The Identification of Perillyl Alcohol Glycosides with Improved Antiproliferative Activity

Nitin S. Nandurkar,† Jianjun Zhang,† Qing Ye,‡ Larissa V. Ponomareva,† Qing-Bai She,‡ and Jon S. Thorson*†

†Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
‡Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536-0596, United States

Supporting Information

ABSTRACT: A facile route to perillyl alcohol (POH) differential glycosylation and the corresponding synthesis of a set of 34 POH glycosides is reported. Subsequent in vitro studies revealed a sugar dependent antiproliferative activity and the inhibition of S6 ribosomal protein phosphorylation as a putative mechanism of representative POH glycosides. The most active glycoside from this cumulative study (4′-azido-D-glucoside, PG9) represents one of the most cytotoxic POH analogues reported to date.

INTRODUCTION

(S)-Perillyl alcohol (POH, also known as p-metha-1,8-diene-7-ol or 4-isopropenyl cyclohexene carbinol) is a monoterpene produced by a number of plants, including cherries, lavendin, mints, and celery seeds via oxidative modification of D-limonene.1,2 Interest in POH as a potential anticancer agent stems from its ability to cause G1 cancer cell cycle arrest via the putative inhibition of post-translational modification of signal transduction proteins involved in the Ras/MAPK pathway.3 While the fundamental mechanism(s) and/or target(s) of POH remain unclear, POH has been implicated in a range of functions including inhibition of small G protein isoprenylation and induction of proto-oncogenes,4 inhibition of Na/K-ATPase,5 disruption of hTERT–mTOR–RAPTOR protein complex,6 suppression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase synthesis in mammalian cells,7 as well as inhibition of 4E-BP1(Ser65) phosphorylation and cap-dependent translation.8 POH was initially evaluated in phase I and phase II clinical trials for the treatment of a range of cancers (breast, colon, ovarian, and prostate).9−16 While these studies revealed POH to be well tolerated at high doses, tumor responses were low. However, more recent clinical studies focused upon intranasal delivery of POH to treat recurrent malignant glioblastoma led to notable tumor regression with high doses of POH.17−19 This promising precedent suggests that POH analogues with improved potency and/or drug properties may serve to reinvigorate the clinical utility of this unique plant metabolite and also potentially offer new probes for further mechanistic interrogation.

The glycosylation of small-molecule-based or natural product-based leads/drugs can often dramatically influence pharmacological properties and ADMET.20 In the context of POH, a small set of naturally occurring POH glycosides (Figure 1; 1a, 2a, 9a, 10a) isolated from Perilla frutescens leaves was first reported as aldose reductase inhibitors.21−24 A few additional POH glycosides were generated via conventional or enzymatic synthesis,21,25−27 (Figure 1; 3a−8a, 11a) and, cumulatively, these studies revealed certain POH glucosides (Figure 1; 1a, 3a) as equipotent to POH against select cancer cell lines in vitro. Yet, studies designed to systematically assess and/or exploit the impact of POH glycosylation are lacking. Neo-glycorandomization, a divergent chemoselective glycosylation method, is advantageous in this regard as it offers a rapid strategy for differential glycosylation of a selected scaffold.28 Herein we report the synthesis and in vitro anticancer activity of a set of 34 distinct POH neoglycosides, several of which displayed improved in vitro anticancer activity over the parent natural product. The best among these (4′-azido-d-glucoside PG9) displayed a striking enhancement in
potency (>85-fold against A549 nonsmall cell lung; 15-fold against PC3 prostate) over POH and represents the most active perillyl glycoside reported to date. In contrast to previous reports, the subsequent study of the improved POH glycosides upon 4E-BP1 phosphorylation in A549 cells suggests the antiproliferative inhibition of cap-dependent translation by targeted first time, the neoglycosides with Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition.

