HIGHER ORDER NLS WITH ANISOTROPIC DISPERSION
AND MODULATION SPACES: A GLOBAL EXISTENCE
AND SCATTERING RESULT

CHAICHENETS, LEONID AND PATTAKOS, NIKOLAOS

Abstract. In this paper we transfer a small data global existence and
scattering result by Wang and Hudzik to the more general case of mod-
ulation spaces $M^s_{p,q}(\mathbb{R}^d)$ where $q = 1$ and $s \geq 0$ or $q \in (1, \infty]$ and $s > \frac{d}{q}$
and to the nonlinear Schrödinger equation with higher order anisotropic
dispersion.

1. Introduction and main results

We are interested in the following Cauchy problem for the higher-order
nonlinear Schrödinger equation (NLS) with anisotropic dispersion

\begin{equation}
\begin{cases}
i \partial_t u + \alpha \Delta u + i \beta \frac{\partial^2 u}{\partial x^2_1} + \gamma \frac{\partial^4 u}{\partial x^4_1} + f(u) = 0, \\
u(t=0, \cdot) = u_0,
\end{cases}
\end{equation}

where $u = u(t, x), (t, x) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d-1}, d \geq 2, \alpha \in \mathbb{R} \setminus \{0\}$ and
$(\beta, \gamma) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. We consider power-like and exponential non-linearities f. The former non-linearity,

\begin{equation}
f(u) = \pi^{m+1}(u),
\end{equation}

is any product of in total $m + 1 \in \mathbb{N}$ copies of u and π of any sign, e.g. $f(u) = -|u|^2 u$. The latter nonlinearity has the form

\begin{equation}
f(u) = \lambda \left(e^{\rho |u|^2} - 1\right) u,
\end{equation}

where $\lambda \in \mathbb{C}$ and $\rho > 0$. Such PDEs arise in the context of high-speed
soliton transmission in long-haul optical communication systems and were
introduced by Karpman, see [Kar96], [DC08] and [KH94]. The case where
the coefficients α, β, γ are time-dependent has been studied in [CPS15] in
one dimension for the cubic nonlinearity, $f(u) = |u|^2 u$ with initial data in
$L^2(\mathbb{R})$-based Sobolev spaces. Before we state our results, we need to recall
some concepts and make some definitions.

The initial data u_0 in our case comes from a modulation space. Modulation
spaces were introduced by Feichtinger in [Fei83] (see also [Grö01] or [WH07]
for a gentle introduction). Let $Q_0 := \left(-\frac{1}{2}, \frac{1}{2}\right]^d$ and $Q_k := k + Q_0$ for $k \in \mathbb{Z}^d$.
Consider any smooth partition of unity $(\sigma_k) \in C^\infty(\mathbb{R}^d)^{2d}$ which is adapted

2010 Mathematics Subject Classification. Primary 35A01, 35A02, 35Q55; Secondary
35B40.

Key words and phrases. Global existence, Modulation spaces, Nonlinear dispersive
equation, Scattering.
to \((Q_k)\), i.e. \(\text{supp}(\sigma_k) \leq B_{\sqrt{2}}(k)\) and \(|\sigma_k(\xi)| \geq C\) for some \(C > 0\), all \(k \in \mathbb{Z}^d\) and all \(\xi \in Q_k\). Define the isometric decomposition operators

\[
\square_k := \mathcal{F}^{-1} \sigma_k \mathcal{F} \quad \forall k \in \mathbb{Z}^d,
\]

which we also call the box operators. For \(p, q \in [1, \infty)\) and \(s \in \mathbb{R}\) we define the modulation space

\[
M^s_{p,q}(\mathbb{R}^d) := \left\{ f \in S'(\mathbb{R}^d) \mid \|f\|_{M^s_{p,q}(\mathbb{R}^d)} < \infty \right\},
\]

where

\[
\|f\|_{M^s_{p,q}(\mathbb{R}^d)} := \left\| \left(|k|^{s} \|\Box_k f\|_p \right)_{k \in \mathbb{Z}^d} \right\|_{l^q(\mathbb{Z}^d)},
\]

\(S'(\mathbb{R}^d)\) is the space of tempered distributions and \(\langle k \rangle := \sqrt{1 + |k|^2}\) denotes the Japanese bracket. We note that a different partition of unity leads to an equivalent norm. We shall sometimes shorten \(M^s_{p,q}(\mathbb{R}^d)\) to \(M^s_{p,q}\) and \(M^r_{p,q}\) to \(M^r_{p,q}\).

