Objetivo: Verificar, por meio de uma revisão sistemática, a acurácia da avaliação nutricional em crianças e adolescentes com base nas curvas de crescimento de comprimento/altura para a idade e índice de massa corporal para a idade do Centers for Disease Control and Prevention (CDC) (2000), Organização Mundial da Saúde (OMS) (2006/2007) e International Obesity Task Force (IOTF) (2012).

Fontes de dados: Os artigos foram selecionados nas bases de dados Medical Literature Analysis and Retrieval System Online (MEDLINE), via PubMed, National Library of Medicine e The National Institutes of Health (NIH), Scientific Electronic Library Online (SciELO) e Biblioteca Virtual em Saúde (BVS). Os seguintes descritores foram utilizados na busca: “criança”, “adolescente”, “avaliação nutricional”, “gráficos de crescimento”, “grupos étnicos”, “estatura-idade”, “índice de massa corporal”, “comparação”, “CDC”, “OMS” e “IOTF”. Os artigos selecionados tiveram sua qualidade avaliada por meio da escala Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies da NIH.

Síntese dos dados: Trinta e três estudos publicados entre 2007 e 2020 foram selecionados e, deles, 20 tinham boa qualidade, 12 tinham qualidade razoável e 1 tinha qualidade insatisfatória. Para menores de cinco anos, as curvas de comprimento/altura para a idade da OMS demonstraram ser apropriadas para as populações de Argentina, África do Sul, Brasil, Gabão, Catar, Paquistão e Estados Unidos. Para maiores de cinco anos, as curvas de IMC para a idade da OMS apresentaram-se acuradas para as populações brasileira e canadense, enquanto as curvas do IOTF se apresentaram acuradas para as populações europeias.

Conclusões: Para maiores de cinco anos, há dificuldade de se obterem curvas internacionais que possam atender a um período tão longo de crescimento e que incluam diferenças genéticas, culturais e socioeconômicas de populações multiétnicas que já tenham superado a tendência secular de crescimento.

Palavras-chave: Criança; Adolescente; Avaliação nutricional; Gráficos de crescimento; Estatura-idade; Índice de massa corporal.

ABSTRACT

Objective: To verify, through a systematic review, the accuracy of nutritional assessment in children and adolescents using the length/height-for-age and BMI-for-age growth charts of the Centers for Disease Control and Prevention (CDC) (2000), the World Health Organization (WHO) (2006/2007) and the International Obesity Task Force (IOTF) (2012).

Data source: We selected articles from the databases Medical Literature Analysis and Retrieval System Online (MEDLINE), through PubMed, National Library of Medicine and The National Institutes of Health (NIH), Scientific Electronic Library Online (SciELO) and Virtual Health Library (VHL). The following descriptors were used for the search: “Child”, “Adolescent”, “Nutritional Assessment”, “Growth Chart”, “Ethnic Groups”, “Stature by age”, “Body Mass Index”, “Comparison”, “CDC”, “WHO”, and “IOTF”. The selected articles were assessed for quality through the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies of the NIH.

Data synthesis: Thirty-three studies published between 2007 and 2020 were selected and, of these, 20 presented good quality, 12 presented fair quality and one presented poor quality. For children under five years old, the WHO length/height-for-age growth charts were shown appropriate for children from Argentina, South Africa, Brazil, Gabon, Qatar, Pakistan and the United States. For those five years old and older, the WHO BMI-for-age growth charts were accurate for the Brazilian and Canadian populations, while the IOTF growth charts were accurate for the European populations.

Conclusions: There are difficulties in obtaining international growth charts for children from 5 years old and older that go along with a long period of growth, and which include genetic, cultural and socioeconomic differences of multiethnic populations who have already overcome the secular trend in height.

Keywords: Child; Adolescent; Nutrition assessment; Growth charts; Stature by age; Body mass index.

*Autora correspondente. E-mail: marianehelen@usp.br (M. H. de Oliveira).
+Universidade de São Paulo, São Paulo, SP, Brasil.
Recebido em 19 de janeiro de 2021; aprovado em 1º de abril de 2021.
INTRODUÇÃO

Há décadas a precisão na avaliação do crescimento de crianças e adolescentes tem sido objeto de estudo de diversos pesquisa- dores, que utilizam a antropometria e as curvas de crescimento para monitorar a evolução das alterações do crescimento e para avaliar o estado nutricional de menores de 20 anos. Essas curvas foram criadas com base em estudos longitudinais e ou transversais e com uma amostra de crianças e adolescentes considerada referência ou padrão. Elas expressam as distribuições em percentis ou escores Z e são tidas como bastante sensíveis para a avaliação do estado nutricional, propiciando intervenções e a prevenção de agravos à saúde.

Diferentes curvas foram propostas por algumas instituições e organizações ao longo dos anos para uso na população mundial, por meio de estudos com amostras nacionais ou internacionais e com diferentes critérios de inclusão. Entre essas curvas, podemos destacar as do Centers for Disease Control and Prevention (CDC, 2000), da Organização Mundial da Saúde (OMS) (2006/2007) e do International Obesity Task Force (IOTF) (2012).

As curvas de crescimento do CDC foram elaboradas nos anos 2000 com base em cinco inquéritos nacionais dos Estados Unidos. São expressas em percentis e específicas por sexo e grupo etário. Para crianças menores de três anos, há curvas de comprimento para a idade, peso para a idade e perímetro cefálico para a idade. Para crianças menores de cinco anos, existe a curva de peso para a altura e, para crianças e adolescentes dos dois aos 20 anos, têm-se as curvas de altura para a idade, peso para a idade e índice de massa corporal (IMC) para a idade.

As curvas de crescimento da OMS para crianças menores de cinco anos foram desenvolvidas em 2006 com base no Estudo Multicêntrico de Referência do Crescimento, cuja meta era descrever o crescimento de crianças saudáveis. Esse trabalho foi conduzido em seis países: Brasil (Pelotas), Estados Unidos (Davis), Gana (Accra), Noruega (Oslo), Índia (Nova Délhi) e Omã (Muscat) e com crianças consideradas padrão, ou seja, que viviam em condições socioambientais e econômicas ideais para o desenvolvimento adequado. Essas curvas de crescimento foram construídas com base em amostras longitudinais (do nascimento aos dois anos de idade) e transversais com crianças de 18 a 71 meses. Já para crianças de cinco anos de idade ou mais e adolescentes de até 20 anos, a construção das curvas de crescimento foi baseada no estudo transversal do National Center for Health Statistics (NCHS/1977), tendo como população de estudo somente os Estados Unidos. Para a construção dessas curvas, o comitê de especialistas da OMS fez uma nova modelagem dos dados da NCHS 1997, mantendo apenas crianças e adolescentes não obesos que haviam atingido as alturas esperadas para a idade e acalentando dados dos padrões de crescimento dos menores de cinco anos com idades entre 18 e 71 meses.

