Blind *Helicobacter pylori* Treatment in Dyspeptics in a High Prevalence Area

Wadzani Gashau¹, Aisha Shehu Adamu²

¹Professor of Medicine, Department of Medicine, College of Medical Sciences, University of Maiduguri and Gastroenterology Unit, Department of Medicine, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria; ²Chief Consultant Physician, Department of Internal Medicine, Federal Medical Centre Jalingo, Nigeria.

ABSTRACT

Background: The initial management of dyspepsia is shifting away from the invasive endoscopic biopsy procedure to identify *H. pylori* before eradication treatment. A test-and-treat strategy is firmly in place, but choices can be limited in resource constrained environments.

Objective: To investigate the short term effect of blind eradication therapy in management of dyspeptic patients prior to knowledge of *H. pylori* infection status by serology and histology.

Patients: A cross sectional study of 125 consecutive patients presenting at a tertiary facility with dyspepsia were screened for other diseases and then offered blind triple *H. pylori* eradication therapy.

Methods: Participants underwent clinical evaluation and completion of a structured questionnaire eliciting sociodemographic, smoking and drinking habits and drug history. Stored sera were tested for liver transaminases, total protein, albumin, creatinine, urea, Hepatitis B surface antigen, Hepatitis C virus antibody and *H. pylori* IgG antibody by ELISA at the end of recruitment, while stool microscopy, occult blood test and abdominal ultrasound scan were done before upper gastrointestinal endoscopy, where antral biopsy specimens obtained were processed for *H. pylori* identification and histological assessment. Patients received oral amoxicillin 1g and clarithromycin 500mg twice daily or metronidazole 400mg three times daily (in place of clarithromycin) and omeprazole 20mg twice daily for fourteen days and came for follow-up at two and four weeks for assessment of treatment response. Data were entered into a computer and analysed using SPSS Version 16. Descriptive statistics, Chi-square test with Yates correction, t-test, ANOVA and the Cochran-Mantel Haenszel test to compare proportions of treatment success were used. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were determined. P values < 0.05 were considered significant.

Results: All patients (125) completed the study, 76 (60.8%) were females and the mean age of subjects was 35.3 ± 12.70 years (range 18 – 84); 74.4% of respondents were < 42 years of age and 90% < 55 years. *H. pylori* were detected by histology in 100 (80.0%) patients, 99 of whom were among the 117 (93.6%) positive by serology (Sensitivity 99%, PPV 84.6%, efficiency 84.9%). Endoscopy was normal in 5% of patients and gastritis 39.5%, oesophagitis 27.7%, and duodenitis 22.7%. The relationship between chronic gastritis inflammatory activity and *H. pylori* infection status was highly significant. Chi square X² = 24.33 p= 0.000001; Yates correction X² = 20.04 p=0.000008. Symptom improvement was highly significant at both 2 and 4 weeks from baseline and between the two visits. (p=.000). Cochran-Mantel Haenszel test to compare proportions of treatment success by *H. pylori* status was highly significant (Q=112.067 p=.000)

Conclusion: On a short term basis, blind empirical *H. pylori* eradication therapy is effective in the management of dyspeptic patients in a high prevalence area and can obviate the need for testing before treatment. Serology concurred very well with histology as a method of infection identification.

Key Words: Dyspepsia, *Helicobacter pylori*, High prevalence, Empirical treatment, Outcome

INTRODUCTION

Dyspepsia is a common and often bothersome symptom complex related to the upper gastrointestinal tract and has an extensive differential diagnosis including gastroduodenal, oesophageal and biliary disorders among others. At presentation, patient symptoms tend to be multiple and do not reliably predict underlying causes or endoscopic findings.
Pooled data from 99 studies put the global prevalence in the community at 20.8% with North European and American studies at 22% and Africa and South America, 35.7% and 37.7% respectively. In Nigeria, a prevalence of 26% in a community-based study in northeastern and 45% in the middle belt regions were noted over the same period. Chronic or recurrent dyspeptic symptoms have been reported in 20-30% of people in Britain and the incidence of the first time symptoms at 1% annually in the community. The wide variation in prevalence persists even when same diagnostic criteria are used. Dyspepsia increases with age and is commoner in smokers, NSAID users and in females.

