Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex

Keng Nei Wu¹, Bruce K Tan², James D Howard¹, David B Conley² & Jay A Gottfried¹,³,⁴

Ongoing sensory input is critical for shaping internal representations of the external world. Conversely, a lack of sensory input can profoundly perturb the formation of these representations. The olfactory system is particularly vulnerable to sensory deprivation, owing to the widespread prevalence of allergic, viral and chronic rhinosinusitis, but how the brain encodes and maintains odor information under such circumstances remains poorly understood. Here we combined functional magnetic resonance imaging (fMRI) with multivariate (pattern-based) analyses and psychophysical approaches to show that a 7-d period of olfactory deprivation induces reversible changes in odor-evoked fMRI activity in piriform cortex and orbitofrontal cortex (OFC). Notably, multivoxel ensemble codes of odor quality in OFC became decorrelated after deprivation, and the magnitude of these changes predicted subsequent olfactory perceptual plasticity. Our findings suggest that transient changes in these key olfactory brain regions are instrumental in sustaining odor perception integrity in the wake of disrupted sensory input.

In the 1960s, a series of landmark studies on the visual system of the developing cat highlighted the importance of sensory experience in shaping brain organization and function¹. This work, along with studies of neural remapping of rodent barrel cortex² and monkey somatosensory cortex³, provided a powerful neuroscientific foundation that remains highly influential for understanding sensory system processing. A fundamental implication is that our sensory systems are not mere passive receivers of information but active respondents. It is the complex interaction between stimulus input and individual experience that defines the form and function of the brain, and ultimately how sensory systems perceive and respond to the external environment.

These earlier studies introduced the concept of the critical period, a time-limited window in an organism’s early development during which there is particularly robust plasticity in response to sensory experience⁴. However, closure of the critical window does not mean shutting the door to sensory-driven plasticity⁵–⁸. Periods of sensory deprivation later in life can alter brain activity and function, albeit in less dramatic ways than during development⁹–¹⁴. Several studies have demonstrated sensory behavioral plasticity resulting from short-term visual, auditory and somatosensory deprivation in adult humans¹⁵–¹⁹. Some of this work has also demonstrated measurable changes in brain activity as a result of sensory deprivation, including visual cortex excitability¹⁵,¹⁶, cross-modal neuroplasticity²⁰ and response tuning shifts in the adult human auditory¹⁷ and somatosensory¹⁸ cortex. Such observations suggest that consistent ongoing afferent input may be important in maintaining the integrity of sensory systems throughout life.

The olfactory system presents an especially interesting case for the study of perceptual plasticity owing to its highly regenerative nature. Olfactory sensory neurons (OSNs) are continuously regenerated and replaced throughout life²¹,²², and the olfactory bulb is one of the only sites in the human brain to be replenished with new neurons throughout the lifespan²³,²⁴. Recent studies have shown that the human olfactory system remains highly pliable into adulthood. For example, previous work in our laboratory has shown that brief passive exposure to an odor, as well as associative conditioning between an odor and footshock, is sufficient to induce perceptual and neural enhancement of olfactory discrimination⁷,⁸. Such findings illustrate the key role of afferent sensory experience in optimizing olfactory system function.

The corollary—that a lack of sensory experience might be detrimental to olfactory processing—has been explored in rodent models. These studies have helped elucidate the basic operation of the olfactory system, as well as mechanisms underlying sensory plasticity. One widely employed method of inducing olfactory deprivation is unilateral nostril (naris) occlusion. Both anatomical and neurochemical changes have been identified in the rodent olfactory bulb and even in primary olfactory cortex using this technique¹⁰–¹³,²⁴–²⁹. Following unilateral naris occlusion, an overall increase in odor-evoked metabolic activity in the olfactory bulb glomerular layer occurs alongside a decrease in the stimulus specificity of odor-evoked single-unit responses in mitral or tufted cells³⁵. Notably, despite marked physiological changes, odor deprivation often has no effect on olfactory behavior³⁶, and paradoxically sometimes enhances detection and discrimination performance when compared to that in control rats²⁴. A unilaterally occluded olfactory bulb can still gain odor access via a septal ‘window’ between the nasal chambers³⁰, and unilateral inputs may nevertheless activate higher-order centrifugal projections bilaterally³¹; these factors may account for the mixed findings. A more ideal

¹Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. ²Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. ³Cognitive Neurology & Alzheimer’s Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. ⁴Department of Psychology, Northwestern University Weinberg College of Arts and Sciences, Evanston, Illinois, USA. Correspondence should be addressed to K.N.W. (kengwu2008@u.northwestern.edu) or J.A.G. (j-gottfried@northwestern.edu).

Received 14 May; accepted 9 July; published online 12 August 2012; doi:10.1038/nn.3186
procedure would be to occlude both nostrils simultaneously, but this approach is unfeasible in obligate nose breathers such as rodents.

So far, there have been no studies investigating the effects of olfactory deprivation in humans. The impracticality of bilateral nostril occlusion in rodents, as noted above, can be overcome in humans, whose respiratory anatomy permits bilateral odor deprivation. Here we introduce a method of odor deprivation in human subjects and combine it with psychophysical measurements, functional magnetic resonance imaging (fMRI) and multivariate (pattern-based) imaging analysis to assess how a 7-d absence of odor afferent input modulates olfactory perceptual representations in the human brain. This design enabled us to test two specific hypotheses that were motivated from animal findings. First, we asked whether odor deprivation would induce general gains in overall response sensitivity to odor stimuli as indexed by perceptual thresholds and fMRI activity in central olfactory brain areas. This was the main aim of fMRI experiment 1. Second, we asked whether olfactory afferent input is necessary to sustain the specificity of categorical representations of odor object quality, as reflected in odor discrimination and spatial patterns of odor-evoked fMRI activity in the human olfactory system. This was the main aim of fMRI experiment 2.

