Quantum interference in the e^+e^- decays of ρ^0 and ω-mesons produced in π^-p reactions

Madeleine Soyeur, Matthias Lutz and Bengt Friman

1. Département d’Astrophysique, de Physique des Particules, de Physique Nucléaire et de l’Instrumentation Associée
 Service de Physique Nucléaire
 Commissariat à l’Energie Atomique/Saclay
 F-91191 Gif-sur-Yvette Cedex, France
2. GSI, Planckstrasse 1, D-64291 Darmstadt, Germany
3. Institut für Kernphysik, TU Darmstadt
 D-64289 Darmstadt, Germany

Abstract

The study of the $\pi^-p \rightarrow \rho^0 n$ and $\pi^-p \rightarrow \omega n$ amplitudes close and below the vector meson production threshold ($1.2 < \sqrt{s} < 1.8$ GeV) reveals a rich dynamics arising from the presence of specific baryon resonances in this energy range. The interference pattern of the e^+e^- decays of the ρ^0- and ω-mesons produced in π^-p reactions reflects directly this dynamics. We discuss this interference pattern in the $\pi^-p \rightarrow e^+e^-n$ reaction as function of the total center of mass energy \sqrt{s}. We emphasize the importance of an experimental study of this reaction, which could be made with the HADES detector and the available pion beam at GSI.

1 Introduction

The coupling of light vector mesons [$\rho(770)$ and $\omega(782)$] to low-lying baryon resonances is still to a large extent unknown. This lack of information is a particularly important source of uncertainties in the theoretical description of the propagation of vector mesons in a nuclear medium, where resonance-hole states are expected to contribute largely to the dynamics.

The $\pi^-p \rightarrow \rho^0 n$ and $\pi^-p \rightarrow \omega n$ processes have been described recently in the framework of a relativistic coupled-channel model [1]. They are particular processes included in a broader scheme aiming at reproducing data on pion-nucleon elastic scattering and pion-induced production reactions involving the $\pi\Delta$, ρN, ωN, $K\Lambda$, $K\Sigma$ and ηN channels. The model is restricted to s-wave scattering in the ρN and ωN channels. The corresponding s- and d-wave resonances in the πN channel are generated dynamically. The meson-baryon
coupling strengths are determined from the fit to the available data on the channels included in the calculation.

The $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ amplitudes are very sensitive to the presence of the s- and d-wave pion-nucleon resonances lying below the vector meson production threshold ($1.3 < \sqrt{s} < 1.7$ GeV). This point is discussed and illustrated in Section 2. Data that directly reflect these amplitudes would provide very useful constraints on the underlying dynamics. The $\pi^- p \rightarrow e^+ e^- n$ reaction appears as a particularly relevant process to study the $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ amplitudes. This reaction offers the possibility to test experimentally the ρ^0 and ω strengths below threshold and the quantum interference in the $e^+ e^-$ decays of the ρ^0- and ω-mesons is very sensitive to the magnitudes and the relative phase of the production amplitudes. In Section 3 we present briefly the formalism and preliminary numerical results. The perspectives of this work are discussed in Section 4.

2 The $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ amplitudes close to the vector meson production threshold

The $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ amplitudes of Ref. [1] entering our calculation of the $\pi^- p \rightarrow e^+ e^- n$ reaction are displayed in Fig. 1. We shall restrict our discussion to $e^+ e^-$ pairs of invariant masses ranging from 0.5 to 0.8 GeV. The exclusive measurement of the $e^+ e^-$ outgoing channel ensures that the $e^+ e^-$ pairs come from vector meson decays (pseudoscalar mesons decay into an $e^+ e^-$ pair and an additional photon). We recall however that only s- and d-wave pion-nucleon resonances are at present included in the model of Ref. [1]. To be complete, the description of the $\pi^- p \rightarrow e^+ e^- n$ reaction in the energy range discussed in this work ($1.2 < \sqrt{s} < 1.8$ GeV) should include also the effect of other partial waves. We will return to this question in Section 4.

