Review of current diagnostic methods and advances in *Helicobacter pylori* diagnostics in the era of next generation sequencing

Daniel Pohl, Peter M Keller, Valentine Bordier, Karoline Wagner

ORCID number: Daniel Pohl (0000-0002-0855-1152); Peter M Keller (0000-0002-2890-5384); Valentine Bordier (0000-0002-1229-825X); Karoline Wagner (0000-0002-4761-1285).

Author contributions: Pohl D, Keller PM, and Wagner K designed the study; Pohl D, Keller PM, Bordier V and Wagner K did the literature search and analysed the data; Pohl D, Keller PM, Bordier V and Wagner K wrote and edited the manuscript.

Conflict-of-interest statement: None of the authors have any potential conflicts of interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: May 2, 2019
Peer-review started: May 4, 2019
First decision: May 24, 2019
Revised: June 25, 2019
Accepted: July 19, 2019

Abstract

Helicobacter pylori (*H. pylori*) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric *H. pylori* eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of *H. pylori*’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of *H. pylori* and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose *H. pylori* infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of *H. pylori* and its drug resistance and their implementation in *H. pylori* management. The second part of the review focuses on the use of next generation sequencing technology in *H. pylori* research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, *H. pylori* culture, PCR and line probe assays) and new sequencing technologies and their
potential implementation in diagnostic laboratory settings in order to complement the currently recommended *H. pylori* management guidelines and subsequently improve public health.

Key words: *Helicobacter pylori*; Advances in diagnostics; Next generation sequencing; Whole genome sequencing; Clinical management

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: With worldwide increasing antibiotic resistance in *Helicobacter pylori* (*H. pylori*), drug resistance phenotypes should be determined prior to the administration of antibiotic eradication regimens. Our literature search yielded studies that focused on the prediction of drug resistance phenotypes in *H. pylori* based on the presence of certain point mutations in the bacterium’s genome using next generation sequencing (NGS) technology. Thus, NGS technology may enable the implementation of rapid and accurate genotypic drug susceptibility testing prior to the administration of antimicrobial therapy. This may increase *H. pylori* eradication rates and ultimately improve patient management.

Citation: Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in *Helicobacter pylori* diagnostics in the era of next generation sequencing. *World J Gastroenterol* 2019; 25(32): 4629-4660

URL: https://www.wjgnet.com/1007-9327/full/v25/i32/4629.htm

DOI: https://dx.doi.org/10.3748/wjg.v25.i32.4629

HELICOBACTER PYLORI PREVALENCE, EPIDEMIOLOGY AND ANTIBIOTIC RESISTANCE

Current Helicobacter pylori prevalence and epidemiology

Initial acquisition of *Helicobacter pylori* (*H. pylori*) occurs primarily during childhood and may persist throughout life[1]. Infection with *H. pylori* occurs worldwide, but there are substantial geographic differences in the prevalence of infection between countries[2]. Multiple studies have demonstrated that socioeconomic status and ethnic origin of the population are strongly associated with prevalence of *H. pylori* infection[3-5]. In Central and Northern Europe, *H. pylori* prevalence, excluding non-European immigrants, was found to be around 24% to 32%[6-10]. Studies conducted in Switzerland revealed a *H. pylori* prevalence of 12%-20% in patients born in Switzerland and a prevalence of 27% in immigrants[5,11]. *H. pylori* can be divided into relatively distinct populations that are specific for large geographical areas: HpEurope, hpSahul, hpEastAsia, hpAsia2, hpNEAfrica, hpAfrica1 and hpAfrica2[12-14]. The most prevalent *H. pylori* populations in Europe are hpEurope and hpNEAfrica[15].

Management of Helicobacter pylori infections

In most patients, *H. pylori* infection stays asymptomatic, but it can progress to various gastrointestinal diseases including chronic active gastritis, peptic or duodenal ulcers, gastric adenocarcinoma and mucosa associated tissue lymphoma[16]. Consequently, it is a challenge for physicians to decide who should be tested for *H. pylori* infection and who should be treated. In general, treatment is recommended in case of detection of *H. pylori* infection, even in patients with asymptomatic *H. pylori* gastritis[17-19]. This practice is supported by results from a systematic review of six randomized trials evaluating *H. pylori* eradication therapy to prevent gastric cancer in healthy asymptomatic individuals that found a significant reduction in the incidence of gastric cancer[19]. However, this conclusion is mostly based on results of one interventional, placebo-controlled trial that was conducted in China[20], a high incidence country for gastric cancer. Therefore, further studies are needed in countries with low prevalence of gastric cancer to evaluate the long-term cost-effectiveness of such interventions. In the United Kingdom, two placebo-controlled trials conducted a *H. pylori* screening and treatment program in the general population that reduced dyspepsia in patients, who receive eradication therapy[21,22]. Though, they concluded that targeted eradication strategies in dyspeptic patients may be preferable. Therefore, the main question in clinical practice remains: Who should be tested and consequently treated?
Based on recent research, current guidelines (i.e., fifth Maastricht/Florence consensus report[25]) recommend testing for H. pylori infection in situations described in Table 1.

Adult patients in industrial countries that have been successfully treated for H. pylori infection rarely show reinfection (reinfection rate of 2%)[24]. Therefore, adequate treatment promises high eradication efficacy (see next chapter for antimicrobial therapy options) without recurrence of H. pylori infection. However, there are major challenges in the treatment of H. pylori infection including increasing resistance to antibiotics, which will be discussed in detail in the next section, and compliance to therapy. A study performed in Switzerland showed that approximately 89% of the patients treated were considered “good compliers”, meaning that they consumed more than 85% of the prescribed doses[29]. In this study, H. pylori eradication was inversely associated with poor compliance (P = 0.029) and the major reason mentioned by the patients not complying with the treatment was side effects. Antibiotic therapy indeed has non-negligible, short-term side effects such as diarrhea, nausea, vomiting, bloating and/or abdominal pain. Moreover, it has been shown, and also received media attention, that antibiotic treatment can alter the gut microbiota richness and diversity[30,31], possibly deferring health-conscious patients from following through with antibiotic treatment.

Antibiotic resistance in Helicobacter pylori

The only currently available efficient treatment against H. pylori infection includes the use of antibiotics. Main mechanisms of antibiotic resistance development in H. pylori include mutations that impair the capability of antibiotics to bind the ribosomes and interfere with protein synthesis; mutations that affect DNA replication and transcription; mutations that modify penicillin binding proteins, involved in peptidoglycan biosynthesis[32]. As H. pylori easily develops drug resistance to single antibiotics, combination therapy of several antibiotics is recommended. Combination of antibiotics used in therapy should depend on local drug resistance rates estimated in the respective country. Primary and acquired resistance to clarithromycin and metronidazole has increased globally in the last years, diminishing the effectiveness of conventional first-line treatment regimens and increasing treatment failures due to drug-resistant H. pylori strains[33-35]. In particular, clarithromycin resistance increased rapidly in several countries, to reach 30% in Japan and up to 50% in China[36]. Also in Europe, an increasing trend of clarithromycin resistance in H. pylori can be observed with an overall primary clarithromycin resistance rate of 17%[37]. However, prevalence of clarithromycin resistance varies from 21% in Austria to 6% in Finland and the Netherlands[37,38]. This shows that clarithromycin resistance is strongly variable between neighboring European countries emphasizing the need to examine drug resistance separately in each geographic region to better guide empiric treatment regimens. Metronidazole resistance, although not as important as clarithromycin resistance, also significantly reduces treatment efficiency of the standard triple regimen[39]. Overall, metronidazole resistance rates have been increasing in many European countries[37-41], ranging from 14% to 33% in Europe[40-42]. The general trend towards increasing resistance to first-line antibiotics in H. pylori has urged treating physicians to prescribe alternative treatment regimens including tetracycline with a PPI and a bismuth salt or the use of levofloxacin or rifabutin-based treatment regimens[37,38]. However, these regimens require high patient compliance as antibiotic therapy consist of many tablets that have to be taken daily for 10 to 14 d[43]. Incomplete patient adherence to antibiotic therapy is directly associated with further resistance development in H. pylori. Although levofloxacin resistance has not been studied as extensively as clarithromycin and metronidazole resistance, there is also a trend towards high primary and secondary levofloxacin resistance in H. pylori[39,44-46]. In contrast, resistance to amoxicillin and tetracycline seems to be negligible in H. pylori (0 to 2%) in European countries[37,45,46]. Though tetracycline resistance does not seem alarming yet in Western Europe, high resistance rates ranging from 5% to 19% were found in Eastern European and Asian countries[39,47], emphasizing the need to prevent further resistance spread in H. pylori. Therefore, similar as for first-line H. pylori eradication regimens, administration of alternative antimicrobial therapy, especially when levofloxacin based, should be guided by the regional and patient-specific antimicrobial resistance patterns and knowledge about their local effectiveness.

CURRENT HELICOBACTER PYLORI DIAGNOSTICS

Several diagnostic methods are available for detecting H. pylori infections. They can be broadly classified as invasive and non-invasive methods depending on the need to retrieve a gastric biopsy from the patient. For H. pylori detection, endoscopy is
Table 1 Who to test, summary of the recommendations from the fifth Maastricht/Florence consensus report

Recommendations from the fifth Maastricht/Florence consensus report
Dyspepsia
Peptic ulcers
Gastritis
Gastric cancer
MALToma
Iron deficiency anemia, idiopathic thrombocytopenic purpura, vitamin B12 deficiency

employed in combination with histology and/or culture from the gastric biopsy specimen. The major limitation of endoscopic examination is its relative invasiveness and that only a small portion of the gastric mucosa can be explored. Therefore, assessment of multiple gastric biopsy specimens is necessary to provide a global picture of *H. pylori* infection in the stomach. \[63,65,66\] When an endoscopy is indicated, *H. pylori* can be detected by histology, rapid urease test (RUT), culture and polymerase chain reaction (PCR)-based tests using gastric biopsy specimens. \[60,61\] The accuracy of histology depends on a number of factors like the pathologist’s experience, density of *H. pylori* colonization in the gastric mucosa, the quality and quantity of the clinical specimen and subjective assessment of tissue changes.

The RUT is based on detecting urea produced by *H. pylori*, and results are obtained within minutes to hours. The RUT is a cheap, rapid and generally highly specific assay, but its sensitivity is affected if less than 10⁷ bacterial cells are present in the gastric biopsy, most probably leading to false-negative results. In some instances, RUT specificity may be negatively affected by the presence of other urease producing bacteria like *Staphylococcus capitis urealiticum* in the stomach that can lead to false-positive test results. \[69\] Commercially available RUTs (e.g., HpFast, CLOtest, HpOne) have reported specificities from 95% to 100%, but their sensitivity is moderate (85% to 95%) \[60,61,62\].

Successful isolation and cultivation of *H. pylori* from gastric biopsy specimens is a challenging task that is affected by a number of factors like the quality of the clinical specimen, occurrence of microbial commensal flora in clinical specimens, time interval between sampling and culture and inappropriate transport conditions (temperature, duration of air exposure, etc.). Furthermore, *H. pylori* requires highly trained laboratory personnel and takes up to 7 d until samples can be reported as negative and up to 2 wk until *H. pylori* has grown and an antibiogram can be provided to the treating physician. *H. pylori* culture from gastric biopsy specimens typically has a sensitivity greater 90% and a specificity of 100%, when performed under optimal conditions \[60,61\]. *H. pylori* culture from clinical specimens obtained by non-invasive procedures, such as gastric juice, saliva and stool, is challenging and hampered by low sensitivity \[64-66\], and therefore not recommended in routine diagnostics \[67\]. With the global emergence of antibiotic resistant *H. pylori* isolates and subsequently increasingly failing empiric first-line therapies, bacterial culture and phenotypic drug susceptibility testing (DST) remains a crucial diagnostic method for antibiotic resistance surveillance and management of antibiotic treatment failures. However, it is not recommended to do a full phenotypic DST before administration of first-line treatment as: (1) An invasive endoscopy is required to obtain gastric biopsy specimens from the patient; (2) It is time consuming and costly; and (3) Less invasive, molecular based methods are also able to detect clarithromycin resistance that is momentarily the main cause of empiric treatment failure in European countries.

Due to these drawbacks, numerous attempts have been made to develop non-invasive diagnostic methods that avoid endoscopy. Classically, non-invasive tests for *H. pylori* detection include stool antigen assays, serology and the frequently used urea breath test (UBT) \[9,81\]. Antigen tests have been widely used for *H. pylori* detection in clinical specimens like gastric juice, saliva, urine and stool \[9,62,72\]. However, antigen detection methods, may suffer from poor specificity and sensitivity \[9,73,79\]. Different stool antigen tests have been developed to detect *H. pylori* in stool specimens with a sensitivity and specificity of 85% to 95% \[17\]. The UBT is the most frequently used point-of-care test in the clinic with a sensitivity and specificity of 85% to 95% \[17\].

