LITHIUM DEPLETION OF NEARBY YOUNG STELLAR ASSOCIATIONS

ERIN MENTUCH, ALEXIS BRANDEKER,1 MARTEN H. VAN KERKWIJK, AND RAY JAYAWARDHANA
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada

AND

PETER H. HAUSCHLITZ
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany

Received 2008 January 9; accepted 2008 August 23

ABSTRACT

We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: the TW Hydrae association, η Chamaeleontis cluster, β Pictoris moving group, Tucanae-Horologium association, and AB Doradus moving group. We determine surface gravities, effective temperatures, and lithium abundances for over 900 spectra through least-squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model-dependent ages. We find that the η Cha cluster and the TW Hydrae association are the youngest, with ages of 12 ± 6 Myr and 12 ± 8 Myr, respectively, followed by the β Pic moving group at 21 ± 9 Myr, the Tucanae-Horologium association at 27 ± 11 Myr, and the AB Dor moving group at an age of at least 45 Myr (whereby we can only set a lower limit, since the models—unlike real stars—do not show much lithium depletion beyond this age). Here the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible, as the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

Subject headings: line: profiles — open clusters and associations: individual (η Chamaeleontis, TW Hydrae, β Pictoris, Tucanae-Horologium, AB Doradus) — stars: abundances — stars: pre-main-sequence

1. INTRODUCTION

Triggered largely by the discovery of young stars in the ROSAT X-Ray Satellite All-Sky Survey, over the last decade several nearby pre-main-sequence (PMS) star groups have been identified (for a review, see Zuckerman & Song 2004). Ranging in age from ~6 to ~100 Myr, five separate groups can be distinguished: the TW Hydrae association (TWA), η Chamaeleontis cluster (η Cha), β Pictoris moving group (BPMG), Tucanae-Horologium association (TUCHOR), and AB Doradus moving group (ABD). The common space motions and localized sky positions suggest that these groups are likely connected to the Sco-Cen star-forming region located ~100 pc away in the southern hemisphere. Mamajek et al. (1999) and Song et al. (2003) have traced back the space motion of members in BPMG, TWA, and η Cha, and they argue that the groups are related to a star formation burst in the Sco-Cen region as a result of the passing of the Carina arm ~60 Myr ago.

These groups, because of their close vicinity, are excellent laboratories for studying star and planet formation. Well-constrained ages are necessary to make conclusions about timescales of, e.g., disk dissipation and planet formation. Already observations from the same sample presented in this paper have revealed that accretion disks can last up to ~10 Myr, while duration beyond this is rare (Jayawardhana et al. 2006).

Previously ages have been derived from Hertzsprung-Russell (HR) diagram fitting, group dynamics, and lithium abundance measurements. Luhman & Steeghs (2004) provide an HR diagram isochrone age for η Cha of 6.7 ± 2 Myr derived from the evolutionary models of Baraffe et al. (1998; hereafter BCAH98) and Palla & Stahler (1999), which agrees well with the dynamical expansion age of 6.7 Myr determined by Jilinski et al. (2005). The dynamical age of TWA has been harder to determine because of inconsistent space motions among its more than 30 members. An inferred age of 8.3 ± 0.8 Myr is given to TWA based on the dynamical motion of four members (de la Reza et al. 2006). However, the likely complex dynamical evolution of TWA has led to several plausible evolutionary scenarios. Makarov et al. (2005) attribute this complex evolution to a chance encounter with Vega, while Lawson & Crause (2005) suggest that TWA is composed of two separate groups, based on bimodal rotation period distributions with distinctly separate ages of ~10 and ~17 Myr. More recently, Barrado y Navascués (2006) found a conservative age of 10 ± 10 Myr by comparing ages from HR diagram isochrone comparisons (from BCAH98) and lithium abundances.

The slightly older group BPMG has an estimated age of 12 ± 3 Myr based on HR diagram isochrone comparisons (from BCAH98) and lithium abundances (Zuckerman et al. 2001), with three-dimensional motions that are consistent with a dynamical expansion age of 11.5 Myr (Ortega et al. 2002). Feigelson et al. (2006) independently derived an age of 13 ± 4 Myr for the recently confirmed wide binary system of 51 Eri and GJ 3305, part of BPMG.

Known to be older than BPMG, but younger than the Pleiades, TUCHOR has an age of 20–40 Myr based on Hα measurements,

1 Current address: Stockholm Observatory, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
X-ray luminosity, rotation, and lithium abundances in comparison to other young clusters such as TWA and the Pleiades (Zuckerman & Webb 2000; Stelzer & Neuhauser 2000; Torres et al. 2000).

Perhaps the most debated age is that of the ABD group. Zuckerman et al. (2004) derived an age of 50 Myr by comparing the Hα emission strength of ABD members to members of the younger TUCHOR association, in addition to fitting its three M-type members to HR diagram isochrones. In contrast, Luhan et al. (2005) compared HR isochrones of ABD members to those of two well-observed clusters with ages of 50 and 125 Myr and suggested that the ABD group is coeval with the Pleiades, at an age of 100–125 Myr. The latter age is strongly supported by Ortega et al. (2007), who compute full three-dimensional galactic orbits of ABD and the Pleiades cluster and show that the dynamics of the two groups can be traced back to a common origin 119 ± 20 Myr ago.

A relatively new approach to age estimates is to use the evolution of the lithium abundance for low-mass, partially and fully convective PMS stars (Bildsten et al. 1997; Jeffries & Oliveira 2005). The initiation and duration of lithium depletion in PMS stars depends on mass and is very sensitive to the central temperature. Lithium is converted into helium in p, α reactions in cores of low-mass stars when the temperature reaches 2.5 × 10^6 K. The lower the stellar mass, the longer it takes to reach this critical temperature. For example, a 0.6 M_☉ star begins to burn lithium at an age of 3 Myr, while a lower mass star, at 0.1 M_☉, begins to burn lithium at an age of 40 Myr. Stars with M < 0.06 M_☉ never reach this typical temperature, while stars with 0.6 M_☉ < M < 1.2 M_☉ burn lithium for a short period (1–2 Myr) until a radiative core develops, and more massive pre-main-sequence stars do not destroy lithium in their envelope at all. The result of these processes is a dip in the lithium abundance as a function of luminosity (and consequently, a function of effective temperature), only affecting stars with spectral types later than F5. As a group ages, this dip becomes deeper and widens on the cool end as progressively cooler stars reach the critical core temperature.

The cool end of this dip has been used to date coeval groups containing late M-dwarf stars by identifying the lithium depletion boundary (LDB). The LDB marks the luminosity above which all stars will have depleted their lithium. The lithium is very quickly depleted in these low-mass stars, so the LDB marks a sharp jump from initial to near depleted lithium abundances. As the temperature in the cores of PMS stars increases in time, the LDB will shift to cooler temperatures as a cluster ages. LDB ages have been determined for the Pleiades (125 ± 8 Myr), α Per (90 ± 10 Myr), IC 2391 (53 ± 5 Myr), and NGC 2547 (35 ± 4 Myr) (Stauffer et al. 1998, 1999; Barrado y Navascués et al. 1999, 2004; Jeffries & Oliveira 2005).

In this paper we fit more than 900 multiple-epoch, high-resolution spectra, introduced in § 2, of 121 low-mass PMS stars to synthetic spectra created from PHOENIX model atmospheres (see § 3). We begin by identifying the model with the best-fitting surface gravity, log g, and effective temperature, T eff, for each observed spectrum, as described in § 4. In § 5, we use these best-fit T eff and log g values to find the lithium abundance by fitting model spectra to both the 6104 and 6708 Å lithium features in the observations, but now using lithium abundance as a free parameter. For comparison, we also measure the equivalent width (EW) of the 6708 Å lithium doublet, which allows us to chronologically order the groups based solely on empirical measurements. We proceed by comparing the measured lithium abundance distribution to that predicted by PMS evolutionary models of BCAH98 and Siess et al. (2000) and estimate model dependent ages for each of the PMS groups.

