The Rayleigh-Lorentz Invariant and Optimal Adiabatic Qubit-Information Detection for Superconducting Qubit Resonators

Jeong Ryeol Choi∗

Department of Electrophysics, Kyonggi University,
Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea

Abstract

Dynamical properties of a resonator can be analyzed using the Rayleigh-Lorentz invariant which is not an exact constant but varies more or less over time. We investigate the time behavior of this invariant for a flux qubit resonator in order for better understanding of qubit-information detection with the resonator. Flux qubit resonators can be utilized in implementing diverse next generation nano-optic and nano-electronic devices such as quantum computing systems. Through the analyses of the temporal evolution of the invariant, we derive a condition for optimal adiabatic qubit-information detection with the resonator. This condition is helpful for controlling the dynamics of qubit resonators over long periods of time. It is necessary to consider it when designing a nano-resonator used for quantum nondemolition readouts of qubit states, crucial in quantum computation.

∗ E-mail: choiardor@hanmail.net
1. Introduction

Flux qubit resonators [1–3] can potentially be implemented to diverse amplification schemes for measuring weak information signals in quantum systems such as quantum computers. Adiabatic readouts of qubit states in quantum computation using controllable resonators are required in optimized computing models [4–6], while adiabatic quantum computation with a robust quantum algorithm can be achieved on the basis of the adiabatic theorem [7, 8]. Due to this, adiabatic evolution of a resonator [5, 9] incorporated with nondemolition qubit information detection has attracted considerable interest in quantum-information science. It is possible to investigate dynamical properties of a flux qubit resonator from the analysis of the variation of the associated Rayleigh-Lorentz adiabatic invariant [10].

It is well known in quantum mechanics that, if the adiabatic hypothesis related to the Rayleigh-Lorentz adiabatic invariants holds, the initial eigenstate in the discrete spectrum of the Hamiltonian remains the same over time. In order to process quantum information using computing algorithms and to read out qubit-state signals, a high-fidelity resonator is indispensable. As an implementation of devices for such purposes, a flux qubit is an artificial two-level system that is a basic unit that stores quantum information. Typically, flux qubits are fabricated by superconducting circuits using nanotechnology facilities. The entanglement between a flux qubit and a SQUID (superconducting quantum interference device) is usually used as a protocol for measuring the quantum states [11].

Adiabatic invariants that are nearly conserved quantities when the system parameters change slowly have been one of the core research subjects concerning time-varying mechanical systems. After Burgers’ pioneering work [12] in the adiabatic hypothesis and its applications, adiabatic invariants for both nonconservative and nonlinear systems have been extensively investigated [13–15]. The reason why adiabatic invariants have become a topic of interest is that we can deduce various dynamical properties of a system from such conserved quantities, leading to deepening the understanding of the system. Indeed, adiabatic invariants are useful for characterizing quantal and photonic properties for adiabatically evolving nanosystems [16–20].
Such Rayleigh-Lorentz invariants are not exact constants, but approximate constants under the assumption that the variations of parameters are sufficiently slow. Namely, the Rayleigh-Lorentz invariants vary more or less with time. The study of such variation for specific systems may allow us to gain insight in understanding the underlying mechanism associated with the invariants [14]. The mechanics of such adiabatic invariance can be applied to analyzing dynamical properties of superconducting flux qubits in adiabatic quantum computation [8, 21].

In this work, we investigate the characteristics of the Rayleigh-Lorentz invariant of the nano-resonator system and find requirements for optimal qubit signal detection by utilizing such characteristics of the invariant. To attain fault-tolerant quantum computation, computational states should not be disturbed when we detect qubit information. Hence, wave function of a qubit state should be precluded from undergoing a decoherence-induced collapse during its measurement. In this regard, ideal qubit readout with high-fidelity is possible from a protective measurement based on the preservation of adiabatic evolution of qubit eigenstates. Protective measurement minimizes disturbance to the system and can possibly be used in situ as a standard quantum measurement with reliable precision. Based on our consequence for the condition for optimal adiabatic qubit-information detection, we will address quantum nondemolition measurement which is critical in order to extract scalable qubit information in quantum computation.