In the past, the need to identify the underlying cause of dyspepsia led to wide spread use of endoscopy where in the United Kingdom for instance, more than 1% of the population underwent gastroscopy each year. However, despite its high degree of diagnostic accuracy, qualitative systematic review does not support its effectiveness in managing dyspeptics, thus making generalized usage unrealistic.

With the identification of Helicobacter pylori (H. pylori) as the most important aetiological agent of chronic active gastritis and peptic ulcer disease, and epidemiological causal relationship to gastric cancer and classification as a group 1 carcinogen a lot of progress has been made in detecting this organism in non-invasive ways in place of endoscopy in patients with upper gastrointestinal symptoms with the assurance that the subgroup with underlying ulcer disease could be cured and the risk of developing actual ulcer disease gastric cancer and lymphoma removed in non-ulcer dyspepsia.

H. pylori as the most common chronic bacterial infection in humans affects 4.4 billion people worldwide according to pooled data from 62 countries. In Northern Europe and America, approximately one third of the population is affected but prevalence varies amongst ethnic groups, while more than 50% are infected in Eastern Europe, South America and Asia, and in Africa, 70.1%.

Reported pooled prevalence of 87.7% is highest in Nigeria where rates in north are 58%, 69% and 91% in children <1 year, 7-10 years and 10-19 years respectively. Among dyspeptics in Nigeria, H. pylori seroprevalence of 94.5% was reported in the western region 81.5% on histology in the northwest and 91% by rapid urease test in the north central zone.

Since the recognition of H. pylori as an infectious disease in the 1980s and the demonstration of reliable non-invasive methods of detection, the test-and-treat method employing therapeutic strategies such as the triple therapy or Bazzoli triple therapy in environments where high susceptibility to metronidazole and clarithromycin or high eradication rates still exist, and the non-bismuth (concomitant) or traditional bismuth based quadruple therapy for 14 days has been fully established as the standard methods of eradication. As about 20% of those with H. pylori infection will experience an H. pylori-related clinical disease this strategy can reduce the numerous cases of non-ulcer dyspepsia and peptic ulcer related admissions and more than 100,000 surgical procedures each year and also mitigate the risk of MALT, and gastric cancer which annually causes over 738,000 deaths worldwide.

While the 2010 Maastricht Consensus Conference advocated the test and treat strategy for uninvestigated dyspepsia in populations with H. pylori prevalence greater than 20% the implementation of such recommendations can be daunting in resource constrained settings. To keep our costs down, we set out to explore the symptomatic outcome of blind H. pylori eradication therapy in our dyspeptic patients whose status of infection were yet unknown.

Study design

This was a cross sectional study carried out at the Gastroenterology Unit of the Department of Medicine, University of Maiduguri Teaching Hospital (UMTH) where 125 consecutive patients aged 18 to 84 years with symptoms of dyspepsia regardless of presence of alarm symptoms were enrolled after clinical evaluation and completion of a structured questionnaire eliciting sociodemographic, smoking and drinking habits and drug history. Subjects with chronic illnesses, or on antibiotics, non-steroidal anti–inflammatory agents (NSAIDs), steroids, bismuth, and proton pump inhibitors in the preceding one month were excluded.

Ethical clearance was obtained from the UMTH Ethical Committee and informed consent from participants. Stool microscopy, occult blood test and abdominal ultrasound scan to exclude diseases mimicking dyspepsia were done before they underwent upper gastrointestinal endoscopy according to standard procedures. Antral biopsy specimens were processed for H. pylori identification and histological assessment for severity of gastritis in accordance with the updated Sydney classification.

The sera from patients were tested for liver transaminases, total protein, albumin, creatinine and urea and remained frozen at minus 20°C until analysis was carried out for H. pylori IgG antibody (Immunolisa Tm Quantitative Orgenics, Israel), Hepatitis B surface antigen (Antec Diagnostics, United Kingdom) and Hepatitis C virus antibody (rapid chromatographic immunoassay for qualitative antibody detection).

