ESC NN-Potentials in Momentum Space

I. PS-PS Exchange Potentials

Th.A. Rijken and H. Polinder
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands

J. Nagata
Venture Business Laboratory, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima, Japan

A momentum space representation is derived for the Nijmegen Extended-Soft-Core (ESC) interactions. The partial wave projection of this representation is carried through, in principle for Two-Meson-Exchange (TME) in general. Explicit results for the momentum space partial wave NN-potentials from PS-PS-Exchange are given.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

For nucleon-nucleon [1–4] and hyperon-nucleon [7] scattering we have shown that the Extended-Soft-Core (ESC) models for baryon-baryon interactions give an excellent description of the NN and YN data. So far, the applications of the ESC-model has been in configuration space. In two papers we give a momentum space representation of the ESC-potentials. Also, we describe a fit to the pp- and np-data for $0 \leq T_{lab} \leq 350$ MeV, having $\chi^2/N_{data} = 1.15$. Here, we used 20 physical parameters, being coupling constants and cut-off masses.

In synopsis, an account of a modern theoretical basis for the soft-core interactions has been given in [1]. Starting from the so called Standard Model and integrating out the heavy quarks one arrives at an effective QCD for the u,d,s quarks. The generally accepted scenario is now that the QCD-vacuum becomes unstable for momenta $Q \leq \Lambda_{SB} \approx 1$ GeV [5], causing spontaneous chiral-symmetry breaking (χ_{SB}). The vacuum goes through a phase-transition, generating constituent quark masses via $\langle 0|\bar{\psi}\psi|0\rangle \not= 0$, and reducing the gluon coupling α_s. Viewing the pseudo-scalar mesons π etc. as the Nambu-Goldstone bosons originating from the spontaneous χ_{SB}, makes it natural to assume quark dressing by pseudo-scalar mesons, and also other types of mesons in general. In this context, baryon-baryon interactions are described naturally by meson-exchange using form factors at the meson-baryon vertices. As a working hypothesis, we restrict ourselves for low energy scattering to the treatment of the the hadronic-phase. Integrating out the heavy mesons and baryons using a renormalization procedure a la Wilson [6], we restrict ourselves to mesons with $M \leq 1$ GeV/c^2, arriving at an so-called effective field theory as the proper arena to describe low energy hadron scattering. This is the general physical basis for the Nijmegen soft-core models.

In this paper, hereafter referred to as I, a representa-

tion for the ESC-interactions in momentum space is presented, which is very elegant and useful for applications in momentum space computations.

We solve basically the problem of finding a suitable representation of the TME-potentials in momentum space in general, and in particularly with gaussian form factors. As is apparent from the configuration space representation, given in [2, 3, 12], we have to evaluate forms like

$$\frac{2}{\pi} \int_0^\infty d\lambda \, \tilde{F}(\Delta^2, \lambda) \, \tilde{G}((\Delta - \kappa)^2, \lambda),$$

which at first sight means an extra numerical integral, besides the usual convolutive integration over the Δ-momentum. Here, \tilde{F} and \tilde{G} contain the couplings, gaussian form factors, and momentum space Yukawa functions for the two exchanged mesons. Fortunately, the integrations over the λ-parameter can be carried through analytically, as we shall show in the sequel. The representations obtained in this paper contain only two parameters, henceforth called t and u, to be integrated over numerically. Moreover, the (t, u)-integration region is effectively over a finite domain, this in view of the exponential integrals $\exp(-m_1^2 t)$ and $\exp(-m_2^2 u)$ in the integrands. Also, the strong gaussian-like fall off in the off-shell region, typical for the soft-core interactions, is easily realized. To realize the latter property of the momentum space potentials is problematic, when these potentials have to be generated numerically from configuration space via Fourier transformation.

The partial wave projection formulas on the LSJ-partial wave basis are developed for the TME-potentials in momentum space. Like for the OBE-potentials in [8], we expand the momentum space potentials in the Pauli-spinor invariants. The partial wave basis is chosen according to the convention of [9]. Explicit formulas are worked out for general pseudoscalar-pseudoscalar (ps-ps) exchange.

In paper II [10], the momentum space representation
for the ESC Meson-Pair-Exchange (MPE) potentials is described. Here, we moreover present a fit to the NN-data for \(0 \leq T_{lab} \leq 350 \text{ MeV} \). In this ESC-model included are the contributions from OBE-, PS-PS-exchange, and MPE.

The contents of this paper are as follows. In section II we review the definition of the ESC-potentials in the context of the relativistic two-body equations, the Thompson, and Lippmann-Schwinger equation. Here, we exploit the Macke-Klein [11] framework in Field-Theory. For the Lippmann-Schwinger equation we introduce the usual potential forms in Pauli spinor space. We include here the central (C), the spin-spin (\(\sigma \)), the tensor (T), the spin-orbit (SO), the quadratic spin-orbit (Q12), and the antisymmetric spin-orbit (ASO) potentials. For TM-exchange, in the approximations made in [2, 3] only the central, spin-spin, tensor, and spin-orbit potentials occur. In section III the special representation for the ESC-interactions in momentum space is developed and illustrated using some basic examples. In section IV the general ps-ps exchange is presented. In section V the projection on the plane wave spinor-invariants is carried through for general ps-ps exchange. The adiabatic corrections are given explicitly. In section VI the partial wave analysis is performed. Finally in section VII the partial wave contributions from the adiabatic terms and the mentioned 1/M-corrections are given.

Appendix A contains some basic integrals which are employed in the paper. In Appendix B a dictionary is given containing the results of the convolutive integrations for the operators that occur in ps-ps exchange. Appendix C contains the LSJ partial wave matrix elements of several important operators. In Appendix D the Fourier connection between coordinate and momentum space is illustrated in particularly for the ps-ps exchange tensor potential.

II. TWO-BODY INTEGRAL EQUATIONS IN MOMENTUM SPACE

A. Relativistic Two-Body Equations

We consider the nucleon-nucleon reactions

\[
N(p_a, s_a) + N(p_b, s_b) \rightarrow N(p_{a'}, s_{a'}) + N(p_{b'}, s_{b'}) \tag{2.1}
\]

with the total and relative four-momenta for the initial and the final states

\[
P = p_a + p_b , \quad P' = p_{a'} + p_{b'} , \\
p = \frac{1}{2}(p_a - p_b) , \quad p' = \frac{1}{2}(p_{a'} - p_{b'}) , \tag{2.2}
\]

which become in the center-of-mass system (cm-system) for a and b on-mass-shell

\[
P = (W, 0) , \quad p = (0, p) , \quad p' = (0, p') . \tag{2.3}
\]

In general, the particles are off-mass-shell in the Green-functions. In the following of this section, the on-mass-shell momenta for the initial and final states are denoted respectively by \(p_i \) and \(p_f \). So, \(p_i^0 = E_a(p_i) = \sqrt{p_i^2 + M_a^2} \) and \(p_f^0 = E_a'(p_f) = \sqrt{p_f^2 + M_a'^2} \), and similarly for b and \(b' \). Because of translation-invariance \(P = P' \) and \(W = W' = E_a(p_i) + E_b(p_i) = E_a'(p_f) + E_b'(p_f) \). The two-particle states we normalize in the following way

\[
\langle p_1', p_2' | p_1, p_2 \rangle = (2\pi)^3 2E(p_1)\delta^3(p_1' - p_1) \times (2\pi)^3 2E(p_2)\delta^3(p_2' - p_2) . \tag{2.4}
\]

The relativistic two-body scattering-equation reads

\[
\psi(p, P) = \psi^0(p, P) + G(p, P) \times \int d^4p' I(p, p') \psi(p', P) , \tag{2.5}
\]

where \(\psi(p, P) \) is a \(4 \times 4 \)-matrix in Dirac-space. The contributions to the kernel \(I(p, p') \) come from the two-nucleon irreducible Feynman diagrams. In writing (2.4) we have taken out an overall \(\delta^4(P' - P) \)-function and the total four-momentum conservation is implicitly understood henceforth.

The two-particle Green function \(G(p, P) \) in (2.5) is simply the product of the free propagators for the baryons of line (a) and (b). The nucleon and more general for any baryon the Feynman propagators are given by the well known formula

\[
G_{\{\mu\}, \{\nu\}}^{(s)}(p) = \int d^4x \langle 0 | T(\psi_{\{\mu\}}^{(s)}(x) \overline{\psi}_{\{\nu\}}^{(s)}(0)) | 0 \rangle e^{ipx} \\
= \frac{\Pi^{(p)}(\mu)}{p^2 - M^2 + i\delta} \tag{2.6}
\]

where \(\psi^{(s)} \) is the free Rarita-Schwinger field which describes the nucleon (\(s = \frac{1}{2} \)), the \(\Delta_{133} \)-resonance (\(s = \frac{3}{2} \)), etc. (see for example [16]). For the nucleon, the only case considered in this paper, \(\{\mu\} = \emptyset \) and for e.g. the \(\Delta \)-resonance \(\{\mu\} = \mu \). For the rest of this paper we deal only with nucleons.

In terms of these one-particle Green-functions the two-particle Green-function in (2.5) is

\[
G(p, P) = \frac{i}{(2\pi)^4} \left[\frac{\Pi^{(s_a)}(\frac{1}{2} P + p)}{\left(\frac{1}{2} P + p\right)^2 - M_a^2 + i\delta}\right]^{(a)} \times \left[\frac{\Pi^{(s_b)}(\frac{1}{2} P - p)}{\left(\frac{1}{2} P - p\right)^2 - M_b^2 + i\delta}\right]^{(b)} . \tag{2.7}
\]

Using now a complete set of on-mass-shell spin s-states in the first line of (2.6) one finds that the Feynman propagator of a spin-s baryon off-mass-shell can be written as
\[
\Pi^{(s)}(p) = \frac{M}{E(p)} \left[\frac{\Lambda^{(s)}_+(p)}{p_0 - E(p) + i\delta} - \frac{\Lambda^{(s)}_-(p)}{p_0 + E(p) - i\delta} \right], \quad (2.8)
\]

for \(s = \frac{1}{2}, \frac{3}{2}, \ldots \). Here, \(\Lambda^{(s)}_+(p) \) and \(\Lambda^{(s)}_-(p) \) are the on-mass-shell projection operators on the positive- and negative-energy states. For the nucleon they are

\[
\Lambda_+(p) = \sum_{\sigma = -1/2}^{+1/2} u(p, \sigma) \otimes \bar{u}(p, \sigma),
\]

\[
\Lambda_-(p) = -\sum_{\sigma = -1/2}^{+1/2} v(p, \sigma) \otimes \bar{v}(p, \sigma). \quad (2.9)
\]

Multiplying out (2.10) we write the ensuing terms in shorthand notation

\[
G(p; W) = \frac{i}{(2\pi)^4} \left(\frac{M_a}{E_a(p)} \right) \left[\frac{\Lambda^{(s)}_+(p)}{\frac{1}{2} W + p_0 - E_a(p) + i\delta} - \frac{\Lambda^{(s)}_-(p)}{\frac{1}{2} W + p_0 + E_a(p) - i\delta} \right]
\]

\[
\times \left(\frac{M_b}{E_b(p)} \right) \left[\frac{\Lambda^{(s)}_+(p)}{\frac{1}{2} W - p_0 - E_b(p) + i\delta} - \frac{\Lambda^{(s)}_-(p)}{\frac{1}{2} W - p_0 + E_b(p) - i\delta} \right], \quad (2.10)
\]

with the Green-function

\[
G_{++}(p; W) = \frac{i}{(2\pi)^4} \left[\frac{M_a M_b}{E_a(p) E_b(p)} \right] \Lambda^{(s)}_+(p) \Lambda^{(s)}_+(p) \cdot
\]

\[
\times \left[\frac{1}{2} W + p_0 - E_a(p) + i\delta \right]^{-1}
\]

\[
\times \left[\frac{1}{2} W - p_0 + E_b(p) + i\delta \right]^{-1}. \quad (2.15)
\]

\[\text{B. Three-Dimensional Equation}\]