2. OBSERVATIONS

High-resolution spectra were obtained during six separate observation runs, on a total of 19 nights, between 2004 December and 2006 April, using the MIKE spectrograph at the Magellan-Clay 6.5 m telescope at Las Campanas. MIKE is a double-echelle instrument, covering two separate wavelength regions. For this study, the red region from 4900 to 9300 Å is used. The raw data were bias-subtracted and flat-fielded, and before extraction, the scattered background in the spectrograph was subtracted by fitting splines to interorder pixels. The spatial direction of the projected slit produced by MIKE is wavelength dependent and not aligned with the CCD. We therefore extracted spectra using a custom procedure developed in ESO-MIDAS that takes into account the tilt and optimally extracts the spectrum by iteratively estimating the slit illumination function. For wavelength calibration, exposures of a thorium-argon lamp were used, as well as observed telluric absorption lines. A more detailed account of the reductions and a log of the observations will appear in a forthcoming paper (A. Brandeker et al. 2008, in preparation). Multiple spectra for many of the targets in our sample were taken in order to search for multiplicity and perform variability studies.

With no binning and using the 0.35” slit, the spectra in this study have a resolution of R = 60,000. The pixel scale was 0.13” pixel⁻¹ in the spatial direction and about 24 mA pixel⁻¹ at 6500 Å in the spectral direction. Integration times were chosen so that the signal-to-noise ratio (S/N) ≥ 70 per spectral resolution element at 6500 Å, except for the brightest stars, for which this would have implied an exposure shorter than 120 s. In those cases we used the longest exposure time shorter than 120 s that did not saturate the detector, giving (S/N) ≥ 70–500, depending on seeing.

For this study, we only use objects with spectral types later than F5 and earlier than M5. Hotter stars do not show depleted lithium abundances in their atmospheres, because their cores are already radiative when lithium burning starts. Cooler stars were not included in the survey because they were too faint. We also exclude obvious spectroscopic binaries. In total we have a sample of 121 stars, with 11 from η Cha, 32 from TWA, 23 objects from BFMG, 35 from TUCHOR, and 22 from ABD. For comparison, we also analyzed 20 radial velocity standard stars from the field.

3. MODELS

We compute synthetic spectra using version 14 of the PHOENIX model atmosphere package (Hauschildt & Baron 1999). The model atmospheres are described in Kudritzki et al. (2005, 2006). In total, we have 240 model spectra covering a spectral region from 3200 to 10000 Å with 0.03 Å spectral resolution, with temperatures (T eff) ranging from 2500 to 6500 K in steps of 100 K, and surface gravities (log g) ranging from 3.0 to 6.0 in steps of 0.5 (i.e., gravities ranging from 10^2 to 10^6 m s⁻²). For each of these temperature and gravity combinations, we have additional models with different lithium abundances (N Li), ranging from log N Li = 0.0 to 4.0 in steps of 0.5 (where the normalization is such that log N Li = 12), which cover the 6104 and 6708 Å absorption lines. All models were calculated at solar metallicity.

The atmospheric models are calculated under the assumptions of local thermodynamic equilibrium (LTE). Carlsson et al. (1994) have systematically analyzed the effects of non-LTE on the formation of the Li i line in cool stars. They show that the non-LTE effects can lead to discrepancies in lithium abundances measured from the 6708 Å lithium doublet from about –0.3 to 0.3 dex, depending on the depletion and temperature. We attempt to minimize the exclusion of non-LTE effects by also fitting the 6104 Å
4.2. Selection of Spectral Regions

We locate spectral regions that are strongly sensitive to surface gravity and temperature. Both Torres-Dodgen & Weaver (1993) and Kirkpatrick et al. (1991) have compiled lists of prominent absorption features useful for spectral classification of low-mass stars. For all regions, we checked whether our model spectra (see § 3) indeed showed strong temperature and/or gravity sensitivity, and we selected only those that did.

In general, the dependence of these features on our parameters is somewhat degenerate, as different T_{eff} and $\log g$ combinations can fit a given absorption feature equally well. As discussed in Mohanty et al. (2004), features that show contrasting dependence on gravity and temperature are needed to constrain the parameter space. Thus, we choose combinations of molecular absorption features such as titanium oxide (TiO) and vanadium oxide (VO) with lines from neutral alkali elements, such as K i and Na i. This procedure works well because, for neutral alkali elements, an increasing temperature can be compensated by increasing gravity, while the molecular absorption bands show less correlation between gravity and temperature. For instance, TiO bands in the vicinity of 7100 Å are much more sensitive to temperature than to gravity, while the triple-headed TiO bands in the range of 8440 Å are more sensitive to gravity than to temperature. Examples of this dependence can be seen in the χ^2 contours shown in the bottom panels of Figures 1 and 2. Of course, these dependencies change with temperature, and hence different sets of regions are best for different spectral types. In principle, one could choose to fit different regions in different temperature ranges, but the risk (borne out in practice) is that at the borders there will be false jumps in parameters due to systematic problems with the models. Thus, we fit all regions for all stars, which gives very tight constraints on T_{eff} and $\log g$ for all spectral types (and more smoothly varying systematic offsets; see below). After investigating spectral fits of 12 individual regions collected from Torres-Dodgen & Weaver (1993) and Kirkpatrick et al. (1991), we settled on the 5 separate spectral regions listed in Table 1. Also listed is the effective temperature range where the features provide strong constraints, as well as whether these constraints are predominantly on T_{eff} and/or $\log g$.

We excluded regions which either tended to overestimate $\log g$ or provided $T_{\text{eff}}/\log g$ values extremely offset from the majority of spectral regions. For instance, for many of the neutral metal lines, particularly K i at 7665 and 7699 Å, the best fits are at surface gravities much higher than are expected for late-type PMS stars. Since these lines are sensitive to gravity and generally fit the spectrum very well, the entire fit was very sensitive to the K i line. Due to this inconsistency between the line strengths in the atmospheric models and predicted surface gravity, this region and several others were not used. We note that we use other neutral metal lines such as Na i that could be flawed similarly. In practice, however, these produced fits that were consistent with the other spectral regions investigated.

4.3. Fitting Methods

All spectra in our study with spectral types later than F5 (corresponding to about 6500 K, the highest temperature for which we have models) were fitted to the synthetic spectra for each spectral window listed in Table 1. Prior to the fit, the synthetic spectra were convolved with a Gaussian filter to match the observed resolution. The fit used a variant of the broadening-function formalism introduced by Rucinski (2002). In this formalism, a least-squares fit is made of the observed spectrum to a
set of reference spectra that differ only in their velocity offset. This way, rotational broadening is automatically accounted for. The difference with the formalism of Rucinski is that the sum of the model spectra at various velocities is also multiplied with a polynomial, to account for not only the normalization, but also for small errors in the flux calibration. For our small wavelength regions, we found that a third-degree polynomial sufficed.

We note that our fitting method effectively introduces a relatively large number of parameters that are not of direct physical interest, viz., the line shape. Since these parameters might be covariant with some of the effects of temperature and/or gravity changes, the constraints on \(T_{\text{eff}} \) and \(\log g \) we find are thus not as strong as might be possible if, e.g., instead we broadened the synthetic spectra with an analytic broadening model (with only...
TABLE 1
SPECTRAL REGIONS FITTED

Line ID	λ (Å)	Δλ (Å)	T (K)	Sensitivity
Na i	5893	5850–5930	2500–4500	T, log g
Fe i	5893, 5898			
TiO i	5847–6058			
VO i	7581–7973	7900–7980	4000–6500	T
CN i	7916, 7941, 7963			
Na i	8183, 8195	8150–8230	2500–3000	log g, T
TiO i	8432, 8442, 8452	8400–8480	2500–6500	T
Fe i	8440, 8468			
Ca ii	8498, 8542	8485–8565	2500–6500	T
VO i	8521, 8538			

Notes.—A list of the spectral regions selected for our fitting method as described in §§ 4.2 and 4.3. The first and second columns identify and locate spectral features within the chosen spectral range that show strong sensitivity to temperature and/or surface gravity. The third column lists the 80 Å region that was selected in our fitting procedure. The fourth column indicates what range in effective temperature the selected region shows strong sensitivity to varying parameters and the fifth column indicates whether the region is more sensitive to effective temperature or surface gravity.

a Torres-Dodgen & Weaver (1993).
b Kirkpatrick et al. (1991).

