Sleeping on the Job: Energy-Efficient Broadcast for Radio Networks

Valerie King∗ Cynthia Phillips† Jared Saia‡ Maxwell Young§

Abstract

Power is one of the most critical resources in battery-operated devices. In this paper, we address the problem of minimizing power consumption when performing reliable broadcast on a radio network. We consider the following popular model of a radio network. Each node in the network is located on a point in a two-dimensional grid, and whenever a node sends a message, all awake nodes within \(L_\infty \) distance \(r \), for some fixed \(r \), receive the message. In the broadcast problem, some node wants to send a message to all other nodes in the network. We want to do this even when up to a \(1/2 \) fraction of the nodes within any \(2r+1 \) by \(2r+1 \) square in the grid can be deleted by an adversary. The set of deleted nodes are carefully chosen by the adversary to foil our algorithm and moreover, the set of deleted nodes may change periodically. This adversary models worst-case behavior due to mobile nodes moving around in the grid; static nodes loosing power or ceasing to function; or simply some points in the grid being unoccupied by nodes.

A trivial solution to this broadcast problem requires each node in the network to be awake roughly \(1/2 \) the time, and a trivial lower bound shows that each node must be awake for at least a \(1/n \) fraction of the time where \(n = (2r+1)^2 \). Our first result is an algorithm that requires each node to be awake for only a \(1/\sqrt{n} \) fraction of the time in expectation. Our algorithm achieves this reduction in power consumption even while ensuring correctness with probability 1, and keeping optimal values for other resource costs such as latency and number of messages sent. We give a lower-bound that shows that this reduction in power consumption is asymptotically optimal when latency and number of messages sent must be optimal. However, if we can increase the latency and messages sent by only a \(\log^* n \) factor we can further increase the energy savings. In particular, we give a Las Vegas algorithm that requires each node to be awake for only a \((\log^* n)/n \) expected fraction of the time in this scenario. We also give a lower-bound showing that this second algorithm is near optimal.

In the process of achieving these results, we define and study a new and compelling data streaming problem that may have applications in other domains. Finally, we show how our results can be used to ensure energy-efficient broadcast even in the presence of Byzantine faults.

∗Department of Computer Science, University of Victoria, BC, Canada; email: val@cs.uvic.ca
†Sandia National Laboratories, NM, USA; email: caphill@sandia.gov
‡Department of Computer Science, University of New Mexico, NM, USA; email: saia@cs.unm.edu. This research was partially supported by NSF CAREER Award 0644058 and NSF CCR-0313160.
§David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada; email: m22young@cs.uwaterloo.ca

1There is nothing special about the fraction \(1/2 \). In fact, our results will still hold, up to constant factors, for any fixed fraction of deleted nodes that is strictly greater than 0.
1 Introduction

We consider the problem of broadcast of a message over a radio network. We use a model for
radio networks that has been studied extensively in the distributed computing literature [15, 13, 14, 5]. In particular, we assume each node is situated on a point in a (possibly infinite)
two dimensional grid and whenever a node sends a message, all awake nodes within L_∞
distance r, for some fixed r, receive the message. If two nodes broadcast simultaneously,
the messages interfere, so nodes in the neighborhoods of both senders receive no message.
Thus, as in previous work, we assign a predetermined schedule of time slots to the nodes in
a given neighborhood to avoid such message collision. We also assume that in any $2r + 1$ by
$2r + 1$ square in the grid, up to t nodes may suffer faults. We consider the cases where these
faults are either all fail-stop: the t nodes are all deleted from the network; or, much harder,
Byzantine: the t nodes are taken over by an adversary and deviate from our protocol in an
arbitrary manner. The goal is to design a protocol that allows for a single node to broadcast
a message to all other nodes in the network, so that eventually all non-faulty nodes learn the
correct message.

Power consumption is one of the most critical resource costs in radio and sensor networks,
particularly since nodes are usually battery powered. The wireless network cards on board
radio network devices offer a number of different modes with such typical states as off, sleeping, idle, receiving and sending [2, 22] and the energy costs across these modes can
vary significantly. The device is always listening for messages while in the idle state, thus
maintaining the idle state is only slightly less costly then maintaining the receiving state.
Remarkably, the cost of the idle, receiving and sending states are all roughly equivalent, and
these costs are an order of magnitude larger than the cost of the sleep state. Thus, to a
first approximation, the amount of time spent in the sleep state gives an excellent estimate
of the energy efficiency of a given algorithm [21]. Unfortunately, all past algorithms for the
reliable broadcast problem essentially ignore energy efficiency by never allowing any node in
the network to transition to the sleep state.

In this paper, we directly address the problem of designing energy-efficient algorithms for
broadcast. Crucial to our approach is the analysis of a new data streaming problem that we
call the Bad Santa problem.

1.1 Bad Santa

A child is presented with n boxes, one after another. When given each box, the child must
immediately decide whether or not to open it. If the child decides not to open a box, he is
never allowed to revisit it. At least half the boxes have presents in them, but the decision
as to which boxes have presents is made by an omniscient and adversarial Santa that wants
the child to open as many empty boxes as possible. The poor child just wants to find a
single present, while opening the smallest expected number of boxes. This is the Bad Santa
problem.

