Framing the transition towards sustainable agri-food supply chains

G T Tsoulfas1,3,4 and Y Mouzakitis2

1 Department of Agribusiness and Supply Chain Management, Agricultural University of Athens, 1st km of Old National Road Thiva-Elefsis, GR32200 Thiva, Greece
2 Department of Mechanical Engineering & Aeronautics, University of Patras, 265 04 Patras, Greece
3 Email: giannis@aua.gr

Abstract. The connection of the agri-food sector with the agenda of sustainable development comes naturally, as the chain from production to processing, trading, distribution and consumption is directly connected with significant issues in environmental, economic, and social realms. Today’s challenge for businesses is not whether to embrace sustainability, but rather how to effectively establish sustainable supply chains. Therefore, a solid grasp of the move from “conventional” to “sustainable” supply chains is necessary. In this paper, we focus on the supply chain management of the agri-food sector, seeking to shed light on practices which may contribute to the transition of the sector towards sustainability. In this vein, we extend the conceptual framework which was proposed by Beske and Seuring (2014) so that it accommodates the contemporary particularities of agri-food supply chains.

1. Introduction

Supply chain management (SCM) connects various activities, operations and business partners aiming at the efficient managing of flows of materials and information. The supply chain (SC) is usually understood as a network of actors at various production and service sites [1] and includes all people, organizations, equipment, activities, and technology involved in the development and distribution of a product or service. Transforming SCs towards sustainability is a popular and growing topic in research, policymaking, and management, and great research prospects remain untapped [2].

The planning and decision-making which combines all sustainability pillars is known as sustainable supply chain management (SSCM). To achieve long-term development, it is necessary to address the three dimensions at once and to remove the obstacles in each of them. While the environmental dimension has always gotten the most emphasis, the social and economic dimensions have been overlooked while playing a focal role in sustainability’s success [3]. Modern global rivalry no longer puts individual firms against one another, but rather pits a company’s SCs against those of its competitors. SC organizations must be acutely aware of stakeholders’ expectations, which are increasingly focused on sustainable practices, in order to remain competitive [4–7]. Apart from financial performance, companies are increasingly being held accountable for the environmental and social consequences of not just their own activities, but also their whole SCs, which may include

4 Author to whom any correspondence should be addressed.
second, third, or higher tier suppliers [8]. As a result, an integrated approach to SCM, from raw material extraction to product recycling, demands the creation and nurturing of relational capacities across SC partners [9].

In this paper we study the transition towards sustainable agri-food SCs. In section 2 the main traits of agri-food SCs are discussed. In section 3 we provide a short overview of theoretical frameworks for sustainable SCs, which have been proposed in the literature, with special respect to the approach of Beske and Seuring [10]. In section 4 we present an extended version of the afore-mentioned framework taking into consideration the contemporary particularities of agri-food SCs and we come to an end with some concluding remarks in section 5.

2. The case of agri-food supply chains
Agriculture is one of the most significant industries supporting the livelihoods of a large part of the world’s population. Agricultural output has risen in importance since recent projections predict that the world’s population will exceed 9 billion by 2050. This fact combined with the changing dietary patterns increase the need for sustainable and coordinated agri-food networks [11]. Agri-food SCs are a series of interconnected activities in the agricultural production of food, which include all phases of production, processing, trade, distribution, and consumption, and their capacity to retain agri-food quality, minimize environmental degradation, and satisfy consumer needs is a vital priority. At the same time, agri-food SCs are exposed to a variety of vulnerabilities and hazards due to their complex structure, including breakdowns, operational issues, credit loss, and economic losses [12].

Seasonality in production, long/fixed production lead times, variable quantity/quality requirements of product, trade, buffer stock restriction, and traceability are core characteristics of the agri-food SC. In addition, unpredictable weather, perishable commodities, rigorous food safety regulations, rapidly changing lifestyles, and multi-stakeholder interest are all defining elements for the agri-food sector [13–16]. Moreover, the agri-food SC networks have become increasingly complicated as a result of a significant increase in food standards requirements, growing industrialization, and the creation of customer and governmental food safety concerns [17].

Companies have been working over the last few years to create comprehensive, sustainable methods to managing their agri-food SCs. These approaches examine sustainability concerns not only at the level of the company’s operations, but at all levels of the SC’s activities. Furthermore, conventional local chains have given way to national and, in some cases, multinational chains [18].

