Influence of Addition of Glass Fibre on Concrete

NPannirselvam\(^1\), SManivel\(^2\)
\(^1\)Associate Professor, Department of Civil Engineering,
\(^2\)Assistant Professor, Department of Civil Engineering,
SRM Institute of Science and Technology, Potheri, Kattankulathur - 603203,
Chengalpattu District, Tamilnadu, India.
Corresponding author Email: \(\text{pannirsn@srmist.edu.in}\)

Abstract. Fibres used to develop high performance concrete. Fibres such as glass, carbon, polypropylene and aramid fibres need to be improved in view of global sustainable development. Long term durability is achieved with the development of a high alkaline resistance fibre dispersion. This system was called reinforced concrete with glass fibre alkali resistance. To decide compressive and split rigidity, modulus of elasticity, modulus of crack and quick chloride penetrability tests for concrete grade M20 and M30 with and without fluctuating level of glass strands. The specimens were cast and tested at 28 days. The percentage of addition of glass fibres marginally increased the strength of compressive, flexural, split tensile for M20 and M30 grades of concrete when specimens tested at 28 days. A reduction in bleeding and permeability is also observed.

Key words: Concrete, Glass Fibre, Strength.

1. Introduction
Concrete was durable material and requires a little or no maintenance. As per IS: 456-2000, the durability aspects of concrete, has better experiences with durability of concrete structures [9,17,18]. Glass fibres are a recent introduction to the production of concrete fibres [7,11]. During the setting phase, concrete mixtures tend to shrink plastic and lead to cracking [1,6]. Adding small quantities of fibres can effectively eliminate cracking plastic shrinkage in the early age.

2. Objectives
1. To design for M20 and M30 grade of concrete.
2. To evaluate the mechanical properties of concrete with and without glass fibre in varying percentage.
3. To estimate the durability properties of concrete with and without glass fibre in varying percentages.

3. Experimental Investigations
Investigations were carried out on 48 cubes, 16 cylinders, 8 prisms and 8 RCPT mould with and without glass fibres of varying percentages. Trials on cast specimens were carried out to determine the strength of compressive, split tensile, flexural, modulus of elasticity and rupture and durability properties of both reference concrete and glass fibre concrete mixes.

4. Materials

4.1 Cement
In the investigation, ordinary Portland cement (53 grade) available on the local standard brand market was used. The details are given in Table 1.

Table 1. Physical properties

Sl. No.	Description	Values
1	Consistency	32%
2	Initial setting time	115 minutes
3	Final setting time	489 minutes
4	Specific gravity	3.49
5	Fineness of cement	4%
6	Compressive strength at 28 days	58.86 N/mm²

4.2 Coarse aggregate

The coarse aggregate tested for its various properties and details are tabulated in Table 2 and 3.

Table 2. Sieve analysis

Sl. No.	Sieve Size(mm)	Percentage of Passing
1	40	100.00
2	20	82.72
3	12.5	15.22
4	10	2.94
5	4.75	0.22
6	Less than 4.75	0

Table 3. Specific gravity and bulk densities for coarse aggregates

Sl.No.	Size of Coarse Aggregate	Specific Gravity	Bulk Density (Kg/m³)	
			Loose	Rodded
1	20 mm	2.65	1622	1781

4.3 Fine aggregate

The fine aggregate tested for its physical properties and results are shown in Table 4 and 5.

Table 4. Sieve analysis.

Sl. No.	Sieve size (mm)	Cumulative percentage of passing	Remarks
1	10.0	100.00	
2	4.75	94.90	
3	2.36	93.30	
4	1.18	71.90	The tested sand belongs to Zone – II category.
5	0.600	40.80	
6	0.300	8.50	
7	0.150	1.30	

Table 5. Specific gravity and bulk densities of supplied fine aggregate.

Sl. No.	Fineness modulus	Specific gravity	Bulk density (Kg/m³)	
			Loose	Rodded
1	2.76	2.62	1598	1732

4.4 Glass fibres

Cem-FIL® Anti–Crack High Dispersion used for the experimental study and their properties were furnished by the manufacture. The samples of Cem-FIL® Anti–Crack High Dispersion are presented in Figs. 1 and 2.

![Sample of Cem-FIL Anti-Crack HD Fibre.](image)

Figure 1. Sample of Cem-FIL Anti-Crack HD Fibre.

![Microscopic Structure of Cem-FIL Anti-Crack HD Fibre.](image)

Figure 2. Microscopic Structure of Cem-FIL Anti-Crack HD Fibre.

4.5 Water

Water used for making concrete from the laboratory used for drinking.

4.6 Concrete Mix Design

Concrete design for grades M20 and M30 as per IS: 10262 – 2019 and the proportions are presented in Table 6.