\footnote{The difference in energy consumption between the idle/send/receive states and the sleep state differs
depending on the type of card and the communication standard being employed. For example, using the
IEEE 802.11 standard with a 11 Mbps card, the ratios between power consumption of the idle/send/receive
states and the sleep state are all more than 15 [3]. In [12], with a different setup employing TinyOS and a
TR1000 transceiver, the measured ratios are over 1000.}

\footnote{When we speak of “reliable broadcast” we are referring to the model considered in [15, 13, 14, 5]: the
terminology has been used in the context of other sensor network models.}
More formally, a sequence of \(n \) bits is streaming by and at least half of the \(n \) bits are 1. We can query any bit as it passes, but if we allow a bit to pass without querying it, it is lost. We must locate a 1. That is, we seek a Las Vegas algorithm with a hard guarantee of success and an minimum expected number of queries. We are interested in two variants of this problem. First the single round case described above. Second the multi-round case where there are multiple \(n \)-bit streams that we query consecutively. In each stream at least half the values are 1, but these values may be distributed differently in each stream. Here again we want to find how many expected queries are required until we find a 1.

The connection of this problem to energy efficiency in sensor networks is as follows. The value \(n = (2r + 1)^2 \) and the bits to be queried represent time steps at which a message may be sent. During some of these time steps, due to a fault in the processor that is scheduled to send in that time step, no message is sent. In this case, the bit queried in that time step is a 0. However, in at least half of the \(n \) time steps, the processor is not faulty and in this case, the bit queried will be a 1. The goal of the listening processor is to sleep as much as possible (query as few bits as possible) but still guarantee it will receive the message (query a 1).

We insist that the data streaming algorithm guarantee that a 1 be found since any probability of error would depend on \(n \), which may be much smaller than the total number of nodes in the network. In particular, even a probability of error that is exponentially small in \(n \) might not be large enough to use a union bound to show that all nodes in the network receive the correct message with high probability.

1.2 Our Results

We present four major results in this paper that are summarized in the theorems below. Theorem 1 is given in Section 2; Theorem 2 in Section 2.1; Theorem 3 in Section ??; and Theorem 4 in Section 3.

Theorem 1. For the single round Bad Santa problem, the optimal expected number of queries is \(\Theta(\sqrt{n}) \)

Theorem 2. For the \(k \) round Bad Santa problem, the optimal expected number of queries is \(O(\log^k(n/2) + k \log^{(2k)} n) \). In particular, for \(k = \log^* n \), we can ensure the expected number of queries is \(O(\log^* n) \)

The following two theorems about energy-efficient broadcast are established by algorithms based on solutions to the Bad Santa problem. Theorem 3 essentially follows directly from Theorems 1 and 2. Theorem 4 requires a fingerprint of the message to first be broadcast through the network. This fingerprint must be sent without any nodes sleeping in order to ensure that all nodes receive the correct fingerprint despite the Byzantine faults. However, once the fingerprint is known by all nodes, the entire message can be sent through the network, in as energy-efficient a manner as in Theorem 3. For both theorems, and throughout the rest of this paper, we let \(n = (2r + 1)^2 \).

Theorem 3. Assume we have a network where at most a \(1/2 \) fraction of the nodes suffer fail-stop faults in any square of size \(2r + 1 \) by \(2r + 1 \). Then there exist two algorithms, both of which guarantee that all non-faulty nodes in the network receive the correct message and which have the following properties.

- The first algorithm requires all nodes to be awake only a \(1/\sqrt{n} \) fraction of the time and has optimal latency and bandwidth. In particular, each node sends out the message only
a single time and each node learns the correct message within $O(nd)$ time steps where d is the L_∞ between the node and the originator of the message.

- For any k between 1 and $\log^* n$, the second algorithm requires all nodes to be awake only a $O((\log^k n)/n)$ fraction of the time and has latency and bandwidth within a factor of k of optimal. In particular, each node sends out the message k times, and each node learns the correct message within $O(knd)$ time steps where d is the L_∞ distance between the node and the originator of the message.

Theorem 4. Assume we have a network where strictly less than a $1/4$ fraction of the nodes suffer Byzantine faults in any square of size $2r+1$ by $2r+1$. Further, assume that the message, m to be broadcast consists of $|m|$ bits, and that the adversary controlling the Byzantine nodes would like to replace the message m with some other message m'. Then there exist two algorithms, both of which ensure that with probability at least $1 - \frac{1}{|m| \log |m|}$, all non-faulty nodes receive the correct message m. Both algorithms require all nodes to be awake for every step during which a fingerprint of size $\log^2|m|$ is initially broadcast to the network. However, after this, when the message m itself is broadcast, the algorithms have the following properties.

- The first algorithm requires all nodes to be awake only a $1/\sqrt{n}$ fraction of the time and has optimal latency and bandwidth.

- For any k between 1 and $\log^* n$, the second algorithm requires all nodes to be awake only a $O((\log^k n)/n)$ fraction of the time and has latency and bandwidth within a factor of k of optimal.

1.3 Related Work

The reliable broadcast problem over a radio network arranged on a two-dimensional grid has been extensively studied [15, 3, 4, 5]. The current state of the art on this problem is a clever algorithm that can ensure that a message is sent reliably to all non-faulty nodes provided that strictly less than a $1/4$ fraction of the nodes in any $(2r+1)$ by $(2r+1)$ square of the grid suffer Byzantine faults [5]. Unfortunately, as mentioned previously, all previous algorithms proposed for this problem require each node in the network to be awake for every time step, and thus are not energy-efficient. Our algorithm from Theorem 4 makes use of the algorithm from [5] to broadcast the fingerprint of the message.