Following the same procedures as in [12] we introduce the three-dimensional wave-function according to Salpeter [18] by

\[
\phi(p) = \sqrt{\frac{E_a(p) E_b(p)}{M_a M_b}} \int_{-\infty}^{\infty} \psi(p_{\mu}) dp_0 . \quad (2.16)
\]

Next, we use for the right-inverse of the \(\int dp_0 \)-operation the \textit{ansatz} proposed by Klein and Macke [11],

\[
\psi(p') = \sqrt{\frac{M_a M_b}{E_a(p') E_b(p')}} A_w(p_{\mu}) \phi(p') , \quad (2.17)
\]
where the right-inverse is given by

\[
A_W(p_0') = -\frac{1}{2\pi i} \frac{W - W(p')}{F_W^{(a)}(p', p_0') F_W^{(b)}(-p', -p_0')}
\]

(2.18)

with the frequently used notations

\[
F_W(p, p_0) = p_0 - E(p) + \frac{1}{2} W + i\delta \\
W(p) = E_a(p) + E_b(p).
\]

(2.19)

Applying now the \(p_0 \) integration to (2.14), and performing the \(p_0' \)-integration, made possible by the ansatz above, one arrives at the Thompson equation [19]

\[
\phi_{++}(p') = \phi_{++}(0) + E_2^{(+))(p'; W)} + \int \frac{d^3 p}{(2\pi)^3} K^{irr}(p', p|W) \phi_{++}(p)
\]

(2.20)

where the Green function is

\[
E_2^{(+)}(p'; W) = \frac{1}{(2\pi)^3} \frac{A_5(p') A_b(-p')}{(W - W(p') + i\delta)}.
\]

(2.21)

and the kernel is given by

\[
K^{irr}(p', p|W) = -\frac{1}{(2\pi)^2} \left[\frac{M_a M_b}{E_a(p') E_b(p')} \right] \left[\frac{M_a M_b}{E_a(p) E_b(p)} \right] (W - W(p')) (W - W(p))
\]

\[
\times \int_{-\infty}^{+\infty} dp_0' \int_{-\infty}^{+\infty} dp_0 \left[\left\{ F_W^{(a)}(p', p_0') F_W^{(b)}(-p', -p_0') \right\}^{-1}
\]

\[
\times \left\{ I(p_0', p; p_0, p) \right\}^{-1} + \frac{4\pi}{F_W^{(a)}(p, p_0) F_W^{(b)}(-p, -p_0)} \right] .
\]

(2.22)

The \(M/E \)-factors in (2.22) are due to the difference between the relativistic and the non-relativistic normalization of the two-particle states. In the following we simply put \(M/E(p) = 1 \) in the kernel \(K^{irr} \) Eq. (2.22). The corrections to this approximation would give \((1/M)^2\)-corrections to the potentials, which we neglect in this paper. In the same approximation there is no difference between the Thompson (2.20) and the Lippmann-Schwinger equation, when the connection between these equations is made using multiplication factors. Henceforth, we will not distinguish between the two.

The contributions to the two-particle irreducible kernel \(K^{irr} \) up to second order in the meson-exchange are given in detail in [2]. For the definition of the TME-potential in the Lippmann-Schwinger equation we shall need the complete fourth-order kernel for the Thompson equation (2.20). In operator notation, we have from (2.20)

\[
\phi_{++} = \phi_{++}^{(0)} + E_2^{(+)} K^{irr} \phi_{++} = \phi_{++}^{(0)} + E_2^{(+)} \left(K^{irr} + K^{irr} E_2^{(+)} K^{irr} + \ldots \right) \phi_{++}^{(0)}
\]

\[
= \left(1 + E_2^{(+)} M \right) \phi_{++}^{(0)}
\]

(2.23)

which implies for the complete kernel \(M \) the integral equation

\[
M(p', p|W) = K^{irr}(p', p|W) + \int \frac{d^3 p''}{(2\pi)^3} K^{irr}(p', p''|W) \cdot \n
\times E_2^{(+)}(p''; W) M(p'', p|W)
\]

(2.24)

C. Lippmann-Schwinger Equation

The transformation of (2.24) to the Lippmann-Schwinger equation can be effectuated by defining

\[
T(p', p) = N(p') \cdot M(p', p; W) \cdot N(p'),
\]

\[
V(p', p) = N(p') \cdot K^{irr}(p', p; W) \cdot N(p),
\]

(2.25)

where the transformation function is

\[
N(p) = \sqrt{\frac{p^2 - p'^2}{2M_N(E(p) - E(p))}}.
\]

(2.26)
Application of this transformation, yields the Lippmann-Schwinger equation
\[
T(p', p) = V(p', p) + \int \frac{d^3p''}{(2\pi)^3} \times V(p', p'') \, g(p''; W) \, T(p'', p) \quad (2.27)
\]
with the standard Green function
\[
g(p; W) = \frac{1}{(2\pi)^3} \frac{\Lambda^+_a(p)\Lambda^b_+(\mathbf{p})}{\mathbf{p}_1^2 - \mathbf{p}_2^2 + i\delta} \quad (2.28)
\]
The corrections to the approximation \(E_{2+} \approx g(p; W) \) are of order \(1/M^2 \), which we neglect henceforth.

The transition from Dirac-spinors to Pauli-spinors, is given in Appendix C of [12], where we write for the the Lippmann-Schwinger equation in the 4-dimensional Pauli-spinor space
\[
T(p', p) = \mathcal{V}(p', p) + \int \frac{d^3p''}{(2\pi)^3} \times \mathcal{V}(p', p'') \, \bar{g}(p''; W) \, T(p'', p) \quad (2.29)
\]
The \(T \)-operator in Pauli spinor-space is defined by
\[
\chi^{(a)}_\sigma \chi^{(b)}_{\sigma'} T(p', p) \chi^{(a)}_{\sigma'} \chi^{(b)}_\sigma = u_a(p, \sigma_a) u_b(-p, \sigma_b) \times T(p, p'') u_a(p'', \sigma'_a) u_b(-p'', \sigma'_b) \quad (2.30)
\]
and similarly for the \(\mathcal{V} \)-operator. Like in the derivation of the OBE-potentials [20, 21] we make off-shell and on-shell the approximation, \(E(p) = M + \mathbf{p}^2/2M \) and \(W = 2\sqrt{\mathbf{p}_1^2 + M^2} = 2M + \mathbf{p}_2^2/M \), everywhere in the interaction kernels, which, of course, is fully justified for low energies only. In contrast to these kind of approximations, of course the full \(\mathbf{k} \)-dependence of the form factors is kept throughout the derivation of the TME. Notice that the Gaussian form factors suppress the high momentum transfers strongly. This means that the contribution to the potentials from intermediate states which are far off-energy-shell can not be very large.

Because of rotational invariance and parity conservation, the \(T \)-matrix, which is a \(4 \times 4 \)-matrix in Pauli-spinor space, can be expanded into the following set of in general 8 spinor invariants, see for example [22, 23]. Introducing [24]
\[
q = \frac{1}{2}(p_f + p_i), \quad k = p_f - p_i, \quad n = p_i \times p_f \quad (2.31)
\]
with, of course, \(n = q \times k \), we choose for the operators \(P_1 \) in spin-space
\[
\begin{align*}
P_1 &= 1 \\
P_2 &= \sigma_1 \cdot \sigma_2 \\
P_3 &= (\sigma_1 \cdot k)(\sigma_2 \cdot k) - \frac{1}{2}(\sigma_1 \cdot \sigma_2)k^2 \\
P_5 &= (\sigma_1 \cdot n)(\sigma_2 \cdot n) \\
P_7 &= (\sigma_1 \cdot q)(\sigma_2 \cdot k) + (\sigma_1 \cdot k)(\sigma_2 \cdot q) \\
P_8 &= (\sigma_1 \cdot q)(\sigma_2 \cdot k) - (\sigma_1 \cdot k)(\sigma_2 \cdot q)
\end{align*}
\]
Here we follow [23], where in contrast to [20], we have chosen P_3 to be a purely ‘tensor-force’ operator. The expansion in spinor-invariants reads

$$T(p_f, p_i) = \sum_{j=1}^{8} T_j(p_f^2, p_i^2, p_f \cdot p_i) P_j(p_f, p_i). \quad (2.33)$$

Similarly to (2.33) we expand the potentials V. Again following [23], we neglect the potential forms P_7 and P_8, and also the dependence of the potentials on $k \cdot q$. Then, the expansion (2.33) reads for the potentials as follows

$$V = \sum_{j=1}^{4} \tilde{V}_j(k^2, q^2) P_j(k, q). \quad (2.34)$$

We develop in the following subsections a new representation of the TME-potentials. Included are the BW-graphs shown in Fig. 1, and the TMO-graphs shown in Fig. 2. Also the employed notations for the momenta are indicated in the figures.

III. MOMENTUM SPACE REPRESENTATION TME-POTENTIALS

In this section we give an outline of the procedures in making the partial wave analysis of TME-potentials in momentum space.

A. TPS Central Potentials

Consider the basic integral

$$\tilde{V}(k) = \int \int \frac{d^3 k_1 d^3 k_2}{(2\pi)^3} \delta(k - k_1 - k_2) \tilde{F}(k_1) \tilde{G}(k_2) = \int \frac{d^3 \Delta}{(2\pi)^3} \tilde{F}((\Delta)^2) \cdot \tilde{G}((k - \Delta)^2), \quad (3.1)$$

with $\tilde{F}(k_1)$ and $\tilde{G}(k_2)$ having the generic soft-core forms

$$\tilde{F}(k_2) = \exp\left[-\frac{k^2}{\Lambda_1^2}\right], \quad \tilde{G}(k^2) = \exp\left[-\frac{k^2}{\Lambda_2^2}\right]. \quad (3.2)$$

Exploiting the identity

$$\exp\left[-\frac{k^2}{\Lambda^2}\right] = e^{m^2/\Lambda^2} \int_1^{\infty} \frac{dt}{\Lambda^2} \exp\left[-\left(\frac{k^2 + m^2}{\Lambda^2}\right)t\right], \quad (3.3)$$

one can write (3.1) as

$$\tilde{V}(k) = e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int_1^{\infty} \frac{dt}{\Lambda_1^2} \int_1^{\infty} \frac{du}{\Lambda_2^2} e^{-(m_1^2/\Lambda_1^2)t} e^{-(m_2^2/\Lambda_2^2)u} \cdot \int \frac{d^3 \Delta}{(2\pi)^3} \exp\left[-\left(\frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2}\right) \Delta^2 + (2k \cdot \Delta - k^2) \frac{u}{\Lambda_2^2}\right]. \quad (3.4)$$

The Δ-integral in (3.4) has been evaluated above, see (D12), and is

$$(4\pi a)^{-3/2} \exp\left[-\frac{tu/\Lambda_1^2 \Lambda_2^2}{(t/\Lambda_1^2 + u/\Lambda_2^2)} k^2\right], \quad \text{with } a = \frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2}. \quad (3.5)$$

Redefining the variables $t \rightarrow t/\Lambda_1^2$ and $u \rightarrow u/\Lambda_2^2$, we rewrite (3.4) in the form

$$\tilde{V}(k) = (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int_{t_0}^{\infty} \frac{dt}{t} \int_{u_0}^{\infty} \frac{du}{u} \exp\left[-(m_1^2/t + m_2^2/u)\right] \cdot \exp\left[-\left(\frac{tu}{t + u}\right) k^2\right], \quad (t_0 = 1/\Lambda_1^2, \ u_0 = 1/\Lambda_2^2). \quad (3.5)$$

