Microscopic transduodenal excision of an ampullary adenoma: A case report and review of the literature

Xiang Zheng, Qing-Jing Sun, Bo Zhou, Ming Jin, Sheng Yan

ORCID number: Xiang Zheng 0000-0003-2920-2282; Qing-Jing Sun 0000-0002-6916-5554; Bo Zhou 0000-0002-4139-5462; Ming Jin 0000-0001-8205-1044; Sheng Yan 0000-0002-4153-3546.

Author contributions: Zheng X and Sun QJ contributed equally to this work; Zheng X and Sun QJ reviewed the literature, acquired the data, and contributed to manuscript drafting; Zhou B and Jin M analyzed and interpreted the imaging findings and contributed to manuscript drafting; Yan S acquired the data and was responsible for revision of the manuscript for important intellectual content; all authors issued final approval for the version to be submitted.

Supported by: Natural Science Foundation of Zhejiang Province, No. LQ19H100004.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest to report.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the

Abstract

BACKGROUND

Transduodenal local excision is an alternative treatment approach for benign ampullary tumors. However, this procedure has technical difficulties, especially during reconstruction of the pancreaticobiliary ducts. An operating microscope has been widely used by surgeons for delicate surgery due to its major advantages of magnification, illumination, and stereoscopic view. The application of an operating microscope in transduodenal excision of ampullary tumors has not been reported.

CASE SUMMARY

A 55-year-old woman was admitted for investigation of recurrent upper abdominal pain. Physical examination and laboratory tests found no abnormalities. Imaging identified a large mass in the descending part of the duodenum. Esophagogastroduodenoscopy revealed a 3.5-cm-sized villous growth over the major duodenal papilla. Pathology of the endoscopic biopsy indicated a villous adenoma with low-grade dysplasia. Microscopic transduodenal excision of the ampullary tumor was performed. The final pathological diagnosis was villous-tubular adenoma with low-grade dysplasia. The patient was discharged on postoperative day 12 after an uneventful recovery. Endoscopic retrograde cholangiopancreatography was performed 3 mo postoperatively and showed no bile duct or pancreatic duct strictures and no tumor recurrence. The patient is continuing follow-up at our clinic and remains well.

CONCLUSION

Operating microscope-assisted transduodenal local excision is a feasible and effective option for benign ampullary tumors.
A 55-year-old woman was admitted to our hospital with a history of recurrent upper abdominal pain for 1 year. The patient had no symptoms of fever, nausea, vomiting, or weight loss.

History of present illness

The patient’s symptoms started 1 year ago, with recurrent episodes of upper abdominal pain that were relieved spontaneously.
History of past illness
The patient had no previous medical history.

Personal and family history
The personal and family history was unremarkable.

Physical examination
The patient’s physical examination was unremarkable.

Laboratory examinations
The laboratory findings, including liver function tests and tumor markers (carcinoembryonic antigen, alpha fetoprotein, and carbohydrate antigen 19-9), were all within normal limits.

Imaging examinations
On computed tomography (CT) (Figure 1A) and magnetic resonance imaging (Figure 1B), a large mass with contrast enhancement was observed in the descending part of the duodenum. On magnetic resonance cholangiography (Figure 1C), no cut-off sign or stricture was found on either the bile duct or pancreatic duct except for a mild dilation of the common bile duct.

Further diagnostic work-up
EGD revealed a 3.5-cm-sized villous growth over the major duodenal papilla (Figure 1D). Pathology of the endoscopic biopsy indicated a villous adenoma with low-grade dysplasia.

FINAL DIAGNOSIS
Based on the radiographic and pathological findings, an ampullary adenoma was diagnosed.

TREATMENT
Microscopic transduodenal excision of the ampullary tumor was performed (Figure 2). The patient was placed in the supine position under general anesthesia. After a midline laparotomy, the duodenum was mobilized with the Kocher maneuver. The ampullary lesion was identified by palpation of the descending part of the duodenum. A 4-cm longitudinal duodenotomy was performed over the anterolateral wall and stay sutures were then placed to keep the duodenotomy open (Figure 2A). A Zeiss operating microscope (OPM2 VARIO 700, Carl Zeiss Meditec AG, Jena, Germany) was used. The ampullary tumor was excised using monopolar cautery and microscopic scissors under the operating microscope (Figure 2B). The pancreaticobiliary duct was identified by high magnification, and dissected carefully to ensure an adequate margin (Figure 2C and D). The specimen was sent for intraoperative pathological examination with the tumor orientation details. Intraoperative frozen section confirmed a villous adenoma with a negative margin. The pancreaticobiliary duct was sutured to the surrounding duodenal mucosa with an interrupted 6/0 prolene suture to reconstruct the ampulla (Figure 2F). A gauge 12 silicone catheter was inserted through the orifice into the pancreatic duct for stenting, and was anchored with 5/0 PDS sutures. The duodenotomy incision was closed with a one-layer transverse suture with interrupted 5/0 prolene stitches (Figure 2F). Anterior and posterior silicone drains were placed near the duodenotomy. The operative time was 160 min. The blood loss was 30 mL.

