Shotonwa, Ibukun O.

2018

1-methyl-4-thiocarbamoylpyridin-1-ium iodide

Department of Chemistry and Biochemistry

https://hdl.handle.net/10133/5328

Downloaded from OPUS, University of Lethbridge Research Repository
1-Methyl-4-thiocarbamoylpyridin-1-ium iodide

Ibukun O. Shotonwa and René T. Boeré

IUCrData (2018). 3, x181491

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1-Methyl-4-thiocarbamoylpyridin-1-ium iodide

Ibukun O. Shotonwab,a and René T. Boereb*

aDepartment of Chemistry, Lagos State University, Ojo, Lagos, Nigeria, and bDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada. *Correspondence e-mail: boere@uleth.ca

In the title compound, C₇H₉N₂S⁺·I⁻, the thioamide moiety is twisted out of the aromatic plane by 38.98 (4)° and forms N—H···I hydrogen bonds. In the crystal, hydrogen-bonded centrosymmetric dimers [C₇H₉N₂S⁺·I⁻]₂ are linked via additional short contacts from an aromatic CH group to the iodide anion into ribbons parallel to the (010) plane.

Structure description

Methylation at the pyridine nitrogen was used as a protecting group in synthetic attempts to prepare the corresponding 3,5-dipyridyl-1,2,4-dithiazolium salts. In the title compound (I), the cation and anion are linked pairwise in a centrosymmetric hydrogen-bonded dimer (N1, I1, N1' and I1'; see Table 1 for symmetry code, and Fig. 1). The pyridine ring is planar (r.m.s. deviation = 0.0054 Å), as is the thioamide functional group (r.m.s. deviation = 0.0020 Å), and the two planes make a dihedral angle of 38.98 (4)°. The N1/I1/N1'/I1' plane makes a dihedral angle of 26.67 (2)° with the thioamide moiety, and the H1A and H1B hydrogen atoms deviate from this plane by −0.39 (2) and 0.12 (2) Å, respectively. The cation structure is closely related to that of the protonated analogue, C₆H₇N₂S⁺·I⁻ (Shotonwa & Boeré, 2014) and all comparable intramolecular distances are indistinguishable within standard uncertainties [Cambridge Structural Database (CSD) Version 5.39, with updates to November 2017 (Groom et al., 2016), refcode: TODDAT].

In the crystal (Fig. 2), the only significant intermolecular contacts are non-classical hydrogen bonds between H5 and I1, with a separation 0.22 Å shorter than the sum of van der Waals radii (Table 1, entry 3). These link the dimers of ion pairs into ribbons parallel to the (010) plane.

Received 4 September 2018
Accepted 22 October 2018
Edited by S. Bernés, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; hydrogen bonds; heteroelements.

CCDC reference: 1874701
Structural data: full structural data are available from iucrddata.iucr.org

ISSN 2414-3146

Electronic reprint
Synthesis and crystallization

The title salt was prepared by a modification of a literature method for related compounds (Kosower, 1955): methyl iodide (0.57 g, 4 mmol) was added dropwise to 4-pyridine-thioamide (0.50 g, 4 mmol) in 5.00 ml of dry CH₃CN, with a colour change from yellow to deep orange. The mixture was stirred for 30 min. at room temperature, followed by reflux for 10 min., cooled, filtered and washed three times with cold CH₃CN. Recrystallization from boiling 99% ethanol afforded 0.21 g (35% yield) of (I) [CAS registry 749784–54–1]. The crystals are hygroscopic and were stored in a well sealed flask.

Figure 1

The molecular structure of the ion pair with the labelling scheme and 50% displacement ellipsoids.

1H NMR, (D₂O, δ/p.p.m.): 8.84 (d, 2 HA r, J = 6.9 Hz), 8.23 (d, 2H Ar, J = 6.9 Hz), 4.38 (s, 3H, N—CH₃). mp = 219.3–220.9°C (lit. 220°C; Christ et al., 1974).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 1
Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1B···I1	0.83 (2)	2.79 (2)	3.6037 (16)	166 (2)
N1—H1A···I1i	0.86 (2)	2.93 (2)	3.6367 (16)	141 (2)
C5—H5···I1ii	0.95	2.96	3.8642 (17)	160

Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, −y + 1, z + 1.

Table 2
Experimental details.

Crystal data	C₇H₉N₂S⁺I⁻
M₀	280.12
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	173
a, b, c (Å)	19.6249 (16), 7.2198 (6), 14.9117 (12)
V (Å³)	2002.5 (3)
Z	8
Radiation type	Mo Kα
μ (mm⁻¹)	3.35
Crystal size (mm)	0.27 × 0.15 × 0.08

Data collection	Bruker APEXII CCD area-detector diffractometer
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
Tmin, Tmax	0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections	13927, 2294, 2121
Rint	0.018
Refinement	wR[F²]<2σ(F²), S
No. of reflections	2294
No. of parameters	107
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å⁻³)	0.35, −0.27

Computer programs: APEX2 and SAINT-Plus (Bruker, 2008), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).