The solution \(u\) is sought in a Planchon-type space. Spaces of this type go back to [Pla00]. The following variant adapted to modulation spaces has been introduced in [WH07]. For \(p, q, r \in [1, \infty)\) and \(s \in \mathbb{R}\) we define

\[
I^s_{\square}(L^r(\mathbb{R}, L^p(\mathbb{R}^d)))) := \left\{ u \in S'(\mathbb{R}^{d+1}) \mid \|u\|_{I^s_{\square}(L^r(\mathbb{R}, L^p(\mathbb{R}^d))))} < \infty \right\},
\]

where

\[
\|u\|_{I^s_{\square}(L^r(\mathbb{R}, L^p(\mathbb{R}^d))))} := \left\| \left(|k|^{s} \|\Box_k u(t, x)\|_{L^r_t L^p_x} \right)_{k \in \mathbb{Z}^d} \right\|_{l^q},
\]

(1) The box operator acts in the space variable \(x\) only. As already done above we shall indicate in which variable which norm is taken by writing e.g. \(L^r_t L^p_x\) for the mixed-norm space \(L^r(\mathbb{R}, L^p(\mathbb{R}^d)))\). Also, we shall sometimes shorten \(I^s_{\square}(L^r(\mathbb{R}, L^p(\mathbb{R}^d))))\) to \(I^s_{\square}(L^r \mathbb{R} L^p)\).

Finally, we denote by \(\lceil \cdot \rceil\) the ceiling and by \(\lfloor \cdot \rfloor\) the floor functions.

We are now in the position to state our results.

Theorem 1.1.

Let \(d \in \mathbb{N}\) with \(d \geq 2\), \(f\) be a power-like nonlinearity from Equation (2) and assume

\[
m \geq m_0 := \left\lfloor \frac{4}{d - \frac{1}{c_\gamma}} \right\rfloor, \quad \text{where} \quad c_\gamma = \begin{cases} 2, & \text{for } \gamma \neq 0, \\ 3, & \text{for } \gamma = 0. \end{cases}
\]

Moreover, let \(\frac{1}{r} \in I_{m,d}\) and \(\frac{1}{p} \in J_{r,d}\), where

\[
I_{m,d} := \left[\frac{1}{2(m + 1)} \frac{1}{m_0 + 1} \right],
\]

\[
J_{r,d} := \left[\frac{1}{2} - \frac{2}{r \left(d - \frac{1}{c_\gamma} \right)} - \frac{1}{2(l + 1)} \left(l - \frac{4}{d - \frac{1}{c_\gamma}} \right) \right],
\]

\[
\frac{1}{2} - \frac{2}{r \left(d - \frac{1}{c_\gamma} \right)} \quad \text{and}
\]

\[
l := \min \left\{ \lfloor r \rfloor - 1, m \right\}.
\]

If \(q = 1\) let \(s \geq 0\) and if \(q > 1\) let \(s > \frac{d}{q}\).
Then, there exists a \(\delta > 0 \) such that for any \(u_0 \in M_{2,q}^s \) with \(\|u_0\|_{M_{2,q}^s} \leq \delta \) the Cauchy problem (1) has a unique global (mild) solution in
\[
X := l_{□}^{s,q}(L^\infty(\mathbb{R}, L^2(\mathbb{R}^d))) \cap l_{□}^{s,q}(L^r(\mathbb{R}, L^p(\mathbb{R}^d))) \subseteq C(\mathbb{R}, M_{2,q}^s(\mathbb{R}^d)).
\]

Theorem 1.2.
Let \(d \geq 2 \), \(f \) be an exponential non-linearity from Equation (3). Moreover, let \(\frac{1}{r} \in I_{3,d} \) and \(\frac{1}{p} \in J_{r,d} \) (see Equation (9), (10) and (11)). If \(q = 1 \) let \(s \geq p \) and if \(q > 1 \) let \(s > \frac{4}{q} \).

Then, there exists a \(\delta > 0 \) such that for any \(u_0 \in M_{2,q}^s \) with \(\|u_0\|_{M_{2,q}^s} \leq \delta \) the Cauchy problem (1) has a unique global (mild) solution in \(X \) (given by Equation (11)).

