Human tissue kallikreins (hKs) are a family of fifteen serine proteases. Several lines of evidence suggest that hKs participate in proteolytic cascade pathways. Human kallikrein 5 (hK5) has trypsin-like activity, is able to self-activate, and is co-expressed in various tissues with other hKs. In this study, we examined the ability of hK5 to activate other hKs. By using synthetic heptapeptides that encompass the activation site of each kallikrein recombinant pro-hKs, we demonstrated that hK5 is able to activate pro-hK2 and pro-hK3. We then showed that, following their activation, hK5 can internally cleave and deactivate hK2 and hK3. Given the predominant expression of hK2 and hK3 in the prostate, we examined the pathophysiological role of hK5 in this tissue. We studied the regulation of hK5 activity by cations (Zn\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\), Na\(^+\), and K\(^+\)) and citrate and showed that Zn\(^{2+}\) can efficiently inhibit hK5 activity at levels well below its normal concentration in the prostate. We also showed that hK5 can degrade semenogelins I and II, the major components of the seminal clot. Semenogelins can reverse the inhibition of hK5 by Zn\(^{2+}\), providing a novel regulatory mechanism of its serine protease activity. hK5 is also able to internally cleave insulin-like growth factor-binding proteins 1, 2, 3, 4, and 5, but not 6, suggesting that it might be involved in prostate cancer progression through growth factor regulation. Our results uncover a kallikrein proteolytic cascade pathway in the prostate that participates in seminal clot liquefaction and probably in prostate cancer progression.

Proteolytic cascade pathways are implicated in many physiological functions such as blood coagulation, fibrinolysis, apoptosis, digestion, among others (1). Proteases are usually synthesized as inactivezymogens and require limited (auto)proteolysis of their propeptide to become active (2). Activation of a zymogen by the activated form of another protease can give rise to proteolytic cascades. This allows rapid amplification of the initial signal, followed by downstream control through inhibitors or (auto)digestion. Serine proteases, the second largest family of proteases, are known to participate in proteolytic cascade pathways, e.g. factors VII, X, and XI, during the coagulation and fibrin formation cascade (1).

Human tissue kallikreins are 10 homologous serine protease genes that co-localize in tandem to chromosome 19q13.4 (3–5). The association of multiple members of this family with many cancer types, such as prostate, breast, and ovarian, as well as their diagnostic/prognostic value, has been extensively studied (6–8). Kallikrein 3 (hK3) and prostate-specific antigen (PSA) are valuable biomarkers for prostate adenocarcinoma (9). Recently, it has been realized that human kallikreins may function through proteolytic cascades (10, 11). KKL1 gene resides at a single locus, and many are regulated by steroids and co-expressed in various tissues and fluids and concurrently up- or down-regulated during tumor progression (5, 12). Similarly to hK5, several serine proteases involved in sequential steps during the coagulation cascade are encoded by tandem co-localized genes, and some may share a common ancestor (1, 13, 14). Furthermore, the facts that 14 of the 15 kallikreins (except hK4) require cleavage of their propeptide after lysine (hK6, hK7, hK8, hK12, hK13, hK14, and hK15) or arginine (hK1, hK2, hK3, hK5, hK9, hK10, and hK11) by a trypsin-like enzyme, and 12 of them are predicted to have trypsin-like activity (except hK3, hK7, hK9, which have chymotrypsin-like activity), strengthen the possibility that hKs are part of an as-yet elusive proteolytic cascade.

Currently, it is known that hK2, hK4, and hK15 can activate pro-hK3 in vitro and that they may be involved in a proteolytic cascade in prostate tissue and seminal plasma (15–19). Other members of the family, such as hK5, hK8, hK11, hK13, and hK14, are also expressed in the prostate and are secreted in seminal plasma, so they might also participate in related cascades. Brattsand et al. (11) have recently suggested that a proteolytic cascade of kallikreins operates in the stratum corneum and that hK5, in vitro, can activate pro-hK7. In addition, some hKs, i.e. hK2 (20, 21), hK5 (11), hK6 (22, 23), and hK13 (24), are capable of autoactivation and may, therefore, be involved in the initiation and maintenance of a cascade, similar to factor XI of the intrinsic coagulation (25).

Human kallikrein 5 (hK5, encoded by the KLK5 gene) is a relatively new member of the human kallikrein family of serine proteases (26, 27). Studies have shown that KLK5 is differentially regulated in a variety of hormone-dependent malignancies, including ovarian (28), breast (29), prostate (30), and testicular (31) cancers. By using an hK5-specific enzyme-linked immunosorbent assay, we have recently shown that hK5 is a potential biomarker for ovarian and breast cancer (32, 33). We have previously shown that hK5 has trypsin-like activity with strong pref-
Kallikrein 5 and Proteolytic Cascade Pathways

ence for Arg over Lys for the P1 position and that its activity is inhibited by the serpins α1-antiplasmin and α1-antithrombin (34). Furthermore, we proposed that hK5 is implicated in tumor progression by degrading components of the extracellular matrix such as collagen types I–IV, fibronectin, and laminin and by releasing angiostatin and potentially in prostate cancer progression.

