A PRIORI BOUNDS FOR THE VORTICITY OF AXIALLY SYMMETRIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

JENNIFER BURKE LOFTUS AND Qi S. ZHANG
Department of Mathematics, University of California, Riverside, CA 92521

(Submitted by: J.A. Goldstein)

Abstract. We obtain a pointwise, a priori bound for the vorticity of axially symmetric solutions to the three-dimensional Navier-Stokes equations. The bound is in the form of a reciprocal of a power of the distance to the axis of symmetry. This seems to be the first general pointwise upper bound established for the axially symmetric Navier-Stokes equations.

1. Introduction

Recall the incompressible Navier-Stokes equations given in Cartesian coordinates:

\[\Delta v - (v \cdot \nabla)v - \nabla p - \partial_t v = 0, \quad \text{div } v = 0, \]

where the velocity field is \(v = (v_1(x, t), v_2(x, t), v_3(x, t)) : \mathbb{R}^3 \times [0, T] \to \mathbb{R}^3 \) and \(p = p(x, t) : \mathbb{R}^3 \times [0, T] \to \mathbb{R} \) is the pressure. When one converts the system to cylindrical coordinates \(r, \theta, z \) with \((x_1, x_2, x_3) = (r \cos \theta, r \sin \theta, z) \) and considers only those solutions that are axially symmetric, then solutions are restricted to ones of the form

\[v(x, t) = v_r(r, z, t)\hat{e}_r + v_\theta(r, z, t)\hat{e}_\theta + v_z(r, z, t)\hat{e}_z. \]

The components \(v_r, v_\theta, v_z \) are all independent of the angle of rotation \(\theta \). Note that \(\hat{e}_r, \hat{e}_\theta, \hat{e}_z \) are the basis vectors for \(\mathbb{R}^3 \) given by

\[\hat{e}_r = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0 \right), \quad \hat{e}_\theta = \left(-\frac{x_2}{r}, \frac{x_1}{r}, 0 \right), \quad \hat{e}_z = (0, 0, 1). \]

Much had been accomplished along the lines of axially symmetric solutions including the long-time existence and uniqueness of strong solutions if the space region is taken to be all of \(\mathbb{R}^3 \), the external force \(f \), if any, as well as the initial velocity \(v_0 \), are axially symmetric, and the rotational components, \(f_\theta \)

Accepted for publication: October 2009.
AMS Subject Classifications: 35Q30 and 35B07.
531
and $v_{0,\theta}$, are equal to zero. That is, the no-swirl case is known, and has been since the late 1960’s (see O. A. Ladyzhenskaya [10], M. R. Uchovskii and B. I. Yudovich [14], and S. Leonardi, J. Malek, J. Necas, and M. Pokorny [11]). More recent activities, in the presence of swirl, include the results of C.-C. Chen, R. M. Strain, T.-P. Tsai, and H.-T. Yau in [3] and [4], where they prove a lower bound on the blow-up rate of axially symmetric solutions. Similar to these results, more can be found in the work by G. Koch, N. Nadirashvili, G. Seregin, and V. Sverak [9]; under natural assumptions they address the types of singularities that can occur in solutions to the Navier-Stokes equations. See also the work by G. Seregin and V. Sverak [12]. Also, in the presence of swirl, there is the paper by J. Neustupa and M. Pokorny [7], proving that the regularity of one component (either v_r or v_θ) implies regularity of the other components of the solution. Also proving regularity is the work of Q. Jiu and Z. Xin [8] under an assumption of sufficiently small zero-dimension scaled norms. We would also like to mention the regularity results of D. Chae and J. Lee [2] who also prove regularity results assuming finiteness of another certain zero-dimensional integral. Lastly, we mention the results of G. Tian and Z. Xin [13], who constructed a family of singular axially symmetric solutions with singular initial data, as well as that of T. Hou and C. Li [5] who found a special class of global smooth solutions. See also a recent extension: T. Hou, Z. Lei and C. Li [6].

In our paper, in essence, we prove an upper bound for the (possible) blow-up rate of the vorticity of axially symmetric solutions to the three-dimensional Navier-Stokes equations. We, first, state a well-known a priori bound for the rotational component of the velocity; a proof can be found in [2] Section 3, Proposition 1, for example. From this we prove an a priori bound on ω_θ, the rotational component of the curl, in regions close to the axis of symmetry, using a Moser’s iteration argument similar to that found in the publication [15], as well as methods in [3]. With our bound on ω_θ, we derive a bound on the remaining components of the curl.

Let us introduce some notation. We use $x = (x_1, x_2, x_3)$ to denote a point in \mathbb{R}^3 for rectangular coordinates, and in the cylindrical system we use $r = \sqrt{x_1^2 + x_2^2}$, $\theta = \tan^{-1}\frac{x_2}{x_1}$, $z = x_3$. Let $R > 0$, $S > 0$, and $0 < A < B$ be constants. Define $P_{AR,BR,SR}$ to be the region $P_{AR,BR,SR} = C_{A,B,R} \times (-S^2R^2, 0)$, where $C_{A,B,R} = \{(x_1, x_2, x_3) : AR \leq r \leq BR, 0 \leq \theta \leq 2\pi, |z| \leq BR\} \subset \mathbb{R}^3$ is the hollowed out cylinder centered at the origin, with inner radius AR, outer radius BR, and height extending up and down BR units for a total height of $2BR$. We can now state the theorem of the paper.
Theorem 1.1. Suppose \(v \) is a smooth, axially symmetric solution of the three-dimensional Navier-Stokes equations in \(\mathbb{R}^3 \times (-T, 0) \) with initial data \(v_0 = v(\cdot, -T) \in L^2(\mathbb{R}^3) \), and \(\omega \) is the vorticity. Assume further, \(rv_0, \theta \in L^\infty(\mathbb{R}^3) \) and let \(0 < R \leq \min\{1, \frac{T}{2}\} \). Then, there exist constants, \(B_1 \) and \(B_2 \), depending only on the initial data, such that, for all \((x, t) \in P_{2R, 3R, \frac{4R}{3}} \subset \mathbb{R}^3 \times (-T, 0) \), where

\[
(i) \quad |\omega_\theta(x, t)| \leq \frac{B_1}{(x_1^2 + x_2^2)^{\frac{5}{2}}}; \quad (ii) \quad |\omega_r(x, t)| + |\omega_z(x, t)| \leq \frac{B_2}{(x_1^2 + x_2^2)^{\frac{5}{2}}}.
\]

Remark 1.1. The constants \(B_1, B_2 \) in the above theorem are recorded here:

\[
B_1 = c\left(\|b\|_{L^\infty((-R^2, 0; L^2(C_{1,4,R}))} + R\|rv_0, \theta\|_{L^\infty(\mathbb{R}^3)} \right)^{\frac{5}{2}}
\times \left(\|\omega_\theta\|_{L^2(P_{R, 4R, \frac{4R}{3}})} + \sqrt{R}\|rv_0, \theta\|_{L^\infty(\mathbb{R}^3)} \right),
\]

\[
B_2 = c\left[(\|b\|_{L^\infty((-2R^2, 0; L^2(\frac{1}{10}, R)))} + R^2\|rv_0, \theta\|_{L^\infty(\mathbb{R}^3)} + R^2)\|\omega_\theta\|^2_{L^2(P_{R, 10R, \frac{4R}{3}})}
\right.
\left. + R\|b\|^4_{L^\infty((-2R^2, 0; L^2(\frac{1}{10}, R)))} + \|v\|^2_{L^2(P_{R, 10R, \frac{4R}{3}})} + R^3 \right]^{\frac{5}{2}}
\times \left(\|\omega_r\|_{L^2(P_{R, 10R, \frac{4R}{3}})} + \|\omega_z\|_{L^2(P_{R, 10R, \frac{4R}{3}})} \right),
\]

where \(b = (v_r, 0, v_z) \) and \(c \) is a generic constant. \(B_1 \) and \(B_2 \) depend only on the initial data, \(v_0 \), by standard energy estimates. Also they can be made to be independent of the smallness of \(R \). Actually, \(B_1, B_2 \to 0 \) when \(R \to 0 \). Also, statements (i) and (ii) are scaling invariant.

Remark 1.2. We assume smoothness of the solution only for technical simplicity. One can use standard approximation methods to treat the weak solution case. One application of the result is that it implies that the singularity of the solution in the theorem can only occur at the \(z \) axis. So far such a statement can only be made for suitable solutions, due to [1]. There is no assumption for pressure in our theorem. Therefore, the solutions here may not be suitable.

The remainder of the paper is organized as follows: Section 2, Preliminaries, Section 3: a priori bound for \(\omega_\theta \), Section 4: a priori bound for \(\omega_r \) and \(\omega_z \).

2. Preliminaries

Let us recall the standard conversion of the three-dimensional axially symmetric Navier-Stokes equations to cylindrical form (see [3] for example):
\[
\begin{align*}
 \begin{cases}
 (\Delta - \frac{1}{r^2})v_r - (b \cdot \nabla)v_r + \frac{v_r^2}{r} - \frac{\partial p}{\partial r} - \frac{\partial v_r}{\partial t} = 0, \\
 (\Delta - \frac{1}{r^2})v_\theta - (b \cdot \nabla)v_\theta - \frac{v_r v_\theta}{r} - \frac{\partial v_\theta}{\partial t} = 0, \\
 \Delta v_z - (b \cdot \nabla)v_z - \frac{\partial p}{\partial z} - \frac{\partial v_z}{\partial t} = 0, \\
 \frac{1}{r} \frac{\partial (rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0,
 \end{cases}
\end{align*}
\]

where \(b(x, t) = (v_r, 0, v_z) \) and the last equation is the divergence-free condition. Here, \(\Delta \) represents the cylindrical scalar Laplacian and \(\nabla \) is the cylindrical gradient field which we record here:

\[
\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}, \quad \nabla = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial z} \right).
\]

Notice that the equation for \(v_\theta \) does not depend on the pressure. Defining \(\Gamma = rv_\theta \), one sees that the function \(\Gamma \) satisfies

\[
\begin{align*}
 \Delta \Gamma - (b \cdot \nabla)\Gamma + 2 \frac{rv_\theta}{r} \frac{\partial v_\theta}{\partial z} + v_r v_\theta - \frac{\partial \Gamma}{\partial t} = 0
 \quad \text{div } b = 0.
\end{align*}
\]

(2.1)

Also recall the vorticity field \(\omega = \text{curl } v \) for axially symmetric solutions:

\[
\omega(x, t) = \omega_r \mathbf{e}_r + \omega_\theta \mathbf{e}_\theta + \omega_z \mathbf{e}_z,
\]

\[
\omega_r = -\frac{\partial v_\theta}{\partial z}, \quad \omega_\theta = \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}, \quad \omega_z = \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}.
\]

(2.2)

Next, we record the equations of vorticity \(\omega = \text{curl } v \), in cylindrical form (again, see [3] for example):

\[
\begin{align*}
 \begin{cases}
 (\Delta - \frac{1}{r^2})\omega_r - (b \cdot \nabla)\omega_r + \omega_r \frac{\partial v_r}{\partial r} + \omega_z \frac{\partial v_\theta}{\partial z} - \frac{\partial \omega_r}{\partial t} = 0, \\
 (\Delta - \frac{1}{r^2})\omega_\theta - (b \cdot \nabla)\omega_\theta + 2 \frac{rv_\theta}{r} \frac{\partial v_\theta}{\partial z} + \omega_r \frac{v_\theta}{r} - \frac{\partial \omega_\theta}{\partial t} = 0, \\
 \Delta \omega_z - (b \cdot \nabla)\omega_z + \omega_z \frac{\partial v_\theta}{\partial z} + \omega_r \frac{\partial v_z}{\partial r} - \frac{\partial \omega_z}{\partial t} = 0.
 \end{cases}
\end{align*}
\]

Define \(\Omega = \frac{\omega_\theta}{r} \), then we have that \(\Omega \) satisfies

\[
\begin{align*}
 \Delta \Omega - (b \cdot \nabla)\Omega + 2 \frac{\partial \Omega}{r} \frac{\partial v_\theta}{\partial r} - \frac{\partial \Omega}{\partial t} + 2 \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial z} = 0, \quad \text{div } b = 0.
 \quad \text{(2.3)}
\end{align*}
\]