3. Sustainable supply chains: mapping the transition

3.1. An overview of theoretical frameworks
Over the years, a growing number of theoretical frameworks have been introduced to study and facilitate the transition of conventional SCs towards sustainability. While the triple bottom line (TBL) has served as a source of inspiration for the corresponding scholars [18], the individual approaches have focused on various traits of SCs, and there is no wide consensus as to which aspects should be included. For instance, Azevedo et al. [19] who provide a methodology for evaluating the long-term sustainability of individual businesses and their upstream SCs, recommend that the linear aggregation approach be used to integrate a collection of indicators from the economic, environmental, and social dimensions of sustainability into a single value, resulting in a composite index for the firm and its SC. In another framework presented by Chen and Kitsis [4] one may find a path for companies which seek to develop and nurture relational capabilities while dealing with increasing stakeholder pressures. Moral reasons enhance and deepen top management commitment, which can aid in the proactive development of relational competencies by channeling stakeholder demands.

In another vein, and based on the Total Interpretive Structural Modeling approach, a theoretical framework was proposed to describe the complex interactions of variables in the dynamic context of SSCM [20]. Through a whole systems perspective, the sustainable SC theoretical framework aids in
describing the dynamic interactions of product design, enabling technology, and environmental conservation strategy to achieve greater brand equity, cost savings, and competitiveness.

A process-oriented approach to SSCM was introduced and 17 sustainable SC processes from the literature were outlined [21]. Furthermore, utilizing the theoretical lenses of stakeholder theory and resource-based view, a framework was proposed to identify the significance of various sustainable SC processes on firm performance.

Svensson et al. [22] explore how organizations across various industries consider external stakeholders in upstream and downstream SCs, the marketplace, and society in their business sustainability initiatives. The stakeholder research approach was put to the test using a typology of 24 different types of stakeholders from industries in Norway and Spain, providing empirical evidence and proof of stakeholder theory in relation to business sustainability across a wide range of companies.

The creation of a robust governance framework to lead the entire SC in working together in a volatile and uncertain environment was analyzed by Wang and Ran [23]. They suggest a sustainable collaborative governance framework with a classification scheme documenting the evolution of a SC in different stages of sustainable development: disorderly development, contractual integration, bilateral integration, and holistic integration. This framework lays out a path for a SC to transition from an unsustainable to a sustainable state that is positively linked to its performance and competitiveness, and it will enable the entire SC to respond proactively and resiliently to uncertainties or perturbations without causing significant disruptions to businesses’ normal operations.

17 constructs for SSCM were derived from the literature and used as components of the framework for SSCM [2]. Further breakthroughs in SSCM theory can be made by analyzing relationships between existing constructs using the abductive reasoning approach. By connecting identified SCM characteristics and SSCM constructs, a more comprehensive SSCM frame of reference may be created. The SC, TBL, SCM decisions, and the associated consequences on sustainability performance and risk are all included in the reference frame.

According to Zimon et al. [7], organizations may take diverse strategic solutions to sustainability depending on their strategic priorities and available resources, resulting in a distinct strategic SSCM model. Based on prior literature on SSCM, they suggested a paradigm for implementation that includes three broad strategic responses (reactive, cooperative, and dynamic), which represent companies’ business priorities and underlying strategic mindsets.

Roy et al. [6] underline that the transition to SSCM is marked by a non-linear path, owing to the never-ending interplay between organizational SSCM initiatives and organizational complexity in facilitating radical changes. Therefore, any SSCM practice cannot be immediately or easily assimilated into organizational SC routines. Furthermore, any deployed SSCM technique faces the risk of rollback, which means that the specific approach will lose its place in organizational SC routines. As a result, the move from traditional to sustainable SCs is an unending journey requiring several initiatives. A new notion for SSCM, namely force-field, was developed to characterize this everlasting journey. Moreover, the innovative idea of differential efforts in SSCM is introduced for defining the central nature of organizational efforts required to guide the progressive SSCM journey.

Santos et al. [24] suggest a theoretical model, which was the result of extensive literature research, that tries to address the shortcomings noted in prior sustainability maturity models. For this, four dimensions (environmental, social, economic, and transversal) and five stages of maturity (nonexistent, conscious, intermediate, advanced, and sustainable) were proposed, seeking to bring the model closer to the TBL concept while also adding one more element. The transversal dimension gives the organization a holistic view that is interwoven with the other dimensions.