TABLE 2
RESULTS FOR STARS IN TW HYDRAE

Object ID	Spectral Type	No. of Obs.	EW_{6708} (Å)	T_{eff} (K)	log g	log N_{Li}
TWA 1	K7e	5	0.467 ± 0.021	3847 ± 16	4.02 ± 0.07	3.03 ± 0.05
TWA 2A	M2b	5	0.567 ± 0.021	3712 ± 17	4.27 ± 0.05	3.36 ± 0.03
TWA 2B	M3b	5	0.563 ± 0.022	3268 ± 12	3.98 ± 0.05	3.34 ± 0.05
TWA 3B	M3.5b	5	0.529 ± 0.025	3340 ± 13	4.07 ± 0.06	3.38 ± 0.11
TWA 4A	M2.5b	4	0.359 ± 0.020	4045 ± 24	4.54 ± 0.07	2.40 ± 0.03
TWA 4A5	M1b	4	0.442 ± 0.020	4360 ± 14	4.26 ± 0.06	3.15 ± 0.02
TWA 5A	M1.5b	5	0.604 ± 0.021	3432 ± 12	4.28 ± 0.05	3.09 ± 0.04
TWA 6	K7b	5	0.523 ± 0.021	3751 ± 12	4.47 ± 0.05	2.78 ± 0.04
TWA 7	M1a	5	0.546 ± 0.021	3531 ± 10	4.18 ± 0.05	3.42 ± 0.05
TWA 8	M2a	5	0.546 ± 0.021	3537 ± 15	4.24 ± 0.05	3.47 ± 0.05
TWA 9	M2b	5	0.575 ± 0.026	3013 ± 15	3.83 ± 0.05	3.54 ± 0.11
TWA 9A	K5b	5	0.535 ± 0.020	4052 ± 12	4.15 ± 0.05	3.25 ± 0.03
TWA 9B	M1a	5	0.517 ± 0.021	3450 ± 12	4.19 ± 0.05	3.43 ± 0.05
TWA 10	M2.5a	5	0.481 ± 0.021	3512 ± 12	4.24 ± 0.05	3.34 ± 0.03
TWA 11B	M2.5b	5	0.503 ± 0.022	3653 ± 14	4.26 ± 0.05	3.22 ± 0.03
TWA 12	M3b	5	0.521 ± 0.020	3647 ± 13	4.33 ± 0.05	3.17 ± 0.03
TWA 13A	M1e	5	0.533 ± 0.021	3845 ± 16	4.46 ± 0.05	3.23 ± 0.03
TWA 13B	M2e	5	0.577 ± 0.021	3817 ± 16	4.47 ± 0.05	3.36 ± 0.03
TWA 14	M0b	5	0.589 ± 0.021	3701 ± 13	4.45 ± 0.05	3.63 ± 0.06
TWA 15A	M1.5b	5	0.494 ± 0.025	3482 ± 12	4.32 ± 0.05	3.07 ± 0.05
TWA 15B	M2b	5	0.484 ± 0.030	3483 ± 12	4.30 ± 0.06	3.16 ± 0.05
TWA 16	M1.5b	5	0.354 ± 0.024	3610 ± 20	4.27 ± 0.05	2.55 ± 0.04
TWA 17	K5b	5	0.499 ± 0.021	3884 ± 25	4.02 ± 0.06	3.31 ± 0.10
TWA 18	M0.5b	5	0.464 ± 0.021	3780 ± 13	4.50 ± 0.06	3.14 ± 0.04
TWA 19A	G5b	5	0.191 ± 0.020	5986 ± 14	3.83 ± 0.07	3.92 ± 0.03
TWA 19B	K7b	5	0.452 ± 0.022	3896 ± 15	4.24 ± 0.05	2.89 ± 0.07
TWA 21	K3/4s	5	0.369 ± 0.020	4689 ± 14	4.44 ± 0.05	3.26 ± 0.03
TWA 22	M5s	5	0.616 ± 0.021	2990 ± 13	4.20 ± 0.05	3.57 ± 0.06
TWA 23	M1a	5	0.525 ± 0.020	3466 ± 12	4.12 ± 0.05	3.51 ± 0.04
TWA 24N	M0a	5	0.438 ± 0.032	3699 ± 15	4.28 ± 0.06	2.83 ± 0.08
TWA 24S	K3b	5	0.380 ± 0.020	4920 ± 16	4.32 ± 0.05	3.64 ± 0.02
TWA 25	M0a	1	0.570 ± 0.020	3920 ± 10	4.45 ± 0.05	3.25 ± 0.02

Note.—All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5).
a Zuckerman & Song (2004).
b de la Reza et al. (2006).
the minimum of a two-dimensional parabola (of the form \(a + bx + cy + dx^2 + ey + f y^2\)) fit to the 16 grid points with the lowest values of \(\chi^2\).

4.4. Examples

In Figures 1 and 2 we show our fits for one spectrum of each of the stars \(\eta\) Cha 10 and TUCHOR member HIP 33235. The gaps in the data in the panels centered on 5890 and 5852 Å are due to the removal of emission lines, as discussed in § 4.1. Similarly, on close inspection, one sees that some telluric lines have been removed from the 8190 Å region.

Overall, the broadened models reproduce the observed spectra well. In detail, however, there are clear inconsistencies between the observed and synthetic spectra, apparent in many of the panels. In particular, a number of lines appear to be absent in the models, or are clearly too weak. We also found examples of the reverse in some other wavelength regions.

In the bottom panels of Figures 1 and 2, the resulting 68.3%, 95.4%, and 99.99% confidence contours in the \(T_{\text{eff}}-\log g\) parameter space are shown, with levels set according to Press et al. (1992) at \(\chi^2_{\min} \times [1 + (2.30, 6.17, 18.4)/N_{\text{dof}}]\), where \(N_{\text{dof}}\) is the degrees of freedom in the fit and \(\chi^2_{\min}\) is the best-fit value inferred from the parabolic fit. Contours are shown for each spectral window as well as for the total \(\chi^2\) values. For the different spectral regions, one notices the different covariances in \(T_{\text{eff}}\) and \(\log g\), and how, by using a number of these sensitive regions, it is possible

\[
\text{Object ID} \quad \text{Spectral Type} \quad \text{No. of Obs.} \quad \text{EW}_{8708} \quad T_{\text{eff}} \quad \log g \quad \log N_{\text{Lag}}
\]

\[
\eta\text{ Cha 1} \quad \text{K4}^a \quad 5 \quad 0.511 \pm 0.020 \quad 4107 \pm 15 \quad 3.94 \pm 0.05 \quad 3.31 \pm 0.05
\]

\[
\eta\text{ Cha 3} \quad \text{M3.25}^b \quad 5 \quad 0.542 \pm 0.021 \quad 3508 \pm 12 \quad 4.18 \pm 0.05 \quad 3.55 \pm 0.04
\]

\[
\eta\text{ Cha 4} \quad \text{K7}^a \quad 5 \quad 0.587 \pm 0.021 \quad 3822 \pm 11 \quad 4.43 \pm 0.05 \quad 3.32 \pm 0.03
\]

\[
\eta\text{ Cha 5} \quad \text{M4}^a \quad 5 \quad 0.606 \pm 0.021 \quad 3314 \pm 11 \quad 4.04 \pm 0.05 \quad 3.41 \pm 0.09
\]

\[
\eta\text{ Cha 6} \quad \text{M2}^a \quad 4 \quad 0.489 \pm 0.022 \quad 3492 \pm 11 \quad 4.22 \pm 0.06 \quad 3.31 \pm 0.03
\]

\[
\eta\text{ Cha 7} \quad \text{K6}^a \quad 5 \quad 0.415 \pm 0.022 \quad 4002 \pm 25 \quad 3.81 \pm 0.05 \quad 2.77 \pm 0.08
\]

\[
\eta\text{ Cha 9} \quad \text{M4.5}^a \quad 5 \quad 0.366 \pm 0.027 \quad 3127 \pm 11 \quad 3.84 \pm 0.05 \quad 3.36 \pm 0.11
\]

\[
\eta\text{ Cha 10} \quad \text{K7}^a \quad 5 \quad 0.534 \pm 0.021 \quad 3992 \pm 11 \quad 4.67 \pm 0.06 \quad 3.08 \pm 0.03
\]

\[
\eta\text{ Cha 11} \quad \text{K4}^a \quad 5 \quad 0.483 \pm 0.021 \quad 4182 \pm 19 \quad 3.92 \pm 0.05 \quad 3.28 \pm 0.03
\]

\[
\eta\text{ Cha 12} \quad \text{M2}^a \quad 5 \quad 0.609 \pm 0.023 \quad 3440 \pm 11 \quad 4.31 \pm 0.06 \quad 3.20 \pm 0.08
\]

\[
\eta\text{ Cha 13} \quad \text{M2}^a \quad 5 \quad 0.426 \pm 0.023 \quad 3319 \pm 11 \quad 3.68 \pm 0.05 \quad 2.89 \pm 0.07
\]

Note.—All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5). All spectral types from Zuckerman & Song (2004).

