Analysis of Modified Bolotin Method on maximum deflection of three stiffeners plates

Meilani1, Khristian Edi Nugroho Soebandrija2 and Sigit Wijaksono3

1 Civil Engineering Department, Faculty of Engineering, Bina Nusantara University. Jakarta Barat, Indonesia 11480
2 Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
3 Architecture Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480

Corresponding author: meilani@binus.edu and knugroho@binus.edu

Abstract. The main goal of this study is to analyze the correlation between the detonation source and the time duration of blast loading and the plate’s dynamic response with the variation of peak pressures. The plate was modeled as a concrete orthotropic plate with semi rigid support at all its sides. Natural frequency can be found with Modified Bolotin Method and the numerical calculation is solved with Mathematica and Microsoft Excel. The results show that the longer the explosion distance, the maximum pressure due to the explosion is smaller and the time that the blast wave needed to reach the plate’s surface will become longer. When the peak pressure of blast loading become bigger, the plate’s dynamic response and deflection will become bigger.

Keywords: Modified Bolotin Method, Dynamic Response, Plate Stiffener

1. Introduction
Research on plate behavior has been carried out since 1766 and research on this topic is growing very rapidly in the world. Actions of terrorism in Indonesia that have attracted a lot of attention include the bomb explosion at the JW Marriott hotel in 2009. Since then, research on plate behavior due to blast loads has begun to develop in Indonesia. Usually, earthquake loads are taken into account in the design of building structures [1].

However, with the occurrence of a terrorist attack in the form of a bomb explosion, it is possible that the structural planner will also consider the effect of the blast load in anticipation of the strength of the building [2].

Based upon International perspectives, reference guidelines for protecting structures from terrorist attacks have been developed, such as those contained in the Reference Manual to Mitigate Potential Terrorist Attacks Against Building [3].

This research itself provides an overview through modeling of the movement of the plates when getting an explosion load with maximum pressure strength due to different blast loads [4].
2. General Description on Building Floor Plate Modelling
The floor plate of the building is modeled as an orthotropic plate with semi-rigid placement on all four sides, measuring 5.05 m x 7.4 m which is given three stiffeners in one direction of the axis in the form of joists measuring 30 cm x 60 cm [5, 6].

The aforementioned modeling is illustrated in Figure 1, and Table 1 in the following depiction.

![Figure 1. Plate with Three Stiffeners](image)

Unit	Dimension	Remark
ax	2.4 m	Distance among plate baseline
ex	0.16 m	System Eccentricity
k1	5.0E+06 Nm/rad	Stiffness of x
k2	3.5E+07 Nm/rad	Stiffness of y
G	1.0713E+10 N/m²	Shifting Module
E	2.61252E+10 N/m²	Plate's Module Elasticity
Dx	1.33614E+08 Nm	Plate's Flexible Rigidity of x
Dy	6.29258E+06 Nm	Plate's Flexible Rigidity of y
B	6.29258E+06 Nm	Effective Rotating Rigidity

Subsequently, in term of Properties of Concrete Slabs and Sub Beams; the orthotropic plate motion equation can be stated as follows:

$$D_x \frac{\partial^4 w(x,y,t)}{\partial x^4} + 2B \frac{\partial^2 w(x,y,t)}{\partial x^2 \partial y^2} + D_y \frac{\partial^2 w(x,y,t)}{\partial y^4} + \gamma h \frac{\partial^2 w(x,y,t)}{\partial t^2} = p(x,y,t)$$

$$D_x = \frac{E' \cdot h^3}{12} + \frac{E \cdot b \cdot x \left\{ \left[(hx-\frac{b}{2})^2 \right] - \left((b-x)^2 \right) \right\}}{6ax}$$

$$D_y = \frac{E' \cdot h^3}{12}$$
The boundary conditions that apply to rectangular plates with semi-rigid placement on all four sides are:

1. Along the coordinate of \(x=0 \) dan \(x=a \):
 \[W(x,y) = 0 \]
 \[-D_x \left[\frac{\partial^2 W(x,y)}{\partial x^2} + \nu \frac{\partial^2 W(x,y)}{\partial y^2} \right] = k_1 \frac{\partial W(x,y)}{\partial x} \]
 (4)

2. Along the coordinate of \(y=0 \) dan \(y=b \):
 \[W(x,y) = 0 \]
 \[-D_y \left[\frac{\partial^2 W(x,y)}{\partial x^2} + \nu \frac{\partial^2 W(x,y)}{\partial y^2} \right] = k_2 \frac{\partial W(x,y)}{\partial y} \]
 (5)

