Scaling and High-Frequency Performance of AlN/GaN HEMTs

Xi Luo, Subrata Halder, Walter R. Curtice, James C. M. Hwang, Kelson D. Chabak, Dennis E. Walker, Jr., and Amir M. Dabiran

1Lehigh University, Bethlehem, PA 18015, USA
2Air Force Research Laboratory, Wright Patterson AFB, OH 45433, USA
3SVT Associates, Inc., Eden Prairie, MN 55344, USA
Email: xil609@lehigh.edu

Abstract — Small- and large-signal RF characteristics were measured on AlN/GaN HEMTs with 80-160 nm gate length and 100-300 µm width. Consistent with the literature, current-gain cut-off frequency and maximum frequency of oscillation were found to increase in inverse gate length and independent of gate width. For the first time, output power and efficiency were reported at the high end of X-band, and were comparable to the best reported at 2 GHz and insensitive to gate length or width. These results suggest that the AlN/GaN HEMTs can be further scaled for higher frequency and higher power performance.

Index Terms — Cutoff frequency, gallium compounds, HEMTs, microwave transistors, pulse measurement, power measurement.

I. INTRODUCTION

Of all high-electron-mobility transistors (HEMTs), the AlN/GaN HEMT has the highest carrier density and adequate mobility, which result in the highest channel conductance [1]. With AlN as thin as a few nanometers, the AlN/GaN HEMT has also the highest mutual transconductance and can be aggressively scaled for millimeter-wave power applications without short-channel effects [2]. With record-setting DC characteristics of AlN/GaN HEMTs, about two-dozen papers have been published [3]-[26] since 2006 on small-signal characteristics such as the current-gain cut-off frequency \(f_T \) and the maximum frequency of oscillation \(f_{\text{MAX}} \) (Table I).

Fig. 1 shows the scaling of \(f_T \) and \(f_{\text{MAX}} \) with the gate length \(L_G \). In general, \(f_T \) increases with inverse \(L_G \) with \(f_T \cdot L_G \approx 10 \pm 6 \text{GHz·µm} \). However, scaling of \(L_G \) was systematically investigated only in [3] and [7], and the gate width \(W_G \) was always fixed. Large-signal characteristics were reported in [9], [10], [13], [17] only at an operating frequency \(f = 2 \text{GHz} \), with saturated output power \(P_{\text{SAT}} = 0.5-2.6 \text{W per mm gate width at a drain-source voltage } V_{DS} \approx 15 \text{V} \). This paper further explores scaling of both \(L_G \) and \(W_G \), especially concerning their effects on small- and large-signal RF characteristics at X-band.

II. EXPERIMENTAL

The present AlN/GaN heterostructure was grown on a c-plane sapphire substrate by plasma-assisted molecular beam epitaxy with a 0.7-µm-thick AlGaN buffer layer, a 2-µm-thick GaN channel layer, a 3.5-nm-thick AlN barrier layer, and a 1-µm-thick GaN cap layer. The combination of GaN and its native oxide helped passivate the surface and suppress gate leakage. (100-nm-thick SiN passivation was added beside the gate.) The gate metal NiAu was patterned by electron-beam lithography into gates of \(L_G = 80 \text{nm}, 120 \text{nm}, \text{and} 160 \text{nm} \). Each gate was centrally located in a 2.7-µm spacing between source and drain Ti/Al/Ni/Au metals. Each HEMT contained two gate fingers with \(W_G = 50 \times 2 \text{µm}, 100 \times 2 \text{µm}, \text{or} 150 \times 2 \text{µm} \). Details of material growth and device processing can be found in [1] and [15], respectively.