One limitation of the beforehand presented non-invasive diagnostic methods is that they can solely detect *H. pylori* but do not provide information on the drug susceptibility of the bacterium. With increasing clarithromycin resistance rates in...
H. pylori, rapid and accurate methods that can simultaneously detect H. pylori and assess its clarithromycin susceptibility offer high added value\cite{10,44,70}. Clarithromycin resistance in H. pylori is attributable, in a majority of cases, to three single point mutations (A2146C, A2146G and A2147G) in the 23S rRNA gene that can be accurately detected by PCR\cite{76-79}. At the moment, there are a number of molecular assays commercially available for H. pylori and clarithromycin resistance detection, such as the H. pylori ClariRes (Ingenetix, Vienna, Austria), the AllplexH H. pylori and ClariR (Seegene, Korea), the LightmixH H. pylori (TIBMolbiol, Germany) and the H. pylori TaqmanH real-time PCR assay (Meridian Bioscience, United States). These assays mostly combine real-time PCR with melting curve analysis and are highly specific and rapid (<2 h) molecular methods that can be applied to gastric biopsy and stool specimens\cite{23,85,86}. Moreover, they can distinguish the three most common point mutations (A2146G, A2147G and A2146C) in the 23S rRNA gene, which allows to genotypically distinguish low- and high-level clarithromycin resistance\cite{87}. However, several studies found rather low sensitivity (ranging from 63% to 84%) of H. pylori detection from stool specimens using the ClariRes assay when compared to stool antigen test and H. pylori culture from gastric biopsy specimens\cite{80-82}. Another study validating the H. pylori TaqmanH real-time PCR assay in stool specimens reported higher sensitivity of 93.8%\cite{84}. Therefore, H. pylori and clarithromycin resistance detection directly from stool specimens may strongly depend on the DNA extraction method and the PCR assay used. Consequently, no general statement on the diagnostic performance of PCR from stool can be made. One limitation of PCR assays is, however, that they can just provide resistance information for clarithromycin. At the moment, there is only one line probe assay (the Genotype HelicoDR assay; Hain Life Sciences, Germany) commercially available that enables the detection of the most common point mutations in the 23S rRNA (A2146G, A2147G and A2146C) and the gyrA gene (N87K, D91G, D91N, D91Y) to determine clarithromycin and levofloxacin susceptibility, respectively. The Genotype HelicoDR assay has been reported to accurately detect H. pylori and clarithromycin resistance from gastric biopsy specimens\cite{80}, but low concordance between H. pylori and clarithromycin resistance detection from biopsy and stool specimens was found\cite{80}. Moreover, the Genotype HelicoDR assay has a long turn-around-time of 6 h compared to real-time PCR assays.

In sum, non-invasive molecular testing from stool would have the following advantages: (1) No invasive endoscopy is required; (2) Specimens can be stored longer and do not require immediate processing; (3) Batching of specimens is possible; (4) H. pylori detection and genotypic clarithromycin susceptibility screening can be done within one working day (<4 h); (5) Detection of hetero-resistance in specimens is achievable when more than one H. pylori strain is present in a clinical specimen; (6) Automated DNA extraction and real-time PCR analysis offers a high degree of standardization and reproducibility. However, further studies are needed that assess the diagnostic performance of optimized DNA extraction procedures and non-invasive stool PCRs (ideally targeting the 23S rRNA and gyrA gene) in comparison to H. pylori culture based phenotypic DST from gastric biopsy specimens.

HELICOBACTER PYLORI TREATMENT AND PROPHYLAXIS

As H. pylori antibiotic therapy is mostly based on clarithromycin, clarithromycin resistance is the major determinant of antimicrobial treatment: In countries with low clarithromycin resistance (i.e., <15%), current first-line standard regimens for H. pylori eradication are a proton pump inhibitor (PPI)-based triple therapy (with clarithromycin in combination with metronidazole or amoxicillin) or a bismuth quadruple therapy\cite{23,85,86}. The second line therapy should then be the bismuth quadruple (if not used as first-line therapy) or a triple therapy containing fluoroquinolones. Choice of third-line therapy should be guided by phenotypic DST or genotypic determination of drug resistance (associated costs for antibiotic therapy are listed in Tables 2 and 3; approximate drug prices from Germany).

In countries with high clarithromycin resistance (i.e., >15%), metronidazole resistance, although clinically less relevant, should be considered. If metronidazole resistance is low, a triple therapy with PPI, amoxicillin and metronidazole can be applied. If the dual resistance for clarithromycin and metronidazole is low, a bismuth quadruple or a concomitant non-bismuth quadruple therapy should be used. However, if the dual resistance is high, bismuth containing quadruple therapies should be used\cite{23}.

Vaccines against H. pylori have only recently been given serious consideration. In animal models, initial vaccination tried oral immunization with H. pylori bacterial lysate and cholera toxin as adjuvant\cite{82}. Later on, intranasal and rectal delivery systems
Table 2 Standard clarithromycin-based triple regimens using metronidazole or amoxicillin and associated costs

Drug	Dose	Costs (EUR) per dose	Costs (EUR) for 7 d	Costs (EUR) for 14 d
Standard triple regimen				
(with metronidazole)				
Clarithromycin	500 mg (twice daily)	1.1	15.4	30.8
Metronidazole	500 mg (three times daily)	0.6	13.1	26.2
Pantoprazole (Proton-pump inhibitor)	Standard dose (twice daily)	0.1	1.6	3.2
In total		1.8	30.1	60.2
Standard triple regimen				
(with amoxicillin)				
Clarithromycin	500 mg (twice daily)	1.1	15.4	30.8
Amoxicillin	1 g (twice daily)	1.4	20.2	40.4
Pantoprazole (Proton-pump inhibitor)	Standard dose (twice daily)	0.1	1.6	3.2
In total		2.6	37.2	74.4

Due to increasing antibiotic resistances and side effects of antibiotics, alternative therapies are of great interest. Probiotics have been shown to have positive effects on eradication rates, prevention of adverse reactions and antibiotic-associated diarrhea when combined to eradication therapies. A recent systematic review and meta-analysis on probiotics as adjunct therapy found 19 randomized controlled trials, all showing positive effects on at least one of the above-mentioned aspects. However, it appears that the number of meta-analysis on the topic exceeds the number of original publications, that, even in randomized controlled fashion show large detail variance. Interestingly, a large and well performed meta-analysis showed that probiotic dose, duration, number of strains and duration of antibiotic treatment did not affect the benefits conferred by probiotic adjunction, reducing the scientific plausibility of this intervention based on current publications. The fifth Maastricht/Florence consensus rapport acknowledges probiotics as beneficial in its report, but evaluates the level of evidence as low to moderate with weak grade of recommendation. That being said, probiotics alone, not in combination with antibiotics, have not been shown to efficiently eradicate *H. pylori*. We as others conclude that “more data are definitely needed to assess the direct efficacy of probiotics against *H. pylori*”.

Licorice root is a botanical product frequently used in Chinese medicine. It has detoxifying, antiulcer, anti-inflammatory, anti-viral and anticarcinogenic properties. A randomized controlled trial on 120 *H. pylori* positive dyspeptic patients (with or without peptic ulcer) assessed the effect of licorice in addition to clarithromycin-based triple regimen. They showed that treatment response was 83.3% in the licorice-group compared to 62.5% in the control group (*P* = 0.018). When distinguishing between peptic ulcer disease and non-ulcer dyspepsia, significantly better response to treatment was only observed in patients with peptic ulcer (*P* = 0.034).

Several other plant-based products are used for the treatment of gastrointestinal disorders. Some of them have been mentioned as influencing *H. pylori* infections such as garlic, cranberry juice, oregano or broccoli sprouts (non-exhaustive list). However, few studies have identified the active ingredient or its mechanism of action and dose/response or exposure level are not understood. Possible safety issues as well as impact of resistance on efficacy of phyto-therapeutic agents has to be addressed. Moreover, one review article mentioned the possibility of phage therapy against *H. pylori*.

NEXT GENERATION SEQUENCING AND HELICOBACTER PYLORI

In order to get an overview on original research studies that focused on the characterization of *H. pylori* by next generation sequencing (NGS) a PubMed search was carried out. The PubMed search results are presented in a table.
Moreover, some studies showed that antibiotic use to eradicate Helicobacter pylori affected the microbiota in response to antibiotic use. Studies have identified a number of changes in the gut microbiota that may induce pathogenesis and various disorders. However, studies investigating the association between genotypic and phenotypic drug resistance in Helicobacter pylori isolates and the characterization of non-human Helicobacter pylori isolates have been published. Inclusion criteria: (1) Original research manuscripts; (2) Characterization of clinical human Helicobacter pylori isolates; and (3) Use of second and/or third generation sequencing technologies. Exclusion criteria: (1) Reviews, case reports, comments, letters; (2) Characterization of non-human Helicobacter pylori isolates; and (3) Original research manuscripts that did not use second or third generation sequencing technology. First, the terms “Helicobacter pylori AND transcriptome OR transcriptomic” were searched and yielded 134 results, of which 12 were original research articles meeting the inclusion criteria (Table 3). Second, a PubMed, MEDLINE and EMBASE search using the terms “Helicobacter pylori AND next generation sequencing” was done that yielded 102 results, of which 19 met the inclusion criteria (Table 4). And finally, a PubMed, MEDLINE and EMBASE search with the terms “Helicobacter pylori AND whole genome sequencing” was done that yielded 89 results, of which 15 met the inclusion criteria (Table 5).

The assessment of the human gut microbiome in health and disease is a hot topic in medical sciences. Changes in the gut microbial community composition after Helicobacter pylori infection may induce pathogenesis and various disorders. However, studies investigating changes in the microbial community composition after Helicobacter pylori infection have generated conflicting results. While some studies could not detect any significant changes in the taxonomic composition of the gut microbiota, studies using NGS technology have reported increased abundance of the families Xanthomonadaceae and Enterobacteriaceae, and the genera Spirochaetae, Streptococcus, Lactobacillus, Granulicatella, Prevotella and Veillonella in response to Helicobacter pylori infection. Moreover, some studies showed that antibiotic use to eradicate Helicobacter pylori affected the microbiota in response to antibiotic use.

Table 3: Alternative antibiotic Helicobacter pylori eradication therapy using quadruple or levofloxacin-based regimens and associated costs

