A case of a renal abscess caused by *Salmonella* bareilly in a previously healthy boy

Tomomi Nakamura¹, Masaru Ido¹,², Masahiro Ogawa¹, Naoya Sasaki¹, Haruna Nakamura³, Yoshihiro Hasegawa⁴, Motoki Bonno² and Shigeki Tanaka¹,²

Abstract

Background: Renal abscesses are relatively uncommon in children, and usually due to Gram-negative rods or *Staphylococcus aureus*, whereas abscesses caused by *Salmonella* are very rare.

Case presentation: We present the case of a previously healthy 10-year-old boy who had a renal abscess due to *Salmonella* bareilly. He responded well to treatment with antibiotics, and computed tomography (CT)-guided drainage of the abscess. His blood, urine and abscess aspirate cultures were sterile, but a broad-range 16S rDNA polymerase chain reaction (PCR) assay of the aspirate followed by analysis of four *Salmonella* genes (*fliC*, *fliD*, *sopE2*, and *spaO*) identified S. bareilly as the causative agent.

Conclusion: To the best of our knowledge, this is the first report of renal abscess caused by *S. bareilly*.

Keywords: *Salmonella* bareilly, Renal abscess, Broad-range 16S rDNA PCR, Single-nucleotide polymorphism

Background

Nontyphoidal salmonellae are foodborne and waterborne [1] pathogens that cause gastroenteritis, bacteraemia, and focal infection. Endovascular infection and deep bone or visceral abscesses are severe complications that may be difficult to treat [2]. However, renal abscess is a rare consequence of *Salmonella* bacteraemia, and the presence of a urogenital abnormality or compromised host immunity may predispose patients to complications even in cases of transient bacteraemia. *S. bareilly*, a group C1 serovar first identified in India in 1928 [3] is one of the most common *Salmonella* found in water [1] that can cause food poisoning. There was previously a worldwide foodborne outbreak of *S. bareilly* [4]. *S. bareilly* is less invasive than other nontyphoidal *salmonella* serovars [5] and has not, to our knowledge, been associated with renal abscesses.

Microbiological culture is an essential procedure for diagnosis of bacteraemia and sepsis, but prior use of antibiotics before sampling frequently reduces the detection rate of bacteria in culture studies. In these cases, molecular methods may be useful to identify the causative agent [6]. Here, we describe a case of renal abscess in a 10-year-old previously healthy boy who had no urogenital abnormality. The patient was previously treated with antibiotics, and thus, no bacterial growth was observed in the drainage culture. The application of a broad-range bacterial polymerase chain reaction (PCR) of 16S rDNA technology coupled with sequencing of four *Salmonella* genes identified *S. bareilly* as the causative agent of the infection.

*Correspondence: ogwmshr@yahoo.co.jp
1 Department of Paediatrics, National Hospital Organization Mie Chuo Medical Centre, 2138-5, Myojincho Hisai, Tsu, Mie, Japan
Full list of author information is available at the end of the article*
Case presentation
A 10-year-old previously healthy boy living in Japan presented with a 6-week history of fever, appetite loss, and weight loss of 2 kg. He had met normal developmental milestones and had received routine childhood vaccinations. He had no history of urinary tract infection or allergies. The family history was unremarkable. These symptoms began approximately 2 weeks after his return from Guam, where he had travelled for a 6-day vacation with his parents and brother. He enjoyed swimming at a pool in a “3-star resort hotel”, and frequently dived into the water. He received no typhoid vaccination or prophylactic therapy prior to his travel. He had no abdominal pain or diarrhoea but had precordial discomfort, difficulty swallowing, some nausea, and anorexia. Two weeks before admission, examination by a home doctor or otolaryngologist was unremarkable, except for tonsillar hypertrophy. One week before admission, he was found to have low-grade fever. Four days before admission, he was treated by a home doctor with azithromycin (10 mg/kg/day) for 3 days, but his symptoms did not improve. Physical examination on admission at the paediatric centre was unremarkable except for fever (38.5 °C) and right-sided flank tenderness. Pertinent laboratory findings included a total white blood cell (WBC) count of 8.35 (normal value, 3.5–8.5) × 10^9/L, with 64% neutrophils. C-reactive protein (CRP) was 88.4 (normal value, 0.0–3.0) mg/L. Renal function tests revealed normal blood urea nitrogen (10.1 mg/dL) and serum creatinine (0.37 mg/dL). Urinalysis was normal. No organism was isolated from urine or blood culture. The test for human immunodeficiency virus was negative. Ultrasound examination showed that the right kidney was normal in size (9.8 × 4.2 cm) but had a cystic lesion (4.58 × 3.63 × 3.36 cm). The left kidney showed no evidence of disease. There was no abnormality in the urinary tract. Computed tomography (CT) revealed a cystic mass with ring enhancement in the right kidney (Fig. 1). Based on these results, we tentatively diagnosed his illness as a right renal abscess and treated him with ceftriaxone 2 g (80 mg/kg/day) by the intravenous route in two divided doses for 3 days. Because there was no clinical improvement, the treatment was changed to meropenem trihydrate (120 mg/kg/day), which was administered three times a day for 3 days. Thereafter, vancomycin (45 mg/kg/day) was added three times a day for 3 days because of increased fever (38.9 °C) and CRP (114.8 mg/L). However, because there was still no clinical improvement despite a 10-day treatment with antibiotics, he was transferred to our hospital, where under local anaesthesia, a CT-guided percutaneous puncture of the renal abscess was performed, and 10 mL of creamy pus was drained. He became afebrile soon after, and the flank tenderness also subsided, but he was continued on the antibiotic regimen of intravenous meropenem and vancomycin for an additional 15 days. The duration of hospitalization was a total of 31 days. He was thereafter discharged, and remained asymptomatic for more than 1 year.