After endoscopy all the patients received oral H. pylori eradication therapy consisting of amoxicillin 1g and clarithromycin 500mg twice daily, or metronidazole 400mg three times daily (in place of clarithromycin) and omeprazole.
20mg twice daily for two weeks. None of the investigators or the patients had prior knowledge of \textit{H. pylori} status at the time of treatment initiation. The participants were asked to come for follow-up at two and four weeks, at which visited patients were asked about the dyspeptic symptoms, while epigastric tenderness was elicited; “worse,” “same,” “improved”, and “much improved” (Likert-type scale) were used as measures of response to treatment. Other outcome measures included the presence of \textit{H. pylori} antibody and bacteria on antral biopsy.

The data obtained were entered in to a computer and analysed using SPSS Version 16 Windows (SPSS Inc., Chicago, IL, USA). Descriptive statistics and where appropriate, additional analyses with Chi-square with Yates correction, t-test, ANOVA and the Cochran-Mantel Haenszel test to compare proportions of treatment success and by \textit{H. pylori} status were used. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were determined. P values < 0.05 were considered significant.

RESULTS

All patients (125) completed the study, 76 (60.8%) were females and the mean age of subjects was 35.3 ± 12.7 years (range 18 – 84); 74.4% of respondents were < 42 years of age and 90% < 55 years.

As previously reported, \textit{H. pylori} was detected by histology in 100 (80.0%) patients, 99 of whom were among the 117 (93.6%) positive by serology.

Measures of validity for the serology test using histology as gold standard returned sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) efficiency of 99%, 28%, 84.6%, 88.9% and 84.9% respectively.

Patient symptoms by \textit{H. pylori} status is shown in Table 1. While chest pain, eructation, haematemesis and melaena were seen only in seropositives and none in those without infection, the differences were not statistically significant.

Antral gastritis was the commonest finding on endoscopy and no case of peptic ulcer was visualised during the period of study. (Table 2)

Table 2: Showing results of endoscopic findings

Endoscopic findings	Number	Percentage
Oesophagitis	35	27.7%
Gastritis	50	39.5%
Duodenitis	28	22.7%
Bile Reflux	5	4.2%
Hiatus hernia	1	0.8%
Normal	6	5.0%
Total	**125**	**100%**

The relationship between the degree of inflammatory activity in chronic gastritis and \textit{H. pylori} infection status among our patients, was highly significant (p= .000). (Table 3)

Table 3: Relationship of Histological activity (Gastritis) and \textit{H. pylori} serology status

Antral Histology	\textit{H. pylori} status by Serology N (%)	Total N (%)	p-value	
Normal	0 (0)	8 (6.4)	8 (6.4)	
Mild	25 (20)	10 (8)	35 (28)	0.000001*
Moderate	54 (43.2)	6 (4.8)	60 (48)	0.000001*
Severe	21 (16.8)	1 (0.8)	22 (17.6)	
Total	**100 (80)**	**25 (20)**	**125 (100)**	

* Chi square $X^2 = 24.33$ p= 0.000001; Yates correction $X^2 = 20.04$ p=0.000008

Abnormalities on stool microscopy were noted in17 (13.6%) of the patients and consisted of undigested food particles, starch or oil droplets in 14 patients and \textit{Entamoeba histolytica} infection in 3, all in the seropositive group.

Occult blood test was positive in only 7 (5.6%) of the participants, but 50% of the 14 with history of malaena.

On abdominal ultrasound scanning, two patients in the infected group had abnormal gall bladder reports. One was enlarged with thickened wall and sludge, and the other, had stones.

Screening for HBsAg was positive in 15 (12%) while 8 (6.4%) had hepatitis C antibody detected and 2 (1.6%) dual infections, all in the \textit{H. pylori} infected patients, but this did not attain statistical significance. One of the patients had hypoalbuminemia, but had no evidence of decompensated liver disease.

The clinical response to treatment which were significant at both 2 and 4 weeks follow up and statistical analysis are depicted below in Table 4 and Table 5.

