Supporting Information (SI) for

The complexity and dynamics of the tissue glycoproteome associated with prostate cancer progression

Rebeca Kawahara1,2,3, Saulo Recuero4, Miguel Srougi4, Katia R.M. Leite4, Morten Thaysen-Andersen2,3\#§, and Giuseppe Palmisano1\#§

1Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
2Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
3Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
4Laboratório de Investigação Médica da Disciplina de Urologia da Faculdade de Medicina da USP, LIM55, São Paulo, Brazil.

\# These authors share authorship

* To whom correspondence should be addressed:

i. GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes 1374, CEP: 05508-000, São Paulo, Brazil. Email: palmisano.gp@usp.br

ii. Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia. E-mail: morten.andersen@mq.edu.au

\textbf{Keywords:} glycosylation, glycomics, glycoproteomics, mass spectrometry, prostate cancer

Running title: The glycoproteome dynamics underpinning prostate cancer progression
Supplementary Figures Legends

Supplemental Figure 1 Example of N-glycan isomeric separation by PGC and MSMS fragment-specific substructure diagnostic ions. A) Distinct PGC-LC elution pattern for α2,6 and α2,3 sialic acid and fragment-specific substructure diagnostic ions for core fucosylation and 6 arm composition. B) Fragment-specific substructure diagnostic ions for LacdiNac containing N-glycans. C) Fragment-specific substructure diagnostic ions for bisecting containing N-glycans. D) Fragment-specific substructure diagnostic ions for NeuGc containing N-glycans.

Supplementary Figure 2 Overview of the reproducibility of unique glycoform identified in the prostate tissue. A) Distribution of (number) and % of unique glycoforms identified across 10-100% of the 54 files. The numbers in parenthesis show the number of glycoforms. B) Distribution of (number) and % of unique glycoforms identified across 1-6 conditions (five Pca grades and BPH) is shown in the bar graph.
Supplementary Tables Legends

Supplemental Table SA: Clinical information of the patients included in the study

Supplementary Table SB: Overview of the raw files and search parameters.

Supplementary Table S1: N-glycome dataset of PCa and BPH tissues.

Supplementary Table S2: O-glycome dataset of PCa and BPH tissues.

Supplementary Table S3: Intact N-glycopeptide dataset of PCa and BPH tissues.

Supplementary Table S4: Intact O-glycopeptide dataset of PCa and BPH tissues.

Supplementary Table S5: De-N-glycopeptide dataset of PCa and BPH tissues.

Supplementary Table S6: Proteome dataset of PCa and BPH tissues.

Supplementary Table S7: Significant correlated intact N-glycopeptide with N-glycan structure.

Supplementary Table S8: Significant correlated intact O-glycopeptide with O-glycan structure.

Supplementary Data Legends

Supplementary Data S1: Spectra evidences for reduced N-glycans (alditols) released from PCa and BPH tissues

Supplementary Data S2: Spectra evidences for reduced O-glycans (alditols) released from PCa and BPH tissues
Supplementary Figures

Supplementary Figure S1

A

B

Full MS Base Peak
m/z=1059.4

MS/MS spectra
m/z=1059.38
RT 30.52 min
Supplementary Figure S2

A

B

% of unique glycoforms

Frequency of observation (%)

% of unique glycoforms

Frequency of observation (%)

(30) 0.4 (1142) 15.3 (789) 10.6 (691) 9.3 (689) 9.3 (1223) 16.4

(5) 0.0 (7) 0.1 (9) 0.1 (11) 7.1 (530) 92.5 (6887)