Norris et al. [25] noted that despite the fact that sustainability issues are recognized as important in SCs, this relational view of the focal organization and its direct stakeholders has not been extended to value creation for and with indirect stakeholders, such as suppliers’ stakeholders. Then they bridge this gap by incorporating a relational view of SSCM into the management of sustainable business models, which broadens the scope of sustainable business models beyond direct stakeholder ties to include indirect stakeholder interactions with suppliers.
3.2. The framework of Beske and Seuring

Beske and Seuring [10] in an influential and highly cited paper provide a generic approach to instill sustainability considerations into SCM. The contribution of their work is twofold: first, they review the literature, and identify five key categories of SSCM, and consequently, they present specific practices which may help an organization to succeed in each of the following categories (see Table 1).

- the orientation, which focuses on the support of the top-management in the transition of SC towards sustainability.
- the continuity, which concentrates on how the individual members of a SC work together.
- the collaboration, where one may find practices which enhance partnership and teamwork in the vein of a sustainable SC.
- the risk management, as adherents of SSCM are more vulnerable to risks, comparing to participants in conventional SCs.
- the proactivity, considering that individual firms which lead the way towards sustainability are expected to be more proactive.

Table 1. SSCM categories and corresponding practices [10].

Categories	Practices
Orientation	Dedication to the TBL; Dedication to SCM
Continuity	SC partner development; Long-term relationships; SC partner selection
Collaboration	Enhanced communication; Logistical integration; Technological integration; Joint development
Risk Management	Standards and certification; Selective monitoring; Pressure groups
Pro-Activity	Learning; Stakeholder management; Innovation; Life-cycle assessment

In a recent article, Silva et al. [26] used their empirical research to extend the Beske and Seuring’s [10] framework by altering their categories (including levels and factors) and adding other characteristics of complexity. In addition, they consider orientation elements (strategic level), integration factors (structural level), collaboration, and stakeholder management factors (process level) in addition to contextual factors (institutional and cultural). The incorporation of a multi-level viewpoint (strategic, structural, process, and contextual levels) improves the understanding of the complexity surrounding SC practice and helps to bridge the gap between theory and practice.

4. Extending the framework of Beske and Seuring

4.1. Methodology

Based on a critical analysis of the state-of-the-art in the topic area and on literature-based conceptual reasoning we explored potential extensions of the framework of Beske and Seuring [10] in the case of agri-food SCs. In this vein, the Scopus database was queried to gather research papers in English that deal with agri-food SCs focusing on sustainability. The query led us to 83 papers (final export date: 01 July 2021), based on the following search query: (TITLE ("agri-food" OR "agrifood" OR "agro-food" OR "agrofood") AND TITLE ("supply chain") AND TITLE-ABS-KEY (sustainability) OR TITLE-ABS-KEY (sustainable) AND (EXCLUDE (DOCTYPE,"ed"))). Overall, we draw on these publications, and we provide answers in the following research questions: Can we extend the conceptual framework introduced by Beske and Seuring so that it incorporates the unique characteristics of agri-food SCs?
4.2. Findings

It was not a surprise for us to note that all the constructs of the framework of Beske and Seuring [10] were explicitly or implicitly addressed in the 83 papers, depending on the authors’ primary objectives. Our objectives do not include the extensive recording and documentation of this fact. Our aim is to identify additional constructs which are relevant and useful for the transition of agri-food SCs towards sustainability. These additional constructs are presented in Table 2 and are documented in the sequel.

Table 2. Extension of the framework of Beske and Seuring.

Categories	Additional practices
Orientation	Focal organization leadership; Circularity
Continuity	Re-engineering; Fairness
Collaboration	Co-operatives
Risk Management	High-risk events
Pro-Activity	Resilience

- **Focal organization leadership** – Because they drive and regulate the SC, the success of focal organizations in supporting sustainable SCs is critical. A comprehensive approach to analyzing focal organizations’ SSCM practices and stakeholders’ expectations will aid in understanding the choice and possible effects of SSCM methods [27,28].

- **Circularity** – Food waste is a major sustainability challenge for food systems and a pressing issue from an economic, environmental, and social standpoint. The food waste hierarchy and food waste valorization which are positioned within the circular economy concept, can open up many activities. In this regard, academics advise focusing on measures that can avoid the production of surplus food while also conserving a greater portion of the sustainable value. Needless to say, technology plays a critical part in the corresponding pre-harvest and post-harvest techniques [29–31].

