Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration

Penglei Cuia,d,1, Panpan Panb,1, Ling Qinc, Xinluan Wangc, Xiaodong Chena, Yonghui Dengb,*, Xiaoling Zhanga,**

a Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
b Department of Chemistry, Fudan University, Shanghai, 200433, People’s Republic of China
c Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, People’s Republic of China
d Department of Spine Surgery, Beijing Jishuitan Hospital, Peking University Fourth School of Clinical Medicine, Beijing, 100035, People’s Republic of China

\textbf{ARTICLE INFO}

Keywords:
- Injectable nanocomposite
- Mesoporous silica
- 3D biomimetic extracellular matrix
- Sustained release of anhydroicaritin
- Cartilage regeneration

\textbf{ABSTRACT}

The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing. Recently, the combination of implanted stem cells, suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration. In this study, a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel, articular cartilage stem cells (ACSCs) and mesoporous SiO\textsubscript{2} nanoparticles loaded with anhydroicaritin (AHI). The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO\textsubscript{2} nanoparticles (mSiO\textsubscript{2} NPs). Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix (ECM) production and cartilage regeneration in vivo. Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI, an efficient bioactive natural small molecule for ACSCs chondrogenesis, within the hybrid matrix of hydrogel and mSiO\textsubscript{2} NPs. Hence, the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.

1. Introduction

Articular cartilage defects are one of the most common orthopedic disease and cause knee joint dysfunction, significant pain and disability, thus leading to heavy economic burdens on the individual patient and society[1,2]. Unfortunately, articular cartilage regeneration remains a considerable challenge because it does not present an instinctive self-healing capacity due to its avascular and aneural nature[3,4]. Tissue engineering is regarded as a promising method for cartilage repair by integrating ideal seed cells[5], suitable biomaterials[6] and biological stimuli[7–10]. Extracellular matrix (ECM) is mainly composed of macromolecular substances (e.g., polysaccharides, proteins) secreted by cells, which possesses an intricate and complex network to support and connect tissue structure. Cells receive signals from the ECM, the natural extracellular microenvironment, regulates biological synthesis and cellular physiological function such as proliferation, apoptosis, migration and differentiation[11]. In recent years, self-healing polymer hydrogels have been demonstrated as promising tissue engineering materials because of their superior biocompatibility, hydrophilicity, low toxicity, injectable[12,13], rapid self-healing and boundary-lubricated capabilities[14–17]. Notably, polysaccharide-based natural marine biomaterials (e.g., chitosan, sodium alginate, chitin) have attracted...
tremendous attention in tissue mimics via providing robust platforms for
culturing cells in three dimensions [18], owing to their merits of unique
physicochemical properties, 3D network framework and rich marine
biological resources [19]. Zhang et al. reported a self-healing antibac-
terial OSA-COS-ZnO composite hydrogel for skin tissue regeneration,
which was fabricated by reversible Schiff base linkages between the
–NH₂ of chitosan oligosaccharide (COS) and the –CH–O of oxidized
sodium alginate (OSA) mixed with zinc oxide nanoparticles (ZnO) [20].
Recent, our group constructed a biocompatible GCS-OSA-Cap hybrid
hydrogel for bone regeneration by spontaneous Schiff base reaction
formed between the –CH–O of OSA and the –NH₂ of glycol chitosan
(GCS) mixed with calcium phosphate (CaP) nanoparticles [21].
Benefiting from the unique dynamic equilibrium of the imine in
hydrogel networks, these hydrogels exhibit excellent performance in
pH-response, injectable and self-healing ability under physiological
conditions without any external stimuli. Despite the above-mentioned
advantages, the reported hydrogels still have much room for improve-
ment in controlled release of cargo. Tailored mesoporous inorganic
biomaterials have been widely utilized for cargo delivery engineering in
the field of biomedicine applications [22-28] because of their unique
features, including nanoscale size, high specific surface area, control-
able mesoscopic structure and physicochemical properties [29,30].
Moreover, multiple biocompatible and degradable nanoparticles (e.g.,
bioactive glass nanoparticles [31], mesoporous silica microrods [32],
hydroxyapatite nanovehicles [33]) have been demonstrated to be
effective for bone-related tissue regeneration by virtue of providing
functional minor components of tissue and precisely regulating sus-
tained drug delivery [34-36]. Especially, except for the superior features of
mesoporous nanoparticles, mesoporous silica nanoparticles (mSiO₂
NPs) could also provide silicon source for inducing bone mineralization,
promoting osteogenesis and angiogenesis [37]. Benefiting from this,
Regi’s group reported an ALN functionalized PEG-modified mSiO₂
nanovehicle acted as biomolecular sustained-release system, which can
transport and deliver effectively Sost siRNA and osteostatin by subcu-
