Aim. The aim of the work is to examine relevant literature on different patterns of experimental osteoarthritis and choose the most acceptable one for providing its preclinical investigation.

Methods and results. Osteoarthritis (OA) is one of the common forms of joint disease. OA is mainly in the head of the top five causes of disability. Notwithstanding a great number of revealed predisposing factors and the involvement of mechanical distress, the exact pathogenesis of OA is still a subject of investigation. Particularly the earliest changes are largely unknown, because they appear long before clinical manifestation, and that is why they are not able to be studied in humans. The great number of OA researches is devoted to OA development and finding morphological, physiological criteria for strict diagnosis of OA.

Conclusion. It was settled that small animal experimental models of OA are more suitable for preclinical investigations of OA pathogenesis: its genetic and molecular mechanisms; large animal experimental models of OA allow to investigate biomechanical changes of the joint and to provide intraarticular interventions. Methods which are necessary for perfect investigation of the joint are described in the article.

Key words: Osteoarthritis, Pathogenesis, Experimental animal model, Articular cartilage, Subchondral bone.
It is characterized by the complexity of joint disorders. Among risk factors obesity, trauma and other mechanical factors are revealed (Bondeson et al., 2010). However, it is impossible to forget about certain endogenous factors, such as type II collagen mutations, acetabular dysplasia, osteogenesis imperfecta, some other genetic, hormonal and immunological ones (Bondeson et al., 2010).

Nowadays, OA is not only a disease of old persons (Bondeson et al., 2010), but it appears even in adolescents and children as one of the manifestations of the hypermobility syndrome (Kaissi, Klaushofer & Grill, 2009). Influence of different factors during the intranatal period of ontogenesis results in primary functional immaturity of articular cartilage, which is one of the main causes of destructive and dystrophy changes of joints after birth (Григорьева О.А., Волощи М.А., 2011). While investigation of mothers’ katamnesis of children with diagnosed undifferentiated connective tissue dysplasia, gestosis syndrome of the first and second part of pregnancy was revealed. Hormonal, immunological, endocrine disorders in fetal period were also diagnosed in such cases.

Modern View on OA Etiology and Pathogenesis

OA is a systemic multiple etiological musculoskeletal disease (Sakkas and Platsoucas, 2007). Notwithstanding a great number of revealed predisposing factors and the involvement of mechanical distress, the exact pathogenesis of OA is still a subject of investigation. Particularly, the earliest changes are largely unknown, because they appear long before clinical manifestation, and that is why they are not able to be studied in humans.

In the case of OA, the whole joint is impaired, its lesion is associated with irreversible articular cartilage loss, concomitant sclerotic changes in the subchondral bone, destruction of the articular capsule, synovitis, and appearance of osteophytes. Articular cartilage has been the focus of research into OA for decades; it is affected predominantly in OA. This affection is mainly connected with gradual loss of extracellular matrix, composed mainly of aggrecan and type II collagen. Impaired synthesis of collagen II can result in development of OA for decades; it is affected predominantly in OA. This affection is mainly connected with gradual loss of extracellular matrix, composed mainly of aggrecan and type II collagen. Impaired synthesis of collagen II can result in development of OA (Golting M.B., Marcu K.B.). Loss of aggrecan decreases cartilage compressive stiffness and leads to the damaging of collagen fibrile network (Goldring M.B., Marcu K.B.).

Different types of collagen are distinguished in the contents of the extracellular matrix of the articular cartilage. Type II collagen forms about 90% of the fibers in the mature articular cartilage. Proportion of different types of collagen changes with age and under different pathological conditions, and needs further examination. Very little, however, is known about the mechanisms and role of the extracellular matrix and its interactions with cell receptors in the regulation of mineralization events of chondrocytes. Binding of type II collagen and/or type X collagen to annexin V stimulates its Ca²⁺ channel activities, leading to an influx of extracellular Ca²⁺ ions into chondrocytes. Annexin V is expressed in human osteoarthritic cartilage, but not in healthy human articular cartilage. Type X collagen expression was also detected in human osteoarthritic cartilage, suggesting hypertrophic and terminal differentiation events occur in articular cartilage during osteoarthritis (Kim and Kirsch, 2008).