This form we consider as the basic representation of the soft-core TME-potentials in momentum space.
In Appendix D the same result is derived in an alternative way starting from the configuration space potentials. From equations (3.10)-(3.11) one can read off immediately the projection of (3.6) onto the spinor invariants (2.33). Repeating the steps taken in the previous subsection, one arrives at the analogue of (3.4): which leads to the basic integral to be evaluated:

\[\tilde{V}_{mn}(k) = \int \frac{d^3\Delta}{(2\pi)^3} \Delta_m \Delta_n \tilde{F}(\Delta^2) \cdot \tilde{G}((k - \Delta)^2) \]

(3.6)

Repeating the steps taken in the previous subsection, one arrives at the analogue of (3.4):

\[\tilde{V}_{mn}(k) = e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \frac{t}{\Lambda_1^2} \int_{t_0}^{\infty} dt \int_{u_0}^{\infty} du \exp[-(m_1^2/\Lambda_1^2)^2] e^{-(m_2^2/\Lambda_2^2)u} \times \int \frac{d^3\Delta}{(2\pi)^3} \Delta_m \Delta_n \exp \left[- \left(\frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2} \right) \Delta^2 + (2k \cdot \Delta - k^2) \frac{u}{\Lambda_2^2} \right] . \]

(3.8)

Using the integral

\[\int \frac{d^3\Delta}{(2\pi)^3} \Delta_m \Delta_n \exp[-a\Delta^2 + 2bk \cdot \Delta] = (4\pi a)^{-3/2} \frac{1}{a} \left[\frac{1}{2} \delta_{mn} + \frac{b^2}{a} k_m k_n \right] \exp \left[\frac{b^2}{a} k^2 \right] \]

one obtains, again after the redefinitions \(t \rightarrow t/\Lambda_1^2 \) and \(u \rightarrow u/\Lambda_2^2 \), for \(\tilde{V}_{mn} \) the expression

\[\tilde{V}_{mn}(k) = (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \frac{t}{\Lambda_1^2} \int_{t_0}^{\infty} dt \int_{u_0}^{\infty} du \exp[-(m_1^2 t + m_2^2 u)] \times \left[\frac{1}{2} \delta_{mn} + \frac{u^2}{(t + u)^2} k_m k_n \right] \exp \left[- \left(\frac{tu}{t + u} \right) k^2 \right] . \]

(3.9)

It is clear that in (3.6) only the \(\delta_{mn} \)-term contributes. The result is

\[\tilde{V}(k) = - \left[(\sigma_1 \cdot k) (\sigma_2 \cdot k) - \frac{1}{3} (\sigma_1 \cdot \sigma_2) k^2 \right] \tilde{H}(k^2) + \frac{2}{3} (\sigma_1 \cdot \sigma_2) k^2 \tilde{H}(k^2) \]

(3.10)

with

\[\tilde{H}(k^2) = \frac{1}{2} (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \frac{t}{\Lambda_1^2} \int_{t_0}^{\infty} dt \int_{u_0}^{\infty} du \exp[-(m_1^2 t + m_2^2 u)] \times \exp \left[- \left(\frac{tu}{t + u} \right) k^2 \right] . \]

(3.11)

From equations (3.10)-(3.11) one can read off immediately the projection of (3.6) onto the spinor invariants (2.33). In Appendix D the same result is derived in an alternative way starting from the configuration space potentials.

IV. GENERAL PS-PS EXCHANGE POTENTIALS

In [2] the derivation of the ps-ps exchange potentials both in momentum and in configuration space is given. In this reference the configuration space potentials are worked out fully. The topic of this paper is to do the same for the momentum space description. In particular, the partial wave analysis is performed leading to a representation which is very suitable for numerical evaluation.

From [2] it appears that the momentum space TME-potential can be represented in general in the form

\[\tilde{V}_{\alpha\beta}(k) = \frac{2}{\pi} \int_0^\infty d\lambda \sum_{i=1}^N w_i(\lambda) \int \frac{d^3\Delta}{(2\pi)^3} \tilde{O}_{\alpha\beta}(k, \Delta) \tilde{F}_{\alpha}^{(i)}(\Delta^2, \lambda) \tilde{F}_{\beta}^{(i)}((k - \Delta)^2, \lambda) \]

(4.1)
Therefore (4.4) becomes, compare with (3.1)-(3.5),

\[
\begin{align*}
\tilde{O}^{Φf}_{αβ}(k, Δ) &= 2 (Δ \cdot (k - Δ))^2 - 2 [σ_1 \cdot Δ × k] [σ_2 \cdot Δ × k], \\
\tilde{O}^{Xf}_{αβ}(k, Δ) &= 2 (Δ \cdot (k - Δ))^2 + 2 [σ_1 \cdot Δ × k] [σ_2 \cdot Δ × k].
\end{align*}
\] (4.2)

In [25] we remind the reader of the precise contents of these operators. As an example for the \(i \) operators \(˜π \)-dependent factor \(π_{et} \) becomes gaussian, they can be performed analytically. Consider for example, the type of integral appearing in (4.3). We write

\[
\tilde{V}^{Φ−X}_{et}(k) = \pm \frac{2}{π} \int_0^∞ \frac{dλ}{λ^2} \int \frac{d^3Δ}{(2π)^3} \tilde{O}^{Φ−X}_{et}(k, Δ) \left[\tilde{F}π(Δ^2, m_π) \, \tilde{F}et((k - Δ)^2, m_π) e^{−λ^2/Λ_1^2} e^{−λ^2/Λ_2^2} \right].
\] (4.3)

Here, the (+)-sign refers to the parallel graphs (//), and the (−)-sign to the crossed (X) graphs.

A. Integration over λ-parameter

Since, due to the use of (3.3) and gaussian form factors all integrations over λ become gaussian, they can be performed analytically. Consider for example, the type of integral appearing in (4.3). We write

\[
\tilde{V}_{αβ}(k) = \frac{2}{π} \int_0^∞ \frac{dλ}{λ^2} \left[\tilde{F}α(Δ^2, m_1) \, \tilde{F}β((k - Δ)^2, m_2) - \tilde{F}α(Δ^2, \sqrt{m_1^2 + λ^2}) \, \tilde{F}β((k - Δ)^2, \sqrt{m_2^2 + λ^2}) \right] e^{−λ^2/Λ_1^2} e^{−λ^2/Λ_2^2}.
\] (4.4)

Going through the same steps as between equations (3.3)-(3.5), we get for the second part between the square brackets, an extra λ-dependent factor

\[
e^{−(λ^2/Λ_1^2)u} e^{−(λ^2/Λ_2^2)u} → e^{−λ^2(t+u)} ,
\]

where we applied again the same variable redefinition as before, i.e. \(t → t/Λ_1^2 \) and \(u → u/Λ_2^2 \). Then, the needed λ-integral in (4.4) is

\[
\frac{2}{π} \int_0^∞ \frac{dλ}{λ^2} \left[1 - e^{−(t+u)λ^2} \right] = \frac{2}{π} \sqrt{t + u}.
\] (4.5)

Therefore (4.4) becomes, compare with (3.1)-(3.5),

\[
\tilde{V}(k) = (2π)^{-2} e^{m_1^2/Λ_1^2} e^{m_2^2/Λ_2^2} \int_0^∞ dt \int_0^∞ du \frac{exp[-(m_1^2 t + m_2^2 u)]}{(t + u)} \left[(t_0 = 1/Λ_1^2, \, u_0 = 1/Λ_2^2) \right].
\] (4.6)

Similarly, all λ-integrations can be performed explicitly.

V. PROJECTION PS-PS EXCHANGE ON SPINOR INVARIANTS

The different contributions, as adiabatic, non-adiabatic, pseudovector-vertex corrections, and off-shell potentials, are in direct correspondence with their configuration space analogs, given in [2].
A. Adiabatic PS-PS Exchange Potentials

We now have prepared all the necessary ingredients for putting things together and to list the projection of ps-ps-exchange onto the potentials V_j. We write

$$\tilde{V}_j^{(0)}(k) = (4\pi)^{-3/2} e^{m_2^2/\Lambda_1^2} e^{m_3^2/\Lambda_2^2} \int_0^\infty \int_{u_0}^\infty dt \, du \, \frac{\exp[-(m_2^2 t + m_3^2 u)]}{(t + u)^{3/2}} \times \exp \left[-\left(\frac{t u}{t + u} \right)^2 \right] \Omega_j^{(0)}(k^2, t, u), \quad (5.1)$$

where

$$\Omega_1^{(0,\omega)}(k^2; t, u) = \frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u},$$

$$\Omega_2^{(0,\omega)}(k^2; t, u) = -\frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u},$$

$$\Omega_3^{(0,\omega)}(k^2; t, u) = \frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u}, \quad (5.2)$$

where $C_{NN,\omega}(I)$ denotes the isospin factor.

Expressions similar to (5.2) hold for the contribution of the crossed BW-graphs (X), and are given below. Note the difference in the O-operators in (4.2) and $D_X(\omega_1, \omega_2) = -D_{\omega}(\omega_1, \omega_2)$.

$$\Omega_1^{(0,X)}(k^2; t, u) = -\frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u},$$

$$\Omega_2^{(0,X)}(k^2; t, u) = -\frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u},$$

$$\Omega_3^{(0,X)}(k^2; t, u) = \frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \cdot \left\{ \frac{15}{4} + \frac{1}{2} \left(\frac{t^2 - 8tu + u^2}{t + u} \right) k^2 + \left(\frac{t^2u^2}{(t + u)^2} \right) k^4 \right\} \cdot \sqrt{t + u}. \quad (5.3)$$

It is convenient to introduce the expansions

$$\Omega_j^{(0,X)}(k^2; t, u) = \frac{2}{\sqrt{\pi}} C_N^{(I)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \sum_{k=0}^K \Upsilon_{j,k}^{(0,1,\omega_1,1,\omega_2)}(t, u) \cdot (k^2)^k. \quad (5.4)$$

The functions $\Upsilon_{j,k}(t, u)$ are given in Table I-II.

B. Non-adiabatic corrections

The denominators $D^{(I)}(\omega_1, \omega_2)$ for the non-adiabatic corrections are given in Ref. [2], Table III. In appendix B of [12] it is explained how $1/\omega^4$ has to be treated. It follows that

$$D^{(I)}(\omega_1, \omega_2) \Rightarrow -\frac{1}{2} \left(\frac{\partial}{\partial m_1^2} - \frac{1}{\Lambda_1^2} + \frac{\partial}{\partial m_2^2} - \frac{1}{\Lambda_2^2} \right) \frac{1}{\omega_1^2 \omega_2^2}, \quad (5.5)$$
and one finds from (3.4) and (5.5) that the contributions to the $\tilde{V}_j^{(1a)}$ can be written in the form

$$\tilde{V}_j^{(1a)}(k) = (4\pi)^{-3/2} e^{m_i^2/\Lambda_i^2} e^{m_2^2/\Lambda_2^2} \int_{t_0}^{t} dt \int_{u_0}^{t} du \frac{\exp[-(m_i^2 t + m_2^2 u)]}{(t + u)^{3/2}},$$

$$\times \frac{1}{2} (t + u) \exp \left[- \left(\frac{tu}{t + u} \right) k^2 \right] \Omega_j^{(1a)}(k^2; t, u). \quad (5.6)$$

The $\Omega_j^{(1a)}$ are given by

$$\Omega_1^{(1a, /)}(k^2; t, u) = C_{NN, /}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot \left\{ - \frac{105}{8} +$$

$$- \frac{15}{4} \left(\frac{t^2 - 5ut + u^2}{t + u} \right) k^2 + \frac{3}{2} tu \left(\frac{t^2 - 5ut + u^2}{(t + u)^2} \right) k^4 + \left(\frac{t^3 u^3}{(t + u)^3} \right) k^6 \right\} \cdot \frac{1}{(t + u)^3},$$

$$\Omega_2^{(1a, /)}(k^2; t, u) = C_{NN, /}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot - \frac{2}{3} k^2 \left\{ - \frac{5}{4} - \frac{1}{2} \frac{tu}{t + u} k^2 \right\} \cdot \frac{1}{(t + u)^2},$$

$$\Omega_3^{(1a, /)}(k^2; t, u) = C_{NN, /}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot - \left\{ - \frac{5}{4} - \frac{1}{2} \frac{tu}{t + u} k^2 \right\} \cdot \frac{1}{(t + u)^2}.$$

