Cohort Profile

Cohort Profile: the Etude Epidémiologique sur les Petits Ages Gestationnels-2 (EPIPAGE-2) preterm birth cohort

Elsa Lorthe,1,2* Valérie Benhammou,1 Laetitia Marchand-Martin,1 Véronique Pierrat,1,3 Cécile Lebeaux,1,4,5 Mélanie Durox,1 François Goffinet,1,6 Monique Kaminski,1 and Pierre-Yves Ancel1,7; on behalf of the EPIPAGE-2 Study group

1Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM (U1153 - Obstetrical, Perinatal and Pediatric Epidemiology Research Team [EPOPé]), INRA, F-75004 Paris, France, 2EPIUnit—Institute of Public Health, University of Porto, Porto, Portugal, 3CHU Lille, Department of Neonatal Medicine, Jeanne de Flandre Hospital, Lille, France, 4Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, Ile de France, France, 5Réseau Perinatal, Val de Marne, Ile-de-France, France, 6Maternité Port-Royal, AP-HP, APHP Centre - Université de Paris, FHU PREMA, Paris, France and 7Clinical Research Unit, Center for Clinical Investigation P1419, APHP.CUP, F-75014, Paris, France

*Corresponding author. Inserm U1153, Maternité Port-Royal, 123 boulevard de Port-Royal, 75014 Paris, France. E-mail: elsa.lorthe@gmail.com

Received 16 June 2020; editorial decision 10 December 2020; Accepted 16 December 2020

Key Features

• Etude Epidémiologique sur les Petits Ages Gestationnels-2 (EPIPAGE-2) is a population-based birth cohort of extremely, very and moderately preterm infants, aiming at estimating short- and long-term outcomes and their association with individual characteristics and unit practices.

• Preterm births (terminations of pregnancy, stillbirths and live births) from 22 + 0 to 34 + 6 weeks’ gestation, and occurring in all maternity units in 25/26 regions in France in 2011, were eligible. A total of 7804 newborns were included at baseline (participation rate 93%), and 4312 were eligible for follow-up.

• From 2011 to 2017, three follow-up steps have been performed: at 1-year corrected age (parental self-administered questionnaire, participation 90%) and 2-year corrected age (parental self-administered questionnaire, 88%, medical questionnaire, 86%). At 5.5 years, 3032 children were still followed; the evaluation consisted of a parental questionnaire (77%), a standardized medical examination (68%) and a neuropsychological assessment (67%).

• Detailed information was collected on maternal sociodemographic characteristics, living conditions, health and pregnancy management and complications. Regarding the child, the main domains assessed were health, health care use, nutrition and growth, gross and fine motor skills, cognitive functions, language, behaviour, quality of life and school attendance. Additional data on policies and practices of maternity and neonatal units were also collected.

• Proposals for collaborations and secondary analyses are welcomed. Data access procedures can be found on the EPIPAGE-2 website [https://epipage2.inserm.fr/index.php/en/related-research/access-to-epipage-2-data].
Why was the EPIPAGE-2 cohort set up?

Prematurity has shown an upward trend since 1990, accounting for about 10% of births worldwide, representing almost 15 million babies born every year before 37 weeks’ gestation. In France, the preterm birth rate was 7.4% in 2010, with about 60 000 babies born preterm every year.

The burden of preterm birth is substantial: it remains a major cause of child mortality during both the neonatal period and childhood before the age of 5 years. Among survivors, the frequency of prematurity-related health problems and developmental deficiencies is substantial, in the short and in the long term after birth. With prematurity and survival rates both increasing, these ‘individuals born preterm’ represent a growing share of the population, displaying specific health care and support needs.

Population-based cohort studies are the methodology of reference for assessing the longitudinal evolution of these fragile infants. Several European and international cohorts have been conducted since the late 1990s, mainly focusing on children born extremely preterm, between 22 and 26 weeks’ gestation. Only a few studies included infants born very (27–31 weeks) or moderately (32–34 weeks) preterm, although they are more numerous and with a greater impact on public health indicators.

The first EPIPAGE (Étude Épidémiologique sur les Petits Âges Gestationnels) cohort study was launched in 1997 in nine French regions, including births occurring at 22–32 weeks’ gestation, with follow-up steps until age 8 years. The cohort provided estimates of mortality, morbidity and disability and health care needs and greatly contributed to changing practices in the neonatal period and after hospital discharge.

