Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding

Shivani Thakur, Rajaneesh Kumar Verma, Kasper Planeta Kepp, Rukmankesh Mehra

ARTICLE INFO

Keywords:
SARS-CoV-2
Spike protein
Covid-19
Mutations
Binding affinity
ACE

ABSTRACT

The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔGbind) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔGbind data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.

1. Introduction

Since early 2020, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused disease across the planet, with casualties counted in many millions [1–3]. Major research efforts are directed towards understanding the structure-function relationships of the virus spike-protein (S-protein), which enters human host cells by binding to human angiotensin-converting enzyme 2 (ACE2) [4–7]. While this fusion process is central to infection, it can be partly prevented by immune recognition and neutralization of S-protein epitopes, which is the rationale behind many important vaccines [8,9]. For this reason, antigenic drift leading to new variants that evade vaccine-induced antibodies is a substantial concern [10–13]. The highly mutated omicron variant illustrates this principle perfectly, with its associated large transmission in already vaccinated people since December 2021 [14, 15]. The S-protein on the surface of the virus features a dynamic, metastable pre-fusion state that converts into an open state upon ACE2 binding, with the receptor binding domain (RBD) in an upwards conformation [16–20]. The ability to bind to ACE2 and evade antibodies depends on this structure and its conformational variations [21]. The emergence of new variants that maintain or improve ACE2 binding will probably remain important for many years to come [22]. It is of major interest, both scientifically and for pandemic surveillance to understand ACE2 binding at the molecular level of the amino acids.

Some optimization of ACE2 binding occurred via the D614G mutation which rapidly became dominant in 2020 [23], and ACE2 binding was most likely further improved in subsequent variants alpha, beta, and gamma, via e.g., N501Y and S477N and E484K mutations [24]. The mutation L452R may play a key role in facilitating evolution [25], possibly by modulating changes in electrostatic interactions via positive charges with the predominantly negatively charged ACE2 surface [21, 26, 27]. There is some disagreement on whether omicron has less [28] or similar [29] binding to ACE2 compared to delta. This difference is...
important because weaker binding could relate to clinical presentation (upper airway infection) but could also indicate that antigenic drift dominates ACE2 binding in the fitness function of the virus.

Computational models are necessary to understand mutation effects mechanistically and could ideally enable complete early screening of mutations of potential concern many weeks before epidemiological and clinical data become more established. Many mutations may occur outside the RBD (for which many mutations have been studied experimentally [30]), and computer models could ideally account for features not in experimental screening assays (e.g. change in conditions and protein state) and cover the full sequence space, ideally to monitor the pandemic potential of future mutations. The publication of hundreds of cryo-electron microscopy (cryo-EM) structures of the S-protein, facilitated by healthy competition between many research groups, makes structure-guided computation much more feasible than for many other proteins [21]. However, there are major technical challenges to modeling such mutation effects, relating to the accuracy of the models and the biases they carry from training on biased mutation data sets [31–33]. For example, the use of a static experimental wild-type structure to extrapolate the impact of mutations [34,35], the quality of this structure and the sensitivity of results to changes in used structure [36,37], and the biological relevance of the experimental cryo-EM structures to in vivo conditions, e.g. effects of chemical conditions, solvent, and protein modifications [38].

In this paper, we use a computational protocol to describe the effect of all possible mutations in the S-protein on ACE2 binding, after benchmarking it against RBD mutation effects, where experimental data are available. We discuss how results depend on the choice of cryo-EM structure used. We show that the comparison of mutations as groups increases the significance of such computational protocol by reducing the uncertainty present for individual mutation effects. Our results demonstrate substantial challenges but also indicate necessary steps forward towards predictive computer models of SARS-CoV-2 evolution.