(5.7)

Again, similar expressions hold for the contribution of the crossed BW-graphs (X), and are given below. See for the differences in the $O^{(1)}$-operators [2] equations (5.3) and (5.4), and $D_X^{(1)}(\omega_1, \omega_2) = -2D_J^{(1)}(\omega_1, \omega_2)$, cf. Table III of [2].

$$\Omega_1^{(1a,X)}(k^2; t, u) = -2C_{NN,X}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot - \frac{105}{8} +$$

$$- \frac{15}{4} \left(\frac{t^2 - 5ut + u^2}{t + u} \right) k^2 + \frac{3}{2} tu \left(\frac{t^2 - 5ut + u^2}{(t + u)^2} \right) k^4 + \left(\frac{t^3 u^3}{(t + u)^3} \right) k^6 \right\} \cdot \frac{1}{(t + u)^3},$$

$$\Omega_2^{(1a,X)}(k^2; t, u) = +2C_{NN,X}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot - \frac{2}{3} k^2 \left\{ - \frac{5}{4} + \frac{1}{2} \frac{tu}{t + u} k^2 \right\} \cdot \frac{1}{(t + u)^2},$$

$$\Omega_3^{(1a,X)}(k^2; t, u) = +2C_{NN,X}^{(f)} \left(\frac{f_{NN\pi}}{m_\pi} \right)^2 \left(\frac{f_{NN\eta}}{m_\eta} \right)^2 \left(\frac{1}{M} \right) \cdot - \left\{ - \frac{5}{4} + \frac{1}{2} \frac{tu}{t + u} k^2 \right\} \cdot \frac{1}{(t + u)^2}.$$

(5.8)

C. Pseudovector-vertex corrections

Here, only the crossed BW-graphs contribute [2]. From the denominators $D^{(1)}(\omega_1, \omega_2) = 1/\omega_1^2 \omega_2^2$ for the pseudovector-vertex corrections [2] one finds that the contributions to the $\tilde{V}_j^{(1)}$ can be written in the form

$$\tilde{V}_j^{(1b)}(k) = (4\pi)^{-3/2} e^{m_i^2/\Lambda_i^2} e^{m_2^2/\Lambda_2^2} \int_{t_0}^{t} dt \int_{u_0}^{t} du \frac{\exp[-(m_i^2 t + m_2^2 u)]}{(t + u)^{3/2}} \cdot$$

$$\times \exp \left[- \left(\frac{tu}{t + u} \right) k^2 \right] \Omega_j^{(1b)}(k^2; t, u),$$

(5.9)
\[
\Omega^{(1 \nu, X)}_i(k^2; t, u) = C_{NN, X}^{(I)} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\eta}} \right)^2 \left(\frac{1}{M} \right) \left\{ -\frac{15}{2} + \frac{5}{2} \left(\frac{t^2 - 2tu + u^2}{t + u} \right) k^2 + tu \left(\frac{t^2 + u^2}{(t + u)^2} \right) k^1 \right\} \cdot \frac{1}{t + u} ,
\]
(5.10)

D. Off-shell corrections in TMO-diagrams

Also in this case the denominators are \(D^{(1)}(\omega_1, \omega_2) = 1/\omega_1^2 \omega_2^2 \) \cite{2}, and one finds that the contributions to the \(\tilde{V}_j^{(1)} \) can be written as

\[
\tilde{V}_j^{(1\nu)}(k) = (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int_{t_0}^{\infty} dt \int_{u_0}^{\infty} du \exp\left[- \frac{(m_1^2 t + m_2^2 u)}{(t + u)^{3/2}} \right] \times \exp\left[- \left(\frac{tu}{t + u} \right) k^2 \right] \Omega_j^{(1\nu)}(k^2; t, u) .
\]
(5.11)

The potentials are very similar to the pseudovector-vertex corrections given above, see \cite{2}, section V.C. We have

\[
\Omega_{i}^{(1\nu, j\nu)}(k^2; t, u) = C_{NN, jj}^{(I)} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\eta}} \right)^2 \left(\frac{1}{2M} \right) \left\{ -\frac{15}{2} + \frac{5}{2} \left(\frac{t^2 - 2tu + u^2}{t + u} \right) k^2 + tu \left(\frac{t^2 + u^2}{(t + u)^2} \right) k^1 \right\} \cdot \frac{1}{t + u} ,
\]
(5.12)

Similarly to (5.4) it is convenient to introduce the expansion

\[
\Omega_{i}^{(1\nu, 1a, 1b, 1c)}(k^2; t, u) = C_{NN, 1a, 1b, 1c}^{(I)} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\eta}} \right)^2 \left(\frac{1}{2M} \right) \sum_{k=0}^{K} \gamma_{j,k}^{(1\nu, 1a, 1b, 1c)}(t, u) \left(k^2 \right)^{k} .
\]
(5.13)

The functions \(\gamma_{j,k}(t, u) \) are given in Table III-VI.

VI. PARTIAL WAVE ANALYSIS

A. General Structure

We write the potentials listed in the previous section in the general form

\[
\tilde{V}_j(k) = \int_{t_0}^{\infty} dt \int_{u_0}^{\infty} du \ w(t, u) \ \exp\left[- \left(\frac{tu}{t + u} \right) k^2 \right] \Omega_j^{(type)}(k^2; t, u) ,
\]
(6.1a)

where for the adiabatic, the \(1/M \) \(pv \) - and off-shell corrections the weight function \(w(t, u) = w_0(t, u) \) with

\[
w_0(t, u) = (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \exp\left[- \frac{(m_1^2 t + m_2^2 u)}{(t + u)^{3/2}} \right] ,
\]
(6.1b)

and for the non-adiabatic corrections, cfrm. (5.6),

\[
w_{\text{na}}(t, u) = \left(\frac{\Lambda_1^2 + \Lambda_2^2}{\Lambda_1^4 \Lambda_2^2} \right) (t + u) \ w_0(t, u) .
\]
(6.1c)
From \(k^2 = p_f^2 + p_i^2 - 2p_f p_i z, \) where \(z = \cos \theta, \) and the \(\Omega_j \)'s one readily sees that the potential contributions can be written in the form

\[
\tilde{V}_j(k) = \int_{t_0}^{\infty} dt \int_{\omega_0}^{\infty} du \, w(t, u) \left(X_j(t, u) + z Y_j(t, u) + z^2 Z_j(t, u) \right) \cdot \exp \left[-\left(\frac{tu}{t+u} \right) k^2 \right],
\]

where

\[
X_j(t, u) = \Gamma_j \left[Y_{j,0}(t, u) + (p_f^2 + p_i^2) Y_{j,1}(t, u) + (p_f^2 + p_i^2)^2 Y_{j,2} \right],
\]

\[
Y_j(t, u) = -\Gamma_j \left[2p_f p_i \, Y_{j,1}(t, u) + 4p_f p_i (p_f^2 + p_i^2) \, Y_{j,2} \right],
\]

\[
Z_j(t, u) = \Gamma_j \left[4p_f^2 p_i^2 \, Y_{j,2} \right].
\]

Here, \(\Gamma_j \) is a combination of isospin and coupling constant factors.

B. Partial Wave Projection

The partial wave projection of (D13) can be done easily. Using formula 10.2.36 of reference [26] one derives that

\[
e^{-\gamma k^2} = \sum_{L=0}^{\infty} (2L + 1) f_L(2\gamma p_f p_i) \, P_L(z) \cdot e^{-\gamma(p_f-p_i)^2}, \quad \gamma \equiv \frac{tu}{t+u}.
\]

Here, the function \(f_L(z) \) is defined as

\[
f_L(2\gamma p_f p_i) \equiv \sqrt{\frac{\pi}{4\gamma p_f p_i}} f_{L+1/2}(2\gamma p_f p_i) \cdot e^{-2\gamma p_f p_i}.
\]

We note that in the form (6.4), the gaussian damping in the off-shell momentum region is manifest. From (6.4) and the recurrence relations for Legendre polynomials, one readily obtains e.g.

\[
z \, e^{-\gamma k^2} = \sum_{L=0}^{\infty} (2L + 1) \left(\frac{L}{2L+1} f_{L-1} + \frac{L+1}{2L+1} f_{L+1} \right) (2\gamma p_f p_i) \, P_L(z) \cdot e^{-\gamma(p_f-p_i)^2},
\]

\[
z^2 \, e^{-\gamma k^2} = \sum_{L=0}^{\infty} (2L + 1) \left(\frac{L(L-1)}{(2L+1)(2L-1)} f_{L-2} + \frac{4L^3 + 6L^2 - 1}{(2L-1)(2L+1)(2L+3)} f_L + \right.
\]

\[
\left. \frac{(L+1)(L+2)}{(2L+1)(2L+3)} f_{L+2} \right) (2\gamma p_f p_i) \, P_L(z) \cdot e^{-\gamma(p_f-p_i)^2}.
\]

Using these results the partial wave contributions can be worked out in a straightforward manner. The basic partial wave projections needed are

\[
U_L(t, u) = \frac{1}{2} \int_{t-1}^{t+1} dz \, P_L(z) \exp \left(-\gamma k^2 \right), \quad R_L(t, u) = \frac{1}{2} \int_{t-1}^{t+1} dz \, z \, P_L(z) \exp \left(-\gamma k^2 \right),
\]

\[
S_L(t, u) = \frac{1}{2} \int_{t-1}^{t+1} dz \, z^2 \, P_L(z) \exp \left(-\gamma k^2 \right).
\]

where \(\gamma = tu/(t+u), \) and the functions \(U_L, R_L, S_L \) can be read off from (6.4)-(6.6). Writing

\[
V(p_f, p_i) = \sum_{j=1}^{4} \tilde{V}_j(p_f, p_i) \, (p_f|P_j|p_i),
\]

the partial wave expansion of the \(V_j \)-functions reads

\[
V_j(p_f, p_i) = \sum_{L=0}^{\infty} (2L + 1) \, \tilde{V}_j^{(L)}(x) \, P_L(\cos \theta).
\]

Using (6.4)-(6.6) the partial waves \(\tilde{V}_j^{(L)}(x) \) for the TME-potentials can be written as

\[
\tilde{V}_j^{(L)}(p_f, p_i) = \int_{t_0}^{\infty} dt \int_{\omega_0}^{\infty} du \, w(t, u) \left[X_j(t, u) \, U_L(t, u) + Y_j(t, u) \, R_L(t, u) + Z_j(t, u) \, S_L(t, u) \right]
\]

\[
= S_L \left[X_j \cdot U_L + Y_j \cdot R_L + Z_j \cdot S_L \right].
\]
C. Partial Wave Projection Spinor Invariants

Distinguishing between the partial waves with parity \(P = (-)^J \) and \(P = (-)^J \), we write the potential matrix elements on the LSJ-basis in the following way (see e.g. [22], section VII):

(i) \(P = (-)^J \):

\[
(p_f; L'S'J'M'| V |p_i; LSJM) = 4\pi V^{J,+}(S',S)\delta_{J',J} \delta_{M',M} \delta_{L',L}.
\] \(\text{(6.11)} \)

(ii) \(P = (-)^J \):

\[
(p_f; L'S'J'M'| V |p_i; LSJM) = 4\pi \delta_{J',J} \delta_{M',M} \delta_{S'S} V^{J,-}(L', L).
\] \(\text{(6.12)} \)

For notational convenience we will use as an index the parity factor \(\eta \), which is defined by writing \(P = \eta(-)^J \). The \(P = (-)^J \)-states contain the spin singlet and triplet-uncoupled states \(\eta = + \), and the \(P = (-)^J \)-states contain the spin triplet-coupled states \(\eta = - \).