Medical practices and the organization of care vary widely across countries and have markedly evolved over the past two decades. The prognosis of very preterm infants has changed accordingly, raising new questions and requiring new assessments. We therefore set up the EPIPAGE-2 cohort, a new longitudinal study of preterm infants, with the following objectives: to provide actualized estimates of short- and long-term outcomes for extremely, very and moderately preterm babies and their families; to study changes in practices at both individual and organizational levels and their impact on child health and development; and to explore aetiologies of preterm birth and identify early predictors of adverse outcomes.

EPIPAGE-2 is a population-based cohort study, set up in 2011 in 25 regions in France (21 of the 22 metropolitan regions and four overseas regions). Only one region (Poitou-Charentes), accounting for 2.2% of all births in France in 2011, did not participate because of organizational issues. All maternity units and neonatology departments participated in the recruitment (Figure 1).
information, in the maternity or neonatal unit. During recruitment, regional coordinators visited all maternity units to ensure the identification of all eligible children. Only families who orally agreed to participate were included. The only exclusion criterion was refusal to participate.

During the recruitment period, 8400 births were eligible, including terminations of pregnancy, stillbirths and live births, among whom 7804 (93%) were enrolled in the study. Refusal rate at baseline was 7% (\(n = 596\)). With ethics committee approval, a small number of basic perinatal data were collected from birth certificates for all eligible births, in order to characterize non-participants. Neonates whose parents refused participation were more frequently born at 32–34 weeks’ gestation and to younger mothers of lower socioeconomic position (SEP) (Table 1). The families of 155 children (3%) had agreed to participate at baseline but secondarily refused to take part in the follow-up. Thus, 4312 children were eligible for the follow-up. Families who refused the follow-up had a similar profile to that described for the initial refusals in terms of maternal age, SEP and gestational age at birth (Table 1). All children whose parents agreed to participate in the follow-up were invited at each follow-up step, whether they had participated in the previous follow-up or not, unless parents asked to stop their participation in the study.

How often have they been followed up?

From 2011 to 2017, evaluation at baseline and three follow-up steps were performed at 1 and 2 years’ corrected age and at 5.5 years (Figure 2).
Table 1 Comparison of participants and non-participants at recruitment and at follow-up invitation

Maternal characteristics	Recruitment (N = 8400)	P-value	Invitation to follow-up among survivors at discharge (N = 4467)	P-value				
	Participants	Refusals		Participants	Refusals			
	n = 7804	n = 596		n = 4312	n = 155			
Age, years								
<20	269/7781	2.9	47/596	1384312	2.5	10/155	7.8	0.009
20-35	6103/7781	79.4	435/596	3424312	80.3	118/155	74.8	
>35	1409/7781	17.7	114/596	7504312	17.2	27/155	17.4	
P-value	<0.001							
Parents' socioeconomic position								
Manager	1386/6965	21.6	35447	9094090	23.2	14/133	11.0	<0.001
Professional	1393/6965	21.1	62447	8734090	22.1	11/133	11.5	
Intermediate	1850/6965	26.8	93447	11184090	27.3	35/133	30.1	
Sales and services worker	1004/6965	14.0	69447	5834090	13.8	24/133	18.7	
Manual worker	934/6965	12.1	87447	4824090	10.9	32/133	17.1	
Unknown	398/6965	4.4	101447	1254090	2.7	17/133	11.6	
Smoking during pregnancy	1534/7457	20.3	113552	8964166	20.4	38/147	26.8	
Yes	ns			ns				
Obstetric characteristics								
No previous pregnancy	2748/7787	36.3	203590	15614303	37.1	52/155	40.8	ns
Multiple pregnancy	1987/7804	30.5	109596	14514312	35.7	51/155	31.5	ns
Neonatal characteristics								
Gestational age at birth								
22-26	3045/7804	18.4	215596	5294312	4.4	22/155	4.1	<0.001
27-31	3510/7804	28.7	235596	26484312	29.6	75/155	19.1	
32-34	1249/7804	52.9	146596	11354312	66.0	58/155	76.8	
ns, non significant.								
aWeighted percentages.								
bDefined as the highest occupational status between current (or former) occupations of the mother and the father, or mother only if living alone, and based on the Classification of Professions and Socioprofessional Categories, developed by the French National Institute of Statistics and Economic Studies.								
cIntermediate socioeconomic position includes employees from administration and public service, self-employed and students.								
Assessment schedule

At birth and during the neonatal period, maternal and neonatal data were extracted from medical records. Moreover, we interviewed mothers in the neonatal units during the infant’s hospitalization and mothers completed a self-administered questionnaire just before the baby’s discharge.

