ONE NUMERICAL OBSTRUCTION FOR RATIONAL MAPS BETWEEN HYPERSURFACES

ILYA KARZHEMANOV

ABSTRACT. Given a rational dominant map $\phi: Y \dasharrow X$ between two generic hypersurfaces $Y, X \subset \mathbb{P}^n$ of dimension ≥ 3, we prove (under an addition assumption on ϕ) a “Noether–Fano type” inequality $m_Y \geq m_X$ for certain (effectively computed) numerical invariants of Y and X.

1. Introduction

1.1. Set-up. Let $X \subset \mathbb{P}^n$ be a smooth hypersurface over \mathbb{C} given by an equation $f = 0$ in some projective coordinates x_0, \ldots, x_n on \mathbb{P}^n. Identify x_i with a basis of $H^0(X, \mathcal{O}(1))$. We will assume in what follows that $n \geq 4$. In particular, given two such hypersurfaces X and Y, we have $\text{Pic} \, X = \text{Pic} \, Y = \mathbb{Z} \cdot L$ (Lefschetz), so that any rational map $\phi: Y \dasharrow X$ is induced by a self-map of \mathbb{P}^n.

Definition 1.2. Call ϕ symplectic if the corresponding map $\mathbb{P}^n \dasharrow \mathbb{P}^n$ preserves, up to a constant, the 2-form $\sum_{i=1}^{n} \frac{dx_i}{x_i} \wedge \frac{d\bar{x}_i}{\bar{x}_i}$ (cf. 2.1 below). Also, call X symplectically unirational, if $Y := \mathbb{P}^{n-1} = (x_n = 0)$ and ϕ is symplectic.

Example 1.3. Take $X = Y = (x_n = 0) \simeq \mathbb{P}^{n-1}$ and ϕ to be the Frobenius morphism $x_i \mapsto x_i^d$, $0 \leq i \leq n-1$, for some integer $d \geq 2$. This ϕ is easily seen to be symplectic.

Fix a point $o \in X$ and consider the blowup $\sigma: \tilde{X} \dasharrow X$ of o. Let $\Sigma := \sigma^{-1}(o)$ be the exceptional divisor of σ. Define the quantity (cf. [1, Definition 1.6])

$$m_X(L; o) := \sup \{ \varepsilon \in \mathbb{Q} : \text{the linear system } |N(\sigma^* L - \varepsilon \Sigma)| \text{ is mobile for } N \gg 1 \}$$

It is called the mobility threshold (of X) and was first introduced by A. Corti in [17] (we will sometimes write simply m_X when the point o is irrelevant).

MS 2020 classification: 14E05, 14M10, 28D20.

Key words: rational map, hypersurface, entropy.

1) Recall that “mobile” means no divisorial component in the base locus.
Example 1.4. Let $f := x_n$ and hence $X \simeq \mathbb{P}^{n-1}$ is a projective subspace. Then we get $m_X(L:o) = 1$ because the lines passing through o sweep out a divisor (in particular, the above ε is always ≤ 1, while the opposite inequality is clear — consider the projection $X \rightarrow \mathbb{P}^{n-2}$ from o to obtain $\varepsilon = 1$).

In this paper, we will be mostly using the following equivalent definition of m_X (although the first one is more suitable for computations):

$$m_X(L:o) := \sup \frac{\text{mult}_o M}{N},$$

where sup is taken over all $N \geq 1$ and mobile linear systems $M \subseteq |L^{\otimes N}|$.

Let us assume from now on that $X = (f = 0)$ and Y are generic. Here is our main result:

Theorem 1.5. If ϕ is symplectic, then there exist points $o \in X$, $o' \in Y$ such that $m_Y(L:o') \geq m_X(L:o)$.

Theorem 1.5 implies in particular that $1 = m_Y \geq m_X$ for $Y := \mathbb{P}^{n-1}$ and symplectically unirational X (cf. Corollary 4.2 below). Note however that similar estimate does not hold for an arbitrary unirational X (see 4.4).

1.6. Discussion. The main idea behind the proof of Theorem 1.5 is that birational invariants of X appear from a (hidden) hyperbolic structure on hypersurfaces. Namely, we employ the so-called pairs-of-pants decomposition II from [15], which we recall briefly in Section 2. This brings further an analogy with hyperbolic manifolds (especially surfaces and 3-folds) and their geometric invariants — most common ones being various types of *volumes*.