RESULTS

The total length of the experiment spanned 2 weeks (Fig. 1a), involving a 1-week period of odor deprivation and a 1-week recovery period. On day 0, subjects underwent baseline psychophysical testing and olfactory fMRI scanning. They were subsequently admitted to the Clinical Research Unit at Northwestern Memorial Hospital for 7 d of odor deprivation, during which time their nostrils were occluded with foam tape during waking hours.

Psychophysical tests and fMRI scanning sessions (Fig. 1b) were repeated immediately following odor deprivation (day 7) and again after recovery (day 14). Findings were considered deprivation-specific only if the changes from pre- to post-deprivation also returned to baseline levels at recovery, thereby minimizing potential confounding factors related to training effects or mere exposure across the repeated testing.

Intranasal anatomy and odor perception

Throughout the study, we carefully assessed the possibility that 7 d of odor deprivation could induce nasal congestion or inflammation, with possible compromise of airflow and peripheral olfactory function. On days 0, 6, 7 and 14, subjects underwent nasal endoscopy and acoustic rhinometry by trained ear, nose and throat physicians (Fig. 2). Qualitative endoscopic assessments of the nasal cavity revealed no major instances of edema, discharge, scarring or crusting. Quantitative endoscopic and acoustic rhinometric measurements revealed no significant change in the space between the inferior turbinate and septum ($F_{1,19,90} = 0.56, P = 0.58, n = 11$; Fig. 2e) or between the middle turbinate and septum ($F_{1,50,14.59} = 0.13, P = 0.82, n = 10$; Fig. 2f). The volume of the nasal cavity (1–5 cm from the entrance of the nares) also remained stable across testing days ($F_{2,19,19.73} = 0.18, P = 0.86, n = 10$; Fig. 2g). These results suggest that peripheral changes in nasal anatomy were unlikely to have influenced the behavioral and neuroimaging findings.

Behavioral analysis revealed that the 1-week deprivation period had no major impact on olfactory function, with regard to either odor detection or discrimination. Apart from the smell identification task (University of Pennsylvania smell identification task, UPSIT) ($F_{1.81,23.51} = 3.62, P = 0.047$), psychophysical task performance remained constant over all testing sessions (Table 1). Participants improved significantly on the UPSIT from pre- to post-deprivation ($t_{13} = 2.39, P = 0.033$), though the effect was small (3.6% improvement). However, because performance at recovery did not return to baseline levels, this change may have reflected a practice effect. These null results are consistent with rodent studies demonstrating minimal behavioral alterations following even longer periods of naris occlusion, suggesting that the adult olfactory system may compensate for diminished afferent odor input through functional plasticity. Whether deprivation induces plasticity in olfactory brain regions, despite preserved perceptual performance, motivated our subsequent imaging analyses.

Deprivation-induced mean changes in fMRI activity

During each time point (day 0, baseline; day 7, post-deprivation; day 14, recovery), subjects took part in two fMRI experiments. Experiment 1, a simple odor detection task (Fig. 1b and Supplementary Fig. 1a), assessed whether odor deprivation had a reversible modulatory effect on stimulus-evoked mean fMRI signal in olfactory-related brain areas. Complete neuroimaging data for this task were obtained from ten subjects. Detection accuracy was high across all three testing sessions (odor trials: 96.9% ± 1.33, mean ± s.e.m.; no-odor trials: 86.4% ± 3.63). Accuracy did not significantly differ across sessions, indicating that any deprivation-related changes in fMRI activity could not be attributed to poor or variable performance across days (odor trials: $F_{1,47,13,27} = 2.12, P = 0.17$; no-odor trials: $F_{1,51,13,99} = 0.34, P = 0.66$). Similarly, there were no significant respiratory differences in sniff volume ($F_{1,32,7.89} = 2.44, P = 0.16, n = 7$) or duration ($F_{1,20,7.18} = 3.15, P = 0.12$) across testing periods (Supplementary Fig. 2).
We first asked whether mean odor-evoked activity in olfactory brain regions differed across baseline, post-deprivation and recovery. A one-way repeated-measure ANOVA identified significant time-dependent changes in right anterior piriform cortex (APC), bilateral posterior piriform cortex (PPC), bilateral orbitofrontal cortex (OFC) and bilateral anterior insula (Fig. 3a and Supplementary Table 1). To establish that these activation differences were specific to odor deprivation and not due merely to factors such as the passage of time or increased task familiarity over the 14-d period, we tested whether response profiles in these brain areas showed a selective decrease in odor-evoked activity as a consequence of deprivation, returning toward baseline levels at recovery. These effects were examined by testing the conjunction of two contrasts: [baseline > post-deprivation] and [recovery > post-deprivation]. We found that the left PPC (x = −14, y = −2, z = −18; MNI coordinate space) showed a deprivation-related decline in odor-evoked activity that recovered to baseline at the time of the day-14 scan (Fig. 3b,c). There were significant differences when each contrast component of the conjunction analysis was tested separately (baseline > post-deprivation: $t_9 = 3.23$, $P = 0.002$ uncorrected (unc.); recovery > post-deprivation: $t_9 = 2.90$, $P = 0.004$ unc.), confirming the robustness of these effects.