TABLE 3

Object ID	Spectral Type	No. of Obs.	\(\text{EW}_{8708}\) (Å)	\(T_{\text{eff}}\) (K)	\(\log g\)	\(\log N_{\text{Lag}}\)
\(\eta\text{ Cha 1}\)	K4 \(^a\)	5	0.511 ± 0.020	4107 ± 15	3.94 ± 0.05	3.31 ± 0.05
\(\eta\text{ Cha 3}\)	M3.25 \(^b\)	5	0.542 ± 0.021	3508 ± 12	4.18 ± 0.05	3.55 ± 0.04
\(\eta\text{ Cha 4}\)	K7 \(^a\)	5	0.587 ± 0.021	3822 ± 11	4.43 ± 0.05	3.32 ± 0.03
\(\eta\text{ Cha 5}\)	M4 \(^a\)	5	0.606 ± 0.021	3314 ± 11	4.04 ± 0.05	3.41 ± 0.09
\(\eta\text{ Cha 6}\)	M2 \(^a\)	4	0.489 ± 0.022	3492 ± 11	4.22 ± 0.06	3.31 ± 0.03
\(\eta\text{ Cha 7}\)	K6 \(^a\)	5	0.415 ± 0.022	4002 ± 25	3.81 ± 0.05	2.77 ± 0.08
\(\eta\text{ Cha 9}\)	M4.5 \(^a\)	5	0.366 ± 0.027	3127 ± 11	3.84 ± 0.05	3.36 ± 0.11
\(\eta\text{ Cha 10}\)	K7 \(^a\)	5	0.534 ± 0.021	3992 ± 11	4.67 ± 0.06	3.08 ± 0.03
\(\eta\text{ Cha 11}\)	K4 \(^a\)	5	0.483 ± 0.021	4182 ± 19	3.92 ± 0.05	3.28 ± 0.03
\(\eta\text{ Cha 12}\)	M2 \(^a\)	5	0.609 ± 0.023	3440 ± 11	4.31 ± 0.06	3.20 ± 0.08
\(\eta\text{ Cha 13}\)	M2 \(^a\)	5	0.426 ± 0.023	3319 ± 11	3.68 ± 0.05	2.89 ± 0.07

Note.—All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5). All spectral types from Zuckerman & Song (2004).
Object ID	Spectral Type	No. of Obs.	$E_{W\text{obs}}$ (Å)	T_g (K)	log g	log N_{Li}
CD – 53 544	K6 Ve	5	0.275 ± 0.021	3796 ± 13	4.53 ± 0.05	1.86 ± 0.04
CD – 60 416	K3/4	5	0.237 ± 0.021	4310 ± 33	4.34 ± 0.06	2.33 ± 0.03
CPD – 64 120	K1 Ve	5	0.284 ± 0.023	5212 ± 48	4.61 ± 0.05	3.73 ± 0.03
GSC 8056-0482	M3 Ve	5	0.351 ± 0.021	3541 ± 13	4.54 ± 0.05	2.38 ± 0.06
GSC 8491-1194	M3 Ve	5	0.033 ± 0.021	3578 ± 12	4.64 ± 0.06	0.25 ± 0.02
GSC 8497-0995	K6 Ve	4	0.127 ± 0.022	4238 ± 18	4.64 ± 0.07	1.52 ± 0.05
HD 13183	G5 V	5	0.205 ± 0.020	5854 ± 22	4.20 ± 0.05	3.73 ± 0.02
HD 13246	F8 V	5	0.133 ± 0.020	6292 ± 13	4.17 ± 0.06	3.68 ± 0.03
HD 8558	G6 V	5	0.192 ± 0.020	5825 ± 19	4.27 ± 0.05	3.90 ± 0.02
HD 9054	K1 V	5	0.178 ± 0.020	5165 ± 35	4.65 ± 0.05	3.01 ± 0.02
HIP 105388	G5 V	5	0.224 ± 0.020	5748 ± 11	4.18 ± 0.08	3.71 ± 0.02
HIP 107343	M1	5	0.055 ± 0.021	3975 ± 13	4.82 ± 0.05	0.25 ± 0.09
HIP 108422	G8 V	5	0.261 ± 0.020	5541 ± 27	3.99 ± 0.07	N/A
HIP 1113	G6 V	3	0.262 ± 0.020	5751 ± 23	3.99 ± 0.07	3.84 ± 0.04
HIP 116748N	M3	3	0.218 ± 0.020	4620 ± 10	4.47 ± 0.05	2.62 ± 0.03
HIP 116749S	G51 V	3	0.212 ± 0.021	5813 ± 44	4.30 ± 0.06	4.00 ± 0.02
HIP 1481	F8	3	0.128 ± 0.020	6323 ± 13	4.27 ± 0.06	3.68 ± 0.03
HIP 16853	G2 V	5	0.149 ± 0.020	6217 ± 14	4.29 ± 0.07	4.00 ± 0.02
HIP 1910	M1	3	0.181 ± 0.020	3890 ± 20	4.73 ± 0.06	1.97 ± 0.06
HIP 1993	M1	3	0.038 ± 0.022	4017 ± 16	4.83 ± 0.08	2.33 ± 0.03
HIP 21632	G3 V	5	0.188 ± 0.020	6003 ± 18	4.12 ± 0.06	3.82 ± 0.02
HIP 22295	F7 V	3	0.130 ± 0.020	6342 ± 17	4.13 ± 0.09	3.65 ± 0.02
HIP 2729	K5 V	3	0.338 ± 0.020	3827 ± 11	4.02 ± 0.06	0.68 ± 0.03
HIP 30030	G0	5	0.163 ± 0.020	6210 ± 21	4.19 ± 0.08	3.77 ± 0.04
HIP 30034	K2 V	5	0.287 ± 0.020	5268 ± 23	4.69 ± 0.06	3.57 ± 0.02
HIP 32235	G6 V	5	0.233 ± 0.020	5774 ± 13	4.34 ± 0.06	3.99 ± 0.02
HIP 33737	K3 V	3	0.279 ± 0.020	4859 ± 18	4.64 ± 0.05	3.16 ± 0.03
HIP 3556	M3	3	0.055 ± 0.022	3677 ± 17	4.72 ± 0.05	0.27 ± 0.09

Table 5

Results for Stars in Tucanae–Horologium (TUCHOR)
to constrain gravity and temperature precisely. Indeed, the contours for the summed χ^2 distribution (solid black contours) are extremely tight. We show below that different spectra of the same star lead to similarly small scatter in the inferred temperature and gravity.

One also notices, in particular in Figure 2, that the contours for the different regions are statistically inconsistent with each other, with differences of several 100 K in T_{eff} and up to 1 dex in $\log g$. These differences likely reflect systematic uncertainties in the models, similar to the uncertainties we find for the resulting best-fit average values below.

4.5. Results

The best-fit model T_{eff} and $\log g$ with corresponding errors for each star, including field stars, can be found in Tables 2–7. We consider two ways of estimating the associated uncertainties. First, we follow Press et al. (1992) and use the curvature of the best-fit two-dimensional parabola to the χ^2 values to find regions which are enclosed within a level of 68% confidence. Second, we consider the error in the mean between the results from different spectra of the same source taken at different epochs (e.g., the standard deviation divided by the square root of the number of observations taken).