This includes, as a basic example, the Euler characteristic of Riemann surface M. A finer invariant is the so-called *conformal volume* $V_c(M)$. One can show that $2V_c(M) \geq \lambda_1 \text{Vol}(M)$ for the first Laplacian eigenvalue λ_1 of M (see [14, Theorem 1] and corollaries thereof). This was used, for instance, to obtain obstructions for existence of maps between Riemann surfaces (see e.g., the proof of the *Surface Coverings Theorem* in [6, §4] or that of [8, Theorem 2.A1]).

Further, if M is a d-dimensional closed oriented hyperbolic manifold, then there is a *Gromov’s invariant* $\| [M] \|$ (see [20, Chapter 6]). It is defined in terms of certain (probability) measures on M and coincides with $C_d \text{Vol}(M)$ for some absolute constant C_d. The most fundamental property of this invariant (used in the proof of Mostow’s rigidity theorem for example) is that for a map $M_1 \rightarrow M_2$ between
two hyperbolic M_i one has $\| [M_1] \| \geq \| [M_2] \|$. The latter inequality and a close similarity between the definitions of $V_c(\)$, $\| \ |$, etc. and that of m_X (cf. 1.1 and 2.3 below) have motivated our approach towards the proof of Theorem 1.5.

Namely, on replacing X by the complex Π mentioned above, we recast m_X in “probabilistic” terms (see Section 3). The argument here is an instance of the (Bernoulli) law of large numbers and allows one to give a conceptual explanation for the estimate $m_Y \geq m_X$ (cf. Remark 3.4). On the other hand, results in 2.3 and 2.7 together with initial definition of m_X in 1.1 yield algebro-geometric applications (see Section 4).

Such line of thought — associating $X \rightarrow \Pi$ and extracting geometric properties of X from combinatorics of Π (and vice versa) — is not new. Classical case includes the Brunn - Minkowski inequality (see e. g. [3]). In a modern context (including the mirror symmetry) this viewpoint appears in [2] and [19] for instance. Finally, we mention the “motivic” part of the story, when one assigns to X its stable birational volume $|X|_{sb}$ (see e. g. [16]) or its class $[X]_K$ in the connective K-theory (see [21]). In the latter case, given $\phi : Y \rightarrow X$ as above, the degree formula of [21] relating the classes $[Y]_K$, $[X]_K$ may be considered as a vast generalization of Noether – Fano inequality (see e. g. [11, Proposition 2]) and was another motivation for our Theorem 1.5.

2. Preliminaries

2.1. Pairs - of - pants complex. Consider the intersection

$$X^0 := X \cap \bigcap_{i=0}^{n} (x_i \neq 0)$$

of X with the torus $(\mathbb{C}^*)^n \subset \mathbb{P}^n$ equipped with (affine) coordinates x_1, \ldots, x_n. We may identify f with the Laurent polynomial defining X^0:

$$f = \sum_{j \in \Delta \cap \mathbb{Z}^n} a_j t^{-v(j)} x_j,$$

where $\Delta \subset \mathbb{R}^n$ is the Newton polyhedron of f, $v : \Delta \cap \mathbb{Z}^n \rightarrow \mathbb{R}$ is a piecewise affine function, $a_j \in \mathbb{C}$ and $t > 0$ is a real parameter (cf. [15, 6.4]).

Let us recall the balanced maximal dual polyhedral Δ - complex Π associated with X. It corresponds to certain (dual) simplicial lattice subdivision of Δ associated with the corner locus of the Legendre transform of v; Π may also be identified with...
its moment image (see \[15, 2.3 \text{ and Proposition 2.4}\]). Here are some properties of \(\Pi \) we will use below:

- there exists a smooth \(T^{n-1} \)-equivariant map (stratified \(T^{n-1} \)-fibration) \(\pi : X \to \Pi \), where \(T^{n-1} := (S^1)^{n-1} \) consists of the arguments of \(x_i \), so that for any open lattice simplex \(\Pi_0 \subset \Pi \) the preimage \(\pi^{-1}(\Pi_0) \) is an open pair-of-pants, symplectomorphic to \(H^0 := \left(\sum_{i=1}^{n} x_i = 1 \right) \subset (\mathbb{C}^*)^n \) equipped with the 2-form \(\Omega := \frac{1}{2\sqrt{-1}} \sum_{i=1}^{n} \frac{dx_i}{x_i} \wedge \frac{d\bar{x}_i}{\bar{x}_i} \);