Table 1: Distribution of symptoms in study subjects by \textit{H. pylori} serology

Symptoms	\textit{H. pylori} positive (n = 117)	\textit{H. pylori} negative (n = 8)	P-value
Chest pain	15	-	0.35*
Epigastric pain	17	8	-
Water brash	23	2	0.50*
Halitosis	15	2	0.26*
Nausea	16	1	0.70*
Eructation	3	-	0.82*
Haematemesis	6	-	0.67*
Melaena	14	-	0.37*

*Not significant
DISCUSSION

This study returned the same serological and histological infection rates (94% and 84% respectively) reported 15 years earlier in the same environment indicating possibly that the socioeconomic status of the inhabitants of the region characterized by low educational attainment, large number of inhabitants in a house and unemployment among other things may not have changed, thus supporting an Australian report asserting that troublesome gastrointestinal symptoms are linked to socioeconomic status, with more being reported by subjects in low socioeconomic class.31

The highest concentration of seropositives was seen among 28 to 42 years old (50%) and the lowest in the elderly (3.2%). Furthermore, 80% of the subjects were under 45 years, the age where organic disease in the gastrointestinal tract is said to be rare.32 Compared to the western world our patients were younger with 90% of the studied population under the sixth decade of life.

While this supports the finding that *H. pylori* is common in the third to fourth decades of life21,28 there was no statistically significant difference between the two groups, (p > 0.05). This differential age prevalence in our cohort supports the suggestion that serology can be used for screening young dyspeptics, as inaccurate test results are said to be more common in the elderly.33

Epigastric pain and tenderness as previously documented in the same community as the commonest clinical features in the index population is in consonance with a report from Zaria unlike nocturnal pain in Kano subjects.18 Patients who were *H. pylori* positive had more symptoms than those without, but this did not achieve statistical significance. While data from multicenter studies have suggested that age should be discountenanced in favour of alarm symptoms due to its poor predictability of underlying pathology36 neither age nor alarm symptoms were predictive of underlying pathology in this study group which further supports the NICE recommendation that all dyspeptic patients without alarm symptoms irrespective of age should initially be managed without endoscopy.37

As previously documented in this population, antral gastritis (37.6%) remains the most frequent finding as against gastritis with duodenitis in some series.17,35 We found no endoscopic abnormalities in 5% of patients who belonged to the *H. pylori* negative group, which agrees with the 6% from Ife.39 Our findings support the report that

Table 4: Clinical response to triple therapy *H. pylori* eradication at 2 and 4 weeks

Response to Triple therapy	*H. pylori* seropositive (P) 2 weeks (%)	*H. pylori* seropositive (P) 4 weeks (%)	*H. pylori* seronegative (N) 2 weeks (%)	*H. pylori* seronegative (N) 4 weeks (%)	All Patients (P+N) 2 weeks (%)	All Patients (P+N) 4 weeks (%)
Much improved	6 (5.1)	104 (88.9)	6 (75.0)	0	12 (9.6)	104 (83.2)
Improved	111 (94.8)	13 (11.1)	2 (25.0)	6 (75.0)	113 (90.4)	19 (15.2)
Same	0	0	0	2 (25.0)	0	2 (1.6)
Worse	0	0	0	0	0	0
Total	**117**	**117**	**8**	**8**	**125**	**125**

Table 5: Statistical analysis of patients’ treatment responses at 2 and 4 weeks

Paired Responses	Mean	Standard Deviation	Stand Error Mean	95% Confidence Interval of the Difference	t	df	Significance (2-tailed)
P2Wks - Baseline	1.0513	.2215	.0205	1.0107	1.0918	116	.000*
P4Wks - Baseline	1.8889	.3156	.0202	1.8311	1.9467	116	.000*
P4Wks - P2Wks	.8376	.3704	.0342	.7698	1.9054	116	.003*
N2Wks - Baseline	1.7500	.46291	.16366	1.36300	2.13700	116	.000*
N4Wks - Baseline	.7500	.46291	.16366	.36300	1.13700	7	.003*
A2Wks - Baseline	1.0960	.29578	.02646	1.04364	1.14836	124	.000*
A4Wks - Baseline	1.8160	.42850	.03833	1.74014	1.89186	124	.000*
A4Wks - A2Wks	.7200	.57642	.05156	.61796	.82204	124	.000*

P – Seropositive N – Seronegative A - All evaluable patients (P+N)
2Wks – 2 weeks 4Wks – 4 weeks Significant
Reliability Statistics - Cochran-Mantel Haenszel test to compare proportions of treatment success and by H. pylori status:
Q=112.067 P=.000
systematic review of models using risk factors, history, and symptoms did not reliably distinguish between functional dyspepsia and organic disease or severity of gastritis as all our cases could be categorized as non-ulcer dyspepsia, unlike a study in northwestern Nigeria which reported equal rates of non-ulcer dyspepsia and peptic ulcer disease (34.5% and 35% respectively), distantly followed by gastritis (9.9%).