Essas adição de dados propiciou o alisamento nas curvas de crescimento, criando uma transição suave aos cinco anos de idade e ao fim da adolescência, com adequação aos pontos de corte de sobrepeso e obesidade recomendados para os adultos.

As curvas da OMS são expressas em percentis ou escores Z e específicas para sexo e grupo etário. Para menores de cinco anos há curvas de perímetro cefálico para a idade e peso para a altura. Para menores de 10 anos há a curva de peso para a idade e, para crianças e adolescentes menores de 20 anos, há curvas de comprimento/altura para a idade e IMC para a idade. Ainda nos anos 2000, o IOTF construiu para crianças e adolescentes com idades entre dois e 20 anos a curva de IMC para a idade com os valores de IMC 25 e 30 kg/m² para 18 anos, sugerindo classificações distribuídas por idade e sexo e apresentando as classificações de sobrepeso e obesidade. Em 2012, após estudos apontarem divergências nas curvas de referência da OMS (2006/2007) em algumas populações, o IOTF divulgou uma atualização dos seus pontos de corte utilizando amostras internacionais e propôs esses pontos para o IMC, o que resultou em seis diferentes classificações semelhantes às da OMS, que são consideradas como padrão.

Os dois principais indicadores antropométricos utilizados na avaliação de crianças e adolescentes são o de comprimento/altura para a idade e o de IMC para a idade. Esses indicadores têm como objetivos, respectivamente: a) evidenciar a trajetória linear de crescimento, sendo fundamentais na detecção de baixa estatura; b) detectar baixo peso ou excesso de peso. Os pontos de corte do CDC (2000), da OMS (2006/2007) e do IOTF (2012), em percentis, para os indicadores de comprimento/altura para a idade e IMC para a idade estão apresentados no Quadro 1.

A OMS recomenda suas próprias curvas de crescimento (2006/2007) para serem utilizadas internacionalmente, e elas estão sendo adotadas nos programas de saúde e nutrição de mais de 140 países, incluindo o Brasil. Porém, alguns estudos têm apresentado comparações divergentes entre as curvas nacionais e as curvas de referência de crescimento da OMS. São exemplos lugares como Reino Unido, Polônia, Noruega, Alemanha, Hong Kong, Irã, Emirados Árabes e África do Sul. Por esse motivo, o Reino Unido criou curvas para determinadas idades com base na junção das referências da OMS com os dados locais, enquanto alguns países, como China, Bolívia, Dinamarca, Noruega e Bélgica, não têm utilizado amplamente as curvas da OMS em razão das divergências nos parâmetros de crescimento de suas populações quando comparados às curvas de referência.

As divergências metodológicas na construção dos pontos de corte entre as referências do CDC, da OMS e do IOTF...
envolvem a composição da população e a modelagem dos parâmetros descritos de índice antropométrico e dos pontos de corte. Essas diferenças geram efeitos sobre a acurácia da classificação nutricional e, por extensão, dificultam o diagnóstico e a comparação das prevalências.

Alguns autores justificam que tais curvas de crescimento deveriam ser construídas com base na população local em função das diferenças genéticas, culturais e socioeconômicas que impactam os processos de crescimento físico e maturação biológica, ocasionando perfiles de crescimento e IMC diferentes.

Ademais, a variação da composição corporal entre crianças e adolescentes de diferentes etnias tem-se apresentado como obstáculo para a determinação de um padrão internacional de classificação do estado nutricional. Assim, o objetivo deste estudo foi verificar, por meio de uma revisão sistemática, a acurácia da avaliação nutricional em crianças e adolescentes com base nas curvas de crescimento recomendadas para uso internacional de comprimento/altura para a idade e IMC para a idade do CDC (2000), da OMS (2006/2007) e do IOTF (2012).

QUADRO 1 Pontos de corte, em percentis, dos indicadores de comprimento/altura para a idade e IMC para a idade do Centers for Disease Control and Prevention (2000), da Organização Mundial da Saúde (2006/2007) e do International Obesity Task Force (2012)

Indicador	Faixa etária	Estado nutricional	OMS* (♂/♀)	CDC** (♂/♀)	IOTF**
Comprimento/altura para a idade					
	0<20 anos				
	Baixa estatura	p<3,00	p<5,00	--	--
	Estatura adequada	p≥3,00	p≥5,00	--	--
	Magreza acentuada	p<0,10	--	--	--
	Magreza	p≥0,10; p<3,00	p<5,00	p<15,50	p<6,50
	Eutrofia	p≥3,00; ps85,00	p≥5,00; p<85,00	p≥15,50; p<90,50	p≥16,50; p<89,30
	Risco de sobrepeso	p>85,00; p≤97,00	--	--	--
	Sobrepeso	p<97,00; ps99,90	p≥85,00; p<95,00	p≥90,50; p<98,90	p≥89,30; p<98,60
	Obesidade	p≥99,90	p≥95,00	p≥98,90; p<99,83	p≥98,60; p<99,76
	Obesidade grave	--	--	p≥99,83	p≥99,76
	0<5 anos				
	Magreza acentuada	p<0,10	--	--	--
	Magreza	p≥0,10; p<3,00	p<5,00	p<15,50	p<16,50
	Eutrofia	p≥3,00; ps85,00	p≥5,00; p<85,00	p≥15,50; p<90,50	p≥16,50; p<89,30
	Sobrepeso	p>85,00; p≤97,00	p≥85,00; p<95,00	p≥90,50; p<98,90	p≥89,30; p<98,60
	Obesidade	p<97,00; ps99,90	p≥95,00	p≥98,90; p<99,83	p≥98,60; p<99,76
	Obesidade grave	p≥99,90	--	p≥99,83	p≥99,76
	5<20 anos				
	Magreza acentuada	p<0,10	--	--	--
	Magreza	p≥0,10; p<3,00	p<5,00	p<15,50	p<16,50
	Eutrofia	p≥3,00; ps85,00	p≥5,00; p<85,00	p≥15,50; p<90,50	p≥16,50; p<89,30
	Sobrepeso	p>85,00; p≤97,00	p≥85,00; p<95,00	p≥90,50; p<98,90	p≥89,30; p<98,60
	Obesidade	p<97,00; ps99,90	p≥95,00	p≥98,90; p<99,83	p≥98,60; p<99,76
	Obesidade grave	p≥99,90	--	p≥99,83	p≥99,76

CDC: Centers for Disease Control and Prevention; OMS: Organização Mundial da Saúde; IOTF: International Obesity Task Force
Fonte: adaptado de CDC (2000), OMS (2006/2007) e IOTF (2012).
Comprimento: medida aferida com a criança deitada (<2 anos de idade). Altura: medida aferida com a criança/adolescente em pé (≥2 anos de idade). ♂: crianças e adolescentes do sexo masculino; ♀: crianças e adolescentes do sexo feminino. p: percentil. *Valores de referência de índice de massa corporal para a idade desde o nascimento. **Valores de referência de índice de massa corporal para a idade de dois anos de idade em diante. -- não aplicável (não apresenta pontos de corte ou referências para essas classificações).

