Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO₂ nanocomposites

G. Ambarasan Govindasamy¹,² · Rabiatul Basria S. M. N. Mydin¹ · Nor Hazliana Harun¹,³ · Wan Nuramiera Faznie Wan Eddis Effendy¹ · Srimala Sreekantan⁴

Received: 10 February 2022 / Accepted: 14 April 2022 / Published online: 16 May 2022
© Institute of Chemistry, Slovak Academy of Sciences 2022

Abstract
Annealing is a crucial functional parameter relevant to the green synthesis and bactericidal properties of TiO₂ nanocomposites (TiO₂-NPs). In this work, the effect of the annealing temperature on the physicochemical, bactericidal and cytocompatibility properties of TiO₂-NPs obtained from Calotropis gigantea was comprehensively studied. Results indicated that amorphous-phase TiO₂-NPs were transformed into the anatase phase at 500 °C with a crystallite size of 40.9 nm and MIC of 100 mg/mL towards Staphylococcus aureus. Whereas TiO₂-NPs annealed at 400 °C demonstrated no bacterial reduction, TiO₂-NPs annealed at 500 °C showed a moderate zone of inhibition towards Escherichia coli and Pseudomonas aeruginosa. Findings from this study found that TiO₂-500C nanocomposites concentration at 100 mg/mL does not inhibit fibroblast cells proliferation activity after 24 h treatment. The plant-mediated nano-sized cubic and spherical anatase TiO₂-NPs encapsulated bioactive green elements, such as carbon, sodium, magnesium, chlorine, potassium, calcium and sulphur, from the C. gigantea extract, ultimately leading to versatile and eco-friendly bactericidal agents with wound-healing properties. Further studies involving in vivo are needed to support this work.

Keywords Calotropis gigantea · Bactericidal agent · Annealing temperature · Titanium dioxide nanoparticles · Cytocompatibility · Green synthesised nanoparticles

List of symbols
\(\bar{d} \) · Crystallite size (nm)
\(\lambda \) · X-ray wavelength of Cu Kα radiation (nm)
\(\theta \) · Bragg diffraction angle (°)
\(T \) · Temperature (°C)
\(t \) · Time (min)

Abbreviations
C. gigantea · Calotropis gigantea
TiO₂-NPs · TiO₂ nanocomposites
C · Carbon
Na · Sodium
Mg · Magnesium
Cl · Chlorine
K · Potassium
Ca · Calcium
S · Sulphur
MIC · Minimum inhibitory concentration
XRD · X-ray diffraction
MDR · Multi-drug resistant
E. coli · Escherichia coli
K. pneumoniae · Klebsiella pneumoniae

1 Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia
2 Ann Joo Integrated Steel Sdn Bhd, Lot 1236, Prai Industrial Estate, 13600 Prai, Penang, Malaysia
3 Neogenix Laboratoire Sdn Bhd, 12-3, Jalan Permas 10/6, Bandar Baru Permas Jaya, 81750 Masai, Johor, Malaysia
4 School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Introduction

Recent progress in research on natural products has resulted in the development of many natural plant-mediated nanoparticles (NPs) with bactericidal properties; amongst these materials, green synthesised titanium dioxide NPs (TiO₂-NPs) have sparked great interest on account of their potential use in wound healing therapy. Green synthesis method represents an advance over conventional chemical and physical methods (Aravind et al. 2021; Ansari et al. 2022). It has shown multiple benefits such as eco-friendly, simple, economical, sustainable and safe (Ansari et al. 2022). Moreover, green synthesised TiO₂-NPs produces biocompatible and enhanced antibacterial stable nanoparticles for biomedical applications compared to the chemically synthesized TiO₂-NPs (Aravind et al. 2021; Ansari et al. 2022).

Calotropis gigantea is a traditional medicinal plant with antimicrobial properties that is often used to treat skin diseases (Kumar et al. 2010) and open wounds (Sangetha et al. 2020). Aqueous solutions of *C. gigantea* leaf extract function as excellent reducing and capping agents in the formation of green TiO₂-NPs. Indeed, given their promising bactericidal properties for addressing skin and wound infections due to pathogens, plant-mediated TiO₂-NPs are amongst the most extensively studied bactericidal agents in the biomedical field (Table 1). TiO₂-NPs exist in three phases, namely, anatase, rutile and brookite, under different processing conditions (Sugapriya et al. 2013; Tesfaye Jule et al. 2021). Scientists worldwide have sought to establish methods to control the size and morphology of TiO₂-NPs as the particle size exerts a massive influence on their bactericidal properties (de Dicastillo et al. 2020). Even slight variations in the annealing conditions could result in prominent effects on the phase and morphology of TiO₂-NPs (Sugapriya et al. 2013; Długosz et al. 2020). A significant improvement in degree of recrystallization, phase transition and uniform size distribution of TiO₂-NPs was seen when increasing the annealing temperature (Tesfaye Jule et al. 2021; Muthee and Dejene 2021). Therefore, a slight alteration on size of NPs and transformation of phase could result in dramatic improvement on antibacterial activity (Lin et al. 2014; Senarathna et al. 2017). The present work discusses the formation of bioactive elements of *C. gigantea* leaf extract and the morphology of the resultant TiO₂-NPs under the effect of different annealing temperatures (i.e., 400 and 500 °C). The physicochemical properties of the TiO₂-NPs were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), UV–Vis spectrophotometry and Fourier transform infrared (FTIR) spectroscopy. Additionally, bactericidal and cytocompatibility properties of green TiO₂-NPs were further investigated.

Materials and methods

Green synthesis and characterisation of bioactive TiO₂-NPs

Green synthesis

TiO₂-NPs was synthesised via green route by the reaction of *C. gigantea* leaves extract aqueous solution with titanium (IV) isopropoxide (Sigma-Aldrich). This grounded green synthesis method uses the following protocol (Govindasamy et al. 2021a, b). Green TiO₂-NPs samples calcined at different low temperatures 400 °C and 500 °C are designated as TiO₂-400C and TiO₂-500C, respectively. In this work, commercially available TiO₂ P25, anatase (Sigma-Aldrich, 99.7%) was used as a commercial control.

X-ray diffraction

X-ray diffractometer (XRD; Bruker D8) was used to study crystalline nature and size of green TiO₂-NPs. The X-ray diffraction peaks were captured via Cu Kα radiation with wavelength of \(\lambda = 0.1541 \) nm and step scan mode with step size of 0.030° in the range of 10° to 90°. The equipment was operated at a voltage of 40 kV and current of 30 mA. Scherrer’s equation was applied to determine the average crystallite size of green TiO₂ which is as under

\[
d = \frac{K\lambda}{\beta \cos \theta}
\]

where \(d \) represents the crystallite size, \(K = 0.9 \) is the shape factor, \(\lambda \) stands for the X-ray wavelength of Cu Kα radiation (1.541 Å), \(\theta \) is used as a Bragg diffraction angle, and \(\beta \) symbolize the full-width at half-maximum (FWHM) of the respective diffraction peak (Govindasamy et al. 2021a).