taneous injection to target bone tissue [38]. In particular, the innovative
structural and functional combination of self-healing organic polymeric
hydrogels with inorganic nanoparticles enables biomimetic composite
hydrogels for drug delivery [39,40], regenerative medicine [41-43] and
biosensing [44] due to their multiresponsive actuating property [45]
and mechanical anisotropy [46-49]. Notably, by combining the diverse
merits of bioactive herbal drug small molecules and therapeutic cells to
promote chondrogenic differentiation, the preparation of bioinspired
injectable composite hydrogels as three-dimensional (3D) biomimetic
extracellular matrices has gradually developed into a new research
hotspot in the field of cartilage regeneration [50,51]. Great efforts are
still needed to optimize herbal drug small molecules and therapeutic
cells to promote chondrogenic regeneration.
Cartilage tissue engineering has emerged as a prospective method of
regenerating cartilage in situ, and hydrogels play a significant role
because of their advantageous features, such as flexible mechanical
properties and good biocompatibility [52-56]. Bone marrow derived
mesenchymal stem cells (BM-MSCs) are regarded as a promising
implantable cell source for cartilage regeneration [57] because of their
high self-renewal capacity and chondrogenic potential in vitro [58,59].
However, cartilage tissues formed through BM-MSCs differentiation are
mostly subject to hypertrophy and have difficulty maintaining the
cartilage phenotype in vivo [60-62], which leads to inferior cartilage
regeneration [63]. Recently, articular cartilage has been demonstrated
to contain a population of cells with progenitor-like qualities including
the ability of self-renewal, the expression of stem cell-related surface
markers, and the potential for multilineage differentiation [64,65], and
these cells were identified as articular cartilage stem cells (ACSCs)
[66-72]. ACSCs play a pivotal role in cartilage development, matura-
tion, repair upon osteoarthritis and response to injury [64,73,74].
Importantly, our previous study found that the chondrogenic ability of
ACSCs was higher than that of BM-MSCs, suggesting that ACSCs
obtained from articular cartilage exhibit a high degree of chondrogenic
characteristics and hold a great promise for use as an ideal cell source and/or
drug target for cartilage regeneration [65].
Natural small molecules are regarded as promising drug resources
since they possess a wide range of pharmacophores and a high degree of
stereoregularity [75,76]. Thus, it is of great significance to explore safe
and low-cost bioactive natural small molecules to function as a substi-
tute for or cooperate with growth factors such as transforming growth
factor (TGF)-β and insulin-like growth factor (IGF) for cartilage regen-
eration. Xian-Ling-Gu-Bao capsule (XLBG), the only anti-osteoporosis
traditional Chinese medicine prescription (TCMP) listed in the China
National Basic Drugs Catalog [77], has been widely used to treat oste-
oporosis [78]. However, it remains unclear whether the components of
XLBG are effective for cartilage regeneration. Anhydroicaritin (AHI), a
prenylated flavonoid naturally occurring in several Epimedium species
(Barberidaceae family), is commonly recognized as one of the effective
compounds of Epimedi Herba, a famous traditional Chinese herbal
medicine. Anhydroicaritin exhibits a variety of biological activities, such
as insulin resistance and diabetic osteoporosis [79,80]. In this research,
a series of experiments was carried out to clarify this hypothesis and the
results from multiple perspectives clearly showed that anhydroicaritin,
an herbal drug small molecule, can significantly promote chondrogenic
differentiation of ACSCs in vitro. The maintenance of the proper level
of bioactive molecules in the defect site is of utmost importance for the
continuous induction of stem cell chondrogenic differentiation and
cartilage regeneration. Therefore, it is of great interest to develop a
novel cartilage regeneration system to achieve efficient and persistent
cartilage regeneration in situ by combining ideal stem cells and safe
and low-cost bioactive molecules with suitable biomaterials.
Herein, a novel bioinspired injectable composite platform was
designed via the integration of biocompatible chitosan-based hydrogels,
ACSCs and mSiO₂ NPs loaded with AHI for utilization as a 3D bio-
mimetic extracellular matrix for dual-continuous payload release and
chondrogenic regeneration. The composite hydrogel exhibited remark-
able sustained release effect due to the synergistic regulation of the
organic hydrogel framework and mesopore channels of inorganic mSiO₂
NPs. Histological assessment and biomechanical tests demonstrated that
the composite hydrogels exhibited superior performance in inducing
ACSCs proliferation and differentiation in vitro and promoting extra-
cellular matrix (ECM) production and cartilage regeneration in vivo.
Furthermore, the composite scaffold was verified to significantly
enhance cartilage regeneration based on the sustained release of AHI,
which is a novel bioactive herbal small molecule for ACSCs chondro-
genesis, within the hybrid matrix and 3D network structure of hydrogels
and mSiO₂ NPs. These bioinspired and injectable composite hydrogels
may provide facile and efficient platforms for tissue regeneration in
clinical diagnostics.