Data streaming problems have been very popular in the last several years [11, 13]. Generally, past work in this area focuses on computing statistics on the data using a small number of passes over the data stream. In [11], the authors treat their data stream as a directed multi-graph and investigate the space requirements of computing certain graph properties regarding node degree and connectedness. Munro and Paterson [16] consider the problem of selection and sorting with a limited number of passes over one-way read-only memory. Along similar lines, Guha and McGregor [19, 20] examine the problem of computing statistics over data streams where the data objects are ordered either randomly or arbitrarily. Alon, Matias and Szegedy [1] examine the space complexity of approximating the frequency of moments with a single pass over a data stream. In all of these cases, and others [8, 7], the models differ substantially from our proposed data streaming problem. Rather than computing statistics or selection problems, we are concerned with the guaranteed discovery of a particular value, and under our model expected query complexity takes priority over space complexity.
2 The Single Stream Problem

We consider the single stream problem first. A naive algorithm is to query \(n/2 + 1 \) bits uniformly at random. The expected cost for this algorithm is \(\Theta(n) \) since the adversary will place the 1’s at the end of the stream. The following is an improved algorithm.

Single Round Strategy

1. Perform \(\sqrt{n} \) queries uniformly at random from the first half of the queue. Stop immediately upon finding a 1.

2. Else, starting with the first bit in the second half of the stream, query each consecutive bit until a 1 is obtained.

Theorem 5. The expected cost of the above strategy is \(O(\sqrt{n}) \).

Proof. Assume that there are \(i\sqrt{n} \) 1s in the first half of the stream where \(i \in [0, \sqrt{\frac{n}{2}}] \). This implies that there are then \((n/2) - i\sqrt{n}\) 1s in the second half of the stream. By querying \(\sqrt{n} \) slots uniformly at random in the first half of the stream, the probability that the algorithm fails to obtain a 1 in the first half is no more than:

\[
\left(1 - \frac{i\sqrt{n}}{(n/2)}\right)^{\sqrt{n}} = \left(1 - \frac{2i}{\sqrt{n}}\right)^{\sqrt{n}}
\]

for an expected overall cost not exceeding:

\[
\sqrt{n} + \left(1 - \frac{2i}{\sqrt{n}}\right)^{\sqrt{n}} \cdot i\sqrt{n}.
\]

We find the maximum by taking the derivative:

\[
\frac{d}{di} \left(1 - \frac{2i}{\sqrt{n}}\right)^{\sqrt{n}} \cdot i\sqrt{n} = \sqrt{n} \left(1 - \frac{2i}{\sqrt{n}}\right)^{\sqrt{n}} - 2i\sqrt{n} \left(1 - \frac{2i}{\sqrt{n}}\right)^{\sqrt{n}-1}
\]

and setting it to zero while solving for \(i \) gives:

\[
i = \frac{\sqrt{n}}{2(\sqrt{n} + 1)}.
\]

Finally, plugging this into the expected cost function gives an expected cost of at most \(\frac{3}{2\sqrt{n}} \). \(\square \)

We now show that this bound is optimal within a constant factor.

Theorem 6. \(\Omega(\sqrt{n}) \) expected queries are necessary in the single round case.
Proof. We follow Yao’s min-max method [23] to prove lower bounds on any randomized algorithm which errs with probability no greater than \(\lambda = 1/2^O(\sqrt{n}) \): We describe an input distribution and show that any deterministic algorithm which errs with tolerance (average error) less than \(2\lambda = 1/2^O(\sqrt{n}) \) on this input distribution requires \(\Omega(\sqrt{n}) \) queries on average for this distribution. By [23], this implies that the complexity of any randomized algorithm with error \(\lambda \) has cost \(1/2\Omega(\sqrt{n}) = \Omega(\sqrt{n}) \). Let \([a, b]\) denotes the bits in position \(a, a+1, ..., b-1, b \) of the stream. The distribution is as follows:

CASE 1. With probability \(1/2 \), \(\sqrt{n} \) uniformly distributed random bits in \([1, n/2]\) are set to 1 and the remaining bits in that interval are 0, \([n/2 + 1, n/2 + \sqrt{n}] \) are all set to 0, and the remaining bits are 1.

CASE 2k: For \(k = 0, ..., \sqrt{n} - 1 \), with probability \(1/(2\sqrt{n}) \), \([1, ..., n/2]\) contains a uniformly distributed random set of \(k \) 0’s and the rest are 1’s. Then \(\sqrt{n} - k \) 0’s are contained in uniformly distributed random bit positions in \([n/2 + 1, n/2 + \sqrt{n}] \), and the remaining \(k \) bits in positions \([n/2 + 1, n/2 + \sqrt{n}] \) are 1’s. The remaining bits in the stream are 0.

Analysis: Let \(A \) be a deterministic algorithm which errs with average probability less than \(2\lambda \). Note that \(A \) is completely specified by the list of indices of bits to query while it has not yet discovered a 1, since it stops as soon as it sees a 1. Let \(x \) be the number of queries in the list which lie in \([1, n/2]\). For a constant fraction of inputs in CASE 1, \(A \) will not find a 1 in \([1, n/2]\) within \(\sqrt{n} \) queries. Hence either \(x \geq \sqrt{n} \) or \(A \) must find a 1 with high probability in \([n/2, n]\). Now suppose \(x < \sqrt{n} \). We show that \(A \)’s list \(L \) must contain greater than \(\sqrt{n} - x \) bit positions in \([n/2 + 1, n/2 + \sqrt{n}] \). If not, it will err on the input in CASE 2x in which all the \(x \) positions queried in \([1, n/2]\) and \(\sqrt{n} - x \) positions queried in \([n/2, n/2 + \sqrt{n}] \) are 0. Since this input occurs with probability \((2\sqrt{n})^{-1}(\frac{n/2}{\sqrt{n}})^{-1}(\frac{\sqrt{n}}{x})^{-1} = 2\lambda \) in the distribution, the algorithm errs with probability at least \(2\lambda \) and there is a contradiction. We conclude that any algorithm erring with probability less than \(2\lambda \) must either have \(x > \sqrt{n} \) or queries greater than \(\sqrt{n} - x \) bits of \([n/2 + 1, n/2 + \sqrt{n}] \).