SEM observation

The morphology of TiO₂-NPs was further investigated using scanning electron microscopy (SEM Fei Quanta FEG 650). Samples were placed on a stub with carbon tape and coated with Pt for 1-min prior to imaging and elemental analysis. The TiO₂-NPs and bioderived elements composition and their percentage from green TiO₂-NPs was further confirmed with EDAX.
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References
Titanium tetra chloride	*Orange peel*	500	Crytallite: 17.30	Porous angular	ZOI: *E. coli*: 9 mm, *P. aeruginosa*: 14 mm and *S. aureus*: 12 mm	Nanoparticle’s attachment and generation of ROS	Nil	Antibacterial, antican and humidity sensor	Amanulla and Sundaram (2019)
TiO(OH)₂	*Euphorbia prosstrata*	Nil	Grain: 83.22	Circular and irregular	*Leishmania* parasites	ROS production	Nil	Antileishmanial agents	Zahir et al. (2015)
Titanium isoprotopoxide	*Aloe vera*	500	Grain: 60–80	Irregular	Nil	Nil	Nil	Semiconductor material	Khadar et al. (2016)
TiO₂ solution	Lemon-fruit	Nil	Grain: 20–200	Near-spherial and irregular	*Dickeya dadantii*: 60% reduction at 50 µg/mL	Generation of oxidative stress	Nil	Phytopathogenic agent	Hossain et al. (2019)
TiCl₄	*Cicer arietinum* L.	500	Crytallite: 14	Spherical	Nil	Nil	Nil	Lithium Ion Battery	Kashale et al. (2016)
TiO₂ solution	*Vigna unguiculata*	Nil	Oval	ZOI: *E. coli*: 2 cm, *Salmonella*: 4 cm, *Enterobacter*: 4 cm, *P. aeruginosa*: 3.5 cm and *S. marcescens*: 4 cm at 75 µL	Nil	Nil	Nil	Anticancer treatments	Chatterjee et al. (2017)
TiO₂ solution	*Vigna radiata* legumes	Nil	Oval	ZOI: *S. aureus*: 2.8 cm, *E. coli*: 3.3 cm, *Enterobacter sp.*: 3.2 cm, *S. marcescens*: 3.6 cm, *Salmonella sp.*: 2.8 cm, *P. aeruginosa*: 3.2 cm, *K. pneumonia*: 3 cm, *P. mirabilis*: 3.4 cm and *Shigella sp.*: 3.6 cm 100 µL	Hydroxyl groups	Nil	Nil	Antibacterial and anticancer	Chatterjee et al. (2016)
Table 1 (continued)

Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
TiO$_2$ solution	*Azadirachta indica*	60	15–50	Spherical	ZOI: *E. coli*: 27.67 mm, *B. subtilis*: 24 mm, *S. typhi*: 21.63 mm, *S. aureus*: 27 mm and *K. pneumoniae*: 25.33 mm at 200 μg/mL; MIC: *E. coli*: 10.42 μg/mL, *B. subtilis*: 25 μg/mL, *S. typhi*: 10.42 μg/mL, *S. aureus*: 20.83 μg/mL and *K. pneumoniae*: 16.66 μg/mL; MBC: *E. coli*: 166.67 μg/mL, *B. subtilis*: 166.67 μg/mL, *S. typhi*: 100 μg/mL, *S. aureus*: 133.3 μg/mL and *K. pneumoniae*: 83.33 μg/mL	Nil	Nil	Nil	Antimicrobial agents	Thakur et al. (2019)
TiO$_2$ solution	*Cinnamomum tamala*	Nil	23	Irregular	Nil	Nil	Nil	Nil	Anticancer drug treatment	He et al. (2017)
Titanium oxysulphate	Polyvinyl pyrrolidone	300–500	Grain: 10–20	Irregular	Nil	Nil	Nil	Nil	Photocatalytic	Khade et al. (2015)
TiO$_2$ solution	*Cinnamomum*	500	Grain: 70–150	Spherical	Nil	Nil	Nil	Solar cells	Nabi et al. (2019)	
TiO$_2$ solution	*Solanum trilobatum L.*	Nil	Grain: 70	Spherical and oval	Effective against *P. h. capitis*, *H. a. anatolicum*, and *A. subpictus*	Nil	Nil	Nil	Antiparasitic	Rajakumar et al. (2013)
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
---------------------------------	----------------	-------------------------------	-----------	--	-------------------------	-------------------	----------	-------------------------	--------------------------------	
TiO(OH)_2	Mangifera indica	Nil	Grain: 30	SEM: Spherical and oval; TEM: round	Effective against R. microplus, Hyalomma anatolicum anatolicum, Haemaphysalis bipinosa, A. subpictus, and Culex quinquefasciatus	Nil	Nil	Antiparásitico	Rajakumar et al. (2015)	
TiO(OH)_2	Glycosmis cochinchinensis	Nil	Grain: 40	Spherical	ZOI: S. saprophyticus: 21 mm, B. subtilis: 19 mm, E. coli: 23 mm and P. aeruginosa: 25 mm at 100 µL	Nil	Nil	Photocatalítico y antimicrobial	Rosi and Kalyanasundaram (2018)	
Titanium (IV)-iso-propoxide	Carica papaya	400	Grain: 15.6	Cages	Nil	Nil	Nil	Photocatalítico	Kaur et al. (2019)	
Titanium (IV) isopropoxide	Ocimum basilicum L.	500	Grain: 50	Hexagonal	Nil	Nil	Nil	Nil	Salam and Sivaraj (2014)	
Titanium tetra-isopropoxide	Pomegranate Peels	90	Grain: 75–90	Nil	Nil	Nil	Nil	Pharmaceutical	Dubey and Singh (2019)	
Titanium Chloride	Aloe vera	500	Grain: 32	Irregular	Effective against S. aureus	Nil	Nil	Nil	Rao et al. (2015)	
Titanium sulfate	Acacia catechu	700	Grain: 17.90	Spherical and hexagonal-shaped	Nil	Nil	Nil	Photocatalítico y antimicrobial	Chand et al. (2020)	
Titanium oxysulfate	Gum Kondagogu	500–900	Grain: 8–13	Spherical	Nil	Nil	Nil	Photocatalítico	Saranya et al. (2018)	
Titanyl hydroxide	Euphorbia heteraden Jaib	Nil	Grain: 20	Spherical	Nil	Nil	Nil	Biocientífico y farmacéutico	Nasrollahzadeh and Sajadi (2015)	
TiO_2 solution	Sesbania grandiflora	Nil	Grain: 43–56	Triangular, square and spherical	Nil	Lethal to zebrafish at concentration < 2.5 mg/L	Drug		Srinivasan et al. (2019)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
--------------------	-------------------------	------------------------------	------------------	------------	------------------------	-------------------	----------	-----------------------	--------------------------	
TiO(OH)$_2$	Artemisia haussknechtii	Nil	Grain: 92.58 ± 56.98	Spheres	ZOI: Lack of growth for S. epidermidis and S. marcescens and no inhibition for E. coli and S. aureus	Nil	Nil	Antibacterial	Alavi and Karimi (2017)	
TiO(OH)$_2$	Protoparmelopsis muralis Lichen	Nil	Grain: 133.32 ± 35.33	Spherical	ZOI: S. aureus: 10.00 mm, E. coli: 11.66 mm and P. aeruginosa: 9.66 mm; MIC: 80 µg/mL; MBC: 100 µg/mL	Nil	Nil	Antibacterial	Alavi et al. (2019)	
Titanium tetraiso-propoxide	Trianthema portulacastrum	450	Crytallite: 6–8	Different	Effective against wheat Rust (Ustilago tritici)	Nil	Nil	Antifungal	Irshad et al. (2020)	
Titanium tetraiso-propoxide	Chopodium quinoa	450	Crytallite: 6–8	Round	Effective against wheat Rust (Ustilago tritici)	Nil	Nil	Antifungal	Irshad et al. (2020)	
Ti plate	H. rosa-sinensis	550	Nil	Nil	Nil	Nil	Nil	Wastewater treatment	Zamri and Sapawe (2018)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
----------------------------------	---------------------------------	------------------------------	--------------------	------------------------------	------------------------	------------------------	----------	------------------------	---------------------------	
Titanium isopro-poxide (IV)	Pristine pomegranate peel	200–1100	Grain: 1–5 µm	Randomly oriented	ZOI: *S. aureus*: 22 mm, *E. coli*: 19 mm and *P. aeruginosa*: 17 mm at 2 wt.%; MIC: *S. aureus*: 189.1 µg/mL, *E. coli*: 304.7 µg/mL and *P. aeruginosa*: 309.2 µg/mL at 90 µg/mL; MBC: *S. aureus*: 200 µg/mL, *E. coli*: <310 µg/mL and *P. aeruginosa*: <315 µg/mL	Production of reactive oxygen species	Nil	Water disinfection	Abu-Dalo et al. (2019)	
Titanium-isopro-poxide	*Syzygium cumini*	570	Grain: 11	Spherical and irregular	Nil	Nil	Nil	Wastewater treatment	Sethy et al. (2020)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
------------------------	----------------------	------------------------------	---------------	------------------------------	--	--	----------	---------------------	-------------------------	
Titanium (IV) oxide	Withania somnifera	120	Grain: 50–90	Spherical and square	MIC: *E. coli*: 32 µg/mL, *P. aeruginosa*: 32 µg/mL, *MRSA*: 32 µg/mL, *L. monocytogenes*: 60 µg/mL, *S. marcescens*: 8 µg/mL, and *C. albicans*: 60 µg/mL; MBC: *E. coli*: 32 µg/mL, *P. aeruginosa*: 60 µg/mL, *MRSA*: 60 µg/mL, *L. monocytogenes*: 128 µg/mL, *S. marcescens*: 16 µg/mL, and *C. albicans*: 128 µg/mL	Reactive oxygen species production	Nil	Anti-infective agent	Al-Shabib et al. (2020)	
Titanium isopropropoxide	*Sonchus asper*	500	Grain: 9–22	Spherical	ZOI: *E. coli*: 12 mm, *S. aureus*: 12 mm and *K. pneumoniae*: 10 mm	ROS generation	Nil	Biomedical	Babu et al. (2019)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
-------------------	---------------------------------	------------------------------	-----------	-----------	------------------------	-------------------	-------------------------------	-----------------------------	-----------------------------	
TiO₂ solution	*Allium eriophyl-lum* Boiss	Nil	Grain: 22	Spherical	ZOI disc diffusion: C. *guilliermondii*: 39.6 mg/mL, C. *krusei*: 40.6 mg/mL, *C. albicans*: 36.2 mg/mL, C. *glabrata*: 36.4 mg/mL, *P. aeruginosa*: 35 mg/mL, *S. typhimurium*: 35 mg/mL, *E. coli*: 36.6 mg/mL, *S. aureus*: 36.8 mg/mL, *S. pneumoniae*: 38.8 mg/mL, and *B. subtilis*: 39.8 mg/mL; MBC for Gram (+) and Gram (−): 2–4 mg/mL; MBC for Gram (+) and Gram (−): 4 mg/mL	ROS generation	No cytotoxicity toward human umbilical vein endothelial cells	Industrial and remedial	Seydi et al. (2019)	
TiO₂ solution	Fruit’s peel agrowaste: plum, kiwi and peach	400–500	Grain: plum: 47.1–63.2, kiwi: 54.1–85.1 and peach: 200	Cylindrical	ZOI ≥ 2 and ≤ 20 mm for *E. coli*, *S. aureus*, *P. aeruginosa* and *B. subtilis* at 12.5–100 μg/mL	HO and O₂ radicals	Nil	Biomedical	Ajmal et al. (2019)	
Precursor	Reducing agent	Calcination temperature \(^{\circ}\)C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
---------------------------	--------------------------	--	------------------------------------	---------------------------	------------------------	--	-------------------	------------------------	------------------------	
TiO(OH)\(_2\)	Cola nitida	Nil	Grain: 25.00–191.41	Near spherical	49.2–73.4\% growth inhibition of *S. aureus*, *P. aeruginosa*, *E. coli*, *K. pneumoniae* at 80 µg/mL using broth method	Ti\(^{4+}\), generation of reactive oxygen species and hydroxyl radicals	Nil	Catalyst and biomedical	Akinola et al. (2020)	
Titanium Oxy-sulfate	*Hibiscus rosa-sinensis* L.	100	Nil	Spherical	ZOI: *V. cholerae*: 17 mm, *P. aeruginosa*: 14 mm, *S. aureus*: 14.5 mm at 20 µg/mL	Nanoparticle’s penetration	Nil	Biomedical	Kumar et al. (2014)	
Titanium tetra isopro-	*Terminalia Catappa*	450	Crytallite: 10–21	Spherical	Nil	Nil	Nil	Therapeutic agent	Rajendhiran et al. (2020)	
oxide isopro-	*Carissa Carandas*	450	Crytallite: 10–21	Spherical	Nil	Nil	Nil	Therapeutic agent	Rajendhiran et al. (2020)	
TiO\(_2\) solution	*Echinacea purpurea* Herba	Nil	Grain: 120	Spherical clusters	Nil	Nil	Nil	Photocatalytic agent	Dobrucka (2017)	
Titanium isopro-	*Acadirachta indica*	Nil	Grain: 124	Interconnected spherical	Nil	Nil	Nil	Photocatalytic	Sankar et al. (2015)	
oxide isopro-	*Origanum vulgare*	Nil	Grain: 341	Spherical	Nil	Nil	Nil	Therapeutic agent	Sankar et al. (2014)	
TiO(OH)\(_2\) solution	*A. alissima*	Nil	Grain: 60–100	Spherical	Nil	Nil	Nil	Photocatalytic agent	Ganesan et al. (2016)	
Titanium (IV) isopro-	*Phyllanthus niruri*	350	Grain: 30–50	Spherical	Nil	Nil	Nil	Photocatalytic material	Shanavas et al. (2020)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
-------------------------	---------------------------------	------------------------------	---------------------------------	-------------------	--	--	----------	-------------------	-------------------------------------	
Titanium oxy sulphate	*Trigonella foenum-graecum*	700	Grain: 20–90	Spherical	ZOI: *S. aureus*, *E. faecalis*, *K. pneumoniae*, *S. faecalis*, *P. aeruginosa*, *E. coli*, *P. vulgaris*, *B. subtilis*, *Y. enterocolitica* and *C. albicans*; 8.5–11.6 mm at 10 mg/mL	Reactive Oxygen Species (ROS), mainly hydroxyl radicals (–OH)	Nil	Biomedical	Subhapriya and Gomathipriya (2018)	
Titanium tetraisopropoxide	Soluble starch	500	Grain: 20–70	Irregular spherical	Nil	Nil	Nil	Photocatalytic	Muniandy et al. (2017)	
Titanium tetra-chloride	*M. citrifolia*	400	Grain: 15–19	Quasi-spherical	ZOI: *S. aureus*: 13 mm, *E. coli*: 10 mm, *B. subtilis*: 12 mm, *P. aeruginosa*: 9 mm, *C. albicans*: 13 mm and *A. niger*: 6 mm at 150 μg/mL	Ti⁴⁺, generation of reactive oxygen species	Nil	Biomedical	Sundraraj et al. (2017)	
Titanium (IV) isopropoxide	*Fomes fomentarius*	Nil	Grain: 100–120	Irregular	ZOI: *E. coli*: 15 mm and *S. aureus*: 11 mm at 100 μg/mL	Nil	Nil	Antibacterial and anticancer	Rehman et al. (2020a)	
Titanium (IV) isopropoxide	*Fomitopsis pini-cola*	Nil	Nil	Irregular	MIC/MBC: 62.5/125 μg/mL for *E. coli* and *S. aureus*	Nil	Nil	Biomedical	Rehman et al. (2020b)	
Titanium chloride	*Jatropha curcas* L.	450	Grain: 10–20	Spherical	Nil	Nil	Nil	Wastewater	Goutam et al. (2018)	
Titanium tetraisopropoxide	*Piper betel*	400	Grain: 6.6	Round	Nil	Nil	Nil	Photocatalytic	Pushpamalini et al. (2021)	
Titanium tetraiso-propoxide	*Ocimum tenuiflorum*	400	Grain: 7.0	Round	Nil	Nil	Nil	Photocatalytic	Pushpamalini et al. (2021)	
Titanium tetraiso-propoxide	*Moringa oleifera*	400	Grain: 6.6	Round	Nil	Nil	Nil	Photocatalytic	Pushpamalini et al. (2021)	
Precursor	Reducing agent	Calcination temperature (°C)	Size (nm)	Shape	Antimicrobial activity	Killing mechanism	Toxicity	Application	References	
---------------------------	----------------------------	------------------------------	-----------	---------------	------------------------	------------------------	----------	----------------------	--------------------------------------	
Titanium tetraiso-propoxide	*Coriandrum sativum*	400	Grain: 6.8	Round	Nil	Nil	Nil	Photocatalytic	Pushpamalinii et al. (2021)	
TiO(OH)$_2$	*Psidium guajava*	Nil	Grain: 32.58	Spherical	ROS generation	Nil	Biomedical		Santhoshkumar et al. (2014)	
TiO$_2$ solution	*Moringa oleifera*	Nil	Grain: 100	Spherical	Nil	Nil	Nil	Skin infection treatments	Sivaranjani and Philominathan (2015)	
Titanium tetraiso-propoxide	*Moringa Oleifera*	500	Crytallite: 12.22	Nil	Nil	Nil	Nil	Nil	Patidar and Jain (2017)	
Titanium tetraiso-propoxide	*Mentha arvensis*	500	Grain: 20–70	Spherical	ROS generation	Nil	Antibacterial and antifungal	Ahmad et al. (2020)		
Titanium tetraiso-propoxide	*Acanthophyllum Laxiusculum*	400	Grain: 20–25	Nanospheres	Nil	Nil	Nil	Nil	Madadi and Lotfabad (2016)	
TiO$_2$ solution	*Cassia fistula*	Nil	Nil	Spherical	Effective against S. aureus and E. coli	Nil	Nil	Nil	Swathi et al. (2019)	
TEM analysis