Regimen	Drug	Dose	Costs (EUR) per dose	Costs (EUR) for 7 d	Costs (EUR) for 14 d
Bismuth quadruple regimen	Tetracycline	500 mg (four times daily)	0.6	12	16.8
	Metronidazole	500 mg (three times daily)	0.6	18.6	26.2
	Pantoprazole (Proton-pump inhibitor)	Standard dose (twice daily)	0.1	2.2	3
	Bismuth Subsulicylale	Standard dose (three times daily)	0.3	10	14
In total			1.6	42.8	60
Levofloxacin-based regimen	Levofloxacin	500 mg (once daily)	2.7	27	38
	Amoxicillin	1 g (twice daily)	1.4	28.8	40.4
	Pantoprazole (Proton-pump inhibitor)	Standard dose (twice daily)	0.1	2.2	3.1
In total			4.2	58	81.5
Concomitant regimen	Clarithromycin	500 mg (twice daily)	1.1	22	30.8
	Amoxicillin	1 g (twice daily)	1.4	28.8	40.4
	Metronidazole	500 mg (three times daily)	0.6	2.2	3
	Pantoprazole (Proton-pump inhibitor)	Standard dose (twice daily)	0.1	18.6	26.04
In total			3.2	72	100
Study	Objective	Main finding	Method	Sequencing	Ref.
-------	-----------	--------------	--------	------------	------
1	Characterization of the MTase JHP1050 in *H. pylori*	The MTase JHP1050, which methylates CCGC sequences, was found to be highly conserved in all analyzed *H. pylori* strains, with a nucleotide sequence identity > 87%. Absence of 5mC methylation had a significant effect on *H. pylori* growth, led to a significant reduction in DNA uptake capacity, and reduced the bacterial protection against an excess of copper	*H. pylori* 26695 culture grown in liquid medium to log phase	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina)	Estibariz et al. [107]
2	Analyzing the impact of bismuth on a diverse array of intracellular pathways in *H. pylori*	Bismuth influences multiple metabolic pathways and suppresses energy production in *H. pylori* through disruption of the central carbon metabolism of the bacterium. Bismuth initially perturbs the citric acid cycle and then urease activity, followed by the induction of oxidative stress and inhibition of energy production, and in the meantime, induces extensive down-regulation in the *H. pylori* metabolome	*H. pylori* 26695 culture grown in liquid medium to early log phase	RNA-sequencing on a HTSeq v0.6.1 platform [114]	Han et al. [114]
3	Transcriptomic analysis to assess the process of biofilm formation in *H. pylori*	*H. pylori* biofilm cells displayed a distinct transcriptomic profile. Lower metabolism and stress responses, likely associated with the microenvironment generated in the *H. pylori* biofilm, could be determinants of antimicrobial tolerance and involved in the persistence and survival of *H. pylori*. However, there were no specific genes up- or downregulated that are specific for biofilm formation, suggesting that there is no biofilm-specific set of genes expressed. However, genes encoding flagellar filaments were upregulated in biofilm cells and formed an integral part of the biofilm matrix	*H. pylori* grown on non-selective solid agar media	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina) RNA-sequencing on an Illumina NextSeq platform (Illumina)	Hathroubi et al. [106]
Table	Objective	H. pylori strain	Depletion of ribosomal RNA	Reference	
-------	-----------	-----------------	-----------------------------	-----------	
4	Transcriptional analysis of H. pylori gene expression under high salt conditions	7.13 was grown in liquid medium to mid exponential phase (OD of 0.5)	RiboZero, Epicentre, Illumina	Loh et al[111]	
	Main finding	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina)	RNA-sequencing on an Illumina HiSeq 3000 platform (Illumina; 2 × 75 bp)		
5	Transcriptional analysis of H. pylori gene expression under different pH conditions	G27 grown in liquid medium, followed by adaptation of the pH (3.0, 4.5, 6.0, 7.4, 8.0)	RiboZero, Epicentre, Illumina	Marcus et al[112]	
	Main finding	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina)	RNA-sequencing on an Illumina HiSeq 2500 platform (Illumina; 1 × 50 bp)		
6	Characterization of the heat shock protein repressor (HspR) binding sites in H. pylori	Different H. pylori strains grown in liquid medium to mid exponential phase (OD = 0.7) with/without heat shock treatment	RiboZero, Epicentre, Illumina	Pepe et al[113]	
	Main finding	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina)	RNA-sequencing on an Illumina GAIIx platform (Illumina; 1 × 85 bp)		
7	Gastric biopsy specimens from patients with H. pylori infection and premalignant tissue changes	Depletion of ribosomal RNA (RiboZero, Epicentre, Illumina)	Thorell et al[116]		
Analysis of the composition of the transcriptionally active microbial community and *H. pylori* gene expression in gastric biopsy specimens from patients with *H. pylori* infection and premalignant tissue changes

Main finding

Although *H. pylori* infection did not change the bacterial diversity, *H. pylori* abundance was positively correlated with the presence of *Campylobacter*, *Deinococcus* and *Sulfurospirillum*. Quantification of *H. pylori* gene expression found high expression of genes involved in pH regulation and nickel transport.

Objective

Characterization of the Nickel dependent transcriptional regulator (NikR) in *H. pylori*

Main finding

NikR not only regulates metal-ion transporters but also virulence factors, non-coding RNAs, as well as toxin-antitoxin systems in response to nickel stimulation.

Depletion of ribosomal RNA

Depletion of ribosomal RNA (Ribozero, Epicentre, Illumina)

Vannini et al.[115]

RNA-sequencing on an Illumina MiSeq platform

(Illumina; 1 × 76 bp)

Characterization of the Nickel dependent transcriptional regulator (NikR) in *H. pylori*

Main finding

NikR not only regulates metal-ion transporters but also virulence factors, non-coding RNAs, as well as toxin-antitoxin systems in response to nickel stimulation.

Depletion of ribosomal RNA

Depletion of ribosomal RNA (Ribozero, Epicentre, Illumina)

Vannini et al.[115]

RNA-sequencing on an Illumina MiSeq platform

(Illumina; 1 × 76 bp)

H. pylori strains grown in liquid medium and treated with high nickel (500 μM Ni2+) concentrations

Vannini et al.[115]

RNA-sequencing on an Illumina MiSeq platform

(Illumina; 1 × 76 bp)

H. pylori strains grown to mid exponential growth phase (OD = 0.7)

Bischler et al.[108]

RNA-sequencing on an Illumina MiSeq 2000 platform

(Illumina; 1 × 97 bp)

Characterization of Nudix hydrolases in *H. pylori*

Main finding

H. pylori encodes two proteins resembling Nudix enzymes. One of them, HpRppH, is an RNA pyrophosphohydrolase that triggers RNA degradation in *H. pylori*, whereas the other, HP0507, lacks such activity. Transcriptional analysis revealed at least 63 potential HpRppH targets in *H. pylori*.

Depletion of ribosomal RNA

Depletion of ribosomal RNA by a rRNA modified capture hybridization approach from MICROBExpress kit (Ambion, Invitrogen, Life Technologies)

Redko et al.[110]

RNA-sequencing on an Illumina HiSeq 2000 platform

(Illumina; 1 × 50 bp)

Characterization of the exo- and endoribonuclease RNase J in *H. pylori* and its putative targets

Main finding

Strong depletion of RNase J led to a massive increase in the steady-state levels of non-rRNAs. mRNAs and RNAs antisense to open reading frames. In contrast, non-coding RNAs expressed in the intergenic regions were much less affected by RNase J depletion. This suggests that RNase J is a major RNAse involved in degradation of most cellular RNAs in *H. pylori*.

Depletion of ribosomal RNA

Depletion of ribosomal RNA by a rRNA modified capture hybridization approach from MICROBExpress kit (Ambion, Invitrogen, Life Technologies)

Redko et al.[110]

RNA-sequencing on an Illumina HiSeq 2000 platform

(Illumina; 1 × 50 bp)

Analysis of methylated DNA sites throughout the *H. pylori* genome for several closely related *H. pylori* strains

Main finding

Analysis of the composition of the transcriptionally active microbial community and *H. pylori* gene expression in gastric biopsy specimens from patients with *H. pylori* infection and premalignant tissue changes.
Overall, the methylome was highly variable among closely related H. pylori strains. DNA sequence motifs for methylation could be assigned to a specific homology group of the target recognition domains in the specificity-determining genes for Type I and other restriction-modification systems. Knocking out one of the Type I specificity genes led to transcriptome changes.

Objective
Characterization of the transcriptome of H. pylori, and construction of a genome-wide map of H. pylori transcriptional start sites and operons.

Main finding
Discovery of hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. An unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs were discovered.

Their objective, employed sequencing method and main finding is briefly described in the table. *H. pylori*: *Helicobacter pylori*.
Study	Main finding	Method	Sequencing	Ref.
1	Objective	DNA extraction from gastric biopsy specimens	Targeted 16S rRNA sequencing on an Ion S5XL platform (Thermo Fisher Scientific, United States)	Han et al[117]
	Main finding	Histological and endoscopic gastritis was associated with the abundance of *H. pylori* and that of commensal bacteria in the stomach. The abundances of *Variovorax paradoxus* and *Porphyromonas gingivalis* were correlated with histological gastritis, but not with endoscopic or symptomatic gastritis. The total PAGI-SYM score showed a stronger correlation with the duodenal microbiota (*Prevotella nanceiensis* and *Alloprevotella rava*) than with the gastric microbiota (*H.pylori*, *Neisseria elongate*, and *Corynebacterium segementosum*)		
2	Objective	*H. pylori* culture from gastric biopsy specimens	Sequencing on an Illumina MiSeq platform (Illumina, United States)	Miftahussurur et al[128]
	Main finding	Resistance to metronidazole rifaximin, rifabutin, furazolidone, garenodoxin and sitafloxacin was investigated in Indonesian *H.pylori* strains		
3	Objective	DNA extraction from gastric FFPE tissue blocks	16S rRNA targeted sequencing on an Ion Torrent (Thermo Fisher) platform	Nezami et al[132]
	Main finding	Detection of *H. pylori* mutations that are known to confer resistance to clarithromycin, levofloxacin, and tetracycline directly from formalin-fixed paraffin-embedded (FFPE) gastric biopsy specimens using next generation sequencing		

Table 5. A PubMed, MEDLINE and EMBASE search using the terms “*Helicobacter pylori* AND next generation sequencing” yielded 19 original research studies.
Therapy failure correlated with the number of mutated genes: no failure in cases with no mutations (0/15), 19% (5/27) failure in cases with one gene mutation, and 69% (11/16) failure in cases with more than one mutated gene. Common 23S rRNA mutations (A2146G or A241G) were present in 88% (14/16) of failed cases as opposed to only 10% (4/42) of eradicated cases ($P < 0.001$). NGS can be used on clinical specimens collected during standard of care testing to detect mutations that correlate with increased risk of treatment failure.

4

Objective
Assessment of the changes in the microbial esophageal community composition in Chinese patients with reflux esophagitis and healthy volunteers using metagenomic high-throughput DNA sequencing.

Main finding
Moderate changes in the microbial community composition were found in patients with reflux esophagitis and compared with the healthy volunteers. At the phylum level, only Bacteroidetes differed between the groups, being less abundant in the reflux esophagitis group. The overall number and diversity of species tended to be lower in reflux esophagitis patients, but there were no significant differences between the groups. Three genera, Prevotella, Helicobacter and Moraxella, were obviously depleted in reflux esophagitis patients.

5

Objective
Characterization of H. pylori-induced alterations in the gastric and tongue coating microbiota and evaluation of potential impacts on human health in patients with chronic gastritis.

Main finding
DNA extraction from gastric biopsy specimens

16S rRNA targeted sequencing on an Illumina MiSeq platform (Illumina)

Zhao et al.[119]
Significant alterations of the gastric microbiota were found in H. pylori-positive (cagA-positive) samples represented by a decrease in bacterial diversity, a reduced abundance of Roseburia and increased abundances of Helicobacter and Haemophilus. At the community level, functions involved in biofilm formation, mobile element content, and facultative anaerobiosis were significantly decreased in the microbial community in H. pylori-positive subjects. Presence of CagA was linked to an increased proportion of Gram-negative bacteria in the stomach, thereby contributing to an up regulation of lipopolysaccharide biosynthesis.

Objective
Characterization of the microbial community in patients suffering from gastritis and gastric cancer

Main finding
The gastric carcinoma microbiota was characterized by reduced microbial diversity, decreased abundance of H. pylori and the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis can be used to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma.

Objective
Assessment of the changes in the gut microbiome after H. pylori eradication therapy in teenagers

Main finding
Alpha diversity revealed that both species richness and evenness were recovered to pre-treatment levels at 2 mo after H. pylori eradication therapy. Although H. pylori eradication therapy caused short-term dysbiosis, microbial diversity was restored in healthy teenagers.

Objective
Assessment of the association between H. pylori infection and the abundance of Lactobacillus species in the gut microbial community in Japanese patients

Main finding
The relative abundance of *Lactobacillus* in *H. pylori*-infected subjects with severe atrophic gastritis was higher compared with patients with mild atrophic gastritis and without atrophic gastritis (*P* < 0.001) and non-infected subjects (*P* < 0.001). The proportion of *Lactobacillus salivarius* was high in *H. pylori*-infected subjects while that of *Lactobacillus acidophilus* was high in non-infected subjects.

9

Objective

Determination of the sequences of virulence genes (*cagA* and *vacA*) and seven housekeeping genes by next generation sequencing.

Main finding

All *H. pylori* strains were considered Western-type, and 75.2% of them carried *cagA*. Patients infected with *cagA*-positive strains had more severe histological scores than patients infected with *cagA*-negative strains. Thus, the low incidence of gastric cancer in Bangladesh might be attributable to the high proportion of less-virulent *H. pylori* genotypes.

10

Objective

Assessment of the bacterial microbiome in a total of 30 homogenized and frozen gastric biopsy samples from eight geographic locations.

Main finding

H. pylori infection of the gastric habitat dominates the gastric microbiota in most patients and is associated with a significant decrease of the microbial alpha diversity. Moreover, some bacterial genera like *Actinomyces*, *Granulicatella*, *Veillonella*, *Fusobacterium*, *Neisseria*, *Helicobacter*, *Streptococcus*, and *Prevotella* were associated with the presence of *H. pylori*.

11

Objective

Characterization of levofloxacin, metronidazole, clarithromycin, amoxicillin and tetracycline resistance in *H. pylori* isolated from 158 dyspeptic patients in Santo Domingo.