RESULTS AND DISCUSSION

Perillyl neoglycan 3 was synthesized in three simple steps (Scheme 1). Specifically, POH was oxidized to (S)-perilaldehyde (1) using 9-iodoxybenzoic acid (IBX) and acetic acid. Subsequent reductive amination proceeded via formation of oxime 2 with methoxyamine hydrochloride in the presence of triethylamine, followed by reduction with NaCNBH3 in the presence of acetic acid to provide the oxime 3. Optimization of 3 neoglycosylation with D-glucose using a range of general neoglycosylation conditions revealed MeOH:HOAc (5:1) as most effective, providing the corresponding d-glucose PG1 in 69% isolated yield and, consistent with prior studies, the β-anomer exclusively. The scope of sugars selected for this study included representative pentoses (α-L-arabinose, PG3/PG28; l-ribose, PG17; d-xylose, PG22), hexoses (β-L-glucose, PG1/PG6; 3-O-methyl-d-glucose, PG4; l-rhamnose, PG32), azidosugars (6-deoxy-6-azido-d-glucose, PG2; 3-deoxy-3-azido-d-glucose, PG8; 4-deoxy-4-azido-d-glucose, PG9; 2-deoxy-2-azido-d-glucose, PG13; 4,6-deoxy-4,6-diazido-d-glucose, PG20, 4-deoxy-4-azido-l-glucose, PG24; 4-deoxy-4-azido-D-xylose, PG34), fluorosugars (3-deoxy-3-fluoro-D-glucose, PG18; 4-deoxy-4-fluoro-D-glucose, PG21; 2-deoxy-2-fluoro-D-glucose, PG29; 2-deoxy-2-fluoro-D-mannose, PG30) N-acyl sugars (N-acetyl-d-galactosamine, PG5; N-acetylmuramic acid, PG12; streptozocin, PG16; 3-N-decanoyl-D-glucosamine, PG23; 6-N-decanoyl-D-glucosamine, PG26; 3-N-allyloxycarbonyl-D-glucosamine, PG27; 2-N-allyloxycarbonyl-D-glucosamine, PG31; 6-N-allyloxycarbonyl-D-glucosamine, PG33), an acid-bearing sugar (d-glucuronic acid, PG28), and a disaccharide (d-cellbiose, PG14) with a bias toward glucosides and acyl glucosides based upon the previously reported active glycosides (1a and 3a). The inclusion of azidosugars served as a starting point for subsequent divergence via chemoselective modification [via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition] or selective reduction to afford the corresponding aminosugar conjugates (Scheme 2). A library of 34 distinct neoglycosides (PG1–PG34) were synthesized (Figure S1 and Table S1 in Supporting Information) in good to excellent yields (23–82%), with the β-anomer as predominate product in most cases, consistent with previous studies. For aminosugar conjugates, azidosugar glycosides (PG2, PG8, PG9, PG13) were readily reduced to their corresponding aminosugar counterparts (PG7, PG10, PG11, PG19) in the presence of PMe3 (1.0 M in THF), with yields ranging from 29 to 46%. To assess the compatibility of neoglycosides with Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition and the potential impact of sugar triazole substitution upon POH bioactivity, the 6′-azido perillyl glucoside was also converted to the corresponding 6′-triazole perillyl glucoside PG15 via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition in 82% yield (Scheme 2).

The anticancer properties of POH, 1, 2, 3, and PG1–PG34 against two human cancer cell lines (nonsmall-cell lung A549 and prostate PC3) was first assessed via percent inhibition of cell viability at a single dose of 250 μM (Figure 3). Compounds which displayed >40% inhibition in one or both cell lines exclusively.
(oxime 2, PG2, PG9, PG13, PG16, PG20, PG22, PG23, PG24, PG26, PG31, PG33, PG34) from the single dose analysis were subsequently subjected to a full dose study for IC50 determination along with the parental POH (Figure 2, 4).

This broad analysis revealed the following key observational trends. First, substitutions of key sugar hydroxyls with an azide present the greatest improvements. For example, while D-glucoside PG1 was relatively inactive (>500 μM in both cell lines), C6′ (PG2: 163 μM, A549; 182 μM, PC3), C4′ (PG9: 4 μM, A549; 22 μM, PC3), or C2′ (PG13: 221 μM, A549; 176 μM, PC3) azido substitution afforded moderate to dramatic improvements in potency over the parent natural product (POH: 350 μM, A549; 380 μM, PC3). From this series, the C4′-azidosugar variant PG9 stands out as the best analogue, with >15-fold improved potency against PC3 and >85-fold increased potency against A549 in vitro, highlighting regiospecificity as an important contributor. Second, the benefits from sugar azido substitution are not additive, as evidenced by a comparison of PG2 (C6′-azido) and PG9 (C4′-azido) to the C4′,C6′-diazido analogue PG20. Third, while the facile synthesis of the C6′-triazole-substituted analogue PG15 highlights the compatibility of neoglycosides with Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition chemistry, C6′-triazole substitution is detrimental to activity based upon the comparative activities of PG2 (C6′-azido) and PG15. Fourth, sugar N-acylation also generally improved activity as both the 3′-N-decanoyl and 6′-N-decanoyl aminoglucosides (PG23 and PG26, respectively) displayed relatively similar improvements in potency over POH (12–20-fold, PC3; 20–25-fold, A549) with shorter C2′, C3′ and C6′-N-acyl substitutions (e.g., PG16, PG27, PG31, PG33) generally being less favorable. Fifth, while the D-glucoside PG1 displayed activity similar to the parent POH (in a manner reminiscent to the prior work with 1a), removal of the C6′-CH2OH (PG22) in this context led to slight improvements and, consistent with PG9, the addition of a 4′-azido-substitution (PG34: 76 μM, A549; 170 μM, PC3) led to further improvements in potency. Finally, on the basis of the comparative activities of PG9 and PG24, the D-enantiomer offered the greatest enhancement.