We confirm this by utilizing the fact that \(r \Omega = \omega_\theta \) and thus satisfies the rotational equation for vorticity:

\[
\begin{align*}
 \left(\Delta - \frac{1}{r^2} \right) (r \Omega) - (b \cdot \nabla)(r \Omega) + 2 \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial z} + \frac{v_r}{r} (r \Omega) - \frac{\partial (r \Omega)}{\partial t} = 0.
\end{align*}
\]

We compute with the product rule on each term:

\[
\begin{align*}
 \Delta (r \Omega) = & \frac{r^2}{r^2} \frac{\partial^2 \Omega}{\partial r^2} + 3 \frac{\partial \Omega}{\partial r} + \frac{\partial \Omega}{r} + r \frac{\partial^2 \Omega}{\partial z^2},
\end{align*}
\]
A priori bounds

\[-\frac{1}{r^2}(r\Omega) = -\frac{\Omega}{r},\]
\[(-b \cdot \nabla)(r\Omega) = -v_r\Omega - r(b \cdot \nabla)\Omega,\]
\[\frac{v_r}{r}(r\Omega) = v_r\Omega,\]
\[\frac{\partial}{\partial t}(r\Omega) = -r\frac{\partial \Omega}{\partial t}.\]

We sum the above and the inhomogeneous term, \(\frac{2v_\theta \partial v_\theta}{r^2}\), to get
\[r \frac{\partial^2 \Omega}{\partial r^2} + \frac{\partial \Omega}{\partial r} + r \frac{\partial^2 \Omega}{\partial z^2} - r(b \cdot \nabla)\Omega + 2 \frac{\partial \Omega}{\partial r} - r \frac{\partial \Omega}{\partial t} + \frac{2v_\theta \partial v_\theta}{r^2} = 0.\]

Grouping all but the last term and factoring out and dividing through by \(r\), provides
\[\Delta \Omega - (b \cdot \nabla)\Omega + 2 \frac{\partial \Omega}{r \partial r} - \frac{\partial \Omega}{\partial t} + \frac{2v_\theta \partial v_\theta}{r^2} = 0.\]

Notice that equations (2.1) and (2.3) are similar except for a sign change on the term involving \(\partial r\) and the addition of an inhomogeneous term in (2.3).

Equation (2.1) is used in [3] to provide the lower bound on the blow-up rate for axially symmetric solutions. As we work with equation (2.3), we assume the initial condition that provides for the pointwise bound of \(v_\theta\) that appears in [2], which we restate below. Note, this is also implicitly stated in [7] (in Step 3.2 pages 396-397).

Proposition 2.1. Suppose \(v\) is a smooth, axially symmetric solution of the three-dimensional Navier-Stokes equations with initial data \(v_0 \in L^2(\mathbb{R}^3)\). If \(r v_{0,\theta} \in L^p(\mathbb{R}^3)\), then \(r v_\theta \in L^\infty(0,T;L^p(\mathbb{R}^3))\). In particular, if \(p = \infty\),

\[|v_\theta(x,t)| \leq \frac{\|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)}}{\sqrt{x_1^2 + x_2^2}}.\]

We will also utilize the scaling of the Navier-Stokes equations in conjunction with a change of variables. We recall that scaling of the equations now; the pair \((v(x,t),p(x,t))\) is a solution to the system, if and only if for any \(k > 0\) the re-scaled pair \((\tilde{v}(x,t),\tilde{p}(x,t))\) is also a solution, where \(\tilde{v}(x,t) = kv(kx,k^2t)\), \(\tilde{p}(x,t) = k^2p(kx,k^2t)\). Thus, if \((v,p)\) is a solution to the axially symmetric Navier-Stokes equations for \((x,t) \in P_{k,4k,k^2}\) then \((\tilde{v}(\tilde{x},\tilde{t}),\tilde{p}(\tilde{x},\tilde{t}))\) is a solution to the equation in the variables \(\tilde{x} = \frac{x}{k},\tilde{t} = \frac{t}{k^2}\) when \((\tilde{x},\tilde{t}) \in P_{1,4,1}\). We note here how certain quantities scale or change due
to the above. Here, D is any domain in \mathbb{R}^3 and $kD = \{x : x = ky, y \in D\}$:

$$r = \sqrt{x_1^2 + x_2^2} : \bar{r} = \sqrt{\left(\frac{x_1}{k}\right)^2 + \left(\frac{x_2}{k}\right)^2} = \frac{r}{k}$$

$$\|v(x,t)\|_{L^2(kD \times (-kR^2,0))} : \|\bar{v}(\bar{x},\bar{t})\|_{L^2(D \times (-R^2,0))} = \left(\int_{-R^2}^{0} \int_D |\bar{v}(\bar{x},\bar{t})|^2 d\bar{x} d\bar{t}\right)^{\frac{1}{2}}$$

$$= \left(\int_{-kR^2}^{0} \int_{kD} |kv(x,t)|^2 \frac{1}{k^5} dxdt\right)^{\frac{1}{2}} = \frac{1}{k^{\frac{1}{2}}} \|v(x,t)\|_{L^2(kD \times (-kR^2,0))}.$$

$b(x,t) = (v_1,0,v_2)$:

$$\bar{b}(\bar{x},\bar{t}) = (kv_1(kx,k^2t),0,kv_2(kx,k^2t)) = kb(kx,k^2t), \quad (x,t) \in P_{k,4k,k}$$

$$\Rightarrow \bar{b}(\bar{x},\bar{t}) = kb(x,t).$$

$$\|b(x,t)\|_{L^\infty(-kR^2,0;L^2(kD))} = \sup_{-kR^2 \leq \bar{t} < 0} \left(\int_D |b(\bar{x},\bar{t})|^2 d\bar{x}\right)^{\frac{1}{2}}$$

$$= \sup_{-kR^2 \leq \bar{t} < 0} \left(\int_{kD} |kb(x,t)|^2 \frac{1}{k^3} dx\right)^{\frac{1}{2}} = \frac{1}{k^{\frac{1}{2}}} \|b(x,t)\|_{L^\infty(-kR^2,0;L^2(kD))}.$$

$\omega(x,t)$:

$$\bar{\omega}(\bar{x},\bar{t}) = k^2 \omega(kx,k^2t), \quad (x,t) \in P_{1,4k} \Rightarrow \bar{\omega}(\bar{x},\bar{t}) = k^2 \omega(x,t)$$

$$\|\omega(x,t)\|_{L^2(kD \times (-kR^2,0))} : \|\bar{\omega}(\bar{x},\bar{t})\|_{L^2(D \times (-R^2,0))} = \left(\int_{-R^2}^{0} \int_D |\bar{\omega}(\bar{x},\bar{t})|^2 d\bar{x} d\bar{t}\right)^{\frac{1}{2}}$$

$$= \left(\int_{-kR^2}^{0} \int_{kD} |k^2 \omega(x,t)|^2 \frac{1}{k^5} dxdt\right)^{\frac{1}{2}} = \frac{1}{k^{\frac{1}{2}}} \|\omega(x,t)\|_{L^2(kD \times (-kR^2,0))}.$$

One can show that $\tilde{\Gamma}(\bar{x},\bar{t}) = \bar{r} \bar{v}_\theta(\bar{x},\bar{t})$ is a solution to (2.1) and $\tilde{T}(\bar{x},\bar{t}) = \bar{\omega}(\bar{x},\bar{t}) \bar{r}$ is a solution to (2.3) in the variables $(\bar{x},\bar{t}) \in P_{1,4,1}$. We will do most of our computations on scaled cylinders.

3. **A priori bound for ω_θ**

In this section, and in Section 4, we are going to drop the “tilde” notation for the sake of simplicity for a time when computations take place over the scaled cylinders. We will then recall that the $L^2 - L^\infty$ bounds derived are
A priori bounds 537

Note, however, because of this scaling, we must keep a close watch on constants that involve the quantities discussed in the preliminaries.

Proof of Theorem 1.1 (i). In the region $P_{1,4,1}$ we do our analysis on (2.3):

$$\Delta \Omega - (b \cdot \nabla) \Omega + \frac{2}{r} \frac{\partial \Omega}{\partial r} - \frac{\partial \Omega}{\partial t} + \frac{2v_{\theta}}{r^2} \frac{\partial v_{\theta}}{\partial z} = 0, \quad \text{div } b = 0.$$

A flow chart for the argument to prove part (i) of Theorem 1.1 is as follows:

Energy Estimates:
Step 1: Use a refined cut-off function.
Step 2: Estimate drift term $(b \cdot \nabla) \Omega$ using methods similar to [15].
Step 3: Estimate a term involving the cut-off.
Step 4: Estimate the term involving the directional derivative $\frac{\partial}{\partial r}$ using a method similar to that in [3].
Step 5: Estimate the inhomogeneous term utilizing the bound in Proposition 2.1 (see [2]).

$\ell^2 - \ell^\infty$ Estimate on Solutions to (2.3) via Moser’s Iteration.

$\ell^2 - \ell^\infty$ Estimate on ω_θ via re-scaling.

Energy Estimates:
Step 1: We use a revised cut-off function and the equation to obtain inequality (3.4) below.

Let $q \geq 1$ be a rational number. We note that eventually we will be applying Moser’s iteration, where at each step $q = (1 + \frac{2}{n})^i$, $i \in \mathbb{N}$ and here $n = 3$. Let

$$\Lambda = \|v_{\theta}\|_{L^\infty(P_{1,4,1})} \leq \|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)} < \infty, \quad (3.1)$$

utilizing the hypothesis that $rv_{0,\theta} \in L^\infty(\mathbb{R}^3)$, the point-wise bound in Proposition 2.1, and the fact that $1 < \sqrt{x_1^2 + x_2^2} < 4$. Let

$$\Omega_+(x, t) = \begin{cases} \Omega(x, t) + \Lambda & \Omega(x, t) \geq 0, \\ \Lambda & \Omega(x, t) < 0. \end{cases} \quad (3.2)$$

Note that $\Omega_+ \geq \Lambda$ and all derivatives of Ω_+ on the set where $\Omega(x, t) < 0$ are equal to zero. This function is also Lipschitz and Ω is smooth by assumption. At interfaces boundary terms upon integration by parts will cancel and so we can make sense of the calculations below. Direct computation yields

$$\Delta \Omega_+ - (b \cdot \nabla) \Omega_+ + \frac{2}{r} \frac{\partial \Omega_+}{\partial r} - \frac{\partial \Omega_+}{\partial t} + \frac{2v_{\theta}}{r^2} \frac{\partial v_{\theta}}{\partial z} = -\frac{q\Omega_+^{q-1}}{r^2} \frac{\partial v_{\theta}^2}{\partial z} + q(q-1)\Omega_+^{q-2} |\nabla \Omega_+|^2. \quad (3.3)$$
Let \(\frac{5}{8} \leq \sigma_2 < \sigma_1 \leq 1 \). Define

\[
P(\sigma_i) = \{(r, \theta, z) : (5 - 4\sigma_i) < r < 4\sigma_i, \ 0 \leq \theta \leq 2\pi, \ |z| < 4\sigma_i\} \times (-\sigma_i^2, 0),
\]

for \(i = 1, 2 \). For convenience denote the space portion, which is a hollowed out cylinder, as \(C(\sigma_i) \) so that \(P(\sigma_i) = C(\sigma_i) \times (-\sigma_i^2, 0) \). Choose \(\psi = \phi(y)\eta(s) \) to be a refined cut-off function satisfying

\[
supp \phi \subset C(\sigma_1); \ \phi(y) = 1 \text{ for all } y \in C(\sigma_2); \ 0 \leq \phi \leq 1;
\]

\[
\frac{|\nabla \phi|}{\phi} \leq \frac{c_1}{\sigma_1 - \sigma_2} \text{ for } \delta \in (0, 1);
\]

\[
supp \eta \subset (-\sigma_1^2, 0); \ \eta(s) = 1, \text{ for all } s \in [-\sigma_2^2, 0]; \ 0 \leq \eta \leq 1
\]

\[
|\eta'| \leq \frac{c_2}{(\sigma_1 - \sigma_2)^2}.
\]

Let \(f = \Omega^q \) and use \(f\psi^2 \) as a test function in (3.3) to get

\[
\int_{P(\sigma_1)} (\Delta f - (b \cdot \nabla) f - \partial_s f + \frac{2}{r}\partial_r f) f\psi^2 dyds
\]

\[
= \int_{P(\sigma_1)} q(q - 1) \Omega^{q-2} |\nabla \Omega|^2 f\psi^2 dyds - \int_{P(\sigma_1)} \frac{q\Omega^{q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} f\psi^2 dyds
\]

\[
= q(q - 1) \int_{P(\sigma_1)} \Omega^{-2} |\nabla \Omega|^2 f^2\psi^2 dyds - \int_{P(\sigma_1)} \frac{q\Omega^{q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} f^2 \psi^2 dyds
\]

\[
\geq - \int_{P(\sigma_1)} \frac{q\Omega^{q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} f^2 \psi^2 dyds.
\]

Integration by parts on the first term implies that

\[
\int_{P(\sigma_1)} \nabla (f\psi^2) \nabla f dyds
\]

\[
\leq \int_{P(\sigma_1)} \left(- b \cdot \nabla f(f\psi^2) - \partial_s f(f\psi^2) + \frac{2}{r}\partial_r f(f\psi^2) + \frac{q\Omega^{q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} f^2 \right) dyds.
\]

A manipulation using the product rule shows that

\[
\int_{P(\sigma_1)} \nabla (f\psi^2) \nabla f dyds = \int_{P(\sigma_1)} (|\nabla (f\psi)|^2 - |\nabla \psi|^2 f^2) dyds.
\]

Thus,

\[
\int_{P(\sigma_1)} |\nabla (f\psi)|^2 dyds \leq \int_{P(\sigma_1)} \left(- b \cdot \nabla f(f\psi^2) - \partial_s f(f\psi^2) + \frac{2}{r}\partial_r f(f\psi^2) + \frac{q\Omega^{q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} f^2 \right) dyds.
\]
\[+ \frac{q\Omega^{2q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} \psi^2 + |\nabla \psi|^2 f^2 \] dyds.