TEM (FEI TECHNAI F20 G2) is used for analysing shape and grain size of TiO$_2$-NPs. At first, TiO$_2$-NPs was dispersed in absolute ethanol and then sonicated for 30 min. After that, a single drop of TiO$_2$-NPs solution was added onto a lacey carbon film-coated copper grid (300 mesh) and then dried at room temperature for 30 min. At last, it was kept in desiccator prior to TEM imaging.

FTIR study

The functional groups of green TiO$_2$-NPs were recorded by FTIR spectroscopy (PerkinElmer) within the range of 4000–400 cm$^{-1}$ through the KBr pellet method. The FTIR samples were prepared by dispersing small dosage of TiO$_2$-NPs uniformly in a KBr matrix which was then compressed to thin transparent disc.

UV–visible spectroscopy

The absorption spectrum of TiO$_2$-NPs was determined using UV–Vis spectrophotometer (Varian) in wavelength range between 200 and 700 nm.

Antibacterial tests

Kirby-Bauer disc diffusion test and minimum inhibitory concentration (MIC) were determined after 24 h of contact with the prepared green samples according to following methods (Govindasamy et al. 2021a, b, c). Four overnights cultured ATCC bacterial suspensions of P. aeruginosa 27853, K. pneumoniae 700603, E. coli 25922 and S. aureus 29213 were employed to study antibacterial effect of TiO$_2$-NPs. 30 µg of Cefoxitin discs used as a positive control. 10% (v/v) DMSO act as negative control in this study.

Cytocompatibility assay

The cytocompatibility assay was performed on fibroblast cells lines model, L929 obtained from American Type Culture Collection (ATCC, USA) and is maintained in RPMI-1640 media (Gibco, Life technologies) supplemented with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) PenStrep (Gibco, USA), sodium bicarbonate, 12.5 g/mL HEPES and 1% (v/v) l-glutamine at 37 °C in a 5% CO$_2$ humidified atmosphere. 10% (v/v) of dimethyl sulfoxide (DMSO) was adapted as strong cytotoxic material (negative control) while fibroblast cells lines without administration of TiO$_2$ as blank control. The in vitro cytocompatibility of green-synthesised TiO$_2$ on fibroblast cells lines was performed by direct contact method according to the protocol recommendations in ISO 10993-5 (2009) (Harun et al. 2021; Chellappa et al. 2015).

The cell viability percentage was determined using (1:10) alamarBlue™ Cell viability reagent DAL1025 (Invitrogen, United Kingdom). At first, cells were subcultured, trypsinized and seeded at a density of 1 × 104 cells/well (100 µL/well) on 96 well plate and grown for 24 h in CO$_2$ incubator at 37 °C. After that, different concentrated TiO$_2$ (0, 25, 50 and 100 mg/mL) were added in the culture media and kept overnight. Then, the serially diluted test sample solution ($n=3$) was incubated with monolayer cells at 37 °C for 24 h. The proportion of live and healthy cells after treatment were further estimated quantitatively through colour change from blue to pink using Alamar blue assay where the treated cells were incubated as a minimum 20 h before measuring the absorbance at wavelength 570 nm and 600 nm using a microplate reader (Bio-Tek Instruments, USA). The cytocompatibility of test sample was compared with the toxic material (10% (v/v) DMSO) and blank control. The live and dead cells were examined microscopically via Olympus CKX41 optical light microscope at magnification of 10× and 20×.