OUTCOME AND FOLLOW-UP
Postoperative pathology showed a villous-tubular adenoma with low-grade dysplasia. The patient started to take a semi-fluid diet 6 d post-operation. An abdominal CT scan was performed on postoperative day 7, and showed no leakage or passage disturbance. The patient was discharged on postoperative day 12 after an uneventful recovery. An endoscopy was performed 3 mo after surgery to remove the pancreatic
Figure 1 Preoperative examination of the ampullary tumor. A and B: Contrast-enhanced computed tomography and magnetic resonance imaging showing an enhanced lesion (arrow) located in the descending part of the duodenum; C: Magnetic resonance cholangiography revealing a mild dilation of the common bile duct, and no cut-off sign or stricture of either the bile duct or pancreatic duct; D: Endoscopic view of the ampullary adenoma.

duct stent, and endoscopic retrograde cholangiopancreatography was performed, which showed no recurrence of the ampullary lesion and no bile duct or pancreatic duct stricture. She is continuing follow-up at our clinic and remains well.

DISCUSSION

Adenomas are the most common ampullary tumors\cite{10}. Complete resection is required to treat ampullary adenomas as they are premalignant\cite{11}. Currently, the management strategies include EP, PD, and transduodenal excision. Although EP is an attractive option as it is minimally invasive, it is limited to patients with smaller lesions confined to the papilla and without involvement of the duodenal muscularis or pancreaticobiliary ducts. PD is a standard procedure for malignant ampullary tumors. However, the treatment of benign tumors by PD is still debated. It could be considered as overtreatment given the high postoperative morbidity (32.6%-57.6\%)\cite{12-15} and mortality (2%-5\%)\cite{16-19} rates associated with PD. Therefore, transduodenal excision has emerged as an alternative treatment option for ampullary adenomas.

Transduodenal excision has advantages over PD in terms of less invasiveness and organ preservation. Its safety and efficacy have been investigated in several case series\cite{7,20,21}. The largest series of transduodenal excision was reported by the Heidelberg group\cite{22}. Eighty-three patients were included in this study, of which 44 patients had adenomas. The postoperative morbidity and mortality rate were 24\% and 1.2\%, respectively, and were much lower than those following PD. A recent study reported by the Milan group confirmed the safety of transduodenal excision, with an overall morbidity rate of 44.4\% and no mortality\cite{6}. With regard to long-term outcomes, the local recurrence rate of adenomas after transduodenal excision was 4.5\% in the Heidelberg study and 11.1\% in the Milan study, lower than that following excision by EP (17\%-45\%) reported in a series including more than 20 cases\cite{23-25}. These results suggest that transduodenal excision of ampullary tumors is an alternative treatment option.
Zheng X et al. Microscopic transduodenal excision of ampullary adenoma

Figure 2 Steps of the surgical procedure under the operating microscope. A: Exposure of the duodenal papillary adenoma; B: Kelly forceps placed under the tumor to raise the ampulla of Vater; C: Identifying the pancreaticobiliary duct (arrow) by insertion of a silicone catheter. One orifice was created in this case; D: Dissecting the ampullary adenoma carefully to ensure an adequate margin; E: Suturing the pancreaticobiliary duct to the surrounding duodenal mucosa with 6/0 prolene sutures; F: Closure after the duodenotomy.

However, to date, there are limited reports on transduodenal excision in the English-language literature, and wide use of this procedure as standard has failed. This is due to the complex anatomy of the ampulla and the location of the tumor which is deep within the duodenum. In addition, the size of the pancreatic and biliary duct might be too small to be identified and delicately sutured to the duodenal mucosa. These features make the surgical procedure complex and technically demanding. Risks can arise from suboptimal dissection and reconstruction of the ampulla. In Lee et al.[26], one (16.7%) of six patients developed biliary stricture 3 mo after the operation[26]. Operation-associated ductal strictures can be complicated by pancreatitis and cholangitis. The postoperative pancreatitis and cholangitis rate was 2.3% and 4.5%, respectively, in the Heidelberg study. In the Milan study, two (5.6%) of 36 patients developed acute pancreatitis postoperatively. In other studies, similar complications have been reported. Grobmyer et al.[27] reported that three (10.3%) of 29 patients undergoing ampullectomy had postoperative pancreatitis[27]. Hong et al reported that one (3.8%) patient was readmitted with cholangitis 28 mo after the operation[21]. The difficulty in pancreaticobiliary duct reconstruction and the operation-associated complications prevent the widespread use of transduodenal excision.

