Tephritoid Flies (Diptera, Tephritoidea) and Their Plant Hosts from the State of Santa Catarina in Southern Brazil

Authors: Garcia, Flávio R. M., and Norrbom, Allen L.

Source: Florida Entomologist, 94(2) : 151-157

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.094.0205
TEPHRITOID FLIES (DIPTERA, TEPHRITOIDEA) AND THEIR PLANT HOSTS FROM THE STATE OF SANTA CATARINA IN SOUTHERN BRAZIL

FLÁVIO R. M. GARCIA 1 AND ALLEN L. NORRBOM 2

1 Federal University of Pelotas, Institute of Biology, Department of Zoology and Genetics
Laboratory of Insect Ecology, 96010-900 P.O. Box: 354, Pelotas, RS, Brazil
E-mail: flavio.garcia@pq.cnpq.br

2 Systematic Entomology Laboratory, c/o National Museum of Natural History, MRC-168,
P.O. Box 37012, Washington, DC 20013-7012, USA
E-mail: allen.norrbom@ars.usda.gov

ABSTRACT

A total of 12,540 ripe fruits belonging to 46 species in 25 plant families were sampled from either the trees or the ground in 6 municipalities in the state of Santa Catarina, Brazil between 2002 and 2006 to determine which fruit fly species developed on various host plants. Each fruit was weighed and placed into a plastic flask filled with sterilized sand 7 cm deep, and the opening of the flask was covered with sheer fabric. The flasks were kept under controlled conditions (25 ± 3°C, 70 ± 10% RH and 12h photophase). After 7 d, the pupae were sifted from the sand and transferred to Petri dishes lined with filter paper. Twenty-one species of Tephritoidea were recovered consisting of 13 species of Tephritidae, 6 of Lonchaeidae, and 2 of Ulidiidae. We present new host records for some species of fruit flies.

Key Words: Tephritidae, Lonchaeidae, Ulidiidae, fruit pests, new host records

RESUMEN

Este trabajo dirigido a la evaluación de las especies de moscas de la fruta y sus plantas hospederas en el estado de Santa Catarina Brasil. Un total de 12.540 frutos maduros que pertenecen a 46 especies y 25 familias de árboles o del suelo en seis municipios del estado de Santa Catarina, Brasil entre 2002 y 2006 fueron muestradas. Cada fruto fue pesado y se colocó en un frasco de plástico cubierto con Voil, con 7 cm de arena esterilizada. Los frascos fueron mantenidos en condiciones controladas (25 ± 3°C, UR 70 ± 10% y 12h de photophase). Después de siete días, la arena se tamizó y las pupas fueron transferidas a placas de petri con papel filtro como sustrato. Veintiún especies de Tephritoidea fueron recuperados consistiendo de 13 especies de Tephritidae, 6 de Lonchaeidae, y 2 de Ulidiidae. Se presentan los registros de para algunas especies de fruta o moscas.

Translation provided by the authors.

Approximately 70 species of Tephritidae are considered important pests of fruit production worldwide. The majority of the species of economic importance belong to 5 genera: Anastrepha, Bactrocera, Ceratitis, Dacus, and Rhagoletis (Garcia 2009). The genus Neosilba of the family Lonchaeidae (McAlpine & Steyskal 1982) includes 16 described species (Strikis & Prado 2005), some of which cause severe damage to certain species of fruit crops in the American tropics.

Field surveys of fruit flies (Tephritoidea) and their host plants and parasitoids are essential for understanding the bioecology of the economically important genera and species in this superfamily (Bateman 1972). The creation of the common market, Mercosul, involving Brazil, Argentina, Paraguay and Uruguay, has elevated the importance of such studies because knowledge of these pest species, their hosts and natural enemies is key to containing their destructive effects as trade in fruits between these countries expands. In Brazil, most of the pest tephritids belong to the genus Anastrepha, but host plants are known for only 44% of the species (Zucchi 2007).

Santa Catarina has the most host plant records, 81, for species of Tephritidae among the Brazilian states (Garcia 2011). However, only 46 plant species belonging to 18 families are recorded in the state as hosts for fruit flies in the genus Anastrepha (Nora et al. 2000).

This work reports new information from a survey of fruit fly species and their host plants in the state of Santa Catarina, Brazil.