Integration by parts on the term involving the time derivative yields
\[
\int_{P(\sigma_1)} - (\partial_s f) f \psi^2 dyds = -\frac{1}{2} \int_{P(\sigma_1)} \partial_s (f^2) \psi^2 dyds
\]
\[= -\frac{1}{2} \left(\int_{C(\sigma_1)} f^2 \psi^2(y, 0) dy - \int_{C(\sigma_1)} f^2 \psi^2(y, -\sigma_1^2) dy \right) + \frac{1}{2} \int_{P(\sigma_1)} \partial_s (\psi^2) f^2 dyds. \]

Our cut-off functions provide \(\psi^2 = (\phi \eta)^2 \), \(\eta(0) = 1 \), \(\eta(-\sigma_1^2) = 0 \), and \(0 \leq \phi \leq 1 \). Thus,
\[
\int_{P(\sigma_1)} - (\partial_s f) f \psi^2 dyds = -\frac{1}{2} \int_{C(\sigma_1)} f^2 (y, 0) \phi^2(y) dy + \int_{P(\sigma_1)} \phi^2(\eta \partial_s \eta) f^2 dyds
\]
\[\leq \frac{1}{2} \int_{C(\sigma_1)} f^2 (y, 0) \phi^2(y) dy + \int_{P(\sigma_1)} (\eta \partial_s \eta) f^2 dyds, \]
and so,
\[
\int_{P(\sigma_1)} |\nabla (f \psi)|^2 dyds + \frac{1}{2} \int_{C(\sigma_1)} f^2 (y, 0) \phi^2(y) dy
\]
\[\leq \int_{P(\sigma_1)} \psi \div (f \psi) dyds + \int_{P(\sigma_1)} (\eta \partial_s \eta + |\nabla \psi|^2) f^2 dyds
\]
\[+ \int_{P(\sigma_1)} \frac{2}{r} \partial_r f (f \psi^2) dyds + \int_{P(\sigma_1)} \frac{q\Omega^{2q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} \psi^2 dyds
\]
\[:= T_1 + T_2 + T_3 + T_4. \]

Step 2: To deal with \(T_1 \), we refer to [15], where a parabolic equation with a similar drift term is explored.

Since \(\div b = 0 \),
\[
T_1 = \int_{P(\sigma_1)} -b \cdot (\nabla f) (f \psi^2) dyds
\]
\[= \frac{1}{2} \int_{P(\sigma_1)} -b \psi^2 \cdot \nabla (f^2) dyds = \frac{1}{2} \int_{P(\sigma_1)} \div (b \psi^2) f^2 dyds
\]
\[= \frac{1}{2} \int_{P(\sigma_1)} \div b (\psi f)^2 dyds + \frac{1}{2} \int_{P(\sigma_1)} b \cdot \nabla (\psi^2) f^2 dyds
\]
\[= \int_{P(\sigma_1)} b \cdot (\nabla \psi) \psi f^2 dyds \leq \int_{P(\sigma_1)} \left(b \psi^{1+\delta} |f|^{2-a} \right) \left(\frac{\nabla \psi}{\psi^a} |f|^a \right) dyds,
\]
for $0 < \delta < 1$, $0 < a < 2$ which we introduce in order to split the above integral using Hölder’s inequality. Apply Hölder’s inequality with exponents $\frac{4}{3}$ and 4:

$$T_1 \leq \left(\int_{P(\sigma_1)} |b|^{\frac{4}{3}} (\psi^{1+\delta})^2 |f|^{2-a} \right)^{\frac{4}{3}} \frac{c_1}{\sigma_1 - \sigma_2} \left(\int_{P(\sigma_1)} f^2 dy ds \right)^{\frac{1}{4}}.$$

We would like $\frac{4}{3}(1+\delta) = 2$, $\frac{4}{3}(2-a) = 2$. This holds if $\delta = \frac{1}{2}$, $a = \frac{3}{2}$. Using properties of the cutoff function we get

$$T_1 \leq \left(\int_{P(\sigma_1)} |b|^{\frac{4}{3}} (f \psi)^2 dy ds \right)^{\frac{3}{4}} \frac{c_1}{\sigma_1 - \sigma_2} \left(\int_{P(\sigma_1)} f^2 dy ds \right)^{\frac{1}{4}}.$$

Next, we fix $\epsilon_1 > 0$ and we apply Young’s inequality, with exponents $\frac{4}{3}$ and 4:

$$T_1 \leq \left(\int_{P(\sigma_1)} |b|^{\frac{4}{3}} (f \psi)^2 dy ds \right)^{\frac{3}{4}} \cdot \left(\int_{P(\sigma_1)} f^2 dy ds \right)^{-\frac{1}{4}} \frac{c_1}{\sigma_1 - \sigma_2} \left(\int_{P(\sigma_1)} f^2 dy ds \right)^{\frac{1}{4}} \leq \epsilon_1 \int_{P(\sigma_1)} |b|^{\frac{4}{3}} (f \psi)^2 dy ds + \frac{c_3 \epsilon_1^{-3}}{\sigma_1 - \sigma_2} \int_{P(\sigma_1)} f^2 dy ds.$$

Thus,

$$|T_1| \leq \epsilon_1 c_4 K_b^4 (C_{1,4,1}) \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \frac{c_3 \epsilon_1^{-3}}{\sigma_1 - \sigma_2} \int_{P(\sigma_1)} f^2 dy ds, \quad (3.5)$$

where $K_b(C_{1,4,1})$ is the constant

$$K_b(C_{1,4,1}) = \|b\|_{L^\infty(-1,0;L^2(C_{1,4,1}))}.$$

This last inequality holds as a result of $b = (v_r, 0, v_z) \in L^\infty([0, \infty), L^2(\mathbb{R}^3))$, Hölder’s inequality with exponents $\frac{3}{2}$ and 3, and the Sobolev inequality, noting the dimension $n = 3$:

$$\int_{P(\sigma_1)} |b|^{\frac{4}{3}} (f \psi)^2 dy ds \leq \int_{-\sigma_1^2}^{0} \left(\int_{C(\sigma_1)} |b|^2 dy \right)^{\frac{3}{4}} \left(\int_{C(\sigma_1)} (f \psi)^6 dy \right)^{\frac{1}{4}} ds \leq c_4 \sup_{-\sigma_1^2 \leq s \leq 0} \left(\int_{C(\sigma_1)} |b|^2 dy \right)^{\frac{3}{4}} \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds \leq c_4 K_b^4 (C_{1,4,1}) \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds.$$

Step 3: The term involving the cut-off function, T_2, is standard. We use

$$T_2 = \int_{P(\sigma_1)} (\eta \partial_\eta \eta + |\nabla \psi|^2) f^2 dy ds,$$
and properties of the cutoff,

$$|\nabla \psi|^2 = |\eta \nabla \phi|^2 \leq \left(\frac{|\nabla \phi|}{\phi^a} \right)^2 \leq \frac{c_1^2}{(\sigma_1 - \sigma_2)^2};$$

and

$$|\eta \partial_{s} \eta| \leq |\partial_{s} \eta| \leq \frac{c_2}{(\sigma_1 - \sigma_2)^2},$$

to get

$$|T_2| \leq \frac{c_5}{(\sigma_1 - \sigma_2)^2} \int_{P(\sigma_1)} f^2 dy ds.$$ (3.6)

Step 4: As we deal with $T_3 = \int_{P(\sigma_1)} \frac{2}{r} \partial_r f (f \psi^2) dy ds$, we note we are assuming the integration takes place away from the singularity set of the solution to the axially symmetric Navier Stokes equations and away from the z-axis in general. Thus, all functions are bounded and smooth and r varies between two positive constants, confirming this quantity is integrable. We also utilize the cylindrical coordinates of the axially symmetric case, and integration by parts:

$$T_3 = \int_{P(\sigma_1)} \frac{2}{r} \partial_r f (f \psi^2) dy ds = \int_{P(\sigma_1)} \frac{1}{r} \partial_r (f^2 \psi^2) r dr d\theta dz ds$$

$$= \int_{P(\sigma_1)} \partial_r (f^2 \psi^2) dr d\theta dz ds = - \int_{P(\sigma_1)} \partial_r (\psi^2) f^2 dr d\theta dz ds$$

$$= - \int_{P(\sigma_1)} \frac{2}{r} \partial_r \psi (f^2) r dr d\theta dz ds = - \int_{P(\sigma_1)} \frac{2}{r} \partial_r (\psi^2 f^2) dy ds$$

$$= - \int_{P(\sigma_1)} \frac{2}{r} |\nabla \psi| \psi f^2 dy ds.$$

The Cauchy-Schwartz inequality then implies

$$|T_3| \leq \int_{P(\sigma_1)} \frac{1}{r} |\nabla \psi| \psi f^2 dy ds.$$

Next, we use splitting methods similar to those found in [3]; fix $\epsilon_2 > 0$, $m > 1$ to be chosen later and apply Young’s inequality with exponents m and $\frac{m}{m-1}$:

$$|T_3| \leq \int_{P(\sigma_1)} \frac{2}{r} |\nabla \psi| \psi f^2 dy ds$$

$$= \int_{P(\sigma_1)} \left((m \epsilon_2 \frac{\sigma_1}{\sigma_2}) \frac{2}{r} (\psi f) \frac{2}{m} \right) \times \left((m \epsilon_2 \frac{\sigma_1}{\sigma_2}) \frac{1}{m} \psi^\frac{m-2}{m} |\nabla \psi| f \frac{2(m-1)}{m} \right) dy ds.$$
\[
\leq \epsilon_2 \int_{P(\sigma_1)} \left(\frac{2}{r} \right)^m \psi^2 f^2 dy ds + \frac{\epsilon_2^{m-1} c_6 m^{m-1}}{m-1} \int_{P(\sigma_1)} \left(\frac{\nabla \psi}{r} \right)^m f^2 dy ds.
\]

Properties of the cutoff yield

\[
|T_3| \leq \epsilon_2 \int_{P(\sigma_1)} \left(\frac{2}{r} \right)^m (f \psi)^2 dy ds + \frac{\epsilon_2^{m-1} c_6 m^{m-1}}{(m-1)(\sigma_1 - \sigma_2)^{m-1}} \int_{P(\sigma_1)} f^2 dy ds.
\]

Now, consider the quantity

\[
\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^m (f \psi)^2 dy.
\]

