Only Closed Testing Procedures are Admissible for Controlling False Discovery Proportions

Jelle J. Goeman* Jesse Hemerik† Aldo Solari‡

Published in The Annals of Statistics:
http://doi.org/10.1214/20-AOS1999

Abstract

We consider the class of all multiple testing methods controlling tail probabilities of the false discovery proportion, either for one random set or simultaneously for many such sets. This class encompasses methods controlling familywise error rate, generalized familywise error rate, false discovery exceedance, joint error rate, simultaneous control of all false discovery proportions, and others, as well as gene set testing in genomics and cluster inference in neuroimaging. We show that all such methods are either equivalent to a closed testing procedure, or are uniformly improved by one. Moreover, we show that a closed testing method is admissible if and only if all its local tests are admissible. This implies that, when designing methods, it is sufficient to restrict attention to closed testing. We demonstrate the practical usefulness of this design principle by obtaining more informative inferences from the method of higher criticism, and by constructing a uniform improvement of a recently proposed method.

1 Introduction

Closed testing (Marcus et al., 1976) is a fundamental principle of familywise error rate (FWER) control in multiple hypothesis testing. Indeed, almost every known procedure controlling FWER has been shown to be a special case of closed testing, and many procedures have been explicitly constructed as such. This is natural from a theoretical perspective, as Sonnemann (1982, 2008), and Sonnemann and Finner (1988) have shown that closed testing is necessary for FWER control: every admissible procedure that controls FWER is a special case of closed testing. Romano et al. (2011) extended the results of Sonnemann and Finner, proving that from a FWER perspective not every closed testing procedure is admissible; only consonant procedures are. These results are valuable for designers of FWER controlling methods, who can rely exclusively on closed testing as a general design principle. Alternative design principles exist, such as the partitioning principle (Finner and Strassburger, 2002) and sequential rejection (Goeman and Solari, 2010), but these are equivalent to closed testing.

Rather than only for FWER control, Goeman and Solari (2011) showed that closed testing may also be used to obtain simultaneous confidence bounds for the false discovery proportion (FDP) of all subsets within a family of hypotheses. Used in this way, closed testing allows a form of post-selection inference. It allows users to look at the data prior to choosing thresholds and criteria for significance, while still keeping control of tail probabilities of the FDP. The approach of Goeman and Solari (2011) is equivalent to an earlier approach by Genovese and Wasserman (2004, 2006) that did not explicitly use
closed testing. A natural question that arises is whether similar results to those of Sonnemann (1982), Sonnemann and Finner (1988) and Romano et al. (2011) also hold for this novel use of closed testing. When controlling FDP, is it sufficient to look only at closed testing-based methods? Which methods controlling FDP are admissible? These are the questions we will address in this paper.

2 Overview and main results

This paper has three main contributions. First, it presents a unification of methods and error rates, rewriting a wide range of diverse procedures as examples of a novel class. Within this class, we give first a necessary condition for admissibility, and then a sufficient one. We start with a birds-eye view of these main results.

Genovese and Wasserman (2004) and Goeman and Solari (2011) considered simultaneous control of FDP for all subsets of a testing problem. For a family of hypotheses of interest \(\mathcal{H} \), these authors have proposed methods to find upper \((1 - \alpha)\)-confidence bounds \(q^I(S) \) for the FDP \(\pi_0(S) \), for all \(S \subseteq I \), that are simultaneous for all such \(S \). This means that

\[
\Pr(\pi_0(S) \leq q^I(S) \text{ for all } S \subseteq I) \geq 1 - \alpha. \tag{1}
\]

In this paper, we investigate the class of all methods controlling the error rate (1). In Section 3 we show that many procedures that seem to target control of other quantities than FDP at first sight are members of this general class. These include all methods with regular FWER control; FWER control of intersection hypotheses; \(k \)-FWER control; simultaneous \(k \)-FWER control; False Discovery Exceedance control; control of the Joint Error Rate; and methods constructing confidence intervals for the overall proportion of true (or false) hypotheses. Essentially, the procedures we can rewrite as a special case of (1) are all procedures that control a tail probability of the number or proportion of false discoveries from above, either for one random set or simultaneously for several such sets.

Broad though this class of methods may be, it turns out that we can make strong statements that are valid for the whole class. We focus on admissibility, and therefore on the existence of uniform improvements of methods controlling (1). The first central result of this paper is given in Section 7: given any method controlling (1), we can always construct a closed testing procedure that is either equivalent to the method we started with, or a uniform improvement of that method. Thus, our result implies that a necessary condition for admissibility is equivalence to a closed testing procedure. Moreover, we give an explicit construction of the improvement using the approach of Genovese and Wasserman (2004) and Goeman and Solari (2011). The second main result of this paper is a sufficient condition for admissibility. We show in Section 8 that a closed testing procedure is admissible if the local tests that define the closed testing procedure are admissible.

Taken together, these results give design principles for multiple testing procedures. To design admissible procedures it is sufficient to create a closed testing procedure with admissible local tests. To show admissibility for a procedure designed in a different way, it is sufficient to show that the procedure is equivalent to such a procedure. We will discuss practical implications of our results for researchers seeking to develop new methods. We do this by revisiting two testing procedures: Higher Criticism (Donoho and Jin, 2004; Meinshausen and Rice, 2006) and the simultaneous FDP bounds of Katsevich and Ramdas (2020). In both cases we do not only uniformly improve the inferential statements of the methods, we also extend their scope by deriving non-trivial bounds for the FDP of sets these methods did not initially target.
3 Inference on false discovery proportions

Assume that we have data X distributed according to some unknown probability distribution $P \in \Omega$. About P we may formulate hypotheses of the form $H \subseteq \Omega$. Let the family of hypotheses of interest be $(H_i)_{i \in I}$, where $I \subseteq C \subseteq \mathbb{N}$ is finite. The set C, possibly infinite, is arbitrary here, but will become important in Section 6. Within the family I, let $I_0 = \{ i \in I : P \in H_i \}$ be the index set of the true hypotheses and $I_1 = I \setminus I_0$ the index set of the false hypotheses. We will make no further model assumptions in this paper: any models, any test statistics, and any dependence structures will be allowed. Equalities and inequalities between random variables should be read as holding almost surely for all $P \in \Omega$ unless otherwise stated. Proofs of all theorems, lemmas and propositions are in Section E in the Supplemental Information. Throughout the paper we will denote all random quantities in boldface. Upper case variables (except the Supplemental Information) throughout the paper we will denote all random quantities in boldface.

We define a procedure with FDP control on I (i.e. on $(H_i)_{i \in I}$) as a random function $q^f : 2^I \to [0, 1]$, where 2^I is the power set of I, such that for all $P \in \Omega$ it satisfies (1).

It will be more convenient to use an equivalent representation that gives a simultaneous lower $(1-\alpha)$-confidence bound for $|S \cap I_1|$, the number of true discoveries. We say that a random function $d^f : 2^I \to \mathbb{R}$ has a $(1-\alpha)$-true discovery guarantee on I if, for all $P \in \Omega$, $\Pr(d^f(S) \leq |S \cap I_1| \text{ for all } S \subseteq I) \geq 1 - \alpha$. (2)

We will usually suppress the dependence on α when talking about true discovery guarantees. To see that the class of methods of FDP control and the class of procedures with a true discovery guarantee are equivalent, note that if q^f fulfils (1), then

$$d^f(S) = (1 - q^f(S))|S|,$$

fulfils (2) and, if d^f fulfils (2), then

$$q^f(S) = \frac{|S| - d^f(S)}{|S| \vee 1},$$

fulfills (1). In the rest of the paper we will focus on true discovery guarantee procedures, which are mathematically easier to work with than methods with FDP control, e.g. because they automatically avoid issues with empty sets S. Without loss of generality we may assume that $d^f(S)$ takes integer values, and that $0 \leq d^f(S) \leq |S|$. If $d^f(S)$ is not integer, we may freely replace $d^f(S)$ by $\lceil d^f(S) \rceil$.

The class of FDP control (cf. true discovery guarantee) procedures encompasses seemingly diverse methods. Only few authors (Genovese and Wasserman, 2006; Goeman and Solari, 2011; Goeman et al., 2019; Blanchard et al., 2020) have explicitly proposed procedures that target control of FDP for all sets S simultaneously as implied by (1). However, many other well-known types of multiple testing procedures turn out to be special cases of FDP control procedures, even if they were not directly formulated to control (1) or its equivalent. We will review these procedures briefly in the rest of this section in order to emphasize the wide range of applications of the results of this paper. We will reformulate such procedures in terms of d^f. Procedures that control FWER (e.g. Westfall and Young, 1993; Bretz et al., 2009; Berk et al., 2013; Janson et al., 2016) within the family defined by I are usually defined as producing a random set K (possibly empty) for which it is guaranteed that, for all $P \in \Omega$, $\Pr(|K \cap I_0| = 0) \geq 1 - \alpha$. A generalization, k-FWER (Hommel and Hoffmann, 1988; Lehmann and Romano, 2005; Romano and Shaikh, 2006; Sarkar, 2007; Guo et al., 2010; Finos and Farcomeni, 2011), makes sure that, for all $P \in \Omega$,

$$\Pr(|K \cap I_0| < k) \geq 1 - \alpha,$$
which reduces to regular FWER if \(k = 1 \) is chosen. It is easily seen that this is equivalent to requiring (2) if we take

\[
I(S) = \begin{cases}
|S| - k + 1 & \text{if } S = K, \\
0 & \text{otherwise.}
\end{cases}
\]

(3)

Free additional statements may be obtained from (3) by direct logical implication. For example, if \(I(S) = |S| - k + 1 \) then we may immediately set \(I(U) = |U| - k + 1 \), if positive, for all \(U \subseteq S \) without compromising (2). We will come back to such implications in Section 5.

Related to \(k \)-FWER are methods controlling False Discovery Exceedance (FDX), also known as \(\gamma \)-FDP, at level \(\gamma \) (Dudoit et al., 2004; Korn et al., 2004; Romano and Shaikh, 2006; Farcomeni, 2009; Sun et al., 2015; Delattre et al., 2015). Such methods find a random set \(K \) (possibly empty) such that, for all \(P \in \Omega \),

\[
P\left(|K \cap I_0| \leq \gamma |K| \right) \geq 1 - \alpha,
\]

which is equivalent to (2) with

\[
I(S) = \begin{cases}
(1 - \gamma)|S| & \text{if } S = K_i \text{ for some } 1 \leq i \leq m, \\
0 & \text{otherwise.}
\end{cases}
\]

In most methods controlling FDX the control level \(\gamma \) is fixed, but it may also be random, as e.g. in the permutation-based method of Hemerik and Goeman (2018). Variants, such as kFDP (Guo et al., 2014), which allow a minimum number of false discoveries regardless of the size of \(K \), also fit (2).

Other methods allow \(\gamma \) to be chosen post-hoc by controlling FDX simultaneously over several values of \(\gamma \). One way to achieve this is by control of the Joint Error Rate (JER). The JER (Blanchard et al., 2020) constructs a sequence of \(m \geq 0 \) distinct random sets \(K_1, \ldots, K_m \subseteq I \) and corresponding random bounds \(k_1, \ldots, k_m \), such that, for all \(P \in \Omega \),

\[
P\left(|K_i \cap I_0| < k_i \text{ for all } 1 \leq i \leq m \right) \geq 1 - \alpha.
\]

This is a special case of (2) if we set

\[
I(S) = \begin{cases}
|K_i| - k_i + 1 & \text{if } S = K_i \text{ for some } 1 \leq i \leq m, \\
0 & \text{otherwise.}
\end{cases}
\]

Joint error rate control may be used with nested sets (Blanchard et al., 2020) or tree-structured sets (Durand et al., 2020), and is meant to be combined with interpolation (see Section 5). Similar approaches were used by e.g. the permutation-based methods of Meinshausen (2006) and Hemerik et al. (2019). Also the approach of Katsevich and Ramdas (2020), discussed in detail in Section 11, can be seen as controlling JER with nested sets.

A different category of methods involves FWER control of many intersection hypotheses, as e.g. used in gene set testing in genomics and in cluster inference in neuroimaging. In genomics, a collection of distinct sets \(K_1, \ldots, K_m \subseteq I \) is given a priori, and the procedure generates corresponding random indicators \(k_1, \ldots, k_m \in \{0, 1\} \) for detection of signal in the corresponding set. FWER is controlled over all statements made, i.e., for all \(P \in \Omega \),

\[
P\left(|K_i \cap I_j| \geq k_i \text{ for all } i = 1, \ldots, m \right) \geq 1 - \alpha.
\]

(4)

This corresponds to (2) with

\[
I(S) = \begin{cases}
k_i & \text{if } S = K_i \text{ for some } 1 \leq i \leq m, \\
0 & \text{otherwise.}
\end{cases}
\]

Examples of such methods include Meinshausen (2008), Goeman and Mansmann (2008), Goeman and Finos (2012), Meijer and Goeman (2015b), Meijer et al. (2015), and Meijer and Goeman (2015a). In the
latter two papers a connection with FDP control was already noted. In neuroimaging, cluster inference methods are similar except that in this case the sets K_1, \ldots, K_m and their number $m \geq 0$ are random, and $k_i = 1$ for $i = 1, \ldots, m$ is fixed (Poline and Mazoyer, 1993). FWER control (4) is guaranteed by Gaussian random field theory. Such control translates to a true discovery guarantee (2) in the same way.

