Assembled concrete reefs as a stand for coral transplantation on the seabed

H Irawan1,5*, R Yude2, M P Suhana3, A Suryanti4, D Kurniawan1, A Zahra1, R D Putra3, T S Razail, A H Yunianto5, A D Syakti3

1Aquaculture Department, Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University. Tanjungpinang, Kepulauan Riau Province. Indonesia.
2Conservation Laboratory – Banyan Tree Bintan Resort, Lagoi, Bintan, Indonesia.
3Marine Science Department, Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University. Tanjungpinang, Kepulauan Riau Province. Indonesia.
4Aquatic Resource Management Department, Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University. Tanjungpinang, Kepulauan Riau Province. Indonesia.
5Maritime Technology Research Center, Raja Ali Haji Maritime University. Tanjungpinang, Kepulauan Riau Province. Indonesia.

*E-mail: henkyirawan.umrah@gmail.com

Abstract. Corals are cultured as a multiplication effort to conserve the recovery of coral reef ecosystems in natural habitat or sold as ornamental biota for saltwater aquariums. Coral cultured requires a substrate for the enlargement of transplanted coral tillers, where the substrate must be in accordance with the needs and conditions of the aquatic environment. This assembled concrete reefs as a stand is designed to be resistant to the conditions of the monsoon season sea waters. Artificial reefs made of concrete designed with concrete beam where each beam has a dimension of 1 m in length, 10 cm in width and 10 cm in height are arranged in specific form so that it is easy to assemble to place on the seabed. The test results shown that this structure for 12 months on the seabed is still intact, the position of the structure has not shifted, the transplanted coral has remained attached, natural epiphytes already attached after 1 month and are attached until next 11 months.

1. Introduction
Reefs are also known as a ridge of jagged rock below the surface of the sea, which are places where coral attaches [1], so reefs that are overgrown with coral are called coral reefs which are one of the ecosystems in the sea [2]. Coral is a group of animals that are protected as well as of high economic value, so corals are cultivated as an attempt to multiply conservation of coral reef ecosystems in nature or sold as ornamental biota for sea water aquariums. Coral cultivation requires a substrate for the enlargement of transplanted coral fragment [3], where the substrate must be in accordance with the needs and conditions of the aquatic environment. This Assembled Concrete Reefs [4] is designed to be resistant to the conditions of the monsoon season sea waters.

The concrete material as patented artificial coral [5] forms from a single artificial coral concrete in the form of a tetrapod form [6, 7], a structure with a spatial shape [8] and a semicircle [9] exists, then an artificial reef with blocks that can be combined [10], then from the combined polyethylene pipe
This research goal is to design the artificial reef that can be efficiently assembled and function effectively.

2. Materials and Methods
This research is design and testing the Assembled Concrete Reefs, using custom made concrete beam where each beam has a dimension of 1 m in length, 10 cm in width, 10 cm in height and weigh 23 kg are arranged in specific form so that it is easy to assemble (Figure 1). The concrete beam was connected each other with metal bolt and lock with it nut. In each concrete beam the coral fragment was attached to the metal pole and glued with epoxy [13] (figure 2). The Assembled Concrete Reefs were tested at depth 6 m in the seabed for 12 months (figure 3).

Figure 1. The structure of Assembled Concrete Reefs, consist of 20 beam concrete

Figure 2. A = Metal Pole; B = Metal bolt; C = Coral fragment; D = Epoxy glue
Figure 3. Testing site

2.1. Coral species that become test subject attached to the structure
 a. *Isis hippuris* 25 fragments
 b. *Acropora millepora* 25 fragments

2.2. The parameter was observed once a month for 12 months
 a. The structure intact, using visual observation, the structure positions, and using visual observation
 b. The status of coral transplant fragment attachment, using visual observation
 c. The status of epiphytes attachment, using visual observation
 d. Surface temperature (Celsius), using multiparameter water quality checker with 3 replications
 e. Salinity (ppt), using digital multiparameter water quality checker with 3 replications
 f. Wave height (m), analog scale stick with 3 replications
 g. Current velocity (m/s), using digital water current meter with 3 replications

2.3. The analysis by describing the condition
 a. Structure Condition
 b. For the structure condition the parameter that observed were the structure intact and the structure position due to the wave height (m) and Current velocity (m/s) each month for 12 months.