MATERIALS AND METHODS

Fruit Sampling

Between 2002 and 2006, a total of 12,540 ripe fruits from 46 plant species belonging to 25 fami-
lies were sampled. Fruits were picked from the plants, or freshly fallen fruits were gathered from the ground below them. Sampling occurred in 6 municipalities of Santa Catarina, Brazil: Anchieta (26° 53'S and 53° 33'W), Chapecó (27° 06'S and 53° 16'W), Cunha Porã (26° 07'S and 53° 16'W), Palmitos (27° 06'S and 53° 16'W), São Carlos (27° 07' S and 53° 00' W), and Xanxeré (26° 87' S and 52°W 40'). Each fruit was weighed and placed into a plastic flask containing 7 cm of sterilized sand, and the opening of the flask was covered with sheer fabric. The flasks were kept under controlled conditions (25 ± 3°C, 70 ± 10% RH and 12h photophase). After 7 d, the sand was sifted and the pupae transferred to Petri dishes with filter paper as substrate.

Identification of fruit flies and host plants

Characters of the females, primarily of the aculeus, and body and wing markings, were considered in identifying species of Anastrepha (Zucchi 2000) identified by Garcia and Zucchi. Ceratitis capitata (Wiedemann) is the only species of Ceratitis in Brazil and was easily recognized by the description by Zucchi (2000). Lonchoidea were identified by Dr. Pedro Strikis, and other Tephritidae and Notogramma cimiciforme Loew (Ulidiidae) were identified by Norrbom. The host plant species were identified by the botanists Dr. Sérgio Augusto de Loreto Bordignon, Dr. Rosiane Berenice Denardin, and Lúcia Salengue. Some voucher specimens of fruit flies and host plants were deposited at the Zoobotanic Museum of the University of Chapecó.

Data Analysis

The infestation indexes were calculated in 2 ways: (1) by dividing the total number of puparia obtained by the number of fruits in the sample (puparia/fruit); or (2) by dividing the total number of puparia by the total mass (kg) of fruits in the sample (puparia/kg). The host plants of Anastrepha obtained in this work were compared to the lists of hosts assembled by Norrbom (2004) and Zucchi (2007, 2008) with the aim of providing new host records for Brazil.

RESULTS AND DISCUSSION

Twenty-one species of Tephritoidea were recovered: 13 species of Tephritidae, 6 of Lonchoidea, and 2 of Ulidiidae (= Otitidae) (Table 1). The species, Parastenopa guttata Aczél and P. montana Aczél, are new records of fruit flies for the state of Santa Catarina, and the total number of known species of Tephritidae from the state is now 81 (Garcia 2011). The development of flies from the fruit of yerba maté, Ilex paraguariensis A. St. Hil., is reported for the first time. Two species of the genus Parastenopa, P. guttata and P. montana, were reared. The only Parastenopa species previously known to attack this plant were reared from stems or from leaf galls of the Paraguayan tea psyllid, Gyrosypilla speciganniana Lizer & Trelles (Hemiptera, Psyllidae) (Blanchard 1929; psyllid as Metaphalara speciganniana), although the North American P. limata (Coquillett) breeds in the fruit of several Ilex species (Benjamin 1934; Phillips 1946). Araticum, Annona rugulosa (Schltdl.) H. Rainer (Annonaceae), Inga sellowiana Benth. (Fabaceae), and the iguana hackberry, C. iguanae (Jacq.) Sarg. (Ulmaceae) are recorded for the first time as host plants of Anastrepha fraterculus (Wiedemann). Rio Grande cherry, Eugenia involucrata DC., is recorded for the first time as a host plant of Anastrepha obliqua (Meyquat); and sete-capas, Campomanesia guazumifolia (Cambess.) O. Berg. (Myrtaceae), is recorded as a host plant of Anastrepha sororcula Zucchi. Strawberry guava, P. cattleianum Sabine (Myrtaceae), is recorded for the first time as host plant of both A. obliqua and A. sororcula in Brazil. Previously strawberry guava had been reported as a host of A. obliqua in Guatemala (Eskafi & Cunningham, 1987).