In partial conjunction testing (Benjamini and Heller, 2008; Wang and Owen, 2019), the hypothesis $H_{k/n}^{k/n}: |I_1| < k$ is tested for some $1 \leq k \leq n$. The requirement that δ, taking values in $\{0, 1\}$ is a valid test of $H_{k/n}$ is equivalent to (2) with

$$d^I(S) = \begin{cases} \delta k & \text{if } S = I, \\ 0 & \text{otherwise.} \end{cases}$$

Finally, related to partial conjunction methods are methods that aim to make one-sided confidence intervals for $\pi_0(I)$, the proportion of true null hypotheses in the testing problem as a whole (Meinshausen and Rice, 2006; Ge and Li, 2012). Here, the requirement that $[0, u]$ is a valid confidence interval for $\pi_0(I)$ is equivalent to demanding (2) with

$$d^I(S) = \begin{cases} (1 - u)|I| & \text{if } S = I, \\ 0 & \text{otherwise.} \end{cases}$$

This listing of the different types of methods that may be written as true discovery guarantee methods is certainly not exhaustive, but a general pattern emerges. Any method controlling a $(1 - \alpha)$-tail probability of the number or proportion of true discoveries (from below) or false discoveries (from above) either in one subset of I, or in several subsets simultaneously, are special cases of general discovery control procedures. The sets and bounds are all allowed to be random; only α must be fixed.

Writing procedures as true discovery guarantee procedures, even when the rewriting is trivial, may bring a new perspective to the use of the procedure. As proposed by Goeman and Solari (2011), procedures that fulfil (1) or (2) allow a different, flexible way of using multiple testing methods. In flexible multiple testing the user may look at the data before choosing post hoc one or several sets $S \subseteq I$ of interest, based on any desired criteria, and find their $d^I(S)$. Regardless of this data peeking the bounds on the selected sets are simultaneously valid due to the simultaneity in (2). Writing procedures in this form, therefore, in principle opens the way to their use as post-selection inference methods (see Rosenblatt et al., 2018; Ebrahimpoor et al., 2019, for applications). Of course, this is only useful if the user has some real choice, i.e. if $d^I(S) \neq 0$ for a number of sets S. We will see in Section 5 how to get rid of some of the zeros in the definitions above.

4 True discovery guarantee using closed testing

A general way to construct true discovery guarantee procedures is provided by closed testing, introduced by Marcus et al. (1976) for FWER control. Genovese and Wasserman (2006) and Goeman and Solari (2011) adapted closed testing to make it usable for true discovery guarantee and FDP control. We will briefly review these methods here.

For every finite set $S \subseteq C$ we define a corresponding intersection hypothesis as $H_S = \bigcap_{i \in S} H_i$. This hypothesis is true if and only if all $H_i, i \in S$ are true. We have $H_\emptyset = \Omega$, which is always true. For every intersection hypothesis H_S we may choose a local test ϕ_S, taking values in $\{0, 1\}$, with 1 indicating rejection of H_S. This is a valid statistical test for H_S if it has the property that, for all $P \in H_S$

$$P(\phi_S = 1) \leq \alpha.$$

We always choose $\phi_\emptyset = 0$ surely. Choosing a local test for every finite $S \subseteq C$ will yield a suite of local tests $\phi = (\phi_S)_{S \subseteq C, |S| < \infty}$. To deal with restricted combinations (Shaffer, 1986) efficiently, if present,
we demand that identical hypotheses have identical tests: if for \(U, V \subseteq C \) we have \(H_U = H_V \), then \(\phi_U = \phi_V \). If \(H_U = \emptyset \) for some \(U \subseteq C \), we may take \(\phi_U = 1 \) surely.

From a suite of local tests we may obtain a true discovery guarantee procedure in two simple steps. First, we need to correct the tests for multiple testing. We define the effective local test within the family \(I \) by

\[
\phi^I_S = \min \{ \phi_U : S \subseteq U \subseteq I \}.
\]

As shown by Marcus et al. (1976), the effective local tests have FWER control over all intersection hypotheses \(H_S, S \subseteq I \), i.e., for all \(P \in \Omega \),

\[
P(\phi^I_S \leq |S \cap I| \text{ for all } S \subseteq I) \geq 1 - \alpha.
\]

Next, we calculate \(d^I(S) \). We see that the procedure defined by \(d^I(S) = \phi^I_S \) already fulfills (2). More recently, however, Goeman and Solari (2011) showed that closed testing may also be used for more powerful FDP control. For any suite of local tests \(\phi \), these authors defined the associated procedure

\[
d^I_\phi(S) = \min_{U \in 2^S} \{|S \setminus U| : \phi^U_V = 0\},
\]

and proved the true discovery guarantee. Note that the minimum is always defined since \(\phi^\emptyset = \phi_{\emptyset} = 0 \) surely.

An earlier general approach to developing true discovery guarantee procedures was developed, without reference to closed testing, by Genovese and Wasserman (2004, 2006). Starting from a suite of local tests, they proved coverage for the general true discovery guarantee procedure

\[
g^I_\phi(S) = \min_{V \in 2^I} \{|S \setminus V| : \phi_V = 0\}.
\]

The difference between approaches (5) and (6) is that (5) uses a two-step approach, first correcting the local tests for multiple testing using the closed testing procedure, while (6) works directly on the local tests. In compensation, (5) only needs to look through the subsets of the set of interest \(S \), while (6) looks through all subsets of the family \(I \). The end result, however, is identical (Hemerik et al., 2019):

Lemma 1. \(g^I_\phi = d^I_\phi \).

The expressions (5) and (6) are very useful for constructing true discovery guarantee procedures. Local tests tend to be easy to specify in most models, as each local test is a test of a single hypothesis, so that standard statistical test theory may be used. Given a suite of local tests, (5) or (6) takes care of the multiplicity. A computational problem remains: direct application of (5) or (6) takes exponential time. Often, however, shortcuts are available that allow faster computation (Goeman and Solari, 2011; Goeman et al., 2019; Dobriban, 2020). We’ll see examples in Sections 10 and 11.

Comparing (5) and (6), the single step expression of Genovese and Wasserman (2006) is clearly more elegant. However, the link of (5) to closed testing is valuable because it connects true discovery guarantee procedures to the enormous literature on closed testing (see Henning and Westfall, 2015, for an overview). The detour via effective local tests is often profitable in practice because expressions for \(d^I_\phi(S) \) can be easier to derive through expressions for \(\phi^I_S \) (Hemerik and Goeman, 2018; Goeman et al., 2019).

5 Coherence and interpolation

By viewing methods in terms of true discovery guarantees, as we have done in Section 3, they are upgraded from making a confidence statement about discoveries in a limited number of sets \(S \subseteq I \) to doing the same for all subsets of \(I \). However, in the definitions of Section 3, most of these statements are
the trivial \(d^I(S) = 0 \). Often, however, some of the statements can be uniformly improved by a process called interpolation. In this section we discuss interpolation and how it can improve true discovery guarantee procedures. We will define coherent procedures as procedures that cannot be improved by interpolation.

Let \(d^I \) be some true discovery guarantee procedure. We define the interpolation \(\bar{d}^I \) of \(d^I \) as

\[
\bar{d}^I(S) = \max_{U \in 2^I} \left\{ d^I(U) - |U \setminus S| + d^I(S \setminus U) \right\}.
\]

(7)

Interpolation was used in weaker versions or in specific cases by several authors (Genovese and Wasserman, 2006; Meinshausen, 2006; Blanchard et al., 2020; Durand et al., 2020). Taking \(U = S \), we see that \(\bar{d}^I(S) \geq d^I(S) \). Moreover, the improvement from \(d^I \) to \(\bar{d}^I \) is for free, as noted in the following lemma.

Lemma 2. If \(d^I \) is a true discovery guarantee procedure then so is \(\bar{d}^I \).

Intuitively, the rationale for interpolation is as follows. If \(d^I(U) \) is large, and \(S \) has so much overlap with \(U \) that the signal \(d^I(U) \) in \(U \) does not fit in \(U \setminus S \), then the remaining signal must be in \(S \). Since this reasoning follows by direct logical implication, it will not increase the occurrence of type I error: we can only make an erroneous statement about \(S \) if we had already made one about \(U \). As an example, consider interpolation for \(k \)-FWER controlling procedures. The interpolated version of (3) is simply

\[
\bar{d}^I(S) = 0 \lor (|S \cap K| - k + 1),
\]

(8)

an expression that simplifies even further to \(\bar{d}^I(S) = |S \cap K| \) with regular FWER when \(k = 1 \).

Interpolation is not necessarily a one-off process, and interpolated procedures may sometimes be further improved by another round of interpolation. We call a procedure coherent if it cannot be improved by interpolation, i.e. if

\[
\bar{d}^I(S) = d^I(S) \quad \text{for all } S \subseteq I.
\]

(9)

We can characterize coherent procedures further with the following lemma.

Lemma 3. \(d^I \) is coherent if and only if for every disjoint \(V, W \subseteq I \) we have

\[
d^I(V) + d^I(W) \leq d^I(V \cup W) \leq d^I(V) + |W|.
\]

We intentionally use the same term coherent that was used by Sonnemann (1982) in the context of FWER control of intersection hypotheses. Looking only at FWER control of intersection hypotheses is equivalent to looking only at \(\mathbb{I}\{d^I(S) > 0\} \) for every \(S \), where \(\mathbb{I}\{\cdot\} \) denotes an indicator function. In that case (9) reduces to simply requiring that \(U \subseteq V \) and \(d^I(U) > 0 \) implies that \(d^I(V) > 0 \), which is exactly Sonnemann’s definition of coherence.

Methods that are created through closed testing are automatically coherent, as the following lemma claims.

Lemma 4. The procedure \(d^I_0 \) is coherent.

Since an incoherent procedure can always be replaced by a coherent procedure that is at least as good, we will restrict attention to coherent procedures for the rest of this paper.

6 Monotone procedures

The methods from the literature discussed in Sections 3 and 4 are usually not defined for a specific family \(I \) of hypotheses, but as generic procedures that can be used for any family, large or small. Researchers
developing methods are usually not looking for good properties for a specific family at a specific scale $|I|$, but for methods that are generally applicable and have good properties whatever I.

We can embed the procedure d^I into a stack of procedures $d = (d^I)_{I \subseteq C, |I|<\infty}$, where we may have some maximal family $C \subseteq \mathbb{N}$. We will briefly call d a monotone procedure if it fulfills the three criteria below. In contrast, we call d^I for a specific I a local procedure, or a local member of d.

1. **true discovery guarantee**: d^I is a true discovery guarantee procedure for every finite $I \subseteq C$;
2. **coherence**: d^I is coherent for every finite $I \subseteq C$;
3. **monotonicity**: $d^I(S) \geq d^I(S)$ for every finite $S \subseteq I \subseteq J \subseteq C$.

The first two criteria are no more than natural. We demand a true discovery guarantee for every member of the monotone procedure, and we demand coherence for every local member since otherwise we may always improve it by a coherent procedure. The monotonicity requirement relates local procedures at different scales to each other. It says that inference on the number of discoveries in a set S should never get better if we embed S in a larger family J rather than in a smaller family I. As the multiple testing problem gets larger, inference should get more difficult. This requirement relates closely to the “subsetting property” of Goeman and Solari (2014) and the monotonicity property of various FWER control procedures (e.g. Bretz et al., 2009; Goeman and Solari, 2010). It is a natural requirement, and the procedures cited in Section 3 generally adhere to it by construction.

There are a few notable exceptions to the rule that method designers tend to design monotone rather than local procedures. All the examples we are aware of are FWER-controlling procedures. Rosenblum et al. (2014) proposed a local procedure for $|I| = 2$ hypotheses that optimizes the power for rejecting at least one of these. Their method is specific for the scale $|I|$ it was defined for; extensions to $|I| > 2$ do not exist (Rosset et al., 2018). In another example, Rosset et al. (2018) developed methods that optimize the power for detecting at least one true effect for specific scales $|I|$ under an exchangeability assumption. These methods also have non-monotone behavior.

We remark, however, that every coherent local d^I true discovery guarantee procedure may be trivially embedded in a monotone procedure with $C = I$ (or even $C = \mathbb{N}$) by setting

$$d^I(S) = \begin{cases} d^I(S) & \text{if } S \subseteq I, \\ 0 & \text{otherwise.} \end{cases}$$

This embedding allows translation of properties of monotone procedures to properties of their local members. We will mostly be studying monotone procedures in this paper, but investigate implications for local procedures where appropriate.

Procedures created using closed testing are automatically monotone, as formalized in the following lemma.

Lemma 5. The procedure $d_\phi = (d^I_\phi)_{I \subseteq C, |I|<\infty}$ is a monotone procedure.

The property of primary interest to us is admissibility. Let us formally define admissibility for true discovery guarantee procedures. Recall that a statistical test δ of a hypothesis H is uniformly improved by a statistical test $\tilde{\delta}$ of the same hypothesis if (1.) $\tilde{\delta} \geq \delta$; and (2.) $P(\tilde{\delta} > \delta) > 0$ for some $P \in \Omega$. A statistical test is admissible if no test exists that uniformly improves it (Lehmann and Romano, 2006, Section 6.7). We call a suite of local tests ϕ admissible if ϕ_S is admissible for all finite $\emptyset \subset S \subseteq C$. We note that existence of admissible tests is not assured in all models, but that under a weak condition all tests that exhaust the α-level are admissible. We discuss these technical issues in Section A in the Supplemental Information, where we also motivate our definition of admissibility compared to alternatives in the literature.

Analogously to admissibility of single tests we define admissibility for true discovery guarantee procedures. A uniform improvement of a monotone procedure d is a monotone procedure \tilde{d} such that
(1.) $\tilde{d}^I(S) \geq d^I(S)$ for all finite $S \subseteq I \subseteq C$; and (2.) $P(\tilde{d}^I(S) > d^I(S)) > 0$ for some $P \in \Omega$ and some finite $S \subseteq I \subseteq C$. A uniform improvement of a local procedure d^I is a local procedure \tilde{d}^I such that (1.) $\tilde{d}^I(S) \geq d^I(S)$ for all $S \subseteq I$; and (2.) $P(\tilde{d}^I(S) > d^I(S)) > 0$ for some $P \in \Omega$ and some $S \subseteq I$. We call a local or monotone procedure that cannot be uniformly improved admissible. If all local members of a monotone procedure are admissible, then the monotone procedure is admissible, but the converse is not necessarily true, as illustrated in Section B in the Supplemental Information.

