@GDY (M = Li, Na, K)] structures with β_0 values of -1.61×10^6 and $\sim 2.88 \times 10^6$ au, respectively. Single alkali metal adsorbed graphene, graphyne, and graphdiyne systems for enhancing NLO response properties were studied by Li et al. by employing first-principles calculations. Their β results were found in the span of 8.57×10^6 to 3.93×10^7 au. Srivastava studied the single alkali atom decorated hexalithiobenzene, and adsorption of a single alkali atom on a lithiated graphene quantum dot (LiG) surface was found with an exceptional NLO response up to 5.4×10^7 and 11.5×10^7 au, respectively.

Recently, Deb et al. investigated the NLO response of various thermodynamically stable configurations of TGQDs. They have calculated first and second hyperpolarizabilities of TGQDs in the absence of an applied field and also after application of field. Their work proved that TGQDs possess a good NLO response especially in the presence of an external field. They have calculated first and second hyperpolarizabilities of various thermodynamically stable configurations of TGQDs. The stability of these alkali metal doped T-graphene quantum dots (TGQD) is checked by calculating their binding energy, with the help of eq 1.

$$E_b = E_{\text{complex}} - (E_{\text{substrate}} + E_{(M)})$$

(1)

where E_b refers to the binding energy of complex, E_{complex} represents the energy of metal doped TGQD complexes, $E_{\text{substrate}}$ is the energy of TGQD, and $E_{(M)}$ is the energy of doped metal atom (alkali metals, Li, Na, K).

Vertical ionization potential (VIP), ionization potential (IP), and electron affinity (EA) have been calculated by employing the following equations:

$$\text{VIP} = E_{\text{cation}} - E_{\text{neutral}}$$

(2)

Ionization potential = $IP = -E_{\text{HOMO}}$ (eV)

(3)

Electron affinity = $EA = -E_{\text{LUMO}}$ (eV)

(4)

where E_{neutral} refers to the energy of optimized alkali metal doped TGQD complexes. E_{cation} refers to the energy of cationic states of alkali metal doped TGQD complexes, using the geometry of neutral alkali metal doped TGQD complexes. Then E_{neutral} was subtracted from E_{cation} of doped complexes obtained at the same equilibrium geometry as that of the neutral complexes.

Global reactivity descriptors such as chemical potential (μ), chemical hardness (η), and chemical softness (s) have been determined by using the following equations:

$$\text{Chemical potential} = \mu = -\frac{(IP + EA)}{2}$$

(5)

$$\text{Hardness} = \eta = \frac{(IP - EA)}{2}$$

(6)

$$\text{Softness} = s = \frac{1}{2\eta} = \frac{1}{(IP - EA)}$$

(7)

Dipole moment μ_0, linear polarizability α_0, and first hyperpolarizability β_0 values are calculated by using the following equations:

$$\text{Dipole moment} \quad \mu_0 = (\mu_k^2 + \mu_y^2 + \mu_z^2)^{1/2}$$

(8)

$$\text{Polarizability} \quad \alpha_0 = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$$

(9)

$$\text{First hyperpolarizability} \quad \beta_0 = (\beta_k^2 + \beta_y^2 + \beta_z^2)^{1/2}$$

(10)

where

2. COMPUTATIONAL METHODS

The geometries of complexes have been optimized without any geometrical constrain through density functional theory (DFT). For this purpose, B3LYP (“hybrid Becke’s” three-parameter exchange functional and the Lee, Yang, and Parr correlation functional) density functional has been utilized. All calculations have been performed by using teh 6-311+G(d,p) basis set. Frequency calculations have been done at the same density functional and basis set, to find the minima.

The stability of these alkali metal doped T-graphene quantum dots (TGQD) is checked by calculating their binding energy, with the help of eq 1.
3. RESULTS AND DISCUSSION

TGQD ($C_{26}H_{22}$) was optimized without symmetry constraint conditions at the B3LYP/6-311+G(d,p) level of theory. The labeled optimized geometry of TGQD is displayed in Figure 1.

TGQD consists of four eight-membered rings (r8a, r8b, r8c, and r8d) and five four-membered rings (one central ring labeled as rc and four peripheral rings labeled as rp) of C–C bonds. The calculated geometric parameters of TGQD revealed that all four b1 bonds are of equal length, i.e., 1.46 Å. Similarly, all four b2 bonds have exactly same bond length of 1.33 Å. The b3 bonds of rings r8a and r8b have a length of 1.47 Å. However, the b3’ bonds of r8c and r8d have a bond length of 1.48 Å. Similarly, the b4 bonds of r8a and r8b are 1.44 Å in length, whereas the b4’ bonds of r8c and r8d are 1.36 Å. Likewise, the b5 bonds of r8a and r8b are 1.37 Å, and the b5’ bonds of r8c and r8d are 1.46 Å. The b6 bonds of all four peripheral four-membered rings (rp) have the bond length of 1.39 Å, whereas all b7 bonds are single having the bond length of 1.48 Å. TGQDs have the D_{4h} point group and possess a planar structure with the existence of C_{4} in it, one C_{2} principal axis of rotation, and one C_{2} axis of rotation. It also contains four C_{2} axes of rotation, which are perpendicular to the principal C_{4} axis. The bond length data of TGQD are given in Table S1 (Supporting Information).

UV–visible spectral analysis has been carried out using TD-DFT, to examine the crucial electronic transitions in alkali metal doped TGQD complexes. The time dependent density functional theory (TD-DFT) has been performed at the CAM-B3LYP level of theory with the 6-311+G(d,p) basis set. Multiwfn software is employed to generate the total density of states (TDOS) and the partial density of states (PDOS). Visual molecular dynamic (VMD) software is used to generate the three-dimensional noncovalent interactions (2D NCI) isosurfaces and two-dimensional reduced density gradient (2D RDG) plots.

