Supporting Information
Materials and Methods

Protein Purification. TylM1 was cloned, over-expressed, and purified as described. The purified protein was dialyzed against 10 mM Tris (pH 8) and 200 mM NaCl and concentrated to 20 mg/mL.

Preparation of dTDP-sugars. dTDP-3-amino-3,6-dideoxyglucose and dTDP-3-amino-3,6-dideoxygalactose were enzymatically synthesized as previously reported. For the preparation of dTDP-o-mycaminose (dTDP-3-N,N-dimethylamino-3,6-dideoxyglucose), a typical 50 mL reaction was set up containing 50 mM HEPPS, 1.5 mM dTDP-3-amino-3,6-dideoxyglucose, and 4.5 mM S-adenosylmethionine. The pH was adjusted to 8.5, and 30 mgs of TylM1 were added. The reaction was incubated for 18 hours at 37°C. Subsequently, TylM1 was removed via filtration through an Amicon 10kD ultrafiltration membrane. The filtrate was diluted to 500 mL and loaded onto a 50 mL 26/10 Resource-Q column (GE LifeSciences). The products were separated with a 20-column volume gradient from 0 to 250 mM ammonium bicarbonate at pH 8.5. dTDP-o-mycaminose eluted at an ammonium bicarbonate concentration of approximately 100 mM. Mass spectroscopic analysis of the product (negative ion mode) gave the expected mass of 574 for an N,N-dimethylated sugar product. dTDP-3-N-methylamino-3,6-dideoxygalactose was prepared and purified in an analogous manner, using dTDP-3-amino-3,6-dideoxygalactose as the starting substrate. Mass spectrophotometric analysis of the product (negative ion mode) gave the expected mass of 560 for an N-monomethylated sugar product. No evidence of a dimethylated sugar was observed in the spectra obtained from this reaction.
Crystallization and X-ray Data Collection. Prior to crystallization trials, the protein was incubated with 5 mM S-adenosylhomocysteine and 10 mM dTDP-d-mycaminose. Crystallization conditions were then surveyed by the hanging drop method of vapor diffusion using a sparse matrix screen developed in the laboratory.

Single crystals of TylM1 were subsequently grown at room temperature via batch experiments by mixing in a 1:1 ratio the protein/S-adenosylhomocysteine/dTDP-d-mycaminose solution with a precipitant solution composed of 30-40% poly(ethylene glycol) 3400, 400 mM NaCl, and 100 mM CHES (pH 9). Crystallization was initiated by macro-seeding. The crystals were frozen for X-ray data collection by transferring them to a cryo-protectant solution composed of 25% poly(ethylene glycol) 3400, 350 mM NaCl, 5 mM S-adenosylhomocysteine, 10 mM dTDP-d-mycaminose, 100 mM CHES (pH 9), and 15% ethylene glycol. The crystals belonged to the monoclinic space group \(P2_1\) with unit cell dimensions of \(a = 73.5\ \text{Å}, \ b = 92.1\ \text{Å},\) and \(c = 80.2\ \text{Å}\) and \(\beta = 106.1^\circ\). The asymmetric unit contained two dimers.

Crystallization in the presence of dTDP-3-N-methylamino-3,6-dideoxygalactose was accomplished in an analogous manner to that described above. The crystallization process was initiated with seed crystals of the TylM1/S-adenosylhomocysteine/dTDP-d-mycaminose complex. The crystals also belonged to the monoclinic space group \(P2_1\), but with unit cell dimensions of \(a = 39.9\ \text{Å}, \ b = 92.9\ \text{Å},\) and \(c = 77.9\ \text{Å}\) and \(\beta = 97.3^\circ\). The asymmetric unit contained one dimer. These crystals showed significant anisotropic diffraction properties.

X-ray data from the TylM1/S-adenosylhomocysteine/dTDP-d-mycaminose complex crystals were collected at 100K at the Structural Biology Center Beamline 19-BM
Relevant X-ray data collection statistics are listed in Table S1. The structure was solved with PHASER using the coordinates for TylM1 (PDB code 3PFH) as a search model. Iterative rounds of model-building with COOT and refinement with REFMAC reduced the R_{work} and R_{free} to 18.1% and 21.6%, respectively, from 30 – 1.6 Å resolution. Relevant refinement statistics are listed in Table S2.

X-ray data from the TylM1/S-adenosylhomocysteine/dTDP-3-N-methylamino-3,6-dideoxygalactose complex crystals were collected at 100K with a Bruker AXS Platinum 135 CCD detector controlled by the Proteum software suite (Bruker AXS Inc.). The X-ray source was Cu Kα radiation from a Rigaku RU200 X-ray generator equipped with Montel optics and operated at 50 kV and 90 mA. These X-ray data were processed with SAINT version 7.06A (Bruker AXS Inc.) and internally scaled with SADABS version 2005/1 (Bruker AXS Inc.). Relevant X-ray data collection statistics are listed in Table S1. The structure was solved with PHASER using the coordinates of the refined structure in complex with S-adenosylmethionine and dTDP-\(d\)-mymcaminose as a search probe. Iterative rounds of model building with COOT and refinement with REFMAC reduced the R_{work} and R_{free} to 21.9% and 27.7%, respectively, from 30 – 2.2 Å resolution. Relevant refinement statistics are listed in Table S2.