The $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ scattering amplitudes of Fig. 1 illustrate the importance of baryon resonances in vector meson production below threshold. These resonances induce a rich structure in both the real and imaginary parts of the amplitudes. In particular, the presence of the d-wave $N^*(1520)$ resonance is clearly reflected in the $J=3/2$ amplitudes for ρ^0 and ω production. This is an immediate consequence of the strong coupling of the $N^*(1520)$ to both the $\rho^0 n$ and ωn channels [1]. The strong couplings imply that there is considerable vector-meson strength in the N^*-hole modes in the nuclear medium.
Fig. 1. Amplitudes in GeV$^{-1}$ for the $\pi^- p \to \rho^0 n$ and $\pi^- p \to \omega n$ processes obtained in Ref. [1]. The amplitudes are averaged over isospin and shown for the two spin channels.

An experimental test of the N*Nρ^0 and N*Nω vertices through the $\pi^- p \to e^+ e^- n$ reaction below the vector meson production threshold would be a most valuable constraint on the in-medium propagation of ρ^0- and ω-mesons.

3 The $\pi^- p \to e^+ e^- n$ reaction

The $\pi^- p \to \rho^0 n$ and $\pi^- p \to \omega n$ amplitudes are simply related to the $\pi^- p \to e^+ e^- n$ amplitudes through the Vector Dominance assumption [2, 3]. In this picture, the $e^+ e^-$ decay of vector mesons is described by their conversion into time-like photons which subsequently materialize into $e^+ e^-$ pairs. The magnitude of the coupling constants f_{ρ} and f_{ω}, which characterize the conversion of ρ- and ω-mesons into photons, is determined from the measured partial widths of ρ^0- and ω-mesons into $e^+ e^-$ pairs [4]. The relative phase of the ρ and ω amplitudes is not determined by hadronic observables. We determine this phase
in each channel by comparing with the photon-decay helicity amplitudes of the corresponding resonance \[4\], assuming Vector Meson Dominance. We use \(f_{\rho} = 0.036 \text{ GeV}^2 \) and \(f_{\omega} = 0.011 \text{ GeV}^2 \) \[5\].

\[\begin{align*}
\left| \langle ne^+e^-|\pi^-p \rangle \right|^2 &= \left| \frac{f_{\rho} M_{\pi^-p\rightarrow\rho n}}{m^4} \right|^2 \left(\frac{m^2 - m_{\rho}^2 + im_{\rho} \Gamma_{\rho}(m)}{m^2 - m_{\omega}^2 + im_{\omega} \Gamma_{\omega}(m)} \right)^2,
\end{align*}\]

where the first term of the right-hand side describes the propagation of the time-like photon and its decay into an \(e^+e^- \) pair of invariant mass \(m \) and the second term contains the vector meson production dynamics. The vector mesons are characterized by their mass \(m_V \) and energy-dependent width \(\Gamma_V(m) \). The interference of the complex \(M_{\pi^-p\rightarrow\rho n} \) and \(M_{\pi^-p\rightarrow\omega n} \) amplitudes (Fig. 1) in the \(\pi^-p \rightarrow e^+e^-n \) cross section is sensitive to their relative phase. The importance of measuring such a phase in the \(e^+e^- \) or \(\pi^+\pi^- \) decays of \(\rho^0 \)- and \(\omega \)-mesons has been evidenced by the contribution of such data to the understanding of other processes, like the photoproduction of \(\rho^0 \)- and \(\omega \)-mesons in the diffractive regime \((\gamma Be \rightarrow e^+e^- Be) \) \[6\] and the \(e^+e^- \rightarrow \pi^+\pi^- \) reaction \[7, 8\].