In nucleon-nucleon the proton neutron mass difference \(M_p - M_n \) is small, and, except for very special studies, the spin singlet-triplet transitions can be neglected. Actually, in the TME-potentials we take \(M_p = M_n = M_N \). As a consequence there are no anti-symmetric spin-orbit potentials, so \(V_5 = 0 \). Also, since we restrict ourselves to terms of order up to and including \(1/M_N \), there are no contributions to the quadratic-spin-orbit potentials, i.e. \(V_5 = 0 \). Also, in nucleon-nucleon one can neglect terms with \(P_7 \) and \(P_8 [22] \). Therefore, we can restrict the partial wave projection of the spinor invariants to the cases \(P_1, P_2, P_3, \) and \(P_4 \).

Below we list the partial wave matrix elements for \(\eta = \pm \) for the different \(V_j P_j \), \((j = 1, 2, 3) \). Here we restrict ourselves to the matrix elements \(\neq 0 \).

1. central \(P_1 = 1 \):

\[
(p_f; L'S'J'M'|V^{(1)} P_1 |p_i; LSJM) = 4\pi \delta_{J',J} \delta_{M',M} F_1^{J}\eta(L', L, S),
\] \(\text{(6.13)} \)

\[
\text{with } F_1^{J}\eta(L', S', L) = \delta_{L',L} \delta_{S'S} V^{(1)}(x)
\]

2. spin-spin \(P_2 = \sigma_1 \cdot \sigma_2 \):

\[
(p_f; L'S'J'M'|V^{(2)} P_2 |p_i; LSJM) = 4\pi \delta_{J',J} \delta_{M',M} F_2^{J}\eta(L', L, S),
\] \(\text{(6.14)} \)

\[
\text{with } F_2^{J}\eta(L', S', L) = \delta_{L',L} \delta_{S'S} [2S(S+1) - 3] V^{(2)}(x)
\]

3. tensor \(P_3 = (\sigma_1 \cdot k)(\sigma_2 \cdot k) - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k^2 \):

\[
(p_f; L'S'J'M'|V^{(3)} P_3 |p_i; LSJM) = \frac{8\pi}{3} (p_f^2 + p_i^2) \delta_{J',J} \delta_{M',M} F_3^{J}\eta(i, j),
\] \(\text{(6.15)} \)

where \(i = S' \) and \(j = S \) for \(\eta = + \), respectively \(i = L' \) and \(j = L \) for \(\eta = - \).

(i) triplet uncoupled: \(L = L' = J, S = S' = 1 \)

\[
F_3^{J,+}(1, 1) = \left[V^{(3)} + \frac{1}{2} \sin 2\psi \left(\frac{2J + 3}{2J + 1} V^{(3)}_{J-1} + \frac{2J - 1}{2J + 1} V^{(3)}_{J+1} \right) \right]
\] \(\text{(6.16)} \)

(ii) triplet coupled: \(L = J \pm 1, L' = J \pm 1, S = S' = 1 \)

\[
F_3^{J,-}(J - 1, J - 1) = \frac{J - 1}{2J + 1} \left[-V^{(3)}_{J-1} + \frac{1}{2} \sin 2\psi \left(\frac{2J - 3}{2J - 1} V^{(3)}_J + \frac{2J + 1}{2J - 1} V^{(3)}_{J-2} \right) \right]
\] \(\text{(6.17a)} \)

\[
F_3^{J,-}(J - 1, J + 1) = -3\sqrt{\frac{J(J+1)}{2J + 1}} \left[-\sin 2\psi V^{(3)}_J + \left(\cos 2\psi V^{(3)}_{J-1} + \sin 2\psi V^{(3)}_{J+1} \right) \right]
\] \(\text{(6.17b)} \)

\[
F_3^{J,-}(J + 1, J - 1) = -3\sqrt{\frac{J(J+1)}{2J + 1}} \left[-\sin 2\psi V^{(3)}_J + \left(\sin 2\psi V^{(3)}_{J-1} + \cos 2\psi V^{(3)}_{J+1} \right) \right]
\] \(\text{(6.17c)} \)

\[
F_3^{J,-}(J + 1, J + 1) = \frac{J + 2}{2J + 1} \left[-V^{(3)}_{J+1} + \frac{1}{2} \sin 2\psi \left(\frac{2J + 5}{2J + 3} V^{(3)}_J + \frac{2J + 1}{2J + 3} V^{(3)}_{J+2} \right) \right]
\] \(\text{(6.17d)} \)
where we introduced

\[
\cos \psi = \frac{p_i}{\sqrt{p_f^2 + p_i^2}} , \quad \sin \psi = \frac{p_f}{\sqrt{p_f^2 + p_i^2}}
\]

(6.18)

4. spin-orbit \(P_4 = \frac{1}{2} (\sigma_1 + \sigma_2) \cdot \mathbf{n} \):

\[
(p_f; L'S'J'M'|V^{(4)}P_4|p_i; LSJM) = 4\pi p_fp_i \delta_{J'J} \delta_{M'M} F^{J\pi}_{4}(i, j).
\]

(6.19)

(i) triplet uncoupled: \(L = L' = J, S = S' = 1 \)

\[
F^{J+}_{4}(1, 1) = - \left(V^{(4)}_{J-1} - V^{(4)}_{J+1} \right) / (2J + 1)
\]

(6.20)

(ii) triplet coupled: \(L = J \pm 1, L' = J \pm 1, S = S' = 1 \)

\[
F^{J-}_{4}(J - 1, J - 1) = \frac{(J - 1)}{(2J - 1)} \left(V^{(4)}_{J-2} - V^{(4)}_{J} \right)
\]

\[
F^{J-}_{4}(J + 1, J + 1) = - \frac{(J + 2)}{(2J + 3)} \left(V^{(4)}_{J} - V^{(4)}_{J+2} \right)
\]

(6.21)

With the matrix elements of this section, the partial waves for the potentials can be readily derived. Henceforth, we will use the following shorthand notation [27] for the potentials:

(i) \(P = (-)^J \):

\[
V^{J+}_{0,0} = V^{J+}(0, 0), \quad V^{J+}_{0,2} = V^{J+}(0, 1)
\]

\[
V^{J+}_{2,0} = V^{J+}(1, 0), \quad V^{J+}_{2,2} = V^{J+}(1, 1)
\]

(6.22)

(ii) \(P = -(-)^J \):

\[
V^{J-}_{1,1} = V^{J-}(J - 1, J - 1), \quad V^{J-}_{1,3} = V^{J-}(J - 1, J + 1)
\]

\[
V^{J-}_{3,1} = V^{J-}(J + 1, J - 1), \quad V^{J-}_{3,3} = V^{J-}(J + 1, J + 1)
\]

(6.23)

where it is always understood that the final and initial state momenta are respectively \(p_f \) and \(p_i \). So \(V^{J}_{0,0} = V^{J}_{0,0}(p_f, p_i) \) etc. Since

\[
V^{J}_{2,0}(p_f, p_i) = V^{J}_{0,2}(p_i, p_f), \quad V^{J}_{3,1}(p_f, p_i) = V^{J}_{1,3}(p_i, p_f)
\]

(6.24)

we will give in case of the off-diagonal terms only the explicit expressions for \(V^{J}_{0,2}(p_f, p_i) \) and \(V^{J}_{1,3}(p_f, p_i) \).

D. Partial Wave Projection Potentials

The momentum space partial wave central (\(C \)), spin-spin (\(\sigma \)), tensor (\(T \)), and spin-orbit (\(SO \)) potentials \(V^{(C)}_L(p_f, p_i) \) etc. lead to the following partial wave potentials \(\neq 0 \):

...
Notice that one obtains from (5.2) for the coefficients (i) central:

$$V_{0,0}^J = 4\pi \left(V_{j}^{(C)} - 3 V_{j}^{(\sigma)} \right) \quad (6.25a)$$

$$V_{2,2}^J = 4\pi \left(V_{j}^{(C)} + V_{j}^{(\sigma)} \right) + \frac{2}{3} \left(p_f^2 + p_i^2 \right) \left\{ V_{j}^{(T)} - \frac{1}{2} \sin 2\psi \left(\frac{2J+3}{2J+1} V_{j-1}^{(T)} + \frac{2J-1}{2J+1} V_{j+1}^{(T)} \right) \right\} \quad (6.25b)$$

$$V_{1,1}^J = 4\pi \left(V_{j}^{(C)} + V_{j}^{(\sigma)} \right) + \frac{2}{3} \left(p_f^2 + p_i^2 \right) \left\{ -V_{j-1}^{(T)} + \frac{1}{2} \sin 2\psi \left(\frac{2J-3}{2J-1} V_{j}^{(T)} + \frac{2J+1}{2J-1} V_{j+2}^{(T)} \right) \right\} + p_J p_i \left(J - 1 \right) \left(V_{j}^{(SO)} - V_{j}^{(SO)} \right) / (2J - 1) \quad (6.25c)$$

$$V_{3,3}^J = 4\pi \left(V_{j}^{(C)} + V_{j}^{(\sigma)} \right) + \frac{2}{3} \left(p_f^2 + p_i^2 \right) \frac{\sqrt{J(J+1)}}{2J+1} \left\{ \sin 2\psi V_{j}^{(T)} + \left(\cos^2 \psi V_{j}^{(T)} + \sin^2 \psi V_{j+1}^{(T)} \right) \right\} \quad (6.25d)$$

$$V_{3,3}^J = 4\pi \left(V_{j}^{(C)} + V_{j}^{(\sigma)} \right) + \frac{2}{3} \left(p_f^2 + p_i^2 \right) \frac{J+2}{2J+1} \left\{ -V_{j}^{(T)} + \frac{1}{2} \sin 2\psi \left(\frac{2J+5}{2J+3} V_{j}^{(T)} + \frac{2J+1}{2J+3} V_{j+2}^{(T)} \right) \right\} - p_J p_i \left(J + 2 \right) \left(V_{j}^{(SO)} - V_{j}^{(SO)} \right) / (2J + 3) \quad (6.25e)$$

Notice that $V_{0,2}^J = V_{2,0}^J = 0$ because $V_L^{(SO)} = 0$. Furthermore, $V_{3,1}^J = V_{1,3}^J$.

VII. ADIABATIC PS-PS POTENTIALS

A. Adiabatic PS-PS Coefficients

Defining the shorthands $A(p_f, p_i)$ and $B(p_f, p_i)$ by

$$k^2 = (p_f^2 + p_i^2) - 2p_f p_i z \equiv A - Bz \ , \ k^4 = A^2 - 2ABz + B^2z^2 \ . \quad (7.1)$$

one obtains from (5.2) for the coefficients $X, Y, Z \neq 0$:

(i) central:

$$X_1^{(\|)}(t, u) = \frac{1}{\sqrt{\pi}} C_{NN,\|}^{(f)} \left(\frac{I_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{I_{NN\eta}}{m_{\pi}} \right)^2 \cdot \quad (7.2)$$

$$\times \frac{1}{4} \left\{ 15 + 2 \left(\frac{t^2 - 8ut + u^2}{t + u} \right) A(p_f, p_i) + 4 \left(\frac{t^2u^2}{(t + u)^2} \right) A^2(p_f, p_i) \right\} \sqrt{t + u} \frac{\sqrt{t + u}}{(t + u)^2} \ ,$$

$$Y_1^{(\|)}(t, u) = -\frac{1}{\sqrt{\pi}} C_{NN,\|}^{(f)} \left(\frac{I_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{I_{NN\eta}}{m_{\pi}} \right)^2 \cdot \quad (7.2)$$

$$\times \left\{ \left(\frac{t^2 - 8ut + u^2}{t + u} \right) B(p_f, p_i) + 4 \left(\frac{t^2u^2}{(t + u)^2} \right) A(p_f, p_i) B(p_f, p_i) \right\} \sqrt{t + u} \frac{\sqrt{t + u}}{(t + u)^2} \ ,$$

$$Z_1^{(\|)}(t, u) = \frac{1}{\sqrt{\pi}} C_{NN,\|}^{(f)} \left(\frac{I_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{I_{NN\eta}}{m_{\pi}} \right)^2 \cdot \quad (7.2)$$

$$\times \left(\frac{t^2u^2}{(t + u)^2} \right) B^2(p_f, p_i) \sqrt{t + u} \frac{\sqrt{t + u}}{(t + u)^2} \ .$$
(ii) spin-spin:

\[
X^{(s)}_2(t, u) = -\frac{2}{3\sqrt{\pi}} C^{(t)}_{NN, //} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\pi}} \right)^2 \cdot A(p_f, p_i) \frac{\sqrt{t + u}}{(t + u)},
\]

\[
Y^{(s)}_2(t, u) = +\frac{2}{3\sqrt{\pi}} C^{(t)}_{NN, //} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\pi}} \right)^2 \cdot B(p_f, p_i) \frac{\sqrt{t + u}}{(t + u)},
\]