Statistical analysis

The different calcination temperature treated group of samples were analysed using analysis of two-way ANOVA implemented in the GraphPad Prism software package. Results were considered statistically significant if p value is less than 0.05. Data are presented as mean ± standard deviation (SD).

Results and discussion

Physicochemical characterisation of the TiO$_2$-NPs

The SEM images in Fig. 1a, b show that the TiO$_2$-400C and TiO$_2$-500C NPs are spherical in shape with a nano-sized and agglomerated morphology (Fig. 1a, b, insets). The EDAX images of the TiO$_2$-NPs confirm the presence of Ti and O, which make up approximately 29.28 wt% and 36.72 wt%, respectively, of TiO$_2$-400C and 33.55 wt% and 41.91 wt%, respectively, of TiO$_2$-500C (Table 2, Fig. 1c, d). The TEM images in Fig. 1e, f reveal that the NPs produced at a low calcination temperature are nearly spherical with a large, agglomerated morphology whilst those calcined at a high temperature are spherical and cuboidal in shape with a partly agglomerated morphology.

EDAX analysis successfully identified an abundance of bioactive elements in C. gigantea, such as carbon (C), calcium, chlorine, sodium, magnesium, potassium and sulphur,
in agreement with a previous research (Govindasamy et al. 2021a, b) (Table 2). These elements are by-products of the green synthesis of the NPs. The combination of these bio-derived elements with high concentrations of C and antimicrobial species, such as hydroxyl radicals, hydrogen peroxide, superoxide anions and titanium (IV), may arrest the growth and development of skin pathogens (Cheng et al. 2009).

The XRD patterns of TiO$_2$-400C and TiO$_2$-500C (Anatase ICDD No. 98-003-7543) are illustrated in Fig. 2a. The XRD spectrum of TiO$_2$-500C showed characteristic peaks at 25.32°, 37.86°, 48.06°, 53.96°, 55.09°, 62.76°, 68.87°, 70.33°, 75.14° and 82.76°, which respectively correspond to the (011), (004), (020), (015), (121), (024), (116), (220), (125) and (224) crystal planes of anatase-phase TiO$_2$-NPs (Nasrollahzadeh et al. 2016). The XRD pattern of TiO$_2$-400C exhibited a single broad peak, which confirms its amorphous character (Sugapriya et al. 2013). The phase transformation and differences in physicochemical properties of inorganic oxide compound (TiO$_2$) at different annealing temperature were successfully captured and it was further validated by previous reported works (Xu et al. 2020; Guo et al. 2020). The green TiO$_2$-500C NPs had a tetragonal crystalline structure with space group of number 141. The crystallite size of green TiO$_2$-NPs obtained at a high calcination temperature was calculated from the strongest XRD peak at 25.32° using Scherrer’s equation (Ahmad et al. 2020) and found to be 40.9 nm. The XRD patterns of the TiO$_2$-NPs confirm the presence of pure TiO$_2$ along with C. gigantea bioderived elements, in agreement with the SEM-EDAX analyses (Fig. 1c, d).

The functional groups responsible for the formation of green TiO$_2$-NPs were determined by FTIR analysis. The FTIR spectrum of the green nanocomposites shown in Fig. 2b reveals a broad peak at 3438 cm$^{-1}$, which could be assigned to the O–H stretching vibrations of flavonoids from C. gigantea (Govindasamy et al. 2021a, b). The peak at 1633 cm$^{-1}$ could be attributed to C=C (carbonyl group), and the peaks at 1361 and 1119 cm$^{-1}$ could respectively be attributed to the O–C–O stretching vibrations of esters and the C–O stretching vibrations of bio-derived elements from the C. gigantea leaf extract (Govindasamy et al. 2021a, b). The peak at 595 cm$^{-1}$ confirms the presence of TiO$_2$-NPs with Ti–O–Ti framework bonds (Nasrollahzadeh et al. 2016; Zhou et al. 2021).

UV–Vis spectrophotometry was applied to measure the bandgap of the green synthesised TiO$_2$-NPs, and the results obtained are shown in Fig. 2c. The absorbance peak at 228 nm is due to the dispersion of natural C in deionised water (Govindasamy et al. 2021a, b), and the small peak at 327 nm confirms the formation of green synthesised TiO$_2$-NPs (Zhou et al. 2014). The UV–Vis spectrum of the control C. gigantea leaf extract showed two prominent absorbance peaks; the sharp peak at 206 nm corresponds to the carbonyl group, whilst the low broad peak at 269 nm represents phenolic compounds (Govindasamy et al. 2021a, b).

Assessment of minimum inhibitory concentration

A preliminary minimum inhibitory concentration (MIC) study performed in this research focused on Staphylococcus aureus.

Sample	C	O	Na	Mg	Cl	K	S	Ca	Ti
TiO$_2$-400C	27.13	36.72	0.42	0.26	0.47	4.84	–	0.89	29.28
TiO$_2$-500C	9.41	41.91	0.51	0.47	3.87	9.56	0.71	–	33.55

Fig. 1 Morphology of bioactive green TiO$_2$ nanocomposites; a SEM image of TiO$_2$-400C (5 µm), b SEM image of TiO$_2$-500C (5 µm), c EDAX spectra of TiO$_2$-400C, d EDAX spectra of TiO$_2$-500C, e TEM images of TiO$_2$-400C (20 nm) and f TEM images of TiO$_2$-500C (20 nm)
aureus because staph skin infections are most commonly observed in open wounds. The MIC of TiO2-500C for S. aureus was 50.0 mg/mL. TiO2-500C exhibited strong bactericidal activity at a high concentration of 100 mg/mL (Fig. 3e). However, the results for TiO2-400C showed no bacterial reduction despite these NPs having a low MIC of approximately 25.0 mg/mL. A sharp decrease in colony count from 4.3 log10 (control S. aureus) to 1.01 log10 was observed for TiO2-500C at a concentration of 100 mg/mL (Fig. 3). Here, * indicates statistically significant differences (** p ≤ 0.0001) between the different calcination groups for each measurement. There is significant difference between control strain group and anatase TiO2-500C group at concentration of 100 mg/mL.

The stronger bactericidal effect of TiO2-500C compared with that of TiO2-400C may be attributed to the anatase crystalline structure of the former, as confirmed by the XRD pattern shown in Fig. 2a (Fu et al. 2005; Senarathna et al. 2017). Inhibition of bacterial colonies was observed only at a high dosage of the NPs. Thus, green TiO2-500C nanocomposites may be considered an excellent bactericidal agent against S. aureus, a gram-positive bacterium (Behera et al. 2017). Table 3 and Fig. 3a–e illustrates the MICs of the green TiO2-NPs for S. aureus.