In this study we examined the interaction of hK5 with the remaining members of the kallikrein family and its ability to activate them. We show that hK5 is able to activate pro-hK2 and pro-hK3 and subsequently deactivate them. Our data also indicate that hK5, along with other members of the human kallikrein family, may participate in a proteolytic cascade pathway that plays a role during seminal clot liquefaction and potentially in prostate cancer progression.

EXPERIMENTAL PROCEDURES

Materials—The synthetic heptapeptides N-Ile-Gln-Ser-Arg-Ile-Val-Gly-C, N-Ile-Leu-Ser-Arg-Ile-Val-Gly-C, N-Ser-Cys-Ser-Gln-Ile-Ile-Asn-C, N-Ser-Ser-Ser-Arg-Ile-Asn-C, N-Glu-Gln-Gln-Ser-Leu-Val-His-C, N-Gln-Gly-Asp-Lys-Ile-Asp-C, N-Glu-Gln-Asp-Lys-Val-Leu-Gly-C, N-Asp-Thr-Arg-Ala-Ile-Gly-C, N-Asn-Asp-Thr-Arg-Leu-Asp-Pro-C, N-Glu-Thr-Arg-Ile-Lys-C, N-Ala-Thr-Pro-Lys-Ile-Asn-C, N-Glu-Ser-Ser-Lys-Val-Leu-Asn-C, N-Asp-Glu-Asn-Lys-Ile-Ile-Gly-C, N-Asp-Gly-Asp-Asp-Lys-Leu-Val-C, and N-Asp-Gly-Lys-Leu-Val-Glu-C were purchased from General Synthesis, San Francisco, CA. The heptapeptides were diluted with water and stored at −20 °C. The synthetic substrates, Val-Pro-Arg-AMC (VPR-AMC), Suc-Ala-Ala-Pro-Phe-AMC (AAPF-AMC), and MeO-Suc-Arg-Pro-Tyr-pNA (RYP-pNA), were purchased from Bachem Bioscience (King of Prussia, PA) and the latter one from Amersham Biosciences-Heparin (Bucks, UK), respectively. The protease inhibitor ACT was purchased from Calbiochem; its purity was ≥95% as verified by SDS-PAGE. A 25-cm C18 column, 50-Å pore size, was purchased from TOSOH, Grove City, OH. Mutated pro[Val217]hK2 (pro-hK2mut), which abolishes its ability to autoactivate, and wild-type-active hK2 (hK2wt) were obtained from Hybritech Inc., San Diego, CA. Pro-hK3 was obtained from Spectra Diagnostics Inc, Toronto, Ontario, Canada. hK5 was produced in-house as has been previously described (34). Semenogelins I and II were purified from seminal plasma as has been previously described (35). Insulin-like growth factor-binding proteins 1–6 were purchased from Diagnostic Systems Laboratories, Webster, TX.

Cleavage of Heptapeptides by hK5—25 μg of the heptapeptides were incubated with 1 μg of hK5 (1500:1 molar ratio) in assay buffer (hK5 optimal buffer, 100 mM phosphate buffer, 0.01% Tween 20, pH 8.0), at a final volume of 150 μl. The reaction was incubated at 37 °C for 0.5, 1, 2, 4, and 8 h and terminated by freezing the samples with liquid nitrogen. 100 μl from each time point was diluted 1.5-fold with loading buffer (distilled H2O, 0.1% trifluoroacetic acid) and loaded to a C18 column connected to a high-performance liquid chromatography system at a flow rate of 0.8 ml/min. Elution was performed by using Buffer A (distilled H2O, 0.1% trifluoroacetic acid) and Buffer B (acetonitrile 0.1% trifluoroacetic acid) with a linear gradient of 0–100% acetonitrile at a flow rate of 0.8 ml/min.

Activation of Pro-hK3 and Pro-hK2mut by hK5—The activation of pro-hK2mut and pro-hK3 was monitored by complex formation of hK2 and hK3 with the serpin ACT, an inhibitor for the aforementioned kallikreins but not for hK5. After incubating pro-hK2mut and pro-hK3 with hK5 at different molar ratios and incubation times, ACT and assay buffer for hK2 and hK3 (hK2 optimal buffer, 0.1 mM Tris-HCl, 0.1 mM NaCl, 0.01% Tween 20, pH 7.5, and hK3 optimal buffer, 0.1 mM Tris-HCl, 3 mM NaCl, 0.01% Tween 20, pH 7.5) were added in a final volume 150 μl. The reaction was incubated for 4 h at 37 °C and terminated by freezing in liquid nitrogen. Positive and negative controls were included as well. 25-μl samples of each reaction were run on SDS-PAGE under reducing conditions and stained with Coomassie Blue to monitor the hK2/3/ACT complex formation.