2. Methods

2.1. Protein structural data

As one of the new approaches in this work, made feasible by the rich structural data of the S-protein, we study the impact of using different structures on the computed ACE2 binding effects. The S-protein displays large conformational changes in vivo [17,19]. Computational studies published so far used only a single cryo-EM structure for each state of interest (prefusion protein, antibody-bound, ACE2-complex) [39–44]. However, the heterogeneity of experimental structures deduced by cryo-EM may impact the results of structure-based computational modeling [21], i.e., results reported from one structure may not be statistically representative of the ensemble of relevant conformation states, perhaps even for the same state. To understand these methodological dependencies we studied 21 different S-protein structures in complex with ACE2 deposited in the Protein Data Bank (PDB) [45] as a sensitivity test.

We expect the structures to have good backbone resolution and accuracy at secondary and tertiary structure level [46]. However, cryo-temperature is likely to freeze out some conformations and cause cryo-contraction of the overall protein [38]. This produces some variation relative to the physiological state, which is also heavily glycosylated in ways not accounted for by the experimental structures. Plausibly, sites shielded by glycans will not change interaction with ACE2 as much upon mutation as predicted from non-glycosylated proteins. The realism of chemical composition, notably protein modification, may also affect results both from computational studies and experiments. As a rationale for our protocol, the average of the 21 structures accounts for the variation in molecular ACE2-S-protein interactions.

The structures 7A94, 7A95, 7A96, 7A97, and 7A98 by Benton et al. [47], 7CT5 (Guo et al.) [48], 7DF4 (Xu et al., 2021) [49], 7DX5, 7DX6, 7DX7, 7DX8, and 7DX9 (Yan et al., 2021) [50], 7KJ2, 7KJ3, and 7KJ4 (Xiao et al., 2021) [51], and 7KMS, 7KMZ, 7KNB, 7KNE, 7KNH, 7KNI (Zhou et al., 2020) [52] were selected among original variant structures, to make all mutations into these structures feasible and comparable, with the requirement of nearly complete trimer structures (number of residues per S-protein chain N > 900) [21]. The number of residues in each of the three S-protein chains (N), percentage outliers in the Ramachandran plot of the structure (% Outliers) and resolution are summarized in Table 1. The resolution varies from 2.9 to 5.4 Å (Table 1). In these resolution ranges the main-chain conformations are largely well-resolved but the accuracy of the side-chain conformations should not be over-emphasized at the given level of cryo-EM structure resolutions [46], and multiple structures may be beneficial.

2.2. Computing the change in ACE2 binding affinity due to mutation

We used the BeatMusic method (default settings) [53], which has shown very promising accuracy in independent benchmarks [54,55], to compute the change in ACE2 affinity (ΔΔGbind, in units of kcal/mol) caused by mutations in the 21 selected S-protein structures. The method

PDB	N in S-protein (Chain 1st, 2nd, 3rd)	% Outliers	Resolution (Å)	ACE2 units	Reference
7A94	1080, 1079, 1078	0.2	3.9	One	Benton et al., 2020 [47]
7A95	1069, 1067, 1070	0.2	4.3	One	Benton et al., 2020 [47]
7A96	1065, 1065, 1065	0.2	4.8	One	Benton et al., 2020 [47]
7A97	1065, 1066, 1066	0.1	4.4	Two	Benton et al., 2020 [47]
7A98	1066, 1066, 1066	0.2	5.4	Three	Benton et al., 2020 [47]
7CT5	1006, 1007, 1006	0.1	4.0	Three	Guo et al., 2021 [48]
7DF4	1005, 1006, 1068	0.2	3.8	One	Xu et al., 2021 [49]
7DX5	1007, 971, 971	0.3	3.3	One	Yan et al., 2021 [50]
7DX6	1007, 971, 971	0.3	3.0	One	Yan et al., 2021 [50]
7DX7	1007, 971, 971	0.3	3.4	One	Yan et al., 2021 [50]
7DX8	1007, 971, 1006	0.3	2.9	Two	Yan et al., 2021 [50]
7DX9	1006, 1006, 1007	0.3	3.6	Two	Yan et al., 2021 [50]
7KJ2	967, 981, 961	0.3	3.6	One	Xiao et al., 2021 [51]
7KJ3	981, 981, 961	0.4	3.7	Two	Xiao et al., 2021 [51]
7KJ4	981, 981, 981	0.4	3.4	Three	Xiao et al., 2021 [51]
7KMS	1033, 1033, 1033	0.0	3.6	Three	Zhou et al., 2020 [52]
7KMX2	1007, 1030, 1013	0.0	3.6	Two	Zhou et al., 2020 [52]
7KNB	1006, 1006, 1029	0.0	3.9	One	Zhou et al., 2020 [52]
7KNE	1006, 1006, 1029	0.0	3.9	One	Zhou et al., 2020 [52]
7KNH	1007, 1030, 1031	0.0	3.7	Two	Zhou et al., 2020 [52]
7KNI	1030, 1030, 1030	0.0	3.9	Three	Zhou et al., 2020 [52]

