P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model

Chris E. Adkins1, Rajendar K. Mittapalli1, Yamshi K. Manda1, Mohamed I. Noumou1, Afroz S. Mohammad1, Toni B. Terrell1, Kaci A. Bohn1, Celik Yasemin2, Tiffany R. Grothe2, Julie A. Lockman2 and Paul R. Lockman1*

Valentina Caldera,* e-mail: paul.lockman@ttuhsc.edu

Coulter, Amarillo, TX 79106-1712, USA

Research Building, 1406 South Health Sciences Center, Amarillo, TX, USA

1 Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
2 Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA

INTRODUCTION

The successful treatment of central nervous system (CNS) tumors and metastases using chemotherapy depends on the ability of therapeutic concentrations of drug to cross the blood–brain barrier (BBB). More than 98% of potential CNS active anticancer drugs fail in preclinical work and or clinical trials because of inadequate BBB penetration (Pardridge, 2007). Clinically this results in many anticancer agents failing to substantially reduce tumor burden and or significantly prolong survival (Deeken and Loscher, 2007).

The microvasculature of the brain is a unique anatomical structure which serves as a homeostatic and regulatory barrier between the blood and the brain parenchyma (Hawkins and Davis, 2005). Specifically, endothelial cells that line the blood vessels of the brain capillaries are fused together by numerous tight junction protein complexes, which restrict blood components from passively diffusing between the cell margins to gain entry into brain. The tight junction protein complexes consist of a number of proteins such as zonula occludins, junctional adhesion molecules, and claudins which function as a unit to seal the endothelia margins. Further the outside of the brain capillary is surrounded by astrocytic foot processes and pericytes that also contribute to the restriction of paracellular diffusion (Abbott et al., 2010).

Further restricting the brain entry of a large number of drugs and drug classes are efflux transporters at the BBB. Efflux transporters are richly expressed in the brain vasculature and have been shown to restrict the accumulation of antiepileptics, antidepressants, and antipsychotics (Schinkel et al., 1995; Loscher and Potocka, 2005). Multiple efflux transporters at the BBB act to actively extrude or prevent drug accumulation into brain, these include P-glycoprotein (P-gp; ABCB1) (Schinkel et al., 1996), breast cancer resistant protein (BCRP; ABCG2; Polli et al., 2009), multidrug resistance associated proteins (MRP; ABCG1-6; Bredfeldt et al., 2005), and organic anion transporters (OATs; Hagenbuch and Meier, 2004).

The net effect of the anatomical and molecular features of the BBB is that to a large degree it restricts drug movement from blood into brain. But some drugs are able to penetrate the BBB. Drug and/or solute permeation across the BBB is mostly limited...
We observed that P-gp is expressed at the BTB in brain metastases. However, it has been previously shown that the BTB expresses P-gp (Cordon-Cardo et al., 1990); however, metastatic lesions (Gallo et al., 2003). It has been previously shown that the BTB expresses P-gp (Cordon-Cardo et al., 1990); however, the expression of P-gp may be variable among different tumors (Henson et al., 1992). In addition to P-gp expression at the BTB, many cancers have been shown to express functional P-gp in vivo which may restrict the cellular accumulation of chemotherapeutics.

Herein we set out to determine the expression and function of P-gp in a preclinical model of brain metastasis of breast cancer using quantitative fluorescence microscopy and autoradiography. We observed that P-gp is expressed at the BTB in brain metastases at nearly similar levels to the BBB. In addition, P-gp is highly functional in limiting the lesion accumulation of the P-gp substrate, Rhodamine 123 (R123) despite significant passive permeability.

MATERIALS AND METHODS

CHEMICALS

R123 was purchased from Molecular Probes Invitrogen (Eugene, OR, USA). Verapamil was purchased from Sigma (St. Louis, MO, USA). Cyclosporine A was purchased from Tocris Biochemicals (St. Louis, MO, USA). L-4,6-C14 labeled aminoisobutyric acid (AIB) was purchased from American Radiolabelled Chemicals (St. Louis, MO, USA). All other chemicals used were of analytical grade and were used as supplied.

ANIMALS

Female NuNu mice (~24 g; 8 weeks of age) were purchased from Charles River Laboratories (Kingston, NY, USA) and were used for all the perfusion experiments done in this study. All studies were approved by the Animal Care and Use Committee and were performed in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals.