Grade of Concrete	Cement (kg)	Fine Aggregate (kg)	Coarse Aggregate (kg)	Water (Lts)	W/C Ratio	Glass Fibres
M 20	320	731	1119	176	0.55	0.03, 0.06 & 0.10% by concrete volume
M 30	350	686	1137	175	0.50	

5. Casting of test specimens

The present experimental study includes casting and testing of specimens for compressive, split tensile, flexural strength and rapid chloride permeability test are performed. The specimens are casted using concrete design mixes.

5.1 Mixing
Pan mixing is adopted throughout the experimental work (Figure. 3) for casting of the specimens.

![Figure 3. Mixing of Concrete (Pan Mixer).](image)

5.2. Cast specimens

A standard moulds of size 100x100x100 mm cubes, 150 mm diameter x 300 mm height and 100mm diameter x 200mm height cylinders and 100x100x500 mm beam moulds are used. The specimen after casting is shown in Figure 4.

![Figure 4. Specimens after Casting.](image)

5.3. Compaction of concrete

In the present investigation, the table vibrator is used for compacting the concrete as shown in Figure 5. Compaction of concrete by vibration makes the concrete better quality, higher strength with given cement content with less mixing water.
5.4. Curing of specimen

The cast specimens are removed from the mould which left for a day at room temperature following curing. The samples are submerged in the curing tank for 28 days. After curing the specimens dried in sunlight and tested to evaluate its hardened strength.

6. Testing of specimens

The cast specimens are tested after it hardens.

6.1. Compressive strength

The test was performed on a 2000kN hydraulically operated digital CTM (Compression Testing Machine) and represented in Figure 6.

6.2. Split tensile strength

The test is performed horizontally on hardened specimen between a CTM’s loading surfaces and the load is applied along the vertical diameter until the cylinder fails. The details of the setup are shown in Figure 7.
6.3. Flexural strength

Two point loading is applied to estimate the strength of concrete by conducting flexural test. The details of the specimen are presented in Figure 8.

6.4. Secant modulus of elasticity

Secant modulus elasticity of cement is 33 percent ultimate strength as shown in Figure 9.
6.5. Testing for Rapid Chloride Permeability Test

The RCPT specimens (cylinder diameter of 150mm and height of 200mm) are cast and cured for 28 days and loaded in the cells as shown in Figure. 10.

7. Results and discussion

The information acquired from exploratory examinations on the modulus of elasticity, modulus of crack, compressive strength, split tensile strength and fast chloride penetrability test results are introduced in the accompanying areas. The expansion of glass filaments and their conduct of the cast examples are additionally exhibited.

7.1. Compressive Strength

The compressive strength for M20 and M30 grades with different percentage of fibres for 7 and 28 days are presented in Table 7.
Table 7. Compressive Strength for different mix proportions.

S.No	Grade	0%	0.03%	0.06%	0.10%	0.15%	
		7day	28 days	7	28 days	7	28 days
1	M20	16.68	27.37	17.75	34.84	18.47	36.28
2	M30	17.3	5	26.0	44.5		

7.2. Split Tensile Strength

M20 and M30 grade’s split tensile strength is determined with various level of fibres at 28 days are enlisted in Table 8.

Table 8. Split Tensile Strength for various percentage of Glass Fibre.

S.No	Grade	0%	0.03%	0.06%	0.10%	0.15%
1	M20	3.61	4.05	4.33	4.45	4.15
2	M30	4.23	4.68	4.89	5.12	4.56

7.3. Modulus of Elasticity

M20 and M30 grade’s modulus of elasticity is determined with various level of fibres at 28 days are enlisted in Table 9.

Table 9. Modulus of Elasticity for various percentage of Glass Fibre.

S.No	Grade	0%	0.03%	0.06%	0.10%	0.15%
1	M20	22478	24356	23486	23260	23140
2	M30	28643	28978	27978	27618	27149

7.4. Modulus of Rupture of Beams

The modulus of rupture of beams for M20 and M30 grades with different percentage of fibres at 28 days are presented in Table 10.

Table 10. Modulus of Rupture of Beams for various percentage of Glass Fibre.

S.No	Grade	0%	0.03%	0.06%	0.10%	0.15%
1	M20	3.52	3.96	4.18	4.29	4.12
2	M30	4.12	4.57	4.96	4.98	4.16

7.5. Rapid Chloride Permeability Test

RCPT for M20 and M30 grades with different percentage of fibres at 28 days are presented in Table 12.

Table 11. RCPT for various percentage of Glass Fibre.