The activation of pro-hK3 by hK5 was also monitored by the release of AMC or pNA and the increase of fluorescence or absorbance, respectively, from hK3-specific substrates, i.e. AAPF-AMC and RYP-pNA. Pro-hK3 was incubated with hK5, at different molar ratios and incubation times, in hK5 assay buffer at 37 °C. The final volume was 50 μl, and the reaction was terminated by the addition of aprotinin (1:100 molar ratio). The activation of pro-hK3 was monitored by adding AAPF-AMC, as above, and assay buffer in a final volume of 200 μl. Reactions were set up in microtiter wells and incubated at 37 °C. Fluorescence or absorbance increase was measured for 20 min on a Wallac Victor fluorometer (PerkinElmer Life Sciences) set at 355 nm for excitation and 460 nm for emission for the AMC substrate and absorbance at 405 nm for the pNA substrate. Enzyme-free reactions, for all substrate concentrations, were used as negative controls, and background fluorescence or absorbance was subtracted from each value. A reaction with hK5 alone and pro-hK3 without incubation with hK5 were used as negative controls. Duplicate reactions were run on SDS-PAGE under reducing conditions in two different gels. The first was stained with Coomassie Blue, whereas the second was electroblotted onto nitrocellulose membranes (Hybond™-C Extra). Western blots were performed by using a polyclonal hK3 as primary antibody.

Western Blotting for Detection of the hK3 Fragments in Seminal Plasma and Prostate—Seminal plasma from healthy individuals were leftovers of samples submitted for routine biochemical testing that had been stored at −80 °C. The prostate extracts were the healthy samples from matched healthy cancerous prostatic tissue pairs were obtained from prostate cancer patients who had undergone radical retropubic prostatectomy for prostatic adenocarcinoma at the Charite University Hospital (Berlin, Germany). The patients had not received hormonal therapy before surgery. The tissue samples were dissected from cancerous and noncancerous (healthy) portions of the prostate immediately after surgical removal. The samples were stored in liquid N2 until needed. To determine the malignant or benign nature of the tissue samples, a histological analysis was performed as described previously (36). These samples were approved for research purpose use by the Ethics Committee of the Charite Hospital. The samples were resolved by SDS-PAGE (NuPAGE 4–12% Bis-Tris gels, Invitrogen) and subsequently electroblotted onto nitrocellulose membranes (Hybond™-C Extra). Western blots were performed as above.

Effect of Cations (Zn2+, Ca2+, Mg2+, Na+, and K+) and Citrate on hK5 Activity—To determine the effect of the cations (solutions made from salts of ZnCl2, NaCl, KCl, MgCl2, and CaCl2) and citrate on hK5 activity, reactions mixtures were set up as follows: purified recombinant hK5 (final concentration of 12 nM) was incubated with each cation and citrate (final concentrations of 0, 12, 60, 120, 1,200, and 12,000 nM) diluted in the assay buffer (0.1 mM Tris-HCl, 1 mM NaCl, 0.01% Tween 20, pH 8.0) at a final volume of 100 μl in microtubes for 10 min at 37 °C with gentle agitation. After incubation, the fluorogenic substrate VPR-AMC (final concentration of 1 mM) was applied to each hK5-cation/citrate mixture separately. Reactions were set up in microtiter wells and incubated at 37 °C. Fluorescence was measured for 15 min as described before. Enzyme-free reactions, for all cations/citrate and substrate, were used as negative controls, and background fluorescence was subtracted from each value. All experiments were done in triplicate.
Relative efficiency of cleavage of heptapeptides by hK5

TABLE 1

Heptapeptide sequence	Pro-hK	Cleavage efficiency	
(N—C)			
IQSR	IVG	hK1	High
IQSR	IVG	hK2	High
ILSR	IVG	hK3	High
SSNR	IIN	hK5	Moderate
DTR	AIG	hK9	Moderate
ETR	IIK	hK11	Moderate
ATDP	IFN	hK12	Moderate
OGDK	IHD	hK7	Low
QEDK	VLG	hK9	Low
DGDK	LLE	hK15	Low
SCSQ	IIN	hK4	No cleavage
EQNK	LVH	hK6	No cleavage
NDTR	LDP	hK10	No cleavage
ESSK	VLN	hK13	No cleavage
DENK	IIG	hK14	No cleavage

a Single letter representation.
b Arrows indicate cleavage site. Bold letters indicate P1 and P1’ sites.

Reversal of Zn2+ Inhibition of hK5 Activity by Semenogelin I and II—
hK5 (concentration, 10 μM) was incubated with Zn2+ (final concentration, 5 μM) to a final volume of 100 μl in microtubes for 10 min at 37 °C with gentle agitation. After incubation, the fluorescent substrate VPR-AMC (final concentration of 0.8 mM) was added. Reactions were set up in microtiter wells and incubated at 37 °C. Fluorescence was measured for 20 min as described before. At certain points, during measurement, semenogelin I or II (final concentration, 0.05 μM) and EDTA (final concentration, 10 mM) were added in each microtiter well. Enzyme-free reactions were used as negative controls, and background fluorescence was subtracted from each value. All experiments were done in triplicate.

Cleavage of Semenogelins I and II by hK5—Purified semenogelins I and II (5 μg) were incubated separately with 165 ng of hK5 in 100 mM Na2HPO4, 0.01% Tween 20, pH 8.0, 0.2 M urea or with 165 ng of hK2 in 0.1 mM Tris-HCl, 0.1 mM NaCl, 0.01% Tween 20, pH 7.5, 0.2 M urea at 37 °C for 2 and 8 h. The reactions were terminated by freezing in liquid nitrogen. Subsequently, the reactions were run on SDS-PAGE under reducing conditions, and the gels were stained with silver staining.