As previously highlighted as the African enigma, peptic ulceration is still lower in this population compared to the rate of H. pylori infection. This is attributed to the strains of H. pylori and the lower basal acid and maximum acid outputs in asymptomatic African controls compared to westerners, possibly due to the less pathogenic effect of H. pylori infection acquired in childhood than in adulthood as suggested by Graham.

Histology to a significant extent corroborated the validity of serology in detecting H. pylori in our patients not minding the possibility that prior antibiotic treatment or inadequate biopsies could have reduced the detection rate.

The degree of histological activity was more in those positive by either serology or histology or both attaining high statistical significance (p < 0.000001), thus comparable with studies utilizing 13C levels where the degree of histological gastritis corresponded to the number of H. pylori organisms.

Giardiasis which can be chronic and may not produce diarrhoea, and responds to metronidazole has been suggested as an important differential in dyspepsia in Scottish children was not detected in any of our patients.

Abdominal ultrasound scan is still important in evaluating dyspepsia as demonstrated in two patients positive for H. pylori, yet had gallbladder disease.

The reported presence of both HBV (13%) and HCV (6.8%) and dual (1.6%) infections occurring exclusively in the H. pylori serology positive subjects may just be a reflection of the trend in the population as there was no significant statistical relationship to the status of infection.

All the serologically positive patients at 2 weeks after H. pylori eradication therapy indicated improvement in symptoms with 5.1% showing much improvement. By 4 weeks, an even higher proportion (88.9%) had much improved (p=.000) which is the expected outcome of specific therapy.

Conversely, in the H. pylori negative group, all patients who reported initial improvement at 2 weeks had a decline in outcome at 4 weeks. The 6 subjects (75%) who reported much improvement declined to “improved” and the other 2 (25%) reverted to the “same” (status quo ante). This is the anticipated response when eradication therapy is used in non-H. pylori dyspepsia.

While this inferior response in the uninfected group supports the view that the empirical use of antibiotics without the confirmation of H. pylori is not recommended the overwhelming (98.4%) response in our patients, (83.2% much improved and 15.2% improved) at 4 weeks strongly supports the empirical use of antibiotics; more so, they all received eradication therapy before their infection status were known. Only 2 (1.6%) of 125 patients at 4 weeks that reverted to status quo ante can be assumed to have inappropriately received eradication therapy.

Those who benefitted included patients with oesophagitis and reflux symptoms (gastric and biliary) though the beneficial effect of PPI related acid suppression in this group cannot be ruled out considering the short period of follow up.

If we depended solely on the gold standard test, the relief reported by 23 patients (17 histological and 6 of 8 serological) would have been denied them, thus supporting the suggestion that a response to eradication of H. pylori in 5–10% of all patients with non-ulcer dyspepsia would make screening and treatment for H. pylori a beneficial option, irrespective of any other potential benefits.

Limitations of the study

Our study showed that all our patients could initially be started on eradication therapy and other approaches used if some showed no improvement, however, concerns still remain because of the possibility of delayed diagnosis of gastric cancer, 87 cases of which were reported in our hospital a referral tertiary institution over a 16-year period. Reports from other parts of Nigeria also indicate that gastric malignancies have been seen in the third and fourth decades in patients though they presented with complicated dyspeptic symptoms some lasting 12 months. Even though endoscopy in all our patients removed intervention bias as may be seen in comparative studies of test-and-treat versus endoscopy and treatment the possibility of patient satisfaction after detailed explanation of the procedure may have positively impacted treatment outcome in the short term.