Corollary 1.3.
If, in Theorem 1.2, one additionally has \(q \leq m + 1 \) then the scattering operator \(S \) carries a whole neighbourhood of 0 in \(M_{2,q}^s(\mathbb{R}^d) \) into \(M_{2,q}^s(\mathbb{R}^d) \). The same is true for Theorem 1.2 if \(q \leq 3 \).

2. Preliminaries

We start by the following observation.

Lemma 2.1.
Let \(l, p, q \in [1, \infty] \) with \(q \leq l \) and \(s \in \mathbb{R} \). Then
\[
l^{s,q}_{□}(L^l(\mathbb{R}, L^p(\mathbb{R}^d))) \hookrightarrow L^l(\mathbb{R}, M_{p,q}^s(\mathbb{R}^d)).
\]

Proof. This is just an application of Minkowski’s integral inequality to \(L^l \) and \(l^{s,q} \).

Let us denote by \(W(t) \) the **free Schrödinger propagator with higher-order anisotropic dispersion** at time \(t \in \mathbb{R} \), i.e.
\[
W(t) = \mathcal{F}^{-1} e^{i(\alpha|\xi|^2 + \beta|\xi|^4 + \gamma|\xi|^6)t} \mathcal{F}.
\]

We cite the **Strichartz estimates** for this propagator from [Bon08, Theorem 1.2]. Let us remark that the dispersive estimate (from which the Strichartz estimates follow), was obtained in [BKS00] for the isotropic case. Strichartz estimates hold for the so-called (dually) **admissible pairs**. We call the pair \((p, r) \in [2, \infty] \times [2, \infty] \) admissible, if
\[
\frac{2}{r} + \left(d - \frac{1}{c_\gamma} \right) \frac{1}{p} = \left(d - \frac{1}{c_\gamma} \right) \frac{1}{2}.
\]

Theorem 2.2 (Strichartz estimates).
Let \((p, r) \) and \((\tilde{p}', \tilde{r}') \) be admissible. For any \(u_0 \in L^2(\mathbb{R}^d) \) one has the homogeneous Strichartz estimate
\[
\|W(t)u_0\|_{L^r_t L^p_x} \lesssim \|u_0\|_{L^2}
\]
and for any \(F \in L^p_{t} L^\tilde{p}_x \) one has the inhomogeneous Strichartz estimate
\[
\left\| \int_0^t W(t - \tau) F(\tau, \cdot) d\tau \right\|_{L^r_t L^p_x} \lesssim \|F\|_{L_{t}^p L_{x}^{\tilde{p}}}.
\]

with implicit constants independent of \(u_0 \) and \(F \).
Strichartz estimates on Lebesque spaces immediately translate to the setting of modulation and Planchon-type spaces.

Lemma 2.3. Let \((p, r)\) and \((\tilde{p}', \tilde{r}')\) be admissible. Moreover, let \(q \in [1, \infty]\) and \(s \in \mathbb{R}\). For any \(u_0 \in M_{p, q}^s\) one has

\[
\|W(t)u_0\|_{L_{\tilde{r}'}^q(L_{\tilde{p}}^p)} \lesssim \|u_0\|_{M_{p, q}^s}
\]

and for any \(F \in l_{q}^{\tilde{s}}(L_{\tilde{r}}^{\tilde{p}}(\mathbb{R}, L_{\tilde{r}}^{p}(\mathbb{R}^d)))\) one has

\[
\left\| \int_0^t W(t - \tau)F(\tau, \cdot)d\tau \right\|_{l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}(\mathbb{R}^d))} \lesssim \|F\|_{l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}L_{\tilde{r}}^{p})}
\]

with implicit constants independent of \(u_0\) and \(F\).

Proof. The proof follows from Theorem 2.2 and the fact that \(W(t)\) and \(\square_k\) commute. \(\Box\)

Lemma 2.4 (Hölder-like inequalities). Let \(d, n \in \mathbb{N}\) and \(\tilde{p}, \tilde{p}_1, \ldots, \tilde{p}_n, q, \tilde{r}, \tilde{r}_1, \ldots, \tilde{r}_n \in [1, \infty]\) be such that

\[
\frac{1}{\tilde{p}} = \frac{1}{\tilde{p}_1} + \cdots + \frac{1}{\tilde{p}_n}, \quad \frac{1}{\tilde{r}} = \frac{1}{\tilde{r}_1} + \cdots + \frac{1}{\tilde{r}_n}.
\]