At each follow-up step, parents completed self-administered questionnaires. Additionally, at 2 years’ corrected age, the child’s referring physician completed a standardized questionnaire. At 5.5 years, children had a clinical examination by a physician and a cognitive assessment by a neuropsychologist, both performed in one of 110 dedicated examination centres in all participating regions. All professionals were specifically trained to ensure homogeneity in data collection.

Follow-up perspectives

To better understand the specific educational difficulties encountered by very preterm children, a school survey will be performed in September 2020, when most children will be in the 4th year of primary school. The survey will comprise tests in French and arithmetic and a few questions for children about their well-being at school. A questionnaire will be completed by the teacher on the child’s behaviour and position in the class.

Finally, children will be directly interviewed for the first time at 10.5 years of age (2021–22), at home. This step of follow-up will allow for assessing development and health status and collecting biological samples.

What is attrition like?

Overall, the families extensively collaborated in the study, with a participation rate of 93% (7804 children) at baseline. A total of 26 children died between their discharge from hospital and the 5.5-year follow-up. The families of 504 children (11%) decided to stop their participation in follow-up: 155 (3%) before 1 year, 89 (2%) between 1 and 2 years and 260 (6%) at 5.5 years. At 5.5 years, 3937 (86%) children discharged alive from neonatal units remained in the cohort (Figure 3).

The parents’ response rates were 90% and 91% at 1 and 2 years, respectively. At 5.5 years, at least one assessment was performed for 3083 (78%) children (Figure 3). A total of 117 (3%) children, still alive, were never assessed whatever the follow-up step, despite parents never declining participation in the study.

Mothers of children who did not participate at 5.5 years were younger, had lower educational level and SEP and were more frequently single than those who did participate; however, the two groups did not differ in children’s characteristics (Table 2).

What has been measured?

Overall, almost 5 000 variables have been collected from baseline to 5.5-year follow-up. All questionnaires are available at [https://pandora-epipage2.insERM.fr/public/index.php]. Table 3 summarizes the main types of data collected on maternal health, antenatal management, parental sociodemographic characteristics and family lifestyle. Table 4 presents the data collected on child’s health, development and health care...
Use.18–20 The standardized scales used in the EPIPAGE-2 questionnaires are presented in Table 5.21–32

Unit policies and practices

Another part of the EPIPAGE-2 study focused on the policies and practices of maternity and neonatal units. In 2012, questionnaires were sent to the medical teams of maternity and neonatal units to collect data on their structural characteristics, organization, and policies and practices related to medical interventions and decision-making processes. In total, 98% and 90% of type III and II maternity units and 100% and 98% of type III and II neonatal units, respectively, completed the questionnaire.

Linkage to routine data sources

Linkage with the national health insurance fund reimbursement register (SNIIRAM) at the individual level is ongoing for families who did not express opposition. It will provide information on prescribed medications since birth and visits to medical and other health care professionals, as well as hospital admissions and their causes. Similar data will be retrieved for the mother during pregnancy. Notably, the linkage will allow for passive follow-up of the children lost to follow-up as long as their parents have not explicitly asked to withdraw from the study.

Additional projects

The EPIPAGE-2 cohort has also allowed for setting up nine associated projects and two randomized controlled trials (Table 6). Benefiting from the cohort infrastructure, these projects were designed to test very specific associations or interventions in various areas. Accordingly, additional clinical and imaging data as well as biological samples have been collected (Table 6).

What has it found?

More than 50 articles based on EPIPAGE-2 data were published up to November 2020, including in collaboration

Figure 3 Participation from birth to 5.5 years in the EPIPAGE-2 cohort.

(1) Respondent: includes complete and incomplete questionnaires. No completed questionnaire whatever the follow-up step: 117/4286 (3%). NICU, neonatal intensive care unit.
with other cohorts. Details and updates of scientific publications can be found on the EPIPAGE-2 website [https://epi-page2.inserm.fr/index.php/en/related-research/scientific-publications]. Some key results are summarized below.