- in fact, \(X \) is glued out of the tailored (or localized) pants \(Q^{n-1} \) (see \[15, 6.6 \text{ and Proposition 4.6}\]), isotopic to \(H^0 \), so that \(\pi \) is a deformation retraction under the Liouville flow associated with \(\Omega \), and \(\pi_*\Omega^{n-1} \) induces the Euclidean measure on \(\Pi \);

- \(\Pi \) is also obtained via the tropical degeneration (compatibly with \(\pi \)): recall that \(f \) depends on \(t \) (see (2.2)) and let \(t \to 0 \) (for each \(Q^{n-1} \)) in the preceding constructions — \(\Pi \) is then a Gromov–Hausdorff limit of amoebas \(A_t(X_0) \) (see \[15, 6.4\]).

2.3. Atomic (probability) measure. Choose a global section \(s \in H^0(X, L) \setminus \{0\} \) and a point \(o \in X \). We are going to construct a measure \(d\mu_{o,s} \) on \(\Pi \) so that \(\text{Vol}(\Pi) = \text{mult}_o \{ s = 0 \} \) with respect to it and \(d\mu_{o,s} \) is supported at the point \(\pi(o) \).

Identify \(s \) with a holomorphic function on a complex neighborhood \(U \subset X \) of \(o \) and consider the \((1,1)\)-current \(\tau := \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log |s| \). Then \(\tau \) acts on the \(L^1 \)-forms on \(U \) of degree \(2n-2 \) via (Poincaré–Lelong)

\[
\omega \mapsto \tau(\omega) = \int_{s = 0} \omega.
\]

In particular, if \(\omega \) is the \((n-1)\)-st power of the Fubini–Studi form on \(\mathbb{P}^n \) restricted to \(U \), one may regard \(\tau(\omega) \) as the volume of the locus \(U \cap \{ s = 0 \} \).

Let us assume from now that \(U := B_o(r) \) is the Euclidean ball of radius \(r \) centered at \(o \). For all \(\xi \in \mathbb{C}, |\xi| < 1 \), we consider the dilations \(z \mapsto \xi z \) of \(U \) and the family of pushed-forward measures \(\xi_* (dm) \).

The following lemma is standard (cf. Remark 2.6 and Proposition 3.3 below):

\[\text{All considerations below apply literally to any } L^{\otimes N}, N \geq 1, \text{ in place of } L.\]
Lemma 2.4. The limit measure

\[\frac{1}{(r\xi)^{2n-2}} \lim_{\xi \to 0} \xi_*(dm) := dm_{o,s} \]

exists and \(\int_U dm_{o,s} = \text{mult}_o \{ s = 0 \} \).

Proof. Indeed, Vol(\{ s = 0 \} \cap U) with respect to \(\frac{1}{(r\xi)^{2n-2}} \xi_*(dm) \) tends to \(\text{mult}_o \{ s = 0 \} \), as \(\xi \to 0 \). This implies that the limit of measures exists. \(\square \)

We may assume that for \(U = B_o(r) \) the radius \(r \to 0 \) as \(t \to 0 \) (cf. (2.2)). Then it follows from 2.1 and Lemma 2.4 that

\[\pi(U) = \text{simplicial complex } \Pi_0 = \text{Gromov–Hausdorff limit of } A_t(U), \]

(2.5)

\[s = \pi^* \ell \text{ for a piecewise linear function } \ell \text{ on } \Pi_0, \]

\[d\mu_{o,s,n_0} := \pi_* dm_{o,s} = \text{measure on } \Pi_0 \text{ supported at } \pi(o) \text{ and such that } \]

\[\text{Vol(} \Pi_0 \text{)} = \int_{\Pi_0} d\mu_{o,s,n_0} = \text{mult}_o \{ s = 0 \}; \]

note also that \(\pi(o) \) belongs to the corner locus of \(\ell \).

Finally, \(d\mu_{o,s,n_0} \) induces a measure \(d\mu_{o,s} \) on \(\Pi \supseteq \Pi_0 \) in the obvious way, which concludes the construction.