- **N** is the number of amino acids present in each S-protein chain of the PDB structure, separated by commas.
- **% Outliers** is the percentage of the amino acid residues of the structure in disallowed regions of the Ramachandran plot, calculated for all the residues present in the structures, (i.e., the full S-protein-ACE2 complex).
uses coarse-grained models to compute protein-protein interactions via statistical potentials. If more than one chain of identical sequence is present in one partner, the method introduces mutations in all of them, and thus the \(\Delta\Delta G_{\text{bind}} \) represents the total change in binding free energy due to mutation, with a negative value representing an increase in binding affinity.

For each input structure, we defined the two interacting partners – one being the three chains of S-protein and the other being ACE2. The relative solvent accessibilities (RSA) of the mutated residue sites were also calculated using all 21 structures as input. BeatMusic computes RSA of the mutated sites in the complex and apo states as the ratio of the solvent accessible surface in the selected structure (using DSSP) [56] and in a corresponding extended tripeptide Gly-X-Gly [53,57]. Previous analysis has shown that the solvent accessibility of individual sites (likely to affect estimates of binding affinity changes) such as D614 varies substantially in different experimental structures, reflecting the conformational dynamics discussed above [21], which suggests that local site heterogeneity may affect mutation estimates.

2.3. Mutation group comparisons

Mutations in proteins are on average more likely to be destabilizing due to the evolutionary optimization toward fold stability [58,59]. Both the apo-protein and the complex are likely to experience loss of stability upon mutation, but the net impact on change in binding affinity depends on the relative stability change of the complex and apo-protein. Computational methods to estimate mutation effects suffer from a number of biases relating to the extrapolation from a specific static wild type structure to a (usually unknown) mutant structure (missing information and structural heterogeneity), the accuracy of the model’s physics, and the biases in the datasets used to train them [32–34,60]. Additionally, they are neither very accurate nor precise (results depend on method and structure used) for individual mutations [32–34,60]. We have previously demonstrated how both systematic and random errors in such methods can be reduced by comparing the averages of case and control mutation groups, e.g., the typical properties of pathogenic mutations relative to the background of similar but random mutations but have not applied this protocol to SARS-CoV-2 mutations affecting S-protein ACE2 binding where it would be equally relevant [61,62].

To do so, we compared the average and standard deviations of \(\Delta\Delta G_{\text{bind}} \) for groups of natural mutations and for various other groups of mutations. We computed and analyzed \(\Delta\Delta G_{\text{bind}} \) for all possible mutations (~18,000 to 21,000 mutations per structure) of all 21 structures, for a total of approximately 400,000 \(\Delta\Delta G_{\text{bind}} \) data points.

