SPACEABILITY OF SETS OF NOWHERE L^p FUNCTIONS

PEDRO L. KAUFMANN AND LEONARDO PELLEGRINI

Abstract. We say that a function $f : [0, 1] \to \mathbb{R}$ is nowhere L^q if, for each nonvoid open subset U of $[0, 1]$, the restriction $f|_U$ is not in $L^q(U)$. For a fixed $1 \leq p < \infty$, we will show that the set

$$S_p = \{ f \in L^p([0, 1]) : f \text{ is nowhere } L^q, \text{ for each } p < q \leq \infty \},$$

united with $\{0\}$, contains an isometric and complemented copy of ℓ_p. In particular, this improves a result from [2] (which in turn is an improvement of a result from [4]), since S_p turns out to be spaceable. In addition, our result is a generalization of one of the main results from [3].

1. Introduction

This note is a contribution to the study of large linear structures within essentially non-linear sets of functions which satisfy certain special properties. Given a topological vector space X, it is by now standard to say that a subset $S \subset X$ is lineable if $S \cup \{0\}$ contains an infinite dimensional subspace of X, and that S is spaceable if $S \cup \{0\}$ contains a closed infinite dimensional subspace of X.

Our main object of study will be the $L^p[0, 1]$ spaces. For clearness, we will write L^p instead of $L^p[0, 1]$. Two results motivate the present work. Muñoz-Fernández, Palmberg, Puglisi and Seoane-Sepúlveda showed the following:

Theorem 1.1 (from [4]). Let $1 \leq p < q$. Then $L^p \setminus L^q$ is \mathfrak{c}-lineable.

Here, \mathfrak{c} indicates that we can find a vector space with a Hamel basis of cardinality \mathfrak{c} contained in $(L^p \setminus L^q) \cap \{0\}$. The other result is from Botelho, Diniz, Fávaro and Pellegrino:

Theorem 1.2 (from [1]). For every $p > 0$, $\ell_p \setminus \cup_{0 < q < p} \ell_q$ is spaceable.

In view of Theorems 1.1 and 1.2 it is natural to ask whether we can obtain a result for L^p spaces analogue to Theorem 1.2. Botelho, Fávaro, Pellegrino and Seoane-Sepúlveda have obtained a positive answer to that question:

Theorem 1.3 (from [2]). For each $p > 0$, $L^p \cup_{q \geq p} L^q$ is spaceable.

In this work we will present an improvement of Theorem 1.3; one could say, to the local level. We say that $f : [0, 1] \to \mathbb{R}$ is nowhere L^q, for some $1 \leq q \leq \infty$, if for each nonvoid open subset U of $[0, 1]$, $f|_U$ is not in $L^q(U)$. For each $1 \leq p < \infty$, we define

$$S_p = \{ f \in L^p([0, 1]) : f \text{ is nowhere } L^q, \text{ for each } p < q \leq \infty \};$$

then S_p satisfies the following property, which is our main result:

Theorem 1.4 (Main). For each $1 \leq p < \infty$, $(S_p \cup \{0\}) \subset L^p$ contains an isometric and complemented copy of ℓ_p. In particular, S_p is spaceable.

Section 2 will be dedicated to the proof of Theorem 1.4. Note that it only improves Theorem 1.3 for $p \geq 1$. We decided to restrict ourselves to this case for the sake of uniformity of arguments; the careful reader can verify that the same construction can be used to show the spaceability of S_p for the quasi-Banach $p < 1$ case. Note that the elements from S_p are nowhere essentially bounded (that is, nowhere L^∞). It is worth mentioning that Theorem 1.4 generalizes one of the main theorems of [4], which states the following:

2010 Mathematics Subject Classification. Primary: 26A30; Secondary: 26A42.
Key words and phrases. Spaceability, nowhere integrable functions.

The first author was supported by CAPES, Research Grant PNPD 2256-2009.
Theorem 1.5 (from [3]). The set G of L^1 functions which are nowhere essentially bounded is spaceable in L^1.

In the same paper, it was shown that G is strongly c-algebraable, that is, $G \cup \{0\}$ contains a c-generated free algebra (with the pointwise multiplication). Let us mention that there are no nontrivial algebraic structures, not even 1-dimensional ones, within C_p, and even within $L^p \setminus L^q$, for $1 \leq p < q < \infty$. In effect, if $f \in L^p \setminus L^q$ for such p and q, then f^n is not in L^p for large enough n.

2. Proof of the main result

We start by discriminating three objects that will be needed in order to construct a nice basic sequence of L^p contained in S_p.