Remark 2.6. The atomic measure \(d\mu_{o,s} \) is an instance of the convexly derived measure from [5] (one may also treat the above “density function” \(\ell \) as a discrete version of the Hessian of \(\frac{\sqrt{-1}}{2\pi} \log |s| \)). The “mass concentration” concept of [5] will be used further to obtain intrinsic (bi) rational invariants of \(X \).

2.7. Rational maps: tropicalization. Let \(Y \subset \mathbb{P}^n \) be another hypersurface, similar to \(X \), with the maximal dual complex \(\Pi^Y \), projection \(\pi^Y : Y \to \Pi^Y \), etc. defined verbatim for \(Y \). Assume also that there exists a rational symplectic map \(\phi : Y \to X \). Then the constructions in 2.1 and 2.3 yield a map \(\Phi : \Pi^Y \to \Pi^X \), given by some PL functions with \(\mathbb{Z} \)-coefficients \(^3 \) so that the following diagram commutes:

(2.8)

\[Y \xrightarrow{\phi} X \]

\[\pi^Y \downarrow \quad \downarrow \pi^X \]

\[\Pi^Y \quad \Phi \quad \Pi^X. \]

Note that \(\Phi \) need not necessarily be a map of simplicial complexes.

\(^3\) We use the notation \(\Pi^X =: \Pi \) and \(\pi^X := \pi \) in what follows.
The following lemma describes Φ as a map of measure spaces:

Lemma 2.9. There exists a positive number $\delta_\phi \in \mathbb{Z}$, depending only on ϕ, such that $\Phi^* \pi_*^X \Omega^{n-1} = \delta_\phi \pi_*^Y \Omega^{n-1}$.

Proof. We have

$$\pi_*^Y \phi^* \Omega^{n-1} = \delta_\phi \pi_*^Y \Omega^{n-1}$$

for some real $\delta_\phi > 0$ (cf. Definition 1.2). Now, since ϕ is the restriction of a rational self-map of \mathbb{P}^n (see 1.1), it follows from 2.1 and (2.8) that $\pi_*^Y \Omega^{n-1}$ (resp. $\Phi^* \pi_*^X \Omega^{n-1}$) coincides with the measure induced by the standard one $dy_1 \wedge \ldots \wedge dy_n$ on \mathbb{R}^n (resp. by $dl_1 \wedge \ldots \wedge dl_n$ for some piecewise linear functions $l_i = l_i(y)$ with \mathbb{Z}-coefficients). It remains to observe that $dl_1 \wedge \ldots \wedge dl_n = \delta_\phi dy_1 \wedge \ldots \wedge dy_n$ by construction. \Box

3. **Proof of Theorem 1.5**

3.1. **The entropy.** Let $\Pi \subset \mathbb{R}^n$ be a simplicial complex with the standard Borel measure $d\mu$. Fix some real number $M > 0$ and consider various measures $d\mu_\ell$ on Π, supported at the corner locus of PL functions ℓ, such that $\int_\Pi d\mu_\ell \leq M$. Let $S := S(\Pi, M)$ be the set of all such measures (aka functions).

Further, given an integer $N > 0$ the measure space $(\Pi, N d\mu) := \Pi_N$ may be regarded as $\Pi \subset \mathbb{R}^{Nn}$, embedded diagonally, with the measure being $d\mu_N := \sum_{i=1}^N \pi_i^* d\mu$ for the ith factor projections $\pi_i : \mathbb{R}^{Nn} \to \mathbb{R}^n$. The affine structure on Π_N is defined by the functions $\sum_{i=1}^N \pi_i^* \ell_i$ for various PL ℓ_i. Note that

$$\frac{1}{N} \int_{\Pi_N} \sum_{i=1}^N \pi_i^* (d\mu_\ell_i) \leq M,$$

i.e. $\frac{1}{N} \sum_{i=1}^N \pi_i^* (d\mu_\ell_i) \in S$, provided $d\mu_\ell_i \in S$ for all $1 \leq i \leq n$.

Define the measures $d\mu_\ell^N$ on $\Pi_N \subset \mathbb{R}^{Nn}$ and the set $S(\Pi_N, M) \ni \frac{1}{N} d\mu_\ell^N$ similarly as above. Let also

$$C := \sup_{\ell \in S(\Pi_N; M), N} \frac{1}{N} \int_{\Pi_N} d\mu_\ell^N. \quad (3.2)$$

4) Here Φ^* is defined with respect to the (limiting) affine structure on Π induced from the complex one on X (cf. 2.1).
Proposition 3.3. There exists a number \(\text{ent}(d\mu, S) < \infty \), depending only on \(d\mu \) and \(S \), such that \(C = \text{ent}(d\mu, S)M \).