3.1. Geometric Parameters

The distances between the doped alkali metal and carbon atoms of TGQD in vicinity have been calculated. It appeared that the alkali metal in all ten isomers is present almost on the top of the center of the rings. However, the calculated value of bond lengths between the doped alkali metal and all carbon atoms of the rings revealed that alkali metals are not doped exactly above the center of the ring except for $M@r8c$ isomers of Li, Na, and K doped TGQD. In the case of $M@r8c$ (where M is Li, Na, and K), the alkali metals are doped exactly above the center of the ring (rc), and all four M–C bonds are of equal length. Therefore, for isomers $M@r8d$ as well as $M@r8a$ ($M = Li, Na, K$) and $Li@rp$, the interaction distances between the alkali metal and the nearest carbon atoms have been calculated. The nearest atoms in the case of $M@r8d$ are C21 and C22 and for $Li@rp$ are C8, whereas for $M@r8a$ isomers, C18 and C24 are nearest to the alkali metal atoms. For isomers $M@r8c$, in which all M–C bonds have same length, the interaction distance (D_{int}) is calculated among alkali metals and the center of ring (rc). The interaction distance data are summarized in Table 1.

The D_{int} data show that in the case of $M@r8d$, the D_{int} is 2.25 Å for $Li@r8d$, which increases to 2.67 Å for $Na@r8d$. This distance is further increased to 3.03 Å for the $K@r8d$ isomer. Likewise, the D_{int} values, for isomers of $M@r8a$ ($M = Li, Na, K$) are 2.27, 2.68, and 3.03 Å, respectively. Similarly, $M@r8c$ has a D_{int} value of 1.91 Å for $Li@r8c$, which increases to 2.36 and 2.71 Å for $Na@r8c$ and $K@r8c$ isomers, respectively. For $Li@rp$, D_{int} is 2.08 Å. This trend of the D_{int} data indicates that the interaction distance between TGQD and the alkali metals shows an increase as the atomic number of considered alkali metal increases.

The thermodynamic stability is an important factor for synthetic usefulness of NLO materials. The thermodynamic

Figure 1. Optimized structure of undoped TGQD.
stability of optimized alkali metal doped TGQDs is explored by calculating their binding energies and results are summarized in Table 2.

Binding energies describe the stabilities of compounds. Therefore, a greater binding energy value represents better interaction between two components and, as a result, greater stability of the doped complexes. Selected alkali metal doped TGQD complexes have reasonably high negative values of binding energies, indicating the feasibility of doping process. The binding energy values of Li doped TGQD isomers are

Figure 2. Optimized geometries of alkali metal doped TGQD complexes.
larger than that of corresponding Na and K doped TGQD isomers. For instance, binding energies for Li@r8d, Na@r8d, and K@r8d are −43.58, −30.05, and −38.83 kcal mol⁻¹, respectively. Similarly, Li@r8a, Na@r8a, and K@r8a have binding energies of −43.58, −30.05, and −38.83 kcal mol⁻¹, respectively. In the case of M@r8c isomers, the binding energy values are −36.42, −24.58, and −36.12 kcal mol⁻¹ for Li@r8c, Na@r8c, and K@r8c, respectively. Hence, it can be concluded from the above discussion that Li@r8d is the most stable among all complexes. From the above discussion, it is generalized that all of these theoretically designed alkali metal doped TGQD complexes possess good thermodynamic stability. The binding energies of these newly designed complexes have also been calculated with the same functional B3LYP at a higher basis set 6-311+G(2d,p), and results are summarized in Table 2. The results imply that E_b values showed very slight variation of the second digit at a higher basis set. The trend of results found at 6-311+G(2d,p) is also consistent with the values computed at 6-311+G(d,p). For instance, the E_b values of Li doped complexes are higher than that of Na and K doped complexes in both cases. For M@r8d complexes, E_b values range from −30.91 kcal mol⁻¹ for Na@r8d to −38.97 kcal mol⁻¹ for K@r8d and −45.08 kcal mol⁻¹ for Li@r8d.

To explore the charge transfer among alkali metal and TGQDs, the NBO charges of selected complexes are calculated. The charge analysis gives an insight into net charge after doping of alkali metals. The results of NBO charge analysis are summarized in Table 2.

Charge analysis information obtained after the NBO analysis showed that all alkali metals carry positive NBO charges in doped complexes. This positive charge confirmed the charge transfer from alkali metal units toward TGQDs. High electropositive character of alkali metals is mainly responsible for the existence of positive charges on alkali metals. For K doped TGQDs, the NBO charge on K is 0.971, 0.972, and 0.975 e⁻ for isomers K@r8d, K@r8a, and K@r8c, respectively. The maximum value of the NBO charge of 0.984 e⁻ is noted on the Na atom in Na@r8c. The value of the NBO charge on alkali metals decreases for Li and the lowest value of the NBO charge 0.940 e⁻ is found on Li in Li@r8a. In short, the NBO charges on alkali metals is observed in the range 0.940−0.984 e⁻.

Table 1. HOMO Energy (E_h), LUMO Energy (E_L), HOMO–LUMO Band Gap (E_g), and Interaction Distance (D_{int}) of M@TGQD

Complex	E_h (eV)	E_L (eV)	E_g (eV)	E_g^+ (eV)	D_{int} (Å)
Li@r8p	−4.19	−2.63	1.56	1.56	2.08^a
M@r8d	−4.22	−3.94	1.60	1.59	2.25^a
M@r8a	−4.33	−4.00	1.68	1.63	2.27^a
M@r8c	−4.08	−3.89	1.28	1.36	1.91^b

^aInteraction distance of the alkali metal (Li, Na, K) from the nearest carbons of TGQD. ^bInteraction distance of the alkali metal (Li, Na, K) from the center of the ring (rc) of TGQD. ^E_b calculated at B3LYP/6-311+G(2d,p).

Table 2. Binding Energy (E_b), NBO Charge (q) on the Alkali Metal, and Dipole Moment of M@TGQD

Complex	E_b (kcal mol⁻¹)	E_b^+ (kcal mol⁻¹)	NBO Charge	μ (D)
Li@r8p	−39.82	−39.65	0.942	6.16
M@r8d	−45.02	−45.09	0.941	6.97
M@r8a	−43.58	−43.64	0.940	4.67
M@r8c	−36.42	−36.08	0.966	7.13

E_b calculated at B3LYP/6-311+G(2d,p).
Molecular electrostatic potential map of undoped as well as alkali metal doped TGQD compounds is presented in Figure 3.