2. Results and discussion

2.1. Chondrogenic potential of ACSCs treated with AHI in vitro

Thirteen small molecule compounds were obtained from XLBG ac-
cording to our previous report [77]. To study the chondrogenic potential
of these compounds, the mRNA expression of cartilage-specific genes
was examined after incubation with the agents described above. AHI
AHI was chosen as the final target for further study because it signifi-
cantly promotes the mRNA expression of col II (col2a1), aggrecan (acan)
and sox9 (Figure S1). Then, to explore the effective and safe concen-
tration of AHI, the proliferation of ACSCs treated with a series of con-
centrations of AHI in culture was determined via a cell counting kit-8
(CCK-8) assay. AHI had almost no effect on the proliferation of ACSCs
when the concentration of AHI was equal to or less than 3 μM but
significantly decreased the proliferation of ACSCs compared with that at
0 μM when it was greater than 3 μM (Fig. 1a). The results showed that an
AHI concentration of 3 μM was the optimal choice and could be used

2.1.
without affecting the proliferation of ACSCs. To further study the potential of AHI on the chondrogenic differentiation of ACSCs, the expression of cartilage-specific genes was examined by Q-PCR and Western blot. Alcian blue staining was used to detect proteoglycan accumulation 21 days after the chondrogenic differentiation of ACSCs, and the staining intensity was quantified by ImageJ software. The TGF-β/AHI groups displayed higher staining intensity than the TGF-β group (Fig. 1b, c, S3b). The mRNA expression levels of cartilage-specific genes, collagen II (col2a1), aggrecan (acan) and sox9, significantly increased (Fig. 1d), and the protein expression levels of collagen X (COL
X), COL2A1, SOX9 and ACAN were also remarkably enhanced (Fig. 1c) in ACSCs treated with TGF-β/AHI compared with those with TGF-β treatment. The mRNA expression levels of COL X significantly decreased (Fig. 1d), and the protein expression levels of collagen X was reduced in treatment. Consistent with the mRNA expression of cartilage-specific genes, ACSCs treated with TGF-β/AHI showed greater chondrogenic capacity than ACSCs treated with TGF-β, as evidenced by higher hydroxyprolin (HYP) and glycosaminoglycan (GAG) contents in vitro (Fig. 1f and g). Therefore, it can be concluded that AHI can significantly promote chondrogenic differentiation of ACSCs and inhibit chondrocyte hypertrophic differentiation in vitro.

2.2. Physicochemical properties of the bioinspired composite hydrogel

Herein, a novel bioinspired and biocompatible composite platform was developed to achieve efficient and persistent cartilage regeneration in situ, and it combines injectable hydrogels with ACSCs and AHI-loaded mSiO$_2$ NPs (denoted as AHI-mSiO$_2$ NPs) (Scheme 1). mSiO$_2$ NPs that act as a reservoir and carrier for AHI by utilization of their high porosity were employed to regulate the continuous release of AHI. First, the AHI-mSiO$_2$ NPs and glycol chitosan (GCS) were dispersed and dissolved in PBS (pH 7.4) to form a homogeneous suspension solution. Then, oxidized sodium alginate (OSA) was added to the suspension solution, resulting in GCS-OSA-AHI-mSiO$_2$ composite hydrogel (denoted as GOAS) through a short-lived self-healing process. In particular, when OSA and ACSCs were added together into the suspension solution, the precursor of the GCS-OSA-AHI-mSiO$_2$-ACSCs composite hydrogel (denoted as GOAS-ACSCs) was obtained. Subsequently, the GOAS-ACSCs composite hydrogel precursor was immediately injected into the cartilage defect to form a dense composite hydrogel in situ via a Schiff base reaction at 37°C without external stimulation, such as by chemical crosslinkers or UV, throughout the fabrication process. The GOAS composite hydrogel was obtained by condensation reaction of the –CHO group from OSA with the –NH$_2$ group from GCS during mixing together with AHI-mSiO$_2$ NPs, leading to rich dynamic –CH=N– groups in the hybrids [81]. After the reaction, new peaks at approximately 1630 cm$^{-1}$ were found for the obtained GOAS composite hydrogel, and the characteristic absorption bands of GCS (–NH$_2$ groups) and OSA (CH=N groups) disappeared [82], indicating the formation of –CH=N– bonds through the Schiff base reaction. Moreover, the characteristic peaks of AHI were preserved in the obtained GOAS composite hydrogel, implying that the AHI was stable throughout the hydrogel preparation process (Figure S5 c) [83,84].

Without special requirements regarding environmental conditions and equipment, whole gelation fabrication can be readily accomplished using the sample 60 s vortex process at 37°C (Fig. 2a). The mSiO$_2$ NPs obtained via a surfactant mediated sol-gel reaction [85] have a uniform diameter of ~178 nm and smooth surface (Figure S6 a, b), and they can be homogeneously dispersed in aqueous solution because of their hydrophilic surface with rich silanol groups. Numerous radially aligned mesopores are clearly visible in the mSiO$_2$ NPs, indicating high porosity and highly accessible pore channels, which are favorable for the intelligent loading of drugs and sustainable release of guest compounds, such as AHI molecules (Figure S6 c). Nitrogen adsorption-desorption measurements revealed that the mSiO$_2$ NPs have uniform pore size of 2.1 nm, ultrahigh Brunauer-Emmett-Teller (BET) surface area (964 m2/g), and large pore volume (0.504 cm3/g) (Figure S8 a, b). AHI molecules were loaded into the mSiO$_2$ NPs through a nanocasting method by impregnating of mSiO$_2$ NPs in a PBS solution of AHI followed by solvent evaporation. The in vitro drug release behavior of the composite material was examined, as shown in Fig. 2b. The hydrogel (donated as GOA) and AHI-mSiO$_2$ NPs exhibited a sudden release at the beginning of two weeks and then a gradually slowing release of AHI, with a cumulative release of 91.0 ± 4.33% and 87.52 ± 2.97%, respectively. Sudden release occurred in the first two weeks due to the fast diffusion of AHI located at the region near the surface of carriers. However, the GOAS composite hydrogel demonstrated a significant sustained slow drug release.
release for up to 10 weeks, and the cumulative release was 85.58 ± 2.37%. It is worth mentioning that the sustained release behavior was not only attributed to the numerous radially aligned mesoporous channels of mSiO$_2$ NPs but also the 3D network structure of the organic hydrogels. Such unique sustained release behavior indicates its potential for in vivo biomedicine applications. After mixing AH$_2$-mSiO$_2$ NPs with OSA and GCS, the obtained GOAS composite hydrogel was freeze-dried for the structure analysis. SEM observations indicated that the dried composites have an open microporous structure and homogeneous distribution of AH$_2$-mSiO$_2$ NPs in cross-section (Fig. 2c). The uniform distribution of AH$_2$-mSiO$_2$ NPs in the hybrid nanocomposite without phase separation is favorable for the sustainable release of AH$_2$ by the regulation of mesopore channels and the polymeric hydrogel.