The greatest infestations based on the number of puparia per fruit were found in pumpkin, Cucurbita pepo L. (6.59), followed by pineapple guava, Acca sellowiana (O. Berg) Burret (6.23), and common guava, Psidium guajava L. (6.16). Regarding the parameter puparia/kg, the greatest infestations occurred in strawberry guava, P. cattleianum (422), followed by pineapple guava, P. cattleianum (278), yerba maté, I. paraguariensis A. St. Hil. (260), and wild cherry, P. avium (L.) L. (232). Considering both parameters, pineapple guava, P. cattleianum, was the species most infested by fruit flies.

The highest number of plant hosts was recorded for A. fraterculus (20 plant species from 8 families) (Table 1); predominantly fig, Ficus carica L. (Moraceae) (75.0% of the total of samples collected were infested); guavairova, Campomanesia xanthocarpa O. Berg, (60.7%); guaviju, Myrctiancea pungens (O. Berg) D. Logrand (57.1%); Surinam cherry, Eugenia uniflora L. (55.3%); wild cherry, P. avium (L.) L. (Rosaceae) (52.0%); pineapple guava, P. cattleianum (51.7%); common guava, P. cattleianum (51.4%); guava (48.0%), Campomanesia guazumifolia (45.4%) (Myrtaceae); and carambola, Acerroha carambola L. (Oxalidaceae), (35.3%).

Nine new host plants of A. fraterculus were recorded in Brazil: araticum, A. rugulosa (Annonaceae); Inga sellowiana (Fabaceae); common fig, F. carica (Moraceae); pineapple guava, P. cattleianum (Myrtaceae); jaboticaba, Myrciaria cauliflora (Mart.) O. Berg (Myrtaceae); Campomanesia guazumifolia (Myrtaceae); wild cherry, P. avium (Rosaceae); bergamot orange, Citrus reticulata.
TABLE 1. PLANTS SAMPLED WITH THEIR RESPECTIVE ORIGIN (O), FRUIT WEIGHT (FW), NUMBER OF FRUITS SAMPLED (N), NUMBER OF PUPAE (P), AVERAGE NUMBER OF PUPAE PER FRUIT (P/N), AND AVERAGE NUMBER OF PUPAE PER KG (P/KG). N = NATIVE AND E = EXOTIC. NUMBER IN PARENTHESES FOLLOWING FLY SPECIES NAMES = NUMBER OF SPECIMENS REARED.