Funding information

The Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged for Discovery Grants (RTB). The APEXII diffractometer was purchased with the help of the NSERC and the University of Lethbridge.

References

Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Christ, W., Rakow, D. & Strauss, S. (1974). J. Heterocycl. Chem. 11, 397–399.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Kosower, E. M. (1955). J. Am. Chem. Soc. 77, 3883–3885.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.

Sheldrick, G. M. (2015a). *Acta Cryst.* A**71**, 3–8.

Sheldrick, G. M. (2015b). *Acta Cryst.* C**71**, 3–8.

Shotonwa, I. O. & Boeré, R. T. (2014). *Acta Cryst.* E**70**, o340–o341.
full crystallographic data

IUCrData (2018). 3, x181491 [https://doi.org/10.1107/S2414314618014918]

1-Methyl-4-thiocarbamoylpyridin-1-ium iodide

Ibukun O. Shotonwa and René T. Boeré

1-Methyl-4-thiocarbamoylpyridin-1-ium iodide

Crystal data

\[\text{C}_7\text{H}_9\text{N}_2\text{S}^+\cdot\text{I}^- \]

- Mr = 280.12
- Monoclinic, C2/c
- \(a = 19.6249 \) \((16) \) Å
- \(b = 7.2198 \) \((6) \) Å
- \(c = 14.9117 \) \((12) \) Å
- \(\beta = 108.592 \) \((1) \)°
- \(V = 2002.5 \) \((3) \) Å\(^3\)
- \(Z = 8 \)
- \(F(000) = 1072 \)

- \(D_r = 1.858 \) Mg m\(^{-3}\)
- Melting point: 493 K

Data collection

- Bruker APEXII CCD area-detector diffractometer
- Radiation source: sealed tube
- Graphite monochromator
- Detector resolution: 8 pixels mm\(^{-1}\)
- ω and φ scans
- Absorption correction: multi-scan (SADABS; Bruker, 2008)

- \(R_{	ext{int}} = 0.018 \)
- \(\theta_{\text{max}} = 27.5^\circ, \theta_{\text{min}} = 2.2^\circ \)
- \(h = -25 \rightarrow 25 \)
- \(k = -9 \rightarrow 9 \)
- \(l = -19 \rightarrow 19 \)

Refinement

- Refinement on \(F^2 \)
- Least-squares matrix: full
- \(R[F^2 > 2\sigma(F^2)] = 0.014 \)
- \(wR(F^2) = 0.032 \)
- \(S = 1.07 \)
- 2294 reflections
- 107 parameters
- 0 restraints
- Primary atom site location: dual
- Secondary atom site location: difference Fourier map
- Hydrogen site location: mixed
- H atoms treated by a mixture of independent and constrained refinement
- \(w = 1/[\sigma(F_o^2) + (0.0118P)^2 + 2.1492P] \)
- \(P = (F_o^2 + 2F_C^2)/3 \)
- \(\Delta/\sigma_{\text{max}} = 0.001 \)
- \(\Delta \rho_{\text{max}} = 0.35 \) e Å\(^{-3}\)
- \(\Delta \rho_{\text{min}} = -0.27 \) e Å\(^{-3}\)

Special details

Refinement 1. Fixed Uiso At 1.2 times of: All C(H) groups, All N(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C5(H5), C3(H3), C4(H4), C6(H6) 2.b Idealised Me refined as rotating group: C7(H7A,H7B,H7C)

IUCrData (2018). 3, x181491
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{eq} / U_{eq}
I1	0.11514 (2)	0.17323 (2)	0.42525 (2)	0.02707 (4)
S1	0.14565 (2)	0.31395 (7)	0.75400 (3)	0.03144 (10)
N1	0.23622 (9)	0.2254 (2)	0.66302 (11)	0.0301 (3)
H1A	0.2776 (12)	0.196 (3)	0.6589 (15)	0.036*
H1B	0.2037 (12)	0.228 (3)	0.6114 (16)	0.036*
N2	0.40862 (7)	0.20871 (19)	0.98789 (10)	0.0241 (3)
C5	0.41537 (9)	0.2872 (2)	0.90990 (12)	0.0269 (4)
H5	0.461071	0.330808	0.910006	0.032*
C3	0.28424 (9)	0.1655 (2)	0.91256 (12)	0.0235 (3)
H3	0.238945	0.124022	0.915043	0.028*
C4	0.34445 (9)	0.1489 (2)	0.99079 (12)	0.0256 (3)
H4	0.340682	0.095014	1.047130	0.031*
C7	0.47204 (10)	0.1918 (3)	1.07418 (13)	0.0333 (4)
H7A	0.516062	0.208892	1.057507	0.050*
H7B	0.472432	0.068642	1.102007	0.050*
H7C	0.469549	0.286572	1.120068	0.050*
C6	0.35692 (9)	0.3056 (2)	0.82953 (12)	0.0263 (4)
H6	0.362624	0.360346	0.774227	0.032*
C2	0.28980 (8)	0.2431 (2)	0.82991 (11)	0.0207 (3)
C1	0.22502 (8)	0.2579 (2)	0.74402 (12)	0.0227 (3)