2.3. Nanocomposites enhanced the chondrogenic differentiation of ACSCs in vitro

To test the chondrogenic efficacy of the bioactive sustained release system, ACSCs and AH$_2$-mSiO$_2$ NPs were encapsulated in the hydrogel to establish a 3D culture system in vitro. First, live/dead assay and CCK-8 assay demonstrated that almost all ACSCs encapsulated in the platform were stained green and the GCS-OSA-mSiO$_2$ NPs composite hydrogel (denoted as GOS) group did not obviously differ from the GOAS group (Fig. 3a). Compared to the control group (cells cultured in dishes), the GOS group and GOAS group had no significant effect on the viability of ACSCs by CCK-8 assay (Fig. 3b). The findings indicated that the bioinspired nanocomposites exhibited excellent biocompatibility for cell survival and proliferation. Then, the chondrogenic potential of ACSCs on the composite hydrogel was detected by analyzing the cartilage-specific gene expression of ACSCs and measuring the content of HYP and GAG in a 3D culture system in vitro. Compared to the GOAS-ACSCs group, a higher mRNA level of cartilage-specific genes, such as acan, col2a1, and sox9, was observed in the GOAS-ACSCs group after coculture for 7, 14 and 21 days (Fig. 3c). Consistent with the mRNA expression of cartilage-specific genes, the protein level of COL2A1 was higher in the GOAS-ACSCs group (Fig. 3d). In addition, compared with the GOS-ACSCs group, the GOAS-ACSCs group exhibited higher chondrogenic capacity according to the detection of HYP and GAG content (Fig. 3e and f). The above features and performances of the nanocomposite in terms of biocompatibility, sustained release of AH$_2$ and enhanced ACSCs chondrogenic differentiation encouraged us to perform further in vivo studies.

2.4. Nanocomposites for in vivo cartilage tissue engineering

To evaluate the ability of the nanocomposite to promote cartilage regeneration in vivo, cylindrical cartilage defect models (4 mm in diameter, 1.5 mm in depth) were constructed in the center of the trochlear groove in New Zealand white rabbits [86]. The prefabricated precursor of the GOS-ACSCs and GOAS-ACSCs nanocomposite were injected into the cartilage defect site, and the nanocomposites formed in situ within 60 s. After 4 weeks, the defects remained empty in the nontreated group (Fig. 4a, d). Compared with the nontreated group and GOAS-ACSCs, although defects were still observed in GOAS-ACSCs group, partial filling of defects was clearly observed. After 8 weeks, cartilage defects could still be observed in the control group and GOAS-ACSCs group; however, the repaired tissue almost fully filled the defects in the GOAS-ACSCs group (Fig. 4a, d). The International Cartilage Repair Society (ICRS) score was designed to assess the integration of the cell-hydrogel construct into the trochlear groove [87]. The ICRS score in the GOAS-ACSCs group was higher than that in the GOS-ACSCs group and 1.9 times higher than that in the nontreated group (Fig. 4e). After 12 weeks, a large cartilage defect was obviously observed in the nontreated group, and a cartilage defect in the central part was still clearly visible in the GOS-ACSCs group. Notably, the GOAS-ACSCs group revealed a smooth and white transparent appearance that was well-integrated with surrounding tissue (Fig. 4a, d). Compared with the nontreated group and GOAS-ACSCs group, the ICRS scores of the GOAS-ACSCs group and nontreated group were the highest and lowest, respectively (Fig. 4e). Biomechanical testing of the repaired cartilage was performed at 12 weeks post-implantation. The reduced modulus of the GOAS-ACSCs group was 403 kPa, which closely resembled that of the normal healthy cartilage and was nearly 2 times higher than that of the other two groups (Fig. 4b). In addition, the mean hardness value of the GOAS-ACSCs group was significantly enhanced compared with that of the other two groups (Fig. 4b). The above results suggest that the injectable GOAS-ACSCs nanocomposite acting as a 3D biomimetic ECM has outstanding performance for functional cartilage regeneration.

![Fig. 2.](image-url) a) Photographs demonstrating the formation of between the aqueous suspension of AH$_2$-loaded mSiO$_2$ and GCS and the OSA solution for 60 s in PBS (pH 7.4). b) Drug release curves of GOA hydrogels, AH$_2$-loaded mSiO$_2$NPs, and GOAS composite hydrogels. SEM images (c–f) of GOAS composite hydrogels after freeze drying viewed from cross-section and e) measuring section of. Scale bar: 1 mm. d) and f) Partial enlargement images of c) and e), respectively. Scale bar: 500 nm.
2.5. Histological assessment of repaired cartilage in vivo

To further evaluate the efficacy of the cell hydrogel on 3D cartilaginous ECM and collagen type II synthesis, toluidine blue staining and collagen II immunohistochemistry of neocartilage were performed. At 4 weeks, the defect site was partially filled with some regenerated tissue and almost empty in the nontreated group (Figs. 4d and 5a). In the GOAS-ACSCs group, more hyaline cartilage-like ECM was observed in
the cartilage defects than in the GOS-ACSCs group. At 8 weeks, the defects were filled with a few regenerated tissues and nearly no neo-cartilage was observed in the nontreated group. In the GOAS-ACSCs group, large amounts of hyaline cartilage-like ECM were observed in the cartilage defects (Fig. 5a and b). At 12 weeks, the defects were filled with more regenerated tissues in the nontreated group (Figs. 4d and 5a). The defects were filled with a mixture of hyaline cartilage-like tissue, and obvious clefts were observed in the GOS-ACSCs group (Fig. 5a and b). It is worth noting that the GOAS-ACSCs group exhibited good interaction between the regenerated tissue and surrounding normal cartilage, and
toluidine blue and collagen II staining showed the largest amount of hyaline cartilaginous tissues, thus indicating that neotissue almost fully filled the defects, which were flush with the native tissue. Overall, the engineered cell-hydrogel nanocomposite was a prospective platform for 3D cartilaginous biomimetic ECM synthesis and cartilage regeneration by providing ACSCs and releasing the chondro-inductive natural molecule AHI.