Plant Species	O	FW (kg)	# fruits	#pupae	P/n ± SE	P/kg ± SE	Tephritidae	Lonchaeidae & Ulidiidae
Annonaceae								
Araticum, Annona rugulosa	N	4.64	102	33	0.32 ± 0.1	7.10 ± 2.4	A. fraterculus (3)	Neosilba zadolicha (18)
Aquifoliaceae								
Erva-mate, Ilex paraguariensis	N	1.00	2465	259	0.11 ± 0.1	259.70 ± 20.5	Parastenopa spp. (254)	
Cactaceae								
Pereskia aculeata	N	0.37	50	45	0.90 ± 0.2	121.62 ± 10.4	A. barbiellinii (19)	
Cucurbitaceae								
Abóbora, Cucurbita pepo	E	139.77	68	448	6.59 ± 2.1	3.21 ± 1.8	A. grandis (310)	Dasiops sp. (8) Euxestia sp. (12) Neosilba padroi (40) Euxestia sp. (22) Lonchaeia sp. (12) Neosilba padroi (10)
Chuchu, Sechium edule	E	8.94	120	46	0.38 ± 0.1	5.15 ± 3.2		
Melancia, Citrullus lanatus	E	58.30	14	2	0.14 ± 0.1	0.03 ± 0.1	A. grandis (2)	Neosilba padroi (9) Euxestia sp. (7)
Melão, Cucumis melo	E	10.80	13	12	0.92 ± 0.3	1.11 ± 0.7		
Pepino, Cucumis sativus	E	8.22	43	11	0.26 ± 0.1	1.34 ± 0.8		
Ebenaceae								
Caqui, Diospyros kaki	E	9.47	126	367	2.91 ± 1.1	38.74 ± 12.0	A. fraterculus (11) C. capitata (293)	
Euphorbiaceae								
Mandioca, Manihot esculenta	N	0.52	210	2	0.01 ± 0.0	3.83 ± 1.3	A. montei (2)	
Fabaceae								
Inga, Inga sellowiana	N	1.75	246	49	0.20 ± 0.2	27.97 ± 6.2	A. fraterculus (5) C. capitata (4)	Lonchaeia sp. (12) Neosilba sp. (19)
Moraceae								
Figo, Ficus carica	E	1.22	52	22	0.42 ± 0.2	18.10 ± 8.3	A. fraterculus (16)	
Myrtaceae								
Araçá, Psidium cattleianum	N	5.67	670	2393	3.57 ± 1.3	421.99 ± 25.1	A. fraterculus (1220) C. capitata (10)	Neosilba zadolicha (5) Neosilba padroi (7) Neosilba sp. (6)
Plant Species	O	FW (kg)	# fruits	#pupae	P/n ± SE	P/kg ± SE	Tephritidae	Lonchaeidae & Ulidiidae
-------------------------------------	---	---------	----------	--------	----------	-----------	-------------	-------------------------
Cereja, *Eugenia involucrata*	N	2.85	516	155	0.30 ± 0.1	54.47 ± 13.0	A. fraterculus (79)	Neosilba padroi (6)
							C. capitata (15)	
Goiaba, *Psidium guajava*	N	12.47	236	1454	6.16 ± 2.4	116.64 ± 10.9	A. fraterculus (697)	Neosilba padroi (29)
							A. obliqua (14)	
							A. sororcula (7)	
							C. capitata (13)	
Goiaba-do-campo, *Acca sellowiana*	N	1.79	80	498	6.23 ± 3.2	277.80 ± 23.2	A. fraterculus (254)	
Guaviu, *Myrcianthes pungens*	N	0.25	52	21	0.40 ± 0.1	84.31 ± 13.3	A. fraterculus (12)	
Guavirova, *Campomanesia xanthocarpa*	N	2.61	717	53	0.07 ± 0.0	20.27 ± 6.8	A. fraterculus (32)	
Jabuticaba, *Myrciaria cauliflora*	N	0.16	25	3	0.12 ± 0.1	18.75 ± 7.7	A. fraterculus (3)	
Pitanga, *Eugenia uniflora*	N	4.49	1699	406	0.24 ± 0.1	90.37 ± 15.6	A. fraterculus (223)	Neosilba padroi (5)
Sete-capotes, *Campomanesia guazumifolia*	N	4.51	398	799	2.01 ± 1.0	177.08 ± 23.1	A. fraterculus (360)	Neosilba padroi (12)
							A. obliqua (4)	
							A. sororcula (5)	
							C. capitata (43)	
Uvaia, *Eugenia pyriformis*	N	1.60	334	148	0.44 ± 0.2	92.48 ± 17.9	A. fraterculus (51)	Neosilba padroi (3)
							C. capitata (43)	
Oxalidaceae							Neosilba padroi (12)	
Carambola, *Averrhoa carambola*	E	3.31	65	25	0.38 ± 0.1	7.56 ± 3.12	A. fraterculus (9)	
							A. obliqua (2)	
Passifloraceae							Neosilba padroi (12)	
Maracujá, *Passiflora edulis*	N	26.58	298	628	2.11 ± 0.5	23.63 ± 15.7	A. dissimilis (9)	Lonchaea sp. (185)
							A. pseudoparallela (363)	
							C. capitata (12)	
Rosaceae							Neosilba sp. (29)	
Ameixa, *Prunus domestica*	E	5.24	148	267	1.80 ± 1.2	50.94 ± 10.8	A. fraterculus (148)	Neosilba sp. (14)
Cereja-do-mato, *Prunus avium*	E	0.40	36	94	2.61 ± 1.1	232.45 ± 27.9	A. fraterculus (47)	
Nêspera, *Eriobotrya japonica*	E	12.79	1263	1285	1.02 ± 0.7	100.44 ± 30.1	A. fraterculus (218)	
							C. capitata (816)	
Pera, *Pyrus communis*	E	9.85	96	52	0.54 ± 0.2	5.28 ± 2.6	A. fraterculus (33)	Lonchaea sp. (14)
Pêssego, *Prunus persica*	E	27.32	652	1151	1.77 ± 0.9	42.13 ± 18.1	A. fraterculus (372)	Neosilba zadolicha (43)
							C. capitata (322)	Neosilba sp. (41)
Rutaceae							Neosilba padroi (12)	
Bergamota, *Citrus reticulata*	E	8.67	138	44	0.32 ± 0.1	5.07 ± 3.3	A. fraterculus (12)	

