Abstract—We report on a case study of the complex type II radio burst of 2012 January 19 and its association with a white-light coronal mass ejection (CME). The complexity can be described as the appearance of an additional type II burst component and strong intensity variation. The dynamic spectrum shows a pair of type II bursts with fundamental – harmonic structures, one confined to decameter-hectometric (DH) wavelengths and the other extending to kilometric (km) wavelengths. By comparing the speeds obtained from white-light images with that speed of the shock inferred from the drift rate, we show that the source of the short-lived DH component is near the nose.

Keywords—coronal mass ejection; type II radio burst; shock.

I. INTRODUCTION

Type II bursts are slowly drifting features in the radio dynamic spectra in contrast to the fast drift of type III bursts. The slow drift is indicative of shock propagation with speeds in the range 500-3000 km s\(^{-1}\). The present work utilizes the white-light and radio measurements to analyze the complex type II burst observed by Waves and Plasma Experiment (WAVES, Bourgeret et al. 1995) on board Wind (Acuna et al. 1995) on 2012 January 19 with added input from the Solar and Heliospheric Observatory (SOHO, Domingo et al. 1995) and Solar Terrestrial Relations Observatory (STEREO, Howard et al. 2008) observations. The overall behavior of the type II burst and its association with white-light CME was already reported by Liu et al. (2013). However, they overlooked the presence of a short-duration, DH type II burst at the beginning with a drift rate much higher than that of the long-lasting type II over the same frequency range. In fact, this type II burst is observed by all the three radio receivers in Wind, STEREO Ahead (A), and STEREO Behind (B). We compare the CME nose speed (from height-time measurements) with the speed of the shock estimated from the radio dynamic spectrum. If the two speeds are comparable then the shock-nose should be the source.
III. Analysis and Discussion

A. CME Kinematics from White-light Observations

The height-time (H-T) measurements of the PCME from the CDAW CME Catalog shows that the PCME is moving with an average speed of 1120 km s\(^{-1}\). It further shows that the PCME has a clear acceleration in the LASCO FOV, somewhat similar to CMEs associated with quiescent filament eruption (Gopalswamy et al. 2015). The acceleration is about 54 m s\(^{-2}\), consistent with the large shock formation height indicated by the lack of metric type II radio burst. A close examination of the solar source revealed that a filament immediately to the north of the active region erupted and became part of the CME. The PCME is a limb event in STEREO-B view, so we are able to track the leading edge using STEREO-B/COR1, COR2 and HI1 images to get a speed that is not subject to projection effects. We are not able to track the PCME in HI2 images because the image quality is too low. The leading edge of the PCME in STEREO-B is at 320° and the corresponding H-T plot is displayed in Fig. 1.3 (a). A second order polynomial is fitted to the COR1 and COR2 H-T data. A linear fitted is assumed to the HI1 data. It shows three phases of the PCME: the early acceleration phase followed by the deceleration phase, and finally a constant speed phase (Gopalswamy et al. 2001). The PCME is on average moving with a linear speed of 1255 km s\(^{-1}\) at 320°. It has a peak speed of 1584 km s\(^{-1}\) at 16:39 UT in the COR2 FOV. Note that this time of peak speed is almost 2 hours after the first appearance of the PCME in the LASCO FOV. When the PCME attained its peak speed, it is at a heliocentric distance of 13.1 Rs. The in-situ shock speed measured by Wind at 1 AU is 408 km s\(^{-1}\) (SOHO/MTOF), suggesting a significant deceleration of the PCME beyond the LASCO FOV.

B. CME Kinematics from Radio and White-light Observations

The speed of the PCME-driven shock can be determined from the drift rate, \(V_{sh} = \frac{\Delta L}{\Delta t} c / f_c \Delta f\), where “\(f_c\)” is the plasma central frequency corresponding to the fundamental component of the type II burst (see e.g., Gopalswamy 2011). “\(f_c\)” and “\(\Delta f\)” can be measured from the dynamic spectrum. The scale height \(L_c = \frac{r_c}{\alpha}\), is obtained from the ambient density \(n(r)\). If the density decreases with \(r\) as a power law, \(n = n_0 r^{-\alpha}\), with \(n_0\) as the density at the coronal base, one can see that \(L_c = r_0 / \alpha\). The density profile can also be obtained inverting the fundamental emission frequency (\(f = 9.11 \sqrt{n} \text{ kHz}\)) in the dynamic spectrum using heights measured. For each height-time data point of the PCME, the corresponding fundamental emission frequency is noted from the dynamic spectrum. In this section, the speeds of the PCME and shock are compared (see Table 1.1) using “\(\alpha\)” from power law in Fig. 1.3. The density corresponding to S1 can be fit to LDB distribution with a multiplier of 3.5 (see Fig. 1.3). Here, we have used the basic LDB distribution because the 1-AU...
density is close to 7.2 cm\(^{-3}\). The power law fit yield “\(\alpha\)” value of 4.3 for S1 with \(n_0 = (3-7) \times 10^4\) cm\(^{-3}\) (see Fig. 1.3).