Gram staining of the aspirate revealed only WBCs, and its culture was sterile. Therefore, broad-range 16S rDNA PCR amplification and sequencing were performed using PCR primers 8UA (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1485B (5′-TACGTTACTTGTGAC-3′) [7] and DNA extracted from the aspirate. The sequence (Fig. 2) was 99.9% identical (1465/1466) to several *Salmonella enterica* strains.

To identify the serovar of *Salmonella*, we examined single-nucleotide polymorphisms (SNPs) located on three *Salmonella* genes, *fliD* (STM1960), *sopE* (STM1855), and *spaO* (STM2891) [8], and found SNPs identical to *S. bareilly* or *S. paratyphi B* variant Java (Table 1). Next, we examined the *fliC* gene of *S. bareilly* and *S. paratyphi B* variant Java by comparison with that of *S. typhimurium* (STM1959). Further PCR amplification and sequencing were also performed to analyse the *fliC* gene using
10	20	30	40	50	60
ATTGAACGCT	GGCACGCCGCT	CTAACACATG	CAAGTCGAAC	GGTAAACAGGA	AGCAGCTTGC
70	80	90	100	110	120
TGCTTTGCCG	ACGGAGTCGGC	GAGCGGCTAG	TAATGCTCGG	GAAAAGGCTTC	GATCGGAGGGG
130	140	150	160	170	180
GATAACTACT	GGAAAGCCTGGT	GCTATACCCG	CATAACCTCG	CAAGACCCAAA	GAGGGGAGCC
190	200	210	220	230	240
TCCGGCGCTT	TTGGCCATCAG	ATGGGCCCCAT	ATGGGATATGCC	CTGTGATTGCC	AGTTAACGCC
250	260	270	280	290	300
TCACCAAGGC	GACGGACCCCT	AGCTGCTCGC	AGAGTCCTAG	GACCCAGGAA	GAGGGGAGCC
310	320	330	340	350	360
CACGGTGCCAG	ATCCTACCCG	GAGGACGAGC	TGGGGATATG	TGCGATACCC	GCGCAAGGCT
370	380	390	400	410	420
GATGCAAGC	TGCCGGCTGT	ATGCAAAGGG	CTCGCTCGGGT	GTAAAGTGCTA	TCCAGCGGGG
430	440	450	460	470	480
AGGAGGGTGT	TGCTGTTAAC	AACGGACGCA	ATACGCTGTA	CCCCACGAGA	AGACCAGCGC
490	500	510	520	530	540
TAACTCCGTT	CCAGCACCGC	CTGTAATACG	GAGGGTCGAC	GCGTAATCGC	GAATTACGTG
550	560	570	580	590	600
GCGTAAACGG	CAGCCACCGG	GTCGTCAAGG	TCAGGATGAC	AATCACCAGG	CCCTAAGG
610	620	630	640	650	660
GAACCTGATT	CGGAAACTGCC	AGGCGTAGGT	CGGGATGAC	CTTGATCCG	TCCAGGTTA
670	680	690	700	710	720
GCCTGAAAT	GGTGAGGAT	TTCGAGGACG	ACCGGCTGCG	AAGGGGCCC	CCTGACAAAA
730	740	750	760	770	780
GACTGACGCT	CAGGTGGCGA	AGGCTGGGGA	GCAACAGGAG	TTAGTACCC	TCGATCCAG
790	800	810	820	830	840
CGCCGTAAAC	GATGTCTACT	TGGGATGTTG	GCCCGTGCAG	GTGGGCTTC	GAGCTAAGG
850	860	870	880	890	900
CGTAAAGTAC	ACAGGCGGAA	GAGGCTGAGG	GGAACGTAA	AACTCAGGAA	AATGACGGG
910	920	930	940	950	960
GGCACCCACA	AGCCGTGAGG	CATGTGCTTT	AATTAGCTAG	AAGCGGAA	AAGACGAGC
970	980	990	1000	1010	1020
GTTCTGACAT	CCACACAGG	TTGCTGACAT	GAAATGGCAG	TCTCTGAGAC	CTGTGAGCAG
1030	1040	1050	1060	1070	1080
GTCCGCTAGT	GCTGCTGCTG	GCTCGTTGAG	TGAATGGTC	GGGTGATACC	CGAAGCAGG
1090	1100	1110	1120	1130	1140
GCAACCCTTA	TCTTTGCTG	CCACGCTGTG	GGCAGCGAA	TCAAAGGAGA	CTGACGTGAG
1150	1160	1170	1180	1190	1200
TAAACCTAGG	GAGGCGGTGGG	ATGAGCTGAA	GTCATCAGG	CCCCCAGCAG	CAGGCTCAG
1210	1220	1230	1240	1250	1260
CACGTGCTAC	AATCGGCGCAT	ACAAGAGAA	GCGACCTGAG	GAGGCAAGG	GAGCTCACA
1270	1280	1290	1300	1310	1320
AAGTGCGTCG	TAGTCCGCTT	TGGAGTCTGC	AAATCGCAGT	CATGAGTAGC	GAATCGCTAG
1330	1340	1350	1360	1370	1380
TAAACTGGAG	TCGAAGTCC	AGGAGGAAAT	CTCTGAGGGA	CGTGGAGGAG	AGGGCGCTG
1390	1400	1410	1420	1430	1440
ACACCCTAGG	AGTTGGGTGGC	GAAAGGAGTA	GTAGGCTTAA	CTTCCCGGAG	GCGGCTCAG
1450	1460				