It is equally possible that the deprivation procedure might have induced selective increases in odor-evoked activity. Therefore, we also tested the conjunction32,33 of [post-deprivation > baseline] and [post-deprivation > recovery], which identified areas in the anterior and posterior OFC corresponding to Walker’s area 11 (16, 44, −16) and area 13 (16, 16, −18; −20, 14, −16), respectively (Fig. 3d–f). These response enhancements were transient, returning to baseline levels after the recovery period. Again, separate analyses of the individual contrast effects were significant for post-deprivation > baseline (right anterior OFC, $t_9 = 4.21$, $P < 0.001$ unc.; right posterior OFC, $t_9 = 3.63$, $P < 0.001$ unc.; left posterior OFC, $t_9 = 3.19$, $P < 0.002$ unc.) and for post-deprivation > recovery (right anterior OFC, $t_9 = 3.93$, $P < 0.001$ unc.; right posterior OFC, $t_9 = 3.77$, $P < 0.001$ unc.; left posterior OFC, $t_9 = 2.90$, $P < 0.004$ unc.), suggesting that these findings were not preferentially driven by either contrast.

Finally, to assess the statistical robustness of these imaging effects, we conducted a leave-one-subject-out analysis34 to establish an independent method of voxel selection for purposes of small-volume correction35. Values extracted with this method were tested for differences over time and were still significant for all three regions identified in the conjunction analyses, including left PPC ($F_{1.20,10.77} = 11.61, \text{s.e.m.}$ Owing to the time-sensitive nature of this study, the number of tasks administered and unpredictable technical difficulties at the MRI scanner, not all subjects completed all tasks; n indicates the number of subjects completing each. With the exception of the two-point tactile discrimination task, all measurements are in arbitrary units.

Table 1: Behavioral performance

Task	Baseline	Post-deprivation	Recovery	n
Sniffin’ Sticks (odor detection threshold)	10.23 ± 1.05	9.87 ± 0.78	9.92 ± 1.03	13
UPSIT (odor identification)	35.00 ± 0.59	36.29 ± 0.80	35.79 ± 0.73	14
Odor similarity ratings (odor quality perception)	4.81 ± 0.73	3.60 ± 1.13	4.08 ± 1.30	13
α- versus β-pinene triangle test (fine odor discrimination)	7.45 ± 0.81	6.91 ± 0.90	6.64 ± 0.98	11
NaCl detection threshold	6.82 ± 0.53	6.60 ± 0.45	7.40 ± 0.44	10
Sucrose detection threshold	5.70 ± 0.95	6.90 ± 0.80	7.40 ± 0.94	10
NaCl versus sucrose triangle task (taste discrimination)	7.27 ± 0.69	7.36 ± 0.74	8.45 ± 0.67	11
Retronasal flavor detection	9.82 ± 0.57	9.00 ± 0.82	8.73 ± 0.75	11
Visual orientation judgment	26.64 ± 0.70	27.71 ± 0.67	27.85 ± 0.55	14
Two-point tactile discrimination	2.45 ± 0.12 (mm)	2.34 ± 0.12	2.49 ± 0.10	14

Data are shown for olfactory and non-olfactory tasks at baseline (day 0), post-deprivation (day 7) and recovery (day 14) sessions. Scores presented as means ± s.e.m. Owing to
Deprivation-induced pattern changes in OFC

Having established that olfactory deprivation had an overall effect on odor-evoked response magnitudes in PPC and OFC, we next asked whether the reduction in afferent sensory input has a direct impact on odor quality representations in these areas. To this end, we designed fMRI experiment 2 to investigate whether odor-specific patterns of ensemble brain activity were degraded after deprivation. Subjects were presented with four different odor stimuli that systematically differed in perceptual quality to explicitly test whether olfactory categorical representations changed after deprivation. The hospital environment or other treatment parameters did not have a generalized, nonspecific effect on olfactory coding from pre- to post-deprivation.

We took advantage of the fact that the odor stimuli used in this task systematically differed in perceptual quality to explicitly test whether olfactory categorical representations changed after deprivation. In a multivariate fMRI analysis, we extracted odor-specific voxel-wise activity patterns from APC, PPC and OFC and calculated pairwise correlations between odors. Here the prediction was that at baseline (day 0), odor-evoked ensemble patterns of fMRI activity would exhibit greater overlap (that is, be more strongly correlated) for odors similar in quality (for example, peppermint and spearmint) than for odors different in quality (for example, peppermint and rose) and that these odor quality–specific effects would be disrupted after deprivation (day 7). As with the results reported previously, we only considered effects to be attributable specifically to deprivation if they returned to baseline levels at recovery (day 14).

To test these predictions, we calculated linear correlations between fMRI activity patterns evoked by odorant pairs similar in quality and compared them to correlations between patterns evoked by odorant pairs that differed in quality. Among the olfactory regions of interest (ROIs), we found a deprivation-specific effect only in OFC, which showed pattern decorrelation, or divergence, in odor categorical discrimination (main effect of day: $F_{1,14,10.27} = 13.58, P = 0.005$), right anterior OFC ($F_{1,14,10.27} = 13.58, P = 0.005$) and right posterior OFC ($F_{1,14,10.27} = 13.73, P = 0.003$) (Fig. 3c,e,g and Supplementary Table 2). Of note, deprivation had no impact on the mean fMRI signal change in APC ($P > 0.1$, unc.). That odor deprivation had a regionally selective impact on PPC and OFC, but not on APC, suggests that the hospital environment or other treatment parameters did not have a generalized, nonspecific effect on olfactory coding from pre- to post-deprivation.