(iii) tensor:

\[
X^{(t)}_3(t, u) = +\frac{1}{\sqrt{\pi}} C^{(t)}_{NN, //} \left(\frac{f_{NN\pi}}{m_{\pi}} \right)^2 \left(\frac{f_{NN\eta}}{m_{\pi}} \right)^2 \frac{\sqrt{t + u}}{(t + u)}.
\]

For the X-diagram contributions one has

\[
X^{(X)}_1 = -X^{(s)}_1, \quad Y^{(X)}_1 = -Y^{(s)}_1, \quad Z^{(X)}_1 = -Z^{(s)}_1,
\]

\[
X^{(X)}_2 = +X^{(s)}_2, \quad Y^{(X)}_2 = +Y^{(s)}_2,
\]

\[
X^{(X)}_3 = +X^{(s)}_3.
\]

B. Adiabatic PS-PS Partial Wave Potentials

The central, spin-spin, and tensor partial wave contributions are

\[
V_{L}^{(C)}(p_f, p_i) = S_L [X_1 \cdot U_L + Y_1 \cdot R_L + Z_1 \cdot S_L] = S_L [X_C \cdot U_L],
\]

\[
V_{L}^{(S)}(p_f, p_i) = S_L [X_2 \cdot U_L + Y_2 \cdot R_L + Z_2 \cdot S_L] = S_L [X_S \cdot U_L],
\]

\[
V_{L}^{(T)}(p_f, p_i) = S_L [X_3 \cdot U_L],
\]

where

\[
X_C(t, u) = X^{(C)}_1 + X^{(X)}_1, \quad X_S(t, u) = X^{(S)}_2 + X^{(X)}_2,
\]

\[
X_T(t, u) = X^{(T)}_3 + X^{(X)}_3,
\]

and similar formulas for $Y_{C, S, T}$ and $Z_{C, S, T}$.

The momentum space partial wave central, spin-spin, and tensor potentials $V_{L}^{(C)}(p_f, p_i)$ etc. lead to the following contributions:

\[
V_{0,0}^{J}(ad) = 4\pi \left(V_{J}^{(C)} - 3V_{J}^{(S)} \right)(p_f, p_i)
\]

\[
V_{2,2}^{J} = 4\pi \left(V_{J}^{(C)} + V_{J}^{(S)} \right) + \frac{2}{3} (p_f^2 + p_i^2) \left[V_{J}^{(T)} - \frac{1}{2} \sin 2\psi \left(\frac{2J + 3}{2J + 1} V_{J+1}^{(T)} + \frac{2J - 1}{2J + 1} V_{J-1}^{(T)} \right) \right]
\]

\[
V_{1,1}^{J} = 4\pi \left(V_{J}^{(C)} + V_{J}^{(S)} \right) + \frac{2}{3} (p_f^2 + p_i^2) \frac{J - 1}{2J + 1} \left[-V_{J-1}^{(T)} + \frac{1}{2} \sin 2\psi \left(\frac{2J - 3}{2J - 1} V_{J-1}^{(T)} + \frac{2J + 1}{2J - 1} V_{J-2}^{(T)} \right) \right]
\]

\[
V_{1,3}^{J} = 4\pi \left(V_{J}^{(C)} + V_{J}^{(S)} \right) + \frac{2}{3} (p_f^2 + p_i^2) \frac{J}{J + 1} \left[\sin 2\psi V_{J}^{(T)} - \left(\cos^2 \psi V_{J-1}^{(T)} + \sin^2 \psi V_{J+1}^{(T)} \right) \right]
\]

\[
V_{3,3}^{J} = 4\pi \left(V_{J}^{(C)} + V_{J}^{(S)} \right) + \frac{2}{3} (p_f^2 + p_i^2) \frac{J + 2}{2J + 1} \left[-V_{J+1}^{(T)} + \frac{1}{2} \sin 2\psi \left(\frac{2J + 5}{2J + 3} V_{J+1}^{(T)} + \frac{2J + 1}{2J + 3} V_{J+2}^{(T)} \right) \right]
\]

APPENDIX A: MISCELLANEOUS INTEGRALS

(i) Consider the integrals with p-components of the Δ-

In this appendix we list a number of useful integrals.
vector in the integrand: gaussian integral

\[I^{(p)}_{m\ldots n}(k) = \int \frac{d^3 \Delta}{(2\pi)^3} \Delta_m \ldots \Delta_n \exp \left[-a\Delta^2 + 2bk \cdot \Delta \right] \]

\[= (4\pi a)^{-3/2} \left(2b\right)^p \sum_{l} \exp \left[\frac{b^2}{2} k^2 \right] \]

(iii) Consider the integrals with \(p \)-factors \(\Delta \cdot k \) in the integrand:

\[K^{(p)}(k) = \int \frac{d^3 \Delta}{(2\pi)^3} \left(\Delta \cdot k\right)^p \exp \left[-a\Delta^2 + 2bk \cdot \Delta \right] \]

\[= (4\pi a)^{-3/2} \left(\frac{\partial}{\partial b}\right)^p \exp \left[\frac{b^2}{2} k^2 \right] \]

The first tensors \(\Pi^{(p)}_{m\ldots n}(k^2) \) are

\[\Pi^{(0)} = 1, \quad \Pi^{(1)} = \frac{b}{a} k_m, \quad \Pi^{(2)} = \frac{1}{a} \left\{ \frac{1}{2} \delta_{mn} + \frac{b^2}{a} k_m k_n \right\} , \]

\[\Pi^{(3)}_{m n k} = \frac{b}{a^2} \left\{ \frac{1}{2} \left[\delta_{mn} k_k + \delta_{mk} k_n + \delta_{nk} k_m \right] + \frac{b^2}{a} k_m k_n k_k \right\} , \]

\[\Pi^{(4)}_{m n k l} = \frac{1}{a^2} \left\{ \delta_{mn} \delta_{kl} + \delta_{mk} \delta_{nl} + \delta_{nk} \delta_{ml} + \frac{1}{2} b^2 \right\} \times \left[\delta_{mn} k_k k_l + \delta_{mk} k_m k_l + \delta_{nk} k_n k_l + \delta_{nl} k_n k_l \right] + \left(\frac{b^2}{a} \right)^2 k_m k_n k_l k_l \right\} . \]

(ii) Consider the integrals with \(p \)-factors \(\Delta^2 \) in the integrand:

\[J^{(p)}(k) = \int \frac{d^3 \Delta}{(2\pi)^3} \left(\Delta^2\right)^p \exp \left[-a\Delta^2 + 2bk \cdot \Delta \right] \]

\[= -\left(\frac{\partial}{\partial a}\right)^p \left(4\pi a\right)^{-3/2} \exp \left[\frac{b^2}{2} k^2 \right] \]

\[\equiv (4\pi a)^{-3/2} \Gamma^{(p)}(k^2) \exp \left[\frac{b^2}{a} k^2 \right] . \]

The first tensors \(\Gamma^{(p)}_{m\ldots n}(k^2) \) are

\[\Gamma^{(0)} = 1, \quad \Gamma^{(1)} = \frac{1}{2a} \left[3 + 2a \left(\frac{b}{a} \right)^2 k^2 \right] , \]

\[\Gamma^{(2)} = \frac{1}{4a^2} \left[15 + 20a \left(\frac{b}{a} \right)^2 k^2 + 4a^2 \left(\frac{b}{a} \right)^4 k^4 \right] , \]

\[\Gamma^{(3)} = \frac{1}{8a^3} \left[105 + 210a \left(\frac{b}{a} \right)^2 k^2 + 84a^2 \left(\frac{b}{a} \right)^4 k^4 \right] + 8a^3 \left(\frac{b}{a} \right)^6 k^6 \right] . \]

(iv) Consider finally the more general integrals with \(p \)-factors \(\Delta^2 \) and \(q \)-factors \(\Delta \cdot k \) in the integrand:

\[J^{(p,q)}(k) = \int \frac{d^3 \Delta}{(2\pi)^3} \left(\Delta^2\right)^p \left(\Delta \cdot k\right)^q \exp \left[-a\Delta^2 + 2bk \cdot \Delta \right] \]

\[= -\left(\frac{\partial}{\partial a}\right)^p \left(\frac{\partial}{\partial b}\right)^q \left(4\pi a\right)^{-3/2} \exp \left[\frac{b^2}{2} k^2 \right] \]

\[\equiv (4\pi a)^{-3/2} \Gamma^{(p,q)}(k^2) \exp \left[\frac{b^2}{a} k^2 \right] . \]

The first tensors \(\Gamma^{(p,q)}_{m\ldots n}(k^2) \), with \(p, q \neq 0 \), are

\[\Gamma^{(1,1)} = \frac{1}{2a} \left(\frac{b}{a} \right)^2 k^2 \right] k^2 , \]

\[\Gamma^{(1,2)} = \frac{1}{4a^2} \left[5 + 16a \left(\frac{b}{a} \right)^2 k^2 + 4a^2 \left(\frac{b}{a} \right)^4 k^4 \right] k^2 , \]

\[\Gamma^{(2,1)} = \frac{1}{4a^2} \left(\frac{b}{a} \right)^2 \left[35 + 28a \left(\frac{b}{a} \right)^2 k^2 + 4a^2 \left(\frac{b}{a} \right)^4 k^4 \right] k^2 . \]

APPENDIX B: INTEGRATION DICTIONARY

In this appendix we give a dictionary for the evaluation of the momentum integrals that occur in the matrix elements of the TME-potentials. The results of the \(d^3 \Delta \)-integration are given apart from a factor \((4\pi a)^{-3/2} \) \((a = t + u) \), common to all integrals. Using the results given in Appendix A one obtains:
where the 9

The spherical wave functions in momentum space with quantum numbers J, L, S, are in the SYM-convention [9]

\[\left(1 + 2 \frac{t^2 - 2tu + u^2}{t + u} \right) k^2 - 4 \left(\frac{t^2 + u^2}{(t + u)^2} \right) \mathbf{k}^4 \cdot \frac{1}{(t + u)^2}, \]

\[\frac{1}{2} \left(15 + 3 \left(\frac{t^2 - 5ut + u^2}{t + u} \right) k^2 - 12tu \left(\frac{t^2 - 5ut + u^2}{t + u} \right) k^4 - 8 \left(\frac{t^3u^3}{(t + u)^2} \right) k^6 \right) \cdot \frac{1}{(t + u)^3}, \]

\[\frac{1}{2} \left(5 - \frac{tu}{t + u} \right) \cdot \frac{1}{(t + u)^2}, \]

\[\frac{1}{2} \left(5 - \frac{2tu}{t + u} \right) \cdot \frac{1}{(t + u)^2}. \]