Determination of zone of inhibition

The bactericidal activity of the TiO2-NPs was further evaluated against S. aureus, the gram-negative bacterium Escherichia coli and the antibiotic-resistant bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa via the Kirby–Bauer disc diffusion method. In this study, TiO2-500C showed a moderate zone of inhibition (ZOI) for E. coli and P. aeruginosa (Table 4 and Fig. 4). By comparison, commercially available anatase TiO2 (P25) and TiO2-400C showed poorer ability to interfere with the cell wall of multi-drug resistant (MDR) and non-MDR strains and disrupt their biochemical processes at a concentration of 100 mg/mL. Cefoxitin antimicrobial discs showed a large ZOI against all four bacterial strains. Researchers found that green TiO2-NPs synthesised from Trigonella foenum-graecum extract have a ZOI of approximately 11.2 mm against S. aureus (Subhapriya and Gomathipriya 2018).

Previous studies demonstrated enhancements in the photocatalytic properties of C-decorated TiO2-NPs for water purification (Nasrollahzadeh et al. 2016; Sharma et al. 2018; Shah et al. 2012; Atchudan et al. 2017) and solid rocket propellants (Dey et al. 2013). None of these works,
however, have highlighted the bactericidal activity of natural C-encapsulated TiO$_2$-NPs. The present study is the first to report that TiO$_2$-500C nanocomposites could encapsulate the bioactive elements of C. gigantea leaf extracts and possess strong inhibitory effects against the tested organisms. This plant-mediated anatase TiO$_2$-based bactericidal agent may be a promising eco-friendly and non-hazardous biomaterial for future pharmaceutical applications.

Cytocompatibility profiles

The cytocompatibility of TiO$_2$-400C and TiO$_2$-500C with different concentration (0, 25, 50 and 100 mg/mL) were investigated by fibroblast cells lines model as described in Fig. 5 with the blank control group and 10% (v/v) DMSO. Blank control group set as 100% viability. Based on ISO 10993-5 (2009) recommendation it can be concluded that all different-concentrated green TiO$_2$ nanocomposites is considered as cyto-compatible since the cell viability is higher than 70%. Comparatively, DMSO exhibited significant cytotoxicity to the tested cell lines with cell viability percentage of approximately 31%. It strongly indicates statistically significant differences (****p value ≤ 0.0001) between different-concentrated green TiO$_2$ group and DMSO treated group. In addition, more healthy live cells with elongated filopodia (the leg like of the cell) between 95 and 129% were seen in all TiO$_2$-400C (Fig. 6b, c, d, f, g, h; Supplementary material) and TiO$_2$-500C (Fig. 6j, k, l, n, o, p; Supplementary material) treated nanocomposites, respectively. The outcome showed green TiO$_2$ had ability in promoting proliferation and viability of fibroblast cells lines.

However, TiO$_2$-500C caught much more attention in this study due to its strong bactericidal activity against Gram-positive S. aureus (Fig. 3e) and high proliferation of fibroblast cells lines at concentration level of 100 mg/mL (Fig. 5). The sedimentation of agglomerated green TiO$_2$ on bottom plate was picturized through yellow circle (Fig. 6; Supplementary material). Previously, researchers have investigated the effect of TiO$_2$ nanoparticles concentration related to cytotoxicity and cytocompatibility against MG63 cell lines.

Table 3: MIC of green TiO$_2$-NPs against S. aureus

Samples	MIC (mg/mL)
TiO$_2$-400C	25
TiO$_2$-500C	50

Table 4: ZOI (mm) of green TiO$_2$-NPs against skin pathogens

Strain	TiO$_2$-400C	TiO$_2$-500C	Commercial P25	Negative control	Positive control
S. aureus	6 ± 0.00	6 ± 0.00	6 ± 0.00	NA	10 ± 0.00
E. coli	6 ± 0.00	6.83 ± 0.29	6 ± 0.00	NA	10 ± 0.00
K. pneumoniae	6 ± 0.00	6 ± 0.00	6 ± 0.00	NA	9 ± 0.00
P. aeruginosa	6 ± 0.00	6.33 ± 0.14	6 ± 0.00	NA	9 ± 0.00

“NA” be a sign of no antimicrobial activity observed for this sample
and discovered that rapid cell proliferation and enhanced viability were seen at different concentrations without any adverse toxicity (Chellappa et al. 2015). Although, proliferation and survival of fibroblast cell lines slightly decreased when the concentration of green TiO$_2$ is further increased. It is ascribed to the higher level of ROS generation at high concentration level of TiO$_2$ (Behera et al. 2017). Future works on ROS release quantification and long-term cytocompatibility properties of green TiO$_2$ on fibroblast cells lines model is needed for further understanding of the molecular level.

Conclusions

Nano-sized cubic and spherical anatase TiO$_2$-500C decoated bioactive green elements nanocomposites with cytocompatible behaviour was successfully synthesised from C. gigantea leaf extract solution. Differences in annealing temperature exerted remarkable impacts on the crystalline phases, morphology, cytocompatibility and bactericidal activities of the green TiO$_2$-NPs towards S. aureus, E. coli and P. aeruginosa. Green TiO$_2$-NPs was found to be cytocompatible on fibroblast cells lines with increased cell viability (≥ 116%). Thus, the TiO$_2$-NPs developed in this work can address current limitations related to pathogen-induced open wound skin infections and wound healing characteristic. However, further investigation is needed to determine the detailed bactericidal mechanism of bioderived anatase TiO$_2$-NPs.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11696-022-02230-z.

Acknowledgements The authors would like to thank Universiti Sains Malaysia for sponsoring this work under Research University Grant (RUI) EKSESAIS TAHUN 2019 (1001/CIPPT/S8012338). The support of all the technical staff of Advanced Medical and Dental Institute and School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia, in the characterization of the sample is also acknowledged.

Author’s contribution GAG mainly contributes in writing this manuscript and carried out all experimental works. NNH, WNFWEE, and SS assist in the procedures. RBSSNM is the principal investigator contributes in the concept idea, experimental design, writing process and gave final approval of this paper for publication. All authors have given approval to the final version of the manuscript.
Funding This research was funded by the Research University Grant (RUI) EKSESAS TAHUN 2019 (1001/CIPPT/8012338) from Universiti Sains Malaysia.

Availability of data and materials The datasets generated and/or analysed during the current study are not publicly available due to the patent application for methods of making and using of titanium dioxide nanocomposites formed by green synthesis but are available from the corresponding author on reasonable request.

 Declarations

Conflict of interest The authors declare no conflict of interests.