In a multivariate fMRI analysis, we extracted odor-specific voxel-wise activity patterns from APC, PPC and OFC and calculated pairwise correlations between odors. Here the prediction was that at baseline (day 0), odor-evoked ensemble patterns of fMRI activity would exhibit greater overlap (that is, be more strongly correlated) for odors similar in quality (for example, peppermint and spearmint) than for odors different in quality (for example, peppermint and rose) and that these odor quality–specific effects would be disrupted after deprivation (day 7). As with the results reported previously, we only considered effects to be attributable specifically to deprivation if they returned to baseline levels at recovery (day 14).

To test these predictions, we calculated linear correlations between fMRI activity patterns evoked by odorant pairs similar in quality and compared them to correlations between patterns evoked by odorant pairs that differed in quality. Among the olfactory regions of interest (ROIs), we found a deprivation-specific effect only in OFC, which showed pattern decorrelation, or divergence, in odor categorical discrimination (main effect of day: $F_{1,14,10.27} = 13.58, P = 0.005$), right anterior OFC ($F_{1,14,10.27} = 13.58, P = 0.005$) and right posterior OFC ($F_{1,14,10.27} = 13.73, P = 0.003$) (Fig. 3c,e,g and Supplementary Table 2). Of note, deprivation had no impact on the mean fMRI signal change in APC ($P > 0.1$, unc.). That odor deprivation had a regionally selective impact on PPC and OFC, but not on APC, suggests that the hospital environment or other treatment parameters did not have a generalized, nonspecific effect on olfactory coding from pre- to post-deprivation.

We took advantage of the fact that the odor stimuli used in this task systematically differed in perceptual quality to explicitly test whether olfactory categorical representations changed after deprivation. In a multivariate fMRI analysis, we extracted odor-specific voxel-wise activity patterns from APC, PPC and OFC and calculated pairwise correlations between odors. Here the prediction was that at baseline (day 0), odor-evoked ensemble patterns of fMRI activity would exhibit greater overlap (that is, be more strongly correlated) for odors similar in quality (for example, peppermint and spearmint) than for odors different in quality (for example, peppermint and rose) and that these odor quality–specific effects would be disrupted after deprivation (day 7). As with the results reported previously, we only considered effects to be attributable specifically to deprivation if they returned to baseline levels at recovery (day 14).

To test these predictions, we calculated linear correlations between fMRI activity patterns evoked by odorant pairs similar in quality and compared them to correlations between patterns evoked by odorant pairs that differed in quality. Among the olfactory regions of interest (ROIs), we found a deprivation-specific effect only in OFC, which showed pattern decorrelation, or divergence, in odor categorical discrimination (main effect of day: $F_{1,14,10.27} = 13.58, P = 0.005$), right anterior OFC ($F_{1,14,10.27} = 13.58, P = 0.005$) and right posterior OFC ($F_{1,14,10.27} = 13.73, P = 0.003$) (Fig. 3c,e,g and Supplementary Table 2). Of note, deprivation had no impact on the mean fMRI signal change in APC ($P > 0.1$, unc.). That odor deprivation had a regionally selective impact on PPC and OFC, but not on APC, suggests that the hospital environment or other treatment parameters did not have a generalized, nonspecific effect on olfactory coding from pre- to post-deprivation.
deprivation-induced fMRI plasticity might still predict alterations in olfactory perception, on a subject-by-subject basis. In particular, given that human PPC and OFC have both been implicated in experience-dependent plasticity and odor quality coding, we tested whether subject-wise changes in fMRI activity from pre- to post-deprivation correlated with perceptual changes in odor similarity ratings (as an index of odor categorical perception). These analyses were conducted by regressing similarity ratings either against fMRI changes in mean activity levels (compare Fig. 3) or against fMRI changes in ensemble pattern coherence (compare Fig. 4). Notably, subject-wise behavioral changes in perceptual similarity ratings were systematically associated only with the degree of odor quality-related pattern decorrelation in OFC (Spearman $r = 0.64, P = 0.044, n = 10$) (Fig. 4c). Thus, with greater disruption of odor quality categorization in OFC, there was a greater corresponding difficulty being able to perceive categorical differences between the odorants.