MÉTODO

Este estudo caracteriza-se como uma revisão sistemática da literatura, delineada de acordo com as recomendações preconizadas pela Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Este estudo foi registrado no International...
Acurácia das curvas de crescimento na avaliação nutricional

Prospective Register of Systematic Reviews (PROSPERO) sob o número de protocolo CRD42020215498, e os dados e delineamentos desta revisão podem ser acessados em www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020215498.

A estratégia Participants, Intervention, Comparison, Outcome, Study Design (PICOS) foi aplicada para a seleção dos estudos. Foram considerados os trabalhos que avaliaram: P (crianças e adolescentes), I (curvas de crescimento de comprimento/altura para a idade e/ou IMC para a idade recomendadas para uso internacional), C (curvas de crescimento nacionais e/ou internacionais), O (estado nutricional), S (coorte, transversal).

Dois pesquisadores independentes realizaram a consulta de artigos publicados em língua portuguesa, espanhola e inglesa e entre os anos 2000 e 2020 nas bases de dados eletrônicos Medical Literature Analysis and Retrieval System Online (MEDLINE), via PubMed, National Library of Medicine e The National Institutes of Health, Scientific Electronic Library Online (SciELO) e Biblioteca Virtual em Saúde (BVS). Na estratégia de busca, foram utilizados os termos do Medical Subject Headings (MeSH) e os Descritores em Ciências da Saúde (DeCS): “criança”, “adolescente”, “avaliação nutricional”, “gráficos de crescimento”, “grupos étnicos”, “estatura-idade”, “índice de massa corporal”, “comparação”, “CDC”, “OMS” e “IOTF” (sob a forma combinada e nas línguas portuguesa e inglesa).

As pesquisas foram consideradas elegíveis para inclusão quando corresponderam aos seguintes critérios: a) avaliaram a curva de crescimento de comprimento/altura para a idade do CDC (2000) e/ou da OMS (2006/2007) em crianças e/ou adolescentes; e/ou b) avaliaram as curvas de crescimento de IMC para a idade do CDC (2000) e/ou da OMS (2006/2007) e/ou do IOTF (2012) em crianças e/ou adolescentes. A seleção das evidências foi restrita aos trabalhos originais, sendo excluídos estudos de revisão, estudos experimentais com animais, relatos de caso, estudos duplicados e em idiomas diferentes dos citados anteriormente.

A seleção foi realizada primeiramente por títulos, em seguida pela seleção por resumos e, por fim, pela leitura na íntegra. As três etapas foram executadas por dois avaliadores, que decidiram sobre a inclusão em cada etapa com base nos critérios de elegibilidade. Cada avaliador, de modo independente, decidiu por “inclusão” ou “exclusão” e os resultados divergentes foram analisados por um terceiro avaliador. Os estudos elegíveis tiveram os dados extraídos de forma independente por dois autores, que os organizaram por meio de instrumentos construídos para esse fim, seguindo as recomendações metodológicas e contemplando os seguintes itens: identificação do artigo original, delineamento do estudo, população de estudo, tamanho da amostra e principais resultados referentes aos indicadores/referências avaliadas.

A qualidade dos artigos foi avaliada por meio da adaptação da escala Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, apropriada para estudos observacionais da NIH. Esse instrumento sugere a classificação da qualidade dos artigos em Boa (good), Razoável (fair) e Insatisfatória (poor) pela análise de 14 itens. Para avaliar os estudos incluídos nesta revisão foram utilizados oito itens dessa escala, referentes aos objetivos da pesquisa, à população do estudo, aos critérios de seleção, ao poder estatístico amostral, às medidas de intervenção/exposição, à perda de seguimento e ao desfecho.

RESULTADOS E DISCUSSÃO

Identificaram-se nas bases de dados, em outubro de 2020, 184 artigos publicados entre os anos 2000 e 2020. Após a seleção por títulos foram excluídos 91 estudos, permanecendo 93 artigos para a análise de resumo. Foram selecionados para leitura na íntegra 55 artigos, dos quais 33, publicados entre 2007 e 2020, foram incluídos na síntese de evidências desta revisão. A Figura 1 mostra o processo de seleção dos

Figura 1 Fluxograma da seleção dos estudos. São Paulo, SP, Brasil, 2021.
artigos em suas diferentes etapas e o respectivo número de trabalhos recuperados.

Na literatura, identificaram-se estudos de diversos países que analisaram a aplicação das curvas internacionais de crescimento em suas populações. Para apresentar os resultados desse levantamento, optou-se por agrupar a síntese dos achados das 33 evidências entre as pesquisas que avaliaram as curvas de crescimento para crianças menores de cinco anos (Quadro 2), as que as avaliaram para maiores de cinco anos (Quadro 3) e as que as avaliaram para crianças e adolescentes com idades entre zero e 20 anos (Quadro 4).

Para crianças menores de cinco anos, os estudos apontam que as curvas de comprimento/altura para a idade da OMS apresentaram melhor desempenho para detectar o déficit de altura quando comparadas às do CDC, e portanto os autores recomendaram para as populações de Argentina, África do Sul, Brasil, Gabão, Catar, Paquistão e Estados Unidos.19-26,28,29 Contudo, para a população do Sri Lanka, os pesquisadores indicaram a necessidade de mais estudos, uma vez que as crianças desse país apresentaram baixa estatura quando comparadas às da OMS.27

Com relação às curvas de IMC para a idade em menores de cinco anos, as da OMS diagnosticaram mais crianças com

Quadro 2 Identificação e características dos estudos incluídos que avaliaram a acurácia das curvas de crescimento para crianças menores de cinco anos.