\(L_G \) (µm)	\(W_G \) (µm)	\(f_T \) (GHz)	\(f_{\text{MAX}} \) (GHz)	\(f \) (GHz)	\(P_{\text{SAT}} \) (W/mm)	\(PAE \) (%)	Reference
0.06-0.25	50×2	83	130				[3]
0.1	50×2	87	149				[4]
0.2	10	52	60				[5], [8]
0.25	15	24	52				[6]
0.05-0.2	50×2	106					[7]
1	200	6	11	0.85	24	[9], [10]	
2	3					[11], [16]	
0.25	60						[12]
1.3	150	9	32	2.6	33	[13]	
0.4	200	20	31			[14]	
0.15	150×2	25	22			[15]	
0.15	50	102	2	0.53	41	[17]	
3	100	3	8			[18]	
0.4	200	20	37			[19]	
0.08	38±2	112	215			[20]	
0.2	100	80	65			[21], [26]	
0.5	40	55				[22]	
0.15	25×2	75	115			[22]	
0.15	38±2	82	210			[23]	
0.2	100	50	40			[24]	
0.16	50	85	103			[25]	
0.08	68	103	2.7	31		[25]	
0.12	50×2	57	82	2.4	32	[25]	
0.16	50	76	2.2	29		[25]	
0.08	72	114	2.6	30		[25]	
0.12	100×2	63	96	12	2.3	33	This Work
0.16	51	77	2.1	31			
0.08	72	97	2.3	26			
0.12	55	90	2.1	27			
0.16	50	80	2.0	24			

Extrinsic values from as-measured S-parameters whenever possible.

TABLE I

2-µm-thick GaN channel layer, a 3.5-nm-thick AlN barrier layer, and a 1-µm-thick GaN cap layer. The combination of GaN and its native oxide helped passivate the surface and suppress gate leakage. (100-nm-thick SiN passivation was added beside the gate.) The gate metal NiAu was patterned by electron-beam lithography into gates of \(L_G = 80 \text{nm}, 120 \text{nm}, \text{and} 160 \text{nm} \). Each gate was centrally located in a 2.7-µm spacing between source and drain Ti/Al/Ni/Au metals. Each HEMT contained two gate fingers with \(W_G = 50 \times 2 \text{µm}, 100 \times 2 \text{µm}, \text{or} 150 \times 2 \text{µm} \). Details of material growth and device processing can be found in [1] and [15], respectively.
The HEMTs were characterized on-wafer. Small-signal characteristics were measured from 6 to 40 GHz in a 50-Ω system. The resulted S-parameters were used to extract f_T, f_{MAX}, and other equivalent-circuit parameters [27]. Large-signal characteristics were measured at $f = 12$ GHz under optimum input and output matches. To minimize heating, both V_{DS} and the RF input power P_{IN} were turned on for only 1 µs with a repetition frequency of 2.78 KHz. RF output power P_{OUT} was sampled in the middle of the pulse.

III. DC AND SMALL-SIGNAL CHARACTERISTICS

Van der Pauw measurement showed that the present AlN/GaN HEMTs had a carrier density of $\sim 3 \times 10^{13}$ cm$^{-2}$ and a carrier mobility of \sim800 cm2/V·s, which resulted in a sheet resistivity of \sim300 Ω/□. Transmission-line measurement confirmed that the sheet resistivity was 279±31 Ω/□. Typically, the HEMTs exhibited a pinch-off voltage of approximately -2 V with a subthreshold slope of -0.5 V/decade, a saturated drain current of \sim500 mA/mm at $V_{GS} = 0$, and an extrinsic transconductance $G_{m} \approx 500$ mS/mm. The off-state drain-source breakdown voltage was approximately 20 V; the off-state drain-gate breakdown voltage was approximately 40 V. The gate leakage current was <100 μA/mm. The contact resistance was \sim0.5 Ω·mm; the total source resistance was \sim1 Ω·mm; the total channel and drain resistance was \sim2 Ω·mm; the gate resistance was \sim5 Ω·mm. Detailed discussions of the DC characteristics can be found in [28].

Fig. 1. Published (○) f_T and (△) f_{MAX} of AlN/GaN HEMTs vs. measured (□) f_T and (▲) f_{MAX} in this work. $W_G = (\cdot \cdot \cdot) 50 \times 2$ µm, (- -) 100 × 2 µm, or (——) 150 × 2 µm.