Short- and mid-term health outcomes

Along with providing up-to-date estimates of health outcomes of preterm children, we have shown substantial improvements in both survival and survival without severe morbidity at discharge for newborns born at 25–31 weeks in 2011 compared with 1997. There was also an increased use of evidence-based practices known to be beneficial for the newborn (antenatal corticosteroids, surfactant etc.). These findings were confirmed at 2 years’ corrected age, with a significant increase in survival without severe or moderate neuromotor or sensory disabilities in 2011 compared with 1997. However, a high number of very and moderately preterm children remained at risk of developmental delay at 2 years of age, which underlines the need for formal developmental evaluations. The use of standardized parental assessments [Ages and Stages Questionnaire (ASQ), communicative development

| Table 2 Comparison of respondents and non-respondents at 5.5 years among the 4286 eligible children |
|---------------------------------|---------------------------------|-----------------|
| **Gestational age, weeks** | **Respondent at 5.5 years** | **Non-respondent at 5.5 years** |
| 24-26 | 379/3083 (4.5) | 143/1203 (4.0) |
| 27-31 | 1934/3083 (31.1) | 701/1203 (26.2) |
| 32-34 | 770/3083 (64.4) | 359/1203 (69.8) |

Maternal characteristics at birth
Maternal age at birth, years
<20
20-35
>35

| Mother born in France |
| 2506/3074 (84.4) | 822/1175 (72.2) |

| Mother living with a partner |
| 2725/2925 (94.1) | 977/1130 (85.8) |

Parents’ socioeconomic positionb
Manager
750/2959 (26.4)
Professional
704/2959 (24.8)
Intermediatec
766/2959 (25.4)
Sales and services worker
370/2959 (12.0)
Manual worker
315/2959 (9.6)
Unknown
54/2959 (1.7)

Maternal level of education
Lower secondary
845/2982 (26.9)
Upper secondary
616/2982 (20.5)
Post-secondary, not tertiary
629/2982 (21.6)
Bachelor degree or more
892/2982 (31.0)

| Multiple pregnancy |
| 1079/3083 (37.4) | 366/1203 (32.0) |

Children characteristics
Male
1638/3083 (54.9)
Small-for-gestational agead
1069/3082 (34.1)
Severe neonatal morbiditiese
376/2936 (7.0)
Cerebral palsy at 2 years
104/2848 (2.4)

ns: non significant.
^Weighted percentages.
^Defined as the highest occupational status between current (or former) occupations of the mother and the father, or mother only if living alone, and based on the Classification of Professions and Socioprofessional Categories, developed by the French National Institute of Statistics and Economic Studies.
^Intermediate socioeconomic position includes employees from administration and public service, self-employed and students.
^Defined as birthweight less than the 10th percentile for gestational age and sex based on French intrauterine growth curves (Ego 2016).
^Defined as severe bronchopulmonary dysplasia or necrotizing enterocolitis stage 2–3 or severe retinopathy of prematurity stage ≥3 or any of the following severe cerebral abnormalities on cranial ultrasonography: intraventricular haemorrhage grade III or IV or cystic periventricular leukomalacia.
inventories (CDI) was considered a valuable screening approach to allow referral of children to a professional if they might benefit from early interventions.34,35 However, this screening strategy will have to be validated with outcomes and specific needs at later stages.

Extreme prematurity (22–26 weeks)
Survival of extremely preterm children in France was lower than in several other developed countries because of less active antenatal and postnatal care.33,36–39 Moreover, infants born in type III hospitals with higher intensity of perinatal care showed improved survival at 2 years’ corrected age, with no increase in sensorimotor morbidity.40 Accordingly, French practices were reassessed and new recommendations were issued in 2020 by French medical associations.