Proof. After normalizing we may assume that \(M = 1 \). Let us also assume for transparency that \(\Pi \) is a simplex.

All measures \(\frac{1}{N} d\mu_s^n \) can be identified with points (mass centers) in the dual simplex \(\Pi^* \subset \mathbb{R}^n \) (compare with the proof of [5, 4.4.A]). Let \(\mathcal{H}_{\mu, S} \subseteq \Pi^* \) be the convex hull of this set. Then

\[
\int_{\Pi} \cdot : \mathcal{H}_{\mu, S} \rightarrow \mathbb{R}_{\geq 0}
\]

is a bounded \((\leq 1)\) linear functional. By definition we obtain \(C = \max_{\mathcal{H}_{\mu, S}} \int_{\Pi} \cdot =: \text{ent}(d\mu, S) \) and the result follows. \(\square \)

Remark 3.4. The constant \(C = C^X \) resembles the value of logarithmic rate decay function at \(d\mu \) (see e.g. [7, Lecture 4]). This suggests \(C \) to be equal the “Boltzmann entropy” and the estimate \(C^Y \geq C^X \) in the setting of 2.7 (compare with [4, p. 7]).

In fact, taking \(d\mu_s := d\mu_{o,s} \) for various \(s \) as in 2.3, we will apply this probabilistic reasoning to (birational) geometry of \(X \) (see below).

3.5. The estimate. Let \(\Phi : \Pi^Y \rightarrow \Pi^X \) be as in 2.7. Although \(\Phi \) need not preserve the simplicial structures, we still can find a pair of \(k \)-simplices \(\Pi^X_0 \subseteq \Pi^X \) and \(\Pi^Y_0 \subseteq \Pi^Y \), \(1 \leq k \leq n \), such that \(\Phi(\Pi^Y_0) = \Pi^X_0 \).

Identify both \(\Pi^X_0 \) and \(\Pi^Y_0 \) with a simplex \(\Pi \), carrying two (Borel) measures \(d\mu \) and \(\delta_0 d\mu \), induced by \(\pi^Y_0 \Omega^{n-1} \) and \(\Phi^* \pi^X_0 \Omega^{n-1} \), respectively (see Lemma 2.9).

Let us assume from now on that \(S := S_X \) consists of PL functions \(\ell \), obtained from various sections \(s = \pi^X \ell \in \mathcal{M} \) and mobile linear systems \(\mathcal{M} \subseteq |L \otimes N| \), so that \(d\mu_\ell = \frac{1}{N} d\mu_{o,s} \) for some \(o \in X \) satisfying \(\pi(o) \in \Pi \) (see 3.1 and (2.5)). It follows from 2.7 that \(M \) in 3.1 can be assumed to coincide with the mobility threshold \(M^X := m_X(L; o) \) (cf. 1.1). Same considerations apply to \(Y \), with \(S_Y, M^Y := m_Y(L; o) \), etc.

Lemma 3.6. In the previous setting, we have \(\text{ent}(d\mu, S_X) = 1 \), and similarly for \(S_Y \).

Proof. This follows from 3.2 (cf. Proposition 3.3), definition of \(m_X \) (cf. 2.5), and the fact that \(\pi^X_0 \Omega^{n-1} = d\mu \) on \(\Pi = \Pi^X_0 \) (see 2.1). \(\square \)

Proposition 3.7. For every \(\ell \in S(\Pi, M^X) \), we have \(d\mu_{\Phi_\ell} = d\mu_{\tilde{\ell}} \), where \(\tilde{\ell} \in S(\Pi, M^Y) \).
Proof. It follows from (2.5) and Lemma 2.4 that
\[\int_{\Pi} \Pi d\mu = \frac{1}{N} \int_{\Pi} \Pi d\mu_{o,s} = \frac{1}{N} \int_{U} dm_{o,s} = \frac{1}{N} \int_{U\setminus Z} dm_{o,s} \]
for any closed subset $Z \subseteq U$. Recall that the rational transform ϕ^{-1} is naturally defined as a member of the mobile linear system $\phi^{-1}M$. In particular, if ϕ is a morphism over $U \setminus Z$, then
\[\int_{\phi^{-1}(U\setminus Z)} dm_{o,\phi^{-1}s} = \text{mult}_{o}\{\phi^{-1}s = 0\} \]
This $\phi^{-1}s$ defines a PL function ℓ as earlier and we have
\[\int_{\Pi} d\mu_{\phi \cdot \ell} = \int_{\Pi} d\mu_{\ell} \]
(cf. (2.8)). The identity $d\mu_{\phi \cdot \ell} = d\mu_{\ell}$ follows and $\ell \in S(\Pi, M^{Y})$ by construction.