Herein, we constructed ACSCs-laden chitosan-based hydrogel mixed with AHI-encapsulated mSiO$_2$ NPs to stimulate cell behavior to further induce more biomimetic tissues. Moreover, the development of composite hydrogel with 3D network framework that can imitate tissue microenvironment and the physiological biomineralization process shows important therapeutic significance for articular cartilage regeneration [88]. The physiochemical properties of the injectable cell-hydrogel engineering nanocomposite are similar to those of native extracellular matrix, which can be employed as a cargo transport system.
for cartilage tissue regeneration. In order to achieve the rapid development of multi-mechanisms, multifunctional self-healing hydrogels and promote the effective expansion of its application in biomaterials, self-healing hydrogels that can self-heal in a variety of environments, design of self-healing hydrogels combined with dynamic covalent/non-covalent interactions, self-healing hydrogel for flexible electronic devices and so on.

3. Conclusion

In summary, the herbal small molecule AHI was identified as a bioactive factor for promoting chondrogenic differentiation of ACSCs. Furthermore, the injectable cell-hydrogel engineering nanocomposite was rationally designed to achieve sustained AHI release and one-step cartilage regeneration in situ by integrating OSA with AHI-mSiO$_2$ NPs composited GCS and ACSCs. The sustained release behavior of AHI was ascribed to the synergistic effect of mesopore channels of inorganic mSiO$_2$ NPs and the 3D organic hydrogel framework. The biocompatible multifunctional composite hydrogel system exhibited superior advantages for inducing ACSCs proliferation and differentiation in vitro, promoting 3D ECM production and cartilage regeneration in vivo, because of its dual merits in in situ injection and fast self-healing of 3D viable cell-hydrogels and sustained release of bioactive factors for a long-lasting effect. Considering the simplicity and high efficiency, this integration strategy for the construction of functionally engineered nanocomposites may also serve as a potential pathway for optimizing the local microenvironment of defect sites and inducing stems cells to participate in tissue and organ regeneration.

4. Experimental section

Chemicals: Tetraethyl orthosilicate (TEOS), ethanol, sodium alginate (SA>350 MPa s), concentrated ammonia solution (28 wt%), NaOH and anhydroicaricin (AHI, purity >99%) were all of analytical grade (Shanghai Chemical Corp.). Glycol chitosan (GCS, polymerization degree 400, assay 60%), cetyltrimethylammonium bromide (CTAB) and alcan blue were supplied by Aldrich-Sigma. Trypsin-EDTA (0.25%) was obtained from Invitrogen. Dulbecco’s modified Eagle’s medium (DMEM)/F-12 1:1 and phosphate buffered saline (PBS) were supplied by HyClone. Fetal bovine serum (FBS) was purchased from Gibco. Cell Counting Kit-8 (CCK-8) was obtained from Dojindo Molecular Technology. All other chemicals were utilized as received. Deionized water was utilized for all experiments.

Cell isolation, culture and chondrogenic differentiation: ACSCs were isolated using fibronectin through an in vitro adhesion assay according to previous report [65]. In brief, knee articular cartilage of rabbits (12 weeks old) was minced and then cut into small slices. Subsequently, the minced tissue was digested to obtain small tissues for 10 min. DMEM/F-12 1:1 containing 10% FBS was added to stop the digestion. The slices were washed with PBS, and digested in collagenase type II (0.02 wt% or 0.05%) for 2 h. The digested tissues were used to obtain fresh slices for 12 h. The isolated cells were harvested and incubated in chondrogenic induction medium for 21 days.

Sulfated GAG and HYP quantification: The total content of sulfated GAG was detected by the dimethylmethylene blue (DMMB) assay. The DNA content was carried out according to a previously reported method [90]. In brief, ACSCs of passage 3 were seeded into six-well plates and complete DMEM/F12 1:1 medium was incubated with the cells. TRizol reagent (Invitrogen) was used to extract total RNA from ACSCs in accordance with the manufacturer’s instructions. Real-time PCR was carried out using the LightCycler 480 system (Roche) and the SYBR Green PCR Kit (Takara) in accordance with the manufacturer’s instructions. The data were analyzed to calculate the relative gene expression by the comparison Ct (2$^{-\Delta\Delta Ct}$) method. The sequences of the gene primers are listed in Table S1.

Western blot analysis: RIPA lysis buffer (Biocolors, China) was used to obtain total protein content from ACSCs, and the concentration of proteins was determined via the BCA protein assay (Thermo Fisher, United States). Lysate proteins (25 μg) were separated via 10% SDS-PAGE and transferred to nitrocellulose blotting membranes (GE Healthcare Life Science, Germany). Subsequently, 5% bovine serum albumin (BSA) in TBS-Tween (TBS: 0.05 M Tris and 0.15 M NaCl, pH 7.4; 0.2% Tween-20) was used to block the membranes for 60 min. Then the membranes were incubated with primary antibodies (anti-collagen type II, 1:200, #CP18; Calbiochem, Darmstadt, Germany) overnight at 4 °C. All experiments were repeated independently in triplicate.

