Estrous responses synchronized by a combination of PGF2α and GnRH hormones in Sapera goat

A Hafid A1, A Anggraeni1, F A Pamungkas1, R G Sianturi1, D A Kusumaningrum1, A B L Ishak1 and A N Mukhlisah2

1Indonesian Research Institute for Animal Production, PO BOX 221 Bogor 16720
2Faculty of Animal Science and Fisheries, Sulawesi Barat University, Majene, Indonesia

E-mail: anitahafid1@gmail.com

Abstract. Estrous synchronization can uniformity of mating and kidding to a population of dairy goat females. The objective of this study was to evaluate response, duration and onset of estrous of Sapera does synchronized by PGF2α and PGF2α combined with GnRH hormones. Study used 16 Sapera does at the ages of one year old after reaching sexual maturity at average body weights of 26.52±2.51 kg (22.4–32.5 kg). Synchronization treatments were conducted for two different injections. Group one was injected two times of PGF2α within 11 day interval. While group two was injected by GnRH on the 9th day after the 1st injection PGF2 α and before the 2nd injection of this hormone within 11 day interval. Estrous observation was evaluated every three hours for four days after the 2nd PGF2α injection. Estrous characteristics were based on behaviour and vulva condition of animals. The result revealed that the two groups of PGF2α vs PGF2α + GnRH hormones gave significantly differences (P<0.05) to the responses of estrous (62.50 vs 100%), duration of estrous (18.75 hrs vs 33.75 hrs) and onset of estrous (25.13 hrs vs 3.00 hrs). The conclusion was that PGF2α + GnRH combination presented more effective synchronization results as indicated by better response, duration and onset of estrous in Sapera goat.

1. Introduction
Estrous synchronization is an important effort for management efficiency of livestock production. Estrous synchronization will synchronize the onset of behavioral symptoms of estrous and ovulation in livestock by manipulating reproductive organs using the hormone. The principle of estrous synchronization is to prolong or shorten the life span of the corpus luteum (CL) or the luteal phase. Through the estrous synchronization we will be knowing the onset, duration and response of estrous.

There are many ways to estrous synchronization such as using Controlled Internal Drug Release (CIDR) [1,2], combined progesterone and Equine Chorionic Gonadotropin [3,4], sponge progesterone [5]. The other method of synchronizing estrous by shortening the luteal phase is usually using a prostaglandin hormone (PGF2α) by lysing CL so that estrous occurs. Hormones which often used for synchronization are progesterone, gonadotropin releasing hormone (GnRH) and prostaglandin, or combination of GnRH and prostaglandin [6]. There are two ways to apply the estrous induce by PGF2α. The first is single injection and the second is double injection. The single injection is effectively used when the estrous cycle had been known on the luteal phase with having the functional CL, while double injection can be applied either on the follicular phase or luteal phase [7].
Estrous synchronization using GnRH and PGF2α has been reported in several animals, such as in dairy cows [8–12], beef cows [13–15], jennies [16], beef heifers [17], ongole crossbred [18], and goat [6]. Nevertheless it has not been widely reported the using GnRH and PGF2α for synchronization in dairy goat. Therefore this study was conducted to determine the estrous response of Sapera goats after being injected with PGF2α and GnRH.

2. Material and methods

2.1. Animal

The research was conducted in the small ruminant pen, Indonesian Research Institute for Animal Production, Ciawi. The materials used in this study were 16 Sapera goat. All goat aged 1 year after reaching sexual maturity, with an average body weight of 26.52±2.51 kg (22.4–32.5 kg).

2.2. Synchronization treatments

Synchronization treatments were conducted for two different injections. The goats divided into two groups of treatment. Group one was injected two times of PGF2α within 11 days interval. While group two was injected by GnRH on the 9th days after the 1st injection PGF2α and before the 2nd injection of this hormone within 11 days interval (figure 1). The dosage of PGF2α used was 1 mL (Lutalyse®), while GnRH used was 0.25 mL.

![Figure 1. Timeline of hormone injection](image)

2.3. Estrous and physiological observation

The estrous observation was evaluated every three hours for four days after the 2nd PGF2α injection. Estrous characteristics were based on the behavior and vulva condition of animals. The pulse frequency and the body temperature were evaluated once a day at 3 pm. The pulse frequency was calculated using stethoscope for a minute. While the measurement of body temperature consisted of rectal and vulva using thermometer digital.