□

Let $C := M^{Y}$ be as in Proposition 3.3 (ent$(d\mu, S)$ = 1 by Lemma 3.6) and δ_{ϕ} as in Lemma 2.9. Then it follows from Proposition 3.7 (cf. Remark 3.4) that
\[C \delta_{\phi} = \sup_{\ell \in S(\Pi_{N}, M^{Y}), N} \frac{1}{N} \int_{\Pi_{N}} \delta_{\phi} d\mu_{\ell}^{N} \geq \sup_{\ell \in S(\Pi_{N}, M^{X}), N} \frac{1}{N} \int_{\Pi_{N}} \delta_{\phi} d\mu_{\phi \cdot \ell}^{N} = \]
\[= \sup_{\ell \in S(\Pi_{N}, M^{X}), N} \frac{1}{N} \int_{\Pi_{N}} \Phi^{\ast} d\mu_{\ell}^{N} = \text{ent}(\delta_{\phi} d\mu, S)M^{X} \]
(the last equality is due to the projection formula $\Phi^{\ast} d\mu = \delta_{\phi} d\mu$ and the change of variables in \int). Finally, since ent$(\delta_{\phi} d\mu, S) = \delta_{\phi} \text{ent}(d\mu, S)$, we conclude that $M^{Y} \geq M^{X}$.

4. SOME EXAMPLES AND APPLICATIONS

4.1. Soft. Setting $Y := \mathbb{P}^{n-1} = (x_{n} = 0)$ we arrive at the following immediate

Corollary 4.2. Suppose X in Theorem 1.5 is symplectically unirational. Then there exists a point $o \in X$ such that $m_{X}(L; o) = 1$.

Proof. It suffices to prove that $m_{X} \geq 1$. This is done by considering the projection $X \rightarrow \mathbb{P}^{n-1}$ from o and observing that the linear system $|\sigma^{\ast}L - a\Sigma|$ is mobile for some $a \geq 1$ (cf. 1.1).

5) There is a slight abuse of notation here — o denotes a point in both X and Y.

8
Suppose X is a quadric. Although we do not know whether X is symplectically unirational (cf. Example 1.3), it is obviously rational, and Corollary 4.2 confirms that $m_X = 1$ in this case (the latter equality can actually be proved directly by considering families of lines on X as in Example 1.4).

Remark 4.3. It would be interesting to find out whether any birationally isomorphic hypersurfaces X and Y as in Theorem 1.5 always have $m_X(L; o) = m_Y(L; o')$ for some points o and o'. It should also be possible to generalize all our considerations to the case of any smooth X and Y.

Let us proceed with non-trivial examples distinguishing ordinary unirationality from the symplectic one.

4.4. Hard. Suppose $\deg f = 3$ (i.e. X is a cubic). It is a classical fact that X is unirational (see e.g. [10, Chapter 3, Corollary 1.18]). Fix a point $o \in X$. We may assume that $o = [1 : 0 : \ldots : 0]$, and hence $f = q_1 + q_2 + q_3$ in the affine chart ($x_0 \neq 0$), where $q_i = q_i(x_1, \ldots, x_n)$ are forms of degree i. Arguing as in [18, Section 1] we obtain that q_1 and q_2 are coprime. Thus the linear system $\mathcal{M} \subset |2L|$ spanned by q_1^2 and q_2 is mobile. We conclude that $m_X \geq 3/2$, since $\text{mult}_o \mathcal{M} = 3$ (cf. 1.1), and so X is not symplectically unirational by Corollary 4.2.

Now assume only that X is smooth (cf. Remark 1.3). Then it is possible to find a (Eckardt) point $o \in X$ for which $m_X(L; o) = 1$ (see [10, Chapter 5]). It would be interesting to study whether such cubics are symplectically unirational.