Cleavage of IGFBPs by hK5—IGFBP1–6 (450 ng) were incubated separately with 50 ng of hK5 in 100 mM Na2HPO4, 0.01% Tween 20, pH 8.0 at 37 °C for different time points. The reactions were terminated by freezing in liquid nitrogen. The reactions were run on SDS-PAGE under reducing conditions, and the gels were stained with silver staining.

N-terminal Sequencing—N-terminal sequencing was performed with the Edman degradation method. Proteins were transferred by electroblotting to a polyvinylidene difluoride membrane and visualized with Coomassie Blue stain.

RESULTS

Cleavage of Heptapeptides by hK5—Because fourteen out of the fifteen human kallikreins (except hK4) require cleavage after Arg (hK1, hK2, hK3, hK5, hK9, hK10, and hK11) or Lys (hK6, hK7, hK8, hK12, hK13, hK14, and hK15) for propeptide release and activation, and hK5 has trypsin-like activity (34), we designed heptapeptides encompassing the putative P1–P4 and P1’–P3 positions of the activation site of each kallikrein. We incubated these peptides with hK5 for various time intervals, and the reactions were monitored with high-performance liquid chromatography chromatography, using a C18 column. The time-dependent decrease of the height and the area under the main peak representing the intact heptapeptide and the generation of one or two new peaks representing the P1–P4 and P1’–P3 fragments was indicative of the efficiency of hK5 to cleave each heptapeptide. hK5 was able to cleave the heptapeptides encompassing the cleavage sites for hK1, hK2, and hK3 with high efficiency; the heptapeptides for hK5, hK9, hK11, and hK12 with moderate efficiency and the heptapeptides for hK7, hK8, and hK15 with low efficiency. No cleavage was observed for the heptapeptides for hK4, hK6, hK10, hK13, and hK14. The data are summarized in Table 1.

Activation and Deactivation of Pro-hK3 and Pro-hK2mut by hK5—Given the above findings (Table 1) we examined the ability of hK5 to activate recombinant pro-hK2 and pro-hK3. After incubating both pro-hK2mut and pro-hK3 with hK5 we monitored their activation through binding to the serpin ACT. Both pro-hK2mut and pro-hK3, after incubation with hK5, became active and formed a complex with ACT (Fig. 1, A and B).

Because hK3 has chymotrypsin-like activity, we monitored its activation by hK5, by adding a chymotrypsin-like fluorogenic or chromogenic substrate. The activation was dependent on the pro-hK3:hK5 molar ratio and the time of incubation (Fig. 2, A and B). At a pro-hK3:hK5 molar ratio of 10:1, the reaction rate decreased in a time-dependent manner (Fig. 2C). By SDS-PAGE and Coomassie Blue staining we observed generation of degradation products of hK3 (Fig. 3A). The bands 1, 2, and 5 had N-terminal sequence of IVGGWE due to activation of pro-hK3 by hK5 (cleavage of the peptide bond at the activation site between Arg1 and Ile2). bands 3 and 4 had a sequence of FLRPGDD due to internal cleavage of hK3 between Arg65 and Phe66, whereas band 6 had a sequence of STCSGDS due to internal cleavage of hK3 between Lys127 and Ser128. These results indicate that hK5 is able to activate and subsequently deactivate hK3 by internal cleavage.

![FIGURE 1. Activation of pro-hK2mut (A) and pro-hK3 (B) by hK5. A, hK5 was incubated with pro-hK2 (0.5 μM) at a 1:5 molar ratio (lane 6). Subsequently, ACT at an hK2:ACT molar ratio of 1:10 was added, and the reaction was incubated for 2 h at 37 °C. The activation was monitored by formation of the ACT-hK2 complex (arrow). Active hK2 was incubated alone with ACT as a positive control (lane 5), whereas pro-hK2 was incubated with ACT (without hK5) as a negative control (lane 4). The kallikreins pro-hK2 and hK5 and the inhibitor ACT alone are shown in lanes 1–3, respectively. Filled arrowheads show the two fragments generated from hK2 as a result of autodegradation (lane 5) or internal cleavage by hK5 (lane 6). For sequencing data see Table 3. The open arrowhead represents the low molecular weight fragment cleaved from ACT after the ACT-hK2 complex formation. B, hK5 was incubated with pro-hK3 (0.5 μM) at 1:5 molar ratio for 5 min at 37 °C (lanes 6). Subsequently, ACT at an hK3:ACT molar ratio of 1:10 was added, and the reaction was incubated for 2 h at 37 °C. The activation was monitored by the ACT-hK3 complex formation (arrow). hK5 and pro-hK3 were incubated with ACT (without hK5) as a negative control (lanes 4 and 5, respectively). The ACT inhibitor and the kallikreins hK2 and pro-hK3 alone are shown in lanes 1–3, respectively. The open arrowhead represents the low molecular weight fragment generated from ACT after the ACT-hK3 complex formation. M, molecular mass standards with shown masses in kilodaltons.](image-url)
Kallikrein 5 and Proteolytic Cascade Pathways