Main finding

H. pylori culture from gastric biopsy specimens

Sequencing on an Illumina MiSeq platform (Illumina)

Aftab et al. [103]

DNA extraction from gastric biopsy specimens

16S rRNA targeted sequencing on an Illumina MiSeq platform (Illumina; 1 × 500 bp)

Klymiuk et al. [139]

H. pylori culture from gastric biopsy specimens

Sequencing on an Illumina MiSeq platform (Illumina)

Miftahussurur et al. [124]
Clarithromycin and amoxicillin resistance were low (3.1% and 1.6%), and no resistance to tetracycline was found. In contrast, metronidazole and levofloxacin resistance were high (82.8% and 35.9%). Most levofloxacin-resistant *H. pylori* strains had an amino acid substitution at codon 87 or 91 in the *gyrA* gene. Many different *rdxA* and *frxA* mutations in metronidazole-resistant *H. pylori* strains were found without synergistic effects. Novel mutations in *dppA*, *dppB*, *fdxA* and *fdxB*, irrespective of *rdxA* and *frxA* mutations were associated with different levels of metronidazole resistance in *H. pylori*.

Objective
Assessment of the influence of antimicrobials on both, the gut microbiota community composition and the plasma ghrelin level in *H. pylori*-infected patients, who underwent eradication therapy (amoxicillin, clarithromycin and proton-pump inhibitors)

Main finding
The Bacteroidetes:Firmicutes (B:F) ratio was significantly increased 3 months after than before antibiotic treatment (*P* < 0.01). A significant decrease in the concentration of active ghrelin (*P* < 0.01) in the plasma was observed before and 3 mo after antibiotic therapy.

Objective
Comparison of *cagA* and *vacA* sequences of *H. pylori* strains isolated from patients with gastric cancer and MALT lymphoma in Japan

Main finding
Conventional genotyping of *cagA* and *vacA* showed no significant difference between patients with gastric cancer and MALT lymphoma. When comparing full protein sequences of CagA and VacA, four novel loci were found on CagA, and three loci were detected on VacA. Significant differences were observed at one CagA locus between gastritis and MALT lymphoma *H. pylori* strains, and at one VacA locus between gastritis and gastric cancer *H. pylori* strains.

Objective
DNA extraction from stool specimens

16S rRNA targeted sequencing on an Illumina MiSeq platform (Illumina; 2 × 300 bp)

Yanagi et al[121]

Objective
H. pylori culture from gastric biopsy specimens

Sequencing on an Illumina HiSeq 2000 and MiSeq platform (Illumina; 2 × 150 bp and 2 × 300 bp)

Hashinaga et al[100]

Objective
H. pylori culture from gastric biopsy specimens

Sequencing on an Illumina MiSeq platform (Illumina)

Miftahussurur et al[126]
Objective	H. pylori culture from gastric biopsy specimens	Sequencing on an Illumina MiSeq platform (Illumina)	Miftahussurur et al. [127]
Characterization of H. pylori strains isolated from 146 patients in Kathmandu, Nepal			
Main finding	Clarithromycin, amoxicillin and tetracycline resistance were low (9.1%, 5.2% and 2.6%). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were found. Metronidazole resistant H. pylori strains showed different rdxA amino acid substitutions, and the 23S rRNA A2147G mutation occurred in clarithromycin resistant H. pylori. However, one clarithromycin resistant H. pylori strain had a novel mutation in rpl22 without an A2147G mutation. Amino acid exchanges at N87 and/or D91 of gyrA were associated with levofloxacin resistance.		
15			

Objective	A metronidazole-resistant strain was cultured from the metronidazole-susceptible H. pylori reference strain 26695 by exposure to low concentrations of metronidazole	Sequencing on an Illumina HiSeq 2000 platform (Illumina: 2 × 90 bp)	Binh et al. [129]
Characterization of wildtype and metronidazole resistant H. pylori reference strain 26695 in order to elucidate the molecular basis of metronidazole resistance and the involved genes in H. pylori			
Main finding			
Mutated sequences in rdxA were successfully transformed into the *H. pylori* reference strain 26695, and the transformants showed resistance to metronidazole. Transformed *H. pylori* isolates containing a single mutation in rdxA showed a low MIC (16 mg/L), while those containing mutations in both rdxA and frxA showed a higher MIC (48 mg/L). Moreover, mutations in rpsU may play a role in metronidazole resistance.

Objective

H. pylori strains were isolated from the members of five families to investigate the microevolution and adaptation of the *H. pylori* genome using next generation sequencing and multi-locus sequence typing.

Main finding

Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous mutations were found in virulence-related genes (cag, vacA, hcpDX, InfA, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes.

Objective

H. pylori strain UM032 was grown on non-selective agar medium.

Main finding

Strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Specifically, 17 methylated sequence motifs corresponding to 1 Type I and 16 Type II R-M systems were found.

Objective

Assessment of the prevalence of *H. pylori* infection and evaluation of human migration patterns in the remote areas of North Sulawesi using next-generation sequencing and multi-locus sequence typing.

Main finding

WJG https://www.wjgnet.com
Their objective, employed sequencing method and main finding is briefly described in the table. *H. pylori*: *Helicobacter pylori*.

CONCLUSION AND POTENTIAL FUTURE DIRECTIONS

During the last years, antibiotic resistance in *H. pylori* has continuously increased, also in Western and Central Europe, where antibiotic resistance has been traditionally considered low. This alarming trend leads to question the usefulness of the currently employed “test-and-treat” strategy and to considered determining *H. pylori*’s antibiotic resistance prior to eradication therapy in order to achieve better treatment efficiency. When considering the current costs for *H. pylori* eradication regimens (Table 2 and Table 3; approximate drug prices from Germany), depending on local
Study	Main finding	Method	Sequencing	Ref.
1	**Objective** Investigation of *H. pylori* evolution during infection and population dynamics inside the gastric environment **Main finding** Phylogenetic analyses suggested location-specific evolution and bacterial migration between gastric regions. Migration was significantly more frequent between the corpus and the fundus than with the antrum, suggesting that physiological differences between antral and oxyntic mucosa contribute to spatial partitioning of *H. pylori* populations. Associations between *H. pylori* gene polymorphisms and stomach niches suggested that chemotaxis, regulatory functions and outer membrane proteins contribute to the specific adaptation to the antral and oxyntic mucosa.	DNA extraction from biopsy specimens **Method** Sequencing on an Illumina HiSeq 2500 platform (Illumina, United States; 2 × 50 bp)	Ailloud *et al.*[123]	
2	**Objective** Single nucleotide polymorphisms (SNPs) were detected in *H. pylori* isolates by whole genome sequencing and their correlation with phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin and rifampicin was assessed **Main finding** Overall, there was high congruence of > 99% between phenotypic drug susceptibility testing results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, *gyrA* and *rpoB* genes. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in *rdxA* and/or *frxA*.	**Method** *H. pylori* culture from gastric biopsy specimens **Sequencing** Sequencing on an Illumina MiSeq platform (Illumina; 2 × 150 bp)	Lauener *et al.*[129]	
3	**Objective** Characterization of polymorphisms in Clarithromycin resistant and susceptible *H. pylori* strains using whole genome sequencing **Main finding** WJG https://www.wjgnet.com September 28, 2019 Volume 25 Issue 32	**Method** *H. pylori* strains grown on solid non-selective agar media **Sequencing** Sequencing on an Illumina HiSeq platform (Illumina; 2 × 150 bp)	Chen *et al.*[133]	
No mutations known to be associated with clarithromycin resistance, except for the controversial T2182C mutation, were detected. Single nucleotide variants (SNVs) in multidrug efflux transporter genes and HP0605 were significantly different between clarithromycin resistant and susceptible H. pylori strains. No significant difference in SNVs of membrane proteins of the RND family or MFS (HP1181) family were found.

Objective
Characterization of the binding ability, adhesion modes, and growth of H. pylori strains isolated from pediatric patients with abdominal pain, gastritis, gastric or duodenal ulcers

Main finding
Increased adhesion capacity of pediatric peptic ulcer disease (PUD) H. pylori strains to human gastric mucins compared to the non-ulcer dyspepsia (NUD) strains both at neutral and acidic pH, regardless if the mucins were positive for Lewis b (Leb), Sialyl-Lewis × (SLex) or LacdiNAc. In addition to babA positive strains being more common among PUD associated strains, H. pylori babA positive strains bound more avidly to gastric mucins than NUD babA positive strains at acidic pH. Binding to Leb was higher among babA positive PUD H. pylori strains compared to NUD strains at neutral, but not acidic, pH. PUD derived babA-knockout mutants had attenuated binding to mucins and Leb at acidic and neutral pH, and to SLex and DNA at acidic pH.

Objective
H. pylori was continuously cultured in vitro under low iron or high salt conditions to characterize fur genetic variation. Moreover, fur sequence variation was assessed in 339 clinical H. pylori strains

Main finding
H. pylori strain B128 isolated from a gastric biopsy of a patient with gastric ulceration was challenged with low/high salt concentrations
Exposure to low iron or high salt selected for a specific single nucleotide polymorphism in the fur gene (FurR88H) in H. pylori. Among the isolates examined, 17% of H. pylori strains isolated from patients with premalignant lesions harbored the FurR88H variant, compared to only 6% of H. pylori strains from patients with non-atrophic gastritis. These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.

Objective

Comparison of homogenization vs enzymatic digestion protocols for DNA extraction from gastric, esophageal and colorectal biopsies and survey of the microbial content and composition using whole genome sequencing.

Main finding

Neither method demonstrated preferential extraction of any particular clade of bacteria, nor significantly altered the detection of Gram-positive or Gram-negative organisms. However, although the overall microbial community composition remained very similar and the most prevalent bacteria could be detected effectively using either method, the precise community structure and microbial abundances between the two methods were different. The homogenization extraction method provided higher microbial DNA content and higher read counts from human tissue biopsy samples of the gastrointestinal tract.

Objective

Whole genome sequencing and comparative analysis of three H. pylori strains isolated from three Arab patients.

Main finding

The three genomes clustered along with HpEurope strains in the phylogenetic tree comprising various H. pylori lineages. The three genomes possessed a complete cag-pathogenicity island with an AB-C type ETYA motif.

Objective

H. pylori strains were isolated from gastric biopsy specimens of patients with chronic gastritis, gastric ulcer, duodenal ulcer and gastric cancer.

Main finding

The three genomes clustered along with HpEurope strains in the phylogenetic tree comprising various H. pylori lineages. The three genomes possessed a complete cag-pathogenicity island with an AB-C type ETYA motif.
Objective	H. pylori strains were isolated from gastric biopsy specimens of patients with non-ulcer dyspepsia, gastric ulcer and duodenal ulcer	Silva et al [102]
Main finding	CagL motifs were highly conserved among the *H. pylori* isolates. CagL E59 and I234 in the C-terminal motif were more common in *H. pylori* isolates from gastric cancer patients. The CagI C-terminal motif was completely conserved across all *H. pylori* isolates	

Objective
Characterization of the expression of virB genes, encoding parts of the type-IV secretion system (T4SS)/Cag-pathogenicity island, in *H. pylori* strains isolated from Western patients with different gastrointestinal malignancies

Main finding
The region spanning from virB2 to virB10 constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions.

Objective	H. pylori culture from gastric biopsy specimens	Thorell et al [104]
Main finding	The Nicaraguan isolates showed a phylogenetic relationship with West African *H. pylori* isolates in whole genome sequence comparison and with Western and urban South- and Central-American isolates using multi-locus sequence analysis. A majority (77%) of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 allele of the vacuolating cytotoxin gene that is linked to increased severity of disease. Moreover, it was found that Nicaraguan isolates have a blood group-binding adhesin (babA) variant highly similar to previously reported babA sequences from Latin America *H. pylori* isolates	

Objective	Characterization of genes associated with biofilm formation in *H. pylori*	Wong et al [105]
Main finding	*H. pylori* reference strain 26695, cagA and Cag-pathogenicity island deletion mutants were cultured	
Genes identified to be associated with biofilm formation in *H. pylori* included alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane proteins and a Cag-pathogenicity island protein (CagPAI). These genes play a role in bacterial motility, lipopolysaccharide synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of *cagA* and CagPAI confirmed that CagA and T4SS were involved in *H. pylori* biofilm formation.

Objective

H. pylori was isolated from a gastroscopic antral biopsy specimen of a 53-year-old male patient with chronic gastritis. Whole genome sequencing was applied to these isolates, and bioinformatic tools were used to investigate the within-host evolution of *H. pylori* isolates.

Main finding

The *H. pylori* genomes fall into two clades, reflecting colonization of the stomach by two distinct strains. The lineages have accumulated diversity during an estimated 2.8 and 4.2 yr of evolution. Around 150 clear recombination events between the two clades were found. Imputed ancestral sequences also showed evidence of recombination between the two strains prior to their diversification, and it was estimated that they have both been infecting the same host for at least 12 yr.