For the temperatures, our statistical uncertainties are typically around 9 K, while the scatter derived from multiple observations of the same object is on average 11 K. For the surface gravities, our statistical uncertainties numbers are 0.02 dex on average, and the scatter derived from the error in the mean from multiple observations is about 0.03 dex. The above suggests that the true intrinsic uncertainties (σ_{sys}) in our temperature and gravity measurements are very small, about 10 K and 0.05 dex for a single observation. We find below, however, that systematic mismatches as a function of, e.g., spectral type, are much larger.

In Figure 3 we show the distribution of $\log g$ as a function of T_{eff} for each group, as well as for the field stars observed. In addition, we draw isochrones from the BCAH98 PMS evolutionary models. One immediately sees that there is a clear systematic problem in determining $\log g$ for stars with 3500 K $< T_{\text{eff}} <$ 4100 K: $\log g$ increases with temperature from 3000 to 4000 K, but at around 4000 K, it becomes almost 1 dex smaller, an unrealistic result.

Table 5—Continued

Object ID	Spectral Type	No. of Obs.	EW$_{6708}$ (Å)	T_{eff} (K)	$\log g$	$\log N_{\text{Li}}$
HIP 490...	G0 V	3	0.153 ± 0.020	6173 ± 17	4.28 ± 0.05	4.00 ± 0.02
HIP 9141...	G3/5 V	5	0.187 ± 0.020	5992 ± 13	4.23 ± 0.05	3.80 ± 0.02
TUCH 7600-0516...	K1	5	0.249 ± 0.020	5163 ± 31	4.63 ± 0.06	3.56 ± 0.02
TYC 5882-1169...	K3/4	5	0.241 ± 0.022	4939 ± 34	4.65 ± 0.09	3.05 ± 0.11
TYC 7065-0879N...	K4	3	0.259 ± 0.020	5513 ± 28	4.58 ± 0.07	3.63 ± 0.03
TYC 7065-0879S...	K4	3	0.267 ± 0.021	5453 ± 31	4.70 ± 0.14	3.63 ± 0.03

Note: All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5). All spectral types from Zuckerman & Song (2004).

Table 6

Results for Stars in AB Doradus (ABD)

Object ID	Spectral Type	No. ofObs.	EW$_{6708}$ (Å)	T_{eff} (K)	$\log g$	$\log N_{\text{Li}}$
AB Dor...	K1	3	0.261 ± 0.021	5210 ± 34	4.63 ± 0.06	3.50 ± 0.04
GSC 08894-00426...	M2	3	0.037 ± 0.022	3343 ± 11	4.83 ± 0.05	0.25 ± 0.02
HD 13482A...	K1	2	0.124 ± 0.020	5725 ± 105	4.47 ± 0.18	3.17 ± 0.03
HD 13482B...	M2	1	0.076 ± 0.020	5090 ± 10	4.95 ± 0.05	1.75 ± 0.02
HD 17332B...	K1	1	0.168 ± 0.020	5780 ± 10	4.35 ± 0.05	3.55 ± 0.02
HD 217343...	G3 V	3	0.172 ± 0.020	5957 ± 28	4.25 ± 0.05	3.68 ± 0.04
HD 217379N...	K1	2	0.020 ± 0.020	4050 ± 14	5.07 ± 0.06	0.30 ± 0.05
HD 217379S...	K1	2	0.030 ± 0.021	4165 ± 11	5.05 ± 0.07	0.35 ± 0.05
HD 218860...	G5	2	0.222 ± 0.020	5670 ± 10	4.32 ± 0.06	3.55 ± 0.02
HD 224228...	K3 V	2	0.076 ± 0.020	4905 ± 11	4.82 ± 0.06	1.35 ± 0.02
HD 35650...	K7	4	0.020 ± 0.020	4252 ± 10	5.06 ± 0.05	0.25 ± 0.02
HD 45270...	G1 V	3	0.142 ± 0.020	6187 ± 24	4.50 ± 0.10	3.95 ± 0.04
HD 65569...	K1 V	3	0.155 ± 0.020	5223 ± 31	4.87 ± 0.05	2.77 ± 0.03
HIP 14807...	K6	1	0.034 ± 0.020	4500 ± 10	4.60 ± 0.05	0.55 ± 0.02
HIP 14809...	G5	1	0.150 ± 0.020	6050 ± 10	4.25 ± 0.05	3.60 ± 0.02
HIP 17695...	M3	2	0.074 ± 0.029	3545 ± 18	4.72 ± 0.06	0.25 ± 0.02
HIP 26369...	K7	3	0.044 ± 0.020	4010 ± 15	4.55 ± 0.06	0.25 ± 0.02
HIP 31878...	K7	3	0.042 ± 0.024	4240 ± 14	5.12 ± 0.05	0.53 ± 0.03
HIP 6276...	G8	3	0.153 ± 0.020	5643 ± 13	4.43 ± 0.05	3.22 ± 0.04
HR 2468...	G1.5	2	0.138 ± 0.020	6060 ± 14	4.60 ± 0.11	3.58 ± 0.03
UY Pic...	K0 V	3	0.267 ± 0.020	5600 ± 15	5.05 ± 0.06	3.60 ± 0.02
V372 Pav...	M3	5	0.020 ± 0.021	3688 ± 19	4.88 ± 0.05	0.25 ± 0.02

Note: All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5). All spectral types from Zuckerman & Song (2004).
physical trend. The systematic differences in \(\log g \) can result from a few effects. If the resolution of the model spectra is not much better than the observations before smoothing, line depths can be systematically off. In addition, stellar activity also introduces systematic errors, as has been found for young M dwarfs, where the chromosphere feeds back into the photosphere (Fuhrmeister et al. 2005). This feedback is not incorporated into the model and may lead to systematic errors of about 0.5 dex in \(\log g \).

To evaluate the dependence of the fitted \(T_{\text{eff}} \) on \(\log g \), we refit our spectra three more times using the method described in § 4.1, except with \(\log g \) fixed to 4.0, 4.5, and 5.0. The change in \(T_{\text{eff}} \) across the surface gravity space is small in an absolute sense. Going from \(\log g \) fixed at 4.0 to 4.5, the average change in temperature within our sample is \(\Delta T_{\text{eff}} = 71 \) K. It is slightly higher going from 4.5 to 5.0, with \(\Delta T_{\text{eff}} = 124 \) K. Changes from \(\log g = 4.0 \) to 5.0, yield absolute average changes in \(T_{\text{eff}} \) of 162 K.

Thus, the external errors related to the models are much higher than the internal errors. Tables 2–7 list the best-fit surface gravities and temperatures, with quoted errors representing the error in the mean of multiepoch observations of the object. More conservatively, we consider our external errors to be 150 K in \(T_{\text{eff}} \) and 0.5 dex in \(\log g \).

In Figure 4 we compare our computed temperatures to those obtained by converting spectral types to effective temperatures using the temperature scale for dwarf-type stars of Luhman & Rieke (1998). Generally, the two scales are consistent within the external errors just discussed, with the largest deviations seen in by the accretors (squares) and ultrafast rotators (circles; see also § 5.4). In addition, most of the objects with \(T_{\text{eff}} > 5000 \) K, while individually consistent within the uncertainties, appear systematically to have fitted temperatures slightly greater than those inferred from spectral type, suggesting a small systematic error.

To set a new simpler standard for converting spectral types to effective temperatures for low-mass stars, we fit a second-degree polynomial to the temperature versus spectral type relationship that we find from the temperatures derived from our fitting method to PHOENIX model atmospheres. Because of the jump in spectral type from K7 to M0 we opted to split the fit into two and use a spectral index convention such that an O0 star has a spectral index (spi) of 0.0, and an A0 star has a spectral index of 10.0, and so on, so that an M0 star has a spectral index of 60.0.