7 All admissible procedures are closed testing procedures

Theorem 1, below, claims that every monotone true discovery guarantee procedure is either equivalent to a closed testing procedure or can be uniformly improved by one. We already know from Lemma 3 that every incoherent procedure can be uniformly improved by a coherent procedure. It follows that every procedure that is not equivalent to a closed testing procedure is inadmissible: the class of all closed testing procedures is essentially complete (Lehmann and Romano, 2006, Section 1.8) for procedures with a true discovery guarantee, and therefore for FDP control. This is the first main result of this paper.

Theorem 1. Let d be a monotone procedure. Then, for every finite $S \subseteq C$,

$$\phi_S = 1\{d^S(S) > 0\}$$

is a valid local test of H_S. For the suite $\phi = (\phi_S)_{S \subseteq C, |S| < \infty}$ we have, for all $S \subseteq I \subseteq C$ with $|I| < \infty$,

$$d^I_{\phi}(S) \geq d^I(S).$$

Coherence is necessary but not sufficient to guarantee admissibility. The procedure $d^I_{\phi}(S)$ implied by Theorem 1 may in some cases be truly a uniform improvement over the original, coherent $d^I(S)$. To see a classical example in which a coherent procedure can uniformly improved by closed testing, think of Bonferroni. Combined with (8), Bonferroni is coherent. However, it is uniformly improved by Holm’s procedure that follows from a well-known step-down argument that incorporates an estimate of $\pi_0(I)$ into the procedure. This stepping-down can be seen as a direct application of closed testing with the local test defined in Theorem 1. Step-down arguments are standard for FWER control and have been applied to several FDP controlling methods in the past (Blanchard et al., 2020; Goeman et al., 2019; Hemerik et al., 2019).

It should be noted that in case of a monotone procedure, the local test ϕ_S defined in Theorem 1 is truly local, in the sense that it uses only the information used by the restricted testing problem d^S about the hypotheses $H_i, i \in S$. For example, in a testing problem based on p-values, the local test would use only the p-values $p_i, i \in S$. In other testing problems, some global information may be used, e.g. the overall estimate of σ^2 in a large one-way ANOVA, but still in such situations the local test is very natural: as a local test for H_S we use the test for discovery of signal in hypotheses $H_i, i \in S$, that we would use in the situation where the hypotheses $H_i, i \notin S$ are not of interest to us. Such a local test is implicitly defined by the local procedure d^S.

The result of the theorem is formulated in terms of monotone procedures. It applies immediately to local procedures as well if we use the trivial embedding (10) of a local procedure into a monotone one. With this embedding we even have $d^I_{\phi}(S) = d^I(S)$. This leads to the following corollary.

Corollary 1. Let d^I be a coherent procedure. Then, for every $S \subseteq I$,

$$\phi_S = 1\{d^I(S) > 0\}$$

is a valid local test of H_S. For the suite $\phi = (\phi_S)_{S \subseteq I}$ we have, for all $S \subseteq I$,

$$d^I_{\phi}(S) = d^I(S).$$
Corollary 1 shows that every coherent true discovery guarantee procedure is equivalent to a closed testing procedure. It may possibly be uniformly improved by another closed testing procedure if the suite of local tests \(\phi \) is not admissible, as we shall see in the next section.

Corollary 1 also confirms the equivalence between the closed testing and partitioning principles for FWER control. This has been clear since Finner and Strassburger (2002) showed that closed testing procedures may be rewritten as partitioning procedures and that this sometimes uniformly improves them, while Sonnemann (1982) and Sonnemann and Finner (1988) had already shown that the family of closed testing procedure is complete for FWER control. However, since the result is important and, as far as we know, not explicitly stated in the literature we phrase it as a separate theorem.

Theorem 2. For every closed testing procedure there exists a partitioning procedure that rejects exactly the same hypotheses. For every partitioning procedure there exists a closed testing procedure that rejects exactly the same hypotheses.

Since both closed testing and partitioning procedures may be written as sequential rejection procedures (Goeman and Solari, 2010), while it cannot improve upon them by Corollary 1 and Theorem 2, sequential rejection could be labelled a third equivalent principle.

8 All closed testing procedures are admissible

So far we have seen that a true discovery guarantee procedure may be uniformly improved by interpolation to coherent procedures, which in turn may be uniformly improved by closed testing procedures. Clearly, equivalence to a closed testing procedure is necessary for admissibility. Are all closed testing procedures admissible? In this section we derive a simple condition for admissibility of monotone procedures that is both necessary and sufficient. We show that admissibility of the monotone procedure \(d_\phi \) follows directly from admissibility of its local tests. This is the second main result of this paper.

Theorem 3. \(d_\phi \) is admissible if and only if the suite \(\phi \) is admissible.

We have already seen from Theorem 1 that only closed testing procedures are admissible. Theorem 3 says that all closed testing procedures are admissible, provided they fulfil the reasonable demand that they are built from admissible local tests. To check admissibility of the local tests, Section A in the Supplemental Information shows that under a weak assumption it is sufficient to check that the local tests exhaust the \(\alpha \)-level. Theorem 3 thus makes it easy to guarantee admissibility of monotone procedures.

Unlike Theorem 1, the result of Theorem 3 does not immediately translate to local procedures: even if \(\phi \) is admissible, it may happen for some finite \(I \subseteq C \) that \(d_\phi \) can be uniformly improved by some other procedure \(d_\psi \). About such local improvements we have the following proposition.

Proposition 1. If \(d \geq d_\phi \) is admissible, then there is an admissible \(\psi \) such that \(d = d_\psi \) and, for all \(S \subseteq I \), \(\psi_S \geq \phi_S \).

Proposition 1 limits the available room for local improvements of admissible monotone procedures. Combining Proposition 1 and Theorem 3 we see that such improvements have to be admissible monotone procedures, and therefore closed testing procedures, themselves. The difference between \(\phi \) and \(\psi \), if both are admissible, is that for every \(S \subseteq I \), \(\phi_S \) uses only the local information in \(d_\phi(S) \), but the same does not necessarily hold for \(\psi_S \).

In Section B in the Supplemental Information we give an example of a local improvement of an admissible monotone procedure. Local improvements are also possible in case null hypotheses are composite, using the Partitioning Principle, as shown in Finner and Strassburger (2002), examples 4.1–4.3, and Goeman and Solari (2010), section 4. For many well-known procedures, e.g. Holm’s procedure under arbitrary dependence, we believe that local improvements do not exist. However, we have no general
theory on the relationship between admissibility of a monotone procedure and admissibility of its local members. We leave this as an open problem.

9 Consonance and familywise error

Theorem 3 establishes a necessary and sufficient condition for admissibility of monotone true discovery guarantee procedures, and therefore of FDP-controlling procedures. At first sight, our results may seem at odds with those of Romano et al. (2011), who proved that for FWER control, which is a special case of the true discovery guarantee requirement, only consonant procedures are admissible. However, this seeming contradiction disappears when we realize that admissibility of a procedure as a true discovery guarantee procedure does not automatically imply admissibility as a FWER controlling procedure and vice versa.

We call a procedure d^I consonant if it has the property that for every $S \subseteq I$, $d^I(S) > 0$ implies that for at least one $i \in S$ we have $d^I(\{i\}) = 1$, almost surely for all $P \in \Omega$. Conceptually, consonant procedures allow pinpointing of effects. If $d^I(S) > 0$, signal has been detected somewhere in S. A consonant procedure in this case can always find at least one elementary hypothesis to pin the effect down on. This is a desirable property, as it can be unsatisfactory for a researcher to know that an effect exists but not where it can be found. However, Goeman et al. (2019) argued that for FDP control, non-consonant procedures can be far more powerful in large-scale multiple testing procedures than consonant ones.

In Section C of the Supplemental Information we go more deeply into the theory of consonant procedures in relation to admissibility of procedures as FWER controlling procedures. We extend the result of Romano et al. (2011), showing that admissible FWER controlling procedures must be closed testing procedures with consonant local tests, but also closed testing procedures with admissible local tests. Conversely, if the local tests are both admissible and consonant, then the resulting closed testing procedure is admissible.

10 Improving methods 1: Meinshausen and Rice (2006)

Existing methods may be improved by embedding them in a closed testing procedure. We illustrate this with the method of Higher Criticism (Donoho and Jin, 2004), which defines a global test for the null hypothesis H_I, as follows. Let $I = \{1, \ldots, m\}$, and assume we have p-values p_1, \ldots, p_m, independent and stochastically larger than uniform under H_I. For this null hypothesis, Higher Criticism defines the test

$$\phi_I = \mathbb{1}\left\{ \max_{k_0 \leq j \leq k_1} \frac{\sqrt{m(j/m - p_{(j)})}}{\sqrt{p_{(j)}(1 - p_{(j)})}} \geq a_m \right\},$$

for suitably chosen k_0 and k_1, where $p_{(1)} \leq \ldots \leq p_{(m)}$ are the sorted p-values, and a_m is a suitably chosen critical value. Donoho and Jin (2004) proposed $a_m = (1 + a)\sqrt{2\log \log(m)}$ for some $a > 0$, assuming large m. Several finite-m adjustments have been proposed (Hall and Jin, 2010; Barnett and Lin, 2014). We will use $k_0 = 1$ and $k_1 = m$. Meinshausen and Rice (2006) improved upon Higher Criticism by showing that discoveries may also be counted, proving that

$$f_I = \max_{t \in (0,1]} \frac{|\{i \in I : p_i \leq t\}| - mt - a_m \sqrt{mt(1-t)}}{1-t}$$

is a $(1 - \alpha)$-lower confidence bound for the number of false hypotheses $|I_1|$. We have $\phi_I = \mathbb{1}\{f_I > 0\}$, so f_I is consistent with the higher criticism test, and uniformly improves it as a true discovery guarantee procedure.
Can we improve f_I further? First, we can use (7) to interpolate, getting
\[
d^I(S) = f_I - m + |S|.
\]
(11)
The resulting method is consonant, and by Corollary 1 it is equivalent to a closed testing procedure with local tests $\psi_S = 1\{|S| > m - f_I\}$ for every $S \subseteq I$, where we note that $\psi_I = \phi_I$. The interpolated method improves upon f_I by giving non-trivial $d^I(S)$ for $S \neq I$ with large $|S|$, but still has $d^I(I) = f_I$.

Further improvement is possible by noting that the suite ψ is not admissible. In fact, ψ is uniformly improved by ϕ, the suite of Higher Criticism local tests. This test is suggested by the recipe of Theorem 1 for improving methods. In Section E of the Supplemental Information we show that
\[
\phi_S \geq \psi_S \quad \text{for all } S \subseteq I,
\]
and that ϕ_S uniformly improves ψ_S for $\emptyset \subset S \subset I$. It follows that d^I_{ϕ} uniformly improves d^I, and that even $d^I_{\phi}(I)$ uniformly improves f_I as a confidence bound for $|I|$, as we shall see.

To solve the issue of computing d^I_{ϕ}, we write (Gontscharuk et al., 2016)
\[
\phi_S = 1\{p_{i:S} \leq l_{i:|S|} \text{ for at least one } i = 1, \ldots, |S|\},
\]
where $p_{i:S}$, for $1 \leq i \leq |S|$, is the ith smallest p-value among the multiset $\{p_i : i \in S\}$, and
\[
l_{i:s} = \frac{2i + a_i^2 - \sqrt{(2i + a_i^2)^2 - 4i^2(s + a_i^2)/s}}{2(s + a_i^2)}.
\]
(14)
Written like this, we see that ϕ is similar to the Simes tests investigated by Goeman et al. (2019). For calculating $d^I_{\phi}(S)$ we can use a generalization of the algorithm presented in that paper, given as Lemma 6.

Lemma 6. If $\phi_S, \emptyset \neq S \subseteq I$, is of the form (13), with $l_{i:m} \geq l_{i:n}$ for all $i \geq 1$ and $0 \leq m \leq n$, then

\[
\phi^I_S = 1\{p_{i:S} \leq l_{i:h_I} \text{ for at least one } i = 1, \ldots, |S|\},
\]

and
\[
d^I_{\phi}(S) = \max_{1 \leq u \leq |S|} 1 - u + |\{i \in S : p_i \leq l_{u:h_I}\}|,
\]
(15)
where
\[
h_I = \max \{s \in \{0, \ldots, |I|\} : p_{(|I|-s+:I)} > l_{i:s}, \text{ for } i = 1, \ldots, s\}.
\]

The lemma offers calculation in quadratic time in the general case. For Higher Criticism, h_I can be calculated using bisection as in Goeman et al. (2019), reducing computation time even to $O(m \log(m))$. We give a condition for the use of bisection in Section F of the Supplemental Information.

To illustrate the new method $d^I_{\phi}(S)$ we used a simple simulation using settings by Donoho and Jin (2004). We used $|I| = m = 10^6$ independent one-sided z-tests. Of these, 10^3 were under the alternative, with a mean shift of $\sqrt{0.30 \log(m)} \approx 2.04$. We used $a = 1.08$ in the calculation of the critical value, which empirically gives good control of type I error for $m \approx 10^6$ and $\alpha = 0.05$. We used 10^4 replications. The power of Higher Criticism in this setting is 98.0%.