References

Abu-Dalo M, Jaradat A, Albiss BA, Al-Rawashdeh NAF (2019) Green synthesis of TiO₂ NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. J Environ Chem Eng 7:103370. https://doi.org/10.1016/j.jece.2019.103370

Ahmad W, Jaiswal KK, Soni S (2020) Green synthesis of titanium dioxide (TiO₂) nanoparticles by using Menthaarvensis leaves extract and its antimicrobial properties. Inorg Nano Metal Chem 50(10):1032–1038. https://doi.org/10.1080/24701556.2020.1732419

Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad M (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO₂) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12(3):244–254. https://doi.org/10.1080/17518253.2019.1629641

Akinola PO, Lateef A, Asafa TB, Beukes LS, Hakeem AS, Irshad HM (2020) Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 6:e04610. https://doi.org/10.1016/j.heliyon.2020.e04610

Alavi M, Karimi N (2017) Characterization, antibacterial, total antioxidant, scavenging, reducing power and iron chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechti leaf extract. Artif Cells Nanomed Biotechnol 46(8):2066–2081. https://doi.org/10.1080/21691401.2017.1408121

Alavi M, Karimi N, Valadbeigi T (2019) Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO₂, ZnO, and Fe₃O₄ NPs via Protoparamelopsis muralis Lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng 5:4228–4243. https://doi.org/10.1021/acsbiomaterials.9b00274

Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, Arshad M, Noor S, Khan JM, Alam P, Albalawi TH, Shahzad SA (2020) Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines. Front Microbiol 11:1680. https://doi.org/10.3389/fmicb.2020.01680

Amanulla AM, Sundaram R (2019) Green synthesis of TiO₂ nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc 8:323–331. https://doi.org/10.1016/j.matpr.2019.02.118

Ansari A, Siddiqui VU, Rehman WU, Akram MK, Siddiqui WA, Al-osaimi AM, Hasse NM, Rafatullah M (2022) Green synthesis of TiO₂ nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity. Catalysts 12(2):181. https://doi.org/10.3390/catal12020181

Aravind M, Amalanathan M, Mary MSM (2021) Synthesis of TiO₂ nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci 3:409. https://doi.org/10.1007/s42452-021-04281-5

Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2017) Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafted titanium dioxide nanoparticles under UV-light irradiation. J Photochem Photobiol A 333:92–104. https://doi.org/10.1016/j.jphotochem.2016.10.021

Babu N, Pathak VM, Singh A, Navneet A (2019) Sonchus asper leaves aqueous extract mediated synthesis of titanium dioxide nanoparticles. Pharma Innov. 8(4):817–822

Behera SS, Das U, Kumar A, Bissoyi A, Singh AK (2017) Chitosan/ TiO₂ composite membrane improves proliferation and survival of L929 fibroblast cells: application in wound dressing and skin regeneration. Int J Biol Macromol 98:329–340. https://doi.org/10.1016/j.ijbiomac.2017.02.017

Chand K, Cao D, Fouad DE, Shah AH, Nazim Lakhan M, Dayo AQ, Sagar HJ, Zhu K, Mohamed AMA (2020) Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanocomposites: a comparative study. J Mol Liq 316:113821. https://doi.org/10.1016/j.molliq.2020.113821

Chatterjee A, Nishanthini D, Sandhiya N, Abraham J (2016) Biosynthesis of titanium dioxide nanoparticles using Vigna radiata. Asian J Pharm Clin Res 9(4):85–88

Chatterjee A, Anjanta M, Talekar A, Revathy N, Abraham J (2017) Biosynthesis, antimicrobial and cytotoxic effects of titanium dioxide nanoparticles using Vigna unguiculata seeds. Phytopathology 91(1):95–99. https://doi.org/10.25258/ijipapr.v91i1.8048

Chellappa M, Anjaneyulu U, Manivasagam G, Vijayalakshmi U (2015) Preparation and evaluation of the cytotoxic nature of TiO₂ nanoparticles by direct contact method. Int J Nanomed 10(1):31–41. https://doi.org/10.2147/IJN.S79978

Cheng C, Sun D, Chu W, Tseng Y, Ho H, Wang J, Chung P, Chen J, Tsai P, Lin N, Yu M, Chang H (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7. https://doi.org/10.1186/1423-0127-16-7

de Dicastillo CL, Correa MG, Martinez FB, Streit C, Galotto MJ (2020) Antimicrobial effect of titanium dioxide nanoparticles. In: Mareš M, Lim S HE, Lai K, Cristina R (eds) Antimicrobial resistance—a one health perspective. IntechOpen, London. https://doi.org/10.5772/intechopen.90891

Dey A, Nangare V, More PV, Khan MAS, Khanna PK, Sidker AK, Chattopadhyay V (2013) Graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in solid rocket propellant. J Name. https://doi.org/10.1039/C3RA09295G

Długoż O, Chwastowski J, Banach M (2020) Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem Pap 74:239–252. https://doi.org/10.1007/s11696-019-00873-7

Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran J Pharm Res 16(2):756–762. https://doi.org/10.22037/IJPR.2017.2026

Dubey J, Singh A (2019) Green synthesis of TiO₂ nanoparticles using extracts of Pomegranate peels for pharmaceutical application. Int J Pharmaceut Phytopharmacol Res 9(1):85–87

Fu G, Vary PS, Lin C-T (2005) Anatase TiO₂ nanocomposites for anti-quorum sensing, antimotility, and antioxidant activities of green synthesized silver, copper and titanium dioxide nanoparticles: a comparative study. J Mol Liq 316:113821. https://doi.org/10.1016/j.molliq.2020.113821

Ganesan S, Babu IG, Mahendran D, Arulselvi PI, Elangovan N, Geetha N, Venkatachalam P (2016) Green engineering of titanium dioxide nanoparticles using Agaratum altissima (L.) King & H.E. Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran J Pharm Res 16(2):756–762. https://doi.org/10.22037/IJPR.2017.2026

Ganesan S, Babu IG, Mahendran D, Arulselvi PI, Elangovan N, Geetha N, Venkatachalam P (2016) Green engineering of titanium dioxide nanoparticles using Agaratum altissima (L.) King & H.E. Robines. medicinal plant aqueous leaf extracts for enhanced photocatalytic