Further, consider the case $\deg f = 4 = n$, assuming again that the quartic X is just smooth. Note that it is still unknown whether any such X is unirational.\footnote{Recall that initially in 1.3 these hypersurfaces were assumed generic.}\footnote{Although a smooth quartic hypersurface X is unirational when $n > 4$ (see [9, Corollary 3.8]).}

Here is a classical unirational example after Segre (cf. [12, 9.2]):

$$X = (x_0^4 + x_0x_4^3 + x_1^4 - 6x_1^3x_2^2 + x_2^4 + x_3^4 + x_3^3x_4 = 0).$$

We claim that $m_X(L; o) = 1$ for some $o \in X$. Indeed, take the hyperplane $\Pi := (x_1 - \alpha x_2 = 0)$, where $\alpha := \sqrt{3 + 2\sqrt{2}}$. Then $X \cap \Pi$ is a cone in \mathbb{P}^3 given by the equation $x_0^4 + x_0x_4^3 + x_1^4 + x_3^3x_4 = 0$. We take o to be the vertex of this cone.
At the same time, if X is generic, then one can show that $m_X \geq \frac{3}{2}$ by exactly the same argument as in the cubic case. Thus again symplectic version of the unirationality problem for X is settled here.

Acknowledgments. I am grateful to John Christian Ottem for valuable comments. The work was carried out at the Center for Pure Mathematics (MIPT) and supported by the State assignment project FSMG-202-0013.

References

[1] I. Cheltsov and I. Karzhemanov, Halphen pencils on quartic threefolds, Adv. Math., 223 (2010), 594 – 618.
[2] B. Gammage and V. Shende, Mirror symmetry for very affine hypersurfaces, Acta Mathematica, 229 (2022), no. 2, 287 – 346.
[3] M. Gromov, Convex sets and Kähler manifolds, in Advances in differential geometry and topology, 1 – 38, World Sci. Publ., Teaneck, NJ.
[4] M. Gromov, In a Search for a Structure, Part 1: On Entropy, https://www.ihes.fr/gromov/category/expository/.
[5] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13 (2003), no. 1, 178 – 215.
[6] M. Gromov, Metric invariants of Kähler manifolds, in Differential geometry and topology (Alghero, 1992), 90 – 116, World Sci. Publ., River Edge, NJ.
[7] M. Gromov, Six lectures on Probability, Symmetry, Linearity, https://www.ihes.fr/gromov/category/expository/.
[8] M. Gromov, Spectral geometry of semi-algebraic sets, Ann. Inst. Fourier (Grenoble), 42 (1992), no. 1-2, 249 – 274.
[9] J. Harris, B. Mazur and R. Pandharipande, Hypersurfaces of low degree, Duke Math. J., 95 (1998), no. 1, 125 – 160.
[10] D. Huybrechts, The geometry of cubic hypersurfaces, Lecture notes at the University of Bonn, 2019, available at http://www.math.uni-bonn.de/people/huybrech/Notes.pdf.
[11] V. A. Iskovskikh, On the rationality problem for algebraic threefolds, Proc. Steklov Inst. Math., 218 (1997), 186 – 227.
[12] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.), 86 (1971), no. 128, 140 – 166.
[13] I. Karzhemanov, Around the uniform rationality, Preprint arXiv:1812.03427v1 (2018).

8) It is proved in [13, A.24] that in fact $m_X = \frac{3}{2}$.
[14] P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), no. 2, 269 – 291.

[15] G. Mikhalkin, Decomposition into pairs - of - pants for complex algebraic hypersurfaces, Topology, 43 (2004), no. 5, 1035 – 1065.

[16] J. Nicaise and J. S. Ottem, Tropical degenerations and stable rationality, Duke Math. J., 171 (2022), no. 15, 3023 – 3075.

[17] Questions in Algebraic Geometry, MSRI notes, 2009, available at www-personal.umich.edu/~ereman/Papers/Questions2.pdf.

[18] A. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math., 134 (1998), 401 – 426.

[19] H. Ruddat et al., Skeleta of affine hypersurfaces, Geom. Topol., 18 (2014), no. 3, 1343 – 1395.

[20] W. P. Thurston, Three - dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997.

[21] K. Zainoulline, Degree formula for connective K - theory, Invent. Math., 179 (2010), 507 – 522.

Laboratory of AGHA, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

E-mail address: karzhemanov.iv@mipt.ru