In this simulation, we found that $d^I_{\phi}(I)$ indeed improved Meinshausen and Rice’s f_I, although in this setting an improvement was found in only 2.2% of the realizations. More importantly, however, the new $d^I_{\phi}(S)$ also makes meaningful statements for $S \neq I$. Figure 1 (bottom) gives 20 realizations of $d^I_{\phi}(K_i)$ as a function of i, where K_i consists of the indices of the i hypotheses with smallest p-values, with ties broken arbitrarily, as well as the expected curve. Figure 1 (top) gives the estimate of $\Pr(d^I_{\phi}(K_i) > 0)$. We see that, by embedding Higher Criticism into a closed testing procedure, even with this weak signal
we may make much stronger statements than only pure detection. In about 88.3% of the realizations, we confidently detected signal within the set of 100 hypotheses with smallest p-values; in about 67.1% this signal was in the top 10, and in 38.3% of the realizations we even had a confident rejection of the single hypothesis with the smallest p-value. Substantial improvement of d_{I_ϕ} over d_I, defined in (11), is also clear since the latter gives $d_I(S) = 0$ whenever $|S| \leq m - f_I \approx 0.9999 \times 10^6$.

The strict line drawn by Donoho and Jin (2004) between detectable and estimable effects is therefore, in our view, more like a gray zone. If we can detect effects, closed testing can count them. Though we may be unable to pinpoint effects, closed testing can close in on them.

11 Improving methods 2: Katsevich and Ramdas (2020)

We chose as a second example a method recently proposed by Katsevich and Ramdas (2020). This elegant method (abbreviated K&R) allows users to choose a p-value cutoff for significance post hoc, and
uses stochastic process arguments to control both FDP and FDR. We focus on the FDP control property here. We use the same setting as in the previous section of \(m \) \(p \)-values, independent and stochastically uniform under the null, and we use the same notation.

Katsevich and Ramdas showed that, if \(\alpha \leq 0.31 \),

\[
P(\vert K_i \cap I_0 \vert \leq c(1 + m \phi_{(i)}) \text{ for all } 1 \leq i \leq m) \geq 1 - \alpha,
\]

where \(c = -\log(\alpha)/\log(1 - \log(\alpha)) \), and \(\phi_{(i)} \) is the \(i \)th smallest \(p \)-value. For \(\alpha = 0.05 \) we have \(c \approx 2.163 \). As in Section 3, we can write this as a true discovery guarantee procedure on \(I \) by writing

\[
d^I(S) = \begin{cases} 0 \lor [i - c(1 + m \phi_{(i)})] & \text{if } S = K_i \text{ for some } 1 \leq i \leq m, \\ 0 & \text{otherwise}, \end{cases}
\]

(16)

where we round up to ensure that \(d^I(S) \) is always an integer.

Is the procedure (16) admissible, and if not, how can we improve it? We apply the results of this paper. First, we remark that the method as defined is not coherent. The interpolation of the procedure is given by

\[
d^I(S) = 0 \lor \max_{k=1,\ldots,|S|} \left[k - c(1 + m \phi_{(k:S)}) \right],
\]

(17)

taking \(d^I(\emptyset) = 0 \) implicitly. The derivation of equation (17) is given in Section E of the Supplemental Information.

We note that interpolated method (17) makes non-trivial statements for sets \(S \) not of the form \(K_i \), and may even improve \(d^I(K_i) \) for some \(i \). It may be checked using Lemma 3 that the procedure (17) is coherent, so no further rounds of interpolation are needed. The K&R procedure was not developed for a specific scale \(m \). Writing \(|I| \) for \(m \) in (17) we have a procedure that is defined for general \(I \), and it is easy to check that \((d^I)_{I \subseteq [N]} \rightarrow 3 \) is monotone.

Next, we use Theorem 1 to embed the method in a closed testing procedure, which results in further improvement of the procedure. By the theorem, the local test for finite \(\emptyset \neq S \subseteq \mathbb{N} \) is given by

\[
\phi_S = \mathbb{I}\{p_{(i:S)} \leq (i - c)/cS \} \text{ for at least one } i = 1, \ldots, |S|.
\]

We will construct the closed testing procedure based on this local test. We note that the local test is of the form assumed in Lemma 6, with

\[
l_{i,s} = \frac{i - c}{cs}
\]

(18)

if \(s \neq 0 \), and \(l_{i,0} = 1 \). By Theorem 1, the method (15) with (18) is everywhere at least as powerful as the interpolated method (17). In fact, it is a uniform improvement of that method as we shall see in the simulation experiment below.

The next question is whether the method defined by (15) with (18) is admissible, or whether it can be further improved. We can verify this using Theorem 3 by checking whether the local tests are admissible. It is immediately obvious that this is not the case. Taking e.g. \(|S| = 1\), we see that at \(\alpha = 0.05 \) with \(c \approx 2.163 \) we have \(\phi_S = \mathbb{I}\{p_{(1:S)} \leq (1 - c)/c < 0\} = 0 \), which is clearly not admissible. We may freely decrease \(c \) to \(c_1 = 1/(1 + \alpha) \approx 0.952 \) to obtain the uniformly more powerful local test \(\phi_S = \mathbb{I}\{p_{(1:S)} \leq \alpha\} \). We can use the same reasoning for \(|S| = 2, 3, \ldots \), decreasing the value of \(c \) to the minimal value that guarantees type I error control. This value may easily be calculated numerically since the worst case distribution of \((p_i)_{i \in S} \) under \(H_S \) is the independent uniform case. We obtain a new local test of the form (13) with

\[
l_{i,s} = \frac{i - c_s}{c_s s}.
\]

(19)

We tabulated the values of \(c_s \) (taking \(\alpha = 0.05 \)) for some values of \(s \) in Table 1. Note that \(c_s \leq c \) for all \(s \). Since \(l_{i,s} \) is monotone in \(c_s \), the new local test uniformly improves the old one. We note that
with these choices of c_s the critical values $l_{ic,s}$ cannot be further increased without destroying type I error control of the local tests, so we conclude that the resulting local tests are admissible, provided that the test $I\{p_i \leq \alpha\}$ is admissible as an α-level local test of H_i for all i and α. Assuming this, by Theorem 3 the resulting true discovery guarantee procedure is admissible. We note that, since c_s is increasing in s, (19) still fulfils the conditions of Lemma 6, so that the admissible method is still computable using Lemma 6.

Table 1: Values of c_s calculated by Monte Carlo integration (10^6 samples)

s	1	2	3	4	5	7	10	15	20	50	100	500	1000
c_s	0.95	1.38	1.55	1.64	1.71	1.78	1.84	1.90	1.92	1.98	2.00	2.01	2.02

We have started with the procedure of Katsevich and Ramdas (2020) and improved it uniformly in three steps: the method was first improved by interpolation. The resulting coherent method was further improved by embedding it in a closed testing procedure, and finally that closed testing procedure was improved to an admissible method by improving its local tests. This way we obtained a sequence of four methods, each uniformly improving the previous one. We will call them the original (16), coherent (17), closed, defined by (15) with (18), and admissible method, defined by (15) with (19). We performed a small simulation experiment to assess the relative improvement made with each of the three steps. We used $m = 1000$ hypotheses, of which m_0 were true, and $m_1 = m - m_0$ false. We sampled p-values independently. For true null hypotheses, we used $p_i \sim U(0, 1)$. For false null hypotheses, we used $p_i \sim \Phi^{-1}(-\gamma Z)$, where Φ is the standard normal distribution function, and $Z \sim N(0,1)$. We took values $m_1 = 8, 40, 200$ and $\gamma = 2, 2.5, 3$. A true discovery guarantee procedure gives exponentially many output values. We report only results for sets K_i of the i smallest p-values, as the original method did. Calculation for the closed and admissible methods was in quadratic time based on Lemma 6. We calculated $d_I^f(K_i)$, $i = 1, \ldots, m$ for the closed and admissible methods in less than 0.1 seconds on a standard PC.

The results are given in Figure 2, in terms of number of true discoveries $d_I^f(K_i)$ (top) and in terms of true discovery proportions $d_I^f(K_i)/i$ (TDP; bottom). For each setting and each method we report the average value of $d_I^f(K_i)/i$ over 10^4 simulations. Several things can be noticed about these simulation results.

The most important finding is that all three improvement steps can be substantial. The improvement from the original to the coherent procedure is perhaps largest. It is especially noticeable for large rejected sets, where the original method may all too often give $d_I^f(S) = 0$, especially if $|S| \gg m_1$. The peak of the TDP is improved if the TDP of the original method was low. The second improvement, from the coherent procedure to closed testing is substantial in terms of numbers of discoveries only if m_1 is large. This is natural because the improvement can be seen as a “step-down” argument, implicitly incorporating an estimate of m_1 into the procedure. Even with large m_1 it is the improvement is negligible on the TDP scale. The final improvement from the initial closed testing to the admissible procedure is clear throughout the figure. It is largest in terms of number of discoveries when m_1 is large, but largest in terms of TDP when m_1 is small.

Although the improvement from the coherent to the closed procedure seems the smallest one, we emphasize that closed testing was crucial for the construction of the admissible procedure. We also note that the method of K& R, as well as its improvements, make no useful FWER rejections at all: in Figure 2 we see that $E[d_I^f(K_i)] \approx 0$ for $i \leq 2$. This phenomenon is analyzed in more detail in Section D of the Supplemental Information.
Figure 2: Lower confidence bound on the number of true discoveries (top) and true discovery proportion (bottom) among the i hypotheses with smallest p-values, relating to the method of Katsevich and Ramdas (2020) and its successive uniform improvements. Curves are the averages over 10^4 realizations. Since each method uniformly improves the previous one, any observed difference is automatically significant.
We have studied the class of all methods controlling tail probabilities of false discovery proportions. This class encompasses very diverse methods, e.g. familywise error control procedures, false discovery exceedance procedures, joint error rate controlling methods, and cluster inference. We have shown that all such procedures can be written as methods simultaneously controlling false discovery proportions over all subsets of the family of hypotheses. This rewrite, trivial as it may be in some cases, is valuable in its own right, because it makes it possible to study methods jointly that seemed incomparable before, and takes a step in reducing the ‘plethora of error rates’ lamented by Benjamini (2010). Moreover, methods that were constructed to give non-trivial error bounds for only a single random hypothesis set of interest, now give simultaneous error bounds for all such sets, allowing their use in flexible selective inference in the sense advocated by Goeman and Solari (2011).

We have formulated all such procedures in terms of a $(1 - \alpha)$-true discovery guarantee, i.e. giving a $(1 - \alpha)$-lower confidence bound to the number of true discoveries in each set, because this representation is mathematically easier to work with. Also, by emphasizing true rather than false discoveries, it gives a valuable positive frame to the multiple testing problem. Otherwise, this change in representation is purely cosmetic; we may continue to speak of FDP control procedures.

Admissibility is a very weak requirement for statistical tests, as under a weak assumption all tests that exhaust their α-level are admissible. However, admissibility is not so easy to achieve for FDP control procedures. We have formulated a condition for admissibility of FDP control procedures that is both necessary and sufficient. All admissible FDP control procedures are closed testing procedures, and all closed testing procedures are admissible as FDP control procedures, provided they are well-designed in the sense that all their local tests are admissible. Apparently, control of false discovery proportions and closed testing procedures are so closely tied together that the relationship seems almost tautological. Admissibility is closely tied to optimality. Since optimal methods must be admissible, and admissible methods must be closed testing procedures, we have shown that only closed testing procedures can be optimal.

This theoretical insight has great practical value for methods designers. It can be used to uniformly improve existing methods, as we have demonstrated on the methods of Meinshausen and Rice (2006) and Katsevich and Ramdas (2020). Given a procedure that controls FDP, we first make sure it is coherent. Next, we can explicitly construct the local tests implied by the procedure, and turn it into a closed testing procedure. To check admissibility, we now only need to check admissibility of the local tests. Each step may result in substantive improvement, as we have shown in simulations. Alternatively, when designing a method we may start from a suite of local tests that has good power properties. The options are virtually unlimited here. The validity of the local test as an α-level test guarantees control of FDP. Correlations between test statistics, that often complicate multiple testing procedures, should be properly taken into account by the local test. Admissibility of the local tests guarantees admissibility of the resulting procedure. In both cases the computational problem remains that closed testing may require exponentially many tests, but this is the only remaining problem. Polynomial time shortcuts are possible. Ideally these are exact, as for K&R and higher criticism above, and admissibility is retained. If the full closed testing procedure is not computable for large testing problems, we may settle for an inadmissible but computable method, based on a conservative shortcut (e.g. Hemerik and Goeman, 2018; Hemerik et al., 2019). It may still be worthwhile to compare such a method to full closed testing in small-scale problems to see how much power is lost.

Concretely, in Lemma 6 have given an exact computational shortcut that can be used for closed testing with a wide range of local tests, e.g. to the local tests implied by the False Discovery Rate controlling procedures of Blanchard and Roquain (2009), to other local tests implied by the Dvoretzky-Kiefer-Wolfowitz inequality (Genovese and Wasserman, 2004; Meinshausen and Rice, 2006), to the local tests implied by second and higher order generalized Simes constants (Cai and Sarkar, 2008; Gou...
and Tamhane, 2014), and to the local tests implied by the FDR controlling procedures of Benjamini and Liu (1999), and Romano and Shaikh (2006, equation 4.1). Using the lemma, computation time of closed testing is quadratic, even reducing to linearithmic in some cases.

We have defined admissibility in terms of simultaneous FDP control for all possible subsets of the family of hypotheses. In some cases we may not be interested in all of these sets, as e.g. when targeting FWER control exclusively. Even when only interested in some of the subsets, we retain the result that admissible procedures must be closed testing procedures. We lose, however, the property that all such procedures are automatically admissible if they have admissible local tests. Additional criteria might come in, such as consonance in the case of familywise error control. Variants of consonance may be useful as well (Brannath and Bretz, 2010).