APPENDIX C: ON THE LSJ-REPRESENTATION OPERATORS

The spherical wave functions in momentum space with quantum numbers J, L, S, are in the SYM-convention [9]

\[\gamma_{JLS}(\hat{p}) = i^L C_{M \mu}^J M \chi_m(\hat{p}) \chi_\mu \]

where \(\chi \) is the two-nucleon spin wave function [28]. Then

\[(S \cdot \hat{p}) \gamma_{JLS}(\hat{p}) = -\sqrt{\frac{L}{2L-1}} \left[\begin{array}{c} L \ S \ J \\ L - 1 \ S \ J \end{array} \right] \gamma_{JL-1S}(\hat{p}) + \sqrt{\frac{L+1}{2L+3}} \left[\begin{array}{c} L \ S \ J \\ L + 1 \ S \ J \end{array} \right] \gamma_{JL+1S}(\hat{p}) \]

where the 9j-symbols differ from [29], formula (6.4.4), in the replacement of the 3j-symbols by the Clebsch-Gordan coefficients and by leaving out the \(m_{3j} \)-summation (see [30]). Working this out explicitly, we find

\[(S \cdot \hat{p}) \gamma_{J,-1}(\hat{p}) = -i a_{J} \gamma_{J1}(\hat{p}) \]

\[(S \cdot \hat{p}) \gamma_{JJ+1}(\hat{p}) = i b_{J} \gamma_{JJ}(\hat{p}) \]

\[(S \cdot \hat{p}) \gamma_{J+1}(\hat{p}) = i a_{J} \gamma_{JJ+1}(\hat{p}) - i b_{J} \gamma_{JJ+2}(\hat{p}). \]
where
\[a_j = -\sqrt{\frac{J+1}{2J+1}}, \quad b_j = -\sqrt{\frac{J}{2J+1}} \]
(C5)

Ordering the states according to \(L = J - 1, L = J, L = J + 1 \), we can write in matrix form
\[
\begin{pmatrix}
 L = J - 1 & J & J + 1 \\
 0 & i a_j & 0 \\
 -i a_j & 0 & i b_j \\
 0 & -i b_j & 0
\end{pmatrix}
\]
(C6)

Similarly, using for \(-i(\hat{p}_f \times \hat{p}_i) \cdot \mathbf{S}\) for spherical components the formula
\[
-i(\hat{p}_f \times \hat{p}_i)_n = -\frac{4\pi}{3} \sqrt{2} C_{k\ell n}^{111} Y^1_k(\hat{p}_f) Y^1_l(\hat{p}_i)
\]
(C7)

one can work out the partial wave matrix elements involving this operator.

From the results above one can derive the following useful partial wave projections for the spin triplet states:
\[
(L'1J|V(k^2)(\mathbf{S} \cdot \hat{p}_i)^2|L1J) = 4\pi \begin{pmatrix}
 a_j^2 V_{J-1} & 0 & -a_j b_j V_{J-1} \\
 0 & V_J & 0 \\
 -a_j b_j V_{J+1} & 0 & b_j^2 V_{J+1}
\end{pmatrix}
\]
(C8a)

\[
(L'1J|V(k^2)|L1J) = 4\pi \begin{pmatrix}
 a_j^2 V_{J-1} & 0 & -a_j b_j V_{J-1} \\
 0 & V_J & 0 \\
 -a_j b_j V_{J+1} & 0 & b_j^2 V_{J+1}
\end{pmatrix}
\]
(C8b)

\[
(L'1J|(\mathbf{S} \cdot \hat{p}_f)V(k^2)(\mathbf{S} \cdot \hat{p}_i)|L1J) = 4\pi \begin{pmatrix}
 a_j^2 V_J & 0 & -a_j b_j V_J \\
 0 & a_j^2 V_{J-1} + b_j^2 V_{J+1} & 0 \\
 -a_j b_j V_J & 0 & b_j^2 V_J
\end{pmatrix}
\]
(C8c)

and
\[
(L'1J) (\sigma_1 \cdot \mathbf{a})(\sigma_2 \cdot \mathbf{a}) = 2(\mathbf{S} \cdot \mathbf{a})^2 - \mathbf{a}^2
\]
(C10)

Using the identity
\[
(P_3 = (\sigma_1 \cdot \mathbf{k})(\sigma_2 \cdot \mathbf{k}) - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k^2 = \frac{1}{3} [p_{12}^2 S_{12}(\hat{p}_i) + p_{12}^2 S_{12}(\hat{p}_f)]
\]
(C11)

where the momentum-space tensor-operator \(S_{12} \) is defined as
\[
S_{12}(\hat{p}) = 3(\sigma_1 \cdot \hat{p})(\sigma_2 \cdot \hat{p}) - (\sigma_1 \cdot \sigma_2)
\]
(C12)

From the formulas given in this appendix the partial wave projections of the several potential forms, as given in sections VI A and VII, can be derived in a straightforward manner. In case of an extra factor \((\mathbf{p}_f \cdot \mathbf{p}_i)\), as occurs for example in the second line of (C11), we simply use the expansion
\[
(\mathbf{p}_f \cdot \mathbf{p}_i) V(k^2) = p_f p_i \sum_{L=0}^{\infty} (2L + 1)\tilde{V}_L(x)P_L(\cos \theta)
\]
(C13)

where
\[
\tilde{V}_L = \frac{1}{2L+1} [(L+1)V_{L+1} + LV_{L-1}]
\]
(C14)
APPENDIX D: FOURIER TRANSFORMATION COORDINATE- TO MOMENTUM-SPACE

In this appendix we give an outline of how the potentials in the coordinate representation can be translated to their momentum space counterparts in a direct way. Of course, we utilize the same techniques as described in this paper. We treat the more complicated case of the tensor potential. In this case the coordinate space potentials are complicated. Nevertheless, we show explicitly how they are connected with our momentum space representation.

1. TPS Tensor and Spin-spin Potentials I

To appreciate this method in the case of TME-potentials, we consider as a typical example the potential

\[V(r) = \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \frac{e^{i(k_1+k_2) \cdot r}}{1 \frac{d}{dr} F(r) \cdot 1 \frac{d}{dr} G(r)} \cdot \langle \sigma_1 \cdot (k_1 \times k_2) \rangle \langle \sigma_2 \cdot (k_1 \times k_2) \rangle \langle \hat{F}(k_1^2) \hat{G}(k_2^2) \rangle \]

(D1)

This potential, in terms of the Fourier transforms \(F(r) \) and \(G(r) \) has been given in [12] and reads

\[V(r) = \frac{2}{3} \left[\frac{1}{r^2} F'(r)G'(r) + \frac{1}{r} F'(r)G''(r) + \frac{1}{r} F''(r)G'(r) \right] \langle \sigma_1 \cdot \sigma_2 \rangle \]

\[+ \frac{1}{3} \left[\frac{2}{r^2} F'(r)G'(r) - \frac{1}{r} F'(r)G''(r) - \frac{1}{r} F''(r)G'(r) \right] S_{12} \, , \]

(D2)

where \(F'(r) \equiv dF(r)/dr \) etc. In seeking the projection on the spinor invariants, we wish to write for the momentum space counterpart of (D1) as

\[\tilde{V}(k) = \int \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \delta(k - k_1 - k_2) \tilde{F}(k_1^2)\tilde{G}(k_2^2) \langle \sigma_1 \cdot (k_1 \times k_2) \rangle \langle \sigma_2 \cdot (k_1 \times k_2) \rangle \]

\[\equiv \tilde{V}_\sigma(k) \langle \sigma_1 \cdot \sigma_2 \rangle + \tilde{V}_T(k) \left[\langle \sigma_1 \cdot k \rangle \langle \sigma_2 \cdot k \rangle - \frac{1}{3} \langle \sigma_1 \cdot \sigma_2 \rangle k^2 \right] . \]

(D3)

It is now our task to find \(\tilde{V}_\sigma, T(k) \). To proceed, we notice that one can easily see that (D2) can be written in the form

\[V(r) \equiv \frac{2}{3} H_\sigma(r) \langle \sigma_2 \cdot \sigma_2 \rangle + \frac{1}{3} H_T(r) S_{12} \, , \]

and

\[H_\sigma(r) = \left(\frac{2}{r} + \frac{d}{dr} \right) H'(r) \, , \]

and

\[H_T(r) = \left(\frac{1}{r} - \frac{d}{dr} \right) H'(r) , \]

(D4)

where the function \(H(r) \) satisfies the equation

\[\frac{1}{r} \frac{d}{dr} H(r) = \frac{1}{r} \frac{d}{dr} F(r) \cdot \frac{1}{r} \frac{d}{dr} G(r) \, . \]

(D5)

To solve the problem posed in this section, it is necessary to find the Fourier transform \(\tilde{H}(k^2) \). To solve this problem we exploit the following lemma:

Lemma 1 If two functions \(h(r) \) and \(H(r) \) are related by \(h(r) = (1/r)dH/dr \), then their fourier transforms \(\tilde{h}(k) \) and \(\tilde{H}(k) \) satisfy

\[h(r) = \frac{1}{r} \frac{d}{dr} H(r) \Rightarrow \tilde{h}(k^2) = \frac{1}{2} \tilde{H}(k^2) . \]

(D6)

Introducing the 'little' functions \(h(r), f(r), g(r) \) by

\[h(r) \equiv \frac{1}{r} \frac{d}{dr} H(r) \, , \]

\[f(r) \equiv \frac{1}{r} \frac{d}{dr} F(r) \, , \]

\[g(r) \equiv \frac{1}{r} \frac{d}{dr} G(r) \, , \]

and from (D5) these satisfy the relation \(h(r) = f(r) \cdot g(r) \).
Next we assume the following generic soft-core forms for \(\tilde{F} \) and \(\tilde{G} \):

\[
\tilde{F}(k^2) = \frac{\exp \left[-k^2/\Lambda_1^2 \right]}{k^2 + m_1^2}, \quad \tilde{G}(k^2) = \frac{\exp \left[-k^2/\Lambda_2^2 \right]}{k^2 + m_2^2}.
\]

The solution for \(\tilde{f}(k^2) \) and \(\tilde{g}(k^2) \), using the differential equations for the Fourier transforms as given in (D6), is discussed in [8], Appendix C, and reads

\[
\begin{align*}
\tilde{f}(k^2) &= -\frac{1}{2} \exp \left(m_1^2/\Lambda_1^2 \right) E_1 \left[(k^2 + m_1^2) / \Lambda_1^2 \right], \\
\tilde{g}(k^2) &= -\frac{1}{2} \exp \left(m_2^2/\Lambda_2^2 \right) E_1 \left[(k^2 + m_2^2) / \Lambda_2^2 \right],
\end{align*}
\]

where \(E_1 \) is the exponential integral [26]. Then, the Fourier transform of \(\tilde{h}(r) = f(r)g(r) \) as follows from (D5) is given by the convolution

\[
\tilde{h}(k) = \tilde{f} \ast \tilde{g}(k) = \int \frac{d^3 \Delta}{(2\pi)^3} \tilde{f}(\Delta^2) \tilde{g} \left((k - \Delta)^2 \right).
\]

With (D8) we obtain

\[
\tilde{h}(k) = \frac{1}{4} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int \frac{d^3 \Delta}{(2\pi)^3} E_1 \left[(\Delta^2 + m_1^2) / \Lambda_1^2 \right] \cdot E_1 \left[((k - \Delta)^2 + m_2^2) / \Lambda_2^2 \right].
\]

Now, the \(\Delta \)-integral can be performed as follows

\[
\begin{align*}
\int \frac{d^3 \Delta}{(2\pi)^3} E_1 \left(\frac{(\Delta^2 + m_1^2)}{\Lambda_1^2} \right) \cdot E_1 \left(\frac{(k - \Delta)^2 + m_2^2}{\Lambda_2^2} \right) &= \int_1^\infty \frac{dt}{t} \int_1^\infty \frac{du}{u} \cdot \\
\times \int \frac{d^3 \Delta}{(2\pi)^3} \exp \left[-\frac{(\Delta^2 + m_1^2)}{\Lambda_1^2} t \right] \cdot \exp \left[-\frac{(k - \Delta)^2 + m_2^2}{\Lambda_2^2} u \right] = \\
\int_1^\infty \frac{dt}{t} \int_1^\infty \frac{du}{u} \exp \left(-\frac{m_1^2}{\Lambda_1^2} t \right) \exp \left(-\frac{m_2^2}{\Lambda_2^2} u \right) \cdot \\
\times \int \frac{d^3 \Delta}{(2\pi)^3} \exp \left[-\frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2} \right] \Delta^2 + \left(2k - \Delta \right)^2 u \right].
\end{align*}
\]