3. Explosion Load and Analysis

The explosion load is elaborated in this paper [7] and this load is due to a bomb explosion, according to Saikov, that can be described as follows, according to Figure 2

![Figure 2](image_url)

Figure 2. Relationship between Explosive Pressure and Time

To obtain a total system solution, it is necessary to define the load function that preliminarily works in the system which can be stated as follows:

\[p(x,y,t) = P(x(t),y(t),t) = P(t) \delta(x-xo) \delta(y-yo) \]

(6)

Where as

- \(x(t) \) = function of movement for applied load in x direction
- \(y(t) \) = function of movement for applied load in y direction
- \(x(t) = xo \) and \(y(t) = yo \) = load position on the time of \(t = to \) (xo,yo)
- \(P(t) \) = impulse applied load on the time \(t \)

\[P(t) = P_0 \left(1 - \frac{t}{td} \right) \]

(7)

In this situation, \(P_{max} \) is depicted in the magnitude of 1.3 MPa and applied on the working position at premises of the following matrix \(\begin{bmatrix} a & b \\ 4 & 4 \end{bmatrix} \).
If the aforementioned equation is substituted to the prior equation, then it results in the following equation of:

\[P(x,y,t) = P_0 \left(1 - \frac{t}{\tau_d}\right) \delta(x-x_0) \delta(y-y_0) \] \hspace{1cm} (8)

As the analysis part, the following discourse are surrounding within the plate free vibration, with the buffer stage, in which \(\gamma = 0 \). It is interpreted as the transversal deflection on plate can be expressed in the following equation:

\[W(x,y,t) = W(x,y) \sin \omega t \] \hspace{1cm} (9)

In the prior equation (9), it can be interpreted as:

- \(W(x,y) \) = spatial function
- \(\omega \) = natural frequency system.

If equation (9) is substituted into equation (1), subsequently the new equation is resulted in the following equaiton:

\[
\begin{align*}
& D_x \frac{\partial^4 W}{\partial x^4} + 2B \frac{\partial^4 W}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 W}{\partial y^4} - \rho h \omega^2 W = 0 \\
& \frac{\partial^4 W}{\partial x^4} \frac{\partial^4 W}{\partial y^4}
\end{align*}
\] \hspace{1cm} (10)

In order to both equation (4) and (5) are complying with the threshold of equation (10), then, transversal plate deflection has to be conveyed in the Double Fourier, within Navier solution of the following equation:

\[W_{mn} = A_{mn} \sin \left(\frac{mnx}{a}\right) \sin \left(\frac{mny}{b}\right) \] \hspace{1cm} (11)

In which,

- \(A_{mn} \) = determined frequency amplitude within initial condition
- \(mn \) = wave number in x direction
- \(a \) = integer index, within vibration pattern at x mode
- \(b \) = integer index, within vibration pattern at y mode
- \(a \) = Plate length at x direction
- \(b \) = Plate length at y direction

If the equation (11) is substituted into equation (10), then the plate system’s natural frequency is obtained with the allocation of all four joints of:

\[\omega_{mn}^2 = \frac{n^4}{\rho h} \left[D_x \left(\frac{mn}{a}\right)^4 + 2B \left(\frac{mn}{ab}\right)^2 + D_y \left(\frac{m}{b}\right)^4 \right] \] \hspace{1cm} (12)

The natural frequency of the system for a rectangular plate with clamped, free, semi-rigid placement can be found by analogizing the rectangular plate as a plate having joint placement on all four sides [7].

The x (m) direction is replaced with p and the y (n) direction is replaced by q, where p and q are real numbers obtained from the transcendental equation.

Thus the natural frequency of a system with asymmetrical placement can be stated as follows:

\[\omega_{mn}^2 = \frac{p^4}{\rho h} \left[D_x \left(\frac{pq}{a}\right)^4 + 2B \left(\frac{pq}{ab}\right)^2 + D_y \left(\frac{q}{b}\right)^4 \right] \] \hspace{1cm} (13)

In which

- \(pq \) = wave number at x direction
- \(a \)
\[q_{п} = \text{wave number at y direction} \]
\[p, q = \text{real numbers (for positioning not joints on both opposite sides) which can be solved by the Levy-type problem of the two auxiliary equations. This method is also known as the Modified Bolotin Method [8, 9].} \]

4. Results

The plate dynamic response can be found using the separation of variable method [10, 11,12]. Thus the particular solution of equation (1) can be expressed as:

\[W(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} X_{mn}(x)Y_{mn}(y)T_{mn}(t) \] (14)

In which

\[T_{mn} (t) = \text{the result of time function through further analysis, in particular through differential equation with coefficient function of } T_{mn} (t) \]

\[T_{mn} (t) + 2\omega_{mn} \ddot{T}_{mn}(t) + \omega_{mn}^2 T_{mn}(t) = \frac{1}{\rho h Q_{mn}} \int_{0}^{a} \int_{0}^{b} X_{mn}(x)Y_{mn}(y) \rho(x,y,t) dx dy \] (15)

In which, \(Q_{mn} \) is normalization factor.