2. Description of the Superconducting Qubit Resonator

While the picture of parametric resonance in a cavity is rich and rather complicated, the designing of superconducting resonators is flexible thank to diverse available methods for parametric pumping [1]. Hence, the characteristics of flux qubit resonators and their mathematical representation are more or less different depending on adopted models and fabrication methodologies. Moreover, for a specific qubit resonator, the degree of approximation for its nonlinear terms in the circuit also affects the explicit form of the equation of motion for the time behavior of a flux. Throughout this work, we consider a kind of flux qubit resonator that were recently proposed and analyzed by Krantz et al. for convenience [22] [24]. Krantz et al.
adopted quarter wavelength superconducting resonators that include a coplanar waveguide transmission line as a practical tool for reading out qubit states. The response of this system near the resonance frequency can be modeled in terms of a parallel RLC resonating circuit. The phase difference in the SQUID is represented as \(\varphi = 2\pi \phi / \phi_0 \) where \(\phi \) is the magnetic flux in the superconducting loop while \(\phi_0 \) is the magnetic flux quantum which is given by \(\phi_0 = \pi \hbar / e \). Because the flux is quantized, the allowed quantities of \(\varphi \) are discrete. When we describe complicated electronic circuits including Josephson junctions, we can choose either charge \(q \) or flux \(\phi \) (or \(\varphi \)) as coordinate. If we choose \(q \) as coordinate, \(\phi \) can be managed as the conjugate momentum, while \(q \) is regarded as momentum in the case where \(\phi \) has been chosen to be coordinate. Because the flux in Josephson junctions of the SQUID exhibits nonlinear characteristics, it is favorable in this case to choose \(\phi \) as coordinate \[25\]. The resonator acts as a parametric oscillator that can be tunable by adjusting the overall inductance (or capacitance). For some technical reasons, the modulation of frequency by a nonlinear flux-tunable inductance is preferable to tuning the capacitance \[22\]. The resonator can be operated by a radially oscillating small ac-flux added to a static dc-flux. In many cases, the operated angular frequency (pumping frequency) of the ac-flux is nearly twice the resonant angular frequency, \(\omega_p \approx 2\omega_r \).

For the tunable quarter wavelength flux qubit resonators considered both nonlinearity and damping, an extended Duffing equation is given by \[1, 24, 26\]

\[
\frac{d^2 \phi}{dt^2} + \left(\frac{\omega_r}{Q} \right) \frac{d\phi}{dt} + \omega^2(t)\phi - \alpha \Lambda(t) \phi^3 = \xi(t). \tag{1}
\]

Here, \(Q \) is the quality factor, \(\alpha \) is the Duffing nonlinear term, \(\xi(t) \) is a noise or external signal, \(\omega(t) \) is a time-dependent angular frequency, and \(\Lambda(t) \) is a time function that is represented as

\[
\Lambda(t) = 1 - 3\lambda Q \epsilon \cos(\omega_p t)/(2\omega_r \omega_p), \tag{2}
\]

where \(\lambda \) is a correction to the Duffing nonlinearity caused by a modulation of \(\alpha \) through the pump, and \(\epsilon \) is the strength of pumping. In Eq. \[1\], higher order terms have been taken into account in order to meet experimental results that exhibit pump-induced frequency shift. Nonlinearity in the system has been induced by connecting the SQUID to the cavity, whereas the damping takes place by attaching the cavity to a transmission line.
In the representation of the flux equation, Eq. (1), we have followed the convention of notations as that in Ref. [26], which are expressed in terms of ϕ, but if we rescale the Duffing nonlinear term as $\alpha \rightarrow (2\pi/\phi_0)^2\alpha$, Eq. (1) reduces to that in Refs. [24] and [1]. The time behavior of the Duffing coefficient $\alpha\Lambda(t)$ characterized by Eq. (2) is identical to that given in Ref. [1] under an appropriate assumption, which is $|f(t)| \ll 1$ where $f(t)$ is a controlling field defined in that reference. The most up-to-date technique for reading qubit data with high fidelity is using the nonlinear properties of the nano-resonator coupled to the qubit system [22].