IN SITU MOUSE HEART PERFUSION TECHNIQUE

The in situ mouse heart perfusion technique was evaluated to determine brain uptake of R123. Mice were anesthetized with ketamine/xylazine (100 and 8 mg/kg, respectively) and the heart exposed. Body temperature was monitored and maintained at 37°C using a heating pad attached to a feedback device (YSI Indicating Controller, Yellow Springs, OH, USA). Prior to insertion of the cannula, the right cardiac atrium was cut to prevent venous return. Cannulation of the left cardiac ventricle was done using butterfly syringe (28G) attached to a perfusion apparatus. Perfusion fluid was pumped into the left cardiac ventricle by a cannula at a constant rate of 2.5 mL/min (Dagensais et al., 2000) using a Harvard Model 944 dual channel pump (Harvard Apparatus, South Natick, MA).

The perfusion fluid consisted of HCO3 buffered physiological saline, containing 128 mM NaCl, 24 mM NaHCO3, 4.2 mM KCl, 2.4 mM NaH2PO4, 1.5 mM CaCl2, 0.9 mM MgSO4, and 9 mM glucose (pH = 7.35; [Na] = 154.4 mM). All solutions were filtered, oxygenated, warmed to 37°C, and adjusted to pH 7.35 prior to perfusion. To determine initial brain uptake of R123, perfusion fluid containing R123 (30 µg/mL) was infused into the systemic circulation for 50–120 s. At the end of each experiment, mice were sacrificed, and the brain was rapidly removed (~60 s) from the skull. The brain was flash frozen in isopentane (~−65°C). Concentration of the fluorophore (R123) in brain was determined using fluorescent microscopy and regional permeability was expressed by the unidirectional transfer constants, Kt/ru (ml/g) derived from Eq. 1.

QUANTIFICATION OF R123 USING FLUORESCENCE MICROSCOPY

Fluorescence was observed with an Olympus MVX10 stereomicroscope (objective: 2×, NA 0.5) with an optical zoom range from 0.63 to 12.6. The excitation and emission of R123 was obtained using a GFP filter (excitation/band pass filter of 470/40, emission/band pass filter of 525/50 and dichromatic mirror at 495 nm; Chroma Technology, Bellow Falls, VT, USA). Tissue sections of 20 µm were obtained at ~23°C using a cryotome (Leica CM3050S, Leica Microsystems, Buffalo Grove, IL, USA), mounted on charged glass slides, and kept at ~−23°C. Data were analyzed using quantitative fluorescence microscopy and all images were obtained with 15 ms exposures, though a 2.0 objective at 4× magnification (Olympus MVX10) with a monochromatic cooled CCD scientific camera (Retiga 4000R, QImaging, Surrey, BC, Canada). Slidebook® 5 software (Intelligent Imaging Innovations, Denver, CO, USA) was utilized to determine sum intensity per gram of brain which then converted into concentration of dye per gram of brain using the brain homogenate standards. The voxel by voxel sum intensity of fluorescence for brain homogenate samples was obtained with the 2× objective. The optical zoom range was maintained at 4× for a total optical magnification of 8×. The sum intensity per gram of brain homogenate was obtained using a set exposure time of 15 ms with camera gain settings of 615. The total fluorescence intensity signal for each concentration was then plotted as a function of grams of brain which was calculated using the area in microns squared multiplied by the thickness of the brain sample (20 µm) to obtain a total brain volume that was analyzed. The brain volume (µm3) was multiplied by the density of brain tissue (1.04 g/cm3) as similarly reported by Tengvar et al., 1983) to obtain a weight of brain tissue that was analyzed.

PREPARATION OF BRAIN STANDARDS

To calculate the concentration of the R123 in brain, standard curves were generated in rat brain homogenates. Briefly, 100 µL of standard solution of the dye was added to each of 500 mg of the brain and homogenized. The homogenized mass was flash frozen.
in isopentane (−80°C) and sliced into 20 μm sections using a cryostat −23°C and mounted onto glass, superfrost slides. The slides were analyzed using quantitative fluorescence microscopy and the sum intensity per gram of brain homogenate was plotted against concentration of the dye.

KINETIC ANALYSIS

Unidirectional uptake transfer constants (K_{un}) were calculated from the following relationship to the linear portion of the uptake curve:

$$Q^* / C^* = K_{un} T + V_0$$

where Q^* is the quantity of fluorophore (R123) in brain (μg/g) at the end of perfusion, C^* is the perfusion fluid concentration of fluorophore (μg/mL), T is the perfusion time (s) and V_0 is the extrapolated intercept ($T = 0$ s; "vascular volume" in mL/g). After determination of a perfusion time that allowed adequate K_{un} was determined in single time-point experiments as:

$$K_{un} = \left[\frac{Q^* - V_0 C^*}{C^* T} \right]$$

(Takasato et al., 1984; Smith and Takasato, 1986).