Apply Hölder’s inequality with exponents \(\frac{3}{2} \) and \(n = 3 \) and the Sobolev inequality, then

\[
\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^m (f \psi)^2 dy \leq \left(\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^{\frac{3m}{2}} dy \right)^{\frac{2}{3}} \times \left(\int_{C(\sigma_1)} (f \psi)^6 dy \right)^{\frac{1}{3}}
\]

\[
\leq c_7 \left(\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^{\frac{3m}{2}} dy \right)^{\frac{2}{3}} \times \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy \leq c_{11} \int_{C(\sigma_1)} |\nabla (f \psi)|^2 dy,
\]

if we choose \(m \) appropriately. To see this, we calculate:

\[
c_7 \left(\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^{\frac{3m}{2}} dy \right)^{\frac{2}{3}} = c_8 \left(\int_{-4\sigma_1}^{4\sigma_1} \int_{0}^{2\pi} \int_{0}^{\frac{1}{r^{\frac{3m}{2}}}} \frac{1}{r^{m-2}} r dr d\theta dz \right)^{\frac{2}{3}}
\]

\[
= \left(c_9 \sigma_1 \sigma_1^{\frac{3m}{2}+2} \right)^{\frac{2}{3}} \quad \text{if we choose } 1 < m < \frac{4}{3}
\]

\[
= c_{10}(\sigma_1)^{2-m} \leq c_{11} \quad \text{since } \frac{5}{8} \leq \sigma_2 < \sigma_1 \leq 1.
\]

Note also:

\[
c_7 \left(\int_{C(\sigma_1)} \left(\frac{2}{r} \right)^{\frac{3m}{2}} dy \right)^{\frac{2}{3}} = c_8 \left(\int_{-4\sigma_1}^{4\sigma_1} \int_{0}^{2\pi} \int_{0}^{\frac{1}{r^{\frac{3m}{2}}}} \frac{1}{r} dr d\theta dz \right)^{\frac{2}{3}} \quad \text{if } m = \frac{4}{3}
\]

\[
= c_9 \sigma_1^{\frac{2}{3}} \leq c_{10} \quad \text{since } \frac{5}{8} \leq \sigma_2 < \sigma_1 \leq 1.
\]

Thus, allowing \(1 < m \leq \frac{4}{3} \) yields

\[
|T_3| \leq \epsilon_2 c_{11} \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \frac{c_6 m^{m-2} \epsilon_2^{m-1}}{(m-1)(\sigma_1 - \sigma_2)^{m-1}} \int_{P(\sigma_1)} f^2 dy ds.
\]

(3.7)
Step 5: Lastly, we work on the inhomogeneous term of (2.3), that is,
\[\frac{2v_\theta}{r^2} \frac{\partial v_\theta}{\partial z}, \]
which produced the term \(T_4 \). Recall
\[\Lambda = \|v_\theta\|_{L^\infty(P_{1,4,1})} \leq \|rv_\theta\|_{L^\infty(\mathbb{R}^3)} < \infty, \]
and that \(\Omega_+ = \begin{cases} \Omega + \Lambda \quad \Omega \geq 0 \\ \Lambda \quad \Omega < 0 \end{cases} \), thus \(\Omega_+ \geq \Lambda \). Also, we have let \(f = \Omega_0^q \).

Using integration by parts yields
\[
T_4 = \int_{P(\sigma_1)} \frac{q \Omega_+^{2q-1}}{r^2} \frac{\partial v_\theta^2}{\partial z} \psi^2 dyds
\]
\[
= - \int_{P(\sigma_1)} \frac{\partial}{\partial z} \left(\frac{\Omega_+^{2q}}{\Omega_+} \right) \frac{q}{r^2} v_\theta^2 dyds
\]
\[
= - \int_{P(\sigma_1)} \frac{\partial}{\partial z} (f \psi)^2 \frac{1}{\Omega_+} \frac{q}{r^2} v_\theta^2 dyds + \int_{P(\sigma_1)} \frac{(\Omega_+^{q} \psi)^2}{\Omega_+^2} \frac{1}{\Omega_+} \frac{\partial \Omega_+}{\partial z} q \frac{1}{r^2} v_\theta^2 dyds
\]
\[
= - \int_{P(\sigma_1)} \frac{\partial}{\partial z} (f \psi)^2 \frac{1}{\Omega_+} \frac{q}{r^2} v_\theta^2 dyds
\]
\[
\quad + \frac{1}{2} \int_{P(\sigma_1)} \left[\frac{\partial (\Omega_+^{2q} \psi^2)}{\partial z} - \frac{\Omega_+^{2q} \psi^2}{\partial z} \right] \frac{1}{r^2} v_\theta^2 dyds
\]
\[
= - \int_{P(\sigma_1)} \frac{\partial}{\partial z} (f \psi)^2 \frac{1}{\Omega_+} \frac{q - (1/2)}{r^2} v_\theta^2 dyds - \frac{1}{2} \int_{P(\sigma_1)} \frac{1}{\Omega_+} \frac{\Omega_+^{2q} \psi^2}{\partial z} \frac{1}{r^2} v_\theta^2 dyds.
\]

Considering that \(\frac{|v_\theta|}{\Lambda} \leq 1 \), utilizing \(\Lambda \leq \Omega_+ \), and \(r = \sqrt{y_1^2 + y_2^2} \geq 1 \) for all \(y \in P(\sigma_1) \), we continue by fixing \(\epsilon_3 > 0 \). Apply Young’s inequality with exponents both being 2 to get
\[
|T_4| \leq \int_{P(\sigma_1)} 2q|v_\theta|\|f \psi\| \left| \frac{\partial (f \psi)}{\partial z} \right| dyds + \frac{c_3}{\sigma_1 - \sigma_2} \int_{P(\sigma_1)} f^2 |v_\theta| dyds \tag{3.8}
\]
\[
\leq \int_{P(\sigma_1)} \left| \frac{2q \Lambda}{(2q)^2} f \psi \right| \times \left| (2q)^2 \frac{1}{\Omega_+^{2q}} \frac{\partial (f \psi)}{\partial z} \right| dyds + \frac{c_3^2 \Lambda}{\sigma_1 - \sigma_2} \int_{P(\sigma_1)} f^2 dyds
\]
\[
\leq \frac{c_3^2 \Lambda^2 q^2}{\epsilon_3} \int_{P(\sigma_1)} f^2 dyds + c_3 \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dyds + \frac{c_3^2 \Lambda}{\sigma_1 - \sigma_2} \int_{P(\sigma_1)} f^2 dyds.
\]

L^2 - L^\infty Estimate: An \(L^2 - L^\infty \) bound is derived using Moser’s iteration. Recall inequality (3.4) from Step 1 and substitute the estimates for
Jennifer Burke Loftus and Qi S. Zhang

T_1 (3.5), T_2 (3.6), T_3 (3.7), T_4 (3.8), found in Step 2-Step 5 to obtain

$$\int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \frac{1}{2} \int_{C(\sigma_1)} f^2(y,0) \phi^2(y) dy$$

$$\leq \epsilon_1 c_4 K_b^4 (C_{1,4,1}) \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \frac{c_3 \epsilon_1^{-3}}{(\sigma_1 - \sigma_2)^4} \int_{P(\sigma_1)} f^2 dy ds$$

$$+ \frac{c_5}{(\sigma_1 - \sigma_2)^2} \int_{P(\sigma_1)} f^2 dy ds + \epsilon_2 c_{11} \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds$$

$$+ \frac{c_6 m^{m-1} \epsilon_2^{-1}}{(m-1)(\sigma_1 - \sigma_2)^{m-1}} \int_{P(\sigma_1)} f^2 dy ds$$

$$+ \epsilon_3 \int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + c_{12} \Lambda^2 q^2 \epsilon_3^{-1} \int_{P(\sigma_1)} f^2 dy ds.$$

Choose $\epsilon_1 = \frac{1}{6c_4 K_b^4 (C_{1,4,1})}$, $\epsilon_2 = \frac{1}{6c_{11}}$, $\epsilon_3 = \frac{1}{6}$ and absorb the appropriate terms to the left-hand side. Then, we have the following:

$$\int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \int_{C(\sigma_1)} f^2(y,0) \phi^2(y) dy$$

$$\leq \left(\frac{c_{13} K_b^4 (C_{1,4,1})}{(\sigma_1 - \sigma_2)^4} + \frac{c_{14}}{(\sigma_1 - \sigma_2)^2} \right) \int_{P(\sigma_1)} f^2 dy ds$$

$$+ \frac{c_{15} m^{m-1} \epsilon_2^{-1}}{(m-1)(\sigma_1 - \sigma_2)^{m-1}} + c_{16} q^2 \Lambda^2 \int_{P(\sigma_1)} f^2 dy ds.$$

Consequently,

$$\int_{P(\sigma_1)} |\nabla (f \psi)|^2 dy ds + \int_{C(\sigma_1)} f^2(y,0) \phi^2(y) dy \leq \frac{c_{17} q^2}{(\sigma_1 - \sigma_2)^4} \left(K_b^4 (C_{1,4,1}) + \Lambda^2 + 1 \right) \int_{P(\sigma_1)} f^2 dy ds.$$

The last inequality follows with $q = 1 + \frac{2}{n} > 1$ and $0 < \sigma_1 - \sigma_2 < 1$, if m is such that $\frac{m}{m-1} \leq 4$. This implies $m \geq \frac{4}{3}$, but our previous restriction on m required $1 < m \leq \frac{4}{3}$. Thus, we let $m = \frac{4}{3}$ and deduce (3.9) above.
Moser’s Iteration: We claim that Moser’s iteration process and the estimate (3.9) together imply

\[\sup_{P_{2,3,\frac{7}{4}}} \frac{\Omega^2}{2} \leq c_{21} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \int_{P_{1,4,1}} \frac{\Omega^2}{2} dy ds. \]

Hölder’s inequality and the Sobolev inequality imply

\[\int_{\mathbb{R}^n} (f\phi)^{2 \left(1 + \frac{2}{n}\right)} dy \leq \left(\int_{\mathbb{R}^n} (f\phi)^2 dy \right)^{\frac{2}{n}} \left(\int_{\mathbb{R}^n} \left(\nabla (f\phi) \right)^2 dy \right)^{\frac{n-2}{n}} \]

\[\leq c_{18} \left(\int_{\mathbb{R}^n} (f\phi)^2 dy \right)^{\frac{2}{n}} \left(\int_{\mathbb{R}^n} |\nabla (f\phi)|^2 dy \right). \]

Multiply by the time portion of the cut-off function to the correct power, \(\eta^{2 \left(1 + \frac{2}{n}\right)}(s) \), on both sides and integrate over time; one can deduce that

\[\int_{-\sigma_1^2}^{0} \int_{\mathbb{R}^n} (f\psi)^{2 \left(1 + \frac{2}{n}\right)} dy ds \]

\[\leq c_{18} \sup_{-\sigma_1^2 \leq s \leq 0} \left(\int_{\mathbb{R}^n} (f\psi)^2 dy \right)^{\frac{2}{n}} \int_{-\sigma_1^2}^{0} \int_{\mathbb{R}^n} |\nabla (f\psi)|^2 dy ds. \]

We use properties of the cut-off to obtain

\[\int_{P(\sigma_1)} (\psi f)^{2 \left(1 + \frac{2}{n}\right)} dy ds \] (3.10)

\[\leq c_{18} \left(\sup_{-\sigma_1^2 \leq s < 0} \int_{C(\sigma_1)} (f\psi)^2 (y,s) dy \right)^{\frac{2}{n}} \int_{P(\sigma_1)} |\nabla (f\psi)|^2 dy ds. \]

In fact, with \(n = 3 \) the above is

\[\int_{P(\sigma_1)} (\psi f)^{10} dy ds \] (3.11)

\[\leq c_{18} \left(\sup_{-\sigma_1^2 \leq s < 0} \int_{C(\sigma_1)} (f\phi)^2 (y,s) dy \right)^{\frac{2}{3}} \int_{P(\sigma_1)} |\nabla (f\psi)|^2 dy ds. \]

We are noting this here because we will use this later in Section 4. The above argument can be run for each time level \(-\sigma_1^2 \leq s < 0 \) and in fact (3.9) holds for all \(s \) in this interval as the upper time limit of the time cut-off function. Thus, the second-to-last factor on the right-hand side of inequality (3.10) is still controlled by estimate (3.9). So together with the estimate and the
cut-off function again, we get
\[
\int_{P(\sigma_2)} \Omega_+^{2\gamma^i} \, dyds \leq c_{18} \left(\frac{c_{16} q^2}{\tau^4} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right) \int_{P(\sigma_1)} \Omega_+^{2q} \, dyds \right)^\gamma, \quad (3.12)
\]
where \(\gamma = 1 + \frac{2}{n} \), \(\tau = \sigma_1 - \sigma_2 \).