We also tested whether odor deprivation had a general effect on olfactory coding patterns, irrespective of quality or functional-group membership. This approach revealed that in APC, odor-evoked ensemble patterns of activity became decorrelated after deprivation, returning to baseline levels at recovery ($F_{1,14,14.05} = 4.93, P = 0.033$; baseline > post-deprivation, $t_{10} = 2.92, P = 0.015$; recovery > post-deprivation, $t_{10} = 3.00, P = 0.013$; Fig. 5a). Similar trends were observed in the PPC ($F_{1,12,13.38} = 3.38, P = 0.079$; post-deprivation > baseline, $t_{10} = 3.40, P = 0.007$; recovery > post-deprivation, $t_{10} = 2.22, P = 0.051$; Fig. 5b) and OFC ($F_{1,17,17.6} = 3.68, P = 0.051$; post-deprivation > baseline, $t_{10} = 2.30, P = 0.044$; recovery > post-deprivation, $t_{10} = 2.41, P = 0.037$; Fig. 5c) but not in the putamen ($F_{1,19,19.92} = 1.41, P = 0.266$; Fig. 5d), a non-olfactory control ROI. In fact, direct statistical comparison between the pattern effects in the olfactory ROIs and the putamen (baseline versus post-deprivation) demonstrated significant differences in all three olfactory regions—APC ($t_{10} = −3.82, P = 0.003$), PPC ($t_{10} = −3.92, P = 0.003$) and OFC ($t_{10} = −3.21, P = 0.009$)—suggesting that deprivation-induced pattern decorrelation was relatively specific to the olfactory system.

Control analyses

Given the odor-evoked increase in mean OFC sensitivity after deprivation (Fig. 3d–g), the OFC pattern decorrelation (Fig. 4) could theoretically be accounted for by fMRI signal saturation. This would result in fMRI patterns across voxels exhibiting weaker category discriminability, with consequent pattern decorrelation. Several control analyses (Supplementary Fig. 4) indicated that such mechanisms were not likely to contribute to the deprivation-related pattern changes in OFC activity. Moreover, the mean fMRI signal change in OFC after deprivation (Fig. 3) was $−0.05$–0.06%, well within the range of previous reports demonstrating OFC signal change of up to 0.5% (refs. 37,38).

Finally, in that odorants typically contain trigeminal components, it is possible that trigeminal stimulation per se could have influenced the findings. For example, among the four odorants used in fMRI experiment 2 (odor discrimination), the two minty odorants are known to stimulate the trigeminal nerve and elicit cooling sensations, and it is unclear whether this could affect our observations. A complementary analysis of the fMRI data set from experiment 2 revealed that this was unlikely to be the case (Supplementary Fig. 5).

Figure 4 fMRI experiment 2: behavioral and multivariate fMRI results. (a) Across all three testing sessions, subjects rated odorant pairs belonging to the same (versus different) perceptual category as significantly more similar. (b) Spatial ensemble patterns of fMRI activity (mean ± s.e.m.) in OFC showed significantly more overlap between categorically similar (versus different) odorants at baseline. Post-deprivation, these pattern differences significantly diminished, returning to baseline levels after recovery. (c) A scatter plot highlights the correlation between the magnitude of quality-related pattern decorrelation and return ing to baseline levels after recovery. (c) Post-deprivation, these pattern differences significantly diminished, returning to baseline levels after recovery. Each diamond represents one subject. *P < 0.05. Pre, baseline; Post, post-deprivation; Rec, recovery.

Figure 5 General deprivation-related changes in fMRI ensemble activity (fMRI experiment 2). (a–d) Pattern correlations of odor-evoked fMRI ensemble activity (mean ± s.e.m.) based on anatomically defined, functionally unrestricted ROIs and computed across all odorant pairs, irrespective of pairwise perceptual or molecular similarity. Deprivation-related pattern decorrelations were identified in APC (a), PPC (b) and OFC (c), but not putamen (d), a non-olfactory control ROI. *P < 0.05. Pre, baseline; Post, post-deprivation; Rec, recovery.
DISCUSSION

How a sustained interruption of odor input affects the human olfactory system has not been previously tested. In this study, we developed a method to induce prolonged odor deprivation in humans, while concurrently minimizing inadvertent exposure to incidental smells. A combination of psychophysical testing, olfactory fMRI and multivariate pattern analysis enabled us to examine olfactory system responsiveness to a 7-d disruption of sensory stimulation. Data collection at baseline, post-deprivation and recovery sessions allowed us to assess changes over time. Behaviorally our findings demonstrate that the olfactory system is able to maintain olfactory perceptual performance despite a substantial reduction in odor afferent input. In parallel, the deprivation procedure elicited reversible changes in piriform and orbitofrontal cortices that may be instrumental in sustaining odor perception in the wake of disrupted input.

Of note, deprivation selectively influenced odor quality coding in OFC, a higher-order processing region, rather than in olfactory sensory regions per se. Multivariate analysis of the odor quality data (Fig. 3a) showed that, at baseline, ensemble patterns in OFC correlated more strongly for odorants belonging to the same category than for odorants belonging to different categories. After deprivation, these pattern-based perceptual representations became decorrelated, such that qualitatively similar odorants were no longer encoded as members of the same odor object category. Insofar as PPC and OFC are interconnected in both rodents and monkeys, the reciprocal response changes after deprivation—a decrease in PPC and an increase in OFC (Fig. 3)—may arise from functional interactions between these two regions to optimize olfactory perception after a period of reduced odor input.

Few animal studies have investigated the effects of odor deprivation beyond the olfactory bulb. Although deprivation-induced changes in odor-evoked cortical representations have been described in rodent APC and PPC, the effect on OFC has not previously been examined. As odor categorical perception relies on linking olfactory inputs with object-knowledge representations, participation of OFC in this process accords with its broader role in linking odor cues with outcome representations in rodent models of olfactory discrimination learning. Given the reported function of human OFC in olfactory attention, it is also possible that the interruption of odor input (as indexed by reduced PPC activity) places greater demands on OFC to focus attentional resources on the incoming stimulus. That being said, with the known technical limitations of fMRI, our data cannot rule out the potential involvement at the level of the olfactory sensory neurons or bulb. Notably, a previous odor deprivation study in adult rats highlighted neuronal plasticity in associative cortical networks, implying that deprivation may in fact target higher-order sensory processing areas.