Fig. 2. Squared amplitude for the \(\pi^-p \rightarrow e^+e^-n \) reaction with intermediate \(\rho^0 \)- and \(\omega \)-mesons.
We indicate the magnitude of the $\rho^0 - \omega$ interference in the $\pi^- p \to e^+ e^- n$ reaction as function of the total center of mass energy in Fig. 3. We have selected $e^+ e^-$ pairs of invariant mass $m=0.55$ GeV. This figure illustrates the role of baryon resonances with masses in the range of 1.5 to 1.6 GeV in generating strong interference effects.

Above the vector meson threshold, the $\rho^0 - \omega$ interference in the $\pi^- p \to e^+ e^- n$ cross section is particularly interesting for $e^+ e^-$ pair invariant masses close to the ω mass. This effect is manifested in the invariant mass spectrum displayed in Fig. 4 ($\sqrt{s}=1.8$ GeV). The model of Ref. [1] for the $M_{\pi^- p \to \rho^0 n}$ and $M_{\pi^- p \to \omega n}$ amplitudes predicts a constructive interference at this energy. This feature appears to be a very sensitive test of the model.
Fig. 4. Differential cross section $d\sigma/dm^2$ for the $\pi^- p \rightarrow e^+ e^- n$ reaction as function of the $e^+ e^-$ pair invariant mass for a fixed total center of mass energy $\sqrt{s}=1.8$ GeV.

A detailed discussion of these interference patterns will be presented in a forthcoming publication [9].

4 Perspectives

The study of the $\pi^- p \rightarrow e^+ e^- n$ reaction provides a particularly stringent test of the $\pi^- p \rightarrow \rho^0 n$ and $\pi^- p \rightarrow \omega n$ amplitudes close and below the vector meson production threshold ($1.2 < \sqrt{s} < 1.8$ GeV).

We have computed the cross section of the $\pi^- p \rightarrow e^+ e^- n$ reaction using the model of Ref. [1] for the vector meson production amplitude and indicated its main features as function of the total center of mass energy.
A natural extension of the present work would be to include the p-wave pion-nucleon resonances in the coupled channel scheme of Ref. [1], thereby increasing the expected domain of validity of the $\pi^-p \rightarrow \rho^0n$ and $\pi^-p \rightarrow \omega n$ amplitudes. Projecting the coupled-channel amplitudes on specific s- and t-channel exchanges could be a useful step in providing a simple interpretation of our numerical results.

We note that the study of the quantum interference of ρ^0- and ω-mesons produced in the $\pi^-p \rightarrow \rho^0n$ and $\pi^-p \rightarrow \omega n$ reactions in other channels than the e^+e^- decay ($\pi^0\gamma$ for example) may also be of interest.

Data on the $\pi^-p \rightarrow e^+e^-n$ cross section in the energy range considered in this work are at present not available. Such measurements would provide an important test of the dynamics in a reaction which is crucial for the understanding of the in-medium propagation of vector mesons.

5 Acknowledgements

One of us (M. S.) acknowledges the generous hospitality of the Theory Group of GSI, where much of this work was done.

References

[1] M. Lutz, G. Wolf and B. Friman, Nucl. Phys. A 661 (1999) 526, and paper presented at this meeting.
[2] J.J. Sakurai, Currents and Mesons, The University of Chicago Press, 1969.
[3] N.M. Kroll, T.D. Lee and B. Zumino, Phys. Rev. 157 (1967) 1376.
[4] Particle Data Group, Eur. Phys. J. C 3 (1998) 1.
[5] B. Friman and M. Soyeur, Nucl. Phys. A 600 (1996) 477.
[6] H. Alvensleben et al., Nucl. Phys. B 25 (1971) 33.
[7] D. Benakas et al., Phys. Lett. B 39 (1972) 289.
[8] H.B. O’Connell et al., Prog. Part. Nucl. Phys. 39 (1997) 201.
[9] M. Lutz, B. Friman and M. Soyeur, in preparation.