S.No	Grade	0%	0.03%	0.06%	0.10%	0.15%
1	M20	3950	3343	3472	3600	3750
2	M30	2962	2272	2343	2355	2487

8. Conclusions

1. The rate increment in compressive strength of various glass fibre concrete proportion is seen from 20 to 40 percent contrasted with 28 days compressive quality.
2. The rate increment in flexural and split tensile strength of glass fibre solid blends of various evaluations is seen from 15 to 25 percent contrasted with 28 days.
3. Reduced bleeding is observed by adding glass fibres which improves its homogeneity and reduces cracking.
4. For higher concrete evaluations, the penetrability of glass fibre strengthened chloride concrete shows less chloride porosity.
5. Generally, glass fibres reduce cracks that cause vacuum interconnection to be minimal.
6. The penetrability of cement with the addition 0.03% of glass fibres in M20 and M30 grades diminishes at 28 days by 15.37 and 23.29%.

9. Reference

[1] Lim C C, Gowripalan N and Sirivivatnanon V 2000 Microcracking and Chloride Permeability of Concrete under Uniaxial Compression Cem. Concr. Compos. 22 353-60.
[2] Caijun Shi 2004 Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results Cement and Concrete Research 34 537-45.
[3] Rolf Feldman, Luiz R Prudencio Jr U and Gordon Chan 1999 Rapid Chloride Permeability Test on Blended Cement and other Concretes: Correlations between Charge, Initial Current and Conductivity Constr. Build. Mater. 13 149-54.
[4] Erhan Guneyisi, Mehmet Gesoglu, Turan Oztturan and Erdogan Ozbay 2009 Estimation of Chloride Permeability of Concretes by Empirical Modeling: Considering Effects of Cement Type Curing Condition and Age Constr. Build. Mater. 23 469–81.
[5] Chindaprasirt P, Rukzon S and Sirivivatnanon V 2008 Resistance to Chloride Penetration of Blended Portland Cement Mortar Containing Palm Oil Fuel Ash Rice Husk Ash and Fly Ash Constr. Build. Mater. 22 932–38.
[6] Barluenga G and Hernández-Olivares F 2007 Cracking Control of Concretes Modified with Short AR-Glass Fibers at Early Age Experimental Results on Standard Concrete and SCC Cement and Concrete Research 37 1624-38.
[7] Asokan P, Osmani M and Price A D F 2009 Assessing the Recycling Potential of Glass Fibre Reinforced Plastic Waste in Concrete and Cement composites J. Clean. Prod. 17 821–9.
[8] Perez-Pena M and Mobasher B 1994 Mechanical Properties of Fiber Reinforced Lightweight Concrete Composites Cement and Concrete Research 24 1121-32.
[9] Purnell P and Beddows J 2005 Durability and Simulated Ageing of New Matrix Glass Fibre Reinforced Concrete Constr. Comcr. Compos. 27 875–84.
[10] Faiz A Mirza and Parviz Soroushian 2002 Effects of Alkali-Resistant Glass Fiber Reinforcement on Crack and Temperature Resistance of Lightweight Cem. Concr. Compos. 24 223-7.
[11] Purnell P, Short N R, Page C L and Majumdar A J 2000 Microstructural Observations in New Matrix Glass Fibre Reinforced Cement Cement and Concrete Research 30 1747-53.
[12] Ormellese M, Berra M, Bolzoni F and Pastore T 2006 Corrosion Inhibitors for Chlorides Induced Corrosion in Reinforced Concrete Structures Cement and Concrete Research 36 536 – 47.
[13] Dale P Bentz 2007 A Virtual Rapid Chloride Permeability Test Cem. Concr. Compos. 29 723-31.
[14] Julio-Betancourt G A and Hooton R D 2004 Study of the Joule Effect on Rapid Chloride Permeability Values and Evaluation of Related Electrical Properties of Concretes Cement and Concrete Research 34 1007-15.
[15] Wee T H, Arvind K Suryavanshi and San San Tin 1999 Influence of Aggregate Fraction in the Mix on the Reliability of the Rapid Chloride Permeability Test Cem. Concr. Compos. 21 59-72.
[16] Yuwaraj M Ghugal and Santosh B. Deshmukh 2006 Performance of Alkali-resistant Glass Fiber Reinforced Concrete Journal of Reinforced Plastics and Composites 25 617-30.
[17] Chandramouli K, Srinivasa Rao P, Pannirselvam N and Seshadri Sekhar T 2010 Long Term Durability Studies on Glass Fibre Reinforced Concrete Using Rapid Chloride Permeability Test International Journal of Applied Engineering Research 5 557–64.
[18] Chandramouli K, Srinivasa Rao P, Pannirselvam N and Seshadri Sekhar T 2010 Study on Strength and Durability Characteristics of Glass Fibre Concrete, International Journal of Mechanics and Solids 515-26.