While a number of putative anticancer mechanisms for POH have been put forth, one reported effect centers around cap-
dependent translation in tumor cell lines. Specifically, Peffley and co-workers reported POH at 400 μM to suppress 4E-BP1 (Ser65/Thr37) phosphorylation and to disrupt interactions between critical components of the capped mRNA-binding complex (eIF4E and eIF4G). Thus, the effect of POH and representative glycosides PG20 and PG23 on 4E-BP1 phosphorylation was assessed using the cell line in which the most dramatic antiproliferative improvements were observed (AS49). As illustrated in Figure 5, in AS49 cells POH had no
decline in p-4E-BP1 Thank you for your question.
27.7, 27.7, 20.9. HRMS-ESI (m/z): calculated for C_{11}H_{20}NO (MH+) 182.1539, found 180.1542.

General Neoglycosylation Procedure (PG1–PG6, PG8, PG9, PG12–PG14, PG16–PG18, PG20–PG34). Neoglycon (3) was dissolved in MeOH/AcOH (5:1) in 1 dram vials along with stir bars at a final concentration of 300–350 mM. Reducing sugar (2 equiv) was added and the vial capped, and the reaction was stirred at 40 °C for 24–48 h. Reaction progress was monitored by TLC. Upon completion, solvent was removed in vacuo to afford the crude product, which was purified by normal-phase flash chromatography using CHCl3/MeOH as eluent. The perillyl neoglycosides were obtained with an isolated yield ranging from 23% to 77% from perillyl neoglycon 3 (Supporting Information, Table S1). Anomeric ratios were obtained by comparison of anomeric proton integration (Supporting Information, Table S1).

Cancer Cell Line Cytotoxicity Assay. Human cancer cell line (lung adenocarcinoma A549 and prostate cancer PC3) viability was determined using the alamar blue (or resazurine reduction) assay as previously described.33,56–58 Briefly, cells were seeded in F-12 medium (Kingh’s Modification of Ham’s F-12 medium, Invitrogen), supplemented with 10% FBS, 2 mM l-glutamine, 100 μg/mL penicillin, and 100 μg/mL streptomycin onto flat-bottomed 96-well tissue culture plates (Corning, NY, USA) at a density of 3 × 103 cells/well and allowed to adhere overnight. After removing the medium, 100 μL of fresh medium containing nine 2- or 3-fold dilutions (500 to 75 nM) of each compound were added. All assays were conducted in the presence of both negative (0.5% DMSO vehicle control) and positive (1.5 mM H2O2) controls. The plates were incubated for 48 h under standard conditions, 5% CO2, and 37 °C, in a humidity control incubator. At the end of incubation period, 10 μL of resazurin (0.25 mg/mL in water) was added to each well. Plates were incubated for an additional 6 h under standard culture conditions and shaken for 5–10 s, and fluorescence of resazurin (λex = 600 nm, λem = 590 nm) was recorded as a basis for IC50 determination using a nonlinear interpolation of dose-dependent curves using Prizm. Data presented (Figure 4 and Supporting Information, Table S2) represent mean values (±SD) of triplicate determinations from three independent experiments.