For \(q > 1\) let \(s > d \left(1 - \frac{1}{q}\right)\) and for \(q = 1\) let \(s \geq 0\). Then, for any \((f_1, \ldots, f_n) \in l_{q}^{\tilde{s}}(L_{\tilde{r}_1}^{\tilde{p}_1}(\mathbb{R}, L_{\tilde{p}_1}^{p}(\mathbb{R}^d))) \times \cdots \times l_{q}^{\tilde{s}}(L_{\tilde{r}_n}^{\tilde{p}_n}(\mathbb{R}, L_{\tilde{p}_n}^{p}(\mathbb{R}^d)))\)

one has

\[
\left\| \prod_{j=1}^n f_j \right\|_{l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}(\mathbb{R}^d))} \lesssim \prod_{j=1}^n \|f_j\|_{l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}(\mathbb{R}^d))}
\]

with an implicit constant independent of \((f_1, \ldots, f_n)\).

Similarly, for \((g_1, \ldots, g_n) \in M_{p_1, q}^s(\mathbb{R}^d) \times \cdots \times M_{p_n, q}^s(\mathbb{R}^d)\)

one has

\[
\left\| \prod_{j=1}^n g_j \right\|_{M_{p, q}^s} \lesssim \prod_{j=1}^n \|g_j\|_{M_{p, q}^s}
\]

with an implicit constant independent of \((g_1, \ldots, g_n)\).

Proof. The special case of (22) for \(n = 2\) is proven in [Cha18, Theorem 4.3]. That proof is easily transferred to the case of Planchon-type spaces applying Hölder’s inequality for the time variable, also. \(\Box\)

Lemma 2.5. Let \(p_1, p_2, q, r \in [1, \infty]\) with \(p_1 \leq p_2\) and \(s \in \mathbb{R}\). Then

\[
l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}(\mathbb{R}, L_{\tilde{r}}^{p_1}(\mathbb{R}^d))) \hookrightarrow l_{q}^{\tilde{s}}(L_{\tilde{r}}^{p}(\mathbb{R}, L_{\tilde{r}}^{p_2}(\mathbb{R}^d))).
\]

Proof. The conclusion follows immediately from the definition of the norm and Bernstein’s multiplier estimate (see e.g. [Cha18, Corollary A.53]). \(\Box\)
Corollary 2.6.
Let \(d \in \mathbb{N} \), \(m \in \mathbb{N}_0 \) and \(l \in \{0, \ldots, m\} \). Moreover, let \(\tilde{p}, q, \tilde{r} \in [1, \infty] \). For \(q > 1 \) let \(s > \frac{d}{4} \) and for \(q = 1 \) let \(s > 0 \). Then
\[
\|\pi^{m+1}(u) - \pi^{m+1}(v)\|_{L_t^{\tilde{p}}(L_x^q)} \lesssim \|u - v\|_{L_t^{\tilde{p}}(L_x^q)} \|u\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})}^{m-1} + \|v\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})}^{m-1} \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})}^{m-1}
\]
for any \(u, v \in S'(\mathbb{R}^{d+1}) \), where the implicit constant is independent of \(u, v \).

Proof. The base case \(m = 0 \) is trivial. For the induction step from \(m - 1 \) to \(m \) observe, that
\[
\|\pi^{m+1}(u) - \pi^{m+1}(v)\|_{L_t^{\tilde{p}}(L_x^q)} \lesssim \|u - v\|_{L_t^{\tilde{p}}(L_x^q)} \|\pi^m(u)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})} \|\pi^m(v)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})}.
\]
For the first summand one has, by the Hölder-like inequality (21),
\[
\|\pi^m(u)(u - v)\|_{L_t^{\tilde{p}}(L_x^q)} \lesssim \|u - v\|_{L_t^{\tilde{p}}(L_x^q)} \|\pi^m(u)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})} \|\pi^m(v)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})}.
\]
For \(l = 0 \) the second factor above is estimated via (21) and (23) against
\[
\|\pi^m(u)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})} \lesssim \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})} \lesssim \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})}^{m-1} \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})}^{m-1}.
\]
For \(l \geq 1 \) one uses the induction hypothesis instead and arrives at
\[
\|\pi^m(u)\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})} \lesssim \|u\|_{L_t^{\tilde{p}}(L_x^{q(1+s)})} \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})}^{m-1} \|u\|_{L_t^{\tilde{p}}(L_x^{\infty})}^{m-1}.
\]
The second summand in (25) is treated via the same methods. This concludes the proof. □

3. PROOFS OF THE RESULTS

In this section we present the proofs of Theorem 1.1 of Theorem 1.2 and of Corollary 1.3.