The resonator system described by Eq. (1) can be applied to various next-generation nanotechnologies for quantum information processing. For convenience, we consider a particular case that $\omega(t)$ is given in the form [24]

$$\omega(t) = \left[\omega_r^2 + \epsilon \cos(\omega_p t) - \frac{\beta\epsilon^2Q}{2\omega_r\omega_p}(1 - \cos(2\omega_p t))\right]^{1/2},$$

(3)

where β is a dimensionless parameter. If $\beta \rightarrow 0$, the frequency given in Eq. (3) reduces to that of Eq. (1) in Ref. [27] and/or Eq. (1) in Ref. [28], leading the system being similar to those treated in the same references. On the other hand, the last term in the bracket of Eq. (3) is the one that appeared in Eq. (1) of Ref. [29]. To know how to determine various parameters in the system, refer to Ref. [22]. For other models where the equation for the flux is different from Eq. (1), refer to Refs. [30] and [31].

Now we consider the case of a weak Duffing nonlinear term, that can be established by putting $\alpha \simeq 0$, as a solvable case. Upon this situation, the Hamiltonian describing Eq. (1) is a quadratic form and the corresponding energy can be written as (see Appendix A)

$$E(t) = \exp(-\omega_r t/Q) \frac{\omega(t)}{\omega(0)} \left(E(0) + \frac{C\xi^2(0)}{2\omega^2(0)}\right) - \frac{C\xi^2(t)}{2\omega^2(t)},$$

(4)

where C is the capacitance of the resonator.

3. Rayleigh-Lorentz Invariant

Rayleigh [10] discovered, for a specific time-varying system, that the quantity $I(t)$, which is defined as

$$I(t) = E(t)/\omega(t),$$

(5)
FIG. 1: The effects of the increase of the frequencies ω_p and ω_d on temporal evolution of the Rayleigh-Lorentz invariant, where a sinusoidal noise $\xi(t) = \xi_0 \cos(\omega_d t + \theta)$ has been taken. Here, ξ_0 is the amplitude of the external force and ω_d is the driving frequency. (A) is for several different values of ω_p, whereas (C) for ω_d. We have used $\omega_d = 1$ for (A) and $\omega_p = 1$ for (C). Other quantities that we have used are $\omega_r = 0.5$, $\epsilon = 0.1$, $\beta = 1$, $Q = 5$, $\xi_0 = 0.2$, $E(0) = 1$, $C = 1$, and $\theta = 0$. (B) and (D) are enlarged plots between $t = 0.2$ and $t = 0.4$ for (A) and (C), respectively.

almost does not vary over time, provided that the variations of system parameters are sufficiently slow. Subsequently, Lorentz rediscovered this consequence in the semiclassical regime and pronounced his discovery at the famous first Solvay Conference (for detailed reviews of this, see Refs. [14] and [15]).

If we insert Eq. (4) in Eq. (5), we obtain the Rayleigh-Lorentz invariant of the system such that

$$I(t) = \exp\left(-\frac{\omega_r t}{Q}\right) \left(E(0) + \frac{C\xi^2(0)}{2\omega^2(0)} \right) - \frac{C\xi^2(t)}{2\omega^3(t)}; \quad (6)$$

where $\omega(t)$ is given by Eq. (3). Apparently, the ratio of energy to the angular frequency is an adiabatic invariant that is useful for studying dynamical properties of the system [9]. The
adiabatic invariant given in Eq. (6) is an approximate constant under the condition that the variations of parameters of the dynamical system are sufficiently slow.