© Springer
activity. Ann Phytomed 5(2):69–75. https://doi.org/10.21276/AP.2016.5.2.8
Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapao KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029
Govindasamy GA, Mydin RBSMN, Sreekantan S et al (2021a) Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens. Sci Rep 11:99. https://doi.org/10.1038/s41598-020-79547-w
Govindasamy GA, Mydin RBSMN, Sreekantan S et al (2021b) Effect of calcination temperature on physicochemical and antimicrobial properties of green synthesised ZnO/Ca nanocomposites using Calotropis gigantea leaves. Adv Nat Sci: Nanosci Nanotechnol 12:015013. https://doi.org/10.1088/2043-6262/abe8da
Govindasamy GA, Mydin RBSMN, Harun NH, Sreekantan S (2021c) Bactericidal potential of dual-ionic honeycomb-like ZnO–CuO nanocomposites from Calotropis gigantea against prominent pathogen associated with skin and surgical wound infections: Staphylococcus aureus. Mater Sci Energy Technol 4:383–390. https://doi.org/10.1016/j.mset.2021.08.013
Guo J, Xu S, Qin Y et al (2020) The temperature influence on the phase behavior of ionic liquid based aqueous two-phase systems and its extraction efficiency of 2-chlorophenol. Fluid Phase Equilib 506:112394. https://doi.org/10.1016/j.fluid.2019.112394
Harun NH, Mydin RBSMN, Sreekantan S et al (2021) In vitro bio-interaction responses and hemocompatibility of nano-based linear low-density polyethylene polymer embedded with heterogeneous TiO2/ZnO nanocomposites for biomedical applications. J Biomat Sci Polym Ed 32(10):1301–1311. https://doi.org/10.1080/09205063.2021.1916866
He F, Yu W, Fan X, Jin B (2017) In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines. Trop J Pharm Res 16(12):2793–2799. https://doi.org/10.4314/tjpr.v16i12.2
Hossain A, Abdallah Y, Ali MA, Masum MMI, Li B, Sun G, Meng Y, Wang Y, An Q (2019) Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules 9:863. https://doi.org/10.3390/biom9120863
Irshad MA, Nawaz R, Zia ur Rehman M, Imran M, Ahmad MJ, Ahmad S, Inaam A, Rizquzzaz A, Rizwan M, Ali S (2020) Synthesis and characterization of titanium dioxide nanoparticles by chemical methods and their antifungal activities against wheat rust. Chemosphere 258:127352. https://doi.org/10.1016/j.chemosphere.2020.127352
Kashale AA, Gattu KP, Ghule K, Ingle VH, Dhanayat S, Sharma R, Chang J-Y, Ghule AV (2016) Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application. Compos B Eng 99:297–304. https://doi.org/10.1016/j.compositesb.2016.06.015
Kaur H, Kaur S, Singh J, Rawat M, Kumar S (2019) Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application. Mater Res Express 6:095034. https://doi.org/10.1088/2053-1591/ab2ec5
Khadar A, Behara DK, Kumar MK (2016) Synthesis and characterization of controlled size TiO2 nanoparticles via green route using Aloe vera extract. Int J Sci Res (IJSR) 5(11):2319–7064
Khade GV, Suwarankar MB, Gavade NL, Garadkar KM (2015) Green synthesis of TiO2 and its photocatalytic activity. J Mater Sci Mater Electron 26(5):3309–3315. https://doi.org/10.1007/s10854-015-2832-7
Kumar G, Karthik L, Rao KVB (2010) Antibacterial activity of aqueous extract of Calotropis gigantea leaves—an in vitro study. Int J Pharmaceut Sci Rev Res 4(2):141
Kumar PSM, Francis AP, Devasena T (2014) Comparative studies on green synthesized and chemically synthesized titanium oxide nanoparticles. A validation for green synthesis protocol using Hibiscus flower. J Environ Nanotechnol 3(4):78–85
Lin X, Li J, Ma S, Liu G, Yang K et al (2014) Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS ONE 9(10):e110247. https://doi.org/10.1371/journal.pone.0110247
Madadi Z, Lofتابad TB (2016) Aqueous extract of Acanthophyllum laxiculaenum roots as a renewable resource for green synthesis of nano-sized titanium dioxide using the sol–gel method. Adv Ceram Prog 2(1):26–31. https://doi.org/10.30501/ACP.2016.70015
Muniandy SS, Kaus NHM, Jiang Z, Altarawnhe M, Lee HL (2017) Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv 7:48083. https://doi.org/10.1039/C7RA08187A
Mutheek DK, Dejene BF (2021) Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles. Heliyon 7(6):e07269. https://doi.org/10.1016/j.heliyon.2021.e07269
Nabi G, Raza W, Tahir MB (2019) Green synthesis of TiO2 nanoparticle using Cinnamon powder extract and the study of optical properties. J Inorg Organomet Polym 30:1425–1429. https://doi.org/10.1007/s10904-019-01248-3
Nasrollahzadeh M, Sajadi SM (2015) Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteredena Jaub root extract and evaluation of their stability. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.07.079
Nasrollahzadeh M, Atarod M, Ialeb B, Gandomirozhbani M (2016) In situ green synthesis of Ag nanoparticles on graphene oxide/ TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram Int 42:8587–8596. https://doi.org/10.1016/j.ceramint.2016.02.088
Patidar V, Jain P (2017) Green synthesis of TiO2 nanoparticle using Moringa oleifera leaf extract. Int J Eng Technol 04(3):2395–0056
Pushpamalin T, Keerthana M, Sangavi R, Nagaraj A, Kamaraj P (2021) Comparative analysis of green synthesis of TiO2 nanoparticles using four different leaf extract. Mater Today Proc 40(1):8180–1814. https://doi.org/10.1016/j.matpr.2020.08.438
Rajakumar G, Rahuman AA, Jayaseelan C, Santhoshkumar T, Mariimuthu S, Kamaraj C, Bagavan A, Zahir AA, Kirthi AV, Elango G, Arora P, Karthikeyan R, Manikandan S, Jose S (2013) Solvanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res 113:469–479. https://doi.org/10.1007/s00436-013-3676-9
Rajakumar G, Rahuman AA, Roopen SM, Chung I, Anbarasan K, Karthikeyan V (2015) Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res 114(2):571. https://doi.org/10.1007/s00436-014-4219-8
Rajendhiran R, Deivasigamani V, Palanisamy J, Masan S, Pitchaiya S (2020) Terminalia catappa and carissa carandas assisted synthesis of TiO2 nanoparticles—a green synthesis approach. Mater Today Proc 45(2):2232–2238. https://doi.org/10.1016/j.matpr.2020.10.223
Rao KG, Ashok CH, Rao KV, Chakra CHS, Tambur P (2015) Green synthesis of TiO2 nanoparticles using Aloe vera extract. Int J Adv Res Phys Sci 2(1A):28–34
Rehman S, Farooq R, Jermey R, Asiri SM, Ravidanyagam V, Jindan RA, Aisalem Z, Shah MA, Reshi Z, Sabit H, Khan FA (2020a) 8A Wild Fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules 10:622. https://doi.org/10.3390/biom10040622
Sivaranjani V, Philominathan P (2015) Synthesis of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med 12:1–5. https://doi.org/10.1016/j.wndm.2015.11.002

Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, Ramachandran S, Ayyasamy R, Pugazhendhi A (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 80:197–202. https://doi.org/10.1016/j.procbio.2019.02.010

Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

Sugapriya S, Srimam R, Lakshmi S (2013) Effect of annealing on TiO2 nanoparticles. Optik 124:4971–4975. https://doi.org/10.1016/j.ijleo.2013.03.040

Sundararajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambbika S, Sangili A, Nithya P, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B 171:117–124. https://doi.org/10.1016/j.jphotobiol.2017.05.003

Swathi N, Sandhiyaa D, Rajeshkumar S, Lakshmi T (2019) Green synthesis of titanium dioxide nanoparticles using Cassia fistula and its antibacterial activity. Int J Res Pharm Sci 10:2(586). https://doi.org/10.26452/ijrps.v10i2.261

Tesfaye Jule L, Ramaswamy K, Bekele B, Saka A, Nagaprasad N (2021) Experimental investigation on the impacts of annealing temperatures on titanium dioxide nanoparticles structure, size and optical properties synthesized through sol–gel methods. Mater Today Proc 45:5752–5758. https://doi.org/10.1016/j.matpr.2021.02.586

Thakur BK, Kumar A, Kumar D (2019) Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 124:223–227. https://doi.org/10.1016/j.sajb.2019.05.024

Xu S, Zhu Q, Lin X et al (2020) The phase behavior of n-ethylpyridinium tetrafluoroborate and sodium-based salts ATPS and its application in 2-chlorophenol extraction. Chin J Chem Eng 33:76–82. https://doi.org/10.1016/j.cjche.2020.07.024

Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahman AA, Singh N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Phyllanthus niruri leaves extract by hydrothermal method. J Photochem Photobiol B 140:134–142. https://doi.org/10.1016/j.jphotobiol.2014.12.006

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.