Table 7

Object ID	Spectral Type	No. of Obs.	\(T_{\text{eff}} \) (K)	\(\log g \)	\(\log N_{\text{Li}} \)
GJ 729	M3.5	1	3340 ± 10	5.00 ± 0.05	0.25 ± 0.02
GJ 156	K7	4	4110 ± 11	5.19 ± 0.05	0.25 ± 0.02
Gl 205	M1.5	4	3875 ± 10	4.89 ± 0.06	0.25 ± 0.02
Gl 349	K3	5	4712 ± 24	4.79 ± 0.07	0.35 ± 0.02
Gl 382	M1.5	2	3745 ± 11	4.68 ± 0.06	0.25 ± 0.03
Gl 876	M4	1	3290 ± 10	4.60 ± 0.05	0.25 ± 0.02
Gl 880	M1.5	2	3795 ± 11	4.97 ± 0.06	0.25 ± 0.02
HD 103932	K5	5	4360 ± 10	4.77 ± 0.05	0.25 ± 0.02
HD 111631	K7	5	4073 ± 10	5.19 ± 0.05	0.25 ± 0.02
HD 153458	G0	2	5935 ± 11	4.12 ± 0.06	2.25 ± 0.02
HD 172051	G5 V	3	6070 ± 12	4.45 ± 0.06	0.97 ± 0.03
HD 120467	K4	5	4231 ± 11	4.97 ± 0.05	0.25 ± 0.02
HD 83443	K0	3	5280 ± 12	3.90 ± 0.06	0.45 ± 0.02
HD 87359	G5	3	5903 ± 35	4.15 ± 0.05	0.92 ± 0.04
HD 88218	F8	1	6240 ± 10	4.10 ± 0.05	2.80 ± 0.02
HD 92945	K1	1	5310 ± 10	4.70 ± 0.05	2.95 ± 0.02
HD 96700	G2	1	6160 ± 10	4.20 ± 0.05	1.55 ± 0.02
LHS 1763	K5	4	4348 ± 10	4.78 ± 0.05	0.49 ± 0.02
NSV 2863	M1.5	4	3882 ± 11	4.94 ± 0.06	0.25 ± 0.02
NSV 6431	M2	5	3724 ± 10	4.64 ± 0.05	0.25 ± 0.02

Note.—All uncertainties are internal, derived from the scatter of fitted values from individual spectra from the mean. The external uncertainties are much larger (see § 4.5).
Our fit is only applicable to stars with spectral types ranging from F5 to M9, as our survey only involved stars of this type.

For spectral types from F5 to K7 (sp i 35.0–57.0):

\[T_{\text{eff}} = 30.98 + 360.92 \times (\text{sp i}) - 5.110 \times (\text{sp i})^2. \]

(1a)

For spectral types from M0 to M9 (sp i 60.0–69.0):

\[T_{\text{eff}} = 3780.45 + 149.94 \times (\text{sp i}) - 2.463 \times (\text{sp i})^2. \]

(1b)

These fits successfully match 1 \(\sigma \) of the observations within 250 K for the fit to F5–K7 stars and within 175 K for the fit to M0–M9 stars. The fits also agree to within \(\sim 150 \) K to the standard temperature scale for dwarf-type stars of Luhman & Rieke (1998).

5. LITHIUM ABUNDANCES

We analyze lithium abundances using two independent methods. In one method, which follows previous work (Jeffries & Oliveira 2005), we measure the equivalent width (EW) of the 6708 Å lithium absorption doublet for each spectrum. We use this measurement and the spectral types quoted in the literature to chronologically order the groups. The other method uses the best-fit model calculated in § 4 to fit model spectra for various lithium abundances to regions surrounding the 6104 and 6708 Å lithium absorption features. As with our EW measurements, we chronologically order the groups. Further, we compare the observations with PMS models of BCAH98 and Siess et al. (2000) to see if the isochrone ages based on lithium abundances are consistent with other age determinations of the five nearby PMS groups in this study.

5.1. Lithium Equivalent Widths

First, we use the EW of the 6708 Å lithium doublet feature in each observed spectrum as an empirical measurement of the lithium abundance. To measure it, we interactively chose the edges of the lithium feature and the boundaries of sufficiently large regions around it to define the stellar continuum. We chose to consistently reject the lowest 15% of the flux points in the continuum region (corresponding to the deepest absorption features), so that we do not underestimate the continuum flux. We do not apply any correction for the five identified accretors in our sample, but find that veiling due to accretion can reduce the measured EW, as discussed briefly below.

The resulting mean EWs, averaged over all available spectra, are listed in Tables 2–7, with uncertainties being the error in the mean between multiple spectra. Figure 5 displays the resulting EWs as a function of spectral type. From this purely empirical figure, the chronological order of the groups is evident: from oldest to youngest, they are ABD, TUCHOR, BPMG, TWA, and \(\eta \) Cha. The same ordering was found by Zuckerman & Song (2004) from lithium EWs for a smaller sample of stars. Although some TWA members appear to be as young as those in \(\eta \) Cha, it is quite clear that no members are older than BPMG, contrary to the suggestion by Lawson & Crause (2005). (Note that we implicitly assume here the initial lithium abundance was the same for all groups. We return to this below.)

We identify the ultrafast rotators and accretors in our sample with black circles and squares, respectively. The EWs of the rotators in BPMG (red squares) and TUCHOR (green stars) stand out above the general trend for each group; we will return to this in § 5.4.

5.2. Lithium Line Analysis

Using the average best-fit effective temperatures and surface gravities listed in Tables 2–7, synthetic spectra, varying in lithium abundance from \(\log N_{\text{Li}} = 0.0 \) to 4.0 in steps of 0.5, are, for each spectrum, fitted to small spectral regions around the 6104 and 6708 Å lithium absorption lines. The fitting method is identical to the method outlined in § 4.3. However, we constrain the minimization of the least-squares fit in a slightly different manner.
Synthetic spectra of varying lithium abundance are fitted to 20 Å wide spectral regions—specifically 6095–6115 Å and 6695–6715 Å. The 6104 Å lithium triplet line is a weaker transition than the 6708 Å doublet line. It is also blended into the strong 6103 Å Ca ii absorption line. As a result, the line is only detectable for high lithium abundance. Overall, we are not very sensitive to this line, detecting only a small change in χ^2 over the entire lithium abundance range. This is not the case with the stronger lithium doublet at 6708 Å, which is very sensitive to lithium abundance and shows sharp transitions from good to bad in its least-squares fits. For high lithium abundances, however, the line saturates, and without the 6104 Å line no good abundance estimates are possible.

In order to be able to treat all data uniformly, irrespective of lithium abundance, we proceeded as follows. First, we use the 6708 Å region, with its higher sensitivity, to determine the approximate abundance, and select the points with N_{Li} corresponding to the four lowest χ^2 values from the fit to this region. For both spectral regions, we then fit a second-order polynomial to the χ^2 for these four selected N_{Li}. Next we normalize both fitted polynomials by dividing by the minimum χ^2 value for each spectral region. The two normalized curves are then added together to give an average curve, and the minimum of this curve is what we take to be the best-fit N_{Li}. Thus, in our procedure for determining the lithium abundances, we give equal weight to both regions, unlike the procedure outlined in §4.3, where we desired to keep the weight on the best fitted regions by summing the raw χ^2 values.

By way of example, we show, in Figure 6, the spectral fits to the two lithium features for three stars with distinctly different lithium abundances. The resulting normalized χ^2 curves are shown in the bottom panel for each star. Averages of the best-fit N_{Li} for all stars can be found in Tables 2–7, with uncertainties representing the error in the mean between multiple-epoch observations.

As discussed in §4.5, uncertainties in the model atmospheres lead to larger errors than the internal errors quoted in Tables 2–7. Thus, we also handle external errors for the lithium abundances with the same approach. We investigate changes in the fitted abundances by refitting the lithium lines to models with T_{eff} perturbed by ± 100 from the initial best-fit T_{eff} and also to models with $\log g$ also perturbed by ± 0.5 dex. We find that this parameter leads to changes in N_{Li} of 0.15 on average. We show this error on all relevant figures to indicate our estimate of the external uncertainties.

5.3. Ages from the Lithium Abundance versus Temperature Isochrones

As a PMS group ages, the lithium abundances of group members deplete as a function of luminosity and time (see §1). As with EWs in §5.1, we can order the groups in age using the relative depletion of members of different groups and by comparison with models, we can also determine absolute ages. Of course, the absolute ages will only be as good as the models. To get an idea of the associated uncertainty, we try both the models of BCAH98 and Siess et al. (2000).