Sulfated GAG and HYP quantification: The detection of GAG and HYP content was carried out according to a previously reported method [90]. The medium was given to ACSCs and ACSCs-loaded hydrogels. At different time points, the extracts were used for gene analysis and biochemical analyses (ds-DNA, GAG and HYP contents). A Varioskan Flash reader was used to quantify the content of DNA, GAG and HYP. Prepared papain (Sigma) was used to digest the ACSCs and ACSCs-loaded hydrogels at 60 °C overnight for the measurement of ds-DNA and GAG content after weighing with a microbalance. The DNA content was tested against standard curves of calf thymus DNA (Sigma). The total content of sulfated GAG was detected by the dimethylmethylene blue (DMMB) assay. The DNA content of GAG was calculated based on the standard curve obtained from chondroitin 6-sulfate from shark (Sigma, USA). The collagen content was quantified by determining the HYP content. The HYP content was measured against a standard curve of L-HYP (Sigma). The GAG and HYP were both normalized by the ds-DNA content.

Preparation of mSiO$_2$ NPs: The mSiO$_2$ NPs were synthesized by the sol-gel method as previously reported [91]. In a typical synthesis, CTAB (0.54 g) was dispersed in a mixture solution containing 120 mL of
deionized water, 60 mL of ethanol and 3.0 mL of concentrated ammonia solution by ultrasonication. Then, TEOS (0.85 g, 2.21 mmol) was added dropwise into the solution over 1 h. The above-obtained mixture was stirred at 180 rpm/min for 8 h at 25 °C. Finally, the product was collected by centrifugation, and washed with water three times. After drying for 12 h at 40 °C, the sample was calcined for 6 h at 550 °C in air to decompose CTAB template, and then uniform mSiO2 NPs with high porosity were obtained.

Preparation of AHI-encapsulated mSiO2 NPs: Four-hundred single milligrams of AHI was dissolved in PBS solution (pH = 7.4, 4.0 mL) under ultrasonic treatment. Then, the above mSiO2 NPs were dispersed in AHI solution with vigorous stirring. After continuous stirring overnight, the resultant solution was allowed to evaporate to remove the solvent and the collected powder sample was rinsed three times by PBS to wash off the unloaded drug. The obtained product was collected for further use.

Preparation of composite hydrogel: Oxidized sodium alginate (OSA, 50% oxidation degree) was prepared according to previously reported methods [92]. As demonstrated in our previous report [21], in order to obtain optimized self-healing capability, the molar ratio of –NH2 bonds from GCS and –CHO bonds from OSA in each composite hydrogel was selected as 0.6. In the synthesis process of the composite hydrogel, 350 μL of the AHI-encapsulated mSiO2 NPs were first dispersed in the GCS PBS solution (6 mL, 3 wt%) under ultrasonication treatment. Then, the OSA PBS solution (1.08 mL, 10 wt%) was rapidly dispersed in the above reaction solution. Shortly after 60 s of vortexing at 35 °C, the reaction mixture was immediately converted into the GCS-OSA hydrogel composited with AHI-encapsulated mSiO2 NPs (denoted as GOAS composite hydrogel). Under the same synthetic conditions, no AHI-encapsulated mSiO2 NPs were added to the GCS PBS solution to form the GCS-OSA hydrogel (denoted as GO hydrogel). Compared with the process of GOAS, same amount of AHI was directly dispersed into the GCS PBS solution without adding of mSiO2 nanocarrier and stirred for 2 h to form the GCS-OSA-AHI hydrogel (denoted as GOA composite hydrogel). Pure mSiO2 NPs without encapsulated AHI were added to the GCS PBS solution to form the GCS-OSA-mSiO2 hydrogel (denoted as GO composite hydrogel).

Preparation of the ACSCs cocultured engineered nanocomposite: GCS complete DMEM/F12 1:1 medium (83.9 μL, 3 wt%) containing AHI-encapsulated mSiO2 NPs, OSA complete DMEM/F12 1:1 medium (15.1 μL, 10 wt%), and ACSCs (1 μL, 2 × 10⁵/mL) were quickly mixed by vortexing, thus becoming hydrogel precursors. After reacting at 25 °C for 60 s, ACSCs 3D cocultured engineered nanocomposites (denoted as GOAS-ACSCs) were obtained. Similarly, GO-ACSCs group were obtained though the same process by replacing pure mSiO2 NPs with AHI-encapsulated mSiO2 NPs.

In vitro release: The in vitro AHI release behavior was studied using ultra-performance liquid chromatography (UPLC, Agilent 1100, USA) according to a previously reported method [22,93]. Prior to this, the drug concentration in the supernatant after centrifugation of AHI-mSiO2 was measured by HPLC, and the drug encapsulation rate and drug amount were calculated to be 62.8% and 15.3%, respectively. In brief, samples were immersed in 0.5 mL PBS and shaken at 100 rpm in a shaking incubator. To detect the release kinetics of AHI from GOA, AHI-NPs or GOAS, the total volume of the immersed PBS was obtained after centrifugation. The samples were quickly filtered through a standard sieve, and then 10 μL supernatant was aspirated and measured by UPLC analysis at 367 nm. Finally, the AHI percentage release was plotted against a standard curve.

In vitro composite hydrogel culture: The GO-ACSCs hydrogel was incubated in chondrogenic induction medium for 7, 14 and 21 days. Then, the samples were collected. The total RNA was isolated from hydrogels using TRIzol reagent (Invitrogen). RIPA lysis buffer (Bio- colors, China) was used to obtain total protein content from hydrogels.