- **Re-engineering** – Organizational changes, such as restructuring and process improvement, are referred to as re-engineering. It is about the fundamental rethinking and restructuring of business processes in order to produce substantial improvements in operations and performance [32]. Re-engineering in the agri-food sector is driven by various situations and facts such as climate change, organic farming, advances in technology and multi-stakeholder partnerships [33–35].

- **Fairness** – Fair trade is an important part of agri-food sustainability. Fairness in agri-food SCs is critical for reaping the benefits of trade liberalization, particularly in emerging nations’ rural areas. It makes agri-food services such as organic training and premium marketplaces more accessible [36,37].

- **Co-operatives** – A co-operative is a self-governing group of people that band together to obtain economies of scale and compete with major businesses in the marketplace. Farmers that join agricultural cooperatives have access to supplies and markets that would otherwise be unavailable to them [38–40].

- **High-risk events** – Agri-food SCs are extremely sensitive to high-risk events such as pandemics, which have severe economic and social consequences for the most vulnerable [41,42]. Recently, during the early phases of the COVID-19 pandemic, agri-food SCs were shown to be vulnerable.

- **Resilience** – In view of increased volatility generated by issues as diverse as climate change, population expansion, high-risk events, and resource limits, national and global food system resilience is becoming an increasingly relevant topic. Despite a growing interest in the concept of resilience from a variety of research fields, a number of factors, such as the priority placed on food security over economic competitiveness, as well as the unique characteristics of food
as a biological resource, mean that these works are not easily adopted by agri-food SCs [42,43].

In addition, the literature review demonstrated that in the agri-food SC, new information and communication technology (ICT) plays a critical role towards sustainability [29,44–50]. Blockchain, the Internet of Things, wireless sensor networks, cloud computing, and machine learning can all help to improve the agri-food SCs’ sustainability. In particular, blockchain technology can make SCs more transparent and enable the production of high-quality food with minimal social and environmental consequences. Furthermore, it can help customers make better buying judgments. Because it allows for remote management of the location and conditions of shipments and products, the Internet of Things might play a key role in resolving logistical issues. One may argue, that is not easy to accommodate ICT within any of the categories presented in Table 2. Therefore, our suggestion is to regard it as a cross-category construct.

5. Concluding remarks
The transition towards a sustainable paradigm in agri-food SCs is a complex and complicated process. The situation thickens as the pressures form the external environment are intensified: environmental issues call for immediate and effective actions, the regulatory framework becomes more demanding, SC partners raise various claims, and societies demand safe and sufficient agri-food products. Competition takes places at a SC level, and it is crucial to include sustainability considerations in all agri-food SC activities, ‘from farm to fork’. This will allow stakeholders to collaborate to address common issues.

In this paper, an extension of the seminal framework of Beske and Seuring [10] was pursued based on evidence from the literature. The unique characteristics of agri-food SCs provide fertile soil for such an attempt. As for directions for future research, empirical studies are necessary to test the elements of the extended theoretical framework.

References
[1] Rozar N M, Sidik H, Razik A, Jeevan J, Othman M R, Izwaan Saadon M S and Kamaruddin S 2020 Innovation framework towards sustainability supply chain management Int. J. Supply Chain Manag. 9 1108–24
[2] Brandenburg M, Gruchmann T and Oelze N 2019 Sustainable supply chain management-A conceptual framework and future research perspectives Sustain. Switz. 11 7239
[3] Hendian S, Liao H and Jabbour C J C 2020 A new sustainability indicator for supply chains: theoretical and practical contribution towards sustainable operations Int. J. Logist. Res. Appl. in press
[4] Chen I J and Kitsis A M 2017 A research framework of sustainable supply chain management: The role of relational capabilities in driving performance Int. J. Logist. Manag. 28 1454–78
[5] Heidary Dahooie J, Zamani Babgohari A, Meidutė-Kavaliauskienė I and Govindan K 2021 Prioritising sustainable supply chain management practices by their impact on multiple interacting barriers Int. J. Sustain. Dev. World Ecol. 28 267–90
[6] Roy V, Schoenherr T and Charan P 2020 Toward an organizational understanding of the transformation needed for sustainable supply chain management: The concepts of force-field and differential efforts J. Purch. Supply Manag. 26 100612
[7] Zimon D, Tyan J and Sroufe R 2019 Implementing sustainable supply chain management: Reactive, cooperative, and dynamic models Sustain. Switz. 11 7227
[8] Govindan K, Shaw M and Majumdar A 2021 Social sustainability tensions in multi-tier supply chain: A systematic literature review towards conceptual framework development J. Clean. Prod. 279 123075
[9] Adamides E, Mouzakitis Y and Zygouris A 2021 Green supply chain management in the Greek market: practices and attitudes in environmental assessment and selection of suppliers. Smart Innov. Syst. Technol. in press
[10] Beske P and Seuring S 2014 Putting sustainability into supply chain management *Supply Chain Manag.* **19** 322–31

