Polydopamine Nanoparticles Attenuate Retina Ganglion Cell Degeneration and Restore Visual Function After Optic Nerve Injury

Xiaotong Lou
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Yuanyuan Hu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Hong Zhang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Jia Liu
Union Hospital

Yin Zhao (zhaoyin85@hust.edu.cn)
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

https://orcid.org/0000-0002-1470-7184

Research

Keywords: Polydopamine nanoparticle, reactive oxygen species scavenging, retina ganglion cell, drug delivery, optic nerve injury

Posted Date: October 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-940186/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Oxidative stress contributes to retina ganglion cells (RGCs) loss in variety of ocular diseases, including ocular trauma, ocular vein occlusion, and glaucoma. Scavenging the excessed reactive oxygen species (ROS) in retinal neurovascular unit could be beneficial to RGCs survival. In this study, a polydopamine (PDA)-based nanoplatform is developed to protect RGCs.

Results: The PDA nanoparticles efficiently eliminate multi-types of ROS, protect endothelia and neuronal cells from oxidative damage, and inhibit microglia activation in retinas. In an optic nerve crush (ONC) model, single intravitreal injection of PDA nanoparticles could significantly attenuate RGCs loss via eliminating ROS in retinas, reducing the inflammatory response and maintaining barrier function of retinal vascular endothelia. Comparative transcriptome analysis of the retina implied that PDA nanoparticles improve RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, as a versatile drug carrier, PDA nanoparticles could deliver brimonidine (a neuroprotection drug) to synergistically attenuate RGCs loss and promote axon regeneration, thus restore visual function.

Conclusions: the PDA nanoparticle-based therapeutic nanoplatform displayed excellent performance in ROS elimination, providing a promising probability for treating retinal degeneration diseases.

1. **Background**
Variety of ocular diseases, including ocular trauma [1], ocular vein occlusion [2], and glaucoma [3] are characterized by retina ganglion cells (RGCs) death, which is the cause of irreversible vision loss [4]. Oxidative stress reflects an imbalance between reactive oxygen species (ROS) production and antioxidant defenses [5, 6]. ROS overproduction is followed by neuronal injury, neuroinflammation and vascular dysfunction in the retinal neurovascular unit, which refers to the functional coupling and interdependency of neurons, glia, and vasculature. Axonal injury is one of the main reasons that triggers RGCs somal loss, as occurs in optic nerve injury or conditions with pathologically increased pressure, e.g., glaucoma [7]. Intracellular superoxide burst has been observed in acute axonal injury [8]. The immoderate ROS induces irreversible oxidative damage on mitochondrial DNA, leading to the apoptosis of RGCs [9, 10]. Thus, reducing ROS accumulation in the retinal neurovascular unit could be beneficial to RGCs survival. Previous studies revealed that deficiency of antioxidant nutrients (e.g. vitamin B1, vitamin E) increased risk of open angle glaucoma, as well as RGCs loss [11, 12]. In addition, antioxidant compounds showed therapeutic potential in neurodegeneration diseases, include coenzyme Q10 [13], N-acetyl cysteine [14], acetyl-L-carnitine [15] and alpha lipoic acid [16]. The reduction of oxidative stress is a promising therapeutic approach for RGCs damage [4]. Although gene therapy targets antioxidant enzymes were proposed as a therapeutic option for ocular diseases [17, 18], the poor transfection efficiency in vivo and inflammatory response associated with viral vectors limited its application [19]. Thus, artificial antioxidant might serve as an alternative.
Polydopamine (PDA), a melanin-like polymer produced by nature neurotransmitter dopamine, has been widely used in biomedical applications because of its excellent biocompatibility, biodegradability, and photothermal transfer ability [20, 21]. Owing to the abundant phenolic groups, PDA possesses ROS scavenging property, and has been applied in alleviating ROS-mediated injury and inflammation [22, 23]. In acute models of peritonitis and lung injury, PDA treatment markedly diminished ROS generation and reduced proinflammatory cytokines [24]. Bao and colleague also reported that PDA could decrease periodontal inflammation [25]. In addition, due to its great drug loading capability through π-π stacking interaction and hydrogen bond, PDA also has been explored as drug carriers [26–28]. Doxorubicin [29], oxaliplatin [30], prostate-specific membrane antigen inhibitor [28] and many other anti-cancer drugs were identified to be encapsulated and delivered by PDA. In glaucoma disease, the negatively-charged microRNA (miR-21-5p) was delivered by cationic PDA nanoparticle (PDA-polyethylenimine) to increase the permeability of outflow pathway, further reduce intraocular pressure (IOP) [31]. Thus, we hypothesized that PDA nanoparticle could serve as a therapeutic nanoplatform to prevent RGCs degeneration via scavenging ROS and delivering therapeutic agents.

Brimonidine, a selective alpha-2 adrenoceptor agonist, is clinically used for reducing IOP [32, 33]. In addition, brimonidine exerts neuroprotective effect by regulating the activity of postsynaptic excitatory N-methyl-D-aspartate (NMDA) receptor in RGCs [34–38]. Brimonidine is usually used as topical eye drops (brimonidine tartrate, Alphagan®) [39, 40], which however possesses poor drug bioavailability (1-7%) and fast clearance requiring frequently drug administration [41, 42], and even gives rise to incidence of periocular allergic reactions (12.7%) and various side effects (e.g. itching, puffy eye, and shallow breathing) [43]. Hence, directly delivering brimonidine into the vitreous chamber using nanoencapsulation is a promising approach to improve the bioavailability and avoid undesired side effects [44–46].

Herein, we designed a versatile therapeutic platform using PDA nanoparticles for ROS scavenging and brimonidine delivery in preventing RGCs damage. The PDA nanoparticles could sufficiently eliminate multi-types of reactive species, reduce the cellular ROS levels, and protect endothelia and neuronal cells from oxidative damage. In the model of optic nerve crush (ONC), PDA markedly reduced ROS levels in the retinas, and improved RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, synergism of the brimonidine-loaded PDA (Br@PDA) provided superior therapeutic efficacy over PDA or brimonidine for attenuating RGC loss and visual function impairment. In summary, our strategy could be considered as a creative inspiration for future neuroprotection drug development.