Obstetric determinants of preterm children’s prognosis
Another major contribution of the EPIDISE-2 cohort study has been to further study antenatal and obstetric predictors of child outcomes. We developed a new clinically relevant classification of causes of preterm birth,41 which was used to more accurately describe preterm newborns’ and children’s prognosis.42–44 Other studies have focused on specific pregnancy complications, their management and related health outcomes.45,46

Evaluation of medical interventions, unit policies and organization of care
EPIPAGE-2 gave us the opportunity to evaluate a large variety of non-consensual or controversial medical interventions and practices in a real-life setting. We have shown that tocolysis administration after preterm premature rupture of membranes (PPROM), although frequently used, was not associated with improved outcomes.47 In addition, planned cesarean section was not associated with improved neonatal and 2-year outcomes for preterm twins or preterm cephalic or breech singletons born after preterm labour or PPROM.48–50 The comparison of antenatal and postnatal assessments of fetal growth restriction revealed discordances for 14% of very preterm infants, birthweight

Table 3 Data collected on maternal health, antenatal management, family’s sociodemographic characteristics and lifestyle
Birth
Maternal health
Medical history
Obstetric history
Pregnancy complications
Post-partum depression
Post-partum anxiety
Global self-rated health
Mental self-rated health
Physical self-rated health
Antenatal management
Diagnosis and medical management
Ultrasoundography and blood tests
Treatments and medications
Hospitalizations during pregnancy
Indications for medical interventions
Delivery and post-partum
Parental sociodemographic characteristics
Familial status
Occupational status
Educational level
Country of birth/nationality
Family’s lifestyle, living conditions and living standards
Household composition
Monthly household income
Social security coverage
Type of housing
Language spoken at home

The table specifies whether the information was collected from medical records (✓), mother’s interview (○), parental self-administered questionnaire (†) or not collected at this follow-up (-).
being more relevant for identifying infants with increased risk.51

For infants born before 29 weeks, we showed that echo-cardiography screening before Day 3 of life was associated with lower in-hospital mortality,52 that treating isolated hypotension was associated with improved short-term outcomes53 and that early extubation was not associated with an increased risk of intraventricular haemorrhage.54

A slow progression of enteral feeding and a less favourable direct-breastfeeding unit policy, as well as some specific microbiota patterns, were associated with the development of necrotizing enterocolitis.55 There were large variations in breastfeeding at discharge, regardless of individual factors, which were partly explained by unit policies, suggesting that improvements in unit policies could result in increasing breastfeeding rates.56,57
Neurodevelopmental care implementation is advocated by parent associations. We investigated its dissemination in French neonatal intensive care units (NICUs), showing the essential role of unit policies and the beneficial impact of structured programmes, such as the Newborn Individualized Developmental Care and Assessment Program (NIDCAP), on this dissemination.\(^{58,59}\)

We also explored the regionalization of care, showing lower NICU volume associated with lower survival, with no difference in disabilities at 2 years.\(^{60}\)

Collaborations

Besides being a very federative project for French clinicians and researchers, the large array of clinical data and biological material collected in the EPIPAGE-2 cohort has led to a number of national and international collaborations.

At the national level, EPIPAGE-2 is closely associated with the ELFE birth cohort [https://www.elfe-france.fr/], whose 18 000 children born at term or near term in France in 2011 serve as a comparison group for some research questions, owing to the collection of similar data.\(^{61}\) These two cohorts led to the creation of the RE-CO-NAI research platform, which provides researchers with a database for 22 500 children.

EPIPAGE-2 is part of three projects conducted within the European Union’s Seventh Framework and Horizon 2020 research and innovation programmes: EPICE (Effective Perinatal Intensive Care in Europe, [https://www.epiceproject.eu]),\(^{62}\) SHIPS (Screening to Improve Health in Preterm Infants in Europe), and RECAP-preterm (Research on European Children and Adults born Preterm, [https://recap-preterm.eu/]). International comparisons of practices and outcomes were also initiated.\(^{63}\)

The variability of practices and health outcomes described in EPIPAGE-2 has led to setting up multidisciplinary working groups, gathering stakeholders from the French perinatal community and parent associations, aiming at fostering strategies at the national level regarding the perinatal management of extremely preterm babies or the dissemination of neurodevelopmental care. Findings were also used to update French guidelines for clinical practice.\(^{64,65}\)

What are the main strengths and weaknesses?