Autores e ano de publicação	Delineamento e população de estudo	Principais resultados						
		Comprimento/altura para a idade	IMC para a idade					
		NAC	CDC	OMS	NAC	CDC	OMS	IOTF
Alfaro et al., 200819	Transversal — Argentina (Jujuy): 4.678 meninas e 4.414 meninos com idades entre 0 e 5 anos	Θ	X	✔	--	--	--	--
Silveira et al., 201110	Transversal — Brasil (Porto Alegre): 203 meninos e 134 meninas hospitalizados, com idades entre 0 e 5 anos	--	X	✔	--	--	--	--
Bagli et al., 201221	Transversal — Brasil: (Rio de Janeiro): Altura para a idade: 299 meninas e 339 meninos IMC para a idade: 254 meninas e 286 meninos com idades entre 1 e 5 anos	--	X	✔	--	X	✔	--
Pereira et al., 201012	Transversal — Brasil: (Rio de Janeiro): 157 meninas e 155 meninos com idades entre 2 e 3 anos	--	X	✔	--	--	--	--
Mei et al., 200821	Transversal — Estados Unidos: 3.920 crianças com idades entre 0 e 5 anos	--	Θ	✔	--	X	✔	--
Bosman et al., 201124	Transversal — África do Sul: 714 meninas e 798 meninos com idades entre 1 e 5 anos	--	X	✔	--	X	✔	--
Schwarz et al., 200825	Longitudinal — Gabão (Lambaréné): 150 meninas e 139 meninos avaliados ao nascimento, aos 3, 9 e 15 meses de idade	--	X	✔	--	--	--	--
Soliman et al., 201126	Longitudinal — Catar: 150 meninas e 150 meninos avaliados ao nascimento, aos 2, 4, 6, 12 e 18 meses.	Θ	X	✔	--	--	--	--
Perera et al., 201427	Longitudinal — Sri Lanka: 241 meninas e 244 meninos avaliados aos 2, 4, 6, 12 e 12 meses.	✔	X	✔	--	--	--	--
Nuruddin et al., 200928	Transversal — Paquistão: 2.584 crianças com idades entre 0 e 35 meses Pesquisa Nacional: 721 meninas e 812 meninos Pesquisa Thatta: 494 meninas e 557 meninos	Θ	--	✔	--	--	--	--
Onis et al., 200729	Longitudinal — Canadá, Estados Unidos e países europeus: crianças com idades entre 0 e 12 meses	--	Θ*	✔*	--	Θ*	✔*	--

IMC: índice de massa corporal; NAC: curvas nacionais do país de estudo; CDC: Centers for Disease Control and Prevention; OMS: Organização Mundial da Saúde; IOTF: International Obesity Task Force; ✔: apropriado para a população de estudo; Θ: razoável para a população de estudo; X: inadequada para a população de estudo; --: não aplicável, não foi realizada a avaliação do indicador/referência no estudo; *: acurácia das curvas aplicável somente para a população dos Estados Unidos.
Acurácia das curvas de crescimento na avaliação nutricional

Quadro 3 Identificação e características dos estudos incluídos que avaliaram a acurácia das curvas de crescimento para crianças e adolescentes maiores de cinco anos.

Autores e ano de publicação	Delineamento e população de estudo	Principais resultados	Comprimento/altura para a idade	IMC para a idade	
			NAC CDC OMS	NAC CDC OMS IOTF	
Mohammadi et al., 2020³⁰	Transversal — Irã: 11.797 meninas e 10.921 meninos com idades entre 6 e 18 anos	-- -- --	✓	☒	--
Esmaili et al., 2019³¹	Transversal — Norte do Irã (Babol): 2.090 meninas e 1.993 meninos com idades entre 7 e 11 anos	-- -- --	✓	☒	--
Ma et al., 2010³²	Transversal — China: 115.374 meninas e 116.766 meninos com idades entre 7 e 18 anos	-- -- --	✓	☒	--
Cavazzotto et al., 2014¹⁶	Transversal — Brasil (Maringá, Rio Claro, Guarapuava e Londrina): 778 meninas e 863 meninos com idades entre 6 e 13 anos	-- -- --	--	☒	☒
Silva et al., 2018³³	Transversal — Brasil (São José/SC): 613 meninas e 519 meninas com idades entre 14 e 19 anos	-- -- --	✓	--	✓
Roman et al., 2015³⁴	Transversal — Brasil (Cascavel): 2.729 meninas com idades entre 9 e 17 anos	-- -- --	✓	☒	--
Romagna et al., 2010³⁵	Transversal — Brasil (Canoas, Porto Alegre): 155 meninas e 117 meninos com idades entre 5 e 18 anos	-- -- --	☒	--	--
Silva et al., 2010³⁶	Transversal — Brasil (Norte, Nordeste, Centro-Oeste, Sudeste e Sul): 18.326 meninas e 23.328 meninos com idades entre 7 e 17 anos	☒ ☒ ☒ ☒	X	☒	--
Cossio-Bolaños et al., 2015³⁷	Transversal — Peru (Arequipa): 138 meninas e 181 meninos com idades entre 12 e 18 anos	✓	☒	--	✓
Valerio et al., 2017³⁸	Transversal — Itália: 3.061 meninas e 3.009 meninos com idades entre 5 e 17 anos	-- -- --	✓	--	☒
Minghelli et al., 2014³⁹	Transversal — Portugal (Algarve): 529 meninas e 437 meninos com idades entre 10 e 16 anos	-- -- --	✓	☒	--
Wóźniacka et al., 2018⁴⁰	Transversal — Polônia (Kraków): 1.674 meninas e 1.731 meninos com idades entre 5 e 14 anos	-- -- --	✓	--	✓
Regecová et al., 2018⁴¹	Transversal — Eslováquia: 19.220 meninas e 19.472 meninos com idades entre 7 e 18 anos	✓ --	☒	--	☒
Kakinami et al., 2012⁴²	Transversal — Canadá (Quebec): 1.262 meninas e 1.204 meninos com idades de 9, 13 e 16 anos	-- -- --	✓	X	--
Moselakgomo e van Staden, 2017⁴³	Transversal — África do Sul (Mpumalanga e Limpopo): 683 meninas e 678 meninos com idades entre 9 e 13 anos	-- -- --	☒	--	☒

Fonte: elaborado pelos autores (2021).