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U²²	U²³	U³³
I1	0.02370 (6)	0.03292 (7)	0.02592 (6)	−0.00189 (5)	0.00981 (4)	−0.00090 (5)
S1	0.01959 (19)	0.0456 (3)	0.0283 (2)	0.00281 (19)	0.00643 (16)	−0.0004 (2)
N1	0.0238 (7)	0.0447 (10)	0.0210 (7)	0.0019 (7)	0.0058 (6)	0.0001 (7)
N2	0.0204 (7)	0.0245 (8)	0.0247 (7)	0.0037 (6)	0.0032 (5)	−0.0017 (6)
C5	0.0213 (8)	0.0293 (9)	0.0301 (9)	−0.0016 (7)	0.0081 (7)	−0.0004 (7)
C3	0.0202 (7)	0.0248 (9)	0.0267 (8)	0.0003 (7)	0.0090 (6)	0.0009 (7)
C4	0.0254 (8)	0.0273 (9)	0.0250 (8)	0.0028 (7)	0.0094 (7)	0.0025 (7)
C7	0.0250 (9)	0.0398 (11)	0.0279 (9)	0.0039 (8)	−0.0018 (7)	−0.0002 (8)
C6	0.0243 (8)	0.0307 (10)	0.0249 (8)	−0.0020 (7)	0.0093 (7)	0.0014 (7)
C2	0.0207 (8)	0.0197 (8)	0.0221 (8)	0.0013 (6)	0.0074 (6)	−0.0028 (6)
C1	0.0219 (8)	0.0205 (8)	0.0251 (8)	−0.0021 (6)	0.0068 (6)	0.0012 (6)

Geometric parameters (Å, °)

	C1—C1	C3—C2	C3—H3	C4—H4	C7—H7A	C7—H7B	C7—H7C	C6—C2
S1—C1	1.6615 (17)	C3—C2	1.389 (2)	1.389 (2)	1.389 (2)	0.9500	0.9800	0.9800
N1—C1	1.316 (2)	C3—H3	0.9500	0.9500	0.9500	0.9800	0.9800	0.9800
N1—H1A	0.86 (2)	C4—H4	0.9500	0.9500	0.9500	0.9800	0.9800	0.9800
N1—H1B	0.83 (2)	C7—H7A	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800
N2—C5	1.338 (2)	C7—H7B	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800
N2—C4	1.345 (2)	C7—H7C	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800
N2—C7	1.483 (2)	C6—C2	1.394 (2)	1.394 (2)	1.394 (2)	1.394 (2)	1.394 (2)	1.394 (2)
Bond	Length (Å)	Bond	Length (Å)					
------------	------------	---------------	------------					
C5—C6	1.376 (2)	C6—H6	0.9500					
C5—H5	0.9500	C2—C1	1.493 (2)					
C3—C4	1.376 (2)							

Bond	Angle (°)
C1—N1—H1A	123.2 (14)
C1—N1—H1B	123.0 (15)
H1A—N1—H1B	114 (2)
C5—N2—C4	121.14 (14)
C5—N2—C7	120.07 (15)
C4—N2—C7	118.76 (15)
N2—C5—C6	120.80 (16)
N2—C5—H5	119.6
C6—C5—H5	119.6
C4—C3—C2	119.89 (15)
C4—C3—H3	120.1
C2—C3—H3	120.1
N2—C4—C3	120.31 (15)
N2—C4—H4	119.8
C3—C4—H4	119.8

Hydrogen-bond geometry (Å, °)

Bond	Length (Å)	Angle (°)		
N1—H1B···I1	0.83 (2)	2.79 (2)	3.6037 (16)	166 (2)
N1—H1A···I1i	0.86 (2)	2.93 (2)	3.6367 (16)	141 (2)
C5—H5···II	0.95	2.96	3.8642 (17)	160

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, z+1/2.