Our focus has been mostly on monotone procedures. Such procedures are defined for multiple testing problems on different scales simultaneously. Connecting between different scales, they have the property that adding more hypotheses to the multiple testing problem will never result in stronger inference for the hypotheses that were already there. This is an intuitively desirable property by itself, which prevents some paradoxes (Goeman and Solari, 2014). Monotone procedures have additional valuable properties: viewed as closed testing procedures, they have local tests that are truly local: the local test on S uses only the information that the corresponding local procedure d^S uses. Admissible monotone procedures, however, may sometimes be locally improved, and we have given an example of this. Such improvements, if admissible, must still be closed testing procedures with admissible local tests themselves.

We have restricted to finite testing problems. Extensions to countably infinite problems are of interest e.g. when considering online control (Javanmard et al., 2018). The results of this paper may trivially be extended to allow infinite $|I|$ if we are willing to assume that $|I_1| < \infty$, so that $d^I < \infty$. If $|I_1|$ is unbounded, care must be taken to scale d properly to keep it in the non-trivial range. This scaling adds some technical complexity, and is not assumption-free because $d^I(S)$ scales with the unknown $|S \cap I_1|$. However, since most of the results of this paper compare methods that obviously require the same scaling, we conjecture that the optimality of closed testing will translate to FDP control in countable and even uncountable multiple testing problems. We leave this to future research.

Finally, we remark that we have only considered procedures that control tail probabilities of the false discovery proportion. These methods can also be used for bounding the median FDP (Goeman and Solari, 2011). However, if there is interest in the central tendency of FDP it is more common to bound the mean FDP, better known as False Discovery Rate (FDR). Given the close connection we have established between closed testing and FDP tail probabilities, it is likely that there is also a connection between closed testing and FDR control. Some connections have already been found between Simes-based closed testing and the procedure of Benjamini and Hochberg (1995) by Goeman et al. (2019). It is likely that there are more such connections. Any procedure that controls FDR, since FDR control implies weak FWER control, implies a local test and can therefore be used to construct a closed testing procedure. Conversely, if FDP is controlled with $(1-\alpha)$-confidence at level γ, then FDR is controlled at $\alpha(1-\gamma) + \gamma$, as Lehmann and Romano (2005) have shown. More profound relationships may be found in the future.

A Existence of admissible procedures

Admissibility as defined in Section 6 is known in the literature as α-admissibility on Ω. Alternative definitions of admissibility exist (Lehmann and Romano, 2006, Section 6.7). With α-admissibility on $\Omega_1 = \Omega \setminus H$, the law P under which δ improves δ with positive probability must be in Ω_1. With d-admissibility, there is an additional requirement that δ may not improve δ with positive probability for $P \in H$. However, α-admissibility on Ω is most commonly considered in the multiple testing context (e.g. Lehmann and Romano, 2006, Section 9.3), because with multiple hypotheses there is no unique Ω_1.

Admissible tests may not always exist. Consider for example the model where $X \sim P_\theta = N(\mu, \sigma^2)$,
with parameter space $\Theta = (-\infty, \infty) \times [0, 1]$ for $\theta = (\mu, \sigma^2)$. Let δ be any valid test for $H : \mu = 0$, for example $\delta = 1\{X > z_{1-\alpha}\}$, where $z_{1-\alpha}$ is the $1 - \alpha$-quantile of the standard normal distribution. Then for any c outside the rejection region of δ,

$$\tilde{\delta} = \delta + 1\{X = c\}$$

improves δ with positive probability for $\mu = c$ and $\sigma^2 = 0$. Since any valid test may be improved in a similar way unless $\alpha = 1$, an admissible test does not exist.

However, we can easily guarantee existence of admissible tests if we rule out degenerate models. A weak assumption for this is the following.

Assumption 1 (common null events). For every measurable event E and for every $P_1, P_2 \in \Omega$ we have that $P_1(E) = 0$ implies that $P_2(E) = 0$.

Under Assumption 1 the collection of null events is common to all parameter values; there are no events that happen with positive probability for some parameter values, but with probability zero for others. This is a weak assumption that holds for most models regularly used in applied statistics, both continuous and discrete, when we are willing to exclude deterministic corner cases from the parameter space. In the example above, Assumption 1 holds if we simply restrict the parameter space to $\Theta = (-\infty, \infty) \times (0, 1]$, excluding $\sigma^2 = 0$.

If we accept Assumption 1, Lemma 7 presents a very simple sufficient condition for admissibility: every statistical test of H that fully exhausts its α-level for some $P \in H$ is admissible.

Lemma 7. If Assumption 1 holds, then a statistical test δ of hypothesis $H \subseteq \Omega$ is admissible if $P \in H$ exists such that $P(\delta = 1) = \alpha$.

B A local improvement

In this section we construct a local improvement of an admissible monotone procedure to illustrate Proposition 1. Assume that for each H_i, $i \in C$ we have a p-value p_i. Assume that each p_i is standard uniform if H_i is true. Under these assumptions we can define the standard fixed sequence testing procedure, which starts testing H_1 using p_1 at level α, continues one by one with H_2, H_3 in order, and stops when it fails to reject some hypothesis. It is well known that this procedure is a closed testing procedure. The local test is defined for all $S \subseteq C$ by

$$\phi_S = 1\{p_{\min}(S) \leq \alpha\}.$$

If we assume that the test $\phi_{\{i\}} = 1\{p_i \leq \alpha\}$ is admissible for all i, then, by Theorem 3, the fixed sequence procedure is admissible.

We will now make some additional assumptions that will allow a uniform improvement of the procedure at the fixed scale $I \subseteq C$. Assume for convenience that all p-values are independent. Next, assume that the distribution of every p_i is constrained even under the alternative. Assume that some $h(x)$ exists such that, for every $P \in \Omega$,

$$P(p_i \leq x) \leq h(x).$$

This means that the power for each test is inherently limited. Even under the alternative, we reject e.g. H_1 with probability at most $h(\alpha)$. Clearly $h(x) \geq x$ or we would not have uniformity under the null. We will now demonstrate that the fixed sequence procedure can be uniformly improved, locally at any I with $|I| > 1$, if $h(\alpha) < 1$.

We start with the simple case $I = \{1, 2\}$. By Proposition 1, the improvement must be a closed testing procedure that involves local tests $\psi_S \geq \phi_I$. Consider $S = \{2\}$. Then $\phi_{\{2\}} = 1\{p_1 \leq \alpha, p_2 \leq \alpha\}$.

Under H_2 this has $P(\phi_2^S = 1) \leq \alpha h(\alpha) < \alpha$. Clearly, there is room for improvement. Let us consider the procedure with $\psi_S = \phi_S$, for all $S \subseteq C$ except $S = \{2\}$, when

$$\psi_S = 1\{p_1 \leq \alpha, p_2 \leq \alpha/h(\alpha)\}.$$

The latter is a valid local test of H_2. The resulting procedure at $I = \{1, 2\}$ starts testing H_1 at level α, and continues, if H_1 is rejected, to test H_2 at level $\alpha/h(\alpha) > \alpha$. This is clearly a uniform improvement of the original procedure at $I = \{1, 2\}$. To see that this is not a counterexample to Theorem 3, consider $I = \{2\}$ instead. Clearly, we do not have

$$1\{p_1 \leq \alpha, p_2 \leq \alpha/h(\alpha)\} = d^{(2)}_\psi(\{2\}) \geq d^{(2)}_\phi(\{2\}) = 1\{p_2 \leq \alpha\}.$$

The local uniform improvement at $I = \{1, 2\}$ comes at the cost of a potential deterioration at $I = \{2\}$.

Similar local improvements actually exist for every finite $I \subseteq C$ with $|I| > 1$. Define recursively

$$\alpha_1 = \alpha; \quad \alpha_{i+1} = \alpha_{i}/h(\alpha_{i}).$$

From this, fix some $I \subseteq C$, and define a local test as

$$\psi_S = 1\{p_i \leq \alpha_i \text{ for all } i \in L_S\},$$

where $L_S = \{i \in I: i \leq \min(S)\}$. To check that this is a valid local test, we verify that for all $P \in H_S$

$$P(\psi_S = 1) \leq \alpha \prod_{i=1}^{l-1} h(\alpha_i) = \alpha,$$

where $l = |L_S|$. The resulting procedure is still a fixed sequence procedure that tests all $H_i, i \in I$ in order, stopping the first time it fails to reject. Only, rather than testing at level α every time, it tests at level α_i in step i. If $x < h(x) < 1$ for all $0 < x < 1$ the sequence $\alpha_1, \alpha_2, \ldots$ is strictly increasing and approaches 1.

Crucial for this example is the assumption that we have limited power and, more importantly, that we know the limit to the power. If we are not willing to assume that $h(\alpha) < 1$, or if we do not know h, then the above local improvements are not possible. It is difficult to think of uniform local improvements in the case $h(x) = 1$, and we believe they do not exist. It may be worthwhile to think of adaptive procedures that learn h as the procedure moves along, but we will not pursue this direction here. In any case, due to the cost inherent to learning h, such a procedure would not uniformly improve d_ϕ.

C Admissibility of FWER controlling procedures

In this section we take a sidestep to FWER control, investigating the concept of consonance, and extending some of the results of Romano et al. (2011) on admissibility of FWER controlling procedures. Consonance was defined in Section 9: we call a procedure d^I consonant if it has the property that for every $S \subseteq I$, $d^I(S) > 0$ implies that for at least one $i \in S$ we have $d^I(\{i\}) = 1$, almost surely for all $P \in \Omega$. If $d^I = d_\phi^I$, this definition is equivalent to the more usual formulation in terms of the suite ϕ, that $\phi^S_2 = 1$ implies that for at least one $i \in S$ we have $\phi^I_{\{i\}} = 1$, almost surely for all $P \in \Omega$. We call a monotone procedure d consonant if all local members $d^I, I \subseteq C$ finite, are consonant. We call a suite ϕ consonant if all $\phi^S, S \subseteq C$ finite, are consonant.

For consonant procedures a stronger version of Lemma 3 holds.

Lemma 8. d^I is consonant and coherent if and only if, for every disjoint $V, W \subseteq I$,

$$d^I(V \cup W) = d^I(V) + d^I(W).$$
Classically, focus in the literature on closed testing has been on FWER controlling procedures (Hennig and Westfall, 2015). A FWER-controlling procedure on a finite $I \subseteq C$ returns a set $R^I \subseteq I$ such that, for all $P \in \Omega$,

$$P(|R^I \cap I_0| = 0) \geq 1 - \alpha.$$

As argued in Section 3, we can relate FWER controlling procedures to true discovery guarantee procedures and vice versa. If R^I is a FWER controlling procedure, then r^I with

$$r^I(S) = |S \cap R^I|,$$

for all $S \subseteq I$, is a coherent true discovery guarantee procedure, as we know from (8). Conversely, if d^I is a coherent true discovery guarantee procedure, then

$$R^I = \{i \in I : d^I(\{i\}) = 1\}$$

is a FWER controlling procedure. Both types of procedures may be created from local tests. The FWER controlling procedure from the suite ϕ is given by

$$R^I_\phi = \{i \in I : \phi^I(\{i\}) = 1\} = \{i \in I : d^I_\phi(\{i\}) = 1\}.$$

We can compare the procedure d^I_ϕ defined from ϕ through (5) with the procedure $r^I_I(S) = |S \cap R^I|$,

indirectly defined through R^I_ϕ. This is the procedure that discards all information in d^I_ϕ that is not contained in R^I_ϕ. Lemma 9 describes consonance as the property that no information is lost in the process.

Lemma 9. If d^I_ϕ is consonant, $d^I_\phi = r^I_I$; otherwise d^I_ϕ uniformly improves r^I_I.

If FWER control is what we are after, however, we must look at admissibility of R^I directly. As with true discovery guarantee procedures, we will focus on monotone (stacks of) procedures defined for all finite $I \subseteq C$. We will call a procedure $R = (R^I)_{I \subseteq C, |I| < \infty}$ monotone if for all finite $J \subseteq I \subseteq C$ we have

$$R^J \supseteq R^I \cap J.$$

As above for true discovery guarantee procedures, it asserts that enlarging the multiple testing problem from J to I will never increase the number of rejections in J (Bretz et al., 2009; Goeman and Solari, 2010). Analogous to the definition in Section 6, we define a uniform improvement of a monotone FWER control procedure R as a monotone FWER control procedure \tilde{R} such that (1.) $\tilde{R}^I \supseteq R^I$ for all finite $I \subseteq C$; and (2.) $P(\tilde{R}^I \supseteq R^I) > 0$ for some $P \in \Omega$ and some finite $I \subseteq C$. A procedure is admissible if no uniform improvement exists. What can we say about admissibility of FWER control procedures?

Romano et al. (2011) showed that consonance is necessary for admissibility of FWER controlling procedures. Proposition 2 is a variant of their result for monotone procedures.

Proposition 2. If R is monotone and admissible, then a consonant suite ϕ exists such that $R = R^\phi_\phi$.

We also have a second necessary condition for admissibility.

Proposition 3. If R is monotone and admissible, then an admissible suite ψ exists such that $R = R^\psi_\psi$.

It would be tempting to conclude from Propositions 2 and 3 that if R is admissible, then $R = R^\phi_\phi$ with ϕ consonant and admissible. Certainly under weak assumptions we may choose $\phi = \psi$. For example, if some ϕ_S is inadmissible because it fails to exhaust the α-level we may choose ψ_S as ϕ_S.
the same holds if \(c = \psi \) is always possible. Perhaps in some awkward models admissible local tests cannot be consonant, and consonant tests cannot be admissible. We leave the question open when \(\phi = \psi \) is possible. In converse however, if we can find a \(\phi \) that is both admissible and consonant, we have an admissible procedure:

Proposition 4. If \(\phi \) is consonant and admissible, then \(R_\phi \) is admissible as a monotone procedure.