Data across the two imaging procedures highlight a noteworthy functional dichotomy in OFC as a consequence of deprivation. An overall mean increase in stimulus-evoked activity in OFC would be consistent with an enhancement of response sensitivity to odors. In turn, a reduction in the strength of ensemble pattern coding in OFC may indicate a disruption of response specificity for odor object categories. This dichotomy is reminiscent of previous rodent data on odor deprivation, in which an increase in odor-evoked metabolic activity in the rodent glomerular layer occurs alongside a decrease in stimulus specificity of odor-evoked single-unit responses in mitral or tufted cells. Although differences in species, experimental protocols and brain areas distinguish our study from the rodent work, a common theme nevertheless emerges: the olfactory system reacts to a prolonged lack of afferent stimulation with increased responsiveness, but at the expense of discrimination. Ecologically, this perceptual recalibration might favor detection of odors in lower concentration ranges while limiting the capacity to make fine-grained judgments between odors.

Given the technical challenges and potential complications involved in occluding airflow through the nostrils for 7 d, it was important to rule out confounding factors. Nasal endoscopic and acoustic rhinometry measurements confirmed that deprivation had no impact on peripheral intranasal anatomy. Odor intensity and pleasantness ratings, as well as sniffing behavior, remained constant throughout the experiment, making it unlikely that deprivation-related fMRI plasticity could have been driven by these factors. Critically, the use of a within-subjects factorial design enabled us to test the interaction between odor quality category and time, minimizing confounds related to effects merely of environment or treatment parameters.

Rodent models of odor deprivation have revealed profound morphological and physiological changes in rodent olfactory epithelium and olfactory bulb when ongoing afferent stimulation is compromised. Remarkably, most rodent studies of odor deprivation describe minimal behavioral impact on olfactory perception, and our human behavioral data are in line with these observations. Nonetheless, the absence of significant behavioral changes after deprivation still raises the question of whether 7 d of nostril occlusion in adult humans was sufficient to modulate olfactory system function. Although unilateral naris occlusion in rodents is typically maintained over a duration of several weeks, it is apparent that the effects of deprivation on the olfactory bulb can occur within 24 h, and even in as little as 15 min after naris occlusion. These observations make it highly conceivable that robust neurophysiological changes could arise from a 7-d deprivation period in the human brain.

We have previously reported that brief exposure to an odor can enhance odor perceptual differentiation, with parallel learning-induced responses in PPC and OFC. Additionally, the magnitude of learning-induced OFC change predicts the magnitude of behavioral improvement. Here, we observed the inverse phenomenon: after a period of deprivation of olfactory experience, categorical specificity in the OFC was disrupted, and this change in brain activity pattern correlated with behavioral changes in quality similarity ratings between odorants. Consistent with previous rodent studies of olfactory deprivation, we found changes in brain activity levels and ensemble patterns in putative olfactory regions without measurable behavioral deficits. The fact that odor perception was nominally preserved at the group level suggests that the olfactory system possesses compensatory mechanisms that render it resistant to transient perturbations of afferent sensory input, as commonly occur during extended instances of rhinosinusitis or upper respiratory infections. Whether the observed changes in mean OFC activity explicitly support odor perception in the wake of impoverished input remains to be established in future studies.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

The authors would like to thank M. Cahill for assistance in nasal endoscopy and acoustic rhinometry measurements, N. Sandalow and K. Phillips for technical assistance and data collection, and S. Warrenburg (International Flavors and Fragrances) for providing the odorless grade solvents. This work was supported by Northwestern Institutional Predoctoral Training Awards to K.N.W. (T32NS047987) and to J.D.H. (2T32 MH067564), grants R01DC010014 and K08DC007653 from the US National Institute on Deafness and Other Communication Disorders to J.A.G.,...
and US National Institutes of Health grant M01-RR00408 from the National Center for Research Resources to Northwestern University Feinberg School of Medicine.

AUTHOR CONTRIBUTIONS
J.A.G. conceived the experiment, with extensive contributions and methodological suggestions from K.N.W., D.B.C. and J.D.H. K.N.W. collected the imaging and behavioral data. D.B.C. and B.K.T. collected and analyzed the nasal endoscopy and rhinometry data. K.N.W. analyzed the behavioral and imaging data with assistance from J.D.H. and J.A.G. K.N.W., J.D.H. and J.A.G. wrote the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nn.3186
Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.
ONLINE METHODS

Subjects. We obtained informed consent from 14 subjects (8 women; mean age, 23.8 years) to participate in this study, which was approved by the Northwestern University Institutional Review Board. Subjects were right-handed nonsmokers with no history of significant medical illness, psychiatric disorder, or smell, taste or ear-nose-throat (ENT) disorder.

Odor deprivation procedure. After the first scanning session (day 0), subjects were admitted to the Clinical Research Unit (CRU) at Northwestern Memorial Hospital (NMH) for 7 d (6 nights). The odor deprivation technique involved placing Microfoam surgical tape (3M) securely over the nostrils to occlude nasal airflow. Merocel nasal tampons (Medtronic) were cut into 1-cm strips and placed just inside the nostrils at the inner aspect of the tape, to absorb excess moisture that collected at the entrance to the nose that might loosen the tape seal. The dressing was replaced once every 4 h during waking hours, or sooner if an air leak was detected. The dressing was removed when subjects went to sleep at night, and a new dressing was applied when they first woke up in the morning, before getting out of bed.