The HEMTs were characterized on-wafer. Small-signal characteristics were measured from 6 to 40 GHz in a 50-Ω system. The resulted S-parameters were used to extract f_T, f_{MAX}, and other equivalent-circuit parameters [27]. Large-signal characteristics were measured at $f = 12$ GHz under optimum input and output matches. To minimize heating, both V_{DS} and the RF input power P_{IN} were turned on for only 1 µs with a repetition frequency of 2.78 KHz. RF output power P_{OUT} was sampled in the middle of the pulse.

$\text{Fig. 1. Published (○) } f_T \text{ and (△) } f_{MAX} \text{ of AlN/GaN HEMTs vs. measured (□) } f_T \text{ and (▲) } f_{MAX} \text{ in this work. } W_G = (\cdot \cdot \cdot) 50 \times 2 \mu \text{m, (- -) 100 × 2 µm, or (——) 150 × 2 µm.}$

Fig. 2. Measured f_T of present AlN/GaN HEMT. $L_G = 80$ nm. $W_G = 100 \times 2 \mu \text{m. } V_{DS} = (\bullet) 2 \text{ V, (■) 4 V, (●) 6 V, or (▲) 8 V.}$

Fig. 3. Measured (▲) C_{GS} and (■) C_{GD} of present AlN/GaN HEMTs. $L_G = (\cdot \cdot \cdot) 80$ nm, (- - -) 120 nm, or (——) 160 nm. $W_G = 150 \times 2 \mu \text{m. } V_{GS} = -0.2 \text{ V.}$
reach diminishing return. As expected, the gate-source capacitance C_{GS} is relatively independent of V_{DS}, while the gate-drain capacitance C_{GD} decreases rapidly with increasing V_{DS}. Fig. 4 shows that the extracted AC transconductance is actually higher than the measured DC transconductance, which indicates that the present HEMTs are not as dispersive as earlier ones.

IV. LARGE-SIGNAL CHARACTERISTICS

As listed in Table I, although both saturated output power density P_{SAT} and power-added efficiency PAE of the present HEMTs decrease with increasing gate length and width, the dependence is not very strong. This suggests that there is ample room to scale the HEMTs for higher power. Although both P_{SAT} and PAE were measured at a much higher frequency than that of [13], their values were comparable. In both cases, $P_{SAT} \approx 2.5$ W/mm is quite reasonable for $V_{DS} \approx 15$ V, $V_{KNEE} \approx 2$ V, and $I_{MAX} \approx 1$ A/mm, where I_{MAX} is the maximum open-channel current. Fig. 5 shows that P_{SAT} increases with V_{DS} sub-linearly and increasing V_{DS} beyond 15 V would degrade the HEMTs by generating and trapping hot electrons under the gate [29]. By contrast, PAE is independent of V_{DS} and is in general low for these relatively small devices. Fig. 6 shows that low PAE is probably caused by soft gain compression due to buffer leakage.

V. CONCLUSION

For the gate lengths and widths investigated in this work, the AlN/GaN HEMTs appear to scale well and consistent with the literature. This suggests that there is room for further scaling to achieve even higher frequency...
and higher power performance. Although the present output power density appears to be reasonable, it can be improved by evening out the field distribution between the gate and the drain to minimize the generation of hot electrons, and by improving the quality of the gate stack to avoid trapping any hot electron generated. Similarly, although short-channel effects appear to be under control, they can be further suppressed by reducing buffer leakage.

ACKNOWLEDGEMENT

This work was supported in part by the US National Aeronautics and Space Administration under contract no. NNX09C76C.

REFERENCES

[1] A. M. Dabiran, A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look, and P. P. Chow, “Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures,” Applied Physics Lett., vol. 93, no. 8, p. 082111, Aug. 2008.

[2] G. Jessen, R. Fitch, J. Gillespie, G. Via, A. Crespo, D. Langley, D. Denninghoff, M. Trejo, and E. Heller, “Short-channel-effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589-2597, Sep. 2007.

[3] M. Higashiwaki, T. Mimura, and T. Matsui, “AIN/GaN insulated-gate HFETs using Cat-CVD SiN,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 719-721, Sep. 2006.