2.4. Statistical analysis

The estrous observation, body temperature, and pulse frequency was analysed using one-way analysis of variance (ANOVA). The model used was as follows:

\[Y_{ij} = \mu + T_i + \epsilon_i \]

\(Y_{ij} \): Observation
\(\mu \): Population mean
\(T_i \): The effect of administration GnRH
ε_ij : Residual error
Differences were considered significant at $P<0.05$.

3. Results and discussion

3.1. Estrous observation

Based on the results of the study, it was found that the estrous response tended to be higher for injection of the PGF2α hormone with GnRH compared to PGF2α only. The mean response to estrous (%), duration and onset of estrous (hour) following injection PGF2α + GnRH and PGF2α only are presented in table 1.

Table 1. Estrous observation.

Group	Response to estrous (%±SD)	Estrous duration (average in hour±SD)	Estrous onset (average in hour±SD)
PGF2α+GnRH	(100.00±0.00)a	(33.75±3.11)a	(3.00±0.00)a
PGF2α	(62.50±51.75)b	(18.75±16.10)b	(25.13±20.90)b

a,b Different letter in the same column shows differ significantly ($P<0.05$).

The working principle of the prostaglandin F2 alpha (PGF2α) hormone is regressing the corpus luteum resulting in levels the progesterone hormone produced will decrease so that it will have an impact on the increase FSH hormone and will stimulate the development of the follicles until they mature and on eventually will cause the estrous. The administration of PGF2α in the middle of the luteal phase caused luteolysis within a few hours so that the progesterone levels decreased and estrogen levels increased which stimulated the anterior pituitary to release Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH), which cause the development and maturation of the follicle, leading to estrous and ovulation.

The goats used in this study were one year old and had just reached the sexual maturity for the first time. So the hormonal regulation will be optimal when administrated the GnRH. The injection of GnRH before the second injection of PGF2α will stimulate to induce maturation of follicle. Elevated GnRH essential for initiating the follicular phase of the estrous cycle. GnRH stimulate release of FSH and LH causing growth and development of ovarian follicles. FSH doesn’t surge with the same magnitude as LH. When estrogen reaches a threshold level (peak), the preovulatory surge of LH occurs, causing estrous response and inducing ovulation [19].

These findings are supported by previous studies, Ataman and Akoz [20] reported that using GnRH and PGF2α are effective for estrous synchronization in sheep. Ruediger et al [21] also reported that the administration of a second dose of GnRH in beef cattle either 24 or 48 hours after PGF2α resulted in 47.7 and 44.9 % pregnancy after TAI.

3.2. Physiological observation

The body temperature every day after the second injection of PGF2α are shown in table 1. There is no significant difference of the goats body temperature neither injection PGF2α nor PGF2α + GnRH (table 2).

Table 2. The body temperature per day after the second injection of PGF2α.

Group	Rectal	Vulva
PGF2α+GnRH	39.05±0.20	38.6±0.58
PGF2α	38.43±0.45	37.56±1.32

NS: Not Significant ($P>0.05$)
The estrous cycle can affect the tissue vascularization and blood flow, it will affect the heat of the body [21]. The duration of estrous in this study shows until 33 hours but it doesn’t show the difference of the heat of the body. While the observation of the pulse frequency shows there is a significant difference in day 2 after the second injection of PGF2α (table 3).

Table 3. The pulse frequency after the second injection of PGF2α.

Group	Pulse frequency			
	Day 1	Day 2	Day 3	Day 4
PGF2α+GnRH	57.62±3.29a	59.37±5.42a	53.25±1.58a	55.75±5.11a
PGF2α	57.12±6.87a	53.00±1.60b	52.62±2.66a	55.25±3.80a

*Different letter in the same column shows significantly different (*P*<0.05)

4. Conclusion
PGF2α+GnRH combination presented more effective synchronization results as indicated by better response, duration and onset of estrous in Sapera goat.