Red and yellow colors indicate negative charge. Therefore, the areas showing red and yellow colors are electron rich. However, the blue color indicates the regions that are electron deficient and exhibit positive charge. The areas with green color indicate the mean potential, and hence green areas are neutral. It is clear from Figure 3 that the undoped TGQDs have unequal charge distribution. All carbon atoms, especially carbons of r8c and r8d of TGQD exhibit negative charge, which is clear from the red and yellow colors in these areas of the molecular electrostatic potential map. After the alkali metals are doped, the charge distribution changes. It can be
seen in Figure 3 that in alkali metal doped TGQD complexes, metal atoms show blue color, which indicates that these metal atoms become electron deficient. This positive charge is because of the shifting of valence s electrons of the alkali metal to TGQDs. This transfer of electrons thus created diffuse excess electrons. The size of the blue area increased with the increasing size of alkali metals, which indicates more efficient charge transfer between alkali metals and TGQDs. However, TGQD complexes show uniform charge distribution. This trend of charge distribution also verifies NBO charge analysis. The NBO analysis data also indicate the presence of positive charges on alkali metals in M@TGQD complexes. In short, the NBO analysis data also indicate the presence of positive charges on alkali metals in M@TGQD complexes. In short, the NBO analysis data also indicate the presence of positive charges on alkali metals in M@TGQD complexes. In short, the NBO analysis data also indicate the presence of positive charges on alkali metals in M@TGQD complexes. The NBO analysis indicates that alkali metals are appropriately for inducing significant dipole moments, which is essential for improvement of the NLO response.

3.3. Global Reactivity Descriptors. The global reactivity descriptors values for ionization potential (IP), electron affinity (EA), chemical hardness, chemical softness (s), and chemical potential of alkali metal decorated TGQD complexes computed at B3LYP/6-311+G(d,p), and results are displayed in Table 3. The global reactivity descriptors are linked with the NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response.

Table 3. Global Reactivity Descriptors (Ionization Potential, Electron Affinity, Chemical Potential, Chemical Hardness, and Chemical Softness) of M@TGQD

complex	IP (eV)	EA (eV)	EA (eV)	chemical hardness (eV)	chemical softness (eV)	chemical potential (eV)
TGQD	4.89	3.24	3.22	0.82	0.61	–4.07
Li@r8p	4.19	2.63	2.61	0.78	0.64	–3.41
Li@r8d	4.22	2.62	2.60	0.80	0.63	–3.42
Li@r8a	4.33	2.64	2.62	0.84	0.59	–3.49
Li@rc	4.08	2.80	2.78	0.64	0.78	–3.44
Na@r8d	4.05	2.47	2.45	0.79	0.63	–3.26
Na@r8a	4.12	2.49	2.47	0.82	0.61	–3.31
Na@rc	3.96	2.60	2.58	0.68	0.73	–3.28
K@r8d	3.94	2.36	2.33	0.79	0.63	–3.15
K@r8a	4.00	2.37	2.35	0.81	0.61	–3.19
K@rc	3.89	2.50	2.48	0.69	0.72	–3.19

“EA calculated at B3LYP/6-311+G(2d,p).”

NLO response of the materials, for example, a complex with smaller IP values exhibits a high NLO response. Similarly, an enhanced NLO response is expected from the complexes having higher softness or lower hardness values.

The HOMO and LUMO energies are directly linked with ionization potential and electron affinity, respectively. The negative of the HOMO energy is almost equal to the ionization potential and that of the LUMO energy is almost equal to the electron affinity (Koopmans approximation). Pure TGQD shows an ionization potential of 4.89 eV, and its electron affinity value is 3.24 eV. Doping of alkali metal to TGQD decreases the ionization potential and electron affinity values of doped compounds, as tabulated in Table 3. For instance, the ionization potential value is 4.19 eV for Li@r8p, 4.22 eV for Li@r8d, 4.33 eV for Li@r8a, and 4.08 eV for Li@rc complexes. These decreasing values of IP for doped TGQD complexes indicate the ease of ionization to generate diffuse excess electrons and hence improved NLO response values. For Na@TGQD and K@TGQD complexes, the ionization potential ranges from 3.96 to 4.12 eV and from 3.89 to 4.00 eV, respectively. Similarly, the electron affinity, which is related to the ability of a system to gain an electron, is also modified after doping of the alkali metal atom. For example, the electron affinity ranges from 2.62 to 2.80 eV for Li@TGQD, 2.47 to 2.60 eV for Na@TGQD, and 2.36 to 2.50 eV for K@TGQD complexes. EA calculations are also executed at B3LYP/6-311+G(d,p), and results are displayed in Table 3. The EA of undoped TGQD is found to be 3.22 eV, which is minutely lower than EA values (3.24 eV) calculated at B3LYP/6-311+G(d,p). Alkali metal doping resulted in further reduction of EA values, and these values range from 2.33 eV (K@r8d) to 2.78 eV (Li@rc). So, overall, EA values at B3LYP/6-311+G(2d,p) are marked as 0.2–0.3 eV smaller than EV values computed at B3LYP/6-311+G(d,p).

Chemical hardness is linked to the stability of a system. The chemical hardness value is 0.82 eV for undoped TGQD, which is greater than values for M@TGQD complexes, indicating that undoped TGQD is more stable and less reactive and hence exhibits a smaller NLO response than doped complexes. The maximum value of chemical hardness in the case of M@r8d (M = Li, Na, K) complexes is 0.80 eV for Li@r8d, which is the most stable complex among all three. Similarly, for M@r8a complexes, Li@r8a is the most stable complex, with a chemical hardness of 0.84 eV. Chemical hardness values for Li@rc, Na@rc, and K@rc are 0.64, 0.68, and 0.69 eV, respectively. Li@r8p exhibits a chemical hardness value of 0.78 eV. The chemical softness value is directly related to the NLO response, and an increase in softness is usually linked with an increase in the NLO response. The chemical softness of pure TGQD is 0.61 eV, which increases after doping, and maximum chemical softness among the doped complexes is 0.78 eV for Li@rc.