2. Methods

2.1 Synthesis and characterization of PDA nanoparticles

The PDA nanoparticles were synthesized according to previous work [47]. Dopamine hydrochloride (1.0 g) was first dissolved in water (40 mL). Next, this solution was added into a mixture solution (4 mL ammonium hydroxide, 160 mL water, and 80 mL ethanol) and stirred at room temperature for 24 h. the
nanoparticles were collected by centrifugation, washed by water, and dried by lyophilization. The morphology of PDA nanoparticles was observed by transmission electron microscope. The hydrodynamic size and zeta potential of PDA nanoparticles were determined using Nano-ZS ZEN3600 (Malvern, UK).

2.2 ROS-Scavenging effects of PDA nanoparticles

The $\text{O}_2^{\cdot-}$ scavenging effect of PDA was examined as previous reported by determining nitro blue tetrazolium (NBT) photoreduction \[47\]. PDA nanoparticles (0.1 to 1.6 mg/mL) were firstly mixed with riboflavin, methionine, and nitro blue tetrazolium (NBT) in PBS buffer, and then the dispersions were exposed to white light for 5 min. The absorbance of these samples was measured at 560 nm using a microplate reader (Infinite F50).

The •OH scavenging effect of PDA was examined by determining the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Briefly, PDA dispersions were mixed with hydrogen peroxide, and FeSO4 in acetic acid buffer (0.5 M, pH 4.5), and incubated for 10 min. Next, the suspensions were centrifuged, and the supernatants were measured at 652 nm.

The free-radical scavenging effect of PDA was examined as previous work \[48\]. PDA dispersions were mixed DPPH• in methanol for 20 min. Then, the supernatants were collected by centrifugation and measured at 517 nm.

2.3 Animals

Male C57BL/6 mice (8 weeks) were purchased from Gempharmatech (Nanjing, Jiangsu, China). Animals were fed with standard food and water in a 12-h light/dark cycle. All the animal protocols and procedures were in accordance with National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and Vision Research and the Use Committee of Huazhong University of Science and Technology.

2.4 Establishment of optic nerve crush model and intravitreal injections

Optic nerve crush model was performed as previously described \[49\]. Briefly, C57BL/6 mice were anesthetized with intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). An incision was made in the conjunctiva at the limbus. The left optic nerve was exposed through the muscle cone and crushed at 1 mm from the optic disc for 5 s using forceps. Immediately after crush, intravitreal injection (2 µL) was completed using a Hamilton syringe (Hamilton, Reno, NV). Finally, the incision was sutured and antibiotic drops were administrated on the eye.

2.5 Cell culture

Human umbilical vein endothelial cells (HUVECs), Raw 264.7 and N2a were purchased from China Center for Type Culture Collection (CCTCC). Cells were cultured in DMEM (GIBCO, Gaithersburg, MD, USA)
supplemented with 10% fetal bovine serum (GIBCO) and 1% penicillin/streptomycin (Invitrogen) at 37°C with 5% CO2.

2.6 In vitro cytotoxicity

In vitro cytotoxicity was detected by CCK-8 assay (Beyotime). Cells were seeded at the density of 1×10^4 cells per well in 96-well plates. Gradient concentrations of PDA nanoparticles were incubated for 24 h, and cells were washed twice with PBS. Fresh media with CCK-8 solution was incubated for 4 h. Finally, absorbance of each well was measured at 450 nm using a microplate reader.

2.7 Nissl staining

Frozen sections from mouse retinas were treated with cresyl violet at room temperature for 5 min, washed in PBS and dehydrated with a graded series of ethanol solutions. Following clearing with xylene, the slices were mounted with neutral balsam and examined with light microscope.

2.8 Propidium Iodide (PI) uptake and cell death analysis

Cells grown on glass coverslips (24-well plates) were incubated with PI (5 µM, Beyotime) and hoechst in culture medium for 30 min at 37°C with 5% CO2. After incubation, cells were washed with PBS for 3 times and analyzed using an inverted confocal microscope (Olympus FV3000).

2.9 RT-PCR

Primers for RT-PCR were: 5′-CTGCAGCCTTGGATCAGGAACCTG-3′ (sense) and 5′-GGAGTAGCCTGTGTGCACCTGGAA-3′ (antisense) for iNOS; 5′-TCTCATTCCTGCTTGTGGC-3′ (sense) and 5′-CAGTGGTAGTTTGTACAGTG-3′ (antisense) for TNF-a. Primers for murine Gapdh was purchased from Tsingke Biotechnology (Beijing, China). After amplification, the sample was separated on an agarose gel (2%) containing ethidium bromide. The bands densities were measured using Image J.

2.10 Immunofluorescence

Cells grown on glass coverslips were fixed with 4% paraformaldehyde for 15 min at room temperature. After washed twice with PBS, cells were permeabilized with 0.1% Triton X-100 for 10 min, blocked with 5% BSA for 1h, then incubated with primary antibodies at 4°C overnight, followed by appropriate secondary antibodies. For tissues, frozen eyes were prepared and sectioned into 10 µm. Frozen sections for immunofluorescence were prepared using the same protocol as for the cells (see above). Images were captured using an inverted confocal microscope.

2.11 Paracellular permeability assay

HUVECs were seeded on the top Transwell chamber with 0.4µm pore-size membrane (Corning, 3413) and grown for a minimum 2 days until full confluence. Cells were treated with H$_2$O$_2$ (200 µM) with or without PDA (100 mg/mL) for 6h at 37°C, followed by 3 washs with PBS. FITC-dextran of 70kDa (Sigma, 1
mg/mL) was added to the top chamber. After 1.5 h, the sample was collected from the bottom chamber and read in a fluorescence microplate reader (Synergy2, BioTek, Winooski, VT, USA) at 485/528 nm.

2.12 In situ measurement of ROS

Dihydroethidium (DHE) was used to detect ROS levels in retinas as previously described [50]. Briefly, eyes were embedded (OCT, Tissue-Tek) and frozen in liquid nitrogen immediately after isolation. DHE (10 µmol/L, Beyotime) was applied to 10 µm unfixed cryosections and incubated for 30 min at 37°C. Images were captured using an inverted confocal microscope.