The derived “\(\alpha\)” value is consistent with the typical value expected in the DH wavelength domain (see Gopalswamy 2011). The shock and PCME speeds estimated from radio and white-light observations for S1 are close. The result indicates that the nose region might be the source of S1. Images from STEREO COR1 when compared with the radio dynamic spectrum from S/WAVES shows that the radio burst starts and ends when the PCME is within the COR1 FOV in the height range 3.2–3.7 Rs. Interestingly, this height range corresponds to the peak in the Alfvén speed profile of the corona (Mann et al. 1999; Gopalswamy et al. 2001). Therefore, the PCME is barely super-Alfvénic at the time of S1. Note that the PCME is still accelerating around this time and reaches its peak speed an hour later. This means S1 ends mainly because it could not remain superAlfvénic because the speed increase is not fast enough to overcome the increase in Alfvén speed with heliocentric distance. The nose region is also consistent with the fact that the burst is seen at all three views (SOHO and STEREO) because the PCME body poses less obstruction to the burst.

Table 1.1 The measured parameters corresponding to S1.

\(f_c\)	\(df/dt\)	\(n\)	\(r_c\)	\(L_c\)	\(V_{sh}\)	\(V_{CME}\)
5.97	4.8x10\(^{-3}\)	4.4x10\(^5\)	3.45	0.8	902	795

\(f_c\), \(df/dt\), \(n\), \(r_c\), \(L_c\), \(V_{sh}\) and \(V_{CME}\) refer to the average frequency in S1 in MHz, drift rate of S1 in MHz s\(^{-1}\), density in cm\(^{-3}\), the power law coefficient, CME height (in Rs) at \(n_0\), scale height (in Rs) at \(r_c\), shock speed in km s\(^{-1}\) and primary CME speed in km s\(^{-1}\), respectively.

IV. CONCLUSION

The PCME is propagating at a linear speed of 1255 km s\(^{-1}\) based on the height-time measurements of the PCME from STEREO-B/COR1, COR2 and HI1. It is driving a strong shock that is responsible for the entire type II emission. However, the shock forms only when the PCME is at a height of ~3 Rs, very similar to filament eruption events. The close speeds of the PCME and shock assuming the density profile follows the power law density distribution, and the simultaneous observation of the segment in the 3 spacecraft, S1 seems to be produced near the nose of the PCME when it is between 3 and 4 Rs. Liu et al. (2013) overlook the details of the radio dynamic spectrum. Basically, they did not consider the two separate F-H structures (S1 and S2).

Acknowledgments

We thank the Wind/WAVES, SOHO/LASCO and STEREO/SECCCHI teams for providing the data. SOHO is an international cooperation project between ESA and NASA.

References

1. Acaña, M. H., K. W. Ogilvie, D. N. Baker, S. A. Curtis, D. H. Fairfield, and W. H. Mish (1995), The Global Geospace Science Program and Its investigations, Space Sci. Rev., 71, 5.
2. Bougeret, J.-L., et al. (1995), Waves: The Radio and Plasma Wave Investigation on the Wind Spacecraft, Space Sci. Rev., 71, 231.
3. Brueckner, G. E., et al. (1995), The Large Angle Spectroscopic Coronagraph (LASCO), Solar Phys., 162, 357.
4. Domingo, V., B. Fleck, and A. I. Poland (1995), The SOHO Mission: an overview, Solar Phys., 162, 1.
5. Gopalswamy, N., S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, and R. Howard (2009), The SOHO/LASCO CME Catalog, *Earth Moon Planets*, 104, 295.

6. Gopalswamy, N., A. Lara, S. Yashiro, M. L. Kaiser, and R. A. Howard (2001), Predicting the 1-AU arrival times of coronal mass ejections, *J. Geophys. Res.*, 106, 29207.

7. Gopalswamy, N., A. Lara, M. L. Kaiser, and J.-L. Bougeret (2001), Near-Sun and near-Earth manifestations of solar eruptions, *J. Geophys. Res.*, 106, 25261.

8. Gopalswamy, N. (2011) Coronal Mass Ejections and Solar Radio Emissions, in *Proc. 7th Planetary, Solar and Heliospheric Radio Emissions (PRE VII) Workshop*, edited by I. Graz, p. 325, Austrian Academy of Sciences Press.

9. Gopalswamy, N., P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie, N. Thakur, and S. W. Kahler (2015), Large Solar Energetic Particle Events Associated with Filament Eruptions Outside of Active Regions, *Astrophys. J.*, 806, 15.

10. Howard, R. A., J. D. Moses, A. Vourlidas, J. S. Newmark, D. G. Socker, S. P. Plunkett, and C. M. Korendyke (2008), Sun Earth Connection and Heliospheric Investigation (SECCHI), *Space Sci. Rev.*, 136, 67.

11. Leblanc, Y., G. A. Dulk, and J. Bougeret (1998), Tracing the Electron Density from the Corona to 1 AU, *Solar Phys.*, 183, 155.

12. Liu, Y. D., J. G. Luhmann, N. Lugaz, C. Möstl, J. A. Davies, S. D., Bale, and R. P. Lin (2013), On Sun-to-Earth Propagation of Coronal Mass Ejections, *Astrophys. J.*, 769, 15.

13. Mann, G., H. Aurass, A. Klassen, C. Estel, and B. J. Thompson (1999), Coronal Transient Waves and Coronal Shock waves, in proc. 8th SOHO Int. Workshop on Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona Matra Marconi Space, SCOSTEP, Université Paris XI, edited by J.-C. Vial and B. Kaldich-Schümann, p.477, ESA Special Publications.

14. Yashiro, S., N. Gopalswamy, G. Michalek, O. C. St. Cyr, S. P. Plunkett, N. B. Rich, and R. A. Howard (2004), A catalog of white light coronal mass ejections observed by the SOHO spacecraft, *J. Geophys. Res.*, 109, A07105.