Let \(\tau_i = 2^{-i-2} \), \(\sigma_0 = 1 \), \(\sigma_i = \sigma_{i-1} - \tau_i = 1 - \sum_{j=1}^i \tau_j \), \(q = \gamma^i \). Then (3.12) generalizes to
\[
\int_{P(\sigma_{i+1})} \Omega_+^{2\gamma^{i+1}} \, dyds \leq c_{18} \left(c_{19}^{i+2} \gamma^{2i} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right) \int_{P(\sigma_i)} \Omega_+^{2\gamma^i} \, dyds \right)^\gamma, \quad (3.13)
\]
which, after taking the \(\frac{1}{\gamma} \)-th power of both sides, implies
\[
\left(\int_{P(\sigma_{i+1})} \Omega_+^{2\gamma^{i+1}} \, dyds \right)^{\frac{1}{\gamma}} \leq c_{18} c_{19}^{i+2} \gamma^{2i} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right) \int_{P(\sigma_i)} \Omega_+^{2\gamma^i} \, dyds.
\]

After iterating the above process, that is, using (3.13) on the integral on the left and raising both sides to the \(\frac{1}{\gamma} \)-th power repeatedly, one obtains
\[
\left(\int_{P(\sigma_{i+1})} \Omega_+^{2\gamma^{i+1}} \, dyds \right)^{\frac{1}{\gamma}} \leq \sum_{j=1}^{i} \frac{1}{\gamma} \sum_{j=1}^{i} \frac{1}{\gamma^j} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right) \sum_{j=1}^{i-1} \frac{1}{\gamma^{j+1}} \int_{P_{1,4,1}} \Omega_+^{2\gamma^j} \, dyds.
\]

Note the sums in the exponents are all from \(j = 1 \) to \(j = i + 1 \). Let \(i \to \infty \). All the exponent series converge. In particular, the series in the exponent for \(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \) converges to \(\frac{5}{2} \). Note also that \(\sigma_i \to \frac{3}{4} \), and so
\[
\sup_{P_{2,3,\frac{3}{4}}} \Omega_+^2 \leq c_{20} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \int_{P_{1,4,1}} \Omega_+^2 \, dyds. \quad (3.14)
\]

Next, repeating the argument on \(\Omega_- = \left\{ \begin{array}{ll} -\Omega + \Lambda & \Omega \leq 0 \\ \Lambda & \Omega > 0 \end{array} \right. \) yields
\[
\sup_{P_{2,3,\frac{3}{4}}} \Omega_-^2 \leq c_{20} \left(K_b^4(C_{1,4,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \int_{P_{1,4,1}} \Omega_-^2 \, dyds.
\]
Recall $\Omega_+ = \{ \Omega + \Lambda \Omega \geq 0 \}; \Omega_- = \{ \Omega + \Lambda \Omega \leq 0 \}; \Omega = \Omega_+ - \Omega_-;$

$\Lambda = \|v_0\|_{L^\infty(P_{1,1,1})} \leq \|rv_{0,\theta}\|_{L^\infty(\mathbb{R})}$. Thus,

$$\sup_{P_{2,3,\frac{3}{2}}} \Omega^2 \leq c_{20} \left(K^4_b(C_{1,1,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \left(\int_{P_{1,1,1}} \Omega^2 dyds + \int_{P_{1,1,1}} \Omega^2 dyds \right)$$

$$\leq c_{20} \left(K^4_b(C_{1,1,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \left(\int_{\{\Omega \geq 0\}} (\Omega + \Lambda)^2 dyds + \int_{\{\Omega < 0\}} \Lambda^2 dyds \right)$$

$$\leq c_{20} \left(K^2_b(C_{1,1,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \left(\int_{P_{1,1,1}} (\Omega + \Lambda)^2 + (-\Omega + \Lambda)^2 + 2\Lambda^2 dyds \right)$$

$$= c_{21} \left(K^2_b(C_{1,1,1}) + \Lambda^2 + 1 \right)^{\frac{5}{2}} \left(\|\Omega\|^2_{L^2(P_{1,1,1})} + \Lambda^2 \right).$$

Re-scaling: We now recall that we omitted the “tildes” in the notation in the above computations. So what has actually been proven thus far is

$$\sup_{(\tilde{x},\tilde{t}) \in P_{2,3,\frac{3}{2}}} \tilde{\Omega}^2(\tilde{x},\tilde{t}) \leq c_{21} \left(K^2_b(C_{1,1,1}) + \tilde{\Lambda}^2 + 1 \right)^{\frac{5}{2}} \left(\|\tilde{\Omega}\|^2_{L^2(P_{1,1,1})} + \tilde{\Lambda}^2 \right).$$

Recall $\tilde{x} = \frac{x}{\tilde{r}}, \tilde{t} = \frac{t}{\tilde{r}^2}, \tilde{\Omega}(\tilde{x},\tilde{t}) = \frac{\omega_0(\tilde{x},\tilde{t})}{\tilde{r}}$. So with $2 \leq \tilde{r} \leq 3$ on the left and $1 \leq \tilde{r} \leq 4$ on the right we can derive

$$\sup_{(\tilde{x},\tilde{t}) \in P_{2,3,\frac{3}{2}}} \omega_0^2(\tilde{x},\tilde{t}) \leq c_{22} \left(K^2_b(C_{1,1,1}) + \tilde{\Lambda}^2 + 1 \right)^{\frac{5}{2}} \left(\int_{P_{1,1,1}} \omega_0^2(\tilde{x},\tilde{t}) d\tilde{x}d\tilde{t} + \tilde{\Lambda}^2 \right).$$

We recall from the Section 2 Preliminaries that

$$K^2_b(C_{1,1,1}) = \|\tilde{b}(\tilde{x},\tilde{t})\|_{L^\infty(-1,0;L^2(C_{1,1,1}))} = \frac{1}{k^2} \|\tilde{b}(x,t)\|_{L^\infty(-k^2,0;L^2(C_{1,1,1}))},$$

and

$$\|\tilde{\omega}(\tilde{x},\tilde{t})\|_{L^2(P_{1,1,1})} = \frac{1}{k^2} \|\omega(x,t)\|_{L^2(P_{1,1,1})},$$
Also, we note the control on Λ is a scaling invariant quantity. Since $\Lambda = \|v_0\|_{L^\infty(P_{1,4,1})}$, we use Proposition 2.1:

$$\tilde{\Lambda} = \left(\sup_{P_{1,4,1}} |\tilde{v}_0(x, t)| \right) \leq \left(\|\tilde{r}v_0(x, -T)\|_{L^\infty(\mathbb{R}^3)} \right)$$ applying Proposition 2.1,

$$= \|rv_0(x, -T)\|_{L^\infty(\mathbb{R}^3)} = \|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)}.$$

We utilize $0 < k < 1$ to obtain

$$\sup_{(x,t) \in P_{2k,3k,\frac{3k}{2}}} k^4\omega_\theta^2(x, t) \leq c_{22} \left(\frac{1}{k^2} \|b\|^4_{L^\infty(-k^2,0;L^2(C_{1,4,k}))} + \|rv_{0,\theta}\|^2_{L^\infty(\mathbb{R}^3)} \right)^{\frac{5}{2}}$$

$$\left(\int_{P_{k,4k,k}} k^4\omega_\theta^2(x, t) \frac{1}{k^5} dxdt + \|rv_{0,\theta}\|^2_{L^\infty(\mathbb{R}^3)} \right) \leq c_{23} \left(\frac{1}{k^6} \|b\|^2_{L^\infty(-k^2,0;L^2(C_{1,4,k}))} + k\|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)} \right)^5 \left(\|\omega_\theta\|^2_{L^2(P_{k,4k,k})} + k\|rv_{0,\theta}\|^2_{L^\infty(\mathbb{R}^3)} \right).$$

Therefore,

$$\|\omega_\theta(x, t)\|_{L^\infty(P_{2k,3k,\frac{3k}{2}})} \leq c_{24} \left(\frac{1}{k^5} \|b\|^2_{L^\infty(-k^2,0;L^2(C_{1,4,k}))} + k\|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)} \right)^{\frac{5}{2}} \left(\|\omega_\theta\|_{L^2(P_{k,4k,k})} + \sqrt{k}\|rv_{0,\theta}\|_{L^\infty(\mathbb{R}^3)} \right).$$

This proves part (i) of Theorem 1.1.

Note, the way the cubes on the left and right are related is that, on the right, we have $\frac{1}{3}$ of the inner radius, $\frac{4}{3}$ of the outer radius, and the time interval on the left is smaller by a factor of $\frac{9}{16}$.

4. A PRIORI BOUNDS FOR ω_r AND ω_z

In this section, we use the a priori bound established in part (i) of Theorem 1.1 (i.e., $|\omega_\theta| \leq \frac{B_1}{2}$) and the 2×2 system below, which consists of the two remaining curl equations noted before, to derive a priori bounds for ω_r and ω_z.

$$\Delta \omega_r - (b \cdot \nabla) \omega_r + \omega_r \left(\frac{\partial v_r}{\partial r} - \frac{1}{r^2} \right) + \omega_z \frac{\partial v_r}{\partial z} - \frac{\partial \omega_r}{\partial t} = 0, \quad (4.1)$$

$$\Delta \omega_z - (b \cdot \nabla) \omega_z + \omega_z \frac{\partial v_z}{\partial z} + \omega_r \frac{\partial v_z}{\partial r} - \frac{\partial \omega_z}{\partial t} = 0.$$

The drift term, $b \cdot \nabla$ can be dealt with in a manner similar to that in Section 3. The main work is to treat the potential terms where $\frac{\partial v_r}{\partial r} - \frac{1}{r^2}, \frac{\partial v_r}{\partial z}, \frac{\partial v_z}{\partial r}, \frac{\partial v_z}{\partial z}$.

are regarded as potentials. It turns out one can control the $L^{10}_{10} \norm{v}$ norm of these using the a priori bound on ω_θ established in part (i) of Theorem 1.1 and the a priori bound on v_θ from Proposition 2.1. These L^{10}_{10} bounds are sufficient to prove part (ii) of Theorem 1.1.

We need two lemmas which are localized versions of Lemma 2 and Lemma 3 in [7], and very similar, also, to Lemma 3 in [2]. Both should be known, but the proofs are short and are included here for completeness. First, we recall our notation, $C_{A,B,R} = \{(r, \theta, z) : AR \leq r \leq BR, 0 \leq \theta \leq 2\pi, |z| \leq BR\} \subset \mathbb{R}^3$, and $P_{AR,BR,SR} = C_{A,B,R} \times (-S^2R^2, 0)$.

Lemma 4.1. Let $v \in C^\infty(C_{1,4,1})$ be a vector field. Then, for all $q > 1$, there exists a constant, $c(q) > 0$, such that
\[
\|\nabla v\|_{L^q(C_{2,3,1})} \leq c(q)
\left(\|\text{curl } v\|_{L^q(C_{1,4,1})} + \|\text{div } v\|_{L^q(C_{1,4,1})} + \|v\|_{L^q(C_{1,4,1})}\right).
\]

Proof. Define ϕ to be a cut-off function such that $\phi \in C^\infty_0(C_{2,3,1})$, $0 \leq \phi \leq 1$, $\phi = 1$ in $C_{2,3,1}$, $|\nabla \phi| \leq c_1$, a constant. Then $v\phi$ is compactly supported, and it is well known that
\[
\|\nabla (v\phi)\|_{L^q(C_{1,4,1})} \leq c(q)
\left(\|\text{curl } (v\phi)\|_{L^q(C_{1,4,1})} + \|\text{div } (v\phi)\|_{L^q(C_{1,4,1})}\right). \tag{4.2}
\]
(This is sometimes called the Helmholtz or Hodge decomposition.) Next note that

$$
\text{div } (v\phi) = \text{div } v \phi + v \cdot \nabla \phi \quad \text{and} \quad \text{curl } (v\phi) = \text{curl } v \phi + \nabla \phi \times v.
$$

The lemma follows by substituting the last two identities into the right-hand side of (4.2) and using the Minkowski inequality and properties of the cutoff function. \hfill \Box

The following lemma is a generalization of Lemma 3 in [7].