Strengths include the large size of the cohort, the population-based design at a national level and the prospective enrolment and longitudinal follow-up of infants born preterm. To the best of our knowledge, there is no comparable study covering a broad spectrum of preterm infants from the limits of viability to moderate health.
Table 6 Additional projects nested in the EPIPAGE-2 cohort

Projects	Objectives/number of included children	Funding	Age at material/data collection	Collected material/data
CHORHIST	Histological chorioamnionitis and subsequent health outcomes N = 1406	EQUIPEX—ANR-11-EQPX-0038	Birth	Histological data on placentas
EPIPPAIN 2	Painful procedures in NICU and subsequent neurodevelopment N = 562	Fondation CNP and Regional Hospital Clinical Research Program (PHRC), 2011	Birth	Data on painful procedures in level-III neonatal care units
OLIMPE	Early mother-infant interactions and attachment and subsequent development N = 167	Fondation de France, 2011	Birth, 6 months	Data on mother-infant attachment
ETHICS	Antenatal and postnatal decision-making processes regarding extremely preterm infants N = 419	Fondation de France, 2010	Birth	Data on limitations of care
EPIRMEX	Cerebral lesions detected by magnetic resonance imaging and development N = 313	National Hospital Clinical Research Program (PHRC) 2011	Birth	Data from magnetic resonance imaging (n = 298)
EPINUTRI	Neonatal nutrient intake and child development N = 325	National Hospital Clinical Research Program (PHRC) 2013	Birth	Data on infant’s polyunsaturated fatty acids and iron intake
EPIFLORE	Intestinal microbiota and diseases of early childhood, childhood and adolescence N = 729	ANR 2013	Birth	Infant stools (n = 720)
BIOPAG	Biological markers and short- and long-term complications in children N = 163	EQUIPEX—ANR-11-EQPX-0038	Birth	Child stools (n = 212)
EPIPAGE-2	Influence of early nutritional practices in neonatology on children’s ‘metabolic’ status at 5.5 years and its link with growth trajectories N = 401	EQUIPEX—ANR-11-EQPX-0038	5.5 years	Saliva (n = 1335)
EPIVAREC	Nestlé 5.5 years	ANR-13-APPR-0007 and National Hospital Clinical Research Program (PHRC) 2013	5.5 years	Child’s urine (n = 175)
EPILANG	Randomized controlled trial of a speech-language guidance program N = 52	National Hospital Clinical Research Program (PHRC) 2013	2 years	Language score of the Developmental Neuropsychological Assessment (NEPSY)
EPIREMED	Randomized controlled trial of cognitive training on visuospatial processing N = 170	National Hospital Clinical Research Program (PHRC) 2015	5 years, 7 years	Primary index scores of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI IV)
Can I get hold of the data? Where can I find out more?

EPIPAGE-2 was conceived as a research platform to serve the national and international scientific community, with an open data access policy under conditions that ensure data security and confidentiality. To date, data have been requested for 117 projects from 17 different French research institutes or universities and two international projects. Our longitudinal dataset has great potential for collaborations and other secondary analyses. We therefore welcome proposals for data access. The data are accessible to all research teams, French or foreign. The study protocol and the data access procedure can be found on the EPIPAGE-2 website [https://epipage2.insERM.fr/index.php/en/related-research/access-to-epipage-2-data]. Questionnaires and data catalogues are available on the Pandora platform [https://pandora-epipage2-data.epipage2.inserm.fr/index.php/en/related-research/access-to-eipipage-2-data]. Further enquiries should be submitted to Prof. Ancel, contact e-mail: [accesdonnees.epipage@inserm.fr].

Funding

The French National Institute of Public Health Research (IRESP) [https://epipage2-data.epipage2-data-insERM.fr/] and its partners [the French Health Ministry, the National Institute of Health and Medical Research (INSERM), the National Institute of Cancer, the National Solidarity Fund for Autonomy (CNSA)], the National Research Agency through the French EQUIPEX programme of investments for the future (grant no. ANR-11-EQPX-0038) and the PremUp Foundation. Additional funding was obtained from the Fondation pour la Recherche Medicale (SPF 20160936356) and Fondation de France [00050329 and R18202KK (Grand Prix)].

