Short Proof of the Gallai-Edmonds Structure Theorem

Andre˘ı Kotlov
CWI, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands
andrei@cwi.nl

Abstract
We derive the Gallai-Edmonds Structure Theorem from Hall’s Theorem.

Introduction and Definitions
In 1971, Anderson [1] gave a derivation of Tutte’s Theorem from Hall’s Theorem. In this note, we give a concise proof of the Gallai-Edmonds Structure Theorem; our proof-method seems new but similar to that of Anderson. For completeness, we proceed with the basic definitions and relevant formulations; the reader familiar with the Gallai-Edmonds Structure Theorem (see, for example, [2] pp.93–95) is asked to skip to the next section.

A set M of edges in a graph G is a matching if no two edges of M share a vertex. A vertex of G incident with no edge in M is M-exposed. A matching is perfect if it has no exposed vertex, and near-perfect if it has exactly one exposed vertex. A graph G is factor-critical if for every vertex $v \in G$ the graph $G-v$ has a perfect matching.

In what follows, S and T are subsets of the vertex set of G; we set $s := |S|$ and $t := |T|$.

The [odd, even] S-components are the connected components of the graph $G-S$ [of odd, even cardinality, respectively]. The number of odd S-components is denoted by $\text{od}(S)$, the total number of vertices in those S-components which have no perfect matching is denoted by $\text{df}(S)$, while the quantity $\text{df}(S) := \text{od}(S) - s$ is the deficiency of S. It is important to notice that (1) every matching in G leaves at least $\text{df}(S)$ nodes exposed, and (2) if a matching M leaves exactly $\text{df}(S)$ nodes exposed then M contains a perfect matching of each even S-component, a near-perfect matching of each odd S-component, and matches all nodes of S to nodes in distinct S-components. If (2) is the case for some S and M, then S is called Tutte-Berge, while M is maximum by (1). The Tutte-Berge Formula asserts that a Tutte-Berge set S always exists.

If $s + \text{od}(S) \geq 2$, we denote by $\langle G, S \rangle$ the bipartite minor of G obtained from G by deleting the vertices of the even S-components, contracting each odd S-component to a single node, and deleting the edges spanned by S. A monochromatic set S of vertices in a bipartite graph H satisfies Hall’s condition [resp., with surplus $k \in \mathbb{N}$] if for every non-empty subset T of S, the size of the neighborhood of T in H is at least t [resp., $t+k$]. In these terms, Hall’s Marriage Theorem asserts that S is covered in H by some matching if and only if S satisfies Hall’s condition. Finally, S is Gallai-Edmonds [with respect to G] if:

(a) the even S-components, if any, have a perfect matching;
(b) the odd S-components, if any, are factor critical;
(c) if S is non-empty, then S satisfies Hall’s condition with surplus one in $\langle G, S \rangle$.

The Gallai-Edmonds Structure Theorem
(i) For every graph G, there exists a Gallai-Edmonds set, S.

(ii) S is Tutte-Berge. Consequently, every maximum matching of G contains a near-perfect matching of each odd S-component, a perfect matching of each even S-component, and matches all nodes of S to nodes in distinct S-components.

(iii) The underlying vertex set of the odd S-components is the set $D(G)$ of the vertices left exposed by at least one maximum matching of G, while S is the neighborhood of $D(G)$. In particular, G has a unique Gallai-Edmonds set.

Proof: Among the subsets of the vertex set of G with maximum deficiency, let S have minimum $\text{df}(S)$. We show, by induction on $|G|$, that S is Gallai-Edmonds.

Suppose that C is an even S-component with no perfect matching. Fix $v \in C$ and set $S' := S \cup \{v\}$. Then $\text{df}(S') \geq \text{df}(S)$ while $\text{df}(S') < \text{df}(S)$. This contradiction shows that S satisfies (a).

Suppose that v is a vertex in an odd S-component C such that $C - v$ has no perfect matching. By induction, the graph $H := C - v$ has a Gallai-Edmonds set, T. In particular, $\text{df}_H(T) \geq 2$. Set $S' := S \cup T \cup \{v\}$. Then $\text{df}(S') = \text{od}(S') - |S'| = [\text{od}(S) + \text{od}_H(T) - 1] - [s + t + 1] = \text{df}(S) + \text{df}_H(T) - 2 \geq \text{df}(S)$ while $\text{df}(S') < \text{df}(S)$. Thus, S satisfies (b).

Suppose that T is a smallest non-empty subset of S violating Hall’s condition with surplus one in (G, S). Set $S' := S - T$. If T consists of a single vertex with no neighbors in (G, S) then $\text{df}(S') > \text{df}(S)$ which is a contradiction. Else, T satisfies Hall’s condition in (G, S). By (b) and Hall’s Theorem, T is contained in an even S'-component with a perfect matching (this even component is spanned by T and the t odd S-components “neighboring” with T in G). Consequently, $\text{df}(S') = \text{df}(S)$ and $\text{df}(S') < \text{df}(S)$. Thus, S satisfies (c) whence (i).

Let now S be Gallai-Edmonds, and let v be a fixed vertex in an odd S-component C. By (c) and Hall’s Theorem, S can be matched to nodes in s distinct odd S-components different from C. By (a) and (b), this matching can be extended by (near-)perfect matchings of the S-components to obtain a matching M avoiding v. Since M leaves $\text{df}(S)$ nodes exposed, it is maximum, and (ii) and (iii) follow immediately. \qed

Concluding Remarks

1. The above proof can be formulated as an exercise, as follows: (A) Among the sets with maximum deficiency, consider a set S which minimizes the total number of vertices in the S-components with no perfect matching; (B) prove, by contradiction, that S is Gallai-Edmonds; (C) deduce the Gallai-Edmonds Structure Theorem.

2. Among the sets T with minimum number of even T-components with no perfect matching, we could choose S to maximize the difference between $\text{df}(S)$ and the total number of vertices in the odd S-components. The above proof would then be repeated almost verbatim.
3. The proof is further shortened if the Tutte-Berge Formula is taken for granted. In fact,
S can be chosen among the Tutte-Berge sets to minimize the total number of vertices
in the odd S-components. Then (a) and (ii) become superfluous for S, while (b) and
(c) can be shown as above but simpler.

4. By incorporating the proof of Hall’s Theorem into the above inductive argument, one
can derive the Gallai-Edmonds Structure Theorem “from scratch.”

Acknowledgements

I would like to express my gratitude to Noga Alon, Romeo Rizzi, and especially Bert Gerards
and Lex Schrijver, for their indispensable help.

References

[1] I. Anderson: Perfect matchings of a graph, *JCT B* 10, 183–186 (1971)

[2] L. Lovász and M.D. Plummer: Matching Theory, North-Holland Mathematics Studies 121
(1986)