2.13 Analysis of visual function

Mice were maintained in the testing room for 1 h in dark conditions in their home cage with free access to food and water. Before test, each mouse was allowed to habituate to the testing conditions for 10 min while in the dark.

Optomotor response was analyzed using a testing chamber and software (Softmaze, Shanghai, China). The mice were placed on a platform surrounded by four screens. Vertical sine wave gratings (100% contrast) were projected on the screens. The spatial frequencies tested at a constant speed of 12 degrees/s for 60 s per time and each mice was tested for 10 times. The spatial frequency of the grating was systematically increased until the animal no longer responded. Visual acuity was determined using the threshold of the highest spatial frequency. A more detailed description of the device and methodology is given elsewhere [51].

The light/dark transition test was conducted in an apparatus that consists of a cage (45*27*27 cm) divided into two chambers of different size (light/dark: 2/1). The light and dark sections were connected by an opening with door (5*5 cm). Mice were initially placed into the dark side and the door is opened after the acclimation period and allowed to move freely between the two chambers for 10 min. The time spent in light or dark chambers were recorded and used for analysis.

2.14 Quantification of RGC Survival

To estimate the number of surviving RGCs, the retina sections was stained with RBPMS antibody (abcam, ab194213, 1:400). The number of RBPMS-positive cells at central and peripheral retinal were quantified separately. The average of cell counting on each retina was used for analysis. For statistical analysis, the density of RBPMS-positive cells (number of cells per mm) was compared.

2.15 Anterograde labeling and quantification of RGC axons
Following anesthesia, 1 µL cholera toxin subunit B (CTB, 2 µg/µL, BrainVTA) was intravitreally injected with a Hamilton syringe. The mice were sacrificed and 2 days later, mice were deeply anaesthetized and optic nerve segment were dissected, sequentially perfused in 4% PFA, dehydrated in 30% sucrose, then embedded in OCT. Longitudinal sections of 10 µm thickness were made. Regenerating axons were quantified as previously reported [52]. Briefly, the CTB-positive fibers at the indicated distances (0.1 mm, 0.2 mm, 0.3 mm, and 0.4 mm) distal to the crush site were counted. The number of axons in a nerve with a radius of (r) at the point (d) were counted and the thickness of 8 µm (t) were used together to calculate the estimated number of axons. R represents for the width of counted axons. The formula is:

\[
\sum ad = \pi r^2 \times (\text{axonnumber} \div R) \div t
\]

2.16 RNA-purification and mRNA Library Construction

Total RNA was extracted from the retinas using Trizol (Invitrogen, Carlsbad, CA, USA) according to manual instruction. RNA was qualified and quantified using a Nano Drop and Agilent 2100 bioanalyzer (Thermo Fisher Scientific, MA, USA). First-strand cDNA was generated using reverse transcription, followed by a second-strand cDNA synthesis. DNA nanoballs (DNBs) were loaded into the patterned nanoarray and single end 50 bases reads were generated on BGIsseq500 platform (BGI-Shenzhen, China). cDNA libraries were prepared for sequencing using the Illumina Nextera XT2 DNA Library Prep Kit (Illumina, CAT#FC-131–1024), and 30–40 million paired-end reads (2 × 75 bp) were sequenced for each sample.

2.17 Statistical analyses

All data are presented as the means ± SD from at least three independent experiments. The statistical analyses were performed using the software GraphPad Prism software (version 1.5.2, GraphPad Software Inc.). Comparisons among multiple groups were assessed using one-way analysis of variance (ANOVA) test, as indicated in the figure legends. Comparisons among two groups were assessed using Student’s t test. A value of \(P < 0.05 \) was considered statistically significant.

3. Results

3.1 PDA nanoparticles effectively scavenged reactive oxygen species (ROS)

The PDA nanoparticles were synthesized by autooxidation in alkaline solution. Transmission electron microscopy (TEM) revealed that the synthesized PDA possessed spherical morphology (Fig. 1A and B). The PDA nanoparticles were easily dispersed in aqueous solution with a hydrodynamic size of 215 nm (polydispersity of 0.03) (Fig. 1C), and a negative zeta-potential (-31 mV) (Fig. 1D), suggesting that uniform PDA nanospheres were synthesized via self-polymerization of dopamine.
To evaluate the ROS scavenging effects of PDA nanoparticles, the clearance efficacy of superoxide anion \((O_2^{•−})\), hydroxyl radicals \((•OH)\), and DPPH radical were studied. As shown in Fig. 1E and Supplementary Fig. S1A, the PDA nanoparticles significantly suppressed the NBT reduction under light irradiation in a dose-dependent manner, suggesting the \(O_2^{•−}\) elimination property of PDA. Approximately 60% of \(O_2^{•−}\) was removed by PDA at the concentration of 80 µg/mL. Similarly, PDA effectively removed the \(•OH\) by inhibiting TMB oxidation (Fig. 1F and Supplementary Fig. S1B), and scavenged DPPH radical dose-dependently (Fig. 1G and Supplementary Fig. S1C). These results indicate that PDA nanoparticles could effectively eliminate variety of ROS, and are promising to serve as antioxidant agents for preventing GRCs damage.

3.2 PDA nanoparticles attenuated oxidative damage in endothelia and neuronal cell line

The cytocompatibility of PDA nanoparticles was tested in human umbilical vein endothelial cells (HUVECs) using CCK-8 assay. Exposed to different concentration of PDA (20 to 200 mg/mL), the viability of HUVECs was all higher than 95%, suggesting the negligible cytotoxicity of PDA nanoparticles (Fig. 2A). As indicated by the fluorescence of DCFH, \(H_2O_2\) treatment (200 µM) significantly induced oxidative stress in HUVECs, as plenty of fluorescent spots were observed (Fig. 2B). Of note, the intracellular ROS levels of treated HUVECs were markedly decreased by PDA nanoparticles in a dose-dependent manner, confirming the PDA’s ROS clearance activity (Fig. 2B and C). Due to the ROS elimination effect, PDA nanoparticles effectively reduced the \(H_2O_2\)-induced cell death in neuronal cells (N2a) (Fig. 2D and E), correspondingly raised the cell viability as high as untreated cells (Fig. 2F), suggesting the cyto-protection effect of PDA against ROS.