The chemical potential value is –4.07 eV for undoped TGQD, which decrease monotonically from Li to K doped complexes. The chemical potential is –3.41 eV for Li@r8p, whereas it is –3.49 eV for Li@r8a, –3.31 eV for Na@r8a, and –3.19 eV for K@r8a. A similar trend of chemical potential is observed for M@r8d and M@rc (M = Li, Na, K) complexes. Chemical potential values of M@TGQD complexes are less than that of undoped TGQD, indicating these systems to be less stable and more reactive, which leads to an enhanced NLO response.

3.4. Electronic Properties. Frontier Molecular Orbitals (FMOs) Analysis. The information about frontier molecular orbitals (HOMO and LUMO orbitals) of a system is essential to investigate its electronic properties. The analysis of the HOMO (highest occupied molecular orbital) and the LUMO (lowest unoccupied molecular orbital) of a system helps to discover the interaction between two components in a system, based on the HOMO–LUMO band gap E_g. According to Koopman’s theorem, the HOMO energies with a negative sign can be considered as the ionization potential whereas that of LUMO can be described as the electronic affinity of a system. That is why we have computationally carried out the frontier molecular orbitals analysis (FMO) of all the isomers of alkali metal doped TGQDs. The FMO analysis results of pure TGQD reveal that TGQD already has a small HOMO–LUMO band gap, that is, 1.65 eV. This small band gap is likely to narrow further as a consequence of doping alkali metals on TGQD. The results of this analysis disclosed that alkali metal doping has affected the energy gap (between HOMO and LUMO orbitals) in all selected isomers of alkali metal doped TGQD complexes. Doping of alkali metals caused an increase
Figure 4. continued
in energy of HOMO orbitals, because of the existence of excess electrons. Because of these excess electrons, new HOMOs are generated, and as a result, excess electrons reside in new HOMOs.

The HOMO−LUMO gap of Li@r8d, Na@r8d, and K@r8d are 1.60, 1.58, and 1.59 eV, respectively. The most significant reduction in the band gap E_g is observed for Mg@rc complexes, where E_g values are found to be 1.28, 1.36, and 1.39 eV for Li@rc, Na@rc, and K@rc, respectively. Na@r8a and K@r8a both have band gaps of 1.63 eV. The lowest HOMO−LUMO gap is 1.28 eV for the Li@rc complex. E_g for Li@rp is found to be 1.56 eV. The HOMO−LUMO gap is also explored at B3LYP/6-311+G(2d,p), and the data are presented in Table 1. The HOMO−LUMO gap E_g values were found to be consistent with that observed at B3LYP/6-311+G(2d,p). The results obtained at B3LYP/6-311+G(2d,p) showed only a minute second digit difference; for example, the E_g value is 1.66 eV for undoped TGQD, which was 1.65 eV at B3LYP/6-311+G(2d,p). Delocalized π electrons of TGQDs influenced the valence s electron of alkali metals, and as a result, a diffuse excess electron system is generated, resulting in the increased energy of HOMO orbitals and consequent lessening of the HOMO−LUMO energy gap. The shapes of HOMO orbitals of alkali metal decorated TGQD compounds have shown that the electron density mostly resides on TGQD. The shapes and positions of HOMO and LUMO orbitals are represented in Figure 4.

It is clear from these images that the density in HOMOs exists mostly on peripheral atoms of TGQDs for undoped as well as alkali metal doped TGQD complexes.

TDOS and PDOS Analysis. We have plotted PDOS (partial/projected density of states) and TDOS (total density of states) for alkali metal doped TGQDs, which further elaborated the outcome of alkali metals doping on TGQDs. These spectra also indicate that both TGQD and the alkali metal atom contributed in formation of new HOMO orbitals. These new HOMO orbitals have higher energies and are located between original HOMO and LUMO orbitals of TGQD. DOS spectra of alkali metals decorated TGQD complexes are given in Figure 5.

3.5. Polarizability and First Hyperpolarizability Analysis. It has been well testified by findings of previous workers that the NLO properties of a system can be improved to a greater extent by introducing excess electrons into the system. These excess electrons generate new HOMO orbitals, which are higher in energy, and as a result, the HOMO−LUMO gap is decreased. These excess electrons also increase the polarizability and first-order hyperpolarizability values of the system. Therefore, we have computed polarizabilities and hyperpolarizabilities of selected alkali metal doped TGQD complexes to explore their nonlinear optical response and have listed the data in Table 4.

For undoped TGQD, the calculated polarizability is 420 au. The alkali metal decorated TGQD complexes show enhanced polarizability values. The K atom doped TGQD complexes exhibit relatively better polarizabilities. The highest polarizability is computed to be 476 au for K@r8a. Isomers K@r8d and K@rc have polarizabilities of 475 and 474 au, respectively. Theoretically calculated polarizabilities for Na@r8d, Na@r8a, and Na@rc isomers are 470, 471, and 471 au, respectively. Li@TGQD complexes show comparatively lower polarizabilities of 470, 465, 467, and 470 au for isomers Li@rp, Li@r8d, Li@r8a, and Li@rc, respectively.

The hyperpolarizability β_o data reveal that undoped TGQD has a hyperpolarizability of 0.14 au. This value of β_o is dramatically increased after doping of alkali metals. Li@r8a has a higher β_o than Na and K doped complexes. However, Li@r8d and Li@rc have lower hyperpolarizability values than Na and K doped at r8d and rc positions.

The hyperpolarizability β_o values of alkali metal doped TGQD complexes are given in Table 5.

The β_o value for Li@rp is 7.8×10^5. The Li@r8d complex has a hyperpolarizability β_o value of 9.9×10^7 au, which increases to 2.7×10^8 and 5.6×10^8 au for Na@r8d and K@r8d complexes, respectively. Similarly, for Mg@rc (M = Li, Na, K), hyperpolarizabilities of 2.2×10^5, 2.5×10^5, and 4.3×10^5 au are observed, respectively. Comparison of the hyperpolarizabilities of alkali metal doped TGQD complexes revealed that the highest β_o value exhibited by Li@r8a is 5.2×10^4 au, Na@r8a is 3.7×10^4 au, and K@r8a it is 2.74×10^4 au. The β_o value of Li@r8a is greater than previously reported values of alkali metal doped NLO compounds, such as Li doped graphdiyne Li@GDY showed a β_o value of 8.57×10^4 au. The investigated K@r8a showed a greater NLO response.