Lemma 4.2. Let $v = v(x,t)$ be a divergence-free, axially symmetric, smooth vector field in $Q_{1,4} = C_{1,4,1} \times [-T,T]$ for fixed $T > 0$. Then, for all $q > 1$, there exists a constant, $c = c(q) > 0$, such that
\[
\|\nabla v_r\|_{L^q(Q_{2,3})} + \left\|\frac{v_r}{r}\right\|_{L^q(Q_{2,3})} + \|\nabla v_z\|_{L^q(Q_{2,3})} \leq c(q)\left(\|\text{curl } v\theta\|_{L^q(Q_{1,4})} + \|v\|_{L^q(Q_{1,4})}\right).
\]

Proof. In the cylindrical coordinate system, for an axially symmetric vector field, $\text{div } v = 0$ means
\[
\frac{\partial v_r}{\partial r} + \frac{v_r}{r} + \frac{\partial v_z}{\partial z} = 0.
\]
Therefore, the vector field $\mathbf{v} = v_r \mathbf{e}_r + v_z \mathbf{e}_z$ is still divergence free. Since the inequality we want to prove does not involve v_θ, we first work on \mathbf{v} where v_θ is not involved. Also, \mathbf{v} is axially symmetric, and so curl \mathbf{v} has only one nonzero component, the one in the direction of e_θ. This is because, for axially symmetric vector fields,

$\omega(x, t) = \omega_r e_r + \omega_\theta e_\theta + \omega_z e_z$

$\omega_r = -\frac{\partial v_\theta}{\partial z}$, $\omega_\theta = -\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}$, $\omega_z = \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}$.

Thus, curl $\mathbf{v} = (\text{curl} \mathbf{v})_\theta e_\theta$. Applying Lemma 4.1 on \mathbf{v}, we deduce, for any fixed t, that

$$
\|\nabla \mathbf{v}(\cdot, t)\|_{L^q(C_{2,3,1})} \leq c(q) \left(\|\text{curl} \mathbf{v}(\cdot, t)\|_{L^q(C_{1,4,1})} + \|\mathbf{v}(\cdot, t)\|_{L^q(C_{1,4,1})} \right)
$$

$$
= c(q) \left(\|\text{curl} \mathbf{v}(\cdot, t)\|_{L^q(C_{1,4,1})} + \|\mathbf{v}(\cdot, t)\|_{L^q(C_{1,4,1})} \right).
$$

Note that $(\text{curl} v)_\theta = \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} = (\text{curl} \mathbf{v})_\theta$, and so

$$
\|\nabla \mathbf{v}(\cdot, t)\|_{L^q(C_{2,3,1})} \leq c(q) \left(\|\text{curl} v\|_{L^q(C_{1,4,1})} + \|v(\cdot, t)\|_{L^q(C_{1,4,1})} \right).
$$

Thus,

$$
\|\nabla v_r(\cdot, t)\|_{L^q(C_{2,3,1})} + \|\nabla v_z(\cdot, t)\|_{L^q(C_{2,3,1})} + \left\| \frac{v_r(\cdot, t)}{r} \right\|_{L^q(C_{2,3,1})} \leq c(q) \left(\|\text{curl} v\|_{L^q(C_{1,4,1})} + \|v(\cdot, t)\|_{L^q(C_{1,4,1})} \right). \tag{4.3}
$$

Here, $\left\| \frac{v_r(\cdot, t)}{r} \right\|_{L^q(C_{2,3,1})}$ is bounded due to the inequality

$$
\left\| \frac{v_r(\cdot, t)}{r} \right\|_{L^q(C_{2,3,1})} \leq \left\| \frac{\partial v_r(\cdot, t)}{\partial r} \right\|_{L^q(C_{2,3,1})} + \left\| \frac{\partial v_z(\cdot, t)}{\partial z} \right\|_{L^q(C_{2,3,1})},
$$

which comes from the divergence-free equation. Taking the q-th power on (4.3) and integrating in time, we deduce the lemma. \(\Box\)

Taking $q = \frac{10}{3}$ in Lemma 4.2 yields the following Proposition.

Proposition 4.1. If v is a smooth, axially symmetric solution to the Navier-Stokes equations in $Q_{1,4}$, then there exists a constant $c_1 > 0$ such that

$$
\|\nabla v_r\|_{L^{\frac{10}{3}}(Q_{2,3})} + \left\| \frac{v_r}{r} \right\|_{L^{\frac{10}{3}}(Q_{2,3})} + \|\nabla v_z\|_{L^{\frac{10}{3}}(Q_{2,3})} \leq c_1 \left(\|\omega_\theta\|_{L^{\frac{10}{3}}(Q_{1,4})} + \|v\|_{L^{\frac{10}{3}}(Q_{1,4})} \right).
$$
The right-hand side is a priori bounded due to standard energy estimates and our Theorem 1.1 (i).

Proof of Theorem 1.1 (ii). We use the scaling invariance of (4.1) and do the analysis in $P_{1,1} \subset Q_{1,4}$. We let V be the matrix

$$
V = \begin{bmatrix}
\frac{\partial v_r}{\partial r} - \frac{1}{r^2} & \frac{\partial v_z}{\partial r} \\
\frac{\partial v_r}{\partial z} & \frac{\partial v_z}{\partial z}
\end{bmatrix},
$$

which can be regarded as a potential in the system when we take the equations together. Proposition 4.1 shows $V \in L^{10}_3(P_{1,4})$. This, along with our analysis on the drift term b as before implies, by a similar argument to that in Section 3, that ω_r and ω_z are also a priori bounded. Again, scaling, and in particular the scaling of $\|V\|_{L^{10}_3(P_{1,4})}$, will come into play.

We let $q \geq 1$ be a rational number and choose $\psi = \phi(y)\eta(s)$ to be the same refined cut-off function as previously defined, satisfying the following:

- $\text{supp } \phi \subset C(\sigma_1); \phi(y) = 1$ for all $y \in C(\sigma_2); 0 \leq \phi \leq 1;
- \frac{\nabla \phi}{\phi^\delta} \leq \frac{c_2}{\sigma_1 - \sigma_2}$ for $\delta \in (0, 1),
- \text{supp } \eta \subset (-\sigma_2^2, 0]; \eta(s) = 1$ for all $s \in [-\sigma_2^2, 0]; 0 \leq \eta \leq 1, |\eta'| \leq \frac{c_3}{(\sigma_1 - \sigma_2)^2}.

We start by using $\omega_r^{2q-1}\psi^2$ as a test function on the first equation of system (4.1).

$$
0 = \int_{P(\sigma_1)} \left(\Delta \omega_r - b \cdot \nabla \omega_r + \omega_r \left(\frac{\partial v_r}{\partial r} - \frac{1}{r^2}\right) + \omega_z \frac{\partial v_r}{\partial z} - \frac{\partial \omega_r}{\partial s}\right) \omega_r^{2q-1}\psi^2 dyds
= \int_{P(\sigma_1)} \omega_r^{2q-1}\psi^2 \Delta \omega_r dyds
- \int_{P(\sigma_1)} \frac{1}{q} b \cdot \nabla (\omega_r^{2q}\psi^2) dyds - \int_{P(\sigma_1)} \frac{1}{q} \partial_s (\omega_r^{2q}\psi^2) dyds
+ \int_{P(\sigma_1)} \left(\frac{\partial v_r}{\partial r} - \frac{1}{r^2}\right) (\omega_r^{2q}\psi^2) + \left(\frac{\partial v_z}{\partial z}\right) \omega_z \omega_r^{2q-1}\psi^2 dyds.
$$

We work on the first term on the right-hand side, using integration by parts, as usual, direct calculations, and algebraic manipulations:

$$
\int_{P(\sigma_1)} \omega_r^{2q-1}\psi^2 \Delta \omega_r dyds = \int_{P(\sigma_1)} \nabla (\omega_r^{2q-1}\psi^2) \cdot \nabla \omega_r dyds
= -\int_{P(\sigma_1)} (2q - 1) (\omega_r^{2q-2} \nabla \omega_r) \cdot \nabla \omega_r \psi^2 + \omega_r^{2q-1} \nabla \omega_r \cdot \nabla (\psi^2) dyds.
$$
This implies that the term involving \(V \) is

\[
- \int_{P(\sigma_1)} (2q - 1)(\omega_r^{q-1}\nabla \omega_r) \cdot (\omega_r^{q-1}\nabla \omega_r)\psi^2 + \nabla (\psi^2)\omega_r^q(\omega_r^{q-1}\nabla \omega_r)dyds
\]

equals

\[
- \frac{2q - 1}{q^2} \int_{P(\sigma_1)} \nabla (\omega_r^q) \cdot \nabla (\omega_r^q)\psi^2 dyds - \frac{1}{q} \int_{P(\sigma_1)} \omega_r^q \nabla (\omega_r^q) \cdot \nabla (\psi^2)dyds
\]

\[
\leq - \frac{1}{q} \int_{P(\sigma_1)} \nabla (\omega_r^q) \cdot \left(\nabla (\omega_r^q)\psi^2 + \nabla (\psi^2)\omega_r^q \right) dyds,
\]

since \(\frac{1}{q} < \frac{2q - 1}{q^2} \),

\[
= - \frac{1}{q} \int_{P(\sigma_1)} \nabla (\omega_r^q) \cdot \nabla (\omega_r^q\psi^2) dyds = - \frac{1}{q} \int_{P(\sigma_1)} (|\nabla (\omega_r^q\psi)|^2 - |\nabla \psi|^2\omega_r^q) dyds.
\]

This implies that

\[
\int_{P(\sigma_1)} |\nabla (\omega_r^q\psi)|^2 dyds \leq - \int_{P(\sigma_1)} b \cdot \nabla (\omega_r^q)(\omega_r^q\psi^2)dyds \quad (4.4)
\]

\[
- \int_{P(\sigma_1)} \partial_s (\omega_r^q)(\omega_r^q\psi^2)dyds + \int_{P(\sigma_1)} |\nabla \psi|^2\omega_r^{2q} dyds
\]

\[
+ q \int_{P(\sigma_1)} \left[\left(\frac{\partial n_z}{\partial r} - \frac{1}{r^2} \right)(\omega_r^{2q}\psi^2) + \left(\frac{\partial n_z}{\partial z} \right)\omega_r\omega_r^{2q-1}\psi^2 \right] dyds.
\]

Similarly, we use \(\omega_r^{2q-1}\psi^2 \) as a test function in the second equation in system (4.1) to arrive at

\[
\int_{P(\sigma_1)} |\nabla (\omega_r^q\psi)|^2 dyds \leq - \int_{P(\sigma_1)} b \cdot \nabla (\omega_r^q)(\omega_r^q\psi^2)dyds \quad (4.5)
\]

\[
- \int_{P(\sigma_1)} \partial_s (\omega_r^q)(\omega_r^q\psi^2)dyds + \int_{P(\sigma_1)} |\nabla \psi|^2\omega_r^{2q} dyds
\]

\[
+ q \int_{P(\sigma_1)} \left[\left(\frac{\partial n_z}{\partial r} \right)(\omega_r^{2q}\psi^2) + \left(\frac{\partial n_z}{\partial z} \right)\omega_r\omega_r^{2q-1}\psi^2 \right] dyds.
\]

We let \(f = |\omega_1|^2 + |\omega_2|^2 \) and \(V \) represent the matrix:

\[
V = \begin{bmatrix}
\frac{\partial n_z}{\partial r} - \frac{1}{r^2} & \frac{\partial n_z}{\partial r} \\
\frac{\partial n_z}{\partial z} & \frac{\partial n_z}{\partial z}
\end{bmatrix}.
\]