Clipped forms of the PSA/hK3 in seminal plasma have been previously described. Typically, 20–30% of hK3 in this fluid is clipped between residues Arg\(^{85}\) and Phe\(^{86}\), Lys\(^{145}\) and Lys\(^{146}\), and Lys\(^{182}\) and Ser\(^{183}\) (37–39). By using a polyclonal antibody against hK3, we performed Western blots of seminal plasma, prostate extracts and at different time points of the activation of pro-hK3 by hK5. We were able to detect four of the five predicted fragments generated by the incubation of pro-hK3 with hK5 (one fragment is probably not recognized by our antibodies) (Fig. 3B). In seminal plasma, we detected all four bands generated by the cleavage of pro-hK3 by hK5 at the peptide bonds Arg\(^{85}\)–Phe\(^{86}\) and Lys\(^{182}\)–Ser\(^{183}\) plus two bands generated by the cleavage at the peptide bond Lys\(^{145}\)–Lys\(^{146}\) (Fig. 3C). Interestingly, we were able to detect the same fragments in prostate tissue extracts (Fig. 3D), indicating that the deactivation of hK3 may initiate within the prostate, after its secretion.

During the activation of pro-hK2\(^{mut}\) by hK5 we also observed the generation of two fragments (Fig. 1A, lane 6). The N-terminal sequence of band 1 was IVGGWE due to activation of pro-hK2\(^{mut}\) by hK5 (cleavage of the peptide bond at the activation site between Arg\(^{1}\) and Ile\(^{1}\)). The N-terminal sequence of band 2 was SLQCVCSSL due to internal cleavage of hK2\(^{mut}\) between Arg\(^{145}\) and Ser\(^{146}\). hK2\(^{mut}\) has been shown to internally cleave itself after autoactivation (40). However, the overall catalytic efficiency of the mutated hK2 form, i.e. hK2\(^{mut}\), used in this study, is <0.01% of wild-type hK2 (41). In the same study, it has also been shown that hK2\(^{mut}\) has a slightly altered PI from Arg to Tyr. These data led us to conclude that hK2\(^{mut}\) fragmentation is due to hK5 activity and not to autolysis.

Effect of Cations and Citrate on hK5 Activity—The cations Zn\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\), Na\(^{+}\), and K\(^{+}\) and the anion citrate are present at high levels in seminal plasma and prostatic fluid and play an important role in the regulation of protease activity (42). After incubating each of the ions with hK5, we added the fluorogenic substrate VPR-AMC to monitor residual enzyme activity. Citrate seems to enhance hK5 activity at relatively high amounts (Table 2). At a 1:10 molar ratio (hK5: Zn\(^{2+}\)), the inhibition was 97.5%, indicating that the high levels of Zn\(^{2+}\) in seminal plasma and prostatic fluid could regulate hK5 activity. The ability of Zn\(^{2+}\) to efficiently inhibit hK2 (20) and hK3 (43, 44) has been previously investigated. Sodium and other tested cations had no effect on hK5 activity (Table 2), in contrast to hK3 whose activity increases with increasing Na\(^{+}\) (44).

Reversal of Zn\(^{2+}\) Inhibition by Semenogelins I and II—Semenogelins I and II are secreted by the seminal vesicles and are highly abundant proteins in human seminal plasma (35, 45). Jonsson et al. (46) have previously shown that semenogelins I and II have the ability to bind zinc...
and regulate the activity of hK3. In this study, after incubating hK5 with Zn\(^{2+}\) and accessing hK5 residual activity with the fluorogenic substrate VPR-AMC, we demonstrated that addition of semenogelins I and II was able to rapidly reverse the inhibition, likely by sequestration of Zn\(^{2+}\) by semenogelins (Fig. 4B).

Cleavage of Semenogelins I and II

— Semenogelins have the tendency to aggregate, therefore we used urea (0.2 M final concentration) to keep them in solution. hK2 and hK3 are known to cleave semenogelins and play a crucial role in the processes that leads to the liquefaction of the seminal clot after the ejaculation (20, 43, 47). In this experiment the same amounts of hK5 and hK2wt (internal control) were incubated in separate reactions with semenogelins I and II. After 8-h incubation, hK5 was able to fully digest semenogelin I and II (Fig. 5, A and B). The generation of fragments was observed within 5 min after initiation of the reaction (data not shown).

Cleavage of IGFBPs by hK5

— IGFBPs comprise a family of six soluble proteins with a primary physiological role to interact and regulate the bioavailability of insulin-like growth factors (IGF-I and IGF-II) by forming complexes and sequestering IGFs away from their receptors, i.e. IGF-IR (48, 49). Numerous studies have shown that their ability to bind IGFs is due to their N and C termini, which are highly conserved among them (50). The middle (or linker) domain is the least conserved region of this protein family and is the target of many proteases, e.g. human kallikrein 3, plasmin, thrombin, MMP1–3, and cathepsin L (48, 51). Cleavage within this domain will result in the release of the two termini and abolishment of the ability of IGFBPs to bind IGFs. We examined if hK5 is also able to cleave IGFBPs in vitro. Indeed, hK5 was able to cleave all IGFBPs (Fig. 6) except IGFBP6 (data not shown). All major cleavage sites were located within the linker domain (Table 3). Two of these sites, i.e. IG3c and IG5c, were also cleavage sites for thrombin (52, 53).