First: an almost disjoint family of Cantor-built sets $(A_n)_n$. First, we recall the construction of the Cantor set of (Lebesgue) measure one half, which we will denote by C. We start with the closed unit interval (denote it by C_1), and remove the center open interval of length 1/4, obtaining C_2, a disjoint union of two closed intervals. From each of them, we remove the center open interval of length 1/4², obtaining C_3, the disjoint union of four closed intervals. Repeating the process and taking the intersection of all C_n, we obtain C. For our convenience, we will call a hole of C each open interval that was removed in each step of the construction of C. Let t_n be the right endpoint of the interval which is the one more to the left, among the closed intervals that constitute C_n. The explicit formula for t_n is $2^{2n-2} - 1$, and for our purposes what is important about the sequence t_n is the following:

1. $t_n < 2^{3-2n}$ and
2. $m(C \cap [0, t_n]) = 2^n$.

This information will be needed later on. We now proceed introducing an specific notation for sets which are essentially unions of sets similar to C.

Definition 2.1.

1. For each subinterval I from $[0, 1]$ and each subset $A \subset [0, 1]$, denote $A_I \triangleq (b - a)A + a$;

2. a nonvoid subset $A \subset [0, 1]$ of the form $\bigcup \{A_j : j \in \Gamma\}$ is said to be C-built (with C-components A_j) if there is an almost disjoint family $\{I_j : j \in \Gamma\}$ of subintervals of $[0, 1]$ such that $A_j = C I_j$, where C is the Cantor set of measure 1/2.

According to the notation from [3], C-built sets are in particular Cantor-built, which means, roughly speaking, that they are essentially unions of Cantor sets. The holes of a set of the form C_I are defined by the natural way: the set of all holes of C_I is given by $\{J : J$ is a hole of $C\}$. With the notion of C-built sets in hands we can start partitioning $[0, 1]$. First, put $A_1 \triangleq C$. A_2 is defined as follows:

$$A_2 \triangleq \bigcup \{C_I : J$ is a hole of $A_1\}.$$

Note that A_1 and A_2 are almost disjoint, and that $m(A_2) = 1/4$. Assuming that we have defined A_n, for some $n \geq 2$, then A_{n+1} is defined inductively:

$$A_{n+1} \triangleq \bigcup \{C_I : J$ is a hole of a Cantor component of $A_n\}.$$

This way, we obtain a sequence $(A_n)_n$ of almost disjoint C-built sets satisfying

1. $m(A_n) = 2^{-n}$, and
2. for any given nonempty open subset U of $[0, 1]$, there exists an $n_0 \in \mathbb{N}$ such that A_n has a C-component contained in U, for each $n \geq n_0$.

Second: a convenient element h of $L^p \setminus \cup_{p < q \leq \infty} L^q$. Let $(r_j)_j$ be a strictly decreasing sequence of real numbers converging to p. For each j, the function $h_j : x \mapsto x^{-1/r_j}$ is in L^p, but not in L^q for any $r_j \leq q \leq \infty$. Define \tilde{h} by

$$\tilde{h} \triangleq \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{h_j}{\|h_j\|_p}.$$

References.
\(\tilde{h} \) is well-defined since the series converges absolutely and \(L^p \) is complete. Then \(\tilde{h} \in L^p \setminus \cup_{p < q \leq \infty} L^q \), and moreover:

Lemma 2.2. \(\tilde{h} = \chi_C \tilde{h} \in L^p \setminus \cup_{p < q \leq \infty} L^q \).

Proof. It is easily seen that \(h \in L^p \). To show that, for a fixed \(p < q < \infty \) we have \(h \notin L^q \), consider \(j_0 \) such that \(r_{j_0} < q \). Then

\[
\int_C |h|^q = \int_C |\tilde{h}|^q \geq \int_C \frac{h^q_{j_0}}{2^{k_0 q} \|h_{j_0}\|^p} \geq \frac{1}{2^{k_0 q} \|h_{j_0}\|^p} \int_C x^{-q/r_{j_0}}.
\]

We will show that the integral to the right converges to \(+\infty\). In effect, denoting \(s = q/r_{j_0} > 1 \) and considering the sequence \(t_n \) defined previously, we have that

\[
\int_C x^{-q/r_{j_0}} = \int_C x^{-s} \geq \int_{C \cap [0, t_n]} x^{-s} \geq m(C \cap [0, t_n]) \inf \{x^{-s} : x \in C \cap [0, t_n]\}
\]

\[
\geq m(C \cap [0, t_n]) t_n^{-s} \geq m(C \cap [0, t_n]) 2^{-n} 2^{s(2n-3)} > 2^{(2s-1)n}.
\]

Since the right hand side tends to infinity along with \(n \), it follows that \(h \notin L^q \). The remaining case, \(q = \infty \), is automatically covered, since \(L^\infty \subset L^q \), for each \(q < \infty \). ♠

Third: a disjoint infinite family of strictly increasing sequences of positive integers, \(\{n_j^k \} : k \in \mathbb{N} \}. It is a simple task for the reader to convince herself/himself that such family exists.