ANTIBODY STAINING

Tissues were rehydrated in PBS and then fixed in 4% paraformaldehyde (PFA) for P-gp (Abcam, Cambridge, MA), cytohesin 2 (Abcam) and CD31 (BD Pharmingen, San Jose, CA), ice-cold methanol for ABCB1 (Santa Cruz Biotechnology), CD31 (BD Pharmingen). After three PBS washings (5 min), slides were blocked with 4% goat serum and 0.2% Triton-X 100 (1 h). After blocking, primary antibodies were added, followed by overnight incubation at 4°C. The next day, the slides were washed and secondary antibodies and DAPI (1 mg/mL) were added (1 h). Slides were again washed, DAKO mounting medium was added, and coverslips were applied.

RESULTS

To determine if P-gp expression is present in the vasculature of brain metastases, we analyzed the brains of tumor bearing mice using immunofluorescence staining for both P-gp and the vascular marker CD31 to quantify the amount of colocalization (Figure 1). There was significant expression of P-gp at the BBB and BTB (Figure 1B). Overall there was no difference between the fluorescent intensity of P-gp staining in the CD-31 defined regions in tumor vasculature (22.9 ± 0.4 A.U.; $n = 756$ vessels) and in the normal brain vasculature (22.6 ± 0.3 A.U.; $n = 1214$). In addition, there was positive P-gp staining that did not co-localize to the vasculature, but surrounded metastasis cells suggesting that P-gp may also be present on the metastatic cancer cells.

We measured P-gp function by the time dependent accumulation of the fluorescent P-gp substrate R123 according to previous methodology (Mintzalli et al., 2013). Using fluorescent brain standards we determined the blood to brain unidirectional transfer coefficient (K_{un}) of R123 in normal brain and in metastatic lesions by calculating the concentration of R123 divided by the concentration in the perfusate and plotted this over time (30–120 s; Figure 2A). We then applied a previously calculated correction to the vascular volume by perfusion of non-permeable [14C]-sucrose and measuring its vascular space (0.035 ± 0.002 mL/g). We observed that the uptake of R123 was linear with the perfusion time with a K_{un} of 0.12 ± 0.03 μL/s/g. To determine if we could inhibit P-gp mediated efflux of R123, we added P-gp inhibitors verapamil and cyclosporine A (Choi and Li, 2005; Breedveld et al., 2006; Raums and Hilgeroth, 2009) at various concentrations to the R123 perfusate in separate experiments (Figure 2A). Upon co-perfusion of R123 and each inhibitor, there was an increase in R123 permeability, Cyclosporin A (2.4 ± 0.5 μL/s/g); and Verapamil (2.2 ± 0.2 μL/s/g) indicating that R123 uptake into brain is limited by the efflux function of P-gp at the BBB.

We then plotted R123’s LogD (octanol/water coefficient; pH = 7.4) and observed K_{un} in comparison to known passive

![Image](file.png)
permeability compounds (Begley, 1996) and efflux substrates (Summerfield et al., 2007; Figure 2B). Molecules and drugs that passively diffuse into brain exhibit a linear relationship between their LogD (octanol/water coefficient) and their observed Log \(K_u \) while molecules which are subject to efflux will exhibit observed Log \(K_u \) values below the value predicted by its LogD (Figure 2B). R123 has a LogD of 1.51 (Forster et al., 2012) and Log \(K_u \) of \(-3.93\) (calculated from observed \(K_u \); Figure 2A) which places R123 several orders of magnitude below a passively diffusing molecule’s profile which supports the evidence of R213’s restriction from brain via an efflux transporter.

To determine BTB passive permeability and whether P-gp influences R123 uptake into brain metastases of breast cancer, tumor-bearing mice were injected with \(^{14} \)C-AIB (passive permeability tracer) which was allowed to circulate for 10 min before a 2 min R123 perfusion, which was followed by sacrifice (Figure 3). Autoradiography analysis of the brains revealed elevated permeability to \(^{14} \)C-AIB (\(\sim 4.9\text{-fold increase} \)). The passive permeability marker tracer’s uptake did not correlate \((r^2 = 0.17\) for AIB) with metastases size \((p > 0.05)\) but \(\Delta K_u \) of normal brain was different from that of normal brain on average \((p < 0.05)\).