Immunoblot Analysis. A549 cells were treated with 250 and 500 μM of perillyl alcohol (POH), PG20, and PG23 for 6 h. Cells were harvested, lysed, and the corresponding extracts subjected to SDS-PAGE, and analyzed by Western analysis as previously described.9 Each SDS-PAGE sample contained equal amounts of total protein. Commercial primary antibodies for p-4E-BP1 (T37/46), p-4E-BP1 (S65), p-4E-BP1 (T70), p-56 (S235/236), eIF4E, and cleaved PARP (Cell Signaling Technology, Danvers, MA) were employed, and secondary antibodies were detected using chemiluminescence (GE Healthcare Bio-Sciences, Pittsburgh, PA).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare the following competing financial interest(s): The authors report competing interests. JST is a co-founder of Centrose (Madison, WI).

ACKNOWLEDGMENTS

This work was supported by NIH R37 AI52218 (JST) and the National Center for Advancing Translational Sciences (UL1TR000117).

ABBREVIATIONS USED

POH, (S)-perillyl alcohol; TLC, thin layer chromatography; IC50, concentration of agent that inhibits cell viability by 50%

REFERENCES

(1) Kelloff, G. J.; Boone, C. W.; Crowell, J. A.; Steele, V. E.; Lubit, R. A.; Doody, L. A.; Malone, W. F.; Hawk, E. T.; Sigman, C. C. New agents for cancer chemoprevention. J. Cell. Biochem. 1996, 62S, 1–28.
(2) Simonsen, J. L.; Olsen, L. N. The Terpenes, Vol 1: The Simpler Acyclic and Monocyclic Terpenes and Their Derivatives. Ed.; Cambridge University Press: London, 1947.
(3) Belanger, J. T. Perillyl alcohol: applications in oncology. Altern. Med. Rev. 1998, 3, 448–457.
(4) Satomi, Y.; Miyamoto, S.; Gould, M. N. Induction of AP-1 activity by perillyl alcohol in breast cancer cells. Carcinogenesis 1999, 20, 1957–1961.
(5) Garcia, D. G.; Amorim, L. M. F.; Castro Faria, M. V.; de Freire, A. S.; Santelli, R. E.; Da Fonseca, C. O.; Quirico-Santos, T.; Burth, P. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol. Cell. Biochem. 2010, 345, 29–34.
(6) Sundin, T.; Pfeffly, D. M.; Hentosh, P. Disruption of an hTERT–mTOR–RAF/encoded by a phytochemical perillyl alcohol and rapamycin. Mol. Cell. Biochem. 2013, 375, 97–104.
(7) Pfeffly, D. M.; Gayen, A. K. Plant-derived monoterpene suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis at the transcriptional level. J. Nutr. 2003, 133, 38–44.
(8) Pfeffly, D. M.; Sharma, C.; Hentosh, P.; Buechler, R. D. Perillyl alcohol and genistein differentially regulate PKB/Akt and 4E-BP1 phosphorylation in breast cancer cells. Carcinogenesis 2000, 21, 498– 503.
(9) Azzoli, C. G.; Miller, V. A.; Ng, K. K.; Krug, L. M.; Spriggs, D. R.; Tong, W. P.; Riedel, E. R.; Kris, M. G. A phase I trial of perillyl alcohol in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2003, 51, 493–498.
(10) Bailey, H. H.; Attia, S.; Love, R. R.; Fass, T.; Chappell, R.; Tutsch, K.; Harris, L.; Jumonville, A.; Hansen, R.; Shapiro, R. G.; Stewart, J. A. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother. Pharmacol. 2008, 62, 149–157.
(11) Bailey, H. H.; Levy, D.; Harris, L. S.; Schink, J. C.; Foss, F.; Beatty, P.; Wadler, S. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: eastern cooperative oncology group study E2E96. Gynecol. Oncol. 2002, 85, 464–468.
(12) Crowell, P. L.; Siai Ayoubi, A.; Burke, Y. D. Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. Adv. Exp. Med. Biol. 1996, 401, 131–136.
(13) Hudes, G. R.; Szarka, C. E.; Adams, A.; Ranganathan, S.; McCauley, R. A.; Weiner, L. M.; Langer, C. J.; Littwin, S.; Yeslow, G.; Halberr, T.; Qian, M.; Gallo, J. M. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin. Cancer. Res. 2000, 6, 3071–3080.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedure of sugars, characterization data of synthesized compounds, and activity results. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Phone: 859-218-0141. E-mail: jsthorson@uky.edu.

7482 dx.doi.org/10.1021/jm000870uJ Med. Chem. 2014, 57, 7478–7484
glucoside from Perilla frutescens (24) Fujita, T.; Nakayama, M.; Perilloside, A. A monoterpene glucoside from Perilla frutescens. Phytochemistry 1993, 34, 1545−1548.