Before proceeding with the proof of the main result, let us establish the following notation: if \(I = [a, b] \) is a subinterval of \([0, 1]\) and \(f : [0, 1] \to \mathbb{R} \), we define \(f_I : [0, 1] \to \mathbb{R} \) by

\[
f_I(x) = \begin{cases} f \left(\frac{x-a}{b-a} \right), & \text{if } x \in I; \\ 0, & \text{if } x \notin I. \end{cases}
\]

Note that this notation is coherent with Definition 2.1 (1), since for any subset \(B \subset [0, 1] \), \((\chi_B)_I = \chi_{B_I} \). It is easily seen that, for any subinterval \(I \) from \([0, 1]\) and any \(1 \leq p \leq \infty \), \(f \) is in \(L^p \) if and only if \(f_I \) is in \(L^p \). In particular, for each subinterval \(I \) from \([0, 1]\), \(h_I \) is in \(L^p \setminus \cup_{p < q \leq \infty} L^q \).

Proof (of Theorem 2.4). Consider \((A_j)_j \), \(h \) and \(\{n_j^k \} : k \in \mathbb{N} \} \) as defined above. For a fixed \(j \geq 2 \), let \((B_j)_j \) be a sequence of all \(C \)-components of \(A_j \), and consider their respective convex hulls \(I_j \). Note that the \(I_j \) are disjoint. Define

\[
f_j = \sum_{l=1}^{\infty} \frac{1}{2^l} \frac{h_{I_j}}{\|h_{I_j}\|^p}.
\]

For \(j = 1 \) just put \(f_1 = \frac{h}{\|h\|^p} \). Then each \(f_j \) is in \(L^p \) with \(\|f_j\|^p = 1 \), and \(f_j \) is not in \(L^q(U) \), for any \(p < q \leq \infty \) and any open set \(U \) containing a \(C \)-component of \(A_j \). Note also, by the construction of \(h \), that \(f_j \) is zero outside of \(A_j \). For each \(k \), consider

\[
g_k = \sum_{j=1}^{\infty} \frac{1}{2^j} f_{n_j^k}.
\]

Then \(g_k \in S_p \) and \(\|g_k\|_p = 1 \), and since the functions \(g_k \) have almost disjoint supports, it follows that \((g_k)_k \) is a complemented basic sequence in \(L^p \), isometrically equivalent to the canonical basis of \(\ell_p \). In particular, \(\text{span}(\{g_k : k \in \mathbb{N}\}) \) is complemented in \(L^p \) and isometrically isomorphic to \(\ell_p \).

To complete our proof, it remains to show that \(\text{span}(\{g_k : k \in \mathbb{N}\}) \subset S_p \cup \{0\} \). Any given nonzero element of \(\text{span}(\{g_k : k \in \mathbb{N}\}) \) is of the form

\[
g = \sum_{k=1}^{\infty} a_k g_k,
\]

where some \(a_{k_0} \) is assumed to be nonzero. Since the functions \(g_k \) have almost disjoint supports and \(g_{k_0} \) is nowhere \(L^q \) for any given \(p < q \leq \infty \), it follows that \(g \in S_p \). ♠
REFERENCES

[1] G. Botelho, D. Diniz, V. Fávaro, and D. Pellegrino, *Spaceability in Banach and quasi-Banach sequence spaces*, Linear Algebra Appl. **434** (2011), no. 5, 1255–1260.

[2] G. Botelho, V. Fávaro, D. Pellegrino, and J. B. Seoane-Sepúlveda, \(L_p[0,1] \setminus \cup_{q>p} L_q[0,1]\) is spaceable for every \(p > 0\), preprint, 2011.

[3] S. Gląb, P. L. Kaufmann, and L. Pellegrini, *Spaceability and algebrability of sets of nowhere integrable functions*, preprint, 2011.

[4] G. A. Muñoz-Fernández, N. Palmberg, D. Puglisi, and J. B. Seoane-Sepúlveda, *Lineability in subsets of measure and function spaces*, Linear Algebra Appl. **428** (2008), 2805–2812.

Instituto de matemática e estatística, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-900, São Paulo, Brazil

E-mail address: plkaufmann@gmail.com, leonardo@ime.usp.br