Optical magnifying tools, such as laparoscopes, robot surgical systems, or operating microscopes, might be helpful when rebuilding the pancreaticobiliary duct system. Laparoscopic and robotic transduodenal excision of ampullary tumors is minimally invasive and facilitates recovery; however, only a few cases have been reported [26,28-31]. Transduodenal excision has been mainly performed by open laparotomy to date.
This is probably due to the difficulty in proper exposure of the ampulla and the complicated procedures involved in delicate resection and reconstruction of fine pancreaticobiliary structures. Microsurgery has been widely used in clinical surgery, and is particularly favorable in dealing with delicate tissues. The application of operating microscopes provides surgeons with a more magnified and clearer view of the anatomy. Thus, operating microscopes are favorable in the field of neurosurgery, ophthalmology, plastic surgery, and orthopedics. Theoretically, the high magnification and illumination can help in the most complex and difficult part of the amputa operation, namely, dissection of the ampulla and reconstruction of the pancreatic and biliary duct. However, to date, there have been no publications in the English-language literature to demonstrate the potential advantages of the operating microscope in local resection of ampullary tumors.

We report the first case of transduodenal excision of an ampullary tumor with the assistance of an operating microscope. The optimal exposure and magnification with the microscope facilitated identification of the tumor margin; therefore, an adequate margin was obtained. Most importantly, the magnified ductal structures are easier to identify and reconstruct, thus optimal suturing can be achieved when performing choledochoduodenostomy and pancreaticoduodenostomy. In the present case, the patient had an uneventful postoperative recovery and was discharged. Compared to the existing data, the application of an operating microscope neither increased the operation time nor the complications. No signs of tumor recurrence and ductal stricture were found during the follow-up period. These results suggest that our proposal of using an operating microscope during transduodenal excision is advantageous in this group of patients. However, microsurgical applications also have limitations. For example, surgeons require precise technical skills and continuous training to complete the resection. The use of an operating microscope may increase the operation time and operation-associated contamination[32,33]. Thus, more cases are needed for analysis to demonstrate the potential benefits.

CONCLUSION

We demonstrated that transduodenal excision is an ideal approach for treating patients with benign ampullary tumors who are not amenable to EP. The use of an operating microscope provides significant technical advantages, particularly in dissecting and rebuilding the pancreaticobiliary ducts.

REFERENCES

1. El Hajj II, Coté GA. Endoscopic diagnosis and management of ampullary lesions. *Gastrointest Endosc Clin N Am* 2013; 23: 95-109 [PMID: 23168121 DOI: 10.1016/j.giec.2012.10.004]
2. Seifer E, Schulte F, Stolte M. Adenoma and carcinoma of the duodenum and papilla of Vater: a clinicopathologic study. *Am J Gastroenterol* 1992; 87: 37-42 [PMID: 1728122]
3. De Palma GD. Endoscopic papillotomy: indications, techniques, and results. *World J Gastroenterol* 2014; 20: 1537-1543 [PMID: 24587629 DOI: 10.3748/wjg.v20.i6.1537]
4. Kang SH, Kim KH, Kim TN, Jung MK, Cho CM, Cho KB, Han JM, Kim HG, Kim HS. Therapeutic outcomes of endoscopic papillotomy for ampullary neoplasms: retrospective analysis of a multicenter study. *BMC Gastroenterol* 2017; 17: 69 [PMID: 28558658 DOI: 10.1186/s12876-017-0626-5]
5. Posner S, Colletti L, Knol J, Mulholland M, Eckhauser F. Safety and long-term efficacy of transduodenal excision for tumors of the ampulla of Vater. *Surgery 2000; 128: 694-701* [PMID: 11015104 DOI: 10.1067/msy.2000.108218]
6. Nappo G, Gentile D, Galvanin J, Capretti G, Ridolfi C, Petitti T, Spaggiari P, Carrara S, Gavazzi F, Repici A, Zerbi A. Trans-duodenal ampullectomy for ampullary neoplasms: early and long-term outcomes in 36 consecutive patients. *Surg Endosc 2020; 34: 4358-4368* [PMID: 31646383 DOI: 10.1007/s00464-019-07206-x]
7. Gao Y, Zhu Y, Huang X, Wang H, Yuan Z. Transduodenal ampullectomy provides a less invasive technique to cure early ampullary cancer. *BMC Surg 2016; 16: 36* [PMID: 27251044 DOI: 10.1186/s12893-016-0156-z]
8. Uluç K, Kuyoth GC, Başkaya MK. Operating microscopes: past, present, and future. *Neurosurg Focus 2009; 27: E4* [PMID: 19722819 DOI: 10.3171/2009.6.FOCUS09120]
9. Damodaran O, Lee J, Lee G. Microscope in modern spinal surgery: advantages, ergonomics and limitations. *ANZ J Surg 2013; 83: 211-214* [PMID: 23331506 DOI: 10.1111/ans.12044]
10. Espinel J, Pinedo E, Ojeda V, Del Rio MG. Endoscopic management of adenomatous ampullary lesions. *World J Methodol 2015; 5: 127-135* [PMID: 26413485 DOI: 10.5662/wjm.v5.i3.127]
Chini P, DraganoV PV. Diagnosis and management of ampullary adenoma: The expanding role of endoscopy. *World J Gastrointest Endosc* 2011; 3: 241-247 [PMID: 2195233 DOI: 10.4253/wjge.v3.i2.24]