D Some properties of the method of Katsevich and Ramdas (2020)

We may derive some the properties of the K&R method and its improvements. We have that \(\delta^I(S) \leq |S| - 2 \) with probability 1 for the original method (16), since \(c > 2 \) if \(\alpha = 0.05 \). This also holds for the coherent method (17). For the closed method the same is not true, but we have that if \(\max_{1 \leq i \leq m} p_i > l_{3,3} \approx 0.004 \) we have \(\phi_I(S) = 0 \) for every \(S \) with \(|S| = 2 \), since \(l_{1,3} < l_{2,3} < 0 \). Therefore

\[
P(\delta^I(S) \leq |S| - 2 \text{ for all } S \subseteq I) \geq P(\max_{1 \leq i \leq m} p_i > l_{3,3}) \approx 1,
\]

unless all hypotheses are false. For the admissible method, by an analogous reasoning using Lemma 6, the same holds if \(c_{I_0} > 2 \), since then \(c_{I_1} > 2 \) with high probability. This happens from \(|I_0| \approx 100 \).

It follows that none of the methods in this section, not even the admissible method, should be expected make any FWER-rejections in practical applications. The admissible method is (almost) fully non-consonant in the sense that for all \(i \in I \), \(\phi^I_{\{i\}} \approx 0 \), and we have \(R^I_\phi = 0 \) with probability almost 1 unless \(|I_1| \approx |I| \). By Romano et al. (2011) the method is clearly inadmissible as a FWER-controlling method. By Theorem 3 it is admissible, however, as a true discovery guarantee procedure: its lack of power for FWER-type statements is compensated by larger power for non-FWER-type statements. Indeed, Katsevich and Ramdas have shown that their method may significantly outperform Simes-based closed testing (Goeman et al., 2019) in some scenarios, which in turn outperforms consonant FWER-based testing in terms of FDP in large-scale testing problems.

E Proofs of the theorems, propositions and lemmas

Lemma 1. \(g^I_\phi = \delta^I_\phi \).

Proof. Take any \(S \in 2^I \). For any \(V \) with \(\phi_V = 0 \) there exists a \(U = S \cap V \subseteq S \) which has \(\phi^U_I \leq \phi_V = 0 \) and \(|S \setminus U| = |S \setminus V| \). Consequently, \(\delta^I_\phi(S) \leq g^I_\phi(S) \).

For any \(U \subseteq S \) with \(\phi^U_I = 0 \) there is a \(V \supseteq U \) with \(\phi_V = 0 \) that has \(|S \setminus V| \leq |S \setminus U| \). Consequently, \(g^I_\phi(S) \leq \delta^I_\phi(S) \). \(\square \)

Lemma 2. If \(\delta^I \) is a true discovery guarantee procedure then so is \(\bar{\delta}^I \).

Proof. Let \(E \) be the event that \(\delta^I(S) \leq |S \cap I_1| \) for all \(S \subseteq I \). Suppose that \(E \) happened and choose any \(S \subseteq I \) and \(U \subseteq I \). Then

\[
\delta^I(U) - |U \setminus S| + \delta^I(S \setminus U) \leq |U \cap I_1| - |U \setminus S| + |(S \setminus U) \cap I_1| \leq |S \cap I_1|.
\]

Consequently, if \(E \) happened, \(\bar{\delta}^I(S) \leq |S \cap I_1| \) for all \(S \subseteq I \). Since \(P(E) \geq 1 - \alpha \), we have coverage for the true discovery guarantee procedure \(\bar{\delta}^I \). \(\square \)
Lemma 3. \(d^I \) is coherent if and only if for every disjoint \(V, W \subseteq I \) we have

\[
d^I(V) + d^I(W) \leq d^I(V \cup W) \leq d^I(V) + |W|. \tag{21}
\]

Proof. Suppose \(d^I \) is coherent and let \(V, W \) be disjoint. Then, taking \(S = V \cup W \) and \(U = V \) in (9), we have

\[
d^I(V \cup W) \geq d^I(V) - |V \setminus S| + d^I(S \setminus V) = d^I(V) + d^I(W).
\]

Also, taking \(S = V \) and \(U = V \cup W \) in (9), we obtain \(d^I(V) \geq d^I(V \cup W) - |W| \).

Next, suppose (21) holds for all disjoint \(V, W \). For every \(S \subseteq I \), we have, by (7) and the left-hand inequality of (21),

\[
\tilde{d}^I(S) \leq \max_{U \subseteq I} \left\{ d^I(U \cup S) - |U \setminus S| \right\}.
\]

Since \(d^I(U \cup S) \leq d^I(S) + |U \setminus S| \) by the right-hand inequality of (21), we get \(\tilde{d}^I(S) \leq d^I(S) \).

Since also \(\tilde{d}^I(S) \geq d^I(S) \), by taking \(U = S \) in (7), we have \(\tilde{d}^I(S) = d^I(S) \) for all \(S \subseteq I \), so \(d^I \) is coherent.

Lemma 4. The procedure \(d^I_{\phi} \) is coherent.

Proof. We use Lemma 3. Let \(V, W \subseteq I \) be disjoint. Then some \(U \subseteq V \cup W \) exists such that \(\phi^I_U = 0 \) and

\[
|V \setminus U| + |W \setminus U| = |(V \cup W) \setminus U| = d^I_{\phi}(V \cup W).
\]

Since \(\phi^I_{U \cap V} \leq \phi^I_V = 0 \), we have \(d^I_{\phi}(V) \leq |V \setminus U| \). Similarly, \(d^I_{\phi}(W) \leq |W \setminus U| \), so we have \(d^I_{\phi}(V) + d^I_{\phi}(W) \leq d^I_{\phi}(V \cup W) \).

Also, there exists \(T \subseteq V \subseteq (V \cup W) \) such that \(\phi^I_T = 0 \) and \(|V \setminus T| = d^I_{\phi}(V) \). Now

\[
|(V \cup W) \setminus T| = |V \setminus T| + |W| = d^I_{\phi}(V) + |W|,
\]

so we have \(d^I_{\phi}(V \cup W) \leq d^I_{\phi}(V) + |W| \).

Lemma 5. The procedure \(d_{\phi} = (d^I_{\phi})_{I \subseteq C, |I| < \infty} \) is a monotone procedure.

Proof. Genovese and Wasserman (2006) already proved that \(d^I_{\phi} \) is a true discovery guarantee procedure for all finite \(I \subseteq C \), and we have coherence by Lemma 4, so we only need to prove monotonicity. This is trivial from (6) and Lemma 1. Take any finite \(S \subseteq I \subseteq J \subseteq C \). Then

\[
d^I_{\phi}(S) = \min_{V \subseteq I} \{|S \setminus V| : \phi^I_V = 0\} \geq \min_{V \subseteq J} \{|S \setminus V| : \phi^I_V = 0\} = d^J_{\phi}(S).
\]

\[
\phi_S = \mathbf{1} \{d^S(S) > 0\}
\]

is a valid local test of \(H_S \). For the suite \(\phi = (\phi_S)_{S \subseteq C, |S| < \infty} \) we have, for all \(S \subseteq I \subseteq C \) with \(|I| < \infty \),

\[
d^I_{\phi}(S) \geq d^I(S).
\]
The proof of validity of partitioning is similar to that of closed testing: let \(T \) and Strassburger (2002). Letting the hypotheses of interest be \(\{H_i\}_{i \in I} \) and all such \(\phi \), so the closed testing procedure rejects exactly the same hypotheses as the partitioning procedure. This proves the first statement.

Before we prove this theorem, we must first define the general partition procedure, following Finner and Strassburger (2002). Letting the hypotheses of interest be \(\{H_i\}_{i \in I} \) as usual, define for every \(S \subseteq I \) the partitioning hypothesis

\[
\tilde{H}_S = H_S \setminus \bigcup_{i \in I \setminus S} H_i.
\]

This hypothesis is true if and only if all \(H_i, i \in S \) are true and all \(H_j, j \in I \setminus S \) are false. If, for every \(S \subseteq I \), we have a valid statistical test \(\phi_S \) for \(\tilde{H}_S \), then the partitioning procedure rejects \(H_S \) if and only if

\[
\hat{\psi}_S = \min\{\psi_U : S \subseteq U \subseteq I\} = 1.
\]

The proof of validity of partitioning is similar to that of closed testing: let \(T = \{i \in I : P \in H_i\} \), then \(\tilde{H}_T \) is true, and if \(\psi_T = 0 \), which happens with probability at least \(1 - \alpha \), then no true hypothesis is rejected.

Now we can prove Theorem 2

Proof. Consider the closed testing procedure defined by the suite \((\phi_S)_{S \subseteq I} \). Define \(\psi_U = \phi_U \) for all \(U \subseteq I \). Since for all \(U \subseteq I \), \(\tilde{H}_U \subseteq H_U \), \(\psi_U \) is a valid test for \(\tilde{H}_U \), we may define a partitioning procedure from \((\psi_S)_{S \subseteq I} \). Since have

\[
\hat{\psi}_S = \min\{\phi_U : S \subseteq U \subseteq I\} = \phi_S^I,
\]

this partitioning procedure rejects exactly the same hypotheses as the closed testing procedure. This proves the first statement.

Consider a partitioning procedure defined by tests \((\psi_S)_{S \subseteq I} \) for the partitioning hypotheses. For all \(U \subseteq I \), define \(\phi_U = \psi_U \). This is a valid test of \(\tilde{H}_U \) since the partitioning procedure has FWER control. Therefore, we may define a closed testing procedure based on \((\phi_U)_{U \subseteq I} \). Since \(\psi_U \leq \psi_V \) whenever \(U \subseteq V \), we have

\[
\phi_S^I = \min\{\psi_U : S \subseteq U \subseteq I\} = \hat{\psi}_S,
\]

so the closed testing procedure rejects exactly the same hypotheses as the partitioning procedure. This proves the second statement. \(\square \)
Theorem 3. d_ϕ is admissible if and only if the suite ϕ is admissible.

Proof. We prove the two counterpoints. Let d_ϕ be inadmissible, and let \tilde{d} be a monotone procedure that uniformly improves it. By Theorem 1 there exists $d_\phi \geq \tilde{d}$ that also uniformly improves d_ϕ. We have, for every finite $S \subseteq C$,

$$\psi_S = 1\{d_\phi^S(S) > 0\} \geq 1\{d_\phi^S(S) > 0\} = \phi_S,$$

Also, by Theorem 1 ψ_S is a valid local test for H_S.

Let $S \subseteq I \subseteq C$, $|I| < \infty$, and $P \in \Omega$ be such that $P(E) > 0$ for $E = \{d_\phi^S(S) > d_\phi^S(S)\}$. If E happened, by (6) there is a $U \subseteq I$ with $|S \setminus U| = d_\phi^S(S)$, such that $\psi_U = 1$ and $\phi_U = 0$. Consequently,

$$P(\phi_U < \psi_U) \geq P(E) > 0,$$

so ϕ_U is inadmissible. Since $|S \setminus U| = d_\phi^I(S) < d_\phi^I(S) \leq |S|$, we have $U \neq \emptyset$.

Conversely, let ϕ_S be inadmissible for some finite $\emptyset \subseteq S \subseteq C$, and let $\phi_S \geq \phi_S$ be a test that uniformly improves it, so that $E = \{\phi_S' > \phi_S\}$ has $P(E) > 0$ for some $P \in \Omega$. Define the suite $\phi_S' = \phi_S$ and $\psi_I = \phi_I$ for $I \neq S$, and consider the monotone procedure d_ϕ. Since $\psi \geq \phi$ we also have $d_\phi \geq d_\phi$. Since E implies $d_\phi^S(S) > d_\phi^S(S)$, we see that d_ϕ uniformly improves d_ϕ, so the latter is inadmissible.

Proposition 1. If $d^I \geq d_\phi^I$ is admissible, then there is an admissible ψ such that $d^I = d_\phi^I$ and, for all $S \subseteq I$, $\psi_S = \phi_S^I$.

Proof. Using (10) we may embed d^I in a monotone procedure. By Theorem 1 we have $d^I \leq d_\phi^I$, with, for all $S \subseteq I$, $\chi_S = 1\{d^I(S) > 0\} \geq 1\{d_\phi^I(S) > 0\} = \phi_S^I$. For every $S \subseteq I$, if χ_S is not admissible, let $\psi_S \geq \chi_S \geq \phi_S^I$ be a uniform improvement; otherwise, let $\psi_S = \chi_S$. Without loss of generality we may assume that ψ_S is admissible. Then $d_\phi^I \geq d^I$. Since d^I is admissible, we have $d_\phi^I = d^I$.

Lemma 6. If ϕ_S, $\emptyset \neq S \subseteq I$, is of the form (13), with $l_{i:m} \geq l_{i:n}$ for all $i \geq 1$ and $0 \leq m \leq n$, then

$$\phi_S^I = 1\{p_{(i:S)} \leq l_{i:h}, \text{ for at least one } i = 1, \ldots, |S|\},$$

and

$$d^I(S) = \max_{1 \leq u \leq |S|} 1 - u + |\{i \in S: p_i \leq l_{u:h}\}|,$$

where

$$h_I = \max\{n \in \{0, \ldots, |I|\}: p_{(|I|-n+1:i)} > l_{i:n}, \text{ for } i = 1, \ldots, n\}.$$

Proof. Consider first the case $|S| > h_I$. By definition of h_I, there is an $1 \leq i \leq |S|$ such that

$$p_{(i:S)} \leq p_{(|I|-|S|+i:i)} \leq l_{i:|S|}.$$

Consequently, $\phi_S = \phi_S^I = 1$ for all S with $|S| > h_I$. Since for such S also $l_{i:|S|} \leq l_{i:h_I}$, the result of the lemma holds if $|S| > h_I$.