Let us analyze the time behavior of $I(t)$ for several particular cases. We have plotted its temporal evolution using Eq. (6) in Fig. 1 for several different choices of the value of parameters. We have chosen $\xi(t)$ as a sinusoidal form in these analyses for the purposes of simplicity. While $I(t)$ almost does not vary for the case of small values of ω_p or ω_d, it oscillates as ω_p and/or ω_d become large. Sánchez-Soto and Zoido discovered similar oscillations of $I(t)$ for the systems of linear or exponentially lengthening pendulums [14]. Figure 2 shows large-scale oscillation of $I(t)$ through the joint effects of ω_p and ω_d. This figure also exhibits the fact that the amplitudes of such oscillations become high as ξ_0 increases. We can confirm from these analyses that, if the process of the change for the parameters of the system is too fast, $I(t)$ would not remain constant.

4. Optimal Adiabatic Condition

Let us deduce a useful adiabatic condition between system parameters from the formula of Eq. (6). The first term in Eq. (6) exponentially decays out as time goes by. Hence, it vanishes for a sufficient large t and, as a consequence, we obtain a useful parametric behavior from the remaining term, which yields at later time, as

$$\xi(t) \propto \omega_{3/2}(t).$$

(7)

This is the main consequence of the present work. When controlling dynamics of the resonator adiabatically [9, 32] over a long time, one should consider this relation. By comparing Fig. 3(A) with Figs. 3(B,C) (or with other previous figures), we see that the variation of the invariant is negligible in the case where this condition has been met. If we regard that one of the main problems for quantum computing is achieving high-fidelity quantum nondemolition readouts of the qubit states without measurement-induced decoherence, protective or nondemolition measurement of qubit states upon adiabatic approximation is important [33, 34]. Quantum-limited metrology in quantum computing systems requires reliable state detection with high efficiency. Practical implementation of protective quantum measurements
FIG. 2: Emergence of large-scale oscillations of the Rayleigh-Lorentz invariant via the joint effects of ω_p and ω_d, which is shown for several different values of ξ_0. The same formula of $\xi(t)$ as that in Fig. 1 is taken. The values of (ω_p, ω_d) that we have used are (10, 10) for (A), (100, 10) for (B), and (10, 100) for (C). Other values are common and given by $\omega_r = 0.5$, $\epsilon = 0.1$, $\beta = 1$, $Q = 5$, $E(0) = 1$, $C = 1$, and $\theta = 0$.
FIG. 3: Graphical demonstration for optimal adiabatic condition from temporal evolution of $I(t)$. Each panel is drawn for several different values of ω_p and ω_r. $\xi(t) = \xi_0 \omega^{3/2+\delta}(t)$ has been taken regarding Eq. \[7\], where δ is a deviation from the optimal condition. Panel (A) is for $\delta = 0$, (B) for $\delta = 1$, and (C) for $\delta = 2$. The values of parameters that we have taken are $\epsilon = 0.5$, $\beta = 0.5$, $Q = 10$, $\xi_0 = 0.4$, $E(0) = 2$, and $C = 1$. (A) shows that $I(t)$ does not vary locally when $\xi(t)$ follows the condition in Eq. \[7\]. If $\xi(t)$ deviates from that condition, the fluctuation of $I(t)$ emerges (B, C).
is based on the fact that, while we can completely describe a system using the Schrödinger wave, the quantum state in adiabatic measurement does not change throughout the experiment.

5. Conclusion

In light of the present research, the invariant plays a crucial role in investigating the dynamics of information detection in the flux qubit resonator. The invariant is approximately constant for small values of the pumping and driving frequencies. We see that the first time-dependent term of the invariant given in Eq. (6) decays exponentially. Hence, the last term in the same equation should become approximately constant over sufficiently long periods. In this way, a useful condition for adiabaticity has been found under which the invariant is approximately constant over estimated long-time scales, as shown in Eq. (7). This condition could help to control the dynamics of the flux qubit resonator over long periods of time.

Rigorous conservation of adiabatic invariants is requisite in order to keep the system being adiabatic during the operation of the nano-resonator [35, 36]. Hence, Eq. (7) is important as a requirement for optimal qubit-information detection in protective/nondemolition adiabatic measurements [4–6, 9, 32–34].