Fong ZY, Ferrone CR, Thayer SP, Wargo JA, Sahora K, Seefeld KJ, Warshaw AL, Lillemoe KD, Hutter MM, Fernández-Del Castillo C. Understanding hospital readmissions after pancreaticoduodenectomy: can we prevent them? *J Gastroint Surg* 2014; 18: 137-44, discussion 144 [PMID: 24002770 DOI: 10.1007/s11605-013-2336-9]

Newhook TE, LaPar DJ, Lindberg JM, Bauer TW, Adams RB, Zaydfudim VM. Morbidity and mortality of pancreaticoduodenectomy for benign and premalignant pancreatic neoplasms. *J Gastroint Surg* 2015; 19: 1072-1077 [PMID: 25801594 DOI: 10.1007/s11605-015-2799-y]

Kang JS, Kim H, Kim JR, Han Y, Kim E, Byun Y, Choi YJ, Kwon W, Jung JY, Kim SW. Short- and long-term outcomes of pancreaticoduodenectomy in elderly patients with pancreatic cancer. *Ann Surg Treat Res* 2020; 98: 7-14 [PMID: 31909045 DOI: 10.4174/astr.2020.98.1.7]

Partelli S, TamburriNO D, Cherif R, Muffatti F, Moggia E, Gaujoux S, Sauvanet A, Falconi M, Fusai G. Risk and Predictors of Postoperative Morbidity and Mortality After Pancreaticoduodenectomy for Pancreatic Neuroendocrine Neoplasms: A Comparative Study With Pancreatic Ductal Adenocarcinoma. *Pancreas* 2019; 48: 504-509 [PMID: 30946244 DOI: 10.1097/MPA.000000000001273]

Narayanan S, Martin AN, Torrentine FE, Bauer TW, Adams RB, Zaydfudim VM. Mortality after pancreaticoduodenectomy: assessing early and late causes of patient death. *J Surg Res* 2018; 231: 304-308 [PMID: 30279945 DOI: 10.1016/j.jss.2018.05.072]

Stevens CL, Watters DAK. Short-term outcomes of pancreaticoduodenectomy in the state of Victoria: hospital resources are more important than volume. *ANZ J Surg* 2019; 89: 1577-1581 [PMID: 31222880 DOI: 10.1111/ans.15298]

Torphy RI, Friedman C, Halpern A, Chapman BC, Ahrendt SS, McCarter MM, Edil BH, Schulick RD, Gleisner A. Comparing Short-term and Oncologic Outcomes of Minimally Invasive Versus Open Pancreaticoduodenectomy Across Low and High Volume Centers. *Ann Surg* 2019; 270: 1147-1155 [PMID: 29771723 DOI: 10.1097/SLA.0000000000002810]

Yoshioka R, Yasunaga H, Hasegawa K, Horiguchi H, Fushimi K, Aoki T, Sakamoto Y, Sugawara Y, Kokudo N. Impact of hospital volume on hospital mortality, length of stay and total costs after pancreaticoduodenectomy. *Br J Surg* 2014; 101: 523-529 [PMID: 24615349 DOI: 10.1002/bjs.9420]