Fig. 2 DNA sequence of the 16S rDNA PCR product amplified using DNA extracted from an aspirate as a template and 8UA and 1485B primers
Table 1 Twenty-three SNPs analysed by sequencing three genes

	flID	sopE2	spaO
	612*	616	639
Salmonella enterica serovar	651	747	748
S. bareilly	C	C	C
S. paratyphi B variant Java	C	T	A
Patient	C	A	A

The results of *S. bareilly* and *S. paratyphi B variant Java* are as reported [8]

The numbers represent the nucleotide location on the coding gene
forward (5′-CGATCTGAAGCAGATCAACTCTCA-3′) and reverse (5′-CATCAATTGAGCCAGCGGT-3′) primers and DNA extracted from the aspirate. The sequence of the PCR product (Fig. 3) was 100% (753/753) identical to that of S. bareilly strain CFSAN000189 and 73.9% (557/753) identical to S. paratyphi B variant Java strain 08-00436.

We performed follow-up cultures of blood, urine, and aspirate but did not detect any bacteria. We also attempted to detect S. bareilly by broad-range 16S rDNA PCR using blood specimens drawn 4 days and 1 month after admission, but the results were negative.

Discussion and conclusion

Renal abscesses, potentially lethal complications of urinary tract infections or bacteraemia, are infrequently encountered in children [9–11], but the actual prevalence is still unknown [10]. Paediatric renal abscesses are most commonly small in size and less than 3 cm in diameter [10, 11]. The most common pathogens isolated in children are *Escherichia coli* and *Staphylococcus aureus* [9–11]. According to a previous report, broad-spectrum and bactericidal antibiotics, such as second- and third-generation cephalosporins, are recommended for children with renal abscesses [12]. However, pathogens are sometimes resistant to antibiotic treatment [12, 13]. Thus, for initial treatment, antibiotics, such as meropenem plus vancomycin, should be selected, considering the harmful and destructive effects of renal abscesses on the kidneys. This combination is effective against not only Gram-negative bacilli but also Gram-positive bacteria, even though they are resistant strains.

There are no definite guidelines for surgical intervention in paediatric patients [14]. In adult patients, abscesses of less than 3 cm in diameter usually resolve with antibiotic therapy for 4–6 weeks [15]. Furthermore, several recent studies on paediatric renal abscesses have reported successful effects of antibiotic therapy against abscesses of less than 3 cm in diameter.