The homeostasis of the retina is maintained by the blood-retina-barrier (BRB), a complex of different cell types. Junctions between vascular endothelia were essential for the integrity of the BRB. The localization of the tight junction protein zonula occludens-1 (ZO-1) was examined to evaluate junction loss in HUVECs. \(H_2O_2\) treatment significantly decreased ZO-1 in HUVECs, while PDA nanoparticles markedly diminished the ZO-1 reduction (Fig. 2G and H), and partially restored the barrier function by reducing the permeability of HUVECs monolayers to macromolecule (FITC-Dextran, 70 kDa) (Fig. 2I). Together, these results indicate that PDA nanoparticles could effectively scavenge ROS, protect cells from ROS-induced damage, and recover the function of different cell types.

3.3 PDA nanoparticles suppressed macrophages polarization

The ROS elimination property of PDA nanoparticles was also assessed in lipopolysaccharide (LPS) stimulated macrophages. Compared with PBS treated cells, LPS (1 µg/mL) treatment markedly elevated the ROS level in RAW264.7 cells (Fig. 2J and Supplementary Fig. S2), and dramatically increased the mRNA levels of iNOS and TNF-α (Fig. 2K and L), which indicate the pro-inflammatory polarization tendency of LPS-treated macrophages [53]. In the presence of PDA nanoparticles, the ROS content of
LPS-treated RAW264.7 cells was significantly reduced, and the mRNA levels of iNOS and TNF-α were also markedly decreased in LPS-treated cells (Fig. 2J-L), indicating that PDA eliminated the cellular ROS and attenuated M1 polarization.

3.4 PDA nanoparticles attenuated retinal degeneration, and suppressed the activation of microglia after ONC

Since superoxide generation was an early event in axonal injuries [8], intravitreous injection of PDA nanoparticles was performed immediately after ONC, and the retinas were collected at day 7 (Fig. 3A). PDA nanoparticles (2 or 4µg) were able to reduce the retinal ROS to the same level of control (uncrushed) group as indicated by dihydroethidium (DHE) staining (Fig. 3B and C). The thickness from the ganglion cell layer (GCL) to outer nuclear layer (ONL) was evaluated by DAPI staining (Supplementary Fig. S3), which revealed the decreased thickness of central and peripheral retinal after ONC. Impressively, PDA nanoparticles markedly protected central and peripheral retinal layers, as the both layers recovered as thick as the control group (Fig. 3D and E). In addition, PDA nanoparticles reduced the neuronal loss in GCL (Supplementary Fig. S4). Further, the apoptotic cells and the number of RGCs in GCL were evaluated by TUNEL and RBPMS staining. As shown in Fig. 3F, ONC significantly induced cell apoptosis in the GCL, while PDA nanoparticles markedly decreased the TUNEL positive cells (Fig. 3F and G), suggesting the cyto-protection effect. Moreover, PDA treatments elevated the number of RBPMS-positive cells at both central and peripheral retinal to the same level with control (uncrushed) group (Fig. 3H and I).

Microglia was the tissue macrophage population of the central nervous system. It was identified that reactive microglia are neurotoxic [54, 55], thus we visualized the microglia morphology using ionized calcium binding adaptor molecule 1 (IBA1). Undergoing ONC, the number of IBA1-positive cells with amoeboïd-like morphology dramatically increased in retina, while PDA nanoparticles significantly attenuated the microglia infiltration (Supplementary Fig. S5), suggesting that PDA suppresses ONC-induced microglia activation in the retina. These results revealed that PDA nanoparticles can effectively eliminate the excessively increased ROS, reduce the retinal neuronal degeneration, and suppressed microglia activation after ONC.

3.5 Comparative Transcriptome Analysis of the retina after ONC treated with or without PDA nanoparticles

To investigate the alternations in the retina after ONC and explore the mechanism of neuroprotective effect of PDA nanoparticles, we performed RNA-seq analysis of retinas from healthy mice and ONC mice with or without PDA treatments. We analyzed differentially expression genes (DEGs), and identified 717 genes related to optic nerve injury. The heat map of all differentially expressed genes between the control and ONC groups were shown in Fig. 4A. KEGG enrichment analysis was demonstrated with scatter plots. The enriched pathways of ONC-related DEGs included phagosome (n = 28), NOD-like receptor (n = 26), TNF (n = 18), cytokine-cytokine receptor interaction (n = 30), Fc gamma R-mediated phagocytosis (n = 14), Toll-like receptor (n = 14), necroptosis (n = 18), and apoptosis (n = 15) pathways, which were mainly associated with inflammatory process and cell survival (Fig. 4B). Moreover, the DEGs between PDA and
ONC groups were showed in heatmap (Fig. 4C). Col1a1, Fbln5, Lcn2, and Tgfbi were identified as potential oxidative stress-associated genes involved in the process of RGCs protection by PDA nanoparticles (Fig. 4D-F). Compared to the ONC group, PDA nanoparticles significantly elevated the expression of these genes which tend to attenuate oxidative damage [56–59].

3.6 Long-term therapeutic efficacy of brimonidine-loaded PDA nanoparticles

The PDA nanoparticles were further served as drug carriers to encapsulate brimonidine (loading content, 20.0%), a selective alpha-2 adrenoceptor agonist that exerts neuroprotective effect by regulating the activity of NMDA receptor in RGCs [35] (Fig. 5A). Next, the long-term therapeutic effects of brimonidine-loaded PDA (Br@PDA) against optic nerve injury were investigated (Fig. 5B). Compared with the ONC group, both brimonidine and PDA treatments significantly increased the density of RGCs at central and peripheral retinal (Fig. 5C and D; Supplementary Fig. S6). Of note, the Br@PDA elevated the RGCs density more effectively than brimonidine and PDA groups, suggesting the combinational therapy effect of Br@PDA. Moreover, Br@PDA significantly decreased the number of microglia as well as PDA alone, likely due to the antioxidant property of PDA, while brimonidine did not affect the microglia infiltration (Fig. 5E and F).