IMC: Índice de massa corporal; NAC: curvas nacionais do país de estudo; CDC: Centers for Disease Control and Prevention; OMS: Organização Mundial da Saúde; IOTF: International Obesity Task Force; ✓: apropriada para a população de estudo; ☒: razoável para a população de estudo; ☒: inadequada para a população de estudo; --: não aplicável, não foi realizada a avaliação do indicador/referência no estudo.

desnutrição do que as do CDC para a população dos Estados Unidos e mais crianças com sobrepeso e obesidade para a África do Sul e Brasil, o que indica que são mais apropriadas para essas populações.²¹,²⁴–²⁹ Alguns autores justificam que o fato de a OMS ter construído as curvas de crescimento para menores de cinco anos com crianças multiétnicas que tiveram as condições de saúde e nutrição adequadas e que receberam alimentação complementar à base de leguminosas, carnes, ovos, frutas e hortaliças, mantendo
aleitamento materno parcial até o 12º mês de vida ou mais, faz com que essas curvas possam ser aplicadas internacionalmente e, portanto, consigam diagnosticar precocemente o deficiência de altura, sobrepeso e obesidade e sejam mais acuradas do que as do CDC.21,24,26 Para crianças e adolescentes de cinco anos de idade ou mais, os trabalhos mostram que as curvas de altura para a idade da OMS apresentaram valores semelhantes apenas para a população brasileira.36 Os imigrantes do Sul da Ásia que vivem na Holanda apresentaram valores de altura inferiores aos da OMS, e as populações de Austrália, Eslováquia e Alemanha apresentaram valores de altura superiores aos da OMS, o que indica que essa referência internacional não detectaria adequadamente o deficiência de altura para crianças e adolescentes (≥5 anos) dessas populações.12,41,44,45 Resultados semelhantes foram encontrados por Bonthuis et al. em um estudo que avaliou 18 curvas nacionais de altura para a idade de 28 países europeus e as comparou com as do CDC, da OMS e do Euro-Growth.50 Os autores relatam que essas curvas europeias nacionais de crescimento mostraram uma tendência secular positiva na altura, o que tem sido observado desde 1850, e que essa tendência secular desacelerou ou mesmo atingiu um patamar desde os anos 1980/1990 em muitos países do norte da Europa, bem como na Itália e nos Estados Unidos.50 Além disso, os autores reforçam que, apesar de essas divergências entre as curvas estarem associadas a fatores genéticos e geográficos, elas são fortemente afetadas pela tendência secular da altura, e que curvas de crescimento para altura construídas com dados coletados antes de 1990, incluindo as do CDC e as da OMS/2007, produziram alturas médias geralmente mais baixas do que as desenvolvidas mais recentemente.50 Por isso, defendem o uso de curvas de crescimento específicas para a população europeia construídas com base em dados nacionais recentes.50

Com relação às curvas de IMC para a idade da OMS/2007, para a população brasileira, elas apresentaram-se adequadas para diagnosticar sobrepeso e obesidade, apresentando diagnósticos semelhantes às curvas nacionais brasileiras (Conde & Monteiro), e com concordâncias substanciais com as do IOTF.36,33,34,45 Sob outra perspectiva, para as populações asiáticas de China, Arábia Saudita e Irã, há uma grande variação entre as curvas da

Quadro 4 Identificação e características dos estudos incluídos que avaliaram a acurácia das curvas de crescimento para crianças e adolescentes com idades entre 0 e 20 anos.

Autores e ano de publicação	Delineamento e população de estudo	Principais resultados					
	Comprimento/altura para a idade	IMC para a idade					
	NAC	CDC	OMS	NAC	CDC	OMS	IOTF
Rosario et al., 201112	Transversal — Alemanha: 8.408 meninas e 8.671 meninos com idades entre 0 e 18 anos	✓	X	X	--	--	--
Hughes et al., 201444	Longitudinal e Transversal — Austrália: 2.979 meninas e 3.117 meninos com idades entre 2 e 16 anos	✓	X	X	--	--	--
Oliveira et al., 201345	Longitudinal — Brasil (Porto Alegre): 54 meninas e 64 meninos com idades entre 2 e 19 anos+B29	--	--	--	X	✓	--
Zong e Li, 201346	Transversal — China: 47.213 meninas e 47.089 meninos com idades entre 0 e 18 anos	✓	--	X	✓	--	X
Al Herbish et al., 200947	Transversal — Arábia Saudita (AS) (13 regiões): 17.399 meninas e 17.880 meninos com idades entre 0 e 19 anos	--	--	--	✓	X	--
El Mouzan et al., 200848	Transversal — Arábia Saudita (AS) (13 regiões): 17.399 meninas e 17.880 meninos com idades entre 0 e 19 anos	✓	X	--	✓	X	--
Wilde et al., 201549	Longitudinal — Holanda (imigrantes do Sul da Ásia): 2.198 meninas e 2.195 meninos com idades entre 0 e 20 anos	✓	--	X	--	--	--

Fonte: elaborado pelos autores (2021).
IMC: índice de massa corporal; NAC: curvas nacionais do país de estudo; CDC: Centers for Disease Control and Prevention; OMS: Organização Mundial da Saúde; IOTF: International Obesity Task Force; ✓: apropriada para a população de estudo; Θ: razoável para a população de estudo; X: inadequada para a população de estudo; --: não aplicável, não foi realizada a avaliação do indicador/referência no estudo.
OMS e as nacionais. Os meninos chineses apresentam valores de peso superiores e as meninas chinesas inferiores, com variações significativas durante algumas faixas etárias, e as crianças e adolescentes da Arábia Saudita apresentam valores de percentil superiores aos da OMS.30-32,46,47

Em relação às curvas do IOTF, para as populações europeias de Eslováquia, Itália, Polônia e Portugal, elas foram as que apresentaram os melhores desempenhos para rastreio de sobrepeso e obesidade, enquanto para a população da África do Sul elas rastrearam melhor os quadros de desnutrição.38-41,43 Com relação às curvas do CDC, para a idade do CDC, elas apresentaram valores semelhantes aos da OMS/2007 para a população canadense e semelhantes aos do IOTF para a população portuguesa; em contrapartida, diagnosticaram mais do excesso de peso na África do Sul e superestimaram os diagnósticos de sobrepeso, obesidade e desnutrição na Arábia Saudita e de desnutrição no Brasil, enquanto subestimaram os diagnósticos de sobrepeso no Brasil e obesidade no Irã.30,34,43,48

Essas variações de diagnóstico nutricional ocasionadas pelo uso das diferentes curvas de IMC para a idade vão de encontro aos achados de um estudo conduzido por Li et al. com a população dos Estados Unidos.51 Nessa pesquisa, os autores observaram que, apesar de haver concordância substancial entre as curvas do CDC, do IOTF e da OMS para a classificação do estado nutricional de adolescentes, as do IOTF classificaram mais sobrepeso do que as outras referências internacionais, enquanto que as da OMS classificaram mais adolescentes com sobrepeso e menos com obesidade do que as do CDC.51 Sob outra perspectiva, em um estudo conduzido em El Salvador por Pérez et al. com crianças de seis a nove anos de idade, os autores observaram que, apesar de não obesos, elas demonstram valores de altura inferiores aos da OMS e do IOTF, a referência da OMS é mais acurada do que a do IOTF.52