Objective

Sequencing on an Illumina MiSeq platform (Illumina; 2 × 150 bp)

Nineteen *H. pylori* clinical isolates were isolated from gastric epithelium biopsy specimens

Main finding

In *H. pylori* strains specific point mutations in the 23S rRNA gene were found. In addition, genetic variants of four gene clusters (hp0605-hp0607, hp0971-hp0969, hp1327-hp1329, and hp1489-hp1487) of efflux pumps homologues, which have been previously implicated in multi-drug resistance, were found.

Nineteen *H. pylori* clinical isolates were isolated from a gastroscopic antral biopsy specimen of a patient with chronic gastritis

Main finding

Sequencing on an Illumina MiSeq platform (Illumina; 2 × 300 bp)
Page	Objective	Method	Finding
14	H. pylori reference strain 26695 was used as amoxicillin-sensitive reference strain and as parental strain to create in vitro resistant H. pylori isolates	Sequencing on an Illumina Genome Analyzer (Illumina)	Qureshi et al. [130]
15	H. pylori reference strain 26695 and H. pylori strain J99 were grown on solid non-selective agar media	Sequencing on a PGM (Ion Torrent, Thermo Fischer Scientific, United States) and an Illumina MiSeq platform (Illumina)	Perkins et al. [156]

Their objective, employed sequencing method and main finding is briefly described in the table. H. pylori: Helicobacter pylori.

Resistance rates, initial molecular determination of H. pylori drug susceptibility may be cost efficient, especially, when considering that costs for PCR assays (< 20 EUR) and WGS (< 100 EUR) have consistently decreased over the last years. In contrast, endoscopy (100-250 EUR) and H. pylori culture-based phenotypic DST (80-100 EUR) remains costly.

However, in order to determine drug resistance phenotypes prior to the administration of antibiotics, resistance information must be more rapidly available, ideally with non-invasive methods that do not require endoscopy. Diagnostic methods, like line probe assays or culture based phenotypic DST, that provide drug resistance
resistance information have long turn-around-times and require a gastric biopsy that can just be obtained by invasive endoscopy. In contrast, currently available, non-invasive diagnostic methods can only detect resistance mutations in the 23S rRNA gene of *H. pylori* (e.g., PCR from stool). This may be insufficient in areas with high metronidazole resistance or if levofloxacin- or rifampicin-based regimens have to be administered to patients. Our literature search yielded studies that focused on the prediction of drug resistance phenotypes based on the presence of certain point mutations in the *H. pylori* genome. However, all of these studies used culture *H. pylori* isolates or DNA extraction from gastric biopsy specimens. In an effort to decrease turn-around-times and apply diagnostic workflows that do not require endoscopy, future studies should aim at detecting *H. pylori* and associated resistance mutations directly from clinical specimens (gastric biopsies or stool) using meta-genomic and/or meta-transcriptomic sequencing. Our literature search yielded primary research articles that have successfully applied WGS directly on gastric biopsies for the detection of *H. pylori*.

One major limitation for the cost-effectiveness and feasibility of clinical meta-genomic and meta-transcriptomic sequencing has always been the rather big amounts of RNA or DNA required for subsequent library preparation and high human DNA background requiring deep sequencing. There has been the rather big amounts of RNA or DNA required for subsequent library preparation and high human DNA background requiring deep sequencing. There has been tremendous development in this area, and in-house developed[144,145] and commercial protocols [e.g., RiboZero (Illumina), RiboGold (Illumina), MICROBExpress (Ambion, Invitrogen)] are becoming available for the depletion of human DNA or the enrichment of bacterial DNA prior to performing WGS, thereby increasing the efficiency and cost-effectiveness of NGS due to less human DNA background in clinical specimens.

In conclusion, NGS technology has opened up new avenues for the characterization of complex microbial communities, including those associated with *H. pylori* associated gastrointestinal disease. Particularly exciting is the promise of culture-independent approaches to *H. pylori* detection and assessment of antibiotic resistance. In the diagnostic laboratory, NGS may enable the implementation of rapid and accurate genotypic DST prior to the administration of antimicrobial therapy for *H. pylori* eradication.

REFERENCES

1. Redlinger T, O’Rourke K, Goodman KJ. Age distribution of Helicobacter pylori seroprevalence among young children in a United States/Mexico border community: Evidence for transitory infection. *Am J Epidemiol*. 1999; 150: 225-230 [PMID: 10430225 DOI: 10.1093/oxfordjournals.aje.a009991]

2. Hunt RH, Xiao SD, Meisner F, Leon-Barua R, Bazzoli F, van de Merwe S, Vaz Coelho LG, Fock M, Fedail S, Cohen H, Malfertheiner P, Vakil N, Hamid S, Goh KL, Wong BC, Krabshuis J, Le Mair A. World Gastroenterology Organization. Helicobacter pylori in developing countries. *World Gastroenterology Organisation Global Guideline*. *J Gastrointestin Liver Dis* 2011; 20: 299-304 [PMID: 21961099 DOI: 10.1097/MCG.0b013e31820b8846]

3. Bruce MG, Maaroos HI. Epidemiology of Helicobacter pylori infection. *Helicobacter* 2008; 13 Suppl 1: 1-6 [PMID: 18783514 DOI: 10.1111/j.1523-5378.2008.00631.x]

4. Bastos J, Peleteiro B, Barros R, Alves L, Severo M, de Fátima Pina M, Pinto H, Carvalho S, Marinho A, Gutiérrezes JT, Acevedo A, La Vecchia C, Barros H, Luan N. Sociodemographic determinants of prevalence and incidence of Helicobacter pylori infection in Portuguese adults. *Helicobacter* 2013; 18: 413-422 [PMID: 23725608 DOI: 10.1111/hel.12061]

5. Gruber D, Pohl D, Vavricka S, Stutz B, Fried M, Tuthian R. Swiss tertiary care centro experience challenges the age-cohort effect in Helicobacter pylori infection. *J Gastrointestin Liver Dis* 2008; 17: 373-377 [PMID: 19104695 DOI: 10.5167/uzh-10809]

6. van Blankenstein M, van Vuuren AJ, Looman CW, Owendijk M, Kuipers EJ. The prevalence of Helicobacter pylori infection in the Netherlands. *Scand J Gastroenterol* 2013; 48: 794-800 [PMID: 23795659 DOI: 10.3109/00395928.2013.799221]

7. den Hollander WA, Holster JL, den Hoed CM, van Deuren F, van Vuuren AJ, Juddo VW, Hofman A, Perez Perez GI, Blasser MJ, Moll HA, Kuipers EJ. Ethnicity is a strong predictor for Helicobacter pylori infection in young women in a multi-ethnic European city. *J Gastroenterol Hepatol* 2013; 28: 1705-1711 [PMID: 23808840 DOI: 10.1111/jgh.12315]

8. Franck C, Hoffmann A, Link A, Schulz C, Wuttig K, Becker E, Heim M, Venerito M, Malfertheiner P. Prevalence of Helicobacter pylori infection among blood donors in Saxony-Anhalt, Germany - a region at intermediate risk for gastric cancer. *Z Gastroenterol* 2017; 55: 653-656 [PMID: 28437803 DOI: 10.1055/s-0043-1710631]

9. Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. *Helicobacter* 2014; 19 Suppl 1: 1-5 [PMID: 25167935 DOI: 10.1111/hel.12165]

10. Bistigler C, Stadlmann A, Makristathis A, Thannesberger J, Kastner MT, Knofflach P, Steinert P, Schöniger-Hekele M, Högenauer C, Bissel A, Datz C, Huber-Schönauer U, Schütz R, Weikl R, Püspök B, Mitrovits N, Leiner J, Tilg H, Effenberger M, Moser M, Siebert F, Hinterberger I, Wurzer H, Stupnicki T, Watzinger N, Gombotz G, Hubmann R, Klimpel S, Biowski-Frotz S, Schrutka-Kölbl C, Graziadei I, Kastner MT, Klöcker P, Wewalka F, Püspök B. Prevalence of Helicobacter pylori infection among blood donors in Saxony-Anhalt, Germany - a region at intermediate risk for gastric cancer. *Z Gastroenterol* 2017; 55: 653-656 [PMID: 28437803 DOI: 10.1055/s-0043-1710631]

11. Lehmann FS, Remmer EL, Meyer-Wyss B, Wilder-Smith CH, Mazzucchelli L, Ruchi C, Drew J,
Beglinger C, Merki HS. Helicobacter pylori and gastric cancers. Results of a prevalence study in asymptomatic volunteers. Digestion 2000; 62: 82-86 [PMID: 11025554 DOI: 10.1159/000047799]

12 Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoaka Y, Mégraud F, Otto K, R.M. and U; Katzwisch F, Wang X, Achtmann M, Suerbaum S. Traces of human migrations in Helicobacter pylori populations. Science 2003; 299: 1582-1585 [PMID: 12624269 DOI: 10.1126/science.1080857]

13 Linz B, Bailoux F, Moodyley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW, Yamaoaka Y, Graham DY, Perez-Trallero E, Wadstrom T, Suerbaum S, Achtmann M. An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007; 445: 915-918 [PMID: 17287725 DOI: 10.1038/nature05562]

14 Moodyley Y, Linz B, Yamaoaka Y, Windsor HM, Breurec S, Wu JY, Maady A, Berhöft S, Thibierge JM, Phuanukoonnon S, Jobb G, Siba P, Graham DY, Marshall BJ, Achtmann M. The peopling of the Pacific from a bacterial perspective. Science 2009; 323: 527-530 [PMID: 19164753 DOI: 10.1126/science.1166083]

15 Moodyley Y, Linz B, Bond RP, Nieuwoudt M, Soodyall H, Schlebusch CM, Berhöft S, Hale J, Suerbaum S, Mugisha L, van der Merwe SW, Achtmann M. Age of the association between Helicobacter pylori and man. PLoS Pathog 2012; 8: e1002693 [PMID: 22589724 DOI: 10.1371/journal.ppat.1002693]

16 Dooley CP, Cohen H, Fitzgibbons PL, Baurer M, Appleman MD, Perez-Perez GI, Blaser MJ. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med 1989; 321: 1562-1566 [PMID: 2586553 DOI: 10.1056/NEJM198912073212302]

17 Fischbach M, Malfertheiner P, Olsen PL, Bolten W, Borsheim J, Buererus S, Glover E, Hoffmann JC, Koletzko S, Labenz J, Mayerle J, Miedkhe S, Moesner J, Peitz U, Prinz C, Sedlar M, Suerbaum S, Venerito M, Vieh M. S2K-Leitlinie Helicobacter pylori und gastroduodenale Ulkuskrankheit. Zeitschrift für Gastroenterologie 2016; 54: 327-363 [DOI:10.1055/a-0042-102967]

18 Pellicano R, Ribaldone DG, Fagoonee S, Astegiano M, Saracco GM, Megraud F. A 2016 panorama of Helicobacter pylori infection: Key messages for clinicians. Panminerva Med 2016; 58: 304-317 [PMID: 22716738]

19 Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: Systematic review and meta-analysis of randomised controlled trials. BMJ 2014; 348: g1374 [PMID: 24846275 DOI: 10.1136/bmj.g1374]

20 Ma JL, Zhang L, Brown LM, Li JJY, Shen L, Khan F, Liu WD, Hu Y, Han ZX, Crystal-Mansour S, Pe D, Blot WJ, Fraumeni JF, You WC, Gail MH. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 2012; 104: 488-492 [PMID: 22177164 DOI: 10.1093/jnci/djs003]

21 Lane JA, Murray LJ, Noble S, Egger M, Harvey JM, Donovan JL, Nair P, Harvey RF. Impact of Helicobacter pylori eradication on dyspepsia, health resource use, and quality of life in the Bristol helicobacter project: Randomised controlled trial. BMJ 2006; 332: 199-204 [PMID: 16428249 DOI: 10.1136/bmj.38702.662546.55]

22 Moayyedi P, Feltbower R, Brown J, Mason S, Mason J, Nathan J, Richards ID, Dowell AC, Axon AT. Effect of population screening and treatment for Helicobacter pylori on dyspepsia and quality of life in the community: A randomised controlled trial. Leeds HELP Study Group. Lancet 2000; 355: 1665-1669 [PMID:10990524 DOI:10.1016/S0140-6736(00)02224-6]

23 Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Peitz U, Prinz C, Pulvirenti A, Sauerbrey G, Suerbaum S, Venerito M, Vieh M. S2K-Leitlinie Helicobacter pylori und gastroduodenale Ulkuskrankheit. Zeitschrift für Gastroenterologie 2016; 54: 327-363 [DOI:10.1055/a-0042-102967]

24 Lanegård MS, Salvesen J, Vistrup L, Cato H, van der Merwe SW, Achtman M. Age of the association between Helicobacter pylori and man. PLoS Pathog 2012; 8: e1002693 [PMID: 22589724 DOI: 10.1371/journal.ppat.1002693]