Tide mark, which consists of proteoglycans, provides elasticity of the mature articular cartilage (Goldring M.B., Marcu K.B.). Its thickness and contents change in OA which brakges biochemical and biomechanical barrier between subchondral bone and articular cartilage; therefore, it is followed by cartilage destruction. Vascular pathology also plays a leading role in the initiation and progression of OA. Vascular invasion of the calcified cartilage from the subchondral bone is one of the early factors in the progression of the disease (Findlay, 2007). Correlation between proinvasive and antiinvasive factors in OA has not been determined yet and needs further investigation.

Subchondral bone is the next «violin» in OA development. The subchondral bone is not only a structural support for articular cartilage, but it also necessary for biochemical interaction between the articular cartilage and bone. Vascularity of the subchondral bone is altered with increasing severity of OA. Sclerosis of the subchondral bone, its stiffness, and formation of cysts within it are the morphological changes of the subchondral bone in OA (Mastbergen and Lafeber, 2011).

OA is also characterized by a broad spectrum of changes in the synovial membrane, ranging from small infiltration of the synovial membrane with lymphocytes and macrophages to intense infiltration, thickness of the vascular wall and general edema of the articular capsule. That is, it is impossible to say, that OA is only a degenerative joint disease (Sakkas and Platsoucas, 2007). Synovial inflammation aggravates symptoms of OA. In fact, OA synovial macrophages exhibit an activated phenotype; they produce vascular endothelial growth factor and proinflammatory cytokines, such as TNF-α, IL-1, IL-10, matrix metalloproteinases, and tissue inhibitors of metalloproteinases (Bondeson et al., 2010). According to lymphocytes, the two main different populations are distinguished in the synovial membrane: residual with γδ TCR+ T cells, which fulfill morphogenic function and control over the proportion of different cell types, range of proliferation; the second population takes part in a T cell immune response, they express activation antigens, Th1 cytokines (Sakkas and Platsoucas, 2007). Dynamics of lymphocytes, their phenotype, and their role in OA development are worth investigating.

Directions of OA Researches

The great number of OA researches is devoted to the methods of early detection and developing strategies of its treatment. It is impossible to analyze the development of the human joint in normal conditions and under the influence of different factors during the fetal period of development, because of many bioethical problems, great number of attendant pathology etc. It is also impossible to analyze molecular mechanisms of OA development in patient in dynamics. So, it is necessary to investigate these processes on experimental animal models with further extrapolation of obtained data. Animal experimental models help in investigating mechanisms of OA development and finding morphological, physiological criteria for strict diagnosis of OA.
In some animal models, more advanced stages of OA can be studied. It is often considered that experimental animal research is necessary for the treatment of human diseases, but not all the animal models are adequate for clinic. Some methodological problems of animal experiments, such as nuances in laboratory technique that may influence on the results etc., still exist (Mastbergen and Lafeber, 2009).

Methods
A comprehensive review of the English language literature was performed using electronic databases Medline (2005-2013), CINAHL (2007-2013), and ProQuest (2007-2013). The following search terms were used in different combinations: «Osteoarthritis», «Experimental models of OA», «Intraarticular changes», and «Pathogenesis of OA». The lists of references of the chosen articles were also analyzed.

Results
To study the changes associated with cartilage, subchondral bone and synovial membrane impairment during OA numerous animal models have been developed and proposed. For this purpose, different types of animals are used: mouse, rat, dog, horse, sheep, goat, guinea pig, etc. It is important to remember that translation of knowledge from animal models to humans should be done with caution (Gregory et al., 2012).

Experimental animal models of osteoarthritis induction include some ones, based on intraarticular injections of different solutions such as sodium monoiodoacetate, Escherichia Coli Lipopolisacharide, etc. These models were developed on the eve of OA investigation. Later on traumatic impact models, instability-based models were proposed.

Unfortunately, a single gold standard model for OA is steel absent. Each model is characterized by its own unique advantages and disadvantages. It is necessary to take into consideration age, size, and sex of the animals. Small animals (mice, rats, guinea pigs, rabbits) are suitable because of their easy upkeep, low cost, and genetic manipulations. So, small animal models are most advantageous for investigation of specific disease mechanisms, preclinical initial screening of therapeutics. They, especially mouse models, are useful in elucidating the genetic (for example, Kniest and Sickler syndrome) and molecular pathogenesis of OA (Gregory et al., 2012). In the case of morphological examination of joint, in general, these models are also favorable, because of the size of the joint. Consequently, it is possible to make one histological sample, which includes all the components of the joint – articular capsule, articular cartilage, subchondral bone, menisci and intraarticular ligaments. That makes possible to have a glance on changes of the joint in the whole. It allows examining quantitative and qualitative composition of cells and substances of the extracellular matrix of all the components of the joint. Mouse experimental models for a long time were the pioneers in biomedical animal models. The Brtl (a knockin model of human osteogenesis imperfecta) mouse model demonstrates that destruction of articular cartilage is secondary to altered architecture of the subchondral bone (Blair-Levy et al., 2008).