TABLE 1. (CONTINUED) PLANTS SAMPLED WITH THEIR RESPECTIVE ORIGIN (O), FRUIT WEIGHT (FW), NUMBER OF FRUITS SAMPLED (N), NUMBER OF PUPAE (P), AVERAGE NUMBER OF PUPAE PER FRUIT (P/n), AND AVERAGE NUMBER OF PUPAE PER KG (P/kg). N = NATIVE AND E = EXOTIC. NUMBER IN PARENTHESES FOLLOWING FLY SPECIES NAMES = NUMBER OF SPECIMENS REARED.
Plant Species	O	FW (kg)	# fruits n	# pupae P	P/n ± SE	P/kg ± SE	Tephritidae	Lonchaeidae & Ulidiidae
Laranja, Citrus sinensis	E	17.20	176	105	0.60 ± 0.2	6.10 ± 4.0	Notogramma cimiciforme (9)	
Sapindaceae	N	5.80	63	2	0.03 ± 0.0	0.34 ± 0.2	Neosilba padroi (29)	Neosilba padroi (69)
Camboatá-vermelho, Cupania vernalis	N	0.24	87	9	0.10 ± 0.1	37.50 ± 12.3		A. elegans (7)
Sapotaceae	N	0.24	87	9	0.10 ± 0.1	37.50 ± 12.3		A. elegans (7)
Aguí, Chrysophyllum gonocarpum	N	911.66	807	608	0.75 ± 0.3	0.67 ± 0.2	Neosilba padroi (3)	Neosilba padroi (52)
Solanaceae	N	0.22	32	13	0.41 ± 0.2	59.09 ± 29.5	Neosilba padroi (12)	Neosilba padroi (52)
Joá, Solanum sisimbrifolium		6.57	193	107	0.55 ± 0.3	16.29 ± 8.2	Neosilba padroi (12)	Neosilba padroi (52)
Tomate, Lycopersicum esculentum	E	6.57	193	107	0.55 ± 0.3	16.29 ± 8.2	Neosilba padroi (12)	Neosilba padroi (52)
Ulmaceae	N	911.66	807	608	0.75 ± 0.3	0.67 ± 0.2	Neosilba padroi (3)	Neosilba padroi (52)
Esporão-de-galo, Celtis iguanaea	N	911.66	807	608	0.75 ± 0.3	0.67 ± 0.2	Neosilba padroi (3)	Neosilba padroi (52)

TABLE 1. (CONTINUED) PLANTS SAMPLED WITH THEIR RESPECTIVE ORIGIN (O), FRUIT WEIGHT (FW), NUMBER OF FRUITS SAMPLED (N), NUMBER OF PUPAE (P), AVERAGE NUMBER OF PUPAE PER FRUIT (P/N), AND AVERAGE NUMBER OF PUPAE PER KG (P/KG). N = NATIVE AND E = EXOTIC. NUMBER IN PARENTHESES FOLLOWING FLY SPECIES NAMES = NUMBER OF SPECIMENS REARED.
Blanco (Rutaceae); and iguana hackberry, C. iguanae (Jacq.) Sarg. (Ulmaceae).

Peresquia aculeata Mill., also known as Ora-pro-nobis or Barbados gooseberry, was found to be a host plant for Anastrepha barbiellinii Lima; and Campomanesia guazumifolia (Myrtaceae) was recorded for the first time as a host plant for both A. obliqua and A. sororcula.