In order to prevent liable transfer of the eigenstate of the system Hamiltonian to other ones, it is necessary to preserve adiabaticity of the eigenstate. Then the collapse or entanglement of the system would not appear and the eigenstate can be measured with a high precision. Protective measurement is possible in such a way, which helps in detecting the actual physical state characterized by the wave function for a quantum system. The temporal response of qubit readout is well-characterized and qualitatively understood from adiabatic measurement, while high fidelity readouts of a qubit state are of central importance for achieving a successful realization of quantum computers.

Appendix A: Derivation of the energy expression

The method for deriving energy expression given in Eq. (4) appears in Ref. [26]. We briefly
review it starting from the general representation of the energy of the system:

$$E(t) = e^{-\omega_r t/Q} \frac{q^2}{2C} + \frac{1}{2} C \left[\omega^2(t) \phi^2 - 2\xi(t) \phi \right],$$

where q is the charge stored in C. Let us consider the classical action of the form, $J = \oint q d\phi$. Then the integration using Eq. (8) gives

$$J(t) = \frac{2\pi e^{\omega_r t/Q}}{\omega(t)} \left(E(t) + \frac{C\xi^2(t)}{2\omega^2(t)} \right).$$

Hence, J has been represented in terms of $E(t)$. Now from the relation $J(t) = J(0)$, we easily have the formula of the energy given in Eq. (4).
[8] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda, *A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem*, Science **292**, 472 (2001), doi:10.1126/science.1057726.

[9] H. C. Yen, G. J. Dick and J. E. Mercereau, *Frequency modulated superconducting resonators*, IEEE Trans. Magn. **13**, 504 (1977), doi:10.1109/TMAG.1977.1059418.

[10] J. W. S. Rayleigh, *On the pressure of vibrations*, Phil. Mag. **3**, 338 (1902), doi:10.1080/14786440209462769.

[11] I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, *Coherent dynamics of a flux qubit coupled to a harmonic oscillator*, Nature **431**, 159 (2004), doi:10.1038/nature02831.

[12] J. M. Burgers, *Die adiabatischen Invarianten bedingt periodischer Systeme*, Ann. Phys. (Berlin) **357**, 195 (1917), doi:10.1002/andp.19173570206.

[13] A. Werner and C. J. Eliezer, *The lengthening pendulum*, J. Aust. Math. Soc. **9**, 331 (1969), doi:10.1017/S1446788700007254.

[14] L. L. Sánchez-Soto and J. Zoido, *Variations on the adiabatic invariance: the Lorentz pendulum*, Am. J. Phys. **81**, 57 (2013), doi:10.1119/1.4763746.

[15] R. Goodall and P. G. L. Leach, *Generalised symmetries and the Ermakov-Lewis invariant*, J. Nonlinear Math. Phys. **12**, 15 (2005), doi:10.2991/jnmp.2005.12.1.3.

[16] L. Midolo, A. Schiesser and A. Fiore, *Nano-opto-electro-mechanical systems*, Nat. Nanotechnol. **13**, 11 (2018), doi:10.1038/s41565-017-0039-1.

[17] N. Bode, S. V. Kusminskiy, R. Egger and F. von Oppen, *Current-induced forces in mesoscopic systems: A scattering-matrix approach*, Beilstein J. Nanotechnol. **3**, 144 (2012), doi:10.3762/bjnano.3.15.

[18] V. Herasymenko, K. Snizhko and Y. Gefen, *Universal quantum noise in adiabatic pumping*, Phys. Rev. Lett. **120**, 226802 (2018), doi:10.1103/PhysRevLett.120.226802.

[19] A. I. Csurgay, W. Porod and C. S. Lent, *Signal processing with near-neighbor-coupled time-varying quantum-dot arrays*, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. **47**, 1212 (2000), doi:10.1109/81.873875.
[20] C. J. Cotter and S. Reich, *Adiabatic invariance and applications: From molecular dynamics to numerical weather prediction*, BIT 44, 439 (2004), doi:10.1023/B:BITN.0000046816.68632.49.