Acknowledgements

We are grateful to the participating children and their families, all maternity and neonatal units in France and all national and regional collaborators who made EPIPAGE 2 possible. The authors thank Laura Smales for editorial assistance and acknowledge the collaborators of the EPIPAGE-2 Study Group: Alsace: D Astruc, P Kuhn, B Langer, J Matis, C Ramousset; Aquitaine: X Hernandezora, P Chabanier, L Joly-Pedespan, M Rebola, M J Costeado, A Leguen, C Martin; Auvergne: B Lecomte, D Lemery, F Vindetelli, E Rochette; Basse-Normandie: G Beucher, M Dreyfus, B Guililois, Y Toure, D Rots; Bourgogne: A Burguet, S Couvreur, J B Gouyon, P Sagot, N Colas, A Franzin; Bretagne: J Szun, A Beuch âe, P Plady, F Rouger, R P Dupuy, D Soupre, F Charlot, S Roudaut; Centre: A Favreau, E Saliba, L Reboul, E Aoustin; Champagne-Ardenne: N Bednarek, P Morville, V Verrière; Franche-Comté: G Thiriez, C Balamou, C Ratajczak; Haute-Normandie: L Marpeau, S Marrer, C Barbier, N Mestre; Ile-de-France: G Kayem, Y Durrmeyer, M Granier, A Lapillonne, M Ayoubi, O Baud, B Carbone, L Foix L’Hélias, F Goffinet, P H Jarreau, D Mitanchez, P Boileau, C Duffaut, E Lorthe, L Cornu, R Moras, D Salomon, S Medjahed, K Ahmed; Languedoc-Roussillon: P Boulot, G Cambonie, H Daude, A Badessi, N Tsaoisiss, M Poujol; Limousin: A Bédou, F Mon, C Bahamas; Lorraine: M H Binet, J Fresson, J M Hascoet, A Milton, O Morel, R Vieux, L Hilpert; Midi-Pyrénées: C Alberge, C Arnaud, C Vayssière, M Baron; Nord-Pas-de-Calais: M L Charkaluk, V Pierrat, D Subtil, P Truffert, S Akowanou, D Roche, M Thibaut; PACA et Corse: C D’Ercole, C Gire, U Simeoni, A Bongain, M Deschamps, M Zahed; Pays de Loire: B Branger, J C Roca, N Winer, G Gascoin, L Sentilles, V Rouger, C Dupont, H Martin; Picardie: J Gondry, G Krim, B Baby, I Popov; Rhône-Alpes: M Debeir, O Claris, J C Picaud, S Rubio-Gurung, C Cans, A Ego, T Debillon, H Patural, A Ranaud; Guadeloupe: E Janky, A Poulichet, J M Rosenthal, E A Burgue, S Mou, J M Martin, P L Laurence, V Locchelette; La Réunion: P Y Robillard, S Samperze, D Ramful. Inserm UMR 1153: P Y Ancel, H Asadullah, V Benhammou, B Blondel, M Bonet, A Brinis, M L Charkaluk, A Coquelin, V Delormel, M Durox, S Esniol, M Fériaud, L Foix-L’Hélias, F Goffinet, M Kaminski, G Kayem, K Khemache, B Khoshnood, C Lebeaux, E Lorthe, L...
Marchand-Martin, I. Onestas, V. Pierrat, M. Quere, J. Rousseau, A. Ritmi, M. J. Saurel-Cubizolles, D. Tran, D. Sylla, L. Vasante-Annamale, J. Zeitlin.

Conflict of interest
None declared.