In light of the reported resistance issues, it must be emphasized that the triple therapy we employed in our patients may no longer be appropriate as the antibiotic stewardship in Nigeria is suboptimal due to the high rate of over-the-counter availability of prescription-only medicines including antibiotics and antibiotic-containing triple therapy ulcer drugs.

The fear of empirical treatment increasing the problem of community-acquired antimicrobial resistance in view of the rather high inappropriate prescription rates in primary care practice in some countries can be minimized if appropriate antibiotic stewardship is embraced.
CONCLUSION

H. pylori must be viewed as an infection which requires specific eradication therapy using appropriate regimen where susceptibility testing is available in dyspepsia management in view of the widespread resistance to clarithromycin and metronidazole reported in several regions of the world. Where it is not as is often the practice among gastroenterologists, empirical therapy must be based on usage of quadruple therapy, local bacterial resistance patterns and recommendations, and drug availability.

While it has been advocated that even in high prevalence areas there should be testing before treatment for *H. pylori*, our study has conclusively shown that in high prevalence resource limited areas, blind *H. pylori* eradication is effective and feasible and can obviate the need for specific methods of *H. pylori* detection and endoscopy in most of our patients. Therefore, the suggested cost-effective approach to dyspepsia management in our population is: treat to eradicate, and if no improvement; give empirical PPIs, and lastly administer endoscopy as appropriate. We recognize however, that the management of dyspepsia should vary in different countries depending on the incidence of *H. pylori* infection and gastric cancer rates as cancers are commoner in some regions than others.

Conflict of Interest

The authors have no conflict of interest to declare

Funding

The study was partly funded by the University of Maiduguri Teaching Hospital, Maiduguri as grant for Dr. Aisha S. Adamu’s fellowship dissertation preparation.

- **Northeastern Nigeria remains a high prevalence area for *H. pylori* infection**
- **Serology concurred very well with histology as a method of infection identification.**
- **Blind *H. pylori* eradication therapy was effective in the management of dyspeptic patients**
- **The need for testing before treatment can be obviated in most of our patients**

Glossary of Abbreviations

ANOVA – Analysis of variance

HBV – Hepatitis B virus

HCV – Hepatitis C virus

IgG – Immunoglobulin G

MALT – Mucosa associated lymphoid tissue

NICE – National Institute for Health and Care Excellence

NPV – Negative predictive value

PPV – Positive predictive value

REFERENCES

1. Ford AC, Marwaha A, Sood R, Moayyedi P. Global prevalence of, and risk factors for uninvestigated dyspepsia: a meta-analysis. Gut 2015; 64(7): 1049–1057.

2. Holcombe C, Omotara BA, Padonu MK et al. The prevalence of symptoms of dyspepsia in Nigeria. A random community based study. Trop Geogr Med 1991; 43; 209-214.

3. Ihezue CH, Oluwole FS, Onuminya JE et al. Dyspepsia among the highlanders of Nigeria; an epidemiological survey. Afr J Med Sci 1996; 25: 23–29.

4. Talley NJ, Zinsmeister AR, Schleck CD et al. Dyspepsia and dyspepsia subgroups: a population-based study. Gastroenterology 1992; 102(4 Pt 1): 1259–1268.

5. Agreus L, Svarsudd K, Nyren O et al. Irritable bowel syndrome and dyspepsia in the general population: overlap and lack of stability over time. Gastroenterology 1995; 109: 671–680.

6. Talley NJ, Weaver AL, Zinsmeister AR et al. Onset and disappearance of gastrointestinal symptoms and functional gastrointestinal disorders. Am J Epidemiol 1992; 136: 165–177.

7. Ryder SD, O’Reilly S, Miller RJ et al Long term acid suppressing treatment in general practice. BMJ1994; 308:827–830.

8. Otm J, Rabeneck L. The effectiveness of endoscopy in the management of dyspepsia: a qualitative systematic review. Am J Med1999; 106:335–346.

9. Graham DY. Evolution of concepts regarding *H. pylori* from a cause of gastritis to a public health problem [Editorial] Am J Gastroenterol, 1994, 89: 469-472.

10. McColl KEL, Murray L, El-Omar E et al. Symptomatic benefit from eradicating Helicobacter pylori infection in patients with non-ulcer dyspepsia. N Engl J Med1998; 339:1869–1874.