![DNA sequence of the fliC PCR product amplified using DNA extracted from an aspirate as a template and fliC forward and reverse primers](image-url)
Percutaneous drainage may be considered for lesions of more than 3 cm in patients with persistent fever despite treatment with appropriate antibiotics or in patients who are immunologically compromised or critically ill [9–11]. In our case, the lesion was more than 3 cm, and the abscess was refractory to antibiotic therapy, and therefore required drainage. The prompt resolution of our patient’s clinical symptoms after drainage suggests that surgical intervention is helpful.

Salmonella could cause gastroenteritis, bacteremia, and subsequent focal infections. However, invasive nontyphoidal salmonellosis rarely affects the kidneys, and there are only a small number of reports of renal abscesses caused by Salmonella serovars, such as S. virchow [16], S. enteritidis, S. typhimurium [17, 18], and S. oranienburg [19]. Also, some nontyphoidal Salmonella serovars, such as S. choleraesuis and S. dublin, can cause more invasive disease than S. typhimurium or S. bareilly [5]. Indeed, there are only a small number of reports of extraintestinal infections by S. bareilly [20, 21].

The route of Salmonella infection in our patient is unclear, although infectious agents have been reported to threaten the health of pool users in tropical countries [22–24]. Since his family members did not show gastrointestinal symptoms during and after their trip, we speculate that he may have ingested contaminated water from the pool in the hotel. Unfortunately, we could not obtain information on Salmonella outbreaks associated with pool water in Guam.

We were unable to isolate the microorganisms from the abscess, perhaps because he had been on antibiotics sometimes before the sample was taken for culture. The diagnosis was therefore based on the result of broad-range PCR [6, 7], which can detect a wide variety of bacteria from biological samples even after sterilization with antibiotics. However, this alone is insufficient to determine the Salmonella serovar, and additional examination for specific bacterial genes [8] was required.

We conclude, to the best of our knowledge, that this is the first report of a paediatric renal abscess due to S. bareilly, which was detected using broad-range PCR followed by DNA sequencing of specific bacterial genes [8] was required.

Acknowlegements

We thank Prof. Esteban Gabazza for critically reading the manuscript. We would like to thank SNAS (Springer Nature Author Services) for English language editing.

Authors’ contributions

All authors contributed both to the writing of the manuscript and to the clinical treatment of the patient. Medical treatment was performed by MO, NS, and HN. Surgical treatment was performed by YH. Molecular examination and data analysis were performed by MI, TN, IMB, and ST. The first draft of the manuscript was written by TN and MO, and all authors commented on the manuscript. All authors read and approved the final manuscript.

Funding

No research funding is involved in this study.

Availability of data and materials

The datasets generated and analysed during the current study are available in the DNA Data Bank of Japan (DDBJ) repository under the following Accession Numbers: LC687364, LC687365.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of National Hospital Organization Mie Chuo Medical Centre.

Consent for publication

Written informed consent was obtained from the parents of the patient for publication of this case report and any accompanying images.

Competing interests

No competing interests to declare.

Author details

1 Department of Paediatrics, National Hospital Organization Mie Chuo Medical Centre, 2158-5, Myojincho Hisai, Tsu, Mie, Japan.

2 Clinical Research Institute, National Hospital Organization Mie Chuo Medical Centre, 2158-5, Myojincho Hisai, Tsu, Mie, Japan.

3 Department of Paediatrics, National Hospital Organization Mie National Hospital, 357 Osatokubotacho, Tsu, Mie, Japan.

4 Department of Urology, National Hospital Organization Mie Chuo Medical Centre, 2158-5, Myojincho Hisai, Tsu, Mie, Japan.

Received: 29 June 2021 Accepted: 1 March 2022

Published online: 10 March 2022

References

1. Ho Y, Tsai H, Hsu B, Chiou C. The association of Salmonella enterica from aquatic environmental and clinical samples in Taiwan. Sci Total Environ. 2018;624:106–13. https://doi.org/10.1016/j.scitotenv.2017.12.122.

2. Acheson D, Hohmann EL. Nontyphoidal Salmonellosis. Clin Infect Dis. 2001;32(2):263–9. https://doi.org/10.1086/318457.

3. Bridges RF, Scott WM. A new organism causing paratyphoid fever in India. J Roy Army Med Corps. 1931;56(9):241.

4. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muru-vinda T, et al. Tracing origins of the Salmonella bareilly strain causing a food-borne outbreak in the United States. J Infect Dis. 2016;213(4):502–8. https://doi.org/10.1093/infdis/jiw297.

5. Jones TF, Ingram LA, Cieslak PR, Yugma DJ, Tobin-D’Angelo M, Hurd S, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008;198(1):109–14. https://doi.org/10.1086/588823.