DISCUSSION

Human tissue kallikreins represent the largest group of serine proteases in the human genome. Members of this family are primarily known for their clinical applicability as cancer biomarkers (6–8). Their involvement in pathological (e.g. cancer progression, neurodegeneration, and skin diseases) and physiological processes (e.g. seminal plasma liquefaction and skin desquamation) is recently becoming apparent and

TABLE 2

Ion	Concentration tested	Molar ratio (hK5:ion)	Residual activity	Seminal plasma	Prostatic fluid
	µM		µM		
Citrate	12	1:1	105	19–48	7–208
	120	1:10	117		
	1200	1:100	132		
Zn\(^{2+}\)	12	1:1	25	1–4	1–20
	60	1:5	6.5		
	120	1:10	2.5		
	1200	1:100	0.5		
Ca\(^{2+}\)	1200	1:100	100	5–13	7–39
Mg\(^{2+}\)	1200	1:100	100	2–7	6–32
Na\(^{+}\)	1200	1:100	100	103–129	110–327
K\(^{+}\)	1200	1:100	100	18–39	28–157
represent a challenging area of investigation (3, 4). Ample evidence suggests the existence of cross-talk among members of the human kallikrein family (10). Here, we examine the involvement of human kallikrein 5 in a kallikrein proteolytic cascade and the role of this pathway during physiological and pathological conditions in the prostate.

We show, for first time, that hK5 is able to efficiently activate both pro-hK2 and pro-hK3. Previous reports have demonstrated that hK2 (15–17), hK4 (18), and hK15 (19) are also able to activate pro-hK3. However, the activation by hK2 seems to be significantly lower than that of hK4 and hK15 (18, 19). Human kallikrein 5, along with hK4, are the most efficient potential activators of pro-hK3, because both are able to activate it within 5 min at a pro-hK3:hK4/5 molar ratio of 10:1; with hK5 being able to completely convert pro-hK3 to its mature form. Takayama et al. (17), after fractionating seminal plasma with gel filtration, were unable to activate pro-hK3 with the fraction predicted to contain hK2. Instead, the activator was in the fraction of the range 60–120 kDa, indicating that the physiological activator has a higher molecular mass. Human kallikrein 5 is a strong candidate, because recombinant hK5 has a molecular mass of ~50 kDa when produced in a mammalian system. Previous studies have shown that hK2 is able to become autoactivated (21, 40). In addition, we here show that hK2 is also activated by hK5.

Interestingly, hK5 had the ability to also deactivate both hK3 and hK2 by internal cleavage. 20–30% of human kallikrein 3 isolated from seminal plasma is known to be clipped between residues Arg85 and Phe86, indicating that the physiological activator has a higher molecular mass. Human kallikrein 5 is a strong candidate, because recombinant hK5 has a molecular mass of ~50 kDa when produced in a mammalian system. Previous studies have shown that hK2 is able to become autoactivated (21, 40). In addition, we here show that hK2 is also activated by hK5.

One of the main characteristics of the prostate epithelial cells is their ability to accumulate cellular levels of zinc that are 3- to 10-fold higher than other mammalian cells (59). Previous studies have shown that zinc has the ability to inhibit the activity of hK2 (41). Our results suggest that zinc efficiently inhibits hK5 activity as well. This inhibition is reversible, and for the first time we showed that semenogelins I and II are able to revert it. Jonsson et al. (46) extensively studied

TABLE 3

Fragment	N-terminal sequencea
hK2	NH$_2$-Ile-Val-Gly-Gly-Trp-Glu
	(Lys137) \downarrow Ala-Leu-His-Val-Thr-Asn
hK3	NH$_2$-Ile-Val-Gly-Gly-Trp-Glu
	Arg139, Phe-Leu-Arg-Pro-Gly-Asp
	(Lys141) \downarrow Ser-Thr-Cys-Ser-Gly-Asp
IGFBP-1	NH$_2$-Ala-Pro-Arg-Glu-Ala
	(Arg146) \downarrow Ala-Leu-His-Val-Thr-Asn
IGFBP-2	NH$_2$-Glu-Leu-Arg-Pro-Glu
	(Arg149) \downarrow Gln-Met-Gly-Lys-Gly-Leu
IGFBP-3	NH$_2$-Gly-Ala-Ser-Asp-Gly
	(Arg151) \downarrow Tyr-Lys-Val-Asp-Tyr-Glu
IGFBP-4	NH$_2$-Glu-Ala-Ile-His
	(Arg159) \downarrow Thr-His-Glu-Asp-Leu-Tyr
IGFBP-5	NH$_2$-Glu-Pro-Cys-Asp-Glu-Lys
	(Arg162) \downarrow Ile-Glu-Leu-Lys-Glu-Ala
	(Arg163) \downarrow Ile-Glu-Leu-Lys-Glu-Ala
	(Arg165) \downarrow Ile-Glu-Leu-Lys-Glu-Ala

a Arrow indicates internal cleavage site.
the ability of semenogelins to bind zinc and regulate hK3 activity. The redistribution of zinc to semenogelins from human kallikreins may have an important physiological role during ejaculation and liquefaction of the seminal clot, as discussed below. Furthermore, zinc seems to also have a major role in the pathogenesis of prostate cancer (59). Its levels decrease 10 and 20 times in the prostate tissue and prostatic fluid, respectively (60, 61). This is primarily due to the down-regulation of zinc transporters, and hK levels increase, leading to increased serine protease activity and subsequent degradation of extracellular matrix components and IGFBPs. This model was developed based on data presented here and previous literature reports. For more details refer to the “Discussion.”