We then divided mutations into seven different groups (Table S1): (a) all possible mutations in the full S-protein (N x 19); (b) all possible

Fig. 1. Structure and mutations of the SARS-CoV-2 S-protein. (a) The S-protein trimer with its three chains (blue, red, and purple) and three ACE2 proteins (dark green, cyan, and light green). (b) Mutations seen in major SARS-CoV-2 variants (alpha, beta, gamma, delta, and omicron). (c) Selected additional mutations repeatedly seen in SARS-CoV-2 sequences other than in major variants. (d) Mutations seen in the original B.1 omicron variant. (e) S-protein-ACE2 interface residues (yellow), with residues in red and orange indicating mutation sites observed in major variants and in other variants, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
2.5. Experimental ACE2 binding data

stoichiometry. that the mutation effect is generally not impacted by ACE2 more sites affected and most of these are not at the interface, suggesting effects are not impacted by ACE2 stoichiometry. Mutations lying far of set does not be of special interest to our investigation. The sets

2.7. pKₐ estimation

pKₐ values of the ionizable groups in S-proteins were predicted using PROPKA 3 [66,67] implemented in the APBS-PDB2PQR software suite [68], pKₐ values were calculated at pH 7 with default parameters. We looked at the pKₐ for seven types of residues including aspartic acid, glutamic acid, histidine, lysine, arginine, tyrosine and cysteine. Since cysteine residues always have very large values and do not deprotonate they were excluded to focus on the titratable groups [69].

3. Results and discussion

3.1. Computed binding affinities correlate with the experimental data

To understand the overall trends in the computed numbers, we compared our binding affinities to the recent experimental binding data specifically for RBD mutations [30]. The experimental values were multiplied by −1 to make them uniform with the computed ΔΔGₘₚbind values so that negative values indicate increased binding affinity. For comparison, the RBD mutations were categorized into full-length RBD, mutations at the RBD-ACE2 interface, natural mutations within the RBD, and natural mutations at the RBD-ACE2 interface.

Despite the expected substantial variations for individual mutations, the predicted and experimental values show similar trends (Fig. 2a and b). The random RBD and interface mutations showed more decreased ACE2 binding than the natural mutations in the RBD and at the interface. The average data (Fig. 2b) showed clear separation between random RBD and natural mutations, and no clear difference between natural mutations at the interface and within the RBD. The similar trends of computation and experiment suggest that BeatMusic can predict the general experimental tendencies of the groups, even when results are unreliable for single mutations; this explains the need for mutation group comparisons.

Scatter plots of the computed ΔΔGₘₚbind and experimental binding and expression data [30] are shown in Fig. 2c. We computed the average ΔΔGₘₚbind for each RBD mutation from the 21 PDB structures and used these average ΔΔGₘₚbind values. We found significant correlation between computed average ΔΔGₘₚbind Values and experimental binding (R = 0.37) and expression data (R = 0.30). Correlation was also seen specifically for natural mutations present on RBD (R = 0.38 for binding and R = 0.24 for expression, Table S3). Though the R-values for the natural mutations are not significant, they are significant for the full RBD mutations, with the same direction in all analyses, indicating that the underlying physics of the effects is captured but that uncertainties in individual mutations and structural variations make the results imprecise. Accordingly, computations can reproduce reasonably the trend if accounting for heterogeneity in the structural data. We note that the experimental expression and ACE2 binding also correlate, which may be due to a common causal property of the mutations, or S-protein concentration impacting the observed ACE2 binding. However, the R-values are not very large despite significant p-values, as further analyzed below.
Fig. 2. Correlation of computed average $\Delta \Delta G_{\text{bind}}$ of RBD mutations with experimental binding and expression (analysis was done using the curated data set with 3390 data points). (a) Comparison of computed versus experimental data. For computed $\Delta \Delta G_{\text{bind}}$, the average for the 21 structures was used. (b) Average of the computed and experimental data for each mutation group. (c) Correlation between computed average $\Delta \Delta G_{\text{bind}}$ and experimental data. (d) Correlation between computed and experimental data using 0.5- and 0.25-value bins. (e) Number of mutations on RBD belonging to stabilizing, neutral and destabilizing binding groups for computed and experimental data.
The experimental values analyzed above are highly skewed (Fig. 2c). To undo this effect, we grouped the data into bins of 0.5- and 0.25-width for the binding expression and expression data, calculated average binding and expression data for each such bin, and plotted correlation with the computed \(\Delta \Delta G_{\text{bind}} \) averaged from bins as described in the methods section. As shown in Fig. 2d, this produces highly significant correlations between both binding and expression and computed structure-averaged \(\Delta \Delta G_{\text{bind}} \). The R-values for experimental versus predicted binding effects are 0.90 and 0.83 for 0.5- and 0.25-value bins, respectively, which is surprisingly accurate but also reflects a massive compression of the data. The R values for expression versus predicted \(\Delta \Delta G_{\text{bind}} \) are 0.94 and 0.80 for 0.5- and 0.25-value bins. Removal of the overrepresented data via bins substantially improved the correlation (Fig. 2c and d).