(25) Xanthakis, E.; Magkouta, S.; Loutraki, H.; Stamatis, H.; Roussos, C.; Kolis, F. N. Enzymatic synthesis of perillyl alcohol derivatives and investigation of their antiproliferative activity. Biochim. Biophys. Acta 2009, 1788, 1−9.

(26) Shimoda, K.; Sakamoto, S.; Nakajima, N.; Hamada, H.; Hamada, H. Synthesis of unnatural mono- and oligosaccharides of farnesol, geraniol, and (S)-perillyl alcohol by biocatalytic glycosylations. Chem. Lett. 2008, 37, 556−557.

(27) Arafa, H. M. M. Possible contribution of beta-glycosidases and caspases in the cytotoxicity of novel glycoconjugates in colon cancer cells. Invest. New Drug 2010, 28, 306−317.

(28) Goiff, R. D.; Thorsen, J. S. Neoglycosylation and neoglycorandomization: enabling tools for the discovery of novel glycosylated bioactive probes and early stage leads. MedChemComm 2014, 5, 1036−1047, DOI: 10.1039/C4MD00117F.

(29) Lin, C.-K.; Lu, T.-J. A simple method for the oxidation of -iodoxybenzoic acid (IBX) in the presence of acetic acid. Tetrahedron 2010, 66, 9688−9693.

(30) Goiff, R. D.; Thorsen, J. S. Enhancement of cyclophanes via conjugation with nonmetabolic sugars. Org. Lett. 2012, 14, 2454−2457.

(31) Peltier-Pain, P.; Timmons, S. C.; Grandemange, A.; Benoit, E.; Thorsen, J. S. Warfarin glycosylation invokes a switch from anticoagulant to anticancer activity. ChemMedChem 2011, 6, 1347−1350.

(32) Goiff, R. D.; Thorsen, J. S. Enhancing the divergent activities of betulinic acid via neoglycosylation. Org. Lett. 2009, 11, 461−464.
(52) Das, B. C.; Mahalingam, S. M.; Panda, L.; Wang, B.; Campbell, P. D.; Evans, T. Design and synthesis of potential new apoptosis agents: hybrid compounds containing perillyl alcohol and new constrained retinoids. *Tetrahedron Lett.* 2010, 51, 1462–1466.
(53) Chen, T.; Levin, D.; Popalli, S. *Pharmaceutical compositions comprising POH derivatives.* WO2012027693, 2012.
(54) Hui, Z.; Zhang, M.; Cong, L.; Xia, M.; Dong, J. Synthesis and antiproliferative effects of amino-modified perillyl alcohol derivatives. *Molecules* 2014, 19, 6671–6682.
(55) Zimmerman, T. P.; Mahony, W. B.; Prus, K. L. 3’-Azido-3’-deoxythymidine. An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. *J. Biol. Chem.* 1987, 262, 5748–5754.
(56) Wang, X. C.; Shaaban, K. A.; Elshahawi, S. I.; Ponomareva, L. V.; Sunkara, M.; Zhang, Y. A.; Copley, G. C.; Hower, J. C.; Morris, A. J.; Kharel, M. K.; Thorson, J. S. Frenolicins C–G, pyranonaphthoquinones from *Streptomyces* sp RM-4-15. *J. Nat. Prod.* 2013, 76, 1441–1447.
(57) Shaaban, K. A.; Wang, X. C.; Elshahawi, S. I.; Ponomareva, L. V.; Sunkara, M.; Copley, G. C.; Hower, J. C.; Morris, A. J.; Kharel, M. K.; Thorson, J. S. Herbimycins D–F, ansamycin analogues from *Streptomyces* sp. RM-7–15. *J. Nat. Prod.* 2013, 76, 1619–1626.
(58) Shaaban, K. A.; Singh, S.; Elshahawi, S. I.; Wang, X. C.; Ponomareva, L. V.; Sunkara, M.; Copley, G. C.; Hower, J. C.; Morris, A. J.; Kharel, M. K.; Thorson, J. S. Venturicidin C, a new 20-membered macrolide produced by *Streptomyces* sp TS-2–2. *J. Antibiot.* 2014, 67, 223–230.
(59) She, Q.-B.; Halilovic, E.; Ye, Q.; Zhen, W.; Shirasawa, S.; Sasazuki, T.; Solit, D. B.; Rosen, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. *Cancer Cell* 2010, 18, 39–51.