25 Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1: 56-66 [PMID: 17805667 DOI: 10.1111/j.1751-736X.2007.00002.x]

26 Zanotti G, Cendron L. Structural Aspects of Helicobacter pylori Antibiotic Resistance. Adv Exp Med Biol 2019 [PMID: 31016632 DOI: 10.1007/978-3-030-16593-8_16] DOI:10.1007/978-3-030-16593-8_16]

27 Wueppenhorst N, Stueger HP, Kist M, Glocker E. Identification and molecular characterization of triple-and quadruple-resistant Helicobacter pylori clinical isolates in Germany. J Antimicrob Chemother 2009; 63: 648-653 [PMID: 19190100 DOI: 10.1093/jac/dkp003]

28 Kist M, Glocker E. Identification and molecular characterization of triple- and quadruple-resistant Helicobacter pylori clinical isolates in Germany. J Antimicrob Chemother 2011; 66: 222-223 [PMID: 21951371 DOI: 10.1093/jac/dkr405]

29 Buzás GM. First-line eradication of Helicobacter pylori: Are the standard triple therapies obsolete? A different perspective. World J Gastroenterol 2010; 16: 3865-3870 [PMID: 20712046 DOI: 10.3748/wjg.v16.i31.3865]

30 Thung I, Azamia H, Vavinshaya K, Gupta S, Park JY, Crowe SE, Valekase MA. Review article: The global emergence of Helicobacter pylori antibiotic resistance Antimicrob Resist Ther 2016; 43: 514-533 [PMID: 26694080 DOI: 10.1111/aprt.13497]

31 Shao Y, Lu R, Yang Y, Xu Q, Wang B, Ye G. Antibiotic resistance of Helicobacter pylori to 16 antibiotics in clinical patients. J Clin Lab Anal 2018; 32: e22339 [PMID: 28994385 DOI: 10.1002/jcla.22339]

32 De Francesco V, Giorgio F, Hassan C, Munes G, Vannella L, Papinelli C, Ierardi E, Zullo A, Worldwide H pylori antibiotic resistance: A systematic review. J Gastroenteritis Liver Dis 2010; 19: 409-414 [PMID: 21188333 DOI: 10.1111/j.1440-1746.2010.06571.x]

33 Megraud F, Coenen S, Vosporten A, Kist M, Lopez-Brea M, Hirschli AM, Andersen LP, Goesken H, Glupczynski Y; Study Group participants. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 2013; 62: 34-42 [PMID: 22580412 DOI: 10.1136/gutjnl-2012-302564]
Dore MP, Leandro G, Realdi G, Sepulveda AR, Graham DY. Effect of pretreatment antibiotic resistance to metronidazole and clarithromycin on outcome of Helicobacter pylori therapy: A meta-analytical approach. Dig Dis Sci 2000; 45: 68-76 [PMID: 10695516 DOI: 10.1023/A:1005457226341]

Migraud F. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004; 53: 1374-1384 [PMID: 15306603 DOI: 10.1136/gut.2003.022111]

Saracino DM, Zullo A, Holton J, Castelli V, Fiorini G, Zaccaro C, Rioda L, Ricci G, Gatta L, Vaira D. High prevalence of primary antibiotic resistance in Helicobacter pylori isolated in italy. J Gastrointestin Liver Dis 2012; 21: 363-365 [PMID: 22356118 DOI: 10.4061/2012/363365]

Boylanova L, Nikolov R, Gergova G, Evtiatiev I, Lazarova E, Kamburov V, Panteleeva E, Spassova Z, Mitov I. Two-decade trends in primary Helicobacter pylori resistance to antibiotics in Bulgaria. Diagn Microbiol Infect Dis 2010; 67: 319-326 [PMID: 20638598 DOI: 10.1016/j.diagmicrobio.2010.03.010]

Cuadrado-Lavin A, Salcines-Carviedo JE, Carrascosa MF, Mellado P, Montagueado I, Llorca J, Cobo M, Campos MR, Ayestaran B, Fernandez-Pousa A, Gonzalez-Coimbras E. Antibiotic susceptibility of Helicobacter pylori to six antibiotics currently used in Spain. J Antimicrob Chemother 2012; 67: 170-173 [PMID: 21956436 DOI: 10.1093/jac/dcl420]

Wolle K, Leoderlter A, Malfertheiner P, König W. Antibiotic susceptibility of Helicobacter pylori in Germany: Stable primary resistance from 1995 to 2000. J Med Microbiol 2002; 51: 795-797 [PMID: 12171304 DOI: 10.1099/jmm.0.03555-0]

Petersen AM, Gjøde P, Vinge OD, Jensen S, Kroglek KA. Helicobacter pylori antimicrobial resistance and risk factors in Denmark 1998-2004: No need for concern? Helicobacter 2006; 11: 210-211 [PMID: 16684270 DOI: 10.1111/j.1525-3778.2006.00402.x]

Hooton C, Dempsey C, Keohane J, O’Mahony S, Crockbie O, Lacey B. Helicobacter pylori: Prevalence of antimicrobial resistance in clinical isolates. Br J Biomed Sci 2006; 63: 113-116 [PMID: 17058710 DOI: 10.1080/096744846.2006.11372370]

Storskrubb T, Aro P, Runkainen J, Weiher K, Nyhlin H, Bolling-Sternevald E, Taljegy NJ, Engström L, Agranus L. Antimicrobial susceptibility of Helicobacter pylori strains in a random adult Swedish population. Helicobacter 2006; 11: 224-230 [PMID: 16882214 DOI: 10.1111/j.1525-3778.2006.00414.x]

Agudo S, Alarcón-T, Cibes T, Urrozpe P, Martin J, Lopez-Brea M. [High percentage of clarithromycin and metronidazole resistance in Helicobacter pylori clinical isolates obtained from Spanish children]. Rev Esp Quimioter 2009; 22: 88-92 [PMID: 19544100]

Toracchio S, Capodicasa S, Soraja DB, Cellini L, Marzio L. Rifabutin based triple therapy for eradication of H pylori primary and secondary resistant to tinidazole and clarithromycin. Dig Liver Dis 2005; 37: 33-38 [PMID: 15702857 DOI: 10.1016/j.dld.2004.09.008]

Gisbert JP, Bermejo F, Castro-Fernández M, Pérez-Aisa A, Fernández-Bermejo M, Tomas A, Barrio J, Bory F, Almela P, Sánchez-Pobre P, Cosme A, Ortiz V, Niño P, Khorrami S, Benito LM, Carneros JA, Lamas E, Modello I, Franco A, O'Callaghan E, Fonce J, Vaira D, Valer MP, Calvet X, Helicobacter pylori Study Group of the Asociación Española de Gastroenterología. Second-line rescue therapy with levofloxacin after H pylori treatment failure: A Spanish multicenter study of 300 patients. Am J Gastroenterol 2008; 103: 71-76 [PMID: 17764498 DOI: 10.1111/j.1572-0241.2007.03150.x]

Ford AC, Malfertheiner P, Giguerre M, Santana J, Khan M, Mooyedi P. Adverse events with bismuth salts for Helicobacter pylori eradication: Systematic review and meta-analysis. World J Gastroenterol 2008; 14: 7361-7370 [PMID: 19190870 DOI: 10.3748/wjg.v14.i43.7361]

Zullo A, Perna F, Hassan C, Ricci C, Saracino I, Morini S, Vaira D. Primary antibiotic resistance in Helicobacter pylori strains isolated in northern and central Italy. Aliment Pharmacol Ther 2007; 25: 1429-1434 [PMID: 17539982 DOI: 10.1111/j.1365-2036.2007.03331.x]

Debets-Ossenkopp YJ, Herscheid AJ, Pot RG, Kuipers EJ, Kusters JG, Vandenvoorde-Gruuls CM. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxicillin, tetracycline and trovafloxacin in the Netherlands. J Antimicrob Chemother 1999; 43: 511-515 [PMID: 10350380 DOI: 10.1093/jac/43.4.511]

Selgrad M, Tammer I, Langner C, Bornschein J, Meißle J, Kandulski A, Varbanova M, Wex T, Schlüter T, Storskrubb T and trovafloxacin in The Netherlands. J Antimicrob Chemother 2012; 69: 1624-1625 [PMID: 25473179 DOI: 10.1093/jac/dks430]

Parsons HK, Carter MJ, Sanders DS, Winstanley T, Lobo AJ. Helicobacter pylori antimicrobial resistance in the United Kingdom: The effect of age, sex and socio-economic status. Aliment Pharmacol Ther 2001; 15: 1473-1478 [PMID: 11552941 DOI: 10.1006/1365-2036.2001.01066x]

Ierardi E, Giorgio F, Losurdo G, Di Leo A, Principi M. How antibiotic resistances could change Helicobacter pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004; 53: 705-709 [PMID: 15702857 DOI: 10.1111/j.1365-2036.2004.03455.x]

Graham DY, Lee SY. How to Effectively Use Bismuth Quadruple Therapy: The Good, the Bad, and the Ugly. Gastroenterol Clin North Am 2015; 44: 537-561 [PMID: 25150053 DOI: 10.1016/j.gtc.2015.05.003]

Bayerdörfler E, Oertel H, Lehn N, Kasper G, Maness GA, Sauerbruch T, Stolte M. Topographic association between active gastritis and Campylobacter pylori colonisation. J Clin Pathol 1989; 42: 834-839 [PMID: 2768523 DOI: 10.1136/jcp.42.8.834]

COX AJ. Stomach size and its relation to chronic peptic ulcer. AM J Pathol 1952; 54: 407-422 [PMID: 1299673]

Pellicano R, Stredile A, Ponzetto A, Berrutti M, Argelisi S, Saracco G, De Angelis C, Repici A, Morgando A, Abate ML, Fagoneee S, Rizzotto M. How accurate is the culture of Helicobacter pylori in a clinical setting? An appraisal. Panminerva Med 2005; 47: 191-194 [PMID: 16462727 DOI: 10.1126/jp.15236-4637.2005.00064.x]

Yahez P, La Garza AM, Pérez-Pérez G, Cabrera L, Muñoz O, Torres J. Comparison of invasive and noninvasive methods for the diagnosis and evaluation of eradication of Helicobacter pylori infection in children. Arch Med Res 2000; 31: 415-421 [PMID: 11068086 DOI: 10.1016/S0188-4409(00)00087-4]

Brandi G, Biavati B, Calabrese C, Granata M, Nannetti A, Mattarelli P, Di Febo G, Saccoccio G, Biasco G. Urease-positive bacteria other than Helicobacter pylori in human gastric juice and mucosa. AM J Gastroenterol 2006; 101: 1756-1761 [PMID: 16780553 DOI: 10.1111/j.1572-0241.2006.00698.x]
Monteiro L, de Mascarel A, Sarraueta AM, Barbery G, Barbasir C, Talpy P, Roux D, Shouler L, Goldfain D, Lamouliatte H, Mégraud F. Diagnosis of Helicobacter pylori infection: Noninvasive methods compared to invasive methods and evaluation of two new tests. Am J Gastroenterol 2001; 96: 353-358 [PMID: 11523675 DOI: 10.1111/j.1572-0241.2001.03518.x]

Tseng CA, Wang WM, Wu DC. Comparison of the clinical feasibility of three rapid urease tests in the diagnosis of Helicobacter pylori infection. Dig Dis Sci 2005; 50: 449-452 [PMID: 15810624 DOI: 10.1007/s10620-005-2456-5]

Hirsch AM, Makristathis A. Methods to detect Helicobacter pylori: From culture to molecular biology. Helicobacter 2007; 12 Suppl 2: 6-11 [PMID: 17999170 DOI: 10.1111/j.1572-0241.2007.00560.x]

Thomas JE, Gibson GR, Darboe MK, Dale A, Weaver LT. Isolation of Helicobacter pylori from human faeces. Lancet 1992; 340: 1194-1195 [PMID: 13592630 DOI: 10.1016/0140-6736(92)92894-L]

Ferguson DA, Li C, Patel MR, Mayberry WR, Chi DS, Thomas E. Isolation of Helicobacter pylori from saliva. J Clin Microbiol 1993; 31: 2802-2804 [PMID: 823399 DOI: 10.1128/JCM.31.11.2937-2939.1993]

Krajtes S, Fuksa M, Anderson J, Kempston J, Bocca A, Petrea C, Babida C, Karolmata M, Penner JL. Examination of human stomach biopsies, saliva, and dental plaque for Campylobacter pylori. J Clin Microbiol 1989; 27: 1397-1398 [PMID: 2754008]

Mégraud F, Lehoux P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 2007; 20: 280-322 [PMID: 17428887 DOI: 10.1128/CMR.00033-06]