De maneira geral, as curvas de IMC para a idade do CDC apresentaram rastreios de diagnósticos nutricionais inferiores às curvas da OMS e do IOTF; contudo, ainda há controvérsias sobre qual das outras duas referências internacionais (OMS e IOTF) seria mais apropriada para uso internacional, especialmente para crianças de cinco anos ou mais. Alguns autores defendem que a referência de crescimento da OMS/2007 é constituída de uma amostra não obesa de crianças dos Estados Unidos de um a 24 anos e coletada de 1963 a 1974, sendo uma população de referência que representa um grupo mais saudável e, portanto, mais sensível aos diagnósticos de excesso de peso.7,52 Entretanto, outros autores defendem que o uso de uma única população na modelagem das curvas faz com que elas não sejam representativas para uso internacional e, por isso, sugerem a aplicação das curvas do IOTF, uma vez que foram desenvolvidas combinando dados de IMC mais recentes de crianças de dois a 18 anos de seis pesquisas nacionais representativas de 1963 a 1993.11,52

No que concerne à qualidade dos estudos selecionados, ela foi considerada excelente, com a maior parte dos estudos classificados como tendo boa qualidade metodológica, conforme apresentado na Figura 2. Para tal avaliação, usou-se a escala da NIH específica para estudos observacionais, que é adequada para esse tipo de delineamento, uma vez que avalia os objetivos do estudo, aspectos metodológicos e a coerência dos resultados.18 Alguns trabalhos incluídos nesta revisão apresentaram limitações como a ausência do cálculo e poder estatístico amostral em estudos transversais e a perda de seguimento em estudos de coorte, embora tais restrições não tenham influenciado na questão de pesquisa investigada, tendo em vista a boa qualidade metodológica atingida.

Esta revisão sistemática permitiu, pela primeira vez, a identificação e a avaliação da acurácia das curvas internacionais do CDC e da OMS para comprimento/altura para a idade e do CDC, da OMS e do IOTF para IMC para a idade em 20 países de cinco diferentes continentes. Por meio desta investigação, constatou-se que para menores de cinco anos as curvas de comprimento/altura para a idade da OMS demonstraram ser mais acuradas do que as do CDC e, portanto, mais apropriadas para uso nas populações de Argentina, África do Sul, Brasil, Gabão, Catar, Paquistão e Estados Unidos, e as curvas de IMC para a idade da OMS apresentaram melhores rastreios do estado nutricional quando comparadas às do CDC, sendo recomendadas para as populações de Estados Unidos, África do Sul e Brasil.

Em contrapartida, para maiores de cinco anos há grande variação nas concordâncias. As curvas de altura para a idade da OMS apresentaram padrões semelhantes para a população brasileira, enquanto os imigrantes do Sul da Ásia que vivem na Holanda apresentam valores de altura inferiores aos da OMS, e as populações de Austrália, Eslováquia e Alemanha apresentam valores de altura superiores aos da OMS, o que indica que essa referência internacional não detecta adequadamente o déficit de altura. Com relação às curvas de IMC para a idade, as da OMS apresentaram-se acuradas para as populações brasileira e canadense, enquanto as do IOTF apresentaram-se mais acuradas para as populações de Eslováquia, Portugal, Itália e Polônia, e as do CDC apresentaram-se acuradas apenas para Portugal e Canadá. Com relação aos países asiáticos China, Irã e Arábia Saudita, os autores sugerem o uso das curvas nacionais e, para a África do Sul, apontam a necessidade de mais estudos para determinar a referência internacional mais acurada.

A explicação para a recomendação internacional da referência da OMS apenas para menores de cinco anos é decorrente da sua modelagem e construção, que envolveu populações...
Artigos	Objetivo definido	População especificada	Critérios de seleção e elegibilidade uniformes	Tamanho amostral representativo	Intervenção/exposição delineadas	Reavaliação da intervenção/exposição	Desfecho definido	Perda de seguimento <20%	Classificação
Rosario et al., 2011	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Cavazzoto et al., 2014	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Alfaro et al., 2008	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Silveira et al., 2011	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Bagni et al., 2012	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Pereira et al., 2010	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Mei et al., 2008	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Bosman et al., 2011	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Schwarz et al., 2008	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Soliman et al., 2011	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Perera et al., 2014	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Nuruddin et al., 2009	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Onis et al., 2007	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Mohammadi et al., 2020	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Esmaili et al., 2019	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Ma et al., 2010	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Silva et al., 2018	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Roman et al., 2015	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Romagna et al., 2010	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Silva et al., 2010	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Cossio-Bolaños et al., 2015	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Valerio et al., 2017	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Minghelli et al., 2014	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Wóźniacka et al., 2018	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Regecová et al., 2018	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Kakinami et al., 2012	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Moselakgomo e van Staden, 2017	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Hughes et al., 2014	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Oliveira et al., 2013	Razoável	Razoável	Boa	Boa	Boa	Boa	Boa	Boa	Razoável
Zong e Li, 2013	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
Al Herbish et al., 2009	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
El Mouzan et al., 2008	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa
de Wilde et al., 2015	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa	Boa

Fonte: elaborado pelos autores (2021), adaptado de NIH.18

Figura 2 Análise da qualidade dos artigos incluídos nesta revisão.
multiétnicas que apresentavam condições ambientais e de saúde para um desenvolvimento adequado e, por isso, quando aplicada, apresenta concordâncias e rastreios de diagnóstico nutricional satisfatórios. O contrário é observado quando a referência da OMS é aplicada para maiores de cinco anos. Isso porque a modelagem e a população utilizadas foram diferentes, resultando em divergências no diagnóstico nutricional de vários países e, portanto, não se indicando amplamente seu uso.

Em síntese, as curvas internacionais de crescimento para maiores de cinco anos apresentam limitações, uma vez que as divergências entre as modelagens utilizadas e a composição das amostras na construção das curvas não permitiram a determinação de um padrão internacional de classificação do estado nutricional. Há dificuldade de se obterem curvas para uso internacional que possam atender a um período tão longo de crescimento e que incluam diferenças genéticas, culturais, socioeconômicas e de composição corporal de crianças e adolescentes de diferentes etnias que já tenham superado a tendência secular de crescimento.