References
[1] Rosasco S L, Beard J K, Hallford D M and Summers A F 2019 Evaluation of estrous synchronization protocols on ewe reproductive efficiency and profitability *Anim. Reprod. Sci.* **210** 106191
[2] Gore D L M, Mburu D L M, Okeno T O and Muasya T K 2020 Short-term oestrous synchronisation protocol following single fixed-time artificial insemination and natural mating as alternative to long-term protocol in dairy goats *Small Rumin. Res.* **192** 106207
[3] Husein M Q and Kridli R T 2005 Effect of Progesterone prior to GnRH-PGF2 alpha Treatment on induction of estrus and pregnancy in anoestrous Awassi Ewes *Reprod. Domest. Anim.* **38** 228–32
[4] Chenault J R, Boucher J F, Dame K J, Meyer J and Wood-Follis S L 2003 Intravaginal progesterone insert to synchronize return to estrus of previously inseminated dairy cows *J. Dairy Sci.* **86** 2039–49
[5] Adiati U, Kusumaningrum D A and Priyanto D 2007 Penyeraentakan berahi dengan progesteron dalam spon pada ternak domba di kabupaten Cianjur *Seminar Nasional Teknologi Pernikahan dan Veteriner* (Jember: Kementrian Pertanian Republik Indonesia)
[6] Titi H H, Kridli R T and Alnimer M A 2008 Estrus synchronization in sheep and goats using combination of GnRH, Progesterone and Prostaglandin F2α *Reprod. Dom. Anim.* **45** 594–99
[7] Hafiez B and Hafiez E S E 2000 *Reproduction in Farm Animals* 7th edition (USA: Lippincott Williams & Wilkins)
[8] Stevens R D, Seguin B E and Momont H W 1993 Simultaneous injection of PGF2α and GnRH into diestrous dairy cows delays return to estrus *Theriogenology* **39** 373–80
[9] Momcilovic D, Archbald F L, Walters A, Tran T, Kelbert D, Risco C and Thatcher W W 1998 Reproductive performance of lactating dairy cows treated with gonadotrophin-releasing hormone (GnRH) and/or prostaglandin F2α (PGF2α) for synchronization of estrus and ovulation *Theriogenology* **50** 1131–9
[10] Pursley J R, Mee M O and Wiltbank M C 1995 Synchronization of ovulation in dairy cows using PGF2α and GnRH *Theriogenology* **44** 915–23
[11] Fricke P M, Guenthalter J N and Wiltbank M C 1998 Efficacy of decreasing the dose of GnRH used in a protocol for synchronization of ovulation and timed AI in lactating dairy cows *Theriogenology* **50** 1275–84
[12] Liu T C, Chiang C F, Ho C T and Chan J P W 2018 Effect of GnRH on ovulatory response after luteolysis induced by two low doses of PGF2α in lactating dairy cows *Theriogenology* **105** 45–50
[13] Fernandes P, Teixeira A B, Crocci A J and Barros C M 2001 Timed artificial insemination in beef cattle using GnRH agonist, PGF2 alpha and estradiol benzoate (EB) *Theriogenology* **55** 1521–32

[14] Barros C M, Moreira M B P, Figueiredo R A, Teixeira A B and Trinca L A 2000 Synchronization of ovulation in beef cows (bos indicus) using GnRH, PGF2alpha and Estradiol benzoate *Theriogenology* **53** 1121–34

[15] Dejarnette J M, Wallace R W, House R B, Salveson R R and Marshall C E 2001 Attenuation of premature estrous behavior in postpartum beef cows synchronized to estrus using GnRH and PGF2alpha *Theriogenology* **56** 493–501

[16] Fanelli D, Tesi M, Rota A, Beltramo M, Camillo F and Panzani D 2019 Studies on the use of Prostaglandin F2alpha and Gonadotropin-releasing hormone analogs for timed artificial insemination in Jennies *J. Equine Vet. Sci.* **74** 36–41

[17] Ratzburg K, Jorgensen-Muga K, Murugesan J, Kastelic J, Kasimanickam V and Kasimanickam R 2020 Presynchronization with CIDR, with or without GnRH, prior to CO-Synch in beef heifers *Theriogenology* **146** 80–7

[18] Astuti P, Airin C M, Widiyanto S, Sarmin S, Hana A, Maheshwari H and Sjahfirdi L 2019 Estrus synchronization using Prostaglandin F2alpha (PGF2alpha) and Gonadotropin-Releasing Hormone in Ongole crossbred *International Conference on Veterinary, Animal, and Environmental Sciences* (Banda Aceh: 1st ICVAES)

[19] Senger P L 2012 Pathways to Pregnancy and Parturition 3rd (USA: Current Conceptions., Inc)

[20] Ataman M B and Akoz M 2006 GnRH-PGF2alpha and PGF2alpha-PGF2alpha synchronization in Akkaraman cross-bred sheep in the breeding season *Bull Vet Inst Pulawy* **50** 101–4

[21] De Ruediger F R, Yamada P H, Barbosa L G B, Chacur M G M, Ferreira J C P, Carvalho N A T, Soriano G A M, Codognoto V M and Oba E 2018 Effect of estrous cycle phase on vulvar, orbital area and muzzle surface temperatures as determined using digital infrared thermography in buffalo *Anim. Reprod. Sci.* **197** 154–61