2.4. Biology condition
For the biology condition the parameter that observed were the status of coral transplant fragment attachment and the status of epiphytes attachment due to the pH, Salinity (ppt) and surface temperature (Celsius) each month for 12 months.

3. Results and Discussions
The result shown that this structure for 12 months on the seabed is still intact, the position of the structure has not shifted, the transplanted coral has remained attached, natural epiphytes already
attached after 1 month and are still attached to 12 months (table 1). The structure can withstand the monsoon season in November 2017 to January 2018.

Table 1. The structure intact

No	Observation period (month/year)	The structure intact	
		Not intact	Intact
1	November 2017	✔	
2	December 2017	✔	
3	January 2018	✔	
4	February 2018	✔	
5	March 2018	✔	
6	April 2018	✔	
7	May 2018	✔	
8	June 2017	✔	
9	July 2018	✔	
10	August 2018	✔	
11	September 2018	✔	
12	October 2018	✔	

Table 2. The structure positions

No	Observation period (month/year)	The structure positions	
		Shifted	Not shifted
1	November 2017	✔	
2	December 2017	✔	
3	January 2018	✔	
4	February 2018	✔	
5	March 2018	✔	
6	April 2018	✔	
7	May 2018	✔	
8	June 2017	✔	
9	July 2018	✔	
10	August 2018	✔	
11	September 2018	✔	
12	October 2018	✔	

Table 3. The status of coral transplant fragment attachment

No	Observation period (month/year)	The status of coral transplant fragment attachment	
		Not attached	Attached
1	November 2017	✔	
2	December 2017	✔	
3	January 2018	✔	
4	February 2018	✔	
5	March 2018	✔	
6	April 2018	✔	
7	May 2018	✔	
8	June 2017	✔	
9	July 2018	✔	
10	August 2018	✔	
11	September 2018	✔	
Table 4. The status of epiphytes attachment

No	Observation period (month/year)	The status of epiphytes attachment
1	November 2017	✔
2	December 2017	✔
3	January 2018	✔
4	February 2018	✔
5	March 2018	✔
6	April 2018	✔
7	May 2018	✔
8	June 2017	✔
9	July 2018	✔
10	August 2018	✔
11	September 2018	✔
12	October 2018	✔

Table 5. The result of average water parameter

No	Observation period (month/year)	Surface temperature (Celsius)	Salinity (ppt)	Wave height (m)	Current velocity (m/s)
1	November 2017	29.240	30.35	0.67	0.36
2	December 2017	29.240	30.35	0.67	0.36
3	January 2018	29.240	30.31	0.67	0.37
4	February 2018	29.237	30.28	0.65	0.36
5	March 2018	29.237	30.28	0.65	0.36
6	April 2018	29.237	30.28	0.64	0.36
7	May 2018	29.233	30.26	0.64	0.36
8	June 2017	29.233	30.26	0.64	0.36
9	July 2018	29.233	30.26	0.64	0.37
10	August 2018	29.229	30.25	0.66	0.38
11	September 2018	29.237	30.28	0.66	0.37
12	October 2018	29.233	30.29	0.66	0.37

3.1. Structure condition

The structure is intact and not shifted because at the depth of 6 m the wave energy become decreased from deep to rather shallow waters [14]. The dimension of the structure that form rectangular shape can distribute the wave that make it not shifted [15]. The horizontal wide structure 3 m and total height 20 cm and total weigh 230 kg (figure 1) give hydrodynamic advantage due the wave force [16].

Waves greatly affect the structure of artificial reefs and higher of significant wave height disrupt the structure of artificial reefs efficiently. Water depth additionally affects the wave impact on artificial reefs, in some case the shallow water on artificial reef were found to be unstable [17]. Tseng et al [18] recommend that the deployment of artificial reef at more deeper water than shallow water to avoid impending shipping cruise and the possibly destroying effects of waves. This is also reinforced by research conducted from Miao and Xie [19] the amplitudes of the hydrodynamic force increase with the decrease of water-depth for different wave-direction angle in shallow water, but the peak values appear when the wave-direction is 90° and this condition give the significant impact in the ultra-shallow water the hydrodynamic force increase very evidently with the decrease of water-depth and hydrodynamic force is 3 times larger when than those of deep water and this will affect artificial reef [19]. The impact of waves and currents on artificial reefs in shallow areas is caused by changing...
in energy concentration, as well know transforming occur the wave shoaling. The wave shoaling is an increase in wave height as the wave enters shallow water. The wave shoaling is an increase in wave height when waves enter the shallow water [20]. Reflective coefficient waves on artificial reefs can be used as an alternative to determining the resistance of reefs to waves. Schlurmann et al [21] has proven that in shallow waters the value of reflection coefficient is higher in artificial reef and shallower the water depth over the reef, the better the damping performance of the artificial reef as the transmission coefficient notably decreases and, therefore, the dissipation coefficient and the reflection coefficient significantly increases [22].