The result of particular solution in \(T_{mn} (t) \) can be written in integral form [13]

\[T_{mn} (t) = \frac{\rho h Q_{mn}}{2} \int_{0}^{a} \int_{0}^{b} X_{mn}(x)Y_{mn}(y) \rho(x,y,t) dx dy \left[e^{\frac{\omega_{mn} (t-t)}{\sqrt{1 - \gamma^2}} \sin \left(\sqrt{1 - \gamma^2} \omega_{mn} (t-t) \right) \right] dt \] (16)

Furthermore, the result of General solution system due to transversal dynamic load, can be represented by the following equation.

\[W(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(X_{mn}(x)Y_{mn}(y) \rho(x,y,t) e^{\frac{\omega_{mn} (t-t)}{\sqrt{1 - \gamma^2}}} \sin \left(\sqrt{1 - \gamma^2} \omega_{mn} (t-t) \right) \right) \frac{1}{\rho h Q_{mn}} \sqrt{1 - \gamma^2} \omega_{mn} \] (17)

The system natural frequency is calculated for the first 5 modes in the x direction and the second 5 modes in the y direction [14, 15] as illustrated in Table 2 and 3.
Table 2. Price of Natural Frequency for Various Modes of Three Stiffeners

m	n	p	q	ω_{mn}	ω_{mn} (rad/det)
1	1	0.999398	1.26149	75237.422	274.2944082
1	2	0.999459	2.38509	100387.15	316.8393056
1	3	0.999533	3.44566	165322.3	406.5984482
1	4	0.999609	4.48299	301970.88	549.5187697
1	5	0.999678	5.51145	553454	743.9448908
2	1	1.99986	1.1393	1127992.4	1062.069881
2	2	1.99986	2.25388	1184331.6	1088.270005
2	3	1.99986	3.33931	1300152.5	1140.2423
2	4	1.99987	4.40286	1507248.6	1227.700526
2	5	1.99988	5.4525	1848970.4	1359.768513
3	1	2.99994	1.09938	5661637.1	2379.419484
3	2	2.99994	2.19162	5769409.9	2401.959591
3	3	2.99994	3.27277	5970360.5	2443.432111
3	4	2.99994	4.34248	6296024	2509.187908
3	5	2.99994	5.40241	6789923.8	2605.748217
4	1	3.99996	1.08417	17845446	4224.387085
4	2	3.99996	2.16548	18025554	4245.611185
4	3	3.99996	3.24183	18346924	4283.331001
4	4	3.99996	4.31215	18841068	4340.629906
4	5	3.99997	5.37631	19551852	4421.747666
5	1	4.99998	1.08182	43517408	6596.77256
5	2	4.99998	2.16191	43793065	6617.632908
5	3	4.99998	3.23888	44273665	6653.845916
5	4	4.99998	4.31134	44990636	6707.505913
5	5	4.99998	5.37888	45987408	6781.401627

Table 3. The Effect Result and its Variety of Threshold

The Effect Result	Glass Minor cuts	Threshold injuries open or buildings	Potentially Lethal Injuries	Threshold, concrete column fail
Detonation Distance R (m)	121.92	45.72	24.384	2.4384
Weigh of TNT W (kg)	45	45	45	45
Z	34.28	12.85	6.86	6.86
Pso (KPa)	3	11	28	3100
td (ms)	24.9	17.78	14.23	1.6

The further the detonation distance, the smaller the maximum explosion pressure will be (as shown at figure 3). It can be expressed in the equation $y = 12935 x ^ (-1.81)$, where y is the maximum burst pressure (KPa) and x is the detonation distance (m).
The longer the duration of the explosion (td), the smaller the maximum explosion pressure will be (as shown at figure 4). This relationship can be expressed in the equation $y = -1220 \ln(x) + 3597.5$, where y is the maximum burst pressure (KPa) and x is the duration of the explosion (m).