DISCUSSION AND CONCLUSION
In the current study, we present data suggesting P-gp retains its efflux function at the BTB despite a disruption in the integrity of the BBB induced by the presence of a metastatic lesion. Of notable methodology, to the best of our knowledge we are the first to combine quantitative fluorescence microscopy to measure R123 P-gp mediated efflux and quantitative autoradiography to measure changes in BTB passive permeability \((^{14} \)C-AIB) in the same brain slice. This method is able to directly shed light on two independent processes occurring at the BTB.

The utilization of R123 to evaluate P-gp function is well established (Hegmann et al., 1992). However, there is less evidence regarding R123’s affinity and efflux transport to other transporters that contribute to drug restriction to brain. R123 has been reported to be subject to transport by BCRP (Doyle et al., 1998), and OCT1 & 2 (Jouan et al., 2012), and MRP2 (Munic et al., 2011). Though studies using specific transporter inhibitors at correct concentrations show P-gp primarily transports R123 and restricts accumulation into brain (Wang et al., 1995). Moreover, the magnitude of R123 efflux by P-gp is greater than that of BCRP and MRP1 (Chopra, 2004) and therefore should represent the major pathway of active efflux transport at the BBB and BTB.

Due to the difficulty in performing the in situ brain perfusion in mice, we modified the in situ brain perfusion to a cardiac perfusion method in female Nu/Nu mice bearing brain metastases of breast cancer to characterize P-gp function in vivo. This method has similar advantages to the in situ brain perfusion method in that we may control aspects of the perfusion to determine both influx and efflux kinetics, transporter inhibition coefficients, and BTB or BBB permeability (Smith and Allen, 2003). This control helps determine accurate apparent permeability coefficients (Lockman et al., 2003a), the degree to what a substrate is efflux back into blood (Lockman et al., 2003b), inhibition constants for...
FIGURE 3 | The BTB is variably compromised for compounds entering via passive diffusion but retains P-gp mediated efflux. The passive permeability marker 14C-AIB fold change in brain metastases did not correlate ($r^2 = 0.167$) with metastasis size (mm2) (A). R123 fold change in brain metastases did not correlate ($r^2 = 0.033$) with metastasis size (B). There was no observed relationship ($r^2 = 0.0009$) between the fold increase in brain metastases of 14C-AIB (passive permeability marker) and R123 (P-gp substrate) (C). One representative brain slice showing metastases location (D, cresyl violet), R123 fluorescence distribution (E, fluorescence microscopy), and 14C-AIB brain uptake (F, quantitative autoradiography).

FIGURE 4 | (A) No difference ($p > 0.05$; student t-test, $n = 3–5$) was seen between R123 blood to brain transfer constant K_{in} between values measured in normal brain ($K_{in} = 0.11 ± 0.01 \mu$L/s/g) and metastases ($K_{in} = 0.12 ± 0.02 \mu$L/s/g). Representative R123 fluorescence images in normal brain (B) and within a metastasis (C) (scale bar = 100 μm).

Transporters (Lockman et al., 2001) and a direct measurement of BBB and BTB integrity (Lockman et al., 2003a, 2004, 2005b) using the cardiac perfusion method, R123 accumulated in brain linearly over 2 min of perfusion time. Our observed blood to brain transfer constant (K_{in}) was \approx10-fold less than what would be calculated K_{in} based on values measured in normal brain ($K_{in} = 0.11 ± 0.01 \mu$L/s/g) and metastases ($K_{in} = 0.13 ± 0.02 \mu$L/s/g). Representative R123 fluorescence images in normal brain (B) and within a metastasis (C) (scale bar = 100 μm).

Of importance to this study, the simultaneous administration of a passive permeability marker and a tracer subject to P-gp mediated efflux allowed us to measure BTB integrity and functional efflux. Both parameters have been shown to significantly impact drug uptake into metastases (Lockman et al., 2010) but have not been simultaneously measured directly in metastatic lesions. Our initial hypothesis prior to the experiment was that since we have seen increased permeability at the BTB in metastases (Lockman et al., 2010), we would also see a similar increase in R123 distribution into the lesion. However we did not observe R123 accumulation within metastases.