Overall, the results of this study point to the existence of a proteolytic cascade pathway in the prostate, in which human kallikreins play a predominant role (Fig. 7). Under physiological conditions, hKs are activated in the prostate but are “silenced” by an allosteric reversible inhibition by Zn$^{2+}$/H11001. After ejaculation, hKs are reactivated due to Zn$^{2+}$/H11001 redistribution to semenogelins, and liquefy the seminal clot, leading to the release of motile spermatozoa (70). On the other hand, during prostate cancer initiation and progression, the decrease of Zn$^{2+}$/H11001 levels may result in an increase in hK activity and increased degradation of extracellular matrix components and IGFBPs. These events could enhance prostate cancer progression and metastatic potential. In addition to Zn$^{2+}$ regulation, this pathway seems to be regulated by two additional mechanisms: (auto)degradation by internal cleavage and inhibition by serpins (4).

The predominant role of serine proteases in many enzymatic cascade pathways is well established. Here, we propose the involvement of Kallikrein 5 and Proteolytic Cascade Pathways

FIGURE 7. Human kallikrein physiology and pathobiology in the prostate. A, role of the proteolytic cascade pathway after ejaculation and during prostate cancer. At ejaculation, the sperm-rich epididymal fluid mixes with prostatic fluid (including hK2, -3, -4, -5, -8, -11, and -15) along with the secretions of the seminal vesicles, (i.e. semenogelins I and II, and fibronectin), constituting the seminal plasma. The seminal vesicle secretion constitutes ~60% and the prostatic secretion ~30% of the ejaculated volume. Semenogelins I and II along with fibronectin are the predominant structural proteins of seminal plasma aggregate together to form a gelatinous mass. Semenogelins have the capacity to capture Zn$^{2+}$, leading to hKs activation and subsequent degradation of the semenogelins and fibronectin, resulting in seminal clot liquefaction. During prostate cancer both the facts that zinc levels decrease, primarily due to down-regulation of zinc transporters, and hK levels increase, leading to increased serine protease activity and subsequent degradation of extracellular matrix components and IGFBPs.

B, regulation of the proteolytic cascade pathway by autodegradation of hKs and by inhibition of hKs by serpins. This model was developed based on data presented here and previous literature reports. For more details refer to the “Discussion.”
human kallikreins in an enzymatic cascade pathway that leads to the liquefaction of seminal plasma. The same cascade may play a major role in prostatic cancer progression. Further, studies are necessary to further characterize this pathway and all of its participating components.