Now consider the case $|S| \leq h_I$. First, suppose that there exists some $1 \leq i \leq |S|$ with $p_{(i:S)} \leq l_{i:h_I}$. Take any $V \supseteq S$. If $|V| > h_I$, we have $\phi_V = 1$ as proved above. If $|V| \leq h_I$, we have

$$p_{(i:V)} \leq p_{(i:S)} \leq l_{i:h_I} \leq l_{i:|V|},$$

so that $\phi_V = 1$. Since this holds for all $V \supseteq S$, we have $\phi_S^I = 1$.

25
Next, suppose that there is no $1 \leq i \leq |S|$ with $p_{\bar{i},s} \leq l_{\bar{i},h_j}$. For $j = 1, \ldots, |I|$, define Z_j as a set with $|Z_j| = j$ such that for all $u \in Z_j$ and $v \in I \setminus Z_j$ we have $p_u \geq p_v$. Let $W = S \cup Z_j$ for some $0 \leq j \leq h_j$ such that $|W| = h_j$. If $1 \leq i \leq h_j - j$, by the assumption we have
\[p_{i,W} = p_{i,S} > l_{i,h_j} = l_{i,W}. \]
If $h_j - j \leq i \leq h_j$, since $Z_j \subseteq Z_{h_j}$ we have
\[p_{i,W} = p_{i,Z_{h_j}} > l_{i,h_j} = l_{i,W}, \]
because $\phi_{Z_{h_j}} = 0$ by definition of h_j. Taken together, this implies that $\phi_{W} = 0$, so $\phi_{W}^I = 0$. This proves the statement about ϕ_{W}^I.

To prove the statement about $d^I(S)$ we will use
\[d^I(S) = \min_{U \subseteq S} \{|S \setminus U| : \phi_{U}^I = 0\} = \min_{U \subseteq S} \{|I| : \phi_{S \setminus U}^I = 0\}. \]

As shown above we have $\phi_{S \setminus U}^I = 1$ if and only if for some $1 \leq u \leq |S \setminus U|$ we have $|\{i \in S \setminus U : p_i \leq l_{u,h_j}\}| \geq u$, and we may trivially extend the range to $1 \leq u \leq |S|$. Thus, $\phi_{S \setminus U}^I = 0$ if and only if for all such u we have $|\{i \in S \setminus U : p_i \leq l_{u,h_j}\}| \leq u - 1$. That is, for all such u,
\[|\{i \in S : p_i \leq l_{u,h_j}\}| - u + 1 \leq |\{i \in U : p_i \leq l_{u,h_j}\}|. \] (23)

Denote the left-hand side of (23) by $g(u)$ and the right-hand side by $f(U, u)$. Let $d = \max_{1 \leq u \leq |S|} g(u)$. Since $0 \leq d \leq |S|$ we can pick $U \subseteq S$ with $|U| = d$ such that for all $i \in U$ and $j \in S \setminus U$, we have $p_i \leq p_j$. For this U, for all $1 \leq u \leq |S|$, we have $f(U, u) \leq |U| = d$. If $f(U, u) < d = |U|$, then $g(u) = f(S, u) = f(U, u)$, where the latter step follows by construction of U. If $f(U, u) = d$, then $g(u) \leq d = f(U, u)$. We conclude that U satisfies (23) for all $1 \leq u \leq |S|$. Obviously, (23) cannot hold for any U with $|U| < d$. We conclude that $d^I(S) = d$.

\textbf{Proof of equation (12): $\phi_S \geq \psi_S$ for all $S \subseteq I$.}

\textit{Proof.} Choose any non-empty $S \subseteq I$. Let $s = |S|$. We have
\[
\psi_S = 1\left\{s - m + \frac{|\{i \in I : p_i \leq t\}| - mt - a_m \sqrt{mt(1-t)}}{1-t} > 0 \text{ for some } t \in [0, 1) \right\}
\leq 1\left\{s - m + |\{i \in I : p_i \leq t\}| - st - a_m \sqrt{st(1-t)} > 0 \text{ for some } t \in [0, 1) \right\}
= 1\{s - m + |\{i \in S : p_i \leq t\}| - st - a_s \sqrt{st(1-t)} > 0 \text{ for some } t \in [0, 1) \}
= 1\{f_S > 0\}
= \phi_S
\]
\textbf{Proof of equation (17):

\[d^I(S) = 0 \lor \max_{k=1,\ldots,|S|} \left[k - c(1 + m p_{k,S})\right], \]

\textit{Proof.} First apply (7) to (16), yielding
\[d^I(S) = 0 \lor \max_{i=1,\ldots,m} \left[|K_i \cap S| - c(1 + m p_{i,I})\right]. \] (24)
To simplify this expression, call \(g(i) = |K_i \cap S| - c(1 + mp_{(i;1)}). \) Let \(\pi_1, \ldots, \pi_m \) be the permutation such that \(K_i = \{ \pi_1, \ldots, \pi_i \} \) for all \(1 \leq i \leq m. \) If \(\pi_i \notin S, \) then either \(i > 1 \) and \(g(i) \leq g(i-1) \) or \(i = 1 \) and \(g(i) < 0, \) so we may restrict the maximum in (24) to values of \(i \) with \(\pi_i \in S. \) We have \(S = \{ \pi_{j_1}, \ldots, \pi_{j_{|S|}} \} \) with \(j_1 < \cdots < j_{|S|}. \) If \(i = \pi_{j_k}, \) then \(g(i) = k - c(1 + mp_{(k;S)}). \) Therefore, (24) reduces to (17).

Lemma 7. If Assumption 1 holds, then a statistical test \(\delta \) of hypothesis \(H \subseteq \Omega \) is admissible if \(P \in H \) exists such that \(\alpha = P(\delta = 1). \)

Proof. Suppose that that \(P \in H \) exists such that \(P(\delta = 1) = \alpha, \) and that \(\delta \) is a test of \(H \) that uniformly improves \(\delta. \) We will derive a contradiction under Assumption 1. Because \(\delta \) is a uniform improvement, some \(P' \in \Omega \) exists such that

\[
P'(\delta' > \delta) > 0.
\]

By Assumption 1, (25) remains valid if we replace \(P' \) by \(P. \) Consequently, since \(\delta' \geq \delta, \) and since \(\{\delta' > \delta\} \) and \(\{\delta = 1\} \) are disjoint, we have

\[
P(\delta' = 1) = P(\delta' > \delta) + P(\delta = 1) > \alpha
\]

which contradicts that \(\delta' \) is a valid test of \(H. \)

Lemma 8. \(d \) is consonant and coherent if and only if, for every disjoint \(V, W \subseteq I, \)

\[
d(V \cup W) = d(V) + d(W).
\]

Proof. Choose any \(V, W \subseteq I \) disjoint. Call \(S = V \cup W. \) We use complete induction on \(|S| \). Suppose that (26) holds for all sets smaller than \(S. \) If \(V = \emptyset \) or \(W = \emptyset \) the result is trivial, so we assume and \(V, W \neq \emptyset. \) If \(d(V) = 0 \) the result follows immediately from Lemma 3, so we may assume \(d(S) > 0. \)

By consonance there is an \(i \in S \) such that \(d(V \cup \{i\}) = 1. \) Without loss of generality, suppose that \(i \in W. \)

By Lemma 3 and the induction hypothesis we have

\[
d(V \cup W \setminus \{i\}) = d(V \cup (W \setminus \{i\})) = d(V) + d(W \setminus \{i\}) + d(\{i\}).
\]

Since \(V \neq \emptyset, W \subseteq S \) and we may use the induction hypothesis once more, saying that \(d(V \cup \{i\}) + d(\{i\}) = d(W) \) to obtain (26).

For the converse, suppose that (26) holds. By Lemma 3, \(d \) is coherent. Choose some \(\emptyset \neq S \subseteq I \) such that \(d(S) > 0. \) We use complete induction on \(|S| \) to show that \(d(\{i\}) = 1 \) for some \(i \in S. \)

Suppose the result holds for all sets smaller than \(S. \) Choose any \(i \in S \) and let \(V = \{i\} \) and \(W = S \setminus \{i\}. \)

By (26), either \(d(V) > 0 \) or \(d(W) > 0. \) If the former, we have the result immediately. If the latter, we have use the induction hypothesis to conclude that \(d(\{i\}) = 1 \) for some \(j \in W \subseteq S. \)

Lemma 9. If \(d_{\phi} \) is consonant, \(d_{\phi} = r_{\phi}; \) otherwise \(d_{\phi} \) uniformly improves \(r_{\phi}. \)

Proof. Choose \(S \subseteq I \) and let \(V = S \cap R_{\phi} \) and \(W = S \setminus R_{\phi}. \) By definition of \(R_{\phi}, \) for every \(i \in V \) we have \(\phi^j_{(i)} = 1, \) so \(\phi^j_{(i)} = 1 \) for all \(\emptyset \neq J \subseteq S, \) so \(d_{\phi}(V) = |V| \) by (5).

If \(d_{\phi} \) is consonant, by definition of \(R_{\phi}, \) for every \(i \in W \) we have \(\phi^j_{(i)} = 0. \) By consonance, we must have \(\phi^j_{(W)} = 0, \) so \(d_{\phi}(W) = 0 \) by (5). By Lemma 8 we have \(d_{\phi}(S) = |V|, \) which proves the first statement.

If \(d_{\phi} \) is not consonant, by Lemma 3 we have \(d_{\phi}(S) \geq d_{\phi}(V) = r_{\phi}(S). \) Moreover, \(S \subseteq I \) exists such that for some \(P \in \Omega \) we have with positive probability that \(d_{\phi}(S) > 0 \) and \(S \cap R_{\phi} = 0, \) or \(d_{\phi} \) would be consonant. For this \(S \) with positive probability \(d_{\phi}(S) > 0 = r_{\phi}(S). \)

Proposition 2. If \(R \) is admissible, then a consonant suite \(\phi \) exists such that \(R = R_{\phi}. \)
Proof. For all finite \(S \subseteq C \) consider \(\phi_S = 1 \{ R^S \neq \emptyset \} \). Then for all finite \(S \subseteq I \subseteq C \)

\[
\phi_S^I = 1 \{ R^J \neq \emptyset \text{ for all } S \subseteq J \subseteq I \}.
\]

We show that \(\phi \) is consonant, i.e. if \(\phi_S^I = 1 \), there is an \(i \in R^S \neq \emptyset \) such that \(\phi_{\{i\}}^I = 1 \). We proceed by complete induction on \(|S|\) downward from \(|I|\). Assume that for all \(V \subseteq I \) with \(|V| > |S|\), it holds that \(\phi_V^I = 1 \) implies that an \(i \in R_V \neq \emptyset \) exists such that \(\phi_{\{i\}}^I = 1 \), but the same does not hold for \(V = S \). We will derive a contradiction. Since \(\phi_S^I = 1 \), indeed, by (27), \(R^S \neq \emptyset \). Choose \(i \in R^S \) and \(J \ni i \). If \(J \subseteq S \), we have \(i \in R_S \cap J \subseteq R^J \) by monotonicity, so \(R^J \neq \emptyset \). If not \(J \subseteq S \), we have \(\phi_{J \cup S}^I = 1 \), since \(\phi_S^I = 1 \) and \(S \subseteq J \cup S \). By the induction hypothesis there exists a \(j \in R_{J \cup S} \) such that \(\phi_{\{j\}}^I = 1 \). Now either \(j \in S \) or \(j \in J \setminus S \). In the former case \(j \in S \cap R_{J \cup S} \subseteq R^S \) by monotonicity, and we have a contradiction. Therefore, we must have \(j \in J \setminus S \), in which case \(j \in R_{J \cup S} \cap J \subseteq R^J \), also by monotonicity, so \(R^J \neq \emptyset \). Since \(R^J \neq \emptyset \) for all \(J \ni i \), we have \(\phi_{\{i\}}^I = 1 \) by (27). This proves consonance.

Since \(R \) is monotone, we have

\[
\phi_S^I \geq 1 \{ R^I \cap J \neq \emptyset \text{ for all } S \subseteq J \subseteq I \} = 1 \{ R^I \cap S \neq \emptyset \}.
\]

Clearly, by (20), \(R^I \geq \{ i \in I : R^I \cap \{ i \} \neq \emptyset \} = R^I \) for all finite \(I \subseteq C \). Since \(R \) is admissible we must have \(R^I = R^I \).

\[\text{Proposition 3. If } R \text{ is admissible, then an admissible suite } \psi \text{ exists such that } R = R_\psi.\]

Proof. Let \(R \) be admissible. By Proposition 2, \(R = R_\phi \), with \(\phi \) consonant. If \(\phi \) is admissible, we are done. Otherwise, let \(\psi \) uniformly improve \(\phi \). Without loss of generality, we may assume that \(\psi \) is admissible. Then \(R_\psi \geq R_\phi \), and we must have equality since \(R \) is admissible.

\[\text{Proposition 4. If } \phi \text{ is consonant and admissible, then } R_\phi \text{ is admissible.}\]

Proof. Let \(\phi \) be consonant. By Lemma 9, we have \(d_\phi = r_\phi \). Suppose \(R \) uniformly improves \(R_\phi \). Then \(r = (r^I)_{I \subseteq C, |I| \leq \infty} \) with \(r^I(S) = |S \cap R^I| \) uniformly improves \(r_\phi = d_\phi \), so \(\phi \) is inadmissible by Theorem 3.