[4] M. Higashiwaki, T. Mimura, and T. Matsui, “Enhancement-mode AlN/GaN HFETs using Cat-CVD SiN,” IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1566-1570, June 2007.

[5] Y. Cao, T. Zimmermann, D. Deen, J. Simon, J. Bean, N. Su, J. Zhang, P. Fay, H. Xing, and D. Jena, “Ultrathin MBE-grown AlN/GaN HEMTs with record high current densities,” in Dig. Int. Semiconductor Device Research Symp., Dec. 2007.

[6] D. Deen, T. Zimmermann, Y. Cao, D. Jena, and H. G. Xing, “2.3 nm barrier AlN/GaN HEMTs with insulated gates,” Physica Status Solidi C, vol. 5, no. 6, pp. 2047-2049, May 2008.

[7] N. Onojima, N. Hirose, T. Mimura, and T. Matsui, “Ultrathin AlN/GaN heterostructure field-effect transistors with deposition of Si atoms on AlN barrier surface,” Applied Physics Lett., vol. 93, p. 223501, June 2008.

[8] T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H. G. Xing, “AIN/GaN insulated-gate HEMTs with 2.3 A/mm output current and 480 mS/mm transconductance,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 661–664, July 2008.

[9] S. Lee, G. Y. Zhao, and D. Pavlidis, “Power characteristics of AlN/GaN MISFETs on sapphire substrate,” Electronics Lett., vol. 44, no. 3, pp. 244-245, July 2008.

[10] S. Lee, K. Ghose, G. Y. Zhao, and D. Pavlidis, “AIN/GaN metal insulator semiconductor field effect transistor on sapphire substrate,” IEICE Trans. Electronics, vol. E91-C, no. 7, pp. 994-1000, July 2008.

[11] S. Lee, E. Cho, and D. Pavlidis, “Improvements of AlN/GaN MISFET DC and RF characteristics with in situ deposited SiNx,” Electronics Lett., vol. 44, no. 24, pp. 244-245, Nov. 2008.

[12] T. Zimmermann, Y. Cao, D. Jena, H. G. Xing, and P. Sauemier, “4-nm AlN barrier all binary HFET with SiN gate dielectric,” Int. J. High Speed Electronics Systems, vol. 19, no. 1, pp. 153-159, Mar. 2009.

[13] D. A. Deen, S. C. Binari, D. F. Storm, D. S. Katzer, J. A. Roussos, J. C. Hackley, and T. Gougoussi, “AIN/GaN insulated gate HEMTs with HfO2 gate dielectric,” Electronics Lett., vol. 45, no. 8, pp. 423-424, Apr. 2009.

[14] C. Y. Chang, T. J. Anderson, F. Ren, S. J. Pearton, A. M. Dabiran, A. M. Wowchak, B. Cui, and P. P. Chow, “Very low sheet resistance AlN/GaN high electron mobility transistors,” in Compound Semiconductor Manufacturing Technology Conf. Dig., May 2009.

[15] K. Chabak, A. Crespo, D. Tomich, D. Langley, V. Miller, M. Trejo, J. K. Gillespie, G. D. Via, A. M. Dabiran, A. M. Wowchak, B. Cui, and P. P. Chow, “Processing methods for low ohmic contact resistance in AlN/GaN MOSHEMTs,” in Compound Semiconductor Manufacturing Technology Conf. Dig., May 2009.

[16] E. Cho, S. Lee, C. Jin, D. Pavlidis, G. Fu, J. Tuerck, and W. Jaegermann, “Impact of in situ SiN, layer grown with metal organic vapor phase epitaxy on the electrical and optical properties of AlN/GaN metal insulator semiconductor field effect transistor structures,” J. Vacuum Science Technology B, vol. 27, no. 5, pp. 2079-2083, Sep.-Oct. 2009.

[17] S. Lee, E. Cho, G. Aroshvili, C. Jin, D. Pavlidis, and L. Considine, “Dispersion, high-frequency and power characteristics of AlN/GaN metal gate semiconductor field effect transistors with in-situ MOCDV deposited SiNx,” IEICE Trans. Electronics, vol. E93-C, no. 8, pp. 1245-1249, Aug. 2010.