There are two possible explanations that may provide insight to the lack of increased R123 permeability in the lesion. First, it is known that P-gp is expressed in the vasculature of human brain tumors and metastases (Guo et al., 2010). Although, P-gp expression at the BTB has been shown to be variable among different types of tumors within the CNS (Cordon-Cardo et al., 1990; Toth et al., 1996; Tews et al., 2000); we also see differences between separate intracranial metastases (Demede et al., 2001; Lockman et al., 2010). We observed some variability of P-gp expression in the vessels of our metastases, but overall P-gp expression was not significantly different in the over 2,000 vessels we analyzed between the BTB and the BBB. Accordingly, this may be a reason why there was little overall difference in tissue accumulation of R123 between the two tissue types. Another possible explanation is that we observed tumor cells directly adjacent or proximal to blood to brain after the addition of verapamil or cyclosporine A to the perfusate (Mittapalli et al., 2013).
the vasculature also express P-gp, which may also contribute to the restriction of R123 in the lesions. Overall, the pattern of distribution for each tracer suggests that the BTB is disrupted yet its efflux transport mechanisms are intact and can limit brain and tumor uptake of P-gp substrates.

This work does have translational value to human drug distribution to brain. The expression of BCRP at human BBB is ~2 fold higher as compared to the expression levels at mouse BBB. The P-gp expression is 5 fold higher at mouse BBB as compared to the expression levels at human BBB. So BCRP still plays a major role at human BBB (Hoshi et al., 2013) suggesting P-gp plays a major functional role in the human BBB. While some studies have supported little efflux contribution for various anti-cancer drugs to brain (Agarwal et al., 2012), others have demonstrated P-gp at the BBB and BTB restricts the uptake of many anti-cancer agents; such as paclitaxel, docetaxel, vemurafenib, erlotinib, axitinib, and tamoxifen (Gallos et al., 2003; Kemper et al., 2004; Wiang et al., 2010; Ifusul et al., 2011; Poller et al., 2011; Mittapalli et al., 2012; Taskar et al., 2012; Agarwal et al., 2013).

Attempts to modify P-gp using inhibitors have shown promise in preclinical settings (Kemper et al., 2004; Mittapalli et al., 2012; Agarwal et al., 2013). Although, we, and others, have observed variably elevated accumulations of small molecules across the BTB in brain metastases, the data herein provide evidence that P-gp retains much of its residual function. Thus, BTB function in this preclinical model may be viewed as only partially compromised and retains significant ability to impede uptake of therapeutic compounds. Given the large list of drugs, particularly anticancer agents such as paclitaxel and doxorubicin, which are subject to P-gp mediated efflux, the clinical impact of this retained function suggests the BTB remains a significant barrier in delivering chemotherapeutics into metastatic lesions.

AUTHORS’ CONTRIBUTIONS
1. Concept and design – Chris E. Adkins, Rajendar K. Mittapalli, Vamshi K. Manda, Paul R. Lockman
2. Development of methodology Chris E. Adkins, Rajendar K. Mittapalli, Vamshi K. Manda, Tori B. Terrell, Kaci A. Bohn, Celik Yasemin, Tiffany R. Grothe, Julie A. Lockman, Paul R. Lockman
3. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc) Chris E. Adkins, Rajendar K. Mittapalli, Vamshi K. Manda, Tori B. Terrell, Kaci A. Bohn, Celik Yasemin, Tiffany R. Grothe, Julie A. Lockman, Paul R. Lockman
4. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis) Chris E. Adkins, Rajendar K. Mittapalli, Vamshi K. Manda, Mohamed I. Nounou, Afnor S. Mohammad, Tori B. Terrell, Julie A. Lockman, Paul R. Lockman
5. Writing, review, and/or revision of the manuscript Chris E. Adkins, Mohamed I. Nounou, Afnor S. Mohammad, Tori B. Terrell, Paul R. Lockman
6. Study supervision Paul R. Lockman

ACKNOWLEDGMENT

Funding for this study was provided by the Department of Defense Breast Cancer Research Program Grant WH 1W8H-062-00333 and National Cancer Institute, National Institutes of Health, Bethesda, MD. 1R01CA166067-01A1 to Paul R. Lockman.