11. Gilvarry J, Buckley MMJ, Beattie S et al. Eradication of Helicobacter pylori affects symptoms in non-ulcer dyspepsia. Scand J Gastroenterol1997; 32:535–540.

12. Forman D, Newell DG, Fullerton F et al. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ1991; 302:1302–1305.

13. Pounder RE, Ng D. The prevalence of *H. pylori* infection in different countries. Aliment Pharmacol Ther 1995; 33-37.

14. Hooi JKY, Lai WY, Ng WK, Suen MYM, Underwood FE, Tanyingoh D et al. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 2017; 153(2): 420-429.

15. Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter 2014 Sep; Suppl 1:1-5.

16. Holcombe C. Prevalence of antibody to *H. pylori* in children in northern Nigeria. Trans R Soc Trop. Med. Hyg 1993; 87: 79 – 80.

17. Otegbola SA, Oluwasola OA, Yakubu A, et al. *H. pylori* serology and evaluation of Gastroduodenal disease in Nigerians with dyspepsia. African J of Clin and Exp Microbiology. 2004; 5 (1):131-138.

18. Tijani BM, Borodo MM, Samaila AA. Upper gastrointestinal endoscopic findings in dyspeptic patients at Kano, Nigeria. Nig. J of Basic and Clinical Sci 2005; (2): 1-2.

19. Ismaila AA. Epidemiology of non – ulcer dyspepsia among patients with dyspepsia at the Jos University Teaching Hospital in a dissertation submitted to the West African College of Physicians 2002.
20. Graham DY, Klein PD, Evans DJ. Campylobacter pylori detected non-invasively by the 13C urea breathe test. Lancet 1987; 1: 1174—1177.

21. Heaney A, Collins J S A, Watson R G P et al. A prospective randomised trial of a “test and treat” policy versus endoscopy based management in young Helicobacter pylori positive patients with ulcer-like dyspepsia, referred to a hospital clinic. Gut 1999; 45: 186–190.

22. Bazzoli F, Zagari RH, Foss I. Short term low dose triple therapy for the eradication of H. pylori. Eur J. Gastroenterol Hepatology 1994; 6: 733–777.

23. D. Y. Graham, “History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer,” World Journal of Gastroenterology 2014; (2018):5191–5204.

24. Grossman MI. Closing remarks. Gastroenterology 1978; 74:487–488.

25. IARC Helicobacter pylori Working Group. Volume 8. Helicobacter pylori eradication as a strategy for preventing gastric cancer. Lyon, France: International Agency for Research on Cancer, 2014.

26. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127:2893–2917.

27. Malferttheiner P, Megraud F, O’Morain CA et al. Management of Helicobacter pylori infection: The Maastricht IV/Florence Consensus Report. Gut 2012; 61: 646–664.

28. Olokoba AB, Gasah W, Bwala A, Adamu A, Salawu FK. Helicobacter pylori infection in Nigerians with Dyspepsia. Ghana Med J 2013; 47 (2): 79–81.

29. Dixon MF, Genta RM, Yardley JH, Gorrea P. Classification and grading of gastritis. The updated Sydney System. Am J Surg Pathol 1996; 20:1161-1181.

30. Holcombe C, Umar H, Lucas SB, Kaluha J. Low incidence of clinically significant gastroduodenal pathology despite a high incidence of H. Pylori infection. Trans R Soc Trop Med Hyg. 1994; 88(5): 569-571.

31. Bytzer P, Howell S, Lemon M et al. Low socioeconomic class is a risk factor for upper and lower gastrointestinal symptoms: A population based study in 15,000 Australian adults. Gut 2001; 49: 66-72. doi:10.1136/gut.49.1.66.

32. Current European concept in the management of H. pylori. The Maastricht consensus report. Gut 1997; 41:8-13.

33. Sobala GM, Crabtree JE, Pentith JA, et al. Screening dyspepsia by serology to H pylori. Lancet 1991; 338: 94–96.

34. Holcombe C, Kaluha J, Lucas SB. Non-ulcer dyspepsia in Nigeria: A case control study. Trans R Soc Trop Med Hyg 1991; 4:553-555.