Mathur A, Paul H, Ross S, Luberice K, Hernandez J, Vice M, Rosemurgy AS. Transduodenal ampullectomy for ampullary adenomas: a safe and effective procedure with long-term salutary outcomes. *Am Surg* 2014; 80: 185-190 [PMID: 24480221]

Hong S, Song KB, Lee YJ, Park KM, Kim SC, Hwang DW, Lee JH, Shin SH, Kwon J, Ma CH, Hwang S, Park G, Park Y, Lee SJ, Kim YW. Transduodenal ampullectomy for ampullary tumors - single center experience of consecutive 26 patients. *Ann Surg Treat Res* 2018; 95: 22-28 [PMID: 29965536 DOI: 10.4174/astr.2018.95.1.22]

Schneider L, Contin P, Fritz S, Stuboel O, Büchler MW, Hackert T. Surgical ampullectomy: an underestimated operation in the era of endoscopy. *HPB (Oxford)* 2016; 18: 65-71 [PMID: 26776853 DOI: 10.1016/j.jghp.2015.07.004]

Jung MK, Cho CM, Park SY, Jeon SW, Tak WY, Kweon YO, Kim SK, Choi YH. Endoscopic resection of ampullary neoplasms: a single-center experience. *Surg Endosc* 2009; 23: 2568-2574 [PMID: 19360365 DOI: 10.1007/s00464-009-0446-9]

Jeanniard-Malet O, Caillol F, Pesenti C, Bories E, Monges G, Giovannini M. Short-term results of 42 endoscopic ampullectomies: a single-center experience. *Scand J Gastroenterol* 2011; 46: 1014-1019 [PMID: 21492053 DOI: 10.3109/00365521.2011.571711]

Ceppa EP, Burbridge RA, Rialon KL, Omotosho PA, Emick D, Jowell PS, Branch MS, Pappas TN. Endoscopic vs surgical ampullectomy: an algorithm to treat disease of the ampulla of Vater. *Ann Surg* 2013; 257: 315-322 [PMID: 23059497 DOI: 10.1097/SLA.0b013e318269d010]

Lee JW, Choi SH, Chon HJ, Kim DJ, Kim G, Kwon CI, Ko KH. Robotic transduodenal ampullectomy: A novel minimally invasive approach for ampullary neoplasms. *Int J Med Robot* 2019; 15: e1979 [PMID: 30578741 DOI: 10.1002/rcs.1979]

Grohmyer SR, Stasik CN, DraganoV P, Hemming AW, Dixon LR, Vogel SB, Hochwald SN. Contemporary results with ampullectomy for 29 "benign" neoplasms of the ampulla. *J Am Coll Surg* 2008; 206: 466-471 [PMID: 18308217 DOI: 10.1016/j.jamcollsurg.2007.09.005]

Rosen M, Zuccaro G, Brody F. Laparoscopic resection of a periampullary villous adenoma. *Surg Endosc* 2003; 17: 1322-1323 [PMID: 12799987 DOI: 10.1007/s00464-002-4524-9]

Ahn KS, Han HS, Yoon YS, Cho JY, Khalilukov K. Laparoscopic transduodenal ampullectomy for benign ampullary tumors. *J Laparoendosc Adv Surg Tech A* 2010; 20: 59-63 [PMID: 19792863 DOI: 10.1089/lap.2009.0243]

Zhong RC, Xu XW, Wu D, Zhou YC, Ajoodeha H, Chen K, Mou YP. Laparoscopic transduodenal local resection of periampullary neuroendocrine tumor: a case report. *World J Gastroenterol* 2013; 19: 6693-6698 [PMID: 24151401 DOI: 10.3748/wjg.v19.i39.6693]

Wong FCH, Lai ECH, Chung DTM, Tang CN. Robotic transduodenal excision of ampullary tumour. *Hepatobiliary Surg Nutr* 2017; 6: 312-316 [PMID: 29152477 DOI: 10.21037/hbsn.2016.12.04]

Weiner BK. Kilgore WB. Bacterial shedding in common spine surgical procedures: headlamp/loupes and the operative microscope. *Spine (Phila Pa 1976)* 2007; 32: 918-920 [PMID: 17426639 DOI: 10.1097/01.brs.0000259837.54411.60]
Bible JE, O'Neill KR, Crosby CG, Schoenecker JG, McGirt MJ, Devin CJ. Microscope sterility during spine surgery. Spine (Phila Pa 1976) 2012; 37: 623-627 [PMID: 21681131 DOI: 10.1097/BRS.0b013e3182286129]