Figure 4. Shapes of HOMO−1, HOMO, LUMO, and LUMO+1 orbitals, HOMO−LUMO gap (E_g) and HOMO−1−LUMO+1 gap ($E_{g'}$) of undoped and alkali metal doped TGQD complexes.
Figure 5. continued
than previously reported potassium doped calix[4]pyrrole having a β_o value of 17304 au. Nazir et al. reported Li@Cora 1N exhibited a 7.36×10^3 au β_o value. Yaqoob et al. recently designed K@SiCNs-III, exhibiting a β_o value of 7.7×10^4 au. Our Li@r8a isomer possesses a greater NLO response than all mentioned compounds, which suggests it is a more efficient NLO material for optics and optoelectronics applications. The hyperpolarizability β_o values are also calculated at CAM-B3LYP/6-311+G(2d,p) and results are tabulated in Table 5. The β_o value followed the same trend at CAM-B3LYP/6-311+G(d,p) as shown by B3LYP/6-311+G(d,p). For example, among M@r8a complexes, Li@r8a showed the highest NLO response, which decreases for Na@r8a and K@r8a.

For these complexes, vertical ionization potential data are also in line with hyperpolarizability β_o results. VIP decreases as a result of doping. The vertical ionization potential results are summarized in Table 4.

Tuning of β_o values can be explained by employing a two-level expression, given as:

$$\beta_o \approx \frac{\Delta \mu^2}{\Delta E^3}$$

(11)

According to this formula β_o is directly linked to the transition dipole moment $\Delta \mu$ and oscillator strength f_o and inversely linked to the third power of the transition energy ΔE, so ΔE becomes a major factor in deciding β_o values. According to the two-level formula, it is well demonstrated in the literature that a decrease in the transition energy leads to an increase in the NLO response. Therefore, we have also calculated crucial transition energies of undoped as well as alkali metal doped TGQD complexes, and results are summarized in Table 7. The transition energy for undoped TGQD is 2.2701 eV, which is expected to decrease for alkali metal doped complexes because of the creation of new energy levels as a result of doping. Results of alkali metal doped complexes reveal a decrease in the transition energy after doping. For example, Li@r8d, Na@r8d, and K@r8d have

| Table 4. Polarizability and Vertical Ionization Potential of M@TGQD |
|-----------------------------|-----------------------------|-----------------------------|
| **M@rp** | **Na** | **K** | **M@r8d** | **Na** | **K** | **M@r8a** | **Na** | **K** | **M@rc** | **Na** | **K** |
| α (au) | 470 | 465 | 467 | 470 | 471 | 474 | 467 | 471 | 474 | 470 | 471 | 474 |
| VIP (eV) | 5.43 | 5.46 | 5.56 | 5.32 | 5.20 | 5.12 | 5.40 | 5.27 | 5.16 | 5.54 | 5.34 | 5.21 |

VIP calculated at B3LYP/6-311+G(2d,p).

| Table 5. Static First Hyperpolarizabilities of M@TGQD |
|-----------------------------|-----------------------------|-----------------------------|
| **M@rp** | **Na** | **K** | **M@r8d** | **Na** | **K** | **M@r8a** | **Na** | **K** | **M@rc** | **Na** | **K** |
| β_o (au) | 7.8 | 9.9 | 5.2 | 2.2 | 7.6 | 2.9 | 3.9 | 2.1 | 2.5 | 1.6 | 3.9 | 2.8 | 4.4 |

β_o values are calculated at CAM-B3LYP/6-311+G(d,p) and results are tabulated in Table 5. The β_o value followed the same trend at CAM-B3LYP/6-311+G(d,p) as shown by B3LYP/6-311+G(d,p) for example, among M@r8a complexes, Li@r8a showed the highest NLO response, which decreases for Na@r8a and K@r8a.
transition energy values of 1.2177, 1.1605, and 1.1312 eV, respectively. Similarly, M@r8a shows 0.1190, 0.2162, and 0.2416 eV for crucial transition energy values of the Li@r8a, Na@r8a, and K@r8a complexes, respectively. For M@rc, crucial transition energies are in the range 0.8678–0.9148 eV.

When the external frequencies are imposed on designed complexes, the phenomena of the electro-optical pockels effect (EOPE) and second harmonic generation (SHG) are observed. Therefore, the effect of external frequencies on hyperpolarizabilities of designed complexes has also been explored at 800, 1064, and 1900 nm, and the values of EOPE $\beta(-\omega,\omega,0)$ as well as SHG $\beta(-2\omega,0,0)$ are listed in Table 6. These results computed at wavelengths of 800 and 1064 nm indicated that most of complexes showed an increase in values of EOPE and SHG as compared to β_0. However, some exceptions are also there, such as for Li@r8a, where both $\beta(-\omega,\omega,0)$ and $\beta(-2\omega,0,0)$ values are decreased as compared to that of β_0, when incident wavelengths of 800 and 1064 nm are imposed on these complexes. The maximum values of $\beta(-\omega,\omega,0)$, 1.8×10^6 au, and $\beta(-2\omega,0,0)$, 2.6×10^6 au, are exhibited by Li@rp at the wavelength of 1064 nm. At a wavelength of 1900 nm, most of the complexes showed a decline in EOPE and SHG values as compared to values of static hyperpolarizabilities.