The \(\Delta \)-integral in the last line of (D11) has a standard Gaussian form and is given by

\[
\int \frac{d^3 \Delta}{(2\pi)^3} \exp \left[\ldots \right] = (4\pi a)^{-3/2} \exp \left[-\frac{tu/\Lambda_1^2 \Lambda_2^2}{(t/\Lambda_1^2 + u/\Lambda_2^2)} k^2 \right], \quad \text{with } a = \frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2}.
\]

In this form, the derivative w.r.t. \(k^2 \) can be taken easily, and we finally obtain for \(\tilde{H} \) the solution

\[
\tilde{H}(k^2) = -\frac{1}{2} (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int_1^\infty \frac{dt}{\Lambda_1^2} \int_1^\infty \frac{du}{\Lambda_2^2} \left(\frac{t}{\Lambda_1^2} + \frac{u}{\Lambda_2^2} \right)^{-5/2} \cdot \\
\times \exp \left(\frac{m_1^2}{\Lambda_1^2} t \right) \exp \left(-\frac{m_2^2}{\Lambda_2^2} u \right) \exp \left[-\frac{tu/\Lambda_1^2 \Lambda_2^2}{(t/\Lambda_1^2 + u/\Lambda_2^2)} k^2 \right].
\]

Redefining the variables \(t \to t/\Lambda_1^2 \) and \(u \to u/\Lambda_2^2 \), one can rewrite (D13) in to the form

\[
\tilde{H}(k^2) = -\frac{1}{2} (4\pi)^{-3/2} e^{m_1^2/\Lambda_1^2} e^{m_2^2/\Lambda_2^2} \int_{t_0}^\infty dt \int_{u_0}^\infty du \cdot \left(t + u \right)^{-5/2} \cdot \\
\times e^{-\left(m_1^2 t + m_2^2 u \right)} \exp \left[-\frac{tu}{t + u} \right] k^2 \right] \left(t_0 = 1/\Lambda_1^2, \ u_0 = 1/\Lambda_2^2 \right).
\]

Notice that this is the same result as obtained in (3.11), as it should.

[1] Th.A. Rijken, *Proceedings of the XIVth European Conference on Few-Body Problems in Physics*, Amsterdam 1993, eds. B. Bakker and R. von Dantzig.
tems, Suppl. 7, 1 (1994).
[2] Th.A. Rijken and V.G.J. Stoks, Phys. Rev. 54, 2851 (1996).
[3] Th.A. Rijken and V.G.J. Stoks, Phys. Rev. 54, 2869 (1996).
[4] V.G.J. Stoks and Th.A. Rijken, Nucl. Phys. A613, (1997) 311.
[5] S. Weinberg, Physica (Amsterdam) 96A (1979) 327; A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189; H. Georgi, Ann. Rev. Nucl. Sci. B43 (1993) 209.
[6] J. Polchinsky, Nucl. Phys. B231 (1984) 269.
[7] Th.A. Rijken, Proceedings of the 1st Asian-Pacific Conference on Few-Body Problems in Physics, Tokyo 1999, to be published.
[8] T.A. Rijken, R.A.M. Klomp, and J.J. de Swart, 'Soft-Core OBE-Potentials in Momentum Space', preprint June 1991, Institute for Theoretical Physics, Nijmegen, The Netherlands.
[9] H.P. Stapp, T. Ypsilantis, and M. Metropolis, Phys. Rev. 105, 311 (1957).
[10] Th.A. Rijken, H. Polinder, and J. Nagata, ESC NN-Potentials in Momentum Space. II. Meson Pair Exchange Potentials, referred to as II.
[11] A. Klein, Phys. Rev. 90, 1101 (1953).
[12] Th.A. Rijken, Ann. Phys. (N.Y.) 208, 253 (1991).
[13] R.P. Feynman, Phys. Rev. 76, 769 (1949).
[14] J. Schwinger, Proc. Nat. Acad. of Sciences (USA) 37, 452 (1951).
[15] E. Salpeter and H.A. Bethe, Phys. Rev. 84, 1232 (1951).
[16] P.A. Carruthers, Spin and Isospin in Particle Physics, Gordon and Breach Science Publishers, New York, 1971.
[17] We follow the conventions of J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics and Relativistic Quantum Fields (McGraw-Hill Inc., New York; 1965).
[18] E. Salpeter, Phys. Rev. 87, 328 (1952).
[19] R.H. Thompson, Phys. Rev. D1, 110 (1970).
[20] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D17, 768 (1978).
[21] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D15, 2547 (1977).
[22] J.J. de Swart, M.M. Nagels, T.A. Rijken, and P.A. Verhoeven, Springer tracts in Modern Physics, Vol. 60, 137 (1971).
[23] P.M.M. Maessen, T.A. Rijken, and J.J. de Swart, Phys. Rev. D40, 2226 (1989).
[24] At this point it is suitable to change the notation of the initial and final momenta. We use from now on the notations $p_i \equiv p_1, p_f \equiv p_2$ for both on-shell and off-shell momenta.
[25] As pointed out in [2], the operators $\hat{O}_{\alpha\beta}^{(j)}$ contain the contributions from all graphs, including the graphs with meson 1 and meson 2 are interchanged. To avoid over-counting, in case of identical mesons, like $\pi\pi$ or $\eta\eta$ these operators must be divided by 2. The results in the Tables of this paper are given for non-identical mesons.
[26] M. Abramowitz and I.A. Stegun, editors, Handbook of Mathematical Functions (Dover Publications Inc., New York (1970)).
[27] T.A. Rijken, Ann. Phys. (N.Y.) 164, 1 and 23 (1985).
[28] In the SYM-convention [9] the configuration space basic JLS-states are

$$\chi_*^{j\ell m}(\hat{\mathbf{r}}) = C^{j\ell m}_* \chi^{0}(\hat{\mathbf{r}}) \chi^{j\ell m}_* .$$

Transformation to momentum space gives (C1). See e.g. J.R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (John Wiley & Sons, Inc., New York (1972)).
[29] A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton (1957)).
[30] The explicit relation between our jj-symbols and those of [29] eq. (6.4.4) is

$$[j_{11} j_{12} j_{13}] = [(2j_{13} + 1)(2j_{11} + 1)(2j_{23} + 1)(2j_{32} + 1)]^{1/2}$$

$$j_{31} j_{32} j_{33}$$

$$\times (-)^{j_{31} + j_{13} - j_{23} - j_{32}}$$

$$\begin{cases} j_{11} j_{12} j_{13} \\ j_{21} j_{22} j_{23} \\ j_{31} j_{32} j_{33} \end{cases}$$

Table I: Coefficients $\Upsilon_{j,l,k}^{(0)}$ for the planar $(//)$ adiabatic ps-ps contributions.
$\Omega_1^{(0,//)}$
$\Omega_2^{(0,//)}$
$\Omega_3^{(0,//)}$
\[\begin{array}{c|c|c|c} & \Upsilon_0(X)(t, u) & \Upsilon_1(X)(t, u) & \Upsilon_2(X)(t, u) \\ \hline \Omega_1^{(0,X)} & \frac{15}{4} \frac{\sqrt{t + u}}{(t + u)^2} & -\frac{1}{2} \left(\frac{t^2 - 8ut + u^2}{t + u} \right) \frac{\sqrt{t + u}}{(t + u)^2} & -\frac{t^2u^2}{(t + u)^2} \frac{\sqrt{t + u}}{(t + u)^2} \\ \Omega_2^{(0,X)} & - & -\frac{1}{3} \frac{\sqrt{t + u}}{(t + u)} & - \\ \Omega_3^{(0,X)} & +\frac{1}{2} \frac{\sqrt{t + u}}{(t + u)} & - & - \\ \end{array} \]

Table II: Coefficients \(\Upsilon_j^{(0)} \) for the crossed (X) adiabatic ps-ps contributions.

\[\begin{array}{c|c|c|c} & \Upsilon_0^{(1a)}/(\bar{a})/(t, u) & \Upsilon_1^{(1a)}/(\bar{a})/(t, u) & \Upsilon_2^{(1a)}/(\bar{a})/(t, u) \\ \hline \Omega_1^{(1a,\bar{a})} & \frac{105}{8} \frac{1}{(t + u)^3} & \frac{15}{4} \left(\frac{t^2 - 5ut + u^2}{(t + u)^3} \right) & \frac{3}{2} \left(\frac{t^2 - 5ut + u^2}{(t + u)^3} \right) \\ \Omega_2^{(1a,\bar{a})} & - & \frac{5}{6} \frac{1}{(t + u)^2} & -\frac{1}{3} \frac{tu}{(t + u)^3} \\ \Omega_3^{(1a,\bar{a})} & \frac{5}{4} \frac{1}{(t + u)^2} & \frac{1}{2} \frac{tu}{(t + u)^3} & - \\ \Omega_4^{(1a,\bar{a})} & -\frac{1}{(t + u)^2} & \frac{2tu}{(t + u)^3} & - \\ \end{array} \]

Table III: Coefficients \(\Upsilon_j^{(1a)} \) for the planar (//) non-adiabatic ps-ps contributions.

\[\begin{array}{c|c|c|c} & \Upsilon_0^{(1a)}(X)(t, u) & \Upsilon_1^{(1a)}(X)(t, u) & \Upsilon_2^{(1a)}(X)(t, u) \\ \hline \Omega_1^{(1a,X)} & +\frac{105}{4} \frac{1}{(t + u)^3} & \frac{15}{2} \left(\frac{t^2 - 5ut + u^2}{(t + u)^3} \right) & -3\left(\frac{t^2 - 5ut + u^2}{(t + u)^3} \right) \\ \Omega_2^{(1a,X)} & - & \frac{5}{3} \frac{1}{(t + u)^2} & -\frac{2}{3} \frac{tu}{(t + u)^3} \\ \Omega_3^{(1a,X)} & \frac{5}{2} \frac{1}{(t + u)^2} & \frac{tu}{(t + u)^3} & - \\ \end{array} \]

Table IV: Coefficients \(\Upsilon_j^{(1a)} \) for the crossed (X) non-adiabatic ps-ps contributions.

\[\begin{array}{c|c|c|c} & \Upsilon_0^{(1a)}(t, u) & \Upsilon_1^{(1a)}(t, u) & \Upsilon_2^{(1a)}(t, u) \\ \hline \Omega_1^{(1a)} & - \frac{15}{2} \frac{1}{(t + u)^2} & - \frac{5}{2} \left(\frac{t^2 - 2ut + u^2}{t + u} \right) \frac{1}{(t + u)^2} & \frac{1}{t + u} \\ \Omega_2^{(1a)} & - & \frac{1}{(t + u)} & \frac{2tu}{(t + u)^2} \\ \end{array} \]

Table V: Coefficients \(\Upsilon_j^{(1b)} \) for the pseudovector-vertex correction ps-ps contributions.
$\Omega^{(1c)}_{1,TMO}$	$\Upsilon^{(1c)}_0(t, u)$	$\Upsilon^{(1c)}_1(t, u)$	$\Upsilon^{(1c)}_2(t, u)$
	$\frac{15}{4} \frac{1}{(t + u)^2}$	$\frac{5}{4} \frac{t^2 - 2ut + u^2}{t + u}$	$\frac{1}{(t + u)^2}$
$\Omega^{(1c)}_{2,TMO}$	$\frac{5}{2} \frac{1}{t + u}$	$\frac{t u}{(t + u)}$	$\frac{1}{2} \frac{t^2 + u^2}{(t + u)^2} \frac{t u}{(t + u)^2}$

TABLE VI: Coefficients $\Upsilon^{(1c)}_{j,k}$ for the off-shell corrections TMO-graphs ps-ps contributions.