Proof of Theorem 1.1. For a \(\delta > 0 \), which will be fixed later, consider
\[
M(\delta) := \left\{ f \in X \left| \|f\|_X \leq \delta \right. \right\},
\]
where \(X \) is given by (14) (the embedding claimed there immediately follows from Lemma 2.1 with \(l = \infty \) and \(p = 2 \)). By Banach’s fixed-point theorem, it suffices to show that the operator
\[
u \mapsto \text{T} \nu := W(t)u_0 + \int_0^t W(t - \tau)\pi^{m+1}(u(\tau))d\tau
\]
is a contractive self-mapping of \(M(\delta) \) for some \(\delta > 0 \). We only show the contractiveness of \(T \), as the proof of the self-mapping property follows along the same lines. Fix any \(u, v \in M(\delta) \).
By the definition of the norm \(\|\cdot\|_X\) one has
\[
\|T(u) - T(v)\|_X = \|T(u) - T(v)\|_{L^q(L^r L^p)} + \|T(u) - T(v)\|_{L^q(L^r L^p)}.
\]

To apply Strichartz estimates we require spaces with admissible indices in both summands. This is already the case for the first summand. For the second summand, observe that Assumption (11) implies
\[
p \geq p_a := \left(\frac{1}{2} - \frac{2}{r (d - \frac{1}{c_\gamma})} \right)^{-1}
\]
and hence, by Lemma 2.5
\[
\|T(u) - T(v)\|_{L^r L^{p_a}} \lesssim \|T(u) - T(v)\|_{L^r L^{p_a}}
\]
follows. Due to \(\frac{1}{r} \in I_{m,d} \subseteq \left[0, \frac{1}{2}\right]\), the pair \((p_a, r)\) is indeed admissible.

By the inhomogeneous Strichartz estimate (20) we therefore have
\[
\|T u - T v\|_X = \left\| \int_0^t W(t - \tau) \left(\pi^{m+1}(u(\tau)) - \pi^{m+1}(v(\tau)) \right) d\tau \right\|_X
\]
\[
\lesssim \|\pi^{m+1}(u) - \pi^{m+1}(v)\|_{L^r L^{p_a}}
\]
for any pair \((\tilde{p}, \tilde{r})\) in \([1, 2]\) such that \((\tilde{p}', \tilde{r}')\) is admissible, which we will fix in the following. Observe, that
\[
I_{m,d} = \bigcup_{k=m_0}^m \left[\frac{1}{2(k+1)}, \frac{1}{k+1} \right]
\]
and that the effective non-linearity \(l\) satisfies
\[
(28) \quad l = \max \left\{ k \in \{m_0, \ldots, m\} \mid \frac{1}{r} \in \left[\frac{1}{2(k+1)}, \frac{1}{k+1} \right] \right\}.
\]
Hence, \(\tilde{r} := \frac{r}{l+1} \in [1, 2]\) and thus \((\tilde{p}', \tilde{r}')\), where
\[
(29) \quad \tilde{p} := \left(\frac{1}{2} + \frac{4 (1 - \frac{1}{l})}{d - \frac{1}{c_\gamma}} \right)^{-1},
\]
indeed form an admissible pair.

We now apply Estimate (24) to arrive at
\[
\|\pi^{m+1}(u) - \pi^{m+1}(v)\|_{L^r L^{\tilde{p}}}
\]
\[
\lesssim \|u - v\|_{L^{r L_l (l+1) \tilde{p}}}
\]
\[
\cdot \left(\|u\|_{L^r L_{(l+1) \tilde{p}}}^{m-l} \|u\|_{L^r L^2}^{m-l} + \|v\|_{L^r L_{(l+1) \tilde{p}}}^{m-l} \|v\|_{L^r L^2}^{m-l} \right).
\]
A short calculation yields
\[
(l + 1)\tilde{p} = \left(\frac{1}{2} - \frac{2}{r (d - \frac{1}{c_\gamma})} - \frac{1}{2(l+1)} \left(l - \frac{4}{d - \frac{1}{c_\gamma}} \right) \right)^{-1},
\]
and thus, due to Assumption (11), \((l + 1)\tilde{p} \geq p\). Therefore, invoking Embedding (23) once again, one finally obtains
\[
\|T(u) - T(v)\|_X \lesssim \|u - v\|_{\tilde{L}^{\infty,q}(L^p)} \cdot (\|u\|_{\tilde{L}^{\infty,q}(L^p)} + \|v\|_{\tilde{L}^{\infty,q}(L^p)}) \lesssim \|u - v\|_{\tilde{L}^{\infty,q}(L^p)} \delta^m.
\]
Choosing \(\delta\) small enough finishes the proof. \(\square\)