There are many factors considered for determining the hyperpolarizability β_0 of a system. The first factor is the ionization potential of the alkali metal, and the second is the interaction distance between the alkali metal and the system of interest. If the ionization potential is the sole parameter, which affects β_0 values, then it is expected that β_0 increases in a monotonic way with the increasing atomic number of the alkali metals. The ionization potential values of alkali metals decrease from Li to K. Li has an ionization potential of 520.2 kJ mol$^{-1}$, which decreases to 495.8 and 418.8 kJ mol$^{-1}$ for Na and K, respectively. This decreasing ionization potential value with increasing atomic size indicates that the valence s electron of the higher alkali metal (K) is easy to push out, and as a result, a diffuse electron system is generated easily. Therefore, the systems with heavier alkali metals can probably show higher hyperpolarizability values. Such behavior of increasing hyperpolarizability β_0 with increasing atomic size is well documented in previous works, for example, Na and K doped calix[4]-pyrrole complex and alkali metal decorated hexalithioben-

Table 6. Frequency Dependent First Hyperpolarizabilities of M@TGQD Complexes

M@r8	Li	Na	K	M@r8	Li	Na	K	M@r8	Li	Na	K
0.86 x 10^6	1.8 x 10^6	3.4 x 10^6	4.0 x 10^6	4.9 x 10^6	5.8 x 10^6						
3.0 x 10^6	1.3 x 10^6	1.3 x 10^6	1.3 x 10^6	1.3 x 10^6							
7.9 x 10^4	1.3 x 10^4	7.6 x 10^4	1.1 x 10^4	1.5 x 10^4							
2.5 x 10^6	6.5 x 10^4	1.1 x 10^4	9.9 x 10^4	7.2 x 10^4							

Table 7. TD-DFT Data, Transition Wavelength (λ_{max}), Highest Oscillator Strength (f_s), Crucial Transition Energies (ΔE) of M@TGQD Calculated at CAM-B3LYP/6-31+G(d,p) and CAM-B3LYP/6-311+G(2d,p)

CAM-B3LYP/6-311+G(d,p)	CAM-B3LYP/6-311+G(2d,p)							
λ_{max} (nm)	f_s	ΔE (eV)						
Li	Na	K	Li	Na	K	Li	Na	K
1046	0.0197	1.2119						
1018	0.0523	1.2177						
959	0.0062	0.1190						
1429	0.0417	0.8678						
1051	0.0197	1.1790						
1029	0.0535	1.2045						
961	0.0062	1.2903						
1429	0.0427	0.8674						
Figure 6. UV–visible absorption spectra of undoped and alkali metal doped TGQD complexes calculated at (a) CAM-B3LYP/6-311+G(d,p) and (b) CAM-B3LYP/6-311+G(2d,p).
Figure 7. continued
Figure 7. continued
We observed this behavior in the case of our M@r8d and M@rc (M = Li, Na, K) complexes. The second important factor affecting the hyperpolarizability β_0 is the interaction distance between the alkali metal and the system. A shorter distance between the alkali metal and the system ensures a stronger interaction, resulting in a higher hyperpolarizability. However, the longer the distance between the alkali metal and the system, the weaker the interaction, leading to a lower hyperpolarizability. The interaction distances between alkali metals and the system increase from lithium to potassium. Hence, if it depends solely on the interaction distance, it is expected that the hyperpolarizability β_0 would decrease monotonically with an increase in the atomic number of the alkali metal. This type of monotonic decrease in hyperpolarizability is also well reported in the literature, for example, M@Al$_{12}$P$_{12}$ nanocages (M = Li, Na, K) and M$_2$@b$_{66}$ isomers of bi-alkali metal doped B$_{12}$P$_{12}$ nanocages. In our study, M@r8a (M = Li, Na, K) complexes have revealed this monotonic decrease in the hyperpolarizability β_0.

3.6. UV–Visible Analysis. The NLO materials exhibiting high values of static first hyperpolarizability are utilized for frequency doubling through the phenomenon of second harmonic generation (SHG). Hence, along with the high first hyperpolarizability value, the NLO material should be transparent for used lasers. For this purpose, UV–visible absorption spectra of undoped as well as alkali metal doped TGQD compounds have been evaluated by performing time dependent DFT (TD-DFT) calculations at CAM-B3LYP/6-311+G(d,p). The results of the transition wavelength (λ_{max}),

Figure 7. 3D NCI isosurfaces as well as 2D RDG plots of alkali metal doped TGQD complexes.
Along with 3D images (isosurfaces), the outcomes of NCI analysis are also presented as two-dimensional RDG (reduced density gradient) plots. The NCI graphs are plotted between RDGs (reduced density gradients) and ($\text{sign} \lambda_2$)ρ. The value of ($\text{sign} \lambda_2$)ρ is less than zero for attractive forces, whereas a value of ($\text{sign} \lambda_2$)ρ greater than zero indicates repulsions. RDG plots and 3D isosurfaces for alkali metal doped TGQD are presented in Figure 7. As mentioned above, all the alkali metal doped TGQD complexes, except Li@rc, have shown green patches in their 3D images, indicating Van Der Waals interactions. The presence of Van Der Waals interactions is also verified by respective NCI plots, which show green peaks of high density between -0.01 and -0.03 au.

4. CONCLUSION

In the present work, ten novel alkali metal doped TGQD complexes are designed theoretically through the density functional theory calculations. Analysis of geometric parameters of these complexes shows that lithium is doped at a minimum distance from the system of interest (TGQDs), whereas the potassium atom is doped at a maximum distance from the TGQDs. The binding energy calculations reveal the thermodynamic stability of these newly designed complexes. Li@r8d is found to be most stable with an E_b value of -45.02 kcal mol$^{-1}$. The doping of alkali metals on TGQDs causes a dramatic change in their electronic and nonlinear optical properties. The highest static first-order hyperpolarizability $β_0$ value calculated for Li@r8a is 5.2×10^5 au. This value is several orders of magnitude higher than that of undoped TGQD and is comparable to values for previously reported best NLO compounds. This extraordinarily high NLO response is rationalized on the basis of HOMO and LUMO energies, TDOS, PDOS, and transition energy analysis. The $β_0$ value of Li@r8a is mainly attributed to the lowest interaction distance between the Li atom and TGQD. Moreover, frequency dependent hyperpolarizabilities $β(−ω_0, ω, 0)$ and $β(−2ω_0, ω, 0)$ are calculated at 800, 1064, and 1900 nm. Maximum $β(−ω_0, ω, 0)$ and $β(−2ω_0, ω, 0)$ values of 1.6×10^6 and 2.6×10^8, respectively, are exhibited by the Na@r8d complex. The NCI analysis discloses that noncovalent interactions are mainly responsible for adsorption of alkali metals on TGQD. The UV–visible spectra of these alkali metals decorated complexes are also evaluated for guidance of future studies, which indicated the absorption ranges from 769 to 1429 nm. Finally, this study furnishes a theoretical base, which would be helpful to practically synthesize the novel materials with exceptional NLO response.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c01746.