Next, the axon regeneration was detected by intravitreally injection of cholera toxin b-subunit (CTB), a highly sensitive retrograde neuroanatomical tracer (Fig. 5G). As shown in Fig. 5H, PDA nanoparticles significantly increased the density of regenerated axons, while brimonidine hardly enhanced axons regeneration. Importantly, Br@PDA dramatically promoted the axons density, and the regenerated axons were 10-fold more than the other groups (ONC, Br and PDA groups) at 0.3 mm distal to the lesion site (Fig. 5H and I), suggesting the synergistic therapy effect of Br@PDA. We further performed the optomotor response test and light/dark transition assay to evaluate the visual acuity and dark preference of mice. Br@PDA group displayed significantly better optomotor response than the ONC group, nevertheless brimonidine or PDA alone ineffectively elevated the threshold spatial frequency of mice (Fig. 5J). The ratio of time spent in dark and light chambers was reduced after ONC, indicating injured ability of photoperceptive. Administration of PDA and Br@PDA elevated the dark/light ratio and no significant difference was found between the two groups (Fig. 5K). These results demonstrated that Br@PDA provided long-term protection from RGC loss and visual function impairment in ONC model.

4. Discussion

Oxidative stress damage raised by reactive oxygen species (ROS) is a common and severe pathological process in various diseases. In ocular diseases, such as ocular trauma, ocular vein occlusion and glaucoma, excessed ROS induces irreversible damage of RGCs. Unfortunately, no matter pharmacological or surgical treatment failed to delay the progression of visual field loss in some individuals [60, 61]. This suggests that preclinical drug discovery for neuroprotection in ocular diseases is urgent [62]. In this study, we proposed a novel approach for RGCs and optic nerve protection using polydopamine (PDA)
nanoparticles-based nanoplatform. For the first time, to our knowledge, we achieve significant visual recovery in optic nerve crush (ONC) model by nanomaterial therapy through ROS elimination. Unlike other preclinical drugs where target one protein, molecular pathway or/and cellular type, the PDA nanoparticles allow single injection to promote RGCs survival, suppress retinal inflammation, and stabilize the barrier function of vascular endothelia cells. Furthermore, as a drug carrier, PDA nanoparticles allow loading neuroprotection drug such as brimonidine to restore visual function synergistically.

PDA is a major pigment of naturally occurring melanin and possesses outstanding biocompatibility [63, 64]. Numerous studies had identified the therapeutic potential of PDA nanoparticles in different diseases, including cancer [65], diabetes [66], inflammation [67] and many other diseases [68, 69]. In this study, we firstly employed PDA nanoparticles for neuroprotection in a model of axonal injury. We found that single intravitreal injection of PDA nanoparticles could rescue the injured RGCs, maintain the barrier function of vascular endothelial cells and reduce the activation of microglia after ONC. It was hypothesized that the accumulation of ROS can trigger microglia activation [55], and then activated microglia will release more ROS to aggravate neurodegeneration [54]. In retinal blood vessels, the excessed ROS can induce vascular endothelial dysfunction which is characterized by reduced endothelium-dependent vasodilation and a pro-inflammatory state [70]. PDA nanoparticles are a broadly investigated ROS scavenger [26]. In vitro and in vivo experiment demonstrated that PDA nanoparticles held broad anti-oxidative activities against toxic ROS in microglia and vascular endothelial cells. Our data revealed that PDA nanoparticles rescued RGCs by scavenging ROS in retinal microglia and vascular endothelial cells, as well as in RGCs.

The data of retinal RNA-seq demonstrated that PDA nanoparticles could increase the expression of Col1a1, Fbln5, Lcn2 and Tgfbi, which are found to reduce ROS levels and oxidative damage [56–59]. Fbln5 competed with fibronectin (FN) for binding to α5β1 integrin, resulting in reduced FN-integrin mediated ROS production [56]. LCN2, functioned as an iron transporter as well as an antioxidant. Absence of LCN2 elicited intracellular iron accumulation, thus leading to iron-related oxidative stress [58, 59]. The alternation of LCN2 in retinas implied that iron metabolism might be involved in the neuroprotection and anti-inflammation process of PDA nanoparticles. However, more experiments are needed to identify the detailed mechanism.

As an emerging polymer material, PDA nanoparticles are also used as promising drug carriers in cancer therapy. Comparing with traditional chemotherapy, PDA nanoparticles can target tumor sites through the enhanced permeability and retention effect, therefore reducing the side effects [27]. Furthermore, the surface of PDA nanoparticles can be modified by -SH or -NH₂ terminated ligands to enhance targeting capability [71]. Previous experimental-glaucoma models showed that brimonidine treatment significantly reduced RGCs apoptosis by 97.7% and 92.8% at 3 and 8 weeks, respectively [72]. In retinal neuronal cells exposed to UV, brimonidine could increase cell viability at 10 and 100 µM. Hence, brimonidine was loaded in PDA nanoparticles (Br@PDA) as a neuroprotection nano-therapeutic to enhance RGCs protection. Notably, the Br@PDA could synergistically rescue RGCs apoptosis, promote optic nerve transport, and improve visual impairment in ONC model.
5. Conclusions

In conclusion, we developed a novel approach to decrease RGCs apoptosis induced by ONC. Single intravitreal injection of PDA nanoparticles could efficiently remove ROS in retina, therefore improve neurodegeneration. We also proved the enhanced therapeutic efficiency of neuroprotection drug loaded PDA nanoparticles on visual impairment. These results provide a direction for future translation research for ocular neurodegeneration diseases.

Abbreviations

RGCs: Retinal ganglion cells
ROS: Reactive oxygen species
PDA: Polydopamine
ONC: Optic nerve crush
HUVECs: Human umbilical vein endothelial cells
BRB: Brain retinal barrier
LPS: Lipopolysaccharide
DHE: Dihydroethidium
GCL: Ganglion cell layer
ONL: Outer nuclear layer
IBA1: Ionized calcium binding adaptor molecule 1
DEGs: Differentially expression genes
CTB: Cholera toxin subunit B

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent to publish.
Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Conflict of interest

No biomedical financial interests or potential conflicts of interest exist.