Proof of Theorem 1.3. By the definition of the exponential nonlinearity (3) we have
\[
f(u) = \lambda \sum_{m=1}^{\infty} \frac{\rho^m}{m!} |u|^{2m} u.
\]
We have to show that the operator
\[
u \mapsto T(u) := W(t)u_0 + \int_0^t W(t - \tau)f(u(\tau))d\tau
\]
is a contractive self-mapping of the complete metric space \(M(\delta)\) as defined in (26). We only briefly sketch the argument for the self-mapping. We have
\[
\|T u\|_X \lesssim \|u_0\|_{M_{2,q}^d} + \sum_{m=1}^{\infty} \frac{\rho^m}{m!} \left\| \int_0^t W(t - \tau)\pi^{2m+1}(u)d\tau \right\|_X \\
\lesssim \|u_0\|_{M_{2,q}^d} + \sum_{m=1}^{\infty} \frac{\rho^m}{m!} \|u\|_{X}^{2m+1} \leq \|u_0\|_{M_{2,q}^d} + \left(\delta e^{\rho^2} - 1 \right) \leq \delta,
\]
where we set \(\pi^{2m+1}(u) := |u|^{2m} u\) and proceeded as in the proof of Theorem 1.1. This is justified because the assumptions on \(r\) and \(p\) are exactly such that Theorem 1.1 can be applied to \(\pi^{2m+1}(u)\) with \(m \geq 1\) \((I_{m,d} \subseteq I_{n,d})\) for \(m \leq n\). Thus, if \(\|u_0\|_{M_{2,q}^d} \lesssim \frac{\delta}{2}\) and \(\delta > 0\) is sufficiently small, the operator \(T\) is a self-mapping of \(M(\delta)\). \(\square\)

Proof of Corollary 1.3. Given initial data \(u_0\) at \(-\infty\) of sufficiently small \(M_{2,q}^d(\mathbb{R}^d)\)-norm we show that the operator \(S_-\) given by
\[
(S_- u)(t) := W(t)u_0 + \int_{-\infty}^t W(t - \tau)f(u(\tau))d\tau, \quad t \in \mathbb{R},
\]
is a contractive self-mapping of \(M\) given in (26). As the only difference between \(S_-\) and \(T\) is the lower limit of the integral being \(-\infty\) instead of 0, the argument is very similar to the proof of Theorem 1.1 and we omit the details. We denote the unique fixed-point of \(S_-\) by \(u\). Following the proof of Theorem 1.1 we notice, that \(u \in \tilde{L}^{\infty,q}(L^p)\) for any \(\rho, \sigma \in [2, \infty]\) satisfying
\[
\frac{2}{\rho} + \left(d - \frac{1}{c_\gamma} \right) \frac{1}{\sigma} \leq \left(d - \frac{1}{c_\gamma} \right) \frac{1}{2},
\]
This is because we can replace the σ by σ_a such that (σ_a, ρ) is admissible, i.e.

$$\sigma \geq \sigma_a := \left(\frac{1}{2} - \frac{2}{\rho \left(d - \frac{1}{c_s} \right)} \right)^{-1},$$

and hence

$$\|u\|_{L_t^q(L_x^p)} \lesssim \|S_- u\|_{L_t^q(L_x^p)} \lesssim \|u_0^-\|_{M_{2,q}^q} + \|\pi^{m+1}(u)\|_{L_t^q(L_x^p)}$$

$$\lesssim \|u\|_{X_{\infty}^{\rho,\sigma}}^{m+1} < \infty,$$

where above we used Lemma 2.5 Strichartz estimates and the Hölder-like inequality for Planchon-type spaces. Notice that, as $t \to -\infty$, one has

$$\|u(t) - W(t)u_0\|_{M_{2,q}^q} \to 0.$$ \hspace{1cm} (34)