35. Danbouche SS, Keshinro IB, Abdu-Gusau K. Afr J Med MedSci1999; 28(1-2):87-90.

36. Wallace MB, Durkalski VL, Vaughan J et al. Age and alarm symptoms do not predict endoscopic findings among patients with dyspepsia: a multicentre database study. Gut 2001; 49: 29–34.

37. Dyspepsia: Managing dyspepsia in adults in primary care. NICE Guideline. Available at: www.nice.org.uk/guidance/cg17/documents/dyspepsia-second-consultation-nice-guideline2

38. Holcombe C. H pylori; the African enigma. Gut 1992; 33: 429-431.

39. Agbakwuru EA, Fatusi AO, Ndububa DA, et al. Pattern and validity of clinical diagnosis of upper gastrointestinal diseases in southwest Nigeria. African Health Sciences 2006; 6: 98-103.

40. Moayyedi P, Talley NJ, Fennerty MB, Vakil N. Can the clinical history distinguish between organic and functional dyspepsia? JAMA 2006; 295(13): 1566-1576.

41. Dooley CP, Cohen H. The clinical significance of H. pylori. Ann Intern Med 1998; 108:70-790.

42. Crabtree JE, Taylor DD, Nyah JL. Mucosal IgA recognition of H pylori 12 kilodalton proteins in Peptic ulceration and gastric pathology. Lancet 1991; 338: 332-335.

43. DaRocha-Afodu JT, Adesola AO. Gastric acid secretion studies in Nigerians using pentagastrin stimulation. Niger Med J 1973; 3(1):19-24.

44. Graham DY, Rakel RE, Fendrick AM, et al. Scope and consequence of peptic ulcer disease: how important is asymptomatic H. pylori infection. Postgrad Med J 1999; 105:106-119.

45. Brown KE, Peura DA, Diagnosis of H. pylori infection. Gastroenterol Clin North Am 1993; 22: 105 – 115.

46. Goel KM, Shanks RA, McAllister TA, Follett EA. Prevalence of intestinal parasitic infection, salmonellosis, brucellosis, tuberculosis, and hepatitis B among immigrant children in Glasgow. Br Med J 1977; 1:676-9.

47. Letters www.annals.org. Annals of Internal Medicine 2 April 2002; 136 (7): 555.

48. Gasah W, Mohammed I. Hepatitis B viral markers in Nigerian patients with primary liver carcinoma. Tropical and Geographical Medicine 1991; 43 (1-2): 64-67.

49. Mohammed MD, Gasah W, Yusuph H, Alkali MD. The Role of Traditional Skin piercing practices in the Transmission of Hepatitis C virus in Northeastern Nigeria. Borno Med J. 2004; 1: 7 – 9.

50. Zar S, Mendall MA. Clinical practice—strategies for management of dyspepsia. Br Med Bull 1998; 54: 217–228.

51. Sonnenberg A. Cost-benefit analysis of testing for Helicobacter pylori in dyspeptic subjects. Am J Gastroenterol 1996; 91: 1773-1777.

52. Bakari AA, Ibrahim AG, Gali BM et al. Pattern of gastric cancer in north-eastern Nigeria: A clinicopathologic study. J Chin Clin Med. 2010; 5: 211-5.

53. Olokoba AB, Obateru OA, Bojuwoye MO et al. That dyspepsia in the young could be cancer. Nig. Med J. 2013;54(2):143-145.

54. Moayyedi P. Helicobacter pylori test and treat strategy for young dyspeptic patients: new data. Gut 2002(50 Suppl 4): iv47–iv50

55. Akinyandenu O, Akinyandenu A. Irrational use and non-prescription sale of antibiotics in Nigeria: A need for change. J of Scientific and Innovative Research 2014; 3 (1):19-24.

56. Badger-Emeka LI, Emeka PM, Okosi M. Evaluation of the extent and reasons for increased non-prescription antibiotics use in a University town, Nsukka Nigeria. Intern J of Health Sciences. 2018; 12(4):11-17.

57. Megraud F, Coenen S, Versporten A et al. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 2012; 62:34–42.

58. Gonzales R, Steiner JF, Sande MA. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 1997; 278: 901–904.