Now, we show that any such deterministic algorithm incurs an average cost of \(\Omega(\sqrt{n}) \) on the CASE 1 strings in this distribution. If \(x \geq \sqrt{n} \) then for a constant fraction of strings in CASE 1, the algorithm will ask at least \(\sqrt{n} \) queries in \([1, n/2]\) without finding a 1. If \(x < \sqrt{n} \), then with constant probability the algorithm will incur a cost of \(x \) in \([1, n/2]\) and go on to incur a cost of \(\sqrt{n} - x \) in \([n/2 + 1, n/2 + \sqrt{n}] \) since all the values there are 0.

We have shown that the distributional complexity with error \(2\lambda \) is \(\Omega(\sqrt{n}) \). It follows from [23] that the randomized complexity with error \(\lambda \) is \(\Omega(\sqrt{n}) \). \(\square\)

2.1 The Multiple Streams Problem

We define an \((\alpha, \beta)\)-strategy to be an algorithm which occurs over no more than \(\alpha \) streams, each with at least \(\alpha \) (possibly different) set of at least \(n/2 \) values of 1, and which incurs expected cost (number of queries) at most \(\beta \). In the previous section, we demonstrated a \((1, O(\sqrt{n}))\)-strategy. We now consider the following protocol over \((k + 1)\) streams.
Multi-Round Selection Strategy

For $i = k$ to 1

- Perform $\log^{(i)}(n/2)$ queries uniformly at random over the entire stream. Stop if a 1 is obtained.

If no value of 1 has been found, use the single stream strategy on the final stream.

Theorem 7. The above protocol is a $(k + 1, O(\log^{(k)}(n/2) + k))$-strategy.

Proof. Correctness is clear because in the worst case, we use the correct one-round strategy in the final round. The expected cost is at most

$$\log^{(k)}(n/2) + \left[\sum_{i=k-1}^{1} \left(\frac{1}{2} \right)^{\log^{(i+1)}(n/2)} \log^{(i)}(n/2) \right] + \left(\frac{1}{2} \right)^{\log(n/2)} O(\sqrt{n})$$

$$= \log^{(k)}(n/2) + \left(\frac{1}{2} \right)^{\log^{(k)}(n/2)} \log^{(k-1)}(n/2) + \ldots + \left(\frac{1}{2} \right)^{\log(n/2)} O(\sqrt{n})$$

$$= \log^{(k)}(n/2) + k + o(1)$$

Corollary 1. If there are $\log^{*}(n/2) + 1$ streams, then the multi-stream algorithm provides a $(O(\log^{*}n/2), O(\log^{*}n/2))$-strategy.

Proof. By the definition of the iterated logarithm:

$$\log^{*} n = \left\{ \begin{array}{ll} 0 & \text{for } n \leq 1 \\ 1 + \log^{*}(\log n) & \text{for } n > 1 \end{array} \right.$$

if $k = \log^{*}(n/2)$, we can plug this value into the last line of the proof for Theorem 7 which contains three terms of which only the first two depend on k. The first term is 1, by definition of $\log^{*} n$, and the second is k for a total expected cost of $1 + \log^{*}(n/2) + o(1)$.

2.2 Lower bound for multiple streams

First, we show the following lemma:

Lemma 1. $\Omega(\log^{(i+2)}n)$ expected queries are required for a randomized algorithm that errs with probability less than $\lambda = (\log^{(i)} n)^{-\epsilon}$ on one stream of length n. In particular, when $i = 0$, $\Omega(\log \log n)$ expected queries are required for a randomized algorithm with error less than $1/n^\epsilon$, for any constant ϵ.

Proof. We apply Yao’s min-max method [23] and consider the distribution in which with probability 1/3, one of the $I_1 = [1, n/3]$, $I_2 = [n/3 + 1, 2n/3]$, and $I_3 = [2n/3 + 1, n]$ intervals is all 0’s, and the other two each contain exactly $n/4$ 1’s with the 1’s distributed uniformly at random. Let L denote the list of queries of a deterministic algorithm, and let x_i be the
number of queries in \(L \cap I_i \). The probability that the algorithm fails to find a 1 in any interval \(I_i \) is \(\left(\binom{n}{n/4}^{n/4} \right)^{n/4} > e^{-2x_i}/4 \). Let \(I_i \) and \(I_j \) be the intervals which are not all 0’s. Then the probability of failing to find a 1 in either \(I_i \) and \(I_j \) is \(> e^{-7(x_i+x_j)}/4 \). Hence the probability of not finding a 1 over all strings is \(> (1/3)e^{-7(x_i+x_j)}/4 > 2\lambda \) if \(x_1 + x_2 < (3/7)e \lg \frac{i+1}{n} \). We conclude that a deterministic algorithm with average error less than \(2\lambda \) can have at most one \(x_i, i = 1, 2, 3 \) such that \(x_i < \frac{3}{14} e \lg \frac{i+1}{n} \).

Now we examine the cost of such an algorithm. Suppose \(x_1 \geq (3\epsilon/14)(\ln(i+2)/n) \) then with probability \(1/3 \) \(I_1 \) is all 0’s and the cost incurred is \(x_1 \), for an average cost of \((\epsilon/14)(\ln(i+2)/n) \). Now suppose \(x_1 < (3\epsilon/14) \ln(i+2)/n \). From above, we know \(x_2 > (3\epsilon/14) \ln(i+1)/n \). Then with probability \(1/3 \), \(I_2 \) is all 0’s and with probability \(> e^{-7x_1}/4 > (\ln(i+1)/n)^{-3\epsilon/8} \), the algorithm does not find a 1 in \(I_1 \) and incurs a cost of \((3\epsilon/14) \lg(i+1)/n \) in \(I_2 \) for an average cost of at least \((\epsilon/14)(\ln(i+1)/n)^{1-3\epsilon/8} \). Hence the average cost of any such deterministic algorithm is at least \(\min\{1/(14)(\ln(i+2)/n), (\epsilon/14)(\lg(i+1)/n)^{1-3\epsilon/8}\} \) = \(\Omega(\ln(i+2)/n) \). By Yao’s min-max method \([?]\), any randomized algorithm with error \(\lambda \) is bounded below by \(1/2 \) the average cost of a deterministic algorithm with average error \(2\lambda \) on any distribution. The lemma now follows.