Figure 4. Relationship between Pso and td
Table 4. Price of Maximum Deflection and Dynamic Responses of Plate with Three Stiffeners

The Effect Results	Glass Minor cuts	Threshold injuries open or buildings	Potentially Lethal Injuries	Threshold, concrete column fail
Maximum Deflection Value (m)	0.000194013	0.0014606	0.0030009	0.0933488
In time function t	1301.67	2719.61	13104.7	273495
In y axis	6927.2	35194.7	124245	3792294.1
In x axis	4564.37	25057	24231.9	2178548.3
In time function t	1046.76	2469.71	19171.9	512707
Mx (Nm)	3744.71	9068.05	27786	200637
In y axis	1972.01	1377.55	4936.64	289537
In x axis	782.28	3317.59	9031.11	211356
In time function t	487.48	2945.01	8250.11	190268
My (Nm)	782.28	3317.59	9031.11	211356
In y axis	487.48	2945.01	8250.11	190268
In x axis	1067.35	44869.7	159339	3335071.1
In time function t	650.26	1836.22	6527.17	161488
Qx (N)	4888.62	18110.6	34678.3	3006848.6
In time function t	1067.35	44869.7	159339	3335071.1
In y axis	650.26	1836.22	6527.17	161488
Qy (N)	4888.62	18110.6	34678.3	3006848.6
In x axis	169.29	40.97	2062	36551.4

5. Conclusions
Based on the simulation of the dynamic response movement of the floor of the orthotropic rectangular building slab, it can be concluded that the further the detonation distance, the smaller the maximum explosion pressure will be.

In further elaboration, this relationship can be expressed in the equation $y = 12935 x^{-1.81}$, where y is the maximum burst pressure (KPa) and x is the detonation distance (m).

The longer the duration of the explosion (td), the smaller the maximum explosion pressure will be. This relationship can be expressed in the equation $y = -1220 \ln(x) + 3597.5$, where y is the maximum burst pressure (KPa) and x is the duration of the explosion (m).

The greater the maximum pressure force due to a bomb explosion, the more will the deflection and dynamic response on the plate

References

[1] Elishakoff, I.B (1974) Vibration Analysis of Clamped Square Orthotropic Plate. *AIAA Journal*, Vol. 12, No.7, July 1974, pp. 921-924.

[2] Seman, M.A., Mohsin, S.M.S, Jaini, Z.M (2019). Blast Load Assessment: RC Wall Subjected to Blast Load. *National Colloquium on Wind & Earthquake Engineering. IOP Conf. Series: Earth and Environmental Science* 244 doi:10.1088/1755-1315/244/1/012007

[3] Kadid, A, (2008). Stiffened Plates Subjected To Uniform Blast Loading. Algeria: *Journal of Civil Engineering and Management*, pp. 155-161.

[4] Badshah E, Naseer DA, Ashraf DM, Ahmad T, (2020). Response of Masonry Systemsagainst Blast Loading, *Defence Technology*, https://doi.org/10.1016/j.dt.2020.07.003.

[5] Langdon, G.S (2002). *The Response of Stiffened Square Plates Subjected To Localised Blast Loading*. UK: WIT Press
[6] Usarov, M., Ayubov, G, Mamatisaev, G., Normuminov,B. (2020) Building oscillations based on a plate model. *Conmechydro IOP Conf. Series: Materials Science and Engineering* 883 doi:10.1088/1757-899X/883/1/012211

[7] Saikov, I.V, Seropyan, S.A, Malakhov, A., Semenchuk, I.E, Kovalev, D.Y. (2020) Synthesis in SHS-Mixtures by Explosive Loading. *Key Engineering Materials*. DOI: 10.4028/www.scientific.net/KEM.839.114

[8] Arani, A.G., Kolahchi, R., Mossayebi, M., Jamali, M. (2014) Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method. *Int J Mech Mater Des* DOI 10.1007/s10999-014-9291-9

[9] Pevzner, P., Tanchum, W. and Abraham, B. (2000). Further Modification of Bolotin Method in Vibration Analysis of Rectangular Plates. *AIAA Journal*, Vol. 38, No. 9, pp. 1725-1729.

[10] Meilani. (2014). Obtaining the natural frequency of stiffened plate with modified bolotin method. *International Journal of Applied Engineering Research*. 9. 21501-21512.

[11] Meilani & Alisjahbana, Sofia. (2011). Analisis Respons Dinamik Pelat Lantai Bangunan Ortotropik dengan Dua Pengaku yang Diberi Beban Ledakan. *ComTech: Computer, Mathematics and Engineering Applications*. 2. 1066. 10.21512/comtech.v2i2.2856.

[12] Paz, M. (1987). *Dinamika Struktur Teori dan Perhitungan*. Jakarta: Erlangga.

[13] Szilard, R. (1989). *Teori dan Analisis Pelat: Metode Klasik dan Numerik*. Jakarta: Erlangga.

[14] Troitsky, M.S., 1999. *Stiffened Plates-Bending, Stability and Vibrations*. Canada: Elsevier Scientific Publishing Company.