Bond lengths of all bonds of TGQD (PDF)

AUTHOR INFORMATION

Corresponding Author

Muhammad Usman Khan – Department of Chemistry, University of Okara, Okara 56300, Pakistan; orcid.org/0000-0003-1900-8136; Phone: +923216967887; Email: usman.chemistry@gmail.com, usmankhana@uo.edu.pk
Authors

Saadia Sarwar — Department of Chemistry, University of Okara, Okara 56300, Pakistan
Junaيد Yaqoob — Department of Chemistry, University of Okara, Okara 56300, Pakistan; Department of Chemistry, COMSATS University Islamabad, Lahore 54600, Pakistan
Riaz Hussain — Department of Chemistry, University of Okara, Okara 56300, Pakistan; orcid.org/0000-0003-4304-0451
Sobia Zulfiqar — Department of Botany, University of Okara, Okara 56300, Pakistan
Abida Anwar — Department of Chemistry, University of Okara, Okara 56300, Pakistan
Mohammed A. Assiri — Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
Muhammad Imran — Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
Mohamed M. Ibrahim — Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
Gaber A. M. Mersal — Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
Ashraf Y. Elmaggar — Department of Food Science and Nutrition, College of Science, Taif University, Taif 21944, Saudi Arabia

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/14), Taif University, Taif, Saudi Arabia. M.A.A. and M.I. express appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia through research groups program under grant number R.G.P. 2/170/43.

REFERENCES

(1) Priyadarshy, S.; Therien, M. J.; Beratan, D. N. Acetylenyl-linked, porphyrin-bridged, donor–acceptor molecules: a theoretical analysis of the molecular first hyperpolarizability in highly conjugated push–pull chromophore structures. J. Am. Chem. Soc. 1996, 118, 1504–1510.
(2) Khan, M. U.; Khalid, M.; Ibrahim, M.; Braga, A. A. C.; Saldañ, M.; Al-Saadi, A. J.; Janjua, M. R. S. A. First Theoretical Framework of Triphenylenes–Dicyanovinylene-Based Nonlinear Optical Dyes: Structural Modification of π-Linkers. J. Phys. Chem. C 2018, 122, 4009–4018.
(3) Lou, A. J.-T.; Marks, T. J. A twist on nonlinear optics: understanding the unique response of π-twisted chromophores. Acc. Chem. Res. 2019, 52, 1428–1438.
(4) Wang, L.; Wang, M. S.; Qiu, Y. Q. Application of Multifunctional X-Doped Sunamene (X= Si, Ge, O, S and Se) for Concave–Convex Supramolecular Assembly with C60 and Their Nonlinear Optical Properties. J. Phys. Chem. C 2019, 123, 27811–27822.
(5) Lu, Z.; T.; Sun, Z.; Chi, Y.; Xue, H.; Guo, S.-P. Balanced second-order nonlinear optical properties of adducts CHI3 (S8) 3 and AsI3 (S8) 3: a systematic survey. Inorg. Chem. 2019, 58, 4619–4625.
(6) Cheng, J.; Barton, R. A.; Englund, D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photodetectors. ACS Photonics 2014, 1, 768–774.
(7) Sun, H.; Autschbach, J. Electronic energy gaps for π-conjugated oligomers and polymers calculated with density functional theory. J. Chem. Theory Comput. 2014, 10, 1035–1047.
(8) Kim, J. T.; Yu, Y.-J.; Choi, H.; Choi, C.-G. Graphene-based plasmonic photodetector for photonic integrated circuits. Opt. Express 2014, 22, 803–808.
(9) Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.
(10) Lucking, M. C.; Beach, K.; Terrones, H. Large second harmonic generation in alloyed TMDs and boron nitride nanostructures. Sci. Rep. 2018, 8, 10118.
(11) Hänsel, M.; Barta, C.; Rietze, C.; Utech, M.; Rück-Braun, K.; Saalfrank, P.; Tegeder, P. Two-dimensional nonlinear optical switching materials: Molecular engineering toward high nonlinear optical contrasts. J. Phys. Chem. C 2018, 122, 25555–25664.
(12) Kulasekera, E.; Petrie, S.; Stranger, R.; Humphrey, M. G. DFT Calculation of Static First Hyperpolarizabilities and Linear Optical Properties of Metal Alkynyl Complexes. Organometallics 2014, 33, 2434–2447.
(13) Khan, M. U.; Ibrahim, M.; Khalid, M.; Qureshi, M. S.; Gulzar, T.; Zia, K. M.; Al-Saadi, A. A.; Janjua, M. R. S. A. First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem. Phys. Lett. 2019, 715, 222–230.
(14) Khan, M. U.; Ibrahim, M.; Khalid, M.; Braga, A. A. C.; Ahmed, S.; Sultan, A. Prediction of Second-Order Nonlinear Optical Properties of D−π−A Compounds Containing Novel Fluorene Derivatives: A Promising Route to Giant Hyperpolarizabilities. J. Cluster Sci. 2019, 30, 415–430.
(15) Khan, M. U.; Ibrahim, M.; Khalid, M.; Jamil, S.; Al-Saadi, A. A.; Janjua, M. R. S. A. Quantum Chemical Designing of Indolo [3, 2-1-jk] carbazole-based Dyes for Highly Efficient Nonlinear Optical Properties. Chem. Phys. Lett. 2019, 719, 59–66.
(16) Khalid, M.; Khan, M. U.; Shafig, I.; Hussain, R.; Mahmood, K.; Hussain, A.; Jawaria, R.; Hussain, A.; Imran, M.; Assiri, M. A. NLO potential exploration for D−π−A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arabian J. Chem. 2021, 14, 103295.
(17) Khalid, M.; Ali, A.; Jawaria, R.; Asghar, M. A.; Asim, S.; Khan, M. U.; Hussain, R.; ur Rehman, M. F.; Ennis, C. J.; Akram, M. S. First principles study of electronic and nonlinear optical properties of A−D−π−A and D−A−D−π−A configured compounds containing novel quinoline−carbazole derivatives. RSC Adv. 2020, 10, 22273–22283.
(18) Khalid, M.; Khan, M. U.; Shafig, I.; Hussain, R.; Ali, A.; Imran, M.; Braga, A. A.; Fayyaz ur Rehman, M.; Akram, M. S. Structural modulation of π-conjugated linkers in D−π−A dyes based on triphenylamine dicyanovinylene framework to explore the NLO properties. Royal Society Open Science 2021, 8, 210570.
(19) Adeel, M.; Khalid, M.; Ullah, M. A.; Muhammad, S.; Khan, M. U.; Tahir, M. N.; Khan, I.; Asghar, M.; Mughal, K. S. Exploration of CH:: F & CF−H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 2021, 11, 7766–7778.
(20) Khan, M. U.; Khalid, M.; Asim, S.; Hussain, R.; Mahmood, K.; Iqbal, J.; Akhtar, M. N.; Hussain, A.; Imran, M.; Irfan, A. Exploration of nonlinear optical properties of triphenylamine-dicyanovinylenes co-existing donor-π-acceptor architecture by the modification of π-conjugated linker. Front Mater. 2021, 8, 287.
(21) Ali, B.; Khalid, M.; Asim, S.; Usman Khan, M.; Iqbal, Z.; Hussain, A.; Hussain, R.; Ahmed, S.; Ali, A.; Hussain, A. Key electronic, linear and nonlinear optical properties of designed disubstituted quinoline with carbazole compounds. Molecules 2021, 26, 2760.
(22) Khalid, M.; Lodhi, H. M.; Khan, M. U.; Imran, M. Structural parameter-modulated nonlinear optical amplitude of acceptor−π−D−π-donor-configured pyrene derivatives: A DFT approach. RSC Adv. 2021, 11, 14237–14250.