Theorem 8. For \(k > 0 \), \(\Omega(\ln(2^k/n)) \) expected queries are necessary to find a 1 from \(k+1 \) streams with probability 1.

Proof. The proof is by induction on the number of streams.

Base Case: Let \(k = 1 \). Either the algorithm finds a 1 in the first pass or the second pass. From Lemma ??, for any constant \(\epsilon \) any algorithm which fails to find a 1 in the first pass with probability \(\leq n^{-\epsilon} \) has expected cost \(\Omega(\log \log n) \). If the algorithm fails to find a 1 in the first pass with probability at least \(n^{-\epsilon} \) then the expected cost to the algorithm is at least the probability it fails in the first pass times the expected cost of always finding a 1 in the second and final pass, which is \(n^{-\epsilon} \cdot \Omega(\sqrt{n}) \). (The second factor is from Lemma ??). Choosing \(\epsilon < 1/2 \), the expected cost is \(\Omega(\log \log n) \).

Inductive Step: Now assume the hypothesis is true for up to \(k > 1 \) streams. Assume we have \(k+1 \) streams. Any randomized algorithm either fails to find a 1 in the first stream with probability less than \((1/\ln(2^k-2))/n \), in which case by Lemma ?? the expected cost of the algorithm when it processes the first stream is \(\Omega(\ln(2^k)/n) \) or the probability that it fails in the first pass is at least \((1/\ln(2^k-2))/n \). In that case, the expected cost deriving from queries of the second stream is at least \((1/\ln(2^k-2))/n \cdot \Omega(\ln(2^k-2)) \) where the second factor of this expression is the expected number of queries needed to find a 1 in \(k \) streams, as given by the induction hypothesis. The minimum expected cost of any randomized algorithm is the minimum of these two possibilities, which is \(\Omega(\ln(2^k)/n) \).

3 Application of the Streaming Problem to Reliable Broadcast in Radio Networks

We now use the streaming algorithms in the radio network model described by ??, ??, 4, 5. Under this model, nodes are situated in a lattice and can communicate with other nodes within a radius \(r \), under a defined metric, via wireless multicast. Considering the \(L_{\infty} \) metric, a Byzantine adversary can place faulty nodes at any location in the lattice subject to the constraint that every \((2r+1) \times (2r+1) \) region of nodes contains at most \(t \) faulty nodes. Previous work has focused on securely transmitting a value \(m \) from a correct node \(s \), known
Let substantial power savings over the original protocols of [3, 4], as we will now demonstrate. The adversary is computationally bounded. Under this scenario, it is possible to achieve a N bits before committing. Here we maintain the original model for finite graphs with the added assumption that they achieve reliable broadcast for \(t \leq (r/2)(2r + 1) \) while Koo [15] has shown that no algorithm can tolerate \(t \geq (r/2)(2r + 1) \). Recent work by [5] extends these results to the setting where faulty nodes can spoof the addresses of correct nodes in the network and cause a bounded number of message collisions. Under the protocol described in [3, 4], for a value \(m \) of \(|m|\) bits, the adversary can force a node to listen to \((2t + 1)|m| \geq r(2r + 1)|m| = \Theta(r^2|m|)\) bits before committing.

Here we maintain the original model for finite graphs with the added assumption that the adversary is computationally bounded. Under this scenario, it is possible to achieve a substantial power savings over the original protocols of [3, 4], as we will now demonstrate. Let \(h \) be a secure hash function known to all nodes that takes an input \(m \) and outputs a fingerprint of size \(\Theta(\log^2|m|) \) bits.

For the following analysis, we define a corridor of width \(2r + 1 \) starting at the dealer located at point \((0, 0)\) and ending at node \(p = (x, y)\). We sometimes denote a point \(q \) at grid location \((x, y)\) as \(q(x, y)\). We define the set of nodes in the corridor to be \(S_{cor} = S_{x, cor} \cup S_{y, cor} \) where \(S_{x, cor} = \{ q(x', y') \mid (-r \leq x' \leq x) \land (y - r \leq y' \leq y + r) \} \) and \(S_{y, cor} = \{ q(x', y') \mid (-r \leq x' \leq x) \land (0 \leq y' \leq y + r) \} \). Figure 1 illustrates a corridor for \(r = 3 \). We use the schedule suggested in [15]. Under this schedule, every node in \(N(x, y) \), the neighborhood of point \((x, y)\), is allotted one time step to broadcast before the schedule repeats after \((2r + 1)^2 \) time steps. We will refer to a full pass through the \((2r + 1)^2 \) time steps of the schedule as a round. We need the following lemma which is an extension of implicit claims in [3] and the statement of [3] (Claim 1).

Lemma 2. If the dealer, \(d(0, 0) \), broadcasts \(m \) at time step \(t_{init} \), node \(p(x, y) \) is able to commit to \(m \) at least by time step \(t_{init} + 2(2r + 1)^2(|x| + |y| - r) \).