Animal surgery procedure: All animal procedures were approved by the Institutional Animal Care and Use Committee of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. All animals were purchased from Peking University. Adult male New Zealand white rabbits (2.3–2.8 kg) were used for the in vivo study. All of the rabbits were raised under the same condition including clean condition, single cage, normal activity, a temperature of 18–23 °C, the relative humidity of 50%–60%, 12 h diurnal rhythm and freedom to eat and drink. The rabbits were randomly divided into three groups: the nontreated group, GOAS-ACSCs group and GOAS-ACSCs group. After general anesthesia, rabbits were placed in recumbent position. After making a parapatellar incision, the articular cartilage was exposed by dislocating the patella. A cylindrical cartilage defect (4 mm in diameter, 1.5 mm in depth) was formed in the center of the knee joint trochlear groove using a corneal trephine. A mixture of OSA, GCS, ACSCs and hollow NPs was injected into the cartilage defect site, and hydrogels were formed for 60 s at room temperature in the GOAS-ACSCs group. The mixture of OSA, GCS, ACSCs and AHI-NPs was injected into the cartilage defects site, and hydrogels were formed for 1 min at room temperature in the GOAS-ACSCs group. The cartilage defect of the nontreated group was left untreated. Finally, after reduction of the patella, the joint was closed with sutures, and the skin of the knee joint was sutured. The rabbits were injected intramuscularly with penicillin to prevent infection. The rabbits were allowed to move freely in their single cage. After 4, 8, and 12 weeks, rabbits were sacrificed for further study.

Microscopic evaluation: The repaired tissues were evaluated according to the International Cartilage Repair Society (ICRS) macroscopic score [94]. The scoring of the repaired tissues was carried out by three different investigators.

Histology and immunohistochemistry: Histological specimens were first fixed in 4% paraformaldehyde for 24 h, rinsed with running water for 12 h, and decalcified using 12.5% EDTA for 8 weeks. The decalcified sample was dehydrated by a gradient ethanol series. After the sample was embedded in paraffin, the sample was sagittally cut into sections (5 μm thick) and stained with hematoxylin and eosin (H&E), Safranin O and Fast Green, and toluidine blue. Immunohistochemistry was performed using a standard protocol [95]. Collagen Type II (1:200, #CP18; Calbiochem, Darmstadt, Germany) was used in this study. In brief, sections were digested using pepsin (Sigma-Aldrich, United States) for 30 min at 37 °C for antigen retrieval. 5% goat serum was used to block the sections, and the sections were incubated with the following primary antibodies.

Nanoindentation assessment: Biomechanical testing of regenerated tissues was carried out by previously reported methods of nanoindentation [96,97]. Samples (n = 5) were obtained from knee joints of animals, and used for biomechanical analysis using a TriboIndenter (Hysitron Inc., Minneapolis, MN, USA).

Statistical analysis: The data are presented as the mean ± S.D. as indicated. For the statistical analysis, the differences among groups were calculated by one-way ANOVA after testing for the homogeneity of variance and data from the same group were evaluated by Student’s t-test. A value of p < 0.05 was considered statistically significant.

Declaration of competing interest

We declare that there is no conflict of interests.

CRediT authorship contribution statement

Penglei Cui: Methodology, Investigation, Data curation, Writing – original draft, Visualization, Formal analysis, Funding acquisition. Panpan Pan: Methodology, Investigation, Data curation, Writing – original draft, Visualization. Ling Qin: Methodology, Investigation, Funding acquisition. Xinluan Wang: Methodology, Investigation, Data curation. Xiaodong Chen: Investigation, Validation. Yonghui Deng: Supervision, Project administration, Funding acquisition, Writing – review & editing. Xiaoling Zhang: Conceptualization, Supervision, Project administration, Funding acquisition, Writing – review & editing.
Declaration of competing interest
All authors declared that we have no conflicts of interest to this work.

Acknowledgements
P. L. Cui and P. P. Pan contributed equally to this work. This work was supported by grants from The Ministry of Science and Technology of China (2020YFC0202800), the National Natural Science Foundation of China (81330078, 21875044), NO.2021-NRSC-CXJ-7-ZH-35 of Clinical Application-oriented Medical Innovation Foundation from National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation and Jiangsu China-Israel Industrial Technical Research Institute Foundation, Sino-Swiss collaborative project from Ministry of Science and Technology (2015DFG32200), Science and Technology Commission of Shanghai Municipal (No.19XJ1434100, 19ZR1433100), Shanghai Jiaotong University “Cross research fund of Medical Engineering” (YG2019ZDA22).

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioactmat.2022.03.032.