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c01746
(23) Cornelis, D.; Franz, E.; Asselberghs, I.; Clays, K.; Verbiest, T.; Koeckelberghs, G. Interchromonic Interactions in Chiral X-type π-Conjugated Oligomers: A Linear and Nonlinear Optical Study. J. Am. Chem. Soc. 2011, 133, 1317−1327.

(24) Zhong, R. L.; Zhang, J.; Muhammad, S.; Hu, Y. Y.; Xu, H. L.; Su, Z. M. Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e−12c bond and large NLO responses. Chem.—Eur. J. 2011, 17, 11773−11779.

(25) Liu, Z.-B.; Zhou, Z.-J.; Li, Z.-R.; Li, Q.-Z.; Jia, F.-Y.; Cheng, J.-B.; Sun, C.-C. What is the role of defects in single-walled carbon nanotubes for nonlinear optical property? J. Mater. Chem. 2011, 21, 8905−8910.

(26) Wang, L.; Ye, J.-T.; Wang, H.-Q.; Xie, H.-M.; Qu, Y.-Q. Third-order nonlinear optical properties of endohedral fullerene (H2) 2@ C70 and (H2O) 2@ C70 accompanied by the prospective of novel (HF) 2@ C70. J. Phys. Chem. C 2018, 122, 6835−6845.

(27) Shi, J.; Chu, H.; Li, Y.; Zhang, X.; Pan, H.; Li, D. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm. Nanoscale 2019, 11, 7287−7292.

(28) Yamijala, S. S.; Mukhopadhyay, M.; Pati, S. K. Linear and nonlinear optical properties of graphene quantum dots: A computational study. J. Phys. Chem. C 2015, 119, 12079−12087.

(29) Li, H. P.; Bi, Z. T.; Xu, R.-F.; Han, K.; Li, M.-X.; Shen, X.-P.; Wu, Y.-X. Theoretical study on electronic polarizability and second hyperpolarizability of hexagonal graphene quantum dots: Effects of size, substrate, and frequency. Carbon 2017, 122, 756−760.

(30) Tan, J. J.; Gu, F. L. Tuning the nonlinear optical response of graphitic carbon nitride by doping Li atoms. J. Phys. Chem. C 2018, 122, 26635−26641.

(31) Zhou, Z.; Li, X. P.; Ma, F.; Liu, Z. B.; Li, Z. R.; Huang, X. R.; Sun, C. C. Exceptionally Large Second-Order Nonlinear Optical Response in Donor−Graphene Nanoribbon−Acceptor Systems. Chem.—Eur. J. 2017, 17, 2414−2419.

(32) Enyashin, A. N.; Ivanovskii, A. L. Graphene allotropes. physica status solidi (b) 2011, 248, 1879−1883.

(33) Liu, Y.; Wang, G.; Huang, Q.; Guo, L.; Chen, X. Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarians. Phys. Rev. Lett. 2012, 108, 225505.

(34) Bandypadhyay, A.; Paria, S.; Jana, D. Tetragonal graphene nanodot as carbon monoxide gas sensor and current rectification device. J. Phys. Chem. Solids 2018, 123, 172−182.

(35) Ye, X.-J.; Liu, C.-S.; Zhong, W.; Zeng, Z.; Du, Y.-W. Metalized T graphene: A reversible hydrogen storage material at room temperature. J. Appl. Phys. 2014, 116, 114304.

(36) Chowdhury, S.; Majumdar, A.; Jana, D. Search for magnetism in transition metal atoms doped tetragonal graphene: a DFT approach. J. Magn. Magn. Mater. 2017, 441, 523−530.

(37) Bandypadhyay, A.; Nandy, A.; Chakrabarti, A.; Jana, D. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon. Phys. Chem. Chem. Phys. 2017, 19, 21584−21594.

(38) Li, X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. J. Mater. Chem. C 2018, 6, 7576−7583.

(39) Li, X. Graphdiyne: A promising nonlinear optical material modulated by tetrahedral alkali-metal nitrides. J. Mol. Liq. 2019, 277, 641−645.

(40) Li, X.; Li, S. Investigations of electronic and nonlinear optical properties of single alkali metal adsorbed graphene, graphyne and graphdiyne systems by first-principles calculations. J. Mater. Chem. C 2019, 7, 1630−1640.

(41) Srivastava, A. K. Enormously high second-order nonlinear optical response of single alkali atom decorated heathlioxibenzone. J. Mol. Liq. 2020, 298, 112187.

(42) Srivastava, A. K. Lithiated graphene quantum dot and its nonlinear optical properties modulated by a single alkali atom: a theoretical perspective. Inorg. Chem. 2021, 60, 3131−3138.