This is because by Lemma 2.1 and the assumption $q \leq m + 1$ one has

$$\int_{-\infty}^{t} \|\pi^{m+1}(u)(\cdot, \tau)\|_{M_{2,q}^q} \, d\tau \leq \int_{-\infty}^{\infty} \|u(\cdot, \tau)\|_{L_{\infty}^{2(m+1),q}} \, d\tau$$

$$= \|u\|_{L_{t}^{\infty}(M_{2(m+1),q})} \leq \|u\|_{L_{t}^{\infty}(L_{\infty}^{2(m+1),L_{x}^{2(m+1)}})}$$

and, as $\rho = m + 1$ and $\sigma = 2(m + 1)$ satisfy the condition (33) by the prerequisite $m \geq m_0$, the norm above is finite. Finally, we define

$$u_0^+ := u_0^- + \int_{-\infty}^{\infty} W(-\tau)\pi^{m+1}(u(\tau)) \, d\tau \in M_{2,q}^q(\mathbb{R}^d)$$

and notice that $\|u(t) - W(t)u_0^+\|_{M_{2,q}^q} \to 0$ as $t \to +\infty$, because

$$\|u(t) - W(t)u_0^+\|_{M_{2,q}^q} = \left\|W(-t)u(t) - u_0^+\right\|_{M_{2,q}^q}$$

$$= \left\|\int_{t}^{\infty} W(-\tau)\pi^{m+1}(u(\tau)) \, d\tau\right\|_{M_{2,q}^q}$$

and the same argument as for the convergence to u_0^- applies. Hence, the scattering operator $u_0^- \overset{S}{\to} u_0^+$ indeed carries a whole neighborhood of 0 in $M_{2,q}^q$ into $M_{2,q}^q$. \hspace{1cm} \Box

ACKNOWLEDGMENT

The authors thank Professor Baoxiang Wang from the School of Mathematical Sciences of the Peking University for fruitful discussions.

REFERENCES

[BKS00] M. Ben-Artzi, H. Koch, and J.-C. Saut. “Dispersion estimates for fourth order Schrödinger equations”. In: Comptes Rendus de l’Académie des Sciences — Série I, Mathématique 330.2 (2000), pp. 87–92.

[Bou08] O. Bouchel. “Remarks on NLS with higher order anisotropic dispersion”. In: Advances in Differential Equations 13.1-2 (2008), pp. 169–198.
REFERENCES

[Cha18] L. Chaichenets. “Modulation spaces and nonlinear Schrödinger equations”. Karlsruhe Institute of Technology (KIT), 2018.

[CPS15] X. Carvajal, M. Panthee, and M. Scialom. “On well-posedness of the third-order nonlinear Schrödinger equation with time-dependent coefficients”. In: 17.04 (2015).

[DC08] F. J. Díaz-Otero and P. Chamorro-Posada. “Interchannel Soliton Collisions in Periodic Dispersion Maps in the Presence of Third Order Dispersion”. In: Journal of Nonlinear Mathematical Physics 15.sup3 (2008), pp. 137–143.

[Fei83] H. G. Feichtinger. Modulation Spaces on Locally Compact Abelian Groups. University Vienna, 1983.

[Grö01] K. Gröchenig. Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser, 2001. isbn: 978-0-8176-4022-4.

[Kar96] V. I. Karpman. “Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations”. In: Physical Review E 53.2 (1996), R1336–R1339.

[KH94] M. Karlsson and A. Höök. “Soliton-like pulses governed by fourth order dispersion in optical fibers”. In: Optics Communications 104.4–6 (1994), pp. 303–307.

[Pla00] F. Planchon. “On the Cauchy problem in Besov spaces for a nonlinear Schrödinger equation”. In: Communications in Contemporary Mathematics 02.02 (2000), pp. 243–254. issn: 0219-1997.

[WH07] B. Wang and H. Hudzik. “The global Cauchy problem for the NLS and NLKG with small rough data”. In: Journal of Differential Equations 232.1 (2007), pp. 36–73. issn: 0022-0396.

Leonid Chaichenets, Technical University of Dresden, Institute of Analysis, 01069 Dresden, Germany
Email address: leonid.chaichenets@tu-dresden.de

Nikolaos Pattakos, Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
Email address: nikolaos.pattakos@gmail.com