Financiamento
O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

Contribuição dos autores
Desenho do estudo: Oliveira MH, Conde WL. Coleta de dados: Oliveira MH, Pereira DS. Análise dos dados: Oliveira MH, Pereira DS, Silva JC. Redação do manuscrito: Oliveira MH, Pereira DS, Melo DS, Silva JC. Revisão do manuscrito: Oliveira MH, Pereira DS, Melo DS, Silva JC, Conde WL. Supervisão do estudo: Conde WL.

Declaração
O banco de dados que deu origem ao artigo está disponível com o autor correspondente.

REFERÊNCIAS
1. World Health Organization. Adolescents. In: WHO. Physical status: the use and interpretation of anthropometry. Geneva: WHO; 1995. p. 176-205.
2. Tirapegui J, Melo CM, Ribeiro SM. Avaliação nutricional de crianças. In: Avaliação Nutricional – Teoria e Prática. 2. ed. Rio de Janeiro: Editora Guanabara Koogan; 2018. p. 193-9.
3. Tirapegui J, Melo CM, Ribeiro SM. Avaliação nutricional de adolescentes. In: Avaliação Nutricional – Teoria e Prática. 2. ed. Rio de Janeiro: Editora Guanabara Koogan; 2018. p. 219-40.
4. Ferreira AA. Avaliação do crescimento de crianças: a trajetória das curvas de crescimento. Demetra. 2012; 7:191-202. https://doi.org/10.12957/demetra.2012.3786
5. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat. 2002;(246):1-190. https://doi.org/10.1542/peds.109.1.45
6. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: WHO; 2006.
7. Onis M, Onyango AW, Borghi E, Siyam A, Borghi E, Onyango AW. WHO Growth Standards. Arch Dis Child. 2008;93:561-5. https://doi.org/10.1136/adc.2007.119826
8. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284-94. https://doi.org/10.1111/j.2047-6310.2012.00064.x
9. Flegal KM, Ogden CL, Wei R, Kuczmarski RJ, Johnson CL. Prevalence of Overweight in US children: comparison of growth charts from the Center for Disease Control and Prevention with other reference values for body mass index. Am J Clin Nutr. 2001;73:1086-93. https://doi.org/10.1093/ajcn/73.6.1086
10. Priori SE, Oliveira RM, Faria ER, Franceschini SC, Pereira PF. Nutrição e saúde na adolescência. Rio de Janeiro: Editora Rubio; 2010. p. 1-4.
15. Cole TJ, Wright CM, Williams AF; RCPCH Growth Chart Expert Group. Designing the new UK-WHO growth charts to enhance assessment of growth around birth. Arch Dis Child Fetal Neonatal Ed. 2012;97:219-22. https://doi.org/10.1136/adc.2010.205864

16. Cavazzotto TG, Brasil MR, Oliveira VM, Silva SR, Ronque VE, Queiroga MR, et al. Nutritional status of children and adolescents based on body mass index: agreement between World Health Organization and International Obesity Task Force. Rev Paul Pediatr. 2014;32:44-9. https://doi.org/10.1590/s0103-05822014000100008

17. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

18. National Institutes of Health [homepage on the Internet]. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies 2014 [cited 2020 Nov 11]. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.

19. Alfaro EL, Vázquez ME, Bejarano IF, Dípierrí JE. The LMS method and weight and height centiles in Jujuy (Argentina) children. Homo. 2008;59:223-34. https://doi.org/10.1016/j.jchb.2007.12.005

20. Silveira CR, Beggitho MG, Carvalho PR, Mello ED. Comparison of NCHS, CDC and WHO growth charts in the nutritional assessment of hospitalized children up to five years old. Nutr Hosp. 2011;26:465-71. https://doi.org/10.1590/S0212-16112011000300006

21. Bagini UV, Luiz RR, Veiga CV. Distortions in child nutritional diagnosis related to the use of multiple growth charts in a developing country. Rev Paul Pediatr. 2012;30:544-52. https://doi.org/10.1590/S0103-05822012000400013

22. Pereira AS, Vieira CB, Barbosa RM, Soares EA, Lanzillotti HS. Comparative analysis of nutritional status of preschool children. Rev Paul Pediatr. 2010;28:176-80. https://doi.org/10.1590/S0103-05822010000200008

23. Mei Z, Ogden CL, Flegal KM, Grummer-Strawn LM. Comparison of the prevalence of shortness, underweight, and overweight among US children aged 0 to 59 months by using the CDC 2000 and the WHO 2006 growth charts. J Pediatr. 2008;153:622-8. https://doi.org/10.1016/j.jpeds.2008.05.048

24. Bosman L, Herselman MG, Kruger HS, Labadarios D. Secondary analysis of anthropometric data from a South African national food consumption survey, using different growth reference standards. Matern Child Health J. 2011;15:622-8. https://doi.org/10.1007/s10835-010-0685-5

25. Schwarz NG, Grobusch MP, Decker ML, Goesch J, Poetschke M, Oyakhirome S, et al. WHO 2006 child growth standards: implications for the prevalence of stunting and underweight-for-age in a birth cohort of Gabonese children in comparison to the Centers for Disease Control and Prevention 2000 growth charts and the National Center for Health Statistics 1978 growth references. Public Health Nutr. 2008;11:714-9. https://doi.org/10.1017/s1368980007001449

26. Soliman A, Eldabbagh M, Khalafallah H, Alali M, Elalaily RK. Longitudinal growth of infants in Qatar: comparison with WHO and CDC growth standards. Indian Pediatr. 2011;48:791-6. https://doi.org/10.1007/s13312-011-0123-9

27. Perera PJ, Fernanado MP, Ranathunga N, Sampath W, Samaranyake R, Meththananda S. Growth parameters of Sri Lankan children during infancy: a comparison with World Health Organization multicentre growth reference study. Rev Bras Crescimento Desenvolv Hum. 2014;24:11-5. https://doi.org/10.7322/jhgd.71331

28. Nuruddin R, Lim MK, Hadden WC, Azam I. Comparison of estimates of under-nutrition for pre-school rural Pakistani children based on the WHO standard and the National Center for Health Statistics (NCHS) reference. Public Health Nutr. 2009;12:716-22. https://doi.org/10.1017/s136898000802383

29. Onis M, Garza C, Onyango AW, Borghi E. Comparison of the WHO Child Growth Standards and the CDC 2000 Growth Charts. J Nutr. 2007;137:144-8. https://doi.org/10.1093/jn/137.1.144

30. Mohammadi MR, Mostafavi SA, Hooshyari Z, Khaleghi A, Ahmadi N, Kamali K, et al. National Growth Charts for BMI among Iranian children and adolescents in comparison with the WHO and CDC curves. Child Obes. 2020;16:34-43. https://doi.org/10.1089/chi.2019.0107