There were several important benefits of the CRU. First, an odor-free environment in a negative-pressure room was constantly maintained. Second, a healthy, bland diet designed by a CRU dietician was provided to minimize non-olfactory behavioral measures. (1) Taste detection thresholds for NaCl and sucrose were based on a criterion of five consecutive correct choices. On each trial, two transfer pipettes were presented, one containing water only and the other containing salt (or sugar) diluted in water. Subjects sipped from each pipette and indicated which one contained a taste other than water. Each trial was followed by a water rinse, with the next trial ~15 s later55. (2) Taste discrimination ability was measured via a three-way forced-choice triangle test using NaCl and sucrose solutions at peri-level thresholds of detection (established for each subject on day 0 of baseline testing). (3) Two-point tactile discrimination of the left index finger was measured using paper clips carefully calibrated for points 1 mm to 6 mm apart46. (4) The Benton line-orientation judgment task was used to characterize visuospatial acuity57. Only subjects who completed a given task on all three testing days were included in that analysis (Table 1).

Odorant delivery. During behavioral testing, odors were delivered to subjects in opaque amber 30-ml glass bottles containing 5 ml of odorant solution. During fMRI scanning, odorants were delivered using an MRI-compatible computer-controlled olfactometer (air flow, 2.5 l/min), as previously described16.

fMRI procedure. Subjects participated in two tasks during fMRI scanning, conducted across all imaging days. Odorants were delivered using a computer-controlled olfactometer. Sniffing was monitored using respiratory effort bands placed around the chest and abdomen. Subject-specific sniff waveforms were baseline-corrected by subtracting the mean activity in the 500 ms preceding sniff onset. Inspiratory volumes and durations for each odor condition were then averaged across trials and subjects.

fMRI experiment 1. A basic odor detection task was conducted to assess whether mean levels of odor-evoked fMRI activity varied across baseline, post-deprivation and recovery. On each trial, subjects were presented with a visual sniff cue, prompting them to sniff and to indicate with a button press whether they smelled an odor or not (Fig. 1b). The stimulus-onset asynchrony (SOA) between trials was 12 s. Each odorant was presented 4 times, and odorless air trials were presented 16 times (that is, 50% of all trials), for an experimental length of ~6.4 min.

fMRI experiment 2. Subjects underwent a second fMRI task (Fig. 1b) designed to assess the multivoxel pattern integrity of odor quality coding following deprivation. The task was divided into four 10-min runs, during which time the four odorants and odorless air were each presented eight times. Odor stimuli were presented for 3 s, with a 15-s SOA. Each session was separated by 90 s. This scanning session lasted ~46 min.

fMRI data acquisition. Gradient-echo T2-weighted echoplanar images (EPI) were acquired with blood oxygen level–dependent (BOLD) contrast on a Siemens Trio 3-T MRI scanner, using either a 32-channel (n = 9) or a 12-channel (n = 2) head coil. Imaging parameters were as follows: TR, 1.51 s; TE, 20 ms; slice thickness, 2 mm; gap, 1 mm; matrix size, 128 × 120 voxels; field of view, 220 × 206 mm; in-plane resolution, 1.72 × 1.72 mm. Image acquisition was tilted at 30° from horizontal to reduce susceptibility artifacts in olfactory regions. A 1-mm isotropic T1-weighted MPRAGE structural MRI scan was obtained to aid in defining anatomical regions of interest (ROIs).

fMRI pre-processing. fMRI data were pre-processed with SPM5 software (http://www.fil.ion.ucl.ac.uk/spm/). Images were spatially realigned to the first volume of the first session (pre-deprivation). For univariate fMRI analysis, this was followed by spatial normalization to a standard EPI template, and spatial smoothing (6-mm kernel) to account for residual intersubject differences. For multivariate fMRI analysis, there were no subsequent preprocessing steps beyond spatial realignment, to preserve the voxel-wise fidelity of the fMRI signal.

Univariate fMRI models. The preprocessed fMRI data from the odor detection task (fMRI experiment 1) were analyzed using an event-related general linear model (GLM) created by modeling onset times for the odor conditions (pooled across all four odorants) and for the odorless air condition with stick (delta) functions, convolved with a standard hemodynamic response function (HRF) to generate two regressors of interest for baseline, post-deprivation and recovery sessions. Models included six head movement–related regressors per fMRI.
session, obtained from the spatial realignment step. Temporal autocorrelations were adjusted using an autoregressive (AR(1)) process. A 128-s high-pass filter was used to remove signal drifts. Voxel-wise, condition-specific β values were then estimated for odor and no-odor conditions.

Subsequently, a flexible-factorial model was used to investigate effects at the group (random effects) level. Subject-specific parameter estimates for the six conditions were modeled in SPM5 using a two-by-three repeated-measures ANOVA, with the factors “odor presence” (yes/no) and “time” (baseline/post-deprivation/recovery), with non-sphericity correction. An omnibus F-contrast was tested for odor-evoked mean fMRI activity changes across time (Supplementary Table 1). Significance was set at $P < 0.05$ whole-brain corrected for multiple comparisons using the false-discovery-rate (FDR) option in SPM5.