[21] J. R. Choi, *Hamiltonian dynamics and adiabatic invariants for time-dependent superconducting qubit-oscillators and resonators in quantum computing systems*, Adv. Math. Phys. 2015, 120573 (2015), doi:10.1155/2015/120573.

[22] P. Krantz, Y. Reshitnyk, W. Wustmann, J. Bylander, S. Gustavsson, W. D. Oliver, T. Duty, V. Shumeiko and P. Delsing, *Investigation of nonlinear effects in Josephson parametric oscillators used in circuit quantum electrodynamics*, New J. Phys. 15, 105002 (2013), doi:10.1088/1367-2630/15/10/105002.

[23] K. M. Sundqvist, S. Kintaş, M. Simoen, P. Krantz, M. Sandberg, C. M. Wilson and P. Delsing, *The pumpistor: A linearized model of a flux-pumped superconducting quantum interference device for use as a negative-resistance parametric amplifier*, Appl. Phys. Lett. 103, 102603 (2013), doi:10.1063/1.4819881.

[24] P. Krantz, *The Josephson parametric oscillator - From microscopic studies to single-shot qubit readout*, Thesis for the Degree of Doctor of Philosophy, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden, 2016.

[25] J. A. Russer and P. Russer, *Lagrangian and Hamiltonian formulations for classical and quantum circuits*, IFAC Proc. 45, 439 (2012), doi:10.3182/20120215-3-AT-3016.00077.

[26] J. R. Choi, *Time behavior of superconducting resonators in quantum circuits for quantum information processing*, Discovery 38, 29 (2015), doi: http://www.discoveryjournals.org/discovery/current_issue/v35-40/n156-185.

[27] C. M. Wilson, T. Duty, M. Sandberg, F. Persson, V. Shumeiko and P. Delsing, *Photon generation in an electromagnetic cavity with a time-dependent boundary*, Phys. Rev. Lett. 105, 233907 (2010), doi:10.1103/PhysRevLett.105.233907.

[28] M. I. Dykman, C. M. Maloney, V. N. Smelyanskiy and M. Silverstein, *Fluctuational phase-flip transitions in parametrically driven oscillators*, Phys. Rev. E 57, 5202 (1998), doi:10.1103/PhysRevE.57.5202.

[29] C. B. Burgner, W. S. Snyder and K. L. Turner, *Control of MEMs on the edge of instability*, 13
IEEE Xplore, 1990 (2011), doi:10.1109/TRANSDUCERS.2011.5969197.

[30] P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets and A. V. Ustinov, *Multistability and switching in a superconducting metamaterial*, Nat. Commun. 5, 3730 (2014), doi:10.1038/ncomms4730.

[31] Y. Laplace and A. Cavalleri, *Josephson plasmonics in layered superconductors*, Adv. Phys. X 1, 387 (2016), doi:10.1080/23746149.2016.1212671.

[32] D. Birx, G. J. Dick, W. A. Little, J. E. Mercereau and D. J. Scalapino, *Pulsed frequency modulation of superconducting resonators*, Appl. Phys. Lett. 33, 466 (1978), doi:10.1063/1.90381.

[33] E. Buks, S. Zaitsev, E. Segev, B. Abdo and M. P. Blencowe, *Displacement detection with a vibrating rf superconducting interference device: Beating the standard linear limit*, Phys. Rev. E 76, 026217 (2007), doi:10.1103/PhysRevE.76.026217.

[34] E. Buks, E. Segev, S. Zaitsev, B. Abdo and M. P. Blencowe, *Quantum nondemolition measurement of discrete Fock states of a nanomechanical resonator*, EPL 81, 10001 (2008), doi:10.1209/0295-5075/81/10001.

[35] T. Su, *On the accuracy of conservation of adiabatic invariants in slow-fast Hamiltonian systems*, Regul. Chaotic Dyn. 17, 54 (2012), doi:10.1134/S1560354712010054.

[36] A. I. Neishtadt, *On the accuracy of conservation of the adiabatic invariant*, J. Appl. Math. Mech. 45, 58 (1981), doi:10.1016/0021-8928(81)90010-1.