Proof. We are assuming the same schedule as in [15] and the same protocol as in [4]; however, we are restricting our view to those nodes in \(S_{cor} \). That is, nodes in \(S_{cor} \) will only accept
messages from other nodes in S_{cor} and they will ignore all messages they receive from nodes outside the corridor. Clearly, this can only result in a slowdown in the propagation of the broadcast value; moreover, the rectilinear shape of the corridor can only slow down the rate of propagation in comparison to the original propagation described in [4]. An argument identical to that in [4] (Theorem 4) can be used to show each node $q(x', y') \in S_{cor}$ will commit to the correct value by receiving messages along at least $2t + 1$ node disjoint paths P_i of the form (u_i, q) and (u_i, u'_i, q) where u_i, u'_i are distinct nodes and lie in the corridor and $u_i \in N(x', y')$; we do not repeat this argument.

We now consider the time required until $p(x, y)$ can commit to m. Without loss of generality, assume that $x, y \geq 0$ and that the broadcast first moves nodes in $S_{y, cor}$ and then along nodes in $S_{x, cor}$. At t_{init}, the dealer broadcasts m and all nodes in $N(0, 0)$ commit to m. Consider a node $q(a, r + 1)$ where $-r \leq a \leq r$. It takes at most one round for q to receive messages along paths of the form (u_i, q). Concurrently, in this one round, nodes u_i can transmit messages to nodes u'_i along paths of the form (u_i, u'_i, q). At most an additional round is required to send from nodes u_i to q. Therefore, at most two rounds are required before q can commit. Note that this holds for all nodes with coordinates $(a, r + 1)$ for $-r \leq a \leq r$; this entire row can commit after at most two rounds. It follows that all nodes in $S_{y, cor}$ are committed to m after $2y$ rounds. An identical argument can be used to show that all nodes in $S_{x, cor}$ are committed to m after $2(x - r)$ rounds. Therefore, p commits after at most $2(x + y - r)$ rounds or, equivalently, $2(2r + 1)^2(x + y - r)$ time steps; if x and y can take on negative values, this becomes $2(2r + 1)^2(|x| + |y| - r)$.

Our protocol for reliable broadcast is as follows:

(k + 1, $O(\lg^k (n/2) + k)$) Reliable Broadcast with Bit Reduction

1. Initially, the dealer $d(0, 0)$ does a local broadcast of $(h(m), t_{init})$.

2. Each node i in $N(d)$ commits to $h(m)$ and does a one-time local broadcast of $\text{COMMIT}(i, h(m), t_{init})$.

The following protocol is followed by each node p including the nodes in the first two steps:

3. If node p receives $\text{COMMIT}(q, h(m), t_{init})$ for the first time, it records this message and broadcasts $\text{HEARD}(p, q, h(m), t_{init})$.

4. If node p receives $\text{HEARD}(q, w, h(m), t_{init})$ for the first time, it records this message.

5. If at any point, $p(x, y)$ holds $t + 1$ messages $m_1, m_2, ...$ such that $\text{COMMIT}(a_i, h(m), t_{init})$ or $m_i = \text{HEARD}(a_i, a'_i, h(m), t_{init})$ where for all $i, a_i, a'_i \in N(q)$ for some node q and for all $i, j, a_i \neq a_j, a_i \neq a'_j$, $p(x, y)$ sets $f_{maj} = h(m)$, does a one-time broadcast of $\text{COMMIT}(p, f_{maj}, t_{init})$.

6. For $i = 0, ..., k$ rounds, p executes the following:

(a) Let G_p denote the set of all nodes that sent p the majority fingerprint f_{maj} and the majority initial time value t_{init}. Assume $|G_p| = n$ and, for ease of analysis, let us consider G_p to be an ordered set where the nodes, denoted by $\{g_0, ..., g_{n-1}\}$, are ordered from earliest to latest by broadcast order as dictated by the broadcast
(b) Node p listens during the time slot only when 1) node $q(x', y') \in Q_i$ is scheduled to broadcast and 2) immediately following time step $t_{\text{init}} + 2(2r + 1)^2(|x'| + |y'| + r) + 1$ (inclusive). In listening to node q, p will obtain a value m_q. If $h(m_q) = f_{\text{maj}}$, then p commits to m_q, breaks the for-loop and proceeds directly to Step 7.

7. Node $p(x, y)$ waits until the time step 1) when node p is scheduled to broadcast and 2) immediately following time step $t_{\text{init}} + 2(2r + 1)^2(|x| + |y| + r) + 1$ (inclusive) and then does a broadcast of COMMIT(p, m_q). Node p broadcasts COMMIT(p, m_q) for a second and final time on its next turn (in the next round).

3.1 The Necessity of Hard Guarantees

We now explicitly address the necessity of a hard guarantee in our reliable broadcast protocol. At first glance, it may appear that the hard requirement can be ignored. However, if a correct node fails to commit to a correct message, [3] proves that reliable broadcast is impossible. Therefore, for reliable broadcast to be guaranteed with probability 1, we cannot tolerate any failures. In turn, to guarantee reliable broadcast with high probability, the probability of such a failure must be overwhelmingly small in the total size of the network, N. There are two ways in which a correct node could fail to obtain the correct message by the above protocol:

1. The adversary achieves a collision for the secure hash function.
2. A good node does not query enough nodes in its neighborhood.

Let $n = (2r + 1)^2$ be the number of nodes in a single neighborhood. The first case is avoided by using a large enough fingerprint. In the second case, we can use a sampling algorithm to reduce the probability that a node fails to obtain the correct message. However, without a hard guarantee, the probability of such a failure is bounded in terms of n (the size of the neighborhood), not N. Realistically, we should expect r to be small in comparison to the total size of the network and, consequently, $n \ll N$. Therefore, in this case, we cannot make the probability of such a failure small in terms of the total size of the network and so we require a hard guarantee on message receipt.