31. Esmaili H, Hajiahamdi M, Fathi M, Chadimi R. Northern Iranian growth charts for children aged 7-11 years: comparison with international reference curves. East Mediterr Health J. 2019;24:1146-54. https://doi.org/10.26719/emhj.18.040

32. Ma J, Wang Z, Song Y, Hu P, Zhang B. BMI percentile curves for Chinese children aged 7-18 years, in comparison with the WHO and the US Centers for Disease Control and Prevention references. Public Health Nutr. 2010;13:1990-6. https://doi.org/10.1017/s1368980010000492

33. Silva DA, Martins PC, Gonçalves EC. Comparison of three criteria for overweight and obesity classification among adolescents from southern Brazil. Matrizes Rev Educ Fis. 2018;23:1-8. https://doi.org/10.1590/s1980-65742017000400007

34. Roman EP, Ribeiro RR, Guerra-Junior G, Barros-Filho AA. A comparison of the nutritional status of girls according to different body mass index references. Rev Bras Saude Mater Infant. 2015;15:121-9. https://doi.org/10.1590/s1519-38292015000100010

35. Romagna ES, Silva MC, Ballardin AZ. Prevalência de sobrepeso e obesidade em crianças e adolescentes de uma unidade básica de saúde em Canoas, Rio Grande do Sul, e comparação do diagnóstico nutricional entre os gráficos do CDC 2000 e da OMS 2006. Sci Med. 2010;20:228-31. https://doi.org/10.11606/d.108.2018.tde-17052018-144820

36. Silva DA, Pelegrini A, PetroSKI EL, Gaya AC. Comparison of the nutritional status of girls regarding different body mass index references. Rev Bras Saude Mater Infant. 2010;38:292015000100010

37. Cossio-Bolaños MA, Viveros-Flores A, Hespanhol JE, Camargo C, Campos RG. Applicability of BMI in adolescent students living at moderate altitude of Peru. Nutr Hosp. 2015;31:922-7. https://doi.org/10.3305/nh.2015.31.2.7733
38. Valerio G, Balsamo A, Baroni MG, Brufani C, Forziato C, Grugni G, et al. Childhood obesity classification systems and cardiometabolic risk factors: a comparison of the Italian, World Health Organization and International Obesity Task Force references. Ital J Pediatr. 2017;43:19. https://doi.org/10.1186/s13052-017-0338-z

39. Minghelli B, Nunes C, Oliveira R. Body mass index and waist circumference to define thinness, overweight and obesity in Portuguese adolescents: Comparison between CDC, IOTF, WHO references. Pediatr Endocrinol Rev. 2014;12:35-41. PMID: 25345083

40. Woźniacka R, Bac A, Kowal M, Matusik S. Differences in the prevalence of overweight and obesity in 5- to 14-year-old children in Kraków, Poland, using three national BMI cut-offs. J Biosoc Sci. 2018;50:365-79. https://doi.org/10.1017/s00219320170000426

41. Regecová V, Hamade J, Janechová H, Ševčíková Ľ. Comparison of Slovak reference values for anthropometric parameters in children and adolescents with international growth standards: implications for the assessment of overweight and obesity. Croat Med J. 2018;59:313-26. https://doi.org/10.3325/cmj.2018.59.313

42. Kakinami L, Henderson M, Delvin EE, Levy E, O’Loughlin J, Lambert M, et al. Association between different growth curve definitions of overweight and obesity and cardiometabolic risk in children. Can Med Assoc J. 2012;184:E539-50. https://doi.org/10.1503/cmaj.110797

43. Moselakgomo KV, Van Staden M. Diagnostic comparison of Centers for Disease Control and Prevention and International Obesity Task Force criteria for obesity classification in South African children. Afr J Prim Health Care Fam Med. 2017;9:e1-7. https://doi.org/10.4102/phcfm.v9i1.1383

44. Hughes I, Harris M, Cotterill A, Garnett S, Bannink E, Pennell C, et al. Comparison of Centers for Disease Control and Prevention and World Health Organization references/standards for height in contemporary Australian children: Analyses of the Raine Study and Australian National Children’s Nutrition and Physical Activity cohorts. J Paediatr Child Health. 2014;50:895-901. https://doi.org/10.1111/jpc.12672

45. Oliveira CJ, Barbiero SM, Cesa CC, Pellanda LC. Comparison of NCHS, CDC, and WHO curves in children with cardiovascular risk. Rev Assoc Med Bras. 2013;59:375-80. https://doi.org/10.1016/s2255-4823(13)70490-9

46. Zong XN, Li H. Construction of a new growth references for China based on urban Chinese children: comparison with the WHO growth standards. PLoS One. 2013;8:e59569. https://doi.org/10.1371/journal.pone.0059569

47. Al Herbish AS, El Mouzan MI, Al Salloum AA, Al Qureshi MM, Al Omar AA, Foster PJ, et al. Body mass index and waist circumference to define thinness, overweight and obesity in Saudi Arabian children and adolescents: a national reference and comparison with international standards. Ann Saudi Med. 2009;29:342-7. https://doi.org/10.4103/0256-4947.55162

48. El Mouzan MI, Al Herbish AS, El Salloum AA, Foster PJ, Al Omar AA, Qurachi MM, et al. Comparison of the 2005 growth charts for Saudi children and adolescents to the 2000 CDC growth charts. Ann Saudi Med. 2008;28:334-40. https://doi.org/10.4103/0256-4947.51688

49. Wilde JA, Van Dommelen P, Van Buuren S, Middelkoop BJ. Height of South Asian children in the Netherlands aged 0-20 years: secular trends and comparisons with current Asian Indian, Dutch and WHO references. Ann Hum Biol. 2015;42:38-44. https://doi.org/10.3109/03014460.2014.926988

50. Bonthuis M, van Stralen KJ, Verrina E, Edefonti A, Molchanova EA, Hokken-Koelega AC, et al. Use of national and international growth charts for studying height in European children: development of up-to-date European height-for-age charts. Plos One. 2012;7:e42506. https://doi.org/10.1371/journal.pone.0042506

51. Li K, Haynie D, Palla H, Lipsky L, Iannotti RJ, Simons-Morton B. Assessment of adolescent weight status: Similarities and differences between CDC, IOTF, and WHO references. Prev Med. 2016;87:151-4. https://doi.org/10.1016/j.ympmed.2016.02.035

52. Pérez W, Melgar P, Garcés A, Marquez AD, Merino G, Siu C. Overweight and obesity of school-age children in El Salvador according to two international systems: a population-based multilevel and spatial analysis. BMC Public Health. 2020;20:687. https://doi.org/10.1186/s12889-020-08747-w