We add (4.4) and (4.5) and apply the Cauchy-Schwarz inequality to the term involving \(V \) to obtain

\[
\int_{P(\sigma_1)} |\nabla (f\psi)|^2 dyds
\]

\[
\leq 2 \int_{P(\sigma_1)} \left(- b \cdot \nabla f(f\psi^2) - \partial_s f(f\psi^2) + |\nabla \psi|^2 f^2 + q c_5 |V| f^2 \psi^2 \right) dyds.
\]
Here, $|V|$ is the max norm of the matrix. We proceed just as in the end of Step 1 in Section 3 to reach

$$
\int_{P(\sigma_1)} |\nabla (f\psi)|^2 dyds + \frac{1}{2} \int_{C(\sigma_1)} f^2(y, 0) \phi^2(y) dy \quad (4.6)
$$

$$
\leq - \int_{P(\sigma_1)} 2b \cdot \nabla f (f\psi^2) dyds + 2 \int_{P(\sigma_1)} (\eta \partial_s \eta + |\nabla \psi|^2) f^2 dyds
$$

$$
+ c_4 q \int_{P(\sigma_1)} |V| f^2 \psi^2 dyds := T_1 + T_2 + T_3.
$$

The terms T_1 and T_2 are in the same form as T_1 and T_2 in (3.4) of Section 3. Therefore, they are treated in an identical manner as found there. We recall the estimates on those terms now (see (3.5) and (3.6)):

$$
|T_1| \leq \epsilon c_5 K_b^4 (C_{1,4,1}) \int_{P(\sigma_1)} |\nabla (f\psi)|^2 dyds + \frac{c_6 \epsilon_1^{-3}}{(\sigma_1 - \sigma_2)^3} \int_{P(\sigma_1)} f^2 dyds \quad (4.7)
$$

$$
|T_2| \leq \frac{c_7}{(\sigma_1 - \sigma_2)^2} \int_{P(\sigma_1)} f^2 dyds. \quad (4.8)
$$

We proceed to term T_3 involving the matrix constructed from the potential terms in system (4.1). We employ Hölder’s inequality twice here:

$$
T_3 = c_4 q \int_{P(\sigma_1)} |V| (f\psi)^2 dyds
$$

$$
\leq c_4 q \left(\int_{P(\sigma_1)} |V|^{\frac{10}{3}} dyds \right)^{\frac{3}{10}} \left(\int_{P(\sigma_1)} (f\psi)^{\frac{20}{3}} dyds \right)^{\frac{7}{10}}
$$

$$
= c_4 q \|V\|_{L^{\frac{10}{3}}(P(\sigma_1))} \left(\int_{P(\sigma_1)} (f\psi)^{\frac{20}{3} - a} (f\psi)^a dyds \right)^{\frac{7}{10}}, \quad 0 < a < \frac{20}{7}
$$

$$
= c_4 q \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})} \left(\int_{P(\sigma_1)} (f\psi)^{\frac{20}{7} - a} p dyds \right)^{\frac{7}{10}} \left(\int_{P(\sigma_1)} (f\psi)^{ap'} dyds \right)^{\frac{7}{10p'}},
$$

for $1 < p, p' < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$. If $\left(\frac{20}{7} - a \right) p = \frac{10}{3}$ and $ap' = 2$, then $p = \frac{14}{9}$ and $p' = \frac{14}{5}$ and we get

$$
T_3 \leq c_4 q \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})} \left(\int_{P(\sigma_1)} (f\psi)^{\frac{20}{3}} dyds \right)^{\frac{9}{20}} \left(\int_{P(\sigma_1)} (f\psi)^2 dyds \right)^{\frac{1}{3}}.
$$
We apply Young’s inequality with exponents $\frac{4}{3}$ and 4:

$$T_3 \leq \left[\left(\frac{4\epsilon_2}{3} \right)^{\frac{3}{4}} \left(\int_{P^{(\sigma_1)}} (f \psi)^{\frac{10}{3}} dyds \right)^{\frac{9}{20}} \right]$$

$$\times \left[c_4 q \left(\frac{4\epsilon_2}{3} \right)^{-\frac{3}{2}} \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})} \left(\int_{P^{(\sigma_1)}} (f \psi)^{2} dyds \right)^{\frac{1}{4}} \right]$$

$$\leq \epsilon_2 \left(\int_{P^{(\sigma_1)}} ((f \psi)^{2})^{\frac{2}{5}} dyds \right)^{\frac{3}{5}} + \frac{c_8 q^4 \|V\|_{L^{\frac{40}{19}}(P_{1,4,1})}^4}{\epsilon_2^3} \int_{P^{(\sigma_1)}} (f \psi)^{2} dyds$$

$$\leq \epsilon_2 \| (f \psi)^{2} \|_{L^2(P^{(\sigma_1)})} + \frac{c_8 q^4 \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})}^4}{\epsilon_2^3} \int_{P^{(\sigma_1)}} f^2 dyds.$$

Note that $\|V\|_{L^{\frac{10}{3}}(P_{1,4,1})}$ can be controlled as a result of Proposition 4.1.

At this time we utilize in (4.6) the estimates for T_1 (4.7), T_2 (4.8), and T_3 (4.9), which then becomes

$$\int_{P^{(\sigma_1)}} |\nabla (f \psi)|^2 dyds + \frac{1}{2} \int_{C^{(\sigma_1)}} f^2(y,0) \phi^2(y) dy$$

$$\leq \epsilon_1 c_5 K^{\frac{3}{4}} (C_{1,4,1}) \int_{P^{(\sigma_1)}} |\nabla (f \psi)|^2 dyds + \frac{c_6 \epsilon_1^{-3}}{(\sigma_1 - \sigma_2)^4} \int_{P^{(\sigma_1)}} f^2 dyds$$

$$+ \frac{c_7}{(\sigma_1 - \sigma_2)^2} \int_{P^{(\sigma_1)}} f^2 dyds + \epsilon_2 \| (f \psi)^{2} \|_{L^2(P^{(\sigma_1)})}$$

$$+ \frac{c_8 q^4 \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})}^4}{\epsilon_2^3} \int_{P^{(\sigma_1)}} f^2 dyds.$$

By choosing $\epsilon_1 = \frac{1}{2 c_5 K^{\frac{3}{4}} (C_{1,4,1})}$ we can absorb the appropriate term in the left-hand side. We arrive at

$$\int_{P^{(\sigma_1)}} |\nabla (f \psi)|^2 dyds + \int_{C^{(\sigma_1)}} f^2(y,0) \phi^2(y) dy$$

$$\leq \frac{c_9 K^{\frac{4}{3}} (C_{1,4,1})}{(\sigma_1 - \sigma_2)^4} \int_{P^{(\sigma_1)}} f^2 dyds + \frac{c_{10}}{(\sigma_1 - \sigma_2)^2} \int_{P^{(\sigma_1)}} f^2 dyds$$

$$+ 2 \epsilon_2 \| (f \psi)^{2} \|_{L^2(P^{(\sigma_1)})} + c_{11} q^4 \|V\|_{L^{\frac{10}{3}}(P_{1,4,1})}^4 \int_{P^{(\sigma_1)}} f^2 dyds$$

$$\leq 2 \epsilon_2 \| (f \psi)^{2} \|_{L^2(P^{(\sigma_1)})}$$
+ \frac{c_{12}q^4}{(\sigma_1 - \sigma_2)^4} \left(K_0^4(C_{1,4,1}) + \|V\|_{L_\infty(P_{1,4,1})}^4 + 1 \right) \int_{P(\sigma_1)} f^2 \, dy \, ds,

noting that 0 < \sigma_1 - \sigma_2 < 1 and q = 1 + \frac{2}{n} > 1.

Now, recall (3.11) in Moser’s iteration in Section 3, which follows from Hölder’s inequality, the Sobolev inequality, the fact that \(n = 3 \), and properties of the cut-off function. We have

\[
\int_{P(\sigma)} \left(\psi f \right)^{\frac{10}{3}} \, dy \, ds \leq c_{13} \left(\sup_{-1 \leq s < 0} \int_{C(\sigma_1)} (f(y, s)\phi(y))^2 \, dy \right)^\frac{2}{3} \int_{P(\sigma_1)} |\nabla (\psi f)|^2 \, dy \, ds.
\]

Apply estimate (4.10), as we did in Section 3, and take the \(\frac{3}{5} \) power of both sides:

\[
\| (\psi f) \|^2_{L_\frac{3}{2}(P(\sigma_1))} \leq \frac{c_{14} q^4}{(\sigma_1 - \sigma_2)^3} \left(K_0^4(C_{1,4,1}) + \|V\|_{L_\infty(P_{1,4,1})}^4 + 1 \right) \int_{P(\sigma_1)} f^2 \, dy \, ds
\]

+ \frac{c_2}{4c_{15}} \| (\psi f) \|^2_{L_\frac{3}{2}(P(\sigma_1))}.

Choose \(\epsilon_2 = \frac{1}{4c_{15}} \), absorb the appropriate term to the left, take the \(\frac{5}{3} \) power of both sides, use the cut-off function, and recall \(f = |\omega_r|^q + |\omega_s|^q \). We get

\[
\int_{P(\sigma_2)} \left| \omega_r \right|^q + \left| \omega_s \right|^q \leq \frac{c_{16} q^4}{\tau^4} \left(K_0^4(C_{1,4,1}) + \|V\|_{L_\infty(P_{1,4,1})}^4 + 1 \right) \int_{P(\sigma_1)} \left| \omega_r \right|^q + \left| \omega_s \right|^q \, dy \, ds \right)^\gamma,
\]

where \(\gamma = 1 + \frac{2}{n}, n = 3 \), \(\tau = \sigma_1 - \sigma_2 \). Define \(h(x,t) = \max(|\omega_r|, |\omega_s|) \) and observe that \(h^q \leq |\omega_r|^q + |\omega_s|^q \leq 2h^q \). Then

\[
\int_{P(\sigma_2)} h^{2q} \, dy \, ds \leq c_{16} \left[\frac{c_{18} q^4}{\tau^4} \left(K_0^4(C_{1,4,1}) + \|V\|_{L_\infty(P_{1,4,1})}^4 + 1 \right) \int_{P(\sigma_1)} h^{2q} \, dy \, ds \right]^\gamma.
\]

(4.11)

Let \(\tau_i = 2^{-i-2}, \sigma_0 = 1, \sigma_i = \sigma_{i-1} - \tau_i = 1 - \sum_{j=1}^{i} \tau_j, q = \gamma^i \). Thus we have an analogue to (3.13):

\[
\int_{P(\sigma_{i+1})} h^{2\gamma^{i+1}} \, dy \, ds \leq c_{16} \left[c_{19} \gamma^i \left(K_0^4(C_{1,4,1}) + \|V\|_{L_\infty(P_{1,4,1})}^4 + 1 \right) \int_{P(\sigma_i)} h^{2\gamma^{i}} \, dy \, ds \right]^\gamma.
\]

(4.12)
Raising both sides to the $\frac{1}{\gamma}$-th power, we get
\[
\left(\int_{P(\sigma_{i+1})} h^{2\gamma^{i+1}} dyds \right)^{\frac{1}{\gamma}} \leq c_{16}^{\frac{1}{\gamma}} \left[c_{19}^{i+2} \gamma^4 \left(K_b^4(C,1,4) + \|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} + 1 \right) \int_{P(\sigma_i)} h^{2\gamma^i} dyds \right].
\]

Now, we apply (4.12) to the integral on the right-hand side, with i replaced with $i - 1$, to obtain
\[
\left(\int_{P(\sigma_{i+1})} h^{2\gamma^{i+1}} dyds \right)^{\frac{1}{\gamma}} \leq c_{16}^{\frac{1}{\gamma}} \left[c_{19}^{i+2} \gamma^4 \left(K_b^4(C,1,4) + \|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} + 1 \right) \right] \times 2c_{16}^{\frac{1}{\gamma}} \left[\gamma^4 \left(K_b^4(C,1,4) + \|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} + 1 \right) \int_{P(\sigma_{i-1})} h^{2\gamma^{i-1}} dyds \right].
\]

Repeat this process and we arrive at
\[
\left(\int_{P(\sigma_{i+1})} h^{2\gamma^{i+1}} dyds \right)^{\frac{1}{\gamma}} \leq \left(2c_{16}^{\frac{1}{\gamma}} \right)^{\frac{1}{\gamma}} \left(c_{19} \right)^{\frac{1}{\gamma}} \left(\gamma^4 \right)^{\sum_{j=1}^{i} \frac{j+1}{\gamma-1}} \int_{P(\sigma_{i-1})} h^{2\gamma^{i-1}} dyds.
\]

Note that the sums in the exponents are all from $j = 1$ to $j = i + 1$. Let $i \to \infty$. All the exponent series converge. In particular, the series in the exponent for $(K_b^4(C,1,4) + \|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} + 1)$ converges to $\frac{5}{2}$. Note also that $\sigma_i \to \frac{3}{4}$. Therefore, we arrive at
\[
\sup_{P_{2,\frac{3}{4}}} (\omega_r^2 + \omega_z^2) \leq c_{20} \left(K_b^4(C,1,4) + \|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} + 1 \right)^{\frac{5}{2}} \left(\int_{P_{1,4,1}} \omega_r^2 dyds + \int_{P_{1,4,1}} \omega_z^2 dyds \right).
\]