3.2 Correctness of the Bit-Reduction Algorithm

Now that we have illustrated the key design points of our algorithm, we prove its correctness.

Theorem 9. Let m denote the message sent from the dealer and let $|m|$ be the number of bits in m. Let h be a secure hash function that maps to a fingerprint of size $\Theta(\log^2 |m|)$. The reliable broadcast protocol with bit reduction has the following properties:

- Reliable broadcast of m is achieved with probability of error that is superpolynomially small in $|m|$ (i.e. less than $O(1/|m|^{C \log |m|})$ for some constant C).

4 We need to guarantee the existence of at least $r(2r + 1)$ paths of which strictly less than half traverse a faulty node. If any good node fails, this destroys the necessary invariant that we always have a (narrow) majority of uncorrupted disjoint paths.
• If \(k = 1 \), node \(p \) listens to \(O(r^2 \log^2 |m| + |m|r) \) bits in expectation.

• If \(k \geq 2 \), node \(p \) listens to \(O(r^2 \log^2 |m| + |m|(\log^k r + k)) \) bits in expectation.

Proof. We begin by proving correctness. By assumption, \(h \) is a secure hash function and, therefore, given \(h(x) \), the probability that the adversary obtains a value \(x' \) such that \(h(x') = h(x) = 2^{-\Theta(\log^2 |m|)} = |m|^{-\Theta(\log^2 |m|)} \). Therefore, it will take the adversary superpolynomial time in \(m \) to forge such an \(x' \) and so \(f_{maj} \) will correspond to the correct value \(m \). Steps 1-5 of the BR protocol, are no different than the broadcast presented in [4] where the values being transmitted are a fingerprint and an initial time value. Consequently, every correct node will be able to derive a majority fingerprint \(f_{maj} \) and \(t_{init} \) value from the messages it receives. By the security of \(h \), \(h(m) = f_{maj} \) with high probability and, by the correctness of the protocol in [4], the majority time value will be the true \(t_{init} \) sent originally by the dealer.

In Step 6a, if \(p \) receives \(m_q = h(f_{maj}) \) from \(q \) for some \(i = 0, ..., k \), \(p \) can be assured, again with high probability, that \(m_q \) is the correct value \(m \). Let \(S_p \) denote the set of nodes from which \(p \) can receive COMMIT messages. A complication arises in attempting to guarantee that \(p \) does not miss any of the \(k + 1 \) broadcasts of \(m_q \) by \(q \in S_p \). For instance, an extreme case occurs if every node in \(S_p \) broadcasts COMMIT messages before \(p \) begins sampling for the true value. In such a case, \(p \) will never receive the actual value to check against its fingerprint. To ensure that the appropriate nodes do not broadcast \(m_q \) before \(p \) is ready, it is enough to impose a sufficiently long delay before any \(q \in S_p \) broadcasts \(m_q \); enough time for \(p \) to first commit to \(f_{maj} \). In particular, if all correct nodes in \(N(q) \) have obtained their majority fingerprint value, then it is safe for \(q \) to begin executing its \(k + 1 \) broadcasts of COMMIT\((p, m_q)\). Assuming the dealer broadcasts the initial fingerprint at time \(t_{init} \), then by Lemma 2, it will take at most \(t_{init} + 2(2r + 1)^2(|x| + |y| - r) \) time steps for \(p(x, y) \) to commit to \(f_{maj} \). Therefore if \(q \) waits until after this time step, it can be assured that \(p \) will be able to receive its transmission of \(m \). In general, \(q \) must wait until all peers in \(N(q) \) can commit to a fingerprint. Since all nodes in \(N(q) \) are located at most \(r \) distance away, \(q(x', y') \) can wait until time \(t_{init} + 2(2r + 1)^2(|x'| + r) + (|y'| + r) - r) = t_{init} + 2(2r + 1)^2(|x'| + |y'| + r) \) at which point all of \(N(q) \) is guaranteed to have committed to a fingerprint. Define \(T \) be the time slot that is 1) scheduled for node \(q \) to broadcast and 2) occurs first after time step \(t_{init} + 2(2r + 1)^2(|x'| + |y'| + r) + 1 \). By Lemma 2, guarantees that \(p \in N(q) \) will have already committed to a majority fingerprint value and be ready to listen to \(m \).

By the hard guarantee of our streaming problem algorithm, \(p \) will obtain a message that, when hashed, matches the fingerprint to which \(p \) committed. Therefore, \(p \) is guaranteed to commit to a value \(m_p \) and, with high probability in \(|m| \), \(m_p \) is the correct value sent by the dealer. Finally, again guaranteed by Lemma 2, \(p \) only begins the first of two consecutive broadcasts of COMMIT\((p, m_p)\) after all nodes in \(N(p) \) have been given enough time to commit to a fingerprint.

To show resource costs, note that \(p \) listens to \((2t + 1) \leq r(2r + 1) \) fingerprints, for a total of \(O(r(2r + 1)\log^2 |m|) \) bits before sampling. Now note that the sampling strategy described in Step 6 matches our algorithm for the streaming problem. While in the streaming problem,

\[^5 \text{We assume the dealer is correct; otherwise, } p \text{ is committing to the value agreed upon by all correct nodes in } N(d) \text{ which is also correct.} \]

\[^6 \text{Note that selecting a random node is necessary; if not, the adversary might have faulty nodes send correct} \]
we attempt to obtain a 1 at unit cost per query, here node p is attempting to select a correct node at the cost of listening to $|m|$ bits per selection. Theorem 7 guarantees that a correct message is obtained at an expected cost of $O(\log^k(n/2) + k)$ bits where $n = (2r + 1)^2$. Therefore, the total expected cost is $O(r^2 \log^2 |m| + |m|(\log^k (r) + k))$.