Native plant species served as hosts of 12 fruit fly species from 4 genera of Tephritidae, whereas exotic plant species served as hosts of only 4 species from 2 genera. Ceratitis capitata developed in 9 plant species from 5 families, with the following order of predominance: khaki, Diospyros kaki Thunb. (Ebenaceae) (93.1% of the fruits sampled); medlar, Eriobotrya japonica (Thunb.) Lindl. (Rosaceae) (63.5%); uvaia, Eugenia pyriformis Cambess. (Myrtaceae) (29.2%); and peach, P. persica (L.) Batsch (28.1%). Some fruit fly species occurred exclusively in 1 plant species: Anastrepha barbiellinii in ora-pro-nobis, Peresquia aculeata; Anastrepha grandis (Macquart) only in pumpkin, C. pepo; Rhaagolotriypetra pastranae Azeél only in espórião-de-galo, Celtis iguanae (Jacq.) Sarg.; Anastrepha dissimilis Stone and A. pseudoparallela only in Passiflora edulis Sims; Anastrepha montei Lima only in cassava, Manihiot esculenta Crantz; and Parastenopa guttata and P. montana only in yerba maté, I. paraguariensis St. Hil.

Lonchaeid flies were recorded from 22 host plant species from 9 families of which 12 were native and 10 exotic. Araújo & Zucchi (2002) have also described the indiscriminate infestation of native and exotic fruits by Lonchaeidae. Neosilba padroii, a species described recently by Strikis & Lerenia (2009), had the highest number of host species (7 native, 15 exotic) belonging to 8 families; the lance fly, Lonchaea sp., had 4 host species (2 native and 2 exotic) in 4 families; Neosilba zadolicha McAlpine & Steyskal had 3 host species (1 native and 2 exotic) in 3 families; and Diasiops sp. occurred only in C. pepo (exotic). Neosilba zadolicha occurred in araticum, A. rugulosa (Annonaceae), aracá, P. cattleanum (Myrtaceae), and peach, P. persica (Rosaceae). Spondias sp. (Anacardiaceae) (Santos et al. 2004) and medlar, Erio- botrya japonica (Strikis & Prado 2009) also may serve as hosts of N. zadolicha.

The Ulidiidae occurred only in 5 exotic species of Rutaceae and Cucurbitaceae; Euxesta sp. occurred only in Cucurbitaceae and N. cimiciforme Loew only in Rutaceae. Euxesta sp. occurred on 3 plant species, with predominance in chayote, Sechium edule (Jacq.) Sw., (48.9%). N. cimiciforme occurred only in bergamot orange, C. reticulata Blanco, and orange, Citrus sinensis (L.) Osbeck. This species has a wide geographic range in the New World and is a scavenger recorded from a wide variety of plants (Steykalsk 1963). Unlike our results, Uchóa-Fernandes et al. (2003) and Aguiar-Menezes et al. (2004) obtained specimens of N. cimiciforme in passion fruit (Passiflora sp.), with occurrences also in tangerine, C. reticulata, and orange, C. sinensis. Such differences may be due to the interpopulation differences or seasonal availability of host plants in different regions (Selivon 2000).

Pumpkin was infested by 4 species of flies belonging to 3 families. Guava, passion fruit, and peach were infested by 5 species each, and these fruits were found to support infestations only of species of Tephritidae and Lonchaeidae.

Under the conditions in which this research was conducted, we conclude that a wide diversity of fruit-bearing plant species in the state of Santa Catarina was attacked by 22 species of tephritid flies. The most predominant fly was A. fraterculus, and P. cattleanum was the host species most frequently infested by these flies.

ACKNOWLEDGMENTS

We thank the National Council of Technological and Scientific Development of Brazil (CNPq) for the Scholarship of Research Productivity; Biologist Pedro Strikis from Unicamp for Lonchaeidae identifications; Prof. Dr. Roberto Antonio Zucchi for some species of Tephritidae confirmations, and Professors Dr. Sérgio Bordignon from Unilasalle, and Dra. Rosiane Denardin and Lúcia Verona from Unochapecó, for plant identifications.

REFERENCES CITED

AGUIAR-MENEZES, E., NASCIMENTO, R. J., AND MENEZES, E. B. 2004. Diversity of fly species (Diptera: Tephritoidae) from Passiflora spp. and their hymenopterous parasitoids in two municipalities of southeastern Brazil. Neotrop. Entomol. 33: 113-116.

ARAÚJO, E. L., AND ZUCCHI, R. A. 2002. Hospedeiros e confirmations, and Professors Dr. Sérgio Bordignon from Unilasalle, and Dra. Rosiane Denardin and Lúcia Verona from Unochapecó, for plant identifications.