REFERENCES

Albritton, N. J., Pietraszyk, A. A., Dolman, D. E., Yusof, S. R., and Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurosurg. Rev. 33, 15–25. doi: 10.1007/s10110-009-0713-0

Agarwal, S., Manchanda, P., VogtBaum, M. A., ObiEJ, J., and Elmquist, W. F. (2013). Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Deliv. Transl. Med. 41, 35–39. doi: 10.1124/d21.1240822

Baumert, C., and Hågerström, A. (2009). Recent advances in the development of P-gp inhibitors. Anticancer Agents Med. Chem. 9, 415–436. doi: 10.1080/14786410903032543

Begley, D. J. (1996). The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J. Pharm. Pharmacol. 48, 136–146. doi: 10.1111/j.1749-6648.1996.tb31122.x

Broussol, P., Heijen, J. H., and Schartel, J. H. (2006). Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anti-cancer drugs. Trends Pharmacol. Sci. 27, 13–24. doi: 10.1016/j.tips.2005.11.009

Broussol, P., Plam, D., Cypser, G., Wedlyge, P., von Taffangen, O., Schubel, A. H., et al. (2005). The effect of Bcrp (Abcg2) on the in vitro pharmacokinetics and brain penetration of mitomycin myelost (Gluvec): implications for the use of breast cancer resistance protein and P-glycoprotein substrates to enable the brain penetration of mitomycin in patients. Cancer Res. 65, 2577–2582. doi: 10.1158/0008-5472.CAN-04-0601

Choi, J. S., and Li, K. (2005). The effect of verapamil on the pharmacokinetics of paclitaxel in rats. J. Phar. Pharmacol. 24, 95–100. doi: 10.1038/036022

Chopra, A. (2004). “11C-Labeled rhodamine-123,” in Molecular Imaging and Contrast Agent Database (MICAD) (Bethesda:National Center for Biotechnology Information).

Cordon-Cardo, C., O’Brien, P. J., Bocci, J., Caulez, D., Bertin, J. R., and Mohamed, M. R. (1995). Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J. Histochem. Cytochem. 33, 1277–1287. doi: 10.1177/73.9.187400

Degroote, C., Breunle, C., Pellegr, G. M., and Schottmann, J. M. (2000). Development of an in situ mouse brain perfusion model and its application to multi P-glycoprotein-deficient mice. J. Cereb. Blood Fervo Memb. 20, 381–386. doi: 10.1007/s10047-000-00320

Dekker, J. F., and Lescher, W. (2007). The blood-brain barrier and cancer: transporters, treatment, and Tregs horses. Clin. Cancer Res. 13, 1065–1072. doi: 10.1158/1078-0432.CCR-06-2354

Domenici, M., Shiel, D., Beausoir, E., Del Maestro, R. R., Moghbeli, A., Gibson, P. B., et al. (2001). Expression of multidrug-resistant P-glycoprotein (MDR1) in human brain tumors. J. Nat. Cancer Inst. 93, 62–66. doi: 10.1093/jnci/93.1.62

Drury, A. L., Yang, W., Ahvaz, L. V., Kroogaard, T., Yao, Y., Riba, A. R., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15645–15650. doi: 10.1073/pnas.95.26.15645

Forster, S., Thumser, A. E., Hood, S. R., and Plant, N. (2012). Characterization of rhodamine-123 as a tracer dye for in vivo micro drug transport assays. PLoS ONE 7:e35235. doi: 10.1371/journal.pone.0035235

Gaill, J. M., Li, S., Guo, P., Beaud, E., and Ma, F. (2003). The effect of P-gp on paclitaxel brain and brain tumor distribution in mice. Cancer Res. 63, 5114–5117.

Guo, Z., Zhu, J., Zhao, L., Luo, Q., and Jin, X. (2010). Expression and clinical significance of multidrug resistance proteins in brain tumors. J. Exp. Clin. Cancer Res. 29, 122. doi: 10.1186/1756-9966-29-122

Hagenskog, B., and Maiz, P. J. (2004). Organic anion transporting polypeptides of the OATP/SCL2 family: phylogenetic classification as OATP/SCL superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 447, 655–665. doi: 10.1007/s00424-005-1108-y

Hawkins, B. T., and Davis, T. P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmaceutical Res. 22, 175–185. doi: 10.1007/s11095-005-7093-2

Hegmann, E. J., Bauer, H. C., and Kerbel, R. S. (1992). Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells. J. Clin. Cancer Res. 9, 415–436. doi: 10.1128/clinres.9.3.415

Henson, J. W., Cordon-Cardo, C., and Dunet, J. R. (1992). P-glycoprotein expression in brain tumors. J. Neurooncol. 14, 37–43. doi: 10.1007/BF00179943

"fphar-04-00136" — 2013/11/3 — 10:36 — page 6 — #6
Adkins et al. P-glycoprotein limits substrate uptake

This article was submitted to Pharmacology of Anti-Cancer Drugs, a section of the journal Frontiers in Pharmacology. Copyright © 2013 Adkins, Mitapalli, Manda, Nounou, Mohammad, Terrell, Bohn, Naumen, Grothe, Lodeman and Lockman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.