References
1. Blencowe H, Cousens S, Oestergaard MZ et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012;379:2162–72.
2. Chawanpaiboon S, Vogel JP, Moller A-B et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 2016;4:e37–46.
3. Blondel B, Lelong N, Kermarrec M, Goffinet F; National Coordination Group of the National Perinatal Surveys. Trends in perinatal health in France from 1995 to 2010. Results from the French National Perinatal Surveys. J Gynecol Obstet Biol Reprod 2012;41:e1–15.
4. Liu L, Oza S, Hogan D et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2015;385:430–40.
5. Saigal S, Doyle LW. An overview of mortality and sequelae of prematurity and early infancy. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA 2000;303:813–20.
6. Saigal S, Doyle LW. Increasing rates of prematurity and early mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA 2000;303:813–20.
7. Vanhaesebrouck P, Allegaert K, Bottu J et al. EPICare. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics 2000;106:659–71.
8. COSTEO K, Hennessy E, Gibson AT, Marlow N, Wilkinson AR; Group for the EpicS. The Epicure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics 2000;106:659–71.
9. EXPRESS Group, Fellman V, Hellström-Westas L, et al. One-year survival of extremely preterm infants after active perinatal care in Sweden. JAMA 2009;301:2225–33.
10. Kramer MS, Demissie K, Yang H, Platt RW, Sauvé R, Liston R. The contribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA 2000;284:43–49.
11. Cheong JLY, Doyle LW. Increasing rates of prematurity and epidemiology of late preterm birth. J Paediatr Child Health 2012;48:784–88.
12. Larroque B. EPIPAGE: epidemiologic study of very premature infants. Protocol of the survey. Arch Pediatr Organne Off Soc Francaise Pediatr 2000;7:339–42.
13. Larroque B, Ancel P-Y, Marret S et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 2008;371:813–20.
14. Larroque B, Ancel P-Y, Marchand-Martin I et al. Special care and school difficulties in 8-year-old very preterm children: the EPipage cohort study. PloS One 2011;6:e21361.
15. Torchin H, Ancel P-Y. [Epidemiology and risk factors of preterm birth]. J Gynecol Obstet Biol Reprod (Paris) 2016 Dec;45:1213–30.
16. Draper ES, Manktelow BN, Cuttini M et al. Variability in very preterm stillbirth and in-hospital mortality across Europe. Pediatrics 2017;139:e20161990.
17. Ancel P-Y, Goffinet F; EPIPAGE 2 Writing Group. EPIPAGE 2: a preterm birth cohort in France in 2011. BMC Pediatr 2014;14:97.
18. Robins DL, Fein D, Barton ML, Green JA. The modified checklist for Autism in Toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders. J Autism Dev Disord 2001;31:131–44.
19. Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol 2000;42:816–24.
20. Ghassabian A, Sundaram R, Bell E, Bello SC, Kus C, Yeung E. Gross motor milestones and subsequent development. Pediatrics 2016;138:e20154372.
21. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1977;1:385–40.
22. Spielberger CD. State-Trait Anxiety Inventory. In: The Corsini Encyclopedia of Psychology. Atlanta, GA: American Cancer Society, 2010.
23. Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ 1993;306:1437–40.
24. Flamant C, Branger B, Nguyen The Tich S et al. Parent-completed developmental screening in premature children: a valid tool for follow-up programs. PLoS One 2011;6:e20004.
25. Kern S, Langue J, Zesiger P, Bovet Boone F. Adaptations française des versions courtes des inventaires du développement communicatif de MacArthur-Bates [French adaptations of short versions of MacArthur-Bates communicative inventories]. Approche Neuropsychol Apprentiss Che Enfant 2010;107:108,217–28.
26. Chlebowski C, Robins DL, Barton ML, Fein D. Large-scale use of the modified checklist for autism in low-risk toddlers. Pediatrics 2013;131:e1121–27.
27. Korkman M, Kemp SL, Kirk U, Lepoutre D. Éditions du Centre de psychologie appliquée (Paris) [NEPSY-II]. Montreuil, France: ECPA, Pearson, 2012.
28. Goodman R, Scott S. Comparing the Strengths and Difficulties Questionnaire and the Child Behavior Checklist: is small beautiful? J Abnorm Child Psychol 2006;34:255–63.
29. Smits-Engelsman BC, Fiers MJ, Henderson SE, Henderson L. Interrater reliability of the Movement Assessment Battery for Children. Phys Ther 2008;88:286–94.
30. Musher-Eizenman DR, de Lauzon-Guillain B, Holub SC, Leporc E, Charles MA. Child and parent characteristics related to parental feeding practices. A cross-cultural examination in the US and France. Appetite 2009;52:89–95.
61. Charles MA, Thierry X, Lanoe J-L et al. Cohort Profile: The French National cohort of children ELFE: birth to 5 years. *Int J Epidemiol* 2020;49:368–69.

62. Zeitlin J, Maier RF, Cuttini M et al. Cohort Profile: Effective Perinatal Intensive Care in Europe (EPICE) very preterm birth cohort. *Int J Epidemiol* 2020;49:372–86.

63. Wang D, Yasseen AS, Marchand-Martin L et al. A population-based comparison of preterm neonatal deaths (22–34 gestational weeks) in France and Ontario: a cohort study. *CMAJ Open* 2019;7:E159–66.

64. Sentilhes L, Sénat M-V, Ancel P-Y et al. Prevention of spontaneous preterm birth: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). *Eur J Obstet Gynecol Reprod Biol* 2017;210:217–24.

65. Schmitz T, Sentilhes L, Lorthe E et al. Preterm premature rupture of the membranes: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). *Eur J Obstet Gynecol Reprod Biol* 2019;236:1–6.