Thijs JC, van Zwaan AA, Thijs WJ, Oey HB, Karrenbeld A, Stellarda F, Luijt DS, Meyer BC, Kleibeuker JH. Diagnostic tests for Helicobacter pylori: A prospective evaluation of their accuracy, without selecting a single test as the gold standard. Am J Gastroenterol 1996; 91: 2125-2129 [PMID: 8855734]

Ogata SK, Kawakami E, Patricio FR, Pedroso MZ, Santos AM. Evaluation of invasive and non-invasive methods for the diagnosis of Helicobacter pylori infection in symptomatic children and adolescents. Sao Paulo Med J 2001; 119: 67-71 [PMID: 11276169 DOI: 10.1590/S1516-31802001000200006]

Yang BL, Yeh C, Kwong WG, Lee SD. A novel one-step Helicobacter pylori saliva antigen test. J Chin Med Assoc 2015; 78: 96-100 [PMID: 25555533 DOI: 10.1016/j.jcma.2014.11.004]

Katsuragi K, Noda A, Tachikawa T, Arzama A, Mukan F, Murakami K, Fujikoa T, Kato M, Asaka M. Highly sensitive urine-based enzyme-linked immunosorbent assay for detection of antibody to Helicobacter pylori. Helicobacter 1998; 3: 289-295 [PMID: 9844071 DOI: 10.1046/j.1523-5378.1998.00804.x]

Korkmaz H, Kesli R, Kartalaghi P, Terzi Y. Comparison of the diagnostic accuracy of five different stool antigen tests for the diagnosis of Helicobacter pylori infection. Helicobacter 2013; 18: 384-391 [PMID: 23551920 DOI: 10.1111/hel.12052]

Wu DC, Kuo CH, Lu CY, Su YC, Yu FJ, Lee YC, Lin SR, Liu CS, Jan CM, Wang WM. Evaluation of an office-based urine test for detecting Helicobacter pylori—a Prospective Pilot Study. Hepatogastroenterology 2001; 48: 614-617 [PMID: 11462887 DOI: 10.1080/03905014.2001.10642932]

Hooton C, Keohane J, Clarr J, Arzum A, O'Mahony S, Croubies O, Lucey B. Comparison of stool antigen assays with the 13C- urea breath test for the primary diagnosis of Helicobacter pylori infection and monitoring treatment outcome. Eur J Gastroenterol Hepatol 2006; 18: 595-599 [PMID: 16702847 DOI: 10.1097/00042737-200606000-00004]

Yuen B, Zhbinen R, Fried M, Bauerfeind P, Bernardi M. Cultural recovery and determination of antimicrobial susceptibility in Helicobacter pylori by using commercial transport and isolation media. Infection 2005; 33: 77-81 [PMID: 15827875 DOI: 10.1007/s10530-005-0477-y]

Owen RJ. Molecular testing for antibiotic resistance in Helicobacter pylori. Gut 2002; 50: 285-289 [PMID: 11839700 DOI: 10.1136/gut.50.3.285]

Redondo JJ, Keller PM, Zhbinen R, Wagner K. A novel RT-PCR for the detection of Helicobacter pylori and identification of clarithromycin resistance mediated by mutations in the 23S rRNA gene. Diagn Microbiol Infect Dis 2018; 90: 1-6 [PMID: 29111147 DOI: 10.1016/j.diagmicrobio.2017.09.014]

Schabereiter-Gurtner C, Hirsch AM, Dragobics B, Hufnagl P, O'Mahony S, Crobbie O, Lucey B. Comparison of three stool antigen assays with the 13C-urea breath test for the primary diagnosis of Helicobacter pylori infection and monitoring treatment outcome. J Clin Microbiol 2017; 55: 2400-2405 [PMID: 28512519 DOI: 10.1128/CM.00596-17]

Lottspeich C, Schwarzner A, Panthel K, Koletzko S, Rüsmann H. Evaluation of the novel Helicobacter pylori ClarRes real-time PCR assay for detection and clarithromycin susceptibility testing of H. pylori in stool specimens from symptomatic children. J Clin Microbiol 2007; 45: 1718-1722 [PMID: 17392440 DOI: 10.1128/JCM.00103-07]

Veesel A, Innerhofer A, Binder C, Gianci H, Hammer K, Bruckdorfer A, Riedl S, Gaden H, Hirsch AM, Makristathis A. Stool polymerase chain reaction for Helicobacter pylori pylori detection and clarithromycin susceptibility testing in children. Clin Microbiol Infect Dis 2010; 8: 309-312 [PMID: 20005978 DOI: 10.1016/j.cmi.2009.12.002]

Scalitsky IC, Aranda KR, Garcia GT, Gonçalves ME, Cardoso SR, Iriya K, Silva NP. Application of real-time PCR stool assay for Helicobacter pylori detection and clarithromycin susceptibility testing in Brazilian children. Helicobacter 2011; 16: 311-315 [PMID: 21762271 DOI: 10.1111/j.1523-5378.2011.00845.x]

Cambut A, Allerheiligen V, Coulon C, Corbel C, Lascols C, Deforges L, Sousy CJ, Delcher JC, Megraud F. Evaluation of a new test, genotype HelicoDR, for molecular detection of antibiotic resistance in Helicobacter pylori. J Clin Microbiol 2009; 47: 3600-3607 [PMID: 19750218 DOI: 10.1128/JCM.00744-09]

Brennan DE, Omorogbe J, Hussey M, Tighe D, Hollaran G, O'Morain C, Smith SM, McNamara D. Molecular detection of Helicobacter pylori pylori antibiotic resistance in stool vs biopsy samples. World J Gastroenterol 2016; 22: 9214-9221 [PMID: 27895408 DOI: 10.3748/wjg.v22.i35.9214]

Gisbert JP, González L, Calvet X, García N, López T, Roqué M, Gabriel R, Pajares JM. Proton pump inhibitor, clarithromycin and either amoxicillin or nitroimidazole: A meta-analysis of eradication of Helicobacter pylori. Aliment Pharmacol Ther 2000; 14: 1319-1328 [PMID: 11012477 DOI: 10.1046/j.1365-2036.2000.00844.x]

Fallone CA, Moss SF, Malfertheiner P. Reconciliation of Recent Helicobacter pylori Treatment Guidelines in a Time of Increasing Resistance to Antibiotics. Gastroenterology 2019; 157: 44-53 [PMID: 30861235]
Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter.

Front Microbiol

The Helicobacter pylori Heat-Shock Repressor HspR: Definition of Its Direct Regulon and Protection and gastric colonization.

Helicobacter: e12490 [PMID: 29696729 DOI: 10.3389/fmicb.2018.01201]

Marcus EA

pylori Genes Encoding Outer Membrane Proteins.

Infect Immun: pii: e00626-17 [PMID: 27270980 DOI: 10.1128/IAI.00626-17]

Bischler T

methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori.

MBio 9: pii: e01973-18 [PMID: 30377283 DOI: 10.1128/mBio.01973-18]

Wong EH

Familial Infection.

PLoS One 10: e0166835 [PMID: 27870886 DOI: 10.1371/journal.pone.0166835]

Yoshikawa H, Kamiya S, Kobayashi I. Microevolution of Virulence-Related Genes in Helicobacter pylori

PLoS One 9: e0182947 [PMID: 2879710 DOI: 10.1371/journal.pone.0182947]

Yamaoka Y. Differences in amino acid frequency in CagA and vacA sequences of Helicobacter pylori distinguish gastric cancer from gastric MALT lymphoma.

Gut Pathog 2016; 8: 54 [PMID: 27833662 DOI: 10.1186/s13099-016-0137-x]

Ogawa H, Iwamoto A, Tanahashi T, Okada R, Yamamoto K, Nishiumi S, Yoshida M, Azuma T. Genetic variants of Helicobacter pylori type IV secretion system components Cagl and Cagl and their association with clinical outcomes. Gut Pathog 2017; 9: 21 [PMID: 28493906 DOI: 10.1186/s13099-017-0165-1]

Silva B, Nunes A, Vale FF, Rocha R, Gomes JP, Dias R, Oleastro M. The expression of Helicobacter pylori pylit plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion. Helicobacter 2017; 22 [PMID: 28436598 DOI: 10.1111/hgc.12390]

Aftab H, Misbahussurur M, Subsombong P, Ahmed F, Khan AKA, Matsumoto T, Suzuki R, Yamaoka Y. Two populations of less-virulent Helicobacter pylori genotypes in Bangladesh. PLoS One 2017; 12: e0182947 [PMID: 2879710 DOI: 10.1371/journal.pone.0182947]

Furuta Y, Komma M, Osaki T, Yonezawa H, Ishige T, Imai M, Shiwata M, Kishida T, Kusumi S. Effect of dietary factors on the expression of Helicobacter pylori in the stomach mucosa. Gut Pathog 2015; 10: e0127197 [PMID: 25978460 DOI: 10.1371/journal.pone.0127197]

Wong EH, Ng CG, Chua EG, Tan AC, Peters F, Marshall BJ, Ho B, Goh KL, Vadivelu J, Loke MF. Comparative Genomics Revealed Multiple Helicobacter pylori Genes Associated with Biofilm Formation. Viruses. PLoS One 2016; 11: e0168830 [PMID: 27370836 DOI: 10.1371/journal.pone.0168830]

Haithouni S, Zerebinski J, Ottemann KM. Helicobacter pylori Biofilm Involves a Multigene Stress-Response Gene Cluster: Identification of a Multicyclic Stress Response Pathway that Distinguishes Helicobacter pylori from Other Helicobacter Species. Gut Pathog 2014; 6: e000037 [PMID: 27747470 DOI: 10.1186/s13099-014-0003-7]

Estibariz I, Overmann A, Allioud F, Krebes J, Josenhans C, Suerbaum S. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res 2019; 47: 2336-2348 [PMID: 30624738 DOI: 10.1093/nar/gkx1307]

Bischler T, Hsieh PK, Rodsh M, Liu Q, Tan HS, Foley PL, Hartleib A, Sharma CM, Belasco JG. Identification of the RNA Pyrophosphohydrolase Rpplf of Helicobacter pylori and Global Analysis of Its RNA Targets. J Biol Chem 2017; 292: 1934-1950 [PMID: 27945848 DOI: 10.1074/jbc.M116.761711]

Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, Chua EG, Tay CY, Thirriot L, Loke MF, Goh KL, Marshall BJ, Roberts RJ, Vadivelu J. The complete methylome of Helicobacter pylori U032D. BMC Genomics 2015; 16: 424 [PMID: 26531894 DOI: 10.1186/s12864-015-1585-2]

Redko Y, Galtier E, Arnion H, Darfeuille F, Sismeiro O, Coppée JY, Médiougue C, Weinman M, Cruveiller S, De Reuse H. RNase J depletion leads to massive changes in mRNAs and m6A levels in Helicobacter pylori. RNA Biol 2016; 13: 243-253 [PMID: 26772680 DOI: 10.1080/15476268.2016.1132141]

Loh JT, Beckett AC, Scholz MB, Cover TL. High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 2018; 86: pii: e00626-17 [PMID: 28229722 DOI: 10.1128/IAI.00626-17]

Marcus EA, Sachs G, Scott DR. Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 2018; 23: e12490 [PMID: 29696729 DOI: 10.1111/hjc.12490]

Pepe S, Pinatel E, Fiore E, Puccio S, Peano C, Brignolli T, Vannini A, Danielli A, Scarlato V, Roncarati D. The Helicobacter pylori Heat-Shock Repressor HprR: Definition of Its Direct Regulation and Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter. Front Microbiol
Han B, Zhang Z, Xie Y, Hu X, Wang H, Xia W, Wang Y, Li H, Wang Y, Sun H. Multi-omics and temporal dynamics profiling reveal reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. *Chem Sci* 2018; 9: 7488-7497. DOI: 10.1039/c8sc00616b

Vannini A, Pinatel E, Costantini PE, Pelliciari S, Roncadori D, Puccio S, De Bellis G, Peano C, Danielli A. Comprehensive mapping of the Helicobacter pylori NixR regulon provides new insights in bacterial nickel responses. *Sci Rep* 2017; 7: 45458. DOI: 10.1038/srep45458

Thorelli K, Bengtsson-Palme J, Liu OH, Palmacci Gonzales RV, Nookaew I, Rabeneck L, Paszat L, Graham DV, Nielsen J, Lundin SB, Sjöling A. In Vivo Analysis of the Viable Microbiota and Helicobacter pylori Transcription in Gastric Infection and Early Stages of Carcinogenesis. *Infect Immun* 2017; 85: pii: e00317-17. DOI: 10.1128/IAI.00317-17