We also analyzed the RBD mutation data for the impact of mutations on \(\Delta \Delta G_{\text{bind}} \) ranked by magnitude to visualize the broadness, i.e., to understand whether the effect in a given variant is most likely dominated by a few or broadly many mutations (with the limitation that epistasis is not accounted for). We classified the data into improved binding (< -0.1), neutral (-0.1 to 0.1) and destabilizing (>0.1) mutations and compared with the experimental binding data by keeping the same quantitative divisions (Table S4 and Fig. 2e). Importantly, and further validating the performance of the protocol, the predicted and experimental binding values follow a similar pattern, with most mutations showing negative or nearly neutral effects, and a very small number of mutations having beneficial effects on ACE2 binding.

3.2. Computed ACE2 binding: comparing natural and random mutations

The results of the \(\Delta \Delta G_{\text{bind}} \) analysis for the seven groups of mutations for all 21 S-protein-ACE2 structures are shown in Fig. 3. The results for all possible mutations in the protein (blue boxes to the left) represent completely random mutations, including mutations not likely to occur in the wild due to various selection pressures and in sites far from the RBD. Most mutations have positive values, suggesting decreased binding affinity for all seven mutation groups in all 21 structures. This may partly be due to a bias in the data set used to train the method towards complexes evolved or designed towards high affinity, or it can be a real effect indicating that the S-protein itself is optimized towards ACE2 binding, such that most mutations tend to impair this optimized affinity. The experimental data by Starr et al. [30] are consistent with such an average tendency indicating that the effect is not simply due to a method bias, but the systematic errors inherent to any computational method renders the direct values not very meaningful.

Comparison of the averages of the different groups removes systematic errors. Using this approach, the natural mutations, regardless of the complex structures, showed consistently better ACE2 binding than random full-protein mutations (light blue boxes to the left) and mutations at the interface (orange). More interestingly, all possible mutations at sites of known natural mutations (Fig. 3, yellow) give values intermediate between actual natural mutations and all S-protein mutations, i.e., the fixed natural mutations were predicted to bind ACE2 better on average than other mutations even in the same sites, located similarly relative to ACE2.

We found no significant difference between the mutations for the major variants and omicron, indicating that the mutations in total produce relatively similar ACE2 binding compared to random mutations in the evolvable and exposed sites. While these estimates represent the pure individual mutation contributions which may be modulated somewhat by epistasis (interactions between sites that change the combined effect on binding) the tendency is supported by estimates of ACE2 binding of delta and omicron being relatively similar [29], although others found a somewhat smaller binding affinity for omicron than delta [28], and others again suggest a somewhat larger [70], which could indicate that these differences are probably small overall. The corresponding analysis for selected pairs of mutation groups in Fig. S2 for all 21 structures shows very good agreement for the main batch comparisons, despite large variations in some individual mutation groups, illustrating the importance of considering groups of mutations (to increase precision) rather than uncertain single-mutation estimates in computational studies.

3.3. Accounting for structural heterogeneity

Fig. 4a shows the \(\Delta \Delta G_{\text{bind}} \) values for the 70 natural mutations in the S-protein averaged for all structures that included these sites. Whereas the direct values were not significant due to systematic errors, the differences between mutations have reduced systematic error but are still not precise (Fig. 4a). However, they illustrate that large differences in individual effects average out to small group differences in Fig. 3. Thus, the combination of structure averaging and group comparisons considerably strengthens any such computational protocol. If we consider 0 ± 0.5 kcal/mol as the cut-off for neutral mutations, most of the mutations fall in that range. Outside the ACE2 interface region we estimate large negative effects of Y145D and W152C. These sites do not interact with ACE2, yet the effect is predicted repeatedly by different structures.