Conjunction ‘null’ analyses were conducted in SPM5 (refs. 32,33) to confirm whether brain regions showed deprivation-selective changes that recovered to baseline levels. Conjunction contrasts of interest were [post-deprivation > baseline] & [post-deprivation > recovery], as well as the converse conjunction, [baseline > post-deprivation] & [recovery > post-deprivation]. Significance for each contrast was set at $P < 0.005$ uncorrected (corresponding to a conjoined $P<0.000025$), delimited to activations observed within the omnibus F-test inclusively masked at $P < 0.05$ uncorrected.

To assess the statistical robustness of the conjunction effects, we conducted a leave-one-subject-out analysis32,36 to maintain independence of voxel identification and small-volume correction35. A group-level model was specified, identically to the above procedures, except that only nine of the ten subjects were included, with one subject left out. Peak coordinates from the conjunction analyses were identified from this nine-subject model and then used as small volume correction (6-mm radius) for the observed fMRI activations from the conjunction analysis of the tenth (left-out) subject. This procedure was iteratively repeated for all ten subjects.

Beta values were converted to BOLD percent signal change and tested for differences over time. Conjunction analysis of the APC was based on regions centered at $(−30, 4, −16)$ and $−(20, 4, −12)$ (6-mm radius), derived from a prior study8. Small volume correction peak coordinates are reported in Supplementary Table 2.

Multivariate pattern analysis. We used a multivariate approach to analyze neuroimaging data from fMRI experiment 2 to evaluate categorical representations of odor quality. Multivoxel ensembles of odor-evoked fMRI activity patterns were extracted from ROIs in APC, PPC and OFC, defined a priori on the basis of prior imaging studies53,54,58,59. Anatomical ROIs were manually drawn on each subject’s T1-weighted MRI scan using MRicroN software (http://www.mricro.com/). APC and PPC were drawn with reference to a human brain atlas35,40, whereas delineation of OFC was guided by an olfactory fMRI meta-analysis59.

For each subject, a GLM was specified for each scanning session from the spatially aligned but un-normalized, unsmoothed fMRI data. For each session, the four runs were sorted into even and odd halves. For each half, five vectors of onset times were generated for the four odor conditions and the odorless air condition (correct trials only). These regressors were convolved with the HRF; all other modeling steps were identical to those described for univariate analysis. Following model estimation, β values were extracted from all voxels within each ROI and assembled into condition-specific linear vectors of ensemble activity.

Ensemble activity patterns were analyzed in two ways. First, we examined pattern correlations between odors belonging to the same category. We constrained the set of voxels within a given ROI to those that showed quality coding selectivity. This procedure used an independent voxel selection method35,36, in which the [odor – air] contrast from the pre-deprivation scan in fMRI experiment 1 was used to rank voxels according to their t-value. Correlation differences between quality-related and quality-unrelated odorant pairs were computed iteratively for increasing numbers of voxels (by t-value rank); that set of voxels exhibiting maximal discriminative validity in the baseline (pre-deprivation) period was then used to independently compute correlation differences for post-deprivation and recovery periods7. A similar approach was used to select voxels based on functional-group discriminability in the baseline scanning session, to assess changes in ensemble coding of this molecular parameter.

Second, we computed pattern correlations between all odorant pairs for each ROI, to assess general changes in odor-evoked ensemble activity. Pattern correlations between odd and even ensembles of odor versus odorless air were also calculated as a control measure of pattern overlap arising from sniffing per se. Correlation differences between odor:odor and odor:air were estimated for each subject separately for baseline, post-deprivation and recovery.

Statistical analyses. Results are shown as mean ± s.e.m. for participants and conditions. To test for group differences in pattern correlations across time, we performed repeated-measures ANOVAs, with follow-up $post$-hoc Student’s t-tests where appropriate. For correlation analyses of behavioral and neuroimaging data, Spearman’s rank correlation coefficients were calculated. Statistical inference was set at a significance of $P < 0.05$ unless otherwise stated.

51. Hilberg, O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy 57 (suppl. 70): 5–39 (2002).
52. Hasegawa, M. & Kern, E.B. The human nasal cycle. Mayo Clin. Proc. 52, 28–34 (1977).
53. Doty, R.L., Shaman, P., Kimmelman, C.P. & Dann, M.S. University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94, 176–178 (1984).
54. Hummel, T., Sekirnger, B., Wolf, S.R., Paule, E. & Kobal, G. ‘Sniffin’ Sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).
55. Bartoshuk, L.M. The psychophysics of taste. Am. J. Clin. Nutr. 31, 1068–1077 (1978).
56. Finnell, J.T., Knopp, R., Johnson, P., Holland, P.C. & Schubert, W. A calibrated paper clip is a reliable measure of two-point discrimination. Acad. Emerg. Med. 11, 710–714 (2004).
57. Benton, A.L., Varney, N.R. & Hamsher, K.D. Visuospatial judgment. A clinical test. Arch. Neurol. 35, 364–367 (1978).
58. Gottfried, J.A., Deichmann, R., Winston, J.S. & Dolan, R.J. Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J. Neurosci. 22, 10819–10828 (2002).
59. Gottfried, J.A. & Zald, D.H. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res. Brain Res. Rev. 50, 287–304 (2005).
60. Mai, J.K., Ascheuer, J. & Paxinos, G. Atlas of the Human Brain viii (Academic Press, San Diego, 1997).