3.2. Biology condition
The coral transplant fragment is 100% attached and because it attached using epoxy that can make strong attachment and lasting longer [13]. The coral fragment can tolerate the current velocity 0.36-0.38 m/s that below 0.8 m/s [23], the water temperature in range 29.229 °C - 29.240 °C and salinity in range 30.25 ppt - 30.35 ppt is in the range of annually averaged tolerance limits for coral reefs [24]. The epiphytes attachment to the concrete structure commonly after 1 month [25, 26] and keep growing to cover the concrete surface.

4. Conclusions
The assembled concrete reefs can be a good stand for coral transplantation on the seabed because the structure is intact, the position of the structure has not shifted and the transplanted coral has remained attached and natural epiphytes already attached after 1 month and remained attached.

References
[1] Smith and Hughes TP 1999 Journal of Experimental Marine Biology and Ecology 235 147–164
[2] Moberg F, Folke C S, Moberg and Folke 1999 Ecological Economics 29 215–233
[3] Ammar M S A and El-gammal F N M 2014 Biodiversitas, Journal of Biological Diversity 14 43–53
[4] Irawan H 2018 Terumbu Beton Rakitan S0020181152, Indonesia [in Indonesian]
[5] Hudson J H 1993 Artificial Ocean Reef Module And Method Of Module Construction US5215406A United States
[6] Tamura I 2012 Live rock for the structure and the porous hardened cement paste JP5143447B2, Japan
[7] Hirota I 2010 Concrete composition, concrete structure and block for fish reef or spawning reef JP2010275155A, Japan
[8] Examiner P and Kreck J 2009 Artificial Marine Reef Inducement Structure US7513711B1, United States
[9] Kihara I, Tamura K and Ishikawa M 2010 Coral concrete reef structures JP4652262B2, Japan
[10] Barnes SL 2002 Artificial Reef Structure US6431792B1, United States
[11] Mahruzar 2016 Sarana Pelestarian Terumbu Karang IDP000042732, Indonesia [in Indonesian]
[12] Suharmi 2012 Suatu Struktur Untuk Pebudidayaan Terumbu Karang IDS000001231, Indonesia [in Indonesian]
[13] Page C A, Muller E M and Vaughan D E 2018 Ecological Engineering 123 86–94
[14] Dutkykh D 2013 Procedia IUTAM 11 34–43
[15] Chou C R, Yan S S and Fang H M 1997 Engineering Analysis with Boundary Elements 20 45–49
[16] Abdul-Azm A G 1994 Ocean Engineering 21 683–706
[17] Düzbastılar F O and Sentürk U 2009 Ocean Engineering 36 900–913
[18] Tseng C T, Chen S C and Huang C S 2001 Fisheries Science 67 1015–1022
[19] Miao Z Q and Xie Y H 2007 Journal of Hydrodynamics 19 372–377
[20] Lopes de AJPPG 2017 Elsevier DOI: 10.1016/j.renene.2017.07.076
[21] Schlurmann T, Bleck M and Oumeraci H 2015 Solving Coastal Conundrums 163 1–13
[22] Bleck M and Oumeraci H 2001 *Ocean Wave Measurement and Analysis* 1062–1071
[23] Tunnicliffe V 1982 *Journal of Experimental Marine Biology and Ecology* 64 1–10
[24] Guan Y, Hohn S and Merico A 2015 *PLoS ONE* 10 1–17
[25] Hartono H, Hartoko A and Suhendro B 2012 Analisis penempelan biota laut pada beton dan diffusivitas air laut pada beton *Simposium Nasional RAPI XI FT UMS* 1–8 [in Indonesian]
[26] Krohling W, Brotto D S and Zalmon I R 2008 Brazil *Brazilian Journal of Oceanography* 54 183–191