Kinetic Analysis. The kinetic constants for the methylation reactions were determined using the SAM510:SAM Methyltransferase Assay Kit (G Biosciences). The assay was continuously monitored with a Beckman DU 640B spectrophotometer. The SAM510 assay protocol was followed with minor alterations. Specifically, the kit components (assay buffer, enzyme mix, colorimetric mix, and S-adenosylmethionine)
totaling 100 µl were incubated at 37°C for 15 min and the solution then cooled to ambient temperature (~23°C). The dTDP-sugar substrates and water were added for a total volume of 10 µl, and the reaction initiated by the addition of 5 µl of TylM1. This yielded a total final reaction volume of 115 µl and a concentration of TylM1 of 9 µg/mL. The production of S-adenosylhomocysteine was monitored spectrophotometrically at 510 nm every 2 seconds over 20 min. dTDP-3-amino-3,6-dideoxyglucose was used in ten different concentrations ranging from 0.025 to 0.7 mM, whereas dTDP-3-amino-3,6-dideoxygalactose was used in 14 different concentrations ranging from 0.1 to 10.0 mM. Note that tests were performed to verify that the concentration of SAM was saturating.

Originally a discontinuous HPLC assay that monitored the consumption of the dTDP-sugar substrates was employed. Unfortunately, this approach was not sensitive enough for the low concentrations of dTDP-3-amino-3,6-dideoxyglucose required. As such, we shifted to the colorimetric assay described above. At the higher substrate concentrations tested in the HPLC assay, the rate of consumption of the dTDP-3-amino-3,6-dideoxyglucose was comparable to the rate of S-adenosylhomocysteine production observed using the SAM510 kit. The kinetic parameters are listed in Table S3.
Table S1: X-ray Data Collection Statistics.

	TylM1/S-adenosylhomocysteine/dTDP-D-mycaminose complex	TylM1/S-adenosylhomocysteine/dTDP-3-N-methylamino-3,6-dideoxygalactose
resolution limits (Å)	50-1.6 (1.63-1.60)^b	50-2.20 (2.30-2.20)
number of independent	123048 (5330)	24812 (2554)
reflections		
completeness (%)	91.6 (79.6)	86.5 (71.8)
redundancy	4.3 (2.4)	3.2 (1.2)
avg I/avg σ(I)	43.2 (4.3)	14.0 (3.7)
R_{sym} (%)^a	6.9 (17.6)	5.7 (14.0)

^aR_{sym} = (\Sigma |I| - \bar{I}) / \Sigma |I| x 100.

^bStatistics for the highest resolution bin.
Table S2: Refinement Statistics.

	TylM1/S-adenosylhomocysteine/dTDP-D-mycaminose complex	TylM1/S-adenosylhomocysteine/dTDP-3-N-methylamino-3,6-dideoxygalactose
resolution limits (Å)	50.0 - 1.6	30.0 – 2.2
\(R\)-factor (overall)%/no. reflections	18.2/123048	21.9/24794
\(R\)-factor (working)%/no. reflections	18.1/116898	21.5/23543
\(R\)-factor (free)%/no. reflections	21.6/6150	27.7/1251
number of protein atoms	7345	3659
number of heteroatoms	899	336
average B values		
protein atoms (Å\(^2\))	24.1	38.6
ligand (Å\(^2\))	17.8	30.5
solvent (Å\(^2\))	30.0	36.0
weighted RMS deviations from ideality		
bond lengths (Å)	0.010	0.013
bond angles (º)	2.03	1.70
planar groups (Å)	0.010	0.006
Ramachandran regions (%)		
most favored	92.0	90.3
additionally allowed	8.0	9.4
generously allowed	0	0.2
disallowed	0	0

\(^{a}\) \(R\)-factor = (\(\sum |F_O - F_C| \) / \(\sum |F_O| \)) x 100 where \(F_O \) is the observed structure-factor amplitude and \(F_C \) is the calculated structure-factor amplitude.

\(^{b}\) Distribution of Ramachandran angles according to PROCHECK.\(^7\)
Table S3. Kinetic Parameters.

Substrate	K_m (mM)	k_{cat} (s$^{-1}$)	k_{cat}/K_m (M$^{-1}$ s$^{-1}$)
dTDP-3-amino-3,6-dideoxyglucose	0.079 ± 0.015	0.75 ± 0.09	9.5 x 10$^{-4}$
dTDP-3-amino-3,6-dideoxygalactose	1.54 ± 0.08	0.61 ± 0.07	4.0 x 10$^{-2}$
References

1. Carney, A. E., and Holden, H. M. (2011) Molecular Architecture of TylM1 from Streptomyces fradiae: An N,N-Dimethyltransferase Involved in the Production of dTDP-d-mycaminose, *Biochemistry* 50, 780-787.

2. Thoden, J. B., Goneau, M. F., Gilbert, M., and Holden, H. M. (2013) Structure of a Sugar N-Formyltransferase from *Campylobacter jejuni*, *Biochemistry* 52, 6114-6126.

3. Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes, *Acta Crystallogr D Biol Crystallogr* 62, 859-866.

4. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software, *J. Appl. Cryst.* 40, 658-674.

5. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method, *Acta Crystallogr D Biol Crystallogr* 53, 240-255.

6. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, *Acta Crystallogr D Biol Crystallogr* 60, 2126-2132.

7. Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) Main-chain bond lengths and bond angles in protein structures, *J Mol Biol* 231, 1049-1067.