In Figure 7, we show the distribution of measured lithium abundance as a function of temperature for each of the groups in this study, as well as for the field stars (which should be fully depleted). As with the EWs in §5.1, it is easy to order the groups chronologically based on the lithium depletion distribution: from oldest to youngest, we again find the order ABD, TUCHOR, BPMG, and then η Cha and TWA, both at about the same age. It is also clear that the field stars are older than all of the PMS groups in this study.

In Figure 8, the dependence of log N_{Li} on stellar T_{eff} is shown for each group individually, as well as a range of PMS isochrones from BCAH98 (solid lines) and Siess et al. (2000) (dashed lines). Both models use a convection mixing length of $\alpha_{\text{MLT}} = 1.9$ and are scaled to the initial lithium abundance. We chose an initial lithium abundance of $N_{\text{Li}} = 3.7$ to match the abundance we measured from our method (see §5.2) for the majority of undepleted stars in the entire sample. The inferred ages do depend on this choice, as well as the choice of model.

From Figure 8, we can infer ages by eye for each group. We tried but decided not to use quantitative analysis, because it is apparent that the models do not reproduce the data to enough accuracy, especially in the temperature range where the lithium...
We find a lithium depletion age of 12 ± 6 Myr for η Cha using the models of BCAH98 and 12 ± 8 Myr using the Siess et al. (2000) models (hereafter given in parentheses), and an age of 12 ± 8 Myr (12 ± 8 Myr) for TWA, consistent with dynamical expansion ages (Jilinski et al. 2005; de la Reza et al. 2006) and other age estimates also based on BCAH98 PMS models (Luhman & Steeghs 2004; Zuckerman & Song 2004; Barrado y Navascués 2006). For BPMG, we find an age of 21 ± 9 Myr (13 ± 5 Myr), which is in agreement with the estimate of 9–17 Myr from other methods (Zuckerman & Song 2004; Feigelson et al. 2006). It is slightly higher than its dynamical expansion age of 11.5 Myr from Ortega et al. (2002), but agrees with a different age based on lithium dating of 10–20 Myr recently found by Mamajek et al. (2007). For TUCHOR, we find an age of 27 ± 11 Myr (22 ± 10 Myr), which is consistent with all previous age estimates for this group (Zuckerman & Webb 2000; Stelzer & Neuhaüser 2000; Torres et al. 2000).

For ABD, we find that it is clearly older than TUCHOR and clearly younger than the field stars; however, the age estimate from PMS models is poorly constrained. Although the field stars show more depletion than ABD, this is not predicted by the PMS isochrones; both models show no depletion after ~ 45 Myr for stars with $4000 \, \text{K} < T_{\text{eff}} < 6000 \, \text{K}$. Until the PMS evolutionary models are improved, the best way to find an upper limit on the age of the ABD group would be to use the cool end of the LDB. This would require stars with spectral types later than M3 ($T_{\text{eff}} \approx 3300 \, \text{K}$), but unfortunately no such members are known in ABD. Within our present large uncertainties, our age estimate is consistent with both a younger estimate of 50 Myr, based on H$_\alpha$ emission strength (Zuckerman et al. 2004), and an older one of 100–140 Myr from HR isochrones (Luhman et al. 2005) and dynamical expansion (Ortega et al. 2007).
We close with a number of notes. First, while the poor fit of the data to the models leads to rather large uncertainties on the ages, these should be considered overall shifts: the age ordering of the groups is secure. Second, an additional uncertainty in the derived ages is our choice of initial lithium abundance, \(\log N_{\text{Li}} = 3.7 \), based on our observations. Decreasing the initial lithium abundance to \(\log N_{\text{Li}} = 3.3 \) (the value used in Jeffries & Oliveira 2005), predicts younger group ages by about 5 Myr. On the other hand, using a higher initial lithium abundance of \(\log N_{\text{Li}} = 4.0 \), yields ages larger by 5–10 Myr. Third, we have ignored non-LTE effects in the lithium lines (§3). While our scatter is larger than the predicted effects, the systematic changes with temperature and abundance will lead to additional systematic age differences. It also may be the underlying reason for our need for a relatively high initial abundance: Carlsson et al. (1994) found that around 6000 K, the correction for the 6708 line is about \(-0.3\) dex, which would imply initial abundances more in line with expectations (at these temperatures, the 6104 Å line is very weak and contributes little to our fits).

5.4. The Effect of Rotation on Lithium Depletion

We examine the effect of stellar rotation on lithium depletion using projected rotational velocities found previously from our observations (Jayawardhana et al. 2006; Scholz et al. 2007). In Figure 8, we identify ultrafast rotators as those stars that have \(v \sin i > 70 \text{ km s}^{-1} \). One member (TWA 6) from TWA, two members (PZ Tel, CD 64 1208) of BPMG, and three members (CD 53 544, HIP 108422, HIP 2729) of TUCHOR are identified as ultrafast rotators. In three of the cooler stars (\(T_{\text{eff}} \approx 3800 \text{ K} \)), CD 64 1208, CD 53 544, and HIP 2729, the lithium EWs are noticeably higher, and the derived abundances larger, than the trend in lithium depletion for the entire group. The correlation between fast rotation and slower lithium depletion has also been seen previously in a sample of weak-line T Tauri stars (Martin et al. 1994) and in the 115 Myr Pleiades cluster (Soderblom et al. 1993; García López et al. 1994). It may be related to rapidly rotating stars being relatively cooler as the rapid rotation inhibits convection (Chabrier et al. 2007). This alternative view is supported by the location of the rotators in Figure 4. It is evident that the \(T_{\text{eff}} \) derived for these rotators is 100–300 K cooler than the temperature derived from their spectral types. It may be that the presence of a colder equatorial region and a hotter polar region affects the model fits differently than the spectral typing.

However, the trend that lithium depletion is slowed down by rotation is not seen in all of our ultrafast rotators. The relatively slow rotators PZ Tel (\(v \sin i = 77.5 \text{ km s}^{-1} \)) and TWA 6 (\(v \sin i = 79.5 \text{ km s}^{-1} \)) have lithium abundances comparable to other members in their groups. For our faster rotator, HIP 108422 (\(v \sin i = 139.8 \text{ km s}^{-1} \)), the spectrum is so strongly broadened that our fitting method does a poor job and we see no change in the quality of fit for varying lithium abundances. For this reason, we do not quote an abundance for this object, but we do note that the equivalent width measured is consistent with other group members.

5.5. Notes on Individual Systems

BD 17 6128.— This binary system from BPMG consists of a K7 primary with \(T_{\text{eff}} = 4140 \text{ K} \) and \(\log N_{\text{Li}} = 2.78 \) and a lithium depleted secondary of \(T_{\text{eff}} = 3350 \text{ K} \) and \(\log N_{\text{Li}} = 0.54 \). This system is unique to our sample, as it is the only case of the cool end of the LDB in effect within a binary, and it provides a precise, if model dependent, age of the system. Using the models from BCAH98, an age of 15–50 Myr is predicted, consistent with the age we inferred for BPMG as a group.

GSC 08056-0482.— The measured \(\log N_{\text{Li}} \) for TUCHOR member GSC 08056-0482 is much higher than expected for a \(\sim 30 \text{ Myr} \) old, M3 dwarf. Indeed, another M3 star in the younger BPMG, GSC 08491-1194, has an abundance over two orders of magnitude smaller (consistent with models at \(\sim 20 \text{ Myr} \)). With a modest \(v \sin i \) of 34.2 km s\(^{-1}\) (Jayawardhana et al. 2006), rotation does not explain the high lithium abundance. As pointed out already by previous authors (see Table 3 of Zuckerman & Song 2004), the lithium abundance suggests that GSC 08056-0482 is likely not a member of TUCHOR, but a star slightly older than TWA and \(\eta \) Cha, but definitely younger than BPMG.

6. SUMMARY AND OUTLOOK

We have measured effective temperatures, surface gravities, lithium equivalent widths and lithium abundances for 121 low-mass PMS stars from five nearby, PMS groups ranging in age from 8–125 Myr by performing least-squares fits of high resolution spectra to synthetic spectra created from PHOENIX model atmospheres (Hauschildt & Baron 1999). To investigate the reliability of our measurements we compare the derived \(T_{\text{eff}} \) and \(\log g \) with isochrones from PMS evolutionary models (BCAH98), as well as temperatures derived from spectral types.