To illustrate the impact of structure choice, Fig. S3 shows the variation in \(\Delta \Delta G_{\text{bind}} \) values for some selected natural mutations for all studied structures. For example, D614G has positive or negative effect on ACE2 binding almost equally distributed depending on the chosen structure, whereas some mutation effects are insensitive to structure use. This result originates in the large conformational variability of some surface sites, with D614 being a notable example [21]. For this reason, computational studies based on a single structure may give misleading results, as the structure’s site conformation may not be representative of the full knowledge we have from cryo-EM structures of the S-protein.

We also note that the change in charge of the natural mutations (Fig. 4b) including omicron (Fig. 4c), shows that many mutations lead to increased charge. Out of 70 natural mutations, 30 cause increased charge, whereas only 10 reduce charge and 30 are charge neutral. In omicron, out of 28 mutations (present in structures analyzed), 13 increase the charge and 4 decrease the charge. This could suggest that the mutations that cause positive charge tend to be more often associated with stronger binding to the negatively charged surface of ACE2 [21]. Earlier studies have reported that charge increment can enhance ACE2 binding affinity [24,26,27,71-74]. The charge-increasing mutations N439K, N440K, E484A, E484K, E484Q, Q493R and Q498R show near neutral effect (with 0.5 kcal/mol cut-off for neutral, Fig. 4a), but considering the systematic tendency towards weaker binding, this mainly indicates a stronger binding relative to random mutations as can be seen in group comparison in Fig. 3.

As noted above, mutation effects sometimes depend substantially on the structure used as input (Fig. S3). To account for this structural heterogeneity, we can average data for the mutations across all the identified structures fulfilling the inclusion criteria. The resulting mutation effects represent the effect in a combined conformational space of the cryo-EM structures, which is missing when using a single structure. The conformations of the S-protein can be very dependent on conditions such as pH [52], which supports this type of analysis.

A corresponding total summary of structure-averaged mutation effects is shown in Fig. 5a, with Fig. 5b showing the statistics (t-test for same mean) of group pair-comparisons. The most important significant differences are, as discussed above, all the natural mutation groups (grey, blue, green, dark blue) vs. all possible S-protein mutations (light blue, left box), spike-ACE2 interface (orange) and all possible mutations in evolvable sites (yellow) (Fig. 5a), with comparisons between groups of natural mutations being insignificant (except omicron). The S-protein-ACE2 interface region is the contact point for ACE2 and therefore any random disturbance in this region is expected to have large effect on ACE2 binding as observed in the orange bar in Fig. 5a. The omicron
Fig. 3. Change in binding free energy ($\Delta\Delta G_{\text{bind}}$) upon mutation for the 21 S-protein-ACE2 complexes. The average $\Delta\Delta G_{\text{bind}}$ for each mutation group is indicated in the top of each panel, and standard deviations are shown in brackets in the bottom of each panel.
Fig. 4. Average $\Delta \Delta G_{\text{bind}}$ and change in charge values for natural mutations. (a) Average $\Delta \Delta G_{\text{bind}}$ calculated from 21 structures for the natural mutations with standard deviations written for each bar. (b) Change in charge ($C_{\text{mutated}} - C_{\text{wild}}$) for the 70 studied natural mutations. (c) Change in charge for omicron mutations.