Hartley guinea pigs spontaneously develop degenerative changes of articular cartilage that are similar to established in humans. Guinea pig model of OA helped in the description of subchondral sclerosis as a biphasic process, characterized with primary thickness of the subchondral bone, which is followed by its stiffness (Muraoka et al., 2007).

Rabbit experimental instability model of OA is one of the most widely used experimental models of OA; it means transection of the anterior cruciate ligament. It is of particular clinical relevance to posttraumatic OA in humans (Tiraloche, Girard, Cournard, Sampalis, Moquin, Ionescu, Reiner, Poole & Laverty, 2005).

Large animal models of OA induction are most advantageous in biomechanical and anatomical similarity to humans, ability to use routine diagnostic imaging, capabilities for arthroscopic interventions and postoperative management. They (dogs, pigs, goats, horses etc.) can undergo routine MRI in vivo to analyze cartilage volume, bone marrow lesions, synovitis, lesions of the ligaments and menisci (Roemer, Crema, Trattning & Guermazi, 2011). And vice versa mice, rats, guinea pigs are too small for MRI (Blair-Levy et al., 2008). As for horses: spontaneous OA is a quite common problem for them. The most frequently affected joint is the metacarpophalangeal joint. In sheep, goats as well as in horses, it is possible to analyze many detailed outcome measures, because of the size of the joints (Mastbergen and Lafeber, 2009).

It is necessary to remember that all animal research must be described in an Animal Care and Use Committee Protocol Form, which must be approved by the institutional Animal Care and Use Committee prior to any animal work being performed. To clarify OA pathogenesis, it is necessary to examine metabolism of articular cartilage, articular capsule and subchondral bone in OA development.

Methods, which are necessary for perfect investigation of the joint
For the investigation of a joint in the whole micro-magnetic resonance imaging and micro-computed tomography are necessary.

For the articular cartilage: 1) macroscopic cartilage assessment: examination of the articular cartilage for gross morphologic changes with application of India Ink; 2) histologic assessment of cartilage: fixed in 10 % neutral buffered formalin, decalcified tissue blocks, dehydrated through graded alcohol, embedded in paraffin 5-6 micrometer sections are stained with hematoxylin-eosin, Safranin O – Fast Green for general review of the cartilage; for estimation of the chondrocytes’ density, for analyzing of nucleo-cytoplasmic proportion; chondrocyte necrosis, fibrillation of matrix, fissure or fracture of cartilage, cartilage thinning, chondrocyte clusters and clones, cartilage erosion; 3) immunohistochemical analysis of type I collagen, type II, type IX and type X collagen with primary thickness of the subchondral bone, which is followed by its stiffness (Muraoka et al., 2007).

Rabbit experimental instability model of OA is one of the most widely used experimental models of OA; it means transection of the anterior cruciate ligament. It is of particular clinical relevance to posttraumatic OA in humans (Tiraloche, Girard, Cournard, Sampalis, Moquin, Ionescu, Reiner, Poole & Laverty, 2005).

Large animal models of OA induction are most advantageous in biomechanical and anatomical similarity to humans, ability to use routine diagnostic imaging, capabilities for arthroscopic interventions and postoperative management. They (dogs, pigs, goats, horses etc.) can undergo routine MRI in vivo to analyze cartilage volume, bone marrow lesions, synovitis, lesions of the ligaments and menisci (Roemer, Crema, Trattning & Guermazi, 2011). And vice versa mice, rats, guinea pigs are too small for MRI (Blair-Levy et al., 2008). As for horses: spontaneous OA is a quite common problem for them. The most frequently affected joint is the metacarpophalangeal joint. In sheep, goats as well as in horses, it is possible to analyze many detailed outcome measures, because of the size of the joints (Mastbergen and Lafeber, 2009).

It is necessary to remember that all animal research must be described in an Animal Care and Use Committee Protocol Form, which must be approved by the institutional Animal Care and Use Committee prior to any animal work being performed. To clarify OA pathogenesis, it is necessary to examine metabolism of articular cartilage, articular capsule and subchondral bone in OA development.