It is time to note how $\|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})}$ is controlled. Applying Proposition 4.1 with $P_{1,4,1}$ being the domain on the left, $P_{\frac{1}{2},\frac{11}{3},1}$ being the domain on the right, we can deduce that
\[
\|V\|^4_{L^{\frac{10}{3}}(P_{1,4,1})} \leq c_{21} \left(\|\omega_\theta\|^4_{L^{\frac{10}{3}}(P_{\frac{1}{2},\frac{11}{3},1})} + \|v\|^4_{L^{\frac{10}{3}}(P_{\frac{1}{2},\frac{11}{3},1})} + 1 \right).
\]

Even though at this point we already know that V is a priori bounded by standard energy estimates and our pointwise bound on ω_θ, we use the
method in Section 3 to prove a bound for $\|\omega\|_{L^{10}(P_{1/2}, \frac{16}{3})}$. This allows for better control of $\|V\|_{L^{10}(P_{1/4}, 1)}$. The argument amounts to running Moser’s iteration only once. Recall $\Omega = \frac{\omega}{r}$ and that in Section 3 we defined a constant Λ and functions

$$\Omega_+ = \begin{cases} \Omega + \Lambda, & \Omega \geq 0, \\ \Lambda, & \Omega < 0, \end{cases} \quad \Omega_- = \begin{cases} -\Omega + \Lambda, & \Omega \leq 0, \\ \Lambda, & \Omega > 0. \end{cases}$$

We will utilize estimate (3.12) to control the $L^{10/3}$ norm of ω, but first we must manipulate the domains that appear in the inequality to fit our current setting. We recall (3.12) from Section 3:

$$\int_{P(\sigma_2)} \Omega_+^2 \gamma dy ds \leq c_{22} \left(\frac{c^{23}q^2}{\gamma^4} (K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1) \right) \int_{P(\sigma_1)} \Omega_+^2 \gamma dy ds \gamma.$$

By choosing σ_1, σ_2 suitably, we deduce

$$\int_{P_{1/2}, \frac{16}{3}} \Omega_+^2 \gamma dy ds \leq c_{24} \left(\left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right) \int_{P_{1/2}, \frac{16}{3}} \Omega_+^2 \gamma dy ds \right)^{\frac{3}{2}}.$$

Similarly, we can also get

$$\int_{P_{1/2}, \frac{16}{3}} \Omega_-^2 \gamma dy ds \leq c_{24} \left(\left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right) \int_{P_{1/2}, \frac{16}{3}} \Omega_-^2 \gamma dy ds \right)^{\frac{3}{2}}.$$

Taking the $\frac{3}{10}$ power of both sides we derive

$$\|\Omega_+\|_{L^{10/3}(P_{1/2}, \frac{16}{3})} \leq c_{25} \left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right)^{\frac{1}{2}} \|\Omega_+\|_{L^2(P_{1/2}, \frac{16}{3})^3},$$

and

$$\|\Omega_-\|_{L^{10/3}(P_{1/2}, \frac{16}{3})} \leq c_{25} \left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right)^{\frac{1}{2}} \|\Omega_-\|_{L^2(P_{1/2}, \frac{16}{3})^3}.$$

We can combine the above two estimates to get

$$\|\frac{\omega}{r}\|_{L^{10/3}(P_{1/2}, \frac{16}{3})} \leq c_{26} \left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right)^{\frac{1}{2}} \|\frac{\omega}{r}\|_{L^2(P_{1/2}, \frac{16}{3})^3},$$

We note r is bounded between two positive constants on the left and on the right, to arrive at

$$\|\omega\|_{L^{10/3}(P_{1/2}, \frac{16}{3})} \leq c_{27} \left(K_b^4(C_{\frac{1}{3}, \frac{64}{9}, 1}) + \Lambda^2 + 1 \right)^{\frac{1}{2}} \|\omega\|_{L^2(P_{1/2}, \frac{16}{3})^3}.$$
Thus, apply this to (4.14):

\[\|V\|_{L^\frac{10}{4}(P_{1,4,1})} \leq c_{28} \left((K_b^4(C_{1,10,10}) + \Lambda^2 + 1) \right)^{\frac{1}{2}} \|\omega_0\|_{L^2(P_{1,4,1})} + \|v\|_{L^2(P_{1,4,1})} + 1 \).

Thus,

\[\|V\|_{L^\frac{10}{4}(P_{1,4,1})} \leq c_{29} \left((K_b^4(C_{1,10,10}) + \|rv_0,\theta\|_{L^\infty(\mathbb{R}^3)} + 1) \right)^{\frac{1}{2}} \|\omega_0\|_{L^2(P_{1,4,1})} + \|v\|_{L^2(P_{1,4,1})} + 1 \),

utilizing the fact that \(\Lambda \leq 4\|v_0,\theta\|_{L^\infty(\mathbb{R}^3)} \). Applying this to (4.13), we get

\[\sup_{P_{2,3,\frac{4}{5}}} \left(\omega_x^2 + \omega_t^2 \right) \leq A \left(\int_{P_{1,4,1}} \omega_x^2 dyds + \int_{P_{1,4,1}} \omega_t^2 dyds \right), \]

where \(A \) is the constant defined as

\[A = c_{30} \left[K_b^4(C_{1,10,10}) + (K_b^4(C_{1,10,10}) + \|rv_0,\theta\|_{L^\infty(\mathbb{R}^3)} + 1) \right] \|\omega_0\|_{L^2(P_{1,10,\frac{4}{5}})}^2 \]

\[+ \|v\|_{L^2(P_{1,10,\frac{4}{5}})}^2 + 1 \]^{\frac{5}{2}}.

The domain is enlarged proportionally to make the right-hand side more uniform.

Re-scaling: Recall our “tilde” notation and that what has actually been shown to this point is

\[\sup_{P_{2,3,\frac{4}{5}}} \left(\tilde{\omega}_x^2 + \tilde{\omega}_t^2 \right) \leq \tilde{A} \left(\int_{P_{1,4,1}} \tilde{\omega}_x^2 d\vec{x}dt + \int_{P_{1,4,1}} \tilde{\omega}_t^2 d\vec{x}dt \right), \]

(4.15)

where \(\vec{x} = \frac{x}{\tilde{c}}, \vec{t} = \frac{t}{\tilde{c}}, \tilde{\omega}_x(\vec{x}, \vec{t}) = k^2 \omega_x(k\vec{x}, k^2\vec{t}), \tilde{\omega}_t(\vec{x}, \vec{t}) = k^2 \omega_t(k\vec{x}, k^2\vec{t}), \) and

\[\tilde{A} = c_{30} \left[K_b^4(C_{1,10,10}) + (K_b^4(C_{1,10,10}) + \|\tilde{r}\tilde{v}_0,\theta\|_{L^\infty(\mathbb{R}^3)} + 1) \right] \|\tilde{\omega}_0\|_{L^2(P_{\tilde{c},10,\frac{4}{5}})}^2 \]

\[+ \|\tilde{v}\|_{L^2(P_{\tilde{c},10,\frac{4}{5}})}^2 + 1 \]^{\frac{5}{2}}.

From the scaling in Section 2,

\[K_b(C_{1,10,10}) = ||\tilde{b}(\vec{x}, \vec{t})||_{L^\infty(-2,0)(C_{1,10,10})} = \frac{1}{k^{\frac{2}{3}}} ||b||_{L^\infty(-2k^2,0;L^2(C_{1,10,10}))}, \]

\[||\tilde{v}(\vec{x}, \vec{t})||_{L^2(P_{\tilde{c},10,\frac{4}{5}})} \frac{1}{k^{\frac{2}{3}}} = ||v(x, t)||_{L^2(P_{1,10,\frac{4}{5}})} \]
and
\[\| \tilde{\omega}(\tilde{x}, \tilde{t}) \|_{L^2(P_{10, 4}^{11, 10, 4})} = \frac{1}{k^2} \| \omega(x, t) \|_{L^2(P_{10, 4}^{11, 10, 4})}. \]

Also, \(\| rv_0, \theta \|_{L^\infty(\mathbb{R}^3)} \) is scaling invariant. Finally, \(\tilde{A} \) scales in the following way:
\[
\tilde{A} = c_{30} \left[K^4_b(C_{10, 10, 1}) + \left(K^4_b(C_{10, 10, 1}) + \| rv_0, \theta \|_{L^\infty(\mathbb{R}^3)} + 1 \right) \| \tilde{\omega} \|_{L^2(P_{10, 4}^{11, 10, 4})} \right. \\
+ \left. \| \tilde{v} \|_{L^2(P_{10, 4}^{11, 10, 4})} \right]^5 \\
= \frac{c_{31}}{k^{16}} \left[\left(K^4_b(C_{10, 10, k}) + k^2 \| rv_0, \theta \|_{L^\infty(\mathbb{R}^3)} + k^2 \right) \| \tilde{\omega} \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right. \\
+ \left. kK^4_b(C_{10, 10, k}) + \| v \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right]^5 \\
\times \left(\| \omega_r \|_{L^2(P_{10, 4}^{11, 10, 4, k})} + \| \omega_z \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right).
\]

Apply all of this to (4.15) to achieve
\[
\sup_{P_{2k, 3k, 4k}} k^4 \left(\omega_r^2(x, t) + \omega_z^2(x, t) \right) \\
\leq \frac{c_{31}}{k^{16}} \left[\left(K^4_b(C_{10, 10, k}) + k^2 \| rv_0, \theta \|_{L^\infty(\mathbb{R}^3)} + k^2 \right) \| \tilde{\omega} \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right. \\
+ \left. kK^4_b(C_{10, 10, k}) + \| v \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right]^5 \\
\times \left(\| \omega_r \|_{L^2(P_{10, 4}^{11, 10, 4, k})} + \| \omega_z \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right).
\]

Therefore,
\[
\| \omega_r \|_{L^\infty(P_{2k, 3k, 4k})} + \| \omega_z \|_{L^\infty(P_{2k, 3k, 4k})} \\
\leq \frac{c_{32}}{k^{10}} \left[\left(K^4_b(C_{10, 10, k}) + k^2 \| rv_0, \theta \|_{L^\infty(\mathbb{R}^3)} + k^2 \right) \| \tilde{\omega} \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right. \\
+ \left. kK^4_b(C_{10, 10, k}) + \| v \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right]^5 \times \\
\left(\| \omega_r \|_{L^2(P_{10, 4}^{11, 10, 4, k})} + \| \omega_z \|_{L^2(P_{10, 4}^{11, 10, 4, k})} \right).
\]

This proves (ii) of Theorem 1.1.

Acknowledgement. We thank Professor T.P. Tsai for sending us [3] before its publication, and for his useful suggestions.
References

[1] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831.

[2] Dongho Chae and Jihoon Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645–671.

[3] Chiun-Chuan Chen, Robert M. Strain, Tai-Peng Tsai, and Horng-Tzer Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math Res. Notices (2008), vol. 8, artical ID rnm016, 31 pp.

[4] Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations II, Comm. P.D.E., 34(2009), no. 1–3, 203–232.

[5] Thomas Y. Hou and Congming Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008) 661–697.

[6] Thomas Y. Hou, Zhen Lei, and Congming Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. P.D.E., 33 (2008), 1622–1637.

[7] Jiri Neustupa and Milan Pokorny, An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 381–399.

[8] Quansen Jiu and Zhouping Xin, Some regularity criteria on suitable weak solutions of the 3-D incompressible axisymmetric Navier-Stokes equations, Lectures on partial differential equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 119–139.

[9] G. Koch, N. Nadirashvili, G. Seregin, and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203(2009), no. 1, 83–105.

[10] O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 7 (1968), 155–177 (Russian).

[11] S. Leonardi, J. Malek, J. Necas, and M. Pokorný, On axially symmetric flows in \mathbb{R}^3, Z. Anal. Anwendungen, 18 (1999), 639–649.

[12] G. Seregin and V. Sverak, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Comm. P.D.E., 34(2009), no. 1–3, 171–201.

[13] Gang Tian and Zhouping Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135–145.

[14] M. R. Ukhovskii and V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52–61.

[15] Qi S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys., 244 (2004), 245–260.