Note that $|m|$ need not be very large in order to make the probability of a collision negligible. For instance, if $|m| = 1$ kilobyte, the probability of a collision is already less than 10^{-30}. Finally, it follows immediately from the above theorem that for a message m of size $|m| \in \omega(\log^2 N)$, the bit-reduction algorithm achieves a substantially lower communication complexity.

4 Future Work and Conclusion

We have designed new algorithms for reliable broadcast in radio networks that achieve near optimal energy savings. These algorithms consume significantly less power than any other algorithms for this problem of which we are aware. In the process of designing and analyzing these algorithms, we have defined and studied a novel data streaming problem, which we call the Bad Santa problem.

Several open problems remain including: Can we close the gap between the upper and lower-bound for the multi-round Bad Santa problem? Can we be robust to Byzantine faults caused by a computationally unbounded adversary and still reduce power consumption? Can we generalize our techniques to radio networks that are not laid out on a two dimensional grid? Are there other applications for the Bad Santa data streaming problem both in and outside the domain of radio networks?

5 Acknowledgements

We gratefully thank Kui Wu, Chiara Petrioli and James Horey for their helpful comments on issues of power consumption in radio networks.

References

[1] Noga Alon, Yossi Matias and Mario Szegedy. “The Space Complexity of Approximating the Frequency Moments”. In the Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), 1996.

[2] Trevor Armstrong. “Wake-up Based Power Management in Multi-hop Wireless Networks”. Unpublished manuscript available at www.eecg.toronto.edu/trevor/Wakeup/index.html.

[3] Vartika Bhandari and Nitin H. Vaidya. “On Reliable Broadcast in a Radio Network”. In Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM Press, 2005.

[4] Vartika Bhandari and Nitin H. Vaidya. “On Reliable Broadcast in a Radio Network: A Simplified Characterization”. Technical Report, CSL, UIUC, May 2005.

fingerprints in the first round and, if p selects nodes from \mathcal{B} in a deterministic fashion, the adversary may force p to listen to many messages that do not hash to f_{maj}.
[5] Vartika Bhandhari, Jonathan Katz, Chiu-Yuen Koo and Nitin Vaidya. “Reliable Broadcast in Radio Networks: The Bounded Collision Case”. In Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM Press, 2006.

[6] Rebecca Braynard and Carla Ellis. “Asynchronous and Asymmetric Communication for Balancing Energy Consumption in Sensor Networks”. Technical Report CS-2004-11, Duke University, December 2004.

[7] Graham Cormode, Flip Korn, S. Muthukrishnan and Divesh Srivastava. Space- and Time-Efficient Deterministic Algorithms for Biased Quantiles Over Data Streams. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems, pp. 263-272, 2006.

[8] Eric Demaine, Alejandro López-Ortiz, and Ian Munro. “Frequency Estimation of Internet Packet Streams with Limited Space”. In Proceedings of the 10th Annual European Symposium on Algorithms (ESA 2002), pp. 348-360, 2002.

[9] Laura Marie Feeney and Martin Nilsson. “Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment”. In Proceedings of IEEE INFOCOM, 2001.

[10] Paul Havinga and Gerard Smit. “Energy-efficient TDMA Medium Access Control Protocol Scheduling”. In Proceedings of the Asian International Mobile Computing Conference (AMOC 2000), 2000.

[11] Monika Henzinger, Prabhaker Raghavan and Sridar Rajagopalan. “Computing on Data Streams”. Technical Report, SRC-TN-1998-011 May 1998.

[12] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler and Kristofer S. J. Pister. “System Architecture Directions for Networked Sensors”. In Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 93-104, 2000.

[13] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations and Trends in Theoretical Computer Science, Volume 1, No. 2, 2005.

[14] Chris Karlof and David Wagner. “Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures”. Ad Hoc Networks, Volume 1, No. 2-3, pp. 293-315, 2003.

[15] Chiu-Yuen Koo. “Broadcast in Radio Networks Tolerating Byzantine Adversarial Behavior”. In Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM Press, pp. 275-282, 2004.

[16] Ian Munro and Mike Paterson. “Selection and Sorting with Limited Storage”. Theoretical Computer Science, 12, pp. 315-323, 1980.

[17] Marshall C. Pease, Robert E. Shostak and Leslie Lamport. “Reaching Agreement in the Presence of Faults”. Journal of the ACM, 27(2), pp. 228-234, 1980.

[18] Mark Stemm and Randy H. Katz. “Measuring and Reducing Energy Consumption of Network Interfaces in Hand-Held Devices”. IEICE Transactions on Communications, volume E80-B, pp. 1125-1131, 1997.
[19] Sudipto Guha and Andrew McGregor. “Approximate Quantiles and the Order of the Stream”. In ACM Symposium on Principles of Database Systems, pp. 273-279, 2006.

[20] Sudipto Guha and Andrew McGregor. “Lower Bounds for Quantile Estimation in Random-Order and Multi-Pass Streaming”. In International Colloquium on Automata, Languages and Programming, 2007.

[21] Lan Wang and Yang Xiao. “A Survey of Energy-Efficient Scheduling Mechanisms in Sensor Networks”. Mobile Networks and Applications 11, pp. 723-740, 2006.

[22] Qin Wang, Mark Hempstead and Woodward Yang. “A Realistic Power Consumption Model for Wireless Sensor Network Devices”. In Proceedings of the Third Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2006.

[23] Andrew Yao. ”Probabilistic Computations: Toward a Unified Measure of Complexity”. In Proceedings of Eighteenth IEEE Symposium on Foundations of Computer Science, pp. 222-227, 1977.