[18] S. Taking, A. Z. Khokhar, D. MacFarlane, S. Sharabi, A. M. Dabiran, and E. Wasige, “New process for low sheet and ohmic contact resistance of AlN/GaN MOS-HEMTs,” in Proc. European Microwave Integrated Circuits Conf., Sep. 2010, pp. 306-309.

[19] C. Y. Chang, C. F. Lo, F. Ren, S. J. Pearton, I. I. Kravchenko, A. M. Dabiran, B. Cui, and P. P. Chow, “Normally-on/off AlN/GaN high electron mobility transistors,” Physica Status Solidi C, vol. 7, no. 10, pp. 2415-2418, Oct. 2010.

[20] A. L. Corrion, K. Shinohara, D. Regan, I. Miloslavzijevic, P. Hashimoto, P. J. Willadsen, A. Schmitz, D. C. Wheeler, C. M. Butler, D. Brown, S. D. Burnham, and M. Micovic, “Enhancement-mode AlN/GaN/AlGaN DHET with 700-mS/mm gm, 112-GHz fT,” IEEE Electron Device Lett., vol. 31, no. 10, pp. 1116-1118, Oct. 2010.

[21] S. Taking, D. MacFarlane, A. Z. Khokhar, A. M. Dabiran, and E. Wasige, “DC and RF performance of AlN/GaN MOS-HEMTs,” in Proc. Asia-Pacific Microwave Conf., Dec. 2010, pp. 445-448.

[22] D. A. Deen, D. F. Storm, R. Bass, D. J. Meyer, D. S. Katzer, S. C. Binari, J. W. Lacis, and T. Gougoussi, “Atomic layer deposited Ta2O5 gate insulation for enhancing breakdown voltage of AlN/GaN high electron mobility transistors,” Applied Physics Lett., vol. 98, no. 2, p. 023506, Jan. 2011.

[23] D. F. Brown, K. Shinohara, A. Williams, I. Miloslavzijevic, R. Grabar, P. Hashimoto, P. J. Willadsen, A. Schmitz, A. L. Corrion, S. Kim, D. Regan, C. M. Butler, S. D. Burnham, and M. Micovic, “Monolithic integration of enhancement- and depletion-mode AlN/GaN/AlGaN DHFETs by selective MBE regrowth,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1063-1067, Apr. 2011.

[24] S. Taking, D. MacFarlane, and E. Wasige, “AlN/GaN MOS-HEMTs with thermally grown Al2O3 passivation,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1418-1424, May 2011.

[25] F. Medjoudj, M. Zegaoui, N. Waldhoff, B. Grimbelt, N. Rolland, and P.-A. Rolland, “Above 600mS/mm transconductance with 2.3A/mm drain current density AlN/GaN high-electron-mobility transistors grown on silicon,” Applied Physics Express, vol. 4, no. 6, p. 064106, June 2011.

[26] S. Taking, D. MacFarlane, and E. Wasige, “AlN/GaN-based MOS-HEMT technology: processing and device results,” J. Active Passive Electronic Components, vol. 2011, p. 821305, 2011.

[27] J. Deng, W. Wang, S. Halder, W. R. Curtice, J. C. M. Hwang, V. Adivarahan, and A. Khan, “Temperature-dependent RF large-signal
model of GaN-based MOSFETs,” *IEEE Trans. Microwave Theory Techniques*, vol. 56, pp. 2709-2716, Dec. 2008.

[28] K. D. Chabak, D. E. Walker Jr., A. Crespo, M. Trejo, M. Kossler, S. Tetlak, J. K. Gillespie, G. D. Via, A. Dabiran, A. M. Wowchak, and P. P. Chow, “Small signal and DC characteristics of ultra-thin GaN/AlN/GaN HFETs,” *Int. J. High Speed Electronics Systems*, accepted for publication.

[29] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” *IEEE Trans. Electron Devices*, vol. 48, no. 3, pp. 560-566, Mar. 2001.