Fig. 5. Comparison of the average $\Delta \Delta G_{\text{bind}}$ values. (a) Distribution of $\Delta \Delta G_{\text{bind}}$ values averaged over mutations in a given mutation group on the selected 21 structures, with standard deviations in brackets. (b) p-values of group comparisons using t-test for same mean for the data in panel (a).
3.4. Solvent accessibility of S-protein-ACE2 complexes

An analysis of the RSA for the 21 PDB structures is shown for the complex in Fig. 6 and after removing ACE2 in Fig. S4. The RSA data for the “full length”, “interface” and “saturation natural mutation” groups were the average values of the 19 mutations. As seen in Fig. 6, the average RSA of S-protein-ACE2 complexes of natural mutations is consistently high in comparison to all possible mutations for all the 21 structures. This trend was also noted for natural mutations relative to the mutations at the ACE2 interface. The natural mutation sites are thus relatively solvent exposed, even in the ACE2 complex state, compared to random sites. We note however that some structures showed large variation in RSA of the natural mutation sites, again documenting the need for using aggregate “ensemble” results from multiple structures.

The average RSA of 21 S-protein structures after removing ACE2 showed similar behavior of consistently high solvent exposure for natural mutation compared to all possible mutations (Fig. S4). The interface residues show a clear increase in solvent accessibility for all 21 structures, as anticipated, on average of ~10–23, when ACE2 was removed. Solvent exposure is important for the mutation tendency, but this is usually due to these sites being more functionally neutral, thus evolving faster than structurally constrained buried sites [76], whereas in the S-protein it is due to many solvent-exposed sites being subject to positive selection, which also increases evolution rates [77].

We expect that mutations that favor binding to one protein (e.g., any antibody) are likely to more often also favor binding to another protein (e.g., ACE2), such that classes of mutations are likely to bind better to both, giving a correlation between ACE2 and antibody binding [40]. Our results suggest that ACE2 binding has been almost maintained or slightly relaxed by a combination of many mutations having different magnitudes of their effects in a plausible trade-off with antibody evasion. However antibodies bind in very different parts of the protein [78] and thus any use of a single antibody as representative for such correlations should be taken with substantial caution. A recent study identifies 377 human monoclonal antibodies for S-protein with ~80 of them binding to RBD, indicating that the antibody sites are very diverse [10]. A study on epistasis [40] relied on one antibody as representative of this entire epistatic relationship with ACE2 and also only one experimental structure for computing the results. As we observed that the conclusions are very much dependent on the structures used (Fig. S3), a single structure might yield insignificant results. Therefore, we recommend using several structures and report the average results. We consider this unlikely to be a strong estimate of whether epistasis is important or not using single representative structures and invite more detailed studies into epistasis, including both intra-S-protein and inter-gene epistasis at both the RNA and amino acid level, preferably with group comparisons and averaging over multiple equally valid cryo-EM structures to reduce noise, as proposed in the present study.

3.5. Influence of pKₐ on the change in binding affinity

We also computed the pKₐ profile of six types of residues using the highest and lowest resolution structures of our study (7DX8 and 7A98; S-protein chain A results shown in Figs. S5 and S6). Both these structures showed similar pKₐ profiles. As expected, we found that all the aspartic and glutamic acid residues exhibit low pKₐ values, whereas arginine, lysine and tyrosine show higher pKₐ values. We calculated the average ΔΔGbind for the 19 mutations in a site and correlated it with the pKₐ of that site. ΔΔGbind and pKₐ are taken as the average of three S-protein chains. For both these structures, some correlation was observed (Fig. S7). As pKₐ increases, the ACE2 affinity decreases, indicating that the pKₐ values of ionizable groups influence the change in binding affinity. The acid and base residues cluster in two groups, with otherwise random spread, thereby producing this apparent relationship, which we interpret as due to cationic wild type residues being mutated away to reduce favorable interaction with predominantly negatively charged ACE2, in support of an electrostatic charge-charge attraction component to the ACE2 binding.