Author contributions

J.L and Y.Z conceived and designed the project, XT.L performed the experiments, XT.L and Y.Z wrote the manuscript, YY.H and H.Z helped to revise the manuscript.

Funding and Acknowledgements

The current studies were supported by funding from the National Natural Science Foundation of China Grant Nos.31800868 and Tongji Hospital (HUST) Foundation for Excellent Young Scientist Grant No. 2020YQ18 (to Dr Yin Zhao). National Natural Science Foundation of China Grant Nos.82072068 (to Prof Jia Liu).

References

1. Chang KC, Sun C, Cameron EG, Madaan A, Wu S, Xia X, Zhang X, Tenerelli K, Nahmou M, Knasel CM et al. Opposing Effects of Growth and Differentiation Factors in Cell-Fate Specification. Curr Biol 2019, 29(12):1963-1975.e1965.

2. Schmid H, Renner M, Dick HB, Joachim SC. Loss of inner retinal neurons after retinal ischemia in rats. Investigative ophthalmology & visual science 2014, 55(4):2777-2787.

3. Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019, 73:100769.

4. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006, 25(5):490-513.

5. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020, 37:101799.

6. Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021:100941.

7. Xiong W, MacColl Garfinkel AE, Li Y, Benowitz LI, Cepko CL. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. The Journal of clinical investigation 2015, 125(4):1433-1445.

8. Kanamori A, Catrinescu MM, Kanamori N, Mears KA, Beaubien R, Levin LA. Superoxide is an associated signal for apoptosis in axonal injury. Brain : a journal of neurology 2010, 133(9):2612-
9. Lee D, Kim KY, Shim MS, Kim SY, Ellisman MH, Weinreb RN, Ju WK. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. Apoptosis 2014, 19(4):603-614.

10. Lee D, Shim MS, Kim KY, Noh YH, Kim H, Kim SY, Weinreb RN, Ju WK. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Investigative ophthalmology & visual science 2014, 55(2):993-1005.

11. Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release 2011, 156(1):92-100.

12. Ramdas WD, Wolf's RC, Kieft-de Jong JC, Hofman A, de Jong PT, Vingerling JR, Jansonius NM. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol 2012, 27(5):385-393.

13. Muthukumaran K, Kanwar A, Vegh C, Marginean A, Elliott A, Guilbeault N, Badour A, Sikorska M, Cohen J, Pandey S. Ubisol-Q10 (a Nanomicellar Water-Soluble Formulation of CoQ10) Treatment Inhibits Alzheimer-Type Behavioral and Pathological Symptoms in a Double Transgenic Mouse (TgAPEswe, PSEN1dE9) Model of Alzheimer's Disease. J Alzheimers Dis 2018, 61(1):221-236.

14. Naziroğlu M, Senol N, Ghazizadeh V, Yürüköver V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 2014, 34(6):895-903.

15. Singh S, Mishra A, Srivastava N, Shukla R, Shukla S. Acetyl-L-Carnitine via Upregulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats. 2018, 55(1):583-602.

16. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, Guo SQ, Wang S, Guo T, Wang ZY et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 2018, 14:535-548.

17. Liu Y, Tang L, Chen B. Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion. Free radical biology & medicine 2012, 52(5):909-915.

18. Usui S, Oveson BC, Iwase T, Lu L, Lee SY, Jo YJ, Wu Z, Choi EY, Samulski RJ, Campochiaro PA. Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free radical biology & medicine 2011, 51(7):1347-1354.

19. Naldini L. Gene therapy returns to centre stage. Nature 2015, 526(7573):351-360.

20. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 2014, 114(9):5057-5115.

21. Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS nano 2019, 13(8):8537-8565.
22. Forooshani PK, Meng H, Lee BP. Catechol Redox Reaction: Reactive Oxygen Species Generation, Regulation, and Biomedical Applications. In: Advances in Bioinspired and Biomedical Materials Volume 1. vol. 1252: American Chemical Society, 2017: 179-196.
23. Wang X, Zhao H, Liu Z, Wang Y, Lin D, Chen L, Dai J, Lin K, Shen SG. Polydopamine nanoparticles as dual-task platform for osteoarthritis therapy: A scavenger for reactive oxygen species and regulator for cellular powerhouses. Chemical Engineering Journal 2021, 417:129284.
24. Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L, Huang J, Xu H, Xu Y, Chen Z et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 2018, 10(15):6981-6991.
25. Bao X, Zhao J, Sun J: Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. 2018, 12(9):8882-8892.
26. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020, 5(3):522-541.
27. Ambekar RS, Kandasubramanian B. A polydopamine-based platform for anti-cancer drug delivery. Biomaterials science 2019, 7(5):1776-1793.
28. Dai L, Shen G, Wang Y, Yang P, Wang H, Liu Z. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. J Mater Chem B 2021, 9(4):1151-1161.
29. Ferreira LP, Gaspar VM, Monteiro MV, Freitas B, Silva NJO, Mano JF. Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. J Control Release 2021, 331:85-102.
30. Zhang YC, Wu CG, Li AM, Liang Y, Ma D, Tang XL. Oxaliplatin and Gedatolisib (PKI-587) Co-Loaded Hollow Polydopamine Nano-Shells with Simultaneous Upstream and Downstream Action to Re-Sensitize Drugs-Resistant Hepatocellular Carcinoma to Chemotherapy. J Biomed Nanotechnol 2021, 17(1):18-36.
31. Tan C, Jia F, Zhang P, Sun X, Qiao Y, Chen X, Wang Y, Chen J, Lei Y. A miRNA stabilizing polydopamine nano-platform for intraocular delivery of miR-21-5p in glaucoma therapy. J Mater Chem B 2021, 9(15):3335-3345.
32. Rahman MQ, Ramaesh K, Montgomery DM. Brimonidine for glaucoma. Expert Opin Drug Saf 2010, 9(3):483-491.
33. Adkins JC, Balfour JA. Brimonidine. A review of its pharmacological properties and clinical potential in the management of open-angle glaucoma and ocular hypertension. Drugs Aging 1998, 12(3):225-241.
34. Kalapesi FB, Coroneo MT, Hill MA. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol 2005, 89(6):758-763.
35. Zhou X, Zhang T, Wu J. Brimonidine enhances inhibitory postsynaptic activity of OFF- and ON-type retinal ganglion cells in a Wistar rat chronic glaucoma model. Experimental eye research 2019, 189:107833.
36. Lee D, Kim KY, Noh YH, Chai S, Lindsey JD, Ellisman MH, Weinreb RN, Ju WK. Brimonidine blocks glutamate excitotoxicity-induced oxidative stress and preserves mitochondrial transcription factor a in ischemic retinal injury. PLoS One 2012, 7(10):e47098.