F A sufficient condition for using bisection to calculate \(h_I \)

In this section we show that \(h_I \) can be calculated by bisection in \(O(m \log(m)) \) time if, for all \(2 \leq i < n \), we have

\[
l_{i-1:n-1} \leq l_{i:n} \tag{28}
\]

By Lemma 6, we have

\[
h_I = \max \{ s \in \{0, \ldots, |I|\} : p_{(|I| - s + i)} > l_{i:s} \text{ for } i = 1, \ldots, s \}.
\]

For bisection to be used we need that the condition that

\[
p_{(|I| - s + i)} > l_{i:s} \text{ for all } i = 1, \ldots, s \tag{29}
\]

holds for all \(s \leq h_I \). This follows immediately by induction, since (29) holds for \(s = h_I \), and if (29) holds, then for any \(1 \leq i \leq s - 1 \), we have

\[
p_{(|I| - (s-1) + i)} = p_{(|I| - (s+1) + i)} > l_{i+1:s} \geq l_{i:s-1},
\]

so (29) holds for the next lower value of \(s \).

It is easy but tedious to check that (28) holds for (14), but it does not hold for (18) or (19).
Acknowledgements

This paper was inspired by many discussions during the workshop “Post-selection Inference and Multiple Testing” in Toulouse, February 2018, organized by Pierre Neuvial, Etienne Roquain and Gilles Blanchard. We thank the organizers and all participants, and especially Ruth Heller for asking the question that triggered this research project. We thank Jonathan Rosenblatt and the Israel Science Foundation for financing the computing equipment used for the simulations (grants 926/14 and 900/16). Jelle Goeman was supported by NWO VIDI grant 639.072.412.

References

Barnett, I. J. and Lin, X. (2014). Analytical p-value calculation for the higher criticism test in finite-d problems. *Biometrika*, 101(4):964–970.

Benjamini, Y. (2010). Simultaneous and selective inference: Current successes and future challenges. *Biometrical Journal*, 52(6):708–721.

Benjamini, Y. and Heller, R. (2008). Screening for partial conjunction hypotheses. *Biometrics*, 64(4):1215–1222.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57(1):289–300.

Benjamini, Y. and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. *Journal of Statistical Planning and Inference*, 82(1-2):163–170.

Berk, R., Brown, L., Buja, A., Zhang, K., Zhao, L., et al. (2013). Valid post-selection inference. *The Annals of Statistics*, 41(2):802–837.

Blanchard, G., Neuvial, P., and Roquain, E. (2020). Post hoc confidence bounds on false positives using reference families. *Annals of Statistics*, 48(3):1281–1303.

Blanchard, G. and Roquain, É. (2009). Adaptive false discovery rate control under independence and dependence. *Journal of Machine Learning Research*, 10:2837–2871.

Brannath, W. and Bretz, F. (2010). Shortcuts for locally consonant closed test procedures. *Journal of the American Statistical Association*, 105(490):660–669.

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. *Statistics in medicine*, 28(4):586–604.

Cai, G. and Sarkar, S. K. (2008). Modified Simes’ critical values under independence. *Statistics & Probability Letters*, 78(12):1362–1368.

Delattre, S., Roquain, E., et al. (2015). New procedures controlling the false discovery proportion via Romano-Wolf’s heuristic. *The Annals of Statistics*, 43(3):1141–1177.

Dobriban, E. (2020). Fast closed testing for exchangeable local tests. *Biometrika*, page in press.

Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. *The Annals of Statistics*, 32(3):962–994.
Dudoit, S., van der Laan, M. J., and Pollard, K. S. (2004). Multiple testing. Part I. Single-step procedures for control of general type I error rates. *Statistical Applications in Genetics and Molecular Biology*, 3(1):1–69.

Durand, G., Blanchard, G., Neuviel, P., and Roquain, E. (2020). Post hoc false positive control for structured hypotheses. *Scandinavian Journal of Statistics*, page in press.

Ebrahimpoor, M., Spitali, P., Hettne, K., Tsonaka, R., and Goeman, J. (2019). Simultaneous enrichment analysis of all possible gene-sets: Unifying self-contained and competitive methods. *Briefings in bioinformatics*, page in press.

Farcomeni, A. (2009). Generalized augmentation to control the false discovery exceedance in multiple testing. *Scandinavian Journal of Statistics*, 36(3):501–517.

Finner, H. and Strassburger, K. (2002). The partitioning principle: a powerful tool in multiple decision theory. *Annals of Statistics*, 30(4):1194–1213.

Finos, L. and Farcomeni, A. (2011). k-FWER control without p-value adjustment, with application to detection of genetic determinants of multiple sclerosis in Italian twins. *Biometrics*, 67(1):174–181.

Ge, Y. and Li, X. (2012). Control of the false discovery proportion for independently tested null hypotheses. *Journal of Probability and Statistics*, 2012:article 320425.

Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. *Annals of Statistics*, 32(3):1035–1061.

Genovese, C. R. and Wasserman, L. (2006). Exceedance control of the false discovery proportion. *Journal of the American Statistical Association*, 101(476):1408–1417.

Goeman, J., Meijer, R., Krebs, T., and Solari, A. (2019). Simultaneous control of all false discovery proportions in large-scale multiple hypothesis testing. *Biometrika*, 106(4):841–856.

Goeman, J. J. and Finos, L. (2012). The inheritance procedure: multiple testing of tree-structured hypotheses. *Statistical Applications in Genetics and Molecular Biology*, 11(1):1–18.

Goeman, J. J. and Mansmann, U. (2008). Multiple testing on the directed acyclic graph of gene ontology. *Bioinformatics*, 24(4):537–544.

Goeman, J. J. and Solari, A. (2010). The sequential rejection principle of familywise error control. *The Annals of Statistics*, 38(6):3782–3810.

Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. *Statistical Science*, 26(4):584–597.

Goeman, J. J. and Solari, A. (2014). Multiple hypothesis testing in genomics. *Statistics in Medicine*, 33(11):1946–1978.

Gontscharuk, V., Landwehr, S., Finner, H., et al. (2016). Goodness of fit tests in terms of local levels with special emphasis on higher criticism tests. *Bernoulli*, 22(3):1331–1363.

Gou, J. and Tamhane, A. C. (2014). On generalized Simes critical constants. *Biometrical Journal*, 56(6):1035–1054.

Guo, W., He, L., Sarkar, S. K., et al. (2014). Further results on controlling the false discovery proportion. *The Annals of Statistics*, 42(3):1070–1101.
Guo, W., Rao, M. B., et al. (2010). On stepwise control of the generalized familywise error rate. *Electronic Journal of Statistics*, 4:472–485.

Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting sparse signals in correlated noise. *The Annals of Statistics*, 38(3):1686–1732.

Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80(1):137–155.

Hemerik, J., Solari, A., and Goeman, J. J. (2019). Permutation-based simultaneous confidence bounds for the false discovery proportion. *Biometrika*, 106(3):635–649.

Henning, K. S. and Westfall, P. H. (2015). Closed testing in pharmaceutical research: Historical and recent developments. *Statistics in Biopharmaceutical Research*, 7(2):126–147.

Hommel, G. and Hoffmann, T. (1988). Controlled uncertainty. In *Multiple Hypothesenprüfung/Multiple Hypotheses Testing*, pages 154–161. Springer.

Janson, L., Su, W., et al. (2016). Familywise error rate control via knockoffs. *Electronic Journal of Statistics*, 10(1):960–975.

Javanmard, A., Montanari, A., et al. (2018). Online rules for control of false discovery rate and false discovery exceedance. *The Annals of statistics*, 46(2):526–554.

Katsevich, E. and Ramdas, A. (2020). Simultaneous high-probability bounds on the false discovery proportion in structured, regression, and online settings. *Annals of Statistics*, page in press.

Korn, E. L., Troendle, J. F., McShane, L. M., and Simon, R. (2004). Controlling the number of false discoveries: application to high-dimensional genomic data. *Journal of Statistical Planning and Inference*, 124(2):379–398.

Lehmann, E. and Romano, J. (2005). Generalizations of the familywise error rate. *Annals of Statistics*, 33(3):1138–1154.

Lehmann, E. L. and Romano, J. P. (2006). *Testing statistical hypotheses*. Springer.

Marcus, R., Peritz, E., and Gabriel, K. (1976). Closed testing procedures with special reference to ordered analysis of variance. *Biometrika*, 63(3):655–660.

Meijer, R. J. and Goeman, J. J. (2015a). A multiple testing method for hypotheses structured in a directed acyclic graph. *Biometrical Journal*, 57(1):123–143.

Meijer, R. J. and Goeman, J. J. (2015b). Multiple testing of gene sets from Gene Ontology: possibilities and pitfalls. *Briefings in Bioinformatics*, 17(5):808–818.

Meijer, R. J., Krebs, T. J., and Goeman, J. J. (2015). A region-based multiple testing method for hypotheses ordered in space or time. *Statistical Applications in Genetics and Molecular Biology*, 14(1):1–19.

Meinshausen, N. (2006). False discovery control for multiple tests of association under general dependence. *Scandinavian Journal of Statistics*, 33(2):227–237.

Meinshausen, N. (2008). Hierarchical testing of variable importance. *Biometrika*, 95(2):265–278.

Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. *The Annals of Statistics*, 34(1):373–393.
Poline, J.-B. and Mazoyer, B. M. (1993). Analysis of individual positron emission tomography activation maps by detection of high signal-to-noise-ratio pixel clusters. *Journal of Cerebral Blood Flow & Metabolism*, 13(3):425–437.

Romano, J. P., Shaikh, A., and Wolf, M. (2011). Consonance and the closure method in multiple testing. *The International Journal of Biostatistics*, 7(1):1–25.

Romano, J. P. and Shaikh, A. M. (2006). Stepup procedures for control of generalizations of the family-wise error rate. *The Annals of Statistics*, 34(4):1850–1873.

Rosenblatt, J. D., Finos, L., Weda, W. D., Solari, A., and Goeman, J. J. (2018). All-resolutions inference for brain imaging. *NeuroImage*, 181:786–796.

Rosenblum, M., Liu, H., and Yen, E.-H. (2014). Optimal tests of treatment effects for the overall population and two subpopulations in randomized trials, using sparse linear programming. *Journal of the American Statistical Association*, 109(507):1216–1228.

Rosset, S., Heller, R., Painsky, A., and Aharoni, E. (2018). Optimal procedures for multiple testing problems. *arXiv preprint arXiv:1804.10256*.

Sarkar, S. K. (2007). Stepup procedures controlling generalized FWER and generalized FDR. *The Annals of Statistics*, 35(6):2405–2420.

Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. *Journal of the American Statistical Association*, 81(395):826–831.

Sonnemann, E. (1982). *Allgemeine Lösungen multipler Testprobleme*. Universit¨at Bern. Institut f¨ur Mathematische Statistik und Versicherungslehre.

Sonnemann, E. (2008). General solutions to multiple testing problems. *Biometrical Journal*, 50(5):641–656.

Sonnemann, E. and Finner, H. (1988). Vollst¨andigkeitss¨atze f¨ur multiple Testprobleme. In *Multiple Hypothesenpr¨ufung/Multiple Hypotheses Testing*, pages 121–135. Springer.

Sun, W., Reich, B. J., Tony Cai, T., Guindani, M., and Schwartzman, A. (2015). False discovery control in large-scale spatial multiple testing. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 77(1):59–83.

Wang, J. and Owen, A. B. (2019). Admissibility in partial conjunction testing. *Journal of the American Statistical Association*, 114(525):158–168.

Westfall, P. and Young, S. (1993). *Resampling-Based Multiple Testing*. New York: Wiley.

Poline, J.-B. and Mazoyer, B. M. (1993). Analysis of individual positron emission tomography activation maps by detection of high signal-to-noise-ratio pixel clusters. *Journal of Cerebral Blood Flow & Metabolism*, 13(3):425–437.

Romano, J. P., Shaikh, A., and Wolf, M. (2011). Consonance and the closure method in multiple testing. *The International Journal of Biostatistics*, 7(1):1–25.

Romano, J. P. and Shaikh, A. M. (2006). Stepup procedures for control of generalizations of the family-wise error rate. *The Annals of Statistics*, 34(4):1850–1873.

Rosenblatt, J. D., Finos, L., Weda, W. D., Solari, A., and Goeman, J. J. (2018). All-resolutions inference for brain imaging. *NeuroImage*, 181:786–796.

Rosenblum, M., Liu, H., and Yen, E.-H. (2014). Optimal tests of treatment effects for the overall population and two subpopulations in randomized trials, using sparse linear programming. *Journal of the American Statistical Association*, 109(507):1216–1228.

Rosset, S., Heller, R., Painsky, A., and Aharoni, E. (2018). Optimal procedures for multiple testing problems. *arXiv preprint arXiv:1804.10256*.

Sarkar, S. K. (2007). Stepup procedures controlling generalized FWER and generalized FDR. *The Annals of Statistics*, 35(6):2405–2420.

Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. *Journal of the American Statistical Association*, 81(395):826–831.

Sonnemann, E. (1982). *Allgemeine Lösungen multipler Testprobleme*. Universit¨at Bern. Institut f¨ur Mathematische Statistik und Versicherungslehre.

Sonnemann, E. (2008). General solutions to multiple testing problems. *Biometrical Journal*, 50(5):641–656.

Sonnemann, E. and Finner, H. (1988). Vollst¨andigkeitss¨atze f¨ur multiple Testprobleme. In *Multiple Hypothesenpr¨ufung/Multiple Hypotheses Testing*, pages 121–135. Springer.

Sun, W., Reich, B. J., Tony Cai, T., Guindani, M., and Schwartzman, A. (2015). False discovery control in large-scale spatial multiple testing. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 77(1):59–83.

Wang, J. and Owen, A. B. (2019). Admissibility in partial conjunction testing. *Journal of the American Statistical Association*, 114(525):158–168.

Westfall, P. and Young, S. (1993). *Resampling-Based Multiple Testing*. New York: Wiley.