Isochrones from PMS models for \(\log N_{\text{Li}} \) as a function of \(T_{\text{eff}} \) are visually compared to the observed distribution. We find agreement between ages derived from PMS isochrones of BCAH98 and Siess et al. (2000) to ages calculated from other methods such as dynamical expansion ages. We find that \(\eta \) Cha and TWA have ages of 12 ± 6 and 12 ± 8 Myr, respectively. BPMG has an age of 21 ± 9 Myr, and TUCHOR has an age of 27 ± 11 Myr. We can only constrain a tight lower limit for ABD, with an age greater than 45 Myr, since, according to the PMS models, there is no more lithium depletion after \(\sim 45 \text{ Myr} \) for stars with 4000 K < \(T_{\text{eff}} < 6000 \text{ K} \). However, the halting of lithium depletion at this age and temperature is inconsistent with observations of radial velocity standards which demonstrate more depletion than the ABD group and the model predictions. Finally, we find that some of the ultrafast rotators in our sample have significantly less lithium depletion than other stars in the same group at the same temperature.

The consistent determination of \(T_{\text{eff}} \) and \(\log g \) between multiple epochs (\(\sigma_{\text{g}} \approx 10 \text{ K}, \sigma_{\log g} \approx 0.05 \text{ dex} \)) means that, in principle, we should be able to constrain those parameters with this precision. As revealed by Figure 3, however, there is an apparent systematic offset between the \(\log g \) inferred from model spectra and \(\log g \) expected from models of stellar evolution (§4.5). To account for these offsets, we introduce rough conservative external errors by examining how the measured parameters depend on each other. We find that the systematic errors in \(\log g \) of 0.5 dex lead to systematic errors of 100 K in our ability to constrain the \(T_{\text{eff}} \). These external errors, similarly lead to offsets in the measured lithium abundances of 0.15 dex.

The small internal errors that we have measured imply that currently our accuracy is limited by the models. With further improvements in the atmospheric models, there is a potential of comparing \(T_{\text{eff}} \) and \(\log g \) directly to evolutionary models, thereby finding an age constraint independent of other estimators, such as color–magnitude diagram or lithium depletion boundary fitting. Our data set would be well suited for use with such future improved models. Another use of our data set would be to derive both overall metallicity and abundances for individual elements. While we do not believe this would affect our derived temperatures, etc., to a significant degree, it may be interesting to see how uniform the abundances are within (and between) groups, and whether there is any dependence on binarity, etc.
We thank the referee for an excellent and thorough review, which helped to improve our manuscript greatly. We also thank the outstanding support staff at Magellan for their assistance during multiple observing runs. This work was supported in part by NSERC and the DFG (via Graduiertenkolleg 1351). Some of the calculations presented here were performed at the Höchstleistungs Rechenzentrum Nord (HLRN); at the NASA’s Advanced Supercomputing Division’s Project Columbia, at the Hamburger Sternwarte G5 and Delta Opteron clusters financially supported by the DFG and the State of Hamburg; and at the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the Department of Energy under contract DE-AC03-76SF00098. We thank all these institutions for a generous allocation of computer time.

REFERENCES

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Barrado y Navascués, D. 2006, A&A, 459, 511
Barrado y Navascués, D., Stauffer, J. R., & Jayawardhana, R. 2004, ApJ, 614, 386
Barrado y Navascués, D., Stauffer, J. R., & Patten, B. M. 1999, ApJ, 522, L53
Bildsten, L., Brown, E. F., Matzner, C. D., & Ushomirsky, G. 1997, ApJ, 482, 442
Chabrier, G., Gallardo, J., & Baraffe, I. 2007, A&A, 472, L17
Carlsson, M., Rutten, R. J., Bruls, J. H. M. J., & Shchukina, N. G. 1994, A&A, 288, 860
de la Reza, R., Jilinski, E., & Ortega, V. G. 2006, AJ, 131, 2609
Eisloeffel, J., Solf, J., & Boehm, K. H. 1990, A&A, 237, 369
Feigelson, E. D., Lawson, W. A., Stark, M., Townsley, L., & Garmire, G. P. 2006, AJ, 131, 1730
Fuhrmeister, B., Schmitt, J. H. M. M., & Hauschildt, P. H. 2005, A&A, 439, 1137
Garcia López, R. J., Rebolo, R., & Martín, E. L. 1994, A&A, 282, 518
Hauschildt, P. H., & Baron, E. 1999, J. Comput. Appl. Math., 109, 41
Jayawardhana, R., Coffey, J., Scholz, A., Brandeker, A., & van Kerkwijk, M. H. 2006, ApJ, 648, 1206
Jeffries, R. D., & Oliveira, J. M. 2005, MNRAS, 358, 13
Jilinski, E., Ortega, V. G., & de la Reza, R. 2005, ApJ, 619, 945
Kirkpatrick, J. D., Henry, T. J., & McCarthy, D. W., Jr. 1991, ApJS, 77, 417
Kučinskas, A., Hauschildt, P. H., Brott, I., Vansevičius, V., Lindegren, L., Tanabé, T., & Allard, F. 2006, A&A, 452, 1021
Kučinskas, A., Hauschildt, P. H., Ludwig, H.-G., Brott, I., Vansevičius, V., Lindegren, L., Tanabé, T., & Allard, F. 2005, A&A, 442, 281
Lawson, W. A., & Crause, L. A. 2005, MNRAS, 357, 1399
Luhman, K. L., & Rieke, G. H. 1998, ApJ, 497, 354
Luhman, K. L., Stauffer, J. R., & Mamajek, E. E. 2005, ApJ, 628, L69
Luhman, K. L., & Steeghs, D. 2004, ApJ, 609, 917
Makarov, V. V., Gaume, R. A., & Andrievsky, S. M. 2005, MNRAS, 362, 1109
Mamajek, E. E., Barrado y Navascués, D., Randich, S., Jensen, E. L. N., Young, P. A., Miglio, A., & Barnes, S. A. 2007, preprint (astro-ph/0702074)
Mamajek, E. E., Lawson, W. A., & Feigelson, E. D. 1999, ApJ, 156, L77
Martin, E. L., Rebolo, R., Magazzù, A., & Pavlenko, Ya. V. 1994, A&A, 282, 503
Mohanty, S., Basri, G., Jayawardhana, R., Allard, F., Hauschildt, P., & Ardila, D. 2004, ApJ, 609, 854
Ortega, V. G., de la Reza, R., Jilinski, E., & Bazzanella, B. 2002, ApJ, 575, L75
Ortega, V. G., Jilinski, E., de la Reza, R., & Bazzanella, B. 2007, preprint (astro-ph/0702315)
Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in C. The Art of Scientific Computing (2nd ed.; Cambridge: Cambridge Univ. Press)
Rucins, S. M. 2002, AJ, 124, 1746
Scholz, A., Coffey, J., Brandeker, A., & Jayawardhana, R. 2007, ApJ, 662, 1254
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
Soderblom, D. R., Jones, B. F., Balachandran, S., Stauffer, J. R., Duncan, D. K., Feedele, S. B., & Hudon, J. D. 1993, AJ, 106, 1059
Song, L., Zuckerman, B., & Bessell, M. S. 2003, ApJ, 599, 342
Stahler, S. W., & Palla, F. 2005, The Formation of Stars (New York: Wiley)
Stauffer, J. R., Schultz, G., & Kirkpatrick, J. D. 1998, ApJ, 499, L199
Stauffer, J. R., et al. 1999, ApJ, 527, 219
Stelzer, B., & Neuhäuser, R. 2000, A&A, 361, 581
Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R., & Jilinski, E. 2000, AJ, 120, 1410
Torres-Dodgen, A. V., & Weaver, W. B. 1993, PASP, 105, 693
Zuckerman, B., & Song, I. 2004, AR&AA, 42, 685
Zuckerman, B., & Bessell, M. S. 2004, ApJ, 613, L65
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ, 562, L87
Zuckerman, B., & Webb, R. A. 2000, ApJ, 535, 959