37. Prokosch V, Panagis L, Volk GF, Dermon C, Thanos S. Alpha2-adrenergic receptors and their core involvement in the process of axonal growth in retinal explants. Investigative ophthalmology & visual science 2010, 51(12):6688-6699.

38. Lafuente MP, Villegas-Pérez MP, Mayor S, Aguiler ME, Miralles de Imperial J, Vidal-Sanz M. Neuroprotective effects of brimonidine against transient ischemia-induced retinal ganglion cell death: a dose response in vivo study. Experimental eye research 2002, 74(2):181-189.

39. Aktaş Z, Gürelik G, Akyürek N, Onol M, Hasanreisoğlu B. Neuroprotective effect of topically applied brimonidine tartrate 0.2% in endothelin-1-induced optic nerve ischaemia model. Clin Exp Ophthalmol 2007, 35(6):527-534.

40. Aktas Z, Gurelik G, Göçün PU, Akyürek N, Onol M, Hasanreisoğlu B. Matrix metalloproteinase-9 expression in retinal ganglion cell layer and effect of topically applied brimonidine tartrate 0.2% therapy on this expression in an endothelin-1-induced optic nerve ischemia model. Int Ophthalmol 2010, 30(3):253-259.

41. Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. Journal of glaucoma 2008, 17(2):147-156.

42. Konstas AG, Stewart WC, Topouzis F, Tersis I, Holmes KT, Stangos NT. Brimonidine 0.2% given two or three times daily versus timolol maleate 0.5% in primary open-angle glaucoma. American journal of ophthalmology 2001, 131(6):729-733.

43. Rodrigo MJ, Cardiel MJ, Fraile JM, Mendez-Martinez S, Martinez-Rincon T, Subias M, Polo V, Ruberte J, Ramirez T, Vispe E et al. Brimonidine-LAPONITE® intravitreal formulation has an ocular hypotensive and neuroprotective effect throughout 6 months of follow-up in a glaucoma animal model. Biomaterials science 2020, 8(22):6246-6260.

44. Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, Xu ZP, Sun X. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS applied materials & interfaces 2017, 9(9):7990-7999.

45. Kim KE, Jang I, Moon H, Kim YJ, Jeoung JW, Park KH, Kim H. Neuroprotective Effects of Human Serum Albumin Nanoparticles Loaded With Brimonidine on Retinal Ganglion Cells in Optic Nerve Crush Model. Investigative ophthalmology & visual science 2015, 56(9):5641-5649.

46. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS nano 2012, 6(9):7595-7606.

47. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS nano 2018, 12(9):8882-8892.

48. Wang Y, Li L, Zhao W, Dou Y, An H, Tao H, Xu X, Jia Y, Lu S, Zhang J et al. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with
Intrinsic Anti-inflammatory Activity. ACS nano 2018, 12(9):8943-8960.

49. Wang XW, Yang SG, Zhang C, Hu MW, Qian J, Ma JJ, Zhang Y, Yang BB, Weng YL, Ming GL et al. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell reports 2020, 31(3):107537.

50. Wilkinson-Berka JL, Deliayanti D, Rana I, Miller AG, Agrotis A, Armani R, Szendralewiez C, Wingler K, Touyz RM, Cooper ME et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxidants & redox signaling 2014, 20(17):2726-2740.

51. Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative ophthalmology & visual science 2004, 45(12):4611-4616.

52. Huang H, Miao L, Yang L, Liang F, Wang Q, Zhuang P, Sun Y, Hu Y. AKT-dependent and -independent pathways mediate PTEN deletion-induced CNS axon regeneration. Cell death & disease 2019, 10(3):203.

53. Zhang MZ, Yao B, Wang Y, Yang S, Wang S, Fan X, Harris RC. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. The Journal of clinical investigation 2015, 125(11):4281-4294.

54. Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 2020, 329:113310.

55. Simpson DSA, Oliver PL: ROS Generation in Microglia. Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. 2020, 9(8).

56. Wang M, Topalovski M, Toombs JE, Wright CM, Moore ZR, Boothman DA, Yanagisawa H, Wang H, Witkiewicz A, Castrillon DH et al. Fibulin-5 Blocks Microenvironmental ROS in Pancreatic Cancer. Cancer research 2015, 75(23):5058-5069.

57. Fu XH, Chen CZ, Wang Y, Peng YX, Wang WH, Yuan B, Gao Y, Jiang H, Zhang JB. COL1A1 affects apoptosis by regulating oxidative stress and autophagy in bovine cumulus cells. Theriogenology 2019, 139:81-89.

58. Yamada Y, Miyamoto T, Kashima H, Kobara H, Asaka R, Ando H, Higuchi S, Ida K, Shiozawa T. Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free radical research 2016, 50(4):414-425.

59. Ferreira AC, Sousa N, Bessa JM, Sousa JC, Marques F. Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress. Neuroscience and biobehavioral reviews 2018, 95:73-84.