[11] Hajimirzajan A, Vahdat M, Sadegheih A, Shadkam E and Bilali H E 2021 An integrated strategic framework for large-scale crop planning: sustainable climate-smart crop planning and agri-food supply chain management *Sustain. Prod. Consum.* **26** 709–32

[12] Tomasiello S and Alijani Z 2021 Fuzzy-based approaches for agri-food supply chains: a mini-review *Soft Comput.* **25** 7479–92

[13] Amer H H, Galal N M and El-Kilany K S 2018 A simulation study of sustainable agri-food supply chain *Proc. of the Int. Conf. on Industrial Engineering and Operations Management* (Paris) **2018** pp 2264–75

[14] Choi run A, Santos I and Astuti R 2020 Sustainability risk management in the agri-food supply chain: Literature review *IOP Conf. Ser.: Earth Environ. Sci.* **475** 012050

[15] Iakovou E, Vlachos D, Achillas C and Anastasiadis F 2014 Design of sustainable supply chains for the agrifood sector: A holistic research framework *Agric. Eng. Int. CIGR J* **2014 Special Issue** 1–10

[16] Kresnanto N C, Putri W H, Lantarsih R and Harjiyatni F R 2021 Challenges in transportation policy: Speeding up a sustainable agri-food supply chain *IOP Conf. Ser.: Earth Environ. Sci.* **662** 012006

[17] Mangla S K, Luthra S, Rich N, Kumar D, Rana N P and Dwivedi Y K 2018 Enablers to implement sustainable initiatives in agri-food supply chains *Int. J. Prod. Econ.* **203** 379–93

[18] Aidonis D, Folinas D, Achillas C, Triantafyllou D and Malindretos G 2015 Multi-criteria evaluation of sustainable supply chains in the agrifood sector *Int. J. Sustain. Agric. Manag. Inform.* **1** 106–19

[19] Azevedo S G, Carvalho H, Ferreira L M and Matias J C O 2017 A proposed framework to assess upstream supply chain sustainability *Environ. Dev. Sustain.* **19** 2253–73

[20] Dubey R, Gunasekaran A and Papadopoulos T 2017 Green supply chain management: theoretical framework and further research directions *Benchmarking* **24** 184–218

[21] Padhi S S, Pati R K and Rajeev A 2018 Framework for selecting sustainable supply chain processes and industries using an integrated approach *J. Clean. Prod.* **184** 969–84

[22] Svensson G, Ferro C, Hovevold N, Padin C and Sosa Varela J C 2018 Developing a theory of focal company business sustainability efforts in connection with supply chain stakeholders *Supply Chain Manag.* **23** 16–32

[23] Wang J and Ran B 2018 Sustainable Collaborative Governance in supply chain *Sustain. Switz.* **10** 171

[24] Santos D A, Quelhas O L G, Gomes C F S, Zotes L P, França S L B, de Souza G V P, de Araújo R A and Santos S D S C 2020 Proposal for a maturity model in sustainability in the supply chain *Sustain. Switz.* **12** 9655

[25] Norris S, Hagenbeck J and Schaltegger S 2021 Linking sustainable business models and supply chains — Toward an integrated value creation framework *Bus. Strategy Environ.* in press

[26] Silva M E, Silvestre B S, Del Vecchio Ponte R C and Cabral J E O 2021 Managing micro and small enterprise supply chains: A multi-level approach to sustainability, resilience and regional development *J. Clean. Prod.* **311** 127567

[27] Kao P, Redekop W and Mark-Herbert C 2012 Sustainable supply chain management-the influence of local stakeholder expectations in China’s agri-food industry *J. Chain Netw. Sci.* **12** 273–89

[28] López-Santos Y, Sánchez-Partida D and Cano-Olivos P 2020 Strategic model to assess the sustainability and competitiveness of focal agri-food smes and their supply chains: A vision beyond COVID 19 *Adv. Sci. Technol. Eng. Syst.* **5** 1214–24