References
[1] Y. Wu, S. Zhu, C. Wu, P. Lu, C. Hu, S. Xiong, J. Chang, B.C. Heng, Y. Xiao, H.W. Ouyang, A Bi-lineage conducive scaffold for osteochondral defect regeneration, Adv. Funct. Mater. 24 (28) (2014) 4475–4483.
[2] O. Behera, R.A. Sitas, J.D. Harris, D.C. Flanigan, Treatment of cartilage defects of the knee: expanding on the existing algorithm, Clin. J. Sport Med. 24 (1) (2014) 21–30.
[3] J.H. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials 98 (2016) 1–22.
[4] D.J. Huey, J.C. Hu, K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive, Science (New York, N.Y.) 338 (6109) (2012) 917–921.
[5] O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.P. Lee, E. Lippens, G.N. Duda, D.J. Mooney, Hydrogels with tunable stress relaxation regulate stem cell fate and activity, Nat. Mater. 15 (3) (2016) 326–334.
[6] T.T. Moutous, L.E. Freed, F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage, Nat. Mater. 6 (2) (2007) 162–167.
[7] Y.L. Chen, H.P. Lee, H.Y. Chan, L.Y. Sung, H.C. Chen, Y.C. Hu, Composite chondroitin-6-sulphate/dermatan sulphate/chitosan/gelatin scaffolds for cartilage tissue engineering, Biomaterials 28 (14) (2007) 2294–2305.
[8] H.W. Wang, S.C. Heilshorn, Adaptable hydrogel networks with reversible linkages for tissue engineering, Adv. Mater. 27 (25) (2015) 3717–3736.
[9] C.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels, Science (New York, N.Y.) 356 (6337) (2017).
[10] R. Edri, I. Gal, N. Noor, T. Harel, S. Fleischer, N. Adadi, O. Green, D. Shabat, L. Heller, A. Shapira, I. Gat-Viks, D. Peer, T. Divir, Personalized hydrogels for engineering diverse fully autologous tissue implants, Adv. Mater. (Deerfield Beach, Fla.) 31 (1) (2019), e1803895.
[11] F. Kai, A.P. Drain, V.M. Weaver, The extracellular matrix modulates the metastatic journey, Dev. Cell 49 (3) (2019) 332–346.
[12] L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials, Chem. Soc. Rev. 37 (8) (2008) 1473–1481.
[13] D.R. Griffin, W.M. Weaver, P.O. Scumpia, D. Di Carlo, T. Segura, Agedowed wound healing by injectable microporous gel scaffolds assembled from annealed building blocks, Nat. Mater. 14 (7) (2015) 737–744.
[14] L. Zhang, J.B. Bailey, R.H. Subramanian, A. Groisman, F.A. Tezcan, Polymeric and natural amphiphilic platforms for drug delivery, Adv. Sci. 8 (7) (2021) 2004213.
[15] P. Pan, Y. Yue, J. Li, M. Gao, X. Yang, Y. Ren, X. Cheng, P. Cui, Smart cargo delivery system based on mesoporous nanoparticles for bone disease diagnosis and treatment, Adv. Sci. (2021), 2004586.
[16] L. Liu, B. Cai, L. Cui, L.-C. Chen, Peptoid-based hierarchically-structured biomimetic nanomaterials: synthesis, characterization and applications, Sci. China Mater. 63 (7) (2020) 1099–1112.
[17] X. Xue, Y. Hu, Y. Deng, J. Su, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering, Adv. Funct. Mater. 31 (19) (2021).
[18] X. Wang, O. Roninson, B. Gravez, N. Farman, T. Baumberger, F. Jaisser, T. Coradin, C. Helary, Nanostructured dense collagen-polymer composite hydrogels as amphotipophilic platforms for drug delivery, Adv. Sci. (Weinh) 8 (7) (2021) 2004213.
[19] P. Pan, Y. Yue, J. Li, M. Gao, X. Yang, Y. Ren, X. Cheng, P. Cui, Y. Deng, Smart cargo delivery system based on mesoporous nanoparticles for bone disease diagnosis and treatment, Adv. Sci. 8 (12) (2021), e2004586.
[20] P. Mon-Raimundo, D. Rizzo, F. Callegaro, F. Mulero, M. Carlozzi, M. Vallier-Regi, Osteoprosis remission and new bone formation with mesoporous silica nanoparticles, Adv Sci (Weinh) 8 (16) (2021), e2101107.
[21] W.-H. Chen, W.-C. Liao, Y.S. Sohn, M. Fadeev, A. Cecconello, R. Nechushtai, J. Willner, Stimuli-Responsive nuclear acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release, Adv. Funct. Mater. 28 (8) (2018).
[22] X. Wang, O. Roninson, B. Gravez, N. Farman, T. Baumberger, F. Jaisser, T. Coradin, C. Helary, Nanostructured dense collagen-polymer composite hydrogels as amphotipophilic platforms for drug delivery, Adv. Sci. 8 (7) (2021), 2004213.
[23] J. Cheng, D. Amin, J. Latona, E. Heber-Katz, P.B. Messersmith, Supramolecular polymer hydrogels for drug-induced tissue regeneration, ACS Nano 13 (5) (2019) 5493–5501.
[24] J. Tan, M. Zhang, Z. Hai, C. Wu, J. Liu, W. Kuang, H. Tang, Y. Huang, C. Chen, G. Lai, Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration, ACS Nano 13 (5) (2019) 5616–5622.
[25] P.S. Gilbert, K.L. Haversen, C.L. Magnani, N.A. Leonard, P. Kraft, N.K. Nguyen, S. Thrun, M.P. Lutolf, H.M. Blau, Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture, Science (New York, N.Y.) 329 (5996) (2010) 1078–1081.
[26] Y. Lee, S.H. Cha, Y.W. Kim, D. Choi, J.Y. Sun, Transparent and attachable ionic communicators based on self-cleaning triboelectric nanogenerators, Nat. Commun. 9 (1) (2018) 1804.
[27] F. Yang, Y. Zhao, W.J. Koshut, J.A. Ribbok, G.B. Wiley, A synthetic hydrogel composite with the mechanical behavior and durability of cartilage, Adv. Funct. Mater. 30 (36) (2020), 2003451.
[28] P. Thomiyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel-based cargos: concept, design and applications of these promising, multi-functional biomaterials, Adv. Sci. (Weinh) 2 (1–2) (2015) 1400010.