Han HS, Lee SY, Oh SY, Moon HW, Cho H, Kim JH. Correlations of the Gastric and Duodenal Microbiota with Histological, Endoscopic, and Symptomtic Gastritis. *J Clin Med* 2019; 8: pii: E312. DOI: 10.3390/jcm8041591

Yu Y, Gao F, Chen Z, Zheng S, Zhang J. Changes in the distal esophageal microbiota in Chinese patients with reflux esophagitis. *J Dig Dis* 2019; 20: 18-24. DOI: 10.1111/1751-2980.12692

Zhao Y, Gao X, Guo J, Yu D, Xiao Y, Wang H, Li Y. Helicobacter pylori infection alters gastric and tongue coating microbial communities. *Helicobacter* 2019; 24: e12567. DOI: 10.1111/hel.12567

Iino C, Shimoyama T, Chinda D, Arai T, Chiba D, Nakaji S, Fukuda S. Infection of Helicobacter pylori and Atrophic Gastritis Influence Lactobacillus in Gut Microbiota in a Japanese Population. *Front Immunol* 2018; 9: 712. DOI: 10.3389/fimmu.2018.00712

Yanagi H, Tsuda A, Matsushima M, Takahashi S, Ozawa G, Koga Y, Takagi A. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy. *BMJ Open Gastroenterol* 2017; 4: e000182. DOI: 10.1136/bmjgast-2017-000182

Miftahussurur M, Tuda J, Suzuki R, Kido Y, Kawamoto F, Matsuda M, Tantular IS, Purwawati S, Nasronudin, Harjianto PN, Yamaoka Y. Extremely low Helicobacter pylori prevalence in North Sulawesi, Indonesia and identification of a Maori-tribe type strain: A cross sectional study. *Gut Pathog* 2014; 6: 42. DOI: 10.1186/s13099-014-0042-0

Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann J, Bader RC, Schulz C, Malfertheiner P, Suerbaum S. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intrastrains migrations and selective sweeps. *Nat Commun* 2019; 10: 2272. DOI: 10.1038/s41467-019-10050-1

Miftahussurur M, Cruz M, Subsомнов P, Jimenez Abreu JA, Hosking C, Nagashima H, Akada J, Yamaoka Y. Clarithromycin-Based Triple Therapy is Still Useful as an Initial Treatment for Helicobacter pylori Infection in the Dominican Republic. *Am J Trop Med Hyg* 2017; 96: 1050-1059. DOI: 10.4269/ajtmh.16-0729

Launener FN, Imkamp F, Lehours P, Buissinore A, Benejal L, Zhbined R, Keller PM, Wagner K. Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. *J Clin Med* 2019; 8: pii: E53. DOI: 10.3390/jcm80901053

Miftahussurur M, Syam AF, Nusi IA, Makanmun D, Waskito LA, Zein LH, Akil F, Uwan WB, Simanjuntak D, Wibawa ID, Waleleng JB, Saudale AM, Yusuf F, Mustika S, Adi P, Maimunah U, Maulahela H, Rezkitha YA, Subsomwong P, Nasronudin, Rahardjo D, Suzuki R, Akada J, Yamaoka Y. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations. *PLoS One* 2016; 11: e0166199. DOI: 10.1371/journal.pone.0166199

Miftahussurur M, Shrestha PK, Subsомнов P, Sharma RP, Yamaoka Y. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal. *BMC Microbiol* 2016; 16: 256. DOI: 10.1186/s12866-016-0783-6

Miftahussurur M, Waskito LA, Syam AF, Nusi IA, Siregar G, Richardo A, Budy AF, Rezkitha YAA, Wibawa IDN, Yamaoka Y. Alternative eradication regimens for Helicobacter pylori infection in Indonesian regions with high metronidazole and levofloxacin resistance. *Infect Drug Resist* 2018; 11: 27809767 DOI: 10.1186/s12866-016-0873-6

Miftahussurur M, Miftahussurur M, Shrestha PK, Subsомнов P, Sharma RP, Yamaoka Y. Emergence of levofloxacin-resistant Helicobacter pylori in Indonesia. *J Clin Med* 2019; 8: pii: E312. DOI: 10.3390/jcm8020124 DOI: 10.3390/jcm8010053

Binh TT, Suzuki R, Trang TT, Kwon DH, Yamaoka Y. Search for novel candidate mutations for levofloxacin resistance in Helicobacter pylori using next-generation sequencing. *Antimicrob Agents Chemother* 2015; 59: 2343-2348. DOI: 10.1128/AAC.01852-14

Qureshi NN, Gallaher B, Schiller NL. Evolution of amoxicillin resistance in Helicobacter pylori in vitro: Characterization of resistance mechanisms. *Microb Drug Resist* 2014; 20: 509-516. DOI: 10.1089/mdr.2014.0019

Iwamoto A, Tanahashi T, Okada R, Yoshiha Y, Kikuchi K, Keida Y, Murakami Y, Yang L, Yamamoto K, Nishiuami S, Yoshiha M, Azuma T. Whole-genome sequencing of clarithromycin-resistant Helicobacter pylori characterizes unidentified variants of multidrug-resistant efflux pump genes. *Gut Pathog* 2014; 6: 27. DOI: 10.1186/s12877-014-0045-9

Nezami BG, Jam M, Alounani D, Hroods DD, Sadri N. Helicobacter pylori Mutations Detected by Next-Generation Sequencing in Formalin-Fixed, Paraffin-Embedded Gastric Biopsy Specimens Are Associated with Treatment Failure. *J Clin Microbiol* 2019; 57: pii: e00184-18. DOI: 10.1128/JCM.00184-18

Chen J, Ye L, Jin L, Xu X, Xu P, Wang X, Li H. Application of next-generation sequencing to characterize novel mutations in clarithromycin-susceptible Helicobacter pylori strains with A2143G of 23s rRNA gene. *Ann Clin Microbiol Antimicrob* 2018; 17: 10. DOI: 10.1186/s12934-018-0529-8

Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois C, Perez-Perez G, Blaser MJ, Rehmna DA. Molecular analysis of the bacterial microbiota in the human stomach. *Proc Natl Acad Sci USA* 2006; 103: 732-737. DOI: 10.1073/pnas.0500655103

Dickesvd J, Lindberg M, Rosenequist M, Enroth H, Janson JK, Engstrand L. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. *J Med Microbiol* 2009; 58: 509-516. DOI: 10.1099/jmm.0.007302-0

Jo HH, Kim J, Kim N, Park JH, Nam RH, Seok YJ, Kim YR, Kim JS, Kim JM, Kim JM, Lee DH, Jung HC. Analysis of Helicobacter pylori by Pyrosequencing: Minor Role of Bacteria Other Than Helicobacter pylori in the Gastric Carcinogenesis. *Helicobacter* 2016; 21: 364-374. DOI: 206157311
Pohl D et al. Advances in H. pylori diagnostics

10.1111/hel.12293

Sjøstedt S, Lager L, Heimdahl A, Nord CE. Microbial colonization of tumors in relation to the upper gastrointestinal tract in patients with gastric carcinoma. Ann Surg 1988; 207: 341-346 [PMID: 3345120 DOI: 10.1097/00000658-198803000-00020]

Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67: 226-236 [PMID: 29102920 DOI: 10.1136/gutjnl-2017-314205]

Klymieniuk I, Biligiri C, Stadlmann A, Thammesberger J, Kastner MT, Höggener A, Pfüsigk A, Biowski-Förster S, Schaller K, Thellung GG, Steen 'ager C. The Human Gastric Microbiome Is Predicated upon Infection with Helicobacter pylori. Front Microbiol 2017; 8: 2508 [PMID: 29312210 DOI: 10.3389/fmicb.2017.02508]

Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J. Helicobacter pylori eradication causes perturbations of the Human Gut Microbiome in Young Adults. PLoS One 2016; 11: e0151893 [PMID: 26991500 DOI: 10.1371/journal.pone.0151893]

Jakobsson HE, Jernberg C, Andersson AF, Sjöland-Karlssson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5: e9386 [PMID: 20552091 DOI: 10.1371/journal.pone.009386]

Gotoda T, Takano C, Kusano C, Suzuki S, Ikebara H, Hayakawa S, Andoh A. Gut microbiome can be restored without adverse events after Helicobacter pylori eradication therapy in teenagers. Helicobacter 2018; 23: e12541 [PMID: 30311721 DOI: 10.1111/hel.12541]

Govers D, Kugathasan S, Denson LA, Vázquez-Baेza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, Gonzalez A, McDonald D, Huberman B, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15: 382-392 [PMID: 24693442 DOI: 10.1016/j.chom.2014.02.005]

Zheng Z, Andersson AF, Ye W, Nyrén O, Normark S, Engstrand L. A method for metagenomics of Helicobacter pylori from archived formalin-fixed gastric biopsies permitting longitudinal studies of carcinogenic risk. PLoS One 2011; 6: e26644 [PMID: 22031833 DOI: 10.1371/journal.pone.0026644]

Zhang C, Cleveland K, Schnoll-Sussman F, McClure B, Bigg M, Thakker P, Schultz N, Shah MA, Betel D. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol 2015; 16: 205 [PMID: 26615188 DOI: 10.1186/s12859-015-0281-z]

Hasan MH, Rawat A, Tang P, Jithesh P, Thomas E, Tan R, tiley P. depletion of Helicobacter pylori in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Clin Microbiol 2016; 54: 919-927 [PMID: 26763966 DOI: 10.1128/JCM.03050-15]

Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP, Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127: 141-145 [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022]

Trappnel C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Trapnell C, Williams BA, Pertea G, Pertea G, Trapnell C, Trapnell C. Homogenization vs. Enzymatic Lysis for Microbiome Profiling in Clinical Endoscopic Biopsy Tissue Samples. Front Microbiol 2019; 10: 3246 [PMID: 30671046 DOI: 10.3389/fmicb.2018.03246]

Zhang C, McMorrow M, Farley R, Bierkandt T, Jite R, Shalini S, Thomas E, Tan R, Tilley P. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Microbiol Methods 2016; 127: 141-145 [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022]

Zheng Z, Andersson AF, Ye W, Nyrén O, Normark S, Engstrand L. A method for metagenomics of Helicobacter pylori from archived formalin-fixed gastric biopsies permitting longitudinal studies of carcinogenic risk. PLoS One 2011; 6: e26644 [PMID: 22031833 DOI: 10.1371/journal.pone.0026644]

Zhang C, Cleveland K, Schnoll-Sussman F, McClure B, Bigg M, Thakker P, Schultz N, Shah MA, Betel D. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol 2015; 16: 205 [PMID: 26615188 DOI: 10.1186/s12859-015-0281-z]

Hasan MH, Rawat A, Tang P, Jithesh P, Thomas E, Tan R, tiley P. depletion of Helicobacter pylori in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Clin Microbiol 2016; 54: 919-927 [PMID: 26763966 DOI: 10.1128/JCM.03050-15]

Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP, Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127: 141-145 [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022]

Trappnel C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Trapnell C, Williams BA, Pertea G, Pertea G, Trapnell C, Trapnell C. Homogenization vs. Enzymatic Lysis for Microbiome Profiling in Clinical Endoscopic Biopsy Tissue Samples. Front Microbiol 2019; 10: 3246 [PMID: 30671046 DOI: 10.3389/fmicb.2018.03246]

Kumar N, Albert MI, Al-Akbal H, Siddique I, Ahmed N. What constitutes an Arabian Helicobacter pylori? Lessons from comparative genomics. Helicobacter 2017; 22 [PMID: 27277215 DOI: 10.1111/hel.12323]

Thorell K, Hosseiní S, Palacios González RV, Chaootam C, Graham DY, Paszat L, Rabeneck L, Lundin SB, Nookaew I, Sjöling Å. Identification of a Latin American-specific BabA adhesin variant through whole genome sequencing of Helicobacter pylori patient isolates from Nicaragua. BMC Evol Biol 2016; 16: 53 [PMID: 26928576 DOI: 10.1186/s12862-016-0619-y]

Cao Q, Dideolf X, Wu Z, Li Z, He L, Li Y, Ni M, You Y, Lin X, Li Z, Gong Y, Zheng M, Zhang M, Liu J, Wang W, Bo X, Fulfish D, Wang S, Zhang J. Progressive genomic convergence of two Helicobacter pylori strains during mixed infection of a patient with chronic gastritis. Gut 2015; 64: 554-561 [PMID: 25907814 DOI: 10.1136/gutjnl-2014-307145]

Perkins TT, Tay CY, Thiriot F, Marshall B. Choosing a benchtop sequencing machine to characterise Helicobacter pylori genomes. PLoS One 2013; 8: e67539 [PMID: 23840736 DOI: 10.1371/journal.pone.0067539]