REFERENCES CITED

AGUIAR-MENEZES, E., NASCIMENTO, R. J., AND MENEZES, E. B. 2004. Diversity of fly species (Diptera: Tephritoidae) from Passiflora spp. and their hymenopterous parasitoids in two municipalities of southeastern Brazil. Neotrop. Entomol. 33: 113-116.

ARAÚJO, E. L., AND ZUCCHI, R. A. 2002. Hospedeiros e níveis de infestação de Neosilba pendula (Bezzii) (Diptera: Lonchaeidae) na região de Mossoró-Açu, R.N. Arq. Inst. Biol. 69: 91-94.

BATEMAN, M. A. 1972. The ecology of fruit flies. Annu. Rev. Entomol. 17: 493-518.

BENJAMIN, F. H. 1934. Descriptions of some native trypetid flies with notes on their habits. U.S. Dep. Agric. Tech. Bull. 401: 95 p.

BLANCHARD, E. E. 1929. Descriptions of Argentine Diptera. Physis 9: 458-465.

ESKAFI, F. M., AND CUNNINGHAM, R. T. 1982. A revision of Neosilba McAlpine with a key to world genera of Lonchaeidae (Diptera). Canadian Entomol. 114: 105-137.
Nora, I., Hickel, E. R., and Prando, H. F. 2000. Santa Catarina, pp. 320-327 In A. Malavasi and R. A. Zucchi [eds.]. Mosca-das-frutas de Importância Econômica no Brasil; Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

Norrbom, A. L. 2004. Host plant database for Anastrepha and Toxotrypana (Diptera: Tephritidae: Toxotrypanini). Diptera Data Dissemination Disk (CD-ROM) 2.

Phillips, V. T. 1946. The Biology and Identification of Trypetid Larvae (Diptera: Trypetidae). Mem. Amer. Entomol. Soc. 12: [ii] + 161 + xvi p.

Santos, W. S, Carvalho, C. A. L., and Marques, O. M. 2004. Registro de Neosilba zadolicha McAlpine & Steyskal (Diptera: Lonchaeidae) em umbú-cajá (Anacardiaceae). Neotrop. Entomol. 33: 653-654.

Selivon, D. 2000. Relações com as plantas hospedeiras, pp.87-91 In A. Malavasi and R. A. Zucchi [eds.], Mosca-das-frutas de Importância Econômica no Brasil; Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

Steyskal, G. C. 1963. The genus Notogramma Loew (Diptera: Acalyptratae, Otitidae). Proc. Entomol. Soc. Washington 65: 195-200.

Strikis, P. C., and Prado, A. P. 2005. A new species of genus Neosilba (Diptera: Lonchaeidae). Zootaxa 828: 1-5.

Strikis, P. C., and Prado, A. P. 2009. Lonchaeidae associated to fruits of néspera, Eryobotria japonica (Thunb.) Lindley (Rosaceae), com descrição de uma nova espécie de Neosilba (Diptera: Tephritoidea). Arq. Inst. Biol. 76: 49-54.

Strikis, P. C., and Lerenà, M. L. M. A. 2009 A new species of Neosilba (Diptera: Lonchaeidae) from Brazil. Iheringia, Série Zool. 99: 273-275.

Uchôa-Fernandes, M., Oliveira, I., Molina, R. M. S., and Zucchi, R. A. 2003. Biodiversity of frugivorous flies (Diptera: Tephritoidea) captured in Citrus groves in Mato Grosso do Sul, Brazil. Neotrop. Entomol. 32: 239-246.

Zucchi, R. A. 2007. Diversidad, distribución y hospederos del género Anastrepha en Brasil, pp. 77-100 In V. Hernández-Ortiz [ed.], Moscas de la Fruta en Latinoamérica (Diptera: Tephritoidea): Diversidad, Biología y Manejo. S y G editores, Pedregal de Santo Domingo.

Zucchi, R. A. 2008. Fruit flies in Brazil - Anastrepha species and their hosts plants. Piracicaba, 2008. Acessado em: 20. Nov. 2009. Online. Disponível em: www.lef.esalq.usp.br/anastrepha/.

Zucchi, R. A. 2000. Taxonomia, pp. 13-24 In A. Malavasi and R. A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.