6. Kobayashi H, Hall GS, Tuohy MJ, Knolte U, Procop GW, Bauer TW. Bilateral periprosthetic joint infection caused by Salmonella enterica serotype enteritidis, and identification of Salmonella sp. using molecular techniques. Int J Infect Dis. 2009;13(6):463–6.

7. Nakamura I, Omori N, Umeda A, Ohkusuki K, Matsumoto T. First case report of fatal sepsis due to Campylobacter upsaliensis. J Clin Microbiol. 2015;53(2):713–5. https://doi.org/10.1128/jcm.02349-14.

8. Funakawa M, Goji N, I wafu TW, Thomas MC, Ogunremi D, Blais B, et al. Rapid detection and serovar identification of common Salmonella enterica serovars in Canada using a new pyrosequencing assay. Can J Microbiol. 2018;64(1):75–86. https://doi.org/10.1139/cjm-2017-0496.
9. Chen CY, Kuo HT, Chang YJ, Wu KH, Yang WC, Wu HP. Clinical assessment of children with renal abscesses presenting to the pediatric emergency department. BMC Pediatr. 2016;16(1):189. https://doi.org/10.1186/s12887-016-0732-5.

10. Linder BJ, Granberg CF. Pediatric renal abscesses: a contemporary series. J Pediatr Urol. 2016. https://doi.org/10.1016/j.jpuro.2015.05.037.

11. Seguás L, Srinivasan K, Mehta A. Pediatric renal abscess: a 10-year single-center retrospective analysis. Hosp Pediatr. 2012;2(3):161–6. https://doi.org/10.1542/hpdeds.2012-0010.

12. Zhang X, Xie Y, Huang G, Fu H. Analysis of 17 children with renal abscess. Int J Clin Exp Pathol. 2019;12(9):3179–84.

13. Kitaoka H, Inatomi J, Chikai H, Watanabe K, Kumagai T, Masui A, et al. Renal abscess with bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli: a case report. BMC Pediatr. 2020;20(1):461. https://doi.org/10.1186/s12887-020-02366-5.

14. Rubbiotta E, Balzario M, Lacolla V, Sarti A, Porcaro AB, Artibani W. Current clinical management of renal and perinephric abscesses: a literature review. Urologia. 2014;81(3):144–7. https://doi.org/10.5301/urologia.5000044.

15. Siegel JF, Smith A, Moldwin R. Minimally invasive treatment of renal abscess. J Urol. 1996;155(1):52–5. https://doi.org/10.1016/S0022-5347(01)66536-4.

16. Olson ES, Asmussen T, Vicca AF, Osborn DE. A case report of renal abscess caused by Salmonella virchow phage type 1, associated with a papillary renal cell carcinoma. J Infect. 1999;38(1):56–7. https://doi.org/10.1016/s0163-4453(99)00035-x.

17. Davíd M, Joshi BN. Renal abscess due to Salmonella typhimurium. Indian J Pediatr. 1990;57(4):586–8. https://doi.org/10.1007/BF01282079.

18. Ramos JM, Aguado JM, García-Corbeira F, Alés JM, Soriano F. Clinical spectrum of urinary tract infections due on nontyphoidal Salmonella species. Clin Infect Dis. 1996;23(2):388–90. https://doi.org/10.1093/clinids/23.2.388.

19. Poh CWM, Seah XVF, Chong CY, Ganesan I, Maiwald M, Nadua K, et al. Salmonella renal abscess in an immunocompetent child: case report and literature review. Glob Pediatr Health. 2021. https://doi.org/10.1177/2333794x211022263.

20. Padnos E, Goldin M. Salmonella bareilly meningitis in a child successfully treated with intravenous aureomycin. J Pediatr. 1951;38(1):85–7. https://doi.org/10.1016/s0022-3476(51)80092-1.

21. Allegra G, Nuotta R. Solitary abscess of the liver caused by Salmonella bareilly. Policlinico Prat. 1957;64(30):1879–82.

22. Sunger N, Hamilton KA, Morgan PM, Haas CN. Comparison of pathogen-derived ‘total risk’ with indicator-based correlations for recreational (swimming) exposure. Environ Sci Pollut Res. 2019;26(30):30614–24.

23. Mavridou A, Pappa O, Papatzitze O, Dioli C, Kefala AM, Drossos P, et al. Exotic tourist destinations and transmission of infections by swimming pools and hot springs—a literature review. Int J Environ Res Public Health. 2018;15(12):2730.

24. Hlavsa MC, Cikesh BL, Roberts VA, Kahler AM, Vigar M, Hilborn ED, et al. Outbreaks associated with treated recreational water—United States, 2000–2014. Morb Mortal Wkly Rep. 2018;67(19):547.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.