Methods, which are necessary for perfect investigation of the joint
For the investigation of a joint in the whole micro-magnetic resonance imaging and micro-computed tomography are necessary.

For the articular cartilage: 1) macroscopic cartilage assessment: examination of the articular cartilage for gross morphologic changes with application of India Ink; 2) histologic assessment of cartilage: fixed in 10 % neutral buffered formalin, decalcified tissue blocks, dehydrated through graded alcohol, embedded in paraffin 5-6 micrometer sections are stained with hematoxylin-eosin, Safranin O – Fast Green for general review of the cartilage; for estimation of the chondrocytes’ density, for analyzing of nucleo-cytoplasmic proportion; chondrocyte necrosis, fibrillation of matrix, fissure or fracture of cartilage, cartilage thinning, chondrocyte clusters and clones, cartilage erosion; 3) immunohistochemical analysis of type I collagen, type II, type IX and type X collagen with primary thickness of the subchondral bone, which is followed by its stiffness (Muraoka et al., 2007).
Analysis and selection of experimental models of osteoarthritis

For the subchondral bone: 1) bone mineralization analysis; 2) analysis of subchondral bone thickness on the histological sections using individual point-to-point distance measures; 3) analysis of bone connectivity; 4) analysis of the subchondral bone structure: trabecular bone volume/total volume, trabecular thickness, trabecular number, trabecular separation, subchondral osteonecrosis, osteosclerosis, subchondral bone erosions, and subchondral cyst formation.

For the articular capsule and synovial layer: 1) staining of the sections with hematoxylin-eosin, resorcin – new fuchsin, with Mallory solution, impregnation of the sections with toluidine blue, Coomassie blue, with Stickler Syndrome.

References

1. Aspden, R. M. (2008). Osteoarthritis: Problems of Growth Not Decay? Rheumatology, 47(10), 1452–1460. doi: 10.1093/ rheumatology/ken199.
2. Blair-Levy, J. M., Watts, C. E., Fiorientino, N. M., Dimitriadis, E. K., Marini, J. C., & Lipsky, P. E. (2008). A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis & Rheumatism, 58(4), 1096–1106. doi: 10.1002/art.23277.
3. Bondeson, J., Blom, A. B., Wainwright, S., Hughes, C., Cater- son, B., & van den Berg, W. B. (2010). The Role of Synovial Macrophages and macrophage-Produced Mediators in Driving Inflammatory and destructive Responses in Osteoarthritis. Arthritis & Rheumatism, 62(3), 647–657. doi: 10.1002/art.27290.
4. Brandt, K. D., Radin, E. L., Dieppe, P. A. (2006). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part II. Arthritis & Rheumatism, 58(1), 26–35. doi: 10.1002/art.23176.
5. Chillemi, C., & Franceschini, V. (2012). Role of Subchondral Bone in Osteoarthritis – Why Choose a Larger Model? Masteberg US Cardiology book temp 2011/2009, 11–14.

Conclusion

Osteoarthritis (OA) is one of the common forms of joint disease. OA is mainly in the head of the top five causes of disability. Pain, joint stiffness and reduced motion lead to disability and loss of independence of patients with OA. Notwithstanding a great number of revealed predisposing factors and the involvement of mechanical distress, the exact pathogenesis of OA is still a subject of investigation. Particularly, the earliest changes are largely unknown, because they appear long before clinical manifestation, and that is why they are not able to be studied in humans. The great number of OA researches is devoted to the methods of early detection and developing strategies of its treatment. Animal experimental models help in investigating mechanisms of OA development and finding morphological, physiological criteria for strict diagnosis of OA. In some animal models, more advanced stages of OA can be studied. Small animal experimental models of OA are more suitable for preclinical investigations of OA pathogenesis: its genetic and molecular mechanisms. Large animal experimental models of OA allow to investigate biomechanical changes of the joint and to provide intraarticular interventions. Providing profound preclinical investigations of OA pathogenesis and treatment is of great importance, because of its great influence on the process of OA development understanding and prevention.

Information about authors:

Grygorieva O. A., associated professor. Department of normal anatomy, operative surgery and topographic anatomy, Zaporozhye State Medical University. E-mail: mstesha@mail.ru.

Skakovskiy E. R., associated professor, Department of normal anatomy, operative surgery and topographic anatomy, Zaporozhye State Medical University.

Monina O. V., intern, Zaporozhye State Medical University.