4. Conclusions

Computational structure-based screening of new S-protein mutations for ACE2 binding is required to rationalize virus function directly from protein structure and may eventually aid early detection of potentially concerning variants. However, substantial systematic and random errors in the models and variations in the cryo-EM structures used as input lead to issues with both accuracy and precision. In this work, we investigated how computations may be used to estimate ACE2 binding effects of new SARS-CoV-2 mutations, using mutation group comparisons to reduce systematic errors and the richness of cryo-EM structures of the S-protein to our advantage as an ensemble to reduce noise in individual mutation estimates. The protocol gives reasonable trend agreement with experimental mutation data for the RBD, but is then computationally extended to the full mutation landscape of 21 different protein structures. Accordingly, the main findings of this work include:

- The computed mutation effects are often highly sensitive to the structure used as input, with e.g., the effect of D614G on ACE2 binding being entirely dependent on structure used.
- We propose a protocol that averages out the structural heterogeneity to give more robust estimates and show how comparisons of differences in average effects can produce significant trends in the ACE2 binding behavior for groups of mutations.
- We find that the S-protein-ACE2 interface region is sensitive to mutation effects, but more importantly that the natural mutations have better binding than random mutations in evolvable sites and the full S-protein, quantifying the presence of an optimization of ACE2 binding but also providing point estimates for mutations not studied experimentally.
- We found that the variant mutations as groups summed to relatively similar binding effects, despite some substantial individual increases and decreases of ΔΔGbind. This suggests that the protocol is accurately usable in estimating combined mutation effects despite the absence of epistasis in the model.
- Omicron mutations exhibited slightly lower binding affinity as compared to mutations in other major variants, which is consistent with experimental studies finding somewhat less [28] or similar [29] binding to ACE2 compared to delta.
- Many natural mutations have led to positive charge increase, which plausibly contributes to strong electrostatic interaction with the negatively charged surface of ACE2.
- The pKₐ calculations suggest the impact of positive charges being favorable to predominantly negatively charged ACE2, as loss of these charges by mutation tended to reduce affinity.

Our protocol and structure-averaged point estimates may be of use in future models that estimate the S-protein-ACE2 binding effects of new mutations and rationalize evolutionary trade-offs of individual mutations with regards to antigenic drift, which we believe is more difficult to
Fig. 6. Residue solvent accessibility for the 21 S-protein-ACE2 complexes. The average RSA and standard deviation for each mutation group are indicated in the plots (standard deviation represented inside bracket). The saturation mutagenesis for the site of natural mutations (yellow) is the data averaged over 19 possible mutations for the same site and therefore differs slightly from the group of all natural mutations (grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
describe due to the complexity and antibody-S-protein interactions. In addition to outlining a substantially better computational protocol to estimate ACE2 binding affinity changes, the detailed genotype phenotype map provided for the full mutation space averaged over 21 experimental cryo-EM structures is the main outcome of our study, which we expect to use for new models with improved predictability of virus evolution.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

We have supplied data in the supplementary files (in word file and excel sheets)

Acknowledgements

RM, ST and RKV acknowledge IIT Bhilai for the supporting this work. RM, ST and RKV acknowledge IIT Bhilai for the supporting this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmgm.2022.108379.

References

[1] F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-P. Pei, et al., A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265–269.
[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733.
[3] M. Cevik, K. Kupali, J. Kindrachuk, M. Peiris, Virology, transmission, and pathogenesis of SARS-CoV-2, BMJ 371 (2020) m3862.
[4] W.T. Harvey, A.M. Carabelli, B. Jackson, R.K. Gupta, E.C. Thomson, E.M. Harrison, C. Ludden, R. Reeve, A. Rambaut, COVID-19 Genomics UK (COG-UK) Consortium, et al., SARS-CoV-2 variants, spike mutations and immune escape, Nat. Rev. Microbiol. 19 (2021) 499–504.
[5] L. Guruprasad, Human SARS-CoV-2 spike protein mutations, Proteins: Struct., Funct., Bioinf. 89 (2021) 569–576, https://doi.org/10.1002/prot.26042.
[6] M. Letko, A. Mazzi, V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol. 5 (2020) 562–569.
[7] A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, in: Coronaviruses Methods Protoc, Springer, New York, 2015, pp. 1–23.
[8] C. Liu, Q. Zhou, Y. Li, L. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, J. Bolton, A. Fyfe, S. Gupta, T. Ueno, et al., SARS-CoV-2 Spike mutations and immune escape, Cell Res. 30 (2020) 1059–1060.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmgm.2022.108379.