REFERENCES

1. Davie, E. W., Fujikawa, K., and Kisieli, W. (1991) Biochemistry 30, 10363–10370
2. Khan, A. R., and James, M. N. (1998) Protein Sci. 7, 815–836
3. Borgono, C. A., and Diamandis, E. P. (2004) Nat. Rev. Cancer 4, 876–890
4. Borgono, C. A., Michael, I. P., and Diamandis, E. P. (2004) Mol. Cancer Res. 2, 257–280
5. Yousef, G. M., and Diamandis, E. P. (2001) Endocr. Rev. 22, 184–204
6. Obiezu, C. V., and Diamandis, E. P. (2005) Cancer Lett. 224, 1–22
7. Diamandis, E. P., Yousef, G. M., Luo, L. Y., Magklara, A., and Obiezu, C. V. (2000) Trends Endocrinol. Metab. 11, 54–60
8. Diamandis, E. P., and Yousef, G. M. (2002) Clin. Chem. 48, 1198–1205
9. Diamandis, E. P. (1998) Trends Endocrinol. Metab. 9, 310–316
10. Yousef, G. M., and Diamandis, E. P. (2002) Biol. Chem. 383, 1045–1057
11. Brattsand, M., Stefansson, K., Lundh, C., Haasum, Y., and Egelrud, T. (2005) J. Invest. Dermatol. 124, 198–203
12. Yousef, G. M., Polymeris, M. E., Grass, L., Soosaipillai, A., Chan, P. C., Scorilas, A., Borgono, C., Harbeck, N., Schmallfeld, B., Dorn, J., Schmitt, M., and Diamandis, E. P. (2003) Cancer Res. 63, 3958–3965
13. Patthy, L. (1985)
14. Davie, E. W., Ichinoe, A., and Leutwy, S. P. (1986) Cold Spring Harbor Symp. Quant. Biol. 51, 509–514
15. Kumar, A., Mikolajczyk, S. D., Goel, A. S., Millar, L. S., and Saedi, M. S. (1997) Cancer Res. 57, 3111–3114
16. Lovgren, J., Rajakoski, K., Karp, M., Lundwall, A., and Lilja, H. (1997) Biochem. Biophys. Res. Commun. 248, 539–545
17. Takayama, T. K., Fujikawa, K., and Davie, E. W. (1997) J. Biol. Chem. 272, 21582–21588
18. Takayama, T. K., McMullen, B. A., Nelson, P. S., Matsumura, M., and Fujikawa, K. (2001) Biochemistry 40, 15341–15348
19. Takayama, T. K., Carter, C. A., and Deng, T. (2001) Biochemistry 40, 1679–1687
20. Lovgren, J., Airas, K., and Lilja, H. (1999) Eur. J. Biochem. 266, 781–789
21. Demmeade, S. R., Lovgren, J., Khan, S. R., Lilja, H., and Isaacs, J. T. (2001) Prostate 48, 122–126
22. Little, S. P., Dixon, E. P., Norris, F., Buckley, W., Becker, G. W., Johnson, M., Dobbins, J. R., Wyrick, T., Miller, J. R., MacKellar, W., Hepburn, D., Corvalan, J., McClure, D., Liu, X., Stephenson, D., Clemens, J., and Johnstone, E. M. (1997) J. Biol. Chem. 272, 25133–25142
23. Magklara, A., Mikolajczyk, S. D., Goel, A. S., Millar, L. S., and Saedi, M. S. (1997) Eur. J. Biochem. 266, 7353–7358
24. Yousef, G. M., Diamandis, E. P., and Diamandis, E. P. (1999) Biochemistry 38, 30033–30040
25. Kim, H., Scorilas, A., Katsaros, D., Yousef, G. M., Massoebro, M., Fracchioni, S., Piccinno, R., Gordini, G., and Diamandis, E. P. (2001) Br. J. Cancer 84, 643–650
26. Yousef, G. M., Scorilas, A., Kyriakopoulou, L. G., Rendl, L., Diamandis, M., Ponzonze, R., Biglia, N., Giai, M., Roagna, R., Simondi, P., and Diamandis, E. P. (2002) Clin. Chem. 48, 1241–1250
27. Yousef, G. M., Scorilas, A., Chang, A., Rendl, L., Diamandis, M., Jung, K., and Diamandis, E. P. (2002) Prostate 51, 126–132
28. Yousef, G. M., Obiezu, C. V., Jung, K., Stephan, C., Scorilas, A., and Diamandis, E. P. (2002) Urology 60, 714–718
29. Yousef, G. M., Polymeris, M. E., Grass, L., Soosaipillai, A., Chan, P. C., Scorilas, A., Borgono, C., Harbeck, N., Schmallfeld, B., Dorn, J., Schmitt, M., and Diamandis, E. P. (2003) Cancer Res. 63, 3958–3965
30. Diamandis, E. P., Borgono, C. A., Scorilas, A., Yousef, G. M., Harbeck, N., Dorn, J., Schmallfeld, B., and Schmitt, M. (2003) Tumour Biol. 24, 299–309
31. Michael, I. P., Sotropoulos, G., Pampalakis, G., Magklara, A., Ghosh, M., Wasney, G., and Diamandis, E. P. (2005) J. Biol. Chem. 280, 14628–14635
32. Malm, J., Hellman, J., Magnusson, H., Laurell, C. B., and Lilja, H. (1996) Eur. J. Biochem. 238, 48–53
33. Meyer, A., Jung, K., Lein, M., Rudolph, B., Schnorr, D., and Loening, S. A. (2001) J. Natl. Cancer Inst. 93, 1575–1580
34. Pollak, M., Beamer, W., and Zhang, J. C. (1998) Cancer Metastasis Rev. 17, 383–390
35. Kobayashi, M., Gaggar, A., and Saedi, M. S. (1997) Eur. J. Biochem. 257, 280–285
36. Malm, J., Hellman, J., and Lilja, H. (2000) Prostate 45, 132–139
37. Hsieh, M. C., and Cooperman, B. S. (2000) Biochim. Biophys. Acta 1481, 75–87
38. Lilja, H., and Laurell, C. B. (1985) Scand. J. Clin. Lab. Invest. 45, 635–641
39. Jonsson, M., Linse, S., Frohn, B., Lundwall, A., and Malm, J. (2005) Biochem. J. 387, 447–453
40. Robert, M., Gibbs, B. F., Jacobson, E., and Gagnon, C. (1997) Biochemistry 36, 8311–8319
41. Firth, S. M., and Baxter, R. C. (2002) Endocr. Rev. 23, 824–854
42. Hwa, V., Oh, Y., and Rosenfeld, R. G. (1999) Endocr. Rev. 20, 761–787
43. Rosenzweig, S. A. (2004) Growth Horm. IGF Res. 14, 329–339
44. Bunn, R. C., and Fowlkes, J. L. (2003) Trends Endocrinol. Metab. 14, 176–181
45. Booth, B. A., Boes, M., and Bar, R. S. (1996) Am. J. Physiol. 271, E457–E470
46. Zheng, B., Clarke, J. B., Busby, W. H., Duan, C., and Clemmons, D. R. (1998) Endocrinology 139, 1708–1714