60. Stein JD, Khawaja AP, Weizer JS. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. Jama 2021, 325(2):164-174.

61. Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012, 31(6):702-719.
62. Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 2012, 11(7):541-559.
63. Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2021, 199:111502.
64. Mei S, Xu X, Priestley RD. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. 2020, 11(45):12269-12281.
65. Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019, 309:203-219.
66. Li X, Wei Z, Wu L, Zhang Y, Li J, Yao H, Zhang H, Yang B, Xu X et al. Efficacy of Fe(3)O(4)@polydopamine nanoparticle-labeled human umbilical cord Wharton's jelly-derived mesenchymal stem cells in the treatment of streptozotocin-induced diabetes in rats. Biomaterials science 2020, 8(19):5362-5375.
67. Jin L, Yuan F, Chen C, Wu J, Gong R, Yuan G, Zeng H, Pei J, Chen T. Degradation Products of Polydopamine Restrainted Inflammatory Response of LPS-Stimulated Macrophages Through Mediation TLR-4-MYD88 Dependent Signaling Pathways by Antioxidant. Inflammation 2019, 42(2):658-671.
68. Fan Y, Zhang Y, Zhao Q, Xie Y, Luo R, Yang P, Weng Y. Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials 2019, 204:36-45.
69. Wang W, Chen J, Li M, Jia H, Han X, Zhang J, Zou Y, Tan B, Liang W, Shang Y et al. Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS applied materials & interfaces 2019, 11(3):2880-2890.
70. Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free radical biology & medicine 2017, 109:4-10.
71. Jung HS, Cho KJ, Seol Y, Takagi Y, Dittmore A, Roche PA, Neuman KC. Polydopamine encapsulation of fluorescent nanodiamonds for biomedical applications. Adv Funct Mater 2018, 28(33).
72. Nizari S, Guo L, Davis BM, Normando EM, Galvao J, Turner LA, Bizrah M, Dehabadi M, Tian K, Cordeiro MF. Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection. Cell death & disease 2016, 7(12):e2514.

Figures
Figure 1

Characterization of PDA nanoparticles. (A-B) TEM images of PDA nanoparticles. (C) hydrodynamic size distribution and (D) zeta-potential of PDA nanoparticles. (E-G) ROS scavenging activities of PDA nanoparticles, including (E) superoxide anion (O$_2^-$), (F) hydroxyl radicals (•OH), (G) DPPH radical.
Figure 2

The effects of PDA on ROS levels, cell survival and macrophage polarization in vitro. (A) The cell viability of HUVECs treated with different concentrations of PDA (0, 20, 50, 100 and 200 μg/mL) was determined by CCK-8 assay. n = 5. (B) and (C) HUVECs were treated with H2O2 (200 μM) and PDA (50, 10 and 200 μg/mL) for 6h. ROS levels was assayed by DCFH-DA. Representative images and quantitative analysis (ANOVA) of ROS levels were shown. Bar = 100 μm. n = 6. (D) and (E) N2a was treated with H2O2 (200
μM) and PDA (200 μg/mL) for 6h. PI staining was performed to evaluate cell death. Representative images and quantitative analysis (ANOVA) of PI signals. Bar = 40 μm. n = 9. (F) The cell viability of N2a was determined by CCK-8 assay. n = 5. (G) and (H) HUVECs were treated with H2O2 and PDA (200 μg/mL) for 6h. Representative images and quantitative analysis (ANOVA) of ZO-1 levels in HUVECs. Bar = 30 μm. n = 6. (I) Quantitative analysis (ANOVA) of FITC-dextran permeability in HUVEC monolayer. n=6. (J) Raw264.7 was treated with LPS (1 μg/mL) and PDA (200 μg/mL) for 12h. Representative fluorescent microscopy images showing intracellular ROS detected by DCFH in Raw264.7. Bar = 40 μm. (K) and (L) PCR was performed to detect the mRNA levels of iNOS and TNF-α in RAW264.7. n = 3. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as the mean ± SD.
Figure 3

The effects of PDA on retinal thickness and neuronal loss in ONC models. (A) Schematic of intravitreally injection of PDA (1 or 2 mg/mL) and the time line for the experiments shown in (B) - (I). (B) and (C) Superoxide anion production was detected by DHE. Representative images and quantitative analysis (ANOVA) of ROS levels in retinal sections. Bar = 50 μm. n = 8. (D) and (E) Representative images and quantitative analysis (ANOVA) of central and peripheral retinal thickness. Bar = 50 μm. n = 8. (F) and (G)
Representative image and quantitative analysis (ANOVA) of TUNEL signals. Bar = 50 μm. n = 8. (H) and (I) Retinal sections were immunostained for RBPMS (marker of RGCs). Representative images and quantitative analysis (ANOVA) of RGCs density in central and peripheral retinas. Bar = 50 μm. n = 8. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as the mean ± SD.

Figure 4

Global transcriptome alterations identified by RNA-seq in retinas of PDA-administrated mice. (A) Heatmap representing the z-score of expression levels of 717 DEG in retinas between control and ONC groups. (B)
The KEGG enrichment for the 717 DEG was evaluated by Rich ratio, Q value and the number of genes enriched in the related pathway. (C) Heatmap representing the z-score of expression levels of 21 DEG (total 105) between ONC and PDA groups. (D) - (H) Histogram illustrating raw gene expression values for oxidative associated genes in DEG between ONC and PDA groups. ***P < 0.001. n = 3. Data are presented as the mean ± SD.
The effects of Br@PDA on RGC survival and axon regeneration 30 days after ONC. (A) Schematic of particles design. (B) The time line for the experiments shown in (C) - (F), (J) and (K). (C) and (D) Retinal sections were immunostained for RBPMS. Representative images and quantitative analysis (ANOVA) of RGC density in central and peripheral retinas. Bar = 50 μm. n = 8. (E) and (F) Retinal sections were immunostained for IBA1. Representative images and quantitative analysis (ANOVA) of microglia density in retinas. Bar = 50 μm. n = 8. (G) The time line for the experiments shown in (H) and (I). (H) and (I) Longitudinal sections of the optic nerve showing CTB-labeled axons at 100, 200, 300, 400, 500 μm distal to the injury site. Representative images and quantitative analysis (ANOVA) of CTB signals. ***P < 0.0001 versus ONC group. n = 6. (J) Quantification (ANOVA) of the optomotor response of mice treated with Br@PDA. n = 7. (K) Quantification (ANOVA) of the ratio of time mice spent in the dark chamber and light chamber. n = 7. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as the mean ± SD.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- abstract.png
- Additionalfi1e1.docx