[29] Belaud J-P, Prioux N, Vialle C and Sablayrolles C 2019 Big data for agri-food 4.0: Application to sustainability management for by-products supply chain *Comput. Ind.* **111** 41–50

[30] Ciccuilo F, Cagliano R, Bartezzaghì G and Perego A 2021 Implementing the circular economy
paradigm in the agri-food supply chain: The role of food waste prevention technologies
Resour. Conserv. Recyl. 164 105114

[31] Zhang C, van Krimpen M M, Sanders J P M and Bruins M E 2016 Improving yield and composition of protein concentrates from green tea residue in an agri-food supply chain: Effect of pre-treatment Food Bioprod. Process. 100 92–101

[32] Chountalas P T, Magoutas A I and Zografaki E 2020 The heterogeneous implementation of ISO 9001 in service-oriented organizations TQM J. 32 56–77

[33] Banasik A, Kanellopoulos A, Bloemhof-Ruwaard J M and Claassen G D H 2019 Accounting for uncertainty in eco-efficient agri-food supply chains: A case study for mushroom production planning J. Clean. Prod. 216 249–56

[34] Pancino B, Blasi E, Rappoldt A, Pascucci S, Ruini L and Ronchi C 2019 Partnering for sustainability in agri-food supply chains: the case of Barilla Sustainable Farming in the Po Valley Agric. Food Econ. 7 13 (2019)

[35] Taghikhah F, Voinov A, Shukla N, Filatova T and Anufriev M 2021 Integrated modeling of extended agro-food supply chains: A systems approach Eur. J. Oper. Res. 288 852–68

[36] Cao Y and Mohiuddin M 2019 Sustainable emerging country agro-food supply chains: Fresh vegetable price formation mechanisms in rural China Sustain. Switz. 11 2814

[37] Fu H, Teo K L, Li Y and Wang L 2018 Weather risk-reward contract for sustainable agri-food supply chain with loss-averse farmer Sustain. Switz. 10 4540

[38] Han C, Pervaz A, Wu J, Shen X and Zhang D 2020 Home-delivery-oriented agri-food supply chain alliance: Framework, management strategies, and cooperation stability control Sustain. Switz. 12 6547

[39] Saitone T L and Sexton R J 2017 Agri-food supply chain: evolution and performance with conflicting consumer and societal demands Eur. Rev. Agric. Econ. 44 634–57

[40] dos Santos R R and Guarnieri P 2020 Social gains for artisanal agroindustrial producers induced by cooperation and collaboration in agri-food supply chain Soc. Responsib. J. in press

[41] Benabdallah C, El-Amraoui A, Delmotte F and Frihka A 2020 An integrated rough-DEMATEL method for sustainability risk assessment in agro-food supply chain Proc. 5th Int. Conf. on Logistics Operations Management (Rabat)

[42] Zavala-Alcivar A, Verdecho M-J and Alfaros-Saiz J-J 2020 Resilient Strategies and Sustainability in Agri-Food Supply Chains in the Face of High-Risk Events IFIP Adv. in Inf. and Comm. Techn. 598 560–70

[43] Stone J and Rahimifard S 2018 Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework Supply Chain Manag. 23 207–38

[44] Kramer M P, Bitsch L and Hanf J 2021 Blockchain and its impacts on agri-food supply chain network management Sustain. Switz. 13 2168

[45] Marinagi C, Trivellas P and Sakas D P 2014 The Impact of Information Technology on the Development of Supply Chain Competitive Advantage 3rd Int. Conf. on Integrated Information IC-ININFO 147 pp 586–91

[46] Pappa I C, Iliopoulos C and Massouras T 2018 What determines the acceptance and use of electronic traceability systems in agri-food supply chains? J. Rural Stud. 58 123–35

[47] Pérez Perales D, Verdecho M-J and Alarcón-Valero F 2019 Enhancing the Sustainability Performance of Agri-Food Supply Chains by Implementing Industry 4.0 IFIP Adv. in Inf. and Comm. Techn. 568 496–503

[48] Rana R L, Tricase C and De Cesare L 2021 Blockchain technology for a sustainable agri-food supply chain Br. Food J. in press

[49] Saurabh S and Dey K 2021 Blockchain technology adoption, architecture, and sustainable agri-food supply chains J. Clean. Prod. 284 124731

[50] Verdouw C N, Robbemond R M, Verwaart T, Wolfert J and Beulens A J M 2018 A reference architecture for IoT-based logistic information systems in agri-food supply chains Enterp. Inf. Syst. 12 755–79